MATHEMATICAL MODEL
 FOR DETROIT RIVER
    USER MANUAL
     ENVIRONMENTAL CONTROL  TECHNOLOGY  CORPORATION
                 ANN  ARBOR,  MICHIGAN

-------
           MATHEMATICAL MODEL

            FOR DETROIT RIVER

               USER MANUAL
                    BY
Environmental Control Technology Corporation
           3983 Research Park Dr.
         Ann Arbor,  Michigan  48104
            Project Officer
             Mr. Howard Zar
               Region V
 U.S. Environmental Protection Agency

-------
                          TABLE OF  CONTENTS



                                                                   Page

 INTRODUCTION                                                         ]

 MODELING THEORY                                                      2

 MODEL DEVELOPMENT                                                    H

 PROGRAM IMPLEMENTATION                                               15

 EXAMPLE                                                              21

ADDITIONAL INFORMATION                                               30

REFERENCES                                                           31

APPENDIX  A                        .                                  32
  Driving Program - SSMPX

APPENDIX  B                                                          35
  Linear System - Flow 200,000 cfs

APPENDIX  C                                                          60
  Linear System Flow 175,000 cfs

APPENDIX  D                                                          85
  Subroutine SLE2

-------
INTRODUCTION
A steady state   mathematical model was developed for the
Detroit River from its head at Lake St. Glair to its mouth
at Lake Erie.  The basic computer program used for this study
is the Steady State Modeling Program (SSMP) developed by
Canale and Nachiappan  .   The model discussed herein was
developed as part of a contract with the U. S. Environmental
Protection Agency under contract number 68-01-1570,

This manual is a supplement to the final report submitted
under contract 68-01-1570,  entitled "Water Quality Investi-
gations of the Detroit and St. Glair Rivers", and is intended
to serve as a basic guide for computer application of the
Detroit River Model.  Discussions of modeling theory,
program input requirements, and a listing of the driving
program and basic input deck are included in.this report.
Discussion of the verification procedure, and results of
numerous simulations are not included in this manual.  The
user should obtain a copy of the main report in order to
understand the step by step procedure which was utilized for
verification of the model for parameters such as chloride,
phenol, iron, ammonia nitrogen and phosphorus.  It should be
noted at this point that while the model presented here is a
complete model for the river, it has not been verified for
the Canadian side of the river.  Thus results from the model
can only be considered reliable for segments located in the
United  States waters.  It is hoped that the necessary
Canadian information can be obtained and incorporated into
the model in the near future.

-------
                 Modeling Theory
A  general methodogy for modeling biological production in
aquatic systems has been described in an earlier report by
Canale  (1970).  This work emphasized the transient behavior
of relatively complex ecosystems in single homogeneous
zones.  The ultimate goal of the project was to suggest how
the annual cylce of phytoplankton 'and nutrient behavior
might be simulated mathematically.  The report described the
complex kinetics of the system as characterized by nonlinear
reaction terms and time-variable rate coefficients.
A  relatively  simpler class of problems is also of interest.•
These problems are concerned with the steady state distri-
bution of species whose decay or production'tendency can be
decribed by first order kinetic formulations .'  The following
list- of water quality variables has been traditionally
analyzed using such assumptions:
         1) Total dissolved solids or conductivity
         2) Chlorides
         3) Any Conservative Chemical Species
         4) Total Coliform Bacteria
         5) Dissolved Oxygen
         6) Biological Oxygen Demand
         7) Radioactive Isotopes
         8) Nitrogen (Nitrification Process)
This report describes a general user-oriented program capable
of calculating the three-dimensional steady state distribu-
tion of the above water quality variables in aquatic systems.
Mathematical models which can be useful for informed manage-
ment of water resources must be based on the diverse
chemical, physical, and biological mechanisms active in the
system.  These mechanisms are recognized by appropriate
terms in equations of continuity for each chemical or

-------
biological element of interest,  Essentially, two distinct
types of mechanisms are recognized.  First, are those pro-
cesses xtfhich alter the concentration of material within a
closed system due to departures of the state from a chemi-
cal equilibrium state.  The study of the rate of changes
toward or away from this equilibrium state is called kine-
tics.  The kinetic expressions may be dependent on species
concentration, temperature, light intensity, and pHt
A second process which can bring about changes in the con-
centration of species results from the mechanical action of
the fluid circulation and the subsequent dilution of con-
centration gradients.  The bulk behavior of the circulation
Is characterized by gross convective transfer, while the
random small-scale fluid movement is accounted for by
dispersion coefficients and transfer due to concentration ~
gradients alone.  The above ideas are summarized by Equation
1'which is a descriptive statement of the continuity law
for any material.  Equation 2'expresses this same law in
mathematical form for a general three-dimensional system.
A direct solution of Equation 2"for natural systems is not
possible.  Therefore in practice it is necessary to use
approximations which are equivalent to considering a con-
tinuous body of water as a series of finite interconnected
segments as shown in Figure 1'  In this case, the steady-
state continuity equation with first order kinetics reduces
to the following;

    «»   'C _/>__ f, r _.f\   f ..  fl J_ r>  <"•

where:
     C,  = concentration of water quality variable in segment
     •     k, (nig/1)
     V,  - volume of segment k, (eft)

-------
Rate of Change of
i with time within
a cell            :
Rate of Input of
i by advection,
dispersion, sed-
imentation, or
migration from
adjacent cells
Rate of Output of
i by advection,
dispersion, sedi- +
mentation, or
migration from
adjacent cells
Rate of Production
of i by growth,
excretion,  or
dissolution within
cell
Rate of disap-
pearance of i by
uptake, predatioi
respiration, deal
or precipitation
Composition  Change
        Hydrodynamic Mechanism
                                                                        Reaction Mechanism
                                 V-(EVC)-V-CUC)
 ACCUMULATION
        DISPERSION  BULK FLOW
                                                                            REACTION

-------
Figure 1 - Uniform  Rectangular Volume
             i f.
             ko
                   C,
                    k4
                                           'k2
                                                                  Jk3
'k5
                                         'kl

-------
      Q, .  -  net flow from segment k to segment j  (positive:
        ^    ward)  (cubic feet per second)
      a, .  =  finite  difference weight given by ratio of flow
        .*'    to dispersion,  0
-------
          akk - '
-------
obtain the distribution of BOD and then use these results
in a continuity equation for D.O.
Thus, the mass balance equation for D,0, Is:
                                                       (10')
v?here C ,  is the saturation value of D.O. ,  K .  is the reaera-
tion coefficient in segment k, K,,  is the deoxygenation
coefficient, L is the biochemical oxygen demand and +W is
now interpreted as sources and sinks of D,0, such as benthal
demands and photosynthetic prodrt tion or respiration.  With
L,  known from previous calculations, the final solution of
Equation 10' is similar to solution of Equation 31?,
As spatial approximations to derivatives have .been used in
Equations 3" and 10', some error are introduced into the' .
analysis.  One of the errors is "psuedo or numerical disper-
sion."  It appears due to the assumption of completely mixed
finite volumes.  Numerical dispersion is defined by Equation
11-.

       '          "'
                     kj
When ak. = 1/2, E      is zero.

On the other hand, it can be shown that for a positive solu-
tion the terms off the main diagonal in the left-hand side of
Equation 9 • should be non-positive.  This condition is
satisfied if                      '
Writing Equation 12  in another way, it is seen that Lj .  must
be chosen such that,
              EA

-------
 For  the  case of  zero numerical  dispersion  a, .  =  1/2  and
                                            KJ
                  2E..A, .
            Lkj<   kj  kj
'If a, . is  set equal  to 1/2 and L, . is  chosen  in  such  a way
 as to satisfy Equation 14',  then  it may be necessary  to
 handle many segments.  However,  if a, . differs very much
 from 1/2,  then numerical dispersion would be  high.  Further,
 making a, . = 1/2 does not imply  the best solution  for the
 case of  unequal-sized segments.

 In SSMP  a, . is first set equal to

            akj ~ —]	
In other words, the segment whose center  is nearer  to  the
interface would have more weightage in  determining  the con-
centration at the interface in Equation 3"t  The value of
a, . is then, checked against Equation 12",  If  it is not
satisfied, then
                                     F"
            cu. is made equal to 1 -'  k'j	
                                     2
Choosing proper spatial grids for approximations  to  the
differential equations is still very much an art,  The more
numerous the segments 5.n a model, the more accurate  the
resulting solution.  However, in such cases the computer
costs may be very high, so a compromise  is necessary,  Con-
siderations of computer size, nature of  problems,  degree  of
accuracy, simplicity of the resulting finite difference
equations, and availability of verifying field data  all  in-

-------
fluence the choice,   For additional details concerning these
questions the reader is referred to Thomann (1971) ,
                             10

-------
MODEL DEVELOPMENT
Utilizing the basic theory outlined in the previous section,
a specific model was developed for the Detroit River.   The
river was divided into 73 segments.  The resulting system of
coupled segments is represented in Figures 2 and 3,  Size,
number, and placement of these segments was based on an exami-
nation of available water quality data, location of major
wastewater inputs, and on the flow pattern of the river.
In analyzing this information, it was found that the Upper
Detroit River (Peach Island to Zug Island) was fairly uni-
form in the concentration of various pertinent, parameters and
contained few waste inputs.  Therefore, large segments were
used in this section of the river with generally two segments
across the river and each segment approximately two miles in.
length.  In the lower river (below Zug Island) the characteristic:
changed considerably.  There are many waste inputs along the
banks of the river and large concentration gradients wero. found
between the U. S. shore and Grosse lie.  This portion of the
river is only 1000-1500 feet wide,  However, because of the
large concentration gradients, the river width was divided
into four segments.  The segments were also much shorter than
the upper segements due to the large number of waste inputs.
This more detailed characterization was followed throughout
the Trenton Channel all the way to Lake Erie.  The rest of the
river was divided using similar considerations as discussed
above (concentration gradients, waste inputs, flow routing).
Islands located in the river were handled by starting new
segments on each side of the Island and splitting the flow
according to the available flow routing information.  A few
of the very small islands were incorporated within one segment.
Several segments in the river were designed to contain water-
sediment boundary conditions.  The choice of these segments
was based on general characteristics of the river  (depth,
water velocity,  proximity to waste inputs, etc.) and on infor-
mation gained during the core sampling portion of the survey
                            11

-------
Figure  n  Model  Se~n-.cnt-irior,
           Upper  Detroit  River
                                                    LAKE ST. CLAIH
         MICHIGAN
                                                  Note:  Not Drawn  to  Scale
                                                        Approx. only
                        1

-------
Figure
     .  '        icion

Lower  Dcciroii: River
                      f.COI'Si:  KIVER



                             28-30
                        37-40

            MONT-UAGON CRD'.'K
     Four  Scsxme

     Across Channel
  ,;•.•!
                                                      Note;  Not Drawn to Scr.lc

                                                             Approx.  only
                '67   68   69   70     71     72
          ,.'•• I  .
          cvi- M;
             ^Vi^
                          1.3

-------
program.  The cross sectional area of the water-sediment
interface was calculated for these designated segments and
incorporated with the physical description in the model.

The schematization was prepared using U.  S.  Department of
Commerce, National Ocean Survey,  Lake Survey Center,  naviga-
tion chart No. 400, scale 1:15,000.   These maps were  used
to determine the cell widths, characteristic lengths,
depths, and volumes.  Flow routing -for the river was  obtained
from the U. S. Public Health Service report

The flow rate in the Detroit River is exceptionally steady.
The average discharge for the period of 1936 through  1973 was
approximately 185,000 cfs.   The average flow during 1962
through 1964 was 170,000 cfs.  Flow rates have been somewhat
higher in the last few years averaging 200,000 to 220,000
cfs."

Dispersion
Specific dye tracer studies were not part of this project and
consequently it was not possible to calculate dispersion coeffi-
cients from such data.  However,  the Public Health Service
report contained some dye tracer information on a qualitative
basis, and also included maps indicating zones of pollution
and the paths they traveled.  Ex  .ination of river water
quality information gathered since the Public Health  report
supported the various zones and pathways which had been defined
earlier.  This information, coupled with the. large flow rates
and swift velocities characteristic of the river, indicated
that advective (bulk) flow was the major type of mass transfer
in the river.

Several dispersion coefficients were tried ranging from .01 to
.25 sq. mile/day.   A coefficient of .05 sq,   miles/day for
lateral dispersion and a coefficient of .10 for longitudinal
dispersion gave good results.  These values were tested using
chloride data for 1968 and 1969.

-------
PROGRAM IMPLEMENTATION
Once the testing of the physical characteristics and dispersion
coefficients was accomplished, the linear system for the. Detroit
Model was generated.  Two versions of this systera are presented
in Appendix B and C.  These systems are both based on the 73
segment representation and on dispersion coefficients of 0,05
sq. miles/day for lateral dispersion and 0.10 sq.  miles/day
for longitudinal dispersion.  The only difference between these
two versions is the flow rate.  System A is based on a flow
rate of 200,000 cfs and systera B on 175,000 cfs.

The drive program SSMPX (Appendix A) is used to read the linear
system and a data file supplied by the user.  The user's data
file contains additional information including reaction coeffi-
cients, boundary conditions input loadings and appropriate scale
factors.

The segments which require boundary conditions are listed, in
Table 1.   With the present linear system only segments 1, 2,
and 67-73 will affect the model.   The other segments are
boundary conditions to be used with the sediment-water interface
and are presently set equal to zero.  They are included so that
in the future, the option of using sediment-Wilted interchange
data can be included in the model.   The basic linear system
is designed at this time with the dispersion coefficient for
these segments set equal to zero.  Thus the computation for
these boundaries will have no effect in model results.

The boundary conditions for segments 1 and 2 are the incoming
conditions for the model.   These boundary concentrations should
be set equal to the incoming water quality levels.   Segments
67-73 serve as the ending conditions and ?:eflect the water
quality of Lake Erie at the mouth of the river.

The model can be used with parameters that follow first order
reaction kinetics, or with coupled systems such as BOD-DO.

-------
                         TABLE 1 •
                    BOUNDARY SEGMENTS

Incoming Water Quality Boundaries

Segments 1  2

         Bottom Sediment - Water Interface Boundaries
Segments
3
15
21
26
35
64
4
16
22
29
40

11
19
23
30
43

12
20
24
33
63

Ending Water Quality Boundaries Interface at Lake Erie
Segments      67    68      69      70
              71    72      73
                            16

-------
This is accomplished by entering the appropriate first order
reaction coefficient.  If the parameter is a conservative
substance such as chloride, the value of the reaction coeffi-
cients  (K) is set equal to zero,  For a coupled system
additional first order reaction coefficients (KA, KD) are used
along with a saturation concentration CCSJ,   Thus to use the
BOD-DO  system, four variables are required,  a first order reaction
coefficient, a rearatlon coefficient, a dcoxygenation coeffi-
cient and the saturated dissolved oxygen concentration at the
temperature used in the run.

The matrices presented in Appendix B and C are for single system
parameters.   The BOD-DO system was not modeled in this study.
A coupled system matrix can be generated in the future should
the need arise.   Thus, for these systems, only a reaction
coefficient K is required for the input data file.

Loads can be entered into the model for any segment.  This is
indicated by the appropriate segment-load pairs used in the
data file.  It is important to note that the number of loadings
must be indicated in card 3 and that each segment-load pair
must be on a separate card.

An example run is provided at the end of this manual to illustrate
the use of the various user supplied options,

SSMPX is the driving program listed in Appendix A,  This program
reads the appropriate information,  performs  necessary calcula-
lations and writes the results.  The program at present: is
written for the Michigan TS and reads from two devices.  Device
4 reads the linear system (see Appendix B and C) and Device 5
reads the user supplied data file.   All results are written on
device 6.

                              17

-------
A library subroutine called SLEl is called by the main program,
This subroutine is part of the MTS library and an appropriate
substitute will be needed if the model is used on a different
computing system.   A description of the method used by SLEl is
given in Appendix D.
                               18

-------
uata
Set
No.
1
2
3






4




5

Loltrnsns
on Card

1-5
1-20
1-5
6-10

11-15
16-25
26-35
36-45
1-10
(NOTE: The
11-20
21-30
31-40
1-6
7-19
Variable
Name

NP
TITLE
NL
NB

KEY
SCALE (1)
SCALE (2)
SCALE (3.)
X
following
KA
KD
CS
ISEG
LOAD
Input
Format

I
(Integer)
A
(Literal)
I
I

I
F
(Real)
F
F
F
values on this
. F.
F
F
I
G
Description of Input

Number of water quality parameters to be


rt*
Verbal description of water quality paramet,
Number of loadings for the current run.
Number of boundary conditions for the
current run.
A switch which indicates the parameter be
run is dissolved oxygen when KEYrO.
Scale factor for boundary concentrations .
Scale factor for loadings.
Scale factor for final concentration.
First order reaction coefficient.
card.-g.re included only if KEY^O)_
First order reaeration coefficient
First order deoxygenation coefficient
Saturated dissolved oxygen concentration
the temperature used in the run.
Number of segment receiving loading.
Load in p.



in







at


                   (Real B- or
                     F-type)
Include one  card typo f> for ooch  of t.1>a NT, 1 nii

-------
    Data       Columns       Variable       Input      Description of  Input
    Set        on  Card         Name         Format
    No.
               1_6           ISEG               I               Number  of segment

               7_19          BC                 G               Boundary concentration for that segment

               Include  one  card type  6  for each of  the NB boundary  concentrations


               Data  cards 2 through 6 are to be repeated for  each of. the NP water quality parameters
               to be run.
to
O

-------
EXAMPLE
This example is an actual model run using chloride data avail-
able from the summer of 1972.   Loading information was obtained
from monitoring programs under the direction of the Michigan
Water Resources Commission.   Boundary conditions x^ere obtained
from river survey data taken by the Michigan WRC.   The first
order reaction coefficient was set equal to zero as chloride
is considred a conservative substance.  A listing of the neces-
sary data is given in Table 2 and a computer data file listing
of the actual deck is shown in Table 3.

The results of the computer output for all segments is repro-
duced in Table 4.  In order to compare this data with survey
data, as was done during the verification, it is necessary to
calculate average concentrations for a segment based on the
point data available from the field surveys,  This average can
then be compared with the model output which is the steady
state concentration for the cell.  The results of the comparison
obtained is shox-m in Table 5 and Figures 4 and 5.

For the case of projecting future water quality, the user can
enter the appropriate loads; boundary conditions, etc., and
the results will give the anticipated concentrations under the
specified conditions.  For additional examples the user is
referred to the main report.  This report contains the results
of several simulations under varying conditions, given both
verification comparisons and projections based on anticipated
future loadings.
                             21

-------
                         TABLE 2
                   USER SUPPLIED DATA

Kinetics:
Chloride conservative K = 0.0

Boundaries:
Chloride concentration headwaters
8.0 mg/1 ave. Segments 1, 2
Chloride concentration Lake Erie Interface
28 mg/1 ave. Segment 67
23 mg/1 ave. Segment 68
15 mg/1 ave. Segment 69
10 mg/1 ave. Segment 70
10 mg/1 ave, Segment 71
18 mg/1 ave. Segment 72
37 mg/1 ave. Segment 73                    . •

Loads:                             1000 of -///day     Segment
Detroit Waste Treatment Plant       1180               15
Rouge River                          120               15
Wyandotte Chemical - North            30               31
Wyandotte Chemical - South           100               37
Pennwalt Chemical                    230               37
Wayne County Waste Treatment Plant    90               37

Scale Factors:
Boundary concentrations       0.623E-04
Loads                         1000.0
Final Concentration           . 161E+05
                             22

-------
> 1
> 2
..> 3
> 5
.> 	 	 6
> 7
> 8
> 9
> 10
> 11
> 12
> 13
>* 14
> IS
> 16
> 17
..> 18
> 19
> 20
•>---- 21
> 22
> 23
> 24
> _ 25
> 26
> 27
..> 28
> 29
> 30
> 31
> 32
> 33
> 34
> 35
> 36
> 37
#ENO OF
ft
l
CHI. on
3
15
31
37
1
?.
3
4
11
12
15
16
IS
20
21
22
23
24
26
29
30
33
35
40
43
63
64
67
68
69
70
71
72
73
FILE

     EXAMPLE - USER'S DATA FILE
)E  1972
 30    0  «00006230     1000.C   16051.0
       30.0
       400*0
        8*0

        0»0
        0.0
        0.0
        0«3
        0.0
        0*0
        0.0

        090

        0.0
        0.0
        0»0
        0.0
        0*9
        0*3
       28«0
        1000
        18*0
                  23

-------
                             TABLE  4
                 EXAMPLE  -  OUTPUT CHLORIDE  1972
'UN  NUf-'RFI   1:

 SCALE  FACTIHS:
  a:.=   0.623E-0't
                     E  1972
                   LOAO=   1000.
                                         CONCENTRATIONS^   C.161E 03
K= 0.0
  15
  31
  37

SEGMENT
   I
   2
   3
   4
  11
  12
  15
  16
  19
  20
  21
  22
  23
  24
  26
  29
  3D
  33
  35
  ^ 0
  43
  63
  6^
  67
  53
  69.
  70
  71
  72
  73
            LOAD
       0.1300 04
        30.0
        400.

         B:)US'r)ARY CDMOITION'
               R.OO
               8,00
              0.0
          "   0.0
              0.0
              0.0
              0.0
              0.0
              0.0
              0.0"
              0.0
       '       0.0
              0.0
              0.0
              0.0
              0.0
              0.0
              0.0 •••-•• •
              0.0
              0.0  •••••-•
        '      0.0
              0.0
              0.0
               23.0
               23.0
               15.0
            .   10. 0
               10.0
               18.0
               37.0
CHI.
ON:












O'UOE
rNTRA1
1
2
3
4
5
6
7
8
9
10
11
12
1972
m^s IN
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
8.
8.

ALL SEGMENTS:
999797
000808
999001
999B08
999801
199808
999801
990308
999006
999008
007073
000126
                                    24

-------
                            TABLE  4 (coat.)
              EXAMPLE  - OUTPUT CHLORIDE 1972
13         7.999816
14         7.999003
1ft         R. 095170
17         8.001443
18         7.99984D
IP        12.630595
20         B. 105992
21         8.002334
22         7. 999889
23        12.590081
24        10.470796
25         0.835679
26         8.007062
27         7.999889
28        12.532568
29        13.5C9169
3^        in. 470434
31        12.72T573
3?        10.563371
33         8.851317
34         8.834512
35         0.013762
36         7.999889
37        21.011988
38        12.0P2831
39        10. 595430
40        10.563878
41         8.833024
42         8.559042
43         9.002776
44         7. 999896
45     .   20.385526
'tf.        12.251011
47        10. 723785
48        10.567742
49        19.954847
50        12.365527
51        10.803593
52        10.575997
53         8.R26300
54         8.559315
55         8.420355
56        19.701094
57        12.437676
58        10.844643
59        10.585692
60        19.445501
61        12.529932
62        11.958186
63        10.625573
64         8.821658
65         8.540020
66         8.420455
67        19,300799
68        17.577567
S9        12.605703
70        11.118909
71         8.837070
72         8.498783

-------
  12
—i
o
                                          Figure 4


                             MODEL VERIFICATION - Choride

                            Detroit River Dt 20.6 and 19.0 1972
                        Dt 20.6
                                                       U-
          100
400
 800
   15
                          Dt  19.0
   10
   U
         100
400
800
T2W

-------
   15
                      FIGURE "5
           MODEL VERIFICATION - Chloride
   Detroit  River Dt 14.6W and 12.OW -  1972
   10  -
                                                                   Dt 14, 6W
o
E
   5  -
   0
        100
                        500
                                             1000
                                                                 1500
                                                                                      2000
   24
                                                                   Dt  12,OW
  16
 too
 B
  0
        100
500
                                             1000

-------
   30
                                    MODEL VERIFICATION - Chloride

                              Detroit River Dt 8.7W and 3.9 - 1972
   20
                                           Dt 8.7W
CJ
   15
   0
         100
  500
                                            1000
                                         1500
   50
   40
                                                                  Dt  3.9
   30
   20
~
   10
   0
         1000
	L_
 5000
_J	
 10000
                                                                9 9
_J	
 15000
                                                                                    20000

-------
                       Chloride  Concentrations

                      DETROIT RIVER - 1972
   Point      Model Segment
                Numbor3

20.6             9,11




r/.4 W        .  15-17




U.6 W          31-33




12.0 V          37-39  '




 8-7  W          56-59




 3-9             67-70




3-9  (cont.)     71-73
AMC
MPC
AMC .
MPC
AMC
MFC
AMC
MFC
AMC
MPC
AMC
MPC
AMC
MPC
8
8
13
13
% 13
13
20
21
20
20
25+
19
9
9
8
8
8
8
11
11
12
12
13
12
22
18
17
16
8
8
8
8
9
9
10
11
11
11
15 .
13
30+
26










10
11


   values as mg/1



   - average measured concentration based on stations located

     within corresponding model segment
        t .

   - model predicted concentration
                                  29

-------
ADDITIONAL INFORMATION OR SYSTEMS

Additional information on this modeling program can be
obtained by contacting our office in Ann Arbor, Michigan..
Additional linear systems can also be obtained from our
office.  Generation of matrices for different flow rates,
other than the two presented here, is relatively easy
and can be provided via a listing, punched cards or
magnetic tape.  The charge for this service will be. based
in the time required to produce and process the required
systems and a quote can be obtained by contacting the
office.
                              30

-------
                           REFERENCES


1.  Canale, R. P., and Nachiappan, S.,  "Steady State Modeling
    Program",  University of Michigan, Sea Grants Program,  Tech.
    Report No. 27, March, 1972.

2.  Canale, R. P., and Squire,  J.  R., "An Application Manual for
    SSMP", Dept.  of Civil Engineering,  University of Michigan,
    September, 1974.

3.  Thomnnn, R.  V.,  "Time Variable Water Quality Models -
    Estuaries, Harbors,  and Off Shore Waters", from Advanced
    Topics in Mathematical Modeling of Natural Systems, 16th
    Summer Institute  in Water Pollution Control (1971).

4.  Thoraann, R.  V. ,  Systems Analysis  and Water Quality Management,
    Environmental Science Services Division,  Environmental
    Research and Applications,  Inc.,  New York, NY,  1972.

5.  Canale, R.P., "A Methodology for Mathematical Modeling of
    Biological Production", Report to the Univ. of Michigan
    Sea Grant Program (1970).
                                 31

-------
      APPENDIX  A






DRIVING PROGRAM - SSMPX
            32

-------
F;9: ONE

  MTS :  /VNN  ARBOR ( CCOl-015'j)...
     rY'^EzTERMINALr  PRIO = K!ORMALf  CLASLr'JNI V/GO\/T
^SIGNO'I *AS:  13:;5!i.28
" BGH" SIGNED  ON AT   14:39.41  OH  THU MOV 21/74
* OK
*!
ftl
\
>
>
>
>
>
>
>
s
>
>
>
s
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
•>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
-1
>
3MS132
}"CL DY:i
- SSOATA
i
2
.- . 3 ..
4
5
6
- . 7.
8

10
.... 11
12
i -i

15
16
17
18
-.. 19
20
2i

.23
24
- 25
26
28
29
30
- 31
32
3~
34
35
O(j
57
38
30
40
41
42
43

4f>

48
49
5fj
51
• 40

^
C
. C
C
r-
c



•••*"* 	 —



2





fj

- - — • - —




	 - n"

13


.._ 1J>.


17
18

l'o"






24
... 25

?6



5SMpX


AHO COMMUTE THE STEAOY STATE CONCENTRATIONS OP ONE OR
MORE WATER QUALITY PARAMETERS. 	 ..._....._ . _. ..-_

RFAL*8 AdO'JflCKO f3(10'JflOO) > LOAD ( 1 00 > t R ( 1 00 > rRC t lO'.O f V f 1 00 ) t ..... .._..__ ._. .
+ C(lOn) .C2(10'M
REAL*4 S1" ALr (" ) ' ^ ' KA t KOr CSi TI TLE (5 J 	 .. 	 	
INTEGER I"r.RM(?CiO)
REAO(4»4) N. ._. 	 	 	 	 -.- 	 -•- 	 — 	 - 	 — -• - 	 -
00 2 1=1 »M
£)C />,r f it i \ (A.(T«.J)fJw*lf'vl)
CONTINUE
RCAO('I>3) (Rtr>»IslfN) _ 	 _ 	 	 , ., 	 ,. 	 	 	 	 	

RFAO(5»4) NP ......:. 	 _ - .. 	 -— 	 	 - 	 - 	 — 	 - 	 — 	 	
00 31 Itrl'NP
00 5 I = lrN 	 	 - 	 --.. - 	 	 	 - 	 - 	 -•• — 	 — -•
LOAO(1)=0.0
f1 F A n f e ' \ T I T t fr
RFAO'(5>7) "NLrNBr KEY, SCALE
*R!TE(6.8) II. TITLE-SCALE . _ 	 	 	 -- -... 	 : . - 	 - ..
IP(KEY.NE.O) GO TO 11

Rr_ A'J t ^ f V i ^ - . ....-- 	 -— • - 	 	 . - i . - 	 	 	 --- - - — 	 — -
WRITE(n.lO) K

«VRITE(6tl2) K»KAfKD»CS . 	 	 	 -' — - — - •— - — 	 	 	 ~ 	 --• -
IF"INL.NE.O) GO TO 15
"JRITE(6» 14) „ . . .- - 	 --- 	 -- 	 _....._ 	 	 -. -
GO TO 18

QO I/ 1-1 f l<— . 	 „ .. . — .- 	 — 	 	 •*• • • • ""• *"**
RFAO(5rl6) J.LOAO(J) .
WRITF(6»16) JrLOAO(J).,,. . 	 .. 	 	 - - ~- - 	 - 	 -- — 	 	 	 	
CONTINUE
00 59 Isl.N 	 	 	 	 	 ••--• 	 --• 	 	 •-- —
no i o 1-1 . i^l . -.- - -- — — - 	 	
B(I. J) cA(I» J)


IP!N^.'-;E.fJ) GO TO 2?
'VR I TT ( 6 > ?1 ) 	 — • — 	 	 	 	 	
GO TO 25
no or T - 1 Mf* - — 	
WRITE (r>»?3) J»*C 	 ._ • • -- - - •'- 	 	 - 	
•R-( J):RC( J) *^':+SCALF (1)
DO 26 1^1 »N - 	 - 	 - 	 -~ 	 '
B(I» I);^(IrM-*KtV(I)
RC.(I_)rRC( i)+LOAO( I)*SCALF(?) 	
                                                  33

-------
 >     V)3            00 21  I'-'l , N                       .
 >     •>'»            'H 1 , / ) r^ ( I . .f ) *- V( I ) + (KA-K)
 >     b , .       ?7   SC{ I) rRC( I) +V( I )+KAT       ?8   CALL  5LE1 ( N» 1 On t<3, 11 l fin t
- >  ..-  "J7 .    ._      00 ?°  1 = 1 tN     .  ...  ....
 >     '^       ?9   C ( I) rC ( I ) *'-V:Al.r (3)
• >     '^            ^RITE(6r3H)  HTLFr(.I»C(I
 >     60            CSCALP:SCALE(3)
 >     61       31   CONTINUE
 >     62     C
 >  	63     c      FORMATS  FOR IN^JT  AND OUTPUT
 >     6<*         i   FORMAT (40?n. i ri)
 >     6',         i*   f'OC  _ '67         6   F'JRN'Af <5A<*)
 >     60'    "    7   POi^'-'AT(3
 >     69         8   FORMAT < M'TJ'-'I i."J'.'.H(it?  '»                       .       	
 >     70	   ""   " + !?;'•  •f'jAfi/'O SCALE ^ACTORS:'/'    f).C=  ' • Gl f). 3 .r)X r ' LOAD: ',
 >  .   71           tGKJ.o^Xi 'CON':fMT^ATIO'-l5=  ' r G] 0.3)         .  .    .  	-	   -•
 >     7?         Q   FORMAT(usio.3)
 >     73       jo   rO^MATCO  RPACTIO'^l COCFf 1C KENTS: • /'    Kr»,GlO,3/'0  SEGMENT'».
 >     74           +6Xf»LOAD«)
 >  .   7l)     _ i2_  roRMATt'ri  ^EACTIO'^I COF.Ff-'lCIFHTS: V    Kr  '.» 010,3/ ^X r_' KAr «_» ol 0 , o »..
 >  " "?f,      "  "+[,X, tKO=  ' »S10.3»r.X/«C5=" ',G10.3/'0 5E&MF NT • .6X1  ' LOAD')
 >     77       in   FORMAT" (•()  NO LOADINGS'.)   	-	  --      -	-
 >     78       16   FORMAT<16,Gl3.3)
 >     70      .go   FOPi/AT ( '0 '5EGMFNT    ROU'MOARY  CONDI T I0^ll )			 . -----
 >     BO       ?j   FO^MATCO  NO ^OUNOARV CONDITIONS')
 >  _  81       ?3   Fo^f>'AT ( J6»7X.513.3)               .....   ...   	
 >     0? '.      sfi'  FORMAT ('-' (5AI*/1 CONCENTRATIONS  Ii-l ALL.  SEGMENTS:'/
 >     63  •         4-innC5X. !?»
 >     fi'* .           CALL EXIT
 >     65            END  "
 Fr:NQ  OF FILE  '  "	~'
                                                   34

-------
            APPENDIX  B

LINEAR SYSTEM DETROIT RIVER MODEL
   FLOW - 200,00  cfs
                 35

-------
73
0.13090503073 11
0.0
o.o'
0.0
0.0
0.0
0.0
0.0
0.0
0.0
D.O
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
-0.69304108990 10
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
-0.60502388350 1C
-0. 12106451610 08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-0. 104 1089Q55D 08
o.o
0.0
0.0
0.0
o.o
.0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.11271166850 11
0.0
0.0
0. C
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
"
0.0
0.0
0.0
0.0
0.0
0.0
' 0.0
0.0
0.0
o.o •
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-0.112 545567 10 li
-0.94926»L'927D 07

-0.32383349510 07
O.C
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
. 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0. 86726G6224D 10
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
c.o
0.0
0.0
0. 0
0.0
0.0
c.o
0.0

-0.7340937500D 07
0.0

0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.C
0.0
0.0
0.0
0.0
0.0
0.0

-0.10282191780
• 0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
c.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-0.26023409370
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0. 1127143033D
0.0




















08


















10

















H

36

-------
o.o
0. 0
o.o
o.o
0. 0
o.o
o.o
0.0
o.o
0. 0
o.o
o.o
0.0
o.o
0. o
o.o
o.o
o.o
°.S755753785D 10
0.0
C. 0
o.o
0.0
o.o
0.0
c.o
0.0
o.o
o.o
o.o
0. 0
o.o
0. 0
0.0
o.o
o.o
0.0
•0.55652941100 08
0. o
o.o
O.o
0. o
0.0
0. 0
o.o
0. o
O.o
o.o
0. 0
o.o
0. o
0. o
0.0
0. 0
o.o
o.o
w • "3 9 ^ 3 ^ -^ Q ? R A >"i ^\^
*~ ~* •- &~ £. J \jj \J 1
O.o
o. o
0.0
0.0
0.0
0.0
0. 0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
-0.65852941180 08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.87562058110 10
'. 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0 .0
0.0
0.0
• o.o .
0. 0
0.0
0.0
o.o
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-0.66621064520 10
-0.7794392523D 07
o.o •
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 '
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
O.S766043092D 10
n o
V* • w
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0

0.0
0.0
C. 0
0.0
0.0
0.0
0.0
0.0
0.0
Of\
• 0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
-0.8659492683D 10
-0.10660166920 08
0.0' 4
0.0
0.0
0.0
0.0
0.0
0.0
0.0 '
0*0
0.0
0.0
0.0
0. 0 '
0.0
0.0
0.0

0.0
-0.98324210530 08
0.0
0.0.
0.0

-------
0.0
0.0
0. 0
o.o
0.0
0. 0
o.o
0.0
0.0
o.o
o.o
o.o
0..0
0. 0
o.o
0. 0
0. 0
o.o
o.o
o.o
0.0
0.. 0
o.o
0, 0
0. 0
o.o
0. 0
o.o
0.0
0. 0
o.o
o.o
o.o
o.o
0. 0
°-e7721910235 10
o.o
0. 0
o.o
0.0
0. 0
0.0
0. 0
o.o
0.0
o.o
o.o
o.o
o.o
o.o
0. 0
o.o
o.o
0. 0
°. Id!) 2728 3243 OS
0. 5958498294D 07
0.0
0. 0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0. 0
-0. C660t'60 187D 10
-0. 11 02 80991 7D OH
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 .
0.0
0.0

0.0
0.0
-0. 10027283240 09
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0 .0
o.o •
0.0
0.0

0 .0
0.0
0.87727245VX) 10
-0. 546I>1 1SI454D C7
0.0
0.0
0.0
0.0
0.0
0.0
0:0
0.0
0.0
:0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
-0.98'.* '21053D 08
0.0
OcO
o.o . .
0.0
0.0
0.0 ' -
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
-0.6659925289D 10
-0.59205
0. 0 "
0. 0
o.c
0.0
.0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
-0.8661028099D
0.0
0.0
0. C
0.0
0.0
0.0















10



















07

















10






8

-------
o.o
0
o.o
o. o
O.o
0. o
o.o
0.0
0. 0
0.0
0.0
0.0
o.o
0. 0
-0.43309^05460 10
0. 0
0 —
. 0
0..
• 0
o.o
o.o
0 —
.0
0. o
o.o
0. o
0_^
. 0
0.0
0. 0 '
0_^
.0
o.o
O.o
o.o
0.0
0-.
.0
;°- 4 33 5.0 723 553 10
- *741'i^33333[j QQ
0. 0
0.0
0-.
• 0
0. 0
0.0
0_
• 0
0_
> 0
0-^
.0
0_
. 0
0»
• 0
0..
0
0 —
• 0
0~
• 0
0_
.0
0.0
O.o
0 —
• 0
o.o
°-4
-------
0.0
o.o
o.o
0. 0
D.O
C-.0
o. o
0.0
0. 0
o.o
0.0
- 0. S0064COOOCD 08
0.0
D.O
0. 0
o.o
0. 0
0.0
0.0
0. 0
0.0
o.o
0. 0
0.0
0. 0
o.o
0.0
0. 0
o.o
0. 0
o.o
0.0
0.0
o.o
0. 0
o.o
o.o
0.0
o.o
0.0
o.o
o.o
0. 0
o.o
o.c
0. 0
o.o
o.o
0. 0
o.o
0. 76i>04446180 10
-0.9420127389D 07
0.0
0.0
0*0
o.o ~
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
-0. 904426666 7D 08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
-0.9044266667D
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
-0.4333111059D
0.450^^50490
-0.8286878981D
0.0
0. 0
0.0
0.0
0.0
0.0
0. C>
o.c
0.0






























08

















10
10
07









40

-------
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 4333111059D 10
0. 45Q2499692D 10
-0. 73661146SOD 07
0.0
0.0
0. 0
0.0
0.0
0. 0
0.0
0. 0
0.0
0. 0
0. 0
0.0
0. 0
0.0
0.0
0. 0
0.0
-0. S5U8074070 06
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C. 0
0.0
0. 0
0.0
o.o
0.0
0.0

0.0
0.0
0.0
0.0
-0.85418C7407D 08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
-0.4334462902D 10
0.442Y?'t<«02GD 10
-0,74680442000 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

o.b
0.0
0.0
-0.4334420127D 10
0. 44325174340 10
-C.23CU65G519D 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0. 0
-0.76604444440
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
' 0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0".'
o.o •
0.0
0.0

0.0
0.0
0.0
0.0
-0.894569S324D
-0.03316725980
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0








00





































08
07











4i

-------
0.3
0.0
0. 0
0.0
0.0
0.0
0.0
0. 3^-9137^300 1C
•0.66-^32048190 C7
0. 0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0. 0
0.0
0.0
0. 0
0.0
•0.eOVtD 10
0.^252555510 10
0.0
0.0
0.0
0.0 '
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0

0.0
0.0
0.0
0.0
-0.8945698324D 08
0.0
0. 0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
-0.5804395604D 07
0.0
0.0
0.0
0.0
0.0
0.0
0,0
o.c
0.0
0.0
0*0

0.0
0.0

0.0
0.0
0.0
-0.4333286879D 10
0.792B526
-------
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0-.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
•0.3
-------
0.0
0. 8b365fl2763D 00
O. 49 b 3 4 54 5 4 51) 07
0.0
0.0
0.0
0. 0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
b.o
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
•0.4964281)7140 C8
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
D.O
0.0
0.0
0.0736691387D 09
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
-0.4330804396D 10
0.0
0.0
0.0
• o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
'. 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.257't C74074D 06
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0 *
0.0
0.0
0.0
0.0
0.4337591250D 10
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0 "
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0"
-0.173P640000D 10
0.0
-0.40773333330 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
• 0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
'0.0
-0.6786854^600
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
o.o-
0.0
0. J.7B63601900
0.0
0.0
0.0
0.0
' 0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
-0.4964285714D























07
















10


















oa
44

-------
0. 265658B4333 10
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.14957608700 07
-Ci. 643666606 7D 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 1807030303D 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0. 0
-0.260045U909D 10
-0.88454545450 07
0.0
-0.26014866670 10
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.6077238830D 10
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
• 0.0
0.0
-0.16870303030 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
•
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0'
0.0
0.0
0.0
0.0
0.1U09925468D 10
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 72074074070 08
0.0
-0.18196363640 0V
-0.5458909091D
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
-0.60692564100
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

o.*o
0.0
0.0
0.0
0.0
0.0
-0. 1734077333D
-0.7207407407D
0.0
0.0
0.0 '
0.0
0.0
0.0
' 0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2683535044D
0.0
-0.3369696970D
07
















10



















10
oa


















10

06
45

-------
o.o
0.0
o.o
0.0
o.o
0. 0
0.0
0.0
0. 0
o.o
0.0
o.o
o.o
o.o
3.0
0 .0
0. 0
3-fi833526404D C9
0.0
-0.3691286307D C7
0.0
0. 0
o.o
o.o
0.0
0.0
o.o
o.o
o.o
0. 0
o.o
o.o
o.o
o.o
-0.7795425000D 10
0. 0
•0.5fil5899582D 07
0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
o.o
0 >
o.o
o.o
0.0
o.o
0. 0
o.o
o.o
0. 0
o.o
o.o
o.o
o.o
0. 0
o.o
0.0
0.0
0.0
0.0
0. 0
0.0
0. 0
0.0

0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
-0.87081589960 09
0.0
0.0
0.0
0.0
0.0
0.0
• o.o
0. 0
0.0

0.0
0.0
0. 0
0.0
0.0
0. 0
0.0
0. 0

0.0
•.-0. 1234048730D 08 •
0.0
0. 0
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
-0.86525740740 09
0.0
-0. 706779661 CD 07
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
. 0.0
0.0
0.0
0.0
'o.o' ' 	 '
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 70677966100 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
• o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.87262512100 09
0.0
-0.2999170124D 06
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0. 0
-0.8845454545D 07
0.0
o.o
0.0
0. 0
0.0
0.0
0.0
0.0
0. » , -
• 0
0. 0
•
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
Oft
.0
Of\
• 0
0» 0
0.0
0.0
Of\
.0
0.0
, 0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
Of\
.0
0. 0
46

-------
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
D.O
0,0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
D.7728148564D C9
0.0
•0.38678260370 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 7506COOOOOD CO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 7506CCOOCOD 08
0.0
0.0
• 0.0
' 0.0
0.0
0.0
0.0
0.0

0.0
0.0
0,0
0.0
o.o •
0.0
0.0
0.0
0.0
0.202165566^0 10
o.c
-0.'«17B6335400 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C. 0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
-0.43318-51268D 10
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 693&870303D 09
0.0
0.0
0.0
0.0
0.0
0.0
0.0 ':
0.0 '
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.1039807030D 10
0.0
-0.90253COOOOD 09
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
• " • -
0.0
0.0
0.0
0. 0
0.0
0.0
0.0 '
0.0
0. 4333834 97flD 10
0.0
-0.6943710407D 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
c.o
0.0
0.0
0,0
0.0
0.0
0.0
47

-------
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
•0. 86G6912863D 09
0.0
0.9333503565D 09
0.0
0.0
-0. &232941176D 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 3753CCOOCOU 03
0.0
o.c
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
'. 0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 5945012903D 08
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.17B4320195D 10
0.0
-0.10705^90060 07
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.1390000000D 08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0

0.0
0.0
0. 0
0.0
0.0
0.0
0.0
-0. 1731819636D
0.0
-O.L390000000D
0.0
0.0'
0.0
0.0
0.0
0.0
0.0
0.0
•
'0.0
0.0
0.0
0.0
0.0
0.0
0.0
-O.B653369697D
0.0
0.07
-------
•i.O
0.0
0. 0
J.O
0.0
0.0
0.0
0.0
3.0
D.Q
0. Mt'J612903D C8
0.0
0. 0
0.0
O.'O
0.0
0.0
0.0
0.0
0.0
0. 0
e.o
0.0
0. 0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
0 3
0.0
0.0
0. 0
0.0
0. 0
c.o
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
o.c
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. e9323404b(jn 1.0
c.o
0. 1045741695D 11
0.0
0.0
-0. 3360JJ95522D 07
0.0
0.0
0.0
o.c

0.0
0.0
0. 0
0.0
0.0
o.c
0.0
o.c
0.0
0.0
-0. 225<1442231D 07
0.0
'0. 0
o.c
o.c
0. 0
0.0
0.0

0.0
0. 0
o.c
0.0
0.0
0.0
0.0
o.c
0.0
0.0
0.0
0.0 -
o.c
0.0
0.0
0.0
0.0
0.0

0.0
0.0
o.c
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.3462259442D 10
0.0
0.0
0.0
c.o
0.0
o.c
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.8652999170D C9
0.0
0.520668F.055D 10
0.0
0.0
-0. 41251612900 07
0.0
0.0
C.O
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.1000353414D 08
0.0
0.0
0.0
0.0
0.0
o.c
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0

0.0
0.0
0.0
.0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.4335003534D
0.0
0.0
0.0
0.0
•o.o
0.0
0.0

0.0
0.0
0.0
0.0 •
0.0
0.0
0.0
0.0
-0.4331S4371CD
0.0
0.4341947245D
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0. 0





























10
















10

10












-------
0.0
0.0
0. 0
0.0
0.0
0.0
•0.c,*;5f&73261D 09
0.0
0.7522C69257D C9
•0 -C765333333D 07
0. 0
0.0
0.0
0. 0
0.0
0. 0
0.0
o.o
0, 0
0.0
o.o
0.0
0.0
o.o
0.0
o.o
o.o
•0.53^3766230 Ob
0. 0
0.0
0.0
0.0
o.o
o.o
0. 0
o.o
o.o
0.0
o.o
0.0
0. 0
0.0
0.0
o.o
0.0
0.0
o.o
0.0
0. o
o.o
0.0
o.o
o.o
0.0
0.0
o.c
0.0
o.o
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 53433766230 08
0.0
0.0
0.0
0.0
0. 0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
-0.1907178634D 10
0.0
0.20383C5006D 10
-0.2965333333D 07
0. 0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
•. o.o
0.0
0.0
0. 0
0.0
0.0
0. 0
0.0
-0.7460727273D 08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.7480727273D 08
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-C.8660705590D 09
0.0
0.96521667160 09
-0, 2965333333D 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0<0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
Oft
.0
0.0
Of*
*u
Oft
.0
0. 0
0.0
0.0
Oft
• 0

0.0
0.0
0. 0
0.0
0.0
Oft
.0
Of,
• 0
0.0
0.0
0.0
0. 0
-0.213") J506A-9D 08
0.0
Oft
.0
0.0
Oft
. 0
0.0
0.0
0.0
0.0
Oft
.0
0.0
0. 0
0*0
so

-------
o.c
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
-0.69496533?3D 09
0.736397422U C9
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.393 6 8 9+4 103 OB
0-0
-0.1B183647COO C7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
o.o •
0.0
0.0
0.0
-0.39368944100 08
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.19059653330 10
0. 199b953l<840 10
0.0
0.0
0.0
0.0 .
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 2137350649D 08
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.5180124224D 08
0.0
0.0
0.0
" 0.0'
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
- 0.8651 381 366D
0.0
0.68735880120
-0.84723809520
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. Z063144654D
0;0
0.0
0.0
C. 0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
G.O
0.0
o.b "
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



09

09
06



















07

































51

-------
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0..0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
•0.6702329412D C9
0. 0
0.0
0. 8933736519D 09
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.51801242241) C8
0.0
-0. 255270'.-', C3D 07
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.21B9726027D 08
0.0
0.0
0.0
0.0

0.0
0.0 '
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 10333360900 11
0.0
0.0
0.0
-0. 0£
0.95
0.0
0.0
' o."o
0.0
0.0

0.0
0.0
0.0
0.0
o.c
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.3C
0.0
-0.1!
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.B679653333H 09
0.9529856154D 09
0.30666335^00  08
0.0
0.1573584906D  07
 0.0
 0.0
 0.0
•0.30 66 633 5400 08
 0.0
 0.0
 0.0 '
 0.0
 0.0

 0,0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0,0
-0.86584723810 09
'0.8980871584D 09
 0.0
 0.0
 0.0
 0.0
 0.0

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
-0. 12434504790 07
 0.0        '
 0.0

 0.0
 0.0
 0.0
 0,0
 0.0
 0.0
 0.0
 0.0
 0.0
 0,0
 0.0
 0.0
    52

-------
0.0
-0.21B97?.!>0^7D 08
0.0
0.0
--0.4633333333D 07
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.6940631447D 09
0.0
-0.2422318471D C8
0.0
0.0
0.0
0.0
r. o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o •
0.0
0.0
0.0
0.0
0.0
3.1954081952D 10
0.0
0. 1043092933D 11
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 52U.C75405D 10
0.0
0.0
-0. 4389 4736840 07
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
OoO
0.0
'. 0.0
0.0
0.0
0.0 .
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
-0. 1
-------
0.017217^700 C6
D.O
0. 0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2422318'*71D CO
0.0
0. 0
0.0
0.0
0.0
0«0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 .
0.0
0.0
0.0
-0.25585e
-------
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 1903817218D 10
0.19449401940 10
0.. 0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 174418B010D 10
0.0
-D.2141629630D 07
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0 D
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
b.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.14188016020 08
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
-0. £6594387270 09
o.26380<5i702D 10
0.0
. 0.0
•
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 •
0.0
0.0
0.0
0.0
0.0
-0.2577818182D 08
0.0
-0. 36937062S4D 06

0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.2577816182D 08
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.365943C727D 09
0.89209142510 C9
0.0
0.0

0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.25585840710 08
0.0
-0.1349117647D 07
0.0

0.0
.0.0
0.0
0.0
0.0
0.0
0.0
0 -0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0

0.0
0.0
55

-------
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
•0.6662434505D C9
0 .0
0.0
-0.14375855660 CO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.60S34406.270 10
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 5977CCOCOCD 07
0.0
-0.4957S61783D 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 5194633333D 10
0.0
0.0
-0. B7097700COD 09
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0. 693532443 5D 10
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.17S!i;j^3529D 07
*
"0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
. 0.0
°-*°-

0.0
OeO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.69243894740 10
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.88241612990
0.0
0.0

0.0"
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.14375S5586D
0.0
-0.34544378700

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0













09


















08

07

























56

-------
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.1 Tt 3 ^911763 09
0.0
•0. 4951875000D 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.29620100520 10
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
. 0.0
• o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.2L.97141630D 10
0.0 •
-0.10094047620 08

0.0
0.0
0.0
0,0
0.0
o.c
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.71
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.5;
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
 0.7045267929D  09
-0.5285716456D  09
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0. 0
 0.0
 0.0
-0.6939562963D 09
 0. 0
-0.9501265823D 07
 0.0

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
•0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.71093063820 09
 0.0

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
-0.3509518750D 09
 0.0

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
    57

-------
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.3561271429D 09
0.0
D.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
o.-
-0. 60584544380 10
0.0
-0.1741555422D 10
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.1248G94979D 10

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.2185982906D 08

0.0
0.0
0.0
0.0
0.0
0.0
0.0
. 0.0
• o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o"
0.0
.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.86536937060 09
0.0
-0.2185982906D 08

o.b
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.9056245954D 09

0.0
0.0'
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o 	
0.0
0.0
0.0
0.0
0.0
-0. 13344000CGD 08

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0 "
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.0.0
0.0
0.0
0.0
0.0
-0.8667988235D
0.0
-0.13344000000

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.7826305389D

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o


























09

03


















LO












58T

-------
  0.0                  0.0                  0.0                  0*0
  0.0                  0.0                  0.0                  0.0
  0.0                  0.0                  0.0                  0.0
  0.0                  0.0                  0.0                  0.0
  0.0                  0.0                  0.0                  0.0
  0.0                 -0.60599579620  10    0.0                  0.0         -
  0.0                  0.0                  0.0                -O.U55542169D 08
  0.607*8768400 10
,0

,0

.0

.0

,0

.0

.0

• 0

,0

,0

•o
.0     '     -•...•-•--•,..         ........   ......   - .; ..,.,....


.900000D  090.1050000 100.4180000 090,6848000 090.4410000  090.5145000 09 "

,3511000  090.27720CD 090.2926000 090.2926COD 090.1102000  090.1102000 09

.1004000  090.9720000 080.1586000 090.1229000 090.1229000  090. 1229OOt)..'09

.2214000  C90.184500D 090.1845000 090.1248000 C90.376000D  030.826000D 08

,4325000  090.9700000 070.362900D 090.1459COD 090.6080000  080.189000D 08

.95C0003  080.7600COD 060.1224000 090.5304000 090.2800000  030.2333000 09

.3280000  08Ci.4430000 080.3280000 080.1150000 080.5408000  090.3328000 09 '

.1196003  090.4032000 090.444300D 080.577COOD 080.4880000  080.2660000 08

.4530000  080.3234COD C80.5659COD 080.21560CD 080.1663000  090.4026000 09

.3686000  090.3937000 030.3937000 080.4937000 080.1575000  080.5936000 08"

.6656003  080.6528CCD C80.4COOCOD 080.283500D 090.3726000  090.3864000 09

.1134000  090.2125000 090.1960000 090.3362COD C90.3123000  C9C.441&OOD 09

.331200}  09                                                               "



It tea ft Cc.Ii tUflfctt**tt **V:**ftlk*****ftmr*ft*fti[t«ir*ft t tt il * *i a yi * fee ft * ttfc E ft i t «t £ S C ft ft * tt t ft ft <= fcftft ft ft * !t ft * * 
-------
            APPENDIX  C

LINEAR SYSTEM DETROIT RIVER MODEL
       FLOW - 175,000 cfs.
                     60

-------
°ETRnt r MATRIX FOK SS
73
3.11440303071') U
0. 0
o.o
o.o
o.o
o.o
0.0
o.o
• o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
~0.6G<30't 108991) 10
0.0
0.0
0.0
0.0
o.o
0. 0
o.o
O.o
o.o '
o.o
o.o
o.o
o.o
0. 0
o.o
O.o
0. 0
o.o
~°- 523823833 5D 1C
o.o
0. >
0 ,-j
0. 0
o.o
o.o
O.o
o.o
o.o
O.o
O.o
0,0
O.o
O.o
o.o
o.o
o.o
o.o
"PX fl.OK = 17 5t QCO CFS

-0. 10410HSB55D Co
0 .0
0.0 -
0.0
0.0
0.0
0.0
0.0 ' .
0-C
0.0
o.o •
0.0
0.0
0,0
0.0
O.C
0.0
0.0
0.9841163848D 10
0.0
O.C
0.0
0.0
0.0
0.0
0.0
0.0
• 0.0
0.0
o.o
O.C
•o.o •
0.0
O.C
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o •
0..0
0.0
0.0
0.0 '
0.0
0.0
0.0
c.o
0.0
0.0
0.0
o.o
-0.98245%712D 10


-0.323C £349510 01
0.0
0.0
0.0
0.0
0.0
C.O
0.0
c.o
0.0
0.0
c.o
0.0
c.o
u.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o 	
0.0
0.0
0.0
0.0
0.0
0.0
0.0
c.o
0.0
0.0
0.75726662241) 10
Of\
. 0
0.0
0 .0
Of\
.0
o.-o
Of\
.0
0.0
0.0
' O.C
0.0
0.0
0.0
0,0
o.o
CA
'.0
n1^
.0
0,0
-C. 73409 37 500 D 07


0.0
Of\
• 0
0.0
0. 0
0.0
0.0
0. 0
0.0
0. 0
0.0
0 .0
Of\
. 0
Oft
. 0
0.0
On
• 0
Of\
.0
0.0
0.0

-0.102821 91 7 3D 08
0.0
0.0
0.0
0/\
.u
C. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
On
• u
0.0
o.o.
0.0
0 .0

-0.227Z3'*0937D 10
0.0
0.0
0.0
0.0
o.o
0,0
o.b
0.0
0.0
0. 0
0 .0
0.0
\J • V/
0,0
0 .0
0.0
0.0
0.0

0.9C4 1.4303 33D 10
61

-------
0.0
0. 0
C.O
0. 0
C.O
C.O
0. 0
0.0
0. 0
0. 0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 7L.&5753785D 10
0.0
O.D
0. 0
0.0
0.0
0 .0
0.0
0. 0
0.0
 0.0
 C.O
0.0
 0. 0
 0.0
 0.0
 0. 0
 0.0
 0. 0
-0.55^52941133  C8
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0. 0
 0.0
 0.0
 0. 3
 0.0
 0. 0
 0.0
 0.0
 0. 3
 0 . 0
 0.0
 0. 0
-C . 7->:>779439:M)  1C
-0. •>••«! 32 C92IJ6D  07
 C.O
0.9492632927D 07
O.C
O.C
0.0
O.C
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-O.B53[3294118D 03
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 7656P058110 1C
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 '
0.0
0.0
C.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 - -
0.0
°^ 	
~C. 73621064520 10
-0.7794392523D 07
0.0
0.0
C.O -
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0;o
C.O
0.0
0.0
0.0
0.0
G.O
0.0
0.0
0.0
0.0
0. 7666Q43B92D 10
0.0
0.0
0.0
0.0
0.0
•o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
o.o •
0. 0
0,0
0.0
0. 0
0.0
0. 0
0.0
0.0
0.0
0.0
C. 0
0.0
0.0
0.0
0.0
-•fX. 75594926030 10
-0.10R601B692D 08
0. 0
0.0
0.0
0. 0
0.0
o-.p
0.0
0.0
o.'o
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
-0. 9832 '«210'j3D Ot
0.0
0.0
                                            62

-------
C. 0
c.o
0. 0
0.0
0.0
0.0
0 .0
0.0
0. 0
0.0
0. 0
c. o
0.0
c.o
0.0
0.0
0.0
0.0
0.0
0. 3
0.0
c.o
0. 0
0.0
0.0
0. 0
0.0
0. 0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
0.76721910233 10
?.o
0. 0
0.0
0. J
C. 0
0.0
D.O
0.0
0.0
0. 0
0.0
0. D
0. 0
0.0
0.0
0.0
0.0
0. 0
-0.1 'J}.-:72fa32'tD Ol>
-0. p-, ;>:;'i 9 Sc 940 07
0 . 0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
o.c
0.0
0.0
0. 0
0.0
0.0

0.0
-0. 7560 86CH 070 10
-0. 1102i]C9917D 08
0.0
0.0
O.C
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
• o.o
0.0
0.0

• o.o
0.0
-0. IQ?27?.£12W 09
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.767.?72-'»5'»9D 10
-0.54 hi 11 9 4 -3 40 07
0.0
0.0
0.0
0.0
0.0
0.0 '
0.0
0.0
0.0
G.O
0.0
0 .0
0.0
c.o
c.o
0.0
0.0

OcO
-C,r' 3324210530 03
C.*,
0.0
0.0
0.0
c.o
o.o 	
0.0
c.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
-C. 75599252690 10
-O.D9Z354o07'JD 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0;0
0.0
0.0
0.0
0.0
C. 0
0.0

0.0
0.0
c.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0

0.0
0.76702124970
0.0
C.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
-0.60723549490
: o.o
o.o
o.o
o.o
0.0
0.0
0.0
J.Q
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
-0.75610280990
0.0
0.0
0.0
0.0
0.0
















10



















07

















10





63

-------
o.o
o.o
0 .0
0.0
0.0
o.o
o.o
0,0
o.o
0. 0
o.o
o.o
o.o
0.0
i(V37fi0920546D 10
0.0
0. 0 	
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o. o
o.o
o.o
0. 0
o.o
0,0
"3 • 3 7rfl o 12 3 5 i>D 1 0
'n • 74133333310 C8
0.0
0.0
o.o
0.0
0,0
o.o
O.o
0.0
0.0
O.j
0,0
o.o -
O.o
0.0
o.o
O.o
0,0
O.o
^^ -^'(32668900 10
~ 'l • :H1 1 0508?4"J C 7
o.o
o.o
o.o
0. o
o.o
0.0
0.0
0. 0
0.0
0.0
o.c
0.0
0. 0
0.0
0.0
• o.o

0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
o.c
0.0
o.c
0.0
0.0
0. 0
0.0
0.0
o.o
0.0

0.0
0.0
0. 0
0.0
o.c
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
o.c
0.0
0.0
0. 0
o.o
0.0

0.0
0.0
-O.J
-0. t'
0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
c.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0*68023235291) 07
C.O
c.o
0.0
0.0
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
o.o
0.0
-C.9174000000D 08
. 0.0
0.0
0.0
0.0
0.0
0. 0
0 .0
0.0
0.0
0 .0
0. 0
0.0
o.o
0. 0
0.0
0.0
0.0
1C 0.0
03 0,0
0. 0
c.o
0.0
0.0
o.o
0.0
0.0
0.0
0,0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.91740300000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o.
0.0
0,0
0.0
0.0
0.39550567470
-0.81110568240
o.o
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
-0.7413333333D
o.o
0.0
0.0
0,0
0.0
0.0
0.0












08
















10
07















OB





64

-------
 n.o
 •). o
 o.o
 o.o
 0.0
 o.o
 o.o
 o.o
 o.o
 0.0
 0 .0
 0. j
-'J. ;i006* CO00CD C3
 0.0
 0. }

 olo
 0. 0
 o.o
 o.o

 0.0
 o.o
 o.o
 o.o
 0. 0
 0.0
 0.0
 "!. 0
 O.-.i
 0.0
 o.o
 O.o
 o.o
 o.o
 o.o
 o.o
 o.o
 o.o
 o.o
 o.o
 o.o
 o.o
 o.o
 o.o
 o.o     .  ••
 o.o
 o.o
 O.Q
 o.o
 O.D
 0,0
 o.o
. o . o
 o.o
 o.?
 o.o
                C3
  o.o
  o.c
  0.0
  0.0
  0.0
  o.o
  0.0
  0. 0

  0.0
  0.0
 -0.3780*051190 10
  0. 3i;6
-------
 o.o                  o.o                  o.o                  o.o
 o.o                  o.o                  o.o                  °'°
 o.o                  o.o                  0.°                  £  o
 o.o                  o.o                  o.o                  o.o
 0. 0       ....         0.0                  °'°

 o'o                  o.o                  o.o                  °'Q
 o.o                  o.o                  0.0                  o-o
 °*°                  0.0        .          0.0                 -o.7660W.440 08
^•••37
-------
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0. o
' 3 • 3 0 f) 9 1 3 7 't 3 OD 1 C
'-• t< 6'»520't3 190 07
0. 0
O.o
0. o
o.o
o.o
o.o
o.o
0. o
o.o
O.o
o.o
O.o
0.0
o.o
O.o
o. o
"3. 37:523661 150 1C
^••39120037260 10
o.o
0.0
0. Q
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0. o
o.o
o.o
O.o
o.o
o.o
o.o
o.o
';• 3.VJ63111HD OB
0.0

o. o
o.o
O.o
o.o
o.o
0. o
d
o.o
o.o
0.0
0 .0
0. 0
0.0
0. C
0.0
0.0
o.c
. 0.0
0.0
0.0
0. 0 -
0.0
o.o
0. 0
0.0
0.0
0.0
0.0
0. 0

0.0
0.0
o.o
0.0
o.c ^
-* 0 • .- 1- J -) «~
0.0
0.0
o.c
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0. 0
0.0
0.0
o.o
-3.T782't6UC440 10
Q.3E75255S51D 10
o.o

o.o
0. 0
0.0
0.0
0.0
0.0
o.c
o.o
0.0
0. 0
0.0
0.0
0.0
0.0
0.0 - •
0.0
0.0
-0.89^69632'tD 03
0.0
0.0
0.0
c.o
0.0
0.0
0.0
0.0
0 ^
0.0
0.0
0.0
0.0

0.0
0.0
0.0
o.o
0.0
0.0 :
0.0
c.o
0.0
f!. 0
0.0
0.0
-i S\
c.o
0.0
0.0
o.o
0 .0
0,0

0.0
0. 0
0 .0
O.*v
.0
0.0
o.o
-C. 5c'0't39560'tD 07
0.0
0.0
Os\
.0
0.0
'V A
U. U
,-\ f\
0 •')
0.0
0.0
0*0
0.0
w • *•
0.0
0.0
0.0
C. 0
0.0
-0.373 3 23 60 790 10
0.6933526^970 10
. 0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0, 0
0.0
\f • v*
0.0
0. 0
0 .0

0.0
0.0
0* 0
0.0
-0.39137^30170 08
o.o
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
:>. o. o
o.o
• o.o

o.o
0. 0
r.o
o.o
o.o
0.0
o.o
o.o

o.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0. 0

67

-------
 o.o
 0. 0
 o.o
 o.o
 o.o
 o.o
 o.o
 0,0
 o.o
 o.o
 o.o
 o.o
 o.o
 o.o
 0. 0
 o.o
 o.o
 o.o
 o.o
 o.o
 o.o
 C.o
 o.o
 o.o
 o.o
^•30338^6CD  10

 O.o
 o.o
 o.o
 o. o
 o.o
 o.o
 o.o
 O.o
 O.o
 o.o
 o.o
 o.o
 O.o
 o.o
 o.o
 o.o
 o.o
 £;>«!>7*03&ni3  10

 3.0
 0. o
 O.o
 0,0

 o.'o

 o'.o
 o.o
 o.o
 O.o

 o!o
 o.o
0.0
0.0
0. 0
0.0
n o
\) • \y
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0 .0
0. 0
0.0
V • V
0.0
0.0
0.0
0.0
0.0
0.0
0 .0.
0.0
-0. 1425641C26D 08
0.0
0. 0
0.0
' 0.0
0. 0
0.0
0.0
0. 0
Q.O
Of)
. 0
0.0
0.0
0.0
o.o
0. 0
C.O
_,.* f*O Oi
-o! 30 2 149 5 76 in 10
— L • 1U •*<-- Vi'^
0.0
0.0
0.0
0. 0

o.o
0.0
0.0
0.0

o.o


o.o
0.0

o.o
0.0
0.0
C.O '
0.0
-C. 15123066510 10
0. l-j4799j93^t[) 10
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 -
0.0
0.0
0.0
0.0
-0.0
-D.2271331673D 10
-C.3304528302D 03
0.0
0,0
0.0
0.0
0.0
o.o
0.0
0.0
^ '*}
k' • ^
0.0
0.0
o.o

0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0,0
0.0
0 0
*J f V
0. 0
0.0
0.0
Of\
» (J
0 .0
0. 0
0.0
O.A
• ' J

Of\
• u
0*0
On
• (J

0.0
0.0
0.0
0. 0
0.0
-0.330452B302D
-0.2640GOOOCCD
0.0
0.0
0.0
0.0
0. 0
OA
•0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 53575176260
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o

0.0
0.0
0.0
0.0
-0.6t;G 16452050
-C. 1383426036D
0.0
0.0
0.0
OA
.0
o.o
0.0
0.0
0.0

o.o
o.o
0.0
0.0


0.0

•o.o
0.0







oa
07











10


10
03



















                                         68

-------
0.0
0.0
3. fiC 6 5827^ol> 09
O . '-t^S 3 A 545't50 C7
0. 0
n.o
0.0
0. 0
0.0
0.0
0. 0
0.0
0. 0
0. 0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0 . 0
0. 0
0.0
0. 0
0.0
0 . 0
0. 0
0 .0
0. 0
0. 0
0.0
0. 0
0. 0
0. 0
0.0
0.0
0 .0
0 .0
0. 0
- .1. 4964285 7 14D CO
0.0
0.0
0.0
0. !)
o.o
0.0
0. 0
0.0
0.0
0.0
o.o
3.0
0.0
0 . 0
C. 0
0.0
0.0
0.0
0.0
o. c
0. 763»k.yi3U7D C9
0.0
0. 0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0. C
0.0

0.0
0.0
0.0
0. 0
0.0
-0.3780J043960 10
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
o.o
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.c
0,0
0. 0
0.0
0.0.
0.0
0.0
0. 0
o.c
0.0
0. 0

0.0
0.0
0.0
0.0
o.c
0.0
0.0
0.0
o.o
0.0
0.0
-0.2i>7-tC7'V07'*D 05
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
"O.'O
0.0
C. 3 737591 2 500 10
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
	 - 	
0.0
0.0
c.o
0.0
0.0
-C, 151264CCOOD 10
0.0
-0. 4077 J33'J33D 07
0.0
0,0
0.0
0 .0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.67868544600 07
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
• 0.0
0.0
0.1&6636019CO 10
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
•o.o
0.0
69

-------
0.0
0.23261. C-,.i'i330 10
0. 0
0.0
0.0
o.o
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0. 0
0.0
0.0
0. 0
0.0
0.0
-0.1/t9<;76Gr<70n C7
-0.64BoU-.66h /() 07
0. 0
0.0
0.0
0, 0
0.0
0.0
0.0
0.0
0. 0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0 .0
0. 0
0.0
-o.H'.b /Jio;o3D 07
0. 0
0."
O.'J
0. 0
0 . 0
0,0
0.0
0.0
0.0
0. 0
0.0
0. 0
0.0
0.0
•0.0
0 .0
-0. 2 27 O-'r '.>(•••.' 0 'it! 10
-O.P84I 'rVlJMl'O C7
0.0
-0.227 14 H6 6670 10
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0

0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.530723S.r38D 10
0.0
0. 0
0.0
0.0
0 .0
0.0
0.0
0.0
0.0
0,0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.c
-0 . 10cJ7030303D 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
o.c
0.0
0.0
0.0
0.0
0.0
0.0
o.o .
0.0
0.0
0.0
0.0
0,0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
c.o
0.0
0.0
0.0

c.o
0.0
0.0
0.0
0.0
fl.O
0.0
0.1^5899254600 10
0.0
0.0
c.o
0.0
0.0
0.0
c.o
0.0
o.o
c.o

G.O
0.0
0.0
0.0
0.0
c.o
0.0
-C. 72074074070 08
0.0
-0.49b42b5714U
-0. b458909091!)
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
-0.529925641CD
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
-0. L5140773330
-0.72074074070
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0

0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0. 2353535044D
0.0
OB
07
















10



















10
OS


















10

70

-------
o.o
o.o
o.o
o.o
o.o
o.o
0,0
0. 0
0.0
0, 0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0.0
o.o
°* 36912863070 C7
o.o
0.0
o.o
o.o
0. 0
o.o
o.o
o.o
o.o
0. 0
o.o
o.o
o.o
o.o
0. 0
'3 • 5815R99582D 07
0. o
o.o
o.o
o. o
o.o
o.o
0. 0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0. 0
o.o
o.o
o.o
o.o
o.o
O.o
o.o
0.0
0.0
0.0
0.0
0. 0
0. C
0.0
0.0
0.0

0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 76031589960 C9
0.0
0.0
0. 0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
o.o
0. 0
0.0
0.0
0.0
o.o
0.0
0.0
-0.12340487800 08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
• -0.755^3 7't07'rD 09
0.0
-0.706Y796610D 07
0.0
0.0
0.0
-0. ltK963o3o40 O/
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
o.o
0, 0
0?*,
0.0
0.0
0.0
0.0
- 0.0
0.0
c.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n n
U . \J
0.0
-0. 7067 7966100 07 .
0.0
0.0
c.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0. 7626Z51210D C9
Crt
. T
0.0
-0. j.
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0

0.0
0. 0
0.0
0.0
0/\
• 0
0/-S
. 0
0. 0
_ n PI
L' . O (
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
... o.o
' 0.0
0.0
0.0
0.0
0.0
0. 0
' .0
^r • V
0.0
0.0
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
                   -O.G845454545D  07
71

-------
0. 0
o.o
0. 0
0.1
o.o
o.o
o.o
o.o
o.o
o.o
0. 0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o. o
o.o
0. 0
o. o
o.o
0.0
o.o
O.o
o.o
o.o
o.o
0. f)
O.o
0.3
o.o
O.o
o.o
O.o
O.o
o.o
0.0
o.o
o.o
o.o
0. 0
0,0
o.o
o.o
O.o
0.3
O.f)
' °. 7 j 06 GOOD 00!) Oli
o.o
o.o
0. .1
o.o
o.o
0.0
0.0
0.0
0. 0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
o.c
0.0
0.0
0.0
0.0
0.0
0.0
- o.o
0.0
0. C
0.0
• 0.0
-0.15060COCCOD 08
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0..0
0.0.
o.o
o.o
0.0
0.0
o.o
O.G
0. 177'J655o64D 10
0.0
-0.417M3354CO 07
0.0
o.o •-
0.0
0.0
0.0
c.o •
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
-C.37018912t.SD 10
0.0
0.0
0.0
c.o
0.0
o'.o'
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
-Q.605S870303D 09
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.-o
0.0
0.0
0.0
0.0
0.0
0.0
-0.9:7C0703U3n 09
0.0
-0. / 92 '3 3 00 GOOD 09
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0

0. 0
0.0
0.0
0.0
0 .0
0. 0
• o.o
Of\
. 0
0. 378G83497SO 10
0/\
. 0
-0.6943 71 04 C7D 07
Of\
.0
Of\
.0
Of\
. 0
Of\
• 0
OA
• 0
Of*
• 0
0.0
o.o
0.0
Of\
• 0
0.0
0.0
Of\
• 0
0.0
0.0
0.0
0.0
o.o
0.0
0. 0
o.o
0.0
0.0
D 0
w . vy
0. 0
0.6
0.0
o.'o
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0

72

-------
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o. o
0.0
0.0
0.0
0.0
3.0
0.'}
-0. 758691.2 R63D 09
0.0
O.H23"3tiO'3565D C9
0.0
0.0
-D.b2329/,1176D 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
o.c
0.0
0.0 ,
0.0
0.0
-0.3753COOOOOD 03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0. 0
0 .0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
-0. ^456129030 06
0.0
• o.o
0.0
0.0
G. 0
0.0
0.0
0.0
0. 0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 1 5643 20 19 50 10
0.0
-C.1C7Q559006D 07
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
-0. U9000COOCD C3
0.0
0.0 	
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
-0. lbll8L9o36D
0.0
-0. L 3 90 0000 ODD
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0

0.0
0. 0
0.0
0.0
0. 0
0.0
0,0
-0.75533696S70
0.0
0. 761JJ751063D
0.0
-0.13dL366460D
0.0
0.0
0.0
0.0
0.0
0. 0

0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0











10

08
















09

09

06

























73

-------
o.o

0.0
o.o
o. o
o.o
0.0
0.0
0. 0
o.o
0.0

o.o'
0. 0
o.o
O.o
o. o
o.o
o.o
o.o
o.o
0. 0
o.o
o.o
o.o
O.o
O.o
o.o
o.o
0. o
o.o
0. 0
o.o

o.o
o.o
o.o
0. o
o.o
o.o
o.o
o.o
O.o
o.o
O.o
O.o
o.o

O.o
o.o
0. 0
o.o
o.o
O.o
o.o
o.o
o.o
o.o
o.o
O.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
•0.60523404B8D 1C
0.0
0.91374169550 10
0.0
0.0
•C. 33608913 5220 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
o.o"
0.0
0. 0
0.0
0.0
•0.22 59442 23 ID 07
0.0
0. 0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0 .0
0.0
0.0
0.0
0.0
o.c
o.o.
0.0
0.0
0.0
0. C
\.t • \J
0.0
0.0
o.c
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
-0. 30;'22i>
-------
0.0
0.0
0. 0
0.0
0.0
0. 0
0.0
0. 6:5766782610 09
0.0
0. 66 ^260 9 2 5 70 09
0. 2965333333D C7
0.0
0. 0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
OcO
0.0
0.0
0.0
0. 0
0.0
-0. 5?'-t3376623D 03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0 .0
• 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0 .0
0. 0
-0.53433760230 08
0.0
0.0
0.0
0. 0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
-0. 16651 786340 10
0.0
0.17963000061) 10
-0. 29653E-.3333D C7
0.0
0,0
0.0
0 .0
0.0

0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
-0. 7'»«072 72730 02
0.0
0.0
O.C
0,0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
c.o
0.0
0.0
• o.o
0.0
0.0
0.0
0.0
0.0
-0. 7^807^72730 C8
0.0
0.0
0 .0
0.0
0.0
c.o

0.0
0.0
0.0
c.o
0.0
0.0
0.0
0.0
0.0
-0. 7!i£>07Q5!J90fi C9
0 .0
0. bi>52 166 7K'D 09
.-0. 2 <; 6 13333 3 3 30 C7
0.0
0.0
0.0
0.0
0,0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0. 0
0.0
0.0
0.0
0 .0
0. 0
0.0
0.0
0.0
o.o •
0.0
0.0

0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
o.o
0.0
-0.2137350649Q 03
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
75

-------
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
o . o
0.0
0.0
0.0
0. 0
0.0
0. 0
0.0
0.0
0. 0
0.0
0.0
0. 0
0.0
0. 0
0.0
0.0
-0. 60696333330 C9
0 . 648397'K-!i! I'J C<3
0.0
0. 0
0.0
0. 0
0 .0
0.0
0. 0
0.0
0. 0
0.0
0.0
0. 0
0.0
0.0
0. 0
0.0
0. 0
0.0
-C . 39360 'J4'i 100 08
0. 0
-3.181036471)00 C7
0. 0
0.0
0.0
0. 0
0.0
0.0
0, 0
0.0
0 . 0
0. 0
0 .0
0.0
0 .0
0 .0
0. 0
0 .0
0.0
0.0
0.0
0.0
0.0
.0.0
o.o 	
0.0
0.0

0 .0
0.0
0.0
0.0
0.0
0.0
o.c
0.0
0 .0
0.0
0 .0
0.0
-0. J9 36)3944 ICO 03
0.0
o.c
0.0
0.0
0. 0

0.0
0.0
0.0
0 , C
0.0
0.0
0. 0
0.0
0.0
o.c
0.0
-0. 166396 53.-.- 3D 1C
0 . 1 7569153 oK40 1C
0.0.
0.0
0.0
0. 0
0.0

0.0
0.0
0.0
0. 0
c.o
0.0
o.c
0.0
0. 0
0.0
0 . 0
0.0
0.0
0. 0
-o.::i
o.o
0. 0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
O.i)
0.0
... o.o
0.0
0.0
0.0
c.o
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
c.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
- o . r>
0.0
0.0
0.0
0.0
0.0

0.0
0 . 0
0.0
0.0
0.0
n.o
c.o
0.0
                     0.0
                     0.0
                     0.0
                     0.0
    :573306490 08
     331242240  Oo
 0. 0
 0. 77735v)aaiZD 09
-O.C472360^52D 06
 0.0
 0.0
 0.0
 0. 0
 0.0

 0.0
 0.0
 0.0
 0.0
 0.0
 0. 0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
-0.20631^46540 07
 0.0
 0.0
 0.0
 0.0

 0.0
 0.0
 0.0
 0.0
 0. 0
 0.0
• 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 0.0
 0. 0
 0.0
 0.0
 0.0
 0.0
 •o.o
 0.0
76

-------
0,0

o.'o
o.o
o.o
0.
0.
o.o
O.o
0. 0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
O.o
o.o
o.o
o.o
o.o

0*3
o.o
o.o
c.o
O.o
o.o
O.o
0. o
o.o
C.o
0. o
o.o
o.o
o.o
o.o
o. o
o.o
o.o
0. 7*
o.o
o.o
o.o
o.o
o.o
o.o
°°
o'.o
o.o
0. o
o.o

0*0
o.o
o.o
               09
               09
                     0.0
                     0.0
                     0.0
                     0.0


                     0.0
                    -0. 2313 2 704 403 U 07
                     0. 0
                     o.o
                     0.0
 0.0
 0.0
 0.0
-(!. 75796533330  C9
 U.iJ429^ol54D  09

 0.0
 0.0
 0.0
 o.o
 0.0
 0.0
 0.0
 0.0
 0. 0
-0.30666335400  03

 0.0
 0.0
 0.0
 0. 0
 0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
o.c
0.0
o.c
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.c
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.21'V3726027D 03
0.0

0.0
0.0
0.0

0.0
0.0
o.o
0.0
0.0
o.c
0.0
0.0
o.o
0.0
-0.f;0'j'J360B96D 10
0.0
0.0
0.0
0.0
0.0
0 . 0
0 t j
0.0
0.0
0.0
0.0
. 0.0
-0. 3C66633540D C3
0.0
-0.1573584906D 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
o.o
0.0
0. 0
0.0
0.0
o.o

0.0
0.0
0 .0
0.0
o.o
o o
*J • V1
0. 0
„' • V
0.0
0 .0
0.0
0.0
0.0
0.0
0.0 •
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
-0.755B4723810
0. 7i)8G67l'J840
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
'••' o.o
0.0
0.0
0.0
0.0
0.0
-6.' 12434 504 79D

0.0
0.0

0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
09
09




07












                                         77

-------
0.0
0.0
0.21!J972t>02 /J C8
0.0
0.0 .
0 . 4 6 M 3 3V) IT Q C 7
0. 0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0. 0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0. 0
-0.60606 31 'i 4 70 C9
D.O
-0. ?.4?.?.1\ .t'-t710 CO
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0. 0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
o.u
0 . 0
0.0
0. 91 L09;-">.',2 70 1C
0.0
0. 0
0. C
0.0

0.0
0.0
0. 0
0.0
0, 0
0. C
o.o.
0. C
0.0
0.0
0.0
0.0
0. 0
-0 . 4 55 107:i 4050 10
o.o . . . 	
0.0
-0. /i 3 89 4 7 368 40 07
0.0

0.0
0.0
0.0
• o.o
0. 0
0.0
0 . 0
0.0
0 .0
0. C
0.0
0. 0
0.0
0.0
C . 0
0.0
0.0
0.0

0 . 0
0. C
0 .0
c.o
u. C
•? .0
0 . 0
0.0
0.0
;> . o
o.c
0 .0
-c . u.tijtu o'.u»sn 10
0. 0
0.0
o .a
-C.2 l'037Q37o4D 03
0.0
0 . i) -
0. 0


0.0
0.0
0.0
0.0
0.0
0 . 0
0 , 0
0.0
0.0
0 .0
-0. 15141251610 10
0.0
0 . 0
0.uC6959004lT) 10
o.o 	
0. 0
0.0
0.0

0.0
0.0-
0.0
C' . 0
0, 0
0.0
0.0
ii. 0
0.0
0.0
c.o
0.0
0.0
0 . 0 ..
0.0
0. 0
0.0
0.0
'
0.0
0.0
0 . 3
e..)
C. 0
0.0
0.0
0 . 0
0. 0
0. )
(J . 0
0.0
0 . 0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0

0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
o.o
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0,0
0. 0
0.0
0.0
0. 63097952'«2D
-0.69319480520
0.0
0.0
o.o
-.
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
•o.o
-0.2422 31B471D








































09
06

















Oij
78

-------
     •;;•. o:::  ,-.,.: j  i.>    --;. ,v,,:.^ i.c,7io
      /,M //A 7--j  :t>     ). ;
                        •.'.0
                        o. o
 '». 3                    0.0
 3. )                    0. 0
 •». 3                    0.0
 3.3                    J.C
 o. ••>                    r . o
 0 . 3                    0. 0
 0.0                    0.0
 0.'}                    0.0
 0.J                    O.C
 0.0                    0.0
 0.0                    0.C
 0.0                    0.0
 ••). )                    0.0
-0..' .22313-+7 ID  C8     O.yli U73A1AD  C9

 3.0                    0.0
 0.0                    O.C
 1. D
 3.0                    0.0
 0. 0                    0 .0
 0.0                    0.0
 0.0                    0.0
 0 .0                    0 .0
 0. 0                    0 , 0
 0.3                   -0.0
 •\ "3                    0.0
 0. .3                    (3.0
 •i.-y                    o.o
 ). 0                    o.o
 o.o                    o.o
 0.0                    0.0
 '».  3                    0.0
 0.0                   -T. 322V757-76jn  08
 ;. 0                    0.0
 -).  3                    O.C
 ).3                    0.0
 •\ o
 ),3                    O.C
 o.  j                    o.o
 ;.  }                    0.0
 .•».o                    o..o
 ;.0                    0.0
 0. ')                    0.0
 \  .3                    0.0
 r .3                    0.0
 \  1             .       0.0
 •i.O                    O.C
 0 . •?                    •.-. 0
 \  I                     3.0
 .'. .3                     3.0
 }.0                     3.0
                         3.0
      /. ::,^fi-t 3710  Oti     ?.0
                        0 .0
o. )
0. )
o.o •
o.o
0 . 0
0 . 0
0 , 0
0 . 0
0.0
0.0
c.o
0.0
0.0
0 . 0
0.0
C . 0
-C, 757'j5^7CA-VD C9
G.O
-0.3^2^757^620 03
0.0
0,0
0.0
0 . 0
0.0
o.;:
o.o
0.3
o.o
o.o
c.o
c.o
0.0
0.0
0.0
0.0
0,0
0. 7/J^£!lS0372r> 09
-O.'/'iJc 7267900 06
C. 3
0.0
0. 0
0.0
0 ; 0
c.o
0.0
0..3
1 0.0
C. 0
c.o
c.o
0.0
0.0
0.0
0.3
o.o
o.o
-0. l^i^-Wvf.D 07
>. J
: . o
0. J
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
c.o
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0. 7i.6573f>6't9D C9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
3.0
0.0
J.O
3.0
D. 0
0.0
0.0
-0. oO'+o'J Jl'^tD ?.')
"i ,c-3<:<:!;}333 loO CN
0.0
0 . 3
                                               79

-------
o.o
o.o
0.0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
O.Q
o.o
o.o
o.o
-0. 1661S172180 10
°« 1732<} .',01 940 10
0.0
0.0
0.0
0.0
0.0
0,0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o'.o""* f'b018D 10
~0- 21416296300 07
0.0
0.0
o.o
0. 0
o.o
O.o
0. 0
0,0
o. o.
o.o
o.o
0. o
o.o
o.o
0. o
o.o
O.o
o.o
o.o
0. o
o.o
0.0

0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
0 .0
0. 0
0. 0
0.0
o.o 	
- 0.14 1880 U:C2l) 08
0.0
. 0.0
0.0
0.0
0.0
0.0
0.0-
o.o
0.0
0.0
0 .0
. 0.0
0. C
0.0
0.0
. 0.0
-a. 75594387270 09
C. 230305 17C2D 10
0.0
0.0

0.0-
0.0
0.0
O.C
0.0
0.0
0.0
0.0
0 . C
c.o
0.0
0.0
. 0.0
0.0
o.o
-0.2577«liild20 00
0.0
-0.36937(^2940 06
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
. 0.0
c.o
0 .0
0.0
0.0
0.0
- 0.0
0 . 0
-0.2577818132D 03
0.0
0.0 -

0.0
0.0
0.0
0.0
• 0.0
0 ..0
0.0
0.0
0.0
c.o
0.0
0.0
0.0
0.0
-0. 75594387270 09
0.0
0.0
0.0
U. u

0.0
Dl*\
• o
0. 0
0/"\
. 0
Of^
. 0
0. 0
0.0
0. 0
0/\
. 0
0 .0
0. 0
0.0
0.0
0.0
-0.25
0.0
-0.13
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0

0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
' o.o
-0.13 49 11 764 70 07

-------
0.0
0.0
0. 0
o.o
o.o
o.o
0.0
0. 0
o.o
o.o
o.o
0.0
•3.75<-.243'f5050 09
0.0
0.0
•3- 14375055 G6D C8
0. Q
0 .0
o.o
o.o
o.o
o.o
o.o
o.o
0. 0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
°« 5213440627D 10
0. 0
o.o
o.o
o.o
o.o
0. 0
o.o
o.o
o'.o
o.o
0.0
0.0
0. 0
o.o
o. o
o.o
O.o
'°* 5077CCOOOOO 07
O.o
•0. V)5 7961 7831) 07
o.o
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.c
0.0
0.0
0 .0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o'
0.0
0. 0
0.0
0.0
-o.o
-0.4534633333D 10
0.0
0.0
• -0.76057700000 09
0. 0
0.0
0.0
0.0
0.0
o.c
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.6055324^350 10
0.0
0.0
0.0
0.0 - -
0.0
0.0
0.0
0.0
0. 0
o.o
0.0
0.0
0.0
0.0
o.o
0.0-
0.0
0.0
0.0
0.0
0.0
-0.17983235290 07

0.0
0.0
0.0
0.0
o.o .
0.0
0.0-
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o .
0.0
0.0
0.0
0.0
o.-o
0.0
0.0
0.0
0.0
-0.6044389W4D 10
0.0
0.0-
0.0
0.0
0.0-
0.0 .
0 .0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0. 772418129SD 09
0.0
0.0

0.0
0 .0
0/\
. 0
Of\
» 0
OJ«I
.0
0. 0
0 .0
0. 0
0. 0
Of\
• 0
0. 0
Of\
. 0
On
• 0
0. 0
Of\
.0
-0. 143758558&0 C8
T3'54437370D 07
- . t
0.0
•• /V rt
0.0
0.0
0.0
Of\
, 0
Of\
. 0
0.0
0.0
0,0
o. 6
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0. 0
0.0
81

-------
0. 0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
-D.1523'*9117GD 09
0. 0
-0.49518 750COD 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0 .';
0.0
0.0
0.0
0.0
0.0
o.o
0.250a010052D 10
0.0
0.0
0.0
0.0
.0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. C
0.0

0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. C

0.0
0.0
0.0
0.0
o.c
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
-0.226714L6300 M
0.0
-0. IQ094Q4762D ns

0.0
• o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o 	
0.0
0.0
0.0
o.o 	
0.0
o.o 	 •
0.0
0.6165267929D 39
0.0

0.0
- 0.0
0.0
0. 0
0.0
0.0
0.0
- 0 . 0
0.0
0.0
0 .0
0.0
0.0
o.o.
0.0
0.0
-0. -16257164560 09
0.0

0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
c.o
o.o
0.0
0.0
0.0
0.0
0. 0
. — .
0.0
c.o
0.0
c.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
-0.605 '3562 95 3D
0.0
-0.9501265323D
0. 0 '

0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0. 0
0. 0
0.0
0.0
0.62293063820
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0 -
0.0
•0.0
0.0
0. 0
0.0
0. 0
0.0
0.0
0.0
-0.3069 51 8 7 500
0.0

0.0
0.0
0.0
0.0
0. 0
0.0
0,0










09

07


















09


















09









82

-------
0.0
o.o
0.0
0. 0
o.o
0. 0
o.o
o.o
0. 0
o.o
-0. 3 12 12 7142 VD 09
o.o
o.o
0. 0
o.o
0. 0
o.o ^
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o .
0. 0
0. 0
o.o
o.o
0.0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
O.o
0. 0
o.o
o.o"
-3.152155154221) 10
0.0
0.0
o.o
0. 0
o.o
o.o
o.o
o.o
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0. 10940V4979D 10

0.0
0.0
0.0
0.0
o.o 	
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
-0.21or'r'B29C6D OB

O.C
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0. 0
0.0
o.o
0 .0
0.0
0.0
o.o
0. 0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
o.o
0.0
0..)
0.0
0.0
0.0
0.0
0.0
0.0
C.O
-0 .7 li^36'
C.O
-0.2 lob ';<

.0.0
0.0
0.0
0.0
0,0 .
0*
o,;)
0,0
.0.0
o.o
0.0
0.0
0,0
0.0
C.O
0.0
o.o
0. 7<"/jij2

C.O
0.0
0.0
0.0
0.0
0,0
C.O
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
-0.1334''

0. 0
0.0
o.o
0 .0
G.O
o.o
0.0
C.O
. 0.0
0 .0
                     0.0
                     0.0
                     0. 0
                     0.0
                     0. 0
                     0.0
                     0.0
                     0.0
               09    0.0
                     0. 0
              '.08    0.0

                     0.0
                     0.0
                     0.0
                     o.o
                     0.0
                     0.0
                     0.0
                     0.0
                     0. 0
                     0.0
                     0.0
                     0.0
                     0. 0
                     0.0
                     0.0
                    -0. 756793fa235D 09
                     0.0
               CO   -0.13344)00000 08

                     o.o
                     0. 0
                     0.0
                     0,0
                     0.0
                     o.o  •
                     0.0
                   •* * *«*
                    • o.o
                     0.0
                     0.0
                     0.0
                     o.o'
                     0.0   .
                     ',0    -
                     0.0
                     0.0
                     0.0
         r;COOD 00    0.6<33630-3:38'3D  10

                     0.0
                     0.0
                     0. 0
                     0.0
                     0.0
                     0.0
                     0.0
                     0. 0
                     0.0
                     0.0            .  .
83

-------
  0.0
  0. 0
  0.0
  0.0
  0.0
  0.0
  0.0
  0.0
  0.530487£>040n  10
 0.0                  0.0
 0.0                  0.0
 0.0                  0.0
 0.0                  0.0
 0.0               .0.0
 0.0                  0.0
-0.i>289957962D  10     0.0
 0.0                  0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
-0.11555421690  08
. 11426
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
9) 110.37(30480
0.0
0.0
. . 0.0 -
0.0
0. 0
0.0
0.0
0.0
0.0
0. 0
0.0
100.0 ...
0. 0
.0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
'0.0
0.0
o.c 	
0.0
0.0
0,0 .
0.0
0.0
0.0
0.0
0.0
. o.o
0.0
0.0
-0.0
0.0
0.0
0.0
0.0
0.0
0.0 -
0.0
0.0
• 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
.0

.90) GOOD 09C.lC'iOOCD 100.41,70000 090.6M4COOD 090.441000D 090.3145000  09

.3511000 C90.2/72000 090.292600U 090.2926COD C90. 1102001) 09C. 1102000  C9

. 10040") J C90.9720CCD 080. 15 660CD- 090 .1 22900D 090.1229000 090.1229000  09

.2214000 Q90.1845COD 090.1845001) 090.124*1000 090.371,0000 030.3260000  OB

,432oCOD 090.9700000 070.3629COD  90.14590CD 090.60GODOU 030.1690000  08

.9500000 000.7600COO 030.1224000 090. 5304CCO C 70. 2800000 CDO.2333300  09

.3280C01) 080.4430000 090.3280000 OH0.1150COD 030.5408000 090.332800D  C9

. U9600D 090.4C.12CO!) 090.444000D 000.5770000 0/J0.43UOOOO 030.266JOOD  00

.45:0000 080.3234000 080.56ti')OOD 080. 2156CCD 000.166300D C9C.4026000  09

,36-3oOi^ 090. 3937 COD -OftO. 393 70 CD GtfO.4937 OOD 030.1D7500I) 000,593^000  08

.6656000 080.632*3000 OtfC. 4COOOGO 0»0. 2-iJ5GCr' C90. 37260CD 090.3864000  09

.lli-'iCOO 090.2125000 O90.l9t»0000 090. 33620CD C90.3123000 C90.441600D  09

.331200D  09
                                            84

-------
         APPENDIX  D




DESCRIPTION OF SUBROUTINE SLE1
               85

-------
COMPUTING CENTER MEMO #M46
                 LIBRARY SUBROUTINE DESCRIPTION

                  Simultaneous Linear Equations

                            and
                       Matrix Inversion


SIMULTANEOUS LINEAR EQUATIONS

     The subroutine.SEL.solves a set of simultaneous linear
equations AX=B or X A=B , by Gaussian elimination, with partial
pivoting, and double back substitution.  All floating point
numbers are presumed to be double precision (REALMS).

     A  is a general NxN matrix of coefficients.  The dimensioned
        column length of A is LENA

     B  is the right-hand matrix with N rows and NSOL columns

     X  is the solution matrix with N rows and NSOL columns

The dimensioned column length of B and X is LENBX,


METHOD*

     For ease of presentation, the permutation of rows due to
partial pivoting will for the present be ignored.

     The maxtrix A is decomposed into triangular matrices L
and U such that A=LU.  L is a lower triangular matrix with ones
along the diagonal, and U is an upper triangular matrix.  This
decomposition is performed by the subroutine LRD which is called
by SLE.

     The system AX=B in the form (LU)X=B can be easily solved
via the two equations LY=B and UX=Y..  We have:

T V — D        ..
Lii -D        y,,
              IK                            i tr   \
         1  v   4-    v                 -• K     )
          21 Ik       2k               "~  2Y  /
                                                 k = 1,NSOL
'"'For a full description of this method and related topics
 see 'Computer Solution of Linear Algebraic Systems' by
 George Forsythe and Cleve Moler, published by Prentice and
 Hall.
                             86

-------
CCMEMO #M46
and

UX=Y:
ullxlk
         U12x2k

         U22x2k
                                    u2NxNk
                                    UNNXNk =
                                                    k=l,NSOL
     The double back substitution expressed by these two sets
of equations is performed by the subroutine DBS which is called
by SLE.  Similar1 ly, the subroutine DBST performs the double
back substitution for the system X A=B .


SUBROUTINE LRD

     This routine computes the LU decomposition with partial
pivoting of an NxM matrix A.  The triangular matrices are stored
in a single matrix T.  Thus we have for a square matrix:
A=
L21
         aNl aN2
              12N
              *NN
"T  =
                                 U
                                   12
                                                   * U
                                                      1N
                                           u
such that
LU  =
     32
                    0
                                     U12 U13 •
                                         U
                                33
                                    o
                                         U
                                           1N
                                      22 U23 ' * * U2N
                                         U
                    3N
~ PA
where PA is the matrix A with some of its rows interchanged.
                             87

-------
  CCMEMO  0M46
      If the parameters for A and T in the calling sequence are
 set equal, then A will be destroyed during execution and re-
 placed by the matrix T.  If they are not equal, then A will re-
 main unchanged.

      LRD uses Gaussian elimination with partial pivoting.  Con-
 sider a general NxN matrix A.  The largest element of the first
 column of the matrix A is found, and the row in which it occurs
 is interchanged, if necessary, with .the first row of the maxtrix,
 The elements of the first column are divided by the pivot ele-
 ment:
 and the remaining columns are processed according to the equa-
 tion:
          aj  =  a^ -   l*alj     i=2,N>      j = 2,N


 —the superscript indicates processed elements i

      The residual matrix A  consisting of  the elements  (a.'. )
 for i=2,N,  j=2,N is treated in the same way as was  the     -1
 original matrix A.  A pivot is found in the first column,  inter
 change of the pivot row with the first row of A  takes  place
 if necessary, elements of the first column are divided  by  the
 pivot then  the remaining columns are processed according to the
 equation


        a?,   s'aj.   -  a?*a*.     i=3,N,      j=3,N
         ij       ij       X£   £J

                              M  9
      When we have  processed  A   ,  a 2x2 matrix,  the decomposi-
 tion  is  complete.

 For a rectangular  NxM matrix our inner loop  equation becomes


   a..   =  a..  -   a.  *a,.    i=k+l,N,   j=k+l,M    k=l,min(N,M)
    1]       13       1JC  Kj

 Slightly different  steps are  taken  in  the  final  stages  of the
 routine  to cover the  two cases HM.

     All interchange  information is stored in a  permutation
 vector during the decomposition.  This integer vector IPERM
has length 2AN"t>ut  can be thought of as N pairs  of elements.
Thus

-------
CCMEMO #M46
     IPERM
IPERM(l)
IPERMC2)
IPERMC3)
IPERMC4)'
 !PERM(2*N-1)
»IPERM(2*N)
Interchange information is stored in IPERM(l),IPERM(3) ,... ,
IMPERM(2*N-1).  These elements are originally set to zero, but
if at the ith stage, we interchange row i with row j, then we
set IPL'RM(i) = 8CJ-1).     (j>i)

The permutation is stored in IPERMC2),IPERM(4),...,IPERM(2*N).
These elements are originally set to 0 ,.8,16,... ,8(N-1) and two
elements are interchanged as the corresponding rows are inter-
changed.  Multiples of eight are used for both parts of the
permutation vector since  these elements are used to reference
the double precision (8 bytes) elements of A,'T, B and X.
Since the final interchange element, IPERN(2AN-1), is never
needed for interchange informal* on, we use this element to store
the sign of the permutation, +1 or -1.  However, if the matrix
A is found to be singular, then zero is stored in IPERM(2*N-1).
Since the produce of the diagonal elements of the T matrix and
IPERM(2*N-1) is equal to the determinant of the matrix A,  then
a zero along this diagonal is the test used for singularity.

EXAMPLE  Decomposition of a general 3x3 matrix.
Consider


4.
1.
2.
~4.
0.
.?•
*4.
0.
-°-
"*4.
0.
J).
4.
0.
.°-


0
0
0
0
25
5
0
25
5
0
25
5
0
25
5


2.
2.
0.
2
2
0
2
1
-1
2
1
-0
2
1
-0


0 4
0 0
0 -3
.0
.0
.0 -
.0
.5 -
.0 -
.0
.5
.667
.0
.5
.667
A


.0
.0
•°-
4.0
0.0
3.0
4
4.0
1.0
5.0







1.0 2.0 0.
4.0 2.0 4.
_2.0 0.0 -3.
max ( a .
0
0
0_
. ) = 4.0 for i=2,3, so




•i-J
we interchange the first and

•M

MM
•

1
second
a1 =
rl

•P

w
4.0"
-1.0
-5.0
al


V
In the
rows
a. /a1 i=2,3
11

1 * 1
= a±. - ail*alj
i=2,3, j=2,3
residual matrix








1-1*0 -5*0 l» the Pivot element
L" * * J is 1.5, no interchange
_ is required and a00 = a00/l.S
4.0
-1.
0 Final
f. *J O f.
element is processed


5C C *7 ^ _ -*- ^ A d-
* ^'ji ^•Q'a "" ^oo^-oo
                             89

-------
   CCMEMO //M46
   initially
        The permutation vector for this  decomposition would be
                                         80-1
[
0  0  0
0  8
,  and finally
               8  0
                                                16
   Thus
        LU
 1.0    0.0    0.0
 0.25   1.0    0.0
 0.5   -0.667  1.0

 4.0  2.0   4.0
 1.0  2.0   0.0
 2.0  0.0  -3.0
              4.0  2.0   4.0
             .O.'O  1.5  -1.0
              0.0  0.0  -5.667
                                       = matrix  A with first and
                                        second  rows  interchanged,
        Rectangular matrices are  also  decomposed such that PA=LU,
    For an NxM matrix with N>M we  have:
   A  =
                 •  *  •
                       12M
        aMl  aM2
         aNl  aN2
                 T  =
                                             U12 '  '  •'  U1M
                             U
                21  22 *
                                                       U
                                        2M
                         •"-Ml XM2  *  '  " U
                                                        1MM
                                                        NM
    such  that
    PA =  LU  =
                 21 1
                          O
                 .I
                                        U
                         12  '
                     '  * U1M
                                        U22 ' * * U2M
                                     O
                                                  u
                                                   MM
                                90

-------
CCMEMO #MU6
EXAMPLE
A =



1.0
-2.0
0.0
L 2.0
The permutation
0.0
3.0
-1.0
4.0 „
•* T =



-2.0 3.0
-1.0 7.0
o.o -0.143
-0.5 0.214
vector in this case is IPERM =




8 24 0 1
8 24 16 0
     For the rectangualr matrix v;ith N
-------
CCMEMO #M46
SUBROUTINE DBS

     This subroutine performs the double back substitution for
the system of equations LUX=PB (obtained from AX=B, where
PA=LU).  The triangualr matrices L and U are stored in a matrix
T which was set up in a previous call to the subroutine LRD
together with the interchange information stored in the vector
IPERM.

LUX=PB is solved via the two equations LY=PB and UX=Y.

Thus out first step in solving these equations is to permute
the elements of B.  We thus have:
LY = PB:
ylk  =  blk
                an
     =  b.,  -
         ik
                             l • • *y •
                         .s
                               i=2,N,    k=l,NSOL
where .the superscript on the b..  represents the permuted ele-
ments of B,                    •*
UX = Y:
 'Nk
                               and
           x
            ik
        
-------
CCMEMO
Let D =
•H.O
 6.0

 1.0
therefore PB =
Solving LY=PB, we get
 6.0

r«f.O
 1.0
     0.25y1 + 1.0
     0.5    - 0.667
                                  vi  =   6'°
                                  y2  =  -5.5
                                  y3  =  -5.667
Solving UX=Y, we get
            u.o
            1.0
           =  6.0

           = -5.5
            5.667x3  =  -5.667
                                           x.
            =   2.0

            = -3.0
                                           x3 =  1.0
SUBROUTINE DBST

     This subroutine performs the double back substitution for
the system of equations X p LU=B  (obtatined from X A=B , where
PA=LU).  The triangular matrices L and U are stored in a matrix
T which was set up in a previous call to the subroutine LRD
together with the interchange information stored in the vector
IPERM.

XtPtLU=Bt is solved via the two equations YtU=Bt and XtPtL=Yt.

We thus solve:
    = B
                       and
            (b   -
                       ki -  .   Ujij
                        ,,  i=2,N,
        yt.
            ykN     and
                     y]f. -  ^  1Tiv-xkj  isN-l,l,  k=l,NSOL
                            j=N
                             93

-------
CCKEMO //M46


     The elements of x..  are members of the matrix X P ,  so the

final step in the solving of this system is to back permute the
         t t
rows of X P  and thus we obtain the final matrix X.
     As in DBS, if the parameter for B and X are set equal in
the calling sequence, then B will be destroyed during execution
and replaced by X.  If they are not set equal then B will re-
main unchanged.
MATRIX INVERSION

     The subroutine INV computes the inverse of an NxM matrix
A.  All floating point number! are presumed to be double pre-
cision (REAL*8).
METHOD

     The matrix A is first decomposed into triangualr matrices
L and U such that PA=LU.  L is a lower triangular matrix with
ones' along the diagonal and U is an upper triangular matrix.
PA is the matrix A with some of its rows interchanged due to
the partial pivoting employed during the decomposition.

     We have PA = LU   or   A = P"1LU


     Thus  A"1 = (P'-'-LUr1 = iT1!/1?

INV calls the subroutine LRD to perform the -decomposition and
calls the subroutine INV1 to compute the inverse of L and U
and hence A" .

     INV itself is just an organizational routine which calls
LRD and INV1 and provides scratch storage for INV1.

     The subroutine LRD is described in an earlier section of
this write-up.  The tirangular matrices are stored in a single
matrix T and the interchange information due to partial pivoting
is stored in the vector IPERM.
 SUBROUTINE  INV1

     This subroutine  inverts the matrices  L  and  U  and  thus  com-
 putes  the inverse  of  A.  The triangular matrices L and U  are
 stored in a matrix T  which was  set up  in a previous call  to the
 subroutine  LRD together with the interchange  information  stored
 in  the vector IPERM.
                             94

-------
CCMEMO
     The following equations are used to invert the triangular
matrices:
     For the matrix U:

                    3-1
                                    j=i+l,N,     1=1,N-l
     For the matrix L:
                                    3*1.1-1,
The matrices L~  and U""  are stored in the matrix T replacing
L and U.

We have A" =U~ L" P.  The following equations form the quotient
              13
                     N
                     E
      ,-1  -
              N
                              3=1,1-1.
This product U" L   is stored back into T.

     The final step of the routine is to permute the columns of
T  using the information stored in the permutation vector IPERM

and this will give us A   .
EXAMPLE
      Inversion of a general  3x3 matrix.
      Consider  A  =
 2.0  1.0   0.0

-1.5  0.0   3.0

 1.0  2.0  -1.0
                             95

-------
CCMEMO #M46
LRD decomposes A into triangualr matrices L and U and stores
these matrices in T:
             2.0   1.0    0.0

             0.5   1.5   -1.0

            -0.75  0.5    3.5
                         where LU - PA = matrix A with
                         its second and third rows
                         interchanged.
INV1 inverts L and U:
 0.5  -0.333  -0.095

-0.5   0.667   0.191

 1.0  -0.5     0.286
                                         -1 .
INV1 computes the quotient
                                  where L
                                  and U
                          and stores it in T:



••MB
1.
-0.
—
o.s
0.0
0.0
1.



0
5
0






-0
0
0
0.
1.
-0.
.333
.667
.0
0
0
5



0
0
0
-0
0
0
.0
.0
.0_
.09
.IS
.28
                T =   0.571  -0.286  -0.095

                     -0.1^2   0.572   0.191

                      0.286  -0.143   0.286
Finally, the second and third columns of T are interchanged and
we ontain A"1.
CALLING SEQUENCES

     SLE has four entry points

SLE1 (N,LENA,A,NSOL,LENBX,B,X,IPERM)
     - this solves the system AX=B, and SLE will supply the space
       needed to store the T matrix.  A remains unchanged.

SLE2 (N,LENA,A,NSOL,LENBX,B,X,IPERM)
     - this solves the system XtA=B , and SLE will supply the
       space needed to store the T matrix.  A remains unchanged.

SLE3 (N,LENA,A,NSOL,LENB1,B,X,IPERM,LENT,T)
     - this solves AX=B.  The user supplies the space for the
       matrix T.

SLE4 (N,LENA,A,NSOL,LENBX,B,X,IPERM,LENT,T)
     - this solves XtA=B.  The user supplies the space for the
       matrix T.
                            96

-------
CCMEMO


INV  (N,LENA,A,IPERM,LENT,T)
     - this inverts the matrix A and puts the result into T.


     If A is set equal to T in the parameter list, then A will
be destroyed during execution.  Similarly, if B is set equal to
X in any of the SLE calling sequences, then B will be destroyed
during execution and replaced by X,

     SLE1 and SLE2 provide space for the matrix T.  If, on a
subsequent call to one of these routines, less space is needed,
then some of the space that was previously obtained will be
released.  If, on a subsequent call, more space is needed,
then more will be obtained.
                                $
     The parameters in the calling sequences are represented by
the same symbols as were used in the preceding descriptions.

     A - a double precision (8 bytes) NxN input matrix of coef-
         ficients ,wnc^se~3imensioned size is LENA.

                        LENA>N,     N >1

     B - a double precision NxNSOL input matrix whose dimensioned
         size is LETTBXT

                     LENBX^NjNSOL,     NSOL>1

     X - a double precision NxNSOL output matrix whose dimensioned
         size is
IPERM  - an integer vector of dimension 2*N.

     For SLE3, SLE4, and INV only;

     T - a double precision storage matrix whose dimensioned
         size" is LENT.


                          LENT>N
     To explain the dimensioning parameters further, consider
the dimension statement in FORTRAN which contains A(50,50).  In
this case, A will be allocated 2500 consecutive doublewords,
and the elements of A will be stored columnwise starting with
A(l,l)»  Thus the linear subscript of the (I,J) element is
(50(J-1)+(I-L)), and the last element of one column is stored
immediately before the first element of the next column.  Sup-
pose, however',  that the matrix of coefficients contains only
30 rows and columns.  Then A(I,J) = A(50(J-1)+(I-1)) still,
but since I and J vary from 1 to 30, then the last element of
one colum will  not be followed immediately by the first element
of the np.xt column.  There will be 20 storage locations  at the

                             97

-------
CCMEMO
end of each column which will be ignored.

     Hence to properly locate the elements of the matrix.A both
the current size 30,  and the  dimensioned column length 50, will
be required.  This technique  of matrix specification,  however,
allows many other variations.  For example, the parameters
N=2, LENA=100 and base element A(I,J)  describes the matrix.
                     ai+I,j
                    M
     As has been said, SLE and INV are organizational subroutines
and call LRD and DBS or DBST or INV1 to perform all the calcu-
lations.

     The calling sequences for these routines (not required if
one calls SLE or INV directly) are:

     LRD (N,M,LENA,A,IPERM,LENT,T)
     DBS (NM,NSOL,LENBX,B,X,IPERM,LENT,T,
     DBST  (NM,NSOL,LENBX,B,X,IPERM,LENT,T)

     INV1  (N,IPERM,LENT,T,Q)
where A is an NxM matrix and NM is the dimension of the square
matrix on which the double back substitution is performed.  Al-
though LRD will successfully decompose a rectangular matrix,
DBS, DBST  and INV1 will only work with square matrices.  Q is
a  double precision scratch vector of dimension N.

Thus a call to SLE3 say is equivalent to a call to LRD fol-
lowed immediately be  a call to DBS, with N«M.  And a call to
INV is equivalent to  a call to LRD followed immediately by a
call to INV1 with N=M.

ACCURACY AND EFFICIENCY OF METHOD

     For a complete error  analysis and description of the dif-
ficulties  encountered when using the Gaussian elimination method,
see the book previously mentioned,  'Computer Solution of Alge-
braic Systems1, by Forsythe and Moler.

     Several tests were carried out on the subroutine LRD to
test its efficiency and speed.  Figure 1 Illustrates the timing
data obtained from these tests.

     For an NxM matrix the  inner  loop  of the routine, where
most of the actual processing  is  done, must be executed approx-
 imately N^/S times.   Thus  the  graph of N3/3 afainst  N  should
 coincide as nearly  as possible with the  graph  of  CPU time
 elapsed during one  decomposition  against N.  This  is seen to
 be the  case, where  values  of  N between 70  and  200  were  taken.

-------
CCMEMO
   time in
   seconds
                                       120      140
160
180
     Figure 1.  CPU time required to decompose  an  NxN  matrix,
                              99

-------
CCMEMO


     We have
             t  =  aN3/3    where   a - 15.8*10~6
Using the instruction times quoted in IBM manuals, we find that

t

3
                           3                    3
the time taken to execute N /3 inner loops is &N /3 where
     Hence the percentage of time spent in the iner loop is


                     14. U   100  *  91%
                       .3


     The accuracy of the routines was tested by comparing the
product of A*X with the matr>ix B, where the matrix X was calcu-
lated using the routines, and the input matrices were generated
from random numbers.  The relative error between elements of

Al1lX and B was about 10""   oh average, occasionally dropping to

10"16 or rising to 10"12.

     Doe to rouding errors, singular  matrices will not always
be recognized by the subroutine LRD.  For example, consider thte

           M .  This will be decomposed into the matrix fQ 333    j

where a = 2-(6*0.333. ..).  a will not be recorded as a true zero
but as a very small number.  Thus the result of the test for
singularity will be negative, and unpredictable results will be
obtained if the double back substitution routine is subsequently
executed.
                             100

-------