AN INVESTIGATION OF ALTERNATIVE MEANS
FOR DEMONSTRATING SEWAGE SLUDGE
INCINERATOR COMPLIANCE WITH TOTAL
HYDROCARBON EMISSION STANDARDS
jr
PACIFIC ENVIRONMENTAL SERVICES, INC.
WASHINGTON, D.C. • RESEARCH TRIANGLE PARK, NC • LOS ANGELES, CA • CINCINNATI, OH
-------
DRAFT
AN INVESTIGATION OF ALTERNATIVE MEANS
FOR DEMONSTRATING SEWAGE SLUDGE
INCINERATOR COMPLIANCE WITH TOTAL
HYDROCARBON EMISSION STANDARDS
EPA Contract No. 68D20162
Work Assignment No. 4-06
Prepared for:
U.S. Environmental Protection Agency
Multimedia Risk Assessment Branch (4304)
401. M Street, S.W.
Washington, D.C., 20406
February 1997
S406.005/rpts
Submitted by:
PACIFIC ENVIRONMENTAL SERVICES, INC.
560 Herndon Parkway, Suite 200
Herndon, VA 20170
(703) 471-8383 FAX (703) 481-8296
-------
TABLE OF CONTENTS
SECTION 1 INTRODUCTION 1-1
Background 1-1
Purpose 1-2
SECTION 2 INCINERATOR DESCRIPTIONS 2-1
Current Furnace Technology 2-1
SECTION 3 DEFINITIONS OF "WELL-OPERATED" 3-1
Intent of Definitions 3-1
SECTION 4 DESCRIPTION OF THE SAMPLING PROGRAM 4-1
Investigation of Relationship between THC and CO 4-3
Observed total Hydrocarbon/Carbon Monoxide Relationships . . 4-7
Emission Rates of Chlorinated Dioxins and Furans 4-13
Test Plans for the Various Sewage Sludge Incinerators 4-13
SECTION 5 SOURCES OF DATA USED FOR THIS EVALUATION 5-1
1 Introduction 5-1
Arlington (Virginia) Water Pollution Control Plant 5-1
Cleveland (Ohio) Southerly Wastewater Treatment Center .... 5-3
Huntington (W. Virginia) Regional Wastewater Treatment
Center 5-9
Hopewell (Virginia) Regional Wastewater Treatment Facility . 5-13
Water Environment Research Foundation Report 5-15
Members of the Association of Municipal Sewerage
Authorities 5-20
The Association of Environmental Authorities (New Jersey
Operators) 5-23
Hampton Roads Sanitary District 5-23
Previous (1991) EPA Study 5-24
Vancouver, Washington Tests 5-26
u
-------
TABLE OF CONTENTS-continued
SECTION 6 DISCUSSION OF RESULTS 6-1
Observed Total Hydrocarbon Concentrations 6-1
Observed Carbon Monoxide/Total Hydrocarbons
Relationships 6-31
Observed Effect of Scrubber on Concentration on Total
Hydrocarbons 6-51
Observed Emissions of Chlorinated Dibenzo-Diozins and
Dibenzo-Furans 6-59
SECTION 7 CONCLUSIONS 7-1
APPENDIX A ARLINGTON CONTINUOUS MONITOR DATA
APPENDIX B CLEVELAND CONTINUOUS MONITOR DATA
APPENDIX C HUNTINGTON CONTINUOUS MONITOR DATA
APPENDIX D HOPEWELL CONTINUOUS MONITOR DATA
-------
LIST OF FIGURES
Figure Page
2.1 Schematic Diagram of a Typical Multiple Hearth Furnace 2-3
2.2 Schematic Diagram of a Typical Fluidized Bed Incinerator 2-6
2.3 Schematic Diagram of a Typical Radiant Electric Furnace 2-9
4.1 Calculate a for THC, Vancouver 4-9
4.2 Calculate a for CO, Vancouver 4-10
4.3 THC vs. CO, Vancouver Run #6 4-11
6.1 Effect of Inlet Concentration of the Values of the Parameter a 6-5
6.2 Effect of Inlet Concentration of the Values of the Parameters A
and Q 6-7
6.3 Sequence of Inlet THC Concentrations for the Hours of Operation
(Hopewell) 6-12
6.4 Predicted Compared to Measured Exit Gas THC Concentrations
(Hopewell) 6-13
6.5 Predicted Compared to Measured Exit Gas THC Concentration,
Points 350 - 400 (Hopewell) 6-16
6.6 Comparison of Observed vs. Predicted Log-Normal Distributions
Of the THC Concentrations (St. Paul) 6-19
6.7 Calculation of the Parameters of the First Order Rate Equation
from THC Inlet and Outlet Data (Hopewell) 6-23
6.8 Exit Gas THC Concentration vs. Final Combustion Zone Temperature,
Test Number 5 (July 15, 1993) (Vancouver) 6-24
6.9 Exit Gas THC Concentration vs. Final Combustion Zone Temperature,
July through September 1991 (Lorton) 6-25
6.10 Ln(Total Hydrocarbons) vs. Z Score, Data for September and Data for
Entire Year 1995 (St. Paul) 6-27
6.11 Comparison of the Log-Normal Frequency Distributions for 1991
And 1995 (Arlington) 6-30
6.12 Total Hydrocarbons vs. Carbon Monoxide, 1995 (Arlington) 6-32
6.13 Total Hydrocarbons vs. Carbon Monoxide, 1995 (Cleveland) 6-34
6.14 Total Hydrocarbons vs. Carbon Monoxide, 1995 (Huntington) 6-34
6.15 Total Hydrocarbons vs. Carbon Monoxide, All Plants 6-36
6.16 Ln(THC) vs. Ln(CO), 1995 (Arlington) 6-38
6.17 Ln(HC) vs. Ln(CO), 1995 (Cleveland) 6-39
6.18 Ln(THC) vs. Ln(CO), 1995 (Huntington) 6-40
6.19 Total Hydrocarbons vs. Z SCORE, Incinerator #5, 1995 (St. Paul) . . 6-41
6.20 Ln(THC) vs. Ln(CO), Incinerator #5, 1995 (St. Paul) 6-42
6.21 Ln(CO/THC) vs. Z SCORE, Furnace Outlet, 1995 (Hopewell) 6-43
IV
-------
LIST OF FIGURES-continued
6.22 CO/THC vs. Z SCORE, 1995 (Cleveland) 6-46
6.23 Ln(CO/THC) vs. Z SCORE, 1995 (Cleveland) 6-47
6.24 Ln(CO/THC) vs. Z SCORE, All Plants 6-48
6.25 Ln(CO/THC) vs. Z SCORE, All Plants 6-49
6.26 Total Hydrocarbon Concentration at Scrubber Inlet vs. Scrubber
Outlet, 1995 (Arlington) 6-54
6.27 Total Hydrocarbon Concentration at Scrubber Inlet vs. Scrubber
Outlet, 1995 (Cleveland) 6-55
6.28 Total Hydrocarbon Concentration at Scrubber Inlet vs. Scrubber
Outlet, 1995 (Hopewell) 6-56
6.29 Total Hydrocarbon Concentration at Scrubber Inlet vs. Scrubber
Outlet, 1995 (Huntington) 6-57
6.30 Total Hydrocarbon Concentration at Scrubber Inlet vs. Scrubber
Outlet, Pooled Data from All 4 Plants Sampled 6-60
6.31 Ln(THCOUT/THCIN) vs. Z SCORE, 1995 (Arlington) 6-61
6.32 Ln(THCOUT/THC,N) vs. Z SCORE, 1995 (Cleveland) 6-62
6.33 Ln(THCOUT/THCIN) vs. Z SCORE, 1995 (Hopewell) 6-63
6.34 Ln(THCOUT/THCIN) vs. Z SCORE, 1995 (Huntington) 6-64
6.35 LnCTHCour/THCm) vs. Z SCORE, Pooled Data from All Plants .... 6-65
-------
LIST OF TABLES
Table Page
3.1 Hearth Temperatures ................................. 3-4
3.2 Multiple Hearth Furnaces .............................. 3-5
3.3 Operating Parameter Summary, Fluidized Bed Incinerators ........ 3-6
4.1 Water Environment Research Foundation Report, Kinetic Evaluation . . 4-8
4.2 Test Plan, MHF Furnace (secondary combustion chamber) ....... 4-15
4.3 MHF Furnaces (On-Hearth afterburner) .................... 4-16
4.4 MHF Furnaces (no afterburner) ......................... 4-17
4.5 Test Plan, FBI Furnaces .............................. 4-18
5.1 THC, CO, CO2, and O2 Concentrations - Furnace Outlet (Arlington) .
5.2 THC, CO, CO2, and O2 Concentrations - Scrubber Outlet (Arlington) . 5-5
5.3 Sewage Sludge Parameters (Arlington) ..................... 5-5
5.4 THC, CO, CO2l and O2 Concentrations - Furnace Outlet (Cleveland) . . 5-8
5.5 THC, CO, CO2, and O2 Concentrations - Scrubber Outlet (Cleveland) . 5-8
5.6 Sewage Sludge Parameters (Cleveland) ..................... 5-9
5.7 THC, CO, CO2, and O2 Concentrations - Furnace Outlet
(Huntingdon) .................................... 5-11
5.8 THC, CO, CO2, and O2 Concentrations - Scrubber Outlet
(Huntington) .................................... 5-12
5.9 Sewage 'Sludge Parameters (Huntington) ................... 5-12
5.10 THC, CO, CO2, and O2 Concentrations - Furnace Outlet
(Hopewell) ..................................... 5-16
5. 1 1 THC, CO, CO2, and O2 Concentrations - Afterburner Outlet
(Hopewell) ..................................... 5-17
5.12 Sewage Sludge Parameters (Hopewell) .................... 5-17
5.13 Operating Conditions at Site 1 .......................... 5-18
5.14 Operating Conditions at Site 2 .......................... 5-19
5.15 Operating Conditions at Site 3 .......................... 5-20
5.16 Test Site Facility Descriptions .......................... 5-21
5. 17 Summary of Operating Conditions at Two (of 6) St. Paul, Minn.
Sewage Sludge Incinerators ........................... 5-22
6. 1 Calculation of C0 from C, and Parameters of the Kinetic Rate Model . . 6-4
6.2 Values for the Parameters of the Model Calculated Based on Various
Assumes Values for the THC Concentration at the Inlet to the Final
Combustion Zone .................................. 6-8
-------
LIST OF TABLES-continued
6.3 Results of Using Kinetic Parameters Developed for One Inlet THC
Concentration to Predict Exit Gas THC Concentrations at Other
Inlet THC Concentrations 6-9
6.4 Representative THC Results from Hopewell, Virginia Testing 6-10
6.5 Values of the Parameters for the First Order Kinetic Model 6-11
6.6 Summary of the Parameters of the Kinetic Model for All Data
Available 6-17
6.7 Results of the Use of the Kinetic Model to Predict THC Concentra-
tion in the Exit Gas from Sewage Sludge Incinerators 6-18
6.8 Calculated Parameters of the Kinetic Model and Predicted THC
Concentrations, St. Paul, Minn., Sewage Sludge Incinerator #9,
1995 6-20
6.9 Summary of Calculation of the First Order Rate Constant (Hopewell) 6-21
6.10 Summary of Statistics of Log-Normal THC Distributions 6-29
6.11 Statistics for the THC/CO Correlation 6-35
6.12 Comparison of CO/THC Ratios for Various Sewage Sludge
Incinerators 6-44
6.13 Selection of Confidence Level and CO Concentration from Log-
Normal Distributions • 6-50
6.14 Plot Statistics and Threshold CO Concentrations for Data Sets 6-51
6.15 Summary of Total Hydrocarbon Concentrations Into and Out of
Wet Scrubbers at Sewage Sludge Incinerators 6-53
6.16 Summary of Plot Data Statistics for THCoirr vs. THCIN Plots 6-58
6.17 Summary of Plot Data Statistics for THCOUT/THC,N vs. Z SCORE
Plots ' 6-59
6.18 Description of the Sewage Sludge Incinerators Tested for CDF
Emissions 6-66
6.19 Analytical Results Wastewater Treatment Plant (Arlington) 6-67
6.20 Analytical Results Wastewater Treatment Center (Cleveland) 6-68
6.21 Analytical Results Wastewater Treatment Plant (Huntington) 6-69
6.22 Concentration of Dioxins and Furans Wastewater Treatment Plant
Incinerator (Arlington) 6-70
6.23 Concentration of Dioxins and Furans Wastewater Treatment Plant
(Cleveland) 6-71
6.24 Concentration of Dioxins/Furans Wastewater Treatment Plant
(Huntington) 6-72
6.25 Concentrations of Dioxins and Furans 6-73
7.1 Summary of Total Hydrocarbon Concentrations Measured at
Incinerators Listed 7-3
VII
-------
SECTION 1
INTRODUCTION
BACKGROUND
On February 19, 1993, the United States Environmental Protection Agency
(EPA) published the Standards for the Use or Disposal of Sewage Sludge (40 CFR Part
503 in the Federal Register. This regulation contains the requirements that have to be
met when sewage sludge is applied to the land; placed onto a surface disposal site;
placed into a municipal solid waste landfill unit; or fired in a sewage sludge incinera-
tor.
One of the Part 503 requirements for incineration of sewage sludge is that the
monthly average concentration of total hydrocarbons (THC) in the exit gas from a
sewage sludge incinerator stack shall not exceed 100 parts per million (ppm) when
corrected to zero percent moisture and to seven percent oxygen. In addition, Part 503
requires the use of a continuous emission monitor (CEM) to continuously record the
concentration of THC in the stack exit gas.
The requirement to install a CEM for THC was the subject of a petition by the
State of New Jersey and by several publicly owned treatment works (POTWs) in the
State of New Jersey. The petitioners argued that the Part 503 requirement to install,
calibrate, and operate a CEM for THC should be changed. The State of New Jersey
currently requires that the concentration of carbon monoxide (CO) in the exit gas from
a sewage sludge incinerator not exceed 100 ppm when corrected to zero percent
moisture and to seven percent oxygen. The State also requires that the CO concentra-
tion in the exit gas be monitored continuously using a CEM.
The petitioners argued, based on information they have gathered, that when the
CO concentration in the exit gas is 100 ppm or less, the THC concentration in the exit
gas also is 100 ppm or less. For this reason, there is no need to monitor both CO and
THC continuously. The petitioners wanted to monitor the exit gas continuously for
only CO.
EPA concluded, after reviewing the information submitted by the petitioners,
that if CO is monitored continuously in the exit gas, and that if the monthly average
exit gas concentration is 100 ppm, or less, that the monthly average THC concentration
in the exit gas should be 100 ppm, or less. For this reason, continuously monitoring of
the exit gas for THC is not necessary to demonstrate compliance with the 100 ppm
THC operational standard in Part 503. On February 25, 1994, EPA amended the Part
1-1
-------
503 regulation to allow the incinerator exit gas to be monitored continuously for CO in
lieu of monitoring the exit gas continuously for THC (59 FR 9095, February 25,
1994). Note that this amendment did not change the 100 ppm operational standard for
THC in Part 503 (see 503.44).
In the February 25, 1994, Part 503 amendment, EPA committed to study
further the relationship between CO and THC in the stack exit gas from sewage sludge
incinerators. At the completion of the study, the Agency will decide whether another
amendment is needed concerning monitoring of CO to demonstrate compliance with the
THC operational standard. This report presents the results of a study of the relation-
ship between CO and THC in the exit gases from sewage sludge incinerators.
Subsequent to publication of the Part 503 regulation, EPA decided to investigate
whether there should be a different THC operational standard for each type of sewage
sludge incinerator. This study included collection of THC concentration data in the exit
gas from different types of sewage sludge incinerators. These data are presented in this
report.
Currently, EPA is reassessing the impacts of polychlorinated dibenzo-dioxins
and -furans (dioxin/furan) that may be emitted from many combustion processes,
including sewage sludge incinerators. This study presents the data on the concentra-
tions of dioxin/furan in the exit gas from sewage sludge incinerators that were collected
during this effort.
Many persons have proposed that the temperature of the exit gas from sewage
sludge incinerators can be used as a surrogate for measurement of total hydrocarbons.
The temperature of the exit gas is a routinely measured process parameter. If a reliable
relationship between exit gas temperature and exit gas THC concentration can be
found, then the cost of monitoring could be reduced by elimination of the need for a
THC monitor. EPA agreed to study possible relationships between temperature and
THC concentration. Some of the data necessary to pursue this objective were collected
during the testing done for this study, other data were provided by several organiza-
tions.
PURPOSE
The purposes of this study were:
(1) To determine if there is a relationship between the concentrations of carbon
monoxide (CO) and unburned organic matter (THC) in the exit gas from
sewage sludge incinerators.
(2) To measure the concentration of THC in the exit gas from "well operated"
sewage sludge incinerators.
1-2
-------
(3) To measure the concentrations of polychlorinated dibenzodioxins (PCDD)
and polychlorinated dibenzofurans (PCDF) in the exit gas from sewage sludge
incinerators.
(4) To study the relationship between incinerator operating conditions (including
final hearth temperature) and exit THC concentrations.
1-3
-------
SECTION 2
INCINERATOR DESCRIPTIONS
There are three types of sewage sludge incinerators in use in this country at this
time. These are:
• Fluidized Bed Incinerator (FBI)
• Multiple Hearth Furnace (MHF)
• Radiant Electric Incinerator (REI)
Only the first two types are common. Statistics developed during the initial development
of Part 503 Regulations indicated that there were approximately 49 FBI and 156 MHF in
use at that time. Only three of the radiant electric incinerators were constructed, only two
of those three were in operation in 1996.
CURRENT FURNACE TECHNOLOGY
There are approximately 207 sewage sludge incinerators in the United States,
located at an estimated 150 publicly owned treatment works ( POTWs). The furnace
technologies currently used in those incinerators are listed below.
156 multiple-hearth furnaces (75 percent of the incinerators firing sewage sludge)
49 fluidized-bed furnaces (24 percent of the incinerators firing sewage sludge)
2 electric infrared furnaces (1 percent of the incinerators firing sewage sludge)
Although three-quarters of the operating sewage sludge incinerators are multiple-hearths,
newly installed sewage sludge incinerators are expected to be divided evenly between the
fluidized-bed and multiple-hearth furnaces.
The water content of the sewage sludge is a main factor controlling incinerator
combustion efficiency. All sewage sludge incinerators, regardless of design, are affected
by the water content of the sewage sludge. Treatment works remove enough water from
the sewage sludge to bring its solids content to at least 25 to 35 percent to increase the
efficiency of combustion. Dewatering is done mechanically by filtration or centrifuga-
tion systems. Most treatment works also add a chemical conditioner to the sewage sludge
to enhance dewatering. Ferric chloride and lime have been used most often in the past to
2-1
-------
condition sewage sludge, but organic polymers are better conditioning agents in many
cases and their use is increasing.
Dewatering increases the heating value of the sewage sludge, which decreases the
need for auxiliary fuel (or electric power in the case of electric infrared furnaces) and
reduces operating costs. Theoretically, combustion can become self-sustaining (or
"autogenous") so that no auxiliary fuel is needed. This can occur when the solids content
of the sewage sludge is above 30 percent and the volatile solids fraction is at least 60 to
65 percent of the total solids. In practice, however, few MHFs operate autogenously.
Most of these units require auxiliary fuel. Autogenous combustion can be reached at a
lower solids content in modern fluidized-bed furnaces.
Multiple-Hearth Furnaces
Multiple-hearth furnaces (MHFs) were initially designed nearly a century ago for
baking mineral ores in the metal extraction industry. Since the 1930s, an air cooled
variant of the original Herreshoff design has been used to bum sewage sludge.
Design Characteristics
MHFs are cylindrical and oriented vertically. Those used to fire sewage sludge
range in size from an outer diameter of approximately 6 feet with a total effective hearth
area of 85 square feet (ft2) for 6-hearth furnaces to 22 feet in diameter with hearth areas of
over 3000 ft2 for 12-hearth furnaces. Hearth loading rates range from 7 to 15 Ib/hr of wet
sewage sludge per ft2 of total hearth (all hearths) area. This amount corresponds to
furnace capacities of 0.3 tons/hr up to 22 tons/hr of wet sewage sludge.
Figure 2.1 illustrates the design of a typical MHF. The outer shell is constructed
of steel and surrounds a series of horizontal refractory hearths. A hollow cast-iron
rotating shaft runs through the center of the hearths. The rabble arms are attached to the
central shaft and extend above the hearths. A fan located at the base of the shaft intro-
duces cool air into the shaft and rabble arms to keep the metal from deforming under the
high temperatures.
Attached to the rabble arms are angled plows less than 3 feet in length that rake
the sewage sludge in a spiral motion. The plows alternate the radial direction of sewage
sludge movement between hearths. The plows in one hearth are angled to move the
material from the outside in ~ these are called "in-hearths". The plows on the next hearth
are then angled to move it from the inside out -these are called "out-hearths. Fuel
burners that provide auxiliary heat are located in the side walls of the hearths.
Operating Conditions
In MHFs, de-watered sewage sludge (17 to 28 percent solids) is fed into the
periphery of the top hearth. As they rotate, the rabble arms rake the sewage sludge
2-2
-------
COOLING AIR
DISCHARGE
SLUDGE CAKE,
SCREENINGS,
AND GRIT-
SCUM
AUXILIARY /
AIRPORTS
RABBLE ARM -
2 OR 4 PER
HEARTH
GAS FLOW
CLINKER
BREAKER
BURNERS
SUPPLEMENTAL
FUEL
COMBUSTION AIR
SHAFT COOLING
AIR RETURN
SOLIDS FLOW
DROP HOLES
......
riL , .'i/y : W •*«• 1 *J •! V • A ':# *V5*Vr.1 .'•MSrwilW^
^.^ SHAFT r;&^tfZ*$^&&$y
*so*« S>-^ "'-^'^'•^A^t-
COOLING AIR X
Figure 2.1 Schematic Diagram of a Typical Multiple Hearth Furnace
2-3
-------
towards the center shaft and break up the sewage sludge so that a larger surface area of
the solids comes in contact with heat and oxygen. The dried sewage sludge then drops
through holes (drop holes) located near the edge of the shaft onto the second hearth,
where it is raked in the opposite direction. This process is repeated in all subsequent
hearths as the sewage is dried and burned. The remaining dry ash is discharged through a
hole at the periphery of the bottom hearth, where it is collected for disposal.
Ambient air is blown through the central shaft at its base and rises into the rabble
arms, cooling the shaft and the rabble arms. A portion, or all, of this air is then recircu-
lated from the top of the shaft back into the bottom hearth as preheated combustion air.
Air that is not recirculated is discharged through the top of the shaft into the stack,
downstream of any air pollution control device (APCD). Additional ambient air is
injected directly into one of the middle hearths. The combustion air flows upward
through the drop holes in the hearths, counter-current to the flow of the sewage sludge
solids.
The overall sewage sludge incineration process occurs within three basic zones in
an MHF. The upper hearth and part of the second hearth constitute the drying zone,
where most of the moisture (and some of the more volatile organic compounds) in the
sewage sludge is evaporated. The furnace gas temperature above the drying sewage
sludge is from 600 °F to 1,200°F. Combustion of volatile organic material occurs on the
next two hearths, where the temperature is increased to about 1,500°F to 1,700°F. The
combustion of carbon should occur on the next 1 to 1.5 hearths. A fourth zone, compris-
ing the lower-most hearth(s), is the ash cooling zone. No combustion occurs in this zone.
The ash is cooled as its heat is transferred to the incoming combustion air.
The theoretical amount of oxygen required for complete combustion is known as
the stoichiometric oxygen. Specific stoichiometric oxygen requirements are determined
by the nature and quantity of the combustible material to be burned. Combustion oxygen
usually is obtained from atmospheric air. The additional oxygen (or air) available for
combustion over and above stoichiometric amount is called excess air. Adding excess air
enhances contact between the fuel and oxygen in the furnace and compensates for normal
variations in both the organic characteristics of the sewage sludge and the feed rate at
which the sewage sludge enters the incinerator. The 18 MHFs for which data were
collected during this study show an average of approximately 180 percent excess air.
This means that the units were using 2.8 times the amount of air that was needed to
oxidize the organic matter in the sewage sludge and in the fossil fuel.
When the amount of oxygen (or air) is less than the stoichiometric amount, it is
called starved air, or substoichiometric air. Under starved-air conditions, incomplete
combustion occurs, which results in the production of carbon monoxide (CO) and
products of incomplete combustion (PICs). The formation of these combustion products
is characterized by the release of smoky emissions containing unburned hydrocarbons
and volatile organic material. Too much excess air results in lower combustion tempera-
2-4
-------
tures, consumption of more auxiliary fuel, more entrainment of particles, and lower
combustion efficiency.
The rate at which the sewage sludge is fed into the MHF and the sewage sludge
moisture content also can affect the performance of multiple-hearth sewage sludge
incinerators. A sharp increase in the feed rate generally causes the middle combustion
zone to drop to lower hearths, a change that can lead to a decrease in temperature within
the combustion zone and high auxiliary fuel usage. A sharp increase in moisture content
can lead to reduced hearth temperatures, while material that is too dry may cause
excessively high temperatures.
One problem resulting from excessively high temperatures in the combustion zone
is the formation of clinker, or clumps of ash, that can break teeth and rabble arms and
increase maintenance requirements. Organic polymer conditioners contribute less to
clinker formation than do ferric chloride and lime conditioners.
Fluidized-Bed Incinerators
Air and sewage sludge are introduced at different locations near the base of a bed
of sand in fluidized-bed incinerators. The mixture of air, sewage sludge, and sand acts as
a fluid in the furnace. Fluidizing the sewage sludge has a number of advantages that help
to improve the burning atmosphere within the incinerator. First, tne turbulence in the bed
facilitates the transfer of heat from the hot sand particles to the sewage sludge. Second,
the greatly increased surface area and turbulence that are contributed by the sand particles
improves the mixing of the sewage sludge and the combustidn air. Third, the sand
provides a large thermal inertia that minimizes the effects of sewage sludge feed rate and
moisture content fluctuations.
Fluidized-bed incineration has been applied to a wide range of industrial processes
since its initial development in the oil-refining industry. Coal drying and calcining
operations in the phosphate industry are two other examples of industrial applications of
fluidized bed technology. The first FBI designed specifically for burning sewage sludge
was installed in 1961 in Lynwood, Washington.
Design Characteristics
Figure 2.2 depicts a cross section of a typical FBI. Like multiple-hearth furnaces,
FBIs are cylindrical and vertically oriented. The outer shell is constructed of steel and is
lined with a refractory material. Tuyere nozzles, which blast air into the furnace, are
located at the base of the furnace within a refractory-lined arch.
There are two general FBI configurations, each based on the method used to inject
the fluidizing air into the furnace. In the hot-wind box design (shown in Figure 2.2), air
is first passed through a heat exchanger, where heat is recovered from the hot
2-5
-------
*- EXHAUST AND ASH
THERMOCOUPLE
SLUDGE
INLET
SAND
FEED
FLUIDIZING
AIR INLET
REFRACTER
ARCH
WINDBOX
PRESSURE TAP
SIGHT
GLASS
BURNER
TUYERES
FUEL GUN
PRESSURE TAP
STARTUP
-i PREHEAT
h BURNER
J FOR HOT
WINDBOX
Figure 2.2 Schematic Diagram of a Typical Fluidized Bed Incinerator
2-6
-------
flue gases. Alternatively, in the "cold-wind box" design, ambient temperature air is
injected directly into the furnace.
The diameter of FBI units is comparable to that of MHFs, ranging from 6 to 25
feet. FBIs have sewage sludge loading rates ranging from 30 to 60 Ib/hr of wet sewage
sludge per ft of bed and burning capacity ranging from 0.5 to 15 tons/hr of wet sewage
sludge.
Operating Conditions
De-watered sewage sludge (17% to 28% solids) is fed into a bed of hot sand in the
lower portion of the furnace. The sand and incoming sewage sludge are simultaneously
fluidized by air injected through the Tuyere nozzles at pressure ranging from 3 to 5
pounds per square inch (lb/in2) Temperatures of 1,250°F to 1,600°F are maintained in
the bed. Gas residence times in the freeboard range from 2 to 5 seconds. As the sewage
sludge is fired, fine ash particles and minor amounts of sand are carried out through the
top of the furnace, where they are captured by an inertial separator and a wet scrubbing
system. The larger sand particles that are collected by the inertial separator system are
returned to the bed.
The overall combustion process in an FBI occurs in two zones. The first zone is
within the fluidized bed itself. Here, water evaporation and pyrolysis of organic materials
occur almost simultaneously, as the temperature of the sewage sludge is rapidly in-
creased. The free board area (see Figure 2.2) is similar to a secondary combustion
chamber, in which the remaining free carbon and combustible gases are burned.
The most noticeable impact of the improved combustion provided by an FBI, as
compared to the multiple hearth furnace is the decrease in the amount of excess air
required for complete combustion of the sewage sludge. FBIs can achieve complete
combustion of sewage sludge with 40 to 60 percent excess air. This is 1.4 to 1.6 times
the amount of air required to effect complete combustion of all of the sewage sludge
organic material and the fossil fuel. The MHF studied used, on the average 2.8 times the
amount of air required. FBI units use 50 percent to 60 percent of the air that an MHF
would use to burn the same sewage sludge. The reduced air flow reduces the auxiliary
fuel requirements of FBIs compared to MHFs.
The most critical operating variable of FBI units is the rate at which the sewage
sludge is fed to the incinerator. The optimal rate of heat transfer achievable for a given
amount of sand is reached when the sewage sludge feed rate is equal to the burning
capacity of the sand bed. If the burning capacity is exceeded because of a sewage sludge
feed rate that is too high, combustion will not be complete. A rapid increase in either the
rate of feed of sewage sludge to the furnace or the moisture content of the sewage sludge
will cause the sewage sludge to coagulate into heavy masses. Coagulation eliminates the
fluidized nature of the bed and halts combustion. It is important to ensure that an
2-7
-------
adequate residence time of sewage sludge solids in the bed is maintained so that the
sewage sludge burns completely..
Because of excellent mixing characteristics, as well as short sewage sludge
residence times, fluidized-bed furnaces are less vulnerable than are MHFs to fluctuations
in the sewage sludge feed rate and the total moisture content. Moreover, any disruption
of combustion happens almost immediately in FBIs and, therefore, can be more easily
detected and corrected by the furnace operators.
Electric Infrared Furnaces
The electric furnace uses infrared radiation as a partial heat source. The radiant
electric heat dries the sewage sludge and initiates combustion. Once ignition occurs the
heat released by the burning sewage sludge solids provides most of the energy necessary
to dry and bum the sewage sludge. This represents a relatively new technological
approach to sewage sludge incineration. The first such unit was put into operation in
Richardson, Texas, in 1975. Two others were put into service in Wrangell and Peters-
burg, Alaska. The unit that was installed in Petersburg has since been decommissioned
and shipped to Wrangell for use as spare parts.
Design Characteristics
Electric furnaces, unlike the other two types of furnaces designs, are oriented
horizontally. They consist of insulated enclosures through which sewage sludge is
transported on a continuous, woven, wire-mesh conveyor belt (see Figure 2.3). The belt
is made of steel alloy and can withstand the temperature encountered in the furnaces. The
refractory lining in the furnace is composed of ceramic felt, not brick. The refractory has
a low heat capacity, so it does not take a lot of heat energy to heat the refractory. Further,
the woven refractory is not subject to fracture by thermal expansion. Because of these
attributes radiant electric furnaces can be started from a cold condition and shut down
relatively quickly.
Operating Conditions
De-watered sewage sludge (17% to 28% solids) is first fed into a holding tank,
then into the incinerator through a feed hopper and dropped onto the conveyor belt. Here,
it is leveled by an internal roller into a layer approximately one inch thick, spanning the
width of the belt. The sewage sludge layer then moves under infrared heating elements,
which sustain the drying and combustion processes. The resulting ash is discharged from
the end of the furnace into the ash-handling system.
Combustion air (often preheated by an external, recuperative-exit heat exchanger)
is introduced at the hot, solids discharge end of the belt. The air also picks up heat from
the hot burning sewage sludge as the sewage sludge and air travel counter-current to one
another.
2-8
-------
Because the primary heat-transfer mechanism used in the infrared furnace is
radiant transfer, satisfactory combustion rates can be achieved without rabbling or
BELT
DRIVE
SLUDGE FEED
AIRLOCK--^
RADIANT
INFRARED
' ROLLER HEATING
,'- LEVELER ELEMENTS (TYP)
COOLING I COOLING ,
. rRABBLING*'" ', *|IR '
, ' DEVICE I i 1
WOVEN WIRE
CONTINUOUS BELT
I
GAS
EXHAUST
COMBUSTION
AIR
Figure 2.3 Schematic Diagram of a Typical Radiant Electric Furnace
plowing the sewage sludge layer. Because there is no mechanical agitation of the sewage
sludge solids or ash, radiant electric incinerators produce less fly ash than do MHFs and
FBIs.
Complete combustion can be achieved in the electric infrared furnace with excess
air levels as low as 10 to 20 percent. This process efficiency is attributed to several
factors. First, the furnace is designed so that uncontrolled sources of excess air are
eliminated. Second, the flow of combustion air is regulated closely and directed down
the channel formed inside the primary combustion chamber between the belt and the
heating elements overhead. Third, the addition of supplemental heat does not require
auxiliary fuel burners that generate any gaseous by-products. The products of combustion
and excess air from these burners dilute the sewage sludge combustion products in MHF
and FBI. This ability to operate at low excess air levels contributes to a reduction in the
size, complexity, and energy requirements of the exit gas scrubbing equipment. Yet,
because electric energy costs from 2 to 3 times as much as other energy sources (e.g.,
natural gas), the total energy cost of the electric furnace is likely to be higher than the
total energy cost for other types of furnaces.
The electric furnace is divided into several temperature control zones. These
zones are maintained at predetermined temperatures with set points. The input power to
the infrared heating elements is then adjusted upward or downward, accordingly. Control
temperatures range from 1,400°F in the drying zones to 1700°F in the combustion zones.
A feedback-loop process also controls the flow of air for sewage sludge com-
bustion. The controller continuously senses the residual oxygen content in the exit
stream and compares it with a set point value and adjusts the air flow rate to maintain the
2-9
-------
oxygen at the set point. In the event that a high-energy sewage sludge is being processed,
the controller adds additional excess air to limit exit temperature. The throughput of the
system can be controlled by adjusting the speed of the internal conveyor belt. This
allows the electric furnace to accommodate different sewage sludge feeds (i.e., sewage
sludge with different moisture contents or volatile solid contents). The operator accom-
plishes this adjustment, which also adjusts sewage sludge retention time, from the control
panel.
To date, infrared furnaces have been used in smaller applications, for which
greater operating flexibility of this type of furnace provides an advantage over tradition-
ally larger multiple-hearth and fluidized-bed furnaces. Because of its ceramic-fiber
blanket insulation system, the infrared furnace is well suited for intermittent operation.
This insulation system is not subject to thermal fracturing and does not require the slow
warm-up and cool-down cydes required by solid refractory materials. Start-up times of 1
to 1-1 '/i hours are normal, and shutdown is accomplished by pressing a single, stop
button.
2-10
-------
SECTION 3
DEFINITIONS OF "WELL-OPERATED"
This section contains definitions of "well-operated" sewage sludge incinerators.
These definitions are in terms of operating parameters that are easily observable and
easily measurable. Insight from experts in the design and operation of sewage sludge
incinerators about the items that they would consider to be important in the design and
operation of sewage sludge incinerators was solicited. The purpose of these definitions is
to provide guidance in the selection of sewage sludge incinerators to be sampled. This
eliminates unwanted influence on the study's conclusions by poorly operated sewage
sludge incinerators. The definitions are not intended to be operating manuals. They are
merely to provide a relatively simple means to identify sewage sludge incinerators that
are operated up to their potential.
INTENT OF DEFINITIONS
The object of this study was to monitor the emissions from sewage sludge
incinerators. This was done by sampling and analysis of the exit gases from well
operated sewage sludge incinerators. This section discusses the definitions of "well-
operated" sewage sludge incinerators and the intended use of those definitions.
Definitions of "well-operated" sewage sludge incinerators were needed to ensure
that the sewage sludge incinerators that were sampled were operated to their potential.
The basis for development of technology-based requirements is the assessment of the
capability of existing technology. Once this determination is made the regulations merely
specify that everyone meet the requirement attainable by existing technology. The
conclusions would have been biased if the sampled population included units that were
not operated in accord with good operating practice and the specifications of their
manufacturers. It was beyond the scope of this project to perform an engineering
evaluation of each sewage sludge incinerator hi the sampling program. Easily observed
operating parameters that could be used to show good operating practice were sought.
These parameters were used to develop definitions of "well-operated" sewage sludge
incinerators.
Please note; these definitions describe smooth (steady state) and productive
(sewage sludge combustion rates at or near design capacity) operation of sewage sludge
incinerators. They do not describe operational techniques that reduce emissions of air
pollutants.
3-1
-------
The definitions that follow describe generic operating conditions. These condi-
tions can be achieved in different ways for particular incinerators. There can be many
reasons why a particular treatment works operates its sewage sludge incinerator in
variance with these relatively simple guidelines. There may be special requirements of
the particular sewage sludge, or peculiarities in the operation of a particular sewage
sludge incinerator that dictate alternative conditions. It was beyond the scope of this
project to investigate individual circumstances that lead to unusual operating conditions.
The fact of operation outside the following, simple and broad definitions infers that the
operation was not typical and representative of commonly encountered conditions.
Although such sewage sludge incinerators may be effective in particular circumstances,
they were considered to be outside the envelope of typical conditions and were not
selected for sampling as part of this study.
Multiple Hearth Furnaces
Optimum operation of a MHF consists of maintaining the active volatiles
combustion zone in a specific area of the furnace on a consistent basis. Combustion of
volatiles begins when the solids content of the sewage sludge increases to approximately
50%. This usually occurs toward the top of the furnace. Furthermore, the onset of active
combustion should start near the outer edge of an in-hearth, but not directly under the
drop-holes of the out-hearth above. The solids on an in-hearth are migrating toward the
shaft. Active combustion should be complete by the time the solids reach the center of
the out-hearth just below. This burning pattern provides the maximum turbulence,
uniform draft conditions, maximum oxygen availability and minimum heat loss. This
mode of operation also exposes all gases released from the lower hearths to the active
flame. Destruction of organic materials is most efficient in an active flame zone.
Conditions that increase the feed rate of heat to the MHF such as: an increase in
the rate of feed of a dry sewage sludge; a decreased moisture content of the sewage
sludge; or a rapid increase in the heat content of the sewage sludge can cause the zone of
active combustion to move upward in the furnace. This condition, called a "flare-up" or a
"burn-out," is characterized by the active combustion occupying the outer edge of the in-
hearth that is just below the feed hearth. When the fire is directly under the drop-holes,
burning becomes erratic, unsteady and smoky due to the restriction of the combustion
space, increased heat losses to the surroundings, and a lack of air. The most critical
parameters to the operation of a MHF are the consistency of the rate of feed, the percent-
age moisture and the heating value of the sewage sludge. These parameters, combined
with the location of the active combustion zone, constitute a well-operated MHF. A well-
operated MHF should have no more than one burn-out per week.
Each furnace operates with its own temperature profile. Sewage sludge moisture
content, heat content, feed rate, and the design of the furnace all affect the temperature
profile within the furnace. These variations make it difficult to include hearth tempera-
tures in the definitions of a well-operated MHF. It is possible, however, to provide some
3-2
-------
guidance about the temperatures in the various hearths of the furnace. The temperatures
in the various hearths also indicate the location of the active combustion zone.
The ideal temperature of the drying hearth depends on whether the furnace is
equipped with a secondary combustion chamber or Zero Hearth afterburner. In the
absence of either of these devices the gas phase of the drying zone must be kept relatively
hot (1,000°F to 1,400°F) to burn the volatile organic material that evaporates with the
moisture. The presence of a back-up combustion chamber allows the the drying zone
temperature to be reduced to 600°F to 1,000°F, because the evaporated volatiles are
destroyed in the back-up combustion chamber. A back-up combustion chamber may be
either an on-hearth afterburner (On-HRTH) or a detached afterburner. On-hearth
afterburners are sometimes added above the sewage sludge feed hearth and are called
zero-hearth afterburners. They are sometimes located on the first or second hearth. In all
cases they are located above the hearth onto which the sewage sludge is fed. The term
On-Hearth is used to cover all options. A detached afterburner is a device that is added to
the system downstream and distinct from the MHF and is called a secondary combustion
chamber (SCC) in this document.
The sludge drying zone is the feed hearth and sometimes the hearth immediately
below it. The gas phase temperature in this zone will be between 600°F and 1,400°F.
The gas phase temperature in the zone where the volatile organic constituents of
the sewage sludge are combusted (called the volatiles burning zone) should be between
1,400°F and 1,700°F. Higher temperatures in this zone usually equate to more
efficient combustion.
The carbon burning zone is the zone immediately below the volatiles burning
zone. The critical temperature in the carbon burning zone is the temperature of the
solids on the hearth. Formation of clinker (slag) begins if the temperature of the solids
approaches 2,000°F. Approximately 300 F° of temperature difference between the gas
and solid phases is necessary to allow effective heat transfer from the burning solids to
the gas. The gas phase temperature should not be more than 1,700°F.
The lower hearths are the ash cooling zone. Heat from the burned out ash is
transferred to the in-coming combustion air and the ash is cooled for disposal. The
temperature in the ash cooling zone is normally between 400°F and 600°F.
These temperature guidelines are summarized in Table 3.1.
3-3
-------
TABLE 3.1
HEARTH TEMPERATURES
Hearth Function
On-Hearth Afterburner
Sewage Sludge Drying
Volatiles Burning
Carbon Burning
Ash Cooling
Hearth Temnerature ( °F)
1,000
-1,700
600-1,400
1,400
1,200
400
- 1,700
- 1,400
-600
The concentration of oxygen in the furnace exit gas should not be less than 8
percent (dry basis). Less oxygen in the furnace may cause inefficient combustion of
the sewage sludge. This oxygen concentration corresponds to 60% excess air. The
concentration of oxygen in the stack exit gas usually does not accurately represent the
concentration of oxygen in the furnace exit gas. This is because there often are points
of significant air in-leakage between the furnace exit and the inlet to the stack. Also,
most MHFs use only part of the shaft cooling air as preheated combustion air. The
residual shaft cooling air is usually re-injected into the stack gas downstream of the
scrubber as a means of reducing the plume of condensed water. This too is a source of
dilution of the furnace exit gas. Thus, the percentage oxygen in the stack gas is much
higher than the percentage oxygen in the furnace exit gas.
Maintenance of a consistent rate of feed of heat hi the form of sewage sludge
into the MHF is critical to maintenance of stable combustion conditions. The rate of
net heat fed hi the sewage sludge is dependent on the percent solids in the sewage
sludge and the heating value of those solids. The rate of feed of sewage sludge at any
particular tune should be no more than 5 percent different (higher or lower) from the
long term average feed rate, assuming that the moisture and heat content of the sewage
sludge solids are constant. If the feed rate of an autogenous sewage sludge increases,
then the furnace will overheat and the location of the fire will move upward in the
furnace. The result will be poor combustion. If the sewage sludge will not support
combustion, an increase in the feed rate may exceed the capacity of the auxiliary fuel
burners to make up the heat deficit, causing the fire to move downward in the furnace,
which also causes poor combustion.
Increases or decreases in the moisture content or the heating value of the sewage
sludge solids have the same effects as changes in the rate of sewage sludge feed. Thus,
upset conditions in the sewage sludge dewatering equipment or changes in the nature of
the wastewater being treated can change the moisture content of the sewage sludge and
thereby change the rate of feed of heat to the furnace even though the pounds per hour
of wet sewage sludge being fed remains constant. For these reasons it is not possible
to specify, with precision, the desired rate of sewage sludge feed to a MHF.
3-4
-------
Table 3.2 provides some values for several parameters. There must be balance
among them. For example, a sewage sludge that has a heat content near the top of the
range may have a higher moisture or a lower feed rate. The values given in the table
are typical values. A MHF that combusts a sewage sludge that is outside of the ranges
of values given will be considered to be atypical for the purposes of this study.
TABLE 3.2
MULTIPLE HEARTH FURNACES
Parameter
Sewage sludge percentage solids (%)
Sewage sludge heating value (Btu/lb)
Sewage sludge feed rate (Ib/fWhr)
Furnace exit gas oxygen (%)
Value
17% - 28%
8,000 -12,000
5-12
8-12
Fluidized Bed Incinerators
The fluidized bed incinerator is a single concurrent device in which the sewage
sludge burns in a hot fluidized sand bed. Fluidized bed incinerators are much easier to
control than are MHFs. They are far less sensitive to fluctuations in sewage sludge
characteristics and feed rates because of the huge thermal inertia provided by the sand
bed. The mass of sand in the bed is approximately 20 times the mass of wet sewage
sludge that is fed to the unit in an hour. The large reservoir of heat held by the sand
dampens variations in the feed material providing stability to the process.
The temperature of the bed should be between 1,250°F and 1,600°F. The
temperature of the gas in the freeboard should be 100 F°to 200 F° higher than the bed
temperature.
The concentration of oxygen in the incinerator exit gas should be between 6%
and 8% (dry basis).
Values for the pertinent operating parameters are summarized in Table 3.3.
3-5
-------
TABLE 3.3
OPERATING PARAMETER SUMMARY
FLUIDIZED BED INCINERATORS
Operating Parameter
Sewage sludge percentage solids (%)
Sewage sludge heat value (Btu/lb)
Sewage sludge feed rate (Ib/ft2/hr)
Furnace exit gas oxygen (%)
Fluidized bed temperature (°F)
Freeboard temperature (°F)
Value
17% - 28%
8,000 - 12,000
30 - 60
6-8
1,250 - 1,600
1,400-1,750
3-6
-------
SECTION 4
DESCRIPTION OF THE SAMPLING PROGRAM
One of the purposes of the study was to design and conduct a field testing
program to measure the emissions from "well-operated" sewage sludge incinerators.
Before proceeding with the design of the testing program it was necessary to analyze
data from previously conducted tests to discern which correlations and which models
might be supported by kinetic theory. The object of this effort was to obtain informa-
tion to guide the selection of the types of tests and numbers of tests to perform. One
study01, supported by the Water Environment Research Foundation, was extremely
useful in this regard. These researchers developed and tested a first order kinetic
model with the reaction rate constant defined by an abbreviated Arrhenius equation.
The researchers tested three MHF so they were unable to sample both the inlet and the
outlet of the combustion zone. There is no practicable way to sample the gases
between hearths in a MHF. They were able to demonstrate that the equation does
describe the combustion of THC. Tests of the model, using data generated at other
sewage sludge incinerators, indicated that the model was probably widely applicable.
Thus it was decided to use this model as the basis for the experimental design of this
study.
The proposal to test the kinetic model during the field tests was made because,
if the model could be validated, there would be a means to extend the test results to
other sewage sludge incinerators. This decision also led to further categorization of the
population of sewage sludge incinerators. This categorization was necessary because in
only one configuration - a sewage sludge incinerator with a secondary combustion
chamber - would it be possible to measure both inlet and outlet THC concentrations.
Sewage sludge incinerators were divided into the following categories:
(1) Multiple Hearth Furnace - No Afterburner (MHF)
(2) Multiple Hearth Furnace - On-Hearth Afterburner (MHF/OH)
(3) Multiple Hearth Furnace - Secondary Combustion Chamber (MHF/SCC)
(4) Fluid Bed Incinerator (FBI)
(5) Fluid Bed Incinerator — Secondary Combustion Chamber (FBI/SCC)
(6) Radiant Electric Incinerator (REI)
4-1
-------
We believed that once we determined the basic rate equation parameters, we
would be able to calculate rate equation parameters for all sewage sludge incinerators.
We expected that the chemical composition of the THC generated by sewage sludge
incinerators would not vary greatly and that the reaction rate parameters would span a
small range. This would make it possible to make site-specific correlations between
final hearth temperature (or afterburner temperature) and the concentration of THC in
the incinerator exhaust gas.
We also intended to develop correlations between operating conditions and the
concentration of THC in the furnace exhaust. THC/CO correlations and correlations
between THC and final combustion stage temperature had been studied in the past and
appeared to hold the most promise for development into useful tools. Thus, the plan
developed was to measure the exit gas temperatures and concentrations of THC and CO
in the exhaust gas from "well-operated" examples of the various types of sewage
sludge incinerators. We anticipated that use of these parameters would make it
possible to develop site-specific correlations between both furnace exhaust gas CO
concentration and final combustion zone temperature and the concentration of THC in
the furnace exhaust gas.
The sampling and analysis portion of this program had four primary objectives.
These were:
(1) To determine the concentration of THC in the exit gas from "well-oper-
ated" sewage sludge incinerators.
(2) To determine if a reliable relationship exists between final hearth tempera-
ture and exit THC concentrations and to develop a means of using final combus-
tion stage gas temperature as a surrogate for THC concentration.
(3) To determine the relationship between the concentrations of carbon monox-
ide (CO) and unburned organic matter (THC) hi the exit gas from sewage
sludge incinerators to determine if the kinetic model would support the measure-
ment of CO as a surrogate for measurement of THC.
(4) To determine the concentrations of polychlorinated dibenzodioxins (PCDD)
and polychlorinated dibenzofurans (PCDF) from sewage sludge incinerators.
The appropriate sampling and analysis response to the objectives is relatively
straightforward. One selects a sample of representative sewage sludge incinerators and
measures the concentrations of the two pollutants and the final hearth temperatures.
We selected EPA Method 25A for measurement of THC, EPA Method 10 for measure-
ment of CO, EPA Method 3A for measurement of oxygen and carbon dioxide, EPA
Method 4 for measurement of the moisture content of the gases being sampled, and
EPA Method 2 for measurement of gas flow rates. EPA Method 23, which was
developed specifically for measurement of PCDD and PCDF emissions from combus-
4-2
-------
tion sources was selected for measurement of the PCDD and PCDF concentrations.
Section 5 of this report contains a discussion of the selection of the sites for the
sampling and analysis.
Other data were collected during the sampling of each sewage sludge incinera-
tor. The field test team obtained recordings of the temperatures of each hearth, the
feed rate of sewage sludge, and the moisture content of the sewage sludge during the
sampling periods. The plant operators also provided composite samples of the sewage
sludge that was burned on each test day. The test contractor submitted these samples
to an independent laboratory for determination of the moisture content and heat value
of the sewage sludge.
INVESTIGATION OF RELATIONSHIP BETWEEN THC AND CO
The development of relationships between CO and THC deserves additional
discussion. The model tested here is the first order decay reaction model, commonly
encountered in chemical reactions. The premise of this model is that the fraction of the
THC and CO that is burned in a given time period is constant for any given tempera-
ture. That is, the rate of destruction of both of these two pollutants can be expressed in
the terms, percent per second. Further, the rate is dependent on the temperature and
that the rate can be calculated for any measured temperature.
This model can only be strictly applied if the concentrations of other reactants
(in this case, oxygen) are high relative to THC and CO and are therefore essentially
unchanged during the reaction. If the concentration of oxygen changes significantly
during the combustion of THC and CO, then a different rate model (a second order
model) would be more appropriate The concentration of oxygen (O^ in the combus-
tion zone of sewage sludge incinerators and in the secondary combustion chambers of
sewage sludge incinerators is typically between 8% and 14% (i.e., between 80,000 and
140,000 ppm). The concentrations of THC in the furnace exit gas of multiple hearth
sewage sludge incinerators is typically on the order of several hundred to 2,000 ppm.
Carbon monoxide concentrations are typically between several hundred ppm and 5,000
ppm. Even if both THC and CO are present at their highest observed concentrations,
only 10% to 20% of the O2 available would be consumed by complete combustion of
the THC and CO. The ratio of O2 to the sum of THC and CO is sufficiently high to
support a first order reaction rate model.
The first order reaction rate model states that the ratio of the inlet concentration
to the outlet concentration of a reactant is proportional to an exponential function of the
reaction rate constant and the time allowed for the reaction to occur. That is:
(Eq.4.1)
4-3
-------
Where:
Q = inlet concentration of the reactant (ppm)
C0 = outlet concentration of the reactant (ppm)
t = time (sec)
k = reaction rate constant (sec'1)
Note that if the concentration (of THC or CO) at the inlet and the concentration
at the outlet of the final combustion stage (On-hearth or SCC) and the retention time in
the final combustion stage are all known, then the value of k can be calculated by re-
arranging Equation 4.1. Equation 4.2 can be used to calculate values of the reaction
rate
c
-k =[ln(—)]/t (Eq.4.2)
constant, k, for short, discrete time periods. The values of t, the retention time in the
final combustion chamber can be calculated by measuring the exit gas flow rate in the
stack and then back-calculating the flow rate in the final combustion chamber based on
measurements of the temperature, and the oxygen and moisture concentrations at both
locations. This technique can be applied only where it is possible to sample the THC
and CO concentrations at both the inlet and the outlet of the final combustion stage.
Because it is not possible to take a sample of the gas entering the On-Hearth stage of a
MHF, we sought to find a MHF equipped with a secondary combustion chamber (SCC)
where inlet and outlet measurements would be possible.
The reaction rate constant (Jfe) is an exponential function of temperature.
k =B*exp(-a/T)
where
T = absolute temperature (°R)
a and B = constants
*
Taking the natural logarithm of both sides of Equation 4.3 yields:
ln(k) =ln(B) + (-a/T)
4-4
-------
A plot of the logarithm of the values of k calculated by Equation 4.2 versus the
reciprocal of temperature (1/T) has a slope equal to the parameter a and an intercept
equal to the logarithm of the parameter B.
This same approach can be used for cases where it is not possible to measure
the concentration of CO and THC at the inlet to the final combustion stage, only if the
concentration of THC or CO at the inlet to the final combustion stage is constant.
Combining equations 4.1 and 4.3:
C
— -) = exp(-Bt*exp(-a/T)) (Eq.4.s)
We now take the natural logarithm of both sides of the Equation 4.5 to obtain:
C
ln(— - ) = -Bt*exp(-a/T) (Eq.4.6)
ci
For simplicity we define:
A = Bt (Eq-4-7>
Combining Equations 4.6 and 4.7 we obtain
c..
= -A*exp(-a/T) (Eq.4.8)
The constant C, is physically equal to the concentration of THC (or CO) in the
inlet to the final combustion stage. If the sewage sludge incinerator were operating at
steady state with a constant inlet concentration, then it would be possible to calculate
that concentration using the model. In the case where the sewage sludge incinerator is
not operating with a constant inlet concentration, the value Ct becomes a parameter in
the equation of the model. If the inlet concentration to the final combustion zone is
4-5
-------
nearly constant then the model can accurately predict outlet THC concentrations based
on the temperature of the final combustion zone.
We now take the natural logarithm of Equation 4.8 to obtain:
(-a/T) (Eq.4.9)
The slope of a plot of the ln(ln(C0)) versus the reciprocal of the absolute
temperature (1/T) will have a slope equal to the parameter a.
We now re-arrange Equation 4.8 to yield:
InfCJ = ln(C.) -A*exp(-a/T) (Eq.4.io)
Therefore, the slope of a plot of ln(Q versus exp(-a/7) should be linear and
have a slope equal to the parameter -A. The intercept of this plot should be equal to
the natural logarithm of the constant C,.
Therefore, if the first order rate equation is appropriate, there should be a set of
constants (a, A and Q for each of the two pollutants (THC and CO) that describes
their combustion in a furnace. Carbon monoxide is a discrete chemical. The values of
the two constants (a and A) for CO should be the same (assuming adequate turbulence)
in every sewage sludge incinerator.
Throughout the preceding, THC has been assumed to be a chemical entity.
THC is actually a mixture of products of evaporation and pyrolysis of sewage sludge.
We anticipated that the THC evolved during the evaporation and pyrolysis of sewage
sludge would be similar at all locations and times. The bulk of the organic composition
of sewage sludge is composed of cellulose fiber and the residue of the microbes that
perform the digestion of the organic material in sewage. It seemed not too optimistic
to assume that if the starting materials and the processes are similar, then the products
of the evaporation and pyrolysis would be similar.
Thus we proposed to test the validity of the model by calculating the values of
the three parameters for CO at as many locations as we could obtain data. We also
proposed to evaluate the values of the three parameters for THC at the same locations.
A finding that the model works for CO would validate the model. A finding that the
model also works for THC would validate our assumption that the composition of THC
4-6
-------
evolved during the evaporation and pyrolysis of the sewage sludge does not vary
widely.
OBSERVED TOTAL HYDROCARBON/CARBON MONOXIDE RELATION-
SHIPS
The data in Table 4.1, from the previously mentioned study by the Water
Environment Research Foundation (WERF)(1), provided some support for this ap-
proach. Sites 1, 2, and 3 were sampled during the WERF study. WERF obtained the
remaining data from the literature. All of the furnaces tested were MHF. One site
(Site 2) was equipped with a secondary combustion chamber (SCC) but no sampling
was done at the inlet of the SCC. The values of the constant a in Eq. 4.3 were found
by plotting the ln(ln) of C0 against 1/T (Eq. 4.9). The slope of this line is equal to a.
A plot of ln(Q versus l/exp(-fl/T) has a slope equal to the constant A and an intercept
equal to the natural logarithm of the inlet concentration (Q. The calculated values of
kt in Table 4.1 were found by calculating value of the logarithm of €„/€,. By Equation
4.1, the natural logarithm of the ratio of C/C, is equal to the product of the parameters
-k and t. The values of kt calculated are approximate for the average temperature in the
final combustion zone during the testing. They are comparable from site to site
because the average, final combustion zone temperature did not vary widely from site
to site.
The variation in the value of the product, -kt, from site to site is small, approxi-
mately a factor of 2.5. Part of the variation may be due to variation in the retention
time of the furnace exit gases in the final combustion zone of the various sewage sludge
incinerators. The values of -kt calculated were consistent enough to provide encourage-
ment that a universal value for the parameter k might be found, and that this could be
used to correlate the temperature in the final combustion zone to the exit gas concentra-
tion of THC.
Figures 4.1 and 4.2 demonstrate application of the technique to other data.
They are plotted from data collected by Lewis, Boe and Boyer® at a MHF in Vancou-
ver Washington. The value of the slopes of these two curves is equal to the value of
the parameter a.
The question of correlation between THC and CO in the exit gas from sewage
sludge incinerators is complex. A successful correlation must include a description of
a plausible causal relationship. Serendipitous correlations occur, but unless there is
some basis in theory why the correlation should occur, they are unreliable for predic-
tion. In the case considered here, a correlation between THC and CO concentrations in
the exit gas of the SCC of a sewage sludge incinerator would be supported by the
4-7
-------
TABLE 4.1
WATER ENVIRONMENT RESEARCH FOUNDATION REPORT"'
KINETIC EVALUATION
Model Tested
&)=exp(-A*exp(-a/T))
Site
1
2
3
AMSA(1)
Detroit
St. Paul
1989
St. Paul
1991
Average
THCta
(C, ppm)®
Calculated
11,900
1,600
340
590
1,970
270
1,780
A
(Calculated)
157
49
24
40
59
98
287
Average
THCout
(Q
341
158
80
60
140
30
190
a
(sec'1)
4,948
4,052
2,961
4,013
4,225
5,753
7,062
Estimated
Values
of ft
(sec~**sec)
3.55
2
1.45
2.29
2.64
2.2
2.24
After-
burner
Type
none
sec
On-HRTH
Various
none
On-HRTH
On-HRTH
(1) Note: These data include results from several sewage sludge incinerators.
(2) Concentration of total hydrocarbons in the gas entering the combustion chamber.
(3) Concentration of total hydrocarbons in the gas leaving the combustion chamber.
kinetic relationships described above, if there were a correlation between the concentra-
tions of THC and CO in the inlet to the SCC.
The theory would hold that the relationship between reductions in THC and CO
concentrations in a SCC could be calculated for any combustion temperature. It may
be possible to measure THC, CO and afterburner temperature for a representative
length of time and use these data to back-calculate the values of A and a for equation
4.3. The values of the parameters A and a would be combined with estimates of the
4-8
-------
1.7
1.6 -
1.5 --
1
o
I
1.4 --
1.3 --
1.2 --
1.1
Indn(THO) =4922.2*(1/T) -1.9822
R2 =0.8022
a =4922
0.00064 0.00066 0.00068 0.00070
1/TEMPERATURE
Figure 4.1 Calculate a for THC, Vancouver
4-9
0.00072 0.00074
-------
2.10
2.05
out
2.00
1.95
1.90
In(lnco)) =1429.1/1 +1.0187
R2 =0.5817
a =1429
V7-•**'••
L m J ^^^ ^
6.4E-04 6.6E-04 6.8E-04 7.0E-04 7.2E-04 7.4E-04
1/TEMPERATURE
Figure 4.2 Calculate a for CO, Vancouver
4-10
-------
160
140--
120
_ 100
a
a
80--
•o
60
20..
TWC =O.0327
-------
retention time of the gases in the combustion zone and used in Eq. 4.8 to calculate the
ratio of THC to CO for any given combustion zone temperature. This calculation
could be used, together with the results of the continuous CO monitor, to assure
compliance with the THC limit. This could work even if the values of A and a varied
among sewage sludge incinerators as long as they were relatively constant for each
sewage sludge incinerator.
The data from Run Number 6 at Vancouver0' (Figure 4.3) are representative of
the type of correlation between CO and THC that we have seen. Other plots from
other sewage sludge incinerators are similar.
Note, however, that the calculation described above is valid only if there is
reason to believe that there is a relationship between the concentration of THC and CO
in the inlet to the combustion zone. There is no reason to believe that this is so. In
fact, there is reason to believe that there is no relationship between THC and CO
concentrations at the inlet to the On-Hearth or secondary combustion chamber of
sewage sludge incinerators. Consider a MHF. Wet sewage sludge is fed to the second
to top hearth (or the top hearth), where heating begins. THC generation begins as the
sewage sludge dries. The more volatile of the THC components evaporate. Further
THC generation results from partial combustion of other organic components as the
drying mass reaches temperatures between 800 and 1,000 °F. Carbon monoxide does
not exist in the wet sewage sludge so none of its generation is attributable to evapora-
tion. CO generation is solely attributable to pyrolysis of the organic matter in the
sewage sludge. The correlation might yet be decent if the contribution of THC from
evaporation is small relative to the total THC.
The argument presented in the preceding paragraph applies to emissions from
FBI furnaces as well. In the case of FBI, the wet mixture is injected into a bed of hot
well-mixed sand. Drying, evaporation, pyrolysis and combustion all begin more
quickly. The shorter period of tune required for heating to combustion temperatures
may result in a closer correlation between the THC and CO concentrations in the gas
entering the freeboard zone.
Most wastewater treatment plants that operate sewage sludge incinerators use
final plant effluent as the scrubber liquid. This practice raised the question of the effect
of exposing the furnace or afterburner exit gases to the final plant effluent on THC
concentration. The effect of this practice could either increase or decrease the concen-
tration of THC in the exit gas. Water soluble organic compounds in the furnace exit
gases could be removed by the scrubber, or slightly soluble organic compounds in the
final effluent might be stripped from the water by exposure to the hot furnace exit
gases. In the first case, the scrubber would assist in meeting the 100 ppm THC limit.
In the second case, the scrubber would add THC to the exit gases. We needed to know
whether the location of the continuous monitor would have any effect on the reported
THC concentrations.
4-12
-------
EMISSION RATES OF CHLORINATED DIOXINS AND FURANS
EPA continues to study the emissions and health effects of chlorinated dioxins
and furans from combustion sources. This work began during the EPA assessment of
dioxin/furan emissions from the combustion of hazardous wastes, but has been
expanded to include emissions from all combustion sources. This project included
measurement of the emission rates of these classes of compounds from sewage sludge
incinerators. The object of these measurements was to characterize the emissions of
dioxins and furans from sewage sludge incinerators. No risk assessment of the impacts
of these emissions was attempted during this program. We chose EPA Method 23 for
collection of the samples for dioxin and furan analysis. This is the method chosen for
collection and analysis for these compounds by EPA/OSW and nearly all state and local
agencies for analysis of these compounds.
TEST PLANS FOR THE VARIOUS SEWAGE SLUDGE INCINERATORS
The considerations discussed above dictated that sampling be done for THC,
and CO at three locations within a sewage sludge incinerator system. These locations
are: the exit gases from the furnace; the exit gases from the afterburner and the exit
gases from the scrubber. There is just one type of sewage sludge incinerator that is
amenable to sampling at all of these locations - a MHF with a separate secondary
combustion chamber (SCC). There is no practicable way to obtain a sample from the
region between the On-Hearth and the first hearth of a conventional MHF. Nor, is
there a way to sample between the bed and the freeboard of an FBI. There are
relatively few FBI with SCC. For these reasons we decided to collect the kinetic rate
equation data at a MHF that is equipped with a SCC.
The consortium of New Jersey WWTP operators that was referred to earlier
sponsored tests at two different sewage sludge incinerators. One of these tests was
done at an FBI and the other was at a MHF/SCC device. We visited the MHF/SCC
site during those tests and found those tests complied with the test protocol that we
proposed for that type of furnace. The tests that the consortium sponsored at the
sewage sludge incinerator were somewhat more limited than we had proposed but
seemed to satisfy most of our requirements. We decided to use the New Jersey data to
satisfy a portion of our needs and to concentrate most of the project effort on collection
of data from other units. With all of the above in mind, we proposed to sample at:
One MHF with a secondary combustion chamber
One MHF with a On-Hearth afterburner
One MHF with no afterburner
One FBI
4-13
-------
Completion of sampling at the units listed above would give us one set of data
with which to validate the kinetic model (the MHF/SCC unit). It also would give us
sufficient data at other types of units to determine whether the kinetic model can be
applied to emissions test data from such units. The specific monitoring proposed for
the various types of units is outlined in Tables 4.2 through 4.5 These tables provide
only the salient attributes of the proposed testing at each of the various sewage sludge
incinerators. Complete sampling, analysis and quality assurance plans were presented
in the Site Specific Test Plans that were developed for each of the sewage sludge
incinerators.
4-14
-------
TABLE 4.2
TEST PLAN
MHF FURNACE (secondary combustion chamber)
Monitor 5 days, 24 hours/day, furnace exit, SCC exit and Stack Exit
Temperature Regimen for Tests
Day
1
2
3
4
5
SCC Temperature (°F)
1.600° F
1.400° F
1.200° F
1.000° F
800° F
Monitored Parameters
Location
Furnace
SCC exit
Stack Exit
Scrubber
Measured
Sewage sludge heat value
Carbon dioxide
Temperature
CO
THC
Oxveen
Moisture
Flow rate
Temperature
CO
THC
Oxveen
Moisture
Flow rate
Carbon dioxide
Temperature
CO
THC
Oxvgen
Moisture
Flow rate
Carbon dioxide
Provided bv Plant
Hearth temneratures
Fuel flow rate
Sewaee sludge moisture
• Fuel heat value
Sewaee sludee feed rate
Temperature
Fuel heat value
Fuel flow rate
Water flow rate
4-15
-------
TABLE 4.3
MHF FURNACES (On-Hearth afterburner)
Monitor continuously for 5 days, 24 hours per day, Stack Exit only
Temperature Regimen for Tests
Day
1
2
3
4
5
On-Hearth Temperature
Normal
Normal
1,600° F
1,200°F
800° F
Monitored Parameters
Location
Furnace
Stack Exit
Scrubber
Measured
Sewage sludge heat value
Sewage sludge Moisture
Temperature
CO
THC
Oxygen
Moisture
Flow rate
Carbon dioxide
Provided by Plant
Hearth temperatures
Fuel flow
Fuel heat value
Sewage sludge feed rate
Sewage sludge moisture
Water flow rate
4-16
-------
TABLE 4.4
MHF FURNACES (no afterburner)
Monitor continuously for 5 days, 24 hours per day, Stack Exit only
Temperature Regimen for Tests
Day
1
2
3
4
5
On-Hearth Temperature
None
None
None
None
None
Monitored Parameters
Location
Furnace
Stack Exit
Scrubber
Measured
Sewage sludge heat value
Moisture
Temperature
CO
THC
Oxygen
Moisture
Carbon dioxide
Provided by Plant
Hearth temperatures
Fuel flow
Fuel heat value
Sewage sludge feed rate
Sewage sludge moisture
Water flow rate
4-17
-------
TABLE 4.5
TEST PLAN
FBI FURNACES
Monitor five days, 24 hours/day, furnace exit and Stack Exit
Temperature Regimen for Tests
Day
1
2
3
4
5
Freeboard Temperature
Normal
Normal
1,600° F
1,200° F
800° F
Monitored Parameters
Location
Furnace
Stack Exit
Scrubber
Measured
Sewage sludge heat value
Sewage sludge moisture
Temperature
CO
THC
Oxygen
Moisture
Carbon dioxide
Dioxins/Furans
Flow rate
Provided by Plant
Freeboard temperature
Bed temperature
Fuel flow
Fuel heat value
Sewage sludge feed rate
"
•
Water flow rate
4-18
-------
SECTION 5
SOURCES OF DATA USED FOR THIS EVALUATION
INTRODUCTION
This section provides data about the general operation of each sewage sludge
incinerator during the period of time that the data were collected. Complete informa-
tion is not available in some cases. Some data were obtained from plant operators for
other purposes and may not contain all of the information that was collected during the
tests conducted during this investigation. Other data were obtained from literature
which did not report all of the information that we would have liked. These data were
used for specific purposes for which they were adequate. For example, the continuous
monitoring data that were provided by the Cities of St. Paul and Cleveland, were used
to develop statistical models. It was not necessary to know the temperature of the final
combustion zone for this purpose, it was enough to know that the temperature was
always within the range of operation of the incinerator. Section 6 of this report
contains a more complete description of the information that was collected during this
investigation. The data are reported in the context of the objectives of the investiga-
tion.
ARLINGTON (VIRGINIA) WATER POLLUTION CONTROL PLANT
Facility Description
The Arlington, (Virginia) Water Pollution Control Plant is a publicly operated
treatment works (POTW) that processes an average of 30 million gallons per day (mgd)
of wastewater. The sludge furnace operates 24 hours per day, 5% days per week. The
influent to the wastewater treatment facility comes from predominantly domestic
sources (98 percent). The treatment facility serves a population of approximately
150,000.
Incoming wastewater is screened at four facilities at the plant and degritted at
two locations. Screenings and grit are hauled directly to a landfill. The primary
treatment consists of four side by side rectangular tanks which receive the degritted and
screened wastewater. A chain and flight collector mechanism moves the settled
material (primary sludge) to the influent end of the tank and the floating material
(grease) to the effluent end of the tank. The primary sludge is pumped to a gravity
thickener; the grease is hauled directly to a landfill.
5-1
-------
The secondary treatment system consists of three side by side four-pass aeration
basins configured to operate in either a step feed or conventional plug flow mode.
Diffused air is used. Six circular clarifiers follow this treatment. The waste sludge
from this process is concentrated in a dissolved air flotation thickener. Only the three
most recent clarifiers have scum removal mechanisms. The secondary scum is pumped
to the primary clarifiers. Site THC-1 advanced treatment includes phosphorous
removal. Sludge generated by this process goes to the primary clarifiers.
All sludge is de-watered prior to incineration to reduce the water content of the
sludge cake to between 70 to 75 percent by weight. De-watering is a critical step in the
process of sludge incineration, because it reduces the thermal demand on the incinera-
tors. A gravity thickener is used to increase the percentage of solids in the primary
sludge. A flotation thickener processes the secondary sludge. The combined thickened
sludge from those thickeners is then pumped into a storage tank. Lime slurry and
ferric chloride solution are used to condition the sludge drawn from the storage tank.
Four recessed plate filter presses are available to de-water the conditioned sludge.
The recessed plate filter presses drop sludge into a bunker where the sludge is
removed by drag conveyors and deposited onto a belt conveyor system and transported
to the furnace.
Incinerator and Air Pollution Control System
Site THC-1 has two identical 22 ft, 3 in. Nichols eight-hearth, MHFs. Only
one of the furnaces is operated at a time. Many MHFs use recycled shaft cooling air to
reduce auxiliary fuel consumption. However, Site THC-1 does not use recycled shaft
cooling air due to problems associated with the original design. Air for combustion is
admitted through atmospheric ports located in Hearth No. 7 and Hearth No. 8. The
position of the atmospheric port dampers is controlled with manual loading stations
located in the control room. The auxiliary fuel system is oil fired and two burners are
located on each of Hearth Nos. 2, 4, 5, and 7.
The air pollution control system consists of an adjustable throat venturi scrubber
followed by a two plate, impingement tray scrubber. The tray scrubber flue gas exit
temperature is nominally 100°F. The position of the venturi adjustable throat is con-
trolled with a manual loading station located in the control room.
Process Description and Operation
The existing Arlington County WPCP has the capacity to treat approximately 30
million gallons per day of raw influent and a maximum of 45 dry tons per day of
sewage sludge. The sludge de-watering facility at the plant consists of four fixed-
chamber plate and frame filter presses. The de-watered sludge cake from the filter
presses is fed to the perimeter of the top hearth of one of the multiple hearth incinera-
tors for processing. There are eight hearths per incinerator. The de-watered cake is
5-2
-------
raked from the perimeter of the top hearth toward the center shaft where it drops
through holes in the center of the hearth. On the next hearth the sludge is raked in the
opposite direction. This same process is repeated in all subsequent hearths as the
sludge dries and then burns. The dry ash is discharged from the bottom of the inciner-
ator and is stored on-site prior to landfill disposal.
The sewage sludge is the primary fuel for the incinerator. Number 2 fuel oil is
used as an auxiliary fuel. The emissions from the incinerator are controlled by a wet
scrubber.
Summary of Results
Incinerator Unit No. 2 was tested. Continuous monitoring of THC, CO, CO2,
and O2 was conducted at two sampling locations from July 21 through July 26, 1995.
Three sample runs for dioxin/furan emissions were conducted at the outlet location on
July 22 and 23.
Table 5.1 summarizes the concentrations of THC, CO, CO2 and O2 measured at
the furnace outlet location over the course of the sampling program. Each run corre-
sponds to a 12-hour sampling period, beginning with July 21, midnight to noon (Run
No. 1-1) and ending with July 26, midnight to noon (1-11). Each reported value repre-
sents the average concentration measured during the monitoring period. Table 5.2
reports equivalent data for measurements at the scrubber outlet location.
Table 5.3 presents the percent total solids (EPA Method 160.3) and the gross
calorific value of the sewage sludge as delivered to the sewage sludge incinerator
(ASTM D-240). The samples analyzed were provided by plant personnel. The sam-
ples were composited over 24-hour periods. None of the gross calorific values were
above the limit of detection of D-240.
CLEVELAND (OHIO) SOUTHERLY WASTEWATER TREATMENT CENTER
Facility Description
The incinerator installation at the Southerly WWT Center is comprised of four
separate, independently operating MHFs. The major items of equipment for each unit
are:
• Multiple hearth incinerator
• Combustion air blowers
• Cooling air blower
• Forced draft fan
• Auxiliary burner system
• Waste heat boiler
5-3
-------
TABLE 5.1
THC, CO, CO2, AND O2 CONCENTRATIONS - FURNACE OUTLET
Arlington, Virginia WWTP, June 1995
Run
No.
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
Date
7/21
7/21
7/22
7/22
7/23
7/23
7/24
7/24
7/25
7/25
7/26
Sludge
Feed
Rate
ton/hr
7.15
7.15
7.60
7.84 .
7.80
7.86
7.87
7.59
„
__
—
Total
Hydro-
carbons
ppm1
80
46
45
63
66
25
30
29
45
31
59
Carbon
Monoxide
ppm1
675
926
1,000
1,079
1,706
778
1,267
601
1,205
806
1.192
Carbon
Dioxide
percent1
8.9
8.6
8.4
9.7
9.8
9.9
10.6
6.8
9.6
9.2
10.0
Oxygen
percent1
10.2
10.5
10.7
9.3
9.2
8.9
8.2
12.3
9.4
9.6
9.0
'Concentration are on a dry basis; THC concentrations based on propane calibration standards.
• Gas scrubber system
• Ash handling system.
After sludge is de-watered on the vacuum filters, the filter cake is conveyed to
one of the four multiple hearth incinerators. In the incinerators, the filter cake is dried
and combusted. The end products are sterile, inert ash, and exhaust gas. The ash is
slurried to the ash lagoons prior to final disposal in a landfill. The flue gas exhaust
system consists of a venturi scrubber and impingement wet scrubber for each incinera-
tor to remove particulates (fly ash). The captured fly ash is mixed with the incinerator
and waste heat boiler ash, discharged to the ash sumps, slurried and pumped to the ash
lagoons.
5-4
-------
TABLE 5.2
THC, CO, CO2, AND O2 CONCENTRATIONS -SCRUBBER OUTLET
Arlington, Virginia WWTP, June 1995
Run
No.
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
Date
7/21
7/21
7/22
7/22
7/23
7/23
7/24
7/24
7/25
7/25
7/26
Sludge
Feed
Rate
ton/hr
7.15
7.15
7.60
7.84
7.80
7.86
7.87
7.59
~
_
—
Total
Hydro-
carbons
ppm1
24
29
27
38
59
22
39
24
37
23
36
Carbon
Monoxide
ppm1
387
535
607
663
911
462
721
467
694
494
726
Carbon
Dioxide
percent1
5.4
5.4
6.0
6.1
6.1
6.1
6.1
4.8
5.8
5.9
—
Oxygen
percent1
14.6
14.5
13.9
13.8
13.7
13.8
13.8
15.3
14.2
14.0
14.1
'Concentration are on a dry basis; THC concentrations based on propane calibration standards.
TABLE 5.3
SEWAGE SLUDGE PARAMETERS
Arlington, Virginia WWTP, June 1995
Date
7/23/95
7/24/95
7/25/95
Total Suspended Solids (%)
30.0
28.1
26.5
Gross Calorific Value (BTU/lb)
16701
17801
18901
1
Limit of detection of ASTM D-240
5-5
-------
Filter cake from the vacuum filters is fed into the top of each incinerator
through a sludge discharge chute. The filter cake moves through the incinerator.
Rabble arms, which are attached to the center shaft and extend to the outer incinerator
wall, rotate slowly. Teeth which are attached to the arms move sludge from the center
to the outside of the incinerator on the odd numbered hearths (out hearths) and from the
outside to the center on even numbered hearths (in hearths). Each odd numbered
hearth has drop holes at the outside wall of the incinerator and the even numbered
hearths have a drop hole at the center shaft.
The holding time in the incinerators is sufficiently long to evaporate the mois-
ture in the filter cake and to oxidize the organic matter by combustion. The operating
temperature is high enough to achieve sterilization of the remaining ash and destruction
of odors in the exhaust gases.
As the filter cake moves downward from hearth to hearth, it is dried, com-
busted, and the resultant ash cooled before dropping into the ash hopper. Air for
combustion, which is supplied by the forced draft fan, enters Hearth Nos. 6 and 8.
The combustion air is therefore preheated when it reaches the combustion zone. The
air is heated to 1,400 - 1,600°F as it passes through the combustion zone. As this air
moves through the upper hearths, it helps dry incoming filter cake. The air exits the
furnace at the top at a temperature of 800 to 1,200°F. Combustion air is also added at
each burner.
In conveying the gases from the outlet of each multiple hearth incinerator to the
scrubbers, a waste heat boiler reduces the gas temperature and reclaims energy at the
same time. The wet scrubbers employ a venturi-slot section and impingement trays to
capture the particles in the gas and sluice them to the ash disposal of the incinerator.
The cleaned gas leaves the scrubbers through a mist eliminator to provide droplet-free
discharge of gas which is released to the atmosphere through the stack.
Incinerator and Air Pollution Control System
The existing Southerly WWT Center has the capacity to treat approximately 100
million gallons per day of raw influent and a maximum of 150 dry tons per day of
sewage sludge. De-watered sludge cake from the vacuum filters is fed to the perimeter
of the top hearth of the multiple hearth incinerators for processing. There are nine
hearths per incinerator. The de-watered cake is raked from the perimeter of the top
hearth toward the center shaft where it drops through holes in the center of the hearth.
On the next hearth the sludge is raked in the opposite direction. This same process is
repeated in all subsequent hearths as the sludge dries and then burns. The dry ash is
discharged from the bottom of the incinerator and is stored on-site prior to landfill
disposal. The sewage sludge is used as the primary fuel for the incinerator. Natural
gas is used as an auxiliary fuel. The emissions from the incinerator are controlled with
a wet scrubber.
5-6
-------
The Southerly WWT Center has four identical nine-hearth MHFs. Only three
of the furnaces are operated'at a time. The MHFs use recycled shaft cooling air to
reduce auxiliary fuel consumption. Air for combustion is admitted through atmo-
spheric ports located in Hearth No. 7 and No. 9. The position of the atmospheric port
dampers is controlled with manual loading stations located in the control room. The
auxiliary fuel system is natural gas fired and two burners are located on each of Hearth
Nos. 1,3, 5, 7, and 9.
Hearth No. 1, also known as the "zero hearth," is used as control for VOC
emissions. A natural gas burner is used in the zero hearth to maintain a temperature of
approximately 1,600°F. The air pollution control system consists of an adjustable
throat venturi scrubber followed by a packed bed scrubber. The scrubber flue gas exit
temperature is nominally 100°F. The position of the venturi adjustable throat is
controlled with a manual loading station located in the control room.
Summary of Results
The No. 4 Sewage Sludge Incinerator was the unit tested. Continuous monitor-
ing of THC, CO, CO2, and O2 was conducted at two sampling locations from July 31
through August 4, 1995. Three sample runs for dioxin/furan emissions were conducted
at the outlet location on August 1 and 2.
The average stack gas velocity was 50.2 feet per second (fps) during the
sampling program. Volumetric flow rates averaged 21,309 actual cubic feet per minute
(acfm) or 17,136 dry standard cubic feet per minute (dscfm). Stack gas temperature
averaged 153°F, with a moisture content of 5.3 percent. Composition of the stack gas
averaged 3.8 percent carbon dioxide (CO^ and 15.9 percent oxygen (Oj). Stack gas
conditions were consistent throughout the sampling program.
Table 5.3 summarizes the concentrations of THC, CO, CO2 and O2 measured at
the furnace outlet location over the course of the sampling program. Each run
corresponds to a five to 13-hour duration, beginning on July 31 at 1800 hours and
ending on August 4 at 0800 hours. Each reported value represents the average
concentration measured during the monitoring period. Table 5.4 reports equivalent
data for measurements at the scrubber outlet location.
Table 5.6 presents the percentage of total solids (as measured by EPA Method
160.3) and the gross calorific value of the sewage sludge as delivered to the sewage
sludge incinerator (as determined by ASTM D-240). The samples analyzed were
provided by plant operating personnel. The samples were composited over 24-hour
periods.
5-7
-------
TABLE 5.4
THC, CO, CO2, AND O2 CONCENTRATIONS - FURNACE OUTLET
Cleveland (Southerly), Ohio WWTC, June 1995
Run
No.
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
Date
7/31
7/31
8/1
8/2
8/2
8/3
8/3
8/4
Sludge
Feed
Rate
ton/hr
5.1
4.2
5.3
7.5
7.1
6.9
7.1
8 1
Total
Hydro-
carbons
ppm1
0.9
3.7
0.6
0.8
1.2
6.6
2.8
22
Carbon
Monoxide
ppm1
7.8
3.7
6.2
4.3
5.2
446
5.0
18.3
Carbon
Dioxide
percent1
4.8
5.1
5.5
5.4
5.4
5.6
5.1
4.6
Oxygen
percent1
14.2
13.9
13.5
13.5
13.9
13.6
13.8
14.5
'Concentration are on a dry basis; THC concentrations based on propane calibration standards.
TABLE 5.5
THC, CO, CO2, AND O2 CONCENTRATIONS - SCRUBBER OUTLET
Cleveland (Southerly), Ohio WWTC. June 1995
Run
No.
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
Date
7/31
7/31
8/1
8/2
8/2
8/3
8/3
3/4
Sludge
Feed
Rate
ton/hr
5.1
4.2
5.3
7.5
7.1
6.9
7.1
8 1
Total
Hydro-
carbons
ppm1
1.8
2.6
2.3
2.4
2.0
4.6
2.9
0 6
Carbon
Monoxide
ppm1
4.6
2.0
5.4
3.0
2.3
322
2.1
11.3
Carbon
Dioxide
percent1
3.6
3.8
3.7
3.8
3.8
3.9
3.7
3.4
Oxygen
percent1
16.1
15.9
15.7
15.7
15.8
15.7
15.7
16.3
'Concentration are on a dry basis; THC concentrations based on propane calibration standards.
5-8
-------
TABLE 5.6
SEWAGE SLUDGE PARAMETERS
Cleveland (Southerly), Ohio WWTC, June 1995
Run
Number
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
Date
7/31
7/31
8/1
8/2
8/2
8/3
8/3
8/4
Total Suspended Solids
(%)
41.0
40.8
41.7
42.2
44.2
42.2
42.3
42.6
Gross Calorific Value
(BTU/lb)
6,290
6,820
6,140
7,560
5,850
7,520
6,370
7.520
HUNTINGTON ( WEST VIRGINIA) REGIONAL WASTEWATER
TREATMENT FACILITY
Facility Description
The original wastewater treatment facilities at the site began operating in 1964
and provided a primary degree of treatment to wastewater received from the City of
Huntington and immediate area. In 1984, in response to orders issued by the Ohio
River Valley Sanitation Commission, the United States Environmental Protection Agen-
cy and the West Virginia Department of Natural Resources, the existing treatment
processes at the facilities were upgraded from primary to secondary treatment levels.
An average daily flow volume of approximately 13 million gallons is received at
the treatment plant and is subject to a treatment process consisting of screening, grit
collection, pre-aeration, primary sedimentation, stabilization utilizing the activated
sludge process, secondary clarification and chlorination prior to discharge into the Ohio
River.
5-9
-------
Incinerator Operating Description
The sludge de-watering and disposal facilities in Huntingdon utilize continuous
belt filter presses to convert the liquid sludges from the wastewater treatment processes
into filter cake which contains approximately 22 percent solids and 78 percent water.
The filter cake is then mixed with coal and fed into a fluidized bed disposal system
where it is burned at a maximum temperature of 1,600°F.
In general, de-watered sludge and coal are injected into the reactor and combus-
tion air flows upward and fluidizes the mixture of hot sand, sludge, and coal. Supple-
mental fuel oil and/or natural gas can also be supplied by burners. The reactor is a
single chamber unit where both moisture evaporation and combustion occur at approxi-
mately 1,550°F in either the dense or dilute phases of the sand bed. All the combus-
tion gases pass through the combustion zone with residence time of several seconds.
The reactor flue gases exit the reactor and are directed through a heat ex-
changer. The heat recovered from the flue gases is used to preheat the fluidizing air.
Flue gases exit the heat exchanger at approximately 1,000°F and enter the air pollution
control system.
The air pollution control system cleans and cools the hot exhaust gases exiting
the heat exchanger. The air pollution control system consists of two sections, each of
which serves a specific purpose. The first section is a venturi scrubber where panicu-
late matter in the exhaust gases are removed and the exhaust gas temperature is reduced
to approximately 185 °F.
The quenched gas changes direction and flows upward through a flooded tray
cooling tower. The gas flows upward through two cooling trays and a mist eliminator
prior to its emission through a stack at a temperature of approximately 120°F.
Scrubbing water from the venturi section is separated in the lower conical part
of the cooling tower and is pumped to an ash lagoon. The scrubbing water from the
cooling tower is discharged into the headworks of the treatment plant with the
wastewater received at the plant.
Summary of Results
Testing was conducted at the sewage sludge incinerator operated by the Hun-
tington Sanitary Board, Huntington, West Virginia. Continuous monitoring of THC,
CO, CO2, and O2 was conducted at two sampling locations from August IS through
August 18, 1995. Three sample runs for dioxin/furan emissions were conducted at the
outlet location on August 15 and 16.
The average stack gas velocity was 50.51 feet per second (fps) during the sam-
pling program. Volumetric flow rates averaged 9,521 actual cubic feet per minute
5-10
-------
(acftn) or 7,938 dry standard cubic feet per minute (dscfm). Stack gas temperature
averaged 111°F, with a moisture content of 9.1 percent. Composition of the stack gas
averaged 7.8 percent carbon dioxide (CO2) and 11.4 percent oxygen
Table 5.7 summarizes the concentrations of THC, CO, CO2, and O2 measured
at the furnace outlet location over the course of the sampling program. Each run corre-
sponds to a period of continuous sampling (four to ten hours in duration) conducted
between August 15 and 18, 1995. Each reported value represents the average concen-
tration measured during the monitoring period. Table 5.8 reports equivalent data for
measurements at the scrubber outlet location.
TABLE 5.7
THC, CO, CO2, AND O2 CONCENTRATIONS - FURNACE OUTLET
Huntington, West Virginia RWWTF, August 1995
Run
No.
1-1
1-2
1-3
1-4
1-5
1-6
Date
8/15
8/16
8/17
8/17
8/18
8/18
Sludge
Feed
Rate
ton/hr
NA
NA
NA
NA
NA
NA
Total
Hydro-
carbons
ppm1
3.7
4.5
6.3
5.6
1.8
5.1
Carbon
Monoxide
ppm1
56.3
35.8
125
155
4.7
92
Carbon
Dioxide
percent1
8.1
7.5
7.1
9.5
6.7
7.5
Oxygen
percent1
10.8
11.8
12.3
9.3
12.1
11.5
'Concentration are on a dry basis; THC concentrations based on propane calibration standards.
NA - Data not available
5-11
-------
TABLE 5.8
THC, CO, CO2, AND O2 CONCENTRATIONS - SCRUBBER OUTLET
Huntington, West Virginia RWWTF, August 1995
Run
No.
1-1
1-2
1-3
1-4
1-5
1-6
Date
8/15
8/16
8/17
8/17
8/18
8/18
Sludge
Feed
Rate
ton/hr
NA
NA
NA
NA
NA
NA
Total
Hydro-
carbons
ppm1
4.9
5.3
5.9
4.6
2.0
3.8
Carbon
Monoxide
ppm1
50.2
36.1
109
130
2.1
80
Carbon
Dioxide
percent1
8.2
7.6
7.2
9.6
7.0
7.1
Oxygen
percent1
10.9
11.9
12.4
9.6
12.4
11.1
'Concentration are on a dry basis; THC concentrations based on propane calibration standards.
NA - Data not available
Table 5.9 presents the percentage of total solids (as measured by EPA Method
160.3) and the gross calorific value of the sewage sludge as delivered to the sewage
sludge incinerator (as determined by ASTM D-240). The samples analyzed were pro-
vided by plant operating personnel. The samples were composited over 24-hour peri-
ods.
TABLE 5.9
SEWAGE SLUDGE PARAMETERS
Huntington, West Virginia RWWTF, August 1995
Date
8/16/95
8/17/95
8/18/95
Total Suspended Solids (%)
19.4
17.9
19.4
Gross Calorific Value (BTU/lb)
3,500
< 1,000
3,500
5-12
-------
HOPEWELL (VIRGINIA) REGIONAL WASTEWATER TREATMENT
FACILITY
Facility Description
The incinerator installation at the Hopewell WWT facility is comprised of one
separate, independently operating MHF. The major items of equipment for this unit
are:
• Multiple hearth incinerator
• Combustion air blowers
• Cooling air blower
• Forced draft fan
• Afterburner system
• Waste heat boiler
• Gas scrubber system
• Ash handling system
After sludge is de-watered on the vacuum filters, the filter cake is conveyed to
the multiple hearth incinerator. In the incinerator the filter cake is dried and com-
busted. The end products are sterile, inert ash and exhaust gas. The flue gas exhaust
system consists of a venturi scrubber and a water after-cooler for the incinerator to
remove particles (fly ash). The captured fly ash is mixed with the incinerator ash and
waste heat boiler ash, discharged to the ash sumps, and trucked to the ash landfills.
Filter cake from the vacuum filters is fed into the top of the incinerator through
a sludge discharge chute. The filter cake moves through the incinerator. Rabble arms,
which are attached to the center shaft and extend to the outer incinerator wall, rotate
slowly. Teeth which are attached to the arms move sludge from the outside to the
center of the incinerator on the odd numbered hearths (in hearths) and from the center
to the outside on even numbered hearths (out hearths). Each odd numbered hearth has
drop holes at the center shaft of the incinerator and the even numbered hearths have a
drop hole at the outside wall.
The holding time in the incinerators is sufficiently long to evaporate the mois-
ture in the filter cake and to oxidize the organic matter by combustion. The operating
temperature is high enough to achieve sterilization of the remaining ash and destruction
of odors in the exhaust gases.
As the filter cake moves downward from hearth to hearth, it is dried, com-
busted, and the resultant ash cooled before dropping into the ash hopper. Air for com-
bustion, which is supplied by the forced draft fan enters Hearth Nos. 3, 4, 6, and 7.
The combustion air is therefore preheated when it reaches the combustion zone. The
air is heated to 1,400 - 1,600°F as it passes through the combustion zone. As this air
moves through the upper hearths, it helps dry incoming filter cake. The air exits the
5-13
-------
furnace at the top at a temperature of 800 to 1,200°F. The gas stream then passes
through an afterburner at a temperature of 1,400 - 1,600°F to ensure complete combus-
tion.
In conveying the gases from the outlet of the afterburner to the scrubbers, a
waste heat boiler reduces the gas temperature and reclaims energy at the same time.
The wet scrubbers employ a venturi-slot section and impingement trays to capture the
particles in the gas and sluice them to the ash disposal of the incinerator. The cleaned
gas leaves the scrubbers and is released to the atmosphere through the stack.
Incinerator and Air Pollution Control System
The existing Hopewell WWT facility has the capacity to treat approximately 50
million gallons of wastewater per day. De-watered sludge cake from die vacuum filters
is fed to the perimeter of the top hearth of the incinerator for processing. There are
eight hearths in the incinerator. The de-watered cake is raked from the perimeter of
the top hearth toward the center shaft where it drops through holes hi the center of the
hearth. On the next hearth the sludge is raked hi die opposite direction. This same
process is repeated hi all subsequent hearths as the sludge dries and then burns. The
dry ash is discharged from the bottom of the incinerator and is stored on-site prior to
landfill disposal. The sewage sludge is used as the primary fuel for the incinerator.
Natural gas is used as an auxiliary fuel. The emissions from the incinerator are con-
trolled with a wet scrubber.
The MHF uses recycled shaft cooling air to reduce auxiliary fuel consumption.
Air for combustion is admitted.through atmospheric ports located in Hearth No. 3 and
No. 5. The position of the atmospheric port dampers is controlled with manual loading
stations located hi the control room. The auxiliary fuel system is natural gas fired and
burners are located on each of Hearth Nos. 3, 4, 6, and 7.
The afterburner is used as control for VOC emissions with a natural gas burner
to maintain a temperature of approximately 1,600°F. The air pollution control system
consists of an adjustable throat venturi scrubber followed by a water after-cooler. The
scrubber flue gas exit temperature is nominally 100°F. The position of the venturi
adjustable throat is controlled with a manual loading station located in the control
room.
Summary of Results
Testing was conducted at the sewage sludge incinerator operated at the Hope-
well, Virginia regional WWT facility. Continuous monitoring of THC, CO, CO2, and
O2 was conducted at two sampling locations from December 5 through December 7,
1995.
5-14
-------
The average stack gas velocity was 52.3 feet per second (fps) during the sam-
pling program. Volumetric flow rates averaged 22,200 actual cubic feet per minute
(acfm) or 16,100 dry standard cubic feet per minute (dscfm). Stack gas temperature
averaged 170°F, with a moisture content of 4.3 percent. Composition of the stack gas
averaged 4.7 percent carbon dioxide (COj) and 15.1 percent oxygen (Oz). Stack gas
conditions were consistent throughout the sampling program. These averages may not
be representative of normal operating conditions at this sewage sludge incinerator. The
primary object of the tests at Hopewell was to gather data relating the concentrations of
CO and THC at the inlet to the afterburner to their concentrations at the outlet at vari-
ous afterburner temperatures. The operators were very responsive to requests of the
test team to change operating conditions so that we could gather data at a variety of
conditions. These changes precluded normal operations a large percentage of the time
during the tests.
Table 5.10 summarizes the concentrations of THC, CO, CO2 and O2 measured
at the furnace outlet location over the course of the sampling program. Each run corre-
sponds to a period of continuous sampling (one to ten hours in duration) conducted
between December 4 and 7, 1995. Each reported value represents the average concen-
tration measured during the monitoring period. Table 5.11 reports equivalent data for
measurements at the afterburner outlet location.
Table 5.12 presents the percentage of total solids (as measured by EPA Method
160.3) and the gross calorific value of the sewage sludge as delivered to the sewage
sludge incinerator (as determined by ASTM D-240). The sample analyzed was pro-
vided by plant operating personnel. The sample was composited over the entire test
period.
WATER ENVIRONMENT RESEARCH FOUNDATION REPORT
The Water Environment Research Foundation (WERF) commissioned a study of
the emissions of organic compounds from sewage sludge incinerators to increase un-
derstanding of those emissions. Richard Kuchenrither, Eugene W. Waltz, Phil Martin,
and Albert J. Verdouw were the Principal Investigators of the study. Their report
(Project 91-ISP-l), Evaluate and Quantify Sludge Incinerator Hydrocarbon Emissions
was published by the WERF in 1993. That study is called the WERF Report in this
document.
5.-15
-------
TABLE 5.10
THC, CO, CO2, AND O2 CONCENTRATIONS - FURNACE OUTLET
Hopewell, Virginia RWWTF, December 1995
Run
No.
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
Date
12/5
12/5
12/5
12/6
12/6
12/6
12/6
12/7
Sludge
Feed
Rate
ton/hr
9.6
11.2
11.5
10.0
11.2
11.5
13.9
12.2
Total
Hydro-
carbons
ppm1
130
476
262
48
317
310
174
109
Carbon
Monoxide
ppm1
1,818
3,006
1,775
2,031
4,066
372
3,178
2.865
Carbon
Dioxide
percent1
7.6
13.4
10.4
9.0
7.1
4.6
10.4
7.5
Oxygen
percent1
12.0
4.6
8.1
10.0
11.5
14.7
7.9
11.1
'Concentration are on a dry basis; THC concentrations based on propane calibration standards.
The investigators did a thorough review of the literature and private sources and
identified 96 separate tests of sewage sludge incinerators that had been performed for
various purposes. These various tests had reported 326 different organic compounds in
the exit gas from sewage sludge incinerators. The data that the investigators accumu-
lated were not reported, and were not available for this investigation.
WERF commissioned the investigators to make measurements of total hydrocar-
bons, carbon monoxide, oxygen, and other pertinent exit gas parameters at 3 sewage
sludge incinerators. The purpose of these tests was to provide information about sev-
eral relationships found during previous tests among THC, emissions of toxic com-
pounds and sewage sludge incinerator operations. The data that were collected were
appended to the report and were analyzed by the investigators during this effort. Each
test was approximately 11 hours in duration. The locations of the sites tested were not
revealed in the report. The facility descriptions for each site given in the following
paragraphs have been taken directly from the WERF Report.
5-16
-------
TABLE 5.11
THC, CO, CO2, AND O2 CONCENTRATIONS - AFTERBURNER OUTLET
Hope well, Virginia RWWTF, December 1995
Run
No.
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
Date
12/5
12/5
12/5
12/6
12/6
12/6
12/6
12/7
Sludge
Feed
Rate
ton/hr
9.6
11.2
11.5
10.0
11.2
11.5
13.9
12.2
Total
Hydro-
carbons
ppm1
26
22
21
7
123
21
36
32
Carbon
Monoxide
ppm1
1,327
1,489
1,043
297
2,450
1,620
1,826
1.606
Carbon
Dioxide
percent1
7.3
12.6
9.6
5.7
7.0
5.2
9.3
6.6
Oxygen
percent1
12.1
5.4
8.8
13.8
11.7
13.9
9.4
11.9
'Concentration are on a dry basis; THC concentrations based on propane calibration standards.
TABLE 5.12
SEWAGE SLUDGE PARAMETERS
Hopewell, Virginia RWWTF, December 1995
Date
12/4/95 -12/7/95
Total Suspended Solids (%)
33.4
Gross Calorific Value (BTU/lb)
4000
WERF Site 1
"Site 1 represents a common MH furnace configuration with no afterburning
chamber and a high energy venturi/impingement tray scrubber system. The plant pro-
vides primary and secondary wastewater treatment for a residential, commercial and
light industrial service district. The furnace system is relatively new and processes
digested sludge cake." The furnace operating parameters are summarized in Table
5.13.
5-17
-------
TABLE 5.13
OPERATING CONDITIONS AT SITE 1
Operating Variable
Sludge Feed Rate (dry tons/hour)
Sludge Cake Solids (%)
Sludge Cake Volatiles
Fuel Use (1,000 ftVdry ton)
Average Top Hearth or
Afterburner Temp. (°F)
Furnace Exhaust Oxygen (% wet)
Stack Gas Oxygen (% dry)
Venturi + Scrubber Differential
(inches of water)
Runll
1.2
19.4
48.6
8.8
1,078
9.3
8.1
26.8
Run #2
1.2
23.0
48.3
8.8
1,076
9.3
7.7
26.9
Run #3
1.2
22.2
48.7
6.1
913
10.7
10.0
26.8
Run #4
1.2
21.1
48.8
6.1
917
10.5
10.0
26.9
The percentage oxygen data appear anomalous. It is usual for the percentage of
oxygen in the stack gas, on a dry basis, to be higher than the wet basis percentage
oxygen in the furnace exhaust. Removing water vapor from the furnace exhaust gases
would increase the percentage of oxygen in the remaining gas. Leaks in duct systems
and the addition of shaft cooling air also tend to increase the percentage of oxygen in
the stack gases over that measured in the furnace exhaust.
WERF Site 2
"Site 2 has a large furnace equipped with a detached afterburning chamber
followed by a waste heat boiler and a high energy venturi/impingement tray scrubber.
The afterburner chamber is internally 9 feet in diameter and about 18.5 feet long with
an approximate volume of 1,172 cubic feet. The furnace was originally constructed in
1968 and upgraded in 1983 to add the afterburner chamber, venturi/impingement tray
scrubber, and an automated operating control system The plant service district is resi-
dential, commercial and industrial." The furnace operating parameters are summarized
in Table 5.14.
5-18
-------
TABLE 5.14
OPERATING CONDITIONS AT SITE 2
Operating Variable
Sludge Feed Rate (dry tons/hour)
Sludge Cake Solids (%)
Sludge Cake Volatiles
Fuel Use (l.OOOftVdry ton)
Average Top Hearth or
Afterburner Temp. (°F)
Furnace Exhaust Oxygen (% wet)
Stack Gas Oxygen (% dry)
Venturi + Scrubber Differential
(inches of water)
Run#l
1.8
23.1
70.5
6.5
1,275
9.9
7.5
38.1
Run #2
1.9
22.5
71.0
5.8
1,103
10.1
8.0
37.6
Run #3
1.9
23.8
71.0
2.7
1,009
10.7
8.2
37.4
Run #4
2.0
24.6
71.5
0.75
832
11.7
8.5
37.6
The percentage oxygen data appear anomalous. It is unusual for the percentage
of oxygen in the stack gas, on a dry basis to be lower than the wet basis percentage
oxygen in the furnace exhaust. Removing water vapor from the furnace exhaust gases
would increase the percentage of oxygen in the remaining gas. Leaks in duct systems
and the addition of shaft cooling air also tend to increase the percentage of oxygen in
the stack gases over that measured in the furnace exhaust.
WERF Site 3
"Site 3 was designed and built as a 10 hearth furnace with a large additional
"zero" hearth as the afterburner chamber. The zero hearth chamber has an internal
height of 12 feet with an approximate volume of 3,725 cubic feet which is over three
times the size of the chamber volume of Site 2. The exhaust gas is routed through the
outer drop holes opposite the exhaust breeching and back across the hearth. The outer
drop holes on the exhaust breeching side of the top hearth are closed. The sludge cake
is fed into the furnace through the side of the "second" hearth. The waste heat boiler
system is preceded by dry cyclones for large paniculate removal. The wet scrubber
system includes a low energy, fixed venturi section followed by a series of vertically
mounted impingement trays with high pressure water sprays." The furnace operating
parameters are summarized in Table 5.15.
5-19
-------
The percentage oxygen data at Site 3 are more typical of sewage sludge inciner-
ators. The concentration in the stack gas is considerably higher than the percentage of
oxygen in the furnace exhaust. Addition of dilution air to, and removal of water vapor
from, the furnace exhaust gas should increase the percentage of oxygen.
TABLE 5.15
OPERATING CONDITIONS AT SITE 3
Operating Variable
Sludge Feed Rate (dry tons/hour)
Sludge Cake Solids (%)
Sludge Cake Volatiles
Fuel Use (1,000 tf/dry ton)
Average Top Hearth or
Afterburner Temp. ("F)
Furnace Exhaust Oxygen (% wet)
Stack Gas Oxygen (% dry)
Venturi + Scrubber Differential
(inches of water)
Runll
1.6
21.7
72.3
10.7
1,310
5.9
17.4
11.2
Run #2
1.6
21.0
73.7
6.5
1,089
5.1
15.9
11.5
Run #3
1.6
22.5
70.7
3.5
981
6.9
16.3
10.5
Run #4
1.5
23.4
69.0
0.3
650
9.3
15.3
10.8
The WERF Report states that "Each site was tested under routine operating
conditions in the "as found" operating mode." The only sewage sludge incinerator
operational difficulty noted during the tests was uneven sewage sludge cake distribution
on the top hearth and in the burning zone of the sewage sludge incinerator at Site 1.
The authors of the WERF Report observed that the uneven cake distribution "resulted
in a very uneven burning pattern in the combustion zone which would increase THC
emission levels."
Table 5.16 describes the physical characteristics of each of the sewage sludge
incinerators. The table was extracted from the WERF Report.
MEMBERS OF THE ASSOCIATION OF MUNICIPAL SEWERAGE
AUTHORITIES
Two members of the Association of Municipal Sewerage Authorities (AMSA),
the Northeast Ohio Regional Sewer District (Cleveland), and the Metropolitan Council
5-20
-------
(St Paul, Minnesota) supplied data for the statistical analysis of long-term trends in
THC concentrations in the exit gas from sewage sludge incinerators.
TABLE 5.16
TEST SITE FACILITY DESCRIPTIONS
Parameter
Furnace
Size
Afterburner
Configura-
tion
Scrubber
Equipment
De- watering
Equipment
Sludge
Condition-
ing
Sludge Type
Auxiliary
Fuel
Operational
Handicaps
Sitel
6-Hearth
None
High energy Venturi
+ impingement tray
Centrifuge
Polymer
9
Primary +
secondary/digested
Natural gas
Uneven cake distri-
bution in top hearths
and burn zone
Site 2
11-Hearth
Detached
High energy Venturi
+ impingement tray
Belt Press
Polymer
Primary + secondary
Natural gas
None
Site 3
10 +'0 'Hearth
'O1 Hearth
Dry cyclone + low
energy fixed Venturi
+ high pressure
water impingement
tray
Centrifuge
Polymer
Primary + secondary
Natural gas
None
The Northeast Ohio Regional Sewer District supplied one year of temperature/THC
data for each of 4 multiple hearth sewage (MHF) sludge incinerators and for one
fluidued bed incinerator that burns only oil and grease. The Metropolitan Council
supplied one year of similar data for each of 6 MHF sewage sludge incinerators.
Some, but not all of the data that were available from other test reports were
included with the Cleveland and St. Paul data. The data that were supplied for the St.
5-21
-------
Paul sewage sludge incinerators are presented in Table 5.17. These data are presented
for comparative purposes. The primary purpose of obtaining the long-term data was to
evaluate the feasibility of using a statistical approach to analysis of long-term THC
data. The data supplied for the Cleveland sewage sludge incinerators contained only
THC concentrations, oxygen concentrations, and final combustion stage temperature.
Cleveland supplied no sludge feed rate or sludge properties data. The data not supplied
was not requested because they were not needed to accomplish the primary use of the
Cleveland and St. Paul data. The primary reason for requesting the long-term data was
to develop the log-normal distributions of THC concentrations and to evaluate the
potential for using relatively short test periods (nominally one-month) to predict the
maximum value of the monthly THC concentration in the exit gas from the sewage
sludge incinerators. The results of the statistical analysis are discussed in Section 6 of
this report.
TABLE 5.17
SUMMARY OF OPERATING CONDITIONS AT TWO (OF 6) ST. PAUL,
MINNESOTA SEWAGE SLUDGE INCINERATORS
Operating Variable
Sludge Feed Rate (dry
tons/hour)
Sludge Cake Solids (%)
Sludge Cake Volatiles
Fuel Use (1,000 fWdry ton)
Average Top Hearth or
Afterburner Temp. (°F)
Furnace Exhaust Oxygen
(% wet)
Stack Gas Oxygen (% dry)
Venturi + Scrubber Differ-
ential (inches of water)
Incinerator # 5
2.5
30.9
76.3
Incinerator # 9
2.3
31.5
75.5
Data Not Supplied
1262
1259
Data Not Supplied
12.1
13.1
Data Not Supplied
AMSA also supplied a copy of the summary report of the sampling and analysis
for dioxins and furans that AMSA submitted to EPA early in 1995. The dioxin/furan
data that were contained in the report were included in Section 6 (Observed Emissions
of Chlorinated Dibenzo-Dioxins and Dibenzo-Furans) of this report. The authors of
this report did not review the data in the report or assess the quality or accuracy of
5-22
-------
those data. The data are included with the dioxin/furan data collected during this
effort for purposes of comparison.
THE ASSOCIATION OF ENVIRONMENTAL AUTHORITIES (NEW JERSEY
WWTP OPERATORS)
The Association of Environmental Authorities ( a consortium of New Jersey
Wastewater Treatment Plant Operators) commissioned sampling and analysis at two
sewage sludge incinerators in New Jersey. One of these tests was at the fluid bed
sewage sludge incinerator at the Gloucester County Wastewater Treatment Plant. The
second test was at the MHF at the Stony Brook Regional Sewerage Authority Plant.
The authors of this report reviewed the test plan that the consultants to the Association
of Environmental Authorities prepared prior to the beginning of testing, and visited the
Stony Brook Facility during the testing. The test designs were similar to those
developed for the tests done during this program. The Association of Environmental
Authorities did not supply the test data in electronic format. The quantity of the data
precluded manual manipulation, so those data could not be analyzed during this
investigation.
HAMPTON ROADS SANITARY DISTRICT
Mr. Andy Nelson, Plant Manager, Hampton Roads Sanitation District (HRSD),
provided data that were collected during a baseline study of emissions at the Hampton
Roads Sanitary District plant in Willliamsburg, Virginia. HRSD performed similar
sampling at three other sewage sludge incinerators during the spring of 1993, as part of
an evaluation of their existing operations and to provide information needed to plan
improvements in the combustion efficiency of their sewage sludge incinerators.
The data consisted of one-minute average values of total hydrocarbons, oxygen,
carbon dioxide, and carbon monoxide. The data did not include the temperature of the
final combustion zone, so the data could not be used to evaluate the kinetic model. The
data did include simultaneous measurements of both CO and THC so they were useful
in development of the statistical THC/CO model. The tests were designed to evaluate
baseline operating conditions at the sewage sludge incinerator, so no adjustments were
made to the routine operating conditions prior to the beginning of sampling. HRSD did
not provide operating data, e.g., sewage sludge feed rates, percentage moisture, and
percentage volatile solids.
DEECO Inc. performed the testing. Their evaluation of the results includes the
assessment:
"Average hydrocarbon levels for baseline conditions are typically under
the 100 ppm level after correction to seven percent oxygen. However,
5-23
-------
there are several spikes in hydrocarbons which greatly exceed 100 ppm
with and without correction to seven percent oxygen. Further, overnight
operating conditions were often in excess of the 100 ppm limit before
and after oxygen correction."
PREVIOUS (1991) EPA STUDY
In February 1989, the U.S. Environmental Protection Agency (EPA) drafted
sewage sludge regulations under section 503d of the Clean Water Act, proposing to
require continuous emission monitoring of total hydrocarbons (THC), The Risk
Reduction Engineering Laboratory (REEL) contracted Pacific Environmental Services
Inc. (PES) to evaluate the ability of continuous analyzers to operate reliably in the
sewage sludge incinerator exhaust stack environment for extended periods of time.
PES selected two sewage sludge incinerators for the evaluation. PES installed CO, O2,
and THC monitors in the exhaust stacks of two multiple hearth furnace (MHF) sewage
sludge incinerators. MHF were selected because they are, by far the most common
type of sewage sludge incinerator, because EPA believed that they presented the most
severe test of reliability to continuous monitors, and because EPA believed that MHFs
typically have higher concentrations of both CO and THC. The two sewage sludge
incinerators selected for sampling during this project were located in Lorton, Virginia
and Arlington, Virginia.
Pace Environmental Products, of Horsham, Pennsylvania provided the THC
analyzers. Both analyzers were manufactured by J.U.M. Engineering Ges. m.b.H.
Both were heated flame ionization detectors. The Milton Roy Corp. of Orange,
California provided the Fuji Electric CO analyzers. Both were nondispersive infrared
analyzers. PES rented Servomex paramagnetic analyzers for the project.
The samples to be analyzed for O2 and CO were filtered at the stack, trans-
ported through heated Teflon* sample line to the refrigeration condenser. Unfiltered
sample gas was delivered to the THC analyzers through heated Teflon" sample lines.
Arlington, Virginia
Data collection began at Arlington, Virginia on June 8, 1991 and was completed
on September 9, 1991. The Arlington facility processed approximately 30 million
gallons per day of wastewater; 98 percent of the wastewater was from domestic sources
from a population of approximately 150,000 persons. The plant provided primary and
secondary (activated sludge) treatment. The primary and secondary sewage sludges
were combined, treated with lime and ferric chloride and de-watered by recessed plate
filter presses. The moisture content of the sewage sludge fired in the sewage sludge
incinerator was reduced to 70 to 75 percent.
5-24
-------
The two sewage sludge incinerators were 22' 3", Nichols eight-hearth MHFs.
Only one furnace operated at a time. The air pollution control system consisted of an
adjustable throat venturi scrubber followed by a two plate, impingement tray scrubber.
The exit gas temperature from the impingement tray scrubber is nominally 100°F. The
sludge feed to the incinerator was erratic during these tests because of variability in the
operation of the sewage sludge feed system. There was no means to meter the rate of
sewage sludge feed other than the speed of the conveyor belt that delivered the sewage
sludge to the sewage sludge incinerators.
No changes in the normal operations of the sewage sludge incinerators were
made for the purposes of this study of the reliability of the THC analyzers. Because
this was a study of the reliability of instrumentation and not a study of the parameters
that affect the concentrations of THC and CO in the exit gas from sewage sludge
incinerators, the rates of sewage sludge feed, the temperatures of the various hearths,
the percentage moisture in the sewage sludge, the percentage of volatile solids, and the
heating value of the sewage sludge were not recorded. The test team did record the
concentrations of oxygen, CO, and THC, as well as the temperature of the final
combustion stage of the sewage sludge incinerators.
Valid THC data are available for 1,579 of the 1,681 hours that the sewage
sludge incinerators operated during the three-month period. This is enough data
collected over a long enough period of time that the data can be considered representa-
tive of the long-term operation of the sewage sludge incinerators.
Lorton, Virginia
The wastewater treatment plant a Lorton, Virginia treated approximately 40
million gallons per day of primarily domestic wastewater from a population of
approximately 400,000 persons. The plant provided primary and secondary (activated
sludge) treatment. The plant also provided tertiary treatment consisting of ferric
chloride addition for phosphorus removal, chlorination and dechlorination and dual-
and mono-media filtration. Sewage sludge de-watering was accomplished by a
combination of vacuum filters, belt presses and membrane filter presses.
The wastewater treatment plant at Lorton has two identical MHFs. The two
sewage sludge incinerators were 22' 3", Nichols eight-hearth MHFs. Only one furnace
operated at a time. The sewage sludge incinerators are equipped with detached,
secondary combustion chambers that were designed to attain a 0.5 second retention
time. Additional air pollution control equipment consists of a variable throat venturi
scrubber and a two-plate impingement tray scrubber.
No changes in the normal operations of the sewage sludge incinerators were
made for the purposes of this study of the reliability of the THC analyzers except for a
two-week period during August when an optimization study of furnace operating
conditions was performed. Because this was a study of the reliability of instrumenta-
5-25
-------
tion and not a study of the parameters that affect the concentrations of THC and CO in
the exit gas from sewage sludge incinerators, the rates of sewage sludge feed, the
temperatures of the various hearths, the percentage moisture in the sewage sludge, the
percentage of volatile solids, and the heating value of the sewage sludge were not
recorded. The test team did record the concentrations of oxygen, CO, and THC, as
well as the temperature of the final combustion stage of the sewage sludge incinerators.
Valid THC data are available for 1,355 of the 1,508 hours that the sewage
sludge incinerators operated during the three-month period. This is enough data
collected over a long enough period of time that the data can be considered representa-
tive of the long-term operation of the sewage sludge incinerators.
VANCOUVER, WASHINGTON TESTS
The data for the Vancouver, Washington tests were collected during July 1993.
These data were the subject of a paper presented to the 67th Annual Conference &
Exposition of the Water Environment Federation (Measure Twice, Cut Once: A Case
History on Upgrading an Operating, 20 Year Old, Multiple Hearth Furnace for the
503s. P.M. Lewis, O. Boe, and T. Boyer; #AC945402). The authors of the paper
provided the complete data set for the purposes of this project.
The Vancouver, Washington plant provides primary and secondary (activated >
sludge) treatment to wastewater that is generated by a population of approximately
84,000 persons. The sewage sludge produced by the plant is primarily from the
domestic wastewater and the residuals from the activated sludge process, though the
plant does receive approximately 3 million gallons per year of septage.
The sewage sludge incinerator is an 18'3", seven-hearth, Skinner MHF that was
originally manufactured by The Mine and Smelter Company. The original design was
for 10,500 wet pounds of sewage sludge per hour with a maximum of 7,900 pounds
per hour of water. Higher capacity burners were added in 1986 to increase the
capacity to 13,000 pounds per hour of wet sewage sludge with a moisture content of
75%. Sewage sludge feed rates during the 6 tests was from 9,000 to 11,000 wet
pounds per hour. The percentage moisture in the sludge during the tests was from
21 % to 23 %. The percentage of volatile solids was not reported. The air pollution
control equipment consists of a venturi scrubber system having a pressure drop of 30"
w.c.
The purpose of the tests was to evaluate the parameters that affect the concen-
trations of CO and THC in the exit gas from the furnace. The duration of each test
was approximately 4 hours. The duration of the test program was approximately one
week. The duration of the test program, its intended purpose (a parametric study) and
5-26
-------
the duration of the individual tests all make the results applicable to a short time
period. The data were useful for the purpose of evaluating the kinetic model, but do
not provide information about long-term emissions from sewage sludge incinerators.
5-27
-------
SECTION 6
DISCUSSION OF RESULTS
OBSERVED TOTAL HYDROCARBON CONCENTRATIONS
Section 4 described the intended theoretical approach to analysis of the THC
data that were gathered during this effort. The kinetic theory of first order reactions
was discussed and the implications for sewage sludge incinerators were described.
This section presents the results of the analysis of the gathered data. The objective of
this investigation is to find a relationship between the temperature of the final combus-
tion zone and the concentration of THC in the exit gas that will enable the substitution
of temperature monitoring for THC monitoring. The first order kinetic equation is the
most likely of any conceivable analytical relationship to produce a reliable link between
final combustion zone temperature and exit gas THC concentration. Temperature
monitoring cannot be a reliable surrogate for THC monitoring unless there is a known
relationship between the two parameters. The relationship would be most satisfying if
it were analytical, i.e., based on known kinetic theory. Later sections consider the
development of empirical (i.e., statistical relationships).
Kinetic Rate Calculations
In Section 4, we described the kinetic theory of first order reaction kinetics,
discussed its applicability to sewage sludge incinerators, and described how we could
back-calculate the concentration of THC (or CO) from the final combustion zone
temperature. Equation 4.1:
C0 = CfXp(-kt) (Eq.4.1)
describes the relationship between the concentration of THC at the outlet of the final
combustion zone and the concentration of THC at the inlet to the final combustion
zone. If measurements of both the inlet and outlet concentrations are made then the
value of the parameter k can be calculated directly from equation 4.2:
-k =
6-1
-------
To make this calculation, we must know the retention time of the gases in the final
combustion zone. The volume of the final combustion zone is fixed so the retention
time of the gases in the final combustion zone depends on the flow rate of air, its
moisture content and the temperature in the final combustion zone. Over periods of
many hours or days, the values of these parameters vary widely. Over short periods of
time (e.g., 4 hours) these parameters remain constant enough to allow computation of
k. The value of k calculated at any given temperature is unique to the compound being
studied. In Section 4, we speculated that the composition of the gases entering the final
combustion zone of a sewage sludge incinerator is surely consistent at a given sewage
sludge incinerators over relatively short periods of time, and is probably consistent in
time for a given sewage sludge incinerator. We also speculated that the composition of
these gases is probably consistent among different sewage sludge incinerators.
The temperature of the final combustion zone not only affects the value of the
retention time, t, it affects the value of the parameter k. Equation 4.3 describes the
dependence of the reaction rate constant k on the temperature at which the reaction
occurs.
k =B*exp(-a/T) (Eq4.3)
The values of the first order reaction rate parameters B and a are fixed for every
chemical compound in a given reaction. The values of a can be found by plotting the
natural logarithm of k against the reciprocal of temperature. The slope of this line is
equal to a, its intercept is equal to the natural logarithm of B. By combining Equations
4.1 and 4.3 we obtained:
C0
(—) = exp(-Bt *exp(-a/T)) (Eq. 4.5)
C,
Section 4 also describes means to calculate the values of B and a using measure-
ments of only the exit gas concentration of THC. Equations 4.7, and 4.9:
A =Bt (Eq. 4.7)
6-2
-------
c
ln(—) = -A*exp(-a/T) (Eq. 4.9)
combine to become Equation 4.5.
Therefore, we should be able to calculate the values for all parameters of the
first order reaction rate equation for combustion of the THC in the exit gas from
sewage sludge incinerators by either method if we have values for the gas flow rate, the
temperature in the final combustion zone, the volume of the final combustion zone and
the inlet and outlet THC concentrations. Most of the data that are available provide
only part of these data. For most plants, we have only the exit gas THC concentration,
and the temperature of the final combustion zone. The data collected during this
project include the gas flow rates at all four sites, the volume of the final combustion
zone at two sites, and the concentration of THC at the inlet to the final combustion
zone at one site.
The following example has been derived to demonstrate the importance of
knowing that the concentration of THC at the inlet to the final combustion zone
remains constant. Values of the reaction rate constant, k, have been calculated by
Equation 4.3 using values of a and B that are similar to those calculated for the Hope-
well, Virginia tests. The concentration of THC at the inlet to the final combustion
zone at Hopewell were measured so that the values of these parameters could be
estimated. A retention time of 1.5 seconds was selected to be representative of
afterburners. A series of inlet concentrations was assumed, and then the concentration
of THC in the outlet of the final combustion zone was calculated by Equation 4.1. The
results of these calculations are shown in Table 6.1, below. Note that the fraction of
THC remaining in the exit gas of the final combustion zone at any given temperature is
the same for all inlet THC concentrations. Once the values of the parameters that
define the reaction rate constant, k, are determined, the fractional reduction in THC
concentration in the final combustion zone becomes a constant for any given tempera-
ture.
Table 6.1 contains exit gas THC concentrations that are calculated by the first
order reaction rate equation using the values of the first order rate equation parameters
that are specified. We now can use these calculated exit gas THC concentrations in the
modified first order kinetic rate equation, Equation 4.9, to calculate the values of the
parameters C0, a and A. Figure 6.1 displays the plots of ln(ln(THC0)) vs the reciprocal
of temperature (1/T), from which the value of the parameter a, is derived for the
assumed inlet THC concentrations.
6-3
-------
TABLE 6.1
CALCULATION OF C0 FROM C, AND
PARAMETERS OF THE KINETIC RATE MODEL
Assume: B = 42 sec'1, a = 4916 °R, t = 1.5 sec
Inlet THC
Concentra-
tion
Ct (ppm)
350
350
350
350
350
750
750
750
750
750
1,250
1,250
1,250
1,250
1,250
2,000
2,000
2,000
2,000
2,000
Tempera-
ture
(°R)
1,300
1,400
1,500
1,600
1,700
1,300
1,400
1,500
1,600
1,700
1,300
1,400
1,500
1,600
1,700
1,300
1,400
1,500
1,600
1,700
Reaction Rate
Constant
(k = B*exp(-a/T))
1.0
1.3
1.6
1.9
2.3
1.0
1.3
1.6
1.9
2.3
1.0
1.3
1.6
1.9
2.3
1.0
1.3
1.6
1.9
2.3
Outlet THC
Concentration
(ppm)
(C0 = C,*exp(-fo))
83.3
53.4
32.5
18.9
10.6
178.5
114.3
69.6
40.6
22.8
297.5
190.6
116.0
67.6
37.9
475.9
304.9
185.7
108.2
60.7
Ratio
(C0/C,)
23.8%
15.3%
9.3%
5.4%
3.0%
23.8%
15.2%
9.3%
5.4%
3.0%
23.8%
15.2%
9.3%
5.4%
3.0%
23.8%
15.2%
9.3%
5.4%
3.0%
6-4
-------
1.9--
1.7- -
1.5-.
13--
1.1 --
0.9-
0.7-
Cj=2QOO
y=2589.5x-0.1206
R? =0.9476
C,=1250
y=2879x-0.4149
F? =0.9435
Q=750
y=3280.4x-0.8063
R? =0.9375°
Q=350
y =4158.1x-1.6134
1^=0.9234
0.0004 0.00045 0.0005 0.00055 0.0006 0.00065 0.0007 0.00075 0.0008
I/Temperature (°R)
Figure 6.1 Effect of Inlet Concentration on the Values of the Parameter a (Use
Derived Data)
6-5
-------
The slopes of the lines in Figure 6.2 are equal to the negative value of the
parameter A, the intercepts are equal to the natural logarithm of the parameter M. The
values of these derived parameters, and the values of the parameter a, are displayed in
Table 6.2. Note that the value found for each parameter depends upon the value of the
THC concentration at the inlet to the final combustion zone. Figures 6.1 and 6.2
display only 4 of the 6 cases for which calculations were made. Note that the values of
the parameters a, A, and C0 are sensitive to the THC concentration at the inlet to the
final combustion zone. The slopes of the lines of best fit in Figure 6.1 are equal to the
parameter a. Figure 6.2 displays the plot of ln(THC0) against e\p(-a/T) from which
the values of the parameters A and M are derived.
Table 6.3 displays the predicted THC exit gas concentrations. Note that the
parameters that were developed for the case where the inlet THC concentration was
350 ppm, over-predict the outlet concentrations for cases where the inlet concentration
was less than 350 ppm. More serious is the under prediction that results when the inlet
THC concentration is greater than the inlet concentration for which the parameters
were developed. The predicted outlet concentration for the 1,300°R temperature (86
ppm) is less than the actual exit gas concentration in all cases where the inlet concentra-
tion exceeds 350 ppm. If the inlet concentration increases to 500 ppm, the predicted
concentration is less than the existing 100 ppm limit whereas the actual exit gas
concentration would be greater than 100 ppm. Such occurrences present a regulatory
difficulty. A facility that relied on the parameters that were developed at one inlet
concentration could be operating in excess of the 100 ppm limit without being aware
that they were.
Relationship Between THC Concentration and Final Combustion Temperature
The preceding example demonstrated the constraints on the use of the kinetic
model to predict the concentration of THC in the exit gas of an sewage sludge incinera-
tor in the absence of knowledge of the concentration of THC in the gas entering the
final combustion zone. It now remains to consider the results when the actual data
from sewage sludge incinerators are analyzed. We begin with the data that were
collected at Hopewell, Virginia. Table 6.4 contains a representative sample of the
THC data that were collected during the testing at Hopewell, Virginia. Only data from
December 6, and December 7, 1995 are displayed, but the statistics at the bottom of
the page are for the entire data set. The values shown for the first order rate constant,
k, were calculated by Equation 4.2. The retention times were calculated from flow rate
measurements taken in the exhaust stack and the volumes of the final combustion
zones. The stack gas flow rates were corrected to the conditions of the afterburner by
making temperature, moisture, and oxygen corrections. The values calculated for the
constant k are relatively consistent, more consistent than, either the THC concentration
at the inlet or the THC concentration in the exit gas from the afterburner. Note that the
THC concentration at the inlet to the final combustion zone varies widely, from a
minimum of 36 ppm to a maximum of 1416 ppm. This wide a variation in the inlet
THC concentration should lessen the accuracy of the predictions of the exit gas
6-6
-------
4
fc
3
Ci°750
y «= -32.79Cx + 7.8759
R* = 0.9976
Cl = 350
y--45.7051+ 6.3169
R* «0.999S
Ci=2000
y = -26.477i + 9.8643
R1 = 0.995
Ci-1250
y-28.771x +8.9132
R1 = 0.9962
0.00
0.05
0.20
0.25
0.10 0.15
EXP(-a/T)
Figure 6.2 Effect of Inlet Concentration on the Values of the Parameters A and C,
6-7
-------
TABLE 6.2
VALUES FOR THE PARAMETERS OF THE MODEL CALCULATED
BASED ON VARIOUS ASSUMED VALUES FOR THE THC CONCEN-
TRATION AT THE INLET TO THE FINAL COMBUSTION ZONE
Assumed THC Inlet
Concentration
100
350
500
750
1,250
2,000
Values of the Parameters for the Kinetic Model
Calculated in Figures 6.1 and 6.2
a
7,891
4,158
3,693
3,280
2,879
2,590
A
260.3
45.71
38.08
32.80
28.77
26.48
c,
38.7
554
1,151
2,633
7,429
19,230
concentration of THC. The temporal variation of afterburner inlet THC concentration
is displayed graphically in Figure 6.3. The THC data were divided into intervals for
analysis. The intervals were selected to group the data according to the THC concen-
tration at the inlet to the SCC. The intervals selected were:
Interval
Number
1
2
3
4
5
Data Points
Included
1-102
103 - 228
229 - 331
332 - 438
All Data
The values of the parameters of the first order rate equation were calculated for
the data within each interval. The results of these computations appear in Table 6.5.
The values of the parameters vary widely among groups. Figure 6.4 displays the
measured exit gas concentrations in the same sequential order as in Figure 6.3. Figure
6.4 also displays the results of prediction of the concentrations at the various tunes
using the values of the parameters calculated using all of the data points. This calcula-
tion reveals that the model does a poor job of predicting the relatively high exit
6-8
-------
TABLE 6.3
RESULTS OF USING KINETIC PARAMETERS DEVELOPED FOR ONE
INLET THC CONCENTRATION TO PREDICT EXIT GAS THC
CONCENTRATIONS AT OTHER INLET THC CONCENTRATIONS
Actual THC
Concentration
in Final Com-
bustion Zone
• Inlet (ppm)
100
100
100
350
350
350
500
500
500
750
750
750
1,250
1,250
1,250
2,000
2,000
2,000
Temper-
ature of Fi-
nal Combus-
tion Zone
<°R)
1,300
1,500
1,700
1,300
1,500
1,700
1,300
1,500
1,700
1,300
1,500
. 1,700
1,300
1,500
1,700
1,300
1,500
1,700
Actual THC
Concentra-
tion in Exit
Gas (ppm)
24
9
3
83
32
11
119
46
15
179
70
23
298
116
38
476
186
61
Predicted
THC
Concentra-
tion in Exit
Gas (ppm)
86
32
11
86
32
11
86
32
11
86
32
11
86
32
11
86
32
11
Error
(ppm)
62
22
8
2
-1
0
-33
-15
-5
-93
-38
-12
-212
-84
-27
-390
-154
-50
Error
(%)
260
242
248
3
-2
-1
-28
-32
-28
-52
-54
-54
-71
-73
-72
-82
-83
-83
6-9
-------
TABLE 6.4 REPRESENTATIVE RESULTS FROM THE HOPEWELL TESTING
Date
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-DBC-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-DBC-95
7-Dec-95
7-Dec-95
7-Dec-95
7-DBC-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
Time
520
525
530
535
540
545
550
555
600
605
6:10
6:15
620
625
630
635
640
645
650
655
700
705
7:10
7:15
720
725
730
735
740
745
THC(ppm@7%O2,Diy)
Afterburner
Infet
(pprri)
222
224
201
187
203
189
185
171
157
166
163
161
165
140
174
141
157
142
151
141
142
147
157
146
168
181
203
224
259
309
Afterburner
Exit Gas
(ppm)
54
47
39
32
30
33
28
24
20
19
18
18
19
18
20
20
20
20
19
20
19
24
23
27
37
40
57
64
93
112
Retention
Time
(sec)
1.3
12
1.2
12
12
1.2
2.0
2.0
2.0
2.1
2.0
2.0
2.0
2.1
2.1
2.1
2.1
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
1.9
1.9
1.9
Reaction
Rate
Constant
(k)
1.1
1.3
13
1.4
1.6
1.4
0.7
0.8
0.8
0.8
1.0
0.9
0.9
1.0
1.0
1.0
1.1
1.1
1.1
1.0
1.1
1.0
1.0
1.0
1.1
1.0
1.0
1.0
1.0
0.9
Afterburner
Temperature
(oR)
1409
1414
1421
1428
1434
1439
1445
1452
1459
1466
1474
1476
1479
1481
1482
1482
1481
1481
1481
1480
1481
1482
1481
1483
1481
1474
1468
1455
1442
1426 1
Average
Maxmmi
Minimum
ReL Std. Deviation
Standard Deviation
179
309
140
3876
39
34
112
18
2271
23
1.9
2.1
12
31.7
0.3
1.04
1.6
0.7
19.4
02
1461
1483
1409
2406
24
6-10
-------
gas THC concentrations that occurred throughout the test period. This is of most
concern for the data points between 350 and 400 (displayed in Figure 6.5). The
measured exit gas THC concentrations in the exit gas average 79 ppm and have a
maximum of 153 ppm. The predicted exit gas THC concentrations average 41 ppm
and have a maxi-mum of 66 ppm. The model under-predicts most of the values. The
under-prediction is even more severe around sequence number 250, where the maxi-
mum measured exit gas THC concentration is 1,646 ppm. The maximum predicted for
this 5-minute average concentration is only 438 ppm. It is true that an under-prediction
of 50 percent over a single 5-minute period would have no effect on a compliance
determination. However, analysis of the data collected at Hopewell, Virginia demon-
strate that the under-prediction was systematic and was caused by the inability of the
kinetic model to make accurate predictions when the THC concentration at the inlet to
the final combustion zone changed. Because any correlation between temperature and
exit gas THC concentration, by definition, is based on a first order kinetic model, such
correlations cannot succeed unless the THC concentration at the inlet to the final
combustion zone is known, or can be maintained constant in a relatively narrow range.
Analysis of the data from other sources confirm these conclusions. Results of analyses,
presented in the following paragraphs, demonstrate little correlation between exit gas
THC concentration and final combustion zone temperature.
TABLE 6.5
VALUES OF THE PARAMETERS FOR THE
FIRST ORDER KINETIC MODEL
Interval
1-102
103 - 228
229-331
332 - 438
All Data
Values of the Kinetic Parameters Calculated for Each Interval
a
4,801
5,794
3,830
4,794
4,964
A
88.5
124
78.3
85.7
129
c,
685
192
15,466
1,274
2,458
6-11
-------
1600
1400 - -
1200 --
1000 --
OQ
£ 800
3
I
y
600--
400 --
200 --
*
•
1
U »
A-''
*
-t-
50 100 150 200 250 300
Five Minute Average THC Concentrations, in Order of Occurrence
350
Figure 6.3 Sequence of Inlet THC Concentrations for the Hours of Operation.
(Hopewell)
6-12
-------
2000
1800-
1600
1400
1200
I? 10001
B 800|
H
600
400
200-
A Series 1 Measured THC in Exit Gas
oSeries2 Predicted THC in Exit Gas
A
A
A
A
0 50 100 150 200 250 300 350 400 450
Sequence Number of THC Measurement
Figure 6.4 Predicted Compared to Measured Exit Gas THC Concentrations.
(Hopewell)
6-13
-------
The calculation procedures for estimating the values of the parameters for the
kinetic model, k, A, and C, were performed on all of the plant data available to the
authors. The results of these calculations, Table 6.6, demonstrate that there is little
consistency among different sewage sludge incinerators. The values of all three para-
meters vary widely. Further there appears to be little consistency from one time to the
next at the same sewage sludge incinerator. Compare the results for the Arlington
incinerator from 1991 to those from 1995. The three sets of parameters calculated for
the Vancouver sewage sludge incinerators also vary. Those data were collected during
testing to evaluate how certain prescribed changes in operating conditions might change
the performance of the unit and the THC concentration in the exit gas. The fact that
these operating condition changes were made intentionally in no way diminishes the
observation that changes in operating conditions alter the relationship between final
combustion zone temperature and the THC concentration in the exit gas. We saw in
Table 6.5 (the Hopewell, Virginia results) that changes to operating conditions that
occur naturally and inadvertently during the course of normal operations change the
relationship between temperature in the final combustion zone and the THC concen-
tration in the exit gas. We now observe that the changes in this relationship that occur
when operating parameters are purposefully altered are no more dramatic than the
changes that occur inadvertently over a period of a few days.
These operating condition changes can consist of the percent moisture in the
sewage sludge being fed to the sewage sludge incinerators, the percent volatile solids,
the heating value of the volatile solids, the temperature of the hearths below the final
combustion zone, the speed of rotation of the shaft, the location of the volatiles burning
hearth, the position of the fire on the volatiles burning hearth, or other unlisted and
unknown variables.
The results shown in Table 6.7 demonstrate the use of the parameters of the
kinetic model to predict the THC concentration in the exit gas. All data from each data
set were used to compute the values of the three parameters. These parameters were
then used to calculate the predicted THC concentrations at the minimum, maximum and
the geometric mean final combustion zone temperatures. In general, the model did a
reasonable job of predicting the THC concentration in the exit gas at the average
temperature, though there was a significant under-prediction at four plants. The model
does a better job of estimating the THC concentration in the exit gas at the maximum
temperature. The prediction was significantly less than the measured concentration in
only one case. The model seriously under-predicted the maximum concentration in
nearly all cases. The most serious of these wider-predictions occur in the cases where
the data were collected over longer time periods. The data from St Paul for 1995 (both
units 5 and 9) were collected over 12 month periods. The data collection durations for
both Lorton and Arlington in 1991 were approximately three months. The best pre-
dictions occur when the data are collected over short time periods, for example, the
Vancouver data were collected over test periods of from 8 to 12 hours. The three
WERF tests were of approximately the same duration as the Vancouver tests but the
results are not as good. It appears that the longer the time available for process
6-14
-------
conditions to change, the more such changes occur with the result that the predictive
accuracy of the model suffers.
Figure 6.6 graphically displays the weakness of the kinetic model. Two log-
normal distributions are shown, one is the distribution of all exit gas THC concentra-
tions observed at the number 9 sewage sludge incinerator operated by the St. Paul,
Minnesota, Metropolitan Council during 1995. The second represents the results of
prediction of the exit gas concentrations for the year using the parameters of the kinetic
model that were developed using the exit gas data and the final combustion zone
temperatures that were recorded for the month of May 1995. We used one month of
monitoring data for predictive purposes in order to imitate the potential use of the
kinetic model for demonstrating compliance with the exit gas THC concentration limit.
A practical use of the procedure would be to monitor for a period of time that is
representative of the long term operation of the sewage sludge incinerator, use those
data to develop the parameters of the kinetic model, and use the final combustion zone
temperatures to predict exit gas THC concentrations. Figure 6.8 represents the results
of such a computation. The THC monitor reported valid values of the THC concen-
tration for 553 of the 730, (about 75%) of the hours in the month. This percentage of
data recovery provides an accurate representation of the behavior of the sewage sludge
incinerator. The model under-predicts 43 percent of the exit gas THC concentrations
and over-predicts 57 of them. The under-predictions are all at the upper end of the
distribution (the highest values are under-predicted). The model over-predicts the
lower exit gas THC concentrations, which are of less interest. This model behavior is
typical of all of such comparisons that we have prepared, and it mitigates the value of
this approach.
The calculated values of the parameters of the kinetic model for the eight
months for which there were enough data to allow calculation of the parameters are
presented in Table 6.8. Note that the values for the parameter A calculated for the
months of August and September were negative, resulting hi the model predicting the
minimum THC concentration to be higher than the maximum THC concentration. This
means that the model predicts, for these two months, that higher THC concentrations
accrue at higher final combustion zone temperatures. This resulted because there was
considerable scatter hi the data. The correlation coefficients (r2) were poor for all
months - their values were between 0.02 and 0.32. The slopes of the lines of best fit
for this parameter for these two months happened to be negative.
The right-hand portion of Table 6.8 contains the maximum, average, and
minimum values of the THC concentration that is predicted if the values for the
parameters that were calculated for that particular month are used. The model does a
relatively poor job of predicting the maximum THC concentration. This appears to be
a well operated sewage sludge incinerator. Evidence of the careful operation consists
of the observations that over 99 percent of the observed THC concentrations are less
than 15 ppm, that the maximum observed 1-hour concentration was only 123 ppm, and
that the average final combustion zone temperature was over 1,250°F. In spite of
6-15
-------
200
150
100
u
o
a
so
Measured THC
in Exit Gas
Predicted THC
in Exit Gas
340 350 360 370 380 390
Sequence Number of THC Measurement
400
410
Figure 6.5 Predicted Compared to Measured Exit Gas THC Concentration, Points
350-400. (Hopewell)
6-16
-------
TABLE 6.6
SUMMARY OF THE PAMETERS OF THE
KINETIC MODEL FOR ALL DATA AVAILABLE
Location
WERF11
WERF21
WERF3 '
AMSA1
Detroit'
St Paul 89 '
St Paul 91 '
St Paul #9 1995 '
St Paul #5 199S '
Arlington 91
Lorton 91
Arlington 95
Cleveland
f untinptnn
Hopewell
Vancouver 1
Vancouver 5
Vancouver 6
Cm
14623
1374
382
590
1970
272
1777
22.2
6.2
1403
1595
1797
60.9
25540
2458
2613
648
3498
a
4929
3805
2855
4013
4225
5753
7062
6662
6510
373
717
2394
5796
232
4964
5898
12371
4922
A
159
43
23
40
59
98
287
74
9.41
3.8
6.5
22
52
10
129
197
9771
120
T
Ceo. Mean
1407
1434
1437
1428
1515
1616
1571
1718
1721
1366
1284
1317
1900
1345
1451
1510
1542
1460
emneraturef*
Maximum
1464
1760
1797
1860
1710
1810
1860
1897
2045
1862
1644
1623
1904
1419
1733
1598
1641
1541
I)
l^ffifiim u|]n
1345
1210
1048
1160
1360
1460
1360
1409
1445
1016
1110
1128
1510
1103
1233
1412
1438
1368
Data from Water Environment Research Foundation Report
Data from Lewis. Boe, and Boyer
Data supplied by the St. Paul Metropolitan Council.
careful operation, the relationship between exit gas THC concentration and final
combustion zone temperature was not consistent enough to support accurate application
of the kinetic model. This must mean that factors that are beyond the scope of the first
order kinetic model affect the exit gas THC concentration.
6-17
-------
TABLE6.7
RESULTS OF THE USE OF THE KINETIC MODEL TO PREDICT THC
CONCENTRATION IN THE EXIT GAS FROM
SEWAGE SLUDGE INCINERATORS
Location
WERF11
WERF21
WERF31
AMSA1
Detroit1
St Paul 89'
St Paul 91'
St Paul #9 1995'
St Paul #51996'
Arlington 91
Lorton91
Arfington95
Cleveland
Huntipgton
HopeweD
Vancouver I2
Vancouver 5Z
Vancouver 6Z
Vancouver 5 3
I/Temperature (°R»10")
Avg.
7.106
6.975
6.957
7.001
6.602
6.189
6366
5.821
5.810
7323
7.789
•7.594
526*
7.43*
6.891
6.624
6.483
6.849
6.483
Mia
6.832
5.683
5566
5.378
5.849
5526
5.378
5.272
4.890
1372
6.084
6.160
5253
7.04$
$.770
6259
6.095
6.491
6.095
Max.
7.437
8267
9546
8.624
7.355
6.851
7355
7.095
6.920
9.846
9.012
8.861
6.624
9.064
8.108
7.084
6.956
7312
6.956
THC in Exit Gas (ppm @ 7% , Dry)
Geo. Mean
Pied.
122
67
16
53
52
17
72
5
5
81
39
52
5
6
36
50
26
57
25
Meas.
341
56
25
60
140
30
190
6
10
122
78
60
65
7
47
55
32
61
32
Minimum
Pred.
10
3
6
13
5
3
2
4
65
24
12
5
6
2
19
4
26
9
Meas.
3
9
DNA*
DNA
DNA
DNA
1
1
4
7
2 n
27T^
1
25
20
4
24
4
Pred.
216
85
168
141
41
361
115
5.6
104
53
20
^
245^
128
108
133
71
Meas.
228
273
DNA
DNA
DNA
DNA
123
139
122
537
310
65
40
1357
107
113
129
113
1 Data from Water Environment Research Foundation Report.
2 Data from Lewis, Boe, and Boyer
3 Vancouver Run 5 results predicted using kinetic parameters from Run 6
4 Data supplied by the St. Paul Metropolitan Council
6-18
-------
o
!
§
U
3 --
2--
1 --
0-
-1
Natural Log3rithm of
Observed THC Concertiations
yM).4963x +1.5552
K2 =0.9737
Natural Lojj^ritfam of
Predrted 1HC Concenrations
Usiqg Kinetic Parameters for May 1995
y=-0.1127x+1.6423
R? =0.9453
-3
-2
-1
0
Z Score
Figure 6.6 Comparison of Observed vs. Predicted Log-Normal Distributions of the
THC Concentrations. (St. Paul) 1995 Data
6-19
-------
TABLE 6.8 CALCULATED PARAMETERS OF THE KINETIC MODEL AND
PREDICTED THC CONCENTRATIONS. ST PAUL, INCINERATOR #9,1995
Month
Feb
Mar
Apr
May
Jul
Aug
Sep
Dec
All Data
Parameters of the Kinetic Model
a
5098
6310
4277
7510
13489
3276
2904
11554
6662
A
29
78
19
132
177
-47
-59
109
75
ln(C.)
3.0
3.9
3.4
33
3.7
1.0
0.7
25
3.1
c,
205
48.1
28.7
27.6
393
2.8
2.1
123
222
Observed Concentrations
Predicted THC Concentrations (C0)
Maximum
9
20
11
15
39
275
3789
12
11
123
Geo.Mean
5
7
6
5
37
2964
109723
11
5
6
Minimum
3
3
4
2
34
11598
710977
10
2
1
The testing at Hopewell, Virginia included sampling to determine the THC
concentrations both before and after the secondary combustion chamber (SCC). The
reason for determining the THC concentration at both locations was to enable cal-
culation of the value for the reaction rate constant, k directly from the concentration
and temperature data. The volume of the SCC was determined to be 1357 cubic feet
from the blue prints of the device that were provided by the operators. The flow rate
of stack exit gas was measured by pitot tube traverses, that were done by EPA Method
2. These traverses were done periodically throughout the testing program. Moisture at
the three sampling locations were measured by EPA Method 4. The Method 4 samples
were collected nearly continuously throughout the testing program. The volumetric
flow rate of gas entering and leaving the SCC was calculated by adjusting the stack exit
gas flow rates to the temperature, moisture concentration, and oxygen concentration of
the gas entering the SCC. The average volumetric flow rate was used to calculate
retention tune. The SCC was equipped with natural gas burners which added to the
flow of gas entering the SCC. The average SCC exit gas flow rate exceeded the SCC
inlet gas flow rate by approximately 8 percent.
»
The concentration data were all adjusted to 7% oxygen and 0% moisture prior
to making the calculations of the parameters of the kinetic model. These normali-
zations of the data to common conditions were necessary to eliminate the effects of
flow rate added to the sewage sludge incinerator exit gas by downstream burners and
by in-leakage. These normalizations were performed on all data analyzed for this
report. Unfortunately, the SCC at Hopewell, Virginia appeared to be a source of both
CO and THC. The SCC outlet concentration of CO exceeded the inlet concentration
16% of the time. The outlet concentration of THC exceeded the inlet concentration
less, 8% of the tune, but enough to conclude that the burners in the SCC were contrib-
uting both CO and THC to the SCC exit gas. We do not know how much of these
pollutants originated in the SCC at any given tune, so calculation of the rate equation
6-20
-------
parameters can be only approximate. This was unfortunate because it attenuated the
value of calculating the parameters of the first order rate equation.
Because the SCC burners contributed THC to the SCC exit gas, the values of k
were calculated on two subsets of the THC data. The first subset consisted of all of the
5-minute time periods for which inlet and outlet THC concentrations, flow rate values,
oxygen concentrations, moisture concentrations and SCC temperature values were
available. The second subset consisted of those 5-minute periods that satisfied the
criteria above and for which the SCC inlet THC concentration exceeded the SCC outlet
concentration by 5 times. The results of these two calculations of k, shown in Table
6.9, yielded similar results. The average value, the maximum and minimum values,
and the standard deviations are all similar. Of course, these averages are calculated
over the temperature ranges displayed. We have shown that the value of k is a function
of temperature as is described by Equation 4.3. The calculation of the parameters of
Equation 4.3 is shown graphically in Figure 6.7 for both data sets. Because the data
for the case where C, > 5*C0, is a subset of the set called "All Data", the points for
this subset overlay those for the entire data set. These points are designated by circles
with lines through them. The values for the parameters of Equation 4.3, B and a found
from Figure 6-7 are quite different for the two data sets. Using only those data points
with large differences between the inlet and outlet THC concentrations probably
mitigates the effect of the contribution of the SCC to the THC concentration. The
parameters derived from this edited data set are probably more realistic than those
derived from the entire data set.
TABLE 6.9
SUMMARY OF CALCULATION OF THE
FIRST ORDER RATE CONSTANT
Data from Hopewell
Statistic
Average
Std. Dev.
Rel. Std. Dev.
Maximum
Minimum
Inlet THC > 5x Outlet THC
Retention
Time
(sec)
2.57
0.93
36.0
5.96
1.39
Temperature
<°R)
1,471
66.1
4.5
1,356
1.631
k
0.97
0.40
38.6
2.49
0.4
Entire Data Set (All Data)
Retention
Time
(sec)
2.48
0.8
32.3
5.96
1.39
Temperature
(°R)
1,446
63.8
4.4
1,297
1.631
k
0.73
0.39
48.4
2.49
0 11
6-21
-------
There are now two estimates for each of the parameters of the first order
reaction model. One estimate was developed from the inlet and outlet THC sampling
that was possible at Hopewell, Virginia. The second estimate was derived from the
analysis of the outlet THC concentrations only, a technique that would be necessary at
most sewage sludge incinerators that have no means of obtaining a sample of the gas
entering the final combustion zone. These estimates are summarized below. The
parameter A is equal to B times the retention time f; in this case, t is assumed to be the
average retention time during these tests, or 2.57 seconds. The estimates are similar
but not identical. The use of this version of the first order reaction rate model provides
no better estimate of the exit gas THC concentration than the one previously consid-
ered. There is still no means to know or predict the concentration of THC at the inlet
of the final combustion zone. Lacking this information, these models cannot provide
the assured estimates of the exit gas THC concentration that is needed for regulatory
purposes.
Source of Estimate
From Inlet and Outlet Sampling
From Outlet-Only Sampling
Parameter
a
6,648
4,964
B
89.9
50,2
A
231
129
On many occasions, we have seen plots of exit gas THC concentration plotted
against the temperature of the final combustion zone. These plots usually are submitted
in support of monitoring of final combustion zone temperature as a surrogate for
monitoring of exit gas THC concentration. It appears that it is possible to generate
curves that demonstrate excellent correlation between final combustion zone tempera-
ture and exit gas THC concentration under controlled conditions, for short periods of
time. Figure 6.8 is an example of such a plot. This plot was prepared, by the authors,
from data that were sent to us by the persons who performed the testing at the Vancou-
ver, Washington, wastewater treatment plant sewage sludge incinerator. These
particular data were collected from 08:30 am through 12:30 pm on July 15, 1993.
The plot presents a satisfying correlation. When such correlations are attempted
over longer periods of time, during routine operations, the correlations are less
remarkable. Figure 6.9 is a plot of exit gas THC concentration vs final combustion
zone temperature at the Lower Potomac Wastewater Treatment Plant, in Fairfax
County, Virginia. These data were collected over a three-month period, beginning in
July 1993. Figure 6.9 is more representative of the time periods over which such
correlations must be reliable for temperature monitoring to be a surrogate for THC
monitoring. The existing regulation requires that the monthly average be demonstrated
to be less than 100 ppm. The reason that these plots break down over the longer time
periods is the same reason that the first order kinetic model breaks down over longer
time periods. That is, the concentration of THC at the inlet to the final combustion
6-22
-------
1.0
0.5
"c 0.0 -I
68
-1.0
-1.5
-2.0
-2.5
0 3 O
3
3 $ 3
Q > 5xC0
y = -6648.1x + 4.4392
R2 = 0.3525
o o
All Data
y = -8623.9x + 5.661
R2 = 0.3311
0.00060
0.00065 0.00070
1/Temperature (°R)
0.00075
0.00080
Figure 6.7 Calculation of the Parameters of the First Order Rate Equation from
THC Inlet and Outlet Data (Hopewell)
6-23
-------
160
B
a
a.
V—/
B
O
••—
*-
«
L.
*»
B
«
u
B
O
U
u
B
H
140
120
100
80
60
40
20
900
950
1000
1050
1100
1150
1200
Temperature of Final Combustion Zone ( F)
Figure 6.8 Exit Gas THC Concentration vs.. Final Combustion Zone Temperature.
Test Number 5 (July 15,1993) (Vancouver)
6-24
-------
600
500
400
I 300
200 •
100
0 o
0 O
e
600
700 800 900 1000 1100
Temperature of final Combustion Zone (oF)
1200
Figure 6.9 Exit Gas THC Concentration vs. Final Combustion Zone Temperature.
July through September 1991. (Lorton)
6-25
-------
zone does not remain constant over extended time periods. If the THC concentration at
the inlet to the final combustion zone were constant, then the THC/temperature
correlations would be reliable, and the correlation would be described by the first order
rate equation.
Statistical Summaries of Total Hydrocarbon Concentration Data
We have noted elsewhere in this report that the concentrations of both THC and
CO are log-normally distributed. That is, a plot of the natural logarithm of the concen-
tration of these gases against the number of standard deviations that the value is
removed from the geometric mean of the data, is linear. We considered the possibility
that, if the distribution was consistent, it might provide a means to use a relatively
short-term test period to provide assurance of continuing operation within the limit of
100 ppm of THC in the sewage sludge incinerator exit gas. The testing conducted
during this program was of relatively short duration - approximately one week per
plant. Data accumulated over a one year period at 12 sewage sludge incinerators
operated by the City of St. Paul, Minnesota were provided by the Metropolitan Council
of that city. The Northeast Ohio Sewer District (Cleveland) provided similar data,
covering a 7-month period for 5 sewage sludge incinerators. The data from the number
5 sewage sludge incinerator in St. Paul (Figure 6.10) are representative of the type of
log-normal distributions that resulted. Not all of the distributions were as linear as the
example, but the correlation coefficients (r2) for all were greater than 0.80, indicating
excellent linearity.
During discussions with members of the affected community, it was decided to
test the practicability of performing sampling and analysis for a one month period and
using the log-normal statistics for those data to compute the expected maximum
monthly average concentration. To do this the statistics of the log-normal distribution
were calculated for these data sets. Then the same statistics were calculated for each of
the 1-month subsets that comprised the set of annual data. The statistics from each
monthly analysis were used to compute the value of the concentration that corre-
sponded to the worst expected monthly average exit gas THC concentration. The
expectation was that the slopes and intercepts of the lines of best fit for the monthly
data sets would be similar to each other and to the slope and intercept of the annual
data set. This calculation procedure imitates sampling and analysis of the exit gas THC
concentration at a sewage sludge incinerator for one month and using those data to
compute the worst expected monthly average concentration. The type of analysis
described above has been used by the EPA Office of Air Quality Standards and
Planning to extrapolate the worst expected 24-hour average concentration of paniculate
matter from data that are collected every sixth day.
The geometric mean of a set of data has a frequency of 0.5 and is located 0
standard deviations from the geometric mean of the data set. In a set of 100 normally
distributed data points the sixteenth highest will have a frequency of 0.84 and will be
6-26
-------
6.0
5.0--
4.0-
2 3'.0--
cc
Q
o
20 +
1.0-
0.0
-1.0
o #REP
#REF!
Linear (#REF!)
All Data for Year
y =-0,80x +2.02
R2 =0.999
-4.0 -3.0 -20 -1.0
0.0
ZSCORE
1.0
September Data
y =-0.7Bx +217
R2 =0.977
o >.
X 0
20
3.0
4.0
Figure 6.10 Ln(TotaI Hydrocarbons) vs. Z Score, Data for September and Data for
Entire Year 1995 (St. Paul)
6-27
-------
located approximately 1 standard deviation from the mean. We have chosen to refer to
the number of standard deviations from the mean as 'Z SCORE', as is common and
simpler. That means that the Z SCORE of the geometric mean is 0. The Z SCORE of
the sixteenth highest will be 1 if the data are ranked in increasing order, or it will be -1
if the data are ranked from highest to lowest. We have adopted the latter convention,
all data are ranked from highest to lowest so that the highest concentrations have
negative Z SCOREs.
The lowest hourly average value in the month having the highest monthly
geometric mean concentration will have a frequency of V12 (0.083) and a Z SCORE of
-1.38. This value will not be equal to the monthly average of the month with the
highest concentration, nor is the monthly average equal to the maximum hourly
concentration. The geometric mean concentration of the month having the highest
average exit gas THC concentration will be the middle ranked hourly concentration
during that month. That is, the hourly average concentration that has a frequency of
V24 (0.0417) will be equal to the geometric mean of the month with the highest exit gas
THC concentration. The Z SCORE of a frequency of 0.0417 is -1.732. The proce-
dure then, is to calculate the slopes and intercepts of the lines of best fit for the hourly
data for each month and then to calculate the value of the concentration that has a Z
SCORE of -1.732. The results of these computations are shown in Table 6.10 for two
of the St. Paul, Minnesota sewage sludge incinerators. Note that the predicted THC
concentrations all exceed the observed maximum monthly exit gas THC concentration
except for the prediction using the statistics of the January 1995 data at incinerator #
5. The over-predictions are moderate - up to approximately a factor of 3, which would
be acceptable in most instances.
The log-normal distribution describes the population of concentrations of THC
in the. exit gas from sewage sludge incinerators. Continuous monitoring data collected
over a twelve month period includes all of the normal, random variations in operating
conditions, sewage sludge feed rates, sewage sludge solids content and auxiliary fuel
use that occurred during the year that was monitored. Further, one month of THC
monitoring apparently contains the same distribution of the same variations in the same
parameters and results in a log-normal distribution that has the same slope and intercept
as the full year of monitoring data. This means that continuous monitoring for a one-
month period can predict the distribution of THC concentrations for a one-year period,
and that the maximum monthly average concentration expected (at a given confidence
level) can be predicted by analysis of the data collected over a one-month period.
" The differences among the statistics of the log-normal plots (monthly and
annual) are not large, but they appear to be significant. They are significant because
they imply that the slope and intercept of these distributions are sensitive to changes in
sewage sludge character and sewage sludge incinerator operating conditions. Figure
6.11 provides additional evidence that this is true. The figure contains two log-normal
distributions for data collected at the Arlington County sewage sludge incinerator. One
set of data was collected in 1991, the other was collected during this project (1995).
6-28
-------
TABLE 6.10
SUMMARY OF STATISTICS OF LOG-NORMAL THC DISTRIBUTIONS
Month
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
ALL
St. Paul Sewage Sludge Incinerator #5
Slope
-0.85
-0.85
-0.72
-0.68
Intercept
1.69
1.96
1.96
1.81
Corr.
Coeff.
(r2)
0.96
0.98
0.97
0.96
Predicted
Max.
Month
(ppm)
23.8
31.1
24.7
19.9
Insufficient Data for Analysis
-0.70
-0.84
-0.60
-0.78
-0.97
-0.68
-0.68
-0.80
2.17
2.16
1.60
2.17
1.96
2.27
2.11
2.02
0.97
0.99
1.00
0.98
0.97
0.98
0.99
1.00
29.3
37.2
14.0
33.5
38.1
31.5
26.7
30.2
St. Paul Sewage Sludge Incinerator #9
Slope
-0.16
-0.35
-0.54
-0.44
-0.40
-0.59
-0.49
-0.40
-0.43
-0.53
Intercept
1.11
1.48
1.88 ~
1.72
1.57
1.36
1.33
1.56
1.41
1.58
Corr.
Coeff.
(r2)
0.83
0.99
0.93
0.99
0.96
0.92
0.99
1.00
0.95
0.97
Predicted
Max.
Month
(ppm)
4.0
8.1
16.7
11.9
9.6
10.9
8.9
9.5
8.6
12.2
Insufficient Data for Analysis
-0.42
-0.55
1.09
1.48
0.89
0.96
6.1
11.3
Max. Observed Monthly Average 12.2 6.4
The operators of the plant made significant improvements to the sewage sludge feed
system in the time "between the collection of the two sets of data. The improvements to
the sewage sludge feed system made the rate of delivery more consistent, the large
changes in sewage sludge feed rate over short periods of time were eliminated. These
improvements had a significant effect on the slope of the line of best fit of the log-
normal distribution. Other factors that have been mentioned earlier (sewage sludge
heat value, the position of the volatiles burning zone in the MHF, sewage sludge solids
content, sewage sludge volatile solids content, auxiliary fuel firing rates, and possibly
others) surely have effects on the slope and intercept of the line as well.
The observations that are discussed above mean that significant changes in the
construction or operation of the sewage sludge incinerator will have significant effects
on the distribution of THC concentrations. Thus, monitoring and specification of the
6-29
-------
7.
«- 6
1
a
I 5
•a 4.
H
•s
*i
1 24
i -.
o
Ariington 1995
y=O615x+35
16=0586
Ariington 1991
y =-O85x-f4394
1^=0579
-4-3-2-101234
Z Score
Figure 6.11 Comparison of the Log-Normal Frequency Distributions for 1991 and
1995 (Arlington)
6-30
-------
limits of the various parameters must be included in order to assure confidence in the
predictions that are made based on one month of THC monitoring. These parameters
will have to be monitored. We have no information about the amounts by which the
various parameters vary during normal operations of sewage sludge incinerators.
Information on normal variations must be gathered before this technique can be
incorporated into a permitting system.
OBSERVED CARBON MONOXIDE/TOTAL HYDROCARBONS
RELATIONSHIPS
Operators of sewage sludge incinerators have requested development of a
correlation between concentrations of carbon monoxide (CO) and total hydrocarbons
(THC) in sewage sludge incinerators exit gas. This was one of the issues raised by the
consortium of New Jersey sewage sludge incinerators operators, and one that USEPA
agreed to pursue.
The first attempts to develop such a correlation were to plot the concentrations
of THC against concentrations of simultaneously measured CO. Figures 6.12 through
6.14 are representative of such plots. The correlation between THC and CO observed
for the data collected at Arlington, and Huntington demonstrate very little correlation
between THC and CO. The data from Cleveland demonstrate a very good correlation,
but this result appears to be atypical of the data that have been obtained and analyzed
during this program. The best correlations occur for tests that were done over short
time periods under highly controlled conditions. The Vancouver and WERF tests are
examples. The correlations found during longer tests, i.e., Arlington, 1991, and
Lorton tend'to be poor.
Figure 6.15 represents all of the data from all of the sources. The correlation
between the two parameters does not offer a means to develop a relationship that can be
used to support the monitoring of CO as a surrogate for THC. Table 6.11 contains the
statistics of the correlations between CO and THC for all plant data. Two of the plants
(Cleveland and WERF 1) demonstrated very good correlation between THC and CO.
If the correlations were as good for the other plants as they are for these two, it might
be possible to develop site specific models that relate THC to CO. The wide variation
in the correlation parameters (slope and intercept) and the poor correlation between CO
and THC when all of the data from all of the plants are combined (All Plants) demon-
strate that this correlation cannot provide an industry-wide relationship between THC
and CO.
We believe that the reason that this is true is that the THC and CO that are in
the exit gas of sewage sludge incinerators is formed by different mechanisms in
different parts of MHF sewage sludge incinerators. It is likely that the primary
mechanism of formation of THC is by evaporation and partial oxidation of volatile
organic compounds while the sewage sludge resides on the sludge drying hearths.
6-31
-------
350
300-
250-
Q.
V)
O 200
03
DC
<
O
O
fj 150
I
O
X
100--
50--
y =0.0343x +17.663
1000
5000
2000 3000 4000
CARBON MONOXIDE (ppm)
Figure 6.12 Total Hydrocarbons vs. Carbon Monoxide, 1995 (Arlington)
6-32
6000
-------
120
100--
80 +
Q.
^a
V)
O
CO
tr
< 60
O
DC
O
20--
y =0.0091x 44.6517
R2 =03123
CD
0 2000 4000 6000 8000
CARBON MONOXIDE (ppm)
Figure 6.13 Total Hydrocarbons vs. Carbon Monoxide, 1995 (Cleveland)
6-33
10000
-------
Q.
a.
O
CD
cc
<
O
O
cc
Q
O
y =0.098x +7.9794
R2 =0.5254
20 --
10 --
0
0 100 200 300
CARBON MONOXIDE (ppm)
Figure 6.14 Total Hydrocarbons vs Carbon Monoxide 1995 (Huntington)
6-34
400
-------
TABLE 6.11
STATISTICS FOR THE THC/CO CORRELATION
Plant Location
Arlington (1991)
Arlington (1995)
Cleveland
Hopewell
Huntington
Lorton
Vancouver
WERF1
WERF2
WERF3
Williamsburg
All Plants
Furnace Type
MHF
MHF
MHF/OH
MHF/SCC
FBI
MHF
MHF
MHF
MHF/SCC
MHF/OH
MHF
N.A.
Statistics of CO/THC Correlations
Slope
0.114
0.034
0.009
0.039
0.098
0.055
0.327
0.170
0.079
0.834
0.013
0.063
Intercept
-50.67
17.66
4.65
15.45
7.98
-16.06
-4.62
-120.56
-75.34
-28.25
59.26
16.64
Correlation
Coefficient
(R2)
0.295
0.448
0.912
0.348
0.525
0.505
0.789
0.974
0.756
0.541
0.015
0.176
MHF Multiple Hearth Furnace with no afterburner
MHF/OH Multiple Hearth Furnace with on-hearth afterburner
MHF/SCC Multiple Hearth Furnace with secondary combustion chamber
FBI Fluidized Bed Incinerator with no afterburner
6-35
-------
3500
3000
2500-
2000
o
00
cc
<
o
i
a
g
1500-
1000
500
o
o
o o
o
o
o
o
0
o
0
o
-------
Secondary release of THC probably occurs during combustion of the sewage sludge on
the volatiles burning hearths. The formation of CO probably occurs primarily by
pyrolysis of residual organic matter during the latter stages of the volatiles burning and
in the carbon burning zone of the MHF. Further, it is unlikely that fluid bed sewage
sludge incinerators form THC and CO in a manner that is similar to their formation in
MHF. The data for the long term tests imply that correlations between THC and CO
found at a particular plant, during a relatively short-term test may not be applicable for
long time periods. This implies that test data collected over a period that is 8 to 24
hours in duration, under controlled conditions, probably will not be representative of
operation over an extended period of time.
Logarithmic plots, i.e., ln(THC) vs. ln(CO) offer no better results. Figures
6.16 through 6.18 are log plots of THC vs. CO for the same three plants. In all cases
the correlation coefficients (R2) are worse than for the corresponding THC vs. CO
plots.
We previously attempted to develop a correlation between the two parameters
that was based upon the first order rate equation. This attempt failed, apparently
because the concentration of CO and THC in the* inlet gas to the final stage of combus-
tion varies widely and rapidly. These observations do not mean that there is no useable
relationship between CO and THC that can be used to support the use of CO monitor-
ing as a surrogate for THC monitoring.
Analysis of the observed total hydrocarbon and carbon monoxide concentrations
revealed that both are log-normally distributed. That is, a cumulative plot of the
logarithm of the pollutant concentration against the number of standard deviations from
the mean (Z SCORE) is linear. A cumulative plot of the concentration of the pollutant
against Z SCORE is less linear. The log-normal nature of these distributions is
demonstrated by Figures 6.19 through 6.21. The first of these figures is a cumulative
normal distribution of the hydrocarbon data collected on Incinerator No. 5 at the St.
Paul, Minnesota, Metro Plant during 1995. The data consist of approximately 5500
hourly average THC concentrations, corrected to 7% O2, dry gas. The second figure
(Figure 6.20) is a log-normal distribution of the same data. The correlation is much
better for the log-normal than for the normal distribution. Figure 6.21 is the log-
normal distribution of the CO data that were collected during this program at the inlet
to the afterburner at Hopewell, Virginia. These three figures are representative of the
many that were constructed for the 12 different sets of plant data that were available
during this program. The results for all plants are similar, sewage sludge incinerators
exit gas concentrations are log-normally distributed. The value of these log-normal
distributions was explored in the section entitled Observed total Hydrocarbon Con-
centrations.
6-37
-------
5
o
6
o
o
y =O.6746fc-0.805
R2 =02701
4-
8
In(CO)
9
10
Figure 6.16 ln(THC) vs. ln(CO) 1995 (Arlington)
6-38
-------
5.00
4.50
4.00.
aso
aoo.
250
200.
1.50..
1.00..
0.50
aoo
o
o
CO
o
o
o
o
y =0.1913x +1.1019
R2 =0.3214
o
o
H H
H 1-
aoo LOO 200 aoo
400 5.00 BOO
In(CO)
7.00 aoo aoo 10.00
Figure 6.17 ln(THQ vs. ln(CO) 1995 (Cleveland)
6-39
-------
2
1 -
-1
y =O.3687x 4O.OJ97
R2 =OA719
o «
O .0
o
o
00 , •
o,*>
o
0
2 3
In(CO)
6
Figure 6.18 ln(THC) vs. ln(CO) 1995 (Huntington)
6-40
-------
140
120
100-
80
a
^a
V)
§
CD
DC
<
O
o
DC
40--
20--
-20--
-40
o
o
-3 -2
y =-7.737x +9XJ367
R2 =0.7078
-r
-1 0 1
Z SCORE
Figure 6.19 Total Hydrocarbons vs. Z SCORE, Incinerator #5, 1995 (St. Paul)
6-41
-------
6.0
5.0-
4.0-
CA
1 3.0
K
g
I
zo
1.0
0.0
-1.0
y =0501x +Z0172
R2 =05986
-4.0 -3.0 -20 -1.0 0.0 1.0 20 3.0 4.0
zSCORE
Figure 6.20 Ln(Total Hydrocarbons) vs. Ln(CO), Incinerator #5, (St. Paul)
6-42
-------
8
6-
5
-» 4
O
o
O
* 34
2-.
1 -
0--
-1
-I—
-2
y =O5977x +Z8353
R2 =05927
-3
-1 0 1
ZSCORE
Figure 6.21 Ln(CO/THC) vs. Z SCORE, Furnace Outlet, 1995 (Hopewell)
6-43
-------
TABLE 6.12
COMPARISON OF CO/THC RATIOS FOR
VARIOUS SEWAGE SLUDGE INCINERATORS
Plant Location
Arlington (1991)
Arlington (1995)
Cleveland
Hopewell
Huntington
Lorton
Vancouver
WERF1
WERF2
WERF3
Williamsburg
Furnace Type
MHF
MHF
MHF/OH
MHF/SCC
FBI
MHF
MHF
MHF
MHF/SCC
MHF/OH
MHF
Ratio of carbon monoxide to total hydrocarbons
(CO/THC)
Geometric
Mean
22
28
17
49
25
27
47
9
33
28
15
Man-
mum
238
1215
177
277
85
268
207
11
91
60
315
Mini-
mum
2
3
2
1
2
2
14
6
10
3
2
Coefficient
of Variance
14
54
29
41
14
15
57
1
20
16
13
MHF Multiple Hearth Furnace with no afterburner
MHF/OH Multiple Hearth Furnace with on-hearth afterburner
MHF/SCC Multiple Hearth Furnace with secondary combustion chamber
FBI Fluidized Bed Incinerator with no afterburner
Because the CO and THC concentrations are log-normally distributed we next
investigated the distribution of the ratio of the carbon monoxide concentration divided
by the total hydrocarbon concentration (CO/THC). The correlation between CO and
THC did not appear to be a reliable predictor of the THC concentration. However if a
linear frequency distribution could be found for the CO/THC ratio, then perhaps it
could be used to estimate a CO concentration below which the THC could be assumed
to be less than 100 ppm. The results of the calculation of the statistics of the CO/THC
ratios for the various plants, Table 6.12 provides some assurance that this approach
6-44
-------
might be useful. The average values of the CO/THC ratios were relatively consistent
for all of the plants for which we had data. Further, the relative standard deviations
(or coefficients of variance) appear to be related to the average CO/THC ratio. These
facts imply that the CO/THC ratio also is distributed log-normally, as is expected of a
proportional parameter.
Note, that with the exception of the WERF 1 plant, the geometric mean values
and coefficients of variance of the CO/THC ratios for the various plants are similar.
Even the FBI and the MHF/SCC data fall within the range of the others. The data
from the WERF 1 plant appear to differ from the others. This is an artifact of the
testing conditions. The duration of this test was approximately 11 hours. For the first
four hours, the temperatures on the top three hearths remained relatively constant at
1,000°F, 1,460°F, and 1,360°F respectively for hearths 1, 2, and 3. After 4 hours
and IS minutes, the temperatures of these hearths dropped by 100°F, 130°F, and
170°F respectively. The temperatures remained constant for the remainder of the test.
Thus, the test consisted of only two different temperatures in the gas phase in the zone
where THC and CO are being burned.
Figures 6.22 and 6.23 are the cumulative normal and cumulative log-normal
distributions, respectively, for the CO/THC ratios observed during the tests in Cleve-
land. The log-normal distribution is obviously superior for this particular data set.
Admittedly, this data set shows one of the more remarkable differences between the
two distributions. The data for some plants, Huntington, for example, show slightly
better correlation for the cumulative normal distribution than for the cumulative log-
normal distribution. On balance, the log plots show superior correlation. For this
reason, and because the log-normal distribution is theoretically correct for proportional
data, the log normal distribution was used for this analysis.
Figure 6.24 displays the lines of best fit for the cumulative log-normal distribu-
tions for each of the 11 plants for which we have both CO and THC data. Except for
the WERF 1 plant, that was discussed above, all the lines lie within a fairly discrete
bundle. Thus we can conclude that the cumulative log-normal distributions of
CO/THC ratios are similar among plants, and that this model has potential for provid-
ing confidence in a CO concentration below which the THC concentration will be less
than 100 ppm. All data from all plants was combined into a single data base to prepare
the distribution shown in Figure 6.25. This plot includes the WERF 1 data, even
though they do not appear to be consistent with the other data. The correlation is
excellent. The plotted distribution can be used to determine the threshold concentration
of CO, below which the THC concentration can be expected to be 100 ppm or less.
6-45
-------
200
150-
100-
O
X
o
o
50
-50
o
-------
5-
4--
3-
o
t
o
o
1 --
0--
-1 --
-2
-3
-2
-1
CO >10ppm
y -1.1196bc +Z0756
R2 =0^165
0 1
ZSCORE
Figure 6.23 ln(CO/THC) vs. Z SCORE, 1995 (Cleveland)
6-47
-------
7
5-
O
O
3-
1 -
-1
-3
ARL91 WERF 3
R2 =0.936 R2 =0.898
-6
WERF1
R2 =0.925
VNCVR
R2 =0.975
CLE
R2 =0.947
VWBF
R2 =Q£
-2
0
ZSCORE
6
Figure 6.24 Ln(CO/THC) vs. Z SCORE, All Plants
6-48
-------
8
7-
5-
4--
o
*
O
o
2--
1 --
0--
-1 --
-2
y MX952X+Z88
-3 -2
-1
0
ZSCORE
Figure 6.25 Ln(CO/THC) vs. Z SCORE, All Plants
6-49
-------
The process of determining the CO concentration at which the THC concentra-
tion can be estimated to be below 100 ppm at a given level of confidence is demon-
strated in Table 6.13. The data used in the table are the combined data base that
consists of all CO and THC data from the 11 plants from which we have data.
TABLE 6.13
SELECTION OF CONFIDENCE LEVEL AND CO CONCENTRATION
FROM LOG-NORMAL DISTRD3UTIONS. BASED ON LOG-
NORMAL DISTRIBUTION OF ENTIRE DATA SET
Percent of
Values
Greater Than
(Confidence)
0.1
1.0
5.0
10
90
95
99
99.9
Z SCORE
-3.09
-2.33
-1.64
-1.28
1.28,
1.64
2.33
3.09
LN(CO/THC)
5.82
5.10
4.45
4.10
1.66
1.31
0.67
-0.06
CO/THC
Ratio at
Given
Confidence
338.3
163.5
85.4
60.4
5.26
3.72
1.95
0.94
Maximum CO
to Assure that
THC < 100
ppm
33,830
16,350
8,540
6,040
526
372
195
94
From Figure 6.25 we note that:
In (CO/THC) =2.88 -0.952 *ZSCORE
Where: Z = Z SCORE (or the number of standard deviations from the mean)
Thus at Z SCORE = 2.33
ln(CO/THC) =0.667
6-50
-------
Then:
CO/THC =exp(0.667)
And:
CO/THC =1.95
Since we are looking for the CO concentration at which the THC concentration
is equal to or less than 100 ppm:
CO =THC *1.95 =195ppm
This technique has been used to calculate the 90%, 95% and 99% confidence
level concentrations of CO at which THC can be estimated to be 100 ppm or less for
each of the 11 plants, and for the combined data base. The results of these calculations
are displayed in Table 6.14, along with the slope, intercept, and correlation coefficient
of the lines of best fit of each data set. The data from Cleveland show lower CO/THC
ratios than typical plants, while the data from Vancouver show higher CO/THC ratios.
On the whole the correlations are good. The correlation for the combined data set
(" All Data") demonstrate excellent correlation. This frequency distribution can be
used to assign a maximum average CO concentration that provides assurance that the
THC concentration is 100 ppm or less.
OBSERVED EFFECT OF SCRUBBER ON CONCENTRATION OF TOTAL
HYDROCARBONS
During this program, the authors used a great deal of data that were provided
by other researchers. These other researchers chose to measure the concentration of
THC and CO in the exit gases of the sewage sludge incinerators that they sampled.
This choice is not unexpected, since the existing regulation applies to the concentration
of THC in the exit gases. During this program, the test team measured concentrations
in the breeching between the furnace and in the exhaust stack. The evaluation of the
kinetic model required the measurement of THC and CO concentrations in the breech-
ing, prior to any possible influence from the scrubber. Comparison of the results to the
exhaust gas regulation requires that concentrations be measured in the exit gases. It is
possible that some operators may choose to locate the sample probe for their continu-
ous emission monitoring systems (CEMS) in the breeching rather than in the stack. If
this is to happen, they must know the effect of wet scrubbers on the concentration of
THC.
6-51
-------
TABLE 6.14
PLOT STATISTICS AND THRESHOLD CO
CONCENTRATIONS FOR DATA SETS
Plant Location
Arlington
(1991)
Arlington
(1995)
Cleveland
Hopewell
Huntington
Lorton
Vancouver
WERF1
WERF2
WERF3
Williamsburg
All Data
Statistics for Line of Best Fit
Slope
-0.622
-0.525
-1.198
-0.998
-0.699
-0.398
-0.459
-0.160
-0.540
-0.707
-0.956
-0.952
Inter-
cept
2.937
3.079
2.076
2.835
2.989
3.214
3.795
2.134
3.291
3.038
2.363
2.881
Correlation
Coefficient
0.936
0.907
0.947
0.893
0.936
0.906
0.975
0.925
0.953
0.898
0.859
0.880
CO to Assure 100
ppm THC with
Designated Confidence
99%
444
641
59
167
391
985
1528
582
764
404
115
195
95%
678
917
126
330
630
1292
2090
649
1100
653
330
372
90%
850
1,110
190
474
812
1,493
2,470
688
1,340
844
465
526
There are two possible effects that the scrubber might have on the THC
concentration in the furnace exit gas. THC concentration may be decreased, or it may
be increased by passage through the scrubber. A decrease in THC concentration is
easily understood, it could be the result of removal of the relatively water-soluble
components of the furnace exit gases. These soluble components consist of the organic
alcohols, ketones, acids, and aldehydes that are produced by inefficient combustion.
An increase in the THC concentration could be the result of stripping of organic
compounds from the scrubber water. Most sewage treatment plants use final effluent
to scrub the exit gases from the sewage sludge incinerator. This water may contain
6-51
-------
organic compounds that could be stripped during passage through the scrubber. It is
true that this water has undergone extensive aeration during the secondary treatment
stage and that during this treatment most of the volatile and slightly soluble organic
constituents have been removed. The next stage in the sewage treatment process is
removal of the solids from the wastewater by settling in quiescent tanks for anywhere
from 16 to 24 hours. This step would seem to present the opportunity for formation of
additional organic compounds through partial biological oxidation of the solids content
of the water. This possibility seemed less probable, but was deemed worthy of
investigation.
Table 6.15 contains a statistical summary of the data. The average value, the
maximum value, the minimum value, and the standard deviation and the relative
standard deviation are given for each of the 4 plants that were sampled during this
program. Also given are the arithmetic average of the ratio of THCo/THC,,, and the
average of the natural logarithms of these individual ratios.
THC concentration data first were adjusted to standard conditions (7% O2, Dry)
and then the concentration at the scrubber inlet was plotted against the concentration at
the outlet from the scrubber for the same 5-minute periods. These plots (Figures 6.26
through 6.29) for the individual plants showed good correlation in some cases -
Arlington (1995) and Cleveland - and poor correlation in others - Hopewell and
Huntington. Neither the data nor the operating conditions during the collection of the
data offer any explanation of why the correlation should be good in some cases and poor
in others. When the data from all four plants is pooled and plotted (Figure 6.30) the
result is also poor. The slope of these lines should be the ratio by which the inlet
concentration is multiplied to estimate the outlet concentration of THC. A second
means to calculate the same ratio is to calculate the geometric mean of the ratio outlet
THC concentration divided by the corresponding inlet THC concentration. Table 6.16
displays this ratio in the last column. These two estimates of the control effectiveness
of the wet scrubber should be comparable. The two estimates are comparable for the
cases where the correlation coefficient of the line of best fit is high; the estimates are
poorly related when the correlation coefficient of the line of best fit is poor. It appears
that a few data points yield unexpectedly high values for the Outlet/Inlet ratio at the
Hopewell, Virginia plant. These high values affect the Hopewell data and the pooled
data. Some appear to be caused by unexpectedly high inlet THC concentrations,
others appear to be caused by unexpectedly low outlet THC concentrations. These
values are called unexpected when they do not fall into the same general concentration
range as the values that immediately preceded them or followed them in the temporal
record. All of the data passed the pertinent quality control checks, so we cannot reject
them merely because they do not support this particular analysis.
6-52
-------
Table 6.15
SUMMARY OF TOTAL HYDROCARBON CONCENTRATIONS
IN TO AND OUT OF WET SCRUBBERS
AT SEWAGE SLUDGE INCINERATORS
Statistical Data
Total Hydrocarbon Data
(ppm@ 7%O2,Dry)
Scrubber
Inlet
Scrubber
Outlet
Ratio
Out/In
Ln(Out/In)
(Unitfess)
Arlington
Average
Standard Deviation
Rel. Std. Deviation
Maximum
IxfliniTniitn
60.4
40.5
67
309.8
1.7
63.2
48.3
76
479.6
21.9
1.05
3.97
275
87.58
0.10
0.03
0.12
404
0.29
-02
Cleveland
Average
Standard Deviation
Rel. Std. Deviation
Maximum
Minimum
10.3
15.0
146
1182
2.4
8.6
11.9
139
93.0
2.6
0.83
0.27
30
1.95
0.43
-0.17
0.28
170
0.67
-0.8
Hope we II
Average
Standard Deviation
ReL Std. Deviation
Maximum
Minimum
90.4
226.8
251
2189.1
3.4
44.0
552
126
497.8
2.1
0.49
0.76
83
6.57
0.02
-0.32
0.72
224
1.88
-3.8
Huntington
Average
Standard Deviation
ReL Std. Deviation
Maximum
^doumum
10.2
4.4
43
40.0
2.1
7.8
3.3
42
29.9
1.9
0.77
0.23
28
1.63
0.37
-025
0.30
119
0.49
-1.0
All Plants
Average
Standard Deviation
Rel. Std. Deviation
Maximum
Minimum
50.9
110.1
216
2189.1
1.7
422
48.4
115
497.8
1.9
0.83
2.81
245
8758
0.02
-0.1017
0.55
537
45
-3.8
6-53
-------
400
y=1.118x-2.56
R2 =0.965
100 150 200
Met THC (ppm@7% Q,, Diy)
250
300
Figure 6.26 Total Hydrocarbon Concentration at Scrubber Inlet vs. Scrubber
Outlet. Arlington, Virginia, 1995
6-54
-------
100
90 -
80 --
70 --
60 --
I 50--
o.
I
« 404-
30 --
20 --
10 --
y =0.785* +0497
R2 =0583
20
40 60 80
Inlet THC (ppm @7% O,, Diy)
100
120
Figure 6.27 Total Hydrocarbon Concentration at Scrubber Inlet vs. Scrubber
Outlet. Cleveland, Ohio, 1995
6-55
-------
500
450
500 1000 1500
Met 1HC (ppn@7% Qz, Diy)
2000 2500
Figure 6.28 Total Hydrocarbon Concentration at Scrubber Inlet vs. Scrubber
Outlet. Hopewell, Virginia, 1995
6-56
-------
30
25-
20-
I16
10-
y =0.608x +lj64
R2 =0.664
10 20 30
Inlet 1HC (ppm@7% Qj, Diy)
4O
50
Figure 6.29 Total Hydrocarbon Concentration at Scrubber Inlet vs. Scrubber
Outlet. Huntington, West Virginia, 1995
6-57
-------
TABLE 6.16
SUMMARY OF PLOT DATA STATISTICS
FOR THCOOT VS. THC.N PLOTS
Plant
Arlington (1995)
Cleveland (1995)
Hopewell (1995)
Huntington (1995)
All Four (pooled)
Statistics for the THCout vs. THCta Plots
Slope
1.12
0.78
0.11
0.61
0.19
Intercept
-2.6
0.5
34.4
1.64
32.3
Correlation
Coefficient
(r2)
0.965
0.983
0.192
0.664
0.193
Arithmetic
Average
THCo.rt/THCi,,
1.07 (a)
0.86
0.73
0.78
0.90
(a) The average value of this ratio should be equal to the slope of the line of best fit.
Overall, the data support a conclusion that the wet scrubbers at sewage sludge
incinerators remove from 10 to 20 percent of the THC in the inlet gas. The data from
Arlington appear to support the contention that the scrubber may contribute THC to the
gas stream in some cases.
The second approach selected for analysis of the efficiency of removal of THC
by wet scrubbers was preparation of log normal distribution plots of the ratio
THCom/THCj,,. Figures 6.31 through 6.34, which are the log-normal plots for the
individual plants demonstrate that this approach has merit. The correlation coefficients
for all of the plots are excellent. Figure 6.35 is a similar plot for the pooled data from
all four (4) of the plants that were sampled during this program. The correlation for
this plot is very good. The analysis presented in Table 6.17 is also encouraging. The
intercept of the line of best fit for a log-normal distribution is a the point where Z
SCORE is equal to zero. The frequency at Z SCORE = 0 is 50%, which is the mean
value of the parameter on the y axis. In this case, the y-axis parameter is the natural
logarithm of the ratio THC^/THQ,,. The anti-log of this number is equal to the
geometric mean of the population. In this case the value of the geometric mean
calculated by taking the anti-log of the average logarithm of the ratio is nearly identical
to the geometric mean found at the 50th percentile of the distribution. Tables 6.16 and
6.17, thus, reaffirm our earlier observation that the log-normal distribution better
describes exit gas parameters than does the normal distribution. The results of the
analysis demonstrate that, for three of the plants sampled, the scrubber removes from
10 to 25 percent of the THC in the gas entering the scrubber. The scrubber at the
6-58
-------
Arlington plant appears to have increased the THC concentration by approximately 3
percent.
TABLE 6.17
SUMMARY OF PLOT DATA STATISTICS
FOR THC/THC V.S. Z SCORE PLOTS
Plant
Arlington
(1995)
Cleveland
Hopewell
Huntington
All Four
(pooled)
Statistics of THC^/THC^ vs. Z SCORE Plots
Slope
0.12
0.28
-0.66
-0.29
-0.50
Inter-
cept
0.03
-0.17
-0.32
-0.29
-0.10
Correl.
Coef.
(r1)
0.97
0.97
0.85
0.97
0.84
Estimate of
Fraction of
THC
Remaining
{exp (Intercept)}
1.03
0.85
0.73
0.75
0.90
Statistics of the Data
Geometric
Mean
(THC^/THC,,,)
0.030
-0.17
-0.32
-0.29
-0.10
Estimate of
Fraction of
THC
Remaining
(Geometric
Mean)
1.03(b)
.85
.73
.78
.90
(b) The geometric mean is equal to the antilogarithm of the intercept of the line of best
fit.
The conclusion of .this analysis is that, on the average, the wet scrubbers
removed 10 percent of the THC in the gases entering the scrubber.
OBSERVED EMISSIONS OF CHLORINATED DIBENZO-DIOXINS AND
DIBENZO-FURANS
The U.S. Environmental Protection Agency (EPA) continues to evaluate both the
health effects and the emissions of chlorinated dibenzo-dioxins and dibenzo-furans
(CDF) in conjunction with the ongoing "Dioxin Reassessment" program. The manag-
ers of that program asked the EPA Office of Water to add CDF sampling and analysis
to the sampling and analysis that was proposed for this program. CDF emissions were
measured in the exit gases from the scrubbers at three of the four plants tested. The
plants sampled are described briefly in Table 6.17.
6-59
-------
500
y =01SBx +3234
R2=0193
500 1000 1500
Inlet THC (ppn@7% Qz, Diy)
2000
2500
Figure 630 Total Hydrocarbon Concentration at Scrubber Inlet vs. Scrubber
Outlet Pooled Data from all 4 Plants Sampled
6-60
-------
1.0
0.8 --
0.6 --
0.4
0.2 -I-
-0.2 -
-0.4 - -
-0.6
-0.84
-1.0
0 O
y =-0.120x +0.030
R2 =0.974
o o o
H 1 1 h
-4.0 -3.0 -ZO -1.0 0.0 1.0 2.0 3.0 4.0
ZSCORE
Figure 631 ln(THCou(/THCin) vs. Z SCORE. Arlington, Virginia, 1995
6-61
-------
y=4K280x- 0.168
R2 =0.974
-1.0
-3.0
Figure 6.32 ln(THC0./THC J vs. Z SCORE. Cleveland, Ohio, 1995
6-62
-------
3.0
1.0
0.04
J
-1.0 I
-20--
-3.0
-4.0
y=4K662x-0320
R2=OJ847
\
°0
H 1-
-4.0 -3.0 -ZO -1.0
0.0
ZSCORE
1.0 20 3.0 4.0
Figure 633 ln( THC^/THCi,,) vs. Z SCORE. Hopewell, Virginia, 1995
6-63
-------
1.0
0.5--
0.0--
i
1 -0.5
jj
-1.0 I
-1.5--
-ZO
H h
y=-0294x-0.250
R2 =0.975
H 1 1 h
-4.0 -3.0 -ZO -1.0 0.0 1.0 ZO 3.0 4.0
ZSCORE
Figure 634 ln(THCOB/THC in) vs. Z SCORE. Huntington, West Virginia, 1995
6-64
-------
3-.
1 -
o
U
0-
-1-
-2-
-3
o
o
o
o
-3 -2
y=«.502x-0.102
R2 =0.845
o
ZSCORE
°0
"00
Figure 635 ln(THCout /THCJ vs. Z SCORE. Pooled Data from All Plants
6-65
-------
TABLE 6.18
DESCRIPTIONS OF THE SEWAGE SLUDGE
INCINERATORS TESTED FOR CDF EMISSIONS
Plant Name
Arlington (1995)
Cleveland
Huntington
Furnace Type
Multiple Hearth
Multiple Hearth
Fluid Bed
Afterburner Type
None
On-Hearth
None
Scrubber Type
Venturi.
Venturi
Venturi.
All sampling and analysis for CDF was done by EPA Method 23. The results
(in Tables 6.19 through 6.21) are the results of the CDF analyses done during this
project. They are expressed as total nanograms of each substance per sample. Tables
6.22 through 6.25 are the same results expressed in nanograms per dry standard cubic
meter (std. cond. @ 68°F) of exit gas. The next to last column in Tables 6.22 through
6.25 contains the average results of the three runs with non-detected (ND) taken to be
zero (0). The last column hi each of these tables contains the average of the three
results with ND taken to be equal to the limit of detection of the analysis.
Table 6.26 contains a summary of the CDF data collected by these investiga-
tors, and data that were provided to EPA by the Association of Municipal Sewage
Authorities (AMSA) in January 1995 and updated in May 1995. The results for the
data collected during this project are expressed as a range. The lower of the two
values is the average result with ND taken as zero (0); the higher result is the average
with ND taken to be the limit of detection during the analysis. The table also contains
the concentration limits that EPA recently (March 1996) proposed for hazardous waste
combustors, and concentration limits that EPA suggested (July 1996) for medical waste
incinerators. These recent regulatory initiatives are included to place the emissions of
CDF from sewage sludge incinerators into the perspective of recent EPA thinking.
6-66
-------
TABLE 6.19
ANALYTICAL RESULTS
ARLINGTON WASTEWATER TREATMENT PLANT
(Analytical results in nanograms per sample train )
ANAL VIE
• RUN NUMBER
1
2
3
TRIP
BLANK
FIELD
BLANK
Results of isomer specific analyses
23,7,8 TCDF*
23, 7,8 TCDD
123,7 ,8 PECDF
23,4,7,6 PECDF
123,7 ,8 PECDD
23,4,7,8 PECDD
123,4,7,8 HXCDF
123,6,7 ,8 HXCDF
123,7 ,8,9 HXCDF
23,4,6,7,8 HXCDF
123,4,7 ,8 HXCDD
123,6,7 ,8 HXCDD
123,7,8,9 HXCDD
123,4,6,7,8 HPCDF
123,4,7 ,8,9 HPCDF
123,4,6,7,8 HPCDD
OCDF
OCDD
23,7,8 TCDD Tox. Eq.
Surrogate Recovery (%)
19.4
23
2.9
103
1.4
ND
23
1.4
ND
3.1
02
0.6
0.4
ND
0.7
1.0
22
2.4
11.0
157
7.1
2.4
1.9
6.0
1.4
ND
1.6
1.0
ND ,
2.0
02
0.6
0.4
ND
03
0.5
0.4
0.5
75
122
6.9
2.0
1.9
5.8
13
ND
1.5
ND
ND
2.4
ND
ND
0.4
ND
0.4
0.5
0.4
0.6
6.8
172
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0
—
ND
Nb
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0
108
Results of total congener analyses
TCDF
TCDD
PECDF
PECDD
HXCDF
HXCDD
HPCDF
HPCDD
PCDF
PCDD
Total Dioxms (ng)
Total Furans (ng)
TOTAL CD* (ng)
145.9
147.9
64.6
11.9
20.7
3.9
15
2.0
22
2.4
168.1
235.0
403.0
117.0
143.0
47.9
14.7
15.5
4.6
0.9
13
0.4
0.5
164.1
181.7
345.8
99.7
112.9
46.7
12.6
15.5
42
12
1.1
0.4
0.6
1312
163.5
294.7
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0
0.0
0.0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0
0.0
0.0
6-67
-------
TABLE 6.20
Table 620 ANALYTICAL RESULTS
CLEVELAND SOUTHERLY WASTEWATER TREATMENT CENTER
(Analytical results in nanograms per sample tram )
AINALYrtt
RUN NUMBER
1
2
3
TRIP
BLANK
KIK.I.ll
BLANK
Results of isomer specific analyses
23,7,8 TCDF
23,7,8 TCDD
1,2,3, 7,8 PECDF
23,4,7,8 PECDF
1,2,3,7 ,8 PECDD
23,4,7,8 PECDD
123, 4,7,8 HXCDF
1 ,23,6,7,8 HXCDF
123,7 ,8,9 HXCDF
23,4,6,7,8 HXCDF
1,23,4,7 ,8 HXCDD
123,6,7 ,8 HXCDD
123,7 ,8,9 HXCDD
123,4,6,7,8 HPCDF
1 ,23,4,7,8,9 HPCDF
123,4,6,7,8 HPCDD
OCDF
OCDD
23,7,8 TCDD Tox. Eq.
Surrogate Recovery (%)
0.0204
ND
Nb
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0
127.0
0.045
ND
Nb
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0
146.0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0
162.0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0
113
ND
ND
Nb
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0
118
Results of total congener analyses
TCDF
TCDD
PECDF
PECDD
HXCDF
HXCDD
HPCDF
HPCDD
PCDF
PCDD
Total Dioxins (ng)
Total Furans (ng)
TOTAL CDF (ng)
026
0.1
0.0
ND
ND
ND
ND
ND
ND
ND
0.1
03
0.4
0.65
0.5
0.5
ND
03
ND
ND
ND
ND
ND
0.5
1.5
1.9
0.12
0.4
ND
ND
ND
ND
ND
ND
ND
ND
0.4
0.1
0.5
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0
0
0.0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0
0
0.0
6-68
-------
TABLE 621
ANALYTICAL RESULTS
HUNITNGTON WASTEWATER TREATMENT PLANT
(Analytical results in nanograms per sample train )
ANALritt
RUN NUMBER
1
2
3
TK1F
BLANK
KIK.IJI
BLANK
Results of isomer specific analyses
23,7 ,8 TCDF
23,7,8 TCDD
123,7 ,8 PECDF
23,4,7,8 PECDF
1 23,7,8 PECDD
23,4,7,8 PECDD
123, 4,7 ,8 HXCDF
123,6,7 ,8 HXCDF
123, 7 ,8,9 HXCDF
23,4,6,7,8 HXCDF
123,4,7 ,8 HXCDD
123,6,7 ,8 HXCDD
1 23,7,8,9 HXCDD
123,4.6,7,8HPCDF
123,4,7 ,8,9 HPCDF
123,4,6,7 ,8 HPCDD
OCDF
OCDD
23,7,8 TCDD Tox. Eq.
Surrogate Recovery (%)
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND .
ND
ND
ND
ND
ND
ND
ND
ND
0.0
•128.0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0
116.0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0
111.0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0
110
Results of total congener analyses
TCDF
TCDD
PECDF
PECDD
HXCDF
HXCDD
HPCDF
HPCDb
PCDF
PCDD
Total Dioxins (ng)
Total Ftaans (ng)
TOTAL CDF (ng)
0.041
5.7
0.0
ND
ND
ND
ND
ND
ND
ND
5.7
0.06
5.7
0.043
5.4
ND
ND
03
ND
— F5D —
ND"
ND
ND
05
0.0
05
0.082
5.4
ND
ND
ND
ND
ND
— ND —
ND
ND
5.4
0.1
5.4
ND
ND
ND
ND
ND
ND
ND
— ND —
ND
ND
0.0
0.0
0.0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0
113
ND
ND
ND
ND
ND
ND
ND—
— RE-
ND
ND
0.0
0.0
0.0
6-69
-------
TABLE 622
CONCENTRATION OFDIOXINS AND FURANS
ARLINGTON WASTEWATER TREATMENT PLANT INCINERATOR
(AD concentrations innanograms ofTEQ per cubic meter)
ANALYTk
KUIN INUMtJhJK
1
2
3
AVEI
ND =0
IAGE
ND=MDL
Isomer specific concentrations
2,3,7,8 TCDF
23,7,8 TCDD
1 ,2,3,7,8 PECDF
23,4,7,8 PECDF
123,7 ,8 PECDD
2,3,4,7,8 PECDD
123,4 ,7 ,8 HXCDF
123,6,7 ,8 HXCDF
123,7 ,8,9 HXCDF
23,4,6,7,8 HXCDF
123,4,7 ,8 HXCDD
123,6,7 ,8 HXCDD
1,23.7 ,8,9 HXCDD
123,4,6,7 ,8 HPCDF
123.4,7,8,9 HPCDF
123,4,6,7,8HPCDD
OCDF
OCDD
23,7,8 TCDD Tox.Eq.
Surrogate Recovery (%)
4.07
0.49
0.61
2.16
0.30
ND
0.48
029
ND
0.6S
0.03
0.13
0.09
ND
0.15
020
0.47
0.51
10.61
127.0
1.56
0.51
0.41
132
0.31
ND
0.34
022
ND
0.4S
0.04
0.13
0.09
ND
0.07
0.12
0.10
0.12
5.79
146.0 .
152
0.45
0.41
128
029
ND
033
ND
ND
053
ND
ND
0.08
ND
0.09
0.10
0.09
0.13
531
162.0
024
0.48
0.02
0.79
0.15
0.00
0.04
0.02
0.00
0.05
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
1.82
113
024
0.48
0.02
0.79
0.15
0.00
0.04
0.02
0.00
0.05
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
1.83
118
Total congener concentrations
TCDF
TCDD
PECDF
PECDD
HXCDF
HXCDD
HPCDF
HPCDD
OCDF
OCDD
Total Dioxins (ng)
Total Furans (ng)
TOTAL CDF (ng)
30.7
31.1
13.6
25
4.4
0.8
03
0.4
0.5
0.5
353
49.4
84.7
25.6
313
105
32
3.4
1.0
02
03
0.1
0.1
35.9
39.8
75.7
22.0
25.0
10.3
2.8
3.4
0.9
03
02
0.1
0.1
29.0
36.1
652
26.1
29.1
115
2.8
3.7
•0.9
03
03
02
0.3
0.0
0.0
0.0
26.1
29.1
115
2.8
3.7
0.9
03
03
02
03
0.0
0.0
0.0
6-70
-------
TABLE 6.23
CONCENTRATION OF DIOXINS AND FURANS
CLEVELAND SOUTHERLY WASTEWATER TREATMENT PLANT
(All concentrations in programs of TBQ per cubic reier )
ANALYTE
RUN NUMBER
1
2
3
AVE1
ND=0
RAGE
ND=MDL
Isomer specific concentrations
2,3,7,8 TCDF
A3.7.8 TCDD
23,7,8 PECDF
1 2,3,4,7,8 PEeDF
23,7,8 PECDD
2,3,4,7,8 PECDD
1,2,3,4,7,8 HXCbfc
123,6,7,8 HXCDF
123,7,8,9 HXCDF
-1,3,4,6,7,8 HXCDF
123,4,7,8 HXCDD
1,23,6,7,8 HXCDD
123,7,8,9 HXCDD
123,4,6,7,8 HPCbF
123,4,7,8,9HPCDF
123,4,6,7,8 HPCDD
OCDF
OCDD
23,7,8 ItDD tox. Bq.
Sunogate Recovery ( %)
4.23
ND
ND
Nt>
ND
ND
ND
ND
ND
ND
ND
ND
NfD
ND
ND
ND
ND
ND
423
12^.0
Total coq
ICDD
FECDh
FtJCDu
HXCDF
HXCDD
HFCDF
HPCDD
OCDt3
OCDD
Total Dioxins (ng)
Total Rirans (ng)
1XJTAL CDF (ng)
53.9
26.9
3.3
ND
ND
Mb
ND
KfD
ND
ND
26.9
57i
842
8.36
ND
ND
ND
Mb
ND
ND
ND
Nb
Nb
Nb
ND
Nb
Nb
Nb
Nb
Nb
Nb
8.36
146.0
Nb
ND
Nb
Nb
Nb
ND
ND
ND
ND
ND
ND
ND
Nb
Nb
Nb
Mb
Nb
ND
0.00
162.0
;ener concentratnns
126.8
873
1003
Nb
483
ND
ND
ND
Nb
Nb
8V3
221.1
308.4
242
705
Nb
Nb
Nb
ND
Nb
Nb
Nb
Nb
703
24.2
$4.6
0.42
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.42
U3
663
61.6
343
0.0
16.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.55
3.06
0.99
9.91
9.91
0.99
1.98
1.98
1.98
1.98
1.98
1.98
1.98
020
020
020
0.04
0.04
40.85
118
&3
61.6
413
19.8
29.7
19.8
19.8
10.8
39.6
39.6
0.0
0.0
0.0
6-71
-------
TABLE 6 JA
CONCENTRATION OFDIOXBVS AND FURANS
HUNTTNGTON WASTEWATER TREATMENT PLANT
(AD concentrations in nanograms oTTEQ per cubic meter)
AINALYME
RUN NUMBER
1
2
3
AVERAGE
ND =0 |ND =MDL
Isomer specific concentrations
2,3,7 ,8 TCDF
2,3,7,8 TCDD
1,23,7,8 PECDF
2,3,4,7,8 PECDF
1,23, 7,8 PECDD
2,3,4,7,8 PECDD
1,23,4,7,8 HXCDF
1,23,6,7,8 HXCDF
1,23, 7,8,9 HXCDF
2,3,4,6,7,8 HXCDF
1,23,4,7,8 HXCbD
1,23,6,7,8 HXCDb
1,23,7,8,9 HXCbb
1,2,3,4,6,7,8 HPCbF
1,23,4.7,8 ,9 ttPCbF
1,23.4,6,7 ,8 HPCDb
OCDF
OCDD
2,3,7,8 TCDD Tox.Eq.
Surrogate Recovery ( %)
ND
Nb
ND
ND
ND
Nt)
ND
ND
ND
ND
ND
ND
Nb
Nb
Mb
ND
ND
ND
0.00
127.0
ND
Nb
Nb
ND
ND
ND
ND
ND
ND
ND
Nb
ND
Nb
Nb
Nb
No
No
ND
0.00
146.0
ND
ND
ND
Nb
ND
Nb
ND
ND
ND
ND
Nb
ND
Nb
Nb
Nb
Nb
ND
ND
0.00
162.0
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
113
0.00
0.00
0.00
o.0i
0.0l
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.04
118
Total congener concentratbns
TCDF
IXJDD
PECD£
PECDD
HXCDF
HXCDD
HPCDF
HPCDD
OCDF
OCDD
Total Dioxins (ng)
Total IHnans (ng)
TOTAL CDF (ng)
0.0
1.1
0.0
ND
Nb
ND
ND
ND
ND
ND
1.1
0.0
1.1
0.1
0.1
0.1
ND
0.0
ND
ND
ND
ND
ND
0.1
0.2
0.3
0.0
0.1
ND
ND
ND
ND
Nb
ND
ND
ND
0.1
0.0
0.1
0.1
0.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6-72
-------
TABLE 6.25
Table 6.25 CONCENTRATIONS OFDIOXINS AND FURANS(1>
(All concentrations in nanograms per cubic meter )
PLANT
Proposed Medical \
Feb. 19
New
Existing
July 1996
New-Large and Medium
Small
Existing- Large
Medium
Small
2,3,7,8 TCDD
Tox. Eq.
(ng/rn3)
TOTAL
CONGENERS
(ng/m3)
Vaste Incinerator Rule
95 Proposal
1.9
1.9
80
80
EPA 'Inclinations"
0.6
2.3
2.3
2.3
?
25
125
125
125
?
Proposed Hazardous Waste Combustor Rule
March 1996 Proposal
New and Existing
0.2
None
Data Collected During This Project
Cleveland Southerly
Huntington
Arlington
0.0004
<8.83
Data are not provided
(4) Average of results from 10 incinerators
6-73
-------
SECTION 7
CONCLUSIONS
This conclusions section will consider the results of the analysis of the work
that was done in pursuit of accomplishing each of the purposes that were stated in
Section 1. During the course of this work, several other observations or conclusions
were made by the investigators. These conclusions will be presented as part of the
discussion of the conclusions about the purposes.
The first stated purpose was to determine if there is a relationship between the
concentrations of CO and THC in the exit gas from sewage sludge incinerators that will
support the use of CO monitoring as a surrogate for THC monitoring. The initial
investigation of this relationship took the form of using correlations between CO and
THC concentrations. Several investigators have reported such correlations in the
literature. This study attempted several forms of a correlation. One was a least
squares fit of CO concentration vs THC concentration. The second was a statistical
analysis of the distribution of CO/THC ratios. The third was the use of a first order
kinetic model to relate CO concentration to THC concentration. The conclusions of
this study are:
1) Correlation that allows estimation of the THC concentration from the
CO concentration does not exist. Correlations between CO and THC.
appear to occur over the duration of short (4 hrs. to 8 hrs.) tests, but are
not reliable for long periods of time.
2) Log-normal distributions of the ratio of CO concentration divided by
THC concentration are linear and are reliable. The statistics of the
distribution calculated for any given month are similar to the statistics of
the annual distribution.
3) The distributions are site specific. An overall distribution was
identified, but the correlation was not as good as most of the site specific
correlations.
4) Additional data analysis is needed to determine which sewage sludge
incinerator operating parameters must be recorded during a one-month
test and controlled during subsequent operations.
7-1
-------
5) Additional data analysis is needed to determine the allowable limits
of variation of the important operating parameters that will allow
flexibility for the sewage sludge incinerator operator and assure
compliance with the emission standard.
6) The kinetic model did not adequately relate THC concentration to
CO concentration. CO concentrations were not related to THC concen-
trations, probably because the mechanisms and locations of formation of
the two pollutants in sewage sludge incinerators are different.
The statistical technique described above is different from a correlation between
THC and CO. The statistical technique does not allow estimation of the THC
concentration at any particular time, it only provides assurance that over an annual
period, that no monthly average THC concentration will exceed 100 ppm. With a
correlation technique, if one were possible, one could calculate the concentration of
THC at a particular time based on the measured CO concentration.
The second purpose of this study was to measure the concentration of THC in
the exit gas from well operated sewage sludge incinerators. Tests were conducted at
four sewage sludge incinerators during these tests. The average value of the THC
concentrations observed during those tests at the sewage sludge incinerators tested are
listed below. These tests were of short duration, from 3 to 5 days in length. No
special preparations were undertaken by the operators of any of the sewage sludge
incinerators prior to the tests. These average values demonstrate the capability of the
equipment over short periods of time, but do not address the THC emission standard,
which is a monthly average. The data from Hopewell are not representative of the
normal operation of that sewage sludge incinerator because, at the request of the test
team, the operators made adjustments to the operation mat would increase the THC
emissions from the sewage sludge incinerator. Data accumulated from other sources
show that typical THC concentrations in the exit gas from sewage sludge incinerators
are less than 100 ppm (@7% O2, Dry).
Additional observations about the concentration of THC in the exit gas from
sewage sludge incinerators were made. These are described below.
1) The log-normal distributions of THC concentrations in the exit gas from
sewage sludge 'incinerators were found to be linear.
2) The distribution for individual months were found to be similar to the annual
distributions.
3) A test consisting of continuous monitoring of THC and operating parameters
for a period of one month could be used to predict the maximum expected 30-
day average THC concentration.
7-2
-------
TABLE 7.1
SUMMARY OF TOTAL HYDROCARBON CONCENTRATIONS
MEASURED AT INCINERATORS LISTED
Plant Location
Arlington, Va.
Cleveland
(Southerly), Oh.
Huntington, WV
Hopewell, Va.
Plant Description
MHFno
Afterburner
MHF on Hearth
Afterburner
Fluid Bed
MHF Secondary
Combustion
Chamber
Average THC
Concentration
(ppm @7% O2, Dry)
63.2
8.6
7.8
44.0
4) Additional data analysis is needed to determine which sewage sludge
incinerator operating parameters must be recorded during a one-month test and,
controlled during subsequent operations.
5) Additional data analysis is needed to determine the allowable limits of
variation of the important operating parameters that will allow flexibility for the
sewage sludge incinerator operator and assure compliance with the emission
standard.
The third purpose of the investigation was to measure the concentrations of
chlorinated dioxins and furans (CDF) in the exit gas from sewage sludge incinerators.
Tests for CDF were done at three of the four sites tested. The test data showed the
concentrations of total CDF congeners and 2,3,7,8 TCDD toxic equivalent at all three
sites to be less than the concentrations that EPA is considering for medical waste
incinerators. Only the concentrations measured at Arlington incinerator, which has no
afterburner, were of the same order of magnitude as the proposed medical waste
incinerator rules. The concentrations measured at the other two sites were less than the
proposed medical waste incinerator regulations by two to three orders of magnitude.
The fourth purpose of this investigation was to study the relationship between
final combustion zone temperature (and other operating parameters) and the
concentration of THC in the exit gas. It is clear that if there is any relationship
7-3
-------
between the temperature of the final combustion zone and the concentration of THC in
the exit gas, that the relationship will be described by the kinetic model. The study
used the first order kinetic model. It is possible that some other order would be more
appropriate. It is unlikely that the reaction is other than first order. Other correlation
procedures have been tried, for example, simple linear plots of THC concentration vs
the temperature of the final combustion zone. Transforms such as plots of the log of
THC concentration vs the reciprocal of temperature are more linear. The best fits are
found if the plot takes the form dictated by the first order kinetic model. The conclu-
sions of the investigation are:
1) There is a relationship between the decrease in THC concentration in
the final combustion zone and the temperature of the final combustion
zone. That relationship is described by the first order kinetic model.
2) At a given temperature and oxygen content in the final combustion
zone, the fractional destruction of THC in the final combustion zone is
constant.
3) The kinetic model correlation between the THC in the exit gas and
the temperature of the final combustion zone works well when the
concentration of THC in the gas entering the final combustion zone is
constant. These correlations usually work well for short (4 to 8 hours)
tune periods.
4) The concentration of THC in the gas entering the final combustion
zone is not constant over long time periods.
5) Changes hi sewage sludge incinerator operation or construction affect
the concentration of THC in the gas entering the final combustion zone.
6) The kinetic model correlation tends to overpredict the exit gas THC
concentration when the concentration of THC entering the final combus-
tion zone is lower than it was when the correlation parameters were
defined.
7) The kinetic model correlation tends to underpredict the exit gas THC
concentration when the concentration of THC entering the final combus-
tion zone is higher than it was when the correlation parameters were
defined.
These last two results seriously compromise the ability of the kinetic model
correlation to assure that the monthly average of the exit gas THC concentrations do
not exceed 100 ppm. The model will underpredict the highest concentrations.
7-4
-------
APPENDIX A
ARLINGTON CONTINUOUS MONITOR DATA
-------
Arlington Virginia
Continuum Monitor Dau
Jnlj 1995
7/21/95
1(21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
10:00
1005
1010
10:13
10:20
10:25
10:30
10:35
10:40
10:45
10:50
10.55
11:00
11:05
11:10
11:15
11:20
11:25
11:30
11:35
11:40
11:45
11:50
11:55
12:00
12:05
12:10
12:15
12:20
12:25
12:30
12:35
12-40
12:45
12:50
12:55
13.00
13:05
13:10
13:15
13:20
13:25
13:30
13:35
13:40
13:43
13:50
13:55
14:00
14:03
14:10
14.13
14:20
14:25
14:30
C02
Scrubber
Inlet
CO,
(*)
6.7
7.1
7.6
86
9.5
92
90
95
92
9.6
10.0
97
9.3
9.2
88
84
8.2
8.3
8.5
8.9
9.0
8.7
8.7
8.5
7.9
8.0
7.8
7.4
7.4
7.2
7.9
7.9
7.6
8.2
7.8
82
8.1
7.2
7.1
9.6
9.8
9.6
10.8
11.3
11.2
Scrubber
Outlet
C0,(%)
(»)
5.9
5.6
5.5
5.5
46
36
39
42
44
5.0
54
54
5.5
5.7
5.9
61
63
61
5.9
5.7
5.6
5.4
5.2
5.3
5.4
5.4
5.6
5.7
5.5
5.5
5.4
5.1
51
5.1
48
4.6
4.4
4.8
48
4.6
48
4.7
5.0
5.0
4.6
4.5
5.1
54
• 5.7
6.5
7.2
7.2
O2
Scrubber
Inlet
Oj
(*)
12.7
12.2
116
10.2
9.3
97
100
9.4
9.8
9.3
8.9
9.3
9.7
9.9
10.2
10.8
11.1
10.9
10.6
10.6
10.1
101
10.4
10.5
106
11.5
114
11.7
12.1
12.0
12.2
11.3
11.3
11.6
10.8
11.2
10.7
10.7
11.8
11.6
8.2
7.9
8.2
6.9
6.6
7.0
Scrubber
Outlet
Oj
(%)
14.1
14.3
144
145
15.5
16.6
16.2
15.8
15.5
14.8
144
14.3
14.3
14.0
14.0
13.7
13.5
13.7
13.9
14.0
14.2
14.4
14.7
14.6
14.4
14.5
14.1
14.1
14.3
14.3
14.4
14.8
14.8
14.9
152
15.3
15.5
150
15.1
15.3
15.0
15.0
14.8
14.6
14.9
15.0
14.2
13.8
13.4
12.4
11.8
12.0
Temperature
Scrubber
Inlet
°F
97
176
827
824
820
825
834
843
842
847
856
863
872
868
859
854
847
834
821
819
825
822
834
844
850
856
859
840
834
830
820
829
823
831
827
818
810
802
794
783
769
762
755
761
776
810
836
842
Scrubber
Outlet
"F
84
84
81
53
476
167
170
163
164
169
170
170
173
174
171
170
170
169
170
170
170
169
169
168
166
165
166
166
166
167
167
166
166
165
164
164
164
163
166
166
168
168
169
172
169
168
167
163
165
176
176
172
172
170
168
THC
Scrubber
Inlet
THC
(ppm)
292
53.0
89.1
662
53.7
504
451
54.1
53.4
46.2
43.7
45.1
407
42.1
38.4
38.4
45.2
46.3
45.4
38.9
48.4
68.5
54.0
50.3
46.1
39.2
55.7
56.2
55.0
58.0
49.7
53.1
45.6
39.1
48.0
46.1
48.3
50.6
57.2
64.3
65.0
195.1
196.1
134.3
146.0
140.0
90.5
Scrubber
Outlet
THC
(ppm)
12.3
13.3
14.5
113
159
21.5
23.6
25.0
250
236
260
24.0
26.2
27.1
23.7
21.7
19.4
17.6
17.1
17.2
17.1
17.7.
18.5
19.2
19.8
21.2
21.1
19.3
18.3
16.9
16.9
20.8
21.7
20.5
20.2
16.5
17.3
16.0
16.7
17.8
19.2
20.7
23.7
33.0
33.8
36.0
207.6
177.3
156.8
133.8
117.5
78.5
CO
Scrubber
Inlet
CO
1071
763
697
749
673
664
750
749
795
797
694
613
557
499
478
476
502
598
623
611
597
582
562
527
478
448
446
476
480
459
443
411
421
491
699
1230
1513
1759
4200
4425
4051
4050
3284
2342
Scrubber
Outlet
CO
715
632
521
450
405
431
404
409
465
480
506
508
445
400
361
324
310
309
326
344
379
399
391
385
375
362
342
311
292
291
298
300
282
270
251
249
298
426
940
941
1084
2229.
2356
2401
2458
2120
1515
Moisture
Scrubber
Inlet
H20
(%)
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
03
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
Scrubber
Outlet
H20
(»)
,
0
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
lot 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
TIME
1435
1440
1445
14:50
14.55
15-00
15.05
15:10
15:15
15.20
15:25
15:30
15-35
15:40
15-45
15:50
15-55
1600
16-05
16.10
16:15
16.20
1625
16:30
1635
16-40
16:45
16:50
16:55
17:00
17:05
17:10
17:15
17:20
17:25
17:30
17:35
17:40
17:45
17.50
17:55
18:00
18:05
18-10
18:15
18:20
18:25
18:30
18:35
18:40
1845
18-50
18:55
19:00
19:05
19.10
CO2
Scrubber
Inlet
CO?
(%)
10.8
103
95
92
85
8.5
87
8.8
92
95
9.7
10.8
96
7.3
7.3
6.7
6.7
7.2
7.7
7.6
8.1
7.8
7.1
6.7
5.7
5.8
6.S
66
77
7.9
8.0
80
7.7
7.1
7.0
8.0
8.3
8 1
8.8
9.8
10.6
10.7
11.2
11.4
11.1
10.8
9.7
9.2
8.5
Scrubber
Outlet
C0j(»)
(%)
7 1
67
63
61
56
5.5
57
57
57
61
6.2
6.5
59
4.2
4.2
3.8
3.9
4.2
4.4
4.4
4.8
4.5
4.2
4.0
3.4
3.5
3.8
3.9
4.5
46
4.6
47
4.4
42
4.1
4.6
49
5.0
5.4
5.9
6.3
6.4
6.6
6.8
6.7
6.4
59
56
5.3
O2
Scrubber
Inlet
Oz
(*)
77
85
93
97
10.5
105
10.3
10.3
9.9
9.5
94
82
9.6
12.4
12.3
12.8
12.6
12.0
11.5
116
11.3
11.6
12.3
12.8
13.9
13.5
12.8
12.8
11.2
11.1
11.1
110
11.5
12.0
12.0
10.6
10.2
10.5
9.7
8.7
7.9
8.0
7.5
7.4
7.8
8.2
9.3
9.7
10.5
Scrubber
Outlet
Oj
(%)
123
129 '
133
136
14 1
141
139
139
141
13.7
137
13.3
140
15.9
159
16.2
16.0
157
154
15.5
15.0
15.4
158
160
16.6
16.5
161
16.0
15.5
15.4
15.3
15.3
15.5
15.8
15.8
151
14.8
14.7
14.2
137
13.3
13.3
13.1
13.0
13.2
13.4
140
14.3
14.7
Temperature
Scrubber
Inlet
°F
854
848
840
837
833
833
843
854
857
881
887
923
938
889
882
871
869
872
885
887
911
921
917
917
892
893
901
902
894
888
878
874
875
873
869
872
837
669
868
858
839
828
841
841
836
840
846
856
850
855
860
867
877
865
861
840
Scrubber
Outlet
"F
167
165
165
164
164
164
164
165
167
167
167
169
168
169
170
169
171
171
172
171
171
171
170
170
170
170
171
171
222
171
171
171
170
172
172
171
169
169
169
168
167
167
170
168
164
165
165
165
163
162
160
163
163
163
164
164
THC
Scrubber
Inlet
THC
(ppm)
54 1
526
467
532
580
55.9
52.2
51.5
51.7
42.7
49.1
53.4
557
451
44.8
487
45.7
448
37.3
39.8
28.2
384
469
45.4
47.2
48.2
40.1
39.1
43.2
32.6
309
28.5
32.9
43.2
38.2
36.9
48.0
42.5
39.2
44.5
46.3
57.9
52.5
41.6
36.5
33.5
307
34.2
Scrubber
Outlet
THC
(ppm)
34 1
293
291
300
305
300
284
260
253
21.3
24.2
25.2
22.1
16.3
149
184
16.2
15.1
143
146
12.9
130
133
13.5
15.6
14.3
12.5
11.7
13.6
13.8
13.5
145
15.9
18.6
23.7
19.9
221
27.0
27.8
30.7
36.7
39.8
43.6
44.2
25.1
20.3
187
15.7
16.1
Scrubber
Inlet
CO
(ppm)
1014
629
511
521
487
559
621
672
776
820
890
1092
668
557
763
781
755
787
734
710
623
559
400
566
631
600
596
692
702
705
678
625
557
460
472
550
752
1029
1397
1503
1755
1736
1185
963
695
505
466
Scrubber
Outlet
CO
(ppm)
681
418
334
341
315
359
401
430
477
505
542
637
407
340
462
477
443
459
428
419
406
397
351
239
348
387
358
360
418
408
414
417
400
368
328
271
278
341
465
620
826
889
1028
1034
727
587
427
313
288
Moisture
Scrubber
Inlet
HjO
(%)
0.3
03
03
0.3
03
03
0.3
0.3
03
03
0.3
0.3
0.3
0.3
03
0.3
0.3
0.3
0.3
0.3
0.3
03
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
Scrubber
Outlet
H30
(%)
0 1
0 1
0 1
0.1
0 1
0 1
0 1
0.1
0.1
01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
. 0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
2 0(26
-------
Arlington VlrglnlA
Cootbunu Monttor Data
Jolj 1995
DATE
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
TIME
19:15
19.20
19:25
19-30
1935
1940
1945
1950
1955
2000
2005
2010
2015
20:20
20:25
2030
20.35
20.40
20:45
20-50
2055
21.00
21.05
21.10
21-15
21-20
21 25
21:30
21-35
21.40
21:45
21:50
21:55
2200
22-05
22.10
22.15
22-20
22-25
22:30
2235
2240
2245
2250
2255
23.00
23-05
23 10
23:15
2320
2325
23:30
2335
2340
23:45
23-50
CO2
Scrubber
Inlet
CO,
(%)
8.4
83
8.4
9.0
8.9
85
86
9.0
95
103
92
70
6.1
74
78
7.6
82
9.0
9.8
10.1
11.1
10.1
76
74
7.2
84
94
99
9.1
8.9
92
8.7
82
82
86
63
11.5
10.9
98
88
8.3
8.2
82
8.6
95
Scrubber
Outlet
CO, (96)
<%>
52
5 1
52
5.5
55
53
53
5.5
57
6.3
56
4.5
40
44
4.6
47
5 1
55
5.9
61
67
60
46
43
45
5 1
56
5.9
5.5
54
5.5
5.2
50
50
52
39
58
54
52
5 1
5 1
53
02
Scrubber
Inlet
Oj
(»)
10.7
10.8
106
99
10.1
106
10.4
9.9
95
86
10.2
12.5
13.3
11.7
11.3
11.6
10.7
9.8
9.1
88
7.7
9.1
11.8
12.0
11.8
10.5
94
89
10.0
102
9.9
106
11.0
11.0
106
13.1
73
8.0
9.4
104
110
11 1
11 1
106
Scrubber
Outlet
0,
(*)
147
14.8
14.7
143
144
147
14.6
143
14 1
13.6
14.5
15.6
161
156
153
152
148
14.4
140
13.8
132
14.1
15.5
158
15.5
147
14.2
13.9
14.5
146
14.4
14.8
15.1
15.1
148
16.4
141
145
148
149
149
146
Temperature
Scrubber
Inlet
"F
834
832
852
873
881
884
892
905
918
935
929
886
865
871
881
886
894
906
918
913
939
931
878
847
847
859
873
884
869
864
876
867
873
876
897
847
827
808
788
764
786
818
822
788
812
774
831
830
819
797
781
771
767
773
Scrubber
Outlet
Op
163
164
163
164
164
164
164
164
164
164
162
158
157
164
165
161
163
165
165
164
162
162
161
164
163
165
167
167
165
164
164
164
164
163
164
163
165
165
160
161
167
167
166
168
171
170
164
165
163
162
161
161
162
THC
Scrubber
Inlet
THC
(ppm)
329
30.0
329
293
241
248
266
234
241
256
276
335
405
35.1
304
353
31.5
298
288
313
357
378
36.2
348
32.6
29.0
26.3
23.1
25.9
28.6
25.1
26.6
28.9
26.0
252
315
53.9
28.6
25.2
200
240
231
272
270
259
Scrubber
Outlet
THC
(ppm)
183
167
17.3
160
149
135
13.1
127
120
138
128
172
18.7
13.8
146
16.9
168
166
166
19.1
25.2
21.9
166
16.1
14.8
12.6
115
10.6
11.2
10.9
10.5
114
120
126
100
131
172
17.8
172
182
177
168
CO
Scrubber
Inlet
CO
(ppm)
421
401
494
476
448
446
469
528
597
686
549
532
548
483
484
473
506
556
642
849
1043
832
572
635
506
491
501
518
567
582
565
583
586
551
516
744
1251
930
604
515
491
488
530
601
Scrubber
Outlet
CO
(ppm)
267
252
304
295
280
280
293
329
371
412
353
345
361
293
291
301
314
343
395
503
612
505
355
374
313
301
305
312
340
352
342
358
365
370
327
470
"
343
314
301
300
324
365
Moisture
Scrubber
Inlet
H20
(%)
0.3
0.3
0.3
03
0.3
0.3
03
0.3
0.3
0.3
0.3
03
03
03
03
03
03
0.3
03
0.3
0.3
03
0.3
03
0.3
0.3
0.3
0.3
03
03
03
03
03
03
03
03
03
Scrubber
Outlet
H,0
(*)
0.1
01
01
01
01
0.1
0.1
01
0.1
0.1
0.1
0.1
0.1
01
0 1
0.1
01
0.1
01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
01
0.1
0 1
0.1
0.1
01
0.1
0 1
0.1
01
0.1
0.1
0 1
0.1
0.1
0 1
0.1
3 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/21/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
TIME
23:55
o-oo
005
0:10
0.15
020
0-25
0.30
0.35
0.40
0.45
0.50
0:55
00
.05
.10
•IS
20
:25
•30
.35
•40
•45
1.50
1:55
2:00
205
2.10
2-15
2:20
2.25
230
2:35
2:40
2.45
2.50
2:55
3.00
305
3 10
3-15
320
3:25
330
335
340
345
3-50
355
400
4.05
410
4 IS
420
425
430
CO2
Scrubber
Inlet
CO,
(*)
11.0
9.8
7.7
6.3
6.7
74
8.2
9.1
98
10.2
109
114
10.3
67
59
65
6.3
68
6.6
73
8.1
7.6
72
7.1
7.2
6.9
60
6.2
6.8
80
94
10.5
11 1
11.5
123
13.2
140
12.9
8.2
6.2
5.1
5.6
54
5.2
64
6.9
77
8.2
77
73
78
90
93
77
75
Scrubber
Outlet
C0j(%)
(*)
5.8
6.6
5.9
48
4 1
4.3
47
5.1
55
6.0
6.1
65
69
6.3
4.3
3.9
4.2
4.1
4.4
4.2
46
51
4.8
4.5
4.5
4.6
44
4.0
4.0
4.3
50
5.8
63
68
72
8.0
84
89
82
53
40
34
38
37
35
42
45
5 1
5.4
5 1
4.8
5.1
5.9
61
5 1
49
O2
Scrubber
Inlet
0,
(»)
9.5
78
95
11.8
133
12.7
11.7
108
.97
90
8.8
8.0
7.4
89
13.0
13.6
13.0
134
12.5
12.8
12.1
11 1
118
12.3
12.3
122
12.6
13.5
131
12.2
10.7
9.0
79
70
6.5
60
54
45
60
11.6
13.7
14.8
14 1
14.4
145
129
122
11.2
108
113
118
11 1
96
95
11.3
11 4
Scrubber
Outlet
02
(»)
140
132
14.0
152
160
15.7
152
147
142
138
137
13.3
12.9
136
159
162
15.8
16.1
155
15.7
15.3
14.9
15.2
15.4
15.4
15.4
15.6
16.1
15.9
15.5
146
13.7
13.2
12.6
12.1
112
10.9
104
114
148
16.2
170
165
166
167
157
152
14.6
143
146
14.9
145
136
135
14.7
148
Temperature
Scrubber
Inlet
"F
795
836
839
803
759
766
780
789
801
816
821
845
896
914
846
810
810
794
809
801
805
828
822
811
806
805
783
751
745
747
752
763
764
774
799
845
883
928
959
901
837
786
789
775
760
783
784
796
806
807
797
806
832
847
818
808
Scrubber
Outlet
°F
162
161
161
158
156
158
162
164
166
167
166
165
165
164
160
158
158
158
160
161
161
162
161
160
160
160
159
158
160
161
162
164
163
161
160
157
154
148
151
157
155
153
153
152
153
156
155
156
157
157
157
157
159
159
158
158
THC
Scrubber
Inlet
THC
(ppm)
235
28.1
208
22.3
26.3
237
205
19.0
184
177
208
21.2
254
244
28.1
305
28.5
307
245
25.0
235
21.1
218
20.3
22.6
21.6
25.2
30.6
292
28.0
27.0
228
355
465
41.4
344
385
808
69.4
30.0
376
470
48.7
53.5
56.3
455
39.8
312
266
24.7
247
203
187
14.8
162
183
Scrubber
Outlet
THC
(ppm)
15.7
24.0
160
14.7
16.7
141
12.2
12.6
126
129
15.2
21.8
21.7
ISO
151
171
158
19.2
13.7
15.6
16.1
134
14.5
15.9
17.1
165
20.2
243
23.3
21.6
22.9
26.6
367
47.6
485
41.5
46.7
92.7
68.8
157
23.8
34.5
340
388
425
32.1
30.6
24.2
19.9
190
193
17.6
146
119
137
13.8
CO
Scrubber
Inlet
CO
(ppm)
720
991
650
572
620
539
491
511
556
630
848
1038
975
759
622
775
775
624
555
671
657
518
508
581
617
577
500
451
432
539
685
958
1524
2049
2218
2118
2558
3122
2371
587
716
910
846
812
871
939
1046
791
592
586
872
937
774
495
493
464
Scrubber
Outlet
CO
(ppm)
429
585
416
373
402
345
306
315
337
379
500
610
603
465
433
' 545
536
428
362
428
419
327
323
368
390
363
316
289
278
335
423
589
911
1238
1366
1391
1647
1826
1341
410
503
617
576
564
597
607
682
523
390
383
564
614
509
321
319
302
Moisture
Scrubber
Inlet
H2O
(«)
.
Scrubber
Outlet
H,0
(%)
4 of 26
-------
Arlington Virginia
Continuum Monitor Data
July 1995
DATE
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
TIME
435
4:40
4:45
4.50
4:55
500
5:05
5.10
5:15
5:20
525
5:30
5.35
5:40
5:45
550
5.55
6.00
605
610
6:15
620
6.25
6:30
635
6-40
6:45
6.50
6-55
7.00
705
7:10
7:15
7-20
725
7-30
735
740
7:45
7.50
7:55
800
8-05
8.10
8-15
8.20
825
830
835
840
845
8.50
8-55
900
905
CO2
Scrubber
Inlet
COj
(%)
8.2
8.9
96
2.0
27
31
2.5
38
49
47
44
5.0
54
56
6.1
56
4.8
69
7.4
7.4
8.0
81
8.4
9.1
8.7
10.2
9.9
10.1
8.8
84
8.9
94
100
11.1
12.1
123
109
98
85
80
90
9.5
100
10.8
10.6
89
8.0
82
9 1
99
10.7
114
121
13.0
104
86
Scrubber
Outlet
C0j(«)
(»)
5.2
5.6
60
6.2
5.9
61
64
6.8
70
6.8
6.7
68
6.9
70
72
6.4
5.5
5.5
59
6.6
71
76
8.0
83
82
7.8
74
7.3
70
6.7
66
6.7
6.8
7.4
7.8
7.7
6.8
62
5.3
5.1
58
61
65
69
67
57
5 1
5.2
5.8
63
68
7.3
7.6
8.1
6.8
5.7
O2
Scrubber
Inlet
Oj
(%)
10.5
9.7
9.0
181
173
169
176
161
148
15.0
153
14.7
14.3
14.0
134
14.0
14.8
123
11.8
11.8
11 3
11.1
10.8
9.9
10.5
8.9
9.2
9.0
10.5
110
10.4
9.9
8.6
79
6.7
65
8.3
95
110
11 5
102
9.7
91
8.2
85
103
114
11.1
9.9
90
8.1
7.1
6.3
54
8.7
108
Scrubber
Outlet
Oj
<%)
144
139
135
134
13.8
136
132
128
12.6
12.8
13.0
12.9
12.8
12.6
124
13.3
142
142
13.6
12.9
12.4
118
113
110
112
11.7
122
123
12.7
130
131
131
129
122
118
119
13.0
13.7
14.7
14.9
14.0
13.7
13.3
12.8
130
14.1
148
146
13.9
133
12.8
122
118
112
130
142
Temperature
Scrubber
Inlet
op
810
818
826
828
826
828
835
848
856
870
878
886
896
908
920
901
870
859
854
858
869
880
889
890
883
919
913
907
890
876
869
870
873
892
925
942
938
916
881
856
872
880
896
914
915
878
837
817
810
813
810
817
817
837
858
833
Scrubber
Outlet
°F
161
163
164
165
165
165
165
166
166
164
163
163
163
163
163
163
162
162
163
164
165
165
161
155
155
163
163
164
164
163
163
163
163
163
162
162
164
163
162
162
163
163
163
163
163
163
163
163
163
163
159
154
149
158
162
161
THC
Scrubber
Inlet
THC
(ppm)
171
14.5
10.5
113
75
147
17.2
15.6
11.2
11.9
12.9
12.6
13.3
15.3
14.8
15.8
17.4
4.1
90
165
187
260
36.7
596
80.0
10.7
107
62
190
20.5
191
18.5
18.3
218
108
31.2
199
196
218
234
206
19.9
112
183
25.0
190
203
236
237
199
392
547
79.7
Scrubber
Outlet
THC
(ppm)
12.8
12.3
12.1
124
127
13.3
141
153
16.1
12.1
113
11 8
122
13.7
147
142
14.8
163
17.5
194
217
32.6
51.4
924
999
30.7
18.1
194
172
159
181
16.6
18.7
232
32.4
370
159
15.0
16.5
17.5
17.1
17 1
178
21.6
227
15.5
18.7
21 1
24.7
31.0
595
906
1219
302.2
170
212
CO
Scrubber
Inlet
CO
(ppm)
438
437
448
482
490
536
663
828
984
713
574
598
637
713
809
706
640
623
656
776
1022
1549
2376
3800
3962
1687
933
965
848
711
707
761
884
1241
1519
1749
757
644
652
686
663
726
796
924
979
702
657
672
778
1042
1884
2744
3902
4867
1850
914
Scrubber
Outlet
CO
(ppm)
276
273
271
288
290
325
402
SOS
593
442
369
384
408
457
516
448
415
418
437
500
648
968
1450
1901
1899
1058
620
640
546
462
464
496
573
788
947
1073
488
421
428
451
427
466
513
587
626
450
426
437
504
673
1204
1720
1960
1955
1011
631
Scrubber
Inlet
H20
(%)
Scrubber
Outlet
H,0
(*)
5 of 26
-------
Arlington Virginia
Continuous Monitor DstB
July 1995
DATE
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/9S
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
TIME
9- IS
9-20
925
9-30
9:35
940
9-45
950
935
10:00
10-05
1010
10-15
10.20
10:25
1030
10:35
1040
10.45
10-50
10.55
11:00
11:05
11:10
11:15
11.20
11:25
1130
11.35
11:40
11 '45
1150
11:55
1200
12.05
12.10
1215
1220
1225
12:30
1235
12.40
1245
12-50
12:55
13.00
13:05
13.10
13:15
13-20
1325
1330
13:35
1340
13.45
1350
CO2
Scrubber
Inlet
CO,
(%)
10.8
105
10.5
10.2
9.7
9.3
9.4
9.7
9.9
10.2
10.3
9.4
8.3
8.9
8.8
91
9.7
10.5
11.2
11.0
11.2
11.6
11 1
10.5
9.7
9.3
9.3
9.0
9.5
104
9.0
8.9
86
86
101
98
8.7
8.5
8.7
8.7
82
83
100
101
109
11 1
102
9.6
93
Scrubber
Outlet
CO, (ft)
(«)
63
63
6.1
5.7
56
56
57
58
6.0
5.8
52
5.7
57
58
6.2
6.7
7.1
6.9
7.0
72
6.9
65
60
59
58
5.6
5.9
6.6
57
56
5.4
54
65
63
5.5
5.3
5.4
55
5.2
52
6.4
6.5
7.1
7 1
6.4
60
58
O2
Scrubber
Inlet
0,
(«)
8.4
86
8.5
8.9
95
10.0
99
96
93
88
8.8
9.7
11.0
10.1
10.1
9.7
9.1
8.1
7.4
78
75
7.1
7.9
8.5
9.3
9.9
9.8
99
9.3
8.6
10.5
10.4
10.7
10.6
8.8
9.2
10.5
108
10.5
10.5
11.0
108
86
85
75
77
9.1
96
9.9
Scrubber
Outlet
Oi
(*)
13.6
136
139
143
144
145
144
14.2
139
141
149
141
14.1
139
13.5
12.9
12.4
12.7
127
12.5
13.0
13.4
138
14.1
14.1
14.2
13.9
133
14.3
145
146
145
132
136
145
14.7
146
145
148
14.7
132
13.1
124
127
136
140
14 I
Temperature
Scrubber
Inlet
°F
819
862
846
836
848
868
874
870
753
795
869
865
853
844
833
835
834
842
838
815
820
810
804
801
804
814
806
797
799
816
818
801
780
770
766
768
791
788
781
776
775
811
808
783
773
771
770
756
749
782
794
811
796
795
792
789
Scrubber
Outlet
°F
159
169
168
167
154
175
168
162
165
166
165
163
164
167
169
171
172
169
165
164
164
165
166
166
165
163
161
156
154
162
165
165
164
163
164
164
158
163
164
163
164
166
166
166
166
166
166
166
165
166
166
160
148
162
164
164
THC
Scrubber
Inlet
THC
(ppm)
79
281
27.1
233
24.4
238
219
246
22.7
27.5
23.4
263
27.0
26.1
299
31.6
331
45.8
583
685
77.0
1045
53.5
352
319
33.6
419
387
499
686
331
385
39.5
401
355
355
406
42.3
429
405
43.4
509
461
422
466
1150
599
461
398
Scrubber
Outlet
THC
(ppm)
181
178
17.8
17.6
163
176
184
196
187
191
21 1
205
22.4
252
31.0
47.3
64.8
678
99.0
1088
49.8
29.5
26.5
328
41.1
408
529
73 I
333
313
335
32.9
298
28.4
32.5
33.7
34.1
346
36.4
409
545
50.6
83 1
1204
486
337
33 1
CO
Scrubber
Inlet
CO
(ppm)
1754
3192
1723
1105
1012
893
759
729
750
856
944
1133
1140
805
697
590
592
688
962
1578
2119
2722
3596
3838
2167
1297
963
1088
1494
1542
1966
2455
888
789
782
755
729
832
829
888
932
956
1068
1447
1667
1609
2184
3548
1691
1089
970
Scrubber
Outlet
CO
(ppm)
1115
601
563
488
461
459
504
547
638
671
506
446
380
387
450
634
1022
1364
1693
1912
1951
1300
788
597
680
910
942
1182
1468
582
509
507
489
485
544
528
562
586
604
677
908
1071
1050
1408
1967
1054
688
616
Moisture
Scrubber
Inlet
H,0
(ft)
0.4
04
0.4
04
04
04
04
0.4
04
0.4
04
04
04
04
04
04
04
0.4
04
04
04
04
04
04
04
0.4
04
0.4
0.4
04
0.4
04
0.4
04
04
04
04
0.4
04
04
0.4
04
04
04
04
0.4
04
04
04
04
04
04
04
04
Scrubber
Outlet
H2O
(ft)
01
0.1
0.1
0.1
01
01
0 1
0.1
0.1
O.I
0.1
0.1
01
01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
01
0.1
01
01
0.1
01
0.1
01
0 1
0.1
0.1
0.1
0.1
0.1
0 1
01
01
01
0.1
01
6 of 26
-------
Arlington Virginia
ConllnDoiu Monitor Dtia
July 1995
DATE
7/22/93
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
1122195
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
112205
7/22/95
1122m
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
1122m
7/22/95
7/22/95
7/22/95
TIME
13.55
14-00
1405
14:10
1415
1420
14:25
14-30
14-35
1440
14:45
14.50
14-55
15:00
1505
IS 10
15-15
15.20
15-25
1530
15:35
15.40
15-45
1550
15.55
16:00
16:05
16:10
16.15
16:20
16.25
16:30
16:35
16-40
16:45
1650
16-55
17:00
17.05
17-10
17:15
17-20
1725
17:30
17-35
1740
17:45
1750
1755
1800
1805
18-10
18:15
1820
1825
1830
C02
Scrubber
Inlet
CO,
(«)
89
88
100
9.9
9.6
94
94
98
104
11.2
100
88
83
83
8.9
87
8.1
7.8
7.9
8.4
89
9.6
96
7.4
6.5
7.5
82
9.0
98
10.2
9.3
10.3
11.2
10 5
101
101
10.2
102
100
98
9.7
103
11 1
US
124
118
9.6
77
65
6.3
62
7.5
84
92
90
83
Scrubber
Outlet
C0,(%)
(%)
56
5.5
6.3
6.3
6.2
62
62
6.4
69
74
67
59
56
56
58
57
53
5 1
52
54
5.7
62
6.1
4.8
42
4.5
4.9
S3
S.8
6.1
, 58
64
6.9
6.6
63
6.3
64
6.4
6.3
6.2
6.1
6.5
6.9
7.1
76
7.2
60
4.9
43
4.1
4 1
46
S 1
5.5
54
49
02
Scrubber
Inlet
Oj
(%)
102
102
8.7
87
9.0
92
9.3
9.0
83
77
9.2
10 S
108
108
10.2
10 S
112
11.6
11.4
107
10.2
9.3
9.4
12.0
12.8
11.6
10.7
98
8.9
85
9.4
82
75
85
87
88
8.6
86
8.9
91
93
85
7.6
72
6.1
6.9
9.3
11.5
129
132
13.3
117
106
97
9.9
108
Scrubber
Outlet
0,
(%)
14.3
14.4
13.3
132
133
134
135
13.3
128
123
132
140
143
143
140
14.2
14.7
149
148
144
141
13.6
137
152
IS 9
154
149
144
14.0
13.6
139
13.2
12.7
13.3
134
134
134
133
135
13.6
13.7
13.3
12.8
12.6
120
125
13.8
15.0
15.8
16.0
160
154
148
143
145
150
Temperature
Scrubber
Inlet
Op
781
769
791
793
785
776
778
789
817
8SO
862
850
8S1
854
847
840
829
818
819
829
845
868
885
850
799
793
790
786
784
797
796
811
832
835
836
839
842
843
838
840
840
852
877
903
939
957
948
916
879
853
823
828
841
851
845
822
Scrubber
Outlet
"F
164
164
164
164
164
163
162
163
163
162
163
161
161
162
162
163
163
162
162
162
164
169
168
167
168
173
174
175
176
176
173
173
174
174
174
174
173
174
174
174
174
173
173
173
167
169
172
168
167
166
165
171
172
172
173
172
THC
Scrubber
Inlet
THC
(ppm)
409
498
516
365
452
461
36.9
418
401
356
295
34.4
34.7
329
333
34.3
350
373
38.6
37.0
364
38.0
393
325
40.5
37.7
35.5
34.0
456
419
41.2
390
34.5
316
28.8
289
27.6
268
27.4
279
308
313
340
26.5
564
657
33.9
329
390
414
440
413
358
345
337
333
Scrubber
Outlet
THC
(ppm)
33.1
399
449
444
41.1
43.1
400
378
357
301
180
193
182
166
176
173
17.8
19.7
19.1
205
20.7
22.0
25.9
182
23.4
20.5
21.1
242
328
336
29.3
352
354
21.9
192
18.8
179
17.7
183
190
201
204
234
272
577
534
161
135
16.7
179
212
168
147
154
154
172
CO
Scrubber
Inlet
CO
(ppm)
960
1328
1319
1353
1203
1248
1170
1121
1168
1267
685
654
616
555
571
535
502
490
528
594
691
842
970
600
548
514
476
521
807
1054
881
1150
1304
783
668
641
624
622
589
561
636
845
1088
1308
2010
1667
821
620
665
649
636
681
712
754
647
558
Scrubber
Outlet
CO
(ppm)
600
814
854
878
795
818
777
735
768
847
456
436
412
367
371
343
323
317
343
382
443
533
601
392
348
306
284
311
485
644
553
721
820
501
425
410
394
395
373
355
401
535
672
787
1192
1010
532
429
459
434
421
416
426
443
381
329
Moisture
Scrubber
Inlet
H20
(%)
0.4
04
0.4
0.4
04
04
0.4
04
04
04
04
0.4
0.4
0.4
04
04
04
04
04
04
04
04
04
04
0.4
04
04
04
0.4
0.4
0.4
0.4
0.4
0.4
04
04
04
04
04
04
04
0.4
0.4
0.4
0.4
0.4
04
0.4
04
04
04
0.4
04
04
04
0.4
Scrubber
Outlet
H2O
(%)
01
01
01
0.1
01
01
0.1
01
01
0 1
01
0.1
0.1
01
0.1
01
01
0.1
0.1
01
01
0.1
01
0.1
0.1
0.1
01
0.1
01
01
01
01
0.1
01
01
01
0.1
01
0.1
01
0.1
01
0.1
01
01
01
0.1
0.1
0.1
01
01
01
01
01
01
01
7 of 26
-------
Arlington Vlrgfnla
ContlBDODS Monitor Data
Jaljl995
DATE
7/22/95
7/22/95
7/22/95
7/22/95
712205
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
1122/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
1122195
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
TIME
1835
18-40
1845
18.50
1855
1900
1905
1910
1915
19.20
19-25
19.30
1935
1940
19:45
1950
1955
20-00
20-05
20.10
20-15
20.20
2025
20-30
2035
2040
2045
20.50
2055
21.00
2105
2110
21-15
21-20
2125
2130
21-35
2140
21.4S
2150
2155
22.00
2205
22-10
2215
2220
2225
2230
22.35
2240
2245
2250
2255
2300
23.05
23 10
CO2
Scrubber
Inlet
CO,
(*)
7.9
8.2
90
10.0
9.8
96
10.0
10.9
120
119
11.5
11.1
10.7
101
9.8
10.3
10.4
105
10.7
10.9
10.6
10.2
9.3
86
87
9.6
9.3
9.1
91
9.2
8.7
82
8.2
8.8
9.9
106
11.1
11.7
11.9
114
113
11.2
119
100
Scrubber
Outlet
C0,(%)
(*)
4.8
49
54
58
60
60
6.3
6.8
74
74
7.2
70
6.7
64
62
64
6.5
6.6
6.7
6.8
6.6
64
59
5.5
56
6.1
5.9
58
5.8
5.8
56
S3
53
5.7
62
6.6
6.9
73
74
7.2
7.1
70
7 1
75
78
74
63
O2
Scrubber
Inlet
Oj
(%)
11.1
107
9.8
8.8
90
91
86
7.6
65
68
73
7.6
81
87
9.0
85
84
83
81
80
8.3
8.7
98
105
10.4
95
97
9.9
9.8
9.8
10.4
10.9
10.9
10.1
89
80
7.5
68
66
7.2
7.4
75
70
9 1
Scrubber
Outlet
Oj
(*)
152
149
14.4
13.9
137
136
133
127
122
123
126
127
130
134
136
13.3
133
13.2
13.1
130
131
134
139
14.4
14.3
137
139
140
140
140
14.2
146
14.5
141
135
131
12.8
124
122
125
126
127
126
122
118
123
136
Temperature
Scrubber
Inlet
°F
804
795
790
789
795
793
800
810
819
839
847
850
845
835
825
827
834
839
850
863
870
875
865
853
849
863
860
860
858
858
849
830
817
812
815
820
827
830
842
848
852
854
858
860
857
848
848
850
852
872
889
910
981
969
Scrubber
Outlet
°F
172
173
173
173
171
168
168
163
149
163
170
170
170
170
169
172
172
171
171
171
170
170
167
166
165
166
166
165
165
164
164
164
163
163
164
164
162
152
145
160
163
163
172
163
163
160
168
158
158
161
156
142
149
157
THC
Scrubber
Inlet
THC
(ppm)
35.2
258
425
485
301
516
492
58.2
1050
623
393
331
307
277
32.1
333
332
293
28.3
26.3
274
25.9
253
262
27.2
25.4
261
25.5
23.9
28.4
283
33.0
281
374
392
390
484
755
377
49.7
332
21 3
309
400
196
Scrubber
Outlet
THC
(ppm)
190
22.5
27.1
37.2
373
399
462
671
120.1
66.5
34.3
279
22.5
222
24.2
27.1
278
26.5
264
239
19.2
157
148
15.5
150
149
159
16.7
172
17.7
189
218
25.2
29.6
337
402
536
869
1073
506
36.4
743
646
463
742
933
670
425
CO
Scrubber
Inlet
CO
(ppm)
491
483
559
922
1056
1148
1478
1974
3090
2221
1271
1021
751
626
646
778
792
881
934
979
838
716
582
520
475
483
502
518
552
531
493 •
484
531
682
900
1313
1705
2589
2982
1852
1448
1254
1425
769
Scrubber
Outlet
CO
(ppm)
292
289
337
560
656
730
934
1247
1910
1395
808
660
489
405
418
502
509
563
595
620
533
454
375
337
308
308
317
329
351
340
315
311
342
439
576
820
1073
1617
1863
1198
929
804
764
781
660
1045
1347
983
497
Moisture
Scrubber
Inlet
H,0
(%)
0.4
04
04
04
04
04
04
04
04
0.4
04
04
04
0.4
04
0.4
04
04
0.4
0.4
0.4
04
0.4
0.4
04
04
04
0.4
0.4
0.4
04
04
0.4
04
0.4
04
04
04
04
04
0.4
0.4
04
0.4
04
0.4
04
0.4
0.4
0.4
0.4
04
0.4
0.4
04
0.4
Scrubber
Outlet
H,0
(%)
0.1
0.1
01
0.1
O.I
01
01
0.1
0.1
0.1
0 1
0.1
01
01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
01
0 1
0.1
0 1
01
0.1
0.1
0.1
0.1
01
01
0.1
0.1
0.1
01
0 I
01
01
0 1
8 of 26
-------
Arlington Virginia
Coatlnnoni Monitor Data
July 1995
DATE
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
TIME
23:15
23:20
23-25
23:30
23-35
2340
23.45
23.50
23:55
0-00
0-05
0:10
0-15
0.20
0:25
0:30
0:35
0.40
0:45
050
0.55
:00
:05
:10
:15
•20
:2S
:30
:3S
.40
1:45
1-50
1:55
2:00
2:05
2-10
2.15
2.20
2:25
230
2:35
240
2-45
2:50
2.55
3.00
305
3.10
3.15
320
325
330
335
3.40
345
350
C02
Scrubber
Inlet
COj
(%)
8.1
7.1
68
69
77
72
66
6.8
75
84
9.7
11.1
11.9
125
13.0
132
126
112
103
10.2
96
9.6
103
11.4
10.9
10.8
115
11.6
113
9.9
8.9
87
93
10.1
9.8
86
82
8.9
98
107
11.5
12.1
123
124
122
119
115
112
108
10.4
10.3
103
10.4
103
110
110
Scrubber
Outlet
C0,(%)
<*)
52
46
44
45
50
46
43
45
49
54
60
66
69
72
75
76
74
67
61
61
58
58
62
68
6.5
64
6.8
6.9
6.7
59
5.4
52
5.5
59
58
52
SO
5.3
5.8
6.2
66
69
69
7.1
7.3
71
70
68
65
63
63
64
66
66
7 1
7.1
O2
Scrubber
Inlet
0,
(%)
112
125
127
126
117
123
129
126
118
107
9.2
7.6
6.8
6.1
5.6
5.6
62
7.5
87
89
96
94
87
74
81
80
72
71
7.5
91
10.1
10.4
97
88
92
104
10.8
100
8.9
8.0
6.9
64
61
6.0
63
68
71
7.3
78
8.1
82
82
81
85
78
82
Scrubber
Outlet
Oj
(%)
147
154
156
155
150
153
157
155
150
144
137
131
127
123
120
11.9
123
13.0
13.6
137
14.1
140
136
12.9
133
13.3
12.8
12.8
130
13.9
144
146
14.3
13.8
140
14.7
148
144
139
13.4
129
126
125
123
122
124
126
12.7
129
13.2
132
130
128
130
12.5
127
Temperature
Scrubber
Inlet
"F
940
908
892
882
880
855
828
811
807
809
811
817
818
828
845
879
898
892
869
855
837
828
834
857
874
888
909
924
934
925
909
900
902
913
907
881
856
847
845
843
836
832
824
827
848
844
841
834
826
816
809
811
822
818
838
854
Scrubber
Outlet
°F
158
157
157
158
158
158
158
159
160
160
160
152
143
141
140
141
150
164
165
164
163
162
161
157
162
163
163
163
164
166
165
166
165
166
164
165
165
166
167
168
158
150
149
148
146
146
146
146
149
151
149
153
156
150
150
156
THC
Scrubber
Inlet
THC
(ppm)
210
22.7
256
257
267
27.9
29.9
328
32.1
316
37.7
763
1181
125.2
1264
1216
780
286
22.7
25 1
263
33.8
400
43.6
275
225
23.1
20.3
224
16.0
14.8
15.8
17.5
22.1
22 1
19.4
194
208
234
32.3
812
1128
125.2
1284
121.5
1174
982
92.1
61.9
303
15
16
-16
227
116
184
Scrubber
Outlet
THC
(PP«n)
296
27.2
248
23.4
263
299
30.3
303
30.0
325
488
98.2
1358
1385
1385
1352
949
322
249
28.0
31.6
376
445
532
309
237
256
245
229
149
146
142
170
212
227
174
18.8
197
228
36.6
981
133.7
138.1
138.1
135.8
131.3
132.1
1327
1198
1136
1203
95.7
74.5
873
78.5
436
CO
Scrubber
Inlet
CO
(ppm)
616
649
680
695
650
609
571
520
506
533
989
2288
3828
4955
4986
4507
2964
1156
700
706
632
784
1087
1677
1238
1137
1427
1455
1228
818
689
667
795
1045
1055
688
572
553
639
1071
2500
3778
4801
4800
3649
3663
3598
3467
2948
2752
3031
2433
2105
2738
3013
1835
Scrubber
Outlet
CO
(ppm)
414
436
454
465
427
394
370
337
328
340
610
1380
1924
1959
1959
1959
1667
690
427
444
393
482
668
1018
722
656
812
834
707
482
412
397
463
594
604
406
340
326
377
618
1414
1937
1958
1958
1957
1955
1943
1942
1748
1639
1802
1518
1350
1675
1801
1131
Moisture
Scrubber
Inlet
H2O
(%)
0.4
0.4
04
0.4
04
04
04
04
0.4
0.4
04
0.4
04
04
04
04
0.4
04
0.4
0.4
0.4
04
04
0.4
0.4
04
0.4
0.4
04
0.4
0.4
0.4
04
04
04
04
04
04
04
04
0.4
04
04
04
0.4
0.4
04
04
04
04
04
04
04
04
04
04
Scrubber
Outlet
H,0
(%)
0 1
0.1
01
0.1
0.1
0.1
01
01
0 1
0.1*
0 1
0.1
0 1
0 1
0.1
01
0.1
0.1
01
0.1
0.1
0.1
0.1
0.1
01
01
01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
01
0.1
01
01
01
0.1
01
01
01
0.1
0 1
01
0.1
01
0 1
01
0 1
0.1
0 1
0 1
0.1
9 of 26
-------
Arlington Virginia
Conltnuotu Monitor Data
July 1995
DATE
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7*/23/9S
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
TIME
3.55
400
405
4 10
4 15
420
4:25
4:30
435
440
4:45
4-50
4.55
5-00
5.05
5:10
5:15
5.20
5:25
5:30
5-35
5.40
5:45
5:50
5-55
6.00
6:05
6:10
6:15
6-20
6.25
6:30
6-35
6:40
6-45
6:50
6-55
7-00
70S
7-10
715
720
7.25
7.30
7-35
7-40
745
7:50
7.55
800
805
810
8 15
820
825
830
CO2
Scrubber
Inlet
CO,
(«)
9.9
89
87
101
87
7.0
S.8
55
75
91
9.7
9.8
8.6
83
102
106
110
11.4
11.9
12.4
12.S
12.1
10.8
99
87
8.1
9.1
101
116
125
136
13.8
15.2
94
4.9
2.2
2.0
1.9
19
18
58
76
8.0
7.8
69
6.6
75
8.6
10.0
10.7
104
106
10.7
10.7
109
108
Scrubber
Outlet
C02(%)
(%)
6.4
5.8
5.7
65
5.6
45
39
37
47
5.5
5.8
59
5.2
48
58
61
64
6.8
71
74
75
73
65
5.9
5.4
49
54
6.1
72
78
8.8
82
96
61
46
41
3.4
32
35
35
40
4.5
48
47
42
40
45
52
59
63
63
63
69
70
7 1
7 1
O2
Scrubber
Inlet
0,
(*)
95
104
105
9.1
107
128
14.0
14.4
11.9
10.1
9.3
9.2
10.6
109
84
8.0
75
69
6.5
5.9
58
6.2
75
8.4
9.7
104
90
7.5
58
5.1
49
50
36
101
151
18.0
18.2
184
183
18.3
13.5
115
11.1
114
12.4
12.7
US
101
8.6
76
80
78
78
80
79
80
Scrubber
Outlet
Oj
(*)
135
141
142
133
14.3
156
164
16.7
15.3
143
139
139
146
151
138
135
13 1
12.6
122
119
117
119 .
128
13.5
140
146
138
12.8
116
110
102
113
9.7
139
154
160
169
17.1
168
167
159
153
151
152
158
159
153
145
137
131
132
131
125
125
125
126
Temperature
Scrubber
Inlet
"F
856
857
858
888
886
851
814
794
806
848
870
882
860
828
843
847
842
840
835
827
824
813
789
780
768
752
778
797
823
829
931
933
1058
1025
949
933
894
878
876
869
874
885
887
878
846
820
814
817
820
819
819
821
845
854
863
869
Scrubber
Outlet
Op
159
159
158
159
158
157
155
154
158
162
163
164
163
166
170
171
170
166
158
153
152
152
153
159
163
165
164
160
151
147
148
147
146
160
161
161
161
162
163
164
166
166
165
165
165
166
167
168
168
165
162
159
160
161
163
165
THC
Scrubber
Inlet
THC
(ppm)
203
221
206
253
88
197
287
31.3
306
207
175
149
138
197
21 1
113
243
432
776
1135
872
82.7
1135
55.7
303
578
475
567
1052
1176
107.7
1055
102.1
319
306
17.9
234
215
19.7
192
270
282
225
216
228
238
242
229
288
469
543
747
286
302
281
212
Scrubber
Outlet
THC
(ppm)
238
22.1
228
21 1
200
249
276
29.4
244
181
175
171
189
207
201
222
32.8
573
101.7
137.3
1386
1387
1354
1049
64.2
37.2
56.7
82.1
123.3
1384
109.9
1218
110.2
151
151
14.9
18.4
158
139
179
148
14.7
162
151
17.1
191
195
21.3
31.7
478
626
925
640
428
312
233
CO
Scrubber
Inlet
CO
(ppm)
878
780
771
1006
675
681
732
769
744
798
864
822
696
641
790
828
1069
1704
2698
4408
4969
4969
4489
3059
1957
1612
1849
2635
4303
4984
4247
4347
3906
463
494
458
472
552
656
889
859
786
741
710
637
541
491
542
971
2010
2171
2530
2292
1573
1197
900
Scrubber
Outlet
CO
(ppm)
575
521
507
633
447
454
496
519
472
485
522
493
419
372
444
479
622
1026
1619
1959
1960
1960
1960
1757
1221
975
1083
1545
1928
1959
1854
1829
1756
301
303
282
288
330
399
564
519
473
469
429
382
323
291
319
569
1156
1286
1396
1355
1012
776
590
Moisture
Scrubber
Inlet
H,0
(%)
0.4
0.4
04
04
04
04
04
0.4
0.4
04
04
0.4
04
04
0.4
0.4
04
04
0.4
0.4
0.4
0.4
04
0.4
04
0.4
0.4
04
04
0.4
04
0.4
04
0.4
0.4
04
04
04
0.4
0.4
04
04
0.4
04
0.4
04
04
0.4
04
04
04
04
0.4
04
04
0.4
Scrubber
Outlet
H20
(%)
0 1
0.1
0.1
01
0.1
0.1
0.1
01
0.1
0 I
01
0.1
01
01
01
0.1
0.1
0.1
0.1
01
01
O.I
01
01
01
0.1
0.1
0.1
0.1
0.1
01
0.1
01
0.1
0 1
0.1
0.1
0.1
0 1
0 1
0.1
01
01
01
0.1
01
01
0.1
0.1
0 1
01
01
01
01
0 1
01
10 of 26
-------
Arlington Virginia
Contlnuou Monitor Data
July 1995
DATE
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
TIME
8.35
8.40
8.45
8-50
8.55
900
905
9:10
9-15
9-20
9.25
9.30
9:35
9-40
945
9:50
955
1000
10-05
1010
10.15
1020
10-25
10.30
10:35
10:40
10.45
10:50
10:55
11.00
11:05
11:10
11 15
11 20
11-25
11:30
11 35
11.40
11.45
11-50
11-55
12.00
12-05
12.10
12-15
1220
12:25
1230
12:35
1240
1245
12.50
1255
13.00
1305
13 10
CO2
Scrubber
Inlet
CO,
(%>
10.7
10.3
96
97
9.7
9.8
9.8
95
97
10.5
10.0
100
10.5
109
109
11.0
104
113
110
10 5
10.0
9.4
96
98
10.1
100
10.0
94
9.3
9.7
9.5
94
93
93
101
108
104
101
102
95
Scrubber
Outlet
CQ,<»)
(%)
7.0
67
63
65
67
5.9
59
60
5.9
58
5.9
64
6.4
64
66
6.8
7.0
7.1
68
7.5
7.2
6.9
6.6
62
6.1
62
6.3
6.3
63
6.2
6.0
60
58
58
5.9
5.8
57
5.7
5.7
56
57
60
64
62
62
63
62
O2
Scrubber
Inlet
Oj
(%)
8.1
87
95
9.2
9.2
90
9.1
9.4
9.0
8.0
87
8.6
81
7.5
7.7
77
8.5
7.4
7.8
8.4
9.0
96
95
9.1
89
90
9.0
95
97
9.2
94
96
95
95
8.5
77
83
86
86
93
Scrubber
Outlet
Oj
<%)
12.6
130
135
132
131
.
13.8
13.8
138
13.8
14.0
13.8
13.2
13.2
13.2
130
127
125
12.5
129
122
12.4
128
131
13.6
137
13.6
134
13.5
135
136
138
138
140
140
13.9
140
14.1
141
14.0
140
139
136
132
135
135
13.4
134
Temperature
Scrubber
Inlet
Op
875
877
873
873
873
874
864
866
856
859
864
870
876
876
874
876
874
871
858
852
853
850
837
840
847
855
863
863
885
893
896
895
884
873
870
876
881
888
894
894
895
895
889
891
891
889
890
886
880
-ISO
675
873
866
870
873
868
Scrubber
Outlet
°F
165
166
165
167
170
171
168
171
169
171
171
171
169
170
171
172
172
171
171
171
171
168
166
168
167
171
169
174
175
175
174
173
174
175
177
177
176
177
177
177
176
177
176
179
178
178
179
179
179
180
ISO
181
181
179
179
176
THC
Scrubber
Inlet
THC
(ppm)
198
15.2
152
116
21 1
290
289
323
257
216
225
225
Scrubber
Outlet
THC
(ppm)
195
15.6
146
15.4
220
16 1
159
16.0
16.6
17.9
27.7
41.2
47.7
592
522
58.3
301
28.4
20.0
166
15.6
16.4
186
19.3
20.1
186
180
164
154
15.2
15.0
163
156
155
IS 1
14.9
156
170
242
22.6
197
19.5
195
CO
Scrubber
Inlet
CO
(ppm)
712
589
509
594
612
628
618
611
710
1055
994
1242
1656
2034
2052
2261
1187
1213
817
623
523
478
534
612
729
732
752
585
541
615
614
603
566
519
657
911
869
741
764
780
Scrubber
Outlet
CO
(ppm)
471
384
331
323
459
355
365
374
368
365
425
638
628
787
1024
1231
1283
1386
750
792
531
405
339
307
332
378
457
455
469
433
390
366
330
328
364
366
357
333
305
308
331
370
527
515
450
469
494
Moisture
Scrubber
Inlet
H20
(%)
04
0.4
0.4
04
0.4
04
02
0.2
02
02
02
0.2
02
0.2
02
02
02
02
0.2
0.2
02
02
0.2
0.2
02
0.2
02
02
02
02
0.2
0.2
02
0.2
0.2
0.2
02
02
0.2
02
02
0.2
0.2
0.2
02
02
02
0.2
02
0.2
02
02
02
02
Scrubber
Outlet
H,0
(%)
0
0
0
0
0.
0
0
0.
0
0.1
11 of 26
-------
Arlington Virginia
Contlmnmi Monitor Dili
July 1995
DATE
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
TIME
13-15
13-20
1325
13.30
1335
13:40
13.45
13-50
13:55
14-00
1405
14:10
14-15
14:20
1425
14:30
14.35
14:40
14-45
14.50
14:55
15:00
15:05
15-10
15-15
15.20
15:25
15:30
15-35
15:40
15:45
15.50
15:55
16:00
16-05
16-10
16:15
16-20
1625
16:30
16-35
1640
1645
1650
16:55
17:00
1705
17:10
17 IS
17-20
1725
1730
1735
1740
1745
1750
C02
Scrubber
Inlet
CO,
(%)
10.3
11.1
103
102
102
96
94
9.7
9.5
97
9.7
10.9
93
9.6
97
100
102
10.7
96
9.6
95
9.5
9.3
9.4
10.0
10.8
11.2
10.8
10.5
112
112
116
11.4
11.1
10.9
10.6
10.9
10.3
99
9.8
9.6
9.0
86
8.S
8.2
8.7
8.9
7.9
7.9
80
82
84
88
8 1
9.3
100
Scrubber
Outlet
C0j(«)
(%)
66
7.0
66
6.2
6.3
60
5.9
61
58
5.9
57
6.3
55
57
57
5.8
60
6.1
5.7
57
56
57
5.5
5.6
5.9
6.3
65
6.3
61
6.6
66
69
6.8
66
65
6.3
64
60
5.9
58
57
5.4
53
52
5.1
53
53
46
45
46
48
49
5.1
4.9
56
5 8
O2
Scrubber
Inlet
Oj
(%)
83
7.5
85
8.7
85
9.2
9.4
9.1
95
9.3
9.2
77
96
91
91
88
84
7.9
9.2
9.2
9.3
93
9.5
9.3
8.6
7.7
7.3
77
8.1
7.1
7.1
6.8
72
76
77
81
78
86
8.9
91
9.3
10.0
10.5
10.5
10.9
10.2
102
11 1
11.0
11.0
107
10.4
10.1
110
94
87
crabber
Outlet
Oj
<%)
130
126
132
135
13.3
137
13.8
136
14.0
139
140
135
143
141
140
139
137
13.6
14.0
140
141
14.1
142
14.1
138
13.3
131
133
135
130
12.9
12.8
12.9
132
132
134
13.2
13.8
13.9
139
141
145
146
147
148
145
14.6
153
153
153
151
150
14.7
149
141
138
Temperature
crabber
Inlet
°F
874
888
883
868
870
856
849
856
848
843
848
859
856
856
862
863
868
871
867
864
862
859
852
849
854
862
869
867
859
874
879
877
878
883
885
887
890
885
882
888
884
880
874
879
874
893
906
885
872
864
859
854
855
848
875
889
crabber
Outlet
°F
176
177
176
177
178
177
176
176
178
179
179
181
180
179
179
179
180
182
179
179
179
179
179
180
180
180
181
181
179
182
181
177
179
181
182
182
181
181
180
180
180
180
179
178
178
178
179
180
181
182
182
183
184
180
181
182
THC
crabber
Inlet
THC
(ppm)
23.3
23.5
172
9.7
164
188
18.7
191
21 1
249
21.9
28.4
15.6
163
119
15.6
130
18.8
133
13.1
13.8
12.9
143
17.0
177
25.4
24.5
19.1
429
24.6
30.9
468
40.4
280
28.4
19.5
247
17.7
19.9
16.1
162
16.9
18.3
13.9
16.1
15.4
14.3
124
12.6
122
11.8
132
126
176
18.2
128
Scrubber
Outlet
THC
(ppm)
215
164
20.2
182
185
19.5
195
22.1
24.4
21.2
30.7
17.2
162
15.1
158
14.9
193
13.8
13.7
13.6
13.9
13.8
16.0
194
26.1
298
22.9
402
29.7
34.1
53.4
45.1
300
28.6
220
26.2
21.3
189
17.1
178
17.3
162
141
150
148
14.5
125
122
117
119
12.9
13.4
158
172
149
CO
Scrubber
Inlet
CO
(ppm)
935
956
654
642
609
505
494
489
531
633
584
1151
524
547
540
566
587
869
516
515
508
519
509
570
731
1064
1250
993
1046
1318
1415
2173
1801
1249
1184
895
1092
825
703
573
570
527
499
489
539
604
612
618
656
576
522
504
518
495
562
568
crabber
Outlet
CO
(ppm)
594
409
389
383
307
296
298
317
380
338
630
298
311
306
321
331
474
295
296
293
299
292
332
420
613
708
570
585
767
824
1243
1028
720
676
516
621
482
403
326
326
300
287
282
323
355
356
348
357
315
286
277
283
285
326
330
Moisture
crabber
Inlet
H,0
(%)
02
02
0.2
02
02
0.2
02
02
02
0.2
02
0.2
0.2
02
0.2
0.2
0.2
02
0.2
02
02
0.2
02
0.2
0.2
02
02
02
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
02
02
0.2
02
02
0.2
02
0.2
0.2
02
0.2
0.2
02
02
02
02
02
02
Scrubber
Outlet
H20
(%)
12 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
18-00
1805
18-10
18.15
1820
18:25
18:30
18.35
18.40
18.45
18-50
1855
19.00
1905
19-10
1915
1920
19-25
19-30
19.35
19.40
1945
1950
1955
2000
2005
2010
2015
20.20
20:25
20.30
20.35
20-40
2045
2050
2055
2100
21-05
21-10
21 15
21.20
2125
2130
21-35
2140
2145
2150
2155
2200
2205
22 10
22.15
22.20
2225
2230
CO2
Scrubber
Inlet
CO,
(%)
95
9.3
8.9
8.9
95
10.3
109
10.7
9.9
9.7
10.3
109
11.8
105
102
98
9.9
9.6
9.5
9.5
9.4
9.5
10.2
11.2
91
71
63
10.0
103
106
109
112
116
116
115
110
94
89
92
100
105
103
104
Scrubber
Outlet
CO, (ft)
(ft)
56
55
53
53
56
61
6.3
62
58
5.7
6.1
6.4
67
62
61
58
59
5.8
5.7
5.7
57
5.7
60
6.6
5.4
4.4
40
56
5.6
5.7
60
62
63
65
67
6.7
67
64
5.5
5.3
54
58
6 1
5.9
6.0
O2
Scrubber
Inlet
0,
(ft)
93
96
99
99
9.2
8.3
7.7
80
90
9.2
8.4
77
6.8
8.2
8.6
91
90
9.3
94
95
9.5
9.4
86
7.5
10.0
123
88
84
8.1
7.8
74
6.9
69
69
78
94
99
9.6
88
84
86
84
Scrubber
Outlet
0,
(«)
142
143
145
144
14 1
136
133
135
140
14.1
13.6
133
129
135
137
140
13.8
14.0
14.1
14.1
14.1
14 1
13.7
13.1
14.5
15.6
141
142
140
138
13.6
135
133
130
130
13.1
134
14.4
146
14.4
140
137
139
138
Temperature
Scrubber
Inlet
°F
878
868
862
858
863
874
885
884
869
864
876
885
886
885
881
876
879
877
876
875
880
885
904
938
941
892
863
862
863
847
845
851
858
865
874
881
875
873
872
867
870
870
872
877
886
894
897
891
867
852
845
844
849
849
855
Scrubber
Outlet
"F
182
181
181
181
181
182
183
182
181
182
182
183
181
183
182
181
181
181
181
180
181
181
181
178
179
177
177
182
183
177
176
180
182
181
180
180
180
181
181
182
181
180
179
179
180
180
178
178
179
179
180
180
179
THC
Scrubber
Inlet
THC
(ppm)
153
16.1
152
163
167
158
172
160
130
17.1
150
161
414
172
143
141
106
115
11.7
11 1
11.7
11.3
11.7
35.3
15.2
136
113
166
20.9
237
292
29.1
25.7
140
4.8
4.5
13.8
16.1
175
184
15.4
166
16.1
156
141
166
15 1
52
82
108
84
12
10 1
Scrubber
Outlet
THC
(ppm)
174
168
167
176
186
201
207
198
183
173
173
204
46.9
210
18.3
160
140
135
12.8
134
131
126
13.9
44.5
215
19.2
18.2
19.4
24.4
303
317
34.8
38.2
349
20.3
159
163
188
20.9
25.5
24.8
246
CO
Scrubber
Inlet
CO
638
583
541
579
660
788
892
857
679
658
776
991
1894
974
794
608
539
517
502
506
512
590
708
1706
604
542
595
686
940
1283
1333
1633
1699
1516
974
477
369
438
613
828
797
858
Scrubber
Outlet
CO
(ppm)
369
330
305
327
380
452
511
496
392
378
447
559
1056
572
466
354
311
299
289
289
292
338
403
950
367
344
357
357
346
408
555
755
786
950
985
886
589
286
220
264
368
498
479
519
Moisture
Scrubber
Inlet
H,0
(ft)
0.2
02
02
02
02
02
02
02
02
0.2
0.2
02
02
02
02
02
0.2
0.2
0.2
0.2
0.2
0.2
02
02
0.2
0.2
0.2
0.2
0.2
02
0.2
02
02
02
02
0.2
0.2
0.2
02
0.2
0.2
02
0.2
0.2
0.2
02
0.2
0.2
0.2
02
0.2
02
02
02
02
02
Scrubber
Outlet
H2O
(%)
13 of 28
-------
Arlington Virginia
Continuous Monitor Data
Juljrl995
DATE
7/23/95
7/23/95
7/23195
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
TIME
2235
22-40
22:45
22:50
22-55
23-00
23.05
23:10
23:15
23-20
23-25
23-30
23.35
23:40
23.45
23-50
23:55
0-00
0-05
0-10
0-15
0.20
0:25
0:30
0:35
0:40
0:45
0:50
0:55
.00
05
•10
•IS
•20
25
.30
•35
:40
:45
•50
:55
200
205
2-10
2-15
2:20
2-25
2-30
2.35
2.40
2-45
2-50
2-55
3.00
3.05
3 10
CO2
Scrubber
Inlet
CO,
<*)
10.6
10.9
10.8
11.1
11.3
112
107
10.2
10.0
99
100
104
104
92
87
87
9.3
102
109
11.6
12.3
12.7
12.7
125
12.1
12.0
11.7
11.3
11.0
108
108
11.5
11.7
119
12.9
138
99
6.9
50
6.7
75
85
98
10.7
11.3
114
11.1
103
100
98
9.9
107
11.7
123
Scrubber
Outlet
OMB)
<*)
62
6.3
6.2
65
65
64
62
59
5.7
5.7
5.7
6.0
6.0
54
5 1
5 I
5.4
5.9
6.2
6.7
7 1
72
7.2
70
6.9
68
6.7
6.4
6.3
6.1
6.1
66
6.7
6.7
7.2
7.9
5.7
4.0
2.9
40
45
5 1
57
63
66
67
65
60
59
58
58
62
68
7.0
79
88
O2
Scrubber
Inlet
0,
(*)
8.1
79
7.9
74
7.3
75
8.2
88
9.0
9.1
8.9
8.4
8.4
9.7
10.0
100
9.3
8.5
78
68
6.1
5.8
5.7
6.0
6.4
6.5
6.9
7.3
7.8
8.0
8.1
7.1
6.9
6.7
5.5
45
9.3
12.7
14.7
126
11.4
102
8.9
79
7 1
7.0
7.4
85
89
91
90
80
67
62
Scrubber
Outlet
0,
(%)
136
13.5
135
13.3
132
134
13.7
140
14.1
142
142
138
139
145
147
147
144
139
135
131
12.6
125
12.5
12.7
129
130
13.1
13.4
13.6
13.7
13.8
133
132
131
125
115
14.3
16.3
175
16.1
154
14.7
141
135
131
130
133
138
139
14.1
140
135
129
127
115
106
Temperature
Scrubber
Inlet
°F
866
877
882
894
900
906
901
897
892
894
896
907
910
890
875
864
862
863
868
873
880
884
895
892
897
892
892
880
874
865
859
870
886
904
930
1000
978
891
823
837
857
874
886
907
921
932
921
904
893
886
880
897
919
929
970
1045
Scrubber
Outlet
°F
180
180
180
180
180
180
179
179
179
179
179
179
180
179
179
179
180
180
181
179
169
164
166
168
176
177
181
181
181
181
181
178
178
178
167
169
181
177
177
177
178
179
180
181
181
181
181
180
179
179
180
181
182
174
162
163
THC
Scrubber
Inlet
THC
(ppm)
135
8.6
94
84
105
107
173
392
737
901
763
816
378
575
297
176
212
20.7
265
420
341
45.4
77.6
846
6.0
111
23.4
17.5
13.0
11.9
112
73
43
64
115
138
130
142
14.1
169
17.2
85
Scrubber
Outlet
THC
(ppm)
234
218
200
201
24 1
217
182
133
140
132
144
156
18.5
149
13 1
140
15.2
19.0
249
500
937
117.5
1103
106.0
67.9
69.2
43.9
380
291
306
312
61.0
57.5
55.6
1061
1058
12.7
165
226
173
139
13.6
144
153
173
16.5
20.1
183
192
18.1
186
260
355
751
1343
1376
CO
Scrubber
Inlet
CO
(ppm)
927
1016
936
998
1288
1168
955
671
690
672
779
861
940
672
529
506
537
679
991
1802
2980
3770
3533
3325
2356
2329
1616
1328
990
1003
1037
1851
2188
2320
3855
3762
631
843
770
495
407
454
587
709
906
923
1128
852
747
634
653
930
1675
2948
Scrubber
Outlet
CO
(ppm)
552
592
543
581
746
689
561
398
404
395
451
500
536
389
308
295
311
398
575
1026
1670
1918
1894
1836
1393
1337
951
778
597
591
604
1086
1275
1291
1912
1780
409
511
457
291
243
272
348
429
539
552
653
508
455
381
390
551
978
1632
1982
1983
Moisture
Scrubber
Inlet
H,0
(*)
0.2
0.2
0.2
02
0.2
0.2
0.2
02
02
02
02
0.2
02
02
02
02
0.2
02
0.2
02
02
02
02
0.2
0.2
0.2
0.2
0.2
0.2
0.2
02
0.2
0.2
0.2
02
02
02
02
0.2
02
02
02
02
02
02
02
02
0.2
02
0.2
02
02
02
02
02
02
Scrubber
Outlet
H20
(%)
0.
0
0
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0
0.
0
0.
0.
0.
0
0.
0.
0
0.
0.
0.
0
0
0.
0
0
0
0.
0
0
0
14 of 26
-------
Arlington Virginia
Continooni Monitor Data
July 1995
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
3:15
3.20
. 3.25
3.30
3:35
3:40
345
350
3.55
400
4.05
4.10
4.15
420
4.25
430
4.35
440
4.45
450
4.55
5:00
5:05
5:10
5:15
5:20
5:25
5-30
5:35
5.40
5.45
5:50
5:55
6.00
6-05
6:10
6-15
6:20
6:25
6-30
6:35
6-40
6:45
6-50
655
7.00
7.05
7-10
7:15
7:20
7:25
7:30
735
7-40
7-45
750
CQ2
Scrubber
Inlet
CO,
<%)
Scrubber
Outlet
C02(%)
(%)
63
42
33
34
40
47
44
50
55
6.3
65
68
76
73
57
38
3.2
32
34
40
48
53
58
62
66
67
69
7.2
7.3
72
71
71
73
71
73
74
73
69
61
55
52
51
53
57
62
69
73
59
45
44
4.4
44
47
50
53
5 1
O2
Scrubber
Inlet
02
(»)
Scrubber
Outlet
0,
<%)
138
16.1
17.1
16.6
159
15.1
155
14.9
14.3
13.4
13.3
13.1
120
125
142
164
16.9
17.1
16.8
16.1
15.1
14.5
13.8
135
13.2
12.9
12.7
12.4
122
12.4
124
125
12.4
12.7
125
124
12.4
129
13.8
144
14.7
14.8
146
14.1
13.6
12.8
125
142
158
158
15.7
156
154
15 1
147
148
Temperature
Scrubber
Inlet
°F
1068
944
881
857
846
851
830
821
841
872
914
946
998
1025
1016
949
902
871
852
848
863
871
881
894
884
877
877
878
867
875
907
919
930
929
946
966
980
981
958
930
919
911
909
920
940
977
1015
992
947
921
910
906
908
913
926
935
Scrubber
Outlet
°F
180
173
170
182
185
184
179
181
181
178
181
181
175
179
178
176
177
177
178
179
ISO
181
182
182
184
177
174
170
166
170
180
181
180
180
179
177
179
181
179
178
177
177
178
179
180
181
175
181
178
178
178
178
179
179
180
178
THC
Scrubber
Inlet
THC
(ppm)
Scrubber
Outlet
THC
(ppm)
27.6
170
229
19.2
16.3
160
183
221
26.3
53.8
25.3
174
52.0
31 1
8.1
9.5
14.8
187
185
16.7
14.5
151
158
17.4
54.5
90.7
1029
1160
1380
1174
38.4
356
37.0
313
398
585
456
226
12.1
98
92
101
108
11 2
116
169
704
135
122
146
142
138
150
150
153
138
CO
Scrubber
Inlet
CO
Scrubber
Outlet
CO
(ppm)
682
255
411
415
312
258
250
328
530
1200
908
805
1289
1151
209
283
493
480
419
346
295
326
381
455
1156
1495
1746
1857
1983
1802
1044
977
1148
928
1076
1338
1180
725
383
263
217
218
248
303
381
549
1288
437
422
474
403
412
431
448
446
452
Scrubber
Inlet
H,0
<*)
02
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
02
02
02
0.2
02
0.2
02
02
02
0.2
0.2
02
0.2
0.2
0.2
0.2
0.2
0.2
0.2
02
0.2
0.2
0.2
0.2
02
02
0.2
0.2
02
0.2
0.2
0.2
02
02
02
02
02
02
02
02
02
02
02
02
02
02
Scrubber
Outlet
H2O
(%)
0.
0.
0.
0
0
0.
0
0
0.
0
0
0.
0.
0.
0
0.
0.
0
0
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0
0
0.
0.
0.
0
0.
0
0
0.
0
0.
0.
0
0
0.
0
0
0.
0.
0
0
0
0.
0
0
15 0(26
-------
Arlington Virginia
Contlnaoiu Monitor Data
July 1995
DATE
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/9S
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
TIME
7.55
8:00
8-05
8-10
815
8:20
8:25
8.30
8:35
840
8.45
8.50
855
9-00
90S
9.10
9-15
9.20
9:25
9.30
9.35
9:40
9.45
9-50
9:55
10:00
10:05
10.10
10:15
1020
1025
10-30
10.35
10:40
10.45
10:50
10:55
1100
11.05
11.10
11:15
11-20
11:25
11:30
11.35
11.40
11.45
11:50
11.55
12:00
1205
12.10
12.15
1220
12.25
1230
CO2
Scrubber
Inlet
COj
(%)
.
Scrubber
Outlet
C0j(%)
(*)
4.7
48
46
48
S.3
5.8
6.1
6.3
67
7.0
71
70
68
67
6.S
6.3
62
60
6.2
63
6.3
6.8
7.0
6.1
47
4.5
34
38
4.5
50
5.1
56
60
6.8
46
3.5
5.6
5.1
44
40
40
43
44
4.5
44
4.5
O2
Scrubber
Inlet
Oj
(%)
Scrubber
Outlet
Oj
(*)
15.3
153
15.4
152
146
14.0
137
135
13.1
12.8
127
129
130
132
135
13.6
13.8
14.0
137
137
13.7
131
129
14.0
155
157
168
163
154
149
143
14.2
13.7
13.0
155
168
144
150
15.8
163
161
158
156
156
156
155
Temperature
Scrubber
Inlet
°F
925
884
857
846
842
843
850
854
871
882
898
916
948
972
970
933
923
905
905
911
927
943
985
1007
924
847
824
800
789
784
787
788
794
823
868
842
787
832
843
831
810
807
808
812
815
819
826
Scrubber
Outlet
°F
176
179
179
180
180
180
177
175
161
159
174
175
180
182
182
181
181
180
181
180
180
180
181
ISO
178
177
176
176
175
177
177
179
178
176
178
182
180
181
181
176
171
163
167
165
175
171
175
172
170
169
169
170
170
170
169
169
THC
Scrubber
Inlet
THC
(ppm)
257
228
Scrubber
Outlet
THC
(ppm)
130
16.4
169
178
21.4
360
55 1
661
1253
1383
71.3
701
47.6
33.9
269
243
21.7
23.1
242
217
182
27.1
31.6
244
135
14.6
31.3
330
452
73.5
984
132.1
111.9
111.0
31.7
34.2
198
16.2
166
18.7
21.1
182
177
178
177
168
CO
Scrubber
Inlet
CO
(ppm)
638
Scrubber
Outlet
CO
(ppm)
408
427
363
337
396
662
1057
1209
1947
1983
1475
1494
1155
887
682
595
498
507
584
634
575
880
945
580
408
393
124
8
346
681
1284
1654
1967
1790
1868
862
831
424
346
350
430
504
443
401
393
403
388
Moisture
Scrubber
Inlet
H,0
(%)
0.2
0.2
02
02
02
0.2
0.2
0.2
0.3
03
0.3
03
03
0.3
0.3
03
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
03
03
0.3
0.3
03
03
03
0.3
0.3
0.3
03
0.3
03
03
0.3
0.3
03
0.3
0.3
0.3
0.3
0.3
Scrubber
Outlet
H,0
(%)
01
0.1
01
0.1
0.1
01
0.1
01
01
0.1
01
01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
01
01
0.1
01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
01
0.1
0.1
0.1
01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
01
0.1
0.1
0 1
0.1
01
0.1
16 of 26
-------
Arlington Virginia
ContloDoiu Monitor Dm
July 1995
DATE
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
TIME
12-35
12:40
12.45
1250
1255
13.00
1305
13:10
13 15
13.20
13-25
13:30
13-35
13:40
13:45
13:50
13:55
14:00
14.05
14:10
14-15
14-20
14-25
14:30
14-35
14:40
14:45
14:50
14.55
15:00
15-05
15:10
15:15
15:20
15:25
1530
15-35
15-40
15-45
15.50
1555
16-00
1605
16-10
16 15
1620
16-25
1630
16:35
1640
16.45
16:50
1655
1700
1705
17 10
CO2
Scrubber
Inlet
CO,
(%)
71
7.3
7.5
76
76
73
7.1
7.3
75
78
7.8
69
64
81
7.2
7.5
7.9
82
78
8.0
89
106
11.1
10.5
11.4
10.1
60
55
49
48
52
59
64
61
67
59
55
5.2
49
58
58
5.3
59
63
65
64
61
6.1
65
68
Scrubber
Outlet
C0,(%)
(*)
44
43
46
47
47
48
46
44
45
46
48
48
4.2
37
44
4.1
4.2
4.4
47
48
SO
55
66
68
64
69
61
3.7
34
30
29
3.0
32
35
34
36
39
41
4.4
52
49
38
37
36
33
38
4.0
3.8
4 1
44
45
44
43
43
45
48
O2
Scrubber
Inlet
0,
(*)
11 9
117
116
117
12.0
122
120
118
11.4
113
12.5
130
108
118
11 4
109
10.4
10.7
10.4
9.4
7.3
7 1
8.2
7.0
89
137
14.2
14.9
14.9
143
13.S
128
130
132
13.7
140
14.4
145
134
13.5
14 1
134
130
128
130
13.3
132
127
123
Scrubber
Outlet
Oj
<*)
157
15.7
15.4
153
15.3
153
154
15.7
156
155
153
152
159
165
156
159
15.7
15.4
15.1
14.9
14.6
13.9
128
128
13.4
128
138
16.7
17.0
173
17.4
17.3
17.0
16.6
16.7
16.5
161
16.0
156
14.7
15.3
164
16.4
16.6
16.8
16.2
160
163
158
15.6
154
155
157
156
153
ISO
Temperature
Scrubber
Inlet
°F
831
831
839
848
853
854
853
843
847
855
866
873
851
798
785
789
779
771
791
SOS
822
853
903
930
960
1024
1052
945
913
890
874
861
855
853
842
837
842
843
860
894
901
872
874
870
8S4
858
860
853
860
867
869
865
856
848
845
846
Scrubber
Outlet
Op
170
169
170
169
168
167
168
170
169
169
169
169
168
171
176
175
175
175
175
172
172
173
175
173
173
173
170
167
167
168
169
174
178
179
177
177
177
177
177
177
175
174
175
175
176
ISO
178
175
176
176
175
175
175
176
177
177
THC
Scrubber
Inlet
THC
(ppm)
170
162
139
16.0
149
16.7
16.4
192
208
21 1
185
186
200
33.S
363
348
492
501
495
39.7
35.6
285
276
36.7
16 5
130
9.2
13.8
15 5
16.S
18.4
200
206
183
174
163
19.7
18.4
16.1
29.4
956
1084
441
262
223
197
190
191
182
169
157
167
167
179
181
182
Scrubber
Outlet
THC
(ppm)
166
17.1
15.6
14.1
238
865
722
228
17.7
180
169
159
184
2SS
268
269
390
407
448
362
335
305
28.6
3S4
18.6
145
110
14 5
146
144
15.2
16.5
16.1
146
15.1
16 1
15.3
15.7
142
11.4
9.4
122
143
15.1
15.6
14.3
14.7
165
15.9
15.3
15 5
159
169
182
190
198
CO
Scrubber
Inlet
CO
(ppm)
662
686
60S
569
514
503
530
601
637
706
723
628
562
517
457
599
1188
1659
1708
1640
1698
1639
1491
1785
1067
680
349
466
532
644
714
864
859
636
583
510
519
663
484
4S3
532
572
522
544
517
474
468
466
446
437
413
381
363
364
389
Scrubber
Outlet
CO
(ppm)
404
419
382
344
312
308
326
368
389
430
441
380
342
299
241
325
638
889
942
971
1021
994
918
1090
645
414
207
277
313
387
442
521
479
346
320
299
281
356
433
415
282
346
391
362
365
333
314
319
317
305
300
285
264
250
250
271
Moisture
Scrubber
Inlet
H2O
(%)
03
03
0.3
0.3
0.3
0.3
0.3
0.3
03
03
03
03
03
03
03
03
0.3
03
03
03
03
0.3
03
03
03
0.3
03
03
03
0.3
03
03
0.3
03
0.3
03
03
0.3
03
03
0.3
03
03
03
0.3
03
03
0.3
03
03
03
0.3
03
03
03
03
Scrubber
Outlet
H,0
(%)
01
0.1
01
0.1
0.1
0.1
01
0.1
01
01
0.1
0.1
01
01
0.1
0.1
01
0.1
0.1
0.1
01
0.1
0.1
0.1
0.1
01
0.1
0.1
01
0.1
0.1
0.1
01
0.1
0 1
0.1
0 1
01
0.1
0.1
0.1
0.1
01
0 1
0.1
0.1
01
01
0 1
0.1
0.1
0 1
01
0 1
O.I
0 1
17 0126
-------
AnngjtOD VirpBu
Contlnnoiu Monitor Data
July 1995
7/24/95
7/24/93
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
17.20
17.25
17:30
17:35
17-40
17:45
1750
1755
18-00
18:05
18:10
18:15
18-20
1825
18-30
18-35
18-40
18:45
18:50
18.55
19:00
19.05
19-10
19:15
19-20
19:25
1930
19:35
19:40
19:45
19:50
19-55
20:00
2005
20-10
20.15
20:20
20:25
20:30
20-35
2040
2045
20.50
20:55
21.00
21:05
21-10
21-15
21 20
21 25
21 30
21.35
21 40
21 45
21 SO
CO2
Scrubber
Inlet
COj
(*)
73
74
71
74
7.3
7.1
7.3
73
7.7
75
70
65
67
70
69
65
6.7
71
6.8
57
5.8
5.7
5.7
6.1
5.9
5.3
5.0
5.4
5.7
5.4
5.0
4.9
6.2
64
6.6
6.6
68
6.6
66
6.9
7.0
63
62
62
6.2
66
68
6.2
5.7
56
5.3
52
56
6.2
63
4.3
Scrubber
Outlet
C0j(*)
(%)
5.1
5.2
50
52
52
5 1
5.2
5.3
56
55
5.4
5 1
51
52
5.1
48
5.0
5.2
5.1
43
4.4
4.3
43
45
45
4.2
4.1
4.3
46
4.4
4.1
4.0
48
5.1
5.4
54
5.6
5.5
56
58
59
53
5.3
53
5.4
5.6
5.9
54
49
4.9
46
46
49
5.4
55
39
O2
Scrubber
Inlet
02
<%)
118
11.7
12.1
117
12.0
12.2
12.0
11.9
11.5
11.7
12.3
13.0
12.8
12.3
125
130
12.6
12.2
12.6
13.8
13.6
13.7
13.7
13.2
13.5
14.2
14.5
14.0
13.7
140
14.6
14.6
130
12.8
12.6
12.6
12.4
12.7
128
126
12.4
132
13.3
13.3
132
12.8
12.6
134
14 1
14.1
14.4
144
140
13.4
135
158
Scrubber
Outlet
0,
(*)
147
145
14.8
146
14.7
148
14.7
146
14.1
142
143
148
148
14.6
14.8
150
148
145
148
156
155
15.6
15.5
153
15.3
157
159
15.5
153
15.5
159
15.9
149
146
14.3
142
140
142
141
140
138
144
145
145
144
14.1
13.9
146
151
152
154
154
150
145
145
164
Temperature
Scrubber
Inlet
°F
847
845
841
844
838
833
838
847
874
885
904
902
906
906
904
906
916
933
942
926
921
917
914
914
913
901
891
894
896
882
861
846
845
847
847
844
850
853
861
872
884
886
892
899
910
926
942
939
924
920
915
915
930
959
988
947
Scrubber
Outlet
°F
178
178
179
179
179
178
177
176
177
176
174
171
170
169
169
169
168
169
169
169
169
170
171
176
176
173
173
174
174
174
174
175
180
181
180
178
178
179
178
178
178
178
178
178
178
178
178
177
176
175
175
175
177
178
177
174
THC
Scrubber
Inlet
THC
(ppm)
194
20.4
21.3
208
22.2
219
18.8
166
139
116
9.3
85
89
93
104
99
109
107
95
106
99
107
100
9.9
10.2
9.7
104
10.8
9.5
108
12.0
134
192
227
248
264
31.0
22.5
221
206
197
147
123
10.4
98
94
90
8.4
7.9
8.8
9.7
100
108
103
85
80
Scrubber
Outlet
THC
(ppm)
20.9
21.7
213
21.2
232
20.8
19.2
175
153
13 1
105
9.7
96
103
10.6
11.0
11.2
11 1
105
112
11.2
109
9.2
10.4
10.3
11.0
12.1
11.7
11.5
12.2
13.9
168
196
23.8
29.7
30.9
36.1
262
258
243
22.1
17.7
148
125
120
11.1
114
99
100
108
109
117
117
114
94
90
CO
Scrubber
Inlet
CO
(ppm)
439
493
511
585
626
583
559
544
515
479
420
370
377
416
439
447
456
486
463
487
475
468
446
473
444
414
415
416
390
343
302
293
383
555
784
839
962
701
666
647
647
512
468
450
434
434
465
370
348
365
370
394
424
429
356
405
Scrubber
Outlet
CO
(ppm)
306
347
358
410
446
415
398
388
380
358
326
294
292
313
330
338
349
372
358
379
367
359
346
353
344
333
337
334
316
278
245
236
296
443
647
704
808
594
578
566
565
444
406
391
376
380
400
320
306
320
325
349
377
395
328
388
Moisture
Scrubber
Inlet
H20
(%)
0.3
0.3
0.3
0.3
0.3
03
0.3
03
0.3
0.3
0.3
0.3
0.3
0.3
03
0.3
0.3
0.3
03
0.3
03
03
03
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
03
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
03
03
0.3
0.3
0.3
03
0.3
0.3
0.3
0.3
0.3
03
03
03
Scrubber
Outlet
H20
(%)
0
0.
0
0
0
0.
0
0
0
0.
0
0
0
0
0
0
0.
0.
0.
0
0
0.
0.
0.
0.
0.
0
0.
0
0.
0.
0.
0
0.
0.
0.
0.
0
0
0.
0.
0.
0
0
0.
0
0.
0.
0
0
0
0.
0.
0
0.
0
180126
-------
Arlington Virginia
Contlnnoui Monitor Data
July 1995
DATE
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
TIME
21:55
22:00
2205
22 10
2215
22.20
22.25
22.30
22:35
22.40
22:45
22.50
22.55
2300
2305
23 10
23:15
23:20
23.25
23-30
2335
23.40
23:45
23:50
23:55
0-00
005
0:10
0-15
0:20
0-25
0:30
0:35
040
0-45
0:50
0.55
1.00
05
•10
.15
20
25
.30
•35
:40
:45
SO
•55
200
205
210
2 15
220
225
230
CO2
Scrubber
Inlet
CO,
(*>
39
3.7
43
49
55
70
73
7.7
80
8.3
85
91
99
10.4
10.9
114
10.9
10.S
10.1
98
105
10.5
10.5
10.4
10.1
9.7
88
85
86
85
91
92
85
85
86
85
87
84
87
92
86
84
90
8.6
10.3
105
Scrubber
Outlet
C0,(%)
(%)
36
34
3.7
43
49
52
4.1
42
43
46
48
49
51
54
58
61
64
66
64
6.1
59
5.7
6.1
62
6.3
62
60
57
52
50
52
5 1
53
5.3
5 1
5.0
5 1
50
5 1
4.9
50
53
50
SO
5.2
5 1
58
60
O2
Scrubber
Inlet
0,
(%)
15.9
16.1
15.3
14.7
14.1
-
12 1
118
11.3
109
105
10.0
9.4
86
79
74
6.9
7.7
8.2
8.7
9.1
8.3
8.4
8.5
8.7
9.0
95
10.4
106
104
106
100
99
10.7
10.7
10.5
10.6
103
107
101
9.5
10.3
102
94
99
8 1
80
Scrubber
Outlet
0,
<*)
16.6
168
16.4
15.7
150
147
156
155
15.4
152
15.0
14.7
14.5
14.1
13.7
13.3
130
12.8
13.2
13.5
13.8
14.0
13.6
13.5
13.5
136
138
141
14.7
148
147
148
146
145
149
149
148
148
148
150
14.7
14.4
147
14.7
142
144
137
135
Temperature
Scrubber
Inlet
°F
916
889
880
888
905
927
940
953
963
954
935
916
886
872
820
805
795
786
780
780
778
782
791
798
807
810
804
797
793
793
805
829
842
850
853
848
846
849
847
846
846
847
846
846
845
835
825
824
828
813
802
799
789
772
782
Scrubber
Outlet
°F
173
174
179
181
181
178
177
174
169
169
174
174
175
176
176
175
175
175
173
174
170
168
165
163
174
175
174
174
172
173
173
172
171
171
170
170
170
170
171
171
170
170
170
170
171
172
172
172
171
171
171
171
163
166
THC
Scrubber
Inlet
THC
(ppm)
10.7
11.2
113
110
92
403
420
37.8
49.4
509
663
632
780
852
106.8
1147
63.3
45.0
43.1
42.8
60.9
51.3
29.5
23.3
198
17.1
16.7
163
16.3
171
18.4
18.0
19.6
197
191
19.7
20.9
22.1
22.8
22.0
290
33.1
40.6
403
1037
915
Scrubber
Outlet
THC
(ppm)
11.7
12.2
112
105
9.6
88
20.0
22.4
308
35.0
409
45.8
58.0
55.6
71.4
83.2
990
110.9
58.7
39.9
37.5
36.4
54.6
42.1
27.3
21.4
172
14.5
143
14 1
142
14.9
161
168
176
179
180
18.0
190
20.4
20.4
198
260
279
326
336
923
79.7
CO
Scrubber
Inlet
CO
(ppm)
484
415
442
423
400
675
718
904
1363
1796
2212
2307
2711
2938
3045
3265
1998
1434
1362
1306
1852
1515
896
733
636
594
569
530
520
497
504
520
520
546
580
526
491
460
504
534
695
1145
1753
1654
3150
2957
Scrubber
Outlet
CO
(ppm)
453
376
374
365
356
326
381
373
417
522
781
1034
1270
1327
1569
1715
1786
1879
1190
848
802
758
1078
903
545
442
375
343
329
306
301
288
287
295
300
313
333
302
278
261
288
306
398
648
992
947
1693
1663
Moisture
Scrubber
Inlet
H20
(%)
0.3
0.3
03
03
03
03
03
03
03
03
03
03
03
03
0.3
0.3
03
03
0.3
03
03
0.3
0.3
0.3
0.3
0.3
0.3
0.3
03
0.3
03
03
03
03
03
0.3
03
03
0.3
0.3
0.3
0.3
03
03
0.3
0.3
03
03
03
03
03
03
03
0.3
03
0.3
Scrubber
Outlet
H,0
(%)
0.1
0.1
0.1
0 1
0.1
01
01
0.1
01
0.1
0.1
0.1
01
0.1
0.1
0.1
0.1
01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
01
0.1
0.1
01
01
01
0.1
0.1
01
0.1
0.1
0.1
0.1
0.1
, 0.1
01
01
01
01
01
0.1
0.1
0.1
01
01
01
01
01
01
19 of 26
-------
Arlington Vtrgbiu
ConttDnaai Monitor Data
July 1995
7/25/95
1/25195
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
235
2-40
2.45
250
2.55
3.00
305
3:10
3.15
3-20
3-25
330
3:35
3-40
345
350
355
4-00
4:05
4-10
415
4-20
425
4.30
435
4:40
4-45
4:50
4:55
500
505
5.10
5:15
1:20
5:25
5.30
5:35
5-40
545
5.50
5:55
6:00
605
6:10
6-15
6.20
6:25
6:30
6.35
6-40
645
650
6-55
7.00
7-05
7 10
CO2
Inlet
COj
(%)
10.9
119
9.7
10.2
105
100
104
103
99
10.0
10.3
108
112
107
101
102
103
100
9.4
9.2
9.0
8.8
8.9
9.2
9.0
8.3
7.8
7.8
8.4
8.6
8.7
87
10.0
10.6
11.5
10.8
105
108
102
95
10.1
10.1
9.7
11.5
12.0
10.6
98
96
102
100
94
9.1
8.5
79
78
77
Outlet
C0,(%)
(%)
64
69
5.8
6.0
6.3
6.0
6.2
6.1
59
5.9
60
6.4
66
63
6.0
60
60
58
5.4
5.3
5.2
51
52
53
5.2
48
4.5
4.5
48
50
52
5.2
5.7
6.3
69
66
6.4
6.5
60
5.6
60
6.0
57
66
7.0
6.5
6.0
5.8
5.9
5.8
5.4
52
4.9
47
46
46
O2
Inlet
0,
(%)
73
66
94
8.7
8 1
8.8
83
8.5
9.1
88
85
8.0
7.7
84
89
8.7
86
9.1
9.7
9.8
10.1
10.4
10.1
98
10.0
10.8
11.3
11.2
104
10 1
9.9
98
8.3
7.6
6.8
7.8
81
7.9
86
92
8.6
8.7
9.1
7.1
6.9
8.4
9.3
95
88
90
9.7
100
10.8
11 5
11 6
11 7
Scrubber
Outlet
Oj
(*)
130
126
14 1
137
13.2
136
13.4
136
138
138
136
133
13.1
135
13.8
13.8
13.7
140
14.4
14.5
14.7
148
147
145
14.6
15.0
15.4
153
14.9
14.6
14.4
14.4
13.7
13 1
124
129
131
13.1
13.7
14.0
136
137
139
130
126
132
138
140
138
140
14.5
146
150
153
154
154
Temperature
Scrubber
Inlet
°F
794
807
805
817
844
847
846
843
836
840
846
855
868
881
885
894
902
901
890
881
875
874
873
876
871
852
829
814
815
814
804
806
816
827
846
856
852
849
832
820
821
822
814
812
845
879
884
885
888
887
875
868
862
854
847
840
Scrubber
Outlet
Op
162
154
172
172
173
171
172
172
171
171
171
171
171
171
170
170
170
171
171
171
171
170
170
171
172
172
171
171
172
173
170
172
173
168
163
174
173
173
173
173
173
173
171
155
163
174
172
170
172
172
171
172
171
170
170
170
THC
Scrubber
Inlet
THC
1061
1338
547
423
27.8
228
246
260
261
301
32.5
359
316
217
183
174
16.5
142
149
159
159
16.1
163
162
15.9
16.1
193
22.3
334
422
650
514
53.1
72.3
910
331
263
316
319
327
414
391
547
134.7
98.1
249
18.8
16.9
154
146
12.9
13 S
140
160
164
174
Scrubber
Outlet
THC
100.4
135.6
42.5
354
22.7
194
221
225
230
253
27.0
308
28.1
19.0
16.6
15.4
147
137
13.7
14 1
14.1
13.5
13.8
13.8
13.5
14.1
16.4
18.7
28.3
372
54.0
40.9
43.1
648
893
30.6
239
28.9
27.9
29.4
357
366
508
1365
924
201
165
147
139
127
116
117
124
135
145
149
CO
Scrubber
Inlet
CO
3121
4786
1734
923
986
703
915
920
839
972
1103
1255
1172
914
812
809
815
710
664
685
673
729
734
643
514
448
426
726
1213
2071
1889
2175
2993
3400
1519
949
1124
1053
979
1229
1239
1503
3403
3402
831
693
671
739
657
623
609
600
624
651
615
Scrubber
CO
1686
1985
1026
549
608
426
558
565
513
585
658
752
694
533
473
465
464
406
377
384
380
376
407
412
361
289
251
238
413
705
1188
1093
1214
1733
1854
973
589
695
637
571
727
734
853
1835
1641
519
419
404
435
383
353
345
345
365
387
364
Scrubber
Inlet
H20
(%)
0.3
0.3
0.3
03
0.3
0.3
0.3
03
0.3
0.3
03
0.3
0.3
03
03
03
0.3
0.3
0.3
0.3
0.3
0.3
03
03
0.3
0.3
0.3
03
0.3
0.3
0.3
03
0.3
03
03
0.3
0.3
0.3
03
03
0.3
0.3
0.3
0.3
03
03
03
0.3
03
03
03
0.3
03
0.3
03
03
Scrubber
H,0
(%)
01
0.1
0.1
O.I
0.1
01
0.1
0.1
0.1
01
0.1
0.1
01
0.1
0.1
0.1
0.1
01
01
01
0.1
0.1
01
0.1
0.1
01
0.1
0.1
0.1
0.1
01
01
0.1
0.1
01
01
0.1
0.1
01
0.1
01
0.1
01
0.1
01
0.1
01
0.1
01
01
0 1
0 1
01
0.1
0.1
01
20 of 26
-------
Arifaigtoo Virginia
Coatlnnoni Monitor Data
July 1995
7/25/9S
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
720
7:25
7-30
735
7.40
745
750
7-55
800
805
8 10
815
8.20
8-25
830
835
840
8-45
8-50
855
9-00
9.05
9:10
9-15
9-20
9-25
930
9:35
9.40
945
9.50
9.55
10:00
10-05
10:10
10-15
1020
10-25
10:30
10-35
10:40
1045
10.50
10.55
11-00
11-05
11 10
11 15
11 20
11 25
11-30
11-35
11-40
11 45
11 50
CO2
Inlet
CO,
(ft)
73
76
84
8.4
8.6
8.9
9 1
9~3
9.7
10.1
10.6
10.9
11.0
9.7
9.6
92
9.0
8.1
8.2
84
9.6
10.0
9.0
80
7.8
80
8.2
8.3
86
96
101
101
98
95
99
95
9.2
8.9
87
89
85
82
80
90
97
9.0
Outlet
C02(»)
(ft)
4.3
46
5 1
52
52
5.4
57
60
64
66
67
69
62
63
6.1
59
61
4.8
50
5.1
53
54
57
62
66
66
64
6.3
65
62
6 1
59
58
59
56
54
53
56
59
55
Inlet
0,
(ft)
122
116
106
106
104
99
96
94
89
84
7.9
75
74
9.0
92
97
98
109
10.7
10.4
90
8.5
97
109
11.0
10.7
105
104
10.0
89
82
83
8.7
90
86
9.2
94
98
99
98
104
108
110
99
91
9.9
Outlet
0,
(»)
157
153
146
146
145
143
14 1
139
134
131
129
127
126
133
133
13.5
136
134
14.9
146
144
142
14.1
138
133
12.8
128
130
132
130
13.3
134
137
138
137
141
143
145
142
138
143
Scrubber
Inlet
Op
817
816
828
823
817
814
811
820
845
856
859
867
874
865
862
854
853
861
891
910
916
931
944
977
968
945
937
942
983
964
936
921
912
904
895
889
896
911
910
912
912
914
907
908
907
905
903
883
877
874
872
882
876
Scrubber
Outlet
°F
170
170
171
172
171
171
170
172
172
171
175
174
171
169
169
170
172
173
170
169
169
168
172
172
173
172
172
172
174
175
174
173
172
172
172
172
172
172
172
172
171
170
173
175
174
THC
Scrubber
Inlet
THC
18.7
21.3
23.1
24.5
26.5
37.1
52.9
61.0
39.6
35.0
SI 2
33.2
273
21.7
21.3
233
25.6
19.7
20.7
20.1
18.5
16.7
14.7
15.0
163
17.0
17.1
19.4
21.0
22.4
207
19.1
149
11.8
11.6
113
108
12.3
132
142
17.4
17.4
18.1
183
162
16.2
Scrubber
THC
15.9
180
198
20.7
245
32.0
42.1
48 3
542
363
31.9
48.4
30.3
267
229
22.7
243
256
26.4
16.3
156
16.0
171
186
199
21 1
198
18.7
153
13.3
12.8
13.3
13.0
142
150
15.7
167
172
180
179
16 1
164
Scrubber
CO
567
535
539
544
628
851
1374
1702
1826
1271
1192
1682
1231
1064
726
718
803
928
599
668
738
722
691
672
732
745
725
701
709
756
859
984
1018
832
611
529
514
483
541
620
629
668
643
661
674
651
550
Scrubber
CO
332
315
320
325
379
512
810
1009
1096
787
742
1044
766
670
467
465
517
589
630
465
473
459
452
459
490
546
623
653
538
395
338
329
310
350
403
408
435
417
429
413
385
328
Scrubber
Inlet
H20
(ft)
0.3
03
03
0.3
0.3
03
0.3
03
03
03
0.3
03
03
03
03
0.3
03
0.3
03
03
03
03
0.3
0.3
0.3
03
0.3
0.3
0.3
0.3
0.3
03
0.3
0.3
03
03
03
0.3
03
03
03
03
03
03
03 '
03
03
03
03
03
03
03
03
03
03
Scrubber
H,0
(ft)
01
0.1
0 1
0 1
0.1
0 1
O.I
0 1
O.I
0 1
0 1
0 1
0 1
0.1
0 1
0 1
0 1
O.I
0 1
0.1
0.1
0.1
0 1
01
0 1
0.1
0 1
0.1
0.1
0 1
01
0.1
0 1
01
0 1
0.1
0 1
0.1
01
0 1
01
0 1
01
01
0.1
01
0 1
0.1
01
0.1
0.1
01
0 1
01
0 1
01
21 of 26
-------
ArOngtoa Virginia
July 1995
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
1200
1205
12-10
12.15
12.20
1225
12.30
12.35
1240
1245
1250
12-55
1300
1305
13 10
13-15
13:20
1325
1330
1335
13:40
1345
1350
1355
1400
1405
1410
14-15
1420
1425
14:30
14.35
1440
14:45
1450
1455
1500
1505
15-10
15.15
15:20
15.25
1530
15:35
15:40
1545
1550
15-55
1600
16.05
16.10
16 IS
1620
1625
16.30
• CO2
Scrubber
Inlet
CO,
<%)
8.3
8.0
80
8.0
8.4
84
7.9
7.7
8.4
8.1
8.2
10.S
9.1
72
9 1
9.3
9.5
87
86
83
80
7.5
8.1
7.8
7.8
7.8
8.1
8.5
8.5
9.5
95
9.8
10.1
92
98
98
10.2
10.3
10.9
10.4
99
9.7
95
94
95
93
89
85
86
Scrubber
Outlet
C0,<%)
(%)
5.1
49
49
50
52
54
52
5.1
56
5.3
53
68
58
48
60
6.1
6.2
5.7
5.7
55
52
4.9
5.3
5.2
5.1
5.2
5.3
56
58
6.0
59
4.5
4.1
44
4.4
5.3
5.3
5.7
5.8
6 1
56
59
59
62
6.4
67
64
6.1
6.0
5.9
59
59
58
56
54
5 5
O2
Scrubber
Inlet
0,
(%)
107
11 1
11.0
10.8
10.2
102
108
110
9.9
10.3
10.0
73
93
11.4
9.1
90
90
10.0
10.1
10.5
11 0
11.6
10.7
11.0
11.0
110
105
10.1
101
90
90
85
81
92
85
84
79
7.9
7.3
79
8.5
8.8
90
9.0
9.0
9.2
97
10 1
100
Scrubber
Outlet
02
(%>
148
ISO
149
148
144
141
143
144
138
141
139
122
136
147
133
132
132
139
139
141
145
148
143
14.4
145
144
142
139
137
135
13.7
154
159
154
154
143
143
139
13.7
133
138
135
134
131
130
126
130
133
135
136
136
136
137
140
142
141
Temperature
Scrubber
Inlet
Op
861
844
847
852
857
862
856
847
855
838
831
860
849
809
851
872
878
863
862
861
851
841
866
868
869
870
877
888
897
908
903
859
834
854
863
152
839
851
847
850
844
842
843
851
861
876
882
883
886
887
890
894
893
889
883
888
Scrubber
Outlet
°F
174
174
174
174
174
172
171
171
172
172
173
175
174
172
173
173
172
170
169
169
169
168
170
170
170
170
170
171
170
170
169
168
167
168
174
175
175
177
180
180
177
179
179
180
179
179
178
177
177
177
177
177
176
176
175
176
THC
Scrubber
Inlet
THC
174
208
217
220
234
225
239
264
28.9
357
380
885
915
500
372
273
225
153
145
155
193
182
164
134
150
137
132
96
10.5
6.9
66
70
95
21.1
26.3
163
240
287
310
350
317
375
408
442
404
380
276
21 1
181
163
154
135
134
135
139
146
Scrubber
Outlet
THC
(ppm)
179
194
201
20.7
210
216
224
25.3
26.6
324
348
786
816
435
334
25.9
22.4
16.5
161
180
21.3
223
185
186
194
193
18.2
16.9
15.7
149
152
18.7
224
209
159
178
189
20.8
247
289
257
310
330
364
324
329
227
177
15.4
144
13.S
12.5
127
130
132
140
CO
Scrubber
Inlet
CO
507
479
473
565
649
729
869
1137
1186
1438
1576
2540
2840
1844
1490
1338
1101
619
503
475
495
531
457
453
521
594
624
622
619
596
588
635
533
576
725
1010
880
1198
1350
1585
1383
1419
999
749
666
632
603
547
520
498
474
516
Scrubber
Outlet
CO
301
282
279
337
389
458
562
731
759
914
998
1625
1797
1216
954
852
700
406
323
304
316
342
293
290
334
382
402
398
395
378
371
412
401
357
291
331
320
339
424
603
534
711
801
953
847
875
618
462
410
387
369
334
319
305
289
317
Moisture
Scrubber
Inlet
H20
(%)
03
03
03
03
03
03
03
0.3
03
0.3
0.3
0.3
0.3
03
0.3
0.3
03
0.3
0.3
0.3
0.3
0.3
03
03
0.3
03
03
0.3
0.3
0.3
0.3
03
03
03
03
0.3
03
03
03
03
03
03
03
03
03
03
03
0.3
03
03
03
03
03
03
03
03
Scrubber
Outlet
H,0
(%)
0
0.
0
0
0
0
0
0
0.
0
0
0
0
0.
0
0.
0.
0.
0.
0.
0.
0.
0.
0
0
0.
0.
0
0.
0.
0
0
0
0.
0
0.
0
0
0
0
0.
0
0
0
0
0.
0.
0.
0
0
0
0
0
0
0
0
22 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
16:40
16:45
16.50
16:55
1700
1705
17:10
17.15
17.20
17-25
1730
17-35
17:40
17:45
17-50
17:55
18.00
1805
18:10
18.15
1820
18:25
18:30
18:35
18.40
1845
1850
18.55
19.00
1905
19:10
19.15
19-20
19-25
19:30
1935
1940
1945
1950
19.55
2000
2005
20-10
2015
20:20
20.25
20-30
20.35
2040
20.45
2050
20.55
21 00
2105
21 10
CO2
Scrubber
Inlet
CO,
(*)
85
90
99
107
9.1
76
8.1
7.9
8.3
8.7
94
100
10.4
103
99
99
9.4
9.4
9.5
9.7
10.4
10.7
110
11.7
10.5
9.8
99
10.8
127
107
75
73
7.2
7.5
7.5
8.1
8.7
102
11.2
10.9
Scrubber
Outlet
C0j(»)
(*)
5.4
56
62
67
57
48
4.9
48
5.0
5.2
5.5
59
6.1
6 1
58
58
5.7
5.7
5.7
5.9
6.3
6.4
66
7.1
6.6
6.2
62
69
78
6.8
4.7
44
4.3
4.6
4.7
5.0
54
6.2
6.8
66
56
4.8
4.7
46
50
5.3
57
62
64
60
57
59
62
O2
Inlet
0,
<»>
101
96
85
77
98
115
108
109
10.3
98
9.1
8.5
8.1
81
86
84
90
90
89
86
78
7.6
7.1
6.4
8.1
8.9
88
76
5.5
83
12.0
12.0
119
11.3
11.4
10.6
9.9
83
72
7.8
Scrubber
Outlet
0,
(»)
14.1
139
133
128
140
15.0
148
14.9
147
144
14.0
13.6
134
13.4
137
13.7
137
138
137
136
131
13.0
12.8
122
13.0
13.5
134
126
11.6
128
15.4
15.5
15.5
15.1
15.0
14.6
141
13.3
12.7
13.
14.
15j
15.
15.
14.6
14.2
138
13.3
13.1
135
138
136
132
Temperature
Scrubber
Inlet
°F
888
894
913
938
922
895
891
880
871
870
877
883
890
891
884
877
870
863
859
853
855
861
870
886
889
892
904
942
981
1006
906
880
870
870
868
869
879
899
921
929
908
882
875
865
866
870
879
890
895
888
874
868
866
863
868
874
Scrubber
Outlet
°F
176
176
176
177
175
174
177
178
179
180
181
182
182
182
181
182
180
180
180
180
181
182
183
183
179
178
178
179
180
174
173
176
178
178
177
178
178
179
180
ISO
178
177
177
178
179
179
180
180
181
180
ISO
ISO
181
180
180
182
THC
Scrubber
Inlet
THC
(ppm)
161
156
13.9
12.4
113
134
135
15.1
15.8
16.3
168
17.4
172
16.9
169
192
19.3
20.0
23.1
278
381
40.9
460
61.6
280
22.2
23.6
26.1
43.6
32.1
16.6
16.9
165
153
17.5
15.8
16.3
14.7
15.2
14.3
Scrubber
Outlet
THC
(ppm)
150
144
130
11 6
11.7
127
12 1
128
13 1
134
139
14.7
146
142
144
162
168
172
199
24.1
32.6
34.8
39.7
54.7
25.1
19.9
20.6
22.3
35.1
25.7
143
15.6
16.5
15.4
17.1
17.6
16.7
15.7
164
167
13.1
137
13.5
147
147
150
156
16.1
159
15.6
18.4
223
295
CO
Scrubber
Inlet
CO
(ppm)
590
663
693
673
572
585
582
549
540
548
593
648
665
636
609
632
613
576
624
807
1252
1421
1650
2293
1175
911
1134
1705
1865
1121
703
751
575
488
523
604
704
817
1070
976
707
604
525
505
508
579
680
757
764
643
613
721
Scrubber
Outlet
CO
365
409
428
409
350
362
345
322
313
316
340
376
384
371
353
367
366
342
372
481
741
844
971
1395
743
568
697
1065
1091
696
454
456
342
288
316
360
429
493
622
577
415
354
307
296
298
340
405
453
455
381
361
436
619
Scrubber
Inlet
H,0
(*)
03
0.3
03
03
0.3
0.3
03
03
0.3
0.3
03
03
03
03
03
03
0.3
03
0.3
03
0.3
03
03
03
0.3
03
03
03
0.3
03
03
03
0.3
0.3
0.3
03
03
0.3
03
03
0.3
03
0.3
03
0.3
03
0.3
0.3
03
0.3
03
03
03
03
03
03
Scrubber
H,0
<*>
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0
0.
0.
0.
0
0.
0
0
0.
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0
0
0.
0.
0.
0.
0.
0
0.
0.
0.
0.
0.
0.
0.
0.
0
0.
23 of 26
-------
Arfagton Virginia
ContlnDom Monitor Data
July 1995
DATE
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/9S
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/2S/9S
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/93
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
726/95
7/26/95
TIME
21:15
21:20
21-25
21:30
21:35
21 40
21-45
21.50
21:55
22:00
2205
22.10
22:15
2220
22.25
22:30
22.35
22:40
22.45
2250
22.55
23.00
23.05
23-10
23:15
23.20
23.25
2330
2335
23.40
23.45
2350
2355
0:00
0-05
0-10
0:15
020
025
0:30
0.35
040
0:45
0.50
0.55
00
.05
•10
.15
:20
:2S
•30
35
.40
45
50
CO2
Scrubber
Inlet
CO,
(»)
101
97
92
91
92
99
107
108
106
96
86
91
90
95
10.0
106
10.7
10.4
10.5
10.7
10.S
10.6
11.1
11.4
11.9
12.0
12.0
11.4
104
99
10.1
99
97
103
10.1
9.9
97
100
10.1
10 1
10.7
10.7
107
10.3
10.1
95
90
102
134
Scrubber
Outlet
C0j(%)
(*)
70
68
63
60
58
57
5.8
62
67
67
65
60
54
56
56
5.9
6.2
6.6
6.6
64
6.4
66
6.6
66
69
7.1
7.4
74
7.4
7.0
65
62
6.1
6.0
5.9
63
6.3
6.1
60
62
62
6.2
65
6.5
6.5
63
63
59
56
64
82
O2
Scrubber
Inlet
Oj
(*)
89
9.3
9.8
9.8
96
88
79
79
8.2
93
103
9.7
9.8
9.3
8.7
80
8.0
8.2
81
7.8
8.1
80
7.4
7.1
65
66
67
74
85
90
89
9 1
92
84
88
9.0
92
8.9
88
88
8.1
8.0
8 1
85
87
95
100
8.5
48
Scrubber
Outlet
Oj
(*)
126
129
135
13.8
140
140
139
134
12.9
130
132
138
144
14.1
141
138
135
13.1
13.1
132
131
13.0
131
131
127
124
12 1
122
122
126
13.3
136
137
138
139
134
135
137
138
13.6
135
136
13.3
132
133
134
135
139
142
133
11 1
Temperature
Scrubber
Inlet
°F
892
907
894
899
912
923
906
903
897
900
900
909
926
930
932
922
906
898
894
898
903
913
915
911
909
907
904
899
903
913
920
916
923
921
908
894
880
869
863
878
875
875
874
878
884
883
889
894
895
898
893
881
871
894
989
Scrubber
Outlet
"F
176
179
179
178
178
177
177
178
178
178
179
177
176
177
177
178
178
178
179
179
180
181
180
180
180
181
181
182
182
181
179
179
180
180
179
181
180
179
179
179
179
179
179
180
180
179
178
177
178
179
172
THC
Scrubber
Inlet
THC
(ppm)
16.1
142
146
13.9
159
148
136
152
155
13.1
127
138
143
154
15.5
161
157
14.7
165
167
17.6
200
251
262
358
439
32.5
216
150
163
190
21.7
284
34.7
24.3
208
223
21 1
198
204
229
22.9
229
187
201
226
281
41 4
2210
Scrubber
Outlet
THC
(ppm)
13 1
166
14.8
14.0
144
142
149
142
13.4
142
142
122
12.1
130
138
142
15.0
15.2
14.8
15.0
16.0
168
176
201
239
25.1
33.6
40.5
30.6
21.0
160
161
188
20.5
26.5
352
223
208
205
200
188
195
21.4
212
209
191
202
214
253
350
207 1
CO
Scrubber
Inlet
CO
(ppm)
667
577
555
589
669
724
767
856
811
669
588
590
593
640
707
772
788
769
781
817
761
821
1060
1212
1740
2031
1529
1125
757
656
699
676
731
1291
815
691
697
756
733
733
896
921
938
806
748
683
791
1543
4409
Scrubber
Outlet
CO
(ppm)
710
536
438
352
343
365
419
453
479
522
494
410
365
358
365
392
436
476
482
472
479
502
477
507
656
762
1089
1278
952
701
474
407
429
414
451
799
512
428
429
464
455
446
548
559
563
498
464
425
486
927
3165
Moisture
Scrubber
Inlet
H,0
(56)
0.3
03
03
03
0.3
0.3
03
0.3
0.3
0.3
03
0.3
03
0.3
03
0.3
03
03
0.3
0.3
03
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
03
0.3
0.3
03
03
03
03
0.3
0.3
0.3
0.3
0.3
0.3
03
03
03
03
0.3
03
03
03
03
03
03
03
03
03
Scrubber
Outlet
H,0
(%)
0
0
0
0
0
0
0
0
0
0
0.
0
0.
0
0
0.
0.
0.
0.
0
0
0
0
0.
0
0
0.
0.
0
0.
0
0
0
0
0
0
0.
0
0
0.
• o.
0
0
0
0
0
0
0.
0.
0
0
0
0
0
0
0.
24 ol 26
-------
Arlington Virginia
Contlnuoni Monitor Data
July 1995
DATE
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
1(26195
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7126m
7/26/95
7/26/95
7/26/95
7/26195
1/26195
1/26195
1126195
1126m
1126195
1126m
7/26/95
7/26/95
7/26/95
1126m
1126m
7/26/95
1116195
1/26195
1126m
1/26195
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
TIME
1.55
2-00
2.05
2:10
2 15
2-20
2.25
2:30
2:35
2.40
245
2.50
2-55
3-00
305
310
3:15
320
325
3:30
3.35
3-40
3.45
350
355
400
405
410
4-15
4-20
425
430
4-35
4-40
445
450
455
500
5.05
5-10
S.15
5-20
5-25
530
5.35
540
545
550
555
600
605
610
615
620
625
630
CO2
Scrubber
Inlet
COj
(%)
148
71
71
55
47
SO
6.1
7.1
80
85
103
11.0
106
96
10.0
10.4
117
Scrubber
Outlet
C0j(%)
(%)
90
4.4
43
3.3
28
2.9
36
40
4.6
49
58
62
6.0
57
60
62
70
6.3
48
50
4.9
47
5.0
53
5.6
60
52
53
6.1
7.1
75
4.1
SO
49
55
53
56
56
49
49
64
6.1
55
53
47
51
57
59
62
68
75
80
72
52
38
40
O2
Scrubber
Inlet
Oj
(%)
3.6
12.7
12.7
14.3
15.2
146
13.3
12.3
11 1
104
8.3
75
8.1
93
89
8.4
68
Scrubber
Outlet
Oj
(%)
10.4
15.9
16.0
17.1
17.6
174
16.6
16.1
15.4
15 1
13.9
136
138
14.2
139
136
126
135
153
150
15.0
15.2
149
14.5
141
13.7
148
146
13.7
12.5
120
162
15.2
152
14.4
146
142
142
15.1
151
133
137
143
146
153
147
140
138
134
12.9
120
114
125
150
164
162
Temperature
Scrubber
Inlet
"F
1164
1095
994
926
870
845
847
850
863
874
891
902
911
910
922
939
969
976
915
898
887
871
860
857
858
861
837
826
835
862
924
868
837
837
853
864
877
885
868
853
895
915
907
896
868
852
857
861
870
885
909
952
981
919
845
803
Scrubber
Outlet
"F
173
173
175
176
178
179
181
181
181
181
183
184
184
180
180
180
180
179
178
180
180
179
180
180
180
180
179
179
180
174
172
178
178
177
177
176
177
177
176
175
178
177
177
176
176
176
178
178
178
179
180
178
178
177
175
175
THC
Scrubber
Inlet
THC
(ppm)
2135
306
344
379
419
41.1
418
39.4
308
299
327
523
413
192
194
16.9
629
1164
165
227
218
200
219
217
20.8
261
258
315
91.3
230.5
2302
223
269
212
18.5
14.7
12.2
124
122
15.8
273
119
109
126
138
170
195
195
229
327
747
1149
54.7
10.9
194
315
Scrubber
Outlet
THC
(ppm)
1847
98
127
18.2
22.4
244
256
24.8
21 8
196
240
422
316
149
154
162
561
883
14.3
173
176
17.4
183
191
204
23.4
240
335
832
2170
2239
21.4
22.5
202
176
144
132
122
13.1
15.2
233
12.8
116
128
14.7
165
185
19.4
214
345
778
124 1
41 1
125
21 2
260
CO
Scrubber
Inlet
CO
(ppm)
3332
441
778
1115
1226
1382
1292
1108
1003
897
1368
2016
1698
837
814
782
1536
2189
870
1006
981
784
749
710
754
960
985
1373
3266
4840
4230
1006
1140
877
933
830
834
789
703
783
1368
871
711
729
681
690
810
841
988
1521
3035
3833
1723
552
947
831
Scrubber
Outlet
CO
(ppm)
2551
270
467
681
709
806
756
635
575
505
737
1072
923
478
476
476
890
1321
537
569
550
449
426
409
445
573
576
780
1844
3180
3224
588
625
498
529
483
484
448
408
446
743
493
416
419
393
389
457
492
588
901
1789
2296
999
333
550
484
Moisture
Scrubber
Inlet
H,0
(%)
0.3
03
0.3
0.3
03
0.3
03
0.3
03
03
0.3
03
0.3
0.3
03
03
0.3
03
03
03
0.3
0.3
0.3
03
03
03
0.3
03
03
03
0.3
0.3
0.3
0.3
03
0.3
03
03
03
03
0.3
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
Scrubber
Outlet
H,0
(%)
0.1
0.1
0.1
01
01
0.1
0.1
01
01
01
01
0 1
0.1
01
0.1
0.1
01
0.1
0.1
0 1
0.1
01
0.1*
0 1
0.1
0.1
0 1
01
0.1
0.1
0.1
01
0 1
0.1
01
0.1
01
0.1
0.1
01
0.1
01
0.1
0.1
0 1
01
01
0 1
0.1
0 1
01
01
01
01
01
01
25 of 26
-------
Arlington VufinlA
Continuous Monitor Data
July 1995
DATE
1/26195
7/26795
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
1/26195
1/26195
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
TIME
6.35
640
645
650
655
700
7-05
7:10
7:15
720
7.25
7:30
7.35
7.40
7:45
750
755
CO2
Scrubber
Inlet
CO,
(%)
Scrubber
Outlet
C0j(»)
(*)
4.7
51
46
40
38
33
33
52
82
87
O2
Scrubber
Inlet
Oj
(%)
Scrubber
Outlet
Oi
(»)
153
147
153
159
159
166
165
14 1
10.4
10.4
Temperature
Scrubber
Inlet
°F
811
809
799
771
762
757
757
823
967
1093
1093
966
890
878
893
910
929
Scrubber
Outlet
°F
176
177
177
179
179
175
174
175
169
172
166
167
171
170
172
176
177
THC
Scrubber
Inlet
THC
(ppm)
600
349
322
312
363
414
563
680
1805
901
Scrubber
Outlet
THC
(ppm)
531
345
280
317
344
424
488
662
1884
CO
Scrubber
Inlet
CO
(ppm)
1335
938
842
1000
827
1084
1536
2271
4683
Scrubber
Outlet
CO
(ppm)
781
560
501
583
491
674
971
1441
3970
Moisture
Scrubber
Inlet
H20
(%)
03
03
0.3
03
03
03
03
03
03
0.3
0.3
03
0.3
0.3
03
Scrubber
Outlet
H2O
(%)
0.
0.
0
0.
0
0.
0.
0.
0
0.
0.
0
26 ol 26
-------
APPENDIX B
CLEVELAND CONTINOUS MONITOR DATA
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
TIME
17.00
17 OS
17.10
17.15
17-20
17.25
1730
17:35
17-40
17 45
17:50
17:55
18-00
18:05
18:10
18:15
18:20
18:25
1830
18:35
1840
18:45
18:50
18.55
19.00
1905
19:10
19:15
19:20
19:25
19:30
19:35
1940
1945
19:50
19-55
2000
20-05
20:10
20:15
20:20
20:25
20:30
20-35
20-40
2045
20:50
20.55
21:00
21-05
21:10
21:15
21.20
21:25
21 30
21-35
CO,
Scrubber
Inlet
CO,
(ft)
4.7
5.0
5.1
5.1
5.3
5.7
6.5
5.3
5.2
5.1
5.4
5.1
5.1
4.8
4.8
4.6
4.7
4.8
5.0
5.1
5.2
5.3
5.2
5.1
5.1
5.4
5.3
5.1
5.2
5.3
5.3
5.0
5.1
5.1
5.2
5.2
5.1
52
5.2
5.2
5.2
5.2
5.2
5.2
Scrubber
Outlet
C02
(ft)
3.8
3.8
3.8
3.9
4.2
4.7
3.9
3.9
3.8
4.0
3.8
3.8
3.5
3.6
3.5
3.5
3.6
3.7
3.8
3.9
3.9
3.9
3.8
3.8
4.0
3.9
38
3.8
39
3.9
3.7
38
3.8
3.8
3.9
3.8
3.8
38
3.9
3.9
39
39
3.9
0,
Scrubber
Inlet
Oj
(ft)
14.2
14.0
13.8
13.9
13.6
13.1
12.2
13.7
13.8
13.8
13.5
13.9
13.9
14.3
14.2
14.4
14.4
14.2
14.0
13.9
13.6
13.6
13.7
13.8
13.9
13.4
13.6
13.8
13.8
13.5
13.6
139
13.9
138
13.7
137
13.8
138
13.8
137
13.7
137
13.8
13.8
Scrubber
Outlet
Oz
(»)
157
15.8
15.7
15.8
15.6
15.3
14.6
15.7
15.7
15.8
15.5
15.9
15.8
16.1
16.1
16.2
16.2
16.0
15.9
15.8
15.7
15.7
15.7
15.8
15.8
15.5
15.6
15.8
15.8
15.6
15.6
15.9
15.8
15.8
15.7
15.7
15.8
15.8
15.8
15.7
15.7
15.7
158
158
Temperature
Scrubber
Inlet
°F
592
591
591
590
591
593
591
591
588
592
592
593
593
593
593
592
592
593
596
597
597
597
597
595
595
594
594
595
594
593
593
593
593
593
594
594
594
595
596
595
594
595
595
595
595
595
596
595
594
594
594
595
596
596
596
596
Scrubber
Outlet
Op
172
173
265
174
177
174
172
174
172
174
174
175
175
174
172
172
173
175
174
175
175
173
173
172
172
172
174
174
174
173
173
172
172
173
174
175
175
173
172
173
173
173
174
174
175
174
173
172
172
173
Scrubber
Inlet
THC
(ppm)
5.9
4.7
3.5
2.7
2.7
2.1
1.7
1.5
1.2
1.1
0.9
0.8
08
0.7
0.8
0.8
0.7
0.7
0.6
0.4
0.3
0.2
0.1
0.1
0.0
-0.3
-0.5
-0.6
-0.5
-0.6
-0.8
-0.9
- .0
- .0
- .1
- .2
- .2
- .2
- 4
- .6
- 6
- .8
- .7
- .8
Scrubber
Outlet
THC
(ppm)
-0.4
•0.4
0.1
0.8
1.6
1.7
1.4
1.2
1.1
.1
.1
.0
.1
.1
.3
.4
2
.2
.4
.5
.7
.7
.5
.6
.9
.8
.9
2.1
2.0
2.1
2.1
2.2
2.0
2.4
2.3
2.1
1.8
2.2
2.0
2.0
22
c rubber
Inlet
CO
(ppm)
5.2
5.2
4.6
3.5
1.9
2.0
2.2
2.5
2.0
2.2
2.2
3.0
3.3
4.1
5.3
5.8
5.5
4.9
4.4
3.8
3.9
3.9
4.3
3.4
2.7
3.0
3.1
3.0
2.4
2.9
3.6
3.3
3.2
3.2
3.1
3.1
ao
2.9
28
2.8
3.0
2.7
Scrubber
Outlet
CO
(ppm)
2.7
2.9
2.4
1.8
0.8
0.7
0.5
0.5
0.4
0.6
0.3
0.8
0.9
1.4
2.3
2.7
~n
.9
.5
.1
.1
.1
.3
0.8
04
0.6
0.6
0.6
0.1
0.7
1.0
0.8
0.7
0.6
0.7
0.7
0.5
0.5
0.4
0.4
0.5
0.6
Scrubber
Inlet
H,0
(ft)
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Outlet
H,0
(%)
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
005
Iofl9
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
TIME
21:40
2145
21:50
2155
22.00
22-05
22 10
22:15
22:20
22:25
2230
22-35
22.40
22.45
22:50
22:55
23:00
23.05
23.10
23:15
2320
23:25
2330
23:35
23:40
23:45
23-50
23:55
0:00
0:05
0:10
0:15
0:20
0:25
0:30
0:35
0:40
0:45
0.50
0:55
1.00
1:05
:10
:15
:20
•25
:30
35
:40
:45
:SO
55
200
205
2:10
215
COj
Scrubber
Inlet
CO,
(*)
S.I
5.2
5.2
4.9
4.7
4.6
4.7
4.9
4.9
5.1
5.2
5.3
5.4
5.3
5.3
5.2
5.2
5.2
5.4
5.3
5.0
5.2
5.1
4.0
3.6
3.3
3.2
3.1
3.0
3.0
3.2
3.6
4.0
4.4
4.5
4.8
4.8
4.8
4.9
5.0
4.8
4.9
4.5
4.6
4.5
4.6
4.5
4.4
4.5
4.6
4.5
4.5
45
Scrubber
Outlet
CO,
(%)
3.8
3.8
3.8
3.7
3.5
3.5
3.6
3.7
3.7
3.8
3.8
3.9
4.0
3.9
4.0
3.9
3.8
3.8
3.8
3.9
3.8
3.0
2.7
2.5
2.4
2.3
2.3
2.3
2.5
2.7
3.0
3.3
3.4
3.6
3.6
3.7
3.7
3.7
3.6
3.7
3.4
3.4
3.4
3.5
3.4
3.3
3.4
3.5
3.4
3.4
34
Oj
Scrubber
Inlet
0,
(%)
13.9
13.8
13.8
14.2
14.5
14.6
14.5
14.2
14.1
14.0
13.8
13.7
13.6
13.7
13.7
13.8
13.8
13.8
13.6
13.7
14.1
13.8
14.0
15.4
15.8
16.2
16.4
16.5
16.6
16.5
16.3
15.8
15.2
14.8
14.6
14.3
14.2
14.2
14.2
140
14.2
14.1
14.6
14.5
14.6
14.5
14.6
14.7
14.6
14.5
14.6
14.6
14.S
Scrubber
Outlet
0,
(%)
15.9
15.8
15.8
16.0
16.3
163
16.2
16.0
16.0
160
15.9
15.8
15.7
15.8
15.7
15.8
15.9
15.9
15.9
15.8
15.9
16.9
17.2
17.5
17'.6
17.7
17.8
17.7
17.5
17.2
16.8
16.4
16.3
161
16.1
16.0
16.0
15.9
16.1
16.0
16.3
16.3
16.3
16.3
16.3
16.4
16.3
16.3
164
16.4
16.3
Temperature
crabber
Inlet
°F
595
595
595
599
599
598
596
594
592
589
589
589
591
591
591
592
591
590
591
592
592
586
590
592
591
592
591
589
587
585
583
580
577
575
576
577
579
581
582
583
584
584
585
585
586
586
586
586
586
586
586
586
586
586
586
586
crabber
Outlet
°F
175
175
175
174
171
171
171
172
173
173
173
172
171
171
170
170
172
173
172
174
174
172
172
171
171
171
170
169
169
168
167
167
168
166
166
165
163
163
162
162
162
163
163
162
162
163
163
164
164
164
165
164
163
164
164
163
THC
crabber
Inlet
THC
(ppm)
- .9
- .9
-0.9
- 6
- .7
- .8
-2.0
-2.1
-2.1
-2.4
-2.6
-2.7
-2.8
-2.8
-2.9
-3.0
-3.1
-2.9
-3.2
-33
2.3
1.9
1.6
1.5
1.6
1.6
1.5
1.5
1.7
1.8
1.8
1.8
1.6
1.5
1.5
14
13
1.1
1.0
0.9
0.8
0.7
0.7
0.7
0.7
06
0.6
0.6
0.5
0.5
0.5
05
05
Scrubber
Outlet
THC
(ppm)
2.0
25
2.2
20
23
2.2
2.1
2.0
.8
.7
.4
.4
.0
.0
0.8
1.8
1.8
1.6
1.5
1.6
1.4
1.6
1.8
1.8
1.9
1.9
2.2
2.2
2.2
2.1
2.0
1.9
1.9
1.8
1.7
1.6
1.6
1.5
1.5
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
Scrubber
Inlet
CO
(ppm)
3.1
3.0
3.6
44
6.2
8.7
10.2
8.4
7.4
6.1
5.3
4.8
4.1
3.5
3.3
3.1
3.4
3.6
2.8
2.6
3.3
1.9
1.2
2.1
3.9
7.0
11.3
17.9
35.8
68.0
80.3
66.5
54.2
35.4
29.2
18.6
13.9
10.9
8.7
6.4
,5.3
44
5.4
5.5
6.2
58
5.3
62
7 1
62
68
69
64
Scrubber
Outlet
CO
(ppm)
0.7
0.8
1.1
1.5
2.7
4.3
5.3
4.2
3.7
3.0
2.6
2.2
1.6
1.4
1.2
1.8
2.1
2.0
2.0
1.0
0.5
1.2
2.4
4.7
6.9
11.4
23.2
45.2
53.7
44.3
35.9
23.1
18.7
11.8
8.9
7.1
5.4
4.0
3.4
2.8
3.2
3.4
3.9
3.4
3.2
3.8
4.5
3.9
4.3
4.3
3.9
Moisture
Scrubber
Inlet
H,0
(*>
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
c rubber
Outlet
H,0
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
005
0.05
0.05
0.05
0.05
005
2 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
TIME
2.20
2:25
2:30
235
2-40
2:45
2-50
2-55
3:00
3-05
3:10
3:15
3:20
3-25
3:30
3:35
3:40
3:45
3:50
3:55
4.00
4-05
4:10
4:15
4:20
4-25
4:30
4:35
4-40
4-45
4:50
4:55
5-00
505
5:10
5.15
5:20
5:25
5:30
5:35
540
545
5.50
555
600
60S
6:10
6-15
6-20
6:25
630
635
640
645
650
655
CO,
Scrubber
Inlet
CO,
(%)
4.5
4.5
4.5
4.5
4.6
45
4.6
4.5
4.4
4.7
4.7
4.8
4.6
4.4
4.5
4.5
4.5
4.7
4.7
4.5
4.6
4.5
4.5
4.4
4.4
4.4
4.4
4.4
4.6
4.6
4.5
4.5
4.5
4.5
4.6
4.5
4.6
4.6
4.5
4.4
4.5
4.6
4.6
4.6
4.5
4.4
4.5
4.4
4.5
4.4
4.4
4.5
4.5
4.4
44
46
Scrubber
Outlet
CO,
(%)
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.3
3.5
3.5
3.6
3.5
3.3
3.4
34
3.4
3.5
3.5
3.4
3.5
3.4
3.4
3.3
3.3
3.3
3.3
3.3
3.4
3.5
3.4
3.4
3.4
3.4
3.4
3.4
3.5
3.5
3.4
3.3
3.4
3.5
3.5
3.4
3.4
3.3
3.4
3.3
3.4
3.3
3.3
3.4
3.4
3.3
3.3
34
0,
Scrubber
Inlet
0,
(%)
14.6
14.6
14.6
146
14.5
14.5
14.5
14.6
14.7
14.4
14.4
14.3
14.5
14.7
14.6
14.6
14.6
14.4
14.4
14.6
14.4
14.5
14.6
14.7
14.7
14.6
14.7
14.7
14.5
14.4
14.5
14.5
14.5
14.5
14.5
14.6
14.4
14.4
14.6
14.7
14.6
14.4
14.5
14.5
14.6
14.7
14.6
14.7
14.5
14.7
14.7
146
14.6
14.7
14.7
14.5
Scrubber
Outlet
0,
<*)
16.3
16.3
16.4
163
16.3
16.3
16.3
16.3
16.4
16.2
16.2
16.1
16.3
16.4
16.3
16.4
16.3
16.2
16.2
16.4
16.2
16.3
16.4
16.4
16.4
16.4
16.4
16.4
16.3
16.2
16.3
16.3
16.3
16.3
16.3
16.3
16.2
16.2
16.3
164
16.4
16.2
16.3
16.3
16.3
16.4
163
16.4
16.3
164
16.4
16.3
164
16.4
16.4
16.3
Temperature
Scrubber
Inlet
°F
586
586
586
586
586
586
586
586
586
586
586
586
587
586
586
586
586
586
587
586
586
587
586
586
586
586
585
585
585
586
586
586
585
586
585
585
586
586
586
586
586
586
585
586
586
585
585
585
585
585
585
584
584
584
584
584
Scrubber
Outlet
°F
164
163
165
164
164
164
163
163
164
164
164
164
164
163
164
164
164
163
164
165
164
164
163
163
163
164
164
164
164
163
163
163
162
163
163
163
163
163
163
163
164
163
164
164
163
164
163
163
163
163
163
163
163
163
162
164
THC
Scrubber
Inlet
THC
(ppm)
0.4
0.4
0.4
0.4
0.3
0.3
0.3
0.3
0.4
0.3
0.2
0.3
03
0.4
0.3
0.2
0.2
0.1
0.1
0.1
0.0
0.0
0.1
0.1
0.1
0.1
0.1
0.0
0.0
-0.1
0.0
0.0
0.0
-0.1
-0.1
00
-0.1
-0.2
0.0
0.0
0.0
-01
-0.2
-0.2
-0.2
-0.2
-0.1
-0.2
-0.1
-0.2
-0.1
-0.1
-0.1
-0.1
0.0
-0.1
Scrubber
Outlet
THC
(ppm)
1.4
1.4
1.4
14
1.5
1.5
1.4
1.5
1.6
1.5
1.6
.6
.6
6
.7
.7
.7
.7
.9
2.0
1.8
2.0
• 2.1
2.2
2.3
2.3
2.3
2.6
2.5
2.5
2.3
2.3
2.4
2.3
2.4
2.2
2.2
2.2
2.2
2.3
2.3
2.2
2.2
2.5
2.2
2.4
2.3
2.2
2.2
2.3
2.2
2.3
24
2.4
2.4
2.4
CO
Scrubber
Inlet
CO
(ppm)
6.7
6.6
74
6.8
6.9
6.8
6.2
6.7
8.2
7.2
6.5
5.3
4.7
6.6
6.7
6.4
7.2
61
4.7
5.8
4.9
5.3
5.9
6.6
7.1
7.3
7.9
8.6
8.1
6.6
6.9
6.9
7.1
6.9
6.9
72
6.8
6.0
6.3
7.2
7.4
6.4
6.2
6.0
6.0
7.1
7.5
8.0
7.7
7.5
9.0
8.6
10.7
13.4
18.1
18.4
Scrubber
Outlet
CO
(ppm)
4.2
4.1
4.5
4.3
4.2
4.1
38
4.2
5.0
4.4
3.9
3.2
2.9
4.2
4.3
4.0
4.6
4.0
3.0
3.7
3.2
3.4
3.7
4.1
4.5
4.5
4.9
5.4
5.0
4.0
4.2
4.2
4.4
4.2
4.0
4.2
4.2
3.6
4.0
4.4
4.7
4.1
4.0
3.7
3.8
4.4
4.6
5.1
4.7
4.6
5.5
5.4
6.7
8.5
11 6
11.7
Moisture
Scrubber
Inlet
H,0
(»)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
Outlet
H20
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
3 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
TIME
7:00
705
7:10
715
7-20
725
7.30
735
7.40
7:45
750
7:55
800
805
810
8-15
8:20
8:25
8-30
835
8:40
8-45
8:50
8:55
9.00
9-05
9-10
9:15
9:20
9:25
9.30
9:35
940
945
950
9.55
10.00
10:05
10:10
10:15
10:20
10:25
10:30
10.35
10:40
10:45
10.50
10-55
11 00
1105
11 10
11 15
1120
11.25
11.30
11 35
CO,
Scrubber
Inlet
CO,
(*)
4.7
4.9
4.7
5.4
5.5
5.7
5.7
5.7
5.5
5.5
5.5
5.3
5.1
5.2
5.2
5.2
5.3
5.2
5.4
5.3
5.2
5.2
5.4
5.2
5.2
5.3
5.2
5.2
5.3
5.1
5.2
5.2
5.3
5.3
5.4
5.4
5.3
5.2
5.3
5.5
54
Scrubber
Outlet
CO,
(*)
3.6
3.7
3.6
4.0
4.1
4.2
4.2
4.2
4.1
4.1
4.1
3.9
3.8
3.8
3.9
3.9
3.9
3.9
4.0
4.0
4.0
4.0
3.8
3.8
3.8
3.8
3.8
3.9
3.8
3.8
3.9
3.8
3.8
38
3.7
3.7
3.7
3.9
3.8
3.9
3.9
3.8
3.8
3.9
40
3.9
0,
Scrubber
Inlet
0,
<»)
14.3
14.2
•14.4
13.5
13.3
13.1
13.1
13.1
13.3
13.3
13.3
13.6
13.9
13.8
13.8
13.7
13.6
13.7
13.4
13.6
13.8
13.9
13.7
13.9
13.9
13.7
13.9
13.8
13.8
14.0
13.9
13.9
13.7
13.7
13.6
13.7
13.7
13.8
13.7
13.5
13.6
Scrubber
Outlet
0,
(*)
16.2
16.0
16.1
15.6
15.4
15.3
15.3
15.3
15.4
15.5
15.5
15.7
15.8
15.8
158
15.7
15.7
15.7
15.6
15.6
15.7
15.6
15.8
15.8
15.9
15.9
15.9
15.7
15.9
15.9
15.8
15.8
15.8
15.8
16.0
15.9
15.9
15.7
15.8
15.7
15.7
15.8
158
157
156
15.7
Temperature
Scrubber
Inlet
"F
584
563
567
560
560
561
562
562
563
563
562
561
561
561
562
562
562
562
563
563
564
562
564
564
563
563
560
555
556
563
561
564
564
564
564
564
564
565
565
564
564
564
565
565
565
565
565
565
565
565
566
566
541
567
567
568
Scrubber
Outlet
°F
163
165
162
164
163
164
164
164
164
164
166
166
166
166
167
167
167
167
168
168
167
168
168
169
168
168
169
168
169
169
169
169
169
169
166
167
170
170
170
170
169
169
169
169
170
170
170
170
170
170
170
170
170
169
169
170
THC
Scrubber
Inlet
THC
(ppm)
0.0
0.2
0.1
-0.1
-0.3
-0.4
0.4
-0.2
-0.3
-0.4
•0.5
-0.4
•0.3
-0.3
•0.4
•0.4
-0.5
-04
-0.5
-0.5
•0.4
4.2
4.0
3.8
3.7
3.6
3.5
3.5
3.4
3.4
3.3
3.3
3.3
3.3
3.5
3.5
3.4
3.6
3.5
3.3
33
Scrubber
Outlet
THC
(ppm)
2.3
2.6
2.2
2.1
2.0
2.0
2.4
2.6
2.2
2.2
2.1
2.2
2.3
2.1
2.1
2.0
2.0
2.1
2.0
2.1
2.1
2.2
2.3
2.5
2.7
2.8
2.8
2.8
2.7
2.5
2.3
2.1
2.1
2.1
2.1
2.0
2.0
2.0
2.0
2.0
2.0
19
1 8
1.9
CO
Scrubber
Inlet
CO
(ppm)
18.7
16.9
24.6
10.2
6.7
4.1
3.1
2.0
1.8
1.7
1.3
1.5
2.4
2.8
2.6
3.1
2.6
3.3
2.5
2.3
2.5
1.1
2.5
3.0
3.4
5.0
4.3
4.6
4.8
4.8
4.4
4.7
4.5
5.0
5.7
5.6
5.6
5.6
5.3
SO
5.0
5.0
5.3
4.4
3.8
Scrubber
Outlet
CO
(ppm)
12.0
10.9
16.2
5.9
3.7
2.1
1.6
0.9
0.8
0.7
0.5
0.6
.2
.4
.3
.6
.2
.7
.2
.1
.1
0.8
.1
.4
.5
2.1
1.4
0.8
0.9
0.9
•0.3
4.3
3.5
3.7
3.7
3.4
3.3
3.4
3.2
3.6
4.1
3.9
3.8
3.8
3.5
3.3
3.2
3.3
3.5
2.8
2.6
Moisture
Scrubber
Inlet
H,0
(%)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
Outlet
H,0
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
005
005
0.05
0.05
0.05
0.05
0.05
0.05
4 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
11:45
1150
1155
12:00
12:05
12-10
12:15
1220
12:25
12:30
12.35
12-40
12:45
12:50
12:55
13:00
13.05
13:10
13-15
1320
13:25
13:30
1335
13:40
13:45
13:50
1355
1400
14.05
14:10
14:15
14:20
1425
14-30
14.35
1440
1445
1450
14.55
1500
1505
15-10
15-15
1520
1525
15.30
15.35
15:40
15:45
1550
1555
16:00
16.05
16 10
16 IS
C02
Scrubber
Inlet
CO,
(*)
5.2
5.2
5.2
5.3
5.3
5.2
5.1
5.2
5.1
5.3
5.2
5.3
5.3
5.1
5.2
51
5.2
5.2
5.2
5.4
5.3
5.3
5.1
5.2
5.2
5.2
5.2
5.1
5.3
5.1
5.2
5.2
5.3
5.3
5.2
5.3
5.2
5.3
5.3
5.1
5.4
51
5.3
5.2
5.1
5.2
5.1
5.1
5.2
5.3
5.3
52
52
5.1
5.2
53
Scrubber
Outlet
CO,
(%)
3.8
3.8
3.8
3.8
3.8
3.8
3.7
3.7
3.7
3.9
3.8
3.8
3.9
3.7
3.8
37
3.8
3.8
3.8
3.9
3.9
3.9
37
38
3.8
3.7
3.8
3.7
3.8
3.7
3.8
3.8
3.8
3.9
3.8
38
38
3.8
3.8
3.7
3.9
3.7
3.8
3.8
3.7
3.8
3.7
3.7
3.8
3.8
3.8
3.8
3.8
3.7
3.7
38
0,
Scrubber
Inlet
0,
(*> '
138
139
13.8
13.8
13.8
13.8
14.0
13.9
14.0
13.7
13.9
13.8
13.7
14.0
13.9
14.0
13.9
13.8
13.8
13.6
13.6
13.7
13.9
13.9
13.8
13.9
13.8
14.0
13.8
13.9
13.8
13.8
13.7
13.6
13.8
13.7
13.8
13.6
13.7
13.9
13.6
13.9
13.7
13.8
14.0
13.8
13.9
13.9
13.8
13.7
13.7
13.8
13.7
138
13.8
13.6
Scrubber
Outlet
0,
(*)
15.9
15.9
15.8
15.8
15.8
15.8
15.9
15.9
15.9
15.7
15.8
15.8
15.7
15.9
15.9
15.9
15.9
15.8
15.9
15.7
15.7
15.8
15.9
15.9
15.8
15.9
15.8
15.9
15.8
15.9
15.9
15.8
15.8
15.7
15.9
15.8
15.8
15.7
15.8
15.9
15.7
15.9
15.8
15.8
15.9
15.8
15.9
15.9
15.8
15.8
15.8
15.9
15.8
15.9
15.8
15.8
Temperature
Scrubber
Inlet
Op
568
568
568
568
568
569
569
569
569
569
569
568
569
569
569
569
569
569
569
569
569
570
570
570
570
570
570
570
570
570
570
570
570
571
571
570
571
571
572
571
571
571
571
571
571
571
571
571
571
571
571
571
571
571
571
572
Scrubber
Outlet
°F
170
170
171
172
172
171
171
172
170
170
169
170
171
170
172
172
172
173
173
173
173
173
171
172
172
173
174
174
174
174
173
174
173
173
175
174
174
175
174
173
174
174
175
174
174
173
174
173
174
174
174
174
174
174
173
175
THC
Scrubber
Inlet
THC
3.3
3.3
:.4
: .5
: .6
: .5
.6
.5
:.9
:.7
: .7
:.s
: .6
3.6
3.6
3.5
3.5
3.5
3.5
3.6
3.6
3.6
3.6
3.5
3.5
36
3.6
3.5
3.9
3.8
3.6
3.6
3.7
3.6
3.6
3.5
3.6
3.6
3.6
3.6
3.6
3.7
3.6
3.6
3.6
3.7
3.7
3.7
4.1
4.1
4.1
4.0
40
40
40
41
Scrubber
Outlet
THC
2.0
2.1
2.2
2.2
2.3
2.2
2.4
2.5
2.5
2.4
2.4
2.4
2.3
2.2
2.2
2.2
2.3
2.4
2.5
2.5
2.5
2.6
2.6
2.6
2.6
2.7
2.7
2.7
2.7
2.7
2.7
2.8
2.8
2.6
2.6
2.6
2.7
2.7
27
2.7
2.7
2.8
2.8
2.7
2.6
2.6
2.6
26
2.7
29
3.1
3.1
3.2
2.9
3.0
3.0
CO
Scrubber
Inlet
CO
4.2
4.6
4.7
45
4.6
4.2
SO
54
58
5.0
4.9
49
4.2
4.9
5.0
47
5.1
5.0
4.7
4.3
3.9
3.3
3.9
4.4
4.1
4.0
3.9
4.1
4.0
3.9
3.9
4.0
3.9
3.3
3.4
3.2
3.1
29
30
38
2.8
2.8
3.0
2.8
3.3
3.1
3.0
3.3
3.4
2.9
27
29
26
2.7
3.3
26
Scrubber
Outlet
CO
2.6
2.8
3.0
2.8
2.8
2.5
3.0
3.3
3.5
3.1
2.8
2.8
2.3
2.8
2.8
2.9
2.9
2.8
2.6
2.4
2.1
1.9
2.2
2.4
2.0
2.2
2.2
2.4
2.1
2.0
2.1
2.1
2.0
6
.6
.5
.5
.3
.3
.9
.3
.6
.4
.2
.6 •
.5
.5
6
.6
.3
.1
3
2
2
.5
2
Scrubber
Inlet
H2O
(*)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
Outlet
H,0
(»)
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
005
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
5 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
TIME
16:20
16:25
16.30
16:35
16.40
16:45
16-50
16:55
17-00
17:05
17:10
17.15
17:20
17.25
17:30
17:35
17:40
17:45
17:50
17:55
1800
18:05
18:10
18:15
18-20
18:25
18-30
18:35
18:40
18-45
18:50
18:55
19:00
1905
19:10
19:15
19:20
19:25
19:30
19:35
19-40
19:45
19:50
19:55
20:00 •
20-05
20-10
2015
20:20
20.25
20:30
20.35
2040
20-45
2050
20.55
C02
Scrubber
Inlet
CO,
(*)
5.2
S.I
5.3
5.4
5.1
5.1
5.2
5.0
5.1
5.3
5.2
5.2
5.2
5.3
5.3
5.1
5.2
5.3
5.9
5.3
45
4.0
3.4
3.7
3.8
4.1
4.3
5.4
5.3
4.8
4.2
3.9
4.0
4.1
4.2
4.3
4.5
4.8
5.3
5.7
6.7
8.4
9.2
Scrubber
Outlet
CO,
(«)
3.7
3.7
3.8
3.9
3.7
3.7
3.8
3.6
3.7
3.8
3.8
3.8
3.8
3.8
3.8
3.7
3.7
3.8
4.2
3.8
3.2
2.8
2.4
2.5
2.5
2.8
3.0
3.3
2.6
2.5
2.6
2.7
2.8
2.9
3.0
3.3
3.6
39
4.5
5.6
6.2
0,
Scrubber
Inlet
02
(»)
13.8
13.9
13.6
13.5
13.9
13.9
13.7
13.9
13.9
13.6
13.7
13.7
13.7
13.6
13.7
13.9
13.7
13.6
12.9
13.6
14.6
15.4
16.0
15.5
15.3
14.9
14.7
13.4
13.6
14.3
15.1
15.4
15.3
15.2
150
14.8
14.6
14 1
13.5
12.9
11.7
96
90
Scrubber
Outlet
0,
(*)
15.9
15.9
15.8
15.7
15.9
15.9
15.8
16.0
15.9
15.8
15.8
15.8
15.8
15.7
15.8
15.9
15.8
15.7
15.2
15.7
16.5
17.0
17.5
17.3
17.2
16.9
16.7
16.4
17.0
17.1
17.0
16.9
16.8
16.7
165
16.2
15.8
15.4
145
13.0
12.5
Temperature
Scrubber
Inlet
"F
572
571
571
572
572
572
572
572
572
572
572
572
572
572
572
572
572
573
573
573
571
571
563
555
555
558
562
562
562
565
566
568
569
571
569
572
575
576
575
573
571
570
568
567
568
565
561
562
564
567
571
587
Scrubber
Outlet
°F
176
177
177
177
175
176
176
176
173
173
174
174
175
174
173
173
173
174
174
174
175
173
178
185
185
183
179
179
178
178
178
179
180
180
182
182
178
•
173
174
173
171
171
171
170
170
170
170
170
171
170
THC
Scrubber
Inlet
THC
(ppm)
4.0
4.1 '
4.2
4.1
4.1
4.0
4.0
4.0
-3.9
3.9
4.0
4.0
3.9
3.9
3.9
3.9
3.9
4.0
3.8
3.8
3.8
3.7
3.9
4.0
4.0
4.0
4.0
4.0
.6
.3
.3
.6
.5
.5
.5
.7
7
.7
.6
4
2
09
0.6
04
Scrubber
Outlet
THC
(ppm)
30
3 1
3.2
3.1
3.0
3.0
3.0
3.0
3.0
3.1
3.2
3.2
3.3
3.2
3.2
3.1
3.1
3.0
3.0
29
2.8
2.7
2.7
2.8
3.0
3.1
3.1
3.1
.6
.4
5
.6
.6
.6
.6
.6
.4
3
.0
0.7
0.7
CO
Scrubber
Inlet
CO
(ppm)
2.6
2.7
2.5
1.7
2.1
2.5
2.2
2.6
2.6
2.2
2.1
2.3
2.2
2.2
1.6
2.0
1.9
2.1
0.7
0.2
0.3
0.1
3.0
3.8
5.8
7.7
8.4
0.8
0.8
2.3
9.6
20.0
28.0
33.6
37.7
41.9
42.0
34.5
21.1
16.4
7.9
36
62
Scrubber
Outlet
CO
(ppm)
1.2
1.4
12
0.6
0.8
1.3
0.9
1.2
1.2
0.9
1.0
0.8
0.9
08
0.5
0.8
0.6
06
0.1
-0.1
0.0
-0.1
1.2
1.5
2.7
3.7
4.2
3.5
10.4
14.0
19.0
22.6
253
28.5
28.7
23.8
15.5
12.6
7.2
4.3
5.7
Moisture
Scrubber
Inlet
HjO
<»)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.13
0.13
013
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.01
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
Scrubber
Outlet
H,0
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
005
0.05
6 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
,1995
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
. 8/2/95
8/2/95
21-05
21 10
21:15
21.20
2125
2130
21:35
21:40
21:45
21.50
21:55
22.00
22.05
22:10
22 15
22:20
22:25
22:30
2235
22.40
22:45
22:50
22:55
2300
23.05
23.10
23-15
23:20
2325
23:30
23:35
23.40
23.45
23.50
23-55
000
0-05
0:10
0:15
0:20
0.25
0.30
0.35
0:40
0-45
0.50
0-55
00
05
•10
15
.20
25
30
35
COj
Scrubber
Inlet
CO,
<»)
7.5
6.7
6.4
6.2
60
5.8
56
5.5
5.6
5.6
5.5
5.6
5.8
5.7
57
5.8
5.7
5.6
5.8
5.8
5.5
5.5
5.6
5.5
5.5
5.5
5.7
5.6
5.5
5.6
5.6
5.4
5.5
5.5
5.6
5.7
5.6
5.8
5.8
5.9
5.8
5.9
5.8
5.7
5.6
5.1
5.0
5.1
52
5.1
5.1
5.0
5.1
5.2
5.3
5.3
Scrubber
Outlet
CO,
(%)
5.1
4.5
4.3
4.2
4.0
3.9
3.8
3.7
3.8
3.8
3.7
3.8
3.9
3.8
3.9
3.9
3.8
3.8
3.9
3.9
3.7
3.7
3.8
3.7
3.7
3.7
3.9
3.8
3.7
3.7
3.8
3.7
3.7
3.8
3.8
3.8
3.8
3.9
3.9
4.0
3.9
4.0
40
3.8
3.8
3.5
3.4
3.5
3.5
3.5
3.4
3.4
3.5
35
3.6
3.6
0,
Scrubber
Inlet
0,
(»)
11.4
12.1
12.5
12.7
12.9
13.1
13.4
13.4
13.3
13.3
13.5
13.3
13.1
13.2
13.1
13.0
13.2
13.3
13.0
13.1
13.5
13.4
13.3
13.5
13.4
13.4
13.2
13.3
13.5
13.4
13.3
13.5
13.5
13.4
13.3
13.2
13.2
13.1
13.0
12.9
* 13.1
13.0
13.0
13.2
13.4
14.1
142
14.1
140
14.1
14.1
14.2
141
14.0
139
139
Scrubber
Outlet
0,
(%)
14.0
14.6
15.0
15.2
15.4
15.5
15.7
15.7
15.7
15.7
15.8
15.6
15.5
15.6
15.5
15.5
15.6
15.6
15.5
15.5
15.8
15.7
15.6
1S.8
15.8
15.7
15.6
156
15.8
15.8
15.7
15.8
15.8
15.7
15.7
156
156
15.5
15.5
15.4
155
15.4
15.5
15.6
15.7
16.2
163
162
16.1
16.2
162
163
162
161
161
160
Temperature
Scrubber
Inlet
°F
596
588
582
579
579
578
578
577
577
577
577
577
577
577
577
577
577
577
577
577
576
576
576
575
575
575
575
575
575
574
575
574
574
574
574
574
574
574
574
575
575
576
577
576
576
574
572
570
570
568
567
567
566
565
565
565
Scrubber
Outlet
°F
169
169
172
173
170
168
168
170
171
172
173
173
173
173
173
173
173
173
175
175
173
174
174
174
175
175
175
175
175
176
176
175
176
176
175
176
176
176
176
176
176
175
175
175
175
175
175
175
175
174
174
174
174
173
173
173
THC
Scrubber
Inlet
THC
(ppm)
02
0.1
0.0
-01
-0.3
-02
-02
-0.3
-0.3
-04
-04
-0.3
-04
-0.5
-05
-0.5
-04
-0.4
-0.6
•0.6
-O6
•0.6
-0.7
•0.6
-0.5
•0.5
-03
-0.4
-0.5
•OS
-0.7
•0.6
•0.7
-0.5
-0.3
-02
-0.3
-0.3
-0.5
-0.5
-0.5
-0.5
-0.6
•0.7
-0.6
•0.5
-0.3
-02
00
00
0.1
0.1
02
0.3
0.7
0.5
Scrubber
Outlet
THC
(ppm)
0.6
0.4
0.2
0.0
0.6
0.3
-0.1
•0.2
•0.2
-0.1
-0.1
0.0
0.7
0.4
0.6
0.6
0.5
0.4
0.3
0.3
0.8
0.7
0.8
.3
.3
.3
.5
.3
.3
.1
.1
.0
1.1
1.0
0.9
0.8
0.9
0.9
0.9
.1
.1
1
.5
.4
.7
: .0
.9
.9
.8
.9
2.0
20
1.9
25
2.0
20
CO
Scrubber
Inlet
CO
5.5
0.6
0.5
0.5
0.7
0.8
.1
.2
.3
.5
.6
.5
.4
.6
4
.1
.3
.5
.4
.3
.6
.7
.8
2.2
2.5
2.3
1.9
1.6
1.9
2.1
1.9
2.1
2.3
2.3
2.1
2.1
2.0
.9
.7
.4
.2
.1
M.9
.0
.0
5.2
8.4
10.0
9.3
11.6
13.2
14.0
14.4
146
14.3
12.0
Scrubber
Outlet
CO
(ppm)
5.7
2.3
2.2
2.1
2.3
2.3
2.4
2.6
2.7
2.8
2.9
2.9
2.8
2.9
2.8
2.7
2.5
2.6
2.6
2.6
2.6
2.8
2.8
3.1
3.1
3.1
2.9
2.9
2.9
2.8
2.7
2.7
2.8
2.6
2.5
2.5
2.6
2.4
2.2
2.0
2.0
2.1
2.2
2.2
2.2
4.5
6.8
7.7
7.3
8.4
9.7
10.0
10.5
10.7
10.3
9.1
Moisture
Scrubber
Inlet
H2O
(«)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
Scrubber
Outlet
H20
(«)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
005
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
7 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
80/95
80/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
80/95
8/2/95
80/95
80/95
80/95
SO/95
80/95
SO/95
80/95
80/95
8O/95
80/95
SO/95
8O/95
8/2/95
SO/95
8/2/95
80/95
8/2/95
80/95
SO/95
8/2/95
8O/9S
TIME
140
1:45
1-50
1.55
200
2:05
2:10
2:15
2-20
2:25
2:30
2:35
2:40
2:45
2:50
2-55
3.00
3.05
3:10
3.15
3:20
3:25
3:30
3:35
3:40
3:45
3:50
3:55
4:00
4-05
4:10
4.15
4-20
4-25
4:30
4:35
4-40
4-45
4:50
4.55
5-00
5. 05
5:10
5:15
5:20
5:25
5-30
5:35
5:40
5:45
5-50
5 '55
600
605
610
615
C02
Scrubber
Inlet
CO,
<%)
S.O
5.2
5.3
5.2
5.2
5.4
5.6
5.7
6.0
6.1
5.7
5.9
5.9
6.0
5.5
5.5
5.6
5.7
5.9
5.8
5.6
5.5
5.6
5.5
5.4
5.3
5.4
5.5
5.8
5.7
5.6
5.6
5.7
5.7
5.6
5.5
5.5
5.4
5.6
5.5
5.6
5.4
5.5
5.6
5.8
6.0
5.9
6.2
5.9
5.8
57
5.5
5.7
5.9
5.8
57
Scrubber
Outlet
CO,
(%)
3.4
3.5
3.6
3.5
3.6
3.7
3.8
3.9
4.1
4.2
3.9
4.0
4.0
4.1
3.8
3.8
3.8
3.9
4.0
4.0
3.8
3.7
3.8
3.8
3.7
3.6
3.7
3.8
4.0
3.9
3.9
3.8
3.9
3.9
3.8
3.8
3.7
3.7
3.8
3.8
3.8
3.7
3.7
3.8
4.0
4.1
4.0
4.2
4.0
4.0
3.9
3.8
3.9
40
4.0
3.9
0,
Scrubber
Inlet
0,
(%)
14.2
14.1
13.9
14.0
14.0
13.8
13.5
13.3
12.9
12.8
13.3
13.1
13.1
12.9
13.5
13.6
13.4
13.2
13.0
13.1
134
13.6
13.4
13.5
13.7
13.8
13.6
13.5
13.1
13.3
13.4
13.4
13.3
13.2
13.5
13.6
13.6
13.7
13.5
13.5
13.4
13.6
13.6
13.4
13.1
12.9
13.0
12.7
13.0
13.2
13.4
13.5
13.2
130
13.1
133
Scrubber
Outlet
0,
(%)
16.3
16.2
16.0
16.1
161
15.9
15.7
15.6
15.3
15.2
15.7
15.5
15.5
15.4
15.8
15.8
15.7
156
15.4
15.5
15.7
15.9
15.7
15.8
15.9
16.0
15.9
15.8
15.5
15.6
15.7
15.7
15.6
156
158
15.8
15.9
16.0
15.7
15.8
15.7
15.9
15.8
15.7
15.5
154
15.4
15.3
15.5
15.6
15.7
15.8
156
155
15.5
156
Temperature
Scrubber
Inlet
"F
564
564
563
563
563
563
563
563
564
565
565
565
566
567
567
566
566
566
566
567
567
566
566
566
566
565
565
565
565
565
565
565
566
566
566
566
566
565
565
565
565
565
565
565
566
569
571
571
570
570
570
570
570
570
571
571
Scrubber
Outlet
°F
173
173
173
173
173
172
172
172
173
173
174
174
174
175
175
174
175
176
174
175
175
176
176
176
176
175
176
176
175
176
176
176
175
176
175
176
176
176
175
176
177
175
177
176
177
177
176
178
177
177
176
177
178
177
176
176
THC
Scrubber
Inlet
THC
(ppra)
0.6
0.9
0.7
0.3
0.4
0.2
01
03
-0.1
0.1
-0.1
00
0.1
-0.2
•0.1
0.0
-0.2
0.0
-0.2
-0.2
-0.2
•0.4
•0.5
•0.4
-0.3
-02
-0.3
-0.3
-0.5
-0.1
-0.3
-02
-0.4
-06
-06
-04
-0.4
-02
-04
•05
-0.6
-05
-04
•0.4
-05
-0.5
-0.6
-0.8
-0.8
-0.9
-0.9
-08
-07
-0.8
-09
-0.9
Scrubber
Outlet
THC
(pprn)
2.3
2.5
2.5
2.4
2.6
2.8
2.9
3.0
3.2
3.1
3.2
3.2
3.1
3.2
3.3
3.2
3.4
3.5
3.5
3.4
3.5
3.6
3.6
3.9
4.0
4.2
4.2
4.4
4.2
4.1
4.2
4.2
4.2
4.1
4.2
4.1
4.3
4.3
4.2
42
4.2"
4.1
41
39
3.9
3.4
3.2
2.9
2.7
26
26
24
2.5
23
2.2
2 1
CO
Scrubber
Inlet
CO
(ppm)
15.3
16.6
15.1
15.1
14.1
14.5
13.0
10.7
8.4
5.2
6.1
4.8
43
36
3.8
4.7
4.9
4.6
3.8
2.9
3.3
4.3
4.2
4.4
4.5
5.7
5.6
6.3
5.0
4.1
3.8
4.6
4.3
3.6
3.9
4.3
4.6
5.1
4.9
5.5
4.9
5.7
74
5.7
5.9
4.9
44
3.4
3.2
3.1
3.3
3.8
3.8
32
3.1
32
Scrubber
Outlet
CO
(ppm)
11.3
12.1
11.1
10.9
10.1
10.5
9.3
8.0
6.6
4.4
4.8
4.0
3.7
3.1
3.5
4.1
4.1
4.1
3.4
2.9
3.1
3.8
3.8
4.0
3.8
4.6
4.8
5.2
4.4
3.9
3.7
4.1
3.9
3.2
36
3.7
3.9
4.5
43
4.5
4.1
45
5.7
4.7
4.8
4.1
3.8
3.1
3.0
2.8
3.1
3.3
3.4
2.9
3.0
30
Moisture
Scrubber
Inlet
H20
(*)
0.
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0 14
Scrubber
Outlet
H20
(«)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
8 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8n/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
TIME
«
6:20
625
630
6:35
640
6.45
6-50
655
7-00
7.05
7:10
7:15
720
7.25
7.30
7:35
7:40
7:45
7-50
755
800
8:05
8:10
8.15
820
825
8:30
8:35
8:40
8.45
8:50
8.55
9:00
9:05
9:10
9:15
9:20
9:25
9:30
9:35
9-40
9:45
9:50
9:55
10.00
10.05
10:10
10-15
1020
1025
1030
1035
1040
10.45
1050
1055
C02
Scrubber
Inlet
CO,
(%)
5.6
5.5
5.5
5.8
5.6
5.7
6.1
5.7
5.5
5.6
5.7
5.7
5.6
4.8
4.9
5.2
5.5
5.7
5.5
5.1
4.7
3.8
3.4
3.4
3.5
3.7
3.9
SO
S.I
4.9
4.9
S.O
5.0
S.O
S.O
4.9
S.O
4.9
4.9
49
4.9
4.9
4.9
5.1
S3
5.3
Scrubber
Outlet
C02
(»)
3.8
3.8
3.8
4.0
3.8
3.9
4.1
3.8
3.8
3.8
3.9
3.9
3.8
3.3
3.3
3.5
3.7
3.1
3.7
3.5
3.2
2.5
2.3
2.2
2.3
2.S
2.6
2.8
3.1
3.2
3.4
3.S
3.6
3.6
3.6
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
34
3.3
3.3
3.5
36
3.6
0,
Scrubber
Inlet
02
(*)
13.4
13.6
13.5
13.2
13.S
13.3
12.8
13.3
13.6
13.4
13.3
13.3
13.4
14.S
14.2
13.8
13.3
13.1
13.4
13.9
14.4
15.7
16.1
16.1
1S.9
1S.6
1S.4
13.9
14.0
14.1
14.1
14.0
14.0
14.0
14.1
14.2
14
14.
14.
14
14.
14.2
142
139
13.7
136
Scrubber
Outlet
Oj
(%)
15.7
1S.8
IS 8
1S.6
1S.8
IS 6
1S.3
15.7
1S.8
15.7
157
15.7
15.7
16.S
16.3
16.0
15.7
16.7
1S.8
16.1
16.5
17.3
17.7
17.7
17.S
17.3
17.2
16.9
16.S
16.3
16.0
16.0
1S.9
15.9
1S.9
15.9
16.1
16.2
16.2
16.2
16.2
16.2
162
162
16.2
163
16.3
16.1
159
15.9
Temperature
Scrubber
Inlet
°F
571
571
571
571
571
572
573
573
572
573
573
573
573
573
574
575
577
579
579
579
579
S78
S76
574
573
573
572
570
572
S73
573
574
S74
S75
575
S78
579
578
579
579
579
579
579
579
578
579
579
579
579
579
579
578
578
578
579
579
Scrubber
Outlet
°F
176
177
176
177
177
177
178
178
177
177
177
177
177
177
177
178
178
177
178
178
176
174
175
175
174
173
171
168
168
167
167
167
168
167
168
168
168
167
166
165
168
168
169
168
168
167
167
170
170
170
171
171
170
170
171
170
THC
Scrubber
Inlet
THC
(ppm)
-1.0
-09
- .0
- 0
- 0
- .0
- 1
-08
-0.8
-0.7
-0.8
- .0
- 2
- .0
-0.9
- .0
- .1
- .2
-0.9
- .1
- .2
- .1
-0.8
-0.8
•0.8
-0.7
-0.8
-0.7
-0.4
0.0
0.0
2.6
2.6
2.4
2.3
2.2
2.2
2.1
2.1
2.0
2.0
2.1
20
20
20
2.1
2.1
2.1
20
Scrubber
Outlet
THC
(ppm)
2.2
22
2.2
2.1
2.1
2.1
2.0
2.0
2.0
2.1
2.1
2.2
23
2.4
2.7
2.9
2.9
1.9
4.3
5.1
4.1
4.0
43
4.6
4.9
4.9
4.3
4.2
3.8
3.5
3.2
3.4
3.3
3.3
2.5
2.5
2.5
2.4
24
2.5
2.4
23
CO
Scrubber
Inlet
CO
(ppm)
3.2
3.7
4.1
3.2
4.1
3.7
2.7
3.0
3.5
3.2
3.2
2.5
2.8
5.5
4.1
2.5
1.9
1.7
1.7
1.3
1.1
2.0
6.6
10.7
12.6
15.0
19.7
15.1
14.8
10.8
8.5
2.1
25
2.7
3.1
2.9
2.7
2.9
2.9
3.0
2.8
3.0
30
3.0
3.1
3.4
5.0
4.0
3.0
29
Scrubber
Outlet
CO
(ppm)
2.9
3.2
3.5
29
3.4
3.4
2.6
2.9
33
30
3.1
2.6
2.8
43
3.8
3.2
2.8
2.6
2.4
2.4
2.5
2.9
5.9
8.5
9.9
11.4
14.4
15.2
11.5
8.7
7.3
6.4
5.3
4.6
4.1
09
0.9
0.7
0.8
0.9
0.9
1.0
0.8
0.7
0.6
06
0.8
09
06
0.7
06
Moisture
Scrubber
Inlet
H20
(%)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
Scrubber
Outlet
H20
(*)
0.0
00
00
0.0
00
0.0
0.0
0.0
00
0.0
0.0
0.0
0.0
0.0
005
005
0.05
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
0.05
o.os
o.os
o.os
o.os
o.os
oos
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
oos
oos
o.os
o.os
oos
oos
o.os
o.os
9 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
TIME
11 00
11.05
11-10
11-15
11.20
11.25
11.30
11:35
11.40
11-45
11:50
11:55
12:00
1205
12:10
12:15
1220
12:25 '
12:30
12:35
12:40
12:45
12.50
12.55
13-00
1305
13.10
13-15
1320
13.25
13-30
13-35
13-40
13.45
13:50
13-55
14:00
1405
14-10
14:15
14-20
1425
1430
14:35
14.40
14:45
14-50
14:55
1500
1505
1510
15 15
1520
1525
1530
1535
C02
Scrubber
Inlet
CO,
<%)
5.4
5.2
5.2
5.1
5.1
5.1
5.0
4.9
5.0
4.9
4.9
4.9
5.0
5.1
5.2
5.2
5.4
S.I
5.3
5.5
5.4
5.4
5.3
5.4
5.4
5.3
5.1
5.2
4.9
5.2
5.5
5.4
5.6
5.7
5.8
5.6
5.6
5.9
5.9
5.7
5.6
5.5
5.6
5.8
5.7
5.8
5.7
5.6
5.6
Scrubber
Outlet
CO,
<»>
3.7
3.5
3.6
3.5
3.5
3.5
3.5
3.4
3.4
3.4
3.4
3.4
3.4
3.5
3.5
36
3.7
3.5
3.6
3.8
3.7
3.7
3.7
3.7
3.7
3.7
3.5
3.6
3.4
3.5
3.8
3.7
3.8
4.0
4.0
3.8
3.8
4.1
4.0
3.9
3.8
3.8
3.9
4.0
3.9
4.0
4.1
4.1
4.1
0,
Scrubber
Inlet
0,
<*)
13.6
13.8
13.8
13.9
13.9
13.9
14.0
14.
14.
14.2
14.
14.
14.
13.8
13.8
13.8
13.5
13.9
13.7
13.4
13.5
13.5
13.6
13.6
13.5
13.6
13.9
13.9
14.1
13.8
13.5
13.5
13.3
13.1
13.0
13.3
13.3
12.9
12.9
13.1
13.3
13.4
13.2
13.0
13.1
12.9
13.1
13.2
132
Scrubber
Outlet
0,
<*)
15.9
16.0
15.9
16.0
16.0
16.0
16.1
16.2
16.2
16.2
16.2
16.2
16.2
16.0
16.0
16.0
15.8
16.0
15.9
15.7
15.8
15.8
15.9
15.8
15.8
15.9
16.1
16.0
16.2
16.0
15.7
15.8
15.6
15.5
15.4
15.7
15.7
15.4
15.4
15.6
15.7
15.7
15.6
15.5
15.5
15.4
15.5
15.5
155
Temperature
Scrubber
Inlet
°F
580
580
580
580
580
580
580
580
580
580
580
580
579
580
581
581
582
582
582
582
582
583
583
583
583
583
583
582
582
582
582
583
583
584
584
583
582
584
585
585
585
585
585
585
585
586
586
585
580
584
583
582
581
582
582
583
Scrubber
Outlet
°F
169
169
168
169
169
168
168
168
168
167
169
170
170
170
170
170
171
169
171
172
172
172
172
171
172
172
171
172
174
174
173
173
173
172
174
175
175
174
174
174
175
173
175
177
177
177
177
176
177
176
176
176
176
180
179
178
THC
Scrubber
Inlet
THC
(ppm)
2.0
2.0
2.1
21
2.1
2.2
2.1
2.1
2.1
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.3
2.4
23
2.5
2.4
2.4
2.4
2.4
23
2.3
2.4
2.4
2.6
2.5
2.5
2.4
2.4
2.4
2.3
2.4
2.4
24
2.4
25
2.4
2.4
24
24
2.4
19
1.8
1.6
Scrubber
Outlet
THC
(ppm)
24
2.7
2.5
2.6
2.5
2.3
23
2.4
2.2
2.2
2.2
2.1
20
2.0
2.3
2.5
2.4
2.3
2.4
2.2
2.2
2.0
2.1
2.2
2.2
2.0
2.0
2.0
2.1
2.2
2.1
2.1
2.3
2.3
2.4
2.2
2.0
1.9
1.8
1.8
1.8
1.9
2.1
CO
Scrubber
Inlet
CO
(ppm)
2.2
2.4
2.4
2.2
2.2
2.0
1.9
2.1
2.1
25
2.6
2.7
2.6
2.0
.3
.6
.3
.6
.8
.2
.2
.2
.4
.6
.5
.3
.8
2.1
2.4
2.3
2.2
2.0
2.0
1.5
1.1
1.2
1.2
1.3
0.8
1.1
1.1
1.2
1.2
1.2
1.1
0.9
16
15
1.6
Scrubber
Outlet
CO
(ppm)
0.5
0.5
0.5
0.3
0.3
0.3
0.4
0.3
0.2
0.3
0.1
0.2
0.3
0.2
0.2
0.2
0.2
0.2
0.2
0.1
0.0
0.5
0.5
0.5
0.4
0.5
0.5
0.5
0.4
0.4
0.5
0.5
0.3
0.5
0.4
0.3
0.3
0.4
0.4
0.5
0.5
0.6
0.6
0.7
0.4
0.4
0.5
0.5
0.4
0.6
0.4
Moisture
Scrubber
Inlet
*H,O
(»)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
Scrubber
Outlet
H,0
(»)
00
0.0
0.0
0.0
0.0
0.0
00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
005
0.05
0.05
0.05
0.05
0.05
005
005
0.05
005
005
0.05
005
005
10 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/2/95
8/2/95
8/2/95
8/2/93
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
80/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8T2/95
8/2/95
8/2/95
8/2/95
8/2/95
80/95
8/2/95
80/95
80/95
SO/95
SO/95
SO/95
80/95
SO/95
SO/95
SO/95
8/2/95
8/2/95
80/95
SO/95
TIME
1540
15.45
15-50
15.55
16.00
16:05
16 10
16-15
16:20
1625
16:30
16:35
16:40
16.45
16:50
16:55
17-00
17-05
17:10
17:15
17:20
17:25
17:30
17-35
17-40
17:45
17.50
17:55
18.00
18:05
18:10
18:15
18.20
18:25
18:30
18-35
1840
18:45
18-50
1855
19.00
1905
1910
19.15
19:20
19:25
19-30
19.35
1940
19:45
1950
19:55
2000
2005
2010
20-15
CO,
Scrubber
Inlet
CO,
<*)
S.4
5.7
5.5
5.6
5.6
5.5
5.4
5.6
5.6
5.4
5.6
5.9
5.9
5.9
6.1
6.2
5.6
5.5
5.5
5.5
5.6
5.5
5.8
6.4
6.1
5.6
5.6
5.8
5.3
5.1
5.0
5.2
5.5
5.7
5.4
5.5
5.5
5.7
5.4
5.5
58
5.6
5.6
5.8
5.7
5.5
5.6
5.6
5.6
5.6
5.6
5.7
5.6
5.6
5.6
5.5
Scrubber
Outlet
CO,
(*)
4.0
4.2
4.1
4.1
4.1
4.0
4.0
4.1
4.1
3.9
4.1
4.3
4.3
4.3
4.4
4.5
4.1
4.0
4.0
4.0
4.1
4.0
4.2
4.6
4.4
4.1
4.1
4.3
3.9
3.8
3.6
3.8
4.1
4.2
4.0
40
4.1
4.2
3.9
4.0
4.3
4.2
4.1
4.2
4.2
4.1
4.1
4.1
4.1
4.1
4.1
4.2
4.1
4.1
4.1
4.0
0,
Scrubber
Inlet
02
(%)
13.4
13.0
13.3
13.2
13.2
13.4
13.4
13.2
13.2
13.5
132
12.8
12.8
12.9
12.6
12.5
13.2
13.4
13.4
13.4
132
13.3
13.0
12.2
12.6
13.3
13.3
13.1
13.7
13.9
14.1
13.7
13.3
13.2
13.5
13.4
13.4
13.2
13.6
13.4
13.0
13.3
13.3
13.1
13.2
13.4
13.3
13.3
13.3
13.3
13.3
13.2
13.3
13.3
13.3
13.4
Scrubber
Outlet
0,
(«)
15.6
15.3
15.5
15.5
15.5
15.6
15.6
15.5
15.5
15.7
15.5
15.2
15.2
15.2
15.1
15.0
15.5
15.6
156
15.6
15.5
15.6
15.3
14.8
15.0
15.5
15.5
15.3
15.7
15.9
16.0
15.8
15.5
15.4
15.6
15.5
15.5
15.4
15.7
15.6
15.3
15.4
15.4
15.3
15.4
15.5
15.5
155
15.5
15.5
15.5
15.4
154
15.4
15.4
15.6
Temperature
Scrubber
Inlet
°F
583
583
583
583
583
583
583
583
583
583
583
584
584
584
586
586
586
586
587
587
587
587
587
588
591
593
593
593
593
591
591
589
590
591
591
590
590
591
591
591
592
592
592
592
593
593
593
593
593
593
592
593
593
593
593
593
Scrubber
Outlet
°F
178
177
176
178
177
177
176
176
176
176
176
176
178
176
177
177
178
178
177
178
177
179
179
178
177
175
175
176
175
175
175
176
175
176
175
175
174
175
175
175
175
174
175
175
175
174
175
175
175
175
174
175
175
174
175
176
THC
Scrubber
Inlet
THC
(ppm)
1.5
1.4
1.5
1.4
1.4
1.5
1.5
1.4
1.4
1.6
1.6
1.7
1.7
1.7
1.6
1.6
1 6
1.5
1.6
1.7
1.9
1.8
1.6
1.4
1.4
1.5
1.6
1.5
1.6
1.6
1.7
1.7
1.7
1.7
1.7
1.6
1.6
1.6
1.7
1.7
1.6
1.7
1.7
1.8
1.8
1.8
1.8
1.8
1.8
1.8
19
19
2.0
2.1
2.0
1.8
Scrubber
Outlet
THC
(ppm)
2.0
.9
.7
.7
.8
.7
.7
.8
.9
2.0
2.1
2.1
2.3
2.4
2.5
2.0
2.1
2.3
2.4
2.3
2.1
2.0
1.9
2.1
2.1
2.1
2.0
2.0
2.2
3.2
2.9
3.0
2.7
2.5
2.3
2.6
2.4
2.7
2.6
2.7
3.0
3.2
32
3.1
3.4
3.3
34
3.5
3.5
3.6
38
3.6
3.6
3.4
CO
Scrubber
Inlet
CO
(ppm)
1.8
1.8
1.7
1.8
1.6
1.8
1.8
1.9
1.8
2.2
2.1
1.7
1.7
1.6
1.5
1.2
1.3
1.4
1.5
1.6
1.4
1.5
1.3
1.1
0.8
1.2
1.1
1.0
1.1
1.7
2.2
2.1
1.7
1.4
1.6
1.7
1.7
1.5
1.9
1.9
1.6
1.7
' 1.7
1.6
1.5
1.6
1.5
1.7
1.6
1.6
1.7
1.5
1.4
1.1
1 1
1.2
Scrubber
Outlet
CO
(ppm)
0.4
0.3
0.3
02
0.3
0.3
03
0.4
0.2
0.2
0.3
0.0
-0.2
-0.2
-0.3
-0.5
-0.4
-0.4
-0.4
-0.3
-0.5
-0.4
-0.5
-0.7
-0.9
-0.8
-0.8
-0.8
-0.9
-0.5
-0.2
-0.3
•0.6
-0.8
-0.7
-0.5
•0.3
•0.5
-0.3
-0.3
-0.5
-0.3
-0.2
-0.3
-0.4
•0.2
-0.4
-0.4
-0.4
-04
•0.3
-0.4
-0.4
•0.5
-04
-0.5
Moisture
Scrubber
Inlet
H20
(*)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
014
0.14
0.14
0.14
0.14
0.14
014
014
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
014
0.14
0.14
Scrubber
Outlet
H,0
(«)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
00
0.0
0.0
0.0
00
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
005
0.05
11 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
1 DATE 1
8/2/95
8/2/95
8n/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
80/95
8/2/95
8/2/95
8/2/95
8/2/95
80/95
SO/95
8/2/95
8/2/95
80/95
SO/95
8/2/95
SO/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
TIME
2020
20-25
20-30
20-35
20-40
2045
20-50
20.55
21:00
2105
21:10
21.15
21:20
21.25
21:30
21.35
21:40
21:45
2150
21:55
22.00
22:05
22.10
22:15
22:20
22:25
22:30
22:35
22:40
22:45
22.50
22:55
2300
23:05
23:10
23:15
2320
23:25
23:30
2335
2340
23-45
23:50
23-55
0.00
005
010
0.15
0-20
025
0-30
035
0:40
045
0.50
CC
Scrubber
Inlet
C02
(%)
5.1
S.2
5.3
5.4
5.5
5.4
5.4
5.5
5.6
5.7
5.5
5.5
5.5
5.9
6.0
5.8
5.7
5.7
5.5
5.5
5.4
5.3
5.3
5.5
5.7
5.5
5.3
5.5
5.4
5.7
5.8
5.7
5.6
5.7
5.4
5.5
5.7
59
5.8
5.6
5.6
5.7
5.4
5.3
Scrubber
Outlet
CO,
(»)
3.8
3.8
3.9
4.0
4.0
3.9
4.0
4.0
4.2
4.2
4.1
4.1
4.1
3.9
3.9
4.0
4.2
4.3
4.2
4.1
4.1
4.0
3.9
3.9
3.8
3.8
3.9
4.1
3.9
3.8
4.0
3.9
4.1
4.1
4.1
4.0
4.1
3.9
4.0
4.1
4.2
4.1
40
4.0
4.1
3.9
3.8
0,
Scrubber
Inlet
Oj
<%)
13.9
13.8
13.7
13.5
13.4
13.6
13.5
13.5
13.2
13.2
13.4
13.4
13.4
12.9
12.9
13.1
13.3
13.2
13.4
13.5
13.6
13.7
13.8
13.5
13.2
13.5
13.7
13.4
13.6
13.3
13.1
13.2
13.4
13.3
13.6
13.5
13.3
13.0
13.1
13.4
13.3
13.2
13.6
13.7
Scrubber
Outlet
0,
(ft)
159
15.8
15.7
156
15.6
15.7
15.6
15.6
15.4
15.4
155
15.5
15.5
15.6
15.7
15.5
15.2
15.2
15.3
15.4
15.4
15.5
15.6
15.7
15.7
15.8
15.6
15.4
15.6
15.7
15.6
15.7
15.4
15.3
15.4
15.5
15.5
157
15.6
15.5
15.3
15.4
15.6
15.5
15.4
157
158
Tempei
Scrubber
Inlet
"F
592
592
591
592
592
592
592
591
592
592
592
592
592
590
592
592
591
592
592
591
592
592
593
594
594
593
593
593
593
593
593
592
592
592
592
592
592
592
592
592
592
592
592
592
592
592
593
593
593
592
593
592
592
ature
Scrubber
Outlet
"F
175
174
174
174
174
175
173
173
174
173
174
174
174
174
172
173
175
175
175
174
174
174
175
173
173
174
173
173
172
172
173
171
172
171
172
171
171
171
172
172
171
173
172
172
172
172
171
171
171
172
171
172
172
170
Scrubber
Inlet
THC
(ppm)
1.8
.7
.7
.7
.6
.6
.6
.6
.5
.5
.5
.5
.4
2.5
2.6
2.6
2.7
2.8
2.8
3.0
3.0
3.0
3.0
2.9
2.9
2.9
2.9
2.9
2.8
2.7
2.6
2.6
2.7
2.7
2.8
2.7
6.4
47
35
3.0
27
2.6
2.6
2.6
Scrubber
Outlet
THC
(ppm)
3
3.
3.
3.
3
3.2
3.2
3.3
3.4
3.4
3.3
3.4
2.2
2.2
2.2
2.1
1.9
1.8
1.7
1.4
1.4
1.3
1.1
1.1
1.4
1.2
0.9
1.0
0.9
0.8
08
0.7
0.7
0.8
0.7
0.8
0.8
0.8
0.9
0.9
0.8
0.9
0.8
0.8
0.7
0.7
Scrubber
Inlet
CO
(ppm)
1.6
2.0
21
1.9
1.5
1.6
1.7
1.8
1.7
1.1
1.1
1.2
1.0
0.7
0.9
0.8
0.5
0.6
0.7
0.8
0.8
1.3
0.8
1.1
1.0
0.7
0.8
1.0
1.1
1.2
0.9
0.7
0.7
0.8
0.7
1.1
1.1
0.9
0.6
0.5
0.6
0.6
0.5
0.6
09
Scrubber
Outlet
CO
(ppm)
-0.5
-0.1
-0.2
-0.2
-0.4
-0.5
-0.4
-0.2
-0.3
-0.6
-0.5
-0.5
-0.4
-0.3
0.0
-0.3
-0.5
-0.4
-0.5
-0.4
-0.5
-0.3
-0.4
-0.1
-0.3
0.1
0.1
-0.3
-0.4
-0.3
•0.3
0.1
•0.1
-0.4
•0.5
-0.5
-0.6
-03
-0.2
-0.5
-0.6
-0.6
-0.6
-0.7
•0.7
-0.7
-05
Scrubber
Inlet
H20
(»)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
013
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
Outlet
H20
<«)
0.0
0.0
0.0
0.0
0.0
00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
005
0.05
005
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
005
12 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
SO/95
8/3/95
8/3/95
8/3/95
80/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
80/95
SO/95
8O/95
SO/95
SO/95
80/95
SO/95
SO/95
80/95
SO/95
80/95
SO/95
80/95
8/3/95
8/3/95
8/3/95
80/95
SO/95
SO/95
80/95
SO/95
80/95
8/3/95
8/3/95
05
•10
.15
.20
:25
:30
:35
.40
45
.50
55
200
205
210
2.15
2.20
2-25
230
235
240
2.45
2:50
255
3.00
305
3:10
3:15
320
325
3:30
335
340
3:45
350
3:55
400
4:05
4:10
415
4.20
425
430
4:35
440
445
450
4-55
500
505
510
5 15
520
525
530
535
CO,
Inlet
CO,
(%)
5.3
S.I
4.8
5.3
5.7
5.8
5.4
5.4
5.4
n
5.1
5.1
5.2
5.1
5.2
5.1
5.1
53
5.1
5.1
5.3
5.2
5.3
5.3
5.0
5.1
5.2
4.9
5.0
5.1
5.3
5.1
sT~
5.1
5.2
5.1
5.0
5.1
5.1
5.3
5.0
5.0
4.9
5.0
4.9
5.1
5.0
49
5.0
5.0
4.9
4.7
4.7
5.0
4.9
5 1
Scrubber
Outlet
CO,
(»)
3.8
3.7
3.4
3.8
4.1
42
3.9
3.8
3.8
3.6
3.6
3.7
3.7
3.7
3.7
3.7
3.7
3.8
3.7
3.7
3.8
3.7
3.9
3.8
3.6
3.7
3.7
3.5
3.6
3.7
3.8
3.6
3.8
3.6
3.7
3.6
3.6
3.7
3.7
3.8
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.5
3.6
3.6
3.5
3.4
3.4
3.6
3.5
3.7
0,
Scrubber
Inlet
0,
(%)
13.8
13.9
14.3
13.7
13.1
13.1
13.6
13.7
13.7
14.2
14.1
14.1
14.0
14.2
14.0
14.1
14.1
13.9
14.1
14.1
13.9
14.0
13.8
13.9
14.3
14.1
14.0
14.4
14.2
14.1
13.9
14.2
14.0
14.2
14.1
14.2
14.3
14.1
14.1
13.9
14.3
14.3
14.3
14.2
14.3
14.2
14.3
14.3
14.3
14.3
14.4
14.6
146
14.3
14.4
14 1
Scrubber
Outlet
0,
(*)
15.8
15.9
16.2
15.8
15.4
15.3
15.7
15.7
15.8
16.1
16.1
16.0
16.0
16.1
16.0
16.0
16.0
15.9
16.0
16.0
15.9
16.0
15.8
15.9
16.1
16.0
16.0
16.2
16.1
16.0
15.8
16.1
15.9
16.1
16.0
16.1
162
16.0
16.0
15.9
16.2
16.1
162
16.1
16.2
16.1
16.2
16.2
16.2
16.2
16.2
164
16.3
16.1
16.3
16.0
Temperature
Scrubber
Inlet
°F
592
591
590
589
590
591
591
591
591
587
585
584
583
583
583
583
582
582
582
582
582
582
582
582
582
582
582
581
581
581
581
581
581
581
581
581
580
580
580
580
580
580
580
580
580
579
580
579
579
579
579
579
578
578
578
578
Scrubber
Outlet
°F
171
170
170
171
170
170
169
170
170
170
169
169
169
169
170
170
168
169
168
168
169
170
169
168
168
168
168
168
169
169
168
168
167
168
167
167
167
167
168
168
168
167
167
166
167
168
168
167
167
167
166
167
167
167
167
166
THC
Scrubber
Inlet
THC
(ppm)
2.6
2.5
2.6
2.5
2.4
2.3
2.3
2.3
2.4
2.5
2.5
2.5
2.4
2.5
2.4
2.4
2.4
2.4
2.4
2.4
2.3
2.6
2.4
2.4
2.4
2.3
2.3
2.4
2.3
2.4
2.3
2.4
2.3
2.4
2.3
2.4
2.4
2.3
2.4
2.3
2.3
2.3
2.3
2.4
2.5
2.3
2.3
2.4
2.2
2.2
2.2
2.2
2.4
2.2
2.4
2.3
Scrubber
Outlet
THC
0.7
08
0.7
0.7
0.6
0.6
0.5
0.6
0.6
0.7
0.7
0.7
0.6
0.7
0.6
0.6
0.6
0.5
0.5
0.6
0.6
0.7
0.6
0.5
0.6
0.6
0.6
0.7
0.7
0.6
0.7
0.7
0.7
0.7
0.7
0.6
0.6
0.6
0.7
0.6
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.8
0.8
0.8
0.9
0.8
0.9
0.9
0.9
CO
Scrubber
Inlet
CO
0.8
1.7
2.6
2.2
1.2
0.9
1.0
1.4
1.8
4.7
6.5
7.1
7.2
8.1
7.8
8.7
9.2
8.2
8.4
8.8
9.0
8.7
7.6
6.8
8.9
9.5
8.0
11.0
11.7
10.9
9.0
10.4
9.8
10.2
10.4
10.7
11.7
117
12.0
10.5
11.7
12.7
12.5
13.2
140
12.8
12.6
13.3
13.2
13.4
14.5
172
18.6
168
189
16.1
Scrubber
Outlet
CO
-0.4
0.1
0.8
0.5
-0.2
-0.4
-0.1
0.1
0.2
2.3
3.1
3.8
37
44
4.3
4.9
5.3
4.4
4.6
47
4.8
4.5
3.8
3.2
4.7
5.0
4.0
6.0
6.5
6.1
4.9
5.9
5.5
5.6
5.7
5.9
6.7
6.5
6.8
5.9
6.6
7.4
7.4
7.7
8.3
7.4
7.3
7.9
7.8
8.1
8.8
10.3
11.6
10.2
11.6
9.7
Moisture
Scrubber
Inlet
H20
<%)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.13
0.13
0.13
0.13
0.13
0.13
013
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
013
0.13
0.13
0.13
0.13
013
Scrubber
Outlet
H20
(*)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
005
0.05
13 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
80/95
80/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
SO/95
8/3/95
80/95
80/95
8/3/95
80/95
8/3/95
8/3/95
8/3/95
8/3/95
SO/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
80/95
8/3/95
8/3/95
80/95
8O/95
80/95
8/3/95
80/95
80/95
8/3/95
80/95
8/3/95
8/3/95
8/3/95
8/3/95
8O/95
8/3/95
80/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
80/95
8O/95
8/3/95
TIME
5:40
5.45
5:50
5.55
600
6-05
6:10
6:15
6-20
6.25
6:30
6:35
640
645
650
6:55
7.00
7-05
7:10
7.15
7.20
7:25
730
7:35
7.40
7:45
7:50
755
8:00
8.05
8:10
8:15
8.20
825
8-30
8:35
8:40
8:45
8:50
8.55
9.00
9.05
9.10
9:15
9-20
9:25
9.30
935
940
9:45
950
9.55
10:00
10-05
10.10
10 15
CO,
Scrubber
Inlet
CO,
5.0
5.0
4.9
4.9
4.9
4.8
4.7
4.9
4.9
4.9
4.9
4.9
5.1
5.3
5.5
5.5
5.5
5.4
5.2
5.2
5.0
5.2
5.9
6.5
6.8
6.8
. 7.0
6.9
6.9
6.8
7.1
7.0
7.0
7.0
7.1
6.9
6.9
6.5
6.1
6.1
5.9
5.8
5.5
5.3
53
5.2
5.2
4.8
4.5
4.5
Scrubber
Outlet
CO,
3.6
3.6
3.5
3.5
3.5
35
3.4
3.5
3.5
3.5
3.5
3.5
3.7
3.7
3.9
3.9
3.9
3.8
3.7
3.7
3.5
3.6
4.1
4.5
4.7
4.7
4.8
4.8
4.7
4.7
4.9
4.8
4.8
4.8
49
4.8
4.8
4.5
4.3
4.2
4.1
4.1
3.9
37
3.7
3.7
3.7
3.4
3.2
3 1
G
Scrubber
Inlet
0,
14.2
14.3
14.4
14.4
14.5
14.5
14.6
14.3
14.4
14.4
14.4
14.4
14.1
13.7
13.4
13.5
13.4
13.6
13.8
13.8
14.1
14.1
13.2
12.5
12.0
12.2
11.9
12.0
12.1
12.2
11.8
11.9
11.9
11.9
11.8
12.0
12.1
12.7
13.2
13.2
13.5
13.6
13.9
14.2
14.2
143
143
15.0
15.3
15.3
>i
Scrubber
Outlet
0,
16.1
16.2
16.2
16.2
16.3
16.3
16.4
16.2
16.3
16.3
16.3
16.2
16.0
15.8
15.6
15.6
15.6
15.7
15.8
15.8
16.1
16.1
15.4
14.9
14.6
14.7
14.5
14.6
14.7
14.7
14.5
14.6
14.6
14.6
14.5
14.6
14.7
15.1
15.4
15.5
15.6
15.7
15.9
16.1
16.1
16.2
16.2
16.6
16.9
169
Temperature
Scrubber
Inlet
°F
578
578
578
578
578
577
577
577
577
577
577
577
578
578
575
573
574
577
577
577
581
585
587
587
587
587
584
578
576
576
577
577
577
578
578
578
579
580
581
581
582
582
582
581
580
579
578
578
577
575
574
573
572
570
567
565
Scrubber
Outlet
°F
167
166
165
166
166
165
167
167
167
166
166
165
165
166
164
165
166
161
164
166
167
166
166
165
166
167
167
169
169
168
169
168
170
170
170
171
172
173
173
174
175
175
175
175
173
175
174
174
173
173
173
174
174
173
172
173
THC
Scrubber
Inlet
THC
(ppm)
2.3
2.3
2.3
23
2.3
2.3
2.4
2.3
2.4
2.2
2.3
2.4
2.3
3.3
28
2.7
2.7
2.7
2.7
2.9
3.3
3.1
2.9
2.5
2.7
2.4
2.3
2.3
2.2
2.1
2.1
2.1
2.1
2.2
2.1
2.2
2.3
2.4
2.5
2.6
2.5
2.7
28
30
3.0
3.0
3.5
37
40
Scrubber
Outlet
THC
(ppm)
0.9
1.0
0.9
.0
.0
0.9
.0
.0
.0
.4
0.7
0.8
1.0
1.9
2.3
2.3
2.0
2.0
.8
.7
.7
.7
.7
.6
.6
.6
.7
.8
.8
.9
.7
• .8
.9
.7
.9
.9
2.1
2.0
2.0
2.1
2.4
2.3
CO
Scrubber
Inlet
CO
(ppm)
15.4
16.3
15.9
17.1
17.8
19.8
21.6
18.6
19.4
19.6
21.1
20.7
18.1
6.1
4.1
38
3.4
3.4
4.2
5.2
16.8
41.0
31.1
20.7
14.0
12.6
11.6
10.2
7.8
7.9
69
6.0
5.5
6.0
5.1
4.2
5.8
5.6
6.5
7.1
9.1
9.9
12.6
18.9
22.2
30.1
31.3
58.8
120.7
185.6
Scrubber
Outlet
CO
(ppm)
9.1
9.7
9.4
10.3
10.8
12.2
13.7
11.5
11.8
12.1
13.3
13.2
11.2
22.6
26.3
19.8
12.3
7.4
6.3
5.5
4.4
2.9
2.9
2.3
1.7
1.3
1.6
1.0
0.4
1.3
1.2
2.0
2.3
3.7
4.0
5.9
10.1
12.3
17.7
18.6
37.4
97.8
126.5
Moisture
Scrubber
Inlet
H,0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
013
013
013
0 13
Scrubber
Outlet
H,0
(96)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
005
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
005
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
14 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
80/95
8/3/95
8/3/95
8/3/95
80/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
80/95
8/3/95
80/95
SO/95
8/3/95
80/95
SO/95
SO/95
8/3/95
80/95
8/3/95
80/95
8/3/95
8/3/95
8/3/95
80/95
SO/95
80/95
8/3/95
80/95
80/95
80/95
80/95
80/95
8/3/95
SO/95
80/95
SO/95
80/95
80/95
SO/95
80/95
TIME
10-20
1025
10:30
10:35
10:40
10.45
10:50
10:55
11:00
11:05
11:10
11:15
1120
1125
11:30
11:35
11:40
11:45
11.50
11:55
12:00
12.05
12.10
12.15
12:20
12:25
12:30
12.35
12:40
12:45
12:50
12:55
13.00
13-05
13-10
13.15
13:20
13:25
13:30
13:35
1340
1345
13.50
13:55
1400
14.05
14-10
14:15
14.20
1425
14.30
1435
1440
1445
1450
1455
CO,
Scrubber
Inlet
CO,
(*)
45
4.8
4.8
4.8
4.9
S.O
5.3
S.4
5.3
5.2
4.8
4.4
4.1
3.7
3.9
3.6
3.5
3.6
3.7
3.8
3.8
3.8
3.9
4.3
5.2
6.2
7.5
9.4
10.5
9.6
8.4
7.2
6.3
5.8
5.4
5.7
6.0
6.4
6.3
5.9
5.2
4.7
Scrubber
Outlet
CO,
(%)
3.2
3.4
3.4
3.4
3.5
3.5
3.7
3.8
3.7
3.6
3.4
3.1
2.8
2.5
2.5
2.4
2.3
2.4
2.4
2.5
2.5
2.5
2.6
2.8
3.6
4.2
5.1
6.3
7.4
6.9
6.1
5.1
4.5
4.2
4.0
4.2
4.0
4.5
4.6
4.3
3.8
3.4
0,
Scrubber
Inlet
0,
(*)
15.2
14.9
14.9
14.9
14.7
14.7
14.3
14.1
14.2
14.5
15.0
15.5
159
16.3
16.1
16.4
16.5
16.3
16.2
16.1
16.2
16.1
15.8
15.3
14.0
12.8
11.2
8.7
7.5
8.9
10.3
11.9
13.0
136
14.0
13.4
13.0
12.4
12.5
13.0
13.9
14.5
Scrubber
Outlet
0,
(%)
16.8
16.6
16.6
16.6
16.4
16.4
16.1
16.1
16.1
16.3
16.6
17.0
17.3
17.7
17.6
17.8
17.9
17.8
17.7
17.6
17.6
17.6
17.5
17.1
16.0
15.2
14.2
12.6
11.3
12.2
13.1
14.3
15.1
15.5
15.8
15.3
15.5
14.7
14.7
15.1
15.7
16.1
Temperature
Scrubber
Inlet
°F
564
561
560
561
560
560
561
562
562
562
559
553
551
543
533
529
529
526
524
521
519
515
519
519
529
535
540
549
580
593
594
590
586
584
581
585
588
593
596
597
597
595
593
591
592
592
588
586
586
586
586
584
589
590
591
591
Scrubber
Outlet
°F
172
171
170
170
170
170
169
170
169
169
168
167
166
172
179
175
177
176
174
172
171
169
169
168
164
165
165
168
164
166
165
164
165
167
167
168
169
169
170
170
170
169
170
171
171
171
171
172
172
172
172
171
172
171
171
172
THC
Scrubber
Inlet
THC
(ppm)
4.3
4.2
4.3
4.5
4.5
4.7
4.4
4.2
4.3
46
4.8
5.4
6.0
7.5
7.9
11.3
16.9
19.8
22.4
25.7
29.1
35.5
35.3
34.4
22.2
15.5
13.9
16.4
12.9
6.4
2.5
2.1
2.3
2.3
2.5
2.1
.9
.7
.6
.7
.7
.8
Scrubber
Outlet
THC
(ppm)
2.4
2.3
24
2.4
2.4
2.5
2.5
2.4
2.5
2.6
2.8
3.3
3.6
4.2
4.2
6.3
9.8
11.5
13.1
15.5
17.3
20.4
21.7
21.1
13.5
9.3
7.7
9.2
8.5
4.1
.4
.2
.3
.4
.4
.3
CO
Scrubber
Inlet
CO
(ppm)
230.3
208.2
209.9
242.3
254.9
290.0
220.3
165.3
172.7
194.4
281.6
460.3
866.4
957.1
976.4
1736.0
1858.3
1949.5
2033.4
2178.3
2257.7
2468.9
2581.7
2535.7
2393.5
1753.2
1326.3
1741.0
1416.5
310.0
44.7
32.5
21.5
26.2
41.3
19.6
10.9
3.7
2.4
2.2
2.5
4.8
Scrubber
Outlet
CO
(ppm)
159.0
143.8
143.8
167.6
176.0
200.5
152.2
112.9
118.3
133.3
193.3
325.1
542.5
683.0
675.5
1100.4
1191.2
1255.6
1314.7
1413.8
1467.8
1610.8
1683.8
1659.1
1609.1
1176.9
873.4
1100.4
936.5
218.2
36.5
28.2
14.2
17.6
28.6
12.8
6.4
1.2
0.5
0.3
0.4
1.8
0.6
0.5
Moisture
Scrubber
Inlet
H,0
(*)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
013
013
0.13
0.13
0 13
Scrubber
Outlet
H,0
(»)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
15 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
1 DATE
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/9S
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
15-00
15.05
15:10
IS 15
15:20
15.25
15:30
15-35
15:40
15.45
15:50
15-55
1600
16:05
1610
16:15
16:20
16:25
16:30
16:35
16:40
16-45
16:50
16:55
17:00
17:05
17:10
17:15
17:20
17:25
17:30
1735
17:40
17:45
17.50
17.55
18.00
18:05
18:10
18:15
18.20
18:25
1830
18:35
1840
18:45
18:50
1855
19:00
1905
1910
19-15
19.20
1925
1930
COj
Scrubber
Inlet
CO,
(%)
4.8
4.7
4.4
4.2
4.3
4.6
5.4
5.8
5.8
5.8
5.7
5.5
5.4
5.3
5.3
5.1
5.2
5.
5.
5.
5. I
5.
5.
5.
5.3
5.5
5.2
5.2
5.0
4.9
5.0
5.0
5.0
4.9
4.9
4.9
4.9
5.1
5.2
52
5.1
4.9
49
4.9
4.9
4.9
5.1
5 3
Scrubber
Outlet
C02
(%)
3.9
3.8
3.7
3.5
3.4
3.1
2.9
3.0
3.3
3.8
4.1
4.1
4.1
4.0
3.9
3.9
3.8
3.7
3.6
3.7
3.6
3.6
3.6
3.5
3.6
3.6
3.6
3.7
3.9
3.7
3.7
3.5
3.5
3.6
3.6
3.6
3.5
3.5
3.5
3.5
3.6
3.7
3.7
3.6
3.5
3.5
3.5
3.5
3.5
3.7
3.8
02
Scrubber
Inlet
0,
(%)
14.3
14.4
14.8
15.1
149
14.5
13.5
13.0
12.9
12.9
13.1
13.3
13.5
13.6
13.7
13.8
13.7
13.8
13.8
13.9
14.0
13.9
13.8
13.8
13.6
13.4
13.7
13.8
14.0
14.1
14.0
13.9
14.0
14.0
14.1
14.1
14.1
13.9
138
13.8
13.9
14.1
14.1
14.1
14.2
14.1
13.8
13.4
Scnibber
Outlet
0,
(%)
15.6
15.7
15.8
16.0
16.1
16.4
16.6
16.5
16.2
15.5
15.1
15.1
15.1
15.3
15.4
15.5
15.6
156
15.8
15.7
15.8
15.8
15.8
15.9
15.8
15.8
15.7
15.6
15.5
15.7
157
15.9
160
158
15.8
15.8
15.9
15.9
15.9
159
15.8
15.7
15.7
15.8
16.0
159
15.9
160
16.0
15.7
155
Temperature
Scnibber
Inlet
°F
592
591
592
593
593
594
595
594
593
593
592
590
590
588
587
588
590
591
592
593
594
594
593
593
594
593
593
593
593
593
592
592
592
593
595
595
595
594
595
594
595
594
594
594
594
594
594
594
595
595
594
594
593
593
594
594
crabber
Outlet
°F
171
172
171
173
172
173
173
172
171
171
172
172
171
170
171
170
170
170
170
170
170
170
171
172
170
172
172
171
172
172
172
171
171
171
171
171
171
171
171
170
170
170
170
170
170
170
169
170
169
170
169
169
171
170
169
170
Scrubber
Inlet
THC
(ppm)
3.6
37
3.4
33
3.2
31
3.1
30
31
3.1
3.1
3.1
3.1
3.1
3.0
3.0
3.1
3.1
3.1
3.1
31
2.9
2.9
2.9
3.0
3.0
3.0
3.0
3.0
3.1
30
3.1
3.1
30
3.0
29
2.9
2.9
29
30
3.0
30
2.9
2.9
Scrubber
Outlet
THC
(ppm)
2.5
2.4
21
2.0
1.9
1.7
1.6
1.7
1.7
1.7
1.6
1.6
1.6
1.6
1.6
1.7
1.8
1.8
1.7
1.7
1.7
1.7
1.7
1.8
1.8
1.9
1.9
1.9
1.8
1.8
1.7
1.9
1.9
1.8
1.8
1.8
1.9
2.0
2.2
23
2.4
2.5
2.6
26
Inlet
CO
(ppm)
5.7
9.9
15.0
16.0
15.8
14.5
9.0
5.3
3.5
2.9
2.7
2.3
2.3
2.6
2.8
3.3
3.0
3.3
3.1
3.6
4.2
4.2
4^6
4.6
3.8
2.8
3.2
3.3
4.0
4.5
4.5
4.8
4.7
5.1
57
6.3
6.8
5.7
4.8
4.2
4.7
4.7
4.9
5.6
5.8
6.1
5.2
4.3
Scrubber
Outlet
CO
(ppm)
0.6
0.7
1.0
09
0.7
1.6
2.1
2.0
1.7
5.6
9.3
10.2
9.9
9.1
5.4
2.9
1.9
1.4
1.2
1.0
1.0
1.1
1.1
1.5
1.2
1.4
1.5
1.9
2.3
2.3
2.5
2.6
2.0
1.3
1.7
1.7
2.1
2.5
2.7
2.5
2.3
2.8
3.3
3.7
4.0
3.3
2.7
2.1
2.6
2.5
2.8
3.1
3.2
3.5
2.9
2.2
Inlet
H2O
(%)
0.1
0.1
0.1
01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Outlet
H,0
<*)
0.0
0.0
0.0
0.0
00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
005
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
005
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
16 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/4/95
8/4/95
8/4/95
8/4/95
TIME
19.40
1945
1950
19.55
2000
2005
2010
2015
20-20
2025
20:30
20.35
2040
20.45
2050
2055
21-00
21.05
21:10
21.15
21:20
21:25
21:30
21:35
2140
21:45
2150
2155
22.00
22:05
22:10
22:15
22:20
22-25
22-30
22:35
2240
2245
22.50
22:55
2300
23.05
23:10
23:15
2320
23.25
23-30
23:35
23-40
2345
23.50
23:55
o-oo
005
0:10
0.15
CO,
Scrubber
Inlet
CO,
(*)
5.3
5.3
5.4
5.3
5.3
S.2
5.2
5.2
5.2
5.1
5.2
5.4
52
S.I
5.3
52
52
S.I
5.2
S.2
S.I
S.I
S.3
S.I
S.2
S.3
S.2
S.I
S.I
S.I
S.2
S.I
5.2
S.2
5.2
4.8
4.8
4.8
4.8
4.9
4.8
4.8
4.8
4.7
4.8
4.7
4.6
4.5
45
Scrubber
Outlet
CO,
(*>
3.8
3.8
3.8
3.8
3.8
3.7
3.7
3.7
3.7
3.7
3.7
3.8
3.7
37
3.8
3.7
3.7
3.7
3.7
3.7
3.6
3.7
3.8
3.7
3.7
3.8
3.7
3.7
3.7
3.7
3.7
.3.7
3.7
3.5
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.5
3.6
3.5
3.5
3.4
3.4
0,
Scrubber
Inlet
0,
(«)
13.5
13.6
13.4
13.5
13.4
13.7
13.6
13.6
13.7
13.7
13.6
13.4
13.7
13.7
136
136
13.7
13.7
13.7
13.6
13.8
13.7
135
13.7
13.7
13.6
13.6
13.7
13.8
13.7
13.7
13.7
13.6
13.6
13.7
14.2
14.2
14.2
14.2
14.1
14.1
14.2
14.3
14.3
143
14.4
14.5
14.6
14.6
Scrubber
Outlet
0,
(*)
15.5
1S.6
15.4
1S.S
15.5
IS.6
15.6
1S.6
1S.6
15.7
1S.6
1S.5
15.7
15.7
1S.6
IS. 6
1S.6
15.7
15.7
15.7
15.8
15.7
1S.6
15.7
15.7
1S.6
1S.6
15.7
1S.8
15.7
15.7
15.7
1S.6
15.7
15.7
16.1
16.1
16.1
16.1
160
16.1
16.1
16.1
162
162
16.2
16.3
16.4
16.4
Temperature
Scrubber
Inlet
Op
595
595
596
596
596
596
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
595
595
598
602
602
600
598
598
599
598
598
598
598
S98
597
597
596
596
595
595
594
Scrubber
Outlet
"F
170
170
170
171
171
171
171
173
172
172
173
173
172
172
172
173
173
173
172
174
173
174
174
173
173
174
174
173
173
173
173
173
172
174
173
172
172
173
172
172
172
172
172
171
169
170
169
170
170
169
169
169
168
168
168
167
THC
Scrubber
Inlet
THC
(ppm)
2.9
2.8
2.8
2.8
2.8
2.8
2.8
2.7
2.7
2.7
2.6
2.6
2.S
2.5
2.4
2.4
2.4
2.5
2.5
2.4
2.4
2.S
2.5
2.5
2.S
2.4
2.4
2.4
2.4
2.4
2.3
2.3
2.3
2.3
2.2
3.2
3.1
2.9
2.7
2.7
2.7
2.7
2.7
2.8
2.8
2.8
2.8
Scrubber
Outlet
THC
(ppm)
26
2.7
2.8
2.9
2.9
2.9
3.0
2.9
3.0
3.0
3.1
3.2
3.0
3.2
3.6
3.7
4.4
4.7
5.0
5.2
5.3
S.6
S.4
5.5
S.6
5.5
55
5.4
S.6
5.7
5.4
5.3
5.0
4.6
4.2
30
3.1
2.6
23
2.1
2.1
2.0
.8
.6
.3
.4
.2
.1
.1
CO
Scrubber
Inlet
CO
(ppm)
3.6
3.5
3.0
2.7
2.6
2.8
2.9
2.7
2.9
3.1
3.1
6.1
6.2
6.S
7.1
6.6
6.6
7.1
8.2
9.7
9.4
11.7
12.5
12.0
17.1
Scrubber
Outlet
CO
(ppm)
6
.5
.2
.0
.0
0.9
.1
0.9
.2
.2
.5
.0
.3
.3
.1
9
.0
.2
.3
1.9
.0
.3
.1
.2
.4
.0
).9
.0
.6
.6
.3
.2
.2
.1
.2
3.8
3.6
4.2
3.6
3.5
3.8
4.7
5.8
5.3
7.0
76
7.0
10.5
Moisture
Scrubber
Inlet
H,0
(*)
0.
0.
0.
0.
0.
0.
0
0.
0.
0.
0.
0.
0.
0.
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
013
0.13
0.13
0.13
013
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
013
0.13
0.13
Scrubber
Outlet
H,0
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.os
o.os
o.os
o.os
0.05
0.05
o.os
o.os
o.os
o.os
0.05
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
0.05
0.05
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
o.os
•0.05
0.05
o.os
o.os
0.05
0.05
17 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/4/95
8/4/95
8/4/9S
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
. 8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
TIME
020
025
030
0-35
0-40
0-45
0-50
0.55
1:00
05
:10
IS
20
25
:30
:35
.40
:4S
•50
55
2:00
205
2:10
2:15
2-20
2:25
2:30
2:35
2-40
2.45
2.50
2.55
3.00
305
3-10
3:15
320
3:25
3:30
3-35
340
3-45
3.50
355
400
4.05
4:10
4 15
4:20
4-25
4-30
435
4-40
4:45
4.50
4-55
CO,
Scrubber
Inlet
CO,
<%)
4.4
4.4
4.7
S.O
4.9
4.8
4.6
4.7
4.7
4.6
4.6
46
4.6
4.5
46
4.7
4.6
4.6
4.6
4.5
4.5
4.S
4.4
4.5
4.3
4.2
4.3
4.4
4.8
4.8
4.8
4.9
4.7
4.6
4.5
4.4
4.5
4.5
4.5
44
4.5
4.4
4.4
4.4
4.4
4.3
4.5
4.5
4.4
4.4
4.3
4.4
4.4
4.3
43
4.3
Scrubber
Outlet
CO,
<%>
3.3
3.2
3.5
3.7
3.7
3.6
3.5
3.6
3.5
3.5
3.4
3.5
3.4
3.4
3.5
3.5
3.5
3.5
3.4
3.4
3.4
3.3
3.3
3.3
3.2
3.1
3.2
3.3
3.6
3.6
3.6
3.7
3.5
3.5
3.4
3.3
3.4
3.4
3.4
3.3
3.4
3.3
3.3
3.3
3.3
3.2
3.4
3.4
3.3
3.3
3.2
3.3
33
3.2
3.2
32
0,
Scrubber
Inlet
0,
(«)
14.8
14.8
14.4
14.0
14.1
14.3
14.5
14.3
14.4
14.4
14.5
14.4
14.5
14.6
14.4
14.4
14.5
14.4
14.5
14.6
14.7
14.7
14.8
14.7
14.9
15.1
15.0
14.8
14.2
14.2
14.2
14.1
14.4
14.5
14.6
14.8
14.7
14.6
14.6
14.7
14.6
14.7
14.8
14.7
14.8
14.9
14.7
14.7
14.7
14.8
14.9
14.7
14.7
14.9
14.9
14.9
Scrubber
Outlet
0,
(*)
16.5
16.5
16.2
15.9
16.0
161
16.3
16.1
16.2
162
16.3
16.2
16.3
16.4
16.2
162
16.3
16.2
16.3
16.4
16.4
16.4
16.5
16.4
16.6
16.7
16.6
16.5
161
16.0
16.1
16.0
16.2
16.3
16.4
16.5
16.4
16.4
16.4
16.4
16.4
16.4
16.5
16.4
165
16.5
16.4
16.4
164
165
16.5
16.4
16.4
16.6
16.6
166
Temperature
Scrubber
Inlet
°F
594
593
594
594
595
595
594
595
595
S94
594
594
594
593
593
593
593
593
593
592
592
592
592
591
590
589
588
589
590
590
591
591
592
590
591
590
590
590
590
590
590
589
589
589
589
588
589
588
588
589
588
588
588
588
588
587
Scrubber
Outlet
"F
168
167
167
166
166
166
165
166
166
166
166
166
166
166
166
166
166
165
165
165
165
166
166
165
164
165
165
165
164
163
164
162
163
163
163
164
164
163
163
163
163
163
163
162
162
163
163
163
162
163
162
163
162
163
163
163
THC
Scrubber
Inlet
THC
(ppm)
3.0
3.1
3.0
2.9
2.9
2.9
2.9
3.0
3.1
3.0
30
2.9
2.9
3.0
2.9
2.9
28
2.9
29
2.9
2.9
2.9
2.9
3.0
3.0
3.1
3.2
3.2
2.8
2.8
2.7
2.5
2.4
12.0
63
3.7
2.6
2.1
1.9
1.8
1.7
15
1.5
15
14
1.5
1.3
1.3
13
1.2
13
1.3
12
1 3
1.4
14
Scrubber
Outlet
THC
(ppm)
.3
3
.3
.2
.3
.2
1.1
1.1
1.1
.2
.2
.0
.2
2
.2
.2
.2
1.3
1.2
1.0
1.1
09
0.8
0.8
0.9
0.8
0.9
0.8
0.4
0.5
0.4
0.2
0.2
02
0.1
0.2
0.2
01
0.1
0.0
-0.2
00
0.0
00
0.1
0.1
02
0.1
0.1
01
01
0.2
0.0
0.1
0.1
02
CO
Scrubber
Inlet
CO
(ppm)
18.6
18.2
15.9
12.5
11.6
11.8
, 13.1
12.6
13.2
12.8
14.6
15.2
15.8
18.1
15.6
14.3
15.5
14.8
15.5
15.6
19.9
23.1
25.6
25.2
26.9
42.0
44.3
37.3
23.2
20.7
18.6
16.1
17.1
17.2
19.6
23.8
23.9
23.6
23 1
,23.9
22.6
25.2
26.2
26.7
273
32.8
27.3
25.9
28.1
263
28.1
279
25.2
29.7
332
33 8
Scrubber
Outlet
CO
(ppm)
11.5
11.2
9.9
7.6
7.1
7.1
8.1
7.5
7.9
7.5
8.6
9.0
9.5
11.0
9.2
8.3
9.1
86
9.1
9.2
12.3
14.5
16.2
15.9
17.2
27.9
29.7
24.6
14.9
13.0
11.7
9.9
10.7
10.7
12.4
15.3
15.4
15.3
14.7
15.5
14.6
16.3
170
17.4
178
21.5
17.7
16.7
182
17.0
182
18.0
16.0
19.3
21.6
22 1
Moisture
Scrubber
Inlet
H,O
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
013
0.13
Scrubber
Outlet
H,0
(%)
0.0
0.0
00
0.0
0.0
0.0
0.0
0.0
00
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
005
0.05
005
005
0.05
0.05
005
0.05
0.05
005
0.05
0.05
0.05
0.05
005
18 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
500
5.05
5 10
5.15
5.20
525
5-30
5.35
540
545
550
555
6-00
605
610
6.15
620
6-25
6.30
6:35
640
645
6.50
6-55
700
705
7 10
7:15
7:20
725
7.30
7:35
7:40
7.45
7.50
7:55
800
805
8:10
815
8:20
825
CO,
Inlet
C02
<*>
43
4.4
4.3
4.4
44
4.5
4.5
4.6
4.6
4.7
4.7
46
4.7
4.8
4.9
5.0
4.9
4.8
4.7
47
46
4.5
4:6
46
4.6
4.6
4.5
4.5
4.6
4.6
4.5
4.5
45
4.5
Scrubber
Outlet
CO,
(%)
3.2
3.3
3.2
3.2
3.3
3.3
3.4
3.4
3.4
3.5
3.5
34
3.5
3.6
3.7
3.7
3.6
3.6
3.5
3.5
3.4
3.4
3.4
3.4
3.4
3.4
3.3
3.3
3.4
3.4
3.3
3.4
3.3
33
3.5
3.7
37
0,
Scrubber
Inlet
0,
(*)
14.9
14.8
14.9
14.8
14.7
14.6
145
14.4
14.5
14.3
14.3
14.4
14.2
14.1
13.9
13.8
14.0
14.1
14.2
14.2
14.5
14.5
14.4
14.4
14.4
14.4
14.6
14.5
14.3
14.4
14.5
14.4
14.5
14.S
Scrubber
Outlet
Oj
(*)
16.6
16.5
16.6
16.5
16.4
16.4
16.3
163
16.3
16.2
16.2
16.2
16.1
16.0
159
15.8
160
16.1
16.1
16.1
16.3
16.3
16.3
16.3
16.2
16.3
16.4
16.4
16.2
16.3
16.4
16.3
16.4
16.4
16.1
15.9
15.8
Temperature
Scrubber
Inlet
°F
587
587
587
587
586
583
583
584
584
585
585
586
586
586
587
588
588
589
589
589
589
589
S88
588
588
588
588
588
588
588
589
588
588
587
582
580
578
577
579
580
581
581
Scrubber
Outlet
"F
163
162
162
162
162
163
163
163
163
163
163
163
164
163
164
164
165
165
164
164
164
165
165
166
165
165
16S
166
165
165
164
164
16S
165
167
168
168
167
169
171
THC
Scrubber
Inlet
THC
.3
.4
.5
5
.5
.4
.4
.2
.4
.3
.3
.2
.3
.2
.1
.1
.0
.1
.2
.1
.1
.1
.1
.0
.0
.0
.1
.1
.0
.0
0.9
0.9
0.9
0.9
0.8
0.6
Scrubber
Outlet
THC
(ppm)
02
0.0
00
•0.1
00
-0.1
-0.2
-0.2
0.0
0.1
-0.1
0.1
0.2
0.0
0.1
0.1
0.3
0.0
0.2
0.2
0.2
0.0
0.0
0.1
0.4
0.1
0.2
0.2
0.3
00
0.0
0.2
0.2
0.0
0.1
0.1
0.3
CO
Scrubber
Inlet
CO
35.7
32.9
33.3
34.0
30.9
25.8
24.0
20.2
21.2
20.0
15.8
15.8
140
13.0
11.0
8.4
8.3
7.4
7.8
8.1
9.0
9.6
102
101
9.3
9.8
11.5
12.6
9.8
9.7
11.0
10.3
11.2
13.3
Scrubber
Outlet
CO
23.5
213
215
21.9
20.0
15.9
14.9
12.1
12.8
12.2
9.3
9.4
8.3
7.5
6.3
4.3
4.3
3.7
3.9
4.0
4.4
4.9
5.2
53
4.9
5.2
6.5
7.1
53
5.1
6.0
5.3
5.9
7.4
5.8
3.5
2.5
2.3
Scrubber
Inlet
H20
<%)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
013
Scrubber
Outlet
H20
(«)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
O.OS
0.05
0.05
O.OS
O.OS
O.OS
O.OS
O.OS
0.05
0.05
0.05
0.05
0.05
O.OS
0.05
0.05
0.05
19 of 19
-------
APPENDIX C
HUNTINGTON CONTINUOUS MONITOR DATA
-------
Huntington, West Virginia
Continuous Monitor Data
August 1995
8/15/95
8/15/95
8/15/95
8/1S/9S
8/15/95
8/1S/9S
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
11:35
11:40
11:45
11:50
11-55
12:00
12:05
12:10
12:15
12:20
12:25
12:30
12:35
12:40
12:45
12:50
12:55
13:00
13:05
13:10
13:15
13:20
13:25
13:30
13:35
13:40
13:45
13:50
13:55
14:00
14:05
14:10
14:15
14-20
14:25
14:30
14:35
14:40
14:45
14:50
14:55
15:00
15:05
15:10
15:15
15:20
15:25
15:30
15:35
15:40
15:45
15:50
15:55
16-00
16:05
C02
Scrubber
Inlet
CO,
<%)
9.1
8.4
9.5
9.5
9.7
9.1
9.2
8.0
8.9
8.3
7.0
7.6
7.7
7.2
6.8
6.0
5.9
5.9
5.1
5.2
6.2
7.0
7.5
7.6
7.5
7.4
9.0
8.5
8.3
9.0
8.9
9.2
8.6
8.5
7.8
7.5
6.9
6.7
67
7.2
8.2
8.2
8.4
8.9
8.6
7.8
8.1
8.0
7.5
7.2
7.1
7.2
7.6
78
Scrubber
Outlet
CO,
(»)
9.2
8.5
9.6
9.6
9.8
9.3
9.3
8.0
9.0
8.3
7.1
7.6
78
7.3
7.0
6.2
6.2
6.1
5.3
5.4
6.4
7.3
7.5
7.7
7.6
7.5
9.1
8.6
8.4
9.1
9.0
9.2
8.7
8.5
7.9
7.6
7.1
6.9
6.9
7.4
8.3
8.2
8.5
9.0
8.6
7.9
8.2
8.0
7.5
7.3
7.3
7.3
7.7
7.8
0,
Scrubber
Inlet
0,
(%)
8.8
9.5
10.5
9.2
9.2
9.0
9.7
9.7
11.3
10.0
10.8
12.5
11.7
11.5
12.1
12.5
13.5
13.5
13.5
14.5
14.4
13.1
12.1
11.7
11.5
11.7
11.8
9.6
10.3
10.6
9.7
9.9
9.6
10.2
10.5
11.2
11.6
12.2
12.4
12.4
11.8
10.6
10.7
10.4
9.8
10.3
11.3
10.8
11.0
11.6
12.0
12.0
11 9
11.4
11 2
Scrubber
Outlet
02
<*>
9.7
10.6
9.3
9.4
9.2
9.9
9.8
11.4
10.1
11.0
12.6
11.9
11.7
122
12.7
13.6
13.7
13.7
14.7
146
13.3
12.2
11.8
117
11.8
11.9
9.9
10.5
107
9.9
10.1
9.8
10.4
10.6
11.4
11.7
12.3
12.5
125
11.9
10.8
109
10.6
9.9
10.5
11.4
11.0
11.1
11.8
12.2
12.1
12.0
11.6
11.4
Temperature
Scrubber
Inlet
"F
785
796
814
823
832
834
849
847
856
861
853
853
858
860
859
850
846
843
836
829
834
844
862
867
871
872
851
827
854
869
882
892
903
910
919
924
927
927
924
920
918
922
924
923
927
932
923
919
921
917
913
910
911
911
915
Scrubber
Outlet
Op
108
106
107
107
107
105
107
106
110
109
105
107
108
107
106
105
104
104
102
102
105
108
109
109
107
106
98
98
110
109
112
114
116
116
116
116
116
115
114
114
114
116
115
115
116
117
115
116
115
114
114
114
114
115
115
THC
Scrubber
Inlet
THC
(ppm)
9.4
8.3
6.8
5.5
4.6
3.9
32
3.0
2.7
2.8
2.3
1.9
1.9
2.0
2.1
2.1
2.1
2.2
2.4
2.3
2.5
2.8
3.1
3.2
2.9
2.7
2.5
2.3
2.9
3.0
2.6
2.3
2.0
1.9
1.9
1.9
2.1
2.3
2.7
32
39
4.2
4.3
4.1
4.1
4.2
4.2
4.2
4.2
4.0
4.1
43
4.4
4.7
4.8
4.8
Scrubber
Outlet
THC
4.8
5.3
4.7
4.1
3.7
3.3
3.0
3.0
2.9
2.9
2.7
2.6
2.6
2.7
2.9
2.8
2.8
3.0
3.0
3.0
3.1
3.3
3.6
3.7
3.8
3.6
3.6
3.8
4.5
4.2
3.7
3.5
3.3
3.3
3.2
3.2
3.2
3.4
3.6
4.0
4.4
4.6
4.6
4.6
4.6
4.7
4.8
4.8
5.0
5.1
5 1
5.1
5.3
5.5
5.6
5.8
CO
Scrubber
Inlet
CO
54
98
104
127
128
122
111
105
91
88
78
64
61
58
53
49
43
41
41
38
37
» 42
46
54
54
55
52
37
28
51
59
60
57
51
45
41
37
33
31
30
31
39
52
61
64
71
75
70
66
63
59
55
53
55
58
62
Scrubber
Outlet
CO
52
95
101
123
123
117
105
99
85
81
70
57
55
52
47
43
37
35
35
33
31
37
41
48
48
49
46
31
23
46
53
54
SO
44
38
34
30
26
24
23
25
33
46
54
58
65
69
64
61
57
53
50
48
49
53
57
Moisture
Scrubber
Inlet
H,0
(56)
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
Scrubber
Outlet
H,0
(%)
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
009
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
Page 1 of 9
-------
Huntington, West Virginia
Continuous Monitor Data
August 1995
Date
8/1S/9S
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
Time
16:10
16:15
16:20
16:25
16:30
16:35
16:40
16:45
16:50
16:55
17:00
17:05
17:10
17:15
17:20
17:25
17:30
17:35
17:40
17:45
17:50
17:55
18:00
18:05
18:10
18:15
18:20
18:25
7:50
7:55
8:00
8:05
8:10
8:15
8:20
8:25
8:30
8:35
8:40
8:45
8:50
8:55
9:00
9:05
9:10
9:15
9-20
9-25
9:30
9:35
9:40
9:45
9-50
9.55
10:00
10.05
CO,
Scrubber
Inlet
CO,
(%)
7.3
7.5
9.1
8.5
8.4
8.0
7.9
7.9
7.6
9.3
8.9
9.0
8.6
8.8
8.7
8.5
9.0
8.5
8.6
8.5
8.3
8.3
8.3
8.1
7.0
7.5
8.3
8.5
7.8
7.6
8.7
8.6
8.0
8.2
84
7.9
6.9
7.6
6.9
6.8
6.6
7.3
7 1
69
68
Scrubber
Outlet
CO,
(%)
7.4
7.6
9.2
8.5
8.4
8.0
7.9
8.0
7.7
9.4
8.9
9.1
8.7
8.9
8.8
8.6
9.1
8.5
8.7
8.6
8.4
8.3
8.3
8.1
8.1
7.6
8.1
8.7
9.0
8.3
8.2
9.3
9.1
84
8.6
8.7
8.3
7.3
8.0
7.3
7.2
6.9
7.6
7.4
7.2
7.2
0,
Scrubber
Inlet
0,
(*)
11.8
11.5
94
10.4
10.5
11.0
11.1
11.0
11.4
9.3
9.9
9.7
10.2
9.9
10.0
10.3
9.6
10.3
10.1
10.2
10.5
10.5
10.6
10.8
'
12.4
11.8
11.0
10.8
11.6
11.8
10.4
10.5
11.4
11.1
10.9
11.6
12.7
11.9
12.6
12.6
12.9
12.0
12.3
12.6
12.7
Sc rubber
Outlet
0,
<%)
12.0
11.7
9.6
10.5
10.7
11.2
11.3
11.2
11.6
9.4
10.1
9.8
10.3
10.1
10.2
10.4
98
10.5
10.3
10.4
10.7
10.7
10.7
11.0
11.4
11.9
11.6
10.7
10.4
11.4
11.6
10.0
10.3
112
11.0
10.8
11.4
12.6
11.7
125
125
12.9
11.9
12.2
12.5
12.6
Temperature
Scrubber
Inlet
°F
913
911
928
931
929
923
918
917
915
926
935
940
939
940
941
941
948
948
947
949
948
950
949
947
921
888
539
654
704
721
740
756
764
765
783
796
801
809
818
821
816
825
829
833
835
843
855
860
865
Scrubber
Outlet
°F
114
114
119
116
115
114
114
114
113
118
116
117
116
117
117
117
118
117
117
117
116
118
118
118
106
100
104
106
104
104
105
105
104
96
110
107
105
106
107
105
105
108
107
106
108
109
107
105
108
107
107
107
110
111
110
112
THC
Scrubber
Inlet
THC
(ppm)
4.8
5.0
5.0
50
4.8
4.7
4.5
4.6
4.3
44
4.1
40
40
38
3.8
3.7
3.7
3.7
3.8
3.9
39
38
4.0
4.0
3.4
7.7
5.7
41
2.7
1.8
20
1.0
02
0.0
-0.2
0.8
0.9
15
16
21
2.0
2.3
2.4
2.7
34
Scrubber
Outlet
THC
(ppm)
5.8
5.9
6.1
6.0
6.0
5.9
6.0
5.9
5.6
57
5.7
5.6
5.7
5.6
5.5
5.5
5.5
5.7
5.7
5.7
5.5
5.5
5.6
5.7
5.7
8.3
6.5
5.0
4.3
3.9
3.1
2.6
2.8
2.4
2.0
2.0
.6
.4
.4
.6
.7
.9
.8
.9
2.2
2.4
30
CO
Scrubber
Inlet
CO
(ppm)
63
64
76
78
77
73
70
68
63
68
73
69
65
63
62
59
56
S3
52
51
51
49
51
52
48
59
64
72
78
73
64
57
59
55
46
43
40
34
27
27
23
21
19
20
21
22
24
Scrubber
Outlet
CO
(ppm)
58
59
71
73
72
68
64
62
57
62
67
63
59
56
56
52
50
47
46
45
45
43
45
46
59
65
72
79
74
64
57
60
55
46
44
41
34
27
27
23
22
20
20
21
23
24
Moisture
Scrubber
Inlet
H,0
(%)
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
Scrubber
Outlet
H2O
<%)
0.09
009
009
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
009
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
Page 2 of 9
-------
Huntington, West Virginia
Continuous Monitor Data
August 1995
Date
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
Tune
10:10
10:15
10:20
10:25
10:30
10:35
10:40
10:45
10:50
10:55
11:00
11:05
11:10
11:15
11:20
11:25
11:30
11:35
11:40
11:45
11:50
11:55
12:00
12:05
12:10
12:15
12:20
12:25
12:30
12:35
12:40
12:45
12:50
12:55
13:00
13:05
13:10
13:15
13-20
13:25
13:30
13:35
13:40
13:45
13:50
13:55
14:00
14:05
14:10
14-15
14:20
14:25
14:30
14-35
14-40
14:45
CO,
Scrubber
Inlet
C02
(ft)
6.1
5.5
5.7
6.3
7.1
7.6
8.3
8.7
8.7
8.6
8.7
9.0
9.0
8.4
86
8.6
82
78
7.8
7.8
7.5
7.7
7.5
7.8
7.9
76
7.7
7.4
7.7
7.5
7.3
7.1
7.5
7.6
7.5
7.4
7.6
7.2
6.6
6.4
7.3
7.7
7.1
6.4
6.2
6.2
6.8
6.7
8.3
8.0
77
7.6
8.0
79
65
6.0
Scrubber
Outlet
CO,
(%)
6.4
5.7
6.0
6.6
7.4
8.0
8.5
9.0
9.0
8.7
9.0
9.2
9.2
8.5
8.8
8.7
8.3
8.0
7.9
8.0
7.6
7.9
7.6
7.9
8.0
7.7
7.9
7.5
7.9
7.5
7.4
7.2
7.6
7.6
7.6
7.4
7.7
7.3
6.6
6.5
7.4
7.7
72
6.5
6.3
6.3
6.9
6.9
8.3
8.0
77
76
8.0
7.9
65
60
02
Scrubber
Inlet
02
(*)
13.5
14.3
14.0
13.3
12.3
11.7
10.9
10.4
10.5
10.7
10.5
10.1
10.2
11.0
10.7
10.7
11. 1
11.6
11.6
11.5
11.9
11.6
11.8
11.5
11.4
11.7
11.6
12.0
11.6
11.9
12.1
12.4
11.8
11.8
11.8
12.0
11.7
12.2
13.0
13.2
12.1
11.6
12.4
13.1
13.4
13.5
12.7
12.8
10.8
11.3
11.6
11.8
11.2
11.3
13.0
136
Scrubber
Outlet
Oj
(ft)
13.4
143
14.0
13.2
12.2
11.6
10.8
10.3
10.3
10.7
10.4
10.0
10.0
11.0
10.6
10.7
11.2
11.7
11.6
11.5
11.9
11.7
11.9
11.6
11.4
11.7
11.6
12.0
11.6
12.0
12.1
12.4
11.9
11.8
11.9
12.1
11.7
12.2
13.0
13.2
12.1
11.6
12.4
13.1
13.6
13.6
12.7
12.8
10.9
11.4
11.7
11.8
11.3
11.4
13.0
13.7
Temperature
Scrubber
Inlet
"F
865
855
845
848
853
858
865
868
872
873
875
882
887
882
882
887
887
885
885
886
888
889
892
897
901
901
900
897
896
898
897
896
897
897
898
898
901
905
895
885
884
896
894
884
872
865
868
869
885
896
903
906
914
922
914
899
Scrubber
Outlet
Op
110
108
108
110
111
112
112
112
112
112
112
113
113
110
111
111
110
108
108
110
110
110
110
112
113
112
112
111
112
111
111
110
112
111
111
110
112
112
108
107
110
112
110
107
105
105
107
107
112
113
113
114
115
116
111
108
THC
Scrubber
Inlet
THC
(ppm)
4.0
4.6
4.9
5.6
5.6
5.4
5.4
4.7
4.4
4.0
3.7
3.6
3.3
2.7
2.8
2.8
2.8
2.8
2.9
3.7
3.8
3.3
3.2
3.3
3.5
3.4
3.5
3.5
3.7
3.5
3.5
3.5
3.6
3.6
3.6
3.7
3.7
3.7
3.8
3.9
4.0
3.8
3.8
3.7
3.6
3.4
3.4
3.5
3.5
3.2
3.5
3.6
3.6
3.7
3.8
4.0
Scrubber
Outlet
THC
(ppm)
3.6
4.1
4.3
4.8
5.0
5.0
4.9
4.5
4.2
3.9
3.7
3.6
3.4
3.1
3.0
3.0
3.0
3.0
3.2
3.3
3.4
3.3
3.4
3.4
3.6
3.7
3.8
3.8
3.9
4.0
4.0
4.0
4.0
4.0
4.0
4.1
4.2
4.3
4.3
4.3
4.5
4.5
4.6
4.5
4.4
4.3
4.4
4.5
4.5
4.5
4.6
4.8
4.9
4.8
4.9
5.1
CO
Scrubber
Inlet
CO
(ppm)
26
28
32
39
47
54
62
68
65
61
59
58
54
50
46
42
38
35
33
31
29
29
26
27
27
26
27
27
28
26
25
25
26
27
26
26
26
24
24
24
26
27
25
24
23
20
22
21
25
23
21
20
20
19
18
17
Scrubber
Outlet
CO
(ppm)
27
28
32
39
48
54
63
68
65
61
60
58
54
50
46
42
38
35
34
31
29
29
27
27
27
26
27
27
28
26
25
25
26
27
27
26
27
25
24
24
26
28
26
25
23
21
22
21
25
23
21
20
20
19
18
17
Moisture
Scrubber
Inlet
H20
<»)
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
Scrubber
Outlet
H,0
(*)
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
Page 3 of 9
-------
Huntington, West Virginia
Continuous Monitor Data
August 1995
Date
3/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16795
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
Time
14:50
14:55
15:00
15:05
15:10
15:15
15:20
15:25
15:30
15:35
15:40
15:45
15:50
15:55
16:00
16:05
16:10
16:15
16:20
16:25
16:30
16:35
16:40
16:45
16:50
16:55
17:00
17:05
17:10
17:15
17:20
17:25
17:30
17:35
17:40
17:45
17:50
17:55
18:00
18:05
18:10
18:15
18:20
18:25
18:30
7-55
8:00
8:05
8:10
8:15
8:20
8.25
8:30
8:35
8:40
8:45
CO]
Scrubber
Inlet
CO,
(*>
80
7.4
7.6
7.4
7.0
7.2
7.6
7.8
8.2
8.2
7.2
67
8.3
8.1
7.2
7.2
6.9
7.7
7.8
7.4
7.6
7.1
6.8
6.8
6.7
6.1
6.3
6.7
8.4
8.1
8.9
8.8
9.3
9.3
9.3
9.8
9.4
9.3
9.4
9.3
9.2
9.1
9.4
9.5
9.2
8.0
6.5
ciubber
Outlet
CO,
(%)
8.1
7.4
7.6
7.4
70
7.2
7.6
7.7
8.2
8.2
7.2
6.8
8.3
8.1
7.2
7.2
6.9
7.6
7.7
7.4
7.5
7.1
6.8
6.8
6.8
6.1
6.3
6.8
8.3
8.0
8.7
8.7
9.2
9.3
9.3
9.7
9.2
9.2
9.3
9.2
9.1
9.0
9.3
9.4
9.5
8.1
6.7
o?
Scrubber
Inlet
02
(*)
11.1
11.9
11.6
12.0
12.4
12.2
11.6
11.5
11.0
11.0
12.3
12.9
10.9
11.1
12.2
12.3
12.7
11.7
11.5
12.0
11.8
12.4
12.7
12.8
12.8
13.6
13.3
12.8
10.7
11.2
10.1
10.2
9.6
9.6
9.6
8.9
9.6
9.7
9.5
9.6
9.7
9.9
9.6
9.4
9.5
11.2
13.1
crabber
Outlet
0,
(*)
11.2
11.9
11.7
12.0
12.5
12.2
11.6
11.5
11.0
11.0
12.3
12.9
10.9
11.2
12.3
12.3
12.7
11.7
11.5
12.0
11.8
12.4
12.7
12.8
12.8
13.7
13.4
12.8
10.8
11.2
10.1
10.2
9.6
9.6
9.6
9.0
9.6
9.7
9.5
9.6
9.7
9.9
9.5
9.4
94
11.3
132
Temperature
Scrubber
Inlet
°F
908
922
928
932
927
924
926
924
925
927
916
892
893
907
901
891
883
886
895
895
895
890
887
877
872
863
860
862
877
893
907
918
930
937
942
950
954
949
948
951
949
949
950
952
927
420
418
416
415
414
420
549
644
713
724
Scrubber
Outlet
°F
115
116
117
117
116
117
117
116
117
117
113
109
114
115
112
111
110
113
114
113
114
112
111
109
109
107
108
109
115
114
117
117
119
120
120
121
120
120
120
120
119
119
120
120
107
106
105
105
106
105
104
104
94
107
108
103
THC
crabber
Inlet
THC
(ppm)
4.2
4.6
4.8
52
5.7
6.2
6.4
6.5
6.7
6.8
6.7
6.7
71
6.5
6.5
6.6
6.5
6.7
6.1
60
6.4
63
6.3
6.5
6.4
5.9
5.9
5.9
6.2
5.5
5.6
5.2
5.3
5.6
5.7
5.7
6.0
6.1
5.9
5.8
5.8
5.8
5.7
5.2
4.3
8.5
8.3
62
Scrubber
Outlet
THC
(ppm)
5.4
58
6.1
6.5
6.9
7.5
7.9
8.2
8.5
8.7
8.5
8.2
8.6
86
8.6
83
8.0
8.3
8.1
8.1
8.4
8.4
8.4
8.1
8.0
7.7
7.7
7.7
7.9
7.9
7.8
7.4
7.4
7.6
7.6
7.9
8.2
8.1
8.0
7.9
8.1
8.1
8.0
7.9
0.8
4.4
5.0
3.5
CO
Scrubber
Inlet
CO
(ppm)
19
21
23
26
27
30
36
43
49
52
53
54
58
55
S3
55
52
51
47
45
47
46
45
46
44
39
38
38
43
41
42
40
42
44
46
49
52
51
49
48
46
44
42
39
102
112
99
Scrubber
Outlet
CO
(ppm)
20
21
23
26
28
31
36
43
49
52
54
54
58
55
53
55
52
51
47
46
47
46
45
46
45
39
38
38
43
42
42
40
42
44
46
49
52
52
49
49
46
44
42
40
114
112
98
Moisture
Scrubber
Inlet
H,0
(%)
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
028
0.28
028
Scrubber
Outlet
H20
(»)
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
006
0.06
006
Page 4 of 9
-------
HuntingtoDt West Virginia
Continuous Monitor Data
August 1995
Date
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
Time
8:50
8:55
9:00
9:05
9:10
9:15
9:20
9:25
9:30
9:35
9:40
9:45
9:50
9:55
10:00
10-05
10:10
10:15
10:20
10:25
10:30
10:35
10:40
10:45
10:50
10:55
11:00
11:05
11:10
11:15
11:20
11:25
11:30
11:35
11:40
11:45
11:50
11:55
12:00
12:05
12:10
12:15
12:20
12:25
12:30
12:35
12:40
12:45
12:50
12:55
13:00
13:05
13 10
13-15
13:20
13:25
C02
Scrubber
Inlet
CO,
(*)
6.1
6.1
60
5.9
6.4
7.0
6.1
7.2
7.8
7.7
7.0
6.3
7.0
7.6
7.7
6.9
6.8
6.8
7.3
7.6
7.2
8.4
8.0
7.3
7.4
7.0
6.5
7.0
6.7
6.9
7.2
7.9
7.7
7.6
5.8
5.8
6.6
8.2
7.5
7.8
7.7
7.5
7.6
7.8
7.5
7.9
7.5
7.5
58
5.7
4.9
5.9
5.5
Scrubber
Outlet
COj
<%)
6.4
6.3
6.2
6.1
6.6
7.2
6.3
7.4
8.0
7.9
7.1
6.5
7.2
7.7
7.9
6.9
6.8
6.8
7.4
7.6
7.2
8.3
8.0
7.3
7.4
7.0
6.6
7.0
6.7
7.0
7.2
7.9
7.6
7.6
5.8
5.9
6.7
8.1
7.4
7.7
7.6
7.5
7.5
7.7
7.4
7.7
7.4
74
58
5.7
6.2
56
02
Scrubber
Inlet
Oz
<*)
13.5
13.6
13.7
13.8
13.2
12.4
13.6
12.2
11.5
11.6
12.6
13.3
12.6
11.9
11.6
12.8
12.8
12.8
12.2
11.8
12.3
10.9
11.4
12.2
12.1
12.6
13.2
12.6
12.9
12.6
12.3
11.4
11.7
11.8
14.1
14.0
13.0
11.1
12.1
11.6
11.7
12.0
11.9
11.5
12.0
11.5
11.9
120
14.0
150
138
14.3
Scrubber
Outlet
0,
(%)
13.7
13.7
13.8
13.9
13.3
12.5
136
12.3
11.6
11.7
12.7
13.4
126
12.0
11.7
12.8
128
12.8
12.1
11.8
12.3
10.9
11.4
12.2
12.2
12.7
13.2
126
12.9
12.6
12.3
11.4
117
11.8
141
140
13.0
11.1
12.0
11.6
11.8
12.0
11.9
116
12.0
11.6
12.0
12.1
14.0
14.8
14.1
145
Temperature
Scrubber
Inlet
°F
727
736
741
747
757
772
770
781
796
803
803
793
794
806
812
815
814
812
818
827
825
834
842
836
833
829
821
823
825
825
831
842
855
850
832
819
817
835
839
844
851
851
853
861
862
863
863
860
842
827
815
806
801
798
805
806
Scrubber
Outlet
°F
102
102
103
102
104
106
104
107
109
108
106
104
106
107
108
106
105
105
107
108
106
110
110
107
106
106
104
106
105
105
107
110
109
108
102
102
104
109
107
109
109
109
109
111
110
111
110
109
104
103
101
99
101
101
104
103
THC
Scrubber
Inlet
THC
(ppm)
5.8
5.8
5.5
5.4
6.3
6.2
6.2
6.9
6.8
6.8
5.8
6.0
6.5
5.8
6.6
6.6
6.5
7.1
7.7
7.7
7.1
7.8
6.8
6.2
5.9
5.8
5.2
5.8
5.6
6.3
6.0
7.2
6.0
6.8
4.2
5.0
6.2
7.0
5.6
6.3
6.0
6.1
6.4
6.6
6.4
6.7
6.5
6.5
4.3
4.6
4.0
Scrubber
Outlet
THC
(ppm)
3.5
38
3.8
4.1
4.8
5.1
5.1
5.7
6.0
5.8
5.2
4.7
5.4
53
59
5.8
5.9
6.2
7.2
7.2
6.7
7.0
6.8
5.9
5.9
5.7
5.3
5.8
5.8
6.1
6.3
7.0
6.9
6.8
4.9
5.2
6.0
7.1
66
6.9
6.8
6.9
7.0
7.1
- 7.0
71
7.2
7.0
5.5
2.3
2.5
33
2.7
CO
Scrubber
Inlet
CO
(ppm)
85
80
76
73
77
89
80
96
110
114
108
99
106
116
120
113
112
117
127
136
135
153
148
138
137
128
116
118
113
116
120
119
132
135
114
108
119
141
134
137
136
132
130
129
129
135
135
139
119
75
85
81
Scrubber
Outlet
CO
(ppm)
83
79
74
71
76
87
77
93
106
108
102
93
100
108
111
102
102
106
115
124
121
138
130
121
120
112
100
103
98
102
105
103
110
114
94
93
107
126
116
119
115
111
109
107
105
113
112
117
98
77
71
Moisture
Scrubber
Inlet
H,0
(%)
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
028
0.28
Scrubber
Outlet
HjO
(»)
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
Page 5 of 9
-------
Huntington, West Virginia
Continuous Monitor Data
August 1995
Date
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
Time
13:30
13:35
13:40
13:45
13:50
13:55
14:00
14:05
14:10
14:15
14:20
14:25
14:30
14:35
14:40
14:45
14:50
14:55
15:00
15:05
15:10
15:15
15:20
15:25
15:30
15:35
15:40
15:45
15:50
15:55
16:00
16:05
16:10
16:15
16:20
16:25
16:30
16:35
16:40
16:45
16:50
16:55
17:00
17:05
17:10
17:15
17:20
17:25
17:30
17:35
17:40
17:45
17:50
17:55
18:00
18.05
C02
Scrubber
Inlet
C02
(%)
7.0
7.2
6.7
6.1
5.0
6.1
7.6
7.6
7.1
8.4
8.2
8.5
8.5
8.2
7.7
9.3
8.9
8.9
8.4
7.2
6.7
6.6
7.3
7.9
9.0
9.0
8.8
9.0
8.7
9.0
9.0
9.1
9.2
8.4
10.0
9.4
9.4
9.4
9.5
9.7
10.0
10.1
9.7
10.0
9.9
10.0
9.9
10.7
10.5
10.3
10.7
10.4
99
79
8.5
8.7
Scrubber
Outlet
CO,
(%)
7.0
7.2
6.6
6.1
5.1
6.2
7.5
7.5
7.0
8.2
8.0
8.3
8.3
8.0
7.5
9.1
8.6
8.6
8.2
7.1
6.7
6.6
7.2
7.7
8.8
8.8
8.6
8.8
8.4
8.8
8.8
8.9
9.0
8.2
9.8
9.2
9.2
9.2
9.3
9.5
9.8
9.8
9.6
9.8
9.7
9.8
9.7
10.5
10.3
102
105
102
9.6
7.7
8.3
8.5
0,
Scrubber
Inlet
Oj
(*)
12.5
12.3
12.9
13.5
14.8
13.5
11.7
11.8
12.4
10.9
11.1
10.7
10.7
11.1
11.8
9.7
10.2
10.2
10.8
12.3
12.9
13.0
12.2
11.4
10.0
10.0
10.3
10.0
10.4
10.0
10.0
9.8
9.7
10.8
8.8
9.4
9.5
9.5
9.3
9.1
8.7
8.6
9.0
8.7
8.9
8.7
8.9
7.8
8.1
8.2
7.8
8.2
8.9
11.5
10.7
10.4
Scrubber
Outlet
0,
(»)
12.7
12.4
13.1
13.8
15.1
13.7
11.9
11.9
12.6
11.0
11.3
10.8
10.9
11.3
11.9
9.8
10.4
10.4
11.0
12.5
13.1
13.2
12.4
11.7
10.2
10.2
10.4
10.2
10.6
10.2
10.2
10.0
9.9
11.0
8.9
96
9.6
9.7
9.5
93
8.9
8.8
9.2
8.9
9.1
8.8
9.1
8.0
8.2
8.4
8.0
8.4
9.1
11.7
109
106
Temperature
Scrubber
Inlet
°F
818
834
841
839
829
830
845
856
854
867
875
881
886
884
874
884
894
900
898
883
863
852
851
858
874
893
899
905
908
913
916
918
917
908
917
924
924
926
927
932
939
942
942
944
943
945
946
954
957
957
960
959
952
927
911
909
Scrubber
Outlet
°F
107
109
108
107
105
108
111
112
110
115
115
116
116
114
111
115
116
116
114
110
107
108
109
111
116
116
115
116
116
117
117
117
116
113
118
117
117
118
118
119
119
119
119
119
118
119
118
121
120
120
121
119
117
110
111
113
THC
Scrubber
Inlet
THC
(ppm)
8.9
8.7
7.6
6.1
7 1
6.2
67
6.7
6.6
6.2
7.7
7.0
7.0
6.8
5.5
5.0
5.5
6.1
6.5
6.6
5.9
6.9
6.4
6.7
6.6
6.7
6.3
6.3
6.2
7.0
5.9
6.4
6.4
6.4
6.3
6.5
6.3
6.4
6.3
5.8
6.3
6.4
6.6
5.8
6.8
58
5.8
5.4
4.4
5.0
52
Scrubber
Outlet
THC
(ppm)
3.9
46
4.3
4.2
3.7
5.0
5.9
6.1
5.6
6.6
6.3
6.6
6.6
6.3
5.6
6.5
6.6
6.8
6.4
5.4
4.6
4.4
4.7
4.9
5.5
5.4
5.9
5.9
5.9
6.3
6.2
6.3
6.0
6.1
6.7
6.4
6.4
6.4
65
6.7
7.0
7.0
7.1
7.3
7.0
7.1
74
7.7
76
74
73
7.2
6.7
58
5.9
60
CO
Scrubber
Inlet
CO
(ppm)
96
102
95
85
73
88
116
121
124
143
150
163
171
173
168
182
175
175
176
161
147
135
139
148
147
153
ISO
153
152
153
156
163
173
160
167
182
171
166
166
168
176
181
183
187
186
185
188
191
206
200
201
201
195
178
167
146
Scrubber
Outlet
CO
(ppm)
86
89
86
78
66
79
104
107
108
126
130
140
146
146
142
158
146
143
143
130
124
115
121
129
127
126
121
122
119
120
123
130
141
130
139
148
138
134
134
136
142
147
147
152
152
152
154
158
171
167
167
165
158
144
142
123
Moisture
Scrubber
Inlet
H20
(%)
0.28
0.28
0.28
028
028
0.28
0.28
0.28
0.28
0.28
0.28
0.28
028
0.28
0.28
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
Scrubber
Outlet
H20
(«)
0.06
0.06
0.06
0.06
0.06
006
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
006
006
0.06
0.06
0.06
0.06
0.06
006
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
006
0.06
006
006
0.06
006
006
0.06
Page 6 of 9
-------
Huntington, West Virginia
Continuous Monitor Data
August 1995
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/ 7/95
8/ 7/95
8/ 7/95
8/ 7/95
8/ 7/95
8/ 7/95
8/ 7/95
8/ 7/95
8/ 7/95
8/ 7/95
8/ 7/95
8/ 7/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/18/95
8/18/95
18:10
18:15
18:20
18:25
18:30
18:35
18:40
18:45
18:50
18:55
19:00
19:05
19:10
19:15
19:20
19:25
19:30
19:35
19:40
19:45
19:50
19:55
20:00
20:05
20:10
20:15
20:20
20:25
20:30
20:35
20:40
20:45
20:50
20:55
21:00
21:05
21:10
21:15
21:20
21:25
21:30
21:35
21:40
21:45
21:50
21-55
22:00
22.05
22:10
22.15
22:20
22:25
22:30
22 35
8:00
8-05
C02
Inlet
CO,
10.5
10.9
9.5
9.3
9.2
8.3
9.0
10.2
9.4
8.8
8.5
8.3
8.5
8.0
8.7
8.7
7.7
7.4
9.6
94
9.0
9.5
9.5
9.5
10.3
10.3
10.3
10.3
10.3
10.2
10.1
9.8
9.4
9.9
100
10.0
9.4
8.4
8.5
9.2
9.4
10.0
10.1
106
104
Outlet
CO,
10.6
9.4
8.0
9.3
105
9.7
9.0
8.7
8.4
8.6
8.2
8.9
8.9
7 8
7.6
9.9
9.7
92
9.8
9.8
9.8
107
10.6
10.6
10.6
107
10.5
105
10.3
10.2
9.8
10.2
104
10.0
10.4
9.6
8.5
8.7
9.4
9.8
10.3
Inlet
0,
SFo~~
7.6
93
9.4
9.6
10.9
9.9
8 5
9.4
10.3
10.6
10.9
10.6
11.2
103
10.3
11 6
12.0
9.2
9.4
100
9.3
9.3
9.3
8 2
8.4
8.4
8.4
8 3
8~6
Jf8~~
8.9
9.4
8.9
8 8
8.7
9.5
10.7
10.5
9.7
9.4
8.8
8.7
8.0
8.3
^
Outlet
0,
(*)
8.1
7.8
9.5
11.7
10.1
8 7
10.5
10.8
11.1
10.8
11.4
105
10.5
Mo
12.2
9.3
9.6
102
9.4
9.4
8 4
8.5
^8.6
8 5
8~8
9.1
9.6
9.0
80
8.9
97
11.0
10.7
99
9.6
90
Inlet
Op
926~~
950
951
950
QAf,
952
957
942
940
930
926
942
934
927
922
920
916
018
921
OIK
904
923
937
939
940
943
943
OS1
~956
959
959
o/ai
960
QV7
956
954
950
949
949
951
950
948
944
943
943
945
947
950
953
954
954
535
534
Scnibbe
Outlet
°F
119
122
118
118
120
121
117
117
113
116
M4
113
113
114
114
1 M6~~
113
120
120
119
119
119
121
121
121
121
120
120
118
119
118
119
118
118
118
119
118
119
118
119
118
117
117
96
98
Scnibbe
Inlet
THC
5.7
4.8
1 4.6
5.1
I 5'2
5.1
5.5
4.9
5.1
4.8
5.2
5.0
1 5'6
5.6
6.7
6.3
6.3
62
6.1
.1
6.5
6.4
6.5
5.9
6.0
5.8
5.7
5.3
5.6
5.4
4.7
5.9
6.5
6.6
56
5.0
5.1
4.5
4.1
5.2
0.9
04
Scnibbe
Outlet
THC
1 6.6
6.7
6.5
.0
1 4.3
4.2
1 3'5
4.0
. 1
3.7
3.7
3.2
3.4
3.1
.2
3.0
2.9
3.0
4.1
4.1
4.2
3.9
4.0
'.1
4.2
4.4
4.3
.0
3.6
.7
3.6
3.7
3.5
3.3
.5
3.3
28
26
38
4.2
3.8
3.2
30
26
23
2.1
Scnibbe
CO
150
164
166
142
143
140
135
155
149
142
129
122
117
109
115
113
109
102
114
131
138
145
152
149
165
172
174
177
179
176
173
170
161
152
154
155
155
153
140
112
107
123
136
150
158
165
163
Scnibbe
CO
127
133
128
114
116
134
125
118
107
101
97
90
97
95^
90
85
99
110
116
124
129
126
143
146
148
149
151
148
146
143
135
126
131
132
131
128
114
88
87
105
118
131
Scnibbe
H,0
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
Scrubber
H,0
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
Page 7 of 9
-------
Huntington, West Virginia
Continuous Monitor Data
August 1995
Date
8/18/95
8/18/9S
8/18/9S
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
Time
8:10
8:15
8:20
8:25
8:30
8:35
8:40
8:45
8:50
8:55
9:00
9:05
9:10
9:15
9:20
9:25
9:30
9:35
9:40
9:45
9:50
9:55
10:00
10:05
10:10
10:15
10:20
10:25
10:30
10:35
10:40
10:45
10:50
10:55
11:00
11:05
11:10
11:15
11:20
11:25
11:30
11:35
11:40
11:45
11:50
11:55
12.00
12:05
12:10
12:15
12:20
12:25
12:30
12:35
12.40
12:45
COj
Scrubber
Inlet
C02
(«)
6.6
8.7
8.8
8.3
7.2
5.2
7.7
8.2
7.2
8.0
6.3
6.3
6.0
5.6
6.8
6.1
6.1
6.3
6.2
6.3
6.4
6.3
6.5
6.3
6.4
6.4
6.4
6.4
6.5
6.6
6.5
6.5
6.6
6.4
6.4
6.5
6.4
6.1
6.3
8.0
56
Scrubber
Outlet
C02
<*)
13.4
9.0
93
8.7
7.4
5.5
8.1
8.5
7.5
8.4
6.7
6.7
6.4
6.0
7.2
6.5
6.5
6.6
6.6
6.8
6.8
6.7
6.8
6.7
6.8
6.8
6.8
6.8
6.9
7.0
6.9
6.9
6.9
6.8
6.8
6.9
6.8
6.5
6.7
6.9
7.1
54
Oj
Scrubber
Inlet
Oj
(*)
12.8
10.2
9.5
10.1
11.6
14.3
10.8
10.2
11.5
10.5
12.5
12.6
12.9
13.4
12.0
12.8
12.8
12.7
12.8
12.6
12.5
12.6
12.4
12.6
12.5
12.4
12.4
12.4
12.3
12.2
12.4
12.3
12.3
12.4
12.5
12.4
12.5
12.8
12.6
13.1
13.6
Scrubber
Outlet
02
(*)
55
10.4
9.6
10.3
11.9
14.5
11.0
10.3
11.7
10.7
12.8
12.9
13.2
13.6
12.2
13.1
13.1
13.0
13.1
12.8
12.7
12.9
12.7
12.8
12.8
12.7
12.7
12.7
12.6
12.5
12.6
12.6
12.5
12.7
12.8
12.6
12.8
13.1
12.8
12.5
108
129
Temperature
Scrubber
Inlet
°F
531
529
527
525
530
603
634
660
675
708
790
813
830
839
833
837
854
853
878
878
865
858
848
858
861
859
863
868
872
876
878
881
880
881
883
885
888
890
896
899
900
903
902
901
901
901
897
894
899
910
912
919
905
877
859
865
Scrubber
Outlet
°F
100
103
103
103
102
89
88
88
L_ «7
98
101
105
106
105
104
105
107
103
110
108
108
107
106
110
108
108
109
109
110
110
110
111
110
111
111
111
111
112
112
113
113
113
113
113
113
113
112
113
113
114
114
116
110
105
109
110
THC
Scrubber
Inlet
THC
(ppm)
01
0.1
0.4
0.4
00
0.5
02
-0.6
-1.0
8.6
18.1
2.3
1.4
1.9
5.6
0.9
0.5
0.2
0.6
1.1
1.5
1.4
1.5
1.4
1.5
1.5
1.4
1.2
12
1.2
12
1.3
1.4
1.1
1.0
1.0
0.9
0.9
0.9
.1
2
3
.3
.3
4
.7
8
2.0
83
53
Scrubber
Outlet
THC
(ppm)
16
1.6
1.9
1.9
2.2
2.0
2.0
2.1
2.2
.9
.9
.9
.8
.9
.9
.8
.8
.8
.7
8
.9
20
2.2
2.2
2.2
2.3
2.4
2.6
2.7
2.8
1.6
1.6
1.5
2.6
CO
Scrubber
Inlet
CO
(ppm)
7
6
5
11
4
8
5
4
4
14
3
4
4
2
3
3
2
2
2
2
3
3
7
3
4
6
6
4
4
5
5
Scrubber
Outlet
CO
(ppm)
3
3
2
2
2
2
3
2
2
2
1
2
2
2
2
2
- 3
3
3
3
4
4
4
22
8
Moisture
Scrubber
Inlet
H20
(«)
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
Scrubber
Outlet
H20
<»)
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
Page 8 of 9
-------
Huntington, West Virginia
Continuous MonHor Data
August 1995
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/I8/9S
Time
12:50
12:55
13:00
13.05
13:10
13:15
13:20
13:25
13:30
13:35
13:40
13:45
13:50
13.55
14:00
14.05
14:10
14:15
14:20
14:25
14:30
14:35
14:40
14-45
14:50
14:55
15:00
15-05
15.10
15:15
15:20
15:25
15:30
15:35
15:40
15:45
15:50
15:55
16.00
16-05
16:10
16:15
16:20
16:25
16:30
16:35
16.40
16:45
16:50
16-55
1700
17:05
CO,
Scrubber
Inlet
CO,
<*)
4.8
3.7
6.0
6.1
5.1
42
5.9
7.1
7.7
10.0
11.2
9.2
8.4
56
3.3
5.5
7.6
7.2
6.9
6.9
7.0
6.9
6.9
6.4
7.2
7.0
9.0
8.8
9.4
7.3
6.7
6.8
7.6
7.9
84
87
8.8
7.9
7.2
6.7
6.7
7.1
Scrubber
Outlet
CO,
(%)
4.6
3.5
5.8
5.9
4.9
4.1
5.7
6.8
7.3
9.5
10.4
8.6
7.7
5.2
3.2
5.3
7.1
6.8
6.6
6.5
6.6
6.6
6.5
6.0
6.8
6.6
8.4
8.3
8.7
6.8
6.3
6.4
7.1
7.4
7.7
8.1
8.2
7.4
6.8
6.4
6.3
6.8
7.5
0,
Scrubber
Inlet
0,
(ft)
14.6
16.1
13.1
12.9
14.3
15.5
13.6
12.2
11.5
8.6
6.9
9.6
10.4
13.7
16.3
13.6
10.9
11.5
11.8
11.9
11.8
11.8
11.9
12.5
11.5
12.3
10.0
10.3
9.5
12.1
12.7
12.6
11.6
11.4
10.8
10.5
10.3
11.4
12.2
12.7
12.7
12.2
Scrubber
Outlet
0,
(ft)
14.0
15.6
12.5
12.4
13.8
15.0
13.0
11.7
11.0
8.3
6.7
9.2
10.0
13.3
158
13.0
10.5
11.1
11.4
115
11.3
11.4
11.5
12.0
11.1
11.8
9.6
9.8
9.2
11.7
12.2
12.1
11.2
10.9
104
10.1
9.9
11.0
11.8
12.2
12.2
118
10.7
»
Temperature
Scrubber
Inlet
°F
851
846
861
868
872
861
862
875
885
909
945
952
943
905
842
825
862
896
899
898
902
906
908
905
906
905
900
899
926
922
913
905
905
904
907
905
912
913
911
907
903
899
900
904
895
881
874
870
865
858
860
857
Scrubber
Outlet
Op
105
108
113-
112
113
112
114
115
116
122
124
124
121
109
99
106
114
119
119
119
119
119
118
117
118
118
117
109
120
117
117
115
117
117
117
117
118
118
117
117
116
116
116
116
110
108
111
111
110
109
THC
Scrubber
Inlet
THC
(ppm)
4.3
9.6
6.6
5.2
92
15.4
160
14.2
12.3
9.1
4.0
6.3
4.9
3.5
1.4
1.9
1.7
3.6
2.4
2.2
2.2
2.0
1.9
2.7
2.8
6.1
5.0
4.4
5.1
5.9
7.1
6.8
6.6
6.2
5.9
5.2
4.8
5.2
6.0
6.6
7.4
7.1
Scrubber
Outlet
THC
(ppm)
2.5
6.5
4.6
3.4
6.6
11.6
11.3
10.5
9.4
80
3.1
5.5
3.7
2.5
0.6
0.7
0.8
2.4
.5
.3
.3
.2
.2
.8
2.0
4.4
3.6
2.9
4.1
4.6
5.5
5.4
5.1
46
44
3.8
3.5
38
4.4
4.9
5.6
54
CO
Scrubber
Inlet
CO
(ppm)
8
11
17
36
74
135
181
218
166
166
105
75
54
20
11
17
13
11
11
9
9
9
20
73
107
135
139
112
95
99
119
134
144
152
146
126
107
98
98
111
Scrubber
Outlet
CO
(ppm)
7
14
12
8
IS
34
72
132
175
209
152
143
85
58
44
13
5
9
5
4
3
3
2
3
14
67
100
110
126
96
80
86
105
121
129
136
129
106
88
81
82
96
118
Moisture
Scrubber
Inlet
H20
(ft)
0.25
0.25
025
0.25
0.2S
0.25
0.25
0.25
0.25
0.25
0.25
025
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
025
0.25
025
0.25
0.25
0.25
0.25
0.25
025
0.25
0.25
0.25
025
Scrubber
Outlet
H,0
(ft)
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
Page 9 of 9
-------
APPENDIX D
HOPEWELL CONTINUOUS MONITOR DATA
-------
Hopewell, 4ia
Continuous Monitor Data
December 1995
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
11:20
11:25
11.30
11:35
11-40
11:45
11:50
11:55
12:00
12:05
12-10
12:15
12.20
12:25
12:30
12:35
12:40
12.45
12:50
12.55
1300
1305
13.10
13.15
13:20
13:25
13:30
13.35
13:40
13-45
13.50
13:55
14:00
14:05
14:10
14.15
Inlet
C02
(»)
160
12.4
03
6.7
9.6
9.3
9.3
9.1
89
8.8
86
8.2
8.4
8.4
8.3
7.9
7.6
7.4
73
73
7.0
69
6.8
6.8
68
6.6
65
64
6.5
6.5
6.5
66
5.2
26
2.6
5.4
COj
Outlet
CO, (%)
(%)
16.4
12.3
28
7.6
80
8.4
88
4.1
2.2
8.3
82
8.2
8.1
8.1
8.0
7.7
7.5
7.3
7.3
7.2
7.0
6.9
6.8
6.8
6.8
6.6
6.5
6.4
6.4
64
6.5
6.6
6.5
65
6.5
6.6
Outlet
C0,(%
(*)
10.1
12.2
1.3
3.6
38
3.9
4.0
4.0
4.1
1.5
37
6.7
4.2
4.1
42
4.2
4.1
4.0
4.0
3.9
3.9
3.8
3.8
3.8
37
3.7
37
3.7
3.6
3.6
3.7
3.7
3.7
36
3.7
3.7
sec
. Inlet
02
<*)
21.4
15.7
2.8
9.3
11.6
9.5
9.5
9.8
9.9
10.1
10.3
10.8
10.7
10.7
10.9
11.4
11.7
12.1
12.0
12.1
12.4
12.5
12.7
12.6
12.7
12.8
13.0
13.1
13.0
13.0
13.0
12.9
14.8
178
17.8
14.2
02
sec
Outlet
O2
(»)
21.6
16.0
7.7
11.8
11.3
10.9
11.9
5.4
3.4
11.1
11.2
112
11.3
11.4
11.5
11.9
12.2
12.3
12.4
124
12.7
128
129
129
12.9
13.1
132
13.2
13.2
13.2
13.2
131
13.1
13.1
13.1
13.0
Scnibbe
Outlet
O2
<*)
12.5
16.9
8.2
16.4
16.2
16.0
15.8
1S.8
15.8
7.1
52
14.4
15.6
15.7
15.7
15.7
15.8
15.9
16.0
16.0
16.1
16.2
16.3
163
16.3
164
16.4
16.4
16.4
16.4
16.3
16.3
16.3
16.4
16.3
16.3
Temperature
sec
Inlet
°F
878
878
888
902
918
936
957
976
974
991
1002
1008
1014
1019
1020
1011
1010
1005
998
997
988
984
974
973
966
959
961
954
954
952
951
953
950
949
949
951
sec
Outlet
°F
841
845
847
855
861
869
879
890
901
910
916
924
928
935
936
935
933
930
929
929
923
919
915
913
909
906
903
901
900
898
897
898
899
903
902
898
Scnibbe
Outlet
Op
163
162
162
163
164
164
164
162
161
161
161
162
162
163
164
164
164
164
164
165
165
164
164
165
165
164
164
164
163
163
164
163
163
163
163
163
Total Hydrocarbons
sec
Inlet
THC
(ppm)
106.0
57.5
53.0
107.0
209.5
154.8
174.0
164.6
70.3
60.3
78.2
54.5
138.0
90
106.1
138.0
145.4
131.0
140.8
91.6
157.1
165.5
178.4
178.7
194.4
204.5
202.3
208.2
188.1
142.5
209.7
121.3
77.9
120
3.8
161.2
sec
Outlet
THC
65.4
259
49.0
43.3
40.1
34.3
45.6
22.1
10.1
23.3
20.1
17.4
15.7
15.6
14.7
14.9
16.3
17.2
17.1
17.3
18.7
20.4
20.8
22.3
24.1
23.8
26.6
27.6
28.7
28.1
26.8
290
28.4
288
29.3
29.8
Scnibbe
Outlet
THC
(ppm)
68.0
26.6
23.2
21.8
19.2
17.7
15.7
13.6
11.6
49
21.8
25.0
84
7.6
7.1
7.4
8.4
8.7
8.7
89
9.3
10.1
10.6
109
11.0
11.4
12.5
12.8
12.7
12.9
13.1
130
126
130
13.4
12.6
Carbon Monoxide
sec
Inlet
CO
-4
14
1679
565
724
1920
2054
1965
1951
2014
2015
1834
1924
1953
1944
1903
2071
2098
2062
2055
2110
2129
2139
2222
2244
2191
2255
2257
2175
2188
2185
2231
1821
915
897
1674
sec
Outlet
CO
706
6
1668
1249
1165
1220
861
522
1423
1301
1005
970
954
894
1005
1206
1327
1352
1395
1438
1458
1508
1584
1639
1641
1661
1770
1759
1690
1761
1731
1720
1762
1781
1743
1714
Scnibbe
CO
693
3
1277
451
490
499
484
495
486
977
994
189
463
424
639
844
909
912
926
931
937
976
1045
1029
1031
1073
1132
1103
1113
1139
1103
1105
1153
1166
1133
1134
sec
H,0
IN
0.285
0.285
0285
0.285
0.285
0.285
0.285
0285
0.285
0.285
0.285
0.285
0.285
0.285
0.285
0285
0.285
0.285
0285
0.285
0.285
0285
0285
0285
0.285
0.285
0.285
0285
0.285
0.285
0.285
0285
sec
HjO
OUT
0.248
0.248
0.248
0.248
0.248
0248
0.248
0.248
0.248
0248
0.248
0.248
0.248
0248
0.248
0248
0.248
0.248
0248
0.248
0248
0.248
0248
0248
0.248
0248
0.248
0.248
0.248
0.248
0.248
0.248
Scrubber
HjO
Slack
0.043
0043
0.043
0043
0.043
0043
0.043
0043
0.043
0043
0043
0.043
0.043
0.043
0.043
0043
0043
0043
0.043
0043
0.043
0.043
0043
0043
0043
0043
0.043
0.043
0043
0.043
0.043
0.043
0.043
0.043
Page 1 of 16
-------
HopeweU, Virginia
Continuous Monitor Data
December 1995
Date
12/S/9S
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
Time
14-20
14:25
1430
14-35
14.40
14.45
14:50
1455
15:00
1505
15:10
15.15
15:20
15:25
15:30
15:35
15.40
15:45
15-50
15-55
16:00
16.05
16:10
16-15
16:20
16:25
16:30
16:35
16-40
16:45
16.50
16.55
17-00
17.05
17-10
17-15
sec
Inlet
C02
(%)
6.5
66
70
7.4
9.1
91
9.8
10.2
10.4
107
10.7
106
10.5
7.2
3.7
7.3
10.9
11.1
11.7
118
120
124
130
13.0
13.2
13.3
13.5
13.5
13.6
13.3
13.3
134
13.5
13.0
135
13.6
C02
sec
Outlet
C0j(»)
(%)
6.7
6.6
6.8
75
8.8
9.0
9.6
9.9
10.1
10.3
10.3
10.2
10.0
7.5
00
8.1
10.5
10.6
107
10.7
10.3
11.8
116
11.7
119
12.2
12.4
12.5
12.6
12.6
126
12.6
12.8
12.8
12.8
12.9
Scrubber
Outlet
COjW
(%)
3.7
3.7
3.8
4.0
4.2
4.3
4.4
4.5
4.8
4.8
4.8
4.8
4.8
4.8
48
4.8
4.8
4.8
4.9
49
4.8
55
5.4
55
55
5.6
5.7
5.7
5.8
5.7
56
5.6
5.7
5.7
5.7
58
1
sec
Inlet
02
(*)
129
12.8
124
12.0
9.6
9.9
9.1
8.6
8.4
8.2
8.2
8.3
8.4
12.7
16.6
12.0
7.9
7.5
6.8
6.6
62
5.8
5.0
4.9
47
4.5
4.3
4.2
4.1
45
4.6
4.5
4.5
51
4.4
4.2
02
sec
Outlet
02
(*)
13.0
13.0
12.8
11.8
10.0
10.0
9.2
8.8
8.6
8.4
8.4
8.5
8.7
12.0
21.1
11 1
8.2
8.1
7.9
7.9
8.3
6.0
6.4
6.2
5.9
5.7
5.4
5.3
5.0
5.2
5.2
5.2
5.0
5.0
5.0
4.9
Scrubbe
Outlet
02
(*)
16.3
16.2
16.2
15.8
15.5
15.5
15.3
15.2
14.9
14.8
14.8
14.9
14.9
14.9
149
14.9
14.9
14.8
14.7
14.7
14.9
13.8
14.0
13.9
13.8
13.7
13.6
13.6
13.5
13.6
13.7
13.8
13.7
13.6
13.6
13.5
Temperature
sec
Inlet
°F
954
954
979
989
929
909
907
903
902
900
896
889
881
877
873
868
863
860
868
871
867
874
874
876
874
872
875
874
878
877
873
872
875
875
876
877
sec
Outlet
°F
897
901
902
936
947
948
952
954
955
957
957
955
954
955
959
946
938
934
935
928
911
979
988
1003
1012
1020
1026
1034
1044
1038
1030
1028
1021
1027
1024
1023
Scrubbe
Outlet
°F
163
162
163
165
175
177
179
181
185
186
187
187
187
187
187
188
188
188
187
187
188
189
189
189
189
189
190
190
190
190
191
192
192
192
193
193
Total Hydrocarbons
sec
Inlet
THC
(ppm)
2184
134.3
222.0
150.4
141.3
134.7
155.1
160.5
145.2
160.2
151.9
153.6
141.2
76.5
4.3
122.8
193.7
2659
247.7
352.0
387.7
291.9
497.0
5123
538.3
534.8
679.4
622.8
554.5
557.2
530.1
440.4
799.4
549.4
779.8
862.5
sec
Outlet
THC
(ppm)
282
27.3
29.6
17.7
27.4
30.1
1.0
7.6
24.3
28.5
28.0
27.0
31.3
20.4
2.5
39.6
43.7
66.9
53.5
67.5
13.2
26.6
20.0
18.4
170
17.6
16.3
15.2
17.5
30.6
36.8
43.1
42.3
47.2
49.4
38.8
Scrubbe
Outlet
THC
(ppm)
12.5
12.7
11.1
8.7
11.2
13.9
13.8
13.4
13.2
13.3
15.1
16.5
17.5
18.4
19.1
20.8
28.6
35.6
37.5
508
50.0
10.8
12.4
11.4
11.0
12.8
11.6
12.4
12.1
22.8
322
36.5
35.4
37.0
35.5
348
Carbon Monoxide
sec
Inlet
CO
(ppm)
2129
2234
2398
2356
2668
2396
2605
2626
2572
2508
2457
2406
2291
1585
784
1628
2789
3279
3521
4024
3740
2584
2637
2847
2876
3183
3269
3457
3515
3543
3550
3652
3652
3586
3728
3684
sec
Outlet
CO
(ppm)
1727
1715
1757
1521
1905
1809
2048
2095
1744
1694
1689
1700
1625
1350
-1
1269
1426
1495
1646
1658
1942
949
1213
1026
1063
987
1000
1061
1046
1519
2006
2894
2970
2956
2898
2991
Scrubbe
Outlet
CO
(ppm)
1146
1121
1137
974
1099
1108
1146
1140
1090
1076
1061
1053
1029
968
997
981
1168
1214
1395
1425
1649
874
1223
1116
1178
1248
1301
1345
1396
1943
2384
2309
2146
2239
2218
2253
Moisture
sec
Inlet
H20
IN
1
0426
0.426
0426
0426
0.426
0.426
0.426
0.426
0.426
0.426
0.426
0.426
0.426
0426
sec
Outlet
H20
OUT
0364
0.364
0.364
0364
0.364
0364
0.364
0.364
0364
0364
0364
0.364
0364
0.364
Scrubber
Outlet
H20
Stack
0039
0.039
0.039
0.039
0039
0.039
0039
0.039
0039
0039
0.039
0.039
0.039
0.039
0.039
Page 2 o
-------
Hopewdl, > Ja
Continuous Monitor Data
December 1995
Date
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
Time
17.20
17:25
17:30
17:35
17:40
17-45
17:50
17-55
18:00
18:05
18:10
18:15
18:20
18-25
18:30
18:35
18:40
18:45
18:50
18-55
1900
19.05
19.10
19-15
19.20
19:25
19.30
1935
19-40
19.45
19.50
19:55
2000
20-05
20:10
20:15
sec
Inlet
COj
(%)
13.6
14.2
13.8
13.4
13.0
134
138
14.1
14.2
14.3
14.1
13.9
128
13.4
13.7
100
4.7
11.6
6.7
-0.1
-01
3.4
7.8
9.1
11.5
2.1
-0.1
5.4
6.8
2.8
65
6.0
5.6
53
5.0
63
sec
C02 (%)
(*)
13.0
13.4
12.9
12.6
12.4
12.6
13.0
133
13.6
13.8
13.7
13.5
12.1
123
125
10.2
5.2
12.1
7.3
-0.1
-0.1
2.9
7.3
7.3
7.1
70
6.9
32
13.8
1.0
-0 1
-0.1
•0.1
15
4.3
6.4
Scrubber
C0,(%)
(%)
58
61
60
5.8
5.7
58
5.9
6.0
6.1
6.2
6.2
6.2
6.0
6.0
62
5.3
5.2
11.7
6.7
0.0
-0.1
1.1
2.7
2.7
2.6
26
2.5
25
2.5
2.4
2.3
2.3
0.4
9.5
6.4
0.0
sec
Inlet
O2
(%)
4.3
3.5
4.1
4.6
5.0
4.5
40
37
3.5
3.3
3.6
3.9
5.4
4.8
4.5
93
16.7
15.7
.3
0.1
0.2
6.1
12.9
13.1
14.8
2.3
0.1
96
12.6
17.5
12.9
13.5
.0
143
14.6
13.3
sec
02
(%)
4.9
4.5
5.1
5.5
5.8
5.6
5.1
4.8
4.4
4.3
44
4.7
6.4
62
6.0
9.1
16.9
15.7
.6
1-01
0.0
5.8
12.3
12.3
12.5
12.6
12.7
165
185
5.2
0.0
0.0
0.0
148
15.6
13.1
Scrubber
O2
(«)
13.5
13.2
13.4
13.6
13.7
13.6
13.5
13.4
13.2
13.1
13.1
13.2
13.5
13.4
13.3
14.3
16.6
15.0
in i
1U.J
0.0
0.1
7.6
17.2
.2
17.3
17.3
174
17.4
175
17.5
.0
17.6
1ft A
JUA
21.1
9.1
0.5
sec
Inlet
°F
880
896
924
929
935
949
960
973
984
994
1011
1021
1055
1080
1099
1121
1136
1124
irvy>
1070
1055
1041
1031
VlVf
999
991
979
975
954
944
yyt
908
flfil
865
834
807
sec
"F
1022
1028
1031
1035
1037
1044
1049
1058
1UO/
1078
1088
1096
1104
1108
1116
1126
1139
1135
1117
1104
1096
1084
1073
1063
1051
1046
1043
1035
1032
iron
1008
(MM
979
963
951
Scrubber
Outlet
°F
193
192
188
186
186
186
188
189
191
191
191
185
188
189
191
192
187
176
176
177
177
176
17£
175
175
174
174
174
172
171
171
169
169
169
182
Tol«d HvHmrarhnns
sec
Inlet
THC
(ppm)
973.3
685.3
517.5
424.1
500.9
397.8
439.1
370.6
393.6
320.3
252.6
97.9
76.6
64.2
50.6
30.9
97.7
356 1
68.2
2.2
59.4
64.7
40 8
58.6
221.1
233.1
63.5
82.5
58.6
107 4
106.3
117 1
146.8
164.0
129.0
sec
Outlet
THC
(ppm)
43.3
339
20.2
167
18.5
13.8
14.4
126
17 4
11.5
10.0
10.6
7.1
6.1
5.1
5.8
5 1
26
1 3
6.9
87.6
70.8
25.4
-1 1
1.0
1.0
1.0
97
27.7
742
34 8
2.1
1 9
1.6
41.8
31.2
Outlet
THC
(ppm)
32.9
24.3
12.7
11.8
12.5
8.0
6.5
5.3
4 9
4.3
4.0
3.8
3.3
3.0
2.2
3.8
4.9
1.9
03
4.7
930
735
26.5
-1 0
0.6
06
0.6
07
0.6
0.5
05
0.5
64
79.7
34.5
-0.1
Carbon Monoxide
Inlet
CO
(ppm)
3639
3431
2863
2809
2748
2895
3120
3306
3618
3678
3537
3145
1609
1071
1014
946
-8
-8
926
1660
948
815
893
708
-1
1451
987
1126
1330
522
1420
1311
1368
1535
1701
905
Outlet
CO
(ppm)
3006
2652
1606
1715
1640
1512
1423
1333
1226
1135
806
627
364
231
171
131
-6
-8
1750
3316
1892
1176
585
579
665
727
724
347
-5
1433
3384
1882
1919
592
1821
1459
Outlet
CO
(ppm)
2177
2025
1314
1313
1281
1197
1069
1054
956
856
644
487
308
179
136
88
1
1
1111
2407
1843
936
3
4
4
4
4
4
4
4
4
6
69
-2
572
1760
Moisture
Inlet
H2O
IN
0.426
0.426
0.426
0.426
0.426
0426
0.426
0.426
0426
0.426
0.426
0.426
0.426
0426
Outlet
H20
OUT
0.364
0364
0.364
0364
0364
0364
0364
0.364
0364
0.364
0.364
0.364
0364
Outlet
H2O
Stack
0039
0.039
0.039
0039
0.039
0039
0039
0039
0039
0039
0.039
0.039
0.039
0.039
0039
Page 3 of 16
-------
HopeweU, Virginia
Continuous Monitor Data
December 1995
Date
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
Time
20:20
20:25
20:30
20:35
20:40
20:45
20:50
20.55
21:00
2105
21:10
21.15
21:20
21-25
21:30
21:35
21:40
21:45
21.50
21:55
22:00
22:05
22:10
22:15
22:20
22.25
22-30
22.35
22.40
22:45
22:50
2255
23.00
23.05
23-10
23:15
CO,
sec
Inlet
COj
(*)
7.8
8.2
8.7
90
9.3
9.6
9.9
10.1
10.4
10.6
113
11.6
11.9
120
114
115
10.7
11.2
10.4
10.6
12.2
120
11 3
10.7
10.5
9.7
9.1
86
8.7
8.5
86
8.5
sec
Outlet
C02(%)
<*)
7.9
8.1
8.5
8.7
9.0
9.1
9.3
9.4
9.7
9.9
10.3
10.6
11.0
11.2
10.4
9.7
8.7
90
8.6
8.8
98
9.2
5.3
8.2
7.9
72
6.7
62
6.3
61
6.1
5.9
Scrubber
Outlet
C02(%)
(*)
1.5
4.0
4.1
4.2
43
4.4
4.4
4.5
4.6
46
4.9
4.9
5 1
5 1
5.1
4.9
5.0
51
4.4
5.5
5.8
5.9
6.2
6.3
61
5.8
5.7
52
50
4.6
4.6
4.3
4.4
43
Oj
sec
Inlet
02
(*)
11.7
11.2
10.5
10.1
9.5
9.2
8.8
8.5
8.0
7.7
6.8
6.4
6.1
58
6.6
66
7.9
7.2
82
7.7
63
6.7
7.4
8.2
8.5
9.3
10.1
10.7
106
10.8
10.7
107
sec
Outlet
O2
(*)
11.2
10.8
10.3
10.0
9.7
9.4
9.2
8.9
8.5
8.2
7.7
7.3
6.9
6.6
7.6
8.8
10.4
10.0
10.5
104
9.2
100
147
11 1
11.5
12.3
12.9
13.4
13.3
13.5
13.5
13.8
Scrubber
Outlet
O2
(%)
19.0
15.8
15.6
15.5
15.4
15.3
15.2
15.1
15.0
14.9
14.6
14.5
14.4
14.3
14.4
14.7
14.8
14.6
15.5
14.2
13.9
13.9
13.5
13.3
13.8
14.2
14.3
148
15.1
15.5
15.5
15.8
15.7
15.8
Temperature
sec
Inlet
"F
820
825
829
832
829
830
826
825
830
833
854
857
862
863
872
890
934
958
979
993
1180
1180
1191
1179
1169
1142
1120
1093
1075
1053
1041
1029
sec
Outlet
"F
971
999
1012
1018
1023
1026
1029
1030
1032
1036
1039
1043
1051
1056
1054
1015
965
953
954
956
1075
1083
1088
1086
1081
1068
1054
1036
1020
1005
994
983
Scrubber
Outlet
°F
184
183
184
183
183
183
184
184
184
184
184
184
185
185
182
178
168
169
165
164
164
164
164
165
168
167
168
168
168
168
170
171
172
171
Total Hydrocarbons
sec
Inlet
THC
(ppm)
107.0
96.4
91.9
99.6
122.2
158.6
187.0
269.9
352.4
218.9
404.2
430.8
394.2
504.9
502.8
262.5
90.9
83.1
698
739
68.0
43.8
38.8
35.9
41.2
47.0
47.2
50.0
52.5
56.0
54.4
55.2
sec
Outlet
THC
(ppm)
21.2
15.3
12.5
12.9
13.6
14.0
15.6
17.3
21.4
20.3
22.2
19.7
23.3
16.6
34.4
60.8
23.4
26.9
21.2
203
20.5
14.3
13.0
11.2
9.9
5.4
7.1
6.3
6.1
67
73
8.2
8.1
8.S
10.9
116
Scrubber
Outlet
THC
(ppm)
5.3
4.3
3.5
3.5
4.4
6.7
7.5
9.6
10.0
13.1
12.5
13.4
13.3
14.3
16.7
33.7
11.2
10.9
99
19.9
17.6
14.2
11.1
8.8
7.3
2.9
2.8
3.0
3.0
3.8
4.7
5.8
5.9
6.8
7.0
7.6
Carbon Monoxide
sec
Inlet
CO
(ppm)
643
597
639
773
955
1253
1385
1666
1775
2079
2322
2707
3043
3373
2920
2202
708
792
708
789
1685
1417
1391
1380
1468
1569
1789
2002
2165
2255
2312
2328
sec
Outlet
CO
(ppm)
950
771
490
619
655
733
756
905
983
1270
1228
1365
1397
1472
1516
1734
790
837
770
858
798
759
490
521
491
563
241
594
611
728
766
964
1017
1282
963
922
Scrubber
Outlet
CO
(ppm)
189
473
455
461
533
632
705
814
875
1049
1118
1291
1374
1579
1509
1486
743
801
627
904
962
997
867
746
450
489
501
603
709
893
921
1051
970
1058
Moisture
sec
Inlet
H20
IN
0.397
0.397
0.397
0.397
0.397
0.397
0.397
0397
0.397
0397
0.397
0.397
0.397
0.397
0.397
0397
0.310
0310
0.310
0.310
0.310
0.310
0310
0.310
0.310
0.310
0.310
0310
sec
Outlet
H2O
OUT
0331
0331
0.331
0.331
0.331
0331
0.331
0.331
0.331
0.331
0331
0.331
0331
0.331
0.331
0.331
0246
0246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
Scrubber
Outlet
H20
Slack
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0039
0039
0.039
0.039
0.039
0.039
0.039
0.039
0043
0043
0.043
0.043
0.043
0.043
0.043
0.043
0043
0.043
0.043
0.043
Page 4 r
-------
HopeweU, Ja
Continuous Monitor Data
December 1995
Date
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/5/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
Time
23:20
23-25
23-30
23.35
23:40
23-45
23:50
23:55
000
0:05
0:10
0.15
0-20
0:25
0.30
0:35
040
0:45
0.50
0-55
1.00
105
1:10
1-15
1:20
1.25
.30
35
•40
:45
:50
.55
2:00
2:05
2:10
2:15
C02
sec
CO,
(%)
8.6
8.6
8.6
8.9
8.9
9.0
8.7
8.8
9.0
9.1
92
9.4
9.6
9.6
9.7
9.5
9.7
9.7
9.9
9.8
9.7
9.5
93
8.9
8.7
85
87
8.7
8.7
8.6
8.6
8.6
8.8
88
9.0
9.0
sec
CO, (%)
(%)
6.1
58
58
5.8
6.0
59
5.7
5.7
5.7
6.5
6.2
6.0
6.0
6.8
6.9
6.9
6.8
68
68
6.7
63
6.0
6.3
6.2
6.0
5.5
52
5.1
5.4
51
49
5.0
5.0
5.0
5.1
5.3
Scrubber
CO, (%)
(%)
4.4
4.4
4.4
4.4
4.5
4.6
4.6
4.6
4.6
47
4.8
4.9
49
5.0
5.0
5.1
5.0
5.1
5.0
5.1
5.1
52
5.0
4.9
4.7
4.7
46
4.6
46
4.5
4.4
45
4.5
4.6
47
4.7
Oj
sec
Inlet
O2
(%)
10.7
10.6
10.5
10.3
10.2
10.1
10.4
104
10.1
10.0
9.7
9.5
9.2
9.1
9.0
9.2
9.1
9.1
90
9.1
9.2
9.5
97
103
10.5
10.7
10.5
10.4
10.5
10.6'
10.6
10.6
10.3
10.3
10.1
100
sec
O2
(%)
13.4
13.7
13.7
13.7
13.5
13.5
13.8
13.9
13.8
12.9
13.2
13.5
13.4
12.5
12.5
12.5
12.6
12.6
12.6
12.6
13.1
135
13.1
132
13.5
141
14.5
14.5
14.2
14.6
14.8
14.7
14.6
146
14.5
14.2
Scrubber
Outlet
O2
(*)
15.7
15.7
15.7
15.6
15.5
15.5
15.5
15.5
15.4
15.3
15.2
15.1
15.1
15.0
15.0
14.9
14.9
14.9
14.9
14.9
14.9
148
15.0
15.1
15.3
15.4
15.5
15.4
15.5
15.5
15.6
15.6
15.5
15.4
15.4
15.3
Temperature
sec
Inlet
op
1023
1020
1017
1020
1020
1024
1017
1017
1022
1027
1029
1044
1043
1053
1055
1062
1066
1072
1074
1078
1068
1069
1068
1067
1056
1050
1056
1057
1045
1046
1043
1037
1045
1039
1052
1052
sec
Outlet
»F
976
972
968
966
966
967
966
964
966
969
971
976
980
983
987
992
995
999
1001
1004
1005
1007
1009
1007
1003
1000
997
996
993
990
986
982
982
983
986
987
Scrubber
Outlet
°F
172
171
172
171
171
170
169
168
169
169
169
169
171
170
171
169
169
169
169
170
170
169
168
167
167
167
167
167
167
167
167
168
167
168
168
168
sec
Inlet
THC
59.7
57.9
50.9
58.7
53.1
58.2
52.7
57.9
50.3
567
51.6
49.2
48.4
46.7
45.1
42.8
43.3
42.9
45.4
40.4
49.1
43.0
47.5
46.6
51.4
53.6
44.8
51.2
47.5
51.7
56.6
53.7
49.9
54.1
48.4
50.7
sec
Outlet
THC
(ppm)
8.2
11.9
12.2
11.2
10.2
11.2
11.7
11.8
10.4
26
6.3
9.3
7.5
1.9
2.6
1.6
2.2
4.3
4.0
2.7
5.6
6.5
3.0
1.7
2.8
7.6
9.2
94
8.0
10.4
11.1
9.8
10.4
9.7
99
79
Scrubber
Outlet
THC
(ppm)
7.4
7.7
7.9
7.5
7.6
7.4
7.8
80
74
7.0
6.8
6.4
6.0
5.8
5.5
5.6
5.2
5.2
5.1
5.0
5.0
5.0
5.1
5.5
58
6.4
6.3
6.4
6.7
7.3
7.4
7.7
6.8
67
6.2
6.1
sec
Inlet
CO
(ppm)
2360
2246
2295
2154
2137
2125
2024
2014
1989
2001
1972
2000
1919
1885
1858
1818
1756
1766
1695
1760
1691
1692
1633
1710
1722
1837
1866
2024
2002
2175
2186
2236
2080
2086
2089
2025
sec
Outlet
CO
(ppm)
1126
797
699
626
659
532
431
373
324
799
581
272
222
548
546
523
510
469
445
410
224
119
348
471
448
240
126
89
251
136
87
123
89
50
53
143
Outlet
CO
(ppm)
1004
1031
1005
984
938
945
922
934
904
883
864
835
805
770
751
732
720
688
694
660
682
653
676
691
745
775
832
846
890
929
1003
977
939
880
870
832
sec
Inlet
H2O
IN
0.310
0.310
0.310
0310
0310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0310
0310
0.310
0.310
0310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
sec
Outlet
H,0
OUT
0.246
0.246
0.246
0.246
0.246
0246
0.246
0246
0246
0246
0.246
0.246
0246
0246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0246
0246
0.246
0246
0246
0246
0.246
0.246
0246
0.246
0.246
0.246
0.246
Outlet
H,O
Stack
0.043
0.043
0.043
0.043
0043
0043
0043
0.043
0.043
0.043
0043
0.043
0.043
0043
0.043
0.043
0.043
0043
0.043
0.043
0.043
0.043
0.043
0043
0.043
0.043
0.043
0043
0043
0.043
0043
0.043
0.043
0043
0043
0043
Page 5 of 16
-------
HopeweU, Virginia
Continuous Monitor Data
December 1995
Date
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
Time
2.20
225
2:30
2:35
2.40
2:45
2:50
2:55
300
3 OS
3:10
3.15
3:20
3:25
3:30
3.35
3.40
3:45
350
3-55
400
405
4:10
4:15
4.20
425
4:30
4:35
4:40
4:45
4:50
4:55
5:00
505
5.10
5 15
COj
sec
Inlet
CO,
(%)
9.1
90
90
8.9
8.8
8.7
8.6
8.7
8.6
86
8.5
8.5
8.3
8.4
8.2
83
8.2
8.4
82
8.4
8.3
84
8.4
85
86
8.6
8.7
8.7
8.8
8.9
9.0
9.0
9.0
90
9.2
90
sec
Outlet
C02(%)
(%)
5.2
5.1
5.5
52
5.1
6.0
6.0
5.7
53
SO
5.8
55
5.1
5.1
50
5.1
5.7
5.3
5.0
5.1
5 1
5 1
5.1
53
5.3
5.4
6.1
6.2
6.1
6.1
6.1
6.2
6.2
62
6.3
6.1
Scrubber
Outlet
C02(%)
(%)
4.7
4.7
4.7
4.7
47
4.6
4.6
4.5
4.5
44
4.5
44
44
4.3
43
4.3
4.3
4.3
4.4
44
44
4.4
4.4
4.5
4.6
46
4.7
4.7
4.7
4.7
4.7
4.7
47
4.7
4.8
4.8
02
sec
Inlet
02
(%)
99
10.0
10.0
10.0
10.1
10.1
10.3
10.3
10.5
10.4
10.6
10.6
10.9
10.7
109
10.8
11.0
10.7
10.8
10.7
10.7
10.6
10.6
10.4
10.3
10.3
10.1
10.2
10.0
10.1
9.9
10.0
9.9
9.8
9.6
9.8
sec
Outlet
02
(%)
14.4
14.5
14.1
14.4
14.4
13.6
13.5
13.9
14.4
146
13.8
14.1
14.6
14.6
14.7
14.6
13.9
14.3
14.7
145
14.5
146
14.6
14.3
14.4
14.3
13.3
13.2
132
13.3
13.2
132
13.2
13.2
13.1
13.3
Scrubber
Outlet
02
(%)
15.4
15.4
15.4
15.4
15.3
15.4
15.4
15.5
15.5
15.6
15.6
15.7
15.7
15.7
15.7
15.8
15.7
15.7
15.6
15.6
15.6
15.6
15.6
15.5
15.4
15.4
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.2
15.2
Temperature
sec
Inlet
°F
1053
1050
1054
1051
1054
1054
1050
1046
1042
1038
1034
1027
1020
1022
1014
1006
1003
1006
1005
1008
1007
1010
1010
1017
1022
1028
1029
1032
1034
1036
1038
1042
1040
1043
1046
1053
sec
Outlet
°F
989
990
990
990
991
992
991
989
986
984
981
978
974
970
966
962
959
959
958
958
958
958
958
961
964
967
971
972
974
976
978
979
979
982
985
987
Scrubbei
Outlet
°F
168
168
168
168
167
168
167
167
168
167
167
167
166
167
167
167
167
166
165
165
166
165
165
166
165
165
165
165
. 165
165
165
165
165
166
166
166
Total Hydrocarbons
sec
Inlet
THC
(ppm)
50.3
44.6
53.1
47.1
43.7
43.3
33.3
52.5
416
49.6
51.4
50.4
51.3
60.1
61.3
53.4
58.9
65.5
60.3
59.4
54.9
58.7
57.7
52.0
54.8
53.5
40.2
50.1
48.6
50.8
47.6
46.2
47.8
47.3
43.8
51.0
sec
Outlet
THC
(ppm)
9.1
9.8
7.4
8.5
9.2
2.5
1.9
4.5
7.7
7.6
1.8
4.6
9.4
10.4
11.4
10.0
0.8
9.1
13.7
11.5
12.5
14.5
14.4
12.5
12.3
12.6
4.5
2.2
2.9
3.1
3.0
3.6
1.8
2.5
2.0
4.2
Scrubber
Outlet
THC
(ppm)
5.8
6.1
60
6.1
6.2
60
6.4
6.7
6.9
7 1
72
7.8
8.5
8.5
9.0
9.4
9.9
9.7
100
92
9.5
9.2
8.9
84
8.0
7.4
7.3
7.0
6.9
7.1
69
67
6.6
6.2
6.2
64
Carbon Monoxide
sec
Inlet
CO
(ppm)
1977
1983
1999
1989
1983
1978
1985
2033
2098
2054
2137
2132
2166
2130
2258
2200
2307
2256
2316
2104
2209
2146
2201
2140
2147
2050
2050
1994
2002
2088
2082
2067
2069
2021
1962
2051
sec
Outlet
CO
(ppm)
64
41
170
73
58
378
435
327
108
67
452
372
141
132
126
218
629
350
128
193
151
92
79
101
84
63
483
523
530
511
461
408
485
431
450
372
Scrubber
Outlet
CO
(ppm)
819
827
827
836
842
825
834
870
881
903
903
963
962
1009
1006
1073
1048
1096
1083
1040
1010
1043
1008
1011
953
911
905
876
890
871
900
836
864
789
799
781
Moisture
sec
Inlet
H20
IN
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0310
0.310
0310
0310
0.310
0310
0310
0310
sec
Outlet
H20
OUT
0.246
0246
0.246
0.246
0246
0.246
0.246
0.246
0.246
0246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0246
0.246
0246
0.246
0.246
0.246
0246
0246
0.246
0246
0.246
0.246
0246
0.246
0.246
0.246
0.246
0.246
0246
Scrubber
Outlet
H20
Slack
0.043
0043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0043
0.043
0043
0.043
0043
0.043
0043
0043
0043
0.043
0043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0043
0.043
0.043
0043
0.043
0043
0043
0.043
Page 6 c
-------
HopeweU, Ja
Continuous Monitor Data
December 1995
Date
12/6/9S
12/6/9S
12/6/9S
12/6/9S
12/6/95
12/6795
12/6/95
12/6/9S
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
Time
5:20
5:25
5:30
5:35
5:40
5:45
5:50
555
6-00
605
6:10
6.15
6:20
6:25
6:30
6:35
6:40
6-45
6.50
6:55
7:00
705
7-10
7:15
7:20
7:25
7:30
7:35
7-40
7.45
7:50
7.55
8-00
805
8.10
8:15
C02
sec
Inlet
CO,
(%)
9.1
8.9
9.0
9.0
9.0
8.8
8.7
8.6
8.6
8.6
86
8.5
8.5
8.5
85
8.6
8.7
8.8
8.8
8.8
8.7
8.7
86
87
86
89
8.9
9.2
94
10.0
10.3
108
108
10.7
10.1
9.5
sec
C0,(%)
(%)
5.7
5.6
5.6
5.4
54
5.2
5.8
5.4
52
5.1
5.0
58
6.0
5.9
6.0
5.8
5.6
52
5.4
5.6
53
5.2
5.2
5.2
5.4
5.3
5.2
5.3
5.4
56
6.0
6.1
6.0
6.4
62
5.7
Scrubber
C0j(%)
(%)
47
4.8
4.7
4.7
4.6
4.6
4.5
4.5
45
4.5
4.5
4.5
4.4
4.4
4.5
4.4
4.5
45
4.6
4.6
4.6
4.5
4.6
4.5
4.6
46
46
4.7
4.9
5.1
54
5.5
5.6
5.5
5.3
4.9
02
sec
Inlet
O2
(%)
9.8
10.0
9.8
9.9
9.9
10.1
10.3
105
105
10.4
10.5
10.5
10.5
10.6
10.5
10.4
10.3
10.2
10.2
10.1
10.2
10.2
10.4
103
10.4
10.0
10.0
96
9.3
8.7
8.3
7.8
7.7
80
8.6
9.4
sec
Outlet
02
(%)
13.8
14.0
140
142
14.3
14.4
13.8
14.2
14.5
14.6
14.7
13.8
13.6
13.7
13.6
137
14.1
14.4
14.2
14.0
14.3
145
14.5
14.5
14.2
14.3
144
14.2
14.2
14.0
13.5
13.4
13.5
13.1
13.4
14.0
Scrubber
Outlet
02
(%)
15.3
15.2
15.3
15.2
15.4
15.4
15.5
15.5
155
15.5
15.6
15.6
15.6
15.6
15.5
15.6
15.5
15.S
15.4
15.5
15.4
15.5
15.5
15.5
15.5
15.5
15.4
15.3
15.1
14.8
14.5
14.4
14.3
14.5
14.7
15.2
Temperature
sec
Inlet
°F
1053
1048
1053
1053
1048
1045
1039
1033
1032
1030
1026
1022
1022
1020
1022
1023
1024
1025
1032
1030
1031
1026
1026
1023
1024
1035
1043
1058
1076
1105
1131
1162
1175
1185
1171
1153
sec
Outlet
°F
988
988
989
990
988
986
984
980
978
977
976
973
972
970
970
970
971
972
974
974
974
972
970
970
970
972
976
982
991
1005
1023
1041
1056
1064
1064
1057
Scrubber
Outlet
°F
166
166
165
166
166
167
166
166
166
165
165
165
165
165
164
165
165
165
165
165
164
164
164
164
165
166
166
166
166
166
165
165
166
166
166
166
sec
Inlet
THC
(ppm)
38.7
49.0
47.7
47.7
41.8
52.7
40.4
55.4
49.0
50.8
53.1
55.3
55.3
52.7
47.3
58.9
50.5
53.5
49.7
48.4
55.0
43.2
57.7
40.7
58.0
40.5
59.7
27.8
48.1
31.3
30.2
35.8
31.0
33.5
35.1
23.7
sec
Outlet
THC
(ppm)
6.4
8.9
7.3
9.6
8.0
9.4
58
82
10.6
10.1
11.1
3.2
2.5
3.0
3.2
4.2
7.4
8.7
7.8
6.1
10.1
9.4
11.6
109
104
10.2
12.6
8.9
9.6
7.0
7.1
5.2
5.0
6.0
3.6
2.4
Scrubber
Outlet
THC
(ppm)
6.1
6.3
6.1
6.1
6.2
6.5
6.8
7.1
7.3
7.5
7.5
8.2
8.3
8.3
7.9
7.9
7.7
7.3
7.4
7.2
7.4
7.4
7.9
78
7.7
7.2
6.9
6.1
5.2
3.8
2.9
2.2
1.9
1.6
1.7
2.2
sec
Inlet
CO
(ppm)
1932
1967
1955
2008
1962
2049
2008
2136
2094
2160
2085
2253
2231
2218
2198
2166
2189
2182
2239
2196
2181
2133
2262
2199
2209
2201
2263
2166
2212
1961
1824
1607
1503
1458
1477
1563
sec
Outlet
CO
(ppm)
167
94
110
47
67
39
321
178
65
41
45
421
492
506
456
423
169
50
70
181
S3
40
38
70
121
60
22
37
15
-3
22
-1
-4
32
40
35
Outlet
CO
(ppm)
799
751
782
747
782
769
811
816
861
868
881
917
926
923
882
862
864
849
853
858
813
839
864
911
852
874
840
838
772
661
533
447
369
348
359
423
Inlet
H,O
IN
0.310
0.310
0.310
0.310
0.310
0310
0310
0310
0.310
0310
0.310
0310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0.310
0310
Outlet
H20
OUT
0246
0.246
0.246
0.246
0246
0246
0.246
0.246
0246
0.246
0.246
0.246
0.246
0.246
0.246
0246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0246
0.246
0.246
0.246
0.246
0246
0.246
0.246
0.246
0246
0.246
Outlet
H20
Stack
0.043
0.043
0043
0043
0.043
0.043
0.043
0.043
0043
0043
0.043
0.043
0.043
0.043
0.043
0043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0043
0.043
0.043
0043
0043
0.043
Page 7 of 16
-------
HopeweU, Virginia
Continuous Monitor Data
December 1995
Date
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/9S
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
Time
8-20
8:25
8:30
8:35
8.40
8:45
8-50
8.55
9:00
9:05
9:10
9:15
9-20
925
9:30
935
940
9.45
9:50
9:55
10:00
10.05
10:10
10:15
10:20
10:25
10.30
10.35
10:40
10:45
1050
10:55
11.00
11.05
11:10
11:15
COj
sec
Inlet
CO,
(%)
9.0
8.7
8.8
85
8.3
8.2
8.2
8.2
8.5
8.6
8.3
8.3
76
7 1
69
6.7
5.9
122
11.0
0.3
0.0
0.0
00
2.3
58
5.5
5.1
5.1
5.2
50
sec
C02(%)
(%)
56
5.1
5.2
5.7
5.6
5.6
5.6
5.5
5.7
5.4
5.1
5.1
0.5
4.4
4.4
4.7
4.9
12.3
10.5
0.5
0.0
0.4
3.6
3.6
2.6
0.0
2.0
2.5
4.3
4.1
Scrubber
Outlet
CQ,<»
(%)
4.6
4.5
4.5
4.4
4.3
4.3
4.3
4.3
4.4
4.4
44
44
4.3
4.3
4.3
4.2
4.2
4.0
4.0
4.4
12.7
11.2
0.3
0.0
0.8
3.4
3.4
3.4
3.3
3.2
30
2.4
33
02
sec
Inlet
O2
<*)
10.1
10.5
10.3
106
10.9
11.0
11.0
10.9
10.5
10.5
10.8
10.8
11.4
11.9
12.1
12.3
13.7
16.2
13.8
1.8
0.4
10.6
21.0
18.0
13.9
14.2
14.6
14.7
14.5
14.7
sec
Outlet
02
(*)
14.1
14.6
14.6
14.0
14.2
14.2
14.2
14.2
14.0
14.4
14.7
14.6
19.9
15.6
15.6
15.1
15.3
16.3
13.9
0.7
0.0
8.5
16.5
16.5
178
20.7
181
17.9
15.7
15.9
Scrubber
Outlet
02
(%)
15.5
15.7
15.7
15.7
15.8
159
15.9
15.9
15.8
15.7
15.8
15.8
15.8
15.9
15.9
16.0
16.0
16.2
16.3
16.8
15.7
15.0
1.2
0.2
7.4
17.1
17.1
17.0
17.1
17.2
17.4
18.3
17.2
Temperature
sec
Inlet
°F
1130
1116
1106
1098
1082
1077
1072
1070
1067
1073
1068
1072
1020
1014
999
986
978
954
938
925
917
910
910
908
904
896
876
872
871
865
sec
Outlet
°F
1046
1035
1028
1021
1013
1006
1000
996
994
996
994
994
966
965
956
946
939
928
914
904
895
891
880
875
866
860
849
842
840
834
Scrubber
Outlet
°F
166
167
167
167
167
167
167
167
168
168
167
166
165
165
165
165
166
166
165
164
162
161
159
158
158
157
157
157
155
154
154
153
152
sec
Inlet
THC
(ppm)
30.0
41.0
18.8
42.6
40.2
45.1
49.5
420
464
25.2
48.5
46.8
65.0
61.7
65.5
76.2
88.7
118.2
101.7
4.6
2.2
0.7
339.9
127.5
177.6
199.1
203.1
205.9
214.4
226.1
sec
Outlet
THC
(ppm)
2.8
2.8
3.1
0.8
1.7
1.0
1.2
2.8
0.5
4.5
6.8
5.3
8.3
7.4
3.7
7.2
4.8
2.4
2.5
18.8
38.3
74.0
39.1
10.6
14.1
65.3
74.8
55.6
16.1
13.1
205.2
357.8
161.8
Scrubber
Outlet
THC
(ppm)
2.6
3.1
3.3
3.5
4.1
44
4.7
4.9
4.6
4.3
45
4.4
45
4.8
5.1
5.5
54
6.3
7.1
6.6
31.0
74.7
38.9
10.6
13.7
42.6
42.6
43.9
501
53.2
48.8
49.5
79.6
sec
Inlet
CO
(ppm)
1680
1818
1888
2109
2286
2373
2448
2404
2331
2290
2322
2302
2454
2785
2874
2926
2379
-10
460
2558
2829
844
0
1184
3237
3418
3233
3276
3466
3719
Outlet
CO
(ppm)
102
26
22
289
345
361
377
340
332
138
62
70
-2
358
780
411
-7
-7
-6
468
-5
483
2592
2821
941
1453
1612
1274
1
972
1457
2482
2355
Outlet
CO
(ppm)
488
553
590
638
704
751
764
781
740
679
698
700
712
799
975
1012
1027
1124
1178
1076
6
431
2101
2067
982
1698
1859
1896
2012
1949
1952
1316
2361
sec
Inlet
H20
IN
0.310
0.310
0.310
0.310
0310
0.310
0.310
0.310
0.310
0310
0.310
0.310
0.310
0.310
0.310
sec
Outlet
H20
OUT
0.246
0246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
Outlet
H20
Stack
0.043
0.043
0.043
0043
0.043
0.043
0.043
0043
0043
0.043
0043
0.043
0043
0043
0.043
0.043
0.043
0.043
0.043
Page 8'
-------
Hopewell, \_
Continuous Monitor Data
December 1995
Date
12/6/9S
12/6/9S
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/9S
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
Time
11:20
11.25
11:30
11:35
11:40
11:45
11:50
11:55
12:00
12.05
12:10
12:15
12:20
12:25
12-30
12:35
12:40
12.45
12:50
12:55
1300
13.05
13.10
13.15
13:20
13:25
13:30
13:35
13:40
13:45
13-50
13:55
14:00
1405
14:10
14:15
CO,
sec
Inlet
CO,
<*)
4.8
4.7
4.5
4.6
4.5
4.4
4.3
3.7
3.4
3.1
2.9
2.8
2.6
2.7
3.1
3.6
4.3
5.0
5.0
50
4.6
4.5
4.6
5.3
61
6.5
6.9
8.2 -
8.4
7.5
10.0
10.0
102
118
9.5
0.0
sec
Outlet
C0,(%)
(»)
2.7
38
3.8
22
3.0
37
3.1
3.5
40
3.6
19
2.4
23
2.4
2.6
3.1
3.7
4.4
5.4
54
5.1
4.9
5.0
5.4
6.1
6.5
6.9
7.7
7.9
7.4
9.2
9.2
94
124
9.6
0.0
Scrubber
Outlet
C0,(%)
(%)
3.1
3.1
3.1
3.1
3.0
2.9
28
2.7
2.4
2.2
1.9
1.8
1.7
1.7
1.9
20
2.5
2.9
3.6
37
3.6 -
3.5
3.6
3.9
4.2
4.4
4.6
5.1
5.4
50
6.4
65
6.6
115
9.7
0.1
02
sec
Inlet
02
(*)
15.0
15.1
15.3
152
15.2
15.4
15.5
16.3
16.6
16.9
17.1
17.3
17.4
17.3
16.9
16.2
15.0
13.9
13.9
14.1
14.6
14.9
14.6
13.7
126
12.0
11.7
10.0
10.0
11.1
7.9
8.1
7.8
16.2
12.8
0.3
sec
. Outlet
02
(%)
12.0
16.1
16.2
18.3
17.2
16.3
17.0
16.4
15.9
16.3
18.4
17.7
17.9
17.9
17.5
17.0
16.0
15.1
13.5
13.5
14.0
14.3
14.1
13.5
12.6
12.2
11.8
10.8
10.6
11.4
8.9
9.0
8.8
15.6
12.5
-01
Scrubber
Outlet
02
(%)
17.4
17.5
17.5
17.5
17.5
176
17.7
17.8
18.0
18.2
18.5
18.6
18.8
18.8
18.7
18.4
17.9
17.3
16.3
16.1
16.3
16.4
16.4
16.0
15.6
15.3
15.1
14.5
14.2
14.7
13.1
13.0
12.9
16.9
13.8
0.2
Temperature
sec
Inlet
°F
849
837
827
820
817
802
787
785
764
740
699
672
660
649
652
656
669
693
717
723
689
652
659
687
722
739
759
790
813
801
877
913
950
979
996
987
sec
Outlet
°F
822
811
801
794
787
774
761
749
730
705
673
647
627
613
612
612
619
636
746
809
828
837
845
860
883
904
920
938
959
962
992
1021
1048
1072
1089
1095
Scrubber
Outlet
°F
150
150
149
148
148
146
146
146
145
144
143
141
140
141
142
144
144
145
145
145
145
144
143
144
144
144
144
145
148
148
149
151
153
154
155
155
Total Hydrocarbons
sec
Inlet
THC
(ppm)
245.7
259.8
263.2
271.6
277.0
293.8
306.1
320.8
362.5
426.2
497.1
5255
490.4
480.9
458.5
526.9
571.4
511.2
471.0
465.6
463.7
463.9
471.2
430.4
368.9
333.4
2936
257.3
225.6
2067
235.6
214.6
157.0
134.4
353.4
177.8
sec
Outlet
THC
(ppm)
141.2
210.7
216.0
144.8
213.2
280.9
273.4
3280
419.9
499.7
430.4
566.4
544.0
360.6
321.4
579.2
582.1
615.4
345.8
383.1
276.6
303.2
285.5
2265
1315
74.7
65.1
46.7
70.7
41.6
234
27.5
21.2
9.5
-10.9
-15.6
Scrubber
Outlet
THC
(ppm)
94.1
107.0
108.7
111.1
115.7
26.4
13.8
15.0
17.1
19.7
22.0
20.7
18.3
17.6
17.9
18.5
19.2
157
10.9
7.0
7.6
8.7
8.8
56.5
40.0
29.6
22.6
196
16.4
16.1
20.2
179
13.5
91
7.1
71
Carbon Monoxide
sec
Inlet
CO
(ppm)
3884
3972
3932
3996
4187
4293
4275
3837
4335
4416
4405
3979
3528
3310
3392
3650
4502
5710
5929
5689
5027
4591
4642
5295
5534
5595
5300
4041
2968
3117
2452
2062
2238
96
11
292
sec
Outlet
CO
(ppm)
2139
2051
2345
1519
2076
3186
2619
3437
4057
4018
2428
3223
2820
2544
2795
2865
3296
4192
4245
3897
3461
3210
3317
3290
3221
2891
3121
2322
1712
1753
1396
1031
1125
563
79
2806
Scrubber
Outlet
CO
(ppm)
2462
2516
2516
2515
1383
1396
1416
1475
1379
967
589
241
321
972
950
993
1199
1578
1668
1583
1480
1410
1422
1495
1409
1316
1216
1004
759
811
671
543
487
236
63
2293
Moisture
sec
Inlet
H,O
IN
0.254
0254
0.254
0.254
0254
0254
0.254
0.254
0.254
0.254
0254
0.254
0.254
sec
Outlet
H,O
OUT
0.279
0.279
0279
0.279
0.279
0.279
0279
0.279
0.279
0.279
0.279
0.279
0.279
0279
Scrubber
Outlet
H,0
Stack
0050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0050
Page 9 of 16
-------
Hopewell, Virginia
Continuous Monitor Data
December 1995
Date
12/6/95
12/6/9S
12/6/9S
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
Time
14:20
14:25
14:30
14:35
14-40
14-45
14:50
14:55
15:00
15:05
15:10
15:15
15:20
15:25
15:30
1535
1540
15:45
15:50
15:55
16:00
16.05
16:10
16:15
16.20
16.25
16.30
16:35
1640
16.45
16.50
16:55
17.00
17.05
17 10
17-15
CO,
sec
Inlet
CO,
(%)
0.0
0.0
5.8
8.8
8.3
8.0
7.5
6.6
5.6
4.7
43
42
4.4
4.1
4.0
4.2
5.4
66
6.2
6.1
6.7
6.6
5.8
5.3
4.4
4.8
4.9
50
4.5
3.9
34
32
26
28
1.5
1.3
sec
Outlet
C02 (%)
(*)
0.0
0.0
4.9
8.7
8.3
8.0
5.7
6.8
5.9
5.5
5.4
5.5
5.4
4.7
4.6
4.7
5.8
7.6
6.7
6.6
7.5
7.0
61
5.8
4.9
52
53
5.3
52
4.8
4.5
4.3
4.2
3.9
2.7
2.3
Scrubber
Outlet
C0,(%)
(%)
0.1
0.0
4.2
5.9
5.5
5.3
5.2
4.9
4.6
4.3
4.1
4.2
4.1
3.8
3.8
3.8
4.2
4.5
4.6
4.6
4.6
4.7
4.4
4.4
4.0
4.1
4 1
4.1
4.1
3.8
3.7
3.6
3.5
32
2.2
2.0
Oj
sec
Inlet
02
(%)
0.0
0.1
6.9
10.3
10.7
11.1
11.5
12.5
13.7
14.8
15.2
15.4
15.0
15.4
15.5
15.2
13.7
12.4
12.8
13.0
12.2
123
13.2
13.8
14.8
14.4
14.2
14.1
14.6
15.3
15.9
16.1
17.2
17.6
19.1
19.3
sec
Outlet
02
(%)
00
-0.1
7.5
10.0
10.6
11.1
13.4
124
13.4
13.8
13.9
13.7
13.9
14.8
15.0
14.8
13.3
10.8
12.1
12.3
10.9
11.8
13.0
13.4
14.4
14.1
13.9
13.9
14.0
14.4
14.7
14.9
15.1
15.4
16.9
17.5
Scrubber
Outlet
02
(%)
0.0
0.0
8.9
13.9
14.3
14.5
14.8
14.9
15.3
15.7
15.8
15.8
15.9
16.1
16.2
16.2
15.7
15.2
15.2
15.2
15.1
15.0
15.4
15.4
15.9
15.8
15.8
15.7
15.8
16.0
16.2
16.4
16.4
16.8
17.9
18.1
Temperature
sec
Inlet
°F
1004
1030
1038
1040
1040
1037
1034
1030
1009
980
943
922
909
897
884
883
899
921
926
933
934
939
936
922
893
872
859
857
841
808
775
747
691
652
627
624
sec
Outlet
°F
1095
1107
1127
1133
1135
1138
1139
1155
1156
1161
1125
1139
1136
1111
1093
1089
1114
1144
1151
1156
1169
1172
1166
1155
1132
1126
1125
1124
1126
1127
1128
1106
1088
1075
1053
1026
Scrubber
Outlet
°F
156
157
159
159
161
161
160
159
156
153
153
154
156
153
150
150
159
168
162
160
167
164
160
158
155
155
155
154
153
152
150
149
148
147
145
143
Total Hydrocarbons
sec
Inlet
THC
(ppm)
277.0
238.0
206.4
240.4
243.4
154.7
189.1
169.6
360.1
310.0
338.7
341.1
294.9
214.0
261.2
325.3
307.4
278.0
328.2
2899
307.9
303.9
307.2
300.4
310.5
295.1
321.6
287.6
319.1
302.5
271.6
227.0
312.0
407.0
432.3
4603
sec
Outlet
THC
(ppm)
10.4
45.0
21.9
24.7
20.3
32.9
14.6
7.2
11.2
17.4
21.0
19.0
18.6
16.8
24.3
18.3
11.9
12.6
10.7
12.4
9.1
120
10.1
8.2
13.0
12.2
17.4
13.8
17.6
23.5
33.5
44.8
51.3
64.0
748
23.5
Scrubber
Outlet
THC
(ppm)
22.1
44.4
14.8
5.1
50
4.8
4.7
4.2
4.4
5.8
8.5
10.3
6.6
6.4
7.3
6.5
3.8
3.0
3.2
3.3
3.1
34
4.0
4.7
6.7
59
5.7
5.5
6.9
10.5
17.8
22.9
283
42.7
57.4
668
Inlet
CO
(ppm)
627
734
202
228
228
225
240
295
298
284
296
319
341
340
337
350
372
381
370
373
388
378
409
425
488
491
505
530
595
620
528
467
351
347
269
257
sec
Outlet
CO
(ppm)
4502
4209
816
284
187
214
346
422
597
1050
1403
1514
1503
1706
1806
1817
1180
167
319
369
205
250
702
874
1764
1700
1750
1868
2150
2806
3230
3683
3662
3431
2425
2463
Scrubber
Outlet
CO
(ppm)
2536
2332
848
301
233
220
325
208
299
547
835
968
756
846
979
959
518
98
203
235
136
151
333
476
1127
925
910
988
1218
1693
2095
2273
2369
2240
1591
1493
sec
Inlet
H20
IN
0.199
0.199
0.199
0.199
0.199
0.199
0.199
0.199
0.199
0.199
0.199
0.199
0.199
0.199
0199
0.199
0.199
0199
0.199
0.199
0.199
0.199
0.199
0.199
0 199
0.199
0.199
0.199
0199
sec
Outlet
H20
OUT
0.181
0.181
0181
0.181
0.181
0.181
0.181
0.181
0.181
0.181
0.181
0.181
0181
0.181
0.181
0.181
0.181
0.181
0181
0.181
0.181
0.181
0.181
0.181
0.181
0181
0.181
0181
0.181
Outlet
H20
Slack
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0050
0.050
0.050
0.050
0.050
0.050
0050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0050
0.050
0.050
Page 10
-------
Hopewell, jia
Continuous Monitor Data
December 1995
Date
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
Time
17:20
17:25
17-30
17-35
1740
17-45
17-50
17:55
1800
18.05
18 10
18-15
18-20
18.25
18.30
18:35
18:40
18:45
18.50
18.55
1900
19.05
19-10
19-15
19:20
19:25
19.30
19:35
19:40
19-45
19:50
19:55
20.00
20.05
20:10
20-15
CO2
sec
Inlet
CO,
(%)
1.3
3.1
1.8
0.0
00
00
12.2
10.0
132
53
01
0.0
0.0
0.0
00
0.0
8.5
126
13.0
73
7.2
6.8
63
6.3
64
6.2
6.1
6.2
64
6.5
6.7
6.9
7.1
7 1
7.6
86
sec
Outlet
C02 (%)
(%)
2.3
4.1
1.9
0.0
00
0.0
12.4
1.7
00
00
00
0.0
03
0.0
00
9.6
10.6
10.6
10.6
6.0
6.0
5.7
55
55
5.5
54
54
5.6
5.7
59
6.1
6.3
6.5
6.5
7.1
8.3
Scrubber
Outlet
C02 («)
(%)
2.0
3.2
1.6
0.0
00
0.0
12.7
13
0
0.
0.
0.
0.5
0.
0.
93
8.3
6.7
5.3
42
3.9
3.7
36
37
3.6
36
3.6
3.7
3.8
39
4.0
4.1
4.1
44
5.1
02
sec
Inlet
02
(%)
19.3
16.6
13.9
0.0
0.0
0.1
16.4
11.8
17.3
6.1
0.1
10
20.8
20.8
20.8
20.8
10.2
5.7
4.9
119
12.4
12.7
132
13.2
13.1
13.4
13.4
13.2
13.1
12.9
12.7
12.3
12.2
122
11.5
104
sec
Outlet
02
(%)
17.6
15.2
12.8
-0.1
-0.1
0.0
16.4
19.7
21 1
21 1
21 1
21.1
28
•0.1
0.0
12.8
9.9
8.1
8.1
13.6
13.7
13.9
14.2
14.2
14.2
14.3
14.2
14.0
13.8
13.6
13.3
13.1
12.9
129
122
10.8
Scrubber
Outlet
02
(%)
18.1
16.8
14.0
0.0
0.0
0.0
15.7
19.7
209
20.9
20.9
20.9
4.5
0.6
0.5
11.7
13.3
13.2
14.9
16.2
16.6
16.8
16.8
16.8
17.0
16.9
16.8
16.7
16.6
16.5
16.3
16.2
16.2
15.9
15.0
Temperature
sec
Inlet
°F
630
635
854
945
993
1001
1011
983
1047
1122
1166
1198
1238
1286
1329
1338
1326
1322
1330
1146
1130
1096
1057
1036
1016
996
981
978
974
969
972
978
982
983
986
1018
sec
Outlet
°F
1004
1044
950
943
964
973
973
971
988
1033
1066
1097
1135
1168
1214
1223
1221
776
-415
-415
1037
1049
1023
1001
976
955
942
933
927
923
922
924
923
925
929
953
Scrubber
Outlet
°F
142
143
147
150
153
155
157
157
159
162
165
166
168
170
171
174
175
176
176
173
168
168
170
171
170
169
169
168
168
167
166
166
166
165
165
Total Hydrocarbons
sec
Inlet
THC
(ppm)
457.3
438.0
331.1
66.0
114
610
353.7
162.4
169.2
120.7
52.7
0.2
-1.0
6.6
394.2
200.1
59.6
92.5
190.7
136.0
177.0
171 1
166.8
181.9
177.5
186.9
162.7
206.5
220.6
198.6
197 1
169.6
257.8
154.6
199.1
170.9
sec
Outlet
THC
(ppm)
13.9
10.9
6.9
28.5
57.2
6.9
-1.1
-1.4
-1.6
-17
12.0
859
64.5
20.5
•0.2
•0.4
5.9
15.6
9.8
11.8
15.8
20.1
21.0
25.3
28.9
30.0
31.9
32.8
32.2
31.9
32.4
30.5
30.3
284
21.2
Scrubber
Outlet
THC
(ppm)
65.2
55.6
45.3
41.5
57.2
8.4
0.9
0.9
0.8
0.8
91
786
64.6
23.5
1.6
1.4
3.9
4.4
4.5
6.5
10.6
144
14.4
15.5
19.5
19.1
191
19.6
18.6,
18.0
17.0
16.6
17.1
15.3
10.2
Carbon Monoxide
sec
Inlet
CO
(ppm)
239
377
170
742
304
218
28
71
-2
136
364
884
71
-2
-2
-2
92
144
139
2464
2489
2769
3021
3267
3359
3553
3339
3259
3173
3037
2963
2860
2701
2723
2652
2550
sec
Outlet
CO
(ppm)
2386
3674
1640
4401
2895
2150
294
-18
-18
-18
-17
-10
2607
3284
1868
719
91
110
320
918
1696
1911
2016
2034
2240
2119
2140
2116
2030
1974
1964
1905
1891
1810
1566
Scrubbe
Outlet
CO
(ppm)
1330
2286
970
2472
2338
1804
297
-4
-4
-4
-4
-4
1938
2434
1908
752
53
83
239
684
1306
1345
1405
1381
1494
1406
1403
1383
1321
1289
1278
1242
1230
1200
1056
Moisture
sec
Inlet
H20
IN
0.199
0.199
0.199
0.340
0.340
0.340
0.340
0.340
0.340
0.340
0340
0.340
0340
0.340
0.340
0.340
0.340
0.340
0340
0.340
0.340
sec
Outlet
H20
OUT
0181
0.181
0.181
0.297
0297
0297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0297
0.297
0.297
0297
0297
0.297
0297
Scrubber
Outlet
H20
Stack
0.050
0.050
0.050
0053
0.053
0053
0.053
0.053
0.053
0053
0053
0.053
0.053
0.053
0.053
0.053
0.053
0053
0.053
0.053
0.053
0.053
0053
Page 11 of 16
-------
HopeweU, Virginia
Continuous Monitor Data
December 1995
Date
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
Time
20:20
20:25
20:30
20.35
20.40
20.45
20:50
20.55
21:00
21.05
21-10
21.15
21:20
2125
21:30
21.35
21.40
21:45
21:50
21:55
2200
22:05
22:10
22:15
22-20
22-25
22:30
22:35
22:40
22:45
22:50
22.55
23:00
23:05
23:10
23:15
COi
sec
C02
(*)
9.5
9.3
8.7
8.2
7.9
8.9
94
9.6
10.0
10.8
116
12.2
12.6
13.0
131
13.3
13.4
13.6
13.6
13.2
12.1
12.1
12.5
128
126
128
12.8
12.8
12.8
12.8
12.8
12.9
12.9
13.0
118
11.8
sec
C02(%)
(«)
87
8.5
8.1
7.6
7.3
8.1
85
8.6
8.8
9.3
9.9
10.4
10.8
11.1
11.3
11.6
11.7
11.9
12.0
11.7
10.8
10.7
110
11.3
11.2
11.3
113
114
11.3
114
114
116
11.6
11.5
107
10.7
Scrubber
C0,(%)
(%)
5.4
5.3
5.0
4.7
4.5
4.9
5.1
5 1
5.3
5.5
5.8
61
6.3
6.5
6.6
68
69
6.9
7.0
6.9
6.5
6.5
66
6.7
6.7
6.7
6.7
6.8
67
6.8
6.8
6.8
6.9
6.9
6.8
6.8
02 |
sec
02
(%)
9.1
9.4
10.1
10.7
11.2
9.8
9.2
8.9
84
74
64
55
49
44
4.1
3.7
3.5
33
3.4
42
5.9
6.0
5.4
51
52
50
5.0
5.0
5.0
50
50
4.9
4.9
5.0
64
6.5
sec
Outlet
O2
<*)
10.1
10.4
11.0
11.5
11.9
10.9
10.4
10.3
9.9
9.2
8.4
7.8
72
6.8
6.4
6.0
5.7
5.5
5.4
6.2
7.6
8
7.4
7.1
7.1
7.1
7.0
70
7.0
7.0
7.0
6.8
6.8
70
8.1
8.1
Scrubber
Outlet
O2
(%)
14.7
14.7
15.1
15.4
15.6
15.2
14.9
14.9
14.8
14.5
14.1
13.7
13.4
13.2
13.0
12.8
12.7
12.6
12.5
12.7
13.4
13.3
13.4
13.2
13.2
13.2
13.2
13.1
13.2
13.2
13.1
13.1
13.0
130
13.2
13.2
sec
Inlet
°F
1032
1033
1020
994
972
969
969
967
965
970
983
1001
1014
1029
1040
1039
1049
1055
1062
1064
1060
1054
1054
1047
1051
1051
1050
1049
1049
1053
1056
1055
1062
1068
1079
sec
Outlet
°F
970
978
973
960
944
939
937
934
932
934
941
951
960
969
977
984
995
1007
1018
1018
1006
OOfi
996
997
995
995
997
998
1000
1001
1002
1004
1006
1010
1019
1021
Scrubber
Outlet
°F
166
165
166
166
166
167
168
169
170
171
171
171
171
170
171
172
173
173
173
173
172
173
173
173
175
175
173
174
174
174
175
176
175
171
172
sec
Inlet
THC
175.0
192.8
143.9
161.4
190.5
122.9
159.3
130.5
144.4
164.1
181.0
179.4
201.2
217.1
250.7
369.5
303.0
246.
249.
342.
198.
181
186.
170.
184.8
179.8
176.5
1667
131.6
137.9
155.4
135.0
161.9
148.0
1053
138.2
sec
Outlet
THC
(ppm)
16.0
13.7
15.5
19.0
21.4
21.3
20.7
20.4
22.2
27.7
39.5
442
56.1
68.6
101.0
119.1
118.7
132.5
1262
77.8
32.6
33 1
384
48.3
51.3
51.1
46.6
47.1
41.2
40.1
44.9
42.8
40.9
23.0
13.7
15.5
Outlet
THC
(ppm)
7.8
7.0
79
8.1
10.2
9.2
10.3
5.8
6.2
8.9
19.7
27.7
32.4
54.0
78.2
99.4
112.0
1182
120.1
73.5
12.9
12 6
12.5
27.9
27.2
24.8
189
17.3
125
12.0
13.3
13.6
11.4
50
27
28
sec
Inlet
CO
(ppm)
2233
1780
1660
1596
1377
1218
1174
1107
1191
1611
2262
2558
3126
4007
5033
6405
7629
8495
9126
7471
3359
3175
3620
4091
4456
4397
4279
4391
4327
4247
4430
4626
4440
3766
2135
2261
Outlet
CO
(ppm)
1298
1007
1071
1135
1080
1041
983
953
963
1151
1438
1455
1692
2125
2744
3463
4232
4625
4785
3945
1740
1717
2014
2304
2519
2402
2381
2478
2341
2369
2467
2666
2443
1966
1126
1229
Outlet
CO
(ppm)
896
716
753
777
737
692
670
654
675
840
1078
1176
1508
1912
2374
2533
2534
2534
2534
2367
1652
1557
1733
2026
2210
2134
2080
2141
2069
2023
2128
2210
2136
1740
1019
1111
Inlet
H,0
IN
0.340
0.340
0.340
0.340
0.340
0.340
0.340
0.340
O.J40
0340
0.340
0340
0.340
0.340
0.340
0340
0.340
0.340
0.340
0.340
0340
0.340
0340
0.340
0.340
0.340
0.340
0340
0.340
0.340
0.340
0.340
0.340
0340
0.340
0.340
Outlet
HjO
OUT
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0297
0.297
0297
0.297
0297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0297
0.297
Outlet
H2O
Stack
0.053
0.053
0.053
0053
0053
0.053
0053
0053
0.053
0.053
0.053
0053
0053
0.053
0.053
0053
0053
0.053
0.053
0053
0053
0053
0.053
0053
0.053
0.053
0053
0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.053
Page 12'
-------
Hopewell, jia
Continuous Moj|itor Data
December/1995
Date
12/6/9S
12/6/9S
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/6/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
Time
2320
23:25
23:30
23:35
23-40
23-45
23:50
23:55
0:00
0.05
0.10
0-15
020
0:25
0:30
0:35
0:40
0:45
0.50
0.55
.00
•05
:10
•15
:20
:25
•30
:35
.40
:45
:50
:55
2.00
2.05
2-10
2.15
CO,
sec
Inlet
CO,
(%)
11.8
12.0
12.0
12.0
12.3
12.8
12.2
10.0
3.8
•0.1
-0.1
-01
3.6
9.3
8.8
8.4
7.9
7.5
7.2
63
6.2
60
6.1
5.8
5.6
58
5.8
5.8
6.0
6.2
6.3
6.3
65
6.9
7.6
8.0
sec
Outlet
C0,(%)
(%)
10.7
10.9
10.9
11.0
11.4
11.9
11.0
10.1
4.2
-0.1
-0.1
•0.1
2.2
70
1.1
3.2
0.3
6.5
6.0
5.5
5.3
5.2
5.4
5.2
5.1
5.2
5.2
53
5.5
5.7
5.8
5.8
5.9
6.4
7.1
74
Scrubber
Outlet
C0,(%)
(%)
6.8
6.9
6.9
7.0
7.2
7.7
7.9
10.3
4.4
0.1
0.1
0.1
2.9
5.5
5.2
3.7
4.6
44
4.2
4.0
3.5
3.6
3.5
34
3.4
3.4
3.4
3.5
3.6
3.6
3.7
3.8
38
4.1
4.2
o.
sec
Inlet
02
(%)
6.5
6.2
6.2
6.2
5.7
52
6.3
18.5
7.5
0.0
0.0
0.0
9.4
10.0
106
11.1
11.7
12.0
12.4
13.3
13.4
13.7
135
138
140
137
13.8
13.8
13.4
13.2
13.2
13.1
13.0
12.6
11.7
11.3
sec
Outlet
02
(%)
80
7.8
7.8
7.8
7.2
6.6
7.8
19.0
7.1
-0.1
-0.1
0.0
9.9
12.6
19.5
17.0
20.4
13.1
13.6
140
14.3
14.4
14.2
14.3
14.5
14.4
14.3
14.2
13.9
13.7
13.6
13.5
13.4
12.9
12.1
11.7
Scrubber
Outlet
02
(%)
13.2
13.1
13.0
13.0
12.6
12.2
11.8
19.0
7.8
0.0
0.1
01
9.0
14.8
15.1
16.9
15.7
16.0
16.2
16.4
16.7
16.7
168
16.9
16.9
16.9
16.9
16.8
16.7
16.6
16.5
16.5
16.4
16.1
15.8
Temperature
sec
Inlet
°F
1086
1103
1124
1149
1175
1222
1278
1329
1363
1321
1339
1314
1282
1316
1327
1253
1214
1188
1168
1120
1115
1097
1088
1070
1051
1034
1024
1019
1014
1017
1003
997
996
993
998
1005
sec
Outlet
°F
1023
1028
1037
1051
1074
1112
1147
1194
1216
1176
1179
1170
1151
1130
1111
1212
2502
1179
1036
993
988
974
963
951
938
930
922
915
910
908
906
904
902
902
905
911
Scrubber
Outlet
°F
171
172
172
172
173
175
176
177
171
168
178
178
177
177
176
175
174
175
173
173
171
171
171
170
171
172
171
171
172
171
170
170
173
175
175
Total Hydrocarbons
sec
Inlet
THC
(ppm)
140.4
141.0
154.6
124.7
119.1
96.7
46.8
119.8
240.2
5.6
-10.4
-12.3
-12.6
129.6
122.2
103.7
95.2
79.6
93.0
108.5
108.1
113.4
114.0
117.8
129.2
133.8
132.3
137.7
133.2
133.6
127.5
1381
127.7
1277
122.9
112.5
sec
Outlet
THC
(ppm)
17.2
14.4
14.4
11.7
10.5
7.9
7.0
1.7
1.5
09
85.8
88.5
47.5
9.9
5.5
30
7.8
24.8
18.9
26.5
28.2
30.9
35.5
39.7
48.9
50.7
479
58.2
53.7
49.3
54.4
53.2
49.8
49.0
41.2
362
Scrubber
Outlet
THC
(ppm)
2.8
23
1.8
1.1
0.6
0.9
4.0
3.2
-0.1
-0.7
858
88.1
47.5
7.9
6.0
5.9
9.1
11.4
13.7
20.4
24.6
26.4
25.5
29.1
33.7
33.2
34.3
36.0
33.5
31.5
32.2
31.7
31.2
290
242
212
Carbon Monoxide
sec
Inlet
CO
(ppm)
2375
2544
2609
2415
2457
2216
1978
473
3853
8597
3797
1897
1056
1761
2005
2053
2269
2443
2746
2924
3112,
3052
2997
3006
3100
3291
3271
3378
3360
3413
3389
3318
3249
2967
2947
2992
sec
Outlet
CO
(ppm)
1316
1340
1283
1128
944
598
415
-19
2112
4854
3599
1880
664
220
141
393
-16
1538
1510
1871
1980
1999
1991
1977
2074
2181
2262
2358
2300
2251
2251
2231
2145
2070
1871
1881
Scrubber
Outlet
CO
(ppm)
1163
1232
1219
1095
965
674
481
32
988
2451
2423
1868
716
487
627
532
945
1099
1246
1394
1470
1514
1489
1509
1578
1611
1630
1680
1642
1608
1601
1612
1612
1459
1331
1289
sec
Inlet
H,0
IN
0.340
0.340
0.340
0.340
0.340
0.340
0340
0.280
0280
0.280
0280
0.280
0280
0.280
0280
0.280
0.280
0.280
0.280
0280
0.280
0.280
0.280
0280
Moisture
sec
Outlet
H,0
OUT
0.297
0.297
0.297
0.297
0297
0.297
0.297
0.182
0.182
0182
0.182
0.182
0.182
0182
0.182
0.182
0.182
0.182
0.182
0.182
0.182
0.182
0.182
0182
Scrubber
Outlet
H,0
Stack
0.053
0.053
0053
0.053
0.053
0.053
0.053
0.032
0.032
0.032
0032
0.032
0032 •
0.032
0.032
0.032
0.032
0.032
0.032
0032
0.032
0.032
0032
0.032
0.032
Page 13 of 16
-------
HopeweU, Virginia
Continuous Monitor Data
December 1995
Date
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
Time
2:20
225
2:30
2-35
2:40
245
2:50
2:55
3-00
305
3 10
3.15
3:20
3.25
330
3:35
3:40
3:45
3:50
3:55
400
4:05
4:10
4-15
4:20
425
4.30
4:35
4:40
4:45
4:50
4:55
5.00
505
5:10
5:15
sec
Inlet
CO,
(*)
8.1
8.3
8.6
8.8
8.8
9.0
91
9.2
8 1
72
6.9
6.7
6.5
6.2
6.0
58
6.1
6.4
6.4
66
6.7
6.7
67
67
6.8
6.9
7.0
7.0
7.0
7.2
73
7.3
7.4
• 7.3
8.0
8.5
CO2
sec
Outlet
OM%)
(»)
7.6
7.8
7.9
8.1
82
8.4
8.5
85
7.5
6.7
6.5
6.3
6.0
58
5.7
5.5
5.8
61
6.1
6.2
6.3
6.3
64
64
6.4
6.5
6.6
6.7
6.7
6.8
6.9
6.9
7.0
7.0
7.5
7.9
Scrubber
Outlet
C02(%)
(%)
43
4.4
4.5
46
4.7
4.8
4.9
49
46
4.2
4.1
4.0
3.9
3.8
3.7
36
37
3.8
3.8
39
39
39
40
4.0
4.0
40
4.1
4.1
4.1
4.2
4.2
. 4.2
4.3
4.3
4.4
4.6
sec
Inlet
O2
(%)
11.1
10.8
10.6
10.4
10.2
10.0
9.9
98
113
123
12.6
128
13.1
13.4
13.5
138
13.4
13.2
13.1
130
12.8
12.8
12.8
12.7
127
12.6
12.5
125
12.5
12.2
12.1
12.0
: 12.0 .
12.0 .
11.3
10.7
02
sec
Outlet
O2
(%)
11.5
11.3
11.1
109
10.8
106
10.6
10.5
11.7
12.6
12.9
13.1
134
13.7
138
14.0
13.6
13.3
13.2
13.2
130
12.9
129
128
12.8
12.7
12.6
12.6
12.6
12.4
123
12.3.
12.1 '
12.2
11.7
11.2
Scrubber
Outlet
02
<%)
15.7
15.6
15.5
15.4
15.3
15.2
15.1
15.1
15.4
15.8
16.0
16.1
16.3
16.4
16.5
16.7
16.6
16.4
16.4
16.3
16.3
16.2
162
16.2
16.1
16.1
16.1
160
16.0
15.9
15.8
15.8
158
158
15.7
15.4
Temperature
sec
Inlet
°F
1006
1010
1018
1025
1029
1036
1041
1045
1049
1044
1038
1032
1026
1029
1021
1006
993 .
987
982
978
977
976
980
977
975
975
975
978
979
980
,982
983
982
982
984
987
sec
Outlet
°F
916
920
925
931
935
942
947
954
958
955
948
942
934
925
915
906
896
891
887
885
885
884
883
883
883
883
884
884
884
886
887
888
892
893
896
902
Scrubber
Outlet
°F
175
176
176
177
176
175
176
176
170
167
167
167
167
166
165
166
167
168
168
167
167
167
167
167
167
166
166
166
166
167
167
167
167
167
- 170
171
Total Hydrocarbons
sec
Inlet
THC
(ppm)
109.4
1036
101.9
98.3
100.0
100.6
95.8
100.3
98.2
102.1
107.1
114.8
114.6
128.0
130.0
1372
139.9
139.1
134.3
1290
130.1
1282
128.2
128.1
128.2
127.5
128.6
125.0
125.3
127.7
126.4
'123.4
,123.2
126.7
121.5
125.9
sec
Outlet
THC
(ppm)
31.9
28.3
26.3
23.5
21.0
20.2
16.5
17.0
19.2
26.3
26.5
35.3
36.4
47.5
47.1
62.4
55.1
56.5
52.6
51.8
51.0
50.3
49.4
51.5
47.4
50.2
48.3
48.0
46.6
47.4
46.5
39.6
42.4
42.4
37.4
35.1
Scrubbe
Outlet
THC
(ppm)
19.2
17.0
15.6
140
12.9
12.2
107
10.6
12.9
17.3
20.1
22.7
25.7
29.5
32.9
37.2
35.1
32.8
31.3
29.6
29.2
28.4
29.3
289
297
289
28.8
276
28.9
28.1
27.2
262
26.0
25.6
23.6
210
Carbon Monoxide
sec
Inlet
CO
(ppm)
2815
2736
2655
2592
2587
2643
2499
2409
2349
2408
2576
2731
2840
2904
2953
3106
2863
2772
2723
2595
2525
2481
2524
2522
2545
2534
2519
2404
2453
2572
2503
2405
J2412
.2410
2629
2765
sec
Outlet
CO
(ppm)
1685
1696
1579
1538
1354
1398
1288
1247
1218
1446
1580
1729
1866
1994
2162
2246
2093
2010
1943
1873
1854
1777
1830
1762
1783
1844
1770
1744
1724
1785
1685
1707
1647
1661
1693
1710
Scrubber
Outlet
CO
(ppm)
1220
1170
1146
1091
1038
1020
939
894
966
1159
1252
1339
1435
1529
1600
1700
1535
1418
1396
1370
1332
1309
1301
1300
1315
1335
1336
1282
1280
1303
1285
1264
1280
1249
1248
1266
Moisture
sec
Inlet
H2O
IN
0.280
0.280
0.280
0280
0280
0280
0.280
0.280
0.280
0.280
0.280
0.280
0.280
0.280
0280
0.280
0.280
0.280
0.280
0.280
0.280
0.280
0280
0.280
0280
0.280
0.280
0.280
0280
0.280
0280
0.280
0.280
0.280
0.280
0280
sec
Outlet
H2O
OUT
0.182
0.182
0.182
0.182
0182
0.182
0.182
0.182
0182
0182
0 182
0182
0 182
0.182
0182
0.182
0.182
0.182
0.182
0182
0182
0182
0.182
0.182
0.182
0.182
0.182
0182
0.182
0.182
0.182
0.182
0.182
0.182
0.182
0182
Scrubber
Outlet
H2O
Stack
0.032
0.032
0032
0.032
0.032
0.032
0.032
0.032
0.032
0.032
0032
0.032
0032
0032
0032
0032
0.032
0.032
0032
0.032
0.032
0.032
0.032
0.032
0.032
0.032
0032
0032
0.032
0032
0.032
0.032
0032
0.032
0.032
0.032
Page 14
-------
Hopewell,
Continuous Monitor Data
December 1995
Date
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
5.20
5:25
5.30
5.35
540
5:45
5:50
5:55
6.00
6.05
6:10
6.15
6:20
6.25
6:30
6-35
6.40
6:45
6-50
6-55
7:00
7.05
7:10
7 15
7.20
7-25
7.30
7:35
7:40
7-45
7:50
7:55
8-00
805
8:10
8:15
sec
Inlet
CO,
(%)
8.5
8.7
91
9.6
9.4
91
9.5
10.1
10.7
108
108
10.6
10.3
10.2
9.9
9.7
9.8
9.8
99
10.0
9.8
9.1
90
8.8
80
7.8
7.5
7'0
6.7
6.2
10.6
5.6
00
00
0.0
0.0
C02
sec
Outlet
C02(%)
<*)
8.0
8.1
84
8.7
86
8.4
8.6
9.0
9.3
94
9.4
9.2
9.0
9.0
8.8
8.6
8.6
8.6
8.6
8.6
8.6
80
7.9
7.7
7.0
6.8
6.6
63
5.9
5.5
10.8
5.3
0.0
0.0
0.1
0.1
Outlet
CO2(%
(%)
4.6
4.7
4.9
4.9
50
49
5.0
5.1
5.1
5.2
52
5.3
5.3
5.2
5.1
5.0
5.1
5.1
5.1
SO
5.1
4.9
48
4.7
4.4
43
4.2
41
39
3.6
9.7
53
00
0.0
0.0
1.2
sec
Inlet
O2
(%)
10.6
10.4
9.9
9.3
9.7
10.0
9.4
8.7
8.2
8.0
80
8.4
8.6
8.7
9.0
9.3
9.1
91
9.0
90
9.1
10.0
10.0
10.3
11.3
11.5
120
124
12.7
13.3
18.6
6.8
0.1
0.0
6.1
21.0
Oj
sec
Outlet
O2
(%)
11.1
10.9
10.5
10.2
10.3
106
10.2
9.8
9.5
9.4
9.3
9.5
9.8
9.9
10.2
10.4
10.3
10.3
10.4
10.3
10.4
11. 1
11.3
11.5
12.3
12.5
12.7
13.1
13.4
13.9
18.3
6.8
0.0
0.0
4.5
17.3
Scrubbe
Outlet
O2
<»)
15.4
15.3
15.2
15.1
15.0
15.1
15.0
14.9
14.9
14.8
14.8
14.7
14.7
14.8
14.9
15.0
15.0
15.0
15.0
15.0
15.0
15.2
15.3
15.3
15.7
15.8
16.0
16.1
16.3
16.6
19.8
75
0.1
0.0
3.8
16.5
Temperature
sec
Inlet
«F
992
996
1003
1011
1017
1022
1029
1037
1045
1055
1066
1066
1067
1068
1071
1071
1069
1069
1067
1066
1066
1067
1067
1068
1067
1060
1055
1043
1031
1016
993
1260
2502
2502
2502
2502
sec
Outlet
°F
907
912
920
926
931
936
943
949
954
958
963
967
973
974
974
974
973
973
975
975
977
977
977
979
976
969
961
948
934
916
900
886
1469
2502
2502
2502
Scrubbe
Outlet
"F
171
171
173
175
173
170
172
175
178
178
180
176
175
175
175
175
176
176
176
176
175
170
171
169
166
165
165
164
163
161
163
159
155
160
269
2502
Total Hydrocarbons
sec
Inlet
THC
1185
122.1
114.6
112.2
118.2
107.0
110.3
108.1
102.7
1106
108.8
104.7
105.4
89.0
107.1
84.8
955
86.5
93.3
87.1
86.3
82.6
88.5
80.0
83.1
87.9
94.0
983
109.3
121.9
37.2
2.9
1.4
-02
396.0
337.2
sec
Outlet
THC
(ppm)
31.5
27.4
23.8
20.0
18.5
20.2
17.7
15.4
13.2
12.8
12.0
12.3
12.1
11.8
12.4
12.6
126
12.7
11.5
12.5
12.0
13.7
13.2
148
18.9
19.8
27.3
296
41.2
46.2
106
69.5
60.9
ISO
0.9
0.7
Scrubbe
Outlet
THC
(ppm)
192
17.3
14.1
11.3
11.8
12.4
11.0
89
7.7
7.3
6.8
7.3
7.5
7.4
78
8.3
8.1
8.1
79
7.9
7.9
92
9.4
100
13.5
15.3
187
224
27.4
35.7
8.4
70.1
61.4
1S.O
0.8
0.6
Carbon Monoxide
sec
Inlet
CO
(ppm)
2687
2614
2474
2356
2366
2524
2473
2369
2282
2218
2148
2133
2208
2163
2197
2221
2242
2231
2204
2198
2227
2282
2303
2413
2620
2786
2998
3061
3424
3611
845
3589
S918
2217
1157
-84
sec
Outlet
CO
1589
1564
1437
1284
1242
1287
1258
1127
987
916
866
889
908
905
9S9
995
1016
1008
998
987
978
1058
1137
1212
1370
1542
1743
1802
2092
2354
517
199S
4356
2174
1221
782
Scrubbe
Outlet
CO
(ppm)
1227
1191
1067
920
922
1022
956
849
733
692
649
698
733
723
745
768
780
774
771
757
769
867
897
94S
1165
1285
1414
1487
1674
1858
285
945
2454
22S8
1295
531
Moisture
sec"
Inlet
H,O
IN
0280
0280
0280
0280
0.280
0.280
0.280
0280
0280
0.280
0.280
0280
0.280
0.280
0.280
0.280
0280
0280
0.280
0280
0.280
0.280
0.280
0.280
0.280
0280
0.280
0280
0.280
0.280
sec
Outlet
H20
OUT
0.182
0.182
0.182
0.182
0182
0.182
0182
0.182
0182
0.182
0.182
0.182
0182
0182
0.182
0182
0182
0.182
0.182
0.182
0.182
0.182
0.182
0.182
0.182
0182
0.182
0.182
0182
0.182
Scrubber
H2O
Stack
0032
0.032
0032
0032
0032
0032
0.032
0.032
0032
0.032
0.032
0.032
0032
0.032
0.032
0.032
0.032
0.032
0.032
0.032
0.032
0.032
0.032
0.032
0.032
0.032
0.032
0.032
0032
0.032
Page 15 of 16
-------
HopeweU, Virginia
Continuous Monitor Data
December 1995
Date
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
12/7/95
Time
8.20
8-25
8.30
8:35
8-40
8:45
8:50
8:55
900
CO,
sec
Inlet
CO2
(%)
0.0
0.0
00
0.0
-0.1
-01
1.2
164
106
sec
Outlet
C02(%)
(%)
0.1
0.1
0.0
0.0
0.0
0.0
1.3
15.6
7.7
Scrubber
Outlet
C0j(%)
(%)
1.1
0.1
0.1
0.0
0.0
0.0
0.6
154
8.0
02
sec
Inlet
02
(%)
4.9
0.2
0.0
0.0
0.0
0.1
4.4
21.4
13.8
sec
Outlet
O2
(%)
20.6
19.0
0.0
00
0.4
0.1
84
20.7
15.7
Scrubber
Outlet
02
(*)
5.1
0.6
0.5
0.0
0.5
0.2
7.7
20.9
16.6
Temperature
sec
Inlet
°F
2502
2502
2502
2502
,2502
2502
2502
2502
2502
sec
Outlet
°F
2502
2502
2502
2502
2502
2502
2502
2502
2502
Scrubber
Outlet
°F
2502
2502
2502
2502
2502
2502
2502
2502
2502
Total Hydrocarbons
sec
Inlet
THC
(ppm)
144.9
314.6
261.8
68.4
13.8
7.5
4.9
3.6
1.0
sec
Outlet
THC
(ppm)
0.7
0.6
0.7
3.6
46.8
25.2
37.5
19.3
0.1
Scrubber
Outlet
THC
(ppm)
0.5
0.4
04
0.2
530
74.1
36.3
18.4
-08
Carbon Monoxide
sec
Inlet
CO
(ppm)
6440
6802
4113
3641
2150
1493
2001
-88
-93
sec
Outlet
CO
(ppm)
-20
38
3185
3507
2026
1425
1286
7
-20
Scrubber
Outlet
CO
(ppm)
2296
2379
2446
2448
2361
1666
1388
67
8
sec
Inlet
H,O
IN
Moisture
sec
Outlet
H,O
OUT
Scrubber
Outlet
H2O
Stack
Page 16 >
------- |