"'^COMPUTER PROGRAM
DOCUMENTATION
a
for the t
STREAM _QUALIIY MODEL QUA L-II *
J>
yj
AN INTERMEDIATE TECHNICAL REPORT
Larry A. Roesner
John R. Manser
Donald E. Evenson ^15* . ,,-i
Headquarters and Chemical Lit
EPA West Bidg Room 3340
Mailcode 3404T _^^^^,, p
1301 Constitution Ave NW , 1Mm —
Washington DC 20004, '^"••*HB» C
prepared for 202-566-0556 e
THE ENVIRONMENTAL PROTECTION AGENCY
SYSTEMS DEVELOPMENT BRANCH e
5 WASHINGTON, D.C. n
>-
g
i
Contract No. 68-01-0742: Iowa And Cedar River Basins Model Project n
e
e
MAY , 1973 RsnnQlrrmi y*w;«i n
tomam Co/lection
2700 MITCHELL DRIVE WALNUT CREEK, CALIFORNIA 94598 D
Walnut Creek. California • Springfield. Virginia • Austin. Texas C
-------
TABLE OF CONTENTS
SECTION I
BACKGROUND AND INTRODUCTION
BACKGROUND 1-1
QUAL-I 1-1
QUAL MODIFICATIONS: QUAL-II 1-2
DOCUMENTATION REPORT 1-3
SECTION II
THEORETICAL CONSIDERATIONS
INTRODUCTION II-l
GENERAL MODEL RELATIONSHIPS 11-2
CONSTITUENT REACTIONS AND INTERACTIONS II-3
SUMMARY OF MATHEMATICAL RELATIONSHIPS II-8
REACTION RATES AND PHYSICAL CONSTANTS 11-10
SECTION III
MODEL DESCRIPTION
INTRODUCTION III-l
PROTOTYPE REPRESENTATION III-l
MODEL LIMITATIONS II1-2
NUMERICAL PROCEDURES II1-3
MODEL STRUCTURE AND SUBROUTINES III-4
SECTION IV
PROGRAM DESCRIPTIONS
MAIN PROGRAM - QUAL2 IV-1
SUBROUTINE ALGAES IV-4
SUBROUTINE BODS IV-6
SUBROUTINE COLIS IV-8
SUBROUTINE CONSVT IV-10
SUBROUTINE DOS IV-12
-------
TABLE OF CONTENTS (Continued)
Page
SECTION IV (Continued)
SUBROUTINE FLOAUG IV-14
SUBROUTINE HEATEX IV-15
SUBROUTINE HYDRAU IV-16
SUBROUTINE INDATA IV-17
SUBROUTINE NH3S IV-18
SUBROUTINE N02S IV-20
SUBROUTINE N03S IV-22
SUBROUTINE P04S IV-24
SUBROUTINE RADIOS (Not Programmed) IV-26
SUBROUTINE REAERC IV-27
SUBROUTINE SOVMAT IV-29
SUBROUTINE TEMPS IV-30
SUBROUTINE TRIMAT IV-32
SUBROUTINE WRPT2 IV-34
SUBROUTINE WRPT3 IV-35
DEFINITION OF SYMBOLS IV-36
SECTION V
QUAL-II
DESCRIPTION OF VARIABLES IN COMMON
SECTION VI
QUAL-II INPUT DATA DESCRIPTION
TITLE DATA CARDS VI-1
PROGRAM ANALYSIS CONTROL DATA VI-1
NONSPATIALLY VARIABLE A, N, AND P CONSTANTS VI-3
REACH IDENTIFICATION AND RIVER MILE DATA VI-4
FLOW AUGMENTATION DATA VI-5
-------
TABLE OF CONTENTS (Continued)
Page
SECTION VI (Continued)
COMPUTATIONAL ELEMENTS FLAG FIELD DATA VI-5
HYDROLOGIC DATA VI-6
BOD AND DO REACTION RATE CONSTANTS DATA VI-7
ALGAE, NITROGEN AND PHOSPHORUS CONSTANTS VI-8
OTHER CONSTANTS VI-9
INITIAL CONDITIONS DATA VI-9
INITIAL CONDITIONS FOR ALGAE, N, P, COLIFORMS AND
ADDITIONAL NONCONSERVATIVES VI-10
INCREMENTAL RUNOFF DATA VI-11
INCREMENTAL RUNOFF DATA FOR ALGAE, N, P, COLIFORMS
AND ADDITIONAL NONCONSERVATIVES VI-11
STREAM JUNCTION DATA VI-12
HEADWATER SOURCES DATA VI-13
HEADWATER SOURCES DATA FOR ALGAE, N, P, COLIFORMS AND
ADDITIONAL NONCONSERVATIVES VI-14
WASTELOADINGS AND WITHDRAWALS DATA VI-14
WASTELOAD DATA FOR ALGAE, N, P, COLIFORMS, AND
ADDITIONAL NONCONSERVATIVES VI-15
LOCAL CLIMATOLOGICAL DATA VI-16
SECTION VII
EXAMPLE PROBLEM
EXAMPLE VII-1
TEST PROBLEM DATA AND RESULTS VII-2
-------
SECTION I
BACKGROUND AND INTRODUCTION
BACKGROUND 1-1
QUAL-I 1-1
QUAL Modifications: QUAL-II 1-2
Documentation Report 1-3
g
o
-------
SECTION I
-------
SECTION I
BACKGROUND AND INTRODUCTION
BACKGROUND 1-1
QUAL-I 1-1
QUAL Modifications: QUAL-II 1-2
Documentation Report 1-3
-------
SECTION I
BACKGROUND AND INTRODUCTION
BACKGROUND
Beginning on June 13, 1972, the Environmental Protection Agency
(EPA) awarded Water Resources Engineers, Inc. (WRE) a series of four contracts
to modify and apply certain water quality models to four river basins in the
United States. These four contracts and the project titles are:
Project Title EPA Contract No.
1. Chattahoochee-Flint River 68-01-0708
Basin Mathematical Model
Project
2. Upper Mississippi River 68-01-0713
Basin Mathematical Model
Project
3. Iowa and Cedar River 68-01-0742
Basins Model Project
4. Santee River Basin 68-01-0739
Model Project
An element of work common to all four projects is the modification and
application of the mathematical model QUAL-I to simulate steady-state
water quality levels in selected river reaches in each basin.
QUAL-I
QUAL-I is a computer program originally designed to simulate the
dynamic behavior of conservative minerals, temperature, biochemical oxygen
demand, and dissolved oxygen levels in streams. The program simulates this
1-1
-------
dynamic behavior by numerical integration of the one-dimensional form of the
advection-dispersion transport equation. The following two reports by
F. D. Masch and Associates and the Texas Water Development Board contain
detailed descriptions of both the theory and structure of the model:
1. Simulation of Water Quality in Streams and Canals,
Theory and Description of the QUAL-I Mathematical
Modeling System. Prepared by Frank D. Masch and
Associates and the Texas Water Development Board,
Report 128, The Texas Water Development Board, May 1971.
2. Simulation of Water Quality in Streams and Canals,
Program Documentation and User's Manual. Prepared
by the Systems Engineering Division of the Texas
Water Development Board. September 1970.
QUAL MODIFICATIONS: QUAL-II
Within the four projects, WRE modified QUAL-I to simulate both
the steady-state and dynamic behavior of the following constituents:
Chlorophyll a_
Ni trogen
Ammonia
Nitrite
Ni trate
Phosphorus
Carbonaceous BOD
Benthic Oxygen Demand
Dissolved Oxygen
Col i forms
Radioactive Material*
Conservative Substances
*The version of the program documented herein does not contain a solution
subroutine for Radionuclides; however, the Input-Output routines are set up
to accommodate the subroutine once it is programmed. Radionuclines will be
included in the program documented in the Upper Mississippi River Basin Project.
1-2
-------
The temperature simulation capability of the program was not modified to
simulate steady-state temperature directly. The modified program will, as
before, simulate dynamic changes in temperature. The modified version of
QUAL-I is referred to in this report as QUAL-II.
DOCUMENTATION REPORT
The theoretical considerations and program structure, which are
discussed in Sections II and III, respectively, are intended to supplement
Report 128 referenced above. The diagram documentation and user's manual
which comprises Sections IV through VII, is self contained, i.e., these
sections replace the existing QUAL-I Program Documentation and User's Manual.
To the extent possible, this documentation uses the same symbols and
terminology that were used in the previous reports and program code. The
reason for making the program documentation and user's manual self contained
was to avoid the possibility of confusing program users by requiring them to
use two documents to set up and use QUAL-II.
The following section of this documentation report presents the
theoretical foundation of the modified model. Section III describes the
overall capabilities, limitations, and structure of QUAL-II. Subroutine
descriptions, including theory, flowcharts and listings are presented in
Section IV, while Section V defines the program variables. Section VI
contains users information on input data preparation. Input data and output
reports for an example problem are presented in Section VII, which concludes
the documentation report.
1-3
-------
SECTION II
THEORETICAL CONSIDERATIONS w
Page n
5
INTRODUCTION II-l -
GENERAL MODEL RELATIONSHIPS 11-2
CONSTITUENT REACTIONS AND INTERACTIONS 11-3
Chlorophyll a. H-3
Nitroqen Cycle 11-4
Ammonia Nitrogen 11-5
Nitrite Nitrogen II-5
Nitrate Nitrogen II-5
Phosphorus Cycle 11-6
Carbonaceous BOD 11-6
Benthic Oxygen Demand 11-7
Dissolved Oxygen II-7
Coliforms 11-7
Radionuclides (Not Programmed) 11-8
SUMMARY OF MATHEMATICAL RELATIONSHIPS 11-8
REACTION RATES AND PHYSICAL CONSTANTS 11-10
Input Parameters 11-10
Temperature Dependence 11-10
-------
SECTION II
-------
SECTION II
THEORETICAL CONSIDERATIONS
Page
INTRODUCTION II-l
GENERAL MODEL RELATIONSHIPS II-2
CONSTITUENT REACTIONS AND INTERACTIONS II-3
Chlorophyll a_ II-3
Nitrogen Cycle II-4
Ammonia Nitrogen II-5
Nitrite Nitrogen II-5
Nitrate Nitrogen II-5
Phosphorus Cycle II-6
Carbonaceous BOD II-6
Benthic Oxygen Demand II-7
Dissolved Oxygen II-7
Coliforms II-7
Radionuclides (Not Programmed) II-8
SUMMARY OF MATHEMATICAL RELATIONSHIPS II-8
REACTION RATES AND PHYSICAL CONSTANTS 11-10
Input Parameters 11-10
Temperature Dependence 11-10
-------
SECTION II
THEORETICAL CONSIDERATIONS
INTRODUCTION
Basically, QUAL-II numerically integrates the advection-
dispersion mass transport equation for all water quality constituents
to be modeled. This equation includes the effects of advection,
dispersion, individual constituent changes, and sources and sinks;
for any constituent, c, this equation can be written as
(Axdx) ff =
3(AxDi)
3x
dx -
dx
4£ +
± s
where
c
x
t
Ax
DL
u
s
concentration (M/L3)
distance (L)
time (T)
cross-sectional area (L2)
dispersion coefficient (L2/T)
stream velocity (L/T)
source or sink (M/T)
There are two terms in this equation that deserve special
attention; these are the two derivatives that describe the local gradients
and individual constituent changes. Under steady-state conditions, the
local derivative becomes equal to zero; in other words
3c -
31 -
II-2
Changes that occur to individual constituents or particles independent of
advection, dispersion and waste inputs are defined by the term
II-l
-------
| = individual constituents changes 11-3
These changes include the physical, chemical, and biological reactions
and interactions that occur in the stream. Examples of these changes are
reaeration, algal respiration and photosynthesis, and coliform die-off.
The basic differences between QUAL-I in its original form and
the version documented in this report is that QUAL-II can now solve
steady-state problems directly plus it includes all the complex reactions
and interactions of the nonconservative constituents listed in Section I.
In order to differentiate between the original and modified versions of
QUAL, the latter version is referred to in this report as QUAL-II.
GENERAL MODEL RELATIONSHIPS
QUAL-I in its original form had the capability to simulate
conservative constituents. Thus, the necessary modifications were directed
toward the development of a model that could simulate the nonconservative
constituents listed in Section I. Of this list, QUAL-I already had the
capability to simulate carbonaceous BOD and dissolved oxygen as dependent
constituents with first order kinetics.
To accommodate the other constituents, WRE modified QUAL-I to
include the major interactions of the nutrient cycles, algae production,
benthic oxygen demand, carbonaceous oxygen uptake and their effect on the
behavior of dissolved oxygen. Figure II-l illustrates the conceptualization
of this model. It should be noted that the arrows on this figure indicate
the direction of normal system progression in a moderately polluted
environment; the directions may be reversed in some circumstances for some
constituents. As an example of process reversal, consider that under normal
conditions oxygen will be transferred from the atmosphere into solution and
thus into the oxygen resources of the stream. Under conditions of oxygen
II-2
-------
AMMONIA
(NITRITE
o
x
y
6
E
N
CARBONACEOUS
BOD
CHLOROPHYLL
(ALGAE)
FIGURE EH
GENERAL MODEL STRUCTURE
FOR QUAL-n
-------
supersaturation, however, which might occur as a result of algal
photosynthesis, oxygen might actually be driven from solution, opposite
to the indicated direction of the flow path.
CONSTITUENT REACTIONS AND INTERACTIONS
The following paragraphs define the mathematical relationships
that describe the individual reactions and interactions among the
constituents treated.
CHLOROPHYLL a (PHYTOPLANKTONIC ALGAE)
Chlorophyll a_ was considered to be directly proportional to
the concentration of phytoplanktonic algal biomass. For the purposes of
this model algal biomass was converted to chlorophyll a_ by the simple
relationship
C = a0 A H-4
where
C = chlorophyll a_ concentration
A = algal biomass concentration
a0 = a conversion factor
The differential equation that governs the growth and production of
algae (chlorophyll a_) is formulated according to the following relationship
$ - yA-pA-^A II-5
where
A = algal biomass
t = time
y = the local specific growth rate of algae as defined
below, which is temperature dependent
p = the local respiration rate of algae, which is
temperature dependent
II-3
-------
a! = the local settling rate for algae
D = average stream depth
Now, the local specific growth rate of algae is known to be coupled to
availability of required nutrients and light. The standard formulation
for the local specific growth rate in a stream takes the form
* N3 P 1 ln KL + L
» = M iTTK FTT ' XDln + -^D ..........
where
y = the maximum specific growth rate
N3 = the local concentration of nitrate nitrogen
P = the local concentration of orthophosphate
L = the local intensity of light
A = the light extinction coefficient in the river
KN, Kp, KL = empirical half-saturation constants (temperature dependent)
It should be noted that Equation II-6 couples algal production to the
available nutrient supply, and thus algae and chlorophyll a_ can be expected
to vary in time and space as nutrients are added to the stream. It should
also be noted that Equation I 1-6 includes light intensity. Thus, other
factors remaining equal, algal production will be increased during daylight
hours and will cease at night, although respiration will continue at night
as indicated in Equation I I -5. Finally, the growth and respiration
constants will be temperature dependent and will be formulated, along with
all other temperature dependent systems variables, according to the
procedure explained in a later paragraph of this section.
NITROGEN
The nitrogen cycle in QUAL-II contains three components as
shown in Figure II-l. The differential equations governing transformation
of nitrogen from one form to another are given below.
II-4
-------
Ammonia Nitrogen
dN,
= B pA -
where
N = the concentration of ammonia nitrogen as nitrogen
B = rate constant for the biological oxidation of ammonia
1 nitrogen, temperature dependent
a = the fraction of respired algal biomass which is
resolubilized as ammonia nitrogen by bacterial action
a = the benthos source rate for ammonia nitrogen
Ax = average stream cross-sectional area
and other terms are as previously defined.
Nitrite Nitrogen
dN
where
2 = Bl NI - 62 N2 H-8
N = the concentration of nitrite nitrogen as nitrogen
& = rate constant for the oxidation of nitrite nitrogen
2 temperature dependent
and other terms are as previously defined.
Nitrate Nitrogen
dN.
II-9
Note the coupling that exists between the conversion of nitrate
and the production of algae to close the loop indicated in Figure II-l.
II-5
-------
PHOSPHORUS CYCLE
The formulation of the phosphorus cycle is less complex than
the nitrogen cycle because the model considers only the interaction of
phosphorus and algae plus a sink term. Correspondingly, the differential
equation describing the distribution can be written as
^ = a2pA - a2yA + a2/Ax 11-10
where
P = the concentration of orthophosphate as phosphorus
ci2 = the fraction of algal biomass that is phosphorus
cr2 = the benthos source rate for phosphorus
and all other terms are as previously defined.
CARBONACEOUS BOD
The rate of change of carbonaceous BOD in the stream is
formulated as a first order reaction according to the formula
where
Lj = the concentration of carbonaceous BOD
Kj = the rate of decay of carbonaceous BOD
(temperature dependent)
K3 = the rate of loss of carbonaceous BOD due
to settling
Note that while the change in BOD is expressed by Equation 11-11,
the oxygen demand exerted as a result of the change is only KjLj. The BOD
which settles becomes a benthic oxygen demand.
II-6
-------
BENTHIC OXYGEN DEMAND
i.e.
where
The benthic oxygen demand is considered to be a fixed demand,
IM2
l_2 = benthic oxygen demand
K,, = constant benthic uptake
DISSOLVED OXYGEN
The differential equation that describes the rate of change of
oxygen in the model is written in the form
where
K2(0* - 0)
A -
. 11-13
0 =
0* =
a =
3
a =
a =
6
the concentration of dissolved oxygen
the saturation concentration of dissolved oxygen
at the local temperature and pressure
the rate of oxygen production per unit of
algae (photosynthesis)
the rate of oxygen uptake per unit of algae respired
the rate of oxygen uptake per unit of ammonia oxidation
the rate of oxygen uptake per unit of nitrite
nitrogen oxidation
the aeration rate in accordance with the Fickian
diffusion analogy
COLIFORMS
The differential equation that describes the die-off of col i forms
in the stream is
II-7
-------
HT ' - KsF ................... IM4
where
F = the concentration of col 1 forms,
K5 = col i form die-off rate.
RADIONUCLIDES (NOT PROGRAMMED)
This portion of the model will be completed in the Upper
Mississippi River Basin Project, and the documentation will be updated
at the time that project is completed. However, it is tentatively
envisioned that the differential equation to describe the changes in
rad i on uc Tides will be written as
" - KrR - KaR ................ IN15
where
R = concentration of radionuclides,
Kr = radioactive decay rate
K3 = radioactive adsorption rate
a
SUMMARY OF MATHEMATICAL RELATIONSHIPS
Table II-l summarizes the complete set of equations solved by
QUAL-II with the exception of the temperature relationships. The equations
that describe the temperature routing as well as the associated relationships
for all the heat budget terms can be found in the report by F. D. Masch and
Associates and the Texas Water Development Board. The equations presented
in Table II-l include the effects of dispersion, advection, constituent
reactions and interactions, and a source term. The following chapter of
this documentation describes how QUAL-II is structured to solve these equations.
II-8
-------
I
UD
Conservative mineral (c)
Algae (A)
Ammonia nitrogen (N,)
Nitrite nitrogen (N2)
Nitrate nitrogen (N3)
Phosphate phosphorus (P)
TABLE II-l
SUMMARY OF DIFFERENTIAL EQUATIONS TO BE SOLVED BY QUAL-II
+ _
AX3X Axdx
Coliforra (F)
3£ _
3t " Ax3x
3(M, I?) 3(VA> S.
3N
3N,
3N
3t Ax3x AX3X
3N.
3N
iP.
3t
Biochemical oxygen demand (L) ~pr
Dissolved oxygen
3F
.
- -> A
Ox
X
3x
SF
Ox
A
Radioactive material (R)
-------
REACTION RATES AND PHYSICAL CONSTANTS
INPUT PARAMETERS
The chemical and biological reactions that are simulated by
QUAL-II are represented by a complex set of equations (3, 4) that contain
many system parameters: some are constants, some are spatially variable,
and some are temperature dependent. Table II-2 lists these system
parameters and gives the possible range of values, units, types of
variation, and reliability of the ranges for each parameter. References
(5) and (6) give detailed discussions of the basic sources of data,
ranges and reliabilities of each of these parameters. Final selection
of the values for many of these system parameters will be made during
model calibration and verification.
TEMPERATURE DEPENDENCE
All rate constants and other factors (except the saturation
concentration of oxygen) that are known to be temperature dependent are
formulated according to the relationship
XT = XT e(T'Ts) 11-16
1 s
where
XT = the value of the variable at the local temperature, T
XT = the value of the variable at the standard temperature, Ts
0 = an empirical constant for each system variable
11-10
-------
REFERENCES
1. Frank D. Masch and Associates and the Texas Water Development Board,
Simulation of Water Quality in Streams and Canals, Theory and
Description of the QUAL-I Mathematical Modeling System, Report 128,
the Texas Water Development Board, May 1971.
2. Systems Engineering Division of the Texas Water Development Board,
Simulation of Water Quality in Streams and Canals, Program Documentation
and User's Manual, September 1970.
3. Water Resources Engineers, Inc., Technical Proposal, Upper Mississippi
River Basin Model Project, submitted to Environmental Protection Agency,
May 1972.
4. Water Resources Engineers, Inc., Progress Report on Contract No.
68-01-0713, Upper {Mississippi River Basin Model Project, Sponsored
by the Environmental Protection Agency, submitted to Environmental
Protection Agency, September 21, 1972.
5. Kramer, R. H., A Search of the Literature for Data Pertaining to
Bioenevgetics and Population Dynamics of Freshwater Fishes, Desert
Biome Aquatic Program, Utah State University, August 1970.
6. Chen, C. W. and G. T. Orlob, Final Report, Ecologia Simulation for
Aquatic Environments, Water Resources Engineers, Inc., prepared for
the Office of Water Resources Research, U.S. Department of the
Interior, October 1972.
.WATER RESOURCES ENGINEERS, INC..
-------
SECTION III
MODEL DESCRIPTION
INTRODUCTION HI-1
PROTOTYPE REPRESENTATION III-l
MODEL LIMITATIONS II1-2
NUMERICAL PROCEDURES 111-3
MODEL STRUCTURE AND SUBROUTINES 111-4
-------
SECTION III
-------
SECTION III
MODEL DESCRIPTION
Page
INTRODUCTION III-l
PROTOTYPE REPRESENTATION III-l
MODEL LIMITATIONS III-2
NUMERICAL PROCEDURES III-3
MODEL STRUCTURE AND SUBROUTINES III-4
-------
SECTION III
MODEL DESCRIPTION
INTRODUCTION
This section of the report describes (1) how the prototype river
system is approximated in the model; (2) the numerical procedures used to
integrate the differential equations presented in Section II and applied
to the prototype representation; (3) the general limitations of the model;
and (4) the overall model structure and subroutines.
PROTOTYPE REPRESENTATION
QUAL-II permits any branching, one-dimensional stream system to
be simulated. The first step involved in approximating the prototype is to
subdivide the stream system intoapeaches^whlch are stretches of stream that
have uniform hydraulic characteristics.-,Each reach is then divided into
-computational elements of equal length so that all computational elements
.vn-all reaches are the same length. J^hus, all reaches must consist of an
jrfiteger number of computational elements.
In total, there are seven different types of computational elements;
these are ,
<1. Headwater element
>
/'I. Standard element
*/Z. Element just upstream from a junction
•^4. Junction element
-^5. Last element in system
•^6. Input element
S 7. Withdrawal element
III-l
-------
Headwater elements begin every tributary as well as the main river system,
and as such, they must always be the first element in a reach. A standard
element is one that does not qualify as one of the remaining six element
types. Since incremental inflow is permitted in all element types, the
only input permitted in a standard element is incremental inflow. A type
3 element is used to designate an element on the mainstem that is just
upstream from a junction element {type 4) which is an element that has a
simulated tributary entering it. Element type 5 identifies the last
computational element in the river system; there should be only one element
type 5. Element types 6 and 7 represent elements which have ir,.uts (waste
loads and unsimulated tributaries) and water withdrawals, respectively.
River reaches, which are aggregates of computational elements,
are the basis of most data input. Hydran^^^ta. reaction rate coefficients.
initial conditions, and incremental 4runoff dat^are constant for all
computational elements within a reach.
MODEL LIMITATIONS
QUAL-II has been developed to be a relatively general program;
however, certain dimensional limitations have been imposed upon it during
program development. These limitations are as follows:
Reaches: a maximum of 75
Computational elements: no more than 20 per reach nor
500 in total
Headwater elements: a maximum of 15
Junction elements: a maximum of 15
Input and withdrawal elements: a maximum of 90 in total
III-2
-------
QUAL-II can be used to simulate any combination of the following
parameters or groups of parameters:
1. Conservative minerals
2. Temperature
3. BOD
4. Chlorophyll a_
5. Phosphorous
6. Ammonia, nitrite and nitrate
7. Dissolved oxygen
8. Coliforms, and
9. Radioactive material
The only limitation placed on the parameters to be simulated is that
temperature can only be simulated under dynamic conditions. All other
parameters can be simulated under either steady-state or dynamic conditions
If either phosphorus or the nitrogen cycle are not being simulated, the
model presumes they will not limit algal growth.
NUMERICAL PROCEDURES
The complete set of equations that must be solved have been
presented in Table II-l. QUAL-II numerically integrates this set of
differential equations using a wholly implicit numerical scheme. Report
128, Simulation of Water Quality in Streams and Canals, prepared by F. D.
Masch and Associates and the Texas Water Development Board (1) describes the
numerical formulation and method of solution. The only difference between
the original version of QUAL and the version documented herein is that all
terms that describe the local derivative (e.g., reaeration and decay rates)
are now described implicitly rather than explicitly.
III-3
-------
MODEL STRUCTURE AND SUBROUTINES
QUAL-II is structured as one main program, QUAL2, supported by 20
different subroutines. Figure III-l graphically illustrates the functional
relationships between the main program and the 20 subroutines. The
original version of QUAL, as programmed by William A. White, was structured
to permit the addition of parameters easily through addition of subroutines.
This basic concept, which proved to be an extremely valuable one, was
maintained in the extension of the original version to QUAL-II. Thus, if
it becomes desirable at some later time to add new parameters or modify
existing parameter relationships, the changes can be made with a minimum
of model restructuring.
The following section of this documentation describes, in detail,
the main program, QUAL2, and its 20 subroutines.
III-4
-------
Qg
a
U 3
Aoe
o
u.
z
oe
L ^
L a;
(1)
(2) _
(3)
(4)
(5)
(6) ^
(7)
(8)
(9)
(10) _
(11)
(12) ^
(13)
(14) _
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
INDATA
HYDRAU
TRIMAT
CONSVT
TEMPS
BODS
ALGAES
P04S
NH3S
N02S
N03S
REAERC
DOS
COL IS
RADIOS
(NOT PROGRAMMED)
Calling Sequence
In ELEMENT A
(1) _
(27) _
WRPT2
(28)
FLOAUG
(29)
WRPT3
HEATEX
(1)
LEGEND
Called I
ELEMENT A
s
0
V
M
A
T
FIGURE m-1
GENERAL STRUCTURE OF QUAL-H
-------
SECTION IV
PROGRAM DESCRIPTIONS
Page
Main Program - QUAL2 IV-1
Subroutine ALGAES IV-4
Subroutine BODS IV~6
Subroutine COLIS IV-8
Subroutine CONSVT IV-10
Subroutine DOS IV-12
Subroutine FLOAUG IV-14
Subroutine HEATEX IV-15
Subroutine HYDRAU IV-16
Subroutine INDATA IV-17 m
Subroutine NH3S IV-18 5
Subroutine N02S IV-20 *
Subroutine N03S IV-22 <
Subroutine P04S IV-24
Subroutine RADIOS (Not Programmed) IV-26
Subroutine REAERC IV-27
Subroutine SOVMAT IV-29
Subroutine TEMPS IV-30
Subroutine TRIMAT IV-32
Subroutine WRPT2 IV-34
Subroutine WRPT3 IV-35
Definition of Symbols IV-36
-------
SECTION IV
-------
SECTION IV
PROGRAM DESCRIPTIONS
Page
Main Program - QUAL2 IV-1
Subroutine ALGAES IV-4
Subroutine BODS IV-6
Subroutine COLIS IV-8
Subroutine CONSVT IV-10
Subroutine DOS IV-12
Subroutine FLOAUG IV-14
Subroutine HEATEX IV-15
Subroutine HYDRAU IV-16
Subroutine INDATA IV-17
Subroutine MH3S IV-18
Subroutine N02S IV-20
Subroutine N03S IV-22
Subroutine P04S IV-24
Subroutine RADIOS (Not Programmed) IV-26
Subroutine REAERC IV-27
Subroutine SOVMAT IV-29
Subroutine TEMPS IV-30
Subroutine TRIMAT IV-32
Subroutine WRPT2 IV-34
Subroutine WRPT3 IV-35
Definition of Symbols IV-36
-------
SECTION IV
PROGRAM DESCRIPTIONS
This chapter describes the main program QUAL2, and its 20
subroutines. Each program description contains: (1) a brief written
description of what the program does, including mathematical relationships;
(2) a program flow chart; and (3) a program listing. Section V contains
definitions of all program variables in COMMON storage.
MAIN PROGRAM QUAL2
QUAL2 is the main program of QUAL-II; it calls most of the
subroutines, computes some miscellaneous constants, sets up the initial
conditions, performs the convergence checks when a steady-state problem
is being solved, and controls the printing of the output reports. The
only subroutine not called by the main program is HEATEX, which is
called by Subroutine TEMPS.
After QUAL2 calls INPUT, which reads in the input data, and
computes some miscellaneous constants, it sets up the initial conditions
for each computational element. Initial conditions for each reach are
read in and used to define the initial conditions for all computational
elements within a reach. QUAL2 then calls the subroutines necessary to
simulate the water quality parameters specified on the title cards.
The input Title Data Cards (see Section VI) prescribe which
water quality parameters QUAL-II will simulate. Whenever a Title Data
Card indicates a parameter is to be simulated, the program assigns a
positive integer to an internal variable (MODOPT) that indicates which
model options are to be used. The correspondence between internal model
options and parameters is as follows.
IV-1
-------
Model Option Parameter(s) to be Simulated
MODOPT (1) Conservative Constituents
MODOPT (2) Temperature
MODOPT (3) Biochemical Oxygen Demand
MODOPT (4) Chlorophyll a.
MODOPT (5) Phosphorus (as P)
MODOPT (6) Ammonia, Nitrite and Nitrate (as N)
MODOPT (7) Dissolved Oxygen
MODOPT (8) Coliforms
MODOPT (9) Radionuclides (not programmed)
Any combination of the above options will work. However, it should be
noted that if chlorophyll a. is to be simulated when either phosphorus
or the nitrogen cycle or both are not to be simulated, the program
assumes they will not limit algae growth. Also, when chlorophyll a_
is to be simulated under steady-state conditions, QUAL2 uses an
iterative numerical scheme to converge on a solution. Basically the
procedure works as follows:
1. Calculate an algae growth rate based on the
initial conditions for the first iteration.
2. Compute the resulting phosphorus and nitrate
concentrations.
3. Recompute the growth rate based on the newly
computed phosphorus and nitrate levels.
4. Compare the previous and newly computed growth rates.
5. If all growth rates have not changed by at least
0.05 per day, the problem is considered solved. If
the growth rate change in any one computational
element exceeds 0.05 per day, steps 2 through 5 are
repeated.
Upon completion of the stream quality computations, QUAL2 selectively
reports the results and execution is terminated.
IV-2
-------
The flow chart for QUAL2 is illustrated in Figure IV-1 and
is followed by the program listing. All program variables contained in
COMMON are described in Section V.
IV-3
-------
INITIALIZE
TITLES
CALL
1MUM
ESTABLISH
REQUIRED
CONSTANTS
PROGRAM RETURN FOR FLU
AUGMENTATION OPTION
l>
SET INITIAL
CONDITIONS
CALLHYDRAU
CALL TRINAT
UPDATE TINE OR
ITERATION NUMBER
PROGRAH RETURN FOR
OVNMflC SOLUTION OR
STHDV-STATE ITERATIVE
SOLUTION
ROUTE SELECTED
QUALITY PARAMETERS
V
FIGURE ISM
FLOW CHART FOR MAIN PROGRAM QUAL2
-------
FIGURE E-Kcont.) FLOW CHART FOR MAIN PROGRAM QUAL2
-------
CALL «US
CAUL SOVMAT
CALL N02S
CALL SOVHAT
CALL RUS
CALL SOVMAT
FIGURE E-1(cont.) FLOW CHART FOR MAIN PROGRAM QUAL2
-------
FIGURE E-Kcont.) FLOW CHART FOR MAIN PROGRAM QUAL2
-------
CALL WWT2(OIH3
CALL
CALL MRPT2(»03
CALL NRPT2(CONS(l.n)
CALL HRPTZ ' "<(
CALL WRPT2(
2(coNS(i.n)
2 CONS 1.2)
2(CONS(1.3)5
FIGURE E-1(cont.) FLOW CHART FOR MAIN PROGRAM QUAL2
-------
CALL URPT2(GROWTH)
COMPUTE
PHOTOSYNTHESIS-
RESPI RATION RATIOS
CALL HRf>T2(Z)
FIGURE BZ-1 (cont.) FLOW CHART FOR MAIN PROGRAM QUAL2
-------
PRORRAP" OUAL-2
UUAL-? IS f SFT OF INTERRELATED STREAC
QUALITY ROUTING 1PDELS. IT HAS THE
CAPARILITY TO ROUTE TFHP. .HOPYPO.
NITPOCiEr SE"IES. PHOSPhATFi ALAGEi
coi rrnpHSi RAPIO MUCLIOE, ANR
UP TO IHRfE CONSF'.VATIVE ("INFRALS
THROUGH A FlJLLY-MIXFf STPEA1 SYSTEP.
THESE FAR»1FTEhS TAN PE POUTED ON AN
INniVIPI'AL OASIS OR SinilLTAriEOLISLY If
SUCH A rnrRTNATION AS THE USER 1ftY
DESIRE. nilAl-1 ALSO MAS THE CAPABILITY
TO COMPUTE THF FLOW AUGHFNTATION RFOEH.
TP MEFT PRFSFLECTPD mniruii no LFVELS.
ARE CO«SInrRFn STFAPY-STATE.
COnTlN TITLE(2n»2fl) tRCHIOITSi'il ,R«THORI75I .RMTEOR(7^) iNHUWAP(lS) <
TARGOOITf I . IAUGOH(7S.f>) ,MCt LRH( 7S> . IFLAG(75.211 ,
IClORU(75i?0).COEFOV<7S),EXPOOV(75)iCnFF(JHI7S)tEXPOOH(75).
r«l/lNN(7SI tCKKTS) iCKJITSI iHJOPT I 75) iCK? ( 7-i) , COCQK? < 7"S I i
EXPOK2(7*%|lTINIT(7SlinolMTT(7S) iBOINIT I 7"i I iCOTMTI 7St3 11
QU7SI ,TI175) .DOI(75).BOnl(7S| ,cnriSI(7'n,T) ,JUNCIU(15.5)t
JUNCllS.SliHWTRIOl1P.!l).HUfLnHllPI.HHTEMP|]5l.hUnOll'i>i
HHHnDtlS) .HWCOMS(l^.J) .WflSTincJO.Sl.TRFftCTl^ni ,HSFLOW('SO>,
U'STEMP (901. USOOI 90 ) . WSBOOl 90 I . v&fONSl "0 .3).OATOT(1S).
AI?OO i.'ii iioni.Ci SOP >iD($> tSitoni.zi son > .wi5oni,G|Soo).
Fl PulaOOl .PEPIHlSOn) .VELC^OP) .OyOvCLCiOni ,K2(-iOn).Kl<500) ,
HS^FTI00).VHUI15)tnrPHU(l'i)l . T(50UI.
oo(.KNHS(5nO),KNn?[Sno).RESPRRCSnn) .COLK500).
ALFAL(Son).PHOSl500ltCNH3(Spn> .CNO?(5rOI .CNOKSnO).
COLlR(75).ALGII75).PHOSl(7b).rilHJI(7S).Crio?I(7b) .
CN03I(7H).COLIIT(7«i)iALGITI7'').PHOSIT(75).CNH3IT(751.
CN02IT(7S).CM03IT(7S) .WSCOl. I I Q0 I . hSALM 90 ) . USPHOSi 90 I t
WSMH3I90).USN02(90) .WSN07(yn).HWCr>LI(l13> .HWALRdSI i
HUPHOS(lS).HUNH3 «
10DOPTIlP).IPCHNO(7Sni,EXCOFr(75l
COni>OII/SSTATE/ XI500I.ISS
CO1"ON/RAOION/
DinFN«!lPN TITL19(15I.TITL?n(lSI
PH«I- Kl ,KP,LAT.LL«.LSM.
.iiSR«PW<90l
• NEU
• NEW
• NEW
• *-3
-------
PnT/\ T]T|]<) /itH ALGiUHAr r,,HHR(lUT.'ll'll Plt.UHTCS
«P.tHFI< 'i.lHM A.tHRf itH ,CIH ,mi ,U|i .MM ,l||l
(1KTA TIIl.?n /1H PHOtiiHTO'Sr.MHNTMF.UH'.IS-.
. T.UUini, . l»HFUTI,l*HOS A.1HPF .tH ,1M i=nEl
IF ii<:s) "oii^fli rinn
HILT = 1.0/21.0
D?LT = 1.0
ITU! = ifcnn.o
IF lPTIMF.LF.n.1 PTIHE=THAX
GO in 10?
011.1 =
STEP t-n
IF THF CORHECT NO. OF DATA
NIT IJEEr KCAll IN, THF PRO&RAK
CONSTANTS.
OOOA460Q
T1AX.NCFI I "51
STEP 5-0
FSTARLISH
0006*900
00065000
00066500
ooof.f.600
00066700
00066800
DF.lT=ri LT«J600.0
00067000
U001TIOO
OB067200
>=nF.i T/inEi.x*nrLx>
STEP f— n
SFT
CALL HTPRAM
CftLI TPI«iAT
CKL=ChL«f-0.
IF iMinnpriai .GT.D
IF (ISS.LE.ni CO TO 110
Fil'lfT = 0.0
IF isniirT.LT.i.nr-m GO in
COrTIITIONS.
CONVFHSION Of CKL TO LAW.LEYS/HH
rnui/ERSION TO PTII/SO.F-T./HR
THE FOLLOWING COMPIITFS THF
AWfRAfiE LIRHT I'UTrMSITY FOR
STFftOT-ST«IE CO1PUTATIHN
00067503
OOOK7&00
000^7700
00067000
00070'SOO
04)070900
-------
N!lLX=li
PLK=FLOAT(WI)LH)
SOAVE=S'>NrT/ULH
OH -JO M=ltllDLH
F»=H
TOT=SOAVF:*I i.o-ros<6.2*»FM/OLHi>
•SO FU'irT=FUfJCT+(TOT/ICKL*TOT) )
51 CONTINUr
SOMME M=CKL tFUNCT/ 1 1 . -FUNCT )
tip CONTINUE
On «1S Tsl.NRrAOl 00067900
NCFI R=NCF:LR.I( ii ooossooo
no "ll Jrl.WCFLR 00068100
in»=icLOKHi i,j) 0006*200
Tl IORI=TI*IT( II 00068300
lltH IOP)=nOTNIT< II 00068X00
B0n< inR)=POI,4ITI II 0006^500
Cf.,'lS( IOR.1 )=COIfITIl tl) 00068600
CONSI IOR,2)=COIMIT(I,2) 00068700
CO\S(IOKi3)=COIMT(I.3) 00068BOO
PMO^I IOR|=PHOSIT| I |
CMHT(IPRI=CNH5IT(II
C'J09( TP^I=CN02IT( I I
Cri03( IOI')=CN03IT(I)
COLT 1 IOC )=COLUT(I |
lF(ronOPTI4).E:Q.O> GO TO 915
TC = 0.55-68.0l
EXPT=EXP(-CXCOEFl I I*DEPTHI IORI I
TLOG=ALOG( (CKL+SOHNEN)/(CKL+SONNF.N*FXPT) I
GKnuTH(IORI=GPOHAX*TLOG/IEXCOCF(II*OEPTHIIOR) I
GKnV'TH(IORI=GROWTH(IOR)*1.0«7**TC
911 COMTItJUC 00068900
00 922 NkS=l.MUASTE 00069000
EFLROO=1.0-THFACT|NUS| 00069100
WSRoniMWSI=EFLPOO*USBODINWS> 00069200
9?2 CONTINUE 00069300
C 00069100
C STEP 7-0 00069500
c ireiN conpiiTATroNS AND OPERATE uooo6960o
C STEADY-STATE CONDITIONS ARE CEAC00069700
C WHITH IS THE TIME (TNAXI PEOUIRE00069800
C WATER PARTICLE AT THE UPPERMOST 00069900
C If THE SYSTEM TO REACH THf END 000070000
C THF STSTEf. 00070100
C 00070200
r STEP 7-1 00070300
C CALL SUPROUTINFS TO PERFORM HYDR00070100
C BALANCE OM SYSTE1 AND ESTABLI&H 00070500
C COEFFICIENT MATRIX. 00070600
C OC070700
991 TIMF=TI«E»D2LT 00071000
TPRIIIT = TPRINT+D?LT On071100
C 00071200
C STEP 7-2 00071300
c HPI'TF SFLfCTEn OUALITY p«BA'«FTEPOo07mon
C 00071500
C MOnOPTIl) CONSERVATIVE
C wmOI'TC?) TECPERATURF
-------
HnDOPT( «)
*ionopT(in
. i
unn
CHLOROPHYLL A
PHOSPHOROUS
MOOOPK7I
nonopTir)
MODOPT(°I
"WTOACTIVE
791
I.FO.O)
uo 777 ur = i,rjrs
c*u i. ro'*t^vr
Cnl.t sOVhAT
NT=HT+1
(.in "-Q" Irl .NCFLLS
COM«!( 1 i'IC)=ZI T I
T0
don
777
70' IF ("KTUIPTCM .ro.p) GO TO 703
».*.»«..Jill F 1. 1975 STFADY STATE TF"P SOLUTION NOT OPERARIE
IF dss.i5T.oi r,n TO 701
C«LI SOV-UT
L.(I "ii" !=' .MCELLS
T( ' l-7( I )
non
IF (I OI'L'PTMI.fO.P) Go T3 70"!
HI = 7
C'M 1 hUDS
CM I
-------
«flf. CONTINUt
NT = 11
CALL unas
Crtl I S(W*M
nn PI* iri ,'ICFII.S
C' O'dl = 7(1)
NT =
CALI
CALI
10 ».
C iOM T) = 7(1)
c
707 IF l"cr&HT (71 .ttn.O) 6O TO 708
NT r 13
cm L PrfiCPr
CALI liOS U007H800
CALI sovi AT OQ07490I)
Lin 0[)3 1 = 1 ...iCFLI S 00075000
0,-(ll=7(l) 00075100
(in* C')'ITIUllF 00075200
70" II- (I P'lOPTcM .EO.PI GO TO 799
I'T = 11
C'-l I- CfiLIS
C»ll SCWHAT
U'.' HU7 1=1 .riCFLI S
C"l IIII = Z(I)
T"t COr.TH.Ut: 0007SOOO
IF (TPRINT.LT.MTIHEI 60 TO "97 0007"»100
TPHtf r=n.p 00079200
n97 COriTlruf 0007^500
C 00079400
C STEP 7-J 00079500
f IF STEADY-STATE C1NDITSOM HAS N'lfl0079600
r RTACHEO, coNTiMue POUTING. 00079700
C on079800
1FI1SS) Mooft. ogog, 9990
q-i''n IF ("rnopTcoi iooiiionii°902 .NEW
9"?? Kljt = U •*-!
ITEO = MFK + 1
WHITF (MJi7779l ITER
777«> FOPKAT I1?H ITEPATION .IS)
UO °9«V JJ=l.M«ruCH
NCELR=Mr! LI'Hi JJI
DO IS"* KKsLNCFLR
E'PT=FXP(-f.XCOEF( JJ)»nrPTM(II I
TL'ir,= nl OR< irKL*SOMNEN)/(CKL + S
X6hl'W=B1Pf»Ay«TLP6/(EXCOLF«JJI«DEPTH(II)
Xrnpn=xC-K"V »1.0"7»»TC
TT -
IF (K.Ofll'T (III .EC.O) CO TO 1*20
K'ir = -1.0/(ALrHA2*ALFAE(I>*TT>
)»(CKP+PHPS( T) l*nGPP-XPFOW
>r = Mif'Ti ( i )»(rKp+cnos( ri )-xGPiiW«PhoS( I)
-------
su TMn«xii-n.o»XA»xc>
III •ii'" = -l!.' -XI/X' + f.'jiROPT/ARSIXAl
Pui^i 11 = Pi'osi t>+nFnos
It ir'iosi; i .LT.n.ni PHOSIII = n.o
ll-i'fl z kf.POhaPHOSlI I/ICKP+PHOSM) )
IF Ifpl'PPTIfil.rP.OI GO TO ""MO
DC.Pf r -1 .0/(ALl HA1»ALGAE(I)»TT)
XI - r-KH'THI 1 I + (CKN+CUO3( II l»PGPr'-XBPOW
xc = rrrum i)« (CKM+cwn3( T ) i-XGRiw»rriOji I)
ROOT = '•f'f n Af'*Xh-t.fl»XA«XCI
01 ir'i-ii.* .Xli/v/i + 0.5*ROnT/AnS(XA)
cpnjii) = cr»o^(i> + OCM03
IT (Ci l'*< I I .LT.C.IM CN03IT) = 0.0
I'.fnt = TTRC **Ct 031 I )/(CKM+Cri03l I ) )
COUTH ur
|if, = Tl-Hi'Vi - GROWTH! I I
IF (H'b(C'C-) .LT.r.PJ) GO TP R99*
MilM = t.HP» + 1
CI-OWTIII) = CPOUTIMl) + 0.7»nG
fi".TI"l (
t'l'TTt (Mj.77nn> Nur
FfUPAl IJPH bFOWTH RA1F NPM CO"VFRGENT IN.IM.9H ELEMENTS)
ir i urn Jooi ,1001.499ft
1r)»t IFIT1"[ .LT. TMAX) GO TO P9*
IF (IFM ciQ9H.9")9»l.l001
inni ri,.iT ir ur
IF ^OLPPTiai ) 1011 .1011.1008
inn' Ml=f
t,»*.»....jL'l:l 1. 197T STF.ADY STATE TFKP SOLUTION NOT OPERABLE »NEW
Gn TO 1011 *NEW
CM I H--»T?(T|
IF (
'ii =
CALI
C.VTIi.iit
IF I -r l-ill'TISI ) 1DJI.10T1.1022
ilP|Ct.M»)
NT = 1 1
CALI VPIM? ICP07I
NT-12
Cm HJPTP lC^:o^l
CiV-TiruL
li I'Vii-n 1 1^1 > 1051.
'JT:0
C*LI ••(•PT5 IHHOSl
in<51 CO ITli Uf
IF i inti .inn, 1
ins? 'ir=r.
C/\LL fRI'l? (1LGAL)
l.'f 1 Ci» iTIr uE
Ir Ih'POPTIf-l I 11-71. 1071. inf.?
-------
1071
107?
CONTINUE
IF i»nr.npTii) ) iu8i.ioei.io72
M = l
CO 1P75 WrliHCS
CALL WRPT? (CONSIl.tUC
IF (MorOPTtqi.EO.OI GO 10 <
»NEU
CALt UKPT? IbROWTH)
DM
2(
COUTH I'E
CALI UK^l
CONTIruC
(Z)
IF (IA|inon.ru.QI RO TO 91-*
-------
SUBROUTINE ALGAES*
Subroutine ALGAES completes the setup of the equations necessary
to calculate algal biomass concentrations in each computational element.
Specifically, the subroutine completes the definition of the diagonal
term of the coefficient matrix and defines the vector of known terms on
the right hand side of the equations. In addition, solar radiation is
read at three hour intervals if a dynamic simulation is being performed.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computation element is:
TYPE DIAGONAL TERM
All except type 7 b-j = XT - (yi - p -
7. Withdrawal bn- = xn- - (y-j - p - ajAt - q0 —
where x^ is defined in Subroutine TRIMAT.
The growth rate, y^, is computed according to Equation II-6
as
N, n i K
. L
in
_ _
N3 + KN _ F+T^ Xffi KL + Le ~ii
For dynamic simulation, nitrate (N3) and phosphorus (P) values from the
previous time period are used to calculate the growth rate; for steady-
state simulation, values from the previous iteration are used.
If, under the program options, algal concentrations are being
simulated and either nitrate or phosphorus or both are not being
simulated, the program assumes that the parameter or parameters not
simulated are not limiting. For example, if both nitrate and phosphorus
are not being simulated the growth rate would be computed as
IV-4
-------
KL
In
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
1. Headwater S^ = A* +
6. Waste Input S1 = A + qA + qwAw
All Others S, = A* + q'Al £•
1 111 V*
For steady-state simulation, the only difference is that the value from
the previous time step, A.J , is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-2 and
is followed by the program listing. All program variables contained
in COMMON are defined in Section V.
*AI I symbols used are defined at the end of this section of the
Documentation Report.
IV-5
-------
(ENTRY \
SUBROUTINE ALGAES 1
(See 0»U
Fora 19)
INITIALIZE COUNTERS AND
CONVERSION FACTORS
READ SOLAR RADIATION IF
SIMULATION IS DYNAMIC
DO conputetlont
from i to b for
ill co«putitton»l
dementi
CALCULATE GROWTH RATE,
AND INITIALIZE KNOW
TERN AND DIAGONAL
TERH FOR STEADY-STATE
OR DYNAMIC SIMULATION
TYPE 1
ADD HEADWATER
INPUTS TO KNOWN
TERN. S(I)
TYPES 2, 3, 4. 5
CONTINUE
TYPE 6
ADD MASTEWATER
INPUTS TO KNOWN
TERM. S(I)
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM. 8(1)
(RETURN \
TOQUAL )
FIGURE E-2
FLOW CHART FOR SUBROUTINE ALGAES
-------
SlinwniiTTMF ALGAFS
n > .«Cllin<75,5> .RHIHOR^^) .RHTEOR<75).NHWWAH< 15> •
TACGOUITS). THIlt,OK(75.|:,) .MCFLRHt 75), IFLAGt 75.20 >.
iaOHU(75,?0>.COLFnV<75>.E)f°OOV(7S>.COEFOH{75>.EXPOeH(75> i
CriBNN(7l> .CK1I75) ,r><3|75>.K?1PT(7S>.CK2<7S>,COEOK2<75> .
r ,T) (75) .001 (TU.ROPT^1-,) .CONSI (75.3). JUNCID< 15.5).
JUTIlSiMiHUTKIUI I'M 51. HWFLP-WI 15). HWTEHPl ISl .HWOOI 15 I i
•i,f-0n(15) .HWCONS( 15.31. WAST TO (SO, 51 .TRFACT ( 90 > , WSFLOW( SO > ,
i.'STEI''.r>(«n).WEDO(yO>.WSHOn(<»0>.WSCOJS(90.3t.OATOT(15).
/1C5P1 1 ,q(5i" I .C 15C .COLIIT(7-i) • OLGIT ( 75 ) .PHOSITI 75) . CNH3IT (75 ) .
CNO2I r (75) ,CNO3IT(75) .USCOLII9I)> .USALGI90) .USOHOSI90) t
US^H3(°0) .WSN02(90).USN03(90) .HWCOLI(15).HUALG(15) .
HUPHOS ( 1 r. I . HUN'11 1 1 S I « HUNOf. ( IS ) . HWN03 (15). GROWTH ( 500 ) .
fonop r i in i . IPCHNCX 751 ) .EXCOEFI 751
INITIALIZE COUNTERS
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
•NEW
•NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
•NEW
•NEW
• NEW
• NEW
•NEW
• NEW
• NEW
• NEW
•NEW
•NEW
• NEW
IMISS • r.T. o .nii. ronoPTi?) .GT.
IF(TRLCn) 10. 10. IS
in hCAnini.il) s,oi»Tr
11 FOR"AT(10X,F10.0)
READ SOLAR RADIATION DATA IF REflP
GO TO S>0
?C
I UE
LOOP THtC'JGH PEACHCS ANII C""P. ELEMENTS
Di 100 1 = 1 .
HCEL>»=NCr I i-IIIII
C^CELR=NCFL^^
Atr.u = (lllD/CNCrLIKALGKI)
On inn J=1.MCFL"
-------
IGUrlCLORPI I . J)
C
C COMPUTE ALbAE GROWTH RATES
C
TC = P.5f>*-*(TIIORI-f.S.O)
KPSPRP ( IOP l=RrSPRT»l .0<*7«.TC
flLSIN- = »LGSrTZ
LxpT=FxP(-excnEF>2
1-rtOHIK IOC) = HPCWTIH lnKI.CNOStIOKI/(C!\N»CN03( IOP) I
',? COMTH'UF
C
r INITIALIZE niAROMAl ANn KNOWN TERNS
C
Kran=GROWTH< lOfl-RESPHHI IORI-ALSINK
SdflPliALCAf (IOP)
.GT.ii s(ioRi=n.n
= S(IOP)+ALGIJ*OTOvCL( IOR)
C
C MQniFY DIAGONAL ANn/OR KNOWN TERMS
r
IFL=IFL«G(T.J>
t,n TO (ioi. 100. 100, 100, loo. 101, 10"»>, IFL
S(IOR) - SIICR) - AIIORI*IIUALG(NHU)
Gn TO 100
1P^ NUS=NWS»l
S(IOR) = S(IOR) + USFLOU(NWS)«WSALGINUSI«DTOtfCL( IOR)
Gfl TO 100
ipu rjus=NUS>i
OlinK) = FMIOR) - USFLOWI!UUS)*DTOVCL(IOR)
inn cniTINuE
-------
SUBROUTINE BODS*
Subroutine BODS completes the setup of the equations necessary
to calculate BOD levels in each computational element. Specifically,
the subroutine completes the definition of the diagonal term of the
coefficient matrix and defines the vector of known terms on the right
hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 bj = x^ + (Kt + K3)At
7. Withdrawal bj = x1 + (Kj + K3)At - q0 77
where x^ is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
1. Headwater S, = L? + qll! ^- - a,Lh
I 1 11 V I '*
6. Waste Input Sn- = Li + q^. 77 +
All Others Si = L* + qjl! ^~
VT
*AII symbols used are defined at the end of this section of the
Documentation Report.
IV-6
-------
For steady-state simulation, the only difference is that the value from
the previous time step, L*, is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-3 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section V.
IV-7
-------
(ENTRY A -
SUBROUTINE nos I
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
CO computations
from > to b For
all computational
elements
INITIALIZE KNOW
TERM AND DIAGONAL
TERM FOR STEADY STATE
OR DYNAMIC SIMULATION
TYPE 1
ADD HEADWATER
INPUTS TO KNOWN
TERM. S(I)
TYPES 2. 3. «. 5
CONTINUE
TYPE 6
ADD UASTEUATER
INPUTS TO KNOWN
TERM. 5(1)
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM. 8(1)
RETURN
TO QUAL
FIGURE EZ-3
FLOW CHART FOR SUBROUTINE BODS
-------
I'OnS
crjiopnri T ITLE 120.20 J.RCHIOI 75.5) .RMTHORI 75) ,RPITEOR< 75>. NHUWARI 15).
TARGOO(7*).IAU60R(7'i.f.>.NCELRH(75>,IFLAG(75.20) .
IClQRU(7>i.?0)>COLFOV(75I.EXPnOVI75).COEraHI75).EXPOaHI75).
rpiANNI7Ii).rKl(75>,CK3l75lnOINITf75>.BOTNITI7S>.COIlgiTf75.3).
ni(7S).TII7.HUFLOU( IS) ,HUTEHP(15> .HWDOf15) .
iHWCONS(1^.3).UASTin(90.51.TRF«CT(90 I.USFLOWI 90).
'SOU 190).WSRODIin I.WSCONSI SO•3 ».0ATOT115).
A (100 I .'((bPO) .C (500) ,0(5) .SI "inn) ,Z( 500) . U( 500 ),G 1500) •
FlO.(TnO),PEPTH(5fln).VFL(500),OTOVCL(SOOI,K2(500).K1<500).
IISNETI^nni .OLI500) , VHU(lp),OEPHW(15l.nLHH( 15) , TI500I .
nocjno) .nurisno) .CONSCJDO,^)«PTIHE,TPRINT,DELX,
"lHWTRb,NPEflCM,NUASTF.NJUNC,DrLT.DlLT.02LT,DTOOX2.0T2ODX.
ATMPR,nIHD,CLOUn,SO'"rT.NI.MJ.TRLCC.TOFDAY.NT.NC.TtnF,NCS
I. /SSTATE/X(SPO».1SS
»NEU
*MCU
*NCU
*N£W
*NEW
»NEW
*NEW
*NEW
*NEU
*NEW
*NEU
*NCW
*NEU
*NEW
*NEU
*-16
N.IU=(1
,»VS=0
llri
INITIALIZE COUNTERS
LOOP THROUGH REACMFS AND COMP. ELEMENTS
Cr.CFLH-MCF.tR
HrOIJ=RIII)/(.MCFLR*ROOII I)
0.1 UiO J=1.NCFLR
INITIALIZE DIAGONAL AND KNOWN TERNS
TC=0.5'56«(T( IOR)-f.«.0)
KI( If)RI=CK! | 1 |*).n«7».TC
K3r(-K3(I|
PrArT=ClLT«(Kl I IOK1+K3)
T.I ) S(IOP)=0.0
S(TOR)=S(IOH>*HnUIJ*DTOVCI IICR)
IFL=lFLAGt I.JI
KOPIFY niAGOMAL ANn/OP KNOWN TERMS
GI TO 1 101 ,100, icn, ion, lOf. 10-5. lou). IFL
N»IV = UM>.<1
zM I nw |. II ini-) «MVrtO'-(llHW)
00002300
00002100
00002600
00002900
00003000
00003100
00003600
00003700
00003800
00003900
00004000
00004100
00004200
00004300
00004400
00004500
00004700
onnnssoo
00005400
-------
GO TO 100 00005600
10* NUSsNUS+1 00006900
S
-------
SUBROUTINE COLIS*
Subroutine COLIS completes the setup of the equations necessary
to calculate coliform levels in each computational element. Specifically,
the subroutine completes the definition of the diagonal term of the
coefficient matrix and defines the vector of known terms on the right
hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 bi = x-j + K5 At
7. Withdrawal I>1 = xi + KS At - qo £7
where xn- is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
1. Headwater Sn- = E* +
6. Waste Input S, = E + qE + q^
All Others S1 + El- + qlEJ
*AII symbols used are defined at the end of this section of the
Documentation Report.
IV-8
-------
For steady-state simulation, the only difference is that the value from
the previous time step, E*, is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-4 and
is followed by the program listing. All program variables contained
in COMMON are defined in Section V.
IV-9
-------
(ENTRY \
SUBROUTINE CM.IS j
INITIALIZE
COUNTERS MID
CONVERSION FACTORS
DO computations
from l to b for
ill conputitiorul
elements
INITIALIZE KNOWN
TERM ADI
TERM FOR S
DIAGONAL
TEADf STATE
OR DYNAMIC SIMULATION
TVPE 1
ADD HEADWATER
INPUTS TO KNOWN
TERM. 5(1)
TYPES 2, 3. 4. 5
CONTINUE
TYPE 8
ADO WASTEUATER
INPUTS TO KNOWN
TERM. S(l)
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM. 8(1)
(RETURN \
TO QUAL I
FIGURE E-4
FLOW CHART FOR SUBROUTINE COLIS
-------
COL is
c
c
COMWCN TITLE(SO.20 I.RCHIOl75.5).RMTHOR)75).RnTEORt75).NHUUARIIS I. *NEU
* TflPGDOl751.IAUGOR(75.6|.NCELRH(75).IFLflG(75,20). *NEU
* ICLORO|75.2D|.COf.Ff>VI75>,EXPOOV(75),COEFOHl75>,EXPOCH<75), *NEU
• CKANN(75>iCKl(T5>.CK3l73).KZOPT(75)iCK2(7S),COEQK2|751. *NEU
* rxpnK2(75l.TINITI7?).OOINITIT5).BOINITIT5).COINITI75.3) • *NEU
• 01(751. Tf <75).nO«75)«BODI|79).CONSl(75i3).JUNCIO(15i5>> •NCH
* JUMC(IS,.*I.HHTKIO(15.5I.HUFLOW(15>,HUTE«P(15) .HUOOI151. • NCu
* HWROOlfj) .HWCONSf 15.3 (, WAST It)( 90.5).TRFACTl 90), WSFLOW( 90), *NEU
* USTEtiP(90l,WSDO(90),USBOD(<)0)tUSCOIilS(90i3).CATOT|15>i «NEU
• »l5nOI.8(bOni,C(500liD(5)iS(500liZ(500liH|500ltG|500l> *NEU
* FLOU(500).OEPTH(500).VEL(SOO).OTOVCL<500I,KB<300).K1<500). »NEU
• KSMCTISOOI.OLISOO).VHU(1S>.OCPHU(15I>OLHU|I5|.T(500}< *NEU
• 00(500).POD(500)iCONS(500.J).PT1HE.TPRINT.DELX, *NEU
• NHWTRS.NRCBCHiNUASTEiNJUNCiDCt.T,01LT.RCSPRR|SOO).COLI(SOO). *NEM
ftLGaC(500t.PHOS(500).CNH3(500),CNOZ(500).CNOS(5001, *NEU
COLIR(75I.AL6H751,PHOSII75).CMH3I(75),CN02I(75). *NEW
CN03M75I.COLIITf71>).AL6IT(75I.PMOSlT(73I.CNH3IT<75). *NCU
CN02ITI7S).CN03ITI75)iW5COLI(90)iUsAL6(90).USPKOSI90*i *NEU
MSNH3(90) «WSN02(90) .WSNOK90) .HUCOLI1151 iHWALGI 15) i *NEM
HUPHOS(15».HWNHSI15).HUNOailS),HWN03I15I.6ROHTH(SOO(, *NEU
nODOPTIlP>.IRCHNOITSOI.E)(COEFI79) »NEU
C .-29
C
COnnnt
K5=CK5(I)»1.U»7«*TC
-------
H(IOM=XCIOR)*REACT
S(IflH)sCOLIIIOR)
IF (ISS.6T.OI S(IOR)=0.0
s(inR»=S(IORI*COLIJ«OTO«CL(IORI
IFL=IFLAGIIiJ)
C MODIFY DIAGONAL AND/OR KNOUN TERNS
C GO TO |101.100.100ilOOflOOil03ilO
-------
SUBROUTINE CONSVT*
Subroutine CONSVT completes the setup of the equations necessary
to calculate concentrations of a conservative constituent level in each
computational element. Specifically, the subroutine completes the
definition of the diagonal term of the coefficient matrix and defines
the vector of known terms on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b^ = x,-
7. Withdrawal bn- = XT - qo £•
where x-j is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
1. Headwater Si = C* + q'.C\ ^ - a^
6. Waste Input Sn- = C* + qlc! ^ - q/
All Others Sn- = C* + qjc! ^~
*AII symbols used are defined at the end of this section of the
Documentation Report.
IV-10
-------
For steady-state simulation, the only difference is that the value from
the previous time step, C*, is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-5 and
is followed by the program listing. All program variables contained
in COMMON are defined in Section V.
IV-11
-------
c
EKTW \
SUBROUTINE CUBIT I
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
T
00 conputallons
from j to t> for
ill cnvuuticnil
alenents
INITIALIZE KNOWN
TEW AND DIAGONAL
TERM FOR STEAD) STATE
OR DYNAMIC SINJLATIIM
TYPE I
ADD HEAWATER
INPUTS TO KNOW
TERM. S(t)
TYPES 2. 3. 4. 5
CONTINUE
TYPS. 6
ADD WASTEUATER
IKPUTS TO KNOWN
TERM. S(I]
TYPE 7
SUDTRAC1 STREAM
WITHDRAWAL FROM
DIAGONAL TERM, B(l)
(RETURN \
TO DUAL I
FIGURE E-5
FLOW CHART FOR SUBROUTINE CONSVT
-------
SUnootlTINf CONSVT
c
C CONSVT PERFORMS A CONSERVATIVE HINERAL
C BALANCE FOR E&CH COMPUTATIONAL ELEMENT
C IN THE SYSTFM.
C
C
C0«"0r, TITLF(?0.aO).RCKIDl7S.5).P.nTHOR(75l.RnTEOR(751.NHVIUAR(15>. *NEU
TAPGnu(7*).IAUGOR(75.6l,NCELPH|75I.IFLAG(75i20>< »NEW
ICLdRD(7'=0).COEFaVI75I.F.XPOOV(75liCOEFOH(75).EXPOOH<75l. *NCW
Cr/W.'(7Sl.rKI(75»tCK*c75liKZOPTt751.eK8(75»iCOEeK?|71i>« *NEW
ExPDK2(7* I .TIMT<7*).OnINIT(7Sl . BOINIT ( 75| .COTNIT (75. 3 ) i *NEU
Bit 75 1 tTI<75)iOOIf»iltBODI(74liCONSII75i3)iJUNCXD(15<5li *NEU
JUMCIl'i,3>.HUTKIO(1'i.5l>HWFLnWMSI.HWTEnP(l'il , MAST IDI 90 . 5 > . TRFACT 1 90 > i USFLOWI 90 ) i *NEU
WSTEf.P(,K2< 5001. Kl 1500 ». (NEW
HS'^ETISnO I ,nL(500) .V/HU(15).nFPHUI15).DLWW<15l .1(5001. *NEW
ROISOD)iPOni500I.CONSI^00.3liPriHEiTPRINT,OELXi «NEU
•JHVTRS. MPEACH. NUASTF • NjUNC .OEtT . D1LT .OZLT .OTOOX2 .OT20DX. *NEW
LAT.LSM.l LH.ELEV.DeT.ftE.PE.nATnFT.rRTBLB.UETBLB.OEWPT, (NEW
STUPR.WINO.CLOUO.SONFr.NI.NJ.TRLCD.TOFD/ST.NT.NC.TlnE.NCS *NEW
.iss
C 00002500
c INITIALIZE COUNTERS
C 00002700
NHU=0 00002BOO
H'JS-0 00008900
C 00003000
C LOOP THROUGH REACHES AND COHP. ELEMENTS
C 00003500
00 100 I=I.NKEACH 00003600
NCFLR=NCELRHIII 00003700
CNCFLR=NCELR 00003BOO
CONClJ=OKI)/CNrELR»CONSI(I,MCI 00003900
DO 10P J=1,NCELP 0000*000
ioR=icLORnii.j) oooomoo
c
C INITIALIZE DIABONAL AND KNOWN TERNS
C
BNSIJ«DTOVrl IIOR)
IFL=IFLr.r,| I.J) 00004200
C
C HOPIFY DIAGONAL AND/OR KNOUN TERNS
C
FO Id ( ICll .IJO.lOO.lOO.lOn.lOS.lO1*). IFL
c oooomtoo
in N(.w=tiiiki*i 00001900
si inri=si IOM-AI ICPKHWCONSCNHU.NC)
PC TO 1PP 00001100
c oooo-s?on
-------
iin HUS=NUSH oooosnoo
S(IOR I=S 4-WSFLOW(NHSI*UScONS< NWS•NCI•OTOVCLI ION I
GO TO 100 00006700
c 00006800
10« MUS=MHS»1 OOOOT300
B(IOR>=FHIOR)-WSFLOW
-------
SUBROUTINE DOS*
Subroutine DOS completes the setup of the equations necessary
to calculate dissolved oxygen levels in each computational element.
Specifically, the subroutine completes the definition of the diagonal
term of the coefficient matrix and defines the vector of known terms
on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b^ = xj + (K.,^ At
7. Withdrawal bj = xi + (K2)1 At - qo —-
where xn- is defined in Subroutine TRIMAT and the reaeration rate
reaeration constant, (K2).., is determined in Subroutine REAERC.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the concentration
in the previous time step. The known term for each type of element for
dynamic simulation is:
* i i At . ,
S.j = <(>i + q.. — + (a3y- - a,,p) A.At - a (K^j)- At
i
- as(K8N2) At - K,Ax ^ + (K2CS). At - K^-At
and is corrected for headwater conditions or a waste input as follows:
*AII symbols used are defined at the end of this section of the
Documentation Report.
IV-12
-------
(ENTRY \
SUBROUTINE DOS J
INITIALIZE
COUNTERS MID
CONVERSION FACTORS
HO computations
true, i to b for
ill computational
elements
INITIALIZE KNOWN
TERM AND DIAGONAL
TEW FOR STEADY-STATE
OR DYNAMIC SIMULATION
TYPE 1
COMPUTE S(I) ANDB(I)
AND ADD HEADWATER
INPUTS TO KNOW
TERN, S(I)
TYPES 2. 3. 5
CONTINUE
TYPE 4
ADD TRIBUTARY INFLOW
TO KNOWN TERM, S(I)
TYPE S
ADD WASTEWATER
INPUTS TO KNOWN
TERM. S(I)
TYPE 7
ADD INCREMENTAL INFLOW
TO KNOWN TERM, S(I). AND
SUBTRACT STREAM
WITHDRAWAL FROM DIAGONAL
TERM, B(I)
(RETURN \
TO QUAL /
FIGURE E?-6
FLOW CHART FOR SUBROUTINE DOS
-------
TlTLE(20i?Ot.RCHlD(75.S).RHTHOR(75) iRMTEORITSI ,NHWWAR(15) .
TARr-nO(7''),IAUGOR<7Ii.6) tNrrLRH(7'i).IFLAG(75,20),
ICLnRD(75i?0>iCOEFnv(7'i).FxPnOV(75l.CxPnQH(7fS),
CFn[iNI7^).CKl<75).rK3(75)iK20PTI75)iCK2|75liCOEQK2(7'il.
CXPQK2<7M.TINITI7*1.noINITI75).ROINITf75).COlNIT(75.3) t
m<7S) , Til 7* > .001(75) , ROOK 751 .CONSI 175.3), JUNCIOllliSI t
JlinCll>).HWTEHP(15)fHWDO .USROO<«SO>,WSCONS(90.3>,OATOT(15),
ACiOOl ,dlbOO).C(50'M.O<5).S('iOO>.Z(50n».H(500).G(500) .
FLOW(;,ml.OEPTH<500).VFL(I'On> .OTOVCL(500),K2(500).K1 (500),
HSNETI*i)OI.OL(500).VHU(lS) iDHPHUUS) tOLHUf 15) • TI500I •
nO(50U) ,ROO(500I.CPNS(500,3I.PTIHE,TPRINT,OELX,
*IHWTRS.Nl>E*eH.NUASTE.NJUNC.OELT.01LT.D2I.T.nTODX2.0T200X.
L/IT,LSM,LLH.ELEV,OAT.AE.BF.D»YOFT,DRYBLB,HETBLB,DEWPT.
AThPR,UINOiClOUOfSONrT.NI.NJiTRLCOiTOFDAT(NTiNCiTinE,
CN03II7-5I.COLIIT(7S).AL6IT(7'i».PHOSIT(75).CNH3IT(75l.
CN02Ill7S).CM03IT(7S).USCOLI(90)tWSAL6(90I.USPHOSI90l.
WSM<3I<)0),USN02(90),USN03I90I,HUCOLII1SI.HUALGI15I.
HUPMOS(lS),HkNH3(l'i)iHUN02|lS|.HUN03(15ltGROWTH|500)<
nODOPl(l(l|,IRCHNO(750l,CXCOEFI75)
Cnpr>0!J/SSTATE/X(50n).ISS
REAL Kl.k7.KU
REAL Kt'Hj.Ktio?
DATA LIPCO/4H RIO/
00002300
10
.CUNvrRT HfTUEEN ULTIMATE BND 5-DAY ROD BASED ON AN ASSUMED
.L«n DFCAY RATE OF 0.23/OAV (RASF E I URN
1F( TTTLF(7.b) .CO. UROO > 60 TP 5(1
Crnnu = l.o - EXHl -5.0*0.23 )
Ivr»T = ()
IVE°T = 1«ERT + 1
IF! 'IhUTHS .LF. 0 I GO TO 25
DO 90 J = 1, NHUTRS
Hjimnij) = M.Ror,(ji / CFBPP
COMTIUUF
IF( NWASTF .LE. 0 I GO TO 35
llll ^0 J = 1 , NUASTE
WSBOPIJ) = usronij) / cFgnn
CONTINUE
OO tb J = 1, NRFACH
n'PT(J) = rtOUTI-') / CFROO
-------
WEIH = NCI I nil I J)
Inj un K = !• "CfLR
I'IR = iCLPl-ni J.KI
imoiioni = Honiiom / rFiinn
un crMTii»ur
1F( ItfLlM .GC. ? ) KETUKN
CCMPI. = l.n / CF30D
C 00002400
C INITIALIZE COUNTERS
C 00002900
MHU=D 00003000
NviS=n 00003100
UliMC = l) OOOR3?00
F«n = i.c / (?6.s * aetno.oi
C 00003300
C LOOP THROUGH REACHES AND COUP. ELEMENTS
C 00003800
00 100 I=1.NKEACH 00003900
WEI R=KCEIRH(II 00004000
CNCTLR=MCELR OOOOW100
OOIJ=BI(I)/CNCELH*OOI( I) 00004200
C WOTIO=] .0/11 .0-fXP(-5.n»CKl | I) ) ) 00004300
01 TOO J=1.NCELP 00004400
IGR=ICLORP(I.J> 00004500
r.
C INITIALIZE DIAGONAL AND KNOWN TERMS
r
S|inRl=DOIIOR)
IF (ISS.GT.l) SIIOR)=0.0
IF (MCL>OPT(4).LT.1I GO TO 90
AREACT =
00 IF |MPDOPT|6I.LT.1| GO TO 9?
SCON) = SIIORI - (A1PHAS«KNH3(IORI*CNH3(IOR) +
1 ALPHA6*KN02IIOR)*CN02IIOR))*D1LT
9? S(lnR) = SlIOR) - CK4(I)*DELX*DTOVCL(IORI*FACT
TC=«.55f-*(TI IORI-6B.O) 00004600
C Kl | TOR)=K1 (IORI»RATIO 00004700
nnSAT=2t.f 9-0.«»a59«T(IORI+0.0037^t»T( IOR)«»?-0.n0001S28«T(IOR>**3 00004600
IF (Do9**TC 00005800
REACT=I>1 LT» I KO*COSAT-K1 1 IOR I »ROO( I OR » I
S(IPH)=Sl IOR)+RFACT*nOIJ«nTOVCLIIOR)-AI IOR)*«UnO(NHW)
Bl IPH)=» ( TnPI+D1LT*KO
GO TO inn 00006100
C 00006200
10' KO=(0.b«(K?( IOR-1)+K?(IOR) I )»1.0159««TC 00006700
Pr«CT=t'lLT» (KO*rOSAT-Kl ( IOR ) *ROni IOR I )
SI inR)=5:( lORl+REftCT+OOI J»DTO«CL( TOH)
OP TO He 00007000
-------
OP007100
nroo7t>ou
00007700
I IHK ,=ci t,.|i i f)r in* iimuti.'^rLot'iN'JS) •wsiniNws) ) «PTOVCLI IORI
1 I •»•»!=» I i r»l lnllLT'KO
T'i IPii OOOdPOOD
OP00810C
ii- c=i.i""r< i onooneoo
OPOOHTOO
00008900
»K?( I OR) 1 ) «1 . 0] >i9«*TC 00008900
« Ari=i iLiKivn^osAT-Kii inpi »noai inp i »
> ( i' i i=«i ji" > + .HLT*KCI
Ci' Ti< inu
OP009300
ir^ U'js=i"isn 00009800
"Tli). '.»(•'?( irih>-i)tK2( TOKI I l»l.ni5''»»TC 0000^900
'<» »rr=r 11 i«inO*ncSAT-ni i inn) »non( IOR »
«,! ioni=<:( inic ArT*nJTJ»nTnwcL( IOP)
H( IP«i=X< K'K>+rjlLT*KO-KSn nU(NUS)>nTOVCL(IO»)
inn C')»TII IIF 00010200
IC( 111LM7tlil . fo. U1OH ) RFTIlTd
r,., Td IT «NFU
E ,<) 00010HOO
-------
TYPE RIGHT HAND SIDE
1. Headwater S.. = S.. -
6. Waste Input S- =
For steady-state simulation, the only difference is that the value
from the previous time step, (jij, is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-6 and
is followed by the program listing. All program variables contained
in COMMON are defined in Section V.
IV-13
-------
SUBROUTINE FLOAUG
Subroutine FLOAUG remains unchanged from the original version
of QUAL as documented by the Texas Water Development Board (2). According
to reference (2):
After steady-state conditions have been reached,
FLOAUG checks the calculated dissolved oxygen
concentration against the pre-speaified target levels
for dissolved oxygen in each reach. If the computed
dissolved oxygen is below the target level, the routine
then searches all of the upstream headwaters for those
sources that the user has specified to have dilution
water. Dilution water is then added equally from all
sources and calculations are repeated. This sequence
continues until all target levels are satisfied,
whereupon a summary is written.
The flow chart for FLOAUG shown in Figure IV-7 is taken from reference
(2). The proaram listing follows the figure.
IV-14
-------
C START J
INITIALIZE
AUGMENTATION
FLOWS
DETERMINE LOCATION AND
MAGNITUDE OF MINIMUM D 0
FOR EACH REACH
rflHIMUM 0 0
FOR EACH REACH
BEEN CHECKED
AGAINST
ARGET
JTES
DIVIDE TOTAL AUGMENTATION^
REQUIRED EQUALLY AMONG
AVAILABLE HEADWATER SOURCES
CHECK TO SEE THAT AN EXCESS
OF FLOW AUGMENTATION
HAS NOI BEEN USED
FIGURE Iff-7
FLOW CHART FOR SUBROUTINE FLOAUG
-------
SIPHPO'ITI'JF
r
r
r FLOAIIG SEARCHES THROUGH THE SYSTEM BY
C RFACH TO DETERMINF THE MINIMUM 00 LEVEL
WITHIN EACH REACH. EACH OF THESE IINIMUM
DO ITVELS IS CHECKED AGAINST A SELECTED
TARGET LFVEL. IF FLOW AUGMENTATION IS
RfOUIREPt THIS FLOW IS DISTRIBUTED
EOUALI.Y AMONG THE HEADWATER SOURCES THAT
Apr AVAILABLE TO A GIVEN REACH.
CONMr.il TITLri20.20l.HCHIOl75,5),RMTHOR(75),RHTEOP(75).NHUWAR(15). «NEW
TARGnO(75).IAUGOR(7S.6).NCELRH(75).IFLAG(75<20)i *NEW
ICLORCH 7'5.?0> .COEFQVI75) .FXPOOV(75) .COEFQHI 751 .EXPOQHI 75) • *NEW
CMANNI75).CKH75) .CK3I75).K20PTI75)iCK2l75)•COEOK2I75). «NEW
EXPOK2I7?),TINIT(75).DOINIT(73>.BOINIT(73).COINIT|75.3). *NEW
OK7'b) ,TI(7S).DOI(7'i),BOni(7SI ,CONSI(75.3).JUNCIO(15.5). (NEW
JUNC(l*i,3).HWTRID|i5<5)iHWFLnW(15).HWTEMPI15) tHWDOUS). *NEW
Hk'flOO(15). HUCONS (1 •!. M . WAST 101 9015) i TRFACT190 ) . WSFLOW (90 ) . *NEW
VSTF.MP (IP ) . WSDO< 90 ) . USBOOf 90 ) • WSCONS (90.3). QATOT 115) • *NEW
A(500>,QC>nol,C(Soni.nt5).S(500).Z(500).W(500).G(SOO). *NEW
FLOwCinO).nEPTH(500)iVEL(DT200X. »NEW
LAT.LSM.LLM.ELEV.DAT.AE.BE.riAYOFY.ORYRLB.UETBLB.OEWPT. *NEW
ATl»PR. WIND, CLOUD. SONET. NI.NJ.TRLCO.TOFDAY. NT. NC.TIME.NCS *NEW
C »-16
r.
OIMrNSlOri IOR"IM(75).RI>IILF(75).DOMIN(75).IORnERI75).QAUG(15) *N£W
C •*-!
C 00002900
C STEP 1-0 00003000
C INITIALIZE AUMEMTATION FLOWS 00003100
DP 1 NHW=1,NHWTPS 00003200
OAUGIMMW1=0.0 00003300
•=, CONTIMJE 00003400
C 00003500
C 00003600
( STEP 2-0 00003700
c LOOP THROUGH SYSTEM OF NREACH REOOOOSBOO
C AND NCELR COMPUTATIONAL ELEHENTS00003900
C REACH TO HETERCINE MINIMUM 00 LE00004000
C REACH AND ITS LOCATION RY RIVER 00004100
r 00004200
HO "=0 I=1.NRLACH 00004300
0(.MINI 11=100.0 00004400
IFU'HigUAH(I) .rn.U) GO TO 50 00004500
NCEIK=NCELRH(I) 00004600
no ion j=i.NCELR 00004700
inR^ICLORDlItJ) 00004SOO
ir inn(to") .GF.ncmiMi)) pn TO 100 00004900
)=nnilliu 00005000
=IOrt 00005100
-------
X»iiv.=j 0000K200
rf-ii i (i )=»f'TnoR( n-y«iN»nFLY/5?BO.n oooo'isoo
IP" cii'iTi-iuF onoo5"»oo
"n Co"TlHur 00005500
00005600
r
r STEP i-n oooosaoo
f LOOP THROUGH NPEACH REACHES TO S00005900
f MINIMUM 00 LEVEL IS BELOW TARGET00006000
C 00004100
on y> i=i.tiRtACH 00006200
IF (MOMIm I) .GF.TARGD01 1) I PO TO 25 00006300
r 00006"»00
C STFP 3-1 00006500
c IF TARGFT LEVEL is NOT MET. conpoooo660o
r AMOUNT OF FLOW AUGMENTATION REOU00006TOO
00006800
00006900
IOKr)E.R/NHWUAKU ) 00008900
c 00009000
C STEP 3-3 00009100
C CHECK TO SEE THAT AN EXCESS OF F00009200
T AUGMENTATION HAS NOT BEEN USED. 00009300
c 00009*00
IF i3RrOO.LT.OSUM) GO TO '5 00009500
NMUAR=NhWWARII) 00009600
DO 175 J=1.MHUAR 00009700
'jMUrlAUGO<«IiJ) 00009800
OAlir. (iiH'.'l=i)Ai)n 00009900
17* CONTINUE oooioooo
?* Cn'ITIIILiC 00010100
If (MnMIG.EJ.nl GO TO 300 00010200
C 00010300
C STEP t-n OOOlOtOO
c WRITE SUMMARY OF FLOW AUG'MT. REOOOIOSOO
C 00010600
UUITC (NJ.200) 00010700
?nn FnnrAT (1Hl.ioxi39H» * * REACHES WITH OXYGEN DEFICIT • • » i //i 23X« 00010800
* "SPKHLACH HO. REACH inENTIFICATION HINrHUM DO.i 00010900
* IbH i
-------
TACu 00011200
00011300
) j.7« FOf'IftT (f>X,Ib.l'X.5AM.l6X.F10.1.2(lX.F10.1) 00012300
270 COHTT'lliE 00012*00
no 3Bn NMW=1.MHWTRS 00012SOO
lUriOW(flHW) = MWFLOW(NHW) + QAUG(NHW) 00012600
^flfl CO'ITIMUE 00012700
GO TO SI'I 00012BOO
Son CONTINlir 00012900
C 00013000
C STEP 5-0 00013100
c WRITE FINAL SUPMARY OF FLOW 00013200
C AUGMENTATION REQUIREMENTS. 00013300
C 00013400
MKITF (Nj,?61| 00013900
?f.i FORMAT uim.isx. »?HTOTAL FLOW AUGMFNTATION REQUIRED.//, oooissoo
• 5x.iniiinrAnviATF.o NO. MFADWATER IDENTIFICATION INITIAL HEOOOISTOO
•A1UATFH FLOW (CFSl AUG. REQUIRED (CFSI./I 00013800
DO *0*i «IHH=1,MHWTPS 00013900
HJFI.PI=nATOT(MHUI OOOltOOO
QATOT HW).HWFLOI 00014100
INFLOW INHU)=HUFLOI 00014200
WHITE (NJ.7.751 NHW.(HWTRID(NHW.J).J=1.5).HWFLOU(NHU).QATOT(NHUI 00014300
30^ CONTlnuE 00014400
110 CONTINUE 00014500
Rf.TURN 00014600
ENH 00014TOO
-------
SUBROUTINE HEATEX
Subroutine HEATEX remains unchanged from the original version
of QUAL as documented by the Texas Water Developm-nt Board (2). According
to reference (2):
fhis routine computes the net amount of heat
radiation flux being transferred across the air-water
interface. It is based on an energy budget which
considers solar radiation, atmospheric radiation, back
radiation, conduction, and evaporation.
Detailed equations for all of the heat budget terms are presented in
Report 128 of the Texas Water Development Board (1).
The flow chart for Subroutine HEATEX shown in Figure IV-8 is
taken from reference (2). The program listing follows the figure.
IV-15
-------
c
START
COMPUTE
REQUIRED
CONSTANTS
COMPUTE ALL TERMS REQUIREOV
FOR EVALUATING THE VARIOUS
FLUXES IN ENERGY BUDGET
CALCULATE POSITION OF
SUN RELATIVE TO
A SELECTED LOCATION
ON THE EARTH'S SURFACE
CALCULATE STANDARD TIMES
AT WHICH SUN RISES
AND SETS
CALCULATE VAPOR PRESSURESN
DEW POINT. AND DAMPENING
EFFECT DUE TO CLOUDINESS
CALCULATE
HOUR ANGLES
CALCULATE AMOUNT OF CLEARv
SKV. SOLAR RADIATION. AND
ALTITUDE OF SUN
CALCULATE ABSORPTION AND
SCATTERING DUE TO
ATMOSPHERIC CONDITIONS
CALCULATE
REFLECTIVITY
COEFFICIENT
CALCULATE NET SOLAR
RADIATION AFTER
SCATTERING. ABSORPTION.
AND REFLECTION
COMPUTE OTHER HEAT FLUXES^
AND PERFORM ENERGV
BUDGET FOR EACH ELEMENT
f RETURN J
FIGURE EZ--8
FLOW CHART FOR SUBROUTINE HEATEX
-------
S I U"in| !Hf HE.ATFX
HFATEX COMPUTES THE NET AMOUNT OF HFAT
RADIATION FLUX BEING TRANSFERRED ACROSS
IMF AIR-WATER INTFRFACE BASEP ON AN
E"FRGY BUDGET tfHIcH CONSIDERS SOLAR
RA1IATIOM. ITHOSPHEMIC RADIATION. BACK
HAOIATION, CONDUCTION, AND EVAPORATION.
TITI.r,NHUWAP(15) ,
TAPr,DU(7").IAUGOR(75.6l,NCrL'»H<75I.IFLAGI75.aOI.
ICI OKI) | T>, PO) .COE.FOVI75) .EXPPQV(75) .COEFQH(7S) ,EXPOOH(75) i
rwfMij(7"),rKl(7'i).rK3l71j).K2nPT|75),CK8(75).COFQK?(75l,
F>f'3K2(7I'I.TTNIT<7'5|.DnlNITI75).BOINITI75).COIMIM75.3l.
OTI75) .TK?1;) .001(7^1 ,BOnl(7S) .CONSII75.3I ,JUNCID(15,5) .
Jljr.rCl
MSTFMPI90),WSDO(90I,WSROD(90).WSCOMS(90,3).OATOTI15I,
A (".on >, HI Slit) ,C<50P> .PCS) .5(500) .2(501) ,U<50n) .6(500).
runjonn) .OEPTHibooi •vFL(5on)«OTOvrL(5oo) .Kacson) .Kiisno).
llSr|FT(Enn).'}LISOOI.VHU(15)lDEPHyilS).DLHU(15).TI5aOI,
"OCSUill .Boni^Oni.CPNSCiOn.SI.PTIHE.TPRINT.OELlf,
•|HWTRS.NPEACH.NWASTE,NJUNC.nELTl01LT,n2LT.DTODX2.DTKODX.
L9T,Lb1,LLf<,rLEV.n(iT,AF.,PE.nnYOFTf,nRTPLR.UETBLB.DEUPT,
ATKPR,WIND.CLOUn.SnNCT.NI.NJ.TRLCO.TOFOAY.NT.MC.TIME.NcS
UrAI
Cnr,?=l'I/l».n.O«LAT
STEP 1-0
COMPUTE REQUIRED CONSTANTS
rrwf.=1J>.o/PI
PEl TM =(Ll«-LS"()/l«i.O
SOLrOtl=13P.O
Fl FXP=FXP(-ELF«/253?.OI
IF (TnFI'AY.ML.n.OI GO TO 77
00002600
00002700
00002800
00002900
00003000
00003100
00003200
00003300
00003400
00003500
00003600
00003700
00003800
00003900
00004000
00004100
STEP 2-0 00004200
COMPUTE ALL TFRNis REQUIRED FOH 00004300
EVALUATING THE VARIOUS FLUXES IN00004400
FMFRGY BUDGET 00004500
00004600
00004700
00004800
STEP ?-1 00004900
COMPUTE SEASONAL AND DAILY POSIT00005000
<5HN RELATIVE TO A SELECTED LOCATQ0005100
THE EARTH'S SURFACE. 00005700
00009300
00005400
• NEW
*NEU
»NEU
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• -16
-------
Orri IN=r()Nu«COSICnNl«(l7a.n-DAYOFYM 00005500
Kl'si t'AkTh»2 00005600
= n.P.101?l-J.l?3iq»SlNtCON1*(OAYOFT-l .0)-0.070l'M 000(15700
-O.J6b'»<'*SIMt?.n*cr>ril» 00005900
AC*=TANICI)»l,»l*TAMI)ECLnNI 00006000
IF (ACS.Cll.n.O) GO TO « 00006100
X=SRRTI l.n-ACS.'CS) 00006200
vzK/AfS 00006100
ArS = ATAMX) 00006100
ir (nccLiii.Gr.n.ui ACS=PI-ACS ooooesoo
Go TO y 00006600
P At'5=PI/?.n 00006700
q CONTINUE 00006800
c 00006900
f STEP 2-2 00007000
r COMPUTE STANDARD TINES AT WHICH 00007100
C RISES AND SETS. 00007200
C 00007300
STR=l?.n-rONft.ACS*DELTSL 00007HOO
Srs=21.n-STR*?.n*DELTSL 00007500
ST1=0.n 00007600
STE=STB*02LT 00007700
GO TO 76 00007600
77 SrH=STR+02LT 00007900
STE=ST('*D2LT 00008000
78 CONTINUE 00008100
C 00008200
C STEP 2-3 00008300
C READ IN LOCAL CLINATALOGICAL OAT00008400
C AT DESIRED TIME INTERVAL (tllNIMUOOOOBSOO
f INTERVAL IS THREE HOURS). 00008600
(. 00008700
IF (TRLCD.NE.n.O) GO TO «? 00008800
Rfah 12. CLOun.nRYBLBtWETpLB.ATHPRtUIND 00008900
WINn=wiND»l. 1S1 00009100
c 00009200
C STEP 2-« 00009300
C COMPUTE VAPOR PRESSURES! DEW POI00009«00
T DAMPENING EFFECT OF CLOUDINESS. 00009900
C 00009600
VPUR=n.l001»LXP|0.03*WETni R)-0.n837 00009700
VrEI-O.Oa0367»ATMPR*lORYBLB-WCTBLP) 00009800
» »(1 .0+i onoutoo
-------
TF=.n-UFLT3L
u\ CONTINUE
TI\I T=(T
COMPUTE HOUR ANGLES OOOll'iOO
00011600
0001)700
000 11 BOO
00011*00
00012000
00012100
00012200
00012300
D0012100
00012500
oooia&oo
00012700
STEP Z-f. 00012BOO
COMPUTE AHT OF CLEAR SKY. SOLAR D0012900
RADIATION, AND ALTITUDE OF SUN. 00013000
00013100
BI + CnN6*COS-SIM(CON5*TB»> 00013300
Ai PMA=«iIN(rilM?l«SintOErLIN) + COSfCON:>l«COS
e. AL"HA=-PI/2.0
•i coNTiuur
IF (ALPHA. LI. 0. 01) 60 TO JS
00013100
00013SOO
00013600
00013700
00013800
00013900
0001HOOO
0001"»100
00011200
00011300
oooii»oo
0001*300
0001H600
STEP 2-7 00011700
COMPUTE ABSORPTION AND SCATTERIN00014BOO
DUE TO ATMOSPHERIC CONDITIONS. 00011900
00015000
PUC=0.006lH*LXPI0.01B9«UEUPTI 00015100
(>aM=ELLXP/««l-l.?53M 00015200
A1=FXP(-(n.16'i*n.OilOB«PWC)*(n.l29+n.l71«EXP(-O.B80»OAHII«OAM) 00015300
A?=FXPI-(0.ii6';*0.ni»Ofl»PWCI«
-------
f STEP 2-1 00017500
C COMPUTE NET SOLAR RADIATION AFTEOC017600
C SCATTERING. ABSORPTION, AND REFL00017700
C 00017800
SONFT=SOLAR*flTC»CS«tl.n-NS) 00017900
OP TO 16 oooiaooo
** SONFTrn.O 00018100
*(, CONTIMUE 00018200
CLC=I .n+o.i7tCLruin**2 OOOIBSOO
C 00018400
C STEP 3-0 00018500
C COMPUTE OTHER HEAT FLUXES AND PE00018600
f ENERGY BUDGET FOR EACH COMPUTATI00018700
C ELEMENT. 00018800
c 00018900
HA=n.*2.89E-06*fnRrRLR+l»60.0l**6*CLC*D2LT 00019000
HO 70 1=1.NPEACH 00019100
NrELR=MCELKH(I) 00019200
00 70 J=1,MCELR 00019300
IOR=ICLnRP(I,j) 00019*00
VPW=n. 1 noi*EXP(O.P3*T| IOR»-0.0837 00014500
HI3=P.<>7*1.73E-09*fT(IOR)-f
-------
SUBROUTINE HYDRAU
Subroutine HYDRAU remains unchanged from the original version
of QUAL as documented by the Texas Water Development Board (2). According
to reference (2):
This routine performs a hydrologic balance for a
branching stream or canal system based on continuity of
flow. It then computes velocities, volumes, and
dispersion coefficients for every computational element
in the system.
The flow chart for Subroutine HYDRAU shown in Figure IV-9 is taken from
reference (2). The program listing follows the figure.
IV-16
-------
FIGURE EZ--9
FLOW CHART FOR SUBROUTINE HYDRAU
-------
sii ii ni TII r
HYOPAU PERFORMS A HYOROLORIC BALANCE ON
TMf SYSTEM BASER ON CONTINUITY. IT
CONPUTFS THF FLOb, VELOCITY, VOLUME.
OEPTH, AND DISPERSION COEFFICIENT FOR
EVFRY ELEMENT IN THE SYSTE1.
C'1»»ON TITLri?0«20l ,KCHIO|75,5>,RMTHOP(75) .RMTEOR ( 75 I .NHUUAR < 15 I t
I ,IAUGOR(7S.fi).NCELRH(7'j) .IFLA6175.20)i
.?OI .COtFnV(75).EXPOQV(75) .COEF8H(75) .EXPOQHI75).
CMANN(7S).rKlf7Ii),rK3l75)iK20PTI75)iCK2l7Ii),COEaK2(75).
FXPQK2I75),TINITI75>iOOINIT(7?),BOINIT(75).COINITI75.3).
01(751 ,T1 (75) .001(7-1 ),ROOI< 75) .CONSI (75.3). JUNCIDI 15.51.
Jljnciis,^) ,HWTRIU(15.5).HWFLOW(15),HWTEHP(15) .HWOOI15).
MWPOOI15).HWCONS(15i3).UASTini10.5)iTRFACT(90),USFLOU(90).
WSTFriP(in),uSOO(9U).WSROD(90>.WSCONS(90<3liOATOTllS)<
Ac-.nm .mbon) ,cison>.n(5).S("500) ,zisnoi.wi500i,G(500).
FLOWIri
C'lC^I n=IICELP
Qi>=nl( ll/CNCELR
On inn J=I.MCF;LR
lOHzICLORtK I.J)
IhL=IFLA(;( I.J)
00002500
STEP 1-0 00002600
INITIALIZE COUNTERS FOR HEADWATE00002700
WASTE INPUTS OR WITHORAULS. AND OOOOZBOO
JUNCTIONS. 00002900
00003000
00003100
00003200
00003300
00003100
STEP 2-0 00003500
LOOP THROUGH SYSTEM OF NREACH REOOOOSSOO
AND NCCLR COMPUTATIONAL ELCMENTS00003700
REACH. 00003800
00003900
00001000
00001100
00001200
00001300
00001100
00001500
00001600
r,[i TO (101.102il02il03.10?.10l,10«), IFL
00001700
00001BOO
STEP 2-1 00001900
TOKPUTE HYDRAULICS FOR AN ELEMEN00005000
TYPE 1. 00005100
00005200
00005300
00005100
-------
)«HUFLUUIMHUI**EXPOOV( n onoossoo
I'I >M'l=??.<;«riiflNN(i i«vnmMHW)»oEPHU(NHWi*«o.m3 00005700
*FLOU(ICDX/IHUFL(H'INHW)/VHUINHW)+FLOW< IORI/VELI IOP) I 00005900
Gi< in IP*5 00006000
r oooo6ton
C STEP 2-2 00006200
f COPPUTE HYDRAULICS FOR ELEMENTS 00006300
C 3.3. OR S. 00006400
r 00006500
in' Fl 11,1 'OK)=FLOu(IUR-I I+OR 00006600
\/FLI IORI=C nFFQVI II«FLOW( I OR I **FXPOOV( 11 00006700
OTOvri < l(iP)=(lT3PUy/(FLOWIinR-ll/VEL(IOR-l)4-FLOW(IOR)/VEL(IOR) ) 00006ROO
RH TO IPS 00006900
t 00007000
C STEP 2-3 00007100
C COMPUTE HTRRAULICS FOR AN ELFMENQ0007200
C TYPE t. 00007300
C 00007400
in* IJIIM(=IJIJMC-»L 00007500
NS=1 00007600
'Jl =.IUMC( UllNCiMS) 00007700
Fl.O'/llx/IFLQW(IOR-l)/VEL(IOR-l)+Fl.OUIIOR)/VEL(IOR)«- OOOOAOOO
• unvcjiD/vrLCJMM oooosioo
Gn 10 lOb 00006200
r 00008300
C STEP 2-4 OOOOB400
C COMPUTE HYDRAULICS FOR CLEMENTS 00008500
T 6 OR 7. 00008600
C 00008700
let H:«S=NWS«1 00008800
FlOlU IOR)=rLOw(IOR-l)+wSFLOW(NUS)+OR 00008900
Vri.(iriK)=rOEFOV(II*FLOU(IOR>**EXPOOVIII 00009000
nrnvci|IOP|=UT2fD»/(FLOU(IOR-l»/VELIIOR-I|»FLOWlIOR)/VEL
-------
SUBROUTINE INDATA
Subroutine INDATA reads'and prints all data required by the
model except the cllmatological data which is read in Subroutine
HEATEX and/or ALGAES. INDATA reads a set of title cards and 11
different types of data that are prepared on 19 different data forms.
Seven of the data forms are optional depending on the parameters to
be simulated. Chapter V contains additional details concerning data
preparation, descriptions of data forms and an example data set. If
INDATA detects any data inconsistencies, it prints an error message
and terminates execution.
Figure IV-10 illustrates the flow chart for INDATA and the
following pages contain the program listing. All program variables
in COMMON are defined in Section V.
IV-17
-------
lUMATIHIl ]ST.lRPTl.I«Ur,nn,T1«X,NCELLSl
TMIS SUPPOUTINE RraPs IN ALL DATA
RFQUIREP FOR THE OPERATION OF THE
nnnr.L tvcrfi THF CLIH«TOLOGIC*L
OtTA FOR TEMPERATURE SIMULATION.
r.f -T-'lii TITLf (?n,an).RCHIU(75.SI,RMTMOKfT5>.RMTEOP<7'il .NHUUAR I 15 I i
TAIi'.Hur 7C l.inUGOMTS.M .MCf LRH(75),IFLAG<75,20> ,
If! IIIJI 7'5,?0)iCOEF(JVI7'S),EXPPOVI71)),COEFOH(75l ,EXPnQHI75),
K) (7S1 .CK^(7'i)if90PT(75) .CK2I75) . COEOK2I75I ,
'_) ,TINIT(7St,nOIMrT(75) .HOINITI7S) .COINITI 75.31 •
01 (751 .TK7SI .noil T .HUTRHH1S.5! .HUFLnUll'il.HHTENPdS) .HWDOM51 .
"wni'DC 151 .1'WCONS<1'5.1) .HAST in (90, 5 1 iTRFACT(90) .WSFLOUI9Q) ,
FLOWI'jPOI
.C<50PI.O(5I.S
SMKK7SI ,hf:H3/bOO).KNO?(500!.RESPRP(5nOI .COLII500).
TOI IR I 7tCOLIIT(7';).ALGIT(75)iPHOSITI75)iCMH3IT(75l .
rt.PPITtT^I.CnOSITITS) .WSCOLK90) ,tfSALG<9n),USPHOS{90l.
l.Sf'HJ 190). W5M09 I .HWN02RAONI|7!i)
iUSRAON|90)
y<50fl).ISS
• NEW
• igEU
*NEU
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• MEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• -89
• NEW
• •-1
• NEW
Rl ftl Kl .K?.LHT.LLI*.LSMf JU'TID
OATf f nr.T/uilEMOT/ , EKD»/"l'FNnA/ . YF.S/1H YF"iTAN.UMfVAP.'lHELEV/
i!i>,niiO PN.UHN co,nn/>ir, , UHM HA.MHLIGH/
STEP i-n
00003300
00003400
00005900
0000*500
-------
r INITIALISE CEKTMN PAHAHFTHS 1)000*600
r OOOOJTOO
in. inrn ]=i,i-*i\
innr [,'rt.r.ot I i=n
I1 OOOOJBOO
I. 00003900
=u oooo«ooo
ISS=n
LiJ=0.0 00004100
Lf=i<.Ii 00001200
LSn=p.c 00004300
PAYnFY=0.r 00004400
AE=n.n 00004500
l-F=0.0 00004600
ELFwrn.o 00004700
[)AT=0.0 00004BOO
NEPP(1U=U 00004SOO
Tnr=o.n oooosooo
TPPU.T = 0.n OOOOS100
TUFPAY=0.0 00005200
T-(LCr=().0 00005300
CKL=0.n
Ni=s 00005400
"J=f 00005500
I i c 00005900
JT) f, f c STFP 2*0 00006000
C READ IN TITLES 00006100
C 00006200
DO 3P 1=1. If.
FLAP INI. ill (TTTLEiJ=li20> 00006400
F
-------
I7?n r'i"TiMiif
f STEP 2-?
T SFT NCS INUNBFR OF CONSFRVATIVE
r CONSTITUENTS
C
Mrs=n
IFO.pfiOPTM ) ,LT. 1) 60 TP 1730
f!CS = I
IF(TlTLt(U,3) ,FQ. YES) NCS=2
lF|TITLFl*t3) .F(J. YES) NfS=3
17jn CtlNTINUF
C 00008300
C STEP 3-0 00008400
C RFAD IN ALL DATA REQUIRED FOR OP00008500
C OF THE MODELS. 00008600
C 00008700
C STEP 3-1 00008800
C READ IN DATA TYPE 1 IHOOEL CONTR00008900
C 00009000
1'ATA=l
IF^OPDPTISI .ST. 0) IOATA=1
NC"DS=1S
DO an i=i.NCnrs
REAM (Nl.?l) (nATA(I,K),K=i,l6) 00009200
f\ Fni>"AT (6«".«1 .FlO.n.lnx.fcftt.Al.Flfl.O 00009300
IF ITATAII.I)-ENOA)20i25,?n 00009400
?n CONTINUE. 00009500
NERPPR=1 00009600
?1 I=I+1 00009700
HLdn (Ml,?]) |OATA(I.K)iK=l<16) 00009800
IF (nATMI.l)-rl»L)Al?4.;>9,?4 00009900
WRITF |IIJ,22) H 00010100
99 FOKMAT PTI = i ononaoo
Gt< TO U. 00011900
7 lailKPP = 1 00017000
!•'• T M 00012100
-------
FORM(7)OF(J9)
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
TITLE DATA
\Simulote ?/
CARD TYPE \Write Yes/
\0r No/
"
T
T
T
T
T
T
T
T
T
T
T
T
T
f
T
E
-
'34.
TLE
TLE
TLE
TLE
TLE
TLE
TLE
TLE
TLE
TLE
TLE
TLE
TLE
TLE
TLE
NOT 1
• '
0
0
0
0
0
0
0
0
0
T
-
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
LE
-
.v
#
NO
_
-
,
-
-
--
"
-- --
- - -
-
-
- — ; '
-
ALPHANUMERIC NAME
J I -
-------
FORM
)OF(I91
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
PROGRAM ANALYSIS CONTROL DATA
*
*
*
*
CARD TYPE
(TYPE 1 DATA)
L
W
N
S
N
N
J
M
L
1
E
E
1 ST
R 1 TE
0 FL
TEAD
UMBE
UM 0
IME
AX 1 M
ATI T
TAND
VAP .
LEV .
NDAT
D
0
Y
R
F
S
u
u
•
ATA
F I NA
W AU
STA
0 F
HEA
TEP
M R0
DE 0
A|RD M
IC0EF
A
0F B
.
1 NPUT
L SUM
GMENT
TE
REACH
DWA'TE
( H0UR
LITE T
F BAS
ER 1 D 1
. , ( AE
AS IN
MARY
AT 1 0N
ES
RS
S)
IME (
1 N ( D
AN ( 0
s
3
HRS) =
EG) =
EG) =
> ;
(FEETJ)
' ' 1 ~
PARAMETER
VALUE
-L *
-- — -
-
«•>
-
-
.
NUMBElR 0F
NUMBE
LNTH
Tl ME
L0NG 1
DAY 0
EVAP.
DUST
R 0F
C0MP
INC
TUDE
J UNCT
WASTE
ELE
F0R R
0F BA
F YEAR STA
C0EF. , ( BE
ATTENlUAT 1 0
1 0NS
L0AD
MENT
PT2 (
SIN (
RT T 1
)
N C0E
s
S
(Ml ) =
HRS) =
DEC) =
ME
3
F .
PARAMETER
VALUE
i . — : — — — 1
FORMAT (6A4, Al, F10.0, 10X, 6A4, Al, FIO.O)
NOTE 1- These cards may be deleted if temperature is not simulated.
NON-SPACIALLY VARIABLE A, N. and P CONSTANTS (SEE NOTE 2)
0 UPT
0! PR0
N C0N
AL_G M
N, HAL
L,l GHT
ENDAT
1
A
D
T
A
F
A
CARD TYPE
(TYPE 1A DATA)
KE B
. BY
ENT
X SP
SAT
HALF
1 A
Y NH3
ALGA
0F AL
EC GR
URAT 1
S~AT
0X 1 D
E ( MG
GAE (
OWTH
ON CO
CONST
(MG 0
0/MG
MG N/
RATE(
NST.
( LNGL
/MG N
A)
MG A)
1 /DAY
(MG/L
Y/M 1 N
) =
S
S
) =
) =
>-•
PARAMETER
VALUE
_
0 UP
0 UP
P C0
ALGA
P HA
TOT A
TAKE
TAKE
NTENT
E RES
LF SA
L DA 1
BY N0
BY AL
0F A
PI RAT
2 0X1
GAE (
LGAE
1 ON R
TURATJI ON C
LY RAJDIATI
D( MG
MG 0/
( MG P
ATE (
ONST .
ON( LA
0/MG/N)
MG A)
/MG A)
1 /DAY)
(MG/ L)
NGLEYS )
S
3
S
B
e
s
PARAMETER
VALUE
FORMAT (8A4, F?.0, 2X, 8A4, F7.0) , , .
HOTS 2: These cards (except ENDATAW may be deleted unless ALGAE, (HH3, N02, N03), P04, Coliforms or adionuclides are to be simulated.
-------
FORM I
)OF (19)
MATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-il
REACH IDENTIFICATION AND RIVER MILE DATA
CARD TYPE
{ TYPE 2 DATA)
1
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
E
1
? 3 • 1 c
TREAh
TREAM
TREAM
TREAh
TREAM
TREAM
TREAh
TREAh
TREAM
TREAM
TREAh
TREAkf
TREAk/
TREAh
TREAh
T R E A h
TREAh
TREAIV
TREAh
TREAh
TREAh
TREAh
TREAh
TREAH
TRE AA
NDAT/
1 J 3 1
ft * 1C HP IJ n «
REA
REA
REA
REA
1 REA
1 REA
1 REA
1 REA
REA
REA
REA
REA
REA
REA
REA
REA
1 REA
t REA
1 REA
1 REA
II REA
t REA
1 REA
t REA
1 REA
k 2 ~ "
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
REACH IDENTIFICATION
ORDER
le i 1" 1« *.-
,
,
.
.
.
m
.
.
<
.
.
.
•
.
ALPHANUMERIC NAME
1 •»! i. j "r * 'J.i - - <
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH-
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH«
RCH =
RCH =
RCH =
RCH =
-
-
-
- - -
' -7 - „ - *» i
FR
FR
FR
FR
FR
FR
FR
FR
FR
FR
FR
FR
FR
FR
FR
FR
FR
F'R
FR
FR
FR
FR
FR
FR
FR
0M
0M
0M
0M
0M
0M
0M
0M
0M
0M
0M
0M
0M
0M
0M
0M
0M
0M
0M
0M
0M
0M
0M
0M
0M
RIVER MILE
AT
HEAD OF REACH
. - j - . - < a
.
t
.
.
.
.
.
.
—
<
.
f
1 11 1. — / •» '
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RIVER MILE
AT
HEAD OF REACH
i "
i II 1 . i II . . jj . „ . ., _ - . . -1 r » i. -• . 1. . -J •
, -» — 1 c f
.
.
,
.
.
.
.
.
.
.
.
.
m
,
.
m
J - * > ••"
ia en unmodified QUAL-1 form (See form B of E)
FORMAT (3A4, 3X, Fi.O, SA4, 3X, A4, 3X, F10.0, 4X, A2, 4X, F10.0)
-------
FORM
©
OF
MATER RESOURCES ENGINEERS, INC./TEXAS MATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
FLOW AUGMENTATION DATA
F L 0!W,
FLOW
FL.0W
FL0W
FL0W
FL0W
F L0W
FL0.W
F L 0,W
FL0W
FL0W
FL0W
FL0W
FL0W
FL0W
FL0W
FL0W
F L0W
FL0.W
FL0!W
F L0W
FL0W
FL0W
FLOW
FLOW
ENDAT
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
CARD TYPE
(TYPE 3 DATA)
U.GMT
UGMiT
UGMT
UGMT
UGMT
UGMT
UG'MT
UG'MT
UGMT
UGMT
UGMT
UGMT
UGMT
UGMT
UGMT
UGMT
UGMT
UGMT
UGMT
UGMT
UGMT
UGMT
UGMT
UGMT
UGMT
3
:s|0!uR
:S'0:U R
,s:0UR
S0UR
S0UR
S0UR
S0UR
S 0 i
(
.
.
'-
• . .
.
.
.
.
.
.
.
ORDER OF AVAILABLE AUGMENTATION SOURCES
1*1
1 j .
' ' !
• '.
.
,
.
( •
.
.
'
.
2Qd
!
.
. 1
.
•
1
.
.
.
.
314
.
.
: .
.
1
.
.
4lt
.
t
•
.
-
'
.
• , i
i i
.
.
.
5
1
1
'
|
in
.
,
i
.
.
.
1 '
i •
i
.
.
.
:
1
61H
i 1
:
• ;
.
i i ;-
, i i
' i I
i : -
:
1 !
1
.
i !
,
.
.
.
*Thia IB art unmodified QUAL-1 form (See form B of E)
FORMAT (SA4, SX, FS.O, SX, PS.O, F10.0, 6FS.O)
These cards (except ENDATA3) may be deleted if floa augmentation IB not used.
-------
FORM
)OF(I9]
WATER RESOURCES ENGINEERS, INC./TEXAS MATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
COMPUTATIONAL ELEMENT FLAG FIELD DATA
CARD TYPE
(TYPE 4 DATA)
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
E
L'AIG
LA.G
LAG
LAG
LAG
LAG
LAG
L'A.G
LAG,
LAG
LAG
LAG
LAG'
LAG'
LAG
LAG
LAG
LAG
LAG
LAG
LAG
LAG
LAG
LAG
LAG
NDAT
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
A
I.ELD
1 ,E'L D
1 E,LD
1 ELD
1 ELD
1 ELD
1 ELD
1 ELD
1 ELD
1 ELD
1 ELD
1 ELD
1 ELD
1 ELD
IELD
1 ELD
1 ELD
1 ELD
1 ELD
1 ELD
1 ELD
1 ELD
1 ELD
1 ELD
1 ELD
4
R'CJH =
RC'H,«
RC'H =
RCH =
RCH =
RCH =
R.C H.=
RCH =
RCH =
RCH =
RCH =
RCH =
R.CH =
RCH =
RCH =
RCH =
RCH =
RCH:
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
ORDER
OF
REACH
1 i ,
1
I
.
i
' I
1
.
.
.
;
J
1
,
NumOf
Compi
Elements
•
.
.
.
.
.
!
;
COMPUTATIONAL ELEMENT FLAGS
1 2 34 5 6 78 9 10 II 12 13 14 15 16 17 18 19 20
I I
.
. .
.
.
[
t t
.
.
. .
• '
1 ,
•
.
. !
'
• ' !
. , I .
.
.
.
.
.
••' M
, i •
. i
!.i
• . ,
i
,-!
: i
I
i
.
: 1
.
1 | .
. ' ; .
..I •
,
• * * • i •
.
•
• i i •
*
.
.
.
.
.
. i
> i
; i ' .
i '
• 1 1
,.; i.'
LI
i
' i
i i '.
i.! '.,
•
•
i .
.
.,
1 (
; i
1
i i
! ! • !-
! 1
•! i-
1 ! i ' '
1 i ' ' j
.
.
i , .
..,.''.
.•
• i
.
.
1 •
r 1 !
| ' 1 . , ' 1
1 • i . ' .
. ' .i .'
*
t
;-! ,-i •
!•' !-l - -
i
.
.-'.'! i- •
1 1 i
-; !.' .i .
.
• • •
.
*Thia is on unmodified QUAL-1 form (See form B)
FORMAT (2A4, A2, SX, PS.O, SX, F5.0, 10X, ZOfZ.O)
-------
FORM
)OF(I9]
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
HYOROLOGIC DATA
CARD TYPE
(TYPE 5 DATA)
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
r
YiDlR'A
YjDiR A
Y D.R.A
YDRA
YDRA
YDRA
YJDJR A
Y'DiR.A
YDJRA
YDRA
YDRA
YDRA
YDRiA
YD.RA
YDRA
YDRA
YDRA
YDRA
YDlRA
YDlRA
YD!RA
YDRA
YDRA
YDRA
YDRA
NDAT
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
A
L;l!C;s
LillC'S
L I|CS
LICS
L 1 CS
L 1 CS
LUiCS
LillCS
L' iC'S
L CS
L CS
L CS
L C.S
L CS
L CS
L CS
L CS
L CS
L CS
L, CS
L. cs
L CS
L CS
L CS
L CS
5
I'RidH =
:R'ClH =
R'C'H =
RCH =
RCH =
RCH =
R|C'H,=
RJClHi =
RiCiH =
RCH =
RCH =
RCH =
R.CH =
RICH -
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
;RCH =
RCH =
RCH =
RCH =
RCH =
ORDER
OF
REACH
' : ,-i
' : '.•
>.
.
.
i
• i.1
.
1 '.,
.
'
,
.
.
1
,
i ;
I'M
-
•
•
,
• '
, :
( '
, ,
,
1
COEFFICIENT
OF FLOW FOR
VELOCITY
i ,
i •
! , 1
,
I ;
i '
l •
!
1 ;
.' ;
.
.
.
. l
.. ;
.
j
' ' *
1
, ,
.
.
.
.
EXPONENT
OF FLOW FOR
VELOCITY
I
1 '
,
i t 1
I
,
1 '
t
t
.
. 1
.{
i ! . '
, 1
. l
.
f
.
• t
.
.
COEFFICIENT
OF FLOW
FOR DEPTH
i
• i
i •
, '
< i
. l '
: . I !
. ,
, |
,
! i
i *
.
.
t
i
• i
' .' i '
1 m
.. i
,
l
EXPONENT
OF FLOW
FOR DEPTH
, . i
' i i :
i
i
• i
, 1
! l
: i 1
i t
! : i
•
i •
— i—
.
r"
i
i
, !
i.: I
'_ , '
.1
•
1 ; ;
1 • l '
'•i :
f
,
MANNING'S
"n"
i
;
,
,
!
— r~
! I
i
i
.
-r
,
i
i
,,
.
.
i
i
• _ i ,
i
i
i
J-i
.
•
.•
i
i
] m
1 t
•
,
i ;
t
ia on unmodified QUAL-1 form (See form C)
FORMAT (2A4, AS, SX, FS.O, 10X, SF10.0)
-------
FORM
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II ~
BOD AND DO REACTION RATE CONSTANTS DATA
CARD TYPE
(TYPE 6 DATA)
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
E
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
EACT
NDAT
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
1X6
RC.H*
RC'H =
RC'H =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
ORDER
OF
REACH
1
t
t
.
§
m
DEOXYGENATION
COEFFICIENT
(I/DAY)
.
g
.
t
t
t
.
-" ?- -a ?» jc
BOD REMOVAL
DUE TO SETTLING
(I/DAY)
Jl 3' 33 J-i 3
1 |—
m
.
.
.
- r 39 & v
OPTION FOR
DETERMINATION
OFK2
, i
i
•
,
1 , .
,
i
.
.
,
,
.
.
.
.
REAERATION
COEFFICIENT
(I/DAY)
t
1
.
.
.
.
.
COEFFICIENT
OF FLOW
FOR K2
•
.
.
.
.
-, -,
EXPONENT
OF FLOW
FOR K2
t »j ™ 9 '• d*»
_.-- '_. ..i —
•
| 1
'
•
-
.
.
'This is an unmodified QUAL-1 form (See form C)
FORMAT (2A4, A2, SX, FS.O, 6F10.0)
-------
FORM
©
OF(I91
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMEfx iOARD
STREW QUALITY ROUTING MODEL
QUAL-II ~
ALGAE.NITROGEN AND PHOSPHOROUS CONSTANTS
CARD TYPE
(TYPE 6 A DATA)
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
E
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
LGAE
NDAT
t
t
t
,
-
t
,
*
,
t
,
i
•-
,
§
-
f
,
-
A
-
N A
N A
N A
N A
N A
N A
N A
N A
N A
N A
N A
N A
N A
N A
N A
N A
N A
N A
N A
N A
N A
N A
N A
N A
N A
6A
ND 'P
ND P
ND P
ND P
ND P
ND P
ND P
ND P
ND P
ND P
ND P
ND P
ND P
ND P
ND P
ND P
ND P
ND P
NO P
ND P
ND P
ND P
ND P
ND P
ND P
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
RC
RC
H =
H*
RCH-
RC
H =
RCH*
RC'H =
RC!H'=
RC
H>
RCH =
RCH =
RCH =
RCH =
RCH =
RC
H' =
RCH =
RCH =
RC
H =
RCH =
RCH =
RCH =
RCH =
RCH =
RC
H =
RCH =
RC
H =
ORDER
OF
REACH
t
,
.
.
.
.
—
—
—
CHLOR A TO
ALGAE RATIO
x/G/MG
.
.
.
.
.
.
.
Algae Settling
Rote
(FT/ Day)
•
•
1
1
•
.
.
.
.
\ . •
.
Ran
NH
» Coef For
3 Oxidation
I/Day)
1
.
.
.
.
.
.
.
.
.
.
-
-
Rate Coef For
NH2 Oxidation
(I/Day)
.
.
.
.
.
.
.
.
Benthos Source
Rate For NH3
MG/FT/Day)
-
-
.
.-
.
.
,
.
.
.
i.i.i .1 ., . • < . • j - « a ., .1 i- ' •> i
Benthos Source
Rate For P04
MG/FT/Day)
i • i
.
i . •
.
•
i : .-'
.
1
: . 1.
• i
.
.
.
.
.
.
\ '• t.
'FORMAT (SA-i, Si, FS.'l, 2X, JFB.O)
T'^si: aai\h (except SSDATA6AI ma, oo tieletcd M! ton ALGAS, (*H3. f '2, NOi), PQ4, Conforms or tka Radion'toiides are to :s siirulalel.
-------
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
FORM (9JOF(\9)
OTHER CONSTANTS*
CARD TYPE
(TYPE 6B DATA)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
E
THER
THER
THER
THER
THER
T.HER
TH'E-R
T H'E R
THER
THER
THER
THER
THER
THER
THER
THER
THER
THER
THER
THER
THER
THER
THER
THER
NDAT
A
C.0IEJF
C0IF1F
C0'E'F
C0EF
C0EF
C0EF
C|0'E F
C,0E!F
C0.E.F
C0EF
C0EF
C0EF
C,0 E.F
C|0,EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
C0EF
68
Fl.lC
F'ljC
F 1 C
F 1 C
F 1 C
F 1 C
F IjC
HE
I'E
1 E
1 E
1 E
1 E
F 1 CJl'iE
Fll'C
F 1 C
F 1 C
F 1 C
FU'C
Fl C
FH C
F 1 C
F 1 C
F 1 C
Fl C
F 1 C
Fl C
F 1 C
Fl C
Fl C
F 1 C
I,E
1 E
1 E
1 E
I'E
I'E
I'E
1 E
1 E
1 E
1 E
1 E
1 E
1 E
1 E
1 E
1 E
NiTJSl ,
N;T.S! •
N'TS
NTS
NTS
NTS
NT'S.
NTS! ;
NT,S>
NTS
NTS
NTS
N.T'S1 !
NT'Si
N'TlS!
NTS
NTS
NTS
NTS
NTS
NTS;
NTS
NTS
NTS
NTS
R'C.H!=
>RCHi =
RCH =
RCH =
RCH =
RCH =
|RCH,=
iRJC H>
,R!CHi=
RCH =
RCH =
RCH =
iR|CH; =
;RIC;H.=
:R:CH:=
RCH =
RCH =
RCH =
RCH =
RC'H =
RCH =
RCH =
RCH =
RCH =
RCH =
ORDER
OF
REACH
t t
i i
•
,
i
1
1
.
i
•
i
i
,
Benthos Source
Rote For BOD
(MG/ Ft/Day)
i
i
1 '
,
•
•
I
i
, ' , i.
*
1 '
.
.
1 t i ;
. ( '.
.
.
'
COL (FORM
DECAY RATE
(I/Day)
i '
> i
, i
. i
i
I :
1
•
•1 u
1
' 1
. ]
.
1
i
.1 !
1
• i
i i
,
.
.
., ,. „
LIGHT
EXTINCTION
"fflff"
,
'
W
! '
; |
I
.
i
1
•
i
1
•
i , :•
.
.
.
.
.
RAD 10-
NUCLIDE
DECAY RATE
'."i"."
• > •
1
! i
i : ;
i , .
i •
1
i
i
!.! '
• • '
!.i !
•
! i •
1 ' ,
( t
1
'
.
.
1
j ,
! • _
—i—
!
1
!
: 1
t
1
! i
1 i
1 '
, i
1 • ! i
, i
1 i
,
;
i i
,
1 ; -
i
i , ( • i
: • • !
•
'
'FORMAT (SA4, SX, F5.0, 2X, 6F8.0)
These cards (except ESDATA6B) may be deleted unless ALGAE, (NH3, N02, 1103), P04, California or Rodionuclides ore to be simulated.
-------
FORM (10)OF |
MATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
INITIAL CONDITIONS DATA
-
E
I
N T
N T
N T.
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
NDAT
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
CARD TYPE
(TYPE 7 DATA)
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L CO
L C0
L C0
L C0
L C0
L C0
7
N'D i IT
NDI T
NDI'T
NDI T
NO 1 T
NO 1 T
NDI T
ND 1 T
NDI T
NDI T
ND 1 T
ND 1 T
ND 1 T
ND 1 T
ND 1 T
ND 1 T
ND 1 T
NDI T
ND 1 T
NDI T
ND 1 T
ND 1 T
ND 1 T
ND 1 T
ND 1 T
0N'S
0'NS
0NS!
0NS
0NS
0NS
0N;S
0N.S
0NS!
0NS
0NS
0NS
0NS
0NS
0NS
0NS
0NS
0NS
0|NS
0NS
0NS
0NS
0NS
0NS
0NS
RCH =
RCH =
RCH*
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
ORDER
OF
REACH
.
.
TEMPERATURE
(°n
.
(
.
.
.
1
DO
( MG/L)
1 t
.
.
. ,
.
, .
.1 -2 1,1 4. ,
BOD
(MG/L)
•
.
1
i 1.
'
1
-e «- t' a S3
CONSERVATIVE
MINERAL I
MG/L
• i
i i
1
i
i
1
• .
ii - « a* ss
, 1
.
i
'
.
.
i j7 SJ ^ 0
CONSERVATIVE
MINERAL H
MG/L
i
,
:
.
61 &' eJ 6* tl
• i
'
.
.
.
i .
, 1
1 I.'
i;-!
, l '.!
1 i '
. ••
.
.
.
6e 67 61 t* -0
CONSERVATIVE
MINERAL nr
MG/L
1
I
(
71 ••
1 1 '
1 > , 1.
! ! i.
1 •_
.
1
i '
i
• i i •
'
' .
-i--U---
1 I
1 ! i
': il -
.
* •
• i •
' i
i •
.
3 -1 -\ t 77 79 7» M
*Thia ia on unmodified QUAL-1 form (See form C)
FORMAT (SA4, SX, FS.O, F10.0, 2FS.O, 3F10.0)
-------
FORM
) OF (191
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
INITIAL CONDITIONS FOR ALGAE.N. P. COLIFORMS.AND RADIONUCLIDES
CARD TYPE
(TYPC 7A DATA)
E
1
N; T'
N T
N T
N T
N T
N T
N T'
N1 T
N ,T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
N T
NDAT
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
ft
A
A
L C0
L CO
L ;C0
L CO
L C0
L C0
LI C0
L !C0
L' C0
L C0
L C0
L C0
L C,0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
L C0
7A
N'D|-!2
ND'-'2
ND'-2
ND-2
ND- 2
ND-2
ND-2
ND-2
ND-2
ND-2
ND-2
ND -2
ND-2
ND-,2
N.D-2
ND- 2
ND- 2
ND-2
ND-2
ND-2
ND-2
ND-2
ND-2
ND -2
ND-2
-
-
—
We H =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
R,CH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH'=
RCH =
RCH =
RCH*
RCH =
RCH =
RCH =
RCH *
RCH =
RCH =
RCH =
ORDER
OF
REACH
-
.
i
1
1
.
.
.
.
t
CHLOR A
>
-------
FORM
I OF (19)
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
INCREMENTAL RUNOFF DATA*
CARD TYPE
(TYPE 8 DATA)
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
E
UN0F
UNOF
UN0F
UN0F
UNOF
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UNOF
UN0F
UNOF
UN0F
NDAT
F
F
F
F
F
F
F
p
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
A
,C0N
ICON
C0'N
C0N
C0N
C0N
C0N
C0!N
Ci0N
C0N
C0N
C0N
C0N
C0N
C0N
C0N
C0N
C0N
C0N
C0N
C0N
C0N
CON
C0N
C0N
8
Dl T, 0
D 1 T 0
Dl T 0
Dl T 0
Dl T 0
D 1 T 0
01 T 0
D 1 T 0
Dl T 0
Dl T 0
D IT 0
D 1 T 0
DIT 0
Dl T 0
DIT 0
DIT 0
DIT 0
DIT 0
DIT 0
DIT 0
DIT 0
DIT 0
DIT 0
DIT 0
DIT 0
NS
NS
NS
NS
NS
NS
NS
NS ;
N;S
NS
NS
NS
NS .
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
RCH =
RCH =
RCH<=
RCH =
RCH =
RCH =
RCH =
R'CH =
R,CH =
RCH =
RCH =
RCH =
'RCH =
RCH =
RCH =
RCH =
RC H =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
RCH =
ORDER
OF
REACH
.
.
.
Incre-
mental
(cV°§,
•
.
.
.
.
jl ' JJ 3J
TEMP
CF)
p
.
.
.
.
U I' V J« *
DO
(MG/L)
•
.
• •
[ t i
.
.
BOD
(MG/L)
.
.
J
.
t
.
.
.
CONSERVATIVE
MINERAL I
(MG/L)
•
*
:
i
,
•
•
.
(
,
.
.
.
.
CONSERVATIVE
MINERAL I
(MG/L)
i
! t
i i
1 i
• i • .
i i
i ••;
.
. : i.
' 1 i
, I
.
.
,
..
.
CONSERVATIVE
MINERAL HI
(MG/L)
1
-
I •
I I
..
.
I t '
I ' • >
' • ' ! ,
.
: i i !.
: ' 1 j.
i , i l i
. ,.!,.'
.
.
1 •'
, .
, !•:
.
'This is an unmodified QUAL-1 foim (See fovn D)
FORMAT (SA4, SX, SPS.O, 3F10.0)
-------
FORM
I OF I
MATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
INCREMENTAL RUNOFF DATA FOR ALGAE, N, P, COLIFORMS, AND RADIONUCLIDES*
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
E
UNI0F
UN0F
UN'OF
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN'0F
UN0F
UN0F
UN0F
UN0F
UN0F
UN0F
NDAT
CARD TYPE
(TYPE 8A DATA)
F
F
j
r
r
r
F
j
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
A
C!0'N
C0N
C'0'N
C0N
C0N
C0N
C0N
C'0'N
C0N
C0N
C0N
C0N
C0.N
C0N
C0N
C0N
C0N
C0N
C0N
C0N
C0N
C0N
C0N
C0N
C0N
8A
D!-'2J
Dl-'2|
0',-'2'
0-2
0-2
0-2
D-2;
Di-2i
D|-|2I
D-2
D-2
D-2
D-2
D'-2.
D!-2
D-2
D-2
D-2
D-2
D-2
D-2
D-2
D-2
D-2
D-2
R'C H' =
R|C,H|=
R'CH' =
RCH =
RCH =
RCH =
RCH =
R|C:H *
RCH =
RCH =
RCH =
RCH =
RjC H »
RCH'=
RCH =
RCH =
RCH =
RCH =
RCH =
RC H =
RCH =
RCH -
RCH =
RCH =
RCH =
ORDER
OF
REACH
1 .
; '.
; .
.
1
(
.
.
.
.
.
CHLOR. A
UG/L)
-
-
;
. i
. •
i
.
.
. ,
.
t
.
.
NH3 AS N
(MG/L)
. ,
.
.
' • i 1
. . 1
,
.
.
t
.
N02 AS N
(MG/L)
• i
i
!
I
•
1
•
.. 1
I
, f
1
• i 1
1 '
•: !
i 1
-. 1
.
.
.
.
.
N03AS N
(MG/L)
,
i
1 '
1 . i
1 i
t
.
• 1
. '
.
.
1
• i
.
.
.
.
P04 ASN
(MG/L)
• ,
1
l
J
. i
.
.
.
.
.
.
.
.
.
.
COLIFORMS
(MPN)
• • * •
•
t
'"
, i
.
•' i!!-
1 ; '• i.
; •
f
.
'
,
.
RADIO-
NUCLIDE
. ' ' .1
1 ' t
,-i
.
1 ;
:
1.
1
i
!
1 • : .!
I >
'
< i .
i
1.
.
'FORMAT (3A4, A2, SX, FS.O, 7F8.0)
These cards (except EHDATA8A) may be deleted if none of the parameters shown are to be simulated.
-------
FORM (l4)OFfl9J
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II -
STREAM JUNCTION DATA
CARD TYPE
(TYPE 9 DATA)
STREA
STREA
STREA
STREA
STREA
ENDAT
| I
I ; '
i ! '
i : i
1
1
< i i
i i
! 1
i i
M
M
M
M
M
A
J,UN
J'UN
J'U'N
JUN
JUN
9
! i ;
i ' i
| { >
i i :
; i
;
< . ,
, »
! ' '
CT!l!»N
ClT!l!0N
CTiliflN
CT 1 0N
CT 1 0N
i ! i
51
I-
•
i 1 :
1 ! '
i •
I '
! ' '
| ,
i
i i '
t
' : : !
i
i : i
i
i i
i ,
!
i i '
i
, 1
I l
ORDER
OF
JUNCTION
.
.
•
! ' i '
i ! i
I .
t i
i ' 1
; i ,
1
i 1 T
I |
1 (
1 1 '
1 •
•
, i
i i
i
!
;
1
;
• • •
: :
. .
i i ,
• '
JUNCTION IDENTIFICATION
JNC =
JNC*
JNC' =
J NC =
JNC =
i : ;
: i . '
1 1 ! .
i
1 | j
,
i •
:
•
,
, i
, i
! i :
•
(
,
,
, •
,
, ! >
1
i
i
i 1
1
'
i
1
,
r51-
'
|
1
1
I l
! ! :
1 -
1
!
1
: ,
I
1
i .
, |
1 i
]
*
No Of
Element
Upstream
Of -June.
i
i I
.
.
I'M
1 i i '
i 1 i 1
1 ' ! ;
i ! '
, '
, ; i i
• ,
: ' i
! |
i
;
!
i :
i
i
! ;
!
<
No Of
Element
Downstrm
O? June.
( .
.
I
1
1 '
1
; |
i ' •
i f '
; '
1 . ;
M
6'
M
69 "0
I
1
71
72
'
1
1
,
1
•
71
7t
-I
No.0f
Element
On
Tributary
(
.
i
' i •'
.
.
:
•
•
,
1
1 •
; '
i
I
76
71 78 " 63
*37it8 ia on unmodified QUAL-1 form (See form D)
FOSMAT (3A4, A3, SX, F5.0, SX, SA4, 3(SX, PS. 0)
-------
FORM (I5)OF(
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
HEADWATER SOURCES DATA*
CARD TYPE
(TYPE
HEADW
HEADW
HEADW
HEADW
HEADW
ENDAT
A
A
A
A
A
A
10 DATA)
TER
TER
TER
TER
TER
1 0
HEADWATER IDENTIFICATION
ORDER
.
.
.
ALPHANUMERIC NAME
HWD =
HWD =
HWD =
HWD =
HWD =
HEADWATER
FLOW
(CFS)
§
.
.
.
TEMP
(F)
p
.
.
DO
(MG/L)
.
.
BOD
(MG/U
.
.
.
CONS
MINERAL
I (MG/U
,
.
CONS
MINERAL
IHMG/L)
^TT-
.
.
.
J -. 73
CONS
MINERAL
m(MG/U
.
.
.
-
*This is an unmodified QUAL-1 form (Sea form D)
FORMAT (2A4, A2, SX, FS.O, SA4, P10.0, 6FS.O)
FORM
I OF I
HEADWATER SOURCES DATA FOR ALGAE. N, P, COLIFORMS. AND RADIONUCLIDES *
CARD TYPE
(TYPE IOA DATA)
H
H
H
H
H
E
1
EADW
EADW
EADW
EADW
EADW
NDAT
1 1 J 3
A
A
A
A
A
A
>
TER-
TER-
TER-
TER-
TER-
1 OA
2
2
2
2
2
HWD =
HWD =
HWD =
HWD =
HWD =
Order
Of Head-
water
.
CHLOR. A
UG/L)
.
.
NH3 AS N
(MG/L)
.
.
N02 AS N
(MG/L)
1
.
.
N03ASN
(MG/L)
.
.
.
-
P04 ASP
(MG/L)
.
.
.
.
COLIFORMS
(MPN)
.
.
.
.
0 11 1 Ic 1 lu 1- -. ' ' i -V 'n J» J J- J ' ' J t. JJ -- -- » -« i,' 1 ^- 33 * * « * *> *- J "6 * £9 t' *' "
RADIO-
NUCLIOE
: ' '
, .
.
!•
-• - s -' i ;i e:
'FORMAT (3A4, AZ, SX, FS.O, 7F8.0)
These cords (except SNDATA10A) may be deleted if none of the parameters shorn are to be simulated.
-------
FORM
IOF(I9J
MATER RESOURCES ENGINEERS. INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
WASTE LOADINGS AND WITHDRAWALS DATA*
CARD TYPE
(TYPE II DATA)
1 - 3 1 5
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
WASTE
ENDAT
*
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
A
• 4 9 III
0AD
0.AO
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0A'D|
0AD
0AD
0AD
0AD
0AD
1 1
WASTELOAD OR WITHDRAWAL IDENTIFICATION
ORDER
II 1 13 1* li
.
.
.
.
.
.
.
.
.
.
.
ALPHANUMERIC NAME
I" IS 19 J 71 - j t j i ii j iJ .
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL -
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL*
WSL =
WSL =
WSL =
If • '-I)
PERCENT
TREAT-
MENT
V - I » -
m
.
.
.
.
.
.
.
.
WASTELOAD OR
WITHDRAWAL
(CFS)
-1 1> - 41 * «•> *S J« V}
i -O « i.
.
.
.
.
.
.
.
.
. g t
TEMP
l°F)
31 i >1 ti j
t
.
.
.
.
.
.
.
.
.
i j i* i.
DO
(MG/L)
s » it J it
t
,
.
,
.
.
.
.
.
1 >
BOD
(MG/L)
f- M t
.
.
.
.
.
.
CONS
MINERAL
I (MG/L)
Oi b OS f)
t
.
.
.
.
f
.
t
.
CONS
MINERAL
n (MG/L)
I
t * j
.
.
t
,
,
,
t
,
.
CONS
MINERAL
ID (MG/L)
7t " • " eO
•.'
4
,
t
m
t
m
,
.
t
, .
.
t
.
.
*This is an unmodified QUAL-1 form.
FOWM21 (2A4, A2, FS.O, 5A4, FS.O, F10.0, 6FS.O)
-------
FORM (18) OF (19J
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
WASTELOAD DATA FOR ALGAE, N, P. COLIFORMS. AND RADIONUCLIDES*
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
yv
w
w
w
-
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
ASTE
NDAT
CARD TYPE
(TYPE IIA DATA)
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
A
0AD-
0AD-
0AD-
0AD-
0AD-
0AD-
0AD-
0AD-
0AD-
0AD-
0AD-
0AJD-
0AD-
0AD-
0AD-
0AD-
0AD-
0AD-
0AD-
0AD-
0AD-
0AD-
0AD-
CIAD-
0AD-
1 1 A *
2 <
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL =
WSL*
WSL =
WSL =
WSL =
WSL =
WSL =
WSL °
WSL =
WSL =
WSL =
WSL =
WSL =
Order Of
Waste-
Load
-
-
t
.
.
•
.
•
CHLOR. A
UG/L)
-
-
-
.
.
.
.
.
.
• —
NH3 AS N
(MG/L)
.
t
.
.
.
.
.
.
.
N02 AS N
(MG/L)
-
<
.
. t
.
m
t
.
.
.
.
.
.
.
N03AS N
(MG/L)
„ aj
1
.
.-
.
^
.
.
.
.
.
P04 AS N
(MG/L)
i
t
•
,
.
.
COLIFORMS
(MPN)
.
t
t
RADIO-
NUCLIDE
, •
, .
. i i .. i
i •
> .;
'
, • i i
1 ••!
.
•
.
.
'FORMAT (3A4, A2, SX, FS.O, 7F8.0)
These coeds (except EtlDATAllA) may be deleted
if none of the parameter a shown ore to be simulated.
-------
FORM (19)OF(191
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
LOCAL CLIMATOLOGICAL DATA
CARD TYPE
(TYPE 12 DATA)
1
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
? j « j
0CAL
0CAL
0CAL
0CAL
0C AL
0CAL
0CAL
0CAL
0CAL
0CAL
0C'A,L
0C.AL
0CAL
0CAL
0CAL
0C AL
0CAL
0C AL
0CAL
0C.AL
0CAL
0CAL
OC AL
0CAL
b
7 n » 10 II '< 13 U IS Ift 17
CL 1 M
CL IM
CL 1 M
CL IM
CL 1 M
CL 1 M
CL 1 M
CL IM
CL 1 M
CL 1 M
CL LM
C'L 1 M
CL I'M
CL 1 M
CL 1 M
CL 1 M
CL 1 M
CL 1 M
CL 1 M
CL.IM
CL IM
CL 1 M
CL 1 M
CL 1 M
AT'0,L'0
AT0L0
A T.0 L 0
AT0L0
AT0L0
AT0L0
AT.0L0
AT 0 L 0
AT0L0
AT0L0
AT.0L0
A'T 0 L 0
AT'0 L 0
A T 0 L 0
AT0L0
AT0L0
AT0L0
AT0L0
AT.0L0
AT0.L0
AT 0 L 0
AT0L0
AT0L0
AT0L0
GY
GY
GY
GY
GY
GY
GY
GY
GY
GY
GY
G,Y
GY
GY
GY
GY
GY
GY
GY
GY
GY
GY
GY
GY
MONTH, DAY
AND YEAR
15 !« » •! ' M 71 '}
-
-
-
-
-
-
-
.-
-
-
-
-
• -
-
-
-
-
-
-
-
-
-
-
IB 13 70
-
-
-
-
-
-
-
• -
-
-
, -
-
-;
-
-
-
.
-
-
-
-
-
-
-
HOUR
OF
DAY
it * ** 7< TO
300
600
900
1 200
1 500
1 800
2 1 00
2400
300
600
9 010
1 200
1 500
1 800
2 1 00
2400
300
600
900
1 200
1 500
1 800
2 1 00
2400
NET SOLAR
RADIATION
(LANGLEYS/HR)
it p n j a v 3- 3e r> *-
'
'
1
,
'
.
.
, ;
!
• •
.
•
CLOUDINESS
41 I"1 11 M IS 4ft 4- V
i '
'
1
'
.
.
'
1
1 '
.
DRY BULB
TEMP
(°F)
19 50 11 H » *4 41 **
•
1
,
:
i
ii
(
1
1
.
.
•
.
.
WET BULB
TEMP
(°F)
5 1 ""
.
.
.
.
.
.
'
i i '•! ;
: i ;•! !
i
i i ,
1 . |
WIND SPEED
KNOTS
•i ' i i. -- i ;» H
i.l •
.
.
1. '
i !
t
•
• ! ! !-i
•! U.i
! 'i-
i
1
.
; ! ' i i-
: i • ]- !
! i 1
*Must be chronologically ordered. FORMAT (SOX, F10.0, SF(B.O))
Net solar radiation is not required if temperate ie simulated.
Only net solar radiation is required for algae simulation.
-------
3
5.TRFAM
NCH= 9F4CH 6
r\
\
V ;
C i
10.0
.n
TO
20.0
.0
!.*» I'ATA TYPC • (TAHl.FT LEVFL HP AND Fl OW AUGMENTATION SOURCFS) SSS
o.
AVAII MOWS TARGET
n. .0
ORDER OF AVAIL SOURCES
o. o. o. o. o. o.
S«« DATA TYPE t {COMPUTATIONAL PEACH FLAG FIELD! SSS
CARPI TYPE
fLAG FIEL"
FLAS FIELD
FLAG FIELII
FL«S FIELP
FLAK FlfLR
FL AG FIELD
ENDATAU
(TACK ELEMENTS/REACH
1 .
?.
3.
0.
20.
11.
1?.
IS.
If.
20.
0.
COMPUTATIONAL FLAGS
I 1.2.2.2.7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.3.
?.2.?.2.7.6.2.2.2.7.2.2.2.3.*•****•***•*
1.?.?.?.7.2.2.2.2.2.2.2.•»»»••»•*»*»«***
2.2.2.2.'.2.2.2.2.2.2.2.2.2.2.**********
1.2.?.?.?.2.2.2.2.2.2.2.2.2.2.2.»»**»*«•
2.2.2.2.?.2.2.2.2.2.2.2.2.2.7.2.2.2.2.5.
•••I************************************
$*S DATA TYPE S (HYDRAULIC COEFFICIENTS FOR DETERMINING VELOCITY AND DEPTH) SSS
COEFOV EXPPOV COEFOH EXPOOH CNANN
.120 .100 .350 .600 .039
.170 .400 .350 .600 .035
.360 .400 .300 .600 .000
.360 .400 .300 .600 .000
.360 .400 .250 .600 .035
.4RO .400 .250 .600 .035
.000 .000 .000 .000 .000
Itt DATA TYPE 6 (KE.ACTION COEFFICIENTS FOR DEOXYGENATION AND REAERATION) SSS
CAMP TYPE
I.YHRAULICS
HYDRAULICS
HYDRAULICS
HYDRAULICS
HYDRAULICS
HYDRAULICS
EMOATA5
REACH
1 .
2.
1.
4.
•i.
6.
n.
CARD TYPE
RFACT COEF
RFACT CoEF
RFOCT CoEF
Rt ArT COEF
Rl ACT COEF
REACT COEF
LNDATA6
PEACH
i.
?.
3.
u.
5.
fi.
P.
Kl
.60
.^0
.f.u
.t~o
.fiO
.60
.no
K3
.00
.00
.00
.00
.00
.no
.00
K20PT
3.
X.
3.
3.
1.
3.
0.
K2
.00
.00
.00
.00
.00
.00
.00
COEOK2
.000
.000
.000
.000
.000
.000
.000
EXPOK2
.000
.000
.000
.000
.000
.000
.000
lit DATA TYPE 6A (ALGAf. NITKOGEN, ANp PHOSPHOROUS CONSTANTS) «$S
CAR" TYPE
ALr.AEi t> AND P CPFF
ALGAEt N 'VMH P COEF
AMD
REACH ALPHAO ALGSET CKNH3
CKN02
SNH3
P COEF
P COEF
P CflEF
ALR«E, N A»n P COFF
ENDATA6A
ALfidE. t.
M.GAEi t> AND
N AnO
1.
?.
3.
1.
5.
6.
0.
50.0
50.0
50.0
50.0
50-0
50.0
.0
.50
.SU
.50
.50
.SO
.50
.00
.15
.IS
.IS
.15
.15
.15
.00
.00
.00
.00
.00
.00
.00
.00
.0
.0
.0
.0
.0
.0
.0
SP04
0
0
*«* DATA TYPE 6B IOTHES COEFFICIENTS) SSS
CAtin TYPF
OTWP COEFICIENTS
OTHFR COEriflENTS
OTHFP COEFICIEMT1?
CTHFR COEFiriEflTS
cnrririCNTS
REACH
1.
2.
3.
4.
b.
CKt
.PO
.no
.OR
.PO
.nn
CKS
.50
.sn
.50
.so
.sn
EXCOEF
.15
.15
.15
.n
.IS
CK6
.00
.00
.00
.00
.00
-------
OTiirp coEFirirwi'-, ».. .no l.SO
luniUAfii u. .00 .no
ttt OATA TVCF 7 (INITIAL COI'UITIONS) J*»
CAHD TYPE RFACH TEMP P.O. POP
1MTIA1 CONDITIONS 1. 65. n .0 .0
INITIAL CONDITIONS ?. 65. n .0 .0
IIJITIAL CON1ITIONS 3. 65.0 .0 .0
IMITIAL COinjiIONS u. 65.0 .0 .0
U'lTIAL COrniTIOMS K. 65.0 .0 .0
11 ITIAL COi.niTTP'iS k. f.5.0 .0 .0
EMIATA7 0. .0 .0 .0
tit DATA TYPE 7I> (INITIAL CONDITIONS FOR CHLOROPHYLL
COLTFOKM ANP RAUIONMCLIOE > SS*
CA'»n 1YPE ('EACH CHLORA NH3 N02
U'ITIAL corn-? I. .n .00 .no
INITIAL COriP-2 2. ,n .00 .00
INITIAL coiy.p-2 3. .0 .00 .00
KIITIAL COM:-? <». ,o .00 .no
INITIAL corjo-2 5. .0 .00 .00
INITIAL coun-2 6. .0 .00 .00
Et.'n«TA7A 0. .0 .00 .TO
Sit HATA TYPF. R (RUNOFF CONDITIONS) S«S
Coon TYPE REACH 0 TEI"P 0.0. BOO
RUNOFF CONTITIONS 2. .0 .0 .0 .0
RUNOFF CONDITIONS 3. .0 .0 .0 .0
RUNOFF CONDITIONS ". .0 .0 .0 .0
RUNOFF COMTITIONS t. .0 .0 .0 .0
.15 .00
.no .00
CH-I CH-II CM-I1I
.0 .n .0
.0 .0 .0
.0 .0 .0
.0 .0 .0
.0 .0 .0
.0 .0 .0
.0 .0 .0
At NITROSENt PHOSPHOROUS!
N03 POU COLI RAON
.00 .00 .0 .00
.00 .00 .0 .00
.on .00 .0 .00
.00 .00 .0 .00
.00 .00 .0 .00
.00 .00 .0 .00
.00 .00 .0 .00
CH-I CH-I I CH-I I I
000
!o !o !o
.0 .0 .0
.0 .0 .0
.0 .0 .0
.0 .0 .0
.n .n .n
lit DATA TYPE 8A ( INCREBLNTAL FLOW CONDITIONS FOR NITROGENi PHOSPHOROUS.
COLIFORH AMC RADIONUCLIDE) Stt
CArfH TT(-C REACH CHLORA NH3 N02
RUNOFF CONII-? 1. .n .00 .00
kUNOFF CUNP-2 2. .0 .00 .00
RUNOFF COC'0-2 3. .0 .00 .00
IUIWOFF fOMP-2 W. .0 .00 .00
RUNOFF CONH-? 5. .n .00 .00
kUunFF LONP-2 6. .0 .00 .00
EMnMABA 0. .0 .00 .00
Sit DATA TYPE <9 (STPEAM JUNCTIONS) *»»
CA»P TYPE JUNCTION ORDER AND IOENT
STHFAM JUNCTION 1. JNC= TRIB-PAINSTE"
ENOATA9 0.
t^T OATA TYPL in IHFAPUATFR SOURCES) «1»
Cf.«ri TYPF. HDUATTK OPDFR ANO IPFNT FLOW
HI 4HUATFR 1. HOW= HKIKS1EK 100.0
li|-A"WATrR 2. HDH= TRIPUTARY 10.0
N03 P0« COLI RAON
.00 .00 .0 .00
.00 .00 .0 .00
.00 .00 .0 .00
.00 .00 .0 .00
.00 .00 .0 .00
.00 .00 .0 .00
.00 .00 .0 .00
UPSTRH JUNCTION TRIB
31. 62. 61.
0. 0. 0.
TEHP 0.0. BOD CP-I CM- 1 1 1
f-5.0 R.« 3.0 27.0 .0
70.0 10.5 2.0 15.0 .0
.0
.n
-------
,\
V
\
\
TrX/l'. -./UFI' !)[ VFLI^KrMT IIOAI'D/UATF". RFSOURCFS ENGINEERS, INC.
» » » PAT« I 1ST FOrt 1POIFIFO OUCI 1 STREAM QUALITY ROUTING "ODEL « • •
F« 1 ITI fS) IS*
(MJAL-I PROGRAM TTTLFS
FXl'ANPEH VFRSION OF QUAL-I
HYHOIHETICAL I1ASIM
CONSERVATIVE HINE»AL I = TDS IN (MG/L X 0.1)
CONSERVATIVE MINERAL II
CONSERVATIVE MINERAL in
TFnPLPATURE IN DEGREES FAHRENHEIT
nlOCHFMICAl OXYbEM PEHAMO IN MG/L
ALGAL AS CHL A IN LIG/L
PHOSPHOHUS AS P IN MG/L
RfiONiA AS P IN MG/L
NITRITE AS N IN NG/L
NITKATE AS N IN HG/L
OISSUI VED OXYbEN IN MG/L
FECAL COLIFORM AS 1000/100 "L
RADIOMUCLIDE
CARP TYf-F
TITI Fnl
TITLED?
TITI.F.03
1 ITLFOl*
TITI EOS
TlTLEOft
IITLE07
T1TI.F08
TITLEH9
TIUF10
TTTLE11
TITLF1Z
TITI E13
TITLE1<»
TIYLE15
EwnTITLF
YF«-
no
MO
NO
YF?
YFS
YFS
YES
YES
YFS
YFS
YFS
l>,0
««*-PATA YYPE 1 (CONTROL DATA) SSt
CARn-TYPF.
>LIST DATA INPUT
WRTTF FINAL SUMMARY
MO FLOW AUGMENTATION
STFCPY STATF SIMULATION
MJrtRTR OF REACHES
NUM OF llEARWATERS
TIME STtP (HOURS)
MAXIMUM ROUTE TIIT
LATTTUOt OF BAST^
STANDARD MF"TDIttn
LVAP. COEF.,|Ari
LLFV. OF BASIN (FFFTl
(HRS)=
(DEG)=
(PEG|=
.OOOPO
.00000
.00000
.00000
6.00000
2.00000
.00000
30.00000
.00000
.00000
.00000
.OOPOO
.000110
CARD TYPE
NUMBER OF JUNCTIONS =
NUMBER OF WASTE LOADS =
LNTH. COUP ELEMENT (MI) =
TIME INC. FOR RPT2 (HRS)=
LONGITUDE OF BASIN (OE6)=
DAY OF YEAR START TIME =
EvAP. COEF..IBE) =
OUST ATTENUATION COEF. =
.00000
.00000
.00000
.00000
1.00000
2.00000
1.00000
.00000
.00000
.00000
.00000
.00000
.00000
IffGATA TYPE 1A (ALGAf PKOOUCTIOM AND NITROGEN OXIDATION CONSTANTS)»SS
CARD TYPE
0 UPTAKE BY MH3 HXIOIMG 0/MG M)=
o PRO . RY ALGAF (MK O/IG A) =
N rONTCNT OF ALG/lF ( MG H/hfi A) =
AL1 "AX SPFC GROt'TH MATE(1/OAY)=
N H»LF •iATllCATION TOMS (C&/L) =
LIRMT HALF SAT CONST I LMGL Y/MlH) =
S.^OPO
I.AOOO
.08*0
1.-5000
.'000
.0^00
.0000
\\\ DM u TYPE 7 (UrOCH IUFNTIFICATION) tit
CARD TYPE
0 UPTAKE RY N02 OXIOIMG 0/MG N) =
0 UPTAKE BY ALGAE IMG 0/MG A) =
P CONTENT OF ALGAE
-------
Er .
n.
.0
.n
.n
.0
,r
.0
.0
lf(
(
DATA
CA«n TYPF
I'F i
! MitTAlnA
CPK1ITIOIS FOR CHLORnPMYLL.NITROGEN. PHOSPHOROUS.
roi irupr" Aun RAtiiot'iicLinri *«»
IT-UATf" CHLOHr f'H3
1 . 10.0 1 .00
?. 5.n .50
n. .0 .00
CCH" TYPF
WASTFLPAM
WA-5TFLOAO
VII 1AT1
TVPF 11 (IASTF LnAPIt'RS) t*t
WASFF LOAP ORDER A(,0 mtNT f"FF
i. usi- innuyTPiru LOAD .00
">-. K!SL= VIIIiOTWAL .00
r,. .no
11A (WASTE LOAD OAflACTFRISTICS -
roi iFonw"; AMP.
TYPC
LOAD nnfirR AND IDFf'T
1. KSL= T'IPUSTRIAL LOAD
7. WSL= WITHCRAUAL
MO'
.05
.01
.no
FLOiJ
in.o
-nn.o
.0
N01
.30
.10
.on
TEnP 0.0.
po.n 5.0
.n .n
.0 .0
IS - ALGAE. NITROGEN
CHL. A
,nn
.00
MH3
1S.OO
.00
P0"» COL I
20
05
no
BOO cn-i
7*>.0 100.
.0
.0
RAON
1
0
n
0
n
0
.00
.00
.00
CM- 1 1
.0
.0
.0
Cl-III
.0
.0
.0
.PHOSPHOROUS.
N02
.50
.00
'N03
10.00
.00
pot
20.00
.00
C'OLI
600.00
.00
RADN
.00
.00
-------
IP
14
]«
1<-S = <
bit T'J 1i
'..'fC.l = fAIAH.'M
IIJIIMC = I AIM 1 , 1(.)
f-0 1O 1^
.11 "ii-", = r •VT.'U 1 ,6)
fMASTI = fATndilO
c ', ir, ir.
ITLT = l)nTA(I.e)
f'FLX = I'ATBU.IM
00 TO lf>
T"A» = PATAd.ftl
"TICE = nATf.fI.16l
GO in if.
HT = PATMItfll
LI 1 = UA1A(I.16>
f.n 10 l^
LSM = HA1I\(I,P)
n.lTOFY = rATA|I.l*l
GO TO IK
AC = nATAii.ai
nr = nATA
r,n TO 16
CLrv=RATAI I.n)
nAT=DATA|l.lbl
KO TO 1ft
OD012300
00012000
00017500
00012600
O00l?7on
00012800
00012900
00011000
00013100
00013200
00013300
00013400
00013503
00013600
00013700
00013800
00013900
00011000
00014100
00011*200
oooiisoo
OOOltilOO
00014300
00014600
00014700
00014900
IFIKKFACH-T-S) 610. 610.^20
kniTCiNj.sisi (•'RFACH
FOKMATIJHP.5X. •»»*»«•. 15. 'PEACHES EXCEED THF PROGRAM DIMENSIONS'
• • OF 75- I
NFRRORsl
lF('ihASIL-7S) 630i630,640
WRITE'IJf
IF IlLIST.EQ.O) GO TO 200 00015000
WRITF ("'J.bOll 00015100
FORMAT 11M],?uX.?9HTEXAS UATFR DEVELOPMENT BOARD.12H/UATER RESOURCE
'S trC-INFERS. INC..//17X.3MH* • » DATA LIST FOR MODIFIED QUAL1.
r «H STPEAM ailAI ITY ROUTIf'R NODEL * » *)
UHITI ((ij.502) 00015500
(lHn.lnX.21HJ.tJ (PROBLEM TITLES) fSS./) 0001*1600
IMJ.201) 00015700
fnnrtcr IIOX.^HCAHP TYPE>2«X<2lHOIIAL-I PROGRAM TITLES) 00015BOO
kl-'ITT iT> (t'.i.'snti 00016100
FOKPAT IlMO,lnx.31Ht$s DATA TYPE 1 (CONTROL DATA) fSS./) 00016200
-•UTr (ti,i,?o5) 00016300
FOI'nAT (K-y.^MCAhD TYPEi3FV,SHCARD TYPE) 00016400
WRITf (tlj.inj) ( (PATSl I . J) . J=l .1ft) . t = l.MCRf)S) 00016500
FONISAT (^(inX.6A4.Al.f.10.>i) I 00016600
COMTI 'liF 00016700
STEP ^-1A
IN OIVTA TYPF 1A (ALGAE PROPUCTTON
-------
c ANO IJITPOGFN OXIDATION CONSTANTS).
t
D'l inri 1 = 1.7
xi Ar (ijl.lnnl) (OATAH.J) ,J=1 ,1ft)
10M FORMAT (C/'M.F7.n.?X.HA«.F7.nl
IF ii.'M«)
GO TO 1006
1(110 ALPHA3=DATA(I.<9>
ALPHAl«=OATA(l,lA)
GO TO 1006
1111 Al PliAl=f)ATl\( l .1)
ALP>'A?=OATni l.K-l
GO rn ioor
RF.SPRT=n'T»U ,1
GO TO 1CP6
10 IS CKN=nATA(I.9>
C>>P=PATA( 1 .111)
GU TO lOOf
1011 n"L=nATACT .91
.
.GT. 0) CKL=CKL*0.1!>33
IF IILIST .Ltt. 0) GO TO
V^ITC IMJ.1016)
JOIt r,'K«.AT (!>'0.lnX.6f,H*t*nAT» TYPE 1A IALGAF PRODUCTION ANO NITROGEN
• OXIHATIOM CP'iSTANTS
WrIITF ("J.1017I
1017 F'IH»ftT (inx.9»C«Rn TYPF,3fX,9HCARO TYPE)
("IJ. 1010) (inATA(I.J).J=l.lB).I = l
CI!«TK UE
00016800
STI-P 3-? 0001*900
-------
C RFA1 IN DATA TYPE 2 (REACH TDENT00017000
r RTVER nitr AT HE on AND END of Rf.oooiTioo
c onniTZoo
ii = nprACH+1 oooiTsoo
no *n 1=1.11 OOOIT«OO
•<;nr miiMi IIIATAI i.ji>j=i .is) 00017500
*i FORMAT (3A"»,Jx.F5.0i5A; CONTINUE 00021100
r 00021200
C STEP 3'^ 00021300
C RF.AD IN DATA TYPE 3 I TARGET LEVE00021400
C AVAILARLE FLOW AUGMENTATION SOUR00071500
C 00021600
-------
dr in 1 = 1,11
«fV IM.fl) (HftTAI I • J) .Jrl.lt)
Fnp*i\r ("ici, jx,r5.n,5x,F5.n.Fio.n.6Fs.n)
I"7 n.'MM 1 ,1 i-ri»nA) 6o.bS.60
OH021700
00021HOO
Jr auri'i = 1
*mn INI.Ml ClATMI.J)iJ=l<14>
IF lOAl ft| I ,1 I-TNOA) 64.fr1,6'(
fQ MsJ-II
WITf INJ.6PI M
(•> FORMAT (lHn,3X.16H«»*«« TCO MANY (.13.IBM) DATA1 CARDS READ)
GO TO M
r* IF II.GE.II) G" TO 63
f.6
MCRHS=1
Gn TO
IlFKHCR=l
'i=II-l
UPTTC (WJ.S6) N
FOrtfnT (1H0.5X.J5H««»»» TnO TFU (.M.18H) OATA3 CARDS
CONTItJUT
RP fi7 I = 1.NKEAC>'
l.tCM=IFIX('jAlft(T. 61*10. + 0. 0001)
'•I.ICH=IhCMNO( IPCH)
N IW«K = OATAI 1.7)
N>-UUA|(IMRCH) = r'HHAR
T£Rr,On(i>IRCH)=n«TA( 1,8)
DO ft" J="'.1't
X = J.C
lAUr,liniNRCH.KI = HATAII.J)
f.7
006
ii- (iLiST.ra.ni on TO nzi,
UAITC IllJ.SOb)
FnHl»HT (lHO.lnx.36HI** DATA TYPE 3 (TARGET LEVEL DO AND.
ilH FLOW AUGMENTATION SOURCES) ***./)
b-«lTl (NJ.'Ofa)
F1MMA1 (lPy.9HC»RD TYPE«lBX.ai»HREACH AVAIL HDWS TARGET.
5X.22HOROER OF AVAIL SOURCES)
W^ITl (NJ.402) < in«TA
-------
P'. Ill 1 = 1 , :i
R'"»r lf.1.71)
fOATM I i J) i Jrl
71
7n
7U
7<»
7?
7s
ir i
rjr
IF iriVTA|I.| |-r'l.(>) 7M.79.7M
IJ=T-II
WRITF (NJ.7?) N
FOR'AT 111 n.-]XilAMi*»« TOO MANY
1.0 TO 7^
IF ii.r.r.ii) eo rn 73
r,rpnni = i
(MJi76) ij
FORMAT < iHo.Sx.ibH««»»« rro Frw
Cnrirlr.ur
|JCROS=I
On 77 I=1.MRLACI<
IuCH=TFIXIDATAIIiU)»ln.t0.0001)
NHO=IRCHNO< IRC^l
= RATA(IiEl
7P
77
?n?
M?7
CD 76 J=b.2S
K = j-5
IFLAG(riRCHiKI=n/>TA( I.J)
CONTINur
CONTINUE
IF (ILIST.FO.O) GO TO 127
WHITE (NJtS07l
F('R»«1 (IHIIilOXi if.HJJ» OAT« TYPE "» (COMPUTATIONAL REACH.
16H FLAG ciri.ni «»«./)
FPKKAT (inx.9HCAKO TYPF.«Xi?nHRFACH ELEMENTS/REACH.
13X.19HCni>'PUTATlaNAL FLAGS)
kVITF (NJ.tOJI ( (OATAI I ,J) ,J=Ii7S) iT=l=IOW
10'iTIHUE
<> = ft\ FLEMENI WITH A uAsrooo?73on
/ = AM TLEMEMT WITH A knnono?7'40')
1)0077500
00027600
OP077700
F2.0I 00077ROO
00077900
0002HOOO
0002A100
(.I?.18tl| fl»TA» CARDS REAOI
OATAI CARDS RCAHI
00028300
0002S100
on02«snn
00020600
00020700
STEP 3-«i
RFAO III DATA TYPE 5 IHYDRAULIC
00029900
00079000
00029100
00029700
00029300
00029100
00029500
00029600
00029800
00029900
00030000
00030100
00030200
00030300
00030100
00030500
00030600
00030700
00030600
00030900
00031000
00031100
00031200
00031300
00031100
00031500
00011600
00031700
00031600
00031900
00037000
00037100
00032200
00032300
00032100
C00032500
-------
MI
»P
«u
rnp COMPUTING VELOCITY AND nrpT"00032&00
OOU32700
CO 1=1 • II 00032800
(i.l.MI (1f>TM I . J) . J=l ."I 00032900
FI-.HPAT i-2/u,A;>.Kx.F5.ii.loy.''Fin.i)
ir (u/>TflJ=1 i9)
Ir |i".HTA( 1 .1 )-Et»OM K4.HS.nu
M=t-IT
ui'Ilt I'u.a?) N
FPK'AT ( I "OiSll. !«"••••• TOO ("ANY ItTJ.lBIl) 1»TA5 CARPS REAO)
r-n TH P5
ir ii.GE.ii) ro TO m
•Mrci'OK = 1
•1=11-1
WRITL (MJ.tfi) ri
FOWAT ( U.p.bX,15ll*«««* TOO FEW (.I^.ISH) nATAS CAKPS READ)
H7
Sp.«
?rp
upb
t?"
0-3 «7 1=1
1 i'ri'= IF lk( DA |A'«iA?.5X.F&.P,10X.^F10.3)
CiVJiir ur
onouooo
ono33ioa
00033200
00033300
00033000
00033500
00033600
00033700
00033600
00033900
00031000
ooosmoo
00031200
00031300
00031100
00031500
00031600
00031700
00031800
|io qfl 1=1,11
i.mi (nATni i.ji ,j=i .101
(?/Mt.A?.5x,Fb.G<6Fin.O)
IF ir«I/-EfDM °0,95."n
CONTIIiUF
Mr.(D(,.( - \
ini.rii cr.«Tf.( iiji ijzl.ioi
it- in/iif ( i .1 i-rMj«) 91,99.1"
rl-Il
•"'ITf IN.J.1'1 II
Fni.-AT |1l'n,3x,lAH»«»«« TPO P/1IMY
On T(> •?<
I' I 1 .1 ' . 1 1 ) f 'i in £1
00035000
00035100
00035200
00035300
00035100
00035500
00035600
00035700
00035800
00035900
00036000
00036100
00036200
00036300
00036100
00036500
00036600
STEP J-f. 00036700
RFAtl IN DATA TYPE 6 (REACTION C000036800
nroXYGEMATION AMD REAERATION). 00036900
00037000
00037100
00037200
00037300
00037100
00057500
00037600
00037700
000*7800
00037900
00038000
00038100
00038200
DATA6 CARDS READ)
00036100
-------
t.ri.»i»- = i
M=l '-'
isi, ..... TOO FFW ..IVIBH. n.r.f CARHS REAR,
.AC..
'IMA IT. HI 'Hi. +0.0001)
0003^00
0003B700
o<>03«BOO
000?9000
°°o3qico
00039300
00039400
00039500
000*9600
00039700
00039flOO
00039900
oootoooo
00010100
. PATft TTPF « .REACTION COEFFICIENTS. 000.0200
3CH FOR DrOXYGENATION AND REAEHATION) SS*t/l
REACH K1,M.2HK3.6X.5HKPOPT.
5X.23HK2 COESK2 EXPOK?)
WHITl (['J.»0bl MpaT»II.JI.J=1.10I.I = liNCRDS)
PIMM nn«.2.».».aii.FS.«.?Fio.p.Fia.o.Fio.«.«Fio.si
CONTINUE
RFAP IN DATA TYPE 6A (ALGAE. NITROGEN.
AMD PHOSPHOROUS COEF.I
(JC lino 1 = 1.11
.111)1 )
I I = USTBIl.tl
= n«TA|IiT)
c«aiiiPCHi = DdTen.ei
Cnr.(ll«?IMkrHI = rATA(I.91
LXPOK?(^rH) = PA1AII.1UI
°T cnwTinur
IF HUS1.fO.OI 60 TO 179
,n,
000,0500
,,.
IF (UATA(I,l)~EF'UA) 1100, 1105.
COMTlliUE
1101 1=1+1
IF iriAT'C'.l I -FTNUAI110il.il 09 1
HO" N=I-1I
110? FOW'AT (lHn.bX.16H«»»«« TOO MANY I.I3.19H) DATA6A fAROS RfADl
6" TO IU'1
IF»I.I-I.MI on TO 1103
lF|M«l=n#TAH.Nl
C". |liMni'C,'>=L,ATA(l.al
-------
)=UATMI.IOI
ATMI.n )
SPIIPS(MI!CI'I=UATA( I ,12)
HOT roMiuur
IIUP IF(IIIST .CO. 0) PO TO 11«9
UI'ITE(NJ.lllu)
inn FORi'ATiiHn.iox.ftSHtss nATA TYPE ft» IAIGAE. NlTRncrN. AND PHOSPHOPO
SU5 CONSTANTS) IIS./)
WRTTFllU. 11111
1111 FORf.-flT(10X,9l
ID? FnRt'HT(1n>-,5Aq,?»,Ffl.n,Fa.l.lX.2F8.2,lX,FS.2.2Fln.l)
11H9 CUNTInuC
c
C STEP 3-6B
C READ IN DATA TYPE 6B (OTHER COEF.I
C
oo izno 1=1.11
PFAO4,5X,FS.0.2X.6F8. 01
IF inATA.120M
N=I-II
WRITF (NJ. 12021 N
12(1? F(1R»AT (lhO,bX.16H««»«» TOO MANY (.I3.19H) OATA6B CARDS READ)
GO TO 1?03
IFH.6E.H) GO TO 1203
IFIICATA) 122o>12?0<1230
GO TO 1?5P
Us II- 1
WRITE (NJ.1206) N
FORfAl (lt-ri,5X,15H.»*«* TOO FEU |,tl,19H) OATA6B CARDS READ)
1ZC.3 CONTINUE
NCR(1S=I
DO 1807 I=1.NREACH
lRCtl=lFtX
1?P7 CONTINUE
12PP ir(TLIST.Fn.O) FO TO 129S
bL'RITClMJ.12) J)
12in FOR«AT(lhOilOX.lllHS«S OATA TYPE 6B I OTHER COFFFICIENTS) t*$i/)
WRITE INJ.1211)
1711 FORMAT! 1UX. 9lirAPn TTPE.18X.6H RF«CH.<(X .JHCKq ,6X , 3HCK5.6X, AHEXCOEF.
URITI (I J,121kl I IPATAI I.JI . J=l<10)i Irl.NCRDS)
1," FOR»AT(HiX.'iAtt.?X,F9.01»F«>.2)
c 000*1000
L STEP 3-7 OOOU1100
-------
c REAO TN DATA TYPE ^ (INITIAL co"ono4i20o
r 00041300
ni, n« 1=1,11 00041400
SFMI (i.r.1111 x.FS.o.Fin.o.2F*>.n,3Fin.oi oooiisoo
ii n.iAT«) iin.H5.nn 00011700
lin COMT1MF OnoiilBOO
WRBOIisl 00041900
Itu IrUI 00042000
PtA" (fl.JHI (fMTAd.JI .JM.12) 000*2100
IF f'.ATAII.ll-ENriAl 111.119.111 00042200
111 N=I-TI 00042300
WDITF IMJ.112) N 00042400
\\? FORMAT I thn.bX.16H***** TOn MANY (.TJ.18H) OATAT CARDS READ) 00042SOO
GO TO 111 00042600
11s IF lI.GL.II) CO TO 113 00042700
NERPOn = 1 00042800
N=M-1 00042900
WRITt |NJ.1lfa) V 00043000
116 FORMAT IIHO.SX.ISH***** TOO FEW I.IS.ISHI DATAT CARDS READ> 00043100
in CONTINUE 00043200
MCinssI 00043300
00 117 Irl.UKEACH 00043400
IRCH=IFTXinATA(I,6l*ln.+0.0001)
N1CI'=]RCHNO(IRCH)
TIMTTitJRCHI = 0/1TAII.7I 00043600
001MTINRCH) = OATAII.8I 00043TOO
= PATAII.SI 00043SOO
. 1 1 =HAT« < i . i o i ooo«39oo
COlNlT(NRCH,2)=nATA(I.lll 00044000
COINITINRCH.3)=DATAII,12> 00044100
117 COKTIHUE 00044200
IF (iLIST.FO.ni 60 TO 430 00044500
WRITF INJ.-jlO) 00044400
5 in FOR "AT (1HP.IOK.10HSJS DATA TYPE 7 (INITIAL CONDITIONS) «Sti/> 00044500
WRITE |U.J,?li)l 00044600
210 FORMAT I10X,9HCI\RP TYPE* IPX* 23HREACH TEflP 0.0. BOD. 00044700
> fix,^6HCn-i cfr-n en-ill) OOOIIBOO
UKITF (NJ.itn6l I (OATAd, J),J=1.1?) .I=1.NCRDS) 00044900
••Oft FORMAT linx>5A1.SXiF5.n.Fin.l.2F5.1>3F10.1) 0004SOOO
130 CONTINJF OOOUS100
c
C STEP 3-7A
C READ IN DATA TYPE7A (INITIAL CONDITIONS
C FOR CHLOROPHYLL. NITROGEN, PHOSPHOROUS.
C COLIFORH.AND RADlONUCLinE)
C
00 Un2 1 = 1,11
in«TA(I,J), J=l.l?i
IF innrni 1 ,11-r'JDA) iso2.noj,isnz
11P2 COMTItuF
IPATA(I.J). 0=1,12)
IF inftTA(T.l)-ENDA) 1304.1305,1304
ISO'S N=I-II
MR1TI (NJ.13DA) N
\',{f- FOR'nr MHo.b)l.lf.H*«»** Tno MANY (,I3.?OH) DATA 7A CARDS READ)
GO TI) 1JP7
-------
ir (i.t.>:. i! i r.n TO 1307
1FIIDATM \.S«!1 ,13?l.mO
11 rinil)S=]
no in i ir.n
1330 iMKKROP=l
N=1T-I
UHIL (NJ.ISUBI M
i DATA 7« CARDS READI
Cr)MT1hUr
NCHDSzI
U.) 1Sn9 1=1. BREACH
i."i>*io.+o.onoi)
Al r,lT(NRCH)=OAT1lI.f,)/ALPHAO(NRCH)
CNHIlTCNPfHIzOATAI 1.7)
CvO'IT(NRCH)=nATA( I. 81
C"03IT(NRCH»=n«TA(I.9l
Ph,0l)=DATA(I.lDI
CriLTITINRrn»=D«TAI 1,111
RAnt4lT(IMRCHI=DATA(Iil2l
130"? CONT1MJF
135n Ih (ILIST.EO.O) SP TO 1320
WHITE (NJtlMOl
1310 FOPMATIlHn.lDXilBHStS DATA TYPE 7A (INITIAL CONDITIONS FOR CHLOROP
• WHYLL A. NITROGEN. PHOSPHOROUS . /.?9X . 30HCOLIFORM AND RADIONUCLI
*DF) its )
WRITE (.'"J.1311)
1311 FORI»AT (lOX.yHCARD TYPEi ISXtSHRrACH, 1 X .SHCHLPRA.IX , 3HNH3.5X, 3HN02 .
• SX.3HN03t5Xi3HPOl»i4Xi«HCOI Ii«Xi«HRADN>
UPITFiNJ. 13121 ((DATAII.J). J=lil2li I=1.NCRDS|
131? FORMAT(10y.3AI|.A2.aX,F6.0,2X,F6.1,F6.2.3FB.2.F10.1,F6.2|
1320 CONTIflUE
c 000*5200
r STEP 3-8 0004S300
c READ IN DATA TYPE 8 I INCREnENTALOOOISOOO
r CONDITIONS). 000»3500
C 00015600
nn I2o 1 = 1.11 00°I'"S0
RFAO IWl.l?l) (naTA(I.J).J=l,l3) OOOH3BOO
1?1 FOH^AT lr)A'i.5x.1!FS.O,3F10.0l OOOH5900
IF |C.ATAII.1>-EI"DA> 120>1?S.120 000»6000
1?0 CONTIfHlt 000»6100
1?u 1=1+1 000*6300
REAP (M.l?l) (PATA(I,JliJ=lil3l 000»6»00
IF UlATAILD-CCDA) 12i»tl29tl2<» 00016SOO
12" N=I-IT 00016600
WRITF |MJ,12^) N 00016700
12? rnn- AT IIHO.SX.KIH***** TOO MANY (.T3.1SH) DATAS CARDS READ) 00016600
GO TO 1?3 00016900
12K IF (I.r,E.II) r.n TO 123 00017000
NF KDor. = i 00017100
N=IT-1 00017200
•JRITE (MJ.l?b) W 00017300
Iff, FOKM/>T (1H0.5X.15H***** Tno FEW (.I3.18H) DATA8 CARDS READ) 00017100
1?^ CO'lTIIIliF 00017500
UCRriSsI 00017600
On 1?7 I=l.NKE»rM 00017700
I-ICHrIFlX(nATA(I,(il»10.+0.0001 I
-------
nio.-tn) = n«T»iii7i 000*7900
II(H.'Cl.) = Llnrtd.A) OOOUBOOO
DRTllPCI'l = OATMIi9l 000<»8100
l-ni-H'ihClt) = PAT/MI. 10) 000*8200
CriNcI(l»llCH,ll=r)ATA|l,ll) 000*B300
miJ<;|IM.l*01> inATAd.JI. J=1.1ZI
l*nl FOHWAT I 3A1,A2,5X,F5.0. TFB.C)
IF (DATA(I.1|-ENDAI 1*00. 1*0?, 1*00
mn" CONTIMUE
NFRPORrl
i*ns 1=1+1
PCAHIMI ,1UQ1 ) (PATA(I.J). J=1.12)
IF (DATAd.l I-ENOA) lt03.110t.lM03
WHITE (NJ.1*OS) H
FORI>AT o TO 1*09
l
-------
• ?W>< "lirOGLN,PHOSPHOROUS. /. 29X i 30HCOI.IFORK ANH RA010NUCL IOC ) t»
• l./l
WI'ITF (''JiltM)
1M1T FP.riwAT (lO«,9HCAI»n TTPF. 15X.5HRE*CH. 1X,6HCHLORA,IX, 3HNH3.5X.3HN02.
• *•* , 5nN03i r-X i 3HP01<4X.4HCOL I .4X .IHlAriN)
Wi'ITtlNJ.ltlZ) UnATAII.Jl. J=l,12>. I=1.NCROS)
FORHaT(10X,3A'(,f2,BX,Ff..O,2X,F6.1 ,Ffi.2,3Ffl.2.F10.1.F6.2l
CONTINUE
C 000*9600
C STEP 3-9 00049700
C RFAD IN DATA TYPE 9 I STREAM JUNC00049BOO
C IDENTIFICATION AND THE ORDER OF 00049900
C CONNECTING ELEMENTS TAKEN CLOCKU00050000
C AROUND THE JUNCTION). 00030100
C 00030200
II=NJUUC*1 00050SOO
on i3o 1=1.11 ooosonoo
KtAn INI.131) (HATAII,JI.Jzl.131 00050500
131 FnRinAT ISAi»,A3,':iX,F5.0,5)(,'5(m,3(5X.F5.0») 00050600
IF (nATS(T.l)-ENDA) 130.135.130 00050TOO
130 CONTINUE 00050800
NERROR=1 OOOS0900
130 1=1*1 00051000
Hran tmi.isii IOATAII.j».j=l,isi ooosiioo
IF 00032500
00 13H J=6,10 00052600
K = J-5 00032700
JUNriniIJUNCiK)=OATA(I,J) 00052BOO
138 CONTINUE 00052900
JUNr(IJUNC,1) = OATAII.11I 00053000
JUNC|!JUMr,2> = RHTAII.12) 00053100
JUMCIIJUNC.3I = OATAII.13I 00053200
137 CONTINUE 00053300
IF llLIST.FO.O) GO TO "»32 00053*00
WRITE (NJ.512) 00053500
SI? FORMAT (lH0.10X.38H*tl DATA TYPE 9 ISTRCAM JUNCTIONS! *$»,/! 00053600
WRITf HJJ.J12) 00033700
21? FORMAT <10X.9HCAHO TIPE.l
-------
II = NHtTI'S+1 00051BOO
DO I'10 1 = 1 .II 00051900
REAP (M.111) -EM)rt) 110.1"5tlin 00055200
lin CoNTH'uC 00055300
NrwBOn=) 00055100
lit 1=1+1 00055500
REAP CM.Ill) iniiTA(l,j).j=l.l6) 00055600
IF inATAii.ii-EMOA) iiiiii15H***** TOO FEU I.I3.19H) OATA10 CARDS READI 00056600
11» CONTINUE 00056700
NCRRS=I 00056800
00 117 I=1,NHWTPS 00056900
NHU = DATAd.1l 00057000
00 IIP J=f),1 00057100
K = J-1 00057200
HUTRin(NHW.K) = DATAII.J) 00057300
IUB CONTHUE 00037*00
riuFl mj(NHU) = OATA(I>10) 00057500
HUTEMP(NHW) = DATAII.11I 00057600
HuDOIMHhl = DATA|I,12) 00037700
HunODINMU) = DATA!I.131 00057800
HHCnNS(IJHW,l)=DATA| Iill) 00057900
HbCnNS(NKW.2l=DATA(Iil5> 00038000
HMCPNS(NHW,3)=OATA(I,16) 00058100
OATnTINHU)=HWFLOU(NHU) 00058200
117 CONTINUE 00038300
IF (ILIST.EO.O) GO TO 133 00058100
WRITE (MJi513) 00058500
513 FORMAT UHOtlOX.IOHtSS DATA TYPE 10 (HEADWATER SOURCES) *S»./I 00038600
U'MTF (NJt213) 00038700
?H FORMAT (inx.9HCARD TTPEiinXi23HHDWATER ORDER AND IDCNTi 00058800
* hX.HlHFLOU TEMP P.O. ROD CH-I Cf-II CH-IIII 00058900
WHITE (NJ,109| ((PATA|I,Jl.J=1.16ltI=liNCRDS) 00059000
ln<« FOR"AT llPX.2A1iA2.5X.F5.n.?X,SA«.F10.1<6F6.1 I 00059100
<.?1 CONTINUE 00059200
r
C STEP 3-1OA
C READ IN DATA TYPE IDA (HEADWATER
c CHLOROPHYLL. NITROGEN. PHOSPHORUS
C COLIFORM AND RADIONUCLIOE CONDITIONS)
C
00 15(10 1 = 1.11
RF.AniM .l^Ol) (OATA(I.J), J=1.12)
l*in] FORMAT I 3A1.A2.5X.F5.0.7F8.0)
IF (DATA(I.l)-ENDA) 1500.1502.1500
ibrn cr.NTiriiiF
NFRRORiJ
I = I«1
RL»n('II.lc01) (TiAlAd.J). J=1.12)
IF (OATA| T.I )-F"IIA| 1503,1501,1503
-------
kRITF (NJ.1505) N
1riO* FoKf«T <1H0.3X.16H*»«*» TOO MANY dI3t21H) DATA IDA CARDS REAO)
00 TO 1 •>()*•
ISO? IF (I.GE.TI) no TO 1506
IF(IUMA) 1520.1520.151(1
15?P riCRDS=l
6n TO 15SO
1530 NFPMORsl
N=II-I
WHITE INJ.15071 N
1507 FORMAT 11M0.5X.15H***** TOO FEW I.I3.21H) DATA 10A CARDS READ)
1506 CONTlNUF
NCMnS=I
DO 15nr. I-l.NHWTKS
WIW=PATA(I.5>
tldAI.C
-------
l*iP
l\.Ci:PS=l
L.D ibv I=1.NUASTC
nws = I' ATAd.it I
nn IbP J=f.,9
K = J-u
W>STlr>(Nws:.K)=n«TA|I.Ji
CONTINUE
TKFACT(NWS) = QATA(I.IO)
WSFI OIMNUSI = DA1AII.11)
ilSTrpip|Nu.«i) = nATAII.l?)
USIIO(NWS) = DfTA(I.lJ)
USPODlNh'S) = nATAMilt)
WSCPNSn, A2,F'j.0.2X.5Ai»,F5. 2. F10.1.6F6. II
1601
16P?
Ufll
1607
1620
16?1
163R
i6un
162?
160"
000614UO
00061900
00062000
00062100
00062200
00062300
000621100
00062500
00062600
00062TOO
00062BOO
00062900
00063000
ooo63ioo
00063200
00063300
00063100
00063500
00063600
00063700
00063BOO
00063900
0006«000
0006*100
00061200
STEP 3-11A
READ IN DATA TYPE 11A (HASTE INPUT
CHARACTERISTICS AL6AE* NITROGEN.
PHOROPHOROUS COLIFORBS AND RAOIONUCLIDE)
DO 1602 1=1.11
REAOINI. ifoii IPATAII.J). j=i.!2)
FOR«AT (3AU.A2.5X.F5.0.7F8.0)
IF (DATA(I.ll-ENDA) 1602. 1621 . 1602
CONTINUE
NERROR=1
1=1+1
HEAtMM. 16011 IPATA(I.J), J=1.12)
IF (t'ATAd.D-FNOA) 1605.1607,1605
M=I-II
WRITE (NJ.I620) N
FORMAT (1H0.5X.16H»»*»» TOO MANY I.I3.21H) DATA 11A CARDS READ)
GO TO 160»
IF (I.GF.II) GO TP 1604
IFITPATA) 16iOil6?0.16<»0
NCROS=p
GO TO 1650
NF:RROR=I
fl=M-I
WRITE (NJ.162?) N
FORMAT (1HQ.SX.15H***** TOP FEW (.I3.21H) DATA HA CARDS READ)
CONTINUE
NCPHS=I
DO Ifcnf. I = 1,NWASTF
NUS=OATA(I,S)
WSAlO(NWS)=nAT>II.6)/ALPH«P(l)
WSNn2(NWS)=flAT«(I,B)
WSN03|NbS)=nATA(I,9)
IS I NWS I =uATA 1 I . 1 0 )
-------
uscni i TYPE HA IUASTE LOAD CHARACTERISTICS -
• ?PH ai.GAF..MIIl K = l
Ifil? FriR»iATIinir.1au.A2.F6.0.1X.!>A'».5(<«x.Ff..2l.?F12.2>
1ftis CONI piur
16*S URITF INJ.ir.12) .J=lt3)
1699 CONTINUE
URITE (NJ.2055)
FORMAT IIHD
00064300
0006««00
OD061500
STEP <»-0 0006*600
IF THE CORRECT NO. OF DATA CARDS0006«700
NOT BEEN READ IN. THE PROGRAM uiooo6«aoo
TERMINATE.
IF iriFRROR.tU.O) GO TO 88(1
WRITE (NJ,?366I
PUf-6 FORMAT (1H1.1SX.3MH* « • * • *
i3H. * . * • .
16X.3UH* E X E C U
53HR M I M A T
14Xi 1H».31X.SHO F<
16X.3UH*
33HI N P U T
lfeX,3tH» * * a » <
TION UAS TE.
ED BECAUSE *,//,
31X.1H*.//,
ERRORS IN ,
DATA «.//.
STUM
RrTdlitl
CNO
0006*900
00065000
0006S100
00065200
00065300
00063*00
00065500
00065600
00065700
00065600
00065900
00066000
00066100
-------
SUBROUTINE NH3S*
Subroutine NH3S completes the setup of the equations necessary
to calculate ammonia nitrogen concentration levels in each computational
element. Specifically, the subroutine completes the definition of the
diagonal term of the coefficient matrix and defines the vector of known
terms on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 bi = Xi + (K7)i t
7. Withdrawal bi = Xi + (K7)i t - q0 ^p
i
where Xi is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each
type of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
1. Headwater $i = (Nj* + q! (1^)! ^ - a1(N1)h
+ a.pA.-At + a_ Ax —
i i z Vi
i
6. Waste Input $i = (N,)* + qj (N^l &• + qw(Nx)w ^
+ a.pA.-At + o, Ax —
II Vi
*AII symbols used are defined at the end of this section of the
Documentation Report.
IV-18
-------
TYPE RIGHT HAND SIDE
* ' ' At1
All Others S1 = (N1)i + q< (N,). £7 + c^
For steady-state simulation, the only difference is that the value from
the previous time step, (Nx)., is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-11
and is followed by the program listing. All program variables contained
in COMMON are defined in Section V.
IV-19
-------
(ENTRY ^
SUBROUTINE NH3S I
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
00 conpuuiions
from i to b for
ill computational
elements
INITIALIZE KNOWN
TERM AND DIAGONAL
TERM FOR STEADY STATE
OR DYNAMIC SIMULATION
TYPE 1
ADD HEADWATER
INPUTS TO KNOWN
TERM. 5(1)
TYPES 2. 3. 4. i
CONTINUE
TYPE 6
ADO WASTEWATER
INPUTS TO KNOWN
TERM. 5(1)
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM. B(l)
RETURN
TO QUAL
FIGURE EZ-11
FLOW CHART FOR SUBROUTINE NH3S
-------
r
c
TTTLE(?n.20).RCHID(75.5).RMTHOR(7!>).Rr'TEOi»(75).NHWWAR(15), »NEW
Tnnr.Nu(75(.IAUGOK(75,f.) .NCCLRH(75).IFLAG(75.20) . *NEw
ICinPO(7r..?0).COEFOV(7'i).EXPOQV(75).COEF<»H(751.EXPOOH(75>. (NEW
CBANHI7S) .CK1I7S) ,CK3(75) ,K20PT ( 751 , CK2( 7SI .COEOK2(75) . *NEW
EXPQh?(7'i).TINIT(7«i).OOINIT(75).noINIT(75I.COINIT(75.3). »NEU
Q I (75 1 ,TI (75). DDK 7S).RODI( 7-5).CONSH75i3) .JUNCIDl 15.51 1 .NEW
JUMrilS,'M.HKTRID{15.5>iHWFLaW(15).HWTEMP(15liHWDO(15). *NEW
hwno'Ml-i) ,HWCONS.Tt.WSFLOW(90), «NEW
WSTC.MP 1 90 ) , usoo (9oi. usnon 1901. USCONS ISO.SI.QATOTIISI. *NEW
fl(cnn> .Risoni .cisnn) .0(5) ,scioo),Z(SOO),w(500).Gi500i . *NEW
FLtiWCiOO) .rFPTH(500I.VFLCinO),OTOVCL(SOOI.K2(500).Kl(5nOI , *NEW
HSMET ( 500 ) . DL ( 500 1 . UHW ( 1 5 1 . OEPHW I IS ) . OLHU ( 1 5 ) . T 1 500 ) . *NEW
HOIb')0).PU(!lbaO)iCONS(SOn.3)iPHOSIT(79).CNH3IT(75)< *NEW
O.'0?l r(7?).CN03IT(75),JSCOLI(90).USALG|90),USPHOS|90>, (NEW
USNM3(90).WSN02(90)iW5N03(90)tHMCOLI(15)tHUALG(15li *NEW
HWPHOS ( 15 ) . HWNH3 ( 1-j ) , HUN02 ( 1 5 1 , HUN03 ( 15 )• GROWTH ( 500 ) i *NEU
MOCOP T ( 10 ) . IRCHNO 1750) , EXCOEF ( 75 ) *NEW
*-29
KMH3
C
C INITIALIZE COUNTERS
C
NHU=0
IIWS=0
FACT = l.P / (20.3 • 66100.01
C
C LOOP THROUGH REACHES AND CONP. ELEMENTS
C
00 100 Isl.NKEACH
NCri_K=NCLLHH(I)
CNCELR=rlCF.LR
CNH3I J="I ( I ) /CNCELR»CMH3I ( I )
00 100 J=1,NCCLR
IiJPrlCLnPM I. Jl
C
C INITIALIZE DIAGONAL AND KNOWN TERMS
C
IF IPTIOOPTCD.EC.O) ALGAE(IOR)=0.0
K.MII^I 10R)=ChllH5( I)»l.OH7««TC
-------
K'-nrTz.ll I MM • ("•fPkWt tORl »«LG«rnnM»niLT + <;N(m I I»PELX«
r.rovri. ciii > > FACT
*l 1 '"•>=»( Inr. IOlLT«KNh<( i
Si irn I=CM
ir iiss. r,T.o>
si ini. ]-•,( ron)»
IfLrll L"G( I. J)
r
r hQnlFY OIAbONAL RMtl/OR KMQW4 TERHS
c
(-•j IP (ioi . lun.ioo. iaOiion.iD3,iot)i IFL
C
1 11 ?»• I-' MW»1
S ( I "h i =S » T1!' ) - A H PR ) «h«HH'1 t HHW >
Gl If 100
C
(MWSI*DTOVCLI 10HI
RO Til 100
PI inn 1=11 1 IOP)-W<=)-'LOU(NWSI«DTOVCLIIOR)
inn C')!"Ttr'liF
-------
SUBROUTINE N02S*
Subroutine N02S completes the setup of the equations necessary
to calculate nitrite nitrogen levels in each computational element.
Specifically, the subroutine completes the definition of the diagonal
term of the coefficient matrix and defines the vector of known terms on
the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b-j = XT + (K^ At
7. Withdrawal b1 = x1 + (KB)1 At - q0 ^7
where x^ is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE RIEHT HAND SIDE
1. Headwater Sj = (N*)i + qj (Njj & - a, (Na)h + (K?Nl)1 At
6. Waste Input Si = (<). + qj (N^ ^- qw (Ma)w ^ + (K7H1)1 At
All Others Sj = (N*)1 + q! (N^. f^+ (K7N,)1 At
*AII symbols used are defined at the end of this section
of the Documentation Report.
IV-20
-------
For steady-state simulation, the only difference is that the value from
the previous time step, (H*)-, is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-12 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section V.
IV-21
-------
(ENTRY A
SUBROUTINE N02S I
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
f-H
DO cooputittons
from a to b for
all computational
elements
INITIALIZE KNOWN
TERM AND DIAGONAL
TERN FOR STEADY STATE
OR DYNAMIC SIMULATION
TYPE 1
ADD HEADWATER
INPUTS TO KNOWN
TERM. S(I)
TYPES 2. 3. 4. 5
CONTINUE
TYPE 6
ADD WASTEUATER
INPUTS TO KNOWN
TERM. S(I)
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM, B(I)
RETURN
TO QUAL
FIGURE EZ-12
FLOW CHART FOR SUBROUTINE N02S
-------
COll'Of TITLC C»).an),KCHln(7*.S).R«lTHOR<7S).RNTEOR(7S).NHWWARd5).
TBKr|iU(7*I.IAUr,OK(7S.M.NCELRH(7I>).IFLAG<75.20l.
ICLi)RJ(7S.?n).COFFQ\M7S),FXPn(JV(7'5).roEFOH(75).EXPOQH(75l .
OA«( l75I.C)>l(75>.rK3l75),K?nPT(75>.CK2<75>tCOEQK2(75).
I kPnK^(7^l,TINIT(7S)iOOIMIT(7S)iROlNIT(75).COINITI75i3li
0)(7bl . TI175) .1>OI(7^>.BOOI(75) .CONSK75.3) .JUNCIDdS.S).
J|iK>C( LK,3),HWTRID(l*.5).HWFLnW(15).HWTEMP(15)iHWnO(15>.
HUP'lli 1 i) .HkCONSI 11,3) ,WASTin(40i5l iTRFACT(90) .WSFLOWI90) .
mO( 901 ,USOOD( 90). WSCONSl 90,3). QftTOTl 15)i
-jnu) ,C.SC;00>.2lSOO) ,U(500> ,G(500) .
.rrPTH(bon),VFL(500),orOVCL(500),K2(500) ,K1(500) .
HSI»F T < «.0 0 ) , 01. ( 500 ) , VHU ( 1 ? ) , DFPMU ( IS ) . DLHW ( 1 5 ) < T I 500 ) i
no ( 5ii J I , f»n ( SO o ) . CON'S 1 500 • 3 1 . PT IME . TPR INT . DELX ,
NilUTI.o.'JPLACH.NUASTr.NJUMC.DFLT,niLT.r>2LT.nTOOX2,OT20DX,
LflT,LiM,LLM,rLEV.O((T.flF,PF.,nnYOFr,nRYRLB.UETRt.B.DEWPT,
ATKPK.UiriD.CI OUn.SONFT.NI.NJ.TRLCD.TOFnAY.NT.NCiTIHEiNCS
) .CKNHK75) .CKN02I75).CKNOS(75).
CKN.CKP.TKl ,ALPMAO(75| .ALPHA1 , ALPHA2, ALPHAS. ALPHA*.
ALPHAS. AI.PHA6 i GRO^AXiRCSPRTf AL6SET ( 7S) , SPHOS ( 75 ) .
SMHJI ?^l .KMH3I50UI ,KNO?(500).RESPRR(S001.COLI(500) .
ALPAclSqn>.PHnS(5on)tCNHS(SOO) WSN03 (901. HWCOL 1 1 15 > . HUALG ( 15 ) .
HUPHO j < 15 ) . HWNH31 1^ | , HWN02 ( 15) . HUNOSf 15 ) i GROWTH) 500 ) .
VOPOP Kin), IHCHNOI 750 ) , EXCoEFI 75 )
• NFW
»NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
•NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• -29
Cnrt»0li/SSTATC/XISOO).ISS
Kf02, KI.H3
NHW=0
rjus=u
00 IdO I=1.NREACH
NCFI P=UCELPH(I)
CPICl'LRzNCELR
ci OPIJ=OK i i/cr.TEL
no 100 J=i.t CFLP
inuriri oprd.ji
INITIALIZE COUNTERS
LOOP THROUGH REACHES AND COUP. ELEMENTS
INITIALIZE DIAGONAL AND KNOWN TERMS
Tr = ."'.5'i6»(T( 10RI-f.B.O)
K|i09|ICIK)=Chl.P?(I)»l .OU7*«Tr
WEAfT=illLT«hi\.HT( IOR»Cr'H)( IOR)
B( inB)=xiini'i«nlLT»KMO?i ion)
-------
S( |(>«|=r'J(>
IF IISS.GT.O)
si ini'i=si 7T»)+nr,\rT*CNn2ij»nTovrL( IORI
IFl zlFl nr,( I,j)
c
r HOniFY 01A60NAL ANP/OR KNOWN TFRNS
r
en TO iJoi ,ioo,iuo,iou.lon.lm,irm). IFL
c
1C1 NM>j=rilik-»l
s(inn > =s11OP)- A(IOR)*HUNO?(NHW)
oo TO inn
c
10? MWSrNUSH
S( lfKI=SI ToO-iW^Fl oU(NWS)*WSNn2 (NUSI*DTOVCLIIOR>
GO 10 100
c
101 NWSrNWS-tl
B(TOR)=H(IOR)-UKFI OWI NWS)»DTOVCL(IOR)
inn CONTINUE
RFTHHM
-------
SUBROUTINE N03S*
Subroutine N03S completes the setup of the equations necessary
to calculate nitrate nitrogen levels in each computational element.
Specifically, the subroutine completes the definition of the diagonal
term of the coefficient matrix and defines the vector of known terms
on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b^ = x.
7. Withdrawal b^ = xi - qQ ^-
where x.. is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, wnich
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE
1. Headwater S^ = (N*). + q^N,). £-- ^(H3)h + (K8N2)i At -
6. Waste Input S. = (N*). + q!^). Jf + qw(N3)w^- + (K8N2). At
All Others Si = (N*). + q^Nj. + (K8N2)1 At - o^y.A^t
*AII symbols used are defined at the end of this section
in the Documentation Report.
IV-22
-------
For steady-state simulation, the only difference is that the value from
*
the previous time step, (N3)., is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-13 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section V.
IV-23
-------
(ENTRY ^
SUBROUTINE HOJS I
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
INITIALIZE KNOWN
TERM AM
DIAGONAL
TERM FOR STEADY STATE
OR DYNAMIC SIMULATION
DO confutations
from > to b for
all coTOiitatlonal
• lenmti
DETERMINE
TYPE OF COMPUTATIONAL
ELEMENT
TYPE 1
ADD HEADWATER
INPUTS TO KNIWN
TERM. S(I)
TYPES 2, 3, 4, 5
CONTINUE
TYPE 6
ADD UASTEWATER
INPUTS TO KNOWN
TERM. S(I)
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM, B(l)
(RETURN \
TO QUAL I
FIGURE EZ-13
FLOW CHART FOR SUBROUTINE NO3S
-------
SURKI'ilTINF
T»P'.riUI75).IAUGOR(7!>.6>.NCELRHI75>.IFLAG(75i20)i
IClOI-UI7*.?OI.COEFrWt75l.£XPOUV(75>.COEFOH<7'il.EXPOOHI75).
CMAfjr (7"i) .CM I7«S) .CK3l75).K!>r>Pn75) .CK2I7S) ,COEOK2(75>.
FXPOK,M7?>.T1NITI7'') .OOIMITI75).BOINIT(75) .COINIK7S.3).
UII7M ,TI I7S) .DOK7-S) .RODII7SI .CONSK75.3I.JUNCIO(15.5) .
Jl;tirtl5.3) .HUTRIUI15.5),HUFLOU<15).HWTEHP(15> .HWDOI1P) .
HHCONSU*. J),UASTin(90.S) ,TRFACT<90(,WSFLOW(90).
.USDOI90) .WSBODI90) .WSCONSt 90.31 . OATOT 1 15) .
A(*nD),n(>.>OOI.C(50ni.D(5>.SI'inP).Z(500>.UlSOO>.G(500).
FLOWlSOO) .DEPTHI 500). VEL( 500) .DTOVCLI 500). K2 ( 5001, Kl( 500)i
HSNET(50n),nt('inOI.VHW(lS),nEPHU|l'i)tDLHU|lS)tTISOO)i
riOCSOO) .PUP(SOO) iCONSISOO.?! .PTinE.TPRINT.OELX.
MI'WTRS.NPEACH.NWASTE.NJUNC.nELT.OlLT.nZLT.DTOOXZ.DTZODX.
LAT t LsM , LLH . ELEv • DO T . »E . BE , nAYOFY . DRYBLB. UETBLB iDEUPT .
AT"PR.WINU.CLOUn.SnNFT.NI.NJ.TRLCO,TOFOAY,NT.NC.TIHE.NCS
CKHI75I .CK5I75).CKNH3(75).CKN02«75I .CKN03I75).
CKM , CKP , CKL . ALPHAO 1 75 1 . ALPHA1 . ALPHA2 . ALPHAS • ALPHA^ .
ALPHAS, ALPHA6,GROM«X.RESPRT.AL6SET(75).SPHOS(75).
SNHS(75),KNH3(SOOI.KN02(500I.RESPRR<300I.COLI(500),
ALGAE ( 500 ) ,PHOS 1 500 ) iCNHS 1 500 1 , CNO? 1 500 1 .CN03 1 500 ) •
COl IRI75) .ALGII75) .PHOSI(75I,CNH3I(73).CN02I(75).
CN03K7S) ,COLIIT(7'i).ALGIT(75I.PHOSIT(75).CNHSIT(75t.
CNO?IT(75).CN03IT(75).WSCOLI(90),USALG(90I,WSPHOS(90).
US^lH3(qO).USNO^(90) , WSNOS<90>.HUCOLI113)>HWAL6<1S>>
HUPHOSH5I .HWNH3ll'i).HWN02(T'5).HUN03«15),GROWTHI500),
MOnnPT (10). IRCHNO I 750 I . EXCOEF ( 75 1
*NEH
«NFW
»NEW
(NEW
»NEW
*NEU
*NEW
*NEW
*NEy
*NEW
*NEW
»NEW
*NEU
»NEU
*NEU
*NCU
*NEU
•MEM
*NEU
*NCW
*NEW
*NEU
»NEW
»NEU
*NEW
»NEU
*NEW
*NEW
*NEW
COMPOM/SSTATE/XISCOIiISS
REAI KNO?
NHW=0
NWS=0
INITIALIZE COUNTERS
LOOP THROUGH REACHES AND COUP. ELEMENTS
00 10(1 I=1,NRFACH
NCEI R=NCEI RH(I)
CMCELPsNCCLK
Cil03IJ=C] ( I ) /CNCELR»CN03I < I )
no 100 J=1,NCEL"
IOP=ICLORO|I.JI
INITIALIZE DIAGONAL AND KNOWN TERMS
IF (hOOOPT(
-------
IF
Si ipwisSdnp. I*HF flcT»ciMO3u*nTo«ru( TORI
I(L=IFL»G< l.JI
c
C MOniFY DIAGONAL AND/OR KNCWN TERMS
r
GO TO <1 0] ,10(1,1 0(1,100,100,101,104) . IFL
C
IP] WHW=fJHU*l
SIIpR)=5lIORI-«(IQRI*HWN03(NHW)
Gn TO 1DO
c
mi NWS=WJS+I
S(IORI= SI I OP 11WSFlOW(NWS I•WSN03 (NWS)*DTOVC L(IOR)
no rn ice
c
101 NJS=NWS»1
8(lnRI=Fl( IORI-WSFinw(NWS)«DTOVCLiIOR)
109 CONTINUf
RETURN
END
-------
SUBROUTINE P04S*
Subroutine P04S completes tne setup of the equations necessary
to calculate phosphorous levels in each computational element. Specifically,
the subroutine completes the definition of the diagonal term of the
coefficient matrix and defines the vector of known terms on the right hand
side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions, and
mass changes caused by stream withdrawals. The resulting diagonal term
for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b. = x..
7. Withdrawal b. = x1 - q. ¥•
where xi is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for eacn type
of element for dynamic simulation is:
TYPE
1. Headwater Si = P* + q'P' £- - a.Ph + a2 (p-u.) a.At + a3Ax £-
6. Waste Input S1 = P* + (q'P1 + qwPj 77- + a2 (p-y.) a.At + 03Ax £f
All Others S. = P. + q'P' Jl + a2 (p-u.) a.At + a3Ax —
i vi
*AII symbols used are defined at the end of +his section
of the Documentation Report.
IV-24
-------
For steady-state simulation, the only difference is that the value from
*
the previous time step, PI, is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-14 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section V.
IV-25
-------
(EIITRY ^
SUBROUTINE P04S J
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
DO confutations
from t to b for
all computational
elcnents
INITIALIZE KNOWN
TERM AND DIAGONAL
TERM FOR STEADY STATE
OR DYNAMIC SIMULATION
TYPE 1
ADD HEADWATER
INPUTS TO KNOWN
TERM. S(I)
TYPES 2. 3. «. 5
CONTI NUT-
TYPE 6
ADD WASTEWATER
INPUTS TO KNOWN
TERM. 5(1)
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM. 8(1)
(RETURN \
TO QUA! I
FIGURE E.M4
FLOW CHART FOR SUBROUTINE P04S
-------
SUPnr.UTINF
c
c
TITLE(?n.20).RCHID<75.5I.RnTHOIM75).Rl":TEOR<75).NHHW*Rll5l. *NEW
TflRGHOf 7-U,IAUGOR(7Si6>iNCEL*H<75>. IFLAGI75i20>. «NEU
lCLORl)(7ISt;>0>tCnEFnv(75)iEXPOQVf75)iCOEFaH(75liDOINlT(75I.BOINlT(751.COINITI75.5l « »NEw
131175) iT 1175) .001(75).BOPII75).CONSII 75,3)i JUNC1DI1S.5I • *NEW
JUNC(15.3),hUTRIDM5i5l .HUFLOUI 151 iHHTEMPf 151 iHUDOUS11 *NEu
HWBOO(151.HWCONSHS.3),UflSTIO(90.5l,TRFACT<90l,WSFLOW|90). .NEW
USTfMPf SO 11USUO(901•USBOO190).WSCONS19D•31< 8ATOTI\S>• *NEU
A(500I.H(bOO)tC(5on)iD<5).S(SOO)iZ<500)iW(5DOI«6(50B)' *NEW
FLOU(bOO) iDEPTHISOO) iVEL(SOO) iDTOVCLCiOO)tK2(500) tKKSOO) i *NEW
HSNETCia(U,nL(500I.VHW<15l,OEPHMU5I.OLMH15t.T<500)« *«EU
DOI500),noO(500».CONS(SOO,3).PTinE,TPRINT,DELX, (NEW
NHWTRSiNRE«CHiNWASTEiNJUNCiOELT.01LTi02LTiOTOOX2tDTZOOXi *NEW
LATiLSIiLLn.tLEVtGATiAEtBEiOAYOFT.ORYRLBtUETBLatDCUPTi *NEU
ATMPR.yjMDtCLOUP.SONET.NIiNJtiaLCO.TOFOAT.NT.NC«TINE.NCS *NEW
C *NEU
C 'NEW
COn»ON/MODIF/ CK *NEU
CKN.CKP,CKL.ALPHAO(75),ALPHA!•ALPHA2.ALPHAS,ALPHA*. *NEU
ALPHAS.ALPH46.6RCm«X.RESPRT.AL6SET(75>,SPHOS(75». *NEW
SNH3|75).KNH3(500).KN02(30ai.RESPRR(300),COLIl500». »NEW
ALGAE(SOO).PHOS|SOO)iCNH3|500)iCN02|SOOIALGITl7S)tPHOSTTIT51.HUNM3U5»
OIIOR)=X(IOR)
IFIISS.GT.1) S(IORI=0.0
PSORrF=SPHOStl|«DELX*DTOWCL(10R» • FACT
-------
r AU'H/l?. (KrSPRRtJOP ] -GROWTH! 70R) I »C1LT
!>( inl>)=M I OK )+PHOSIJ»nTOVri < ION I *RE*CT« ALGAE ( I OR ) +PSOPrE
IFL=IFLAR|[,J|
C
C HOPIFY DIAGONAL ANn/OR KNOWN TERMS
C
on in ( 101 ,iuo. too, 100, 100, loi.ioni , IFL
C
=
-------
SUBROUTINE RADIOS
(Not Programmed)
IV-26
-------
SUBROUTINE REAERC*
Subroutine REAERC determines the reaeration coefficient for
each computational element through the use of any one of seven
different procedures. However, the same procedure must be used for
all computational elements within an individual reach. The choice of
which procedure to use is controlled by input options for each reach.
The seven options, procedures, and references are:
3.
OPTION & PROCEDURE
Read-in K2 values
K2 = 5.026
jO.969
,1.673
2.31
k0.5
m
86,400
REFERENCE
None
Churchill et al (1962)
0'Conner and Dobbins (1958)
4-
0.67
u
D"
Owens et al (1964)
5. K2 = 10.8(1 + /F)
6. K, = 3.3 If x 2.31
7. K, = aQ
2.31
Thackston and Krenkel (1966)
Langbien and Durum (1967)
None
where
u
D
m
velocity (feet/sec)
depth (feet)
molecular diffusion coefficient (2.25 x 10"8 ft2/sec)
*This subroutine is unchanged from the original version of QUAL.
All symbols used are defined at the end of this section of
the Documentation Report.
IV-27
-------
= Froude Number = u//Dg
* = shear velocity (ft/sec)
= u n /1.49 D1'167
g = acceleration of gravity (32.2 ft/sec2)
n = Manning's roughness coefficient
The subroutine flow chart is illustrated in Figure IV-15 and
is followed by the program listing. All program valuables contained in
COMMON are defined in Section V.
IV-28
-------
(ENTER A
SUBROUTINE REAEHC J
DO COMPUTATIONS
FROH a, TO b
FOR STREAM REACHES
SET Kj OPTION
FOR ALL COMPUTATIONAL
ELEMENTS IN REACH
FOR ALL COKPUTAT1CWAL ELEKCKTS
WITHIN THE STREAM REACH
OPTION 1
SET Kg EQUAL
TO VALUES READ-IN
QPTJOIlS 2-7
CALCULATE Kj
RETURN
TO DUAL
FIGURE E-15
FLOW CHART FOR SUBROUTINE REAERC
-------
ORUI INF
TAN CITHER REDO IN RFAERATION
CnFFFlCIFNTS (OPTlONl)t COMPUTE THEM
USING A SELECTED FOLIATION (OPTION 2.3.
4.5. ANP 61• OR COMPUTE THEM BASED ON
K9=A>Q«*R. ALL K?'S ARE TO THE BASE E.
TITLFI?0.20>,RCHIOl7li.5>.l*MTHOR|75).RMTEORI75I.NHWWARI15).
™PGnut75) , IAII&ORI 75.6).Nrri_RH( 75) .1FLAGI 75.20).
ICl ORUI 7*i.?0 I .rOLFOV<75> iFXPOQVI 751 .COEF8H1 75) .EXPOQHI 751 i
CMA'ir'(75> .CK1I7-J) ,CKS(75).K?OPT<75) .CK2<75) .COEOK?I 75).
rxPQH2(7-i),TINlT(75).nnlMIT|75).BOINIT(75).COINIT<75.3).
'•'I (75 I. TT( 7-5) ,001(751 ,ROr.I<75).CONSI (75.3) .JUNCIDI 15.5).
.IUNC (IS, Jl.HUTR 10(15.5) .HWFLPWI15) ,HWTEMP( 151.HWOO( 15).
MWPr>C(15),HWCONS(15.3>,UASTID<90.5).TRFACT(90>.USFLOW(90)t
WSTCMP (90 ). USOO (90 I . WSROP < 90 I , USCOriS (90 .3) . OATOT ( 15) t
A(?noI,H(500>,C(500 I,DIM,5(^001.Z(5001.W(5001.6(500).
FlOU(bOO),DFPTH(50n|,VF.l(500).DTOVCL|500),K2(500).Kl<500).
HSNFT<«iOn),CL<5nOI.VHW2| lOD=rK?I 1 I
00002500
00002600
STEP 1-0 00002700
LOOP THROUGH SYSTEM OF NREACH RC00002BOO
AMD NCELR COMPUTATIONAL ELENENTSoooo290o
REACH. 00003000
OOOOS100
00003200
00003300
00003«00
00003500
00003600
00003700
00003800
STEP 1-1 00003900
SFLECT K2'S FOR ANY OPTION AS DE00001000
BY REACH. 00001100
00000200
00004300
KOPT =1 K2 IS READ IN. 00004400
KOPT = ? CHURCHILL (1962) 00004500
KOPT = 3 fl'CONNER - DOBBINS 11900004600
KnpT = i. nuENSt EDWARDS. - GIBH00004700
KOPT = 5 THACKSTON - KRENKEL (100004AOO
KOPT = t LANGRIEN - OUHUK (196700001900
KOPT =7 K2 = A • Q «« P 00005000
00005100
00005700
00005300
• NEW
*NEU
• NEW
• NEW
• NEW
• NEW
• NEW
*NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• -16
-------
CO TO inn OOUO'ilOO
IP? K?<.026vCL(IOR)*CMANN(I)/(l.i>9*OEPTH(IORI**1.167l 00006300
l-2(TUPI=in.ei«(l.n*SeKT(F I I*SHRVEL*2.31 00006«00
r,o TO ino 00006500
inf. K2IIOI. )=S.S«VFLI inR)/OrPTll(IOR)**1.133»2.31
GO TO 100 00006700
107 K2(!CR)=CPcOK2
-------
SUBROUTINE SOVMAT
Subroutine SOVMAT remains unchanged from the original version
of QUAL as documented by the Texas Water Development Board (2).
According to reference (2):
Subroutine SOVMAT solves a system of simultaneous
linear equations whose coefficient matrix is of
tridiagonal form by using a modified Gaussian Elimination
algorithm.
The solution algorithm is presented, in detail, in Report 128 of the
Texas Water Development Board (1). The subroutine flow chart shown
in Figure IV-16 is taken from reference (2). The program listing
follows the Figure.
IV-29
-------
INITIALIZE
COUNTERS
,2-0
HAY
WAT IONS FOR
ALL ELEMENTS BEEN
OPERATED
ON'
HAVE
EQUATIONS FOR
All ELEMENTS BEEN
SOLVED BV BACK
SUBSTITUTION
FIGURE Iff-16
FLOW CHART FOR SUBROUTINE SOVMAT
-------
SlIHiOUTINF SOVKAT
SOVMAT SOLVES A SYSTEM OF SIMULTANEOUS
LINEAR EQUATIONS WHOSE COEFFICIENT
MATRIX IS OF TRIDIAGONAL FORM USING
A MODIFIED GAUSSIAN ELIMINATION TYPE OF
ALGORITHM.
COMMON TITLEC20.20).RCHIOI75.S>.RMTHOR<75).PMTEOR<75I.NHWWAR»15I.
1APr,DO( 7^1 tIAUGORt 75.61 iNCELRHI 751. IFL«G(75.20),
ICLORUI75•20 11COEFOVI 75).EXPOOVI 75»•COEFQHI751.EXPOOHI75)•
CMANNI75>.rKl(7SI.CK3<75I.K20PTIT5I.CK2l7S).COEOK2<75).
EXPOK2(7*I.TINIT<7'!)«DOINITIT5>,BOINITI75I,COINITC75.3).
01(75). TI(75)«DOl<75»«BODIl75I.CONSII75.3l«JUNC10<15«5li
JUNC<15.3).HWTRIDI15.5).HWFLOWI15).HWTEHP|15».HWOOC13I,
HWPoni151.HWCONSIIS.'I.WASTIDI90.5)iTRFACTI90l.WSFLQWI90).
WS1E-HPl90).WSDO<90l.WSBOD«90I.WSCONS<90.3l,OATOT(15l,
A( «ifln).B( 500 ).C (500) .0(5) .8(5001.Z»500).W(3001.6(500).
FLOW<500).DEPTH|500)«VEL(500I.DTOVCL(500).K2(500>,K1(500»,
hSNET(500».DLI500l,VHW(15) .DEPHWdSI «DLHW(15) i
P0(500(.800(500).CONS(500.3).PTIME.TPRINT,DELX,
NHUTRS.NREACH,NWASTEiNJUNC.OELT.DlLT,D2LT,OTODX2.DT20DX.
LAT.LSM.LLM.FLEV.OAT.AE.BE.DAYOFY.DRTBLB.UETBLB.OEWPT,
ATfPR.WIND.CLOUD.SONET.NI.NJ.TRLCD.TOFDAY,NT,NC.TIHE.NCS
OIMFNSION IFLGlSOO)
IJUNC=0
00 100 I=1.NKEACH
NCELR=NCELRH(I)
00 100 J=1,NCELR
IOR=ICLORP(IiJ)
IFL=IFLAGII.J)
IFLG(IOR)=IFL
00002500
00002600
STEP 1-0 00002700
INITIALIZE COUNTER FOR STREAM JU00002800
00002900
00003000
00003100
STEP 2-0 00003200
LOOP THROUGH SYSTEM OF NREACH RE00003300
WITH NCELR COMPUTATIONAL ELCKCNTOOOOBOOO
REACH. 00003500
00003600
00003700
00003800
00003900
00001000
00004100
00001200
*NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
•NEW
• NEW
•-16
GO TO 1101,102.102,103,10?,102.1021, IFL
101 W(IOR)=C(IOR)/B(IORI
G{TnHI=S(IOR)/B(IOR)
Cfi TO 100
00001300
00001100
STEP 2-1 00001500
OPERATE ON EQUATION FOR AM ELEME00001600
TYPE 1. 00001700
00001BOO
00001900
00005000
00005100
00005200
STEP 2-9 00005300
-------
10? OrNriHsFM IPR|-l\(tOR)»U(IOR-tl
C OPERATE ON EQUATION FOR ELEnFfJTSOOOOSlOO
C 2.3,5.6, On 7. 00005500
00005600
00005700
00005800
GI rnRi=is< irmi-fl(ioR)*G( inn-i t i/OENnn 00005900
GO TO 100 00006000
C 00006100
C STEP 2-3 00006200
C OPERATE ON EQUATION FOR AN ELEME00006300
C TYPE -A(lnRI»U( tOR-l>-OUJUNCl«UtNN)
U(IOR)=CIIORI/nFNOH
G( InR)=(S( lOKI-A) IOR)*6I IOR-1) I/DENOM 00007200
100 COMTIhUE
109
0.0
ZIIOKI=GMOR>
IF (ZIIORI.LT.O.OI ZIIORI
IOR=IOK-1
IFL=IFLG|IORI
GO TO (lOfr,106,107,106.106,106,106). IFL
OOOOT300
OOOOT^OO
STEP 3-0 00007500
SOLVE SYSTEM OF NREACN 6T NCELR 00007600
EQUATIONS USING BACK SUBSTITUTIOQ0007700
00007BOO
00007900
lOf.
107
ion
Z(IOR)=GIIoR)-W(IORI*ZIIOR+ll
IF C7(IOR).LT.n.a) 7.(IORI=0.0
GO TO 106
NS=1
DO 9B IJ=liNJUNC
IF lIOR.EO.JUNCIIJ.NSM IJUNCsIJ
CONTINUE
NS=?
NN=JUNC(IJUNCtNS)
ZIIOR)=G(IOR)-W
-------
CALL kUPT? Ill
01 CONTINUE 00011100
RrTllRM 00011200
CMO 00011300
-------
SUBROUTINE TEMPS*
Subroutine TEMPS completes the setup of the equations
necessary to calculate temperatures in each computational element.
Specifically, the subroutine completes the definition of the diagonal
term of the coefficient matrix and defines the vector of known terms
on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b. = x^
7. Withdrawal ^
where x.. is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and the concentration in the previous time step.
The known term for each type of element for dynamic simulation is:
TYPE
1. Headwater S, = T* * ^- * q! 1\ ± - q.Th
6. Waste Input S. = T* + l. + q\ TJ ft + qwTw ^
All Others
i K- ^i
01
*AII symbols used are defined at the end of this section
of the Documentation Report.
IV-30
-------
Steady-state temperature distributions cannot be simulated with the model
The subroutine flow chart is illustrated in Figure IV-17 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section V.
IV-31
-------
(ENTRY A
SUBROUTINE TEMPS I
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
CALL HEATEX
DO computations
from a to b for
•11 computational
elements
INITIALIZE KNOW
TERN AND DIAGONAL
TERM FOR DYNAMIC
SIMULATION
TYPE I
ADD INCREMENTAL INFLOW
AND HEADWATER INPUTS
TO MOWN TERM.
S(D
TYPES 2, 3. 5
ADD INCREMENTAL
INFLOW TO KNOWN
TERM, S(I)
TYPE 4
ADD INCREMENTAL
INFLOW TO KNOWN
TERM. S(I)
TYPE 6
ADD INCREMENTAL INFLOW
AND WASTEWATER INPUTS
TO KNOWN TERM.
S(D
TYPE 7
ADD INCREMENTAL INFLOW
TO KNOWN TERM, S(I). AND
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM, B(I)
(RETURN )
TO OUAL J
FIGURE EZ-17 FLOW CHART FOR ENTRY SUBROUTINE TEMPS
-------
MlfHOUTIMF TCWPS
C
TlTLEI?0,2ni.RCHlD(7",5),RMTHORl75I.RBTEOR(751,NHWHAR(15>. «NEW
T/>HROO(75),IAUGORI71,6).NCELRHI75I.IFLAGI75.20>. *NEU
ri"IANN|7S)!cKll75> •fKS(7S) .K20PT(75I ,CK2{75I .COEOK2O5I . »NEu
ExPOK?|75l,TINIT|7S>,noiHIT(75I.BOINIT|75l.COINIT|75i3)< «NEW
OII75),TI(75I.DOH75).BOMI75l,CONSII75.3l,JUNCIOI15.5|, *NEU
JUKCI15.3|,HkTRIDI15,5l,HUFLOWI151,HHTEHPI15I.HUOOI15l, »NEW
HWPODUSI,HUCONSI15,3I.WASTin(90.SI.TRFACT(9al,WSFLOWI90). *NEW
WSTEHPI. IFL 00004600
c 00004700
101 NHU=NHW+1 OOOOS200
A[iEPTH=0.?»CUEP»W(NHW)*DF.PTH(lORl) OflOOSSOO
RF/>rT=l,SMrTJlDR)/(RHOCP*SPEPTH) OOOOStOO
S[lPK» = TlinKI+RFArT*TPTJ*PTnv;CL(IOR)-AIIORl*HgTEf1P(NHu) 00005500
G«I TO inn oooo560o
r 00005700
-------
In? A( El'TI.=O.S. (Ur"TM(IPP-l I »PFPTHIIOK1) 00006200
Ml (ICTrl'trrTI 10H|/(MI-nCP*ArEPTl'l 00006300
SIinR1=1( IHR) 4UrACT + TPIJ«nm«rL( TORI 00006400
M> in n.p 000065CO
r 00006600
\P1 l,JS=Ml'b*l 00007100
A'll PTl-=n.r*IOFP1hl IOR-l)+nEPTM( TOM ) 00007200
"F.ACTzHSurT ( inH l/(RHOCP»«nEPTH) 00007300
S( lni')=T 11 OP I t"*(nEPTH( IOR-l|+nEPTM(NNI+2.0»OEPTH( IOR) I 00008400
RlnrT=HSMF1(lPR)/(RMOCP«AnEPTH) 00008500
Si mn>=T( TORItDFACT + TPIJtriTnvCU IORI 00008600
GO TO 100 00008700
r 00008800
IP'S NUS=NWS*1 00009300
flnFPTH=U.S«lOFPTH(IOP-ll*nEPTH(IOR)l 00009400
HFACTiHSrFTIIOM)/ 00009500
S(IPRl=l(IOH)+HFACT+ITPIJI»nTOVCLIIOR)
It I I Ok I =p I I OR I - riSFLOU (NWS) • DTOVCL IIOR )
ipn CriNTIMir 00009700
RETimf 00009800
Efll) 00009900
-------
SUBROUTINE TRIMAT
Subroutine TRIMAT computes all coefficients for the implicit,
finite difference advection-dispersion equation for each computational
element except for the diagonal term. In the case of the diagonal
term, bj , TRIMAT computes that portion of term that is fixed and
independent of the constituent to be simulated. This fixed portion of
the diagonal term is designated as x..
In general, the basic equation that TRIMAT sets up for a
computational element, i, is:
bizi + cizi+l = Si
where
bi = xj + (constituent dependent terms)
a.j ,c^ = off -diagonal terms
S.. = known term
z = variable
In the case of a computational element that contains a junction and the
upstream element in the tributary stream is n, the basic equation becomes
Vi-1 +bizi + cizi+l +dizn ' si
Table IV-1 contains the equations for each term in each type of
computational element.
The subroutine flow chart is illustrated in Figure IV-18
followed by the program listing. All program variables in COMMON are
defined in Section V.
IV-32
-------
TABLE IV-1
SUBROUTINE TRIMAT EQUATIONS
FOR VARIOUS TYPES OF COMPUTATIONAL ELEMENTS
I
OJ
co
Reach Type
1.
2.
3.
4.
5.
6.
Headwater
Regular
Upstream
from
junction
Junction
(with n)
End of
Reach
Input
a
n AT n AT
~Uh Ax2" " \ ^j"
-D. . ^..n , £
UJ-1 AX7^ 4j-l Vi
same as 2
same as 2
•(DJ-1+DJ) fxT-Qi-l 71
J1 J AX J'»T
J
same as 2
X
(i.o + (DO + DJ) jgr+Qj £1)
J
(1.0 + (D._-, + Q.) &L.+ Q. A!)
j
same as 2
(1.0 + D.^ + 2D. + Dn) ^5-+ Q. £L
same as 2
same as 2
c d
-D. T-2- none
same as 1 none
same as 2 none
same as 2 -Dn ^ - Q —
n AXZ n v-
J
-0- none
same as 2 none
7. Withdrawal same as 2
same as 2
same as 2
none
-------
(ENTRY ^
SUBROUTINE TR1MAT J
INITIALIZE
COUNTERS
DO COMPUTATIONS
FROM a TO b FOR
ALL COMPUTATIONAL
ELEMENTS
INITIALIZE FIXED COMPONENT
OF DIAGONAL TERM. x(I),
FOR STEADY STATE OR
DYNAMIC SIMULATION
TYPE 1
HEADWATER ELEMENT
COMPUTE COEFFICIENTS
A(D. X(I). C(I)
TYPES 2. 3. 6 OR 7
OTHER ELEMENTS
COMPUTE COEFFICIENTS
A(I). X(I). C(I)
TYPE 4
JUNCTION ELEMENT
COMPUTE COEFFICIENTS
A(I), X(I). C(I). D(I)
TYPE 5
FINAL ELEMENT
COMPUTE COEFFICIENTS
A(I). X(I)
c
RETURN
TO QUAL
FIGURE E-18
FLOW CHART FOR SUBROUTINE TRIM AT
-------
H IMF TKIWAT
TRIMAT COMPUTES THE COEFFICIENT MATRIX
FOR THE IMPLICIT-FINITE-DIFFERENCE FORM
OF THE ONE-niMENSIONAL IADVECTION t
DISPERSION) TRANSPORT EQUATION.
TJTin?0.;>(».RCHin(75.'i>.RfmiOR(75),RWTEOR<75).NHWWAP(15),
TAMC.nO|7£>),T«UGnR(7!>.6I.MCCLRH(75).IFLAG(75i20>i
lCLORl>(7';.?n>.cnEFnV(75>.FxPnOV<75).COEFQH<75),ExPOOH|75).
rpi/\MN(7'S) ,CKl<75>.rK3(75>,K?OPT(75>.CK2<7P).COEOK2I75),
EXPr)K;:(7b) ,TIMT(7M .OOINIT(75> .BOINITI75I ,COINIT<75.3(.
01(75) .TI< 75).001 (751 .RODI^M.CONSI (75.3) .JUNCIOI 15.5).
JUNC(15.M.HWTRinil5.S).HWFLOW(l'i>.HUTEHP(lSliHUOO(15).
"WFOOI15) .HuCONSIl'i.S) .WASTTO(90.5).TRFACT(90I.WSFLOWI90).
t>STF*P(<)0)iWSnni90).USBOD(90>iWSCOMSl90.3).QATOT|15li
acinoi ,R(5nr» ,C(Snn) .0(5) .scioO).Z(Sno),w(500),G(500).
FLrv(bnO>.nEPTh|50l)).VEL<500I.OTOVCLl500I.K2l500liKll500)i
HSfTTCiOni.nLISOO) ,VHU(15).DEPHW(15».OLHW(15).T(500).
nO(^OQI,ROn(500I.CntaS(500,3I.PTIME.TPRINT,OELX.
MHVTRS,NREACH,NUASTC(NJUNC.DELT,DlLT.02LT,DTODX2.0T20DXt
L«T,LSM,LLM.eLrv.O»TtAE.PF.DAYOFr,ORYRLB.WETBLBtDEUPT,
ATM-'R, WIND.CLOUD. SONET,NI.NJ.TRLCD.TOFDAY,NT.NC.TIHE.NCS
COMMOI /SST/iTE/XlhOO). ISS
NHUrO
NUS=0
IJUMC=0
00 100 I=1.NKFACH
NCFlR=NCtl RHII)
UO 100 J=1 .NCrLR
IOP=IrLORfl( I.J)
XI10RI = 1.0
IF iiss.r-T.oi xnoR)
• NEW
• NEW
.NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• -16
00002400
STEP 1-0 00002500
INITIALIZE COUNTERS FOR HEADUATE00002&00
WASTE LOADS OR WITHDRAWLS. AND 500002700
JUNCTIONS. 00002800
00002900
00003000
00003100
00003200
00003300
STEP 2-0 00003400
LOOP THROUGH SYSTEM OF NREACH RE00003500
WITH NCFLR COMPUTATIONAL ELEMENT00003600
REACH. 00003700
00003SOO
00003900
00004000
00004100
00004200
o.n
GO TO (101 .1(1?.10?.103,104.10?.102). IFL
STEP 2-1
COMPUTE COEFFICIENTS B
ELEMENT OF TYPE i.
in' Mit>=riMw+i
00004300
00004400
00004500
00004600
AND C FOMOP004700
00001BOO
00004900
00005000
-------
Airr.i >--,nci \?»rLHw(NHki)-iuFLOU(Niiu)«nTovcL< ion) oooosioo
Y( !fi(| = » i mi i MiTory?.(nLHu(Hnv)+ni i lo1)) )-fFLOU( inoj.nTC'VCUIORi
n ini l = -l TM|l-l=-010n*?<(ILIinp.l)-FLOWIIOR-tl*DTOVCL(IORI 00006000
«( ir"i = M I ""I* )lonx2*mLI IOR-1 ItHLlIOBI )«FLOU( IOR)*OTOVCL( I OR I
Clir.i )z-nTnn«?>r~Lr 00006100
( 00006<400
C STFP 2-1 00006500
T COMPUTE COEFFICIENTS =-OTonx?*PL(NNi-Fi nu«oTrwcL( IORI 00007200
l=-ni'iL,x?>nL(IOR-l)-FLOU(IOR.ll*nTOVCLIIORI 00007300
• r'invCL( IOH) 00007500
Cilni i = -l'Tn|ix?«PL( IPRl 00007600
M< TO 101) 00007700
r 00007800
C STEP 2-4 00007900
r COMPUTE COEFFICIENTS A ANP B FOKOOOOAOOO
C ELEMENT OF TYPF 5. 00008100
r 00008200
L 00008300
10M AilPK)=-iiinnx?«(m I IOH-l)+r;L( IORI l-FLOd( IOR-1 I *DTOVCLI IOR I 000081)00
XI IPN) = X| inf) + nT|jnX2«(DLI TOR-1 )«ni.(IOR» I+FLOUI IOR I *DTOVCt-l IOR )
ipr CPNTIfliF 00008600
RfTUCr 00008700
E-n 00008800
-------
SUBROUTINE WRPT2
Subroutine WRPT2 is basically the same program as documented
by the Texas Water Development Board (2). Minor changes to report
headings and formats are the only differences from the original version
of the program. QUAL-II uses WRPT2 to print intermediate summaries of
simulation results. For dynamic simulations, the intermediate reports
occur at preselected time intervals; while for steady-state simulations,
the reports are printed at a preselected iteration interval. WRPT2
writes the concentration of the quality constituents simulated for each
reach and all computational elements within the reach. For steady-state
simulations the WRPT2 also reports the number of computational elements
that do not satisfy the convergent criteria. The following page
illustrates an example output report from WRPT2 for a steady-state
simulation.
Figure IV-19 illustrates the subroutine flow chart, and the
following pages contain the program listing. Variables in COMMON
are defined in Section V.
IV-34
-------
wni" r<"J\/r>r.r'iT IN 07 ELE"CNTS
?
C.UOWTH PATF WO'I CONVF'-P' "T It "2 ELEMENTS
O'' i
P/ITC MOM ronvrnr.! NT IN o ELEMENTS
RCH/CL 1
l fl.io
? 7. PI
3 10. 3b
1 °.lfc
5 7.02
<- 7.3fl
?
*.21
t'.ft"
in.?l
°. 3i
7J04
7.10
III'.
3
C.1"
7. Of
10. n«
q ?o
7)06
7.1?
~ni vrn OXYRLN Ii1 HG/I
u '.
1.07 o.Ol
7.«« 7.pq
9.97 9.H7
T.26 9. ?1
7J09 7M1
7. IS 7.M7
f.
7.9f
7.36
9.7P
9.21
7.13
7.19
7
7. "2
7.11
9.69
9.19
7.16
7.51
nlun'FMCAL oxyfiE" OEfANn in
RCH/CL 1
1 2.C7
2 1.19
3 l."&
1 1.55
5 3.91
6 3.?1
2
'.7'-
1.14
1.92
1 .52
1.B6
1.1P
i
i.r-*
l!o9
1.89
1.1 =
3J15
•• 5
?.5? 2.41
i.os i.ni
1.85 l.m
1.16 1.11
T.76 1.72
1.12 3.10
6
?.31
7J1?
1.78
1.11
3.67
1.07
7
2.21
7lll
1.74
1.18
3.63
3.04
K
7.H8
6.89
9.6?
9.17
7.18
7. 51
i NG/L
8
2.11
6.82
1.71
1.35
3.58
3.01
q
7.85
6.69
9.16
9.15
7.20
7.55
9
?.o?
6J51
1.68
1."
3.54
».9H
10
7.83
6. Si
9.50
9.11
7.23
7.57
IP
1.93
6.26
1.65
1.30
3.50
2.96
11
7.81
P. 36
9.44
9.13
7.25
7.59
11
1.85
6.00
1.61
1.28
.1.45
?.93
12
7.80
6.22
9.40
9.11
7.27
7.61
12
1.77
5.76
1.58
1.25
3.41
2.90
/|!»M(II\I1A AS N IN <7
!7P
.1°
.1*
1.10
1 5
.9h .95
.77 .76
.19 .19
.16 .16
1.10 1.39
1.37 1.11
''ITR1TF AS N IN
RfH/fL 1
1 .0».
2 .11
1 .PI
4 ."3
5 .16
6 .17
2
.06
.11
.01
.03
.16
1
.07
.11
.n?
.0?
.17
.in
1 5
.07 .r,c
.11 .11
.na .r?
.01 .in
.47 .17
.1* .in
MlTKATE AS N IN
BCH/CL 1
1 .10
? .14
3 .10
4 .11
s 1.01
f 1.09
2
.11
.45
.10
.11
1.05
1.10
i
.11
.15
.10
.11
1.05
1.10
1 5
.1? .3?
.16 .17
.in .10
.11 .11
1.0-- I.OS
1.10 1.10
PHOSPI.OF.liS AS P
RCH/CL 1
2
1
U 5
6
.9n
2.03
.49
.46
1.3q
1.33
Mfi/L
6
.OP
.16
.0?
.04
.17
"6 XL
6
.31
1.35
.10
.11
l.Of.
l.ll
in t'R
6
7
.93
2.01
.48
.46
1.19
1.33
7
.09
.17
.02
.04
.17
.18
7
.14
1.36
.10
.12
1.06
1.11
/L
7
8
.92
1.99
.48
.45
i.3e
1.32
8
.09
.18
.0?
.04
.17
.18
8
.34
1.07
.10
.12
1.06
1.11
8
9
.91
1.97
.48
.45
1.38
1.3?
9
.09
.18
.01
.04
.17
.18
9
.31
1.08
.11
.12
1.07
1.11
q
10
.90
1.95
.18
.45
1.37
1.32
10
.10
.19
.03
.04
.17
.18
10
..16
1.40
.11
.1?
1.07
1.12
in
11
.89
1.93
.47
.45
1.37
1.31
11
.10
.20
.03
.04
.17
.18
11
.36
ill
.12
1.07
1.12
11
12
.88
1.91
.47
.44
1.36
1.31
12
.10
.20
.03
.04
.17
.18
12
.37
1.42
.11
.12
1.08
1.12
12
ITERATION 3
13 1" IS
7.79 7.78 7.7B
6.10 6.00
9.11 9.10 9.09
7.29 7.31 7.33
7.63 7.65 7.69
ITERATION 3
13 14 15
1.70 1.62 1.55
5.52 5.29
1.23 1.20 1.18
3.37 3.33 3.29
2.88 2.85 2.83
ITERATION 3
IS 14 15
.87 .86 .85
1.89 1.87
.44 .44 .44
1.36 1.36 1.35
1.31 1.30 1.30
ITERATION 3
13 14 15
.10 .10 .11
.21 .21
.04 .04 .04
.17 .17 .47
.18 .18 .18
ITERATION 3
13 14 15
.38 .3* .39
1.44 1.45
.1? .13 .13
l.OP 1.08 1.09
1.13 1.13 1.11
ITERATION 3
11 1" 15
16
7.78
7.35
7.71
16
1.49
3.25
2.79
16
.84
1.35
1.30
16
.11
.17
.18
16
.40
1.09
1.1.1
16
17 18 19 20
7.78 7.79 7.80 7.81
7.81 7.86 7.92 7.97
17 18 19 20
1.42 1.36 1.30 1.29
2.76 2.73 2.69 2.66
17 18 19 20
.83 .82 .81 .80
1.29 1.29 1.29 1.28
17 18 19 20
.11 .11 .11 .11
.18 .18 .18 .18
17 18 19 20
.41 .41 .42 .43
1.14 1.14 1.14 1.15
17 18 19 20
-------
Loop through
program from >
to b for all
stream reaches
WRITE
INTERMEDIATE
OUTPUT REPORT
(RETURN 1
TO QUAL I
FIGURE 12-19
FLOW CHART FOR SUBROUTINE WRPT2
-------
: inr
URPT? WRITES AN INTERMEDIATE SUMMARY
OF THE SFLECTEO QliALITY CONSTITUENTS.
THFSE CONSTITUENTS ARE WRITTFN BY REACH
AMD BY ELEMFNT. THIS SUMMARY CAN BE
GIVFN AT 0 TIME INTERVAL OF DELT OR
S"I»E MULTIPLE OF OELT.
ncoi. TIT|.F-(?ll.20)iPCHlO(7!>.m.RMTHOR(7IS>.RMTEORI75).NHWWAR(15).
TAKODOI 75 ) ,I^UROR( 75.61 .NCELRH(7S I .IFLOGI 75.20 ),
ICI.nRO(7Sf?OI.COEFCv(7'SI.ExPOOVI75)iCOEFQHI75).EXPOOH(75l.
r*aNN(75>.CKl (75>.r«3<75) .K?OPT<75I.CK2(7SI ,COEOK?<75) ,
EXPOK2I 7C).TINIT< 7-5) .HOINITI 75>.BOINIT<75).COJNIT< 75.3) .
RI ( 75) ,TI( 751.001 1 7t)),RODI<7S),CONSI (75.3). JUNCIOIIS.SI.
JUNCI 15.JI.HWTRID(lS.5).HUFLOWa5),HWTEMP(15) .HWDOdSI.
MWBOO(IS) ,HUCONS(f.3) .WAST 101 90 .•> I .TRFACTI90) .WSFLOUI90I i
WSTEMP(90).WSDOI90>.WSRODf90).USCONS(90.3)iOATOTI15)<
A(5PO)0(5l.K1ISOO).
HSNET ( " on I . OL ( 500 I . VHfc ( 15 1 . OEPHW IIS). OLHW 1 1 5 ) . T 1 500 1 <
rO|
HWPHOS ( 1 * ) i HUMH3 1 1* ) . MUN02 (151. HUN03 ( 1 5 ) . GROWTH ( 500 ) .
MODOPT(in),iHCHNO(7IiO).EXCOEFI75)
CKf,(75) .RAONIT ( 75 )
I I 7SI ,HWRADN( IS ) ,USRAON(90 )
^P^••()^/•!ST/ITE/XISOO).ISS
.Cr»MC(bOO)
ir
ITIT=IHE
uimr ("J.1D (TITLE(NT.J).J-6.?OI.ITIME
1« FOR1M (lHfl.l9X.l'iAt.l4X.9MlTE:RATION. HI
60 TO 51!
?0 CONTINUE
in
I'j.sni (TlTir (NT.J) .Jrf,.?n>.TIMD/iY
• n F.1R>"V1 MMu.ltX.lfiAU.lv.F'S.P.SH DAY^./I
STFP 1-n
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
•NEW
• NEW
•NEW
• NEW
• NEW
• NEW
00002700
00002600
00002900
00001000
-------
ii.'ITI (i J.'-U
3^4^67
11 i? 17 14 IS 16 17 18 11
* sn'/t 00003400
c LOOP THROUGH SYSTEM OF NREACH RE00003SOO
r RY NCELK COMPUTATIONAL ELEMENTS 00003600
HEACH. 00003700
'- 00003800
-, ion i = l.r,,
-------
SUBROUTINE WRPT3
Subroutine WRPT3 prints for each reach the final results of
the simulation. The output report contains three basic parts; these are:
1. Values of hydraulic parameters
2. Water quality results
3. Average values of reach coefficients
The following page contains an example of the output report produced by
Subroutine WRPT3. Figure IV-20 illustrates the subroutine flow chart
and the following pages contain the program listing. Variables in COMMON
are defined in Section V.
IV-35
-------
FINAL REPORT
REACH NO. i.o BCH= RFACH i
HIVFR WILES 90.0 TO TO.O
1 . HYP HAUL 1C PARArETFP VALUES
HEAD OF PF»CH END OF RFACH HAKIHUH MINIMUM AVERAGE
FLOW (CFsi = inn.ooo loo.non ino.ooo 100.000 100.000
VELoflTY (FpS) = .7-57 .757 • .757 .757 .757
DEPTH IFT1 = *.517 5.517 5.517 5.517 5.517
9. MATER QUALITY PARAMETER VALUES • • « • • «
FLFH i 2 3 t i 6 7 e 9 10 11 12 13 11 is 16 i7 IB i9 20
no «.30 «.21 B.lt 8.07 6.01 7.96 7.92 7.88 7.8? 7.83 7.81 7.80 7.79 7.T6 7.7B 7.78 7.78 7.79 7.«fl 7.81
POO 2.«7 2.75 2.63 2.52 2.11 2.31 2.P1 2.11 2.02 1.93 1.85 1.77 1.70 1.62 l.SS 1.19 1.12 1.36 1.30 1.25
NH3 .99 .96 ."7 ."»6 .95 .•»! .93 .92 .91 .90 .89 .88 .87 .66 .85 .81 .83 .62 .81 .60
N02 .06 .06 .07 .07 .dfl .06 .09 .0« .09 .10 .10 .10 .10 .10 .11 .11 .11 .11 .11 .11
N03 .30 .31 .11 .32 .32 .31 .11 .31 .35 .36 .36 .57 .36 .36 .39 .10 .11 .11 .12 .15
P01 .20 .20 ,?0 ,?n .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
flLGY in.12 in.as 10.16 in.SI 10.6S 10.79 10.93 11.OB 11.23 11.56 11.51 11.70 11.86 12.03 12.21 12.36 12.57 12.75 12.95 13.11
fOLI ,t5 .10 .16 .33 .29 .26 .21 .21 .19 .17 .16 .11 .13 .11 .10 .09 .06 .07 .07 .06
fowl 27.00 !>7.00 Z7.no ?7.00 27.00 ?7.00 27.00 ?7.00 ?7.00 27.00 27.00 2T.OO 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00
• NOTE: UMTS ARE HC/L. EXCEPT FOR ALGAE AS CHL A IN U6/L
AND FECAL COLIFORN AS 1000/100 HL
AND CONSERVATIVE MINERAL I = TOS IN |«G/L X 0.1)
AVERAfiF VALUE"' OF REACH COEFFICIENTS • * • •
DECAY RATES ll/OAT) SETTLING RATES (I/DAY) BENTHOS SOURCE RATES (H6/FT/OAT) RCAERATION RATE CKLOR A/ALGAE
ll/OAYI RATIO IUG/HGI
KIROH = . f.0 BOO = .00 BoO = .00 K2 = .663 RATIO = 50.00
Mu* = .15 ALGAE = .50 NH3 = .00
HMD? = i.no POI = .00
hCOLI = 1.50
KRHN = .00
-------
(SUBROUTINE ^
. "" J
LOOP THROUGH PROGRAM
FROM i TO b FOR ALL
STREAM REACHES AND PRINT REPORT
INITIALIZE TERNS AND
FIND MID.. MAX., AND
AVERAGE HYDRAULIC
CONDITIONS
WRITE
HYDRAULICS SUMMARY
REPORT
WRITE
FINAL RESULTS OF WATER
QUALITY SIMULATION
WRITE
AVERAGE VALUES OF
REACH COEFFICIENTS
(RETURN A
TO QUAL )
FIGURE 12-20
FLOW CHART FOR SUBROUTINE WRPT3
-------
SIIHPDUTIT'F LliPTJ
WRPT3 GIVFS A FINAL SUflHtRY (RFACH PT
RFACHI CF1ER STEADY-STATE CONDITIONS
HAVE qEEN REACHED. IT SUMMARIZES THE
COIiniTlONS AT THE BEGINNING ANP END OF
EACH REACH AS WELL AS THr MAXIMUM.
PINIM.UM. AND AVERAGE CONDITIONS WITHIN
THE REACH.
C()H"f>N 1ITLF(?0.aO).RCHlDfT!s.'i|,l»MTHOR(75).RMTEOR(75) .MHWUARIlSIt
TARGnO(7M.IAUGORI75<6).NCELRH(75>.IFLAGI75t20>.
ICLnri)(7--.20I.COEFOV<75>.E>POOVI75>.COEFOH<75I.EXPOaH<75>.
CnA|uN<75).CKll7*>).rK^I75).l-2nPT(75>iCK2l75>tCOCeK2<75).
ETXPOK^(7C ).TINIT(75I.DOINrTI75).BOINIT(75l.COINIT(75.5l.
PI (75 1 ,TII7S),DOII75).BOnl»7S».CONSI(75.3),JUNCIOI15.5).
JliMC.HWTRIDll5.5>iHWFLOHd5>.HWTEHPtl5).HUOO(15) .
HUPODI Ti) ,HWCONS(15.S),UASTin(.DEPHWI15l«DLHW(15I.TlSOOI.
PdlSOO) .POOIEOO)iCnNS(50n.J).PTlME.TPRINT,nELX.
NHWTKS.NRCACH.NWASTE.NJUNC.DELT.D1LT.D2LT,DTODX2.DT20DX.
LAT.LSM.LLM.ELFV.OAT.AE.BE.DAYOFY.DRYBLa.UETBLB.DEWPT.
WIND. CLOUD. SONET. NI.MJ.TRLCO.TOFDftY, NT. NC. TIME. NCS
CK»(75I.CKS(75I ,CKNH3(75I .CKN02(7S) ,CKN03(7SJ.
CKf 1 1 CKp , CKL i ALPHAO ( 75 ) . ALPH Al . ALPHA2 1 ALPHAS. ALPHA* •
ALPHAS. ALPHAS. GROMAX.RESPRT.ALGSETtTSIiSPKOSITS I •
SNH3(7S1 ,KMH3(SnOI .KN02l5nn(.RESPRR(500t.COLII500l.
Al KAPCiOO) .PHOSI500I .CNHSCiOn) ,CNO?1500I .CN03I5DO) .
COI IR ( 75 1 < A| GI < 75 1 . PHOSI I 75 ) i CNH3I ( 75 1 • CN021 1 751 .
CM>MI75).COLIlTI7'i).ALGm7S).PHOSITI75»,CNH3IT»75>.
Crjr2IT(7'il.CN03lT(75I.UScnLI(90),WSALG(90|,WSPHOSI90),
WSNH3 1 Pn I . MSN02 (901 . HSN03 1 90 I • HUCOLI 1 15 1 • HWALS< IS) i
Mk PHOS ( 1 5 I . Ht'NH3 ( 1 •> ) . HUNP2 (151, HUN03 ( 15 ). GROWTH ( 500 ).
, IPCHMO ( 7SC ) , EXCOEF 1 75 1
CK6|7S),RAPNlT(75).r>ATAM31
• llHVFLO.1HClTV.ltH (FP.UHS) ,1H = ,
• 1MUFPT.1HH (F.tHT) .tH ,1H = /
DATA TATA/1411 M03.4HTE1P.MH BOD.4HAI GY ,1H P04.4H NHJ,<*H
1 iiirULI.'oi RAOi«M N02,U|iCnrjl.<»HCON?.UHCON3/
r
r srrp i-o
00.
00003100
OOOOIZOfl
00003000
-------
' OOOOitUO
I LOOP THROUGH SYSTEM ONE RFACH
r AT A TIME
r
PC 10 M = l ,750
JO I'.'CM'TilKK) = TARSI IRCHNO(KK) |
r
r oooo«7oo
DO inn I=),MKFACH 00004600
DO *n KK=i,75n
IF < iRCHr,nfIN=l.nf>06 00005300
«VEK?=0.0
NCFLR=NCELRH(I|
IS=!CI.Or)rj(I.l)
IE=IS-l*NCFLR
AVC=MCELR 00007200
00 »50 J=J.NCFLR
IOR=ICLORn(IiJ) 00008100
C 00008200
C STEP 1-2
c FIND MAXIMUM, MINIMUM, AND AVERAOOOOBIOO
C CONDITIONS WITHIN EACH REACH. 00008500
C 00008600
IF IFLOW(IOR).LT.FLOMAX) GO TO 1 00008700
FLOMAX=FLOUIIOKI OOOOBBOO
1 IF IFLOW( rORI.GT.FLOPIN) RO TO 2 00008900
F|.OMIN=FLOU(IOR) 00009000
? Fl-OAVFiFLOnVE+FLOUdORl/AVE 00009100
AVC»?=AVr
?-sn CO.MTlf.UE
Vri«1AX=r:0<-FQiMII»FLOI'1AX*«F)(POgvlI) 00012000
VFI.niN=COFFi)V(I)*FLOMIN**FXPOOViN»*rxPooH( n 00012400
CIFPft«E=COFFnH{ I I •FLOAVE«*FVPOOHI I ) 00012500
00012600
STEP 1-3 00008300
WRITE HYDRAULICS SUMMARY
00012900
WI-ITE cu.irui
-------
1 FQKV.,1 ( //,«^n t. HYDRAULIC PARAMETER V A L U
•CS * < • * * * • /)
M? FORKAI f U.n,HX.*HPARAnETFR.9X.l.lHHFAO OF REACHi7Xi
• 1?HENP PF REACH, 5Xi7HMAXIMU>1.5X>7HniNinUPi5X<7HAVERAGE. SI
TH.1 FONfAT I 9k,lu«r'EIJ,ll>J=lf'il.FLOW(IS>iFLOWfIE>>F'LOHAX,
• FLOrtlN, FLO/WE 00014000
WHITE (MJi^O.3)
PIJI=UOni IOR1
Ifc1 CnNTII'UE
WKITt CIJO58I PATAI 3>.(P(K),K=1,NCELR)
en TO ?oo
IK'S CONTINUE
IF (MPOOPTf bl.Lt.O) GO TO 200
IO>4=ICLOHni
1ft«i C3i«7THUE
U'02(iORi
l«7 CONTl'JUF
-------
-I'.MTI ("Ji|-6 COMIItMlF
UHITL (NJ.156) OATAI 2 ) . I P( Kl ,K=1 iNCELH )
nn TO 200
190 CONTIr'llF
IF (i«OPOPT( ll.LE.O) GO TO 200
H1->
0(J 192 rhC = l>N'>S
NT=MT+1
DO 191 J=l. MCFLP
InH-ICLOKPI I..J)
l'IJ)=CC1rIS( lOK.W(JL)
1<-1 CONTIMUE
KK = 10«N''C
WITF (NJ.1SHI fATA(KK)t(P(K)iK=liNrELR)
19' CONTII llF
GO TO ?00
in-", CONTINUE
IP iMoni'T( -ji.ic.o) co TO ?no
-------
J=1.NCELR
i'1 i ,j>
RAiiinMMCLirE NOT PROGRAMED THIS OATE 15 FCB
Iff- Lir\ii innl
VRITF InlJilSd) PATA( 9)i(l>IK).K=l.NCELR)
?nn CONTIHJF
IF IWPHIN.LT.I) GO TO 150
W-UTLIHJ.?10> (TITLC(8.J).J=6,20) .NEW
?]0 F1H-AT M7HJ. NOTE: UNITS ARE HG/L. EXCEPT FOR ilSAH) ••-!
WRJTr(NJ,?15) (TITLEimiJ)i J=6t?OI »NEW
ir (»innni'T(ii.LF.O) GO TO z?o
no fit, KK=i.r,cs
UilITE (Nji?lS) (TITLEIKKK.J)24)
F1I1MAT (i3X,4HANO
C 00003800
c
C STEP 3-0
C
c WRITE AVERAGE VALUES OF REACH
C COEFFICIENTS
C 00007500
r STEP s-i
c
C LOOP THROUGH ALL COMPUTATIONAL
r ELEMENTS IN THE REACH
C OOOOT900
WRITE (NJ.107)
107 FORMAT I///.9KH 3. AVERAGE VALUES OF REACH C
•0 EFFICIENTS * * * •///>
WHITE (NJ.102I
10? FORMAT (3?H DECAY RATES ll/OAYI ,3X>
• ??HSI-TTLING RATES II/DAYI.SX.SSHBENTHOS SOURCE RATES ING/FT/DAY).
• jx.t-iHRrnFRnTiOM RATE.BX.ISHCHLOR A/ALGAEI
WHITE (NJ.lOi)
lt>1 FORMAT (<"tXilOH ( 1/OAY ) ,9Xi 13HRATTO IU6/HGI/I
UftTr ir'J.lflit) CK1 II)irK3(I)iCK«|I).CK2(I)iALPHAO(I)iCKNH3lIli
1 ALGSr T ( I ) . SNH5 1 1 ) . CKN02 ( 1 1 • SPHOS ( 1 1 i CK5 1 1 ) • CK6 1 1 1
lot F?P«lAT (9X.PH K1BOO =iF7.' 1 16Xt 7HBOP =iF7.2t 16X.SHBOD =.F5.2i
• 17X.MI-IK2 r,F>i.3ii>X<7HRATIn =.F7.2i/.
• 9x.flH KNH3 =.F7.?.16X.7HALGAE =,F7. 2 , 16X. SHNH3 =iF5.2i/.
• 9X.BH KHOZ =.F7.2i«6y.SHDOi| =.F5.2i/.
» 9V. BH KCOLI =,F7.2./.9X.HH KRDN =,F7.2)
inn CONTINUF 00016200
rtTTURM 00005300
E if
-------
DEFINITION OF SYMBOLS
The following tabulation defines the symbols used in the
right hand side of the equations shown in each subroutine description,
except TRIMAT, which is self-explanatory.
SYMBOL DEFINITION
a Coefficient in convection-diffusion
equation due to upstream stream segment
A Algal biomass
ai Fraction of respired algal biomass
resolubilized as ammonia nitrogen by
bacterial action
a Fraction of algal biomass that is
2
phosphorus
a3 Rate of oxygen production per unit of
algae (photosynthesis)
a Rate of oxygen uptake per unit of algae
11 respired
as Rate of oxygen uptake per unit of ammonia
oxidation
a Rate of oxygen uptake per unit of nitrite
nitrogen oxidation
C Concentration of a conservative material
C Difference between oxygen concentration
5 and oxygen saturation concentration
D Average stream depth
D Average stream depth
Dm Molecular diffusion coefficient
Concentration of oxygen
E Concentration of coliform
F Froude number
g Acceleration of gravity
IV-36
-------
SYMBOL DEFINITION
X Light extinction coefficient
h Net heat flux
K. Emperical half-saturation constant, light
KN Emperical half-saturation constant, nitrogen
Kp Emperical half-saturation constant, phosphorus
Kj Rate of decay of carbonaceous BOD
K2 Aeration rate in accordance with the Fickian
diffusion analogy
K3 Rate of loss of carbonaceous BOD
due to settling
K4 Constant benthic uptake of oxygen
KS Rate of coliform die-off
K7 Rate constant for the biological oxidation
of ammonia nitrogen
K8 Rate constant for the oxidation of nitrite
nitrogen
L Intensity of light (ALGAES)
L Concentration of carbonaceous BOD (BODS)
y Algal specific growth rate
0 Maximum specific algal growth rate
n Manning's roughness coefficient
Nx Concentration of ammonia nitrogen
N Concentration of nitrite nitrogen
N3 Concentration of nitrate nitrogen
P Concentration of orthophosphate
p Algal respiration rate
q Stream flow
a Algal settling rate
a2 Benthos source rate for ammonia
a Benthos source rate for phosphorus
3
t Time
T Temperature
IV-37
-------
SYMBOL
h (subscript)
i (subscript)
o (subscript)
w (subscript)
* (superscript)
1 (superscript)
DEFINITION
Velocity
Shear velocity
Volume
Length
Specific heat times density
Headwater
Element
Taken out of system
Waste load
Previous time step value
Upstream element
IV-38
-------
SECTION V
QUAL-II
DESCRIPTION OF VARIABLES IN COMMON
a
5
-------
SECTION V
-------
SECTION V
QUAL-II
DESCRIPTION OF VARIABLES IN COMMON
-------
SECTION V
QUAL-II
DESCRIPTION OF VARIABLES IN COMMON
Variable Name
A(IOR)
AE
ALGAE(IOR)
ALGI(I)
ALGIT(I)
ALGSET(I)
ALPHAO(I)
ALPHA1
ALPHA2
ALPHAS
ALPHA4
ALPHAS
ALPHAS
ATMPR
Definition
= Vector below diagonal in
tridiagonal coefficient matrix
for computational element IOR
= Evaporation coefficient
= Concentration of algae in
computational element IOR
= Incremental inflow concentration
of chlorophyll a^ into reach J
= Initial concentration of
chlorophyll a_ in reach I
= Local settling rate for algae
in reach I
= Ratio of chlorophyll a to
algae biomass in reacfi I
= Fraction of algae biomass
which is N
= Fraction of algae biomass
which is P
= 02 production per unit of algae
growth
= 02 uptake per unit of algae
respired
= 02 uptake per unit of NH3
oxidation
= 02 uptake per unit of N02
oxidation
= Local barometric pressure
Units
ft/hour-in. Hg
mg/1
M9/1
M9/1
ft/day
ug Chl-a_
mg A
mg N
m A
mg
mg P
mg A
mg g
mq A
mg
mg g
mg A
mg g
mg A
mg g
mg A
in. Hg
V-l
-------
Variable Name
Definition
Units
B(IOR)
BE
BOD(IOR)
BODI(I)
BOINIT(I)
C(IOR)
CK2(I)
CK3(I)
CK4(I)
CK5(I)
CK6(I)
CKN
CKNH3(I)
CKN02(I)
CKL
= Diagonal vector in tridiagonal
coefficient matrix for
computational element IOR
= Evaporation coefficient
= Ultimate BOD in computational
element IOR
= Ultimate BOD of incremental
inflow in reach I
= Initial ultimate BOD in reach I
= Vector above diagonal in
tridiagonal coefficient matrix
for computational element IOR
= BOD decay rate coefficient
(base e) for reach I
= Reaeration coefficient (base e)
for reach I
= Rate of settling or scouring
of BOD (base e) in reach I
= Benthos source rate for BOD
in reach I
= Coliform die-off rate in
reach I
= Radionuclide decay rate
in reach I
= Nitrogen half-saturation
constant for algae growth
= Rate constant for biological
oxidation of NH3^N02 in reach I
= Rate constant for biological
oxidation of N02-»-N03 in reach I
= Light half-saturation constant
for algae growth
ft/hour-in. Hg-MPH
mg/1
mg/1
mg/1
I/day
I/day
I/day
mg
day-foot
I/day
I/day
mg/1
I/day
I/day
Langleys/day
V-2
-------
Variable Name
CKP
CLOUD
CMANN(I)
CNH3(IOR)
CNH3I(I)
CNH3IT(I)
CN02(IOR)
CNOZI(I)
CN02IT(I)
CN03(IOR)
CN03I(I)
CN03IT(I)
COEFQH(I)
COEFQV(I)
COEQK2(I)
Definition Units
Phosphorus half-saturation mg/1
constant for algae growth
Fraction of sky covered
(cloudiness express as
decimal)
Manning's channel roughness
coefficient for reach I
Concentration of NHg in mg/1
computational element IOR
Incremental inflow concentration mg/1
of NH3 in reach I
Initial concentration of NH3 mg/1
in reach I
Concentration of N02 in mg/1
computational element IOR
Incremental inflow concentration mg/1
of N02 in reach I
Initial concentration of N02 mg/1
in reach I
Concentration of N03 in mg/1
computational element IOR
Incremental inflow concentration mg/1
of N03 in reach I
Initial concentration of N03 mg/1
in reach I
Coefficient of flow for depth-
discharge relationship in
reach I
Coefficient of flow for velocity-
discharge relationship in
reach I
Coefficient of flow for
reaeration-discharge
relationship in reach I
V-3
-------
Variable Name
COINIT(I,NC)
COLI(IOR)
COLIR(I)
COLIIT(I)
CONS(IOR.NC)
CONSI(I.NC)
D(IJUNC)
DAT
DAYOFY
DELT
DELX
DEPHW(NHW)
DEPTH(IOR)
DEWPT
DL(IOR)
Definition
= Initial conservative mineral
concentration in reach I
= Concentration of coliform in
computational element IOR
= Incremental inflow concentration
of coliform in reach I
= Initial concentration of
coliform in reach I
= Concentration of conservative
minerals in computational
element IOR
= Concentration of conservative
minerals in incremental inflow
in reach I
= Vector of coefficients not in the
tridiagonal portion of the
coefficient matrix for junction
IJUNC
= Dust attenuation coefficient
= Day of the year on which temper-
ature routing begins (from
January 1)
= Time interval of integration
(time step over which the
solution to the routing equation
is advanced)
= Space interval of integration
(length of computational element)
= Depth of headwater source NHW
= Depth in computational element
IOR
= Dew point temperature
= Dispersion coefficient in
computational element IOR
Units
mg/1
1000
100 ml
1000
100 ml
1000
100 ml
mg/1
mg/1
days
seconds
miles
feet
feet
degrees Fanr.
ft2/sec
V-4
-------
Variable Name
DLHW(NHW)
DO(IOR)
DOI(I)
DOINIT(I)
DRYBLB
DTODX2
DT20DX
DTOVCL(IOR)
DILI
D2LT
ELEV
EXCOEF
EXPOQH(I)
EXPOQV(I)
EXPQK2(I)
FLOW(IOR)
GROMAX
GROWTH(IOR)
Definition
= Dispersion coefficient at
headwater source NHW
= Dissolved oxygen concentration
in computational element IOR
= Dissolved oxygen concentration
in incremental inflow in reach I
= Initial dissolved oxygen
concentration in reach I
= Dry bulb temperature
= DELT/DELX2
= (2.0 x DELT)/DELX
= DT20DX/(FLOW(IOR)/VEL(IOR) +
FLOW(IOR-1)/VEL(IOR-1))
= Time interval of integration
= Time interval of integration
= Mean elevation of river basin
= Light extinction coefficient
= Exponent of flow for depth-
discharge relationship in reach I
= Exponent of flow for velocity-
discharge relationship in reach I
= Exponent of flow for reaeration
discharge relationship in reach I
= Discharge in computational
element IOR
= Maximum specific growth rate
of algae
= Algae growth rate in
computational element IOR
Units
ft2/sec
mg/1
mg/1
mg/1
degrees Fahr.
sec/ft2
sec/ft
sec/ft3
days
hours
ft
I/ft
CFS
I/day
I/day
V-5
-------
Variable Name
HSNET(IOR)
HWRADN(NHW)
HWTEMP(NHW)
HWTRID(NHW,15)
lAUGOR(I.NHW)
ICLORD(I.J)
Definition Units
r
Net heat exchanged through air- BTU/ff
water interface in computational
element IOR
HWALG(NHW)
HWBOD(NHW)
HWCOLI(NHW)
HWCONS(NHW.NC)
HWDO(NHW)
HWFLOW(NHW)
HWNH3(NHW)
HWN02(NHW)
HWNOS(NHW)
HWPHOS(NHW)
= Concentration of chlorophyll A
in headwater source NHW
= Ultimate BOD of headwater source
NHW
= Concentration of col i form in
headwater source NHW
= Concentration of conservative
minerals at headwater source NHW
= Dissolved oxygen concentration
at headwater source NHW
= Discharge at headwater source NHW
= Concentration of NHo in
headwater source NHW
= Concentration of NO? in
headwater source NHW
= Concentration of N03 in
headwater source NHW
= Concentration of P04 in
yg/l
mg/1
1000
100 ml
mg/1
mg/1
CFS
mg/1
mg/1
mg/1
mg/1
headwater source NHW
= Concentration of radionuclide
in headwater source NHW
= Temperature in headwater
source NHW
= Alphanumeric name of headwater
source NHW
= Order of headwater sources
available for flow augmentation
= Order of computation
degrees Fahr.
V-6
-------
Variable Name
IFLAG(I.J)
IRCHNO(250)
ISS
JUNC(IJUNC,3)
JUNCID(IJUNC,15)
Kl(IOR)
KZ(IOR)
K20PT(I)
KNHS(IOR)
KN02(IOR)
LAT
LLM
LSM
MODOPT(IO)
NC
NCELRH(I)
NCS
Definition Uni ts
Computational flag field
Number of inserted reach —
Program internal variable
Order of computational elements
clockwise around junction IJUNC
Alphanumeric name of stream —
junction IJUNC
BOD decay rate (base e) I/day
coefficient in computational
element IOR
Reaeration coefficient (base e) I/day
in computational element IOR
Option for determining reaeration —
coefficient in reach I
Internal variable, temperature —
corrected CKNH3 in computational
element IOR
Internal variable, temperature —
corrected CKNOg in computational
element IOR
Mean latitude of river basin degrees
Local meridian of river basin degrees
Standard meridian of time zone degrees
in which river basin is located
Model option, program internal
variable
Counter for the conservative —
mineral being routed
Number of computational elements
in reach I (maximum = 20)
Number of conservative minerals —
being routed (maximum = 3}
V-7
-------
Variable Name
Definition
Units
NHWTRS
NHWWAR(I)
NI
NJ
NJUNC
NREACH
NT
NWASTE
PHOS(IOR)
PHOSI(I)
PHOSIT(I)
PTIME
QATOT(NHW)
QKD
RADNI(I)
RADNIT(I)
RCHID(I,15)
RESPRR(IOR)
= Number of headwaters in stream
system (maximum = 15)
= Number of headwater sources
available for flow augmentation
= Input tape
= Output tape
= Number of stream junctions in
system (maximum = 15}
= Number of reaches in system
(maximum = 75)
= Counter for printing titles
= Number of waste discharges or
withdrawals (maximum = 90)
= Concentration of P04 in
computational element IOR
= Incremental inflow concentration
of P04 in reach I
= Initial concentration of P04
in reach I
= Time interval for writing
intermediate summary
= Total flow augmentation from
each headwater source used
= Incremental inflow in reach I
= Incremental inflow concentration
of radionuclides in reach I
= Initial concentration of
radionuclides in reach I
= Alphanumeric name of reach I
= Algae respiration rate in
—
—
—
—
—
—
—
—
mg/1
mg/1
mg/1
hours
CFS
CFS
—
—
—
I/day
computation element IOR
V-8
-------
Variable Name
RESPRT
RMTEOR(I)
RMTHOR(I)
S(IOR)
SNH3(I)
SONET
SPHOS(I)
TARGDO(I)
T(IOR)
TKD
TIME
TINIT(I)
TITLE(I.J)
TOFDAY
TPRINT
TRFACT(NWS)
Definition
= Algae respiration rate
= River mile at end of reach I
= River mile at head of reach I
= Vector of the known heat or
material balance obtained in
computational element IOR
= Benthos source rate for NH3
in reach I
= Average light intensity in basin
Benthos source rate for PO^
in reach I
Minimum allowable target level
for dissolved oxygen
concentration in reach I
Temperature in computational
element IOR
Temperature of incremental
inflow in reach I
Length of time over which a
quality constituent has been
routed
Temperature of incremental
inflow in reach I
Alphanumeric program titles
Hour of day
Time counter to determine wnen
to write intermediate summary
Treatment plant efficiency
(decimal fraction) for waste
discharge NWS
Units
I/day
miles
miles
degrees Fahr.
or mg/1
mg N
day-foot
Langleys/day (for
dynamic run use
Langleys/hour)
mg P
day-foot
mg/1
degrees Fahr.
degrees Fahr.
hours
degrees Fahr.
hours
hours
V-9
-------
Variable Name
TRLCD
VEL(IOR)
VHW(NHW)
WASTID(NWS,90)
WETBLB
WIND
WSALG(NWS)
WSBOD(NWS)
WSCOLI(NWS)
WSCONS(NWS,NC)
WSDO(NWS)
WSFLOW(NWS)
WSNH3(NWS)
WSN02(NWS)
WSN03(NWS)
Definition Units
= Time counter to determine when hours
to reach Local Climatological
Data
= Velocity in computational FPS
element IOR
= Velocity at headwater source NHW FPS
= Alphanumeric name of treatment
plant, withdrawal, or point
source NWS
Wet bulb temperature
Wind velocity
Input concentration of
chlorophyll a^ for waste load
or point source NWS
Ultimate BOD of waste loading
or point source NWS
Input concentration of fecal
coliform for waste load or
point source NWS
Concentration of conservative mg/1
mineral in waste load or
point source NWS
Concentration of dissolved oxygen mg/1
in waste load or point source NWD
Discharge of waste load, with- CFS
drawal or point source NWS
Input concentration of NH3 mg/1
for waste load or point
source NWS
Input concentration of NC"2 for mg/1
waste load or point source NWS
Input concentration of N03 for mg/1
waste load or point source NWS
degrees Fahr.
KNOTS
yg/i
mg/1
1000
V-10
-------
Variable Name
WSPHOS(NWS)
WSRADN(NWS)
WSTEMP(NWS)
X(IOR)
Z(IOR)
Definition
Input concentration of PCty for
waste load or point source NWS
Input concentration of
radionuclide for waste load
or point source NWS
Temperature of waste load or
point source NWS
Program internal variable for
computational element IOR
Temporary storage vector for
computational element IOR
Units
mg/1
degrees Fahr.
V-ll
-------
SECTION VI
QUAL-II INPUT DATA DESCRIPTION
TITLE DATA CARDS VI-1
PROGRAM ANALYSIS CONTROL DATA VI-1
NONSPATIALLY VARIABLE A, N, AND P CONSTANTS VI-3
REACH IDENTIFICATION AND RIVER MILE DATA VI-4
FLOW AUGMENTATION DATA VI-5
COMPUTATIONAL ELEMENTS FLAG FIELD DATA VI-5
HYDROLOGIC DATA VI-6
BOD AND DO REACTION RATE CONSTANTS DATA VI-7
ALGAE, NITROGEN AND PHOSPHORUS CONSTANTS VI-8
OTHER CONSTANTS VI-9
INITIAL CONDITIONS DATA VI-9
INITIAL CONDITIONS FOR ALGAE, N, P, COLIFORMS AND VI-10
ADDITIONAL NONCONSERVATIVES
INCREMENTAL RUNOFF DATA VI-11
INCREMENTAL RUNOFF DATA FOR ALGAE, N, P, COLIFORMS VI-11
AND ADDITONAL NONCONSERVATIVES
STREAM JUNCTION DATA VI-12
HEADWATER SOURCES DATA VI-13
HEADWATER SOURCES DATA FOR ALGAE, N, P, COLIFORMS AND VI-14
ADDITIONAL NONCONSERVATIVES
WASTELOADINGS AND WITHDRAWALS DATA VI-14
WASTELOAD DATA FOR ALGAE, N, P, COLIFORMS, AND VI-15
ADDITIONAL NONCONSERVATIVES
LOCAL CLIMATOLOGICAL DATA VI-16
-------
SECTION VI
-------
SECTION VI
QUAL-II INPUT DATA DESCRIPTION
TITLE DATA CARDS VI-1
PROGRAM ANALYSIS CONTROL DATA VI-1
NONSPATIALLY VARIABLE A, N, AND P CONSTANTS VI-3
REACH IDENTIFICATION AND RIVER MILE DATA VI-4
FLOW AUGMENTATION DATA VI-5
COMPUTATIONAL ELEMENTS FLAG FIELD DATA VI-5
HYDROLOGIC DATA VI-6
BOD AND DO REACTION RATE CONSTANTS DATA VI-7
ALGAE,. NITROGEN AND PHOSPHORUS CONSTANTS VI-8
OTHER CONSTANTS VI-9
INITIAL CONDITIONS DATA VI-9
INITIAL CONDITIONS FOR ALGAE, N, P, COLIFORMS AND VI-10
ADDITIONAL NONCONSERVATIVES
INCREMENTAL RUNOFF DATA VI-11
INCREMENTAL RUNOFF DATA FOR ALGAE, N, P, COLIFORMS VI-11
AND ADDITONAL NONCONSERVATIVES
STREAM JUNCTION DATA VI-12
HEADWATER SOURCES DATA VI-13
HEADWATER SOURCES DATA FOR ALGAE, N, P, COLIFORMS AND VI-14
ADDITIONAL NONCONSERVATIVES
WASTELOADINGS AND WITHDRAWALS DATA VI-14
WASTELOAD DATA FOR ALGAE, N, P, COLIFORMS, AND VI-15
ADDITIONAL NONCONSERVATIVES
LOCAL CLIMATOLOGICAL DATA VI-16
-------
SECTION VI
QUAL-II INPUT DATA DESCRIPTION
All the input data required by the program are in card form.
The card data and input formats are itemized on the input forms (1
through 19). The following paragraphs give details of the data required,
with suggested parameter limits and explanations of program requirements.
TITLE DATA CARDS (Form 1 of 19)
All sixteen cards are required in the order shown. The first
two cards are title cards, and columns 37 to 80 of card 2 can be used to
describe the basin, i.e. name, date, season. Title cards 3 through 15
require either a YES or a NO in columns 10-12, right adjusted. NHg, N02,
and N03 must be simulated as a group. Card 16 must read ENDTITLE.
NOTE: QUAL-II simulates ULTIMATE BOD in the general case;
however, if the user wishes to use 5-day BOD for input and output, the
program will make the conversions to ultimate BOD internally. To use
the 5-day BOD 1-0 option, write "5-DAYbBI0CHEMICALi0XYGEN&DEMAND&INiMG/L"
on the TITLED? card beginning in column 22.
PROGRAM ANALYSIS CONTROL DATA (Form 2 of 19)
The first four cards control input-output printing. If any
characters other than those shown are 'inserted in the first four columns
of these cards>t requested action will not occur.
VI-1
-------
LIST - Card 1, list the input data
WRIT - Card 2, write the final summary
FLOW - Card 3, use flow augmentation, on Form 2 shown
in the documentation there will be no flow
aupentation.
STEA - Card 4, on Form 2 shown this is a steady-state
simulation. If it is not to be a steady-state,
write dynamic simulation and it is automatically
a dynamic simulation.
The next four cards describe the system. There are two data fields per
card, columns 26-35 and 71-80.
The first card (card five), contains the number of reaches into
which the stream is broken down and the number of stream junctions
(confluences) within the stream system.
Card 6 has the number of headwater sources and the number of inputs
or withdrawals within the stream system. These inputs can be small streams,
wasteloads, etc. Withdrawals can be municipal water supplies, canals, etc.
(NOTE: Withdrawals must have a minus sign in type 11 data and must have
IFLAG=7 in type 4 data).
Card 7 contains the time step interval in hours and the length
of the computational element in miles. For steady state computations
leave the time step interval blank.
The maximum route time for dynamic simulations is on card 8,
and it represents the approximate time in hours required for a particle
of water to travel from the most upstream point in the system to the most
downstream point. In steady-state solutions enter the maximum number of
iterations required for convergence. 30 iterations should be sufficient
VI-2
-------
in most cases. Also on card 8 is the time increment in hours for summary
reports. For the steady-state solutions, leave this blank.
The next four cards (cards 9-12) are required only if temperature
is being simulated. The data fields are also columns 26-35 and 71-80. The
basin latitude and longitude are entered on card 9 and represent mean values
in degrees for the basin. On card 10 enter the standard meridian in degrees,
and the day of the year the simulation is to begin. The evaporation
coefficients are entered on card 11. On data card 12, enter the mean basin
elevation in feet above MSL, and the dust attenuation coefficient for
solar radiation.
The last card must read ENDATA1.
NONSPATIALLY VARIABLE A, N, AND P CONSTANTS (FORM 2 OF 19)
Six input data cards are required if algae, NH^, NO^, NO.,, PO.,
coliforms or radionuclides are to be simulated. Otherwise they may be
deleted. The data fields are columns 33-39 and 74-80. Card 1 inputs
data on oxygen uptake per unit of ammonia oxidation, 4.0 mg 0/mg N, and
oxygen uptake per unit of nitrite oxidation, 1.14 mg 0/mg N.
The next three cards concern algae. Card 2 contains data on
oxygen production per unit of algae growth, usually 1.6 mg 0/mg A, with
a range of 1.4 to 1.8. It also contains data on oxygen update per unit
of algae, usually 2.0 mg 0/mg A respired, with a range of 1.6 to 2.3.
The third card concerns the nitrogen content and phosphorus content of
algae in mg per mg of algae. The fraction of algae biomass which is N
is about 0.08 to 0.09, and the fraction of algae biomass which is P is
about 0.012 to 0.015. Card 4 inputs the maximum specific growth rate of
VI-3
-------
algae, which has a range of 1.0 to 3.0 per day, and the respiration rate
of algae, which has a range of 0.05 to 0.5 per day. The respiration value
of 0.05 is for pure streams, while 0.2 is used where the NO^ and PO^
concentrations are greater than twice the half saturation constants.
The nitrogen and phosphorus half saturation constants are
entered on card 5 in mg/1. The range of the values for nitrogen is
from 0.2 to 0.4 and the P value is 0.04.
Card 6 inputs solar radiation information. The light half
saturation constant, in Langleys/minute, is 0.03. The total daily
radiation is in Langleys.
This group of cards must e.id with ENDATA1A, even if no data
are entered.
REACH IDENTIFICATION AND RIVER MILE DATA (FORM 3 OF 19)
The cards of this group identify the stream reach system by name
and river mile by listing the stream reaches from the most upstream point
in the system to the most downstream point. When a junction is reached,
the order is continued from the upstream point of the tributary. There
is one card per reach. The following information is on each card.
Reach order or number Columns 16-20
Reach identification or name Columns 26-40
River mile at head of reach Columns 51-60
River mile at end of reach Columns 71-80
This group of cards must end with ENDATA2.
VI-4
-------
FLOW AUGMENTATION DATA (FORM 4 OF 19)
These cards except ENDATA 3 are required only if flow augmentation
is to be used. The cards in this group contain data associated with
determining flow augmentation requirements and available sources of flow
augmentation. There must be as many cards in this group as in the reach
identification group. The following information is on each card.
Reach order or number Columns 26-30
Augmentation Sources (the number Columns 36-40
of headwater sources which are
available for flow augmentation)
Target Level (minimum allowable Columns 41-50
dissolved oxygen concentration
(mg/1) in this reach)
Order of Sources (order of available Columns 51-80
headwaters, starting at most
upstream point)
This card group must end with ENDATA3.
COMPUTATIONAL ELEMENTS FLAG FIELD DATA (FORM 5 OF 19)
This group of cards identifies each type of computational element
in each reach. These data allow the proper form of routing equations to be
used by the program. There are seven element types allowed; they are
listed below.
VI-5
-------
IFLAG Type
1 Headwater source element
2 Standard element, incremental inflow only
3 Element on mainstream immediately upstream of
a junction
4 Junction element
5 Most downstream element
6 Input element
7 Withdrawal element
Each card in this group (one for each reach), contains the following
information.
Reach order or number
Number of elements in the reach
Element type (these are numbers
of a set, identifying each
element by type)
This card group must end with ENDATA4.
Columns 16-20
Columns 26-30
Columns 41-80
HYDROL06IC DATA (FORM 6 OF 19)
The cards in this group contain variables for determining the
hydraulic conditions in the system. Flow characteristics are determined
for each reach by the program. Velocity is calculated as V = aQ and
a
depth is found by D = aQ. Each card represents one reach, containing
the values of a, b, a, and @, as described below.
Reach order or number
a, coefficient for velocity
Columns 16-20
Columns 31-40
VI-6
-------
b, exponent for velocity Columns 41-50
a, coefficient for depth Columns 51-60
6, exponent for depth Columns 61-70
Mannings "n" for reach Columns 71-80
The last card for this group must end with ENDATA5.
BOD AND DO REACTION RATE CONSTANTS DATA (FORM 7 OF 19)
This group of cards includes reach information on the BOD rate
coefficient and settling rate, as well as the method of computing the
reaeration coefficient. Seven options for reaeration coefficient
calculation are available. These are listed below.
K20PT Method
1 Read in values of K2
2 Churchill (1962)
3 O'Conner and Dobbins (1958)
4 Owens and Gibbs (1964)
5 Thackston and Krenkel (1966)
6 Langien and Durum (1967)
7 Use equation K2 = aQ
One card is necessary for each reach, and contains the following information.
Reach order or number Columns 16-20
BOD rate coefficient, per day Columns 21-30
BOD removal rate by settling, per day Columns 31-40
Option for K2 (1 to 7, as above) Columns 41-50
K2 (option 1 only) reaeration Columns 51-60
coefficient
VI-7
-------
a, coefficient for K2 (option
7 only)
b, exponent for K2 (option 7
only)
This group of cards must end with ENDATA6.
Columns 61-70
Columns 71-80
ALGAE, NITROGEN AND PHOSPHORUS CONSTANTS (FORM 8 OF 19)
This group of cards is required if algae, NH3> N02» N03> PO^,
coliforms or radionuclides are to be simulated. Otherwise, they may be
deleted. Each card of this group, one for each reach, contains the
following information.
Reach order or number
Chlorophyll a_ to algae ratio,
(yg chl a/mg/Algae
range of 50 to 100)
Algae settling rate, feet/day
(range of 0.5 to 6.0)
Rate coefficient for ammonia
oxidation, per day (range of
0.1 to 0.5, about equal to
BOD rate coefficient)
Rate coefficient for nitrite
oxidation, per day (range of
0.5 to 2.0, about five times
BOD rate coefficient)
Benthos source rate for ammonia
(mg/foot/day)
Columns 26-30
Columns 33-40
Columns 41-48
Columns 49-56
Columns 57-64
Columns 65-72
VI-8
-------
Benthos source rate for Columns 73-80
phosphorus (mg/foot/day)
This card group must end with ENDATA6A, even if no data are entered.
OTHER CONSTANTS (FORM 9 OF 19)
This group of cards is required if algae, NH3, N02» N03, PO
coliform or radionuclides are to be simulated. Otherwise they may be
deleted. Each card of the group, one for each reach, contains the
following information.
Reach order or number Columns 26-30
Benthos source rate for BOD Columns 33-40
(mg/foot/day)
Coliform decay rate, per day Columns 41-48
Light extinction coefficient, per foot Columns 49-56
Radionuclide decay rate, per day Columns 57-64
This group of cards must end with ENDATA6B, even if no data are
entered.
INITIAL CONDITIONS DATA (FORM 10 OF 19)
This card group, one card per reach, establishes the initial
conditions of the system, with respect to temperature, dissolved oxygen
concentrations, BOD concentrations, and conservative minerals. Only
temperature is required for steady-state simulations. The information
is contained as follows.
VI-9
-------
Reach order or number Columns 26-30
Temperature in degrees F Columns 31-40
Dissolved Oxygen, mg/1 Columns 41-45
BOD, mg/1 Columns 46-50
Conservative mineral I, mg/1 Columns 51-60
Conservative mineral II, mg/1 Columns 61-70
Conservative mineral III, mg/1 Columns 71-80
This group of cards must end with ENDATA7.
INITIAL CONDITIONS FOR ALGAE, N, P, COLIFORMS, AND RADIONUCLIDES
(FORM 11 OF 19)
This group of cards, one per reach, is required only if algae,
NH-, N02> N03, PO., coliforms, or radionuclides are to be simulated.
Otherwise they may be deleted. The following information is on each card.
Reach order or number Columns 20-24
Chlorophyl a_, micrograms/1 Columns 25-32
Amnonia as N, mg/1 Columns 33-40
Nitrite as N, mg/1 Columns 41-48
Nitrate as N, mg/1 Columns 49-56
Phosphate as N, mg/1 Columns 57-64
Coliforms (MPN) Columns 65-72
Radionuclides Columns 73-80
This group of cards must end with ENDATA7A, even if no data are entered.
VI-10
-------
INCREMENTAL RUNOFF DATA (FORM 12 OF 19)
This group of cards, one per reach, accounts for the additional
flows into the system not represented by inflows or headwaters. The flow
rate, temperature of the flow and DO, BOD, and conservative mineral concen-
tration of the flow is taken into account. Each card contains the following
information.
Reach order or number Columns 26-30
Incremental flow, cfs Columns 31-35
Temperature of flow, degrees F Columns 36-40
Dissolved oxygen concentration, mg/1 Columns 41-45
BOD concentration, mg/1 Columns 46-50
Conservative Mineral I, mg/1 Columns 51-60
Conservative Mineral II, mg/1 Columns 61-70
Conservative Mineral III, mg/1 Columns 71-80
This group of cards must end with ENDATA8.
INCREMENTAL RUNOFF DATA FOR ALGAE, N, P, COLIFORMS, RADIONUCLIDES
(FORM 13 OF 19)
This group of cards, one per reach, is required only if algae,
NH-, NOp, NO,, P04, coliforms, or radionuclides are to be simulated.
Otherwise they may be deleted. The following information is on each card.
Reach order or number
Chlorophyll a. concentration,
nricrogram/1
Armenia as N, mg/1
Nitrite as N, mg/1
Nitrate as N, mg/1
Phosphate as P, mg/1
Columns 20-24
Columns 25-32
Columns 33-40
Columns 41-48
Columns 49-56
Columns 57-64
VI-11
-------
Coliforms as MNP Columns 65-72
RadionucTides Columns 73-80
This group of cards must end with ENDATA8A, even if no data are entered.
STREAM JUNCTION DATA (FORM 14 OF 19)
This group of cards is required if there are junctions on
confluences in the stream system being simulated. Otherwise they may be
deleted. The junctions are ordered starting with the most upstream junction.
There is one card per junction, and the following information is on each card.
Junction order or number Columns 21-25
Junction name or identification Columns 35-50
Order number of the last element Columns 56-60
in the mainstream reach
immediately upstream of the
junction (See example below.
In the example, for Junction 1,
the order number of the last
mainstream element immediately
upstream of the junction is
number 17. For Junction 2 it
is number 43. The Junction 1
mainstream element order number
immediately downstream of the
junction is 29. For Junction 2
it is number 52. The Junction 1
element order number of the last
element of the tributary is number
28. For Junction 2 it is number
51.)
VI-12
-------
Most Upstream
Point
Computational
Element Number'
1
2
3
4
5
6
7
6
9
10
II
12
13
14
15
16
17
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
52
93
54
55
56
57
58
59
60
61
62
63
/"
65
66
67
1
2
5
6
8
9
Reach
Number
FIGURE 33-1
STREAM NETWORK FOR EXAMPLE PROBLEM
-------
Columns 66-70
Order number of the first element
in the mainstream reach
immediately downstream from
the junction
Order number of the last element
in the last reach of the
tributary entering the junction
This group of cards must end with ENDATA9, even if no data are entered.
Columns 76-80
HEADWATER SOURCES DATA (FORM 15 OF 19)
This group of cards, one per headwater, defines the flow,
temperature, dissolved o>
-------
HEADWATER SOURCES DATA FOR ALGAE, N, P, COLIFORMS AND RADIONUCLIDES
(FORM 16 OF 19)
This group of cards, one per headwater is required only if
algae, NH3> N02> NO.,, PO., coliforms, and radionuclides are to be simulated.
Otherwise they may be deleted. The following information is on each card.
Headwater order or number Columns 20-24
Chlorophyll a_ concentration, Columns 25-32
micrograms/1
Ammonia as N, mg/1 Columns 33-40
Nitrite as N, mg/1 Columns 41-48
Nitrate as N, mg/1 Columns 49-56
Phosphate as P, mg/1 Columns 57-64
Coliforms, MPN Columns 65-72
Radionuclides Columns 73-80
This group of cards must end with ENDATA10A, even if no data are to be
entered.
WASTELOADINGS AND WITHDRAWALS DATA (FORM 17 OF 19)
This group of cards, one per inflow or withdrawal, describes
the percent of treatment (for wastewater treatment), inflow or withdrawal,
temperature, and dissolved oxygen, BOD, and conservative mineral concentrations,
They must be ordered starting at the most upstream point. The following
information is on each card.
VI-14
-------
Waste!oad order number
Wasteload Identification or name
Percent treatment (use only if
influent BOD values are used)
Wasteload inflow or withdrawal
in cfs (a withdrawal must
have a (-) sign).
Temperature, degrees F
Dissolved oxygen concentration, mg/1
BOD concentration, mg/1
Conservative Mineral I, mg/1
Conservative Mineral II, mg/1
Conservative Mineral III, mg/1
Columns 11-15
Columns 20-35
Columns 36-40
Columns 41-50
Columns 51-55
Columns 56-60
Columns 61-65
Columns 66-70
Columns 71-75
Columns 76-80
This group of cards must end with ENDATA11.
WASTELOAD DATA FOR ALGAE, N, P, COLI FORMS, AND RADIONUCLIDES (FORM
18 OF 19)
This group of cards, one per wasteload, is required only if
N03, PO,, coliforms, and radionuclides are to be simulated.
Otherwise they may be deleted. The following information is on each card.
algae, NH3> N02,
Wasteload order or number
Chlorophyll a_ concentration,
microgram/1
Ammonia concentration, mg/1
Nitrite concentration, mg/1
Nitrate concentration, mg/1
Phosphate concentration, mg/1
Columns 20-24
Columns 25-32
Columns 33-40
Columns 41-48
Columns 49-56
Columns 57-64
VI-15
-------
Coliform, MPN Columns 65-72
Radionuclides Columns 73-80
This group of cards must end with ENDATA11A, even if no data are to be
entered.
LOCAL CLIMATOLOGICAL DATA (FORM 19 OF 19)
The following cards are required only if dynamic temperature
and/or dynamic algae is being simulated. Otherwise they may be deleted.
Each card represents readings at three hour intervals, chronologically
ordered. There must be a sufficient number of cards to cover the time
period specified for the simulation. The following information is on each
card.
Month Columns 18-19
Day Columns 21-22
Year (last two digits) Columns 24-25
Net Solar Radiation1, Langleys Columns 31-40
per hour
Cloudiness2, fraction in tenths Columns 41-48
of cloud cover
Dry Bulb Temperature2, degrees F Columns 49-56
Wet Bulb Temperature2, degrees F Columns 57-64
Barometric pressure2, inches Hg Columns 65-72
Wind speed2, knots Columns 73-80
There is no end card for this group.
Required only if dynamic algae is simulated and temperature is not.
2Required if temperature is dynamically simulated.
VI-16
-------
SECTION VII
EXAMPLE PROBLEM
Page
EXAMPLE VII-1
TEST PROBLEM DATA AND RESULTS VI1-2
o
-------
SECTION VII
-------
SECTION VII
EXAMPLE PROBLEM
Page
EXAMPLE VII-1
TEST PROBLEM DATA AND RESULTS VI1-2
-------
SECTION VII
EXAMPLE PROBLEM
The example problem was for a branched system of 6 reaches,
97 elements, 2 headwaters, 1 junction, 1 point source waste load, and
1 withdrawal. The water temperature was 65.0°F., and the total daily
radiation was 400 Langleys. The input information is shown on the following
pages.
The problem was set to compute the steady state concentrations
of TD.S, BOD, chlorophyll A, phosphorus, ammonia, nitrite, nitrate, dissolved
oxygen and fecal coliform. There was no incremental runoff or flow
augmentation. Reaeration was computed by the #3 option, the equation by
O'Conner and Dobbins. The computed values can be seen in the final report
on each reach, shown on the following pages.
The DO saturation at 65°F. is 9.48 mg/1.
The interim report shown on the following pages indicates that
almost all of reach 3 is supersaturated. The point source waste load
effects can be seen in reach 2, element 6, the input point for all water
quality constituents. DO levels and chlorophyll a_ levels go down, other
constituent concentrations increase.
VII-1
-------
COMPUTER DATA SHEETS
AND REPORT
VII-2
-------
o-
RM 9OO
RM 700
-RM 650
— RM 96 0
RM 400
>RM Z60
— RM 200
O
o
The atovt oaun contains the following fnimes
Z Headwaters (mommum allowable • 15 )
I Junction (maximum allowable • IS)
6 Reaches (maximum allowable * 751
I Ware discharge
(maximum allowable *90)
I Withdrawal
97 computational elements I max allowable* 500)
I-
FIGURE
SCHEMATIC DIAGRAM OF A
HYPOTHETICAL STREAM SYSTEM
-------
r,»owTn PAIF
TTERATIPI.
r.nnwTH PATF
RT"«TH "ATE
MOM cONv"i-r,r-iT i^
?
MO'J CONVFPf-t'iT It
riON fOtlVEnr-FNT IN
°7 ELE'EMTS
'.2 CLEHENTS
0 CLEMENTS
Fiissnivrn nxyfiiN ii1 MG/I
BCM/CL 1
1 8.1U
2 7. PI
3 10. 3b
1 °.lt
5 7.02
(• 7.38
?
*.21
7!h4
10 .91
oJ32
7.0«
7.40
3
(•.14
7.Pf
10. OH
Ofya
7J06
7.4?
u
«.07 o
7.HX 7
9.97 9
T.26 9
7.09 7
7.15 7
r,
.01
."9
.H7
.?3
.11
.17
f.
7.9E
7.36
9.7P
9.21
7.13
7.149
7
7.02
7.11
9.69
9.19
7.16
7.51
nlori'FMCAi. oxrGE" OECANn
RCH/ri_ 1
1 2.67
2 1.19
3 1.96
4 1.-55
5 3.91
6 3.21
2
9.71.
1.11
1.92
1 .52
.1.86
1.18
.1
?.A1
l!o9
1.89
1.19
3. PI
3.15
V
2.5? 2
1 .05 1
1 .85 1
] (i|* i
1^76 1
3J12 3
APHONIA AS
QCH/fL 1
1 .°9
2 .79
3 .50
H .47
5 1.11
6 1 . 31
>
.9fl
.79
.50
.17
1 .11
1.31
3
.97
.7P
.19
l|lO
t
.96
|77
.19
.16
l.»0 1
1.3? 1
r'lTRITF ftS
RfH/fL 1
1 .Oh
2 .11
1 .PI
t ."3
5 .16
6 .17
2
.06
.11
.01
.03
.16
.1»
1
07
11
«2
ns
17
18
«
.07
.11
.09
.03
IIITRATE AS
BCH/CL 1
1 .30
? .44
3 .10
1 .11
b l.Oit
f 1.09
?
.11
!l5
.in
.11
1.0-i
i .10
1
M
i"1!
.10
.11
l.OP
1.10
U
.1?
|l6
.10
.11
1 . O1- 1
1.10 1
PHOSPl.OMiS
RCH/CL 1
2
T
u
5
.11
.01
.ni
.11
.72
.10
N IN
5
.95
.76
.19
.16
!l9
."
M IN
5
.nr
.11
.P?
.at
H IN
•i
.39.
."7
.10
.11
.05
.10
AS P
5
6
?.31
7.12
1.78
1.11
1.67
1.07
*F/L
6
.9n
2.03
.19
.16
U33
HR/L
6
.OP
.16
.02
.04
.18
H6/L
6
.31
l!35
.10
.11
1.06
1.11
7
3.21
7.11
1.71
1.18
3.63
3.01
7
.93
2.01
.18
.16
1.39
1.33
7
.09
.17
.02
.0*
.16
7
.11
l!36
.10
.12
1.06
1.11
8
7.H8
6,89
9.6?
9.17
7.18
7. SI
IM MG/L
8
2.11
6.82
1.71
1.35
3.58
3.01
8
.92
1.99
.18
.15
1.36
1.32
8
.09
.18
.09
. OU
.18
a
.31
1.07
.10
.12
1.06
1.11
o
7. as
6.69
9.56
9.15
7.20
7. "55
9
9.09
6.51
1.68
1.11
9^98
9
.91
1.97
.18
.15
1.38
1.3?
9
.09
.18
.01
.01
.18
9
.3S
1.08
.11
.12
1.07
1.11
10
7.83
6.51
9.50
9.1M
7.23
7.57
10
1.93
6.26
1.65
1.30
3.50
2.96
10
.90
1.9S
.18
.15
1.37
1.32
10
.10
.19
.03
.04
.18
10
.16
1.10
.11
.19
1.07
1.12
11
7.81
6.36
9.11
9.13
7.25
7.59
11
1.85
6.00
1.61
1.28
1.15
2.93
11
.89
1.93
.17
.15
1.37
1.31
11
.10
.20
.03
.04
.18
11
.36
l.°l
.11
.12
1.07
1.12
12
7.80
6.22
9.10
9.11
7.27
7.61
12
1.77
5.76
1.38
1.25
3.11
2.90
12
.88
1.91
.17
.91
1.36
1.31
12
.10
.20
.03
.01
.18
12
.37
1.12
.11
.12
1.08
1.12
in r-K/L
6
7
8
9
10
11
12
ITERATION 3
13 11 15
7.79 7.78 7.78
6.10 6.00
9.11 9.10 9.09
7.29 7.31 7.33
7.63 7.65 7.68
ITERATION 1
13 11 IS
1.70 1.62 1.55
5.52 5.29
1.23 1.20 1.18
3.37 3.33 3.29
2.68 2.85 2.83
ITERATION 3
13 11 15
.87 .86 .85
1.89 1.87
.11 .11 .11
1.36 1.36 1.35
1.31 1.30 1.30
ITERATION 3
13 11 IS
.10 .10 .11
.21 .21
.01 .01 .04
.18 .in .16
ITERATION 3
13 H IS
.38 .38 .39
1.11 1.15
.12 .13 .13
l.OP 1.08 1.09
1.13 1.13 1.1.1
ITERATION 3
13 14 15
16
7.78
7.35
7.74
16
1.19
3.25
2.79
16
.84
1.35
1.30
16
.11
.18
16
.10
1.09
1.13
16
17 18 19 20
7.78 7.79 7.80 7.81
7.81 7.86 7.9Z 7.97
17 18 19 20
1.12 1.36 1.30 1.25
2.76 2.73 2.69 2.66
17 18 19 20
.83 .82 .81 .80
1.29 1.29 1.29 1.28
17 18 19 20
.11 .11 .11 .11
.18 .18 .18 .18
17 18 19 20
.11 .11 .12 .13
1.11 1.11 1.11 1.15
17 IB 19 20
-------
.?'. .20
.'0 .an ,?o
t
1
f
5
6
.5*li ,?0
.P* .Oc
.05 .05
1.19 1.19
I." '.19
^L 1 ?
. ""' .S"1 .'f
.05 .or. .(i*.
.01 .01 .m
i." 1.1° 1.1°
1 I11 1 **'( 1 ^9
si r-nr AS OIL A
115
?.00 J.flO
.OS .05
.05 .05
1.4° 1.19
1M UG/L
f. 7
?.on
.05
.05
1.39
8
?.0fl
.05
.0"5
1.39
Q
2.00
.05
.05
1.3°
10
?.oo
.05
.05
1.31
11
2.00
.05
.05
1.39
12
?.on
.05
1.39
13
2.00
.0'- .05
1.39 1.39
ITERATION 3
11 15
1.39
16
.'" .20 .211 .20 ,?0 .20 .?C .20 .20 .20 .20 .20
1.39 1.39 1.39 1.39
18
19
20
12.03 12.?1 12. SB 12.57 12.75 12.95 13.11
FFCAL rOLIFORM
"CM/CL 1
1 .15
2 .05
3 .01
1 .01
5 11.09
6 P.fK
2
.10
.05
.01
.01
13.67
8.18
5
.-16
.01
.01
.00
1.1. ?6
R.?9
1
.3.1
.01
.01
.00
12.B6
tt.10
5
.21
!o&
.01
.no
12.17
7.92
AS 1000/100
(i
.2S
19)39
.01
.on
12.10
7.71
C1NSEIJVATIVE MINERAL
RCH/CL i
2
*
1
5
6
7
.71
IlisB
.01
.00
11.73
T.56
I =
7
"L
8
.21
10.23
.01
.00
11.38
7.3"
TOS IN
a
9 10
.19 .17
36.31 32.78 29.
.01 .01
.00 .00
11.01 10.71 10.
7.?2 7.06 6.
tl-lG/L X 0.1)
9 10
11
16
56
01
00
39
90
11
12
.1*
26.70
.01
.00
10.07
6.711
12
13
.13
21.10
.00
9.77
6.59
13
ITERATION
H
.11
21.75
.00
9.18 9.
6.11 6.
ITERATION
H
3
15
10
00
19
32
3
15
16
.09
8.92
6.13
16
17
ia
.08 .07
19
.07
28
20
.06
5.95 5.77 5.60 5.43
17
18
19
20
ALGAE GROWTH RATES IN PER O«Y ARE
415678
10
11
12
ITERATION
13 H 1
16
1 ,'3
2 .27
3 .10
1 .10
5 .11
6 .11
.23
.27
.10
.10
.11
.11
.9.1 .23 .ai
.?7 .27 .?B
.10 .10 .10
.10 .10 .10
."1 .11 .11
.11 .11 .11
.21
.1?
.10
.10
.11
.11
.21
.12
.10
.10
.11
.11
PI-OTOSYNTHESIS-PESPIRA8ION
RCH/CL 1
1 1.98
? 2.11
' .82
5 S!E?
6 3.55
2
'.no
'.13
.83
.87
1.S2
'.56
315
?.pl 2.03 2.Q1
? . SI ? . 36 2 . .18
.'* .63 ."3
,«B .8* .89
3.i? 1.52 3.53
1.56 1.56 3.56
6
2.b6
3.63
.6
-------
F i n
REPORT
RCflCH NO. 1.0 RCH= REACH 1
RTVtR MILES 90.0 TO 70.0
1 . HYPKHULIC
PARAMETER
FLOU (CFS)
DEPTH (FT)
ELE"H i
no n.30
POO
NH3
N02
NOi
POt
ALGY
rtiLI
2.S7
.99
.06
.30
?0
inli2
."5
8. 21
2.75
.98
.06
.31
.20
10.25
.40
3
8. It
2.63
.07
.07
.M
.90
10. ^B
.^6
P It K
s
HEAD OF RFUCH ENO OF REACH
inn. ooo 100. POD
.757 .757
S.547 5.547
a. 07
2.52
.qj
.07
.32
.?fl
in. si
.33
8.01
2.41
.95
.OR
.32
.20
30.6-5
.29
7.96
2,31
.94
.08
.35
.20
10.79
.26
7.92
2.?1
.93
.09
. 14
.20
10.93
.24
7.88
2.11
.92
.09
.34
.20
11. 0«
.21
U W t,
7. as
2.02
.91
.09
.35
.20
11.23
.19
ia •
10
7.83
1.93
.90
.10
• 36
.20
11.38
.17
ino.ooo
• .757
5.547
7.81
1.85
.89
.10
.36
.20
11.5*
.16
* 9
1C
7.60
1.7T
.88
.10
.37
.20
11.70
.1*
MINIMUM
100.000
.757
5.547
7.79
1.70
.87
.10
.38
.80
11.86
.is
7.78
1.62
.86
.10
.38
.20
12.03
.11
AVERAGE
100.000
.757
5.517
. ft
1 7
7.78
1.55
.85
.11
.39
.20
12.21
.10
. A
1 D
7.78
1.49
.84
.11
.40
.20
12.38
.09
17
7.78
IB
19
20
7.79
.42 1.36
.83 .82
.11 .11
.41 .41
.20 .20
.57 12.75 12
.08 .07
.00 27.00 27
.80 7.81
.30 1.29
.81 .80
.11 .11
.42 .43
.20 .20
.95 13.14
.07 .06
.00 27.00
« NOTE: UMTS ARE
EXCEPT FOR ALGAE AS CHL A IN UG/L
AND FECAL COLIFORH AS 1000/100 KL
AND CONSERVATIVE MINERAL I = TOS IN IM6/L X 0.1)
1. AVERAGE V S I. M E S OF REACH CO
NTS
DEC*I RATES (t/OAYI
.60
KNM* = .is
KM)? = 1.1)0
KCOL1 = 1.50
KRDN = .00
SETTLING RATES
BOD = .00
IL6AE = .50
BENTHOS SOURCE RATES i«6/FT/o»r)
BOD = .00
NH3 = .00
P04 = .00
RATE
(I/DAY)
K2 = .863
CHLOR A/ALBAE
RATIO 4UG/HG>
RATIO
90.00
-------
FINAL REPORT
REACH NO. 2.0 RCH= REACH 2
RIVER MILES 70.0 TO 56. 0
1. HTnnBULIC **
PH'AHFTEB
FLPu (CFS)
HEAD OF REACH END OF REACH riftXIPUK
= 100.000 110.000 110.000
VELOCITY CFPSI =
p. u A
ELF*
DO 7.
BOD 1.
UH3
N02
N03
P04
DEPTH
T E R
1
Hi 7
19 1
79
11
44
20
ALGT 13.31 13
COL I
CQN1 27.
• NOTE:
05
00 97
(FT)
2
.84 7.
.14 1.
.79
.11
.»S .
.20
.54 13.
.05
.00 27.
3
• 6 7
09 1
79
11
111
?0
75 13
nt
no 27
UNITS ARE fG/L.
4
.88 7
.05 1
.77
.11
.46
.20
.97 14
.01
.00 27
EXCEPT
.757 .787
5.547 5.874
5 6 7 8 9 10
.09 7.36 7.11 6.89 6.69 6.51
.01 7.42 7.11 6.82 6.55 6.26
.76 2.03 2.01 1.99 1.97 1.95
.11 .16 .17 .18 .18 .19
.47 1.35 1.36 1.37 1.38 1.40
.20 2.00 2.00 8.00 2.00 2,00
.19 13.22 13.57 13.93 14.29 14.67 15
.06 49.39 44.38 40.23 36.31 32.78 29
.00 33. fit 33.64 S3. 64 31.64 33.64 33
FOR ALGAE AS CHL A IN UG/L
ANO FECAL COLIFORN AS 1000/100 NL
.787
5.874
11
.36
.00
.93
.20
.41
.00
.OS
.58
.64
12
6.22
5.76
1.91
.20
1.42
2,00
15.45
26.70
33.64
niNinun
100.000
AVERAGE
106.429
.757
5.547
13
6.10
5.52
1.89
.21
2loO
15.86
24.10
33.64
6
S
1
1
2
16
21
33
14
.00
.29
.87
.21
.43
.00
.28
.75
.63
.776
5.758
15
AND CONSERVATIVE MINERAL I s TDS IN IHG/L X 0.1)
16
18
19
20
3. AVERAGE VALUES OF REACH COEFFICIENTS
OFCAV RATES n/PAT)
SETTLING RATES (I/DAT) BENTHOS SOURCE RATES (H6/FT/OAt» REAERATION RATE CHLOR A/ALGAE
(1/OAYI RATIO IUG/HGI
,(,t
KNHi = .15
Hum = 1 .00
KCnLI = I.JO
KRnN = .00
HOD = .OO
ALGAE = .50
BOD = .00
NH3 = .00
P(M» s .00
K2 =
.827 RATIO = 50.00
-------
FINAL REPORT *
REACH MO. 3.0 RCH= REACH 3 TRIB
PIILES ?7.0 Tn 1S.O
1. H Y
ELEM
00 10
ROD I
NH3
N02
N03
POD
ALGY 5
COLI
D H A U L 1 C
PARAMETER
FLOu ICFS)
VELOCITY IFPSI
DEPTH (FT)
1
.35
.96
.SO
.01
.10
.05
.00
.01
2
10.21
1.92
.50
.91
.in
.05
S.01
.01
3
10.08
l.«9
.«9
.02
.10
.05
"•.01
.nJ
PAH
=
1
9.9T
1.85
.""
.0?
.10
.0*
1.G?
.01
AHFFFP WAL
HEAD OF RTUCH
50.000
1.721
3.
5
9.H7
l.M
."9
.02
.10
.05
5.02
.01
137
6
9.78
1.78
.19
.02
.10
.05
5.02
.01
7
9.69
1.71
.16
.02
.10
.05
5. OS
.01
END OF REACH
50.000
1.721
V.
A
a
9.62
1.71
.tt>
.02
.10
.05
5.03
.01
3.137
LI 1 F
U L
9
9.56
1.6A
.«
.03
.11
.05
5.0<»
.01
10
9.50
1.65
.49
.03
.11
.05
5.0(1
.01
HAXIWJM NXNimj* AVERAGE
50.000 50.000 50.000
1.721 1.721 1.721
3.137 3.137 3.137
11
9..ij = .15 ALGAE = .so NHJ = .00
KNCi? = 1.00 POU = .00
KCHLI = i.so
.00
-------
1 . H Y
?• U A
FLFH
no t.
"00 1.
NHJ
N02
Nn3 .
PO* .
AL&Y i.
roLl
POM is.
* *
nhAULIf PAR
PARAMFTE.P
FLOu CCFSl =
VELOCITY (FPSI =
OEPTH IFT) =
1ER QUALITY
36 <».32 1.7f. «.7f
55 1.52 1.11 1.16
17 .17 .af, ,HK
03 .03 .01 .01
11 .11 .'1 .11
01 .Ob .05 .01
Ob 5.06 S.flf. 5.07
01 .01 .no .on
no iS.oo n.on 51.00
A t1 E T E R V
HFAO OF PEACH
50.000
1.721
3.137
PAH A N E T
= .23 «).21 9.
1.13 1.11 1.
.16 .16
.01 .01
.11 .11
.05 .05
5.HB 1.08 5.
.00 .00
Ib.OO 15.00 15.
a
p
19
38
16
01
12
05
09
00
00
REACH
RIVER
Lll F C
U L a
END OF
so.
1.
no. i.
MILES
REACH
000
721
3.117
Rif n 1 HFC
v n L u t- o
R ""
".17 9
1.35 1
.11
.01
.1?
.OS
5.09 5
.00
11.00 15
•»
.15 9.
.31 1.
.IS
.01
.18
.01
.10 S.
.00
.00 15.
0 RCH= QEACH
15.0
HA
50
1
3
10
11 9.
30 1.
15
01
18
05
10 5.
00
on is.
TO
XI nu"
.000
.7?!
.137
11
13 9
28 1
15
01
12
05
11 5
00
00 IS
12
.11
.25
.11
.01
.1?
.05
.12
.00
.00
1 TRIB
.0
50.000
1.781
1.137
13
9.11 9.
1.23 1.
.11
.01
.18
.05
5.12 5.
.00
15.00 15.
11
10
20
01
13
05
13
00
00
AVERAGE
bO.OOO
1.721
1.137
15 16 17
9.09
1.16
.11
.01
.13
.05
5.11
.00
15.00
• NOTE: UNITS ARE MR/Lt FXCEP1 FOR ALGAE AS CHL A IN UG/L
At.o FECAL COLIFORM AS 1000/100 «L
ANU CONSERVATIVE 1INERAL I = TOS IN (HG/L X 0.11
1. A V C P A G F VAlllFS OF REACH COEFFICIENTS
IB
20
DECAY RATES II/DAY)
R1MOD = .60
KNH3 = .15
KNO' = 1.00
KCOLI = 1.5H
KKDN = .00
SETTLING- RATE* II/DAYI BENTHOS SOURCE RATES ««G/FT/OAYI REAERATION RATE CHLOR A/ALGAE
(I/DAT) RATIO IUG/HGI
ROD =
ALGAE =
.00
.50
BOD = .00
NH3 = .00
P01 = .00
K2 = 3.061
RATIO s SO.00
-------
FINAL REPORT
PEACH NO. 5.0 RCH= REACH 5
PIVER MILES S6.o TO »o.o
hYPR^UI. Ir PARAHFTER VALUES
PARAMFTFK
FLOU ICFSI
VELOCITY IFP«)
PEPTH (FT I
HE/>P Or PEACI'
160.nan
?.741
•i.25?
FND OF RFACH
160.000
2.71(1
5.?53
HAXI1UK
160.000
2.7m
5.253
160.000
2.741
5.253
AVERAGE
160.000
5.25.1
>. w
ELF
DO
ROD
NH3
N02
NOJ
•» 1
7.02
1.91
1.41
l.Ol
2
7.04
3.86
1.41
l.OS
i
T.r.i
S!M
l.on
l.OS
4
7. 01
1.76
1.40
l.OS
5
7.11
3.72
1.39
1.05
f
7.11
1.67
1.39
1.06
7
7.16
3.63
1.39
1.06
V A
8
7. IB
1.5R
1.38
1.06
9 10 11
7.?0 7.23 7.25
3. "54 3.50 3.45
1.1B 1.37 1.37
1.07 1.07 1.07
12
7.27
3.41
1.36
i.oe
13
7.29
3.37
1.36
1.08
14
7.31
3.33
1.36
l.on
15
7.33
3.?9
1.35
1.09
16
7.35
3.25
1.35
1.09
17
18
19
P0» 1.39 1.39 l.»« 1.39 1.39 1.39 1.39 1.39 1.19 1.39 1.39 1.39 1.39 1.39 1.39 1.39
«LCr 12.96 il.OS H.15 13.24 13.33 13.41 13.-53 11.62 13.72 13.82 13.92 14.02 14.12 14.22 14.32 14.42
TOLI 14.09 11.67 13.?6 12.86 12.47 12.10 11.73 11.3ft 11.04 10.71 10.39 10.07 9.77 9.48 9.19 8.92
CON1 ?7.7« »7.7« 87.7« 27.7* 27.7« 27.7R 27.78 ?7.78 J.-.7" 27.78 27.78 27.78 27.78 27.7« 27.78 27.78
* N01F: UNITS APE MG/L.
AND
ALGAF AS CHL A IN UG/L
FECAL COLIFORK AS 1000/100 ML
AMD COPJSERYATIVE MINERAL I = TOS IN |HG/L X 0.11
i. AVE«»GE; VALIJTS OF PEACH co
E N T S
PATES 11/HAYI
Kinon = ,f,a
".MUl r .15
KNn' = 1 .""O
HrnLI = 1.50
= .00
SFTTLINP RATES U/D«Y) BENTHOS SOURCE RATES
pon =
ALGAE =
.00
BOO = .00
NH* = .00
PO« = .on
REAERATION RATE CHLOR A/ALGAE
(1/OAY) RATIO IU6/HGI
K2 = 1.782 RATIO = 50.00
-------
FINAL
P 0 R T
REACH NO. 6.0 RCH= REACH b
RIVER PILES »o.o TO zo.o
VALUCS
P«PAl"IETET
fLCJ ICFS)
VELOCITY IFP1)
REPTH IFTI
HEAP. OF REAC*
1*0.000
3.65S
5.253
FNP OF REACH
an.ooo
2.770
3.06A
MAXIHUH
160.000
3.655
5.2S3
MINIHU"
no.noo
?.770
3.466
AVERAGr
136.000
T.125
4.765
U A 1 E
QUALITY PAKAMETER VALUES
ELFH 1
DO
POO
18
71
1
1
11.
10
11
12
13
15
16
17
18
19
20
. MO
.18
.31
.18
.10
.39
H02 .17
M03 t.09
POK 1.39
ALGY m.Sl
TOLI ".68
CON1 ;>7.7S -J7.78
7.US>
1.15
1 .31*
!ip
l.'O
l.*9
7.4S
3.1?
1 .31
".IR
1.10
t.39
7.«7
3.10
1.33
.18
1.10
1.39
7.49
1.07
1.33
.in
1.11
1.39
7.51
3.0«
1.33
.18
1. 11
1.39
7.53
3.01
1.32
.1R
1.11
1.39
7,'3'i
2.9R
1. 12
.IB
1.11
1.39
7.57
2.96
.16
1.12
1.39
7.59
2.93
1.31
.16
1.12
1.39
7.61
2.90
1.31
.16
1.12
1.39
7.63
2.66
1.31
.16
1.13
1.39
7.65
2.65
1.30
.18
1.13
1.39
7.66
2.83
1.30
.16
1.13
1.39
7.74
2.79
1.30
.IB
1.13
1.39
7.81
2.76
1.29
.16
1.14
1.39
7.66
2.73
1.29
.16
1.14
1.39
7
2
1
1
1
,90 16.02 16
,95 5.77 5
.92 7.97
.69 2.66
.29 1.26
.16 .16
.14 1.15
.39 1.39
.15 16.26
.60 5.43
27.71 ?7.7H ?7.7B ?7.7H ?7.7fl 27.7B ?7.78 27.78 27.76 27.78 27.76 27.78 27.76 27.78 27.76 27.76
* NOTE :
UNITS ARE HG/L, FXCEPT FOR
AND
ALGAE AS CHL A IN U6/L
FECAL COLIFORH AS 1000/100 ML
AND CONSERVATIVE MINERAL I = TDS IN (MG/L X 0.11
3. AVCRAGE VALIIT5 OF REACH COEFFICIENTS
OCCAV PATt
-------
TABLE II-2
INPUT PARAMETERS FOR QUAL-II
IHPVT
HUMS
IH fit'.
»,
«,
'»
a,
°.
»s
"•
"MX
P
8,
8,
o,
°.
"•
K,
",
",
*>
K,
<•
------- |