QUALITY ASSURANCE PROGRAM PLAN
                                      for the
                            Office of Toxic Substances
                     Office of Pesticides and Toxic Substances

                         EPA Prime Contract No.  68-02-3938
                              Work Assignment No.  16
                            MRI Project No.  7901-A(16)

                       U.S.  Environmental Protection Agency
                            Office of Toxic Substances
                           Field Studies Branch, TS-798
                              Washington, D.C.   20460

                   Attn:   Dr.  Frederick W.  Kutz, Project Officer

                          QUALITY ASSURANCE  PROGRAM PLAN
                                      for the
                            Office of Toxic  Substances
                     Office  of Pesticides and  Toxic Substances

                         EPA Prime Contract  No.  68-02-3938
                              Work Assignment  No.  16
                            MRI Project No.  7901-A(16)

                       U*.S.  Environmental  Protection  Agency
                            Office  of Toxic Substances
                           Field Studies Branch,  TS-798
                              Washington,  D.C.   20460

                   Attn:   Dr.  Frederick W.  Kutz,  Project Officer

              The following quality assurance program plan was prepared by
Donna Rose of Midwest Research Institute.  The plan was tailored to satisfy
quality assurance needs of this bulk asbestos analytical program.

                                               Section No.:
                                               Revision No.:
                            July 3. 1984
                                SECTION 1.0
                          Quality Assurance Plan

                        EPA Contract No. 68-02-3938
                        MRI Project No. 7901-A(16)
Approved for:

  Chemistry Department
              Approved for:

                                             EPA Project Officer            Date
EPA Quality Assurance Officer  Date
MRI Quality Assurance Manager  Date

                                               Section No.: 	2.0
                                               Revision No.: 	0
                                               Date:       July 3. 1984
                                               Page	1    of _
                                SECTION 2.0

                             TABLE OF CONTENTS
Title Page
Table of Contents
Project Description
Project Organization and Management
Personnel Qualifications
Facilities, Equipment, Consumables
and Services
Data Generation
Data Processing
Data Quality Assessment
Corrective Action
Documentation and Reporting
A - Kohler Illumination
B - Analysis of Bulk Samples for Asbestos
C - Releasability Assessment Protocol
Pages Revi

and/or Other

si on



List of Plan Holders:
      Midwest Research Institute
        J.  Going           D. Rose
        C.  Green           P. Constant
        G.  Atkinson
        C.  Haile

      Environmental Protection Agency
        F.  R.  Kutz
        J.  J.  Breen
        M.  Huneycutt

                                               Section No.: 	3.Q
                                               Revision No.:        0
                                               Date:       July 3. 1984
                                               Page       1    of 	1
                                SECTION 3.0

                            PROJECT DESCRIPTION
The Exposure Evaluation Division (EED) of OPTS is currently developing and
implementing a multifaceted asbestos analytical program to support the
asbestos-in-schools and public buildings program.  The analytical program
involves the development of an analytical protocol and guidance on a qual-
ity assurance program appropriate for implementation at the state and local
level.  The protocol and quality assurance packages are being prepared under
contract, for OTS/EED through collaboration with EMSL/RTP.

In the interim period, however, there are serious sampling and analysis
problems which need to be addressed in support of the asbestos-in-schools
and public buildings program.

The present absence of a standardized analytical protocol  has resulted in
conflicting analyses of bulk samples with complex matrices.   The OTS task
manager will identify and provide MRI with samples of these analytically
troublesome materials and copies, as available, of the conflicting analyses.
MRI will analyze these samples using PLM with or without dispersion stain-
ing (OS) with an eye towards resolving the analytical discrepancies.   When
requested by the EPA work assignment manager, MRI will provide detailed com-
ments and guidance on what elements or components of the material matrix may
be the source of the discrepancies.

                                               Section No.:       4.0
                                               Revision No.:        0
                                               Date:       July 3, 1984
                                               Page 	\    of 	
                                SECTION 4.0


4.1   Organization

      The project organization is presented in Figure 4.1.
      4.1.1   Department Management:  Dr. John Going will represent depart-
              ment management.  He will:

                 Assure that all necessary resources are available.

                 Assure that the Quality Assurance Monitor (QAM) is fully
                 informed and involved in the project.

                 Assure that all personnel are informed of project QA policy.

                 Review all communication from QA regarding the project.

                 Assure that any problems, deviations,  etc., reported by
                 QA receive immediate corrective action.

      4.1.2   QA Management:  Carol Green, Quality Assurance Manager, will
              be the QAM for this project and will:

                 Help prepare the project QA plan.

                 Assure that all MRI QA policies and procedures are available
                 and understood.

                 Conduct a systems audit of the asbestos analysis.

                 Assure management that the facilities, equipment,  personnel,
                 methods, records, and controls are in  conformance with pro-
                 gram objectives and requirements.

                 Inform the work assignment leader and  department management
                 representative of any problems in the  project and request
                 corrective actions by way of reports to management.

      4.1.3   Work Assignment Leader:   Donna Rose will  be the work assign-
              ment leader.   She will:

                 Help prepare the project QA plan.

                               Section No.:      4.0
                               Revision No.: 	Q
                               Date:       July 3.  1984
                               Page     2     of	3

    Dr. D. Sunderman

   Dr.  J.L. Spigarelli
     Dr. J .E. Going

     Dr. C.L. Haile

       D.R. Rose

      C. Green
         Figure 4.1 - Project Organization

                                         Section No.:       4.0
                                         Revision No.: 	0
                                         Date:       July 3. 1984
                                         Page      3     of 	3
          Be responsible for training all staff where required.

           Enforce instrument calibration and maintenance procedures.

          Be responsible for sample custody and traceability.

          Maintain document control of lab data, notes, records, and
           other hard copy information.

          Examine notebooks at appropriate intervals and verify
           authenticity by initialing at bottom of the appropriate

          Take corrective action for any problems and communicate in
           writing to the QAM and department management.

4.1.4   Physical/Chemical Analysis Staff:   Donna Rose will be respon-
        sible for asbestos analysis.  She will be assisted by Sam Ferro.

4.1.5   Consultant:  Gaylord Atkinson will be available for consulta-

                                               Section No.:  	5.0
                                               Revision No.:        0
                                               Date:        July 3. 1984
                                               Page       1     of 	l_
                                SECTION 5.0

                         PERSONNEL QUALIFICATIONS
Donna Rose has considerable experience in sampling and analysis of asbestos-
containing materials.  She is project leader of asbestos analysis projects
and has served as subtask leader on EPA asbestos analysis work assignments.

Sam Ferro has completed an audiovisual course in asbestos identification by
PLM and has experience in PLM analysis of asbestos-containing materials.

Gaylord Atkinson manages a program specializing in microanalytical chemistry,
including microscopy.  He has been task manager of several EPA asbestos-
related tasks.

All analysts have successfully participated in the EPA "Asbestos Bulk Sample
Analysis Quality Assurance Program" administered by RTI.

                                               Section No.:       6.0
                                               Revision No.:        0
                                               Date:        July 3. 1984
                                               Page      1      of 	3
                                SECTION 6.0

6.1   Facilities and Equipment

      5.1.1   Microscopy Laboratory:  The microscopy laboratory is adequately
              designed and equipped for asbestos analysis.   Sample prepara-
              tion and microscopic analyses are performed in a fume hood.
              The following microscopes and accessories are available:

                 Unitron MRS Polarizing Light Microscope*
                 Unitron MPS-3 Polarizing Light Microscope*
                 Bausch and Lomb Stereo Zoom Microscope
                 Olympus Stereo Zoom Microscope
                 Zeiss Phase Contrast Microscope and Illuminator
                 Various Illuminators

              *  This microscope is equipped with McCrone dispersion staining
                 objectives and "first-order-red" compensators.

      6.1.2   Infrared Spectroscopy Laboratory:  The infrared spectroscopy
              laboratory is equipped with:

                 Perkin-Elmer Model 283 spectrophotometer with communications
                 accessory and Model 3500 intelligence terminal.

                 Wilks Model 88 multiple internal reflection spectrophotom-
                 eter, a modified Perkin-Elmer Model 237, used for both
                 reflection and transmission.

                 Perkin-Elmer Infracord 137B IR unit.

                 Various ancillary equipment, including KBr press and special
                 cells with CsCl, AgCl, and quartz windows.

      6.1.3   Inspection and maintenance:   MRI's instrument maintenance pro-
              gram consists of both scheduled (or preventive maintenance)
              and nonscheduled maintenance procedures.   Records of mainte-
              nance performed on the instruments are maintained in the re-
              spective instrument logbooks.   In addition, any instrument
              repair not performed by the laboratory personnel is handled
              by the Instrument Services Department, which also adheres to
              a recordkeeping program.

                                         Section No.:       6.0
                                         Revision No.:        0
                                         Date:       July 3. 1984
                                         Page      2     of 	3
        Routine maintenance of microscopes consists of cleaning
        lenses when dirty with lens tissue.  Nonroutine maintenance
        and/or repair is provided by MRI's Instrument Services Depart-
        ment who will contact an authorized repairman for service.

6.1.4   Calibration procedures   Microscopes:  Koehler illumination is achieved in
                  the polarizing light microscopy in a manner similar
                  to that described by McCrone2 (see Appendix A), and
                  checked by the analyst at the start of each analysis
                  day.   Infrared:   The IR spectrum of a polystyrene film is
                  run by Chemical Management personnel  of the Bio-
                  analytical Chemistry Section once a week.   The pat-
                  tern of peaks and the position of eight of the more
                  prominent absorbance maxima compared to standard
                  values is recorded.   If significant discrepancies
                  are observed, the Instrument Services Department is

6.1.5   Standard and reference materials   Asbestos and other standards:  Bulk standards con-
                  taining known amounts of asbestos are available for
                  assisting in the visual  etimation of volume percent-
                  ages of asbestos.   Various asbestos mine dusts of
                  known identity as well as other known minerals and
                  fibers are also available.   Printed reference materials:

                  1.   U.S.  Environmental Protection Agency.   Asbestos;
                      friable asbestos-containing materials  in schools;
                      identification and notification.   Final Rule.
                      40 CFR Part 763, Federal  Register.  Vol. 47,
                      No.  103, May 27, 1982.

                  2.   McCrone, W.  C.,  and J. G. Delly,  The Particle Atlas.
                      2nd Ed., Volumes I-IV (1974),  Volumes  V-VI (1978),
                      Ann Arbor Science Publishers.

                  3.   McCrone, W.  C.,  et al.,  Polarized Light Microscopy,
                      (1979),  Ann Arbor Science Publishers.

                  4.   McCrone, W.  C.,  The Asbestos Particle  Atlas.
                      (1980),  Ann Arbor Science Publishers.

                                               Section No.: 	6.0
                                               Revision No.:        0
                                               Date:        July 3. 1984
                                               Page 	3    of     3

                        5.   Rajhans, G.  S. ,  and J.  R.  Sullivan, Asbestos
                            Sampling and Analysis,  (1981), Ann Arbor Science

                        6.   McCrone, W.  C.,  Identification of Asbestos:   An
                            Audiovisual  Training Program for Microscopists,
                            (1983), Brian Howard and Associates.

                        7.   Zeller, M.  V.,  and M.  P.  Juszli, Reference Spectra
                            of Minerals  (1975), Perkin-Elmer.

6.2   Consumables and Supplies

      Cargille or equivalent refractive  index liquids, as specified in
      McCrone's analytical  scheme, will  be  utilized.   Other materials used
      will include precleaned standard microscope slides and cover glasses,
      and infrared grade KBr.

                                               Section No.:       7-
                                               Revision No.:        0
                                               Date:        July 3. 1984
                                               Page      1      of 	?
                                SECTION 7.0

                              DATA GENERATION
This section presents a detailed outline of the analytical approach to bulk
samples suspected of containing asbestos.

7.1   Sample Collection

      Samples will be collected and coded by EPA.

7.2   Sample Analysis

      Samples are analyzed according to the protocol  given in Appendix B
      (see also Ref.  No.  1, Section   For the microscopic analyses,
      MRI uses a stereo zoom microscopes capable of 7X to 40X magnification
      equipped with an external illuminator for oblique illumination,  and a
      polarizing microscope (100X magnification) equipped with an external
      illuminator and dispersion staining objective.

      Each bulk sample is examined as a whole through the stereo microscope
      for layering, homogeneity, and the presence of fibrous material.
      Identification of macrosize nonfibrous components is usually possible
      at this point.

      Subsamples of the bulk sample selected using the stereo microscope
      are mounted onto a clean microscope slide in the appropriate index of
      refraction liquids for examination through the polarizing microscope.

      The polarized light microscopy procedure consists of observing the
      characteristics of the subsample components with transmitted polarized
      light, crossed polars, slightly uncrossed polars, crossed polars plus
      the first-order red compensator, and the central stop dispersion stain-
      ing objective.   The observations obtained using the various techniques
      are used to identify the fibrous and some of the nonfibrous components
      on the basis of morphology, sign of elongation, and refractive index/
      dispersion staining colors.

      Quantisation of the asbestos is achieved by stereo microscopic obser-
      vation of the entire bulk sample through the stereo microscope and
      PLM examination of the subsamples.   The volume percentages of the var-
      ious components are estimated in relationship to the whole sample.

      A releasability assessment is made according to the protocol  in
      Appendix C.

Section No. :
Revision No.



7.3   Internal Quality Control Checks

      Every tenth sample received will be analyzed as a blind duplicate by
      a second analyst.  Results will be recorded in a laboratory notebook
      reserved exclusively for internal quality control analyses.  Results
      of both analyses will be reported to the EPA task manager.
7.4   Performance and Systems Audits

      The MRI QA Manager will perform a systems audit of the asbestos analy-
      sis and report the findings to the task leader.

                                               Section No.:        8.0
                                               Revision No.:        0
                                               Date:        July 3. 1984
                                               Page       1     of 	l
                                SECTION 8.0

                              DATA PROCESSING
8.1   Collection
      Data collection will consist of recording in a bound laboratory note-
      book the gross and microscopic observations for all samples.

8.2   Data Validation

      Procedures for validation of data will  include screening laboratory
      notebooks for completeness of sample information and analytical  obser-
      vations, and comparing duplicate analysis results.   This will  be done
      when work is completed on each group of samples analyzed if the number
      of samples received in a group is less  than 10, or at the end  of each
      work day if the number of samples in a  group is more than 10.

                                               Section No.:       9-0
                                               Revision No.:        0
                                               Date:       July 3. 1984
                                               Page      1     of      t
                                SECTION 9.0

                          DATA QUALITY ASSESSMENT
9.1   Precision
      Precision will be determined from the results of duplicate analyses.
      Neither of the duplicate estimated percentages should vary from the
      average of the two by more than  50%.  Duplicate identifications of
      species of asbestiform materials (e.g., chrysotile, amosite) shall
9.2   Accuracy
      Accuracy will not be determined, because the percentages are visually
9.3   Completeness

      No data losses are anticipated.

9.4   Comparability

      Other laboratories routinely use PLM analysis for asbestos; therefore,
      our results are comparable.

9.5   Standards

      Various UICC asbestos mine dusts and miscellaneous matrices contain-
      ing known amounts of asbestos are available for reference.   Their use,
      when required, will be recorded in the project laboratory notebook.

9.6   Traceability of Samples

      Traceability methods will be utilized as described below.

      A unique MRI number will  be affixed to each sample.   The following
      information will  be entered in an MRI logbook.

        MRI number (as above).

         Sample description.

                                               Section No.:       9.0
                                               Revision No.:       0
                                               Date:       July 3. 1984
                                               Page 	2     of 	
        Source (if available).

        Date of receipt.

        MRI logbook number and page where analytical data are entered.

        Sample disposition (storage box number, returned to EPA,
         forwarded to subcontractor, etc.).

9.7   Traceability of Data

      Data will be documented from recording of sample receipt through
      reporting results to the EPA work assignment manager.

9.8   Representativeness

      Samples will be collected by EPA and shipped to MRI.  Samples received
      are assumed to be representative of the environment from which they
      were taken.   Each sample received will be examined as a whole.

                                               Section No.: 	10.0
                                               Revision No.:        0
                                               Date:       July 3. 1984
                                               Page       1    of 	
                               SECTION 10.0

                             CORRECTIVE ACTION
The work assignment leader has primary responsibility for taking corrective
action; if she is unavailable, the department management and/or the QAM shall
be contacted for instructions.  Some of the types of problems and corrective
actions to be taken are listed below.
10.1  Systems Audits

      If problems are detected by the QAM during any audit:

          The QAM shall immediately notify the lab person responsible and
          the work assignment leader of the problem(s) and any action(s)

          The work assignment leader and the responsible field/lab person
          shall correct the problem, then notify the QAM.

          The QAM shall then prepare and send a problem/action-taken memo
          to the department management.

          The work assignment leader, department management, and the QAM
          shall then collectively decide on the appropriate  action.

          The work assignment leader shall then implement the corrective

          The work assignment leader shall prepare and send  a documentation
          memo to department management and the QAM.

10.2  Loss of Data

      The work assignment leader shall  investigate the problem,  then perform
      one or more of the following actions:

          If the problem is limited in  scope, the problem/action-taken is
          documented in the MRI  notebook;  the work assignment leader then
          prepares and sends a problem/action-taken memo to  the  QAM  and
          department management.

          If a large quantity of data is affected, the problem/actiontaken
          is documented in the MRI notebook;  the work assignment leader then
          prepares and sends a problem/action-taken memo to  the  QAM,  depart-
          ment management, and the EPA  work assignment manager.

                                               Section No.:       10-0
                                               Revision No.:        0
                                               Date:        July 3. 1984
                                               Page       2     of 	2
10.3  Significant QA Problems

      In general, the work assignment leader shall identify technical

          The work assignment leader prepares and sends a problem memo to
          the QAM and department management; if the problems are significant,
          the action is determined collectively.

          The action taken is documented in the MRI notebook.

                                               Section No.:       11.0
                                               Revision No.:        0
                                               Date:       July 3. 1984
                                               Page      1      of 	2
                               SECTION 11.0

                        DOCUMENTATION AND REPORTING
11.1  Documentation
      All entries made in logbooks, laboratory notebooks and other task
      documents shall be in ink.  Errors shall be corrected by drawing a
      line through the error and entering the correct information.  The
      correction will then be initialled, dated, and a written explanation
      for the correction given.   All additions to existing data will be
      dated and initialled at the time they are entered.

11.2  Document Control

      11.2.1  Sample traceability:   All samples submitted by EPA shall be
              logged in by assigning each sample a unique MRI number and
              recording that number and other pertinent information in the
              task sample logbook.   Entries (book number and page number)
              in the analytical  task notebook and date(s) of reports shall
              be cross-referenced in the task sample logbook.

              Chain-of-custody procedures will be instituted only on request
              of the EPA work assignment manager.

      11.2.2  Data archiving and storage:  Institute QA SOP's will be
              followed for task sample logbooks, laboratory notebooks and
              other pertinent documents.

11.3  Quality Assurance Reports  to  Management

      The QAM, in cooperation with  the work assignment leader,  shall identify
      critical phases of the project which will be subject to inspection.
      The inspection will include a review of:

          Results of performance and systems audits.

          Equipment maintenance  and calibration records.

          Data entry.

          Data errors, deletions, and corrections.

          Records and other information.

                                               Section No.:       11.0
                                               Revision No.:        0
                                               Date:       July 3. 1984
                                               Page      2     of 	2
          Document control.

          Assessment of data accuracy, precision, and completeness.

      The results of inspections and audits will be reported by the QAM to
      MRI management; summaries of the audits will be reported to the EPA
      project officer.

11.4  Report Design

      Reports will consist of telephoned results to the EPA work assignment
      manager, followed by a confirming letter report through normal channels.
      The analysis schedule is unknown, but telephone contact followed by
      letter report will be the norm for each sample shipment received on
      this task.

      Reports will identify each sample by the MRI log number, as well as
      any information on the sample label  as-received.   Analysis results
      given will  include, but will not be limited to:

          Type and percent by volume of asbestos.

          Type and percent by volume of non-asbestos fibrous materials.

          Type and percent of other identified components.

          An assessment of releasability.

          Other information as requested by the EPA Task Manager.

                                APPENDIX A

                            KOHLER ILLUMINATION

          "To arrange the microscope and illuminator for Kohler illumination,
it is well to proceed methodically through the following steps:

               "a.  Remove the diffusers and filters from the lamp.

               "b.  Tilt the lamp until the beam is centered on the microscope
mirror.  Open the lamp diaphragm (also called field diaphragm, field iris
or radiant field stop).

               "c.  By moving the lamp condenser, focus a sharp image of the
filament on the plane of the microscope substage iris.   The filament image
should be large enough to fill, even though unevenly, the microscope substage
condenser opening.  If it does not, move the lamp away from the microscope
to enlarge the filament image and refocus.

               "d.  Place a specimen on the microscope stage and focus sharply
with a 16 mm (10X) objective.   Open the substage diaphragm completely.   If
the light is too bright, temporarily place a neutral density filter in the

               "e.  Close field iris somewhat and adjust the mirror to center
it in the field of view.

               "f.  Move the specimen so that a clear area is under observa-
tion.   Place the Bertrand lens in the optical path, or remove the ocular
and insert an auxiliary telescope (sold as a phase contrast accessory) in
its place, or remove the ocular and observe the back focal plane of the
objective directly.   Now observe the lamp filment through the microscope.

               "g.  If the filament does not appear to be centered, swing
the lamp housing in a horizontal arc centered at the field diaphragm.   The
purpose is to maintain the field diaphragm on the lamp in its centered posi-
tion.   If a vertical movement of the filament is required, loosen the bulb
base and slide it up and down.   If the base is fixed, tilt the lamp housing
in a vertical arc around the field diaphragm (again endeavoring to keep the
lamp diaphragm centered).   If you have mastered this, you have accomplished
the most difficult step.  (Better microscope lamps simplify this step with
adjustments to move the bulk independently of the lamp housing.)

               "h.  Put the specimen in place, replace the ocular and the
desired objective and refocus.

               "i.  Open or close the field diaphragm until  it falls just
outside the field.

               11 j.  Observe the preparation and adjust the contrast by open-
ing or closing the substage iris.   It must be as wide open as possible.


               "k.  Observe the back focal plane of the objective, preferably
with the Bertrand lens or the auxiliary telescope, and note the position of
the substage iris.  It it is not open at least two thirds of the diameter
of the back focal plane, the preparation has too little inherent contrast
or you are a bad judge of good illumination.  It is instructive to vary the
opening of the substage iris and observe the image and the objective back
focal plane critically during this manipulation.

               "1.  If the illumination is too strong, insert an appropriate
neutral density filter between the illuminator and the condenser.   Do not
use the condenser iris or the lamp field diaphragm to control illumination

Source:  McCrone, W. C., et al., Polarized Light Microscopy, Ann Arbor,
           Michigan, 1979.

                                APPENDIX B


    CAUTION:  Perform all asbestos analyses in  laboratory fume hoods.

General and Stereomicroscopic Observations

             Empty the entire bulk sample onto  clean weighing paper.  Describe
general appearance in laboratory notebook (e.g., floor tile, acoustical tile,

             Examine the sample under the stereomicroscope.   Use tweezers
and probes to expose all materials to view.  Write Stereomicroscopic obser-
vations in laboratory notebook.

Polarized  Light Microscope (PLM) Observations

          All fibrous components in a bulk sample must be identified, al-
though nonasbestos fibers may be designated by  class only (e.g., synthetics).

             Set up the PLM for Kohler illumination (see Appendix A) in a
manner similar to that described by McCrone (McCrone, W.  C. , et al.  ,
Polarized  Light Microscopy. Ann Arbor Science,  Ann Arbor, Michigan 1979).
Use only the steps appropriate for the specific PLM and associated illuminator
used (e.g., all PLM's do not have a Bertrand lens, all illuminators are not
equipped with diffusers).

             Using tweezers and the stereomicroscope if needed, place repre-
sentative examples of each type of material present onto a microscope slide
and mount them in one or more drops of 1.550 HD and other appropriate index
of refraction liquids for PLM analysis.   Separate fibers in the liquid, if
necessary, then add coverslip.

             Place prepared slide on PLM stage  and focus on sample.

             Identify asbestiform minerals and  other bulk sample components
using prescribed polarized light microscope techniques.   These techniques
include but are not limited to:

               Crossed polars (+):   Insert upper analyzer and cross  the
polars.  Rotate stage and observe angle of extinction of anisotropic minerals.
Observe morphology of fibers.

               Slightly uncrossed polars (X):    (Optional:   may help  in deter-
mining glass).

               Crossed polars plus first order red plate (+R1):  Insert upper
analyzer and cross the polars.  Insert first order red plate.  Rotate stage
and observe sign of elongation.

               Dispersion staining central stop (CS) or anular stop (AS):
Uncross polars and remove upper analyzer.  Insert Bertrand lens and rotate
central or annular stop into place.  Remove Bertrand lens and refocus micro-
scope.  Rotate the stage and determine dispersion staining colors of sample
materials.  Enter in lab book.

               Transmitted light ( ):  (Used when crocidolite is suspected).
Insert Bertrand lens and remove dispersion staining stop from field of view.
Remove upper analyzer.   Remove Bertrand lens.   Rotate stage and determine
pleochroism of suspect fiber(s).   Note all PLM observations in laboratory
Determination of Carbonate vs. Noncarbonate Binders

          Using tweezers, transfer small representative portions of the bulk
sample to black spot plate depression.

          While observing this subsample under the stereomicroscope, add
hydrochloric acid (approximately 3N) dropwise.
          Estimate carbonate (soluble) versus noncarbonate (insoluble) binders
in lab book.
on the basis of amount of material soluble with C02 evolution.   Enter estimate
Estimation of Sample Components

          Using PLM results (specific materials identification) combined
with carbonate/noncarbonate binder determination and whole-sample observa-
tion under the stereomicroscope, estimate volume percentages of all materials
and enter in lab book.   Standards containing known percentages of asbestos
are available for reference.
Dispositon of Analyzed Samples

          Return bulk sample to its original primary container and reseal.

          Damp-wipe the outside of the container and remove sample from hood.

          If asbestos was found, place "cancer hazard" or other type of
carcinogen sticker on outside of primary container.

          Place analyzed sample in designated secondary container to await
storage or other disposition as directed by project/task leader.

Handling Discrepancies

          If blind analysis by a second MRI analyst or by outside QA contrac-
tor produces serious discrepancy, the sample will be compared with standards
containing known percentages of asbestos.  These standards are available
for reference, should they be needed by the analyst to compare with any sam-
ple being analyzed.

Infrared Spectroscopy (IR)

          An occasional sample may require IR to confirm identity of one or
more components.  (CAUTION:  Perform all grinding and mixing in a laboratory
fume hood.)

     A.  KBr Pellet

          1.   If the material appears pure:

               a.  Take approximately 1 to 2 mg and grind to a fine powder
using a small mortar and pestle.

               b.  Add approximately 150 mg KBr to the ground sample and
mix thoroughly.

               c.  Transfer sample mixed with KBr to a mini press plugged
at one end with the appropriate bolt.

               d.  Secure the second bolt and compress the KBr using bench-
top wrench and t-handle socket wrench.

               e.  Remove both bolts and examine pellet--it should be fairly
clear.   If not,  re-press.

               f.  Consult instrument SOP for specific IR instrument used.

               g.  Run spectrum.

               h.  If spectrum is too weak, add more sample and make another
pellet.  Or,  use computer (consult instrument manual) to enhance the spectrum.
If spectrum is too strong, add KBr and make another pellet.

               i.  Compare sample spectrum with known mineral spectra for

          2.   If the material is impure:

               a.  Remove adequate amount (1 to 2 mg of the fiber type of
interest from the bulk sample).

               b.  Scrape any adhering binder from the fibers.

               c.  Grind the cleaned sample to a fine powder using a mortar
and pestle.

               d.  Proceed from Step l(b) above.

     B.  Cast Film

          High concentration of organic-soluble material may be cast as a
film on silver chloride or sodium chloride discs and spectra taken of the
cast film to be compared with reference spectra.  Other procedures also may
be applicable.

     C.  Detection and Quantification Limits

          The limits of detection and quantification of asbestos in a bulk
sample are a function of the presence of materials that tend to coat or other-
wise obscure the fiber.  In the absence of interferences, detection and quan-
tification limits are simply related to the quantity of sample examined and
are well below "]%.  Estimated quantification values are relatively accurate
under these conditions.

          When obscuring materials (e.g., gypsum, calcium carbonate, cement)
are present, the limits can be greatly increased and may approach or exceed
1%.  Special treatments to visualize the asbestos may then be required, such
as treatments to dissolve the obscuring materials.

MRI Internal QC

          Ten percent 10% of the bulk samples will  be reanalyzed by a second
MRI analyst.  Every 10th sample analyzed by the primary analyst will be re-
coded and analyzed blind by a second person.   Results will be compared after
the second analysis is complete.   Comparison of results may be on a sample
by sample basis, or after several of the internal QC samples have been

                                APPENDIX C

          The releasability rating is a subjective determination requiring
the good judgment of an experienced analyst.  The releasability rating is
assigned after completing the following steps:

          1.  Determine the identity and volume percent of sample components
by the usual microscopic means.

          2.  Examine the sample under a stereomicroscope at approximately
10X magnification.  Note the size and freedom of the fibers.

          3.  Probe the sample with needles and note the brittleness, tough-
ness, or resilience of the matrix.

          4.  Rate the releasability on a scale of 0 to 9.  A low rating is
assigned samples with low potential for release of asbestos, a high rating
for samples with high release potential.   The rating is assigned following
the consideration and judgment of the following factors:

                 Assign a high rating for a large number of free asbestos

                 Assign a high rating for a brittle or fragile matrix that
can be readily broken or abraded.

                 Assign a low rating for a resilient or tough matrix (such
as a resin-bonded glass wool or resin-bonded vermiculite).
   Midwest Research Institute.  1983.  Releasability of asbestos containing
     materials as an indicator of airborne asbestos exposure.  Draft Final
     Report.   MRI Project 4901-A(55).  Washington, DC:   Office of Pesticides
     and Toxic Substances, U.S. Environmental Protection Agency.  Contract