v)
                                                               PB84-157148
              MINTEQ--A COMPUTER PROGRAM FOR CALCULATING AQUEOUS
              GEOCHEMICAL EQUILIBRIA
              Battelle  Pacific Northwest Laboratories
              Richland, WA
                                                  ENVIRONMENTAL'
                                                 PROTECTION AGENCY
                                                     REGION 9
                                                 FEB 18
                                                   LIBRARY

             Feb 84
EJBD

ARCHIVE

EPA
600-

3-
84-                    U.S. DEPARTMENT OF COMMERCE
032                  National Technical  Information Service

-------
                                      f       -i      B a  .    •  I
                                      Repository Material
                                     Permanent.Co  lection
                                         MINTEQ—A COMPUTER
                                  PROGRAM FOR CALCULATING AQUEOUS
                                       GEOCHEMICAL EQUILIBRIA
      -84-032


PB84-157148
ri
so
                                                 by

                                            A. R. Felmy
                                            D. C. Glrvln
                                            E. A. Jenne
                               Battelle, Pacific Northwest Laboratories
                                     Richland, Washington 99352
                                            Contract No.
                                             68-03-3089
                                          Project Officer
                                           R. B. Ambrose
                            Technology Development and Applications Branch
                                  Environmental Research Laboratory
                                       Athens, Georgia   30613
                                  ENVIRONMENTAL RESEARCH LABORATORY
                                  OFFICE OF RESEARCH AND DEVELOPMENT
                                 U.S. ENVIRONMENTAL PROTECTION AGENCY
                                        ATHENS, GEORGIA  30613
                                        REPRODUCED 8Y
                                        NATIONAL TECHNICAL
                                        INFORMATION  SERVICE        , ir, ,__,
                                           U.S. DEPARIMENr OF COMMERCE           UO'E'-A
                                             SPRINGflElO. »A. 221J1,   ,    ,  -     . ,.,    .....
                                                      Heaaauarters ana Gnemical Libraries
                                                           EPA Was? Bida Room 3340
                                                                McJ-ocoe 3^'>!T
                                                            13C1 Consutuiion A\eNW
                                                             Washircton DC 20004
                                                               -  20^66-0556

-------
                                   TECHNICAL REPORT DATA
                           (Please read Instructions on the reverse before completing)
1. REPORT NO.
  EPA-600/3-84-032
             3. RECIPIENT'S ACCESSION-NO.
                   ?%% u   L > /  1« 8
4. TITLE AND SUBTITLE
 MINTEQ—A  Computer Program for Calculating Aqueous
 Geochemical  Equilibria
             5. REPORT DATE
               February 1984
             6. PERFORMING ORGANIZATION CODE
7. AUTMOR(S)
 A.R. Felmy,  D.C.  Girvin, and E.A. Jenne
                                                          8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
 Battelle
 Pacific Northwest Laboratories
 Richland  WA  99352
             10. PROGRAM ELEMENT NO.

               CCUL1A
             11. CONTRACT/GRANT NO.
               68-03-3089
12. SPONSORING AGENCY NAME AND ADDRESS
 U.S. Environmental  Protection Agency—Athens  GA
 Office of Research  and Development
 Environmental  Research Laboratory
 Athens GA  30613
             13. TYPE OF REPORT AND PERIOD COVERED
               Final,  9/81-8/83	
             14. SPONSORING AGENCY CODE
               EPA/600/01
15. SUPPLEMENTARY NOTES
16. ABSTRACT           •
       MINTEQ  is  a  computer program for computation of geochemical  equilibria.   MINTEQ
 was developed for  incorporation into the Metals Exposure Analysis 'Modeling System
 (MEXAMS), a modeling system for the assessment of the fate and migration of selected
 priority pollutant metals in aquatic systems.   MINTEQ combines the best features of
 two existing  geochemical models MINEQL and WATEQ3.  The mathematical  structure was    j
 taken from MINEQL.  The WATEQ3 features were added to this basic structure.  The main •
 features obtained  from WATEQ3 are the well referenced thermodynamic data base, temper-!
 ature correction of equilibrium constants  using either the Van't Hoff relationship or
 analytical expressions for the equilibrium constants as a function of temperature and
 ionic strength correction using either the extended Debye-Huckel equation or the
 Davies  equation.  Six different adsorption algorithms: an "activity"  Kd, an "activity"
 Langmuir equation, an "activity" Freundlich equation, an ion  exchange algorithm, a
 constant capacitance surface complexation  model, and the triple layer surface complex-
 ation model.   In addition, a large number  of user oriented features such as the abili-
 ty to handle  alkalinity inputs, an initial mass of solid, and different analytical in-
 puts were incorporated.
17.
                                KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS  C. COSATI Field/Group
13. DISTRIBUTION STATEMENT

 RELEASE TO PUBLIC
19. SECURITY CLASS (ThisReport)
   UNCLASSIFIED
                                                                         21. NO. OF PAGES
                                              20. SECURITY CLASS (Thispage)
                                                 UNCLASSIFIED
                                                                         22. PRICE
EPA Form 2220-1 (9-73)

-------
                               DISCLAIMER

     The information in this document has been funded wholly or in part
by the United States Environmental Protection Agency under Contract No.
68-03-3089 to Battelle, Pacific Northwest Laboratories.  It has been
subject to the Agency's peer and administrative, review, and it has been
approved for publication as an EPA document.  Mention of trade names or
commercial products does not constitute endorsement or recommendation
for use.

     The MINTEQ computer code has been tested against other computer
programs to verify its computational accuracy.  Nevertheless, errors in
the code are possible.  The U.S.  Environmental Protection Agency assumes
no liability for either misuse of the model or for errors in the code.
The user should perform verification checks of the code before using
it.
                                  ii

-------
                                FOREWORD

     As environmental controls become more costly to implement and the
penalties of judgment errors become more severe,  environmental quality
management requires more efficient analytical tools based on greater
knowledge of the environmental phenomena to b« managed.   As part of
this Laboratory's research on the occurrence, movement,  transformation,
impact, and control of environmental contaminants, the Technology
Development and Applications Branch develops management  or engineering
tools to help pollution control officials achieve water  quality goals.

     Concern about environmental exposure to heavy metals has increased
the need for techniques to predict the behavior of metals entering
natural waters as a result of the manufacture, use, and  disposal of
commercial products.  Previously, mathematical models have been developed
to provide data on aquatic geochemistry, including metals speciation at
equilibrium.  The modeling technique described in this manual combines
the best elements of two of these models and permits the user to examine
what species of a metal are likely to be present under different chemical
conditions in a water body.  Because different species of a metal cause
different biological effects, this model should help users better relate
metals concentration and aquatic chemistry to observed effects.      .
                                   William T. Donaldson
                                   Acting Director
                                   Environmental Research Laboratory
                                   Athens, Georgia
                                  iii

-------
                                  ABSTRACT






     MINTEQ is a computer program for computation of gebchemical equilibria.




MINTEQ was developed for incorporation into.the Metals Exposure Analysis




Modeling System (MEXAMS) a modeling system for the assessment of the fate




and migration of selected priority pollutant metals in aquatic systems.




     MINTEQ combines the best features of two existing geochemical models,




MINEQL and WATEQ3.  The mathematical structure was taken from MINEQL. The




WATEQ3 features were added to this basic structure.  The main features




obtained from WATEQ3 are the well referenced thermodynamic data base,




temperature correction of equilibrium constants using either the Van't Hoff




relationship or analytical expressions for the equilibrium constants as  a




function of temperature, and ionic strength correction using either the




extended Debye-Huckel equation or the Davies equation.  Six different




adsorption algorithms were added:  1) an "activity" Kg, 2) an "activity"




Langmuir equation, 3) an "activity" Freundlich equation, 4) an ion exchange




algorithm, 5) a constant capacitance surface complexation model, and 6)  the




triple layer surface complexation model.  In addition, a large number of




user oriented features such as the ability to handle alkalinity inputs,  an




initial mass of solid, and different analytical input units were incorporated.




     This report was submitted in fulfillment of Contract No. 68-03-3089  by




Battelle, Pacific Northwest Laboratories under the sponsorship of the U.S.




Environmental Protection Agency.  This report covers a period from September




14, 1981 to August 31, 1983, and work was completed as of August 31, 1983.






                                     iv

-------
                                  CONTENTS
Foreword	ii:L




Abstract	'     *       v




Figures	•    •    •    '    '    *     *      vi




Tables    .    .    •    •  '  •    •    •    •    .•    '    *     " .    V±1



List of Abbreviations and Symbols  .    .    .    •    •    •     •    viii




     1.  Introduction    ...••••••




     2.  Conclusions     .     .    •    •    •    •    •    •     *


                                                                        A

     3.  Recommendations .     •    .  -   .    .




     4.  Model Theory     	      5




               Basic Formulations   ...••••      5




               Adsorption      ....«•••      15




                Solid Phases	•    .37




      5.   Numerical Method     .     •     «     •     •     •    •    •      42




      6." Thermodynamic Data Base	50




                Introduction   ...•••••      ^0




                Data in MINTEQ ....'••••      51



                                                                        s?
                Accessory Data .     .     •          •     •     •     •      Jf-





                                                                        53
 References	-   '




 Appendix A	

-------
                                  FIGURES
Number                                                                Page

  1       Schematic Representation of Surface Species and Surface
          Charge-Potential Relationship for the Triple Layer
          Model     •    *••....••     24

  2       Schematic Representation of Surface Species and Surface
          Charge-Potential Relationship for the Constant
          Capacitance Layer Model  .    .'   .    .    ...    .     25

  3       Logic Diagram for Modified Line Search  .    .         .     47

  4       Example Convergence Pattern for Fe^*" Using the Modified
          Line Search    .........     48
                                     vi

-------
                                   TABLES
Number                                         .                       Page
  1  *     Derivatives for the Constant  Capacitance  and Triple
          Layer Adsorption Models   .......      44

  2    -   Supplementary Data in the MINTEQ  Data Base  for Each
          Species   ..........      52

A.I       Thennochemical Data for  Aqueous Complexes
          (Default Type II)	      65

A.2       Thermochemical Data for  Recox Reactions and
          Gases (Default Type VI)   .......      75

A.3       Thermochemical Data for  Minerals  and Solids
          (Default Type V or VI)   .     .     .    .    .    .     .      76
                                    vii

-------
                        List  of  Abbreviations and Symbols

A      - Davies equation A parameter
A
-------
I      - ionic strength
J.  -    - Jacobian matrix
*K     - equilibrium constant for adsorption  reactions  written  in terms of the
         neutral  sites (XOH) rather than the  charged  site  (SO").
Kd     - distribution coefficient
Kjct   - "activity" Kd
Kex    - equilibrium constant for ion exchange  reactions
Kp     - Freundlich constant
Kp-ct   - "activity" Freundlich constant
K.J     - equilibrium constant for reaction  i
K|_     - Langmuir adsorption constant
K^ct   - "activity" Langmuir constant
K°     - equilibrium constant for reaction  at 298.15°K
X      - F/RT
m      - total number of  aqueous  species
M.J     - mass of solid phase i
n      - total number of  components
1/n    - Freundlich constant
Na     - Avagadro's number
Ns     - surface site density
*      - electrostatic potential  at  a  designated adsorption plane
q.j     - noncarbonate alkalinity  factor  for species i
R      - ideal gas constant
s      - number of aqueous species plus  number of solid phases
S      - total mass adsorbed in molal  units
S      - free or unoccupied surface  sites
                                       IX

-------
SA     - specific surface area
a      - total charge at a designated adsorption  plane
SI     - saturation index
Sj     - maximum quantity adsorbed  in Langmuir isotherm
TJ     - total analytical concentration  of  component j
Xj     - activity of component  j
Yj     - difference function  (relaxed mass  balance constraint) for component j
Z-j     - charge on species i
Z(j,k) - Jacobian matrix of partial  derivatives 3Yj/aXK.

-------
                                   SECTION 1
                                  INTRODUCTION

     This report describes MINTEQ, a computer program for computation of
geochemical  equilibria.  MINTEQ combines the best features of its precursors
MINEQL (Westall et al.,1976) and WATEQ3 (Ball et al. 1981).  Financial support
for the development of MINTEQ has come from several sources.  Development of
the original WATEQ3 data base (Ball et al. 1981) was done by the United States
Geological Survey (USGS).  Development of the mathematical structure in MINEQL
was supported under an earlier project funded by the Environmental Protection
Agency (EPA).  Incorporation of the WATEQ3, features and adsorption algorithms
into the MINEQL mathematical structure was performed as part of EPA Contract
No. 68-03-3089.  The objective of this contract was to develop a predictive
methodology for the assessment of the migration and fate  of priority pollutant
metals in aquatic systems.  To meet this objective, MINTEQ was  coupled vTith
EXAMS, the  Exposure Analysis l-fodeling System,  through a user interactive
program.  The complete geochemical-transport modeling system is called MEXAMS,
the Metals  Exposure Analysis Modeling System.  A separate report entitled
MEXAMS - The Metals Exposure Analysis Modeling System provides guidelines for
the use of  MINTEQ.  This  report presents the  chemical and mathematical concepts
embodied in MINTEQ.  Since the mathematical  structure in  MINTEQ is the same  as
in MINEQL,  Westall's (1976) original notation will be used in this report.
     MINTEQ provides a  great deal of*flexibility in the way the user defines
the chemistry  of the system being modeled.   Although one  does rvot need to

-------
master  the  concepts  presented  in  this  report  to effectively  use MINTEQ,  a  basic
understanding  of  the program will  allow  experienced users  to solve  a  very  broad
range of  chemical  equilibrium  problems.   It is recommended that the user begin
by  reading  the report entitled, MEXAMS - The  Metals Exposure Analysis Modeling
.System.
     This report  is  divided into  three major  sections.   The  first  section
describes the  equations  for computing  equilibria with regard to aqueous
speciation, adsorption and solid  phases.  The second section describes the
numerical  methods employed to  solve the  chemical equilbrium  problem and  the
third section  describes  the thermochemical  values which constitute  the data
base.

-------
                                   SECTION 2
                                  CONCLUSIONS

     The geochemical  model  MINTEQ is capable of calculating equilibrium aqueous
speciation, adsorption,  gas phase partitioning, solid phase saturation states
and precipitation/dissolution.  MINTEQ combines the best features of two
geochemical precursors;  MZNEQL and WKSEF&.  MINTED can solve a much broader
range of chemical  equilibrium problems than WATEQ3, is more user-oriented than
MINEQL, contains a well  referenced thermodynamic data base, and contains six
different algorithms  for calculating adsorption.
     MINTEQ, like MINEQL, has a general  mathematical  approach to solving the
chemical equilibrium problem.  The general mathematical approach allows MINTEQ
to solve a broad range 'of chemical equilibrium problems.

-------
                                    SECTION  3
                                 RECOMMENDATIONS

     The capabilities of MI-NTEQ  would  be extended  if the thermodynamic data for
aqueous species and solid phases of additional elements were added to the data
base.  Available  data in the  literature should be  critically reviewed and the
most accurate  values incorporated  into the.MINTEQ  data base.  Furthermore, as
more reliable  thermodynamic data for important aqueous species and solid phases
already in the model become available, they should be used to update the data
base thereby increasing the overall competency of  the model.
     MINTEQ does  not have a kinetic capability,  it is only a thermodynamic
equilibrium model.  In many environmental systems  the equilibrium assumption
may not be valid.  Kinetics of solid precipitation or dissolution may dominate
the geochemistry  of the system.  Therefore, including kinetics of precipita-
tion/dissolution  and of oxidation-reduction would  be an important extension.
     The elementary ion association models used  in MINTEQ for computing
activity coefficients and aqueous  speciation are not valid for high ionic
strength solutions (i.e., ionic  strengths equal  to or greater than sea
water).  Higher order-ion interaction  models described by (Pitzer 1973; Pitzer
and Mayorga 1973, Pitzer and  Kim 1974) appear to be more reliable at high ionic
strengths (Harvie and Weare 1980).  Such models  should be incorporated into
MINTEQ for treating high ionic strength solutions  where the ionic strength
exceeds approximately 0.7 molal.

-------
                                   SECTION 4
                                 MODEL  THEORY

     This section describes the formulation of the chemical equilibrium problem
in MINTEQ..  The equilibrium equations for aqueous speciation, adsorption and
solid phases are described.

BASIC FORMULATIONS
     The chemical equilibrium problem can be described by a set of mass balance
equations, one for each component,  and a set of mass action expressions, one
for each species.  The problem then reduces" to solving the non-linear mass
action expressions with the linear mass balance equations.  This is commonly
termed the equilibrium constant approach to the chemical equilibrium problem.
There are other formulations of the chemical equilibrium problem that are also
possible.  As an example, at fixed temperature and pressure the chemical
equilibrium problem can also be solved by a direct minimization of the Gibbs
free energy or the Helmholtz free energy if the volume and temperature are
specified [see Van Zeggeren and Storey  (1970)].
     The equilibrium constant approach  is used in MINTEQ.  A basic set of
components is chosen and all mass action equations are written in terms of the
components [Equation (1)],


                             T1C1 = Kj  l_  X/^'J)                          (1)

-------
where
     Y-J - activity coefficient  for  species  i
     Cj = concentration of  species  i
     Ki = equilibrium  constant  for  reaction i
     Xj = activity of  component j
 a(i,j) = stoichiometric  coefficient  of  component j in species  i
      n = number,  of  components  j.

     The mass  balance  equations can then be written as a summation  of the Ci
terms  (Westall  et al.  1976),
                                      m
                                T,  =  I   a(1.j) C                            (2)
                                 J  .  i Jl          '
Where
     Tj = total analytical  concentration  of component j
      m = number of aqueous species.

     Equation  (2) can be reformulated  to  make the solution to the  chemical
equilibrium problem easier to  solve by relaxing the mass  balance constraint  at
intermediate iterations  (Westall  et al.  1976),
                                   m
                             Y  =  I  a(i,j) C  - T                          (3)
                              J   i=1         i   .J

-------
where
     Yj = difference function for component j.

     The solution is the set of all  Xj terms such that all Yj terms equal
zero.  The convergence criterion is described in Section  5.
     The previous mathematical formulations are defined for systems without
solid phases.  Solid phases are handled in basically two  ways.  The first
method treats the mass of each solid phase as an independent variable and
thereby expands the basic set of unknowns  (i.e., the Xj terms) to include  a
variable M.J for each solid phase.  The mass balance equations can then be
written,

                               m                s
                   Y, - -T. +  I  a(i,j) C  -   I   a(i,j) M                 (4)
                    J     J   i=l          n   i=m+l         n

where s = number of solid phases plus number of aqueous species.  The summation
over the Mi terms then represents the mass of component j in solid phases.
     This method is used in other geochemical models such as EQ3/EQ6  (Wolery
1979) and PHREEQE (Parkhurst  et al.  1980).
     The second method for handling solid  phases is by what is termed a
"transformation of basis."  This is -the method used in MINEQL and retained in
MINTEQ.  The transformation of basis reduces the number of independent
variables which must be determined and also allows the treatment of different
chemical reactions in a mathematically general way.  This latter attribute
allows MINEQL and MINTEQ to solve a wide range of chemical equilibrium
problems.  The mathematical description, given in Appendix One in Westall

-------
et al. (1976), wi-11 not be reproduced  here.   Instead,  the  following  example  is
presented to clarify the approach.  Suppose there  exists a four component
system Ca   , H+, COg  and HgO, and the following  reactions occur  in  aqueous
solution.
             Ca2+  +  H20 +  CaOH+  + H+
              Ca2+  + H+  +  CO2' t
                    CO2" t  CaCO°   ,
              H20 *  OH"  +  H
log K°- = 12.6
log K° = 11.33
log K" = 3.15
log Kjl = -13.98
(5)

(6)

(7)

(8)
where log K°  is  the equilibrium  constant for the stated reaction  at  298.15°K.
     If the solid calcite  is  now imposed as  an  equilibrium solid  then  one  of
the Xj terms  in  the calcite dissolution  reaction, Equation (9),  is eliminated
computationally  and all the reactions  containing that  component  are  rewritten
with calcite  [CaC03(s)] as a  component (Westall  et al. 1976),
                   Ca2"*" + CO2" t CaC03(s)   ,   log K° = 8.475
                        (9)
As an example, suppose XQ02- is  eliminated  then  the reactions  would  be  written
                          J
as:
               Ca2+ + H20 * CaOH+ +  H+   ,         log K°  = 12.6
                       (10)

-------
               CaC03(s) + H* + CaHCOj    ,        log K° =  2.855             (II)
               CaC03(s) t CaCOj   ,              log K°  =  -5.325       .     (12)
               H20 * H+ + OH"   ,                log K° =  -13.98           (13)
Since the activity of pure calcite is equal to one, the set  of  independent
variables (Xj terms) is reduced by one.  The transformation  of  basis  is
completely general and, for example, can be applied to species  present at a
fixed activity, gases at a fixed partial pressure, solids not present at unit
activity, or redox reactions which establish a fixed relationship  between
components.                                             .    .

Activity Coefficients
     The activity is related to the concentration by the activity  coefficient
(y).  MINTEQ corrects the equilibrium constants for ionic strength by a  simple
rearrangement of the mass action expressions, thus
                                                                            (14)
The resulting equilibrium constant  Is  termed  a  "mixed  constant"  because  the
species formed in the reaction' is in terms  of concentration  and  the  components
are in terms of activities.
     MINTEQ uses two alternate formulations for computing  activity
coefficients:  1) an extended  Debye-Huckel  equation which  contains two

-------
adjustable  parameters  (Truesdell  and Jones  1974), and 2) the Davles equation
(Davies  1962).   The extended  Debye-Huckel equation,
where                                                   •
     A(j and  BQ- are  the  Debye-Huckel  constants which depend upon the
     dielectric constant  and temperature,
     Zi = charge on species  i
     a^ = ion  size  parameter
     bj = ion  specific  parameter which allows for the decrease in solvent
           concentration in concentrated solutions (Truesdell  and Jones 1974)
       I = ionic strength.
The Ad and Bd  constants are  computed as described in Truesdell and Jones
(1974).   The a-j  and b^"  parameters were taken directly from the WATEQ3 data base
(Ball et  al. 1981).   The  ionic strength is,
                                   1   m   9
                               I  =i  )'  -£ C.    .                         (16)
                                   c i=l  1  1
The a^ and b-j parameters  are  only  available for the major ions and certain
trace metals such as Cu and Mn.   In  cases where a-j  and'b^ are not available for
the species formed in the  reaction,  MINTEQ defaults to the Davies equation for
calculation of single ion  activity coefficients,
                                       10

-------
                         log YI »'-A-zf(—£—•--0.3  II                     (17)
                              1       1 1 + /T
     Activity coefficients for neutral aqueous species are represented by
(Helgeson 1969),
                                 log
MINTEQ sets aj to 0.1 for all neutral aqueous species.

     The ion association models used in MINTEQ are not valid  in  high  ionic
strength solutions (brines).  The ion-interaction models published by  Pitzer
(1973), Pitzer and Mayorga  (1973) and Pitzer and Kim  (1974) expand the basic
Debye-Huckel equation by adding a series of ion interaction terms*  These
interaction terms are analogous to virial coefficients for non-ideal  gases.
Such ion interaction models  should be added to MINTEQ before  it  can be
accurately applied to high  ionic strength solutions.

Activity of Water
     The activity of water  is calculated in MINTEQ by the relationship
                                               m
                              n n = 1 - 0.017  £  C,                         (18)
                               2U             i=l  1
where m is the total number of aqueous species.  The expression  is derived  from
Raoult's law and is valid only for dilute solutions.  The constant 0.017 is
                                       11

-------
obtained from a plot  of the activity of water versus number of solute ions
 (Garrells and Christ  1965).

Temperature Correction
      The equilibrium  constants in the MINTEQ data base are valid at 298°K or
25°C.   MINTEQ corrects these equilibrium constants to temperatures other than
298°K by. using either the Van't Hoff relationship or, whenever available,
analytical expressions for log K°. as a function of temperature.
      The analytical expressions for log K° as a function of temperature are
expressed as:

              log KT = A + BT + C/T + D Log1Q(T) + ET2 + F/T2 + 6//T        (19)


where T is temperature in degrees Kelvin and A through 6 are empirically
derived coefficients.   When analytical  expressions for log K with temperature
are not available, the Van't Hoff relationship is used.  The Van't Hoff
relation  (Lewis  and Randall  1961) takes the form:
                                           AH°    ,    .
                        log KT = log KJr - ^T (f - f-)                   (20)
                                                       r
where Tp is the reference temperature  (298.15°K), AH0, is  the enthalpy  of
reaction, T is the specified  temperature and R is the ideal  gas constant.   Data
for the enthalpy of reaction  were taken  from the WATEQ3 data base  (Ball  et al.
1981) and will be tabulated in Appendix  A.
                                       12

-------
     The Van't Hoff relation assumes that AH0, is  independent  of  temperature.
This assumption is not strictly valid so the Van't Hoff  relationship may
produce substantial errors at temperatures significantly  different  from  25°C.
Unfortunately, data for AH°j298 or Io9 K expressions as a  function  of
temperatures are not available for all species in the MINTEQ  data base.   In"
such cases, the log Kr>298 is used at a^ temperatures.   Because of these
                   »
limitations, applications of MINTEQ should definitely be  limited to
temperatures less than 100°C.

Alkalinity Correction
     Frequently, analytical data are available for total  alkalinity but  not
total inorganic carbon.  In such cases, MINTEQ can convert total alkalinity to
total inorganic carbon.  There are three important steps  in the  conversion.
     The first step is to convert the input alkalinity expressed as carbonate
to equivalents;  This is simply done by multiplying the  input alkalinity  value
by two since carbonate ion will consume two equivalents  of acid  per mole,
Equation (21).
                                 T*  = 2.0 T                                (21)
                                  JJ
where jj represents C0|~, T  2 is the titration alkalinity  in molality,
                           CUo
and Pjj is the titration. alkalinity in equivalents.                        -
     The next step is to subtract the difference between  the equivalents  of
acid consumed by a carbonate containing--species and the stoichiometry  of
carbonate in the species.  As an example, the following species all would
                                       13

-------
consume  two  equivalents  of  acid per mole, C0^~, PbCO°j, MgCO°j, and contain.only
one carbonate  ion.   This means each species consumes one excess equivalent of
acid  per mole.   This difference must be subtracted from the total alkalinity in
equivalents  to  obtain the correct total inorganic carbon.  The number of equi-
valents  of acid consumed per-mole of a carbonate containing species is termed
the carbonate  alkalinity factor.  The excess equivalents of acid consumed per
mole  of  carbonate containing species is then.
                                  m
                            Ec =  E  Ci [fi •*(1»JJ)3                      (22)
                             c        n   n
 where
      Ec  = excess equivalents of acid
      fi  = carbonate  alkalinity factor for species i  •
 a(i»jj)  = molality of carbonate in species i.

      The  next  step is to  subtract the noncarbonate alkalinity.   Noncarbonate
 alklinity  results from such  species as OH", A1(OH)4, or HPof" which consume
 acid  during the  alkalinity titration but do not contain carbonate.   The
 equivalents of acid  consumed by nonarbonate containing  species  is,
                                                                            (23)
where
     EN = equivalents of noncarbonate  alkalinity
     q^ = noncarbonate alkalinity factor  for  species  i.
                                       14

-------
     The noncarbonate alkalinity factor is the number of equivalents .of  H+
consumed by a noncarbonate containing species if the solution were  titrated  to
approximately pH 4.6.
     The final step in computing total inorganic carbon is to add the  mass  of
        ).  The overall  conversion can be 'summarized,
                            m                       m     •       •
                               0  (f-«>-l*c            <24>
where -
    TJJ = molality of inorganic carbon
     f^ = carbonate alkalinity factor,
     q-j = noncarbonate alkalinity factor
    G.J.J = mass of H2C03(aq).

ADSORPTION
     MINTEQ contains six algorithms for treating adsorption:   an  "activity  Kd,"
an "activity Langmuir" isotherm, an "activity Freundlich"  isotherm,  an  ion
exchange model and two surface complexation models, the  constant  capacitance
surface complexation model  (Huang and Stumm 1973;  Schindler et al.  1976;  Stumm
et al. 1976), and the triple layer surface complexation  model  (Yates et al.
1974; Davis et al. 1978).   This section presents a brief reviewof  each model
and an outline of the mathematical formalism used  by  each  model.  For further
detail on the mathematical  formalism of the constant  capacitance  model  and  the
triple layer model see (Westall 1979a,  L979b; Westall  1980; Westall  and Hohl
1980).
                                       15

-------
The  KH and the  Langminr  and  Freundlich  Isotherms
      In this  section,  the  traditional concentration  K^ and  the  Langminr  and,
Freundlich isotherms will  be defined  in  terms  of  the  total  dissolved
concentration of  the adsorbate.   These  isotherms  and  the  K^ will then  be
redefined in  terms  of  the  activity  of the  bare adsorbate  ion and the
limitations of  this treatment of  adsorption  will  be  discussed.
      The distribution  coefficient Kd  is  defined as the ratio of the amount
adsorbed to the amount remaining  in solution.   This  can be  conceptualized and
written as any  other reaction.  An  example for cadmium is,
                                    Cdtotal * SCd                           (25)
where  S  represents  free  or  unoccupied  surface  sites,  Cdtota^  = total dissolved
cadmium  remaining in solution,  and  SCd =  adsorbed  cadmium  in  molal units.
     The mass action expression for Equation  (25)  is  the common definition of
the Kd,
                                                                            (26)
where the implicit assumption is made that  S  is in great excess with respect to
Cdtotal and tne activity of S is set to one since with an assumed excess the
variability of S is negligible.
                                       16-

-------
Activity Langmuir Isotherm
     The'LangmuIr equation can be formulated as,
                                       K.STC
                                      rHrr.                             <27>
                                           .
where
      S = the amount adsorbed in molality
     K|_ = the Langmuir adsorption constant
      C = the total dissolved concentration in solution at equilibrium
     ST = the maximum quantity that can "be adsorbed in molality.

     Assuming that each adsorbing ion occupies only one adsorption site, then
Sj is also equal to the total number of adsorption sites.  The Langmuir iso-
therm has the advantage over the activity Kj in considering a mass balance on
surface adsorption sites.  The Langmuir equation as formulated in Equation (27)
is simply a combination of a mass action expression for adsorption and a mass
balance equation for surface sites,(a)

                                  C  + St  S    ,                             (28)

                                 ST = "S + S   ,                            (29)
(a) Note:  In this formulation, competition between ions for surface sites can
    be readily included by formulating additional mass action expressions
    [Equation (28)] and then including the adsorbed species in the mass balance
    [Equation (29)].
                                       17

-------
where
      S represents surface  sites  unoccupied  by  adsorbate.

     If the adsorption data do  not conform to a Langmuir plot, the Freundlich
equation frequently  provides  a  fit to  the data.  The  Freundlich equation  is
formulated as,

                                  S = KFC1/n    .                            (30)

where Kp and  1/n are constants  and C is  the  equilibrium total dissolved
concentration.  For  cadmium adsorption then,
                              SCd  - Kp(Cdt()t)1/n    .                         (31)
In this example, if the  data  conform to  a Freundlich  isotherm a  plot  of  the
logarithm of SCd versus  the logarithm of the  concentration of total Cd in
solution at equilibrium  (Cdtot)  would yield a straight  line  with slope 1/n and
an intercept of log Kp.   The  Freundlich  isotherm  can  then be thought  of  as an
adsorption reaction where  the stoichiometry of the  adsorbing species  equals
1/n,


                            I + 1/n (Cd   ) * SCd   .                       (32)
                                       tot
The mass action expression is then,
                                       18

-------
                                                                            (33)
                                   tot-
There is no mass balance on surface sites and assuming  an  excess  of  sites  with
respect to the absorbate the activity of the free sites  (S)  is  set equal to
one.  There is one complication in use of the Freundlich isotherm in  MINTEQ  and
that is in the stoichiometry of the adsorbing species.  The  stoichiometry  of
the adsorbing species in the mass action expression equals 1/n; however, the
stoichiometry of the adsorbing species in the Cd mass balance equation  equals
one.  Thus, to use the Freundlich isotherm  in a  geochemical  model requires
using separate stoichiometries for mass balance  and mass action expressions.'3)
     Equations  (25) through (31) are written in  terms of the total
concentration of the adsorbate Ctot  (or Cdtot).  Since  Ctot  involves  all
aqueous species, this formulation implicitly assumes  that  all species absorb
with equal strength.  There is abundant experimental  evidence to  support the
hypothesis that only certain aqueous species react  with the  surface  (Huang and
Stumm 1973; Hohl and Stumm 1976; Davis and  Leckie  1978).   If Ctot is  replaced
with .the activity of the aqueous species which dominates the adsorption
                                       2+
reaction with the surface sites, say Cd   in the above  examples,  then the
activity 1^ is
(a) Only the UNIVAC and VAX versions of  MINTEQ  have  this  capability.   Thus,
    the "activity" Freundlich isotherm cannot be  used  in  the  POP  11/70 version
    unless 1/n = 1.0.
                                       19

-------
     The activity Langmuir equation is
                                      ..act ,.  ,rH2+.
                                      K,    ST {Cd  }

                            S = "SCa =  L   J -                           (35)
                                          K    {Cd}
and the activity Freundlich equation  is,
                                S  =  K*ct  {Cd2+}1/n                           (36)
where {  }  denote the activity  of  the  adsorbing  species, in this example  Cd+^



ion, in  bulk  solution.



     The dependency of the  'concentration'  Kd and  isotherms on adsorbate



aqueous  complexation and  ionic strength  effects  has been removed by usirrg the



'activity1  representation in  Equations '(34)  to  (36).  KJjct and the activity



isotherms  are thus applicable  over  a  wider  range of natural water compositions



than the standard concentration representations.



     A number of limitations  remain,  however.   These  descriptions of adsorption



do not consider:  1) a charge  balance on surface sites  and adsorbed species;

                                                      *

2) electrostatic interactions  between the adsorbing ion and the charged



surface; and  3) reaction  of the solid with  aqueous constituents other  than the



adsorbate'ion, e.g., H+ and major supporting electrolyte anions and cations.



The effect  of these factors varies  with  changes  in solution composition.  Thus



failure to  include these factors  in describing  adsorption limits the range of



applicability of that description.  The  surface  complexation models described



below incorporate  these effects  and  are  thus more generally applicable.
                                       20

-------
     To use "activity" Langmufr/Freundlich isotherms in MINTEQ. the following
procedure (see MEXAMS - The Metals Exposure Analysis Modeling "Systems) should
be followed.  For the activity Langmuir isotherm, include a surface site  (i.e.,
SOH1 or SOH2) as a component and specify a mass total (equal to Sj) for that
component.  Then enter the adsorption reaction as a type II inserted species
with an equilibrium constant of Kj[ct, and set the adsorption model (IADS) to
one.  For the activity Freundlich isotherm, include a surface  site (i.e., SOH1
or SOH2) as a.component and give it .a type III designation.   Include the
adsorption reaction as a type II inserted species with an equilibrium constant
of Kpct» and set the adsorption model (IADS) to one.  Finally, set the
stoichiometry of the adsorbing component to 1/n and set the stoichiometry in
the "8" matrix to 1.0.(a)
Ion Exchange
     Ion exchange reactions are modeled in the same way as  in the  geochemical
model PHREEQE (Parkhurst et al. 1980).  The  reader is referred to  this document
for details; only a brief summary will be presented here.
     Ion exchange reactions involve the exchange of ions of like charge on the
solid surface.  As an example, K+ ion could  exchange for Na+ ion on the surface
of the exchanger S,
                                  + KS * .1C  + NaS                          (37)
(a) Only the UNIVAC and VAX versions of MINTEQ have this capability.  Thus,
    the "activity" Freundlich isotherm cannot be used in the POP  11/70 version
    unless 1/n = 1.0.
                                       21

-------
where KS represents exchanger bound  potassium'and  NaS represents^exchanger
bound sodium.
     MINTEQ, like  PHREEQE, can model  ion  exchange  reactions  by maintaining  a
fixed activity  ratio of the exchangeable  species.   Equations  (38) and  (39)
present an example,
                                 {Na+}  (KS|     ex
                            '-v    1_                                /3g\
                               "           '         '                      (   '
The use of  K£x  assumes  an  infinite  reservoir of exchanger  at a  constant  solid
phase composition  [i.e.,  KS/NaS remains  fixed  in  Equation  (39)].   This  is
equivalent to  assuming that  the concentration  of  exchangeable  species  on the
surface is much greater than  the concentration in solution.  Therefore, even  if
the concentration  of the  exchangeable  species  in  solution  is changed,  the
activity ratio of  the species in solution  will  re-adjust to the original fixed
value due to the large reservoir of  exchangeable  species on the solid.

Surface Complexation Models
     The "activity" Kd, "activity" Langmuir, ""activity" Freundlich and  ion
exchange treatments described above  all  ignore electrostatic effects due to
surface charge and the effect of solution  chemistry  on the solid.   An
electrical  charge  frequently  exists  on the  surface of solid particles  and
creates an electrostatic  potential which extends  into solution.  This
                                       22

-------
electrostatic potential can significantly influence the adsorption of charged
species.  In addition, pH and the concentration and composition of the
electrolyte alter the distribution and availability of the surface hydroxyl
groups which act as adsorption sites for the trace constituents, e.g., Cd.   The
surface complexation models described below include treatment of these effects.
     Both of the surface complexation models of adsorption in MINTEQ, the
constant capacitance model and the triple layer model, were developed for and
have been primarily applied to crystalline oxides  (Davis et al. 1978).   These
models have also been applied with considerable success to amorphous iron
oxyhydroxides (Davis and Leckie 1978, Benjamin and Leckie 1981) and to clays
(James and Parks 1982).  Each model treats the oxide surface in contact  with
water as an array of hydroxyl groups designated as XOH, where X represent
structural Si, Fe, Ti, Al, Mn or other atoms at the solid liquid interface.
(Figures 1 and 2).  These hydroxyl groups or adsorption "sites" can be treated
as ligands which:  1) have specific acid/base characteristics, and  2) form
complexes with supporting electrolyte ions, metal  ions or other ion-pairs in
solution.  Adsorption reactions, i.e., the coordination of these solute  ions
with surface hydroxyl groups, are treated by analogy with complexaton in bulk
solution.  Thus, for an assumed stoichiometry of  reaction, an association
(adsorption) constant can be used to describe the  adsorption reaction.   The
description which follows for surface sites,-XOH,  can  be  generalized to  include
additional surface sites, SOH or TOH, whose acid/base  or  cation/anion
coordination behavior differ from those  of XOH.
     Examples of surface equilibria for  oxides are typically written for
protonation and deprotonation reactions  as
                                       23

-------
   SCHEMATIC OF
  SURFACE SPECIES
       I
       I
X--O-H°
X--0-O"
X--0-H2*
X--0-()"-Cda*
X--0-()~-CdOH*
X--0-H0   I
X - -0 - ( f- Na*
X--Q-H2*-CI
X--0-
   SCHEMATIC
   OF CHARGE-
   POTENTIAL
  RELATIONSHIP
"KCdOH
CONSTANTS IN TEXT
 CORRESPONDING
   TO SURFACE
     SPECIES
                                          DIFFUSE LAYER
                                        'OF COUNTER IONS*
                        DISTANCE FROM SURFACE (x)—*•

FIGURE 1.   Schematic  Representation of Surface  Species and Surface
           Charge-Potential Relationship for the  Triple Layer
           Model.   Brackets in the 'zero' plane indicate
           deprotonated  surface sites.
                                24

-------
      SCHEMATIC OF
     SURFACE SPECIES
      SCHEMATIC
      OF CHARGE-
      POTENTIAL
     RELATIONSHIPS





5





_r_t_
•3-
I
z
114
»-
o
Q.


X-
X-
X-
X-
X-
X-
X-




j
0




1
1
-0-H°
-o - { r
-0 - H8*
-0-H"
-0-Cd*
-o, 1
Cd°
-O'v
1
,
'

•
1 1
—• k2-

IX
V*i
V
1 \


V
-^-«aa |
~* 	 Kai I CON*
} CORRES
** 	 'KCd, I TO SI
j SP!
f

•O' PLANE AT POTE
CHARGE O-Q

^ 	 . 'd' PLANE OR OUT£
PLANE (OH)


mmtMjf\
* '
I
                                                                AND
                              ffo
                                   |-«—DIFFUSE LAYER OF COUNTER IONS
                        DISTANCE FROM SURFACE (x) —*-

FIGURE 2.  Schematic Representation of Surface Species  and  Surface  Charge-
           Potential Relationship for the Constant Capacitance  Layer
           Model Brackets in the 'zero1  plane indicate  deprotonated
           surface sites.
                                    25

-------
                        +      +         .    lAurw                          /4QN

                 XOH + H* +  XOH,,  K  .   =	:—S-T—                      v   '

                        5      *     31   {XOH9}  {H+}c
                                         1    2J     s
                  ynu  -  VfT 4.  H    1^         .    .   =>                          f41)
                  AUn  -  MJ  -r  H_ ,  N-   -     I vnul      -            •           \^Ay
                              s   a2
                                                        2+
respectively, and for adsorption of a divalent cation, M  , as
                                                   Ixo~  Ml  IH+I

              XOH + M2+ I [XO- - M2Y + \f. *KM • -!—	U—•*•         (42)

                     5                    S    M             2t
where  K,  ,  Ka  » are the first and second surface acidity constants,  *KM  is  an
       a -I   "2                                                       II.


adsorption  constant,  { }  represents the activity of surface species  XOH,  XO",



XOHt,  and  (XO" - M2+) in  moles per liter and { }s represents the activity of an

                                                         •    y i

ion in the  electrical double layer.  The subscript "s" (Hs, M|  ) indicates  that



the H+ and  M^+ ions are in the electric double layer rather than in  the  bulk



solution.   The asterisk on the adsorption constant is a convention which



indicates that the adsorption reaction is written in terms of-the neutral site



XOH rather  than a deprotonated site X0~.



     A fundamental difference between adsorption reactions at the solid-



solution interface and aqueous coordination reactions in bulk solution is that



a variable  electrostatic  interaction energy exists between the  charged



adsorbing ion  and the surface charge on the solid (Figures 1 and 2).  A



difference  in  chemical potential  of the charged ion develops near the surface



due to the  electrostatic  potential, if>, produced by the surface  charge, o.



Because of  these nonideal  interactions, the activities of ions  approaching  the
                                       26

-------
surface are modified by the electrical  work necessary to bring them from the
bulk solution to a specific adsorption  plane within the -electric double
layer.  The activities near the surface are related to the activities in bulk
solution by an exponential Boltzman factor which is a function of potential.
For any ion A , this relation is,
                          (AZ}S  =  {AZ}aq  exp  {-ZF
where 's' and 'aq1 refer to activities in the electrostatic double layer and in
bulk solution, respectively, Z is the charge on ion A, F is Faraday's constant,
R is the ideal gas constant in joules, T is the absolute temperature, and t is
the electrostatic potential on the surface or at the designated adsorption
plane within the double layer..
     In MINTEQ, the activity coefficients for ions are calculated using the
Debye-Huckel or Davies equations.  Since no adequate theory exists for
calculation of the activity coefficients for surface species, the activity
coefficients in MINTEQ for all surface species are set equal to one and the
activities, { }, of all surface species are replaced by concentrations, [ ].  .
     The major differences betwen the constant capacitance and the triple layer
models, as normally formulated, are:  1) the set of surface species considered
{e.g., whether surface-electrolyte species are considered), and 2) the
description of the electric double layer, i.e., the definition and assignment
of ions to "mean" planes of adsorption within the double layer and the
mathematical form of the surface charge-potential relation, a = f(i|>).
                                       27

-------
     The mass action and mass  balance equations  in  both the constant
capacitance and the. triple layer models are similar.  For mathematical
simplicity in MINTEQ, the Boltzman factor  in the mass action equations  for
surface species, e.g.,
[XOH+ 1 = [XOH] {H}a  exp (-F+/RT)
                                    aq

is treated  as though  it is just another chemical component.  This new component
is the  coulombic or electrostatic component, X(o).  From Equation (3) above,
the mass  balance equation used in MINTEQ to check convergence of each
electrostatic component is,
                                   m
                            Y(o) = I a(1»o)  C.  - T(o)
The electrostatic components are unique in that there is no measurable
analytical value for total surface charge, T(a).  A value for T(a) is
calculated using the mathematical expression relating surface charge to
potential, a = f(ip)i where f(ip) depends on the model of the electrical double
layer used.  Thus, T(o) = f(i|») B, where the factor B converts coulombs of
charge per square meter into moles of charge per liter.
     With this b'rief introduction, the constant capacitance and triple layer
models will be described below for the case where adsorption occurs from a
                                       28

-------
solution containing Na+, Cl" and so|~ as the major electrolyte ions and Cd2+

ion as the dilute adsorbate.  Surface ligands consist of a single amphoteric

surface site, XOH.



Constant Capacitance Model

     With this model, all  specifically adsorbed ions (H+, OH~, and Cd2+) are

considered to be located in the surface lo' plane, contribute to the charge 00'

and are .subject to a potential, ip0, as shown in Figure 1.  Ions which are not

specifically adsorbed are excluded from the double layer and are assumed to be

located in the diffuse layer.  The dominant contribution to o0 is from the

potential determining ions H+ and OH~.  It is assumed that the ions of the

background electrolyte, Na+, Cl~, and S0^~ do not coordinate with the surface

sites.

     In the double layer, the surface charge-potential relationship used is the

simple linear expression, a0 = C1^, where the capacitance of the double layer,

C1 , is assumed to be constant.  The surface hydrolysis and adsorption reactions

together with the acidity and adsorption constants for the surface species as

shown in Figure 1 are,

                                                [XOht]
XOH + Hit XOH~                         K.  = - ^-r- exp (Xt!>)           (43)
       5      c                            1   [XOH] (H >



XOH = XO- + H+                          Ka  = rrc^olfl * exp (-**„}         (44)


                        4*                         —   ?4*    41
XOH + Cd2+ =  (XO- -Cd2+)  + H^         *KrH  = rXO -Cd  1  f H 1     ^  j    (45)
        S                    S          . Cdl    [XOH]                   J
           ?x              9+ n                C(XO")9  -Cd2+]  {H+}2
(XOH)2 + Cd2+ = f(XO-)2 -Cd2+)° + 2H!, *KC   = - ? -  - '—       (46)
     L     S          *             S    W2    [(XOH)]

-------
where  X  =  F/RT,  {  }aq  =  {  }  represents  the  activity  in the  bulk  solution;
(XOHJg and (xo~)2  represents  two adjacent XOH  and  XO" sites, respectively,
acting as  a single surface ligand,(a) and [ ]  represents the concentration  of
surface  species.
      In  MINTEQ,  the surface  sites,  XOH,  are treated  as a chemical component,
X(XOH).   The mass  balance  equation  for  surface sites is,

                     Y(XOH) = I (all surface sites) - T(XOH)                (47)
where
                   =  [XOH]  + CXO"]  +  [XOH2]  +  [XO" -Cd2+] + 2HXO')2 -Cd2+]
 is the  sum  of  the  concentrations  of  all  of  the surface sites as calculated  from
 the mass  action equations  and  T(XOH)  is  the analytical total concentration  of
 surface sites  in moles of  sites per  liter,

                              T(XOH) = Ns SA CS/NA

 Here, NA  is Avagadro's number, SA is  tne  specific surface area of the solid
 0" /g)» Cs  is  the concentration of the solid in suspension  (g/fc), and Ns  is  the
analytically determined surface site  density (number of sites/m2).
     In the case of the coulombic  or  electrostatic component, X(aQ), the
equation describing the surface charge balance is,
(a) The UNIVAC and VAX versions, but not the PDP/11-70 version, of MINTEQ have
    the capability to model reactions with different stoichiometries in the
    mass action and mass balance equations.
                                       30

-------
                   Y(OO) = I (charged species in V) - T(a- )               (48)
where the total surface charge (i.e., the net concentration of charged sites in
the  'o' plane in moles/fc) calculated from the mass action equations is,
               Hspecles'tn v) = CXOHj] - [XCT] + [X(T -Cd2+].
Since no analytical value of J(o0) is available, the model dependent charge-
potential relation is used to define T(ao) 1n mo1es of charge per liter as,

                            T(°o) = a0 B = C !|;0 B  ,

where B = ($A CS)/F.  By analogy with all other components in the formulation
of the equ.ilibriiiim problem, the sum of charged surface species in Equa-
tion (48), calculated from the mass action equations, must equal the electro-
statically calculated charge T(o0), Equation (49), when the problem is solved.
     When using the constant capacitance model, the coulombic component X.(ao)
(PSIO in the MINTEQ code), must be designated as Type VI  (see users manual
MEXAMS - The Metals Exposure Analysis Modeling Systems) Since it has no mass in
aqueous solution.  The input to MINTEQ requires:   1) an initial guess for the
value of the electrostatic component, e.g., for \p  > 0, let log  CX(aQ)] =  -1.0;
2) the same value for the capacitance (C1) for a given ionic strength and
electrolyte as that used to derive the adsorption  constants; 3) analytical
values for the surface site density (N$), the specific surface area (S^) and
the concentration of the solid in suspension (Cs); and 4) acidity and adsorp-
tion constants for surface hydrolysis and complexation reactions, determined
experimentally for a given ionic strength and electrolyte composition.
                                       31

-------
     For this model,  in which  coordination  of  the  background electrolyte  ions
with surface sites  is  ignored,  both the capacitance,  C1, and the adsorption
constants  depend  on the type and  concentration  of  the background electrolyte,
and are applicable  only at the  ionic  strength  and  for the specific electrolyte
for which  the adsorption  data  were obtained.   However,  for applications where
the background electrolyte.is  fixed and the concentration of strongly
coordinated electrolyte ions remain unchanged,  use of the constant capacitance
model  requires less experimental  characterization than  is required by  the
triple layer model  (described  below).   If,  however conditions include  variable
concentrations of strongly coordinating electrolyte ions, use of the constant
capacitance model would require new adsorption  constants, derived from
experimental adsorption data,  for each  set of conditions, reminicent-of the
early  Kd approach previously described.  For.these conditions, the experimental
characterization  required by the  triple layer is less extensive than that
required by the constant  capacitance  model.  This  is a  direct consequence  of
the tr.iple layer  model's  inclusion of known electrolyte/surface reactions.

Triple Layer Model
     This model treats the solid  solution interface as  being composed  of  two
constant capacitance  layers bounded by a diffuse layer  (Figure 2).
Specifically, adsorbed H+ and  OH" ions are located in the surface  'o'  plane,
contribute to the surface charge  $Q, and experience an  electrostatic potential,
a0.  All other specifically adsorbed  ions, including major electrolyte ions,
are located in the  'b1 or inner Helmholtz plane and are bound pairwise to
oppositely charged  surface sites  by either a specific chemical or an
electrostatic energy or both.   These ions contribute to the charge,  a^, and are
subject to an electrostatic potential", ^.  The outer Helmholtz plane  or  the

                                       32

-------
'd1 plane is-the inner boundary of the diffuse region of nonspecifically bound
counter ions.  From theoretical considerations of monovalent electrolytes, the
potential, i^, in the 'd' plane is related to the total charge in the diffuse
region, o
-------
and in the  'd'  plane
                        °d • C2(*d - *b)
     The  expressions for the surface hydrolysis reactions are identical to

those  given.in Equations (43) and (44) for the constant capacitance model.  The

adsorption  reactions and constants for the other surface species  shown in

Figure 2  are,


XOH +  Na* = (X0~ -Na+)° + H*

                      [X0~ -Na+] {H+}
               *KM,  =	—'- exp f-X(
-------
         ~                      ~
XOH +  (SOJ-)S + H+ =  (XOH+ -
                     [XOH*  -SOJj~]
             *Kcn  =	»	— exp (A(;p
               iU4   [XOH]  {-SOj"}  {H*>          °

Here,  three electrostatic components, X(a0j, X(ob')> and X(od)> in addition  to
the surface site component,  X(XOH),  are  added to the normal set of  chemical
components describing the aqueous equilibrium problem.  Within the  content  of
the triple layer model, no bidentate surface species [(X0~)2 - Cd2+]  have been
considered.   The set of surface species  shown in Figure 2, although not
necessarily unique, usually  provides an  adequate fit of experimental  adsorption
data for mono-  and divalent  cations  and  anions.
     As  a consequence of the inclusion of surface-electrolyte coordination
reactions and the multiple layer  structure of the interface, the acidity and
adsorption constants defined for  the triple layer model are  'intrinsic'
constants, i.e., they are applicable over a wide range of  pH, electrolyte" and
dilute adsorbate  (Cd^+) concentrations.   However, experimental data over a  wide
range of chemical conditions is needed to determine these  intrinsic constants
(Davis et al'. 1978; James et al.  1978; Balistrieri and Murray, 1979,  1981,
1982).
     The mass balance equation  for  the surface site component, X(XOH),  is
identical to  Equation  (47) except that,
      ? (surface sites) = [XOH] + [XOH2]  +  [XO"]  + [XOH2 -C1"] + [XO" ~Na+]
                         + [X0~ -Cd2+]  + [X0~ -CdOH+] -t
                                       35

-------
      For the electrostatic components  X(a0) and  X(ab), the surface charge
 balance equations are, respectively,
                    Y(°0) = I  (charged species in  V) - T(aQ)
                  Y(ab) = y  (charged species in  V) - T(ob)
 where
                                 + [XOH2 -C1"] ' WH - W -Na+]
                          - [XO" -Cd2+] - [X0~ -CdOH+] + [XOH+ -SO2"]
 and

     *  fspeci^in 'b<) = CX°" •Na+] ' CX°H2 -C1"3 + 2[X°" ^^.
                          + [XO" -CdOH+] - aCXOH^ -SO2"]


 The  expressions  for  the T terms in these charge balance equations  are  T(o0) =
 o0 B,  and  T(at,)  = <*b B» wnepe B is. a constant defined on Page 31 and a0 and ob
 are  defined  by the Equations (50) and (51).  The summations of the charged
 surface  species  in the V  and V planes, calculated from mass action
equations, must  equal  the electrostatically calculated charge, T(o0),  and
T(ob), respectively,  when the equilibrium problem is solved.  Since in this  -
model there  are  no surface  species assigned to the 'd1 plane, the  net  charge in
the diffuse  layer, given  by the Gouy-Chapman equation, must balance the
electrostatic charge  on the 'd'  plane given by Equation (52).  Thus, the charge
balance equation  for  the  electrostatic component,  X(od), is,
                                        36

-------
             Y(ad) = ((-8e£oRTI)1/2 slnh(F*d/2RT))  -  (C^  - y).


As equilibrium is approached during the numerical  solution of the problem,
Y(0d) and the values of Y for all components approach zero.
     When using the MINTEQ code to solve problems  with the triple layer model,
an initial quess is supplied as input to the code  for the electrostatic
components X(o0), X(ob), and x(ad) (PSIO,  PSIB, and PSID, respectively in
MINTEQ).  These components are given a Type VI designation (see the users
manual  MEXAMS - The Metals Exposure Analysis Modeling System) because they have
no mass in aqueous solution.  Other input  data is  similar to that required for
the constant capacitance model  except that a second capacitance, C2, is
needed.  It should be noted that the K values defined for the triple layer
model are not conditional  constants, as is the case for the  constant
capacitance model, but are invariant with  respect  to adsorbate concentration
below a surface loading threshold vfoich depends upon the adsorbate/surf ace
combination (Benjamin and Leckie 1981) and within  the experimental range of pH
and ionic strength for which they were determined.

SOLID PHASES

Saturated Indices
     The saturation indices are used to describe the apparent closeness to
equilibrium of a solid phase and the aqueous solution with which it is in
contact.  For solid dissolution reactions, saturation indices can be formulated
in the following straight-forward manner:
                                       37

-------
Si! -log (Kp)1 -log (I X^i'J)
   i         ii       -j=l J
                                                                           (53)
where SI, is the  saturation  index for species  (solid) i.
     The thermodynamic  data  base in MINTEQ was taken from WATEQ3 (Ball  et al.
1981).  All reactions involving solid phases were written as dissolution
reactions in WATEQ3.  The mathematical  formalism in MINTEQ requires all
reactions to be written as formation reactions.  Therefore, all  equilibrium
constants for  solid  phases in  WATEQ3 were multiplied by minus one to convert
the log Kr  values to association reactions.  This also resulted in
Equation  (53)  being  rewritten  as
SI  .log (K )  +.log [  J   X^1'^]
  1          r 1        j=l   J
                                                                           (54)
The Stable Phase  Assemblage
     This section describes  how  MINTEQ selects the thermodynamically stable
solids from the array  of  all  considered solids (i.e., Type V solids) described
in MEXAMS - The Metals Exposure  Analysis Modeling System.  The procedure
described here has  been modified only  slightly from the original MINEQL
model.  'Equatiorv  (55)  is  the  mathematical  relation which details whether a
solid will be present  (i.e.,  in  equilibrium),
     r).  + log  £  X'    < 0.
               J ~X
                      log (K). + log  £  X'   < 0.0   .                  (55)
                                       38

-------
This inequality simply means that at equilibrium all solids being considered
must either be in equilibrium o.r undersaturated. "To solve this inequality,
MINTEQ first ranks all considered solids by their tendency to precipitate.  The
tendency to precipitate is estimated by dividing the saturation index by the
number of ions in the solid formation reaction.  Dividing by the number of ions
is necessary because the saturation indices are a function of the manner in
which the chemical reaction is written.  In the example below, doubling the
reaction stoichiometry doubles the saturation index.  If the activities of Ca2+
and SOj-
         are j x
                Ca2+  +  SO2" ± CaS04(s)   ,  log Kp =4.0 , SI = -2.0         (56)

             '2 Ca2+ + 2S02" ± 2CaS04(s) ,  log Kp = 8.0 , SI = -4.0         (57)
Dividing the saturation indices by the number of ions in the solid helps to
eliminate this effect.
     After the solids have been ranked, MINTEQ, like MINEQL, precipitates the
solid with the highest ranking  (i.e., equilibrates the solution with that
solid).  The solids are ranked  again and the process repeated until
Equation (55) is satisfied.   If the selection process makes a wrong choice and
the mass of a previously precipitated solid becomes negative, then MINTEQ will
redissolve the amount of that solid phase which was precipitated and continue.

-------
 Effect of Solids on pH and pE
      The dissolution or precipitation of"solid phases can alter  the  pH or pE of
 the solution,  MINTEQ can model the changes in pH or pE as solids  dissolve or
 precipitate as long as the appropriate mass totals are known.
      The mass total for H+ ion is-.determined  by use of a form  of the
 electroneutrality condition called the "proton condition" which  is defined as
 the excess or deficiency of protons over the  "zero level" species  (Stumm  and
 Morgan 1970).  The "zero level" species in MINTEQ are the components.   If
 anionic components are in their unprotonated  forms and all  cationic components
 are the uncomplexed ions, then the proton condition corresponds  directly  to a-
 mass total for hydrogen ion or the total  ionizable hydrogen  (Morel and  Morgan
 1972).  If components are chosen which contain H+, for example HS~ or  HCOo,
 then'the proton condition does not have the physical  interpretation of  a  total
 mass of hydrogen ion but is still computationally  valid.
      To correctly predict changes in pH during precipitation or  dissolution,
 the  initial  proton excess or deficiency first  must be  determined and then
 entered as the total  mass of H+.  To obtain the  initial  proton excess  or
 deficiency,  one enters the measured pH and models  the  solution in MINTEQ
 without permitting precipitation or dissolution  of solids.  The  computed
 aqueous mass  of H+ is then the initial  proton  excess  or deficiency.  When this
 value  is entered  as the total  mass  of H+,  MINTEQ will  compute the correct pH as
precipitation  or  dissolution occurs.
     Electrons  do not exist in aqueous solution.   Therefore, to  allow  the pE to
vary during the precipitation  or dissolution of  solids,  the mass totals for all
components of  redox reactions  must  be known in the absence  of  solids.   This may
require an initial  modeling run  at  fixed  pH and  pE to  obtain the mass totals
for all components  of redox couples.  Then one merely  reenters the electron as

                                       40

-------
Type VI (see the Users Manual" for MEXAMS - The Metals Exposure Analysis
Modeling System) and remodels the solution in the presence of solids.  MINTEQ
will recompute the correct pE during precipitation or dissolution.
     One of the advantages to this method of computing pH and pE  is that H+ and
the electron are treated identically to all other components and  the new pH and
pE are recomputed along with all other component activities.

Initial Mass of Solid
     MINTEQ can accept input of a starting mass of solid.  The  initially
specified mass is added to the mass computed by MINTEQ from equilibrium
constraints.  If the mass of solid (i.e., computed mass plus initial mass)
should become negative, then MINTEQ will dissolve the initially specified mass
of sol-id by adjusting the mass totals in the solid formation reaction and
removing the equilibrium constraint.
                                       41

-------
                                    SECTION 5
                                NUMERICAL METHOD

     MINTEQ utilizes a Newt.on-Raphson  iterative  technique  to  solve the series
of simultaneous nonlinear equations  relating component  activity to total
mass.  The technique is  identical  to that  described by  Westall et al. (1976)
except for modifications required  for  the  constant  capacitance and triple layer
adsorption models.
     Given an  initial estimate  of  all  Xj  values, MINTEQ computes all C^ terms
by Equation  (1).   The difference function  (i.e., relaxed mass balance
constraint) defined by Equation (3)  is then computed.   The problem now reduces
to one of finding  new estimates for  the Xj values.   In  the Newton-Raphson
iteration technique, a new  estimate  for the set  of  components Xj is computed by
first differentiating the set of relaxed  mass balance equations, Equation (3),
with respect to the components, Xk,  to obtain the elements Zj^ of the n x n
Jacobian matrix,
                         Zjk = 8X  = a(1»J) aC**) Ci/Xk
                                 l\
where j and k vary from  1 to n and
                                       42

-------
                                     *V
                                      ^k =
except for electrostatic  components.   For a derivation  of  Equation  (58)  see
Westall et al .  1976.  The correction  vector &x_ is  computed from the  matrix
equation,
                                         = y_
where A_X_ is equal to  (^  - _Xj\|+i)»  N  is  the  iteration  number  and  Z  is  the
Jacobian matrix of  partial  derivatives  just computed.   The system  of  linear
equations represented  by  this  matrix equation  is  then  solved by  gaussian
elimination, and  a  new set  of  Xj terms  are  computed.
     The convergence  criteria  used in MINTEQ is  identical  to the criteria  in
MINEQL which is,
                                    max  Y.
                                         J
                                                                            (59)
where max Yj is the maximum of  the  terms  comprising Yj  and e equals  1 x 10~3 in
MINTEQ.   In the absence  of solids,  maximum Y,-  equals Tj.
     In the case of the  constant  capacitance and triple layer adsorption models
gT-i/gXi f ° for the electrostatic components since the  total charge  depends
  J   J
upon the potential.   The derivatives  for  the electrostatic terms have been
computed by Westall  (1979b) and are summarized in Table 1.
                                       43

-------
 TABLE  1.  DERIVATIVES FOR. THE CONSTANT CAPACITANCE AND
    TRIPLE  LAYER ADSORPTION MODELS  (UESTALL 1979b)
Constant  Capacitance Model
                           .   B
Triple Layer Model
                             -- B
                            -' B
                                     ~* B
  Z*b*d = * C2 TT- *  B
  ZV»b " " C2TT"''B
                                       C^~' B
                        44

-------
 Modified Line Search
      The Newton-Raphson numerical  method usually converges rapidly.
 Unfortunately,  there are cases when the method does not converge.   One of the
 most  common instances of nonconvergence results from extremely poor  starting
 estimates for the component activities.  This frequently occurs for  such
 components as Fe   or U   where the actual component activity is a small
 fraction of the mass total.  In such cases the default starting estimate of one
 hundredth the mass total may be 20 or 30 orders of magnitude too high.  Another
 common case of nonconvergence is when an aqueous solution contains two major
 components with essentially all of the mass of each component tied up in a
 common complex.  In such cases, the ionic strength also varies with  the major
 components activities and the numerical problem may become unstable.
      For both' of these cases of nonconvergence, the problem can usually be
 solved by making more accurate guesses for the component activities.
 Unfortunately,  this may be a time consuming process.  To help solve these
 problems, a modified line search has been included.
      The modified line search is based on the fact that at convergence the
 component activities at the current iteration are approximately equal to the
.activities at the previous iteration (i.e., XN « XN+1).(a)  The line search
 uses  this fact  to modify the component activities  (Xj terms) computed by the
 Newton-Raphson  method.  To understand the method, let X represent the component
 activity before Newton-Raphson correction and Y the value after Newton-Raphson
 correction.  This means that at convergence, X = Y.  The modified line search
 then  simply monitors the progress of the iteration scheme and uses previous X-Y
 points to project new values for the component activities.  The new values for
 (a)  The principal  idea behind the modified line search was originally sug-
     gested by Dr.  John R. Morrey, Battelle, Pacific Northwest Laboratories.
                                        45

-------
 the  component  activities  are  obtained  by  either, extrapolation  or  interpolation
 to the  X  =  Y convergence  line.   The  overall  principal  of the method  is  to
 refine  the  component  activities  to be  close  enough to  the.final solution values
 that the  Newton-Raphson method will  converge.   The new values  for the component
 activities  are then used  as the  new  starting estimates for  the Newton-Raphson
 iteration.  Figure 3  presents a  logic  diagram  of the method.
     .An example convergence pattern  for Fe   is shown  in Figure 4.   Figure  4 is
 a  schematic of the following discussion.  An initial estimate  of  the logarithm
 of the activity of Fe3+ (X0) was made  of  -4.00.  The Newton-Raphson  iteration
 then produced a new estimate  (Y0) of -4.35.  Since this is  the first point,  a
 new  X} was computed,
                                          =  -4.18
Newton-Raphson iteration then yields  Yj  =  -4.52.   Since both points  are on  the
same side of X = Y, and the computed  slope  is  0.96 and;since there are only  two
points on this side of the line, the  model  chooses the closest  point  on the
X = Y line [i.e., X2 = (Xj + Yj)/2.0  = -4.35].   Newton-Raphson  iteration
produces Y2 = -4.70.  The point  (X2,Y2)  is  on  the  same side  of  the X = Y  line
as the previous points, and the computed slope  between the last two  points
equals 1.01.  Now, however, there are three points on  the  same  side  of X  =  Y
and the algorithm extrapolates^ X'3 =  2 * X£a)  = -8.70.  Newton-Raphson then
returns a value of Y3 = -9.00.  Since this  is  also on  the  same  side  of the
X = Y line and the slope is still approximately equal  to one, the model


(a) In comparing Figure 3 XN_3 equals zero  for  the first extrapolation.
                                       46

-------
              c
  START
                    MASS
                   BALANCE
                   WITHIN
                     50%
                                                            ARE
                                                         THERE AT
                                                       LEAST 3 POINTS
                                                        ON THIS SIDE
                                                          OFx
   ALL
POINTS ON
SAME SIDE
 OF x = y
  SLOPE
> 0.95 and
  < 1.05
                 FIND CLOSEST
                   POINT ON
                 OPPOSITE SIDE
                   OFx-y
                  EXTRAPOLATE
                  LAST 2 POINTS
                     TOx = y
                      LINE
                 INTERPOLATE
                   TOx = y
 =(2.0-x«
•*
-------
   -14
y   -8-
    -4 -
    -2
-6
-8
-10
-12
-14
FIGURE 4.  Example Convergence  Pattern for Fe3+ Using the Modified  Line
           Search.  All values  as  logarithm.
                                   48

-------
extrapolates again X4 = 2X3 - XQ = -13.40.  Newton-Raphson then returns Y4 =
-13.1.  The point (X^.Y^) is now on the other side of X = Y and the model
interpolates a new point  [X5 =  (-slope-X4 + Y4)/(1.0 - slope)] = -10.9.
Newton-Raphson then .returns -11.1 which satisfies the mass balance criteria
within 50% and the line search  is complete.
     It should be remembered that the  line search utilized in MINTEQ was tested
on only a few sample problems.   The method is not intended to be used unless
the user has been unable  to get the Newton-Raphson method to converge.  In such
cases the method may prove useful but  the users are advised that this option
should be used at their own peril.
                                        49

-------
                                    SECTION 6
                            THERMODYNAMIC DATA BASE

 INTRODUCTION
     The use of mass action expressions  in MINTEQ requires the use  of
equilibrium constants (log Kp.) at a  reference  temperature of 298. 15°K  and  zero
ionic strength for entry into the data base.   Equilibrium constants are
extrapolated by MINTEQ to temperatures other than 298°K by use of the  Van't
Hoff relation which requires the enthalpy of  reaction  (AH0, oga)'  wnen
analytical expressions for log K°. are not  available.
     The equilibrium constants can be determined directly from solubility,
potentiometric, ion exchange or other analytical  methodologies (Rossotti  1981),
or computed from calculated Gibbs free  energies  of reaction by the
relationship,
                              !09 K

                                   r.298   2.303 RT
where AG° 298 = 5:AGf 298 (Products) - ^Gf  298*  (reactants).   The free  energy  of
formation (AG^gg) 1S related to the heat  of  formation  and entropy by,


                      AGf,298 = AHf,298  '  298'15  AS298  -'
                                       50

-------
     Calori metric measurements  of  the  heat  of  solution  and  heat  capacity  can  be
used to compute, AH0: and AS°>gg,  respectively.   The enthalpy  of  reaction is
readily computed,
               r 298  =  ^AHf  298 (Products)  -  5-AH°  298  (reactan
-------
references do not give the primary source  of  the  data  but  are  intended as
indexes to the tabulations which give the  specific  reactions and data sources.

ACCESSORY DATA
     In addition to thermodynamic data,  the MINTEQ  data  base also contains
necessary supplementary data for each species.  The data are summarized in
Table 2.  Most of these parameters have  been  previously  described in this
document or. the accompanying User's Guide  MEXAMS  -  The Metals  Exposure Analysis
Modeling System.
     All Debye-Huckel  parameters were taken directly from  the  WATEQ3 data base
(Ball et al.  1981), the majority of which  were  in turn obtained from the
tabulation in Truesdell and Jones (1974).  Many of  the Debye-Huckel parameters
in the WATEQ3 data base for aqueous species of  Cu,  Mn  and  Zn were estimated.
     TABLE 2.   SUPPLEMENTARY DATA IN THE MINTEQ  DATA  BASE  FOR  EACH SPECIES
                       - Charge
                       - Gram formula weight
                       - Carbonate alkalinity factor
                       - Extended Debye Huckel parameters
                       - Name
                       - ID Number
                                       52

-------
                                   REFERENCES

Baes, C. F., and R.  E.  Mesmer.   1976.   The Hydrolysis of Cations.  John Wiley
   and Sons, New York,  New York.

Balistrieri, L. S.,  and J.  W.  Murray.   1979.   "The Surface of Goethite (aFeOOH)
   in Seawater."   In  Jenne,  E.  A., ed., Chemical  Modeling in Aqueous Systems
   Speciation, Sorption,  Solubility,  and Kinetics.  Am.  Chem. Soc. Symposium,
   Sen. -93, p. 275-298.

Balistrieri, L. S.,  and J.  W.  Murray.   1981.   "The Surface Chemistry of
   Geothite (aFeOOH)  in  Major  Ion  Sea  Water.   Amer.  J..Sci. 281:788-806.

Baltstrieri, L. S.,  and J.  W.  Murray.   1982.   "The Adsorption of Cu, Pb, Zn,
   and Cd on Goethite from Major  Ion  Sea Water."   Geochim. et Cosmochim. Acta.
   46:1253-1265.

Ball, J. W., E. A. Jenne  and D.  K.  Nordstrom.   1979.  "WATEQ2:  A Computerized
   Chemical Model  for Trace  and Major  Element  Speciation and Mineral Equilibria
   of Natural  Waters."   In  Chemical  Modeling  in Aqueous  Systems, ed.
   E. A. Jenne, pp.  815-835.  Amer.  Chem.  Soc. Symp. Series 93.

Ball, J. W., E, A. Jenne  and M. W. Cantrell.   1981.   WATEQ3:  A Geochemical
   Model  with Uranium Added.  U.S. Geol.  Survey,  Open File Report 81-1183.
                                       53

-------
Ball, J. W., D. K. Nordstrom and  E. A.  Jenne.   1980.   Additional  and  Revised
   Thermochetnical  Data and Computer Code  for WATEQ2—A Computerized  Chemical
   Model for Trace and Major Element Sped at ion  and  Mineral  Equilibria  of
   Natural  Waters.  U.S. Geol.. Survey Water Res.  Invest.  78-116.

Benjamin, M. M., and J. 0. Leckie. 1981.  "Multiple-Site  Adsorption  of  Cd,
   Cu,Zn and Pb on Amorphous Iron Oxyhydroxide."   J.  Colloid Interface  Sci.
   79:209-221.

Davies,  C.  W.  1962.  Ion Association.  Butterworths Pub., Washington D.C.
   190 pp.

Davis, J. A., R. 0. James, and J. 0. Leckie.   1978.   "Surface lonization and
   Complexation at the Oxide/Water Interface:   I.   Computation of Electrical
   Double Layer Properties in Simple Electrolytes.   J. Colloid Interface Sci.
   63:480-499.                                                             .

Davis, J. A., and  J. 0. Leckie.   1978.  "Surface lonization and Complexation at
   the Oxide/Water Interface:  II.  Surface Properties of Amorphous  Iron Oxyhy-
   droxide  and  Adsorption of Metal Ions." J.  Colloid Interface Sci.  67:90-107.

Garrels, R. M.  and C. L. Christ.  1965.   Solutions,  Minerals, and Equilibria.
  •Freeman, Cooper and Company, San Francisco,  California.
                                       54

-------
Harvie, C. E., and J. H. Weare.   1980.   "The Prediction  of  Mineral  Solubilities
   in Natural Waters:  the Na-K-Mg-Ca-Cl-S04-H20  System  from  Zero to  High
   Concentration at 25°C."   Geochemica et  Cosmochimica.  Acta.  44:981-987.

Helgeson, H. C.  1969.   "Thermodynamics  of Hydrothermal  Systems  at  Elevated
   Temperatures and Pressures."   Amer. J.  of Sci.  267:729-804.

Helgeson, H. 'C., J. M. Delany,  H. .W.  Nesbitt and  D.  K. Bird.   1978.   "Summary
   and Critique of the Thermodynamic  Properties  of Rock-Forming  Minerals."
   Amer. J. Sci., 278-A.
Hohl, H., and W. Stumm.   1976.   "Interaction  pf  Pb2+ with  Hydrous  y-Al203."
   Colloid Interface Sci.  55:281-288.
Huang, C. and W. Stumm.   1973.   "Specific  Adsorption  of Cations on  Hydrous
   Y-A1203."  J. Colloid  Interface  Sci.  43:409-420.

James, R. 0., J. A. Davis  and  J.  0.  Leckie.  -1978.   "Computer Simulation  of the
   Conductometric and  Potentiometric Titrations  of the  Surface Groups  on
   lonizable Latexes."  J.  Colloid  Interface Sci.  65:331-344.

James, R. 0.,' and G. A. Parks.   1982.   "Characterization of Aqueous Colloids by
   Their Electrical Double-Layer  and Intrinsic Surface  Chemical Properties."
   Surface Colloid  Sci. 12:119-216.
                                       55

-------
Krupka,  K.  M.,  and  E.  A.  Jenne.   1982.  WATEQ3 Geochemical Model:
   Thermodynamic  Data  for Several  Additional Solids.  PNL-4276.  Pacific
   Northwest  Laboratory,  Rich!and,  Washington.

Lewis, G. N., and M. Randall.   Revised by K. S. Pitzer and L. Brewer.  1961.
   Thermodynamics.  Second  Edition,  McGraw-Hill Book Company, New York,
   New York.

Morel, F., and J. 0. Morgan.   1972.   "A Numerical Method for Computing
   Equilibria in Aqueous  Chemical  Systems."  Environ. Sci. Tech. 6:58-67.

Nordstrom, D. K., L. N. Plummer,  T.  M. L. Wigley, T. J. Wolery, J. W. Ball,
   E. A. Jenne, et al.  1979.   "A Comparison of Computerized Chemical Models
   for Equilibrium Calculations  in  Aqueous Systems."  In Chemical Modeling in
   Aqueous Systems, ed. E.  A.  Jenne,  pp.  857-892.  Amer. Chem. Soc. Symp.
   Series 93.

Parker, V. B., D. D. Wagman and  W.  H. Evans.  1971.  "Selected Values of
   Chemical  Thermodynamic  Properties.  Tables for the alkaline earth elements
   (elements 92 through 97  in  the standard order of arrangement)."  U.S. Natl.
   Bur. Standards Tech. Note 270-6.

Parkhurst, D. L., D. C. Thorstenson and L. N. Plummer.  1980.  PHREEQE - A
   Computer  Program for Geochemical Calculations^   U.S.  Geol. Survey Water Res,
   Invest. 80-96, 210 p.
                                       56

-------
Pitzer, K. S.  1973*  "Thermodynamics  of  Electrolytes.  I.  Theoretical  Basis  and
   General Equations.".  Jour, of  Phys.  Chem.  77:268-277.

Pitzer, K. S., and J. J.  Kim.   1974.   "Thermodynamics  of  Electrolytes.  IV.
   Activity and Osmotic Coefficients for  Mixed  Electrolytes."   J.  Am.  Chem.
   Soc. 96:5701-5707.

Pitzer, K. S., and G. Mayorga.   1973.   "Thermodynamics  of Electroytes.  II.
   Activity and Osmotic Coefficients for  Strong Electrolytes with  One  or  Both
   Ions Univalent."  Jour,  of  Phys.  Chem. 77:2300-2308.

Plummer, L. N., B. F.- Jones  and A.  H.  Truesdell.   1976.   WATEQF -  A FORTRAN  IV
   Version of WATEQ, A Computer Program for Calculating Chemical  Equilibrium of
   Natural Waters.  U.S.  Geol.  Survey  Water Res.  Invest.  76-13*

Robie, R. A., B. S. Hemingway,  and  J..  R.  Fisher.   1978.  "Thermodynamic
   Properties of Minerals and  Related  Substances  at 298.15 K and 1 Bar
   (10^ Pascals) Pressure and  at Higher Temperatures.   U.S.  Geol.  Survey,
   Bulletin 1452.

Rossotti, F.  1981.  The  Determination of Stability Constants.  McGraw-Hill
   Co., Inc., New York, New York.
Schindler, P. W.,  B.  Furst,  R.  Dick  and P.  U.  Wolf.   1976.   "Ligand Properties
   of Surface Silanol  Groups:   I.  Surface  Complex Formation with Fe  ,  Cu  ,
   Cd2+, and Pb2+.  J.  Colloid  Interface Sci.-55:469-475.
                                       57

-------
Stumm, W., and  J.  J.  Morgan.   1970.   Aquatic Chemistry - An Introduction  .
   Emphasizing  Chemical  Equilibria  in Natural  Waters*  John Wiley and Sons
   Inc.,  New  York,  New  York.

Stumm, W., H. Hohl  and  F.  Dalang.   1976.   Interaction of Metal Ions with
   Hydrous Oxide Surfaces.  Croat.  Chem.  Acta. 48:491-504.

Truesdell, A. H., and B. F. Jones.   1974.  "WATEQ, A Computer Program for
   Calculating Chemical  Equilibria  of Natural  Waters."  U.S. Geol. Survey J.
   Res. 2:233-248.

Van Zeggeren; F., and S. H. Storey.   1970.  The Computation of Chemical
   Equilibria.  Cambridge  Univ.  Press, London, England.

Wagman, D. D., W. H. Evans, V.  B. Parker, I. Halow, S. M. Bailey and
   R. H.  Schumm.  1968.  "Selected  Values of Chemical Thermodynamic
   Properties.  Tables  for the  first thirty-four elements in the standard order
   arrangement."  U.S.  Natl. Bur* Standards  Tech. Note 270-3.

Wagman, D. D., W." H. Evans, V.  B. Parker, I. Halow, S. M. Bailey and
   R. H.  Schumm.  1969.  "Selected  Values of Chemical Thermodynamic
   Properties.  Tables  for elements  35 through 53 in the standard order of
   arrangement."  U.S.  Natl. Bur. Standards  Tech. Note 270-4.
                                       58

-------
Wagman, D. D.,-W. H. Evans,  V.  B.  Parker,  R.  H.  Schumm  and  R.  L.  Hutall.
   1981.  "Selected Values of Chemical  Thermodynamic  Properties.   Compounds  of
   Uraniuim, Protactinium, Thorium,  Actinium,  and  the Alkali  Metals.   U.S.
   Natl. Bur. Standards  Tech. Note  270-8,  U.S.  Government  Printing Office,
   Washington, D.C.

Wolery, T. J.  1979.   Calculation  of Chemical  Equilibrium  Between Aqueous
   Solution  and  Minerals.  The  EQ3/6 Software Package.   UCRL-52658, Lawrence
   Livennore Laboratory, Livermore,  California.

Westall, J., 1979a.  MICROQL I. A Chemical Equilibrium  Program in BASIC.   Swiss
   Federal Institute of  Technology EAWAG,  CH-8600, Duebendorf, Switzerland.

Westall, J.  1979b.  MICROQL II.  Computation of Adsorption Equilibria in
   BASIC.  Swiss  Federal Institute of Technology EAWAG, CH-8600, Duebendorf,
   Switzerland.

Westall, J.  1980.   "Chemical  Equilibrium Including Adsorption on Charged
   Surfaces."  In Particulates  in Water, ed. M. C. Kavanaugh and J. 0. Leckie,
   pp.  33-44, Advances in Chem. Series 189.

Westall, J.  C.,  J.  L.  Zachary  and F. M. M. Morel.   1976.  MINEQL, A Computer
   Program for the  Calculation  of Chemical Equilibrium Composition of Aqueous
   Systems.  Tech.  Note  18,  Dept. Civil Eng., Massachusetts Institute of
   Technology, Cambridge, Massachusetts.
                                        59

-------
Westall, .0., and H. Hohl.  1980.   "A  Comparison  of Electrostatic Models for the



   Oxide/Solution Interface."  Adv. Coll.  Inter.  Sci.  12:265-294.







Yates, D.. E., S. Levine and T. W.  Healy.   1974.   "Site-binding Model of the



   Electrical Double Layer at the  Oxide/Water Interface."  Chem. Soc.



   Faraday I.  70:1807-1818.
                                       60

-------
                                   APPENDIX A



                        REACTIONS AND THERMODYNAMIC DATA





     This appendix contains  a  listing of the thermochemical data  in MINTEQ.



The references are for the equilibrium constants and enthalpy of  reaction data.
                                        61

-------
                      Footnotes for Tables A-l, A-2, A-3.
     (a)  reaction written in terms of H+(aq) and

     (b)  reaction written in terms of CO^'(aq) rather than HCO^aq).   For the
          reaction:
                               H+  +  GO?" ^ HCOo
                                       *J       O

          log K = 10.33, AH° = -3.617 taken from Ball et al. (1981) to maintain
          consist*
          series.1
consistency with that data base.  Log K is the same as in NBS 270
   •ies.va;
     (c)  reaction written in terms of P0|-(aq) rather than HPof'(aq).   For the
          reaction:
          log K = 12.346,  AH° = -3.53 taken from NBS 270-3 and identical  to the
          values in Ball  et  al. (1981).
                                         o
     (d)   reaction written in terms .of PO^aq) rather than HgPO^aq).   For the
          reaction:

                               2H+  +     ~
          log  K =19.553,  AH°  = -4.52 taken from NBS 270-3(b) and identical  to
          the  values  in Ball et.al.  (1981).

     (e)   reaction  written in  terms  of Cu+l rather than Cu+2 and e~.  For the
          reaction:.
          log  K = -2.72 and AH° =  -1.65 from NBS 270-4, which is also the same
          values used in Ball  et al.  (1981).

     (f)   addition of WATEQ3 reactions 544 and 542 in Ball et al. (1981).

     (g)   reaction written in  terms  of COo'(aq) rather than H2C03(aq).
          Thermodynamic data taken from NBS 270-3.

     (h)   reaction written in  terms  of HS~(aq) rather than S2~(aq).   AG$ and
          AH0:  for HS'(aq) from NBS 270-3.
(a) The NBS 270 series referred to here consists of NBS technical  notes 270-3
    (Wagman et al.  1968), 270-4 (Wagman et al.  1969), 270-6 (Parker et al.
    1971), and 270-8 (Wagman et al. 1981).
(b) AG? for H2P05(acl) in NBS 270-3 is  in error  and should be
    -270.17 kcal.

                                       62

-------
(i )   reaction written in terms  of  ^AsO^aq)  rather than AsO^-(aq).  For
     the reaction:        •                 -
                              + 3H+ ^

     log K = 20.6, AH° = -3.43 from  NBS  270-3.
                                  63

-------
                     Data  Sources for Tables A-l, A-2, A-3.

 1.  Ball et-al. (1980)
 2.  Ball et al. (1981)
 3..  Plummer et al. (1976)
 4.  Truesdell and Jones (1974)
 5.  Recomputed by Krupka et al. (a) who  reference  Dongarra  and  Langmuir  (1980)
     for the equilibrium constants.
 6.  Computed by Krupka et al. (a) who reference  NBS  270-8 (Wagman  et  al.
     1981).
 7.  Recomputed as part of this study using the  data  of  Robie  et  al.  (1978).
     The calculations are consistent with the accepted ancillary  data  of  Krupka
     and Jenne (1981).
 8.  Recomputed as part of this study.  AG* and  AH* taken  from Helgeson  et  al.
     (1978).             .                        •
 9.  Recomputed as part of this study.  AG° = 65.9  taken from  Truesdell  and
     Jones (1974) for:
     Al2Si4010(OH)2 + 12 H20 ^2A1(OH)4 + 4H4Si04l + 2H+.
     Reaction rewritten in terms of Al3+(aq) consistent  with the  ancillary  data
     of Krupka et al. (1982).
10.  Recomputed as pact of this study.  A 6° computed  from  log  K in  Baes  and
     Mesmer  (1976) written with C02(g).   AH2 taken  from  Robie  et  al.  (1978).
     All ancillary data taken from NBS 270-5 except Or+(aq) and  Cu(0) from
     Robie et al. (1978).
11.  Krupka  and Jenne (1982).
(a) Krupka, K. M., E. A. Jenne, and W. J. Deutsch  (DRAFT).   "Validation of the
    WATEQ4 Geochemical Model for Uranium."  PNL-4333.   Pacific  Northwest
    Laboratory, Richland, Washington.
                                       64

-------
                         TABLE A.I.   Thermochemical  Data for  Aqueous Complexes (Default  Type  II)
cn
2
8937320
a
8937321
2
693S600
3
893sa01
3
•939802
3
6939603
3
893sa04
3
8937700
3
7)17)0*
3
7)17301
3
7317302
)
7)1730)
)
7317104
3
1,000 89)
KU02S04 AO S.IU0
1.0H0 091
NU02S04)2.2 b.ttfB
1,000 89)
KU02HPU4 AU -.tf.100
1.000 89)
1
1

it

1
KU02HP04I2 -11.39*
1.000 893
KU02H2PU4*! .1.700
l. ewe 693
MU02H2PU4)2 «!*,&
1.000 Of)
HU02H2P04)) »££.*
1,1(00 89)
KU02H3S104
1.000 89)
KS2 *2 II. 4
1,000 7J0
K63 .2 |U,4
1.000 U0
K84 «2 9.7
1.000 734
KS5 -2 9.3
I.UU0 730
KSt "i
1.000 7J|)
2

1

2

3

1

1

2

3

«

9
,000 180
2.709
,000 732
4.18)
,000 7)2
20.614
,000 986
42.986
,000 980
22,643
,000 960
44.70
,000 980
66,245
,000 980
•2.4
,000 770
•14,926
.000 Ml
•13,282
,000 731
•9.829
.000 731
•9.999
.000 731
•9.681
.000 731





I.OVO

2,0«0

2.0M0

4,000

6.000

•1,000

•1,000

•1,000

•1,000

•1,000

•1.0U0





330

310

3)0

330

330

330

330

330

330

330

330


•2.

0.

•2.

1.

0,

• | .

| ,

-2.

•2,

•2.

•2.

•2.

0.0'

0,0

0.0

0.0

0.0

0

0

0

0.0

»,*'

0.0

o.o

0.0

0,0

0,0

0.0

0.0

0,0

0

0

0

0,0

0,0

>>•

0,0

0,0



462.1910

966.0072

461.96*9

167.0191

464.002

960,969

169,139

64,186

96.192

120, 236

160,120

192,364

REFEHtNCC
2

2

2

9'

2

2

2

2

1

1

1

1

1

MAttO
REACTION NUN0ER
990

991

992

**»«

994

999

996

609

902

903

904

909

906

                                  Reproduced from
                                  best available

-------
TABLE  A.I,  (contd)
                                              KEFCNtNCe
                                                              HATCQ
2 1.008 142 1.808 116 NBACUON N























^^^^^^
CTXJ
ni a
U.-D
-^
< £•
=^8
jj*n,-
— _^
™ "i
rt
8§
T>
?
jflh*
§»B
iPntfKEi
\2jpr


8913108
1
4911101
1
6911102
1
6913161
1
•911104
1
6912788
2
•912701
2
2
6912703
6912784
2
•911608
2
•917120
2
2
6915600
1
1
6919602
1
6915601
1
8913100
1
8911101
8913102
69l|400
2.B0 2
»91|4B|
4.00 2
8 9114k! 2
6.04 2
69l£7ue
2
6912701
2
8914/02
i
B912701
e
asJiauu
KUDU tl ll.MJ .0,656
1.008 69| |,B06 2
«U(OH)2 »2 17.740 .•2,276
•2.808 110 1.008 691
KU(OH|1 t| 22.645 •4.919
1,008 691 4,688 2
NU(OH)4 AU 24.760 .6,494
1,000 B9| 4.608 2
KU(UH)5 -I 27.975 •11,120
1.000 091 9,808 2
HUF «1 5.050 6.699
1,000 691 1.6*6 270
KUF2 *2 7,200 14,497
1 1 0(00 V9| 4*0110 470
KUFJ-tl 7,150 19. 119
1.800 09| 1.688 278
KUM AD 4,600 21,640
1.000 891 4.808 276
»UFS .| 4,a5tf 29.218
1.000 69| 5.886 27B
KUF6 .2 3.SU0 27,716
1,800 091 6.686 278
KUCL »1 9.911 1,336
1.808 691 1,808 168
KU6U4 «2 3,700 9.461
1.000 09| 1.008 712
KU(604)2 «0 7.600 9.749
1.000 09| 2.608 712
KUHP04 »2 7.500 24.441
1.000 691 1.088 960
KU(HPO«)2AU |,7tf0 46,614
1,008 69| 2.688 968
KU(HP04)l-2 -7,600 67,964
1.000 69t 4.800 960
KU(nP04)4.4 -ib.sen 66.461
1.000 691 4,006 968
R|jU«J 11,161
l.tfuo 6Vt 1,000 270
KUU4F« -2 -l.lrf.1 12.607
l.tftfH OVt <4,000 270
Ki)U4Cl. tl 1 ,<*i3 U.220
•I.0M0
2,0MB
•1,0MB
•4.1106
•9,800












1,606
a, 800
1,808
4,008

•1,800

•2,000
•9,000














140
2
348
140
338












336
1)8
118
138

348

148
33B














*•
.*•
1,
6.
•1.
1.
2.

1.
••
•1,
•2,
1,

2,
6.
2,

0.
•2,
•6,
1,

2.
1.
6.
•2,

•4,

1,

*>.

.(,

"2.

1.
0.0
0.0
».«
-,H
0.0
0,0
0,0

0.8
0.0
0.0
0,0
0,0

0.0
0.0
0.0

0.0
0.8
8.8
0.0

0.0
0.0
0,0
0,0

0.0

0,0

U.0

0.0

u.u

U.0
0.0
6.0
Vf •
Vf •
00 1
•••
0,|

V iV
• |B
•••
v§ •
**••

0f 1
•.•
•••

•.6
«.•
•.6
0.8

8.8
0.0
8.8
6,8

0,0

6,8

",6

0,0

0,8

0,0
•99.0364
•72.6417
•69.6911
186.8966
121,6699
•97,6274
•76,6296

199. 6249
114,0226
111,6216
192,6196
•71,4626

114,6986
418.1922
114,0864

429.9677
929. 96M
621(9469
•67(8)92

974.8781
699.1201
138,0172
190,0465

490,0559

269,0262

IBB. 8246

127,0210

346.6214

105.4608
2
2
a
2
2
2
2

•
a
2
2
a

<
2
8

2
2
1
9

2
2
2
i

•a

2

<

2

i

i
949
946
947
946
94*
996
9S7
*
996
999
961
961
564
* V
565
966
967

566
969
S7B
• •**

979
976
561
962

963

565

566

997

566

569

-------
                                                        TABLE A.I,   (contd)
                                                                                                                         HATCO
a\
2 1,000 20 1.000 732
0204920 KA6N03 AO 0.riUUU .0,2900
2 I.0lfi0 2tt 1,000 492
02049|0 KAG(N02)2 • *.ri000 2,2200
2 1,00* 20 2.000 491
0201302 KA6UM3 .2 0.00B0 6.7100
2 1,000 2H 1.000 1)0 .
020)602 KACI) .2 .27.0)00 11.1700
2 1,000 M 1.000 )60
0201*01 HA614 .) 0.X000 14.0600
2 1,000 t» 4,006 380
0207302 KA6184)2 .3 0.0000 0,9910
4 1,000 20 2.000 7)0 •2,000 )30
0207)0) KA6»4»5 *) 0,0000 0,6600
4 1,000 2H 2,600 7)0 •2,000 110
0207104 KAB(H6)34.2 0.0U00 10.4)10
4 1,000 20 2,000 7)0 ^1,000 130
0201410 KAC FUCVATS 0,00*0 2,3990
2 1,000 20 1,000 141
0201420 HAG HUNATE 0.0000 2,1990
2 1,000 20 1,000 142
3300600 KH2A803 • 6.5b00 .V.2200
2 1,000 60 *1,000 130
1)00601 KHASOl «2 14,1990 •21.31
2 1,000 60 .2.000 330
1)00602 KA*U3 .) 20,2500 .14.7440
2 1,000 66 .3.000 330
1100610 HN4ASU1 « 0.0U00 .0.3090
2 1,000 60 1.000 330
1100611 KH2A804 . .I.H900 .2.2430
2 I.0U0 61 .1,000 330
1)00612 NHA»04 .2 -0.S200 .9.0010
2 I.0V0 61 i2,000 330
1100611 NAS04 *! 1.4100 .20.5970
2 1,000 61 .3.000 330
3101400 KMCOl . .1.6170 10,1300
1.00 2 1.000 140 1,000 330
1)01401 KH2C01 AO .2.2470 -16.601
2 1,000 140 2.000 3)0
1107)20 KHS04 . 4.9100 1.9870
2 1.0*0 712 1.000 110
1102700 KHF AW 1.4b00 1.1690
2 1.000 270 1.000 330
1302701 KHF2 - 4,5bU0 3.7490
2 2,0*0 270 1.000 330
1102702 KH2F2 *U u.Hrtiou 6.7660
2 2. HUB 2TM 2.000 130
13050U* KMPU4 -2 -J.ilUU 12.1460
2 l.dUtj ban 1.000 330
3105tt01 HM2P04 . -t.bcidD 19.5510
2 1.04* 500 2.000 330
31B7100 «M2» AQ -b.lorf 6,9940
2 I.Ome 710 1.000 130
3307)ul MS >2 Iri.lrtdd .|2,9|»0
2 I,JKB 7i4 «l,000 1)0
11U14|«I KH fULVATl 'J.^.lHd 4.2700
2 l.MMH 14) l.dOB JJB
1101420 KH rtUMilt rt.H.ioO 4.2700

0, 0.0 0,0 16,9,6720
•i. 0.0 0,0 199,6790

•2, 0,0 0,0 147,3600

•2, 0,0 0,0 460,5610
•3, 0.0 0.0 613,4650
•3, 22, • 0,0 364.1600
6,000 731
•). 24.0 0,0 196.4440
7,000 73}
•2. 19,0 0,8 269,1960
3.000 711
•1. U.0 0.0 797.0600

•1, 0.0 0,1 1107.6670

•1. 0.0 0,0 124.9350
•2. 0.0 0,0 123.9270

•3, 0.0 0.1 122.9190
1. 0.0 0,0 126,9910
• 1. 0.0 .0,1 140,9330
•2, 0.0 0,0 119.9270

•3, 0,0 0,1 130,9190
•1, 5.4 0,0 61.0170

0. 0.0 0,0 62,0290
•1, 4.9 0,0 97,0690

0. 0,0 0,0 20.0060
*l, 1,> 0,0 19,0040
0. 0.0 0.0 40,0120
>2. 5.0 0,0 99,9790
•i. b,4 0.0 96,9670

0. 0.0 0,0 34,0790

•i. b.0 0.0 12,0640

•1, u.tf 0,0 691,0060
>1, 0,0 0,0 2001.007k)

1
l
i
1
A
1
1
1
I
1
t

I
01
1
|

1
, 1
1
|

1
|

1(0)
n

1
1
1
4
4

«

4

1
1
REACTION Nl
439
£10\
0UD
ATI
473
414
479.
907
908
909
511
'•1
• •a
mfm
478
AVQ
*f »
460
461
462
AA1
^ v«
404
i a
00
39


202
203
937
19


41
~»
42
»t
523
924
                        Reproduced from
                        best available copy.

-------
                                                TABLE  A.l.   (contd)
00
2.00 2 .I.00H 64it 1,000 140
6001105 KC0(OH)4 -2. M.*tf00 .39,6990
i I.0BH 6»a 4.000 2 *4.0»0 3J0
6007121 KP0(I04)2.2 0.0000 1,4700
2 1.0U0 6«M 4,000 712
6001402 Kf>BhC03 * 0.0000 11,200
1.0' 1 I.0U0 6U0 1.000 140 1.000 3J0
9401100 NNiBft * 0.0000 ,,»»«„
2 . 1.000 •> . B0a 110
5401401 NNKul AU 0.0M00 ' 6.0700 '
2.00 2 1.0011 S4M t 000 Ua
5401402 KN11C01J2-2 0.0000 10,1100
9407121 HNI(SU4)2«2 0.0000 * I.020M
2 1,000 540 2. til a 732
020H00 KAIittft AU . 0.0000 4,2400
2 1,00(1 art i a00 IIB
020|10i KAUUN2 * . «i,0Mtf0 7,2000
2 1.00H 2» 2,000 1)0
0201400 KAbCL AU .rf,t>»00 3.2700
2 1.0 tit) «» t,000 100
0201801 KAUCL2 . .1.9300 5.2700
.1. . i i-1:"*8 "^ *••"• •••
0201802 KAGCul .2 0.0000 9.8900
on a <«0«a 2« i.«00 it«
U-D 020t«03 nAutui .3 a.0ui«0 9.5|00
0,0 2 1.0U0 ft 4.000*100
£g. aeajr,,,, KABf AQ .d.tt,MB' S,iJS0
£ij> 2 l.tlllH d4 1.H00 270
n 2_ 0207300 MAI>M$ AU il.MrtUU 14.0500
21 2 |,0t)U in l.tUt 730
"^ 02«<710I KAb(rlS)2 . M.UUtft) Id. 4900
53 2 J.UIDH in 2,000 730
t< 2 |,0t)M c!H 1,000 la*
^^ aatljanj KAU12 . r-.OOl.d 10,6800
E'jfi P203ii<0 AAUIIH AU H,«1HBB ' »}2 0*HW
^B^ 1 l.t«.»n ^» l,0t)0 *2 »i,0uo jia
1 ' l.i«nn !>.< tf,Mt)0 2 «2 Utfa li»i
ean/120 KAbsoa . i.^wu i.*v0«>
	 •" •»»! ||*
MKACTION N
•2. 0,0 0.0 17S.2I90
"»t 0,0 0,0 199.1110
1. 0.0 0.0 168,2070
1. 0.0 0.0 110,6140
It 0.0 0.0 ,94,1610
1, 0.0 0.0 77.7000
>. 0t0 0.0 79,7170
0. 0.0 0.0 92,7240
-It 0t0 0*0 109.7120
• 	 (54.7710
0, 0,0 0,0 189.6160
It 0.0 0^0 119.7270
0. 0,0 0,0 110.7190
•2, 0.0 0,0 IT0.7280
-«, 0.0 0,0 290.0110
«. 0.0 0,0 107,7720
•t, 0,0 0,0 267.6760
•. 0.0 0.0 141,1210
•1, 0,0 0,0 (70,7740
.2. 0.0 0.0 214,2270'
.1, 0.0 0,0 249,6790
0. 0.0 0.0 126.8660
«, 0.0 0.0 140,9190
•1. 0.0 0.0 I74.UIIU
«. *.U 0,0 214,7720
-1, 0,0 0,0 361,6760
0, «.tt 0,0 124,67*0
•>!. 0,0 0,0 141,d820
•1. 0,0 0,0 201,9290 .
t
1
110)
1
t
,
1
t
1
1
»
1
1(0)
1
1
1
1
1
t
1
1
1
1
1
t
1
I
1
1
1
469
470

401
404
409
406
407
408
409
518
919
920
921
***
522
421
422
421
424
425
426
427
428
429
430
431
412
433
414

-------
                          TABLE A.I,   (contd)
                                                                                             HATED
                                                                                        NtACT ION NUMBER
2
16014M1
2
1.00 3
Ib0|40l
2.04 2
I6B712I
2
Ib0|4|0
2
1691420
2
600180)9
2
600|0ttt
2
b0UtV02
2
6B0|ttul
2
b00|400
4. 04 2
6H02700
2
bu027lo|
2
6002702
CD a
IfV
6002701
2
6003100
3
6003101
1
6001102
3
6001101
3
6004920
2
600T320
2
600T100
2
btlBTlttl
2
600JI04
3
bit)! IBM
2
b0B|30t
2
60I1J8B0
2
bB0J6ul
2
t>43\*al
I.OM0 IOH 1.000 letl
KCOI2 AU tt.mw* 3«*900
l.lftkM IB* 2.000 380
HCUhCUl « M, «« 12.400
1.000 Ib* 1.000 140 1.0t>0 310
KCUbOl AQ i*.HU«l0 5.1990
|.*0H Ibri 1.000 140
KCO(SJ4)2-2 «l,<«>i«i0 3,5000
t.itldtl Ibfl 2.000 732
KCU FULVATfc B.dilUll 3.5000
1, ft'* Ibg 1.000 141
KCU HOMATt H,H)«1«1 1.5H00
1,0MB Ib* 1.000 142
KPBCL t fl.JB^O 1.6000
1.00U avtit 1.000 180
HPBCL2 AQ l.rtBrlv) 1,8000
I.MOU 6>10 2.000 180
KPBCLl - i.tlM I.b990
I.Uikifl btie 1.000 180
APBCL4 -2 J.'JIOH 1.3800
1.HOI0 bu« 4.000 180
KPB(C03J2-2 *..IH«J« 10.6400
l.fciMM bMM 2.B00 140
NpttF * ti.viviotl 1.2S00
l.iDvlH b»n 1.000 270
HPB»-2 AU d.rtmJO 2.5600 •
1.000 b«iM 2.000 270
KPBI-3 - H.t^JKI.) 3.4200
I.0U0 bn^ 1.000 270
K,fi*M -2 0.«i«t)M 3,1000
1,0019 bu'il 4,000 270
Npoun t e.^udu -7.7100
l.titin bum 1.000 2 -1,0»0 310
UPBtOMJJ AU GI.I94b>0 .17,1200
I.0ti0 bt)«l 2.000 2 -2,000 310
KPt»(OH)l - 
-------An error occurred while trying to OCR this image.

-------
TABLE  A.I,   (contd)
                                                 NCFCNtNtE
     HATCO
KfcACTION NUM0ER
2.04 2
2311401
4.04 2
2311000
2
2311*01
2
2311602
2
2)l|801
2
2312700
2
2313)00
3
2313301
3
2313)02
3
2313303
3
2313)04
3
2317320
2
2317300
2
2)11402
1.00 3,
23t|410
2
2311420
2
9501800
2
9501001
2
9501802
2
9501003
2
9502700
2
950])00
)
95B))Hl
)
950))k<2
)
95U))U)
J
9S01dt>4
1
•>4Hf)»i(*
i
95B71HI
«H7J*V>
1.000 2)| I
KCU(C03)2-2 0.tiil*0
1.000 231 2
KCUCl * fl. 65*0
1.000
KCUCi.2 AO
1.000
KCUCL) -
1,000
KCUCL4 .2
1,0*0
KCUK »
1,000
KCUUH *
1.0*0
KCUIOHI2 A
I.00HI
KCU IOM)) .
1.0*0
KCU ion) « .
1.000
2)| 1
10.5600
2)1 2
|). 6900
2)1 )
17.7H00
2)1 4
1.6200
2)1 1
0.0000
2)1 1
a 0.0000
2)1 2
0.0U00
2)1 3
2 0.0*00
241 4
KCU2(OH)2t2 ir.b)90
2.000
KCUS04 Afl
1,0*0
KCU(HS)) .
1,000
KCUhCOl t
1,0*0
2)1 2
1.22*0
2)1 I
0.0*00
2)1 )
a.0**B
2)1 1
KCU FUUVATE m,*0*0
1,000
KCU MUMATt
t,tJ*«
KZNCU »
1 «**0
KZNCt2 AQ
1.000
KZNUL3 •
I, BUM
KZNCL4 .2
1.0*0
KZNf »
1.0*0
KZNUH t
1 .lADu
KZNCOH)2 A
1 . t)*M
KZNlOiOi -
1 •t**tl
KJN (OHM -
1 ,Bdi>
K/NUHCL AIJ
I.Mt'rt
KZN(Hi),! 4
I , <>l't<
H/NlrtiJi .
Mrtsn^Au
2)1 1

2)1* 1
7.7900
950 t
a(t>**0
950 i
9«^btt0
9bl» )
!*.96B0
9!>a 4
2,22u*
9it» 1
t 5.1990
9SM 1
i1 1
H.>IM»)«1
''bm 1
i) H.^IMH^I
4b<* 2
l'.»<«M
1 . lu.l.1
,
,
,

,
,

,

,

,

,

,



,

,

,

,

.

,

,

,

,

,

,

,

,

t



•

§

*
000 140
9,8)00
000 140
0,4)00
000 160
0.1600
000 160
.2.2900
000 180
.4,5940
000 160
1.2600
000 270
.6,0000
000 2 "1.0B8 110
•11,6600
000 2 -2.000 330
.26,0990
000 2 .3,000 3)0
•)9,*000
000 2 .4,000,330
•10,1590
000 2 .2,0*0 1)0
2,3100
000 7)2
23,6990
000 730
13.000
000 140 1.0U0 3)0
*,I990
000 141
*,I990
000 142
0,4300
000 160
0.4500
000 160
0,5000
000 180
0.1990
000 160
1.1500
B00 270
.8,960*
000 2 *l,0*0 310
•16,6990
BBO 2 >2,0*0 1)0
-28,)99I>
000 2 •1,0*0 1)0
•41,199*
000 2 '4,*utf 1)0
-r.aaB*
HUB 2 •1,0*0 110
14,94*0
BB0 7 IB
16. 1MB*
"""z.l"*!
•2,
1.

0.
•1.

•2,

1,

1.

0,

•1,

-«t

2,

0,

•1,

1.

«,

0,

1.

0,

• I.

•2.

1,

1.

0.

•1.

.2,

0.
1.U00
0.

-1.
".
0,0
4.0

0.0
4,0

i.0

*>.0

4.0

0,0

0,0

0,0

0.0

0.0

0.0

0,0

0,0

0,0

4.0

0,0

. 4.0

b.0

0.0

U,0

0.0

0.U

tt.0

M.0
180
B.0

*.0
0.0
«

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0
,.

,0


,0

,0

,0

,0

.0

,0

,0

,0

,0

»0

.0

10

,0

t>

.0

.0

,0

.0

.0

,0

.0

.0

,0

,0
,0
101,5*40
90,9990

134,4920
1*9,9050

205,1560

02,9440

00,99)0

97,9*00

114.9*00

131.9730

1*1,106*

199,*070

1*2,7*10

124,5*10

713.54*0

20*3,9450

100,0210

13*. 27*0

171.7290

207,1020

04,3*00

82.3770

99.3040
1
ll*,3920

133,3990

117,0)00

131.9130

1*4.5850
lbl,431U
1
1

1
1

1

1

1

1

t

1

1

1

1

lib)

1

1

t

1

1

1

1

1

1

1

1

t

t

1
1
2|0
211

212
219

*>•

219

216

217

210

219

220

221

222

910

927

920

291

292

293

294

295

29*

257

290

259

2*0

261

2*2
263

-------
TABLE A..1.   (contd)










(0 fl> I
i*T) 1
i°
I rf»i 3.008 taa
HFtUMi t 0.0000 .5.6700
1.000 261 2, 000 8 .2,000 310
KFEUM)> AU 0,0000 •11,6000
1,000 26| 3,088 a -3, 8MB 330
KFIOH4 . 0.0000 •21,6008
1.00(1 2«l 4.000 3 -4,008 138
KFH12C04 »2 0.0088 24,980
1,000 2»| 1.008 980 2,000 130
1,000 2B|' 1.888*878
»FtF2 t 4,6000 t0.aaaa
|,B00 841 2.800 870
KFEF1 AU 5,1998 14,800
1.000 261 3.808 878
*Ft(a04)8 • 4,6888 5,428*
1,000 2»| 2,000 738
KFE FULVATt 0.0080 9,1448
I.0BB 88i i.aaa lit
HFC HUHATC 0.8000 9,1990
1.000 261 1.808 148
KFE2(OH)8t4 13.5000 .8,4300
. 2.800 86i a.aaa a .2,808 na
!b -
1 tfwti
ntULQi HI
470
".
470
a,
47ri
14
470
•t 0.
470
0.
47U
2.

Aij -H
47H
4.
4/M
.«
•fiit

^ ikl
-S a.
•i 4l1
1 >1.
^3(1
n.
I
000B
a
0008
1
,3998
|
0080
3
0000
1
1700
t
.3960
2
0000
1
.42
2
26
j
0
j
n
Jt
0MII0
.808 188
8.0418
.Baa taa
.,18900
,808 168
•10,5900
.800 8 -1.0W8 330
•34, 8000
.000 2 •1,000 330
0,8500
.800 878
8.8688
.800 732
0.6880
.808 492
11.680
,000 140 1.008 3J0
5.5
.800 160
5.78
,000 160
3,39
.000 730 6,000 fJi
2.66
.000 730 7.0U0 711
6.7300
1.
8,
a,
a.
i.
0.
i,
i.
9,
•1.
1.
1.
1,

a,

•it

i.

•it

i.

B.

0.

1.

•1.

.2,

•3.
•2,000
-3.
•2,000
B.
0.0
9,0
0.0
0,0
a. a
8.0
8.0
8,8
5.0

0,0

5,0

S.0

9.8

5.0

. 8.0

0.0

5.0

4.0

5.0

i!),0
310
25.0
310
0.0
8.8
••a
8.8
8.8
8.8
•.8
8.8
8,8
•*•
8.8

8.8

8,8

•.8

",8

8.8

8.8

8.8

0.8

8.8

0.8

0.0

8,8

0.0
69.6610
106.6690
181,8760
138,6)48
74,8490
93,0410
112.8420
847.9700
789.8478
8899.8460
145.7888
839,9788
101,8000
184,6870
134.347V
98,3910

125,6448

161.8970

161.8978

105,9608
1
73.9360

158.9990

178.9470

115,95*0

134. 4S2

169, 90S

320,056

352.122

123.b!>b0
HtFtHtNCt MATED
RUCTION NUMBER
1 102
1 183
1 104
MO! 196
1 169
1 166
t 167
1 331
1 989
1 986
1 334
t 139
4 126
41AI 189
4l*JI 130
t 178

1

1

1

1

1

1

1

UB)

I(F)

MF)

un

HF|

1

171

178

171

174

179

176

177

176

206

207

465

486

209

-------
                        TABLE A.I,   (contd)
                                                                         HtrtHtNLt
      HATEO .
KEACT10N NUMBER
1.00 3
5007120
2
5005600
5002700
2
4107)20
2
4(05600
1
010)100
3
0)03)01
3
0303)02
3
0)02700

0302701
2
0302F02
2
0302701
2
0307120
2
1307)21
""** 2
00 0303)03
2&U3300
1
2»03)0l
3
2807)20
2
2805800
3
2603)02
2605801
3
2807300
2
2807301
2
2813)00
)
2815800
3
2817)20
2
2611600
2
2811601
2
2611802
I.0J0
KNAHPU4 -
1.00(1
KNAC AH
1,000
HH5U4 -
1.000
KKHPOt >
l.HIOil
KALOH *t
kALlGn)2 '
5,1*1 1.000 140 I.0U0 130
t.UeU 0,7000
5.1U 1.000 718
rt.MUdd 12,616
bwv) 1.400 560 1.000 310
«,ri»00 .0.9560
StM 1.000 870
2.2*00 0.6504
<4|M 1.000 732
M.MV>i!0 12*640
4|«i 1.000 560 1.0«0 I"
|l.dV90 .4.9900
1* 1.000 8 .1.000 330
» «.«000 .10.1000
1.00U 30
AA(.(On)4 . 4<4
1.000

H*U2* +

NAIM'AU
I.00H
KALF4 .
1,000
1.000
i0.

21,1

?.
^t
30*
2.
- 2.
1.00e IB
KALlOrO) AU 0.
I.WM0
KftOM «
1,000
KFtUhJ -I
1,000
KftSOl AU
KFt«2P04
KftUHi AC)
Ju
|i
2l)0
10
26H
2a«'
» 0.
20,1
So
1.000 2««
KftMPUd AH V,
1,00(1
1,000
HFtlHSJJ
1,0X0

KFtMPOd t
1,000
KftSCU *
I.0UH
KftCL «2
1 0M0
KFtcii *
1 ,000
KftlLi Al)
2bt)
AQ U.
2o«i
- «.
28ft
2 000 2 .2.0U0 H0
.W600 -23.0000
4.000 2 •«. 000 330
M»ik>0 7,0100
1 000 270
.U000 12.7500
2 000 270
•i«00 17.0200
3.000 270
*t>00 19,7200
4.000 270
i:>00 3,0200
1.000 732
8400 4.9200
2.000 732
0000 .16.0000
3.000 2 '1.000 310
,1990 -9.5000
1.000 2 -I.0U0 310
.1000 .11,0000
1.000 2 -3,000 310
2100 2.8500
1,000 738 .
MUU0 88.853
1.000 580 2.000 310
.5650 .20.5700
2.000 2 .2.0W0 110
t<000 15.950
1,000 580 1.000 330
M0U0 8,9500
2.000 730
MU00 10.9670
1.000 730
1D.J490 .2.1900
*"i,
).
2at

So/

£D|*
«.
1.000 2 -1.010 330
.Jut) 17*780
I.0U0 560 1.0D0 330
'MUM 3,9200
1.000 738
totttttf 1,4600
1.000. 180
tlUklB 2,1300
2,000 160
1U)«)H 1.110U
-I.
0.
2.
ti
-It
8,

I.

0,
•I.
t.
• 1.
0.
it
•i.
0.
t.
0.
0.
0.
-1.

2.
1.
1.

i.

\.

0.
0.0
5,«
4.4
»,4
4,
s.

*.

0.
4.
4,
4.
0.
b.
*.
0.
i.
0.
0*
0.
0.

5,
5.
5.

5.

i.
4

4

0
5
5
ft
0
0
0
0
4
0
0
0
k)
,
0
4
0

0

0.0
0,0
0,0
0,0
0,0
0,0
0,
0,

».

0,
0,
0t
o.
,0.
0.
0.
0.
0.
0.
0.
0.
0t

0,
0.
0.

0.

0
0

0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0

0

i.0 0.0


U.0


0.0
119.0510
116.9690
41,9660
135.1630
115,0810
41,9660
60,9960
95,0110
45,9790

64,9760

63,9760
108.9750
181,0410
819,1040
76.0010
78,6540
106,6690
151.9060
158.6140
69.6610
151.8260
121,9900
155,0680

72.6540
151.6260
151,9060

91,3000

186,7530

168,2060
1
UCJ
2
1
Kb)
1
1
1
4

4

4
4
1
1
1
1
t
1
410)
4
41CJ
1
1

. 1
11C)
1

1

I

1
71
30
540
78
32
80
81
82
83

64

65
86
67
68
336
2
3
8
120
105
136
476
477

t
119
. 4

5

6

7
Reproduced (rom
best available copy.

-------An error occurred while trying to OCR this image.

-------
TABLE  A.2.  Thermochemlcal  Data for Redox Reactions and Gases  (Default  Type VI)
                                                                                           MATED
                                                                                      HtAdioN NUMBER
2«I2«0« rt+3/Ft*2 -10,
s • i.aad 2Bi
4700020 KHNU4 - U6.
4 1,94(1 4M
4700021 KHNU4 -2 1S*».
4 I.0U0 470
4914920 NU2/NU1 -«1.
4904920 NN4/N01 -18/
5 -1,000 49*
0600610 »SOi/AS04 -1*.
S 1.MU0 bl
8908910 U+l/UUf+2 -lit,
S 1.0H0 891
B4ln91iA U*4/U02t2 -14
S |,0UI» 8)5
1 I'. 0*K 891
4714700 HN»imi*2 iS.I
i 1,000 ir*
2102H0 CO»l/Cl)»a 1.61
1 1. HUM 1,
4 l.MUH I'll
3301403 CU2(GA8) -»,i
I l.viuu \<**
1100021 02CAQ) s»10
1 i.fOrt 2
1I«|0022 U2(A<1) CALL H>.
3 2 kH6U ?
89155105 KUblOn)l5t9 4
1 6,d«iti »'M
1100021 02(t>AS) l>i>,

* 41, Bd
8.000 1
tl 18.16
2.000 110
.45.54
•4.000 110
»1 .85,98
-4,000 110
-17,229
15,1100 2 •
t>l .81.120
-4,000 110
I.0W0 1
•e, 000 310
-0.000 110
2.0U0 130
•1.UU0 2
2.0U0 110
4,0U0 310

4,000 310
•1.0B0 892

•1.000 471.

•1.0W0 210
8,000 1
10.0U0 110

•i,0U0 2

•4,««0 1

• 4,0110 1

15,UUt) lit)

• 4.0HI0 0U1

-1. 3.0
•5.UU0 1
•2, 4.0
•4,0d0 1
2,000 |
10,000 110
•1.000 60
.1.0U0 890

•1.000 891





-1,000 710
•1,000 2






9. 0,0




0.0 116.9150
0.0 116. 9150
•|(000 2
0.000 1
•1.000 2
•2.000 2

•2,000 2





•4.000 2
16.0412
41,0100

31.9988

11.9908

0,0 1681.2846



1
1
1
1
1
1
t
2
1
1
4i»r
4 Ct»
Mil.)
4
4
*
4
1
179
180
400
127
'"
542
573
169
20ft
90
94
137
136
151
550
93
             Reproduced from
             besf available copy.

-------An error occurred while trying to OCR this image.

-------
                                               TABLE A.3.   (cantd)
                                                                                                     NtftKtNU
                                                                                                                       HATEO
                                                                                                                 KUCTION NUMBER
5189102 U02N01.1M2U
      1     1,080 491
5|69l0» U02N01.6H20
      I     i,0ea 0«
2001000 ALOnl(A)
      J     |,00H  1M
6001000 ALOMS04
      4
6001001
      4
604I00B
      4
           10.000
             K
                  4ia
      )     1,00(1 4JH
6015000 ANMtORHE
      2     1.000 Ibw
5015000 AHAUON1TE
      2     l.0ae tsa
5046000 ANUMMt
      4    -2,000 110
421000* BAF2
      2     i.auid l*«i
6010000 BANITt
      2     l.BMIi IM
2001001 BQtMMlTt

        BMUCITE
      1     1.0*0 46«t
5015001 CALCITE

6040000 CCLlSTm
      2     l,B0t» BH*
       2     <2.U00    2
         CHNYSOTILC
       4     -t,«)«e  no
 0246000  CUtNOtNSTlTfc
       4     -i.etie    2
2801002 01ASPOHE
      1    -l.tinji 11*
6215000 OlOPSIllt
      5    -2,HUB   t
5015002 OOUUrtJIt
      1     l.HMH Ilk"
68*6000 EPitUMlTt
      1     t.HlJH <4btt
        StPIOLIU(C)
            -J..HIH 11,1
  2.0U0
 2.485
  2,000
-4.770
  2,000
27.«4S
  1.B00
  .080
  1.000
  .000
  4.B00
-7.22B
  1.B00
•1.918
  1,000
 1.769
  1.000

  1,000
26,742
  2.000
-1.000
  2.000
•6.2B0
  1.000
2B.110
  1,000
25.840
  2.000
 2. 585
   l.BBB
   .470
   1.000
-4.615
   1.000
52.485
   1.000
20.015
   1.000

   1.000
24.610'
   1.000
 12.280
   1.0*0
  0.290
                           t.aae
                         £7.268
                           2,aaa
                           ,840
492     2,8100   2
  -1,642    ,000
492     1.0U0   2
  •2.1*0    .00*
492  *   6.0U0   2
 •10,180  -9.690
  2    .1.0U0 310

 10 '   1.0U0 712
 .22,700    .000
 10     1.00B 712
,   5,170    ,00«
 IB  '   2,8144 712
   1,146    .000
 IB  '   2,000 712
   4,617    .008
712
   •,160    ,aaa
140
  -9,608    ,aaa
460     1.080 140
   9,760    6.740
270
   9.9T6    .0*0
712
  •8,970   •B.abS
 10     2.000   2
 •16,792    .000
  2     .2.0*0 110
   9,475    0,560
140
   6,469    ,00*
712
   1,521    .00*
770
 *12,188     .00*
460      2.0*0  7M
 •11,110  -10,972
460      1,0*0  770
    1.SB7     .00*
770

  10      2.0*0   2
  .19,066    .0**
 150      l.BBB 4b*
   17,0*0    .0**
 460      2,*tt0 14*
    2,14*    ,U0(t
 712      7.*l)0   2
                                                              2

                                                              2

                                                              2

                                                              2
 ,*VI*

1.070
   1.0*0
 ,***
  10,000
 ,*00
  12,000
 ,000
   6,000
 ,0*0

 .000

 ,088
   5.000
4,658

9.771

 ,0*0

 ,080

 ,0*0

6,149

 ,0**
                                                       1.000   2
                                                  11.632
                                                     -2.000 110
                                                       2,000 770
                                                     .«I30
                                 460      1,0100  7ftt
                                   • 4.H91   -J.Vif
                                 eat      i.tmi*    i
 |0£ttUt<«) Kti Pi*'
                           .Brit)     1,840    ,l<
                           1.0H0 dt\     a,7«)
-------
                                                 TABLE  A.3.   (contd)
09

3 •I,00W Jin
6026100 FE2($U4)3 ,
2 2,000 2H|
701901*2 FCOIAFATITC
6 9,49* ISi
421500) FLUUN1U
2 l,00« IS*
604»000 FOWtiWt
3 -4,080 13*
2003003 BI0B61U (C)
3 *3,0*W JJ9
2020102 euetHiTt
1 •3,0ow JJa
0*20400 BHUNAUITE
4 >6,0*0 li«
1026001 Btteicm
4 -4,000 JJ«|
60IS00I STPKUN
3 1,000 ISO
4150000 HALITt
• 1 1 0ltflH &(9«|
2026105 MtMATlIt
3 -6,00m 31*
5019003 HUNTItE
3 3,0*0 4**
504*001 HTOMMAUNtSlt
4 S,0»0 4bi)
6030000 JAHU61TE NA
5 -6.0MM 310
6041402 JAHUSITt K
5 -*,4M* JIM
6026101 JAH08irg ti
4 -3.0*1(1 JJM
1026002 M»CMNAH|Tt
3 . -t.ooo Jiii
6450*00 MAGAOIITC
4 -I.OtIM 3JM
2026104 MAbnCniTC
3 -6,VU>& IJii
504b*02 MAl>N£S)ft
2 l.0t)M 4bl)
f- 30260*10 MAl»N£f|lE
jo-jo] * -0,»U» JJ.i
IS"/ bfl24*l)4 MKLANf LNI ft.
l-n 1 . 3 l.ouo 2di
I"1 0.1 fa0%0*Vl lINASlLlTt
1 5 c 1 3 £,O^M 5vM
Ijpo I Ju5u*0M NAtHOM
/cr0-/ J a.rtwH ^vu
111 ^J 3(i4b*03 NtiUUtnllMl It
ln O J 3 1 . »inn •'in
lo 3 I 6b"bid(i| PhLUGL'l* I It
[£ . 1 JM(|WS •»•.-« »^«

>'M 'tii'
inigl 2o7ftl«i2 UUAKl^
^jf^' i -£.Ll''t' c1
ttbObMnKI St K [i)l.| U (<.)

1,000 200 1.000 7i*
49,120 -J,SB0 ,*50
3.000 732
-3<),390 114,400 ,u«0
.160 500 ,|44 4b0
•4.710 10,9*0 .000
2.000 271
46.910 •20.290 .000
2,000 4*0 1,000 770
22.600 -6,770 «0,467
1,000 10 1,000 2
14.460 •,504 ,000
1.000 2*1 2.000 i
.000 -20,*|0 .000
3.000 200 2,000 770
.000 49,035 ,000
2.000 201 |,000 IHtt
•.261 4,646 .000
1.000 7]2 2.000 i
•.916 >l,»62 ,000
1,000 160
34,645 4,006 ,M00
2,000 26| J.000 i
23,760 29,9*0 ,000
1.000 150 4,000 140
42.2IM 0,7k* .000
4,000 140 >2,000 J1U
lb.l*0 11,200 ,«00
' 1,000 500 3,000 201
11,260 14,000 ,000'
1,000 410 3,000 2ttl
33.150 12.100 .000
3.000 261 2.000 732
,000 4,640 ,**0
1,000' 280 1,000 MM
.00* 14.3*0 ,0*0
-9.000 2 1.000 Soo
.000 >*,366 ,000
2,0*0 261 3,000 2
0,169 0,029 D.27V
1,400 140
*«t.4*0 »3,737 •l.lbf
2,0*0 20| 1,000 2b0
-2.66* 2,47* .ODD
1.0*4 732 7.0ua e
-IN, 967 1,114 ,00u
I.OIH0 712 lu.euu i
-13,745 t.lll .*)Mi«
1..1JH 14U 1H. HUM i
3.769 3,*2I i.UJ
1,040 140 1.0*1) i
Ob. JOH -bb.i** .HMO
l.^ud 41W i,*UO H
-11. Jo* l«,4fv .mil)
-li.MHa I I,W«/H <*NM
*h.22U t.MUO . I1OI)
l.MMM 770
.a.i.i -ta./od ,.MII


HtftMtNtt
MATEQ
HEAC7ION NUHbER
.000

.000
4,000 960
.000'

,0*0
•9,440

.000

,000
1,400 2
,000
4.000 730
.000

,00*

.000

,000

,000
6,000- 2
,*0*
2,000 732
,000
*,*40 732
,00*
7,000 2
,400

,000
r,**0 770
,00*

7,77V

•*,34!>
4,1040 2
tu>o*

, JHd

t
-------
TABLE  A.3.   (contd)
4 -.500 a
5028400 JJDttmt
2 1,000 40U
2077801 8IlHCA,bU
2 -2.000 2
2077084 6104(A,PT)
2 .2.000 2
4260008 IRP2
2 1.0U0 000
7826100 8TRtN6ITE
1 1.0t>u 201
5868000 8THONT1ANIU
2 1.000 000
6646002 TALC
4 -4.000 2
6050002 THfcNAHOlU
2 2,000 5n0
5050401 TNEHMUNATK
1 2, MUD 5k)M
6215001 TKtMOUTE
5 -8.0M0 2
7026001 VIVIANITE
1 3.000 4B0

2 1,000 lie
2047400 PtKOLUSnt
4 -4.000 33rt
-vl 2047001 8IRNESS1TE
«XJ 4 -4.000 130
2047002 NJUTITE
4 .4.00H 3i0
1047108 ttlXbUTE
1 -6, OHM 330
3047000 HAU5CUNNITE
4 >0,000 33'0
2047001 MM4CH01TE
1 >2.000 330
2047104 MANOANITE
1 • -1,000 33o
5047000 ftHOUOCtittOSIT
2 1 . H00 47w
. 	 , 4147408 MNCi,2i <*n2U
O-jo] 1 1.0HH 47«|
jj t
o3 304I0H0 AoCNVflUHtrL H
5 5 -34.01HI 15/1
• 30101000 HUtL A'101 It
^J^l b -3i,HHH J5V

MIW 6 -24.*H'H '31J1
^^ 3K)i|<|iJK0 LlTillUf'iii.lKI 1
2.000 460 1,000 77V<
5,320 10,550 U,I04
1.800 140
-4.448 1.018 .00k>
1,000 770
•3.910 2.710 .000
1.800 778
-1.850 6,»4B V.U0
2.000 270
2.030 26.400 2V. |23 26
1.000 580 2.000 2
.698 9,250 11.769
1.000 140
35,885 .21,055 .10.980 .21
3.008 468 4,000 770
.572 .179 .000
1.880 7)2
2.802 -.125 ,000
1.800 140 I.0U0 2
96,615 .56,546 ,000
2.000 150 5.0100 4b0
,000 16*008 .004
2.000 588 8.000 2
.,160 6.385 13.115
1,000 140
-4,000 330
.000

.000

,00.0

.000

.215

,000

.066
•6,000 310
.000

.000

.000
0,000 770
,000

.000

29,160 .15,061 ,000 .16,016
•1.800 1 1,000 471
.800 .18,091 .000
-1.000 t 1.000 471
,008 .17,504 .000
•1.880 1 1.0U0 471
15.245 ,611 *,226
2,080 471 1,000 2
00,140 .61,540 .000
-2.000 1 1.000 470
22.590 •15,066 .000 -15
1.000 470 2,000 2
,800 ,218 ,00U
1,000 471 2,000 2
2,879 10,410 U.MIM 9
1.000 140
-17.380 .2.710 .800
2,000 180 4.000 2
5,790 .1,000 ,000
1,000 470 1.000 730
15,400 .2.6D9 .000
1.000 732
39,860 5,711 ,000
3.000 732
-£,120 23,027 .wan
2.000 560
.000 .000 ,kl«)0
, 16.U00 471 .0100 410
.AW ,000 ,000
(4,000 471 .0*0 HHk*
.ritttf ,0U0 , UUtf
.393 150 .4*3 46H
.fl0u ,aa* .ami"
2.000 2
.008
2,000 2
.000
2.000 2
.430

.000
4,000 Z
.301

.000

.991

.080

,000

.000

,000

,ri00

.VI00
1 7,i««>U 2
,0k)0
,*70 200
, t>«10
1M.0UU 471
,4«I0

115.6564

60,0040

68,8048

125,6168

186,6490

147,6294

379,2686
142,0412

124,0041

612,4096
•14,800 310
501,6062
,
197,1494

•6,9168

86,9366
•6,9366

157,6742

226,61lb

66,9526

67,9446

114,9474

197.9052

67.002U

I50,999b

398,0bUa

154,7560

775.730<:
•7,400 470
817,4214
16.000 2 -b,«|0 470
S92.4b4I
14,008 2 -J.ttbb 470
1953,3934
                                                                MATCO
                                                           HtACT ION NUIlbER
'4
4
1
1
4
1
4(AJ
4
4
4(A)
4
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
tee
395
399
146
142
37
65
61
31
106
145
163
164
165
186
187
186
169
198
191
192
162
134
193
195
196
196
199

-------
TABLE  A.3.  (contd)
6
1015001
5
BB23B0B
2
4123401
2
4223000
2
2021000
1
1023000
3
1023001
4
1023002
4
1023001
4
1021100
4
1021101
1
6021000
2
1023000
4
412)100
00 2
0 5023100
2
4223100
2
4221101
1
2023100
3
4121101
4
9123100
4
6021100
4
6021101
4
6H23I02
4
2025101
1
6023101
4
702310*
2
7023101
1
6023104
2
6H23IMS
•70,000 lia
MANCUIU*
•10,000 5iV
eu nit AL
1,000 «1M
NANTOKIU
I.00W 21tl
CUF
1.000 210
CUPHIIC
•2.000 110
CHAUOCITE
•1.000 110
OJUNLtm
•1.000 310
AN1LI7E
-I.0M0 110
0LAU6UI II
•1.000 110
BLAUftkEI 1
• 1.000 1311
covtune
•I.B0B 114
CU2»04
2,000 210
CuPttOUSFtkIT
•4.00fl l)«l
HClANOTHALLl
1.000 21|
CUC01
l,00u 211
CUF2
It0u0 211
CUF2, 2H2U
1.000 211
CU(UN)2
-2.0*0 lltt
A7ACAH11fc'
•1.000 110
Cu2(On)lNill
•1.0W0 150
ANlLEMTt
•«,au0 ii*
0HUbNANTITC
•6.0tffl ltd
LANbMt
-b.0iip tin
TtNUttITt
-2.«tUH Jirf
CUUCUS04
-2.0W0 11*1
CUl IPU4) 2
l.riOtl 211
Cul(Pu4)2, Jti
i.DHU 211
CU4W
l.tv* <>lt

2.000
.000
.440
-17,110
1.000
•9,900
1.000
12.170
1.000
•6.243
2,000
•49.190
2,000
-47.661
.066
-45.919
.250
.000
.600
.000
.900
•24.010
t.000
4.96B
1,000
1.400
1.000
12.120
2.000
.000
1.B00
11.120
2.000
1.69B
2,000
15.250
1.000
16.690
2.000
17.150
2,000
.000
1.000
.000
4.000
19.610
4.000
15.240
1.000
15.575
2.000
.0*0
2.000
.000
2.H00
ltt.140
l.n<)0
-1.440
440 0.0K0 Ju
.000 ,H00
150 6.000 471
6,760 .000
1
6,760 ,000
1*0
•7,060 ,000
270
1,550 1.670
210 |,B0B 2
14,619 14,920
21B ' 1,000 710
15,920 .000
231 l,*6* 230
11, «7* ,000
211 1,500 230
27,279 ,000
231 ,*0B 210
14,162 .000
211 ,200 210
21,016 ,000
211 1,000 710
1,950 ,000
712
6,920 ,000
210 1.000 201
•1,710 ,000
160
9,610 V.690
140
,620 .000
270
4,550 .000
270 2,0*0 2
••,640 .000
211 2.0B0 2
.7,140 »».240
211 " 1.000 2
•9.240 ,000
211 1,000 2
•6,290 ,U00
231 4.000 2
• 15.140 >1!>.150
231 6.0U0 2
•16,790 ,U00
231 7.0U0 2
-7.620 -'.ISU
231 1.0U0 2
•11,510 .000
211 |,tfu0 2
16.650 .WHO
560
15.120 .0UB
5B0 1.0U0 2
• l,t>10 -£,614
7J2
2.640 C.lbU
20.000
.000
12,000
6.000

6.610

,000

.700

10.900

,000
1.000
.0*0
1,000
,000
1.000
,000
1,000
22,170

,000

6.660
2,000
•4.450

9.610

.000

,000

•9.200

•7,490
1,000
•9.110
1,000
•6,900
1.000
•15.500
1,000
•17,400
1,000
-r.aso

.0140
I.U00
Ib.***

.DUO

-i.««t»)

2. US
471

2











T10

710

710

710





2











J*0

492

712

712

712



712







49,000 2
466.1910
•1,440 470
61.9460

9*, 9990

62,9444

143.0914

199,1560

194.9620

143,2695

121.0264

101,9646

99,6100

221,1916

191,1916

114.4520

121.5592

101.5426

117.57J2

97,5606

211.5669

240,1109

354,7246

452,2654

470,30*6

79,5454

219.1490

360,Sa«tf

414.6264

159.6016

249.6790
Reproduced from
bes» available copy. HJR^
                             -6,000 470
NtNLI-
1
1
I
1
1
1
1
1
I
1
1
t
1
1
1
1
1
t
1
t
>
\
1
1
1
1
1
1
1
MATED
NtACTION NUHbCR
200
221
224
229
22*
22T
247
939
934
933
246
226
229
23B
231
2 32
233
234
237
231
239
240
241
242
243
244
245
247
24«

-------
TABLE  A.3.   (contd)
                                                    Ktt-tKtNLE
                                                                                                                                   HATED
                                                                                                                             NEACUON NUMBER
00
1
2023102
1
3023100
4
1023102

4021000
2
4121000
2
U095400
2

2
5095000
2
5095001
3
4295400
2
2095000
1
2095001
1
2095002
1
2095001
1
2095904
3
4195001
4
4195002
4
6095000
4
6095001
4
S1950M0
1
2095005
1
2095006
1
6095002
4
7095404
1
10950*0
3
1095401
1
1095402
I
8295400
4
809S4W4
1,011)0 21)
OlOPTASfc
.2.000 110
CUPKICFEHIT
.6,000 114
CNAUOfMRlTt
•2,000 110
CU0N
1,000 214
Cut
1,000 21m
ZN HE Hi.
1,000 950
ZNCL2
1,000 950
8NITHSONITE
1,000 950
ZNCOlf 1H20
1,000 950
ZNP2
1.000 95«

-2.000 Hit
ZN(OH)2 (C)
•2,000 110
ZN(OH)2 («)
•2.000 110
ZNIUH)2 (G)
•2,000 114
ZN(ON)2 (t)
-2.000 110
ZN2(0(l)3CL
•1,000 110
ZN5lOH)6CL2

ZN2(OH)£ttu4
•2.000 110
ZN4tOr1)6Sn«
•6,000 110
ZNNUl)2«6H2u
1.000 950
ZNUtACriVt)
•2,000 110
ziNcire
• 2,000 lit)
ZNiimotiz
-2,000 110
ZNHP04) i 4*16
WKKTZUfc
-i.aww 11*
ZNM01
-2,itup ll.162 6,^4
1.000 950 t.dlue 71*
ID. 270 .2,910 .BMW .*?*
-1.000 2 1,UU0 950 l,k)k)k)
1S.17B .15,114 •11.15B ,ri«0




3

710

























100

180

732

713







2









77*

                        157,6449

                        239,2176

                        103.5110

                        143,4500

                        I90.45V5

                         65,3800

                        136,2660

                        123,3092

                        143.4044

                        103,3768

                         99,3946

                         99,3946

                         99.3946

                         99.3946

                         99,3946

                        217,2149

                        933.6644

                        260.0122

                        459,6214

                        297.4810

                         01.3794

                         81,im

                        404.2546

                        456.1436

                         97.4400

                         97.440D

                         97,4400

                        141,4617

                        220.0431
1
1
'I
1
1
1
I
1
1
1
1
I
1
1
1
1
1
1
1
t
1
1
t
1
1
1
1
1
1
420
349
250
459
460
365
267
360
269
270
271
272
273
374
875
376
377
370
379
360
361
262
363
384
285
286
267
288
289

-------
TABLE A.3.  (contd)

1 -4,000 1)0
6099001 IINCOSITE
2 i,0u0 V*B
6099004 2*004, iH20
3 1.000. 9!>0
6099009 aiANChlTC
1 1.000 950
6099006 G03LANITE
l 1,000 940
4095000 IN0M2, 2H20
1 1,00* 9511
4199000 ZNii
2 1,000 9bn
6016000 co HEIAL
a 1,000 i6i«
0016001 SANK* cu
2 1.000 16*
901*000 OTAVltt
2 i,00a |60
4H6000 coci2
2 1.H00 UK
4| Item CDCL2, 1H20
1 1,000 tb0
4116002 CUCL2,2,5n2 1 4 «1.000 i
l< O.I 601600) CUSU4
fuCI i l.HMH. IbM
J^nl 6016^04 CUif04, 1H2II
/O-0-/ I I.U0H Uri
/n^f 601600S COSO«|2,7ili;ii
(n ° / > i.dl'W It..)
I ° 3 / 10l6»0i« &KttNUCi>l It
/x / 1 -l,M«m }i«)
1* 1 4016000 CnBMi, Ol^U
MfeJ i 1.0in(l Ibt)
M»®[ 41l6m
0060400 Ptt ntlAt

2.000 «S0 I.HU0 ffll
IV. 200 -3.010 .000
1.000 7)2
10.640 ,»70 ,000
1,000 732 1,000 e
.160 l,?65 .000
1.000 712 6.000 2
•1.100 |,«60 ,000
1.100 712 7,000 i
7.S10 -3,210 .000
2,000 130 2,001 2
11.440 •7,210 ,000
2.000 100
10,100 •|3,4«0 ,000 .
2.000 1
10,140 .|1,»«0 .000
2.000 1
,910 11,740 14,010
1.000 (40
4,470 ,600 .000
2,000 100
1.420 1,710 ,000
2,101 160 1,000 2
•1,710 I«V40 ,000
2,000 100 ' 1,900 2
«,720 2,m .000
2,000 270
20.7T0 •13,710 •11,610 •
1,001 160 2, alia 2
,000 •13.690 ,000
1.000 160 ' 2,000 a
7.407 -3,920 -1,100
1.000 160 1,001 2
,000 -22,960 ,000
1.000 160 4,0U0 2
.000 -6,710 ,000
1.006 160 2.000 2
,000 «20,400 ,000
4.000 160 6,000 2
24,760 -19,120 ,000 -
1.000 160 1.0U0 2
,0a0 12,600 ,000
2.000 960 *
16.630 -V,060 -f,V60
1.000 160 1,000 770
14,740 ,100 .1)0
1.000 712
7.920 I,6b7 1.600
1.000 712 1.000 2
4.100 I,b7i 1,040
1.000 732 «,6'0 i
-16.360 1&.VJ0 .000
i.aeii 160 t.0u0 710
•7.210 2.420 .000
2.000 110 4.000 2
•4,ttd0 1,610 ,000
2.00B 100
-.400 -*,£!* -1.070


•1.V10

,!>00

1,020

!i«'0

,000
,000

11.M0

.000

11.210

,470 .

,000

,000

.000

14,100

,000

,000
1,000 160
,000
1,000 712
,00a
2,000 712
,000 •
1.000 712
15,740

,000

,t)H0
-2,000 110
,050

1.6*0

1,060

11,112

.000

,000

-4,il0


161,4116

!7t,492»

26*. 9260

267,9440

261,2104
II9.U90

112,4100

112.4100

172.4192

103,1160

201,1112

126,1916

190,4060

146,4246

146,4246

164,0701

901,1160

961,1940

647,7414

120,4094

927,1720

|00,4«17

200,4676

226,4020

296,3079

144,4700

144,2700

166,2190

207,2000
HtctNtNtt 'NATEU
REACTION NUMBER

1 290

1 291

1 292

1 293

1 461
1 462

1 912

1 313
t
1 319

1 316

1 317

1 318

1 319

1 328

1 321

1 322

1 323

1 324

1 329

1 326

1 327

1 328

1 329

1 110

1 311

1 3)2

1 463

I 464

1 360

-------
TABLE A.3.   (contd)
                                                 NtFtRtMt
                                                                  HATED
                                                             hfcACTION NUtlBER
i
4160000
2
4160001
3
4160002
3
S060B0B
2
4260004
2
206000B
1
2060001
3
2060102
3
3B60001
4
6060004
4
6060001
4
6060002
4
7060001
3
7060002
W 4
00 5060002
4
7060003
5
7060404
6
706000S
5
0260000
4
8060000
3
frtfffHlPlf*
O~7Q 2
245 1460001
"1 J
a; g_ 2060403
oi c '4
=rm 30604*0
~~ n a
a~-~ lk)bt)00l
o 4
0 ^ 20644114
5 *
11 60*} Hi
-Kim-h. 4
4 1 b 0 d H 4
^^P' 4
bUbiOUJ
1.000 btlid
CUIUNNITE
1,000 fcum
HATLOCKITE
1,000 6W«*
pnosstNjTE
2.000 6HW
CtKHUSIlf
1,000 BUI*
PHF2
l,0U0 bins'
rtASSjCuT
•2,000 31u
LITNARGt
•2, HBO 310
PBO, t3N2l)
•2,000 llw
PB2UC03
•2,0I«0 11M
LARNAK I It
•2,000 Jl»
PU302S04
•4,40(1 110
P04U3&04
•6.400 311}
CLPVItOMURPH
3,000 6MM
HXYPYMUHORPH
•1,000 Ilk*

•4,000 11*
PUUMUGUMMlIt
•3,000 31*

•6,0HI» lilt
TSUflEOlTE
• 3,000 lit)
Pbsioi
•1,01)0 i
P82SIU4
• 4,000 Hit
ANGLC& I 1 t
1,0(40 6k>!»
GALtNA
-l.aan HM
PUAfTNEKlTt
•4.0U0 ilil
PB2J1
-6.KWH 111*
NJN1UM
-tt.HUd JJn
PB(UH)i (Cl
-2,Ull)k> lit'
LAUHIUMU.
-l.klOM 11.1
fdd (On) iCl
-J.^OM 1JM
M»Dtt«(,440
1,000 140
,780 7,440 ',570
2,000 270
16,700 •12,9|0 .12,7914
1,800 600 1,0140 2
16,300 .12,728 >U,640
1,088 688 1,0140 2
.008 .12,900 .000
1.000 600 1,310 2
It. 468 ,300 ,7«U
2.808 600 1.0U0 2
6,440 ,280 «,300
2,840 600 ' 1,000 732
2M. 758 .10,400 .14110
3,888 680 1,0140 732
15.078 .22,100 ,000
4,000 600 1,0140 712
.000 84,438 ,000
3,080 300 1,0)40 |«t)
.8B8 62,790 .000
3,080 600 3,0140.5011
26,430 .11,020 ,000
3,808 600 1,000 140
,800 32,798 ,000
1,000 600 3,0140 30
,808 2,500 ,000
1.000 600 3.0U0 30
,080 9,790 ,000
2,080 600 1,0140 211
9,260 .7,320 >6,t20
-2.808 330 " !,0t>0 600
26,000 .19,760 .19,220
2.8H0 6BB I.0U0 77(1
•2,150 7,790 J.OTtf
1,000 732
•19,400 15,132 10.452
1,008 600 1,0140 71M
70.730 .49,100 -4V,ttU0
• 2.800 1 ' 1.0U0 6Utl
,800 •61,040 .MM*
-2,008 1 2,0U0 bMkt
1H2.760 .73.694 -TH.flkJe
-2,H0<4 t 3,010 bkJM
11,994 -8,1-jB .MHM
I, Ota bBB 2.0U0 i
,eet) .,b21 ~«!7b
1.400 bUtl l.MUH I&H
, BMU •B,791 , MMkl
2.U40 bU0 1.UV0 2
,04V l/,4«k1 . ilMk)

4,b70

a,bu0

,000

12,03)4

.000

,000

•13,070

,040

,000
1.U00 140
,000
1,000 2
,000
2,000 2
,004
3,000 2
34.514

,000
1.000 2
.000
2.000 2
,000
2,000 500
,000
1,000 500
,000
1.000 500
•7,640
1.000 770
•20,054

M0k)

13«btt2

.HUM
2.000 2
, Otfk)
1,000 2
,0140
4,440 2
-11,61k)

. I1«H)
I.UU0 2
, tfdO
l.tion tat)
.em) id

270,14bU

261.6514

545,3152

267,2092

245,1960

223,1994

223,1994

229,1444

490,4006

526,4570

749.6564

972,8558

1356,3672

1337.9215

T|3,6000

581,1391
6,000 2
581,2174
1,000 732 6,000 002
677,9049
6,000 2
203,2037

506.4831

303,2576

239,26144

239.19BD

462.39B2

685.5976

24l,2|4b

259,bbKil

500,0749

775,bll«»

1

1

1

1

1

1

1

1

1

1

1

I

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

362

363

364

365

366

367

368

369

370

371

372

373

376

377

378

379

380

381

382

383

384

385

386

307

368

38.9

390

391

392

-------
             TABLE  A,3.   (contd)
4
2060009
3
4060400
i
4060001
3
4360001
i
6060404
4
9094000
2
2094000
1
609400)1
4
2094001
3
7094404
2
1094001
3
6B9400I
3
60940U2
3
• 0940011
I
0002000
2
4002000
2
4|02000
2
9002000
2
4202000
3
4302000
2
2002000
3
7002001
2
1002400
}
6002400
2
84*440!
9
86V30P0
4
S64340I
'4
8415404
9
Bu5nn»)2
•2. 0411 Jlrf
P020(OH)2
•4.000 330
PDHM2
1,000 6H»i
PB0H*
1,040 »UH
P0I2
1,000 6MB
P0410H)6»D4
-6.0V0 330
N1CU3
1.000 *44
N1(UW)2
•2,000 33*
N14(Ort)6S(l4
•6,000 350
1UN8EN1TE
•2.000 33H
NI4(PU4)2
3,000 94*
HIU.CMIU
•I.00H 330
fteTueium
1.00(1 5««l
MORtN08ITt
1.000 Sou
NI2JHU4
•4.0M0 ill*
A6 MtUL
1.0V0 *<»
0K01YRIU
1.040 2H
CCfUftCVKIU
I.08H M
AC2C03
2.0DH 2«l
»6f,4MJO
1.000 cJ.I
,ioor«iTt
I,0H0 «!H
A620
•2,000 lit*
AGJP04
l.«IUH /^
»C»NT«l(t
• I,«MH l^M
•liiSOl
a.owc ci'.i
ANALClMt
I.WWM b»M
MAtLOrSITt
2,<)nh }.i
RAULINIU
i.lJllH l.i
LtUMMAHUITt
-1.HWI1 ^
LU« »UH1U
3.040
.••'
2.040
•a. 100
2.000
.000
1.0*0
•19.160
2,000
.•00
4,000
«,«40
1.000
•30.431
t.040
.000
4.000
43.421
1.010
.000
2.000
•2.401
t.000
•t.tei
t.0»0
•2.44I
1,000
3J.360
2,000
•29.214
1,000
-24.178
1.000
•19.692
1.000
-«.930
1.000
•4. 270
1.000
•26,8*0
1.000
10.430
2,000
.000
1.000
-S3. 300
2,040
•4.290
1.000
22.840
1.000
jy.734
2,000
J*.2tt4
2.0U0
oi.Jbm
-16.0140
17.4KI0
600 2.0M0 I4W
2.MM0 2
.26,200 .UV0 '27.100
600 3.000 2
9,104 »,340
130
•«4«0 .000
130 1.000 2Y0
1.070 .000
380
.21,100 ' .000
600 1,000 732
6,040 .000
1481
.10,400 .10,990 •
940 2,0U0 2
.12,000 ,000
940 1,000 7J2
.12,410 .000 .
949 1,001 2
11,304 ,000
980 '
8,042 «.|32
949 1,001 731
2,040 ,000
732 6,100 2
2,168 ,000
712 ' 7,000 2
•I4,b40 ,000
948) ' 1.100 770
13,910 ,000
1
12.270 ,000
130
9,794 .000
180
11,070 ,000
140
.,»!»4 ,000
170 4,000 2
16,070 ,00«
181
•12,980 .000
20 I.0K0 2
17,»94 ,000
980
16,490 ,00U
20 I,4U0 710
. 4,924 .MUD
732
•6.F19 ,400
30 2.0««l 7)0
•a,v94 .untie
770 I.0K0 *
-1.1 io .HUB
770 I.WU0 2
•16»4W0 .WflU
330 2.0U0 I*P
-itttt ,a*a

4,410

.000

,000

,000
6,000 2
.000

13.30U

.000
6.000 2
12.390

,000

,000

,000

,000

,000

.000

,004'

,000

.000

,00U

,000

.1400

.000

,t)4«

.440

,04k)
-I.00M 2
,040
-6,000 330
,i0k>0
-6.0IA4 330
.HI)*)
B. 4140 770
.«4tt

464.4144

367,0000

306,1024

461,0090

1026,9014

118.1492

92,7146

432.9014

74,6994

366,0428

90,7600

262,0400

200,0640

209.4811

107,0600

187,7720

141,3210

279.7492

198.9272

230,772*

231.7394

418.97*4

247,70614

3JJ.T936

220.1*90
•4,000 334
258, 16*14

25S.I62U

922.8674
4,004 }£
262.24*14
NtNtE
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
1
7
7
7
1
MATCU
KfcACTION NUMBER
393
469
466
467
394
41B
411
412
413
414
415
416
417
418
417
4)8
439
440
441
442
443
444
449
446
—
—
~,
...
Rporoduced  from
best available_cop£.

-------
TABLE A.3.   (contd)
9 1.000 !>">»•
6490001 ANALBITE
9 1.000 *t)H

4 1.000 *1W
66*1001 ANNlTt
9 1.0BW MlH
6419001 ANOKTHITE
660)002 PTRUPMYLLHt
4 2,0UH IM
6419002 LAUMONTItt
4 1,000 150
6419001 NAINAKITE
5 1,000 IbC
902)101 MALACHITE
4 2»00H 211
9023102 AZUHlTE
4 3,400 211
3006000 AHSfcNOLITE
2 4,000 e>U
3006001 CLAUUfcUTt
2 4,000 6H
4106000 ASH
4 1,000 oil
1006000 OHIPHENT
4 2,000 60
1006001 HEALGAH
3 , 9 |,0U0 bvl
1 3006100 *S4U9
2 2.00H 61
5299000 ZN(D02)2
4 -2.000 2
5216000 CO(B02)2
4 >2.000 '«.
9260000 P0(UQ2)2
4 -2.000 2
7047001 MNHPOI(C)


T% 7060006 PBHP04
"* "O 11 000 QvH9
~o 7060007 Pdl(PU4)2
<0- 2 1.000 6tM
5!.o 007)100 6UIFUH
57g_ i 1,000 Tin
Z^ 720)1100 ALAS04.2W
16 -^ 4 1.0U0 in'
n § 7213100 CA)lA$U4)r>l>H
^ 4 i.nua fin
•< 7221100 CUH'A3fl4)26M
4 1.UB0 2)1
^Pfe 7220100 PEASO* «!n
ft*l 4 l(0k'f> 201
>®P 7247000 MMJASOIiflu
4 1 vIVIM 4 fkt
72Sa«00 NII 1*301 lain
4 ) ritffi ^>^>i
72bBd0H PuJltiOt)?
1.0U0 10 1,0H0 770
24.000 •1,406 .tfMie
1.000 10 1,000 770
59.140 •12.990 ,00V
1,006 10 1,000 '70
65,721 •21,290 ,000
1.000 240 1,000 10
70.660 -2S,«Ji) .000
2.000 10 2.0»0 770
.000 !.»96 ,000
4.000 770 -4,000 2
50,450 •14,460 .000
2.000 10 4,0*0 770
61,150 •10,»70 ,00U
2.000 10 4,000 770
15.610 5.160 ,000
2.000 2 1,000 1*0
21.TT0 16.920 .000
2.000 2 2.000 140
•14,110 2,601 2,»59
•6,000 2
•11.290 1,065 ,000
•6.000 2
-1.675 •4,155 ,00U
1.000 160 1,000 110
-62,690 60,971 ,000
1.000 710 1.000 110
•10.549 19,747 26.574
1.000 T10 2.000 110
5.405 «6,»99 .000
•1.000 2
,000 -6,291) ,000
•2.000 110 1.0U0 950
,000 •9,840 ,000
-2.000 110 1,000 160
5.600 -7,610 ,000
•2.000 110 1,000 600
,000 21,400 .000
1.000 560 1.000 110
.000 21,900 .000
1.000 560 1.000 110
.000 44,300 ,000
2,000 560
4.200 2,110 ,0H0
•1.000 130 >2.000 1
.000 •4,a00 .n0t)
1.000 61 2.000 2
,000 •28,100 .000
2.000 61 ' 4.0U0 2
,000 -6, IBB .000
2.M00 61 2,000 2
.004 -.400 .000
1.000 bl 2.0W0 2
.000 •I2.!)00 .Wk)U
2.000 bl 0.0U0 2
.000 •13,700 .000
2.000 bl «.0«tf *
.000 -b.BBB .0014
•4.000 1)0
,*)«*»
•4,000 110
,000
•10,004 310
,0t)0
1,000 7'0
,00*
•6,000 110
,B00
•6,000 110
.000
' •tt,000 110
,000
•8,000 110
1,940
•2,000 330
,000
•2,000 310
2, '26
1,021

,000
•1,000 2
46,004
• 6,«)U0 2
,000
1,000 1
•9,4f6

,000
2.000 99
.000
2,000 90
.000
2,000 90
,000

.000

.000

.000

.000
•1.000 110
,000
•0,000 3)0
,000
-6.000 110
,000
-1,000 110
,000
»6,0ttU 1)0
.at)*
-b.BHO 110
.000
•4,000 2
262.2250
•4,000 2
396.1110

511.6900
•10,000 310
. , 276.2110
160,1116

470,4414
4)4,4114
•2,000 2
221.1162
144,6716
195,6624
395,6824

4SS,614r

246,0154
106,9855
•1,000 2
229,6400

150.989)

196,0166
292,6091

150,9174

101,1691

611,5123

12,0640

165,9006

506,1700

576,5660

210.7967

' 566,7746

459.1707

699.4079
NEFfcHtNCE


    7

    7

    tt

    7

    9

    6

    6

    10

    10
                                                                  •MATED
                                                            HEACUON NUMBER
t

1
1
1
1
1
1
1
1
HC)
IIC)

1(0
1(M)
I(U
1(1)
»M».
1(1)
1(1)
111)
1(1)
497
I
496
499
500
501
466
266
314
361
194
374
t
175
402
489
490
491
492
493
494
49S

-------
TABLE A.3.   (contd)
1
72*9*00
4
7218*88
1
2019*08
1
2019801
1
282a*B8
)
2046001
1
1021*01
4
1046001
4
•290008
1
•219002
4
•21900)
, 4
•019002
CD »
& 8019*07
4
•01900)
4
•BI9*«9
P «
fTTO
a a
lA T1
-S
Jo.
2 1"
-+r f»
s-n
o-a-
;r^
„ 0
0 3
TJ

JJ|»K
[*lf
•819084
4
«44|*0e
4
•441001
9
•441802
9
•44|001
9
849a*0«
4
•0I9U06
9
^5^ 202aiv)
i
66*001110
6
8641002
6
abijOMiJ
6
flblbMHb
k
).0U0 bttil
lNlAlO2.0U0 114
HEKCVM7C
•a, 000 114
•PlNEb
•a, 000 iin
HAB-ftHRlIt
•a. 800 UK
CRYOLITE
|,00n Ulrt
HOUASTONlTt
•1,000 »«ia
•I,UV0 0H2
CA'OLlVINt
•4,000 lltf
LAHNIIE
•4.000 1)4
CA13I09
•6,0U0 1)0
lONIICEULI't
•4,0u0 lie
AHEHMlNlTt
•1.000 0tf2

KAL4ILITE
•4,000 114
LEUCIIE
•2,0tl0 0H£
HICHOCllMf.
«4.(ll>0 UU2
H SANlOlNt
• 4.0VI0 Uni
NECMELI^t
•4,0UU llri
UtMLfllt
•IK.Bt'ti 11^
LtPIOUCHOCM
• l.^tfli 110
NA*MONTHnr)| 1
«7«J«!n Hit
H-NUslRUlllTt
-7,12k! Jl.l
CA-NONTNONlt
-7.i^d 1H
MC-NOHTHOMll
>7,)2ti 111
2. 000
.800
2.80*
•2. MB
2.808
*I.88B
18,490
1.888
24, (46
U.M7
Ik, 119
1.888
78.S40
I.BBB
1.800
•I0,«04
1,0*0
n.4«a
•2,888
21,84*
•2,800
1.80*
97,|)a
1.000
1,088
41,421
1,888
74.449
107,111
2,000
20,91*
1.800
22,889
•4.808
12,189
•4.888
J4.Z52
-1.B00
11,204
1.0U0
tlk.l2S
2.0*0
a
I.0U0
0
-2.640
0
-2.6B0
f)
•2.690
n
-2. 680
kl -6
41 ' 2
41 ' «k
198 ' 1
•22,679
198 2
•11.447
228 . |
•21,41*
•27,}42
288 2
448 ' 2
•14.749
448 2
908 '• k
110 * '*!
•11.846
118 1
•17,64V
778 ~ 2
•11,14!
778 2
778 * 1
•10.272
778 1
•47,472
118 2
778 ' I
•!2.*)a
77« 1
•6(421
))8 2
•0(416
118 1
•1,062
118 1
•14,210
778 1
•96,422
010 1
•1,171
201 ' 2
14,^04
0i>2 B
ib,iW
82
0
B
tf
0
0
0
B
0
B.
0
0
0
0
0

0

0

0

U

0

*

u

0

It

K


















1,670 770

1.670 770

1.670 770

J.b/B 7ffc
                                               RtftKtNtC

                                                  1IIJ
                                                  1UJ
                                                  II
                                                  11
                                                  It
                                                  II
                                                  II
                                                  II
                                                  II
                                                  11
                                                  II
                                                  II
                                                  It
                                                  u
                                                  II
                                                  II
                                                  II
                                                  II
                                                  u
                                                  'll
                                                  II
                                                  11
                                                  11
                                                  II
                                                  11
                                                  11
                                                  II
                                                  11
                                                  II
      HATC0
HEACTION NUMBER
       416
       941

-------