EPA-660/2-75-007
APRIL 1975
                         Environmental Protection Technology Series
Water  Quality Effect of  Diking
a  Shallow  Arid-Region  Lake
                                       National Environmental Research Center
                                         Office of Research and Development
                                        U.S. Environmental Protection Agency
                                                Corvallis, Oregon 97330

-------
                      RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development,
U.S. Environmental Protection Agency, have been grouped into
five series.  These five broad categories were established to
facilitate further development and application of environmental
technology.  Elimination of traditional  grouping was consciously
planned to foster technology transfer and a maximum interface in
related fields.  The five series are:

          1.   Environmental Health Effects Research
          2.   Environmental Protection  Technology
          3.   Ecological  Research
          4.   Environmental Monitoring
          5.   Socioeconomic Environmental  Studies

This report has been assigned to the ENVIRONMENTAL PROTECTION
TECHNOLOGY STUDIES series.  This series  describes research
performed to develop and demonstrate instrumentation, equipment
and methodology to repair or prevent environmental degradation from
point and non-point sources of pollution.  This work provides the
new or improved technology required for the control and treatment
of pollution sources to meet environmental  quality standards.
                         EPA REVIEW NOTICE

 This  report has  been  reviewed  by the Office of Research and
 Development, EPA,  and approved for publication.  Approval does
 not signify that the  contents  necessarily reflect  the views and
 policies  of the  Environmental  Protection Agency, nor does mention
 of trade  names or  commercial products  constitute endorsement or
 recommendation for use.

-------
                                              EPA-660/2-75-007
                                              April  1975
             WATER QUALITY EFFECT OF

        DIKING A SHALLOW ARID-REGION LAKE
                        By

       Dean K.  Fuhriman, LaVere  B.  Merritt,
     Jerald S. Bradshaw and  James  R.  Barton
                Grant No. R-801400

              Program Element  1BB045
               ROAP 21-ACC, Task 10
                 Project Officer

                 Lowell  E.  Leach
Robert S.  Kerr Environmental Research  Laboratory
     National  Environmental Research Center
                 P.  0.  Box 1198
             Ada,  Oklahoma  78420
      NATIONAL ENVIRONMENTAL  RESEARCH CENTER
        OFFICE OF RESEARCH AND  DEVELOPMENT
      U.  S.  ENVIRONMENTAL PROTECTION AGENCY
              CORVALLIS, OREGON  97330
            For Sale by the National Technical Information Service
            U.S. Department of Commerce, Springfield, VA 2215!

-------
                               ABSTRACT

The inflow, outflow, and in-lake water quality and quantity of Utah Lake
in Central Utah was studied over a 36-month period.  The work was under-
taken to determine the effect of a proposed diking project on the
quality and quantity of lake water and to develop methodology for de-
termining the effect of diking or other management practices on the
quality of water in any lake system.

A computer simulation model was developed which is able to analyze the
effect of a given management program on the water quality of the lake,
particularly as related to the "conservative salts" present.  The
simulation model was also used to evaluate the evaporation from the lake
by use of a salt balance technique.

Results of the research indicate that the diking of Utah Lake will have
a positive beneficial effect upon the water quality of the lake and will
also result in considerable saving of water and reclamation of valuable
land.

This report was submitted in fulfillment of Project Number 16080 and
Grant Number R-801400 by Brigham Young University under the partial
sponsorship of the Environmental Protection Agency.  Work was completed
as of June 24, 1974.
                                   11

-------
                               CONTENTS

                                                                   Page
Abstract                                                             i1
List of Tables                                                       v
Acknowledgements                                                     V1
Sections
      I  Conclusions                                                 1
     II  Recommendations                                             2
    III  Introduction                                                3
     IV  Description of Utah Lake                                    6
      V  Diking Plans for Utah Lake                                  9
     VI  Collection of Data                                          12
    VII  Analysis of Data                                            14
   VIII  Computer Simulation                                         34
     IX  Discussion of Results                                       37
      X  References                                                  ^5
     XI  List of Inventions and Publications      .                   49
    XII  Appendix A - Basic Data Collected                           53
   XIII  Appendix B - LKSIM—Water Quality Simulation
            Model for Shallow Lakes                                  99

-------
                                FIGURES

No.                                                                Page
1.  Map showing location of Utah Lake and Jordan River               7
2.  Map of Utah Lake showing proposed diking of Goshen Bay and
       Provo Bay                                                    10
3.  Graph showing simulated and observed concentration of
       sodium ions in Utah Lake - July 1970 to July 1973            40
4.  Graph showing simulated and observed concentration of
       chloride ion in Utah Lake - July 1970 to July 1973           41
5.  Graph showing simulated and observed concentration of
       total dissolved solids in Utah Lake - July 1970 to
       July 1973                                                    42
6.  Map of Utah Lake showing sampling stations                      54
7.  Map showing location of tributary stations                      55
                                   IV

-------
                                TABLES
No.
1.  Utah Lake Surface Tributary Inflows, 1970-71                   16-17
2.  Utah Lake Surface Tributary Inflows, 1971-72                   18-19
3.  Utah Lake Surface Tributary Inflows, 1972-73                      20
4.  Water Budget Analysis, Utah Lake, 1970-71                         30
5.  Water Budget Analysis, Utah Lake, 1971-72                         31
6.  Calculated Evaporation from Utah Lake  and Evaporation
       from Pan at Lehi, July 1970-September 1972                    32
7.  Water Budget Analysis, Utah Lake, 1972-73                         33
8.  Summary of Simulation Results - Utah Lake  as  at Present          38
9.  Summary of Simulation Results - with Dikes on Provo Bay
       and Goshen Bay                                                43

-------
                       ACKNOWLEDGEMENTS

Many individuals have had important roles in carrying out the research
program reported herein.   The authors wish to acknowledge with thanks
the contribution of the following graduate students of Brigham Young
University, Provo, Utah,  who have provided significant assistance in
collecting and analyzing the data:  Harold Stock, Elwood Loveridge,
David Pratt, Eric Loveless, James Riley, James D. Nelson, Bruce Sundrud,
David Tillman, Mark Morrison, Lynn Kennison, Paul Daniels, Allon Owen,
and Coleman McVea.  Advice and general assistance of Professors David
White and Sheril Burton are gratefully acknowledged.

The cordial cooperation and material  assistance of the U. S.  Bureau  of
Reclamation in providing data, maps,  measuring equipment, and engineer-
ing instruments to assist in gathering data has been a significant
factor in accomplishing the work reported herein.  The assistance of
Bureau of Reclamation personnel—Palmer DeLong, Provo Area Office
Director, Larry Fluharty, Gale Moore, and Robert White—has been
particularly helpful to the project.

Financial assistance of the Environmental Protection Agency and the
helpfulness of Project Officers Lowell Leach and Curtis Harlin has
been greatly appreciated.
                                  VI

-------
                               SECTION I   .
                              CONCLUSIONS

The diking of Utah Lake will  result in salvaging about 75,000 acre feet
of water per year.  It will  also improve  the water quality since concen-
trations of dissolved ions will be decreased significantly since much of
the water that would evaporate remains in the lake as "dilution" water.

The computer simulation model developed as part of this project may be
used to predict water quality improvements and quantity savings which
may result from diking of lakes at any location.  It may also be used
to investigate effects of many other water management alternatives in
water resource development.

The amount of evaporation from Utah Lake is greater than previous in-
vestigators have estimated.  The sub-surface spring inflow is also
greater than has been presumed in previous investigations.  Much of the
sub-surface inflow to the lake probably comes from deep strata contain-
ing warm highly-mineralized water that issues into the lake in areas of
geologic faulting.

The principles of salt balance incorporated into the simulation model
developed on this project provide a valuable tool in refinement of eva-
poration estimates by the water budget method.

-------
                              SECTION  II
                            RECOMMENDATIONS

The computer simulation model  developed on this project should  be  tested
at other locations to provide  a check  on the model  and to assist in  the
development of water resource  planning decisions.

The positive results of diking of Utah Lake—improvement of water
quality, savings of water, and reclamation of land  for other uses—are
such that investigations as to engineering and economic feasibility
should proceed.  Such investigations should include  (1) the relative
benefits and costs for each of the dikes considered separately  as  well
as together,  (2) evaluation of the numerous water  management policies
using the LKSIM model to determine the quantity and quality results  of
these policies,  (3) pre-treatment of  Provo Bay tributaries which  are
high in organic matter, phosphates or  nitrates, and  (4) dike design
features and construction methods that will preserve fish habitat  which
may be eliminated in the diking process.

-------
                               SECTION  III
                              INTRODUCTION

Natural  waters of arid regions are  subject  to  the  same  factors  which
cause deterioration of water quality in humid  regions—municipal,  in-
dustrial  and agricultural  waste pollution,  natural  pollution from  many
biological  processes,  and  excessive concentration  of phosphates and
nitrates.  In addition to  these universal problems,  arid  region waters
contain  great quantities of dissolved minerals--often in  such excessive
concentration that the water is unfit for many uses—and  the total
quantity of water available with which  any  contaminant may be diluted  is
often extremely limited.  Many of the dissolved minerals  in arid region
waters;  which are predominantly chlorides,  sulphates, and carbonates of
sodium,  potassium, calcium and magnesium; have existed at relatively
high concentrations since  long before man came upon the scene.   They are
present mainly because the watershed soils  of streams in  arid areas have
not been subjected to the  greater precipitation and natural leaching
which has been going on for centuries in humid areas.

Any process involving water use—whether it be natural  or purposeful,
beneficial  or wasteful, planned or inadvertent—results in leaving the
dissolved minerals as a residue in the  soils of the drainage basin or  in
the waters  of the basin, in increasingly greater concentrations.   Most
of the water "used" is taken from the waters of the basin by evaporative
processes.

Water lost  as evaporation  from lakes or artificial  storage reservoirs
usually serves no immediate beneficial  purpose and represents,  in  total,

-------
                                                 1*
a tremendous quantity of water.   In 1962, Meyers    estimated the total
evaporation losses from the fresh water areas of seventeen contiguous
western states as 23,641,000 acre-feet, or 7,703,420,000,000 gallons
(29,160 million cubic meters) annually.  This is enough water to provide
the irrigation water supply to about eight million acres (3.2 million
hectares) of land, or the domestic water supply for more than one
hundred million people.  The economic value of such lost water is stag-
gering.

The enormous quantity of water lost in evaporation from fresh water sur-
faces has attracted considerable attention from engineers and scientists,
especially in the water-short arid regions.  A great research effort has
been carried on over the past two decades to find means of reducing the
amount of evaporation losses.  A major part of the research effort has
been related to the development of a protective material to be applied
to the surface of the water which will act to reduce or suppress the
evaporation loss.  The magnitude of this research effort may be indicat-
ed by the fact that in 1973, the office of Water Resources Research
                                                          o
issued a 477-page bibliography on evaporation suppression.   In the 319
reports listed in the publication, studies were reported of various
methods of reducing evaporation from water surfaces, but no research was
reported in which the reduction of water surface area by any means was
considered.

If a lake or reservoir is relatively shallow over all or a significant
portion of its total area, it may be possible to materially reduce evap-
oration by reduction of the surface area.  Such is the case with Utah
Lake, located in Central Utah, where the surface area is large but the
lake is shallow.  Evaporation loss from this lake is equal to about one-
third of the total capacity and nearly one-half of the average annual
in-flow.  Plans for the diking of Utah Lake have been under consideration
 T
 Superscript numbers refer to literature cited in SECTION X of this
 report.

-------
for several years as a part of the Bonneville Unit of the U.S. Bureau
of Reclamation Central Utah Project.    The proposed diking of Utah Lake
would dike off two bays from the lake and reduce the surface area by
about one-third resulting in the saving of about 75,000 acre-feet
(925,500,000 cubic meters) of evaporation loss annually.  The research
reported herein represents an evaluation of the projected dikes as they
relate to the quality of the water in Utah Lake and describes the com-
puter model, LKSIM, that was developed to help evaluate the water
quality and quantity changes associated with diking.  This model was set
up to be flexible and versatile so that it might be readily applied to
other lake systems.

-------
                              SECTION IV
                       DESCRIPTION OF UTAH LAKE

Utah Lake is located in Central Utah and is the primary fresh water  lake
in the Jordan River drainage basin (See Figure 1).   Water is  stored  in
Utah Lake and then released into the Jordan River and irrigation canals
for use in the Salt Lake Valley.  Water flowing from Utah Lake which is
not diverted for irrigation terminates in the Great Salt Lake.  The
Great Salt Lake is a remnant of the Lake Bonneville of ancient times
which at one time covered 20,000 square miles (51,800 square  kilo-
meters) in northwestern Utah and had a depth of about 1000 feet (304.8
meters).  For a detailed description of the geology of Utah Lake and
the surrounding valley, the reader is referred to Hunt, Varnes and
      4            5
Thomas  and Bissell .

The area and volume of Utah Lake vary depending upon the lake level.
The control level is known as "compromise level," which represents a
near maximum level above which the lake does not often remain for any
extended period of time.  At "compromise level" the lake has  a surface
area of about 95,000 acres (38,446 hectares), a volume of storage equal
to 898,000 acre feet (1108 million cubic meters) and an average depth of
9.5 feet (2.88 meters), according to U.S. Bureau of Reclamation surveys
made between 1953 and 1962.  The lake level drops several feet each  year
during the hot summer months, when water is being used for irrigation
and when large amounts of water are being evaporated.  During periods of
drouth, the lake has decreased greatly in size and depth reaching a  rec-
ord level 12 feet (3.66 meters) below "compromise" after the great
drouth of 1934.

-------
                          Great Salt Lake
      STATE
         0 F
      UTAH
MILES
0      5
10     15     20
05   10   15  20   25   30
KILOMETERS
Figure  1-  Map  showing location of Utah Lake and  Jordan River

-------
The lake has a mud bottom throughout most of the lake, composed largely
of lake sediments of clay and silt.   The waters of the lake are often
turbid, since frequent winds on the  lake generate rather high waves
which stir up the bottom sediments and re-deposit them.   The usual  wind
direction is from the north, but south winds also occur at times.
During times of wind, in addition to the wave action which is generated,
a seiche is established with the water level at the leeward end of the
lake reaching a level of as much as two feet (0.61 meters) in elevation
above the water level at the windward end.  This fact causes some dif-
ficulty in evaluating the "change in lake storage" in "water-balance"
calculations.

There are about 51 streams of water in definite channels which flow in-
to Utah Lake during all or a substantial part of each year.  The Jordan
River represents the only natural outflowing stream, but there are
several locations where water is sometimes pumped from the lake for use
in irrigation.

A number of springs issue forth beneath the water surface of the lake.
These springs are generally of two types—either warm rather highly
mineralized waters, or cool waters of good quality.  The warm mineral
springs seem to issue from a geologic fault or faults extending across
the lake in a general north-south direction from Saratoga Resort on the
northwest shore of the lake to Lincoln Point.  The cool springs are
located mainly near the north and east shores of the lake and seem to
be similar in mineral content to well water from the shallow artesian
aquifer along the east and north shore of the lake.  The presence of
these under-water springs introduces some difficulty into the water
balance studies required to evaluate various water quality effects of
the lake.  The amount and quality of water from the springs in the lake
will be further discussed in SECTION VII.
                                    8

-------
                               SECTION V
                      DIKING PLANS FOR UTAH LAKE

Consideration of plans for diking of Utah Lake to curtail  the evapora-
tion by reducing the surface area of the lake date back many years.   In
1905, Swendsen  wrote of such consideration by the then newly-organized
Reclamation Service of the federal government.  The investigations in-
cluded the measurement of 33 inflowing tributaries to the lake over a
five-year period, limited studies of the underwater springs in the lake,
records of lake level fluctuations, and notes relating to the nature of
the bottom sediments along the lines of proposed dikes across the Provo
and Goshen Bays.  Considering the limited knowledge of the field of soil
mechanics and the relatively primitive earth moving equipment available,
it is not surprising that the conclusion was reached that the construc-
tion of the proposed dikes should not be undertaken at that time.

A plan to dike Provo and Goshen Bays is included in the Bonneville Unit
of the U.S. Bureau of Reclamation Service Central Utah Project.  Some
parts of this unit are already under construction.  The proposed dike
                                                  3
locations are shown  in Figure 2.  The present plan , calls for the
Goshen Bay land reclaimed by diking, to be used as a waterfowl refuge
and the Provo Bay land to be drained and used for agricultural purposes.
At compromise level, the Goshen Bay and Provo Bay dikes would reduce the
lake surface area by 26,776 acres (10,836 hectares) and 6,961 acres
(2817 hectares), respectively.  This represents a total area equal to
35.5 percent of the existing lake area.  Design details for the dikes
have not been completed, nor has a definite program date for construc-
tion been established.

-------
                                         Prove Bay
                                              Proposed Dikes
                                                       20 Statute Miles

                                                       •
                                                   30 Kilometers
Figure 2-  Map of Utah  Lake showing proposed  diking of Goshen

           Bay and  Provo Bay
                                 10

-------
The project reported herein was  planned  to  provide  information  relating
to the effect of the proposed  diking  upon  the  water quality of  the  lake,
and to develop methodology which could be  applied to other similar
projects which may exist at other locations.
                                      11

-------
                              SECTION VI
                          COLLECTION OF DATA

The task of collection of the data required to make the evaluations of
this study was a monumental one.   Fifty-one surface streams are tribu-
tary to Utah Lake.   The quantity  of flow in each of these streams
fluctuates with time, and it was  therefore necessary to install measur-
ing devices and make regular observations of the flow at frequent inter-
vals throughout the study period.   It was also necessary to obtain
samples for determination of quality parameters from the inflowing
streams, the outlet stream (the Jordan River) and at many points in the
lake.  This massive program of measurement, sampling, and chemical and
biological analyses of the samples was initiated in June 1970.   Some
scattered water quality data prior to that time was found and included
in the data tabulation of the project.  Most of the flow measurements
were made jointly by project personnel and the staff of the Provo River
Project office of the U.S. Bureau of Reclamation.  Most of the lake and
stream sampling and analyses during 1970-72 was done by the research
project staff.  Tributaries were measured at least weekly during the
summer months and less frequently during the winter.

The U.S. Geological Survey maintains regular water stage recorder
records on the Provo and Spanish Fork Rivers near their point of entry
into Utah Lake.  Their records were included in our project tabulations.
Effluent flow from the Geneva Steel works were furnished to our project
by the engineering staff of Geneva Steel Company.  Effluent data from
Provo, Orem, and American Fork sewage treatment works were provided by
the Utah State Department of Health, and effluents from other sewage

                                    12

-------
treatment works in the valley were included as part of the flow of
measured tributaries.

Information on lake levels was obtained from the water stage recorder
operated by the Jordan River Commissioner.

Precipitation records were compiled from regular U.S. Weather Bureau
stations in the valley and also from supplemental stations at several
locations established by the U.S. Bureau of Reclamation.  Evaporation
pan data for the U.S.  Weather Bureau station at Lehi were obtained from
the Weather Bureau.  Supplemental records during part of the study
period were obtained from temporary stations established by the U.S.
Bureau of Reclamation at the Provo Airport and at Dixon Farms, near the
south end of the lake.

Water quality data for under-water springs were derived from Harding ,
Subitzky8, Mundorff9, and Milligan, et. a!.10.

A listing of the lake and tributary water measurements  and sample
analyses made during the  investigation  is included  in Appendix A.  Some
water quality data from samples  taken over a  three-year period prior to
the beginning of this project are also  included  in  the  listing.
                                    13

-------
                              SECTION VII
                           ANALYSIS OF DATA
WATER BUDGET STUDIES
The hydrology of a lake may be studied in detail  by making a water bud-
get study.  This involves a quantitative determination of all  inflows
(inflowing surface tributary flows, precipitation on the lake surface,
and sub-surface seepage or spring inflows), and all  outflows (outflowing
surface streams, evaporation from the lake surface,  transpiration  from
vegetation growing in the water, and sub-surface  seepage into the
material under-lying the lake).   If inflows and outflows are defined as
above and are all  measureable, the outflow plus or minus the change in
storage should equal the inflow.  However, it is  not possible to measure
evaporation loss from a large body of water, and  so the water budget
method is often used as an indirect method of determining evaporation.
It is also usually impossible to measure accurately the subsurface
seepage into or out of the lake.  In the Lake Hefner (Oklahoma)
       11  12
studies  '   , the lake was carefully selected, primarily because  of
its geologic characteristics.  Lake Hefner is underlain by a shale
formation which is relatively impermeable, and the influent and  effluent
seepage is an outward flow of about six acre feet per month.  With such
a small seepage factor, and careful measurement of other parameters, the
researchers were able to determine lake evaporation with much greater
accuracy than had been possible in any previous investigation.

In the Utah Lake studies reported herein, it was  known from previous
reports that there are a number of springs in the lake.  The amount of
                                    14

-------
inflow to the lake from these springs  has never been  accurately deter-
mined, and therefore this un-measured  quantity must be evaluated in the
water budget calculations—along with  the evaluation  of evaporation
losses from the lake.   It is obvious  that if all  of the other water
budget factors can be measured or accurately estimated, an over-
estimate of evaporation will  also result in an over-estimate of sub-
surface spring flow if it is determined by the water  budget.  Conversely,
an under-estimate of evaporation will  result in an underestimate of
subsurface spring flow, if spring flow is calculated  from the water
budget equation.   Recognizing this problem, it was determined that it
would be advantageous to develop some  criteria for evaluation in addi-
tion to the water budget analysis.  A  method of analysis involving salt
balance was developed, and this method and the actual  analysis are dis-
cussed in the following sub-sections,  in which data for each factor in
the water budget analysis are considered in detail.

Inflowing Tributaries
All of the surface tributaries to the  lake were located by study of maps
and by air or ground observation.

A total of 52 tributaries were located.  A summary of the flows of all
of the tributaries for each month from July 1970 to June 1972 is shown
in Tables 1 and 2.  It is noted that station number 30 shows no entries.
The  flows of this tributary were found to be insignificantly small, and
the measurements were discontinued after the first year.  Measurements
were made of the major tributaries also during the 1972-73 year.  The
remaining inflows for that year are combined together as one estimate
for "un-measured" inflow.  The resulting measured and un-measured data
for 1972-73 are shown in Table 3.

The two largest tributaries, Provo River (No. 29) and Spanish Fork
River, (No. 48) are included in the network of stream gaging stations
maintained by the U.S. Geological Survey and are equipped with automatic
                                    15

-------
Table 1.  UTAH LAKE SURFACE TRIBUTARY INFLOWS,  1970-71
        (All Figures are in acre-feet of water)

Tributary
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

1970
July
44
46
0
24
23
138
43
353
1287
207
163
64
58
148
157
143
401
1444
1
1842
0
0
0
12
67
314
1210
7
1250


Aug.
33
25
0
28
13
126
62
117
678
236
129
58
67
163
156
73
255
1569
3
2027
0
0
0
8
98
313
1270
0
633


Sept.
57
24
0
23
37
234
37
385
1240
275
95
99
45
153
153
118
356
2686
0
1849
0
0
0
11
58
289
1240
28
1220


Oct.
26
45
0
32
7
69
40
436
1507
262
83
80
52
155
195
119
319
2442
0
1910
0
0
0
17
59
252
1380
35
9500


Nov.
0
0
0
30
20
55
29
376
1642
213
74
61
44
126
174
99
222
2081
0
2170
0
0
4
20
82
296
1440
68
20700
f

Dec.
0
0
0
33
16
67
34
383
1474
185
74
54
26
109
155
93
156
1866
0
2165
0
8
6
19
94
217
1420
67
23350

1971
Jan.
0
0
0
33
21
73
75
404
1519
191
74
60
23
120
156
111
158
2115
0
2196
0
8
6
22
119
202
1500
182
19280


Feb.
0
0
0
33
30
66
47
314
1189
175
76
47
21
102
138
111
131
1725
0
1741
0
6
6
17
88
199
1480
129
17170


March
0
0
0
34
14
64
40
274
1207
181
80
35
23
109
156
122
159
1819
0
1910
0
6
6
16
85
225
1540
79
13310


April
17
0
7
32
18
73
81
316
1066
185
80
61
25
128
163
124
235
1974
0
2006
0
4
6
15
23
217
1450
87
18800


May
16
2
59
34
23
104
102
327
977
240
117
136
49
125
191
146
368
1673
0
1910
0
2
5
13
72
252
1530
47
11690


June
3
19
37
35
67
146
65
392
1363
269
215
154
501
226
189
152
472
1519
0
1805
0
0
2
13
89
260
1320
28
19500
Totals
July-
June
196
161
103
371
289
1215
655
4077
15149
2619
1260
909
934
1664
1983
1411
3232
22913
4
23531
0
34
41
183
934
3036
16780
757
156403

-------
                   Table 1.   (Continued)  UTAH LAKE SURFACE  TRIBUTARY  INFLOWS  1970-71
                                (All  fiqures are in acre-feet of water)

Tributary
Number
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

1970
July
78
49
6
743
91
32
74
867
1524
232
408
1484
743
145
170
494
334
353
68
261
1454
0


Aug.
121
44
6
722
92
64
81
870
1564
229
423
1403
373
128
205
577
924
681
69
331
1645
0


Sept.
164
44
6
717
199
138
94
814
1361
185
416
1362
359
758
207
422
1134
2165
56
256
3242
0


Oct.
149
45
7
669
118
50
93
1041
812
247
337
1708
278
1366
226
267
1361
4130
57
288
3454
0


Nov.
177
42
7
595
149
26
82
1118
948
236
263
1782
293
2002
242
176
1211
5320
50
245
3944
0


Dec.
160
43
7
410
132
13
61
1041
928
208
273
1568
404
2049
229
217
1291
5810
34
272
3885
0

1971
Jan.
116
43
7
337
93
40
58
990
935
184
292
1602
673
1979
209
178
1211
6810
32
303
3516
1538


Feb.
106
39
7
269
99
130
54
898
828
166
298
1390
634
1834
213
164
1158
6810
42
368
3706
1231


March
119
43
6
296
45
25
58
1208
853
184
346
1228
817
2178
183
178
1215
9970
44
242
3933
720


April
143
46
6
358
65
38
75
1031
1014
167
378
1274
923
2731
140
194
1159
13860
37
277
4233
359


May
118
47
6
394
83
76
83
814
1182
170
498
1858
921
2012
154
227
399
10760
35
395
2881
338


June
66
55
6
702
75
88
72
825
1342
148
461
1297
729
557
281
523
791
1910
58
434
2159
70
Totals
July-
June
1517
540
77
6212
1241
720
885
11517
13291
2356
4393
17956
7147
17739
2459
3617
12188
68579
582
3672
38052
4256
Totals
19056  18692  24811   35725  48934  51106   49797   45485   45385   55701   43661   41490  479840

-------
                            Table  2.   UTAH  LAKE  SURFACE  TRIBUTARY  INFLOWS,  1971-72
                                    (All  figures are  in  acre-feet  of water)
00

Tributary
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

1971
July
0
0
0
38
22
159
68
276
1387
215
259
73
63
158
123
99
348
1374
1
1933
0
0
0
10
107
262
1210
17
850


Aug.
4
5
0
35
2
115
79
93
997
207
141
96
60
231
106
103
377
1678
3
1980
0
0
0
13
90
292
1270
3
877


Sept.
15
23
0
22
19
215
135
298
1445
220
107
121
58
167
158
98
428
2693
0
2538
0
0
0
11
45
273
1240
50
1120


Oct.
10
0
0
26
15
63
194
328
1558
217
76
114
57
159
178
115
378
2466
0
2266
0
0
0
16
66
245
1380
75
1 5802


Nov.
0
0
0
31
29
64
191
343
1418
204
74
90
58
133
163
98
249
2020
0
2289
0
6
6
21
82
226
1440
122
20229


Dec.
0
0
0
32
0
70
97
310
1311
180
77
72
60
114
151
94
171
1863
0
2440
0
6
6
18
103
279
1420
123
20205

1972
Jan.
0
0
0
31
37
74
92
295
1291
178
70
49
61
105
129
80
141
1654
0
2723
0
6
6
16
92
290
1500
111
16520


Feb.
0
0
0
35
21
63
58
230
1104
16
66
38
58
89
115
71
123
1377
0
2377
0
6
6
15
73
257
1480
104
16288


March
0
0
49
30
17
55
30
178
1168
213
70
50
68
86
121
90
117
1353
0
2541
0
12
7
16
61
265
1540
80
20577


April
0
0
0
23
12
60
57
214
916
274
92
100
83
121
135
83
179
1452
6
2509
0
30
7
15
54
266
1450
12
16854


May
25
68
0
33
20
112
179
406
375
325
104
168
105
149
150
121
375
1150
0
2440
0
6
6
15
100
312
1530
55
16723


June
8
1
60
39
32
146
74
351
1154
233
164
178
173
168
177
114
506
1410
0
2313
0
0
1
13
78
312
1320
23
29437
Totals
July-
June
62
97
109
375
226
1196
1254
3322
14124
2482
1300
1149
904
1680
1706
1166
3392
20490
10
28349
0
72
45
179
951
3279
16780
775
175482

-------
                  Table 2   (Continued)  UTAH  LAKE  SURFACE  TRIBUTARY  INFLOWS,  1971-72
                                (All  figures are  in  acre-feet  of  water)
Tributary
Number
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
1971
July-
104
42
3
617
46
25
75
859
1439
404
313
1529
451
149
341
386
489
593
62
333
1043
0


Aug. Sept.
100
45
6
354
54
24
80
947
1624
255
262
2057
414
191
279
456
835
538
54 '
250
1156
0
149
40
6
297
119
60
92
711
1401
273
241
2116
438
434
331
274
891
1700
39
207
2559
0

Oct.
137
42
6
470
211
58
95
883
1259
206
245
2241
476
1461
424
216
941
5343
45
180
3063
922

Nov.
105
39
6
242
214
26
76
868
1117
169
228
1940
468
1663
643
203
1073
6389
44
137
3793
2082

Dec.
109
42
6
224
133
30
55
923
1055
149
208
1468
509
1766
401
191
823
7289
40
135
4013
1783
1972
Jan.
123
43
7
234
148
31
49
959
952
123
215
1279
553
1968
357
185
935
7329
31
172
4034
1014

Feb.
104
40
7
224
35
23
35
892
944
29
196
1294
506
1818
, 276
127
1041
7525
35
150
3664
2013

March
74
49
7
289
80
25
37
1008
1128
31
24G
1457
553
2226
283
178
1992
10320
37
160
-3419
680

April
89
42
7
321
125
71
60
726
1141
30
303
1743
553
2130
315
202
1095
6926
54
184
2600
600

May
68
80
8
301
141
25
68
750
1325
18
240
2060
584
92
240
240
689
801
49
394
1636
90

June
65
125
8
321
119
24
69
684
1466
0
250
2338
779
161
268
292
238
736
48
303
2172
0
Totals
July-
June
1227
629
77
3894
1425
422
791
10210
14851
1687
2947
21522
6284
14059
4158
2950
11042
55489
538
2605
33152
9184
Totals
18355  18838  23877   44728  51111   50554  46292  45048  53073  44321   34951   48951   480099

-------
ro
o
                              Table 3.   UTAH LAKE SURFACE TRIBUTARY INFLOWS, 1972-73


                                      (All  figures are in acre-feet of water)
Tri-
butary
No.
9
11
18
20
26
27
29
34
38
39
41
42
43
47
48
51
Un-
measured
tri-
butaries
Totrils

1972
July
1537
129
1599
1745
314
1210
1840
679
813
1475
286
1020
861
85
113
440



3721
17867


Aug.
1168
124
1568
2372
314
1270
732
710
695
1427
• 455
1072
829
221
149
336



3416
tGSbK


Sept.
1309
138
2410
2313
304
1240
2020
533
632
1381
550
775
439
416
762
857



4331
20410


Oct.
1875
143
2767
2593
295
1380
11400
429
943
1269
524
1161
689
1072
4950
2413



5429
3933?


Nov.
1666
130
2350
2602
285
1440
13850
235
683
933
529
1651
455
1133
6320
2657



.A7.3.4
42653


Dec.
1722
135
1875
2579
295
1420
14090
191
1185
1135
336
740
252
1156
6450
2619



5978
5215K

1973
Jan.
1506
143
1783
2782
295
1500
16290
188
1319
1009
240
526
144
1128
6550
2828



61 GO
44331


Feb.
1722
130
1805
2250
266
1480
16000
204
1206
945
272
461
218
1137
5730
3307



1 3800d
50933


March
1968
130
2029
2271
333
1540
17130
334
1395
1094
340
1055
375
1270
7300
3590



5612
4/766


April
1785
140
1577
2063
313
1450
20680
502
1325
1068
374
1104
371
1187
17090
3273



8653b
52955


May
1107
150
1844
2265
285
1530
41880
875
678
1465
460
1423
333
893
40150
3951



37029h
136368


June
1368
150
1785
2405
304
1320
19470
1154
546
1427
387
1214
980
119
3480
?023



17339h
55471


Totals
18733
1642
23392
28240
3603
16780
175382
6034
11420
14628
4753
12202
5996
9817
99044
28294



117142
57710?
       February  abnormal  winter  thaw caused considerable un-measured runoff.


       fist nnattjd indirectly by evaporation and water balance calculations.

-------
water stage recorders for continuous recording of the stream flow.  The
flow records are published as "Provo River at Provo, Utah" and "Spanish
Fork River near Lakeshore, Utah."  Records for these two tributaries
were tabulated from U.S.G.S.  data.

The effluent from Geneva Steel plant (No. 20) is measured continuously by
the steel company, and these records have been made available to the
project.

Records of effluent flow from Provo (No. 39), Orem  (No. 26), and
American Fork  (No. 11) sewage treatment plants were obtained from the
Utah State Board of Health.  Flows from the other sewage  treatment
facilities in  the valley are mingled with other waters  before entering
the lake, and  the entire flow of  these tributaries,  was  measured  on  a
regular basis  over  the period of  study.  One  tributary, Powell Slough
 (No.  27), consists of several branches  in an  area where a number of
 springs arise.  Measurement  of  this tributary presented a number of
difficulties.   A  study of  several  record  sources  indicated that  rather
 careful and  detailed measurements of  this tributary had been  made at
 different  times in  the  past.  Swendsen   made  detailed  measurements  over
                                       13
 a  13-month  period in  1903-04.   Harding    carefully  analyzed the
 Swendsen  records  and  noted minor differences  from his  own measurements.
 The Bureau  of Reclamation made  measurements  over  an eight-year  period,
 1938-45.   Taking  all  of the  available records of  measurements of
 Powell's  Slough,  it was  noted that for each  month of the  year,  the
 records of flow from  all  of  these different  periods of ti-me did  not dif-
 fer greatly from each other.   It was  therefore decided that to  use  a
 fixed monthly flow equal  to  the average of  the available  ten years  of
 record would not  be seriously in error.   Considering the  physical  dif-
 ficulty of getting an actual measurement of this  tributary it was  felt
 that  the expense of attempting to do so would not be warranted.   Since
 all three years of the study were "good" water years and  the lake  level
 was high, the same monthly figure was used  for each corresponding  month
 of the three years.  Measuring devices were  established on all  of  the
                                    21

-------
other of the fifty-one tributaries.   For the first two years  of study,
measurements were made at all stations weekly during the summer months
and about monthly during the other periods of the year, when  experience
showed that there was relatively little change in flow with time.   After
the first two years of data were collected, it was noted that many of
the small drainage channels which are tributary to the lake are not
subject to appreciable fluctuation, except on a predictable seasonal
basis.  Thirty-five of the fifty-one stations were in this category.
These thirty-five stations included numbers 1 through 8, 10,  12 through
17, 19, 21 through 25, 28, 31 through 33, 35 through 37, 40,  44 through
46, 49, 50, and 52.  These thirty-five stations represented thirteen
percent of the total surface tributary inflow in each of the first two
years of the study.  It was decided in the third year that these flows
could be estimated, using the records of the first two years  and the
flows from the major tributaries during the third year as a basis for
the estimation.  It will be noted in Table 3 that an estimated total
flow for each month for these thirty-five stations is given.

The estimates of flow for these thirty-five stations during the last
half of 1972 were made by comparison with measurements of previous
years, and measurements of the other seventeen tributaries which were
measured.  However, in February an unusual winter thaw occurred which
caused a lot of un-measured flow into the lake, which was difficult to
evaluate.  The spring runoff during 1973 was also abnormally high as
shown by flows of the Provo and Spanish Fork River.  In view of these
conditions, it was decided that the best way to estimate the un-
measured lake tributary inflow was to utilize the water budget method,
using sub-surface spring flows and evaporation data and average lake-
pan coefficients determined from the first two year's data for each
of the months when evaporation pan data were available.
                                    22

-------
Precipitation Measurement
Precipitation on the lake surface was determined by using the data from
regular U.S. Department of Commerce precipitation station records as
                                  14
published in "Climatological Data"  ; supplemented by stations establish-
ed by the U.S. Bureau of Reclamation at Pelican Point, Lakeshore, Dixon
Farms, and Provo Airport over part of the study period.  Average weighted
precipitation on the lake surface was determined by using the Thiessen
method15.
Lake Outflow
All of the surface outflow from Utah Lake is through the overflow gates
or pumping plant to the Jordan River at the north end of the lake near
Lehi, except for a small amount taken by direct pumping from the south-
western portion of the lake near Elberta.  The outflows are accurately
measured and reported by Gardner   .
study were taken from these reports.
measured and reported by Gardner  .   All outflow data used in this
 Change in Storage
 The change in storage during any time period  used  in water budget  studies
 may be determined by use of area-capacity data  coupled with accurate
 measurements of  the elevation of the lake surface.  Water budget calcu-
 lations  in this  study were made over monthly  time  intervals.   Determina-
 tion  of  the elevation of the water  surface  of the  lake were made from
 water stage recorder readings at midnight on  the last day of  each  month,
 with  adjustments as necessary to account for  seiches caused by wind on
 the lake surface.  Continuous water stage recorder records of the
 elevation of the water  surface of the lake  throughout the entire period
 reported herein  were obtained from  the  Utah Lake and Jordan River  Com-
 missioner.  Tables giving  surface areas and volume of storage for  the
 lake  at  one-hundredth of a foot  intervals were  obtained  from  the U.S.
 Bureau of Reclamation.  The  importance  of accuracy in determining  and
 evaluating the elevation of  the water surface can  be emphasized by
 pointing out that  at compromise  level,  a one-inch  (2.54  c.m.)  difference
                                     23

-------
in elevation represents a change in storage of nearly  8000  acre  feet
(9,872,000 cubic meters).

In making calculations by the water budget method,  it  is  worthy  of  note
that over short periods (i.e., monthly) small  errors in determining  water
stage levels may result in considerable errors in  the  other calculated
factors over longer periods (such as one or two years) or during
months of high evaporation losses* the small  water  level  errors  have
only a relatively small effect on the calculations  of  water budget
factors.

Sub-Surface Seepage
The existence of springs in Utah Lake has already  been mentioned.   The
springs along the east shore of the lake from the mouth of  Provo River
northward are presumed to issue from the shallow Pleistocene Aquifer
from which many flowing wells near the lake draw water.   This pre-
sumption is based upon the similarities in salt content,  water pressure,
and water temperature between these wells and the  sub-surface springs  in
this area of the lake.

The warm springs which occur in a general line from the vicinity of
Saratoga Resort at the north end of the lake to Lincoln Point are pre-
sumed to issue from geologic faults in the lake which  have  much  deeper
origin.  These spring waters are similar in dissolved  solids and tempera-
ture to the springs at Lincoln Point and Saratoga.   They  are high in
dissolved salts—particularly sodium chloride.

Swendsen  and Harding  and others *  '   , have pointed out that the
groundwater near the lake is under pressure--sometimes as much as 15
feet of pressure head.  It is presumed, therefore,  that the net  seepage
flow is into the lake, and that it occurs primarily in the  warm  and cold
springs mentioned above.
                                    24

-------
Various estimates have been made of the quantity of flow into the lake
in the sub-surface springs.  Most investigators  have indicated that
their estimates are subject to considerable possibility of error.   Cer-
tainly the amount of flow would decrease as the  pressures in the aqui-
fers feeding the springs decreased.   It has been noted, however, that
even in the extreme drouth years, the water pressure in deep aquifers
was probably not diminished significantly.   The  pressures in the shallow
aquifers, being subject to greater development and use, have diminished
in time of drouth, or even during short periods  of heavy use such as the
                                                         I O
summer months.   In investigations reported in 1964, Viers   estimated
inflow of 18,300 acre feet (22.6 million cubic meters)  annually from
known springs,  and 67,000 acre feet (82.7 million cubic meters) "un-
measured inflow from the alluvial fans north of the Provo River."

Greene   and Jacobsen and Peterson  , estimated that the "invisible in-
flow" to Utah Lake is less than 300 cubic feet per second (8.5 cubic
meters per second)--this is 217,200 acre feet (268 million cubic meters)
annually--with  their estimates presumably being based upon the same
water budget analysis.  Harding  reported a number of personal studies
and measurements to evaluate all sub-surface spring flow into the lake.
He estimated a total average spring flow from known spring areas at 40
to 60 cubic feet per second (1.13 to 1.70 cubic meters per second).  An
average flow of 60 cubic feet per second represents an annual volume
equivalent to about 45,000 acre feet (55.5 million cubic meters).  It
was decided, as a first approximation, to use 45.,000 acre feet as the
annual sub-surface flow to the lake for each of the three years of the
study reported herein.  A somewhat arbitrary flow by months was estimat-
ed by assuming monthly fluctuations similar to the normal high-to-low
fluctuations in ground water aquifer pressures in the shallow Pleisto-
cene Aquifer at Lehi.  Water Quality similar to the shallow Pleistocene
Aquifer was also assumed.  The first approximation was later adjusted
based upon water budget and salt balance studies over the first two
years of the study which are described in subsequent paragraphs.

                                    25

-------
The lake simulation model, described later, indicated that there was more
salt and more spring water inflowing into the lake.  Balance of the
simulation model was achieved when 4324 acre feet (5.34 million cubic
meters) of water per month was added as additional  sub-surface inflow.
Of this added spring flow, 2000 acre feet (2.47 million cubic meters)
per month was assumed to have dissolved mineral content similar to the
wells of the shallow Pleistocene Aquifer on the east and north shore of
the lake.  The other 2324 acre feet (2.87 million cubic meters) per
month was assumed to have dissolved mineral content similar to the warm
springs issuing from the geologic fault zone in the lake already
mentioned.  The total annual  sub-surface spring inflow to the lake was
thus estimated at 96,880 acre feet (119.6 million cubic meters) and was
considered to be made up of three components--(a) 45,000 acre feet per
year (55.5 million cubic meters) with the quantity varying from month
to month corresponding to ground water pressures in the shallow Pleisto-
cene Aquifer, and quality similar to this aquifer;  (b) 24,000 acre feet
(29.6 million cubic meters per year) evenly distributed to each month,
and of the same quality as the shallow Pleistocene Aquifer just mention-
ed; and (c) 2,324 acre feet (2.87 million cubic meters) per month or
27,888 acre feet (34.4 million cubic meters) per year of quality similar
to the warm springs issuing from the fault.

Each of the three years of the study reported herein were relatively
"good" water years, and it may therefore be assumed that the magnitude
of the sub-surface spring inflow would be approximately the same in all
three years.  The above-adjusted estimate was then used in the water
budget analysis to calculate the evaporation term in the water budget
equation.

Evaporation From The Lake
Other researchers have given considerable attention to the problems of
                                                 12
measuring evaporation from a natural lake.  Allen   used the water
budget, energy budget, and evaporation tanks in carefully controlled

                                    26

-------
studies at Lake Hefner,  Oklahoma.   Harbeck and others  ,  in earlier
Lake Hefner studies investigated the use of water budget, energy budget,
mass transfer, pan evaporation,  and a radiation integration in extensive
research investigations.   The Lake Hefner studies were the result of
                      21
much detailed planning   in an attempt to find a suitable location where
the parameters of the water budget equation could be measured with
sufficient accuracy that the evaporation could be determined by this
method.  At the same time, the data obtained could be used as a base for
testing of the use of energy budget and mass transfer methods which had
never been possible before.

                                        22
Prior to the Lake Hefner studies,  Rohwer   in 1931 reported extensive
studies which included careful laboratory measurements under controlled
conditions as well as the use of an 85-foot (25.9 meter)  diameter con-
                    23
crete tank.  Hickox    also conducted carefully controlled laboratory
studies of evaporation as related to wind, velocity, vapor pressure
gradient, water temperature, air pressure and other variables.
Many have attempted to derive empirical equations for evaporation from
lakes or reservoirs.  These efforts have been handicapped by a lack of
actual evaporation information.  The same handicap has limited the use-
fulness of studies aimed at evaluation of the use of evaporation pans.
                             22
Aside from the work by Rohwer   (who correlated pan evaporation with that
from the 85-foot tank already mentioned) no studies prior to the Lake
Hefner studies had sufficient information on actual measured evaporation
to provide meaningful comparisons with pan data or emperical equations.
Young   and Follansbee   projected many records of pan evaporation by
                                  pc
using "pan coefficients."  Harding   studied several lakes in Nevada
and California during periods of limited inflow and made calculations of
evaporation based on water budget analyses.  Many investigators have
been tempted to use a pan coefficient, based on measurements over an
entire season, to short periods—even sometimes for periods as short as
one month.  This has resulted in many erroneous estimates of evaporation,
since the relationship between lake and pan evaporation changes as the

                                    27

-------
season progresses.  In the Lake Hefner studies,  the coefficients  for
the Weather Bureau Class A pan varied from about 0.5 in the early spring
to nearly 1.0 in the fall, and greater than 1.0  in the winter months.
The seasonal fluctuation is due in part to heat  stored in  the lake or
reservoir waters which increases evaporation from the lake or reservoir
in the fall and winter months as the average air temperature decreases.

In the Utah Lake studies reported herein, it was anticipated that evap-
oration could be calculated by the water budget  method—at least  during
the first two years of the study when extensive  measurements of inflow-
ing tributaries were made.  The difficulty caused by having two unknowns
(evaporation and sub-surface flow) was overcome  by making  use  of the
salt balance principle.

Salt Balance Study -
Measurements of dissolved mineral content of the inflowing and outflow-
ing waters and of the lake itself were made at regular intervals.
Measurements were made of total dissolved minerals and of  the sodium,
calcium, magnesium, potassium, bicarbonate, carbonate, sulphate,  nitrate,
and phosphate ions.  The chlorides and sulphates of sodium and potassium
do not easily precipitate out of solution at the concentrations existing
in Utah Lake.  A balance therefore should exist  between the inflowing
and outflowing quantities of these ions adjusted for changes in the
amount in solution in the lake over an appropriate time period, with the
water that evaporates leaving the salt behind in solution  in the  lake
waters.  A simulation on the computer over the first two years of the
study indicated that the evaporation as calculated by the  water budget
method using Harding's estimate  of subsurface inflow to the lake re-
sulted in a large deficiency of sodium, potassium, chloride, and  sulphate
compared with the actual conditions in the lake  over the two-year period.

By increasing the estimated sub-surface spring flows from  the spring
sources having the greatest concentration of chlorides, sulphates,
                                     28

-------
sodium and potassium ions (and by increasing the evaporation a corre-
sponding amount to keep the water budget in balance);  the simulation
model was brought into approximate balance, mineral-wise, with the
actual lake conditions.   The water budget figures,  adjusted to achieve
salt balance, show the calculated evaporation.   These  figures are shown
in Tables 4 and 5.  Since evaporation in the winter months is small  and
represents the difference between large numbers (inflow, outflow, and
change of storage) any small errors are greatly magnified in the calcu-
lated evaporation.  Therefore, although monthly calculation of evapora-
tion is made for the seven months, April through October, no attempt is
made to calculate monthly evaporation during the months of October
through March.  A total evaporation for these five months is calculated
based upon water budget analysis over this five-month  period in each of
the first two years of the study.

Water Balance - The Third Year -
In the third year of the study, many of the tributary inflows were not
measured.  During most of the year, the measurements on these tributaries
during the first two years provide enough  information to enable reason-
ably accurate estimates of flow in the unmeasured tributaries.  In the
months of April, May, and June of 1973, a  period of extra-ordinarily
high runoff occurred, and it was not possible to estimate the flows by
this method.  Therefore, the evaporation for these months was estimated
by using the evaporation pan records at Lehi, Utah, and average co-
efficients for the months as determined from the records of the first
two years.  Calculated pan coefficients for the first two years of the
study are shown in Table 6.  Water budget  figures for the third year of
the study, (including evaporation data for the months of April, May, and
June calculated from average pan coefficients for these months from the
first two years of the study) are shown in Table 7.
                                    29

-------
                               Table 4,  WATER BUDGET ANALYSIS - UTAH LAKE 1970-71

                                     (All figures are in acre-feet of water)
OJ
o
       Month
Precipitation
   on lake
   surface
Surface
inflow
  Shallow
sub-surface
  inflow
July '70
August
September
October
November
December
January '71
February
March
April
May
June
7,254
5,981
15,710
9,705
19,745
12,634
6,180
12,007
2,985
16,632
3,833
2,517
19,056
18,692
24,811
35,725
48,934
51,106
49,794
45,485
45,385
55,701
43,661
41,490
4,490
4,490
4,707
5,447
6,149
6,593
6,784
6,460
6,937
6,445
5,791
4,707
    Deep
sub-surface
   inflow
                                            2,324
                                            2,324
                                            2,324
                                            2,324
                                            2,324
                                            2,324
                                                              2,
                                                              2,
                                                              2,
                                                              2,
                                                              2,
                                              324
                                              324
                                              324
                                              324
                                              324
                                                              2,324
Surface
outflow
45,300
50,700
33,400
14,900
8,900
16,900
23,100
25,900
31,900
30,000
38,200
40,000
Change in
storage
-66,248
-76,441
-26,540
+14,128
+76,133
+30,066
+47,043
+25,196
+21,627
+27,483
-22,764
-45,029
                       Calculated
                       evaporation
                                                                54,072
                                                                57,228
                                                                40,692
                                                                24,173
                                                                32,033
                                                                23,619
                                                                40,173
                                                                56,067
     Totals
   115,183
479,840
   69,000
   07 OQQ
   LI ,OOO
359,200   + 4,654
328,057

-------
                          Table 5.   WATER BUDGET  ANALYSIS  -  UTAH  LAKE  1971-72

                                (All  figures  are  in  acre-feet of  water)
  Month
July '71
August
September
October
November
December
January
February
March
April
May
June
Precipitation
   on lake
   surface
       827
       151
       807
       381
       814
       519
       354
       116.
     2,445
     9,171
       330
     5,239
 5,
 5,
10,
 7,
10,

Surface
inflow
18,355
18,838
23,877
44,728
51,111
50,554
46,292
45,048
53,073
44,321
34,951
48,951
Shallow
sub-surface
inflow
4,490
4,490
4,707
5,447
6,149
6,593
6,784
6,460
6,937
6,445
5,791
4,707
Deep
sub-surface
inflow
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324

Surface
outflow
48,000
51,400
36,800
12,900
10,300
15,200
23,800
25,800
29,300
25,200
44,800
44,000

Change in
storage
-84,530
-74,340
-29,952
+38,816
+55,521
+53,770
+30,486
+23,295
+13,121
+ 3,761
-50,373
-32,215
                                                                         Calculated
                                                                         evaporation
                                                   62,526
                                                   53,743
                                                   29,867
                                                   11,164
                                                                            31,276
                                                                            33,300
                                                                            48,969
                                                                            49,436
Totals
    58,154
            480,099
69,000
27,888
367,500   -52,640
320,281

-------
        Table 6.  CALCULATED EVAPORATION  FROM UTAH LAKE AND
                 EVAPORATION FROM PAN AT LEHI, UTAH,

                     JULY 1970 - SEPTEMBER 1972.
 Month
           Calculated
 Average       Lake         Lake         Pan
Lake Area  Evaporation  Evaporation   Evaporation       Pan
 (acres)   (acre-feet)   (inches)      (inches)     Coefficient
1970
July
August
September
October
1971
Apri 1
May
June
July
August
September
October
1972
April
May
June
July
August
September
October

92,018
89,940
88,467
88,292

94,772
94,843
93,817
91 ,890
89,578
88,096
88,222

93,982
93,284
92,052
90,270
87,914
83,162
86,055

54,072
57,228
40,692
24,173

23,619
40,173
56,067
62,526
53,743
29,867
11,164

33,300
48,969
49,436
64,892
51,913
40,279
18,733

7.05
7.64
5.52
3.29

2.99
5.08
7.17
8.17
7.20
4.07
1.52

4.25
6.30
6.44
8.63
7.09
5.81
2.61

9.39
8.32
6.20
3.47

5.16
6.57
9.16
10.88
9.06
6.84
no data

5.17
8.87
9.01
11.72
8.73
6.04
no date

0.75
0.87
0.89
0.95

0.58
0.77
0.78
0.75
0.79
0.59
--

0.82
0.71
0.72
0.74
0.81
0.96
__ _
Calculated by water budget method.
                                   32

-------
                                Table  7.   WATER  BUDGET ANALYSIS  - UTAH LAKE  1972-73

                                      (AH  figures  are in  acre-feet of water)
        Month
            Precipitation
               on lake
               surface
 Surface
 inflow
  Shallow
sub-surface
   inflow
    Deep
sub-surface
   inflow
Surface
outflow
Change in
 storage
Calculated
evaporation
CO
CO
July '72
August
September
October
November
December
January
February
March
April
May
June
               73
955
4,542
5,220
20,316
6,481
4,830
7,410
7,189
9,542
11,784
8,964
6,106
17,867
16,858
20,410
39,332
42,653
42,158
44,331
50,933
47,766
62,955a
136,368a
55, 471 a
                4,490
                4,490
                4,707
                5,447
                6,149
                6,593
                  784
                  460
                6,937
                6,445
                5,791
                4,707
    6,
    6,
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
51,000
51,900
35,485
13,370
5,286
1,773
6,779
19,714
26,753
29,798
39,258
44,551
- 90,256
- 75,599
- 43,103
+ 35,316
+ 46,240
+ 49,623
+ 54,057
+ 47,622
+ 39,002
+ 30,048
+ 65,794
- 29,732
                                                                                                   64,892
                                                                                                   51,913
                                                                                                   40,279
                                                                                                   18,733
                                         10,987
                                                                                                   23,662
                                                                                                   48,395!
                                                                                                   53,789'
      Totals
                93,339
577,102
   69,000
   27,888
325,667    +129,012
               312,650
       Evaporation  during April, May, and June was calculated from pan evaporation data at Lehi, Utah, and
          surface inflow calculated  by water budget, since surface inflow measurements not available for
          these  months.

-------
                             SECTION VIII
                          COMPUTER SIMULATION

A Fortran IV computer program,  LKSIM, was  developed to allow  simulation
of the conservative salts in a  well-mixed  lake system.   This  model
(1) carries along the salt concentrations  as well  as the water budget,
thus allowing the user to evolve better estimates  of evaporation  and
sub-surface inflow; and  (2) provides the  capability to predict changes
in water quality and the water  budget resulting from various  management
alternatives, such as  (a) diking,  (b) changes in tributary  inflow
quantity and/or quality,  (c) and diked bay management policies.

The simulation model is based on the concept of a  central main lake
which has satellite bays connected to it.   During  each time period  of
the simulation, normally one month,  the given inflows, outflows,  pre-
cipitation and evaporation are  evaluated for each  area; the total
quantities of inflowing salts are calculated and added to each area;
and the end-of-period water volume and quality determined assuming  that
each area is a separate, well-mixed body of water.  The imaginary gates
separating the bays from the main lake are then "opened" and  the  volume
of interflow occurs as necessary to bring  the entire lake system  to the
same stage.  This lake stage is the dependent variable since  all  other
water quantities are given as input data.   Circulation between the  main
lake and any bays is simulated  at this point by also allowing the ex-
change of a specified percentage of a bay's volume with lake  water.
These flows are then completely mixed in the recipient areas.  The

                                    34

-------
end-of-period water quantity and quality summary is then printed and the
next time period begins.

Diking is simulated by leaving the imaginary gates closed, thus leaving
the diked area as a separate lake.  Many options are possible for manage-
ment of the diked area, for example:
     (1)  Any or all bay tributaries may be reassigned to another bay or
to the main lake.  This allows simulation of diversion of water around
the diked bay or pumpage of tributary inflow over the dike.
     (2)  Any desired beginning bay stage may be given, thus represent-
ing various degrees of pumpage from the bay after dike completion.  Any
such pumpage would be simulated by assigning it as a tributary inflow
during an early time period(s).
     (3)  If a given maximum stage is exceeded in the main lake in any
period, the excess water may be allowed (coded) to flow into a diked bay
area or else be exported out of the lake system, etc.  Refer to
Section XIII, Appendix B for specific details on these and other model
options.

Although the LKSIM simulation model is conceptually quite simple, it
provides a powerful tool for the evaluation of the water balance and
dissolved salt concentrations in a lake system.  The model does not
presently incorporate non-conservative quality parameters—all are
assumed to be conservative—and it would be difficult to do so for most
parameters.  This difficulty stems more from the general dearth of
understanding of factors as:  (a) chemical precipitation,  (b) circula-
tion patterns,   (c) energy balances, and  (d) biological cycles; than
from inherent difficulties in the model itself.

Since the simulation model assumes well-mixed sub-areas, the quality
calculated is, at best, the average for each part of the real lake
system.  Any quality gradient between the main lake and a bay is like-
wise lumped at the  imaginary boundary between them.
                                    35

-------
When applying the model to a lake system, many judgments and estimates
must be made, such as:  (a) average beginning salt concentrations,  (b)
circulation for each period,  (c) time period step to be used.  When the
model is used in conjunction with a detailed knowledge of the real
system, and compared to the observed lake quality during the calibration
period, it greatly increases the probability of accurately establishing
the major unknown components in the water balance budget.  The "cali-
brated" model then also provides a powerful tool for evaluating re-
sponses to changes in the lake system.
                                     36

-------
                              SECTION IX
                         DISCUSSION OF RESULTS

The computer simulation  of the lake system was described in the previous
section and in Appendix  B.   This simulation served as a valuable tool
in the evaluation of evaporation losses from the lake over the study
period, as already described in previous sections of this report.  The
salt balance technique,  utilizing the "conservative" ions which are
least subject to precipitation out of solution, should prove valuable
to other investigators who may be interested in the evaluation of evapo-
ration from lakes and reservoirs.  Details of the methodology involved
can be noted by careful  study of the detailed simulation reproduced in
Appendix B.  The simulation presented there is actually the end product
of a number of successive preliminary simulations with appropriate ad-
justments made successively to bring about the evolution of the simula-
tion presented.

The capability of simulation of the lake and tributary system in a
computer model permits many kinds of analyses.  The analysis presented
herein relates to consideration of the diking of two bays of the main
lake.  Innumerable variations in management are possible using the
LKSIM model.  Considerable data are generated by the model.  It is noted
that the simulated water quality, as indicated by total dissolved solids
and nine different ions, is determined on a monthly basis throughout the
study period.  A  brief summarization of the results of the detailed
simulation  (shown in Appendix B)  is presented in Table 8.  In addition
to simulated water quality data at the end of the 36-month study period,
                                     37

-------
                         Table 8.  SUMMARY OF SIMULATION  RESULTS - UTAH LAKE  AS  AT PRESENT

                      •••SUMMARY  INFORMATION FOR TIME PERIOD 36     --   MONTHS

                      •**  PERIOD  FLOWS AND INTERFLOWS
CO
00
BAY PRECIP EVAP SUM TRIB VOL BEFORE
NAME NO, AC-FT AC-FT INFLOW AC-FT INTERFLOW
M*IN LK 1 3139, 34634, 11569, 64U61,
PWOVO B 3 374, 4002, 5827, 31059,
GOSH£N 8 3 2719. 15246, 535, 226169,
TOTAL SYSTEM 6131, 53883, 17951,
*** HATER UUAL1TY AT THE END OF THE
BAY TOS NA CA
MAIN LK 1 960,19 121,90 88,16
PROVO B 2 747,00 63,12 92,15
GOSMEN B 3 1201,92 162,37 100,22
•••WATER BALANCE FOR THE SIMULATION
PERIOD
MG K
44,70 16,61
34.99 11.81
56,43 21,19

BAY PRKCIP EVAP TRIB INFLOW BEGINNING
AC-FT AC-FT AC-FT
MAIN LK 1 161951, 633970, 1521799,
PROVO H Z 19350, 63356. 266885,
GOSHEN B 3 81293. 268882, 398125,
STAGE VOLUME
448H.58 595789,0
44811,58 21771,5
448A,58 209400,7
•••TOTAL LAKE -^ AC-KT (EXCLUOINH DIKED BAYS,
TOTAL PHfcCIPITATION 262293,6
TOTAL EVAPORATION 96*2M7,6
TOTAL TRIB. INFLOW 1827709,1
TOTAL TR1*, OUTFLOW -1052366.4




OTHER OVERFLOW 0,0 (ENDING VOLUME HAS BEEN
BEGINNING VOLUME 626961,1
ENDING VOLUME 898389,8
STAGED 4488,58
STAGE* 4489,33
INTERFLOW
VOL AC-FT
-689,
-35261
LAKE

CL
189,21
71, a?
261.66

ENDING
STAGE
FINAL
STAGE AREA VOLUME
4489,33 61450, 641650,
4489,33 (.928, 26645,
4489,33 26640, 229695,
4489,33 9521B, 898390,

HC03 504
328.62 172.68
391,26 143,40
387,19 225,23


VOLUME

N03
6,61
2,99



4489.33 641850.1
4489,33
26844.5

4489,33 229695,1
IF ANY)




ADJUSTED







POR OVERFLOW)










P04
2.42
3.07
2.04

-------
the summary also shows a water balance analysis  for the entire 36-month
period.   The computer printout, reproduced on Appendix B,  also displays
these data in graphical  form showing variations  throughout the study
period.   Comparison of these simulated values with  actual  measurements
at various times indicates  the salt balance characteristics.   Figures 3,
4, and 5 show comparisons between  simulated and  observed concentrations
of sodium ions,  chloride ions, and total  dissolved  solids  in  Utah Lake
over the three-year period of the  study.

Many other simulations have been generated for different input and
management conditions.  One which  is most pertinent to the present study
is one in which  Provo Bay and Goshen Bay were assumed to have been sepa-
rated from the main body of the lake by diking.   For this  "diked" simula-
tion, all of the Provo Bay tributaries were diverted around the bay and
into the lake, and all of the Goshen Bay tributaries continued to flow
into Goshen Bay.  All of the areas started at the same July 1, 1970
stage, and no water was pumped out of the bays into the lake.  When the
lake level exceeded compromise level, the excess water was "exported"
out of the system.  A summary of results of the  computer simulation are
shown in Table 9.  It may be noted from the summary that a net saving of
220,000 to 270,000 acre feet (271  to 331 million cubic meters) of water
was made over the three-year period—the exact value being dependent
upon whether the Goshen Bay tributaries are also diverted to the main
lake.  It may also be noted that the total dissolved solids of the main
lake would be reduced from 960 to  800 milligrams per liter by comparing
the undiked simulation results to  the diked simulation results.  Diking
would reduce sodium concentration  from 122 to 95 milligrams per liter,
and chloride from 189 to 138 milligrams per liter.

It should be pointed out in passing that while some of the quality para-
meters shown in  the simulation  (for example, sodium, potassium, and
chloride) would be expected to correspond to actual measured values;
others (such as calcium, bi-carbonate, nitrate,  phosphates, and total
                                    39

-------
   200
   175
o>
D-
!> 15°


'i
 r\

2 125

• *
o o o

o
c
>




1970





t
0 O <
o o
o



o
o
o
o o
<
>




1971



•

> (
o o o
O 0
*
o Simulated
• Observed
0 •
0 0

O O0
(
>




1972




>
o
o
o
0 <

1973
O
o
00
   100
                    Figure 3.  Graph showing simulated and observed  concentration
                        of sodium  ions  in Utah Lake - July 1970  to July  1973

-------
  300
 s-
 

1970





>
0 1
o o o o





o o o
0 0
cj




1971




(
? o o o
° o •


O Simulated
• Observed
O
O 0
• o
0 • J
>
^




1972



y
O
O
0

6
0

1973
                 Figure 4.  Graph showing simulated  and  observed concentration of
                        chloride ions in Utah Lake  -  July 1970 to July 1973

-------
            1400
ro
        5-
        O)
        S-
        OJ
        CL
        S-
        CT
        on
        o
o

o
            1200
            1000
             800
             600
             400




o o
o
o
o9 * ~ 1
•>



1970







' ° (
o o o
0




O
0 0
o
o <

>




1971





[) t

o o

•
•
O Simulated
• Observed
O
O 0
—
o



o

>
A A
•




1972
o
o
x-v _/^
(
o



1973
                              Figure 5.  Graph showing simulated and observed concentration
                             of total dissolved solids in Utah Lake - July 1970 to July 1973

                  Note:   The simulated  IDS results have not been  corrected for apparent precipitation
                         of CaCO.,  from  the water.   Rough  estimates  of this precipitation based on
                         analysis  of calcium and  bicarbonate ions would decrease the simulated total
                         dissolved solids to near  observed values in 1972. (About 100 mg/1  decrease)

-------
        Table  9.   SUMMARY OF SIMULATION  RESULTS - WITH  DIKES  ON PROVO BAY AND  GOSHEN BAY

          ***SUMMARY  INFORMATION FOR  TIME  PERIOD 36      »*  MONTHS

          *** PERIOD  FLOWS AND INTERFLOWS
            SAY
        NAME  NO,
     MAIN LK   1
     PROVO B   2
     GOSHEN 8  3

   TOTAL SYSTEM
               PRF.CIP   EVAP   SUM TRIB
               AC-FT   AC-FT INFLOW AC-FT
               3123,   34455.    17416,
                 46.     668,        0,
               2082,   11676,      535,

                 5251,   468C1,    17951,
     **» WATEK DUALITY AT THE END OF THE PERIOD


MAIN L*
     BAY
      1
 TOS
799,64
 NA
94,59
 CA
82,46
 MG
36.94
IL BEFORE
INTERFLOW
62&521.
493,
77395,

K
I 13,57
INTERFLOW
VOL AC-FT
0.
0!
LAKE
CL
138,00
F I
STAGE
4489,12
4482,63
4482,88
4489,1
HC03
301,75
N A L
AREA
61220,
521,
2 61220.
S04
136.14
VOLUME
628521,
493,
77395,
628521,
N03
6.90
P04
2.46
     ***WATER BALANCE FOR THE SIMULATION
         EVAP  TRIB INFLOW
        AC-KT     AC-KT
       63S542, 1777751,
        C7331,   181933,
             ,   59325,


MAIN LK
PROVO B
GOSHEN B
BAY

1
2
3
HRKCIP
iC-FT
lf>2*45.
15120,
74987,
                                                BEGINNING
                                            STAGE   VOLUME
                                                          ENDING
                                                        STAGE   VOLUME
                                           44S*,,58 595769,0 4489,12 628523,6
                                           4463,56  21771,5 4462,60    493.2
                                           4438,53 209400,7 4482,88  77395,0
     ***TOT\L L-AKE
TC5TAL
TOTAL
TOTAL
TOTAL TRIB, OUTFLOW"
OTHEK OVERFLOW     a
BEGINNING  VOLUME  a
ENDING  VOLUME     =
         —  AC-FT
            162.'I«S.2
            635b42,3
           1777751,1
                                     CEXCLUOING DIKED BAYS, IF ANY)
                            219*55,9 (ENDING VOLUME HAS BEEN ADJUSTED FOR OVERFLOW)
                            595789,a     STAGE* 4488.53
                            628520.6     STAGEa 4469,12

-------
dissolved solids would not—for at least two reasons:  (1) chemical
precipitation of several compounds, especially calcium carbonate, and
(2) biological activity such as algae growth and decay which results in
uptake and release of nutrients such as nitrates and phosphates.  The
quantities of these nonconservative ions that are trapped or removed in
the lake may be estimated by calculating the difference between the ob-
served and the simulated levels at the end of the simulation period.
Using this approach, the model is calibrated using the conservative
ions and then used to estimate nonconservative ion removal.  Several
other important factors in relation to the effects of diking should be
                                                        27
mentioned.  The authors have already previously reported   that Provo
Bay is presently functioning as a large oxidation pond which has con-
siderable effect upon the reduction of pollution parameters within the
bay.  If the waters now tributary to the bay were diverted to the main
lake, some pre-treatment would be necessary to maintain the present
lake quality, particularly near the inflow area.

The research reported herein was not directed toward a detailed study of
                                        28
biological factors, but Barnes, et. al.,   have reported several recom-
mendations relating to the precautions which should be taken to limit
the possible adverse effects of the proposed Goshen Bay dike on the
biota of the lake.
                                    44

-------
                           SECTION X
                          REFERENCES

1.    Meyers, J. Stuart.  Evaporation From the Seventeen Western States.
     U.S. Geological Survey, Washington, D.C.  Professional Paper 272-D.
     1962.  30 p.

2.    Water Resources Scientific Information Center.  Evaporation Suppression
     A Bibliography. Office of Water Resources Research, U.S. Department
     of the Interior, Washington,  D.C. Publication Number WRSIC-73-216.
     December 1973.  477 p.

3.    Bureau of Reclamation. Bonneville Unit - Central Utah Project.  U.S.
     Department of the Interior.  Government Printing Office,  Washington,
     D.C.  1968.

4.    Hunt, C. B., H. D. Varnes, and H. E.  Thomas. Lake Bonneville:
     Geology of Northern Utah Valley, Utah.  U.S. Geological  Survey,
     Washington, D.C.   Professional Paper 257-A. 1953.  99 p.

5.    Bissell, Harold J .   Lake Bonneville:  Geology of Southern Utah Valley,
     Utah. U.S. Geological Survey, Washington, D.C.  Professional Paper
     257-B.  1963. 30 p.

6.    Swendsen, George L.  Operations in  Utah.  In:  Third Annual  Report
     of the Reclamation Service, 1903-4.  U.S. Geological Survey, Depart-
     ment of the Interior, Washington, D.C.  1905. p. 494-508.
                                45

-------
 7.    Harding, S. T.  Springs Rising Within the Bed of Utah Lake. Un-
      published Report of Investigations for Board of Canal Presidents
      of the Associated Canals of Salt Lake County.  April  1941.

 8.    Subitzky, Seymour. Records of Selected Wells and Springs, Selected
      Drillers' Logs of Wells and Chemical Analyses of Ground and Surface
      Waters - Northern Utah Valley, Utah County, Utah.  U.S.  Geological
      Survey, Salt Lake City, Utah.  Basic-Data Report No. 2.  1962.
      Up.

 9.    Mundorff, J . C. Major Thermal Springs of Utah.  Utah Geological
      and Mineralogical  Survey, Salt Lake City, Utah.  Water Resources
      Bulletin 13.  September 1970.  60  p.

10.    Milligan, J. H., R. E. Marsell, and J. M. Bagley.  Mineralized
      Springs in Utah and Their Effect on Manageable Water Supplies.
      Utah Water Research Laboratory,  Utah State University, Logan,
      Utah. Report WG23-6.  September 1966.  50 p.

11.    U.S. Geological Survey.  Water-Loss Investigations:  Volume I -
      Lake Hefner Studies Technical Report. U.S. Department of the
      Interior, Washington, D.C. Circular 229. 1952.  153 p.

12.    Allen, James B. An Analysis of Evaporation at Lake Hefner, 1965-66,
      Based on the Water Budget, Energy Budget, and Evaporation Tanks.
      Department of Agricultural Engineering,  Oklahoma University,
      Still water, Oklahoma.  Doctoral Thesis.  July 1968.  208 p.

13.    Harding, S. T.  Inflow to Utah Lake 1903-04 and 1935-36.  Unpub-
      lished Report of Investigations for Board of Canal Presidents of the
      Associated Canals of Salt Lake County.  1936.  24 p.

14.    Environmental Data Service. Climatological Data - Utah.  National
      Oceanic and Atmospheric Administration, Asheville, North Carolina.
      Volumes 72-75.  1970-73.
                                 46

-------
15.   Thiessen, A. H.  Precipitation for Large Areas. Monthly Weather
     Review, 39:1082-1084, July 1911.

16.   Gardner, David B.  Utah Lake and Jordan River Distribution.  Annual
     Report of the Utah Lake and Jordan River Commission for the Years
     1970-73, inclusive,  Salt Lake City, Utah. p. 19-21.

17.   Richardson, C. B.  Underground Waters in Valleys of Utah. U.S.
     Department of the Interior, Geological Survey,  Washington, D.C.
     Water Supply Paper 1957.  1906. p. 29, 49.

18.   Viers, C. E.  The Chemical Quality of the Waters of Utah Lake.  U.S.
     Department of the Interior, Bureau of Reclamation,  Region  4, Salt
     Lake City, Utah.  Unpublished Report.  May 1964.  106 p.

19.   Greene, W. M. Utah Lake Division of the Salt Lake Basin Investiga-
     tion. U.S. Bureau of Reclamation.  Unpublished Report.  May 1923.

20.   Jacobsen, C. B., and W. F. Peterson.  Utah Lake,  A Storage Reser-
     voir. University of Utah, Salt Lake City, Utah. Unpublished B.S.
     Thesis.  May 1932.

21.   Harbeck, G.  E.  Utility of Selected Western  Lakes and  Reservoirs for
     Water Loss Studies.  U.S. Geological Survey, Washington, D.C.
     Circular No. 103.  March 1951.

22.   Rohwer, C.  Evaporation from  Free Water Surfaces.  U .S. Department
     of Agriculture, Washington, D.C.  Technical Bulletin No. 271.
     December 1931.

23.   Hickox, G. H. Evaporation from a Free Water Surface. American
     Society of Civil Engineers, Transactions, IJjHPaper 2266): 1-33, 1946.

24.   Young, A. A.  Evaporation from Water  Surfaces in California.  Division
     of Water Resources, Department of Public Works, State of California,
     Sacramento, California.  Bulletin No. 54.  1947.  68 p.
                                 47

-------
25.    Rohwer, C., and R. Follansbee. Evaporation from Water Surfaces:  A
      Symposium.  American Society of Civil Engineers, Transactions,
      99:671-747, 1934.

26.    Harding, S. T.  Evaporation from Large Water Surfaces Based on
      Records in California and Nevada.  American Geophysical Union,
      Transactions, 1j>(Part 2): 507-511,  1935.

27.    Barnes, J. R., T. W. Toole, D.  L. Tiilman, and D. K. Shiozawa.
      The Effect of Goshen Bay Dike on the Benthos  of Utah Lake in Relation
      to Water Quality. Department of Zoology and Center for Health and
      Environmental Studies,  Brigham Young University, Provo, Utah.
      Final Project Report. 1974.

28.    Fuhriman, D. K., J.  R. Barton, L. B. Merritt, and J .  S. Eradshaw.
      The Diking of Arid  Region Lakes to Improve Water Quality.  In:
      Water—1973. American Institute of Chemical Engineers, 345 East
      47th Street, New York,  New York  10017.  1974.  Symposium Series
      Vol. 70, Number 136. p. 629-637.
                                 48

-------
                           SECTION XI
         INVENTIONS, PUBLICATIONS, TECHNICAL PAPERS

INVENTIONS
No inventions have been produced on this project.

PUBLICATIONS
Kennison, L. T., J. S. Bradshaw, D. R. Pratt, E. L.  Loveridge, D. K.
Fuhriman, and J . R. Barton.  Eutrophication of Utah Lake—An Initial
Estimate of Nutrient Inflow. Utah Academy of Sciences, Arts and Letters.
Proceedings 48 (Part 1): 52-55.  October 1971.

Bradshaw, J. S., E. L. Loveridge, K. P. Ripee, J. F. Brown, E.  M.
Michener, B. Hague, J. L. Peterson, D.  K. Fuhriman, J. R. Barton, and
D. A. White.  Pesticides in the Water and Fish of Utah  Lake and Its
Tributaries. Utah Academy of Sciences, Arts and Letters.  Proceedings
48 (Part 2): 26-32. October 1971.

Bradshaw, J. S., E. L. Loveridge, K. P. Ripee, J. L. Peterson, D. A.
White, J. R. Barton, and D. K. Fuhriman.  Seasonal Variations in Residues
of Chlorinated Hydrocarbon Pesticides in the Water of the Utah Lake Drain-
age System—I 970 and 1971. Pesticides Monitoring Journal, 6/3): 166-170,
December 1972.

Bradshaw, J. S., R. B. Sundrud, D. A. White, J. R. Barton, D. K.
Fuhriman, E. L. Loveridge, and D. R. Pratt. Chemical Response of Utah
Lake to Nutrient Inflow. Journal Water Pollution Control Federation,
45:880-887, May 1973.
                                 49

-------
Fuhriman, D. K., J. R. Barton, L. B. Merritt, and J. S. Bradshaw.
The Diking of Arid Region Lakes to Improve Water Quality.  In:  Water—1973,
American Institute of Chemical Engineers, 345 East 47th Street, New York,
New York 10017. 1974.  Symposium Series Vol. 70, Number 136. p. 629-
637.  (This paper also presented at 74th National  Meeting of AlChE, New
Orleans, Louisiana in March 1973.)

GRADUATE STUDENT THESES, PROJECT REPORTS AND DISSERTATIONS
Kennison, Lynn.  Eutrophication of Small Lakes.  Master of Science Thesis.
Department of Chemistry, Brigham Young University, Provo,  Utah.
May 1971.

Morrison, C. Mark.  A Survey of Summer and Winter Water Quality Condi-
tions of Provo Bay. Master of Civil Engineering Project Report.  Brigham
Young University, Provo, Utah. August 1971.

Sundrud, R. Bruce. The Biochemical Response of Provo Bay to Nutrient
Inflow.  Master of Science Thesis.  Department of Zoology, Brigham Young
University, Provo, Utah.  August 1971.

Riley, James A.  Utah Lake Water Budget Study—1970-71. Master of Civil
Engineering Project Report.  Brigham Young University, Provo,  Utah.
February 1972.

Loveless, Eric C. Utah Lake Water Budget Study—June 1970 through
December 1971.   Master of Civil Engineering Project Report.  Brigham
Young University, Provo, Utah. May 1972.

Nelson, James D. Utah Lake Water Quality Study—1968-1972.  Master of
Civil Engineering Project Report. Brigham Young University, Provo, Utah.
December 1972.

Stock, Harold S. A New  Approach to Evaporation Estimation by Combining
Water Budget and Salt Balance Techniques.  Ph.D. Dissertation.  Brigham
Young University, Provo, Utah, fn preparation 1974.
                                 50

-------
TECHNICAL PAPERS PRESENTED
Fuhriman, D, K., and J. R. Barton.  Utah Lake Pollution Research.  Utah
Section, American Society of Civil Engineers, Salt Lake City, Utah.
October 1970.

Fuhriman, D. K., James R. Barton, and Jerald S. Bradshaw. Diking
Research on Utah Lake.  B.Y.U. Chapter, Sigma Xi, Provo, Utah. March
1971.

Tillman, David S. The Biochemical Oxygen Demand and Coliform Bacteria
Counts of Utah Lake.  Utah Academy of Sciences, Arts and Letters, Provo,
Utah.  October 1970.

Sundrud, R. B., M. Morrison, D. R. Pratt,  E. L. Loveridge, J. S.
Bradshaw, D. A. White, J. R. Barton, and D. K. Fuhriman.  The Bio-
chemical Response of Provo Bay to Nutrient Inflow.  Utah Academy of
Sciences, Arts and Letters, Ogden, Utah.  April  1971.

Kennison, L. T., J. S. Bradshaw,  D. R. Pratt, E. L.  Loveridge, D. K.
Fuhriman, and J . R. Barton.  Eutrophication of Utah Lake—An Initial
Estimate of the Nutrient Inflow.  Utah Academy of Sciences, Arts and
Letters. Ogden, Utah.  April  1971.

Pratt,  D. R., and J . S. Bradshaw.  Water Chemistry of Utah  Lake.  Utah
Lake Research Symposium, Provo, Utah.  February 1971.

Bradshaw, J. S.,  R. B. Sundrud, L. T. Kennison, E. L. Loveridge, D. R.
Pratt,  D. A. White, D. K,  Fuhriman, and J. R. Barton.  The Chemical
Response of Utah Lake to Nutrient Inflow.  Northwest Regional Meeting of
American Chemical Society.  Bozeman, Montana.   February 1971.

Morrison, Mark, J. S. Bradshaw, James R.  Barton, and O.K. Fuhriman.
Dissolved Solids in Utah Lake. Utah Academy of Sciences, Arts and Letters,
Provo, Utah.  October 1970.
                                51

-------
Loveless, Eric, D. K. Fuhriman, J. R. Barton, and J .  S. Eradshaw.
Water Budget Studies of Utah Lake.  Utah Academy of Sciences, Arts and
Letters, Provo, Utah.  October 1970.

Loveridge, E. L., J. S. Bradshaw, J. R. Barton, and  D. K. Fuhriman.
Pesticide Levels in the Tributaries to Utah Lake.  Utah  Academy of
Sciences, Arts and Letters,  Provo, Utah. October 1970.

Bradshaw, J. S., E. L. Loveridge, K. P. Ripee, J. F. Frown, E. M.
Michener, B. Hague, J. L. Peterson, O.K. Fuhriman, J. R. Barton, and
D. A. White.  Pesticides in the Water and Fish of Utah Lake and Its
Tributaries. Utah Academy of Sciences, Arts and Letters, Provo, Utah.
October 1970.

Fuhriman, D. K., J. R. Barton,  L.  B. Merritt, and J.  S. Eradshaw. The
Diking of Arid Region Lakes to Improve Water Quality.  74th National
Meeting, American Institute  of Chemical Engineers.   New Orleans,
Louisiana.  March 1973.
                                 52

-------
                              SECTION XII
                              APPENDIX A

In this section,  a  complete  computer print-out is given for all  lake and
tributary quality sampling results and many of the quantitative  flow
measurements of tributaries, particularly  for those made at the  same
time a quality sample was taken.   See pages 56  to 98  inclusive.

Preceding the computer print-outs are maps showing the location  of all
sampling stations and an explanation sheet of nomenclature used  in the
data listing.

The tabulation of data is presented chronologically for each sampling
station in order of number,  except for some supplemental data obtained
from the U.S. Bureau of Reclamation for the period September 1972 to
June 1973 which is presented on the last three pages of the data list-
ing.
                                    53

-------
UL I
                                    Figure  6.  Map of Utah
                                 Lake  Showing  Sampling Stations
                                    Scale -  1" =  3.33 miles
                               54

-------
                   N
             Figure  7.   Map  Showing
         Location  of Tributary  Stations
              Scale  - 1" = 4 miles
55

-------
                 NOMENCLATURE USED IN THE DATA LISTING

AL = Alkalinity - reported as mg/liter calcium carbonate
BOD = Biochemical oxygen demand - 5 day 20 degree C
CA = Calcium - reported in mg/liter
CL = Chloride - reported in mg/liter
C03 = Carbonate - reported as mg/liter
COLF = Coliform bacteria - measured either as actual number or most
       probable number per 100 ml of sample
COND = Conductivity measured in micromhos/cm
DS = Dissolved solids - total soluble salts measured in mg/liter
F = Fluoride - reported in mg/liter
FLOW = Flow rate in cubic feet per second
GB = Goshen bay stations
HARD = Hardness of the water reported as mg/liter calcium carbonate
HC03 = Bicarbonate - reported as mg/liter
K = Potassium - reported in mg/liter
MG - Magnesium - reported in mg/liter
NA = Sodium - reported in mg/liter
NH3 = Nitrogen present as ammonia - reported as mg/liter nitrogen
N03 = Nitrogen present as nitrate - reported as mg/liter nitrogen
PB = Provo bay stations
PH = Negative log of hydrogen  ion concentration  in  moles/liter
P04 = Ortho phosphate  -  reported as mg/liter  phosphorus
S04 = Sulfate -  reported as  mg/liter
TEMP = Water Temperature - degrees  C
TURB = Turbidity reported in Jackson  turbidity units
UL  = Utah Lake stations
UT = Tributaries to Utah Lake including Jordan River  outflow
                                   56

-------
            DATE   STi   FLOW
                                     l>H  COfiO  fiL HAPD  NA  CA   MG   K  IIC03 CQ3  CL  SG4  N03   NH3  P04
BOD   OQ  DS TU13
01
510T2 ur
51072 UT
02669 U7
90269 UT
9096-7 JT
•50570 UT
602 70 UT
2o.m UT
3U72 U7
32372 UT
33072 UT
4G572 UT
41372 (JT
4 1'/ 72 U'
50372 UT
51072 UT
3.'372 Ur
33072 UT
40572 UT
413/2 ur
41072 UT
5017,> UT
51072 UT
M672 yl
32372 UT
33072 UT
40572 01
41172 UT
41972 UI
50372 UT
51072 UT
31672 ur
32372 ur
33072 UT
4-JS72 UT
41372 ur
41972 UT
50372 UT
51072 (JT
31672 U*
32372 UT
33072 UT
4057? ur
't!372 UT
41972 UT
42672 Ur
53372 Ur
51072 UT
32669 UT
90269 UT
1
2
3
3
3
3
3
3
4 0.52
4 0. 70
4 0.02
4 0.54
4 0.42
4 j.37
4 0.32
4 0.44
!) 0.20
5 0.24
5 O.,i2
5 0.46
5 0.22
5 0.20
5 0.44
6 1.0ft
6 0.34
6 J.tU
6 1.40
6 0.90
6 1.00
6 1.13
6 2. '•>/
7 0.62
7 J.5',1
7 0.5 4
7 0.y
7 3.5S
3 2.40
3 2.7J
« 2.70
3 3.15
b b. U
3 5. U
it 4.70
8 S.70
8 6.30
9
9
14. J
;s.o
26.7 8.70
22.9
24.5 
Of-.. 5
13.0
14.0
14.0
12.0
15.0
14.0
07.0
06.0
13.5
14.0
13.0
12 0
13.5
12.5
J3.3
03.5
13.5
13.5
15.0
25.5 3.80
22.3 O.UJ
432
410



1310
475
649



605
643


475


356
475


250




605


810



497
551


616



691
640

713
a 53
724


187 204
160 195



485 539
209 231

225 431
132 507
291 369
246
341 412
340 376

163 221
205 281
217 293
Ub
231 250
204 214

286 3A5
331 J8h
330 303
317 372
219
318 35B
313 36U

331 299
327 ^62
228 376
276 294
194
227 237
259 273

309 332
298 364
292 351
322 2V4
112
260 254
301 343
309 3tO
304 342
295 381


053
014



70
17

072
04t
045
041
047
042

027
025
020
016
016
016

024
036
032
031
021
029
030

036
046
047
035
029
031
031

035
05S)
046
035
035
037
035
03t)
042
044


57
57



99
58

125
157
100
51
114
106

54
78
03
28
69
50

72
92
94
tie
3?
bl
05

82
71
75
!>7
22
44
60

64
30
73
57
61
44
?U
SO
73
72


15 9 2?9
13 06 220



71 2 591
21 2 251

29 01 275
28 02 162
29 02 356
29 14
2H 02 417
27 01 415

21 05 200
21 03 251
21 02 290
19 01
19 02 282
17 02 249

45 02 349
30 07 404
36 D8 403
37 08 307
34 07
38 16 388
30 06 332

23 39 404
45 OS 400
46 12 279
37 36 337
34 04
31 04 273
30 04 316

42 05 373
40 08 36-V
3h 09 357
37 06 393
39 00
35 03 3lli
36 US 36S
39 10 3711
39 12 371
49 10 361


010
005



0.8 05
2.0 20

012
926
030
02-J
023
010

019
017
020
022
or/
015

012
035
055
02 U
025
031
027

327
021
OJ7
021
0.J2
OLD
OU

015
031
026
OJ6
033
034
030
032
OJA
192







163
2V

305
1)6
o?a

099



042
045

042



072
363
071

070



094
OS7
070

075



r/j
071
040

063

051
080



1.3d
0.37



0.11
J.32
i. ro
1.80
1.33
1.74
1.66
1.6J
1-55

0.12
O.rtO
0.74
3.68
0.88
J.6t)

0. 73
2.70
2.64
2.64
1.96
2.24
2.20

2.76
0.90
0.83
3.7«J
1.14
1.26
1.23

0.78
2. BO
2.66
3. '36
2.04
3.05
2.76
1.95
5.85
2.65


).44
0.09





0.44
0.03
J. 03
0.03
0.07
J.03


J. 17
0. U
0.04
J.J6
0.07
0.02

0.06
0.13
J.16
O.O/
0.11
J.ll


0.21
O.Od
0.23
0.1 J
O.O/
0,0:1
0. J2

0.08
J.52
1.36
1.02
J. J9
1.22
O.G4
I. 10
0.75
2.03


04.6
01. 5



3.5

oo. a
JO. 5
01.0
00.4
Jv.6

J2.2
02.4
00.6
JO. 1
01. a
oo. a
00.6
04.0
J J. 7
01.1
Oj.6
01.4
00.9
01.6
Jo. 6
01.6
00.7
00.3
01.7
JJ.6
02.3
J2.0
05.6
06.3
J3.Y
03.9
02.6
06.7
06.1
04. 3


372
315
03.8
J7.4.
12.3

7.0 424
341
523
662

0742
0590
326
430
4U2

449
400
650
687
691
653

645
0600
663
6bU
554
564
401
04b2
J567
643
755
656
608
0755
05dU
609
631
657
7*2
13.0
09.4


043
042
028






































035
029

-------
OATt  ST4  FLJM   TEMP
C3.';0 AL MAP
                                                    NA  CA  KG  K t7J
102V70
1U27J
1 1 127 J
111670
1120 TJ
113J7J
121070
122270
10471
11471
20271
20871
21171
21071
30271
30t71
31171
3ld71
J2S71
40171
40071
41571
42771
51371
b J J7 1
c.0371
61571
62271
62971
71371
72J71
72971
31672
ur 9
UT 9
vJT 9
ur 9
UT 9
UT 9
UT .5 8.15
7.0 a. 25
a. is
7.0 B.I )
8.20
8.0 0.10
C.2J
6.0 3.20
2.0 d.U
8.2 J
3.0 U.65
7.0 d.85
a. 25
7.0 8.40
6.0 0. 12
8. )i
d. >0
B. 10
u. 12
8. 10
8.10
d.20
7.35
D.20
8.30
3.40
3.02
a. 20
8.33
8.10
a. 10
d. 2 J
8.10
12.0
655

600








650



700
630
693

$68
67J
690
649
635
62V
649
675

610
643
650
570
59J
S'/O
:>70
t> (JO
510
530
050
550
530
510
540
590
540
533
590

258
243

254
213
129



197


265
156



261

213

277


268


254

214
233





253

206
209








278
338
342
29B
309
342
367
222


263


369
321



'340

345

359


342


333


309





319

311









357
23
22
16
17
24
55



22


21
19



18

24

20


20


22


22





22

25









040
73
73
70
63
76
86



56


77
71



77

79

78


75


63


58





67

62









32
38
39
3')
34
37
37



30


43
35



36

36

40


38


39


40





37

38









37
4
5
5
3
6
2,



6


3
3



4

4

4


4


4


4





4

7









03
311 2.4
294 1.6

290 9.9
246 7.0
158



241


317 3.1
191



314 2.4

260
.
333 2.9


321 2.3


334 3.0

262 .
2U2 1.6





300 2.6

2 '32 .
251 2.3








340
23
30
14
22
16
U



17
3tt
3d
33
16

25
2>
29
25
10
25
30
2s
25
30
37

34


3J





17

17

17







013
103
106

73
90
77



43


95
69



82

84

93


90


1JO


90





95

114









091
l.ai
0.16

1.13
0.99
J.99
1.40


1.24
1.20
U23
1.18
2.64

1. 10
1.90
l.dl
1.60
2.12
1.70
1.60
1.50
0.32
2.10
1.40
1.60
2.70
1.60
1.64
1.60
1.56
1.74
1.76
1.74
2.54
1.63
1.03
1.42
1.49
1.46
1.23






2.20


0.
0.
3.
U.


0.
0.
0.
0.
u.

0.
0.
0.
0.
0.
0.
J.
0.
0.
*
0.
0.
0.
0.
0.04 0.
0.
0.10
0.06 0.
0.
* *
0.04 0.
d.
0.
0.07 J.
0.
0.
0.
J.
0.
0.
0.
0.
1.
0.


40
30
1}
02


40
14
J3
70
50

04
03
20
04
10
02
20
05
17
10
12
U
20
u
21
10

Ob
11
10
J9
u
03
16
13
12
10
24
22
10
21
7 a
25
33











0.35




0.31






0.32
























C3UF  BOD   00  OS TURB

          05.5      020
4300  4.8
2000  5.0

 930  S.3
                                                                                                          9300

                                                                                                          23 JO
                                                                    7200


                                                                    1500


                                                                    5000


                                                                     150
                                                                          5.5



                                                                          5.2

                                                                          4.3
                                                                                                          9330  5.0
                                                                                                                     6.0
                                                                                                                     9.J
                                                                                                      5.8


                                                                                                      5.9


                                                                                                      6.0


                                                                                                      7.3
          10.0
          12.0

           9.0

          10.0

           8.0
           9.0

           9.0
           0.0

           7.0
           9.0
                                                                                                           430   5.8
                                                                                                                          464  12
                                                                                                                          35
-------
           DATE  ST4
                                   PH
cn
vo
32372
3307i
40572
41372
41972
42o72
51072
31672
32372
33072
4057?
41372
4 I •; 7 2
30372
51372
31672
32372
3307:
40572
4lJf2
419/2
51072
3lo72
32372
33072
40572
41372
41'-, 7 2
50372
51072
316/2
32.'J72
41)572
41372
41972
50372
51072
31072
32372
40572
41372
41972
503 12
51072
31672
32372
33072
40572
41372
41972
UT 9
UT 'i
UT 9
u: 9
UT 9
U7 'v
UT 9
UTl 3
UT10
UTlo
UT10
UT10
UT 1 J
uno
UT10
UTl 2
UT12
UTl 2
UT 12
UTl 2
U'12
UU2
UTl 3
UT13
UT13
UTl 3
UTl 3
UT13
UT13
UTi j
UTl 4
UTH
UTl 4
UTl 4
UTl 4
UT14
UT14
UTl 5
UTli
0715
UT15
UU5
UTl 5
UTl 5
UTl 6
UTl 6
UTl 6
UT16
UTlo
UTl 6
19.5
20. 1
li>.0
16.2
15.1
12. i!
05.0
3.53
3.71
4.20
4.33
4.75
4.UO
4.66
5.6d
0. UO
0. 77
- 0 . E 8
0.'/9
1.27
l.:J3
2.35
01.0
31. 1
01.0
01.0
31.3
01. I
01. 1
31. 1
1.39
1.39
l.r)3
1.93
2.23
2.63
3.01
1.93
2. Jj
2.33
2.23
3. 5U
2.23
2.^6
1.07
l.il
1.19
1.15
1.23
1.27
11.0
09.0
n.o

03.5
12.0
14.2
16.3
13.0
14.5
14. J
05.3
13.3
15.5
16.0
15.0
12.0
15.5
M.5
Or/.0
09.5
15.0
lri.O
12.3
14.0
13.2

•OP. .0
1 /.O
13. )
lo.O
12.0
l'r.3
09.0
10.0
15.3
15.5
16.0
13.3
1 .0

1 /. J
15.5
16.5
16.3
13.0
14.5
13.9

10.0
:OND


497
551

616
533



432
562

562



432
475




513
373

497


454
464



432
339

497



572
543

AL H
244
2«>2

23o
292
31 8
304
251
2 12
228

291
267
289
190
190
139

262
272
231
185
219

196
237
243
222
232

245
253
222
185

117
250
258
225
213
135

422
242
HAftO
353
347
20t»
279
336
340
333
375
421
321
213
351
326
311
329
393
33:
211
346
353
338
329
527
220
217
204
291
342
396
236
327
313
332
363
211
165
298

564
404
389
279
415
349
NA
031
3?
012
010
012
336

038

034

178
03 T
071

074


073
Iftl
085

337

m
074
101

044

1.86
1.65
1.50
1.63
1.15
1.20
2.40
1.36
1.66
1.33
2. 18
1.64
2.56
1.65
1.66
0.74
1.60
1.92
1.58
1.27
1.10
0.94
0.32
0.30
1.05
                                                                              013
                                                                              013 104
                                                                              01-> 035
                                                                              013
                                                                              013 089
                                                                              Oil
        1.42
        1.35
        1.36
        1.56
        1.64
        1.44
                                                                              Oil 069 2.30
                                                                              010 062 2.50
                                                                              012     2.55
                                                                              010 067 2.58
                                                                              309     2.44

                                                                              004     3.06
                                                                              322 214 2.15
                                                                              024 143 1.94
                                                                              024 153 1.U4
                                                                              023     0.40
                                                                              021 13S 2.06
                                                                              019     2.16
                                                                                                  Pf)4

                                                                                                 0.05
                                                                                                 J.34
                                                                                                 0.07
                                                                                                 O.Ci
                                                                                                 0.01
                                                                                                 0.03
                                                                                                 0.37
                                                                                                 0.02
                                                                                                 0.03
                                                                                                 0.03
                                                                                                 3.36
                                                                                                 0.07
                                                                                                 0.01

                                                                                                 0.05
                                                                                                 0.03
                                                                                                 3.34
                                                                                                 0.07
                                                                                                 0.03
                                                                                                 0.34
0. 32
0.04
0.03
0.35
0.07
0.03

0.10
0.02
0.04
0.06
0.04
C.02
                  0.04
                  0.08
                  0.06
                  0.13
                  0.02

                  0.03
                  0.31
                  0.17
                  0.04
                  0.36
                  0.04
                  0.03
                                                                                                             C3LF   rtOO   DO  DS
03.2
01. 1
jo. a
01.2
00.7
01.0
01.3
00.6
01.8
00.2
00.3
OJ.5
00.6

01.5
OJ.l
UJ.3
00.2
jj.9
JU.4
J 1.7
OJ.5
00.9
JJ.4
01.4
uO.4
02.3
01.5
31.4
00.8
01.0
JJ.9
0255
0233
05U2
J475
0501

0344
663
0540
492
0440
0571
0450
566
0475
591
403

567
0599
5B5

572
0533
365
0421
437
549
548
0465
365
0231
                 02.6
                 01.3
                 00. 1
                 00.9
                 OJ.9

                 01.0
                 01.4
                 02.4
                 00.4
                 00.1
                 01.6
                 00.3
 507
 446
04C5
0418
041V

0377
 761
 609
 510
0644

 563

-------
            11ATP   ST6   FICM    TPMP   PH   CJNO AL  HA»&  MA  CA  HG  K  HC03  C03   CL   SO*   M33   NH3   HC4
COLF  BDD   DO  OS TUft3
at
o
51072
31672
32372
40572
41372
41472
51072
8266-J
<>J^6'>
•)UV(.V
50570
6';27)
61670
63070
H47J
7U70
71770
7M7-)
30470
01170
81470
62070
90170
92J70
100570
101570
102970
1U270
1 lli1 70
111670
112070
113073
121070
U2270
10*71
114/1
20271
20071
21171
21071
33271
30471
31171
31(t71
32571
40171
40671
41571
42771
51371
UT16
im 7
UT17
UTI;
U717
UT17
U717
UTia
UTI 8
UT1B
1)7 Id
UTlU
UTld
UTld
UTI U
u;iu
UTl!J
UTI 3
uTia
und
UTI a
UTIU
DUB
liTl t:
UT:O
UTUJ
ima
uru
UUd
UTlU
UTlU
una
UTIU
uria
UT18
UTld
UTld
UTld
uTia
uTia
UTlo
UTlU
UTld
UTld
UTIS
UTiU
UTia
una
UTIO
uria
0.77
1.47
1.93
2.30
2. 25
i.U
3.50
26.1
25.3 *
2i. a *
23.0
20. 5
26. 1 *
25.2 *
31.5
37.1 *
40.* *
40.6


35.5

35.9

32.8


26.0


31.2

3^.3 *
^i>.to
27.6
29.9 «
30. V
29.1 *
27.7 *
27.5 *
2B.5 *

35.0 *
17.5
15.0
12.0
17.5
03.5
03.3
16.0
27.3
24. J
23.4
24.0
^2.3
22.3
ia.5



9.0
9.0

9.0

9.0

6.5
2.0

6.0
7.0

7.0
6. J










8.70
U.7J
8.50
d. 15
a.U
8.00
8. 10
0.35
8.15
0. 10
7. 35
a. 3)

0.15
a. 15
!). 10
8.00
U. 20
7.1)0
0.20
a. 05
B.i.0
a. u
3. 50
a. 33
7.65
0.40
7.75
7.95
8.12
0. 15
7. /a
8.10
it. 31
3.20
8.10
8.15
8.20
$83
626
562
730
710
745
450

775



792
725
064

771
035
824
92*
760
<)2<,
U64
595

J65
aao
«15
69J
720
730
710
820
660
650
530
245
276
141
285
300
316
253
260
281
241
319
272

299
233



300

247

323


•)11


248

263
303





309

254
204
350
410
349
393
356
347
334
367
366
370
426
432
256
39*
372

401
367



382

379
:,
411



-------
cn
OATf
52371
60d71
61571
62271
62971
71371
72071
72471
31672
32372
33072
40572
41372
41972
42672
5037J
51072
41972
5107?
31672
32372
33072
40572
41372
41972
51072
50372
G266V
90269
•30969
iCb/0
6J270
61670
63070
704 73
71470
71770
73170
80473
31470
0 1 1 7 0
3^870
90170
V237J
100570
101570
1J2970
110270
111270
111673
ST4
uria
UT13
UT1U
UT18
UTlb
UT18
UT1U
uru
UT18
UTld
UT18
uTia
UT16
UT13
UTlo
UT18
UTld
UT21
UT24
UT25
ur7.
fl4.
118.
37o.
117.
25.
25.
11.
<1.
13.
7.
d.
19.
17.
93.
34.
113.
336.
331.
329.
319.
re MO








13.0
11. j
14.0
12.5
Jtl.J
C/.5
12.5
13.3
17.0
06.0
17.2
16.0
U.O
16.0
14.3
oa.o
06.5
19.5
Id. 5
24.3
23.5
22.6






27.0
25.5



24.5
,


a.o
7.5

7.5

PH
a. 30
7.37
3. 10
a. 15
H.C2
0.00
3. 33
8. IS



















0.50
&. 60
0.'>3
8.15
8.00

8.10


8.40
8.33

8.20

7.90
8.25
a. 23

7.95
6. 11
0.40
8.10
e.u
CONfi
630
600
550
690
770
740
710
710



637


708
799
734

506



637
648

767




460
460

365


240





'•15



447
400
487

AL









122
351

337
318
318
287
326
566
272
326
162
366

381
395
426




182
174

143
131
148




136

183
151



161

57
HARD








423
436
417
290
432
393
394
383
397
374
397
41!>
376
322
134
374
361
397




232
2J8
Idl
ISO
196
232
Ib4
256


176

226
253



203

197
NA








037
037
035
044
033
042
033
336
042
130
025
042
042
037
013
039
051
030




12
12
<)
d
13
51




14

11
19



11

12
CA








102
107
90
47
13J
V5
92
US
90
51
93
84
00
73
29
79
72
65




65
64
56
49
59
65




46

61
70



5S

56
MG K








41 04
41 06
42 06
42 05
37 J4
3U 06
40 05
41 06
42 05
60 25
42 34
50 17
43 16
34 18
15 02
43 IS
44 la
57 19




17 3
19 2
10 4
14 3
12 4
17 4




15 6

18 3
19 7



16 4

14 4
HC03 C03









149
429

412
309
3U9
351
393
715
332
398
193
447

465
432
520




219 1.7
211 1.2

173 1.2
16).
181




166
0
219 2.2
ISi



192 2.7

70
CL
26







019
033
023
043
029
031
027
325
034
105
015
030
027
025
026
029
032
025




23
25
9
2J
11
13



36
14
36
21
U

25
2i
24
25
8
$04 M'33
1.98
1.40






106 3.05
100 4.10
ill 3.34
2.25
131 2.H6
2.44
097 2.25
119 2.15
1.75
0.75
3.72
076 1.20
Oo5 0.97
079 3.72
3.78
076 0.80
J.52
1.13




56 J.23
54 0.36

37 J.23
100
42 0.41
0.22
0.31

0.09
45 0.00
0.49
39 3.14
47

1.40
0.11
50 O.
-------
DATE SU FLDW
112670 UT2«> 411.
113070 UT2V 401.
121070 UT29 379.
121470 UT29 374.
122370 UT29 300.
10471 UT29 17/.
11471 UT29 2CO.
11671 UT2-; 2i,l.
20tf71 DT29 J2B.
21171 UT2'J Jf*2.
21071 UT29 2dl.
30271 UT29 Itio.
31171 UT29 16 'j.
31S71 IJT2Y 157.
32571 UT29 264.
43171 U729 353.
40671 ur29 32S.
42771' UT29 362.
51371 UT i-si 191.
52071 UT2-J 162.
60071 U1V9 165.
61571 UT29 456.
62271 UT29 369.
62971 UT29 120.
71371 IIT29 13.
72071 UT29 16.
72971 UT29 12.5 *
31672 UT29 35'..
32372 UT29 364.
33072 UT29 332.
40572 UT29 2G6.
41372 UT29 341.
41S72 UT29 313.
42072 Iir2'i» 2/4.
50372 'JT29 1V2.
51072 1>T2'V 121.
31672 UT31 01.5
32J72 UT31 03.5
33072 UT31 01.3
40072 UT31 01. 0
41172 UT31 02. 1
41972 UT31 01.0
51072 UT31 00.5
32372 UT32 JJ.7
33072 UT32 00.7
41372 UT32 00.7
41972 U732 J3.7
51072 UT32 00.7
32372 UM33 00.1
TFMP PH
7.0 a. J3
8.20
4.5 8. 15
8. JO
4.0 0.20
8. 30
2.0 8.45
K.53
4.0 S.'VJ
3.10
4. 0 8.75
4.0 7.R4
8.40
0.25
8.05
8. 10
8. JO
8.20
8.20
8.23
0. 30
7.35
8.23
8.30
7.b3
7.93
7.93
a. 20
38. J
07.0
00.0
07.5
06.0
or.o
ou.o
on. 3
12.0
15.0
12.0
1'. .0
14.3
07.0
ov.o
lf>.l


11.5
12.3
12.0

COND AL HARD NA
264
410 161
437
133
305
410 165
426
365 143
426
450 163
430 143
4S5 171
420
460
440
420
455 165
340 140
370 133
•400
330
295
295
330
430
400
420
46

186
373
421 169
m
410 162
475 163
356 164
201
203
266
378
486 202
269
572 283


309
350
583 314

201 11
234 54
228 11
240 12
219 11
224 11


221 11
219 12








250 016
236 014
219 012
134 013
215 010
210 010
201 013
213 013
234 015
318 023
318 016
303 021
178 016
309 016
294 017
207 GIB


359 020
352 019
343 031

CA
56
58
75
58
60


59
63








77
70
63
29
63
03
56
61
46
93
93
87
37
91
85
77


106
103
93

MC K HC03
15 3 194
IS 3 163
20 4 197
13 181
18 3 196
175
10 4 204


18 3 199
15 5 172
160








14 33 57
15 03
15 03 227
15 02
14 03 207
13 03 221
15 33 193
14 03 205
29 02 231
21 34 343
21 05 240
21 04 325
21 )3
20 04 345
20 05 329
23 04 346


23 04 377
23 05 427
24 04 334

C03 CL
25
1.7 2J
a
25
2.2 19
25
10
1.7 24
2.8 39


1.7 11
11
1.1
11







O'JV
010
00')
316
oo-;
03d
035
005
OJ3
014
016
016
017
019
015
012


020
016
016

S04 NO 3
3.21
52 0. ID
0.21
54 J.3J
o.ov
53 0.25
J.22
0.33
0.37
5B J.17
0.36
0.44
61 3.»4
0.41
010
. J 7
0, -
.44
0.65
54 O.bO
55 0.30
0.26
0.28
0.31






354 3.28
050 0.36
049 0.14
3.10
045 0.22
0.17
345 0.36
047 0.11
0.15
J61 3.25
057 0.22
052 0.15
J.15
062 0.25
0.35
J.22


112 1.15
1.08
o.aa

NH 3 P04 F
J. 33
0.20
0.04
J. Ji
0.06
0.10 0.22
0.16
0.04 0.00
O.Od
J.10
0.33
0.02 0.25
0.10
0.06 0.08
0.11
J. Id
0.08 0.00
0.04 0.24
0. 04
OfiH
. wv
01 &
. . ^
Oy A
. ft O
0. 19
01O
. 4 W
0.31
0.52
1.23
0. 06
0.04
0.03
0.06
0.04
0.02
0. 3J
0.05
0.08
0.06
0.13
3.11
0. J8
0.10
0.04



0.04
0.02
0.05

CO IF BOD
430 «. 5
230 6.6
433 6.3
153 3.4


4300 6.0








02 O
V ft . V
01.2
01.5
00. 3
01.6
00. 7
00. 1
01.9
00.0
Jl. 8
01. V
01.4
JJ.5
01. 1
01.4
02. 6


OJ.4
01.0
00.2

OT OS TURft
9.0 259
8.0
10.0 271
274
9.3 365
346
9.0 270
10. 0 295
7.0 260
391
285
350
297
2V7
357
334








A A A •!
W^*t 3
378
0349
0389
348
0429


556
456
526
0553
0557
0460
3433


663
4V4
0558

40
16
19




































-------
                   STA
                                       PH   COND AL HA«0  NA  CA   MG  K  HCO3 CO3   CL   SQ4  NO3  NH3
                                                                                                                       CJLF  BOO   OO  OS  TURB
CO
33072
40572
41372
51072
90967
50570
60270
61670
63^7 j
70470
71470
71770
73170
80470
8117)
8 1470
d2870
sum
92370
100WJ
1J157J
102970
110270
111270
11167J
112070
113070
121070
121470
122370
10471
11471
11671
2^71
20U71
21171
3027 I
31171
311371
32571
40171
40k 7 1
42771
51371
52071
60871
61571
UT33
UT3J
UT33
UT34
UT34
UTJ4
U"34
UT34
UT34
UT34
UT14
UT34
UT34
UT}4
UT34
IJT34
UTJ4
UT34
UT34
Ur J4
UU4
un4
UT'Vt
UT34
UT.14
un*
U734
UT34
UT34
UT34
UT34
UT 34
UTJ4
UTJ4
1)134
UT34
UT34
UT34
Ufi4
UT34
UT34
UT34
U734
UT34
UT34
UT34
UT34
00. 1
00.1 12.2
00.1 12,0
00. I 12.0
00.1 12.0
24.7 0.40
22.3 3.50
22.3 3.40
7.70
7.9*
15.0 »
11. 8 * 8.00
11.9 •
11. 6 *
1J.O 16.5 7.85
11.5 19.0 7.90
11.7 «
11.6
17.0 7.45
11.6 17.5 7.60
12. J » 8.2)
1U9 « 8.00
11.5 *
lj.7 11.0 7.45
10. 0 * 10.0 7.65
U. i * 7.75
10.3 1 J.5 7.6J
0.6 * 7.dJ
10. 1 10.0 7. 70
10.1 * 7.75
6.0 7.0 7. 70
5.5 * a. 30
5.7 *
6. 1 *
5.7*
5. 6 *
-.. 0 *
5.7 *
S.9 *
't.3 *
4.7 *
4.7 *
CJ.I *
5.8 *
5.8 *
5. 3 *
6.6 *
6. 5 *
11.9 +
12.3
7.0 7.70
7.70
6.0 8. 10
8. 15
8.0 8.40


8.30
7.'; 2
7.75
7.80
7. 70
7.80
7.70
7. 70
0.30
/.6a
8.00
406 273 227
163 222
454 26S 223
575 231 280
570 240 303
314
610 241 305
198 314
200 347
205
300
152 203
595 243 302
127 2B5
660
600 259 315
690
223 305
447
630 249 314
624
173
588
615 260 304
Oi9
500 188 346
5B8


600 236 283
530
530
550
540
650 246 302
450 212 272
500 181
530
540
520
034 58 20 04 334
033 56 20 04 199
036 55 21 04 324
14 84 19 4 281
13 87 21 4 210
15 93 20 6
14 86 22 5 291
16 93 20 6 2'.2
52 98 25 6 244
15 50 19 7 186
18 83 23 5 292
18 83 19 5 155
16 85 25 7 314
19 86 2? 7 273
2 88 23 6 302
58 20 212

15 86 22 04 316

15 104 21 230



15 81 21 5 282




15 83 23 5 299
17 76 20 7 259
220



0.7
1.4
1.6
2.6
0.7
1.0
0.8
0.9
1.9

0.9

1.5



3.1




1.0
0.6
0.5



027
023
018
2U
2tt
20
31
IB
20
17
37
37
30
14
25
37
30
37
10
3/
3D
25
17
3 a
30
34
1



39




21
21

21


016 0.14
0.06
J.J2
55 1.24
49 1.29
ol 2.24
80 2.24
56 2.24
1.20
2.01
50 1.56
1.64
1.32
54 1.36
50 0.20
0.55
1.20
52 0.95
J.65
57 1.13
0.66
78 1.02
O.SJb
59 1.10
3.43
50 1.04
0.
-------
ST4  FLOW
TP*P
COMO AL HARD  MA  C»  MG  K HCQ3 C03  CL   S04   N03  NH3   ^04
                                                                                                           COLF  300   00  OS TlMB
cr»
62271
62971
71371
72071
72971
31672
32372
•3307?
40572
41372
41972
42f>72
50372
51072
3167>
J2372
40572

1.37
0.04
0.04
0.03
o.oa
0.05
0.04

0.03
0.05
0.03
0.13
0.07

0.07
0.08

0.03
0.05



0.07
0.07
0.08
0. JS
0.13
0.7U
0.11
O.Oti
0.07
J.07
0.03
0.15
0.08
0.03
0.05



0.05
0.09
1.12
0.25

0.40
02.9
JO.l
00.5
00.3
01.2
01.1
01.5
01.3
Ol.O
00.5
01.9
00.3
00.9
02.2
00.7
01.3
01.2
Jl.O
00.2

00.1
01.6
01.6
J1.2
00.2
01.2
U2.4
01. 1
02.4
01.3
04.4
02.3
02.3
01.9


0532
0512
503

0549
500
516

036o
434
351
02*3
414
0273
0431
302
464
661
07tJ9
635
589
471
476
437

0404
0313
0400
420
364
371

4J9
464
6.0 10
5.0 1065 5

-------
            OATt  STft
                               TPMP  Pit  CONO  At.  HARD  NA  CA   MO  K IICO3 COS  CL  SO*  NO 3   NH 3  P04
                                                                                                                   COIF   BOO   DO  os Tuf»a
en
10471
10571
11071
23271
21671
3U471
3U71
31371
32*71
4)171
406/1
42Z71
42771
50071
51371
52)71
61571
622/1
62971
71371
72071
72971
80471
3167?
32372
330/2
40572
41372
41972
4?672
50J72
51J72
oU/0
70470
7147;
717/0
7 3 1 7 0
3117)
dJiJ/J
I J1570
1)2373
102970
111270
1.12670
121070
122370
10371
11471
11671
20271
IJT42
UT42
l)T42
UT42
IJT42
UI42
UT42
UT42
UT42
UT42
UT42
IIT42
UT42
U742
UT42
UT42
UT42
UT42
UT42
UT42
UT42
UT42
UT42
U742
UT42
'JT42
UI42
UT42
UT>
11.5
14.0
18.0
16.5



20.0
1-5.5

13.0
c.o

6.5
0.0
8.3
6.5
6.5

4.0

3.0

7.00
0.20
6. 3]
7.45
7.46
7.4)
7.35
7.50
7.50
7UO
790
743
730
800
742
760
750
7 BO
710
700
020
790
830
353
830



767
332

664

907









364
945
533
915
944

944
605
312

234
207

179







137

190









235
153

240
251
251
251
269

200
202


255








226

235


420
521









443











486
33'>
345
454
449
467
526
495
364
387
391
205

333








468

472


40
36









44











051
060
033
OJ5
043
043
0-V3
040
24
41
74


n








35

39


99
136









117











132
70
74
126
122
126
148
129
98
99
99


84


53





110

110


42 9
44









38 10











3P 07
40 06
39 05
34 06
35 05
37 06
30 06
42 06
29 7
34 6
35 9


30 10








47 6
"
43


284
253

219







229

232









287
187

293
307
307
307
329

245
247


200








276

287


1.0 54
l.ft 47

0.2







0.3 39

0.3
33








044
037
040
03,'
033
OJ2
022
036
21
44
53


5.1 52
3d
50

63
63
75
75
65
2.3 37
75
4.2 56


268










244











293
282

245

252
27
0.65
0.43
J.64
0.57

1.31
1.40
0. 50
0.90
3.43
0.32
1.40

I. 10
1.40
3.06
1. /O
0.57
1.^4
1.40
1.46
1.20


0.94

1.88
1.15
2.09
1.45
0.81
0.09

0.85
0.1)9
1.82
0.16
0.60
































1.32


0.30 0.69
1.0
O.U4
1.35
2.10
1.69
1.87
2.10
0.86
2.01
1.12
1.04
2. 05
1.20
0.89
1.50
1.23
0.84
0.77
1.20
1.47
0.39

O.J7

0.08
J.10
0.05

O.J3
o.oa

5.2J
4.30
1.45
3.00
2. SO
1.35
2.25

l.dS
1.90
1.30
0.61
1.10
3.4
3.10
3.2
1.90
                                                                                                                   2300
                                                                                                                                    740   10
                                                                                                                               6.0  694
                                                                                                                               6.0
                                                                                                                                    668
                                                                                                                                    669
                                                                                                                                    597
                                                                                                                                    S06
                                                                                                                                    639
                                                                                                                                    722








6.0
5.0
6.0
5.0
7.0
6.0
7.0
7.0
8.0

• 3.0

6.0
853
6B3
0721
0917
0499
0977
843
582
543
552
627
532
571
606
640

654
582
640
745
600








20
3
10
40

21
no
12






-------
           OATt   STA   PLJW   TEHP  PH  C3ND AL MAUD   NA  CA  KG  K HC03 C03  CL  504  N03   MH3   (>04   F    CJLF  BOO   00  OS  TURd
CTI
21671
30471
30H71
31171
31971
32571
40171
42271
42771
50871
51371
52071
61571
62271
62971
71371
72071
72971
80471
31672
32372
33072
40572
41372
41972
42o72
50372
51072
82669
9J269
90969
50570
60270
63070
71770
73170
82870
9017J
12J70
1 J057J
110270
111670
113J70
121470
10471
10571
11671
20271
20671
21671
UT43
UT43
UT43
UT43
UT4J
UT43
11743
UT4 J
UT4J
UT43
UT43
UT43
IU43
UT43
UT43
UT43
UT43
UT43
UT43
UF43
IK43
UT43
UT43
U743
ur-,3
U*43
UT'.3
UT44
UT44
U744
UT44
U'44
UT44
UT44
UT44
UT44
UT4t
UT44
UT44
UT44
UT44
UT44
UT44
UT44
UT44
UT44
UT44
UT44
UT44
11. a
12.7
13.6
13.8
12. S
13.6
15.4
Ib. 1
15.1
17. J
16.4
12.6
0.0
/.O
5.9
12.0
3.9
6.5
10.0
J303
08.8
OS. 2
JV.9
10.2
Od.d






.4
2.6
1.0
1.6
4.1
5.5
9.2
27.5
33.1
36.2
32. V
J1.3
31.1
32.9
33.0
33.3
33.4
13.0 7.95
7.i)U
7.85
7.33
7.60
7.54
7.6J
7.60
Q.OJ
7.40
8.35
0.1 )
7.03
7. 90
7.70
•> 7.90
• 7.20
18.0
13. J
16.0
16.0
10.0
09.5
1 3.0
19.5
18.5
24.6 8.50
21.5 8.6}
20.3 8.40
0. 10
7.75
7.75



8.00
a. 10

3.25
7-bO
8.30
8, 20

8.2}
8.30
6.0 0.40
8.25
9.5 8.25
aio
825
750
760
7«0
730
7«;o
740
650
700
630
630
700
710
640
690
730
730
616
756

767
064
648



320
745
815



750


490

510


470
365
588
480
440
197
205
203
245
200
245
263
245
240
23J
276



136
237
254



253
104

204
172
221
129

222
156

236
151
404
378
220
271
383
370
385
376
357



166
374
402



374
206

2',4
239
249
235

270
249

242

51
040
037
oia
034
033
030
040
047
030



7
23
28



40
17

12
14
13
24

10
10

11

113
109
102
67
61
154
99
100
103
92



50
97
97



97
53

65
60
72
68

73
75

69

46
32
30
13
29
30
30
33
29
31



10
32
39



32
18

20
17
17
16

21
15

17

11
05
05
02
05
06
05
08
06
04



2
5
7



5
2

4
3
2
2

3


2

241
251
254
300
254
299
321
300
293
261
337



164
268
309



306
123

244
211
264
158

266
183

247
185
1.0
0.7
3.9






1.1
0.9
1.0



1.7
J.7

2.4
0.6
2.9
1.1

2.3
4.0

2.4
1.5
51
034
Oil
030
045
039
039
044
060
027



19
4J
47



47
14

22
11
21
31

18
29

29

210
149
122
037
1J4

131
117




26
131
146



107
32

41
5 t
44
23

36


43

1.36
1.21
1.41
1.48
1.34
2.12
2.04
1.15
1.70
1.20
1.7J
2.05
2.10
1.78
1.23
1.08
3.55
1.23



0.45
1.70
0.52



1.24
1.11

0.66
J.B3
0. 79
0.82

1.06
0.80

0.66
0.79
2.25
0.84 2.63
0.03 2.27
0.63 2.54
0.24 2.54
2.54
0.34 2.15
0.29 1.96
0.64 1.95
0.01 2.J6
0.46 2.70
1.51
3.31
3.26
2.82
2.91
3. 78
2.13
J.69
0.93
0.91
0.85
0.50
0.36
0.96
0.60
0.47



0.10
2.1]
2.20



2.40 0.50
J. 10

0.10

0.20
0.50

0.20 0.13
0.06 0.30

0.10
0.03







1500
2300
2300



3000

2300
2400

4300


2300


4300

J3.5
00.4
03.4
Jl.l
04. 7
02. 5
02.7
04.6
02. 3



3.2
2.5
3.0



3.6

3.2
2.7

2.5

7.8



6.8

8.0 570
625
643
640
590
579
624
682
671
564
475
0495
669
0511
0479
647
523
021
023
05.6 020



543
552
627








433 15
344
7.0 281

10.0 259

-------
           RAIT
                      FLJW
                             TFMP   PH  COtJO AL HARD   NA  CA  MC  K HCQ3 CO 3  Cl  SO*  »O3  MM 3  PO<,
crt
30271
30471
31171
31B71
32571
40171
40671
42271
42771
5J971
51371
52071
63871
61571
62271
62971
71371
72071
72071
31672
32372
33372
40572
41372
41972
42o72
50J72
51072
3196';
Giif.O J
v02o -i
90'J7<»4
UT44
UT<><|
UT44
UT44
U744
UT44
UT<,',
U744
U744
UT44
UT'.4
UT44
IK'./,
UT45
UT45
UT45
UT45
UT^S
UT45
U7't!>
UT45
UT4t>
U745
UT4i
!I7''. 5
U741)
U7',5
11745
UT> 5
UT4t>
U745
UT45
UT45
UT45
U745
33. O
33.0
33.0
J3.6
ja./
45.7
44.3
44.3
44.7
Jr;.7
35.6
37. d
13.0
14.0
3.0
5- J

3. a *
2.9 *
40.5
30.0
33.8
33.3
38.2
37.5
34.2








V.2 *
9.5 »
5. 7 *
a. 2 *
10.0
U.5
Ji. 7 *
(1.4
9.0
9.5
0.7*
7.5 *
6.2 *
9.3 *
10.1 *
2.9 *



















09.0
O'J.O
J9. 3
10.5
03.0
•J5.0
07.2


24.3
21.4
23.5
20.7






18.5
17.5


13.0
13.0



9.0
a. 5

7.70
3. 12
8. 1J
3. 15
3. 10
3.10
8.15
6.20


8.25
3.50
8. 10
6.40
6. 10
8.27
7.00
8.10
7.0J









8.70
d. 'JO
0.8 J
0.30
8.23
7.75

7.55


7.6J
7. t>0


7.55
7. 5J
6.20
8.60

7.70
7.92
7.85
400
460
410
430
410
310
320
265

255
285
320
43J
430
470
450
690
610
610




605

356






12JO
770

963


430





335



1136
1170
207





132

204

125








159
131
187

169
168
167






379
329

379
251
231



250


346
250



408
249





160

182










184
190
295

183
181
185






364
309
326
445
351
334
256
239

329


360
431



441
9





6

9










010
090
018

007
003
010






130
36
47
5J
43
46



63


65
31



95
72





46

58










59
50
67

57
56
56






75
90
77
96
83
81



43


80
82



91
16 2





U 2

9 3










9 01
11 02
31 02

10 02
10 H
11 02






43 12
40 40
33 7
5J 4
35 7
32 6



54 
-------
               STA  FU1W   TTMP  PH  COND AU HARP  NA  CA  MC,  K HC93 CO)  CL  534  NJ3  NH3  P:14
coif  BOO   oo  OS Tima
o>
00
111270
112670
113370
121070
122370
10'. 71
11471
20271
20671
30271
304/1
31171
32571
40671
42771
603 71
61571
62271
62971
71371
72071
729/1
40li7i:
41972
JU-72
J2372
33)72
40572
41372
41972
50372
51072
d!96')
02669
90269
90969
20271
216/t
30471
31171
31071
32571
4!) 171
42271
42771
50371
51371
52071
61571
OT45
UT45
UT'«5
UT45
UT45
UT45
UT'.5
UT45
UT45
UT45
UT45
UT45
Iir45
UT45
UT45
UT45
UT45
IJ745
U745
UT45
U745
UT45
UT4I>
UT45
UT'.o
UT46
U*4d
MT46
UT46
UT46
UT46
IJT46
UT47
UT47
UT47
UT47
UT-V7
UT',7
UT47
U*4 /
UT4 /
UT47
UT47
UT47
(JT47
UT47
UT47
UT47
UT47
3.
2.
3.
3.
3.
3.
2.
3.
3.
2.
2.
2.
2.
2.
3.
11.
4.
7.
7.
6.
6.

05.
3!i.
OJ.
03,
)3.
03.
03.
J3.
03.
03.




20.
22.
i-;.
20.
19.
19.
18.
21.
21.
11.
1.
1.
20.
2
9
4
6
a
I
a
0
I
a

-------
            DATE   STA   FL3*    Tf.Hf   PH  CONO  AL MAUD  NA  CA  MO  K HCO3 CD3  CL  SO4  NO3  NH3  CO4
                                                                                                                 aoo
                                                                                                                       oo  os  TURB
vo
62271
62V71
71371
72071
72V71
d047t
31672
32372
3307J
40572
41372
41972
42672
53372
51072
ai9fc<)
8266V
90269
9UV6V
50570
60270
61670
63070
70470
71470
71770
7317J
30470
31170
3147J
82870
90170
'P237 J
100570
101570
1J297J
110270
111270
11167J
112670
113070
121J7J
1 2 1 4 70
122370
10471
11471
11671
20271
20U71
21671
11747
UT47
UT47
UT47
UT47
'Jf',7
UT47
UT47
UT47
UU7
U74 7
UT47
UT47
•Jf47
UT47
ur7
432

291
398
397



177


333
180



276

?62

312

235



22'i

330
268









1.9
1.2

1.1





13.0


2.9
1.0



2.1

2.4

1.5

2.2



3.3

2.3
1.9
042 119 1.56
123 145 2.40
109 2.44
1.94
831
142 1.90
0*4 136 2.26

076 3.56




42 75 J.36
96 15U 0.47
32
47 7o J.36
123 190 0.29
111 223 0.54
0.31
1.30

21 55 J.38
100 0.66
75 0.28
117 J.45
39 36 0.36

87 0.35
75 0.30
61 101 3.J4
/5 0.13
53 101 J.45
6^ 0.06
70 113 0.45
75 0.33
69 117 J.61
75 0.22

3d 0.33
57 0.5.V 0.06
0.32
70 105 0.50
0.58 0.10
4.17
1.26
2.71
1.7U
5.76
3.44
0.44
1.78
1.40
0.53
0.75
1.14

0.08




0.2J
0.20

J.23
1.20
0.30
0.17
U.90

0.6J
0.11
0.07
O.S3 0.37


J.4U
0.07

0.07

0.04
0.20
0.05

0.10

0.10
0.26
o.oa
0.10
0.62
                                                                                                                06.3
                                                                                                                02.3
                                                                                                                05.6

                                                                                                                03.9
                                                                                                                06.0
                                                                                                                07.0

                                                                                                                04.1
                                                                                                           7500  3.3
                                                                                                           5000  10.8
                                                                                                           7500
                                                                                                            930  10.2
     1027
      940
      915

      828
                                                                                                                     06.4
                                                                                                           9300  7.8
                                                                                                           9300  U.9

                                                                                                           30JO  9.3
                                                                                                                 2.4
                                                                                                                 8.3
                                                                                                              3
                                                                                                           3000  6.4
          J31
          025
          032
          022
 6.0  516
 5.5  802
                                                                                                                      9.0       65
                                                                                                                      7.0  868  190
10.0  526  35
11.0  4U1  23

 7.0  489  35

 9.0  433 260

10.0       50

 8.0  487

 9.0  499
      539
 8.0  485

 7.0  494

-------
OATC  ST4  FL3W   TEMP   PH   COND  AL HAP.O  Nt  CA  HP,  K HC03 C03  CL  SO*,  N03
30271
30471
31171
31U71
32571
4)171
40671
42271
42771
51371
52071
63871
61571
622 7 1
62471
71371
72071
72'J71
31t>72
32372
33072
40572
41372
4 1 9 7 i
42672
50372
51072
43572
41972
51072
11672
32372
33072
4J572
41372
41972
5J372
51072
82669
90269
90969
50570
60270
61670
63U70
70470
71470
71770
73170
30470
IK48
UT4b
UT48
UT48
UT48
UT4d
UT4B
UT48
UT4J
UT40
IJT4d
UT4B
UT43
UT4d
U74U
UT43
UT43
OT4B
UT48
UT4U
UT4J
UT4J
l/T'.d
l(T4d
UT40
ur4d
uf'.n
UT49
UT49
UT4-J
Uf5 J
UT50
UT50
orsj
UT5J
UT50
UT5>
U750
urs i
UT51
uroi
UTM
UT51
UTil
UT51
UT51
UT51
UT51
UT51
UT51
100.
113.
125.
12V.
191.
212.
214.
191.
263.
207.
126.







Ib8.
1/H.
155.
103.
130.
U.6.
112.
Itl.
32.
00.6
01.1
00. t
02. 6
02.6
02.7
J2.5
02.7
03.2
04.1
06.0





48. 1 *
15.4 *
15.5 *
26.6 *
18.5
30.5
29.3 *


















OT.O
Ort.O
07.0
10.0
03.0
06.5
OV.O
14.5
13.0
13.2
oa.7
19.0
17.0
12.0
14.0
14.5
11.0
10.0
la.5
16.4
24.9
23.9
22.5






21.0
19. 5

7.90
8.25
8.20
8.13
11.00
0.23
8.25
8.35
8.30
8.30
8.40
8.J2
8.20
8.10
7.93
7.90
7.90
8.10




















3.70
8.7J
8.50
8.25
7.95

8.30


7.35
7.60

800
770
720
720
sso
580
625
550
48J
470
520
630
1325
470
1065
580
510
*9'0



518


594
907
670


1998











1335
1600

1750


980


258 319





237 266

186 250
208








282 310

213 259
181
281 276
295 258
269 276
337 340
275 281
428
495 448
471 579
762
231 866
568

610 390
600

554 648



397 458
442 541
449
460 536
348 654
333 519
394
325

55





40

37









048

355
040
042
038
041
073
04?
504
343
328
650
648
689
718
540
683

382



125
183
139
190
265
177



72





64

59









73

56
25
71
64
68
02
70
59
64
77
138
85
139
83
130
145

93



70
85
81
83
99
86



34 5





26 3

25 6









28 04

29 34
29 03
24 03
24 03
26 03
33 OS
26 02
117 05
70 20
94 12
160 10
159 10
183 10
233 09
16 13
229 11

101 12



69 14
80 18
60 18
80 18
99 22
74 19



313 1.4





284 2.8

227 2.1
236 9.0








345

261

343
361
329
412
336

605
575
930
283


745
733

677



476 4.7
534 2.6

550 6.1
425
407



73





31

27

26







033

34 J
043
033
030
033
050


271
2d2
650
636
665
376
235
935

352



121
164
106
bS
256
131



109





63

95









071

OBI

072

067
109




896
725
022

895






183
277

307
346
250



0.59
J.62
0.55
0.51
0.45
0.42
0.45
0.34
1.05
0.37
0.47
0.52






0.42

J.44
0.36
0.36
J.24
0.33
0.42
J.47
0.27
I.t2
J.66
0.70
0.42
J.45
0.40
0.74
0.49

0.97



1.58
J.77

O.dl
3.61
1.45
1.05
3.60

0.10
0.04 0.
0.04 0.12
0.14.
0.14
0.05 0.18
0.10
0.03 0.15
0.04 0.24
0.21
0.211
0.19
0.26
0.23
0.12
0.22
0.40
1.42
0.03

3.34
0.06

0. 34
0.06
0.10


0.62
3.55
0. 13
0.4o
J.I.)
0.12
0.10
0.04

0.22



0.60
0.50

0.20
0.40
0.90
0.35
J.18

COIF  BOO   00  OS

 230  3.8       663

                561
                532
                                                                                                930 10.3
                                                                                                    OU8

                                                                                                    00.0

                                                                                                    02.7
                                                                                                    Jl.O
                                                                                                    01.0
                                                                                                    01.?
                                                                                                    OJ.7
                                                                                                    02.1
                                                                                                    02.1
                                                                                                    05.9
                                                                                                    02.4
                                                                                                    01.8
                                                                                                    01. 2
                                                                                                    01.0
                                                                                                    01.9
                                                                                                    01.2
                404

                383
                477
                607

                526
               0457

                520
               0710
                765
                476

               1367
               1369
               3434

               3202
               3908
                                                                                                    02.5
                                                                                                                  323
                                                                                                                  030
                                                                                                         07.2      030
                                                                                                930   4.0       17X9
                                                                                               71.00   6.0

                                                                                               2000   4.8
                                                                                                          5.0  1116  140
                                                                                                          5.0  1045  45
                                                                                                     4. I

-------
DATE  ST4   FL3W    TTMI>  PH  COND  AL HARD  NA  CA   MC   K HC03 CO3  CL   S34   N33  NH3  PO4
                                                                                                     CULF  800   DO   OS  TUA3
an 70
81470
32670
•5017)
90'J70
92J70
100570
101570
102'* 70
110270
110270
111270
111670
112670
113070
121070
12237J
11471
11671
23271
20871
21671
3J271
33471
30871
31171
31071
J2t»7l
4M71
40'.)7l
42271
'•2771
51371
520/1
60B71
61571
62^71
62971
71371
/2071
72'>7l
31672
32372
33072
40572
41372
41972
42672
50372
51072
UT51
U7M
UTil
UT51
UT5i
UTS I
ur-ji
'JT51
IK51
UT51
U751
JT51
U751
UT'Jl
UT51
HTbl
UTS1
ursi
UTbl
'jrsi
UTS I
UTS I
UT51
ursi
orsi
ursi
UT51
UT51
UTbl
U75L
UT51
IJT51
UT51
UTOl
UT51
UTlil
OT51
IJT-il
UT51
u:t>;
'JT51
UT51
UT51
UTS I
ursi
UT51
UT51
LIT 51
UT51
UTS I
10.6
18.3
39.5
45.6 *

52.3 *
54.3 *
56.4 *
6J.3 *
57.6 *
57.6 *
75.0
70.2 *
71.0
70.2 *
67.0
59.3 *


61. 3 •
74.0 *
6'>.4 •
!»<.(. *
63. 7 *
50.0 *
64.2 *
6<*.2 *
62. <> *
65.1 *
62.'; *
72. B *
77. 1 *
46.0 *
37.0 *
35.1 *
45.3
5o.3
"0.5
Lfi.5 *
2J.O
. ll>. 4 *
6J. J
60.0
47.5
45.2
45.3
45.2
39.. J
55.0
30.0
20.0 7.75
19.5 7.05
<]. 13
22.5 8.30
8. 7 0

7.0 r.as
4.5 8.10
8.5 J
8.50
5.5 3.20
a. 20
7.0 7.80
8.20
2.0 7.^0
1.0 8.10
0.0 U.20
3.52
5.0 8.80

8.0 8.20
3.1J
8. 10
0.
8.27
8.08
3.00
0. 14
d. 15
8.00
8.3 J
8.20
8.50
8.05
a. 20
a. 10
0.17
a. 10
8.00
8.20
12.3
10.0
12.0
12.2
10.0
08.0
li.O
17.0
18.0


1215




1346

1045
1508


1435
1266
1407
1145
1040
1S07

1335
1170
1255

1165
1210
1005
9dO
1045
1125
920
970
1335
1J95
1215
2210
2305
1990
1600
1525




1.015

1215
1598
1577
323 389

400 425

269 408



336 357
384 394

US 492

472 468



329 558


37$
400 432






333 386

338 435
283








418 418
250 284
430 463
0 347
301 262
459 430
463 460
U09 565
522 638
192

14J

44



13J
85

15J

155



79



100






80

132









098
077
115
130
129
108
124
165
213
44

73

73



49
64

80

72



113



79






74

72









05
38
90
32
19
80
79
98
76
68 13

59 16

55 15



57 17
57 15

71 27

70 22



67



57 5






49 8

62 26









50 09
46 09
58 12
65 13
57 20
!>3 14
64 16
78 14
109 15
378 S.O

482 3.3

306 11.0



346 14.3
453 7.9

233 1.7

566 4.9



384 9.0


444 9.0
482 3.3






400 3.1

413 3.8
341 2.5








510
336
525
0
368
561
562
908
637
1!>5
350
17i
110

78

137
137
t)J
uO
137
233
125
122
125
137
112
97



90






73

92

147







061
058
002
106
107
Oil 3
0
-------
D4TC STA f^A
32V72 JT52 06.6
40o72 UT'j2 07.2
4JJ72 U^Oi: 13.7
SOS70 UT03 bOi.
60270 UTi.) 7*3.
61f>7 ) 'JT53 M5.
62170 UTi>3 75d.
63J70 UT53 700.
70470 UT53 911.
71470 UT53 7'j6.
71770 'JT53 330.
73170 OT53 772.
S0470 UT53 814.
01 170 U">.1 006.
81470 UT53 U33.
07070 UT53 807.
•30170 UT53 789.
*2370 UT53 610.
100570 UT53 510.
101570 UT53
102970 UT53
113l.
11471 UT53
20o71 UT53 45o.
21171 UTt.3
21071 uri>3 452.
30271 U753 320.
30471 UTS3 495.
31171 UT53 538.
31G71 Ute>3 504.
32571 UT^J 53i.
40171 UT53 522.
40671 UT53 517.
4lr>7l UT!>3
427/1 UTi3 5i3.
51371 UT5J 573.
52071 UT53 649.
601171 UT5S o54.
61571 UT&3 515.
62271 UT53 74').
62971 UT53 741.
71371 UT53 768.
TEMP PH
09.5
20.0
13.5
8.35


3.20
8.25

18. 5 8.45



8.50
0.45
7.55
3.50
8.5 8.50
5.5 3.33
3.10
S.20
5.0 8.25
8.20
6.0 8.10
a. 30
3.0 3.25
0.5 0.20
8.20
'2.0 0.75

5.0 3.15
4.0 0. 10
8.25
8.45
3.05
0.22
8.20
8.20
6. 35
0. 15
* 8. 10
* 8.40
* 8.30
* 7.93
* 8.20
* 8.40
* 8.28
* 8.20
COND AL HARD NA
5940 389
6372 389
12BO 204


1350 205
1335 205
166
160
730


159


1350 180
180

,1467
132
1335 206
1588 0
161
1005
1410 209
1246
1286
1450 220
1226


11 75
1350 203
1226
1035
1100
1095
1365
1350 201
1095
186
1035 162
1105
1135
1155
1145
1200
1125

351 552
734 242
354 140

375 149
365 145
366 145
373 167
411 191
154

4.9
372 164


398 175
353 178


392 252
366 ISO
382 200
402 160

390 165



360 135





357 145

378 132







CA

37
52
58

63
59
61
62
66


52

5
46
46


55
51
51
64

56



57





54

66







KG K HC03
475
63 25
147 25 475
51 25 243

53 22
53 18 246
52 19 246
53 22 203
60 22 196


59 30 194
9
5 9
69 22 220
58 21 175


62 27 162
58 17 247
62 25 197
59 16 250

61 18 264



53 16 243





54 16 240

52 24 227
194






C03 CL
1783
745
1630
3.0 180

17d
2.1 190
2.4 198
193
195


210


0.4 220
2.0 209
233
275
203
2.2 20d
203
217
225
2.7 220
300
300
2.3 211
2S8



2.4 193





3.0 185

155
2.2
180





504 NU3
0.03
0.01
0.10
210 0.57


217 0.50
230 0.36
0.18
219 0.50
J.75


241 0.52


240 0.05
243 0.03
0.17
0.36
232 0.51
236 0.43
0.31
243 0.57
0.75
257 0.75
0.68
0.33
242 0.90
0.52

0.56
0.48
219 0.41
0.59
3.43
0.35
0.31
3.36
223 0.54
0.52
218 0.73
0.47
0.50
0.56




NH3 P04 F
0.09
0.03




0.20
1.00
0.3C
0.08


1.00


0.50 0.65
0.20
0.04
0.10
0.60
0.10 0.64
0.04
0.20
0.12
0.40
0.05
0.08
0.20 0.63
0.17

0.18
0.10 0.29

0.16
0.30 0.18
0.18 0.09
0.14 0.14
0.06 1.S6

3.03
0.26 0.17
0.24
0.18
j.18
0.32
0.16
0. 18
0.32
COLF 60D
01.2
JO. 2
01.5
150 6.9
430 4.6


93 6.4







930 5.3

93 6.0

93 7*0
93 7.0

110 4.6

93 4.3
43 4.5


143 9.4





9 5.0









DO OS TURB
395 1
2819






6.0 997
470







10.0
9.0

3.0 896
9.0 845

8. 0
10.0 876
1021
10.0 888

6.0 896
9.0 867


803
893
636
834
921
906
375















75







45
•ft A
22

48
80
C f
p I
13




















-------
                   STA   FL3*
                               TEMP   PH   CONO  At.  HARD  MA  CA  MO   K HCO3  CO3  CL   SO*  tO3  NH3  PO4
                                                                                                             COLF  BOD
                                                                                                                         DO  OS TURB
72071
72
-------
JiTE
FLOW   TEMP   PH  CONO AL HARD  NA  CA  MG  K HC03 C03   CL  SO*  N03  NH3  P04
coif  BOO   DO  os rirna
82669
90V69
5057)
60270
6lb70
6307 J
71070
71470
80470
80770
81170
32170
90470
92370
D-JI7J
100S70
1022/0
1U2/J
1L0570
Illb70
1 1 r; 7 j
112770
117070
12J37)
121770
122370
10471
10771
12071
20.171
21171
30271
4067 1
42771
60H71
82d'i9
'KOJ69
70
6J270
61670
63J70
7107J
71470
80470
8077 J
61170
Q2170
UT61
•JT61
UT61
UTbl
UT61
U761
U*6l
U*61
UT61
UT61
OThl
'JT61
Ufhl
UTbl
JT61
IJT61
UT61
UTbl
IIT61
DTol
IK61
LIT 6 I
JTbl
UT61
U761
UTol
UT61
l)T6l
UTbl
')T6l
U761
U"62
UT6
-------
cn
OATf
90170
90470

cJ09£j*<
5 3 r> 1 •)
6027J
6 If, 7 0
63073
71070
71470
8047 J
GO/70
8117U
82173
901 70
904 70
<)2373
1001 7i3
100170
10227J
110270
110270
110573
111670
111970
112773
113070
STA FU3H
Uft.2
UT62
UT62
UT62
U"62
UT62
U762
UT62
U762
UTt><:
UT62
Ult2
ur<>2
UT62
yf 62
UTt,2
UT62-
U~t>2
Ut 62
urt>2
UT62
UT62
UT62
UT62
UT6 J
U763
OT63
UT6J
JT63
VIT63
UT6 J
IIT63
U 1 6 J
UIb3
ur<>3
UT63
l>r&J
UT63
UT63
UT63
UT6J
U763
'JT63
UT63
UT63
UT63
UT63
UT63
UT63
UT63
' TEMP

12.0

9.0

7.5

7.5

4.0
7.0
6.0
3.5
1.0

.5
4.0

4.5





27.2
23.5
23.4




14.3


12.5

12.5

12.5

12.5

9.5


8.0

5.0
6.5

PH
7.75
8.25
8.40
8.40

8.09
0.05
8.45
8.20
8.25
8.15
8.40
8. S>0
8.20
8.35
S.40
0.49
8.00
8.55
8.30

8.40
0.30
7.92
8.70
0.80
0.60
0.25
8.20

8.00
7. UO


7.65

7.2J
8.35
7.50
7.90
7.95

7.70
8. 30
8.30
8.25
8.10
8.20
7.80
7.ao
CONO
415


SOT


435
497

446
487
447
456
446
510
426
450
4 £10

405

430
330
265



430
425

360






415


446



350
410

325
467
390
At HARD
140

146



152

140





174


161

159

154
146




182
168

135

142


147

180

140



142
165

141


152
237

231



250

249





284


255

262

225
216




219
220
173
177
171
234

120
186

228

221



186
184

137


199
NA
3

3



4

3





7


4

4

3
4




9
11
10
8

46


9

10

9



9
7

0


9
CA
62

63



64

67





74


66

67

59
62




60
62
53
48

66


50

60

64



50
49

52


52
MG
20

18



22

20





24


22

23

19
15




17
16
10
14

17


15

19

15



15
15

14


17
K HC03
i vao

1 168



3 184

I 169





2 207


2 194

1 190

2 183
I 175




2 216
2 202
4
2 164

2 174


3 180

1 215

2 170



2 170
4 197

2 170


3 185
C03
0.6

5.0



1.1

1.2





2.6


1.2

2.1

2.5
1.6




2.1
1.3

0.9






2.7

0.6



1.5
2.2

1.0


0.6
CU
17
25
3


12
16
12
3

12

25
12
19


19

19

20
4




2J
20
1 J
13

13


12
25
24
3d
8
25

25
8
20
12
6

25
22
S04
76

81



90

84





105


90

99

72
113




35
52

36

37


53

39

33



22
25

30


47
NQ3
0.14
0.12

0.08

.030
0.14
J.03
0.07
0.08
0. J9
.055
0.13
0.12
o.ta
0.11
0.11
0.75
o.os
0.07

0.16
0.20
0.23



0.45
0.29

0.36
0.30
0.36

0.53
0.25
0.41
0.32
0.24
0.13
0.31

.033
0.13
0.20
0.16
0.23
0.19
0.16
0.25
NH3 P34 F
0.40 0.26
0.04

0.02

0.06
0.10 0.29
0.04
0.70
0.03
0.05
0.26
0.05
0.04
1. 10 0.31
0.04
0.05

0.06



0.09 0.09
0.08






0.20
0.04
0. 50

0.03
0.30
0.02
0.60 0.21
0.03
0.10


0.06
0.10
0.00 0.16
0.06
0.70
0.05
0.04
0.30
COLP
2300



430

150







9300


750

93

93





23
430

750






230



2300

9300
9300




430
aoo
5.0



5.2

4.2







2.6


2.4

3.6

6.3





6.9
4.0

7.2


7.1



6.1



6.3

S.2
9.2




6.0
00

9.0

9.0

10.0

10.0

9.0
10.0

10.0
11.0

10.3
8.0

10.0





12.4
13.6
12.4




9.0


8.0

7.0

7.0

10.0

9.0


11.0

10.0
10.0

os rufta

276

254

406 S

308

238 4
297
135
334
321
442 1
337
302

328
405
602

229

054
044
039




219


252

262

38J

230

237 S


221

212 5
237 5


-------
 DATS  ST4  FLOW   TEMP  PH  CONO AL HARD  NA  CA  MS  K HC03 C03  CL   S04  M)3   NH3   P04

120370 UT&3
121470 UT63
121770 IIT63
122371 UT63
 10471 UT63
 10771 UT63
 11071 UT63
 12U71 UT63
 20371 UT63
 21171 UT63
 30271 UT63
 40671 U763
 42771 UT63
 60071 UT6)
 50570 UT64
 6327J Uf6
-------
DATE  STA   FL3W    TEMP  PK  COND  At HARD  NA  CA   MO   K HC03 Ct*  CL  SO*  N03  NH3  P04
                                                                                                     C3LP  BOO
                                                                                                                 00  OS  TORB
50570
6327D
61670
63070
71)70
71470
804 70
BD77>
81170
82170
9JL7J
90470
92370
100170
100570
102270
110,"!70
110270
110570
111670
111970
112670
113070

120'j70
121770
12227J
10471
10571
128 71
20871
10771
43671
42771
60071
U 2 6 ( < 9
90269
909o9
5057)
60270
6 It/ 70
63070
710/0
71470
8J47J
H0770
81170
8217)
V0170
90470
UT65
UT65
UT65
UT65
UT65
UT65
'JT65
UT65
UT65
DTiiS
UT65
UT65
UTuS
UTl>5

'JT65
UT 6 5
UTt>5
UT65
UT65

-------
CO
DATE su FLDW
92370 UTfc6
100170 UT66
IOJ17J OT66
102270 OT66
110270 HTo6
11U*7> 'JT66
111670 UT66
111V70 UT6o
112670 UToo
113070 UTt>6
120370 'JTfco
121770 UT66
122270 UT60
10471 UT66
10571 UT66
20871 jTfcb
12871 UT66
30271 UT66
40<.7.l UTbo
42771 UT66
60871 UT66
81969 UT67
aZl.bl UT67
902o<5 UT67
90V69 UT67
13471 U7<»7 39.1
10571 U1V7 3J.8
10571 UTo7 3ti.8
11671 UT67 4J.5
11871 UTo7 40.2
20271 uTo7 36.  316
3 303

2 279
2 267
4 277






5 226
5 287
212
224

206







7 225

239








C03
2.0



2.9

1.9


3.2




2.0
3.3

3. 1
2.3
4.1






0.8
0.9
1.9
1.6

0.4







0.5

0.5








CL
ft
25

25
20
12
5

12
23

12
25

16
26
25
20
6
5






32
41
36
34









35


33







S04 ND3
21


.025
2.) 0.35
0.02
28 0.24
0.03
0.05
23 J.I 8
0.03
0.05
0.05

23 0.11
23 0.05
0.09
19 0.07
21 0.20
25 0.08






0.64
44 1.22
0.26
1.26
1.15
0.93
o.ao
0.39
0.43
0.57
0.54
0.88
0.48
51 0.61
0.36
1.02
1.08







NH3



















0.05








3.86
2.78

5.48
2.55
4.90
3.33
2.80
2.48
0.48
1.96
3.B6
3.92
1.00
2.22







»»04 f

1.15

0.04
0.3J
0.08
1.00
0.04
0.06
0.2J
0.02
0.04
3.37

0.10 0.08
3.03
4.40


0.10
0.13





4.1
3.80 0.29
4.4
2.5
3.70
5.5
4.9
1.96
4.11
3.89
2.68
1.98
3.33
3.37
6.76
3.06
3.26
2.53
2.97
2.S6
2.94
2.48
3.37
2.41
COIF BOO 00
4
13.0
2300 3.6
10.0
150 0 3.0
11.0

10.0
8.0
4300 3.3

10*0
11.0
8.9
430
150 8.5
12.0
ISO 6.8
43 4.0


10.2
04.8
11.6
OS. 8
9300 17.5




6.0
6.0


















OS TO*B

438 40

287 12

310 15

303 10
299 10

291
315
304

465 4

303
411
384
413

024
026
021
025

394 12
498
462
446
387
312

412
401
360
370
476
370
450











-------
 DATE  STA  FL3W   7FHP  PH  CONO AL HARD  NA   CA   MO  K HCO3 C03  CL  $0*  N03  NH3  PO4   P    COUP  BOD   DO  OS TUK»

 31969 UT68        25.0 8.90                                                                                 12.0      035
 32669 UT63        22.0 8.53                                                                                 04.2      028
 90269 UT6
-------
            DATE  STA
T6MP  PH  CJNO AL  HARD
CA  MG  K HC03  C03  CL  SO*  N33
                                                                                               P04
COLF  800   00 OS TURfl
00
O
32470
61 f. 7)
70070
01^70
9007U
90970
61570
7007)
01270
9GB70
61363
61764
62763
70163
70568
70i!G8
71160
71568
71060
72162
7256.1
72963
60160
30460
80(160
81268
31V63
32660
9J263
9056 8
90963
9126U
91669
•n
5
5
:>
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
&
5
5
5
5
5
5
5
5
5
5
9
5
5
5
10.0
25.0
25.5

21.0
27.0
27.0









































8.35
8.30
8.60
0.50
8.35
8.15
8.60
7. HO
8.25
8.40
8.20
8.35
8.20
8.40
8.35
8.35
8.30
3. 00
8.00
7.50
7.73
7.60
7.65
0.00
8.11
0.00
8.25
8.30
B.45
0.55
7.85
7.95
7.90
0.30
8.05
0.45
8.20
8.20
0.25
0.20
8.20
8.20
7.65
7. B5
7.05
8.25
8.25
8.30
1000
I2ao

1280
1230
1250
1300
1250
1445
1425
1425
1490
1630
1510
1390
1510
1000
1000
14 'JO
1425
1390
1490
1490
1470
1270
1425
1470
1600
1450
1270
1470
1500
1470
1560
1465
1390
1406
1395
1415
1430
1345
1325
1390
1370
1300
1280
1390
1170
184
196
172
172
204
202
172
177
207
206
201
200
204
194
166
195
194
184
172
180
174
177
170
171
170
138
149
165
148
153
160
161
1.66
186
211
212






172
157
161
131
191
194
293
342
341
328
345
348
322
332
363
358
360
364
364
354
348
344
346
346
334
348
339
354
344
340
340
306
342
340
320
329
332
468
380
366
352
374






323
312
320
344
338
334
92
140
163
160
120
140
145
150
140
140
140
140
140
140
132
148
130
145
130
140
140
140
140
150
140
155
145
155
150
165
155
165
150
165
145
140






144
150
140
150
145
130
55
53
41
41
59
54
40
44
60
58
50
57
55
54
50
49
50
36
46
49
47
50
45
46
45
34
30
43
37
30
40
41
42
51
59
62






44
36
37
43
48
51
30 13
51 19
58 20
55 21
43 17
52 19
54 19
54 20
52 17
52 17
52 10
54 19
55 19
53 19
54 19
54 20
54 20
62 20
bJ 20
55 21
54 21
56 21
56 21
55 20
55 20
54 22
60 18
57 10
55 18
57 18
56 19
89 19
67 19
50 19
50 18
53 17






52 21
54 20
55 19
53 18
53 18
50 18
219
234
201
203
243
243
202
215
248
244
241
238
244
23J
221
232
232
222
208
219
211
215
206
206
205
157
178
199
175
180
194
195
201
222
254
251






209
190
195
217
228
232
2.7
2.6
4.4
3.5
3.3
1.9
4.4
0.8
2.0
3.4
2.1
2.9
2.1
3.2
2.7
2.9
2.4
1.2
1.1
0.3
0.5
0.4
0.5
.1
.4
.5
.8
.1
.8
3.5
0.7
0.9
0.9
2.5
1.6
3.9






0.5
0.7
0.0
2.1
2.2
2.6
126
lOd
213
217
167
184
201
19J
180
177
100
19J
192
193
190
196
196
200
209
199
202
203
204
204
207
205
207
217
210
232
221
217
217
226
184
101
200
220
210
210
205
210
195
204
203
203
196
179
153
210
233
235
203
214
220
211
223
216
223
227
232
232
230
233
234
240
243
241
239
245
245
241
245
246
241
243
248
249
252
249
255
256
200
222
218
215
210
215
210
200
220
210
230
223

204
0.23
0.20
J.23
0.18
0.23
0.11
0.23
3.25
0.29
0.23
0.07
0.29
0.23
0.23
0.14

0.07
0.07
0.02
0.02


0.02
0.23
0.50
0.05
0.27
0.27
0.05
0.11
0.23
0.23
0.16
0.50
0.32
0.29






0.27
0.07
0.25
0.23
0.23
0.23
0.1
0.5
3.2
0.4
0.2
0.6
0.4
0.5
0.0
0.9
0.0
0.8
0.8
0.6
1.0
1.0
1.0
0.9
3.5
2,8
2.6
2.4
2.4
2.6
1.0
0.4
0.9
0.6
0.3
0.5
0.7
1.0
0.5
0.9
0.7
0.8






0.8
1.4
1.0
0.1
0.0
0.0



0.77



0.68
0.68
0.64
0.71
0.70
0.71
0.7J
0.65
0.70
0.73
0.64
0.70
0.74
0.74
0.75
0.75
0.77
0.76
0.77
0.80
0.82
0.81
0.58
0.76
0.76


0.66
0.74






0.70
0.72
0.71
0.64
0.62
0.59
230
93 5.9 5.*
4 4.7 9.0
5.8 5.5
11.2
93 8.0
12.9
5.4





































1.2

1.8








922
909
916
929
941
923
862
937
920
928
892
836
eao
894
884
888
921
856
858
688
878
870
8V2
906
922
966
880
880
8<;o
692
907
920
860
847
852
862
878
906
896
840








11
5
8
16
9
8
16
17
9
14
10
9
9
5
8
8
5
4
4
4
2
10
10
5
29
11
30
30






50
21
45
13
35
38

-------
            OATf-   STA
00
 6?*7>
 72270
 02670
 92J7J
 V572
 *2072
 51572
121669
 3IN70
 6157J
 70070
 31270
 <.'8
            7HH.B
            72100
            72568
            72Vt.3
            0 ? 1 6 3
            30'. 08
             0196U
             90563
             9 jT^.il
             91968
            102268
            112668 ULll
             *2269 ULll
Tf KP
23.5
2*. 5
11.5
11.5
ID. 9
21.5
27.0
26.0

21.0

27.0



























t>H CONO
8.*3 1370
8.30 1335
3.60 1*55




7.95
8.35
7. 60
3.35
8.2}
8.55
7.70
a. 30
8. 30
ft. 50
0. JJ
8. 35
B. 10
S.JO
0. 20
a. 35
B.*0
8. 15
8. 20
a. 05
7.60
7.90
7.'»o
7.55
7.90
8. 10
3. 3'i
8. 15
7.80
7.95
8.25
8.10
8.20

1166
1264

1230
1.100
1060
1280
1283
1370
1200
1*90
1*25
l**-5
l**b
1*25
1630
I'j30
1530
1S10
1 V/0
1000
I 3'JO
1*2*5
1390
1*90
15 JO
1210
1195
1*50
1*50
1*50
1500
1*50
1*70
1*30
1370
AL MAUD
202 366
166 3*2
168 3*2

180 327
222 377

202 357
170 3*0
181 3*1
209 363
196 355
170 330
185 351
212 368
210 370
207 360
?0* 360
195 3faO
200 360
197 362
196 352
200 V;Z
19/t 353
137 346
133 3*3
183 3*fl
175 339
172 3*G
190 3*2
Ifl* 352
169 3*0
162 33*
150 326
157 327
165 332
165 *68
177 376
167 3*8
205 360
MA
1*5
170
170

17*
159

135
1*5
120
130
1*5
155
150
1*0
1*0
1*0
1*3
1*0
1*0
IbO
1*0
150
1*0
150
159
1*0
1*0
150
1*0
150
1*0
150
170
160
155
150
150
150
130
CA
57
*0
*0

*7
57

59
**
56
63
55
*0
*2
63
61
57
5fl
55
55
56
51
52
55
37
51
50
*6
**
50
51
*5
*6
*0
3d
*2
*1
51
50
58
MO
5*
59
59

51
57

51
56
*9
50
53
56
60
53
53
53
52
5*
55
5*
55
5*
5*
61
5*
5*
5*
5*
56
55
55
55
5-i
56
55
89
61
5*
52
K HCO3
20 2*0
31 199
16 197

19 220
15 271

20 2**
19 212
19 221
1C 2*9
20 235
ie 200
21 225
18 253
18 251
17 .:*7
19 ?'.*
19 232
19 2*1
19 235
19 .''35
;o ;'io
20 ?32
20 225
20 219
21 ?21
21 213
21 208
21 ^30
21 22*
20 <0*
1C 195
U Ifl3
19 lfc<»
19 200
19 200
16 212
IS 225
2 2*6
CO3
3.3
2.2
4.3




1.2
2.6
0.5
3.1
2.1
3.9
0.6
2.3
2.7
2.7
2.7
2.9
1.7
Z.f*
2.1
2.9
3.2
1.3
1.9
I.*
0.*
1.0
0.9
0.*
0.9
I.*
2.3
1.7
0.7
0.9
2.1
1.6
2.2
CL SO*
196 22*
217 2*0
237 2**

190
191

132
202
150
180
192
207
19*
235
130
r>2
llib
1J7
193
195
190
2 JO
l')3
195
20*
2JJ
200
205
202
203
209
210
210
2tl
216
211
203
197
186

213


221
225
201
219
225
230
221
231
228
225
229
227
232
238
2>0
23*
2'.J
2*0
2*5
22*
2*1
2*e
2*0
2*2
2*6
2*6
2*5
2*5
2*U
2*9
252
230
221
NO 3
0.36
0.09
0.09

0.19
0.22

0.02
0.68
0.97
0.72
0.23
0.23
0.38
0.05
0.27
0.25
0.29
0.29
0.20
0.13
0.16
0.02
O.I*


0.16

0.1*

0.05
0.32
0.32
0.18
0. 1*
0.1*
0.23
0.36
0.*3
0.3*
                                                                                       0.9
                                                                                       0.9
                                                                                       0.3
                                                                                       3.8
                                                                                       0.9
                                                                                       O.ti
                                                                                       0.9
                                                                                       0.9
                                                                                       0.9
                                                                                       0.9
                                                                                       1.3
                                                                                       1.3
                                                                                       2.6
                                                                                       *.2
                                                                                       8.0
                                                                                       2.*
                                                                                       2.7
                                                                                       0.5
                                                                                       0.5
                                                                                       1.0
                                                                                       0.5
                                                                                       0.9
                                                                                       0.7
                                                                                       0,7
                                                                                       0.8
                                                                                       0.8
                                                                                     0.58
                                                                                     0.70
                                                                                     0.67
                                                                                     0./2
                                                                                     0.71
                                                                                     0.72
                                                                                     0.73
                                                                                     0.65
                                                                                     0.63
                                                                                     0.76
                                                                                     0.67
                                                                                     0.73
                                                                                     0.7*
                                                                                     0. 7*
                                                                                     0.7*
                                                                                     0.73
                                                                                     0.76
                                                                                     0.81
                                                                                     0.83
                                                                                     0.7i
                                                                                     0.59
                                                                                     0.73
                                                                                     0.76
                                                                                     0.76
                                                                                     0.67
                                                                                     0.6*
                                                                                                                    2.7
96*
936
935
932
919
V3d
951
92*
953  21
9 39  1 *
932  18
•550
892
     18
      6
     13
     1*
     1*
      9
     17
     15
     20
     18
B80  10
9*0  12
93*   8
955   5
902   6
866  11
930   *
66*  13
933  13
962  11
920  29
928  17
899  12

-------
            r>ATL   STA
                   TfMP  PH  CONO AL HARD  NA  CA  KG  K HC03 C03  CL  SO'.  NJ3  NH3  P04
                                                                                          CQLF  BOO   DO  OS TIM&
            $2769
            603 b?
            0036V
00
ro
            626 IS 9
            70169
            70169
            70064
            7156V
       'All
       ULll
       ULH
       an
       ULll
       ULll
            V0269
112569
121669
 30370
 32470
 02470
 7227J
 02670
 92370
 12572
 40672
 42072
 51572
121609
 32470
 61360
 61764
 62068
 62463
 62768
 70160
 70*60
 70d6U
 nua
 71568
 7U6B
 7216R
 7256S
            80168
            a 04 MI
            dOObO
            31260
            81969
            02608
            90560
            90V68
            91268
            91668
ULll
ULll
'JL11
ULll
ULll
ULll
ULll
Ul. 1 1
ULll
ULll
UL1 1
ULll
ULH
ULll
ULll
ULll
ULll
UL12
UL12
•JL13
UL13
UL13
UL13
DLL 3
III 13
UL13
UL13
UL13
UH3
UL13
UL13
UL13
UL13
in. 13
UL I 3
L»Ll3
UL13
UL13
UL13
UL13
UL13
UL13
UL13









22.5
23.0


11.7
9.4
9.3
16.9


























e.35 12R5
0.30 14UO
0.20 1330
8.U 1370
8.20 1410
a. 25
0.30 1315
S.20 1350
8.24 1353
8.05 1400
7.93 1425
8.00 I3i0
0.13 1335
0.30 U70
8.30 1140
8.40 1170
8.40 1370

8.35 1403
Q. 60 1435
1199
1080
12S3


8.25 1425
0.40 1445
0.25 1425
8.30 1445
8.35 1445
0.00 1510
0.40 I6d0
8.35 1440
3.30 1550
6.20 1510
0.45 1300
8.15 1425
0.35 1380
8.10 1425
8.35 1425
7.90 1490
7.-VO 1445
7.73 1303
7.55 1195
0.20 1500
0.40 1450
7.90 1500
0.35 1450
7.80 1450
200 360
213 366
202 348

180 334
165 321
165 328
177 336
183 330
185 350
193 325
207 367

166 341
167 341

354 324
355 377


209 358
205 355
204 346
218 369
205 364
203 366
222 364
193 352
204 360
193 358
1-52 350
186 354
177 340
178 344
177 346
174 378
175 347
174 344
178 346
170 334
165 334
164 340
160 338
163 338
130
140
130

145
150
150
150
140
115
115
145

170
170

151
153


140
140
130
150
160
150
160
140
160
154
150
190
176
140
140
140
140
150
150
145
150
172
162
145
59
61
56

48
39
42
46
48
46
SO
58

41
30

46
57


58
50
57
58
58
58
56
54
56
49
52
37
47
48
47
50
48
45
48
45
42
46
42
41
52 17 248
52 17 255
51 19 241

52 22 217
54 20 200
54 19 199
54 19 213
51 17 219
56 15 221
49 17 229
54 19 245

58 21 198
60 17 195

51 19 432
57 14 434


52 17 250
51 17 243
56 16 244
54 18 260
53 19 244
54 19 245
54 20 263
53 19 230
54 20 244
57 20 231
54 20 226
64 20 ?23
54 20 211
54 21 215
56 21 211
63 21 210
55 21 212
56 21 212
55 20 216
54 21 204
56 19 198
55 19 190
57 19 191
57 19 198
3.3
2.4
2.7

1.3
0.9
1.1
1.5
2.4
2.4
3.2
3.4

2.4
4.3





2.5
3.4
2.4
2.9
3.3
1.4
3.7
2.8
2.7
2.0
3.2
1.7
2.6
1.5
2.6
0.9
0.9
5.0
0.4
1.8
2.7
0.8
2.4
0.6
171 236
179 221
210 217
213 210
213 200
220 210
174 217
223 210
21S 210
196 223
204 223
205 228
230 236
Ib5 210
111 177
165 190
197 228

222 243
226 238
144
183 190
105


179 218
185 217
170 211
199 234
2)0 234
197 231
221 234
193 227
207 236
203 236
190 237
202 262
202 240
202 239
201 242
202 243
203 22*
205 244
209 241
20d 247
214 247
218 251
220 248
216 249
0.34
0.32
0.16

3.16
0.09
0.20
3.23
0.23
0.18
3.18
0.36

0.39
0.09
0.13
0.12
0.28


0.27
3.25
0.18
0.23
3.23
0.02
0.34
j.ie
0.07


0.07
0.02
0.02



0.09
0.36
0.11
0. 11
0.11
0.23
0.36
3.7 0.61
0.9 0.70
0.20
0.30
0.41
0.38
0.9 0.63
0.33
0.44
0.9 0.69
1.1 0.75
1.0 0.65
2.5 0.77
0.1 0.65
O.I 0.56
0.1 0.57
0.2 0.56

0.5
0.2 0.67
0.36
0.03
0.10


0.8 0.66
0.9 0.66
0.6 0.62
0.8 0.60
0.0 0.71
1.5 0.70
0.9 0.73
0.9 0.73
0.9 0.67
0.8 0.69
0.9 0.75
0.9 0.66
1.0 0.72
2.7 0.72
2.2 0.74
2.1 0.72
2.4 0.73
2.4 0.77
0.7 0.77
0.2 0.75
O.S 0.79
1.0 0.59
0.0 0.58
1.0 0.78
083
929
883
076
099
892
840
870
866
860
872
890
800
856
770
3 819
23 7.2 951
8.2


00. 5 0890
00.9 1077
01.0 0900
1.4
23 2.0
918
916
880
970
973
958
1014
910
Vb3
953
894
1001
954
896
090
906
913
904
941
OV4
894
914
896
006
70
0
25

70
53
65
16
10
25
27
26




7



16
36
11
22
11
13
10
9
14
14
14
14
12
13
13
$
10
6
9
7
7
2
8
a

-------
           DATE   5T«
                              TEMP  PH  COND At. HARD  NA  CA   MG   K  HCO3  73  CL  SO*  N33   NH3  P04
                                                                                                               C3LP   ftOO
                                                                                                                            00  OS
           91960
00
GO
          12d3<>it
           603 6 '*
           7016V
           70164
           700o')
           7lr.oT
           HOW
           0026'J
           110-.69
           51370
           62470
       UL13
       IX 13
       ULU
       UL13
       ULl 3
       ULl J
       ULli
       ULl 3
       UL13
       UL13
       ULl 3
       UL 1 3
       UL13
       IH.13
       UllJ
       UL 13
       ULl 3
       UU13
       UL 13
           32670
           '12J70
           'tO(.7«J
 51572
100V70
 61J6.1
 6 I 1 6 B
 (S206J
 6:4<.3
 027611
 701M
            71168
            71563
            7106(1
            72163
            72160
            72'763
            U016H
            a 04 ft a
            00360
            31268
            31960
            •50268
            90568
            VOS6S
            91268
UL13
Oil 3
ULl 3
ULl 3
UL 13
ULl 3
ULl 4
ULl 5
ULl 5
UL 15
'JL15
Ml 15
UL 1 5
KL15
ULl 5
in. 1 s
ULl 5
ULl'J
UL15
ULl 5
ULl 5
ULl 5
ULl 5
'JL15
UL15
ULl 5
ULl 5
ULl 5
ULl 5
ULl 5









24.5
24.5


11.0
10.1
11.0
19.6
























a. 00 1500 166 340 155
8. 40 2000 171 350 160
8.45 1510 185 360 166
S.OO 1320 210 3*4 140
(1.30 1350
3.2J 1338
8.25 1440
0.2) 1351) 195 342 140
8.20 1450
8.20 1435
8.2J 1406
8.00 1425 183 338 144
7.70 1370 166 348 170
0. 40 1350 163 322 161
8. 10 1410 176 330 160
8.40 1335 187 300 170
8.3J 1300 200 343 160
8.20 1390 212 360 140
0.40 1370 206 369 145

8.40 1350 171 349 175
8.60 1435 172 349 170

1100 291 139
1134 201 314 151
1274 232 3/7 164
8.20 1200 408 459 125
0.20 l'>55 210 300 160
0.3* 1710 ?12 3fl9 180
8.35 1510 ?14 374 160
B.30 17'.0 231 400 220
0.25 1553 2D4 3t>) 170
0. 50 1655 210 366 1 70
8.00 1655 202 364 150
B. 35 163) 194 360 150
8. 15 1650 204 368 170
S. 20 1550 193 350 156
8.10 13'JO 194 360 155
8.40 142
58
51)
56
53
54
50
51
37
50
50
50
•58
50
44
46
45
43
41
39
57
59
57
53
51

53
60
55
55
55
52
51
54

60
60

49
51
57
63
57
60
56
60
57
59
54
55
57
55
57
66
50
57
57
59
58
61
56
61
57
59
60
19
18
18
17
20

22
20
19
19
21
18
17
20

21
1.7

14
19
16
12

21
18
??
20
?1
20
20
21
20
21
21
21
22
22
22
22
22
21
19
19
20
20
203
203
218
253
234

221
202
193
?12
222
239
254
244

203
201


246
2R4
490
751
.75?
255
276
244
t'5l
244
231
245-
,731
..'33
235
?23
222
224
219
217
?20
;io
207
133
193
189
1.1
2.8
3.4
1.4
2.0

1.2
0.6
2.7
1.5
3.1
2.6
2.2
3.4

2.8
4.4




4.3
2.2
3.1
3.1
3.0
2.4
2.4
1.3
2.9
1.9
2.0
1.6
3.3
0.7
1.2
1.6
0.0
0.4
I. I
0.3
0.3
3.7
0.6
1.7
22.)
227
215
183
MO
2U
?20
167
22t
220
222
2JI
204
220
212
222
120
104
204

237
22
V24
860   3
931
95J
999
882  52
878  23
894  40
834  22
950  U
880  44
656  30
     12
                                                                                                          02.3
                                                                                                          01.5
                                                                                                          00.4
      12
      U
      27
      27
      12
0460
0930
0851

 930
1059
 992
1191
1029
1045  23
 966   7
 908  15
1026  17
 890  2a
 981  17
 984  20
 944  14
 922
 946
 944
 924
 986
 932
 912
 896
1029
 948
                                                                                                                           13
                                                                                                                            8
                                                                                                                            6
                                                                                                                           16
                                                                                                                           15
                                                                                                                           12
                                                                                                                            4
                                                                                                                           10
                                                                                                                            5
                                                                                                                           10

-------
            OATF  STA
                   TEMP   PH   CONO 41 HARD  NA  CA  HC  X HC03 C03  CL  S04  NU3  NH3  P04
                                                                                          COLF  BOO   00  OS  TUKR
            9196b
           100868
00
-p.
            60369
            60360
            61969
            62669
            70169
            7016V
            70169
            70J69
            70B6V
            7156-)
       UL15
       ULii
       UU5
       UL15
       UL15
       UU5
       UU5
       OL15
       UL15
       UL15
       UL 15
 902 6'<
100069
110469
12026V
 3J37)
 51370
 42470
 7227J
 82670
 92370
 40672
 420/2
 51572
 4)672
 42072
 51572
 6157J
 70070
 00370
 fl 1 0 7 )
 01270
 31770
                  'IL15
                  UL15
                  UL15
                  U.15
                  tlU5
            100370
             80370
             81070
             01770
            100370
             61570
             70870
             81270
             90U70
             32572
             40672
             42072
             51572
UL15
UL15
UL15
UL 10
UL15
1)1.15
UL16
UL16
ML 16
•Jl I 7
U.17
UL17
US. I 7
UL17
UU7
UL17
UL17
UL19
UL19
UL19
UL1V
UL21
UL21
UL21
Ui.21
III 21
UL21
UL2L
UL21









24.5
24.3


11.1
10.2
12.1
13.8
13.0
15.2
19.5
24.0
25.0
24.3
24.5
8.00
8.25
8.J5
8.35
8.50
8.52
8.35
0.00
8.23
8.30
e.io
8.20
8.23
7.85
7.60
7.70
8.00
0.10
8.30
0.05
8. 35

7.85
8.50






8.30
8.20
8.70
8. 20
8.45
1500
1470
16 JO
1470
1400
1395
1418
1450
1393
1420
4210
1425
1402
1400
1320
1375
1410
1345
1550
1370
1370

1400
1455
994
1220
1205
uoi
i ioa
1285
1300
1410

1390
1435
167 340
172 350
203 372
214 362
199 356
189 336

175 340
170 337
167 328
191 342
ISO 342
203 366
221 364
207 369

170 351
179 365
252
195 328
272 *19
194
201 328
212 359
246 375
188 370


182 348
170
160
165
1 40
150
140

144
160
163
160
160
190
140
145

175
185
161
079
171
072
079
159
135
155


165
42
43
54
61
54
51

45
41
37
44
44
50
62
59

40
44
35
44
61
30
44
SO
63
56


44
57 19
59 18
58 19
51 18
54 24
51 18

55 22
57 20
57 19
56 19
56 19
59 22
51 18
54 20

61 23
62 la
40 11
53 19
65 16
29 07
53 19
57 15
53 18
56 21


58 20
201
206
241
255
240
226

212
207
203
231
217
242
266
246

206
212

239
333

246
259
294
226


216
1.1
2.0
1.5
3.1
1.3
2.2

0.8
0.5
0.6
1.3
1.5
2.7
1.7
3.0

0.8
3.7






3.2
2.2


3.3
226 255
227 261
229 250
182 223
200 199
209
210 196
200 220
103 218
212 200
6*>3 705
213 235
212 200
197 225
2Jd 2)2
219 23>
225 239
213 204
260 246
iaa 213
200 229

230 243
24y 256
136
199 220
207
106
204 224
197
175 208
214 232


220 242
0.07
0.20
0.54
0.32
0.02

0.27
0.17
0.09
0.27
0.20
0.05
0.32
J.41

0.11
0.20
0.04
0.13
0.23
0.06
0.20
0.24
0.23
0.29
0.22

0.23
0.7 0.77
0.6
1.0
0.8 0.72
0.9 0.69
0.9 0.64

0.8 0.74
1.6 3.91
1.5 0.75
2.0 0.80
1.8 0.75
0.1 0.65
0.8 0.68
0.2 0.63

0.1
0.2 0.69
0.08
0.04
0.11
0.07
0.03
0.09
0.2
0.5
0.12
0.03
0.2
     7.23 1410 206 367 170
18.0 9.70 1567
24.2 8.60
25.4 8.35 1365

10.0 9.60 1477
2J.5 8.43  980 215 321  95
23.5 8.15 1090 169 299 130
24.5 7.60 1200 158 351 110
     7.63  870 175 257
12.0
13.1
12.3
                                                           50  59 21 252  0.2
                                                                   227 237 0.18
                                                                   312     0.04
                                           95
                                      222 064
                              907 200 291 049
                   14.0
114S 204 333 150

58
36
32
34
38
49
48

43
51
66
42
31
41
52

11
16
11
12
06
11
13

256
203
192
213

244
250

3
1
0
0




.6
.6
.4
.5



287
110
164
200
111
111
119
159

168
201
175
163

160

0.
0.
0.
0.
3.
0.
0.
0.
08
05
11
20
18
04
20
07
0
0
0
1
0

0
0
.02
.2
.6
.3
.4

.05
.07
                                                        0.5  0.75
                                                        0.01

                                                        0.03
                                                                                          0.55


39







930
*










9
4









00.
00.
DO.
00.
00.
01.
a.
7.


4.

8.





12.
12.
Id.
4.
03.
02.
05.




3
7
9
a
6
2
5
0


3

0





0
4
0
3
6
2
9


7.
7.






6.
7.
14.
7.




10.
8.


11.
14.
8.






1
4






2
8
0
0




0
0


0
0
7




918
934
966
884
895
892
904
908
844
910
900
913
397
876
876
916
936
916
1073
942
912

0404
853
0985
0364
0942
0856


932
1009

996

910

692
952
839





0790
672
10
32
1$
27
25
20
50
28
85
51
19
3
SO
32









50
50



48
28
65

38








-------
00
cn
              12166V
               32*70
               M570
               70070
               81270
               'KV'70
              121669
               3.7470
               61570
               7)U73
               31? 7.)
               90R70
               61363
               61763
       STA

       I1L22
       UL22
       UL22
       UJ.22
       UL22

       UL23
       ULJ3
       UL2i
62463
6?76rl
70163
7JS03
70360
71160
71508
713611
72101)
7? S<.rt
7296U
OOlOti
               JOiif.B
               012613
               81060
               0?668
               fu.'.otl
               9 j •) (, H

               91.?6d
               91661*

              100000
              120361)
               00309
               6036S

               62669
               70169
               70169
               7JS69
               71569
               30*169
               90269
UL23
U123
lit 2*
UL24
UL24
5
1000 1B6
1350 181
1390 179
1490 103
1493 175
1490 179
1490 173
1240 166
1400 152
1470 157
1425 161
U70 163
1010 163
1500 Io5
1500 162
1450 172
1535 196
1470 208
1380
1373
1)88
1350 183
1400
1460
1450
1400 180
1335 164

302 145
369 150
354 160
370 170


355 125
34B 145
330 150
346 140
396 160
365 150
364 150
363 150
360 140
364 150
366 150
364 150
302 156
360 142
360 155
•5*6 120
324 159
3*<. 1*0
350 1*0
353 140
351 140
342 140
332 140
324 ISO
332 145
330 155
338 170
356 165
338 155
333 155
344 160
366 165
360 145



340 140



340 144
320 150
CA

64
59
48
51


63
52
40
48

56
50
57
53
57
56
54
54
50
37
36
49
*0
50
46
49
44
42
39
39
41
41
42
41
41
43
49
57



50



46
40
HC K HCO3

54 17 252
54 20 244
57 24 220
59 21 213


48 17 254
53 19 231
56 20 200
55 19 234
61 19
55 19 245
53 17 252
55 18 256
52 10 241
54 19 243
55 20 246
56 20 233
60 20 241
57 20 246
65 20 233
62 20 221
40 20 215
55 21 216
55 22 220
55 21 212
57 21 .'10
56 21 210
55 21 202
55 22 177
5Y 19 166
05 10 l 90
57 10 192
tl 19 199
57 19 199
57 19 196
58 18 204
59 19 234
53 18 249



52 21 225



55 21 213
54 20 199
C03

2.2
2.1
1.2
1.5


2.2
2.5
3.1
0.9
2.7
2.4
3.1
2.3
2.7
3.0
2.4
2.9
2.7
3.0
2.3
2.7
2.7
1.3
1.9
1.5
0.7
0.4
4.3
3.5
2.6
3.3
3.4
0.5
1.4
0.3
3.2
2.9
2.4



2.2



1.1
0.4
Ct SJ* N33

203 241 0.36
200 232 0.32
224 260 0.23
223 247 0.18


174 211 0.61
19J 222 0.14
210 231 0.23
180 210 0.36
201 240 0.23
200 236 0.25
190 22«> 0.23
194 234 0.05
103 225 0.02
200 235 0.25
211 239 0.18
204 240 0.16
202 221 0.16
204 238
20') H9 0.05
.""-. 1 2*2
200 244 0.02
204 2** 0.05
?0d 243
203 247
205 2*1 0-02
20* 2*2 0.05
21'J 249 O.*l
213 2*9 0.05
212 2*2 0.32
21 J 250 O.U9
214 2>i 0.16
216 247 0.11
221 254 0.23
222 255 0.09
221 254 0.16
225 243 J.52
lii-J 224 0.25
22* 23J
220 230
220 210
193 215 0.05
226 212
220 200
2iO 210
195 223 0.25
204 227 0.07
NH3 PO*

0.2
0.5
0.4
0.4


0.4
0.4
0.2
0.5
0.9
0.9
0.9
0.9
1.0
0.8
0.9
0.9
0.9
0.9
3.0
1.3
1.0
2.1
2.4
2.3
2.2
3.0
1.0
0.4
0.3
0.5
1.0
0.0
1.0
0.7
0.8
0.8
o.a



1.0



1.0
1.3
F




0.81





0.69
0.73
0.63
0.63
0.69
0.69
0.70
0.71
0.73
0.67
0.70
0.66
0.64
0.73
0.69
0.74
0.73
0.75
0.71
0.81
0.78
0.79
0.84
0.62
0.53
0.77
0.77


0.71



0.63



0.69
0.79
C3LF SOD DO OS TUftft
2.0
93 5.8
430 7.2
3.6

2.3
43 3.5
1500 6.0 6.4
9 5.4 9.2
5.0 4.2
5.0

965
954
90S
92o
963
901
918
959
962
912
883
902
900
912
094
914
896
894
878
8DO
806
950
950
9*9
910
926
1001
938
880
382
806
376
900
935
930
373
868












9
19
21
7
22
4
9
12
31
13
13
8
7
14
5
16
5
10
e
6
13
5
5
12
%
32
12
26



18



33
23

-------
            DATE  SI A
            TEMP  PM  CJNO AL HAP.O  NA  CA
                                                      K HC03 C03  CU  SO'.  NO 3  NH3  P04
                                                                                          COLP   600    00  OS  TUKB
00
            120?69
            3J37>
            51370
            62'. 70
            826 YJ
            97370
            J2572
            401.72
            42072
            51072
UL24
in. 2 4
UL24
UL24
DL24
VIL24
UL24
UL24
UL24
UL24
Ul 24
1>124
ML 2 4
UL82
             32470
             42170
            121669
             37<.7J
             421/0
             32470
             '.2170
            12U6T
      UL93
      Ul.94
      ULV't
      ULV4
      HI. 95
3?!470
4<>t70
37
UL-Jo
UU98
LI 2
Ll 2
LI 8
I I 6
LIU
LU1
L114
LU4
LUt>
LU6
LH7
LU/
                       8.4S
                       8. 15 1410
                       8.05 1230
                       B.33 1393
                       8.15 1425
                  23.0 0.35 1300
                  25.0
                       8.35 1370
                       0.50 1455
                  12.3
                  12.3
                   9.0
                  18.9
                           16} 322 155
                           100 326 160
                           177 334 165
                           207 344 155
                           210 362 145
                           202 364 140

                           173 349 175
                           176 349 180
                      ioao
                      llt.6
                      1274
             38
             41
             43
             50
             61
             55

             41
             41
    225 097  31
191 325 077  48
228 387 158  61
55 19 193
54 19 216
55 20 213
53 18 247
51 18 252
55 20 241

60 21 206
60 16 208

36 09
50 19 234
57 14 279
3.0
1.7
1.5
2.7
2.0
3.0

2.5
3.6
211 224 0.09
212 222 0.18
210 233 0.23
200 224 0.09
193 213 0.20
200 2U 0.45

222 237 0.11
233 248 0.14

168     0.07
200 218 0.12
192     0.26
1.6
2.0
1.8
0.4
0.9
0.2

0.2
0.1

0.08
0.04
0.09
0.80
0.84
0.81
0.62
0.70
0.59
0.66
              908
              916
              920
              918
75
8.0
6.9
904
          42
           6
          20
          45
          35
           9



230
9300

2300
430
5000
230


2100
430
9300
2300
930
230
230

2300
V300
23 JJ
3000
9300
01.1 0372
01.0 0846
00.4 0828
1.0
13.0
13.1
4.1




4.4
1.5


1.0
1.5



2.4
4.4
5.9
8.8
3.3
2.4

-------
                  STA
                                    pH  CONO AU HARD  NA  CA  KG   K  HCO3  C03  CU  SO*  NO3  NH3  P04
                                                                                                           COLF  BOD
                                                                                                                       DO  OS TUR8
00
-J
61970
62573
62670
70270
73973
71670
72370
3067 J
01370
02770
90370
')1070
13J7 1
20(.7l
21371
22371
32U71
33071
41071
42-vri
51571
52171
60771
62171
63071
70571
72671
30271
61') 70
62073
62670
7027 }
70'; 70
71f.70
7?370
80(>7 J
01370
82770
90370
91073
S 2 It 7 3
101 770
117170
10071
13071
20671
21371
22371
32071
33071
pa i
PP i
pb l
PB 1
PO 1
pa i
pa i
PB 1
pa i
."» l
PB 1
PB 1
P3 1
PB I
PB 1
PB 1
P'3 1
P3 1
PB I
PB 1
Pi\ I
pa i
Prt 1
P3 1
PS 1
PO 1
PB 1
PB 2
P3 2
Pft 2
P1^ ?
Pft 2
Pfi 2
P3 2
P15 2
Pft 2
Prt 2
PS 2
P3 2
P:J 2
fQ 2
?a 2
Pii 2
?8 2
P'3 2
PS 2
P-3 2
pa 2
PB 2
22.3
29.5
21.5
23.0
26.6
18.7
23.4
23.3
21.5

16.5
4.5
9.0
4.0
8.5









24.5
28.5

21.9
24.3
27.5
23.0
25.6
24.6
22.0
19.0
16.5
16.0
14.5
9.0
3.0
4.5
4.0
6.0
6.95
3.33
7.30
7.13
7.70
7.60
7.55
7.90
7.50
7.43
7.60
7.45

7.42
8. 50
7.40
7.50
7.25
7.35
7.95
3.35
7.52
6.20
8.03
7.60
7.55
7.60
8. 10
8.35

8.65
7. 38
a. 50
7.60
7.63
7.95
7.70
7.73
7.60
7.90
8.10
7.30
7.80
7.60
8.15
7.80
0.50
7.70
7.64









713
740
680
620
660
670
610
620
630
680
640
700
690
683
660







824
730
510
665
715
680
720
780
770

191 358
195 362
205


206 370

212
210
206
214


212 364











159 323
222

205 363

206 346
207 392
178
218
228
225
184

49 94 30 U 234
34 99 23 7 238



35 99 30 7 252

259
257
251
254


47 98 29 6 259











67 70 36 11 195

33 96 30 7 251

31 96 26 6 252
32 96 37 8 253
24 22 217
265
275
273
219

0.1
0.5



0.3

0.3

0.3
3.7


1.0











2.8

0.5

1.4
0.7
0.6
0.4
1.8
0.8
3.2

42
33


90
35
63
50





34











60

75
100
63
50
63
32
31
27

103
107 2-15
0.36
0.30
O.M
121

0.24
0.44
3.45
0.43
0.22
3.45
2.26
0.43
3.41
111 0.34
0.38










122 0.05
0.27
07 A
. t <*
0.73
120
3.31
0.65
123 3.91
145 3.41
79 0.76
0.36
0.40
0.21
D.J5
0.02
1.48








2.08
2.43
2.18
0.48
3.52
1.36
1.25
2.96
1.08
0.20














3.46
2.67
2.06
0.68
0.28
0.43
1.03
4.90
5.0
3.9
1.40
1.62

1.9

3.10
3.35
2.11
2.11
4.11
3.48
3.29
3.98
2.62
1.76
2. 82
1 .83
2t Q
. oo
21 1
. 16
21 i
.11
1 . 50



2 . 50
1.3
2.60
3. 70

3.50
2.7
2.43
0.80
2.7
3.3
3.23
4.03
3.70
2.17
1.25
0.37
0.93
                                                                                                                      14.0
                                                                                                                               430
                                                                                                            170   1.0
                                                                                                            5000 20.0
                                                                                                            7500 49.0
                                                                                                            3500   3.0
                                                                                                            5000 11.0

                                                                                                                10.0
                                                                                                            8000 30.0
                                                                                                            3000   7.0
S.O
4.0
5.0

3.0
5.0

4.0
7.0
4.0
                                                                                                                       8.0

                                                                                                                 17.0 19.0
                                                                                                             500 25.0
                                                                                                            17JO 28.0 10.0
                                                                                                            6000  8.0
                                                                                                                  8.5
                                                                                                            4000  2.0
                                                                                                            5000 25.0
                                                                                                            5000 10.0

                                                                                                            1033  1.0
                                                                                                            0500 22.0
516
444
565
552
432
472
 3.0
 2.8
87.0
 4.0
 4.0
 5.0
 7.0
 5.0
 6.0

 4.0
11.0
14.0

 6.0
     13
     20
     25
     25
     15
     IS
531
540  20
336
630
592
637
469
423
510
518
432
578  58
     50
591
595  85
409  45
562  95
434  23
458  25
478
640
523
487
494
575
                                                                                                                            395
                                                                                                                            512
                                                                                                                            577
                                                                                                                            547
                                                                                                                            477
                                                                                                                            601
                                                                                                                            571
     15
     15
     15
     15
     24

-------
          OATF   STA
                  TEMP   PH  CONO AL  HARD  NA  CA  KG  K HC03 CO)  CL   SO*.  NO3  NH3  P04
                                                                                          COLF  BOO   00  OS TUXS
00
00
          42971
          41071
          51571
          52171
          60771
          62171
          63071
          70571
          72671
          80271
          80S 71
          32572
          40072
          42072
          61970
          62570
          62u70
          70^70
          70970
          71670
          72370
      P3
      r>B
      Pb
      pa
      pa
      Prt
      P3
      P8
      Prt
      PO
      PB
      PS
      PB
      P3
      fft
      P8
          02770
          90370
          01070
13071
2J(»7l
2U71
22371
32)71
33071
41071
42971
51571
52171
AJ771
67171
63071
70571
72671
40271
6197J
62570
62670
70270
70970
71670
7237J
80670
      P3 2
      Pfl 3
P9
PR
PB
PR
PH
Pft 3
Pit 3
PS 3
Pi\ 3
P9 3
PB 3
PI 3
I'fl J
         3
         3
         3
         3
         3
                PH 3
PU 3
PB 3
PB 3
P& 3
Pfl 3
P5 3
P8 3
PB 4
F3 4
PU 4
PO 4
PB 4
P3 4
pa .4
P9 4











14
14
11
24
27
22
23
21
24
25
24
21
20
15

3
5
3
6











24
20











.5
.5
.0
.3
.5
.7
.5
.6
.0
.7
.5
.5
.0
.0

.0
.0
.0
.5











.9
.5
8.
7.
0.
8.
8.
8.
8.
8.
3.
7.
7.



3.
8.
0.
7.
B.
8.
8.
7.
7.
8.
8.
7.
8.
8.
0.
7.
7.
7.
a.
0.
8.
0.
B.
9.
8.
8.
6.
8.
a.
38
82
23
70
08
40
70
30
40
60
80



60
60
60
80
90
20
15
60
70
45
70
60
50
00
65
75
68
58
65
45
90
20
30
10
90
75
60
40
70
590
720
670 200 356 69 90
690
700

670
660
643
630
620

821 269 036 65
616 216 291 045 72







212 359 35 96


751
675 204
730 238
730 235
700 213
720
760
550
590
690 223 334 67 78
700
650

650
670
670
800

256
121 0
3
32 7 249 1.8 49 121 0
0








26 05 079
27 06 264 038 111 0




0
0
0
29 B 259 0.4 63 114
5J 0
63
63 1
248 0.4 0
283 4.2 0
284 1.3 0
250 5.2 0
0
1

130 0
34 7 236 18.0 57 130 0
0








.09
.40
.12
.16









.38




.03
.21
.43

.43

.40
.41
.38
.06
.29
.20
.59

.09
.12
.12








0
0
0
0





















2
2
0
0
1
0
0
0
0
.








.69
.55
.46
.10





















.22
.06
.25
.59
.13
.65
.33
.15
.18
003








0
1
1
1
0
1
0
2
1
2
3

0
1


3

2

4
3
4

I
2
3
1
2
1
1
0
0
0
0
1
1
0
0
1
1


•
•
•
•
•
•
•
•
•
•
«

•
•


•

•

*
•
•

•
•
*
•
•
*
•
•
*
•
•
•
•
•
•
•
*


71
33
12
34
70
03
47
21
67
91
29

29
06


50

85

00
4
60

80
83
35
96
41
64
35
42
35
74
46
01
58
65
93
44
14


                                                                                                          432
                                                                                                          5S1
                            22.4 8.45

                            26.9 8.45
                            26.5 9.15
                            26.5 8.65
                           278 299
                           145 276
94
86
49
48
43 12 l!i7
38 13 177
2.3
80 102 0.09
77 143
       0.27
0.45
0.6
1.1
0.88


3
100
ttOO
3JOJ
1200

1830
300









01.
02.

16.
46.
46.
32.
19.
8.
25.
16.









4
2

0
0
0
0
5
0
0
0









18.

9.

13.
9.
10.
5.
7.

13.


11.

7.



0

0

0
0
0
0
0

0


0

0



564
597
560
560
460
485
449
607
500
484
489
488
651
645
508
538
552
457
416


40



99

25

20








                                                                                            25 38.0
13.0

11.0

11.0
14.0
11.0
489  25
     22
618
611  35
628
583 109
557 220
    120

-------
        DATE   STA
00
81370
82770
90370
91J70
92670
101770
112170
10971
1T071
20.S71
21371
22)71
32)71
33071
41071
6197)
6.7WO
62670
7027J
70'J70
7U.70
72)7)
81370
02770
9017)
91070
92670
10971
21J71
6TJ70
62 W)
62673
70? 70
70970
7167.0
7P 3 70
81370
32770
90370
91070
92670
101/70
112170
22m
32071
33071
41)71
42971
51571
52171
pa 4
Pfl V
?3 tf
P* 4
PB 4
P3 4
PR 4
P6 4
PiJ 4
PB 4
pa 4
P8 4
PB 4
PB 4
P3 4
PB 5
P3 5
?ti 5
PB 5
PI 5
Pfl 5
PS 5
Pft 5
Pfl 5
Pfl 5
PS 5
Pi) 5
Pil 5
Pft 5
P3 6
P3 6
Ph 6
pn 6
Pi) 6
PA 6
PB 6
Pti 0
P3 6
PB 6
P3 o
PB 6
PB 6
o.'l 6
Pft t>
P3 6
Prt o
PR 6
pn o
P3 6
Pfl 6
TSM»>
23.6
22.5
23.5
17.0
15.0
14.0

0.5


5.0




26.2
29.0
22.6
28.3
24.5
25.2
23.5
23.5
17.0
15.0


25.0
26.8
18.7
26.3
23.3
2*. 2
21.0
2UO
.6.5
14.0
12.0
3.0





f>H
9.05
8.00

7.00
a. oo
3.10
7.70
7.90


7.80
8.55
7.95
7.75
7.53
0.50
6.05
S.55
6.90
9. 33

7.95
7.91
7.70
8.10
7.90
7.95
8.50
8.93
8.70
9.10
9.00
9.15
9. 10
9.10
8.80
0.53
8.00
7.60
7.78
7.82
8.43
8.55
8.68
CONO




751


640
600
790
740
730
780
790
790









761

690









730
649
649
790
770
630
650
720
AL HARD

174 309



199 346
209 371
231
212
239
228
174






154 286
171





238
228



145 267


144 238



150 276
154 279



202 330

NA CA MG K HCOS C03

52 76 29 9 213



31 94 27 6 243
36 96 32 8 255
31 32 280
259
292
277
206






82 52 38 12 188






29 32 289
277


62 11
87 43 39 13 177


86 33 38 13 176



39 63 29 7 184
55 54 35 9 188



67 78 33 6 210


1.0



1.4
0.6
1.0


0.8
3.4






7.0






1.0
1.1



10.4


10.4



0.8
0.3



18.0

CL
125
46
53
312
50
31
32
39










73



50
81
50
34




31


71
83
63
75
39
44



64

SO 4

113



1J3
135
103










141






107




157


149



100
121


118
123

N03
0.
0.
0.

1.
0.
0.
1.
0 .
0.
0.
0.
0.
I.
0.










1.
0.






0.


0.
0.

1.
0.
0.
0.
0.
03
18
47

00
J5
07
12
33
33
06
05
07
20
26










17
1$






27


oa
05

14
15
09
10
11
MH3







3.23
2.05
1.34
0.25
0.34
0.14
1.21











1.86
0.53












0.02
0.13
0.29
.016
.004
P04
1.00
2.7

2.40
2.50
1.7
4.0
3.50
3.J)
2.42
0.95
0.87
0.20
0.46
0.33


0.44
1.3





2.18
3.00
2.89



1.1


1.2


0.25
0.4
1.7
0.51
0.19
0.34
0.39
0.15
                                                                                                                COLF  BOO    00  OS

4500 16.0
3250 34.0
1000 12.0


































25.0
30 22.0





9.0
3.0
7.0
4.0
6.0
6.3
6.0


12.0




14.0

14.0

15.0
25.0
12.0
4.0

3.0
7.0

11.0




7.0
10.0
11.0
5.0
8.0
13.0
10.0
17.0
12.0

7.0



511
541
503
468
432
514
522
476
604
599
506
589
593
636

623
620
536
587
507
504
511
491

438
567
S61


574
585

608
564
582
646
512
463
461

600
564
570
586
485
100
20


IS
12








50

70


145
95
53
50

25


30
16


82
125

150
165
35
65
22
32






-------
       ST4
TfMP  PH  CONO At HARD  NA  CA  *C  K HC03 CO)  Cl   S04   NO3   NH3   P04
COIF  BOO   00  OS TURB
 60771 l>9 6
 621 71 °B 6
 63071 ru 6
 70571 PB 6
 72671 P& o
 00271 Ptl 6
 B0971 PR 6
 62670 PA 7
 70WO f'D 7
 61V70 PH 7
 6?S70 PR 7
 70270 «>ft 7
 71670 PtJ 7
 7?jrj PB 7
 01370 PO 7
 02770 Pll 7
 91070 P» 7
 92i70 Prt 7
U177) PB 7
1U170 ?« 7
 10971 P!J 7
 2?37l "0 7
 320/1 PU 7
 13071 PO 7
 41071 PB 7
 42<)71 Pn 7
 51571 frt 7
 52171 P|\ 7
 60771 Prt 7
 62171 »3 7
 63071 PJ 7
 7J571 f>3 7
 72671 PH 7
       Pi* 7
       P8 7
       r»a o
 62570 P8 3
 6Z67J P3 8
 70270 PB 3
 70970 Pft 8
 723/J PB 8
 fl0670 PH 0
 B137J P3 3
 81970 PB a
 82770 ?B 3
 90370 PB d
 9137J P3 3
 92670 P3 8
101770 PB 3
25.
24.
20.
25.
21.
23.
22.
20.
'.6.
13.
10,
3.
0.
2.
6.












26.
24.
19.
21.
26.
28.

22.
19.
15.
12.
11.
5
8
8
0
0
3
0
0
0
0
5
0
0
0
5












0
9
2
6
t.
5

0
0
0
5
0
a.
8.
9.
8.
9.
9.
9.
8.
8.
3.
a.
8.
9.
9.
a.
8.
9.
7.
8.
0.
8.
7.
7.
7.
a.
8.
B.
7.
.3.
9.
8.
9.
9.
9.
8.
8.
8.
8.
9.
9.

V.
3.
8.
9.
7.
20
10
40
7J
50
40
70
50
70
58
85
75
05
10
tfj
70
50
70
00
10
73
60
30
72
20
50
73
98
00
30
00
40
20
70
51
80
50
80
10
65

15
60
95
15
90
710
740
700
740
730
710

144 279
171

152 254


588
162 225
201 317
755 251
395 199
850
740
360
860
670 177 294
730
680

800
730
650
710
670



154


141 263
146 287


730
138 227


82 46 40 12 176 5.8 76


90 41 37 12 186 U.O 73
103
08
100
74 31 36 9 198 0.4 61
70 61 40 10 246 1.1 53
49 38 303 1.7 50
232 5.4




77 65 32 7 214 1.3 56














82 38 41 13 173 77
82 54 37 13 179 11.8 83
113
153
83
54 35 34 8 169 0.6 50


154


143



130
149
163




123
117














152
149



115


0


0


0
0
0
0
0

1
0
0
0
0











0

0
0

0
0
0


.00


.16


.40
.06
.07
.78 0.01
.08 0.26
0.83
.51 0.02
.30 0.46
.08 0.53
.08 0.28
.11











.30

.09
.16

.13
.58
.06
0
0
0
0
0
0
0
0
1


0


0
0
1
3
0
0
0
3
0
0
0
0
0
0
0
0
0
a


0
0
i
i
0
1

0
0
0
•
•
•
•
*
•
•
*
•


•


•
*
•
•
*
•
•
.
*
•
*
•
•
*
•
*
*
•


•
•
*
*
«
*

•
•
4
14
42
25
28
21
20
13
33
1


9


22
6
8
60
31
37
b&
26
29
34
13
14
27
14
33
10
12
16


53
77
45
45
6
3

52
43
7



10.0
11.0
8.0
6.0
10.0
6.0
8.0
7.0
11.3
15.0
70 22.0 U.O
9.0

6.0



625
542


637
587
503
508
559
529
526
463
539

607
627
661
543
665
670


24
25
35
90
140
125
145
170
135
»5
75
55






                                                                                               666
                                                                                         11.0

                                                                                         10.0

                                                                                    45.0  6.0
                                                                                 10 46.0 15.0
                                                                                110 58.0
                                                                                 20 47.0
                                                                                 55 60.0
                                                                                  0 40.0
           6.0
           7.0
           7*0
                                                                                     8.0 16.0
     45
     25
665
674  40
581
492 130
600 130
611 130

573 165
572 105
540  75
464  60
430  55

-------
 DATE  STA
                   TEMP  PM  CONO AL HARD  NA  CA  MC  K HC03 C03  CL  S04  NO3  NH3  P04
                                                                                                 COLF  BOO   DO  OS TURB
112170
 10*71
 13171
 22371
 32071
 33071
 51571
 52171
 60771
 62171
 63J71
 70571
 72671
 80271
 80971
PB U
Pl> 3
Pft 3
P5 3
Pi 3
?i» 3
pa a
Pb a
PO a
PB 3
Pa a
pa 4
PS s
PA A
Pb 8
   a
   3
 62570
 62670
 702 7 i
 70970
 71!>70
 72370
 81370
 82Y70
 93370
 91070
 92670
IJ1770
112170
 10-J71
 22371
 32071
 33071
 4U71
 51571
 521/1
 60771
 62171
 63071
 70571
 72671
 80271
 80971
 61970
 62570
 62670
 70270
PO
PB
P3 •>
PB 9
PB 9
P8 9
PiJ 9
Pd 9
Pfl 9
pa 9
Pfl V
PB 9
pa 9
Pft 9
PO 9
Pfi 9
Pd 9
Pb 9
P& 9
Pa •}
P3 9
PIJ 9
Pd 9
P3 V
P6 9
f»3 9
pa 9
pa 9
P8 9
pa  ?
?a 9
P310
PftlO
3.0
0.0
0.

.0

4.0












25
23
24

28
24
30
23
24
15
16
12
3.
0
1
5























.2
.9
.2

.2
.5
.4
.0
.5
.0
.0
.0
0
.5
.3
.5











24.7
24.6
9.05
8.10
3.20
a. 65
7. 70
7.80
7.82
8.15
3.40

8.10
8.10
9.40
9. 10
9.7}
9.40
9.80

8.00
8.70
6.40
9.05
9.25
9.75
9.05
9.50
9.00
9.50
7. U
7.70
8.20
7.90
7.82
7. 70
8. 10
3.45
8.60
8.22
3.20
9.15
9. 10
9.70
9.30
9.35
3.40
8.60
629
805 238 63 44 287 1.6
305 234 63 43 282 2.1
1005 198 232 4.8
330
7ao
890
320
700 192 311 83 67 35 7 21V 9.0
710
720

730
720
710
700
690




131 247 87 33 40 13 161 fl.4
154

136 196 87 26 32 13 166 8.7


659
US 224 62 32 35 S 144
164 294 44 60 35 9 201 0.4
805 225 68 45 271 2.0
770
790
330
750
720 198 7 216 13.0
700
740

680
710
720
730
700

1400 256
75
65
75





61








154
166




131
124







0.
J.
»
0.
0.
0.
0.
a.
0.
0.






05
26
17
09
02
24
39
13
06
11







Z.

0.
0.
1.
0.
0.
0.
0.







89

23
56
17
31
45
43
01






0.
2.
2.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
52
60
60
13
36
55
21
21
47
13
13
24
12
27
22
17
0.04




83

150
37
124
38
75
59
44
74




66













164


151



118
135
166



133
133













0.


0.


0.
0.
0.
0.
0.
0.
0.
0.
0.
0.













00


00


60
06
09
08
02
B4
23
09
09
.10































0.

0.


1.




54

8


3


0*36




0.82
0.
35
0.01
0.
0.
11
55
0.30
.001


















0.
1.
2.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.


,1
0
.00
,30
,59
,29
,23
,66
,17
,06
.13
.15
,06
.25
,09
.17


                                                                                                     14.0  464
                                                                                                     5.0  676
                                                                                                     5.0  769
                                                                                                          760
                                                                                                     6.0  624
                                                                                                          583
                                                                                                          683
                                                                                                          642
                                                                                                                      78

13.0

14.0

13.0
13.0
14.0
10.3
8.0
7.0
12.0
14.0
10 27.0 13.0
5.0





627

64B
633
579
587
561
505
538
548
506
462
453

730
565
583
596
636
534
40
SO

35

90
110
135
165
130
100
45
105
78






 P810
             20.1  8.30
                                                                               0.36
                                                                                                           736  44
                                                                                                      3.0       30
                                                                                                           803
                                                                                                 4.0  8.0  869  25

-------
       STA
            TFMP  PH  COND AL HARD  NA  CA  KG  K HC03  COS   CL   504  N03  NH3  PQ4
                                                                                                COLF  BOO   00  OS Wft
 70970
 71670
 72370
 80670
 81370
 82770
 •70370
 91070
 92673
101770
IU170
121273
 10971
 22371
 22771
 32071
 33071
 41071
 42971
 51571
 52171
 60771
 62171
 63071
 70571
 72671
 80271
 80071
 61970
 62570
 62670
 70270
 70970
 71070
 716/0
 72370
 8)670
 8U70
 82770
 9037)
 VI070
 S2670
1M77)
112170
121270
 22371
 22771
 32071
 33071
 41071
PBIO
PBIO
PD10
PC10
"81 J
PBIO
PDIO
P910
PdlO
PlUO
PiUJ
PIHO
PBIO
PBIO
P610
PIHO
PlilO
PB10
Pi) 10
PB10
PtUO
PBIO
^11 10
PBIO
Pt>10
PBll
PIU1
Pftll
Pbll
PBll
PBll
PM1
Ptill
PBll
PBll
Pdll
PQ11
PIU1
Pdll
PU11
Pdll
PBll
P311
PBll
pen

24.0
21.7
24.0
23.1
21.5
23.0
15.5
12.0
10.0
3.0
1.0

1.5













26.3
24. 5
19.4

22.7
24.0
21.7
23.5
23.3
23.0
23.0
1S.O
12.5
10.0
3.5
2.0
1.5

3.5


0.
8.90
8.40
8.80
8.70
9.15
9.25
9.00
9.20
7.40
7.80
8.85
8.30
8.60
8. 10
7.85
7. 8t>
7.92
8.10
8.45
8.35
8.23
8.60
9.20
8.90
9.55
9.30
V.6S
8.20
8.31
8.20
0.
8.05
8.20
7.95
0.20
8.50
8.60
6.65
8.55
a. so
8.40
0.45
a. 45
8.48
8.00
A. 05
8.15
8.13








884
872
864
944
825
aao
925
1025
940
US/5
900
770
1J45
940
830
920
830
370
830

1400
3500









1447
1407
1206
1145
1055
945
1015
1025
1105
123 330 139
146 316 112
154


140 285 110



129 251 60
147 295 102
170 178
215 82
189
189




178 345 103












167 370 145
171


152 351 175



152 345 145
161 361 146
185 219
181
168



45 53 19 151
54 44 17 179



50 39 14 171



26 44 6 158
44 45 15 180
45 9 208
49 258
223
228




74 39 9 214












61 53 22 204



45 58 27 186



46 56 21 186
49 53 23 197
60 16 226
215
204




6



11



0
0
6
2
4
1




I












1



3



2
2
2
3
0




.6



.3



.1
.5
.9
.4
.1
.3




.8












.5



.4



.1
.6
.9
.0
.9



161
133


225
88
168
150
137
93
114
88
87






85












209


333
400
300
288

325
177
185





170
193



149



150
169
179
182





148
147












242



248



224
216
219





0.41
0.00
0.31
0.24
0.12
0.00


0.17
0.05
0.07
0.10
0.10
0.11
0.11
0.09
0.43
0.29
0.07
0.08
0.33












0.31
0.26

0.10


0.22
0.06
0.22
0.11
0.15
0.42
0.15
0.57
0.34












0.83
0.42
0.09
0.52
0.49

0.60
0.22
0.02






















0.24
0.22
0.38
0.19

0.4
0.9
0.26
0.45
0.53
1.9


0.70
0.4
0.4
1.0
2.00
0.23

0.28
0.2>7
0.09
0.20
0.09
0.13
0.09
0.2)1
0.1*
0.36
0.11
0.15
0.12


0.14


0.1
0.04
0.07

0.23


0.05
0.05
0.6
0.4
0.60
0.25
0.23
0.17
0.07
25 19.0
   18.0
10 22.0
   25.0

20 37.0

   33.0

10 10.0
   20.0
   12.0
 9.0
 6.0
10.0
 8.0
 5.0
10.0
 8.0
15.0
10.0
10.0

 6.0
         6.0
 763
 617  82
 758 135
 677 155
 731 115
1139 135
 614 150
 943 110
 897  80
1003  95
      53
      75
 750

 573
 765
 714
 748
 654









9.0
65.0
20.0

10.0






7.0

6.0


7.0
7.0
6.0
9.0
6.0
9.0
7.0
11.0
11.0
10.0


8.0


885
928
871
886
866
8^4
905
906
873
914
976
838
887
872


751
743
780
831
65
25

60

50
65
90
40
50
70
70
70
65
75
43
68





-------
OATF

42971
51571
52171
10
CO
 62171
 b307l
 73571
 7?671
 fi027t
 80iJ45
                   PB45
                   PB45
                   PB45
                   PB45
                   PB45
      PB45
      P345
      P&45
      PB45
                              TEMP  PH  CONO AL HARD   NA  CA   HC  K  HCi.J C03  CL  S04  NO3  NHJ   P04
                                               68  54 16 214  9.0










8.5

3.0
3.0
6.0










8.35
a. 50
8.3d
8.31
8.40
d. 70
8.55
8.60
8.70
9.3J
7.40
7.60
8.30


8.50
a. 30
8.UO
7. V8
8.00
8.30
8.50
9.40
8.20
7.85
1085
1075 190 392
1055
1205

1135
1055
1245
1205
1115
751 209 371
844



580
720 200 359
720
6/0

610
650
710
740
640

145








36





80








                                              96  32  8 255  0.3
                                              86  35  7 245  2.2

173








32



62








0.35
205 0.28
0.33







135 0.07
0.34
2.90
130 0.08
127 0.11
0.13







0.15 0.13
0.11 0.13
0.01 0.15
0.13
0.24
0.10
0.17
0.13
0.14
0.14
3.95
4.40
0.32
0.31 0.32
0.34 0.64
.002 0.37
0.12
0.15
0.21
0.61
0.13
0.18
2.4$
                                                                                                 COLF  BOO   00  OS TUR»

                                                                                                                 820
      45V
 5.0  571
 5.0  476
12.0  604
      506
 6.0  589
      593
      421
22

-------
           DATE  STA
                   TFM?  PH  CONO At HARD  NA  CA  HC  K KC03 C03  Cl  $04  NJ3  NM3  P04
                                                                                          C3LF   BOD    DO  OS  TU*9
10
 62270
 6307J
 7)67J
 71370
 72070
 7277J
 80370
 81070
 62270
 63070
 70670
 71370
 72070
 77770
 00370
 8U70
 62270
 63070
 7J67J
 71370
 72070
 72770
 80170
 81070
 ai77j
 82470
 33170
1)5370
103170
120570
 4J672
 42072
 51572
 62270
 63070
 70670
 71370
 72070
 72770
 81070
 81770
 82470
 33170
1JJ370
103170
1201)70
 62270
 63070
 70670
 71370
                 Gd
                 G8
                 OB
                 GO 1
                 Gd
                 GB
                 CO
                 r,a
                 GB
                 r.a
                 Gd
                 03
                 Gd
                 08
                 Co
                 Gb
                 CS
                 G3
                 CO
                 r,a
                 ca
                 GO
                 Cd
CD
CJ
G3
GR
G3
CB
                 r.a 3
                 G9 3
                 Ga
                 OB

                 GB
                 GO
                 GB
                 G3
                 r.a
                 Gd
                 r,n
                 r,a
                 Ga
                 ca
                 Grt
                 G3
                 G3
                 G8
                 G3
                 G3
   3
   3
   *»
   4
   4
   4
   4

   4
   4
   4
   4
   4
   4
   4
   5
   5
   5
   5
24.7
20.4
25.9
24.4
26.0
23.6
24.8
23.4
24.7
19.7
25.3
24.4
26.1
23.3
24.5
22.6
24.0
20.5
24.2
24.0
26.0
23.9
24.4
23.5
24.2
23.5
23.5
15.5
6.5
2.5
12.3
10.3
15.0
23.7
18.7
23.7
24.5
24.4
23.6
23.6

24.0
23.5
15.0
6.5
2.5
22.7
20.0
23.9
24.3
8.40
8.70
8.60
8.90
8.05
9.3J
8.80
8.40
8.40
0.60
8.60
8.75
8.65
8.90
8.80
8.55
8.20
8.45
8.43
8.60
8.45
8.50
8.65
3. .20
0.60
8.60
8.45
9.85
8.20
8.55



6.20
8.30
8.«2
3.55
8.45
8.50
8.15

U.60
8.75
9.65
8.75
8.20
8.15
8.20
8.39
8.50
2800
2800




4440

3500





2100



2101
2158
2005
1490
2376
3240

4000




1470



1768
2000
1949




209 756
193 665
222
194 531






137
168 382



175 639



194 499
185 497
355
246 460
306 734



222
178 391


172 581



166 519
173 457



188
656
645

419







216



261



421
384
206
384
522




209


238



312
209




78
57

61







56



55



50
64
40
54
80




56


53



48
61




137 40
127 40

92 36







59 26



122 29



91 40
82 34
62 19
79 30
130 40




61 26


109 25



97 31
74 27




256 9.5
236 9. ft

215 11. 0







205 2.7



214 4.0



237 1.7
226 3.7

301
374




181 Ift.O


211



203 5.3
212 1*5




933
999

651







306


590
375
175
400
500
479
478
157
492
803




314


296
125
999
437
293
383




631
672

475







296



332



396
368

405





299


262



280
162




0.10
3.07



0.20



0.11




0.02
0.05

0.45
0.05
0.04
0.03
0.38
0.09



0.10



0.11


0.45
0.04
0.37



0.11
0.17
0.21
0.04
0.1
0.2J
0.31
0.09
0.14
0.17
0.02


0.08

0.15
0.15
0.07
0.04


0.02
0.6
0.60

0.02
0.28
0.65
0.07
0.03
o.oa

0.14
0.12
0.06
0.4

0.02
0.3


0.01

0.05

O.U

0.05

70


45

31


50








20

55

30



10














20



10

75



6.
6.
7.
12.

14.
35.

4.







5.
0.
9.
11.

19.
7.
8.
1.
19.

16.
0.
01.
00.
03.








7.
11.


11.

2.



0
0
0
0

5
0

5







5
0
0
0

0
0
0
0
0

0
4
5
6
1








0
0


0

5



ft.
7.
7.

8.
5.
5.

8.
8.
7.
9.
8.

B.

7.

7.
8.
6.
8.
7.
7.
6.
7.

5.





7.
7.
7.
7.

8.


7.

10.
9.

7.
7.
a.

0
0
0

0
0
0

0
0
0
0
0



0

0
0
0
0
0
0
0
0

0





0
0
0
0

0


0

0
0

0
0
0
3265
2653
2675
2860
3023
3333
3512
3748
2260
1965
2009
2155
2011
2434

2269
966
1343
1295
1299
1211
1335

1387
1496

1341
1305


0642
1745
2446
1231
1114
1086
1206
1291
740
950
1148

1065
1091

1125
984
972
1007
1051
73
55
70
92
85

110

86
55
60
80
80
45
73
55
50
55
55
35
75
100
75
70
45
95
170
40
25
24



60
65
90
65
65

135

85
115
45
14
722
50
80
65
53

-------
         DATT  STA
                           TFMP  PH  CONO AL HARD  NA
cn
         72J7D
         72770
         81770
         62270
         63070
         70670
         7137J
         72070
       GO
         01070
         81770
         82470
        100)70
        103170
         63070
         70670
         7137J
         72070
         72770
         80373
         81070
         d',770
         82*70
         33173
        10J170
r,s 5
Gil 6
CB 6
Od 6
r,8 6
c.a 6
G't 6
GS 6
ca 6
G3 6
Gft ft
Gil 6
GU /
G3
Gil
GB
r,tt
G3
r,3
GB
 82470
 03170
U037J
103170
120570
   7
   7
   7
   7
   7
   7
   7
   7
   7
Gfl 7
G312
r.au
G1H2
       03
               cai2
               Gc»12
25
24

23
20
26
24
25
23
22

23
15
6.
20
25
24
25
22
24
23
24
23
23
5
24
23
24
16
7
2
.0
.1

.0
.6
.2
.U
.9
.5
.5

.5
.0
08
.3
.5
.5
.2
.5
.6
.2
.5
.5
.5
.*
.5
.5
.0
.0
.0
.5
8.
8.

8.
8.
8.
b.
7.
a.
8.
7.
3.
9.
7.
8.
8.
8.
7.
8.
0.
8.
7.
3.
0.
8.
8.
8.
8.
9.
8.
8.
50
70

10
30
35
45
40
60
10
90
65
15
GO
20
20
10
70
20
40
10
70
45
50
10
65
70
75
95
40
30









1650


1728
1708






1390



1467



4202
4252
3342
ISO

158




159


146


165


171
149



151


159
23
-------
           SUPPLEMENTAL DATA FROM U.S. BUREAU OF RECLAMATION - SEPTEMBER 1972 THROUGH JUNE 1973
           DATE  STA  riOW   TEMP   PH    CONO AI HARD  NA   CA   MC   K MCOS C03  CL  304   N03   NK5  POO
VO
cn
91472
1W3172
112972
10273
20273
22773
32273
41773
5147.1
914T2
1H3172
112972
1P273
2C273
22773
32273
41773
5147S
91472
103172
112972
1*273
20273
22773
32273
41773
S147S
91472
1C3172
112972
1*273
20273
2*775
32273
4J77J
51473
91472
103172
112972
17273
20273
22773
32273
41773
51471
91472
i«3l72
112972
10273
20273
UT
UT
UT
UT
UT
UT
UT
UT
UT
UT18
UTJA
UTJ6
UTIA
UTU
UT18
una
UTU
UT1»
UTJ4
UT34
UT34
UT34
UT34
UT34
UT34
UT34
UT.14
UT3S
UT38
UT38
UT3«
UT39
UT38
IJTS8
UT39
UTJA
UT41
UT41
UT41
UT41
UT41
UT41
UT41
UT41
UT41
UT42
UT42
UT42
UT42
UT42
35
30
23
22
29
33
33
31
2*
35
4ii
34
27
25
30
37
27
l«
*
4
4
3
3
4
6
9
14
10
20
6
22
22
20
20
24
10
9
5
4
4
3
4
«
6
9
12
16
28
10
6
16.3
l*.a
4.
4,
5.
a.
10,
tfl.
IS.
IB.
tl.
«.
5.
*-,
i<»,
10.
It,
1*.
15.
7.
It.
6.
4.
11.
10.
13.
13,
17.
12,
13.
5.




















.4
,B
,9
.1
,«
.2
,1
.2
.1
.3
,0
.«
.1
.2
.1
.0
,2
.*
.9
.0
,2
,0
7.9
8,0
7.9
7, A
M
A. 3
».l
A. 4
8,2
6.7 7. 8
12,2 A. 2
te.1 A, 2
13.
15.
16.
15.
7.
2,
4.
7.
B,
li,
15.
IB.
ts.
12,
6.
4.
7.8















.6
.1
.1
.1
,2
,a
,1
.3
.1
.1
,7
.7
.1
.5
.1
682
632
675
712
730
782
723
697
657
799
756
618
689
897
1030
1050
910
759
609
6?9
592
631
631
645
636
637
636
5fl4
537
778
525
526
559
553
434
615
575
555
573
662
656
726
697
659
666
968
1010
11310
1090
1070
19
17
19
20
22
26
23
23
23
27
27
30
36
40
53
57
44
33
14
15
15
IS
15
17
IS
16
15
11
12
41
12
13
14
14
13
17
14
19
21
22
23
27
28
93
22
31
33
33
37
40
76
66
74
82
77
60
71
72
61
92
76
99
98
94
98
98
91
76
86
91
65
90
86
AS
88
87
«e
70
75
89
74
69
74
72
56
79
75
5A
59
81
73
78
74
74
79
122
132
132
139
131
38 3
36 2
37
37
39
43
40
36
37
39
38
40
41
42
48
50
41
35
20
21
21
21
21
22
22
21
21
19
19
29
19
19
20
19
14
23
23
27
29
31
29
32
31
31
30
38
41
40
45
42
1 318 8.4
1 279
309
337
3?1
331
310
31(1
244
373 0,7
375
363
392
375
346
399
362
325
315
314
3B0
320
3391
3»0
299
2V9
296
245 9.
262
323 8.7
256
2»3
260
2U6
186
296
3JI3
?59
274
350
317
359
3U3 17,7
337
337
271
278
276
292
269
IB
17
17
21
21
25
23
20
?0
27
27
29
37
40
51
61
44
34
16
20
16
19
22
24
25
25
23
13
15
59
15
17
17
17
17
21
15
16
19
21
23
24
32
20
23
40
40
42
47
49
103
84
92
96
93
117
tea
97
96
94
100
102
112
136
154
167
132
96
61
61
56
57
57
77
71
62
65
52
51
57
56
61
62
61
44
61
54
62
59
57
56
63
79
54
67
248
267
265
307
290
1.31
2,19
.56
.94
,94
,M
.58
,fc3
,15
2,21
2,71
2,71
3.39
3. "4
2.94
2.89
4.52
1.76
0.75
0.75
0.88
0,77
0,68
0.61
(1,61
H,B6
1.63
0.99
0.99
2.26
0,95
0,97
1,04
0.90
0.66
1.42
d,50
P. 18
P,tt6
1,13
1.17
0,79
P. 81
0.79
0,77
0.36
0.66
0.79
0.66
a. 95




0,02
0.02



0,02
0,23
0.27
0.36
0.34
0,30
t»,30
1.14
0,30
0.04
0.06
0.04
0,04
0.04
0,04
ft,*2
0.04
0,P2
0,11
0,04
0,15
0,04
0.06
0,04
0,11
0,19
0.19
0,1*4


0.02
0.A2
0.04
P,P4
0,02
0,04
0,02
0,04
0.08
0,02
0.04
COLF  BOD   DO   OS  TURB

                 431
                 39ft
                 396
                 440
                 443
                 490
                 461
                 444
                 402
                 514
                 516
                 506
                 552
                 559
                 587
                 670
                 506
                 466
                 371
                 369
                 351
                 379
                 366
                 377
                 347
                 404
                 394
                 315
                 330
                 469
                 31*
                 302
                 330
                 345
                 272
                 367
                 34«
                 336
                 325
                 392
                 368
                 415
                 429
                 404
                 405
                 684
                 729
                 699
                 777
                 748

-------
DATE  3TA  PLOW   TEMP  PH   CO*D At. HARD  MA   CA   Hti   X  HC03  C03   Ct   800   NO}  NM]  COO
COLF  BOO   00  OS TUKB
22773
32275
41773
51473
91472
1*3172
112772
1(1273
2?«73
22773
3?27J
41773
51473
103172
11 2972
1P273
2P273
22773
32273
41775
51475
103072
112972
11-273
2P273
22773
32273
41773
51475
91472
103172
112972
1P273
20273
22773
32273
41773
51473
UT42
UT4J>
UT42
UT42
UT43
UT4J
UT43
UT41
UT4J
UT43
UT43
UT45
UT43
UT44
UT44
UT44
Ul44
UT44
UT
.2
,3
.6
.8
,4
,1
,1
.B
.2
.2
.2
.2
«"
1130
1150
1090
10IS0
939
899
845
8?4
880
945
973
896
610
508
490
491
476
5?1
474
340
253
1360
1400
1500
1450
159B
1770
2280
t 1KB
1590
1310
1340
1340
1220
1470
1640
1190
603
43
46
43
37
41
36
32
30
38
39
40
34
36
10
12
9
9
IB
9
6
4
143
153
169
173
213
217
396
147
135
113
117
110
99
155
160
112
37
134
138
132
133
98
112
107
1CB
100
106
112
IB7
92
73
66
70
66
74
70
53
36
87
86
86
83
75
ae
62
63
82
85
68
91
86
70
86
81
54
45
47
43
41
44
35
33
31
32
37
40
35
26
IB
17
17
17
16
16
9
6
51
50
54
50
49
54
46
35
58
65
67
67
61
70
79
55
24
7
6
7
6
6
5
5
5
4
5
6
5
6
2
2
2
2
2
2
2
2
14
13
13
13
13
14
14
14
13
15
14
14
11
16
14
10
5
279
27P
273
278
361
3ie
3W7
297
266
3ie
3ii2
291
296
260
242
251
255
264
??9
its
126
525
5?S
567
438 41,7
537
5?3 29,4
5i3 62.1
393
464 21,0
520
539
573
493
514
514
436
246
49
53
48
48
53
59
42
40
52
49
54
45
47
11
16
11
11
13
11
8
6
105
115
126
129
144
169
234
114
125
96
93
85
63
123
155
95
34
321
33«
309
294
163
160
143
132
159
166
213
194
132
42
51
46
51
53
.46
33
17
161
161
182
163
2HP
254
357
144
167
179
169
165
163
209
261
167
67
f!
0
P
0
f
1
2
3
2
0
P
P
2
0
0
0
0
0
P
e
0
i
4
3
3
1
2
1
1
0
I
1
1
1
0
I
0
0
.50
.50
.43
.21
.34
.33
,94
.44
.17
.84
,86
.">*»
.42
.84
• 65
,M
,75
.79
.70
,72
.45
,94
,52
,61
,61
,90
,10
,83
,49
.54
,11
,51
,96
,96
.65
,35
.79
,27
0
0
0
0






0
3
1
a
0
0
0
e
71
e
0
0
1
P
1
1
0
t
t
0
0
0
0
0
0
0
^
t
.
,
,

.
,
.
.
.
.
,
.
.
.
,

.
•
.
,
.
<

,
«
.
.
.
,
.
.
.
,
*
,
,
,
i
02
P4
(92
06
14
14
76
14
14
14
76
76
98
00
00
("0
00
04
00
02
04
76
14
76
14
14
76
14
14
11
30
23
38
34
15
19
1 9
04
                                                                                                                798
                                                                                                                844
                                                                                                                789
                                                                                                                745
                                                                                                                632
                                                                                                                608
                                                                                                                550
                                                                                                                529
                                                                                                                550
                                                                                                                608
                                                                                                                660
                                                                                                                605
                                                                                                                514
                                                                                                                310
                                                                                                                292
                                                                                                                290
                                                                                                                270
                                                                                                                299
                                                                                                                216
                                                                                                                155
                                                                                                                851
                                                                                                                873
                                                                                                                937
                                                                                                                6A9
                                                                                                                972
                                                                                                               1100
                                                                                                                729
                                                                                                                864
                                                                                                                845
                                                                                                                649
                                                                                                                843
                                                                                                                760
                                                                                                                937
                                                                                                               1050
                                                                                                                772
                                                                                                                370

-------
VD
00
        DATE  3TA
UL 1
UL 2
UL
UL
UL
UL
UL
UL
IU.11
ULtl
UL11
UL12
0113
UL13
UL15
UU6
U.L16
UL16
UL17
UL19
UL19
UL19
UL24
UL24
UL24
P« 1
PB
 62172
 82172
 61172
 82172
1(92472
111472
 • 2172
 91172
102572
111472
 82172
 81(72
182572
 91172
 02172
 91172
102572
 62172
102472
111472
11U72
 911T2
102572
111472
 62172
 82172
 81172
1112572
 82172
 61172
 91172
 91172
102572
 62172
 82172
 62172
 91172
102572
111472
                 3
              Pfl 4
              PB 4
              PS 5
              PB 8
              PBll
              P811
              GB  I
              bB  2
              68  3
              C8  3
              on  3
              68  3
TC«J»
21.7

2P.6
16,3
22,2
ltt,6
5,6
23,9
17,2
10. 0
5.6
21.7
16.9
9.4
16.9
21,1
18,9
10,0
22.2
10.6
5.0
4.4
17,8
10.0
S,(1
21.7

16.1
8.9
21.7
16.3
17.8
18.9
8,9
21.1
20,0
21.7
17,2
10,0
5.0
PH
•.3
8,1
8.3
8,3
6,1
7,9

7!9
8.6
8,n
8.0
8,1
8.6
6,3
8,7
6,2
6.6
8,1
8,2
6,0
7.9
6.0
8.7
6.0
8.2
7.9
6,3
8,0
7.5
8,3
8.9
6,6
6,6
7.7
8,2
8,4
6.0
fr, 7
7,9

COND AL HARD
1570
1550
1560
1550
1540
1510
1450
IS80
1590
1520
1402
1560
1610
1610
1590
1680
1600
1660
1650
1590
1440
1410
1570
1580
1450
666
9P7
1060
702
1560
665
1130
16U0
1540
1590
1660
1620
1700
1600
1470
NA
162
178
164
180
162
173
161
165
166
170
132
184
192
188
187
204
188
195
196
182
161
159
169
179
162
76
97
109
48
184
66
127
166
175
166
202
166
219
166
167
CA
50
47
47
42
46
49
52
46
43
54
59
49
45
49
42
53
45
50
50
51
54
53
42
50
54
53
32
49
72
47
33
34
45
52
46
45
4b
30
48
52
MO K
60 19
59 19
60 19
59 20
59 19
56 19
55 17
60 19
61 20
58 19
56 16
60 19
61 22
61 20
60 20
61 20
60 20
62 22
61 20
61 20
59 17
57 17
61 20
60 20
57 16
36 9
40 11
46 11
35 7
59 19
42 11
49 13
61 20
56 19
59 19
64 20
61 2Q
66 23
61 20
56 17
HC03
204
224
192
2 Oh
219
215
223
222
193
226
24?
228
163
19fl
171
239
165
22fl
239
?21
231
231
172
219
231
226
167
34}
300
2H3
190
179
167
226
197
196
221
142
220
193
C03
11.1

16.3
2.4




9.9



14,7
12.3
17,4

14.4





16.2



5.1


14,4
2,4
10,5
14.1


10.2

20.1


CL
233
225
226
227
227
220
202
232
239
214
196
233
243
237
237
262
241
257
242
229
207
2^3
239
230
2R6
65
106
91
49
226
95
146
243
221
235
260
24tf
277
237
207
S04
264
265
280
269
?65
265
204
f.H
282
255
246
275
276
?82
28P
262
276
276
280
276
246
246
276
276
246
162
164
161
106
269
154
213
202
259
269
296
282
290
322
250
N03
0.27
0,45
0,09
P,f>8
0,47
0.25
0.18
0,93
0,14
0.38
0,77
0.43
0.07
0.16
0.07
P.*3
0.09
0.29
0.45
0.29
0,43
0.25
fl.OS
Pi, 32
0.61
2.21
1.87
0.07
2.17
P. 34
0.11
0,09
0,07
0.20
0.09
0.47
0.50
0,14
0.20
0.16
NH3 P04 F
0,02
0,04
0.02

0,04
0,04
0.04
0.04
0.02
0,04
0,P6
0.04



0,02
0.00
0,04
0,04
0,04
0 • P4


0.U4
0.02
0.J0
0.04
0.06
1.14
0,04

0,02

0,04
a, 02
0,02
0.04

0,02
0,04
COIF  BOO   00  OS TURB

                965
                943
                971
                954
                900
                945
                907
                958
                966
                945
                874
                982
                998
                                                                                                                         974
                                                                                                                         966
                                                                                                                         1050
                968
                883
                864
                972
                960
                866
                554
                562
                521
                955
                552
                706
                99B
                955
                979
               1030
                968
               1020
                967
                915

-------
                             SECTION XIII
             APPENDIX B -  LKSIM - WATER QUALITY SIMULATION
                        MODEL FOR SHALLOW  LAKES
DESCRIPTION
The purpose of the following paragraphs  is to give a general  description
of the simulation model  LKSIM and to indicate the general  application,
capability, and data requirements of the model.

Need For The Model
When modifications of tributary inflows,  either rate or quality, or lake
geometry are considered,  a very relevant concern is the impact on lake-
water quality.   For most  lake systems, the large quantities of data to
be incorporated, as well  as the tedious and time-consuming calculations
to be completed, make a computer-based computational system attractive.
One of the main advantages of a computer-based system is that numerous
lake system modifications may be readily and economically evaluated.

Conceptual Model - LKSIM
Various types of models might be used in water quality-model!ing, e.g.,
one, two, or three dimensional models.  Also, various water quality
parameters might be modelled, e.g., conservative, non-conservative, or
biological parameters. The type of model selected depends on many
factors, including the simulation time frame, types of data required,
types of data available,  use of the model, quality parameters of im-
portance.
                                    99

-------
The LKSIM model was developed to calculate the water balance and con-
servative salt concentrations in a well-mixed lake system both for
existing and diked lake configurations.

The conceptual lake system consists of a main lake that has separable
bays or sub-areas connected to it.  During each time step in the model
(normally one month), it is assumed that each bay is completely separat-
ed from the main lake.  For each time period, the tributary inflows and
outflows (including groundwater) and their salt concentrations, evapora-
tion and precipitation are used to calculate the end-of-period water
volume and well-mixed salt concentrations for each sub-area.  The
imaginary gates isolating the sub-areas from the main lake are then
opened.  The volume of water required to achieve equilibrium flows
across the boundaries, either in or out of each sub-area, is completely
mixed in the recipient area.  Circulation between the main lake and a
bay is simulated by specifying the fraction of the end-of-period volume
in the bay that is to be exchanged with lake water.  This intermixing,
if any, occurs at the end of the period after overall lake stage equili-
brium has been achieved.

Any or all of the subareas may be diked off from the main lake.  The
diked area is carried along in the simulation as a separate lake.  Any
or all of the tributaries to the diked area may be reassigned to flow
into the main lake or into another bay.   Any main lake overflow that
occurs when a specified maximum lake stage is exceeded, may be designat-
ed to either flow into a diked area or be exported out of the lake
system.  The overflow quality is the quality of the main lake water.

Use of The Model
This model may be used to determine the effect on lake water volume and/
or conservative salt concentration in response to changes in tributary
inflow quantity or quality and/or to the diking of lake sub-areas.  The

                                   100

-------
normal mode of usage is to pick a historical period for which an
adequate amount of tributary flow and quality, lake stage and quality,
precipitation, and evaporation data are available or can be established.
A simulation based on these data is run for the period, and the simula-
tion results compared to the historical lake stage and quality profiles.
Adjustments are then made to the data, if necessary, to complete the
model  calibration.

The next step is to verify the model, if possible, by running a simula-
tion for a historical time period that was not used to calibrate the
model.  Normally, this verification is conducted by inputting the
hydrologic flows, precipitation and evaporation and then comparing the
simulated quality to the historical quality record.  Additional adjust-
ments to the data are then made, if necessary.  The model is finally
used to predict the outcome of changes in the lake system.  Of particu-
                                                f>
lar interest are changes in lake volume (stage) and quality (salt con-
centration) caused by diking sub-areas of the lake system or by changing
inflow quantity or quality.

Date Requirements
The model is essentially a "bookkeeping" model and requires the follow-
ing data:

Stage - Area - Volume Tables -
These values must be established for the total lake and each sub-area in
the lake system.

Tributary Flow-Quality Tables -
The correlation between flowrate in cfs and ion concentration in mg/1
must be made for every inflow to the system, also for the outflows if
any.
                                   101

-------
Tributary Flowrates -
These average flowrates (or volumes) including groundwater, must be
determined for each time step of the desired simulation.

Precipitation and Evaporation -
These values (depths in inches or feet) must be determined for each
sub-area for each time step.

Circulation -
If there is appreciable circulation between the main lake and bays
during the selected time period step, and if the quality in a bay is
markedly different than the main lake, it may be necessary to specify
the fraction of the bay volume that is exchanged with lake water during
each period.  Circulation is very difficult to measure accurately, but
calibration runs for different values may lead to acceptable estimates
for the circulation.

USER'S GUIDE - SIMULATION MODEL
The purpose of this guide is to present instructions to the user on
data preparation and coding, as well as on the interpretation of simula-
tion results.

Accuracy and Completeness of Data
For most lakes, there are only limited data available.  One of the major
challenges in using the model is to establish the hydrologic, climatic,
and quality data to the precision necessary to give sufficiently
accurate simulation results.  The relationship between data and simula-
tion precision is difficult to establish, but one must still be sensi-
tive to discrepancies in, or validity of, data used; and then refine the
data as model simulations indicate the response (sensitivity) to various
input data variations.   Such sensitivity results will indicate the data
                                   102

-------
that are most  critical  in obtaining  better  simulations—be  it  flows,
quality, evaporation, precipitation, or other  factors.

Several factors  need to be  considered  initially to set  the  framework
for data evaluation, such as,  average  detention times,  lake circulation
and mixing  characteristics,  volume/surface  area ratio,  areal and
temporal variation  in precipitation  and evaporation,  interest  in  short
or long term variations, and intended  use of the  resulting  simulations.
All of the  factors  must be  weighted  in view of the model  limitations as
imposed by  the basic assumption  of an  incremental time, well-mixed
system.  The time step  to be used  is a major outcome  of careful con-
sideration  of  these factors.

Problem Preparation and Coding
The following  steps must be completed  prior to running  a  simulation:
1.  On a map or  sketch  of the  lake system,  establish  the  imaginary
    boundaries between  the  main  lake and the bays  (9  maximum).  Assign
    the integer  1 to the main  lake and a unique integer to  each bay
    using any  integer 2 through  10.
2.  Determine  the stage, area, and volume table for each  sub-area as
    well as the  total lake  system.  A  maximum  of  15 discrete common
    values  for stages may be used  to describe  the curves.
3.  Identify all tributaries to  the  lake system including outflows and
    groundwater  inflows.  Assign each  one a unique  integer  code number,
    using any  integer 1 through  60.
4.  Establish  a  flowrate-quality table for  each tributary and  each ion
    desired.   A  maximum of  four  coordinate  points may be  used  to  de-
    scribe  each  relationship (flow,  quality).   Flow may be  given  in
    cubic feet per  second  (cfs)  or else acre feet per month (ac ft/mo).
    Quality may  be  given in milligrams per  liter  (mg/1) or  else tons per
    acre foot  (taf).
                                    103

-------
5.   Determine the flow for each tributary for every time period in the
    simulation—may be given as cubic feet per second or acre feet per
    second, day, week, month, or year.
6.   Determine the precipitation and evaporation for each sub-area for
    each time period in inches or feet per day, week, month,  or year.
7.   Other factors that may be needed for given runs are:
    a.  Stage at which overflow is to occur from main lake.
    b.  Areas to be diked off.
    c.  Intermixing (circulation) fractions during any time  period.

Date Input Structure
The subroutine DATA reads and manipulates the data.  The data is struc-
tured to be read in by segments.  The segments are identified by a five-
digit number punched in the first five columns of the first  card in each
segment.  88888 ends any segment, 99999 ends the data search for the
current simulation, and 12345 ends the run.
Segment Identification Codes -
            Subsegment
Segment
 11111
              12111
              13111
                Information
Initialization and setup.

Project Name/Description Title
Number of time periods.
Beginning lake stage.
Data tape read or write code.

Ions to be considered.
              14111
              15111
                           Key for outflow quality.

                           Number of diked bays and their code number.
                           Diked bay to receive overflow.
                           Stage of lake at overflow.

                                   104

-------
(continued)
Segment     Subsegment
 22222

 33333


 44444
              16111
              17111
              18111
              19111
              19511
                Information
Volume of lake system at overflow stage.
Tributaries from diked bay to be reassigned
   to another bay.

Number of tributary bays and their code
   numbers.
Names of bays.

Intermixing (circulation) fraction for bays
   in each time period.

Output codes - controls amount of data print-
   ed out.

Multipliers for all flows, precipitation, and
   evaporation data.

Multipliers for specified  tributaries.

Tributaries flowing into each  bay.

Tributaries flowing out  of the system.
Tributary  flowrates for  each time  period.

Tributary  water quality  and  flowrate correla-
    tions.
  55555

  66666
 Precipitation data.
 Evaporation data.
                                   105

-------
(continued)
Segment     Subsegment                     Information
 77777                     Stage,  area and volume data.
                           End of segment.


 99999                     End of data (for this simulation).


 12345                     End of simulations.


The data segments may be submitted in any order and only those  segments

required for a given simulation need be included.
V

Data Card Description -

Data card descriptions are found below


Segment 11111


Subsegment 12111 (Begins at statement 120 in subroutine DATA)


   Card 1 (Title)	
           Title6ol
           15A4
   Card 2 (Time periods)
 HINT
  15
            10
KEY
 15
   NINT = The number of time periods in the simulation -  dimensioned for
             a max of 50
   KEY  = The time period key = 1, one day
                              = 2, one week
                              = 3 or 0, one month
                              = 4, one year

                                  106

-------
   Card 3 (Beginning  stages)
/1C
/s(H)
L-«
! 20 :
!SCD i
Pin
30 ;
S(2) !
n'c
40
S(3)
50
S(4)
r • •
   The beginning stages  for  each  of  the  subareas  in the  lake  system  (any
      zero values are  set equal to 5(11) which  is the stage for the
      entire interconnected  lake  system)
Subsegment 13111
   Card 1  (Quality factors)
/ 5[ 10
/NIONS (lONS(l)
15| 20
IONS(2JIONS(3)
rtf-.
• • •
   NIONS   = The number of ions  to  be  simulated
   IONS(1)  = The code number of  the first  ion
   IONS(2)  = The code number of  the second ion
                etc
Subsegment 14111
   Card 1  (Outflow Quality)
   QOF = Key for the ion concentration  in  the  lake  outflow:
         ^ 1  means the specified quality will  be  used
         = 1  means simulated lake quality will  be used
                                  107

-------
   Card 2 (Initial  ion concentrations— one for each bay and ion)





/
/

I
J
5
I
15
s
=
K =





C


=
10
J
15
15
K
15
25
C
F10.0



Bay code number
Code number of quality factor (ion)
Unit key
fl.unit of C is mg/1
=l,unit of C is tons/ac ft.
Initial concentration of specified ion in








the specified bay
Subsegment 15111
   Card 1 (Diked bays)
/ 5
/NOBD
l_» 	
10
BAY1
15
BAY2
20
BAYS
25
» * •

   NOBD = The number of bays  to be  diked off  from main lake
   BAY! = The code number of  the first  bay.
   BAY2 = The code number of  the second bay.
     :        etc.
   Card 2 (Overflow assignment)
/ 5
/IBOF
15
rone
15
SOF
F10.0
= rnA,
25
VOLOF
F10.0
a n i imKa


^ n-F H-ilfaH haw *n v»Arpi UP lakp nvprflnw if anv.
              0 means overflow is exported.
   SOF   = The lake stage at which overflow  occurs.
   VOLOF = The lake volume, excluding diked  areas,  at which overflow
              occurs
                                   108

-------
   Card(s)  3  (Tributary  reassignment)
/ 5
/ I
10
II
15
TR1
20
TR2
25|
TR3 1 ....
15's 	 *-
   I    =  Diked  bay  code  number.
   II   =  Code number of  bay  to receive  diked-bay  tributary  flow.
   TR1  =  Code number of  first tributary reassigned.
   TR2  =  Code number of  second tributary reassigned.
    !   =     etc.
Subsegment 16111
   Card 1  (Bay code numbers)
/ 5
NBAYS
10
IBAY(l)
15
IBAY(2)
20
[BAY (3)
.. . (10 subareas max)
   NBAYS   - The total  number of subareas in the lake including the
                main lake - the main lake is always the first specified.
   IBAY(l) = The main lake code number.
     I      = etc.
/
' NAMEB(l)
A8
fciAtifft/n \ _
16
NAMEB(2)

etc.
A8
1 1_ ___ — . f L. A . . 1 r O >*L*.*^ «A -* ** 4-«* ***f m^ v/ I
   NAMES(2) = Name of bay 2.
     :      =    etc.
                                   109

-------
Subsegment 17111
   Card(s) 1 (Intermixing fractions)
                   15
           20
         15
   BMF(I,1)
   BMF(I,2)
              5MF{1) BMF(2)
       :5.0's
               ... (50 period max)
Bay code number.
Intermixing in period 1.
Intermixing in period 2.
   etc.
   Note:  READ is terminated by a negative number that is entered in the
             first F5.0 field after the last period BMF.
Subsegment 18111
   Card 1  (Printout keys)
/ 5
/ 101
—
10
102

IE
103

20
104
IS1!! -
25
105

30
106

35
107
— ••



   101, 102, etc.

   t 1
   = 1
      Code for printout of data read in.  Correspond to
         each section 11111 through 77777.
      Print out data.
      Don't print out data.
Subsegment 19111
   Card 1  (multi pii er factors)
/ 5
/FQ
^ '
cn -
10
FP
F5.0's-
ThA mil'
15
FE

H-inl-ioi


* -Fnr* all t-irHhnfrArv -flnw^.
   FP = The multiplier for all precipitation values,
   FE = The multiplier for all evaporation values.

   Note:  Set to 1 if zero.
                                 110

-------
Siibsegment 19511
   Card 1  (Selected flowrate multipliers)
5
NIC
15
10
ITC(l)
15
15
FTC(l)
F5.0
20
ITC(2)
15
25
FTC(2)
F5.0


   NIC  =  Number  of  tributaries  to  have flowrates changed.
   ITC  =  The  tributary  code  number.
   FTC  =  The  multiplier for  the flowrates.
Segment 22222  (Begins  at  statement  200)
   Card  1  Tributary  assignment)
/ 5
Ll
10
NTRIB

ITBAY(I
	 TI^'c
15
,1)

ITBAY(

1,2)
20


etc.
— 	 — 	 — 	 ^K-
   I          = Bay code number
   NTRIB      = Number of tributaries to the bay.
   ITBAY(IJ) = Code number of first tributary.
   ITBAY(I,2) = Code number of second tributary.

   Note:  50 tributary max per bay,  60 total.
Segment 33333 (Begins at statement 300)
   Card 1 (Outflowing tributaries)
/ 5
L NTO
10
ITOS(l)
- T^'c
15
[TOS(2)

etc. (7 max)
	 »»
   NTO     = Number of outflows.
   ITOS(l) = The code number of the first tributary outflow.
   ITOSJ2) = The code number of the second tributary outflow.
                                   Ill

-------
Card
15
s) 2 (Tributary Flowrates— one set of cards for each tributary)
10
J
15
15
K
15
20
L
15
25
FLOWS(IJ)
F5
30
FLOWS(I,2)
O's
—
   I = The tributary code number.
   J = Flow unit key.
       0 = cf s
       1 = ac ft
   K = Time unit key.
       0 = sees
       1 = day
       2 = week
       3 = month
       4 = year
   L = Number of flows on card(s)

   Note:  The flow volume specified is for the time increment used.
Segment 44444 (Begins at statement 400)
   Card(s) 1 (Quality of tributaries)
5
I
id »
j] K
15 15 ' 15
! 20
L

QF(I,
15 F10.
25
J.l)

QF(I,
0 F10.
30
J.2)
0

* • *

   I       ,  = Tributary code number.
   J         = Quality factor code number.
   K         = Flowrate unit key.
               f 1, cfs.
               = 1, ac ft/month.
   L         = Quality unit key.
               f 1, mg/1.
               = 1, tons/ac ft.
   QF(I,J,1) = Flowrate or volume.
   QF(I,J,2) = Quality (concentration).
       I      =    etc.
       *
       -  max of 4 points (4 flowrate,  4  quality).
                                   112

-------
Segment 55555 (Begins  at statement 500)
   Card(s)  (Precipitation)
/ 5
/ I
15
10
J
15
K
20* 25
L 1 PREC(I.l)
30
PREC(I,2)
15 15 15 F5.0 F5.0

etc.

   Note:   READ terminated by number less  than zero in  the field
             immediately after the last EVAP entry.

   I = Bay code number.
   J = Precipitation unit key.
       ^  1, inches.
       =  1, feet.
   K = Time unit key.
       0  = month.
       1  = day.
       2  = week.
       3  = month.
       4  = year.
   L = Repeat period key
       =  0, repeat the first 12 by 12's through 48.
       f  0, no effect.

   PREC:   The precipitation for period 1.
             etc.
Segment 66666 (Begins at statement 600)
   Card(s) 1 (Evaporation)
7 5
/ I
15
10
J
15
15
K
20
L
25
EVAP(IJ)
30
EVAP(I,2)

etc.
15 15 F5.0 F5.0
   Note:  READ is terminated by a number less than zero.
                                   113

-------
Segment 77777 (Begins at statement 700)
   Cards 1 (stages)
/ 5
/1 0011
TC
10
J
TC
20
STAGE(l)
30
STAGE(2)
. nn n« c .....
40
STAGE (3)
etc. (2 cards)
   10011 = Code for setting up the lake stages for which area and
              volume values will be given below.
   J     = Stage unit key.
           f 1, feet.
           = 1, inches.
   STAGE = The stages.
   Card(s) 2  (Surface area values)
/ 5
200
I
10

J
TR TR
20

AREA(I,1)
30

AREA(I,2)
40

AREA(I,3)


etc. (2 cards
per area
— - . . ... Fin.n'<; 	 — 	 »
   2001^= The code number of the subarea.  The leading digits digits
             200 identify the data as area data.  I = 11 is the area
             information for the total lake system.
   J    = The area unit key.
          ^  1, acres.
          =  1, sq. ft.
   AREA = The areas at each stage specified above.
5
10
I
10
J

15 15

VOL(

_

20
I.D

VOL (I

Fin n
	 r IU. \t
30
,2)


4C
VOL(I,3)

' f
O
3001 = The code number of the subarea. The




etc



leading digits

. (2
per


300

cards
area)



              identify  the  data  as  volume data.   I  =  11 is the volume in-
              formation for the  total  lake  system.
    J    = Volume unit  key.
           f 1,  ac ft.
           = 1,  cu ft.
    VOL  = The volume at each  stage specified above.
                                   114

-------
PROGRAMMING GUIDE,  SIMULATION MODEL.
The purpose of this programming guide is to give the LKSIM program list-
ing and briefly describe the program.

The complete LKSIM  program as printed on the computer is listed on the
following pages.  Numerous comments have been included in the program to
aid in understanding of the information flow and computational steps.

The program is written in FORTRAN IV and requires about 30K words of
program space in its present form.

All of the system resides simultaneously in core except for some of the
data which may be written and read from external Unit 1 as set up in
subroutine TAPE.   It would be easy, however, to separate the subroutine
DATA as a separate  first link.

The subroutine PLOTRS plots the simulation results on the lineprinter.
It is necessary to  substitute Plot calls as required for the x-y plot
available on the computer used.
                                    115

-------
        UTLAK.FOR
                FORTRAN V,16(142) /Kl   29-JUL-74
                                                                10JJ7   PACE  i
00381
00972
80804
00005
00037
oonas
iiaeiz
00015
00816
00017
00018
OBP28

40022

00024

00026
00031
(10052
00034
90035
00037
00041
00*42
00P43
C0P44
00045
00048
00949
00050
00951
00052
C  ••«•
C  ••*
C  •*•
C  *»*
C  • »«
C  •*•
C
C
C  **«•
C  »**
C  •*•
C  »«*
C  •*•
C
C
C
C  •*•
C  *••
C  *«•
C  **•
C  •••
C  •*•
C
C
C  *•*
C  •**
C  «*«'
C  •*•
C  •••
C  •»•
C  *»•
C  ***
C
C
C  •**
C  •••
C  •**

C  *•*
C  *••
C  •»•
C  ••"
C  ••*
C  •*•
C  •**
C  • ••
C
C
C  **«
C  • •*
C  •*•
C  *••
GENERAL OESCHIPTION
THIS PROGRAM CALCULATES THE MATER BALANCE AND CONCENTRATION OF
CONSERVATIVE SALTS IN A WlLL-*mO LAKE SYSTEM,  THE PJ»OC*AH
IS BASICALLY A 'tJOOKKEEPING* MODEL —IT REQUIRES TM*T ALL OF TME
INFLCKS, TME CONCENTRATION OF THE CONSERVATIVE SALTS IN TME INFLOWS,
EVAPORATION, PRECIPITATION, AND THE STAGE-AREA-VOLUME TABLES BE
SETUP AS DATA FOR THE SIMULATION,


THE CONCEPTUAL LAKE SVSTEH, FOR WHICH THE MODEL IS STRUCTURED, IS
A MAIN LAKE THAT HAS SATELLITE BAYS  CONNECTED TO IT,  EACH OF THE
BAYS, AS hELL AS THE MAIN LAKE, ARE ASSUMED TO 3E COHPLETELV-MIXEO,
SFPEKATE BODIES OF MATER DURING THE TIME PERIOD SELECTED FOR EACH
STtP IN THE WATEK QUALITY SIMULATION,  ALL Of THE TRIBUTARY INFLOVi,
PRECIPITATION, AND EVAPORATION VOLUMES ARE ACCOUNTED FOH IN EACH
AREA (BAYS AND HAIN LAKE) DURING THE TIME PERIOD   TME RESULTING
CONCENTRATIONS OF CONSERVATIVE SALTS ARE CALCULATED FOR EACH AREA.
THEN THE VOLU*E OF WATER REQUIRED TO FLO* ACfOSS TnE LAKE-BAY INTERFACES
so AS in ACHIEVE EQUILIBRIUM is DETERMINED,  THESE VOLUMES ARE
COMPLETELY HIVED  IN THE RECIPIENT AHEA.
ANY BAY(S) IN THE SYSTEM HAY BE DIKED OFF.  THE DIKED AREA IS THEM
CARRIED ALONS AS AN INDEPENDENT LAKE.  MANY OPTIONS FOR ALLOWING
OVERFLOW, TRIft REASSIGNMENT, INFLOM, EVAPORATION, AND PRECIPITATION
CHANGES WITHOUT CHANGING TME BASIC OAT* ARE AV1ALABLE,
(SEE THE DOCUMENTATION FOR DETAILS)
,-•_•_..•••..__...«•--»•««---•«•••-•-••«•••--»••-••--•---••••-••---"•«••••••
ANY CIRCULATION BETWEEN THt LAKE AND A BAY DURING A TIME STEP CAM
dE IMPOSED BY SPECIFYING THE FRACTION OF ThE BAY VOLU*2 THAT INTER*
CHANGES MlTH THE LAKE  MATER DUE TO  THE CIRCULATION, IF ANY,
THIS MIXING OCCURS AT THE END OF THE PERIOD,

VARIABLE DEFINITION
UNLABELED COMMON
ARRAYS
  1T(1)     DUMHY ARRAY USED FOR TEMPORARY DATA STORAGE
  Ofl)      DUMMY ARRAY USED FOR TEMPORARY DATA STORAGE
  ITBAY(I.J) CONTAINS THE CODE NUMBERS FOR THE TtfldUTARIES (J) FOR
            EACH BAY AREA (I),
  NTRI8CI)  CONTAINS THE NUMBER OF TRIBUTARIES  TO EACH BAY  (I),
  FLOWMI.J) CONTAINS THE FLOMHATES FO* tACH TRIBUTARY  (I) FOR
            EACH TIHt PEHIOD (J).  MAY Rfc »EAO«IN fclTH UNITS OF
            CFS  OK AC-FT. AND TIME UNITS OF SECONDS, DAYS,  WEEKS,
            MONTHS, OR YEARS.  STORED INTERNALLY WITH CFS UNITS
  QF(I,J,K) CONTAINS THE KATtR QUALITY INFORMATION FOR EACH  TRIB,  (I)
            AND QUALITY FACTOR (J),  000 VALUES OF K CONTAIN THE
            FLOMRATE IN CFS AND THE EV£N VALUES THE CONCENTRATION
            IN HG/L.  THESE FOUR POINTS SPECIFY THE FLOW-CONC
            RELATIONSHIPS FOR EACH TRIBUTARY.
  IONS(I)   CONTAINS THE CODE NUMBERS OF THE IONS TO BE TRACED IN
            THE SIMULATION.
  CQFIN(I,J) CONTAINS THE CURRENT CONC  (MATER  QUALITY)  FOR EACH  BAY
                                            116

-------
MAIN.   UTLAK.FOR
                FORTRAN V.1B(1«?) /KI   29-JUL-70
                                                                lain   PAGE 1-1
am*
08355
oaas*
OB362

aaa63
SI35I64
BBB67
BBP70


•.B072


BB374
SIB? 7 7
eeesa

aecaa
480491
BBP93

B0.TJ6
aaise
piBiaj
aejas

03135
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
«•*             (I) AND EACH ION (J).
•**   STAGE(I)  CONTAINS THE ELEVATIONS OF UATER SURFACE THAT MATCH

• •*             UP WITH THE AREA AND VOLUME ARRAYS,  THESE ARRAYS GIVE
«•*             THE 5TAGE-AREA-VOLUHE RELATIONSHIPS FOR THE LAKE SYSTEM,
•**   AREA(I,J) CONTAINS THE SURFACE AREA VALUES (J) FOR EACH BAY (I),
•**             AREA MAY BE READ IN AS S3-FT OR ACRES,  STORED AS ACRES.
• •«   VOL(I.J)  AS FOR AREA, READ-IN AS AC-FT OR CU-FT, STORED AS AC-FT,
• **   PHECCIiJ) CONTAINS T«E PRECIPITATION FOR GACH B»Y (I) FOR EACH TIME
*••             PERIOD fj),  HAY BE HEAD IN AS INCHES OR FEET PER DAY,
*•*             WEt-K, MONTH,  OR YEAR.  STORED AS FT PER MONTH.
***   EVAP(I,J) CONTAINS THE EVAPORATION FQR EACH BAY (I) FOR EACH TIME

***             PERIOD (j),  MAY BE READ IN AS INCHES OR FEET PER DAY,
***             WEEK, MONTH, OR YEAR,  STORED AS FT PER MONTH.
*•»   NBD(I)    CONTAINS THE CODE NUMBERS OF ANY DIKED BAYS.
**•   ITNA(I,J) CONTAINS THE CODE NIMBfcRS OF TRIBUTARIES OF ANY OUEO
*••             BAY (I) fcHICH ARE TO BE ASSIGNED TO ANOTHER PAY FQR
*••             THE SIMULATION,  THIS CHANGE MAY ALSO BE MADE 8Y
•ft*             CHANGING THE BASIC TRIBUTARY ASSIGNMENT DATA CARDS,
•ft*   IBAYSCI)  CONTAINS THE CODE NUMBERS OF THE BAYS IN THE SYSTEM
•••             TO BE SIMULATED.  I»AY(1) ALWAYS AUTOMATICALLY.CONTAINS
*••             NUMBER 11 WHICH IS THE CODE FOR 1 Hfc ENTIRE LAKE SYSTEM,
•ft*             IHAYC3) IS ALWAYS ASSUMED TO BE THE MAIN LAKE.
•ft*   SALTS(I)  CONTAINS THE CURRENT SALT ACCUMLAT10N FOR ION I,
•••   OELV(I)   CONTAINS THE PE3UIRFD 1NTERFLOX VOLUME (WITH THE MAIN
*•*             LAKE) DURING THE CURRENT PERIOD SO AS TO ACHIEVE
•ft*             EQUILIBRIUM AT THE END OF THE PERIOD,
•*•   TITLE(I)  CONTAINS THE TITLE READ IN FOR THE SUN.
*•*   NAMEB(I,2)  CONTAINS THE NAME OF EACH BAY AREA (I).  ft CHARACTERS,
•••   INMIX(I)  A KEY ARrfAY-.IF IT CONTAINS 1 FOR BAY I THEN CIRCULATION
•*•             (INTERMIXING) FRACTIONS ARE OESIREO FOR AT LEAST SOME
• •*             OF THE TIME PERIODS—(FRACTIUN ARRAY IS B>"F).
•*•   BHF(I,J}  CONTAINS A FRACTION FOR EACH TIME PERIOD AND SPECIFIED

***             BAY I,  IT IS THE FRACTION OF THE tUY VOLUME WHICH IS TO
••*             BE DISPLACED BY LAKE WATER  TO ACCOUNT FUR CIRCULATION
*••             FROM THE LAKE INTO TH£ BAY DURING THE TIME PERIOD,

•••   TOTSICI)  ACCUMULATES THE TOTAL QUANTITY OF ION ] »HICH FLOWS
•••             INTO THE LAKE SYSTEM DURING  THE SIMULATION.
•••   TOTSotn  AS ABOVE —FOR THE QUANTITY OUT OF THE SYSTEM.
•••   sm      CONTAINS THE CU»RENT WATER SURFACE ELEV OF AREA i,
      IBTA(I)   CONTAINS THE NUMBER OF TRIBUTARIES FROM BAY I TO BE
                REASSIGNED TO ANOTHER AREA—FROM BEHIND THE DIKED BAY,
      TTF(I)    CONTAINS THE ACCUMULATIVE FLO* FOR TRIBUTARY I DURING
                THE SIMULATION.
      TTSCI.J)  CONTAINS THE ACCUMULATED ION (J) QUANTITY FLOWING INTO
                THE LAKE SYSTEM FROM EACH TRIBUTARY I,
      ITOS(I)   CONTAINS THE CODE NUMBERS OF THC TRIBUTARIES THAT FLOW
*•*             OUT OF THE LAKE- SYSTEM,
***   COMMON VARIABLES
*••   NIONS     THE NUMBER OF IONS TO BE CARRIED IK THE SIMULATION,
*•*   NOBD      THE NUMBER OF BAYS DIKED OFF FOR THE SIMULATION,
*•*   INT       THE COUNTER (INDEX) FOR THE TIME PERIODS,
••*   NINY      THE NUMBER OF TIME PERIODS IN THE SIMULATION,
*•*   N8AYS     THE NUMBER OF BAYS IN THE LAKE SYSTEM. (INCLUDING THE
                                          117

-------
MAIN,   UTLAK.FOR
FORTRAN V.13(142) /Hi   29«JUL-7»
PAGE 1-2
88106
noier
U0108
00109
08110
001 ti
80112
80113
010114
nans
0011*
80117
nans
*0U9
00128
88121
80122
88123
"01 2*
.10125
88 126
i»012T
90120
P0129
00130
H8131
nat \9
vv 1 JC
40133
8813«
*«135
88 136
90137
00139
(18139
«oi40
n8|4i
«B142
08143
flat At
vo » •*
99 145
00146
Afl 1 AT
HD 11*
98148
WJ149
W01S8
80151
•8152
•0153
P0154
00155
00156
HOIST
8815B
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c





c
c
c
c
c
c

c
c

c










*•• MAIN LAKE),
**• 1TI A KEY FOR TAPE READ— IF • 1 SOME DATA IS HEAD FROM TAPE,
••* IT2 A KEY FOB TAPE ftBITE— IF • 1 DATA SPECIFIED IN SUBR TAPE
••• WILL BE WRITTEN TO DATA TAPE.
«•• TP TOTAL PERIOD PRECIPITATION VOLUME FOR THE ENTIRE LAKE,
••* TE TOTAL PERIOD EVAPORATION VOLUME FOR THE ENTIRE LAKE.
*»* TQ TOTAL PERIOD TRIBUTARY INFLOW FOR THE ENTIRE LAKE.
••* IBOF CODE NUHbER OF THE DIKED PAY WHICH IS TO REClEvE ANY
•«* SYSTEM CVERFLO-— NEED NOT BE SPECIFIED,
**• SOF LAKE STAGE AT *nlCrt OVERFLOW OCCURS.
*•* VOLOF VOU01E IN AC FT OF TKE EKTJRE LAKE SYSTEM AT OVERFLOW
*»* STAGE, EXCLUDING DIKED AREAS.
••» BVDB VOLUME IN THE OKEO BAY WHICH IS TO RECEIVE A*r OVERFLOW
*•• —AT THE BEGINNING OF THE SIMULATION,
••* OOF A KEY WHICH SPECIFIES WHETHER THE OVERFLOWING TRIBS
••* ARE TO CARRY ION
*** CONCENTRATIONS SPECIFIED IN ARRAY OF (KEY NOT • t) OR THE
• •* CURRENT LAKE QUALITY— KEY*1
••• FT THE ACCUMULATIVE TOTAL TRI8. INFLOK FOR T"E ENTIRE
**• LAKC, EXCLUDING DIKED AREAS AM) OUTFLOWS,
••* VQFS THE ACCUMULATIVE VOLUME IN AC FT OF ANY OVERFLOW FROM
*•» THE LAKE SYSTEM,
*•* 101 A KEY WHICH CAUSES THE PERIOD TRIB FLOJ AND QUALITY
••• TO BE PRINTED OUT IF THE KEY • I
*•• TIMEF THE MULTIPLIER THAT CORRECTS THE FLOW, PR EC, ANO EVAP
**• TO BE CORRECTED TO THE TIME PERIOD SPECIFIED.
••» LABELED COMMON
•*• ARRAYS
*•• A(I) CONTAINS THE CURRENT WATER SURFACE AREA FOR EACH BAY I,
*•• VCI) CONTAINS THE CURRENT VOLUME OF WATER IN EACH BAY I,
*** VT(I> CONTAINS THE CU*HENT TOTAL VOLUME OF WATER THAT FLOWED
*•• INTO THE BAY I PURING THE CURRENT TIME PERIOD.
*•• P(X) CONTAINS THE CURRENT PRECIPITATION VOLUME THAT FELL
•«* ON THE BAY i DURING THC CURRENT TIME PERIOD.
*•• Ed) CONTAINS THE CU'HENT EVAPORA110N VOLUME DURING THE PERIOD,
• ••
• •*

••• THIS MAIN PROGRAH CONTKOLS THE SIMULATION. IT STEPS THROUGH THE NUMBER
•*• OF TIME INTERVALS, NJM, TABULATES AND PLOTS THE RESULTING WATER QUALITY,

• •«
COMMON IT{20>. 0(50). ITBAV(13,5CI), NTRIP(10), FLOW5( 60,52),
2 OF( 6(1,12, «)i 10*5(12), COFIN(19, 12) , STAGE(lS), *«EA(M,l5),
3 VOL(UilS), PREC(10,S2), EVAP(1P,52), KBO(10), ITNA(10,30),
4 lAAVSdl), SALTS(IS), OELVtll), TITLE(1S)( NAHEB(1I,2)(
S INHIX(lR), BHF(10,S2), TOTSK12), TOTSO(|2) , S(ll), IBTA(10)|
6 TTF(60), TTS(6fl,12), ITOS(7),
7 NIONS, NOBO, INT , NINT, NBATS, IT1, IT2, TP, TE, TO, IBOF, SOF,
6 VOLOF, BVOB, OOF, FT, VOFS, 10 J, TIMEF
COMMON /STVL/ A(tl), V(tl), VT(tl), PC11). E(ll)
DIMENSION NAMET(2), SS(I2), TES(10), TPS(10), TaSCtB), VB(ll),
                                          118

-------
HAIN.    UTLAK.FOR
                FOKTRAN V,lb(l«11
CALL OATA
IFfSOF .FQ. 0.)SOF>1,E6
FOHMAT ClMl J
HR1TEC 6,3005) TITLE
FORMAT ClHB. ' 	 BEGIN THE SIMULATION 	 •)
HHITE(6,110)
FORMATflHB, 10X, ••••INITIAL CONCENTRATIONS'/)
*•*
**. THE PRINTOUTS IN THE MAIN PROGRAM ARE BASED ON THE IONS BEING
*** SPECIFIED IN THE FOLLOWING OKOER WITH NO OH1SS10KS"
*»* NO, ION CODE NO
• ** 1 TOS I
•*• 2 NA 2
*** 3 CA 3
•** 4 HG 4
••• 5 K S
••• 6 CL 6
**» 7 HC03 7
• •* 8 SOU 8
•*• 9 HOI 9
•*• 18 P04 10
• •*
WHITE (6, 120)
FORMATC1M ,10X,'BAr TOS* , 7X, «NA',7X, 'CA',7X, 'HG',7X, 'K',61t,
2 'CL',6X, 'HC03',5X, *S04»,7X, »N05't6X, •P04'»?t)
VOFS»3,
NX«N9AY5»1
00 2« II>2,NX
I'laAvscii)
TES(I)»8.
TPS(I)»B,
TC5(I)«0.
WRITE(6.US) NAnEB(I,l),NAHEB(Ir2), 1, CCQKIN(I,KJ, K>1,12>
FORHATtlH , 2A4, 14, IX, 15F9.2)
«••
88284
08236
00207
0028B
08289
08218
80211
C  ••• MHEN ARC*?, THE SUBR SAV RETURNS THE AREA A*D VOL OF E*CH  ANEA
C  ••* FOK THE GIVEN STAGES OF tACH ONE,
C
C
      CALL SAV(8)
      IFOBOF ,EQ. 0) GOTO 22
      BVD6*V(IBOF)

130   FORMATC/XIHa, 5X, 'BAY   NO,  STAGE     AREA     VOLUME')
                                            119

-------
FORTRAN V.1RU42) /HI   29-JUL-74
tettT   PAGE i«*
80212
R3213
00214
00215
00216
00217
00218
00219
09220
00221
00222
00223
80224
00225
00226
00227
00226
80229
00230
00231
«B232
00233
00234
00235
00236
00237
00238
08239
80240
0024}
00242
00243
00244
00245
00 25 11*2. NX
IdBAYS(II)
V9(I)«V(I)
59, NAMEBCI.2) I X,SCI) . A(I), VCD
132 FORMAT (1H , zt, 2A4, 13, F9.2, 2F|B,1)
V8(l 1)«V (11)
S9(ll]»S(in
NHITE<6,133) S(ll), AClDr W(ll)
133 FORMATC1HB, 2X, 'TOTAL LAKE', F10.2.2F10.1)
ix»*
COTO 92
30 IX»1
00 35 IIM.NIONS
I«IONStlI)
SALTS(I)«B.
35 SSU)BQ(I)
N*l
VS.Y(U)
CALL PLOTRS(N, VS)
C **•
C ••• STEP THROUGH THE TIME INTERVALS NINT«TKE TI«E INTERVAL HAT
C ••« ANV OESIREO, IF THE DATA BASE IS SET UP FOR IT,
C •••





















BE


C *•• 3U9R COM CALCULATES ALL OF THE VOLUME AND QUALITY CHANGES DURING
C ••• THE TIKE PERIOD INT.
C *•*
00 90 INT*1,MINT
N»N»1
CALL COM
NHITEC 6,3005) TITLE
WHITE(6.135) INT. NAMET







0024k 135 FOSNATCtHB. IDX, '•••SUMMARY INFORMATION FOR TIKE PERIOD*, 13,
00247
00246
00249
00250
00251
00252
00253
00254
00255
00256
00257
0025*
00259
00260
00261
•0262
00263
8026*
t 5X,*« *,2A4J
WRITE (6« 145)
145 FORMAT { 1*0, 10X, '••• PERIOD FLOWS AND INTERFLOWS')
KKITE(6,150)
150 FORHATUH0, TX, • BAY PRECIP EVAP SUM TRIB VOL
2E INTERFLOW F I N A L*/9X.»NAHE MO, AC-FT AC»FT
3 AC-FT INTERFLOW VOL AC-FT STAGE AREA VOLUME')
00 40 II>2,NX
I*IHATS{IIJ




BEFOR
INFLOW



HRI1EC6,160)NAMEB(I,l)(NAMEB(I,2),I,PCI)iE(I)rVT(I),OCI).DELVCX).
2 StI), Afl), VCI)
160 FORMAT ( 1H ,SX,2A«, 13, 2F9.0, F1B.0, 2F12.0, F9.2, ZF10(0)
TESCI)-TES(I) * ECI)
TPS(1)»TPS{I) * PCD
T3S(I)»TOS(I) * VT(I)
40 CONTINUE
TOSC1) • TOSC1) » FLOWS C53i INT) • 59.5041 * TIMEF
HRITEC6,165) TP, TE, TO, Mil), A(|l), V(ll)








                   120

-------
MAIN.   UTLAK.FOR
                FORTRAN V.1RU42) MI   29-JUL-74
                                                        161(7   PAGE 1-5
00266
0B2&7
08268
00269
00270
00271
00272
00274
00293
00295
00296
00297
00298
00299
00100
00501
00302
00393
0030S
003P6
00307
00338
00389
03310
00311
00312
00313
00314
00315
00316
00317
165   FORMATC1HG. 3X, »TOTAL SVST6"   ', 2F9.B, F10.0, 16X, 'LAKE' ,2X,
     2F9.2, 2F10.0)
      UHITE(6,170)
170   FORMAT (//1HB, 5X, *•** WATCD QUALITY AT THE END OF THE PERIOD'/)
      UHITE(6,1<>0)
      00 50 II'2.NX
      t'IBAYSdl)
      W4ITE(6,175) N»ME8CI,l)i NtHEBCI,2), Ir (CQFIN(I,(C) , K«J ,NIONS)
175   FORHATCIH , 2A4, 14, IX, 12F9.2)
50    CONTINUE
      KRITECb, 183) N
00276
03277
09278
00279
00280
00282
113283
00284
00287
002A4
00289
00291!
00291
18(1
C
C
C
c
c
c
92
FORHAT(////////lHCl,5X,r«**TIME PERIOD', 13, ' HAS BEGUN')
VS.V(ll)
CALL PUOTRSCN, VS)
CONTINUE
• *•
••• THE SIMULATION IS COMPLETED AT THIS POINT. -N04 THE TOTAL SALTS ARE
«** TABULATED FOR THE VARIOUS COMPONENTS IN THE SIMULATION,
• ••
••* FACTOR F CONVERTS FROM MG/L AC-FT UNITS TO TONS,
• *•
F«62. 4*43560. /2.E9
00 102 II»1,NIONJ
i«ioNS(in
      TOTS1CI)«TOTSI{IJ«F
      TOTSOCI)«TOTSO(I)*F
      DO 100 KK»2.NX
      K*IBAYSCKK)
      QCD'Od) * CaFIN(K,I)*V(K)
10B   CONTINUE
102
102
      CONTINUE
      IF (IX ,EO. 0) GOTO 30
      t«HITE( 6,3eB5) TITLE
      FORMAT(//tHO, 5X,  »««*TOTAL SALT SUMMARY FOR THE  SIMULATION',  //,
       25X, 'TON  S»)
      HAITE(6,120)
      «RITEC6,185)  (TOTSI(KJ,K»1,NIONS)
      WRITE (6, 186)  (TOTSO(K),K> UNIONS)
      WRITEC6.187)
      FORtlATClH . 'TRIB. INFLOW , F10.B,nF9.0)
      FORMAT(1H0, 'LAKE OUTFLOW', F10.0, 11F9.0)
      FORMATflH , 'LAKE . . '/,»   BEGINNING ',F1B,0, 11F9.B)
      FORMATCtH , '  ENDING    ', FJ0.8, llF9tO)
      HKITEC 6,3005) TITLE
185
186
187
188
2100  FORMAT
-------
MAIN.   UTLAK.FOR
FORTRAN V,18(142) /KI   29-JUL-74
1011T   PAGE  l«6
00318
910319
00321*
Pd321
00322
«0323
00324
00325
00326
00328
09329
00330
00331
00332
00333
0B334
00335
00336
00337
08338
00339
00340
00341
00342
00343
00344
00345
00346
00347
0034B
00349
00359
00351
00352
00353
00354
00355
0B356
00357
R0356
00359
08369
00361
00362
OB363
00364
08365
00366
00367
00368
00369
00370





2120


2130











218



2195




215
2200

2210

2220
220
C *»*
C • • •
IC«C
00 220 11*2, NX
I«If)AYS(tI)
KHUE(6,2110)
UHITE(6,21?0) I
FORWAT(lMa, 'RAY', 13)
U1,NIONS )
FORKATdH , 4X, 'PCT', f7.3, I2F9.3)
HRITE(6,222e)
FORMAT Uh0)
CONTINUE


C •*• THE FOLLOWING STATtMENTS CALCULATE AND PRINT OUT THE HATER
C *••
C*«*
W W w
C •*•

3005

3000

3018
2
BALANCE FOX THE SIMULATION PERIOD

WRITE! 6,3095) TITLE
FO*HATCtHl,//,18X, 15A4)
MKITE(6,30n0)
FORMAT (// 1K0, 5X, ••••HATER BALANCE FOR THE SIMULATION*)
UKlTE(6,3ai0)
FORMAT(IH0, |0X, 'BAY PRECIP EVAP TRIB INFtOtf BEGINNING
ENDING *,/, 16X, *AC«FT AC-FT AC^FT JTACE VOLUN
3£ STAGE VOLUME •)


TE«0.
TP«0,
                                           122

-------
HAIN.    UTLAK.FOR
                FORTRAN V,19(142)  /Kl    29-JUL-74
                                                         10UT   PACE 1*7
00371
08373
08374
18375
00376
•0377
•0378
•3379
08388
M381
00383
03394
B03«5
00386
08387
•0388
00389
09390
00391
80392
•0393
00398
•0395
00396
•0397
00398
00399
(10489
00401
      TQ»0.
      DO 3?0 II«2,*X
      I*IHAYS(1I)
      WrtITE(t>,3e>20) NAMEBCI.l),  NAHE8U ,2) , I,  TPS(I), TESCD, TOS(I),
     2 SB(I), VH(I), S(J), Vtl)
      FORMATC 1H , 2A4,  14, 3F9.0,  3X,  2(F8.2,F9.1))
      IF(NBOCI) ,EO, 1)  GOTO 320
      TE«TE * TES(I)
      TP»TP »• TPS(I)
      TQ.TO * TOS(I)
      CONTINUE
      CHECK » TP - TE •  TO * TTF(53)  «  VflJJ  •  VB(ll) - VOFS
      UUTVIT«<- -VAVn*
3020
320
      t.RITE(«,,?0a3) TP. TE, TO,  TTFC53),  VOFS,  VB(U),
     2 S(ti)
3048  FORHAT( 1H , SX,  'TOTAL  PRECIPITATION!* ,  Ftl.ii/>(>X,
                                                                V(U),
                                                            'TOTAL
     2ATION  .', Ftl.l,/, 6X,  'TOTAL  TR1B.  INFLOW «', m,l, /. &X,
     3 'TOTAL TKtB. OUTFLOWt',Fn.l,/,6X|  'OTHEK OVERFLOW     «'.ni,J,
     3*  (ENOING VOLUME HAS  BEEN  ADJUSTED  FOR OVERFLOW) «,
     4 /,&*, 'BEGINNING   VOLUMfc   «',FJ1,1,  5X,  «STAGE»», F8,2,/. 6X,
     5 'ENDING  VOLUME      "'rFlt.!,  5X,  »ST*CE»'( Ffl,2)
3030  FOR«AT(//1H  , UX,  '••«TOTAL  LAnE   —  AC-FT   (EXCLUDING pl«EO 8*
     2*S, IF *NY)«)
      HHITE<6,3S50) CHECK
3U5P  FORMAT(// |H0, 5X,  'C«ECK«»,  Fit, I,*   (IF NOT ZCRO--PROG ERROR}')
95    INT«999
C  •*•
   • »*•
•0403
08404
•0405
00406
C  ••* THE PROGRAM NOh GOES  BACK  TO  THE  BEGINNING AND LOOKS FOR NEW OAT*—
C  ••• THE ONLY CHANGES  IN THE  OATA  AS IT EXISTS AT THE END OF THIS
C  ••• SIMULATION KILL BE THOSE SPECIFIED IN THE DATA FOUND—SEE SUBR  DATA,
C  ••»—-.-——-»——.—...«.—-••.—.«—»..--•.---•«——-•—«—-•••-—«..
C  •••
      GOTO 10
      END
      s
                                             123

-------
MAIN.   UTLAK.FOR
             FORTRAN V. 16(142)
                                         29-JUL-74
tent   PAGE
93994

00P06
09930
00609
(1391(1
00312
aoai3
03615
"BP22
1)13323
R0P25

SBJ2T
93038
B00S3
(•OPJ4
00035
e*B36
«a?Jfl

C3B4B
        SUBROUTINE DATA
        C  ***
 C
 C
 C
 C
 C
 C
 C
' C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
            • •*•
••* DATA HANDLES ALL OF THE DATA INPUT ANO INITIALIZATION FOR THE
»•• SIMULATION.
•*•___......._...._.._.._.___.-.._....._.....__._....._..-.._-.___....
»•« THIS SUBK is SET UP TO BE VERY FLEXIBLE AS TO THE AMOUNT OF DATA
• •• GIVEN FOR A RUN, AS ttELL AS THE UNITS OF fhE DATA.
••« EACH TYPE OF DATA IS SET APART BY SPECIAL SECTION CARDS WHICH ARE
• •• OESCrtlrtF.D IN DETAIL IN THE DOCUMENTATION,
• •*
*•* INT IS SET TO 999 AT THE END OF EACH SIMULATION RUN,  THE PROGRAM
•••> THEN RE.TURNS TO THIS POINT AND LOOKS FOR NEW DATA FOR THE NEXT
«•• RUN.  IF A DATA CARD CONTAINING 12345 IN THE FIRST 5 COLUMNS IS
••* FOUND THEN THE RUN IS ENDED.
OBP44

C0B46

00848
           «** NORMALLY THE FLOW, QUALITY, EVAPORATION, ANO PRECIPITATION INFORMATION
           *•• AS MELL AS THE STAGE-AREA-VOLUME TABLES ARE kRITTEN TO TAPE
           •*• DURING AN EARLY RUN AND THIS INFORMATION READ BACK FROM TAPE FOR
           •«• ADDITIONAL RUNS.  (SEE FORMATS 123? AND 1240 BELOW),  THIS GREATLY R
           •*• REDUCES THE NUMBER OF DATA CARDS TO BE SUBMITTED IN MOST CASES,
00051
C0852
C
C
C
C
       COMMON ITC20),  0(511),  ITBAY(10,5«>,  NTRIBU0),  FLOWSf  68,52),
      2 OF( 60,12,  ft),  ION5U2),  COFINC10,12),  STAGE(IS),  *ȣ*(!!,15),
      3 VOL(11,I5),  PttEC(10,52),  EVAP(1B,52),  NBO(ld),  ltNA(i3,30),
      4 IPAYS(II),  SALTSC15),  DELV(ll),  TITLLC15),  NAMEBCU»2),
      5 INHTi(ift),  BMF(1P,52),  TOTSKI2),  TDTSOCI2)  ,  S(l|)f  I8TA(I0),
      6 TTF(6P),  TTS(6B,12),  ITOSC7),
      7 NIONS,  NOBO, INT  ,  NINT,  NBAY3,  ITl,  IT2,  TP,  TE,  TO,  1BCF,  SOF,
      a VOLOF,  BVDd, OOF, FT,  VOFS,  101, TIMEF
       DIMENSION  ITC(7),  FTCC7),  BCS(6B,12)
       IFdNT ,EO,  999) GOTO  7
       SOF«1.E6
       DO 5 I»l,60
       DO 5 J«l,l?
       FLOUS(I.J)>a.
       00 5 Ml,7,2
       OF(I,J,K)«8,
       CONTINUE
       00 t> lBl.il
       AREA(I,2)»8.
       00 9 I«1,6B
       00 B J*l,12
       CQFIN(I,J) •  BCS(I.J)
       TTS(1,J) • B,
       TTF(I) • 0.
       FT » 0.
           • *•
           ***•
••« THE DATA READ FORMAT IS SET UP SO AS USE SEPERATOR CARDS TO KEY THIS
.** SUBR. TO READ THE DATA SUBMITTED-- SEE DOCUMENTATION FOR DETAILS,
                                              124

-------
DATA    UTLAK.FOR
                FORTRAN V.16(142)  /KI    29-JUL-74
                                                                10»17   PAGE  |-1
00053
00854
00055
00056
00057
110058
00059
00060
90061
00062
00063
00064
00065
00066
00067
0006B
00869
00?7*
20071
00072
00073
00074
00075
0X076
00077
00078
40079
00080
B088I
00082
00083
00084
00085
00086
00087
C •
C *
10
11909


12
15
20
33




40
as


50

1020

60


70
100
103
104
105



tie
115

• •
REAO(5,10G(!) I
FORHAT115)
IFCI .ME. 15305)007012
STOf»
IF(I-lllll) 50,20,15
IF (1-66666) 30,40i 45
!F(I .EO, 11111) 1*1
IF(I .FQ, 22222) 1*2
IF(I ,EO, 31333) 1*3
IFtI .EO. 44404) I>4
IF(I .EO, 55555) 1*5
GOTO 59
IF(I .EO. 6666*) 1*6
IF(I .EO. 77777) I»7
IF« ,EO. 88688) GO TO 10
IF(I .EO, 99999) 1*9
IF(I ,GT. 9) CO TO 60
GO TO 70
FOBHATUHe, '***QATA READ ERROR—SECTION CODE MOT FOUND— VALUE FOU
2NO**,I6)
hKITE(6,1020) I
IERR>1
GO TO 10
GU TO (100, 2f!2,30a, 403, 508, 630, 7
-------
DATA
        UTLAK.FOR
                FORTRAN V.1B(142) /KZ   29-JUt-7a
                                                                PA6E
BBlPb
00107
00104
801 Iff
00111
00112
00113
88114
»011S
08116
«0117
00120
00121
00122
00123
90124
00125
0B12*
90127
0012*
00130
00131
"0132
0B133
B0134
9*136
«J0137
00138
90140
40141
00142
90143
00144
00145
K0146
P0147
00148
•UJ149
00150
00151
98152
•10153
001 54
00155
80156
00157
00158
     2«», 13, //,bX, 'THE TIKE PERIOD KEY IS «',I2)
      TJHEF « 1.
      IFtKEt .fO. 1) TIMEF« .03333
      IF(«Ef ,EO. 2) TXneF« .23333
      IF(KEV ,FO. 4) TXnEF* 12.167
      RE*D(5,1215) S(|l),
      FORHATCBF10.0)
      DO 125 I»l(10
      IF(S(I)) 122,122.125
1215
122
125

1228
1230
1240
      CO TO 103
C  *•«
C  *••——————,..————————..——-.——•-....»—.—«•....
C  *•* THIS SECTION READS THE NUfBEH OF IONS TO BE TRACED (NIOHiS) AND THEIR
c  ••• CODE NUMBERS (FOUND IN AHRAY IONS).
C  ••«——.—————.—-.—-—..—.——..,„.-.—.,.»,—.,———.....
c  *••
130   REAOC5.1230) NIONS, CION5CD,I«l,12)
      IF(IOl .EO. 1) GO TO 103
      WRITE(t.ltll)
till  FORMAT(1H8,5X,'*•»•*•••••*••»*••*••»••••*••*«*••****•«••*••••••••*
1210
      CONTINUE
      w«ITE(6,122B) (1,5(1), 1*1 , 10)
      FORM*T{iH3, 5X, 'THE BEGINNING STAGES IN THE LAKE SYSTEM
     2 /. SX, * BAV   STAGE',/, 5X,     10(13, F18.2,/, 5X))
      RtAnf5,l?3t1) IT1, IT2
      IFCIT1 ,EO, 1) KRITE(b,1238)
      FOR1AT(1H0, 5X, 'THt DATA HILL BE RE*0 FRQN TAPE —THEM MODIFIED
     2BY ANY CARDS READ*)
      IF(!T! ,E3. 1) CALL TAPE(l)
      IFCIT2 ,EO. 1) HRITE(6«124P)
      FORHATdHfl, 5X, 'THE DATA SETUP FOR THIS SIMULATION WILL BE WRITTE
     2N TO THE PATA TAPE')
1350
      FORHAT(1H0,   »JS$ SIMULATION SETUP AND INITIALIZATION DATA')
      WHITE (b, 1350) (IONS (I), 1*1, NIONS)
      FOBHUHlHB, 5X,  'IONS TO BE CARRIED IN THE SIHULAT ION* ', 1515)
      60 TO 193
C  •••
C  »»»——-.—_-__— ——-.—-— -———.-...-..-.....—.-——---.----...
C  •*• THIS SECTION READS OOF WHICH IS THE KEY AS GIVEN IN FORMAT t«10 AND
C  ••* ALSO READS THE INITIAL HATER QUALITY IN EACH OF THE LAKE AREAS,
c  •••——»..-.....»,———•».—-»»—....•—.»..-...—•—-•———--.«
c  •••
140   READ(S,3035) OOF
      HRITE(b,1410) OOF
1410  FORMATCJHB, SX. •••*OUALITY OUTFLOW FACTOR «', FS.0,/ ,1BX,  '0, HE
     2ANS THAT OUALITV READ IN FOH THE TRIB (OUTFLON) HILL BE USED FOR T
     SHE OUTFLOW', /,10X, '!» MEANS THAT THE LAKE QUALITY DILL BE USED FO
                                             126

-------
DATA    UTLAK.FOR
FORTRAN V.16(142) /Kt   29«3UL-74
                                                                ie«i7   PAGE
00159
00160
00161
00162
00163
4R THE OUTFLOW)
IFCI01 ,EQ, 1) GO TO 142
WRITE tfc,1 111)
WHITE Cfe, 1420)
HHITECf.,1425)





"0164 1420 FORMAT(1H0, 5X, 'INITIAL WATER DUALITY IN ThE LAKE AND BAYS')
00165
00166
00167
00168
00169
00170
00171
"0172
00173
0017«
R0I75
H0176
"0177
00178
00179
nat Hft
rv I O«*
03181
C0I82
00183
10164
00185
001B6
00187
00188
00189
00190
00191
00192
H0193
B0194
90195
00196
0B197
00198
•3199
»P?00
00201
00202
00203
10204
00205
00207
03208
00209
1425 FORNATdHZ, 5X, 'BAY QUALITY OUAL UNIT », /6X,
2 'NO, F.C. KEY CONCENTRATION')
142 REAO<5|143P) I,J,K,C
Ffl.
1430 FOWMAT (315, F 13,0)
Iftl .CT. 1111!) GO TO 104
IF(I .CT. 10) '»RITE(6,14J5) I
1435 FORMATdH ,'*o«E»ROR — BAY ,GT, 10-.-INITIAL W, DUALITY CARD,
IKK ,EQ, 1) Ft*. 00(9736
TF(10l ,EO, 1) GO TO 146
WRITE(6,1440) I,J,K,C
1440 FORHAT(I8,I7,I10, F13,3)
146 COFIN(I,J)»C*F1
GO TO 142
C •»•
C *•• THIS SECTION READS THE NUMBER OF DIKED BAYS KOBO JF ANY, A
C •*• STORES 1 IN ARRAY N3Q INDICATIONG DIKING FOR ANY BAY NO.
C •*« STATEMENT 153 READS THE CODE NUMBER OF THE BAY TO RECEIVE
C *** IBOF AMD THE STAGE AND VOLUME OF THE REMAINING LAKE SYSTEM
C ••• OVERFLOW OCCURS (SOF AND VOLOF) IF IBOF > D THEN OVERFLOW
C • •« FLOx OUT OF THE SYSTEM AND NOT INTO ANY DIKED BAY,







»',I4)







^0
GIVEN,
OVERFLOW
WHEN
IS TO

C •** STATEMENTS STARTING WITH 155 REASSIGN ANY TRIBS, DESIRED TO FLOW
C *•* INTO THE MAIN LAKE— TRIBS THAT taERE ASSIGNED TO THE DIKED
C *«»
ISO KEAD(5.1200) NOBD, ( IT(I) ,!•!, 10)
IFfNOBO ,LT. 1DGOTO 151
I«NOf>l)
NOBO'fl
GO TO 104
15t IF(NOHO ,LE. 0) GOTO 153
DO 152 I«1,MOBD
J*IT(I)
152 NBO(J)«t
IFdOl ,EO. 1) GO TO 155
HRITE(6, 1111)
kRITE(6,1510) NOBO, ( IT (I) , !•} ,NOBD)
1510 FORMATUHB, 5X, 13, • BAYS DIKED OFF FOR THIS HUN, BAY NOS,
153 REAQ(5,1515) IBOF, SOF, VOLOF
1515 FORMAT(I5,2F10,8)
HKITE((,,lSin IBOF, SOF, VOLOF
BAY I,













M3I5)



1517 FORHATdHO, 5X, 'BAY DESIGNATED TO RECEIVE ANY LAKE SPILLAGE IS',
Z 13,' (0 MEANS THE SPILLAGE IS EXPORTED OUT OF THE SYSTEM)'//,
80211
             3 1 SIX,'STAGE AT OVERFLOW • ',F10,2,//, 10X, 'VOLUME AT OVERFLOW,
             4
                                           127

-------
DATA
UTLAK.FOR
                FORTRAN  V.18(142)  /«!   29-JUL-74
10117   PACE 1-4
00212
00213
00214
00216
00217
«021«
15S
156

157
      READ(5,12P0)  I,  II.  (IT(J),J>1,14)
      IFCI .GT,  11111) GO  TO  104
      It-14
      03 157 J«IX,IE
      IF(IT(J) ,LE, 0)  60 TO ISft
      ITNAd.J) • ITCJ)
00222
B022S
00224
00225
00226
00227
00228
00229
00230
«0231
02232
00233
00234
MB93S
VV C J J
00236
0D237
00238
flCOTQ
1TC J~
00240
00241
00242
00243
flP244
A0245
00246
IX«IB
IC«JE»16
REA(>(5,1200) {IT(II),II«IX,IE)
GOTO 156
158 J»J-1
ITNA(1,I) * J
IF(IOl .EO. 1) GO TO 155
t*RITE(fc§l 111)
WKITE(6,t52a) I, IBTA(I), (IT CD ,L"1 , J)
1520 FORMAT (tHR, 5X, 'TRIBS FROM DIKED BAY', 13, ' WHICH ARE TO RUN
20 BAV',13, /,10X, 3014)
GO TO 155
C *••
C ••• THIS SECTION READS THE NUMBER OF 3UBAREAS IN THE LAKE SYSTEM
c ••• PUTS THE COOE NUMBERS ASSIGNED TO EACH IN IBAVS, THE NAME OF
C *•• A»EA IS THEN READ INTO NAHEB— 8 CHARACTERS FOR EACH AREA)
C •••
160 REAO(5,1?00) NBAVS, (IBAVS(I), 1-2, 1 1)
IF{NBAVS ,LT. 11) GOTO 162
IF (I ,LT, 22222) GOTO 104
I'bDAVS
J«16I11
HRITE(fc,1610) J









INT



(NBAVS)
EACH








«<02a7 1610 FOUfUTOHa. IBX, ••••TROUBLED-NO. OF BAYS SPECIFIED .GT, 11, CHECK
90240
00249
00250
00251
00252
0025?
90254
£0255
00256
00257
00258
K0259
00260
00261
00262
00263
00264
2 OATA SECTION', 17)
GOTO 104
162 REAO(5,1620)((NAMEB(I,J),jBlt2),I«l,10)
1620 FORMATC20A4)
164 1FCIOI .EO, 1) GOTO 103
NRItE(6,llll)
HRIIE(6,1640) NBAYS
1640 FORMATUH0, 5X, 'NO. OF SUBAREAS IN THE LAKE SYSTEM '',13, SX,
2 'THF.IR CODE NOS, AND NAMES ARE-')
NX«NBAY3«1
00 166 I«2.NX
J*IBAVS(I)
166 UHITE{6,1650) J, (NAHE8(J,K) ,K«1,2)
1650 FORMAT (IH , 5X, 12, 2X, 2A4)
GOTO 103
C «**
















                                            128

-------
DATA    UTLAK,FOR
                FORTRAN V,1B(142>  /KI    29-JUL-74
                                                         10U7    PACE 1-5
(18265
M266
08267
80268
82269
0827R
80271
W272
80273
80274
80277
1>0279
08280
002A1
02282
83283
83284
80285
802B7
80289
00290
92292
00295
08297
0Z29A
82299
08380
80381

80303
803X6
8932)9
80312
80313
80315
00316
00317
C  ***
C  ***
C  «**
C  •*«
C  ***
170
171
1710
       THIS SECTION READS THE  INTERMIXING FRACTIONS FOR  ANY BAY  SPECIFIED
       I IS THE BAY NO,,           A DECIMAL FRACTION FOR EACH TIME PERIOD
       THE READ IS TERMINATED  BY  A NEGATIVE REAL  NUMBER.
      REAO(5,171B) I, J,  (Q(K),K>1,14)
      FO«MAT(2I5, 14F5.0)
      IF(I ,LT, 11) GOTO  172
      IF(I .LT. 22222) GOTO 104
      GOTO 1P4
      INHIX(I)*1
      DO 173
      B"F(I,K)*0(lC)
      IB.-l

      IE.10
      00 176 K«IX,I£
      IF(HMF(I,K)) 178,176,176
      CONTINUE
172

173
174

nt>
      IF(IE ,GT, 52)
      t»E*0(5, 3335)  (BHF (I,K) ,K>IB, IE)
      GUTO 174
176   IK101 ,EO, 1) GOTO 171
      KaK-l
      MRITE(6,17B0)  I,  (8HF(I,J),J*1,K)
1780  FORMATC1H0, 5X, 'INTERMIXING FRACTIONS  FOR  BAY»»  13,  •  ARE
     5 Stl2F6,3,/, 44X))
      GOTO 171
ISfl   READ(5,1200)  101,102,103,104,105,106,107
      IF(101 ,GT, 11111) GO  TO  104
      GO TO 103
      FOHHATC16I5)
12*B
C  ***
C  »** THIS SECTION READS OECI"AL  FRACTIONS  THAT  BECOME  MULTIPLIERS FOR ALL
C  ••* FLOWS, PRECIP., ANP EVAP, RESP.  AS  IN THE  BASIC DATA,
C  •** THIS SECTION CAN CHANGE THE MAGNITUDE OF THE  FLOWS  FOR ALL OF THE
C  *•* TRIOS,--THE SECTION BEGINNING  WITH  STATEMENT  195  CHANGES ONLY THE
C  •** TRIBS, SPECFICALLY GIVEN THERE,
C  ***--———--—.--.-.—....-.--.-..,.. ...»_..._...._...-•__--.-.........
C  •*•
!90   REAO(5,3a3S) FO, FP, FE
      IFCFQ ,LE, 0.) F0»l,
      IF(FP ,LE, 0.) FP»1.
      IFtFE ,LE, a.) FE«1.
      MRITE(6,H!1)
      HRITE(6,1920) FO, ff, FE
                                           129

-------
DATA
        UTLAK.FOR
                FORTRAN V.1BU42) /Hi   29-JUL-74
10117   PACE 1*6
00318
PB311
l»e 528
P0321
00322
10324
00525
00326
00327
0P329
00330
«03J2
00333
00334
00335
(10336
«033T
99338
3B339
00340
00341
00343
M344
00345
*0346
POS4T
0034d
*03a9
W0350
00351
H0353
B0354
00355
00356
C03S7
00358
00359
0036*
00361
00363
00364
0036$
00366
00367
8036«
00369
0B370
1920  FORMATC1H3, 5X, '•••THE MULTIPLIERS TO BE APPLIED TO THE I*PUT OAT
     3A AKE', /,10», »FLO*.S. . .», Fb.3,/,10X, 'PRECIP , ,» ,Ffe.3,/, 10X,
     3 'EV»P . , .' ,F6,3)
      60 TO ie3
195   READtS.HSB) NTC,(ITC{K>, FTC(K) ,K«1,7J
      FOBMAUI5, 7CJ5.F5.0))
      IF(NTC ,GT. 1111) GO TO 100
      IF(NTC .IE. 0) GO TO 104
        1950
i960  FORMAT (1HO, 5X, 'THE FOLLOWING TRIBS wlLL BE CHANCED BY THE FACTOR
     2 GIVEN—*,/. 5», 'THIS.   FACTOR*,/, 7(5X, IS, F9,3))
      GO TO 103
C  ••»
           •*»
C  •«* THIS SECTION READS THE TRI8S. THAT ARE TKIB TO EACH SAV, I>BAY NO,
C  ••* N • NUMBER OF TRIBS TO THE BAY.
C  ••• ---- .- --------- _...,-__...„. --- „„ ---- . ---- ..... --------- „-.— -----
C  ••*
zee   iraas ,EO. t) GO TO 210
      WKITE(6, 171491 TITLE
1090  FORtUT(lHl//,9X, 'TITLE-', 15A4)
      H«ITE( 6,1111)
2010  FORfUTflHa,i0X,  'BAY - TRIBUTARY ASSIGNMENT DATA')

2020  FORMATflHa, 5X,  *BAV   NO. OF    TRIBUTARY CODE NUMBERS'/JK ,
     2 IIX.'THIHS')
210   REAO(5,2a3?> I,N,(IT(L),L«1,14)
2030  FOHMATU6I5)
      IFCI .CT, 11110)GO TO 12
      IF(J .CT. 10) GO TO 290
      00 220 L'ltl4
      ITMY(I,L) « IT(L)
      NTRI»(I)»N
220   CONTINUE
      IFfN ,LT, 15) GO TO 230
      REAl>(5,2030) (ITBAY(I,M),M>15,N)
230   CONTINUE
      IF(102 »NE. 1)  WRITE(6,2048) 1,N,(ITBAY(I,H),H«1,N)
2040  FORMAT(/5X,I3,  17, 5X, fa(1PI5,/,2?X))
      GO TO 210
29B   MRITEC6.2100) I,N, CIT(L),L«1,14)
      URR«1
      GO TO 210
2100  FOffMATdHa, •••.DATA HEAD ERRQR>-IN SECTION 22222—BAY CODE NO  ,GT,
     2. 10* /IH ,5X,  »CA»0 IMAGE IS*,1615)
C  *•*
C  *•«-—--•---..-.--.-.--•-------•-------.---..---..-.•--•..----•-•-•--•------..
C  ••• THIS SECTION READS TiE NO. GF TRIBS. THAT FLOW OUT OF THE SVSTEK(NTO)
C  •*• AND THEIR CODE NOS.-STATEMENTS 395 TO 396 CHANGE  THESE TRI85  TO NEC,
C  «*« FLOWS,  XT THEN READS THE FLOW RATES (ST. 310), I • TRIB, NO,, J • FLOH
C  ••• UNIT KEY, K •  TIME UNIT KEY, L » NO, OF FLOriS,
C  *»*.—...—•-....-«.-..-..—.—.—.—.-.—..----..-..-----.----.-•..—---..
                                            130

-------
DATA
        UTLAK.FOR
                FORTRAN V.16(142) /HI    39-JUL«7fl
                                                                 I0IJ7   PAGE J-7
(10371
B0372
00373
(•0374
00375
        C  •**
        30B
00377
00378
08379
JI0359
B0S81
00382
00383
90384
00385
90386
00387
40388
H0389
00390
00391
0039?
00393
00394
00395
00396
90397
0CJ98
00399
00400
09401
00402
00493
00404
00405
00406
00408
00409
00411
00412
00413
00414
00415
03416
00417
0*«ia
00419
00420
00421
•0422
00423
              1FCNTO ,EO, P) GOTO 305
              IFCNTO ,GT. 7) GO TO 1614
              WRITE(6,3(*25)     (ITOS(I),1«1,NTO)
        3025  FQRMATdHa, 5X, '***THE TRIBS FLOWING  OUT  OF THE  SYSTEM ARE',
             2 511)
3030
        320
3035
330
              IF(103 .EO. 1) GO TO 310

        3310  FOBMAT(1H0, 15X, 'TRIBUTARY FLOnRATE  DATA*)

        3020  FORMAT (1H55, 5X,  'TRIB  FLOW UNIT   TIME  BASE    r t 0 K »    PERIOD'
             2 /7X, 'HO      KEY        KEY       1        2       3  ,  .  «')
              FORHAT(4I5<12F5,0)
              IF(I .GT, HUB) CO TO  360
              If II .GT. 1B3) GO TO 390
              00 323 M>1,12
              IF(L .LT, 13) GO TO  33B
              Rt*Uf5,3035)  (FLOWS(I,H),M.13,U)
              FORHAT{16F5.0)
              CONTINUE
              IF(I03 .£0, 1JCOTO 340
              IF(IC .LT.  11) GOTO  335
              1C » 0
              WRITCC6.1090) TITLE
        3015  FOPHATdH  ,  '—CONTINUED'/)
335
3040
340
342

344

346

348
350


355
              WRITEC 6,3P40)  I,J,K,  (FLOWS f I ,H) ,H.J , L)
              FORMATtlHa, 5X,I3,I8.I11,2X,   6C12F6, 1. /38X))
              IF(J .EQ,  1) Fl»«3560,
              IF(K ,ti3.  0) GO TO  350
              GO TO  (342,344,346, 348),K
              F2afl.64E4
              GQ TO  350
              F2»h.04BE5
              GO TU  350
              F2«2.592E6
              GO TO  350
              F2-3.1104E7
              F1-F1/F2
              oo 355 HM.L
              FLOWSd.h). FLOHS(I,M)«F1
              CONTINUE
                                             131

-------
DATA    UTLAK.FOR
                        FORTRAN V.1B(142) /Kl   29-JUL-74
                                                                10117   PAGE l-»
00424
0*425
00426
(10428
00429
(18430
00431
*0«32
08433
918034
R0435
                                                                           • HEE
M043T
0043S
00439
08440
«0441
00442
«(>443
              GO TO 31*
              IF(I03 .£0, 1) GO TO 395
              Hum (6,3453)
              *RITE(fe,3055)
        3850  FORMAT (///lri9l,20X, 'KEY CODE-'/25X, 'FLOW UNIT KEY' /33X,
             2 '0 « CFS» /3JX, *i • AC, FT.')
              FORHAT(1H0,24X, 'TINE UNIT KEY* /33X,
             1                        *0 • SECONDS»/33X, '1 • DAV/33X, '2
             3*»  X33X, '3 • HONTM»/33X, '« » YEAR')
              CO TO 395
              NR1TE(6,3100) I,J,K,L, (0(H) .*•! ,12)
              ItRR»l
              FOR«»T (ina, ***«OATA READ ERROR—IN SECTION 33333»»TRiB CODE NO ,c
             2T. ine'./lH , 5X, 'CARD IMAGE IS » ,415, 12F7, 1)
              CO TO 3lfl
              IFCNTO .EO, 0) GOTO 12
              00 396 I'l.MTO
              J'lTOSCI)
              DO 398 Ml, 5?
00446
00447
00449
9IO«51
B04«
00453
        360
        3B5S
        390
        side
        39S
        396   FLOMS(J«K)»-FUOUS(J«K)
        39B   CONTINUE
        C  •*•
        C
        C
        C
        C
        C
        C
        C
A04S5
00056
«>045T
00458
004b9
B0460
           •*• THIS SECTION READS THE FLO* RATE--OUALITY  DATA  (ST.  410),   I  •  TRIB.  NO*,
           ••• J  • QUALITY FACTOR CODE, K • FLOM UNIT KEY,  L •  DUALITY UNIT  KEY)
           ••» THE FLOMRATE ANO DUALITY ARE THEN KEAO IN  PAIRS,   AT LEAST  1*0  PAIRS
           ••« MUST BE GIVEN,  THE PROGRAM INTERPOLATES   TO FIND  THE NEEDED  FLOH,
           •*«—————.———————,.———.——.——»——— ——.—,
           •**
              iF(io4  ,co. i) co TO
              WKITE(6,1P90)TXTLE
        4010  FORHAT(1H«I,15X, 'TRIBUTARY HATER DUALITY  DATA')
00462
00463
00464
P046S
R0466
9P467
004611
00469
R047R
H0471
0A472
00473
00474
0047S
00476
        4020  FOOH»T(JH0, ?X, 'TRIB  OUALXTY  FLOH  UNIT   QUAL  UNIT     POINTS*  /
             2 6X,'NO.    F.C.      KEY        KEt'.SX, *FLOH   QUALITY')
        410   RE*D(5,4f30) I,J,K,L, (0(h) ,H>| , 10)
        4030  FORntT(4I5,lPr5.B)
        4040
        4042
        430
              F2*l.
              IF(I  .CT. 11110) GO TO 450
              IF(I  ,GT. 100 .OR. J ,GT, 12) GO TO  4
-------
O»TA    UTLAK.FOR
                        FORTRAN V,18(142) /KI   29-JUL-T4
                                                         1BM7    PACE 1-9
(3477
£3478
       440
C3480   450
C04B3
C04B4
»0'4B5
93886
ZB437
C34B*
110489
f 51490
D3492
«349)
M494
M495
03496
V8497
88494
JR3499
H50J
035??
MS06
(8508
33509
M512
03513
08514
«5i5
C8517
P3519
•2520
•3521
88525
•0524
«052S
•3526
D0528
33524
              OFCI,J,M*1)
              CO  TO  410
              IFU04 .£0.  1)  CO TO 12
        4050   FOPHATt/XXlHK,  20X,  'KEY CODE-»/25X, 'QUALITY FACTOR CODE'X35X.
             Z'l  •  TOS'  X35X,  »2 « NA' /35X,»3 « CA' X35X, »4 « HG»/ 35X,  »5  •  K
             3'  /35X,  '6 »- CL»  /35X, »7 « HC03' X35X, '8 • S04' /35X »9  »  N03'  /
             4 34X  'tO • P04'  /34X »U • F')
      FO«MAT( 1H0.24X, 'FLOW  UNIT  KEY'  /35X,
     I                            »0  • CFS'  /35X  »l  •  AC,  FT,/MO' )
4065  FORHATC1H0, 24X,
     2 'OUALITY UNIT KEY* X35X  «B  "  MGXL*  X35X  »l  • TON/AF')
      CO TO 12
      WRITE (6,4100) 1,J,K,L,  (0(H),H.l,10)
      FORHATC1H0, «***nATA READ ERROR —IN  SECTION  44444—1RI8 OK QUAl. FAC
     2CIOH CODE TOO LARGE' /1M3, SX, 'CARD  IMAGE IS ',415,10F9.3)
        490
      CO TO 410
C  **•
C  »**-.----.---.-..........._.........._..._....................._.-._.....
C  •** THIS SECTION READS THE  PRECIPITATION DATA (ST.  510))   I • AREA CODE,
C  **• J • PREC. UNIT KEY, K  * TIME  BASE  KEY,  L • REPEAT KEY,
C  •*»-..—..-.-.---.------.-.».--,.•.---..........--..........-.»..«..-....
C  •*•
500   IF (I05.EQ.1) GOTO 510
      HKlTE(6,109i3)TlTLE
      WHITE C6,5fllO
5010  FORMAT (1H0,15X,'PRECIPITATION DATA'}
        5020   FORMAT (1H0I5X>'BAV  PRECIP UNIT  TIME BASE  REPEAT    »    /
             11H ,5X,«MO,      KEY         KEY       KEY   I'ERIOO   PRECJP'  J
        510    RLAO(5tS03n)I,J,K,L,{Q(H),H>ll12)
              IF (I.GT.llltO)GOTO 5b0
              IF CI.GT.10)GOTO 590
              Fl ».083»
512

S14

516
517
5030
5035
               N»12
              IM«1
              IF(J.E0.1)FI« 1,
              If (K.EO.O)COTO 518
              ROTO (51?, 514,518, 516), K
              f2»3".41
              60 TO 517
              GO TO 517
              F2m.tia33
              F1«F1«F2
              FORMAT (4I5,12F5.0)
               FOHMAT(16F5.0)
              00 520 H»IM,N
                                              133

-------
DATA    UTUAK.FOR
                FORTRAN V,16(182) /KI   29.JUL-74
                                                        13117   PACE 1-10
00530
BCI531
00533
D0534
80535
00536
00537
0353*
00539
90590
00541
00542
00543
00544
B8545
00546
B0547
00548
90549
18550
00551
"0552
80553
00554


520




52S

5040
530








535

568

S06fl
PRECU.H) « 0(H)*F1
IF tO(l).LT,a,0)COTO 525
CONTINUE
IMcN+1
N«N*16 .
READ(5,503S)(Q(M),H«H1,N)
GO TO 518
H»M— 1
IFO05 .NE, 1) WRlTe(6,S040) t,J,K,L, (N,C (N> ,N« I ,*)
FOUMATUH ,17, SX, 14, 8X, I«, 110, 3X, 100( 15 ,F9,3,/42X))
IFtL .NE. 0)GOTO 518
00 535 J«l,12
Jl-J+12
J2>J*24
J5 «J*36
PaPREC(I,J)
PRF.C(I,Jt) « P
PREC(I,J2) » P
PHEC(I,J3) » P
CONTINUE
60 TO Std
IFCIOS. EG. DGOTO 12
WRITE (6,506*)
FORHAT(///lHa,23X, 'KEY CODE-',/2SX,
(10556
00557
BB558
00560
00561
00562
00564
00565
(10566
00567
00569
B0S70
00571
00572
00573
00574
00575
00576
00577
00578
08579
00580
*05«1
B0S8Z
     2 'PHECIP UNIT KEY' /33X, '0 • IN.' /33X, »l • FT,')
      WHITEC6.5065)
5065  FORnAT(IH0.24X, 'TIME UNIT KEY' /33X, '0 • MONTH', /33X,
     2 '1 * DAY' /33X, *2 • WEEK' /33X '3 • MONTH* /3JX,
     3'4 » YEAR')
      CO TO 12

510B   FOHHAT(1H0,'*»*OATA READ ERROR—IN SECTION 55S55--BAY CODE NO, ,G
     3tH ,SX, 'CARD IHACE !S-',4lS,12F7.D
      GOTO SIB
   •«•
C  ••• THIS SECTION READS THE EVAPORATION DATA AS FOR PKECIP, ABOVE,
C  ••»——....——•.«.»...»•«.—«••-..—-•-•«-••—"—»-•••••"•»••••••
c  •*«
600   IF(IOb ,EC. 1}COTO 610
      WHITE (6, 1B90) TITtE
      WHITE(6,6RI0)
6910  FOffMATUHB, 15X, 'EVAPORATION DATA')
      WHITE (6, 6328)
      FORMAT(1H0, 5X, 'BAY   EVAP UNIT    TINE BASE   REPEAT V6X 'NO', 7X,
     2 'KEY'^X, 'KEY', 7X, 'KEY    PERIOD  EVAPORATION'}
      REAO(5.5030) I,J,K,L,
      IF(I .CT. 11110)GO TO 668
      1FCI .CT, 10) 60 TO 690
      Fl«. 0833
6020
                                            134

-------
DATA    UTLAK.FOR
FORTRAN V,16(143) /KI   a9»JUL*T4
leiiT
                                                                      PAGE  \'\
89583
00585
00586
00587
00588
00589
00593
00591
00592
9)9593
88591
00595
30596
00597
9059S
00599
00601
00602
006H3
00604
40695
00606
006(97
00608
00609
00610
00611
0061?
00613
00614
00615
0(1616
09617
00618
910619
0862B
00621
80622
00623
00624
00625
60626
B0627
00621
00629
03630
00631
B0632
00633
00634
00635



612

614

616
617
61ft



629



625

630








635

668

6060
2


698
61Pf»
2

C **»
C *»•
c *•*
c •«*
c *«*
c ***
c *•*
c •**
700

IFCJ ,EQ, 1) Fl-1,
IFCK.EQ. 0) 60 TO 61fl
GO TO (612, 614, 610, 6163, K
F2»33,fll
GO TO 617
F2»4,33
GO TO 61T
t 2". B833
F1»F1*F2
t>o 620 M»IM.N
EVAPCI,H) • 0(M)*F1
IKQ(M) ,LT, B.) CO TO 625
Ht«H»l
CONTINUE
I«.N»1
«eAD(5,5035) (0(M),M.Ht,N)
GO TO 618
H»H-t
IFCI06 ,NE, 1) HRITE(6,5040) I, J,K,L, (N, Q (N) , N»] ,M)
IFCL .N£, Q) GO TO 610
00 635 J»l,12
Jl«J»12
j£ij*24
J3«J»36
E « EVAP(I.J)
EVAPCI.Jl) • E
EVAP(I,J2) • £
EVAP(i,J5) " E
CONTINUE
GO TO 610
IFCI06 .EC, 1) CO TO 12
fRI TE (b,6E960)
FORH*TC///lHa,2?X, 'KEY CODE-* /25X, 'EVAPORAT ION UNIT KEY',/33X,
'0 » IN,» /33X, M « FT,«)
WRITE(6^65)
GO TO 12
hRITC(6,6109) I,J,K,L,(U(H),K«1,12)
FQRMATClHO, '...OAT* READ ERROR->IN SECTION 66666-*BAf NO, ,GT, IB' /5X
• /5X, »C»HD IMAGE IS-',4I5,12F7,1)
CO TO MB

THIS SECTION READS THE STAGE, AREA, VOLUME DATA, (ST. 710),
I « ARE* COOE, J • UNIT CODE, AREA 11 IS THE EN1JRE LAKE SYSTEM,
IF ANY BAYS ARE OIKEU THE AREA AND VOLUME OF THE DIKED AREA ARE
AUTOMATICALLY REMOVED BY STATEMENTS 9010 TO 6200 BELOW,

IF(107,EQ,I)GOTO 710
WRITE(6,1090)TITLE
                                       135

-------
DAT*    UTLAK«FOR
                        FORTRAN V,10(142) /KX   29-4UL-M
                                                                IBI1T   PACE  X-12
00636
00637
90638
00639
00640
08641
00642
0P644
(•0645
00646
110647
(10648
00649
00659
«l065t
00652
•06S3
siat.54
00655
006S6
00658
00660
00661
H0663
P0664
00665
HJ666
00667
0066«
0066*)
P0670
OR67I
0P672
02673
00674
00675
00676
00677
00670
00679
0068R

00682
00683
00684
00685
00666
00687
00688
               WRITECb,7SH0)
        7010   FO«MAT{tH«l,15X,'STAGE - AREA - VOLUHE'
              WRITE C(>i7fl20)
        702B   FOKMAT(IH?,5X,'BAY   STAGE      AREA
             2/6X'NO     FT        ACRES      AC,FT.*)
        710    READ(5,703851,J, (Q(H),M»1,7)
        7830  FORHAT(2IS, 7F10.R)
              If(I .GT, JZatl) GOTO 770
        7035
                                                          VOLUME*
        720

        730
        740

        750
        760
        770
        7060

        775
        7070
        780
        790
              FORMAT <«F10,.0)
               FJ«1.
               1FU,GT.2(I0I1JGOTO 750
               IF(l.GT.l(19HnCOTO 730
                IF(J.EQ.|)FI>12.
                00 720 H«1,15
                STACECH)  • 0(H)/Fl
              GOTO 710
                i»i-2no«a
                JF(J.ta.l)Fl»43568,
                00 740 H«t,15
                ARtA(I,M)«OCM)/Fl
              XFtOfH) .EO, 0.) AREA(I,M).,1
              CONTINUE
              GOTO 710
                l«I-30«00
              IF{4 .E0.1)Ft«43560t
              00 16Z H*l,15
              VOL(I,H)«0(H)/F1
                GOTO 710
                IF(I07.Ea.l)GOTO  12
              00 740 J'1,11
              IF(AReA(J,2).LE.e.) 60 TO 790
                «RITE.(6,7B6a)
                FORMAT (tH0)
              DO 7SO Hcl.15
                URITE(6,7070)J,STAGE(«),   AREACJf»)i
              FORHATdH  ,2X. U.Flt.2, 2F12.2)
              CONTINUE
              CONTIHUE
              GO TO 12
              WKITE(6,9010)
                FORHAT(/1H0,»««*AUU  DATA HAS  BEEN READ IN»)
        900
        9010
        C  ***
        C  ••*—.....——.»..————-———————•"""••"••"•" •• — — "

        C  !•• THE  FOLLOWING   SECTION ACCOUNTS FOR DIKING BY DECREASING THE TOTAL LAKE
        C  •*• AREA AND  VOLUME BY THE BAY VALUES— SPECIFIED TRIBS ARE ASSIGNED TO
        C  >•• OTHER BAYS AS  OESIHEO.  THE DIKED BAYS ARE CARRIED ALONG AS SEPERATE BAYS
        C  **•
        C  •«•—————..-—————————""«—•"——— ----
        C  •••
               NX'NBAVS+1
                                             136

-------
DATA
        UTIAK.FOR
FORTRAN V.1BC142)
                                                Z9-JUL»7«
10I1T   PAGE
P0690
M69i
R0696
00699
00700
00701
00703
00704
00706
00707
0070S
00789
8871*1
00711
00712
33713
00714
00715
00716
00717
00718
00719
08728
Q0721
0B728
00723
88T24
00725
00726
M727
88728
00729
007391
00731
09732
08733
00734
00735
00736
09737
00738
00739
00743
09741
              DO 620 11*2,NX
              I»IBAYS(II)
              IF(NHDd) ,NE, 1) GOTO 623
              00 610 L'1.15
              AREAdt,L)«AHEAdl.U -
              VOldliL) • VOLdl.L) - VOLdtD
        01(1   CONTINUE
              waiTE(b,8203) I
        82*   CONTINUE
        82l«B  FORMATdHO, SX. 'THE TOTAL LAKE AREA  AND VOLUME  HAVE  BEEN REDUCED BY THE
             2BY THE VALUES FOH DIKED BAY', 13}
        C  •*•
        C  • ••.-.•••••.•.-....-—.•—.-.—»•—..•-...«.•-•-•.•.•--»•-•-—••-..-•..«
        C  ••• THE FOLLOWING SECTION IQEhTIFIEDS DIKED BAYS  AND  REASSIGNS THE SPECIFIED
        C  **« TH1BS TO THE BAY LISTED  IN THE ARRAY  I6TA,
        C  ** • • — ••«• — — *«••—••««•••»••»••»• ** »••**• •••»••***«.•*«*•«*«••••*••*<••«•»• V *«* *•• V to *tk«^
        C  •••
              DO BfeO II"1,NBAYS
           *•* IF N30 CONTAINS 1 THEN THE BAY  IS DIKED
              IF(NHOd) ,NE. I) GOTO BbB
              J»It»TAd)
              NTRIH(J)»NN*Ll.
              00 650 L»l,tL
        842
        as?
              ITBAY(J,NNN)  i
              KK> NTRIB(I)
              DO 642 K*1,KK
              IFdTNA(I,L) ,*E. ITBAY(I.K)) GOTO 842
              ITBAY(I.K) • ITBAY(I.KK)
              NTRIB(I) * KK-1
              GO TO 850
              CONTINUE
              CONTINUE
              HHITE(6,6510) I, J,  CITNAdAJ.L'l.LU
        astd  FO»MiT()Htl, SX, '***TRIbS FROM DIKED'BAY',  13,  *  THAT HAVE BEEN AS
             25SIGSEO TO BAY',13,  '  THEY  1SE»,/, 20X,  3313}
              K«KT«IB(I>
              IF(N .EG. 0) GOTO »6!!
              WHITE(6,8220) I, dT8AY(I,L).L«l,N)
        8220  FORMATdHB, 5X, 'DIKED BAY',  13,  » HAS  THE  FOLLOWING TRJBS REKAINIM
             2NG* , 3013)
              CONTINUE
        Bbd
        C  «•« THE FOLLOWING STATEMENTS  CHANGE  THE  FLOWRATES (FO),  PRECIPITATION  (FP>
        C  ••* AND EVAPORATION (FE) 8Y TnE FACTOR GtVEK IN THE DATA,
        C  ........	....................	.....	—	..........	
        C
              IF(FO,E0.1, ,ANO.
                                              ,  FE,EQ,l.)  G010
                                            137

-------
DATA    UTLAK.FOR
                FORTRAN V.10(142) /KI   Z9-JUU-74
                                                        IBM?   PACE J-J4
03742
00743
03744
80745
80746
BB747
(10748
80749
30758
00751
08752
00753
90754
03755
(10756
00757
82758
08759
0076B
03761
83762
00763
08764
03766
00767
08768
W0769
C3778
«077l
03772
83773
B8774
08775
63776
00777
»877B
03779
00780
00781
007*2
03713
03784
08705
03786
90787
00788
00784
80793
00791
00792
03793
B3794
      IFfFO.EO.8. .AND. FP.EQ.0, ,«hO. FE.EO.O.) 60TO 948
      00 933 II«1,NBAY3
      J«I8ATS(I1»1)
      00 923 I«1,*INT
      PHEC{J,n«PHECCJ,I)*FP
      eVAP{J,I)«EV»P(J,I)»FE
      tF(FQ.Ea.l,)GOTO 926
      NsNTRlH(J)
      00 910 tL»liN
      L«IT8A»(J,LL)
      00 918  K-l.NXKT
      FLOMS(L«K)»FLOHS(L|K}*FQ
920   CONTINUE
930   CONTINUE
      WHITE C6| 91131 FP, Ft. FO
9110  FORhATClHa, SX, 'THE PRECIP, EVAP, AND FLOURATCS HAVE BEEH HULTIPL
     2IEO 8Y THE FOLLOWING FACTORS',/. 18K, 'PNECIP FACTOR*', F5,?,/
                    FACTOR »», F5,e, /, 1BX, 'FLOW  FACTOR *',F5,2)
     3 ,10V, 'EVAP
940   CONTINUE
C  *•*
C  •••-——•-——«•-•-•—-•——•»»..•—••»•-—•——---—«•-•——•••—<••
C  ••* THE FOLLOWING STATEMENTS CHANCE THE MAGNITUDE OF TRIB FLOWS FOR
C  • «• TRIflS IN ITC, IF ANY,
C  •»•—«••-•«-•••»••-•—-••«••--•••••--••••••••••••••-•••••••••••—"••
C  •**
      IF(NTC ,EO, fl) CO TO 980
      00 970 II»1,NTC
963
      F«FTC(II)
      00 963 I»1,NINT
      FLOHS(K,I) * FLOhS(K,I)
97B
980
990
C  ***
                              • F
      FORMAT(1H0, 5X, 'FLOWRATES FOR TRIB',13, *
     2Y FACTOR',F7.3)
      CONTINUE
      CONTINUE
      00 990 1*1,60
      DO 990 J*l,12
      BCSCI.J) • COFIN(I,J)
                                                  HAVE BEEH HULTIPL1EO B
C  •*• >
-------
        UTLAK.FOR
                        FORTRAN V,18(142) /KI   29-JUL-74
                                                                1BII7    PACE  1
00001
00C02
00003
00004
00006
00M7
03038
00*10
00011
00012
00013
00016
00017
03319
0Z322
00021
90022
(10023
90229
00030
00032
00033
90034
P3? 3 6
08R3T
00939
00040
00041
01043
00344
«0046
00047
00049
eapse
•0051
0B352
        SUBROUTINE COW
        C   •«»
        C   •*•--...-...
        C   **• THIS SUBROUTINE COMBINES THE TIME PERIOD INFIOW, PRECIPITATION
        C   • *• AND EVAPORATION TO DETERMINE A NET FLOW BETWEEN THE MAIN LAKE AND
        c   ••• THE SATELLITE BAYS. THE BAY CODE NUMBERS AHE STORED IN THE  ARRAY
        C   **• IBAY IN THE ORDER TO BE CONSIDERED.  IBAYC1) CONTAINS J1--THE CODE
        C   •*« FOH THE ENTIRE LAKE, IctAV(?) IS THE MAIN LAKE, IHAY(S), ,  .CONTAIN
        C   **• THE CODE NUMBERS FOR THE SATELLITE BAYS TO THE MAIN LAKE,
        C   **»
        C   *«« ANY WATER OVERFLOWING OUT OF THE SYSTEM OR FLOWING INTO A
        C   **• SATELLITE BAY IS RfcMOVEO BEFORE THE FINAL END-OF-PERJOO QUALITY
        C   *•« OF THE MAIN LAKE IS DETERMINED.
        C   **• WHEN KEY«3 SU3R SAV RETURNS THE VOLUME AND AREA OF ALL THE  BODIES FOR  THE
        C   ••* THE BEGINNING STAGE,
              COMMON IT{23), 0(5(1), ITBAYC10.5B), NTftlB(lfl), fLOWSC 68,S?J,
             2 OF( bM,t2. 8), IONSC12), CQFIN(ie,12), STACE(IS),
               VnLCll,l5),  PREC(IB,52), EVAP(lSl,523, KPOtJP),
               IBAVSdt), SALTS(15), DEtV(ll), TITLEdS), NAHEB{11,21,
               INHIXdB), BHF(10,52), TOTSU12), TOTSOC12) , S(lt), IdTAflB),
               TTK6W),  TTS(he,I2), ITOS{D,
               NIONS,  NOBD, INT , NINT, NBAYS, ITU m, TP, TE, TO, IBOF, SOF,
               VOLOF,  BVDa, OOF,  FT, VOFS, 101, TIMEF
              COMMON /STVL/    A(ll), Vdl), VT(tl), P(U), E(M)
        2BB
       4
       5
   TQ»n.
*•* UETEKHINE THE INFLOW, PRECIP, ANO EVAP FOR  EACH  BODY  AND THE
••• RESULTING QUALITY AFTER MIXING IN EACH OF THE  BODIES  BEFORE INTERMIXING
   NX*NAAYS+1
   IFdOl ,EO, 1) hRITE(b,230) INT
   FORHAT(// tH3, 10X, •«*.TRI8. FLOW AND QUALITY  DATA  USED FOR PERIO
  20', I3,//, •    BAY  TRIB,  FLOH-ACFT   I 0  H   C 0  N  C  —HG/L»)
   DO 30 II>2,NX
              NcNTRIBCI)
   00 20 JJ>1,N
   J.ITBAYd.JJ)
   F1«FLOWS{J,INT)
   F«Fl*S9,50ai * TXMEF
   TTF(J) * TTFCJ) * F
   UCI)-0(1)+F
   00 l«l KK«1,NIONS
   K«ICNS(KK)
   IF(F1) 4,1C,6
   IF(OOF) «.,<>,5
   QUA. COFIN(I.K) *F
   IF(NBDd) ,EO. I) GOTO 9
   TOTSO(K) • TOTSOCK) - QUA
                                           139

-------
COM
         UTLAK.FOR
                        FORTRAN V.1BU42) /KI   29-JUL-74
                                                                 10117   PAGE  1-.J
03053
00954
00055
«fl«»56
(10057
W0058
00059
00960
30063
00860
A0CI65
(10(166
00067
00069
00070
03071
90072
00073
P3074
08075
00077
00078
00081
00083
003)84
0aaBS
00086
0008T
B3PS9
00090
00091
93092
081*93
00094
0109)95
00R96
03097
031)98
00099
00100
03101
00102
00103
00104
0010S
         10
        210
        20
               GOTO  9
               QUA >aUALF(J,KtFl,KK)  *  F
               IF(NBOd)  .£0.  I) GOTO  9
               If(fl)  7,7,8
               TOTSO(K) •  TOTSO(K)  -  OUA
               GOTO  9
               TOTSI(KJ»TOT»ItK)  *
               SALT3(K}«SALTS(K)
               1F(J  .E0.55)  OUA"
               TTStJ.KJ *  T7S(J,K)  *  QUA
               6«F (!,»() «  OUA/F
               CONTINUE
               IF(J  .ME,  53) FT • FT+F
               IF(101  ,EO, 1)  MRITE(6,2te)  I,  J,  F,
               FOffHATf 1H ,  16. 16, F12.1,  12FA.2)
               CONUNUt
                                  OUA
                                  -OUA
              vs.vm
              Hll* PHCCF(I) • AH) •
              e(i)« ev»PF
-------
COM
UTLAK.FOR
FORTRAN V,18(142) /*!   2
-------
MAIN.   UTLAK.FOR
                        FORTRAN v.tati«8)
                                                29-JUL-74
                                                                10117   PAGE  1
O0e0i
        SUBROUTINE PLOTHSCN,
        C  **•
                              VS)
0BB05

03387
00012
00017
00)122
03*24
00025
00026
30327
CI002A
«p03e
00031
00032
03(133
00035
00040
09042
90843
025144
00045
00949
80350
00051
«0052
        C  *•• THE PLOT ROUTINE MUST BE SET UP FOR THE PLOT AVAILABLE ON THE
        C  ••* COMPUTER BEING USED — THIS IS INCLUDED AS AN EXAMPLE OF PLOT SYSTEMS
        C  *•*
        C  «•• PLOTRS STOHES THE DUALITY AT THE END OF EACH TIHE PERIOD AND
        C  **• THEN PLOTS THE RESULTS AT THE ENO OF THE SIMULATION,
        C  •••--	...	«	—	........
        C  ***
              COMMON IT(20), 0(50), ITBAYUP.S?), NTRIB(ie), FLOMSC 68,52},
             2 OF( 60,1?, A), IONSO?), CUF!N(ia,12), STAGE(15), ARCA(11,1S),
             3 VOL(11,15), P«EC(18,52), EVAP(ie,52), NBDCI0),  ITNA(10,30),
             4 IBAYS(lt), SALTS(IS), DELV(ll), TITLEClS), NAHE8(tl,2),
             5 INMIX(ta), BnF(10,52), TOTSIC12), TOTSO(12) , 5(11), IBTA(10),
             6 TTf(M), TTS(60,12), IIOSC7),
             7 NIONS, NOPO. INT ,   NI, NBAVSf IT1, IT2, TP, TE, TO, I90F, SOF,
             6 VOLPF, PVnR, OOF, FT, VOFS, 101, TIMtF
              DIMENSION OSL(46), OSP(4B), 050(48), XNAL(4B), XNAP(4B), XNAG(48),
             2 CAL(4B}, CAP(4B), CAG(OB),  XHGL(4B), XHCP(48),  XHGG(4B),
             3 XKLC4A), XKP(48), XKR(48),  CLL(4B), CLP(«8), CLG(«8),
             « HC03LC48), HC03P(C8), HC03G(B8),  S04L(4B), S04P(4B), S04G(48),
             SXN03LC48),  X'403P(4B). XN01G(4B), P04LC4A), POaP(«8), PO«G(fl8),
             S FL(48), FP(4A), FG(4B),
             6 TOTVOL(48),          XH(4B), NAH£l(b), NAHE2(6),  NAHE3(6),
             7 NAHE«(b),  NAHES(6), NAMES,(6), NAHE7(6), NAHEB(6), NAHE9(6),
             A NAHE10C6), NAHElt(6), NAH£t2(6), NAME13(fc)iALTl(«8),ALT2C48),
             9 ALT5(4d)
              DATA NAMEl  X»OISS','OLVE»,'0 SO',»LIDS»,'.MC/»,'I.    «/,
             2 NAME2  /'SOOI',*ll«  I','ON
             3 NAHE3  /'CALC'.'IUH »,»ION  »
             4 NAMEfl  /'HAGN'.'ESIU',**  10*
             5 NAHE5  /'POTA','SSIU',*H  10'
             6 NAHEb  /'CHLO'.'RIOE',' ION'
             7 NAHE7  /'BICA'.'RBON'.'ATE  '
             8 NAHEB  /'SULF»,'AT£ »,'ION  •
             9 NAHE9  /'NITR'.'ATE »,»CONC'
             X NAMEia /*PHnS','PHAT»,'E AS
               NAHE12 /'LAKE',' LEV,'EL.
                     /'TOTA'.'L LA»,
                                            •—HG*,'/L
                                            '—MG','/L
                                            »N  -*,»HG/','L    •/  ,

                                            •—H»,»C/L  ','  '/,
                                            'AS C»,'AC03',*"HGL'/ i
                                            •—NG',VL   ',*  '/,
                                            ' AS  *,'N—H',»G/L
                                                 F'.'EET ','-HSL'/i
                                          V,«OLUM»,'E--
              OSLC*<)
              OSP{N)
              OSG(N)
              XNAL(N)
              XNAP(K)
              XNAG(M)
               CAL(N)
               CAP(N)
               CAG(N)
              XMGL(N)
              XHGPtN)
              XHGG(N)
               XKLCN)
                        CGFIN(3,i)
                        COFIN(1,2]
                        CQFINt3,2)
                        COFIN(1,3)
                        COFINC2.3)
                        CQ?IN(2,4)
                        COFIN(3,4)
                        COF:N(l,5)
                                              142

-------
PLOW  UTLAK.FOR        FORTRAN V.1BU42) /HI   29-JUL-74       10117   PACE


00053           XKP(N)  • CQFIN(2,5)
               XKG(N)  • CGF1NCS»5)
             CLL(N)   « CGFIN(t,6)
             CLP(N)   * CQFIN(2,6)
MB57         CLG(N)   • COFINC3.6)
0005(1         HCOJL{N)s CQFIN(1,7)
00059         HC03P(N)m CCFIN(2,7)
00069         NC03G(N)« COFIN(3,7)
00861         SOat(N)  • CGFIN(1,B)
             S04PCN)  i
00064          XN03L(N)c COFIN(1,9)
00866          XN03r.(N)« CQFIN(3,9)

10868           PO«P(N)> CQFIN(2|ie)
00969           PO«G(N)« COFIN(3,10)
00870             FL(N)» COFINCl,!!)
•3«71             FP(N)« COFINC2,in
•0872             FG(N)« COFIN(3tll)
98073          ALTl(N)  • 5(1)
10074          ALT2(N)»S(2)
•0875          ALT3CN)  « S(3)
•8076          TOT VOL (N) • VS
00877          XM(N)  •  N
0087S          IF(N  ,fcO.(NI+l))GO TO 10
80?79          RETURN
•06AP   10     MRITE(b«20)
oenat          oo  is  n«i|NjoMs
008B2          I'lONSdU
00283   15     IT(I)*999
08(I84          NINT*Nl«l
em*   20     FORHAT(lHl)
0eO«6   25     FORHATUH , fc0X,'LEGEND— MAIN  LAKE   AAAAA», /, T0X, 'PROVP BAY  B98
008S7        2BB*,/,70X, 'GOSHEN BAY CCCCC  '   )
              NH.OS
              IFtOSG(N)  ,GT, 190B.) NH«1M
80091          IF(IT(1)  ,NE. 999) GOTO 40
•8092          CALL XrPLTXCl,,,S,0,,«0.)
0809]          CALL XVPLOT(N,NH,M,60b,XM,05L|OSP,03G)
089194          WRITE(fe,30)  NAME1
00895   30     FOBMATtlHp,  38X, 6A4)
08896          WRITE(6,?5)
01997          HRITE(b,2(Iil)  TITLE
80096   200    FORMAT(|H  ,1?X, 1SA4)
•0899          «HITE(h,2B)
00100   40     XF(IT<2)  ,NE. 999) GOTO 50
0010!          CALL XYPLTXd.,,5,0.,5.)
•0102          CALL XVHLOT(N,NH,M,606,XM,XNAL,XNAP,XNAG)
00103          NRITE(6(30)  NAME2
80104          bRITE(6,25)
•0185          MRITE(6,200)  TITLE
                                              143

-------
PLOTRS  UTLAK,FOR
                                V.1B<1«2) /KI   29«JUL-74
                                                                10117   PAGE  1-2
00iob
03107
08108
P0109
B0ll«!
0)0112
03113
92114
P2115
00116
H0117
03118
03119
00120
00122
00123
P012Q
00125
00126
00127
00129
03130
00132
70133
W0155
OBlSfe
W01J7
02138
02139
00140
02142
t»ei«3
H0144
00145
00146
00147
P8J48
3B149
00150
(10134
00195
00156
001S7
00)58
        SO
        b>
        70
        60
        90
        1B0
        110
        120
              1K1T(3) ,NC. 999} 6QTO 63
              CALL xvpLTxci.,,5,0., 3.)
              CALL XYPLOT{N,NH,f1,68bfXH,CAL,CAP,CAC}
              *«HTEt«»,3J!) NAMES
              WHlTE(t,200) TITLE
              URITE(6,2a)
              IF(IT{4) ,NE. 994) GOTO 70
              CALL XYPLTXd., ,S,»,,
              kKITEtfe.30)
              fKITE(f>,25)
              WalTE(b.2a0) TITLE
              IF (IT (5) .NE. 999J  GOTO 00
              CALL XTPLTX(1,,.5,0,,1.)
              CALL
              W«ITE«., 3B5 NAMES
              URITE(fr,2B0)  TITLE
               IFUT(fc)  .ME, 999}  GOTO  90
               CALL XYPLtX(l.,.5,0.,ie,)
               CALL XVPLOT(N,NH,n,*e6,XM,CLL,CLP,CLG)
               MRITECb.SCI) NAHE6    '
               M*HE(t>f25)
               URITE(b.?0e) TITLE
               IF(IT(7) .NE, 999) GOTO  100
               CALL Kr?LTX{».».5,0,,10.)
               CALL XVPLOTtH,NH,M,606,XM,MC03L|NC03P,HCOJG)
               HKITE(b,30) NAHi.7
               MRITE(«,25)
               HRITE((>.200) TITLE
              IF(IT(B1 .ME, 999) GOTO  110
              CALL xrPLTX(l.,.5,0.,l0J
              CAUL XYPLOT(N,NH,HI606,XHIS04L»904R,904(»)
              HRITE(b,30) NAHE8
              MRITE(b.25l
              HRI1E(fa,2P0) TITLE
              HRITE(6,20)
              ir(IT(9) .NE. 999) GOTO  120
              CALL XVPLTXCI.,,5,0,,,1)
              CALL X¥PLOT(N,Nh,M,bafc,XM,XN03L,XN03P,XN03C)
              MRITE(b,30) NAKE9
              MRITE(b,25)
              MRITE(6,200) TITLE
              MRITE(b
-------
M.OTHS  UTLAK.FOR       FORTRAN V.ltiU42) /KI    29-JUU-74       Idtll   PA&t  1-3


88159          WRITC(6,30) NAHE10
V8161          WHtTC(f>,2e0) TITLE
8B162          WRIT£(b,?B)
f0165    130    IFUT(H) ,NE, 999) GOTO  140
IH164          CAtt XYPLTX(t.t.S,d...2)
10165          CALL
•0166
»8t6«          WRlTECb.ZOP.) TITLE
*etTt»    140    CALL XYPLTX(l.r.5,4P00ein,J5PSi0,}
10171          CALL XYPLCT(N,5B,H,6B6,XM,TOTVOL)
88172          waiTE(fc,30) NAME13
(8173          KHITE(6,238)J TITLE
>Bt?4          WHITE(8,30)
88175          CALL XYPLTXCl.,.5r«a8a.,.2J
(U176          CALL XYPLOT(N,53,M,6eb,XM,iLTl,ALT2,ALT3)
JB17T          «HITE(6,3i9) NAME12
8B17A          WRITE({,,2e3) TITLE
19179          HRITEfb,2B)
••lea          RETURN
VB1B1          END
•8182          f
                                             145

-------
MAIN,   UTLAK.FOR
                        FORTRAN V,18(142) /KI   29.JUL-74
                                                        10117   PACE
00007
00f*l9«
00SI09
00010
(189II
00012
M0013
00014
00020
00021
00022
00023
"0024
00025
00027
0002A
00029
00030
00051
P003?
00033
00034
00035
0Z036
00037
00838
        FUNCTION QUALF(J,K,F1,KK)
00001   C  •**
00002   C  «.*————.———.—...——-....-.—.———....———.——.—...—.—.
00003   C  • •* OUALF RETURNS THE QUALITY OF TRIBUTARY J, DUALITY FACTOR K,
00004   C  **« AND FLOURATE F,  LINEAR INTERPOLATION IS USED BETWEEN POINTS
D0005   C  *ft* STORED IN THE ARRAY OF,
        C  m*—» — •«• — •• — •••••••••••••»••• ••«•»_ »•••»•••••••••»_•••••«•»•*•»••»«••••**••»•* «WWW»WMOTMW«
        C  • •«
              COMMON IT(20), 0(50), ITBAV(t0,50), NTPI6C1B), FLOMS( 60,52),
             2 OF( 60,12, B), IONSCI2), CCFIN(10.12), STACE(IS), AREA(ll.lS),
             3 VOUCH,lb), PREC(10,52), EVAP(10,52), NBO(IB), ITNA(1B,3B),
             4 IBAYS(ll), 3ALTSU5), OELV(ll), TITLE(15), N»HfcBCll,2),
             5 1NMIXU0), BHF(10,52), TOTSK12), TOTSO(12) , S(ll)i 1BTA(10),
             t> TTF(6(t), TTS(60,12), ITOS(7),
             7 NIONS, NOBO, INT , NINT, NBAVS, ITl, IT2, TP, TE, TO, JBOF, SOF,
             « VOLOF, 8VD8, OOF, FT, VOFS, 101, TIMEF
000|fc   C  ••• THIS SUBROUTINE DETERMINES THE DUALITY FOR TRIB J, DUALITY FACTOR K FROM
00017   C  ••• THE TABLE OF WHICH CONTAINS FLOW-DUALITY PAIRS.
0001*         DATA IX/B/
9
10
12
100

IS

20



30
              IF(F1 .LT, 8.) F.-
              00 }
              IF(UF(J,K,M))12,12,10
              CONTINUE
              IX«IXtt
              JFCIX ,CT, IS) GOTO 15
              HtiITE«.,ie0) J,K,F
              FORMAT ( IN ,'***THOUBLE— FLOUNATE NOT FOUND IN FLOW-DUALITY TABLE
             i— THIB»»,I3, '   O.F.-M3, •  FLOW-', Fa. 2)
              OUALF«(|,
              CO TO 3D
              X» OF(J,K,M) » OF(J,K,M-2)
              IFCX ,LT, l.E-53 GOTO IS
              X»(F-QF(J,K,M-2)) / X
              OUALF       • OF(J,K,«-1) • X«COF(J,K,M*1)
              RETURN
              END
              5
                                          146

-------
 •IAIN.   UTLAK.FOR
                FORTRAN V.lB(i42)  /KX    29-JUL-74
                                                                 10M7   PAGE
 MBB1
 two?
        SUBROUTINE SAV(KEY)
        C  *•*
 (IBM 8
 IW09
 •0310
 Mm
 98012
 *B015
 MBJfc
                                                          TO(  IBOF, SOF,
 •Bats
 M»2t>
 •0fi2 1
 •8P2S
 •0025
 •4026
 mnar
 •0B29
 BZBJ2
 •0MJ
 ••(•34
        C  *** SAV -• WHEN KEY»B  THE  AREA  AND  VOLUME OF EACH  BAY  AND THE TOTAL
        C  ••* LAKE ARE DETERMINED,   WHEN  K£Y«a  THE  STAGE IS  DETERMINED FOR ThE
        C  ••• TOTAL LAKE  (BASED  ON THE  TOTAL  VOLUME),  THEN THE DELTA VOLUME
        C  *** (OELV) INTERFLOW BETWEEN  THE  MAIN LAKE AND EACH OF THE BAYS IS
        C  *•• DETERMINED FOR EQUILIBRIUM  (UNIFORM  STAGE) THROUGHOUT TH£ SYSTEM,
 COMMON IT(?01, 0{5fl3, ITBAV(1B,50), NTRIB(ti5), FLOWS(
3 QF( 6?, 12, a), IONSC12}, C(*FIN(1B,12), STAGE(tS),  AREA(||,15),
3 VOLdl.15), PK£C(ia,5?), EVAP(ia,52), NBDC10),  ltNA(}0,5B),
4 IRAVS(ll). SALTSU5), OELV(ll), TITLE(15), NAHE8(Hi2),
5 I^MUCIB), 8MF(l0,5a), TOTSKJ2), TOTSO(I2)  , 5(11),  IbTA(lQ),
i> TTF(bP), TTS(ba,12), ITOSC7),
7 NIONS, HOBO, INT , MINT, MBAYS, in, iT2t TP, TE,
6 VOLOF. BVOd, QOF, FT, VOFS, 101, TIMEF
 COMMON /STVL/    A{U), Vtll). VT(tl), Ptlt), E(Jt)
 NX«NSAYS * 1
 IF(KET .EO, t)GO TO SB
 00 4S KK»1,NX
 L«I8ArS(KK)
 no 20 J»a,is
 IF(S(L) - STAGE(J)) 30,33,20
 CONTINUE
 W«irE(».,J08) S(L), L
 FORMAT (//1H ,'.». TROUBLE — LAKE STAGE  C,F10,2, ') NOT  IN  STAGE-AREA
*A. VOLUME TABLE— -BAY', 13)
 STOP
 X • (SU)-STAGEU-U) / (STAGE(J)™STAGE{J-1))
 A(L) « ARE*(L,J-1) • X«fAKEA(L,J)-A«EAtL(J-n)
 VIL) • VOLCL,J-l) * X*(VOL(L|J)«VOL(L,Jtl»
 CONTINUE
 RETURN
 W«37
 •0B38
 90039
      00 55 I«2,N)f
      L»IHAYS(I)
 B8B42
. IBB41
 •8845
 68844
 MB48
; BI049
 •Bast
v taesz
20
        30
45

50
      XF(NRO(L) ,EO. 1) GOTO 55
      V{11)«V(J1) * V(L)
55    CONTINUE
C  •** INTERPOLATE TO GET POINT  X  IN  TABLE  FOR  THE TOTAL LAKE AND OIKEO BAYS
      00 72 LL«t,NX
      LM8AYSCLL)
      IF(L,NE.1I .AND. NBDtD.NE.UGOTO  72
56    00 6 PI J«2,15
      IF(V(L)-VOLU,J)) 65,65,60
60    CONTINUE
      WRITE(6,118) V(L)
tl0   FORMAT(/1H , ••••TROUBLE— LAKE  VOLUME CALCULATED--', FIB, Z, ' AC fT«L*RGER
     2~ LARGER THAN FOUND IN VOLUME TABLE')
      STOP
                                              147

-------
 SAW
         UTLAK,FOR
                         FORTRAN  V.1BU42)  /KI    29-JUL-74
                                                                10117   PAGE  1-1
 Q00S3    65
               »•  (W1)  *  X*{AREA(L,J)  >  AREA(L,J»D)
               IF(Stlt)  ,LT(  30F*,B2)  GOTO  72
               IX>IRAVS(2)
               IF(IAOr)  67.67,66
               K»tBOF
                        woior -  vein
                        •.OELV(K)
               V(ll)  » VOLOF
               KRIUtfc.iaP) K. DELV(I«)>
               FORMAT (1H3, 5X, 'OVERFIOM  FROH MAIN LAKE  TO DIKED
             2 F9.1.' AC FT  OU3IN6  THIS  PERIODS  13)
               VOF5«VOFS - OtLV(K)
               0« Vtm - OELV(K)
               00 650 111*2,15
               IF (o - VOUK.III)) 655,655,650
               CONTINUE
               MHITE(6,10«I) S(K),K
               X  •  (0 -
               S(K) • STAGE
               A(K) • AREA(K,III»1)
               0  • -OELV(K)
               GOTO 69
               0  • V(tl) - VOLOF
               V(ll) •  VOLOF
               NKITE(f>,!25) 0
               FORHATCtHO. 5X, 'OVERFLOW  FHON THE  LAKE   THIS PEH100 IS', F9,l,
             2 *AC FT»)
               VOFS'VOFS * 0
               OELV(IX)  • 0
               00 68 IIM.MON3
                                       (VOU(K,III)-VOL(K,lII-t))
                                      X«(STAGE(III)  -  STAGE(III-l) )
                                      X*(AREA(KfIII) - AREACK, III-l) )
              TOTSO(I) • TOTSOtI) * COFXN(IX,I)« DELV(IX)
              ICM
              V(IX) • V(IX) * 0
              Q(IX) * V(IX)
              GO TO 56
              CONTINUE
              X»X1
              00 80 I»2,NX
              J«J1
              L*IBAYS(I)
              IF(N90(L) ,EQ. t) GOTO «B
           ••• DETERMINE THE INTERFLOW VOLUME FOR EACH BAY.  POSITIVE DELV MEANS
           ••• FLOWS MUST LEAVE THE BAY FOR EQUILIBRIUM TO BE ACHIEVED,
              OELV(L) • DELV(L) + V(L) -CVnLCL.J-U * X« (VOL (L, JJ-VOLU, J-l) >}

              A(L) • *REA(l.J«l) • X*CAREA(L,J) « AREA(LtJ»l))
              CUNTlNUb
              RETURN
              END
              r
                                             148

-------
MAIN.   UTLAK.FOR       FO«T»AN V, 16(14?) /KI   29-JUL"7«        10U7    PACE  t


       FUNCTION PRECF(X)
a0aai   c  **•
t!00ii»2   C  *•* — -"- ——-.-•.-——.-—--.—.---....— — ..----....—..-. ——
CI0JI03   C  *** HRtCF RETURNS TMt PRECIPITATION FALLING ON BAY I  DURING  TIME
       c  *•* PEKXOD INT,
       C  »**——— — ....—_........._. — ...._.........-...._-_..............
       C  »*«
             COMMON IT(2B), QC5P),  ITBAV(10,5ft) , NTRIBC13), FLOWS(  60,5?),
B0SIKB        2 QFC 60,12, »),  IONSO2), COFIN(ie, 18), STAGEC15), AREA(J1,15),
            S YOUll.tbl, PRtC(»e,5a), EVAP(te,52), NBD(IB), ITNACia,3B),
            4 IHAVS(ll), SALTS(IS), OELV(U), TITLE(15), NAM£B(11,2),
            s iNHixaa), 6MF(tB,sa), TOTSKU), TOTSOCIS) , sen),  I&TA(IPI),
00(112        6 TTf(fcB), TT$(60,}2),  IT05C7),
D0at3        7 NIONS, NOflO, INT ,  NJNT, MBAYS, IT1, IT2« TP, TE, TO,  JBOF, SOF,
            « VOLOF, BVD8, QOF , FT, VOFS, 101,
             RETURN
40917         END
00018         F
        FUNCTION
        C  •**
        C  t**—--—--.------.—---..-----—.-——-—-—.--------.-.-------.--
 H0023   C  ••» EVAPF  RETUHNS THE EVAPORATION FROH BAY I DURING TIME PERIOD INT
 9BBP*   C  •••-- ----- —.,_......„....._...,..., --- .... --- „___..„...„..—.
        c  •**
              COMMON  ITC20), 0(50),  I T8AV (18,50) , NTRIB(te),  FLOWS( b«,52),
 D0»07        2 QF( 6P.12,  B), IQNSCt?),  CQFIN(10, 12) , STAGEC15), ARE/HI, 13),
 K00JS        3 VOL(11,1S), PREC(10,52),  EVAP(ia,52), NBO(IB), ITNA (JPI, 33) ,
             4 ia*vs(in,  SALTSCIS), oEuv(n),  TITLE(IS),  NAMtB(u,2),
             5 lfc»*IX(10)t  HMF(10,52), TOTSK12),  TOTSO(12) ,  S(H)t
             6 TTF(6t»),  rT3«.fl,12),  ITOSC7),
 (IB012        7 NIONS, NOBD, INT , HINT,  N6AY3,  IT1,  IfS, ff,  TE, TO, IBOP, SOF,
 B081S        8 VOLOF, BVOB, OOF, FT, VOFS,  101, TIMEF
 »B01«         EVAHF.EVAP(I,INT)
 40015         RETURN
 aaaib         END
 00017         3
                                           149

-------
MAIN.   UTLAK.FOR
             FORTRAN V.18(142)  /HI    29-JUU-T4
                                                        tans    PAGE  i
        SUttROUTINE TAPCdO]
        C  *••
00002
00003
00004
00009
9000B
00310
00011
08812
00013
98014
98*17
H3018
        30
0802*
90021
00*22
00024
00025
90027
00028
08029
90030
«0031
000)2
"8035
P8034
00935
00936
90037
83B35
• 8839
09040
50
60
•*• THIS SUBR,  WHITES AND READS THE INDICATED DATA  FROM  TAPE  UNIT  1,
•••...........-......-....................-...•.••.........•.•'.•••'I
• ••
   COMMON IT(2B),  C(5B),  IT8AY(10,50),  NTKIB(IB), FLOWS( 60,52),
  2 UFC 60,12,  8), IONS(12),  CQFIN(IC,12),  STAGE(15),  AREA(It,15),
  3 vnutl,15), PRtCtie,52),  EVAP(10,52),  NBD(IB),  ITSAC10.33),
  4 IBAVSCU),  5ALTSC15), DEl_V(U), TITLE(15), NAHEB(1|,2),
  5 IKrtlXdO),  BHF(10,52), TOTSI(U).  TOTSOC12) , S(ll), IBTAC10),
  6 TTK*d), TT9(60,12),  ITOS(7),
  7 NIUNS, NOBD, INT , NJNT,  H3ATS, IT1,  IT2, TP, TE,  TO,  IBOF,  SOF,
  « VCLOF, BVOB, OOF, FT, VOFS, 101,  TIHEF
   IF(IO ,EO. 1) CO TO 58
   REWIND 1
   00 30 1*1,60
   bKITE(l)
   CONTINUE
   MHITE(1)((PHCC(I,J),I«6,10),J«I,59)
   WHITE(n((tVAPtI,J),I«t,5),J-l,50)
   hRITE(l)((EVAP(I,J)>I«6,10),J>l,5B)
   NHITE(l) STAGE, AREA
   WHITE(t) VOL
   ENO FILE 1
   RETURN
   REWIND 1
   00 69 LM.6B
    REAOC1)  t.(FLOWS(I,J),J>i,52)
    READ CD  ((QF(I,J,K),J>l,t2),KM,ie)
   CONTINUE
    REAO(1)((PREC(I,J),I*1,5),J«1,50)
    «EADC1){(PHEC(I,J),I»6,10),J»1,50)
    «EAO(l)f (EVAPtl.J), 1-1,5), J»l, 53)
    READ(l)((EVAP(I,J),I*6,10),J-lr50)
    •REAO(l) STAGE, AREA
    REAO(l) VOU
   RETURN
                                           150

-------
 ILLUSTRATIVE WATER QUALITY SIMULATIONS

 System Simulated
 A computer printout of the simulation of water quality in Utah Lake is
 included in the following pages.  The simulation period is from July 1,
 1970 to July 1, 1973.   This simulation is included here to illustrate
 the necessary data input as described earlier, and to display the
 simulation results.  Detailed descriptions of the Utah Lake setting,
 hydrology, and water quality, as well as discussions of these simula-
 tions, are found in the main report.

 Simulation of "Natural" Lake Quality
 This simulation is for the Utah Lake system as it existed during the
 July 1, 1970 to July 1, 1973 period.  As discussed in the main report,
 extensive analyses of the measured data and several preliminary simula-
 tions were used to refine the estimates of mineral spring inflow
 quantity and lake evaporation necessary to achieve a reasonably good
 simulation of observed lake quality.

 Data Listing -
 A listing of the data cards required to run the simulation  is given on
 pages 152to 166inclusive immediately following.  Each line  contains
 the data found on one data card.  Interpretation of the data is possible
 by referring to the data coding instructions in the User's  Guide pre-
 sented earlier in this section.

 Results of Simulation -
iThe complete computer printout of the results for  the simulation is
;given on pages 167 to 234 inclusive.
                                    151

-------
mil
12111
UTAH LA« — JULY 1970-JUUY !973-->
   36
 4486.56
1311
1
1411














i



i
i












1
t I
I
2
3
4
5
7
«
10
11
12
1
2
3
4
t 5
t 6
S 7
5 8
? 9
8 10
i 11
! 12
t
2
3
4
5
6
7
8
10
11
12

2

140*
50.
55.
2«.
2301
193,
u*
0.
a.
590.
70.
60.
«5.
10.

160.
150.
.15
1.
0.
a.
1R50
180.
55.
55.
24.
30$).
190.
265.
*j»3
0.
e.
                                                     10
                    60.
16111
    3123
MAIN UK PROVO B GOSHEN B
17111
    2   36 .BUS. 005 .BBS .005 .002  .B02  ,C02  .082  *B02  .005  .005 .005 .075 .005
 .005 .ans .«a2 .RP2 .eez ,092 .002  .005  ,005  ,005  ,005  ,005  .BBS ,005 ,002 ,e«2
 .092 .d»2 ,002 .005 ,005 ,005-. 01
    3   36 .15  .15  ,15  .15  .1    .1    ,1    ,1    ,1    ,15   .15  ,15  ,15  ,15
 ,15  .15  .1   .1   .1   .1   .1    .15   .15   .15   .15   .IS   .IS  .15  ,1    .1
 .1   .1   .1   .15  ,15  ,15 i-.Ol
16111
              1    1
                                           152

-------
1, 1. 1.
38888
22222
1 39 1 2 3
IS 16 17 18 19
49 53 51 53 54
2 17 31 32 33
45 46 47
3 3 52 57 58
g&aea
33333
1 53
1 1 3 3614.
8, 4, 15. 19. 0.
a, 0. 0. 0. 0,
2 1 3 3646,
8, 5, 23. 0. 0,
0, 0. 8. 9, 0,
313 360,


413 3624.
38, 35, 22. 26. 31.
e. «, 0. a. 0,
5 1 3 3623,
22, 2. 19. 15. 29.
9, e. a, «. 0.
61 3 36138,
159, 115. 215. 63. 64.
B, 0. 3, 8, 0,
T 1 3 3603,
68, T9. 135, 194. 191,

8 1 3 36353.
276, 93. 29». 328, 343,
8, a. 2, 0. e.
913 361237.
1387,997. loas,1558,l«18.
1666. 1722. J 5*6.1722. 1968,
IB I 3 3*237,
215, 207, 22«. 217. ?0a.
e, B, 0, 0, 0,
11 1 3 3M63,
259, HI. 107. 76. 74,
133. 135. 103. 130. 130,
12 1 3 3660,
73. 96. 121. 114. 93.
a. 0. 0. o, 0.
13 1 3 3658,
63, 60. 58, 57. 58,
8, 0. a, 0, e.
14 1 3 3M48,
158, 231. 167. 159, 133.
e. 0. 0. o. 0.
15 1 3 36157,
123, 106. 158, 178, 163.
«. a. 0. a. 0.
16 1 3 36143,


4
20
55
34





33.
e.
0.
25.
0.
0,
0.
Q
0
28.
32,
0.
13,
e.
B,
126.
70.
0.
62,
97.
Q
117.
310.
P.
678.
1311.
1785.
236.
Ififl,
0.
129,
77,
100,
56.
72.
0
67,
619,
0f
163,
110.
8,
156.
151.
pi
73.


5
21
56
35





57.
0.
0.
24,
0.
0*
0.


23.
31,
0.
37.
37,
0,
234.
74.
0,
37.
92,

365.
295.
0.
1240,
1291.
11P7,
275.
178,
a.
95,
70,
is?.
99,
49,
0,
45.
61.
0.
153.
105,
0.
153.
129.
is
tie.


6
22
59
36





26.
0,
0.
45.
0.
0,
0.
ffl

32.
35.
0.
7,
21.
a.
69.
63.
0.
40.
58.
fit
436.
230,
B.
15B7,
1 1H«,
1368.
262.
16.
K,
83.
66,
150,
BP,
3*.
H,
52.
5*.
0,
155.
69.
0,
195,
115,
0.
119,


7
23
63
37





0.
0.

e.
f.

0.
49.

33.
38,

20.
17,

55,
55,

29,
30.

376,
178,

1642.
1168,

213,
213,

74.
7B,

61.
50.

44,
68,

126,
86,

174,
121,

99.


e
24

38





0.
0.

0.
0.

0.
a.

33,
23,

16.
12,

67,
60.

34.
S7.

383,
214.

1474,
916,

185.
274,

74,
92.

54.
10?,

26,
83,

109,
121.

155,
135.

93,


9
25

39





0.
25.

0.
68,

0.
pi

33,
33.

21.
20,

73.
112.

75.
179.

404,
406.

1519,
375.

191 ,
325.

74,
104.

60,
168.

23.
105,

I20t
U9.

156.
150.

Ill,


10
26

40





0.
8,

0.
1.

0.
60,

33.
39,

30.
32.

66,
146,

47,
74,

314.
351.

1189,
1154,

175.
233.

76.
164,

47,
178.

21.
173.

102,
168,

138.
177,

111,


11
27

41





0.
0»

0,
0.

0.
0,

34,
e,

]4,
0.

64,
0.

40,
0.

274,
0.

1207,
1537,

181.
B.

80.
129,

35,
0.

23,
0,

109,
e.

156.
0.

122.


12
28

42





17.
0.

0.
0.

7,
0.

32.


18,
0.

73.
0,

81.
Pt

316.
0.

1066.
1168,

IBS.
O.

80.
124,

61.
0.

25,
0,

126,
0.

163,
e.

124.


13
29

43





16.
0.

?,
0.

59.
0

34.
0.

23,
0.

104,
0.

102.
B.

327,
0.

977,
1389.

200,
0.

117,
138,

136.
0.

09.
0.

125,
0.

191,
0.

146,


14
43

44





3.
0.

19,
0,

37.
0

35,
0,

67,
0,

106,
0,

65,
0.

392,
O.

1363,
1875,

269,
P.

215,
143,

154,
0,

531,
a.

226,
0.

159,
a.

152,
W,  183, 93,  115, 98,   94.   SB,  71.  90.  83,   121,  114,  0,   0,   0,   0,
 a.   a.   0,   9,   0,    0,    B,
                                         153

-------
   17    I    3   36001, 255. 356. 319, 222. 156. 158. 131. 159. 235. 368. 472.
348, 377. 428. 37ft, 249, 171. 141. 123. 117, 179. 375. 5B6,  0,   0,   0.   a,
 e.   a.   0.   P.   (i.   P.   0.   P.
   18    1    3   361444,1569,2686.2402.2C9B1.1866,2115,1725,1819,1974,1673,1519,
1374,1678.2693.24(rfe.2020.1663.1654,1377.1353.1452,11SQ.14 IB,1S99.1S68.241C.2767.
2350,1875. 1783, 18115,2329. 1577,1 Baa. 1735.
   19    i    3   36t.   3.   e,   0.   e.   0.   0.   0,   0.   e.   e.   e,
t,   3,   e,   a.   a,   e.   e.   e,   e,   6.   0,   e,    e.   a.   o,   0.
 B,   a,   0,   B,   0.   B,   e.   e,
   20    1    3   361642,2<<27.1849.1910,2170.2165,2196,1741.|9|0,2C!06.19in,1825,
1933.1930.2538.2266.2289.2440.2723.2377,2541,2509.2440,2313,1745,2372.2313.2593,
2602.2579.2782.2250,2271.2063,2265,2425,
   21    1    3   36(1.   0.   0,   8,   0.   0,   0.   0,   0.   e.   0.   0,
o,   0.   0.   e.   o,   e.   0.   o.   P.   ^,   e.   0.    0,   a.   o.   e.
 a.,  0.   0.   9.   0.   0.   «.   0.
   22    i    3   36  e,   e.   o,   0,   0.   a.   a.   6,   6,   «,   2,   e.
*.   0.   R.   0.   6.   6,   6.   6.   12,  30.  6,   0,    0,   0.   0,   B,
 0.   B.   0,   0,   0,   0,   0.   0.
   23    1    3   360,   P,   0.   0.   4.   6.   6,   6.   6,   6.   5.   2,
«.   0.   0.   0.   6,   6.   6.   6.   7.   7.   6,   1,    0,   0,   0,   0,
 0,   0.   0,   a.   0.   n,   e.   0,
   24    1    3   3612,  6.   11.  17,  20.  19.  22.  17.  Ib,  15.  13.  13,
10,  13,  It.  16,  21,  1«,  Id.  15.  16,  15,  15,  13.   0,   0,   0,   0.
 0,   0,   0.   0,   0,   0,   0,   0,
   25    t    3   3667,  98,  59.  S9,  82.  94,  119, 68,  85,  23,  72.  89,
107. 9B,  45.  66,  82,  19*3, 92.  73.  61.  54,  180, 78.   0,   0.   0.   0.
 0.   0,   0,   0.   8,   0,   0,   *.
   26    I    3   36314, 313. 289. 252. 296. 217. 202. 199, 225, 217, 25?, 268,
262. 292. ?73, 245. ?2. 279. 29fi. 257, 265. 266. 312, 312. 310. 314, 3Z4, 295,
285. 295. 295. 2*6. 333. 313. 285. J2C,
   27    i    3   3bt?lO,127ft.12eti.13691.1440.1420,15Ce.1480,1540.1450.1530,1320.
U1Q. 1270.1240.1363. 14q0,142(1.15(10, 1480. 1540, 1450. 1530.1320 ,1210,1270, 1240,1380,
1440.1420,1509,I4«fl.1540,1450,1530,1328,
   28    I    3   367,   0,   28,  35.  68,  67,  182. 129, 79,  *7,  47.  28,
17,  3.   52.  75.  122, 123. 111. IPi, 80,  12.  55.  23.   0.   0,   0,   0,
 0,   0,   0.   A,   0,   8,   0,   0,
   29    i    3   36 1250  633 1220 95382070*23359192801717013310188*0!169019588
  850  877 I12015de22322928235165281h288205771685416723a9437164a.732. 2C20.11400
13850140991 b29(*16aae 17138236804188219479
   31    t    3   3678.  121. 164. 149. 177, 160, 116. 106. 119, }4J, 118, 66,
104, 100. 149. 137, 105, 109, 123. 1C4, 74.  89.  68,  65.   0,   0,   0,   0(
 0,   0,   0(   0,   0.   0,   0,   0,
   32    1    3   3649.  44.  44,  45,  42,  43,  43.  39.  43.  46.  47.  55,
42.  4S,  40.  42.  39,  42,  43.  40,  49.  42.  80.  125,  0,   0,   0,   0,
 0.   o.   0.   *.   0,   9.   0.   0.
   33    1    3   366,   6,   6,   7,   7.   7.   7.   1,   6.   6.   6.   6,
3,   6,   6.   6.   6,   6,   7,   7.   7.   7.   8.   8..    0.   0.   0.   0,
 AflHftdann
  *34    i  * 3  *36743, 722. 717. 669. 595. 410, 337, 269, 296, 358. 394, 702,
617. 354, 297. 470. 242. 224, 234, 224, 2(99, 321, 361. 321. 679. 710, 533, 429,
235, 191, 188. 204. 334, *>a2, 875, 1154,
   35    t    3   369|,  92.  199, 118. 149. 132. 93.  99.  45,  65.  63,  75,
46.  54,  119, 211, 214, 133, 148. 35,  CZ,  125, 141. 119.  B.   0.   0,   0.
 0.   9.   0.   0.   0,   0.   0.   0.
   36    1    3   3632,  64,  138, 50.  26.  13.  40.  138, 25.  38,  76,  88,
25,  24.  6ft.  58.  26,  30.  31.  23.  25.  71,  25,  24,   0,   0,   0,   0,
 B.   0.   0.   0.   8,   0.   0.   0,
   37    1    3   3674,  64,  94.  93.  62,  63,  58.  54,  SB,  75,  83,  72,
75.  60.  92.  95.  76.  55,  49,  35.  37,  60.  68.  69.   0.   0,   0,   0.
 0.   0.   0.   0.   0,   0,   0,   0,
                                         154

-------
   58    I    3   36P67, 670.  P14,  1041 , t II 8 ,1 {>4 1 ,95,689, 233, 85.  221, 4J6, J872,
1133.1156.1128,1137.1273.1167.693.  119.
   48    I    3   3635J. 681,  2165,41 3P, 5320,SB13.68 IP,6313,997B,1386S!Zlbl 1912
  593  53ft 173C 53«J 6359 72*9  T329  752510320  6926  6fll  736113, 1«9, 762, 4952,
W2a,64561,655B,573H.73B0,17a9pO(!«15H34 88,
   49    1    3   366B,  69,   5b.   57,   53,   34,  32,  42,  04,  37,  35,  58,
ia,  54.  39.  05.  44.  70.  670,  670,  670, 67J, 670, 670, 670, t7Zi,
670. 670. 670. 670. 670, 670.  670.  670.
   56    i    3   36673. 670.  670.  670,  670,  670.  670, 672, 673, 670, 672, 673,
'178. 670. 67B. 67U. 670, 670,  670,  670,  670,  670,  673. 670, 670, 670, 670, 673,
478, 670. 670. 670. 670, 67«,  670,  670,
   57    1    3   38- 250. 253,  250,  ?50,  253,  252, 253, 250, 252, 250. 250, 250,
 258, 250, 253, 250. 250, 250,  253.  250,  253,  253, 253, 253, 252, 253, 250, 253,
 259, 250, 250. 250, 250. 250,  253.  250,
                                              155

-------
   5»    t    3   36 250.  250.  252,  250.  358.  250,  25P>.  258. 258. 259. 250, 250,
 253. 258. 25». 259. 258.  25*.  250,  253,  250.  253.  25B.  253. 258, 250. 258. 258.
 250. 25*. 258, 25«. 258,  253,  250,  252,
   s«    t    3   36 0,   a.    e.    e.    0.    e,    e.    0.   e.   a.   a.   B,
 a.   a.   u.   B,   a,   a.    B.    9.    e.    a,    a,    a,  3721,3416,4331.4929.
5134.5278.4980.107PSJ4912. 8153,36779173*4
   88    I    3   36Qa<»3,4490,4787.5447.6149.6593.6784,6460,6937.6445.5791.«7BT.
449?.4493.4707,5447,6149,6593,6784.6463,6937.6445,5791,4787,4490,4493,4787.5447,
6149,6593,6784,6468.6937,6445.5791,47^7.
88S8B
44444
    1    1
    t    2fl    8
    t    3    R
    t    48    0
    1    5
    1    6
    !    7
    i    a
    t    90    a
    l   tea    a
    2    i
    2    2
    2    30    3
    2    4B    B
    2    5     8
    2    6
    270
    2    0
    2    98    a
    2   tea    a
         1
         2
         30    e
         40    e
         5*    8
         ft
         7B    B
         a
         90    0
        IH     8
         2
         38    0
         ce    0
         50    0    0,   1.8  .5   10.8 .8   3.0  9,   3,0
         6
         70    e
         8
         9
        to
         1
         2
    5    38    9
    5    40    0    B,   20.  ,25  20,  ,5   47,  2.   47,
    5    58    0
    5    6
    5    70    0
    S    *
    S    90    0
    s   iae    a
t.
t.
0
*•

t.
»t
a.
a.

i,
t.
a.
a,
a.
i .
* w
0,
a.
a.
a.
i.
t.
*.
a.

t.
a.
i*
"i
a.
t.
e.
a.
0.
t.
0,
t.
a.
*•
1,
t.
a.
«•
a.
e.
a.
t.
a.
e.
3d*.
S<8.
8.56.
15,

12.
2*5,
72.
1,06

315,
14.
5*,,
13.
fc.

225.
7?.
.4
,98
420,
52.
72.
46.

51.
428.
99.
t,04
.««
44.
t«0.
2».
1.8
39,
300.
97.S
1,76
.*«
663.
23.
68.
20,
1.8
18.
285,
«2.
."
.as
2,
2.
1.
1.

2.
1.
2.
1.

2.
2.
1.
1.
2.

1.
2.
.«
1.
2.
2.
1.
t.

2.
It
2.
1.
2.
2.
1.
1.
.5
2.
1.
2.
2.
t.
2.
2.
1.
,25
1.
2.
1,
2,
1.
1.
3*>a,
50.
56.
15.

12.
225,
72.
1.F8

3t5.
1«.
56.
13.
6.

225,
72,
,a
.e*
428,
52,
72.
46,

51.
420.
99,
1.04
.44
«.
10*.
28.
10.8
se.
3P1K.
97,5
1.76
,04
660.
28,
6B,
28,
1.8
18.
285.
«2.
.72
.08
a.
2.
2.
2.

2.
2.

2,


2.
2.
2.


2.

2.
2.
2.
2.
2.
2.

2.
2.
2.
2.

2,
2.
2,
.8
2.
2.
2.

2.
2.
2.
2.
,5
2.

2.
2.
2.
2.
363.
50,
56,
15.

12.
225.

1.08


1«.
56.
13,


225,

.«
.08
420.
5?.
72.
Ifc,

51.
4?0,
99.
1.B4

44,
tee.
28.
3.0 9.
38.
sea.
97.5

.04
660,
20.
60.
«r, 2.
1.8

285.
«2.
.72
.08
                                             156

-------
5







































It
IB
te
18
t V
18
18
IB
IB
18
It
n
11
U
11
n
n
u
11
u
i
2
30
40
50
6
70
a

10
t
2
30
40
50
6
70
8
9
10
» **
1
2
3
40
5
6
70
a
9«1
f da
1
2
3H
40
5
b
70
a
9
130
1
2
3
4
5
6
7
a
9
10
l
2
3
4
5
6
7
B
9
IB

it
9
0

0

a



9
0
0

B


0



0


0

0
0


0
0


a


0



0
u

0

0
0










1.
1,
0.
0.
0.
1.
0.
1.
0,

i!
i.
0.
«.

1.
0.
1.
0.

1.
1.
0.
0.

1.
0,
1,
O.

1.

0|
0.
0,
0,
0.
1.

0.
1.
0,
0,
0.


0f
0,
P.
0.
1.
0.

0!
0.
0.

01

0,
453, 2,
^2! 2.7
3fi, .9
7.B 3.
30. 20,
435, 3.
7a. 20.
2.4 1,5
.12 3.
6VZ, 20,
4i», 2,
68, 4,
42. 4.


368, 4)
82, 2.
1.34 7.
P8 4
55*. 2,
44 , 20.
72, 6.5
43. 6,5
7.6 2,6
33. 22,
375, 6.5
72, 2«.
3.15 6.5

663. 20,
24. 50.
96. 35.
38. 35.
4.2 53.
2*. 50,
315. 35.
93. 4t).
1.52 20,
.2 35,
420, 40.
17. 9,
90« 9,
28. 6.

15. 9.
365. 6,
90. 9,
2.16 6,
,04 6.
540, 20,
95. 6.
69. 6.
24. 6,
a. 6.
156. 6.
317, 6.
75, 6.
3.9 6.
17,3 6.
450, 2,
84) 3.P
38, 2.7
7.8 5.
3f ,
4P5, 5.
72,
2.4 2. 7
.12 5.
662,
4P, 7,
64, 7,
42, 7.

17. 7.
360. 7.
82, 7,
1.04

553. 7,
44,
72, 9,
40, 9,
7.6 6,
33.
375. 9,
72,
3.15 9.

66)9.
24,
96. 50.
38. 50.
4.2
20.
315. 53,
90, 52,
2.72 28,
,2 53.
420. 50,
17,
98,
28, 9,

15,
345, 9,
90.
2,16 9.
.04 9.
540.
95,
69.
24,
8.
156,
317,
75,
3,9
17,3
458.
84, 5, 8ft,
22. 9.B 22, 5,
7.8

435.

a. 68 9, 2,88
.12

4f>,
64.
42.

17.
360.
82.

(•8
550.

72,
40,
10.9 10, IB, 9

375,

3,15



96,
38.


315.
90.
1,93 50, 1,92
,2ft
420,


28.


345,

2,16
,04










157

-------
11
IZ
IZ
IZ
IZ
IZ
IZ
j2
12
12
12
13
13
13
13
13
13
13
13
13
13

14
14

14
14
14

14
14
15
15
1«
IS
IS
IS
IS
15
15
15
16

16
16

16
16
16
16
16
17
17
17
17
17
17
17
IT
17
1
Z
3
40
S
6
7
8
9
13
1
1
2
3
4
50
6
7
8
9
10
Z
3
4
5
6
7
ft
q
10
1
Z
3
4
5
6
7
8
90
IB
1
Z
3
4
5
60
7
8
9
10
10
28
3
4
S
60
7
8
9
10


0
0
0

a

0
0




0
a

0

a
0

e
e
B

0

0
0


0
0
0

0

e
0


0
0
0
0
0

a
0
0
0
0
0
a
e
0

e
8
0,
0.
0,
0,
0.
0.9
0.
B.
0,
0.
,9
0.
0.
e.
0,
0.
B.
0,
0.
B,
flt
e.
0.
0.
a.
0.
*.
0.
0.
8.
0.
0.
0.
0,
«.
e.
0.
0.
0*
0.
0.
0.
0.
0.
t>.
P.
0.
0,
a.
0.
0.
».
0.
9,
0.
e.
B,
0.
0.
0.
0,
0.
0!
0|9
0.
B.
0,
0.
0*
0*
e.

o!
0.

o*

a»
0.
0.

a!
0.
*.


»,
0,
0,
0,


B»
0.
0.

0.
0.
0.
0.
0.

0.
0.

0!
«.
0.
».
0.

01
0*

0*
0.
0.
b?0, 1
16. <
aa, :
14. i
9tl. 1
1.6
.04
5T0, ,
510.
5Z.
7Z.
42.
4.5
12.
Z7B.
93.
1.04

14.
10A.
26.
3.0

315.
90,

,84
450.
IZ.
84.
22.

IZ.
205,
66,
Z.64
.fl6
420.
24,
112.
38.

24.
30 1»,
66.
2. as
,014

32,*

34*,
4.8
18.
360.
140,
2.8
.08
5>. <
s, '
5. <
5. <
2.7
5.
b.
3,
3.
Z.4
1.
1.
12.
Z.
Z.
2.
Z,
1.
Z.
z.
7.
1.4
3.5
3,5
S.
3.5
7,

3.5
7,
4.
4.
4.

4,
4.
8.
4,
4.
4.
4.
us
U5

4.
1.5
3,
1.5
1.5
4.
1.75
3.5
3,5
3.5
20.
3.5
10.
3.5
3.5
bcG> t
16.
BB. <
26, '
14. '
300. '
90.
1.6 '
,P4 '
570.
MP.
40.
72.
42.
4.5
12,
270.
90.
1.04
.04
14.
108,
26,
3.0
12.
315,
98.

.04
450,
12.
84,
22.


285.
66,
2.64
.86
428,
24,
112,
38.

24,
3P0,
6*.
2.08
,84
600.
32.
92.
34.
4.8
IB.
36D*
148.
2.8
.«*
»I 2&|
», 14.
». 3B0.
9. 1.6
9, ,84
9. 578,
1,8 393.
1.8 IP.

9. 42.
9, 4.5
9, 12,
9. 270.
1.8 4?.
9. 1.04
9, .84

2,45 84.
9. 26.
9, 3.8
9. 12.
9. 315.


9. .04

9. IZ.
9. 84.
9. 22.

9, IZ,
9. 285,

9. 2,64
9, .C6
9. 420,

9. 112.
9. 38.


9. 300.

9. 2.88
9. .04

2.45 16.
9. 9Z«
9. 34.
9. 4.8

9. 360,

9. Z.S
9. .08
        393, 4.
    IZ.  »0.  »,
    9.    42,
    7.5  84.
390,
     10.  16,
158

-------
17
18
18
18
18
18
18
18
18
18
19
19
19

19
19

19
19
19
23
28
23
20
29!
28
28
23
23

21
21
21
21
21
21
21
21
21
21
22
22
22
22
22
22
22
22
22
22
23
2)
21
21
23
21
23
23
23
2
3
4
5
b
7
d
9
13
1
e
3
4
5
b
7
8
9
IB
1
1
g
3
4
5
b
7
B
9
10
2CI
3
4
5
b
7
B
9
IB
1
2
3
4
5
6
7
a
9
19
1
2
3
4
5
£
7
o
9
10
e ei,
a.
e.
3.
55,

B,
8,
0,
B
e.

e!

3.
0.
8.
a.
0.
0.
e.
e.
c.
e,
0.
e,

a!

0!
0|
6 B,
0 B ,
e e.
0 e.
e.
0 0,

a 0!
e a.
e.
o.

8,
B,
e.
e.

B,
0,
B.
e.
a.

*!
0.

0f
B.

630. 28,
36, 90.
96, 91J,
42, S0,
5.« 9e.
32. 98.
37B, 9B.
111. 96).
2.25 981,
.66 90.
63U, 90.
33. 2,
70, a.
as. 2,
27. 2,
21. a,
355. 2,
7». 2,
.75 R.
,17 2.
60B, a.
62C1, 163,
«8, 163.
85, 160,
31, 160,
18, 163.
64, 1619,
275, 160.
191. 16B.
37. 168.
,7 160.
13e. 19.
52. 1,
60. 1.
25.2 1.
135, E,
338. 1.
78. 2,
.72 1.
.26 1,
639, 2,
3a, a.
73, a.
4b, a.
27, 2,
21. 2.
355, 2,
7S. 2,
.75 a.
.17 a.
6?e, a.
3n, a.
iz, a.
«*, a.
a7. a.
21, a.
355, 2,
7s, a.
,75 a.
.17 2.
630,
36.
96,
12,
5.1
32.
370.
in.
2.25
.66
639,
30.
70,
46,
27,
21,
355.
78,
.75
.17
691(3,
628.
as.
85.
31.
18.
61,
275,
191.
37.
.7
130,
52, 9, 52.
63. 9, 68.
25.2 9, 25,2
185,
390, 9, 320,
78.
.72 9, ,72
,26 9, ,28
603,
33,
70.
46,
27,
21.
355,
78.
.75
.17
609,
30,
78,
46,
27.
21.
355,
78,
.75
.17
159

-------
23
24
24
24
24
24
24
24
24
24
24
25
25
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
26
26
26
27
27
27
27
27
27
27
27
27
27
28
2ft
28
26
28
28
28
28
28
28
29
29
29
29
29
29
29
29
29
1
2
3

5

7
d
9

1
2
3
4
5

7
6
9
10
t
2
3
4
5
6
7
8
9
IB
1
2
3
4
5
6
7
a
9
10
1
2
10
3
4
5
b
7
8
9
1
2
3
4
5
6
7
6
9
ID
0,

t 0,
e 0,
0 0,

e a.

0 0,
0 B,


0 0,
0 0.
a a.

a 0,

ft a*
e e.

0f

0!
0.

0!
0.
0|
0.

0*
0.
0.

0»
0.

0i
0.

6oe. 2, 60?,
24, 16, 24,
93. 1, 9««, 9. 98,
4?, 1, «2. 9, 42.
42, 1. 42. 9. 42,
15. 16. 15.
33Z. 1. 330. 9. 330,
40. 18. 40.
,72 1, ,72 9, .72
.06 1. .06 9. .06
519. 18. 510.
36. 18. 36,
68. 1.5 68. 9. 68,
36. 1,5 36. 9. 36,
16.2 1.5 16.2 9, 16,
27. 18. 27.
435. 1.5 435, 9. 435
78, 16. 7ft,
,8 1.5 .8 9. ,8
,16 1. 5 ,16 9, ,16
690. 18. 690.
88, 9, 60.
54, 9, 54,
21. 9. 21.
10. 9, 10,
116. 9. 11B,
326, 9, 326.
49. 9. 49,
4,3 9. 4,3
22, 9, 22.
479, *», 479.
139, 50. 139.
49. 50. 49.
52, 50. 52.
19. 53. 19.
186. 50, 186,
226, SB. 226.
211. 50. 211.
1. 50, 1,
,4 50. .4
6(10, 50, 609,






i









.























26. 18. 26. 2. 26,
a 0.
a 0.
0 «.
0 0.

a e.

0 0.


0 0.
0 0*
0 0.
0t
0 0«


0i
,04 1, .04 6, ,04
102. 6. 102.
23. 6. 23.
4.5 6, 4.*
18, 1ft. IB.
398. 6, 390,
114. 1». 114,
1,192 6, 1.02
570, 18, 570,
12. 608. 12. 100i».12
60. 5»a. 63, ieez.6?
16. 500. 16. ie»0.16
3. 5"3. 3. 1000.3.








.
.
.

18. 1000,18,
MO, 500. 180. 1000.180
51, 6«t». 51. 1800.51
,32 1390. .32
,12 1290. ,12
•


160

-------
29
30
33
38
30
38
SB
3e
ja
38
38
31
31
31
31
31
31
31
31
31
31
32
32
32
32
32
32
32
32
3!
32
33
31
33
33
H
33
33
JS
33
33
34
34
10
34
34
34
34
34
34
34
35
35
35
35
35
35
35
35
35
1
2
3
4
S
6
7
a
9
ie
t
2
3
40
5
6
7
6
9
10
1
2
3
4
5
6
7
A
9
IB
1
2
3
4
S
6
7
S
9
Id
1
2
3
4
5
b
7
B
9
IB
1
Z
3
4
S
6
7
ft
9
10

0
a
a

a

a
0



3
0

0

0
a


0
a
0

0

0
0


0
0
0

8

a
8


a
a
B

a


a


a
a
a

a

0
,
26.
1P2,
23.
4,5
18.
390,
114.
1.02
.89
570,
32.
58.
21.
4.2
24.
1003,
2.
2,
2.
2.

2.

2.
2.











2,
10.
10.
10,

10,

10.
10.


10.
10.
10,

262.510,
18.
,12
,12
420,
16.
66.
21.
4.8
24 .
315.
54.
1.28
,98
420.
10.
56.
16.5
3.
12.
285,
48,
.72
,08

18.
10,

30,
3B.
30.
10,5

12.
30.

12,
30.

10.
10,
ia.

ie.

ie.
10.
S30,
26.
102,
23.
«. 5

39B,

1.02
.04











26.
102.
23.
4.5

390,

1.02
,P4


58,
21.
4.2

262,5

.12
,12

18.
86.
21.
b, 50 t 6.

255, 70. 255,
54,

.24 30. ,24
423,

58,
16.5
3.

.285.

,72
.06
161

-------
35
36
36
36
36
36
36
36
36
36
36
37
37
37
37
57
37
37
37
37
37
38
38
38
38
38
38
38
38
38
38
39

39
39
39
39
39
39
39
39
40
40
40
aa
40
40
40
40
40
40
41
41
41
41
41
41
41
41
41
1
2
3
4
5
6
7
a
9
10
1
2
3
4
S
b
7

9
10
1
2
3
4

6
7
a
9
10
i
2
3
4
S
6
7
ft
9
10
1
2
3
4
S
6
7
a
9
10
1
2
3
4
5
fe
7
a
9

0
a
0
0
0
0
0
0
0

0

0
0


0
0
0

0

0
0












0
0
0

8

0
a


0
0
0

e

0
0
P.
0.
0.
a.
o\
0.
0.
0.

>.

0.
e.


0.
B*


BI

0>


",
B»
0,
B,

0!

B!

B,

B.
0.


8.

B.
B*


B,
B.


0,

B.
B.
330. 18.
2(1. 16.
4». 2.5
27. ?.5
3.0 2.5
12. 18.
225. 2.5
3V. 18.
,32 2.5
.08 2.5
360. 18.
28. Id,
l"l*«
26.
5.2
18.
400.
57.
1.36
.08
600.
16.
68.
17.
3.
16.
255.
42,
,8
.1
390.
46.
69,
20,
7.
79,
295.
38,
6.2
8.3
437.
28,
68.
3(i,
38,
IB.
270,
42.
.8

450,
28.
68.
30.
38.
18.
270.
42*
.8
,06
1.5
1.5
1.5
IB.
1.5
18.
1.5
1,5
18.
"0.
20.
2
-------
41
42
42
42
42
42
42
42
42
42
42
43
45
43
43
43
43
43
43
43
43
44
44
44
44
44
44
44
44
44
44
45
45
45
45
45
4S
45
45
45
45
46
46
46
46
46
46
46
46
46
46
47
47
47
47
47
47
47
47
47
1
2
3
4
5
6
7
8
9
te
l
2
3
4
5
6
7
6
9
10
1
2
3
4
5
6
7
8
9
10
1
a
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
IB
1
2
3
4
5
6
7
8
9
10

e
e
0

0

0
e


e
9
t»

a

a
a


a
e
e

a

a
e


0
0
g

0

0
0


9
a
a

a

e
a


a
a
a

e

o
e

0,
0.
0,

0.

0.



0,

0)

f.

a.
0.


B
B,
e.

0,

0.
0,

0,
0,
0.
o.

o.
0,
0.
0,


0.

0!

0.

o.
0,


0,
0,
e,

0.

0.

459.
48.

44.'
6.
S*.
300.
259,
.56
,765
78H,
32,
105,
32.
6,
60.
270,
126.
1.4
2.15
6BO,
18,
64.
16.
1.8
IP.
21*.
1R6.
.72
.1
54P,
12B.
60,
42.
22,4
120,
430.
2fl
-------
47
48
48
4ft
48
48
«8
48
48
48
48
48
49
49
49
49
49
49
49
49
49
49
50
52
59
50
59
50
53
53
53
53
51
51
51
51
51
51
51
51
51
51
52
52
52
52
52
52
52
52
52
52
55
53
53
53
53
53
53
S3
1
2
3
4
5
7
6
7

9
10
1
2
3
4
5
6
7
8
9
la
i
2
3
4
5
6
7
8
9
la
1
2
3
4
5
fc
7
8
9

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
1
7
8
930, 40. 930. 80. 930,
0, 50. 600. 50,
B, 70, 680. 70,
0, 30, 600, 3P,
0, 5, fc00, 5,
0, 300, 683. 303.
P, 79). 6BIJ. 70.
B, 300. 6a», 3*0,
B. 90, 6Z0. 90,
0r ,s baa, ,s
0, .2 609. .2
fl. 550, b00. 550,
330. 9, 338,
0 0. 64, 1.5 64. 12. 64.
a B, 97,5 1,5 97,5 12, 97,5
0 B, 1?.6 1,5 12.6 12. 12.6
282. 9, 262,
8 0, 590. 1,5 590, 12, 598.
0, 390. 3, 390.
tf B, .96 1,5 .96 12. ,96
9 0, .6 1.5 .6 12. .6
1380.9. 1300,
660, 9, 660, 12. 660,
0 0. 136. 6, 136, 12. 13b.
9 0, 155, 6, I5b, 12, 155.
0 0, 10,2 6. IP, 2 12, 10,2
608, 9. 600. 12, 688.
B 0, 728. b. 720. 12, 720,
780. 9. 780. 12. 780.
0 0, ,«8 6, ,48 12. .48
0 B, .12 6. .12 12. .12
3040,9, 3040.12. 3040,
193. 16, 193. 72. 150, 160. 156,
9 B, 84, 80, 64, 160, 84.
0 0, 100. 64. 60. 80. 60, 160. 60,
0 0. 16.8 80. 16.8 160. 16.8
238. 56. 112. 100, 112. 160. 112.
B 8. 5Pa. 72. 460. 88. 460. 160. 460,
33». 56, 161, 100, 161. 160. 160,
a 0, ,96 80. ,96 160, ,96
' 0 0, ,525 85). ,525 163. .525
1120.64. 860. IBS!, 880. 160.880,
0, 400. 80. 400,
a, 45. 80. 45,
0, IPS, 80. 105,
0, 25. 80. 25.
B, 1400.80. 1480,
e, 475. ea. 475,
B, 780. B8. 78H,
8. ,S>7 80. .07
B, .86 80, ,06
6. 3390.80. 3393,
193. 475. 143. 9b«i. 165. 1»BB.165, 1508,165.
8 *. 54, 570. 68. 959, 60, laB0.6B. 1500.60.
0 0, 60. 475. 54, 76(1, 6P, 1S0B.60.
B B. 20. 950. 20. 1500.20.
240. 570. 169. 950, 221. ISM, 221.
1280, 360.1100. 570, 860.1208. 868,
210, 420, 285, 87B, 210, 1503, 210,
258, 475. 216. 950, 24B, 15CZ.248.
164

-------
53
53
54
54
54
54
54
54
54
54
55
55
55
55
55
55
55
55
56
56
56
56
56
56
56
56
57
57
57
57
57
57
57
57
56
58
58
5»
59
58
58
58

59
59
eg
. J »
59
59
59
59
59
59
60
60
60
60
60
60
60
60
9
10
t
2
3
4
5
6
7
a
1
2
3
4
5
b
7
8
t
Z
3
4
5
6
7
8
1
z
3
4
5
fc
7
6
1
2
3
4
5
t>
7
8
1
2
3
4
5
6
7
8
9
10
1
Z
3
4
5
6
7
a
a 0,
0 0,
0,
0.
0!
o.
0!
0*.
0.
0.
*'•
v.
0.
0.
0,
!) t
e.
0.

p,
0i
ti.
0,
0.
0.

0!
0.

e!
0.

0.
0 0,
0 0,
(9 0 ,
o 0.
M V 9
a 0.
a e,
0 CJ »
a e.
a e.
a 0,








.4 <;
.2 S
220,*1
93. I
in. i
31. 1
352, 1
231, 1
41P, !
7flb. ]
247. 1
157, 1
138, !
1820.!
147. '
fcfeW.
18*9,
103,
114,
lh».
2950,
731,
72C,
164B,
3ft0,
37.
37,
24.
sets.
2«4,
9?.
1373,
3B3.
29,
29,
25,
510.
244,
88,.
57-2,
12,
60.
U.
II
3.
IB,
183.
51.
32.
12.
378.
22,
6fl,
22,
IB.
15.
279.
S3.
• 50. ,4 1
153, .2 1
,3, 222.
,0. 93.
;0. 10,
10. 31.
IB. 330.
IB, 231,
[2. ate.
[2?, 4600.
lea, 7B5,
l»a| 157J
l?.3. 138,
1U0, 1620,
13?,7ftft0.
100,181!?,
1913.14)9.
122,114,
l?0,tt>0.
102,2950,
IBS ,744 ,
108.720.
IP, 1A4P,
IB, 364),
10. 37.
18, 37,
1«. 24.
10. 54U,
10, 2a4.
13, 92.
19. 1370,
10, 330,
10. 29,
Ii5. 29.
ie, 25,
10. 518.
ia. 204.
10, 88,
1^(32,570.
1000, 12,
1C PIS!, 60,
10P8, 3.
ie?a, is.
la^B.lsa,
leas. si.
10?3, 32,
isfia, 12,
ISP, 37 B,
ma, 22,
100. 63,
lee. 23.
lae. 12.
l®0. 15.
103. 270,
1(93. 53.
,570. .4
1538..2























5033.570,
50ea, 12,
5a?a, 68,
5?eiJ. 3.
saea. iat
50cR,iee.
52??!, St.
5003, 32,
5000, 12,








165

-------
   60    9               ,01  tee, ,01
   fre   le               ,es  tea, ,0s
88889
55555
    1              1 ,79  ,74 2,21 1,1« 2.39 1,40   .77  1.42   .Sift  1.98  .35   .32
 .05  .67  ,69 J.lft |,26 1,64  ,83  ,192  ,P2 1.16   ,195   .65   .09   ,49  .7? 2.87
 ,76  .61  .44 1.14 1,18 1.13  ,91  .61 -.1
    2              1 ,86 1,24 2,53 1,49 3,3? 1,66   ,64  2,15   ,56  2,16  ,91   ,52
  .35  .62 1.16 1.89 1,65 2.37  .08  .06  ,00 1,46   .99  ,67  ,22   ,76  .73 3,84
1,25  .60  ,93  .72 1,18  .78 1,25  ,46 -.1
    3              1 1,33  ,75 1.86 1,61 3,09 2,28   ,91 1,67   ,53 2.57  .67  .27
  .22  .76  .96 1.87  .40  ,55  .04  .00  ,05 1,13   ,01  .77  ,20  1,18  ,83 2,56
1.14  .73 1,10  ,53 1,38 2.10 1.60 1.20 *.l
88888
66666
    1              17,05 7,64 5,52 3.29  ,84  .84   ,63   ,83   ,84  2,99 5,08 7,17
6,17 7.20 4.07 1.52  ,82  ,82  ,82  ,80  .82 4.25 6,30  6,44 8,63  7,09 5,81 2.61
 ,29  .29  ,29  .29  ,30 3,02 6,09 6.73 ».l
    2              17,05 7.64 5,52 3,29  ,84  .84   .83   ,83   ,84  2,99 5,06 7,17
«.17 7.20 4.07 1.52  ,82  .82  ,82  ,80  .82 4.25 6,30  6,44 8,63  7,09 5,81 2,61
 ,29  ,29  .29  ,29  ,30 3,02 6,09 6,73 -,J
    3              17,05 7.64 5.52 3.29  .84  .84   ,83   ,63   ,84  2.99 5.06 7.17
8,17 7.20 4.07 1,52  ,82  ,82  ,82  ,80  ,62 4,25 6,30  6.44 8,63  7.09 5,81 2,61
 ,29  .29  .29  ,29  ,30 3,02 6.09 6,73 «,t
88886
77777
t it e
4486
3 11 »
595341
3 1 0
442034
320
7019
330
145684
2 11 0
86390
2 1 0
58374
220
4}46
230
23670
88888
99999
12345
4476
4468

772028

560365

17870

193793
IS
91413
15
60046

6033

25332



4476.5
4490
760
961447
766
682513

31323
14
247611
5599
97117
5461
62149

7375
138
27593



4477
• 492
6816
1160460
6395
808963

47292
421
304205
17894
1020(14
15829
64349

8585
2065
29070



4478
4494
34024
1369894
28897
940076

65631
5127
64 87
35525
107538
28555
66800

9747
6970
30991



4460

138240

112187

2

26131

63005

49076

6

13923




4482

275614

2)6216

31

59367

73116

51101

23

16992




4484

828855

326954

1567

183334

*0C20

56568

1*78

21774




                                               166

-------
          44«ft.5fl
     THE  NUMBER  OP  TIME  INCREMENTS  (N  THIS SIMULATION*  3fr


     THE  TIME  PERIOD  KEY  13  •  8


     THE  BEGIWNIN5  STAGES  IN THE  CAKE  SYSTEM ARE
     BAY    STAGE
     t********************************************************************************


     **•«••**•«••••«•»••••••**•»*•»•••*•**»••*•***••****•**•*•••***•******************

111 SIMULATION SETUP AND INITIALIZATION CAT*


     ••••»••*««••••••«»•*•••**«***»**•******•******•**•*•*•****•*•*"*•****************

     IOHS TO Bt CARRIfQ IN THE SIMULATION*    |23 IN FOR THE TRIB  COUPON) WILL BE USED FOR THE OUTFLOW
         I, Mf»Nj TMAT THE L»*E OUAUlTY WILL BE USED F0»  THE OUTFIQW.


     •••««••«•*«*.••*••••«*««•••••*•**•**•«***«****•*****»****•*******************•*•*
     IMJTIAL
                   QUALITY IN TrtE LA<1 AND BAYS
     BAY  DUALITY  UU'AL UNIT
o.












?
?
2
2
F.C.
I
2
I
4
5
d
T
fl
9
10
11
u
i
a
3
4
KE>
0
e
0
it
0
B
n
0
PI
2
0
0
B
0
e
0
                      KEY    CONCtNTBATION
                       0       57i,t>M
                               tin,

-------
                    10
                    tl
                    12
                     1
                    It
                    11
                    12
                                       10.000
                                       ao.000
                                      180,000
                                      130,000
                                       0,150
   ,
  0,000
  0,000
                                      55,001!
                                      55,000
                                      24,000
265,000
  0,2iJ0
  0,230
  0,000
  o,oe0
            NO. or  8U8ARE43  IM  THE LAKE  SYSTEM  •
              1  MAIN IK
              2  PROVO  8
              I  60SMEN 9
                   THEIR CODE NOS, AND NAMES AREi
                        FRACTIONS  FOR  BAT   2  ARE
CTi
00
              0,00! 0,005 0.005 0,005 0.002 0,002 0.002 0.002 0.002 0.005 0,005 0.005
              0,005 0,005 0,005 0,005 0,002 0.002 0.002 0,002 0,002 0,005 0.005 0.005
              0.BB5 0.0U5 0,005 0,005 0,002 0,002 0,002 0,002 0,002 0.005 0,095 0,005
             INTEKHIX1N6  FRACTIONS  FOR  BAT   3  ARE    0,150  0,150  0,150  0,150  0,100  0,100  0,100 0,100 0.1U0 0.1S0 0.
                                                    0,150  0.15P  0,159  0.150  0,100  0,100  0,100 0.100 0,100 0.150 0.
                                                    0,150  0,150  0,150  0,150  0,109!  0,100  0,100 0.100 0.100 0,150 0.


             *••••«•••»••*•••••«•*»••**•**••*••••«••*•««*»•»****«•••*•••**•••••*»*•»•«*••*•••*
                                                                            150 0.150
                                                                            150 0.150
                                                                            150 0.150
             •••THE  MULTIPLIERS  TO  BE  APPLIED  TO  THE  INPUT  DATA ARE
                 Pl!)M».  .  .  1.000
                 PREC1P  ,  .  1.0B0
                      .  ,  .  1.000

-------
BAY • TNlnuTASY ASSIGNMENT DATA
BAY NO, OF
TR1B3
1 39
I IT
3 3
TRIBUTARY
1 8
11 12
21 IS
49 5P
31 18
41 02
52 5T
CODE NUMBERS
3 4
13 14
51 53
33 34
• 3 44
58
5 6 T
15 1* IT
25 96 27
5« 55 1t>
35 3* 3T
45 46 47

8
18
28
59
38

9 10
19 20
29 48
39 40


-------
   TITLOUT4H LAKE —JULY HT8-JULY  1973—HIN SPR8  iODEO
•••THE TRISS FLOWING OUT or THE  SYSTEM ARE  S3

-------
   TITLE*UTAH LAKE "JULY tlTB.JULY HT3--NIN 8PHS ADDED

          PRECIPITATION DATA
•AY  PRCC1P UNIT  TIME BASE  REPEAT
*»0,      KEY         KEY       KEY
 t        a           (9i
PERIOD
   1
   2
   3
   4
   5
   6
   7
   6
   9
  te
  11
  12
  13
  11
  15
  16
  17
  16

  20

  22
  23

  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36

   1
   2
   3
                                       7
                                       8
                                       9
                                      10
                                      11
                                      12
                                      U
                                      la
                                      15
                                             0.790

                                             2)210
                                             1,160
                                             2,390
                                             1,100
                                             0.770

                                             0|3e0
                                             1,640

                                             9\fiie

                                             l)l60
                                             0.B50
                                             2,870

                                             O.'MB
                                             0,940
                                             1.140
                                             1,160
                                             1,130
                                             0.910
                                             0.610
       2,530
       1,490
       3.JTO
       1,660
       0,640
       2, 160
                                            1.160

-------
ro
It
IT
16

20
21
22
23
24
SS
26
27
28

30
31
32
33
34
35
36

 1
 2
 3
 4
 3
 ft
 7
 6

te
11
12
13
14
19
16
17

19
20
21
22
23
24
25
26
27
20
31
32
S3
34
35
36
                                                         1,650
                                                         0,060
                                                         0,000
                                                         I.46P
                                                         0,090
                                                         0,760

                                                         3,SOB
                                                         0,930
                                                         0,720
                                                         1,190
                                                         0,780
                                                         1,250
                                                         0.460

                                                         1,130
                                                         0,750
                                                         1.860
                                                         2,290

                                                         1*670
                                                         0,670
                                                         0,270
                                                         0,220
                                                         6,7fe0
                                                         0,960
                                                         I.R70

                                                         01*50
                                                         n.flon
                                                         1,130
                                                         P.2SI0
                                                         1.160
                                                         O.S30

                                                         1*147
                                                         PI,MO
                                                         2. I

-------
                        ner  CODE
                                    •  •  IN.
                                    >  •  FT,

                            T1HE  UNIT  KEY
                                    B  •  MONTH
                                    1  •  DAY
                                    2  •  WEEK
                                    3  •  MQMTH
                                    4  •  YIAR
CO

-------
Tme«UT*H LAKE «JUUY
                                   I«TS*«HIN »p»» AOOEO
          EVAPORATION OATA
MY
NO
 I
        UNIT
      nev
TIME BASE
  KEY
   0
KEY
 t
PERIOD
1
2
3
4
ft
7
t
9
ie
it
12
13
M
15
Ik
17
18
19
20
21
22
25
2«
25
2b
27
2B
29
30
31
32
33
3D
35
1
2
3
t
5
b
7
B
9
IB
11
12
t3
14
Jb
EVAPORATION
T.0S«
7,64(1
5,520
3,290
cilete
0,830
,830
, SflCI
,998
,38*!
,170
,170
7,200
A, 079
1.520
0,820
0,820
1.820
0,60ft
0,820
,250
,300
,4
-------
t6
IT
IB
19

et
22
23
24
25
26
it
28

30
31
32
33
3«
35
36

 1
 2
 3
 4
 5
 6
 7
 S
 9
IB
11

13
ia
15
16
17
IB
22
23
24
25
26
27
28
29
33
31
12
33
34
35
36
si,«an
6.30(1
T.PI90
5,910
6.730

7.CI5B

5.'520
3.29B
f ,810


0,830

2^998



7,208

U'sati
PI.82B

0^829
PI,8ft)


6,300
5.81B
2.610
f.390
3.M2B

6.730

-------
KEY cooe*
    tVAMHATION UNIT
B
I
Tine UNIT
Q
1
2
3
4
I",
CY
MONTH
OAT
wecx
MONTH
YEAR

-------
   TITLE-UTAH t»*e »-JUUV  l»T0«JUUt  1973—WIN SPRS AOOEO

          STAGE • AREA •
BAY
NO
 STAGE
  ft
AREA
ACRES
VOLUME
AC,FT,
     4476.50
     4477,00
     4478,00
4484,00
41166,00
4486.00
     4492,Ufl
     4494,00

        0.00
              t5.ee
            5461,00
                Sb^bfl.BB
               0,10
               0.10
               0,10
               e,0e
             766,0(1
            6395.00
           28697,00
          112107,00
               0,00
     4476, SB
     44*8, I*J!
     4492,00
     4494,40
               8.10
               0.10
               0,19
               0.10
               6,00

            1678|<*0
            4346, f,fi
            6033,00
            7375.«0
            9747,00
               0.10
               0.10
               0.10
               0,00
               0.00
               0,00
               0.00
               2, (10
              31.00
            1567,00
            7419,00
           17870.B0
                            65631,00
                                0,00
     44T6.I90
     4476.50
     4477,00
     4478,00
     449U.JI0
     4492.00
     4494,00

        0.110
               0.10
             138.80
            206*,00
            6970.00
                1899?, 00
           29370,00
           30991,W
               0.10
               P.10
               0,10
               0,00
              ID.en
             421,60
            5127,00
           26111,00
           b93*>7,B0
                      247611 jfc

-------
         ti    4476,ee       n.ee        0,00
         tt    4476,50     9999,00      780,00
         11    4477,«B    17644,BB     6616,00
         ii    4476.ea    35S2S.ee    34024.pa
         ti    4«e*.«a    6i0?5.en   i3S240.ee

         H    ••84,efl    8ne2B.ev
         II    4486.00    66390.ua

         ||    ••4u!oP    471ir!00   961447,190

         it    ••44.ee   iers38.ee  i369844.ee
         tl       e.ne        n.ifl        n.ee
         11       e.ee        e.ie        n,«e
         il       a.99        e.io        0.00
     »••«(.(. DAT* HAS RECN MEAD IN
00

-------
vo
              UTAH LAKE --juur I^TB.JULY IVTJ--HIN sens ADDED

     —8ECIN THE SIMULATION.-"

               •••INITIAL CONCENTRATIONS
BAY TOS
PROVO B 2 590100
GOSMEN B 3 1050,00
MY NO. STAGE
MAIN UK 1 4448.58
PROVO S 2 4448,58
OOSHEN fl 3 4488.38
TOTAL LAKE 44«8,58
•••TROUBLE-.FLO*»ATt
••• TROUBLE »-FLOWR ATE
***TRUUBLE»-FLOWRATE
• ••TRou8LE--FLO'«RATE
•••TROuBLE-.FLCwBATt
•••TRUUbLE-*FLO«RATC
• ••TRouBLt—FLOrfRATE
•••TROU81E--FLOWRATE
• ••TRQUBLE--FLOWATE
•••T»OUBLt--FLO«*ATE
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NA
140,00
70,01
180.00
AREA
60657.3
642?, 2
25987,7
93067,2
F(3U*0
FOUND
FOUNO
FOUND
FOUND
FOUN|>
FOUND
FOL'ND
FOUND
FOUND
IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
CA MS K
se.ee ss.ee 2*,ee
A fl| an *• A A 101 at A
DWfVIO <* J » Bin 1 W f fiW
ss.ee 35,0e 24,00
VOLUME
595789. B
21771.5
826961.1
FLOH-OUALITY
FLOw-UUALITY
FLOH-UUALITY
FLOW-DUAL ITY
FLOW-QUALITY
FLOW-QUALITY
FLOW-QUALITY
FLOW-QUALITY
FLOW-QUALITY
FLOw-UUALITY

TABLE--TRIB.
TABLE--TKIB"
TABLE--TKIM
TAfiLt--THTB«
TABLE--TKIB"
TABLt--TRIB»
TAbLE--T«IB«
TABLE--TRIB"
T ABLE--' WIB«
TABLE--THIB*
CL HC03 304
180.00 230.00 19H.00
80.00 180,00 150.00
300,00 190,00 263,00

54
54
55
55
56
56
57
57
58
58

0
0
0
Q
Q
0
0
Q
0
Q

.F
.F
,f
.F
,F
.F
.f
.F
.F
.r
9
10
9
10
9
10
9
10
9
10

FLOW*
FLOW.
FLOW.
FLOW-
FLOW*
FLOW.
FLOW.
FLOW.
FLOW.
FLOW.

8.13
8.13
1 1 ,26
11.26
11.26
11.26
4.20
4.20
4,?0
4,20
                                                                                               N03
                                                                                               e.t3
                                                                                               0,15
                                                                                               0.20
                                            P04
                                            J.90
                                            l.ae
e.0e
0,00
0.0B
0,en
0,00
          «•« THE INTEKM1XIN6 FRACTION FOR BAY  Z IS
FOR TIME PERIOD  1
          *•• THE INTERMIXING FRACTION FOR BAY  3 is  e.ise FOR TIME PERIOD  i

-------
                UTAH LAKE "JULY 1970-JULY 1973—MIN SPRS ADDED

                 •••SUMMARY INFORMATION FOR TIME PERIOD  1     ••  MONTHS
                 •*• PERIOD FLO«» AND INTERFLOWS
     NAME  NO.
  MAIN L*   I
  PKOVO •   I
  COSHEN 0  3

TOTAL SYSTEM
PRECIP   EVAP   SUM TRIB   VOL BEFOHE
AC-FT   AC-FT INFLOM AC-FT  INTERFLOW
3992,   3962?,   -27404,
 460,    3772,     7474,
2879,   15262.      5f)",

  7331,   54655,   -19430.
                                                         25«3«,
                                                        147518,
                         INTERFLOW
                         VOL AC-FT
                          -15694.
                            8763.
                            6430,

                             LAKE
                               FINAL
                           STAGE     AREA
                          44P.7.87
                          4487,87
                          4487.87
                                                                               4487,87
                                                                                                 VOLUME
                            25221.

                              91077,
                                                                                           1T171.
                                                                                          190380.
            *•» HATCH QUALITY AT THE END OF  THE PERIOD
MAIN LK
MOVQ »
003HEN «
                 AAV
                  |
                  2
                  3
                        TOS
            1B92.27
                                  NA
      70,92
     184,22
 CA
54,64)
72.74
57,88
 HO
57,Tl
46,02
58,28
 K        CL      HC03     S04       NOJ      P04
21,34   199,20   243,59   20).17     0,39     1,86
11,26    80.61   238.76   158.03     0.72     1.48
24,85   300,37   208,62   269,15     0,24     0,50
00
o
            •••TIME PERIOD  2 HAS BEGUN
       •••TRaUBLE»-FLO«RATE NOT FOUND IN FLOW-QUALITY TABLE--THIB" 54   Q.F.i  9  FLOW"     4,13
       *»«TRou»Lt—FLOXRATC NOT FOUND IN FLOW-QUALITY TABLE—THIS* 54   Q,F,« 10  FLOW*     s.ts
       •••TROUBLE--FLOMP.ATE MOT FOUND IN FLOK-UUALITY TABLE—THIS* 55   a,F.I  9  FLOW*    it.26
       • ••I
-------
                 UTAH LAKE —JOLT HTB-JULV I9T3--M1N 8PR9 ADDED
                  •••SUMMARY INFORMATION FOR TIME PERIOD  i     •«  MONTHS

                  •*• PERIOD FLOWS AND INTERFLOWS
BAY PRECIP
NAME NO, AC-FT
MAIN LK 1 3894,
PROVO « 2 612,
GOSHIS B 3 1576,
TOTAL
• *•
MAIN LK
PHQVO B
60SHEN B
SYSTEM 6061
WATER QUALITY AT
BAY TDS
1 1037,33 1
2 734,11
EVAP SUM TRIB VOL BEFORE INTERFLOW
»C-FT INFLOW AC-FT INTERFLOW VOL AC-FT
18144, -33520. 484679, -16155,
3768, 7829. 21844. 9232.
16051, 500, 176613, 6923.
, 57962, *
TME ENO OF THE
NA CA
62,63 60,16
73,10 «3.09
94,86 62.10
25191,
PERIOD
M6
46J63
62,71
LAKE

K CL
22,95 220.17
12,17 81.36
26.26 306,96
FINAL
STAGE AREA
4466.99 59206,
4486.99 5184,
4466,99 24496.
4466,99 88866,

HC03 304
262, B2 222,61
302,69 164,95
231.54 279,94
VOLUME
500633,
169689)
663135,

N03
0,58
1.33
0,31
                                                                                                           P04
                                                                                                           1.86
                                                                                                           1.96
                                                                                                           B.75
00
             •••TIME PERIOD  3 HAS BEGUN

             •*• TMt INTERMIXING FRACTION FOR BAY  2 IS  0,005 FOR TIME  PERIOD  3

             •*• THE INTERMIXING FRACTION FOR BAY  3 IS  0.150 FOR TIME  PERIOD  3

-------
    UTAH LAKE »*JULV 1970-JULV 14T3--MIN SPRS ADDED

     •••SUMMARY INFORMATION POM TIME PERIOD  3     •«

     ••• PERIOD FLO** AND INTERFLOWS

       BAY     PRECIP   EVtP   SUM TRIB   VOL BEFORE
   NAME  NO.   AC-PT   AC-'T INFLOW AC»FT  INTERFLOM
MAIN LK   1   10844.   27224,   *1U438,     474071,
PROVO B   2    1043.    2384,     8380.
608MIN B  3    3745,   11264.      50fl,
           TOTAL SYSTEM
                15767.   40871,
                         •1558,
                                                                    MONTHS
INTERFLOW p i
VOL AC-FT STAGE
•B42B, 4486,64
H665. 4486,64
2)6, 4486,64
N A L
ARIA
58453.
443B,
24245,

VOLUME
482441.
11036,
162465,
                                       LAKE
                                               4486,64
                                                88128,
                                                656443,
             ••• HATER QUALITY AT THE END OF THE PERIOD
        MAIN LK
        PROVO B
     RAY
      1
      2
      3
  TOS
1064.11
 721.61
119fl,86
  NA
167,31
 64.67
148,51
 CA
63,77
83,12
64,64
 MO
62,Zfl
41.86
64, 4T
 K        CL      HC03     804       N03      P04
23,52   229.27   273.68   224,14     0,75     1.82
11.45    72.61   328,40   153.60     1.67     2,07
26,84   368,87   247.17   282,24     0,39     0,44
oo
ro
              ***TI»e PERIOD  4 HAS BEGUN

              •••  THE INTERMIXING FRACTION FOR BAY  2  IS  8.805 FOR TIME PERIOD  4

              «*•  THC INTE1M1XIN6 FRACTION FOR BAY  3  IS  0,150 FOR TIME PERIOD  4

-------
                  UTAH LAKC "JULY 19T0-JULY 1973--HIN 9PRS AOOCO
                   •••SUMMARY INFORMATION FOX TIME PERIOD  4     -•  MONTHS
                   • •• PERIOD PI.ON3 AND INTERFLOWS
BAY PNECIP EVAP SUM TR1B VOL BEFORE
NAME NO, AC-FT AC-FT INFLOW AC-FT INTERFLOW
MAIN LK 1 5795. 16157, 19322, 491952.
PROVO B 2 612, 1351, 8774, 19071,
GOSHEN B 3 3252. 6645, 500, 159573,
TOTAL SYSTEM 9658. 24152, 28596,
• *•
MAIN IK
PROVO e
60SNEN B
MATER
BAY
1
2
3
QUALITY AT THE END
TDS
1071,04
691.23
1188,80
NA
166,59
59,82
196,22
INTERFLOW FINAL
VOL AC-FT STAGE AREA VOLUME
• 4H4. 4466.85 5908T, 492436,
72P1. 44A6.85 5065, 11870,
-6717, 4486,85 24378, 166289,
LAKE 4486,85 88529, 670595,
OF THE PERIOD
CA
66,24
83,82
66,01
MG
61,51
37,02
65,35
K
23.36
10.35
26.62
CL
230,33
62.99
299.58
HC03
280,06
334,41
257,75
S04
228.58
144.04
276,24
N03
0.90
1,68
0,49
P04
1,72
1.64
1.11
00
CO
              •••TIME PERIOD  5 HAS BEGUN
              ••• THE INTERMIXING FRACTION FOR BAY  2  is  0.002 FOR TIME PERIOD  s
              «*• THE INTERMIXING FRACTION FOR BAY  3  la  0.100 FOR TIME PERIOD  9

-------
                    UTAM LAKE —JULY 1970OULV 197S--HIN SPRS AODEO
                     •••SUMMARY INFORMATION FOR TIME PERIOD  5     ••  MONTHS
                     ••« PERIOD FLOWS AND INTERFLOWS
BAY PRECIP EVAP SUM TR1B VOL BEFORE
NAME NO, AC-FT AC«>T INFLOW AC-FT INTERFLOW
MAIN LH | U763, 4134, 36656, 536723,
PROVO B 2 1422, ISA, 9349, 222A7,
GOSMEN 0 I 6275, 1706, 508, 171396,
TOTAL SYSTEM 194*0, 6199, 489BT,
• ••

MAIN LK
PROVO B
00SHEN B
WATER
BAY
1
2
3
OUAIITV AT THE END
TDS
1112,76
6BP.64
1134,46
MA
156,04
49.44
165.60
INTEftFLO
VOL AC-F
«9ie,
6763,
-11681,
LAKE
OF THE PEHIOO
CA
65.26
77,87
64,32
M6
57,50
3
-------
      UTAH LAKE ..JULY 19TB-JULY 19T3—MIN SPR8 ADDED

       ...SUMMARY INFORMATION FOR TIME PtRIOD  6     >-  MONTHS

       ••« PERIOD

         BAY
     NAME  NO,
  MAIN LK   1
  PROVO ft   2
  COSMEN B  3

TOTAL SYSTEM
                                   AND INTERFLOWS

                            PKECIP   tVAP   SUM TR1B
                            AC-FT   AC-FT If»FLO« AC-FT
                            6959,    «175,    33589,
                             762.     396.     9036.
                            474(1,    1746.      Sk)0,
                             124A1.    6317,
L BEFORE
NTERFLOW
57P177,
24946,
186533,
INTERFLOW
VOL AC-FT
36BI3.
6392.
•9996,
F I
STAGE
4488.119
4468.10
4488,10
N A L
AREA
6P155,
6101.
25447.

VOLUME
566574,
18554,
196529,
                                                                        LAKE
                                                              ««88,1B
                                                                    91T8J,   T81656.
             •«« HATER QUALITY AT THE END OF m PIRIOO
        MAIN L*
        PROVO 8
        SOSHEN B
BAY
 1
  TOS
 969,22
 575,18
1894,91
                        N*
                      147,91
                       46,43
                      178,03
 CA
64,63
75,22
63,45
 MC
54.43
26.65
60,42
 K
20.61
 6.80
24,21
  CL
2*6.65
 47.96
265,87
 MC03
265,89
301.72
252,42
 S04
213,9(1
116,36
247, JT
N03
1.98
1.54
0,63
P04
1.43
1.51
l.lfl
00
O1
             •••TIME PERIOD  7 MAS BEGUN

             •»* THE INTERMIXING FRACTION FOR BAY  2 is  a.0*2 FOR TIME PERIOD  7

             *•• THE INTERMIXING FRACTION FOR BAY  3 is  a.iee FOR TIME PERIOD  T

-------
                     UTAH LAKE  "JULY  197B-JULY  19TS—MIN SMS  AOOEO
                      •••SUMMARY  INFORMATION  FOR  Tine  PERIOD   7      ••

                      •••  PERIOD  PLOWS  AND INTERFLOWS

                        BAT     PRECIP    EVAP  SUN TR10   VOL BEFORE
                    NAME  NO,   AC-FT    AC-FT INFLOW AC-FT   INTERFLOW
                 HAIN4.K   t    3896,     4199,     24617,     991090.
                 PROVO H   I      323.      422,      6947,      27404,
                 GOSMEN B   3    1929,     J759.      2036,     196736,
               TOTAL  SYSTEM
       6113,
      6340,
     3588Z,
                                             MONTHS
                                   INTERFLOW
                                                            FINAL
                                             VOL AC-FT  STAGE     AREA     VOLUME
                                                ISTfr,   44»6,a8    6B549.    9895I«,
                                                6324,   4466, <6     6393,     21860,
                                               •7900,   4466.46    23672,    206636,
                            446»,46    92774,   817*39,
                 ••*  MATER  QUALITY  AT  THE  END OF  THE  PERIOD
                      BAY
            NAIN LK     t
            PROVO B     2
            QOSHEN a   3
  TOS
 940,91
 972,40
1*188,79
  NA
142.44
 45,45
174,66
 CA
64,63
79.64
63,40
 MO
92,32
26.36
99,90
 K        CL      HC03     304       NQ3      P04
19,T6   200,04   263.22   196.63     1.16     1,34
 8,81    47,13   303.9»   11*.43     1,96     1,32
23.99   264,69   299.19   243,37     0,70     1.19
oo
CT»
                 •••TIME PERIOD  6 HAS BEGUN

                 *•• THE INTERHIXIN6 FRACTION FOR BAY  2 13  0.002 FOR TIME PERIOD  6

                 ••* THE INTERMIXING FRACTION FOR BAY  3 is  0.100 FOR TIME PERIOD  s

-------
                      UTAH LAKE "JULY 1978-JULY 1973--MIN SPRS AOOCO


                       •••SUMMARY INFORMATION FOR TIME  PERIOD  6     "  MONTHS


                       ••» PERIOD FLOWS AND INTERFLOWS
BAY PRECTP EVAP SUM TRIB VOL BEFORE INTERFLOW FINAL
NAME NO, AC-FT AC-FT INFLOW AC-FT iNTEftFLOW VOL AC-FT STAGE AREA
MAIN LH I 7162. 4186, 16351. 61084], -504. 4466.63 69925.
PROVQ 8 2 1136, 439, 6287, 30P66, 6581. 4466.63 6593.
GOSMEN B 3 3599, 1T89, 1731, 21(9177, *6077. 4460,63 26276,
TOTAL
...
MAIN LK
PROVO e
GOSHEN 0
SYSTEM
HATER
BAY
1
2
3
11699. 6414, j
QUALITY AT THE END OF THE
TOS NA CA
914,67 137,71 64.46
556,60 43.79 72,56
1070,54 170,32 62.90
-6369.
PERIOD
MG
50.40
27.40
56,06
LAKE 4466,63 93794.

K CL HC03 304
19,112 194,36 259,91 190.04
7,62 4S.45 297,39 111.73
22.63 259,95 254,96 237.06
VOLUME
611345.
23465.
216255,
651084,

N03 P04
1.20 1.26
1,53 1.47
0,75 1,18
00
--J
                  •••TIME PERIOD  9 MAS BEGUN


                  ••• THE INTERMIXING FRACTION FOR BAY  2 18  B.8PZ FOR TIME PERIOD  9


                  *** THE INTERMIXING FRACTION FOR PAY  3 IS  e,100 FOR TIME PERIOD  9

-------
                   UTAH LAKE «-JUtY 19T0«JULY 19T3--HIN SPRS AOOEO

                    •••SUHHAHY INFORMATION POD TIME PERIOD  9     •

                    ••* PERIOD FLOW! AND INTERFLOWS
MONTHS

BAY
PRECIP EVAP
NAME NQ.
HAIN
LK
1
PROVO B 2
BOS*
TOTAL
...

HAIN LR
PROVO B
GOSMtN B
EN B
SYSTEM
MATER
BAT
1
2
3
3

AC-FT
1923,
306,
1160,
299
QUALITY AT
TOS
9BB.
934.
1099,

09
22
80
SUH TRIB VOL BEFORE
AC-FT INFLOW AC-FT
4263,
461,
1S39,
0. 6563
12544.
8982.
1220.
, 22746,
INTERFLOW
621148,
32313
216796

•
.

INTERFLOW
VOL AC»FT
»29(>0,
7466,
•4906,
LAKE
F
STAGE
•4489,04
4489,84
4489,04
4489,
I N A L
AREA
61138,
6729,
26503,
04 94371,

VOLUME
623709.
24846.
221702,
870297,
THE END OF THE PERIOD
NA
134,69
43.31
167,46
CA HG
64,72 49.
72.33 27.
63,19 57,
K
16 ia
30 a
20 22

.93
.00
.»
CL
191,01
49.30
233,99
HC03
299,94
299.93
256,90
304
185,83
109,70
232,64
N03
1.26
1.94
0,82
                                                                                                             P04
                                                                                                             1,20
                                                                                                             1.47
                                                                                                             1,18
00
00
                ••'TIME  PERIOD  10  HAS  BEGUN

                •*•  THE  INTERHIX1N6  FRACTION  FOR  BAY   2  IS   0,009 FOR  TIME PERIOD  10

                •••  THE  INTERMIXING  FRACTION  FOR  BAY   3  IS   0,150 FOR  TIME PERIOD  10

-------
                   UTAH LAKE --JULY J97B-JULY |9TJ—.H1N 9KRS ADDED
                    •••SUMMARY INFORMATION FOR TIME PtRlOO IB     >
                    *** PERIOD FLOWS AND INTERFLOWS
MONTHS
BAY PRECIP EVAP SUM
NAME NO, AC*FT AC-FT INFLOrt
MAIN LK 1 9676, 15227. 2)
PROVO B 2 1211, 1676. •»
60SHEN B 3 5674, 6601.
TOTAL
• »•
MAIN LK
PROVO B
GOSMEN B
SYSTEM
NATE*
BAY
1
e
3
16361,
QUALITY AT THE
TOS NA
888,00 131,
5«B,54 42,
1034.74 162.
23505,
END
83
91
(10
OF THE
CA
65,26
72,77
63,71
TRIB VOL BEFORE INTERFLOW FINAL
AC*FT INTERFLOW VOL AC-FT STAGE AREA VOLUME
R6». 642*27, 567, 4469.33 61443, 641459,
742. 34J23, 7322, 44*9.33 6924, 2681*1,
859, 221634, -7989. 4489.33 26833, 229523,
34470,
PEKIOO
M6
48,10
27,32
55,70
LAKE 4489,33 95279, 197784

K CL HC03 S04 N03
18,05 188,05 26f),98 162,25 1,31
8,22 4S.67 302.41 107,64 1,57
21.64 246,06 258,79 224,39 0,91
,

P04
1.15
1,50
1,18
00
VO
                *»*TIHC PEftlOO  11 HAS BEGUN
                **•  THE INTERMIXING FRACTION FOR BAY  2 is  e.aes FOK TIME PERIOD 11
                •••  THE INTERMIXING FRACTION FOR BAY  3 18  0,i?a FOR TIME PERIOD i.

-------
                   UTAH  LAKE  —JULY  19T0-JULY  1973—MIN  SMS  ADDED

                    •••SUMMARY  INFORMATION  FOR TIME  PERIOD  11     —   MONTHS

                    ••*  PERIOD  PLOWS AND  INTERFLOWS
BAY PRECIP EVAP SUM TRIB VOL BEFORE
NAME NO, AC- FT AC-FT INFLOW AC-FT INTERFLOM
MAIN LK 1 1791, 26B00, 3696, 620446,
PROVO B 2 525, 2430, 4*42, 33438,
GOSHEN B 3 1496, 11355, 836, 220504,
TOTAL SYSTEM 3614, 40265, 13576,
•*• HATER QUALITY AT TME END OF THE PERIOD
BAY TOS NA CA MG K
MAIN LK t 915,14 134,49 66,45 49,22 16,46
PROVO B 2 563,61 44,34 81,28 29,07 9,03
OOSHEN B S 1056,61 164,16 66,79 96,70 21.42
INTERFLOW
VOl AC. FT
•5749,
8263,
•2514,
LAKE

CL
143,45
47.93
246,36
P
STAGE
4469,09
44A4.04
4469,09
4489,

HC03
273,20
314.55
271.06
I N A L
AREA
61184,
6762,
26560,
09 44MB,

804
166,65
115,44
226,87
VOLUME
626645,
25175,
223016.
674668,

N03
1.40
1,64
1.02
                                                                                                             P04
                                                                                                             1.15
                                                                                                             1,63
                                                                                                             1.21
vo
o
               •••TIME PERIOD 12 HAS BEGUN

               *** THE INTERMIXING FRACTION FOR BAY  2 18  B.005 FOR TIME PERIOD 12

               ••• TME INTERMIXING FRACTION FOR BAY  3 IS  0.150 FOR TIKE PERIOD 12

-------
    UTAH  LAKE  "JULY  19T8-JULY  19T3--MJN  8PRS  ADOCD
     •••SUMMARY  INFORMATION  FOR  Tint  PERIOD  la    --   MONTHS
     • ••  Pen 100  flOwS AND  INTERFLOWS
BAY
NAME NO,
MAIN LK 1
PROVO 8 2
60SH6N B 3
TOTAL SYSTEM
••• MATER
SAY
MAIN LH 1
PROVO 6 2
COSHEN 0 3
PRECIP EVAP
AC-FT AC-FT
1631. 36546.
293, 4D39,
597, 15063,
SUM TRI8
INFLOW AC-FT
-67.
8018.
570.
2521, 56447,
QUALITY AT
TOS
958.
660.
1106,
36
04
45
THE END
NA
140,44
SB, 36
170.76
OF THE
CA
72,89
89,09
71,81
8521,
PEKIOD
51.
32.
59,
VOL BEFORE
INTERFLOW
591713.
29448,
200322.


K
19 19,21
71 10,29
22 22,82
INTERFLOW
VOL AC-FT
-5702.
7497,
-1795,
LAKE

CL
202.14
54,34
256,77
F I
STAGE
4486.61
4488,61
4488,61
4484.61

HC03
289,33
357,91
298,67
N A L
AREA
6P685.
6440,
26018.
93143,

SQ4
194.82
129.60
235,30
VOLUME
597415,
219SJ,
210117,
829483

N03
1,53
1,98
Itl7

t

P04
1.19
It"
1,28
•••TIME PERIOD 13 HAS BEGUN
•*• THE INTERMIXING FRACTION FOR BAY  2 IS  B.BB5 FOR TIME PERIOD 13
••• THE INTERMIXING FRACTION FOR RAT  3 IS  0,150 FOR TIME PERIOD 13

-------
                  UTAH  LAKE  "JULY  19T0OULV  1»7J-«*IN SPRS  ADDED
                   •••SUHHARV  INFORMATION FOR  TIME PERIOD  13     •
                   *•*  PERIOD  FLOW! AND  INTERFLOWS
MONTHS
BAT PRECIP EVAP SUH TRIB VOL BEFORE
NAME NO. AC-FT AC-FT INFLOW AC-PT INTERFLOW
MAIN LK 1 152, 41300, -30603, 525664,
PROVO B' 2 166, 4363. 7272. 25026,
OOSHEN 8 3 477. I77H7. 500. 193367.
TOTAL SYSTEM 616, 63390, -22631.
••• MATER QUALITY AT THE END OP THE PERIOD
BAT TD8 NA CA HC K
MAIN LK I 1041.67 152.86 79.27 55.26 20,91
PROVO B 2 T49,59 57,26 100,67 37.04 11,61
60SHEN B 3 1179,66 161,16 76,29 62,18 24.23
INTERFLOW
VOL AC-FT
-15964,
• 811,
7173.
LAKE

CL
221.12
61,67
270.97
F I
STAOE
4487,66
4467.66
4467.66
4487,66

HC03
314.65
404, 0B
316.16
N A L
AREA
39783,
5766.
25069,
90616,

804
211.54
147,06
245,66
VOLUME
541647.
1*217,
166215,
744079.

N03
J.74
2.33
1.34
                                                                                                           P04
                                                                                                           2^31
                                                                                                           1,37
ro
              ••*TIKE PERIOD 14 HAS BEGUN
              •*• THE INTERMIXING FRACTION FOR BAY  2 is  0,005 FOR TIME  PERIOD  i«
              ••• THE INTERMIXING FRACTION FOR BAY  3 is  0.150 FOR TIME  PERIOD  14

-------
                 UTAH LAKE --JULT 11TP-JULT J«tT3--HJN 9PRS ADDED

                  •••SUMMARY INFORMATION FOR TIME PERIOD 14     -•  MONTHS

                  *•• PERIOD FLOWS AND INTERFLOWS
                    PAT
                            PRECIP   EVAP   SUM TRIB   VOL BEFOnE   INTERFLOW
NAME NO, AC-FT AC-FT INMOW AC-FT INTERFLOW
MAIN LK 1 3337. 35*56, -34231. «T««97,
PROVO 8 2 298, J«5». 7983, Zia39,
GOSHEN S 3 1587, 19019, See. 1T326&.
TOT*L SYSTEM 5a«l, ?a3«9, -?57«8,
•** MATER DUALITY AT THE END Of THE PIHIOO
BAY TOS NA C» MG K
MAIN LK 1 HIT. 32 US 3, 90 83,31 !8, 89 22.43
PROVO B t 812.29 62. 8« ll(),t>2 39.69 12,35
GOSHEN B 3 1247.66 !9lt.73 64. a| 66,36 29,53
VOL »C-FT
-16606.
9251,
7354,
LAKE

CL
238, Bl
66,91
264.09
STAGE
4466.84
4486, fl4
4466.64
4486,64

HC03
33R.38
433.33
34B.15
AREA
59P74,
5S3S1.
24365,
88498,

304
226,50
162,09
261.22
VOLUME
4915P3,
11786,
165912,
669203,

N03
t,«6
2,60
1.52
                                                                                                            P04
                                                                                                            1.39
                                                                                                            2,64
                                                                                                            1.46
CO
             •••TIME PERIOD 15 HAS BEGUN

             •»• THE INTtRMIXING FRACTION FOR BAY  2 19  0.809 FOH TIME PERIOD  15

             • »• TME INTERMIXING FRACTION FOR BAY  3 IS  0,15(1 FOR TIME PERIOD  15

-------
                   UTAH LAKE ••JULY nre-JiM 1973—mN SPRS AOOEO
                               INFORMATION FOR TIME PERIOD 19

                    • ••.PERIOD FLOWS AND INTERFLOWS
                      0AV
                              PRECIP   EVAP   SUM TR1S   VOL BEFORE
   NAME  NO.   AC-FT   AC-FT INFLOW AC«FT
MAIN LK   t    3199,   20?2B.   »|4?69.
PROVO B   2     488,    1T13,     7873.
COIHCN B  3    1948,    8260.      see,
                                                          INTCRFLOM
             TOTAL IVITCH
                         30001,
      »S»92,
                                                            16436,
                                                                      MONTHS
                          INTCRFLOM      FINAL
                          VOL  AOFT  STA6C      AREA      VOLUME
                           • 10T(.6,   44S6.S0     56769.    471371.
                            • «>»    <«•«.  «A      4T64,     1JBJ9.
                                               14062,    1ST761.
                VOL AC>. .   „,-.,.
                 •10T(.6,   4486,59
                   6427,   4466.90
                   2339,   4486.Se

                    LAKE     4486,90
                              87639,    639142,
               ••• MATER gUALITT AT THE END OF THE PERIOD
          BAT
MAIN LK    1
PHOVO B    2
009MEN B   3
                           TOS
                         1190.10
                          769,70
                         1274,09
                      NA
                    166,39
                     61,04
                    194,02
  CA
 66,62
106,26
 MG
60,31
37,77
 67,74    67,94
 K
23,06
11.94
29,99
  CL
244,77
 64,29
267,99
 HC03     30*
391,26   232,46
413.96   160,22
392,99   264,90
N03
2,19
2,49
1,67
F04
1.43
2.56
1,90
V£>
                ***TIHC PERIOD  16 HAS BEGUN

                ••*  THE INTERMIXING FRACTION FOR BAY  2  IS  0,009 FOR TIME PERIOD 16

                •••  THE INTERMIXING FRACTION FOR BAV  3  is  0,190 FOR TIME PERIOD i*

-------
                  UTAH  LAKE  ••JUiY  19TB.JULY  19T3—MIN  SPSS  ADDED

                    •••SUMMARY  INFORMATION  F0« TIME  PERIOD  16

                    *»•  PERIOD  FLOWS AND  lNTERFLOv.8
MOMTH9
P-AY PRFCIP EVAP SUM THI8 VOL BEFORE
NAME NO, AC-FT AC-FT INFLOW AC-FT INTERPLOK
MAIN LK 1 5779, 7444, 2A8V6. 498512,
PROVO » 2 750, 6BJ, 9371, 1952»,
COSHtN B 3 3751, 35)49, 1422, 159885,
TOTAL SYSTEM 102*0, 11&96, 39599,
••• HATER DUALITY AT THE END OF THE PERIOD
BAY TDS NA CA MC K
MAIN LK ] 1115.86 161,96 87.76 58,21 22, 21
PROVO 8 2 683,48 52,11 96,65 32.51 9,47
GOSHEN B 3 1247,98 188,31 87,10 65,52 25,13
INTERFLO
VOL AC-F
-8392^
LAKE

CL
235,79
54,58
21*2,22
               FINAL
           STAGE     AREA
                13    59156,
                13     5135,
          4486.93    24447,
                                                                                                    VOLUME
                                                                                                    497344,
                                                                                                    169277,

                                                                                             88738,   677925,
                                                                                 HC03     S04       N03      P04
                                                                                346.32   22«.lT     2,18     UJ7
                                                                                358.53   lag.9*     2,10     2.13
                                                                                350.65   257,72     1,76     1,46
tn
               • ••TIME PERIOD 17 HAS BF.GUN

               *•• THE INTERMIXING FRACTION FOR BAY  2 IS  8.0B2 FOR TIME PERIOD J7

               • •* TME INTERMIXING FRACTION FOR BAY  3 IS  B.lfJB FOR TIME PERIOD 17

-------
                   UTAH LAKE -»JULY 19T0-JULY 1973—MIN SPRS ADDED

                    •^SUMMARY INPOHMATION con TINE PERIOD IT     •

                    ••• PERIOD PLOMI ANQ INTERPLOwS
                                                     >•   MONTHS
         BAV .
     NAHE  NO.
  MAIN LK   1
  PROVO 6   2
  GOSHEN B  3

TOTAL SYSTEM
PRECIP
AC-PT
6209.
 T86,
 819.

  7729.
                                       EVAP   SUM TH1B   VOL BEPORE
                                      AC-PT INPLQW AC-PT  INTERPLOH
                                       40«t,    37*22,     937139,
                                        391,     9080,      21T39,
                                       1670,     2982,     170003.
P I N A L
INTERPLOH      P
VOL AC-PT  STAGE
   9668.  4487.91
   6421,  4487,91
  	   4487,91

            4467,91
                                                                          LAKE
      AREA
      99639,
       9*21,
      24926,
VOLUME
93146T.
 19318,
182092,
                                                                                             98186,   T2B87T,
               ••• WATCH QUALITY AT THE END OP THE PEMIOO

MAIM LK
PROVO B
90SHEN B
BAV
1
2
3
TDS
1069,72
626,30
1249,79
NA
193.49
47,60
186,09
CA
89,40
89,69
66,62
HG
99,27
29.89
64,49
K
21.01
8,19
24,96
CL
223,94
49,08
269,94
                                                                                 HC03     S04       N03      P04
                                                                                339.16   212.61     2,16     1.28
                                                                                3)0.62   129,31     1,89     1,88
                                                                                390,98   256.38     1,81     1,42
10
O>
               •**TINC PERIOD 18 HAS BEGUN

               • «• THE INTERMIXING PRACTION fOR BAY  2 IS  0,002 POR. TIME PERIOD 18

               **• THE INTERMIXING PRACTION POR BAT  3 I)  9.198 POR TIME PERIOD 16

-------
                  UTAH LAKE —JULY  l9T«l»JUtr  1973--»XN  8PR3  ADDED
                   •••SUMMARY INFORMATION FOR  TIME  PERIOD  16
                   ••• PERIOD FLOWS  ANI>  INTERFLOWS
MONTHS
BAY
NAME NO,
MAIN L* 1
PROVO 8 2
GOSHtN 8 3
TOT*L SYSTEM
••* WATER
BAY
MAIN LK 1
PROVO B 2
GOSHEN B 3

PRECIP
AC-FT A
8147,
lite,
1142,
1B399,
QUALITY AT THE
TDS
Id2fl,
584,
1211.
NA
11 145,
78 44,
38 isa.
EVAP
C-FT
4UT4.
3P4,
17(93,
SUM TRIB
INFLOW AC-FT
33896.
iiti'.
VOL BEFORE
IKURFLOH
24135!
183815,
6160, 44271.
END
91
03
OF THE PCH
CA
83.01
61.52
85,81
IOD
MG
52.
27.
63,

K
61 19.92
86 7,67
01 23,90
INTERFLOW
VOL AC-FT
5fB5|
LAKE

CL
213.54
45.83
2(»a.97
F I
STAGE
4408,06
4486.06
4486,06

HC03
324,49
310,66
348,14
N A L
AREA
60107,
6071.
91574.

$04
202,55
119. 65
252,46
VOLUME
1825l!
195316,
777387

N03
2.15
1.T7
1,85

,

P04
1.21
1.T4
l.JT
VO
               •••TIME  PERIOD  19  HAS  BEGUN
               •••  THE  INTERMIXING  FRACTION  FOR  BAY   2  IS   0,002  FOR  TIME  PERIOD 19
               ••*  THE  INTERMIXING  FRACTION  FOR  BAY   3  13   9.100  FOR  TIMf  PERIOD 19

-------
UTAH
                               "JULY 19T0«JULV I973--MIN SPRS ADDEO
                      •••SUMMARY INFORMATION Pf)R TIME PERIOD 19

                      ••* PERIOD FLOWS ANO INTERFLOWS
                        BAY
                    NAME  NO,
                 MAIN UK   t
                 PROVO •   2
                 60SHEN B  3

               TOTAL SYSTEM
PRECIP   EVAP   SUM TRIB   VOL BEFORE
AC-FT   AC-FT INFLOW AC*FT  INTERFLOW
 190,    4106,    21929.     981790,
  40,     419,     »16I,      26037,
  89,    1739,     1314,     199179.

   273,    6299,    31600,
                                                   MONTHS
                                                   INTERFLOW
                                                            FINAL
                                                   VOL AC-FT  STAGE     AREA     VOLUME
                                                      1«48.  •4S8.33    603»2.   960342,
                                                      9967,  M8S.33     6292,    20070,
                                                     "7411,  4486,33    29702,   202999,

                                                       LAKE    4488,33    92346,   803007,
                 •*• WATER QUALITY AT THE END OF  THE PERIOD
            MAIN LK
            PROVO a
            OOSHEN B
 BAY
  I
  2
  3
  TOS
 998,96
 980,32
1218,93
       NA
     142.16
      43,75
     179,62
 CA
82,16
79,10
89,63
 HG
51,23
27.76
61,98
 K
14.36
 7.96
23,46
  CL
2ee,68
 49,83
282,13
 HC03
320,47
312.16
347,21
 S04
197,34
116,96
248,79
N03
2,20
1,79
1,90
P04
1.16
1,71
1,33
VO
00
                 **«TIME PERIOD 20 HAS BEGUN

                 ••• THE INTERHIXINC FRACTION FOR BAY  2 is  0.002 re* TIME PERIOD 20

                 • •* THE INTERMIXING FRACTION FOH BAY  3 19  0,100 FOP. TIME PERIOD 2f)

-------
                   UTAH LAKE —JULY 19TB-JULY 19T3--MJN SPSS ADDED

                    •••SUMMARY INFORMATION FOR TIME PERIOD 28     •-  MONTHS

                    • •• PERIOD PUOW9 AMD INIERFLOwS
MY PRECIP EVAP SUM TRIB VOL BEFORE
NAME NO, AC-FT AC-FT INFLOW AC-FT INTERFLOW
MAIN LK | 101, 4024, 17928, 594346.
PROVO B 2 31. 417, 7591, 27276,
60SMEN B
TOTAL
*•*

MAIN LK
PROVO B
COSMEN B
SYSTEM
NATEH
BAY
t
i

3

QUALITY
TDS
981.81
583. T0
1216,44
0, 1713,
132. 6154
2513, 203395.
« '
AT THE END OF THE
NA
139,25
44.36
178,11
CA
81,43
77,60
85.26
!6*32.
PERIOD
M6
50,09
27,90
61.23


K
1»,89
7.48
23,817
INTERFLOW
VOL AC-FT
•189,
•54531
LAKE

CL
205,24
46.67
284.58
FINAL
STAGE AREA
4488.56 60636,
4488,56 »>4tfe.
4488.56 25965,
4486

HC03
317,15
314,86
346, 88
,56 93*109,

S04
193,17
116,97
247,73
VOLUME
594535,
21633,
208848,
825017

N01
2,22
1,77
1,94


,

P04
1.J3
1.72
1,31
IO
IO
                •••TIME  PERIOD  21  MAS  BEGUN

                •»* THE  INTERMIXING  FRACTION  FOR  BAY   2  IS   B.0B2  FOR  TIME  PERIOD  21

                *«• THE  INTERMIXING  FRACTION  FOR  BAY   3  IS   0.1B0  FOR  TIME  PERIOD  21

-------
                     UTAH LAKE —JULY  HTB-JUUT  1973—HIM SPRS  ADDED

                      •••SUMMARY  INFORMATION POM TIME PERIOD 21

                      ••• PERIOD  FLO'S AND INTERFLOWS
                                                  MONTHS
                        *AY
                    NAME  NO,
                 MAIN L*   I
                 PROVO >   2
                 60SHIN •  3

               TOTAL SYSTEM
          PHCC1P
          AC-FT
           101,
             e,
           108.

             209.
              EVAP    SUN  TRJB
             AC-FT  INFLO* AC-FT
              4142,     111*1,
               438,     9663,
              1774,      1160.
VOL BEFORE
INTERFLOW
6U669.
sess*.
ZBBJfcJ.
INTERFLOW
VOL AC-FT
• 10,
T3I5,
•SI25,
F 1
STAGE
446S,«4
44S8.S4
«40S,«4
N A L
AREA
60934,
6999.
26285.
VOLUME
6I1S7S.
23943,
2I64SS.
                6393.
               33034,
                                                 LAKE
                                     44S«,S4
                                       93SIS,    851907,
                 *•• HATER QUALITY AT THE END OF THE PtHlOO
            MAIN LK
            MOVC 9
            BOSMEM 6
BAY
 t
 t
 3
  TOS
 999,«7
 969,24
1115.82
  NA
139.fl»
 46,44
174.43
 CA
10,54
76,42
64,98
 PG
49,68
28,87
59,99
 K        CL      hCOJ     804       N03      P04
18.27   199.78   313.11    187,79     2.23     1.08
 7,47    48.91   320,84    117,22     1.79     1,74
22.98   278.49   344,66    242.33     1.48     1,28
no
o
o
                 •••TIME FERIQO 22 HAS BEGUN

                 ••• THE INTERHIUNB FRACTION FOR BAY  2 IS  0.003 FOR TIME PERIOD 22

                 *•* THE INTERMIXING FRACTION FOR BAY  3 IS  0.150 FOR TIME FERIOO 22

-------
                  UTAH LAKE —JULY  19T0-JUCY  I9T3--MIN  SPRS  AODCO

                   •••SUMMARY INFORMATION FOR TIME  PERIOD  22

                   ••* PERIOO FLOWS AND  INTERFLOWS
MONTHS
MY
NAME NO,
MAIN L* t
PROVO B 2
GOSMEN n 3
PRECIP
AC-FT
5888,
2474^
EVAP
AC-FT
215T?
2336
9396
TOTAL SYSTEM 9165, 332

••• WATER
BAY
MAIN LK i
PROVO B 2
60SHEN B 3
QUALITY AT
TOS
969.
11901
73
THE
NA
136.
",
172,
END
04
99
SI
SUM TR18
INFLOW AC-FT
, 17*37,
. 8953,
, 1100,
14, 27890,
OF THE PEHIOD
CA MC
81,67 48,
80,97 29,
86.41 59,
VOL BEFORE
INTERFLOW
614028,
30963,
210757.


93
13
37


K
ie.
7,
22.


32
75
39
INTERFLOW
VOL fC-FT
7lfl7i
LAKE

CL
202.40
50.45
274,79
               FINAL
           STAGE     AREA
                IB    6B977,
                                                                                                    VOLUHE
                                                                                     I*     26331,

                                                                                  448(1,88     93934,
 HC03     S04
317.2?   189,29
331,82   121,82
348,75   239, SI
                               23816,
                              217579,

                                855747,
                              N03
                              2,30
                              1,86
                              2,f»8
                                                                                                             P04
                                                                                                             1.08
                                                                                                             1,80
                                                                                                             1.27
ro
O
               **»TIME  PERIOD 23 HAS flEGUN

               •••  THE  INTERMIXING FRACTION FOR  BAY   2  is   0.res  FOR  TIME  PERIOD  23

               ••*  THE  INTERMIXING FRACTION FOR  BAY   3  13   0.150  FOR  TIME  PERIOD  23

-------
                 UTAH LAKE »-JULY 11T0-JULY I9TS--MIN SPRJ AOOCO

                  •••SUMMARY INFORMATION FOR TIME PERIOD 23

                  •** PERIOD ruo«s AND INTERFLOWS
MONTHS
BAY PftECIP EVAP SUM TRIB VOL BEFORE
NAME NO, AC-FT AOFT INFLOW AC-FT INTERFLOW
HAIN L« 1 254, 3200ft, -9253, 573353.
PftOVO B 2 50, 3477, 6929, 27317.
GOSMEN B 3 22. 13818, 590, 204373,
TOTAL 8V3TEM 326, 49296, "1734,
•*• HATER QUALITY AT THE ENO OF THE PEHIOO
BAY TDS NA CA MQ K
MAIN LK 1 1016.15 142.14 86,04 51,03 19.15
PROVO B I 690,98 54,42 93.77 32,93 8,86
G08MEN B 3 123?, 02 178,27 91,13 61,36 23,16
INTERFLOW
VOL AC-FT
•8302.
7102.
1200.
LAKE

CL
812.46
57.30
201,47
F
STAGE
4488,33
4488,33
4488,35
4488,

HC03
333,77
370.62
366,02
I N A L
AREA
60414,
6267.
25726.
33 92407,

804
198.07
141.13
246,72
VOLUME
581655,
202(5,
203173,
805043,

N03
2,46
2.13
2,26
                                                                                                           P04
                                                                                                           1.13
                                                                                                           2.14
ro
o
ro
              •••TIME  PERIOD 24 HAS BEGUN

              «••  THE  INTERMIXING FRACTION FOR BAY  2  is  0,005 FOR TIME PERIOD 24

              «•*  THE  INTERMIXING FRACTION FOR BAY  3  IS  0,150 FOR TIME PERIOD 24

-------
                  UTAH  LAKE  -•JULY  |97B»JULY  1975—M1N SPR3 ADDED

                   *«#SU1MARY  INFORMATION  FOR TIME PERIOD  24     —   MONTHS

                   • •*  PERIOD  FLOWS ANQ
BAY PHECIP EVAP SUM THIB VOL BEFORE
NAME NO. AC-FT AC-FT INFLOW »C-FT INTERFLOW
MAIN LK 1 Jan, 324B9, 4?75, 596792.
PROVO H 2 350, 3362. 7207, 34* IB,
60SHEN B 3 165JI, 13801. 500, 191523,
TOT»L SYSTEM 5271. 4-J572, 11982,
•»• NATE* QUALITY AT THE END OF THE PERIOD
BAY TOS NA CA MG K
MAIN LK 1 1041.96 1««,75 69,70 52.16 19.54
PROVO B 2 753.19 5«,£0 105,78 35.95 9,81
COSHEN B 3 1265.48 IB?. 41 95.56 63,16 23,77
INTERFLOW
VOL AC-FT
•4«22,
6490,
-2468.
LAKE

CL
217.02
61,90
28^,93
F I
STAGE
4486,01
4488,01
4468.01
44»8.Q1

HC03
346.05
397. M
381,65
N A L
AREA
60B56,
6038.
25340.
9143a.

804
202.73
157,47
251,92
VOLUME
5t>0614,
17919,
193991,
77S724,

N03
2.57
2,36
2,42
                                                                                                            P04
                                                                                                            1.15
                                                                                                            2,44
                                                                                                            1.36
ro
o
              •««TIHE PERIOD 25 HAS BEGUN

              ••• THE INTERMIXING FRACTION FOR BAY  t is  0,005 FOR TIME PERIOD 25

              *•• THE INTERMIXING FRACTION FOR BAY  3 IS  0,150 FOR TIME PERIOD 25

-------
                    UTAH LAKE .-JULY 19T0-JULY 197J.-M1N SPRS ADDED


                     •••SUMMARY INFORMATION FOR TIME PERIOD 25


                     ••• PERIOD FLOKS AND INTERFLOWS
MONTHS
SAY PRECIP EVAP SUM THIb VOL BEFOKF INTERFLOW FINAL
NAME NO, AC-FT AC-PT IMLOa AC-FT INTERFLOW VOL AC-FT STAGE AREA
MAIN L* 1 «™, «S173, -32P:t4. 4(«6SI54. -'.3791, 4486.98 59192,
PROVQ B f. Ill, 4341. 5219. 1S9M9, 6384, 4486.98 517B,
TOTAL
• •*
MAIN LR
PROVC P
GOSMEN B
SYSTtH
WATER QUALITY
DAY TOS
2 861,47
1 1353,95
983, 65739,
*•
AT TME END OF TMt
NA CA
15«,M 97,
65,53 122,
194,36 103,
96
ei
92
263J9.
PEN I OP
M6
56,78
41,41
67,44
LAKE 4486,98 88844,

K CL HC03 S04
21.44 239,21 377,54 221.51
12,05 72.51 454,73 177,38
29,42 Je3,36 413.03 268,09
VOLUME
499845,
12SSS,
981658,

N03 P04
3.C6 1.36
2,92 3,11
2.72 1,«7
ro
o
                •••TIME PERIOD 26 MAS BEGUN


                *** THE INTERMIXING FRACTION FOR »AY  2 is  e.005 FOR TIME PERIOD 26


                ••• TME INTERMIXING FRACTION FOR BAY  3 IS  0,150 fOH TIME PEHIOO 26

-------
                 UTAH LAKE --JULY I9TB-JUUY 1973--MIN 9FRS ADDED

                  •••SUMMARY INFORMATION FOR TIME PERIOD 26

                  »«• PERIOD FLOWS AND INTERFLOWS
MONTHS
MY
NAME NO,
HAJN IK 1
PKOVO B 2
603MEN e 3
TOTAL SYSTEM
PRECIP EVAP
AC-FT AC-FT
1972, 34959,
327, 3053.
2406, 1U459,
470
••* MATER QUALITY AT
BAY TOS
HAIN LK 1 1234,
PROVO B I 904,
603MEN 6 3 l«22.
52
36
Op. Jif ** f
THE END
NA
171.02
68,03
203,64
SUM TRIB
INFLOW AC-FT
•34137,
500,
1,
OF THE
CA
105.51
128,17
110,65
26228,
PERIOD
MG
60,
«J.
70,
VOL BEFORE
INTERFLOW
432721.
157737^


64
79
64


K
23,19
13,77
26,70
INTERFLOW
VOL AC-FT
TITS!
9053.
LAKE

CL
259,16
77,62
316,50
F
STAGE
4466.12
4486.12
4486.12
4466,

MC03
406.19
476.56
438,08
I N A L
AREA
56472,
4445,
23767,
12 66684,

S04
236.36
183,29
280,17
VOLUME
448952,
6030.
146644.
605666,

N03
3.59
3.26
3,03



PO*
1.57
3.55
1.58
ro
O
Ul
             ***TIMC PERIOD 27 HAS BECUN

             ••* THE INTERMIXING FRACTION FOR BAY  8 IS  0,005 FOR TIME PERIOD 27

             *** THE INTERMIXING FRACTION FOR BAY  3 IS  0.150 FUR TIME PERIOD 27

-------
ro
o
                    UT»H LAKE ..JULY 19TB-JULY 19TJ--MIN 9P*S ADOEO


                     •••SUMMARY INFORMATION FOR TIME PERIOD H


                     • ** PERIOD FLOWS AND INT6RFLON8
MONTHS
BAY.
NAME NO,
MAIN LK 1
PROVO a *
COSHEN B 3
TOTAL SYSTEM
••• WATER
BAY
MAIN LK l
PROVO a i
C09NEN 8 3

PRECIP EVAP
AC-FT AC-FT
3507, ?8?99.
2TB, 2151,
542
QUALITY AT
T08
1297. 99
1487.48
O 0 * \ * J
THE END
NA
1T9.54
69. 84
212.66
SUM THIS
INFLOK AC-FT
4726^
C 4)
OF THE
CA
111,01
127,68
117,06
.6M4,
PEM100
MG
»3.
44.
T3.
VOL «EFORE
INTERFLOW
aK89k),
10875.


K
61 24.41
09 14.0(9
63 27,92
INURFLOW
VOL AC-FT
-7471,
4*60,
2811,
LAKE

CL
2TJ.B2
BB.B7
329.14
F
STAGE
44»5.59
4485,59
4485.59
4485'.

MC03
426.78
482.72
461.82
I N A L
A4EA
JBBa2.
3797,
23280.
59 85079.

904
249.56
176.15
291.47
VOLUME
41R362.
6215,
136513,
16U89

N03
4.13
3.53
3.3A

•

P04
1,76
3,91
1.69
                «**TIHE PERIOD 28 HAS BEGUN

                •** THE INTERHIIINC FRACTION FOR BAT  i IS  0,005 FOR TIME PERIOD 28


                »•* THE INTERMIXING FRACTION FOR BAY  3 is  e.isw FOR TIME PIRIOO 28

-------
                      UTAH LAKe -»JULY  197B-JULY  1973--NIN SPRS  ADDED

                       •••SUMMARY  INFORMATION  FOR TIME  PERIOD  28     --  MONTHS

                       «** PERIOD  FLOWS AND INTERFLOWS
         BAY
     NAME  NO,
  MAIN LK   t
  PROVO B   2
  GOSHEN B  3

TOTAL SYSTEM
                                 PNCCIP    EVAP    SUM  TttlB
                                 AC-FT    AC-fT  INFLOW AC-FT
                                13867,    12610,     26*46.
                                 1215,      826,     6087,
                                 4964.     5061,
                                  20046,    18497,
                              33733,
L BEFORE
NTERFLOW
446264,
12691.
137416,
INTERFLOW
VOL AC-FT
3536.
5211.
-8747.
F I
STAGE
4486,01
4486.01
4486.01
N A L
AREA
58384.
4356.
23680.

VOLUME
442728,
7480,
146163,
                                                 LAKE
                                               4486,Bl
                                       86419.   596371,
                  •••  KATfS QUALITY  AT  THE  END OF  THE  PERIOD
             MAIN LK
             PROYO B
BAY
 1
 2
 3
  TDS
1245,39
 714,34
1442.88
  NA
171,05
 57.93
205.07
                                 CA
                               107.61
                                97.42
                               114,69
 MG
60.82
35.3B
7P.96
 K        Ct      NCOS     304       N03      P04
23.33   260,36   413,04   238,06     4.30     1,78
12.28    65,88   390,25   I4J.92     2,82     3,13
26.96   316,59   451,23   281,26     3.55     1,70
ro
o
                  •••TIME PERIOD 29 HAS BEGUN

                  ••• THE INTERMIXING FRACTION FOR BAY  2 is  0.002 FOR Tine PERIOD 29

                  • •• TMe INTERMIXING FRACTION FOR BAY  3 IS  0.135) FOR TIKE PERIOD 29

-------
                  UTAH LAKE --JUCY I9T0.JULY 1973--MIN SPRS ADDED

                   •••SUMMARY INFORMATION F0« TIME PERIOD 29     ••  MONTHS

                   ••• PERIOD FLOWS AND INTERFLONS
BAY
NA*C NO.
WAIN UK- 1
PROVO 0 2
UOSMtN B 3
TOTAL 8YSTIM
PRECIP
AC»FT
1696,
2249J
6398,
                                             SUM TRIB   VOL bEFORC
                                     AC'FT INFLOW »C-fT  JNTtRFtOW
                              109,
                              572,

                               2088,
                                                1IB0,
                                                            INTERFLOW
                                                            VOL AC-FT  STA6E
                                                               7621,   4486.98
                                                            FINAL
                                                                  ARtA      VOLUME
                                                                  98859.    476314,
                                                3001,   4486,56      4835,     1C446,
                                                       4486,58     24151,    159762.
                                                                         LAKE
                                                                                 4446,58
                                                                    67645.    646522,
               •«« HATER QUALITY AT THE END OF THE PERIOD
"AIM L*
PROVO B
60SHEN t
                   BAY
                     I
                     2
                     3
  T03
1185,98
 6T9,fl7
1393.28
  NA
162,04
 54,69
197,19
  CA
133.25
 88,16
111,26
 HO
57,67
32,15
68,18
 K        CL      HC03     S04       N03      P04
22,06   246,97   394,94   225,43     4,43     1,77
11.10    59,41   354,37   136,62     2,«1     2,68
25,69   307,96   437,15   270,51     3.65     1,69
ro
o
oo
                      PERIOD  50 MAS BEGUN

               •••  THE INTERMIXING  FRACTION FOR BAY  2  is  0.002 FOR TIME PERIOD 30

               •••  THE INTERMIXING  FRACTION FOR BAY  3  is  0.100 FOR TIME PERIOD 30

-------
                     UTAH LAKE "JULY 19TC-JULT 197S—MJN SPffS ADOEO

                      •••SUMMARY INFORMATION FOR TIME PERIOD 30     •

                      *•* PERIOD FLOWS AND INTERFLOWS
MONTHS
BAY
NAME NO.
MAIN I* I
PROVO B 2
COSHtN B 3
TOTAL SYSTEM

•»• HATER
BAY
MAIN L* i
PROVO B 2
GOSMEN B 3
PRECIP EVAP
AC-FT AC-FT
2991, 145?.
322, 117,
1469, 563.
4782.
OUAL1TY AT THE
T03
1138,
135l!
NA
15 154,
63 53.
57 1918.
212
END
87
51
38
SUM TRIB
INFLOW AC-FT
4JK7.
C Q
OF THE
CA
99.68
81,49
108.38
49302.
PERIOD
MC
55.
3«,
VOL BEFORE
INTERFLOW
52H969,
15«>47,
161B47,


K
12 21,07
27 10,24
67 24,96
iNTERf-LOM
VOL AC-FT
9*77.
2127.
LAKE

CL
23f>,45
57,77
299,14
F
STAGE
4487.17
4487,17
4497,17
44«7.

NCOS
360,12
342.13
425.26
I N A L
AHtA
59J51.
5331,
17 69322,

S04
215,21
127.93
261.41
VOLUME
511112.
13520.
173851,
698483,

N03
4,54
2,37
3.76
                                                                                                               poa
                                                                                                               1,77
                                                                                                               2,64
                                                                                                               1.66
ro
o
                  **«TIME  PERIOD  31 HAS BEGUN

                  •••  THE  INTERMIXING FRACTION FOR BAY  2 is  8,002 FOR TIME PERIOD 31

                  »*»  THE  INTERMIXING FRACTION FOR BAY  3 IS  0.1BB FOR TIME PERIOD 31

-------
                  UTAH LAKE --JUI*  19T8l-JULt  t973»-PlN SPRS ADDED

                   •••SUMMARY  INFORMATION FOR TIME PE«IOD 31

                   *•• PERIOD  FLOWS AND INTERFLOWS
MONTH!
AAV PRECIP EVAP SUM THIB VOL PEFORE INTERFLOW
NAHt NO, AC-FT AC-fT iNFtOn AC-FT iNttOfLOM VOL AC-FT
MAIN LK 1 4647, 1434, 40406, 554732, 8916,
PROVO « 2 413, 129. 4$«4, 1*338, 1773,
60SMCN B
TOTAL
...

MAIN LK
PROVO B
GOSHEN B
SYSTEM
MATEH
BAT
1
2
I
S 2258,
7318,
QUALITY AT TMt
TOS NA
1091.78 147,
(22,82 52.
1312,13 183.
593, I
2150,
ENO OF THE
CA
95 96,18
64 77,40
aa 105,08
Ten, 177214, -10689.
46(<6t1,
PEHIOD
HP.
52.66
28.93
63,27
LANE

K CL
21,10 2?6,
1,57 56,
24.00 292.


33
57
25
FINAL
STAGE AREA
4487,75 59842,
4487,75 5826,
4487.75 25128.
4487,73 90793,

MCOJ 904
365.75 2VS.«4
334,44 120,06
412.45 253,16
VOLUME
545816,
1*5*5.
18790*.


7S0303

NO 3
4
2
3
.60
.34
.83
.



P04
1.
2.
1.
75
58
67
ro
o
               •••TIMS  PERIOD  32  HAS  BECUN

               •••  THE  1NTCKHIXIN6 FRACTION FOR BAY  2  13  0,002 FOR TIME PERIOD 32
               ***  THE  INTERMIXING FRACTION FOR SAY  3  IS  0,|00 FOR TIME PERIOD 32

-------
                   UTAH LAKE "JULY 1979-JULY 1»7J—MJN 3PRS ADDED
                    *»*SUMMARY INFORMATION FOB TIME PERIOD 38     —  MQNTMS
                    *•• PERIOD FLOHS AND INTERFLOWS
MY
P«ECIP
EYAP SUM THIS VOL BEFORE
NAME NO. »C-FT AC-FT INF
MAIN LK
PROVO B
GOSMtN t
TOTAL SYSTEM
•«• WATER
BAY
MAIS LK 1
PROVO B 2
G03KEN S 3
1 56(3.
2 309,
3 11(19.
7I4J,
QUALITY AT THE
TDS *A
1040.13 140,
611,53 52,
1300.61 100.
1416.
111.
607.
2193,
END OF
LOW AC-FT 1
31960,
40,03,
36«e,
napBS,
TME PEHIOO
CA M5
94 92
41 75
77 1B2
.76 5e.23
,21 28,25
,10 61,70
NTEHfLOW
542813.
21237,
192PI05,


K
19.11
9,20
23,27
INTERFLOW
VOL AC-FT
6670.
1717,
-0307,
LAKE

CL
216.25
56.19
296,65
F
STAGE
4466,25
4468,25
4466,25
4400,

HC03
351. f.7
331.10
403,36
I N A L
AREA
603R6,
6190,
25609,
25 92112,

304
19b,71
115,60
251,35

VOLUME
575343.
1952(1.
2P0392,
795254

N03
4,06
2,33
3,91





t

P04
1.62
2,55
1,66
ro
                »**T1MC  PERIOD  33  HAS  BE5UN
                *•*  THE  INTERMIXING  FRACTION FOR BAY  2 is  0,022 FOK TIME. PERIOD 33
                •••  THE  INTERMIXING  FRACTION FOR BAY  3 is  0.100 FOR TIME PERIOD 33

-------
 UTAH LAKE --JULY ISTe-JUlt 1973»HIN SPRS ADDED
  •••SUMM»»Y INFORMATION FOR TIME PERIOD 33
  *•• PERIOD FLOWS AND INTERFLOWS
    BAY     PRECIP   EVAP   SUM TMIH   VOL BEFORE
NAME  NO,   AC-FT   AC-FT INFLOW AC-FT  INTERFLOW
                                                                       MONTHS
                                                                       INTERFLOW       FINAL
                                                                       VOL  AC-FT   STA6E      AREA
HA1N LK
PROVO a
TOTAL
...
PROVO 9
BOSHEN u
1 592*.
2 6C9.
Ibs!
SVSTCH 9U61, 23BZ
WATER
HAY
1
3
DUALITY AT
TOS
1BU9, 11
599,99
23211,
» -
THE END OF THE
NA
135, 09
51.35
173.90
CA
69,66
72,65
99,14
I0?74.
PERIOD
HG
46,
?7.
59,
6P2974.
25637,


K
19 16,28
*7 6,97
41 22,36
3«-57.
-71S7.
LAKE

CL
2P7.71
54.62
2A5.53
44A6.64
44(6,64

HC01
32«!sS
39P.77
6A721,
«-af-3.
4324Q,

SU4
lisiefe
241.52
599494.
2il!:33!
632TB7

N03
2^26
3.96

,

P04
1,79
2.46
1.65
no
—i
ro
                •••T]M£ PERIOD 34 HAS BEGUN
                ••• THE INTERMIXING FRACTION FOR BAY  2 is  e.eas FOR TIME PERIOD 34
                • •• THE INTCMIIXtttC FRACTION FOR BAY  3 IS  0,15(9 FOR TIME PERIOD 34

-------
                   UTAH LAKE «JUtr 19TB-JUL* 1973--MIN SPRS ADDED

                    •••SUMMARY INFORMATION FOR TIME PERIOD 30     •

                    ••• PERIOD PLOWS AND INTERFLOWS
MONTHS
BAY PRECIP EV»P SUM TRIO VOL BEFORE
NAME NO, AC-FT AOCT INFLOW AC-FT INTt»FLOW
IAIN UK 1 5716, 15275, J«<>95f 62893:1,
PROVO 8 2 «2B. 1626, 5931, ?.b<>*5,
UOSHEN 6 3 9556. 65b5, lOBP, £10036,
TOTAL SYSTEM 1069a, ?34bb, 41926,
• ••
IAIN LK
PROVO 9
OOSHEN B
HATER
SAY
1
2
3
QUALITY AT THE END
TD4
991,93
628,32
1217,52
NA
131, 60
33.62
167,77
INTERFLOW F x N A u
VOL AC-FT STASE AREA VOLUME
»!>£9. «488,95 61005. 6183?!,
2654, 4488.95 6670. 2«251,
.9283. 4468.95 26404. 219319,
LAKE 4488,95 94116, 861871,
OF THE PERIOD
CA
09,00
75. T7
97.68
nc
• 7.20
20,99
57,51
K
J7.73
9,34
21.65
CL
203,04
57,29
274,17
HC03
336,86
338,85
383.07
S04
183,18
119.64
232.68
N03
•.92
2,34
4,18
                                                                                                             F-04
                                                                                                             1,81
                                                                                                             2,52
                                                                                                             1,69
ro
__i
CO
                •••TIME PERIOD 35 HAS BEGUN

                •**  THE INTERMIXING FRACTION FO« SAY  a  is  0.005 FOR TIME PESJOO 55

                •«•  THE INTERMIXING FRACTION FOR BAY  3  IS  0,150 FOR TIME PERIOD 35

-------
UTAH U*KE ..JULY 19TB-JULY 1973--MIN SPRS ADDED
            INFORMATION FOR TIME PERIOD 33
                                                                 —  MONTHS
                   •*• PERIOD FLOHS AND INTERFLOWS
»AV
NAME NO
MAIN LK 1
PROVO B 2
G03HEN PI 3
TOTAL
• *•
MAIN UK
PROVO B
GOSHEN B
SYSTEM
PKECI? tVAP
, AOFT AC-FT
46?7, 3CI966,
694, 3363,
3319, 13393,
SUM THIS
INFLOW AC*
96?96.
6177.
75P.
FT
VOL BEFOKE
INTERFLOW
27734J
8841, 47746. 103223.
WATER QUALITY AT
BAY
1
2
3
TOS
926.66
1163)66
THE END
NA
116, S3
60.16
161,34
INTERFLOW
VOL AC-FT
29191.
-1222.
-27964,
LAKE
F
STAGE
4489.65
4489,65
4489.65
4469.
X N A L
AREA
6176B,
M39,
27196,
63 96116,
VOLUME
6MB67,
28961,
236162,
928141,
OF THE PERIOD
CA
64,63
62.91
97,46
HG
43.
32.
35.
K
44 16,16
(16 10,49
62 28.47
CL
164.06
67.12
261,47
HC03
316,36
363.11
376,69
S04
167,62
132.41
223,96
N03
3,92
2,73
4,77
                                                                                                             P04
                                                                                                             2,17
                                                                                                             2.77
                                                                                                             1,67
ro
               *«*TIME  PERIOD 36 HAS  BEGUN

               *••  THE  INTERMIXING FRACTION  FOR BAY   2 is  e.etis  FOR  TIME  PERIOD  36

               •»»  THE  INTERMIXING FRACTION  FOR BAY   3 IS  0,138  FOR  TIME  PERIOD  36

-------
no
_i
01
         UTAH LAKE "JULY 1970-JULY 1973--MIN SPRS ADDED

          »»«SUMMARY INFORMATION FOR TIME PERIOD 36

          **« PERIOD FLOWS ANQ
                                                                        MONTHS
                       BAY     PHECIP    EVAP    SUM  TRU    VOL  BEFORE    INTERFLOW       FINAL
                    NAME   NO,   AC-FT    AC-FT  INFLOW AC-FT   INTERFLOW    VOL  AC-FT   STAGE      AREA      VOLUME
                 MAIN  LK    1    3139,    34634.     11509,      641161,       -M9.   4469,33     61450,

                 COSHCN »   3    2719)    liilb,       *>!•:',      226169J       -35261   4489|33     26840)    889695.
               TOTAL  SYSTEM
      6131,   538«3.
               17951,
                                                                            LAKE
                                                                                    4409,33
                                                                                   95Z1S.   U9«39B,
                 •*t  WATER  8UALITY  AT  THE  E^O  OF  THE  PERIOD
MAIN LK
PROVO B
GOSHEN 5
                      BAY
                       1
                       2
                       3
 TOS
96P.19
TOT,ee
  NA
121,99
 63,12
162,37
  CA
 0S,16
 92,15
100.22
44.7(9
34,99
56.43
 K
16.61
11,81
21.19
  CL
la^.et
 71,82
261.66
 HC03
3?n.62
391,26
367,19
 S04
t7e,6a
143,40
S25.23
NQ3
6.6i
?.99
5,313
P04
?,aa
3.07
2.04
                 •**TIM8 PERIOD  37  MAS BEGUN

-------
               t.
r\j
               I ,Z«f»ffPt»f *
               !,?fi»i«
               I.IKV
               l.lin*







c c
c

C A A
A

A



B B
B e















c c c
c

A A
A A






B 6 B B

I






c

c
C A

C A

A
A
6
B

B

B


I






C C C
c


A
A
A





B
B
B B








C
c
c c



A
A
A A


B

6

B B


!
C
C C
C


A
A A
A






B B


B
B




i




c c

c
c


A
A
A A






B B
B B


I 1







c





A


B






t I
                                         DISSOLVED  30LXOS-MG/L
                     UTAH LAKE "JULY J970-JULT  1973--M1M  SP»S  ADDED
                                                                        LEGENO— MAIS LAKl  AAAAA
                                                                                 P90VO BAY  HCB08
                                                                                 GCSHEN BAY CCCCC

-------
no
                  SZ(Mf>t»0l





























t
B
I
I












•
•
i
C .
c c ,
1
c c
t
f
•
A A A .
,
A
A
I
|
*
I
f
t
ff
*
I
t
1
t
*
|
8
a
B
B .
,
$
t
i
t
t
»
•
,
•
I
•
•
t)
.)
,
*
ff
9
c
c
c .
c .
c
t
A •
1
A A .
A ,
A
t
•
•
•
•
1
*
•
•
*
,
t

,
,
»
B B B B 8
i
•
»
t
•
,
1
I
«
i
i
i
,
C
C ,
•
c
ff
C A
C A .
t
A ,
,
t
A
A
<
t
<
>
•
•
i
«
•
*
•
,
•
B ,
B
B .
B
B
*
1
«
t
•
,
ff
I
t
t
0
f
•
ff
*• •
C
c c c
r
,
•
A ,
A ,
i
A ,
A A
i
i
f
ff
•
<
«
i
•
i
i
i
«
,
,
i
,
B B ,
9 B B
i
*
•
t
•
I
•
I
,
, c
t
. c c
,
c c
,
,
C C . A
c c
, A A
*
A A
*
ff
A .
A ,
A A
•
t
•
*
*
i
•
i
«
t
t
t
, 8 B
0
B , B
9 , e
B
B
<
t
»
•
>
t
'
I
•
•
*
•
»
•
C
, c
« c

•
•
•
A
i A
t

,
*
t
i
*
i
t
«
t
•
•
i
,
•
,
«
P B
• B
•
i
•
9
1
ff
'

^
I
f
ff
,>
•

f
f
4
t
C
C ,

c c
•
t
#
t
A .
A ,
fl
A A
•
•
*
i
•
•
f
*
,
,
* B
B
B i
B .
<
•
*
>
*
•
i
'
1
                                          SODIUM
                                                        -MG/L
                      UTAh LAKE --JULY l<»7e«JUUY 1"»T3--MIN  3PRS  ADDED
                                                                         LEGtNO-- MAIN LAKE  A4AAA
                                                                                  PROVO BAY  PB9P9
                                                                                  GOSMEN BAY CCCCC

-------














•
1
1





ro
CO

:"5S«i«
:i;is;l:5l
, \tft>y^*ZZ
, \ \f\ffltti
,f l)fl*Pt«t1i>
,ng?.'<»E*UZ
,Hfif.9lt*9t
,iftrn+e\
,d??0flt*01
, sppiect «8i
,0'BflCPE»B|
,TB?'?E«8l
,«PiU'?t»«M
, lOM«)PE»t9i
.fCPl-fiE**)!
, Soffit »^1
,?\-,;c' .HI
,«e^?»t»(M
,6l.'|itf»L*l91
,3eeef|t»»'i
,?r?ie?t»(it
,lc(>act«(ii
• ?t*^^Pt*^^
• PPPI0(*t*?^*













B B B



B

C A
C A
A
C


















B B
B B

A A A
C C A C




I



8


B



B


B
A

A
A
C





I








B

B
A C C C
A A
B A
B






•


I





B


C
B
C A
C A
ft
A A

B








I
B 8
f
c
C A C
A
P
A

B


B


















C
C
C C
A
A
A A



B
B 8
8






.
[







C

B

A












[
                      i,i0punf*nt          2,ieoe0E«et          3.
            i,6eeeBE«ei          2,6ecenE*ei          3,
                    CALCIUM ION —HG/L
UTAH LAKE .-JULY 1*70-JULY 14T3--MIN SPRS AODtO
                                                  LEOtNO" MAIN LAKE  AAAAA

                                                           PRQVQ HAT  BDHOB

                                                           &OSHEN RAY CCCCC

-------
            *t
ro
10
            I ,«;>f»nn£*Ht
•
•
t
•
t
•
1
I
•
fl
•
"
1
•
•
t
1
1
f
ft
ft
*
c c ,
C A A C
A , C C
A A C C
. A
, A A
B . A
e .
a .
9
6 .
,
B B
, B e B
1
1
t
ft
.
ft
•
•
I

I
ft
•
ft
1
1
ft
1
1
ft
ft
ft
I
ft
ft
ft
1
t
,
,
ft
ft
ft
•
c
•
9
A
•

9
9
9
t
B
•
•
t
t
•
•
9
f
I

•
<
•
«
•
t
•
•
«
•
<
•
«
>
•
>
•
1
,
•
C
c , c
c , c
C A A
C , A
A . A
" t
A ,
•
,
e B
» .
B , B
B . B
»
•
•
•
•
«
t
t
'
I
*
i
•
i
•
•
*
•
•
•
*
•
i
•
4
1
ft
ft
1
ft
ft
,
,
c c ,
c
ft
A ,
A A
t
«
t
•
i
i
t
B B B
•
•
t
ft
•
«
9
t
I
9
ft
ft
ft
ft
ft
ft
ft
1
ft
ft
ft
ft
ft
ft
ft
ft
1
1
. c
. c
I
c
C C , A
C C . A
A
t
A A ,
A A ,
, B B
a
,
B .
e ,
B ,
B ,
»
»
t
•
•
t
«
•
I
•
•
»
•
*
•
•
•
•
t
•
•
i
•
•
i
i
i
i
•
C ,
C .
c
t
A .
A .
A
>
,
ft

•
B .
B .
8
•
i
•
t
9
•
f
f
f
I
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
I
ft
ft
ft
ft
ft
ft
ft
ft
,
ft
ft
ft
C C
c .
c c c
A
* ,
A A .
. A
A
,
• B
B
B 8 .
B B ,
•
i
•
•
•
•
•
•
X
UTAH LAKE --JUUY
                                      MAGNESIUM  ION  -MG/ L
                                              1973— HIN  SPRS  ADDED
                                                                           --  MAIM  LAKE   AAA«A
                                                                              PHOVO BAY   PBBBB
                                                                              COSMEN HAY  CCCCC

-------
ro
no
O
               ,)0«im*at
               ,00P<" I»E*00


c c
c
c
A
A A

A






•
B B
9









C C
C
c
A
A
A A








B B B B

1



C

C
c
C A
A

A
A



a B

B
B


I




C C
C
c
JL
A
A
A







•
BBS







c
c c
c

A
A
A A





B
6
B
B
I 1


C C
C

A
A A
A





B
B
B
B




1 1





C
C
c c

»
£
A A





B
B B B


I








£



A


B





[
                                          i,ipi0BO£»Bi          e,t00e0e*0t          3.ie0ue£*ei
                                l,60«00E*0i         »,ft0ji«tiE*et          3,<
                                        POTASSIUM  ION  —MO/U
                    UTAH LAKE ••JULY 1470«JULV 14TJ—HIN  SPWS  AOOEO
                                                                       LEGEND"  MAIN  LAKE  AAUA

                                                                                PHOVO BAT  RBBBB

                                                                                       SAY  CCCCC

-------
4 f50000C*?2
4 y40ff10ftC*ft2
4 v3Q00ttC*td2
4 f EPflflPE*?2
3 v *Jtt0iSH*£ *0i
3 tSflflflPt *fl2
3c2^d?9C*(|i?
3 f 1 PC* ^fl£ *0 2
3fPtff*8P6*rti?
«t*(!p(ti*n*i.ia
2»6flv1i0wt*ifl?
2 * Tp^flt »3J
2ff6?i^3flt»Y2
1,501*306*0?
2 1 fl 0t5flflt O2
2 « 3^?k*K t «02
2,2t)fla;»E»vfZ
2,| v>i'0;iL*t9i
2 t!POJli"E*fl2
t f 9^fl «JRf *>J2
1 1 Bpfliflottkia
t (T80tfHE»d2
i fffctf0i8wt*32
t fl?8^0!Pt*^2
1 a40ft^ftfc + 0(!
t , 3t»a«)cit+fl2
1 ,lU?Uft + prtjflE«01
6 Ci'J'/.H « Jl
T,I".!
•
•
t
t
t

,
t
V
B
B B a B B e
•
•
*
•
I

ff
t
1
t
t
ff
t
t
•

c c
1
t
t
A A A
,
. A
t
•
1

t
ff
f
t
1
•
fl
t
,
,
B .
B
, B B
»
t
t
t
I

>
t
i
t

t

i
. c

,
,
i
,
A A A
, A A
*
I
I
•
«
•
9
t
f

t
*

*
B B B B 6
t
*
*
•
i

t
*
»
«
«
•
«
•
c
c .
1
•
„
A
t
A ,
A ,
t
t
t
t
f
•
t
•
•
|
,
ff
t
0
B B ,
i
•
•
»
f
I

t
t
c !
c c ,
c .
c
f
A i
A A ,
A ,
A
,
i
•
,
i

»
t
t
t
»
•
i
t
i
a B ,
B ,
B a
•
»
•
•
'
l

«
•
*
,
,
c ,
c c .
c ',
c c
•
.
A ,
A i
A ,
A .
. A
A
•
l
t
•
•
•
*
,
i
,
B B
B B 8 ,
B .
•
i
•
'
I





]
1
I
I
]













1
]
]
I
I
]





                              IOM--M  G/L
                                                          - MAIN LAKE  *****
                                                            PROVO H/iY  BBB88
                                                            GOSHEN BAY CCCCC
UT*ri L*KE I.-JULT 197P-JUUY
                                      SPR3  ADDED

-------
ro
ro
ro











B B


8

A
A
A C
C
A
C
C















8 B 8 B


A
A A A
c c



I


B

B



B

»

ft C
A

A

A





t








B
A C C C
A
B
A A
B B









I 1




B

C
B

C A
C
B A
B A
A









i

c c
A 1
A A

B A



B













t :

i
i
c
c
c
c
A

A
A A
B B
B










t 1





B





A












                                                                                  3.teeeeE«et
                                        BICARBONATE
                                                            • MBL
                    UTAH CAKE  »»JULT  J9TB-JUUY  J973--NIM SPBS AOOEO
                                                                      UECENO-- MAIN CAKE  AAAAA

                                                                               PROVO HAT  P8BB6
                                                                               60SHEN BAY CCCCC

-------
ro
ro
CO
                 i1'.} ("£»•)!




c





A




B
















t
i
i
t
C C C .
•
c
. c

A A \
A
A
• A
f
t
f
6
B ,
B .
,
a B
!
t
•
1
•
•
i
•
*
•
•
i
t
•
•
•
•
•
*
•
•
•
,
,
,
•
c c . c
c . c
c
•
A •
A A , A A
A
(
t
*
,
» B
B , B
B B B
•
i
t
«
«
t
«
t
•
•
I
t
f
f
*
ff
t
t
f
ff

I
C C
c .
t
A A
•
A ,
•
i
•
*
B B
8 ,
,
i
•
i
«
i
•
•
i
•
•
t
t
•
I
t
*
(
,
,
C C
C C C
. c c
t
A ,
A ,
A A ,
A A A
,
•
«
*
6 .
B .
B B B B B
>
>
«
•
i
•
»
•
•
i
<
I
•
*
•
•
•
i
•
•
•
«
•
B
•
,
C
,
c c .
•
a
A
>
A A ,
,
e
•
B .
,
B .
i
•
i
•
•
<
•
•
•
•
«
t
•
I
*
i
i
a
c
c c .
c .
c
A , C C
A A .
A ,
A
. A
. A

B B i
,
,
t
B 6 ,
B
, B B
i
•
*
«
•
•
•
•
i
•
•
Z
*
•
t
i
»
t
t
*
t
t
•
•
»

,
,
c
c ,
c
«
ff
A ,
A ,
A
,
t
t
8
B ,
B ,
t
ff
t
ff
ff
•
1
f
t
*
1








C





A


B














                                         SULFATE ION --MC/L
                    UTAH LAKE —JULY  19TO-JUIY H73--HIN SPR3 ADDED
                                                                              --  MAIN  UAKE  AAAAA

                                                                                 PROVO BAY  *»*»$

                                                                                 UOSHEN BAY CCCCC

-------
ro
              ,A0f>0Rt*0B





















a a







A
A

A
C
A C
C
C























B
B B B

A
A A
A


C C
C
C




I













B


B

B A


a A

A C
A
C
C

C








I

















B

B C C
C C B B
















1













A
A
B
'A C
C B
C
B
6
















I

A
A

A



A C C
B
C
B
C


B





















;



C


C
ft








B B B B




















I ]












B
























I
            1.6BB00E+81         i

                    NITRATE CONC AS N.«*G/L


UTAH LAKE —JULY J»re-JULY J97J—1IN SPSS ADDED
                                                                       3.«i)80BE*ei
                                                                     LEGEND— MAIN LAKE  AAAAA
                                                                              PNOVO BAY  ftttBttB
                                                                                     BAT CCCCC

-------
no
ro
01





















8
A A


B







C

C





t
t
f
't
t
•
•
t
t
9
t
t
ff
•
f
•
t
t
«
1
t
f
B
,
t
An
8 •
A .
A
,
•
t
C
c .
t
c .
,
*
•
*
ff
•
•
•
I
•
•
•
•
f
•
ff
•
ff
fl
•
t
f
1
•
t
1
,
(
•
1
f
f
,
f
t
•
1
t
p 8 B B B
* ,
A A .
C C C A C
A
c
t
,
i
•
t
i
i
•
•
I
*
f
i
•
4
t
•
t
i
4
g
•
•
•
,
,
B B
,
t
B •
,
,
,
B
,
B
C C
C A A
C A .
A A
*
*
fl
•
«
f
t
4
ff
ff
'
1
ff
t
t
t
ff
t
t
t
t
•
9
9
I
9
9
f
,
t
«
ff
t
f
B
t
B
B S B B
i
c ,
A C C .
A C C C
A A .
A A
a
I
I
1
•
1
ff
•
ff
«
I

»
*
f
f
•
*
»
t
ff
0
ff
f>
*
t
§
,
B ,
t
f
B ,
*
ff
g
,
C
C A
c c f
A .
A A ,
t
*
t
t
t
. »
«
t
*
»
I
|
i
B
ff
*
B
•
i
i
v
B ,
t
i
,
B .
a
(
•
(
t

,

c c c c
* t
t
,
,
1
1
1
»
•
1
1
1
1
1
*
ff
I
•
•
•
1
•
•
f
•
•
ff
t
1
• B
•
t
B
,
B B
8 6 .
. A
v
A
,
. c
C
A C C C ,
*
,
f
*
v
*
9
9
f
t
I
*
•
•
*
•
I
                                       PHOSPHATE  AS  P   --MG/L
                   UTAH  CAKE  — JUL*  1970-JUL.Y  19F3--H1N SPRS AOOEO
                                                                     LEGENO-- MAIN LAKt  A«AAA

                                                                              PROVO 6*r  9BBBB

                                                                              GOSHEN BAY CCCCC

-------
,19Am*fl6
                                                      A A
,«0*fj*e«M  t,
            I
                                          1          1          I          I
                         TOTAt, LAKE VDIU"E"-AC-?T
     UTAH UARE .«JUIY ii/e-Juuv 19T3--M1N SPHS ADDED

-------
               4,492001*0*
                 ,49]!>2t*i
-------
                     UTAH L4KE "JULY HTB-JLM J9T3--MJN JP»S AOOEO
                 •••TOTAL SALT 8UHNAKT FOR THE SIMULATION

                                    TONS
                      BAY   ' T08       NA       CA       MO
            TMIB, INFLOW  1641889,  2009*2,  166092,   72231,

            LAKE OUTFLOW  1446894,  208297.  112092,   79863,
            LAKE . ,
              BEGINNING   1049026,  166618,   97914,   61919,
              ENOJN6      1240097,  199324,  111994,   9T887,
  K        CL      NCOS     804       N03      F04
26772,  318494,  020499,  280986,   10999,    3298,

28999.  302394,  444626.  286910.    3313.    2074,

23320,  233494,  249634,  233702,     240.    1634,
21937,  249394,  421603,  226176,    7930,    2897,
ro
ro
00

-------
         UTAH LAKE --JULT 1970-JUL? 1973— -MJN SPR3 ADDED



     •••TRIBUTARY FLOWS AND SALT QUANTITIES

                    SALTS" TONS TOTAL FOR THE SIMULATION

BAY  1
          PAY    IDS       NA       CA       MC       K        CL      HC03     804       N03       P0«
T»IB.   FLOW
       AC-FT
 1      25S,     lit,,    17.53    19,64     3,?6     3,16     4,21    78.89    25.25    0.3T9    0,154
    PCT  e.0i«    0,006    0,009    0.012    0.007    0,012    0,001    0,013    0,009    0,004     0,003


 2      258,     110,     4.91    19.64     4,56     2.10     2,10    78.69    25. 25    0,140    0,028
    PCT  0.014    0,007    0,002    0,012    0.006    0,0(16    ?.e01    0,013    0,009    0,001     0,301


 3      212,     121,    14.99    20,74    13,25     0,52    14,69   121.01    26.52    0,300    0.127
    FCT  0.012    0,007    0,007    0,012    (9,018    0,002    0,005'   0,019    0,1010    (!,0U3     0.004


 4      746,     669,    44,6}   101,39    28,39     9,30    10,42   304, J6    98.85    1,784    0,4)31
    PCT  0.041    0.041    0,022    0,061    0.039    0.835    0,010    0,049    0,035    0,017     0.001


 5      515,     315.    14,00    42.00    25.38     1,26    12,60   199.48    29, «B    0,504    0,056
    PCT  0,028    0,019    0,007    0,025    0,035    0.005    0,004    0,032    PI, 010    0,005     0,002


 6     2411,    2163.   104,86   283,05    95.51    25.56    98,30  1327,07   235,92    8,578    0.393
    PCT  0.132    0.132    0.05?    0,17(1    0.132    0.P95    0,031    0,214    0,084    0,081     0,012


 7     1909,    1427.   103.78   166.05   108,97    20,24    44,11   934,01   212, T5    2,698    0,208
    PCT  0,104    0,087    0,052    0,100    0.151    0.076    11,014    0,150    0,076    0.025     0.1406
 6     7399, '   6637,   442.45   724,02   4192.23   103, 7B   331,84  3770.91   724.0?   31,676
    PCT  0.4flS    0,404    0.820    0.436    H.557    0,387    0,104    0.6B7    0,256    0.299    0,305


 9    48096,   27402,  1565,85  6263,38  2179.26   274,02  13P4.B7 20551.73  5871,42  150,151   13.049
    PCT  2,627    1,669    19,779    3,771    3,432    1.024    H,«10    3.309    2.090    1,417    0.396


10     Slfll.    3744.   117,85   623.90   194,11    29,1?   103. 99  2391,75   623, 9a   14.974    0,277
    PCT  0.279    0.228    0.059    0,376    0,269    0,109    0.MJ    ft, 385    0.2?2    0.141    0,308


11     4202.    3541.   542.53   394.05   137. (16    45,69   890. 81)  1810.33   426.31   22.272   98,797
    PCT  B, 230    P.Jlfc    U.2TB    0,237    0,19B    0.171    (1, 280    0,292    0,152    0,210    2,996

-------
                  UTAH LAKE —JULY 1970-JUUY 1973--MJN 8PR3 AODEO
         •••CONTINUED


         BAT  I
                   BAY    T08       MA       CA       HO       K        CL      NCOS     »04       N03      Hit
         WB,   fUO*
                AC-PT
         12     2«36.    1394,    44.73   246.13    72.72    J1.T5    39.16   634.09   231,73    4,475    0.112
             PCT  0,113    0.B97    0.022    0,148    0,101    0,014    4,012    8,133    0,090    0,042    0,023


         13     1838,    1136,    67,34   179,85   1194,41    11,24    29,9B   674,45   169,64    2,598    0,100
             PCT  0.101    0,069    0,034    0,108    0,145    0,042    0,009    0,109    0.060    0.025    0,003


         14     3344,    2045,    63,63   405.64   118,16    13,63    54.54  1431,59   409,03    7,272    0,182
             fCt  0,183    0,125    0,032    0,244    0,164    0,051    0,017    0,231    0,1*6    0.069    0,006


         15     3689.    2106.    60.16   421.14   110,30    15,04    60,16  1428.88   330.90   13,236    0,301
             PCT  0,202    0,128    0,030    0,234    0,153    0,056    4,019    0.230    0,118    0,123    0,009


         16     2577,    2191,    84,06   392,26   133.09    10,51    84,06  1050,70   231,15    7,285    0,149
             PCT  0,141    0,128    0,042    0,236    0,184    0,039    19,026    0,169    0,082    0,069    0,004
ro
CO
O       17     6624,    5672.    148.62   828,23   306.08    43.21    162.04  3240.90  1260,15   23,2«7    0,720
             PCT  0.362    0.343    0,074    0,499    0,424    0,161    0,031    0,522    0,449    0,238    0,022


         18     66793.    37191.  3268.03  8714.80  3812.73   490,21  2904.93 33386.29 10076.49  204.233   59,914
             PCT  3,655    3,463    1,626    5,247    5,279    1,831    0,912    5,409    3,566    1,926    1,817


         19       14.      11,     0,37      1.33      0.48     0.51     0.40     6,75     1.46    0,014    0,003
             ret  0,001    0,001    0,000    0,001    0.001    0,002    0,000    0,001    0,001    0,000    0,000


         20     80120.    67511,  522h,66  9255,55  3373.35  1960.00  6968,68 29944.42 20797.76 4026.865   7f>,222
             PCT  4.364    4.112    2,601    5,573    4.673    7.321    2.186    4.622    7.402   36.027    2,311


         21         0,       0,     0.00      0,00      0.08     0.00     0.00     0.00     0,00    0,000    0,000
             PCT  8,000    P.000    0,000    P. caw    e.oeo    0,000    ti,«st0    0,000    0,000    0,000    0,000


         22       106,      66.     4,32     10.«8      6,63     3,69     3,03    31,14    11,24    0,108    0,024
             PCT  0.006    0,003    0,002    0,006    0.0B9    0.013    F.flOl    0,008    8,094    0,001    0,001


         23       66.      70.     3,M      8,18      5.J8     3.16     2,49    41.49     9.12    0,066    0,020
             PCT  0.005    0,004    M.002    0.005    0,007    e.012    E,US>1    0,007    0,003    0.001    0.001

-------
         UTAH LAKE «JWUt 1970-JUt.Y 1973--MIN 8PK9 ADDED
•••CONTINUED


BAY  t
          BAY    TDS       NA       CA       M6       K        CU      HC03     804        N03       PCM
TRIP.   ruOM
       AC-FT
24      362.     251.    11.41    44.28    20,46    27,66      7.18    162.35     1«». 6B     0.134     0.030
    PCT  0.020    B.015    0.006    d.027    fl.029    0.077    0,002     0.026     0.007     0.003     0,081


25     1885.    1768,    92.23   174,?1    92,23    41,50    69.17  ltl«.«0    199,02     2.049     0,410
    PCT  11,103    0,108    0,046    0,105    0,128    0,155    0,022     P.179     0,071     0.019     0,012


26     991«,    6»57,  1078,34   727.8?   283.06   134,79  1590,55  4394.24    660,48    57.961  296,544
    PCT  0.543    0,393    0.537    0,438    0.392    0,503    0,499     0,708     0.235     0.547     8,993


27    50340.   41049.  9509.77  3352.37  3557,61  1299.90  12725,31  15461.94  14435.70    68,416    27.366
    PCT  2,734    2,500    4.732    2,018    4,925    4,855    3,996     2,490     5,138     0,646     0,839


28     1532.    1187,    54,13   212.37    47,89     9.37    37,49    812,92    237.36     2.124     0.083
    PCT  0.e«4    fl,07?    0.027    0.12A    0.066    0,035    0,?12     0.131     0.084     0.020     0,003


29   507267.  227506,  6272,14 41364,72 11030,59  2068.24  12409.42124094.16  35160,01  220.612    82,729
    PCT 27.754   13,856    4,117   24,905   15,271    7,725    3,897   19,983   12,513     2,082     2,509


«8   223112,  136762, 12432,"»2 17406,09  7459,75  1243,29  17406.09  74597.52  22379,26  124,329    49,732
    PCT 12.2*7    8.330    6.187   10,480   10.328    4,644    5,466   12,013     7,965     1,173     1,500


49     112P>,    2101,   50?,31    97.42   148,41    19.18   429.25    898.07    593.64     1,461     0.913
    PCT  0.VI61    0.128    0.25H    0,059    0.205    0,072    U.135     0,145     0.211     0,314     0,628


50     6277,   25934,  5630,39  1160.20  1322.29    87,02  5118.53  6142,24  6654.09     4,095     1,024
    PCT  0.343    1,580    2,*02    0.69°    1.831    0,325    1,607     0.989     2.368     0,039     0,031


51    9949H.  1247813, 22177.*9 U35H.69  9063.IB  2871.78  17156.14  63560.«1  24566.97  129.816    70,993
    PCT  5,44«    7,595   11,036    6,839   U.548    8,486    ^,388   10.338     8,743     1,225     2.153


53 •1052366,  1446854,208296.58112451.82 75862,87 28555.34302594.04444826.3P28B509,63 3312.584 2073,942
    PCTi00.*fi0  100,009  i(ia,0Ct(i  luc.pipp  100.004  icsj.npo  lCB,cma  1001.000   100,000   100,000   100,000


54     17424,   33153.  5209.7P!  2*02.28   236,80   734.09  7814.55  5470,19  9708,99     B,0f>0     0.0Ba
    PCT  0,«93    2,019    9,b9f    1,326    C.328    2.742    2,a
-------
                   UTAH LAKE —JULY 19T0»JULY 1973--MIN SPR» AODCD
          •••CONTINUED


          BAY  t
                    HAY    TOS       NA       CA       no       K        Cl      MCOS     30«       N03      P04
          Ttll,   PLO"
                 AS-fT
          39    24120.  137348, 231111.46  0096,66  5146,39  4323,T5 39661.03  4616.76 21633.33    9.000    0.800
              PCT  1,310    9,303   11,300    4,075    7,125   16,045   16.73)    0,776    7,700    0,000    0,000


          36    24120,  12*466. 60316.67  4589,31  3737,01  3244.93 96703.36 24380.92 23602,10    0,000    0.000
              PCT  1,320   13,976   30,014    2,763    3,174   19,391   30,366    3.9ZT    0,400    0,000    0,0(10


          39   109337.   04871,  1706.73  0933.TS  23*2,33   44fc.*9  2600,12 26801.24  7393,68 47*4.663 1706.749
              PCT  3,994    3,169    0,009    3,379    3,290    1,669    0,042    4,316    2,703   44,972   34,104


          60   207000.   44702.  2416,32  7240,96  2416,32  1208,16  1812,24 32620,32  6040,00    1.208    6,041
              PCT 11.326    2,723    1,202    4,364    3,343    4,313    0,369    3,233    2.130    0,011    0,103
                              SALTS-- TONS TOTAL FOR THE SIMULATION

          6AY  2
IN9                  0AY    TOS       NA       CA       « 1I4BT.55  189?.Bf,   36.C39    4.505
              PCT  1,016    I,fl70    (J.35*    1,M4    l.t>6»    B.5U5    8.220    I.8b«    «.^3    0.340    e.137

-------
                   UTAH  LAKE  --JUL* 1970-JULY 1973--MIN SPRS ADDED
          — CONTINUED


          BAT   2
                    BAY     TDS       NA       CA       M6       K        CL      HC03     S04       N03      POa
          TRIB,    FLO*
                 AC»FT
          34    42773,    254»J,   2673, »6  4[MQ,80  1168.55   406,89  4333,94 17147,61  2208, 64  360,390  482.458
              PCT   a. JOB    1.547    1.331    2.415    1.609    1.920    1.424    2.761    0.786    3,402    14,631


          48      4943.     2473,    155.85   373.64   164,04   206. 80    98.91  1483,58   230,78    4,396    0,330
              PCT   0,221    0,151    0,077    0,225    0,228    0,760    3,031    0,239    0.082    0,041    0,010


          41     12093.     7396,    460,19  1117,60   493,06   624.54   295,83  4437,52   690,28   13,148    0.9«6
              PCT   0,662    0.450    0,229    P.673    e.683    2,333    0.093    0.715    0,246    e,121    0.930


          42    S168C.    54765.   3371,37  720A.70  2649,3V   421, «2  2528.5221071,04 18191.33   39,333   53,731
              PCT   2,828    3,337    1,678    4,3*8    3.668    1,574    0,794    3,393    6.474    0,371    1,629


          43     19427.    15842,    844.89  2772.28   644.89   409,54  1584.16  7128,72  3326,74   36,964   56.7*6
              PCT   I.fl63    0,965    0.420    1.669    1,170    1,538    3.497    1,148    1,184    0,349    1,721

ro
CO        44     31798.    13396,    432,16  2765.81   691.45    77.79   777,88  9075.31  2060.18   31,115    4.322
CO            PCT   1,740    0,616    0.215    1.665    0,957    0,291    0,244    1,461    0.733    0.294    0,131


          45      661T,     7326,    684.76   755,41   433,03    82,44   699,28  4J30.50  1491,35   13,669    2,878
              PCT  0.362    P. 446    0,140    0,455    0,690    0.308    0,220    0,665    0.531    0,129    0,067


          46      (.567.     6«2t>,    499, BO   5)7.50   374.8?    32.13   285,60  3614,63  1071. BO   12.852    0,7)4
              PCT  0,359    f,391    0,249    0.323    0,519    01.120    Vl,fl90    PI, 562    M.3M    «l,121    0,022


          47     33047,    41769,   5254,65  2335,49  1616,88   456.11  4581,15 22232.05  6084.38  104,199  101.055
              PCT  1,808    2,3«4    2,615    1.4B6    2,238    1,711    1,436  6605, »9  29»(l,52  1101', «5    (5,nB0    0,0?0
              PCT  B.492    J.T73    2.191    PI. 272    B.627    1,397    S.Q74    P.4P1    0.392    d.BUB    e.(JB

-------
        91     9000,   16737,  4646.02   334,72   334,72   303,79  6236,J«  2*84,3?  1076,36
            PCT  e,4*2    1,021    2.313    0,214    0,4*1    1,142    t.*3«    0.461    8,383
                                                                                   0,000
                                                                                     0,000
0,000
                 UTAH LAKE --JULY 1*70«JULY 1*T3--MIN »PKS AOOED
             •••MATER BALANCE FOR THE SIMULATION

                  BAY  PRECIF    EVAP  TRIO INFLOW
                       AC-FT    AC»FT     AC-FT
        MAIN LK    1  1*1*31,  631*70, 1321744.
        FKOVO 0    2   1*030,   63336,  266883,
        COIHEN «   3   81213.  269882,   39P23,
                                           BEGINNING      ENDING
                                       STAGE   VOLUME   STAGE   VOLUME
                                      44BA.38 3*3769,0 448*,33 641630,1
                                      4466,38  21771,3 448*,33  26844,3
                                      4«e«,38 20*4«I0.7 446*.33 22*6*3,1
ro
CO
     •••TOTAL LAKE  "  AC-FT   CEXCLUUIN6 DIKED BAYS, IF ANT)
TOTAL PRECIPITATION*   2622*3.6
TOTAL EVAPORATION  •   96«H7,6
TOTAL TRIB. INFLOW •  162T7C"),!
TOTAL TRIB, OUTFLOW* •1032366,4
OTHER OVERFLOW     •        B,U CENDINU VOLUME HAS BEEN ADJUSTED FOR OVERFLOW)
                       826961,1     STAGt* 4488,38
                       696369,6     STAGE* 4469,33
             BEGINNING  VOLUME  •
             ENDING   VOLUME     •
             CHtCKi
             •0.0  (IF NOT 2EKO--PROG EKKOP)

-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
|,REPORTNO. 2.
EPA-660/2-757007
;TITLE AND SUBTITLE
WATER QUALITY EFFECT OF DIKING A SHALLOW
ARID-REGION LAKE
LAUTHOR(S)
Dean K. Fuhriman, LaVere B. Merritt,
Jerald S. Bradshaw, and James R. Barton
.PERFORMING ORGANIZATION NAME AND ADDRESS
Brigham Young University
Provo, Utah 84602
12. SPONSORING AGENCY NAME AND ADDRESS
U. S. Environmental Protection Agency, OR§D
NERC-Corvallis
Robert S. Kerr Environmental Research Laboratory
Ada, Oklahoma 74820
3. RECIPIENT'S ACCESSION NO.
5. REPORT DATE
APRIL 1975
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
1BB045 (ROAP 21-ACC, Task 10)
11. CONTRACT/GRANT NO.
R- 801400 (Formerly 16080 EVT)
13. TYPE OF REPORT AND PERIOD COVERED
Final (6/1/70 - 6/30/74)
14. SPONSORING AGENCY CODE
5. SUPPLEMENTARY NOTES
«, ABSTRACT
The inflow, outflow, and in-lake water quality and quantity of Utah Lake in Central
Utah was studied over a 36-month period. The work was undertaken to determine the
effect of a proposed diking project on the quality and quantity of lake water and to
develop methodology for determining the effect of diking or other management
practices on the quality of water in any lake system.
A computer simulation model was developed which  is  able to analyze the effect of a
given management program on the water quality of the  lake, particularly as related
to the "conservative  salts" present.  The simulation  model was also used to evaluate
the evaporation from  the lake by use of a salt balance technique.

Results of the research indicate that the diking of Utah Lake will have a positive
beneficial effect upon  the water quality of the  lake  and will also result in con-
siderable saving of water and reclamation of valuable land.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
Lakes, Dikes, Water Quality,
Evaporation, Seepage, Arid Land, Sodium,
Chloride
DISTRIBUTION STATEMENT
Release to public
b.lDENTIFIERS/OPEN ENDED TERMS
Dissolved Solids,
Lake Diking, Shallow
Lakes
19. SECURITY CLASS (This Report)
Unclassified
20. SECURITY CLASS (This page)
Unclassified
c. COS ATI Field/Group
08 08
21. NO. OF PAGES
?.U
22. PRICE
 Form 2220-1 (9-73)
                            U.S. GOVERNMENT PRINTING OFFICE: 1975-698-228/113 REGION 10

-------