EPA-660/2-75-007
APRIL 1975
Environmental Protection Technology Series
Water Quality Effect of Diking
a Shallow Arid-Region Lake
National Environmental Research Center
Office of Research and Development
U.S. Environmental Protection Agency
Corvallis, Oregon 97330
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development,
U.S. Environmental Protection Agency, have been grouped into
five series. These five broad categories were established to
facilitate further development and application of environmental
technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in
related fields. The five series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
This report has been assigned to the ENVIRONMENTAL PROTECTION
TECHNOLOGY STUDIES series. This series describes research
performed to develop and demonstrate instrumentation, equipment
and methodology to repair or prevent environmental degradation from
point and non-point sources of pollution. This work provides the
new or improved technology required for the control and treatment
of pollution sources to meet environmental quality standards.
EPA REVIEW NOTICE
This report has been reviewed by the Office of Research and
Development, EPA, and approved for publication. Approval does
not signify that the contents necessarily reflect the views and
policies of the Environmental Protection Agency, nor does mention
of trade names or commercial products constitute endorsement or
recommendation for use.
-------
EPA-660/2-75-007
April 1975
WATER QUALITY EFFECT OF
DIKING A SHALLOW ARID-REGION LAKE
By
Dean K. Fuhriman, LaVere B. Merritt,
Jerald S. Bradshaw and James R. Barton
Grant No. R-801400
Program Element 1BB045
ROAP 21-ACC, Task 10
Project Officer
Lowell E. Leach
Robert S. Kerr Environmental Research Laboratory
National Environmental Research Center
P. 0. Box 1198
Ada, Oklahoma 78420
NATIONAL ENVIRONMENTAL RESEARCH CENTER
OFFICE OF RESEARCH AND DEVELOPMENT
U. S. ENVIRONMENTAL PROTECTION AGENCY
CORVALLIS, OREGON 97330
For Sale by the National Technical Information Service
U.S. Department of Commerce, Springfield, VA 2215!
-------
ABSTRACT
The inflow, outflow, and in-lake water quality and quantity of Utah Lake
in Central Utah was studied over a 36-month period. The work was under-
taken to determine the effect of a proposed diking project on the
quality and quantity of lake water and to develop methodology for de-
termining the effect of diking or other management practices on the
quality of water in any lake system.
A computer simulation model was developed which is able to analyze the
effect of a given management program on the water quality of the lake,
particularly as related to the "conservative salts" present. The
simulation model was also used to evaluate the evaporation from the lake
by use of a salt balance technique.
Results of the research indicate that the diking of Utah Lake will have
a positive beneficial effect upon the water quality of the lake and will
also result in considerable saving of water and reclamation of valuable
land.
This report was submitted in fulfillment of Project Number 16080 and
Grant Number R-801400 by Brigham Young University under the partial
sponsorship of the Environmental Protection Agency. Work was completed
as of June 24, 1974.
11
-------
CONTENTS
Page
Abstract i1
List of Tables v
Acknowledgements V1
Sections
I Conclusions 1
II Recommendations 2
III Introduction 3
IV Description of Utah Lake 6
V Diking Plans for Utah Lake 9
VI Collection of Data 12
VII Analysis of Data 14
VIII Computer Simulation 34
IX Discussion of Results 37
X References ^5
XI List of Inventions and Publications . 49
XII Appendix A - Basic Data Collected 53
XIII Appendix B - LKSIM—Water Quality Simulation
Model for Shallow Lakes 99
-------
FIGURES
No. Page
1. Map showing location of Utah Lake and Jordan River 7
2. Map of Utah Lake showing proposed diking of Goshen Bay and
Provo Bay 10
3. Graph showing simulated and observed concentration of
sodium ions in Utah Lake - July 1970 to July 1973 40
4. Graph showing simulated and observed concentration of
chloride ion in Utah Lake - July 1970 to July 1973 41
5. Graph showing simulated and observed concentration of
total dissolved solids in Utah Lake - July 1970 to
July 1973 42
6. Map of Utah Lake showing sampling stations 54
7. Map showing location of tributary stations 55
IV
-------
TABLES
No.
1. Utah Lake Surface Tributary Inflows, 1970-71 16-17
2. Utah Lake Surface Tributary Inflows, 1971-72 18-19
3. Utah Lake Surface Tributary Inflows, 1972-73 20
4. Water Budget Analysis, Utah Lake, 1970-71 30
5. Water Budget Analysis, Utah Lake, 1971-72 31
6. Calculated Evaporation from Utah Lake and Evaporation
from Pan at Lehi, July 1970-September 1972 32
7. Water Budget Analysis, Utah Lake, 1972-73 33
8. Summary of Simulation Results - Utah Lake as at Present 38
9. Summary of Simulation Results - with Dikes on Provo Bay
and Goshen Bay 43
-------
ACKNOWLEDGEMENTS
Many individuals have had important roles in carrying out the research
program reported herein. The authors wish to acknowledge with thanks
the contribution of the following graduate students of Brigham Young
University, Provo, Utah, who have provided significant assistance in
collecting and analyzing the data: Harold Stock, Elwood Loveridge,
David Pratt, Eric Loveless, James Riley, James D. Nelson, Bruce Sundrud,
David Tillman, Mark Morrison, Lynn Kennison, Paul Daniels, Allon Owen,
and Coleman McVea. Advice and general assistance of Professors David
White and Sheril Burton are gratefully acknowledged.
The cordial cooperation and material assistance of the U. S. Bureau of
Reclamation in providing data, maps, measuring equipment, and engineer-
ing instruments to assist in gathering data has been a significant
factor in accomplishing the work reported herein. The assistance of
Bureau of Reclamation personnel—Palmer DeLong, Provo Area Office
Director, Larry Fluharty, Gale Moore, and Robert White—has been
particularly helpful to the project.
Financial assistance of the Environmental Protection Agency and the
helpfulness of Project Officers Lowell Leach and Curtis Harlin has
been greatly appreciated.
VI
-------
SECTION I .
CONCLUSIONS
The diking of Utah Lake will result in salvaging about 75,000 acre feet
of water per year. It will also improve the water quality since concen-
trations of dissolved ions will be decreased significantly since much of
the water that would evaporate remains in the lake as "dilution" water.
The computer simulation model developed as part of this project may be
used to predict water quality improvements and quantity savings which
may result from diking of lakes at any location. It may also be used
to investigate effects of many other water management alternatives in
water resource development.
The amount of evaporation from Utah Lake is greater than previous in-
vestigators have estimated. The sub-surface spring inflow is also
greater than has been presumed in previous investigations. Much of the
sub-surface inflow to the lake probably comes from deep strata contain-
ing warm highly-mineralized water that issues into the lake in areas of
geologic faulting.
The principles of salt balance incorporated into the simulation model
developed on this project provide a valuable tool in refinement of eva-
poration estimates by the water budget method.
-------
SECTION II
RECOMMENDATIONS
The computer simulation model developed on this project should be tested
at other locations to provide a check on the model and to assist in the
development of water resource planning decisions.
The positive results of diking of Utah Lake—improvement of water
quality, savings of water, and reclamation of land for other uses—are
such that investigations as to engineering and economic feasibility
should proceed. Such investigations should include (1) the relative
benefits and costs for each of the dikes considered separately as well
as together, (2) evaluation of the numerous water management policies
using the LKSIM model to determine the quantity and quality results of
these policies, (3) pre-treatment of Provo Bay tributaries which are
high in organic matter, phosphates or nitrates, and (4) dike design
features and construction methods that will preserve fish habitat which
may be eliminated in the diking process.
-------
SECTION III
INTRODUCTION
Natural waters of arid regions are subject to the same factors which
cause deterioration of water quality in humid regions—municipal, in-
dustrial and agricultural waste pollution, natural pollution from many
biological processes, and excessive concentration of phosphates and
nitrates. In addition to these universal problems, arid region waters
contain great quantities of dissolved minerals--often in such excessive
concentration that the water is unfit for many uses—and the total
quantity of water available with which any contaminant may be diluted is
often extremely limited. Many of the dissolved minerals in arid region
waters; which are predominantly chlorides, sulphates, and carbonates of
sodium, potassium, calcium and magnesium; have existed at relatively
high concentrations since long before man came upon the scene. They are
present mainly because the watershed soils of streams in arid areas have
not been subjected to the greater precipitation and natural leaching
which has been going on for centuries in humid areas.
Any process involving water use—whether it be natural or purposeful,
beneficial or wasteful, planned or inadvertent—results in leaving the
dissolved minerals as a residue in the soils of the drainage basin or in
the waters of the basin, in increasingly greater concentrations. Most
of the water "used" is taken from the waters of the basin by evaporative
processes.
Water lost as evaporation from lakes or artificial storage reservoirs
usually serves no immediate beneficial purpose and represents, in total,
-------
1*
a tremendous quantity of water. In 1962, Meyers estimated the total
evaporation losses from the fresh water areas of seventeen contiguous
western states as 23,641,000 acre-feet, or 7,703,420,000,000 gallons
(29,160 million cubic meters) annually. This is enough water to provide
the irrigation water supply to about eight million acres (3.2 million
hectares) of land, or the domestic water supply for more than one
hundred million people. The economic value of such lost water is stag-
gering.
The enormous quantity of water lost in evaporation from fresh water sur-
faces has attracted considerable attention from engineers and scientists,
especially in the water-short arid regions. A great research effort has
been carried on over the past two decades to find means of reducing the
amount of evaporation losses. A major part of the research effort has
been related to the development of a protective material to be applied
to the surface of the water which will act to reduce or suppress the
evaporation loss. The magnitude of this research effort may be indicat-
ed by the fact that in 1973, the office of Water Resources Research
o
issued a 477-page bibliography on evaporation suppression. In the 319
reports listed in the publication, studies were reported of various
methods of reducing evaporation from water surfaces, but no research was
reported in which the reduction of water surface area by any means was
considered.
If a lake or reservoir is relatively shallow over all or a significant
portion of its total area, it may be possible to materially reduce evap-
oration by reduction of the surface area. Such is the case with Utah
Lake, located in Central Utah, where the surface area is large but the
lake is shallow. Evaporation loss from this lake is equal to about one-
third of the total capacity and nearly one-half of the average annual
in-flow. Plans for the diking of Utah Lake have been under consideration
T
Superscript numbers refer to literature cited in SECTION X of this
report.
-------
for several years as a part of the Bonneville Unit of the U.S. Bureau
of Reclamation Central Utah Project. The proposed diking of Utah Lake
would dike off two bays from the lake and reduce the surface area by
about one-third resulting in the saving of about 75,000 acre-feet
(925,500,000 cubic meters) of evaporation loss annually. The research
reported herein represents an evaluation of the projected dikes as they
relate to the quality of the water in Utah Lake and describes the com-
puter model, LKSIM, that was developed to help evaluate the water
quality and quantity changes associated with diking. This model was set
up to be flexible and versatile so that it might be readily applied to
other lake systems.
-------
SECTION IV
DESCRIPTION OF UTAH LAKE
Utah Lake is located in Central Utah and is the primary fresh water lake
in the Jordan River drainage basin (See Figure 1). Water is stored in
Utah Lake and then released into the Jordan River and irrigation canals
for use in the Salt Lake Valley. Water flowing from Utah Lake which is
not diverted for irrigation terminates in the Great Salt Lake. The
Great Salt Lake is a remnant of the Lake Bonneville of ancient times
which at one time covered 20,000 square miles (51,800 square kilo-
meters) in northwestern Utah and had a depth of about 1000 feet (304.8
meters). For a detailed description of the geology of Utah Lake and
the surrounding valley, the reader is referred to Hunt, Varnes and
4 5
Thomas and Bissell .
The area and volume of Utah Lake vary depending upon the lake level.
The control level is known as "compromise level," which represents a
near maximum level above which the lake does not often remain for any
extended period of time. At "compromise level" the lake has a surface
area of about 95,000 acres (38,446 hectares), a volume of storage equal
to 898,000 acre feet (1108 million cubic meters) and an average depth of
9.5 feet (2.88 meters), according to U.S. Bureau of Reclamation surveys
made between 1953 and 1962. The lake level drops several feet each year
during the hot summer months, when water is being used for irrigation
and when large amounts of water are being evaporated. During periods of
drouth, the lake has decreased greatly in size and depth reaching a rec-
ord level 12 feet (3.66 meters) below "compromise" after the great
drouth of 1934.
-------
Great Salt Lake
STATE
0 F
UTAH
MILES
0 5
10 15 20
05 10 15 20 25 30
KILOMETERS
Figure 1- Map showing location of Utah Lake and Jordan River
-------
The lake has a mud bottom throughout most of the lake, composed largely
of lake sediments of clay and silt. The waters of the lake are often
turbid, since frequent winds on the lake generate rather high waves
which stir up the bottom sediments and re-deposit them. The usual wind
direction is from the north, but south winds also occur at times.
During times of wind, in addition to the wave action which is generated,
a seiche is established with the water level at the leeward end of the
lake reaching a level of as much as two feet (0.61 meters) in elevation
above the water level at the windward end. This fact causes some dif-
ficulty in evaluating the "change in lake storage" in "water-balance"
calculations.
There are about 51 streams of water in definite channels which flow in-
to Utah Lake during all or a substantial part of each year. The Jordan
River represents the only natural outflowing stream, but there are
several locations where water is sometimes pumped from the lake for use
in irrigation.
A number of springs issue forth beneath the water surface of the lake.
These springs are generally of two types—either warm rather highly
mineralized waters, or cool waters of good quality. The warm mineral
springs seem to issue from a geologic fault or faults extending across
the lake in a general north-south direction from Saratoga Resort on the
northwest shore of the lake to Lincoln Point. The cool springs are
located mainly near the north and east shores of the lake and seem to
be similar in mineral content to well water from the shallow artesian
aquifer along the east and north shore of the lake. The presence of
these under-water springs introduces some difficulty into the water
balance studies required to evaluate various water quality effects of
the lake. The amount and quality of water from the springs in the lake
will be further discussed in SECTION VII.
8
-------
SECTION V
DIKING PLANS FOR UTAH LAKE
Consideration of plans for diking of Utah Lake to curtail the evapora-
tion by reducing the surface area of the lake date back many years. In
1905, Swendsen wrote of such consideration by the then newly-organized
Reclamation Service of the federal government. The investigations in-
cluded the measurement of 33 inflowing tributaries to the lake over a
five-year period, limited studies of the underwater springs in the lake,
records of lake level fluctuations, and notes relating to the nature of
the bottom sediments along the lines of proposed dikes across the Provo
and Goshen Bays. Considering the limited knowledge of the field of soil
mechanics and the relatively primitive earth moving equipment available,
it is not surprising that the conclusion was reached that the construc-
tion of the proposed dikes should not be undertaken at that time.
A plan to dike Provo and Goshen Bays is included in the Bonneville Unit
of the U.S. Bureau of Reclamation Service Central Utah Project. Some
parts of this unit are already under construction. The proposed dike
3
locations are shown in Figure 2. The present plan , calls for the
Goshen Bay land reclaimed by diking, to be used as a waterfowl refuge
and the Provo Bay land to be drained and used for agricultural purposes.
At compromise level, the Goshen Bay and Provo Bay dikes would reduce the
lake surface area by 26,776 acres (10,836 hectares) and 6,961 acres
(2817 hectares), respectively. This represents a total area equal to
35.5 percent of the existing lake area. Design details for the dikes
have not been completed, nor has a definite program date for construc-
tion been established.
-------
Prove Bay
Proposed Dikes
20 Statute Miles
•
30 Kilometers
Figure 2- Map of Utah Lake showing proposed diking of Goshen
Bay and Provo Bay
10
-------
The project reported herein was planned to provide information relating
to the effect of the proposed diking upon the water quality of the lake,
and to develop methodology which could be applied to other similar
projects which may exist at other locations.
11
-------
SECTION VI
COLLECTION OF DATA
The task of collection of the data required to make the evaluations of
this study was a monumental one. Fifty-one surface streams are tribu-
tary to Utah Lake. The quantity of flow in each of these streams
fluctuates with time, and it was therefore necessary to install measur-
ing devices and make regular observations of the flow at frequent inter-
vals throughout the study period. It was also necessary to obtain
samples for determination of quality parameters from the inflowing
streams, the outlet stream (the Jordan River) and at many points in the
lake. This massive program of measurement, sampling, and chemical and
biological analyses of the samples was initiated in June 1970. Some
scattered water quality data prior to that time was found and included
in the data tabulation of the project. Most of the flow measurements
were made jointly by project personnel and the staff of the Provo River
Project office of the U.S. Bureau of Reclamation. Most of the lake and
stream sampling and analyses during 1970-72 was done by the research
project staff. Tributaries were measured at least weekly during the
summer months and less frequently during the winter.
The U.S. Geological Survey maintains regular water stage recorder
records on the Provo and Spanish Fork Rivers near their point of entry
into Utah Lake. Their records were included in our project tabulations.
Effluent flow from the Geneva Steel works were furnished to our project
by the engineering staff of Geneva Steel Company. Effluent data from
Provo, Orem, and American Fork sewage treatment works were provided by
the Utah State Department of Health, and effluents from other sewage
12
-------
treatment works in the valley were included as part of the flow of
measured tributaries.
Information on lake levels was obtained from the water stage recorder
operated by the Jordan River Commissioner.
Precipitation records were compiled from regular U.S. Weather Bureau
stations in the valley and also from supplemental stations at several
locations established by the U.S. Bureau of Reclamation. Evaporation
pan data for the U.S. Weather Bureau station at Lehi were obtained from
the Weather Bureau. Supplemental records during part of the study
period were obtained from temporary stations established by the U.S.
Bureau of Reclamation at the Provo Airport and at Dixon Farms, near the
south end of the lake.
Water quality data for under-water springs were derived from Harding ,
Subitzky8, Mundorff9, and Milligan, et. a!.10.
A listing of the lake and tributary water measurements and sample
analyses made during the investigation is included in Appendix A. Some
water quality data from samples taken over a three-year period prior to
the beginning of this project are also included in the listing.
13
-------
SECTION VII
ANALYSIS OF DATA
WATER BUDGET STUDIES
The hydrology of a lake may be studied in detail by making a water bud-
get study. This involves a quantitative determination of all inflows
(inflowing surface tributary flows, precipitation on the lake surface,
and sub-surface seepage or spring inflows), and all outflows (outflowing
surface streams, evaporation from the lake surface, transpiration from
vegetation growing in the water, and sub-surface seepage into the
material under-lying the lake). If inflows and outflows are defined as
above and are all measureable, the outflow plus or minus the change in
storage should equal the inflow. However, it is not possible to measure
evaporation loss from a large body of water, and so the water budget
method is often used as an indirect method of determining evaporation.
It is also usually impossible to measure accurately the subsurface
seepage into or out of the lake. In the Lake Hefner (Oklahoma)
11 12
studies ' , the lake was carefully selected, primarily because of
its geologic characteristics. Lake Hefner is underlain by a shale
formation which is relatively impermeable, and the influent and effluent
seepage is an outward flow of about six acre feet per month. With such
a small seepage factor, and careful measurement of other parameters, the
researchers were able to determine lake evaporation with much greater
accuracy than had been possible in any previous investigation.
In the Utah Lake studies reported herein, it was known from previous
reports that there are a number of springs in the lake. The amount of
14
-------
inflow to the lake from these springs has never been accurately deter-
mined, and therefore this un-measured quantity must be evaluated in the
water budget calculations—along with the evaluation of evaporation
losses from the lake. It is obvious that if all of the other water
budget factors can be measured or accurately estimated, an over-
estimate of evaporation will also result in an over-estimate of sub-
surface spring flow if it is determined by the water budget. Conversely,
an under-estimate of evaporation will result in an underestimate of
subsurface spring flow, if spring flow is calculated from the water
budget equation. Recognizing this problem, it was determined that it
would be advantageous to develop some criteria for evaluation in addi-
tion to the water budget analysis. A method of analysis involving salt
balance was developed, and this method and the actual analysis are dis-
cussed in the following sub-sections, in which data for each factor in
the water budget analysis are considered in detail.
Inflowing Tributaries
All of the surface tributaries to the lake were located by study of maps
and by air or ground observation.
A total of 52 tributaries were located. A summary of the flows of all
of the tributaries for each month from July 1970 to June 1972 is shown
in Tables 1 and 2. It is noted that station number 30 shows no entries.
The flows of this tributary were found to be insignificantly small, and
the measurements were discontinued after the first year. Measurements
were made of the major tributaries also during the 1972-73 year. The
remaining inflows for that year are combined together as one estimate
for "un-measured" inflow. The resulting measured and un-measured data
for 1972-73 are shown in Table 3.
The two largest tributaries, Provo River (No. 29) and Spanish Fork
River, (No. 48) are included in the network of stream gaging stations
maintained by the U.S. Geological Survey and are equipped with automatic
15
-------
Table 1. UTAH LAKE SURFACE TRIBUTARY INFLOWS, 1970-71
(All Figures are in acre-feet of water)
Tributary
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
1970
July
44
46
0
24
23
138
43
353
1287
207
163
64
58
148
157
143
401
1444
1
1842
0
0
0
12
67
314
1210
7
1250
Aug.
33
25
0
28
13
126
62
117
678
236
129
58
67
163
156
73
255
1569
3
2027
0
0
0
8
98
313
1270
0
633
Sept.
57
24
0
23
37
234
37
385
1240
275
95
99
45
153
153
118
356
2686
0
1849
0
0
0
11
58
289
1240
28
1220
Oct.
26
45
0
32
7
69
40
436
1507
262
83
80
52
155
195
119
319
2442
0
1910
0
0
0
17
59
252
1380
35
9500
Nov.
0
0
0
30
20
55
29
376
1642
213
74
61
44
126
174
99
222
2081
0
2170
0
0
4
20
82
296
1440
68
20700
f
Dec.
0
0
0
33
16
67
34
383
1474
185
74
54
26
109
155
93
156
1866
0
2165
0
8
6
19
94
217
1420
67
23350
1971
Jan.
0
0
0
33
21
73
75
404
1519
191
74
60
23
120
156
111
158
2115
0
2196
0
8
6
22
119
202
1500
182
19280
Feb.
0
0
0
33
30
66
47
314
1189
175
76
47
21
102
138
111
131
1725
0
1741
0
6
6
17
88
199
1480
129
17170
March
0
0
0
34
14
64
40
274
1207
181
80
35
23
109
156
122
159
1819
0
1910
0
6
6
16
85
225
1540
79
13310
April
17
0
7
32
18
73
81
316
1066
185
80
61
25
128
163
124
235
1974
0
2006
0
4
6
15
23
217
1450
87
18800
May
16
2
59
34
23
104
102
327
977
240
117
136
49
125
191
146
368
1673
0
1910
0
2
5
13
72
252
1530
47
11690
June
3
19
37
35
67
146
65
392
1363
269
215
154
501
226
189
152
472
1519
0
1805
0
0
2
13
89
260
1320
28
19500
Totals
July-
June
196
161
103
371
289
1215
655
4077
15149
2619
1260
909
934
1664
1983
1411
3232
22913
4
23531
0
34
41
183
934
3036
16780
757
156403
-------
Table 1. (Continued) UTAH LAKE SURFACE TRIBUTARY INFLOWS 1970-71
(All fiqures are in acre-feet of water)
Tributary
Number
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
1970
July
78
49
6
743
91
32
74
867
1524
232
408
1484
743
145
170
494
334
353
68
261
1454
0
Aug.
121
44
6
722
92
64
81
870
1564
229
423
1403
373
128
205
577
924
681
69
331
1645
0
Sept.
164
44
6
717
199
138
94
814
1361
185
416
1362
359
758
207
422
1134
2165
56
256
3242
0
Oct.
149
45
7
669
118
50
93
1041
812
247
337
1708
278
1366
226
267
1361
4130
57
288
3454
0
Nov.
177
42
7
595
149
26
82
1118
948
236
263
1782
293
2002
242
176
1211
5320
50
245
3944
0
Dec.
160
43
7
410
132
13
61
1041
928
208
273
1568
404
2049
229
217
1291
5810
34
272
3885
0
1971
Jan.
116
43
7
337
93
40
58
990
935
184
292
1602
673
1979
209
178
1211
6810
32
303
3516
1538
Feb.
106
39
7
269
99
130
54
898
828
166
298
1390
634
1834
213
164
1158
6810
42
368
3706
1231
March
119
43
6
296
45
25
58
1208
853
184
346
1228
817
2178
183
178
1215
9970
44
242
3933
720
April
143
46
6
358
65
38
75
1031
1014
167
378
1274
923
2731
140
194
1159
13860
37
277
4233
359
May
118
47
6
394
83
76
83
814
1182
170
498
1858
921
2012
154
227
399
10760
35
395
2881
338
June
66
55
6
702
75
88
72
825
1342
148
461
1297
729
557
281
523
791
1910
58
434
2159
70
Totals
July-
June
1517
540
77
6212
1241
720
885
11517
13291
2356
4393
17956
7147
17739
2459
3617
12188
68579
582
3672
38052
4256
Totals
19056 18692 24811 35725 48934 51106 49797 45485 45385 55701 43661 41490 479840
-------
Table 2. UTAH LAKE SURFACE TRIBUTARY INFLOWS, 1971-72
(All figures are in acre-feet of water)
00
Tributary
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
1971
July
0
0
0
38
22
159
68
276
1387
215
259
73
63
158
123
99
348
1374
1
1933
0
0
0
10
107
262
1210
17
850
Aug.
4
5
0
35
2
115
79
93
997
207
141
96
60
231
106
103
377
1678
3
1980
0
0
0
13
90
292
1270
3
877
Sept.
15
23
0
22
19
215
135
298
1445
220
107
121
58
167
158
98
428
2693
0
2538
0
0
0
11
45
273
1240
50
1120
Oct.
10
0
0
26
15
63
194
328
1558
217
76
114
57
159
178
115
378
2466
0
2266
0
0
0
16
66
245
1380
75
1 5802
Nov.
0
0
0
31
29
64
191
343
1418
204
74
90
58
133
163
98
249
2020
0
2289
0
6
6
21
82
226
1440
122
20229
Dec.
0
0
0
32
0
70
97
310
1311
180
77
72
60
114
151
94
171
1863
0
2440
0
6
6
18
103
279
1420
123
20205
1972
Jan.
0
0
0
31
37
74
92
295
1291
178
70
49
61
105
129
80
141
1654
0
2723
0
6
6
16
92
290
1500
111
16520
Feb.
0
0
0
35
21
63
58
230
1104
16
66
38
58
89
115
71
123
1377
0
2377
0
6
6
15
73
257
1480
104
16288
March
0
0
49
30
17
55
30
178
1168
213
70
50
68
86
121
90
117
1353
0
2541
0
12
7
16
61
265
1540
80
20577
April
0
0
0
23
12
60
57
214
916
274
92
100
83
121
135
83
179
1452
6
2509
0
30
7
15
54
266
1450
12
16854
May
25
68
0
33
20
112
179
406
375
325
104
168
105
149
150
121
375
1150
0
2440
0
6
6
15
100
312
1530
55
16723
June
8
1
60
39
32
146
74
351
1154
233
164
178
173
168
177
114
506
1410
0
2313
0
0
1
13
78
312
1320
23
29437
Totals
July-
June
62
97
109
375
226
1196
1254
3322
14124
2482
1300
1149
904
1680
1706
1166
3392
20490
10
28349
0
72
45
179
951
3279
16780
775
175482
-------
Table 2 (Continued) UTAH LAKE SURFACE TRIBUTARY INFLOWS, 1971-72
(All figures are in acre-feet of water)
Tributary
Number
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
1971
July-
104
42
3
617
46
25
75
859
1439
404
313
1529
451
149
341
386
489
593
62
333
1043
0
Aug. Sept.
100
45
6
354
54
24
80
947
1624
255
262
2057
414
191
279
456
835
538
54 '
250
1156
0
149
40
6
297
119
60
92
711
1401
273
241
2116
438
434
331
274
891
1700
39
207
2559
0
Oct.
137
42
6
470
211
58
95
883
1259
206
245
2241
476
1461
424
216
941
5343
45
180
3063
922
Nov.
105
39
6
242
214
26
76
868
1117
169
228
1940
468
1663
643
203
1073
6389
44
137
3793
2082
Dec.
109
42
6
224
133
30
55
923
1055
149
208
1468
509
1766
401
191
823
7289
40
135
4013
1783
1972
Jan.
123
43
7
234
148
31
49
959
952
123
215
1279
553
1968
357
185
935
7329
31
172
4034
1014
Feb.
104
40
7
224
35
23
35
892
944
29
196
1294
506
1818
, 276
127
1041
7525
35
150
3664
2013
March
74
49
7
289
80
25
37
1008
1128
31
24G
1457
553
2226
283
178
1992
10320
37
160
-3419
680
April
89
42
7
321
125
71
60
726
1141
30
303
1743
553
2130
315
202
1095
6926
54
184
2600
600
May
68
80
8
301
141
25
68
750
1325
18
240
2060
584
92
240
240
689
801
49
394
1636
90
June
65
125
8
321
119
24
69
684
1466
0
250
2338
779
161
268
292
238
736
48
303
2172
0
Totals
July-
June
1227
629
77
3894
1425
422
791
10210
14851
1687
2947
21522
6284
14059
4158
2950
11042
55489
538
2605
33152
9184
Totals
18355 18838 23877 44728 51111 50554 46292 45048 53073 44321 34951 48951 480099
-------
ro
o
Table 3. UTAH LAKE SURFACE TRIBUTARY INFLOWS, 1972-73
(All figures are in acre-feet of water)
Tri-
butary
No.
9
11
18
20
26
27
29
34
38
39
41
42
43
47
48
51
Un-
measured
tri-
butaries
Totrils
1972
July
1537
129
1599
1745
314
1210
1840
679
813
1475
286
1020
861
85
113
440
3721
17867
Aug.
1168
124
1568
2372
314
1270
732
710
695
1427
• 455
1072
829
221
149
336
3416
tGSbK
Sept.
1309
138
2410
2313
304
1240
2020
533
632
1381
550
775
439
416
762
857
4331
20410
Oct.
1875
143
2767
2593
295
1380
11400
429
943
1269
524
1161
689
1072
4950
2413
5429
3933?
Nov.
1666
130
2350
2602
285
1440
13850
235
683
933
529
1651
455
1133
6320
2657
.A7.3.4
42653
Dec.
1722
135
1875
2579
295
1420
14090
191
1185
1135
336
740
252
1156
6450
2619
5978
5215K
1973
Jan.
1506
143
1783
2782
295
1500
16290
188
1319
1009
240
526
144
1128
6550
2828
61 GO
44331
Feb.
1722
130
1805
2250
266
1480
16000
204
1206
945
272
461
218
1137
5730
3307
1 3800d
50933
March
1968
130
2029
2271
333
1540
17130
334
1395
1094
340
1055
375
1270
7300
3590
5612
4/766
April
1785
140
1577
2063
313
1450
20680
502
1325
1068
374
1104
371
1187
17090
3273
8653b
52955
May
1107
150
1844
2265
285
1530
41880
875
678
1465
460
1423
333
893
40150
3951
37029h
136368
June
1368
150
1785
2405
304
1320
19470
1154
546
1427
387
1214
980
119
3480
?023
17339h
55471
Totals
18733
1642
23392
28240
3603
16780
175382
6034
11420
14628
4753
12202
5996
9817
99044
28294
117142
57710?
February abnormal winter thaw caused considerable un-measured runoff.
fist nnattjd indirectly by evaporation and water balance calculations.
-------
water stage recorders for continuous recording of the stream flow. The
flow records are published as "Provo River at Provo, Utah" and "Spanish
Fork River near Lakeshore, Utah." Records for these two tributaries
were tabulated from U.S.G.S. data.
The effluent from Geneva Steel plant (No. 20) is measured continuously by
the steel company, and these records have been made available to the
project.
Records of effluent flow from Provo (No. 39), Orem (No. 26), and
American Fork (No. 11) sewage treatment plants were obtained from the
Utah State Board of Health. Flows from the other sewage treatment
facilities in the valley are mingled with other waters before entering
the lake, and the entire flow of these tributaries, was measured on a
regular basis over the period of study. One tributary, Powell Slough
(No. 27), consists of several branches in an area where a number of
springs arise. Measurement of this tributary presented a number of
difficulties. A study of several record sources indicated that rather
careful and detailed measurements of this tributary had been made at
different times in the past. Swendsen made detailed measurements over
13
a 13-month period in 1903-04. Harding carefully analyzed the
Swendsen records and noted minor differences from his own measurements.
The Bureau of Reclamation made measurements over an eight-year period,
1938-45. Taking all of the available records of measurements of
Powell's Slough, it was noted that for each month of the year, the
records of flow from all of these different periods of ti-me did not dif-
fer greatly from each other. It was therefore decided that to use a
fixed monthly flow equal to the average of the available ten years of
record would not be seriously in error. Considering the physical dif-
ficulty of getting an actual measurement of this tributary it was felt
that the expense of attempting to do so would not be warranted. Since
all three years of the study were "good" water years and the lake level
was high, the same monthly figure was used for each corresponding month
of the three years. Measuring devices were established on all of the
21
-------
other of the fifty-one tributaries. For the first two years of study,
measurements were made at all stations weekly during the summer months
and about monthly during the other periods of the year, when experience
showed that there was relatively little change in flow with time. After
the first two years of data were collected, it was noted that many of
the small drainage channels which are tributary to the lake are not
subject to appreciable fluctuation, except on a predictable seasonal
basis. Thirty-five of the fifty-one stations were in this category.
These thirty-five stations included numbers 1 through 8, 10, 12 through
17, 19, 21 through 25, 28, 31 through 33, 35 through 37, 40, 44 through
46, 49, 50, and 52. These thirty-five stations represented thirteen
percent of the total surface tributary inflow in each of the first two
years of the study. It was decided in the third year that these flows
could be estimated, using the records of the first two years and the
flows from the major tributaries during the third year as a basis for
the estimation. It will be noted in Table 3 that an estimated total
flow for each month for these thirty-five stations is given.
The estimates of flow for these thirty-five stations during the last
half of 1972 were made by comparison with measurements of previous
years, and measurements of the other seventeen tributaries which were
measured. However, in February an unusual winter thaw occurred which
caused a lot of un-measured flow into the lake, which was difficult to
evaluate. The spring runoff during 1973 was also abnormally high as
shown by flows of the Provo and Spanish Fork River. In view of these
conditions, it was decided that the best way to estimate the un-
measured lake tributary inflow was to utilize the water budget method,
using sub-surface spring flows and evaporation data and average lake-
pan coefficients determined from the first two year's data for each
of the months when evaporation pan data were available.
22
-------
Precipitation Measurement
Precipitation on the lake surface was determined by using the data from
regular U.S. Department of Commerce precipitation station records as
14
published in "Climatological Data" ; supplemented by stations establish-
ed by the U.S. Bureau of Reclamation at Pelican Point, Lakeshore, Dixon
Farms, and Provo Airport over part of the study period. Average weighted
precipitation on the lake surface was determined by using the Thiessen
method15.
Lake Outflow
All of the surface outflow from Utah Lake is through the overflow gates
or pumping plant to the Jordan River at the north end of the lake near
Lehi, except for a small amount taken by direct pumping from the south-
western portion of the lake near Elberta. The outflows are accurately
measured and reported by Gardner .
study were taken from these reports.
measured and reported by Gardner . All outflow data used in this
Change in Storage
The change in storage during any time period used in water budget studies
may be determined by use of area-capacity data coupled with accurate
measurements of the elevation of the lake surface. Water budget calcu-
lations in this study were made over monthly time intervals. Determina-
tion of the elevation of the water surface of the lake were made from
water stage recorder readings at midnight on the last day of each month,
with adjustments as necessary to account for seiches caused by wind on
the lake surface. Continuous water stage recorder records of the
elevation of the water surface of the lake throughout the entire period
reported herein were obtained from the Utah Lake and Jordan River Com-
missioner. Tables giving surface areas and volume of storage for the
lake at one-hundredth of a foot intervals were obtained from the U.S.
Bureau of Reclamation. The importance of accuracy in determining and
evaluating the elevation of the water surface can be emphasized by
pointing out that at compromise level, a one-inch (2.54 c.m.) difference
23
-------
in elevation represents a change in storage of nearly 8000 acre feet
(9,872,000 cubic meters).
In making calculations by the water budget method, it is worthy of note
that over short periods (i.e., monthly) small errors in determining water
stage levels may result in considerable errors in the other calculated
factors over longer periods (such as one or two years) or during
months of high evaporation losses* the small water level errors have
only a relatively small effect on the calculations of water budget
factors.
Sub-Surface Seepage
The existence of springs in Utah Lake has already been mentioned. The
springs along the east shore of the lake from the mouth of Provo River
northward are presumed to issue from the shallow Pleistocene Aquifer
from which many flowing wells near the lake draw water. This pre-
sumption is based upon the similarities in salt content, water pressure,
and water temperature between these wells and the sub-surface springs in
this area of the lake.
The warm springs which occur in a general line from the vicinity of
Saratoga Resort at the north end of the lake to Lincoln Point are pre-
sumed to issue from geologic faults in the lake which have much deeper
origin. These spring waters are similar in dissolved solids and tempera-
ture to the springs at Lincoln Point and Saratoga. They are high in
dissolved salts—particularly sodium chloride.
Swendsen and Harding and others * ' , have pointed out that the
groundwater near the lake is under pressure--sometimes as much as 15
feet of pressure head. It is presumed, therefore, that the net seepage
flow is into the lake, and that it occurs primarily in the warm and cold
springs mentioned above.
24
-------
Various estimates have been made of the quantity of flow into the lake
in the sub-surface springs. Most investigators have indicated that
their estimates are subject to considerable possibility of error. Cer-
tainly the amount of flow would decrease as the pressures in the aqui-
fers feeding the springs decreased. It has been noted, however, that
even in the extreme drouth years, the water pressure in deep aquifers
was probably not diminished significantly. The pressures in the shallow
aquifers, being subject to greater development and use, have diminished
in time of drouth, or even during short periods of heavy use such as the
I O
summer months. In investigations reported in 1964, Viers estimated
inflow of 18,300 acre feet (22.6 million cubic meters) annually from
known springs, and 67,000 acre feet (82.7 million cubic meters) "un-
measured inflow from the alluvial fans north of the Provo River."
Greene and Jacobsen and Peterson , estimated that the "invisible in-
flow" to Utah Lake is less than 300 cubic feet per second (8.5 cubic
meters per second)--this is 217,200 acre feet (268 million cubic meters)
annually--with their estimates presumably being based upon the same
water budget analysis. Harding reported a number of personal studies
and measurements to evaluate all sub-surface spring flow into the lake.
He estimated a total average spring flow from known spring areas at 40
to 60 cubic feet per second (1.13 to 1.70 cubic meters per second). An
average flow of 60 cubic feet per second represents an annual volume
equivalent to about 45,000 acre feet (55.5 million cubic meters). It
was decided, as a first approximation, to use 45.,000 acre feet as the
annual sub-surface flow to the lake for each of the three years of the
study reported herein. A somewhat arbitrary flow by months was estimat-
ed by assuming monthly fluctuations similar to the normal high-to-low
fluctuations in ground water aquifer pressures in the shallow Pleisto-
cene Aquifer at Lehi. Water Quality similar to the shallow Pleistocene
Aquifer was also assumed. The first approximation was later adjusted
based upon water budget and salt balance studies over the first two
years of the study which are described in subsequent paragraphs.
25
-------
The lake simulation model, described later, indicated that there was more
salt and more spring water inflowing into the lake. Balance of the
simulation model was achieved when 4324 acre feet (5.34 million cubic
meters) of water per month was added as additional sub-surface inflow.
Of this added spring flow, 2000 acre feet (2.47 million cubic meters)
per month was assumed to have dissolved mineral content similar to the
wells of the shallow Pleistocene Aquifer on the east and north shore of
the lake. The other 2324 acre feet (2.87 million cubic meters) per
month was assumed to have dissolved mineral content similar to the warm
springs issuing from the geologic fault zone in the lake already
mentioned. The total annual sub-surface spring inflow to the lake was
thus estimated at 96,880 acre feet (119.6 million cubic meters) and was
considered to be made up of three components--(a) 45,000 acre feet per
year (55.5 million cubic meters) with the quantity varying from month
to month corresponding to ground water pressures in the shallow Pleisto-
cene Aquifer, and quality similar to this aquifer; (b) 24,000 acre feet
(29.6 million cubic meters per year) evenly distributed to each month,
and of the same quality as the shallow Pleistocene Aquifer just mention-
ed; and (c) 2,324 acre feet (2.87 million cubic meters) per month or
27,888 acre feet (34.4 million cubic meters) per year of quality similar
to the warm springs issuing from the fault.
Each of the three years of the study reported herein were relatively
"good" water years, and it may therefore be assumed that the magnitude
of the sub-surface spring inflow would be approximately the same in all
three years. The above-adjusted estimate was then used in the water
budget analysis to calculate the evaporation term in the water budget
equation.
Evaporation From The Lake
Other researchers have given considerable attention to the problems of
12
measuring evaporation from a natural lake. Allen used the water
budget, energy budget, and evaporation tanks in carefully controlled
26
-------
studies at Lake Hefner, Oklahoma. Harbeck and others , in earlier
Lake Hefner studies investigated the use of water budget, energy budget,
mass transfer, pan evaporation, and a radiation integration in extensive
research investigations. The Lake Hefner studies were the result of
21
much detailed planning in an attempt to find a suitable location where
the parameters of the water budget equation could be measured with
sufficient accuracy that the evaporation could be determined by this
method. At the same time, the data obtained could be used as a base for
testing of the use of energy budget and mass transfer methods which had
never been possible before.
22
Prior to the Lake Hefner studies, Rohwer in 1931 reported extensive
studies which included careful laboratory measurements under controlled
conditions as well as the use of an 85-foot (25.9 meter) diameter con-
23
crete tank. Hickox also conducted carefully controlled laboratory
studies of evaporation as related to wind, velocity, vapor pressure
gradient, water temperature, air pressure and other variables.
Many have attempted to derive empirical equations for evaporation from
lakes or reservoirs. These efforts have been handicapped by a lack of
actual evaporation information. The same handicap has limited the use-
fulness of studies aimed at evaluation of the use of evaporation pans.
22
Aside from the work by Rohwer (who correlated pan evaporation with that
from the 85-foot tank already mentioned) no studies prior to the Lake
Hefner studies had sufficient information on actual measured evaporation
to provide meaningful comparisons with pan data or emperical equations.
Young and Follansbee projected many records of pan evaporation by
pc
using "pan coefficients." Harding studied several lakes in Nevada
and California during periods of limited inflow and made calculations of
evaporation based on water budget analyses. Many investigators have
been tempted to use a pan coefficient, based on measurements over an
entire season, to short periods—even sometimes for periods as short as
one month. This has resulted in many erroneous estimates of evaporation,
since the relationship between lake and pan evaporation changes as the
27
-------
season progresses. In the Lake Hefner studies, the coefficients for
the Weather Bureau Class A pan varied from about 0.5 in the early spring
to nearly 1.0 in the fall, and greater than 1.0 in the winter months.
The seasonal fluctuation is due in part to heat stored in the lake or
reservoir waters which increases evaporation from the lake or reservoir
in the fall and winter months as the average air temperature decreases.
In the Utah Lake studies reported herein, it was anticipated that evap-
oration could be calculated by the water budget method—at least during
the first two years of the study when extensive measurements of inflow-
ing tributaries were made. The difficulty caused by having two unknowns
(evaporation and sub-surface flow) was overcome by making use of the
salt balance principle.
Salt Balance Study -
Measurements of dissolved mineral content of the inflowing and outflow-
ing waters and of the lake itself were made at regular intervals.
Measurements were made of total dissolved minerals and of the sodium,
calcium, magnesium, potassium, bicarbonate, carbonate, sulphate, nitrate,
and phosphate ions. The chlorides and sulphates of sodium and potassium
do not easily precipitate out of solution at the concentrations existing
in Utah Lake. A balance therefore should exist between the inflowing
and outflowing quantities of these ions adjusted for changes in the
amount in solution in the lake over an appropriate time period, with the
water that evaporates leaving the salt behind in solution in the lake
waters. A simulation on the computer over the first two years of the
study indicated that the evaporation as calculated by the water budget
method using Harding's estimate of subsurface inflow to the lake re-
sulted in a large deficiency of sodium, potassium, chloride, and sulphate
compared with the actual conditions in the lake over the two-year period.
By increasing the estimated sub-surface spring flows from the spring
sources having the greatest concentration of chlorides, sulphates,
28
-------
sodium and potassium ions (and by increasing the evaporation a corre-
sponding amount to keep the water budget in balance); the simulation
model was brought into approximate balance, mineral-wise, with the
actual lake conditions. The water budget figures, adjusted to achieve
salt balance, show the calculated evaporation. These figures are shown
in Tables 4 and 5. Since evaporation in the winter months is small and
represents the difference between large numbers (inflow, outflow, and
change of storage) any small errors are greatly magnified in the calcu-
lated evaporation. Therefore, although monthly calculation of evapora-
tion is made for the seven months, April through October, no attempt is
made to calculate monthly evaporation during the months of October
through March. A total evaporation for these five months is calculated
based upon water budget analysis over this five-month period in each of
the first two years of the study.
Water Balance - The Third Year -
In the third year of the study, many of the tributary inflows were not
measured. During most of the year, the measurements on these tributaries
during the first two years provide enough information to enable reason-
ably accurate estimates of flow in the unmeasured tributaries. In the
months of April, May, and June of 1973, a period of extra-ordinarily
high runoff occurred, and it was not possible to estimate the flows by
this method. Therefore, the evaporation for these months was estimated
by using the evaporation pan records at Lehi, Utah, and average co-
efficients for the months as determined from the records of the first
two years. Calculated pan coefficients for the first two years of the
study are shown in Table 6. Water budget figures for the third year of
the study, (including evaporation data for the months of April, May, and
June calculated from average pan coefficients for these months from the
first two years of the study) are shown in Table 7.
29
-------
Table 4, WATER BUDGET ANALYSIS - UTAH LAKE 1970-71
(All figures are in acre-feet of water)
OJ
o
Month
Precipitation
on lake
surface
Surface
inflow
Shallow
sub-surface
inflow
July '70
August
September
October
November
December
January '71
February
March
April
May
June
7,254
5,981
15,710
9,705
19,745
12,634
6,180
12,007
2,985
16,632
3,833
2,517
19,056
18,692
24,811
35,725
48,934
51,106
49,794
45,485
45,385
55,701
43,661
41,490
4,490
4,490
4,707
5,447
6,149
6,593
6,784
6,460
6,937
6,445
5,791
4,707
Deep
sub-surface
inflow
2,324
2,324
2,324
2,324
2,324
2,324
2,
2,
2,
2,
2,
324
324
324
324
324
2,324
Surface
outflow
45,300
50,700
33,400
14,900
8,900
16,900
23,100
25,900
31,900
30,000
38,200
40,000
Change in
storage
-66,248
-76,441
-26,540
+14,128
+76,133
+30,066
+47,043
+25,196
+21,627
+27,483
-22,764
-45,029
Calculated
evaporation
54,072
57,228
40,692
24,173
32,033
23,619
40,173
56,067
Totals
115,183
479,840
69,000
07 OQQ
LI ,OOO
359,200 + 4,654
328,057
-------
Table 5. WATER BUDGET ANALYSIS - UTAH LAKE 1971-72
(All figures are in acre-feet of water)
Month
July '71
August
September
October
November
December
January
February
March
April
May
June
Precipitation
on lake
surface
827
151
807
381
814
519
354
116.
2,445
9,171
330
5,239
5,
5,
10,
7,
10,
Surface
inflow
18,355
18,838
23,877
44,728
51,111
50,554
46,292
45,048
53,073
44,321
34,951
48,951
Shallow
sub-surface
inflow
4,490
4,490
4,707
5,447
6,149
6,593
6,784
6,460
6,937
6,445
5,791
4,707
Deep
sub-surface
inflow
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
Surface
outflow
48,000
51,400
36,800
12,900
10,300
15,200
23,800
25,800
29,300
25,200
44,800
44,000
Change in
storage
-84,530
-74,340
-29,952
+38,816
+55,521
+53,770
+30,486
+23,295
+13,121
+ 3,761
-50,373
-32,215
Calculated
evaporation
62,526
53,743
29,867
11,164
31,276
33,300
48,969
49,436
Totals
58,154
480,099
69,000
27,888
367,500 -52,640
320,281
-------
Table 6. CALCULATED EVAPORATION FROM UTAH LAKE AND
EVAPORATION FROM PAN AT LEHI, UTAH,
JULY 1970 - SEPTEMBER 1972.
Month
Calculated
Average Lake Lake Pan
Lake Area Evaporation Evaporation Evaporation Pan
(acres) (acre-feet) (inches) (inches) Coefficient
1970
July
August
September
October
1971
Apri 1
May
June
July
August
September
October
1972
April
May
June
July
August
September
October
92,018
89,940
88,467
88,292
94,772
94,843
93,817
91 ,890
89,578
88,096
88,222
93,982
93,284
92,052
90,270
87,914
83,162
86,055
54,072
57,228
40,692
24,173
23,619
40,173
56,067
62,526
53,743
29,867
11,164
33,300
48,969
49,436
64,892
51,913
40,279
18,733
7.05
7.64
5.52
3.29
2.99
5.08
7.17
8.17
7.20
4.07
1.52
4.25
6.30
6.44
8.63
7.09
5.81
2.61
9.39
8.32
6.20
3.47
5.16
6.57
9.16
10.88
9.06
6.84
no data
5.17
8.87
9.01
11.72
8.73
6.04
no date
0.75
0.87
0.89
0.95
0.58
0.77
0.78
0.75
0.79
0.59
--
0.82
0.71
0.72
0.74
0.81
0.96
__ _
Calculated by water budget method.
32
-------
Table 7. WATER BUDGET ANALYSIS - UTAH LAKE 1972-73
(AH figures are in acre-feet of water)
Month
Precipitation
on lake
surface
Surface
inflow
Shallow
sub-surface
inflow
Deep
sub-surface
inflow
Surface
outflow
Change in
storage
Calculated
evaporation
CO
CO
July '72
August
September
October
November
December
January
February
March
April
May
June
73
955
4,542
5,220
20,316
6,481
4,830
7,410
7,189
9,542
11,784
8,964
6,106
17,867
16,858
20,410
39,332
42,653
42,158
44,331
50,933
47,766
62,955a
136,368a
55, 471 a
4,490
4,490
4,707
5,447
6,149
6,593
784
460
6,937
6,445
5,791
4,707
6,
6,
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
2,324
51,000
51,900
35,485
13,370
5,286
1,773
6,779
19,714
26,753
29,798
39,258
44,551
- 90,256
- 75,599
- 43,103
+ 35,316
+ 46,240
+ 49,623
+ 54,057
+ 47,622
+ 39,002
+ 30,048
+ 65,794
- 29,732
64,892
51,913
40,279
18,733
10,987
23,662
48,395!
53,789'
Totals
93,339
577,102
69,000
27,888
325,667 +129,012
312,650
Evaporation during April, May, and June was calculated from pan evaporation data at Lehi, Utah, and
surface inflow calculated by water budget, since surface inflow measurements not available for
these months.
-------
SECTION VIII
COMPUTER SIMULATION
A Fortran IV computer program, LKSIM, was developed to allow simulation
of the conservative salts in a well-mixed lake system. This model
(1) carries along the salt concentrations as well as the water budget,
thus allowing the user to evolve better estimates of evaporation and
sub-surface inflow; and (2) provides the capability to predict changes
in water quality and the water budget resulting from various management
alternatives, such as (a) diking, (b) changes in tributary inflow
quantity and/or quality, (c) and diked bay management policies.
The simulation model is based on the concept of a central main lake
which has satellite bays connected to it. During each time period of
the simulation, normally one month, the given inflows, outflows, pre-
cipitation and evaporation are evaluated for each area; the total
quantities of inflowing salts are calculated and added to each area;
and the end-of-period water volume and quality determined assuming that
each area is a separate, well-mixed body of water. The imaginary gates
separating the bays from the main lake are then "opened" and the volume
of interflow occurs as necessary to bring the entire lake system to the
same stage. This lake stage is the dependent variable since all other
water quantities are given as input data. Circulation between the main
lake and any bays is simulated at this point by also allowing the ex-
change of a specified percentage of a bay's volume with lake water.
These flows are then completely mixed in the recipient areas. The
34
-------
end-of-period water quantity and quality summary is then printed and the
next time period begins.
Diking is simulated by leaving the imaginary gates closed, thus leaving
the diked area as a separate lake. Many options are possible for manage-
ment of the diked area, for example:
(1) Any or all bay tributaries may be reassigned to another bay or
to the main lake. This allows simulation of diversion of water around
the diked bay or pumpage of tributary inflow over the dike.
(2) Any desired beginning bay stage may be given, thus represent-
ing various degrees of pumpage from the bay after dike completion. Any
such pumpage would be simulated by assigning it as a tributary inflow
during an early time period(s).
(3) If a given maximum stage is exceeded in the main lake in any
period, the excess water may be allowed (coded) to flow into a diked bay
area or else be exported out of the lake system, etc. Refer to
Section XIII, Appendix B for specific details on these and other model
options.
Although the LKSIM simulation model is conceptually quite simple, it
provides a powerful tool for the evaluation of the water balance and
dissolved salt concentrations in a lake system. The model does not
presently incorporate non-conservative quality parameters—all are
assumed to be conservative—and it would be difficult to do so for most
parameters. This difficulty stems more from the general dearth of
understanding of factors as: (a) chemical precipitation, (b) circula-
tion patterns, (c) energy balances, and (d) biological cycles; than
from inherent difficulties in the model itself.
Since the simulation model assumes well-mixed sub-areas, the quality
calculated is, at best, the average for each part of the real lake
system. Any quality gradient between the main lake and a bay is like-
wise lumped at the imaginary boundary between them.
35
-------
When applying the model to a lake system, many judgments and estimates
must be made, such as: (a) average beginning salt concentrations, (b)
circulation for each period, (c) time period step to be used. When the
model is used in conjunction with a detailed knowledge of the real
system, and compared to the observed lake quality during the calibration
period, it greatly increases the probability of accurately establishing
the major unknown components in the water balance budget. The "cali-
brated" model then also provides a powerful tool for evaluating re-
sponses to changes in the lake system.
36
-------
SECTION IX
DISCUSSION OF RESULTS
The computer simulation of the lake system was described in the previous
section and in Appendix B. This simulation served as a valuable tool
in the evaluation of evaporation losses from the lake over the study
period, as already described in previous sections of this report. The
salt balance technique, utilizing the "conservative" ions which are
least subject to precipitation out of solution, should prove valuable
to other investigators who may be interested in the evaluation of evapo-
ration from lakes and reservoirs. Details of the methodology involved
can be noted by careful study of the detailed simulation reproduced in
Appendix B. The simulation presented there is actually the end product
of a number of successive preliminary simulations with appropriate ad-
justments made successively to bring about the evolution of the simula-
tion presented.
The capability of simulation of the lake and tributary system in a
computer model permits many kinds of analyses. The analysis presented
herein relates to consideration of the diking of two bays of the main
lake. Innumerable variations in management are possible using the
LKSIM model. Considerable data are generated by the model. It is noted
that the simulated water quality, as indicated by total dissolved solids
and nine different ions, is determined on a monthly basis throughout the
study period. A brief summarization of the results of the detailed
simulation (shown in Appendix B) is presented in Table 8. In addition
to simulated water quality data at the end of the 36-month study period,
37
-------
Table 8. SUMMARY OF SIMULATION RESULTS - UTAH LAKE AS AT PRESENT
•••SUMMARY INFORMATION FOR TIME PERIOD 36 -- MONTHS
•** PERIOD FLOWS AND INTERFLOWS
CO
00
BAY PRECIP EVAP SUM TRIB VOL BEFORE
NAME NO, AC-FT AC-FT INFLOW AC-FT INTERFLOW
M*IN LK 1 3139, 34634, 11569, 64U61,
PWOVO B 3 374, 4002, 5827, 31059,
GOSH£N 8 3 2719. 15246, 535, 226169,
TOTAL SYSTEM 6131, 53883, 17951,
*** HATER UUAL1TY AT THE END OF THE
BAY TOS NA CA
MAIN LK 1 960,19 121,90 88,16
PROVO B 2 747,00 63,12 92,15
GOSMEN B 3 1201,92 162,37 100,22
•••WATER BALANCE FOR THE SIMULATION
PERIOD
MG K
44,70 16,61
34.99 11.81
56,43 21,19
BAY PRKCIP EVAP TRIB INFLOW BEGINNING
AC-FT AC-FT AC-FT
MAIN LK 1 161951, 633970, 1521799,
PROVO H Z 19350, 63356. 266885,
GOSHEN B 3 81293. 268882, 398125,
STAGE VOLUME
448H.58 595789,0
44811,58 21771,5
448A,58 209400,7
•••TOTAL LAKE -^ AC-KT (EXCLUOINH DIKED BAYS,
TOTAL PHfcCIPITATION 262293,6
TOTAL EVAPORATION 96*2M7,6
TOTAL TRIB. INFLOW 1827709,1
TOTAL TR1*, OUTFLOW -1052366.4
OTHER OVERFLOW 0,0 (ENDING VOLUME HAS BEEN
BEGINNING VOLUME 626961,1
ENDING VOLUME 898389,8
STAGED 4488,58
STAGE* 4489,33
INTERFLOW
VOL AC-FT
-689,
-35261
LAKE
CL
189,21
71, a?
261.66
ENDING
STAGE
FINAL
STAGE AREA VOLUME
4489,33 61450, 641650,
4489,33 (.928, 26645,
4489,33 26640, 229695,
4489,33 9521B, 898390,
HC03 504
328.62 172.68
391,26 143,40
387,19 225,23
VOLUME
N03
6,61
2,99
4489.33 641850.1
4489,33
26844.5
4489,33 229695,1
IF ANY)
ADJUSTED
POR OVERFLOW)
P04
2.42
3.07
2.04
-------
the summary also shows a water balance analysis for the entire 36-month
period. The computer printout, reproduced on Appendix B, also displays
these data in graphical form showing variations throughout the study
period. Comparison of these simulated values with actual measurements
at various times indicates the salt balance characteristics. Figures 3,
4, and 5 show comparisons between simulated and observed concentrations
of sodium ions, chloride ions, and total dissolved solids in Utah Lake
over the three-year period of the study.
Many other simulations have been generated for different input and
management conditions. One which is most pertinent to the present study
is one in which Provo Bay and Goshen Bay were assumed to have been sepa-
rated from the main body of the lake by diking. For this "diked" simula-
tion, all of the Provo Bay tributaries were diverted around the bay and
into the lake, and all of the Goshen Bay tributaries continued to flow
into Goshen Bay. All of the areas started at the same July 1, 1970
stage, and no water was pumped out of the bays into the lake. When the
lake level exceeded compromise level, the excess water was "exported"
out of the system. A summary of results of the computer simulation are
shown in Table 9. It may be noted from the summary that a net saving of
220,000 to 270,000 acre feet (271 to 331 million cubic meters) of water
was made over the three-year period—the exact value being dependent
upon whether the Goshen Bay tributaries are also diverted to the main
lake. It may also be noted that the total dissolved solids of the main
lake would be reduced from 960 to 800 milligrams per liter by comparing
the undiked simulation results to the diked simulation results. Diking
would reduce sodium concentration from 122 to 95 milligrams per liter,
and chloride from 189 to 138 milligrams per liter.
It should be pointed out in passing that while some of the quality para-
meters shown in the simulation (for example, sodium, potassium, and
chloride) would be expected to correspond to actual measured values;
others (such as calcium, bi-carbonate, nitrate, phosphates, and total
39
-------
200
175
o>
D-
!> 15°
'i
r\
2 125
• *
o o o
o
c
>
1970
t
0 O <
o o
o
o
o
o
o o
<
>
1971
•
> (
o o o
O 0
*
o Simulated
• Observed
0 •
0 0
O O0
(
>
1972
>
o
o
o
0 <
1973
O
o
00
100
Figure 3. Graph showing simulated and observed concentration
of sodium ions in Utah Lake - July 1970 to July 1973
-------
300
s-
1970
>
0 1
o o o o
o o o
0 0
cj
1971
(
? o o o
° o •
O Simulated
• Observed
O
O 0
• o
0 • J
>
^
1972
y
O
O
0
6
0
1973
Figure 4. Graph showing simulated and observed concentration of
chloride ions in Utah Lake - July 1970 to July 1973
-------
1400
ro
5-
O)
S-
OJ
CL
S-
CT
on
o
o
o
1200
1000
800
600
400
o o
o
o
o9 * ~ 1
•>
1970
' ° (
o o o
0
O
0 0
o
o <
>
1971
[) t
o o
•
•
O Simulated
• Observed
O
O 0
—
o
o
>
A A
•
1972
o
o
x-v _/^
(
o
1973
Figure 5. Graph showing simulated and observed concentration
of total dissolved solids in Utah Lake - July 1970 to July 1973
Note: The simulated IDS results have not been corrected for apparent precipitation
of CaCO., from the water. Rough estimates of this precipitation based on
analysis of calcium and bicarbonate ions would decrease the simulated total
dissolved solids to near observed values in 1972. (About 100 mg/1 decrease)
-------
Table 9. SUMMARY OF SIMULATION RESULTS - WITH DIKES ON PROVO BAY AND GOSHEN BAY
***SUMMARY INFORMATION FOR TIME PERIOD 36 »* MONTHS
*** PERIOD FLOWS AND INTERFLOWS
SAY
NAME NO,
MAIN LK 1
PROVO B 2
GOSHEN 8 3
TOTAL SYSTEM
PRF.CIP EVAP SUM TRIB
AC-FT AC-FT INFLOW AC-FT
3123, 34455. 17416,
46. 668, 0,
2082, 11676, 535,
5251, 468C1, 17951,
**» WATEK DUALITY AT THE END OF THE PERIOD
MAIN L*
BAY
1
TOS
799,64
NA
94,59
CA
82,46
MG
36.94
IL BEFORE
INTERFLOW
62&521.
493,
77395,
K
I 13,57
INTERFLOW
VOL AC-FT
0.
0!
LAKE
CL
138,00
F I
STAGE
4489,12
4482,63
4482,88
4489,1
HC03
301,75
N A L
AREA
61220,
521,
2 61220.
S04
136.14
VOLUME
628521,
493,
77395,
628521,
N03
6.90
P04
2.46
***WATER BALANCE FOR THE SIMULATION
EVAP TRIB INFLOW
AC-KT AC-KT
63S542, 1777751,
C7331, 181933,
, 59325,
MAIN LK
PROVO B
GOSHEN B
BAY
1
2
3
HRKCIP
iC-FT
lf>2*45.
15120,
74987,
BEGINNING
STAGE VOLUME
ENDING
STAGE VOLUME
44S*,,58 595769,0 4489,12 628523,6
4463,56 21771,5 4462,60 493.2
4438,53 209400,7 4482,88 77395,0
***TOT\L L-AKE
TC5TAL
TOTAL
TOTAL
TOTAL TRIB, OUTFLOW"
OTHEK OVERFLOW a
BEGINNING VOLUME a
ENDING VOLUME =
— AC-FT
162.'I«S.2
635b42,3
1777751,1
CEXCLUOING DIKED BAYS, IF ANY)
219*55,9 (ENDING VOLUME HAS BEEN ADJUSTED FOR OVERFLOW)
595789,a STAGE* 4488.53
628520.6 STAGEa 4469,12
-------
dissolved solids would not—for at least two reasons: (1) chemical
precipitation of several compounds, especially calcium carbonate, and
(2) biological activity such as algae growth and decay which results in
uptake and release of nutrients such as nitrates and phosphates. The
quantities of these nonconservative ions that are trapped or removed in
the lake may be estimated by calculating the difference between the ob-
served and the simulated levels at the end of the simulation period.
Using this approach, the model is calibrated using the conservative
ions and then used to estimate nonconservative ion removal. Several
other important factors in relation to the effects of diking should be
27
mentioned. The authors have already previously reported that Provo
Bay is presently functioning as a large oxidation pond which has con-
siderable effect upon the reduction of pollution parameters within the
bay. If the waters now tributary to the bay were diverted to the main
lake, some pre-treatment would be necessary to maintain the present
lake quality, particularly near the inflow area.
The research reported herein was not directed toward a detailed study of
28
biological factors, but Barnes, et. al., have reported several recom-
mendations relating to the precautions which should be taken to limit
the possible adverse effects of the proposed Goshen Bay dike on the
biota of the lake.
44
-------
SECTION X
REFERENCES
1. Meyers, J. Stuart. Evaporation From the Seventeen Western States.
U.S. Geological Survey, Washington, D.C. Professional Paper 272-D.
1962. 30 p.
2. Water Resources Scientific Information Center. Evaporation Suppression
A Bibliography. Office of Water Resources Research, U.S. Department
of the Interior, Washington, D.C. Publication Number WRSIC-73-216.
December 1973. 477 p.
3. Bureau of Reclamation. Bonneville Unit - Central Utah Project. U.S.
Department of the Interior. Government Printing Office, Washington,
D.C. 1968.
4. Hunt, C. B., H. D. Varnes, and H. E. Thomas. Lake Bonneville:
Geology of Northern Utah Valley, Utah. U.S. Geological Survey,
Washington, D.C. Professional Paper 257-A. 1953. 99 p.
5. Bissell, Harold J . Lake Bonneville: Geology of Southern Utah Valley,
Utah. U.S. Geological Survey, Washington, D.C. Professional Paper
257-B. 1963. 30 p.
6. Swendsen, George L. Operations in Utah. In: Third Annual Report
of the Reclamation Service, 1903-4. U.S. Geological Survey, Depart-
ment of the Interior, Washington, D.C. 1905. p. 494-508.
45
-------
7. Harding, S. T. Springs Rising Within the Bed of Utah Lake. Un-
published Report of Investigations for Board of Canal Presidents
of the Associated Canals of Salt Lake County. April 1941.
8. Subitzky, Seymour. Records of Selected Wells and Springs, Selected
Drillers' Logs of Wells and Chemical Analyses of Ground and Surface
Waters - Northern Utah Valley, Utah County, Utah. U.S. Geological
Survey, Salt Lake City, Utah. Basic-Data Report No. 2. 1962.
Up.
9. Mundorff, J . C. Major Thermal Springs of Utah. Utah Geological
and Mineralogical Survey, Salt Lake City, Utah. Water Resources
Bulletin 13. September 1970. 60 p.
10. Milligan, J. H., R. E. Marsell, and J. M. Bagley. Mineralized
Springs in Utah and Their Effect on Manageable Water Supplies.
Utah Water Research Laboratory, Utah State University, Logan,
Utah. Report WG23-6. September 1966. 50 p.
11. U.S. Geological Survey. Water-Loss Investigations: Volume I -
Lake Hefner Studies Technical Report. U.S. Department of the
Interior, Washington, D.C. Circular 229. 1952. 153 p.
12. Allen, James B. An Analysis of Evaporation at Lake Hefner, 1965-66,
Based on the Water Budget, Energy Budget, and Evaporation Tanks.
Department of Agricultural Engineering, Oklahoma University,
Still water, Oklahoma. Doctoral Thesis. July 1968. 208 p.
13. Harding, S. T. Inflow to Utah Lake 1903-04 and 1935-36. Unpub-
lished Report of Investigations for Board of Canal Presidents of the
Associated Canals of Salt Lake County. 1936. 24 p.
14. Environmental Data Service. Climatological Data - Utah. National
Oceanic and Atmospheric Administration, Asheville, North Carolina.
Volumes 72-75. 1970-73.
46
-------
15. Thiessen, A. H. Precipitation for Large Areas. Monthly Weather
Review, 39:1082-1084, July 1911.
16. Gardner, David B. Utah Lake and Jordan River Distribution. Annual
Report of the Utah Lake and Jordan River Commission for the Years
1970-73, inclusive, Salt Lake City, Utah. p. 19-21.
17. Richardson, C. B. Underground Waters in Valleys of Utah. U.S.
Department of the Interior, Geological Survey, Washington, D.C.
Water Supply Paper 1957. 1906. p. 29, 49.
18. Viers, C. E. The Chemical Quality of the Waters of Utah Lake. U.S.
Department of the Interior, Bureau of Reclamation, Region 4, Salt
Lake City, Utah. Unpublished Report. May 1964. 106 p.
19. Greene, W. M. Utah Lake Division of the Salt Lake Basin Investiga-
tion. U.S. Bureau of Reclamation. Unpublished Report. May 1923.
20. Jacobsen, C. B., and W. F. Peterson. Utah Lake, A Storage Reser-
voir. University of Utah, Salt Lake City, Utah. Unpublished B.S.
Thesis. May 1932.
21. Harbeck, G. E. Utility of Selected Western Lakes and Reservoirs for
Water Loss Studies. U.S. Geological Survey, Washington, D.C.
Circular No. 103. March 1951.
22. Rohwer, C. Evaporation from Free Water Surfaces. U .S. Department
of Agriculture, Washington, D.C. Technical Bulletin No. 271.
December 1931.
23. Hickox, G. H. Evaporation from a Free Water Surface. American
Society of Civil Engineers, Transactions, IJjHPaper 2266): 1-33, 1946.
24. Young, A. A. Evaporation from Water Surfaces in California. Division
of Water Resources, Department of Public Works, State of California,
Sacramento, California. Bulletin No. 54. 1947. 68 p.
47
-------
25. Rohwer, C., and R. Follansbee. Evaporation from Water Surfaces: A
Symposium. American Society of Civil Engineers, Transactions,
99:671-747, 1934.
26. Harding, S. T. Evaporation from Large Water Surfaces Based on
Records in California and Nevada. American Geophysical Union,
Transactions, 1j>(Part 2): 507-511, 1935.
27. Barnes, J. R., T. W. Toole, D. L. Tiilman, and D. K. Shiozawa.
The Effect of Goshen Bay Dike on the Benthos of Utah Lake in Relation
to Water Quality. Department of Zoology and Center for Health and
Environmental Studies, Brigham Young University, Provo, Utah.
Final Project Report. 1974.
28. Fuhriman, D. K., J. R. Barton, L. B. Merritt, and J . S. Eradshaw.
The Diking of Arid Region Lakes to Improve Water Quality. In:
Water—1973. American Institute of Chemical Engineers, 345 East
47th Street, New York, New York 10017. 1974. Symposium Series
Vol. 70, Number 136. p. 629-637.
48
-------
SECTION XI
INVENTIONS, PUBLICATIONS, TECHNICAL PAPERS
INVENTIONS
No inventions have been produced on this project.
PUBLICATIONS
Kennison, L. T., J. S. Bradshaw, D. R. Pratt, E. L. Loveridge, D. K.
Fuhriman, and J . R. Barton. Eutrophication of Utah Lake—An Initial
Estimate of Nutrient Inflow. Utah Academy of Sciences, Arts and Letters.
Proceedings 48 (Part 1): 52-55. October 1971.
Bradshaw, J. S., E. L. Loveridge, K. P. Ripee, J. F. Brown, E. M.
Michener, B. Hague, J. L. Peterson, D. K. Fuhriman, J. R. Barton, and
D. A. White. Pesticides in the Water and Fish of Utah Lake and Its
Tributaries. Utah Academy of Sciences, Arts and Letters. Proceedings
48 (Part 2): 26-32. October 1971.
Bradshaw, J. S., E. L. Loveridge, K. P. Ripee, J. L. Peterson, D. A.
White, J. R. Barton, and D. K. Fuhriman. Seasonal Variations in Residues
of Chlorinated Hydrocarbon Pesticides in the Water of the Utah Lake Drain-
age System—I 970 and 1971. Pesticides Monitoring Journal, 6/3): 166-170,
December 1972.
Bradshaw, J. S., R. B. Sundrud, D. A. White, J. R. Barton, D. K.
Fuhriman, E. L. Loveridge, and D. R. Pratt. Chemical Response of Utah
Lake to Nutrient Inflow. Journal Water Pollution Control Federation,
45:880-887, May 1973.
49
-------
Fuhriman, D. K., J. R. Barton, L. B. Merritt, and J. S. Bradshaw.
The Diking of Arid Region Lakes to Improve Water Quality. In: Water—1973,
American Institute of Chemical Engineers, 345 East 47th Street, New York,
New York 10017. 1974. Symposium Series Vol. 70, Number 136. p. 629-
637. (This paper also presented at 74th National Meeting of AlChE, New
Orleans, Louisiana in March 1973.)
GRADUATE STUDENT THESES, PROJECT REPORTS AND DISSERTATIONS
Kennison, Lynn. Eutrophication of Small Lakes. Master of Science Thesis.
Department of Chemistry, Brigham Young University, Provo, Utah.
May 1971.
Morrison, C. Mark. A Survey of Summer and Winter Water Quality Condi-
tions of Provo Bay. Master of Civil Engineering Project Report. Brigham
Young University, Provo, Utah. August 1971.
Sundrud, R. Bruce. The Biochemical Response of Provo Bay to Nutrient
Inflow. Master of Science Thesis. Department of Zoology, Brigham Young
University, Provo, Utah. August 1971.
Riley, James A. Utah Lake Water Budget Study—1970-71. Master of Civil
Engineering Project Report. Brigham Young University, Provo, Utah.
February 1972.
Loveless, Eric C. Utah Lake Water Budget Study—June 1970 through
December 1971. Master of Civil Engineering Project Report. Brigham
Young University, Provo, Utah. May 1972.
Nelson, James D. Utah Lake Water Quality Study—1968-1972. Master of
Civil Engineering Project Report. Brigham Young University, Provo, Utah.
December 1972.
Stock, Harold S. A New Approach to Evaporation Estimation by Combining
Water Budget and Salt Balance Techniques. Ph.D. Dissertation. Brigham
Young University, Provo, Utah, fn preparation 1974.
50
-------
TECHNICAL PAPERS PRESENTED
Fuhriman, D, K., and J. R. Barton. Utah Lake Pollution Research. Utah
Section, American Society of Civil Engineers, Salt Lake City, Utah.
October 1970.
Fuhriman, D. K., James R. Barton, and Jerald S. Bradshaw. Diking
Research on Utah Lake. B.Y.U. Chapter, Sigma Xi, Provo, Utah. March
1971.
Tillman, David S. The Biochemical Oxygen Demand and Coliform Bacteria
Counts of Utah Lake. Utah Academy of Sciences, Arts and Letters, Provo,
Utah. October 1970.
Sundrud, R. B., M. Morrison, D. R. Pratt, E. L. Loveridge, J. S.
Bradshaw, D. A. White, J. R. Barton, and D. K. Fuhriman. The Bio-
chemical Response of Provo Bay to Nutrient Inflow. Utah Academy of
Sciences, Arts and Letters, Ogden, Utah. April 1971.
Kennison, L. T., J. S. Bradshaw, D. R. Pratt, E. L. Loveridge, D. K.
Fuhriman, and J . R. Barton. Eutrophication of Utah Lake—An Initial
Estimate of the Nutrient Inflow. Utah Academy of Sciences, Arts and
Letters. Ogden, Utah. April 1971.
Pratt, D. R., and J . S. Bradshaw. Water Chemistry of Utah Lake. Utah
Lake Research Symposium, Provo, Utah. February 1971.
Bradshaw, J. S., R. B. Sundrud, L. T. Kennison, E. L. Loveridge, D. R.
Pratt, D. A. White, D. K, Fuhriman, and J. R. Barton. The Chemical
Response of Utah Lake to Nutrient Inflow. Northwest Regional Meeting of
American Chemical Society. Bozeman, Montana. February 1971.
Morrison, Mark, J. S. Bradshaw, James R. Barton, and O.K. Fuhriman.
Dissolved Solids in Utah Lake. Utah Academy of Sciences, Arts and Letters,
Provo, Utah. October 1970.
51
-------
Loveless, Eric, D. K. Fuhriman, J. R. Barton, and J . S. Eradshaw.
Water Budget Studies of Utah Lake. Utah Academy of Sciences, Arts and
Letters, Provo, Utah. October 1970.
Loveridge, E. L., J. S. Bradshaw, J. R. Barton, and D. K. Fuhriman.
Pesticide Levels in the Tributaries to Utah Lake. Utah Academy of
Sciences, Arts and Letters, Provo, Utah. October 1970.
Bradshaw, J. S., E. L. Loveridge, K. P. Ripee, J. F. Frown, E. M.
Michener, B. Hague, J. L. Peterson, O.K. Fuhriman, J. R. Barton, and
D. A. White. Pesticides in the Water and Fish of Utah Lake and Its
Tributaries. Utah Academy of Sciences, Arts and Letters, Provo, Utah.
October 1970.
Fuhriman, D. K., J. R. Barton, L. B. Merritt, and J. S. Eradshaw. The
Diking of Arid Region Lakes to Improve Water Quality. 74th National
Meeting, American Institute of Chemical Engineers. New Orleans,
Louisiana. March 1973.
52
-------
SECTION XII
APPENDIX A
In this section, a complete computer print-out is given for all lake and
tributary quality sampling results and many of the quantitative flow
measurements of tributaries, particularly for those made at the same
time a quality sample was taken. See pages 56 to 98 inclusive.
Preceding the computer print-outs are maps showing the location of all
sampling stations and an explanation sheet of nomenclature used in the
data listing.
The tabulation of data is presented chronologically for each sampling
station in order of number, except for some supplemental data obtained
from the U.S. Bureau of Reclamation for the period September 1972 to
June 1973 which is presented on the last three pages of the data list-
ing.
53
-------
UL I
Figure 6. Map of Utah
Lake Showing Sampling Stations
Scale - 1" = 3.33 miles
54
-------
N
Figure 7. Map Showing
Location of Tributary Stations
Scale - 1" = 4 miles
55
-------
NOMENCLATURE USED IN THE DATA LISTING
AL = Alkalinity - reported as mg/liter calcium carbonate
BOD = Biochemical oxygen demand - 5 day 20 degree C
CA = Calcium - reported in mg/liter
CL = Chloride - reported in mg/liter
C03 = Carbonate - reported as mg/liter
COLF = Coliform bacteria - measured either as actual number or most
probable number per 100 ml of sample
COND = Conductivity measured in micromhos/cm
DS = Dissolved solids - total soluble salts measured in mg/liter
F = Fluoride - reported in mg/liter
FLOW = Flow rate in cubic feet per second
GB = Goshen bay stations
HARD = Hardness of the water reported as mg/liter calcium carbonate
HC03 = Bicarbonate - reported as mg/liter
K = Potassium - reported in mg/liter
MG - Magnesium - reported in mg/liter
NA = Sodium - reported in mg/liter
NH3 = Nitrogen present as ammonia - reported as mg/liter nitrogen
N03 = Nitrogen present as nitrate - reported as mg/liter nitrogen
PB = Provo bay stations
PH = Negative log of hydrogen ion concentration in moles/liter
P04 = Ortho phosphate - reported as mg/liter phosphorus
S04 = Sulfate - reported as mg/liter
TEMP = Water Temperature - degrees C
TURB = Turbidity reported in Jackson turbidity units
UL = Utah Lake stations
UT = Tributaries to Utah Lake including Jordan River outflow
56
-------
DATE STi FLOW
l>H COfiO fiL HAPD NA CA MG K IIC03 CQ3 CL SG4 N03 NH3 P04
BOD OQ DS TU13
01
510T2 ur
51072 UT
02669 U7
90269 UT
9096-7 JT
•50570 UT
602 70 UT
2o.m UT
3U72 U7
32372 UT
33072 UT
4G572 UT
41372 (JT
4 1'/ 72 U'
50372 UT
51072 UT
3.'372 Ur
33072 UT
40572 UT
413/2 ur
41072 UT
5017,> UT
51072 UT
M672 yl
32372 UT
33072 UT
40572 01
41172 UT
41972 UI
50372 UT
51072 UT
31672 ur
32372 ur
33072 UT
4-JS72 UT
41372 ur
41972 UT
50372 UT
51072 (JT
31672 U*
32372 UT
33072 UT
4057? ur
't!372 UT
41972 UT
42672 Ur
53372 Ur
51072 UT
32669 UT
90269 UT
1
2
3
3
3
3
3
3
4 0.52
4 0. 70
4 0.02
4 0.54
4 0.42
4 j.37
4 0.32
4 0.44
!) 0.20
5 0.24
5 O.,i2
5 0.46
5 0.22
5 0.20
5 0.44
6 1.0ft
6 0.34
6 J.tU
6 1.40
6 0.90
6 1.00
6 1.13
6 2. '•>/
7 0.62
7 J.5',1
7 0.5 4
7 0.y
7 3.5S
3 2.40
3 2.7J
« 2.70
3 3.15
b b. U
3 5. U
it 4.70
8 S.70
8 6.30
9
9
14. J
;s.o
26.7 8.70
22.9
24.5
Of-.. 5
13.0
14.0
14.0
12.0
15.0
14.0
07.0
06.0
13.5
14.0
13.0
12 0
13.5
12.5
J3.3
03.5
13.5
13.5
15.0
25.5 3.80
22.3 O.UJ
432
410
1310
475
649
605
643
475
356
475
250
605
810
497
551
616
691
640
713
a 53
724
187 204
160 195
485 539
209 231
225 431
132 507
291 369
246
341 412
340 376
163 221
205 281
217 293
Ub
231 250
204 214
286 3A5
331 J8h
330 303
317 372
219
318 35B
313 36U
331 299
327 ^62
228 376
276 294
194
227 237
259 273
309 332
298 364
292 351
322 2V4
112
260 254
301 343
309 3tO
304 342
295 381
053
014
70
17
072
04t
045
041
047
042
027
025
020
016
016
016
024
036
032
031
021
029
030
036
046
047
035
029
031
031
035
05S)
046
035
035
037
035
03t)
042
044
57
57
99
58
125
157
100
51
114
106
54
78
03
28
69
50
72
92
94
tie
3?
bl
05
82
71
75
!>7
22
44
60
64
30
73
57
61
44
?U
SO
73
72
15 9 2?9
13 06 220
71 2 591
21 2 251
29 01 275
28 02 162
29 02 356
29 14
2H 02 417
27 01 415
21 05 200
21 03 251
21 02 290
19 01
19 02 282
17 02 249
45 02 349
30 07 404
36 D8 403
37 08 307
34 07
38 16 388
30 06 332
23 39 404
45 OS 400
46 12 279
37 36 337
34 04
31 04 273
30 04 316
42 05 373
40 08 36-V
3h 09 357
37 06 393
39 00
35 03 3lli
36 US 36S
39 10 3711
39 12 371
49 10 361
010
005
0.8 05
2.0 20
012
926
030
02-J
023
010
019
017
020
022
or/
015
012
035
055
02 U
025
031
027
327
021
OJ7
021
0.J2
OLD
OU
015
031
026
OJ6
033
034
030
032
OJA
192
163
2V
305
1)6
o?a
099
042
045
042
072
363
071
070
094
OS7
070
075
r/j
071
040
063
051
080
1.3d
0.37
0.11
J.32
i. ro
1.80
1.33
1.74
1.66
1.6J
1-55
0.12
O.rtO
0.74
3.68
0.88
J.6t)
0. 73
2.70
2.64
2.64
1.96
2.24
2.20
2.76
0.90
0.83
3.7«J
1.14
1.26
1.23
0.78
2. BO
2.66
3. '36
2.04
3.05
2.76
1.95
5.85
2.65
).44
0.09
0.44
0.03
J. 03
0.03
0.07
J.03
J. 17
0. U
0.04
J.J6
0.07
0.02
0.06
0.13
J.16
O.O/
0.11
J.ll
0.21
O.Od
0.23
0.1 J
O.O/
0,0:1
0. J2
0.08
J.52
1.36
1.02
J. J9
1.22
O.G4
I. 10
0.75
2.03
04.6
01. 5
3.5
oo. a
JO. 5
01.0
00.4
Jv.6
J2.2
02.4
00.6
JO. 1
01. a
oo. a
00.6
04.0
J J. 7
01.1
Oj.6
01.4
00.9
01.6
Jo. 6
01.6
00.7
00.3
01.7
JJ.6
02.3
J2.0
05.6
06.3
J3.Y
03.9
02.6
06.7
06.1
04. 3
372
315
03.8
J7.4.
12.3
7.0 424
341
523
662
0742
0590
326
430
4U2
449
400
650
687
691
653
645
0600
663
6bU
554
564
401
04b2
J567
643
755
656
608
0755
05dU
609
631
657
7*2
13.0
09.4
043
042
028
035
029
-------
OATt ST4 FLJM TEMP
C3.';0 AL MAP
NA CA KG K t7J
102V70
1U27J
1 1 127 J
111670
1120 TJ
113J7J
121070
122270
10471
11471
20271
20871
21171
21071
30271
30t71
31171
3ld71
J2S71
40171
40071
41571
42771
51371
b J J7 1
c.0371
61571
62271
62971
71371
72J71
72971
31672
ur 9
UT 9
vJT 9
ur 9
UT 9
UT 9
UT .5 8.15
7.0 a. 25
a. is
7.0 B.I )
8.20
8.0 0.10
C.2J
6.0 3.20
2.0 d.U
8.2 J
3.0 U.65
7.0 d.85
a. 25
7.0 8.40
6.0 0. 12
8. )i
d. >0
B. 10
u. 12
8. 10
8.10
d.20
7.35
D.20
8.30
3.40
3.02
a. 20
8.33
8.10
a. 10
d. 2 J
8.10
12.0
655
600
650
700
630
693
$68
67J
690
649
635
62V
649
675
610
643
650
570
59J
S'/O
:>70
t> (JO
510
530
050
550
530
510
540
590
540
533
590
258
243
254
213
129
197
265
156
261
213
277
268
254
214
233
253
206
209
278
338
342
29B
309
342
367
222
263
369
321
'340
345
359
342
333
309
319
311
357
23
22
16
17
24
55
22
21
19
18
24
20
20
22
22
22
25
040
73
73
70
63
76
86
56
77
71
77
79
78
75
63
58
67
62
32
38
39
3')
34
37
37
30
43
35
36
36
40
38
39
40
37
38
37
4
5
5
3
6
2,
6
3
3
4
4
4
4
4
4
4
7
03
311 2.4
294 1.6
290 9.9
246 7.0
158
241
317 3.1
191
314 2.4
260
.
333 2.9
321 2.3
334 3.0
262 .
2U2 1.6
300 2.6
2 '32 .
251 2.3
340
23
30
14
22
16
U
17
3tt
3d
33
16
25
2>
29
25
10
25
30
2s
25
30
37
34
3J
17
17
17
013
103
106
73
90
77
43
95
69
82
84
93
90
1JO
90
95
114
091
l.ai
0.16
1.13
0.99
J.99
1.40
1.24
1.20
U23
1.18
2.64
1. 10
1.90
l.dl
1.60
2.12
1.70
1.60
1.50
0.32
2.10
1.40
1.60
2.70
1.60
1.64
1.60
1.56
1.74
1.76
1.74
2.54
1.63
1.03
1.42
1.49
1.46
1.23
2.20
0.
0.
3.
U.
0.
0.
0.
0.
u.
0.
0.
0.
0.
0.
0.
J.
0.
0.
*
0.
0.
0.
0.
0.04 0.
0.
0.10
0.06 0.
0.
* *
0.04 0.
d.
0.
0.07 J.
0.
0.
0.
J.
0.
0.
0.
0.
1.
0.
40
30
1}
02
40
14
J3
70
50
04
03
20
04
10
02
20
05
17
10
12
U
20
u
21
10
Ob
11
10
J9
u
03
16
13
12
10
24
22
10
21
7 a
25
33
0.35
0.31
0.32
C3UF BOD 00 OS TURB
05.5 020
4300 4.8
2000 5.0
930 S.3
9300
23 JO
7200
1500
5000
150
5.5
5.2
4.3
9330 5.0
6.0
9.J
5.8
5.9
6.0
7.3
10.0
12.0
9.0
10.0
8.0
9.0
9.0
0.0
7.0
9.0
430 5.8
464 12
35
-------
DATE ST4
PH
cn
vo
32372
3307i
40572
41372
41972
42o72
51072
31672
32372
33072
4057?
41372
4 I •; 7 2
30372
51372
31672
32372
3307:
40572
4lJf2
419/2
51072
3lo72
32372
33072
40572
41372
41'-, 7 2
50372
51072
316/2
32.'J72
41)572
41372
41972
50372
51072
31072
32372
40572
41372
41972
503 12
51072
31672
32372
33072
40572
41372
41972
UT 9
UT 'i
UT 9
u: 9
UT 9
U7 'v
UT 9
UTl 3
UT10
UTlo
UT10
UT10
UT 1 J
uno
UT10
UTl 2
UT12
UTl 2
UT 12
UTl 2
U'12
UU2
UTl 3
UT13
UT13
UTl 3
UTl 3
UT13
UT13
UTi j
UTl 4
UTH
UTl 4
UTl 4
UTl 4
UT14
UT14
UTl 5
UTli
0715
UT15
UU5
UTl 5
UTl 5
UTl 6
UTl 6
UTl 6
UT16
UTlo
UTl 6
19.5
20. 1
li>.0
16.2
15.1
12. i!
05.0
3.53
3.71
4.20
4.33
4.75
4.UO
4.66
5.6d
0. UO
0. 77
- 0 . E 8
0.'/9
1.27
l.:J3
2.35
01.0
31. 1
01.0
01.0
31.3
01. I
01. 1
31. 1
1.39
1.39
l.r)3
1.93
2.23
2.63
3.01
1.93
2. Jj
2.33
2.23
3. 5U
2.23
2.^6
1.07
l.il
1.19
1.15
1.23
1.27
11.0
09.0
n.o
03.5
12.0
14.2
16.3
13.0
14.5
14. J
05.3
13.3
15.5
16.0
15.0
12.0
15.5
M.5
Or/.0
09.5
15.0
lri.O
12.3
14.0
13.2
•OP. .0
1 /.O
13. )
lo.O
12.0
l'r.3
09.0
10.0
15.3
15.5
16.0
13.3
1 .0
1 /. J
15.5
16.5
16.3
13.0
14.5
13.9
10.0
:OND
497
551
616
533
432
562
562
432
475
513
373
497
454
464
432
339
497
572
543
AL H
244
2«>2
23o
292
31 8
304
251
2 12
228
291
267
289
190
190
139
262
272
231
185
219
196
237
243
222
232
245
253
222
185
117
250
258
225
213
135
422
242
HAftO
353
347
20t»
279
336
340
333
375
421
321
213
351
326
311
329
393
33:
211
346
353
338
329
527
220
217
204
291
342
396
236
327
313
332
363
211
165
298
564
404
389
279
415
349
NA
031
3?
012
010
012
336
038
034
178
03 T
071
074
073
Iftl
085
337
m
074
101
044
1.86
1.65
1.50
1.63
1.15
1.20
2.40
1.36
1.66
1.33
2. 18
1.64
2.56
1.65
1.66
0.74
1.60
1.92
1.58
1.27
1.10
0.94
0.32
0.30
1.05
013
013 104
01-> 035
013
013 089
Oil
1.42
1.35
1.36
1.56
1.64
1.44
Oil 069 2.30
010 062 2.50
012 2.55
010 067 2.58
309 2.44
004 3.06
322 214 2.15
024 143 1.94
024 153 1.U4
023 0.40
021 13S 2.06
019 2.16
Pf)4
0.05
J.34
0.07
O.Ci
0.01
0.03
0.37
0.02
0.03
0.03
3.36
0.07
0.01
0.05
0.03
3.34
0.07
0.03
0.34
0. 32
0.04
0.03
0.35
0.07
0.03
0.10
0.02
0.04
0.06
0.04
C.02
0.04
0.08
0.06
0.13
0.02
0.03
0.31
0.17
0.04
0.36
0.04
0.03
C3LF rtOO DO DS
03.2
01. 1
jo. a
01.2
00.7
01.0
01.3
00.6
01.8
00.2
00.3
OJ.5
00.6
01.5
OJ.l
UJ.3
00.2
jj.9
JU.4
J 1.7
OJ.5
00.9
JJ.4
01.4
uO.4
02.3
01.5
31.4
00.8
01.0
JJ.9
0255
0233
05U2
J475
0501
0344
663
0540
492
0440
0571
0450
566
0475
591
403
567
0599
5B5
572
0533
365
0421
437
549
548
0465
365
0231
02.6
01.3
00. 1
00.9
OJ.9
01.0
01.4
02.4
00.4
00.1
01.6
00.3
507
446
04C5
0418
041V
0377
761
609
510
0644
563
-------
11ATP ST6 FICM TPMP PH CJNO AL HA»& MA CA HG K HC03 C03 CL SO* M33 NH3 HC4
COLF BDD DO OS TUft3
at
o
51072
31672
32372
40572
41372
41472
51072
8266-J
<>J^6'>
•)UV(.V
50570
6';27)
61670
63070
H47J
7U70
71770
7M7-)
30470
01170
81470
62070
90170
92J70
100570
101570
102970
1U270
1 lli1 70
111670
112070
113073
121070
U2270
10*71
114/1
20271
20071
21171
21071
33271
30471
31171
31(t71
32571
40171
40671
41571
42771
51371
UT16
im 7
UT17
UTI;
U717
UT17
U717
UTia
UTI 8
UT1B
1)7 Id
UTlU
UTld
UTld
UTI U
u;iu
UTl!J
UTI 3
uTia
und
UTI a
UTIU
DUB
liTl t:
UT:O
UTUJ
ima
uru
UUd
UTlU
UTlU
una
UTIU
uria
UT18
UTld
UTld
UTld
uTia
uTia
UTlo
UTlU
UTld
UTld
UTIS
UTiU
UTia
una
UTIO
uria
0.77
1.47
1.93
2.30
2. 25
i.U
3.50
26.1
25.3 *
2i. a *
23.0
20. 5
26. 1 *
25.2 *
31.5
37.1 *
40.* *
40.6
35.5
35.9
32.8
26.0
31.2
3^.3 *
^i>.to
27.6
29.9 «
30. V
29.1 *
27.7 *
27.5 *
2B.5 *
35.0 *
17.5
15.0
12.0
17.5
03.5
03.3
16.0
27.3
24. J
23.4
24.0
^2.3
22.3
ia.5
9.0
9.0
9.0
9.0
6.5
2.0
6.0
7.0
7.0
6. J
8.70
U.7J
8.50
d. 15
a.U
8.00
8. 10
0.35
8.15
0. 10
7. 35
a. 3)
0.15
a. 15
!). 10
8.00
U. 20
7.1)0
0.20
a. 05
B.i.0
a. u
3. 50
a. 33
7.65
0.40
7.75
7.95
8.12
0. 15
7. /a
8.10
it. 31
3.20
8.10
8.15
8.20
$83
626
562
730
710
745
450
775
792
725
064
771
035
824
92*
760
<)2<,
U64
595
J65
aao
«15
69J
720
730
710
820
660
650
530
245
276
141
285
300
316
253
260
281
241
319
272
299
233
300
247
323
•)11
248
263
303
309
254
204
350
410
349
393
356
347
334
367
366
370
426
432
256
39*
372
401
367
382
379
:,
411
-------
cn
OATf
52371
60d71
61571
62271
62971
71371
72071
72471
31672
32372
33072
40572
41372
41972
42672
5037J
51072
41972
5107?
31672
32372
33072
40572
41372
41972
51072
50372
G266V
90269
•30969
iCb/0
6J270
61670
63070
704 73
71470
71770
73170
80473
31470
0 1 1 7 0
3^870
90170
V237J
100570
101570
1J2970
110270
111270
111673
ST4
uria
UT13
UT1U
UT18
UTlb
UT18
UT1U
uru
UT18
UTld
UT18
uTia
UT16
UT13
UTlo
UT18
UTld
UT21
UT24
UT25
ur7.
fl4.
118.
37o.
117.
25.
25.
11.
<1.
13.
7.
d.
19.
17.
93.
34.
113.
336.
331.
329.
319.
re MO
13.0
11. j
14.0
12.5
Jtl.J
C/.5
12.5
13.3
17.0
06.0
17.2
16.0
U.O
16.0
14.3
oa.o
06.5
19.5
Id. 5
24.3
23.5
22.6
27.0
25.5
24.5
,
a.o
7.5
7.5
PH
a. 30
7.37
3. 10
a. 15
H.C2
0.00
3. 33
8. IS
0.50
&. 60
0.'>3
8.15
8.00
8.10
8.40
8.33
8.20
7.90
8.25
a. 23
7.95
6. 11
0.40
8.10
e.u
CONfi
630
600
550
690
770
740
710
710
637
708
799
734
506
637
648
767
460
460
365
240
'•15
447
400
487
AL
122
351
337
318
318
287
326
566
272
326
162
366
381
395
426
182
174
143
131
148
136
183
151
161
57
HARD
423
436
417
290
432
393
394
383
397
374
397
41!>
376
322
134
374
361
397
232
2J8
Idl
ISO
196
232
Ib4
256
176
226
253
203
197
NA
037
037
035
044
033
042
033
336
042
130
025
042
042
037
013
039
051
030
12
12
<)
d
13
51
14
11
19
11
12
CA
102
107
90
47
13J
V5
92
US
90
51
93
84
00
73
29
79
72
65
65
64
56
49
59
65
46
61
70
5S
56
MG K
41 04
41 06
42 06
42 05
37 J4
3U 06
40 05
41 06
42 05
60 25
42 34
50 17
43 16
34 18
15 02
43 IS
44 la
57 19
17 3
19 2
10 4
14 3
12 4
17 4
15 6
18 3
19 7
16 4
14 4
HC03 C03
149
429
412
309
3U9
351
393
715
332
398
193
447
465
432
520
219 1.7
211 1.2
173 1.2
16).
181
166
0
219 2.2
ISi
192 2.7
70
CL
26
019
033
023
043
029
031
027
325
034
105
015
030
027
025
026
029
032
025
23
25
9
2J
11
13
36
14
36
21
U
25
2i
24
25
8
$04 M'33
1.98
1.40
106 3.05
100 4.10
ill 3.34
2.25
131 2.H6
2.44
097 2.25
119 2.15
1.75
0.75
3.72
076 1.20
Oo5 0.97
079 3.72
3.78
076 0.80
J.52
1.13
56 J.23
54 0.36
37 J.23
100
42 0.41
0.22
0.31
0.09
45 0.00
0.49
39 3.14
47
1.40
0.11
50 O.
-------
DATE SU FLDW
112670 UT2«> 411.
113070 UT2V 401.
121070 UT29 379.
121470 UT29 374.
122370 UT29 300.
10471 UT29 17/.
11471 UT29 2CO.
11671 UT2-; 2i,l.
20tf71 DT29 J2B.
21171 UT2'J Jf*2.
21071 UT29 2dl.
30271 UT29 Itio.
31171 UT29 16 'j.
31S71 IJT2Y 157.
32571 UT29 264.
43171 U729 353.
40671 ur29 32S.
42771' UT29 362.
51371 UT i-si 191.
52071 UT2-J 162.
60071 U1V9 165.
61571 UT29 456.
62271 UT29 369.
62971 UT29 120.
71371 IIT29 13.
72071 UT29 16.
72971 UT29 12.5 *
31672 UT29 35'..
32372 UT29 364.
33072 UT29 332.
40572 UT29 2G6.
41372 UT29 341.
41S72 UT29 313.
42072 Iir2'i» 2/4.
50372 'JT29 1V2.
51072 1>T2'V 121.
31672 UT31 01.5
32J72 UT31 03.5
33072 UT31 01.3
40072 UT31 01. 0
41172 UT31 02. 1
41972 UT31 01.0
51072 UT31 00.5
32372 UT32 JJ.7
33072 UT32 00.7
41372 UT32 00.7
41972 U732 J3.7
51072 UT32 00.7
32372 UM33 00.1
TFMP PH
7.0 a. J3
8.20
4.5 8. 15
8. JO
4.0 0.20
8. 30
2.0 8.45
K.53
4.0 S.'VJ
3.10
4. 0 8.75
4.0 7.R4
8.40
0.25
8.05
8. 10
8. JO
8.20
8.20
8.23
0. 30
7.35
8.23
8.30
7.b3
7.93
7.93
a. 20
38. J
07.0
00.0
07.5
06.0
or.o
ou.o
on. 3
12.0
15.0
12.0
1'. .0
14.3
07.0
ov.o
lf>.l
11.5
12.3
12.0
COND AL HARD NA
264
410 161
437
133
305
410 165
426
365 143
426
450 163
430 143
4S5 171
420
460
440
420
455 165
340 140
370 133
•400
330
295
295
330
430
400
420
46
186
373
421 169
m
410 162
475 163
356 164
201
203
266
378
486 202
269
572 283
309
350
583 314
201 11
234 54
228 11
240 12
219 11
224 11
221 11
219 12
250 016
236 014
219 012
134 013
215 010
210 010
201 013
213 013
234 015
318 023
318 016
303 021
178 016
309 016
294 017
207 GIB
359 020
352 019
343 031
CA
56
58
75
58
60
59
63
77
70
63
29
63
03
56
61
46
93
93
87
37
91
85
77
106
103
93
MC K HC03
15 3 194
IS 3 163
20 4 197
13 181
18 3 196
175
10 4 204
18 3 199
15 5 172
160
14 33 57
15 03
15 03 227
15 02
14 03 207
13 03 221
15 33 193
14 03 205
29 02 231
21 34 343
21 05 240
21 04 325
21 )3
20 04 345
20 05 329
23 04 346
23 04 377
23 05 427
24 04 334
C03 CL
25
1.7 2J
a
25
2.2 19
25
10
1.7 24
2.8 39
1.7 11
11
1.1
11
O'JV
010
00')
316
oo-;
03d
035
005
OJ3
014
016
016
017
019
015
012
020
016
016
S04 NO 3
3.21
52 0. ID
0.21
54 J.3J
o.ov
53 0.25
J.22
0.33
0.37
5B J.17
0.36
0.44
61 3.»4
0.41
010
. J 7
0, -
.44
0.65
54 O.bO
55 0.30
0.26
0.28
0.31
354 3.28
050 0.36
049 0.14
3.10
045 0.22
0.17
345 0.36
047 0.11
0.15
J61 3.25
057 0.22
052 0.15
J.15
062 0.25
0.35
J.22
112 1.15
1.08
o.aa
NH 3 P04 F
J. 33
0.20
0.04
J. Ji
0.06
0.10 0.22
0.16
0.04 0.00
O.Od
J.10
0.33
0.02 0.25
0.10
0.06 0.08
0.11
J. Id
0.08 0.00
0.04 0.24
0. 04
OfiH
. wv
01 &
. . ^
Oy A
. ft O
0. 19
01O
. 4 W
0.31
0.52
1.23
0. 06
0.04
0.03
0.06
0.04
0.02
0. 3J
0.05
0.08
0.06
0.13
3.11
0. J8
0.10
0.04
0.04
0.02
0.05
CO IF BOD
430 «. 5
230 6.6
433 6.3
153 3.4
4300 6.0
02 O
V ft . V
01.2
01.5
00. 3
01.6
00. 7
00. 1
01.9
00.0
Jl. 8
01. V
01.4
JJ.5
01. 1
01.4
02. 6
OJ.4
01.0
00.2
OT OS TURft
9.0 259
8.0
10.0 271
274
9.3 365
346
9.0 270
10. 0 295
7.0 260
391
285
350
297
2V7
357
334
A A A •!
W^*t 3
378
0349
0389
348
0429
556
456
526
0553
0557
0460
3433
663
4V4
0558
40
16
19
-------
STA
PH COND AL HA«0 NA CA MG K HCO3 CO3 CL SQ4 NO3 NH3
CJLF BOO OO OS TURB
CO
33072
40572
41372
51072
90967
50570
60270
61670
63^7 j
70470
71470
71770
73170
80470
8117)
8 1470
d2870
sum
92370
100WJ
1J157J
102970
110270
111270
11167J
112070
113070
121070
121470
122370
10471
11471
11671
2^71
20U71
21171
3027 I
31171
311371
32571
40171
40k 7 1
42771
51371
52071
60871
61571
UT33
UT3J
UT33
UT34
UT34
UTJ4
U"34
UT34
UT34
UT34
UT14
UT34
UT34
UT}4
UT34
IJT34
UTJ4
UT34
UT34
Ur J4
UU4
un4
UT'Vt
UT34
UT.14
un*
U734
UT34
UT34
UT34
UT34
UT 34
UTJ4
UTJ4
1)134
UT34
UT34
UT34
Ufi4
UT34
UT34
UT34
U734
UT34
UT34
UT34
UT34
00. 1
00.1 12.2
00.1 12,0
00. I 12.0
00.1 12.0
24.7 0.40
22.3 3.50
22.3 3.40
7.70
7.9*
15.0 »
11. 8 * 8.00
11.9 •
11. 6 *
1J.O 16.5 7.85
11.5 19.0 7.90
11.7 «
11.6
17.0 7.45
11.6 17.5 7.60
12. J » 8.2)
1U9 « 8.00
11.5 *
lj.7 11.0 7.45
10. 0 * 10.0 7.65
U. i * 7.75
10.3 1 J.5 7.6J
0.6 * 7.dJ
10. 1 10.0 7. 70
10.1 * 7.75
6.0 7.0 7. 70
5.5 * a. 30
5.7 *
6. 1 *
5.7*
5. 6 *
-.. 0 *
5.7 *
S.9 *
't.3 *
4.7 *
4.7 *
CJ.I *
5.8 *
5.8 *
5. 3 *
6.6 *
6. 5 *
11.9 +
12.3
7.0 7.70
7.70
6.0 8. 10
8. 15
8.0 8.40
8.30
7.'; 2
7.75
7.80
7. 70
7.80
7.70
7. 70
0.30
/.6a
8.00
406 273 227
163 222
454 26S 223
575 231 280
570 240 303
314
610 241 305
198 314
200 347
205
300
152 203
595 243 302
127 2B5
660
600 259 315
690
223 305
447
630 249 314
624
173
588
615 260 304
Oi9
500 188 346
5B8
600 236 283
530
530
550
540
650 246 302
450 212 272
500 181
530
540
520
034 58 20 04 334
033 56 20 04 199
036 55 21 04 324
14 84 19 4 281
13 87 21 4 210
15 93 20 6
14 86 22 5 291
16 93 20 6 2'.2
52 98 25 6 244
15 50 19 7 186
18 83 23 5 292
18 83 19 5 155
16 85 25 7 314
19 86 2? 7 273
2 88 23 6 302
58 20 212
15 86 22 04 316
15 104 21 230
15 81 21 5 282
15 83 23 5 299
17 76 20 7 259
220
0.7
1.4
1.6
2.6
0.7
1.0
0.8
0.9
1.9
0.9
1.5
3.1
1.0
0.6
0.5
027
023
018
2U
2tt
20
31
IB
20
17
37
37
30
14
25
37
30
37
10
3/
3D
25
17
3 a
30
34
1
39
21
21
21
016 0.14
0.06
J.J2
55 1.24
49 1.29
ol 2.24
80 2.24
56 2.24
1.20
2.01
50 1.56
1.64
1.32
54 1.36
50 0.20
0.55
1.20
52 0.95
J.65
57 1.13
0.66
78 1.02
O.SJb
59 1.10
3.43
50 1.04
0.
-------
ST4 FLOW
TP*P
COMO AL HARD MA C» MG K HCQ3 C03 CL S04 N03 NH3 ^04
COLF 300 00 OS TlMB
cr»
62271
62971
71371
72071
72971
31672
32372
•3307?
40572
41372
41972
42f>72
50372
51072
3167>
J2372
40572
1.37
0.04
0.04
0.03
o.oa
0.05
0.04
0.03
0.05
0.03
0.13
0.07
0.07
0.08
0.03
0.05
0.07
0.07
0.08
0. JS
0.13
0.7U
0.11
O.Oti
0.07
J.07
0.03
0.15
0.08
0.03
0.05
0.05
0.09
1.12
0.25
0.40
02.9
JO.l
00.5
00.3
01.2
01.1
01.5
01.3
Ol.O
00.5
01.9
00.3
00.9
02.2
00.7
01.3
01.2
Jl.O
00.2
00.1
01.6
01.6
J1.2
00.2
01.2
U2.4
01. 1
02.4
01.3
04.4
02.3
02.3
01.9
0532
0512
503
0549
500
516
036o
434
351
02*3
414
0273
0431
302
464
661
07tJ9
635
589
471
476
437
0404
0313
0400
420
364
371
4J9
464
6.0 10
5.0 1065 5
-------
OATt STft
TPMP Pit CONO At. HARD NA CA MO K IICO3 COS CL SO* NO 3 NH 3 P04
COIF BOO DO os Tuf»a
en
10471
10571
11071
23271
21671
3U471
3U71
31371
32*71
4)171
406/1
42Z71
42771
50071
51371
52)71
61571
622/1
62971
71371
72071
72971
80471
3167?
32372
330/2
40572
41372
41972
4?672
50J72
51J72
oU/0
70470
7147;
717/0
7 3 1 7 0
3117)
dJiJ/J
I J1570
1)2373
102970
111270
1.12670
121070
122370
10371
11471
11671
20271
IJT42
UT42
l)T42
UT42
IJT42
UI42
UT42
UT42
UT42
UT42
UT42
IIT42
UT42
U742
UT42
UT42
UT42
UT42
UT42
UT42
UT42
UT42
UT42
U742
UT42
'JT42
UI42
UT42
UT>
11.5
14.0
18.0
16.5
20.0
1-5.5
13.0
c.o
6.5
0.0
8.3
6.5
6.5
4.0
3.0
7.00
0.20
6. 3]
7.45
7.46
7.4)
7.35
7.50
7.50
7UO
790
743
730
800
742
760
750
7 BO
710
700
020
790
830
353
830
767
332
664
907
364
945
533
915
944
944
605
312
234
207
179
137
190
235
153
240
251
251
251
269
200
202
255
226
235
420
521
443
486
33'>
345
454
449
467
526
495
364
387
391
205
333
468
472
40
36
44
051
060
033
OJ5
043
043
0-V3
040
24
41
74
n
35
39
99
136
117
132
70
74
126
122
126
148
129
98
99
99
84
53
110
110
42 9
44
38 10
3P 07
40 06
39 05
34 06
35 05
37 06
30 06
42 06
29 7
34 6
35 9
30 10
47 6
"
43
284
253
219
229
232
287
187
293
307
307
307
329
245
247
200
276
287
1.0 54
l.ft 47
0.2
0.3 39
0.3
33
044
037
040
03,'
033
OJ2
022
036
21
44
53
5.1 52
3d
50
63
63
75
75
65
2.3 37
75
4.2 56
268
244
293
282
245
252
27
0.65
0.43
J.64
0.57
1.31
1.40
0. 50
0.90
3.43
0.32
1.40
I. 10
1.40
3.06
1. /O
0.57
1.^4
1.40
1.46
1.20
0.94
1.88
1.15
2.09
1.45
0.81
0.09
0.85
0.1)9
1.82
0.16
0.60
1.32
0.30 0.69
1.0
O.U4
1.35
2.10
1.69
1.87
2.10
0.86
2.01
1.12
1.04
2. 05
1.20
0.89
1.50
1.23
0.84
0.77
1.20
1.47
0.39
O.J7
0.08
J.10
0.05
O.J3
o.oa
5.2J
4.30
1.45
3.00
2. SO
1.35
2.25
l.dS
1.90
1.30
0.61
1.10
3.4
3.10
3.2
1.90
2300
740 10
6.0 694
6.0
668
669
597
S06
639
722
6.0
5.0
6.0
5.0
7.0
6.0
7.0
7.0
8.0
• 3.0
6.0
853
6B3
0721
0917
0499
0977
843
582
543
552
627
532
571
606
640
654
582
640
745
600
20
3
10
40
21
no
12
-------
OATt STA PLJW TEHP PH C3ND AL MAUD NA CA KG K HC03 C03 CL 504 N03 MH3 (>04 F CJLF BOO 00 OS TURd
CTI
21671
30471
30H71
31171
31971
32571
40171
42271
42771
50871
51371
52071
61571
62271
62971
71371
72071
72971
80471
31672
32372
33072
40572
41372
41972
42o72
50372
51072
82669
9J269
90969
50570
60270
63070
71770
73170
82870
9017J
12J70
1 J057J
110270
111670
113J70
121470
10471
10571
11671
20271
20671
21671
UT43
UT43
UT43
UT43
UT4J
UT43
11743
UT4 J
UT4J
UT43
UT43
UT43
IU43
UT43
UT43
UT43
UT43
UT43
UT43
UF43
IK43
UT43
UT43
U743
ur-,3
U*43
UT'.3
UT44
UT44
U744
UT44
U'44
UT44
UT44
UT44
UT44
UT4t
UT44
UT44
UT44
UT44
UT44
UT44
UT44
UT44
UT44
UT44
UT44
UT44
11. a
12.7
13.6
13.8
12. S
13.6
15.4
Ib. 1
15.1
17. J
16.4
12.6
0.0
/.O
5.9
12.0
3.9
6.5
10.0
J303
08.8
OS. 2
JV.9
10.2
Od.d
.4
2.6
1.0
1.6
4.1
5.5
9.2
27.5
33.1
36.2
32. V
J1.3
31.1
32.9
33.0
33.3
33.4
13.0 7.95
7.i)U
7.85
7.33
7.60
7.54
7.6J
7.60
Q.OJ
7.40
8.35
0.1 )
7.03
7. 90
7.70
•> 7.90
• 7.20
18.0
13. J
16.0
16.0
10.0
09.5
1 3.0
19.5
18.5
24.6 8.50
21.5 8.6}
20.3 8.40
0. 10
7.75
7.75
8.00
a. 10
3.25
7-bO
8.30
8, 20
8.2}
8.30
6.0 0.40
8.25
9.5 8.25
aio
825
750
760
7«0
730
7«;o
740
650
700
630
630
700
710
640
690
730
730
616
756
767
064
648
320
745
815
750
490
510
470
365
588
480
440
197
205
203
245
200
245
263
245
240
23J
276
136
237
254
253
104
204
172
221
129
222
156
236
151
404
378
220
271
383
370
385
376
357
166
374
402
374
206
2',4
239
249
235
270
249
242
51
040
037
oia
034
033
030
040
047
030
7
23
28
40
17
12
14
13
24
10
10
11
113
109
102
67
61
154
99
100
103
92
50
97
97
97
53
65
60
72
68
73
75
69
46
32
30
13
29
30
30
33
29
31
10
32
39
32
18
20
17
17
16
21
15
17
11
05
05
02
05
06
05
08
06
04
2
5
7
5
2
4
3
2
2
3
2
241
251
254
300
254
299
321
300
293
261
337
164
268
309
306
123
244
211
264
158
266
183
247
185
1.0
0.7
3.9
1.1
0.9
1.0
1.7
J.7
2.4
0.6
2.9
1.1
2.3
4.0
2.4
1.5
51
034
Oil
030
045
039
039
044
060
027
19
4J
47
47
14
22
11
21
31
18
29
29
210
149
122
037
1J4
131
117
26
131
146
107
32
41
5 t
44
23
36
43
1.36
1.21
1.41
1.48
1.34
2.12
2.04
1.15
1.70
1.20
1.7J
2.05
2.10
1.78
1.23
1.08
3.55
1.23
0.45
1.70
0.52
1.24
1.11
0.66
J.B3
0. 79
0.82
1.06
0.80
0.66
0.79
2.25
0.84 2.63
0.03 2.27
0.63 2.54
0.24 2.54
2.54
0.34 2.15
0.29 1.96
0.64 1.95
0.01 2.J6
0.46 2.70
1.51
3.31
3.26
2.82
2.91
3. 78
2.13
J.69
0.93
0.91
0.85
0.50
0.36
0.96
0.60
0.47
0.10
2.1]
2.20
2.40 0.50
J. 10
0.10
0.20
0.50
0.20 0.13
0.06 0.30
0.10
0.03
1500
2300
2300
3000
2300
2400
4300
2300
4300
J3.5
00.4
03.4
Jl.l
04. 7
02. 5
02.7
04.6
02. 3
3.2
2.5
3.0
3.6
3.2
2.7
2.5
7.8
6.8
8.0 570
625
643
640
590
579
624
682
671
564
475
0495
669
0511
0479
647
523
021
023
05.6 020
543
552
627
433 15
344
7.0 281
10.0 259
-------
RAIT
FLJW
TFMP PH COtJO AL HARD NA CA MC K HCQ3 CO 3 Cl SO* »O3 MM 3 PO<,
crt
30271
30471
31171
31B71
32571
40171
40671
42271
42771
5J971
51371
52071
63871
61571
62271
62971
71371
72071
72071
31672
32372
33372
40572
41372
41972
42o72
50J72
51072
3196';
Giif.O J
v02o -i
90'J7<»4
UT44
UT<><|
UT44
UT44
U744
UT44
UT<,',
U744
U744
UT44
UT'.4
UT44
IK'./,
UT45
UT45
UT45
UT45
UT^S
UT45
U7't!>
UT45
UT4t>
U745
UT4i
!I7''. 5
U741)
U7',5
11745
UT> 5
UT4t>
U745
UT45
UT45
UT45
U745
33. O
33.0
33.0
J3.6
ja./
45.7
44.3
44.3
44.7
Jr;.7
35.6
37. d
13.0
14.0
3.0
5- J
3. a *
2.9 *
40.5
30.0
33.8
33.3
38.2
37.5
34.2
V.2 *
9.5 »
5. 7 *
a. 2 *
10.0
U.5
Ji. 7 *
(1.4
9.0
9.5
0.7*
7.5 *
6.2 *
9.3 *
10.1 *
2.9 *
09.0
O'J.O
J9. 3
10.5
03.0
•J5.0
07.2
24.3
21.4
23.5
20.7
18.5
17.5
13.0
13.0
9.0
a. 5
7.70
3. 12
8. 1J
3. 15
3. 10
3.10
8.15
6.20
8.25
3.50
8. 10
6.40
6. 10
8.27
7.00
8.10
7.0J
8.70
d. 'JO
0.8 J
0.30
8.23
7.75
7.55
7.6J
7. t>0
7.55
7. 5J
6.20
8.60
7.70
7.92
7.85
400
460
410
430
410
310
320
265
255
285
320
43J
430
470
450
690
610
610
605
356
12JO
770
963
430
335
1136
1170
207
132
204
125
159
131
187
169
168
167
379
329
379
251
231
250
346
250
408
249
160
182
184
190
295
183
181
185
364
309
326
445
351
334
256
239
329
360
431
441
9
6
9
010
090
018
007
003
010
130
36
47
5J
43
46
63
65
31
95
72
46
58
59
50
67
57
56
56
75
90
77
96
83
81
43
80
82
91
16 2
U 2
9 3
9 01
11 02
31 02
10 02
10 H
11 02
43 12
40 40
33 7
5J 4
35 7
32 6
54
-------
STA FU1W TTMP PH COND AU HARP NA CA MC, K HC93 CO) CL 534 NJ3 NH3 P:14
coif BOO oo OS Tima
o>
00
111270
112670
113370
121070
122370
10'. 71
11471
20271
20671
30271
304/1
31171
32571
40671
42771
603 71
61571
62271
62971
71371
72071
729/1
40li7i:
41972
JU-72
J2372
33)72
40572
41372
41972
50372
51072
d!96')
02669
90269
90969
20271
216/t
30471
31171
31071
32571
4!) 171
42271
42771
50371
51371
52071
61571
OT45
UT45
UT'«5
UT45
UT45
UT45
UT'.5
UT45
UT45
UT45
UT45
UT45
Iir45
UT45
UT45
UT45
UT45
IJ745
U745
UT45
U745
UT45
UT4I>
UT45
UT'.o
UT46
U*4d
MT46
UT46
UT46
UT46
IJT46
UT47
UT47
UT47
UT47
UT-V7
UT',7
UT47
U*4 /
UT4 /
UT47
UT47
UT47
(JT47
UT47
UT47
UT47
UT47
3.
2.
3.
3.
3.
3.
2.
3.
3.
2.
2.
2.
2.
2.
3.
11.
4.
7.
7.
6.
6.
05.
3!i.
OJ.
03,
)3.
03.
03.
J3.
03.
03.
20.
22.
i-;.
20.
19.
19.
18.
21.
21.
11.
1.
1.
20.
2
9
4
6
a
I
a
0
I
a
-------
DATE STA FL3* Tf.Hf PH CONO AL MAUD NA CA MO K HCO3 CD3 CL SO4 NO3 NH3 CO4
aoo
oo os TURB
vo
62271
62V71
71371
72071
72V71
d047t
31672
32372
3307J
40572
41372
41972
42672
53372
51072
ai9fc<)
8266V
90269
9UV6V
50570
60270
61670
63070
70470
71470
71770
7317J
30470
31170
3147J
82870
90170
'P237 J
100570
101570
1J297J
110270
111270
11167J
112670
113070
121J7J
1 2 1 4 70
122370
10471
11471
11671
20271
20U71
21671
11747
UT47
UT47
UT47
UT47
'Jf',7
UT47
UT47
UT47
UU7
U74 7
UT47
UT47
•Jf47
UT47
ur7
432
291
398
397
177
333
180
276
?62
312
235
22'i
330
268
1.9
1.2
1.1
13.0
2.9
1.0
2.1
2.4
1.5
2.2
3.3
2.3
1.9
042 119 1.56
123 145 2.40
109 2.44
1.94
831
142 1.90
0*4 136 2.26
076 3.56
42 75 J.36
96 15U 0.47
32
47 7o J.36
123 190 0.29
111 223 0.54
0.31
1.30
21 55 J.38
100 0.66
75 0.28
117 J.45
39 36 0.36
87 0.35
75 0.30
61 101 3.J4
/5 0.13
53 101 J.45
6^ 0.06
70 113 0.45
75 0.33
69 117 J.61
75 0.22
3d 0.33
57 0.5.V 0.06
0.32
70 105 0.50
0.58 0.10
4.17
1.26
2.71
1.7U
5.76
3.44
0.44
1.78
1.40
0.53
0.75
1.14
0.08
0.2J
0.20
J.23
1.20
0.30
0.17
U.90
0.6J
0.11
0.07
O.S3 0.37
J.4U
0.07
0.07
0.04
0.20
0.05
0.10
0.10
0.26
o.oa
0.10
0.62
06.3
02.3
05.6
03.9
06.0
07.0
04.1
7500 3.3
5000 10.8
7500
930 10.2
1027
940
915
828
06.4
9300 7.8
9300 U.9
30JO 9.3
2.4
8.3
3
3000 6.4
J31
025
032
022
6.0 516
5.5 802
9.0 65
7.0 868 190
10.0 526 35
11.0 4U1 23
7.0 489 35
9.0 433 260
10.0 50
8.0 487
9.0 499
539
8.0 485
7.0 494
-------
OATC ST4 FL3W TEMP PH COND AL HAP.O Nt CA HP, K HC03 C03 CL SO*, N03
30271
30471
31171
31U71
32571
4)171
40671
42271
42771
51371
52071
63871
61571
622 7 1
62471
71371
72071
72'J71
31t>72
32372
33072
40572
41372
4 1 9 7 i
42672
50372
51072
43572
41972
51072
11672
32372
33072
4J572
41372
41972
5J372
51072
82669
90269
90969
50570
60270
61670
63U70
70470
71470
71770
73170
30470
IK48
UT4b
UT48
UT48
UT48
UT4d
UT4B
UT48
UT4J
UT40
IJT4d
UT4B
UT43
UT4d
U74U
UT43
UT43
OT4B
UT48
UT4U
UT4J
UT4J
l/T'.d
l(T4d
UT40
ur4d
uf'.n
UT49
UT49
UT4-J
Uf5 J
UT50
UT50
orsj
UT5J
UT50
UT5>
U750
urs i
UT51
uroi
UTM
UT51
UTil
UT51
UT51
UT51
UT51
UT51
UT51
100.
113.
125.
12V.
191.
212.
214.
191.
263.
207.
126.
Ib8.
1/H.
155.
103.
130.
U.6.
112.
Itl.
32.
00.6
01.1
00. t
02. 6
02.6
02.7
J2.5
02.7
03.2
04.1
06.0
48. 1 *
15.4 *
15.5 *
26.6 *
18.5
30.5
29.3 *
OT.O
Ort.O
07.0
10.0
03.0
06.5
OV.O
14.5
13.0
13.2
oa.7
19.0
17.0
12.0
14.0
14.5
11.0
10.0
la.5
16.4
24.9
23.9
22.5
21.0
19. 5
7.90
8.25
8.20
8.13
11.00
0.23
8.25
8.35
8.30
8.30
8.40
8.J2
8.20
8.10
7.93
7.90
7.90
8.10
3.70
8.7J
8.50
8.25
7.95
8.30
7.35
7.60
800
770
720
720
sso
580
625
550
48J
470
520
630
1325
470
1065
580
510
*9'0
518
594
907
670
1998
1335
1600
1750
980
258 319
237 266
186 250
208
282 310
213 259
181
281 276
295 258
269 276
337 340
275 281
428
495 448
471 579
762
231 866
568
610 390
600
554 648
397 458
442 541
449
460 536
348 654
333 519
394
325
55
40
37
048
355
040
042
038
041
073
04?
504
343
328
650
648
689
718
540
683
382
125
183
139
190
265
177
72
64
59
73
56
25
71
64
68
02
70
59
64
77
138
85
139
83
130
145
93
70
85
81
83
99
86
34 5
26 3
25 6
28 04
29 34
29 03
24 03
24 03
26 03
33 OS
26 02
117 05
70 20
94 12
160 10
159 10
183 10
233 09
16 13
229 11
101 12
69 14
80 18
60 18
80 18
99 22
74 19
313 1.4
284 2.8
227 2.1
236 9.0
345
261
343
361
329
412
336
605
575
930
283
745
733
677
476 4.7
534 2.6
550 6.1
425
407
73
31
27
26
033
34 J
043
033
030
033
050
271
2d2
650
636
665
376
235
935
352
121
164
106
bS
256
131
109
63
95
071
OBI
072
067
109
896
725
022
895
183
277
307
346
250
0.59
J.62
0.55
0.51
0.45
0.42
0.45
0.34
1.05
0.37
0.47
0.52
0.42
J.44
0.36
0.36
J.24
0.33
0.42
J.47
0.27
I.t2
J.66
0.70
0.42
J.45
0.40
0.74
0.49
0.97
1.58
J.77
O.dl
3.61
1.45
1.05
3.60
0.10
0.04 0.
0.04 0.12
0.14.
0.14
0.05 0.18
0.10
0.03 0.15
0.04 0.24
0.21
0.211
0.19
0.26
0.23
0.12
0.22
0.40
1.42
0.03
3.34
0.06
0. 34
0.06
0.10
0.62
3.55
0. 13
0.4o
J.I.)
0.12
0.10
0.04
0.22
0.60
0.50
0.20
0.40
0.90
0.35
J.18
COIF BOO 00 OS
230 3.8 663
561
532
930 10.3
OU8
00.0
02.7
Jl.O
01.0
01.?
OJ.7
02.1
02.1
05.9
02.4
01.8
01. 2
01.0
01.9
01.2
404
383
477
607
526
0457
520
0710
765
476
1367
1369
3434
3202
3908
02.5
323
030
07.2 030
930 4.0 17X9
71.00 6.0
2000 4.8
5.0 1116 140
5.0 1045 45
4. I
-------
DATE ST4 FL3W TTMI> PH COND AL HARD NA CA MC K HC03 CO3 CL S34 N33 NH3 PO4
CULF 800 DO OS TUA3
an 70
81470
32670
•5017)
90'J70
92J70
100570
101570
102'* 70
110270
110270
111270
111670
112670
113070
121070
12237J
11471
11671
23271
20871
21671
3J271
33471
30871
31171
31071
J2t»7l
4M71
40'.)7l
42271
'•2771
51371
520/1
60B71
61571
62^71
62971
71371
/2071
72'>7l
31672
32372
33072
40572
41372
41972
42672
50372
51072
UT51
U7M
UTil
UT51
UT5i
UTS I
ur-ji
'JT51
IK51
UT51
U751
JT51
U751
UT'Jl
UT51
HTbl
UTS1
ursi
UTbl
'jrsi
UTS I
UTS I
UT51
ursi
orsi
ursi
UT51
UT51
UTbl
U75L
UT51
IJT51
UT51
UTOl
UT51
UTlil
OT51
IJT-il
UT51
u:t>;
'JT51
UT51
UT51
UTS I
ursi
UT51
UT51
LIT 51
UT51
UTS I
10.6
18.3
39.5
45.6 *
52.3 *
54.3 *
56.4 *
6J.3 *
57.6 *
57.6 *
75.0
70.2 *
71.0
70.2 *
67.0
59.3 *
61. 3 •
74.0 *
6'>.4 •
!»<.(. *
63. 7 *
50.0 *
64.2 *
6<*.2 *
62. <> *
65.1 *
62.'; *
72. B *
77. 1 *
46.0 *
37.0 *
35.1 *
45.3
5o.3
"0.5
Lfi.5 *
2J.O
. ll>. 4 *
6J. J
60.0
47.5
45.2
45.3
45.2
39.. J
55.0
30.0
20.0 7.75
19.5 7.05
<]. 13
22.5 8.30
8. 7 0
7.0 r.as
4.5 8.10
8.5 J
8.50
5.5 3.20
a. 20
7.0 7.80
8.20
2.0 7.^0
1.0 8.10
0.0 U.20
3.52
5.0 8.80
8.0 8.20
3.1J
8. 10
0.
8.27
8.08
3.00
0. 14
d. 15
8.00
8.3 J
8.20
8.50
8.05
a. 20
a. 10
0.17
a. 10
8.00
8.20
12.3
10.0
12.0
12.2
10.0
08.0
li.O
17.0
18.0
1215
1346
1045
1508
1435
1266
1407
1145
1040
1S07
1335
1170
1255
1165
1210
1005
9dO
1045
1125
920
970
1335
1J95
1215
2210
2305
1990
1600
1525
1.015
1215
1598
1577
323 389
400 425
269 408
336 357
384 394
US 492
472 468
329 558
37$
400 432
333 386
338 435
283
418 418
250 284
430 463
0 347
301 262
459 430
463 460
U09 565
522 638
192
14J
44
13J
85
15J
155
79
100
80
132
098
077
115
130
129
108
124
165
213
44
73
73
49
64
80
72
113
79
74
72
05
38
90
32
19
80
79
98
76
68 13
59 16
55 15
57 17
57 15
71 27
70 22
67
57 5
49 8
62 26
50 09
46 09
58 12
65 13
57 20
!>3 14
64 16
78 14
109 15
378 S.O
482 3.3
306 11.0
346 14.3
453 7.9
233 1.7
566 4.9
384 9.0
444 9.0
482 3.3
400 3.1
413 3.8
341 2.5
510
336
525
0
368
561
562
908
637
1!>5
350
17i
110
78
137
137
t)J
uO
137
233
125
122
125
137
112
97
90
73
92
147
061
058
002
106
107
Oil 3
0
-------
D4TC STA f^A
32V72 JT52 06.6
40o72 UT'j2 07.2
4JJ72 U^Oi: 13.7
SOS70 UT03 bOi.
60270 UTi.) 7*3.
61f>7 ) 'JT53 M5.
62170 UTi>3 75d.
63J70 UT53 700.
70470 UT53 911.
71470 UT53 7'j6.
71770 'JT53 330.
73170 OT53 772.
S0470 UT53 814.
01 170 U">.1 006.
81470 UT53 U33.
07070 UT53 807.
•30170 UT53 789.
*2370 UT53 610.
100570 UT53 510.
101570 UT53
102970 UT53
113l.
11471 UT53
20o71 UT53 45o.
21171 UTt.3
21071 uri>3 452.
30271 U753 320.
30471 UTS3 495.
31171 UT53 538.
31G71 Ute>3 504.
32571 UT^J 53i.
40171 UT53 522.
40671 UT53 517.
4lr>7l UT!>3
427/1 UTi3 5i3.
51371 UT5J 573.
52071 UT53 649.
601171 UT5S o54.
61571 UT&3 515.
62271 UT53 74').
62971 UT53 741.
71371 UT53 768.
TEMP PH
09.5
20.0
13.5
8.35
3.20
8.25
18. 5 8.45
8.50
0.45
7.55
3.50
8.5 8.50
5.5 3.33
3.10
S.20
5.0 8.25
8.20
6.0 8.10
a. 30
3.0 3.25
0.5 0.20
8.20
'2.0 0.75
5.0 3.15
4.0 0. 10
8.25
8.45
3.05
0.22
8.20
8.20
6. 35
0. 15
* 8. 10
* 8.40
* 8.30
* 7.93
* 8.20
* 8.40
* 8.28
* 8.20
COND AL HARD NA
5940 389
6372 389
12BO 204
1350 205
1335 205
166
160
730
159
1350 180
180
,1467
132
1335 206
1588 0
161
1005
1410 209
1246
1286
1450 220
1226
11 75
1350 203
1226
1035
1100
1095
1365
1350 201
1095
186
1035 162
1105
1135
1155
1145
1200
1125
351 552
734 242
354 140
375 149
365 145
366 145
373 167
411 191
154
4.9
372 164
398 175
353 178
392 252
366 ISO
382 200
402 160
390 165
360 135
357 145
378 132
CA
37
52
58
63
59
61
62
66
52
5
46
46
55
51
51
64
56
57
54
66
KG K HC03
475
63 25
147 25 475
51 25 243
53 22
53 18 246
52 19 246
53 22 203
60 22 196
59 30 194
9
5 9
69 22 220
58 21 175
62 27 162
58 17 247
62 25 197
59 16 250
61 18 264
53 16 243
54 16 240
52 24 227
194
C03 CL
1783
745
1630
3.0 180
17d
2.1 190
2.4 198
193
195
210
0.4 220
2.0 209
233
275
203
2.2 20d
203
217
225
2.7 220
300
300
2.3 211
2S8
2.4 193
3.0 185
155
2.2
180
504 NU3
0.03
0.01
0.10
210 0.57
217 0.50
230 0.36
0.18
219 0.50
J.75
241 0.52
240 0.05
243 0.03
0.17
0.36
232 0.51
236 0.43
0.31
243 0.57
0.75
257 0.75
0.68
0.33
242 0.90
0.52
0.56
0.48
219 0.41
0.59
3.43
0.35
0.31
3.36
223 0.54
0.52
218 0.73
0.47
0.50
0.56
NH3 P04 F
0.09
0.03
0.20
1.00
0.3C
0.08
1.00
0.50 0.65
0.20
0.04
0.10
0.60
0.10 0.64
0.04
0.20
0.12
0.40
0.05
0.08
0.20 0.63
0.17
0.18
0.10 0.29
0.16
0.30 0.18
0.18 0.09
0.14 0.14
0.06 1.S6
3.03
0.26 0.17
0.24
0.18
j.18
0.32
0.16
0. 18
0.32
COLF 60D
01.2
JO. 2
01.5
150 6.9
430 4.6
93 6.4
930 5.3
93 6.0
93 7*0
93 7.0
110 4.6
93 4.3
43 4.5
143 9.4
9 5.0
DO OS TURB
395 1
2819
6.0 997
470
10.0
9.0
3.0 896
9.0 845
8. 0
10.0 876
1021
10.0 888
6.0 896
9.0 867
803
893
636
834
921
906
375
75
45
•ft A
22
48
80
C f
p I
13
-------
STA FL3*
TEMP PH CONO At. HARD MA CA MO K HCO3 CO3 CL SO* tO3 NH3 PO4
COLF BOD
DO OS TURB
72071
72
-------
JiTE
FLOW TEMP PH CONO AL HARD NA CA MG K HC03 C03 CL SO* N03 NH3 P04
coif BOO DO os rirna
82669
90V69
5057)
60270
6lb70
6307 J
71070
71470
80470
80770
81170
32170
90470
92370
D-JI7J
100S70
1022/0
1U2/J
1L0570
Illb70
1 1 r; 7 j
112770
117070
12J37)
121770
122370
10471
10771
12071
20.171
21171
30271
4067 1
42771
60H71
82d'i9
'KOJ69
70
6J270
61670
63J70
7107J
71470
80470
8077 J
61170
Q2170
UT61
•JT61
UT61
UTbl
UT61
U761
U*6l
U*61
UT61
UT61
OThl
'JT61
Ufhl
UTbl
JT61
IJT61
UT61
UTbl
IIT61
DTol
IK61
LIT 6 I
JTbl
UT61
U761
UTol
UT61
l)T6l
UTbl
')T6l
U761
U"62
UT6
-------
cn
OATf
90170
90470
2J70
100170
100570
102270
110270
1105 70
111670
111970
112770
120370
121770
12237J
1 0 '• 7 I
1077L
1 2ft 71
20071
21171
30271
31371
40h7l
42/71
60H71
02669
S02fa<>
cJ09£j*<
5 3 r> 1 •)
6027J
6 If, 7 0
63073
71070
71470
8047 J
GO/70
8117U
82173
901 70
904 70
<)2373
1001 7i3
100170
10227J
110270
110270
110573
111670
111970
112773
113070
STA FU3H
Uft.2
UT62
UT62
UT62
U"62
UT62
U762
UT62
U762
UTt><:
UT62
Ult2
ur<>2
UT62
yf 62
UTt,2
UT62-
U~t>2
Ut 62
urt>2
UT62
UT62
UT62
UT62
UT6 J
U763
OT63
UT6J
JT63
VIT63
UT6 J
IIT63
U 1 6 J
UIb3
ur<>3
UT63
l>r&J
UT63
UT63
UT63
UT6J
U763
'JT63
UT63
UT63
UT63
UT63
UT63
UT63
UT63
' TEMP
12.0
9.0
7.5
7.5
4.0
7.0
6.0
3.5
1.0
.5
4.0
4.5
27.2
23.5
23.4
14.3
12.5
12.5
12.5
12.5
9.5
8.0
5.0
6.5
PH
7.75
8.25
8.40
8.40
8.09
0.05
8.45
8.20
8.25
8.15
8.40
8. S>0
8.20
8.35
S.40
0.49
8.00
8.55
8.30
8.40
0.30
7.92
8.70
0.80
0.60
0.25
8.20
8.00
7. UO
7.65
7.2J
8.35
7.50
7.90
7.95
7.70
8. 30
8.30
8.25
8.10
8.20
7.80
7.ao
CONO
415
SOT
435
497
446
487
447
456
446
510
426
450
4 £10
405
430
330
265
430
425
360
415
446
350
410
325
467
390
At HARD
140
146
152
140
174
161
159
154
146
182
168
135
142
147
180
140
142
165
141
152
237
231
250
249
284
255
262
225
216
219
220
173
177
171
234
120
186
228
221
186
184
137
199
NA
3
3
4
3
7
4
4
3
4
9
11
10
8
46
9
10
9
9
7
0
9
CA
62
63
64
67
74
66
67
59
62
60
62
53
48
66
50
60
64
50
49
52
52
MG
20
18
22
20
24
22
23
19
15
17
16
10
14
17
15
19
15
15
15
14
17
K HC03
i vao
1 168
3 184
I 169
2 207
2 194
1 190
2 183
I 175
2 216
2 202
4
2 164
2 174
3 180
1 215
2 170
2 170
4 197
2 170
3 185
C03
0.6
5.0
1.1
1.2
2.6
1.2
2.1
2.5
1.6
2.1
1.3
0.9
2.7
0.6
1.5
2.2
1.0
0.6
CU
17
25
3
12
16
12
3
12
25
12
19
19
19
20
4
2J
20
1 J
13
13
12
25
24
3d
8
25
25
8
20
12
6
25
22
S04
76
81
90
84
105
90
99
72
113
35
52
36
37
53
39
33
22
25
30
47
NQ3
0.14
0.12
0.08
.030
0.14
J.03
0.07
0.08
0. J9
.055
0.13
0.12
o.ta
0.11
0.11
0.75
o.os
0.07
0.16
0.20
0.23
0.45
0.29
0.36
0.30
0.36
0.53
0.25
0.41
0.32
0.24
0.13
0.31
.033
0.13
0.20
0.16
0.23
0.19
0.16
0.25
NH3 P34 F
0.40 0.26
0.04
0.02
0.06
0.10 0.29
0.04
0.70
0.03
0.05
0.26
0.05
0.04
1. 10 0.31
0.04
0.05
0.06
0.09 0.09
0.08
0.20
0.04
0. 50
0.03
0.30
0.02
0.60 0.21
0.03
0.10
0.06
0.10
0.00 0.16
0.06
0.70
0.05
0.04
0.30
COLP
2300
430
150
9300
750
93
93
23
430
750
230
2300
9300
9300
430
aoo
5.0
5.2
4.2
2.6
2.4
3.6
6.3
6.9
4.0
7.2
7.1
6.1
6.3
S.2
9.2
6.0
00
9.0
9.0
10.0
10.0
9.0
10.0
10.0
11.0
10.3
8.0
10.0
12.4
13.6
12.4
9.0
8.0
7.0
7.0
10.0
9.0
11.0
10.0
10.0
os rufta
276
254
406 S
308
238 4
297
135
334
321
442 1
337
302
328
405
602
229
054
044
039
219
252
262
38J
230
237 S
221
212 5
237 5
-------
DATS ST4 FLOW TEMP PH CONO AL HARD NA CA MS K HC03 C03 CL S04 M)3 NH3 P04
120370 UT&3
121470 UT63
121770 IIT63
122371 UT63
10471 UT63
10771 UT63
11071 UT63
12U71 UT63
20371 UT63
21171 UT63
30271 UT63
40671 U763
42771 UT63
60071 UT6)
50570 UT64
6327J Uf6
-------
DATE STA FL3W TEMP PK COND At HARD NA CA MO K HC03 Ct* CL SO* N03 NH3 P04
C3LP BOO
00 OS TORB
50570
6327D
61670
63070
71)70
71470
804 70
BD77>
81170
82170
9JL7J
90470
92370
100170
100570
102270
110,"!70
110270
110570
111670
111970
112670
113070
120'j70
121770
12227J
10471
10571
128 71
20871
10771
43671
42771
60071
U 2 6 ( < 9
90269
909o9
5057)
60270
6 It/ 70
63070
710/0
71470
8J47J
H0770
81170
8217)
V0170
90470
UT65
UT65
UT65
UT65
UT65
UT65
'JT65
UT65
UT65
DTiiS
UT65
UT65
UTuS
UTl>5
'JT65
UT 6 5
UTt>5
UT65
UT65
-------
CO
DATE su FLDW
92370 UTfc6
100170 UT66
IOJ17J OT66
102270 OT66
110270 HTo6
11U*7> 'JT66
111670 UT66
111V70 UT6o
112670 UToo
113070 UTt>6
120370 'JTfco
121770 UT66
122270 UT60
10471 UT66
10571 UT66
20871 jTfcb
12871 UT66
30271 UT66
40<.7.l UTbo
42771 UT66
60871 UT66
81969 UT67
aZl.bl UT67
902o<5 UT67
90V69 UT67
13471 U7<»7 39.1
10571 U1V7 3J.8
10571 UTo7 3ti.8
11671 UT67 4J.5
11871 UTo7 40.2
20271 uTo7 36. 316
3 303
2 279
2 267
4 277
5 226
5 287
212
224
206
7 225
239
C03
2.0
2.9
1.9
3.2
2.0
3.3
3. 1
2.3
4.1
0.8
0.9
1.9
1.6
0.4
0.5
0.5
CL
ft
25
25
20
12
5
12
23
12
25
16
26
25
20
6
5
32
41
36
34
35
33
S04 ND3
21
.025
2.) 0.35
0.02
28 0.24
0.03
0.05
23 J.I 8
0.03
0.05
0.05
23 0.11
23 0.05
0.09
19 0.07
21 0.20
25 0.08
0.64
44 1.22
0.26
1.26
1.15
0.93
o.ao
0.39
0.43
0.57
0.54
0.88
0.48
51 0.61
0.36
1.02
1.08
NH3
0.05
3.86
2.78
5.48
2.55
4.90
3.33
2.80
2.48
0.48
1.96
3.B6
3.92
1.00
2.22
»»04 f
1.15
0.04
0.3J
0.08
1.00
0.04
0.06
0.2J
0.02
0.04
3.37
0.10 0.08
3.03
4.40
0.10
0.13
4.1
3.80 0.29
4.4
2.5
3.70
5.5
4.9
1.96
4.11
3.89
2.68
1.98
3.33
3.37
6.76
3.06
3.26
2.53
2.97
2.S6
2.94
2.48
3.37
2.41
COIF BOO 00
4
13.0
2300 3.6
10.0
150 0 3.0
11.0
10.0
8.0
4300 3.3
10*0
11.0
8.9
430
150 8.5
12.0
ISO 6.8
43 4.0
10.2
04.8
11.6
OS. 8
9300 17.5
6.0
6.0
OS TO*B
438 40
287 12
310 15
303 10
299 10
291
315
304
465 4
303
411
384
413
024
026
021
025
394 12
498
462
446
387
312
412
401
360
370
476
370
450
-------
DATE STA FL3W 7FHP PH CONO AL HARD NA CA MO K HCO3 C03 CL $0* N03 NH3 PO4 P COUP BOD DO OS TUK»
31969 UT68 25.0 8.90 12.0 035
32669 UT63 22.0 8.53 04.2 028
90269 UT6
-------
DATE STA
T6MP PH CJNO AL HARD
CA MG K HC03 C03 CL SO* N33
P04
COLF 800 00 OS TURfl
00
O
32470
61 f. 7)
70070
01^70
9007U
90970
61570
7007)
01270
9GB70
61363
61764
62763
70163
70568
70i!G8
71160
71568
71060
72162
7256.1
72963
60160
30460
80(160
81268
31V63
32660
9J263
9056 8
90963
9126U
91669
•n
5
5
:>
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
&
5
5
5
5
5
5
5
5
5
5
9
5
5
5
10.0
25.0
25.5
21.0
27.0
27.0
8.35
8.30
8.60
0.50
8.35
8.15
8.60
7. HO
8.25
8.40
8.20
8.35
8.20
8.40
8.35
8.35
8.30
3. 00
8.00
7.50
7.73
7.60
7.65
0.00
8.11
0.00
8.25
8.30
B.45
0.55
7.85
7.95
7.90
0.30
8.05
0.45
8.20
8.20
0.25
0.20
8.20
8.20
7.65
7. B5
7.05
8.25
8.25
8.30
1000
I2ao
1280
1230
1250
1300
1250
1445
1425
1425
1490
1630
1510
1390
1510
1000
1000
14 'JO
1425
1390
1490
1490
1470
1270
1425
1470
1600
1450
1270
1470
1500
1470
1560
1465
1390
1406
1395
1415
1430
1345
1325
1390
1370
1300
1280
1390
1170
184
196
172
172
204
202
172
177
207
206
201
200
204
194
166
195
194
184
172
180
174
177
170
171
170
138
149
165
148
153
160
161
1.66
186
211
212
172
157
161
131
191
194
293
342
341
328
345
348
322
332
363
358
360
364
364
354
348
344
346
346
334
348
339
354
344
340
340
306
342
340
320
329
332
468
380
366
352
374
323
312
320
344
338
334
92
140
163
160
120
140
145
150
140
140
140
140
140
140
132
148
130
145
130
140
140
140
140
150
140
155
145
155
150
165
155
165
150
165
145
140
144
150
140
150
145
130
55
53
41
41
59
54
40
44
60
58
50
57
55
54
50
49
50
36
46
49
47
50
45
46
45
34
30
43
37
30
40
41
42
51
59
62
44
36
37
43
48
51
30 13
51 19
58 20
55 21
43 17
52 19
54 19
54 20
52 17
52 17
52 10
54 19
55 19
53 19
54 19
54 20
54 20
62 20
bJ 20
55 21
54 21
56 21
56 21
55 20
55 20
54 22
60 18
57 10
55 18
57 18
56 19
89 19
67 19
50 19
50 18
53 17
52 21
54 20
55 19
53 18
53 18
50 18
219
234
201
203
243
243
202
215
248
244
241
238
244
23J
221
232
232
222
208
219
211
215
206
206
205
157
178
199
175
180
194
195
201
222
254
251
209
190
195
217
228
232
2.7
2.6
4.4
3.5
3.3
1.9
4.4
0.8
2.0
3.4
2.1
2.9
2.1
3.2
2.7
2.9
2.4
1.2
1.1
0.3
0.5
0.4
0.5
.1
.4
.5
.8
.1
.8
3.5
0.7
0.9
0.9
2.5
1.6
3.9
0.5
0.7
0.0
2.1
2.2
2.6
126
lOd
213
217
167
184
201
19J
180
177
100
19J
192
193
190
196
196
200
209
199
202
203
204
204
207
205
207
217
210
232
221
217
217
226
184
101
200
220
210
210
205
210
195
204
203
203
196
179
153
210
233
235
203
214
220
211
223
216
223
227
232
232
230
233
234
240
243
241
239
245
245
241
245
246
241
243
248
249
252
249
255
256
200
222
218
215
210
215
210
200
220
210
230
223
204
0.23
0.20
J.23
0.18
0.23
0.11
0.23
3.25
0.29
0.23
0.07
0.29
0.23
0.23
0.14
0.07
0.07
0.02
0.02
0.02
0.23
0.50
0.05
0.27
0.27
0.05
0.11
0.23
0.23
0.16
0.50
0.32
0.29
0.27
0.07
0.25
0.23
0.23
0.23
0.1
0.5
3.2
0.4
0.2
0.6
0.4
0.5
0.0
0.9
0.0
0.8
0.8
0.6
1.0
1.0
1.0
0.9
3.5
2,8
2.6
2.4
2.4
2.6
1.0
0.4
0.9
0.6
0.3
0.5
0.7
1.0
0.5
0.9
0.7
0.8
0.8
1.4
1.0
0.1
0.0
0.0
0.77
0.68
0.68
0.64
0.71
0.70
0.71
0.7J
0.65
0.70
0.73
0.64
0.70
0.74
0.74
0.75
0.75
0.77
0.76
0.77
0.80
0.82
0.81
0.58
0.76
0.76
0.66
0.74
0.70
0.72
0.71
0.64
0.62
0.59
230
93 5.9 5.*
4 4.7 9.0
5.8 5.5
11.2
93 8.0
12.9
5.4
1.2
1.8
922
909
916
929
941
923
862
937
920
928
892
836
eao
894
884
888
921
856
858
688
878
870
8V2
906
922
966
880
880
8<;o
692
907
920
860
847
852
862
878
906
896
840
11
5
8
16
9
8
16
17
9
14
10
9
9
5
8
8
5
4
4
4
2
10
10
5
29
11
30
30
50
21
45
13
35
38
-------
OATf- STA
00
6?*7>
72270
02670
92J7J
V572
*2072
51572
121669
3IN70
6157J
70070
31270
<.'8
7HH.B
72100
72568
72Vt.3
0 ? 1 6 3
30'. 08
0196U
90563
9 jT^.il
91968
102268
112668 ULll
*2269 ULll
Tf KP
23.5
2*. 5
11.5
11.5
ID. 9
21.5
27.0
26.0
21.0
27.0
t>H CONO
8.*3 1370
8.30 1335
3.60 1*55
7.95
8.35
7. 60
3.35
8.2}
8.55
7.70
a. 30
8. 30
ft. 50
0. JJ
8. 35
B. 10
S.JO
0. 20
a. 35
B.*0
8. 15
8. 20
a. 05
7.60
7.90
7.'»o
7.55
7.90
8. 10
3. 3'i
8. 15
7.80
7.95
8.25
8.10
8.20
1166
1264
1230
1.100
1060
1280
1283
1370
1200
1*90
1*25
l**-5
l**b
1*25
1630
I'j30
1530
1S10
1 V/0
1000
I 3'JO
1*2*5
1390
1*90
15 JO
1210
1195
1*50
1*50
1*50
1500
1*50
1*70
1*30
1370
AL MAUD
202 366
166 3*2
168 3*2
180 327
222 377
202 357
170 3*0
181 3*1
209 363
196 355
170 330
185 351
212 368
210 370
207 360
?0* 360
195 3faO
200 360
197 362
196 352
200 V;Z
19/t 353
137 346
133 3*3
183 3*fl
175 339
172 3*G
190 3*2
Ifl* 352
169 3*0
162 33*
150 326
157 327
165 332
165 *68
177 376
167 3*8
205 360
MA
1*5
170
170
17*
159
135
1*5
120
130
1*5
155
150
1*0
1*0
1*0
1*3
1*0
1*0
IbO
1*0
150
1*0
150
159
1*0
1*0
150
1*0
150
1*0
150
170
160
155
150
150
150
130
CA
57
*0
*0
*7
57
59
**
56
63
55
*0
*2
63
61
57
5fl
55
55
56
51
52
55
37
51
50
*6
**
50
51
*5
*6
*0
3d
*2
*1
51
50
58
MO
5*
59
59
51
57
51
56
*9
50
53
56
60
53
53
53
52
5*
55
5*
55
5*
5*
61
5*
5*
5*
5*
56
55
55
55
5-i
56
55
89
61
5*
52
K HCO3
20 2*0
31 199
16 197
19 220
15 271
20 2**
19 212
19 221
1C 2*9
20 235
ie 200
21 225
18 253
18 251
17 .:*7
19 ?'.*
19 232
19 2*1
19 235
19 .''35
;o ;'io
20 ?32
20 225
20 219
21 ?21
21 213
21 208
21 ^30
21 22*
20 <0*
1C 195
U Ifl3
19 lfc<»
19 200
19 200
16 212
IS 225
2 2*6
CO3
3.3
2.2
4.3
1.2
2.6
0.5
3.1
2.1
3.9
0.6
2.3
2.7
2.7
2.7
2.9
1.7
Z.f*
2.1
2.9
3.2
1.3
1.9
I.*
0.*
1.0
0.9
0.*
0.9
I.*
2.3
1.7
0.7
0.9
2.1
1.6
2.2
CL SO*
196 22*
217 2*0
237 2**
190
191
132
202
150
180
192
207
19*
235
130
r>2
llib
1J7
193
195
190
2 JO
l')3
195
20*
2JJ
200
205
202
203
209
210
210
2tl
216
211
203
197
186
213
221
225
201
219
225
230
221
231
228
225
229
227
232
238
2>0
23*
2'.J
2*0
2*5
22*
2*1
2*e
2*0
2*2
2*6
2*6
2*5
2*5
2*U
2*9
252
230
221
NO 3
0.36
0.09
0.09
0.19
0.22
0.02
0.68
0.97
0.72
0.23
0.23
0.38
0.05
0.27
0.25
0.29
0.29
0.20
0.13
0.16
0.02
O.I*
0.16
0.1*
0.05
0.32
0.32
0.18
0. 1*
0.1*
0.23
0.36
0.*3
0.3*
0.9
0.9
0.3
3.8
0.9
O.ti
0.9
0.9
0.9
0.9
1.3
1.3
2.6
*.2
8.0
2.*
2.7
0.5
0.5
1.0
0.5
0.9
0.7
0,7
0.8
0.8
0.58
0.70
0.67
0./2
0.71
0.72
0.73
0.65
0.63
0.76
0.67
0.73
0.7*
0. 7*
0.7*
0.73
0.76
0.81
0.83
0.7i
0.59
0.73
0.76
0.76
0.67
0.6*
2.7
96*
936
935
932
919
V3d
951
92*
953 21
9 39 1 *
932 18
•550
892
18
6
13
1*
1*
9
17
15
20
18
B80 10
9*0 12
93* 8
955 5
902 6
866 11
930 *
66* 13
933 13
962 11
920 29
928 17
899 12
-------
r>ATL STA
TfMP PH CONO AL HARD NA CA KG K HC03 C03 CL SO'. NJ3 NH3 P04
CQLF BOO DO OS TIM&
$2769
603 b?
0036V
00
ro
626 IS 9
70169
70169
70064
7156V
'All
ULll
ULH
an
ULll
ULll
V0269
112569
121669
30370
32470
02470
7227J
02670
92370
12572
40672
42072
51572
121609
32470
61360
61764
62068
62463
62768
70160
70*60
70d6U
nua
71568
7U6B
7216R
7256S
80168
a 04 MI
dOObO
31260
81969
02608
90560
90V68
91268
91668
ULll
ULll
'JL11
ULll
ULll
ULll
ULll
Ul. 1 1
ULll
ULll
UL1 1
ULll
ULH
ULll
ULll
ULll
ULll
UL12
UL12
•JL13
UL13
UL13
UL13
DLL 3
III 13
UL13
UL13
UL13
UH3
UL13
UL13
UL13
UL13
in. 13
UL I 3
L»Ll3
UL13
UL13
UL13
UL13
UL13
UL13
UL13
22.5
23.0
11.7
9.4
9.3
16.9
e.35 12R5
0.30 14UO
0.20 1330
8.U 1370
8.20 1410
a. 25
0.30 1315
S.20 1350
8.24 1353
8.05 1400
7.93 1425
8.00 I3i0
0.13 1335
0.30 U70
8.30 1140
8.40 1170
8.40 1370
8.35 1403
Q. 60 1435
1199
1080
12S3
8.25 1425
0.40 1445
0.25 1425
8.30 1445
8.35 1445
0.00 1510
0.40 I6d0
8.35 1440
3.30 1550
6.20 1510
0.45 1300
8.15 1425
0.35 1380
8.10 1425
8.35 1425
7.90 1490
7.-VO 1445
7.73 1303
7.55 1195
0.20 1500
0.40 1450
7.90 1500
0.35 1450
7.80 1450
200 360
213 366
202 348
180 334
165 321
165 328
177 336
183 330
185 350
193 325
207 367
166 341
167 341
354 324
355 377
209 358
205 355
204 346
218 369
205 364
203 366
222 364
193 352
204 360
193 358
1-52 350
186 354
177 340
178 344
177 346
174 378
175 347
174 344
178 346
170 334
165 334
164 340
160 338
163 338
130
140
130
145
150
150
150
140
115
115
145
170
170
151
153
140
140
130
150
160
150
160
140
160
154
150
190
176
140
140
140
140
150
150
145
150
172
162
145
59
61
56
48
39
42
46
48
46
SO
58
41
30
46
57
58
50
57
58
58
58
56
54
56
49
52
37
47
48
47
50
48
45
48
45
42
46
42
41
52 17 248
52 17 255
51 19 241
52 22 217
54 20 200
54 19 199
54 19 213
51 17 219
56 15 221
49 17 229
54 19 245
58 21 198
60 17 195
51 19 432
57 14 434
52 17 250
51 17 243
56 16 244
54 18 260
53 19 244
54 19 245
54 20 263
53 19 230
54 20 244
57 20 231
54 20 226
64 20 ?23
54 20 211
54 21 215
56 21 211
63 21 210
55 21 212
56 21 212
55 20 216
54 21 204
56 19 198
55 19 190
57 19 191
57 19 198
3.3
2.4
2.7
1.3
0.9
1.1
1.5
2.4
2.4
3.2
3.4
2.4
4.3
2.5
3.4
2.4
2.9
3.3
1.4
3.7
2.8
2.7
2.0
3.2
1.7
2.6
1.5
2.6
0.9
0.9
5.0
0.4
1.8
2.7
0.8
2.4
0.6
171 236
179 221
210 217
213 210
213 200
220 210
174 217
223 210
21S 210
196 223
204 223
205 228
230 236
Ib5 210
111 177
165 190
197 228
222 243
226 238
144
183 190
105
179 218
185 217
170 211
199 234
2)0 234
197 231
221 234
193 227
207 236
203 236
190 237
202 262
202 240
202 239
201 242
202 243
203 22*
205 244
209 241
20d 247
214 247
218 251
220 248
216 249
0.34
0.32
0.16
3.16
0.09
0.20
3.23
0.23
0.18
3.18
0.36
0.39
0.09
0.13
0.12
0.28
0.27
3.25
0.18
0.23
3.23
0.02
0.34
j.ie
0.07
0.07
0.02
0.02
0.09
0.36
0.11
0. 11
0.11
0.23
0.36
3.7 0.61
0.9 0.70
0.20
0.30
0.41
0.38
0.9 0.63
0.33
0.44
0.9 0.69
1.1 0.75
1.0 0.65
2.5 0.77
0.1 0.65
O.I 0.56
0.1 0.57
0.2 0.56
0.5
0.2 0.67
0.36
0.03
0.10
0.8 0.66
0.9 0.66
0.6 0.62
0.8 0.60
0.0 0.71
1.5 0.70
0.9 0.73
0.9 0.73
0.9 0.67
0.8 0.69
0.9 0.75
0.9 0.66
1.0 0.72
2.7 0.72
2.2 0.74
2.1 0.72
2.4 0.73
2.4 0.77
0.7 0.77
0.2 0.75
O.S 0.79
1.0 0.59
0.0 0.58
1.0 0.78
083
929
883
076
099
892
840
870
866
860
872
890
800
856
770
3 819
23 7.2 951
8.2
00. 5 0890
00.9 1077
01.0 0900
1.4
23 2.0
918
916
880
970
973
958
1014
910
Vb3
953
894
1001
954
896
090
906
913
904
941
OV4
894
914
896
006
70
0
25
70
53
65
16
10
25
27
26
7
16
36
11
22
11
13
10
9
14
14
14
14
12
13
13
$
10
6
9
7
7
2
8
a
-------
DATE 5T«
TEMP PH COND At. HARD NA CA MG K HCO3 73 CL SO* N33 NH3 P04
C3LP ftOO
00 OS
91960
00
GO
12d3<>it
603 6 '*
7016V
70164
700o')
7lr.oT
HOW
0026'J
110-.69
51370
62470
UL13
IX 13
ULU
UL13
ULl 3
ULl J
ULli
ULl 3
UL13
UL13
ULl 3
UL 1 3
UL13
IH.13
UllJ
UL 13
ULl 3
UU13
UL 13
32670
'12J70
'tO(.7«J
51572
100V70
61J6.1
6 I 1 6 B
(S206J
6:4<.3
027611
701M
71168
71563
7106(1
72163
72160
72'763
U016H
a 04 ft a
00360
31268
31960
•50268
90568
VOS6S
91268
UL13
Oil 3
ULl 3
ULl 3
UL 13
ULl 3
ULl 4
ULl 5
ULl 5
UL 15
'JL15
Ml 15
UL 1 5
KL15
ULl 5
in. 1 s
ULl 5
ULl'J
UL15
ULl 5
ULl 5
ULl 5
ULl 5
'JL15
UL15
ULl 5
ULl 5
ULl 5
ULl 5
ULl 5
24.5
24.5
11.0
10.1
11.0
19.6
a. 00 1500 166 340 155
8. 40 2000 171 350 160
8.45 1510 185 360 166
S.OO 1320 210 3*4 140
(1.30 1350
3.2J 1338
8.25 1440
0.2) 1351) 195 342 140
8.20 1450
8.20 1435
8.2J 1406
8.00 1425 183 338 144
7.70 1370 166 348 170
0. 40 1350 163 322 161
8. 10 1410 176 330 160
8.40 1335 187 300 170
8.3J 1300 200 343 160
8.20 1390 212 360 140
0.40 1370 206 369 145
8.40 1350 171 349 175
8.60 1435 172 349 170
1100 291 139
1134 201 314 151
1274 232 3/7 164
8.20 1200 408 459 125
0.20 l'>55 210 300 160
0.3* 1710 ?12 3fl9 180
8.35 1510 ?14 374 160
B.30 17'.0 231 400 220
0.25 1553 2D4 3t>) 170
0. 50 1655 210 366 1 70
8.00 1655 202 364 150
B. 35 163) 194 360 150
8. 15 1650 204 368 170
S. 20 1550 193 350 156
8.10 13'JO 194 360 155
8.40 142
58
51)
56
53
54
50
51
37
50
50
50
•58
50
44
46
45
43
41
39
57
59
57
53
51
53
60
55
55
55
52
51
54
60
60
49
51
57
63
57
60
56
60
57
59
54
55
57
55
57
66
50
57
57
59
58
61
56
61
57
59
60
19
18
18
17
20
22
20
19
19
21
18
17
20
21
1.7
14
19
16
12
21
18
??
20
?1
20
20
21
20
21
21
21
22
22
22
22
22
21
19
19
20
20
203
203
218
253
234
221
202
193
?12
222
239
254
244
203
201
246
2R4
490
751
.75?
255
276
244
t'5l
244
231
245-
,731
..'33
235
?23
222
224
219
217
?20
;io
207
133
193
189
1.1
2.8
3.4
1.4
2.0
1.2
0.6
2.7
1.5
3.1
2.6
2.2
3.4
2.8
4.4
4.3
2.2
3.1
3.1
3.0
2.4
2.4
1.3
2.9
1.9
2.0
1.6
3.3
0.7
1.2
1.6
0.0
0.4
I. I
0.3
0.3
3.7
0.6
1.7
22.)
227
215
183
MO
2U
?20
167
22t
220
222
2JI
204
220
212
222
120
104
204
237
22
V24
860 3
931
95J
999
882 52
878 23
894 40
834 22
950 U
880 44
656 30
12
02.3
01.5
00.4
12
U
27
27
12
0460
0930
0851
930
1059
992
1191
1029
1045 23
966 7
908 15
1026 17
890 2a
981 17
984 20
944 14
922
946
944
924
986
932
912
896
1029
948
13
8
6
16
15
12
4
10
5
10
-------
OATF STA
TEMP PH CONO 41 HARD NA CA HC X HC03 C03 CL S04 NU3 NH3 P04
COLF BOO 00 OS TUKR
9196b
100868
00
-p.
60369
60360
61969
62669
70169
7016V
70169
70J69
70B6V
7156-)
UL15
ULii
UU5
UL15
UL15
UU5
UU5
OL15
UL15
UL15
UL 15
902 6'<
100069
110469
12026V
3J37)
51370
42470
7227J
82670
92370
40672
420/2
51572
4)672
42072
51572
6157J
70070
00370
fl 1 0 7 )
01270
31770
'IL15
UL15
UL15
U.15
tlU5
100370
80370
81070
01770
100370
61570
70870
81270
90U70
32572
40672
42072
51572
UL15
UL15
UL15
UL 10
UL15
1)1.15
UL16
UL16
ML 16
•Jl I 7
U.17
UL17
US. I 7
UL17
UU7
UL17
UL17
UL19
UL19
UL19
UL1V
UL21
UL21
UL21
Ui.21
III 21
UL21
UL2L
UL21
24.5
24.3
11.1
10.2
12.1
13.8
13.0
15.2
19.5
24.0
25.0
24.3
24.5
8.00
8.25
8.J5
8.35
8.50
8.52
8.35
0.00
8.23
8.30
e.io
8.20
8.23
7.85
7.60
7.70
8.00
0.10
8.30
0.05
8. 35
7.85
8.50
8.30
8.20
8.70
8. 20
8.45
1500
1470
16 JO
1470
1400
1395
1418
1450
1393
1420
4210
1425
1402
1400
1320
1375
1410
1345
1550
1370
1370
1400
1455
994
1220
1205
uoi
i ioa
1285
1300
1410
1390
1435
167 340
172 350
203 372
214 362
199 356
189 336
175 340
170 337
167 328
191 342
ISO 342
203 366
221 364
207 369
170 351
179 365
252
195 328
272 *19
194
201 328
212 359
246 375
188 370
182 348
170
160
165
1 40
150
140
144
160
163
160
160
190
140
145
175
185
161
079
171
072
079
159
135
155
165
42
43
54
61
54
51
45
41
37
44
44
50
62
59
40
44
35
44
61
30
44
SO
63
56
44
57 19
59 18
58 19
51 18
54 24
51 18
55 22
57 20
57 19
56 19
56 19
59 22
51 18
54 20
61 23
62 la
40 11
53 19
65 16
29 07
53 19
57 15
53 18
56 21
58 20
201
206
241
255
240
226
212
207
203
231
217
242
266
246
206
212
239
333
246
259
294
226
216
1.1
2.0
1.5
3.1
1.3
2.2
0.8
0.5
0.6
1.3
1.5
2.7
1.7
3.0
0.8
3.7
3.2
2.2
3.3
226 255
227 261
229 250
182 223
200 199
209
210 196
200 220
103 218
212 200
6*>3 705
213 235
212 200
197 225
2Jd 2)2
219 23>
225 239
213 204
260 246
iaa 213
200 229
230 243
24y 256
136
199 220
207
106
204 224
197
175 208
214 232
220 242
0.07
0.20
0.54
0.32
0.02
0.27
0.17
0.09
0.27
0.20
0.05
0.32
J.41
0.11
0.20
0.04
0.13
0.23
0.06
0.20
0.24
0.23
0.29
0.22
0.23
0.7 0.77
0.6
1.0
0.8 0.72
0.9 0.69
0.9 0.64
0.8 0.74
1.6 3.91
1.5 0.75
2.0 0.80
1.8 0.75
0.1 0.65
0.8 0.68
0.2 0.63
0.1
0.2 0.69
0.08
0.04
0.11
0.07
0.03
0.09
0.2
0.5
0.12
0.03
0.2
7.23 1410 206 367 170
18.0 9.70 1567
24.2 8.60
25.4 8.35 1365
10.0 9.60 1477
2J.5 8.43 980 215 321 95
23.5 8.15 1090 169 299 130
24.5 7.60 1200 158 351 110
7.63 870 175 257
12.0
13.1
12.3
50 59 21 252 0.2
227 237 0.18
312 0.04
95
222 064
907 200 291 049
14.0
114S 204 333 150
58
36
32
34
38
49
48
43
51
66
42
31
41
52
11
16
11
12
06
11
13
256
203
192
213
244
250
3
1
0
0
.6
.6
.4
.5
287
110
164
200
111
111
119
159
168
201
175
163
160
0.
0.
0.
0.
3.
0.
0.
0.
08
05
11
20
18
04
20
07
0
0
0
1
0
0
0
.02
.2
.6
.3
.4
.05
.07
0.5 0.75
0.01
0.03
0.55
39
930
*
9
4
00.
00.
DO.
00.
00.
01.
a.
7.
4.
8.
12.
12.
Id.
4.
03.
02.
05.
3
7
9
a
6
2
5
0
3
0
0
4
0
3
6
2
9
7.
7.
6.
7.
14.
7.
10.
8.
11.
14.
8.
1
4
2
8
0
0
0
0
0
0
7
918
934
966
884
895
892
904
908
844
910
900
913
397
876
876
916
936
916
1073
942
912
0404
853
0985
0364
0942
0856
932
1009
996
910
692
952
839
0790
672
10
32
1$
27
25
20
50
28
85
51
19
3
SO
32
50
50
48
28
65
38
-------
00
cn
12166V
32*70
M570
70070
81270
'KV'70
121669
3.7470
61570
7)U73
31? 7.)
90R70
61363
61763
STA
I1L22
UL22
UL22
UJ.22
UL22
UL23
ULJ3
UL2i
62463
6?76rl
70163
7JS03
70360
71160
71508
713611
72101)
7? S<.rt
7296U
OOlOti
JOiif.B
012613
81060
0?668
fu.'.otl
9 j •) (, H
91.?6d
91661*
100000
120361)
00309
6036S
62669
70169
70169
7JS69
71569
30*169
90269
UL23
U123
lit 2*
UL24
UL24
5
1000 1B6
1350 181
1390 179
1490 103
1493 175
1490 179
1490 173
1240 166
1400 152
1470 157
1425 161
U70 163
1010 163
1500 Io5
1500 162
1450 172
1535 196
1470 208
1380
1373
1)88
1350 183
1400
1460
1450
1400 180
1335 164
302 145
369 150
354 160
370 170
355 125
34B 145
330 150
346 140
396 160
365 150
364 150
363 150
360 140
364 150
366 150
364 150
302 156
360 142
360 155
•5*6 120
324 159
3*<. 1*0
350 1*0
353 140
351 140
342 140
332 140
324 ISO
332 145
330 155
338 170
356 165
338 155
333 155
344 160
366 165
360 145
340 140
340 144
320 150
CA
64
59
48
51
63
52
40
48
56
50
57
53
57
56
54
54
50
37
36
49
*0
50
46
49
44
42
39
39
41
41
42
41
41
43
49
57
50
46
40
HC K HCO3
54 17 252
54 20 244
57 24 220
59 21 213
48 17 254
53 19 231
56 20 200
55 19 234
61 19
55 19 245
53 17 252
55 18 256
52 10 241
54 19 243
55 20 246
56 20 233
60 20 241
57 20 246
65 20 233
62 20 221
40 20 215
55 21 216
55 22 220
55 21 212
57 21 .'10
56 21 210
55 21 202
55 22 177
5Y 19 166
05 10 l 90
57 10 192
tl 19 199
57 19 199
57 19 196
58 18 204
59 19 234
53 18 249
52 21 225
55 21 213
54 20 199
C03
2.2
2.1
1.2
1.5
2.2
2.5
3.1
0.9
2.7
2.4
3.1
2.3
2.7
3.0
2.4
2.9
2.7
3.0
2.3
2.7
2.7
1.3
1.9
1.5
0.7
0.4
4.3
3.5
2.6
3.3
3.4
0.5
1.4
0.3
3.2
2.9
2.4
2.2
1.1
0.4
Ct SJ* N33
203 241 0.36
200 232 0.32
224 260 0.23
223 247 0.18
174 211 0.61
19J 222 0.14
210 231 0.23
180 210 0.36
201 240 0.23
200 236 0.25
190 22«> 0.23
194 234 0.05
103 225 0.02
200 235 0.25
211 239 0.18
204 240 0.16
202 221 0.16
204 238
20') H9 0.05
.""-. 1 2*2
200 244 0.02
204 2** 0.05
?0d 243
203 247
205 2*1 0-02
20* 2*2 0.05
21'J 249 O.*l
213 2*9 0.05
212 2*2 0.32
21 J 250 O.U9
214 2>i 0.16
216 247 0.11
221 254 0.23
222 255 0.09
221 254 0.16
225 243 J.52
lii-J 224 0.25
22* 23J
220 230
220 210
193 215 0.05
226 212
220 200
2iO 210
195 223 0.25
204 227 0.07
NH3 PO*
0.2
0.5
0.4
0.4
0.4
0.4
0.2
0.5
0.9
0.9
0.9
0.9
1.0
0.8
0.9
0.9
0.9
0.9
3.0
1.3
1.0
2.1
2.4
2.3
2.2
3.0
1.0
0.4
0.3
0.5
1.0
0.0
1.0
0.7
0.8
0.8
o.a
1.0
1.0
1.3
F
0.81
0.69
0.73
0.63
0.63
0.69
0.69
0.70
0.71
0.73
0.67
0.70
0.66
0.64
0.73
0.69
0.74
0.73
0.75
0.71
0.81
0.78
0.79
0.84
0.62
0.53
0.77
0.77
0.71
0.63
0.69
0.79
C3LF SOD DO OS TUftft
2.0
93 5.8
430 7.2
3.6
2.3
43 3.5
1500 6.0 6.4
9 5.4 9.2
5.0 4.2
5.0
965
954
90S
92o
963
901
918
959
962
912
883
902
900
912
094
914
896
894
878
8DO
806
950
950
9*9
910
926
1001
938
880
382
806
376
900
935
930
373
868
9
19
21
7
22
4
9
12
31
13
13
8
7
14
5
16
5
10
e
6
13
5
5
12
%
32
12
26
18
33
23
-------
DATE SI A
TEMP PM CJNO AL HAP.O NA CA
K HC03 C03 CU SO'. NO 3 NH3 P04
COLP 600 00 OS TUKB
00
120?69
3J37>
51370
62'. 70
826 YJ
97370
J2572
401.72
42072
51072
UL24
in. 2 4
UL24
UL24
DL24
VIL24
UL24
UL24
UL24
UL24
Ul 24
1>124
ML 2 4
UL82
32470
42170
121669
37<.7J
421/0
32470
'.2170
12U6T
UL93
Ul.94
ULV't
ULV4
HI. 95
3?!470
4<>t70
347)
42170
32470
4217J
32470
42170
32470
42170
32470
42170
32470
42170
'JL<>7
UL-Jo
UU98
LI 2
Ll 2
LI 8
I I 6
LIU
LU1
L114
LU4
LUt>
LU6
LH7
LU/
8.4S
8. 15 1410
8.05 1230
B.33 1393
8.15 1425
23.0 0.35 1300
25.0
8.35 1370
0.50 1455
12.3
12.3
9.0
18.9
16} 322 155
100 326 160
177 334 165
207 344 155
210 362 145
202 364 140
173 349 175
176 349 180
ioao
llt.6
1274
38
41
43
50
61
55
41
41
225 097 31
191 325 077 48
228 387 158 61
55 19 193
54 19 216
55 20 213
53 18 247
51 18 252
55 20 241
60 21 206
60 16 208
36 09
50 19 234
57 14 279
3.0
1.7
1.5
2.7
2.0
3.0
2.5
3.6
211 224 0.09
212 222 0.18
210 233 0.23
200 224 0.09
193 213 0.20
200 2U 0.45
222 237 0.11
233 248 0.14
168 0.07
200 218 0.12
192 0.26
1.6
2.0
1.8
0.4
0.9
0.2
0.2
0.1
0.08
0.04
0.09
0.80
0.84
0.81
0.62
0.70
0.59
0.66
908
916
920
918
75
8.0
6.9
904
42
6
20
45
35
9
230
9300
2300
430
5000
230
2100
430
9300
2300
930
230
230
2300
V300
23 JJ
3000
9300
01.1 0372
01.0 0846
00.4 0828
1.0
13.0
13.1
4.1
4.4
1.5
1.0
1.5
2.4
4.4
5.9
8.8
3.3
2.4
-------
STA
pH CONO AU HARD NA CA KG K HCO3 C03 CU SO* NO3 NH3 P04
COLF BOD
DO OS TUR8
00
-J
61970
62573
62670
70270
73973
71670
72370
3067 J
01370
02770
90370
')1070
13J7 1
20(.7l
21371
22371
32U71
33071
41071
42-vri
51571
52171
60771
62171
63071
70571
72671
30271
61') 70
62073
62670
7027 }
70'; 70
71f.70
7?370
80(>7 J
01370
82770
90370
91073
S 2 It 7 3
101 770
117170
10071
13071
20671
21371
22371
32071
33071
pa i
PP i
pb l
PB 1
PO 1
pa i
pa i
PB 1
pa i
."» l
PB 1
PB 1
P3 1
PB I
PB 1
PB 1
P'3 1
P3 1
PB I
PB 1
Pi\ I
pa i
Prt 1
P3 1
PS 1
PO 1
PB 1
PB 2
P3 2
Pft 2
P1^ ?
Pft 2
Pfi 2
P3 2
P15 2
Pft 2
Prt 2
PS 2
P3 2
P:J 2
fQ 2
?a 2
Pii 2
?8 2
P'3 2
PS 2
P-3 2
pa 2
PB 2
22.3
29.5
21.5
23.0
26.6
18.7
23.4
23.3
21.5
16.5
4.5
9.0
4.0
8.5
24.5
28.5
21.9
24.3
27.5
23.0
25.6
24.6
22.0
19.0
16.5
16.0
14.5
9.0
3.0
4.5
4.0
6.0
6.95
3.33
7.30
7.13
7.70
7.60
7.55
7.90
7.50
7.43
7.60
7.45
7.42
8. 50
7.40
7.50
7.25
7.35
7.95
3.35
7.52
6.20
8.03
7.60
7.55
7.60
8. 10
8.35
8.65
7. 38
a. 50
7.60
7.63
7.95
7.70
7.73
7.60
7.90
8.10
7.30
7.80
7.60
8.15
7.80
0.50
7.70
7.64
713
740
680
620
660
670
610
620
630
680
640
700
690
683
660
824
730
510
665
715
680
720
780
770
191 358
195 362
205
206 370
212
210
206
214
212 364
159 323
222
205 363
206 346
207 392
178
218
228
225
184
49 94 30 U 234
34 99 23 7 238
35 99 30 7 252
259
257
251
254
47 98 29 6 259
67 70 36 11 195
33 96 30 7 251
31 96 26 6 252
32 96 37 8 253
24 22 217
265
275
273
219
0.1
0.5
0.3
0.3
0.3
3.7
1.0
2.8
0.5
1.4
0.7
0.6
0.4
1.8
0.8
3.2
42
33
90
35
63
50
34
60
75
100
63
50
63
32
31
27
103
107 2-15
0.36
0.30
O.M
121
0.24
0.44
3.45
0.43
0.22
3.45
2.26
0.43
3.41
111 0.34
0.38
122 0.05
0.27
07 A
. t <*
0.73
120
3.31
0.65
123 3.91
145 3.41
79 0.76
0.36
0.40
0.21
D.J5
0.02
1.48
2.08
2.43
2.18
0.48
3.52
1.36
1.25
2.96
1.08
0.20
3.46
2.67
2.06
0.68
0.28
0.43
1.03
4.90
5.0
3.9
1.40
1.62
1.9
3.10
3.35
2.11
2.11
4.11
3.48
3.29
3.98
2.62
1.76
2. 82
1 .83
2t Q
. oo
21 1
. 16
21 i
.11
1 . 50
2 . 50
1.3
2.60
3. 70
3.50
2.7
2.43
0.80
2.7
3.3
3.23
4.03
3.70
2.17
1.25
0.37
0.93
14.0
430
170 1.0
5000 20.0
7500 49.0
3500 3.0
5000 11.0
10.0
8000 30.0
3000 7.0
S.O
4.0
5.0
3.0
5.0
4.0
7.0
4.0
8.0
17.0 19.0
500 25.0
17JO 28.0 10.0
6000 8.0
8.5
4000 2.0
5000 25.0
5000 10.0
1033 1.0
0500 22.0
516
444
565
552
432
472
3.0
2.8
87.0
4.0
4.0
5.0
7.0
5.0
6.0
4.0
11.0
14.0
6.0
13
20
25
25
15
IS
531
540 20
336
630
592
637
469
423
510
518
432
578 58
50
591
595 85
409 45
562 95
434 23
458 25
478
640
523
487
494
575
395
512
577
547
477
601
571
15
15
15
15
24
-------
OATF STA
TEMP PH CONO AL HARD NA CA KG K HC03 CO) CL SO*. NO3 NH3 P04
COLF BOO 00 OS TUXS
00
00
42971
41071
51571
52171
60771
62171
63071
70571
72671
80271
80S 71
32572
40072
42072
61970
62570
62u70
70^70
70970
71670
72370
P3
r>B
Pb
pa
pa
Prt
P3
P8
Prt
PO
PB
PS
PB
P3
fft
P8
02770
90370
01070
13071
2J(»7l
2U71
22371
32)71
33071
41071
42971
51571
52171
AJ771
67171
63071
70571
72671
40271
6197J
62570
62670
70270
70970
71670
7237J
80670
P3 2
Pfl 3
P9
PR
PB
PR
PH
Pft 3
Pit 3
PS 3
Pi\ 3
P9 3
PB 3
PI 3
I'fl J
3
3
3
3
3
PH 3
PU 3
PB 3
PB 3
P& 3
Pfl 3
P5 3
P8 3
PB 4
F3 4
PU 4
PO 4
PB 4
P3 4
pa .4
P9 4
14
14
11
24
27
22
23
21
24
25
24
21
20
15
3
5
3
6
24
20
.5
.5
.0
.3
.5
.7
.5
.6
.0
.7
.5
.5
.0
.0
.0
.0
.0
.5
.9
.5
8.
7.
0.
8.
8.
8.
8.
8.
3.
7.
7.
3.
8.
0.
7.
B.
8.
8.
7.
7.
8.
8.
7.
8.
8.
0.
7.
7.
7.
a.
0.
8.
0.
B.
9.
8.
8.
6.
8.
a.
38
82
23
70
08
40
70
30
40
60
80
60
60
60
80
90
20
15
60
70
45
70
60
50
00
65
75
68
58
65
45
90
20
30
10
90
75
60
40
70
590
720
670 200 356 69 90
690
700
670
660
643
630
620
821 269 036 65
616 216 291 045 72
212 359 35 96
751
675 204
730 238
730 235
700 213
720
760
550
590
690 223 334 67 78
700
650
650
670
670
800
256
121 0
3
32 7 249 1.8 49 121 0
0
26 05 079
27 06 264 038 111 0
0
0
0
29 B 259 0.4 63 114
5J 0
63
63 1
248 0.4 0
283 4.2 0
284 1.3 0
250 5.2 0
0
1
130 0
34 7 236 18.0 57 130 0
0
.09
.40
.12
.16
.38
.03
.21
.43
.43
.40
.41
.38
.06
.29
.20
.59
.09
.12
.12
0
0
0
0
2
2
0
0
1
0
0
0
0
.
.69
.55
.46
.10
.22
.06
.25
.59
.13
.65
.33
.15
.18
003
0
1
1
1
0
1
0
2
1
2
3
0
1
3
2
4
3
4
I
2
3
1
2
1
1
0
0
0
0
1
1
0
0
1
1
•
•
•
•
•
•
•
•
•
•
«
•
•
•
•
*
•
•
•
•
*
•
•
*
•
•
*
•
•
•
•
•
•
•
*
71
33
12
34
70
03
47
21
67
91
29
29
06
50
85
00
4
60
80
83
35
96
41
64
35
42
35
74
46
01
58
65
93
44
14
432
5S1
22.4 8.45
26.9 8.45
26.5 9.15
26.5 8.65
278 299
145 276
94
86
49
48
43 12 l!i7
38 13 177
2.3
80 102 0.09
77 143
0.27
0.45
0.6
1.1
0.88
3
100
ttOO
3JOJ
1200
1830
300
01.
02.
16.
46.
46.
32.
19.
8.
25.
16.
4
2
0
0
0
0
5
0
0
0
18.
9.
13.
9.
10.
5.
7.
13.
11.
7.
0
0
0
0
0
0
0
0
0
0
564
597
560
560
460
485
449
607
500
484
489
488
651
645
508
538
552
457
416
40
99
25
20
25 38.0
13.0
11.0
11.0
14.0
11.0
489 25
22
618
611 35
628
583 109
557 220
120
-------
DATE STA
00
81370
82770
90370
91J70
92670
101770
112170
10971
1T071
20.S71
21371
22)71
32)71
33071
41071
6197)
6.7WO
62670
7027J
70'J70
7U.70
72)7)
81370
02770
9017)
91070
92670
10971
21J71
6TJ70
62 W)
62673
70? 70
70970
7167.0
7P 3 70
81370
32770
90370
91070
92670
101/70
112170
22m
32071
33071
41)71
42971
51571
52171
pa 4
Pfl V
?3 tf
P* 4
PB 4
P3 4
PR 4
P6 4
PiJ 4
PB 4
pa 4
P8 4
PB 4
PB 4
P3 4
PB 5
P3 5
?ti 5
PB 5
PI 5
Pfl 5
PS 5
Pft 5
Pfl 5
Pfl 5
PS 5
Pi) 5
Pil 5
Pft 5
P3 6
P3 6
Ph 6
pn 6
Pi) 6
PA 6
PB 6
Pti 0
P3 6
PB 6
P3 o
PB 6
PB 6
o.'l 6
Pft t>
P3 6
Prt o
PR 6
pn o
P3 6
Pfl 6
TSM»>
23.6
22.5
23.5
17.0
15.0
14.0
0.5
5.0
26.2
29.0
22.6
28.3
24.5
25.2
23.5
23.5
17.0
15.0
25.0
26.8
18.7
26.3
23.3
2*. 2
21.0
2UO
.6.5
14.0
12.0
3.0
f>H
9.05
8.00
7.00
a. oo
3.10
7.70
7.90
7.80
8.55
7.95
7.75
7.53
0.50
6.05
S.55
6.90
9. 33
7.95
7.91
7.70
8.10
7.90
7.95
8.50
8.93
8.70
9.10
9.00
9.15
9. 10
9.10
8.80
0.53
8.00
7.60
7.78
7.82
8.43
8.55
8.68
CONO
751
640
600
790
740
730
780
790
790
761
690
730
649
649
790
770
630
650
720
AL HARD
174 309
199 346
209 371
231
212
239
228
174
154 286
171
238
228
145 267
144 238
150 276
154 279
202 330
NA CA MG K HCOS C03
52 76 29 9 213
31 94 27 6 243
36 96 32 8 255
31 32 280
259
292
277
206
82 52 38 12 188
29 32 289
277
62 11
87 43 39 13 177
86 33 38 13 176
39 63 29 7 184
55 54 35 9 188
67 78 33 6 210
1.0
1.4
0.6
1.0
0.8
3.4
7.0
1.0
1.1
10.4
10.4
0.8
0.3
18.0
CL
125
46
53
312
50
31
32
39
73
50
81
50
34
31
71
83
63
75
39
44
64
SO 4
113
1J3
135
103
141
107
157
149
100
121
118
123
N03
0.
0.
0.
1.
0.
0.
1.
0 .
0.
0.
0.
0.
I.
0.
1.
0.
0.
0.
0.
1.
0.
0.
0.
0.
03
18
47
00
J5
07
12
33
33
06
05
07
20
26
17
1$
27
oa
05
14
15
09
10
11
MH3
3.23
2.05
1.34
0.25
0.34
0.14
1.21
1.86
0.53
0.02
0.13
0.29
.016
.004
P04
1.00
2.7
2.40
2.50
1.7
4.0
3.50
3.J)
2.42
0.95
0.87
0.20
0.46
0.33
0.44
1.3
2.18
3.00
2.89
1.1
1.2
0.25
0.4
1.7
0.51
0.19
0.34
0.39
0.15
COLF BOO 00 OS
4500 16.0
3250 34.0
1000 12.0
25.0
30 22.0
9.0
3.0
7.0
4.0
6.0
6.3
6.0
12.0
14.0
14.0
15.0
25.0
12.0
4.0
3.0
7.0
11.0
7.0
10.0
11.0
5.0
8.0
13.0
10.0
17.0
12.0
7.0
511
541
503
468
432
514
522
476
604
599
506
589
593
636
623
620
536
587
507
504
511
491
438
567
S61
574
585
608
564
582
646
512
463
461
600
564
570
586
485
100
20
IS
12
50
70
145
95
53
50
25
30
16
82
125
150
165
35
65
22
32
-------
ST4
TfMP PH CONO At HARD NA CA *C K HC03 CO) Cl S04 NO3 NH3 P04
COIF BOO 00 OS TURB
60771 l>9 6
621 71 °B 6
63071 ru 6
70571 PB 6
72671 P& o
00271 Ptl 6
B0971 PR 6
62670 PA 7
70WO f'D 7
61V70 PH 7
6?S70 PR 7
70270 «>ft 7
71670 PtJ 7
7?jrj PB 7
01370 PO 7
02770 Pll 7
91070 P» 7
92i70 Prt 7
U177) PB 7
1U170 ?« 7
10971 P!J 7
2?37l "0 7
320/1 PU 7
13071 PO 7
41071 PB 7
42<)71 Pn 7
51571 frt 7
52171 P|\ 7
60771 Prt 7
62171 »3 7
63071 PJ 7
7J571 f>3 7
72671 PH 7
Pi* 7
P8 7
r»a o
62570 P8 3
6Z67J P3 8
70270 PB 3
70970 Pft 8
723/J PB 8
fl0670 PH 0
B137J P3 3
81970 PB a
82770 ?B 3
90370 PB d
9137J P3 3
92670 P3 8
101770 PB 3
25.
24.
20.
25.
21.
23.
22.
20.
'.6.
13.
10,
3.
0.
2.
6.
26.
24.
19.
21.
26.
28.
22.
19.
15.
12.
11.
5
8
8
0
0
3
0
0
0
0
5
0
0
0
5
0
9
2
6
t.
5
0
0
0
5
0
a.
8.
9.
8.
9.
9.
9.
8.
8.
3.
a.
8.
9.
9.
a.
8.
9.
7.
8.
0.
8.
7.
7.
7.
a.
8.
B.
7.
.3.
9.
8.
9.
9.
9.
8.
8.
8.
8.
9.
9.
V.
3.
8.
9.
7.
20
10
40
7J
50
40
70
50
70
58
85
75
05
10
tfj
70
50
70
00
10
73
60
30
72
20
50
73
98
00
30
00
40
20
70
51
80
50
80
10
65
15
60
95
15
90
710
740
700
740
730
710
144 279
171
152 254
588
162 225
201 317
755 251
395 199
850
740
360
860
670 177 294
730
680
800
730
650
710
670
154
141 263
146 287
730
138 227
82 46 40 12 176 5.8 76
90 41 37 12 186 U.O 73
103
08
100
74 31 36 9 198 0.4 61
70 61 40 10 246 1.1 53
49 38 303 1.7 50
232 5.4
77 65 32 7 214 1.3 56
82 38 41 13 173 77
82 54 37 13 179 11.8 83
113
153
83
54 35 34 8 169 0.6 50
154
143
130
149
163
123
117
152
149
115
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
.00
.16
.40
.06
.07
.78 0.01
.08 0.26
0.83
.51 0.02
.30 0.46
.08 0.53
.08 0.28
.11
.30
.09
.16
.13
.58
.06
0
0
0
0
0
0
0
0
1
0
0
0
1
3
0
0
0
3
0
0
0
0
0
0
0
0
0
a
0
0
i
i
0
1
0
0
0
•
•
•
•
*
•
•
*
•
•
•
*
•
•
*
•
•
.
*
•
*
•
•
*
•
*
*
•
•
•
*
*
«
*
•
•
4
14
42
25
28
21
20
13
33
1
9
22
6
8
60
31
37
b&
26
29
34
13
14
27
14
33
10
12
16
53
77
45
45
6
3
52
43
7
10.0
11.0
8.0
6.0
10.0
6.0
8.0
7.0
11.3
15.0
70 22.0 U.O
9.0
6.0
625
542
637
587
503
508
559
529
526
463
539
607
627
661
543
665
670
24
25
35
90
140
125
145
170
135
»5
75
55
666
11.0
10.0
45.0 6.0
10 46.0 15.0
110 58.0
20 47.0
55 60.0
0 40.0
6.0
7.0
7*0
8.0 16.0
45
25
665
674 40
581
492 130
600 130
611 130
573 165
572 105
540 75
464 60
430 55
-------
DATE STA
TEMP PM CONO AL HARD NA CA MC K HC03 C03 CL S04 NO3 NH3 P04
COLF BOO DO OS TURB
112170
10*71
13171
22371
32071
33071
51571
52171
60771
62171
63J71
70571
72671
80271
80971
PB U
Pl> 3
Pft 3
P5 3
Pi 3
?i» 3
pa a
Pb a
PO a
PB 3
Pa a
pa 4
PS s
PA A
Pb 8
a
3
62570
62670
702 7 i
70970
71!>70
72370
81370
82Y70
93370
91070
92670
IJ1770
112170
10-J71
22371
32071
33071
4U71
51571
521/1
60771
62171
63071
70571
72671
80271
80971
61970
62570
62670
70270
PO
PB
P3 •>
PB 9
PB 9
P8 9
PiJ 9
Pd 9
Pfl 9
pa 9
Pfl V
PB 9
pa 9
Pft 9
PO 9
Pfi 9
Pd 9
Pb 9
P& 9
Pa •}
P3 9
PIJ 9
Pd 9
P3 V
P6 9
f»3 9
pa 9
pa 9
P8 9
pa ?
?a 9
P310
PftlO
3.0
0.0
0.
.0
4.0
25
23
24
28
24
30
23
24
15
16
12
3.
0
1
5
.2
.9
.2
.2
.5
.4
.0
.5
.0
.0
.0
0
.5
.3
.5
24.7
24.6
9.05
8.10
3.20
a. 65
7. 70
7.80
7.82
8.15
3.40
8.10
8.10
9.40
9. 10
9.7}
9.40
9.80
8.00
8.70
6.40
9.05
9.25
9.75
9.05
9.50
9.00
9.50
7. U
7.70
8.20
7.90
7.82
7. 70
8. 10
3.45
8.60
8.22
3.20
9.15
9. 10
9.70
9.30
9.35
3.40
8.60
629
805 238 63 44 287 1.6
305 234 63 43 282 2.1
1005 198 232 4.8
330
7ao
890
320
700 192 311 83 67 35 7 21V 9.0
710
720
730
720
710
700
690
131 247 87 33 40 13 161 fl.4
154
136 196 87 26 32 13 166 8.7
659
US 224 62 32 35 S 144
164 294 44 60 35 9 201 0.4
805 225 68 45 271 2.0
770
790
330
750
720 198 7 216 13.0
700
740
680
710
720
730
700
1400 256
75
65
75
61
154
166
131
124
0.
J.
»
0.
0.
0.
0.
a.
0.
0.
05
26
17
09
02
24
39
13
06
11
Z.
0.
0.
1.
0.
0.
0.
0.
89
23
56
17
31
45
43
01
0.
2.
2.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
52
60
60
13
36
55
21
21
47
13
13
24
12
27
22
17
0.04
83
150
37
124
38
75
59
44
74
66
164
151
118
135
166
133
133
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
60
06
09
08
02
B4
23
09
09
.10
0.
0.
1.
54
8
3
0*36
0.82
0.
35
0.01
0.
0.
11
55
0.30
.001
0.
1.
2.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
,1
0
.00
,30
,59
,29
,23
,66
,17
,06
.13
.15
,06
.25
,09
.17
14.0 464
5.0 676
5.0 769
760
6.0 624
583
683
642
78
13.0
14.0
13.0
13.0
14.0
10.3
8.0
7.0
12.0
14.0
10 27.0 13.0
5.0
627
64B
633
579
587
561
505
538
548
506
462
453
730
565
583
596
636
534
40
SO
35
90
110
135
165
130
100
45
105
78
P810
20.1 8.30
0.36
736 44
3.0 30
803
4.0 8.0 869 25
-------
STA
TFMP PH COND AL HARD NA CA KG K HC03 COS CL 504 N03 NH3 PQ4
COLF BOO 00 OS Wft
70970
71670
72370
80670
81370
82770
•70370
91070
92673
101770
IU170
121273
10971
22371
22771
32071
33071
41071
42971
51571
52171
60771
62171
63071
70571
72671
80271
80071
61970
62570
62670
70270
70970
71070
716/0
72370
8)670
8U70
82770
9037)
VI070
S2670
1M77)
112170
121270
22371
22771
32071
33071
41071
PBIO
PBIO
PD10
PC10
"81 J
PBIO
PDIO
P910
PdlO
PlUO
PiUJ
PIHO
PBIO
PBIO
P610
PIHO
PlilO
PB10
Pi) 10
PB10
PtUO
PBIO
^11 10
PBIO
Pt>10
PBll
PIU1
Pftll
Pbll
PBll
PBll
PM1
Ptill
PBll
PBll
Pdll
PQ11
PIU1
Pdll
PU11
Pdll
PBll
P311
PBll
pen
24.0
21.7
24.0
23.1
21.5
23.0
15.5
12.0
10.0
3.0
1.0
1.5
26.3
24. 5
19.4
22.7
24.0
21.7
23.5
23.3
23.0
23.0
1S.O
12.5
10.0
3.5
2.0
1.5
3.5
0.
8.90
8.40
8.80
8.70
9.15
9.25
9.00
9.20
7.40
7.80
8.85
8.30
8.60
8. 10
7.85
7. 8t>
7.92
8.10
8.45
8.35
8.23
8.60
9.20
8.90
9.55
9.30
V.6S
8.20
8.31
8.20
0.
8.05
8.20
7.95
0.20
8.50
8.60
6.65
8.55
a. so
8.40
0.45
a. 45
8.48
8.00
A. 05
8.15
8.13
884
872
864
944
825
aao
925
1025
940
US/5
900
770
1J45
940
830
920
830
370
830
1400
3500
1447
1407
1206
1145
1055
945
1015
1025
1105
123 330 139
146 316 112
154
140 285 110
129 251 60
147 295 102
170 178
215 82
189
189
178 345 103
167 370 145
171
152 351 175
152 345 145
161 361 146
185 219
181
168
45 53 19 151
54 44 17 179
50 39 14 171
26 44 6 158
44 45 15 180
45 9 208
49 258
223
228
74 39 9 214
61 53 22 204
45 58 27 186
46 56 21 186
49 53 23 197
60 16 226
215
204
6
11
0
0
6
2
4
1
I
1
3
2
2
2
3
0
.6
.3
.1
.5
.9
.4
.1
.3
.8
.5
.4
.1
.6
.9
.0
.9
161
133
225
88
168
150
137
93
114
88
87
85
209
333
400
300
288
325
177
185
170
193
149
150
169
179
182
148
147
242
248
224
216
219
0.41
0.00
0.31
0.24
0.12
0.00
0.17
0.05
0.07
0.10
0.10
0.11
0.11
0.09
0.43
0.29
0.07
0.08
0.33
0.31
0.26
0.10
0.22
0.06
0.22
0.11
0.15
0.42
0.15
0.57
0.34
0.83
0.42
0.09
0.52
0.49
0.60
0.22
0.02
0.24
0.22
0.38
0.19
0.4
0.9
0.26
0.45
0.53
1.9
0.70
0.4
0.4
1.0
2.00
0.23
0.28
0.2>7
0.09
0.20
0.09
0.13
0.09
0.2)1
0.1*
0.36
0.11
0.15
0.12
0.14
0.1
0.04
0.07
0.23
0.05
0.05
0.6
0.4
0.60
0.25
0.23
0.17
0.07
25 19.0
18.0
10 22.0
25.0
20 37.0
33.0
10 10.0
20.0
12.0
9.0
6.0
10.0
8.0
5.0
10.0
8.0
15.0
10.0
10.0
6.0
6.0
763
617 82
758 135
677 155
731 115
1139 135
614 150
943 110
897 80
1003 95
53
75
750
573
765
714
748
654
9.0
65.0
20.0
10.0
7.0
6.0
7.0
7.0
6.0
9.0
6.0
9.0
7.0
11.0
11.0
10.0
8.0
885
928
871
886
866
8^4
905
906
873
914
976
838
887
872
751
743
780
831
65
25
60
50
65
90
40
50
70
70
70
65
75
43
68
-------
OATF
42971
51571
52171
10
CO
62171
b307l
73571
7?671
fi027t
807l
101770
112170
13371
20671
22371
32071
330 71
42971
51571
52171
60771
62171
63J71
70571
72671
00271
80971
P011
PU11
PlUl
Pflll
PD11
PI'. 1 1
Prill
Plill
P311
P811
"045
PH45
P043
l>iJ45
PB45
PB45
PB45
PB45
PB45
PB45
P345
P&45
PB45
TEMP PH CONO AL HARD NA CA HC K HCi.J C03 CL S04 NO3 NHJ P04
68 54 16 214 9.0
8.5
3.0
3.0
6.0
8.35
a. 50
8.3d
8.31
8.40
d. 70
8.55
8.60
8.70
9.3J
7.40
7.60
8.30
8.50
a. 30
8.UO
7. V8
8.00
8.30
8.50
9.40
8.20
7.85
1085
1075 190 392
1055
1205
1135
1055
1245
1205
1115
751 209 371
844
580
720 200 359
720
6/0
610
650
710
740
640
145
36
80
96 32 8 255 0.3
86 35 7 245 2.2
173
32
62
0.35
205 0.28
0.33
135 0.07
0.34
2.90
130 0.08
127 0.11
0.13
0.15 0.13
0.11 0.13
0.01 0.15
0.13
0.24
0.10
0.17
0.13
0.14
0.14
3.95
4.40
0.32
0.31 0.32
0.34 0.64
.002 0.37
0.12
0.15
0.21
0.61
0.13
0.18
2.4$
COLF BOO 00 OS TUR»
820
45V
5.0 571
5.0 476
12.0 604
506
6.0 589
593
421
22
-------
DATE STA
TFM? PH CONO At HARD NA CA HC K KC03 C03 Cl $04 NJ3 NM3 P04
C3LF BOD DO OS TU*9
10
62270
6307J
7)67J
71370
72070
7277J
80370
81070
62270
63070
70670
71370
72070
77770
00370
8U70
62270
63070
7J67J
71370
72070
72770
80170
81070
ai77j
82470
33170
1)5370
103170
120570
4J672
42072
51572
62270
63070
70670
71370
72070
72770
81070
81770
82470
33170
1JJ370
103170
1201)70
62270
63070
70670
71370
Gd
G8
OB
GO 1
Gd
GB
CO
r,a
GB
r.a
Gd
03
Gd
08
Co
Gb
CS
G3
CO
r,a
ca
GO
Cd
CD
CJ
G3
GR
G3
CB
r.a 3
G9 3
Ga
OB
GB
GO
GB
G3
r.a
Gd
r,n
r,a
Ga
ca
Grt
G3
G3
G8
G3
G3
3
3
*»
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
24.7
20.4
25.9
24.4
26.0
23.6
24.8
23.4
24.7
19.7
25.3
24.4
26.1
23.3
24.5
22.6
24.0
20.5
24.2
24.0
26.0
23.9
24.4
23.5
24.2
23.5
23.5
15.5
6.5
2.5
12.3
10.3
15.0
23.7
18.7
23.7
24.5
24.4
23.6
23.6
24.0
23.5
15.0
6.5
2.5
22.7
20.0
23.9
24.3
8.40
8.70
8.60
8.90
8.05
9.3J
8.80
8.40
8.40
0.60
8.60
8.75
8.65
8.90
8.80
8.55
8.20
8.45
8.43
8.60
8.45
8.50
8.65
3. .20
0.60
8.60
8.45
9.85
8.20
8.55
6.20
8.30
8.«2
3.55
8.45
8.50
8.15
U.60
8.75
9.65
8.75
8.20
8.15
8.20
8.39
8.50
2800
2800
4440
3500
2100
2101
2158
2005
1490
2376
3240
4000
1470
1768
2000
1949
209 756
193 665
222
194 531
137
168 382
175 639
194 499
185 497
355
246 460
306 734
222
178 391
172 581
166 519
173 457
188
656
645
419
216
261
421
384
206
384
522
209
238
312
209
78
57
61
56
55
50
64
40
54
80
56
53
48
61
137 40
127 40
92 36
59 26
122 29
91 40
82 34
62 19
79 30
130 40
61 26
109 25
97 31
74 27
256 9.5
236 9. ft
215 11. 0
205 2.7
214 4.0
237 1.7
226 3.7
301
374
181 Ift.O
211
203 5.3
212 1*5
933
999
651
306
590
375
175
400
500
479
478
157
492
803
314
296
125
999
437
293
383
631
672
475
296
332
396
368
405
299
262
280
162
0.10
3.07
0.20
0.11
0.02
0.05
0.45
0.05
0.04
0.03
0.38
0.09
0.10
0.11
0.45
0.04
0.37
0.11
0.17
0.21
0.04
0.1
0.2J
0.31
0.09
0.14
0.17
0.02
0.08
0.15
0.15
0.07
0.04
0.02
0.6
0.60
0.02
0.28
0.65
0.07
0.03
o.oa
0.14
0.12
0.06
0.4
0.02
0.3
0.01
0.05
O.U
0.05
70
45
31
50
20
55
30
10
20
10
75
6.
6.
7.
12.
14.
35.
4.
5.
0.
9.
11.
19.
7.
8.
1.
19.
16.
0.
01.
00.
03.
7.
11.
11.
2.
0
0
0
0
5
0
5
5
0
0
0
0
0
0
0
0
0
4
5
6
1
0
0
0
5
ft.
7.
7.
8.
5.
5.
8.
8.
7.
9.
8.
B.
7.
7.
8.
6.
8.
7.
7.
6.
7.
5.
7.
7.
7.
7.
8.
7.
10.
9.
7.
7.
a.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3265
2653
2675
2860
3023
3333
3512
3748
2260
1965
2009
2155
2011
2434
2269
966
1343
1295
1299
1211
1335
1387
1496
1341
1305
0642
1745
2446
1231
1114
1086
1206
1291
740
950
1148
1065
1091
1125
984
972
1007
1051
73
55
70
92
85
110
86
55
60
80
80
45
73
55
50
55
55
35
75
100
75
70
45
95
170
40
25
24
60
65
90
65
65
135
85
115
45
14
722
50
80
65
53
-------
DATT STA
TFMP PH CONO AL HARD NA
cn
72J7D
72770
81770
62270
63070
70670
7137J
72070
GO
01070
81770
82470
100)70
103170
63070
70670
7137J
72070
72770
80373
81070
d',770
82*70
33173
10J170
r,s 5
Gil 6
CB 6
Od 6
r,8 6
c.a 6
G't 6
GS 6
ca 6
G3 6
Gft ft
Gil 6
GU /
G3
Gil
GB
r,tt
G3
r,3
GB
82470
03170
U037J
103170
120570
7
7
7
7
7
7
7
7
7
Gfl 7
G312
r.au
G1H2
03
cai2
Gc»12
25
24
23
20
26
24
25
23
22
23
15
6.
20
25
24
25
22
24
23
24
23
23
5
24
23
24
16
7
2
.0
.1
.0
.6
.2
.U
.9
.5
.5
.5
.0
08
.3
.5
.5
.2
.5
.6
.2
.5
.5
.5
.*
.5
.5
.0
.0
.0
.5
8.
8.
8.
8.
8.
b.
7.
a.
8.
7.
3.
9.
7.
8.
8.
8.
7.
8.
0.
8.
7.
3.
0.
8.
8.
8.
8.
9.
8.
8.
50
70
10
30
35
45
40
60
10
90
65
15
GO
20
20
10
70
20
40
10
70
45
50
10
65
70
75
95
40
30
1650
1728
1708
1390
1467
4202
4252
3342
ISO
158
159
146
165
171
149
151
159
23
-------
SUPPLEMENTAL DATA FROM U.S. BUREAU OF RECLAMATION - SEPTEMBER 1972 THROUGH JUNE 1973
DATE STA riOW TEMP PH CONO AI HARD NA CA MC K MCOS C03 CL 304 N03 NK5 POO
VO
cn
91472
1W3172
112972
10273
20273
22773
32273
41773
5147.1
914T2
1H3172
112972
1P273
2C273
22773
32273
41773
5147S
91472
103172
112972
1*273
20273
22773
32273
41773
S147S
91472
1C3172
112972
1*273
20273
2*775
32273
4J77J
51473
91472
103172
112972
17273
20273
22773
32273
41773
51471
91472
i«3l72
112972
10273
20273
UT
UT
UT
UT
UT
UT
UT
UT
UT
UT18
UTJA
UTJ6
UTIA
UTU
UT18
una
UTU
UT1»
UTJ4
UT34
UT34
UT34
UT34
UT34
UT34
UT34
UT.14
UT3S
UT38
UT38
UT3«
UT39
UT38
IJTS8
UT39
UTJA
UT41
UT41
UT41
UT41
UT41
UT41
UT41
UT41
UT41
UT42
UT42
UT42
UT42
UT42
35
30
23
22
29
33
33
31
2*
35
4ii
34
27
25
30
37
27
l«
*
4
4
3
3
4
6
9
14
10
20
6
22
22
20
20
24
10
9
5
4
4
3
4
«
6
9
12
16
28
10
6
16.3
l*.a
4.
4,
5.
a.
10,
tfl.
IS.
IB.
tl.
«.
5.
*-,
i<»,
10.
It,
1*.
15.
7.
It.
6.
4.
11.
10.
13.
13,
17.
12,
13.
5.
.4
,B
,9
.1
,«
.2
,1
.2
.1
.3
,0
.«
.1
.2
.1
.0
,2
.*
.9
.0
,2
,0
7.9
8,0
7.9
7, A
M
A. 3
».l
A. 4
8,2
6.7 7. 8
12,2 A. 2
te.1 A, 2
13.
15.
16.
15.
7.
2,
4.
7.
B,
li,
15.
IB.
ts.
12,
6.
4.
7.8
.6
.1
.1
.1
,2
,a
,1
.3
.1
.1
,7
.7
.1
.5
.1
682
632
675
712
730
782
723
697
657
799
756
618
689
897
1030
1050
910
759
609
6?9
592
631
631
645
636
637
636
5fl4
537
778
525
526
559
553
434
615
575
555
573
662
656
726
697
659
666
968
1010
11310
1090
1070
19
17
19
20
22
26
23
23
23
27
27
30
36
40
53
57
44
33
14
15
15
IS
15
17
IS
16
15
11
12
41
12
13
14
14
13
17
14
19
21
22
23
27
28
93
22
31
33
33
37
40
76
66
74
82
77
60
71
72
61
92
76
99
98
94
98
98
91
76
86
91
65
90
86
AS
88
87
«e
70
75
89
74
69
74
72
56
79
75
5A
59
81
73
78
74
74
79
122
132
132
139
131
38 3
36 2
37
37
39
43
40
36
37
39
38
40
41
42
48
50
41
35
20
21
21
21
21
22
22
21
21
19
19
29
19
19
20
19
14
23
23
27
29
31
29
32
31
31
30
38
41
40
45
42
1 318 8.4
1 279
309
337
3?1
331
310
31(1
244
373 0,7
375
363
392
375
346
399
362
325
315
314
3B0
320
3391
3»0
299
2V9
296
245 9.
262
323 8.7
256
2»3
260
2U6
186
296
3JI3
?59
274
350
317
359
3U3 17,7
337
337
271
278
276
292
269
IB
17
17
21
21
25
23
20
?0
27
27
29
37
40
51
61
44
34
16
20
16
19
22
24
25
25
23
13
15
59
15
17
17
17
17
21
15
16
19
21
23
24
32
20
23
40
40
42
47
49
103
84
92
96
93
117
tea
97
96
94
100
102
112
136
154
167
132
96
61
61
56
57
57
77
71
62
65
52
51
57
56
61
62
61
44
61
54
62
59
57
56
63
79
54
67
248
267
265
307
290
1.31
2,19
.56
.94
,94
,M
.58
,fc3
,15
2,21
2,71
2,71
3.39
3. "4
2.94
2.89
4.52
1.76
0.75
0.75
0.88
0,77
0,68
0.61
(1,61
H,B6
1.63
0.99
0.99
2.26
0,95
0,97
1,04
0.90
0.66
1.42
d,50
P. 18
P,tt6
1,13
1.17
0,79
P. 81
0.79
0,77
0.36
0.66
0.79
0.66
a. 95
0,02
0.02
0,02
0,23
0.27
0.36
0.34
0,30
t»,30
1.14
0,30
0.04
0.06
0.04
0,04
0.04
0,04
ft,*2
0.04
0,P2
0,11
0,04
0,15
0,04
0.06
0,04
0,11
0,19
0.19
0,1*4
0.02
0.A2
0.04
P,P4
0,02
0,04
0,02
0,04
0.08
0,02
0.04
COLF BOD DO OS TURB
431
39ft
396
440
443
490
461
444
402
514
516
506
552
559
587
670
506
466
371
369
351
379
366
377
347
404
394
315
330
469
31*
302
330
345
272
367
34«
336
325
392
368
415
429
404
405
684
729
699
777
748
-------
DATE 3TA PLOW TEMP PH CO*D At. HARD MA CA Hti X HC03 C03 Ct 800 NO} NM] COO
COLF BOO 00 OS TUKB
22773
32275
41773
51473
91472
1*3172
112772
1(1273
2?«73
22773
3?27J
41773
51473
103172
11 2972
1P273
2P273
22773
32273
41775
51475
103072
112972
11-273
2P273
22773
32273
41773
51475
91472
103172
112972
1P273
20273
22773
32273
41773
51473
UT42
UT4J>
UT42
UT42
UT43
UT4J
UT43
UT41
UT4J
UT43
UT43
UT45
UT43
UT44
UT44
UT44
Ul44
UT44
UT
.2
,3
.6
.8
,4
,1
,1
.B
.2
.2
.2
.2
«"
1130
1150
1090
10IS0
939
899
845
8?4
880
945
973
896
610
508
490
491
476
5?1
474
340
253
1360
1400
1500
1450
159B
1770
2280
t 1KB
1590
1310
1340
1340
1220
1470
1640
1190
603
43
46
43
37
41
36
32
30
38
39
40
34
36
10
12
9
9
IB
9
6
4
143
153
169
173
213
217
396
147
135
113
117
110
99
155
160
112
37
134
138
132
133
98
112
107
1CB
100
106
112
IB7
92
73
66
70
66
74
70
53
36
87
86
86
83
75
ae
62
63
82
85
68
91
86
70
86
81
54
45
47
43
41
44
35
33
31
32
37
40
35
26
IB
17
17
17
16
16
9
6
51
50
54
50
49
54
46
35
58
65
67
67
61
70
79
55
24
7
6
7
6
6
5
5
5
4
5
6
5
6
2
2
2
2
2
2
2
2
14
13
13
13
13
14
14
14
13
15
14
14
11
16
14
10
5
279
27P
273
278
361
3ie
3W7
297
266
3ie
3ii2
291
296
260
242
251
255
264
??9
its
126
525
5?S
567
438 41,7
537
5?3 29,4
5i3 62.1
393
464 21,0
520
539
573
493
514
514
436
246
49
53
48
48
53
59
42
40
52
49
54
45
47
11
16
11
11
13
11
8
6
105
115
126
129
144
169
234
114
125
96
93
85
63
123
155
95
34
321
33«
309
294
163
160
143
132
159
166
213
194
132
42
51
46
51
53
.46
33
17
161
161
182
163
2HP
254
357
144
167
179
169
165
163
209
261
167
67
f!
0
P
0
f
1
2
3
2
0
P
P
2
0
0
0
0
0
P
e
0
i
4
3
3
1
2
1
1
0
I
1
1
1
0
I
0
0
.50
.50
.43
.21
.34
.33
,94
.44
.17
.84
,86
.">*»
.42
.84
• 65
,M
,75
.79
.70
,72
.45
,94
,52
,61
,61
,90
,10
,83
,49
.54
,11
,51
,96
,96
.65
,35
.79
,27
0
0
0
0
0
3
1
a
0
0
0
e
71
e
0
0
1
P
1
1
0
t
t
0
0
0
0
0
0
0
^
t
.
,
,
.
,
.
.
.
.
,
.
.
.
,
.
•
.
,
.
<
,
«
.
.
.
,
.
.
.
,
*
,
,
,
i
02
P4
(92
06
14
14
76
14
14
14
76
76
98
00
00
("0
00
04
00
02
04
76
14
76
14
14
76
14
14
11
30
23
38
34
15
19
1 9
04
798
844
789
745
632
608
550
529
550
608
660
605
514
310
292
290
270
299
216
155
851
873
937
6A9
972
1100
729
864
845
649
843
760
937
1050
772
370
-------
VD
00
DATE 3TA
UL 1
UL 2
UL
UL
UL
UL
UL
UL
IU.11
ULtl
UL11
UL12
0113
UL13
UL15
UU6
U.L16
UL16
UL17
UL19
UL19
UL19
UL24
UL24
UL24
P« 1
PB
62172
82172
61172
82172
1(92472
111472
• 2172
91172
102572
111472
82172
81(72
182572
91172
02172
91172
102572
62172
102472
111472
11U72
911T2
102572
111472
62172
82172
81172
1112572
82172
61172
91172
91172
102572
62172
82172
62172
91172
102572
111472
3
Pfl 4
PB 4
PS 5
PB 8
PBll
P811
GB I
bB 2
68 3
C8 3
on 3
68 3
TC«J»
21.7
2P.6
16,3
22,2
ltt,6
5,6
23,9
17,2
10. 0
5.6
21.7
16.9
9.4
16.9
21,1
18,9
10,0
22.2
10.6
5.0
4.4
17,8
10.0
S,(1
21.7
16.1
8.9
21.7
16.3
17.8
18.9
8,9
21.1
20,0
21.7
17,2
10,0
5.0
PH
•.3
8,1
8.3
8,3
6,1
7,9
7!9
8.6
8,n
8.0
8,1
8.6
6,3
8,7
6,2
6.6
8,1
8,2
6,0
7.9
6.0
8.7
6.0
8.2
7.9
6,3
8,0
7.5
8,3
8.9
6,6
6,6
7.7
8,2
8,4
6.0
fr, 7
7,9
COND AL HARD
1570
1550
1560
1550
1540
1510
1450
IS80
1590
1520
1402
1560
1610
1610
1590
1680
1600
1660
1650
1590
1440
1410
1570
1580
1450
666
9P7
1060
702
1560
665
1130
16U0
1540
1590
1660
1620
1700
1600
1470
NA
162
178
164
180
162
173
161
165
166
170
132
184
192
188
187
204
188
195
196
182
161
159
169
179
162
76
97
109
48
184
66
127
166
175
166
202
166
219
166
167
CA
50
47
47
42
46
49
52
46
43
54
59
49
45
49
42
53
45
50
50
51
54
53
42
50
54
53
32
49
72
47
33
34
45
52
46
45
4b
30
48
52
MO K
60 19
59 19
60 19
59 20
59 19
56 19
55 17
60 19
61 20
58 19
56 16
60 19
61 22
61 20
60 20
61 20
60 20
62 22
61 20
61 20
59 17
57 17
61 20
60 20
57 16
36 9
40 11
46 11
35 7
59 19
42 11
49 13
61 20
56 19
59 19
64 20
61 2Q
66 23
61 20
56 17
HC03
204
224
192
2 Oh
219
215
223
222
193
226
24?
228
163
19fl
171
239
165
22fl
239
?21
231
231
172
219
231
226
167
34}
300
2H3
190
179
167
226
197
196
221
142
220
193
C03
11.1
16.3
2.4
9.9
14,7
12.3
17,4
14.4
16.2
5.1
14,4
2,4
10,5
14.1
10.2
20.1
CL
233
225
226
227
227
220
202
232
239
214
196
233
243
237
237
262
241
257
242
229
207
2^3
239
230
2R6
65
106
91
49
226
95
146
243
221
235
260
24tf
277
237
207
S04
264
265
280
269
?65
265
204
f.H
282
255
246
275
276
?82
28P
262
276
276
280
276
246
246
276
276
246
162
164
161
106
269
154
213
202
259
269
296
282
290
322
250
N03
0.27
0,45
0,09
P,f>8
0,47
0.25
0.18
0,93
0,14
0.38
0,77
0.43
0.07
0.16
0.07
P.*3
0.09
0.29
0.45
0.29
0,43
0.25
fl.OS
Pi, 32
0.61
2.21
1.87
0.07
2.17
P. 34
0.11
0,09
0,07
0.20
0.09
0.47
0.50
0,14
0.20
0.16
NH3 P04 F
0,02
0,04
0.02
0,04
0,04
0.04
0.04
0.02
0,04
0,P6
0.04
0,02
0.00
0,04
0,04
0,04
0 • P4
0.U4
0.02
0.J0
0.04
0.06
1.14
0,04
0,02
0,04
a, 02
0,02
0.04
0,02
0,04
COIF BOO 00 OS TURB
965
943
971
954
900
945
907
958
966
945
874
982
998
974
966
1050
968
883
864
972
960
866
554
562
521
955
552
706
99B
955
979
1030
968
1020
967
915
-------
SECTION XIII
APPENDIX B - LKSIM - WATER QUALITY SIMULATION
MODEL FOR SHALLOW LAKES
DESCRIPTION
The purpose of the following paragraphs is to give a general description
of the simulation model LKSIM and to indicate the general application,
capability, and data requirements of the model.
Need For The Model
When modifications of tributary inflows, either rate or quality, or lake
geometry are considered, a very relevant concern is the impact on lake-
water quality. For most lake systems, the large quantities of data to
be incorporated, as well as the tedious and time-consuming calculations
to be completed, make a computer-based computational system attractive.
One of the main advantages of a computer-based system is that numerous
lake system modifications may be readily and economically evaluated.
Conceptual Model - LKSIM
Various types of models might be used in water quality-model!ing, e.g.,
one, two, or three dimensional models. Also, various water quality
parameters might be modelled, e.g., conservative, non-conservative, or
biological parameters. The type of model selected depends on many
factors, including the simulation time frame, types of data required,
types of data available, use of the model, quality parameters of im-
portance.
99
-------
The LKSIM model was developed to calculate the water balance and con-
servative salt concentrations in a well-mixed lake system both for
existing and diked lake configurations.
The conceptual lake system consists of a main lake that has separable
bays or sub-areas connected to it. During each time step in the model
(normally one month), it is assumed that each bay is completely separat-
ed from the main lake. For each time period, the tributary inflows and
outflows (including groundwater) and their salt concentrations, evapora-
tion and precipitation are used to calculate the end-of-period water
volume and well-mixed salt concentrations for each sub-area. The
imaginary gates isolating the sub-areas from the main lake are then
opened. The volume of water required to achieve equilibrium flows
across the boundaries, either in or out of each sub-area, is completely
mixed in the recipient area. Circulation between the main lake and a
bay is simulated by specifying the fraction of the end-of-period volume
in the bay that is to be exchanged with lake water. This intermixing,
if any, occurs at the end of the period after overall lake stage equili-
brium has been achieved.
Any or all of the subareas may be diked off from the main lake. The
diked area is carried along in the simulation as a separate lake. Any
or all of the tributaries to the diked area may be reassigned to flow
into the main lake or into another bay. Any main lake overflow that
occurs when a specified maximum lake stage is exceeded, may be designat-
ed to either flow into a diked area or be exported out of the lake
system. The overflow quality is the quality of the main lake water.
Use of The Model
This model may be used to determine the effect on lake water volume and/
or conservative salt concentration in response to changes in tributary
inflow quantity or quality and/or to the diking of lake sub-areas. The
100
-------
normal mode of usage is to pick a historical period for which an
adequate amount of tributary flow and quality, lake stage and quality,
precipitation, and evaporation data are available or can be established.
A simulation based on these data is run for the period, and the simula-
tion results compared to the historical lake stage and quality profiles.
Adjustments are then made to the data, if necessary, to complete the
model calibration.
The next step is to verify the model, if possible, by running a simula-
tion for a historical time period that was not used to calibrate the
model. Normally, this verification is conducted by inputting the
hydrologic flows, precipitation and evaporation and then comparing the
simulated quality to the historical quality record. Additional adjust-
ments to the data are then made, if necessary. The model is finally
used to predict the outcome of changes in the lake system. Of particu-
f>
lar interest are changes in lake volume (stage) and quality (salt con-
centration) caused by diking sub-areas of the lake system or by changing
inflow quantity or quality.
Date Requirements
The model is essentially a "bookkeeping" model and requires the follow-
ing data:
Stage - Area - Volume Tables -
These values must be established for the total lake and each sub-area in
the lake system.
Tributary Flow-Quality Tables -
The correlation between flowrate in cfs and ion concentration in mg/1
must be made for every inflow to the system, also for the outflows if
any.
101
-------
Tributary Flowrates -
These average flowrates (or volumes) including groundwater, must be
determined for each time step of the desired simulation.
Precipitation and Evaporation -
These values (depths in inches or feet) must be determined for each
sub-area for each time step.
Circulation -
If there is appreciable circulation between the main lake and bays
during the selected time period step, and if the quality in a bay is
markedly different than the main lake, it may be necessary to specify
the fraction of the bay volume that is exchanged with lake water during
each period. Circulation is very difficult to measure accurately, but
calibration runs for different values may lead to acceptable estimates
for the circulation.
USER'S GUIDE - SIMULATION MODEL
The purpose of this guide is to present instructions to the user on
data preparation and coding, as well as on the interpretation of simula-
tion results.
Accuracy and Completeness of Data
For most lakes, there are only limited data available. One of the major
challenges in using the model is to establish the hydrologic, climatic,
and quality data to the precision necessary to give sufficiently
accurate simulation results. The relationship between data and simula-
tion precision is difficult to establish, but one must still be sensi-
tive to discrepancies in, or validity of, data used; and then refine the
data as model simulations indicate the response (sensitivity) to various
input data variations. Such sensitivity results will indicate the data
102
-------
that are most critical in obtaining better simulations—be it flows,
quality, evaporation, precipitation, or other factors.
Several factors need to be considered initially to set the framework
for data evaluation, such as, average detention times, lake circulation
and mixing characteristics, volume/surface area ratio, areal and
temporal variation in precipitation and evaporation, interest in short
or long term variations, and intended use of the resulting simulations.
All of the factors must be weighted in view of the model limitations as
imposed by the basic assumption of an incremental time, well-mixed
system. The time step to be used is a major outcome of careful con-
sideration of these factors.
Problem Preparation and Coding
The following steps must be completed prior to running a simulation:
1. On a map or sketch of the lake system, establish the imaginary
boundaries between the main lake and the bays (9 maximum). Assign
the integer 1 to the main lake and a unique integer to each bay
using any integer 2 through 10.
2. Determine the stage, area, and volume table for each sub-area as
well as the total lake system. A maximum of 15 discrete common
values for stages may be used to describe the curves.
3. Identify all tributaries to the lake system including outflows and
groundwater inflows. Assign each one a unique integer code number,
using any integer 1 through 60.
4. Establish a flowrate-quality table for each tributary and each ion
desired. A maximum of four coordinate points may be used to de-
scribe each relationship (flow, quality). Flow may be given in
cubic feet per second (cfs) or else acre feet per month (ac ft/mo).
Quality may be given in milligrams per liter (mg/1) or else tons per
acre foot (taf).
103
-------
5. Determine the flow for each tributary for every time period in the
simulation—may be given as cubic feet per second or acre feet per
second, day, week, month, or year.
6. Determine the precipitation and evaporation for each sub-area for
each time period in inches or feet per day, week, month, or year.
7. Other factors that may be needed for given runs are:
a. Stage at which overflow is to occur from main lake.
b. Areas to be diked off.
c. Intermixing (circulation) fractions during any time period.
Date Input Structure
The subroutine DATA reads and manipulates the data. The data is struc-
tured to be read in by segments. The segments are identified by a five-
digit number punched in the first five columns of the first card in each
segment. 88888 ends any segment, 99999 ends the data search for the
current simulation, and 12345 ends the run.
Segment Identification Codes -
Subsegment
Segment
11111
12111
13111
Information
Initialization and setup.
Project Name/Description Title
Number of time periods.
Beginning lake stage.
Data tape read or write code.
Ions to be considered.
14111
15111
Key for outflow quality.
Number of diked bays and their code number.
Diked bay to receive overflow.
Stage of lake at overflow.
104
-------
(continued)
Segment Subsegment
22222
33333
44444
16111
17111
18111
19111
19511
Information
Volume of lake system at overflow stage.
Tributaries from diked bay to be reassigned
to another bay.
Number of tributary bays and their code
numbers.
Names of bays.
Intermixing (circulation) fraction for bays
in each time period.
Output codes - controls amount of data print-
ed out.
Multipliers for all flows, precipitation, and
evaporation data.
Multipliers for specified tributaries.
Tributaries flowing into each bay.
Tributaries flowing out of the system.
Tributary flowrates for each time period.
Tributary water quality and flowrate correla-
tions.
55555
66666
Precipitation data.
Evaporation data.
105
-------
(continued)
Segment Subsegment Information
77777 Stage, area and volume data.
End of segment.
99999 End of data (for this simulation).
12345 End of simulations.
The data segments may be submitted in any order and only those segments
required for a given simulation need be included.
V
Data Card Description -
Data card descriptions are found below
Segment 11111
Subsegment 12111 (Begins at statement 120 in subroutine DATA)
Card 1 (Title)
Title6ol
15A4
Card 2 (Time periods)
HINT
15
10
KEY
15
NINT = The number of time periods in the simulation - dimensioned for
a max of 50
KEY = The time period key = 1, one day
= 2, one week
= 3 or 0, one month
= 4, one year
106
-------
Card 3 (Beginning stages)
/1C
/s(H)
L-«
! 20 :
!SCD i
Pin
30 ;
S(2) !
n'c
40
S(3)
50
S(4)
r • •
The beginning stages for each of the subareas in the lake system (any
zero values are set equal to 5(11) which is the stage for the
entire interconnected lake system)
Subsegment 13111
Card 1 (Quality factors)
/ 5[ 10
/NIONS (lONS(l)
15| 20
IONS(2JIONS(3)
rtf-.
• • •
NIONS = The number of ions to be simulated
IONS(1) = The code number of the first ion
IONS(2) = The code number of the second ion
etc
Subsegment 14111
Card 1 (Outflow Quality)
QOF = Key for the ion concentration in the lake outflow:
^ 1 means the specified quality will be used
= 1 means simulated lake quality will be used
107
-------
Card 2 (Initial ion concentrations— one for each bay and ion)
/
/
I
J
5
I
15
s
=
K =
C
=
10
J
15
15
K
15
25
C
F10.0
Bay code number
Code number of quality factor (ion)
Unit key
fl.unit of C is mg/1
=l,unit of C is tons/ac ft.
Initial concentration of specified ion in
the specified bay
Subsegment 15111
Card 1 (Diked bays)
/ 5
/NOBD
l_»
10
BAY1
15
BAY2
20
BAYS
25
» * •
NOBD = The number of bays to be diked off from main lake
BAY! = The code number of the first bay.
BAY2 = The code number of the second bay.
: etc.
Card 2 (Overflow assignment)
/ 5
/IBOF
15
rone
15
SOF
F10.0
= rnA,
25
VOLOF
F10.0
a n i imKa
^ n-F H-ilfaH haw *n v»Arpi UP lakp nvprflnw if anv.
0 means overflow is exported.
SOF = The lake stage at which overflow occurs.
VOLOF = The lake volume, excluding diked areas, at which overflow
occurs
108
-------
Card(s) 3 (Tributary reassignment)
/ 5
/ I
10
II
15
TR1
20
TR2
25|
TR3 1 ....
15's *-
I = Diked bay code number.
II = Code number of bay to receive diked-bay tributary flow.
TR1 = Code number of first tributary reassigned.
TR2 = Code number of second tributary reassigned.
! = etc.
Subsegment 16111
Card 1 (Bay code numbers)
/ 5
NBAYS
10
IBAY(l)
15
IBAY(2)
20
[BAY (3)
.. . (10 subareas max)
NBAYS - The total number of subareas in the lake including the
main lake - the main lake is always the first specified.
IBAY(l) = The main lake code number.
I = etc.
/
' NAMEB(l)
A8
fciAtifft/n \ _
16
NAMEB(2)
etc.
A8
1 1_ ___ — . f L. A . . 1 r O >*L*.*^ «A -* ** 4-«* ***f m^ v/ I
NAMES(2) = Name of bay 2.
: = etc.
109
-------
Subsegment 17111
Card(s) 1 (Intermixing fractions)
15
20
15
BMF(I,1)
BMF(I,2)
5MF{1) BMF(2)
:5.0's
... (50 period max)
Bay code number.
Intermixing in period 1.
Intermixing in period 2.
etc.
Note: READ is terminated by a negative number that is entered in the
first F5.0 field after the last period BMF.
Subsegment 18111
Card 1 (Printout keys)
/ 5
/ 101
—
10
102
IE
103
20
104
IS1!! -
25
105
30
106
35
107
— ••
101, 102, etc.
t 1
= 1
Code for printout of data read in. Correspond to
each section 11111 through 77777.
Print out data.
Don't print out data.
Subsegment 19111
Card 1 (multi pii er factors)
/ 5
/FQ
^ '
cn -
10
FP
F5.0's-
ThA mil'
15
FE
H-inl-ioi
* -Fnr* all t-irHhnfrArv -flnw^.
FP = The multiplier for all precipitation values,
FE = The multiplier for all evaporation values.
Note: Set to 1 if zero.
110
-------
Siibsegment 19511
Card 1 (Selected flowrate multipliers)
5
NIC
15
10
ITC(l)
15
15
FTC(l)
F5.0
20
ITC(2)
15
25
FTC(2)
F5.0
NIC = Number of tributaries to have flowrates changed.
ITC = The tributary code number.
FTC = The multiplier for the flowrates.
Segment 22222 (Begins at statement 200)
Card 1 Tributary assignment)
/ 5
Ll
10
NTRIB
ITBAY(I
TI^'c
15
,1)
ITBAY(
1,2)
20
etc.
— — — ^K-
I = Bay code number
NTRIB = Number of tributaries to the bay.
ITBAY(IJ) = Code number of first tributary.
ITBAY(I,2) = Code number of second tributary.
Note: 50 tributary max per bay, 60 total.
Segment 33333 (Begins at statement 300)
Card 1 (Outflowing tributaries)
/ 5
L NTO
10
ITOS(l)
- T^'c
15
[TOS(2)
etc. (7 max)
»»
NTO = Number of outflows.
ITOS(l) = The code number of the first tributary outflow.
ITOSJ2) = The code number of the second tributary outflow.
Ill
-------
Card
15
s) 2 (Tributary Flowrates— one set of cards for each tributary)
10
J
15
15
K
15
20
L
15
25
FLOWS(IJ)
F5
30
FLOWS(I,2)
O's
—
I = The tributary code number.
J = Flow unit key.
0 = cf s
1 = ac ft
K = Time unit key.
0 = sees
1 = day
2 = week
3 = month
4 = year
L = Number of flows on card(s)
Note: The flow volume specified is for the time increment used.
Segment 44444 (Begins at statement 400)
Card(s) 1 (Quality of tributaries)
5
I
id »
j] K
15 15 ' 15
! 20
L
QF(I,
15 F10.
25
J.l)
QF(I,
0 F10.
30
J.2)
0
* • *
I , = Tributary code number.
J = Quality factor code number.
K = Flowrate unit key.
f 1, cfs.
= 1, ac ft/month.
L = Quality unit key.
f 1, mg/1.
= 1, tons/ac ft.
QF(I,J,1) = Flowrate or volume.
QF(I,J,2) = Quality (concentration).
I = etc.
*
- max of 4 points (4 flowrate, 4 quality).
112
-------
Segment 55555 (Begins at statement 500)
Card(s) (Precipitation)
/ 5
/ I
15
10
J
15
K
20* 25
L 1 PREC(I.l)
30
PREC(I,2)
15 15 15 F5.0 F5.0
etc.
Note: READ terminated by number less than zero in the field
immediately after the last EVAP entry.
I = Bay code number.
J = Precipitation unit key.
^ 1, inches.
= 1, feet.
K = Time unit key.
0 = month.
1 = day.
2 = week.
3 = month.
4 = year.
L = Repeat period key
= 0, repeat the first 12 by 12's through 48.
f 0, no effect.
PREC: The precipitation for period 1.
etc.
Segment 66666 (Begins at statement 600)
Card(s) 1 (Evaporation)
7 5
/ I
15
10
J
15
15
K
20
L
25
EVAP(IJ)
30
EVAP(I,2)
etc.
15 15 F5.0 F5.0
Note: READ is terminated by a number less than zero.
113
-------
Segment 77777 (Begins at statement 700)
Cards 1 (stages)
/ 5
/1 0011
TC
10
J
TC
20
STAGE(l)
30
STAGE(2)
. nn n« c .....
40
STAGE (3)
etc. (2 cards)
10011 = Code for setting up the lake stages for which area and
volume values will be given below.
J = Stage unit key.
f 1, feet.
= 1, inches.
STAGE = The stages.
Card(s) 2 (Surface area values)
/ 5
200
I
10
J
TR TR
20
AREA(I,1)
30
AREA(I,2)
40
AREA(I,3)
etc. (2 cards
per area
— - . . ... Fin.n'<; — »
2001^= The code number of the subarea. The leading digits digits
200 identify the data as area data. I = 11 is the area
information for the total lake system.
J = The area unit key.
^ 1, acres.
= 1, sq. ft.
AREA = The areas at each stage specified above.
5
10
I
10
J
15 15
VOL(
_
20
I.D
VOL (I
Fin n
r IU. \t
30
,2)
4C
VOL(I,3)
' f
O
3001 = The code number of the subarea. The
etc
leading digits
. (2
per
300
cards
area)
identify the data as volume data. I = 11 is the volume in-
formation for the total lake system.
J = Volume unit key.
f 1, ac ft.
= 1, cu ft.
VOL = The volume at each stage specified above.
114
-------
PROGRAMMING GUIDE, SIMULATION MODEL.
The purpose of this programming guide is to give the LKSIM program list-
ing and briefly describe the program.
The complete LKSIM program as printed on the computer is listed on the
following pages. Numerous comments have been included in the program to
aid in understanding of the information flow and computational steps.
The program is written in FORTRAN IV and requires about 30K words of
program space in its present form.
All of the system resides simultaneously in core except for some of the
data which may be written and read from external Unit 1 as set up in
subroutine TAPE. It would be easy, however, to separate the subroutine
DATA as a separate first link.
The subroutine PLOTRS plots the simulation results on the lineprinter.
It is necessary to substitute Plot calls as required for the x-y plot
available on the computer used.
115
-------
UTLAK.FOR
FORTRAN V,16(142) /Kl 29-JUL-74
10JJ7 PACE i
00381
00972
80804
00005
00037
oonas
iiaeiz
00015
00816
00017
00018
OBP28
40022
00024
00026
00031
(10052
00034
90035
00037
00041
00*42
00P43
C0P44
00045
00048
00949
00050
00951
00052
C ••«•
C ••*
C •*•
C *»*
C • »«
C •*•
C
C
C **«•
C »**
C •*•
C »«*
C •*•
C
C
C
C •*•
C *••
C *«•
C **•
C •••
C •*•
C
C
C *•*
C •**
C «*«'
C •*•
C •••
C •»•
C *»•
C ***
C
C
C •**
C •••
C •**
C *•*
C *••
C •»•
C ••"
C ••*
C •*•
C •**
C • ••
C
C
C **«
C • •*
C •*•
C *••
GENERAL OESCHIPTION
THIS PROGRAM CALCULATES THE MATER BALANCE AND CONCENTRATION OF
CONSERVATIVE SALTS IN A WlLL-*mO LAKE SYSTEM, THE PJ»OC*AH
IS BASICALLY A 'tJOOKKEEPING* MODEL —IT REQUIRES TM*T ALL OF TME
INFLCKS, TME CONCENTRATION OF THE CONSERVATIVE SALTS IN TME INFLOWS,
EVAPORATION, PRECIPITATION, AND THE STAGE-AREA-VOLUME TABLES BE
SETUP AS DATA FOR THE SIMULATION,
THE CONCEPTUAL LAKE SVSTEH, FOR WHICH THE MODEL IS STRUCTURED, IS
A MAIN LAKE THAT HAS SATELLITE BAYS CONNECTED TO IT, EACH OF THE
BAYS, AS hELL AS THE MAIN LAKE, ARE ASSUMED TO 3E COHPLETELV-MIXEO,
SFPEKATE BODIES OF MATER DURING THE TIME PERIOD SELECTED FOR EACH
STtP IN THE WATEK QUALITY SIMULATION, ALL Of THE TRIBUTARY INFLOVi,
PRECIPITATION, AND EVAPORATION VOLUMES ARE ACCOUNTED FOH IN EACH
AREA (BAYS AND HAIN LAKE) DURING THE TIME PERIOD TME RESULTING
CONCENTRATIONS OF CONSERVATIVE SALTS ARE CALCULATED FOR EACH AREA.
THEN THE VOLU*E OF WATER REQUIRED TO FLO* ACfOSS TnE LAKE-BAY INTERFACES
so AS in ACHIEVE EQUILIBRIUM is DETERMINED, THESE VOLUMES ARE
COMPLETELY HIVED IN THE RECIPIENT AHEA.
ANY BAY(S) IN THE SYSTEM HAY BE DIKED OFF. THE DIKED AREA IS THEM
CARRIED ALONS AS AN INDEPENDENT LAKE. MANY OPTIONS FOR ALLOWING
OVERFLOW, TRIft REASSIGNMENT, INFLOM, EVAPORATION, AND PRECIPITATION
CHANGES WITHOUT CHANGING TME BASIC OAT* ARE AV1ALABLE,
(SEE THE DOCUMENTATION FOR DETAILS)
,-•_•_..•••..__...«•--»•««---•«•••-•-••«•••--»••-••--•---••••-••---"•«••••••
ANY CIRCULATION BETWEEN THt LAKE AND A BAY DURING A TIME STEP CAM
dE IMPOSED BY SPECIFYING THE FRACTION OF ThE BAY VOLU*2 THAT INTER*
CHANGES MlTH THE LAKE MATER DUE TO THE CIRCULATION, IF ANY,
THIS MIXING OCCURS AT THE END OF THE PERIOD,
VARIABLE DEFINITION
UNLABELED COMMON
ARRAYS
1T(1) DUMHY ARRAY USED FOR TEMPORARY DATA STORAGE
Ofl) DUMMY ARRAY USED FOR TEMPORARY DATA STORAGE
ITBAY(I.J) CONTAINS THE CODE NUMBERS FOR THE TtfldUTARIES (J) FOR
EACH BAY AREA (I),
NTRI8CI) CONTAINS THE NUMBER OF TRIBUTARIES TO EACH BAY (I),
FLOWMI.J) CONTAINS THE FLOMHATES FO* tACH TRIBUTARY (I) FOR
EACH TIHt PEHIOD (J). MAY Rfc »EAO«IN fclTH UNITS OF
CFS OK AC-FT. AND TIME UNITS OF SECONDS, DAYS, WEEKS,
MONTHS, OR YEARS. STORED INTERNALLY WITH CFS UNITS
QF(I,J,K) CONTAINS THE KATtR QUALITY INFORMATION FOR EACH TRIB, (I)
AND QUALITY FACTOR (J), 000 VALUES OF K CONTAIN THE
FLOMRATE IN CFS AND THE EV£N VALUES THE CONCENTRATION
IN HG/L. THESE FOUR POINTS SPECIFY THE FLOW-CONC
RELATIONSHIPS FOR EACH TRIBUTARY.
IONS(I) CONTAINS THE CODE NUMBERS OF THE IONS TO BE TRACED IN
THE SIMULATION.
CQFIN(I,J) CONTAINS THE CURRENT CONC (MATER QUALITY) FOR EACH BAY
116
-------
MAIN. UTLAK.FOR
FORTRAN V.1B(1«?) /KI 29-JUL-70
lain PAGE 1-1
am*
08355
oaas*
OB362
aaa63
SI35I64
BBB67
BBP70
•.B072
BB374
SIB? 7 7
eeesa
aecaa
480491
BBP93
B0.TJ6
aaise
piBiaj
aejas
03135
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
«•* (I) AND EACH ION (J).
•** STAGE(I) CONTAINS THE ELEVATIONS OF UATER SURFACE THAT MATCH
• •* UP WITH THE AREA AND VOLUME ARRAYS, THESE ARRAYS GIVE
«•* THE 5TAGE-AREA-VOLUHE RELATIONSHIPS FOR THE LAKE SYSTEM,
•** AREA(I,J) CONTAINS THE SURFACE AREA VALUES (J) FOR EACH BAY (I),
•** AREA MAY BE READ IN AS S3-FT OR ACRES, STORED AS ACRES.
• •« VOL(I.J) AS FOR AREA, READ-IN AS AC-FT OR CU-FT, STORED AS AC-FT,
• ** PHECCIiJ) CONTAINS T«E PRECIPITATION FOR GACH B»Y (I) FOR EACH TIME
*•• PERIOD fj), HAY BE HEAD IN AS INCHES OR FEET PER DAY,
*•* WEt-K, MONTH, OR YEAR. STORED AS FT PER MONTH.
*** EVAP(I,J) CONTAINS THE EVAPORATION FQR EACH BAY (I) FOR EACH TIME
*** PERIOD (j), MAY BE READ IN AS INCHES OR FEET PER DAY,
*** WEEK, MONTH, OR YEAR, STORED AS FT PER MONTH.
*•» NBD(I) CONTAINS THE CODE NUMBERS OF ANY DIKED BAYS.
**• ITNA(I,J) CONTAINS THE CODE NIMBfcRS OF TRIBUTARIES OF ANY OUEO
*•• BAY (I) fcHICH ARE TO BE ASSIGNED TO ANOTHER PAY FQR
*•• THE SIMULATION, THIS CHANGE MAY ALSO BE MADE 8Y
•ft* CHANGING THE BASIC TRIBUTARY ASSIGNMENT DATA CARDS,
•ft* IBAYSCI) CONTAINS THE CODE NUMBERS OF THE BAYS IN THE SYSTEM
••• TO BE SIMULATED. I»AY(1) ALWAYS AUTOMATICALLY.CONTAINS
*•• NUMBER 11 WHICH IS THE CODE FOR 1 Hfc ENTIRE LAKE SYSTEM,
•ft* IHAYC3) IS ALWAYS ASSUMED TO BE THE MAIN LAKE.
•ft* SALTS(I) CONTAINS THE CURRENT SALT ACCUMLAT10N FOR ION I,
••• OELV(I) CONTAINS THE PE3UIRFD 1NTERFLOX VOLUME (WITH THE MAIN
*•* LAKE) DURING THE CURRENT PERIOD SO AS TO ACHIEVE
•ft* EQUILIBRIUM AT THE END OF THE PERIOD,
•*• TITLE(I) CONTAINS THE TITLE READ IN FOR THE SUN.
*•* NAMEB(I,2) CONTAINS THE NAME OF EACH BAY AREA (I). ft CHARACTERS,
••• INMIX(I) A KEY ARrfAY-.IF IT CONTAINS 1 FOR BAY I THEN CIRCULATION
•*• (INTERMIXING) FRACTIONS ARE OESIREO FOR AT LEAST SOME
• •* OF THE TIME PERIODS—(FRACTIUN ARRAY IS B>"F).
•*• BHF(I,J} CONTAINS A FRACTION FOR EACH TIME PERIOD AND SPECIFIED
*** BAY I, IT IS THE FRACTION OF THE tUY VOLUME WHICH IS TO
••* BE DISPLACED BY LAKE WATER TO ACCOUNT FUR CIRCULATION
*•• FROM THE LAKE INTO TH£ BAY DURING THE TIME PERIOD,
••• TOTSICI) ACCUMULATES THE TOTAL QUANTITY OF ION ] »HICH FLOWS
••• INTO THE LAKE SYSTEM DURING THE SIMULATION.
••• TOTSotn AS ABOVE —FOR THE QUANTITY OUT OF THE SYSTEM.
••• sm CONTAINS THE CU»RENT WATER SURFACE ELEV OF AREA i,
IBTA(I) CONTAINS THE NUMBER OF TRIBUTARIES FROM BAY I TO BE
REASSIGNED TO ANOTHER AREA—FROM BEHIND THE DIKED BAY,
TTF(I) CONTAINS THE ACCUMULATIVE FLO* FOR TRIBUTARY I DURING
THE SIMULATION.
TTSCI.J) CONTAINS THE ACCUMULATED ION (J) QUANTITY FLOWING INTO
THE LAKE SYSTEM FROM EACH TRIBUTARY I,
ITOS(I) CONTAINS THE CODE NUMBERS OF THC TRIBUTARIES THAT FLOW
*•* OUT OF THE LAKE- SYSTEM,
*** COMMON VARIABLES
*•• NIONS THE NUMBER OF IONS TO BE CARRIED IK THE SIMULATION,
*•* NOBD THE NUMBER OF BAYS DIKED OFF FOR THE SIMULATION,
*•* INT THE COUNTER (INDEX) FOR THE TIME PERIODS,
••* NINY THE NUMBER OF TIME PERIODS IN THE SIMULATION,
*•* N8AYS THE NUMBER OF BAYS IN THE LAKE SYSTEM. (INCLUDING THE
117
-------
MAIN, UTLAK.FOR
FORTRAN V.13(142) /Hi 29«JUL-7»
PAGE 1-2
88106
noier
U0108
00109
08110
001 ti
80112
80113
010114
nans
0011*
80117
nans
*0U9
00128
88121
80122
88123
"01 2*
.10125
88 126
i»012T
90120
P0129
00130
H8131
nat \9
vv 1 JC
40133
8813«
*«135
88 136
90137
00139
(18139
«oi40
n8|4i
«B142
08143
flat At
vo » •*
99 145
00146
Afl 1 AT
HD 11*
98148
WJ149
W01S8
80151
•8152
•0153
P0154
00155
00156
HOIST
8815B
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
*•• MAIN LAKE),
**• 1TI A KEY FOR TAPE READ— IF • 1 SOME DATA IS HEAD FROM TAPE,
••* IT2 A KEY FOB TAPE ftBITE— IF • 1 DATA SPECIFIED IN SUBR TAPE
••• WILL BE WRITTEN TO DATA TAPE.
«•• TP TOTAL PERIOD PRECIPITATION VOLUME FOR THE ENTIRE LAKE,
••* TE TOTAL PERIOD EVAPORATION VOLUME FOR THE ENTIRE LAKE.
*»* TQ TOTAL PERIOD TRIBUTARY INFLOW FOR THE ENTIRE LAKE.
••* IBOF CODE NUHbER OF THE DIKED PAY WHICH IS TO REClEvE ANY
•«* SYSTEM CVERFLO-— NEED NOT BE SPECIFIED,
**• SOF LAKE STAGE AT *nlCrt OVERFLOW OCCURS.
*•* VOLOF VOU01E IN AC FT OF TKE EKTJRE LAKE SYSTEM AT OVERFLOW
*»* STAGE, EXCLUDING DIKED AREAS.
••» BVDB VOLUME IN THE OKEO BAY WHICH IS TO RECEIVE A*r OVERFLOW
*•• —AT THE BEGINNING OF THE SIMULATION,
••* OOF A KEY WHICH SPECIFIES WHETHER THE OVERFLOWING TRIBS
••* ARE TO CARRY ION
*** CONCENTRATIONS SPECIFIED IN ARRAY OF (KEY NOT • t) OR THE
• •* CURRENT LAKE QUALITY— KEY*1
••• FT THE ACCUMULATIVE TOTAL TRI8. INFLOK FOR T"E ENTIRE
**• LAKC, EXCLUDING DIKED AREAS AM) OUTFLOWS,
••* VQFS THE ACCUMULATIVE VOLUME IN AC FT OF ANY OVERFLOW FROM
*•» THE LAKE SYSTEM,
*•* 101 A KEY WHICH CAUSES THE PERIOD TRIB FLOJ AND QUALITY
••• TO BE PRINTED OUT IF THE KEY • I
*•• TIMEF THE MULTIPLIER THAT CORRECTS THE FLOW, PR EC, ANO EVAP
**• TO BE CORRECTED TO THE TIME PERIOD SPECIFIED.
••» LABELED COMMON
•*• ARRAYS
*•• A(I) CONTAINS THE CURRENT WATER SURFACE AREA FOR EACH BAY I,
*•• VCI) CONTAINS THE CURRENT VOLUME OF WATER IN EACH BAY I,
*** VT(I> CONTAINS THE CU*HENT TOTAL VOLUME OF WATER THAT FLOWED
*•• INTO THE BAY I PURING THE CURRENT TIME PERIOD.
*•• P(X) CONTAINS THE CURRENT PRECIPITATION VOLUME THAT FELL
•«* ON THE BAY i DURING THC CURRENT TIME PERIOD.
*•• Ed) CONTAINS THE CU'HENT EVAPORA110N VOLUME DURING THE PERIOD,
• ••
• •*
••• THIS MAIN PROGRAH CONTKOLS THE SIMULATION. IT STEPS THROUGH THE NUMBER
•*• OF TIME INTERVALS, NJM, TABULATES AND PLOTS THE RESULTING WATER QUALITY,
• •«
COMMON IT{20>. 0(50). ITBAV(13,5CI), NTRIP(10), FLOW5( 60,52),
2 OF( 6(1,12, «)i 10*5(12), COFIN(19, 12) , STAGE(lS), *«EA(M,l5),
3 VOL(UilS), PREC(10,S2), EVAP(1P,52), KBO(10), ITNA(10,30),
4 lAAVSdl), SALTS(IS), OELVtll), TITLE(1S)( NAHEB(1I,2)(
S INHIX(lR), BHF(10,S2), TOTSK12), TOTSO(|2) , S(ll), IBTA(10)|
6 TTF(60), TTS(6fl,12), ITOS(7),
7 NIONS, NOBO, INT , NINT, NBATS, IT1, IT2, TP, TE, TO, IBOF, SOF,
6 VOLOF, BVOB, OOF, FT, VOFS, 10 J, TIMEF
COMMON /STVL/ A(tl), V(tl), VT(tl), PC11). E(ll)
DIMENSION NAMET(2), SS(I2), TES(10), TPS(10), TaSCtB), VB(ll),
118
-------
HAIN. UTLAK.FOR
FOKTRAN V,lb(l«11
CALL OATA
IFfSOF .FQ. 0.)SOF>1,E6
FOHMAT ClMl J
HR1TEC 6,3005) TITLE
FORMAT ClHB. ' BEGIN THE SIMULATION •)
HHITE(6,110)
FORMATflHB, 10X, ••••INITIAL CONCENTRATIONS'/)
*•*
**. THE PRINTOUTS IN THE MAIN PROGRAM ARE BASED ON THE IONS BEING
*** SPECIFIED IN THE FOLLOWING OKOER WITH NO OH1SS10KS"
*»* NO, ION CODE NO
• ** 1 TOS I
•*• 2 NA 2
*** 3 CA 3
•** 4 HG 4
••• 5 K S
••• 6 CL 6
**» 7 HC03 7
• •* 8 SOU 8
•*• 9 HOI 9
•*• 18 P04 10
• •*
WHITE (6, 120)
FORMATC1M ,10X,'BAr TOS* , 7X, «NA',7X, 'CA',7X, 'HG',7X, 'K',61t,
2 'CL',6X, 'HC03',5X, *S04»,7X, »N05't6X, •P04'»?t)
VOFS»3,
NX«N9AY5»1
00 2« II>2,NX
I'laAvscii)
TES(I)»8.
TPS(I)»B,
TC5(I)«0.
WRITE(6.US) NAnEB(I,l),NAHEB(Ir2), 1, CCQKIN(I,KJ, K>1,12>
FORHATtlH , 2A4, 14, IX, 15F9.2)
«••
88284
08236
00207
0028B
08289
08218
80211
C ••• MHEN ARC*?, THE SUBR SAV RETURNS THE AREA A*D VOL OF E*CH ANEA
C ••* FOK THE GIVEN STAGES OF tACH ONE,
C
C
CALL SAV(8)
IFOBOF ,EQ. 0) GOTO 22
BVD6*V(IBOF)
130 FORMATC/XIHa, 5X, 'BAY NO, STAGE AREA VOLUME')
119
-------
FORTRAN V.1RU42) /HI 29-JUL-74
tettT PAGE i«*
80212
R3213
00214
00215
00216
00217
00218
00219
09220
00221
00222
00223
80224
00225
00226
00227
00226
80229
00230
00231
«B232
00233
00234
00235
00236
00237
00238
08239
80240
0024}
00242
00243
00244
00245
00 25 11*2. NX
IdBAYS(II)
V9(I)«V(I)
59, NAMEBCI.2) I X,SCI) . A(I), VCD
132 FORMAT (1H , zt, 2A4, 13, F9.2, 2F|B,1)
V8(l 1)«V (11)
S9(ll]»S(in
NHITE<6,133) S(ll), AClDr W(ll)
133 FORMATC1HB, 2X, 'TOTAL LAKE', F10.2.2F10.1)
ix»*
COTO 92
30 IX»1
00 35 IIM.NIONS
I«IONStlI)
SALTS(I)«B.
35 SSU)BQ(I)
N*l
VS.Y(U)
CALL PLOTRS(N, VS)
C **•
C ••• STEP THROUGH THE TIME INTERVALS NINT«TKE TI«E INTERVAL HAT
C ••« ANV OESIREO, IF THE DATA BASE IS SET UP FOR IT,
C •••
BE
C *•• 3U9R COM CALCULATES ALL OF THE VOLUME AND QUALITY CHANGES DURING
C ••• THE TIKE PERIOD INT.
C *•*
00 90 INT*1,MINT
N»N»1
CALL COM
NHITEC 6,3005) TITLE
WHITE(6.135) INT. NAMET
0024k 135 FOSNATCtHB. IDX, '•••SUMMARY INFORMATION FOR TIKE PERIOD*, 13,
00247
00246
00249
00250
00251
00252
00253
00254
00255
00256
00257
0025*
00259
00260
00261
•0262
00263
8026*
t 5X,*« *,2A4J
WRITE (6« 145)
145 FORMAT { 1*0, 10X, '••• PERIOD FLOWS AND INTERFLOWS')
KKITE(6,150)
150 FORHATUH0, TX, • BAY PRECIP EVAP SUM TRIB VOL
2E INTERFLOW F I N A L*/9X.»NAHE MO, AC-FT AC»FT
3 AC-FT INTERFLOW VOL AC-FT STAGE AREA VOLUME')
00 40 II>2,NX
I*IHATS{IIJ
BEFOR
INFLOW
HRI1EC6,160)NAMEB(I,l)(NAMEB(I,2),I,PCI)iE(I)rVT(I),OCI).DELVCX).
2 StI), Afl), VCI)
160 FORMAT ( 1H ,SX,2A«, 13, 2F9.0, F1B.0, 2F12.0, F9.2, ZF10(0)
TESCI)-TES(I) * ECI)
TPS(1)»TPS{I) * PCD
T3S(I)»TOS(I) * VT(I)
40 CONTINUE
TOSC1) • TOSC1) » FLOWS C53i INT) • 59.5041 * TIMEF
HRITEC6,165) TP, TE, TO, Mil), A(|l), V(ll)
120
-------
MAIN. UTLAK.FOR
FORTRAN V.1RU42) MI 29-JUL-74
161(7 PAGE 1-5
00266
0B2&7
08268
00269
00270
00271
00272
00274
00293
00295
00296
00297
00298
00299
00100
00501
00302
00393
0030S
003P6
00307
00338
00389
03310
00311
00312
00313
00314
00315
00316
00317
165 FORMATC1HG. 3X, »TOTAL SVST6" ', 2F9.B, F10.0, 16X, 'LAKE' ,2X,
2F9.2, 2F10.0)
UHITE(6,170)
170 FORMAT (//1HB, 5X, *•** WATCD QUALITY AT THE END OF THE PERIOD'/)
UHITE(6,1<>0)
00 50 II'2.NX
t'IBAYSdl)
W4ITE(6,175) N»ME8CI,l)i NtHEBCI,2), Ir (CQFIN(I,(C) , K«J ,NIONS)
175 FORHATCIH , 2A4, 14, IX, 12F9.2)
50 CONTINUE
KRITECb, 183) N
00276
03277
09278
00279
00280
00282
113283
00284
00287
002A4
00289
00291!
00291
18(1
C
C
C
c
c
c
92
FORHAT(////////lHCl,5X,r«**TIME PERIOD', 13, ' HAS BEGUN')
VS.V(ll)
CALL PUOTRSCN, VS)
CONTINUE
• *•
••• THE SIMULATION IS COMPLETED AT THIS POINT. -N04 THE TOTAL SALTS ARE
«** TABULATED FOR THE VARIOUS COMPONENTS IN THE SIMULATION,
• ••
••* FACTOR F CONVERTS FROM MG/L AC-FT UNITS TO TONS,
• *•
F«62. 4*43560. /2.E9
00 102 II»1,NIONJ
i«ioNS(in
TOTS1CI)«TOTSI{IJ«F
TOTSOCI)«TOTSO(I)*F
DO 100 KK»2.NX
K*IBAYSCKK)
QCD'Od) * CaFIN(K,I)*V(K)
10B CONTINUE
102
102
CONTINUE
IF (IX ,EO. 0) GOTO 30
t«HITE( 6,3eB5) TITLE
FORMAT(//tHO, 5X, »««*TOTAL SALT SUMMARY FOR THE SIMULATION', //,
25X, 'TON S»)
HAITE(6,120)
«RITEC6,185) (TOTSI(KJ,K»1,NIONS)
WRITE (6, 186) (TOTSO(K),K> UNIONS)
WRITEC6.187)
FORtlATClH . 'TRIB. INFLOW , F10.B,nF9.0)
FORMAT(1H0, 'LAKE OUTFLOW', F10.0, 11F9.0)
FORMATflH , 'LAKE . . '/,» BEGINNING ',F1B,0, 11F9.B)
FORMATCtH , ' ENDING ', FJ0.8, llF9tO)
HKITEC 6,3005) TITLE
185
186
187
188
2100 FORMAT/lHe,5X, '•••TRIBUTARY FLOWS AND SALT QUANTITIES')
2110 FORMATUH0, 2UX, 'SALTS— TONS TOTAL FOR THE SIMULATION')
121
-------
MAIN. UTLAK.FOR
FORTRAN V,18(142) /KI 29-JUL-74
1011T PAGE l«6
00318
910319
00321*
Pd321
00322
«0323
00324
00325
00326
00328
09329
00330
00331
00332
00333
0B334
00335
00336
00337
08338
00339
00340
00341
00342
00343
00344
00345
00346
00347
0034B
00349
00359
00351
00352
00353
00354
00355
0B356
00357
R0356
00359
08369
00361
00362
OB363
00364
08365
00366
00367
00368
00369
00370
2120
2130
218
2195
215
2200
2210
2220
220
C *»*
C • • •
IC«C
00 220 11*2, NX
I«If)AYS(tI)
KHUE(6,2110)
UHITE(6,21?0) I
FORWAT(lMa, 'RAY', 13)
U1,NIONS )
FORKATdH , 4X, 'PCT', f7.3, I2F9.3)
HRITE(6,222e)
FORMAT Uh0)
CONTINUE
C •*• THE FOLLOWING STATtMENTS CALCULATE AND PRINT OUT THE HATER
C *••
C*«*
W W w
C •*•
3005
3000
3018
2
BALANCE FOX THE SIMULATION PERIOD
WRITE! 6,3095) TITLE
FO*HATCtHl,//,18X, 15A4)
MKITE(6,30n0)
FORMAT (// 1K0, 5X, ••••HATER BALANCE FOR THE SIMULATION*)
UKlTE(6,3ai0)
FORMAT(IH0, |0X, 'BAY PRECIP EVAP TRIB INFtOtf BEGINNING
ENDING *,/, 16X, *AC«FT AC-FT AC^FT JTACE VOLUN
3£ STAGE VOLUME •)
TE«0.
TP«0,
122
-------
HAIN. UTLAK.FOR
FORTRAN V,19(142) /Kl 29-JUL-74
10UT PACE 1*7
00371
08373
08374
18375
00376
•0377
•0378
•3379
08388
M381
00383
03394
B03«5
00386
08387
•0388
00389
09390
00391
80392
•0393
00398
•0395
00396
•0397
00398
00399
(10489
00401
TQ»0.
DO 3?0 II«2,*X
I*IHAYS(1I)
WrtITE(t>,3e>20) NAMEBCI.l), NAHE8U ,2) , I, TPS(I), TESCD, TOS(I),
2 SB(I), VH(I), S(J), Vtl)
FORMATC 1H , 2A4, 14, 3F9.0, 3X, 2(F8.2,F9.1))
IF(NBOCI) ,EO, 1) GOTO 320
TE«TE * TES(I)
TP»TP »• TPS(I)
TQ.TO * TOS(I)
CONTINUE
CHECK » TP - TE • TO * TTF(53) « VflJJ • VB(ll) - VOFS
UUTVIT«<- -VAVn*
3020
320
t.RITE(«,,?0a3) TP. TE, TO, TTFC53), VOFS, VB(U),
2 S(ti)
3048 FORHAT( 1H , SX, 'TOTAL PRECIPITATION!* , Ftl.ii/>(>X,
V(U),
'TOTAL
2ATION .', Ftl.l,/, 6X, 'TOTAL TR1B. INFLOW «', m,l, /. &X,
3 'TOTAL TKtB. OUTFLOWt',Fn.l,/,6X| 'OTHEK OVERFLOW «'.ni,J,
3* (ENOING VOLUME HAS BEEN ADJUSTED FOR OVERFLOW) «,
4 /,&*, 'BEGINNING VOLUMfc «',FJ1,1, 5X, «STAGE»», F8,2,/. 6X,
5 'ENDING VOLUME "'rFlt.!, 5X, »ST*CE»'( Ffl,2)
3030 FOR«AT(//1H , UX, '••«TOTAL LAnE — AC-FT (EXCLUDING pl«EO 8*
2*S, IF *NY)«)
HHITE<6,3S50) CHECK
3U5P FORMAT(// |H0, 5X, 'C«ECK«», Fit, I,* (IF NOT ZCRO--PROG ERROR}')
95 INT«999
C •*•
• »*•
•0403
08404
•0405
00406
C ••* THE PROGRAM NOh GOES BACK TO THE BEGINNING AND LOOKS FOR NEW OAT*—
C ••• THE ONLY CHANGES IN THE OATA AS IT EXISTS AT THE END OF THIS
C ••• SIMULATION KILL BE THOSE SPECIFIED IN THE DATA FOUND—SEE SUBR DATA,
C ••»—-.-——-»——.—...«.—-••.—.«—»..--•.---•«——-•—«—-•••-—«..
C •••
GOTO 10
END
s
123
-------
MAIN. UTLAK.FOR
FORTRAN V. 16(142)
29-JUL-74
tent PAGE
93994
00P06
09930
00609
(1391(1
00312
aoai3
03615
"BP22
1)13323
R0P25
SBJ2T
93038
B00S3
(•OPJ4
00035
e*B36
«a?Jfl
C3B4B
SUBROUTINE DATA
C ***
C
C
C
C
C
C
C
' C
C
C
C
C
C
C
C
C
C
C
C
C
C
• •*•
••* DATA HANDLES ALL OF THE DATA INPUT ANO INITIALIZATION FOR THE
»•• SIMULATION.
•*•___......._...._.._.._.___.-.._....._.....__._....._..-.._-.___....
»•« THIS SUBK is SET UP TO BE VERY FLEXIBLE AS TO THE AMOUNT OF DATA
• •• GIVEN FOR A RUN, AS ttELL AS THE UNITS OF fhE DATA.
••« EACH TYPE OF DATA IS SET APART BY SPECIAL SECTION CARDS WHICH ARE
• •• OESCrtlrtF.D IN DETAIL IN THE DOCUMENTATION,
• •*
*•* INT IS SET TO 999 AT THE END OF EACH SIMULATION RUN, THE PROGRAM
•••> THEN RE.TURNS TO THIS POINT AND LOOKS FOR NEW DATA FOR THE NEXT
«•• RUN. IF A DATA CARD CONTAINING 12345 IN THE FIRST 5 COLUMNS IS
••* FOUND THEN THE RUN IS ENDED.
OBP44
C0B46
00848
«** NORMALLY THE FLOW, QUALITY, EVAPORATION, ANO PRECIPITATION INFORMATION
*•• AS MELL AS THE STAGE-AREA-VOLUME TABLES ARE kRITTEN TO TAPE
•*• DURING AN EARLY RUN AND THIS INFORMATION READ BACK FROM TAPE FOR
•«• ADDITIONAL RUNS. (SEE FORMATS 123? AND 1240 BELOW), THIS GREATLY R
•*• REDUCES THE NUMBER OF DATA CARDS TO BE SUBMITTED IN MOST CASES,
00051
C0852
C
C
C
C
COMMON ITC20), 0(511), ITBAY(10,5«>, NTRIBU0), FLOWSf 68,52),
2 OF( 60,12, ft), ION5U2), COFINC10,12), STAGE(IS), *ȣ*(!!,15),
3 VOL(11,I5), PttEC(10,52), EVAP(1B,52), NBO(ld), ltNA(i3,30),
4 IPAYS(II), SALTSC15), DELV(ll), TITLLC15), NAMEBCU»2),
5 INHTi(ift), BMF(1P,52), TOTSKI2), TDTSOCI2) , S(l|)f I8TA(I0),
6 TTF(6P), TTS(6B,12), ITOSC7),
7 NIONS, NOBO, INT , NINT, NBAY3, ITl, IT2, TP, TE, TO, 1BCF, SOF,
a VOLOF, BVDd, OOF, FT, VOFS, 101, TIMEF
DIMENSION ITC(7), FTCC7), BCS(6B,12)
IFdNT ,EO, 999) GOTO 7
SOF«1.E6
DO 5 I»l,60
DO 5 J«l,l?
FLOUS(I.J)>a.
00 5 Ml,7,2
OF(I,J,K)«8,
CONTINUE
00 t> lBl.il
AREA(I,2)»8.
00 9 I«1,6B
00 B J*l,12
CQFIN(I,J) • BCS(I.J)
TTS(1,J) • B,
TTF(I) • 0.
FT » 0.
• *•
***•
••« THE DATA READ FORMAT IS SET UP SO AS USE SEPERATOR CARDS TO KEY THIS
.** SUBR. TO READ THE DATA SUBMITTED-- SEE DOCUMENTATION FOR DETAILS,
124
-------
DATA UTLAK.FOR
FORTRAN V.16(142) /KI 29-JUL-74
10»17 PAGE |-1
00053
00854
00055
00056
00057
110058
00059
00060
90061
00062
00063
00064
00065
00066
00067
0006B
00869
00?7*
20071
00072
00073
00074
00075
0X076
00077
00078
40079
00080
B088I
00082
00083
00084
00085
00086
00087
C •
C *
10
11909
12
15
20
33
40
as
50
1020
60
70
100
103
104
105
tie
115
• •
REAO(5,10G(!) I
FORHAT115)
IFCI .ME. 15305)007012
STOf»
IF(I-lllll) 50,20,15
IF (1-66666) 30,40i 45
!F(I .EO, 11111) 1*1
IF(I .FQ, 22222) 1*2
IF(I ,EO, 31333) 1*3
IFtI .EO. 44404) I>4
IF(I .EO, 55555) 1*5
GOTO 59
IF(I .EO. 6666*) 1*6
IF(I .EO. 77777) I»7
IF« ,EO. 88688) GO TO 10
IF(I .EO, 99999) 1*9
IF(I ,GT. 9) CO TO 60
GO TO 70
FOBHATUHe, '***QATA READ ERROR—SECTION CODE MOT FOUND— VALUE FOU
2NO**,I6)
hKITE(6,1020) I
IERR>1
GO TO 10
GU TO (100, 2f!2,30a, 403, 508, 630, 70, 903, 9033 ,1
CONTINUE
RtAD(5,1003) I
IF(I-15111)105,110,115
IF(I .EU. 12111) I»2
Iftl .EO, 1311)) 1*3
IF(t ,EO, 14111) 1*4
GO TO 118
IF(I .EQ. 15111) 1*5
IF(I .EO. 16111) 1*6
00090
00091
00092
00093
.EU,
.EQ.
IMI .EO.
IF(I .GT.
1*8
17111)
18111)
19111)
19511)
19511) GO TO 15
GO TO (1513, 120, 13H, lau, 150, 163, 170, 18(5,190,195), I
00096
00097
00P98
00099
00100
00101
00102
00103
00104
00(05
••» THIS PART OF THE DATA READ 15 FOR (1) TITLE (2) NO. OF TIME INCREMENTS
«•* AND(3) KEY FOK TAPE READ AND WRITE— FOR DATA INPUT
C
C
C
120 READ(5,111B) TITLE
C *••
11 IB FORHATO5A4)
HKITE(6,1090) TITLE
READ(5,12f)CI) NINT, KEY
hRITE(6,1212) NINT, KEV
1212 FORHATC1HO, 5X, 'THE NUMBER OF TIME INCREMENTS IN THIS SIMULATION
125
-------
DATA
UTLAK.FOR
FORTRAN V.1B(142) /KZ 29-JUt-7a
PA6E
BBlPb
00107
00104
801 Iff
00111
00112
00113
88114
»011S
08116
«0117
00120
00121
00122
00123
90124
00125
0B12*
90127
0012*
00130
00131
"0132
0B133
B0134
9*136
«J0137
00138
90140
40141
00142
90143
00144
00145
K0146
P0147
00148
•UJ149
00150
00151
98152
•10153
001 54
00155
80156
00157
00158
2«», 13, //,bX, 'THE TIKE PERIOD KEY IS «',I2)
TJHEF « 1.
IFtKEt .fO. 1) TIMEF« .03333
IF(«Ef ,EO. 2) TXneF« .23333
IF(KEV ,FO. 4) TXnEF* 12.167
RE*D(5,1215) S(|l),
FORHATCBF10.0)
DO 125 I»l(10
IF(S(I)) 122,122.125
1215
122
125
1228
1230
1240
CO TO 103
C *•«
C *••——————,..————————..——-.——•-....»—.—«•....
C *•* THIS SECTION READS THE NUfBEH OF IONS TO BE TRACED (NIOHiS) AND THEIR
c ••• CODE NUMBERS (FOUND IN AHRAY IONS).
C ••«——.—————.—-.—-—..—.——..,„.-.—.,.»,—.,———.....
c *••
130 REAOC5.1230) NIONS, CION5CD,I«l,12)
IF(IOl .EO. 1) GO TO 103
WRITE(t.ltll)
till FORMAT(1H8,5X,'*•»•*•••••*••»*••*••»••••*••*«*••****•«••*••••••••*
1210
CONTINUE
w«ITE(6,122B) (1,5(1), 1*1 , 10)
FORM*T{iH3, 5X, 'THE BEGINNING STAGES IN THE LAKE SYSTEM
2 /. SX, * BAV STAGE',/, 5X, 10(13, F18.2,/, 5X))
RtAnf5,l?3t1) IT1, IT2
IFCIT1 ,EO, 1) KRITE(b,1238)
FOR1AT(1H0, 5X, 'THt DATA HILL BE RE*0 FRQN TAPE —THEM MODIFIED
2BY ANY CARDS READ*)
IF(!T! ,E3. 1) CALL TAPE(l)
IFCIT2 ,EO. 1) HRITE(6«124P)
FORHATdHfl, 5X, 'THE DATA SETUP FOR THIS SIMULATION WILL BE WRITTE
2N TO THE PATA TAPE')
1350
FORHAT(1H0, »JS$ SIMULATION SETUP AND INITIALIZATION DATA')
WHITE (b, 1350) (IONS (I), 1*1, NIONS)
FOBHUHlHB, 5X, 'IONS TO BE CARRIED IN THE SIHULAT ION* ', 1515)
60 TO 193
C •••
C »»»——-.—_-__— ——-.—-— -———.-...-..-.....—.-——---.----...
C •*• THIS SECTION READS OOF WHICH IS THE KEY AS GIVEN IN FORMAT t«10 AND
C ••* ALSO READS THE INITIAL HATER QUALITY IN EACH OF THE LAKE AREAS,
c •••——»..-.....»,———•».—-»»—....•—.»..-...—•—-•———--.«
c •••
140 READ(S,3035) OOF
HRITE(b,1410) OOF
1410 FORMATCJHB, SX. •••*OUALITY OUTFLOW FACTOR «', FS.0,/ ,1BX, '0, HE
2ANS THAT OUALITV READ IN FOH THE TRIB (OUTFLON) HILL BE USED FOR T
SHE OUTFLOW', /,10X, '!» MEANS THAT THE LAKE QUALITY DILL BE USED FO
126
-------
DATA UTLAK.FOR
FORTRAN V.16(142) /Kt 29«3UL-74
ie«i7 PAGE
00159
00160
00161
00162
00163
4R THE OUTFLOW)
IFCI01 ,EQ, 1) GO TO 142
WRITE tfc,1 111)
WHITE Cfe, 1420)
HHITECf.,1425)
"0164 1420 FORMAT(1H0, 5X, 'INITIAL WATER DUALITY IN ThE LAKE AND BAYS')
00165
00166
00167
00168
00169
00170
00171
"0172
00173
0017«
R0I75
H0176
"0177
00178
00179
nat Hft
rv I O«*
03181
C0I82
00183
10164
00185
001B6
00187
00188
00189
00190
00191
00192
H0193
B0194
90195
00196
0B197
00198
•3199
»P?00
00201
00202
00203
10204
00205
00207
03208
00209
1425 FORNATdHZ, 5X, 'BAY QUALITY OUAL UNIT », /6X,
2 'NO, F.C. KEY CONCENTRATION')
142 REAO<5|143P) I,J,K,C
Ffl.
1430 FOWMAT (315, F 13,0)
Iftl .CT. 1111!) GO TO 104
IF(I .CT. 10) '»RITE(6,14J5) I
1435 FORMATdH ,'*o«E»ROR — BAY ,GT, 10-.-INITIAL W, DUALITY CARD,
IKK ,EQ, 1) Ft*. 00(9736
TF(10l ,EO, 1) GO TO 146
WRITE(6,1440) I,J,K,C
1440 FORHAT(I8,I7,I10, F13,3)
146 COFIN(I,J)»C*F1
GO TO 142
C •»•
C *•• THIS SECTION READS THE NUMBER OF DIKED BAYS KOBO JF ANY, A
C •*• STORES 1 IN ARRAY N3Q INDICATIONG DIKING FOR ANY BAY NO.
C •*« STATEMENT 153 READS THE CODE NUMBER OF THE BAY TO RECEIVE
C *** IBOF AMD THE STAGE AND VOLUME OF THE REMAINING LAKE SYSTEM
C ••• OVERFLOW OCCURS (SOF AND VOLOF) IF IBOF > D THEN OVERFLOW
C • •« FLOx OUT OF THE SYSTEM AND NOT INTO ANY DIKED BAY,
»',I4)
^0
GIVEN,
OVERFLOW
WHEN
IS TO
C •** STATEMENTS STARTING WITH 155 REASSIGN ANY TRIBS, DESIRED TO FLOW
C *•* INTO THE MAIN LAKE— TRIBS THAT taERE ASSIGNED TO THE DIKED
C *«»
ISO KEAD(5.1200) NOBD, ( IT(I) ,!•!, 10)
IFfNOBO ,LT. 1DGOTO 151
I«NOf>l)
NOBO'fl
GO TO 104
15t IF(NOHO ,LE. 0) GOTO 153
DO 152 I«1,MOBD
J*IT(I)
152 NBO(J)«t
IFdOl ,EO. 1) GO TO 155
HRITE(6, 1111)
kRITE(6,1510) NOBO, ( IT (I) , !•} ,NOBD)
1510 FORMATUHB, 5X, 13, • BAYS DIKED OFF FOR THIS HUN, BAY NOS,
153 REAQ(5,1515) IBOF, SOF, VOLOF
1515 FORMAT(I5,2F10,8)
HKITE((,,lSin IBOF, SOF, VOLOF
BAY I,
M3I5)
1517 FORHATdHO, 5X, 'BAY DESIGNATED TO RECEIVE ANY LAKE SPILLAGE IS',
Z 13,' (0 MEANS THE SPILLAGE IS EXPORTED OUT OF THE SYSTEM)'//,
80211
3 1 SIX,'STAGE AT OVERFLOW • ',F10,2,//, 10X, 'VOLUME AT OVERFLOW,
4
127
-------
DATA
UTLAK.FOR
FORTRAN V.18(142) /«! 29-JUL-74
10117 PACE 1-4
00212
00213
00214
00216
00217
«021«
15S
156
157
READ(5,12P0) I, II. (IT(J),J>1,14)
IFCI .GT, 11111) GO TO 104
It-14
03 157 J«IX,IE
IF(IT(J) ,LE, 0) 60 TO ISft
ITNAd.J) • ITCJ)
00222
B022S
00224
00225
00226
00227
00228
00229
00230
«0231
02232
00233
00234
MB93S
VV C J J
00236
0D237
00238
flCOTQ
1TC J~
00240
00241
00242
00243
flP244
A0245
00246
IX«IB
IC«JE»16
REA(>(5,1200) {IT(II),II«IX,IE)
GOTO 156
158 J»J-1
ITNA(1,I) * J
IF(IOl .EO. 1) GO TO 155
t*RITE(fc§l 111)
WKITE(6,t52a) I, IBTA(I), (IT CD ,L"1 , J)
1520 FORMAT (tHR, 5X, 'TRIBS FROM DIKED BAY', 13, ' WHICH ARE TO RUN
20 BAV',13, /,10X, 3014)
GO TO 155
C *••
C ••• THIS SECTION READS THE NUMBER OF 3UBAREAS IN THE LAKE SYSTEM
c ••• PUTS THE COOE NUMBERS ASSIGNED TO EACH IN IBAVS, THE NAME OF
C *•• A»EA IS THEN READ INTO NAHEB— 8 CHARACTERS FOR EACH AREA)
C •••
160 REAO(5,1?00) NBAVS, (IBAVS(I), 1-2, 1 1)
IF{NBAVS ,LT. 11) GOTO 162
IF (I ,LT, 22222) GOTO 104
I'bDAVS
J«16I11
HRITE(fc,1610) J
INT
(NBAVS)
EACH
«<02a7 1610 FOUfUTOHa. IBX, ••••TROUBLED-NO. OF BAYS SPECIFIED .GT, 11, CHECK
90240
00249
00250
00251
00252
0025?
90254
£0255
00256
00257
00258
K0259
00260
00261
00262
00263
00264
2 OATA SECTION', 17)
GOTO 104
162 REAO(5,1620)((NAMEB(I,J),jBlt2),I«l,10)
1620 FORMATC20A4)
164 1FCIOI .EO, 1) GOTO 103
NRItE(6,llll)
HRIIE(6,1640) NBAYS
1640 FORMATUH0, 5X, 'NO. OF SUBAREAS IN THE LAKE SYSTEM '',13, SX,
2 'THF.IR CODE NOS, AND NAMES ARE-')
NX«NBAY3«1
00 166 I«2.NX
J*IBAVS(I)
166 UHITE{6,1650) J, (NAHE8(J,K) ,K«1,2)
1650 FORMAT (IH , 5X, 12, 2X, 2A4)
GOTO 103
C «**
128
-------
DATA UTLAK,FOR
FORTRAN V,1B(142> /KI 29-JUL-74
10U7 PACE 1-5
(18265
M266
08267
80268
82269
0827R
80271
W272
80273
80274
80277
1>0279
08280
002A1
02282
83283
83284
80285
802B7
80289
00290
92292
00295
08297
0Z29A
82299
08380
80381
80303
803X6
8932)9
80312
80313
80315
00316
00317
C ***
C ***
C «**
C •*«
C ***
170
171
1710
THIS SECTION READS THE INTERMIXING FRACTIONS FOR ANY BAY SPECIFIED
I IS THE BAY NO,, A DECIMAL FRACTION FOR EACH TIME PERIOD
THE READ IS TERMINATED BY A NEGATIVE REAL NUMBER.
REAO(5,171B) I, J, (Q(K),K>1,14)
FO«MAT(2I5, 14F5.0)
IF(I ,LT, 11) GOTO 172
IF(I .LT. 22222) GOTO 104
GOTO 1P4
INHIX(I)*1
DO 173
B"F(I,K)*0(lC)
IB.-l
IE.10
00 176 K«IX,I£
IF(HMF(I,K)) 178,176,176
CONTINUE
172
173
174
nt>
IF(IE ,GT, 52)
t»E*0(5, 3335) (BHF (I,K) ,K>IB, IE)
GUTO 174
176 IK101 ,EO, 1) GOTO 171
KaK-l
MRITE(6,17B0) I, (8HF(I,J),J*1,K)
1780 FORMATC1H0, 5X, 'INTERMIXING FRACTIONS FOR BAY»» 13, • ARE
5 Stl2F6,3,/, 44X))
GOTO 171
ISfl READ(5,1200) 101,102,103,104,105,106,107
IF(101 ,GT, 11111) GO TO 104
GO TO 103
FOHHATC16I5)
12*B
C ***
C »** THIS SECTION READS OECI"AL FRACTIONS THAT BECOME MULTIPLIERS FOR ALL
C ••* FLOWS, PRECIP., ANP EVAP, RESP. AS IN THE BASIC DATA,
C •** THIS SECTION CAN CHANGE THE MAGNITUDE OF THE FLOWS FOR ALL OF THE
C *•* TRIOS,--THE SECTION BEGINNING WITH STATEMENT 195 CHANGES ONLY THE
C •** TRIBS, SPECFICALLY GIVEN THERE,
C ***--———--—.--.-.—....-.--.-..,.. ...»_..._...._...-•__--.-.........
C •*•
!90 REAO(5,3a3S) FO, FP, FE
IFCFQ ,LE, 0.) F0»l,
IF(FP ,LE, 0.) FP»1.
IFtFE ,LE, a.) FE«1.
MRITE(6,H!1)
HRITE(6,1920) FO, ff, FE
129
-------
DATA
UTLAK.FOR
FORTRAN V.1BU42) /Hi 29-JUL-74
10117 PACE 1*6
00318
PB311
l»e 528
P0321
00322
10324
00525
00326
00327
0P329
00330
«03J2
00333
00334
00335
(10336
«033T
99338
3B339
00340
00341
00343
M344
00345
*0346
POS4T
0034d
*03a9
W0350
00351
H0353
B0354
00355
00356
C03S7
00358
00359
0036*
00361
00363
00364
0036$
00366
00367
8036«
00369
0B370
1920 FORMATC1H3, 5X, '•••THE MULTIPLIERS TO BE APPLIED TO THE I*PUT OAT
3A AKE', /,10», »FLO*.S. . .», Fb.3,/,10X, 'PRECIP , ,» ,Ffe.3,/, 10X,
3 'EV»P . , .' ,F6,3)
60 TO ie3
195 READtS.HSB) NTC,(ITC{K>, FTC(K) ,K«1,7J
FOBMAUI5, 7CJ5.F5.0))
IF(NTC ,GT. 1111) GO TO 100
IF(NTC .IE. 0) GO TO 104
1950
i960 FORMAT (1HO, 5X, 'THE FOLLOWING TRIBS wlLL BE CHANCED BY THE FACTOR
2 GIVEN—*,/. 5», 'THIS. FACTOR*,/, 7(5X, IS, F9,3))
GO TO 103
C ••»
•*»
C •«* THIS SECTION READS THE TRI8S. THAT ARE TKIB TO EACH SAV, I>BAY NO,
C ••* N • NUMBER OF TRIBS TO THE BAY.
C ••• ---- .- --------- _...,-__...„. --- „„ ---- . ---- ..... --------- „-.— -----
C ••*
zee iraas ,EO. t) GO TO 210
WKITE(6, 171491 TITLE
1090 FORtUT(lHl//,9X, 'TITLE-', 15A4)
H«ITE( 6,1111)
2010 FORfUTflHa,i0X, 'BAY - TRIBUTARY ASSIGNMENT DATA')
2020 FORMATflHa, 5X, *BAV NO. OF TRIBUTARY CODE NUMBERS'/JK ,
2 IIX.'THIHS')
210 REAO(5,2a3?> I,N,(IT(L),L«1,14)
2030 FOHMATU6I5)
IFCI .CT, 11110)GO TO 12
IF(J .CT. 10) GO TO 290
00 220 L'ltl4
ITMY(I,L) « IT(L)
NTRI»(I)»N
220 CONTINUE
IFfN ,LT, 15) GO TO 230
REAl>(5,2030) (ITBAY(I,M),M>15,N)
230 CONTINUE
IF(102 »NE. 1) WRITE(6,2048) 1,N,(ITBAY(I,H),H«1,N)
2040 FORMAT(/5X,I3, 17, 5X, fa(1PI5,/,2?X))
GO TO 210
29B MRITEC6.2100) I,N, CIT(L),L«1,14)
URR«1
GO TO 210
2100 FOffMATdHa, •••.DATA HEAD ERRQR>-IN SECTION 22222—BAY CODE NO ,GT,
2. 10* /IH ,5X, »CA»0 IMAGE IS*,1615)
C *•*
C *•«-—--•---..-.--.-.--•-------•-------.---..---..-.•--•..----•-•-•--•------..
C ••• THIS SECTION READS TiE NO. GF TRIBS. THAT FLOW OUT OF THE SVSTEK(NTO)
C •*• AND THEIR CODE NOS.-STATEMENTS 395 TO 396 CHANGE THESE TRI85 TO NEC,
C «*« FLOWS, XT THEN READS THE FLOW RATES (ST. 310), I • TRIB, NO,, J • FLOH
C ••• UNIT KEY, K • TIME UNIT KEY, L » NO, OF FLOriS,
C *»*.—...—•-....-«.-..-..—.—.—.—.-.—..----..-..-----.----.-•..—---..
130
-------
DATA
UTLAK.FOR
FORTRAN V.16(142) /HI 39-JUL«7fl
I0IJ7 PAGE J-7
(10371
B0372
00373
(•0374
00375
C •**
30B
00377
00378
08379
JI0359
B0S81
00382
00383
90384
00385
90386
00387
40388
H0389
00390
00391
0039?
00393
00394
00395
00396
90397
0CJ98
00399
00400
09401
00402
00493
00404
00405
00406
00408
00409
00411
00412
00413
00414
00415
03416
00417
0*«ia
00419
00420
00421
•0422
00423
1FCNTO ,EO, P) GOTO 305
IFCNTO ,GT. 7) GO TO 1614
WRITE(6,3(*25) (ITOS(I),1«1,NTO)
3025 FQRMATdHa, 5X, '***THE TRIBS FLOWING OUT OF THE SYSTEM ARE',
2 511)
3030
320
3035
330
IF(103 .EO. 1) GO TO 310
3310 FOBMAT(1H0, 15X, 'TRIBUTARY FLOnRATE DATA*)
3020 FORMAT (1H55, 5X, 'TRIB FLOW UNIT TIME BASE r t 0 K » PERIOD'
2 /7X, 'HO KEY KEY 1 2 3 , . «')
FORHAT(4I5<12F5,0)
IF(I .GT, HUB) CO TO 360
If II .GT. 1B3) GO TO 390
00 323 M>1,12
IF(L .LT, 13) GO TO 33B
Rt*Uf5,3035) (FLOWS(I,H),M.13,U)
FORHAT{16F5.0)
CONTINUE
IF(I03 .£0, 1JCOTO 340
IF(IC .LT. 11) GOTO 335
1C » 0
WRITCC6.1090) TITLE
3015 FOPHATdH , '—CONTINUED'/)
335
3040
340
342
344
346
348
350
355
WRITEC 6,3P40) I,J,K, (FLOWS f I ,H) ,H.J , L)
FORMATtlHa, 5X,I3,I8.I11,2X, 6C12F6, 1. /38X))
IF(J .EQ, 1) Fl»«3560,
IF(K ,ti3. 0) GO TO 350
GO TO (342,344,346, 348),K
F2afl.64E4
GQ TO 350
F2»h.04BE5
GO TU 350
F2«2.592E6
GO TO 350
F2-3.1104E7
F1-F1/F2
oo 355 HM.L
FLOWSd.h). FLOHS(I,M)«F1
CONTINUE
131
-------
DATA UTLAK.FOR
FORTRAN V.1B(142) /Kl 29-JUL-74
10117 PAGE l-»
00424
0*425
00426
(10428
00429
(18430
00431
*0«32
08433
918034
R0435
• HEE
M043T
0043S
00439
08440
«0441
00442
«(>443
GO TO 31*
IF(I03 .£0, 1) GO TO 395
Hum (6,3453)
*RITE(fe,3055)
3850 FORMAT (///lri9l,20X, 'KEY CODE-'/25X, 'FLOW UNIT KEY' /33X,
2 '0 « CFS» /3JX, *i • AC, FT.')
FORHAT(1H0,24X, 'TINE UNIT KEY* /33X,
1 *0 • SECONDS»/33X, '1 • DAV/33X, '2
3*» X33X, '3 • HONTM»/33X, '« » YEAR')
CO TO 395
NR1TE(6,3100) I,J,K,L, (0(H) .*•! ,12)
ItRR»l
FOR«»T (ina, ***«OATA READ ERROR—IN SECTION 33333»»TRiB CODE NO ,c
2T. ine'./lH , 5X, 'CARD IMAGE IS » ,415, 12F7, 1)
CO TO 3lfl
IFCNTO .EO, 0) GOTO 12
00 396 I'l.MTO
J'lTOSCI)
DO 398 Ml, 5?
00446
00447
00449
9IO«51
B04«
00453
360
3B5S
390
side
39S
396 FLOMS(J«K)»-FUOUS(J«K)
39B CONTINUE
C •*•
C
C
C
C
C
C
C
A04S5
00056
«>045T
00458
004b9
B0460
•*• THIS SECTION READS THE FLO* RATE--OUALITY DATA (ST. 410), I • TRIB. NO*,
••• J • QUALITY FACTOR CODE, K • FLOM UNIT KEY, L • DUALITY UNIT KEY)
••» THE FLOMRATE ANO DUALITY ARE THEN KEAO IN PAIRS, AT LEAST 1*0 PAIRS
••« MUST BE GIVEN, THE PROGRAM INTERPOLATES TO FIND THE NEEDED FLOH,
•*«—————.———————,.———.——.——»——— ——.—,
•**
iF(io4 ,co. i) co TO
WKITE(6,1P90)TXTLE
4010 FORHAT(1H«I,15X, 'TRIBUTARY HATER DUALITY DATA')
00462
00463
00464
P046S
R0466
9P467
004611
00469
R047R
H0471
0A472
00473
00474
0047S
00476
4020 FOOH»T(JH0, ?X, 'TRIB OUALXTY FLOH UNIT QUAL UNIT POINTS* /
2 6X,'NO. F.C. KEY KEt'.SX, *FLOH QUALITY')
410 RE*D(5,4f30) I,J,K,L, (0(h) ,H>| , 10)
4030 FORntT(4I5,lPr5.B)
4040
4042
430
F2*l.
IF(I .CT. 11110) GO TO 450
IF(I ,GT. 100 .OR. J ,GT, 12) GO TO 4
-------
O»TA UTLAK.FOR
FORTRAN V,18(142) /KI 29-JUL-T4
1BM7 PACE 1-9
(3477
£3478
440
C3480 450
C04B3
C04B4
»0'4B5
93886
ZB437
C34B*
110489
f 51490
D3492
«349)
M494
M495
03496
V8497
88494
JR3499
H50J
035??
MS06
(8508
33509
M512
03513
08514
«5i5
C8517
P3519
•2520
•3521
88525
•0524
«052S
•3526
D0528
33524
OFCI,J,M*1)
CO TO 410
IFU04 .£0. 1) CO TO 12
4050 FOPHATt/XXlHK, 20X, 'KEY CODE-»/25X, 'QUALITY FACTOR CODE'X35X.
Z'l • TOS' X35X, »2 « NA' /35X,»3 « CA' X35X, »4 « HG»/ 35X, »5 • K
3' /35X, '6 »- CL» /35X, »7 « HC03' X35X, '8 • S04' /35X »9 » N03' /
4 34X 'tO • P04' /34X »U • F')
FO«MAT( 1H0.24X, 'FLOW UNIT KEY' /35X,
I »0 • CFS' /35X »l • AC, FT,/MO' )
4065 FORHATC1H0, 24X,
2 'OUALITY UNIT KEY* X35X «B " MGXL* X35X »l • TON/AF')
CO TO 12
WRITE (6,4100) 1,J,K,L, (0(H),H.l,10)
FORHATC1H0, «***nATA READ ERROR —IN SECTION 44444—1RI8 OK QUAl. FAC
2CIOH CODE TOO LARGE' /1M3, SX, 'CARD IMAGE IS ',415,10F9.3)
490
CO TO 410
C **•
C »**-.----.---.-..........._.........._..._....................._.-._.....
C •** THIS SECTION READS THE PRECIPITATION DATA (ST. 510)) I • AREA CODE,
C **• J • PREC. UNIT KEY, K * TIME BASE KEY, L • REPEAT KEY,
C •*»-..—..-.-.---.------.-.».--,.•.---..........--..........-.»..«..-....
C •*•
500 IF (I05.EQ.1) GOTO 510
HKlTE(6,109i3)TlTLE
WHITE C6,5fllO
5010 FORMAT (1H0,15X,'PRECIPITATION DATA'}
5020 FORMAT (1H0I5X>'BAV PRECIP UNIT TIME BASE REPEAT » /
11H ,5X,«MO, KEY KEY KEY I'ERIOO PRECJP' J
510 RLAO(5tS03n)I,J,K,L,{Q(H),H>ll12)
IF (I.GT.llltO)GOTO 5b0
IF CI.GT.10)GOTO 590
Fl ».083»
512
S14
516
517
5030
5035
N»12
IM«1
IF(J.E0.1)FI« 1,
If (K.EO.O)COTO 518
ROTO (51?, 514,518, 516), K
f2»3".41
60 TO 517
GO TO 517
F2m.tia33
F1«F1«F2
FORMAT (4I5,12F5.0)
FOHMAT(16F5.0)
00 520 H»IM,N
133
-------
DATA UTUAK.FOR
FORTRAN V,16(182) /KI 29.JUL-74
13117 PACE 1-10
00530
BCI531
00533
D0534
80535
00536
00537
0353*
00539
90590
00541
00542
00543
00544
B8545
00546
B0547
00548
90549
18550
00551
"0552
80553
00554
520
52S
5040
530
535
568
S06fl
PRECU.H) « 0(H)*F1
IF tO(l).LT,a,0)COTO 525
CONTINUE
IMcN+1
N«N*16 .
READ(5,503S)(Q(M),H«H1,N)
GO TO 518
H»M— 1
IFO05 .NE, 1) WRlTe(6,S040) t,J,K,L, (N,C (N> ,N« I ,*)
FOUMATUH ,17, SX, 14, 8X, I«, 110, 3X, 100( 15 ,F9,3,/42X))
IFtL .NE. 0)GOTO 518
00 535 J«l,12
Jl-J+12
J2>J*24
J5 «J*36
PaPREC(I,J)
PRF.C(I,Jt) « P
PREC(I,J2) » P
PHEC(I,J3) » P
CONTINUE
60 TO Std
IFCIOS. EG. DGOTO 12
WRITE (6,506*)
FORHAT(///lHa,23X, 'KEY CODE-',/2SX,
(10556
00557
BB558
00560
00561
00562
00564
00565
(10566
00567
00569
B0S70
00571
00572
00573
00574
00575
00576
00577
00578
08579
00580
*05«1
B0S8Z
2 'PHECIP UNIT KEY' /33X, '0 • IN.' /33X, »l • FT,')
WHITEC6.5065)
5065 FORnAT(IH0.24X, 'TIME UNIT KEY' /33X, '0 • MONTH', /33X,
2 '1 * DAY' /33X, *2 • WEEK' /33X '3 • MONTH* /3JX,
3'4 » YEAR')
CO TO 12
510B FOHHAT(1H0,'*»*OATA READ ERROR—IN SECTION 55S55--BAY CODE NO, ,G
3tH ,SX, 'CARD IHACE !S-',4lS,12F7.D
GOTO SIB
•«•
C ••• THIS SECTION READS THE EVAPORATION DATA AS FOR PKECIP, ABOVE,
C ••»——....——•.«.»...»•«.—«••-..—-•-•«-••—"—»-•••••"•»••••••
c •*«
600 IF(IOb ,EC. 1}COTO 610
WHITE (6, 1B90) TITtE
WHITE(6,6RI0)
6910 FOffMATUHB, 15X, 'EVAPORATION DATA')
WHITE (6, 6328)
FORMAT(1H0, 5X, 'BAY EVAP UNIT TINE BASE REPEAT V6X 'NO', 7X,
2 'KEY'^X, 'KEY', 7X, 'KEY PERIOD EVAPORATION'}
REAO(5.5030) I,J,K,L,
IF(I .CT. 11110)GO TO 668
1FCI .CT, 10) 60 TO 690
Fl«. 0833
6020
134
-------
DATA UTLAK.FOR
FORTRAN V,16(143) /KI a9»JUL*T4
leiiT
PAGE \'\
89583
00585
00586
00587
00588
00589
00593
00591
00592
9)9593
88591
00595
30596
00597
9059S
00599
00601
00602
006H3
00604
40695
00606
006(97
00608
00609
00610
00611
0061?
00613
00614
00615
0(1616
09617
00618
910619
0862B
00621
80622
00623
00624
00625
60626
B0627
00621
00629
03630
00631
B0632
00633
00634
00635
612
614
616
617
61ft
629
625
630
635
668
6060
2
698
61Pf»
2
C **»
C *»•
c *•*
c •«*
c *«*
c ***
c *•*
c •**
700
IFCJ ,EQ, 1) Fl-1,
IFCK.EQ. 0) 60 TO 61fl
GO TO (612, 614, 610, 6163, K
F2»33,fll
GO TO 617
F2»4,33
GO TO 61T
t 2". B833
F1»F1*F2
t>o 620 M»IM.N
EVAPCI,H) • 0(M)*F1
IKQ(M) ,LT, B.) CO TO 625
Ht«H»l
CONTINUE
I«.N»1
«eAD(5,5035) (0(M),M.Ht,N)
GO TO 618
H»H-t
IFCI06 ,NE, 1) HRITE(6,5040) I, J,K,L, (N, Q (N) , N»] ,M)
IFCL .N£, Q) GO TO 610
00 635 J»l,12
Jl«J»12
j£ij*24
J3«J»36
E « EVAP(I.J)
EVAPCI.Jl) • E
EVAP(I,J2) • £
EVAP(i,J5) " E
CONTINUE
GO TO 610
IFCI06 .EC, 1) CO TO 12
fRI TE (b,6E960)
FORH*TC///lHa,2?X, 'KEY CODE-* /25X, 'EVAPORAT ION UNIT KEY',/33X,
'0 » IN,» /33X, M « FT,«)
WRITE(6^65)
GO TO 12
hRITC(6,6109) I,J,K,L,(U(H),K«1,12)
FQRMATClHO, '...OAT* READ ERROR->IN SECTION 66666-*BAf NO, ,GT, IB' /5X
• /5X, »C»HD IMAGE IS-',4I5,12F7,1)
CO TO MB
THIS SECTION READS THE STAGE, AREA, VOLUME DATA, (ST. 710),
I « ARE* COOE, J • UNIT CODE, AREA 11 IS THE EN1JRE LAKE SYSTEM,
IF ANY BAYS ARE OIKEU THE AREA AND VOLUME OF THE DIKED AREA ARE
AUTOMATICALLY REMOVED BY STATEMENTS 9010 TO 6200 BELOW,
IF(107,EQ,I)GOTO 710
WRITE(6,1090)TITLE
135
-------
DAT* UTLAK«FOR
FORTRAN V,10(142) /KX 29-4UL-M
IBI1T PACE X-12
00636
00637
90638
00639
00640
08641
00642
0P644
(•0645
00646
110647
(10648
00649
00659
«l065t
00652
•06S3
siat.54
00655
006S6
00658
00660
00661
H0663
P0664
00665
HJ666
00667
0066«
0066*)
P0670
OR67I
0P672
02673
00674
00675
00676
00677
00670
00679
0068R
00682
00683
00684
00685
00666
00687
00688
WRITECb,7SH0)
7010 FO«MAT{tH«l,15X,'STAGE - AREA - VOLUHE'
WRITE C(>i7fl20)
702B FOKMAT(IH?,5X,'BAY STAGE AREA
2/6X'NO FT ACRES AC,FT.*)
710 READ(5,703851,J, (Q(H),M»1,7)
7830 FORHAT(2IS, 7F10.R)
If(I .GT, JZatl) GOTO 770
7035
VOLUME*
720
730
740
750
760
770
7060
775
7070
780
790
FORMAT <«F10,.0)
FJ«1.
1FU,GT.2(I0I1JGOTO 750
IF(l.GT.l(19HnCOTO 730
IF(J.EQ.|)FI>12.
00 720 H«1,15
STACECH) • 0(H)/Fl
GOTO 710
i»i-2no«a
JF(J.ta.l)Fl»43568,
00 740 H«t,15
ARtA(I,M)«OCM)/Fl
XFtOfH) .EO, 0.) AREA(I,M).,1
CONTINUE
GOTO 710
l«I-30«00
IF{4 .E0.1)Ft«43560t
00 16Z H*l,15
VOL(I,H)«0(H)/F1
GOTO 710
IF(I07.Ea.l)GOTO 12
00 740 J'1,11
IF(AReA(J,2).LE.e.) 60 TO 790
«RITE.(6,7B6a)
FORMAT (tH0)
DO 7SO Hcl.15
URITE(6,7070)J,STAGE(«), AREACJf»)i
FORHATdH ,2X. U.Flt.2, 2F12.2)
CONTINUE
CONTIHUE
GO TO 12
WKITE(6,9010)
FORHAT(/1H0,»««*AUU DATA HAS BEEN READ IN»)
900
9010
C ***
C ••*—.....——.»..————-———————•"""••"••"•" •• — — "
C !•• THE FOLLOWING SECTION ACCOUNTS FOR DIKING BY DECREASING THE TOTAL LAKE
C •*• AREA AND VOLUME BY THE BAY VALUES— SPECIFIED TRIBS ARE ASSIGNED TO
C >•• OTHER BAYS AS OESIHEO. THE DIKED BAYS ARE CARRIED ALONG AS SEPERATE BAYS
C **•
C •«•—————..-—————————""«—•"——— ----
C •••
NX'NBAVS+1
136
-------
DATA
UTIAK.FOR
FORTRAN V.1BC142)
Z9-JUL»7«
10I1T PAGE
P0690
M69i
R0696
00699
00700
00701
00703
00704
00706
00707
0070S
00789
8871*1
00711
00712
33713
00714
00715
00716
00717
00718
00719
08728
Q0721
0B728
00723
88T24
00725
00726
M727
88728
00729
007391
00731
09732
08733
00734
00735
00736
09737
00738
00739
00743
09741
DO 620 11*2,NX
I»IBAYS(II)
IF(NHDd) ,NE, 1) GOTO 623
00 610 L'1.15
AREAdt,L)«AHEAdl.U -
VOldliL) • VOLdl.L) - VOLdtD
01(1 CONTINUE
waiTE(b,8203) I
82* CONTINUE
82l«B FORMATdHO, SX. 'THE TOTAL LAKE AREA AND VOLUME HAVE BEEN REDUCED BY THE
2BY THE VALUES FOH DIKED BAY', 13}
C •*•
C • ••.-.•••••.•.-....-—.•—.-.—»•—..•-...«.•-•-•.•.•--»•-•-—••-..-•..«
C ••• THE FOLLOWING SECTION IQEhTIFIEDS DIKED BAYS AND REASSIGNS THE SPECIFIED
C **« TH1BS TO THE BAY LISTED IN THE ARRAY I6TA,
C ** • • — ••«• — — *«••—••««•••»••»••»• ** »••**• •••»••***«.•*«*•«*«••••*••*<••«•»• V *«* *•• V to *tk«^
C •••
DO BfeO II"1,NBAYS
*•* IF N30 CONTAINS 1 THEN THE BAY IS DIKED
IF(NHOd) ,NE. I) GOTO BbB
J»It»TAd)
NTRIH(J)»NN*Ll.
00 650 L»l,tL
842
as?
ITBAY(J,NNN) i
KK> NTRIB(I)
DO 642 K*1,KK
IFdTNA(I,L) ,*E. ITBAY(I.K)) GOTO 842
ITBAY(I.K) • ITBAY(I.KK)
NTRIB(I) * KK-1
GO TO 850
CONTINUE
CONTINUE
HHITE(6,6510) I, J, CITNAdAJ.L'l.LU
astd FO»MiT()Htl, SX, '***TRIbS FROM DIKED'BAY', 13, * THAT HAVE BEEN AS
25SIGSEO TO BAY',13, ' THEY 1SE»,/, 20X, 3313}
K«KT«IB(I>
IF(N .EG. 0) GOTO »6!!
WHITE(6,8220) I, dT8AY(I,L).L«l,N)
8220 FORMATdHB, 5X, 'DIKED BAY', 13, » HAS THE FOLLOWING TRJBS REKAINIM
2NG* , 3013)
CONTINUE
Bbd
C «•« THE FOLLOWING STATEMENTS CHANGE THE FLOWRATES (FO), PRECIPITATION (FP>
C ••* AND EVAPORATION (FE) 8Y TnE FACTOR GtVEK IN THE DATA,
C ........ .................... ..... — ..........
C
IF(FO,E0.1, ,ANO.
, FE,EQ,l.) G010
137
-------
DATA UTLAK.FOR
FORTRAN V.10(142) /KI Z9-JUU-74
IBM? PACE J-J4
03742
00743
03744
80745
80746
BB747
(10748
80749
30758
00751
08752
00753
90754
03755
(10756
00757
82758
08759
0076B
03761
83762
00763
08764
03766
00767
08768
W0769
C3778
«077l
03772
83773
B8774
08775
63776
00777
»877B
03779
00780
00781
007*2
03713
03784
08705
03786
90787
00788
00784
80793
00791
00792
03793
B3794
IFfFO.EO.8. .AND. FP.EQ.0, ,«hO. FE.EO.O.) 60TO 948
00 933 II«1,NBAY3
J«I8ATS(I1»1)
00 923 I«1,*INT
PHEC{J,n«PHECCJ,I)*FP
eVAP{J,I)«EV»P(J,I)»FE
tF(FQ.Ea.l,)GOTO 926
NsNTRlH(J)
00 910 tL»liN
L«IT8A»(J,LL)
00 918 K-l.NXKT
FLOMS(L«K)»FLOHS(L|K}*FQ
920 CONTINUE
930 CONTINUE
WHITE C6| 91131 FP, Ft. FO
9110 FORhATClHa, SX, 'THE PRECIP, EVAP, AND FLOURATCS HAVE BEEH HULTIPL
2IEO 8Y THE FOLLOWING FACTORS',/. 18K, 'PNECIP FACTOR*', F5,?,/
FACTOR »», F5,e, /, 1BX, 'FLOW FACTOR *',F5,2)
3 ,10V, 'EVAP
940 CONTINUE
C *•*
C •••-——•-——«•-•-•—-•——•»»..•—••»•-—•——---—«•-•——•••—<••
C ••* THE FOLLOWING STATEMENTS CHANCE THE MAGNITUDE OF TRIB FLOWS FOR
C • «• TRIflS IN ITC, IF ANY,
C •»•—«••-•«-•••»••-•—-••«••--•••••--••••••••••••••-•••••••••••—"••
C •**
IF(NTC ,EO, fl) CO TO 980
00 970 II»1,NTC
963
F«FTC(II)
00 963 I»1,NINT
FLOHS(K,I) * FLOhS(K,I)
97B
980
990
C ***
• F
FORMAT(1H0, 5X, 'FLOWRATES FOR TRIB',13, *
2Y FACTOR',F7.3)
CONTINUE
CONTINUE
00 990 1*1,60
DO 990 J*l,12
BCSCI.J) • COFIN(I,J)
HAVE BEEH HULTIPL1EO B
C •*• >
-------
UTLAK.FOR
FORTRAN V,18(142) /KI 29-JUL-74
1BII7 PACE 1
00001
00C02
00003
00004
00006
00M7
03038
00*10
00011
00012
00013
00016
00017
03319
0Z322
00021
90022
(10023
90229
00030
00032
00033
90034
P3? 3 6
08R3T
00939
00040
00041
01043
00344
«0046
00047
00049
eapse
•0051
0B352
SUBROUTINE COW
C •«»
C •*•--...-...
C **• THIS SUBROUTINE COMBINES THE TIME PERIOD INFIOW, PRECIPITATION
C • *• AND EVAPORATION TO DETERMINE A NET FLOW BETWEEN THE MAIN LAKE AND
c ••• THE SATELLITE BAYS. THE BAY CODE NUMBERS AHE STORED IN THE ARRAY
C **• IBAY IN THE ORDER TO BE CONSIDERED. IBAYC1) CONTAINS J1--THE CODE
C •*« FOH THE ENTIRE LAKE, IctAV(?) IS THE MAIN LAKE, IHAY(S), , .CONTAIN
C **• THE CODE NUMBERS FOR THE SATELLITE BAYS TO THE MAIN LAKE,
C **»
C *«« ANY WATER OVERFLOWING OUT OF THE SYSTEM OR FLOWING INTO A
C **• SATELLITE BAY IS RfcMOVEO BEFORE THE FINAL END-OF-PERJOO QUALITY
C *•« OF THE MAIN LAKE IS DETERMINED.
C **• WHEN KEY«3 SU3R SAV RETURNS THE VOLUME AND AREA OF ALL THE BODIES FOR THE
C ••* THE BEGINNING STAGE,
COMMON IT{23), 0(5(1), ITBAYC10.5B), NTftlB(lfl), fLOWSC 68,S?J,
2 OF( bM,t2. 8), IONSC12), CQFIN(ie,12), STACE(IS),
VnLCll,l5), PREC(IB,52), EVAP(lSl,523, KPOtJP),
IBAVSdt), SALTS(15), DEtV(ll), TITLEdS), NAHEB{11,21,
INHIXdB), BHF(10,52), TOTSU12), TOTSOC12) , S(lt), IdTAflB),
TTK6W), TTS(he,I2), ITOS{D,
NIONS, NOBD, INT , NINT, NBAYS, ITU m, TP, TE, TO, IBOF, SOF,
VOLOF, BVDa, OOF, FT, VOFS, 101, TIMEF
COMMON /STVL/ A(ll), Vdl), VT(tl), P(U), E(M)
2BB
4
5
TQ»n.
*•* UETEKHINE THE INFLOW, PRECIP, ANO EVAP FOR EACH BODY AND THE
••• RESULTING QUALITY AFTER MIXING IN EACH OF THE BODIES BEFORE INTERMIXING
NX*NAAYS+1
IFdOl ,EO, 1) hRITE(b,230) INT
FORHAT(// tH3, 10X, •«*.TRI8. FLOW AND QUALITY DATA USED FOR PERIO
20', I3,//, • BAY TRIB, FLOH-ACFT I 0 H C 0 N C —HG/L»)
DO 30 II>2,NX
NcNTRIBCI)
00 20 JJ>1,N
J.ITBAYd.JJ)
F1«FLOWS{J,INT)
F«Fl*S9,50ai * TXMEF
TTF(J) * TTFCJ) * F
UCI)-0(1)+F
00 l«l KK«1,NIONS
K«ICNS(KK)
IF(F1) 4,1C,6
IF(OOF) «.,<>,5
QUA. COFIN(I.K) *F
IF(NBDd) ,EO. I) GOTO 9
TOTSO(K) • TOTSOCK) - QUA
139
-------
COM
UTLAK.FOR
FORTRAN V.1BU42) /KI 29-JUL-74
10117 PAGE 1-.J
03053
00954
00055
«fl«»56
(10057
W0058
00059
00960
30063
00860
A0CI65
(10(166
00067
00069
00070
03071
90072
00073
P3074
08075
00077
00078
00081
00083
003)84
0aaBS
00086
0008T
B3PS9
00090
00091
93092
081*93
00094
0109)95
00R96
03097
031)98
00099
00100
03101
00102
00103
00104
0010S
10
210
20
GOTO 9
QUA >aUALF(J,KtFl,KK) * F
IF(NBOd) .£0. I) GOTO 9
If(fl) 7,7,8
TOTSO(K) • TOTSO(K) - OUA
GOTO 9
TOTSI(KJ»TOT»ItK) *
SALT3(K}«SALTS(K)
1F(J .E0.55) OUA"
TTStJ.KJ * T7S(J,K) * QUA
6«F (!,»() « OUA/F
CONTINUE
IF(J .ME, 53) FT • FT+F
IF(101 ,EO, 1) MRITE(6,2te) I, J, F,
FOffHATf 1H , 16. 16, F12.1, 12FA.2)
CONUNUt
OUA
-OUA
vs.vm
Hll* PHCCF(I) • AH) •
e(i)« ev»PF
-------
COM
UTLAK.FOR
FORTRAN V,18(142) /*! 2
-------
MAIN. UTLAK.FOR
FORTRAN v.tati«8)
29-JUL-74
10117 PAGE 1
O0e0i
SUBROUTINE PLOTHSCN,
C **•
VS)
0BB05
03387
00012
00017
00)122
03*24
00025
00026
30327
CI002A
«p03e
00031
00032
03(133
00035
00040
09042
90843
025144
00045
00949
80350
00051
«0052
C *•• THE PLOT ROUTINE MUST BE SET UP FOR THE PLOT AVAILABLE ON THE
C ••* COMPUTER BEING USED — THIS IS INCLUDED AS AN EXAMPLE OF PLOT SYSTEMS
C *•*
C «•• PLOTRS STOHES THE DUALITY AT THE END OF EACH TIHE PERIOD AND
C **• THEN PLOTS THE RESULTS AT THE ENO OF THE SIMULATION,
C •••-- ... « — ........
C ***
COMMON IT(20), 0(50), ITBAYUP.S?), NTRIB(ie), FLOMSC 68,52},
2 OF( 60,1?, A), IONSO?), CUF!N(ia,12), STAGE(15), ARCA(11,1S),
3 VOL(11,15), P«EC(18,52), EVAP(ie,52), NBDCI0), ITNA(10,30),
4 IBAYS(lt), SALTS(IS), DELV(ll), TITLEClS), NAHE8(tl,2),
5 INMIX(ta), BnF(10,52), TOTSIC12), TOTSO(12) , 5(11), IBTA(10),
6 TTf(M), TTS(60,12), IIOSC7),
7 NIONS, NOPO. INT , NI, NBAVSf IT1, IT2, TP, TE, TO, I90F, SOF,
6 VOLPF, PVnR, OOF, FT, VOFS, 101, TIMtF
DIMENSION OSL(46), OSP(4B), 050(48), XNAL(4B), XNAP(4B), XNAG(48),
2 CAL(4B}, CAP(4B), CAG(OB), XHGL(4B), XHCP(48), XHGG(4B),
3 XKLC4A), XKP(48), XKR(48), CLL(4B), CLP(«8), CLG(«8),
« HC03LC48), HC03P(C8), HC03G(B8), S04L(4B), S04P(4B), S04G(48),
SXN03LC48), X'403P(4B). XN01G(4B), P04LC4A), POaP(«8), PO«G(fl8),
S FL(48), FP(4A), FG(4B),
6 TOTVOL(48), XH(4B), NAH£l(b), NAHE2(6), NAHE3(6),
7 NAHE«(b), NAHES(6), NAMES,(6), NAHE7(6), NAHEB(6), NAHE9(6),
A NAHE10C6), NAHElt(6), NAH£t2(6), NAME13(fc)iALTl(«8),ALT2C48),
9 ALT5(4d)
DATA NAMEl X»OISS','OLVE»,'0 SO',»LIDS»,'.MC/»,'I. «/,
2 NAME2 /'SOOI',*ll« I','ON
3 NAHE3 /'CALC'.'IUH »,»ION »
4 NAMEfl /'HAGN'.'ESIU',** 10*
5 NAHE5 /'POTA','SSIU',*H 10'
6 NAHEb /'CHLO'.'RIOE',' ION'
7 NAHE7 /'BICA'.'RBON'.'ATE '
8 NAHEB /'SULF»,'AT£ »,'ION •
9 NAHE9 /'NITR'.'ATE »,»CONC'
X NAMEia /*PHnS','PHAT»,'E AS
NAHE12 /'LAKE',' LEV,'EL.
/'TOTA'.'L LA»,
•—HG*,'/L
'—MG','/L
»N -*,»HG/','L •/ ,
•—H»,»C/L ',' '/,
'AS C»,'AC03',*"HGL'/ i
•—NG',VL ',* '/,
' AS *,'N—H',»G/L
F'.'EET ','-HSL'/i
V,«OLUM»,'E--
OSLC*<)
OSP{N)
OSG(N)
XNAL(N)
XNAP(K)
XNAG(M)
CAL(N)
CAP(N)
CAG(N)
XMGL(N)
XHGPtN)
XHGG(N)
XKLCN)
CGFIN(3,i)
COFIN(1,2]
CQFINt3,2)
COFIN(1,3)
COFINC2.3)
CQ?IN(2,4)
COFIN(3,4)
COF:N(l,5)
142
-------
PLOW UTLAK.FOR FORTRAN V.1BU42) /HI 29-JUL-74 10117 PACE
00053 XKP(N) • CQFIN(2,5)
XKG(N) • CGF1NCS»5)
CLL(N) « CGFIN(t,6)
CLP(N) * CQFIN(2,6)
MB57 CLG(N) • COFINC3.6)
0005(1 HCOJL{N)s CQFIN(1,7)
00059 HC03P(N)m CCFIN(2,7)
00069 NC03G(N)« COFIN(3,7)
00861 SOat(N) • CGFIN(1,B)
S04PCN) i
00064 XN03L(N)c COFIN(1,9)
00866 XN03r.(N)« CQFIN(3,9)
10868 PO«P(N)> CQFIN(2|ie)
00969 PO«G(N)« COFIN(3,10)
00870 FL(N)» COFINCl,!!)
•3«71 FP(N)« COFINC2,in
•0872 FG(N)« COFIN(3tll)
98073 ALTl(N) • 5(1)
10074 ALT2(N)»S(2)
•0875 ALT3CN) « S(3)
•8076 TOT VOL (N) • VS
00877 XM(N) • N
0087S IF(N ,fcO.(NI+l))GO TO 10
80?79 RETURN
•06AP 10 MRITE(b«20)
oenat oo is n«i|NjoMs
008B2 I'lONSdU
00283 15 IT(I)*999
08(I84 NINT*Nl«l
em* 20 FORHAT(lHl)
0eO«6 25 FORHATUH , fc0X,'LEGEND— MAIN LAKE AAAAA», /, T0X, 'PROVP BAY B98
008S7 2BB*,/,70X, 'GOSHEN BAY CCCCC ' )
NH.OS
IFtOSG(N) ,GT, 190B.) NH«1M
80091 IF(IT(1) ,NE. 999) GOTO 40
•8092 CALL XrPLTXCl,,,S,0,,«0.)
0809] CALL XVPLOT(N,NH,M,60b,XM,05L|OSP,03G)
089194 WRITE(fe,30) NAME1
00895 30 FOBMATtlHp, 38X, 6A4)
08896 WRITE(6,?5)
01997 HRITE(b,2(Iil) TITLE
80096 200 FORMAT(|H ,1?X, 1SA4)
•0899 «HITE(h,2B)
00100 40 XF(IT<2) ,NE. 999) GOTO 50
0010! CALL XYPLTXd.,,5,0.,5.)
•0102 CALL XVHLOT(N,NH,M,606,XM,XNAL,XNAP,XNAG)
00103 NRITE(6(30) NAME2
80104 bRITE(6,25)
•0185 MRITE(6,200) TITLE
143
-------
PLOTRS UTLAK,FOR
V.1B<1«2) /KI 29«JUL-74
10117 PAGE 1-2
00iob
03107
08108
P0109
B0ll«!
0)0112
03113
92114
P2115
00116
H0117
03118
03119
00120
00122
00123
P012Q
00125
00126
00127
00129
03130
00132
70133
W0155
OBlSfe
W01J7
02138
02139
00140
02142
t»ei«3
H0144
00145
00146
00147
P8J48
3B149
00150
(10134
00195
00156
001S7
00)58
SO
b>
70
60
90
1B0
110
120
1K1T(3) ,NC. 999} 6QTO 63
CALL xvpLTxci.,,5,0., 3.)
CALL XYPLOT{N,NH,f1,68bfXH,CAL,CAP,CAC}
*«HTEt«»,3J!) NAMES
WHlTE(t,200) TITLE
URITE(6,2a)
IF(IT{4) ,NE. 994) GOTO 70
CALL XYPLTXd., ,S,»,,
kKITEtfe.30)
fKITE(f>,25)
WalTE(b.2a0) TITLE
IF (IT (5) .NE. 999J GOTO 00
CALL XTPLTX(1,,.5,0,,1.)
CALL
W«ITE«., 3B5 NAMES
URITE(fr,2B0) TITLE
IFUT(fc) .ME, 999} GOTO 90
CALL XYPLtX(l.,.5,0.,ie,)
CALL XVPLOT(N,NH,n,*e6,XM,CLL,CLP,CLG)
MRITECb.SCI) NAHE6 '
M*HE(t>f25)
URITE(b.?0e) TITLE
IF(IT(7) .NE, 999) GOTO 100
CALL Kr?LTX{».».5,0,,10.)
CALL XVPLOTtH,NH,M,606,XM,MC03L|NC03P,HCOJG)
HKITE(b,30) NAHi.7
MRITE(«,25)
HRITE((>.200) TITLE
IF(IT(B1 .ME, 999) GOTO 110
CALL xrPLTX(l.,.5,0.,l0J
CAUL XYPLOT(N,NH,HI606,XHIS04L»904R,904(»)
HRITE(b,30) NAHE8
MRITE(b.25l
HRI1E(fa,2P0) TITLE
HRITE(6,20)
ir(IT(9) .NE. 999) GOTO 120
CALL XVPLTXCI.,,5,0,,,1)
CALL X¥PLOT(N,Nh,M,bafc,XM,XN03L,XN03P,XN03C)
MRITE(b,30) NAKE9
MRITE(b,25)
MRITE(6,200) TITLE
MRITE(b0)
IF(IT(13) .NE. 999) GOTO 130
CALL XYPLTX(1...5,e.,.l«)
CALL XYPLOT(N,NM,M,fc06,XH,PO«L,P04P,POQG)
144
-------
M.OTHS UTLAK.FOR FORTRAN V.ltiU42) /KI 29-JUU-74 Idtll PA&t 1-3
88159 WRITC(6,30) NAHE10
V8161 WHtTC(f>,2e0) TITLE
8B162 WRIT£(b,?B)
f0165 130 IFUT(H) ,NE, 999) GOTO 140
IH164 CAtt XYPLTX(t.t.S,d...2)
10165 CALL
•0166
»8t6« WRlTECb.ZOP.) TITLE
*etTt» 140 CALL XYPLTX(l.r.5,4P00ein,J5PSi0,}
10171 CALL XYPLCT(N,5B,H,6B6,XM,TOTVOL)
88172 waiTE(fc,30) NAME13
(8173 KHITE(6,238)J TITLE
>Bt?4 WHITE(8,30)
88175 CALL XYPLTXCl.,.5r«a8a.,.2J
(U176 CALL XYPLOT(N,53,M,6eb,XM,iLTl,ALT2,ALT3)
JB17T «HITE(6,3i9) NAME12
8B17A WRITE({,,2e3) TITLE
19179 HRITEfb,2B)
••lea RETURN
VB1B1 END
•8182 f
145
-------
MAIN, UTLAK.FOR
FORTRAN V,18(142) /KI 29.JUL-74
10117 PACE
00007
00f*l9«
00SI09
00010
(189II
00012
M0013
00014
00020
00021
00022
00023
"0024
00025
00027
0002A
00029
00030
00051
P003?
00033
00034
00035
0Z036
00037
00838
FUNCTION QUALF(J,K,F1,KK)
00001 C •**
00002 C «.*————.———.—...——-....-.—.———....———.——.—...—.—.
00003 C • •* OUALF RETURNS THE QUALITY OF TRIBUTARY J, DUALITY FACTOR K,
00004 C **« AND FLOURATE F, LINEAR INTERPOLATION IS USED BETWEEN POINTS
D0005 C *ft* STORED IN THE ARRAY OF,
C m*—» — •«• — •• — •••••••••••••»••• ••«•»_ »•••»•••••••••»_•••••«•»•*•»••»«••••**••»•* «WWW»WMOTMW«
C • •«
COMMON IT(20), 0(50), ITBAV(t0,50), NTPI6C1B), FLOMS( 60,52),
2 OF( 60,12, B), IONSCI2), CCFIN(10.12), STACE(IS), AREA(ll.lS),
3 VOUCH,lb), PREC(10,52), EVAP(10,52), NBO(IB), ITNA(1B,3B),
4 IBAYS(ll), 3ALTSU5), OELV(ll), TITLE(15), N»HfcBCll,2),
5 1NMIXU0), BHF(10,52), TOTSK12), TOTSO(12) , S(ll)i 1BTA(10),
t> TTF(6(t), TTS(60,12), ITOS(7),
7 NIONS, NOBO, INT , NINT, NBAVS, ITl, IT2, TP, TE, TO, JBOF, SOF,
« VOLOF, 8VD8, OOF, FT, VOFS, 101, TIMEF
000|fc C ••• THIS SUBROUTINE DETERMINES THE DUALITY FOR TRIB J, DUALITY FACTOR K FROM
00017 C ••• THE TABLE OF WHICH CONTAINS FLOW-DUALITY PAIRS.
0001* DATA IX/B/
9
10
12
100
IS
20
30
IF(F1 .LT, 8.) F.-
00 }
IF(UF(J,K,M))12,12,10
CONTINUE
IX«IXtt
JFCIX ,CT, IS) GOTO 15
HtiITE«.,ie0) J,K,F
FORMAT ( IN ,'***THOUBLE— FLOUNATE NOT FOUND IN FLOW-DUALITY TABLE
i— THIB»»,I3, ' O.F.-M3, • FLOW-', Fa. 2)
OUALF«(|,
CO TO 3D
X» OF(J,K,M) » OF(J,K,M-2)
IFCX ,LT, l.E-53 GOTO IS
X»(F-QF(J,K,M-2)) / X
OUALF • OF(J,K,«-1) • X«COF(J,K,M*1)
RETURN
END
5
146
-------
•IAIN. UTLAK.FOR
FORTRAN V.lB(i42) /KX 29-JUL-74
10M7 PAGE
MBB1
two?
SUBROUTINE SAV(KEY)
C *•*
(IBM 8
IW09
•0310
Mm
98012
*B015
MBJfc
TO( IBOF, SOF,
•Bats
M»2t>
•0fi2 1
•8P2S
•0025
•4026
mnar
•0B29
BZBJ2
•0MJ
••(•34
C *** SAV -• WHEN KEY»B THE AREA AND VOLUME OF EACH BAY AND THE TOTAL
C ••* LAKE ARE DETERMINED, WHEN K£Y«a THE STAGE IS DETERMINED FOR ThE
C ••• TOTAL LAKE (BASED ON THE TOTAL VOLUME), THEN THE DELTA VOLUME
C *** (OELV) INTERFLOW BETWEEN THE MAIN LAKE AND EACH OF THE BAYS IS
C *•• DETERMINED FOR EQUILIBRIUM (UNIFORM STAGE) THROUGHOUT TH£ SYSTEM,
COMMON IT(?01, 0{5fl3, ITBAV(1B,50), NTRIB(ti5), FLOWS(
3 QF( 6?, 12, a), IONSC12}, C(*FIN(1B,12), STAGE(tS), AREA(||,15),
3 VOLdl.15), PK£C(ia,5?), EVAP(ia,52), NBDC10), ltNA(}0,5B),
4 IRAVS(ll). SALTSU5), OELV(ll), TITLE(15), NAHE8(Hi2),
5 I^MUCIB), 8MF(l0,5a), TOTSKJ2), TOTSO(I2) , 5(11), IbTA(lQ),
i> TTF(bP), TTS(ba,12), ITOSC7),
7 NIONS, HOBO, INT , MINT, MBAYS, in, iT2t TP, TE,
6 VOLOF. BVOd, QOF, FT, VOFS, 101, TIMEF
COMMON /STVL/ A{U), Vtll). VT(tl), Ptlt), E(Jt)
NX«NSAYS * 1
IF(KET .EO, t)GO TO SB
00 4S KK»1,NX
L«I8ArS(KK)
no 20 J»a,is
IF(S(L) - STAGE(J)) 30,33,20
CONTINUE
W«irE(».,J08) S(L), L
FORMAT (//1H ,'.». TROUBLE — LAKE STAGE C,F10,2, ') NOT IN STAGE-AREA
*A. VOLUME TABLE— -BAY', 13)
STOP
X • (SU)-STAGEU-U) / (STAGE(J)™STAGE{J-1))
A(L) « ARE*(L,J-1) • X«fAKEA(L,J)-A«EAtL(J-n)
VIL) • VOLCL,J-l) * X*(VOL(L|J)«VOL(L,Jtl»
CONTINUE
RETURN
W«37
•0B38
90039
00 55 I«2,N)f
L»IHAYS(I)
B8B42
. IBB41
•8845
68844
MB48
; BI049
•Bast
v taesz
20
30
45
50
XF(NRO(L) ,EO. 1) GOTO 55
V{11)«V(J1) * V(L)
55 CONTINUE
C •** INTERPOLATE TO GET POINT X IN TABLE FOR THE TOTAL LAKE AND OIKEO BAYS
00 72 LL«t,NX
LM8AYSCLL)
IF(L,NE.1I .AND. NBDtD.NE.UGOTO 72
56 00 6 PI J«2,15
IF(V(L)-VOLU,J)) 65,65,60
60 CONTINUE
WRITE(6,118) V(L)
tl0 FORMAT(/1H , ••••TROUBLE— LAKE VOLUME CALCULATED--', FIB, Z, ' AC fT«L*RGER
2~ LARGER THAN FOUND IN VOLUME TABLE')
STOP
147
-------
SAW
UTLAK,FOR
FORTRAN V.1BU42) /KI 29-JUL-74
10117 PAGE 1-1
Q00S3 65
»• (W1) * X*{AREA(L,J) > AREA(L,J»D)
IF(Stlt) ,LT( 30F*,B2) GOTO 72
IX>IRAVS(2)
IF(IAOr) 67.67,66
K»tBOF
woior - vein
•.OELV(K)
V(ll) » VOLOF
KRIUtfc.iaP) K. DELV(I«)>
FORMAT (1H3, 5X, 'OVERFIOM FROH MAIN LAKE TO DIKED
2 F9.1.' AC FT OU3IN6 THIS PERIODS 13)
VOF5«VOFS - OtLV(K)
0« Vtm - OELV(K)
00 650 111*2,15
IF (o - VOUK.III)) 655,655,650
CONTINUE
MHITE(6,10«I) S(K),K
X • (0 -
S(K) • STAGE
A(K) • AREA(K,III»1)
0 • -OELV(K)
GOTO 69
0 • V(tl) - VOLOF
V(ll) • VOLOF
NKITE(f>,!25) 0
FORHATCtHO. 5X, 'OVERFLOW FHON THE LAKE THIS PEH100 IS', F9,l,
2 *AC FT»)
VOFS'VOFS * 0
OELV(IX) • 0
00 68 IIM.MON3
(VOU(K,III)-VOL(K,lII-t))
X«(STAGE(III) - STAGE(III-l) )
X*(AREA(KfIII) - AREACK, III-l) )
TOTSO(I) • TOTSOtI) * COFXN(IX,I)« DELV(IX)
ICM
V(IX) • V(IX) * 0
Q(IX) * V(IX)
GO TO 56
CONTINUE
X»X1
00 80 I»2,NX
J«J1
L*IBAYS(I)
IF(N90(L) ,EQ. t) GOTO «B
••• DETERMINE THE INTERFLOW VOLUME FOR EACH BAY. POSITIVE DELV MEANS
••• FLOWS MUST LEAVE THE BAY FOR EQUILIBRIUM TO BE ACHIEVED,
OELV(L) • DELV(L) + V(L) -CVnLCL.J-U * X« (VOL (L, JJ-VOLU, J-l) >}
A(L) • *REA(l.J«l) • X*CAREA(L,J) « AREA(LtJ»l))
CUNTlNUb
RETURN
END
r
148
-------
MAIN. UTLAK.FOR FO«T»AN V, 16(14?) /KI 29-JUL"7« 10U7 PACE t
FUNCTION PRECF(X)
a0aai c **•
t!00ii»2 C *•* — -"- ——-.-•.-——.-—--.—.---....— — ..----....—..-. ——
CI0JI03 C *** HRtCF RETURNS TMt PRECIPITATION FALLING ON BAY I DURING TIME
c *•* PEKXOD INT,
C »**——— — ....—_........._. — ...._.........-...._-_..............
C »*«
COMMON IT(2B), QC5P), ITBAV(10,5ft) , NTRIBC13), FLOWS( 60,5?),
B0SIKB 2 QFC 60,12, »), IONSO2), COFIN(ie, 18), STAGEC15), AREA(J1,15),
S YOUll.tbl, PRtC(»e,5a), EVAP(te,52), NBD(IB), ITNACia,3B),
4 IHAVS(ll), SALTS(IS), OELV(U), TITLE(15), NAM£B(11,2),
s iNHixaa), 6MF(tB,sa), TOTSKU), TOTSOCIS) , sen), I&TA(IPI),
00(112 6 TTf(fcB), TT$(60,}2), IT05C7),
D0at3 7 NIONS, NOflO, INT , NJNT, MBAYS, IT1, IT2« TP, TE, TO, JBOF, SOF,
« VOLOF, BVD8, QOF , FT, VOFS, 101,
RETURN
40917 END
00018 F
FUNCTION
C •**
C t**—--—--.------.—---..-----—.-——-—-—.--------.-.-------.--
H0023 C ••» EVAPF RETUHNS THE EVAPORATION FROH BAY I DURING TIME PERIOD INT
9BBP* C •••-- ----- —.,_......„....._...,..., --- .... --- „___..„...„..—.
c •**
COMMON ITC20), 0(50), I T8AV (18,50) , NTRIB(te), FLOWS( b«,52),
D0»07 2 QF( 6P.12, B), IQNSCt?), CQFIN(10, 12) , STAGEC15), ARE/HI, 13),
K00JS 3 VOL(11,1S), PREC(10,52), EVAP(ia,52), NBO(IB), ITNA (JPI, 33) ,
4 ia*vs(in, SALTSCIS), oEuv(n), TITLE(IS), NAMtB(u,2),
5 lfc»*IX(10)t HMF(10,52), TOTSK12), TOTSO(12) , S(H)t
6 TTF(6t»), rT3«.fl,12), ITOSC7),
(IB012 7 NIONS, NOBD, INT , HINT, N6AY3, IT1, IfS, ff, TE, TO, IBOP, SOF,
B081S 8 VOLOF, BVOB, OOF, FT, VOFS, 101, TIMEF
»B01« EVAHF.EVAP(I,INT)
40015 RETURN
aaaib END
00017 3
149
-------
MAIN. UTLAK.FOR
FORTRAN V.18(142) /HI 29-JUU-T4
tans PAGE i
SUttROUTINE TAPCdO]
C *••
00002
00003
00004
00009
9000B
00310
00011
08812
00013
98014
98*17
H3018
30
0802*
90021
00*22
00024
00025
90027
00028
08029
90030
«0031
000)2
"8035
P8034
00935
00936
90037
83B35
• 8839
09040
50
60
•*• THIS SUBR, WHITES AND READS THE INDICATED DATA FROM TAPE UNIT 1,
•••...........-......-....................-...•.••.........•.•'.•••'I
• ••
COMMON IT(2B), C(5B), IT8AY(10,50), NTKIB(IB), FLOWS( 60,52),
2 UFC 60,12, 8), IONS(12), CQFIN(IC,12), STAGE(15), AREA(It,15),
3 vnutl,15), PRtCtie,52), EVAP(10,52), NBD(IB), ITSAC10.33),
4 IBAVSCU), 5ALTSC15), DEl_V(U), TITLE(15), NAHEB(1|,2),
5 IKrtlXdO), BHF(10,52), TOTSI(U). TOTSOC12) , S(ll), IBTAC10),
6 TTK*d), TT9(60,12), ITOS(7),
7 NIUNS, NOBD, INT , NJNT, H3ATS, IT1, IT2, TP, TE, TO, IBOF, SOF,
« VCLOF, BVOB, OOF, FT, VOFS, 101, TIHEF
IF(IO ,EO. 1) CO TO 58
REWIND 1
00 30 1*1,60
bKITE(l)
CONTINUE
MHITE(1)((PHCC(I,J),I«6,10),J«I,59)
WHITE(n((tVAPtI,J),I«t,5),J-l,50)
hRITE(l)((EVAP(I,J)>I«6,10),J>l,5B)
NHITE(l) STAGE, AREA
WHITE(t) VOL
ENO FILE 1
RETURN
REWIND 1
00 69 LM.6B
REAOC1) t.(FLOWS(I,J),J>i,52)
READ CD ((QF(I,J,K),J>l,t2),KM,ie)
CONTINUE
REAO(1)((PREC(I,J),I*1,5),J«1,50)
«EADC1){(PHEC(I,J),I»6,10),J»1,50)
«EAO(l)f (EVAPtl.J), 1-1,5), J»l, 53)
READ(l)((EVAP(I,J),I*6,10),J-lr50)
•REAO(l) STAGE, AREA
REAO(l) VOU
RETURN
150
-------
ILLUSTRATIVE WATER QUALITY SIMULATIONS
System Simulated
A computer printout of the simulation of water quality in Utah Lake is
included in the following pages. The simulation period is from July 1,
1970 to July 1, 1973. This simulation is included here to illustrate
the necessary data input as described earlier, and to display the
simulation results. Detailed descriptions of the Utah Lake setting,
hydrology, and water quality, as well as discussions of these simula-
tions, are found in the main report.
Simulation of "Natural" Lake Quality
This simulation is for the Utah Lake system as it existed during the
July 1, 1970 to July 1, 1973 period. As discussed in the main report,
extensive analyses of the measured data and several preliminary simula-
tions were used to refine the estimates of mineral spring inflow
quantity and lake evaporation necessary to achieve a reasonably good
simulation of observed lake quality.
Data Listing -
A listing of the data cards required to run the simulation is given on
pages 152to 166inclusive immediately following. Each line contains
the data found on one data card. Interpretation of the data is possible
by referring to the data coding instructions in the User's Guide pre-
sented earlier in this section.
Results of Simulation -
iThe complete computer printout of the results for the simulation is
;given on pages 167 to 234 inclusive.
151
-------
mil
12111
UTAH LA« — JULY 1970-JUUY !973-->
36
4486.56
1311
1
1411
i
i
i
1
t I
I
2
3
4
5
7
«
10
11
12
1
2
3
4
t 5
t 6
S 7
5 8
? 9
8 10
i 11
! 12
t
2
3
4
5
6
7
8
10
11
12
2
140*
50.
55.
2«.
2301
193,
u*
0.
a.
590.
70.
60.
«5.
10.
160.
150.
.15
1.
0.
a.
1R50
180.
55.
55.
24.
30$).
190.
265.
*j»3
0.
e.
10
60.
16111
3123
MAIN UK PROVO B GOSHEN B
17111
2 36 .BUS. 005 .BBS .005 .002 .B02 ,C02 .082 *B02 .005 .005 .005 .075 .005
.005 .ans .«a2 .RP2 .eez ,092 .002 .005 ,005 ,005 ,005 ,005 .BBS ,005 ,002 ,e«2
.092 .d»2 ,002 .005 ,005 ,005-. 01
3 36 .15 .15 ,15 .15 .1 .1 ,1 ,1 ,1 ,15 .15 ,15 ,15 ,15
,15 .15 .1 .1 .1 .1 .1 .15 .15 .15 .15 .IS .IS .15 ,1 .1
.1 .1 .1 .15 ,15 ,15 i-.Ol
16111
1 1
152
-------
1, 1. 1.
38888
22222
1 39 1 2 3
IS 16 17 18 19
49 53 51 53 54
2 17 31 32 33
45 46 47
3 3 52 57 58
g&aea
33333
1 53
1 1 3 3614.
8, 4, 15. 19. 0.
a, 0. 0. 0. 0,
2 1 3 3646,
8, 5, 23. 0. 0,
0, 0. 8. 9, 0,
313 360,
413 3624.
38, 35, 22. 26. 31.
e. «, 0. a. 0,
5 1 3 3623,
22, 2. 19. 15. 29.
9, e. a, «. 0.
61 3 36138,
159, 115. 215. 63. 64.
B, 0. 3, 8, 0,
T 1 3 3603,
68, T9. 135, 194. 191,
8 1 3 36353.
276, 93. 29». 328, 343,
8, a. 2, 0. e.
913 361237.
1387,997. loas,1558,l«18.
1666. 1722. J 5*6.1722. 1968,
IB I 3 3*237,
215, 207, 22«. 217. ?0a.
e, B, 0, 0, 0,
11 1 3 3M63,
259, HI. 107. 76. 74,
133. 135. 103. 130. 130,
12 1 3 3660,
73. 96. 121. 114. 93.
a. 0. 0. o, 0.
13 1 3 3658,
63, 60. 58, 57. 58,
8, 0. a, 0, e.
14 1 3 3M48,
158, 231. 167. 159, 133.
e. 0. 0. o. 0.
15 1 3 36157,
123, 106. 158, 178, 163.
«. a. 0. a. 0.
16 1 3 36143,
4
20
55
34
33.
e.
0.
25.
0.
0,
0.
Q
0
28.
32,
0.
13,
e.
B,
126.
70.
0.
62,
97.
Q
117.
310.
P.
678.
1311.
1785.
236.
Ififl,
0.
129,
77,
100,
56.
72.
0
67,
619,
0f
163,
110.
8,
156.
151.
pi
73.
5
21
56
35
57.
0.
0.
24,
0.
0*
0.
23.
31,
0.
37.
37,
0,
234.
74.
0,
37.
92,
365.
295.
0.
1240,
1291.
11P7,
275.
178,
a.
95,
70,
is?.
99,
49,
0,
45.
61.
0.
153.
105,
0.
153.
129.
is
tie.
6
22
59
36
26.
0,
0.
45.
0.
0,
0.
ffl
32.
35.
0.
7,
21.
a.
69.
63.
0.
40.
58.
fit
436.
230,
B.
15B7,
1 1H«,
1368.
262.
16.
K,
83.
66,
150,
BP,
3*.
H,
52.
5*.
0,
155.
69.
0,
195,
115,
0.
119,
7
23
63
37
0.
0.
e.
f.
0.
49.
33.
38,
20.
17,
55,
55,
29,
30.
376,
178,
1642.
1168,
213,
213,
74.
7B,
61.
50.
44,
68,
126,
86,
174,
121,
99.
e
24
38
0.
0.
0.
0.
0.
a.
33,
23,
16.
12,
67,
60.
34.
S7.
383,
214.
1474,
916,
185.
274,
74,
92.
54.
10?,
26,
83,
109,
121.
155,
135.
93,
9
25
39
0.
25.
0.
68,
0.
pi
33,
33.
21.
20,
73.
112.
75.
179.
404,
406.
1519,
375.
191 ,
325.
74,
104.
60,
168.
23.
105,
I20t
U9.
156.
150.
Ill,
10
26
40
0.
8,
0.
1.
0.
60,
33.
39,
30.
32.
66,
146,
47,
74,
314.
351.
1189,
1154,
175.
233.
76.
164,
47,
178.
21.
173.
102,
168,
138.
177,
111,
11
27
41
0.
0»
0,
0.
0.
0,
34,
e,
]4,
0.
64,
0.
40,
0.
274,
0.
1207,
1537,
181.
B.
80.
129,
35,
0.
23,
0,
109,
e.
156.
0.
122.
12
28
42
17.
0.
0.
0.
7,
0.
32.
18,
0.
73.
0,
81.
Pt
316.
0.
1066.
1168,
IBS.
O.
80.
124,
61.
0.
25,
0,
126,
0.
163,
e.
124.
13
29
43
16.
0.
?,
0.
59.
0
34.
0.
23,
0.
104,
0.
102.
B.
327,
0.
977,
1389.
200,
0.
117,
138,
136.
0.
09.
0.
125,
0.
191,
0.
146,
14
43
44
3.
0.
19,
0,
37.
0
35,
0,
67,
0,
106,
0,
65,
0.
392,
O.
1363,
1875,
269,
P.
215,
143,
154,
0,
531,
a.
226,
0.
159,
a.
152,
W, 183, 93, 115, 98, 94. SB, 71. 90. 83, 121, 114, 0, 0, 0, 0,
a. a. 0, 9, 0, 0, B,
153
-------
17 I 3 36001, 255. 356. 319, 222. 156. 158. 131. 159. 235. 368. 472.
348, 377. 428. 37ft, 249, 171. 141. 123. 117, 179. 375. 5B6, 0, 0, 0. a,
e. a. 0. P. (i. P. 0. P.
18 1 3 361444,1569,2686.2402.2C9B1.1866,2115,1725,1819,1974,1673,1519,
1374,1678.2693.24(rfe.2020.1663.1654,1377.1353.1452,11SQ.14 IB,1S99.1S68.241C.2767.
2350,1875. 1783, 18115,2329. 1577,1 Baa. 1735.
19 i 3 36t. 3. e, 0. e. 0. 0. 0, 0. e. e. e,
t, 3, e, a. a, e. e. e, e, 6. 0, e, e. a. o, 0.
B, a, 0, B, 0. B, e. e,
20 1 3 361642,2<<27.1849.1910,2170.2165,2196,1741.|9|0,2C!06.19in,1825,
1933.1930.2538.2266.2289.2440.2723.2377,2541,2509.2440,2313,1745,2372.2313.2593,
2602.2579.2782.2250,2271.2063,2265,2425,
21 1 3 36(1. 0. 0, 8, 0. 0, 0. 0, 0. e. 0. 0,
o, 0. 0. e. o, e. 0. o. P. ^, e. 0. 0, a. o. e.
a., 0. 0. 9. 0. 0. «. 0.
22 i 3 36 e, e. o, 0, 0. a. a. 6, 6, «, 2, e.
*. 0. R. 0. 6. 6, 6. 6. 12, 30. 6, 0, 0, 0. 0, B,
0. B. 0, 0, 0, 0, 0. 0.
23 1 3 360, P, 0. 0. 4. 6. 6, 6. 6, 6. 5. 2,
«. 0. 0. 0. 6, 6. 6. 6. 7. 7. 6, 1, 0, 0, 0, 0,
0, 0. 0, a. 0. n, e. 0,
24 1 3 3612, 6. 11. 17, 20. 19. 22. 17. Ib, 15. 13. 13,
10, 13, It. 16, 21, 1«, Id. 15. 16, 15, 15, 13. 0, 0, 0, 0.
0, 0, 0. 0, 0, 0, 0, 0,
25 t 3 3667, 98, 59. S9, 82. 94, 119, 68, 85, 23, 72. 89,
107. 9B, 45. 66, 82, 19*3, 92. 73. 61. 54, 180, 78. 0, 0. 0. 0.
0. 0, 0, 0. 8, 0, 0, *.
26 I 3 36314, 313. 289. 252. 296. 217. 202. 199, 225, 217, 25?, 268,
262. 292. ?73, 245. ?2. 279. 29fi. 257, 265. 266. 312, 312. 310. 314, 3Z4, 295,
285. 295. 295. 2*6. 333. 313. 285. J2C,
27 i 3 3bt?lO,127ft.12eti.13691.1440.1420,15Ce.1480,1540.1450.1530,1320.
U1Q. 1270.1240.1363. 14q0,142(1.15(10, 1480. 1540, 1450. 1530.1320 ,1210,1270, 1240,1380,
1440.1420,1509,I4«fl.1540,1450,1530,1328,
28 I 3 367, 0, 28, 35. 68, 67, 182. 129, 79, *7, 47. 28,
17, 3. 52. 75. 122, 123. 111. IPi, 80, 12. 55. 23. 0. 0, 0, 0,
0, 0, 0. A, 0, 8, 0, 0,
29 i 3 36 1250 633 1220 95382070*23359192801717013310188*0!169019588
850 877 I12015de22322928235165281h288205771685416723a9437164a.732. 2C20.11400
13850140991 b29(*16aae 17138236804188219479
31 t 3 3678. 121. 164. 149. 177, 160, 116. 106. 119, }4J, 118, 66,
104, 100. 149. 137, 105, 109, 123. 1C4, 74. 89. 68, 65. 0, 0, 0, 0(
0, 0, 0( 0, 0. 0, 0, 0,
32 1 3 3649. 44. 44, 45, 42, 43, 43. 39. 43. 46. 47. 55,
42. 4S, 40. 42. 39, 42, 43. 40, 49. 42. 80. 125, 0, 0, 0, 0,
0. o. 0. *. 0, 9. 0. 0.
33 1 3 366, 6, 6, 7, 7. 7. 7. 1, 6. 6. 6. 6,
3, 6, 6. 6. 6, 6, 7, 7. 7. 7. 8. 8.. 0. 0. 0. 0,
AflHftdann
*34 i * 3 *36743, 722. 717. 669. 595. 410, 337, 269, 296, 358. 394, 702,
617. 354, 297. 470. 242. 224, 234, 224, 2(99, 321, 361. 321. 679. 710, 533, 429,
235, 191, 188. 204. 334, *>a2, 875, 1154,
35 t 3 369|, 92. 199, 118. 149. 132. 93. 99. 45, 65. 63, 75,
46. 54, 119, 211, 214, 133, 148. 35, CZ, 125, 141. 119. B. 0. 0, 0.
0. 9. 0. 0. 0, 0. 0. 0.
36 1 3 3632, 64, 138, 50. 26. 13. 40. 138, 25. 38, 76, 88,
25, 24. 6ft. 58. 26, 30. 31. 23. 25. 71, 25, 24, 0, 0, 0, 0,
B. 0. 0. 0. 8, 0. 0. 0,
37 1 3 3674, 64, 94. 93. 62, 63, 58. 54, SB, 75, 83, 72,
75. 60. 92. 95. 76. 55, 49, 35. 37, 60. 68. 69. 0. 0, 0, 0.
0. 0. 0. 0. 0, 0, 0, 0,
154
-------
58 I 3 36P67, 670. P14, 1041 , t II 8 ,1 {>4 1 ,95,689, 233, 85. 221, 4J6, J872,
1133.1156.1128,1137.1273.1167.693. 119.
48 I 3 3635J. 681, 2165,41 3P, 5320,SB13.68 IP,6313,997B,1386S!Zlbl 1912
593 53ft 173C 53«J 6359 72*9 T329 752510320 6926 6fll 736113, 1«9, 762, 4952,
W2a,64561,655B,573H.73B0,17a9pO(!«15H34 88,
49 1 3 366B, 69, 5b. 57, 53, 34, 32, 42, 04, 37, 35, 58,
ia, 54. 39. 05. 44. 70. 670, 670, 670, 67J, 670, 670, 670, t7Zi,
670. 670. 670. 670. 670, 670. 670. 670.
56 i 3 36673. 670. 670. 670, 670, 670. 670, 672, 673, 670, 672, 673,
'178. 670. 67B. 67U. 670, 670, 670, 670, 670, 670, 673. 670, 670, 670, 670, 673,
478, 670. 670. 670. 670, 67«, 670, 670,
57 1 3 38- 250. 253, 250, ?50, 253, 252, 253, 250, 252, 250. 250, 250,
258, 250, 253, 250. 250, 250, 253. 250, 253, 253, 253, 253, 252, 253, 250, 253,
259, 250, 250. 250, 250. 250, 253. 250,
155
-------
5» t 3 36 250. 250. 252, 250. 358. 250, 25P>. 258. 258. 259. 250, 250,
253. 258. 25». 259. 258. 25*. 250, 253, 250. 253. 25B. 253. 258, 250. 258. 258.
250. 25*. 258, 25«. 258, 253, 250, 252,
s« t 3 36 0, a. e. e. 0. e, e. 0. e. a. a. B,
a. a. u. B, a, a. B. 9. e. a, a, a, 3721,3416,4331.4929.
5134.5278.4980.107PSJ4912. 8153,36779173*4
88 I 3 36Qa<»3,4490,4787.5447.6149.6593.6784,6460,6937.6445.5791.«7BT.
449?.4493.4707,5447,6149,6593,6784.6463,6937.6445,5791,4787,4490,4493,4787.5447,
6149,6593,6784,6468.6937,6445.5791,47^7.
88S8B
44444
1 1
t 2fl 8
t 3 R
t 48 0
1 5
1 6
! 7
i a
t 90 a
l tea a
2 i
2 2
2 30 3
2 4B B
2 5 8
2 6
270
2 0
2 98 a
2 tea a
1
2
30 e
40 e
5* 8
ft
7B B
a
90 0
IH 8
2
38 0
ce 0
50 0 0, 1.8 .5 10.8 .8 3.0 9, 3,0
6
70 e
8
9
to
1
2
5 38 9
5 40 0 B, 20. ,25 20, ,5 47, 2. 47,
5 58 0
5 6
5 70 0
S *
S 90 0
s iae a
t.
t.
0
*•
t.
»t
a.
a.
i,
t.
a.
a,
a.
i .
* w
0,
a.
a.
a.
i.
t.
*.
a.
t.
a.
i*
"i
a.
t.
e.
a.
0.
t.
0,
t.
a.
*•
1,
t.
a.
«•
a.
e.
a.
t.
a.
e.
3d*.
S<8.
8.56.
15,
12.
2*5,
72.
1,06
315,
14.
5*,,
13.
fc.
225.
7?.
.4
,98
420,
52.
72.
46.
51.
428.
99.
t,04
.««
44.
t«0.
2».
1.8
39,
300.
97.S
1,76
.*«
663.
23.
68.
20,
1.8
18.
285,
«2.
."
.as
2,
2.
1.
1.
2.
1.
2.
1.
2.
2.
1.
1.
2.
1.
2.
.«
1.
2.
2.
1.
t.
2.
It
2.
1.
2.
2.
1.
1.
.5
2.
1.
2.
2.
t.
2.
2.
1.
,25
1.
2.
1,
2,
1.
1.
3*>a,
50.
56.
15.
12.
225,
72.
1.F8
3t5.
1«.
56.
13.
6.
225,
72,
,a
.e*
428,
52,
72.
46,
51.
420.
99,
1.04
.44
«.
10*.
28.
10.8
se.
3P1K.
97,5
1.76
,04
660.
28,
6B,
28,
1.8
18.
285.
«2.
.72
.08
a.
2.
2.
2.
2.
2.
2,
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2,
2.
2,
.8
2.
2.
2.
2.
2.
2.
2.
,5
2.
2.
2.
2.
2.
363.
50,
56,
15.
12.
225.
1.08
1«.
56.
13,
225,
.«
.08
420.
5?.
72.
Ifc,
51.
4?0,
99.
1.B4
44,
tee.
28.
3.0 9.
38.
sea.
97.5
.04
660,
20.
60.
«r, 2.
1.8
285.
«2.
.72
.08
156
-------
5
It
IB
te
18
t V
18
18
IB
IB
18
It
n
11
U
11
n
n
u
11
u
i
2
30
40
50
6
70
a
10
t
2
30
40
50
6
70
8
9
10
» **
1
2
3
40
5
6
70
a
9«1
f da
1
2
3H
40
5
b
70
a
9
130
1
2
3
4
5
6
7
a
9
10
l
2
3
4
5
6
7
B
9
IB
it
9
0
0
a
9
0
0
B
0
0
0
0
0
0
0
a
0
0
u
0
0
0
1.
1,
0.
0.
0.
1.
0.
1.
0,
i!
i.
0.
«.
1.
0.
1.
0.
1.
1.
0.
0.
1.
0,
1,
O.
1.
0|
0.
0,
0,
0.
1.
0.
1.
0,
0,
0.
0f
0,
P.
0.
1.
0.
0!
0.
0.
01
0,
453, 2,
^2! 2.7
3fi, .9
7.B 3.
30. 20,
435, 3.
7a. 20.
2.4 1,5
.12 3.
6VZ, 20,
4i», 2,
68, 4,
42. 4.
368, 4)
82, 2.
1.34 7.
P8 4
55*. 2,
44 , 20.
72, 6.5
43. 6,5
7.6 2,6
33. 22,
375, 6.5
72, 2«.
3.15 6.5
663. 20,
24. 50.
96. 35.
38. 35.
4.2 53.
2*. 50,
315. 35.
93. 4t).
1.52 20,
.2 35,
420, 40.
17. 9,
90« 9,
28. 6.
15. 9.
365. 6,
90. 9,
2.16 6,
,04 6.
540, 20,
95. 6.
69. 6.
24. 6,
a. 6.
156. 6.
317, 6.
75, 6.
3.9 6.
17,3 6.
450, 2,
84) 3.P
38, 2.7
7.8 5.
3f ,
4P5, 5.
72,
2.4 2. 7
.12 5.
662,
4P, 7,
64, 7,
42, 7.
17. 7.
360. 7.
82, 7,
1.04
553. 7,
44,
72, 9,
40, 9,
7.6 6,
33.
375. 9,
72,
3.15 9.
66)9.
24,
96. 50.
38. 50.
4.2
20.
315. 53,
90, 52,
2.72 28,
,2 53.
420. 50,
17,
98,
28, 9,
15,
345, 9,
90.
2,16 9.
.04 9.
540.
95,
69.
24,
8.
156,
317,
75,
3,9
17,3
458.
84, 5, 8ft,
22. 9.B 22, 5,
7.8
435.
a. 68 9, 2,88
.12
4f>,
64.
42.
17.
360.
82.
(•8
550.
72,
40,
10.9 10, IB, 9
375,
3,15
96,
38.
315.
90.
1,93 50, 1,92
,2ft
420,
28.
345,
2,16
,04
157
-------
11
IZ
IZ
IZ
IZ
IZ
IZ
j2
12
12
12
13
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
15
15
1«
IS
IS
IS
IS
15
15
15
16
16
16
16
16
16
16
16
17
17
17
17
17
17
17
IT
17
1
Z
3
40
S
6
7
8
9
13
1
1
2
3
4
50
6
7
8
9
10
Z
3
4
5
6
7
ft
q
10
1
Z
3
4
5
6
7
8
90
IB
1
Z
3
4
5
60
7
8
9
10
10
28
3
4
S
60
7
8
9
10
0
0
0
a
0
0
0
a
0
a
0
e
e
B
0
0
0
0
0
0
0
e
0
0
0
0
0
0
a
0
0
0
0
0
a
e
0
e
8
0,
0.
0,
0,
0.
0.9
0.
B.
0,
0.
,9
0.
0.
e.
0,
0.
B.
0,
0.
B,
flt
e.
0.
0.
a.
0.
*.
0.
0.
8.
0.
0.
0.
0,
«.
e.
0.
0.
0*
0.
0.
0.
0.
0.
t>.
P.
0.
0,
a.
0.
0.
».
0.
9,
0.
e.
B,
0.
0.
0.
0,
0.
0!
0|9
0.
B.
0,
0.
0*
0*
e.
o!
0.
o*
a»
0.
0.
a!
0.
*.
»,
0,
0,
0,
B»
0.
0.
0.
0.
0.
0.
0.
0.
0.
0!
«.
0.
».
0.
01
0*
0*
0.
0.
b?0, 1
16. <
aa, :
14. i
9tl. 1
1.6
.04
5T0, ,
510.
5Z.
7Z.
42.
4.5
12.
Z7B.
93.
1.04
14.
10A.
26.
3.0
315.
90,
,84
450.
IZ.
84.
22.
IZ.
205,
66,
Z.64
.fl6
420.
24,
112.
38.
24.
30 1»,
66.
2. as
,014
32,*
34*,
4.8
18.
360.
140,
2.8
.08
5>. <
s, '
5. <
5. <
2.7
5.
b.
3,
3.
Z.4
1.
1.
12.
Z.
Z.
2.
Z,
1.
Z.
z.
7.
1.4
3.5
3,5
S.
3.5
7,
3.5
7,
4.
4.
4.
4,
4.
8.
4,
4.
4.
4.
us
U5
4.
1.5
3,
1.5
1.5
4.
1.75
3.5
3,5
3.5
20.
3.5
10.
3.5
3.5
bcG> t
16.
BB. <
26, '
14. '
300. '
90.
1.6 '
,P4 '
570.
MP.
40.
72.
42.
4.5
12,
270.
90.
1.04
.04
14.
108,
26,
3.0
12.
315,
98.
.04
450,
12.
84,
22.
285.
66,
2.64
.86
428,
24,
112,
38.
24,
3P0,
6*.
2.08
,84
600.
32.
92.
34.
4.8
IB.
36D*
148.
2.8
.«*
»I 2&|
», 14.
». 3B0.
9. 1.6
9, ,84
9. 578,
1,8 393.
1.8 IP.
9. 42.
9, 4.5
9, 12,
9. 270.
1.8 4?.
9. 1.04
9, .84
2,45 84.
9. 26.
9, 3.8
9. 12.
9. 315.
9. .04
9. IZ.
9. 84.
9. 22.
9, IZ,
9. 285,
9. 2,64
9, .C6
9. 420,
9. 112.
9. 38.
9. 300.
9. 2.88
9. .04
2.45 16.
9. 9Z«
9. 34.
9. 4.8
9. 360,
9. Z.S
9. .08
393, 4.
IZ. »0. »,
9. 42,
7.5 84.
390,
10. 16,
158
-------
17
18
18
18
18
18
18
18
18
18
19
19
19
19
19
19
19
19
23
28
23
20
29!
28
28
23
23
21
21
21
21
21
21
21
21
21
21
22
22
22
22
22
22
22
22
22
22
23
2)
21
21
23
21
23
23
23
2
3
4
5
b
7
d
9
13
1
e
3
4
5
b
7
8
9
IB
1
1
g
3
4
5
b
7
B
9
10
2CI
3
4
5
b
7
B
9
IB
1
2
3
4
5
6
7
a
9
19
1
2
3
4
5
£
7
o
9
10
e ei,
a.
e.
3.
55,
B,
8,
0,
B
e.
e!
3.
0.
8.
a.
0.
0.
e.
e.
c.
e,
0.
e,
a!
0!
0|
6 B,
0 B ,
e e.
0 e.
e.
0 0,
a 0!
e a.
e.
o.
8,
B,
e.
e.
B,
0,
B.
e.
a.
*!
0.
0f
B.
630. 28,
36, 90.
96, 91J,
42, S0,
5.« 9e.
32. 98.
37B, 9B.
111. 96).
2.25 981,
.66 90.
63U, 90.
33. 2,
70, a.
as. 2,
27. 2,
21. a,
355. 2,
7». 2,
.75 R.
,17 2.
60B, a.
62C1, 163,
«8, 163.
85, 160,
31, 160,
18, 163.
64, 1619,
275, 160.
191. 16B.
37. 168.
,7 160.
13e. 19.
52. 1,
60. 1.
25.2 1.
135, E,
338. 1.
78. 2,
.72 1.
.26 1,
639, 2,
3a, a.
73, a.
4b, a.
27, 2,
21. 2.
355, 2,
7S. 2,
.75 a.
.17 a.
6?e, a.
3n, a.
iz, a.
«*, a.
a7. a.
21, a.
355, 2,
7s, a.
,75 a.
.17 2.
630,
36.
96,
12,
5.1
32.
370.
in.
2.25
.66
639,
30.
70,
46,
27,
21,
355.
78,
.75
.17
691(3,
628.
as.
85.
31.
18.
61,
275,
191.
37.
.7
130,
52, 9, 52.
63. 9, 68.
25.2 9, 25,2
185,
390, 9, 320,
78.
.72 9, ,72
,26 9, ,28
603,
33,
70.
46,
27,
21.
355,
78.
.75
.17
609,
30,
78,
46,
27.
21.
355,
78,
.75
.17
159
-------
23
24
24
24
24
24
24
24
24
24
24
25
25
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
26
26
26
27
27
27
27
27
27
27
27
27
27
28
2ft
28
26
28
28
28
28
28
28
29
29
29
29
29
29
29
29
29
1
2
3
5
7
d
9
1
2
3
4
5
7
6
9
10
t
2
3
4
5
6
7
8
9
IB
1
2
3
4
5
6
7
a
9
10
1
2
10
3
4
5
b
7
8
9
1
2
3
4
5
6
7
6
9
ID
0,
t 0,
e 0,
0 0,
e a.
0 0,
0 B,
0 0,
0 0.
a a.
a 0,
ft a*
e e.
0f
0!
0.
0!
0.
0|
0.
0*
0.
0.
0»
0.
0i
0.
6oe. 2, 60?,
24, 16, 24,
93. 1, 9««, 9. 98,
4?, 1, «2. 9, 42.
42, 1. 42. 9. 42,
15. 16. 15.
33Z. 1. 330. 9. 330,
40. 18. 40.
,72 1, ,72 9, .72
.06 1. .06 9. .06
519. 18. 510.
36. 18. 36,
68. 1.5 68. 9. 68,
36. 1,5 36. 9. 36,
16.2 1.5 16.2 9, 16,
27. 18. 27.
435. 1.5 435, 9. 435
78, 16. 7ft,
,8 1.5 .8 9. ,8
,16 1. 5 ,16 9, ,16
690. 18. 690.
88, 9, 60.
54, 9, 54,
21. 9. 21.
10. 9, 10,
116. 9. 11B,
326, 9, 326.
49. 9. 49,
4,3 9. 4,3
22, 9, 22.
479, *», 479.
139, 50. 139.
49. 50. 49.
52, 50. 52.
19. 53. 19.
186. 50, 186,
226, SB. 226.
211. 50. 211.
1. 50, 1,
,4 50. .4
6(10, 50, 609,
i
.
26. 18. 26. 2. 26,
a 0.
a 0.
0 «.
0 0.
a e.
0 0.
0 0.
0 0*
0 0.
0t
0 0«
0i
,04 1, .04 6, ,04
102. 6. 102.
23. 6. 23.
4.5 6, 4.*
18, 1ft. IB.
398. 6, 390,
114. 1». 114,
1,192 6, 1.02
570, 18, 570,
12. 608. 12. 100i».12
60. 5»a. 63, ieez.6?
16. 500. 16. ie»0.16
3. 5"3. 3. 1000.3.
.
.
.
18. 1000,18,
MO, 500. 180. 1000.180
51, 6«t». 51. 1800.51
,32 1390. .32
,12 1290. ,12
•
160
-------
29
30
33
38
30
38
SB
3e
ja
38
38
31
31
31
31
31
31
31
31
31
31
32
32
32
32
32
32
32
32
3!
32
33
31
33
33
H
33
33
JS
33
33
34
34
10
34
34
34
34
34
34
34
35
35
35
35
35
35
35
35
35
1
2
3
4
S
6
7
a
9
ie
t
2
3
40
5
6
7
6
9
10
1
2
3
4
5
6
7
A
9
IB
1
2
3
4
S
6
7
S
9
Id
1
2
3
4
5
b
7
B
9
IB
1
Z
3
4
S
6
7
ft
9
10
0
a
a
a
a
0
3
0
0
0
a
0
a
0
0
0
0
0
0
0
8
a
8
a
a
B
a
a
a
a
a
a
0
,
26.
1P2,
23.
4,5
18.
390,
114.
1.02
.89
570,
32.
58.
21.
4.2
24.
1003,
2.
2,
2.
2.
2.
2.
2.
2,
10.
10.
10,
10,
10.
10.
10.
10.
10,
262.510,
18.
,12
,12
420,
16.
66.
21.
4.8
24 .
315.
54.
1.28
,98
420.
10.
56.
16.5
3.
12.
285,
48,
.72
,08
18.
10,
30,
3B.
30.
10,5
12.
30.
12,
30.
10.
10,
ia.
ie.
ie.
10.
S30,
26.
102,
23.
«. 5
39B,
1.02
.04
26.
102.
23.
4.5
390,
1.02
,P4
58,
21.
4.2
262,5
.12
,12
18.
86.
21.
b, 50 t 6.
255, 70. 255,
54,
.24 30. ,24
423,
58,
16.5
3.
.285.
,72
.06
161
-------
35
36
36
36
36
36
36
36
36
36
36
37
37
37
37
57
37
37
37
37
37
38
38
38
38
38
38
38
38
38
38
39
39
39
39
39
39
39
39
39
40
40
40
aa
40
40
40
40
40
40
41
41
41
41
41
41
41
41
41
1
2
3
4
5
6
7
a
9
10
1
2
3
4
S
b
7
9
10
1
2
3
4
6
7
a
9
10
i
2
3
4
S
6
7
ft
9
10
1
2
3
4
S
6
7
a
9
10
1
2
3
4
5
fe
7
a
9
0
a
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
a
0
0
0
e
0
0
P.
0.
0.
a.
o\
0.
0.
0.
>.
0.
e.
0.
B*
BI
0>
",
B»
0,
B,
0!
B!
B,
B.
0.
8.
B.
B*
B,
B.
0,
B.
B.
330. 18.
2(1. 16.
4». 2.5
27. ?.5
3.0 2.5
12. 18.
225. 2.5
3V. 18.
,32 2.5
.08 2.5
360. 18.
28. Id,
l"l*«
26.
5.2
18.
400.
57.
1.36
.08
600.
16.
68.
17.
3.
16.
255.
42,
,8
.1
390.
46.
69,
20,
7.
79,
295.
38,
6.2
8.3
437.
28,
68.
3(i,
38,
IB.
270,
42.
.8
450,
28.
68.
30.
38.
18.
270.
42*
.8
,06
1.5
1.5
1.5
IB.
1.5
18.
1.5
1,5
18.
"0.
20.
2
-------
41
42
42
42
42
42
42
42
42
42
42
43
45
43
43
43
43
43
43
43
43
44
44
44
44
44
44
44
44
44
44
45
45
45
45
45
4S
45
45
45
45
46
46
46
46
46
46
46
46
46
46
47
47
47
47
47
47
47
47
47
1
2
3
4
5
6
7
8
9
te
l
2
3
4
5
6
7
6
9
10
1
2
3
4
5
6
7
8
9
10
1
a
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
IB
1
2
3
4
5
6
7
8
9
10
e
e
0
0
0
e
e
9
t»
a
a
a
a
e
e
a
a
e
0
0
g
0
0
0
9
a
a
a
e
a
a
a
a
e
o
e
0,
0.
0,
0.
0.
0,
0)
f.
a.
0.
B
B,
e.
0,
0.
0,
0,
0,
0.
o.
o.
0,
0.
0,
0.
0!
0.
o.
0,
0,
0,
e,
0.
0.
459.
48.
44.'
6.
S*.
300.
259,
.56
,765
78H,
32,
105,
32.
6,
60.
270,
126.
1.4
2.15
6BO,
18,
64.
16.
1.8
IP.
21*.
1R6.
.72
.1
54P,
12B.
60,
42.
22,4
120,
430.
2fl
-------
47
48
48
4ft
48
48
«8
48
48
48
48
48
49
49
49
49
49
49
49
49
49
49
50
52
59
50
59
50
53
53
53
53
51
51
51
51
51
51
51
51
51
51
52
52
52
52
52
52
52
52
52
52
55
53
53
53
53
53
53
S3
1
2
3
4
5
7
6
7
9
10
1
2
3
4
5
6
7
8
9
la
i
2
3
4
5
6
7
8
9
la
1
2
3
4
5
fc
7
8
9
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
1
7
8
930, 40. 930. 80. 930,
0, 50. 600. 50,
B, 70, 680. 70,
0, 30, 600, 3P,
0, 5, fc00, 5,
0, 300, 683. 303.
P, 79). 6BIJ. 70.
B, 300. 6a», 3*0,
B. 90, 6Z0. 90,
0r ,s baa, ,s
0, .2 609. .2
fl. 550, b00. 550,
330. 9, 338,
0 0. 64, 1.5 64. 12. 64.
a B, 97,5 1,5 97,5 12, 97,5
0 B, 1?.6 1,5 12.6 12. 12.6
282. 9, 262,
8 0, 590. 1,5 590, 12, 598.
0, 390. 3, 390.
tf B, .96 1,5 .96 12. ,96
9 0, .6 1.5 .6 12. .6
1380.9. 1300,
660, 9, 660, 12. 660,
0 0. 136. 6, 136, 12. 13b.
9 0, 155, 6, I5b, 12, 155.
0 0, 10,2 6. IP, 2 12, 10,2
608, 9. 600. 12, 688.
B 0, 728. b. 720. 12, 720,
780. 9. 780. 12. 780.
0 0, ,«8 6, ,48 12. .48
0 B, .12 6. .12 12. .12
3040,9, 3040.12. 3040,
193. 16, 193. 72. 150, 160. 156,
9 B, 84, 80, 64, 160, 84.
0 0, 100. 64. 60. 80. 60, 160. 60,
0 0. 16.8 80. 16.8 160. 16.8
238. 56. 112. 100, 112. 160. 112.
B 8. 5Pa. 72. 460. 88. 460. 160. 460,
33». 56, 161, 100, 161. 160. 160,
a 0, ,96 80. ,96 160, ,96
' 0 0, ,525 85). ,525 163. .525
1120.64. 860. IBS!, 880. 160.880,
0, 400. 80. 400,
a, 45. 80. 45,
0, IPS, 80. 105,
0, 25. 80. 25.
B, 1400.80. 1480,
e, 475. ea. 475,
B, 780. B8. 78H,
8. ,S>7 80. .07
B, .86 80, ,06
6. 3390.80. 3393,
193. 475. 143. 9b«i. 165. 1»BB.165, 1508,165.
8 *. 54, 570. 68. 959, 60, laB0.6B. 1500.60.
0 0, 60. 475. 54, 76(1, 6P, 1S0B.60.
B B. 20. 950. 20. 1500.20.
240. 570. 169. 950, 221. ISM, 221.
1280, 360.1100. 570, 860.1208. 868,
210, 420, 285, 87B, 210, 1503, 210,
258, 475. 216. 950, 24B, 15CZ.248.
164
-------
53
53
54
54
54
54
54
54
54
54
55
55
55
55
55
55
55
55
56
56
56
56
56
56
56
56
57
57
57
57
57
57
57
57
56
58
58
5»
59
58
58
58
59
59
eg
. J »
59
59
59
59
59
59
60
60
60
60
60
60
60
60
9
10
t
2
3
4
5
6
7
a
1
2
3
4
5
b
7
8
t
Z
3
4
5
6
7
8
1
z
3
4
5
fc
7
6
1
2
3
4
5
t>
7
8
1
2
3
4
5
6
7
8
9
10
1
Z
3
4
5
6
7
a
a 0,
0 0,
0,
0.
0!
o.
0!
0*.
0.
0.
*'•
v.
0.
0.
0,
!) t
e.
0.
p,
0i
ti.
0,
0.
0.
0!
0.
e!
0.
0.
0 0,
0 0,
(9 0 ,
o 0.
M V 9
a 0.
a e,
0 CJ »
a e.
a e.
a 0,
.4 <;
.2 S
220,*1
93. I
in. i
31. 1
352, 1
231, 1
41P, !
7flb. ]
247. 1
157, 1
138, !
1820.!
147. '
fcfeW.
18*9,
103,
114,
lh».
2950,
731,
72C,
164B,
3ft0,
37.
37,
24.
sets.
2«4,
9?.
1373,
3B3.
29,
29,
25,
510.
244,
88,.
57-2,
12,
60.
U.
II
3.
IB,
183.
51.
32.
12.
378.
22,
6fl,
22,
IB.
15.
279.
S3.
• 50. ,4 1
153, .2 1
,3, 222.
,0. 93.
;0. 10,
10. 31.
IB. 330.
IB, 231,
[2. ate.
[2?, 4600.
lea, 7B5,
l»a| 157J
l?.3. 138,
1U0, 1620,
13?,7ftft0.
100,181!?,
1913.14)9.
122,114,
l?0,tt>0.
102,2950,
IBS ,744 ,
108.720.
IP, 1A4P,
IB, 364),
10. 37.
18, 37,
1«. 24.
10. 54U,
10, 2a4.
13, 92.
19. 1370,
10, 330,
10. 29,
Ii5. 29.
ie, 25,
10. 518.
ia. 204.
10, 88,
1^(32,570.
1000, 12,
1C PIS!, 60,
10P8, 3.
ie?a, is.
la^B.lsa,
leas. si.
10?3, 32,
isfia, 12,
ISP, 37 B,
ma, 22,
100. 63,
lee. 23.
lae. 12.
l®0. 15.
103. 270,
1(93. 53.
,570. .4
1538..2
5033.570,
50ea, 12,
5a?a, 68,
5?eiJ. 3.
saea. iat
50cR,iee.
52??!, St.
5003, 32,
5000, 12,
165
-------
60 9 ,01 tee, ,01
fre le ,es tea, ,0s
88889
55555
1 1 ,79 ,74 2,21 1,1« 2.39 1,40 .77 1.42 .Sift 1.98 .35 .32
.05 .67 ,69 J.lft |,26 1,64 ,83 ,192 ,P2 1.16 ,195 .65 .09 ,49 .7? 2.87
,76 .61 .44 1.14 1,18 1.13 ,91 .61 -.1
2 1 ,86 1,24 2,53 1,49 3,3? 1,66 ,64 2,15 ,56 2,16 ,91 ,52
.35 .62 1.16 1.89 1,65 2.37 .08 .06 ,00 1,46 .99 ,67 ,22 ,76 .73 3,84
1,25 .60 ,93 .72 1,18 .78 1,25 ,46 -.1
3 1 1,33 ,75 1.86 1,61 3,09 2,28 ,91 1,67 ,53 2.57 .67 .27
.22 .76 .96 1.87 .40 ,55 .04 .00 ,05 1,13 ,01 .77 ,20 1,18 ,83 2,56
1.14 .73 1,10 ,53 1,38 2.10 1.60 1.20 *.l
88888
66666
1 17,05 7,64 5,52 3.29 ,84 .84 ,63 ,83 ,84 2,99 5,08 7,17
6,17 7.20 4.07 1.52 ,82 ,82 ,82 ,80 .82 4.25 6,30 6,44 8,63 7,09 5,81 2.61
,29 .29 ,29 .29 ,30 3,02 6,09 6.73 ».l
2 17,05 7.64 5,52 3,29 ,84 .84 .83 ,83 ,84 2,99 5,06 7,17
«.17 7.20 4.07 1.52 ,82 .82 ,82 ,80 .82 4.25 6,30 6,44 8,63 7,09 5,81 2,61
,29 ,29 .29 ,29 ,30 3,02 6,09 6,73 -,J
3 17,05 7.64 5.52 3.29 .84 .84 ,83 ,63 ,84 2.99 5.06 7.17
8,17 7.20 4.07 1,52 ,82 ,82 ,82 ,80 ,62 4,25 6,30 6.44 8,63 7.09 5,81 2,61
,29 .29 .29 ,29 ,30 3,02 6.09 6,73 «,t
88886
77777
t it e
4486
3 11 »
595341
3 1 0
442034
320
7019
330
145684
2 11 0
86390
2 1 0
58374
220
4}46
230
23670
88888
99999
12345
4476
4468
772028
560365
17870
193793
IS
91413
15
60046
6033
25332
4476.5
4490
760
961447
766
682513
31323
14
247611
5599
97117
5461
62149
7375
138
27593
4477
• 492
6816
1160460
6395
808963
47292
421
304205
17894
1020(14
15829
64349
8585
2065
29070
4478
4494
34024
1369894
28897
940076
65631
5127
64 87
35525
107538
28555
66800
9747
6970
30991
4460
138240
112187
2
26131
63005
49076
6
13923
4482
275614
2)6216
31
59367
73116
51101
23
16992
4484
828855
326954
1567
183334
*0C20
56568
1*78
21774
166
-------
44«ft.5fl
THE NUMBER OP TIME INCREMENTS (N THIS SIMULATION* 3fr
THE TIME PERIOD KEY 13 • 8
THE BEGIWNIN5 STAGES IN THE CAKE SYSTEM ARE
BAY STAGE
t********************************************************************************
**•«••**•«••••«•»••••••**•»*•»•••*•**»••*•***••****•**•*•••***•******************
111 SIMULATION SETUP AND INITIALIZATION CAT*
••••»••*««••••••«»•*•••**«***»**•******•******•**•*•*•****•*•*"*•****************
IOHS TO Bt CARRIfQ IN THE SIMULATION* |23 IN FOR THE TRIB COUPON) WILL BE USED FOR THE OUTFLOW
I, Mf»Nj TMAT THE L»*E OUAUlTY WILL BE USED F0» THE OUTFIQW.
•••««••«•*«*.••*••••«*««•••••*•**•**•«***«****•*****»****•*******************•*•*
IMJTIAL
QUALITY IN TrtE LA<1 AND BAYS
BAY DUALITY UU'AL UNIT
o.
?
?
2
2
F.C.
I
2
I
4
5
d
T
fl
9
10
11
u
i
a
3
4
KE>
0
e
0
it
0
B
n
0
PI
2
0
0
B
0
e
0
KEY CONCtNTBATION
0 57i,t>M
tin,
-------
10
tl
12
1
It
11
12
10.000
ao.000
180,000
130,000
0,150
,
0,000
0,000
55,001!
55,000
24,000
265,000
0,2iJ0
0,230
0,000
o,oe0
NO. or 8U8ARE43 IM THE LAKE SYSTEM •
1 MAIN IK
2 PROVO 8
I 60SMEN 9
THEIR CODE NOS, AND NAMES AREi
FRACTIONS FOR BAT 2 ARE
CTi
00
0,00! 0,005 0.005 0,005 0.002 0,002 0.002 0.002 0.002 0.005 0,005 0.005
0,005 0,005 0,005 0,005 0,002 0.002 0.002 0,002 0,002 0,005 0.005 0.005
0.BB5 0.0U5 0,005 0,005 0,002 0,002 0,002 0,002 0,002 0.005 0,095 0,005
INTEKHIX1N6 FRACTIONS FOR BAT 3 ARE 0,150 0,150 0,150 0,150 0,100 0,100 0,100 0,100 0.1U0 0.1S0 0.
0,150 0.15P 0,159 0.150 0,100 0,100 0,100 0.100 0,100 0.150 0.
0,150 0,150 0,150 0,150 0,109! 0,100 0,100 0.100 0.100 0,150 0.
*••••«•••»••*•••••«•*»••**•**••*••••«••*•««*»•»****«•••*•••**•••••*»*•»•«*••*•••*
150 0.150
150 0.150
150 0.150
•••THE MULTIPLIERS TO BE APPLIED TO THE INPUT DATA ARE
Pl!)M». . . 1.000
PREC1P , . 1.0B0
. , . 1.000
-------
BAY • TNlnuTASY ASSIGNMENT DATA
BAY NO, OF
TR1B3
1 39
I IT
3 3
TRIBUTARY
1 8
11 12
21 IS
49 5P
31 18
41 02
52 5T
CODE NUMBERS
3 4
13 14
51 53
33 34
• 3 44
58
5 6 T
15 1* IT
25 96 27
5« 55 1t>
35 3* 3T
45 46 47
8
18
28
59
38
9 10
19 20
29 48
39 40
-------
TITLOUT4H LAKE —JULY HT8-JULY 1973—HIN SPR8 iODEO
•••THE TRISS FLOWING OUT or THE SYSTEM ARE S3
-------
TITLE*UTAH LAKE "JULY tlTB.JULY HT3--NIN 8PHS ADDED
PRECIPITATION DATA
•AY PRCC1P UNIT TIME BASE REPEAT
*»0, KEY KEY KEY
t a (9i
PERIOD
1
2
3
4
5
6
7
6
9
te
11
12
13
11
15
16
17
16
20
22
23
25
26
27
28
29
30
31
32
33
34
35
36
1
2
3
7
8
9
10
11
12
U
la
15
0.790
2)210
1,160
2,390
1,100
0.770
0|3e0
1,640
9\fiie
l)l60
0.B50
2,870
O.'MB
0,940
1.140
1,160
1,130
0.910
0.610
2,530
1,490
3.JTO
1,660
0,640
2, 160
1.160
-------
ro
It
IT
16
20
21
22
23
24
SS
26
27
28
30
31
32
33
34
35
36
1
2
3
4
3
ft
7
6
te
11
12
13
14
19
16
17
19
20
21
22
23
24
25
26
27
20
31
32
S3
34
35
36
1,650
0,060
0,000
I.46P
0,090
0,760
3,SOB
0,930
0,720
1,190
0,780
1,250
0.460
1,130
0,750
1.860
2,290
1*670
0,670
0,270
0,220
6,7fe0
0,960
I.R70
01*50
n.flon
1,130
P.2SI0
1.160
O.S30
1*147
PI,MO
2. I
-------
ner CODE
• • IN.
> • FT,
T1HE UNIT KEY
B • MONTH
1 • DAY
2 • WEEK
3 • MQMTH
4 • YIAR
CO
-------
Tme«UT*H LAKE «JUUY
I«TS*«HIN »p»» AOOEO
EVAPORATION OATA
MY
NO
I
UNIT
nev
TIME BASE
KEY
0
KEY
t
PERIOD
1
2
3
4
ft
7
t
9
ie
it
12
13
M
15
Ik
17
18
19
20
21
22
25
2«
25
2b
27
2B
29
30
31
32
33
3D
35
1
2
3
t
5
b
7
B
9
IB
11
12
t3
14
Jb
EVAPORATION
T.0S«
7,64(1
5,520
3,290
cilete
0,830
,830
, SflCI
,998
,38*!
,170
,170
7,200
A, 079
1.520
0,820
0,820
1.820
0,60ft
0,820
,250
,300
,4
-------
t6
IT
IB
19
et
22
23
24
25
26
it
28
30
31
32
33
3«
35
36
1
2
3
4
5
6
7
S
9
IB
11
13
ia
15
16
17
IB
22
23
24
25
26
27
28
29
33
31
12
33
34
35
36
si,«an
6.30(1
T.PI90
5,910
6.730
7.CI5B
5.'520
3.29B
f ,810
0,830
2^998
7,208
U'sati
PI.82B
0^829
PI,8ft)
6,300
5.81B
2.610
f.390
3.M2B
6.730
-------
KEY cooe*
tVAMHATION UNIT
B
I
Tine UNIT
Q
1
2
3
4
I",
CY
MONTH
OAT
wecx
MONTH
YEAR
-------
TITLE-UTAH t»*e »-JUUV l»T0«JUUt 1973—WIN SPRS AOOEO
STAGE • AREA •
BAY
NO
STAGE
ft
AREA
ACRES
VOLUME
AC,FT,
4476.50
4477,00
4478,00
4484,00
41166,00
4486.00
4492,Ufl
4494,00
0.00
t5.ee
5461,00
Sb^bfl.BB
0,10
0.10
0,10
e,0e
766,0(1
6395.00
28697,00
112107,00
0,00
4476, SB
44*8, I*J!
4492,00
4494,40
8.10
0.10
0,19
0.10
6,00
1678|<*0
4346, f,fi
6033,00
7375.«0
9747,00
0.10
0.10
0.10
0,00
0.00
0,00
0.00
2, (10
31.00
1567,00
7419,00
17870.B0
65631,00
0,00
44T6.I90
4476.50
4477,00
4478,00
449U.JI0
4492.00
4494,00
0.110
0.10
138.80
206*,00
6970.00
1899?, 00
29370,00
30991,W
0.10
P.10
0,10
0,00
ID.en
421,60
5127,00
26111,00
b93*>7,B0
247611 jfc
-------
ti 4476,ee n.ee 0,00
tt 4476,50 9999,00 780,00
11 4477,«B 17644,BB 6616,00
ii 4476.ea 35S2S.ee 34024.pa
ti 4«e*.«a 6i0?5.en i3S240.ee
H ••84,efl 8ne2B.ev
II 4486.00 66390.ua
|| ••4u!oP 471ir!00 961447,190
it ••44.ee iers38.ee i369844.ee
tl e.ne n.ifl n.ee
11 e.ee e.ie n,«e
il a.99 e.io 0.00
»••«(.(. DAT* HAS RECN MEAD IN
00
-------
vo
UTAH LAKE --juur I^TB.JULY IVTJ--HIN sens ADDED
—8ECIN THE SIMULATION.-"
•••INITIAL CONCENTRATIONS
BAY TOS
PROVO B 2 590100
GOSMEN B 3 1050,00
MY NO. STAGE
MAIN UK 1 4448.58
PROVO S 2 4448,58
OOSHEN fl 3 4488.38
TOTAL LAKE 44«8,58
•••TROUBLE-.FLO*»ATt
••• TROUBLE »-FLOWR ATE
***TRUUBLE»-FLOWRATE
• ••TRou8LE--FLO'«RATE
•••TROuBLE-.FLCwBATt
•••TRUUbLE-*FLO«RATC
• ••TRouBLt—FLOrfRATE
•••TROU81E--FLOWRATE
• ••TRQUBLE--FLOWATE
•••T»OUBLt--FLO«*ATE
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NA
140,00
70,01
180.00
AREA
60657.3
642?, 2
25987,7
93067,2
F(3U*0
FOUND
FOUNO
FOUND
FOUND
FOUN|>
FOUND
FOL'ND
FOUND
FOUND
IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
CA MS K
se.ee ss.ee 2*,ee
A fl| an *• A A 101 at A
DWfVIO <* J » Bin 1 W f fiW
ss.ee 35,0e 24,00
VOLUME
595789. B
21771.5
826961.1
FLOH-OUALITY
FLOw-UUALITY
FLOH-UUALITY
FLOW-DUAL ITY
FLOW-QUALITY
FLOW-QUALITY
FLOW-QUALITY
FLOW-QUALITY
FLOW-QUALITY
FLOw-UUALITY
TABLE--TRIB.
TABLE--TKIB"
TABLE--TKIM
TAfiLt--THTB«
TABLE--TKIB"
TABLt--TRIB»
TAbLE--T«IB«
TABLE--TRIB"
T ABLE--' WIB«
TABLE--THIB*
CL HC03 304
180.00 230.00 19H.00
80.00 180,00 150.00
300,00 190,00 263,00
54
54
55
55
56
56
57
57
58
58
0
0
0
Q
Q
0
0
Q
0
Q
.F
.F
,f
.F
,F
.F
.f
.F
.F
.r
9
10
9
10
9
10
9
10
9
10
FLOW*
FLOW.
FLOW.
FLOW-
FLOW*
FLOW.
FLOW.
FLOW.
FLOW.
FLOW.
8.13
8.13
1 1 ,26
11.26
11.26
11.26
4.20
4.20
4,?0
4,20
N03
e.t3
0,15
0.20
P04
J.90
l.ae
e.0e
0,00
0.0B
0,en
0,00
«•« THE INTEKM1XIN6 FRACTION FOR BAY Z IS
FOR TIME PERIOD 1
*•• THE INTERMIXING FRACTION FOR BAY 3 is e.ise FOR TIME PERIOD i
-------
UTAH LAKE "JULY 1970-JULY 1973—MIN SPRS ADDED
•••SUMMARY INFORMATION FOR TIME PERIOD 1 •• MONTHS
•*• PERIOD FLO«» AND INTERFLOWS
NAME NO.
MAIN L* I
PKOVO • I
COSHEN 0 3
TOTAL SYSTEM
PRECIP EVAP SUM TRIB VOL BEFOHE
AC-FT AC-FT INFLOM AC-FT INTERFLOW
3992, 3962?, -27404,
460, 3772, 7474,
2879, 15262. 5f)",
7331, 54655, -19430.
25«3«,
147518,
INTERFLOW
VOL AC-FT
-15694.
8763.
6430,
LAKE
FINAL
STAGE AREA
44P.7.87
4487,87
4487.87
4487,87
VOLUME
25221.
91077,
1T171.
190380.
*•» HATCH QUALITY AT THE END OF THE PERIOD
MAIN LK
MOVQ »
003HEN «
AAV
|
2
3
TOS
1B92.27
NA
70,92
184,22
CA
54,64)
72.74
57,88
HO
57,Tl
46,02
58,28
K CL HC03 S04 NOJ P04
21,34 199,20 243,59 20).17 0,39 1,86
11,26 80.61 238.76 158.03 0.72 1.48
24,85 300,37 208,62 269,15 0,24 0,50
00
o
•••TIME PERIOD 2 HAS BEGUN
•••TRaUBLE»-FLO«RATE NOT FOUND IN FLOW-QUALITY TABLE--THIB" 54 Q.F.i 9 FLOW" 4,13
*»«TRou»Lt—FLOXRATC NOT FOUND IN FLOW-QUALITY TABLE—THIS* 54 Q,F,« 10 FLOW* s.ts
•••TROUBLE--FLOMP.ATE MOT FOUND IN FLOK-UUALITY TABLE—THIS* 55 a,F.I 9 FLOW* it.26
• ••I
-------
UTAH LAKE —JOLT HTB-JULV I9T3--M1N 8PR9 ADDED
•••SUMMARY INFORMATION FOR TIME PERIOD i •« MONTHS
•*• PERIOD FLOWS AND INTERFLOWS
BAY PRECIP
NAME NO, AC-FT
MAIN LK 1 3894,
PROVO « 2 612,
GOSHIS B 3 1576,
TOTAL
• *•
MAIN LK
PHQVO B
60SHEN B
SYSTEM 6061
WATER QUALITY AT
BAY TDS
1 1037,33 1
2 734,11
EVAP SUM TRIB VOL BEFORE INTERFLOW
»C-FT INFLOW AC-FT INTERFLOW VOL AC-FT
18144, -33520. 484679, -16155,
3768, 7829. 21844. 9232.
16051, 500, 176613, 6923.
, 57962, *
TME ENO OF THE
NA CA
62,63 60,16
73,10 «3.09
94,86 62.10
25191,
PERIOD
M6
46J63
62,71
LAKE
K CL
22,95 220.17
12,17 81.36
26.26 306,96
FINAL
STAGE AREA
4466.99 59206,
4486.99 5184,
4466,99 24496.
4466,99 88866,
HC03 304
262, B2 222,61
302,69 164,95
231.54 279,94
VOLUME
500633,
169689)
663135,
N03
0,58
1.33
0,31
P04
1.86
1.96
B.75
00
•••TIME PERIOD 3 HAS BEGUN
•*• TMt INTERMIXING FRACTION FOR BAY 2 IS 0,005 FOR TIME PERIOD 3
•*• THE INTERMIXING FRACTION FOR BAY 3 IS 0.150 FOR TIME PERIOD 3
-------
UTAH LAKE »*JULV 1970-JULV 14T3--MIN SPRS ADDED
•••SUMMARY INFORMATION POM TIME PERIOD 3 •«
••• PERIOD FLO** AND INTERFLOWS
BAY PRECIP EVtP SUM TRIB VOL BEFORE
NAME NO. AC-PT AC-'T INFLOW AC»FT INTERFLOM
MAIN LK 1 10844. 27224, *1U438, 474071,
PROVO B 2 1043. 2384, 8380.
608MIN B 3 3745, 11264. 50fl,
TOTAL SYSTEM
15767. 40871,
•1558,
MONTHS
INTERFLOW p i
VOL AC-FT STAGE
•B42B, 4486,64
H665. 4486,64
2)6, 4486,64
N A L
ARIA
58453.
443B,
24245,
VOLUME
482441.
11036,
162465,
LAKE
4486,64
88128,
656443,
••• HATER QUALITY AT THE END OF THE PERIOD
MAIN LK
PROVO B
RAY
1
2
3
TOS
1064.11
721.61
119fl,86
NA
167,31
64.67
148,51
CA
63,77
83,12
64,64
MO
62,Zfl
41.86
64, 4T
K CL HC03 804 N03 P04
23,52 229.27 273.68 224,14 0,75 1.82
11.45 72.61 328,40 153.60 1.67 2,07
26,84 368,87 247.17 282,24 0,39 0,44
oo
ro
***TI»e PERIOD 4 HAS BEGUN
••• THE INTERMIXING FRACTION FOR BAY 2 IS 8.805 FOR TIME PERIOD 4
«*• THC INTE1M1XIN6 FRACTION FOR BAY 3 IS 0,150 FOR TIME PERIOD 4
-------
UTAH LAKC "JULY 19T0-JULY 1973--HIN 9PRS AOOCO
•••SUMMARY INFORMATION FOX TIME PERIOD 4 -• MONTHS
• •• PERIOD PI.ON3 AND INTERFLOWS
BAY PNECIP EVAP SUM TR1B VOL BEFORE
NAME NO, AC-FT AC-FT INFLOW AC-FT INTERFLOW
MAIN LK 1 5795. 16157, 19322, 491952.
PROVO B 2 612, 1351, 8774, 19071,
GOSHEN B 3 3252. 6645, 500, 159573,
TOTAL SYSTEM 9658. 24152, 28596,
• *•
MAIN IK
PROVO e
60SNEN B
MATER
BAY
1
2
3
QUALITY AT THE END
TDS
1071,04
691.23
1188,80
NA
166,59
59,82
196,22
INTERFLOW FINAL
VOL AC-FT STAGE AREA VOLUME
• 4H4. 4466.85 5908T, 492436,
72P1. 44A6.85 5065, 11870,
-6717, 4486,85 24378, 166289,
LAKE 4486,85 88529, 670595,
OF THE PERIOD
CA
66,24
83,82
66,01
MG
61,51
37,02
65,35
K
23.36
10.35
26.62
CL
230,33
62.99
299.58
HC03
280,06
334,41
257,75
S04
228.58
144.04
276,24
N03
0.90
1,68
0,49
P04
1,72
1.64
1.11
00
CO
•••TIME PERIOD 5 HAS BEGUN
••• THE INTERMIXING FRACTION FOR BAY 2 is 0.002 FOR TIME PERIOD s
«*• THE INTERMIXING FRACTION FOR BAY 3 la 0.100 FOR TIME PERIOD 9
-------
UTAM LAKE —JULY 1970OULV 197S--HIN SPRS AODEO
•••SUMMARY INFORMATION FOR TIME PERIOD 5 •• MONTHS
••« PERIOD FLOWS AND INTERFLOWS
BAY PRECIP EVAP SUM TR1B VOL BEFORE
NAME NO, AC-FT AC«>T INFLOW AC-FT INTERFLOW
MAIN LH | U763, 4134, 36656, 536723,
PROVO B 2 1422, ISA, 9349, 222A7,
GOSMEN 0 I 6275, 1706, 508, 171396,
TOTAL SYSTEM 194*0, 6199, 489BT,
• ••
MAIN LK
PROVO B
00SHEN B
WATER
BAY
1
2
3
OUAIITV AT THE END
TDS
1112,76
6BP.64
1134,46
MA
156,04
49.44
165.60
INTEftFLO
VOL AC-F
«9ie,
6763,
-11681,
LAKE
OF THE PEHIOO
CA
65.26
77,87
64,32
M6
57,50
3
-------
UTAH LAKE ..JULY 19TB-JULY 19T3—MIN SPR8 ADDED
...SUMMARY INFORMATION FOR TIME PtRIOD 6 >- MONTHS
••« PERIOD
BAY
NAME NO,
MAIN LK 1
PROVO ft 2
COSMEN B 3
TOTAL SYSTEM
AND INTERFLOWS
PKECIP tVAP SUM TR1B
AC-FT AC-FT If»FLO« AC-FT
6959, «175, 33589,
762. 396. 9036.
474(1, 1746. Sk)0,
124A1. 6317,
L BEFORE
NTERFLOW
57P177,
24946,
186533,
INTERFLOW
VOL AC-FT
36BI3.
6392.
•9996,
F I
STAGE
4488.119
4468.10
4488,10
N A L
AREA
6P155,
6101.
25447.
VOLUME
566574,
18554,
196529,
LAKE
««88,1B
91T8J, T81656.
•«« HATER QUALITY AT THE END OF m PIRIOO
MAIN L*
PROVO 8
SOSHEN B
BAY
1
TOS
969,22
575,18
1894,91
N*
147,91
46,43
178,03
CA
64,63
75,22
63,45
MC
54.43
26.65
60,42
K
20.61
6.80
24,21
CL
2*6.65
47.96
265,87
MC03
265,89
301.72
252,42
S04
213,9(1
116,36
247, JT
N03
1.98
1.54
0,63
P04
1.43
1.51
l.lfl
00
O1
•••TIME PERIOD 7 MAS BEGUN
•»* THE INTERMIXING FRACTION FOR BAY 2 is a.0*2 FOR TIME PERIOD 7
*•• THE INTERMIXING FRACTION FOR BAY 3 is a.iee FOR TIME PERIOD T
-------
UTAH LAKE "JULY 197B-JULY 19TS—MIN SMS AOOEO
•••SUMMARY INFORMATION FOR Tine PERIOD 7 ••
••• PERIOD PLOWS AND INTERFLOWS
BAT PRECIP EVAP SUN TR10 VOL BEFORE
NAME NO, AC-FT AC-FT INFLOW AC-FT INTERFLOW
HAIN4.K t 3896, 4199, 24617, 991090.
PROVO H I 323. 422, 6947, 27404,
GOSMEN B 3 1929, J759. 2036, 196736,
TOTAL SYSTEM
6113,
6340,
3588Z,
MONTHS
INTERFLOW
FINAL
VOL AC-FT STAGE AREA VOLUME
ISTfr, 44»6,a8 6B549. 9895I«,
6324, 4466, <6 6393, 21860,
•7900, 4466.46 23672, 206636,
446»,46 92774, 817*39,
••* MATER QUALITY AT THE END OF THE PERIOD
BAY
NAIN LK t
PROVO B 2
QOSHEN a 3
TOS
940,91
972,40
1*188,79
NA
142.44
45,45
174,66
CA
64,63
79.64
63,40
MO
92,32
26.36
99,90
K CL HC03 304 NQ3 P04
19,T6 200,04 263.22 196.63 1.16 1,34
8,81 47,13 303.9» 11*.43 1,96 1,32
23.99 264,69 299.19 243,37 0,70 1.19
oo
CT»
•••TIME PERIOD 6 HAS BEGUN
*•• THE INTERHIXIN6 FRACTION FOR BAY 2 13 0.002 FOR TIME PERIOD 6
••* THE INTERMIXING FRACTION FOR BAY 3 is 0.100 FOR TIME PERIOD s
-------
UTAH LAKE "JULY 1978-JULY 1973--MIN SPRS AOOCO
•••SUMMARY INFORMATION FOR TIME PERIOD 6 " MONTHS
••» PERIOD FLOWS AND INTERFLOWS
BAY PRECTP EVAP SUM TRIB VOL BEFORE INTERFLOW FINAL
NAME NO, AC-FT AC-FT INFLOW AC-FT iNTEftFLOW VOL AC-FT STAGE AREA
MAIN LH I 7162. 4186, 16351. 61084], -504. 4466.63 69925.
PROVQ 8 2 1136, 439, 6287, 30P66, 6581. 4466.63 6593.
GOSMEN B 3 3599, 1T89, 1731, 21(9177, *6077. 4460,63 26276,
TOTAL
...
MAIN LK
PROVO e
GOSHEN 0
SYSTEM
HATER
BAY
1
2
3
11699. 6414, j
QUALITY AT THE END OF THE
TOS NA CA
914,67 137,71 64.46
556,60 43.79 72,56
1070,54 170,32 62.90
-6369.
PERIOD
MG
50.40
27.40
56,06
LAKE 4466,63 93794.
K CL HC03 304
19,112 194,36 259,91 190.04
7,62 4S.45 297,39 111.73
22.63 259,95 254,96 237.06
VOLUME
611345.
23465.
216255,
651084,
N03 P04
1.20 1.26
1,53 1.47
0,75 1,18
00
--J
•••TIME PERIOD 9 MAS BEGUN
••• THE INTERMIXING FRACTION FOR BAY 2 18 B.8PZ FOR TIME PERIOD 9
*** THE INTERMIXING FRACTION FOR PAY 3 IS e,100 FOR TIME PERIOD 9
-------
UTAH LAKE «-JUtY 19T0«JULY 19T3--HIN SPRS AOOEO
•••SUHHAHY INFORMATION POD TIME PERIOD 9 •
••* PERIOD FLOW! AND INTERFLOWS
MONTHS
BAY
PRECIP EVAP
NAME NQ.
HAIN
LK
1
PROVO B 2
BOS*
TOTAL
...
HAIN LR
PROVO B
GOSMtN B
EN B
SYSTEM
MATER
BAT
1
2
3
3
AC-FT
1923,
306,
1160,
299
QUALITY AT
TOS
9BB.
934.
1099,
09
22
80
SUH TRIB VOL BEFORE
AC-FT INFLOW AC-FT
4263,
461,
1S39,
0. 6563
12544.
8982.
1220.
, 22746,
INTERFLOW
621148,
32313
216796
•
.
INTERFLOW
VOL AC»FT
»29(>0,
7466,
•4906,
LAKE
F
STAGE
•4489,04
4489,84
4489,04
4489,
I N A L
AREA
61138,
6729,
26503,
04 94371,
VOLUME
623709.
24846.
221702,
870297,
THE END OF THE PERIOD
NA
134,69
43.31
167,46
CA HG
64,72 49.
72.33 27.
63,19 57,
K
16 ia
30 a
20 22
.93
.00
.»
CL
191,01
49.30
233,99
HC03
299,94
299.93
256,90
304
185,83
109,70
232,64
N03
1.26
1.94
0,82
P04
1,20
1.47
1,18
00
00
••'TIME PERIOD 10 HAS BEGUN
•*• THE INTERHIX1N6 FRACTION FOR BAY 2 IS 0,009 FOR TIME PERIOD 10
••• THE INTERMIXING FRACTION FOR BAY 3 IS 0,150 FOR TIME PERIOD 10
-------
UTAH LAKE --JULY J97B-JULY |9TJ—.H1N 9KRS ADDED
•••SUMMARY INFORMATION FOR TIME PtRlOO IB >
*** PERIOD FLOWS AND INTERFLOWS
MONTHS
BAY PRECIP EVAP SUM
NAME NO, AC*FT AC-FT INFLOrt
MAIN LK 1 9676, 15227. 2)
PROVO B 2 1211, 1676. •»
60SHEN B 3 5674, 6601.
TOTAL
• »•
MAIN LK
PROVO B
GOSMEN B
SYSTEM
NATE*
BAY
1
e
3
16361,
QUALITY AT THE
TOS NA
888,00 131,
5«B,54 42,
1034.74 162.
23505,
END
83
91
(10
OF THE
CA
65,26
72,77
63,71
TRIB VOL BEFORE INTERFLOW FINAL
AC*FT INTERFLOW VOL AC-FT STAGE AREA VOLUME
R6». 642*27, 567, 4469.33 61443, 641459,
742. 34J23, 7322, 44*9.33 6924, 2681*1,
859, 221634, -7989. 4489.33 26833, 229523,
34470,
PEKIOO
M6
48,10
27,32
55,70
LAKE 4489,33 95279, 197784
K CL HC03 S04 N03
18,05 188,05 26f),98 162,25 1,31
8,22 4S.67 302.41 107,64 1,57
21.64 246,06 258,79 224,39 0,91
,
P04
1.15
1,50
1,18
00
VO
*»*TIHC PEftlOO 11 HAS BEGUN
**• THE INTERMIXING FRACTION FOR BAY 2 is e.aes FOK TIME PERIOD 11
••• THE INTERMIXING FRACTION FOR BAY 3 18 0,i?a FOR TIME PERIOD i.
-------
UTAH LAKE —JULY 19T0-JULY 1973—MIN SMS ADDED
•••SUMMARY INFORMATION FOR TIME PERIOD 11 — MONTHS
••* PERIOD PLOWS AND INTERFLOWS
BAY PRECIP EVAP SUM TRIB VOL BEFORE
NAME NO, AC- FT AC-FT INFLOW AC-FT INTERFLOM
MAIN LK 1 1791, 26B00, 3696, 620446,
PROVO B 2 525, 2430, 4*42, 33438,
GOSHEN B 3 1496, 11355, 836, 220504,
TOTAL SYSTEM 3614, 40265, 13576,
•*• HATER QUALITY AT TME END OF THE PERIOD
BAY TOS NA CA MG K
MAIN LK t 915,14 134,49 66,45 49,22 16,46
PROVO B 2 563,61 44,34 81,28 29,07 9,03
OOSHEN B S 1056,61 164,16 66,79 96,70 21.42
INTERFLOW
VOl AC. FT
•5749,
8263,
•2514,
LAKE
CL
143,45
47.93
246,36
P
STAGE
4469,09
44A4.04
4469,09
4489,
HC03
273,20
314.55
271.06
I N A L
AREA
61184,
6762,
26560,
09 44MB,
804
166,65
115,44
226,87
VOLUME
626645,
25175,
223016.
674668,
N03
1.40
1,64
1.02
P04
1.15
1,63
1.21
vo
o
•••TIME PERIOD 12 HAS BEGUN
*** THE INTERMIXING FRACTION FOR BAY 2 18 B.005 FOR TIME PERIOD 12
••• TME INTERMIXING FRACTION FOR BAY 3 IS 0.150 FOR TIKE PERIOD 12
-------
UTAH LAKE "JULY 19T8-JULY 19T3--MJN 8PRS ADOCD
•••SUMMARY INFORMATION FOR Tint PERIOD la -- MONTHS
• •• Pen 100 flOwS AND INTERFLOWS
BAY
NAME NO,
MAIN LK 1
PROVO 8 2
60SH6N B 3
TOTAL SYSTEM
••• MATER
SAY
MAIN LH 1
PROVO 6 2
COSHEN 0 3
PRECIP EVAP
AC-FT AC-FT
1631. 36546.
293, 4D39,
597, 15063,
SUM TRI8
INFLOW AC-FT
-67.
8018.
570.
2521, 56447,
QUALITY AT
TOS
958.
660.
1106,
36
04
45
THE END
NA
140,44
SB, 36
170.76
OF THE
CA
72,89
89,09
71,81
8521,
PEKIOD
51.
32.
59,
VOL BEFORE
INTERFLOW
591713.
29448,
200322.
K
19 19,21
71 10,29
22 22,82
INTERFLOW
VOL AC-FT
-5702.
7497,
-1795,
LAKE
CL
202.14
54,34
256,77
F I
STAGE
4486.61
4488,61
4488,61
4484.61
HC03
289,33
357,91
298,67
N A L
AREA
6P685.
6440,
26018.
93143,
SQ4
194.82
129.60
235,30
VOLUME
597415,
219SJ,
210117,
829483
N03
1,53
1,98
Itl7
t
P04
1.19
It"
1,28
•••TIME PERIOD 13 HAS BEGUN
•*• THE INTERMIXING FRACTION FOR BAY 2 IS B.BB5 FOR TIME PERIOD 13
••• THE INTERMIXING FRACTION FOR RAT 3 IS 0,150 FOR TIME PERIOD 13
-------
UTAH LAKE "JULY 19T0OULV 1»7J-«*IN SPRS ADDED
•••SUHHARV INFORMATION FOR TIME PERIOD 13 •
*•* PERIOD FLOW! AND INTERFLOWS
MONTHS
BAT PRECIP EVAP SUH TRIB VOL BEFORE
NAME NO. AC-FT AC-FT INFLOW AC-PT INTERFLOW
MAIN LK 1 152, 41300, -30603, 525664,
PROVO B' 2 166, 4363. 7272. 25026,
OOSHEN 8 3 477. I77H7. 500. 193367.
TOTAL SYSTEM 616, 63390, -22631.
••• MATER QUALITY AT THE END OP THE PERIOD
BAT TD8 NA CA HC K
MAIN LK I 1041.67 152.86 79.27 55.26 20,91
PROVO B 2 T49,59 57,26 100,67 37.04 11,61
60SHEN B 3 1179,66 161,16 76,29 62,18 24.23
INTERFLOW
VOL AC-FT
-15964,
• 811,
7173.
LAKE
CL
221.12
61,67
270.97
F I
STAOE
4487,66
4467.66
4467.66
4487,66
HC03
314.65
404, 0B
316.16
N A L
AREA
39783,
5766.
25069,
90616,
804
211.54
147,06
245,66
VOLUME
541647.
1*217,
166215,
744079.
N03
J.74
2.33
1.34
P04
2^31
1,37
ro
••*TIKE PERIOD 14 HAS BEGUN
•*• THE INTERMIXING FRACTION FOR BAY 2 is 0,005 FOR TIME PERIOD i«
••• THE INTERMIXING FRACTION FOR BAY 3 is 0.150 FOR TIME PERIOD 14
-------
UTAH LAKE --JULT 11TP-JULT J«tT3--HJN 9PRS ADDED
•••SUMMARY INFORMATION FOR TIME PERIOD 14 -• MONTHS
*•• PERIOD FLOWS AND INTERFLOWS
PAT
PRECIP EVAP SUM TRIB VOL BEFOnE INTERFLOW
NAME NO, AC-FT AC-FT INMOW AC-FT INTERFLOW
MAIN LK 1 3337. 35*56, -34231. «T««97,
PROVO 8 2 298, J«5». 7983, Zia39,
GOSHEN S 3 1587, 19019, See. 1T326&.
TOT*L SYSTEM 5a«l, ?a3«9, -?57«8,
•** MATER DUALITY AT THE END Of THE PIHIOO
BAY TOS NA C» MG K
MAIN LK 1 HIT. 32 US 3, 90 83,31 !8, 89 22.43
PROVO B t 812.29 62. 8« ll(),t>2 39.69 12,35
GOSHEN B 3 1247.66 !9lt.73 64. a| 66,36 29,53
VOL »C-FT
-16606.
9251,
7354,
LAKE
CL
238, Bl
66,91
264.09
STAGE
4466.84
4486, fl4
4466.64
4486,64
HC03
33R.38
433.33
34B.15
AREA
59P74,
5S3S1.
24365,
88498,
304
226,50
162,09
261.22
VOLUME
4915P3,
11786,
165912,
669203,
N03
t,«6
2,60
1.52
P04
1.39
2,64
1.46
CO
•••TIME PERIOD 15 HAS BEGUN
•»• THE INTtRMIXING FRACTION FOR BAY 2 19 0.809 FOH TIME PERIOD 15
• »• TME INTERMIXING FRACTION FOR BAY 3 IS 0,15(1 FOR TIME PERIOD 15
-------
UTAH LAKE ••JULY nre-JiM 1973—mN SPRS AOOEO
INFORMATION FOR TIME PERIOD 19
• ••.PERIOD FLOWS AND INTERFLOWS
0AV
PRECIP EVAP SUM TR1S VOL BEFORE
NAME NO. AC-FT AC-FT INFLOW AC«FT
MAIN LK t 3199, 20?2B. »|4?69.
PROVO B 2 488, 1T13, 7873.
COIHCN B 3 1948, 8260. see,
INTCRFLOM
TOTAL IVITCH
30001,
»S»92,
16436,
MONTHS
INTCRFLOM FINAL
VOL AOFT STA6C AREA VOLUME
• 10T(.6, 44S6.S0 56769. 471371.
• «>» <«•«. «A 4T64, 1JBJ9.
14062, 1ST761.
VOL AC>. . „,-.,.
•10T(.6, 4486,59
6427, 4466.90
2339, 4486.Se
LAKE 4486,90
87639, 639142,
••• MATER gUALITT AT THE END OF THE PERIOD
BAT
MAIN LK 1
PHOVO B 2
009MEN B 3
TOS
1190.10
769,70
1274,09
NA
166,39
61,04
194,02
CA
66,62
106,26
MG
60,31
37,77
67,74 67,94
K
23,06
11.94
29,99
CL
244,77
64,29
267,99
HC03 30*
391,26 232,46
413.96 160,22
392,99 264,90
N03
2,19
2,49
1,67
F04
1.43
2.56
1,90
V£>
***TIHC PERIOD 16 HAS BEGUN
••* THE INTERMIXING FRACTION FOR BAY 2 IS 0,009 FOR TIME PERIOD 16
••• THE INTERMIXING FRACTION FOR BAV 3 is 0,190 FOR TIME PERIOD i*
-------
UTAH LAKE ••JUiY 19TB.JULY 19T3—MIN SPSS ADDED
•••SUMMARY INFORMATION F0« TIME PERIOD 16
*»• PERIOD FLOWS AND lNTERFLOv.8
MOMTH9
P-AY PRFCIP EVAP SUM THI8 VOL BEFORE
NAME NO, AC-FT AC-FT INFLOW AC-FT INTERPLOK
MAIN LK 1 5779, 7444, 2A8V6. 498512,
PROVO » 2 750, 6BJ, 9371, 1952»,
COSHtN B 3 3751, 35)49, 1422, 159885,
TOTAL SYSTEM 102*0, 11&96, 39599,
••• HATER DUALITY AT THE END OF THE PERIOD
BAY TDS NA CA MC K
MAIN LK ] 1115.86 161,96 87.76 58,21 22, 21
PROVO 8 2 683,48 52,11 96,65 32.51 9,47
GOSHEN B 3 1247,98 188,31 87,10 65,52 25,13
INTERFLO
VOL AC-F
-8392^
LAKE
CL
235,79
54,58
21*2,22
FINAL
STAGE AREA
13 59156,
13 5135,
4486.93 24447,
VOLUME
497344,
169277,
88738, 677925,
HC03 S04 N03 P04
346.32 22«.lT 2,18 UJ7
358.53 lag.9* 2,10 2.13
350.65 257,72 1,76 1,46
tn
• ••TIME PERIOD 17 HAS BF.GUN
*•• THE INTERMIXING FRACTION FOR BAY 2 IS 8.0B2 FOR TIME PERIOD J7
• •* TME INTERMIXING FRACTION FOR BAY 3 IS B.lfJB FOR TIME PERIOD 17
-------
UTAH LAKE -»JULY 19T0-JULY 1973—MIN SPRS ADDED
•^SUMMARY INPOHMATION con TINE PERIOD IT •
••• PERIOD PLOMI ANQ INTERPLOwS
>• MONTHS
BAV .
NAHE NO.
MAIN LK 1
PROVO 6 2
GOSHEN B 3
TOTAL SYSTEM
PRECIP
AC-PT
6209.
T86,
819.
7729.
EVAP SUM TH1B VOL BEPORE
AC-PT INPLQW AC-PT INTERPLOH
40«t, 37*22, 937139,
391, 9080, 21T39,
1670, 2982, 170003.
P I N A L
INTERPLOH P
VOL AC-PT STAGE
9668. 4487.91
6421, 4487,91
4487,91
4467,91
LAKE
AREA
99639,
9*21,
24926,
VOLUME
93146T.
19318,
182092,
98186, T2B87T,
••• WATCH QUALITY AT THE END OP THE PEMIOO
MAIM LK
PROVO B
90SHEN B
BAV
1
2
3
TDS
1069,72
626,30
1249,79
NA
193.49
47,60
186,09
CA
89,40
89,69
66,62
HG
99,27
29.89
64,49
K
21.01
8,19
24,96
CL
223,94
49,08
269,94
HC03 S04 N03 P04
339.16 212.61 2,16 1.28
3)0.62 129,31 1,89 1,88
390,98 256.38 1,81 1,42
10
O>
•**TINC PERIOD 18 HAS BEGUN
• «• THE INTERMIXING PRACTION fOR BAY 2 IS 0,002 POR. TIME PERIOD 18
**• THE INTERMIXING PRACTION POR BAT 3 I) 9.198 POR TIME PERIOD 16
-------
UTAH LAKE —JULY l9T«l»JUtr 1973--»XN 8PR3 ADDED
•••SUMMARY INFORMATION FOR TIME PERIOD 16
••• PERIOD FLOWS ANI> INTERFLOWS
MONTHS
BAY
NAME NO,
MAIN L* 1
PROVO 8 2
GOSHtN 8 3
TOT*L SYSTEM
••* WATER
BAY
MAIN LK 1
PROVO B 2
GOSHEN B 3
PRECIP
AC-FT A
8147,
lite,
1142,
1B399,
QUALITY AT THE
TDS
Id2fl,
584,
1211.
NA
11 145,
78 44,
38 isa.
EVAP
C-FT
4UT4.
3P4,
17(93,
SUM TRIB
INFLOW AC-FT
33896.
iiti'.
VOL BEFORE
IKURFLOH
24135!
183815,
6160, 44271.
END
91
03
OF THE PCH
CA
83.01
61.52
85,81
IOD
MG
52.
27.
63,
K
61 19.92
86 7,67
01 23,90
INTERFLOW
VOL AC-FT
5fB5|
LAKE
CL
213.54
45.83
2(»a.97
F I
STAGE
4408,06
4486.06
4486,06
HC03
324,49
310,66
348,14
N A L
AREA
60107,
6071.
91574.
$04
202,55
119. 65
252,46
VOLUME
1825l!
195316,
777387
N03
2.15
1.T7
1,85
,
P04
1.21
1.T4
l.JT
VO
•••TIME PERIOD 19 HAS BEGUN
••• THE INTERMIXING FRACTION FOR BAY 2 IS 0,002 FOR TIME PERIOD 19
••* THE INTERMIXING FRACTION FOR BAY 3 13 9.100 FOR TIMf PERIOD 19
-------
UTAH
"JULY 19T0«JULV I973--MIN SPRS ADDEO
•••SUMMARY INFORMATION Pf)R TIME PERIOD 19
••* PERIOD FLOWS ANO INTERFLOWS
BAY
NAME NO,
MAIN UK t
PROVO • 2
60SHEN B 3
TOTAL SYSTEM
PRECIP EVAP SUM TRIB VOL BEFORE
AC-FT AC-FT INFLOW AC*FT INTERFLOW
190, 4106, 21929. 981790,
40, 419, »16I, 26037,
89, 1739, 1314, 199179.
273, 6299, 31600,
MONTHS
INTERFLOW
FINAL
VOL AC-FT STAGE AREA VOLUME
1«48. •4S8.33 603»2. 960342,
9967, M8S.33 6292, 20070,
"7411, 4486,33 29702, 202999,
LAKE 4488,33 92346, 803007,
•*• WATER QUALITY AT THE END OF THE PERIOD
MAIN LK
PROVO a
OOSHEN B
BAY
I
2
3
TOS
998,96
980,32
1218,93
NA
142.16
43,75
179,62
CA
82,16
79,10
89,63
HG
51,23
27.76
61,98
K
14.36
7.96
23,46
CL
2ee,68
49,83
282,13
HC03
320,47
312.16
347,21
S04
197,34
116,96
248,79
N03
2,20
1,79
1,90
P04
1.16
1,71
1,33
VO
00
**«TIME PERIOD 20 HAS BEGUN
••• THE INTERHIXINC FRACTION FOR BAY 2 is 0.002 re* TIME PERIOD 20
• •* THE INTERMIXING FRACTION FOH BAY 3 19 0,100 FOP. TIME PERIOD 2f)
-------
UTAH LAKE —JULY 19TB-JULY 19T3--MJN SPSS ADDED
•••SUMMARY INFORMATION FOR TIME PERIOD 28 •- MONTHS
• •• PERIOD PUOW9 AMD INIERFLOwS
MY PRECIP EVAP SUM TRIB VOL BEFORE
NAME NO, AC-FT AC-FT INFLOW AC-FT INTERFLOW
MAIN LK | 101, 4024, 17928, 594346.
PROVO B 2 31. 417, 7591, 27276,
60SMEN B
TOTAL
*•*
MAIN LK
PROVO B
COSMEN B
SYSTEM
NATEH
BAY
t
i
3
QUALITY
TDS
981.81
583. T0
1216,44
0, 1713,
132. 6154
2513, 203395.
« '
AT THE END OF THE
NA
139,25
44.36
178,11
CA
81,43
77,60
85.26
!6*32.
PERIOD
M6
50,09
27,90
61.23
K
1»,89
7.48
23,817
INTERFLOW
VOL AC-FT
•189,
•54531
LAKE
CL
205,24
46.67
284.58
FINAL
STAGE AREA
4488.56 60636,
4488,56 »>4tfe.
4488.56 25965,
4486
HC03
317,15
314,86
346, 88
,56 93*109,
S04
193,17
116,97
247,73
VOLUME
594535,
21633,
208848,
825017
N01
2,22
1,77
1,94
,
P04
1.J3
1.72
1,31
IO
IO
•••TIME PERIOD 21 MAS BEGUN
•»* THE INTERMIXING FRACTION FOR BAY 2 IS B.0B2 FOR TIME PERIOD 21
*«• THE INTERMIXING FRACTION FOR BAY 3 IS 0.1B0 FOR TIME PERIOD 21
-------
UTAH LAKE —JULY HTB-JUUT 1973—HIM SPRS ADDED
•••SUMMARY INFORMATION POM TIME PERIOD 21
••• PERIOD FLO'S AND INTERFLOWS
MONTHS
*AY
NAME NO,
MAIN L* I
PROVO > 2
60SHIN • 3
TOTAL SYSTEM
PHCC1P
AC-FT
101,
e,
108.
209.
EVAP SUN TRJB
AC-FT INFLO* AC-FT
4142, 111*1,
438, 9663,
1774, 1160.
VOL BEFORE
INTERFLOW
6U669.
sess*.
ZBBJfcJ.
INTERFLOW
VOL AC-FT
• 10,
T3I5,
•SI25,
F 1
STAGE
446S,«4
44S8.S4
«40S,«4
N A L
AREA
60934,
6999.
26285.
VOLUME
6I1S7S.
23943,
2I64SS.
6393.
33034,
LAKE
44S«,S4
93SIS, 851907,
*•• HATER QUALITY AT THE END OF THE PtHlOO
MAIN LK
MOVC 9
BOSMEM 6
BAY
t
t
3
TOS
999,«7
969,24
1115.82
NA
139.fl»
46,44
174.43
CA
10,54
76,42
64,98
PG
49,68
28,87
59,99
K CL hCOJ 804 N03 P04
18.27 199.78 313.11 187,79 2.23 1.08
7,47 48.91 320,84 117,22 1.79 1,74
22.98 278.49 344,66 242.33 1.48 1,28
no
o
o
•••TIME FERIQO 22 HAS BEGUN
••• THE INTERHIUNB FRACTION FOR BAY 2 IS 0.003 FOR TIME PERIOD 22
*•* THE INTERMIXING FRACTION FOR BAY 3 IS 0.150 FOR TIME FERIOO 22
-------
UTAH LAKE —JULY 19T0-JUCY I9T3--MIN SPRS AODCO
•••SUMMARY INFORMATION FOR TIME PERIOD 22
••* PERIOO FLOWS AND INTERFLOWS
MONTHS
MY
NAME NO,
MAIN L* t
PROVO B 2
GOSMEN n 3
PRECIP
AC-FT
5888,
2474^
EVAP
AC-FT
215T?
2336
9396
TOTAL SYSTEM 9165, 332
••• WATER
BAY
MAIN LK i
PROVO B 2
60SHEN B 3
QUALITY AT
TOS
969.
11901
73
THE
NA
136.
",
172,
END
04
99
SI
SUM TR18
INFLOW AC-FT
, 17*37,
. 8953,
, 1100,
14, 27890,
OF THE PEHIOD
CA MC
81,67 48,
80,97 29,
86.41 59,
VOL BEFORE
INTERFLOW
614028,
30963,
210757.
93
13
37
K
ie.
7,
22.
32
75
39
INTERFLOW
VOL fC-FT
7lfl7i
LAKE
CL
202.40
50.45
274,79
FINAL
STAGE AREA
IB 6B977,
VOLUHE
I* 26331,
448(1,88 93934,
HC03 S04
317.2? 189,29
331,82 121,82
348,75 239, SI
23816,
217579,
855747,
N03
2,30
1,86
2,f»8
P04
1.08
1,80
1.27
ro
O
**»TIME PERIOD 23 HAS flEGUN
••• THE INTERMIXING FRACTION FOR BAY 2 is 0.res FOR TIME PERIOD 23
••* THE INTERMIXING FRACTION FOR BAY 3 13 0.150 FOR TIME PERIOD 23
-------
UTAH LAKE »-JULY 11T0-JULY I9TS--MIN SPRJ AOOCO
•••SUMMARY INFORMATION FOR TIME PERIOD 23
•** PERIOD ruo«s AND INTERFLOWS
MONTHS
BAY PftECIP EVAP SUM TRIB VOL BEFORE
NAME NO, AC-FT AOFT INFLOW AC-FT INTERFLOW
HAIN L« 1 254, 3200ft, -9253, 573353.
PftOVO B 2 50, 3477, 6929, 27317.
GOSMEN B 3 22. 13818, 590, 204373,
TOTAL 8V3TEM 326, 49296, "1734,
•*• HATER QUALITY AT THE ENO OF THE PEHIOO
BAY TDS NA CA MQ K
MAIN LK 1 1016.15 142.14 86,04 51,03 19.15
PROVO B I 690,98 54,42 93.77 32,93 8,86
G08MEN B 3 123?, 02 178,27 91,13 61,36 23,16
INTERFLOW
VOL AC-FT
•8302.
7102.
1200.
LAKE
CL
812.46
57.30
201,47
F
STAGE
4488,33
4488,33
4488,35
4488,
HC03
333,77
370.62
366,02
I N A L
AREA
60414,
6267.
25726.
33 92407,
804
198.07
141.13
246,72
VOLUME
581655,
202(5,
203173,
805043,
N03
2,46
2.13
2,26
P04
1.13
2.14
ro
o
ro
•••TIME PERIOD 24 HAS BEGUN
«•• THE INTERMIXING FRACTION FOR BAY 2 is 0,005 FOR TIME PERIOD 24
«•* THE INTERMIXING FRACTION FOR BAY 3 IS 0,150 FOR TIME PERIOD 24
-------
UTAH LAKE -•JULY |97B»JULY 1975—M1N SPR3 ADDED
*«#SU1MARY INFORMATION FOR TIME PERIOD 24 — MONTHS
• •* PERIOD FLOWS ANQ
BAY PHECIP EVAP SUM THIB VOL BEFORE
NAME NO. AC-FT AC-FT INFLOW »C-FT INTERFLOW
MAIN LK 1 Jan, 324B9, 4?75, 596792.
PROVO H 2 350, 3362. 7207, 34* IB,
60SHEN B 3 165JI, 13801. 500, 191523,
TOT»L SYSTEM 5271. 4-J572, 11982,
•»• NATE* QUALITY AT THE END OF THE PERIOD
BAY TOS NA CA MG K
MAIN LK 1 1041.96 1««,75 69,70 52.16 19.54
PROVO B 2 753.19 5«,£0 105,78 35.95 9,81
COSHEN B 3 1265.48 IB?. 41 95.56 63,16 23,77
INTERFLOW
VOL AC-FT
•4«22,
6490,
-2468.
LAKE
CL
217.02
61,90
28^,93
F I
STAGE
4486,01
4488,01
4468.01
44»8.Q1
HC03
346.05
397. M
381,65
N A L
AREA
60B56,
6038.
25340.
9143a.
804
202.73
157,47
251,92
VOLUME
5t>0614,
17919,
193991,
77S724,
N03
2.57
2,36
2,42
P04
1.15
2,44
1.36
ro
o
•««TIHE PERIOD 25 HAS BEGUN
••• THE INTERMIXING FRACTION FOR BAY t is 0,005 FOR TIME PERIOD 25
*•• THE INTERMIXING FRACTION FOR BAY 3 IS 0,150 FOR TIME PERIOD 25
-------
UTAH LAKE .-JULY 19T0-JULY 197J.-M1N SPRS ADDED
•••SUMMARY INFORMATION FOR TIME PERIOD 25
••• PERIOD FLOKS AND INTERFLOWS
MONTHS
SAY PRECIP EVAP SUM THIb VOL BEFOKF INTERFLOW FINAL
NAME NO, AC-FT AC-PT IMLOa AC-FT INTERFLOW VOL AC-FT STAGE AREA
MAIN L* 1 «™, «S173, -32P:t4. 4(«6SI54. -'.3791, 4486.98 59192,
PROVQ B f. Ill, 4341. 5219. 1S9M9, 6384, 4486.98 517B,
TOTAL
• •*
MAIN LR
PROVC P
GOSMEN B
SYSTtH
WATER QUALITY
DAY TOS
2 861,47
1 1353,95
983, 65739,
*•
AT TME END OF TMt
NA CA
15«,M 97,
65,53 122,
194,36 103,
96
ei
92
263J9.
PEN I OP
M6
56,78
41,41
67,44
LAKE 4486,98 88844,
K CL HC03 S04
21.44 239,21 377,54 221.51
12,05 72.51 454,73 177,38
29,42 Je3,36 413.03 268,09
VOLUME
499845,
12SSS,
981658,
N03 P04
3.C6 1.36
2,92 3,11
2.72 1,«7
ro
o
•••TIME PERIOD 26 MAS BEGUN
*** THE INTERMIXING FRACTION FOR »AY 2 is e.005 FOR TIME PERIOD 26
••• TME INTERMIXING FRACTION FOR BAY 3 IS 0,150 fOH TIME PEHIOO 26
-------
UTAH LAKE --JULY I9TB-JUUY 1973--MIN 9FRS ADDED
•••SUMMARY INFORMATION FOR TIME PERIOD 26
»«• PERIOD FLOWS AND INTERFLOWS
MONTHS
MY
NAME NO,
HAJN IK 1
PKOVO B 2
603MEN e 3
TOTAL SYSTEM
PRECIP EVAP
AC-FT AC-FT
1972, 34959,
327, 3053.
2406, 1U459,
470
••* MATER QUALITY AT
BAY TOS
HAIN LK 1 1234,
PROVO B I 904,
603MEN 6 3 l«22.
52
36
Op. Jif ** f
THE END
NA
171.02
68,03
203,64
SUM TRIB
INFLOW AC-FT
•34137,
500,
1,
OF THE
CA
105.51
128,17
110,65
26228,
PERIOD
MG
60,
«J.
70,
VOL BEFORE
INTERFLOW
432721.
157737^
64
79
64
K
23,19
13,77
26,70
INTERFLOW
VOL AC-FT
TITS!
9053.
LAKE
CL
259,16
77,62
316,50
F
STAGE
4466.12
4486.12
4486.12
4466,
MC03
406.19
476.56
438,08
I N A L
AREA
56472,
4445,
23767,
12 66684,
S04
236.36
183,29
280,17
VOLUME
448952,
6030.
146644.
605666,
N03
3.59
3.26
3,03
PO*
1.57
3.55
1.58
ro
O
Ul
***TIMC PERIOD 27 HAS BECUN
••* THE INTERMIXING FRACTION FOR BAY 8 IS 0,005 FOR TIME PERIOD 27
*** THE INTERMIXING FRACTION FOR BAY 3 IS 0.150 FUR TIME PERIOD 27
-------
ro
o
UT»H LAKE ..JULY 19TB-JULY 19TJ--MIN 9P*S ADOEO
•••SUMMARY INFORMATION FOR TIME PERIOD H
• ** PERIOD FLOWS AND INT6RFLON8
MONTHS
BAY.
NAME NO,
MAIN LK 1
PROVO a *
COSHEN B 3
TOTAL SYSTEM
••• WATER
BAY
MAIN LK l
PROVO a i
C09NEN 8 3
PRECIP EVAP
AC-FT AC-FT
3507, ?8?99.
2TB, 2151,
542
QUALITY AT
T08
1297. 99
1487.48
O 0 * \ * J
THE END
NA
1T9.54
69. 84
212.66
SUM THIS
INFLOK AC-FT
4726^
C 4)
OF THE
CA
111,01
127,68
117,06
.6M4,
PEM100
MG
»3.
44.
T3.
VOL «EFORE
INTERFLOW
aK89k),
10875.
K
61 24.41
09 14.0(9
63 27,92
INURFLOW
VOL AC-FT
-7471,
4*60,
2811,
LAKE
CL
2TJ.B2
BB.B7
329.14
F
STAGE
44»5.59
4485,59
4485.59
4485'.
MC03
426.78
482.72
461.82
I N A L
A4EA
JBBa2.
3797,
23280.
59 85079.
904
249.56
176.15
291.47
VOLUME
41R362.
6215,
136513,
16U89
N03
4.13
3.53
3.3A
•
P04
1,76
3,91
1.69
«**TIHE PERIOD 28 HAS BEGUN
•** THE INTERHIIINC FRACTION FOR BAT i IS 0,005 FOR TIME PERIOD 28
»•* THE INTERMIXING FRACTION FOR BAY 3 is e.isw FOR TIME PIRIOO 28
-------
UTAH LAKe -»JULY 197B-JULY 1973--NIN SPRS ADDED
•••SUMMARY INFORMATION FOR TIME PERIOD 28 -- MONTHS
«** PERIOD FLOWS AND INTERFLOWS
BAY
NAME NO,
MAIN LK t
PROVO B 2
GOSHEN B 3
TOTAL SYSTEM
PNCCIP EVAP SUM TttlB
AC-FT AC-fT INFLOW AC-FT
13867, 12610, 26*46.
1215, 826, 6087,
4964. 5061,
20046, 18497,
33733,
L BEFORE
NTERFLOW
446264,
12691.
137416,
INTERFLOW
VOL AC-FT
3536.
5211.
-8747.
F I
STAGE
4486,01
4486.01
4486.01
N A L
AREA
58384.
4356.
23680.
VOLUME
442728,
7480,
146163,
LAKE
4486,Bl
86419. 596371,
••• KATfS QUALITY AT THE END OF THE PERIOD
MAIN LK
PROYO B
BAY
1
2
3
TDS
1245,39
714,34
1442.88
NA
171,05
57.93
205.07
CA
107.61
97.42
114,69
MG
60.82
35.3B
7P.96
K Ct NCOS 304 N03 P04
23.33 260,36 413,04 238,06 4.30 1,78
12.28 65,88 390,25 I4J.92 2,82 3,13
26.96 316,59 451,23 281,26 3.55 1,70
ro
o
•••TIME PERIOD 29 HAS BEGUN
••• THE INTERMIXING FRACTION FOR BAY 2 is 0.002 FOR Tine PERIOD 29
• •• TMe INTERMIXING FRACTION FOR BAY 3 IS 0.135) FOR TIKE PERIOD 29
-------
UTAH LAKE --JUCY I9T0.JULY 1973--MIN SPRS ADDED
•••SUMMARY INFORMATION F0« TIME PERIOD 29 •• MONTHS
••• PERIOD FLOWS AND INTERFLONS
BAY
NA*C NO.
WAIN UK- 1
PROVO 0 2
UOSMtN B 3
TOTAL 8YSTIM
PRECIP
AC»FT
1696,
2249J
6398,
SUM TRIB VOL bEFORC
AC'FT INFLOW »C-fT JNTtRFtOW
109,
572,
2088,
1IB0,
INTERFLOW
VOL AC-FT STA6E
7621, 4486.98
FINAL
ARtA VOLUME
98859. 476314,
3001, 4486,56 4835, 1C446,
4486,58 24151, 159762.
LAKE
4446,58
67645. 646522,
•«« HATER QUALITY AT THE END OF THE PERIOD
"AIM L*
PROVO B
60SHEN t
BAY
I
2
3
T03
1185,98
6T9,fl7
1393.28
NA
162,04
54,69
197,19
CA
133.25
88,16
111,26
HO
57,67
32,15
68,18
K CL HC03 S04 N03 P04
22,06 246,97 394,94 225,43 4,43 1,77
11.10 59,41 354,37 136,62 2,«1 2,68
25,69 307,96 437,15 270,51 3.65 1,69
ro
o
oo
PERIOD 50 MAS BEGUN
••• THE INTERMIXING FRACTION FOR BAY 2 is 0.002 FOR TIME PERIOD 30
••• THE INTERMIXING FRACTION FOR BAY 3 is 0.100 FOR TIME PERIOD 30
-------
UTAH LAKE "JULY 19TC-JULT 197S—MJN SPffS ADOEO
•••SUMMARY INFORMATION FOR TIME PERIOD 30 •
*•* PERIOD FLOWS AND INTERFLOWS
MONTHS
BAY
NAME NO.
MAIN I* I
PROVO B 2
COSHtN B 3
TOTAL SYSTEM
•»• HATER
BAY
MAIN L* i
PROVO B 2
GOSMEN B 3
PRECIP EVAP
AC-FT AC-FT
2991, 145?.
322, 117,
1469, 563.
4782.
OUAL1TY AT THE
T03
1138,
135l!
NA
15 154,
63 53.
57 1918.
212
END
87
51
38
SUM TRIB
INFLOW AC-FT
4JK7.
C Q
OF THE
CA
99.68
81,49
108.38
49302.
PERIOD
MC
55.
3«,
VOL BEFORE
INTERFLOW
52H969,
15«>47,
161B47,
K
12 21,07
27 10,24
67 24,96
iNTERf-LOM
VOL AC-FT
9*77.
2127.
LAKE
CL
23f>,45
57,77
299,14
F
STAGE
4487.17
4487,17
4497,17
44«7.
NCOS
360,12
342.13
425.26
I N A L
AHtA
59J51.
5331,
17 69322,
S04
215,21
127.93
261.41
VOLUME
511112.
13520.
173851,
698483,
N03
4,54
2,37
3.76
poa
1,77
2,64
1.66
ro
o
**«TIME PERIOD 31 HAS BEGUN
••• THE INTERMIXING FRACTION FOR BAY 2 is 8,002 FOR TIME PERIOD 31
»*» THE INTERMIXING FRACTION FOR BAY 3 IS 0.1BB FOR TIME PERIOD 31
-------
UTAH LAKE --JUI* 19T8l-JULt t973»-PlN SPRS ADDED
•••SUMMARY INFORMATION FOR TIME PE«IOD 31
*•• PERIOD FLOWS AND INTERFLOWS
MONTH!
AAV PRECIP EVAP SUM THIB VOL PEFORE INTERFLOW
NAHt NO, AC-FT AC-fT iNFtOn AC-FT iNttOfLOM VOL AC-FT
MAIN LK 1 4647, 1434, 40406, 554732, 8916,
PROVO « 2 413, 129. 4$«4, 1*338, 1773,
60SMCN B
TOTAL
...
MAIN LK
PROVO B
GOSHEN B
SYSTEM
MATEH
BAT
1
2
I
S 2258,
7318,
QUALITY AT TMt
TOS NA
1091.78 147,
(22,82 52.
1312,13 183.
593, I
2150,
ENO OF THE
CA
95 96,18
64 77,40
aa 105,08
Ten, 177214, -10689.
46(<6t1,
PEHIOD
HP.
52.66
28.93
63,27
LANE
K CL
21,10 2?6,
1,57 56,
24.00 292.
33
57
25
FINAL
STAGE AREA
4487,75 59842,
4487,75 5826,
4487.75 25128.
4487,73 90793,
MCOJ 904
365.75 2VS.«4
334,44 120,06
412.45 253,16
VOLUME
545816,
1*5*5.
18790*.
7S0303
NO 3
4
2
3
.60
.34
.83
.
P04
1.
2.
1.
75
58
67
ro
o
•••TIMS PERIOD 32 HAS BECUN
••• THE 1NTCKHIXIN6 FRACTION FOR BAY 2 13 0,002 FOR TIME PERIOD 32
*** THE INTERMIXING FRACTION FOR SAY 3 IS 0,|00 FOR TIME PERIOD 32
-------
UTAH LAKE "JULY 1979-JULY 1»7J—MJN 3PRS ADDED
*»*SUMMARY INFORMATION FOB TIME PERIOD 38 — MQNTMS
*•• PERIOD FLOHS AND INTERFLOWS
MY
P«ECIP
EYAP SUM THIS VOL BEFORE
NAME NO. »C-FT AC-FT INF
MAIN LK
PROVO B
GOSMtN t
TOTAL SYSTEM
•«• WATER
BAY
MAIS LK 1
PROVO B 2
G03KEN S 3
1 56(3.
2 309,
3 11(19.
7I4J,
QUALITY AT THE
TDS *A
1040.13 140,
611,53 52,
1300.61 100.
1416.
111.
607.
2193,
END OF
LOW AC-FT 1
31960,
40,03,
36«e,
napBS,
TME PEHIOO
CA M5
94 92
41 75
77 1B2
.76 5e.23
,21 28,25
,10 61,70
NTEHfLOW
542813.
21237,
192PI05,
K
19.11
9,20
23,27
INTERFLOW
VOL AC-FT
6670.
1717,
-0307,
LAKE
CL
216.25
56.19
296,65
F
STAGE
4466,25
4468,25
4466,25
4400,
HC03
351. f.7
331.10
403,36
I N A L
AREA
603R6,
6190,
25609,
25 92112,
304
19b,71
115,60
251,35
VOLUME
575343.
1952(1.
2P0392,
795254
N03
4,06
2,33
3,91
t
P04
1.62
2,55
1,66
ro
»**T1MC PERIOD 33 HAS BE5UN
*•* THE INTERMIXING FRACTION FOR BAY 2 is 0,022 FOK TIME. PERIOD 33
••• THE INTERMIXING FRACTION FOR BAY 3 is 0.100 FOR TIME PERIOD 33
-------
UTAH LAKE --JULY ISTe-JUlt 1973»HIN SPRS ADDED
•••SUMM»»Y INFORMATION FOR TIME PERIOD 33
*•• PERIOD FLOWS AND INTERFLOWS
BAY PRECIP EVAP SUM TMIH VOL BEFORE
NAME NO, AC-FT AC-FT INFLOW AC-FT INTERFLOW
MONTHS
INTERFLOW FINAL
VOL AC-FT STA6E AREA
HA1N LK
PROVO a
TOTAL
...
PROVO 9
BOSHEN u
1 592*.
2 6C9.
Ibs!
SVSTCH 9U61, 23BZ
WATER
HAY
1
3
DUALITY AT
TOS
1BU9, 11
599,99
23211,
» -
THE END OF THE
NA
135, 09
51.35
173.90
CA
69,66
72,65
99,14
I0?74.
PERIOD
HG
46,
?7.
59,
6P2974.
25637,
K
19 16,28
*7 6,97
41 22,36
3«-57.
-71S7.
LAKE
CL
2P7.71
54.62
2A5.53
44A6.64
44(6,64
HC01
32«!sS
39P.77
6A721,
«-af-3.
4324Q,
SU4
lisiefe
241.52
599494.
2il!:33!
632TB7
N03
2^26
3.96
,
P04
1,79
2.46
1.65
no
—i
ro
•••T]M£ PERIOD 34 HAS BEGUN
••• THE INTERMIXING FRACTION FOR BAY 2 is e.eas FOR TIME PERIOD 34
• •• THE INTCMIIXtttC FRACTION FOR BAY 3 IS 0,15(9 FOR TIME PERIOD 34
-------
UTAH LAKE «JUtr 19TB-JUL* 1973--MIN SPRS ADDED
•••SUMMARY INFORMATION FOR TIME PERIOD 30 •
••• PERIOD PLOWS AND INTERFLOWS
MONTHS
BAY PRECIP EV»P SUM TRIO VOL BEFORE
NAME NO, AC-FT AOCT INFLOW AC-FT INTt»FLOW
IAIN UK 1 5716, 15275, J«<>95f 62893:1,
PROVO 8 2 «2B. 1626, 5931, ?.b<>*5,
UOSHEN 6 3 9556. 65b5, lOBP, £10036,
TOTAL SYSTEM 1069a, ?34bb, 41926,
• ••
IAIN LK
PROVO 9
OOSHEN B
HATER
SAY
1
2
3
QUALITY AT THE END
TD4
991,93
628,32
1217,52
NA
131, 60
33.62
167,77
INTERFLOW F x N A u
VOL AC-FT STASE AREA VOLUME
»!>£9. «488,95 61005. 6183?!,
2654, 4488.95 6670. 2«251,
.9283. 4468.95 26404. 219319,
LAKE 4488,95 94116, 861871,
OF THE PERIOD
CA
09,00
75. T7
97.68
nc
• 7.20
20,99
57,51
K
J7.73
9,34
21.65
CL
203,04
57,29
274,17
HC03
336,86
338,85
383.07
S04
183,18
119.64
232.68
N03
•.92
2,34
4,18
F-04
1,81
2,52
1,69
ro
__i
CO
•••TIME PERIOD 35 HAS BEGUN
•** THE INTERMIXING FRACTION FO« SAY a is 0.005 FOR TIME PESJOO 55
•«• THE INTERMIXING FRACTION FOR BAY 3 IS 0,150 FOR TIME PERIOD 35
-------
UTAH U*KE ..JULY 19TB-JULY 1973--MIN SPRS ADDED
INFORMATION FOR TIME PERIOD 33
— MONTHS
•*• PERIOD FLOHS AND INTERFLOWS
»AV
NAME NO
MAIN LK 1
PROVO B 2
G03HEN PI 3
TOTAL
• *•
MAIN UK
PROVO B
GOSHEN B
SYSTEM
PKECI? tVAP
, AOFT AC-FT
46?7, 3CI966,
694, 3363,
3319, 13393,
SUM THIS
INFLOW AC*
96?96.
6177.
75P.
FT
VOL BEFOKE
INTERFLOW
27734J
8841, 47746. 103223.
WATER QUALITY AT
BAY
1
2
3
TOS
926.66
1163)66
THE END
NA
116, S3
60.16
161,34
INTERFLOW
VOL AC-FT
29191.
-1222.
-27964,
LAKE
F
STAGE
4489.65
4489,65
4489.65
4469.
X N A L
AREA
6176B,
M39,
27196,
63 96116,
VOLUME
6MB67,
28961,
236162,
928141,
OF THE PERIOD
CA
64,63
62.91
97,46
HG
43.
32.
35.
K
44 16,16
(16 10,49
62 28.47
CL
164.06
67.12
261,47
HC03
316,36
363.11
376,69
S04
167,62
132.41
223,96
N03
3,92
2,73
4,77
P04
2,17
2.77
1,67
ro
*«*TIME PERIOD 36 HAS BEGUN
*•• THE INTERMIXING FRACTION FOR BAY 2 is e.etis FOR TIME PERIOD 36
•»» THE INTERMIXING FRACTION FOR BAY 3 IS 0,138 FOR TIME PERIOD 36
-------
no
_i
01
UTAH LAKE "JULY 1970-JULY 1973--MIN SPRS ADDED
»»«SUMMARY INFORMATION FOR TIME PERIOD 36
**« PERIOD FLOWS ANQ
MONTHS
BAY PHECIP EVAP SUM TRU VOL BEFORE INTERFLOW FINAL
NAME NO, AC-FT AC-FT INFLOW AC-FT INTERFLOW VOL AC-FT STAGE AREA VOLUME
MAIN LK 1 3139, 34634. 11509, 641161, -M9. 4469,33 61450,
COSHCN » 3 2719) liilb, *>!•:', 226169J -35261 4489|33 26840) 889695.
TOTAL SYSTEM
6131, 538«3.
17951,
LAKE
4409,33
95Z1S. U9«39B,
•*t WATER 8UALITY AT THE E^O OF THE PERIOD
MAIN LK
PROVO B
GOSHEN 5
BAY
1
2
3
TOS
96P.19
TOT,ee
NA
121,99
63,12
162,37
CA
0S,16
92,15
100.22
44.7(9
34,99
56.43
K
16.61
11,81
21.19
CL
la^.et
71,82
261.66
HC03
3?n.62
391,26
367,19
S04
t7e,6a
143,40
S25.23
NQ3
6.6i
?.99
5,313
P04
?,aa
3.07
2.04
•**TIM8 PERIOD 37 MAS BEGUN
-------
t.
r\j
I ,Z«f»ffPt»f *
!,?fi»i«
I.IKV
l.lin*
c c
c
C A A
A
A
B B
B e
c c c
c
A A
A A
B 6 B B
I
c
c
C A
C A
A
A
6
B
B
B
I
C C C
c
A
A
A
B
B
B B
C
c
c c
A
A
A A
B
6
B B
!
C
C C
C
A
A A
A
B B
B
B
i
c c
c
c
A
A
A A
B B
B B
I 1
c
A
B
t I
DISSOLVED 30LXOS-MG/L
UTAH LAKE "JULY J970-JULT 1973--M1M SP»S ADDED
LEGENO— MAIS LAKl AAAAA
P90VO BAY HCB08
GCSHEN BAY CCCCC
-------
no
SZ(Mf>t»0l
t
B
I
I
•
•
i
C .
c c ,
1
c c
t
f
•
A A A .
,
A
A
I
|
*
I
f
t
ff
*
I
t
1
t
*
|
8
a
B
B .
,
$
t
i
t
t
»
•
,
•
I
•
•
t)
.)
,
*
ff
9
c
c
c .
c .
c
t
A •
1
A A .
A ,
A
t
•
•
•
•
1
*
•
•
*
,
t
,
,
»
B B B B 8
i
•
»
t
•
,
1
I
«
i
i
i
,
C
C ,
•
c
ff
C A
C A .
t
A ,
,
t
A
A
<
t
<
>
•
•
i
«
•
*
•
,
•
B ,
B
B .
B
B
*
1
«
t
•
,
ff
I
t
t
0
f
•
ff
*• •
C
c c c
r
,
•
A ,
A ,
i
A ,
A A
i
i
f
ff
•
<
«
i
•
i
i
i
«
,
,
i
,
B B ,
9 B B
i
*
•
t
•
I
•
I
,
, c
t
. c c
,
c c
,
,
C C . A
c c
, A A
*
A A
*
ff
A .
A ,
A A
•
t
•
*
*
i
•
i
«
t
t
t
, 8 B
0
B , B
9 , e
B
B
<
t
»
•
>
t
'
I
•
•
*
•
»
•
C
, c
« c
•
•
•
A
i A
t
,
*
t
i
*
i
t
«
t
•
•
i
,
•
,
«
P B
• B
•
i
•
9
1
ff
'
^
I
f
ff
,>
•
f
f
4
t
C
C ,
c c
•
t
#
t
A .
A ,
fl
A A
•
•
*
i
•
•
f
*
,
,
* B
B
B i
B .
<
•
*
>
*
•
i
'
1
SODIUM
-MG/L
UTAh LAKE --JULY l<»7e«JUUY 1"»T3--MIN 3PRS ADDED
LEGtNO-- MAIN LAKE A4AAA
PROVO BAY PB9P9
GOSMEN BAY CCCCC
-------
•
1
1
ro
CO
:"5S«i«
:i;is;l:5l
, \tft>y^*ZZ
, \ \f\ffltti
,f l)fl*Pt«t1i>
,ng?.'<»E*UZ
,Hfif.9lt*9t
,iftrn+e\
,d??0flt*01
, sppiect «8i
,0'BflCPE»B|
,TB?'?E«8l
,«PiU'?t»«M
, lOM«)PE»t9i
.fCPl-fiE**)!
, Soffit »^1
,?\-,;c' .HI
,«e^?»t»(M
,6l.'|itf»L*l91
,3eeef|t»»'i
,?r?ie?t»(it
,lc(>act«(ii
• ?t*^^Pt*^^
• PPPI0(*t*?^*
B B B
B
C A
C A
A
C
B B
B B
A A A
C C A C
I
8
B
B
B
A
A
A
C
I
B
B
A C C C
A A
B A
B
•
I
B
C
B
C A
C A
ft
A A
B
I
B 8
f
c
C A C
A
P
A
B
B
C
C
C C
A
A
A A
B
B 8
8
.
[
C
B
A
[
i,i0punf*nt 2,ieoe0E«et 3.
i,6eeeBE«ei 2,6ecenE*ei 3,
CALCIUM ION —HG/L
UTAH LAKE .-JULY 1*70-JULY 14T3--MIN SPRS AODtO
LEOtNO" MAIN LAKE AAAAA
PRQVQ HAT BDHOB
&OSHEN RAY CCCCC
-------
*t
ro
10
I ,«;>f»nn£*Ht
•
•
t
•
t
•
1
I
•
fl
•
"
1
•
•
t
1
1
f
ft
ft
*
c c ,
C A A C
A , C C
A A C C
. A
, A A
B . A
e .
a .
9
6 .
,
B B
, B e B
1
1
t
ft
.
ft
•
•
I
I
ft
•
ft
1
1
ft
1
1
ft
ft
ft
I
ft
ft
ft
1
t
,
,
ft
ft
ft
•
c
•
9
A
•
9
9
9
t
B
•
•
t
t
•
•
9
f
I
•
<
•
«
•
t
•
•
«
•
<
•
«
>
•
>
•
1
,
•
C
c , c
c , c
C A A
C , A
A . A
" t
A ,
•
,
e B
» .
B , B
B . B
»
•
•
•
•
«
t
t
'
I
*
i
•
i
•
•
*
•
•
•
*
•
i
•
4
1
ft
ft
1
ft
ft
,
,
c c ,
c
ft
A ,
A A
t
«
t
•
i
i
t
B B B
•
•
t
ft
•
«
9
t
I
9
ft
ft
ft
ft
ft
ft
ft
1
ft
ft
ft
ft
ft
ft
ft
ft
1
1
. c
. c
I
c
C C , A
C C . A
A
t
A A ,
A A ,
, B B
a
,
B .
e ,
B ,
B ,
»
»
t
•
•
t
«
•
I
•
•
»
•
*
•
•
•
•
t
•
•
i
•
•
i
i
i
i
•
C ,
C .
c
t
A .
A .
A
>
,
ft
•
B .
B .
8
•
i
•
t
9
•
f
f
f
I
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
I
ft
ft
ft
ft
ft
ft
ft
ft
,
ft
ft
ft
C C
c .
c c c
A
* ,
A A .
. A
A
,
• B
B
B 8 .
B B ,
•
i
•
•
•
•
•
•
X
UTAH LAKE --JUUY
MAGNESIUM ION -MG/ L
1973— HIN SPRS ADDED
-- MAIM LAKE AAA«A
PHOVO BAY PBBBB
COSMEN HAY CCCCC
-------
ro
no
O
,)0«im*at
,00P<" I»E*00
c c
c
c
A
A A
A
•
B B
9
C C
C
c
A
A
A A
B B B B
1
C
C
c
C A
A
A
A
a B
B
B
I
C C
C
c
JL
A
A
A
•
BBS
c
c c
c
A
A
A A
B
6
B
B
I 1
C C
C
A
A A
A
B
B
B
B
1 1
C
C
c c
»
£
A A
B
B B B
I
£
A
B
[
i,ipi0BO£»Bi e,t00e0e*0t 3.ie0ue£*ei
l,60«00E*0i »,ft0ji«tiE*et 3,<
POTASSIUM ION —MO/U
UTAH LAKE ••JULY 1470«JULV 14TJ—HIN SPWS AOOEO
LEGEND" MAIN LAKE AAUA
PHOVO BAT RBBBB
SAY CCCCC
-------
4 f50000C*?2
4 y40ff10ftC*ft2
4 v3Q00ttC*td2
4 f EPflflPE*?2
3 v *Jtt0iSH*£ *0i
3 tSflflflPt *fl2
3c2^d?9C*(|i?
3 f 1 PC* ^fl£ *0 2
3fPtff*8P6*rti?
«t*(!p(ti*n*i.ia
2»6flv1i0wt*ifl?
2 * Tp^flt »3J
2ff6?i^3flt»Y2
1,501*306*0?
2 1 fl 0t5flflt O2
2 « 3^?k*K t «02
2,2t)fla;»E»vfZ
2,| v>i'0;iL*t9i
2 t!POJli"E*fl2
t f 9^fl «JRf *>J2
1 1 Bpfliflottkia
t (T80tfHE»d2
i fffctf0i8wt*32
t fl?8^0!Pt*^2
1 a40ft^ftfc + 0(!
t , 3t»a«)cit+fl2
1 ,lU?Uft + prtjflE«01
6 Ci'J'/.H « Jl
T,I".!
•
•
t
t
t
,
t
V
B
B B a B B e
•
•
*
•
I
ff
t
1
t
t
ff
t
t
•
c c
1
t
t
A A A
,
. A
t
•
1
t
ff
f
t
1
•
fl
t
,
,
B .
B
, B B
»
t
t
t
I
>
t
i
t
t
i
. c
,
,
i
,
A A A
, A A
*
I
I
•
«
•
9
t
f
t
*
*
B B B B 6
t
*
*
•
i
t
*
»
«
«
•
«
•
c
c .
1
•
„
A
t
A ,
A ,
t
t
t
t
f
•
t
•
•
|
,
ff
t
0
B B ,
i
•
•
»
f
I
t
t
c !
c c ,
c .
c
f
A i
A A ,
A ,
A
,
i
•
,
i
»
t
t
t
»
•
i
t
i
a B ,
B ,
B a
•
»
•
•
'
l
«
•
*
,
,
c ,
c c .
c ',
c c
•
.
A ,
A i
A ,
A .
. A
A
•
l
t
•
•
•
*
,
i
,
B B
B B 8 ,
B .
•
i
•
'
I
]
1
I
I
]
1
]
]
I
I
]
IOM--M G/L
- MAIN LAKE *****
PROVO H/iY BBB88
GOSHEN BAY CCCCC
UT*ri L*KE I.-JULT 197P-JUUY
SPR3 ADDED
-------
ro
ro
ro
B B
8
A
A
A C
C
A
C
C
8 B 8 B
A
A A A
c c
I
B
B
B
»
ft C
A
A
A
t
B
A C C C
A
B
A A
B B
I 1
B
C
B
C A
C
B A
B A
A
i
c c
A 1
A A
B A
B
t :
i
i
c
c
c
c
A
A
A A
B B
B
t 1
B
A
3.teeeeE«et
BICARBONATE
• MBL
UTAH CAKE »»JULT J9TB-JUUY J973--NIM SPBS AOOEO
UECENO-- MAIN CAKE AAAAA
PROVO HAT P8BB6
60SHEN BAY CCCCC
-------
ro
ro
CO
i1'.} ("£»•)!
c
A
B
t
i
i
t
C C C .
•
c
. c
A A \
A
A
• A
f
t
f
6
B ,
B .
,
a B
!
t
•
1
•
•
i
•
*
•
•
i
t
•
•
•
•
•
*
•
•
•
,
,
,
•
c c . c
c . c
c
•
A •
A A , A A
A
(
t
*
,
» B
B , B
B B B
•
i
t
«
«
t
«
t
•
•
I
t
f
f
*
ff
t
t
f
ff
I
C C
c .
t
A A
•
A ,
•
i
•
*
B B
8 ,
,
i
•
i
«
i
•
•
i
•
•
t
t
•
I
t
*
(
,
,
C C
C C C
. c c
t
A ,
A ,
A A ,
A A A
,
•
«
*
6 .
B .
B B B B B
>
>
«
•
i
•
»
•
•
i
<
I
•
*
•
•
•
i
•
•
•
«
•
B
•
,
C
,
c c .
•
a
A
>
A A ,
,
e
•
B .
,
B .
i
•
i
•
•
<
•
•
•
•
«
t
•
I
*
i
i
a
c
c c .
c .
c
A , C C
A A .
A ,
A
. A
. A
B B i
,
,
t
B 6 ,
B
, B B
i
•
*
«
•
•
•
•
i
•
•
Z
*
•
t
i
»
t
t
*
t
t
•
•
»
,
,
c
c ,
c
«
ff
A ,
A ,
A
,
t
t
8
B ,
B ,
t
ff
t
ff
ff
•
1
f
t
*
1
C
A
B
SULFATE ION --MC/L
UTAH LAKE —JULY 19TO-JUIY H73--HIN SPR3 ADDED
-- MAIN UAKE AAAAA
PROVO BAY *»*»$
UOSHEN BAY CCCCC
-------
ro
,A0f>0Rt*0B
a a
A
A
A
C
A C
C
C
B
B B B
A
A A
A
C C
C
C
I
B
B
B A
a A
A C
A
C
C
C
I
B
B C C
C C B B
1
A
A
B
'A C
C B
C
B
6
I
A
A
A
A C C
B
C
B
C
B
;
C
C
ft
B B B B
I ]
B
I
1.6BB00E+81 i
NITRATE CONC AS N.«*G/L
UTAH LAKE —JULY J»re-JULY J97J—1IN SPSS ADDED
3.«i)80BE*ei
LEGEND— MAIN LAKE AAAAA
PNOVO BAY ftttBttB
BAT CCCCC
-------
no
ro
01
8
A A
B
C
C
t
t
f
't
t
•
•
t
t
9
t
t
ff
•
f
•
t
t
«
1
t
f
B
,
t
An
8 •
A .
A
,
•
t
C
c .
t
c .
,
*
•
*
ff
•
•
•
I
•
•
•
•
f
•
ff
•
ff
fl
•
t
f
1
•
t
1
,
(
•
1
f
f
,
f
t
•
1
t
p 8 B B B
* ,
A A .
C C C A C
A
c
t
,
i
•
t
i
i
•
•
I
*
f
i
•
4
t
•
t
i
4
g
•
•
•
,
,
B B
,
t
B •
,
,
,
B
,
B
C C
C A A
C A .
A A
*
*
fl
•
«
f
t
4
ff
ff
'
1
ff
t
t
t
ff
t
t
t
t
•
9
9
I
9
9
f
,
t
«
ff
t
f
B
t
B
B S B B
i
c ,
A C C .
A C C C
A A .
A A
a
I
I
1
•
1
ff
•
ff
«
I
»
*
f
f
•
*
»
t
ff
0
ff
f>
*
t
§
,
B ,
t
f
B ,
*
ff
g
,
C
C A
c c f
A .
A A ,
t
*
t
t
t
. »
«
t
*
»
I
|
i
B
ff
*
B
•
i
i
v
B ,
t
i
,
B .
a
(
•
(
t
,
c c c c
* t
t
,
,
1
1
1
»
•
1
1
1
1
1
*
ff
I
•
•
•
1
•
•
f
•
•
ff
t
1
• B
•
t
B
,
B B
8 6 .
. A
v
A
,
. c
C
A C C C ,
*
,
f
*
v
*
9
9
f
t
I
*
•
•
*
•
I
PHOSPHATE AS P --MG/L
UTAH CAKE — JUL* 1970-JUL.Y 19F3--H1N SPRS AOOEO
LEGENO-- MAIN LAKt A«AAA
PROVO 6*r 9BBBB
GOSHEN BAY CCCCC
-------
,19Am*fl6
A A
,«0*fj*e«M t,
I
1 1 I I
TOTAt, LAKE VDIU"E"-AC-?T
UTAH UARE .«JUIY ii/e-Juuv 19T3--M1N SPHS ADDED
-------
4,492001*0*
,49]!>2t*i
-------
UTAH L4KE "JULY HTB-JLM J9T3--MJN JP»S AOOEO
•••TOTAL SALT 8UHNAKT FOR THE SIMULATION
TONS
BAY ' T08 NA CA MO
TMIB, INFLOW 1641889, 2009*2, 166092, 72231,
LAKE OUTFLOW 1446894, 208297. 112092, 79863,
LAKE . ,
BEGINNING 1049026, 166618, 97914, 61919,
ENOJN6 1240097, 199324, 111994, 9T887,
K CL NCOS 804 N03 F04
26772, 318494, 020499, 280986, 10999, 3298,
28999. 302394, 444626. 286910. 3313. 2074,
23320, 233494, 249634, 233702, 240. 1634,
21937, 249394, 421603, 226176, 7930, 2897,
ro
ro
00
-------
UTAH LAKE --JULT 1970-JUL? 1973— -MJN SPR3 ADDED
•••TRIBUTARY FLOWS AND SALT QUANTITIES
SALTS" TONS TOTAL FOR THE SIMULATION
BAY 1
PAY IDS NA CA MC K CL HC03 804 N03 P0«
T»IB. FLOW
AC-FT
1 25S, lit,, 17.53 19,64 3,?6 3,16 4,21 78.89 25.25 0.3T9 0,154
PCT e.0i« 0,006 0,009 0.012 0.007 0,012 0,001 0,013 0,009 0,004 0,003
2 258, 110, 4.91 19.64 4,56 2.10 2,10 78.69 25. 25 0,140 0,028
PCT 0.014 0,007 0,002 0,012 0.006 0,0(16 ?.e01 0,013 0,009 0,001 0,301
3 212, 121, 14.99 20,74 13,25 0,52 14,69 121.01 26.52 0,300 0.127
FCT 0.012 0,007 0,007 0,012 (9,018 0,002 0,005' 0,019 0,1010 (!,0U3 0.004
4 746, 669, 44,6} 101,39 28,39 9,30 10,42 304, J6 98.85 1,784 0,4)31
PCT 0.041 0.041 0,022 0,061 0.039 0.835 0,010 0,049 0,035 0,017 0.001
5 515, 315. 14,00 42.00 25.38 1,26 12,60 199.48 29, «B 0,504 0,056
PCT 0,028 0,019 0,007 0,025 0,035 0.005 0,004 0,032 PI, 010 0,005 0,002
6 2411, 2163. 104,86 283,05 95.51 25.56 98,30 1327,07 235,92 8,578 0.393
PCT 0.132 0.132 0.05? 0,17(1 0.132 0.P95 0,031 0,214 0,084 0,081 0,012
7 1909, 1427. 103.78 166.05 108,97 20,24 44,11 934,01 212, T5 2,698 0,208
PCT 0,104 0,087 0,052 0,100 0.151 0.076 11,014 0,150 0,076 0.025 0.1406
6 7399, ' 6637, 442.45 724,02 4192.23 103, 7B 331,84 3770.91 724.0? 31,676
PCT 0.4flS 0,404 0.820 0.436 H.557 0,387 0,104 0.6B7 0,256 0.299 0,305
9 48096, 27402, 1565,85 6263,38 2179.26 274,02 13P4.B7 20551.73 5871,42 150,151 13.049
PCT 2,627 1,669 19,779 3,771 3,432 1.024 H,«10 3.309 2.090 1,417 0.396
10 Slfll. 3744. 117,85 623.90 194,11 29,1? 103. 99 2391,75 623, 9a 14.974 0,277
PCT 0.279 0.228 0.059 0,376 0,269 0,109 0.MJ ft, 385 0.2?2 0.141 0,308
11 4202. 3541. 542.53 394.05 137. (16 45,69 890. 81) 1810.33 426.31 22.272 98,797
PCT B, 230 P.Jlfc U.2TB 0,237 0,19B 0.171 (1, 280 0,292 0,152 0,210 2,996
-------
UTAH LAKE —JULY 1970-JUUY 1973--MJN 8PR3 AODEO
•••CONTINUED
BAT I
BAY T08 MA CA HO K CL NCOS »04 N03 Hit
WB, fUO*
AC-PT
12 2«36. 1394, 44.73 246.13 72.72 J1.T5 39.16 634.09 231,73 4,475 0.112
PCT 0,113 0.B97 0.022 0,148 0,101 0,014 4,012 8,133 0,090 0,042 0,023
13 1838, 1136, 67,34 179,85 1194,41 11,24 29,9B 674,45 169,64 2,598 0,100
PCT 0.101 0,069 0,034 0,108 0,145 0,042 0,009 0,109 0.060 0.025 0,003
14 3344, 2045, 63,63 405.64 118,16 13,63 54.54 1431,59 409,03 7,272 0,182
fCt 0,183 0,125 0,032 0,244 0,164 0,051 0,017 0,231 0,1*6 0.069 0,006
15 3689. 2106. 60.16 421.14 110,30 15,04 60,16 1428.88 330.90 13,236 0,301
PCT 0,202 0,128 0,030 0,234 0,153 0,056 4,019 0.230 0,118 0,123 0,009
16 2577, 2191, 84,06 392,26 133.09 10,51 84,06 1050,70 231,15 7,285 0,149
PCT 0,141 0,128 0,042 0,236 0,184 0,039 19,026 0,169 0,082 0,069 0,004
ro
CO
O 17 6624, 5672. 148.62 828,23 306.08 43.21 162.04 3240.90 1260,15 23,2«7 0,720
PCT 0.362 0.343 0,074 0,499 0,424 0,161 0,031 0,522 0,449 0,238 0,022
18 66793. 37191. 3268.03 8714.80 3812.73 490,21 2904.93 33386.29 10076.49 204.233 59,914
PCT 3,655 3,463 1,626 5,247 5,279 1,831 0,912 5,409 3,566 1,926 1,817
19 14. 11, 0,37 1.33 0.48 0.51 0.40 6,75 1.46 0,014 0,003
ret 0,001 0,001 0,000 0,001 0.001 0,002 0,000 0,001 0,001 0,000 0,000
20 80120. 67511, 522h,66 9255,55 3373.35 1960.00 6968,68 29944.42 20797.76 4026.865 7f>,222
PCT 4.364 4.112 2,601 5,573 4.673 7.321 2.186 4.622 7.402 36.027 2,311
21 0, 0, 0.00 0,00 0.08 0.00 0.00 0.00 0,00 0,000 0,000
PCT 8,000 P.000 0,000 P. caw e.oeo 0,000 ti,«st0 0,000 0,000 0,000 0,000
22 106, 66. 4,32 10.«8 6,63 3,69 3,03 31,14 11,24 0,108 0,024
PCT 0.006 0,003 0,002 0,006 0.0B9 0.013 F.flOl 0,008 8,094 0,001 0,001
23 66. 70. 3,M 8,18 5.J8 3.16 2,49 41.49 9.12 0,066 0,020
PCT 0.005 0,004 M.002 0.005 0,007 e.012 E,US>1 0,007 0,003 0.001 0.001
-------
UTAH LAKE «JWUt 1970-JUt.Y 1973--MIN 8PK9 ADDED
•••CONTINUED
BAY t
BAY TDS NA CA M6 K CU HC03 804 N03 PCM
TRIP. ruOM
AC-FT
24 362. 251. 11.41 44.28 20,46 27,66 7.18 162.35 1«». 6B 0.134 0.030
PCT 0.020 B.015 0.006 d.027 fl.029 0.077 0,002 0.026 0.007 0.003 0,081
25 1885. 1768, 92.23 174,?1 92,23 41,50 69.17 ltl«.«0 199,02 2.049 0,410
PCT 11,103 0,108 0,046 0,105 0,128 0,155 0,022 P.179 0,071 0.019 0,012
26 991«, 6»57, 1078,34 727.8? 283.06 134,79 1590,55 4394.24 660,48 57.961 296,544
PCT 0.543 0,393 0.537 0,438 0.392 0,503 0,499 0,708 0.235 0.547 8,993
27 50340. 41049. 9509.77 3352.37 3557,61 1299.90 12725,31 15461.94 14435.70 68,416 27.366
PCT 2,734 2,500 4.732 2,018 4,925 4,855 3,996 2,490 5,138 0,646 0,839
28 1532. 1187, 54,13 212.37 47,89 9.37 37,49 812,92 237.36 2.124 0.083
PCT 0.e«4 fl,07? 0.027 0.12A 0.066 0,035 0,?12 0.131 0.084 0.020 0,003
29 507267. 227506, 6272,14 41364,72 11030,59 2068.24 12409.42124094.16 35160,01 220.612 82,729
PCT 27.754 13,856 4,117 24,905 15,271 7,725 3,897 19,983 12,513 2,082 2,509
«8 223112, 136762, 12432,"»2 17406,09 7459,75 1243,29 17406.09 74597.52 22379,26 124,329 49,732
PCT 12.2*7 8.330 6.187 10,480 10.328 4,644 5,466 12,013 7,965 1,173 1,500
49 112P>, 2101, 50?,31 97.42 148,41 19.18 429.25 898.07 593.64 1,461 0.913
PCT 0.VI61 0.128 0.25H 0,059 0.205 0,072 U.135 0,145 0.211 0,314 0,628
50 6277, 25934, 5630,39 1160.20 1322.29 87,02 5118.53 6142,24 6654.09 4,095 1,024
PCT 0.343 1,580 2,*02 0.69° 1.831 0,325 1,607 0.989 2.368 0,039 0,031
51 9949H. 1247813, 22177.*9 U35H.69 9063.IB 2871.78 17156.14 63560.«1 24566.97 129.816 70,993
PCT 5,44« 7,595 11,036 6,839 U.548 8,486 ^,388 10.338 8,743 1,225 2.153
53 •1052366, 1446854,208296.58112451.82 75862,87 28555.34302594.04444826.3P28B509,63 3312.584 2073,942
PCTi00.*fi0 100,009 i(ia,0Ct(i luc.pipp 100.004 icsj.npo lCB,cma 1001.000 100,000 100,000 100,000
54 17424, 33153. 5209.7P! 2*02.28 236,80 734.09 7814.55 5470,19 9708,99 B,0f>0 0.0Ba
PCT 0,«93 2,019 9,b9f 1,326 C.328 2.742 2,a
-------
UTAH LAKE —JULY 19T0»JULY 1973--MIN SPR» AODCD
•••CONTINUED
BAY t
HAY TOS NA CA no K Cl MCOS 30« N03 P04
Ttll, PLO"
AS-fT
39 24120. 137348, 231111.46 0096,66 5146,39 4323,T5 39661.03 4616.76 21633.33 9.000 0.800
PCT 1,310 9,303 11,300 4,075 7,125 16,045 16.73) 0,776 7,700 0,000 0,000
36 24120, 12*466. 60316.67 4589,31 3737,01 3244.93 96703.36 24380.92 23602,10 0,000 0.000
PCT 1,320 13,976 30,014 2,763 3,174 19,391 30,366 3.9ZT 0,400 0,000 0,0(10
39 109337. 04871, 1706.73 0933.TS 23*2,33 44fc.*9 2600,12 26801.24 7393,68 47*4.663 1706.749
PCT 3,994 3,169 0,009 3,379 3,290 1,669 0,042 4,316 2,703 44,972 34,104
60 207000. 44702. 2416,32 7240,96 2416,32 1208,16 1812,24 32620,32 6040,00 1.208 6,041
PCT 11.326 2,723 1,202 4,364 3,343 4,313 0,369 3,233 2.130 0,011 0,103
SALTS-- TONS TOTAL FOR THE SIMULATION
6AY 2
IN9 0AY TOS NA CA « 1I4BT.55 189?.Bf, 36.C39 4.505
PCT 1,016 I,fl70 (J.35* 1,M4 l.t>6» B.5U5 8.220 I.8b« «.^3 0.340 e.137
-------
UTAH LAKE --JUL* 1970-JULY 1973--MIN SPRS ADDED
— CONTINUED
BAT 2
BAY TDS NA CA M6 K CL HC03 S04 N03 POa
TRIB, FLO*
AC»FT
34 42773, 254»J, 2673, »6 4[MQ,80 1168.55 406,89 4333,94 17147,61 2208, 64 360,390 482.458
PCT a. JOB 1.547 1.331 2.415 1.609 1.920 1.424 2.761 0.786 3,402 14,631
48 4943. 2473, 155.85 373.64 164,04 206. 80 98.91 1483,58 230,78 4,396 0,330
PCT 0,221 0,151 0,077 0,225 0,228 0,760 3,031 0,239 0.082 0,041 0,010
41 12093. 7396, 460,19 1117,60 493,06 624.54 295,83 4437,52 690,28 13,148 0.9«6
PCT 0,662 0.450 0,229 P.673 e.683 2,333 0.093 0.715 0,246 e,121 0.930
42 S168C. 54765. 3371,37 720A.70 2649,3V 421, «2 2528.5221071,04 18191.33 39,333 53,731
PCT 2,828 3,337 1,678 4,3*8 3.668 1,574 0,794 3,393 6.474 0,371 1,629
43 19427. 15842, 844.89 2772.28 644.89 409,54 1584.16 7128,72 3326,74 36,964 56.7*6
PCT I.fl63 0,965 0.420 1.669 1,170 1,538 3.497 1,148 1,184 0,349 1,721
ro
CO 44 31798. 13396, 432,16 2765.81 691.45 77.79 777,88 9075.31 2060.18 31,115 4.322
CO PCT 1,740 0,616 0.215 1.665 0,957 0,291 0,244 1,461 0.733 0.294 0,131
45 661T, 7326, 684.76 755,41 433,03 82,44 699,28 4J30.50 1491,35 13,669 2,878
PCT 0.362 P. 446 0,140 0,455 0,690 0.308 0,220 0,665 0.531 0,129 0,067
46 (.567. 6«2t>, 499, BO 5)7.50 374.8? 32.13 285,60 3614,63 1071. BO 12.852 0,7)4
PCT 0,359 f,391 0,249 0.323 0,519 01.120 Vl,fl90 PI, 562 M.3M «l,121 0,022
47 33047, 41769, 5254,65 2335,49 1616,88 456.11 4581,15 22232.05 6084.38 104,199 101.055
PCT 1,808 2,3«4 2,615 1.4B6 2,238 1,711 1,436 6605, »9 29»(l,52 1101', «5 (5,nB0 0,0?0
PCT B.492 J.T73 2.191 PI. 272 B.627 1,397 S.Q74 P.4P1 0.392 d.BUB e.(JB
-------
91 9000, 16737, 4646.02 334,72 334,72 303,79 6236,J« 2*84,3? 1076,36
PCT e,4*2 1,021 2.313 0,214 0,4*1 1,142 t.*3« 0.461 8,383
0,000
0,000
0,000
UTAH LAKE --JULY 1*70«JULY 1*T3--MIN »PKS AOOED
•••MATER BALANCE FOR THE SIMULATION
BAY PRECIF EVAP TRIO INFLOW
AC-FT AC»FT AC-FT
MAIN LK 1 1*1*31, 631*70, 1321744.
FKOVO 0 2 1*030, 63336, 266883,
COIHEN « 3 81213. 269882, 39P23,
BEGINNING ENDING
STAGE VOLUME STAGE VOLUME
44BA.38 3*3769,0 448*,33 641630,1
4466,38 21771,3 448*,33 26844,3
4«e«,38 20*4«I0.7 446*.33 22*6*3,1
ro
CO
•••TOTAL LAKE " AC-FT CEXCLUUIN6 DIKED BAYS, IF ANT)
TOTAL PRECIPITATION* 2622*3.6
TOTAL EVAPORATION • 96«H7,6
TOTAL TRIB. INFLOW • 162T7C"),!
TOTAL TRIB, OUTFLOW* •1032366,4
OTHER OVERFLOW • B,U CENDINU VOLUME HAS BEEN ADJUSTED FOR OVERFLOW)
826961,1 STAGt* 4488,38
696369,6 STAGE* 4469,33
BEGINNING VOLUME •
ENDING VOLUME •
CHtCKi
•0.0 (IF NOT 2EKO--PROG EKKOP)
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
|,REPORTNO. 2.
EPA-660/2-757007
;TITLE AND SUBTITLE
WATER QUALITY EFFECT OF DIKING A SHALLOW
ARID-REGION LAKE
LAUTHOR(S)
Dean K. Fuhriman, LaVere B. Merritt,
Jerald S. Bradshaw, and James R. Barton
.PERFORMING ORGANIZATION NAME AND ADDRESS
Brigham Young University
Provo, Utah 84602
12. SPONSORING AGENCY NAME AND ADDRESS
U. S. Environmental Protection Agency, OR§D
NERC-Corvallis
Robert S. Kerr Environmental Research Laboratory
Ada, Oklahoma 74820
3. RECIPIENT'S ACCESSION NO.
5. REPORT DATE
APRIL 1975
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
1BB045 (ROAP 21-ACC, Task 10)
11. CONTRACT/GRANT NO.
R- 801400 (Formerly 16080 EVT)
13. TYPE OF REPORT AND PERIOD COVERED
Final (6/1/70 - 6/30/74)
14. SPONSORING AGENCY CODE
5. SUPPLEMENTARY NOTES
«, ABSTRACT
The inflow, outflow, and in-lake water quality and quantity of Utah Lake in Central
Utah was studied over a 36-month period. The work was undertaken to determine the
effect of a proposed diking project on the quality and quantity of lake water and to
develop methodology for determining the effect of diking or other management
practices on the quality of water in any lake system.
A computer simulation model was developed which is able to analyze the effect of a
given management program on the water quality of the lake, particularly as related
to the "conservative salts" present. The simulation model was also used to evaluate
the evaporation from the lake by use of a salt balance technique.
Results of the research indicate that the diking of Utah Lake will have a positive
beneficial effect upon the water quality of the lake and will also result in con-
siderable saving of water and reclamation of valuable land.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
Lakes, Dikes, Water Quality,
Evaporation, Seepage, Arid Land, Sodium,
Chloride
DISTRIBUTION STATEMENT
Release to public
b.lDENTIFIERS/OPEN ENDED TERMS
Dissolved Solids,
Lake Diking, Shallow
Lakes
19. SECURITY CLASS (This Report)
Unclassified
20. SECURITY CLASS (This page)
Unclassified
c. COS ATI Field/Group
08 08
21. NO. OF PAGES
?.U
22. PRICE
Form 2220-1 (9-73)
U.S. GOVERNMENT PRINTING OFFICE: 1975-698-228/113 REGION 10
------- |