Drafc
                                                           i0.21/45
         AM5IENT  AQUATIC LIFE WATER QUALITY CRITERIA FOR

                            TOXAPHENE
Pi is -rafc ooi;.3Lns only  freshwater daca.  The salcwacer  -iaca  will
•>.co: D.-r-ac--?.-; i  ir.or.  The  freshwater CCC is likely co change  when  L.
salc.-'itF.r  : IC.T are  incorporated.
             •-•.S.  ENVIRONMENTAL  -'ROTECTTON AGENCY
              OFFICE OF '^ESEA^CH AND  DEVELOPMENT
              ENVIRONMENTAL RESEARCH  LABORATORIES
                       T'MJTH, MINNESOTA
                  N'ARRACAN'SETT,  nHODE  ISLAND

-------
Til-; c-v M"".'ic  .ins H.->en  reviewed  bv c'r;e  Criteria  JiiH ScjnildrJs Division,
iff LCI-  of •.'".-OL-  Regulations .nnci  ScaiKiinis, U.S.  v.ivi riMir.-.a:ic.il Procicc-Lo
-\^e:icv,  .TV.! .: jorove-J  : " M  pub L i c.uz ion .
•i'i-.cL'i'i *•>: crad-? rrr'es  "r consnarc ial  oroduccs does noc  ^o;isc icuce o.ulo
    to>;
This  u-CM.T'iT  is .ivn Liable co  C'i-i public c*i rough che Mac ional Teciin i.:n!.
Infonarion  ^eivir.9  (VTrsl.  3233 Pore  ;«t.'y--il :lo.iJ .  Sprino i i e LJ ,  V\ .'21*31

-------
     S»crior  30i(.-0(i1  of die Cloan W.-cer Ace of  L977  (P.L.  95-217) requires
c''": A.J.Tiin iterator  of the Enviroivnent.il Protection Agency  to  publish criteria
Lor w.cer quality  nc-.'ui ice Ly it-Ml»ccin<> che  l.'icesc  scienci fie'knowledge on
i'n-2 kind  and  extsj-t  u  all identifiable effects on  health and  welfare that
nay be exoecced  fron che presence of pollutants in  any  body  of water,
includiis  ;: oinri wat-sr.   This document is a  revision of proposed criceria
b.i-ec;  tnon  •;  --on1* iderac ion of co-nnencs received from other  Federal agencies,
Sc-iC'1  :v;e;vi^s,  sneciT]  ipceresc groups, and  individual scientists.  fne
cric-'ria  co".t .iine-1  in  this document replace  any nreviously  published EPA
.i-jsiau i c  1 i f-i  cr icer i ~<.

     The  ter^i  "water quality criteria" is used  in two  sections of the Clean
Mater  Ac",  section  304(a)(l) and section 303(c)(2).  Tlie  term  has a different
proars"i  Linp-jct  in  each  section.   In section  304,  che term represents a
non-reg'jlacorv,  sci.entific assessment of ecological effects.   The criteria
presented  in  this  publication are such scientific assessments.   If water
qua', icy cri.ter;.i dssocLiced  with specific stream  uses  are adooced by a State
as water  quality sta-.ilards under section 303, they  become enforceable maximum
accent rib ie  concent rat io'.io of a pollutant in  ambienc waters  within that State.
The w.iter quality  criteria adopted in the State water  quality  standards could
'^ave the  sane  numerical  values as the criteria developed  under section 304.
i-l ,..;•?vor.  n many situations  States may want  to adjust  water  quality criteria
devalued u'-.d ;r  section  304  to reflect local  environmental  conditions and
hiiT.d-.'i  "t;>i-s:j:  2  natterns  3sfore incorporation  into water quality standards.
Lt is  noc  1'itil  their  adcot ion. as part of the State water quality standards
cli.it ~.\\n.  cri'j--rLi  b^c^ne regulatory.
     (j-iid" i :nes  to  a^'-'ist  the States in the modification  of criteria
T.-esentad  ir this dr-c^nent,  in the development of water quality  standards,
•-.->'i \  i other vacar-re lateri  o rot; rams of this Agency, have  been developed by
'£. i-''-..
                                    Di rector
                                    Office of ..'jter Regulations  and Standards
                                      L •.

-------
Ji-h::  '".  F.scon
' f. r^nwjce:'  anchor)
":iv i •• ».rnenc .1 i  ttese ire.'•> Lnbo; JC o: y
'i1.:!ijt'i .  Mi"n
                                 Jeff MyLand
                                 (.s n 1 c w.-i c e r  a LI c h o r)
                                 Env i riMimiVic a 1 Ket>earch  i.aoi
                                              c , Rhode Island
'>,.;:• 1 erf I.  '^'L .•."):'>3''
i ao^o r r-is:  -o • r J :.r.3;:or !
"•ill" i •.•••'•vie-'L'T i  ^e~.5 ? •.•>•!•, !,.-ioor JL
                                  Ouvid J.  Han.sen
                                  (salcwacer coord indc^i)
                                  FInv i roiTnenL.'il  ilesiiarcli  Laboracory
                                  Narra^ansscc,  Rhode  Island
CLeru.ai
're:   Terry L.  Highland
      Shelley A.  Heintz

-------
                                     COMFITS



                                                                               Pace
        .                                              ....... •  .  .  .   .    L i L
!• o :~ e wo r > 1  ..................
                                                                                  v
TchLes
                                                               	       1
     .v::.ic : i on	*  •
Acue.?  Toxicicv  eo Aquae ic  Animals   .  .




Chronic To'.i^'-cv co l\qf-iae Lo AniTinls




Toxic i cv c.1  Aqijac Lc Planes	




3ioac J'jmul ac i on	•  •








    ;-2'i Dae n	

-------
                                     TABLES
}.   ~^.'^a  Ti'xicicy of Toxaohone LO Aquaeic  An iTUil ri	




2.   Cirop.Lc  Toxic icy of  Tox.ciohe:ie co Aquae ic  AniT.dls	




3.   R--'r.2:. :-^.'~i= M-2.U-. .Vi-.c? Values wich  Species Mejn  Acuce-Chronic





    RJIC ios	




'4.   Ti'xicicy of Toxaoiiepo co Aquae ic  Planes	




5.   'iLoaccuaiilacion  on  Toxaphene  by Aquae ic Organisras	




"--.   Ociier Data on  Eiffeccs o£ Toxaphene on Aquaeic
                                         V L

-------
Ir.ci •.' i.K'tion'-

     Tox.inhene  firs-  became  commercially available  iii  1948  under  che crj'le

name ";leregies  3956".   It  has  been used in various  torms, suc'rl  as

o-,uil < : f i .iM-» 0<>i•_••.-:•! t ;-j.tr!s .  weccable powders, dust and  ^i.inular  b.-iics.

Toxan'n-vie  is .iroci'icei:  bv  che c'r lorinnc ion of camohene,  resulting  in a  :nixcuie

of ar. leas::  175 sgparata  components with a cota^ chlorine concent  of ft 7 co

69% (Casida  ec  al.  1974;  Holrascead ec al. 1974). . Tne  cectinical grade  produce

is an aaber, wnxy  ^olici wich a vapor pressure of 0.17  co 0.4 mm Hg ac  25°C, a

melting poiiic ran^e  of 65 co 90°C, and a mild cerpene  odour.  Ics general

e-npirical  formula  is  CjQHjQClg (molecular wei^hc =  4141,  is soluble
                                    - f
                                   • r
in wacer Co  auproxinac^ly 37 ^o/L-ambienc cemperacure  (Lee  ec al.  1968),awl

Ls-slishcly  soluble in alcohols.  Ic  is highly  soluble in  organic  solvencs.

such -3.s kei-.-'Sene,  doecon", benzene, chloroform,  xylene and  coluene.   Ic is

dechlovi'i'ice-i nni^Ci'i ical ly d'i'l by heac ac about  120°C, ics  breakdown  being

,'K.ce Leracea  by  alktiLine conditions ano by iron  catalysis.   Most of the

individual co-nponencs of coxaphene have not  been  precisely   identified.

     Toxriphene  was che most heavily used  pesticide  in  che  U.S.  during  che

I960:-; ano  1970s, viuh annual applications total I in?, many millions  of

kilo;.-3ns  '?.-> I l.v.'< a:-.-. Kilgore 1978;  Ribuk  ec  al.  1932).    It  is  frequently

•lixed with methyl  oarachion or other  pesticides co  improve  effectiveness.   It

has  been  employed  against insect  oests  of cotton,  tobacco,   forests, turf,

ornamental plants, grains, vegetables and  livestock, most heavily  in  the
 *  Ar,  u-idersc -ind i'.ig  >•.' the "Guidelines  for Deriving Numerical National  Water
   Q-'.ility Cricer:.-;  for che Protection  of Aquatic Organisms and  Their Uses"
   (Sfjoh.v -?c ..il. i''S3), hereafter  referred to as tn» Cu i :iel ines,  is neces-
        in order co  i'nJ»rdcand  the  following text, tables, and calculations.

                                        I

-------
i.en-:-


i-?3l.-,ced m.ny of  DDT's for.aci -ises.   In 1976 it was closi betiinu  -wcnyl


parach-.on  .is =nc  sec -.-id mosc buavily  used  insecticide in cho  "deU.i states"


of Lov-siam. -\rk. '..!•*-.-= and Mississippi  (0.2 mi I lion kilograms)  a.id tne sine1,!


7io»t r.^vi!"  !>ed in die c.-r-.i belc  (0.2 mill LOU ki 1 05 rams)  (SchmLLC a.iti


'•:i-i--5t-  !QS'i).   \'c<>!.-n! •-'!  -'./ T.illion kiloyrnms was applied EO  a wi-.!e ian-ze


of mai-M-  a?:-i.-.jlEural crops  in  12  not Eh cencral spaces  in  1978  (Acie and Park


1931').   'Js-2  i.-.  California  ii Ehe 1970s averaged 1.7 million kilograms per


veai  (Cohen  ec  al. 1982).   Toxaohene's lelatively  low coxicicy  co honey bees


conpared E."  T.nnv .^->i-:i-  ins-cE icides has favoured  ics  use a^ r icu! Eurally


(r.ckevz 19^y'.   O-il.-  very  small quanCLEies  of  coxaphene have ever  been  used


aa;riculcura!'.v 1:1 CatMdj  (Deparc-nenE of NaEional  Health and Welfare  C4nad'^'


 1977N. .   Tc was also  usod  LH civ? H50s  nnd  early  1960s by fisheries  personnel


 i-! s'?.-r-il U.S.  sEaEes and Canadian  orovinces  EO  remove unwanted fish  from


 Lj.:
-------
 l, .  _.   ^i;o  Vc.h,r, ^o,e.  iJsLn, -,i«,  hou,,c L LBS ,ad  joldflsh,  Khalifa ec al.  (1974),
 Turner ec a!.  (1975),  *3leh ec   al .  (1977), and Turner  ec al. (»HO
 ^,,,:rau^ cn.c chere  nre aubscnacLaUy  differenc  coKicLcles for  d.fferenc
   .-V:-,-.; c^-on^.:-   I.oe ec  al. (1977)  found chac  c.-.-n^ne chac  Sad
races  ,f so
 ••v-^-e.e-r- LO -,--,-  in  ,  ! 3ke was al cered cbe-tcally  'diminuclon of  Inc.
 -lucL.g pe-V*S) ar.i  b.ca^e son.vhac less  coxi,  co  fish chan che ordinal
 fornuiacion.  Chafes  in  envi i onmencal  sample  chromaconran,-. os conr-red  CO   _
 reference  sc-ndard  chrcwiacosra-na have led  some analyses co refer  co  cheir
 vn!,-  as  "t ^.iphena-l ifc*" si.bsc.mceB .  alcho-^h che or.v.iUng uP.MC.uncy  in
 t '.-v^ i >'ic -=i-i  USLII^ ch- Uco-^c  analysis cechnLques  ^  ,nall.  Th.:  low-.
 ••Hi-.  -,E  d.ceccion o: coxaphe-,e  oy several GC dececcion necnods  -  abou= 5 co
 I-'  -,  (Do.,!.'. GL .il.  '^79K   Coiicencra:ions have been  T.anc L cac iv-l y -nc.'saied

-------
k-vii -jo  0.!  ;;';  i-i  ::-h ri-j^.ies  (RibL'k -;c  al .  1962), .I.K!  J.nvn co O.'V,  ij/a




L' e-i-;  i'".-:! •^•iv i s" oc  .-.i! .  1984).




     Toxapnene .'ipp4-i.-ej»£ LOUS c .'  Ijkes  rel4fc«*J  ix>  fisheries m.uia^e.nenE




prae:c-i-e-«vs  :uve or'^'i. led  ^vt^s" iiic i n!  'mounts  of  aquae Lc face .md efficcs  field




d.icn.   :\<:- ;•> -: '- -; irn  •-••'.! i 1 jo 1 •»  on  ciie  risacmenc of wacer bodies  in .TC  leasz  a




:'.>.•..•>•  s c .'. ;«••>•: j". i  :•']!,'•: :•>! >'v i:u-ei .   NK--;c en"  c'ncso scudies  i p.vesc i a;ic ed  CMO




•j ir^i-'-jC i^-i of coxapheue iMqc«r- coiioenc rac ions  over c ime as an indicacion  of




i:=;  ^ffic.icy an-i  ho-.,  soon afcsi  eLitrinacion  of  undesirable  species che Lake




cojld  ba res rooked.   Treac>nenc  concencrac ions usually r-aa£ed between  5 and




200  j?  of  co\aohe-ie  oer  licer of  lake wacer,  higher concencrac ions being




recommended for warTi-ar,  .ilia'.lower- and Tiore  curbid lakes  (Rose I95d) .




Peissscence of ::<•>-:ic icy  co fish  was  hi»hly  variable,  ranging frim  a  few weeks




(e.s-.  Ma>.ew 1^59)  co -:r-eacer chan five years  in Miller  Lake,  Oiere  »>: al.  i^'jo) buc  wj-j  d=?cecceci  -,c  1-4 j»/L




*.-> c-'  10 years .'. fccr  ic  was .Tpulied  co shallow  euciophir  lakes in  Wisco is in




(Johnson er al. 1956).  Various  scudi.es (e.?,.,  Chandurkar and Macs.jmura  1979;




Chindirkar ec al.  i978:-Isensee  ec ai. 1979;  Hughes ec al.  1970;  Salek ec  al.




1977)  hav-i Idnon-r iTiice I  a biol'^io.'i!  k >.ip.Jh i I icy  co 'necabo 1 Lze o: de^Lkle




uox.iphene  !•> -r!i .isrob •.. 11 Ly and  a:uii-:i obic.il ly .   Qu.inc icac ive dac;i  on




•  
-------
t. • •.::-,'•: o:ie  from Mississipoi soil  under .in.ierobic  laboratoiy coivi it LOP.M ,  •: ii;


whether  .-icci ibuc-ib! a co hi.uiip'-;  co soil parcicles  or  co biological bre.'ikil.'w.


•»-Js -10;:  resolved.   Nash and  Wool son (1VIS7) >>st inate;l  cite hali'-lif'.: -M


cox.so'iene  co  be 11 ve irs  in  soil.   Toxjohene  is  not  readily desorbed back


i'l.:^ w>;:•:::•  from conLaninjced  sedimencs (Veich  and  Lee 197!) biic  is likelv  co


'••i1 ^•.•^10'!.  ;i"lii.; .uju.Kiv  ac'osysL e'ns iriiion^h rlio  bencho^-wjuer ^olunn  fooii  w.-.'b


c-M'-i^cc Liv.is  fxalLman ec .-i I .  1962;  Kioe and Kvans-19Si) .


     In  a-'dicion co ^'iai ply  °levaced :i i r concgncrac ions Ln che immed iace


viri-iicy of  apolicacions  (a.o.,  Scanl-jy ec al.  1971;  Sieber ec al. 1979)  long


•. an»rowing  ireas of che  southern


U.S., LridC  were Tiore chan 10  c imes c'nose of ocher  pescicides reported  in  che


"i.iri'U' acniosohere.  Ze 11  and  5^1 Isciviicer (1930)  fv-»jnd  residues  in fish (08


co ^.503 :n-i/r.  of exc: ncLab le  lipid) o-nlecceci  f-rosn prisci-ie sices  in  che


Ivr-'lian Alps, Norch west  Ireland,  Caspian Ss.-i,  Norch  Aclancic, Norch  Pacific,


and A.ncari.-cic  Ocean.  Ohlendorf  ec al. (1982)  dec-ecceii  coxaohene  i es idues  in


c-he ooos of  15 out of che 19  saecies of is Land-nesc in;;  Al ask JIT sea birds  chey


-•<--:-Lii-^d .   Z^IL inr. Bal Ischmicer  (1980) sug^esc  ch^L  su.-h wLie -I ISLI iout i on


of coxaohene  i es iduesjias creaced  "an overall  -jlobal  :>oll,icion larger  thnn

                 f  '    ;
chat by  PCP".    ^   ^/


     Rice ec  al. (1984) monitored  acmospheric  levels  of toxaphene  in  che


sunmet  and  fall of 1931 ac four  locations between  Greenville, Mississippi  and


n-vc'.iern Lake  vii ohic-.Ti.   Several  line- of evidence indicaced che  coccon belc


/.a a source  of coxcuv-e;-,-?  in  Lake  Michigan: .1 decrease in number oc OC


ci'i-onatooi !-•  aeak  -n.icclies when ijoin-j front south  co north; a reduction  in

-------
; '"..•--•'.£ rac L'>"!3  (7.39 r^'xr i"! Greenville,  1.18  ng/iir  i •! St.  Louis, 0.27
* '"       •      "          -*'
n,',/-A)  from sou CM co north: corresponding  temporal  convene rat ion pa;:c.jr:i:s

 (all higher in  S'nrr.ar) ;  and n nee south  co  norch  wind flow paccern.' Tne

 =8i!C;iois  e-c L".'i i coc.il coxaphe-.ie  flux  co Lake  Michigan of 3, 3bO co 6,720

 ks  i"  I9bl.  N'^  in :oma:, ion could be  Locnced on current use of coxaohene  in

 Mexico,  Cencr-i!  or So^ich America aiul  charefore  possible long-rangu cransporc

 co  che  U.S.  Facilicies  for che produce ion  of coxaphene are known co hjve

 exisL'^ri  in  c'-iese are^.s (Personal Commun icac ion, Office of Pescicide Programs,
                                                              •

 L'.S. P?-\) .

     All  conoencracions  are expressed  as  coxaphene, noc as che material

 cesced.   The criteria presenced herein supersede  previous aquaeic life wacer

 quality  criteria for PC?  (U.S. EPA  1976,  1980)  because these new criteria

 were derived usiiVs improved procedures and  additional information.  Whenever

 a-leq lately  inscificd, a mt ional- or itnrio'i  'iiav  be replaced by a sice-specific

 criterion  (U.S.  EPA i^oB.i), which may  include not only site-specific

 crizerion  ooncencr.it ions  ('J.S. EPA  l^Wb) ,  but  also sice-specific durations

 '••f  avi racing periods and s ice-speo L f ic frequencies  of allowed exceedences

 (U.S.  F.PA  1985).  The latest  literature  search  for  in formac ion for  this

 <-i'->cunie-.Tt  va.s coiiriucced in  Febtuary,  1J33;  so-ie  newer iin'oimacioij was also

 LI s eci.




 Acute  Toxicicy to Aquatic Animals

     Table  i prcse-.cs jcoeocable acutk2 toxic icy data for vertebrate and
                         /
 i ''ver-co r^ce aniT.Tl^.  'f)ata a re  listed in order of  phylo^eny, c'nen  from

 UH-/---C  to  highest t°~ineracure within snecies, and then from younsjsst co

 oldesr  life sta^e (embryo, larva,  juvenile  jnd  adult) at a ^iven  cesc

-------
C5'r.rr  both  channel  cncfish (Tabl=  1) and clie  lijooji-J  frog

(Trihie 6).  early exogenously  feeding Life stages were more sensitive  tiun

initial (yolk deuendenc) or  lacer life  stages.  Adults of boch  soecjss  appear

:o be c'na  lens: sensitive  Life  stage.   In most cases where che  influence  of

cemoer.icj-'; vas exaiuned  le.g., Hooper  and Grezenda  1935; Johnson  and  Julin

1980; '-Ucek ec'-iL.  lcH-j9; ••l.ih.li  1966; U.S. FWS  1964; Workman  and Neunold

19bJ), coxioic> w.ns  greacer  nc  lilqher  cemner^cures.  A notable  cone rad LCC ion

ari che dac.i  for Daphnia -nagna  obtained by Crosby  ec al. (1966)  (Table  o) .

     Where  t'i-i effects  on  toxicity of  additional factors were  investigated

(e.°., water  quality conditions,  test  organism source), these  are  identified

in che cerr.peracure col-imn  of  Tables 1  and 6.   Tlie most well  controlled

exnerirnenrs for water  quality effects  conducted with channel catfish  by

Johnson an-i Julin  (1980)  indicated little or no influence on toxicity.

1J.-2:HM-son  a-;  y i . (I9r)9a) obtained similar results wi'th the fathead nun now.

   e! ',eaer«!tid '.saiii'-i water form different sources  (Sanders 1972;  Wo L km an  and

     M 19b3) indie nt»  greater  differences in  toxicity but the  causal  factors

are unclear and may  not be attributable to the measured water  quality

c.ond ic ions.

     'lenHor•».••! -::  j!.  (1959b) and Uorknnn .ml  Neuhold  (1963) invest traced the

i-.ifluence  of  forrr.ul.it ion on  toxicity dm! found essenti'illv no  differences

between the straight technical  grade and commercial  formulations  with

percentages of active  ingredient  ranging from  10 to  62.62 (Table  1).

     Two other factors  also  obviously  influence acute  results  --  exposure
                                ''.ij(l
duration (lower LC50 valu^-6  with  longer exposures) and static  versus

i low-throim!"1  test  tiethoriology.   Toxaphene is relatively insoluble in  water

(37 •JS/L)  i Lr:e »t  nl.  1963)  and cends-to sorb  onto solid surfaces  and

-------
.i I-.-L icul .'i.'?-.  rfsp-jv i-il Iv u'-ioj-o  cone i i'• i i'; .M'^cini^  .n.'.c-ii i J1 s .   Ace-Ml v.::-21

coi'.c ^:icrac ions  of coxaphene .ire  essenciilLy always  Lowei  ciu:i amounts
                                                                       •

1'ici -.'.LU-o-i  inco P. icher f 1 ow-Lliron^h  or scjcic test  systems, b'ut are.

Uiirc I.*' ilar ! ••  lower in static  cescs.   Foi  iiXJ"iple,  Ho I I  onJ Swine ford (19^1)

•ne is-ir-id  J.i  iverawe ^ I only 30.5*  of  c!ie incenHecl  wa^er convene rac ions  in  a

sori'.'s N^ t  noie  resiscenc than youny  .Mies

I.O.I.. •tei'.e-.jar 1966).  Tte^tme'it concentr;\z ions  reco-nmended  for fasc,

complete  eradication  of  fish  (10 to  200  J^/L  depending oil water quality)

correspond  well to fish LC50s observed in laboratory  studies (e.<$., Gushing

and Olive 1955; llenpnill 1954;  Hene-*ar 1965;  Kallman  ec al.  1962;  Needhara

196^;  ».^ye  1955; Stiin^ei and McMynn 1953; Webb  1980; Woolicz 1962).   Field
                                                           t  '
re--.Its  also  a^rae with one  jnocher  a-id with  c'ne  lab data ch.ic many

i  nvcr-LO^S :r«  SD-?C.''"S  jra less ^ensiciv? tiui'i  fisli; t'n IL so'ne nidges

-------
    v.M  . i 1 • i''i . '''or'ua sp.),  in.Dh ipo;•>. ice.s  •: r-i  .; "on-j; chc- nc^sc  sonsicive  i rwercebr jces  ( a 1 •so Hi I Be-tof £ 1471);




 CM-,c •>!  i-^iv I- i •: •:•', ^iiails,  I-TevhPS and  many insects  are  quite  lesiscenc; nod




-v',.!r. ili'!C-<  i".'  p'nvcii-.^L vikvivi  .us resiscjtic.




      The  S?-i.-.';*  Me.ui Acuce  Vjlues (Table 11 were  used ec1 calculace Genus




 '•l(?j:i X'-ic-* Vi'..!•;  (Vi'il-2.  3^.   «')f c'ne  29  genera for  which  acute  values are




 av^ i L.3'"; 1 e, c>.-  u'si <-»:is ic ive,  C 1 aassenia,   is 350,000 r L.-ass  more  sensicive




 •c'l.v z'-° rnosc  i e.^i^c nic ,  ^a.'. ^ivT.  Howavei",  che rana^ of  sens ic ivic Les of cne




 2o -.-"5C senrsicive jenera  t^j  o:ily a factor of 335.   Acuce values  ure available




 f^r  -..-•:a  c' i-i  o-ie ^oecies Ln e'-jch of tf  genera, and che rangs  of  Species Mean




 \CMte V'.!;•-  wic'i-in each  ^cnns  is less  chan a factor of  4.4.   Tne nine most




 ie".sic ive  --ier-  ire all  wichln a faccor of 4 and  Include cwo  sconefliss-,  che




 c.'inon C2ti,  an-.i  -iev = i .il  i.-noorcanc fish species  including channel catfish,




 I ;;  i-si^ou::1! bjs->,  coho .T.id c^i-ioolc sjl'ion, rainbow  and brown  crouc,  and c'ne




 •iLr'r-e'i ^iis-*.   A  '•"rss'Tw.Tcci  Final -\ciic» V.ilue of  1.434 jg/L  was  calcalatec!




 f":  c ":Toil?n•»  fr>i che ^snus Mean Acuce Values in  T-i.ole  3 using  che




 , .IvMlac.on  pi -ce^'ii-; described in che  Cui.iel Lnes.   This is  higher  chan che




 •s-vi'is 'I-.' n  A;uce Valje  for che imporcanc  channel cacEisli,  hue  che vnlaes




 •"->i  u'-  -  -T»ci ?s  vis -ioc  based  on ciie  resales M a f Low-c'nron^h  cest 1-1 which




 t ;   c.'". MI.: r ic i-vis of coxaohene 'jera -ne.i-titeJ.









 3hronic Toxic icy  co Aqu^cic  Anitnjls




      Th •»  chr^-iic  I T'I  '.3C'i,  3)chou°i)  much nore li'iiiced, indi;ace  ahouc -i one




 •• ;«o  Tvi^rs  •>f  -i !i;'ii c iJe  i^rp-iccr sensicivicy ch.in  cho  -icuc'e  daca  fi«r cn^r




 •-.lie •oici--'  >T;iDla 1'' .   effects wore  ohserved ihiou^h c-ie  b.^wesc exposure




 .!"•-..••  r-!C  ••  ('J.-MQ  i-'/U  in  the brook crou-c partial life-cycle  clir«Miic

-------
ce-'" cosui iw ceci  by  M;jy«r  -ic  .-'.1.  (1973), leaving open che  possibiiicv  cliac  chis


fish i.-; m.-u-e  sensitive  than all other species examined.   Sensitive .


invercebt-.-Jc^s appo^r  fron chronic tesulcs co be more coleranc  chan "fish,


a<;re;: LIII$ with ob.->ei-.- ic ions  from che -.i.iny fi-;!i er^d icac Lon-relaced  field


aC'triies c !<3C  nany  invercebi-ace  f i sh-f ood organisms survived  creacmencs


in carded Cv1 remove fish.


     -\cuce-chronic racios are available for cwo 'fish species and  one


invercebrace  soecies.   The  acuce sensicivLCies only range  from 5.5  co 10
                                                             •

•JO/L, hue  'cne acuce-chronic racios range from 28 co 196.   In che  chronic  cesc


wich a chLfd  fish  species,  che  brook crouc, all cesced concencracions of


coxaohene  cajsed unaccencable e.ffeccs.  In addicion, che only  acuce  value


avaLlahle  for chis soecies  was  obtained in a cesc  wich yearlings,  noc


juve-'.iles.  These  cwo  values, however, would produce an  acuce-chronic racio


of  ,reacet  z -..an 277.   Because' of che apparenc ran«e of acuce-chronic racios,


Lc  tloes iioc seetn reasonable c.-  use a racio co calculate  a  Final Chronic


Value.   Ic  is obvious,  however, chac che Final Chronic Value should  be  less


chan 0.039  Jt?/L based  on  che life-cycle cesc wich  brook  crouc.






Toy.ic icy co Aquae LC Planes
                                      ••o

-------
       TJ lac i on
     "Loxaotie-ie has  been  observed frequencly Ln tissues of  birds and aquacic




organisms boch -iear  co  and  Ear away from primary use  sices:  eggs  of




Lsirj'-ii-nesr Lig sea  birrls in Alqska (O'nlendorf ec at.' 1982);  e°°s  of




i ol.-'i !-ne;>: in1? w.jcer fowl in Lake Michigan (Haselcine  ec  al.  1981);  shore




birds LIT Te---.^ ('.vtiir.e ec al.  1980); cerns in souchern California  (Oh Lend -or f




ec al . 1985;; fisi — eacin"  birds (O'nlendorf ec al..  1931)  and  eagles  (Wieneyer




RC al. l9;Si) across  chc  U.S.;  ducks tT California  (Ohlendorf and  Miller




l'JS^;, At •  :.•«:'. a and  New  Mexico  (Fleming and Cain  1935), Maryland ''.%riice ec al.




1979) 3.111 s!;-i'ie  (Ssar.'  ec  al.  1979);  brown uelicans  in Texas (Kin?  ec al.




1985-' and Louisiana  (Blus  ec  al. 1975); Canadian easc-coasc  marine  fish




(Musi -a I a;i.i Uche  19S3);  birds  and several kinds  of aquae ic organisms from che




AoaV.chlcola River.  Florida (Winger ec al. 1984; Eldei and Mattrdw  198^) and




Louisiana '.-xbow  lakes ( Niechammer ec  al. 1984);  and  various  fish  soecies in




•Uabanna (C-.-**vr\a  ec  al.  1965), Texas  (Dick 1982),  che Colorado River (Johnson




a:H Lew i?1?, ») GJ! i forni a  (Krech-and  Hunc 1966)  and  che  Mississippi River

-------
delca (Havc'r.orne ec al.  1974;  Crockecc  ec  .1!.  1975;  F.pps ec  .il.  1967*).   Only

a few instances have been  reoorced  of morcalicies  associated wich
                                                                    •

j.o riculcural appl i oac ions  of  coxaphene  (e.g.,  Kieth  1966; Giftn and Fishei

197-'tO, .nul some of chose have  involved  contamination bv ocher pesticides Js

well  (Kiech  Ia66;  Plumb  and Richbur*  1977).

      Toxapiiene  residue  levels  measured  in  Great Lakes fish through 1931 have

been  summarized by Rice  and Evans  (1984).   They .indicate an increase in

residues through the 1970s and higher  levels  of, Michigan fish than in those

fron  the ocaer  lakes.  Like ocher  chlorinated  hydrocarbon pesticides,
                                                     ,.  :..'~rr,r   *
coxaphene  is lipophilic  and cends  to  reach maximum Lovol<; in the oldest and

fattest fi'sh at the coo  of the food chain, such as lake trout.

Concentrations  in  this species have generally  ianged between 1 and 10 mg/kg

in the tnosc  recently published analyses -(-Sc-hmTtt et  al. 1983 ;•- Hcs-yg Ibe-rg-i—MI—

Rice  and ovans , !98^-;-  ^in-ida  Department of Fisheries and Oceans \'*)&2)e.
   '  '   -    • •  •         '     •/     .'S  s  ..     - / ^  .
ScVii.;:c et al.  (1985)  raporced chat coxaphene  residues seemed co have

•jiareaued  -iac tonally in  U.S.  freshwacer fish  collected in 1980 and 1981, even

enough ic  was more widely  discribuced  than in  previous surveys.  Residues  in

Si-sac Lflkes  fish,  especially  chose  from Lakes  Michigan and Superior,

generally  .icne.nra-.i 2 co  5  rag/kg lower  than the 5 to  10 mg/kg coir.monly

observed during the 1970s.  Adult  lake  trout  collected ftom Lake Huron near

Rockport,  Michigan in  1984 contained  2.2  mg/ko; bloater chubs collected from

Lake  Michigan near baugacuck,  Michigan  in  1982 contained 1.6 mg/kg, whereas

chose collected in che same area in che fall  of 1984 contained 2.2 mg/k?

(Personal  Communication, Dr.  Robert Hasselburg, U.S. Fish and Wildlife

Service, Greac  Lakes Fishery  Laboratory,  Ann  Atbor,  Michigan).  All reported

values are for  conceitr.ic tons  in wholu  fish,  which are probably soniewhac
                                      i2

-------
'ni^i-.er  than convener .it ions  in  edible tissue.   Clark ec al. (1984)




"appirenc  toxjphene'1  residues  in coho salmon fi Ileus ac below 0.5 rr->/kg  in




Lakes Erie and  Superior,  Co nearly 2 mg/kg in Lakes Michigan and Hur-on.




"Toxj.phene  like"  residues have been measured in fillecs of lake crouc  from




che -nouch of  Sa;inaw  Say  in Lake Huron ac up no 26 mg/kg (Swain ec al.




Manurer i DC ) .  H-^sn 1 rs—±f  fan\y  a few measurements of che concentrac ion  of




coxaohene  in  samples of water  from che Greac Lakes have been reporced.




     Samoles  col lec-.ce-i  in 19SO fron 5 scacions in Lake Huron ranged from 1.2




co 2.i  ng/L 3'id  averaged  1.6 ng/L (Swain ec al. Manuscript),  '.^hile che




analyses refer  co  chese as  "coxaphene like" macerials, chey feel quice




ceicain  :n.-fc  che  observed residues ate derived from chlorinated catnphene




(Personal Cora.nunicacion,  Dr. Mike MulI in).  This laboracory has also measured




"toxao'^ene like"  res idues in Siskiwic Lake on Isle Royale in Lake Superior ac




2.2  17 'L.  Five  co-naosices  of . lake 'crouc froin Siskiwic Lake averaged 4.2




mg/'-v; and a cross-check of  chese analyses by che U.S. FWS laboiacory in




Columbia, Missouri  measured 3.2 mg/ko.  Toxaphene has been measured in che




w.-,c•  ng/L wich che higher values bein^




presenc  ac che western end  of  die lake.   No water concertracion




decerminations are  known  to exist for che other Great Lakes.




     Analysis of bioconcentracion data from chronic laboratory tests indicate




th.ac a water-co-c issue equilibrium in coxaphene concentrations is reached by




abi'uL 10 dfivj of exposure of fish.  Pooling of all fish whole body residue




d.ica -i- Table 5 provides  a  geometric T.ean b ioconcentrac ion faccor (BCF) of




15,000.   Pqormia magr.a accuraul aced 4,0'IQ times che wacer concencrac ion of

-------
         i.  These values are smilar  co  chose  observed  by  Terriers ec  al.


(1966) in several stocked  fish  soecies and  other  aquatic organisms from cwo


Oregon lakes studied over  a 3-year  period during  recovery  from fish-


eradication treatment.  BCFs chere  ranged  from 9,000  to 19,000 for rainbow


trout, 4,00'J to 5,000  for  Atlantic  salmon,  and 15,000 cor  brook crout.


Residues  in edged r.n:ibow  trout  introduced  into one of  the lakes indicated


chac -in equi.libriun night  hdve  been  reached between 38  and 46 days of


exnosure.  Tnvercebrace residues  ranged  becween 1,200 and  2,500 times  water


concentrations, and aquatic planes  had BCFs of 500 co 7,000.   The similarity


of the laboratory BCF  (direct uptake) data  and field  BAF data -- within a


factor of 3 or 4 for  fish  and invercebrates — indicates  little or no  food


web magnification.


     Relating  these data to the Great Lakes, an accumulation  of 5,000,000          .
                                      •f      .•'::,-'.        - .    ,  .     ,       f-\

times would be required co o'-cain  residues  of 10  mg/k7  in  lake crout^from a


water concencrac.ion of 2 ng/L,  <*t—a-tn»ite—200~E4ww—»rea'C';r "eVvan-ehe-  LaboracxHr-y

                   *"**                       '!-•    t   _         f ' *.   *    .*"     __ / ."
                                            -* -         ••-                          — t.  i .j
^.ve-.Oregon- takes-ftOPs-.'. Possible reaso-is  for the lack  of agreement/ are  many


and  include: a much higher bioconcentrat ion poten-tial among lake crout than


a'Tiong other, usually  less  fac fish  species; inaccurate  field  water  01  fish


cissue toxaohene determinations;  a  much  longer exposure period in Great Lakes


nish;,the existence of food-web magnification of  residues  in  Great  Lakes  fish


not evident from other (e.g., Oregon lakes) stud ies;. local ized e^*xaf>heae_/ *•


water concencracions  chac  are higher chan  chose chac  have  been measured'to


dace: differences in  the precise  composition of che toxaphene being measured;


or a combination of ~iore than one  of chese  factors.  A relevanc discussion of


che  importance of food related  bioaccumulacion of highly persiscenc organic


ch-i-nLj^j Is, including  coxaohene  is  presented by Niimi  (1985).   He shows chac

-------
much higher tissue residues wojltl be expected  in ndult salmoniris  in the G: eat




Lakes ch- Schoettger and Olive (1961) found  that Dap'nnia magna exposed  to




multiple: ssiSi etli nl c»!K-cnc rat ions of Loxaphene could accumulate enough




pesticide .to be lethal when- these were fed  to  shinet minnows (Notropis  sp.).




                                     15

-------
Unused Dr.ra




     Examoles of data that were not used include the results of several  tests
         •                                                          •




wich homogenized tissue preparations (Deai.ih and Koch  1975; Davis ec al.




1972; Hiltibran 1974, 1982; Moffecc and Yarbrough  1972).  Two cell culture




studies bv Shea and Berry  (1932a,b) and a shore radio-labelled coxaphene




uptake scudv by Schaoer and Crowder (1975) were also considered inapplicable.




A study in which coxaphene was force-fed to carp-(Loeb and Kelly  1963) was




noc i.:sedj nor were che mixtures studies by Macek (1975) and Hall  ec al.




(1984).  The resulcs of coxicicy cescs by Weber ec al. (1982), Burke and




Ferguson (1969) and Ferguson and liringham (1966) were  noc used because che




results were displayed only in graphical form.




     The results of cescs  by Cohen ec al. (1960),  Boyd (1964), Lawrence




(1950), Surber  (1943), Applegace ec al.  (1957), Doudoroff ec al.  (1954),




Davniow and Sabacino (1954), N'elson and Macsumura  (1975), Courtney and




Roberts (1973), Career and Graves  (1972), and Mills  (1977) were rejecced




h'D-:-Tu
-------
field observations, indicate1' aii effect threshold  for  fish cind niacroinverte-


b races of around 0.03 ,JH/L.  While birds ami  fish  aie  thought  to have  been


killed near sices of application during former periods of heavy use,' no


biological -?f Foots have been associated with  water or  tissue concentrations


currently reported for the Great Lakes or elsewhere.   However, tissue


concent rjt ions of Greac Lakes fish have frequently been  observed that  exceed


the U.S. FDA action level of 5 mg/kg.  Although based  on extremely  li-iited

                                            A
water concent i at i on measurements, the w-ater levels of  toxaphene causing  high


tissue bur-dens in older and  fatter Great Lakes fish  appear considerably  lower


than .night be expected from  accumulation factors determined  in the  laboratory


and from other field data.   These "environmental concentrations are  thought  to


have resulted fro-n toxaohene bein° transported to  the  Great  Lakes  from remote


use sites, the location of which are not well known.   Whechei  or not the


recent elimination of .^ost of the uses  in the U.S.   and  Canada will result  in


significant droos in environmental levels is  not yet known.   H ic  can be
     i-     ,                                                ,

••i3-*uneri "Irat ( cur rent ly available data on Great Lakes water and fish tissue


concentrations are correct, •£•'««« watet concentrations  would  have to be


reJ.;.ced approximately 3-fold to 0.0002 jg/L to keep  fish tissue  residues


belo1; 3
National Criteria


     The procedures described  in  the  "Guidelines  for  Deriving  Numerical


National Water Quality Criteria  for the  Protection  of Aquatic  Organisms  and


Their I'scs'1 indicate that, except  oossibly  where  a  locally  important  species


is very sensitive, freshwater  aquatic organisms and their uses should  not  be


.T fleeced una^eoranl v  if  the  Four-dav  Jverage  concentration  of toxaphene does
         S7^0V.O X\         '
not '••>:ce^d 153 ug/L "lor-?  than  once every  tin ee years  on  the  average  or  if  the

                                      I 7

-------
Mie-hour average concentration does not exceed(0.74 ug/Ljjiore than once every


:''iree years or. che average.  •           '                   f,  .  .


     L'he procedures described in che "UuiJelines foi Deiiving Numerical


National Water Qualicy Criteria for che Protection of Aquatic Organisms and


Their U&es" indicate c'njc, except possibly where a  locally  important  species


id vcrv sensitive, saltwater aquatic or
-------
                                          TABLE 1.  ACUTE TOXICITY OF TOXAPHENE TO AQUATIC ANIMALS
Species
Clam (55-50 nm) ,
tfanqla cuneata
Cl -I'locei 
-------
I CJU 1 U 1 • \ I.UH 1 1 MUCTU 1

Spec I es
Stonetly (15-20 ran) ,
Pteronarojl la badia
StoneM v ( tO'S-i mm) ,
Ptoronarcys cjl i forn lea
Stonef ly (20-25 mm) ,
Claassenia saoulosa
Crane fly ( 1 arvo) ,
I" ! p u 1 a
Midqe (4tn Instar larva),
Chironomus plumosus
Midq4 (4th instar larva),
Chironomus oluniosus
Snipe fly ( larva) ,
Atnerlx varleqata
Coho salmon (1 q) ,
Oncornynchus kisutch
Coho salmon (0.6-1.7 q) ,
Oncornyncnus klsutch
Coho sjln.on (57-76 mm; 2.7-4.1 q) ,
Oncorhvncnus kisutch
Chlnoo1 salmon,
Oncorii.'nchus tshawytscha
Chinoi""- salmon (51-114 mm,
1.45-r- g>.
Oncor hvnchus tshawytscha
Rainbow trout ( 1 g) ,
Salmo qalrdner 1
Rainbow Trout,
Sa 1 mo qairdner 1


Method*
S.U

S.U

S.U

s.u

s.u

S.M

s.u

•s.u

s.u

s.u

s,u

s.u

s.u

s.u -


Temperature
Formulation** CO
1 15.-J

1 1 • > . 'i

r ID. 5

r is

r is

r 22
"
T 15

r 12

T 13

T 20

T 14.4
•
T 20

7.2

C 11.7

Species Mean
LC50 or Acute Value
EC50 (tig/l)*" (uq/L)**"
5 .0 3 .0



Reference
•jomtors diivt (,'oiiu I9i




00 •

75 2. i O.indors and Cono Ivo's

1.3 1.3

18 1"

30

180 73.4J3

40 40

b

4.0 t..7

9.4

1.54 1.962

2.5

5.4

8.4



Sand cars and Cooo IVorf

Johnson and Finlny

Johnson and F i n 1 oy

Sanders 1900

Johnson and Finley

Johnson and Finley


I',."/.

rjfio



19BO

1980

Macek and McAllistor 1970

Kat,; 1961

U.S. FWS 1970

Kat^ 1961

U.S. P-JS 1964
"
Mahdi 1966













-------
laui*t I • \uuiiii iiuau /



Temperature
Spec 1 eS
Rainbow front (1.1 q) ,
S-i Imo qa irdner i
Ra inbow tr jut (1 q) ,
Sa Imo ijciirilnor i
Rainbow trout (0.6-1.7 q) ,
S a 1 mo qalrdner 1
Rainbow trout (1 q) ,
5a Ifno dp



1 9 70






1-363

1963

900












1963


-------
Spec 1 es
Goldfish (4.2 q),
Carassius auratus
•'jo I'M i-'.h,
Cirassius nuratus
Gold f i sh,
Carassius auratus
noidf ish (1 ci) ,
Cnrassius aurntus
Goldfish (-1.2 q) ,
Carassius auratus
Goldfish (4.2 q) ,
Carassius auratus
Goldfish (4.2 q),
Carassius auratus
Goldf ish (4 .2 q) ,
Carassius auratus
Goldfish (4.2 q) ,
Carassius auratus
GoMfish (4.2 q),
Carassius auratus
Goldfish,
Carassius auratus
GoMfish (6 cm) ,
Carassius auratus
Goldfish ( 1-2 g) ,
Carassius auratus
Method*
S.U
s.u
s.u
s.u
s.u
S.U
s.u
s.u
s,u
S.u
s.u
s.u
Formulation**
*j2.64 a.i.
S i n k i nq
C
C
T
10* a.i.
Floating
62.6* a.i.
Sink ing
Floating
Si nkinq.
FloaHn.)
Si nkl ng
C
Species Mean
Temperature LC50 or Acute Value
CO EC50 (ug/L)*** (Mg/L>***
20 (pH 8.3, 44
TDS 160)
1 1 . / 9.4
17.2 28
20 (on 8.3, 4
TDS 166)
21) (pH 8.3, 9
TDS 166)
20 (pH 7. B, 2H
TDS 233)
70 (on 7.8, 16
fUS 238)
20 (pH 7.0, 7
TDS 46)
20 (pH 7.0, 9
TOS 46)
22.7 50
25 11
25 5.6 _ 16.71
Reference
Workman cincl Naiihijld
Mdhdi Wiio
Hand! 19("i6
Johnson and FinUiy 1
Workman and Nouhold
Workman and Nuuholti
Workman and N-3uholfl
*
Workman find Neuhold
workman and NeuhoM
workman and Neuhold
Mahdi 1966
Warner ef al . 1966
Henderson et al . 19!
I-/63
IVUO
Ho 3
I9o3
19o3
19o3
a9a
Common carp (0.6 q),
Cyprinus carplo
s.u •
                          Id
                                               3.7
                                                              3.7
                                                                                                                      Johnson and Fin ley  19aO

-------
Table 1.  (continued)
Species
Go 1 ilen shiner,
Notemlnonus crysoleucns
Go Nun shiner,
tiofem i'lonus crysoloucas
Rl nnt nose minnow,
Pimephales notatus
Hluntnoso 'ninnow,
Pimephales notatus
Bluntnose minnow,
Pimephales nofatus
Fathead minnow (0.6-1.7 q) ,
Pimeohales oromelas
Fathead minnow (0.5-1.5 q) ,
P i map hales promelas
Fathead minnow (1.1 q) ,
Pimephales Drome las
Fathead minnow (0.5-1.5 q) ,
Pimephales promelas
Fathead minnow (0.5-1.5 q) ,
Pimephales promelas
Fathead minnow (30 day; 0.32 q;
30 mm) ,
P Imephales promelns
Fathead minnow (0.5-1.5 q) ,
Pimephales oromelas
Fathead minnow (1-2 g) ,
Plmephales promelas
Fathead minnow (1-2 g) ,
Method*
S,U
S.U
s,u
S.U
S.ll
s,n
s.u
S.U
F.U
F.U
F.U
S.U
S,U
s.u
Species Mean
Temperature LC50 or Acute Value
Formulation" CO EC50 (Mg/L)"» (gg/L)*"
C 17.2
C 22.7
C 11.7
C I/. 2
C 22.7
T 18
T . 20
T . 20
T 20
T 25
T 25
T 25
25 (hard water)
25 (soft water)
<5
-. 6 <5.477
30
8.8
6.3 11.05
14
20
18
7
5
7.2
23
5.1 '
7.5 10.12
Reference

Mahdi I96b
Mahdl 1966
;-',a hd 1 1 966
Mshdi 1966
Mahdi 1966
Macek and McAllistur IV/O
Johnson and Julin 19BO
Johnson and
Johnson and
Johnson and
Mayer at al .
Johnson and
Henderson of
Henderson at
Finloy 1980
Jul in 1930
Jul in 1950
1977
Jul in 19UO
jl. I959a
al. I95^d
Pimephales promelas

-------
Species
Black but (head,
Ictalurus me las
til -ic k bul Inoad,
1 ctalurus rnol as
Black bullhead (0.6-1.7 g) ,
Ictalurus me las
Black bul 1 heart,
Icfalurus me las
Black bul Ihead (0.9 q) ,
Ictalurus me las
Channel catHsh (yolk sac fry;
1-4 day),
Ictalurus nunctatus
Channel catfish (swim-up fry;
5-8 days old) ,
Ictalurus Diinctatus
Channel catfish (flnqerlinq;
0.5-1.5 q),
Ictalurus punctatus
Channel catfish ( 1 .5 q) ,
Ictalurus punctatus
Channel catfish (4 q) ,
Ictalurus punctatus
Channel catfish (0.5-1.5 i|),
Ictalurus _qy_nctatus
Channel catfish (0.5-1.5 q),
Ictalurus punctatus
Channel catfish (0.5-1.5 q) ,
Ictalurus punctatus
Channel catfish (0.5-1.5 q) ,
Ictalurus punctatus
Method*
S.U
S.U
S.U
s.u
S.U
S.U
S.U
S.U
S.U
F.IJ
S.U
S.U
S.U-
s,u
Formulation"*
C
C
r
c
r
T
T
T
T
T
T
T
T
T
Temperature
CO
Species Mean
LC50 or Acute Value
EC50 (Mq/L)**« (pq/L)**"
11.7 25ft
17.2 .2.7
ia 5 -
22.7 l.tt
24 5.b 3.146
25 & -
25 ' 0.8m
15( pH 7.4, 4.7
alk 35, hard 40)
18 (pH 7.4, 13.1
alk 55, hard 40)
20 5.5
20 (pH 6.5. 2.7
alk 35, haru 40)
20 (PH 8.2, 3.9
alK 220, hard 10)
20 (pH 7.5, 3.4
alk 35, hard 40) •
20 (pH 7.4, 4.2
alk 35, hard 40)
Reference
Mahdi 1966
Mahdi 1066
Macek and McAllister 197'.)
Mahdi 1966
Johnson and Finley 1930
Johnson and Julin 1980
Johnson and Julin 1930
•
Johnson and Jul in 1980
Johnson and Finley 1^80
Johnson and Julin 1980
Johnson and Jul in 19bO
Johnson and Jul in 1980
Johnson and Julin 1980
John-son 'and Julin 1980

-------
Table 1.  (continued)
Species
Channel catfish (0.5-1.5 g) ,
Ictalurus jiunctatus
C'li'innal cat-fish (0.5-1.5 g) ,
Ictalurus punctatus
Channel catfish (0.5-1.5 g) ,
Ictalurus punctatus
Channel c,
1 ctal urus punctatus
Channel catfish (0.15 q) ,
Ictaiurus punctatus
Channel catfish (2.5 yr; 767 q,
39-1 mm) ,
Ictalurus punctatus
Mosqui fof Ish (0.32 g) ,
G ambus fa afflnis
Mosquitoflsh (0.32 q),
Gambusia afflnis
Mosqui tof Ish (0.32 q) ,
Gambusia afflnis
Mosquitof ish (0.32 q) ,
Gambusia affinis
Mosquitof ish (0.32 g) ,
Gambusia afflnis
Mosquttof Ish {0.32 q) ,
Gambusia afflnis
Method*
s.u
S.U
S,U
S.U
S,U
s.u
F.U
F,M
S.U
S,IJ
s.u
S,U
s,u
s.u-
Species Mean
Temperature LC50 or Acute Value
Formulation** CO EC50 dig/D**" (uq/L)***
T
T
r
r
T
T
T
T
10$ a.l .
F 1 oa f i ng
62.6? a.l.
S 1 nk i nq
Floating
Sinking
Floating
Sinking
20 (pH 8.3, 3
dlX 35, hard <10)
20 (pH 8.2, 3.2
fllk 220, hard 40)
20 (pH 8.2, 3.9
alK 220, hard 160)
20 (pH Q.2, 4.7
alK 220, hard J20)
25 (pH 7.4, 2.8
alk 35, hard 40)
25 (pH 7.4, 3.7
alk 35, hard 40)
25 (pH 7.4, 7.5
alk 35, hard 40)
20 16.5 0.8
20 (pH 8.3, 24
TDS 166)
20( pH 8.3, 48
TOS 166)
20( pH 7.8, 52
TDS 238)
20 (pH 7.8, 6
TDS 238)
20 (pH 7.0, 9
TDS 46)
20 (pH 7.0, 9
TDS 46)
Reference
Johnson and Julin )ybO
lohnson and Jul in I9r,.j
Johnson find Julio IQO'J
Johnson and Julin I'Jdu
Johnson and Julin 1-jrfu
Johnson and Julin 1V80
Johnson and Julin I'-JdO
Mayer et al. 1977
Workman and Neuhold 1963
Workman and Neuhold 1V63
Workman and Neuhold 1963
Workman and Neuhold 1963
Workman and Neunold 1963
Workman and Neuhold 1963

-------
Table 1.   (continued)



Temperature
Species
Mosquil-ofish (30-40 mm),
G ambus I a af finis
Cunpy (0.1-0.2 q) ,
Poeci i ia ret Iculata
Striped bass (juvenile; 2.3 q) ,
Horone saxat i 1 Is
Striped hass (35-30 days),
Morone saxat ills
Blueqi 1 1 (0.6-1.5 q) ,
Lepomls macrochirus
Blue'ql 1 1 (0.6-1 .7 q) ,
Lepomis macrochirus
Blueqi 1 1 (0.6-1.5 g) ,
Lepomis macrochirus
Bluoqil 1 (0.6-1.5 q).
Lepomls macrochirus
Blueqll 1 (0.6-1.5 g) ,
Lepomis macrochirus
Blueqi 1 1 (0.6-1 .5 q) ,
Lepomls macrochirus
Blueqi 1 1 (0.5-1.5 g) ,
Lepomis macrochirus
Bl ueql 1 1 (0.5-1.5 g) ,
Lepomls macrochirus
Blueqll 1 (3.8-6.4 on,
1.0-2.0 g).
Lepomls macrochirus
Blueqi 1 1 (3.8-6.4 on.
1.0-2.0 g),
Method* Formulation**
-,u

s,u

F.LI T

S,U ' T

S.U T

S.U T

S.U T

S.U T _

F.U T

s.u r

S.U T

F.U T

S.U T


S.U 20< a.l.
EC
CO
24

25

17

20

12.7

18

18.3

70

20

23.8

25
•
25

25 (soft
water)

25 (hard
water)
Species Mean
LC50 or Acute Value
EC50 *»* d.g/L)*«"
8 15.68

20 20

4.4

5.4 4.874

3.2

18

2.6

2.6

4.7

2.4

2.4

3.4

3.5


4.6



Reference
Cha iyaracn at 
-------
Table 1. (continued)

Species
Sluegill (3.3-6.4 cm, 1.0-2.0 g) ,
Lcoomis mficrochirus

L injemou th bass (0.9 q) ,
Micropterus sal mo ides

Rail oar sun fish (0.6-1.7 q) ,
Leoomi s microlophus

Method*
s.u

S.U

S.U


Temperature
Formulation** CO
207. a.i. 25 (soft
cp water)
I.*.*
r 'a
r 18
1 '°


LC50 or
EC50 (uq/L)*»*
4.4
2*

13


Species Mean
Acute Value
(uq/L)**«
3.77
•£

13



Reference
Henderson &r al . I1'
Johnson and F Inlay

Macek jnd McAl 1 ist<

\r*r . r\f f\n ^111 1 Pi nlriV
vel low perch (1.4 q) ,                 VI
Porca 11 avesce_n_s_

Western chorus froo  (t.idpole,         S.U
7 day)-,
Pseudar.ris triseriata

Fowler's  toad  (tadpole,               S,U
23-35 day),'
Bufo  fowIeri
                                                                    Id
                                                                    15.5
                                                                    15.5
                                                                                    12
                                                                                   500
                                                                                   140
                                                                                                   12
                                                                                                  500
                                                                                                  140
                                                                                                                       Sanders  1970
                                                                                                                       Sanders
*   S = static; R = renewal; F =  flow-through. M  = measured;  U  =  unmeasured.

«  EC = emu.sifiab.e concentrate; C  = co-nmerci.l  grade;  T  =  technical  qrade;  a... = act.ve inqred.ent.

«»« Values are  in terms of  toxaphene, not  the  formulation.

                                                         »r  «„
                                                                                                                                  •       "
    omitted  from species mean  calculation.
ttt Only value  used  as  the  mean  for this specie because of the high probab.lity that  ,t is a particularly sensitive  M f e  stage.

-------
  TABIF  2.   CHRONIC TOXICITY OF TOXAPHENE  TO AQUATIC ANIMALS
Spec las
Cladoceran,
Oaphnia manna
Brook trout,
Snivel injs fontinalls
Fathead minnow,
Pimeohales promelas
Channel catfish,
Ictalurus ounctatus

Test* Formulation**
Temperature
CO
Limits
diq/L)"**
Chronic Value
(iig/L)*** Reference
FRESHWATER SPECIES
LC T
LC T
LC r
LC T
IB
<)
25
26
* LC = Life cycle or partial life cycle.
** T = technical qrade.
**** Results are In terms of toxaphene, not the formulation.
»** Unacceptable effects occurred at all concentrations tested.
Acute-Chronic
Species
Cladoceran,
Daphnia maqna
Fathead in In now,
Pimephales promelas
Channel catf i sh,
Acute Value
( ug/L )
10
7.2
5.5
0.07-0.12
< 0.039"1""1
0.025-0.054
0.129-0.299
Ratio
Chronic Value
(wg/L)
0.09165
0.03674
0.1964
0.09165 Sanders I960
<0.039 Mayer and Mehrlo I'J/w
0.0367-1 Mayer ef dl . 1977
0.1964 Mayer ut al . 1977
Ratio
109.1
•196.0
28.0
Ictalurus punctatus

-------
TABLE 3.  RANKED GENUS MEAN ACUTE VALUES WITH SPECIES MEAN ACUTE-CHRONIC RATIOS
Jank*
29
28
27
26
2b
24
23
22
21
20
19
18
Genus Mean
Acute Value
(gq/L)
460,000
500
210
140
73. 48
40
31.75
20.85
20
18
16T7I
15.6B
Species
FRESHWATER SPECIES
Clam,
Ranqla cuneata
Western chorus froq,
Pseudacrls trlseriata
Crayfish,
Procambarus simulans
Fooler's toad,
Bufo fowler!
Midqa,
Chlronomus simulans
Snlpefly,
Atherlx varleqata
Prawn ,
Palaemonetes kadiakensls
Amph ipod ,
Gammarus fasciatus
Amph 1 pod ,
Gammarus lacustrls
Amp hi pod,
Gammarus pseudol Imnaeus
Gunpy,
Poecilla reticulata
Crane fly,
Tlpula
Goldfish,
Carasslus auratus
Mosgul tof ish,
Species Mean
Acute Value
(gq/L)««
460,000
500
210
140
73.48
40
31.75
14.49
26
24
20
18
16.71
15.68
Species Mean
Acute-Chronic
Ratio""
-
                       Gambusla af fIn Is

-------
TABLE 3 (continued)
Genus Mean
Acute Value
Rank* (uq/L)
17 13.78
16 12.25
15 12
14 <1I.19
13 -10.95
12 10.8
11 7.0
10 <5.477
9 4.874
8 4.234
Species
Cl adoceran,
S Imocephal us serrulatus
Cladoceran,
Daphnia magna
Cl aiioceran,
Daphnia pulex
Yel low perch,
Perca flavescens
Stonerol ler,
C ampost oma a n oma 1 urn
Bl un'tnose minnow,
Plmephales notatus
Fathead minnow,
Pimephales promelas
Brook trout,
Salvelinus fontlnalis
Ulueqll 1 ,
Lepomls macrochirus
Red ear sunf ish,
Lepomls microlophus
Golden shiner,
Notemlqonus crysoleucas
Str iped bass,
Morone saxatl 1 Is
Ra 1 nbow trout ,
Salmo galrdner 1
Brown trout,
Salmo trutta
Species Mean Species Mean
Acute Value Acute-Chronic
(pq/L)»* Ratio""
13.78
10 HI
15
12
11.85 ' -
10.12 195
10.8
3.77.
13
<5.477
4.4
5.782
'3.1

-------
TABLE 3 (continued)
Rank*

  7


  6
Genus Mean
Acute Value
  (iig/L)
                3.0


                2.1


                2.0


                1.66





               1.3
Species

Common earn,
CyprInus carpio

Coho salmon,
Oncorhynchus kisutch

Chinook salmon,
Oncorhynchus tshawytscha

Stonefly,
Pteronarcella bad!a

Stonefly,
Pteronarcys call torn lea

Largemouth  bass,
Mlcropterus sal mo Ides

Black bulI hoad,
Ictalurus me I as
                Channel catfish,
                Ictalurus punctatus

                Stonofly,
                Claassenla sabulosa
Species Mean
Acute Value
  d.g/L)»»

      5.7


      6.7


      1.962


      5.0


      2.3


      2.0


      3.446


      0.8


      1.3
                                                                       Species Mean
                                                                       Acute-Chronic
                                                                         Ratio""
                                                                  2B
*   Ranked from most resistant to most sensitive based on Genus Mean Acute Value.

«*  From Table 1.

*."* Fron Table 2.


Fresh water

     Final Acute Value = 1.484 ug/L (calculated from Genus Mean Acute Values)

     Criterion Ma
-------
                                           TABLE 4.  TOXICITY OF TOXAPHENE TO AQUATIC PLANTS

                                               Temperature     Duration                             Results
Species                       Formulation*        CO          (days)              Effect           Ug/L)*"      Reference

                                                            FRESHWATER SPECIES

Graon al.ja,                       -               21° C            10         Siqni f icant.decrease   100-1000      Staitnyk at al . 1971
ScenotUgsnujs quadrIcamla                                              .       In cell  numbers

(Sreon alqa,                       T               24° C            4         5U<  qrowth  Inhibition     i80          .Call  ot al . 1983
Selenastrum capr I cor nu turn
11  T -  technical qrarte.

** Results are  In  terms  of  toxaphone, not tho formulation.

-------
TABLE 5.  BIOACCUMULATION OF TOXAPHENE BY AQUATIC  ORGANISMS





   Concentration       Duration               P?r(:!nt
         •   .   .. \.      *  .  _»     T I _ — ..-.     I  I A I i-l0       Of*f
g par lag rormu i arion-
Clarioceran, T
Oaphn i a mngna
Drook trout , T
Salvel Inus fontlnal is
Brook trout, T
Salvel inus fontinal is
Brook trout , T
Salvel inus fontlnal Is
Brook trout, T
Salvol inus fontinal Is
Brook trout , T
Salvel inus fontinal is
Brook trout, T
Salvel inus fontinal is
Fathead minnow, T
Plmephales oromelas
Fathead minnow, T
Pimephales promelas
Fathead minnow, T
Plmephales promelas
Fathead minnow, T
Pimephales promelas
Fathead minnow, T
Plmephales promelas
Channel catfish, T
Ictalurus punctatus
Channel catfish, T
Ictalurus punctatus
1 II no 1 01 % MH' *- '
0.06-0.12

O.OJ9-0.139

0.068-0.502

0.039-0.139

0.039-0.502

0.039-0.502

0.068-0.502

0.013-0.173

0.013-0.173

0.013-0.173

0.055-0.621

0.013-0.173

0.049-0.630
.
U.04 J-0.6JO

FRESHWATER.
7

riO

60

90

140

161

161 .

30

50

98

150 '

295

30

30

SPECIES
Whole body

Whole body

Whole body

Whole body

Whole body

Whole body

Fillet

Whole body 5.2

Whole body 5.7

Whole body 9.3

Whole body

Whole body 2.7

Whole body 1.8

Wholo body • 8.8


4,000

12,000

4,200

18,000

9,400

6,400

3,100

16,000

22,000

51,000

90,000

7,900

' 11,000

13,000

                                                                             Reference








                                                                             Sanders  1000






                                                                             Mfiyor  ut al.  19/5






                                                                             M;iyer  et al .  1975






                                                                             Mayer  et al.  1975






                                                                             Mayer  et al .  1975






                                                                             Mciyer  et il .  1973






                                                                             Mayer  et al.  1975






                                                                              Mayer  et al. 1977






                                                                              Mayor et al. 1977






                                                                              Mayer et al. 1977






                                                                              Mehrlo  and Mtiyer






                                                                              Mayer et al . 1977






                                                                              Mayor et. al . 1977






                                                                              M.iyor et al . l'J7/

-------
Table 5 (continued)
Species
Channel catfish,
Ictalurus punctatus

Channel catfish,
Ictalurus punctatus

Channel catfish,
I etalurus punctatus

Channel catfish,
Ictalurus punctatus

Channel catfish,
I etalurus punctatus
Formulation*


    T


    T


    T


    T


    T
Concentration       Duration               Percent
In Water (Mg/L)      (days)     Tissue     Llplds      BCF or BAF*»
0.049-0.630
0.049-0.630
0.049-0.630
0.049-0.650
0.049-0.630
 50       Whole body     8.2
 60       Wnola body     2.7
 75       Whole body     7.1
 90       Whole body     4.7
100       Whole holy     7.6
12,000
24,000
18,000
39.000
22,000
                                                                                                                     Reference
Mayer et at.  l'J/7
Mayor at al. 1977
                                                                               ot al.  1977
Mayor ot a I.  lv)7/
Mayer ot al. 1077
*  T = technical qrade.

"* Bioconcentration factors (BCF) and bioaccumulation factors (BAF)'are  in terms of toxaphene, not the formulation.
                                                  Maximum Permissible Tissue Concentration
                                  Consumer
                                  Man
                         .Action Level or Effect

                          Action level for edible
                         • fish or shelI fish
                                   Concentration
                                      (mq/kq).

                                        10
                               Reference

                               U.S.  FDA 1979
                                  Freshwater Final Residue Value = (10 rng/kq) / IS,000 = 0.0006667 mg/kg
                                  0.6667

-------
                                     TABLE 6.  OTHER DATA  ON  EFFECTS OF TOXAPHENE ON AQUATIC ORGANISMS



                                                 .Temperature
Cr\af 1 ft^
jOO\f 1 V>9
Cl j'iocoran,
Oaphnla giagna
Cl-sooceran (1st inst-ir,
<24 tir).
Qaphn i a maqna
Cladocoran,
Oaphnla megna
Cl adocer-in,
Daonni a manna
1 sopod ,
Asellus in termed 1 us
Amoh i pod ,
Gammarus fasclatus
Arnohlpod (15-20 mm) ,
Gammarus fasclatus
Ampniood (5-10 dav old),
Gammarus tasclatus
Prawn,
Palaemonetes kad lakensl s
Prawn,
Palaemonetes kadiakonsls
Prawn,
Palaemonetes kadiakensls
Prawn,
Palaemonetes kadiakensis
Prawn,
Pa 1 aemonetes kadiakensis
Prawn .
Formulation*
EC

-


C
C
EC

EC

T

T

T

T

T

T

T

T
(° C)
12.7

19


21.1
25
12.7

12.7

-

18

2*; Site 1

24; Site 2
•
24; Site 3

24; Site 4

20; Sita 1

20; Site 2
Duration
24 hr

26 hr


26 hr
26 hr
24 hr

24 hr

7.67 hr

30 day

24 hr

24 hr

24 hr

24 hr

36 hr

36 hr
Effect
I.C50

LCSO


EC50
( immobl 1 i nation)
EC50
( immobl 1 Izatlon)
LC50

LC50

L-T50

growth reduction

LC50

LC50

LC50

LC50

LC50

. LC50
ResuM
1,500

94


260
1,900
100

60

50

0

44

229

20

80

. 170

57
r»«













.18




"
.9

.9



.5
                                                                                                                      Referenco



                                                                                                                      Hooper  and Gr/jomla
                                                                                                                       Fre.ir  and lloyd l'
                                                                                                                       Crosby et al . 1966
                                                                                                                       Crosby et a I . 19o6
                                                                                                                       Hoopor and Grzenda  IV51}
                                                                                                                       Hooper ami Grzen.la  l'}5b
                                                                                                                       McDonald 1962
                                                                                                                       Sanders
                                                                                                                       Nnqvl and Ferguson  l'J7(J
                                                                                                                       Naqvi and Feri]uson
                                                                                                                       Naqvi and Ferguson  1970
                                                                                                                       Naqvi and Ferguson H70
                                                                                                                       Ferguson  et  al .  1965
                                                                                                                       Ferguson  et  al .  1965
Palaemonates  kadlakensls

-------
Table 6 (continued)
Spec 1 es
White River crayfish (0.25-
0.40 f); 1I.8-H.6 mm) ,
Procambarus acutus
White Rlvor crayfish (0.25-
0.40 g; 11.8-14.6 mm) ,
Procambarus acutus
Mayfly,
Ephemera simulans
Mosquito (larva, 2nd instar),
Aedes aegypti
Mosquito (larva, 4th Instar),
Aedes aegypti
Mosquito (larva, 4th instar),
Aedes aeqyptl
Mosquito (larva, 4th instar),
Aeries aogypti
Mosquito (larva, 4th instar),
Aedes aeqypti
Brook trout ( embryo) ,
Salvel inus fontlnal is
Brook trout (133 q; 231 mm),
Salvel Inus fontlnal is
Stonerol ler,
Campostoma anomalum
GoMf ish,
Carassius auratus
Goldf Ish (6 cm) ,
farfl<;«; 1 MI auratus
Formulation*
T
r
EC
T
T
T
T
T
T
C
Temperature
C C) Duration
48 hr
_4fl hr
12.7 24 hr
>5 hr
. 24 hr
21-23; Site 1 48 hr
21-23; Site 2 48 hr
21-23; Site 3 4tt hr
9 90 day
post hatch
10 8 day
22.7 48 hr
20 24 nr
25 96 hr
Effect
EC50
( immobi 1 i zation)
EC50
( immobi 1 i zation)
LC50
ET50
( immobi 1 i zation)
LC50
LC50
LC50 >
LC50
Vertebrae col-
1 aqen metabolism
d i sruped
LC50
LC50
LC50
Behavior
modi f i cat Ion
Result**
60.7
90.2
9,500
10
375.5
1,900
81 ,920
140
0.039
4.9
8
20 '
0.44
Reference

Alba ugh 1972
Albaugh 1972
Hoopor and Grzeniici \-)>3'
Burch field and Storrs
Chandurkar et al . 1973
Klassen et al . 1965
Klassen et al . 1965
Klassen et al. 1965
Mehrle and Mayer 1975a
Mayer et al . 1975
Mandi 1966
Turner et .al. 1977
Warner et al . 19rit>

-------
 Table 6 (continued)
                                                Temperature
Species
Golden shiner,
Notemlqonus crysoleucas
Ool-lon sniner,
fiotemujoniis crysoleucas
Golden shiner,
Notemlggnjis crysoleucas
Golden seiner.
Motoiniqonus crysoleucas
Fathead minnow,
Plmephales promelas
Fathoad minnow,
Pimephales promelas
Fathead minnow (3-3.5 cm),
Pimephales promelas
Fathead minnow (30 day; 0.32
g; 30 mm) ,
Pimephales promelas
Fathoad minnow (0.5-1.5 g) ,
Pimephales promelas
Fathead minnow (10 day old),
Pimephales promelas
Fathead minnow (0.5-1.5 q) ,
Pimephales promelas
Black bullhead ( f Inqer 1 inq) ,
Ictalurus me las
Black bullhead ( f 1 ngerl Inq) ,
Ictalurus me las
13 lack bullhead (f Inqer 1 Inq) ,
Formulation*
C
T
T
C
EC
EC
T
T
T
T
T
T
T
C C)
11.7
20; ii te 1
20; Site 2
17.2
10
23.8
25.
25
25
20
20; Site 1
20; Site 2
20; Site 3
Duration
24 hr
ib hr
36 hr
72 nr
24 nr
24 nr
40 hr
10 day
16 day
150 day
24 'day
36 hr
36 hr
36 hr
Effect
LC50
LCoO
LCSO
LC50
LC50
LC50
.LC50
LC50
LC50
Impa ired
qua) Ity
LC50
LC50
LC50
LC50
Result"
12.5
30
1200
b.2
36
5.7
77.55
4.8
• 1.5
bone 0.054
2.6
12.5
50
3.75
                                                                                                                     Reference



                                                                                                                     Mahdi 1966






                                                                                                                     Ferguson 196-1






                                                                                                                     Ferguson 1964






                                                                                                                     Mahrtl 1966






                                                                                                                     Hooper and Grzendj






                                                                                                                     Hooper and 'jr/enda l'*5i






                                                                                                                     Chanilurkar et at. 1978






                                                                                                                     Mayer ef al. 1977








                                                                                                                     Johnson and Ju I i n 1980






                                                                                                                     Mehrle and Mayer 1975b






                                                                                                                     Johnson and Julin 1980






                                                                                                                     Ferguson et al.  1965






                                                                                                                     Ferguson et ctl .  1965






                                                                                                                     Ferguson et al.  I9t>5
Ictalurus melas

-------
Table 6 (continued)
                                               Temperature
Species

Black bullhead (fingerI Ing),
Ictalurus me I as

Channel catfish (finger IInq,
0.5-1.5 q),
J_ctalurus punctatus

Chdnnel catfish (0.15 g) ,
Ictalurus punctalus

Channel Cfitf ish (200
                                                                                                                   Reference
                                                                                                                   Furquson at al. 1965
                                                                                                                   Johnson and Julln
                                                                                                                   Johnson and Julin iy»30
                                                                                                                   Jonnson and Julin IvBO
                                                                                                                   Mayer et al . 1977
                                                                                                                   Menrle and Mayer
                                                                                                                   Ferguson et al. 1965
                                                                                                                   Ferguson et a 1. 1965
                                                                                                                   Ferugson i3t al . 1965
                                                                                                                   Ferguson ot bl . 1965
                                                                                                                   Ferugson et jl. 1965
                                                                                                                   Ferguson et al. 1965
                                                                                                                   Ferguson et al. 19b5

-------
Table 6 (continued)
Species
Mosqui tof Ish (adult),
Gambusia aft in is
Mosqui tof i sh (adult),
Gambusia affinls
Mosqui tof ish (adult),
Gambusia affinis
Mosqui tof ish (adul t) ,
Gambusia af finis
Mosqui tof i sh,
Gambusia affinls
Mosqui tof I sh,
Gambusia afflnis
Mosqui tof I sh,
Gambusia affinls
Mnsqul tof 1 sh,
Gambusia affinls
Blueqll 1,
Lepomis macroch 1 rus
Blueql 1 1 (6-10 cm) ,
Lepomis macroch i rus
Dlueglll (0.5-1.5 g),
Lepomis macroch 1 rus
Bu 1 1 frog ( larva) ,
Rana catesbelana
Leopard froq (embryo),
Rana sphenocephal a
Leopard frog (young larva) ,
Rana sphenocephal a
Temperature
Formulation* C C)
T 21.1; Site 1
T 21.1; Si le 2
T 21.1; Site 3
T 21.1 ; Site 4
-; Site 1
-; Site 2
-; Site 3 •
T
T 20.5
T 19.2-20.5
T 20
T
T- 20
T 20
Duration
36 hr
3b hr
36 hr
36 hr
43 hr
48 hr
48 hr
15 min
72 hr
21 and 42 day
34 'day
96 hr
96 hr
96 hr
Effect Result"
LC50 10
f.C-50 160
LC50 60
I.C'JU 480
LC50 31
LC50 2 1 2
.LC50 301
Avoidance 250
LC50 1.5
Reduced cyto- 0.144
chrome P-450
activity levels
LC50 0.7
LC50 after 99
8 days
LCiO after 46
24 days
LC'iO after 32
30 days
Reference
Boyd and Ferguson 196-1
Poyd and Forguson l''6-1
Qoyd and Forguson 196-1
rtoyd and Ferguson 196-1
Ozluk and (Jlapp 1973
Dzluk and Plapp IJ73
Dziuk and Plapp 1973
Kynard H74
Auwarter 1977
Auwarter 1977
Johnson and Jul in 1980
Hal 1 and Swl neford 1981
Hall and Swlneforj 1980
Hall and Swl neford H80
• «

-------
Table 6 (continued)
Species Formulation*
Leopard frog (sub-adult), 1"
Rana sphenocepha la
Wood frog ( larva) , T
Rana sylvatica
American toad (larva), T
Bufo americanus
Northern cricket frog, T
( larva) ,
Acris creel tans
Spottel salamander (larva), T
Ambystoma rnaculatum
'Marbled salamander (larva), T
Ambystoma opacum
Temperature
(• C) Duration Effect Result*"
20 96 hr LC50 after 370
8 days
. 96 hr LC50 after 195
8 days
96 hr LC50 after 34
8 days
96 hr LC50 after 76
8 days
96 hr LC50 after 34
8 -lays
96 hr LC50 after 342
8 days
Reference
Hal 1 and Swinefor,d
Hal 1 and Swine ford
Hal 1 and Swlneford
Hal 1 and Swlneford
Hal 1 and Swlneford
Hal 1 and Swineford
1-J80
19(31
I9bl
l'

-------
                                 KETEKENCES


Acie, C. and E.L. °arke. 1981. Pesticide use on .najor crops  in the  nortn


central region. 1973. Research Bulletin 1132. Ohio Agricultural  Research  and
                                                                   •

Development Center.




Albauyh, I).VI. 1-47?.  Insecticide tolerances of two crayfish populations


(Procarcbarus acutus) in south-central Texas. Bull. Environ.  Contain.  Toxicol.
                                                     *
8:331-338.

                                                            •



Applegate, V.C., J.H. Howell, A.E. Hall, Jr.'and M.A. Smith. 1957.  Toxicity


of 4,346 chemicals to larval lampreys and fishes. Special  Scientific Report -


Fisheries No. 207, U.S. Fish and Wildlife Service, Washington, UC.




Auwater, A.G. 1977. Sone effects of toxaphene-methyV parathion interaction  on


bluegill sunfish (Leporcis inacrochirus Rafinesque). Ph.D.  Thesis.  University


of Georgia, Athens, GA.; Hiss. Abstr. Int. B 38:3061 (1978).




Bidleinan, T.F. and C.E. Olney. 1975..Long range transport  of toxaphene


insecticide m the atmosphere of- the western North Atlantic. Nature  257;

475-^77.




Blus, L.J., T. Joanen,  A.A. Belisle and '^.M. Prouty. 1975. The brown pelican


and certain environmental  pollutants in Louisiana. Bull.  Environ. Contam.

Toxicol. 13:546-655.




Boyd, C.E. 1964.  Insecticides cause mosquitofish to abort. Prog.  Fish-Cult.

26:138.

-------
 3oyJ.  C.E.  and  O.E.  Ferjuson.  1964.'Suscepti&i1ity and  resistance of



 •losquitofis'n  to several  insecticides. J. Econ.  Entomol. b7:4JU-431.

                                                                   •






 Bnnynann,  u. and  R.  Kuhn.  196U.  Tne water-toxicological detection of



 insecti cuies. Gesi.md.-Inj.  31:243.  •








 Burcnfield, H.P. and  E.E. Storrs. 1954. Kinetics of insecticidal action based
                                                •


 on  the  photomivjration of larvae of Aedes aegypti (L.). Contno. Boyce



 Thonpson  lost.  17:439-452.








 Burke,  U.O.. and D.E.  Ferguson. 1969. Toxicities of four insecticides to



 resistant and susceptible -nosquitofish in static and flowing solutions. Mosq.



 News 29:96-100.








 Call, O.J., LIT. Brooke, N.  Ahnad and J.E.  Richter.  1983.  Toxicity and



 netaboHsn studies with EPA priority pollutants and  related chemicals in



 freshwater organises. Pfi83-2635b5 or Et'A-6UU/3-33-U95. National Technical



 Information Service, Sprinyfield, VA.








 Canada Hepartment of Fisheries and Oceans.  1982. Toxaphene  in Great Lakes



 fish. Annual Report 1982. Great Lakes Fisheries Research Branch, Burlinyton,



Ontario, Canada, pp. 4 ,1 38.








Carter, R.L. and J.B. Graves.  1972.  Me-isuriny effects  of insecticides on



aquatic ani-'wls. La. Ayric.  16:14-15.

-------
Casifla, -J.'E., S.L.  Holnstead,  S.  Khalifa,  J.R.  Knox,  T.  Ohsawa, K.J. Palmer



and H.Y. Wong. ly?4.  Toxaphene insecticide:  A complex 5iodeyradable mixture.



Science 183:520-521.







Chaiyarach. S., V.  Rar.andmm 
-------
Coian. J.M., L..).  Kanphake, A.E.  Lenke,  C.  Henderson  and  R.L.  Woodword.  HoO.


effect of fish poisons on water supplies. Part  1.  Removal  of  toxic Materials.
                                                                    »

J. Am. Uater Works Assoc. 52:15bl-1566.






Courtenay, U.R., Jr. .and M.H.  Roberts, Jr.  1973.  Environmental  Effects on


toxaphene toxicity to selected fishes and crustaceans.  EPA-R3-73-G35.


National Technical Information Service,  Sprinjfield,  VA.






Crockett, A.B., rn.3. Miersna,  H.  Tai  and W. Mitchell.  1975.  Residues  in  fish,


wildlife, and estuaries. Pest. Monit. J. S:235'-240.






Crosby, O.G., R.K. Tucker and  N.  Aharonson. 1966.  The detection of  acute


to
-------
Oepartneni of National Health and Welfare. H77. Toxapnene. 77-EHU-ll.
Ottawa, Canada.

Desaiah, 0. and R.B. Koch. 1977. Influence of solvents on the pesticide
inhibition of 'YPase activities in fish and insect tissue homogenates.  Bull.
Environ. Contain. Toxicol. 17:74-78.

Dick. M. 1982. Pesticide and PC8 concentrations in Texas-water, sediment, and
fish tissue. Report 264. Texas Department of Water Resources,' Austin,  TX.

Ooudoroff, P., M. Katz and C.M. Ta.rzwell. 1953. Toxicity of some organic
insecticides to fish. Sewaye Ind. Wastes 25:840-844.

iJurkin, P.R., P.H.  Howard, ,J. Saxena, S.S. Lanrie,  J. 'Santodonato, J.R.
Strange and O.H. Cristopher. 1979.  Reviews of the  environmental effects of
pollutants: X. Toxaphene. PB81-132409 or EPA-600/1-79-044.  National  Technical
Information Service, Springfield, VA. '

nziuk, I..J. and F.N. Plapp. 1973. Insecticide resistance in mosquitofish from
Texas. Bull.  Environ. Contain. Toxicol. 9:15-19.

Eckert, J.E.  1949.  Determining toxicity of agricultural  chemicals to honey
bees. J. Econ. Entomol.  42:261.

-------
 Elder,  J'.F.  and  H.C.  Mactraw, Jr.  1984.  Accumulation  of  trace elements,



 pesticides,  and  polychlorinateu  oiphenyls  in sediments and the clau CorjDicul a



 manilensis  of  the Apal achicola River,  Florida. Arch.  Environ: Contain.



 Toxicol.  13:453-469.







 Ferguson, !).£. '1963.  Characteristics and significance of resistance to



 insecticides in  fishes. Reservoir  Fishery  Resources Syinposiun, Athens, GA,


 April 5-7, 1967.







 Ferguson, D.E. and C.R. Blngham. 1966. The effects of combinations of



 insecticides on  susceptible and  resistant mosquito fish. Bull. Environ.


 Contain. Toxicol.  1:97-103.







 Ferguson, O.E., 0.0. Culley and W.O. Cotton. 1965. Tolerances of two



 populations of fresh water shrii.ip to five chlorinated hydrocarbon



 insecticides.  J. Miss. Acad. Sci.  11:235-237.







 Ferguson, D.E., W.U. Cotton, U.T. Gardner and 0.0. Culley.  196b.  Tolerances



 to five chlorinated hydrocarbon insecticides in two species of fish fron a
                                                                •


 transect of the lower Mississippi River.  J. Miss.  Acad.  Sci.  ll:239-24b.







Fleming, W.J. and B.W. Cain.  1985.  Areas  of localized organochlorine



contamination in Arizona and New Mexico.  Southwest. Nat.  3U:269-277.

-------
Frear, n.£.H. and J.E. I3oyd.  1967.  Use of Oaphnia  nayna  for  the  mi crobi oassay



of pesticides. !. Development of standardized techniques for rearing U a p n n i a



and preparation.  J.  Econ. Entoinol.  60:1228-1236.







Ginn, T.M. and P.M.  Fisher, Jr.  1974.  Studies on  the  distribution  and flux of



pesticides in waterways associated  with a ricefield -  marshland  ecosystem.



Pestic. Monlt. J. 8:23-32.







Grahl , K.  1983. The  classification  of  materials contained in-wter  according



to their toxicity potential to water organisms. Acta  Hydrochim.  Hydrobiol.
Grzenria, A.R. , G.J. Lauer and H.P.  Nicholson.  1964.  Water pollution by



insecticides in an auricultural  river basin.  II.  The.zoopl ankton,  bottom



fauna, and fish. Linnol. Oceanoyr.  9:313-323.








Hall, L.W., Jr., L.O.  Horseman and  S. Zeyer.  1984.  Effects  of  oryamc and



inorganic chemical contaminants  on  fertilization,  hatching  success, and



prolarval survival 'of striped bass. Arch.  Environ.  Conta'n.  Toxicol.



13:723-729.








Hall, R.J. and D.  Swineford. 1980.  Toxic effects  of endrin  and toxaphene on



the southern leopard frog Rana sphenocephala.  Environ.  Pollut. (Series A)  23:



53-65.

-------
Hall, R.,'). and D.M. Swineforcl. 1931". Acute toxicities of toxaphene and endrin

to larvae of seven species of amphibians. Toxicol. Lett. 3:331-330.
                                                                  •



Hannon, M.R. , Y.A. fireiclius, R.L. Appleyate and A.C. Fox. 1970.  Ecological

distribution of pesticides in Lake 'Poinsett, South Dakota.  Trans. Am.  Fish.

Soc. 99:496-51)0.




Maseltine, S.O. , ri.H. Heinz, W.L. Reichel, and J.F. Moore.  I981c.

•Jrganochlorine and netal residues in eggs of waterfowl  nesting on islands in

Lake Michigan off Door County, Wisconsin, 1977-73. Pestic.  Monit. ,J.  15:

90-97.




Hawthorne, J.C., .J.H. Ford and G.P. Harkin.  1974.  Residues  of mirex  and other

chlorinated pesticides in commercially raised catfish.  Bull.  Environ.  'Contain.

Toxicol. 11:258-265.




Henphill, J.E. 1954. Toxaphene as a fish toxin. Proy. Fish-Cult. 16:41-4^.




Henderson, C., i).H. Pickering and C.M. Tarzwell. 19599. Relative toxicity of

ten chlorinated hydrocarbon insecticides to  four species of fish.




Henderson, C., Q.H. Pickering, and C.M. Tarzwell.  1959b. The  toxicity  of

or.janic phosphorus and chlorinated hydrocarbon insecticides to fish.

Transactions of the Second Seminar on Biological Problems in  Water Pollution,

April 20-24, 19b9, U.S. Public Health Service, Robert A. Taft Sanitary

Enjineering Center', Cincinnati, OH.

-------
H,«nejar, O'.L. 1966.  Minimum lethal  levels of toxaphene  as  a piicicuie  in

North Dakota lakes.  Resource Publication 7.  U.S.  Fish and  Wildlife  Service',

Washington, I1C.                                               •


Hilsenhoff. W.L. 195'j. Tne effect of toxaphene on the benthos of a

thernally-stratified lake. Trans. An. FISH.  Soc.  94:210-213.

                                                  •
Hiltibran, R.C. 1974. Oxygen and phosphate metabolism of blueyill liver

initochondria in the presence of some insecticides. Trans.  111. State Acad.

Sci. 67:228-237.


Hiltibran, R.C. 19M2. Effects of insecticides on the metal-activated

hydrolysis of  adenosine triphosphate by  bluejill   liver -ni  tochondr-ia. Arch.

Environ.  Contan. Toxicol.  11:709-717-.


Hoi instead, R.I-., S. Khalifa  and J.E. Casida.  1974. Toxaphene  composition

analyzed  by  combined  ^as  chromatography - chemical ionization nass

spectrometry.  J. Ayric. Food Chem.  22:939-944.

                                                                 t
Hooper, F.F. and A.R.  Grzenda.  1957. The use of  toxaphene as  a  fish poison.

Trans.  Am.  Fish.  Soc.  85:180-190.


 Hughes, R.A.,  G.O.  Veith  and G.F.  Lee.  1970. Gas chromatographic analysis of

 toxaphene in natural  waters, fish  and  lake  sediments.  Water Res. 4:547-558.

-------
international  Joint  Connission.  19H3.  1983 Report on Great Lakes water



quality.  Great Lakes Hater  Quality  Board, Windsor, Ontario, Canada.







Isensee,  A.R., G.E.  Jones,  J.A.  McCann and F.G. Pitcher. 1979. Toxicity and



fate of nine toxaphene fractions in an aquatic model ecosystem. J. Ayric.



Food Chem. 27:1041-1046.







Johnson,  O.W.  and S. Lew.  197U.  Chlorinated  hydrocarbon pesticides in



representative fishes of  southern Arizona. Pestic. Monit. J. 4:57-61.







Johnson,  W.D.  , G.F.  Lee and D.  Spyridakis. 1966. Persistence of toxaphene in



treated lakes. Air Water  Pollut. Int.  J.  10:555-560.







Johnson,  W.U.  and M.T. Finley. • 1980." Handbook of acute  toxicity of chemicals



to fish and aquatic  invertebrates.  Resource  Publication 137. U.S.  Fish and



Wildlife Service, Washington, DC.








Johnson,  w.W.  and A.M. Julin. 1980. Acute toxicity of  toxaphene to fathead



minnows,  channel catfish, and bluegills.  EPA-6UO/3-8U-U05.  National  Tecnnical



Information Service, Springfield, VA.








Kallnan,  B.J., U.B.  Cope and R.J. Navarre.  1962._Distribution  and



detoxication  of toxaphene in Clayton Lake,  New  Mexico.  Trans.  Am.  Fish.  Soc.




91:14-22.

-------
Katz, M. 1'961.  Acute toxicity  of  some  organic  insecticides to three species



of salnomds and to the threespine stickleback.  Trans. Am. Fish. Soc. 9U:



264-253.







Keith, J.O. 1966. Insecticide  contaminations  in  wetland  habitats and  their



effects on fish-eating birds.  J.  Appl. Ecol.  3 (Suppl.):71-8b.







Keith, J.O. and E.G. Hunt. 1966.  Levels of insecticide residues  in  fish  and



wildlife in California.  Trans. 31st N. Am.  Wildl.  Nat".  Resources Conf-.   pp.



150-177.







Khalifa, S., T.R. Mon, J.L. Engel and J.E. Casida.  1974. Isolation  of



2,2,5-endo,6-exo,8,9 ,10-heptachlorobornane and an octachloro toxicant from



technical  toxaphene. J. Agric. Food Chen. 22:653-657.-







King, K.A., D.R. Blankinship, E Payne, A.J.  Krynitsky and G.L.  Hensler.  1985,



Brown pelican  populations  and pollutants in Texas 1975-1981. Wilson Bull.



92:201-214.







Klassen, U., U.J. Keppler  and J.B. Kitzni Her. 1965. Toxicities of certain



larvicides to  resistant and susceptible Aedes aegypti (L.).  Bull.  W.H.O. 33:



117-122.







Korn,  S. and R.  Earnest.  1974. Acute  toxicity of twenty insecticides to



striped bass,  Morone saxatilis.  Calif. Fish Game 60:128-131.

-------
Kynard, ri. 1974. Avoidance henavior of  insecticide susceptible and resistant


populations of J-iosq-jUof i sh  to  four insecticides. Trans. An. Fish. Soc. Iu3:
                                                                   •

557-561.





LeUianc, ii.A. 19y4.  Intprspeci es relationships  in acute toxicity of che.iicals


to aquatic orga^i si-is. Environ.  To
-------
Macek, K.J.,'c.  Hutchinson and 0.4.  Cop,.  1*69.  The  effects  of  tenperature on



the susceptibility of blue.jills ana  rainbow trout  to selected  pesticides.




Riill. Environ. Contan. Toxicol. 4:174-183.







Mahdi, M.A. 196S. Mortality of soae species of fish to toxaphene at tnree



temperatures. Resource Publication No. 1-J. U.S. Fish and Wildlife Service,




Washinyton, UC.







Mayer, F.L.  and P.M.  Mehrle.  1978.  Collayen and hydroxyproline'in



 toxicolouical  studies with fishes.  In:  Proc.  first  second USA-USS*  symposia



 effects  pollutants  aquatic ecosyste-ns.  Mount, O.I., H.R.  Swain and  N.K.




 Ivanilow (eds.). pp. 331-340.







 Mayer, F.L., -Jr., P.M. Hehrle. Jr.  and H.P. Owyer.  1976.  Toxaphene effects  of



 reproduction,  -j'rowth. and nortality of hrook trout. EPA-60U/3-7b-013.



 National Technical  Infornation Service,  Springfield, VA.







 Mayer,  F.L., Or.,  P.M.  Mehrle, Jr. and-H.P.  Uwyer.  W77. Toxaphene:  Chronic



  toxicity co  fathead minnows  and  channel  catfish. EPA-6UU/3-77-U69. -iation.il




  Technical  Information Service,  Sprinjfield,  VA.







  ilayhew, J.  1955. Toxicity of seven different insecticides  to rainbow trout




  Salno gairdnerii (Richardson). Acad. Sci. 62:599-bU6.







  Mehrle, P.M.  and F.L. Mayer, Jr. 1975a. Toxaphene effects on jrowtn and Done



  condition of  fathead  minnows, Plmeohales  pronelas. J.  Fish. Res.  Board Can




  3b:593-b98.

-------
      ,  P'.M. and F.L.  Mayer,  Jr.  1975b.  Toxaphene effects  on  growth  and




development of brook trout (Salvelinus fontinalis).  J.  Fisn.  Res.  Board  Can,




32:609-513.








Mills. U.L. H77. Bioassay procedure to evaluate the acute toxicuy  of




salinity ann -jeothemal  poll-itants (pesticides)  to Gai-ibusia affinis.




UCHL-1383^. National Technical Infornation Service,  Springfield,  VA.
                                                 •







Moffett, i5. R. and J.D. Yarbrough. 1972.  The effect of DOT, tdxaphene,  and




dieHrin on succinic dehydrojenase activity in insecticide-resistant and




susceptible Gambusia affinis. J.  Agric.  Food Che'n. 20:558-560.
   i^i, C.J. and J.F. Lithe. 1983. Widespread occurrence of the pesticide



toxaphene in Canadian east coast marine fish. Int. J; Environ. Anal. Chem.



14:117-125.







Mash, R.I5. and E.A. Wool son. 1967. Persistence of chlorinated hydrocarbon



insecticides in soils. Science 157:92-927.







Naqvi , S.M. and n.F.. Ferguson. 1968. Pesticide tolerances of selected



freshwater invertebrates. J. Miss. Acad. Sci. 14:121-127.







Maqvi , S.M. and D.E. Ferguson. 1970. Levels of insecticide'resistance in



fresh-water shrimp, Palaenonetes kadiakensis. Trans. M. Fish. Soc. 4:



696-699.

-------
Needhan, ft.G.  1966.  Effects of 'toxaphene  on  plankton  and  aquatic
invertebrates  in North Dakota lakes.  Resource  Publication No. 3. U.S. Fisn
and Wildlife Service,  Washington,  DC.

Nelson; J.O. and F.  Matsumura; 1975.  Separation  and  comparative toxicity of
toxap'nene components.  J.  Ayric.  Food  Cher.i.  23:984-991).
                                                 •
Nietnanner, K.R., O.K. White, T.S. Saskett  and M.W.  Sayre.  1984. Presence and
bionagnification of  organochlorine chemical  residues  in oxbow  lakes  of
northeastern Louisiana. Arch. Environ.  Contain! Toxicol. 13:63-74.

Niiroi, A.J. 1985. Use  of laboratory studies  in assessing  the  behavior of
contaminants in fish inhabiting natural  ecosystems.  Water Pollut.  Kes.  Can.
2U:79-88.


Ohlendorf, H.M. and  M.R.  Miller. 1984.  Orjanochlorine contaminants in
California waterfowl.  J.  Wildl.  Manage;  43:867-877.

Ohlendorf, H.M., D.M.  Swineford and L.N.  Locke.  1981. Organochlorine resiuues
and mortality of herons.  Pestic. Monit.  J.  14:li!b-13b.

Ohlendorf, H.M., J.C.  Bartonek, G.J.  Divoky, E.E. Klass,  A.J.  Krynitsky..
1982. Urganochlorine residues in eggs of Alaskan seabirds. Special Scientific
Report - Wildlife No.  245. U.S.  Fish and Wildlife Service, Washington,  OC.

-------
         .

Qhlendorf,  H.M. ,  F.C. Schaffner, T.W.  Custer and C.J.  Stafford.  193b.



Reproduction and  or.janochlorine contaminants in terns  at San Dieyo I3ay.




Colonial '^aterbirds 3:42-53.








Palawski, 0., J.H. Hunn and F.J. Owyer. Sensitivity of young striped bass to



organic arH inor.jamc contaninants in fresh and saline waters.  Trans.  Am.



Fish. Soc.  114:748-753.








Plumb, J.A. and R.U. Richburg. 1977. Pesticide levels  in sera of moribund



channel catfish from a continuous winter mortality. Trans. Am.  Fish. Soc.



105:185-188'.








Pollock, G.A.  and W.U. Kilgore. 1978.  Toxaphene. Residue Reviews 69:87-14U.








Ribick, M.A.,  G.R. ilubay, J.D. Petty, O.L. Stalling and C.J. Schmitt. 1982.



Toxaphene  residues in  fish: Identification, quantification, and confirmation



at part per billion  levels. Environ. Sci. Technol. lb:310-318.








Rice, C.P. and M.S.  Evans.  198^.  Toxaphene in  the Great Lakes.  In: Toxic
                                                                i


contaminants,  in the  Great Lakes.  Nriayu, J.O.  and M.S.  Sii.inons  (eds.). John



Wiley ai)
-------
 Kose,  E. 19W.  Further  notes  on  toxaphene  in  fish  population control. Iowa
 Stats  Conservation  Commission Quarterly  Biological rteport ID.

 Saleh,  M.A..  U.V. Turner, J.E. Casida. 1977.  Polychlorobornane Conponents of
 toxaphene:  Structure-toxicity relations  and metabolic reductive
 dechlorination.-Science 198:1256-1258.

 Sanders, H.O. 1964. Toxicity  of  pesticides to the  crustacean Gammarus
 lacustris.  Technical Paper  No. 25. M.S.  Fish  and Wildlife Service,
 Uashinyton, DC.

 Sanders, H.O. 1970. Pesticide toxicities to tadpoles of the western chorus
 frog Pseudacris triseriata  and fowler's  toad ttufo woodhousii fowleri. Copeia
 2:246-251.

 Sanders, H.O. 1972. Toxicity  of  soine insecticides to four species of
 cialacostracan crustaceans.  Technical  Paper No. 66.. U.S.  Fish and Wildlife
 Service, Uashington, DC.

 Sanders, H.O. 1980.  Sublethal  effects of toxaphene on daphnids, scuds, and
nidges.  EPA-600/3-3U-U06. National Technical  Information Service,
 Sprinijfield, VA.

Sanders, H.O. and n.ij.  Cope. 1966. Toxicities  of several  pesticides  to two
species of cladocerans.  Trans. An. Fish.  Soc.  9b:16b-169.

-------
Sanders, H.O. and 0.3. Cops. 1963. The relative toxicities of several



pesticides to naiads of three species of stoneflies.  Linnol.  Oceano.jr.  13:
                                                                    •


112-117.







Schaper, R.A. and L.A. Crowder. Uptake of ^Cl-toxaphene in nosquito t'isn



Ganbusia at finis. «ull. Environ. Contan. Toxicol. 15:btfl-587.







Schnitt, C.J. and D.V. Winger. 1980. Factors controlling the fate of



pesticides in rural watersheds of the lower Mississippi  River Alluvial



Valley. Transactions of the 45th North American Wildlife and Natural



Resources Conference, 1980. Ilildli-fe Manayenent Institute, Washington,  OC.



pp. 354-375.








Schsnitt, C.J., J.L. Lajicek and M.A'. Ribick. 1985. national pesticide



nonitorinij proyran: Residues of organochlorine chemicals in freshwater  fish,



1980-H1. Arcii. Environ. Conta.-n. Toxicol. 14:225-260.








Schoettger, R.A. and J.R.  Olive. 1951. Accufiiulation of toxaphene by fish-food



oryanisns. Linnol. Oceanoyr. 6:216-219.








Seiber, J.N., S.C. Madden, M.M. McChesney and W.L. Winterlin. 1979. Toxaphene



dissipation fron treated cotton field environments: Component residual   -



behavior on leaves and in  air, soil, and sediments determined by capillary



yas c'nronatography. J. Agric. Food Chen. 27:284-291.

-------
 Shea,  T.8.  and  E.s.  Berry. 1982a. Uptake and toxicity of toxaphcne to cell



 cultures  derived  from Goldfish  (Carassius auratus). Uull. Environ. Contan.
                                                                   •


 Toxicol.  29:63-75.







 Shea,  T.B.  and  E.S.  Berry. I982b. Chronic exposure of go Idfish-aeriveu cell



 cultures  to  toxaphene alters  the replication of Goldfish Virus-2. Bull.



 Environ.  Contain.  Toxicol. 29:731-733.







 Smith, S. and G.H. Willis. 1978. Disappearance of residual  toxaphene  in  a



 Mississippi delta soil. Soil Sci. 126:87-93.







 Stadnyk,  L., H.S. Campbell and B.T.  Johnson. 1971. Pesticide effect on growth



 and C14 assimilation in a freshwater alga.  Bull.  Environ. Contain. Toxicol. 6:



 1-8.







Stanley, C.U., J.E.  Barney II," M.R.  Helton  and A.R.  Yobs. 1971.  Measurement



of atmospheric levels of pesticides. Environ.  Sci. Technol.  5:43U-43b.







Stringer,  G.E. and R.r,.  McMynn.  I960. Three  years'  use of toxaphene as a  fish



toxicant in British  Columbia. Can.  Fish-Cult.  28:37-44.







Surber, E.W. 1948. Chemical  control  agents and their effects  on  fish.  Prog.



Fish-Cult. 10:125-131.






 Scephan, C.E., D.I.  Mount, D.J.  Hansen, J.H. Gentile, G.A. Chapman and W.A.



 Brungs. 19S5. Guidelines for deriving numerical national wacer quality



criteria  for the protection of aquatic organisms and their uses. PB85-227049.



 National Technical Information Service, Springfield, VA.

-------
 Swain,  W.R.  and  M.D. Mull in. 1985. long  range transport of toxic organic


 contaminants  to  the  North American Great Lakes. In: Problems of aquatic
                                                                   •

 toxicology,  biotesting  and water quality management: Proceedings of US-USSR

 synposium, Borok, Jaroslavl Oblast, July 30-August 1, 19H4. In press U.S.

 EPA,  Athens,  GA.




 Szaro,  R.C.,  N.C. Coon  and E. Kolbe. 1979. Pesticide and PC8 of coi.non eider,


 herring  gull  and great  black-backed gull eggs. Bull. Environ.  Contain.

 Toxicol. 22:394-399.




 Terriere, I.e., U. Kiigeinagi, A.R. (jerlach and R.L. Borovicka. 1966.  The


 persistence of toxaphene in lake water and its uptake by aquatic plants and

 animals. J. Agric. Food Chen. 14:66-69.




 Turner, W.V./S.  Khalifa and J.E. Casida. 1975.  Toxaphene toxicant  A.  Mixture


 of 2,2,5-endo,6-6x0,8,8,9,10-octachlorobornane and 2 ,2 ,5-endo,6-exo,8,9 ,9,1U-

 octachlorobornane. J. Agric.  Food Chem. 23:991-994.




 Turner, W.V., J.L.  Engel and  J.E. Casida. 1977.  Toxaphene components  and


 related compounds:  Preparation  and  toxicity of some hepta-,  octa-,  and


nonachlorobornanes,  hexa-  and heptachlorobornenes, and  a

hexachlorobornadiene. J. Agric.  Food  Chem.  25:1394-1401.

-------
 U.S.  EPA'.  H76. (Juality  criteria for water. EPA-44U/9-76-023. National
 Technical  Information  Service, Sprinyfield, VA.

 U.S.  EPA.  1980. Anbient  water Duality criteria for toxaphene.
 EPA-440/5-30-U76. National Technical Information Service, Sprinyfield, VA.

 U.S.  EPA.  19S3a. Water quality standards regulation. Fed. Resist.
 43:51400-51413. November 8.

 U.S.  1983b. Water quality standards handbook. Office of Water Regulations and
 Standards,-Washington, DC.

 U.S.  EPA.  198b. Technical support document for water-quality based toxics
 control. Office of Water, Washington, DC. September.'
       .•           t  -
     i
U.S.  Fish  and Wildlife Service.  1970. Proyress in sport fishery research
 1970. Resource Publication 106.  Washington, DC.

U.S.  Food  and Dru-d Administration.  1979.  Administrative Guideline 7420.U8,
Attachment K, July 5.

-------
Veith, fi.Q. and G.F. Lee.  1971.  Water chemistry  of  toxaphene  -  role  of  lake



sediments. Environ. Sci. Technol. 5:230-234.







Warner, R.E., K.K. Peterson and  I..  Bor^nan.  1966.  Behavioural  patholoyy  in



fish: A quantitative study of sublethal'pesticide  toxication.  J.  Appl.  Ecol.



3:223-247.







Webb, D.W. 198U. The effects of  toxaphene piscicide on benthic



macroinvertebrates.'J. Kansas Entomol. Soc.  b3:731-744.







Weber, F.H., f.B. Shea and E.S.  Rerry. 1982.  Toxicity of certain insecticides



to protozoa. Bull. Environ. Contaro. Toxicol.  28:628-631.







i-lhite, T.H., K.A. King and R.M.  Prouty. iy8U. Significa-nce of organochlori ne



and heavy metal residues in wintering shorebiras at Corpus Christi,  Texas,



1976-77. Pestic. Monit. J. 14:58-63.







White, D.H., C.A. Mitchell and R.--I. Prouty.  1983.  Nestiny bioloay of lauyhing



gulls in relation to agricultural chemicals  in south Texas, 1978-81.  Wilson



Bull. 95:54U-5i31.







Uideqvist, U., 8. Jansson, L. Reuteryardh and G. Sundstroi.i. 1984. The



evaluation of an analytical nethori for polychlorinated terpenes (PCC) in



bioloyical sanples usiny an internal standard. Cheinosphere 13:367-379.

-------
Uie~ieyer, S.N., T.G. Lanont, C.M. Bunck ,  C.R.  Sindelar,  F.J.  Granlich,  J.D..

Fraser and'M.A. Byrd. 1984. Organochl'orine pesticide, polychlorobiphenyl ,  and

nercury residues in bald eagle eggs - 1969-79  - and their relationships to

shell thinning and reproduction. Arch. Environ. Contain.  Toxicol. 13:

529-549.



Winger, P.V., C.•Sieckaan, T.W. May and II.W. Johnson. 1984.  Residues  of

organochlonne insecticides, polychlorinated biphenyls,  and  heavy metals in

biota fron Apalachicola River, Florida, 1978.  J. Assoc.  Off. Anal. Chem.

67:325-333.



Wollitz, R.F... 1962. Effects of certain commercial fish toxicants on the

limnology of three cold-water ponds, Montana.  Proc. Mont. Acad. Sci.  22:

54-81.



Workman, G.W. and O.M. Neuhold. 1963. Lethal concentrations of  toxaphene for

goldfish, mosquitofish, and rainbow trout, with  notes on detoxification.

Prog. Fish-Cult. 25:23-30.



Yarbrough, J.O. and .).E. Chambers. 1979.  The disposition and

biotransfonnation of  organochlorine insecticides in  insecticide-resistant and

-susceptible mosquitofish.  In:  Pesticide  and xenobiotic  rnetabolisn in  aquatic
            i
organisms. Khan, M.A.f)., J.J. Lech and J.J. Menn (eds.). ACS Symposium

Series,  No. 99



Zell, M.  and K. RalIschmiten. 1980. Baseline studies  of  the  global pollution.

II.  Glogal occurrence of  hexachlorobenzene  (HCB) and  polychlorocarnphenes

(Toxaphen®)  (?CC)  in  biological  samples.  Fresenius  Z. Anal.  Chem.  300:

387-402.

-------