United States              Information         July 1983
Environmental Protection   Clearinghouse

Agency                     (PM 211A)
                           Washington DC 20460
Office of Administrations
Office of Management Information & Support Services
FPA ENVIRONMENTAL


DATA BASE AND


MODEL  DIRECTORY



Volume 2 of  2


Part 2 of 2  (Page's 811  through 1625)

-------
                             Accession Mo.   6408000201      (cont)

    R.I.
(ROR)  Responsible Organization:  Office of  Research and
    Development.Office of Environaental Processes and Effects Rese
                              811

-------
                             Accession Ho.   6408000202

(DQ)  Date of Questionaire: 12-02-82
(HAH)  Name of Data Base of Model: Coastal  Environmental  Assessment
    Studies
(ACR)  Ac Tonya of Data Base or Model: CEAS
(MED)  Media/Subject of Data Base or Model: Sediment ;Surface
    vater-estuarlne/marine ;Tissue Mercenaria mercenaria, Mytllus
    Pseudopleuronectes aaericanus
(ABS)  Abstract/Overview of Data Base or Model: This data base contains
    tissue residue analyses for    several  species including Mytilus
    edulis, Mercenaria   aercenarla and Pseudopleuronectes americanus
    from both indigenous and transplanted populations exposed to
    varying  degrees of pollution in coastal and estuarine areas of  the
    United States.  Saaple frequency varies.  Pollutants  measured
    include metals, synthetic organ!cs, and petroleum hydrocarbons*
    Biological effects are also addressed through histopathological
    examination plus a number of physiological parameters, prin-
    cipally Scope for Growth.
(CTC)  CORTACTS: Subject aatter  Donald K.  PheIPS, Environmental
    Scientist  ;     Computer-related  Robert Payne, ADP  Coordinator
    (401)   ;    EPA Office  Robert Barles, Exploratory Research
(DTP)  Type of data collection or monitoring: Coabination/Other data
    collection - aabient and    non-point source, sludge and dredge
    spoil dumping
(STA)  Data Base status: Operational/ongoing
(HPP)  Hon-pollutant paraaeters included in the data base: Biological
    data ^Collection method ^Concentration measures ;Exposure data ;
    Location j Physical data ;Salinity ^Sampling data ^Temperature /
    Shell measurements ^Organism Heights ;Sex
(DS)  Time period covered by data base: 01-01-70 TO 04-30-81
(TRM)  Termination of data collection: Hot anticipated
(PRO)  Frequency of data collection or sampling: weekly  ^monthly ;as
    needed
(HOB)  Number of observations in data base: 1200(Bstimated)
(RED  Estimated annual increase of observations in data base: 200
(IMF)  Data base includes: Ran data/observations
(ITS)  Total number of stations or sources covered in data base:  15
(MCS)  Ho. stations or sources currently originating/contributing data:
    5
(HOP)  Huaber of facilities covered In data base (source monitoring): 0
(6EO)  Geographic coverage of data base: Rational selected areas
(LOC)  Data elements Identifying location of station or source include:
    State ;City ^Coordinates - latitude/longitude
(FAC)  Data elements identifying facility include: H/A
(CDE)  Pollutant Identification data are: Ohcoded
(LIN)  Limitation/variation in data of Hhich user should be ay are: The
    CEAS is a research data base and entries are  subject to revision.
(DPR)  Data collect./anal, procedures conform to QRD guidelines:  Samplin
    g plan documented jCollection method documented ;Analysis method
    document QA procedures documented
(AML)  Lab analysis based on EPA-approved or accepted methods? TES
(ADO)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates are not available.


                             812

-------
                             Accession No.  6408000202     (cont)

(EOT)  Editting: No known edit procedures exist.
(CBY)  Data collected by: EPA lab-ERL, Narragansett, R.I.
(ABY)  Data analyzed by: EPA lab-ERL, Narragansett, R.I.
    Other federal agency-NOAA/NMFS, Milford
CIDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Anticipatory/research
(AUT)  Authorization for data collection: Bo statutory requirement:
    Data collection requirement is for research purposes*
(OMB)  Data col lee ted/sub* it ted using OMB-approved EPA reporting foras:
    QQ
(REP)  Form of available reports and outputs of data base: Publications
    - Phelps, O.K. and tf.B. Gallouay.  1979.  The Use of Introduced
    Species (Mytilus edulis) as a    Biological Indicator of Trace
    Metal Contamination in an Estuary. In: Advances in Marine
    Environmental Research.  OSEPA  600/9-79-035:26-37. Hlddows, J.L.,
    O.K. Phelps and V.B. Galloway.  1981.  Measure-   ment of
    Physiological Condition of Mussels Along a Pollution     Gradient
    in Narragansett Bay.  Marine Environmental Research.    4:181-194.
    Phelps, O.K. and M.B. Galloway.  1980.  A Report on the Coastal
    Environmental Assessment Station (CEAS) Program.  Rapp. P.-v.
    Reun. Cons. Int. Explor. Mer., 179:76-81.    Phelps, O.K., M.B.
    Galloway, P.P. Thurberg, E. Gould, M.A.  Dauson.  1981.  Comparison
    of Several Physiological Monitoring   Techniques as Applied  to Blue
    Mussel Mytilus edulis.   Along a Gradient of Pollutant Stress in
    Marragansett Bay, Rhode  Island. In:  Biological Monitoring of
    Marine Pollutants.     F.J. fernberg, A. Calabrese, P.P. Thurberg,
    V.B. ?ernberg, eds., Academic Press,  335-355. Myers, Allen C. 1979.
    Summer and Winter Burrows  of a Mantis Shrimp,   Squilla empusa, in
    Harragansett Bay, Rhode Island (OSA).   Estuarine  and Coastal
    Marine Science, fol. 8, 87-98.   Phelps, D.K.  and A.C. Myers.
    1977.  Ecological considerations in     site assessment for
    dredging  and spoiling  activities. In:  Proceedings  of the second
    U.S./Japan  meeting  on  management of     bottom  sediments containing
    toxic  substances, October,  1976.  EPA    Ecological Research
    Series, EPA 600-3-77-083.     Phelps, O.K., Telek,  G., and R.L.
    Lapan, Jr.  1975.   Assessment  of heavy metal  distribution within
     the  food  web.   In:  Marine    Pollution and Marine  Haste Disposal,
     pp.  341-348.   Ed. by E.A.    Pearson  and E.D. Frangipane.  Pergamon
     Press, Oxford  and Rew  York.    Bayne, B.L., Moore,  M.H., Hiddows,
     J.,  Livingstone,  D.R.  and     Salkeld,  P.M. 1979.  Measurement of
     the  responses  of  individuals to  environmental  stress and pollution.
     Phil.  Trans.  R.  Soc. Ser.      B.  286, 563-81.
     Unpublished reports -  unknown at this time
 (ROS) Number of  regular users of data base:  1
 (OSR)  Current regular  users  of data base:  EPA  laboratories
 (CMF)  Confidentiality  of  data and limits on  access:  No limits  on
     access to data
 (DLC) Primary physical location of  data: EPA lab
 (DST)  Form of data storage:  Magnetic disc  ;0rigioal form (hardcopy,
     readings)                                         ......  .«.
 (DAC)  Type of data access: Manually jEPA software: DATUM jEPA
     hardware DEC 11/70


                              813

-------
                             Accession No.   6408000202     (coot)

(CHG)  Direct charge for non-EPA use: Ho
(OPDT)  Frequency of data base master file  up-date:  Other as necessary
(CMP)  Completion of fora:
    Halter Gallouay
    OFC: EPA/ERL-Karragansett
    AD: South Ferry Road, Narragansett, R.I.  02882
    PH: (401) 789-1071
(OF)  Date of form completion: 09-21-81
(WHAT)  Number of substances represented in data base: 28
(NCAS)  Number of CAS registry numbers in data base: 25
(MAT)  Substances represented in data base:
    PCB-1254 (Arochlorl254)              dibenzota,h:ianthracene<53-70-3>
       <11097-69-l>                      dissolved oxygen
    aluninua<7429-90-5>                  fluoranthene<206-44-0>
    aMonia<7664-41-7>                   hydrocarbons
    anthracene<120-12-7>                 iron<7439-89-6>
    benzo(a)anthracene<56-55-3>          lead<7439-92-l>
    benzo(g,h,l)perylene<191-24-2>       n-alkanes (clO-c30)
    be nzo(k)fluoranthene<207-08-9>       nickel<7440-02-0>
    ben2oCalpyrene<50-32-8>              phenanthrene<85-01-8>
    cadmlum<7440-43-9>                   polychlorlnated blphenyls (PCBs)
    chlordane<57-74-9>                      <1336-36-3>
    chro«iu»<7440-47-3>                  pyrene<129-00-0>
    chrysene<218-01-9>                   silver<7440-22-4>
    copper<7440-50-8>                    vanadiuX7440-62-2>
    ddt<50-29-3>                         zinc<7440-66-6>
(CAS)  CAS registry numbers of substances Included in data base: 11097-6
    9-1; 7429-90-5; 7664-41-7; 120-12-7;   56-55-3; 191-24-2; 207-08-9;
    50-32-8; 7440-43-9; 57-74-9; 7440-47-3;       218-01-9; 7440-50-8;
    50-29-3; 53-70-3; 206-44-0; 7439-89-6;       7439-92-1; 7440-02-0;
    85-01-8; 1336-36-3; 129-00-0; 7440-22-4;   7440-62-2; 7440-66-6
(CNN)  Contact name(s): Galloway,H.    ;    Payne,R.
(COR)  contact organization: Robert Barles, Exploratory Research
(ROR)  Responsible Organization: Office of Research and
    Development.Offlee of Environmental Processes and Effects Rese
                             814

-------
                             Accession Mo.  6409000106

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Environmental (Nicrobial
    Populations)
(ACR)  Acronyn of Data Base or Model: lone
(MED)  Media/Subject of Data Base or Model: Surface uater estuarine
(ABS)  Abstract/Overview of Data Base or Model: Samples of inshore
    surface films were   collected using a membrane adsorption
    technique.  These samples were analyzed for bacterial
    populations which Here typically 10-100 times greater  than those
    in underlying Haters of 10 centimeters.

-------
                             Accession Ho.  6409000106     (cont)

    Proceedings of International Biodegradation    Symposium, 1976
(MUS)  Number of regular users of data base: Ho longer used
CCIF)  Confidentiality of data and Halts on access: Ho Halts on
    access to data
(OLC)  Primary physical location of data: published
(DST)  Fora of data storage: none
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: yes
fCMP)  Completion of form:
    Al fiourquln
    OFC: EPA/(ORD)/(OEPER)/(ERL-GB)
    AD: Sabine Island Gulf Breeze/ FL
    PR: (904)932-5311
(DP)  Date of fora completion: 12-14-82
(CUM)  contact name(s): BOUTguIn,A.
(COR)  Contact organization: Environmental Research Lab-Gulf Breeze
(ROR)  Responsible Organization: Office of Research and
    Development.Offlee of Environmental Processes and Effects Rese
                             816

-------
                             Accession Mo.   6409000107

CDQ)  Date of Questionaire: 12-02-82
(NAM)  Have of Data Base of Model: River Pollution by
    Anticholinesterase Agents
Site
    description ;    Test/analysis Method
(OS)  Ti«e period covered by data base: 07-01-72 TO 10-30-72
(TRM)  Termination of data collection: Occurred 10/30/72
(FRQ)  Frequency of data collection or saMpling: one tine only
(NOB)  NuMber of observations in data base: 2.(Actual)
(NEI)  Estimated annual increase of observations in data base: 0.
(INF)  Data base includes: SuMMary aggregate observations
(NTS)  Total nuMber of stations or sources covered in data base: 5.
(NCS)  No. stations or sources currently originating/contributing data:
    0.
(NOF)  NuMber of facilities covered in data base (source Monitoring): 1
(GEO)  Geographic coverage of data base: Geographic region Missouri and
    Kansas Rivers
(LOC)  Data elements identifying location of station or source include:
    State jCity
(FAC)  Data elements identifying facility include: Plant location
(CDE)  Pollutant identification data are: Oncoded
(LIM)  Limitation/variation in data of which user should be aware:  Four
    pesticides Measured in effluent at Kansas City, MO. 5 stations
    Monitored for fish poisoning    on Kansas and Missouri Rivers in
    1972 (July and October).
(DPR)  Data collect./anal, procedures conform to ORO guidelines:
    g plan documented ^Collection Method documented ^Analysis Method
    document QA procedures documented
(AMD  Lab analysis based  on EPA-approved or accepted Methods? YES
(ADD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base.


                             817

-------
                             Accession No.   6409000107     (cont)

(EOT)  Editting: Edit procedures used and documented.
(CBY)  Data collected by: EPA lab Environnental Research Lab-Gulf
    Breeze
(ABY)  Data analyzed by: EPA lab Environmental Research Lab-Gulf Breeze
(IDL)  Laboratory identification: TES
(PR1)  Primary purpose of data collection:  Compliance or enforcement
(A0T)  Authorization for data collection: Statutory authorization  is P
    L 92-500 as amended (Clean Hater Act-CWA) Statutory authorization
    is P L 92-516 as amended (Federal Insecticide,     Fungicide and
    Rodentlcide Act-FlFRA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base: Publications
    Coppage, D.L. and T.E*. Braldech "River Pollution    by
    Antlcholinesterase Agents."  Hater Research (1976) vol. 10, pp.
    19-24.
(HOS)  Humber of regular users of data base: 1 office
(OSR)  Current regular users of data base: EPA laboratories
(CNF)  Confidentiality of data and limits on access: No Halts on
    access to data
(DLC)  Primary physical  location of data: EPA lab
(DST)  Form of data storage: Original form (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: no
(OPDT)  Frequency of data base master file up-date: Other single
    study-only one time  data collection
(CMP)  Completion of form:
    David L. Coppage
    OFC: EPA/(OPTS)/(OPP)/(HED)
    AD: 401 M St S.tf. Washington, DC 20460
    PH: (703) 557-0576
(DF)  Date of fora completion: 12-14-82
(NMAT)  Number  of substances represented in data  base:  4
(NCAS)  Number  of CAS registry numbers In data base:  4
(MAT)  Substances represented in data base:
     disulfoton<298-04-4>                 guthion<86-50-0>
     fensulfothion<115-90-2>             propoxur
(CAS)  CAS registry numbers of  substances included in data base:
     41 115-90-2; 86-50-0; 114-26-1
(CNM)  Contact  name(s):  Coppage,D.                 ....._.*.        or
(COR)  Contact  organization: Environmental Research Lab-Gulf  Breeze,  FL
(ROR)  Responsible Organization: Office  of Research and
     Development.Office  of Environmental  Processes and Effects Rese
                              818

-------
                             Accession No.   6502000104

(DQ)  Date of Questionaire: 12-02-82
(RAM)  Name of Data Base of Model: Epidemiology studies (including
    "CHESS")
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Air ;0ther health status
    questionnaires regarding physiologic measures
(ABS)  Abstract/Overview of Data Base or Model: The data base includes
    questionnaire    responses from population surveys of health
    status,    such as:  acute respiratory  disease incidence, chronic
    respiratory disease prevalence, and asthma attack frequency?
    physiologic monitoring, such as   ventilatory function; personal
    information on     demographic, socio-economic characteristics;  and
    aabient air quality data.
(CTC)  CONTACTS: Subject matter   WillIan Nelson  (919)541-2330   ;
    Computer-related  Gerald
(DTP)  Type of data collection or monitoring: Ambient data collection
(STA)  Data Base status: Discontinued
(GRP)  Groups of substances represented in Data Base: 7 criteria NAAQS
(NPP)  Non-pollutant parameters included in the data base: Concentration
    measures ;Exposure data ;Health effects ^Population demographics ;
    Temperature
(DS)  Time period covered by data base: 09-01-70 TO 06-30-79
(TRM)  Termination of data collection: Occurred 06/30/79
(FRQ)  Frequency of data collection or sampling: Other Variable from
    less than hourly to as needed (but not ongoing)
(NOB)  Number of observations in data base: 4000000-(Estimated)
(NEI)  Estimated annual Increase of observations in data base: 0.
(INF)  Data base includes: Raw data/observations ^Summary aggregate
    observations
(NTS)  Total number of stations or sources covered in data base: 40
    ((approximately).)
(RCS)  No. stations or sources currently originating/contributing data:
    0.
(NOF)  Number of facilities covered in data base (source monitoring): 0.
(GEO)  Geographic coverage of data base: County/smaller location
    approximately 40 separate cities or  neighborhoods.
(LOO  Data elements identifying location of station or source include:
    State jCounty >City ;Town/township ;Street address ^Coordinates OTM
    >  Project Identifier
(FAC)  Data elements identifying facility include: N/A
(CDE)  Pollutant identification data are: Saroad parameter
(LIH)  Limitation/variation in data of which user should be aware:  None
(DPR)  Data collect./anal. procedures conform  to ORD guidelines: Samplin
    g plan documented ^Collection method documented ;Analysis method
    document QA procedures documented
(AND  Lab analysis based  on EPA-approved or accepted methods? YES
(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base.   Edit variable by  individual study.
(CBY)  Data collected by:  EPA lab Health Effects Research Lab-Research
    Triangle Park >Contractor several c
(ABY)  Data analyzed by: EPA lab Health Effects Research Lab-Research
    Triangle Park


                             819

-------
                             Accession lo.  6502000104     (cent)

    Contractor lab several contractor labs
         sulfur dioxlde<7446-09-5>
    ozone<10028-15-6>                    total suspended participates
(CAS)  CAS registry nuabers of  substances included in data base: 10102-4
    4-0; 10028-15-6;  7446-09-5
(CHM)  Contact naae(s): Nelson,*.  ;    II eh Is, G.  ;    Cortesi,R.
(ROR)  Responsible Organization: Office of Research and
    Development.Offlee of Health Research.Health Effects Search La
                             820

-------
                             Accession No.   6502000105

(DQ)  Date of Questionalre: 12-02-82
(NAM)  Name of Data Base of Model:  Clinical Laboratory  for  Evaluation
    and Analysis of Noxious  Substances/Clinical  Research
CACR)  Acronya of Data Base or Model: CLEANS/CLEVER
(MED)  Media/Subject of Data Base or Model: Air ;Blood  ^Tissue nasal
    washings ;Other physiological perfornance
(ABS)  Abstract/overview of Data Base or Model: The data base includes
    test subject physical and  medical status/  environmental  exposure
    measurement and control   data, environmental facility  operational
    status, physiologic     function measurements/ results  of
    biochemical and immunological  blood analyses, instrument
    calibration data, and quality    assurance  audit results.
(CTC)  CONTACTS: Subject matter   Walter L. Crider  (919) 541-2872;
    Computer-related  Walter
(DTP)  Type of data collection or monitoring: Combination/Other
    exposure atmospheres
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented in Data Base: 7 criteria NAAQS
    ;3 HID CAA
(NPP)  Non-pollutant parameters included in the data bases  Biological
    data ;chemical data ^collection method ;Concentration measures ;
    Exposure data ;Flou rates ;Health effects ;Physical data  ;Sampling
    date ;  Temperature ;Yolume/mass measures ;physiologic  performance
(DS)  Time period covered by data base: 03-01-77 TO 09-30-81
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: less than  hourly 2
    minute intervals
(NOB)  Number of observations in data base: 70000000.(Estimated)
(NEI)  Estimated annual increase of observations in data base: 30000000.
(INF)  Data base includes: Ran data/observations ;Summary aggregate
    observations ;measurement data
(NTS)  Total number of stations or sources covered in data  base: 2.
(NCS)  No. stations or sources currently originating/contributing data:
    2.
(NOF)  Number of facilities covered in data base (source monitoring):  1.
(LOC)  Data elements identifying location of station or source include:
    N/A
(FAC)  Data elements identifying facility include: N/A
(CDE)  Pollutant identification data are: Oncoded
(LIM)  Limitation/variation in data of which user should be aware: None
(DPR)  Data collect./anal, procedures conform to ORO guidelines: ORD
    Guidelines
(AND  Lab analysis based on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but  are not
    included in data base.
(EDT)  Edittlng: Edit procedures used and documented.
(CBY)  Data collected by: EPA lab Health Effects Research Laboratory -
    RTF ;Contractor lab Rockwell
(ABY)  Data analyzed by: EPA lab Health Effects Research Laboratory -
    RTF
    Contractor lab Rockwell


                             821

-------
                             Accession Mo.  6502000105     (cont)

(IDL)  Laboratory Identification: NO
(AOT)  Authorization for data collection: Statutory authorization  is P
    L 86-206 as amended (Clean Air Act - CAA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting foras:
    QQ
(REP)  Fora of available reports and outputs of data base:  Publications
    Effects of Air Pollutants on Huaan Cardlopulaonary  Function
    Machine-readable raw data
    On-line computer
(NDS)  Nuaber of regular users of data base: 1 office
(OSR)  Current regular users of data base: EPA laboratories
(CNF)  Confidentiality of data and liaits on access: Limits on access
    Hithin EPA and outside agency for soae  data
(DLC)  Priaary physical location of data: Contractor
(OST)  Fora of data storage: Magnetic tape
(DAC)  Type of data access: EPA software set of individual  prograas
    with no systea naae j     EPA hardware DEC PDP-11/40
(CHG)  Direct charge for non-EPA use: yes
(OPDT)  Frequency of data base aaster file up-date: Meekly
(CMP)  Coapletion of fora:
    Robert E. Lee
    OFC: EPA/(ORD)/(OHR)/(HERL-RTP)
    AD: Research Triangle Park, MC 27711
    PH: (919) 541-2283
(DP)  Date of fora completion: 01-25-83
(RMAT)  Muaber of substances represented in data base: 6
(RCAS)  Huaber of CAS registry nuabers in data base: 4
(MAT)  Substances represented in data base:
    acid alst                            ozone<10028-15-6>
    carbon aonoxlde<630-08-0>            sulfur dioxide<7446-09-5>
    nitrogen dioxide<10102-44-0>         total suspended particulates
(CAS)  CAS registry nuabers of substances included in data  base: 630-08-
    0} 10102-44-0; 10028-15-6; 7446-09-5
(CMM)  Contact naae(s): Crider,H.L.    ;    Crider,U.L.    ;
    Cortesi,R.
(ROR)  Responsible Organization: Office of Research and
    Developaent.Office of Health Research.Health Effects Search La

-------
                             Accession No.   6502000106

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model:  Mortality Data Base
(ACR)  Acronym of Data Base or Model:  None
(MED)  Media/Subject of Data Base or Model:  Other No Specific
    Media-death records from National Center for Health  Statistics
(ABS)  Abstract/Overview of Data Base or Model:  The data base includes
    all U.S. cancer deaths for the  years 1950-1961 and all  deaths for
    the years 1962-1978.
(CTC)  CONTACTS: Subject matter   Wilson B.  Riggan  (919) 541-2674?
    Computer-related  John V
(DTP)  Type of data collection or monitoring: Combination/Other  cancer
    related death records
(STA)  Data Base status: Discontinued
(NPP)  Non-pollutant parameters included in  the  data base: Political
    subdivisions ^Population demographics ;Health Effects:   Death
    records
(DS)  Time period covered by data base: 01-01-50 TO 12-31-78
(TRM)  Termination of data collection: Occurred  12/31/78
(FRQ)  Frequency of data collection or sampling: Other  annual death
    records
(NOB)  Number of observations in data base:  35000000.(Estimated)
(NEI)  Estimated annual increase of observations in data base: (N/A.)
(INF)  Data base includes: Summary aggregate observations
(NTS)  Total number of stations or sources covered in data base: 0.
(NCS)  No. stations or sources currently originating/contributing data:
    0.
(NOF)  Number of facilities covered in data  base (source monitoring): 0.
(GEO)  Geographic coverage of data base: National
(LOC)  Data elements identifying location of station or source include:
    State ;County
(FAC)  Data elements identifying facility include: N/A
(CDC)  Pollutant identification data are: Other  coding  scheme
(LIM)  Limitation/variation in data of which user should be  aware: None
(DPR)  Data collect./anal, procedures conform to ORD guidelines: QA
    procedures documented
(AUD)  Lab Audit: Data not based on lab analysis.
(EOT)  Editting: Edit procedures used but undocumented.
(CBY)  Data collected by: Other federal agency U.S. National Center  for
    Health  Statistics
(ABY)  Data analyzed by: Other federal agency U.S. National  Center for
    Health   Statistics
(PR1)  Primary purpose of data collection: Special study
(AUT)  Authorization for data collection: No statutory  requirement:
    Data collection requirement Is    used  to support Health Effects
    Research Laboratory research.
(OMB)  Data collected/submitted using OMB-approved EPA  reporting forms:
    QQ
(REP)  Form of available reports and outputs of  data base: Publications
    several publications
    Machine-readable raw data
(NUS)  Number of regular users of data base: 2 offices
(USR)  Current regular users of data base:  EPA laboratories


                             823

-------
                             Accession Ho.  6502000106     (cont)

    university
(CIV)  Confidentiality of data and limits on access: No Halts on
    access to data
(DLC)  Primary physical location of data: NCC/UHIVAC
(DST)  Form of data storage: Magnetic tape
(DAC)  Type of data access: EPA software Mortality Studies Support
    MIDS:6502200106 ;individual computer tap
(CHG)  Direct charge for non-EPA use: Bo
(UPDT)  Frequency of data base master file up-date: Other data base no
    longer being updated
(CMP)  Completion of fora:
    William Kelson
    OFC: EPA/(ORD)/(OHR)/(HERL-RTP)
    AD: Research Triangle Park MC 27711
    PH: (919) 541-2330
(DF)  Date of fora completion: 01-25-83
(CNM)  Contact name(s): Riggan,U.B.    /    Van Bruggen,J.
(RQR)  Responsible Organization: Office of Research and
    Development.Offlee of Health Research.Health Effects Search La
                             824

-------
                             Accession Mo.   6502000108

(DQ)  Date of Questionaire: 12-02-82
(HAN)  Kane of Data Base of Model:  Population at Risk
(ACR)  Acronym of Data Base or Model: POPATRISK
(MED)  Media/Subject of Data Base or Model: Air ;Other climatology
    ;Other death records census population  records }     Ho specific
    •edia
(ABS)  Abstract/Overview of Data Base or Model: County level national
    data base containing air    quality, death rate, climatology,
    socio-economic/ demographic,   and Migration information.  Air
    quality includes 1974 Beans,     • ax in a, and minima for 5 criteria
    pollutants:  total   suspended particulates (TSP), sulfur dioxide
    (S0<2», nitrogen   dioxide (N0<2», carbon monoxide (CO), and
    ozone.  Death    records include 1969-71 age adjusted death rates
    for 50     International Classification of Diseases-Adapted
    categories by race and sex.
(CTC)  CONTACTS: Subject natter   William Nelson  (919) 541-2330  ;
    Computer-related  Jerome
(DTP)  Type of data collection or nonitoring: Ambient data collection
(STA)  Data Base status: Operational/ongoing
(GRP)  Croups of substances represented in  Data Base: 7 criteria NAAQS
(NPP)  Non-pollutant parameters included in the data base: Concentration
    neasures ^Elevation ;Health effects ;Political subdivisions ;
    Population denographics ^Population density ^Precipitation ;Site
    description ;  Tenperature jin-out county migration ;family incone
    ;alcohol sales
(DS)  Tine period covered by data base: 01-01-69 TO 12-30-74
(TRM)  Termination of data collection: Occurred 12/30/74
(FRQ)  Frequency of data collection or sampling: Other includes SAROAD
    (Storage and Retrieval of Air Quality Data) 1974 air quality data
    base.
(NOB)  Sunber of observations in data base: 10000000.(Estimated)
(NEI)  Estimated annual increase of observations in data base: 0.
(INF)  Data base includes: Ray data/observations ^Summary aggregate
    observations ^Reference data/citations
(NTS)  Total number of stations or sources  covered in data base: 6000.
(NCS)  No. stations or sources currently originating/contributing data:
    0.
(NQF)  Nunber of facilities covered in data base (source monitoring): 60
    00.
(GEO)  Geographic coverage of data base: National
(LOC)  Data elenents identifying location of station or source include:
    State ;County
(FAC)  Data elenents identifying facility include: N/A
(CDE)  Pollutant identification data are: Saroad parameter
(LIM)  Limitation/variation in data of which user should be aware: None
(ANL)  Lab analysis based on EPA-approved or accepted nethods? YES
(PRE)  Precision: Precision and accuracy estinates are not available
(EOT)  Fditting: Edit procedures used but undocumented.
(CBY)  Data collected by: Contractor Systen Sciences, Inc. ;Other
    federal agency U.S. Census Bureau, Natio Health Statistics,
    National Oceanographic and Atmospheric Administration ; EPA
    headquarters Office of Air Quality Planning and  Standards.


                             825

-------
                             Accession to*   6502000108     (cent)

(ABY)  Data analyzed by: EPA headquarters Office of Air Quality
    Planning and Standards
CIDL)  Laboratory identification: 10
(PR1)  Primary purpose of data collection:  Anticipatory/research
(AUT)  Authorization for data collection: Ho statutory requirement:
    Data collection requirement is    to support air quality health
    effects research.
COMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Fora of available reports and outputs of data bases Publications
    Population at Risk to various Air Pollution    Exposures:  Data
    Base -POPATRISK* (EPA 600/1-78-051) also in National Technical
    Information Service
    Machine-readable ran data
CMOS)  Number of regular users of data base: 5 offices
(OSR)  Current regular users of data base:  EPA headquarter offices
    Office of Research and Development
    EPA laboratories
    Other federal agencies
(CNF)  Confidentiality of data and limits on access: Ho limits on
    access to data
(DLC)  Primary physical location of data: HCC/ONIYAC
(DST)  Form of data storage: Magnetic disc
(DAC)  Type of data access: Commercial software System 2000 ;EPA
    hardware UNIVAC 1100
CCHG)  Direct charge for non-EPA use: no
(OPDT)  Frequency of data base master file up-date: Other data base  no
    longer updated
(CMP)  Completion of form:
    Hilliam Nelson
    OFC: EPA/(ORD)/(OHR)/(H£RL-RTP)/(BD)
    AD: Research Triangle Park/ RC 27711
    PH: 919-541-2330
(DF)  Date of form completion: 01-25-83
(HMAT)  Number of substances represented in data bases 5
(HCAS)  Number of CAS registry numbers in data base: 4
(MAT)  Substances represented in data base:
    carbon monoxide<630-08-0>            sulfur dioxlde<7446-09-5>
    nitrogen dioxlde<10102-44-0>         total suspended particulates
    ozone<10028-15-6>
(CAS)  CAS registry numbers of substances Included in data base: 630-08-
    0; 10102-44-0; 10028-15-6; 7446-09-5
(CHM)  Contact name(s)s Helson/H. ;    Getding,J.
(COR)  Contact organization: Health Effects Research Lab-Research
    Triangle Park
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Health Research.Health Effects Search La
                             826

-------
                             Accession No.   6502000109

(DQ)  Date of Questionaire: 12-02-82
(RAH)  Dane of Data Base of Model:  Genetic  Toxicology Information
    System
(ACR)  Acronym of Data Base or Model: GTDMIS
(MED)  Media/Subject of Data Base or Model: Air ;Mobile source
    emissions ;0ther complex chemical bioassays ;  Other Hot related  to
    specific media:  pure chemicals also tested
(ABS)  Abstract/Overview of Data Base or Model: This data base is
    designed to store data from     genetic toxicology bioassays of
    pollutants including   complex mixtures and pure chenicals. The
    data will    include results fro» Genetic Toxicology Divisions
    (GTD)     research and GTD contractor bioassays.  In addition,
    results of biological tests reported in the literature will be
    included on some chemicals.  Pollutant  parameters   have not,  as
    yet, been defined for inclusion in the  data    base.
(CTC)  COHTACTS: Subject matter   Barry Houard  (919) 541-4689    ;
    Computer-related  Carol
(DTP)  Type of data collection or monitoring: Combination/Other
    laboratory observations
(STA)  Data Base status: Funded for development
(DPO)  Projected operational date of Data  Base: 01-00-82
(NPP)  Bon-pollutant parameters included in the data base: Biological
    data
(DS)  Time period covered by data base: 01-00-80
(TRM)  Termination  of data collection: Mot anticipated
(FRQ)  Frequency of data collection or sampling: as needed
(MOB)  Number of observations  in data base: M/A.(Estimated)
(MEI)  Estimated annual increase of observations in data base: 300.
(INF)  Data  base includes: Raw data/observations *Summary aggregate
     observations ^Reference data/citations
(NTS)  Total number of stations or  sources covered  in  data base: (N/A.)
(MCS)  Mo. stations or sources currently originating/contributing data:

(MOF)  Number of facilities covered in data base (source monitoring): (N

(LOC)  *Data  elements  identifying location  of  station or source include:
     N/A
(FAC)  Data  elements  identifying facility  include:  N/A
(CDE)  Pollutant  identification  data  are:  CAS registry  number
(LIM)  Limitation/variation in data of  which  user should be  auare: None
(DPR)  Data  collect./anal,  procedures  conform to ORD guidelines:  Analysi
     s  method documented ;QA procedures  documented
(AML)  Lab analysis based on  EPA-approved  or  accepted  methods? MO
(AUD)  Lab Audit:  Data  not based on lab analysis.
 (PRE)  Precision:  Precision and accuracy estimates  are not  available
 (EOT)  Editting:  Edit procedures used and  documented.
 (CBT)  Data collected by:  EPA lab  Health Effects Research Lab-Research
     Triangle Park ^Contractor lab  vario
 (ABY)  Data analyzed by:  EPA lab Health Effects Research Lab-Research
     Triangle Park
     Contractor  lab various labs under contract to EPA
 (IDL)   Laboratory Identification:  YES


                              827

-------
                             Accession Ho.   6502000109     (cont)

(PR1)  Priaary purpose of data collection:  refining and- developing
    bioassays
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Fora of available reports and outputs of data base:  Printouts on
    request
(HOS)  Number of regular users of data base: 1 office
(OSR)  Current regular users *f data base:  EPA laboratories
(CRT)  Confidentiality of data and Halts on access: Limits on access
    within EPA and outside agency for soae   data
(DLC)  Priaary physical location of data: HCC/UMIYAC
(DST)  Fora of data storage: Magnetic disc
(DAC)  Type of data access: EPA software Genetic Toxicology Inforaation
    Systea  MIOS:6502800904 ;  EPA hardware UHIVAC 1100
(CHG)  Direct charge for non-EPA use: no outside use/access permitted
(UPDT)  Frequency of data base master file  up-date: Quarterly
(CMP)  Completion of fora:
    Carol Evans
    OFC: EPA/(ORD)/(OHR)/(RERL-RTP)/(BD)
    AD: Research Triangle Park, HC 27711
    PH: (919) 541-2567
(DP)  Date of fora completion: 01-25-83
(CMM)  Contact naae(s): Howard,8. ;    Evans,C.
(COR)  Contact organization: Genetic Toxicology Division
(RQR)  Responsible Organization: Office of  Research and
    Development*Offlee of Health Research.Health Effects Search La
                             828

-------
                             Accession No.   6502000110

(DQ)  Date of Questionaire: 12-02-82
(RAM)  Rame of Data Base of Model:  HUMan Morbidity Costs of Air
    Pollution in St. Louis
(ACR)  Acronym of Data Base or Model: Hone
(MED)  Media/Subject of Data Base or Model:  Air
(ABS)  Abstract/Over view of Data Base or Model: Consists of records for
    approximately 10,000 individuals residing in the urbanized area of
    the St.  Louis Standard Metropolitan Statistical Area (SMSA)     who
    vere administered background and follow-up    questionnaires  during
    overlapping 8 week periods between    June 1978 and July 1979.
    Principal background parameters   concern demographics/ income/
    health insurance/   occupation/ residence/ diet/ exercise/ smoking/
    and    baseline health status.   Principal follow-up parameters
    concern medical problems/ disability, health services  utilization/
    and exposure to ambient pollutants and    meteorological
    conditions.
(CTC)  CORTACTS: Subject matter   Michael D. Koontz  (301) 424-9133
    ;     Computer-related  Michael D. Koontz  (301 424-9133  ;  EPA
    Office  Alan P. Carlin  (202) 382-5754
(DTP)  Type of data collection or monitoring: Ambient data collection
(STA)  Data Base status: Funded for development
(DPO)  Projected operational date of Data Base: 12-00-80
(GRP)  croups of substances represented In Data Base: 7 criteria HAAQS
(IPP)  Ron-pollutant parameters included in the data base: Cost/economic
    data ?Exposure data jHealth effects jLocation j     Population
    demographics ;Temperature ;Bind velocity ;income ;    health
    Insurance ;occupation ;residence ;diet ;exercise ;sacking ;
    baseline health status
(DS)  Time period covered by data base: 06-01-78 TO 07-30-79
(TRM)  Termination of data collection: Occurred 07/30/79
(FRQ)  Frequency of data collection or sampling: one time only
(HOB)  Number of observations in data base: 10000.(Estimated)
(iEI)  Estimated annual increase of observations in data base: (R/A.)
(INF)  Data base includes: Raw data/observations }Summary aggregate
    observations
(RTS)  Total number of stations or sources covered in data base: 25.
(RCS)  Ro. stations or sources currently originating/contributing data:

(HOF)  Number of facilities covered in data base (source monitoring): (R

(GEO) "Geographic coverage of data base: Geographic region St. Louis
    Standard Metropolitan Statistical area
(CDE)  Pollutant identification data are? Uncoded
(LIM)  Limitation/variation in data of which user should be aware: Indiv
    idual  exposures assigned  from  closest local  monitoring data to
    their  hourly locations for major activities   (e.g. residence/
    work,  school) during  an 8 week period;     health effects over the
    same period  are reported by one      respondent  for  each household
    on a biweekly basis.
(DPR)  Data  collect./anal. procedures conform  to ORD  guidelines: Samplin
    g plan documented ^Collection  method documented ;Analysis method
    document  QA  procedures documented


                              829

-------
                             Accession Ho.  6502000110     (cont)

(ANL)  Lab analysis based on EPA-approved or accepted Methods? YES
(ADD)  Lab Audit: Data not based on lab analysis.
CPRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base.
(EOT)  Edittlng: Edit procedures used and documented.
(CBT)  Data collected by: Local agency St. Louis City/County and
    Southwest Illinois  Monitoring stations.  Contractor Geomet
    Technologies, Inc.
(ABY)  Data analyzed by: Mo analysis has been done to date
(IDL)  Laboratory identification: 10
(PR1)  Primary purpose of data collection: Anticipatory/research
(PR2)  Secondary purpose of data collection: Special study
(AOT)  Authorization for data collection: Ho statutory requirement:
    Data collection requirement is    intended to provide estimates of
    economic benefits (fro* reduced morbidity) associated with air
    pollution control strategies.
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    158-R-0158
(REP)  For* of available reports and outputs of data base: Machine-reada
    ble raw data
(HOS)  number of regular users of data base: 0
(USR)  Current regular users of data base: EPA headguarter offices
    Office of Strategies Assessment and Special   Studies/Office of
    Research and Development.
(CMF)  Confidentiality of data and limits on access: Limits on outside
    access for some data
(DLC)  primary physical location of data: Contractor
(DST)  Form of data storage: Magnetic tape
(DAC)  Type of data access: Commercial software any software accepting
    IBM EBCDIC  character coding
(CHG)  Direct charge for non-EPA uses no outside use/access permitted
    as yet
(OPDT)  Frequency of data base master file up-date: Other one time
    study only
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    SAROAD (Storage and Retrieval of Aerometric Data) data used in
    constructing data base.
(CMP)  Completion of form:
    Michael D. Koontz
    OFC: Geomet Technologies, Inc.
    AD: 15 Firstfield Road Galthersburg, NO 20760
    PH: 301-424-9133
(DF)  Date of form completion: 01-25-83
(NMAT)  Number of substances represented in data base: 5
(RCAS)  Mumber of CAS registry numbers in data base: 4
(MAT)  Substances represented in data base:
    carbon mono*ide<630-08-0>            sulfur dloxlde<7446-09-5>
    nitrogen dioxide<10102-44-0>         total suspended partlculates
    ozone<10028-15-6>
(CAS)  CAS registry numbers of substances included in data base: 630-08-
    0; 10102-44-0; 10028-15-6; 7446-09-5
(CHM)  Contact name(s): Koontz,M.D.    ;    Koontz,M.D.    ;


                             830

-------
                             Accession No.  6502000110     (cont)

    Carlin,A.P.                                          !
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Health Research.Health Effects Search La
                             831

-------
                             Accession Ho.   6502000111

5 HESHAPS J7 criteria MAAQS ;3 HID CAA *   18
    radioactive ;noise j!29 307 CMA >41 CMA potential criteria ;   21
    drinking Mater standards ;9 potential drinking water >29 drinking
    water monitoring ;   299 hazardous substances ;48 cancelled
    pesticides ;9 monitoring pesticides >    54 TSCA assessment ;RCRA
    hazardous Hastes ;16 Pre-RPAR
(HPP)  Hon-pollutant parameters included in the data base: Chemical
    data jTest/analysis method                *«.„,, •»« a*
(DS)   Time  period covered  by data base: 01-01-30 TO 11-30-81
(TRM)  Termination of data collection: Hot anticipated
(FRQ)  Frequency of  data collection or sampling: as needed
(HOB)  Humber of observations In data base: (more than
    32000)(Estimated)                                         .,„•«..*
(HEI)  Estimated  annual  increase of observations in data base: (unknown)
(IHF)  Data base includes: Ran  data/observations ;Reference

(UTS)  Total number  of  stations or  sources covered  in  data base:  1000
(HCS)  Ho.  stations  or  sources  currently originating/contributing data:

(HOF)  number  of  facilities covered in data base (source monitoring):  (H

(CEO)  Geographic  coverage of  data base: International             ...
(LOC)  Data elements identifying  location  of  station or source include:
    project identifier
(PAC)  Data elements identifying  facility  include:  H/A
(CDE)   Pollutant  Identification data are:  CAS registry number
(LIM)  Limitation/variation in data of which user  should be anare. This
     library is  accessible  through the Management    information and
    Data systems Division  (MiDSD).   Only a fraction of this data
    originates  in the Health Effects Research Lab-Research Triangle
    Park (HERL-RTP)-none is stored as a data base there.   Data
    originating in  HERL-RTP  is contributed to the Chemical Information
     System (CIS)  in  Washington.


                              832

-------
                             Accession Mo.  6502000111     (cent)

(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base
(EOT)  Editting: No knoun edit procedures exist.
(CBY)  Data collected by: EPA lab Health Effects Research Lab-Research
    Triangle Park /various universities
(ABY)  Data analyzed by: EPA lab Health Effects Research Lab-Research
    Triangle Park
    various universities and research laboratories
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Anticipatory/research
(AUT)  Authorization for data collection: Statutory authorization  Is P
    L 92-516 as amended (Federal Insecticide, Fungicide and Rodenticide
    Act-FIFRA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Fora of available reports and outputs of data base: On-line
    conputer
(HUS)  Number of regular users of data base: 1000 or more
(OSR)  Current regular users of data base: EPA laboratories
    Other federal agencies
    States
(CNF)  Confidentiality of data and Halts on access: Ho Units on
    access to data
(DLC)  Primary physical location of data: Contractor
(DST)  Form of data storage: Magnetic disc
(DAC)  Type of data access: Commercial software Telenet
(CHG)  Direct charge for non-EPA use: yes
(OPDT)  Frequency of data base master file up-date: Other
    unknown-updates done by users
(RSS)  Related EPA automated systems which use data base: Chemical
    Information  System CCIS)
(CMP)  Completion of form:
    Nancy K. Milson
    OFC: EPA/(ORD)/(OHR)/(HERL-RTP)
    AD: Research Triangle Park MC 27711
    PH: (919) 629-2358
(OF)  Date of form completion: 01-25-83
(NMAT)  Number of substances represented  in data base: 769
(NCAS)  Number of CAS registry numbers in data base: 995
(MAT)  Substances represented in data base:
                                          1,1,2,2,-tetrachloroethane
    -0,0-diethyl phosphoricacid,0-p-        <79-34-5>
       nitrophenyl ester<311-45-5>        l,l,2-trichloroethane<79-00-5>
    0,0-diethyl-0-(2-pyrazinyl)           l,l,2-trichloroethene<79-01-6>
       phoshorothloO,0-diethyl-s-(2-      1,1-dichloroethane<75-3 4-3>
       ethylthlo)ethyl)ester of           l,l-dichloroethylene<75-35-4>
       phosphorodlthioicacld              l,l-dimethylhydrazine<57-14-7>
    0,0-diethyl-s-Bethyl ester of phos    l/12-trichloroethene<79-01r6>
       1,1,1,2-tetrachloroethane          l,2,3,4,10,10-hexachloro-l,4,4a,5,
       <630-20-6>                            8* 8a-h«xahydro-l*4:5*8
    Iflf1-trichloroethane<71-55-6>           endo-dimetha


                             833

-------
                          Accession lo.  6502000111
                   (cont)
 l*2*4*-trichlorobenzene 1,2,4,5-
    tetrachlorobenzene<95-94-3>
 l*2-dibro«o-3-chloropropane (dbcp)
    <96-12-8>
 l,2-dibro»oethajie<106-93-4>
 If 2-dlchlorobenzene< 95-50-1>
 1, 2-dichloroethane<107-06-2>
 1* 2-dichloropropane<78-87-5>
 l,2-di«thylhydrazine<1615-80-l>
 If 2-di«ethylhydrazine<540-73-8>
 l,2-diphenylhydrazine<122-66-7>
 l*2~propanediol<57-55-6>
 if 2-tr ans-dlchloroethylene
    <156-60-5>
 1*3,4 trlchlorobenzene<120-82-l>
 If 3-dichlorobenzene<541-73-l>
 1* 3-dichloroprop«ne<542-75-6>
 1^3-dlchloropropylene<542-75-6>
 1^3-Pentadiene<504-60-9>
 1^3-propane sultone<1120-7l-4>
 If 4-dlchloro-2-butene<110-57-6>
 If 4-dlchlorobenzene<106-46-7>
 If4-dioxane<123-91-l>
 1, 4-naphthoquinone<130-15-4>
 1- C o-chlorophenyl) thiourea
    <5344-82-l>
 l-(p-chloroben2oyl)-5-»ethoxy-2-
    •ethylindole-3-acetlc acid
 l-chloro-2, 3»epoxypropane
    <106-89-8>
 1-naphthyl-2-thlour«a<86-88-4>
 1-naph thyl »ine< 134-32-7>
 2^2-dichloropropionlc acid
    <75-99-0>
           tr achlor ophenol<58-90-2>
         aiiines
         esters
 2,4,5-t  salts
 2f 4,5-tp acid esters
 2^4^5-trichlorophenol<95-95-4>
 2,4^5-trichlorophenoxyacetic  acid
    
 2^4^5-trichlorophenoxypropionic
    acid  (TP)<93-72-l>
 2,4^6-trichlorophenol<88-06-2>
 2^4^7^8-tetrachlorodibenzo-p-
   dioxin  (tcdd)
2^4-d acid<94-75-7>
2^4-d esters
2,4-dichloroph«nol<120-83-2>
2^4-dichlorophenoxyacetic acid (2*
   4-dX94-75-7>
 2,4-diaethylphenol<105-67-9>
 2^4-dinitrophenol<51-28-5>
 2^4-dinitrotoluene<121-14-2>
 2, 4-dithiobiur et<541-53-7>
 2,6-dichlorophenol<87-65-0>
 2,6-dinitrotoluene<606-20-2>
 2-acetylaainof lourene
 2-butanone peroxide<1338-23-4>
 2-chloroethyl vinyl ether<110-75-8>
 2-chloronaphthalene<91-58-7>
 2-chlorophenol<95-57-8>
 2-cyclohexy 1- 4, 6-dlnitr ophenol
    <131-89-5>
 2-fluoroacetamide (1081)<640-19-7>
 2-Bethyl-2-(raethylthio)propionalde
    hyde-o-{roethylcarbonyl)oxiae
    <80-62
    -6>
 2-«ethylaziridine<75-55-8>
 2-Bethyllactonitrile<75-86-5>
 2-naphthylaraine<91-59-8>
 2-nitrophenol<88-75-5>
 2-nltropropane<79-46-9>
 2-picoline<109-06-8>
 2-propyn-l-01<107-19-7>
 2-sec butyl-4, 6-dlnitrophenol
    <88-85-7>
 3^3'-dichlorobenzidine<91-94-l>
 3,3 '-dine thoxybenzidine<119-90-4>
 3^3 '-dimethyl-l(methylthlo)-2-
    butanone-0-((methylanino)
   carbonyDoxime
 3^3 •-dira€thylb€nzidine<119-93-7>
 3/4-benzofluoranthene<205-99-2>
 3r 4-dihydroxy- alpha-die thy Ian Ino)-
    methyl  benzyl  alcohol
 3-chloropropionitrile<542-76-7>
 3-»ethylcholanthrene<56-49-5>
 39196-18-4>
4^4'-dde(p,p'-ddx)<72-55-9>
4,4'-ddt<50-29-3>
4/4»-»ethylene-bis-(2-chloroanilin
4^6-dinitro-o-cresol<534-52-l>
4-A«inopyrldlne<504-24-5>
4-bro«ophenyl phenyl ether
   <101-55-3>
4-chloro-o-toluidine hydrochloride
   <3165-93-3>
4-chlorophenyi phenyl ether
   <7005-72-3>
                         834

-------
                         Accession No.  6502000111
                  (cont)
4-nitrophenol<100-02-7>
5-(aninonethyl)-3-isoxazolol
   <2763-96-4>
5-nitro-o-toluidine<99-55-8>
6-a«ino-l,lar2,8,8a,Bb-hexahydro-
   B-thydroxymethyl) 8-methoxy-5-
   •ethyl-caraba
7,12-dinethylbenz(a)ant 7-
   oxabicycol(2. 2.1) heptane-2,3-
   dicarboxylicacid<145-73-3>
acenaphthene<83-32-9>
acenaphthylene<208-96-8>
acetaldehyde<75-07-0>
acetic acid<64-19-7>
acetic anhydride<108-24-7>
acetone cyanohydrin<75-86-5>
acetone<67-64-l>
acetonitrlle<75-05-8>
acetophenone<98-86-2>
acetyl bromlde<506-96-7>
acetyl chloride<75-36-5>
acid *ist
acrolein<107-02-8>
acrylaaide<79-06-l>
acrylic acid<79-10-7>
acrylonitrile<107-13-l>
adipic acid<124-04-9>
alachlor<15972-60-8>
aldrin<309-00-2>
allyl alcohol<107-18-6>
allyl chloride<107-05-l>
alpha,alpha-dimethylbenzylhydro-
   peroxide<80-15-9>
alpha,alpha-dimethylphenethylasine
   <122-09-8>
alpha-chlorotoluene<100-44-7>
aluiinun phosphide<20859-73-8>
aluainun sulfate<10043-01-3>
alu»inu«<7429-90-5>
a*ltraz (baa«)<33089-61-l>
a«itrole<61-82-5>
a««onia<7664-41-7>
aaaonliui acetate<631-61-8>
   onlun benzoate<1863-63-4>
         bicarbonate<1066-33-7>
         bichronate<7789-09-5>
aaaoniua bifluoride<1341-49-7>
auoniun bisulfite<10192-30-0>
aiMoniue carbaiate
aaaoniuB carbonate<506-87-6>
aaaoniun chloride<12125-02-9>
         chromate<7788-98-9>
annoniun citrate<7632-50-0>
amaonlun f luoborate<13826-83-0>
amaonium f luo ride< 121 25-01- 8>
aaaonium hydroxide< 13 36-21- 6>
aowoniuM oxalate<1113-38-8>
aamoniuB picrate<131-74-8>
annoniun sllicofluoride
   <16919-19-0>
annoniun sulf anate<7773-06-0>
annoniun sulf ide<12135-76-l>
annoniun sulf ite<10l96-04-0>
annoniun tartrate<3164-29-2>
annoniun thiocyanate<1762-95-4>
annoniun thiosulfate<7783-18-8>
anyl acetate<628-63-7>
aniline<62-53-3>
anthracene<120-12-7>
antlnony pentachioride<7647-18-9>
antinony potassiun tar tr ate
antinony tribroraide<7789-61-9>
antinony trlchloride<10025-91-9>
antinony trif luoride<7783-56-4>
antinony trioxide<1309-64-4>
antimony<7440-36-0>
araalte<140-57-8>
arsenic acid<1327-52-2>
arsenic disulf ide<1303-32-8>
arsenic pentoxide<1303-28-2>
arsenic trichloride<7784-34-l>
arsenic trioxlde<1327-53-3>
arsenic trisulf ide<1303-33-9>
arsenic<7440-38-2>
asbestos<1332-21-4>
atrazine<1912-24-9>
auraaine<2465-27-2>
azaserine<115-02-6>
banvel-d<1918-00-9>
barlun cyanide<542-62-l>
bariuo<7440-39-3>
benefin<1861-40-l>
benomyl<17804-35-2>
benz ( c) acridine<225-51-4>
benzac
benzal chloride<98-87-3>
benzene<71-43-2>
benzenesulfonyl chloride<98-09-9>
benzene thiol<108-98-5>
benzidine<92-87-5>
benzo(a)anthracene<56-55-3>
benzo(a)pyrene<50-32-8>
benzo(9,h,i)perylene<191-24-2>
                         835

-------
                         Accession Ho.  6502000111
                  (cont)
benzo(k)fluoranthene<207-08-9>
benzole acid<65-85-0>
benzonitrile<100-47-0>
benzotrichloride<98-07-7>
benzoyl chloride<98-88-4>
benzyl chloride<100-44-7>
beryllium chlorlde<7787-47-5>
berylliuv -dust
berylliuB fluorlde<7787-49-7>
berylliuB nitrate<13597-99-4>
berylliuB<7440-41-7>
bhc 
bhc-alpha<319-84-6>
bhc-be ta<3 19-8 5-7>
bhc-delta<319-86-8>
biphenyl<92-52-4>
bis (2-chloroethoxy)Bethane
bis(2-chloroethyl)ether
bis(2-chloroisopropyl) ether
   <39638-32-9>
bis(2-ethylhexyl)phthalate
bis(chloroMthyl)ether<542-68-l>
bisauth co«pounds< 7440-6 9-9>
boron co«pounds<7440-42-8>
bro«ine<7726-95-6>
bro«oacetone<598-31-2>
broBobenzene<108-86-l>
broBOchlorobenzene<28906-38-9>
bro»odichloro«ethane<75-27-4>
bro»o«ethane<74-83-9>
brucine<357-57-3>
bu t ach lor< 231 84-66 -9>
butyl acetate<123-86-4>
butyl benzyl phthalate<85-68-7>
butyla«lne<109-73-9>
butyric ac Id <1 07-92- 6>
cacodylic acid and salts<75-60-5>
cadBiua acetate<543-90-8>
cadBlua bro«ide<7789-42-6>
cadaiuB chloride
cadBlu«<7440-43-9>
calciUB arsenate<7778-44-l>
calciuB arsenite<52740-16-6>
calciu* carbide<75-20-7>
calciuB chroBate
calciuB cyanide<592-01-8>
calcium dodecylbenzenesulfonate
   <26264-06-2>
calciuB hydroxide<1305-62-0>
calclUB hypochlorite<7778-54-3>
        oxide<1305-78-8>
captan<133-06-2>
carbaryl<63-25-2>
carbofuran<1563-66-2>
carbon disulfide<75-15-0>
carbon Bonoxlde<630-08-0>
carbon tetrachlorlde<56-23-5>
carbony1 fluoride<353-50-4>
chloral<75-87-6>
chloraBbucll<305-03-3>
chlor anil<118-75-2>
chlordane<57-74-9>
chlorinated naphthalenes
chlorlne<7782-50-5>
chloroac«taldehyde<107-20-0>
chlorobenzene<108-90-7>
chlorobenzilate<510-15-6>
chlorodibroBoaethane<124-48-l>
chloroethane<75-00-3>
chloroethene<75-01-4>
chloroethyl vinyl ether<110-75-8>
chlorofluorocarbons
chlorofor«<67-66-3>
chloro»ethane<74-87-3>
chloroaethyl Methyl ether
   <107-30-2>
chloroprene<126-99-8>
chlorosulfonlc acid<7790-94-5>
chlorpyrlfos<2921-88-2>
chroaic acetate<1066-30-4>
chroBic acid<7738-94-5>
chroBic sulfate<10101-53-8>
chroBiuB<7440-47-3>
chroaous chlorlde<10049-05-5>
chrysene<218-01-9>
cls-l,2-dlchloroethylene<156-59-2>
coal tar<8007-45-2>
cobalt<7440-48-4>
cobaltous bro«ide<7789-43-7>
cobaltous for«ate<544-18-3>
cobaltous sulfaaate
copper cyanlde<544-92-3>
copper<7440-50-8>
couBaphos<56-72-4>
creosote<8021-39-4>
cresol<1319-77-3>
cresylic acid<1319-77-3>
crotonaldehyde<4170-30-3>
cuB«ne<98-82-8>
cupric acetate<142-71-2>
cuprlc ac«toars«nite<12002-03-8>
cupric chlorlde<7447-39-4>
                         836

-------
                          Accession Ho.  6502000111
                   (cont)
 cupric nitrate<3251-23-8>
 cupric oxalate<814-91-5>
 cupric sulfate airaoniated
    <10380-29-7>
 cupric sulfate<7758-98-7>
 cupric tartrate<815-82-7>
 cyanazine<21725-46-2>
 cyanide<57-12-5>
 cyanogen bro«ide<506-68-3>
 cyanogen chloride<506-77-4>
 cy a noge n< 460 -19- 5>
 cyclohexan«KllO-82-7>
 cyclohexanon«Kl08-94-l>
 cyclophosphaaide<50-18-0>
 dauno«ycin<20830-81-3>
 ddd(tde)
 ddt
 deneton<8065-48-3>
 di-isopropylfluorophosphate
    <55-91-4>
 di-n-butyl phthalate<84-74-2>
 dl-n-octyl phthalate<117-84-0>
 dl-n-propylnitrosanine<621-64-7>
 dialkyl  ethers
 dialkyl  phosphates
 diallate<2303-16-4>
 diazinon<333-41-5>
 dibenzo( a, h)anthracene<53-70-3>
 dibenzofuran<132-64-9>
 dibenzol(a,i)pyrene
 dibroMOchlor oaethane<124-48-l>
 dibro«oaethane<74-95-3>
 dibutyl  phthalate<84-74-2>
 dicanba<1918-00-9>
 dichlobenl1<1194-6 5-6>
 dichlone<117-80-6>
 dichlorobenzene<25321-22-6>
 dichlorobroMonethane<75-27-4>
 dlchlorodifluoro«ethane<75-71-8>
 dichloroiodo«ethane<594-04-7>
 dichloro»ethane<75-09-2>
 dichlorophenylarsine<696-28-6>
dlchloropropane<26638-19-7>
 dichloropropene-dichloropropane
   •Ixture
dlchloropropene<26952-23-8>
dichlorvos (ddvp)<62-73-7>
dleldrin<60-57-l>
diepoxybutane<1464-53-5>
diethyl phthalate<84-66-2>
diethyla»in€<109-89-7>
diethylarsine
 dlethylstilbestrol<56-53-l>
 dihydrosafrole<94-58-6>
 diaethoate<60-51-5>
 diaethyl phthalate<131-ll-3>
 dlaethyl sulfate<77-78-l>
 di«ethylamine<124-40-3>
 diaethylcarbaaoyl chloride
    <79-44-7>
 dime thy lnitrosamine<62-75-9>
 dlnitrobenzene<25154-54-5>
 dlnitrophenol
 dinltrotoluene<25321-14-6>
 dioxane<123-91-l>
 dioxin<828-00-2>
 dlphenyl ether
 diphenylhydrazine<38622-18-3>
 dipropylaaine<142-84-7>
 diquat<2764-72-9>
 disulfoton<298-04-4>
 dluron<330-54-l>
 dodecylbenzenesulfonic  acid
    <27176-87-0>
 ebdc's  (ethylenebisdithlocarbaaate
    s)
 edta<60-00-4>
 endosulfan  sulfate<1031-07-8>
 endosulfan-alpha<959-98-8>
 endosulfan-beta<33213-65-9>
 endosulfan
 endrin  aldehyde<7421-93-4>
 endrin<72-20-8>
 epichlorohydrin<106-89-8>
 epn (ethyl-p-nitrophenyl  thionoben
    zenephosonate)<2104-64-5>
 erbon<136-25-4>
 ethioiK563-12-2>
 ethyl acetate<141-78-6>
 ethyl acrylate<140-88-5>
 ethyl chloride<75-00-3>
 ethyl ether<60-29-7>
 ethyl nethacrylate<97-63-2>
 ethyl «ethanesulfonate<62-50-0>
 ethyl parathion<56-38-2>
 ethylbenzene<100-41-4>
ethylcyanlde<107-12-0>
ethylene bisdithiocarbaaate
 ethylene dibroaide (edb)<106-93-4>
ethylene dichloride<107-06-2>
ethylene oxide<75-21-8>
ethylene thiourea<96-45-7>
ethylenedlaaine<107*15-3>
ethylenelalne<151-56-4>
                         837

-------
                          Accession Ho.  6502000111
                  (cont)
 ferric araoniui citrate<1185-57-5>
 ferric amoniu* oxalate
    <14221-47-7>
 ferric chloride<7705-08-0>
 ferric cyanide
 ferric fluoride<7783-50-8>
 ferric nitrate<10421-48-4>
 ferric sulfate<10028-22-5>
 ferrous aMonlra sulfate
    <10045-89-3>
 ferrous chloride<7758-94-3>
 ferrous suifate<7720-78-7>
 fluoranthene<206-44-0>
 fluorene<86-73-7>
 fluorides
 fluorine<7782-41-4>
 fluoroacetic acid,  sodlua salt
 fluorotrichloro«ethane<75-69-4>
 for»aldehyde<50-00-0>
 foralc aci
 fuaarlc acld<110-17-8>
 furan<110-00-9>
 furfural<98-01-l>
 glycidylaldehyde
 gross alpha
 guthion<86-50-0>
 heptachlor  epoxide<1024-57-3>
 heptachlor<76-44-8>
 hexachlorobenzene<118-74-l>
 hexachlorobutadiene<87-68-3>
 he xach loro cy cl ohexane< 58-89-9>
 hexach lorocyclopentadlene<77-47-4>
 hexachloroethane<67-72-l>
 hexachlorophene<70-30-4>
 hexachloropropene<1888-7l-7>
 hexaethyl tetraphosphate<757-58-4>
 hydrazine<302-01-2>
 hydrocarbons
 hydrochloric acid<7647-01-0>
 hydrocyanic acid<74-90-8>
 hydrofluoric acld<7§64-39-3>
 hydrogen cyanide<74-90-8>
 hydrogen sulflde<7783-06-4>
 hydroxydiaethyl  arsine  oxide
   <75-60-5>
 indeno  (l,2r3-cd)pyrene<193-39-5>
lodooe thanc<74-88-4>
iron and co«pounds<7439-89-6>
iron dextran<9004-66-4>
isobutyl  alcohol<78-83-l>
isocyanic acid,  Methyl  ester
   <624-83-9>
 isophorone<78-59-l>
 lsoprene<78-79-5>
 isopropanolaalne dodecylbenzene
   sulfonate<54590-52-2>
 lsosafrole<120-58-l>
 kelthane
 kepone<143-50-0>
 1asiocarpine<303-34-4>
 lead ac«tate<301-04-2>
 lead arsenate<3687-31-8>
 lead chlorlde<7758-95-4>
 lead fluoride<7783-46-2>
 lead fluoroborate<13814-96-S>
 lead lodide<10101-63-0>
 lead nltrate<10099-74-8>
 lead phosphate<7446-27-7>
 lead st«arate<1072-35-l>
 lead subacetate<1335-32-6>
 lead sulfate<7446-14-2>
 lead sul£ide<1314-87-0>
 lead thlocyanate<592-87-0>
 lead<7439-92-l>
 llndan«<58-89-9>
 llthiui and co«pounds<7439-93-2>
 lithluB chro«ate
«-cresol<108-39-4>
•-xy1ene<10 8-3 6-3>
•alathion<121-75-5>
•aleic acid<110-16-7>
•aleic anhydrlde
•aleic hydrazide<123-33-l>
•alononitrile<109-77-3>
•anganese<7439-96-5>
•anaade beta
•ate
•«lphalan<148-82-3>
•ercaptodlB«thur<2032-65-7>
•ercurlc cyanlde<592-04-l>
•ercuric nitrate<10045-94-0>
•ercuric sulfate<7783-35-9>
•ercuric thiocyanate<592-85-8>
•ercurous nitrat«<10415-75-5>
•ercury ful»inate<628-86-4>
•ercury<7439-97-6>
•ethanearsonates
•ethanethiol<74-93-l>
•ethanol<67-56-l>
•ethapyrllene<91-80-5>
•«tho«yl<167$2-77-5>
•ethoxychlor<72-43-5>
•ethyacrylonltrll«<126-98-7>
•ethyl chlorocarbonate<79-22-l>
                         838

-------
                          Accession Ho.   6502000111
                   (cont)
 •ethyl chlorofora<71-55-6>
 methyl ethyl ketone (mek)<78-93-3>
 methyl ethyl ketone peroxide
    <1338-23-4>
 methyl hydrazine<60-34-4>
 methyl iodide<74-88-4>
 methyl Isobutyl  ketone<108-10-l>
 methyl mercaptan<74-93-l>
 methyl methacrylate<80-62-6>
 methyl parathion<298-00-0>
 methylthiouracil<56-04-2>
 mevi nphos<77 86-3 4-7>
 mexacarbate< 315-18-4>
 microbiology coliform bacteria
 mirex<2385-85-5>
 molybdenun and compounds
    <7439-98-7>
 Bonoethyla*ine<75-04-7>
 monoeethy1anine< 74-89-5>
 monuron<150-68-5>
 n, n-bis(2-chloroethyl)-2-naphthyla
    mine<494-03-l>
 n-alkanes clO-c30
 n-butyl alcohol<71-36-3>
 n-butyl phthalate<84-74-2>
 n-aethyl-n*-nitro-n-nitrosoguanidi
    ne<70-25-7>
 n-nitroso-n-ethylurea<759-73-9>
 n-ni troso-n-ae thy lurea<684-93-5>
 n-nitroso-n-*ethylurethane
    <615-53-2>
 n-nltrosodi-n-butylamlne<924-16-3>
 n-nitrosodi-n-propylam ine
    <621-64-7>
 n-nitrosodiethanola«ine<1116-54-7>
 n-nltrosodlethyla«ine<55-18-5>
 n-nitrosodimethylamine<62-75-9>
 n-ni trosodiphenylamine<86-30-6>
 n-nitrosomethylvinylamine
 n-nitrosopiperidine<100-75-4>
 n-nltrosopyrrolidine<930-55-2>
 n-phenylthiourea<103-85-5>
 n-propylanine<107-10-8>
 naled<300-76-5>
 naphthalene<91-20-3>
 naphthenic acid<1338-24-5>
 nickel amonium  sulfate<7785-20-8>
 nickel carbonyl<12612-55-4>
 nickel chloride<7718-54-9>
nickel cyanide<557-19-7>
nickel hydroxide<12054-48-7>
nickel nitrate<13138-45-9>
 nickel sulfate<7786-81-4>
 nickel<7440-02-0>
 nicotine and salts<54-ll-5>
 nitralin<4726-14-l>
 nitrate<14797-55-8>
 nitrates/nitrites
 nitric acid<7697-37-2>
 nitric oxide<10102-43-9>
 nitriloacetates
 nitrobenzene<98-95-3>
 nitrogen dioxide<10102-44-0>
 nitrogen peroxide<10102-44-0>
 nitrogen tetroxide<10544-72-6>
 nitroglycerine<55-63-0>
 nitrophenol<25154-55-6>
 nltrosoaethylurea<684-93-5>
 nitrosoaorpholine<59-89-2>
 nltrotoluene
 nonaphthalene
 o-cresol<95-48-7>
 o-methoxyphenol<90-05-l>
 o-toluidine  hydrochloride
   <636-21-5>
 o-xylene<95-47-6>
 octaaethylpyrophosphoraaide (OMPA)
   <152-16-9>
 oil and  grease
 oleyl  alcohol condensed with 2
   aoles ethylene oxide
 osmiua tetroxide<20816-12-0>
 ozone<10028-15-6>
 p-chloro-a-cresol<59-50-7>
 p-chloroaniline<106-47-8>
 p-cresol<106-44-5>
 p-dichlorobenzene<106-46-7>
 p-diaethyla»inoazobenzene<60-ll-7>
 p-nltroanillne<100-01-6>
 p-xylen
 paraforaaldehyde<30525-89-4>
 paraldehyde<123-63-7>
 paraquat<4685-14-7>
 parathion<56-38-2>
 pcb-1016  (arochlor 1016)
   <12674-ll-2>
 pcb-1221  (arochlor 1221)
   <11104-28-2>
 pcb-1232  (arochlor 1232)
pcb-1242 (arochlor 1242)
   <53469-21-9>
pcb-1248 (arochlor 1248)
   <12672-29-6>
                         639

-------
                         Accession No.  6502000111
                  (cont)
pcb-1254  (arochlor 1254}
   <11097-69-l>
pcb-1260  (arochlor 1260)
   <11096-82-5>
pentachlorobenzene<608-93-5>
pentachloroethane<76-01-7>
pentachloronitrobenzene (PCIB)
   <82-68-8>
pentachlorophenol<87-86-5>
perchloroethyl«ne<127-18-4>
perthane<72-56-0>
phenac«tin<62-44-2>
phenanthrene<85-01-8>
phenarsazine chloride<578-94-9>
phenol<108-95-2>
phenyl  diehloroarsine<696-28-6>
ph«nylacetic acid<103-82-2>
phenylmercury  acetate<62-38-4>
phorate 298-0202
phorate<298-02-2>
phosgene<75-44-5>
phosophorothioic acid,o,o-
   dimethyl ester,o-ester yith nf
   n-dimethylbenzene
phosphine<7803-51-2>
phosphoric acid<7664-38-2>
phosphorus and compounds
   
phosphorus o*ychloride<10025-87-3>
phosphorus pentasulfide<1314-80-3>
phosphorus sulfide<1314-80-3>
phosphorus trichloride<7719-12-2>
phosphorus<7723-14-0>
photon  emitters
phthallc  acid<88-99-3>
phthallc  anhydrlde<85-44-9>
piperonyl butoxide<51-03-6>
polybroainated blphonyls (PBBs)
polychlorinated bipnenyls CPCBs)
potasslua arsenate<7784-41-0>
potassiu* arsenite<10124-50-2>
potassluM bichro«ate<7778-50-9>
potasslui chro»ate<7789-00-6>
potassiua cyanlde<151-50-8>
potassiu* hydroxide<1310-58-3>
potassiUM per«anganate<7722-64-7>
potassiUM silver cyanide<506-61-6>
prona«ide<23950-58-5>
pr opachlor
propanlKl 09-98-8>
propar glte<2312-35-8>
proplonic acid<79-09-4>
propionic anhydride<123-62-6>
propionltrile<107-12-0>
proplyene oxide<75-56-9>
propoxur<114-26-l>
propylene oxide<75-56-9>
pyrene<129-00-0>
pyrethrin<121-29-9>
pyridine
qulnoline<91-22-5>
quinones
radiua 226<13982-63-3>
radiun 228<15262-20-1>
radon<10043-92-2>
reserpine<50-55-5>
resorcinol<108-46-3>
ronneK 299-84-3>
rotenone<83-79-4>
s/s^s-tributyl phosphorotrithloate
   <78-48-8>
saccharin<81-07-2>
8afrole<94-59-7>
secondary aaines
selenious acid<7783-00-8>
seleniua oxide<12640-89-0>
seleniu* sulfide<7446-34-6>
seleniu«<7782-49-2>
selenourea<630-10-4>
silver cyanlde<506-64-9>
silver nitrate<7761-88-8>
sll»er<7440-22-4>
silvex<93-72-l>
sUazlne<122-34-9>
sodlue and co«pounds<7440-23-5>
sodlui arsenate<7631-89-2>
sodiiM arsenite<7784-46-5>
sodium azide<26628-22-8>
sodium bichro«ate<10588-01-9>
sodiua blfluoride<1333-83-l>
sodiu* bisulfite<7631-90-5>
sodium chro«ate<7775-ll-3>
sodium cyanide<143-33-9>
sodium dodecylbenzenesulfonate
   <25155-30-0>
sodium fluoride<7681-49-4>
sodium fluoroacetate (1080)
   <62-74-8>
sodium hydrosulfide<16721-80-5>
sodium hydroxide<1310-73-2>
sodium hypochlorite<7681-52-9>
sodium methylate<124-41-4>
sodium nitrite<7632-00-0>
                         840

-------
                         Accession No.  6502000111
                  (cont)
sodiua phosphate, dibasic
   <7558-79-4>
sodiua phosphate, tribasic
   <7601-54-9>
sodiUB selenite<10102-18-8>
sodiUB<7440-23-5>
streptozotocin
strobane<8001-50-l>
strontium chroaate<7789-06-2>
strontium sulfide<13l4-96-l>
strychine<57-24-9>
strychnine<57-24-9>
styrene<100-42-5>
sulfates
sulfides
sulfonaaide
sulfur dioxide<7446-09-5>
sulfur Bonochloride<10025-67-9>
sulfuric acid<7664-93-9>
tde<72-54-8>
terpenes
tetrachloroethene<127-18-4>
tetrachloroethylene<127-!8-4>
tetrachloroaethane<56-23-5>
tetraethyl dithiopyrophosphate
   <3689-24-5>
tetraethyl lead<78-00-2>
tetraethyl pyrophosphate<107-49-3>
tetrahydofuran<109-99-9>
tetranltro«ethane< 509-14-8>
thallic oxide<1314-32-5>
thalliua acetate<563-68-8>
thalliua carbonate<29809-42-5>
thai HUB chloride<7791-12-0>
thallium nitrate<10102-45-l>
thalliua selenite
thalliua sulfate<7446-18-6>
thallium<7440-28-0>
thioaceta«ide<62-55-5>
thiophanate •ethyl<23564-05-8>
thiosenicarbazide<79-19-6>
thiourea<62-56-6>
thiura»<137-26-8>
toluene diisocyanate<26471-62-5>
toluene<108-88-3>
toluen«dia«ine<25376-45-8>
total reduced sulphur
total suspended particulates
toxaphene<8001 -35-2>
triallate<2303-17-5>
tribro«omethane<75-25-2>
tr ichl or f on< 52*6 8-6>
trichloroethane<25323-89-l>
trichloroethene<79-01-6>
trichloroethylene<79-01-6>
trichlorofluoro«ethane<75-69-4>
trichloro«ethanethiol<75-70-7>
trichiorophenol (TCP)<25167-82-2>
triethanolaaine dodecylbenzenesulf
   onate<27323-41-7>
triethylaaine<121-44-8>
trifluraline (tref lan)<1582-09-8>
tri«ethyla«lne<75-50-3>
trinitrobenzene<99-35-4>
tris(2,3-dibroBopropyl)phosphate
   <126-72-7>
trypan blue<72-57-l>
trysben<50-31-7>
turbidity
uracil •ustard<66-75-l>
uraniu«<7 440- 61-1 >
uranyl acetate<541-09-3>
uranyl nitrate<10102-06-4>
urethane<51-79-6>
vanadic acid, amoniua salt
vanadiun pentoxidc<13l4-62-l>
vanadiun<7440-62-2>
vanadyl sulfate<27774-13-6>
vinyl acetate<108-05-4>
¥inyl chloride<75-01-4>
vinylldene chloridc<75-35-4>
xylene<1330-20-7>
xylenol<1300-71-6>
zinc acetate<557-34-6>
zinc aiaoniua chloride
zinc borate<1332-07-6>
zinc br OB ide< 7699-45- 8>
zinc carbonate<3486-35-9>
zinc chloride<7646-85-7>
zinc cyanide
zinc fluoride<7783-49-5>
zinc forBate<557-41-5>
zinc hydrosulf ite<7779-86-4>
zinc nitrate<7779-88-6>
zinc phenol sulfonate<127-82-2>
zinc phosphide<1314-84-7>
zinc silicofluoride<16871-71-9>
zinc sulfate<7733-02-0>
zinc<7440-66-6>
zirconiua nitrate<13746-89-9>
zirconiuB potassiua fluoride
   <16923-95-8>
zirconiuB sulfate<14644-61-2>
                         841

-------
                             Accession Ho.  6502000111     (cont)

    zirconIUH tetrachlorlde
       <10026-ll-6>
(CAS)  CAS registry lumbers of substances included in data base: 311-45-
    5; 630-20-6; 71-55-6; 79-34-5;    79-00-5; 79-01-6; 75-34-3;
    75-35-4; 57-14-7; 79-01-6; 95-94-3;   96-12-8; 106-93-4; 95-50-1;
    107-06-2; 78-87-5; 1615-80-1; 540-73-8;   122-66-7; 57*55-6;
    156-60-5; 120-82-1; 541-73-1; 542-75-6; 542-75-6;       504-60-9;
    1120-71-4; 110-57-6; 106-46-7; 123-91-1; 130-15-4;     5344-82-1;
    106-89-8; 86-88-4; 134-32-7; 75-99-0; 58-90-2; 95-95-4;    93-76-5;
    93-72-1; 88-06-2; 94-75-7; 120-83-2; 94-75-7; 105-67-9;
    51-28-5; 121-14-2; 541-53-7; 87-65-0; 606-20-2; 1338-23-4;
    110-75-8;       91-58-7; 95-57-8; 131-89-5; 640-19-7; 80-62-6;
    75-55-8; 75-86-5;      91-59-8; 88-75-5; 79-46-9; 109-06-8;
    107-19-7; 88-85-7; 91-94-1;      119-90-4; 119-93-7; 205-99-2;
    542-76-7; 56-49-5; 72-55-9; 50-29-3;    101-14-4; 534-52-1;
    504-24-5; 101-55-3; 3165-93-3; 7005-72-3;    100-02-7; 2763-96-4;
    99-55-8; 145-73-3; 83-32-9; 208-96-8; 75-07-0;   64-19-7; 108-24-7;
    75-86-5; 67-64-1; 75-05-8; 98-86-2; 506-96-7;      75-36-5;
    107-02-8; 79-06-1; 79-10-7; 107-13-1; 124-04-9; 15972-60-8;
    309-00-2; 107-18-6; 107-05-1; 80-15-9; 122-09-8; 100-44-7;
    20859-73-8; 10043-01*3; 7429-90-5; 33089-61-1; 61-82-5; 7664-41-7;
    631-61-8; 1863-63-4; 1066-33-7; 7789-09-5; 1341-49-7; 10192-30-0;
    1111-78-0; 506-87-6; 12125-02-9; 7788-98-9; 7632-50-0; 13826-83-0;
    12125-01-8; 1336-21-6; 1113-38-8; 131-74-8; 16919-19-0; 7773-06-0;
    12135-76-1; 10196-04-0; 3164-29-2; 1762-95-4; 7783-18-8; 628-63-7;
    62-53-3; 120-12-7; 7647-18-9; 11071-15-1; 7789-61-9; 10025-91-9;
    7783-56-4; 1309-64-4; 7440-36-0; 140-57*8; 1327-52-2; 1303-32-8;
    1303-28-2; 7784-34-1* 1327-53-3; 1303-33-9; 7440-38-2; 1332-21-4;
    1912-24-9; 2465-27-2; 115-02-6; 1918-00-9; 542-62-1; 7440-39-3;
    1861-40-1; 17804-35-2; 225-51-4; 98-87-3; 71-43-2; 98-09-9;
    108-98-5;      92-87-5; 56-55-3; 50-32-8; 191-24-2; 207-08-9;
    65-85-0; 100-47-0;     98-07-7; 98-88-4; 100-44-7; 7787-47-5;
    7787-49-7; 13597-99-4;    7440-41-7; 58-89-9; 319-84-6; 319-85-7;
    319-86-8; 92-52-4; 111-91-1;       111-44-4; 39638-32-9; 117-81-7;
    542-88-1; 7440-69-9; 7440-42-8;       7726-95-6; 598-31-2;
    108-86-1; 28906-38-9; 75-27-4; 74-83-9;     357-57-3; 23184-66-9;
    123-86-4; 85-68-7; 109-73-9; 107-92-6; 75-60-5;      543-90-8;
    7789-42-6; 7440-43-9; 7778-44-1; 52740-16-6; 75-20-7;
    13765-19-0; 592-01-8; 26264-06-2; 1305-62-0; 7778-54-3; 1305-78-8;
    133-06-2; 63-25-2; 1563-66-2; 75-15-0; 630-08-0; 56-23-5; 353-50-4;
    75-87-6; 305-03-3; 118-75-2; 57-74-9; 7782-50-5; 107-20-0;
    108-90-7;       510-15-6; 124-48-1; 75-00-3; 75-01-4; liO-75-8;
    67*66-3; 74-87*3;     107*30-2; 126-99-8; 7790-94-5; 2921-88-2;
    1066-30-4; 7738-94-5;       10101-53-8; 7440-47-3; 10049-05-5;
    218-01-9; 156-59-2; 8007-45-2;     7440-48-4; 7789-43-7; 544-18-3;
    544-92-3; 7440-50-8; 56-72-4;    8021-39-4; 1319-77-3; 1319-77-3;
    4170-30-3; 98-82-8; 142-71-2;   12002-03-8; 7447-39-4; 3251*23-8;
    814-91-5; 10380-29-7; 7758-98-7;    815-82-7; 21725-46-2; 57-12-5;
    506-68-3; 506-77-4; 460-19-5;     110-82-71 108-94-1; 50-18-0;
    20830-81-3;  8065-48-3; 55-91-4; 84-74-2;      117-84-0; 621-64-7;
    2303-16-4; 333-41-5; 53-70-3; 132-64-9; 189^55-9;      124-48-1;
    74-95-3;  84-74-2; 1918-00-9; 1194-65-6; 117-80-6;      25321*22-6;


                             842

-------
                         Accession Mo.  6502000111     (cont)

75-27-4; 75-71-8; 594-04-7; 75-09-2; 696-28-6;       26638-19-7;
26952-23-8; 62-73-7; 60-57-1; 1464-53-5; 84-66-2;    109-89-7;
56-53-1; 94-58-6; 60-51-5; 131-11-3; 77-78-1; 124-40-3;
79-44-7; 62-75-9; 25154-54-5; 25321-14-6; 123-91-1; 828-00-2;
38622-18-3; 142-84-7; 2764-72-9; 298-04-4; 330-54-1; 27176-87-0;
60-00-4; 1031-07-8; 959-98-8; 33213-65-9; 115-29-7; 7421-93-4;
72-20-8; 106-89-8; 2104-64-5; 136-25-4; 563-12-2; 141-78-6;
140-88-5;      75-00-3; 60-29-7; 97-63-2; 62-50-0; 56-38-2;
100-41-4; 107-12-0;      106-93-4; 107-06-2; 75-21-8; 96-45-7;
107-15-3; 151-56-4; 1185-57-5;       14221-47-7; 7705-08-0;
7783-50-8; 10421-48-4; 10028-22-5; 10045-89-3;      7758-94-3;
7720-78-7; 206-44-0; 86-73-7; 7782-41-4; 75-69-4; 50-00-0;
64-18-6; 110-17-8; 110-00-9; 98-01-1; 86-50-0; 1024-57-3; 76-44-8;
118-74-1; 87-68-3; 58-89-9; 77-47-4; 67*72-1; 70-30-4; 1888-71-7;
757-58-4; 302-01^2; 7647-01-0; 74-90-8; 7664-39-3; 74-90-8;
7783-06-4; 75-60-5; 193-39-5; 74-88-4; 7439-89-6; 9004-66-4;
78-83-1;      624-83-9; 78-59-1; 78-79-5; 54590-52-2; 120-58-1;
115-32-2; 143-50-0;      303-34-4; 301-04-2; 3687-31-8; 7758-95-4;
7783-46-2; 13814-96-5;      10101-63-0; 10099-74-8; 7446-27-7;
1072-35-1; 1335-32-6; 7446-14-2;   1314-87-0; 592-87-0; 7439-92-1;
58-89-9; 7439-93-2; 14307-35-8;       108-39-4;  108-38-3; 121-75-5;
110-16-7; 108-31-6; 123-33-1; 109-77-3;      7439-96-5; 148-82-3;
2032-65-7; 592-04-1; 10045-94-0; 7783-35-9;      592-85-8;
10415-75-5; 628-86-4; 7439-97*6; 74-93-1; 67-56-1; 91-80-5;
16752-77-5; 72-43-5; 126-98-7; 79-22-1; 71-55-6; 78-93-3;
1338-23-4;        60-34-4; 74-88-4; 108-10-1; 74-93-1; 80-62-6;
298-00-0; 56-04-2;      7786-34-7; 315-18-4; 2385-85-5; 7439-98-7;
75-04-7; 74-89-5;     150-68-5; 494-03-1; 71-36-3; 84-74-2;
70-25-7; 759-73-9; 684-93-5;    615-53-2; 924-16-3; 621-64-7;
1116-54-7; 55-18-5; 62-75-9; 86-30-6;   100-75-4; 930-55-2;
103-85-5; 107-10-8; 300-76-5; 91-20-3; 1338-24-5;      7785-20-8;
12612-55-4; 7718-54-9; 557-19-7; 12054-48-7; 13138-45-9;
7786-81-4; 7440-02-0; 54-11-5; 4726-14-1; 14797-55-8; 7697-37-2;
10102-43-9; 98-95-3; 10102-44-0; 10102-44-0; 10544-72-6; 55-63-0;
25154-55-6; 684-93-5; 59-89-2; 95-48-7; 90-05-1; 636-21-5; 95-47-6;
152-16-9; 20816-12-0; 10028-15-6;  59-50-7; 106-47-8; 106-44-5;
106-46-7; 60-11-7; 100-01-6; 106-42-3; 30525-89-4; 123-63-7;
4685-14-7; 56-38-2; 12674-11-2; 11104-28-2;  11141-16-5; 53469-21-9;
12672-29-6; 11097-69-1; 11096-82-5;  608-93-5; 76-01-7; 82-68-8;
87.86-5; 127-18-4; 72-56-0; 62-44-2;  85-01-8; 578-94-9; 108-95-2;
696-28-6; 103-S2-2; 62-38-4; 298-02-2; 75-44-5;  7803-51-2;
7664-38-2;       7723-14-0; 10025-87-3; 1314-80-3; 1314-80-3;
7719-12-2; 7723-14-0;    88-99-3;  85-44-9; 51-03-6; 7784-41-0;
10124-50-2; 7778-50-9;     7789^00-6; 151-50-8;  1310-58-3;
7722-64-7; 506-61-6; 23950-58-5;      1918-16-7; 109-98-8;
2312-35-8; 79-09-4; 123-62-6; 107-12-0; 75-56-9;     114-26-1;
75-56-9;  129-00-0; 121-29-9; 110-86-1; 91-22-5;  13982-63-3;
15262-20-1; 10043-92-2; 50-55-5; 108-46-3; 299-84-3; 83-79-4;
78-48-8; 81-07-2; 94-59-7; 7783-00-8; 12640-89-0; 7446-34-6;
7782-49-2; 630-10-4; 506-64-9; 7761-88-8; 7440-22-4; 93-72-1;
122-34-9; 7440-23-5; 7631-89-2; 7784-46-5; 26628-22-8; 10588-01-9;
1333-83-1; 7631-90-5;  7775-11-3; 143-33-9; 25155-30-0; 7681-49-4;


                         843

-------
                             Accession Ho.  6502000111     Ccont)

    62-74-8; 16721-80-5; 1310-73-2; 7681-52-9; 124-41-4; 7632-00-0;
    7558-79-4; 7601-54-9; 10102-18-8; 7440-23-5; 8001-50-1; 7789-06-2;
    1314-96-1; 57-24-9; 57-24-9; 100-42-5; 7446-09-5; 10025-67*9;
    7664-93-9; 72-54-8; 127-18-4; 127-18-4; 56-23-5; 3689-24-5;
    78-00-2;       107-49-3; 109-99-9; 509-14-8; 1314-32-5; 563-68-8;
    29809-42-5;   7791-12-0; 10102-45-1; 7446-18-6; 7440-28-0; 62-55-5;
    23564-05-8;     79-19-6; 62-56-6; 137-26-8; 26471-62-5; 108-88-3;
    25376-45-8;    8001-35-2; 2303-17-5; 75-25-2; 52-68-6; 25323-89-1;
    79-01-6; 79-01-6;      75-69-4; 75-70-7; 25167-82-2; 27323-41-7;
    121-44-8; 1582-09-8;   75-50-3; 99-35-4; 126-72-7; 72-57-1;
    50-31-7; 66-75-1; 7440-61-1;     541-09-3; 10102-06-4; 51-79-6;
    11115-67-6; 1314-62-1; 7440-62-2;      27774-13-6; 108-05-4;
    75-01-4; 75-35-4; 1330-20-7; 1300-71-6;    557-34-6; 1332-07-6;
    7699-45-8; 3486-35-9; 7646-85-7; 7783-49-5;      557-41-5;
    7779-86-4; 7779-88-6; 127-82-2; 1314-84-7; 16871-71-9;
    7733-02-0; 7440-66-6; 13746-89-9; 16923-95-8; 14644-61-2;
    10026-11-6
(CRN)  Contact naae(s): Heller,S. ;    Heller,S. ;    Heller,S.
(ROR)  Responsible Organization: Office of Research and
    Development.Offlee of Health Research.Health Effects Search La
                             844

-------
                             Accession No.   6503000108

(DQ)  Date of Questionaire: 12-02-82
CHAN)  Have of Data Base of Model:  Health Effects Research
    Laboratory-Cincinnati, OH Aggregate
(ACR)  Acronym of Data Base or Model: HERL-CIN
(MED)  Media/Subject of Data Base or Model:  Drinking Hater ^Effluents
    industrial, publicly owned treatment uorks j  Enissions  uater
    reclamation plant ;Solid waste }Surface  water lakes,  reservoirs,
    coastal, influent Tissue humans, animals yother Mortality rates,
    cancer rates
(ABS)  Abstract/Overview of Data Base or Model: HERL Cincinnati's
    project files cover BOre than 300 research     projects.  Over
    one-third of these include environmental measurement  data.
    Individual     project data is reported  in published  reports and
    sometimes incorporated in     automated  data bases maintained  by
    other laboratories.  This summary  covers the     environmental
    measurement data only.
(CTC)  CONTACTS: Subject matter   varies by  project;
    Computer-related  varies by project
(DTP)  Type of data collection or monitoring: Point source data
    collection uater supplies and mammals (primarily)
(STA)  Data Base status: Discontinued
(NPP)  Non-pollutant parameters included in  the data base: Biological
    data ;Chemical data ^Collection method ;Concentration measures ;
    Exposure data ;Geographic subdivision ;Health effects ;Location ;
    Physical data ^Political subdivisions population demographics ;
    population density ^Sampling date ;Test/analysis method
    ;epidemiological
(DS)  Time period covered by data base: 07-01-71 TO 09-30-81
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling:  Other varies by
    individual project from very short term  observa-  tions to those
    requiring several years*
(NOB)  Number of observations in data base:  50000 or more.(Estimated)
(NEI)  Estimated annual increase of observations in data  base: (unknown.
(INF)  Data base includes: Raw data/observations ;Summary aggregate
    observations
(NTS)  Total number of stations or sources covered in data base: 3000
    (or more.)
(NCS)  No. stations or sources currently originating/contributing  data:
    103 (or more.)
(NOF)  Number of facilities covered in data base (source  monitoring):  18
    4 (or more.)
(GEO)  Geographic coverage of data base: Geographic region varies  by
    project
(LOC)  Data elements identifying location of station or source include:
    varies by project
(FAC)  Data elements identifying facility Include: varies by project
(CDE)  Pollutant identification data are: Other coding scheme
    Oneoded
(LIM)  Limitation/variation in data of which user should  be aware: Data
    base includes more than 150 studies each with difference
    parameters, area, period, and protocols.  Quality assurance aspects


                             845

-------
                             Accession Ro.  6503000108     (cent)

    of     data*
(AMD  Lab analysis based on EPA-approved or accepted Methods? YES
(AOD)  Lab Audit: Lab audit Is satisfactory for varies by project.
(PRE)  Precision: Precision and accuracy estimates partially exist for
    varies by project Edit varies by project.
CCBY)  Data collected by: EPA lab Health Effects Research
    Lab-Cincinnati, OH (31%) ^Contractor lab various Contractor various
    (24%) ;various grantees (25%) and cooperative agreements (20%)
(ABT)  Tata analyzed by: EPA lab Health Effects Research
    Lab-Cincinnati, OH (31%)
    Contractor lab various
    Contractor various (24%)
    grantees (25%) and cooperative agreements (20%)
(IOL)  Laboratory identification: YES
(PR2)  Secondary purpose of data collection: Trend assessment
(AUT)  Authorization for data collection: No statutory requirement:
    Data collection requirement is    usually not—varies by project
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base: Published in
    open scientific literature as project     summaries and reports and
    various unpublished reports.
(NOS)  Number of regular users of data base: 100 or more
(OSR)  Current regular users of data base: EPA headquarter offices
    office of Toxic Substances, Office of Hater   and Haste Management
    EPA laboratories
    Other federal agencies
    universities
(CMF)  Confidentiality of data and limits on access: Limits on access
    within EPA and outside agency for some  data
(DLC)  Primary physical location of data: principal investigator
(DST)  Form of data storage: Original form (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: yes
(OPDT)  Frequency of data base master file up-date: Other varies by
    project
(RDBEPA)  Related EPA data bases used in conjunction yith this data base
    Uaterdrop D6404000110
(CMP)  Completion of form:
    James B. Lucas
    OFC: Health Effects Research Laboratory
    AD: U.S. EPA, 26 H. St. Clair St., Cincinnati, OH  45268
    PR: (513) 684-7359
(DF)  Date of form completion: 02-07-83
(MMAT)  lumber of substances represented in  data base: 58
(MCAS)  lumber of CAS registry numbers in data base: 19
(MAT)  Substances represented in data base:
    alkalinity                           asbestos<1332-21-4>
    aerosols                             bacteria
    alumlnum<7429-90-5>                  calcium
    arsenic<7440-38-2>                   carbon
    artificial sweetners                 carbon monoxide<630-08-0>


                             846

-------
                             Accession Ho.   6503000108      (cont)

    carcinogens                          sludge
    coal                                 strontium<7440-24-6>
    coliforms                            sulfur
    conductivity                         teratogens
    diseases                             tin
    drinking water contaminants          trace metals
    endotoxin                            viruses
    giardia                              uasteuater
    hardness                             barium<7440-39-3>
    heavy metals                         benzene<71-43-2>
    hepatitis                            cadmium<7440-43-9>
    inorganics                           chlorine<7782-50-5>
    magnesium                            chloroform<67-66-3>
    methane                              copper<7440-50-8>
    microorganisms                       fluorides
    mutagens                             formaldehyde<50-00-0>
    organics                             iron<7439-89-6>
    parasites                            lead<7439-92-l>
    pesticides                           nitrogen<7727-37-9>
    polyphosphates                       pH
    rddionuclides                        potassium<7440-09-7>
    radium                               sodium<7440-23-5>
    reclaimed vater                      styrene<100-42-5>
    silicon                              zinc<7440-66-6>
(CAS)  CAS registry numbers of substances Included in data  base:  7429-90
    -5; 7440-38-2; 1332-21-4; 630-08-0;    7440-24-6; 7440-39-3;
    71-43-2; 7440-43-9; 7782-50-5; 67-66-3;    7440-50-8; 50-00-0;
    7439-89-6; 7439-92-1; 7727-37-9; 7440-09-7;       7440-23-5;
    100-42-5; 7440-66-6
(CNN)  Contact name(s): project/I.;    project,M.
(COR)  Contact organization: Health Effects Research Lab-Cincinnati,  OH
(ROR)  Responsible Organization:  Office of Research and
    Development.Office of Health  Research.Toxicology & Nicrobiolog
                             847

-------
                             Accession Mo.  6606000506

(DQ>  Date  of  Questionaire: 12-02-82
(NAM)   Mane of Data Base of Model: PRESTO
(ACR)   Acronym of Data Base or Model: PRESTO
(NED)   Media/Subject  of Data Base or Model: Ground water ; runoff-
    water from waste  burial
(IBS)   Abstract/Overview of Data Base or Model: Low level Hater
    Transport  & Health Effect Model
(CTC)   CONTACTS: Subject matter  j. Broadway  FTS-534-761S  ;
    Computer-related  J. Broadway  FTS-534-7615  ;  EPA Office  J.
    Broad   way FTS-534-7615
(DTP)   Type of data collection or monitoring: Non-point source
(STA)   Data Base status: Funded for Development: projected operational
    date of data base 83-03.
(6RP)   Groups  of substances represented in Data Base: 18 radioactive
(MPP)   Non-pollutant  parameters included in the data base: Health
    effects }  temperature
(OS)  Time  period covered by data base: 01-75 TO 01-80
(PRQ)   Frequency of data collection or sampling: Ongoing:as needed
(•OB)   Number  of observations in data base: SOOCEstimated to Date)
(RED   Estimated annual Increase of observations in data base: 100
(INF)   Data base includes: reference data or citations
(NTS)   Total number of stations or sources covered in data base: 10
(NCS)   Ho.  stations or sources currently originating/contributing data:
    3
(HOP)   Number  of facilities covered in data base (source monitoring): 10
(GEQ)   Geographic coverage of data base: National
(LOC)   Data elements  identifying location of station or source Include:
    State ;  city
(FAC)   Data elements  identifying facility include: plant or facility
    name ;  plant location
(COS)   Pollutant identification data are: coded, other coding scheme
(LIN)   Limitation/variation in data of which user should be aware: throu
    ghout OSA
(DPR)   Data collect./anal, procedures conform to ORD guidelines: YES
(ANL)   Lab  analysis based on EPA-approved or accepted methods? YES
(ADD)   Lab  Audit: N/A: data not based on laboratory analysis
(PRE)   Precision: None available
(EOT)   Edittlng: No known edits
(CBY)   Data collected by: Contractor Lab, OBML
(ABY)   Data analyzed  by: Contractor Lab, ORNL
(IDL)   Laboratory identification: NO
(PR1)   Primary purpose of data collection: development of regulations
    or  standards
(PR2)   Secondary purpose of data collection: None
(AGT)   Authorization  for data collection: NO
(OMB)   Data  collected/submitted using OMB-approved EPA reporting forms:
    NO
(REP)   Form  of available reports and outputs of data base: Publications,
    Inpress
(NOS)   Number  of regular users of data base: in development
(OSR)  Current regular users of data base: EPA Headquarters Offices,
    Office of  Radiation Programs


                             848

-------
                             Accession Mo.  6606000506     (cont)

(CNF)  Confidentiality of data and Units on access: Hone
fDLC)  Primary physical location of data: Contractor
(DST)  Fora of data storage: Magnetic tape
(DAC)  Type of data access: Manually only
(CHG)  Direct charge for non-EPA use? MO
(UPDT)  Frequency of data base aaster file up-date: When revisions are
    available
(RSS)  Related EPA automated systems which use data base: None
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    Mone
(RDB)  Non-EPA data bases used in conjunction uith this data base: lone
(CMP)  Completion of fora: f J. Broaduayf OFC: EERF, Montgoaery, ALff
    PH: (205) 272-3402f
(OF)  Date of fora completion: 01-13-83
(RMAT)  Nuaber of substances represented in data base: 18
(MCAS)  Nuaber of CAS registry nuabers in data base: 0016
(MAT)  Substances represented in data base:
    Bariua 140 <14798-08-4>              Uraniua 238    <7440-61-1>
    Carbon 14 <14762-75-5>               Plutoniua 238 
    Cesiua 137    <10045-97-3>           Plutoniua 239 <15117-48-3>
    Iodine 129 <15046-84-l>              Potassiua <7440-09-7>
    Iodine 131 <10043-66-0>              Radiokrypton
    Krypton 85 <13983-27-2>              Radioxenon
    Tritium <10028-17-8>                 Radiun 226 <13982-63-3>
    Oraniua 234  <13966-29-5>            Strontiua 89 <14158-27-l>
    Uranium 235 <15117~96-1>             Strontiua 90 <10098-97-2>
(CAS)  CAS registry nuabers of substances included in data base: 14798-0
    8-4; 14762-75-5; 10045-97-3;      15046-84-1; 10043-66-0;
    13983-27-2; 10028-17-8; 13966-29-5;      15117-96-1; 7440-61-1;
    13981-16-3; 15117-48-3; 7440-09-7; 13982-63-3;      14158-27-1;
    10098-97-2
(CNN)  Contact naae(s): Broadway, J.  ;   Broadway,J.  ;  Broad way/J.
(COR)  Contact organization: J. Broadway
(ROR)  Responsible Organization: Office  of Air, Noise and
    Radiation.Office of Radiation Prograas.Eastern Environaental
                              849

-------
                             Accession No.  6606000507

(OQ)  Date of Questionaire: 12-02-82
(MAN)  Hame of Data Base of Model: Environmental Radiation Ambient
    Monitoring System
(ACR)  Acronym of Data Base or Model: CAA
(MED)  Media/Subject of Data Base or Model: Air ; atmospheric
    deposition ; drinking nater ; ground water > surface water (river
    water) ; Other- milk
(ABS)  Abstract/Overview of Data Base or Model: Ambient levels of
    radiation in air, milk, water.  Common fission products and
    actinides included.
(CTC)  CONTACTS: Subject Batter  J. Broadway  FTS-534-7615  ;
    Computer-related  J. Broadway  FTS-534-7615  j  EPA Office Charles
    R. Porter  Director* Eastern environmental Research Facility
    534-7615
(DTP)  Type of data collection or monitoring: Ambient
(STA)  Data Base status: Presently Operational/Ongoing
(GRP)  Groups of substances represented in Data Base: 18 radioactive
(NPP)  Non-pollutant parameters included in the data base: Location ;
    Types of Radiochemical Analysis used.
(DS)   Time period covered by data base: 07-73 TO 01-83
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: Ongoing:monthly }
    ongoing:quarterly ; ongoing:annually
(NOB)  Number of observations in data base: 20,000(Actual to Date)
(NEI)  Estimated annual increase of observations in data base: 2,000
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base: 200
(NCS)  No. stations or sources currently originating/contributing data:
    200
(HOF)  Number of facilities covered in data base (source monitoring): 20
    0
(GEO)  Geographic coverage of data base: National
(LOC)  Data  elements identifying location of  station  or source include:

(FAC)  Data  elements  identifying facility  include: coded, other  coding
    scheme                                             , .          ,,.
 (LIM)  Limitation/variation  in data of which  user  should be  aware:  All
    over USA
(DPR)  Data  collect./anal, procedures conform to ORD  guidelines: YES
(ANL)  Lab analysis based on EPA-approved or  accepted methods? YES
(ADD)  Lab Audit: YES
(PRE)  Precision: YES,  for all measurements
(EOT)  Editting: YES,  documented  edits
(CBY)  Data  collected  by:  State  agency,  all States
(ABY)  Data  analyzed  by:  EPA Lab  SERF, EPA, Montgomery
(IDL)  Laboratory  identification:  YES
(PR1)  Primary  purpose of data collection:
    6606000507    40
(AUT)  Authorization  for  data collection: YES,  citation- Clean Air  Act
    ammended  1977.
(OMB)  Data colleeted/submitted  using OMB-approved EPA  reporting forms.
    NO


                              850

-------
                             Accession Ho*   6606000507     (cont)

(REP)  For* of available reports and outputs of data base:  Unpublished
    reports Environmental Data Reports ;  on-line computer  terminal
(IDS)  number of regular users of data bases 300
(OSR)  Current regular users of data base:  SPA Headquarters Offices,
    Office of Radiation Programs
(CNF)  Confidentiality of data and limits on access: Hone
(DLC)  Primary physical location of data: EPA Lab
(DST)  Form of data storage: Magnetic tape
(DAC)  Type of data access: EPA Software System CAA, Hardware POP-1745
(CHG)  Direct charge for non-EPA use: NO
(UPDT)  Frequency of data base master file  up-date: Monthly
(RSS)  Related EPA automated systems which  use data base: Hone
(ROBEPA)  Related EPA data bases used in conjunction with this data base
    Hone
(ROB)  Non-EPA data bases used in conjunction with this data base:  None
(CMP)  Completion of form: f J. Broadway! OFC: EBRF/ Montgomery, AL
    36193f   AD: P.O. Box 3009, Montgomery, AL  361931    PR: (205)
    272-34021
(OF)  Date of form completion: 01-13-83
(NMAT)  Number of substances represented in data base: 18
(NCAS)  Number of CAS registry numbers in data base: 0016
(MAT)  Substances represented in data base:
    Barium 140 <14798-08-4>              Uranium 238    <7440-61-1>
    Carbon 14 <14762-75-5>               Plutonium 238 <13981-16-3>
    Cesium 137    <10045-97-3>           Plutonium 239 <15117-48-3>
    Iodine 129 <15046-84-l>              Potassium <7440-09-7>
    Iodine 131 <10043-66-0>              Radlokrypton
    Krypton 85 <13983-27-2>              Radioxenon
    Tritium <10028-17-8>                 Radium 226 <13982-63-3>
    Uranium 234  <13966-29-5>            Strontium 89 <14158-27-l>
    Uranium 235 <15117-96-l>             Strontium 90 <10098-97-2>
(CAS)  CAS registry numbers of substances included in data  base: 14798-0
    8-4> 14762-75-5; 10045-97-31      15046-84-1; 10043-66-0;
    13983-27-2; 10028-17-8; 13966-29-5;      15117-96-1; 7440-61-1;
    13981-16-3; 15117-48-3; 7440-09-7; 13982-63-3;      14158-27-1;
    10098-97-2
(CNM)  Contact name(s): Broadway,J.  ;  Broadway,J.  ;  Porter,C.R.
(COR)  Contact organization: Eastern Environmental Radiation Facility
(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Office of Radiation Programs.Eastern Environmental
                             851

-------
                             Accession No.   7103000901

(DQ)  Date of Quest!onaire: 12-02*82
(•Ml)  Name of Data Base of Model: Chemical Substances Infornation
    Hetvork
(ACR)  Acronym of Data Base or Model: CSIM
(MED)  Media/Subject of Data Base or Model: Other CSIN to allow access
    to many kinds of existing resources    carrying data and
    information on all the Media.
(ABS)  Abstract/Overview of Data Base or Model: CSIH provides a
    coordinated approach to the  identification, location, accessing,
    processing, and   analysis of data and inforaation on chemical
    substances     and how they impact humans and other compartments of
    the environment.  The Hetwork alloys and encourages user
    interaction with    data and information resources which are
    geographically scattered and available in systems which are
    independent and autonomous for its computers and software selected.
    Most of the complex interfacing steps previously  required to make
    use of such computerized information resources have been   made
    transparent to the user.
(CTC)  C01TACTS: Subject matter Sidney Siegel  (202)382-22561
    Computer-related     Dr. Sidney Siegel (202)382-2256  ;  EPA Office
    Office of CSIH   Administration (202)382-2256
(DTP)  Type of data collection or monitoring: Combination/Other CSIH
    offers access to many data bases carrying  data & information from
    various sources.
(STA)  Data Base status: Operational Prototype form.
(DPO)  Projected operational date of Data Base: 11-01-81
(GRP)  Groups of substances represented in Data Base: 43 air priority
    chemicals >5 HESHAPS >7 criteria NAAQS ;3 HID CAA >   18
    radioactive ;noise ;129 307 CHA ;11 conventional water ;41 CHA
    potential criteria }    21 drinking water standards ;9 potential
    drinking water ;29 drinking water monitoring ;   299 hazardous
    substances ;48 cancelled pesticides ;9 monitoring pesticides ;
    54 TSCA assessment ;RCRA hazardous wastes ;16 Pre-fiPAR ;15 metals
CHPP)  Hon-pollutant parameters included in the data base: Biological
    data ;Chemical data Collection method ;Compliance data ;
    Concentration measures ;Cost/economic data /Discharge points J
    Disposal /Elevation /Exposure data /Flow rates /Funding data ;
    Geographic subdivision ;Bealth effects ;Industry /Inspection data /
    Location /Manufacturer ;Physical data ;Political subdivisions ;
    Population demographics population density /Precipitation
    /Production levels / Salinity ;Sampling date /Site description
    /Temperature /Test/analysis method /  Treatment devices /Use
    /?olume/mass measures  /Hind direction ;   Hind velocity /Presence
    of data elements varies by resource (data base)
(DS)  Time period covered  by data base: 01-01-70 TO 01-30-83
CTRM)  Termination of data collection: Hot anticipated
(FRQ)  Frequency of data collection  or sampling: Other frequency  of
    collection, sampling,  updating dependent on rate    established  by
    each Information resource accessible through the  network*
(HOB)  Number of observations in  data base: 25  million(Estimated)
(HEI)  Estimated annual increase  of  observations in data base:  2.5-5.0
    (million)


                             852

-------
                             Accession Mo.   7103000901      (cont)

(IMF)   Data base includes:  Ran data/observations ^Summary  aggregate
    observations ;Reference data/citations   varies by resource/data
    base
(NTS)   Total number of stations or sources  covered in data base: 8-10
    (resources)
(HCS)   Ho.  stations or sources currently originating/contributing  data:
    7
(HOP)   Number of facilities covered in data base (source monitoring):  (»
    /A)
(GEO)   Geographic coverage  of data base: International  ;national
(LOG)   Data elements identifying location of station or source  include:
    State ^County ;Congressional district ;SMSA jCity ;Town/township ;
    Street address ^Coordinates ;Project identifier ;varies by
    resource/data base
(FAC)   Data elements identifying facility include: Plant facility  name
    jPlant location ;Parent corp name ;Parent corp location ;    Street
    address ;SIC code ;Dun  Bradstreet ;SCC  ;HPDES ^Program identifier  ?
    varies by resource/data base
(COE)   Pollutant identification data are: CAS registry  number
(LlM)   Limitation/variation in data of which user should be auare: The
    prototype, operational  '81, includes NLM (Medlars Cheallne, etc.)
    CIS CAS-ON-LINE, SDC(ORBIT), MACS, Conditional with    DIALOGUE,
    BRS, ETIS/HAZARDLINE, TONS, & PROPHET.   5-7 additional resources
    will be added in calendar *83.  For each resource accessable
    through the network usually a statement made when its  system is
    first     accessed will speak to differences in periods of
    sampling, numbers of observations,  experimental protocols, quality
    assurance procedures   followed & levels of documentation,  etc.
(DpR)   Data collect./anal,  procedures conform to ORD guidelines: QRD
    Guidelines ;sampling plan documented ^Collection method documented
    ;     Analysis method documented jQA procedures documented   (Above
    varies by resource/data base.)                         •
(ANL)   Lab analysis based on EPA-approved or accepted methods?  YES
(AOD)   Lab Audit: Lab audit is satisfactory but varies by  data  base.
(PRE)   Precision: Precision and accuracy estimates partially  exist for
    some resources/data    bases     Edit for some resources, not  for
    others.                                                       •
(CBY)   Data collected by: Self reporting ;Local agency ;State agency
    ^Regional office ;     EPA lab ^Contractor lab Contractor  >Other
    federal agency 7EPA headquarters ;   collector varies  by
    resource/data base
(ABY)   Data analyzed by: Self reporting
    Local agency
    State agency
    Regional office
    EPA lab
    Contractor lab
    Contractor
    Other federal agency
    EPA headquarters
    analyzer varies by resource/data base
(IDL)   Laboratory identification:  YES


                             853

-------
                             Accession Mo.  7103000901     (coat)

(AOT)  Authorization foe data collection: Statutory authorization is P
    L 94-469, Sections 10 & 25. Each resource has  its own
    authorization.
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Fora of available reports and outputs of data base: Publications
    overview documents, technical user documents, CSIH  Directory
    Unpublished reports
    Printouts on request
    Microfila
    Machine-readable ran data
    On-line coaputer
    Outputs available vary by resource/data base.
(HUS)  Ruaber of regular users of data base: 10-50 offices
(OSR)  Current regular users of data base: EPA headquarter offices
    Office of Pesticides and Toxic Substances     Office of Toxic
    Integration
    EPA regional offices
    EPA laboratories
    Other federal agencies
    States
    industry, acadeaia, and other nations.
(CMF)  Confidentiality of data and 11*its on access: Limits on access
    within EPA and outside agency for some  data

-------
                             Accession Mo.   7103000901
                     (cont)
(MCAS)   Nuaber  of CAS registry nuabers
(NAT)   Substances represented in data

    "0, 0-diethyl  phosphoricacid,0-p-
       nltrophenyl ester<311-45-5>
    0,0-diethyl-O-(2-pyrazinyl>
       phoshorothioO,0-diethyl-s-(2-
       ethylthio)ethyl)ester of
       phosphorodithioicacid
    0,0-diethyl-s-»ethyl  ester of phos
       If If\f2-tetrachloroethane
       <630-20-6>
    l,l,l-trichloroethane<71-55-6>
    1,1,2,2,-tetrachloroethane
       <79-34-5>
    l,l,2-trlchloro«thane<79-00-5>
    I/l-dichloro«thane<75-34-3>
    l,l-dichloro«thylene<75-35-4>
    l,l-di«ethylhydrazine<57-l4-7>
    I/12-trichloroethene<79-01-6>
    l,2,3,4,10,10-hexachloro-l,4,4a,5,
       8,8a-hexahydro-l, 4:5, 8-endo,
       endo-dinetha
    l/2/4/-trichlorobenzene<120-82-l>
    1/2,4/5-tetrachlorobenzene
       <95-94-3>
    l/2-dibro«o-3-chloropropane (dbcp)
       <96-12-8>
    lf 2-dibroraoe thane<106-93-4>
    If2-dichlorobenzene<95-50-l>
    It2-dichloroethane<107-06-2>
    U2-dichloropropane<78-87-5>
    if2-diethyIhydrazine<1615-80-l>
    1,2-di»ethylhydrazine<540-73-8>
    1^2-diphenylhydrazlne<122-66-7>
    1^2-propanediol<57-55-6>
    1,2-trans-dichloroethylene
       <156-60-5>
    1,3,4 trichlorobenzene<120-82-l>
    l,3-dichlorobenzene<541-73-1>
    If3-dichloropropene< 542-75-6>
    I/3-pentadiene<504-60-9>
    1,3-propane sultone<1120-71-4>
    1, 4-dichloro-2-bu t ene< 110-57-6>
    If4-dlchlorobenzene<106-46-7>
    If4-dioxane<123-91-1>
    If4-naphthoquinone<130-15-4>
    l-(o-chlorophenyl)thiourea
       <5344-82-l>
    l-(p-chlorobenzoyl)-5-«ethoxy-2-
       •ethylindole-3-acetic acid
 in data base: 724
base:
   l-chloro-2,3-epoxypropane
      <106-89-8>
   l-naphthyl-2-thiourea<86-88-4>
   l-naphthyla«ine<134-32-7>
   2/2-dlchloropropionic acid
      <75-99-0>
   2,3/4,6-tetrachlorophenol<58-90-2>
   2/4,5-t anines
   2,4,5-t esters
   2,4,5-t salts
   2,4,5-tp acid esters
   2,4,5-trichlorophenol<95-95-4>
   2,4,5-trichlorophenoxyacetic acid
      (T)<93-76-5>
   2,4,5-trlchlorophenoxypropionic
      acid (TPX93-72-l>
   2/4,6-trlchlorophenol<88-06-2>
   2,4/7/8-tetrachlorodibenzo-p-
      dloxin (tcdd)
   2,4-d acid<94-75-7>
   2,4-d esters
   2/4-dlchlorophenol<120-83-2>
   2f4-dlchlorophenoxyacetic acid (2,
      4-d)<94-75-7>
   2/4-diicthylphenol<105-67-9>
   2f4-dinitrophenol<51-28-5>
   2,4-dinitrotoluene<121-14-2>
   2f4-dithiobiuret<541-53-7>
   2/6-dichlorophenol<87-65-0>
   2,6-dinitrotoluene<606-20-2>
   2-acetyla«lnoflourene
   2-butanone peroxide<1338-23-4>
   2-chloroethylvinyl ether<110-75-8>
   2-chloronaphthalene<91-58-7>
   2-chlorophenol<95-57-8>
   2-cyclohexyl-4x6-dinitrophenol
      <131-89-5>
   2-fluoroacetaraide (l081)<640-19-7>
   2-»ethyl-2-(«ethylthlo)propionalde
      hyde-o-(aethylcarbonyl)oxiae
      <80-62
      -6>
   2-«ethylaziridine<75-55-8>
   2-«ethyllactonitrile<75-86-5>
   2-naphthyla«lne<91-59-8>
   2-nltrophenol<88-75-5>
   2-nitropropane<79-46-9>
   2-plcoline<109-06-8>
   2-propyn-l-01<107-19-7>
                             855

-------
                         Accession No.  7103000901
                  (cont)
2- sec butyl- 4, 6-dinitrophenol
   <88-85-7>
3, 3 '-dicti! orobenzidlne<91-94-l>
3, 3 '-d Uethoxybenzidine
3,3*-diBethyl-l-2-
   butanone-0- (dethyl anlno)
   carbonyDoxiae
3,3--diBethylbenzidine<119-93-7>
3,4-benzofluoranthene<205-99-2>
3, 4-dlhydroxy-alpha-(«ethylaaino)-
   •ethyl benzyl alcohol
3-chloropropipnitrile<542-76-7>
3-Bethylcholanthrene<56~49-5>
39196-18-4>
4,4'-ddd(p,p'tde)
4,4*-dde(p,p'-ddx)<72-55-9>
4,4*-ddt<50-29-3>
4, 4'-aethylene-bis-( 2-chloroanilin
4,6-dinltro-o-cresol<534-52-l>
4-Aminopyr idine<50 4- 2 4-5 >
4-broaophenyl phenyl ether
   <101-55-3>
4-chloro-o-toluidine hydrochloride
   <3165-93-3>
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nitrophenol<100-02-7>
5-(a«inoBethyl)-3-isoxazolol
   <27 63-96- 4>
5-nitro-o-toluidine<99-55-8>
   8- ( hy droxy aethy 1) 8- «e thoxy-5-
   •ethyl-cacaba
acenaphthene<83-32-9>
acenaphthylene<208-96-8>
acctaldehyde<7 5-07-0 >
acetic acid<64-19-7>
acetic anhydride<108-24-7>
acetone cyanohydrin<75-86-5>
acetone<67-64-l>
acetonitrile<75-05-8>
ac«tophenone<98-86-2>
acetyl bro«ide<506-96-7>
acetyl chloride<75-36-5>
acid Bist
acidity
acrolein<107-02-8>
acrylaBide<7 9-06-1 >
acrylic acid<79-10-7>
acrylonitrile<107-13-l>
adiplc aci
alachlor<15972-60-8>
aldrin<309-00-2>
alkalinity
allyl alcohol<107-18-6>
allyl chloride<107-05-l>
alpha, alpha-diaethylbenzy Ihydro-
   peroxide<80-15-9>
alpha, alpha-diaethylphenethylamlne
   <122-09-8>
alpha-chlorotoluene<100-44-7>
aluainuB phosphide<20859*73-8>
aluBinua sulfate< 10043-01 -3>
aluainUB<7429-90-5>
aaitraz (baa»)<33089-61-l>
aBitrole<61-82-5>
awonia<7664-4l-7>
aBBoniua acetate<631-61-8>
aBBoniuB benzoate<1863-63-4>
aBBoniua bicarbonate
aBBoniuB bichro«ate<7789-09-5>
aBBoniuB bif luoridc<1341-49-7>
amoniuB bisulfite<10192-30-0>
aBBoniuB carbaBate
aBBoniuB carbonate<506-87-6>
aBBoniuB chloride<12125-02-9>
amoniuB chroiate<7788-98-9>
aaaoniuB citrate<7632-50-0>
         f luoborate<13826-83-0>
         fluoride< 12125-01- 8>
aBBoniuB hydroxide<1336-21-6>
aBBoniuB oxalate<1113-38-8>
aBMonluB picrate<131-74-8>
aBBoniuB sillcofluorlde
   <16919-19-0>
aaaonluB sulfaBate<7773-06-0>
aaaoniua sulf ide< 12 135-76-1 >
aBBoniuB tartrate<3164-29-2>
aBBoniuB thlocyanate< 1762-9 5-4>
aaaoniUB thiosulf ate<7783-18-8>
a«yl acetate<628-63-7>
anlllne<62-53-3>
anthracene<120-12-7>
antiaony pentachlorlde<7647-18-9>
antiaony potassiua tartrate
antimony tribroBide<7789-61-9>
antiBony trlchloride<10025-91-9>
antiBony trif luoride<7783-56-4>
antiaony trioxide<1309-64-4>
antiaony<7440-36-0>
araBite<140-57-8>
arsenic acid<1327-52-2>
                         856

-------
                         Accession No.  7103000901
                  (cont)
arsenic dlsulf ide<1303-32-8>
arsenic pent oxide< 1303-28- 2>
arsenic trichloride< 77 84-3 4-l>
arsenic trioxide<1327-53-3>
arsenic trisulfide<1303-33-9>
arsenic<7440-38-2>
asbestos<1332-21-4>
atrazine
auramine<2465-27-2>
azaserine<115-02-6>
banvel-d
bariuB 140<14798-08-4>
bariua cyanide<542-62-l>
bariua<7440-39-3>
b«nefin<1861-40-l>
benoayl<17804-35-2>
benz(c)acridine<225-51-4>
benzac
benzal chl or ide< 98-87- 3>
benzene<71-43-2>
benzenesulfonyl chloride<98-09-9>
benzenethiol<108-98-5>
benzi dine<92-87-5>
benzo( a)anthracene<56-55-3>
benzo(a)pyrene<50-32-8>
benzo(g,h,i)perylene<191-24-2>
benzo
benzoic acid<65-85-0>
benzonitrile<100-47-0>
benzotrichloride<98-07-7>
benzoyl chloride<98-88-4>
benzyl chloride<100-44-7>
beryllium chloride<7787-47-5>
berylliuM dust
beryllium fluoride<7787-49-7>
beryllium nitrate<13597-99-4>
berylliuB<7440-41-7>
bhc (lindane)-ga»aia<58-89-9>
bhc-alpha<319-84-6>
bhc-beta<319-85-7>
bhc-delta<319-86-8>
biphenyl<92- 52-4>
bis(2-chloroethoxy)«ethane
bis(2-ehloroethyl)ether
bis(2-chloroisopropyl) ether
   <39638-32-9>
bis(2-ethylhexyl)phthalate
bis(chloro«ethyl)ether<542-88-l>
bisvuth co»pounds<7440-69-9>
boron co«pounds<7440-42-8>
bromine<7726-95-6>
bro»oacetone<598-31-2>
bromobenzene<108-86-l>
bromochlorobenzene<28906-38-9>
broBOdichloroBethane<75-27-4>
broBoaethane<74-83-9>
brucine<357-57-3>
butachlor<23184-66-9>
butyl acetate<123-86-4>
butyl benzyl phthalate<85-68-7>
butyla«ine<109-73-9>
butyric acid<107-92-6>
cacodylic acid and salts<75-60-5>
cadaiuB acetate<543-90-8>
cadaiuB bromide<7789-42-6>
cadaiua chloride
cadmiu«<7440-43-9>
calciUB arsenate<7778-44-l>
calciua arsenite<52740-16*6>
calciuB carbide<75*20-7>
calciua chroaate<13765-19-0>
calciua cyanide<592-01-8>
calciu* dodecylbenzenesulfonate
   <26264-06-2>
calciua hydroxide<1305-62-0>
calciua hypochlorite<7778-54-3>
calciua oxide<1305-78-8>
captan<133-06-2>
c arbaryl<63-25-2>
carbofuran<1563-66-2>
carbon 14<14762-75-5>
carbon disulfide<75-15-0>
carbon monoxide<630-08-0>
carbon tetrachloride<56-23-5>
carbonyl fluoride<353-50-4>
cesiua 137<10045-97-3>
chloral<75-87-6>
chloraabucil<305-03-3>
chloranil<118-75-2>
chlor dane< 57-7 4-9>
chlorinated naphthalenes
chlorlne<7782-50-5>
chloroacetaldehyde<107-20-0>
chlorobenzene<108-90-7>
chlorobenzilate<510-15-6>
chlorodibroBoaethane<124-48-l>
chloroethane<75-00-3>
chloroethene<75-01-4>
chloroethyl vinyl ether<110-75-8>
chlorofluorocarbons
chlorofora<67-66-3>
chloroaethane<74-87-3>
                         857

-------
                         Accession Mo.  7103000901
                  (cent)
chloroaethyl »ethyl ether
   <107-30-2>
chloroprene<126-99-8>
chlorosulfonic acid<7790-94-5>
chlorpyrifos<2921-88-2>
chronic acetate<1066-30-4>
chroaic acid<7738-94-5>
cbroaic sulfate<10101-53-8>
chro*iun<7 440-47-3>
chreaous chloride<10049-05-5>
chrysene<218-Ol-9>
cls-l,2-dlchloroethylene<156-59-2>
coal tar<8007-45-2>
cobalt<7440-48-4>
cobaltous bro«lde<7789-43-7>
cobaltous foraate<544-18-3>
cobaltous 8ulfa«ate<14017-41-5>
copper cyanld«<544-92-3>
copp«r<7440-50-8>
cov>aphos< 56-72- 4>
creosote<8021-39*4>
cr«aol<1319-77-3>
cresylic acl
crotonaldehyde<4170-30-3>
ciuene<98-82-8>
cupric acetate<142-71-2>
cupric acetoarsenite<12002-03-8>
cupric chlorld«<7447-39-4>
cupric nitrate<3251-23-8>
cupric oxalate<814-91-5>
cupric sulfate auionlated
   <10380-29-7>
cupric sulfate<7758-98-7>
cupric tartrate<815-82-7>
cyanazln«<21725-46-2>
cyanlde<57-12-5>
cyanogen bro«ide<506-68-3>
cyanogen chlor ide< 506-77-4>
cyanoyeiK460-l9-5>
cycloh«xane<110-82-7>
cyclohexanone<108-94-l>
cyclopnospha«ide<50-18-0>
dauno»ycin<20830-81-3>
dddCtde)
ddt
d«»eton<8065-48-3>
dl-isopropylfluorophosphate
   <55-91-4>
di-n-butyl phthalate<84-74-2>
dl-n-octyl phthalate<117*84-0>
dl-n-propylnitrosaaine<621-64-7>
dialkyl ethers
dialkyl phosphates
dlallate<2303-16-4>
diazinon<333-41-5>
dib«nzo(a,h)anthracene<53-70-3>
dibcnzofuran<132-64-9>
dlbenzol(a,i)pyrene<189-55-9>
dlbro«ocbloromethane<124-48-l>
dibro«o«ethane<74-95-3>
dibutyl phthalate<84-74-2>
dicaaba<1918-00-9>
dichlobeniKl 194-6 5-6 >
dichlone<117-80-6>
dlchlorobenzene<25321-22-6>
dichlorobro»o«ethane<75-27-4>
dlchlorodlfluoro««than«<75-71-8>
dlchlorolodo««thane<594-04-7>
dlchloro««thane<75-09-2>
dlchlorophenylarslne<696-28-6>
dichloropropane<26638-19-7>
dlchloropropene-dlchloropropane
   •ixture
dichloroprop«ne< 26952-23-8>
dlchlorvos (ddvp><62-73-7>
dl«ldrln<60-57-l>
dlepoxybutaoe<1464-53-5>
diethyl phthalate<84-66-2>
di«thyla«lne<109-89-7>
dlethylstilbestrol<56-53-l>
d ihydrosafrole<94-58-6>
di«ethoate<60-51-5>
diaethyl phthalate<131-11-3>
dUethyl sulfate<77-78-l>
dl«ethyla«ine<124-40-3>
diaethylcarbaaoyl chloride
   <79-44-7>
dU€thylnitrosa«ln«<62-75-9>
dlnitrobenzene<25154-54-5>
dlnltrophenol
dinitrotoluene<25321-14-6>
dloxane<123-91-l>
dioxln<828-00-2>
diphenyl ether<101-84-8>
dlpbenylhydrazlne<38622-18-3>
dlpropyla«lne<142-84-7>
diquat<2764-72-9>
dissolved oxygen
dissolved solids
dIsulfoton<29 8-04-4>
diuron<330-54-l>
dodecylbenzenesulfonic acid
   <27176-87-0>
                         858

-------
                         Accession Mo.   7103000901
                   (cont)
 ebdc's (ethylenebisdithiocarbaaate
   s)
 edta<60-00-4>
 endosulfan sulfate<1031-07-8>
 endosulfan-alpha<959-98-8>
 endosulfan-beta<33213-65-9>
 endosulfan<115-29-7>
 endrin aldehyde<7421-93-4>
 endrin<72-20-8>
 eplchlorohydrin<106-89-8>
 ethion<563-12-2>
 ethyl acrylate<140-88-5>
 ethyl chloride<75-00-3>
 ethyl ether<60-29-7>
 ethyl »ethacrylate<97-63-2>
 ethyl •ethanesulfonate<62-50-0>
 ethyl parathion<56-38-2>
 ethylbenzene<100-41-4>
 ethylcyanide
 ethylene bisdithiocarbavate
 ethylene dibroaide Cedb)<106-93-4>
 ethylene dichloride<107-06-2>
 ethylene oxide<75-21-8>
 ethylene thiourea<96-45-7>
 ethylenedia«ine<107-15-3>
 ethylenei«ine<151-56-4>
 fecal colifora
 ferric amoniua citrate<1185-57-5>
 ferric amoniua oxalate
   <14221-47-7>
 ferric chloride<7705-08-0>
 ferric cyanide
 ferric fluoride<7783-50-8>
 ferric nitrate<10421-48-4>
 ferric sulfate<10028-22-5>
 ferrous aaaoniua sulfate
   <10045-89-3>
 ferrous chloride<7758-94-3>
 ferrous sulfate<7720-78-7>
 fluoranthene<206-44-0>
 fluorene<86-73-7>
 fluorides
 fluorine<7782-41-4>
 fluoroacetic acid/ sodiui salt
 fluorotrichloro«ethane<75-69-4>
 for«aldehyde<50-00-0>
 for»ic acid<64-18-6>
 fuaaric acid<110-17-8>
 furan<110-00^9>
furfural<98-01-l>
glycidylaldehyde
gross alpha
 guthion<86-50-0>
 heptachior  epoxide<1024-57-3>
 heptachlor<76-44-8>
 hexachlorobenzene<118-74-l>
 hexachlcrobutadiene<87-68-3>
 hex achlorocyclohexane<58-89-9>
 hexachlorocyclopentadiene<77*47-4>
 hexachloroethane<67-72-l>
 hexachlorophene<70-30-4>
 hexachloropropene<1888-71-7>
 hexaethyl tetraphosphate<757-58-4>
 hydrazlne<302-01-2>
 hydrocarbons
 hydrochloric  acid<7647-01-0>
 hydrocyanic acid<74-90-8>
 hydrofluoric  acid<7664-39-3>
 hydrogen cyanide<74-90-8>
 hydrogen sulfide<7783-06-4>
 hydroxydiaethyl arsine oxide
   <75-60-5>
 indeno  (1^ 2,3-cd)pyrene<193-39-5>
 iodine  129<15046-84-l>
 iodine  13K100 43-66-0 >
 iodoaethane<74-88-4>
 iron dextran<9004-66-4>
 iron<7439-89-6>
 isobutyl alcohol<78-83-l>
 isocyanic acid, aethyl ester
   <624-83-9>
 isophorone<78-59-l>
 isoprene<78-79-5>
 isopropanolaaine dodecylbenzene
   sulfonate<54590-S2-2>
 isosafrol«<120-58-l>
 kelthane<115-32-2>
 kepone<143-50-0>
 krypton 85<13983-27-2>
 1asiocarpine<303-34-4>
 lead acetate<301-04-2>
 lead arsenate<3687-31-8>
 lead chloride<7758-95-4>
 lead fluoride<7783-46-2>
 lead fluoroborate<13814-96-5>
 lead iodide<10101-63-0>
 lead nitrate<10099-74-8>
lead phosphate<7446-27-7>
 lead stearate<1072-35-l>
 lead subacetate<1335-32-6>
lead sulfat
lead sulfide<1314-87-0>
lead thiocyanate<592-87-0>
lead<7439-92-l>
                         859

-------
                         Accession Mo.  7103000901
                  (cont)
lindane<58-89-9>
lithiUB and co»pounds<7439-93-2>
lithiu. chro»ate<14307-35-8>
«-ctesol<108-39-4>
m-xylene<108-38-3>
•alathion<121-75-5>
•aleic acid<110-16-7>
•aleic anhydride<108-31-6>
•aleic hydrazide<123-33-l>
•alononltrile<109-77-3>
»anganese<7439-96-5>
ma nit ad e beta
•ate
•elphalan<148-82-3>
•ercaptodlaethur<2032~65-7>
•ercurie cyanide<592-04-l>
•ercuric nitrate<10045-94-0>
•ercurie sulfate<7783-35-9>
•ercuric thiocyanate<592-85-8>
•ercurous nitrate<10415-75-5>
•ercury ful«inat
•ercury<7439-97-6>
•ethanearsooates
•ethanethlol<74-93-l>
•cthanol<67-56-l>
•«thapyrilcne<91-80-5>
•etiHwyl<16752-77-5>
•ethoxychlor<72-43-5>
•ethyacrylonitril«<126-98-7>
•ethyl chlorocarbonate<79-22-l>
•ethyl chlorofor«<71-55-6>
•ethyl ethyl Ice tone (•ek)<78-93-3>
•ethyl ethyl ketone peroxide
   <1338-23-4>
•ethyl hydrazine<60-34-4>
•ethyl iodide<74-88-4>
•ethyl isobutyl ketone<108-10-l>
•ethyl •ercaptan<74-93-l>
•ethyl «ethacrylate<80-62-6>
•ethyl parathion<298-00-0>
•ethylthlouracil<56-04~2>
•evinphos<7786-34-7>
•exacarbate<315-18-4>
•icrobiology colifora bacteria
•irex<2385-85-5>
•olybdenuB and coapounds
   <7439-98-7>
•onoethyla»ine<75-04-7>
•onoaethylaaine<74-89-5>
•onuron<150-68-5>
n,n-bis(2-chloroethyl)-2-naphthyla
   •ine<494-03-l>
o-alkanes clO-c30
n-butyl alcohol<71-36-3>
n-butyl phthalate<84-74-2>
n-«ethyl-n*-nitro-n-nitrosoguanidi
   ne<70-25-7>
n-nitroso-n-ethylurea<759-73-9>
n-nitroso-n-»ethylurea<684-93-5>
n-nitroso-n-«ethylurethane
   <615-53-2>
n-nitrosodi-n-butyla«ine<924-16-3>
n-nitrosodi-n-propyla«ine
   <621-64-7>
n-nitrosodiethanola«ine<1116-54-7>
n-nitrosodiethyla»ine<55-18-5>
n-nitrosodi«ethyla*ine<62-75-9>
n-nltrosodiphenyla»ine<86-30-6>
n-nitrosoBethylvinylaaine
n-nitrosopiperidine<100-75-4>
n-nitrosopyrrolldine<930-55-2>
n-pheny1thlourea
n-propyla»Ine<107-10-8>
naled<300-76-5>
naphthenic acid<1338-24-5>
nickel a»«oniu« sulfate<7785-20-8>
nickel carbonyl<12612-55-4>
nickel chloride<7718-54-9>
nickel hydroxide<12054-48-7>
nickel nitrate<13138-45-9>
nickel sulfate<7786-81-4>
nlckel<7440-02-0>
nicotine and salts<54-ll-5>
nltralin<4726-14-l>
nitrate<14797-55-8>
nitrates/nitrites
nitric acid<7697-37-2>
nitric oxide<10102-43-9>
nitriloacetates
nitrobenzene<98-95-3>
nitrogen dioxide<10102-44-0>
nitrogen peroxide<10102-44-0>
nitrogen tetroxide<10544-72-6>
ni trogen<7727-37-9>
nitroglycerine<55-63-0>
nitrophenol<25154-55-6>
nltroso«ethylurea<684-93-5>
nitroso«orpholine<59-89-2>
nitrotoluene
nonaphthalene
o-cresol<95-48-7>
o-«ethoxyphenol<90-05-l>
o-toluldine hydrochloride
   <636-21-5>
                         860

-------
                         Accession Ho.  7103000901
                  (cent)
o-xy lene<9 5- 47-6>
octane thy Ipyrophosphoraaide (QMPJl)
   <152-16-9>
oil and grease
oleyl alcohol condensed with 2
   moles ethyl ene oxide
osalua tetroxide<20816-12-0>
oxygen denand
ozore<1002 8-15-6 >
p-chloro-a-cresol< 59-50-7>
p-chloroaniline<106-47-8>
p-cresol<106-44-5>
p-dichlorobenzene<106-46-7>
p-di«ethylaainoazobenzene<60-ll-7>
P-nitroaniline<100-01-6>
P-xylene
PH
paraforaaldehyde<30525-89-4>
paraldehyde< 123-63-7>
paraquat<4685-14-7>
para thiorK 56-38- 2>
pcb-1016 (arochlor 1016)
   <12674-ll-2>
pcb-1221 (arochlor 1221)
   <11104-28-2>
pcb-1232 (arochlor 1232)
pcb-1242 (arochlor 1242)
   <53469-21-9>
pcb-1248 (arochlor 1248)
   <12672-29-6>
pcb-1254 (arochlor 1254)
   <11097-69-l>
pcb-1260 (arochlor 1260)
   <11096-82-5>
pentachlorobenzene<608-93-5>
pentachloroethane<76-01-7>
pentachloronitrobenzene (PCNB)
   <82-68-8>
pentachlorophenol<87-86-5>
perchloroethylene<127-18-4>
per thane <7 2- 56-0 >
phenacetin<62-44-2>
phenanthrene<85-01-8>
phenarsazine chloride<578-94-9>
phenol<108-95-2>
phenyl dichloroarsine<696-28-6>
phenyl acetic acid<103-82-2>
phenylnercury acetate<62-38-4>
phorate 298-0202
phosgene<75-44-5>
phosophorothioic acid/o/o>
   diaethyl ester,o-ester with n,
   n-dine thyIbenzene
phosphine<7803-51-2>
phosphoric acid<7664-38-2>
phosphorus and compounds
   <7723-14-0>
phosphorus oxychloride<10025-87-3>
phosphorus pentasulfide<1314-80-3>
phosphorus sulfide<13l4-80-3>
phosphorus trichloride<7719-12-2>
photon emitters
phthalic acid<88-99-3>
phthalic anhydride<85-44-9>
plperonyl butoxide<51-03-6>
plutoniua 238<13981-16-3>
Plutonium 239<15117-48-3>
polybroinated biphenyls (PBBs)
polychlorinated biphenyls (PCBs)
potassiu* arsenate<7784-41-0>
potassiua ars«nite<10124-50-2>
potassium bichro«ate<7778-50-9>
potassiuji chro«ate<7789-00-6>
potassiUR cyanide<151-50-8>
potassiua hydroxide<1310-58-3>
potassiua peraanganate<7722-64-7>
potassiua silver cyanide<506-61-6>
potassiua<7440-09-7>
pronaaide<23950-58-5>
propachlor<1918-16-7>
propanil<109-98-8>
proparqite<2312-35-8>
propionlc acid<79-09-4>
propionic anhydride<123-62-6>
propionitrile<107-12-6>
proplyene oxide<75-56-9>
propoxur<114-26-l>
pyrene<129-00-0>
pyrethrin<121-29-9>
pyridine<110-86-l>
quinoline< 91-22-5>
quinones
radiokrypton
radioxenon
radiua 226<13982-63-3>
radium 228<15262-20-1>
radon<10043-92-2>
reserpine<50-55-5>
resorcinol<108-46-3>
ronnel<299-84-3>
rotenone<83-79-4>
saccharin<81-07-2>
                         861

-------
                         Accession No.  7103000901
                  (cont)
safrole<94-59-7>
secondary nines
selenious acid<7783-00-8>
seleniua oxide<12640-89-0>
selenium sulfide<7446-34-6>
seleniuB<7782-49-2>
selenourea<630-10-4>
silver cyanide<506-64-9>
silver nitrate<7761-88-8>
silver<7440-22-4>
sil»ex<93-72-l>
siBazine<122-34-9>
soditui and co»pounds<7440-23-5>
sodium arsenate<7631-89-2>
sodiuB arsenite<7784-46-5>
sodiuB azide<26628-22-8>
sodiua bichro»ate<10588-01-9>
sodiin bifluoride<1333-83-l>
sodiuB bisulfite<7631-90-5>
sodiuB chroBate<7775-ll-3>
sodim cyanlde<143-33-9>
sodiua dodecylbenzenesulfonate
   <25155-30-0>
sodiin fluoroacetate (1080)
   <62-74-8>
sodiua hydrosulfide
sodiua hydroxide<1310-73-2>
sodiiw hypochlorite<7681-52-9>
sodiin methylate<124-41-4>
sodium nitrite<7632-00-0>
sodlua phosphate^ dibasic
   <7558-79-4>
sodiui phosphate^ tribaslc
   <7601-54-9>
sodlua selenite<10102-18-8>
sodiu«<7440-23-5>
streptozotocin<18883-66-4>
strobane<8001-50-l>
strontiua 89<14158-27-l>
strontiua 90<10098-97-2>
strontiuB sulfide<1314-96-l>
strychine< 57-24-9>
styrene<100-42-5>
sulfates
suIfides
sulfonaaide
sulfur dioxide<7446-09-5>
sulfur •onochloride<10025-67-9>
sulfurlc acid<7664-93-9>
suspended solids
tde<72-54-8>
terpenes
tetrachloroethylene<127-l8-4>
tetrachloroaethane<56-23-5>
tetraethyl dithiopyrophosphate
   <3689-24-5>
tetraethyl lead<78-00-2>
tetraethyl pyrophosphate<107-49-3>
tetrahydofuran<109-99-9>
tetranittOBethane<509-14-8>
thallic oxide<1314-32-5>
thalliua acetate<563-68-8>
thaiHUB carbonate<29809-42-b>
thailiu« chloride<7791-12-0>
thalllua nitrate<10102-45-l>
thalliua selenlte
thalliuB suifate<7446-18-6>
thalliuB<7440-28-0>
thioacetaBide<62-55-5>
thiophanate Bethyl<23564-05-8>
thiose«icarbazide<79-19-6>
thiourea<62-56-6>
thiuraB<137-26-8>
titaniuB<7440-32-6>
toluene diisocyanate<26471-62-5>
tolucne<108-88-3>
toluenediaBine<25376-45-8>
total reduced sulphur
total suspended particulates
toxaphene< 8001-35-2>
triallate<2303-17-5>
tribrOBOBethane<75-25-2>
tributyl phosphorotrithioate
   <78-48-8>
trichlorfon<52-68-6>
trichloroethane<25323-89-l>
trichloroethylene<79-01-6>
trichlorofluoro«ethane<75-69-4>
trichloroBethanethiol<75-70-7>
trichlorophenol (TCP)<25167-82-2>
triethanolanine dodecylbenzenesulf
   onate<27323-41-7>
triethylaBine<121-44-8>
trifluraline (treflan)<1582-09-8>
triBethylaBine<75-50-3>
trinitrobenzene<99-35-4>
tris(If3-dibroBopropyl)phosphate
   <126-72-7>
tritiu»<10028-17-8>
trypan blue<72-57*l>
trysb«n<50-31-7>
turbidity
uracil BUStard<66-75-l>
uraniua 234<13966-29-5>
                         862

-------
                             Accession Ho.   7103000901     (cent)

    uranium 235<15117-96-l>              zinc borate<1332-07-6>
    uranium 238<7440-61-1>               ziac brOBide<7699-45-8>
    uraniun<7440-61-l>                   zinc carbonate<3486-35-9>
    uranyl  acetate<541-09-3>             zinc chloride<7646-85-7>
    uranyl  nitrate<10102-06-4>           zinc cyanide
    urethane<51-79-6>                    zinc fluoride<7783-49-5>
    vanadie acid, aanoniun salt          zinc for«ate<557-41-5>
       <11115-67-6>                      zinc hydrosulfite<7779-86-4>
    vanadium pentoxide<1314-62-l>        zinc nitrate<7779-88-6>
    vanadiu»<7440-62-2>                  zinc phenol sulfonate<127-82-2>
    vanadyl sulfate<27774-13-6>          zinc phosphide<1314-84-7>
    vinyl acetate<108-05-4>              zinc silicofluoride<16871-71-9>
    vinyl chloride<75-01-4>              zinc sulfate<7733-02-0>
    vinylidene chloride<75-35-4>         zinc<7440-66-6>
    xylene<1330-20-7>                    zirconiui nitrate<13746-89-9>
    xylenol<1300-71-6>                   zirconiu* sulfate<14644-61-2>
    zinc acetate<557-34-6>               zirconiua tetrachloride
    zinc aBBoniuB chloride                  <10026-ll-6>
(CAS)  CAS  registry numbers of substances included in data bases 311-45-
    5;  630-20-6;  71-55-6; 79-34-5;    79-00-5; 75-34-3; 75-35-4;
    57-14-7; 79-01-6; 120-82-1; 95-94-3;       96-12-8; 106-93-4;
    95-50-1; 107-06-2; 78-87-5; 1615-80-1;  540-73-8;   122-66-7;
    57-55-6; 156-60-5; 120-82-1; 541-73-1;  542-75-6; 504-60-9;
    1120-71-4; 110-57-6; 106-46-7; 123-91-1; 130-15-4; 5344-82-1;
    106-89-8; 86-88-4; 134-32-7; 75-99-0; 58-90-2; 95-95-4; 93-76-5;
    93-72-1; 88-06-2; 94-75-7; 120-83-2; 94-75-7; 105-67-9; 51-28-5;
    121-14-2; 541-53-7; 87-65-0; 606-20-2;  1338-23-4; 110-75-8;
    91-58-7;       95-57-8; 131-89-5; 640-19-7; 80-62-6; 75-55-8;
    75-86-5; 91-59-8;      88-75-5; 79-46-9; 109-06-8; 107-19-7;
    88-85-7; 91-94-1; 119-90-4;     119-93-7; 205-99-2; 542-76-7;
    56-49-5; 72-55-9; 50-29-3; 101-14-4;    534-52-1; 504-24-5;
    101-55-3; 3165-93-3; 7005-72-3; 100-02-7;    2763-96-4; 99-55-8;
    83-32-9; 208-96-8; 75-07-0; 64-19-7; 108-24-7;    75-86-5; 67-64-1;
    75-05-8; 98-86-2; 506-96-7; 75-36-5; 107-02-8;      79-06-1;
    79-10-7; 107-13-1; 124-04-9; 15972-60-8; 309-00-2; 107-18-6;
    107-05-1; 80-15-9; 122-09-8; 100-44-7;  20859-73-8; 10043-01-3;
    7429-90-5; 33089-61-1; 61-82-5; 7664-41-7; 631-61-8; 1863-63-4;
    1066-33-7; 7789-09-5; 1341-49-7; 10192-30-0; 1111-78-0; 506-87-6;
    12125-02-9; 7788-98-9; 7632-50-0; 13826-83-0; 12125-01-8?
    1336-21-6;       1113-38-8; 131-74-8; 16919-19-0; 7773-06-0;
    12135-76-1; 3164-29-2;    1762-95-4; 7783-18-8; 628-63-7; 62-53-3;
    120-12-7; 7647-18-9;    11071-15-1; 7789-61-9; 10025-91-9;
    7783-56-4; 1309-64-4; 7440-36-0;   140-57-8; 1327-52-2; 1303-32-8;
    1303-28-2; 7784-34-1; 1327-53-3;      1303-33-9; 7440-38-2;
    1332-21-4; 1912-24-9; 2465-27-2; 115-02-6;      1918-00-9;
    14798-08-4; 542-62-1; 7440-39-3; 1861-40-1; 17804-35-2;
    225-51-4; 98-87-3; 71-43-2; 98-09-9; 108-98-5; 92-87-5; 56-55-3;
    50-32-8; 191-24-2; 207-08-9; 65-85-0; 100-47-0; 98-07-7; 98-88-4;
    100-44-7; 7787-47-5; 7787-49-7; 13597-99-4; 7440-41-7; 58-89-9;
    319-84-6; 319-85-7; 319-86-8; 92-52-4;  111-91-1; 111-44-4;
    39638-32-9; 117-81-7; 542-88-1; 7440-69-9; 7440-42-8; 7726-95-6;
    598-31-2; 108-86-1; 28906-38-9; 75-27-4; 74-83-9; 357-57-3;


                             863

-------
                         Accession Ho.  7103000901     (cent)

23184-66-9; 123-86-4;  85-68-7; 109-73-9; 107-92-6; 75-60-5;
543-90-8;      7789-42-6; 7440-43-9; 7778-44-1; 52740-16-6;
75-20-7; 13765-19-0;     592-01-8; 26264-06-2; 1305-62-0;
7778-54-3; 1305-78-8;  133-06-2;      63-25-2; 1563-66-2;
14762-75-5; 75-15-0; 630-08-0; 56-23-5; 353-50-4;      10045-97-3;
75-87-6; 305-03-3; 118-75-2; 57-74-9; 7782-50-5;     107-20-0;
108-90-7; 510-15-6; 124-48-1; 75-00-3; 75-01-4; 110-75-8;
67-66-3; 74-87-3; 107-30-2; 126-99-8; 7790-94-5; 2921-88-2;
1066-30-4; 7738-94-5;  10101-53-8; 7440-47-3; 10049-05-5; 218-01-9;
156-59-2; 8007-45-2; 7440-48-4; 7789-43-7; 544-18-3; 14017-41-5;
544-92-3; 7440-50-8; 56-72-4; 8021-39-4; 1319-77-3; 1319-77-3;
4170-30-3; 98-82-8; 142-71-2; 12002-03-8; 7447-39-4; 3251-23-8;
814-91-5; 10380-29-7;  7758-98-7; 815-82-7; 21725-46-2; 57-12-5;
506-68-3; 506-77-4; 460-19-5; 110-82-7; 108-94-1; 50-18-0;
20830-81-3; 8065-48-3; 55-91-4; 84-74-2; 117-84-0; 621-64-7;
2303-16-4; 333-41-5; 53-70-3; 132-64-9; 189-55-9; 124-48-1;
74-95-3;       84-74-2; 1918-00-9; 1194-65-6; 117-80-6; 25321-22-6;
75-27-4;    75-71-8; 594-04-7; 75-09-2; 696-28-6; 26638-19-7;
26952-23-8;    62-73-7; 60-57-1; 1464-53-5; 84-66-2; 109-89-7;
56-53-1; 94-58-6;      60-51-5; 131-11-3; 77-78-1; 124-40-3;
79-44*7; 62-75-9; 25154-54*5;   25321-14-6; 123-91-1; 828-00-2;
101-64-8; 36622-18-3;  142-84-7;       2764-72-9; 298-04-4;
330-54-1; 27176-87-0;  60-00-4; 1031-07-8;   959-98-8; 33213-65-9;
115-29-7; 7421-93-4; 72-20-8; 106-89-8;    563-12-2; 140-88-5;
75-00-3; 60-29-7; 97-63-2; 62-50-0; 56-38-2;      100-41-4;
107-12-0; 106-93-4; 107-06-2; 75-21-8; 96-45-7; 107-15-3;
151-56-4; 1185-57-5; 14221-47-7; 7705-08-0; 7783-50-8; 10421-48-4;
10028-22-5; 10045-89-3; 7758-94-3; 7720-78-7; 206-44-0; 86-73-7;
7782-41-4; 75-69-4; 50-00-0; 64-18-6; 110-17-8; 110-00-9; 98-01-1;
86-50-0; 1024-57-3; 76-44-8; 118-74-1; 87-68-3; 58-89-9; 77-47-4;
67-72-1; 70-30-4; 1888-71-7; 757-58-4; 302-01-2; 7647-01-0;
74-90-8;       7664-39-3; 74-90-8; 7783-06-4; 75-60-5; 193-39-5;
15046-84-1;    10043-66-0; 74-88-4; 9004-66-4; 7439-89-6; 78-83-1;
624-83-9;    78-59-1;  78-79-5; 54590-52-2; 120-58-1; 115-32-2;
143-50-0;      13983-27-2; 303-34-4; 301-04-2; 3687-31-8;
7756-95-4; 7783-46-2;      13814-96-5; 10101-63-0; 10099-74-8;
7446-27-7; 1072-35-1;  1335-32-6;       7446-14-2; 1314-87-0;
592-87-0; 7439-92-1; 58-89-9; 7439-93-2;   14307-35-8; 108-39-4;
108-38-3; 121-75-5; 110-16-7; 108-31-6;    123-33-1; 109-77-3;
7439-96-5; 148-82-3; 2032-65-7; 592-04-1;    10045-94-0; 7783-35-9;
592-85-8; 10415-75-5;  628-86-4; 7439-97-6;     74-93-1; 67-56-1;
91-80-5; 16752-77-5; 72-43-5; 126-98-7; 79-22-1;    71-55-6;
78-93-3; 1338-23-4; 60-34-4; 74-88-4; 108-10-1; 74-93-1;
80-62-6; 298-00-0; 56-04-2; 7786-34-7; 315-18-4; 2385-85-5;
7439-98-7; 75-04-7; 74-89-5; 150-68-5; 494-03-1; 71-36-3; 84-74-2;
70-25-7; 759-73-9; 684-93-5; 615-53-2; 924-16-3; 621-64-7;
1116-54-7;      55-18-5; 62-75-9; 86-30-6; 100-75-4; 930-55-2;
103-85-5; 107-10-8;    300-76-5; 1338-24-5; 7785-20-8; 12612-55-4;
7718-54-9; 12054-48-7;    13138-45-9; 7786-81-4; 7440-02-0;
54-11-5; 4726-14-1; 14797-55-8;     7697-37-2; 10102-43-9; 98-95-3;
10102-44-0; 10102-44-0; 10544-72-6;   7727-37-9; 55-63-0;
25154-55-6; 684-93-5;  59-89-2; 95-48-7; 90-05-1;       636-21-5;


                         864

-------
                             Accession Mo.   7103000901     (cont)

    95-47-6;  152-16-9; 20816-12-0; 10028-15-6; 59-50-7;    106-47-8;
    106-44-5;  106-46-7; 60-11-7;  100-01-6;  106-42-3;       30525-89-4;
    123-63-7;  4685-14-7; 56-38-2; 12674-11-2; 11104-28-2;
    11141-16-5;  53469-21-9; 12672-29-6; 11097-69-1; 11096-82-5;
    608-93-5;       76-01-7; 82-68-8; 87-86-5; 127-18-4; 72-56-0;
    62-44-2;  85-01-8;        578-94-9; 108-95-2; 696-28-6;  103-82-2;
    62-38-4;  75-44-5;  7803-51-2;        7664-38-2; 7723-14-0;
    10025-87-3;  1314-80-3; 1314-80-3; 7719-12-2;    88-99-3; 85-44-9;
    51-03-6;  13981-16-3; 15117-48-3; 7784-41-0;    10124-50-2?
    7778-50-9; 7789-00-6; 151-50-8; 1310-58-3; 7722-64-7;      506-61-6;
    7440-09-7; 23950-58-5; 1918-16-7; 109-98-8; 2312-35-8;
    79-09-4;  123-62-6; 107-12-0;  75-56-9;  114-26-1; 129-00-0; 121-29-9;
    110-86-1;  91-22-5; 13982-63-3; 15262-20-1; 10043-92-2; 50-55-5;
    108-46-3;  299-84-3; 83-79-4;  81-07-2;  94-59-7; 7783-00-8;
    12640-89-0;       7446-34-6; 7782-49-2;  630-10-4; 506-64-9;
    7761-88-8; 7440-22-4;       93-72-1; 122-34-9; 7440-23-5;
    7631-89-2; 7784-46-5; 26628-22-8;       10588-01-9; 1333-83-1;
    7631-90-5; 7775-11-3; 143-33-9; 25155-30-0;    62-74-8; 16721-80-5;
    1310-73-2; 7681-52-9; 124-41-4; 7632-00-0;       7558-79-4;
    7601-54-9; 10102-18-8; 7440-23-5; 18883-66-4; 8001-50-1;
    14158-27-1;  10098-97-2; 1314-96-1; 57-24-9; 100-42-5;  7446-09-5;
    10025-67-9;  7664-93-9; 72-54-8; 127-18-4; 56-23-5; 3689-24-5;
    78-00-2;  107-49-3; 109-99-9;  509-14-8;  1314-32-5; 563-68-8;
    29809-42-5;  7791-12-0; 10102-45-1; 7446-18-6; 7440-28-0; 62-55-5;
    23564-05-8;  79-19-6; 62-56-6; 137-26-8; 7440-32-6; 26471-62-5;
    108-88-3;  25376-45-8; 8001-35-2; 2303-17-5; 75-25-2; 78-48-8;
    52-68-6;  25323-89-1; 79-01-6; 75-69-4;  75-70-7; 25167-82-2;
    27323-41-7;  121-44-8; 1582-09-8; 75-50-3; 99-35-4; 126-72-7;
    10028-17-8;  72-57-1; 50-31-7; 66-75-1;  13966-29-5; 15117-96-1;
    7440-61-1; 7440-61-1; 541-09-3; 10102-06-4; 51-79-6; 11115-67-6;
    1314-62-1; 7440-62-2; 27774-13-6; 108-05-4; 75-01-4; 75-35-4;
    1330-20-7; 1300-71-6; 557-34-6; 1332-07-6; 7699-45-8; 3486-35-9;
    7646-85-7; 7783-49-5; 557-41-5; 7779-86-4; 7779-88-6; 127-82-2;
    1314-84-7; 16871-71-9; 7733-02-0; 7440-66-6; 13746-89-9;
    14644-61-2;        10026-11-6
(CNH)   Contact name(s): Siegel,S. ;    Siegel,S.
(COR)   Contact organization: Office of CSIH Administration
(ROR)   Responsible Organization:  Office of Pesticides and Toxic
    Substances.Office of Toxic Intergration.
                             865

-------
                             Accession lo.  7202000005


-------
                             Accession No.  7202000005     (cont)

(ANL)  Lab analysis based on EPA-approved or accepted methods? NO
(PRE)  Precision: Precision and accuracy estimates are not available.
    Edit Programs for validity of bibliographic information only; no
    edits for accuracy.
(CBY)  Data collected by: Self reporting pesticide producers and
    Manufacturers ;EPA headquarters Office of
(ABY)  Data analyzed by: Self reporting primary data analysis
    EPA headquarters Office of Pesticide Programs
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Development of regulations
    or standards
(PR2)  Secondary purpose of data collection: Risk assessment
(AUT)  Authorization for data collection: statutory authorization is P
    L 92-516 as amended, section 3(c)<2)(c)   (FIFRA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Fora of available reports and outputs of data base: Printouts on
    request
    Microfilm
(NUS)  number of regular users of data base: 350 people (OPP revleu
    Scientists and contract revieuers)
(USR)  Current regular users of data base: EPA headquarter offices
    Office of Pesticide Programs
(CNF)  Confidentiality of data and limits on access: Limits on access
    within EPA and outside agency for some  data
(DLC)  Primary physical location of data: Headquarters office
(DST)  Fora of data storage: Magnetic disc ;Microfich/fila
(DAC)  Type of data access: Commercial software NYLBOR ;EPA hardware
    IBM 370/168  HIDS:7200000905
(CHG)  Direct charge for non-EPA use: no outside use/access permitted
(OPDT)  Frequency of data base master file up-date: Weekly
(CMP)  Completion of fora:
    if 111 Ian C. Grosse
    OFC: EPA/(OPTS)/(OPP)/(PSD)
    AD: 401 M St., S.tf. Washington, DC 20460
    PH: (703) 557-7143
(OF)  Date of fora coupletion: 12-22-82
(NMAT)  Number of substances represented in data base: 73
(NCAS)  Number of CAS registry numbers in data base: 20
(MAT)  Substances represented in data base:
    2-ethyl,1,3-hexanediol               benefin<1861-40-l>
    4-Aninopyridine<504-24-5>            bifenox
    CDEC                                 boric acid and salts
    EPTC                                 bromacil and salts
    OBPA                                 butralin
    acephate                             butyl acetate<123-86-4>
    alachlor<15972-60-8>                 butylate
    aluminum phosphide<20859-73-8>       carboxin (vitavax)
    ammonium sulfamate<7773-06-0>        chlorbromuron
    aspon                                chloroneb
    atrazine<1912-24-9>                  chloropicrin
    bandane                              chloroxuron


                             867

-------
                            Accession Ho.  7202000005     (cent)

   coUBaphos<56-72-4>                   aethoayl<16752-77-5>
   cyanazine<21725-46-2>                aethoprene
   cyclohexiaide                        aetobroauron
   cyprazlne                            aetolachlor
   daainozide  (alar)                    aonuron<150-68-5>
   ddd(tde)                             naphthalene<91-20-3>
   deet                                naphthaleneacetic acid
   dial if or                             neburon
   dlcaaba<1918-00-9>                   norea
   dichlone<117-80-6>                   phosalone
   dicrotophos (bidrin)                 potassiua azide
   dluron<330-54-l>                    potassim cyanate
   endosulfan<115-29-7>                 redox potential (oxidation
   •thlolate                               reduction potential)
   ethoxyquin                           slduron
   fluOMeturon                         sl«azine<122-34-9>
   fUMarin and Ha salt                 sodiua azide<26628-22-8>
   hypochlorites                        tebuthiuron
   isocyanurates                        teaephos
    isopropalln                         terbacil
   kelthane<115-32-2>                   terbutol
    llnuron                             terrazole
    •cpa and salts                      trlchlorobezychlore
   •ethaaidophos  (aonitor)             warfarin and Ha salt
    aethidathion                        zinc phosphide<1314-84-7>
(CAS)  CAS  registry nuabers of substances  included in data base: 504-24-
    5; 15972-60-8; 20859-73-8; 7773-06-0;       1912-24-9; 1861-40-1;
    123-86-4;  56-72-4;  21725-46-2;  1918-00-9;       117-80-6;  330-54-1;
    115-29-7;  115-32-2; 16752-77-5; 150-68-5;    91-20-3; 122-34-9;
    26628-22-8; 1314-84-7
(CBM)  Contact nawe(s): Grosse,V.C.   ;    Fry^B.C.  ;    €rosse,H.C.
(ROR)  Responsible Organization:  Office  of Pesticides and Toxic
    Substances.Office of Pesticide  Programs.Program Suppor
                             868

-------
                             Accession No.  7202000009

Industry ;Manufacturer
(DS)  Time period covered by data base: 01-01-50 TO 09-30-81
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: weekly
(NOB)  Number of observations in data base: 40000.(Estimated)
(NED  Estimated annual increase of observations in data base: 200.
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base: (N/A.)
(NCS)  No. stations or sources currently originating/contributing data:
    (N/A.)
(NOF)  Number of facilities covered in data base (source monitoring): (N
    /A.)
(GEO)  Geographic coverage of data base: National
(LOC)  Data elements identifying location of station or source include:
    company number
(FAC)  Data elements identifying facility Include: Parent corp name
    ;Parent corp location ;Program identifier
(CDE)  Pollutant identification data are: Other coding scheme
(LIM)  Limitation/variation in data of which user should be aware:  None
(DPR)  Data collect./anal. procedures conform to ORD guidelines: Collect
    ion method documented ;QA procedures documented
(ADD)  Lab Audit:  Data not based on lab analysis.
(PRE)  Precision:  Precision and accuracy estimates are not available
(EDT)  Editting: Edit procedures used and documented.
(CBY)  Data collected by:  EPA headquarters Office of Pesticide
    Programs, Registration  Division
(ABY)  Data analyzed by: EPA headquarters Office of Pesticide Programs
(IDL)  Laboratory identification: NO
(AUT)  Authorization for data collection: Statutory authorization is P
    L 92-516 (The Federal insecticide. Fungicide,  and Rodenticide Act
    as amended)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    158-R-0068 J158-R-0066


                             869

-------
                             Accession Mo.  7202000009     (cont)

(REP)  Fora of available reports and outputs of data base: Printouts on
    request
    Microfilm
    Machine-readable raw data
(NUS)  Number of regular users of data bases 300
(OSR)  Current regular users of data base: EPA headquarter offices
    EPA regional offices
    Other federal agencies
    States
    private industry
(CNF)  Confidentiality of data and !!•its on access: Limits on access
    within EPA and outside agency for sone  data
(DLC)  Primary physical location of data: HCC/IBM
(DST)  Fora of data storage: Magnetic disc
(DAC)  Type of data access: EPA software PPIS Cobol & Easytrlve
    MIDS:7200000909 >EPA hardware IBM 370/168
(CHG)  Direct charge for non-EPA use: no outside use/access permitted
    of confidential  formulas.
(OPDT)  Frequency of data base vaster file up-date: Meekly
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    Establishment Registration Support System (ERSS)  in Office of
    Enforcement
(CMP)  Completion of fora:
    Elgin G« Fry
    OFC: EPA/(OPTS)/(OPP)/(PSD)/(SSB)
    AD: TS-757, 401 M St., S.H., Washington, DC 20460
    PH: (202)426-8862
(OF)  Date of fora completion: 12-22-82
(HMAT)  lumber of substances represented in data base: 77
(•CAS)  Number of CAS registry numbers in data base: 70
(MAT)  Substances represented in data base:
    l,2-dibromo-3-chloropropane          coal tar<8007-45-2>
       (dbcp)<96-12-8>                   creosote<8021-39-4>
    2,4,5-trichlorophenol<95-95-4>       ddd(tde)
    1f 4,5-trichlorophenoxyacetlc acid    ddt
       (T)<93-76-5>                      diallate<2303-16-4>
    2-fluoroacetamide (1081)<640-19-T>   dleldriiK60-57-l>
    acrylonitrile<107-13-l>              dimethoate<60-51-5>
    aldrin<309-00-2>                     ebdc's (ethyleneblsdlthiocarbamate
    amltraz (baam)<33089-61-l>              s)
    araiite<140-57-8>                    endrin<72-20-8>
    arsenic acid<1327-52-2>              epn (ethyl-p-nitrophenyl thlonoben
    arsenic pentoxida<1303-28~2>            zenephosonate)<2104-64-5>
    arsenic trioxide          ethylene  dibromide (edb)<106-93-4>
    arsenic<7440-38-2>                   ethylene  oxide<75-21-8>
    benomyl<17804-35-2>                  heptachlor<76-44-8>
    benzac                               kepone<143-50-0>
    cad»iu«<7440-43-9>                   lindane<58-89-9>
    chloranil<118-75-2>                  maleic hydrazide<123-33-l>
    chlordane<57-74-9>                   mirex<2385-85-5>
    chlorobenzilate<510-15-6>            monuron<150-68-5>
    chloroform<67-66-3>


                             870

-------
                             Accession Ho.  7202000009
                  (cent)
    octanethylpyrophosphoramide (OMPA)
       <152-16-9>
    pentachloronitrobenzene (PCNB)
       <82-68-8>
    pentachlorophenol<87-86-5>
    phenarsazine  chloride<578-94-9>
    pronaaide<23950-58-5>
    safrole<94-59-7>
    silwex<93-72-l>
    sodium  fluoroacetate (1080)
       <62-74-8>
    strobane<8001-50-l>
    strychnine<57-24-9>
    thlophanate aethyl<23564-05-8>
    toxaphene<8001-35-2>
    trifluralin 
    trysben<50-31-7>
    2,4-d acid<94-75-7>
    ca  captan<133-06-2>
    carbaryl<63-25-2>
    carbofuran<1563-66-2>
    carbon  tetrachloride<56-23-5>
chlorpyrifos<2921-88-2>
dialkyl phosphates
dicanba<1918-00-9>
dichlorvos (ddvp)<62-73-7>
erbon<136-25-4>
ethyl parathion<56-38-2>
•alathion<121-75-5>
aethanearsonates
•ethyl parathion<298-00-0>
paraquatX 4685-14-7>
perthane<72-56-0>
piperonyl butoxide<51-03-c»
polychlorinated biphenyls (PCBs)
propoxur<114-26-l>
ronnel<299-84-3>
rotenone<83-79-4>
s,s^s-tributyl phosphorotrithioat
   <78-48-8>
triallate<2303-17-5>
tributyl phosphorotrithioate
   <78-48-8>
trichlor fon<52-68-6>
(CAS)   CAS  registry numbers of substances included in data base:  96-12-8
    ;  95-95-4;  93-76-5;  640-19-7;      107-13-1;  309-00-2;  33089-61-1;
    140-57-8;  1327-52-2;  1303-28-2;        1327-53-3; 7440-38-2;
    17804-35-2;  7440-43-9;  118-75-2;  57-74-9;        510-15-6; 67-66-3;
    8007-45-2;  8021-39-4;  2303-16-4;  60-57-1;  60-51-5;      72-20-8;
    2104-64-5;  106-93-4;  75-21-8;  76-44-8;  143-50-0; 58-89-9;
    123-33-1;  2385-85-5;  150-68-5; 152-16-9;  82-68-8; 87-86-5;
    578-94-9;        23950-58-5;  94-59-7;  93-72-1; 62-74-8; 8001-50-1;
    57-24-9;        23564-05-8; 8001-35-2; 1582-09-8; 50-31-7; 94-75-7;
    133-06-2;     63-25-2;  1563-66-2;  56-23-5;  2921-88-2; 1918-00-9;
    62-73-7; 136-25-4;       56-38-2;  121-75-5; 298-00-0; 4685-14-7;
    72-56-0; 51-03-6; 114-26-1;    299-84-3; 83-79-4; 78-48-8;
    2303-17-5;  78-48-8;  52-68-6
(Cf|M)   Contact  naae(s):  Fry,E.G.   ;     Fry/E.G.
(COR)   Contact  organization:  Prograa  Support  Div. GPP,OPTS
(ROR)   Responsible  Organization: Office of  Pesticides and  Toxic
    Substances.Office of  Pesticide Prograas.Program Suppor
                             871

-------
                             Accession No.  7205000001

(DQ)  Date of Questionaire: 12-02-82
(HAN)  Name of Data Base of Model: National Human Milk Monitoring
    Prograa
(ACR)  Acronym of Data Base or Model: IHMP
(MED)  Media/Subject of Data Base or Model: Other human milk
(ABS)  Abstract/Over view of Data Base or Model:  Data base contains
    values of chlorinated.    hydrocarbon insecticides and
    polychlorinated biphenyl residues found in human milk saaples
    provided by approximately 3,000 volunteers randomly selected
    from the entire continental O.S.
(CTC)  COHTACTS: Subject matter Jerry Blonde11 (703)557*0267;
    Coaputer-related Jerry Blonde11 (703)557-0267; EPA Office of
    Pesticide Programs, Health Effects Branch
(DTP)  Type of data collection or monitoring: Point source data
    collection human volunteers
(STA)  Data Base status: Operational/ongoing
(CRP)  Groups of substances represented in Data Base: 129 307 CHA ;48
    cancelled pesticides ;9 monitoring pesticides
(NPP)  Non-pollutant parameters included in the data base: Collection
    method ;Health effects ;Location ;Physical data ^Population
    demograph Volume/mass measures
(DS)  Time period covered by data base: 01-01-75 TO 09-30-81
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: one time only
(NOB)  Number of observations in data base: 30000.(Estimated)
(NEI)  Estimated annual increase of observations in data base: 100.
(INF)  Data base includes: Rau data/observations
(NTS)  Total number of stations or sources covered in data base: 500.
(NCS)  No. stations or sources currently originating/contributing data:
    500.
(NOF)  Number of facilities covered in data base (source monitoring): 50
    0.
(6EO)  Geographic coverage of data base: National
(LOG)  Data elements identifying location of station or source include:
    State ^Project identifier ;Hospltal Identification
(FAC)  Data elements identifying facility include: Program Identifier
    ;Hospital Identification
(CDE)  Pollutant identification data are: Other coding scheme
(LIN)  Limitation/variation in data of which user should be aware: Sampl
    e is representative for each of 48 states.  Major periods covered
    are 1975-76 (1436  observations) and 1978-79 (1800 observations).
    Annual increase of 100 is ongoing in the absence of major new data
    collection in 1981-82.  The data base is accessed through the
    Health Effects Branch, Hazard Evaluation   Division, Office of
    Pesticides and Toxic Substances,   as veil as through Colorado
    State University.
(DPR)  Data collect./anal, procedures conform to ORD guidelines: Saaplin
    g plan documented jCollection method documented ;Analysis method
    document QA procedures documented
(AWL)  Lab analysis based on EPA-approved or accepted methods? YES
(AUD)  Lab Audit: Lab audit is satisfactory*
(PRB)  Precision: Precision and accuracy estimates exist for all


                             872

-------
                             Accession No.  7205000001     (cent)

    measurements
(EOT)  Editting: Edit procedures used and documented.
(CBY)  Data collected by: Contractor lab Colorado State University and
    various labs  under cooperative agr
(ABY)  Data analyzed by: Contractor lab Colorado State University and
    various labs   under cooperative agreements
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Development of regulations
    or standards
(PR2)  Secondary purpose of data collection: Risk assessment
(AUT)  Authorization for data collection: Statutory authorization is P
    L 92-516 as amended. Section 20 (Federal  Insecticide, Fungicide,
    and Rodenticide Act-FIFRA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Forn of available reports and outputs of data base: Publications
    National Study to Determine Levels of Chlorinated   Hydrocarbon
    Insecticides in Human Milk 1975-76, vol. I 4 II.
    ray data available on request
(NUS)  Number of regular users of data base: 50-100
(USR)  Current regular users of data base: EPA headquarter offices
    Office of Pesticides & Toxic Substances, Office of Research and
    Development, Special Pesticide Review Division
    EPA regional offices
    EPA laboratories
    Other federal agencies
    States
    World Health Organization, United nations
    Food and Agriculture Organization, United Nations
(CNF)  Confidentiality of data and limits on access: Limits on access
    within EPA and outside agency for some  data
(DLC)  Primary physical location of data: Contractor
(DST)  Form of data storage: Magnetic tape
(DAC)  Type of data access: Software system at Colorado State
    University
(CHG)  Direct charge for non-EPA use: yes
(UPDT)  Frequency of data base master file up-date: Annually
(CMP)  Completion of form:
    Jerry Blonde11
    OFC: EPA/(OPTS)/(OPP)/(HED)
    AD: 1921 Jefferson-Davis Highway, Arlington, VA 22202  PR:
    (703)557-0267
(OF)  Date of form completion: 01-27-83
(NMAT)  Number of substances represented in data base: 20
(NCAS)  Number of CAS registry numbers in data base: 15
(MAT)  Substances represented in data base:
    4,4*-ddd(p,p'tde)                    bhc-beta<319-85-7>
    4,4'-dde(p,p'-ddx)<72-55-9>          chlordane<57-74-9>
    4,4'-ddt<50-29-3>                    ddd(tde)
    aldrin<309-00-2>                     ddt
    bhc (lindane)-gamma<58-89-9>         dieldriiK60-57-l>
    bhc-alpha<319-84-6>                  endrin<72-20-8>


                             873

-------
                             Accession Ho.  7205000001     (cont)

    heptachlor epoxide<1024-57-3>        pcb-1254 (arochlor 1254}
    heptachlor<76-44-8>                     <11097-69-l>
    hexachlorobenzene<118-74-1>          pcb-1260 (arochlor 1260)
    kepone<143-50-0>                        <11096-82-5>
    lindane<58-89-9>                     polychlorlnated blphenyls (PCBs)
(CAS)  CAS registry lumbers of substances included in data base: 72-55-9
    ; 50-29-3; 309-00-2; 58-89-9;     319-84-6; 319-85-7; 57-74-9;
    60-57*1; 72-20-8; 1024-57-3; 76-44-8;    118-74-1; 143-50-0;
    58-89-9; 11097-69-1; 11096-82-5
(CiM)  Contact naae(s): Jerry Blonde 11 j Jerry 81ondell
(COR)  Contact organization: of Pesticide Programs, Health Effects
    Branch
(ROR)  Responsible Organization: Office of Pesticides and Toxic
    Substances.Offlee of Pesticide Programs*Hazard Evaluat
                             874

-------
                             Accession No,  7205000002

(DQ)  Date of Questionaire: 12-02-82
(HAM)  Name of Data Base of Model: National Electronic Injury
    Surveillance System
(ACR)  Acronya of Data Base or Model: NEISS
(MED)  Media/Subject of Data Base or Model: Other sample is hospital
    emergency rooms which treat pesticide    poisonings.
(ABS)  Abstract/Overview of Data Base or Model: NEISS consists of a
    listing of pesticide     poisoning incidents giving information on
    type of pesticide/ route of exposure, whether or not the  case was
    diagnosed as a poisoning by a physician, what symptoms, if any,
    were present, the brand name    of the pesticide, and the EPA
    registration number of the product, if known.
(CTC)  CONTACTS: Subject matter   Jerome Blondell    <703)557-57S5>
    Computer-related  Eileen
(DTP)  Type of data collection or monitoring: Combination/Other
    monitoring of injuries (pesticide poisonings)   treated in hospital
    emergency rooms.
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented in Data Base: All pesticides in
    use are covered.
(NPP)  Non-pollutant parameters included in the data base: Exposure
    data ;Health effects jLocatlon population demographics ;
    Sampling date /Treatment devices ;pesticide type ;route of exposure
    ; physician diagnosis of poisoning ;symptoms present lage & sex of
    patient ; disposition of case ;body part affected ;EPA regulation
    number
(DS)  Time period covered by data base: 01-01-79 to Present
(TRM)  Termination of data collection: Mot anticipated
(FRO)  Frequency of data collection or sampling: Annual reports.
(NOB)  Number of observations in data base: 17207(Estimated)
(NEI)  Estimated annual increase of observations in data base: 18500.
(INF)  Data base includes: Raw data/observations ;Summary aggregate
    observations
(NTS)  Total number of stations or sources covered in data base:  74.
(NCS)  Mo. stations or sources currently originating/contributing data:
    52.
(NOF)  Number of facilities covered In data base (source monitoring): 74
    •
(CEO)  Geographic coverage of data base: National
(LOG)  Data elements identifying location of station or source include:
    County ;State (available to Health Effects Branch only)
(PAG)  Data elements identifying facility include: hospital
    identification number assigned by Consumer Product Safety
    Commission
(CDE)  Pollutant identification data are; Other coding scheme
(LIM)  Limitation/variation in data of which user should be aware:  Pesti
    cide data accessible by type only, i.e. Insecticide, rodenticlde,
    etc.
(DPR)  Data collect./anal, procedures conform to ORD guidelines:  Samplin
    g plan documented ;Analysis method documented
(AML)  Lab analysis based on EPA-approved or accepted methods? NO
(AUD)  Lab Audit: Data not based on lab analysis.


                             875

-------
                             Accession Ho.  7205000002     (cont)

(PRE)  Precisions Precision and accuracy estimates exist but are not
    included in data base
(EOT)  Editting: Edit procedures used but undocumented.
(CBY)  Data collected by: hospital personnel
(ABY)  Data analyzed by: Other federal agency U.S. Consumer Product
    Safety Commission     (CPSC)
(IDL)  Laboratory identification: 10
(PR2)  Secondary purpose of data collection: Special study
CAOT)  Authorization for data collection: Ho statutory requirement:
    Data collection requirement is    to support Agency research into
    health effects of pesticides.
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base: Unpublished
    reports Report of First Year Data-Interagency   Agreement with the
    Consumer Product Safety Commission
(JIUS)  lumber of regular users of data base: 5
(DSR)  Current regular users of data base: EPA headquarter offices
    Health Effects Branch, Office of Pesticide    Programs
    EPA laboratories Pesticide Incident Monitoring System (PINS) Data
    Center, Miami FL.
(CNF)  Confidentiality of data and limits on access: Limits on access
    within EPA and outside agency for some  data
(DLC)  Primary physical location of data: Other federal agency
(DST)  Form of data storage: Magnetic disc
(DAC)  Type of data access: through the Health Effects Contact with the
    Consumer Product Safety Commission
(CHG)  Direct charge for non-EPA use: Report or abstract of data
    available at no charge
(OPDT)  Frequency of data base master file up-date: Semi-annually
    Bother report annually
(ROB)  lon-EPA data bases used in conjunction with this data base: repor
    ts from Poison Control Centers
(CMP)  Completion of form:
    Mary Frankenberry
    OFC: EPA/(OPTS)/(OPP)/(HED)/(HEB)
    AD: 401 M St., S.tf., Hashing ton, DC 20460
    PH: (202)426-2454
(OF)  Date of form completion: 01-27-82
(MMAT)  Huaber of substances represented in data base: 78
(RCAS)  lumber of CAS registry numbers in data base: 69
(MAT)  Substances represented in data base:
    l,2-dibromo-3-chloropropane          arsenic acid<1327-52-2>
       (dbcp)<96-12-8>                   arsenic pentoxide<1303-28-2>
    2,4,5-trichlorophenol<95-95-4>       arsenic trioxide<1327-53-3>
    2,4,5-trlchlorophenoxyacetic acid    arsenic<7440-38-2>
       (T)<93-76-5>                      benomyl<17804-35-2>
    2-fluoroacetamide (1081)<640-19-7>   benzac
    acrylonitrlle<107-13-1>              c admium<7440-43-9>
    aldrin<309-00-2>                     chloranil<118-75-2>
    amltraz (baam)<33089-61-1>           chlordane<57-74-9>
    aramite<140-57-8>                    chlorobenzilate<510-15-6>


                             876

-------
                             Accession Ho.   7205000002
                  (cont)
    chlorofora<67-66-3>
    coal  tar<8007-45-2>
    creosote<8021-39-4>
    ddd(tde)
    ddt
    diallate<2303-16-4>
    dieldrin<60-57-l>
    di«ethoate<60-51-5>
    ebdc's  (ethylenebisdithiocarbaaate
       s)
    endrin<72-20-8>
    epn (ethyl-p-nitrophenyl thlonoben
       zenephosonate)<2104-64-5>
    ethylene  dibroaide (edb)<106-93-4>
    ethylene  oxide<75-21-8>
    heptachlor<76-44-8>
    kepone<143-50-0>
    lindane<58-89-9>
    •aleic  hydrazide<123-33-l>
    •irex<2385-85-5>
    •onurotK 150-68-5>
    octa»ethyIpyrophosphoraside (OMPA)
       <152-16-9>
    pentachloronitrobenz«ne (PCNB)
       <82-68-8>
    pentachlorophenol<87-86-5>
    phenarsazine  chloride<578-94-9>
    prona«ide<23950-58-5>
    safrole<94-59-7>
    silvex<93-72-l>
    sodli^i  fluoroacetate  (1080)
       <62-74-8>
    strobane<8001-50-1>
thiophanate methyl<23564-05-8>
toxaphene<8001-35-2>
trifluraline (treflan)<1582-09-8>
trysben<50-31-7>
2^4-d acid<94-75-7>
az cacodyllc acid and salts
   <75-60-5>
captan<133-06-2>
carbaryl<63-25-2>
carbofuran<1563-66-2>
carbon t«trachloride<56-23-5>
chlorpyrifos<2921-88-2>
dlalkyl phosphates
dicaaba<1918-00-9>
dichlorvos (ddvp)<62-73-7>
erbon<136-25-4>
ethyl parathion<56-38-2>
•alathion<121-75-5>
•ethanearsonates
•ethyl parathion<298-00-0>
paraquat<4685-14-7>
P erthane<7 2-56-0>
piperonyl butoxide<51-03-6>
polychlorlnated biphenyls CPCBs)
propoxur<114-26-l>
ronnel<299-84-3>
rotenone<83-79-4>
s,sxs-tributyl phosphorotrithioat
   <78-48-8>
triallate<2303-17-5>
tributyl phosphorotrithioate
   <78-48-8>
trichlorfon<52-68-6>
    strychnine<57-24-9>
{CAS)   CAS registry nu«l>ers of substances Included in data base:  96-12-8
    ;  95-95-4; 93-76-5;  640-19-7;      107-13-1;  309-00-2;  33089-61-1;
    140-57-8; 1327-52-2;  1303-28-2;        1327-53-3;  7440-38-2;
    17804-35-2;  7440-43-9;  118-75-2;  57-74-9;        510-15-6;  67-66-3;
    8007-45-2; 6021-39-4; 2303-16-4;  60-57-1;  60-51-5;      72-20-8;
    2104-64-5; 106-93-4;  75-21-8;  76-44-8;  143-50-0;  58-89-9;
    123-33-1; 2385-85-5;  150-68-5;  152-16-9;  82-68-8; 87-86-5;
    578-94-9;        23950-58-5; 94-59-7;  93-72-1;  62-74-8; 8001-50-1;
    57-24-9;        23564-05-8; 8001-35-2; 1582-09-8;  50-31-7;  94-75-7;
    75-60-5;      133-06-2;  63-25-2;  1563-66-2; 56-23-5;  2921-88-2;
    1918-00-9; 62-73-7;       136-25-4; 56-38-2;  121-75-5;  298-00-0;
    4685-14-7; 72-56-0;  51-03-6;   114-26-1;  299-84-3; 83-79-4;
    78-48-8; 2303-17-5;  78-48-8; 52-68-6
(CHM)   contact naae(s):  Blondell/J.     ;     Kessler,E«;     Blondell,J.
(ROR)   Responsible  Organization: Office of  Pesticides and  Toxic
    Substances.Offlee  of  pesticide  Prograss.Hazard Evaluat
                             877

-------
                              Accession Bo.   7205000003

 (DQ)   Date of Questionaire:  12-02-82
 (MAM)   name of Data Base of  Model:  Pesticide Incident Monitoring System
 (ACR)   Acronym of Data Base  or  Model:  PINS
 (MED)   Media/Subject of Data Base or Model:  Air  ;Blood  ;Drinking Hater
     ;Ground water ;Runoff agricultural j   Sediment  >Soil ;Tissue
     human, animal, fish
 CABS)   Abstract/Overview of  Data  Base  or  Model:  The  Pesticide
     Monitoring Systea (PIMS) enters,  stores, coordinates and retrieves
     pesticide    incident data  within  the EPA.   The  system develops and
     •aintains reporting sources,  Monitors suspected   incidents and
     provides confirmatory analysis  and data  on  circumstances of the
     incident.
 CCTC)   COMTACTS:  Subject matter James  J.  Boland  (703)557-0576;
     Computer-related Kelly Thomas (305)547-5823.? EPA Office Hazard
     E-valuation Division, Office  of Pesticide
 (DTP)   Type of data collection  or monitoring: Combination/Other data
     collection or monitoring is often   determined   by  the nature of
     the incident.
 (STA)   Data Base  status:  Partially Operational/Under revision
 (GRP)   Groups of  substances  represented in Data  Base: 43 air priority
     chemicals ;129 307 CMA ;41  CMA potential criteria }    21 drinking
     water standards ;9 potential  drinking water  ;29 drinking water
     monitoring ;    299 hazardous  substances ;48  cancelled pesticides ;9
     monitoring pesticides ;     54 TSCA  assessment >16 Pre-RPAR
 (MPP)   Non-pollutant parameters included in the  data base: Biological
     data yChemical data ^Collection method Concentration measures ;
    Disposal ^Exposure data  ^Geographic subdivision ;Health effects ;
     Industry ;Location }Manufacturer ;Physical data precipitation ;
     Sampling date  ;Site description ;Dse ;Uind direction ;fflnd velocity
    ;  some application methods ;Rates
 (DS)   Time period  covered by data base: 01-01-66 TO 09-30-81
 (TRM)   Termination of data collection: lot anticipated
 (PRO)   Frequency of data  collection or sampling: Other varies as
    incidents are  reported-may be as frequently  as daily.
 (MOB)   number of observations in data base:  53000.(Actual)
 (IfEl)   Estimated annual Increase of observations in data base: 4000.
 (INF)   Data base includes: Raw data/observations ^Summary aggregate
    observations
 (NTS)   Total number of stations or sources covered in data base: 100
    (or more.)
 (NCS)   No.  stations or  sources currently originating/contributing data:
    50  (major contributors.)
 (MOP)   Number of facilities covered in data base (source monitoring): (N
    w "A f
 (GEO)   Geographic  coverage of data base: National
 (LOC)   Data elements Identifying location of station or source include:
    State ;County  ;City ;Project identifier ;Agency or reporting source
(CDE)   Pollutant Identification data are: Other coding scheme
(LIN)   Limitation/variation in data of which user should be aware:  Pesti
    cides with most reported  incidents are those with high agricultural
    and home use rates.   No  incidents have been reported for some  of
    the   pesticides.  PlMs is a voluntary system—as such,  numbers of


                             878

-------
                             Accession Ho.  7205000003     (cont)

    reports vary as does the quality (e.g. confined as to pesticide
    cause. )
(ANL)  Lab analysis based on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: Data not based on lab analysis.
(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base    Edit automated data processing system
    edited periodically.
(CBY)  Data collected by: Self reporting ;Local agency ;State agency 3*
    collecting 90% of the reports. ; Regional office ? EPA lab
    Contractor lab ^Contractor 8 universities are  collecting the
    reports. ;    Other federal agency JEPA headquarters
(ABY)  Data analyzed by: Local agency
    State agency
    Regional office
    SPA lab
    Contractor lab
    Contractor cooperative agreement with the University of    Miami,
    School  of Medicine-operates PIMS
    Other federal agency
    EPA headquarters
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Development of regulations
    or standards
(PR2)  Secondary purpose of data collection: Anticipatory/research
(AUT)  Authorization for data collection: Statutory authorization  is P
    L 92-516 as amended, Section 3 (The Federal    Insecticide,
    Fungicide, and Rodent!cide Act-FIFRA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    158-R-0008
(REP)  Form of available reports and outputs of data base: Publications
    summary reports
    Unpublished reports
    Printouts on request
(NUS)  Number of regular users of data base: 50
(OSR)  Current regular users of data base: EPA headquarter offices
    Office  of Pesticide Programs, Office of  General Counsel, Office of
    Pesticides and Toxic Substances, Office of Enforcement
    EPA regional offices
    Other federal agencies
    States
    General Accounting Office
    Public  Interest Groups - various ones
(CNF)  Confidentiality of data and limits on access: Limits on outside
    access  for all data
(DLC)  Primary physical location of data: Contractor
(DST)  Form of data storage: Magnetic disc ^Original form (hardcopy,
    readings)
(DAC)  Type of data access: University of Miami, IBM Series I
(CHG)  Direct charge for non-EPA use: No
(UPDT)  Frequency of data base master file up-date: Other daily
(CMP)  Completion of form:
    James J. Boland


                             879

-------
                             Accession Ho.  7205000003
                  (cont)
    OFC: EPA/(OPTS)/(OPP)/(HED)/(TS-769-C)
    AD: 1921 Jefferson Davis Buy., Arlington, Virginia  20002
    PH: (703)557-0576
(DP)  Date of fora completion: 01-14-83
(•NAT)  limber of substances represented In data base: 201
(•CAS)  MuBber of CAS registry numbers In data base: 172
(MAT)  Substances represented In data base:
    l,l,l-trichloroethane<7l-55-
       6>
    If 1, 2, 2, -tet rachloroet bane
       <79-34-5>
    lr2,4,-trichlorobenzen«<120-82-l>
    1, 2-dlbroao~3-cbloropropane (dbcp)
       <96-12-8>
    1, 2-dlchlorobenzene<95-50-l>
    l,2-dichloroethane<107-06-2>
    If 3-dlchlorobenzen«< 541-73-l>
    1, 4-dichlorobenzene<106-46-7>
    2,2-dichloroproplonic acid
       <75-99-0>
    2,4,5-t nines
    2, 4,5-t esters
    2,4,5-t salts
    2,4,5-tp acid esters
    2f 4,5- trichlorophenol<95-95-4>
    2,4,5-trichlorophenoxyacetic acid
       (T)<93-76-5>
    2,4,5-trichlorophenoxypropionic
       acid (TP)<93-72-l>
    2,4,6- trichl or ophenol<88-06-2>
    2,4-d acid<94-75-7>
    2,4-d esters
    2f 4-dichlorophenoxyacetlc acid (2,
       4-d)<94-75-7>
    2f 4-dlnItrophenol<51-28-5>
    2-fluoroacetaalde (1081)<640-19-7>
    4,4*-ddd(p,p*tde)
    4,4--ddt<50-29-3>
    ac«naphth«ne<83-32-9>
    acetic acld<64-19-7>
    acroleln<107-02-8>
    acrylonltrile< 107-13-
    al achlor <1 5972-60-8>
    aldrln<309-00-2>
    allyl alcohol<107-18-6>
    aaltraz (baa»)<33089-61-l>
    a»»onla<7664-41-7>
    aaaonlua chlorlde<12125-02-9>
    aaaoniUB sulfa»ate<7773-06-0>
    aaaoniui thlocyanate<1762-95-4>
             thlosulfate<7783-18-8>
ara«ite<140-57-8>
arsenic acid<1327-52-2>
arsenic disulfide<1303-32-8>
arsenic pentoxlde<1303-28-2>
arsenic trioxld
arsenic<7440-38-2>
atrazin«<1912-24-9>
banvel-d<1918-00-9>
b«nefin<1861-40-l>
beno»yl<17804-35-2>
benzac             '
benzene<71-43-2>
bhc (lindane)-ga»na<58-89-9>
bhc-alpha<319-84-6>
bhc-beta<319-85-7>
bhc-delta<319-86-8>
bro«o«cthanc<74-83-9>
butachlor<23184-66-9>
cacodylic acid and salts<75-60-5>
cad«iu«<7440-43-9>
calciua arsenate<7778-44-l>
calciui arsenite<52740-16-6>
calciua hydroxlde<1305-62-0>
calcium hypochlorite<7778-54-3>
calcluB oxide<1305-78-8>
captan<133-06-2>
carbaryl<63-25-2>
carbo£uran<1563-66-2>
carbon disulfide<75-15-0>
carbon t«trachloride<56-23-5>
chloranil<118-75-2>
chlordane< 57-7 4-9>
chlorobenzilat«<510-15-6>
chlorofor«<67-66-3>
chloro»ethane<74-87-3>
chlorpyrlfos<2921-88-2>
chroiiu«<7440-47-3>
coal tar<8007-45-2>
copper<7440-50-8>
couBaphos<56-72-4>
cr«osote<8021-39-4>
cresol<1319-77-3>
cyanazln«<21725-46-2>
cyanlde<57-12-5>
ddd(tde)
                             880

-------
                         Accession Ho.  7205000003
                  (cont)
ddt
deneton<8065-48-3>
dlalkyl phosphates
dlallate<2303-16-4>
diazinon<333-41-5>
dIbutyl phthalate<34-74-2>
dica»ba<1918-00-9>
dichlobenll<1194-65-6>
dichlone<117-80-6>
dichlorobenzene<25321-22-6>
dichloronethane<75-09-2>
dichloropropane<2663 8-19-7>
dlchloropropene-dlchloropropane
   mixture
dichloroprop ene< 26 952-23-8>
dichlorvos (ddvp)<62-73-7>
di«ldrin<60-57-l>
di»ethoate<60-51-5>
dlnitrophenol
dlqtiat<2764-72-9>
disulfoton<298-04-4>
diuron<330-54-l>
ebdc's (ethylenebisdlthiocarbaaate
   sy
endosulfan sulfate<1031-07-8>
endosulfan-alpha<959-98-8>
endcsulfan-beta<33213-65-9>
endosulfan<115-29-7>
endrln<72-20-8>
epichlorohydrin<106-89-8>
epn (ethyl-p-nltrophenyl thlonoben
   zenephosonate)<2104-64-5>
erbon<136-25-4>
ethion<563-12-2>
ethyl parathioiK56-38-2>
ethylene dibroiide (edb)<106-93-4>
ethylene dichloride<107-06-2>
ethylene oxide<75-21-8>
for»aldehyde<50-00-0>
guthion<86-50-0>
heptachlor epoxide<1024-57-3>
heptachlor<76-44-8>
hexachlorobenzene
hydrogen cyanlde<74-90-8>
k€lthane
kepone<143-50-0>
lead arsenate<3687-31-8>
lindane<58-89-9>
m-cresol<108-39-4>
»alathion<121-75-5>
•alelc hydrazide
•ercaptodi«ethur<2032-65-7>
nethanearsonates
»ethoxychlor<72-43-5>
•ethyl chlorofor«<71-55-6>
•ethyl parathion<298-00-0>
•evinphos<7786-34-7>
•lrex<2385-'85-5>
•onuron<150-68-5>
naled<300-76-5>
naphthalene<91-20-3>
nitrophenol<25154-55-6>
o-cresol<95-48-7>
octanethyIpyrophosphoraalde (OMPA)
   <152-16-9>
p-cresol<106-44-5>
p-dichlorobenzene<106-46-7>
pHenol<108-95-2>
paraquat<4685-14-7>
parathlon< 56-38-2>
pentachloronitrobenzene (PCHB)
   <82-68-8>
pentachlorophenol<87-86-5>
perchloroethylene<127-l8-4>
perthane<72-56-0>
phenarsazine chlorlde<578-94-9>
phenol<108-95-2>
phorate 298-0202
phosgene<75-44-5>
phosphorus and compounds
   <7723-14-0>
phosphorus<7723-14-0>
phthalic acld<88-99-3>
piperonyl butoxide<51-03-6>
polychlorlnated blphenyls (PCBs)
pronaalde<23950-58-5>
propachlor<1918-16-7>
propanil<709-98-8>
proparglte<2312-35-8>
proplyene oxide<75-56-9>
propoxur<114-26-l>
pyrethrln<121-29-9>
ronnel<299-84-3>
rotenone<83-79-4>
s,s,s-tributyl phosphorotrlthloate
   <78-48-8>
safrole<94-59-7>
sllvex<93-72-l>
si*azine<122-34-9>
sodiun acsenate<7631-89-2>
sodiua arsenlte<7784-46-5>
sodium cyanide<143-33-9>
sodiun fluocoacetate (1080)
   <62-74-8>
                         881

-------
                             Accession No.  7205000003      (cont)

    sodiua  hypochlorite<7681-52-9>        tributyl pbosphorotrithioate
    strobane<8001-50-l>                     <78-48-8>
    strychine<57-24-9>                    trichlorfon<52-68-6>
    strychnine<57-24-9>                   trichloroethane<25323-89-l>
    td«<72-54-8>                          trichloroethylene<79-01-6>
    tetrachloroethylene<127-18-4>         trichlorophenol (TCP)<25167-82-2>
    tetraethyl pyrophosphate<107-49-3>    trifluraline (treflan)<1582-09-8>
    thaiHUB sulfate<7446-18-6>           trysben<50-31-7>
    thalliu»<7440-28-0>                   xylene<1330-20-7>
    thiophanate •etbyl<23564-05-8>        zinc chloride<7646-85-7>
    toxaphene<8001-35-2>                  zinc sulfate<7733-02-0>
    triallate<2303-17-5>

-------
                             Accession No.   7206000901

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Pesticide Usage Data Base
(ACR)  Acronym of Data Base or Model:  None
(MED)  Media/Subject of Data Base or Model: Other-Households
(ABS)  Abstract/Overview of Data Base or Model:  This data base contains
    demographic inforaation on     respondents and quantity data  and
    site data on pesticides used   in home.  General attitudinal
    questions on pesticide use uere used    for collection of data.
(CTC)  CONTACTS: Subject matter  L. DeLuise, Economist, Economic
    Analysis   ;     Computer-relat
(DTP)  Type of data collection or monitoring: Point source data
    collection - households
(STA)  Data Base status: Funded for development
(DPO)  Projected operational date of Data Base: 03-01-83
(NPP)  Ron-pollutant parameters included in the data base: Disposal
    population demographics ;Sit« description ;Quantity data
(DS)  Time period covered by data base: 01-01-82 TO 12-31-82
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: Other-three  times a
    year
(NOB)  Number of observations in data base: 1500Sampling plan documented Collection method
     docume Analysis method documented ;QA procedures documented
(AND  Lab analysis based  on EPA-approved  or accepted methods? NO
(AOD)  Lab Audit: Lab  audit is not based on lab analysis
(PRE)  Precision: Precision and  accuracy estimates are  not yet known.
(EOT)  Editting: Edit  procedures  are unknown at this point.  System is
     under development.
(CBT)  Data  collected  by:  Contractor - to  be named
(ABY)  Data  analyzed by: Contractor - to be named
(IDL)  Laboratory  Identification:  NO
(PR2)  Secondary purpose of data  collection: Program evaluation
(AOT)  Authorization  for  data collection:  Statutory authorization is
     P.L.  92-516 FIFRA                           a                .
(OMB)  Data  collected/submitted  using OMB-approved EPA  reporting forms.
     SF 83
(REP)  Form  of  available  reports and  outputs  of data base: Unknown at
     this  time.   System under  development.


                              883

-------
                             Accession Mo.  7206000901     (cont)

(OSR)  Current regular users of data base: Unknown
(CNF)  Confidentiality of data and lliits on access: Mo Halts on
    access to data
(DLC)  primary physical location of data: Unknown
COST)  Fora of data storage: Magnetic disc ;Microfich/fila ^Original
    fore (hardcopy, readings)
(DAC)  Type of data access: EPA hardware -  not yet developed
(CHG)  Direct charge for non-EPA use: Mo
(UPDT)  Frequency of data base aaster file up-dateX Other-Rone
(ROBEPA)  Related EPA data bases used in conjunction with this data base
    Unknown
(CMP)  Completion of for*:
    L. DeLuise
    OFC: Benefit & Field Studies Oiv./Bconoaic Analysis Branch/
    Office of Pesticide Programs
    AD: 1921 Jefferson Davis Hwy., Crystal Mall |2, R>. 803,
    Arlington, firginia
    PH: (703) 557-7560
(OF)  Date of fora completion: 01-27-83
(CNM)  Contact naae(s): DeLuise,L.;    DeLulse,L.
(COR)  Contact organization: Economic Analysis Branch/Benefit fc Field
(ROR)  Responsible Organization: Office  of Pesticides and Toxic
    Substances.Office of Toxic Substances.Management Suppo
                             884

-------
                             Accession No.   7301400901

(DQ)  Date of Questions!re: 12-02-82
(NAM)  Name of Data Base of Model: Soil, Hater/ Estuarine Monitoring
    System
(ACR)  Acronym of Data Base or Model: SHENS
(MED)  Media/Subject of Data Base or Model: Soil jTissue agricultural
    crops
(ABS)  Abstract/Overview of Data Base or Model: The soils section of
    the SWEMS system contains    residue data for agricultural and
    urban soils/ raw     agricultural crops, and agricultural chemical
    application   data for the sites sampled,  these data »ay be
    summarized   in several Hays:  by Material, by state, by county,  by
    crop, by urban area (for urban soils)*
(CIC)  CONTACTS: Subject Matter   Daniel T. Heggem    (202)382-3584 ;
    Computer-related  Qlch Levy  (202) 382-3895 ;  EPA Office Frederick
    V. Kutz (202) 382-3569
(DTP)  Type of data collection or Monitoring: Ambient data collection
(STA)  Data Base status: Operational/ongoing
(NPP)  Non-pollutant parameters included in the data base: Sampling
    date ?Site description
(DS)  TlMe period covered by data base: 05-01-68 TO 09-30-81
(TRM)  Termination of data collection: Not anticipated-no samples
    collected in 1981
(FRQ)  Frequency of data collection or sampling: Other annually urban
    soil only
(NOB)  Number of observations in data base: 12500.(Estimated)
(NEI)  Estimated annual increase of observations in data base: 500.
(INF)  Data base includes: Rav data/observations ^Summary aggregate
    observations
(NTS)  Total number of stations or sources covered in data base: 9000.
(NCS)  No. stations or sources currently originating/contributing data:
    3000.                                                       M  v  ,„
(NOF)  Number of facilities covered  in data base (source monitoring): (N
    /A.)
(GEO)  Geographic coverage of data base: National
(LOC)  Data elements identifying  location  of station or source include:
    State  jCounty ;SMSA >ProJect  identifier
(CDE)  Pollutant identification data are:  Other coding  scheme
(LIM)  Limitation/variation in data  of which user should be  aware: Agric
    ultural data collected only 1968-1973.   1973 (FY  '74) data is a
     six-year  schedule,  so  2 sets  of  data     (different years) are
     available for most  SMSAs.  Pesticide residue data has     been
     automated through 1978.  1979 data  is  being  analyzed but not
     automated.  1980 samples are  currently    being analyzed.
(DPR)  Data collect./anal, procedures conform  to ORD guidelines: Samplin
     g  plan documented ;Collection Method documented ;Analysis method
     document  QA procedures documented
(ANL)  Lab analysis based  on EPA-approved  or accepted methods? YES
(AUD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and  accuracy estimates exist but are not
     included  in data base
(BDT)  Editting: Edit procedures  used and  documented.
(CBY)  Data  collected by:  Contractor various ;0ther federal  agency


                             885

-------
                             Accession Ho.  7301400901     (cont)

    Department of Agriculture, U.S.    Geological Survey JEPA
    headquarters Exposure Evaluation Division, Office of     Toxic
    Substances
«ABY)  Data analyzed by: EPA headquarters Toxicant Analysis Center,
    Field Studies    Branch, Exposure Evaluation Division
(IDL)  Laboratory identification: MO
(PR2)  Secondary purpose of data collection: Prograa evaluation
(AUT)  Authorization for data collection: Statutory authorization is P
    L 94-469, section 10 P L 92-516, as amended.   Section 20(c)
(OMB)  Data collected/submitted using OMB-approved EPA reporting foras:
    agricultural data collected with OMB approved fora through 1975*
(REP)  For* of available reports and. outputs of data base: Publications
    Carey, A.E. and J.A. Gotten. 1976.  PCB's in    agricultural and
    urban soil.  Pages 195-198.  In Proceedings of the   national
    Conference on PCBs.  EPA 560/6-75-004.
    Carey, A.E. 1974.  Soil.  In Guidelines on Sampling and
    Statistical Methodologies for Aabient Pesticide
    Monitoring.Fed.Hortcing     Group on Pest Mgt., Hash.D.C., Oct.1074.
    Chap. Ill, III.1-III.7.
    Printouts on request
    Machine-readable ran data
    Carey,A.E«, et al. 1973. Organochlorine pesticide residues in
    soils and crops of the corn belt region, U.S.-1970. Pestle* Monit.
    J. 6:369-376.
    Carey,A.E., et al. 1977. Pesticide application and cropping data
    fro* 37 states, 1971-Hational Soils Monitoring Prograa. Pestle.
    Monit. J.  12:137-148.
    Carey,A.E. and J.A. Gowen. 1979. Pesticide application and cropping
    data fro* 37 states in 1972-Rational Soils Monitoring Prograa.
    Pestic. Monit. J. 12:198-208.
    Crockett, A. B., et al.  1974. Pesticide residue levels in soils
    and crops, FY 70-Hational Soils Monitoring Prograa (II).   Pestle.
    Monit. J. 8:69-97.
    Vlersaa, G. B., et al. 1972. Pesticide Residue Levels in  Soils, FY
    1969-Wational soils Monitoring Prograa.  Pestic. Nonit.     J.
    6:194-228.
    Carey, A. E. et al. 1976. Pesticide residues in urban     soils
    fro* 14 U.S. cities, 1970.  Pestic. Monit. J.  10:54-70.
    Mlersaa, G. B. et al. 1972.  Pesticide residues in soil    froa
    eight cities-1969.  Pestic. Monit. J.  6:126-129.
    Carey, A. E. et al.  1978.  Pesticide residue levels  in soils and
    crops in 1971-Rational Soils Monitoring Prograa (III)    Pestic.
    Monit. J.  12:117-136.
    Carey, A. E., et al.  1978. Pesticide residue levels in soils and
    crops in 1972-Hational Soils Monitoring Prograa     (If).  Pestic.
    Monit. J.  12:209-229.
    Carey, A. E., et aI.  1980.  Heavy Betal concentrations   in soils
    of five United States cities, 1972.  Urban Soils Monitoring
    Prograa.  Pestic. Monit. J.  13:150-154.
    Carey, A. E.  1979.  Monitoring pesticides in   agricultural and
    urban soils in the United States.  Pestic. Monit. J.  13:23-27.
    Carey, A. E.  1979. Pesticide residue concentrations in soils of


                             886

-------
                             Accession  No.   7301400901      (cont)

    five  U.  s.  cities.   1971. Urban Soils Monitoring      Program.
    Pestic.  Monit.  J.   13:17-22.
(NOS)   Number  of  regular users of data  base:  50
(USR)   Current  regular  users  of data base:  EPA headquarter  offices
    Office  of  Pesticide Programs, Office of  Toxic  Substances,  Office
    of  General  Counsel.
    EPA regional  offices
    EPA laboratories
    Other federal agencies
    States
(CNF)   Confidentiality  of data and Halts on access:  No Units  on
    access  to  data
(DLC)   Primary physical location of data: Headquarters  office
(DST)   Form of data storage:  Magnetic tape
(DAC)   Type of data access: EPA software Special program
    HIDS:7501300900 ;EPA hardware IBM 370/168
(CHG)   Direct  charge for non-EPA use: no outside use/access permitted
(DPDT)  Frequency of data base naster file up-date: Semi-annually
(CMP)   Completion of form:
    Ann E.  Carey
    OFC:  EPA/
    4,4"-dde(p,p*-ddx)<72-55-9>          heptachlor<76-44-8>
    aldrin<309-00-2>                     hexachlorobenzene<118-74-l>
    arsenic<7440-38-2>                    lead<7439-92-l>
    atrazine<1912-24-9>                  lindane<58-89-9>
    bhc (lindane)-ga»ma<58-89-9>         malathion<121-75-5>
    cad»ium<7440-43-9>                    mercury<7439-97-6>
    chlordane<57-74-9>                    methyl parathion<298-00-0>
    ddd(tde)                             «irex<2385-85-5>
    diazinon<333-41-5>                    parathion<56-38-2>
    dieldrin<60-57-l>                    pcb-1242 (arochlor 1242)
    endosulfan sulfate<1031-07-8>           <53469-21-9>
    endosulfan-alpha<959-98-8>           pcb-1254 {arochlor 1254)
    endosulfan-beta<33213-65-9>             <11097-69-l>
    endrin  aldehyde<7421-93-4>           pcb-1260 (arochlor 1260)
    endrin<72-20-8>                         <11096-82-5>
    epn (ethyl-p-nitrophenyl thionoben   polychlorinated biphenyls (PCBs)
       zenephosonate)<2104-64-5>         propachlor<1918-16-7>
    ethion<563-12-2>                     ronnel<299-84-3>
    ethyl parathion                      tde<72-54-8>
       <56-38- 6-50-OoiK86-50-0>         trifluraline (treflan)<1582-09-8>
(CAS)  CAS  registry numbers  of substances  included in data base: 72-55-9
    ; 309-00-2; 7440-38-2? 1912-24-9;      58-89-9; 7440-43-9; 57-74-9;
    333-41-5;  60-57-1;  1031-07*8; 959-98-8;       33213-65-9;
    7421-93-4; 72-20-8; 2104-64-5; 563-12-2; 1024-57-3;       76-44-8;


                             887

-------
                             Accession lo.  7301400901     
-------
                             Accession No.   7301400902

(DQ)  Date of Questionaire:  12-02-82
(MAM)  Name of Data Base of Model: Hunan Monitoring Data Base
(ACR)  Acronya of Data Base or Model:  HMDB
(MED)  Media/Subject of Data Base or Model:  Blood ;Tlssue human
    biological media, urine and adipose tissue
(ABS)  Abstract/overview of Data Base or Model:  HMDB monitors  on  a
    national scale, the  incidences, prevalences, and levels of
    selected   pesticides and toxic substances in various human
    biological media to assess trends over  time; to   evaluate the
    effects of regulatory actions.  Includes HANES II blood and urine
    data (2/76 - 3/81).  and annual tissue  data.  Data automated
    through 12/79.
(CTC)  CONTACTS: Subject natter   Brion Cook  (202)382-3581 ;
    Computer-related Rich Levy  (202)382-3895
(DTP)  Type of data collection or monitoring: Ambient data collection
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented in  Data Base: 129 307  CUA ;41
    CVA potential criteria ;21 drinking water standards ;  299
    hazardous substances ;48 cancelled pesticides ;9 monitoring
    pesticides
(NPP)  Non-pollutant parameters included in the data base: Biological
    data Collection method ^Exposure data  ;Geographic subdivision  /
    Health effects ;Location ;Population demographics ^Sampling date ;
    Test/analysis nethod }Volume/mass measures
(OS)  Time period covered by data base: 07-01-68 TO 03-30-81
(TRM)  Termination of data collection: Not  anticipated
(FRQ)  Frequency of data collection or sampling: annually ;Other  also
    includes special projects
(NOB)  Number of observations in data base:  16,000.(Estimated)
(NEI)  Estimated annual increase of observations in data base: 1000.
(INF)  Data base includes: Ran data/observations ;Summary aggregate
    observations
(NTS)  Total nunber of stations or sources  covered in data base:  125.
(NCS)  No. stations or sources currently originating/contributing data:
    40.
(NOF)  Number of facilities covered in data base (source monitoring):  12
    5.
(GEQ)  Geographic coverage of data base: National
(LOG)  Data elements identifying location of station or source include:
    State /SMSA ;Town/township
(FAC)  Data elements identifying facility include: Plant facility nane
    ;Street address ;Program identifier ;census divisions
(CDE)  Pollutant identification data are: Other coding scheme
(LIM)  Limitation/variation in data of which user should be aware:  Natio
    nal survey design; data valid on   Census Division, Census Region,
    or National basis.     No others (i.e.  state) valid.
(DPR)  Data collect./anal, procedures conform to ORD guidelines:  Samplin
    g plan documented jCollection method documented ;Analysis  method
    document QA procedures documented
(ANL)  Lab analysis based on EPA-approved or accepted methods? NO
(ADD)  Lab Audit: Lab audit Is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but are  not


                             889

-------
                             Accession Mo.   7301400902     (cont)

    Included in data base
(EOT)  Editting: Edit procedures used and documented.
(CBY)  Data collected by: Other federal agency National Center for
    Health  Statistics-HANES II ; contracted hospitals-Adipose data
(ABT)  Data analyzed by: Contractor lab 2 labs-adipose; 4 labs RANES-II
    EPA headquarters Exposure Evaluation Division
(IDL)  Laboratory identification: YES
(PR2)  Secondary purpose of data collection: baseline data and public
    health evaluations
(AOT)  Authorization for data collection: Statutory authorization  is P
    L 94-469, section 10 (The Toxic Substances     Control Act - TSCA)
    Statutory authorization is P L 92-516, as amended, section 20  (The
    Federal Insecticide, Fungicide, and Rodenticide Act - FIFRA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    158R0140
(REP)  Fora of available reports and outputs of data base: Publications
    "Survey of Selected organochlorlne Pesticides in the     General
    Population of the 0. S.n; and others
    Unpublished reports PCP residues in human tissue
    Printouts on request
    Microfilm, microfiche
    Machine-readable raw data
    On-line computer
(MOS)  lumber of regular users of data base: 15
(OSR)  Current regular users of data base: EPA headquarter offices
    Office of Pesticide Programs, Office of  Toxic Substances, Office
    of the General Counsel
    EPA regional offices
    EPA laboratories
    Other federal agencies
    States
    press
    physicians
(CNF)  Confidentiality of data and limits on access: Limits on access
    within EPA and outside agency for some  data
(DLC)  Primary physical location of data: Contractor
(DST)  Form of data storage: Magnetic tape
(DAC)  Type of data access: EPA software custom written programs
    MIDS:7501300900 ;EPA hardware IBM 370/168
(CHG)  Direct charge  for non-EPA use: yes
(OPDT)  Frequency of  data base master file up-date: Quarterly
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    Soil, Mater, Estuarine Monitoring  System (SHEMS); Multimedia
    Toxics Information System   (formerly TOXET)
(CMP)  Completion of  form:
    Brion Cook
    OFC: EPA/(QPTS)/(OTS)/(EED)/(FSB)
    AD: 401 M St., S.H. Mashington, D.C. 20460
    PH: (202)382-3581
(DF)  Date of form completion: 01-26-83
(•MAT)  Number  of substances represented in data base: 52
(•CAS)  Number  of CAS registry numbers In data base: 86


                             890

-------
                             Accession Mo.   7301400902
                                                          (cent)
(MAT)   Substances represented in data base:
    2,4,5-trlchlorophenol<95-95-
       4>
    2,4,5-trichlorophenoxyacetic acid
       (T)<93-76-5>
    2, 4, 5-tr ic hi or op he no xy prop ionic
       acid 
    2,4-d acid<94-75-7>
    2/4-dichlorophenoxyacetic acid (2*
       4-d)<94-75-7>
    2, 4-dinitrophenol<51-28-5>
    4,4*-ddd(p,p'tde)
    4,4*-dde(p,p*-ddx)<72-55-9>
    4,4'-ddt<50-29-3>
    4-nltrophenol<100-02-7>
    aldrin<309-00-2>
    bhc (lindane)-ga«»a<58-89-9>
    bhc-alpha< 319-84-6>
    bhc-beta<319-85-7>
    bhc-delta<319-86-8>
    captan<133-06-2>
    carbofuran<1563-66-2>
    chlordane<57-74-9>
    chlorpyrifos<2921-88-2>
    ddd(tde)
    ddt
    dialkyl phosphates
    diazinon<333-41-5>
    dibenzofuran<132-64-9>
    dicanba<1918-00-9>
    dieldrin<60-57-l>
    dioxin<828-00-2>
    endrin<72-20-8>
                                        ethyl parathion<56-38-2>
                                        heptachlor epoxide<1024-57-3>
                                        heptachlor<76-44-8>
                                        hexachloroben2ene<118-74-l>
                                        lindane<58-89-9>
                                        •alathion<121-75-5>
                                        •ethyl parathion<298-00-0>
                                        »irex<2385-85-5>
                                        naled<300-76-5>
                                        naphthalene<91-20-3>
                                        nitrophenoK 25154-5 5-6>
                                        pcb-1016  (arochlor 1016)
                                           <12674-ll-2>
                                        pcb-1221  Carochlor 1221)
                                           <11104-28-2>
                                        pcb-1232  (arochlor 1232)
                                        pcb-1242  (arochlor  1242)
                                            <53469-21-9>
                                        pcb-1248  (arochlor  1248)
                                            <12672-29-6>
                                        pcb-1254  (arochlor  1254)
                                            <11097-69-l>
                                        pcb-1260  (arochlor  1260).
                                            <11096-82-5>
                                        pentachlorophenol<87-86-5>
                                        phosphorus and compounds
                                            <7723-14-0>
                                        polychlorinated  biphenyls (PCBs)
                                        propoxur<114-26-l>
                                        silvex<93-72-l>
    eiiui JIIJN i A— c.v—of                      tde<72—54—8>
(CAS)  CAS  registry numbers of substances Included in data base:  95-95-4
    ; 93-76-5;  93-72-1;  94-75-7; 94-75-7;       51-28-5; 72-55-9;
    50-29-3;  100-02-7; 309-00-2; 58-89-9; 319-84-6;     319:8*-7; _
    319-86-8; 133-06-2;  1563-66-2; 57-74-9; 2921-88-2;     333-41-5;
    132-64-9; 1918-00-9; 60-57*1; 828-00-2; 72-20-8; 56-38-2;
    1024-57-3;  76-44-8;  118-74-1; 58-89-9; 121-75-5; 298-00-0;
    2385-85-5;       300-76-5; 91-20-3; 25154-55-6; 12674-11-2;
    11104-28-2; 11141-16-5;    53469-21-9; 12672-29-6; 11097-69-1;
    11096-82-5; 87-86-5; 7723-14-0;   114-26-1; 93-72-1; 72-54-8
(CUM)  Contact name(s):  Cook,B.   ;   Levy,R.                    .,»««.
(COR)  Contact organization: Field Studies Branch, Exposure Evaluation

(ROR)  Responsible Organization: Office of Pesticides and Toxic
    Substances.Office of Toxic Substances.Exposure Evaluat
                              891

-------
                             Accession No.   7301400903

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model:  Pesticides in Ambient Air
(ACR)  Acronym of Data Base or Model:  None
(MED)  Media/Subject of Data Base or Model:  Air
(ABS)  Abstract/overview of Data Base  or Model: Pesticides  in  Ambient
    Air is a raw data base containing  about  3*000 observations.   The
    data    can only be accessed Manually.   Years of collection:
    1970-1972* and 1975 - present.   The quantity of data   collected
    each year of the 1970-1972 period  is about   ten times  that of  the
    1975-1980 period.
(CTC)  CONTACTS: Subject Matter   Henry Yang  (202)382-3578 ;     EPA
    Office  Field    Studies Branch* Exposure Evaluation Division
(DTP)  Type of data collection or Monitoring: AMbient data  collection
(STA)  Data Base status: Operational/ongoing
(NPP)  Hon-pollutant paraMeters included in  the data base:  Concentration
    Measures ;Flow rates ;Location ;precipitatlon ;     SaMpling  date
    ;Terperature ;Uind direction ;Hlnd velocity
(OS)  TiMe period covered by data base: 04-01-70 TO 09-30-81
(TRM)  TerM!nation of data collection: Mot  anticipated
(PRO)  Frequency of data collection or sampling: other Monthly 90%  of
    the data
(NOB)  Number of observations in data  base:  3000.(Estimated)
(NEI)  EstiMated annual increase of observations in data base: 100.
(INF)  Data base includes: Ran data/observations
(NTS)  Total number of stations or sources  covered in data  base:  80.
(NCS)  NO. stations or sources currently originating/contributing data:
    10.
(NOF)  NuMber of facilities covered in data base (source Monitoring):  (N
    /A.)
(GEO)  Geographic coverage of data base: Geographic region  selected
    locations in selected states
(LOC)  Data elements identifying location of station or source include:
    State ;County ;Clty ; Town/town ship ;Street address
(COB)  Pollutant identification data ares encoded
(LIM)  Limitation/variation in data of which user should be aware:  Exten
    sive annual sampling 1970-72.  No   data 1972-74.  Fewer samples
    fro* 1975 on.  Currently  data base covers California*  Montana*
    Illinois*   Mississippi and Texas.
(DPR)  Data collect./anal, procedures  conform to GRD guidelines:  Saaplin
    g plan documented /Collection Method documented /Analysis  Method
    document
(ANL)  Lab analysis based on EPA-approved or accepted Methods? YES
(PRE)  Precision: Precision and accuracy estimates are not  available
(EOT)  Editting: No known edit procedures exist.
(CBY)  Data collected by: EPA headquarters  Field Studies Branch*
    Exposure Evaluation  Division.
(ABf)  Data analyzed by: EPA lab Office of  Pesticide Programs  Beltway
    Lab (Washington*    D.C.) for other data.
    Contractor lab Various* currently:  Midwest Research Institute
(IDL)  Laboratory identification: HO
(PR1)  Primary purpose of data collection:  Risk assessment
(PR2)  Secondary purpose of data collection: Anticipatory/research


                             892

-------
                             Accession No.   7301400903      Ccont)

(AUT)   Authorization for  data collection:  Statutory authorization  is  P
    L  92-516 as amended by P L 94-140 and      PL 95-396 section 20
    (The Federal Insecticide, Fungicide, and Rodenticide Act-FIFRA)
(OMB)   Data collected/submitted using OMB-approved EPA  reporting forms:
    QQ
(REP)   Form of available  reports and outputs of data base:  Publications
    Air Pollution froa Pesticides and Agricultural Processes (CRC
    Press)
(•OS)   Number of regular  users of data base: 50
(USR)   Current regular users of data base:  EPA headquarter  offices
    Office  of General Counsel Office of Pesticide Programs
    States
(CNF)   confidentiality of data and Halts  on access: No Halts on
    access  to data
(DLC)   Primary physical location of data:  Headquarters  office
(DST)   Fora of data storage: Original fora  (hardcopy, readings)
(DAC)   Type of data access: Manually
(CHG)   Direct charge for  non-EPA use: yes
(OPDT)  Frequency of data base naster file  up-date: Annually
(RDBEPA)  Related EPA data bases used in conjunction uith this data  base
    Pesticides in Soil; Pesticides in  Hater; Pesticides in Humans?
    Pesticides in Estuary     Fishes and Animals.
(CMP)   Completion of fora:
    Henry Yang
    OFC: EPA/(OPTS)/(OTS)/(EED)/(FSB)
    AD: 401 M St., S.H. Washington, D.C. 20460
    PH: (202)382-3578
(OF)  Date  of fora coapletlon: 01-26-83
(•MAT)  Nuaber of substances represented in data base:  39
(•CAS)  Nuaber of CAS registry numbers in  data base: 33
(HAT)   Substances represented in data base:
    2,4,5-t esters                      endrin<72-20-8>
    2,4-d esters                        ethion<563-12-2>
    4,4*-ddd(p,p"tde)                   ethyl parathion<56-38-2>
    4,4"-dde(p,P *-ddx)<72-55-9>          guthion<86-50-0>
    4,4'-ddt<50-29-3>                   heptachlor epoxide<1024-57-3>
    aldrin<309-00-2>                    h«ptachlor<76-44-8>
    bhc (lindane)-gamaa<58-89-9>        hexachlorobenzene<118-74-l>
    bhc-alpha<319-84-6>                  lindane<58-89-9>
    bhc-beta<319-85-7>                  aalathion<121-75-5>
    bhc-delta<319-86-8>                 aethoxychlor<72-43-5>
    captan<133-06-2>                    aethyl parathion<298-00-0>
    carbofuran<1563-66-2>               parathion<56-38-2>
    chlordane<57VM-9>                  phorate<298-02-2>
    ddd(tde)                            polychlorinated biphenyls (PCBs)
    ddt                                  ronneK 299-84-3>
    deaeton<8065-48-3>                   tde<72-54-8>
    diazinon<333-41-5>                   toxaphene<8001-35-2>
    dleldrin<60-57-l>                    trifluraline 
    endosulfan-alpha<959-98-8>
    endosulfan-beta<33213-65-9>
    endosulfan<115-29-7>


                             893

-------
                             Accession No.  7301400903     (cont)

(CAS)  CAS registry numbers of substances included in data base: 72-55-9
    ; 50-29-3* 309-00-2; 58-89-9;     319-84-6; 319-85-7; 319-86-8;
    133-06-2; 1563-66-2; 57-74-9;      8065-48-3; 333-41-5; 60-57-1;
    959-98-8; 33213-65-9; 115-29-7;    72-20-8; 563-12-2; 56-38-2;
    86-50-0; 1024-57-3; 76-44-8; 118-74-1;    58-89-9; 121-75-5;
    72-43-5; 298-00-0; 56-38-2; 298-02-2; 299-84-3;    72-54-8;
    8001-35-2; 1582-09-8
(CUM)  Contact naae(s): Yang,H.
(COR)  Contact organization: Field Studies Branch, Exposure Evaluation
    Division
(ROR)  Responsible Organization: Office of Pesticides and Toxic
    Substances.Office of Toxic Substances.Exposure Evaluat
                             894

-------
                             Accession  No.   7301400904

(DO)   Date of  Questionaire:  12-02-82
(NAM)   Name of Data Base  of  Model:  National  Estuarine Monitoring
   Program
(ACR)   Acronym of  Data  Base  or  Model: Hone
(MED)   Media/Subject of Data Base or Model:  Tissue  fish and  shellfish
(ABS)   Abstract/Overviey  of  Data Base or Model:  The National Estuarine
   Monitoring Program     tested for levels  of pesticides  and other
   toxic   substances  in fish  and shellfish.   The  data from  this
   program was  never made into a data  base  and  computerized.
(CTC)   CONTACTS: Subject  natter   Dr. F. ».  Kutz  (202)755-8060    ;
   EPA Office      David  Redford (202)382-3583
(DTP)   Type of data collection  or monitoring:  Ambient  data collection
(STA)   Data Base status:  Discontinued
(NPP)   Non-pollutant parameters included In  the data base: Biological
   data Concentration measures ^Location  ;Sampling date  ;      residue
   levels: whole  fish  ;residue levels: shellfish ;residue levels:  fish
   livers ;  Geographic subdivision bay
(DS)   Time period  covered by data base: 01-01-65 TO 12-30-78
(TRM)   Termination of data collection:  Occurred 12/30/78
(FRQ)   Frequency of data collection or  sampling: Other  several separate
   studies,  at  the approximate rate of at  least    one per year
(NOB)   Number of observations in data base:  10000.(Estimated)
(NEI)   Estimated annual increase of observations in data base: 0.
(INF)   Data base includes: Raw data/observations ;Summary  aggregate
   observations
(NTS)   Total  number of  stations or sources  covered in  data base:  (over
   )200.
(NCS)   No. stations or  sources currently originating/contributing data:

(NOF)   Number of facilities covered in data base (source monitoring):  (N

(CEO)   Geographic  coverage of data base: National
(LOC)   Data  elements identifying location of station or source include:
    State ;water body
(CDE)   Pollutant identification data are: Hncoded
(LIM)   Limitation/variation in data of which user should be aware: Proto
    col and  parameters  may differ for  separate studies.
(DPR)   Data  collect./anal, procedures  conform to ORD guidelines: ORD

(ANL)   Lab analysis based on EPA-approved or accepted methods? YES
(PRE)   Precision:  Precision and accuracy estimates are not  available
(EDT)   Editting: No known edit procedures exist.
(CBY)   Data collected  by: EPA  lab Toxicant Analysis Center;
    Environmental Research  Lab, Gulf  Breeze
(ABf)   Data analyzed by: EPA lab Toxicant Analysis Center;
    Environmental Research Lab,    Gulf Breeze
(IDL)   Laboratory  identification: YES
(PR1)   Primary purpose of data collection:  Special study
(AOT)   Authorization for data  collection: Statutory authorization  is P
    L  92-516 as amended, Section 20 (The Federal   Insecticide,
    Fungicide and  Rodenticide  Act-FIFRA)                         *„,..-.
(OMB)  Data collected/submitted using  OMB-approved EPA reporting forms.


                             895

-------
                             Accession Ho.  7301400904     (cont)

    QQ
(REP)  Fora of available reports and outputs of data base: Publications
    "Pesticide and PCB Residues in Estuarine Finfish*   Pesticide
    Monitoring     Journal
    Journal articles
(NOS)  lumber of regular users of data base: 15-20
(OSR)  Current regular users of data base: EPA headquarter offices
    Office of General Counsel/ Office of     Pesticides and Toxic
    Substances, Office of Toxic Substances
    EPA regional offices
    EPA laboratories
    Other federal agencies
    States                                           _  , . . .
(C»F)  Confidentiality of data and limits on access: lo Units on
    access to data
(DLC)  Primary physical location of data: Headquarters office
(DST)  Fora of data storage: Original fora  (hardcopy, readings)
(OAC)  Type of data access:  journals
(CHG)  Direct charge for non-EPA use: Bo
(OPDT)  Frequency of data base master file  up-date:  Other Data base no
    longer being updated
(CMP)  Completion of fora:
    David Redford
    OFC: EPA/(OPTS}/(OTS)/(EED)/(FSB)
    AD: 401 M St., S.M. Washington, D.C.  20460
    PH: (202)382-3583
(DP)   Date of for» completion: 01-26-83
(NMAT)  lumber of substances represented  in data  base:  23
(RCAS)  Number of CAS  registry numbers in data  base: 18
(MAT)   Substances represented in data base:
     aldrin<309-00-2>                      endosulfan<115-29-7>
     2, 4,5- trichlorophenoxy acetic acid    ethion< 563-1 2-2>
        (T)<93-76-5>                       heptachlor<76-44-8>
     2,4-dichlorophenoxyacetic acid  (2,    lindane<5!;5?'?L^N
        4-dK94-75-7>                      malathlon<121-75-5>
     DEF                                   mirex<2385-85-5>

     azinphosmethyl                        Pjrat5i;««6;?8;?>
     carbophenothiron                      phorate<29 8-0 2- 2>
     chlordane<57-74-9>                   polychlorinated blphenyls (PCBs)
                                          silvex<93-72-l>
     demeton<8065-48-3>
     dia2inon<333-41-5>                   trifluraline

 (CAS)lecASl?egistry numbers of substances included in data base: 309-00-
     2s 93-76-52 94-75-71 57-74-9>     8065-48-31 333-41-5; 60-57-1;
     115-29-5; 563-12-2, 7i-44-8/ 58-89-9,   121-75-5, 2385-85-5,
     56-38-2; 298-02-2, 93-72-1, 8001-35-2,      1582-09-8
 (CKf)  Contact name(s): Kutz,F.U. ,    R*2f2rdiS%^     ,, Trtvi^
 (ROR)  Responsible Organization: Office of Pesticides and Toxic
     Substances. Off ice of Toxic Substances. Exposure Evaluat
                              896

-------
                             Accession No.   7301400905

(DQ)  Date of Questionaire: 12-02-82
(MAM)  Kane of Data Base of Model: National Surface Water Monitoring
    Program
(ACR)  Acronym of Data Base or Model: HSHMP
(MED)  Media/Subject of Data Base or Model: Surface water streams
(ABS)  Abstract/overvieu of Data Base or Model:  Contains pesticide
    residue and toxic substance    Monitoring data on 40 chemicals  at
    approximately 150   nationwide collection stations*
(CTC)  CONTACTS: Subject natter   Daniel T. Heggem  (202)382-3584;
    Cosputer-related     Rich Levy (202)382-3895  ;  EPA Office
    Frederick H. Katz (202)382-3569
(DTP)  Type of data collection or Monitoring: Ambient data collection
(STA)  Data Base status: Operational/ongoing
(NPP)  Non-pollutant parameters included in the data base: Collection
    •ethod ^Concentration Measures ;Flow rates ;Geographic subdivision
    ;  Location jPhysical data political subdivisions ;Sampling date ;
    Site description ^Temperature ;Test/analysis method jUse
    ;volune/mass Measures
(DS)  TiMe period covered by data base: 05-01-76 TO 09-30-81
(TRM)  Termination of data collections Not anticipated
(FRQ)  Frequency of data collection or sampling: quarterly
(NOB)  Number of observations in data base: 90000.(Estimated)
(NED  Estimated annual increase of observations in data base: 600-1000.
(INF)  Data base includes: Ran data/observations
(NTS)  Total number of stations or sources covered in data base: 150.
(NCS)  No. stations or sources currently originating/contributing data:
    150.
(NOF)  Number of facilities covered in data base (source monitoring): (N
    /A.)
(GEO)  Geographic coverage of data base: National
(LOC)  Data elements identifying location of station or source include:.
    State ^Coordinates Latitude and longitude
(FAC)  Data elements identifying facility  include: N/A
(CDE)  Pollutant identification data are: Other coding scheme
(LIM)  Limitation/variation in data of which user should be aware:  None
(DPR)  Data collect./anal. procedures conform to ORD guidelines: Samplin
    g plan documented ^Collection method documented
(ANL)  Lab analysis based on EPA-approved  or accepted methods? NO
(ADD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base
(EOT)  Editting: Edit procedures used but  undocumented.
(CBY)  Data collected by: Other federal agency U.S. Geological
    Survey-National Stream  Quality Accounting Network  (NASQAN) Stations
(ABY)  Data analyzed by: EPA  lab Bay St. Louis, Ms., Office of
    Pesticides  and Toxic  Substances
    EPA headquarters Field Studies Branch, Office  of Pesticides     and
    Toxic  Substances
(IDL)  Laboratory identification: YES
(PR1)  Primary  purpose  of  data collection: Trend assessment
(AOT)  Authorization  for data collection:  Statutory authorization is P
    L 92-516 as amended. Section  20  (Federal  Insecticide, Fungicide


                              897

-------
                             Accession No.  7301400905     (cont)

    and Rodenticide Act-FIFRA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting foras:
    QQ
(REP)  For* of available reports and outputs of data base:  On-line
    computer
(•OS)  Umber of regular users of data base: 80-100
(OSR)  Current regular users of data base: EPA headquarter  offices
    Office of Pesticides and Toxic Substances
    Other federal agencies
    States
(CUT)  Confidentiality of data and liaits on access: No Halts on
    access to data
(OLC)  Primary physical location of data: EPA lab
(OST)  For* of data storage: Magnetic tape
(DAC)  Type of data access: EPA software Soil, Water, Estuarine
    Monitoring System (SWEMS)     MIDS:7501300900 ;EPA hardware IBM
    370/168
(CMC)  Direct charge for non-EPA use: no
(DPDT)  Frequency of data base Master file up-date: Quarterly
(ROBEPA)  Related EPA data bases used in conjunction with this data base
    National Soils Monitoring Prograa
(CMP)  Completion of for*:
    Thoaas Dixon
    OFC: EPA/(OPTS)/(EED)/(FSB)/(OTS)
    AD: 401 M St, S.V. Washington, DC 20460
    PR: (202) 755-8060
(DF)  Date of fora completion: 01-26-83
(NMAT)  Number of substances represented in data base: 43
(NCAS)  Number of CAS registry numbers in data base: 35
(MAT)  Substances represented in data base:
    ( 2, 3,6-trichlorophenyl)aceti         endosulf an-alpha<959-98-8>
       c acid (fenac)                    endosulfan-beta<33213-65-9>
    2,4,5-trichlorophenol<95-95-4>       endrin<72-20-8>
    2,4,5-trichlorophenoxyacetlc acid    enothion)
       (T)<93-76-5>                      ethion<563-12-2>
    2f 4-dichlorophenoxyacetlc acid (2,   heptacblor epoxide<1024-57-3>
       4-d)<94-75-7>                     heptachlor<76-44-8>
    alachlor<15972-60-8>                 hexachlorobenzene<118-74-l>
    aldrin<309-00-2>                     isodrin<465-73-6>
    atrazine<1912-24-9>                  •alathion<121-75-5>
    bhc (lindane)-gaMa<58-89-9>         •ethoxychlor<72-43-5>
    bhc-alpha<319-84-6>                  methyl parathion<298-00-0>
    bhc-beta<319-85-7>                   parathion<56-38-2>
    chlordane<57-74-9>                   pentachlorophenol<87-86-5>
    chlorinated naphthalenes             phorate<298-02-2>
    ddt                                  polybromlnated biphenyls  (PBBs)
    diazinon<333-41-5>                   propachlor<1918-16-7>
    dicamb                   ronnel<299-84-3>
    dieldrin<60-57-l>                    st(p-chlorophenylthio)aethyl3 0,0-
    dimethyl tetrachloroterephthaiate       diethyl phosphorordithioate
       (DCPA)                               (carboph
    endosulfan sulfate<1031-07-8>        silvex<93-72-l>


                             898

-------
                            Accession No.  7301400905      (cont)

   siiazine<122-34-9>                   tributyl  phosphorotrithioite
   toxaphene<8001-35-2>                    (nerpbos)
   tributyl phosphorotrithioate         trifluraline (treflan)
      <78-48-8>
(CAS)  CAS registry nuabers  of  substances  included in data  base: 95-95-4
   ; 93-76-5; 94-75-7; 15972-60-8;   309-00-2;  1912-24-9;  58-89-9;
   319-84-6; 319-85-7; 57-74-9;  333-41-5;       1918-00-9; 60-57-1;
   1031-07-8; 959-98-8; 33213-65-9; 72-20-8;    563-12-2;  1024-57-3;
   76-44-8; 118-74-1; 465-73-6;  121-75-5; 72-43-5;       298-00-0;
   56-38-2; 87-86-5; 298-02-2; 1918-16-7; 299-84-3; 93-72-1;
   122-34-9; 8001-35-2; 78-48-8;  1582-09-8
(Cm)  Contact nane(s): Heggen/D.  ;    Levy/R.  ;    Heggem/D.
(ROR)  Responsible Organization:  Office of Pesticides and Toxic
   Substances.Office of Toxic  Substances.Exposure Evaluat
                            899

-------
                             Accession Mo.   7301400909

(DQ)  Date of Questionaire: 12-02-82
(RAN)  Name of Data Base of Model:  Chemicals Identified in Hunan
    Biological Media
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model:  Other Hot applicable-data
    obtained from published sources
(ABS)  Abstract/Overview of Data Base or Model:  Centralized collection
    of human body burden data fro»  world literature and other  sources
    is contained in this data     base*  Data is accessible by  tissue,
    chemical and other pertinent     factors.  Approximately 500
    chemicals are in data base retro-    spective to 1974*  Reports  are
    published annually in tabular     format and available on-line on
    ReCON and DIALOG.
(CTC)  CONTACTS: Subject matter  Cindy Stroup  OTS/EED/DDB (202)
    382-3891   ;     Computer-related Cindy Stroup QTS/EED/DDB
    (202)382-3891  ;  EPA Office     Cindy Stroup OTS/EED/DDB
    (202)382-3891
(DTP)  Type of data collection or monitoring: Combination/Other data
    collection -human body burden
(STA)  Data Base status: Operational/ongoing
(GRp)  croups of substances represented in Data Base: 129 307 CHA ;299
    hazardous substances ;54 TSCA assessment /RCRA hazardous wastes  IS
    metals
(NPP)  Poo-pollutant parameters Included in the data base: Chemical
    data ^Collection method ;Coneentration measures ^Exposure data ;
    Geographic subdivision ?Hea1th effects ;Other-toxicity
    ?Otlter-pathology ;  Other-tissue ;Other-experimental design
    jOther-metals ;0ther-pesticides
(OS)  Time period covered by data base: 01-01-74 TO 10-31-81
(TRM)  Termination of data collection: Mot anticipated
(FRQ)  Frequency of data collection or sampling: daily
(NOB)  Number of observations in data base:  5000(Actual)
(NED  Fstimated annual increase of observations in data base:  1500
(INF)  Data base includes: Raw data/observations ;Summary or aggregate
    observations ^Reference data/citatio
(NTS)  Total number of stations or sources covered in data base:  (N/A)
(HCS)  Ho. stations or sources currently originating/contributing data:
    (N/A)
(HOP)  Number of facilities covered In data base (source monitoring): (N
    /A)
(GEO)  Geographic coverage of data base: International
(LOC)  Data elements identifying location of station or source  include:
    State ;County ;City ;Other-country
(FAC)  Data elements identifying facility include: Not  applicable
(CDE)  Pollutant identification data are: CAS registry  number
(LIN)  Limitation/variation in data of which user should be aware: Data
    has not been evaluated.  User must exercise  own professional
    judgement.
(DPR)  Data collect./anal, procedures confori to ORD guidelines:  Conform
    to ORD QA Guidelines-N/A
(AND  tab analysis based on EPA-approved or accepted methods?  Lab
    analysis is not applicable.


                             900

-------
                             Accession Ho.   7301400909      (cont)

(ADD)   Lab  Audit:  Lab audit is  not applicable.
(PRE)   Precision:  Precision and accuracy estimates  are  not  applicable.
(EOT)   Edltting: Mo known edit  procedures exist.
(CBY)   Data collected by: Self  reporting ;Local agency  ;State agency
    ;Regional  office ;     Other federal agency /EPA  headquarters
    ;0ther-published literature
(ABY)   Data analyzed by:  Self reporting
    Local agency
    State agency
    Regional office
    Other federal  agency
    EPA headquarters
    Other-published literature
(ADT)   Authorization for  data collection: Statutory authorization  is
    TSCA Section 10 P.L.  94-469
(OMB)   Data collected/submitted using OMB-approved  EPA  reporting forms:
    QQ
(REP)   Fora of available  reports and outputs of data base:  Publications-
    Chemicals  Identified  in Human Biological  Media:  A  Data Base/  1st
    and 2nd Annual Reports.  Third in progress.
    Unpublished reports-Third Annual Report in progress.
    On-line computer
(MOS)   Nunber  of  regular  users  of data base: 10000
(OSR)   Current regular users of data base:  EPA headquarter offices-Air/
    Hater,  OTS/ OPP, Enforcement
    SPA regional  offices
    Other federal  agencies
    States
    international  nailing list
(CNF)   Confidentiality of data and limits on access: No limits on
    access  to  data
(DLC)   Primary physical location of data: Contractor
(DST)   Form of data storage: Magnetic disc ^Original form (hardcopy,
    readings)
(DAC)   Type of data access: Manually ;ReCON, DIALOG
(CHG)   Direct  charge for  non-EPA use: No
(UPDT)  Frequency of data base master file up-date: Weekly
(CMP)   Completion of form:
    Cindy Stroup
    OFC: OTS/Exposure & Evaluation Div/Office of Toxic Substances/EPA
    AD: 401 M. Street, S.M. Washington, D.C. 20460  (ET-305)
    PH: (202)  382-3891
(OF)  Date  of  form completion:  01-26-83
(•MAT)  Number of substances represented in data base: 668
(•CAS)  Number of CAS registry numbers in data base: 648
(NAT)   Substances represented in data base:
                                         0,0-diethyl-0-(2-pyrazinyl)
    -azirino(2-3-:3,4)-pyrrolo(l,2-a)       phosphorothioate<297-97-2>
       indole-4,7-dione(ester)           0,0-dlethyl-s-(2-ethylthio)ethyl)
       <50-07-7>                            ester  of phosphorodithioic acid
    0,0-diethyl phosphoric  acid,0-p-     0,0-diethyl-s-methyl ester of
       nitrophenyl  ester<311-45-5>          phosphorodithioic acid


                             901

-------
                         Accession Ho.  7301400909
                                                       (cont)
1, 1,1, 2-te tr achloroethane
   <630-20-6>
lf l,l-trichloroethane<71-55-6>
1, If2f 2-te trachloroethane<79-34-5>
l,l,2-trichloroethane<79-00-5>
l,l,2-trichloroethene<79-01-6>
1, l-dichioroethane<75-34-3>
1, 1-dichloroethy lene<75-35-4>
l,l-di«ethylhydrazine<57-14-7>
1, 2, 3, 4, 1 0, 1 0-hexach loro-1, 4, 4 a, 5,
   8,8a-hexahydro-l, 4: 5,8- en do,
   endo-diaethan
1,2,4,-trichlorobeazene  1,2,4,5-
   tetrachlorobenzene<95-94-3>
l,2-dibro«o-3-chloropropane (dbcp)
l,
1,
l,
l,
l,
1,
I,
I
1,
It
If
l,
If
l-

l-


1-
l-
2,
   2-dlbro«oethane<106-93-4>
   2-dichlorobenzene<95-50-l>
   2-dichloroethane<107-06-2>
   2-dichioropropane<78-87-5>
   2-dichioropropylene<563-54-2>
   2-diethylhydrazine<1615-80-l>
   2-di«ethylhydrazine<540-73-8>
   2-diphcnylhydrazine<122-66-7>
   2-propanedlol< 57-55- 6>
   2-trans-dichloroethylene
    <156-60-5>
   3-dichiorobenzene< 541-73-l>
   3-dichloropropene<542-75-6>
   3-pentadiene<504-60-9>
   3-propane sultone<1120-71-4>
   4-dichloro-2-butene< 110-57-6>
   4-dichlorobenz«ne<106-46-7>
   4-dioxane<123-91-l>
   4-naphthoquinon«< 1 30-1 5-4>
   (o-chloropheny 1) thiourea
    <5344-82-l>
   (p-chlorobenzoyl)-5-«ethoxy-2-
    •ethyiindole-3-ac«tic  acid
    <53-86-l>
   chlo ro- 2, 3- epoxy pr op ane
    <106-8 l-naprtthyl-2-thiourea
    <86-88-4>
   naphthyla«ine<134-32-7>
   2-dichloropropionic  acid
    <75-99-0>
 2* 3^ 4, 6- te tr achlor ophenoK 58- 90- 2>
 2,4,5-t ajiines
 2,4,5-t esters
 2,4,5-t salts
 2,4,5-tp acid esters
 2,4^5-trichlorophenol<95-95-4>
2,4,5-trlchlorophenoxyacetic acid
   (T)<93-76-5>
2,4,5-trichlorophenoxypropionic
   acid (TP)<93-72-l>
2,4,6-trichlorophenol<88-06-2>
2,4,7,8-tetrachlorodibenzo-p-
   dioxin (tcdd)
2,4-d acid<94-75-7>
2,4-d esters
2,4-dichlorophenol<120-83-2>
2,4-dichlorophenoxyacetic acid (2,
   4-d)<94-75-7>
2,4-di»ethylphenol<105-67-9>
2,4-dinitrophenol<51-28-5>
2,4-dinitrotoluene<121-14-2>
2,4-dithiobiuret<541-53-7>
2,6-dichlorophenol<87-65-0>
2,6-dinitrotoluene<606-20-2>
2-acetyla«inoflourene<53-96-3>
2-butanone peroxide<1338-23-4>
2-chloroethylvinyl ether<110-75-8>
2-chloronaphthalene< 91-58-7>
2-chlorophenol<95-57-8>
2-cyclohexyl-4,6-dinitrophenol
   <131-89-5>
2-fluoroaceta»ide (1081)<640-19-7>
2-»ethyl-2-(«ethylthio)propionalde
   hyde
   o-(Methylcarbaw>yl)oxlMe
   <116-06-3>
2-«ethylaziridine<75-55-8>
2-«ethyllactonitrile<75-86-5>
2-naphthyla«ine<91-59-8>
2-nitrophenol<88-75-5>
2-nitropropane<79-46-9>
2-picoline<109-06-8>
2-propyn-l-ol<107-19-7>
2-sec  butyl-4,6-dlnitrophenol
   <88-»85r7>
3,3*-dichlorobenzidine<91-94-l>
3,3 *-di»e thoxybenz idine<119-90-4>
3,3*-di«ethyl-l(»ethylthio)-2-
   butanone-0-((»ethyla«ino)
   carbonyDoxiae
3,3 *-di«ethylbenzidine
   <119-9  3,4-benzofluoranthene
   <205-99-2>
3,4-dihydroxy-alpha-((«ethyla»ino)
   •ethyl) benzyl  alcohol<51-43-4>
3-chloropropionitrile<542-76-7>
3-«ethylcholanthrene<56-49-5>
39196-18-4>
                          902

-------
                         Accession No.  7301400909
                  (cont)
4/ 4 '-ddd(p/p 'tde )<72-54-8>
4,4'-dde(p/p*-ddx<72-55-9>
4/4'-ddt<50-29-3>
4/4'-nethylene-bis-(2-chloroanilin
4/6-dinitro-o-cresol<534-52-l>
4-A«inopyridine<504-24-5>
4-bromophenyl phenyl ether
   <101-55-3>
4-chloro-o-toluidine hydrochlorlde
   <3165-93-3>
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nitrophenol<100-02-7>
5- ( ami none thyl ) -3-isoxazolol
   <2763-96-4>
5-nitro-o-toluidin«< 99-55- 8>
6- amino-1/ la/2/8/8 a/ 8b-hex ahydro-
   8-hydroxyaethyl-8-methoxy-5-
   nethylcarbaaat
Oc tame thylpyrophosphor aside (OMPA)
   <152-16-9>
acenaphthene<83-32-9>
aceraphthylene<208-96-8>
acetaldehyde<75-07-0>
acetic acid<64-19-7>
acetic anhydride<108-24-7>
acetone cyanohydrin<75-86-5>
acetone<67-64-l>
acetonitrile<75-05-8>
ac«tophenone<98-86-2>
acetyl bro«ide<506-96-7>
acetyl chloride<75-36-5>
acrolein<107-02-8>
acrylamide<79-06-l>
acrylic acid<79-10-7>
acrylonitrile<107-13-l>
adipic acid<124-04-9>
aldrin<309-00-2>
allyl alcohol<107-18-6>
allyl chloride<107^05-l>
alpha/ alpha-diaethylbenzylhydro-
   peroxide<80-15-9>
alpha/ alpha-dime thylphenethylanine
   <122-09-8>
alpha-chlorotoluene<100-44-7>
aluninum phosphide<20 859-7 3-8>
alutinun sulfate<10043-01-3>
anitrole<61-82-5>
a»nonia<7664-41-7>
annoniuB acetate<631-61-8>
annonium benzoate<1863-63-4>
auoniun bicarbonate<1066-33-7>
annoniua bichroaate<7789-09-5>
amoniun bif iuoride<1341-49-7>
ammonium bisulf ite<10192-30-0>
amaoniua carbasate< 1111-7 8-0>
aanoniua carbonate<506-87-6>
anaonium chloride<12125-02-9>
aanoniuM chromate<7788-98-9>
auaoniuB citrate<7632-50-0>
anmoniUH f luoborate<13826-83-0>
aaaoniuB f luoride<12125-01-8>
amoniun hydroxide<1336-21-6>
annoniun oxalate<1113-38-8>
ammonium picrate<131-74-8>
amnoniua silicofluoride
   <16919-19-0>
amaoniua sulf anate<7773-06-0>
anmonium sulf ide<12135-76-l>
aaaoniua sulf ite<10196-04-0>
anaonium tartrate<3164-29-2>
ammonium thiocyanate<1762-95-4>
aaaoniua thiosulf ate<7783-18-8>
aayl acetate<628-63-7>
aniline<62-53-3>
anthracene<120-12-7>
antimony pentachloride<7647-18-9>
antiaony potassium tart rate
antiaony tribroaide<7789-61-9>
antiaony trichloride<10025-91-9>
antimony trifluoride<7783-56-4>
antiaony<7440-36-0>
arsenic acid<1327-52-2>
arsenic disulf ide<1303-32-8>
arsenic pentoxide<1303-28-2>
arsenic trichloride<7784-34-l>
arsenic trioxide<1327-53-3>
arsenic trisulfide<1303-33-9>
arsenic<7440-38-2>
asbestos<1332-21-4>
auraaine<2465-27-2>
azaserine<115-02-6>
bariua cyanide<542-62-l>
bariua<7440-39-3>
benz(c)acridine<225-51-4>
benzal chloride<98-87-3>
benzene<71-43-2>
benzenesulfonyl chloride<98-09-9>
benzene thiol<108-98-5>
benzldine<92-87-5>
benzo(a)anthracene<56-55-3>
benzo(a)pyrene<50-32-8>
                          903

-------
                         Accession Ho.  7301400909
                  Ccont)
benzo(g,h,l)perylene<191-24-2>
benzo( k ) f 1 uo rant hene< 207-0 8-9>
benzole acid<65-85-0>
benzonitrile<100-47-0>
benzotrichloride<98-07-7>
benzoyl chloride<98-88-4>
benzyl chloride<100-44-7>
berylliua chloride<7787-47-5>
beryllium dust
beryllium f luoride<7787-49-7>
beryllium nitrate<13597-99-4>
beryllium<7440-41-7>
bhc (lindane)-gam«a<58-89-9>
bhc*alpha<319-84-6>
bhc-beta<319-85-7>
bhc-delta<319-86-8>
bis(2-chloroethoxy)methane
bls(2-chloroethyl)ether
bis(2-chloroisopropyl)ether
   <39638-32-9>
bis(2-ethylhexyl)phthalate
bis(chloro«ethyl)ether<542-88-l>
bro«oacetone<598-31-2>
bro»o»ethane<74-83-9>
brucine<357-57-3>
butyl acetate<123-86-4>
butyl benzyl phthalat«<85-68-7>
butyla«ine<109-73-9>
butyric aci(K107-92-6>
cad«lu« acetate<543-90-8>
        bro«ide<7789-42-6>
        chloride
cad«iu»<7440-43-9>
calclua arsenat«<7778-44-l>
calciun arsenlte<52740-16-6>
calclua carbide<75-20-7>
calciui chroma te< 137 6 5-1 9-0 >
calclua cyanlde<592-01-8>
calciua dodecylbenzenesulf onate
   <26264-06-2>
calclua hydroxld«<1305-62-0>
calclua hypochlorite<7778-54-3>
calclua oxide<1305-78-8>
captan<133-06-2>
carbaryl<63-25-2>
carbofuran<1563-66-2>
carbon disulflde<75-15-0>
carbon tetrachlorlde<56-23-5>
carbonyl f iuoride<353-50-4>
chloral<75-87-6>
chlora»bucll<305-03-3>
chlordane<57-74-9>
chlorinated ethanes
chlorinated naphthalenes
chlorine<7782-50-5>
chloroacetaldehyde<107-20-0>
chlorobenzene<108-90-7>
chlorobenzilate<510-15-6>
chlorodlbro«o«ethane<124-48-l>
chlocoethane<75*00-3>
chloroethene<75-01-4>
chloroethyl vinyl ether<110-75-8>
chlorofluorocarbons
chlorofor«<67-66-3>
chloroiethane<74-87-3>
chloroaethyl aethyl ether
   <107-30-2>
chlcrop rene
chlocosulfonlc acld<7790-94-5>
chlorpyrifos<2921-88-2>
chroalc acetate<1066-30-4>
chromic acld< 7738-94-5>
chromic sulfate<10101-53-8>
chromium<7440-47-3>
chromotis chloride<10049-05-5>
chrysene<218-01-9>
cobalt<7440-48-4>
cobaltous bromlde<7789-43-7>
cobaltous for«ate<544-18-3>
cobaltous sulfamate<140l7-41-5>
copper cyanlde<544-92-3>
copper<7440-50-8>
coumaphos<56-72-4>
cresol<1319-77-3>
cresylic acid<1319-77-3>
crotonaldehyde<4170-30-3>
c u» ene< 98- 8 2- 8>
cuprlc acetate<142-71-2>
cupric acetoarsenlte<12002-03-8>
cuprlc cblorlde<7447-39-4>
cuprlc nltrate<3251-23-8>
cuprlc oxalate<814-91-5>
cuprlc sulfata aaaonlated
   <10380-29-7>
cuprlc sulfate<7758-98-7>
cuprlc tartrate<815-82-7>
cyanlde<57-12-5>
cyanogen bro»lde<506-68-3>
cyanogen chlorlde<506-77-4>
cyanogen<460-19-5>
cyclohexane<110-82-7>
cyclohexanone<108-94-l>
                         904

-------
                         Accession Mo.  7301400909
                  (cont)
cyclophospharaide<50-18-0>
daunomycin<20830-81-3>
ddd(tde)<72-54-8>
ddt<50-29-3>
di-isopropylfluorophosphate
   <55-91-4>
di-n-butyl phthalate<84-74-2>
di-n-octyl phthalate<117-84-0>
di-n-propylnitrosaaine<621-64-7>
diallate<2303-16-4>
diazinon<333-41-5>
dibenzo(ash)anthracene<53-70-3>
dibenzol(a,i)pyrene<189-55-9>
dibroBOchloronethane<124-48-l>
dibro»omethane<74-95-3>
dicamba<1918-00-9>
dichlobenil<1194-65-6>
dichlone<117-80-6>
dichlorobenzene<25321-22-6>
dichlorobroaoaethane<75-27-4>
dichlorodifluoroaethane<75-71-8>
dlchloro»ethanc<75-09-2>
dichlorophenylarsine<696-28-6>
dlchloroprop ane<7 8-87-5>
dichloropropene-dichloropropane
   «ixture<8003-19-8>
dichloropropene<542-75-6>
dichlorvos<62-73-7>
dieldrin<60-57-l>
diepoxybutane
diethyl phthalate<84-66-2>
diethylamine
diethylarsine
diethylstllbestrol<56-53-l>
dihydrosafrole<94-58-6>
diraethoate<60-51-5>
diBcthyl phthalate<131-ll-3>
dimethyl sulfate<77-78-l>
dimethylaBine<124-40-3>
dimethyIcarbaraoyl chloride
   <79-44-7>
diBethylnitrosaaine<62-75-9>
dinitrobenzene<25154-54-5>
dinitrophenol
dinitrotoluene<25321-14-6>
dioxin<828-00-2>
dipropylaBine<142-84-7>
diquat<2764-72-9>
disulfoton<298-04-4>
diuron<330-54-l>
dodecylbenzenesulfonic acid
   <27176-87-0>
e
edta<60-00-4>
endosulfan sulfate<1031-07-8>
endosulfan-alpha<959-98-8>
endosulfan-beta<33213-65-9>
endosulfan<115-29-7>
endrin aldehyde<742l-93-4>
endrin<72-20-8>
epichlorohydrin<106-89-8>
ethion<563-12-2>
ethyl acetate<141-78-6>
ethyl acrylate<140-88-5>
ethyl ether<60-29-7>
ethyl Bethacrylate<97-63-2>
ethyl aethanesulfonate<62-50-0>
ethylbenzene<100-41-4>
ethylcyanide<107-12-0>
ethylene bisdithiocarbanate
ethylene dibromide<106-93-4>
ethylene dichloride<107-06-2>
ethylene oxide<75-21-8>
ethylene thiourea<96-45-7>
ethylenedlaBine
ethyleneiBine<151>56-4>
ferric aamoniUB citrate<1135-57-5>
ferric aaaoniua oxalate
   <14221-47-7>
ferric chloride<7705-08-0>
ferric cyanide
ferric fluoride<7783-50-8>
ferric nitrate<10421-48-4>
ferric sulfate<10028-22-5>
ferrous aaaonlua sulfate
   <10045-89-3>
ferrous chloride<7758-94-3>
ferrous sulfate<7720-78-7>
fluoranthene<206-44-0>
fluorene<86-73-7>
fluorine<7782-41-4>
fluoroacetic acid, sodiua salt
   <62-74-8>
fluorotrichloroaethane<75-69-4>
foraaldehyde<50-00-0>
formic acid<64-18-6>
fuaaric acid<110-17-8>
furan<110-00-9>
furfural<98-01-l>
glycidylaldehyde<765-34-4>
guthion<86-50-0>
heptachlor epoxide<1024-57-3>
heptachlor<76-44-8>
hexachlorobenzene<118-74-l>
                         905

-------
                         Accession Mo.  7301400909
                  4cont)
hexach!orobutadiene<87-68-3>
hexachlorocyclohexane<58-89-9>
hexachlorocyclopentadiene<77-47-4>
hexachloroethane<67-72-l>
he xachloro phene<7 0-30-4>
hexachloropropene<1888-71-7>
hexaethyl tetraphosphate<757-58-4>
hydrazine<302-01-2>
hydrochloric acld<7647-01-0>
hydrocyanic acid<74-90-8>
hydrofluoric acid<7664-39-3>
hydrogen cyanide<74-90-8>
hydrogen sulfide<7783-06-4>
hydroxydiaethyl arsine oxide
   <75-60-5>
indeno (1*2,3-cd)pyrene<193-39-5>
iodo*ethane<74-88-4>
iron dextran<9004-66-4>
iron<7439-89-6>
isobutyl alcohol<78-83-l>
isocyanic acid* aethyl ester
   <624-83-9>
isophorone<78-59-l>
isoprene<78-79-5>
isopropanolaaine dodecylbenzene
   sulfonate<54590-52-2>
isosafrole<120-58-l>
kelthane<115-32-2>
kepone<143-50-0>
lasiocarpine<303-34-4>
lead acetate<301-04-2>
lead arsenate<3687-31-8>
lead chloride<7758-95-4>
lead fluorborate<13814-96-5>
lead fluorlde<7783-46-2>
lead iodlde<10101-63-0>
lead nitrate<10099-74-8>
lead phosphate<7446-27-7>
lead stearate<1072-35-l>
lead subacetate<1335-32-6>
lead sul£ate<7446-14-2>
lead sulfide<1314-87-0>
lead thlocyanate<592-87-0>
lead<7439-92-l>
lindane<58-89-9>
llthiua chro»ate<14307-35-8>
»-cresol<108-39-4>
»-xylene<108-38-3>
•alathion<121-75-5>
•alcic acld<110-16-7>
•alelc anhydride<108-31-6>
•aleic hydrazide<123-33-l>
•alononitrile<109-77-3>
•anganese and co»pounds<7439-96-5>
•elphalan<148-82-3>
•ercaptodinethur< 2032-65-7>
•ercurie cyanide<592-04-l>
•ercuric nitrate<10045-94-0>
•ercuric sulfate<7783-35-9>
•ercuric thiocyanate<592-85-8>
•ercurous nitrate<10415-75-5>
•ercury ful»inate<628-86-4>
•ercury<7439-97-6>
»ethanethiol<74-93-l>
•ethanol<67-56-l>
•ethapyrilene<91-80-5>
»etho«yl<16752-77-5>
•ethoxychlor<72-43-5>
»ethyacrylonitrile<126-98-7>
•ethyl chlorocarbonate<79-22-l>
•ethyl ethyl ketone («ek)<78-93-3>
•ethyl ethyl ketone peroxide
   <1338-23-4>
•ethyl hydrazine<60-34-4>
•ethyl iodide<74-88-4>
•ethyl isobutyl ketone<108-10-l>
•ethyl »ercaptan<74-93-l>
•ethyl »ethacrylate<80-62-6>
•ethyl parathion<298-00-0>
•ethylthiouraciK 56-04-2>
•evinphos<7786-34-7>
•exacarbate<315-18-4>
•onoethyla«lne<75-04-7>
»onoHethylamine<74-89-5>
n/n-bis(2-chlotoethyl)-2-naphthyla
   •ine<494-03-l>
n-butyl alcohol<71-36-3>
n-butyl phthalate<84-74-2
   n-«ethyl-n*-nitro-n-
   nitrosoguanidine<70-25-7>
n-nitroso-n-ethylurea<759-73-9>
n-nitroso-n-«ethylurea<684-93-5>
n-nitroso-n-«ethylurethane
   <615-53-2>
n-nitroscdi-n-butyla«ine<924-16-3>
n-nitrosodi-n-propylaaine
   <621-64-7>
n-nitrosodiethanola»ine<1116-54-7>
n-nltrosodiethyla«ine<55-18-5>
n-nitrosodi«ethyla«ine<62-75-9>
n-nitrosodiphenyla«ine<86-30-6>
n-nitrosomethylvinylamine
   <4549-40-0>
n-nitrosopiperidine<100-75-4>
                          906

-------
                         Accession No.  7301400909
                  (cont)
n-nitrosopyrrolidine<930-55-2>
n-phenylthiourea<103-85-5>
n-propyla»ine<107-10-8>
naleoX300-76-5>
naphthalene< 9l-20-3>
naphthenic acid< 1338-2 4-5>
nickel amnoniua sulfate<7785-20-8>
nickel car bony l<12612-55-4>
nickel chloride<7718-54-9>
nickel cyanide<557-19-7>
nickel hydroxide<12054-48-7>
nickel nitrate<13138-45-9>
nickel sulfate<7786-81-4>
nickel<7440-02-0>
nicotine and salts<54-ll-5>
nitric acid<7697-37-2>
nitric oxide<10102-43-9>
ni trobenzene< 9 8- 95-3>
nitrogen dioxide<10102-44-0>
nitrogen peroxide<10102-44-0>
nitrogen tetroxide<10544-72-6>
nitroglycerine<55-63-0>
nitrophenol<25l54-55-6>
nitrotoluene
o-cresol<95-48-7>
o-toluidine hydrochloride
   <636-21-5>
o-xy lene< 95- 47-6>
oil and grease
oleyl alcohol condensed with 2
   •oles ethylene ox ide< 9004-98- 2>
onaphthalene<465-73-6>
osBiua tetroxide<20816-12-0>
p-chloro-«-cresol<59-50-7>
p-chloroaniline<106-47-8>
p-cresol<106-44-5>
p-dimethyla«inoazobenzen€<60-ll-7>
p-nitroaniline<100-01-6>
p-xylene<106-42-3>
parafor«aldehyde<30525-89-4>
paraldehyde<123-63-7>
par athion< 56-38- 2>
pcb-1016 (arochlor 1016)
   <12674-ll-2>
pcb-1221 (arochlor 1221)
   <11104-28-2>
pcb-1232 (arocblor 1232)
pcb-1242 (arochlor 1242)
   <53 469-21 -9>
pcb-1248 (arochlor 1248)
   <12672-29-6>
pcb-1254 (arochlor 1254)
   <11097-69-l>
pcb-1260 (arochlor 1260)
   <11096-82-5>
pentachlorobenzene<608-93-5>
pentachloroethane<76-01-7>
pentachloronitrobenzene (PCNB)
   <82-68-8>
pentachlorophenol<87-86-5>
phenacetin<62-44-2>
phenanthrene<85-01-8>
phenol<108-95-2>
phenyl dichloroarsine<696-28-6>
phenylnercury acetate<62-38-4>
phorate<298-02-2>
phosgene<75-44-5>
phosphine<7803-51-2>
phosphoric acid<7664-38-2>
phosphorothioic acid,o,o-diaethyl
   esterro-ester yith n/n-dimethyl
   benzene s
phosphorus oxychloride
   < phosphorus pentasulflde
   <1314-80-3>
phosphorus sulfide<1314-80-3>
phosphorus trichloride<7719-12-2>
phosphorus<7723-14-0>
phthalic anhydride<85-44-9>
polybrominated biphenyls (PBBs)
polychlocinated biphenyls (PCBs)
   <1336-36-3>
potassiUM arsenite<10124-50-2>
potassium bichro«ate<7778-50-9>
potassiuc chroaate<7789-00-6>
potassiUB cyanide<151-50-8>
potassiua hydroxide
potassiui pernanganate<7722-64-7>
potassiua silver cyanide<506-61-6>
potassiu«-arsenate<7784-41-0>
prona«ide<23950-58-5>
propargite<2312-35-8>
prop ionic acid<79-09-4>
propionic anhydride<123-62-6>
propionitrile<107-12-0>
propylene oxide<75-56-9>
pyrene<129-00-0>
pyrethrin<121-29-9>
pyridine<110-86-l>
quinoline<91-22-5>
quinones
reserpine<50-55-5>
resorcinol
                         907

-------
                         Accession Ho.  7301400909
                  (cent)
saccharitK 81-07-2>
safrole<94-59-7>
selenious acid<7783-00-8>
selenium oxide<12640-89-0>
selenium sulfide<7446-34-6>
selenium<7782-49-2>
selenourea<630-10-4>
silver cyanide<506-64-9>
silver nitrate<7761-88-8>
silver<7440-22*4>
sodium arsenate<7631-89-2>
sodium arsenlte<7784-46-5>
sodium azide<26628-22-8>
sodium bichromate<10588-01-9>
sodium blfluorlde<1333-83-l>
sodiUB bisuifite<7631-90-5>
sodita chromate<7775-ll-3>
sodium cyanide<143-33-9>
sodium dodecylbenzenesulfonate
   <25155-30-0>
sodiua fluoride<768l-49-4>
sodiUB hydrosulfide<16721-80-5>
sodiui hydroxide<1310-73-2>
sodluB hypochlorite<7681-52-9>
sodiua »ethylate
sodlua nitrlte<7632-00-0>
sodliia phosphate^ dibasic
   <7558-79-4>
sodluB phosphate^ trlbasic
   <7601-54-9>
sodiua selenlte<10102-18-8>
sodiua<7440-23-5>
sir eptozotocin
strontium chroiate<7789-06-2>
strontium sul£ide<1314-96-l>
strychnln«<57-24-9>
«tyrene<100-42-5>
sulfur «onochloride<10025-67-9>
sulfurlc acid<7664-93-9>
tde<72-54-8>
tctrachloroethene<127-18-4>
tetrachloroethylene
tatrachloro««than€<56-23-5>
tetraethyl dithiopyrophosphate
   <3689-24-5>
tatraethyl lead<78-00-2>
tetraethyl pyrophosphat«<107-49-3>
tetrahydofuran<109-99- 9>
tetranitromethane<509-14-8>
thailie oxide<1314-32-5>
thallium acetate<563-68-8>
thallium carbonate<29809-42-5>
thallium chloride<779l-12-0>
thallium nitrate<10l02-45-l>
thallium selenite<12039-52-0>
thallium sulf ate<7446-l 8-6>
thailium<7440-28-0>
thioacetamide<62-55-5>
thios«mlcarbazide<79-19-6>
thiourea<62-56-6>
thiura«<137-26-8>
titanium<7440-32-6>
toluene diisocyanate<26471-62-5>
toluene<108-88-3>
tolu«nedia«lne<25376-45-8>
toxaphene<8001-35-2>
tribromo«ethane<75-25-2>
trichlorfon<52-68-6>
trichloroethane<25323-89-l>
trichloroethene<79-01-6>
trichloroethylene<79-01-6>
trichlorofluoromethane<75-69>4>
trichloromethanethiol<75-70-7>
tcichlorophenol (TCP)<25167-82-2>
triethanolamine dodecylbenzenesulf
   onate<27323-41-7>
triethylamine<121-44-8>
trimethylamine
   <75-50-3> trinitrobenzene
   <99-35-4>
tris(2,3-dibromop ropy 1) phosphate
   <1 26-7 2-7 >
trypan blue<72-57-l>
ulfonamide<52-85-7>
uracil mustard<66-75-l>
uranyl acetate<541-09-3>
uranyl nitrate<10102-06-4>
urethane<51-79-6>
vanadic acid, ammonium salt
vanadium pentoxide<1314-62-l>
vanadium<7440-62-2>
vanadyl sulfate<27774-13-6>
vinyl ac«tate<108-05-4>
vinyl chloride<75-01-4>
vinylideoe chloride<75-35-4>
xylene<1330-20-7>
xylenol<1300-71-6>
zinc ace tate< 557-3 4-6 >
zinc ammonium chloride
zinc borate<1332-07-6>
zinc bromide<7699-45-8>
zinc carbonate<3486-35-9>
zinc ch lor ide< 7646- 85-7>
                         903

-------
                             Accession Ho.  7301400909     (cont)

    zinc cyanide<557-21-l>               zinc sul£ate<7733-02-0>
    zinc fluoride<7783-49-5>             zinc<7440-66-6>
    zinc formate<557-41-5>               zirconiui nitrate
    zinc hydrosulfIte<7779-86-4>         zirconiu* potassiua fluoride
    zinc nitrate<7779-88-6>                 <16923-95-8>
    zinc phenol sulfonate<127-82-2>      zirconiua sulfate
    zinc phosphide<1314-84-7>            zirconiua tetrachloride
    zinc silicofluoride         <10026-ll-6>
(CAS)  CAS registry numbers of substances included in data base: 50-07-7
    ; 311-45-5; 297-97-2; 630-20-6;   71-55-6; 79-34-5; 79-00-5;
    79-01-6; 75-34-3; 75-35-4; 57-14-7;   95-94-3; 96-12-8; 106-93-4;
    95-50-1; 107-06-2; 78-87-5; 563-54-2;     1615-80-1; 540-73-8;
    122-66-7; 57-55-6; 156-60-5; 541-73-1; 542-75-6;      504-60-9;
    1120-71-4; 110-57-6; 106-46-7; 123-91-1; 130-15-4;     5344-82-1;
    53-86-1; 134-32-7; 75-99-0; 58-90-2; 95-95-4; 93-76-5;     93-72-1;
    88-06-2; 94-75-7; 120-83-2; 94-75-7; 105-67-9; 51-28-5;
    121-14-2; 541-53-7; 87-65-0; 606-20-2; 53-96-3; 1338-23-4;
    110-75-8;       91-58-7; 95-57-8; 131-89-5; 640-19-7; 116-06-3;
    75-55-8; 75-86-5;     91-59-8; 88-75-5; 79-46-9; 109-06*8;
    107-19-7; 88-85-7; 91-94-1;      119-90-4; 51-43-4; 542-76-7;
    56-49-5; 72-54-8; 72-55-9; 50-29-3;      101-14-4; 534-52-1;
    504-24-5; 101-55-3; 3165-93-3; 7005-72-3;    100-02-7; 2763-96-4;
    99-55-8; 152-16-9; 83-32-9; 208-96-8; 75-07-0;   64-19-7; 108-24-7;
    75-86-5; 67-64-1; 75-05-8; 98-86-2; 506-96-7;      75-36-5;
    107-02-8; 79-06-1; 79-10-7; 107-13-1; 124-04-9; 309-00-2;
    107-18-6; 107-05-1; 80-15-9; 122-09-8; 100-44-7; 20859-73-8;
    10043-01-3; 61-82-5; 7664-41-7; 631-61-8; 1863-63-4; 1066-33-7;
    778S-09-5; 1341-49-7; 10192-30-0; 1111-78-0; 506-87-6; 12125-02-9;
    7788-98-9; 7632-50-0; 13826-83-0; 12125-01-8; 1336-21-6; 1113-38-8;
    131-74-8; 16919-19-0; 7773-06-0; 12135-76-1; 10196-04-0; 3164-29-2;
    1762-95-4; 7783-18-8; 628-63-7; 62-53-3; 120-12-7; 7647-18-9;
    11071-15-1; 7789-61-9; 10025-91-9; 7783-56-4; 7440-36-0; 1327-52-2;
    1303-32-8; 1303-28-2; 7784-34-1; 1327-53-3; 1303-33-9; 7440-38-2;
    1332-21-4; 2465-27-2; 115-02-6; 542-62-1; 7440-39-3; 225-51-4;
    98-87-3; 71-43-2; 98-09-9; 108-98-5; 92-87-5; 56-55-3; 50-32-8;
    191-24-2; 207-08-9; 65-85-0; 100-47-0; 98-07-7; 98-88-4; 100-44-7;
    7787-47-5; 7787-49-7; 13597-99-4; 7440-41-7; 58-89-9; 319-84-6;
    319-85-7; 319-86-8; 111-91-1; 111-44-4; 39638-32-9; 117-81-7;
    542-88-1; 598-31-2; 74-83-9; 357-57-3; 123-86-4; 85-68-7; 109-73-9;
    107-92-6; 543-90-8; 7789-42-6; 7440-43-9; 7778-44-1; 52740-16-6;
    75-20-7; 13765-19-0; 592-01-8; 26264-06-2; 1305-62-0; 7778-54-3;
    1305-78-8; 133-06-2; 63-25-2; 1563-66-2; 75-15-0; 56-23-5;
    353-50-4;       75-87-6; 305-03-3; 57-74-9; 7782-50-5; 107-20-0;
    108-90-7; 510-15-6;       124-48-1; 75-00-3; 75-01-4; 110-75-8;
    67-66-3; 74-87-3; 107-30-2;     126-99-8; 7790-94-5; 2921-88-2;
    1066-30-4; 7738-94-5; 10101-53-8;     7440-47-3; 10049-05-5;
    218-01-9; 7440-48-4; 7789-43-7; 544-18-3;      14017-41-5;
    544.92-3; 7440-50-8; 56-72-4; 1319-77-3; 1319-77-3;
    4170-30-3; 98-82-8; 142-71-2; 12002-03-8; 7447-39-4; 3251-23-8;
    814-91-5; 10380-29-7; 7758-98-7; 815-82-7; 57-12-5; 506-68-3;
    506-77-4; 460-19-5; 110-82-7; 108-94-1; 50-18-0; 20830-81-3;
    72-54-8;      50-29-3; 55-91-4; 84-74-2; 117-84-0; 621-64-7;


                             909

-------
                         Accession No.  7301400909     (cont)

2303-16-4; 333-41-5;   53-70-3; 189-55-9; 124-48-1; 74-95-3;
1918-00-9; 1194-65-6; 117-80-6;      25321-22-6; 75-27-4; 75-71-8;
75-09-2; 696-28-6; 78-87-5; 8003-19-8;       542-75-6; 62-73-7;
60-57-1; 1464-53-5; 84-66-2; 109-89-7; 56-53-1;    94-58-6;
60-51-5; 131-11-3; 77-78-1; 124-40-3; 79-44-7; 62-75-9;
25154-54-5; 25321-14-6; 828-00-2; 142-84-7; 2764-72-9; 298-04-4;
330-54-1; 27176-87-0; 60-00-4; 1031-07-8; 959-98-8; 33213-65-9;
115-29-7; 7421-93-4; 72-20-8; 106-89-8; 563-12-2; 141-78-6;
140-88-5;      60-29-7; 97-63-2; 62-50-0; 100-41-4; 107-12-0;
106-93-4; 107-06-2;    75-21-8; 96-45-7; 107-15-3; 151-56-4;
1185-57-5; 14221-47-7;     7705-08-0; 7783-50-8; 10421-48-4;
10028-22-5; 10045-89-3; 7758-94-3;       7720-78-7; 206-44-0;
86-73-7; 7782-41-4; 62-74-8; 75-69-4; 50-00-0;   64-18-6; 110-17-8;
110-00-9; 98-01-1; 765-34-4; 86-50-0; 1024-57-3;   76-44-8;
118-74-1; 87-68-3; 58-89-9; 77-47-4; 67-72-1; 70-30-4;
1888-71-7; 757-58-4; 302-01-2; 7647-01-0; 74-90-8; 7664-39-3;
74-90-8; 7783-06-4; 75-60-5; 193-39-5; 74-88-4; 9004-66-4;
7439-89-6;      78-83-1; 624-83-9; 78-59-1; 78-79-5; 54590-52-2;
120-58-1; 115-32-2;       143-50-0; 303-34-4; 301-04-2; 3687-31-8;
7758-95-4; 13814-96-5;       7783-46-2; 10101-63-0; 10099-74-8;
7446-27-7; 1072-35-1; 1335-32-6;   7446-14-2; 1314-87-0; 592-87-0;
7439-92-1; 58-89-9; 14307-35-8;       108-39-4; 108-38-3; 121-75-5;
110-16-7; 108-31-6; 123-33-1; 109-77-3;      7439-96-5; 148-82-3;
2032-65-7; 592-04-1; 10045-94-0; 7783-35-9;      592-85-8;
10415-75-5; 628-86-4; 7439-97-6; 74-93-1; 67-56-1; 91-80-5;
16752-77-5; 72-43-5; 126-98-7; 79-22-1; 78-93-3; 1338-23-4;
60-34-4;       74-88-4; 108-10-1; 74-93-1; 80-62-6; 298-00-0;
66-04-2; 7786-34-7;    315-18-4; 75-04-7; 74-89-5; 494-03-1;
71-36-3; 84-74-2; 759-73-9;     684-93-5; 615-53-2; 924-16-3;
621-64-7; 1116-54-7; 55-18-5; 62-75-9;       86-30-6; 4549-40-0;
100-75-4; 930-55-2; 103-85-5; 107-10-8; 300-76-5;      91-20-3;
1338-24-5; 7785-20-8; 12612-55-4; 7718-54-9; 557-19-7;
12054-48-7; 13138-45-9; 7786-81-4; 7440-02-0; 54-11-5; 7697-37-2;
10102-43-9; 98-95-3; 10102-44-0; 10102-44-0; 10544-72-6; 55-63-0;
25154-55-6; 95-48-7; 636-21-5; 95-47-6; 9004-98-2; 465-73-6;
20816-12-0; 59-50-7; 106-47-8; 106-44-5; 60-11-7; 100-01-6;
106-42-3;      30525-89-4; 123-63-7; 56-38-2; 12674-11-2;
11104-28-2; 11141-16-5;    53469-21-9; 12672-29-6; 11097-69-1;
11096-82-5; 608-93-5; 76-01-7;    82-68-8; 87-86-5; 62-44-2;
85-01-8; 108-95-2; 696-28-6; 62-38-4;      298-02-2; 75-44-5;
7803-51-2; 7664-38-2; 1314-80-3; 7719-12-2;   7723-14-0; 85-44-9;
1336-36-3; 10124-50-2; 7778-50-9; 7789-00-6;      151-50-8;
1310-58-3; 7722-64-7; 506-61-6; 7784-41-0; 23950-58-5;
2312-35-8; 79-09-4; 123-62-6; 107-12-0; 75-56-9; 129-00-0;
121-29-9;       110-86-1; 91-22-5; 50-55-5; 108-46-3; 81-07-2;
94.59.7. 7783-00-8;    12640-89-0; 7446-34-6; 7782-49-2; 630-10-4;
506-64-9; 7761-88-8;      7440-22-4; 7631-89-2; 7784-46-5;
26628-22-8; 10588-01-9; 1333-83-1;   7631-90-5; 7775-11-3;
143-33-9; 25155-30-0; 7681-49-4; 16721-80-5;    1310-73-2;
7681-52-9; 124-41-4; 7632-00-0; 7558-79-4; 7601-54-9;
10102-18-8; 7440-23-5; 7789-06-2; 1314-96-1; 57-24-9; 100-42-5;
10025-67-9; 7664-93-9; 72-54-8; 127-18-4; 127-18-4; 56-23-5;


                         910

-------
                             Accession Mo.   7301400909     (cont)

    3689-24-5;  78-00-2; 107-49-3; 109-99-9; 509-14-8; 1314-32-5;
    563-68-8;  29809-42-5; 7791-12-0; 10102-45-1; 12039-52-0;  7446-18-6;
    7440-28-0;  62-55-5; 79-19-6; 62-56-6; 137-26-8; 7440-32-6;
    26471-62-5; 108-88-3; 25376-45-8; 8001-35-2; 75-25-2; 52-68-6;
    25323-89-1; 79-01-6; 79-01-6; 75-69-4;  75-70-7; 25167-82-2;
    27323-41-7; 121-44-8; 75-50-3; 99-35-4; 126-72-7; 72-57-1;  52-85-7;
    66-75-1; 541-09-3; 10102-06-4; 51-79-6; 11115-67-6; 1314-62-1;
    7440-62-2;  27774-13-6; 108-05-4; 75-01-4; 75-35-4; 1330-20-7;
    1300-71-6;  557-34-6; 1332-07-6; 7699-45-8; 3486-35-9; 7646-85-7;
    557-21-1;  7783-49-5; 557-41-5; 7779-86-4; 7779-88-6; 127-82-2;
    1314-84-7;  16871-71-9; 7733-02-0; 7440-66-6; 13746-89-9;
    16923-95-8;       14644-61-2; 10026-11-6
(CNN)  Contact narae(s): OTS,C.S.  ;    OTS,C.S.
(COR)  Contact organization: Cindy Stroup OTS/EED/DDB
(ROR)  Responsible Organization: Office of Pesticides and Toxic
    Substances.Office of Toxic Substances.Exposure Evaluat
                             911

-------
                             Accession Ho.   7301700901

(DQ)  Date of Questionaire: 12-02-82
(STATUS)  Status of entry: Test Data Bank
(HAM)  Have of Data Base of Model: Scientific Paraaeters in Health and
    the  Environment, Retrieval and Estivation
(ACR)  Acronym of Data Base or Model: SPHERE
(MED)  Media/Subject of Data Base or Model: Physical-Chemical
    properties. Health Effects, Environmental Affects and Environmental
    Fate.
(ABS)  Abstract/Overview of Data Base or Model: This data bank is a
    repository for scientific     data generated by, submitted to, or
    collected by or for the Office    of Toxic Substances (OTS).
    SPHERE is currently a test component of the HIH/EPA Chemical
    Information System (CIS) which provides  substructure search  and
    data analysis capabilities for OTS to use     in conjunction  with
    their scientific data.
(CTC)  COHTACTS: Paula Miles (202) 382-3775
(DTP)  Type of data collection or monitoring: Data extracted from the
    literature, EPA  summary data, and Unpublished laboratory test
    result data.
(STA)  Cata Base status: Funded for development
(DPO)  Projected operational date of Data Base: 08-01-83
(HPP)  Non-pollutant parameters included in the data base: Physical-chem
    ical properties, health effects, environmental effects and
    environmental fate data.
(DS)  Time period covered by data base: 01-01-70 to 01-01-81
(TRM)  Termination of data collections Hot anticipated
(FRQ)  Frequency of data collection or sampling: as needed ;Qther file
    building/as funded
(ROB)  Number of observations  In data base: 25,000 records
(HEX)  Estimated annual increase of observations in data base: 15,000
    records
(IMF)  Data base includes: evaluated data generated by expert groups
    and  unevaluated data  from  the literature or from laboratory tests.
(HTS)  Total number of stations or sources covered in data base:  Current
    ly 6 data sources in  test  data set.
(HCS)  MO. stations or sources currently originating/contributing data:

(•OF)" Number of facilities covered  in data base (source monitoring): 0.
(6EO)  Geographic coverage of  data base: International
(LOC)  Data elements identifying  location of station or source include:
    H/A
(FAC)  Data elements identifying  facility include: H/A
(COE)  Pollutant identification data  are: CAS  registry number
(HM)  Limitation/variation in data  of which user should be  aware: Conce
    ntrations/levels of a  chemical in a     particular media are not
     included  in this data base.   Toxicity, physical-chemical, and
    environmental fate data are      included.  Future access through
     the  HIH/EPA Chemical  Information     System; test data base  limited
     to OTS use.
(DPRO  Data  collect./anal, procedures conform  to ORD guidelines: Conform
     s  to ORD  Quality Assurance Standards
(AIL)  Lab  analysis  based on EPA-approved  or accepted methods? MO


                             912

-------
                             Accession Ho.   7301700901     (cont)

(PRE)  Precision: Quality Indicators included for some components     of
    the data bank*  Considerable test condition data also presented
    in the records.
(EOT)  Editting:  SPHERE CoMlttee (OTS interdlvisional    Committee)
    conforms to the ORD Quality Assurance Standards for   editing.
    Data are edited to assure that they are true to the    original
    source.  Source data are not validated.
(CBY)  Data collected by: Federal Agencies ;industry ,? published
    literature
(ABY)  Data analyzed by: Data in system are not generally analyzed;
    user does his oun analysis using CIS analytical components such  as
    their mathematical modelling laboratory.
(IDL)  Laboratory identification: M/A
(AOT)  Authorization for data collection: Statutory authorization  is  P
    L 94-469, Section 10 (Toxic Substances    Control Act 15 2609)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base: Similar  to
    other NIH/EPA CIS outputs, e.g.   printouts on reguest and On-line
    computer access
(NUS)  number of regular users of data base: Test data base has 20
    users; 500 users expected    by January 1984.
(DSR)  Current regular users of data base: Office of Toxic Substances
    EPA regional offices
    By August 1983, Industry, Government, Academia
(CNF)  Confidentiality of data and limits on access: No confidentiality
    limits, public access after test mode - August 1983.
(DLC)  Primary physical location of data: NIH/EPA Chemical Information
    System DEC 2060  Computer in Washington, D.C.
(DST)  Form of data storage: Magnetic disc
(DAC)  Type of data access: Through NIH/EPA Chemical Information System
(CHG)  Direct charge for non-EPA use: will conform to CIS rate
    structure. Expected $65.00/connect hr.
(UPDT)  Frequency of data base master file up-date: Quarterly.
(CMP)  Completion of form:
    Paula Miles
    OFC: EPA/(OPTS)/(OTS )/(MSD)
    AD: 401 M St. SV, Washington, DC
    PH: (202) 382-3775
(OF)  Date of form completion: 12-10-82
(NMAT)  Number of substances represented in data base: 2,000 substances
(NCAS)  Number of CAS registry numbers in data base: 1,900 CAS RN
(CKM)  Contact name(s): Auer,C.   ;    Jover,T.  ;    Miles,P.
(ROR)  Responsible Organization: Office of Pesticides and Toxic
    Substances.Off Ice of Toxic Integration.
                             913

-------
                             Accession No.   7301700902

(DQ)  Date of Questionaire: 12-02-82
(STATUS)  Status of entry: Inactive
(MAN)  Name of Data Base of Model:  CHEMTRAX
(ACR)  Acronym of Data Base or Model:  CHEMTRAX
(MED)  Media/Subject of Data Base or Model: Other status  of  chemical
    assessment
(ABS)  Abstract/Overview of Data Base or Model:  Tracking  of  action  and
    decision status of    chemical substances within the  Office  of
    Toxic    Substances, other EPA programs, and federal  agencies
    pertinent to the Office of Toxic Substances* planning.   In addition
    to the chemicals individually   identified,  CHEMTRAX  covers  the
    following lists:
    -CAG chemicals 144
    -IRLG regulatory development 29
    -MCI bioassay 552
    -FIFRA 23
    -AD pre-chips screening 419
    -304 Hater Pollution Control Federation
    -382 Active Ingredients in registered pesticides
    -89 Fishbine List
    -661 NTP testing chemicals
    -947 OSHA carcinogens
    -65 hazardous wastes
    -42 CUT
    -661 preliminary list
    -50 highest production volume chemicals
    -65 OTS mutegenicity tested chemicals
(CTC)  CONTACTS: Subject matter   Jim Bradshaw  (202)755-2110;
    Computer-related  Frances Cor
(DTP)  Type of data collection or monitoring: Combination/Other
    administrative actions
(STA)  Data Base status: Discontinued
(6RP)  Groups of substances represented In Data Base: 129 307 CWA ;21
    drinking water standards ;9 potential drinking water ;  29 drinking
    water monitoring ;299  hazardous substances ;48 cancelled pesticides
    ;    54 TSCA assessment
(IPP)  Bon-pollutant parameters included in the data base:  action
    decision status
(DS)  Time period covered  by data base: 02-01-78 TO 09-30-80
(TRM)  Termination of data collection: Rot anticipated
(FRQ)  Frequency of data collection or sampling: Other ad hoc
(•08)  Rumber of observations in data base: 7500(Estimated)
(•El)  Estimated annual Increase of observations in data base:  1500
(IMF)  Data base includes: chemical decision  status and Office of Toxic
    Substances actions
(MTS)  Total number of stations or sources covered in data base: 0
(ICS)  io. stations or sources currently originating/contributing data:
    0
(•OF)  Number of facilities  covered in data base (source monitoring): 0
(LOC)  Data  elements  identifying location  of  station or source include:

(FAC)  Data  elements  identifying facility  include: N/A


                              914

-------
                             Accession No.   7301700902      (cont)

(CDE)   Pollutant  Identification data are:  Other coding  scheme
(LIM)   Limitation/variation in data of which user should be aware:  Coded
    with CHEMTRAX identification numbers;  actual data from contributors
    predates    initiation of CHEMTRAX; System is not interactive-
    presently being rewritten.
(ANL)   Lab analysis based on EPA-approved  or accepted methods? MO
(AUD)   Lab Audit: Data not based on lab analysis.
(PRE)   Precision: precision and accuracy estimates are not available
(EOT)   Fditting:  No known edit procedures  exist.
(CBY)   Data collected by: Self reporting Office of Toxic Substances/
    BPA Bother federal agency National In  Safety and Health,
    Occupational  Safety and Health Administration, Food and Drug
    Administration/ Interagency Testing Committee ;EPA headguarters
    Office of Toxic Substances/ EP
(ABY)   Data analyzed by: EPA headguarters  Office of Toxic Substances/
    EPA
UDL)   Laboratory identification: NO
(PR1)   Primary purpose of data collection: program coordination
U0T)   Authorization for data collection:  Statutory authorization is P
    L  94-469, Sections 9 & 10-support of assessment process (Toxic
    Substances Control Act of 1976-TSCA)
(OMB)   Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)   Form of available reports and outputs of  data base: Printouts on
    reguest
(•OS)   lumber of regular users of data base: 1 office
(OSR)   Current regular users of data base: EPA headguarter offices
    Office of Toxic Substances Search Center/     Management  Support
    Division                                          .   _.  ..
(CiF)   Confidentiality of data and  limits on access: No  limits on
    access to data                                ^   ,  .
(OLC)   Primary physical  location of data: Other  Federal  Agency:
    National Institutes  of Health-will  move to  EPA
(DST)   Form of data storage:  Magnetic disc               „«*.«*,»,».»   «.„.
(DAC)   Type of data access:  EPA software CHEMTRAX  MIDS:7500000902  ;EPA
    hardware IBM 370
(CHG)  Direct charge for n on-EPA use: no
(CMP)  Completion  of form:
    Fran Corbin
    OFC: EPA/(OPTS)/(OTS)/(MSO)
    AD:  401 N St.  S.W.  Washington/  D.C. 20460
    PH:  (202)426-2447
 (DF)  Date of form completion:  12-10-82
 (IMAT)   Number of  substances represented  in data base.  10^2
 (ICAS)   Number of  CAS  registry  numbers  in data base: 1068
 (NAT)   Substances  represented in  data base:
    l/l/l/2-tetracHloroethane<63          i,l,2-trichloro-l/2/2-trifluoroeth
        0-20-6>                               ane<76-13—1>
    1,I/l-trichloroethane<71-55-6>        l,l,2-trichloroethane<79-00-5>
    l'l/2/2/-tetrachloroethane           i,l,2-trichloroethene<79-01-6>
     '                                    l,l-dichloroethane<75-34-3>
                                          i,i-dichloroethylene<75-35-4>


                              915

-------
                         Accession Ho.  7301700902
                  (cont)
l,l-dichloropropane<78-99-9>
1,12-benzoperylene<191-24-2>
1* 2,3,4-tetrachlorobenzene
   <634-66-2>
1,2,3,5-tetrachlorobenzene
   <634-90-2>
l,2,3-trichlorobenzene<96-18-4>
l,2,4,-trichlorobenzene<120-82-l>
l,2-dibro»o-3-chloropropane (dbcp)
   <96-12-8>
1,2-dibro»oethane<106-93-4>
1,2-dichlorobenzene<95-50-l>
l,2-dichloroethane<107-06-2>
1,2-dichloropropane<78-B7-5>
l,2-diphenylhydrazine<122-66-7>
1,2-trans-dichloroethylene
   <156-60-5>
1,3,4 trichlorobenzene<120-82-l>
l,3,5-trichlorobenzene<108-70-3>
1,3-butylene glycol<107-88-0>
1,3-dichlorobenz«ne<541-73-l>
1,3-dichloroprop«n«<542-75-6>
1,3-dioxolane< 646-06-0>
1,4-dlchlorobenzen«<10 6-46-7>
1,5-cyclooctadiene
l-pent«ne<109-67-l>
11,12-benzofluoranthene<207-08-9>
2,2-dichloropropionlc acid
   <75-99-0>
2^3,7,8-tetrachlorodibenzo-p-
   dioxin
2,3-dinltrotoluene<602-01-7>
2,3-o-phenylenepyrene<193-39-5>
2, 4,5-t a*ines
2,4,5-t esters
2,4,5-t salts
2,4,5-tp acid esters
2, 4,5-trlchlorophenoK 95-95-4>
2,4,5-trlchlorophenoxyacetlc  acid
    Cf><93-76-5>
2,4,5-trichlorophenoxyprop ionic
    acid (TP)<93-72-l>
2,4,6-trichlorophenol<88-06-2>
2,4-d acid<94-75-7>
2/4-d esters
2,4-dichlorophenol<120-83-2>
2,4-dichlorophenoxyacetic acid (2,
    4-d)<94-75-7>
 2,4-dl«ethylphenol<105-67*9>
 2,4-dinltrophenol<51-28-5>
 2,4-dinitrotoluene<121-14-2>
 2,4-toluene diisocyanat«<584-84-»9>
2,5-dinitrotoluene<619-15-8>
2,6-dlnitrotoluene<606-20-2>
2-chloroethylvinyl ether<110-75-8>
2-chloronaphthalene<91-58-7>
2-chlorophenol<95-57-8>
2-diaethyl aainoethanol<108-01-0>
2-ethyl hexanol<104-76-7>
2-fluoroacetaaide {1081)<640-19-7>
2-hydroxy-benzoic acid<69-72-7>
2-hydroxy-prppanolc acid<50-21-5>
2-nitrophenol*<88-75-5>
2-nitroptopane<79-46-9>
3,3'-dichlorobenzidine<91-94-l>
3,4,5-trichlorogualacol
3,4-benzofluoranthene<205-99-2>
3,4-dinitrotoluene<610-39-9>
4,4'-dde
4,4'-ddt<50-29-3>
4,6-dinitro-o-cresol<534-52-l>
4-broaophenyl phenyl ether
   <101-55-3>
4-chloro-3-«ethyl phenol<59-50-7>
4-chlorophenyl phenyl  ether
   <7005-72-3>
4-»ethyl-benzenesulfona«ide
   <70-55-3>
4-nitrophenol<100-02-7>
5-ethyl-5-isopentyl-barbiturlc
   acid<57-43-2>
5-ethyl-5-phenyl-barbituric acid
   <50-06-6>
abietlc
abs<9003-56-9>
acenaphthene<83-32-9>
acenaphthylene<208-96-8>
acetaldehyde<75-07-0>
acetaldol<107-89-l>
aceta«lde<60-35-5>
acetanilide<103-84-4>
acetic acid salts
acetic acld<64-19-7>
acetic anhydride<108-24-7>
acetone cyanohydrln<75-86-5>
acetone<67*64-l>
 acetonitrile<75-05-8>
 acetophenone<98-86-2>
 acetyl bro«ide<506-96-7>
 acetyl chloride<75-36-5>
 acetylene<74-86-2>
 acrolein<107-02-8>
 acryla»id«<79-06-l>
 acrylic acid<79-10-7>
                          916

-------
                         Accession No.  7301700902
                  (cont)
acrylic fiber
acrylic resins
acrylonitrile<107-13-l>
adipic acid<124-04-9>
adiponitrile
aerosols
alachlor<15972-60-8>
aldrin<309-00-2>
allyl alcohol<107-18-6>
allyl chloride<107-05-l>
alpha- terpineol
aluvinuB sulfate<10043-01-3>
ajiitraz (baam)<33089-61-l>
aBBcni a<76 64- 4 1-7>
aBBoniun acetate<631-61-8>
aBBoniuB benzoate<1863-63-4>
aBBoniuB bicarbonate<1066-33-7>
aBBoniuB bichroaate<7789-09-5>
aBBoniuB bif luoride<1341-49-7>
aBBoniun bisulf ite<10192-30-0>
aBBonlua carba»ate
aBBoniua carbonate<506-87-6>
aBBoniuB chlorid«<12125-02-9>
aamcniua chro«ate<7788-98-9>
aBBoniUB fluoborate<13826-83-0>
aBBoniuB f luoride<12125-01-8>
aaaoniuB hydroxide<1336-21-6>
aBnoniUB oxalate<1113-38-8>
aBBoniuB silicof luoride
   <16919-19-0>
aBBoniuB sulf anate<7773-06-0>
aBBoniua sulfide<12135-76-l>
aMoniuB sulf ite<10196-04-0>
aBBoniuB tar trate<3164-29-2>
aBBoniua thiocyanate
aaaoniuB thiosulfate<7783-18-8>
aayl acetate<628-63-7>
aByla«ine<110-58-7>
aniline hydrochloride< 142-0 4-l>
aniline<62-53-3>
anisole<100-66-3>
anthracene
anthranilic acid<118-92-3>
anthraquinone<84-65-l>
antiaony pentachloride<7647-18-9>
antiaony potassiua tartrate
arsenic acid<1327-52-2>
arsenic disulf ide<1303-32-8>
arsenic pentoxide<1303-28-2>
arsenic trichloride<7784-34-l>
arsenic trioxide<1327-53-3>
arsenic trisulfide<1303-33-9>
arsenic <7440-38-2>
asbestos<1332-21-4>
aspirin<50-78-2>
a tr azlne< 1 912-24- 9>
banvel-d<1918-00-9>
barluB cyanide<542-62-l>
bariUB<7440-39-3>
benefin<1861-40-l>
benoByl<17804-35-2>
benzaldehyde<100-52-7>
benzaBide<55-21-0>
benzene acetic acid<103-82-2>
benz«ne<71-43-2>
benzenepropanoic acid<501-52-0>
benzenesulfonic acid<98-ll-3>
benzidine<92-87-5>
benzo(a)anthracene<56-55-3>
benzo(a)pyrene<50-32-8>
benzo(g^h^i)perylene<191-24-2>
benzo (k) f luor anthene<207-08-9>
benzole acid<65-85-0>
benzoin
benzoni tr ile<100-47-0>
benzophenone
benzoyl chlorlde<98-88-4>
benzoyl peroxide<94-36-0>
benzyl alcohol<100-51-6>
benzyl chloride<100-44-7>
benzyl dichloride<98-87-3>
beryl HUB chloride<7787-47-5>
berylliuB f luoride<7787-49-7>
beryl HUB nitrate<13597-99-4>
berylliuB<7440-41-7>
bhc (lindane)-gaama<58-89-9>
bhc-alpha<319-84-6>
bhc-beta<319-85-7>
bhc-delta<319-86-8>
bis(2-chloroethoxy)Bethane
antiaony tribro«ide<7789-61-9>
antiaony trichloride<10025-91-9>
antiaony trifluoride<7783-56-4>
antimony trioxide<1309-64-4>
an ti»ony< 7 440-36-0 >
bls(2-chloroethyl)ether
bls(2-chloroisopropyl)ether
   <39638-32-9>
bis(2-ethylhexyl)phthalate
bis(chloronethyl)ether<542-88-l>
bisphenol a<80-05-7>
                         917

-------
                         Accession No.  7301700902
                  (cont)
boric acid and salts
bro»obenzene<108-86-l>
bro»odlchloro«ethane<75-27-4>
bro»ofor»<75-25-2>
bro«o»ethane<74-83-9>
bu tadi ene<10 6-99-0>
butralin<33629-47-9>
butyl acetate<123-86-4>
butyl benzyl phthaiate<85-68-7>
butyl phthalyl butyl glycolate
   <85-70-l>
butyla»ine<109-73-9>
butyloctyl phthalate<84-78-6>
butyric acid<107-92-6>
cad*lu« acetate<543-90-8>
cad»lu» bro«ide<7789-42-6>
cadaiua chloride
cad*iu«<7440-43-9>
caffeine<58-08-2>
calclua arsenate<7778-44-l>
calciuM arscnite<52740-16-6>
calcium carbide<75-20-7>
calclua chro«ate<13765-19-0>
calclua cyanide<592-01-8>
calciua dodecylbenzenesulfonate
   <26264-06-2>
calciun hydroxlde<1305-62-0>
calclua hypochlorlte<7778-54-3>
calciua oxide<1305-78-8>
calciUM stearate<1592-23-0>
caprolacta«<105-60-2>
captan<133-06-2>
carbaryl<63-25-2>
carbofuran<1563-66-2>
carbon dioxide<124-38-9>
carbon disulfide<75~15-0>
carbon tetrabro«ide<558-13-4>
carbon tetrachloride<56-23-5>
carbon tetrafluorid«<75-73-0>
carbon<7440-44-0>
castor oll<8001-79-4>
cellophane<9005-81-6>
cellulose acetate<9004-35-7>
cellulose nltrate<9004-70-0>
cblor dane<57-7 4-9>
chloride
chlorinated ethanes
chlorinated hydrocarbons
chlorinated naphthalenes
chlorine<778 2-50-5>
chloroacetlc  acid<79-ll-8>
chloroacetophenone<1341-24-8>
chlorobenzene<108-90-7>
chlorobenzilate<5lO-15-6>
chlorodibro«o«ethane<124-48-l>
chlorodilluoroBethane<75-45-6>
chloroethane<75-00-3>
chlorofluoroc arbons
chlorofor»<67-66-3>
chloro»ethane<74-87-3>
chlorophenols
chloroprene<126-99-8>
chlorosulfonlc acid<7790-94-5>
chlorpyrifos<2921-88-2>
cholesterol<57-88-5>
chollne chlorid«<67-48-l>
chroBic acetate<1066-30-4>
chroalc «cid<7738-94-5>
chroalc sulfate<10101-53-8>
chro»lu» (hexaval«nt)<7440-47-3>
chro»iu»<7440-47-3>
chroaous chloride<10049-05-5>
chrysene<218-01-9>
cis-l,2-dichloroethylene<156-59-2>
cis-9xcls-12-octadecadienoic acid
   <60-33-3>
coal tar<8007-45-2>
cobaltous bro»ide<7789-43-7>
cobaltous £or«ate<544-18-3>
cobaltous sulfa»ate<14017-4l-5>
coke oven e»lsslons<65996-81-8>
copper<7440-50-8>
cou»aphos<56-72-4>
creosote<802l-39-4>
cresol<1319-77-3>
crotonaldehyd«<4170-30-3>
crotonic acid<3724-65-0>
cuaene hydroperoxide<80-15-9>
cuprlc acetate<142-71-2>
cuprlc acetoarsenite<12002-03-8>
cuprlc chloride<7447-39-4>
cuprlc nltrate<3251-23-8>
cupric oxalate<814-91-5>
cupric sulfate a»»oniated
   <10380-29-7>
cuprlc sulfate<7758-98-7>
cupric tartrate<815-82-7>
cyanazine<2!725-46-2>
cyanide<57-12-5>
cyanides
cyanoacetic  acid<372-09-8>
cyanogen chloride<506-77-4>
cyanuric acid<108-80-5>
cyanurlc chloride<108-77-0>
                         918

-------
                         Accession No.  7301700902
                  (cont)
cyclohexane<110-82-7>
cyclohexanol<108-93-0>
cyclohexene<110-83-8>
cyclohexylaBine<108-91-8>
ddt
decanol<112-30-l>
dehydrobietic<1740-19-8>
di-isobutyl phthaiate<84-69-5>
di-n-butyl phthalate<84-74-2>
di-n-octyl phthalate<117-84-0>
di-tridecyl phthalate<121-69-7>
diacetone alcohol<123-42-2>
diallate<2303-16-4>
diazinon<333-4l-5>
dibenzo(a,h)anthracene<53-70-3>
dibutyl phthalate<84-74-2>
dicanba<1918-00-9>
dichlobenil<1194-65-6>
dichlone<117-80-6>
dichlorobenzene<25321-22-6>
dichlorobro«oraethane<75-27-4>
dichlorodifluoromethane<75-71-8>
dichloroethyl ether
dichlorohydrin<26545-73-3>
dichloromethane<75-09-2>
dichloropropene-dichloropropane
   mixture
dichloropropene<26952-23-8>
dichlorotetrafluoroethane
   <1320-37-2>
dichlorvos (ddvp)<62-73-7>
dicyclohexyla«ine<101-83-7>
dicyclopentadine<77-73-6>
didecyl phthalate<84-77-5>
dieldrin<60-57-l>
diepoxybutane
diethy1 phthalate<84-66-2>
diethyl sulfate<64-67-5>
diethylaaine<109-89-7>
diethylene glycol monobutyl ether
   acetate
diethylene glycol nonobutyl ether
   <112-34-5>
diethylene glycol nonoethyl ether
   acetate
diethylene glycol mononethyl
   ether
diethylene glycol
diethylstilbestrol<56-53-l>
diisobutylene<25167-70-8>
dilsocotyl phthalate<27554-26-3>
diisodecyl phthalate<26761-40-0>
diisopropyl anine<108-18-9>
diketene<674-82-8>
di»ethoate<60-51-5>
diaethyl phthalate<131-ll-3>
dimethyl sulfide<75-18-3>
dimethyl sulfoxide<67-68-5>
diaethyl terephthalate<120-61-6>
dinethylanine<124-40-3>
dimethylcarbanoyl chloride
   <79-44-7>
dinitrobenzene<25154-54-5>
dinitrotoluene<25321-14-6>
dioxin<828-00-2>
diphenylanine<122-39-4>
diphenylthiourea<102-08-9>
dlpropylene glycol<25265-71-8>
diquat<2764-72-9>
disulfoton<298-04-4>
diuron<330-54-l>
dodecyl »ercaptan<112-55-0>
dodecylbenzenesulfonic acid
   <27176-87-0>
dodecylphenol<27193-86-8>
dosiun phenate<139-02-6>
ebdc's (ethylenebisdithiocarbaaate
   s)
edta<60-00-4>
endosulfan sulfate<1031-07-8>
endosulfan-alpha<959-98-8>
endosulfan-beta<33213-65-9>
endosulfan<115-29-7>
endrin aldehyde<7421-93-4>
endrin ketone<53494-70-5>
endrin<72-20-8>
epichiorohydrin<106-89-8>
epn (ethyl-p-nitrophenyl thionoben
   zenephosonate)<2104-64-5>
epoxy resins<61788-97-4>
ethanol<64-17- ethanolaalnes
ethelene glycol monoethyl ether
   acetate
ethion<563-12-2>
ethyl acetoacetate<141-97-9>
ethyl bronide<74-96-4>
ethyl chloride<75-00-3>
ethyl chloroacetate<105-39-5>
ethyl «ercaptan<75-08-l>
ethyla»ine<75-04-7>
ethylbenzene<100-41-4>
ethylene chlorohydrin<107-07-3>
ethylene dibroslde (edb)<106-93-4>
ethylene dichlorlde<107-06-2>
                         919

-------
                         Accession Ho.  7301700902
                  (cont)
ethylene glycol diacetate
ethylene glycol dimethyl ether
ethylene glycol aonobutyl ether
   acetate<112-07-2>
ethylene glycol lonobutyl ether
ethylene glycol aonoethyl ether
   <110-80-5>
ethylene glycol aonoaethyl ether
   ace tate
ethylene glycol Monoaethyl ether
   <109-86-4>
ethylene glycol<107-21-l>
•thyltne oxide<75-21-8>
ethylene<74-85-l>
«thylenedia*lnt<107-15-3>
ethylnexanoic «cid<149-57-5>
f ensul f othion<115-90-2>
ferric aMonliui citrate<1185-57-5>
ferric araoniua oxalate
   <14221-47-7>
ferric chloride<7705-08-0>
ferric fluoride< 77 83-50- 8>
ferric nitrate<10421-48-4>
ferric sulfate<10028-22-5>
ferrous aaaoniua sulfate
   <10045-89-3>
ferrous chloride<7758-94-3>
ferrous sulfatc<7720-78-7>
fluoranthene<206-44-0>
fluorene<86-73-7>
fluoride<16984-48-8>
for»aldehyde<50-00-0>
f or«a»lde< 75-1 2-7>
foralc acld<64-18-6>
fu«aric acid<110-17-8>
furfural<98-01-l>
geraniol<106-24-l>
glutavic acid, aonosodiuB salt
   <142-47-2>
glycerol (natural & synthetic)
   <56-81-5>
glycerol dichlorohydrin
   <26545-73-3>
glycerol tri(polyoxypropylene)
   ether<25791-96-2>
glycidol<556-S2-5>
glycine<56-40-6>
glyoxal<107-22-2>
guthion<86-50-0>
hcliu»<7440-59-7>
heptachlor epoxide<1024-57-3>
heptachlor<76-44-8>
heptene<25339-56-4>
hexachlorobenzene<118-74-l>
hexachlorobutadiene<87-68-3>
hexachlorocyclopentadiene<77-47-4>
hexachloroethane<67-72-l>
hexacloroethane<67-72-l>
hexadcecanoic acid<57-10-3>
hexadecyl alcohoi<36653-82-4>
hexaaethylene tetra»ine<100-97-0>
hexaaethy1enedianine<124-09-4>
hydrochloric acid<7647-01-0>
hydrofluoric acid<7664-39-3>
hydrogen cyanide<74-90-8>
hydrogen sulfide<7783-06-4>
hydrog«n<1333-74-0>
hydroxyethyl c«llulose<9004-62-0>
indeno (l,2,3-cd)pyrene<193-39-5>
lodlne<7553-56-2>
lsoa«yl«ne<26760-64-5>
isobutyl acetate<110-19-0>
isobutyraldehyde
isobutyrlc acid<79-31-2>
isoctyl alcohol<26952-21-6>
isodrln<465-73-6>
isop entane<7 8-7 8-4>
isophorone<78-59-l>
isophthalic acid<121-91-5>
isopiaaric acld<5835-26-7>
isoprene<78-79-5>
isopropanol<67-63-0>
isopropyl ac«tate<108-21-4>
Isopropyl alcohol<67-63-0>
Isopropyl chlorid«<75-29-6>
isopropyl ether<108-20-3>
isopropyl phenol<25168-06-3>
lsopropyla»ine<75-31-0>
kelthane<115~32-2>
kepone<143-50-0>
ketene<463-51-4>
lead acetate<301-04-2>
lead chloride<7758-95-4>
lead fluoride<7783-46-2>
lead fluoroborate<13814-96-5>
lead iodide<10101-63-0>
lead nitrate<10099-74-8>
lead stearate<1072-35-l>
lead sulfate<7446-14-2>
lead sulfide<1314-87-0>
lead thlocyanate<592-87-0>
                         920

-------
                         Accession So.  7301700902
                  (cent)
lead<7439-92-l>
lindane< 58-89- 9>
linear alkylate sulfonate
linoleic acid<60-33-3>
lithium chromate<14307-35-8>
m-chloroaniline<108-42-9>
ra-cresol
•-dichlorobenzene<541-73-l>
»-xylene<108-38-3>
malathion<121-75-5>
maleic acid<110-16-7>
•aleic anhydride<108-31-6>
maleic hydrazide
melamine<108-78-l>
•ercaptodimethur<2032-65-7>
mercuric cyanide<592-04-l>
mercuric nitrate<10045-94-0>
mercuric sulfate<7783-35-9>
mercuric thiocyanate<592-85-8>
mercurous nitrate<10415-75-5>
mercury<7439-97-6>
•esityl oxide<141-79-7>
•etanilic acid<121-47-l>
methacrylic acid 79 41-4
•ethallyl chloride<563-47-3>
methane<74-82-8>
methidathion<950-37-8>
methoxychlor<72-43-5>
methyl acetate<79-20-9>
methyl acetoacetate<105-45-3>
•ethyl butyl ketone<591-78-6>
methyl chloride<74-87-3>
methyl formate<107-31-3>
methyl iodide<74-88-4>
methyl isobutyl carbinol<108-ll-2>
methyl mercaptan<74-93-l>
methyl methacrylate<80-62-6>
methyl parathion<298-00-0>
methyl salicylate<119-36-8>
methyl sulfoxide<67-68-5>
methylamine<74-89-5>
methylcyclohexane<108-87-2>
methylene bis-thiocyanate
   <6317-18-6>
methylene chioride<75-09-2>
methylene dianiline<101-77-9>
me thylpentynol<77-75-8>
•evinphos<7786-34-7>
mexacarbate<315-18-4>
monochlorodehydroabietic acid
   <57055-38-6>
monoethylamine<75-04-7>
monomethylamine<74-89-5>
raorpholine<110-91-8>
nrn-diBethyl-£oroafflide<68-12-2>
n,n-dimethylaniline<121-69-7>
n,n-dimethylformamide<68-12-2>
n,n-diphenylhydrazine<530-50-7>
n-butene<25167-67-3>
n-butyl acetate<123-86-4>
n-butyl phthalate<84-74-2>
n-butylacrylate<141-32-2>
n-butylamineC109-73-9>
n-butyraldehyde<123-72-8>
n-butyric anhydride<106-31-0>
n-butyronitrile<98-73-7>
n-methylaniline<100-61-8>
n-nitrosodi-n-propylamine
   <621-64-7>
n-nitrosodimethylamine<62-75-9>
n-nitrosodiphenyla«ine<86-30-6>
n-pentane<109-66-0>
n-propyl clcohal<71-23-8>
naled<300-76-5>
naphthalene<91-20-3>
naphthenic acid<1338-24-5>
neon<7440-01-9>
neopentaooic acid<75-98-9>
nickel ammonium sulfate<7785-20-8>
nickel chloride<7718-54-9>
nickel hydroxide<12054-48-7>
nickel nitrate<13138-45-9>
nickel sulfate<7786-81-4>
nickel<7440-02-0>
nitralin<4726-14-1>
nitrate<14797-55-8>
nitric acid<7697-37-2>
nitrobenzene<98-95-3>
ni troethane<7 9-24-3>
nitrogen dioxide<10102-44-0>
nitrogen oxide<11104-93-l>
nitroaethane<75-52-5>
nitrophenol<25154-55-6>
nitrotoluene
nomylphenol<25154-52-3>
nylon 6<25038-54-4>
o-chloroaniline<95-51-2>
o-chloronitrobenzene<88-73-3>
o-chlorotoluene<95-49-8>
o-cresol<95-48-7>
o-dichlorobenzene<95-50-l>
o-me thoxyphenoK 90-05-1>
o-nitroaniline<88-74-4>
o-xylene<95-47-6>
                         921

-------
                         Accession Mo.  7301700902
                  Ccont)
octadecanoic acid<57-ll-4>
octaaethylpyrophosphoraaide (OHPA)
   <152-16-9>
octyl decyl phthalate<119-07-3>
octylphenol<27193-28-8>
oxy gen<778 2- 44-7>
P-a*Inophenol
p-chloro-«-cresol<59-50-7>
p-chloroto luene< 106- 43-4>
p-cresol<106-44-5>
p-hydroxybenzoic acid<99-96-7>
p-tert-butyl benzole acld<98-73-7>
P-xylene<106-42-3>
paraforaaldehyde<30525-89-4>
parathioiK 56-38- 2>
pcb-1016 (arochlor 1016)
   <12674-ll-2>
pcb-1221 (arochlor 1221)
   <11104-28-2>
pcb-1232 (arochlor 1232)
pcb-1242 (arochlor 1242)
   <53469-21-9>
pcb-1248 (arochlor 1248)
   <12672-29-6>
pcb-1254 (arochlor 1254)
   <11097-69-l>
pcb-1260 (arochlor 1260)
   <11096-82-5>
pentachloronltrobenzene (PCNB)
   <82-68-8>
pentachl or ophenoK 87-86- 5>
pepchloronethyl >e reap tan
   <594-42-3>
petroleua hydrocarbons
phenanthrene<85-01-8>
phenol<108-95-2>
phenols
phosgene<7 5- 44-5>
phosphoric acid<7664-38-2>
phosphorus oxychloride<10025-87-3>
phosphorus pentasulf ide<1314-80-3>
phosphorus trichloride<7719-12-2>
phosphorus<7723-14-0>
ph thai ate esters
phthalic acid esters
phthalic acid<88-99-3>
phthall»ide< 85-4i-6>
plperazine<110-85-0>
platinu«<7440-06-4>
polyanid«s<63428-83-l>
polybroainated biphenyls (PBBs)
polychlorlnated biphenyls (PCBs)
polyethyene terephthalate
   <25038-59-9>
polyethylene glycol<25322-68-3>
polypropylene glycol<25322-69-4>
polyvinyl alcohol<9002-89-5>
polyvinyl chloride<9002-86-2>
polyvinyl pyrrolidone<9003-39-8>
potassiua arsenate<7784-41-0>
potassiua arsenite<10124-50-2>
potassiu* azide<20762-60-l>
potassiua bichro»ate<7778-50-9>
potassiua chro«ate<7789-00-6>
potassium cyanide<151-50-8>
potassiua hydroxide<1310-58-3>
potassiui per»anganate<7722-64-7>
prona»ide<23950-58-5>
propachlor<1918-16-7>
propane<74-98-6>
propanil<709-98-8>
propargite<2312-35-8>
propionaldehyde<123-38-6>
propionic acid<79-09-4>
propionic anhydride<123-62-6>
propyl acetate<109-60-4>
propyl chloride<540-54-5>
propylene dichloride<78-87-5>
propylene glycol<57-55-6>
propylene oxide<75-56-9>
propylene<115-07-l>
pyrene<129-00-0>
pyrethrin<121-29-9>
quinollne< 91-22-5>
resorcinol<108-46-3>
salicylic acid<69-72-7>
sec-butyl alcohol<78-92-2>
sec-butyla»ine<13952-84-6>
seleniua oxide<12640-89-0>
seleniu«<7782-49-2>
silica<7631-86-9>
silicones
silver nitrate<7761~88-8>
silver<7440-22-4>
silvex<93-72-l>
siaazine<122-34-9>
sodium acetate<127-09-3>
sodiuB arsenate<7631-89-2>
sodium acsenite<7784-46-5>
sodiuB benzoate<532-32-l>
sodiua bichro«ate<10588-01-9>
sodiua bifluoride
sodiu» bisulfite<7631-90-5>
                         922

-------
                         Accession No.  7301700902
                  (cont)
sodium carboxymethyl cellulose
   <9004-32-4>
sodiun chloroacetate<3926-62-3>
sodium chromate<7775-ll-3>
sodiun cyanide<143-33-9>
sodiun dodecylbenzenesulfonate
   <25155-30-0>
sodiun fluoride<7681-49-4>
sodiun fluoroacetate (1080)
   <62-74-8>
sodiun fornate<14l-53-7>
sodiun hydrosulfide<16721-80-5>
sodiun hydroxide<1310-73-2>
sodiun hypochlorite<7681-52-9>
sodiun Bethylate<124-41-4>
sodiun nitrite<7632-00-0>
sodiun phosphate, dibasic
   <7558-79-4>
sodiun phosphate, tribasic
   <7601-54-9>
sodiun selenite<10102-l8-8>
sodiun<7440-23-5>
sorbic acid<110-44-l>
strontium chro«ate<7789-06-2>
strychine<57-24-9>
strychnine<57-24-9>
styrene<100-42-5>
succinic acid<110-15-6>
sucrose<57-50-l>
sulfanilic acid<121-57-3>
sulfate aerosols
sulfate<14808-79-8>
sulfolane<126-33-0>
sulfur aonochloride
sulfur<7704-34-9>
suIfuric acid<7664-93-9>
surfactants
tannic acld<1401-55-4>
tde<72-54-8>
terephtalic acid<100-21-0>
terpenes
tert-butyl alcohol<75-65-0>
tert-butylanine<75-64-9>
tetrachloroethylene<127-18-4>
tetrachlorophthalic anhydride
   <117-08-8>
tetraethyl lead<78-00-2>
tetraethyl pyrophosphate<107-49-3>
tetra«ethyethlenedia»ine
tetranethyl lead<75-74-l>
thalliun sulfate<7446-18-6>
thalliun<7440-28-0>
thiophanate raethyl<23564-05-8>
thiophene<110-02-l>
titaniun dioxide<13463-67-7>
toluene-2, 4-diaraine<95-80-7>
toluene<108-88-3>
toluenesulfonaaide<1333-07-9>
toluenesulfonyl chloride<98-59-9>
toluidines
total suspended particulates
toxaphene<8001-35-2>
tribroraonethane<75-25-2>
tributyl phosphorotrithioate
   <78-48-8>
trichlorfon<52-68-6>
trichloroethane<25323-89-l>
trichloroethylene<79-01-6>
trichlorof luoronethane<75-69-4>
trichlorophenol (TCP)<25167-82-2>
triethanolanine dodecylbenzenesulf
   onate<27323-41-7>
triethyla«ine<121-44-8>
triethylene glycol<112-27-6>
triethylene tetranine<112-24-3>
trifluraline (tref lan)<1582-09-8>
trine thylanine<75-50-3>
tungsten<7440-33-7>
uraniu«<7440-61-l>
uranyl acetate<541-09-3>
uranyl nitrate<10102-06-4>
urea<57-13-6>
vanadlun pentoxide<1314-62-l>
vanadyl sulfate<27774-13-6>
vinyl acetate<108-05-4>
vinyl chloride<75-01-4>
vinyl toluene< 2501 3-1 5-4>
vinylidene chloride<75-35-4>
x-17 aminoethylethanolanine
xylene sulfonic acid<25321-41-9>
xylene<1330-20-7>
xylenol<1300-71-6>
xylidine<1300-73-8>
zinc acetate<557-34-6>
zinc annoniun chloride
zinc bora te
zinc broaide<7699-45-8>
zinc carbonate<3486-35-9>
zinc chloride<7646-85-7>
zinc cyanide
zinc fluoride<7783-49-5>
zinc fornate<557-41-5>
zinc hydrosulfite<7779-86-4>
                         923

-------
                         Accession Ho.  7301700902
                  (cont)
zinc nitrate<7779-88-6>
zinc phenol sulfonate<127-82-2>
zinc phosphide<1314-84-7>
zinc silicofluoride<1687l-71-9>
zinc sulfate<7733-02-0>
zinc<7440-66-6>
zirconium nitrate
zirconium potassium fluoride
   <16923-95-8>
zirconium sulfate<14644-61-2>
zirconium tetrachloride
   <10026-ll-6>
0,0-diethyl phosphoric acid,0-p-
   nitrophenyl ester<3ll-45-5>
0,0-diethyl-0-(2-pyrazlnyl)
   phoshorothiol,1-dimethyIhydrazi
   ne<57-14-7>
1*2,3,4,10,10-hexachloro-l,4,4a,5,
   8,8a-hexahydro-l,4:5,8-endo,
   endo-dimetha
1^2^4,5-tetrachlorobenzene
   <95-94-3>
I,2-diethylhydrazine<1615-80-l>
l,2-dimethylhydrazlne<540-73-8>
If2-propancdiol<57-55-6>
1,3-pentadiene<504-60-9>
1,3-propane sultone<1120-7l-4>
l,4-dichloro-2-butene<110-57-6>
1,4-dloxane<123-91-l>
1^ 4-napbth oquinone
1-(o-chlorophenyl)thiourea
   <5344-82-l>
l-chloro-2,3-epoxypropane
   <106-89-8>
1-naph thy1-2-1 hi ourea<86-88-4>
l-naphthylamine<134-32-7>
2/3,4,6-tetrachlorophenol<58-90-2>
2,4-dithiobiuret<541-53-7>
2,6-dichlorophenol<87-65-0>
2-bvtanone peroxlde<1338-23-4>
2-cyclohexyl-4^ 6-d ini trophenol
   <131-89-5>
2-methyl-2-(methylthio)propionalde
   hyde-o-(methylcarbonyl)oxime
   <80-62-6>
2-»ethylaziridine<75-55-8>
2-»ethyllactonitrile<75-86-5>
2-naphthylamine<91-59-8>
2-picoline<109-06-8>
2-propyn-l-01<107-19-7>
2-sec butyl-4,6-dinitrophenol
   <88-85-7>
3^3 '-dime thoxybenzidine<119-90-4>
3,3'-diaethylbenzidine<119-93-7>
3,4-dihydroxy-alpha-(methylamino>-
   methyl benzyl alcohol
3-chloropropionitrile<542-76-7>
3-methylcholanthrene<56-49-5>
4,4*-dde(p,p»-ddx)<72-55-9>
4^4'-ddt<50-29-3>
4,4*-methylene-bis-(2-chloroanilin
4-chloro-o-toluidine hydrochloride
   <3165-93-3>
5-nitro-o-toluidine<99-55-8>
6-amino-l/la,2,8,8as8b-hexahydro-
   8-(hydroxymethyl)8-methoxy-5-
   •ethyl
   -caraba
7,12-diaethylbenz(a)ant 7-
   oxabicycol(2. 2. l)heptane-2,3-
   dicarboxylic
   acid<145-73-3>
aluminum phosphide<20859-73-8>
aluninum<7429-90-5>
amltrole<61-82-5>
ammonium picrate<131-74-8>
ara«ite<140-57-8>
auramine<2465-27-2>
azaser ine< 115-02-6>
benz(c)acridine<225-51-4>
benzal chloride<98-87-3>
benzenesulfonyl chloride<98-09-9>
benzenethiol<108-98-5>
benzidine<92-87-5>
benzotr ichlor ide< 98-0 7-7>
beryllium dust
biphenyl<92-52-4>
bismuth compounds<7440-69-9>
boron co«pounds<7440-42-8>
bromine<7726-95-6>
bromoacetone<598-31-2>
brucine<357-57-3>
cacodylic acid and salts<75-60-5>
carbon monoxide<630-08-0>
carbonyl fluoride<353-50-4>
chloral<75-87-6>
chlor ambuciK 305-03-3>
chloranil<118-75-2>
chl oroacct aldehyde<107-20-0>
chloroethene<75-01-4>
chloroethyl vinyl ether<110-75-8>
chloromethyl methyl ether
   <107-30-2>
                         924

-------
                         Accession Ho.  7301700902
                  (cont)
cobalt<7440-48-4>
copper cyanide<544-92-3>
cresylic acid<1319-77-3>
cu«ene<98-82-8>
cyanogen bro«ide<506-68-3>
cyanogen<460-l9-5>
cyclohexanone<108-94-l>
cyclophosphamide<50-18-0>
dauno«ycin<20830-81-3>
de«eton<8065-48-3>
di-n-propylnitrosanine<621-64-7>
dibenzofuran<132-64-9>
dlbenzol(a,i)pyrene<189-55-9>
dlbronochloronethane
dibro»o«ethane<74-95-3>
dichlorophenylarsine<696-28-6>
diethylarsina
dihydrosafrole<94-58-6>
diaethyl sulfate<77-78-l>
dl«ethylnitrosaBine<62-75-9>
dioxane<123-91-l>
diphenyl ether<101-84-8>
aipropyla«lne<142-84-7>
«rbon<136-25-4>
ethyl acetate<141-78-6>
ethyl acrylate<140-88-5>
ethyl ether<60-29-7>
ethyl »ethacrylate<97-63-2>
ethyl »ethanesulfonate<62-50-0>
ethyl parathion<56-38-2>
ethylcyanlde<107-12-0>
ethylene blsdlthiocarbaaate
ethylene thiourea<%-45-7>
ethylenei«ine<151-56-4>
fluorides
fluorine<7782-41-4>
fluorotrichloro«ethane<75-69-4>
furaiKllO-00-9>
hex achlorocyclohexane<58-89-9>
hexachloroethane<67-72-l>
hexachlorophene<70-30-4>
hexachloropropene<1888-7l-7>
hexaethyl tetraphosphate<757-58-4>
hydrazine<302-01-2>
hydrocarbons
hydrocyanic acid<74-90-8>
hydroxydiaethyl arsine oxide
   <75-60-5>
iron dextran<9004-66-4>
iron<7439-89-6>
isobutyl alcohol<78-83-l>
isocyanic acidy nethyl ester
   <624-83-9>
isosafrole<120-58-l>
lasiocarpine<303-34-4>
lead phosphate<7446-27-7>
lead subacetate<1335-32-6>
lithium and coipounds<7439-93-2>
•alononitrile<109-77-3>
»anganese<7439-96-5>
•ate
•elphalan<148-82-3>
•ercury fulBinate<628-86-4>
•ethanethiol<74-93-l>
•ethanol<67-56-l>
•ethapyrilene<91-80-5>
»etho«yl<16752-77-5>
•ethyacrylonitrile<126-98-7>
•ethyl chlorocarbonate<79-22-l>
•ethyl chlorofor»<71-55-6>
•ethyl ethyl ketone (aek)<78-93-3>
•ethyl ethyl ketone peroxide
   <1338-23-4>
•ethyl hydrazine<60-34-4>
•ethyl Isobutyl lcetone<10€-10-l>
•ethylthiouracil<56-04-2>
•lrex<2385-85-5>
•onuron<150-68-5>
n^n-bia(2-chloroethyl)-2-naphthyla
   •ine<494-03-l>
n-alkanes clO-c30
n-butyl alcohol<71-36-3>
n-aethyl-n'-nitro-n-nitrosoguanidi
   ne<70-25-7>
n-nitroso-n-ethylurea<759-73-9>
n-nitroso-n-methylurea<684-93-5>
n-nitroso-n-aethyiurethane
   <615-53-2>
n-nitrosodi-n-butyla»ine<924-16-3>
n-nitrosodi-n-propylaiine
   <621-64-7>
n-nitrosodlethanolanineC1116-54-7>
n-nitrosodiethylaBine<55-18-5>
n-nitroscBethylvinylaaine
n-nitrosopiperidine<100-75-4>
n-nitrosopyrrolidine<930-55-2>
n-phenylthiourea<103-85-5>
n-propyla»ine
nickel carbonyl<12612~55-4>
nickel cyanide<557-19-7>
nicotine and salts<54-ll-5>
nitrates/nitrites
nitric oxide
                         925

-------
                         Accession Mo.   7301700902
                  (cont)
nitrogen peroxide<10102-44-0>
nitrogen tetroxide<10544-72-6>
nitrogen<7727-37-9>
nitroglycerine<55-63-0>
nitroso»ethylurea<684-93-5>
nitrosonorpholine< 59-89-2>
nonaphthalene
o-toluidine hydrochloride
   <636-21-5>
oleyl alcohol condensed uith 2
   •oles ethylene oxide
osmium tetroxlde<208!6-12-0>
ozone<10028-15-6>
p-chloroaniline<106-47-8>
p-dichlorobenzene<106-46-7>
p-di»ethyla»inoazobenzene<60-ll-7>
p-nitroaniline<100-01-6>
paraldehyde<123-63-7>
paraquat<4685-14-7>
pentachlorobenzene<608-93-5>
pentachloroetbane<76-01-7>
perchloroethylene<127-l8-4>
per thane<7 2-56-0>
phenacetin<62-44-2>
phenarsazine  chlorlde<578-94-9>
phenyl dichloroarsine<696-28-6>
phenylBercury acetate<62-38-4>
phosophorotbiolc  acid*o,o-
   dimethyl ester,o-ester yith n,
   ij-d i»etbyIb enzene
phosphine<7803-51-2>
phosphorus  sulfide<1314-80-3>
phthalic anhydride<85-44-9>
piperonyl  butoxide<51-03-6>
potassiua  silver  cyanide<506-61-6>
propionitrile<107-12-0>
propoxur<114-26-l>
propylene  oxide<75-56-9>
pyridine<110-86-l>
qulnones
 reserpine<50-55-5>
ronnel<299-84-3>
 rotenone<83-79-4>
 s,s,s-tributyl phosphorotrithioate
    <78-48-8>
safrole<94-59-7>
secondary amines
selenious acid<7783-00-8>
selenium sulfide<7446-34-6>
selenourea<630-10-4>
silver cyanide<506-64-9>
sodium azide<26628-22-8>
sodiu«<7440-23-5>
strobane<8001-50-l>
strontiui sulfide<1314-96-l>
sulfates
sulfonamlde
sulfur dioxide<7446-09-5>
tetrachloroethene<127-l8-4>
tetrachloromethane<56-23-5>
tetraethyl dithiopyrophosphate
   <3689-24-5>
tetrahydofuran<109-99-9>
tetranitro«ethane<509-14-8>
thallic  oxide<1314-32-5>
thallium acetate<563-68-8>
thallium carbonate<29809-42-5>
thallium chloride<7791-12-0>
thallium nitrate<10102-45-l>
thalliua selenite
thioaceta«ide<62-55-5>
thiose«icarbazide<79-19-6>
thiourea<62-56-6>
thiur am< 137-26-8>
titaniu»<7440-32-6>
toluene  diisocyanate<26471-62-5>
toluenedia«ine<25376-45-8>
triallate<2303-17-5>
tributyl phosphorotrithioate
    <78-48-8>
 trichloroethene<79-01-6>
 trichloro»ethanethiol<75-70-7>
tris(2/3-dibro«opropyl)phosphate
    <126-72-7>
 tritiu»<10028-17-8>
 trypan blue<72-57-l>
 trysben<50-31-7>
 uracil »ustard<66-75-l>
 urethane<51-79-6>
 vanadiu«<7440-62-2>

                       s 630-20-

                          926

-------
                         Accession Ho.  7301700902     (cont)

75-99.0; 1746-01-6;      602-01-7; 193-39-5; 95-95-4; 93-76-5;
93-72-1; 88-06-2; 94-75-7;      120-83-2; 94-75-7; 105-67-9;
51-28-5; 121-14-2; 584-84-9; 619-15-8;   606-20-2; 110-75-8;
91-58-7; 95-57-8; 108-01-0; 104-76-7; 640-19-7;   69-72-7; 50-21-5;
88-75-5; 79-46-9; 91-94-1; 205-99-2; 610-39-9;      72-55-9;
50-29-3; 534-52-1; 101-55-3; 59-50-7; 7005-72-3; 70-55-3;
100-02-7; 57-43-2; 50-06-6; 9003-56-9; 83-32-9; 208-96-8; 75-07-0;
107-89-1; 60-35-5; 103-84-4; 64-19-7; 108-24-7; 75-86-5; 67-64-1;
75-05-8; 98-86-2; 506-96-7; 75-36-5; 74-86-2; 107-02-8; 79-06-1;
79-10-7; 107-13-1; 124-04-9; 111-69-3; 15972-60-8; 309-00-2;
107-18-6; 107-05-1; 10043-01-3; 33089-61-1; 7664-41-7; 631-61-8;
1863-63-4; 1066-33-7; 7789-09-5; 1341-49-7; 10192-30-0; 1111-78-0;
506-87-6; 12125-02-9; 7788-98-9; 13826-83-0; 12125-01-8; 1336-21-6;
1113-38-8; 16919-19-0; 7773-06-0; 12135-76-1; 10196-04-0;
3164-29-2;       1762-95-4; 7783-18-8; 628-63-7; 110-58-7;
142-04-1; 62-53-3;     100-66-3; 120-12-7; 118-92-3; 84-65-1;
7647-18-9; 11071-15-1;    7789-61-9; 10025-91-9; 7783-56-4;
1309-64-4; 7440-36-0; 1327-52-2;    1303-32-8; 1303-28-2;
7784-34-1; 1327-53-3; 1303-33-9; 7440-38-2;     1332-21-4; 50-78-2;
1912-24-9; 1918-00-9; 542-62-1; 7440-39-3;   1861-40-1; 17804-35-2;
100-52-7; 55-21-0; 103-82-2; 71-43-2;     501-52-0; 98-11-3;
92-87-5; 56-55-3; 50-32-8; 191-24-2; 207-08-9;     65-85-0;
119-53-9; 100-47-0; 119-61-9;  98-88-4; 94-36-0; 100-51-6;
100-44-7; 98-87-3; 7787-47-5;  7787-49-7; 13597-99-4; 7440-41-7;
58-89-9; 319-84-6; 319-85-7; 319-86-8; 111-91-1; 111-44-4;
39638-32-9; 117-81-7; 542-88-1; 80-05-7; 108-86-1; 75-27-4;
75-25-2;       74-83-9;  106-99-0; 33629-47-9; 123-86-4; 85-68-7;
85-70-1; 109-73-9;       84-78-6; 107-92-6; 543-90-8; 7789-42-6;
7440-43-9; 58-08-2;      7778-44-1; 52740-16-6; 75-20-7;
13765-19-0; 592-01-8; 26264-06-2;     1305-62-0; 7778-54-3;
1305-78-8; 1592-23-0; 105-60-2; 133-06-2;       63-25-2; 1563-66-2;
124-38-9; 75-15-0; 558-13-4; 56-23-5; 75-73-0;    7440-44-0;
8001-79-4; 9005-81-6; 9004-35-7; 9004-70-0; 57-74-9;
7782-50-5; 79-11-8; 1341-24-8; 108-90-7; 510-15-6; 124-48-1;
75-45-6;      75-00-3; 67-66-3; 74-87-3; 126-99-8; 7790-94-5;
2921-88-2; 57-88-5;   67-48-1; 1066-30-4; 7738-94-5; 10101-53-8;
7440-47-3; 7440-47-3;      10049-05-5; 218-01-9; 156-59-2; 60-33-3;
8007-45-2; 7789-43-7;    544-18-3; 14017-41-5; 65996-81-8;
7440-50-8; 56-72-4; 8021-39-4;      1319-77-3; 4170-30-3;
3724-65-0; 80-15-9; 142-71-2;  12002-03-8;       7447-39-4;
3251-23-8; 814-91-5; 10380-29-7; 7758-98-7; 815-82-7;
21725-46-2; 57-12-5; 372-09-8; 506-77-4; 108-80-5; 108-77-0;
110-82-7; 108-93-0; 110-83-8;  108-91-8;  112-30-1; 1740-19-8;
84-69-5;      84-74-2; 117-84-0; 121-69-7;  123-42-2; 2303-16-4;
333-41-5; 53-70-3;        84-74-2; 1918-00-9;  1194-65-6;  117-80-6;
25321-22-6; 75-27-4;     75-71-8; 111-44-4;  26545-73-3; 75-09-2;
26952-23-8; 1320-37-2;    62-73-7; 101-83-7; 77-73-6; 84-77-5;
60-57-1; 1464-53-5; 84-66-2;     64-67-5; 109-89-7; 124-17-4;
112-34-5; 112-15-2; 111-77-3;  111-46-6;        56-53-1; 25167-70-8;
27554-26-3; 26761-40-0;  108-18-9; 674-82-8;       60-51-5;  131-11-3;
75-18-3; 67-68-5;  120-61-6;  124-40-3; 79-44-7;      25154-54-5;
25321-14-6; 828-00-2; 122-39-4;  102-08-9; 25265-71-8;


                          927

-------
                         Accession Ho.  7301700902     (cont)

2764-72-9; 298-04-4; 330-54-1; 112-55-0; 27176-87-0; 27193-86-8;
139-02-6; 60-00-4; 1031-07-8; 959-98-8; 33213-65-9; 115-29-7;
7421-93-4; 53494-70-5; 72-20-8; 106-89-8; 2104-64-5; 61788-97-4;
563-12-2; 141-97-9; 74-96-4; 75-00-3; 105-39-5; 75-08-1; 75-04-7;
100-41-4; 107-07-3; 106-93-4; 107-06-2; 111-55-7; 110-71-4;
112-07-2;      111-76-2; 110-80-5; 110-49-6; 109-86-4; 107-21-1;
75-21-8; 74-85-1;   107-15-3; 149-57-5; 115-90-2; 1185-57-5;
14221-47-7; 7705-08-0;       7783-50-8; 10421-48-4; 10028-22-5;
10045-89-3; 7758-94-3; 7720-78-7;       206-44-0; 86-73-7;
16984-48-8; 50-00-0; 75-12-7; 64-18-6; 110-17-8;   98-01-1;
106-24-1; 142-47-2; 56-81-5; 26545-73-3; 25791-96-2;    556-52-5;
56-40-6; 107-22-2; 86-50-0; 7440-59-7; 1024-57-3; 76-44-8;
25339-56-4; 118-74-1; 87-68-3; 77-47-4; 67-72-1; 67-72-1; 57-10-3;
36653-82-4; 100-97-0; 124-09-4; 7647-01-0; 7664-39-3; 74-90-8;
7783-06-4; 1333-74-0; 9004-62-0; 193-39-5; 7553-56-2; 26760-64-5;
110-19-0; 79-31-2; 26952-21-6; 465-73-6; 78-78-4; 78-59-1;
121-91-5;        5835-26-7; 78-79-5; 67-63-0; 108-21-4; 67-63-0;
75-29-6; 108-20-3;    25168-06-3; 75-31-0; 115-32-2; 143-50-0;
463-51-4; 301-04-2;     7758-95-4; 7783-46-2;  13814-96-5;
10101-63-0; 10099-74-8; 1072-35-1;       7446-14-2; 1314-87-0;
592-87-0; 7439-92-1; 58-89-9; 60-33-3;     14307-35-8; 108-42-9;
108-39-4; 541-73-1; 108-38-3; 121-75-5;    110-16-7; 108-31-6;
123-33-1; 108-78-1; 2032-65-7; 592-04-1;     10045-94-0; 7783-35-9;
592-85-8; 10415-75-5; 7439-97-6; 141-79-7;      121-47-1; 563-47-3;
74-82-8; 950-37-8; 72-43-5; 79-20-9;  105-45-3;    591-78-6;
74-87-3; 107-31-3; 74-88-4; 108-11-2; 74-93-1;  80-62-6;
298-00-0; 119-36-8; 67-68-5; 74-89-5; 108-87-2; 6317-18-6; 75-09-2;
101-77-9; 77-75-8; 7786-34-7; 315-18-4; 57055-38-6; 75-04-7;
74-89-5;       110-91-8; 68-12-2; 121-69-7; 68-12-2; 530-50-7;
25167-67-3; 123-86-4;      84-74-2; 141-32-2;  109-73-9; 123-72-8;
106-31-0; 98-73-7; 100-61-8;   621-64-7; 62-75-9; 86-30-6;
109-66-0; 71-23-8; 300-76-5; 91-20-3;      1338-24-5; 7440-01-9;
75-98-9; 7785-20-8; 7718-54-9; 12054-48-7;      13138-45-9;
7786-81-4; 7440-02-0;  4726-14-1; 14797-55-8; 7697-37-2;    98-95-3;
79-24-3; 10102-44-0; 11104-93-1; 75-52-5;  25154-55-6;   25154-52-3;
25038-54-4; 95-51-2; 88-73-3; 95-49-8;  95-48-7; 95-50-1;
90-05-1; 88-74-4;  95-47-6; 57-11-4; 152-16-9;  119-07-3; 27193-28-8;
7782-44-7; 123-30-8; 59-50-7; 106-43-4;  106-44-5;  99-96-7; 98-73-7;
106-42-3; 30525-89-4;  56-38-2; 12674-11-2; 11104-28-2;  11141-16-5;
53469-21-9; 12672-29-6;  11097-69-1; 11096-82-5; 82-68-8;  87-86-5;
594.42-3; 85-01-8;  108-95-2; 75-44-5; 7664-38-2;  10025-87-3;
1314-80-3; 7719-12-2;  7723-14-0; 88-99-3;  85-41-6;  110-85-0;
7440-06-4; 63428-83-1;  25038-59-9;  25322-68-3; 25322-69-4;
9002-89-5;       9002-86-2; 9003-39-8; 7784-41-0;  N>J24-50-2;
20762-60-1; 7778-50-9;    7789-00-6; 151-50-8;  1310-58-3;  7722-64-7;
23950-58-5; 1918-16-7;     74-98-6; 709-98-8;  2312-35-8;  123-38-6;
79.09-4;  123-62-6; 109-60-4;        540-54-5;  78-87-5;  57-55-6;
75-56-9;  115-07-1; 129-00-0;  121-29-9;     ^-22-5;  M*'46-**   0< 0.
69-72-7;  78-92-2; 13952-84-6;  12640-89-0;      7782-49-2;  7631-86-9;
7761-88-8;  7440-22-4;  93-72-1;  122-34-9;   127-09-3;  7631-89-2;
7784-46-5;  532-32-1;  10588-01^9;  1333-83-1;       7631-90-5;
 9004-32-4;  3926-62-3;  7775-11-3;  143-33-9; 25155-30-0;


                          928

-------
                         Accession No.  7301700902     (cont)

7681-49-4; 62-74-8; 141-53-7; 16721-80-5; 1310-73-2; 7681-52-9;
124-41-4; 7632-00-0; 7558-79-4; 7601-54-9; 10102-18-8; 7440-23-5;
110-44-1; 7789-06-2; 57-24-9; 57-24-9; 100-42-5; 110-15-6; 57-50-1;
121-57-3; 14808-79-8; 126-33-0; 10025-67-9; 7704-34-9; 7664-93-9;
1401-55-4; 72-54-8; 100-21-0; 75-65-0; 75-64-9; 127-18-4; 117-08-8;
78-00-2; 107-49-3; 110-18-9; 75-74-1; 7446-18-6; 7440-28-0;
23564-05-8; 110-02-1; 13463-67-7; 95-80-7; 108-88-3; 1333-07-9;
98-59-9; 8001-35-2; 75-25-2; 78-48-8; 52-68-6; 25323-89-1; 79-01-6;
75-69-4; 25167-82-2; 27323-41-7; 121-44-8; 112-27-6; 112-24-3;
1582-09-8; 75-50-3; 7440-33-7; 7440-61-1; 541-09-3; 10102-06-4;
57-13-6; 1314-62-1; 27774-13-6; 108-05-4; 75-01-4; 25013-15-4;
75-35-4; 111-41-1; 25321-41-9; 1330-20-7; 1300-71-6; 1300-73-8;
557-34-6; 1332-07-6; 7699-45-8; 3486-35-9; 7646-85-7; 7783-49-5;
557-41-5; 7779-86-4; 7779-88-6; 127-82-2; 1314-84-7; 16871-71-9;
7733-02-0; 7440-66-6; 13746-89-9; 16923-95-8; 14644-61-2;
10026-11-6;      311-45-5;  57-14-7; 95-94-3; 1615-80-1; 540-73-8;
57-55-6; 504-60-9;   1120-71-4; 110-57-6; 123-91-1; 130-15-4;
5344-82-1; 106-89-8;     86-88-4; 134-32-7; 58-90-2; 541-53-7;
87-65-0; 1338-23-4; 131-89-5;   80-62-6; 75-55-8; 75-86-5; 91-59-8;
109-06-8; 107-19-7; 88-85-7;      119-90-4; 119-93-7; 542-76-7;
56-49-5; 72-55-9; 50-29-3;  101-14-4;    3165-93-3; 99-55-8;
145-73-3; 20859-73-8; 7429-90-5; 61-82-5;    131-74-8; 140-57-8;
2465-27-2; 115-02-6; 225-51-4; 98-87-3; 98-09-9;       108-98-5;
92-87-5; 98-07-7; 92-52-4;  7440-69-9; 7440-42-8; 7726-95-6;
598-31-2; 357-57-3; 75-60-5; 630-08-0; 353-50-4; 75-87-6; 305-03-3;
118-75^2; 107-20-0; 75-01-4; 110-75-8; 107-30-2; 7440-48-4;
544-92-3;      1319-77-3;  98-82-8; 506-68-3; 460-19-5; 108-94-1;
50-18-0;       20830-81-3;  8065-48-3; 621-64-7;  132-64-9; 189-55-9;
124-48-1;   74-95-3; 696-28-6; 94-58-6; 77-78-1; 62-75-9; 123-91-1;
101-84-8;     142-84-7;  136-25-4; 141-78-6; 140-88-5; 60-29-7;
97-63-2; 62-50-0;    56-38-2;  107-12-0; 96-45-7; 151-56-4;
7782-41-4; 75-69-4; 110-00-9;   58-89-9; 67-72-1; 70-30-4;
1888-71-7; 757-58-4; 302-01-2; 74-90-8;    75-60-5; 9004-66-4;
7439-89-6; 78-83-1; 624-83-9;  120-58-1; 303-34-4;      7446-27-7;
1335-32-6; 7439-93-2; 109-77-3; 7439-96-5; 148-82-3;
628-86-4; 74-93-1; 67-56-1; 91-80-5;  16752-77-5; 126-98-7; 79-22-1;
71-55-6; 78-93-3; 1338-23-4; 60-34-4; 108-10-1;  56-04-2;  2385-85-5;
150-68-5;  494-03-1; 71-36-3; 70-25-7; 759-73-9;  684-93-5; 615-53-2;
924-16-3; 621-64-7; 1116-54-7; 55-18-5; 100-75-4; 930-55-2;
103-85-5;      107-10-8; 12612-55-4;  557-19-7;  54-11-5;  10102-43-9;
10102-44-0;       10544-72-6; 7727-37-9; 55-63-0; 684-93-5; 59-89-2;
636-21-5;     20816-12-0;  10028-15-6; 106-47-8;  106-46-7; 60-11-7;
100-01-6;   123-63-7; 4685-14-7; 608-93-5; 76-01-7; 127-18-4;
72-56-0; 62-44-2;   578-94-9;  696-28-6; 62-38-4; 7803-51-2;
1314-80-3; 85-44-9; 51-03-6;       506-61-6;  107-12-0; 114-26-1;
75-56-9; 110-86-1; 50-55-5; 299-84-3;   83-79-4; 78-48-8; 81-07-2;
94-59-7. 7783-00-8; 7446-34-6; 630-10-4;   506-64-9;  26628-22-8;
7440-23-5; 8001-50-1; 1314-96-1; 7446-09-5;      127-18-4; 56-23-5;
3689-24-5; 109-99-9; 509-14-8; 1314-32-5;      563-68-8;  29809-42-5;
7791-12-0; 10102-45-1;  62-55-5; 79-19-6;   62-56-6; 137-26-8;
7440-32-6; 26471-62-5;  25376-45-8;  2303-17-5;       78-48-8;
79-01-6; 75-70-7;  126-72-7; 10028-17-8; 72-57-1; 50-31-7;


                          929

-------
                             Accession Mo.  7301700902     (cont)

    66-75-1; 51-79-6* 7440-62-2
(CNM)  Contact naae(s): Bradshay,J.    ;    Corbin,F. ;    Quinlan,J,
(ROR)  Responsible Organization: Office of Pesticides and Toxic
    Substances.Offlee of Toxic Substances.Management Suppo
                             930

-------
                             Accession No.   7301700903

(DQ)   Date of Questionaire: 12*02-82
(NAM)  Name of Data Base of Model: Chenlcal Regulations and  Guidelines
    System
(ACR)  Acronym of Data Base or Model:  CRGS
(MED)  Media/Subject of Data Base or Model: All aspects of regulatory
    control of chemicals     are covered including:*      o  Disposal
    o Trade Restrictions*       o Manufacture                   o
    Transportation!      o Occupational Health           o Use*      o
    product Registration!    *   Fields covered Include:? *       o
    Aeronautics                   o Foodf      o Agriculture
    o Miningf         o Consumer Products             o Nuclear
    Technology*       o Cosmetics                     o Petrochemicals*
    o Energy                        o Pharmaceuticals*    o
    Environment protection        o Transportation*   *
(ABS)  Abstract/Overview of Data Base or Model: CHEMICAL REGULATIONS
    AND GUIDELINES SYSTEM   (CRGS) is an authoritative index to U.S.
    federal regulatory material  relating to the control of  chemical
    substances/ covering federal statutes, promulgated regulations and
    available federal guidelines/   standards/ and support documents.
    CRGS follows the regulatory   cycle and includes an up-to-date
    reference to each document.     Including main documents and
    revisions published in the Federal  Register.  Each chemical cited
    in a regulatory document is indexed    by name, CAS Registry
    Number, and a chemical role tag.  The latter    gives information
    on the context in which the substances appear in    the  document.
    CRGS also provides links between the statutes, the     regulations
    promulgated under these statutes, and the support    documents
    generated prior to the promulgation of a regulation.  Each
    document is described  in terms of publication date, title,
    abstract,  index terms, and chemical identifiers.  Index terms are
    assigned fro» the CRCS Thesaurus which will be available online in
    the CRGS    file.                            ^  ^ ^MM9t
 (CTC)  CONTACTS: Subject matter   Paula Miles   (202) 426-2447;
    Computer-related Paula Miles  (202) 426-2447; EPA Office Paula Miles
     (202)  426-2447.
 (DTP)  Type of data collection or monitoring: CRGS represents data
    obtained from official   sources of regulatory material including
    the U.S. Code and its    supplements, Statutes at Large, Code of
    Federal Regulations,     Federal Register/  and other material
    obtained directly from federal   agencies.                   „,„„„
 (STA)  Data Base status: Federal  segment available publically on DIALOG
     information Retrieval  Service.  CRGS is not currently funded for
    update.
 (1PP)  Non-pollutant  parameters  included  in the data base: Statutes,
     regulations, standards and  guidelines  currently  in effect.
 (DS)   Time period covered  by  data base:  01-01-30 TO 12-30-81
 (TRM)  Termination  of data collection:  Currently terminated awaiting
     funding  for update.
 (FRQ)  Freguency of  data  collection or  sampling: As funded; not
     currently  funded.
 (NOB)  Number  of  observations In data base:  3,000  records.
 (NBI)  Estimated  annual Increase of observations in data  base: 1,000


                              931

-------
                             Accession Mo.   7301700903      (cont)

    records/yr.
(IMF)  Data base includes: Regulatory citations ;Indicative abstract
    ^"Descriptors" common to all regulator  Concept and  index terms
    (Thesaurus) chemical name ;CAS number ;  Qualified  "role" of
    regulated substances
(NTS)  Total number of stations or sources  covered in data base:  (N/A.)
(RCS)  No. stations or sources currently originating/contributing data:
    (N/A.)
(NOF)  Number of facilities covered in data base (source monitoring):  0.
(GEO)  Geographic coverage of data base: National
(LOG)  Data elements identifying location of station or source Include:
    Promulgating agency ^Official document  citation ;Geographic
    regulatory coverage
(FAC)  Data elements identifying facility include: N/A
(CDE)  Pollutant identification data are: CAS registry  number
(ANL)  Lab analysis based on EPA-approved or accepted methods? M/A
UUD)  Lab Audit: N/A
(PRE)  Precision: Precision and accuracy estimates are  not applicable*
(EOT)  Fdltting: Edit procedures used and documented.
(CBY)  Data collected by: Contractor CRC Systems, Fairfax, Va.
(ABY)  Data analyzed by: Data not analyzed
(IDL)  Laboratory identification: NO
(PR1)  Primary purpose of data collection:  Retrieval of federal
    regulations or standards
(PR2)  Secondary purpose of data collection: Compliance or enforcement
(AUT)  Authorization for data collection: Statutory authorization Is  P
    L 94-469, Sections 9-10 (Toxic Substances Control of 1976-TSCA)
(OMB)  Data collected/submitted using OMB-approved EPA  reporting  forms:
    QQ
(REP)  Form of available reports and outputs of data base: Printouts  on
    request.
(HUS)  Number of regular users of data base: 200
(USR)  Current regular users of data base:  Government,  industry,
    academia
(CNF)  Confidentiality of data and limits on access: No limits on
    access to data
(DLC)  primary physical location of data: Dialog Information Services,
    Inc.
(DST)  Form of data storage: N/A
(DAC)  Type of data access: interactive query on Dialog Information
    Services
(CHG)  Direct charge for non-EPA use: yes
(OPDT)  Frequency of data base master file up-date: As funded; monthly
    is objective
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    NIB/EPA CIS's Federal Register Search System (FRSS)
(CMP)  Completion of form:
    Paula Milesi  OFC: EPA/(OPTS)/{OTS)/(MSD)
    AD: 401 N St., S.H. Washington, DC 20460
    PH: (202) 382-3775
(DF)  Date of form completion: 12-10-82
(CNM)  Contact name(s): Miles, P.  j  Miles,?.  ;  Miles,P.


                             932

-------
                             Accession Ho.  7301700903     (cont)

(ROR)  Responsible Organization: Office of Pesticides and Toxic
    Substances.Office of Toxic Substances.Management Suppo
                              933

-------
                             Accession No.  7301700904

(DQ)  Date of Quest!onaire: 12-02-82
(HAM)  Rame of Data Base of Model: On-Line Chemical Inventory System
(ACR)  Acronym of Data Base or Model: OLCIS
(MED)  Media/Subject of Data Base or Model: No specific aedia
(ABS)  Abstract/Overview of Data Base or Model: The Toxic Substances
    Control Act (TSCA) provides EPA uith   authority to regulate
    commercial chemical substances, which pose unreasonable risk to
    •an and the environment*  OLCIS supports this effort.  Information
    Maintained     are chemical, plant, and production volumes.  It
    contains chemicals manu-  factured or imported in the U.S., what
    chemicals are manufactured or  imported  at a given site, where
    plants are located, and their names.  There are    data for about
    55,000 chemicals in OLCIS, including the approximately 700 in the
    Clearinghouse.
(CTC)  CONTACTS: Subject matter   Geri Now ale  (202)382-3568;
    Computer-related Fred Zalss (202)382-3617
(DTP)  Type of data collection or monitoring: Combination/Other
    chemical manufacturing and production data
(STA)  Data Base status: Operational/ongoing
(NPP)  Non-pollutant parameters Included in the data base:  Chemical
    data ;Location ;Manufacturer production levels
(OS)  Time period covered by data base: 01-01-77 TO 12-30-77
(TRM)  Termination of data collection: Occurred 12/30/78
(FRQ)  Frequency of data collection or sampling: one time only ;Other
    TSCA allows EPA to collect additional information, as requi which
    may serve to update the data base.
(NOB)  Number of observations in data base: 54500
    substances.(Estimated)
(NEI)  Estimated annual increase of observations in data base: (unknown*
(INF)  Data base includes: Summary aggregate observations
(NTS)  Total number of stations or sources covered in data base: 7700
    (sites.)
(NCS)  No. stations or sources currently originating/contributing data:
    0.
(NOF)  Number of facilities covered in data base (source monitoring): (N
    /A.)
(GEO)  Geographic coverage of data base: National
(LOC)  Data elements identifying location of station or source include:
    H/A
(FAC)  Data elements identifying facility include: Plant facility name
    ;Plant location ^Street address ;Dun Bradstreet ;  Program
    identifier
(CDE)  Pollutant identification data are: CAS registry number
(LiM)  Limitation/variation in data of which user should be aware: The
    OLCIS On-line User's Guide should be consulted  prior to
    accessing the information.  Quality assurance questions are not
    applicable.
(EOT)  Editting: Edit procedures used and documented.
(C8Y)  Data collected by:  Contractor Chemical Abstracts Service
(ABT)  Data analyzed by: EPA headquarters Office of Pesticides and
    Toxic Substances  (OPTS)/Office  of Toxic Substances (OTS)
(IDL)  Laboratory identification:  NO


                             934

-------
                            Accession  No.  7301700904      (cont)

(PR1)  Primary purpose of  data collection: Development  of regulations
   or standards
(PR2)  Secondary purpose of  data  collection:  Risk  assessment
(AUT)  Authorization  for data collection: Statutory  authorization  is
   P L 94-469, Sections 8(a) and 8(b)  Toxic  Substances Control Act
   (TSCA)
(OMB)  Data collected/sub*itted using OMB-approved EPA  reporting foras:
   158S77011
(REP)  Fora of available reports  and outputs  of  data base:  055-007-00004
   -7, 055-007-00003-9, 055-000-00189-8:  Government   Printing Office
   TSCA chemical  inventory, PB-295-108 National Technical
   Information Service (NTIS) magnetic tape.
   Printouts on request
   Microfilm
   On-line computer
(•US)  Kumber of regular users of data  base:  8 offices
(OSR)  Current regular users of data base: EPA headquarter  offices
   Offices of Pesticides  and Toxic Substances,    Office of Toxic
   Substances, Office of  Enforcement,  Office of Solid  Haste,  Office of
   Research  and  Development, Office of Drinking  Hater, Office of
   Hater Program     Operations,    Office of Air  Quality Planning and
   Standards
   Other federal  agencies
(CNF)  Confidentiality of  data and limits on  access: Limits on access
   within EPA and outside agency for some  data
(DLC)  Primary physical location  of data: Contractor
(OST)  Form of data storage: Magnetic disc
(DAC)  Type of data access:  EPA software OLCIS   MIDS:7301700904 ;
   EPA hardware DECSYSTEM-2020.   Also  available from the NIH/EPA
   Chemical Information System.   Component name is  TSCAPP  (TOSCA
   Plant and Production Data).
(CHG)  Direct charge  for non-EPA  use: no outside use/access permitted
(UPDT)  Frequency  of  data  base master file up-date:  Other selected
   portions/chemicals updated as required
(CMP)  Completion  of  form:
   Substances (OPTS)/
   Office of Toxic Substances (OTS)/Nanagement  Support Division (MSD)
   AD: 401 M St,  SH, Washington, DC 20460
   PH: (202)426-4697
(OF)  Date of form completion: 12-10-82
(•MAT)  Number of  substances represented in data base:  570
(ICAS)  Number of  CAS registry numbers  in data base: 577
(NAT)  Substances  represented in  data base:
   acenaphthene<83-32-9>                acetyl  bromide<506-96-7>
   acenaphthylene<208-96-8>            acetyl  chloride<75-36-5>
   acetaldehyde<75-07-0>                acrolein<107-02-8>
   acetic acid<64-19-7>                 acrylamide<79-06-l>
   acetic anhydrlde<108-24-7>           acrylic acid<79-10-7>
   acetone cyanohydrin<75-86-5>         adipic  acid<124-04-9>
   acetone<67-64-l>                     ally! alcohol<107-18-6>
   acetonitrile<75-05-8>                allyl chloride<107-05-l>
   acetophenone<98-86-2>


                            935

-------
                         Accession Mo.  7301700904
                  (cont)
alpha*alpha-dinethylbenzylhydro-
   peroxide<80-15-9>
alpha,alpha-di«ethylphenethyla»ine
   <122-09-8>
alpha-chlorotoluene<100-44-7>
0,0-diethyl-0-<2-py 1,1,1-
   trlchloroethane<71-55-6>
If If If1f-tetrachloroethane
   <79-34-5>
l,l,2-trichloroethane<79-00-5>
l,l,2-trichloroethene<79-01-6>
l,l-dichloroethane<75-34-3>
l,l-dichloroethylene<75-35-4>
lfl-diaethylhydrazlne<57-14-7>
l,2,4,-trichlorobenzene<120-82-l>
l,2,4*5-tetrachlorobenz«ne
   <95-94-3>
1, 2-dibro»o-3-chloropropane (dbcp)
   <96-12-8>
1,2-dlbr o*o« thane<106-93-4>
If2-dichlorobenzene<95-50-l>
l,2-dichloroethane
1,2-dichloropropane<78-87-5>
U2-dlchloropropylene<563-54-2>
l*2-dlphenylhydrazlne<122-66-7>
If2-propanediol<57-55-6>
1,2-trans-dichloroethylene
   <156-60-5>
1,3,4 trichlorobenz«ne<120-82-l>
1,3-dlchlorobenzene<541-73-l>
l,3-dichloroprop«ne<542-75-6>
l,3-pentadiene<504-60-9>
1,3-propane sultoo«<1120-7l-4>
l,4-dlchloro-2-butene<110-57-6>
U4-dlchlorobenzeQe<106-46-7>
l,4-dioxan
1,4-naphthoquinone<130-15-4>
l-(o-chlorophenyl)thlourea
   <5344-82-l>
l-chloro-2/3-epoxypropane
   <106-89-8>
l-naphthyl-2-thiour«a<86-88-4>
l-naphthyla«in«<134-32-7>
2,2-dlchloroproplonic acid
   <75-99-0>
2f 4,5-trichlor ophenoK 95-95-4>
2,4,5-trlchloroph«noxyac«tlc acid
   (T)<93-76-5>
If 4,5-trichlorophenoxypropionic
   acid (TP)<93-72-l>
2,4,6-trichloroph«nol<88-06-2>
2,4-d acid<94-75-7>
2,4-dlchlorophenol<120-83-2>
2,4-dlchlorophenoxyacetic acid (2,
   4-d)<94-75-7>
2, 4-di«ethy IphenoK 105-67-9>
2, 4-din itrophenol<51-28-5>
2,4-dinltrotolu«ne<121-14-2>
2,4-dithiobiuret<541-53-7>
2,6-dlchloroph«nol<87-65-0>
2,6-dinitrotoluene<606-20-2>
2-butanone peroxide<1338-23-4>
2-chlorocthylvlnyl ether<110-75-8>
2-chloronaphthalene<91-58-7>
2-chlorophenol<95-57-8>
2-fluoroaceta«ide (l081)<640-19-7>
2-«e thy l-2-(«e thy Ithio) prop ionalde
   hyde-o-(Bethylcarbonyl)oxl«e
   <80-62
   -6>
2-««thylaziridine<75-55-8>
2-«ethyllactonitrile<75-86-5>
2-naphthyla«lne<91-59-8>
2-nitrophenol<88-75-5>
2-nitropropane<79-46-9>
2-picollne<109-06-8>
2-propyn-l-01<107-19-7>
2-sec butyl-4,6-dinltrophenol
   <88-85-7>
3^3'-dichlorobenzidine<91-94-l>
3,3'-di«ethoxybenzidine<119-90-4>
3,3 •-di»ethyl-l(»ethylthio)-2-
   butanone-0-((«ethyla«ino)
   carbonyDoxiae
3,3 *-dl»ethylbenzldlne
   <119-9 3-chloropropionitrile
   <542-76-7>
3-««thylcholanthrcne< 56-49- 5>
4,4--dd«Cp^P'-ddx)<72-55-9>
4,4'-ddt<50-29-3>
4,4'-»«ttoylen«-bis-(2-chloroanilin
4,6-dinitro-o-cresol<534-52-l>
4-A«inopyridine<504-24-5>
4-bro»ophenyl phenyl ether
   <101-55-3>
4-chloro-o-toluidine hydrochloride
   <3165-93-3>
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nit rophenoK 100-02-7>
5-(a«ino«ethyl)-3-isoxazolol
   <2763-96-4>
5-nltro-o-toluidine<99-55-8>
                          936

-------
                         Accession Ho*  7301700904
                  (cont)
<39196-18-4>
aliminiM phosphide<20859-73-8>
aluBinun sulf ate<10043-01-3>
aluffinun<7429-90-5>
aaitrole<61-82-5>
aaaoni a< 7664-41-7>
aaaoniua acetate<631-61-8>
aaaoniua benzoate<1863-63-4>
aaaoniua bicarbonate<1066-33-7>
aaaoniura blchroaate<7789-09-5>
aaaonlua bif luoride<1341-49-7>
aaaonlua bisulfite<10192-30-0>
aiioniun carbaaate
aaaonlua carbonate<506-87-6>
aMoniun chlorlde<12125-02-9>
aBBoniua chro«ate<7788-98-9>
aiaonlum citrate<7632-50-0>
aMcniua f luoborate<13826-83-0>
anonium f luoride<12125-01-8>
aMoniura hydroxide<1336-21-6>
aHonium oxalate<1113-38-8>
aaBoniuB picrate<131-74-8>
auoniu* silicof luoride
   <16919-19-0>
aiBoniun sulfa«ate<7773-06-0>
anonium sulf ide< 121 35-7 6-l>
auoniua sulf ite<10!96-04-0>
anonium tartrate<3164-29-2>
aMonium thiocyanate<1762-95-4>
aiioniua thiosulfate<7783-18-8>
aiyl acetate<628-63-7>
anillne<62-53-3>
anthracene
antinony pentachloride<7647-18-9>
antiaony potassiun tar tr ate
antimony trichloride<10025-91-9>
antiaony trifluoride<7783-56-4>
antimony tri oxide<1309-64-4>
antimony<7440-36-0>
arsenic acid<1327-52-2>
arsenic pentoxide<1303-28-2>
arsenic trichloride<7784-34-l>
arsenic trloxide<1327-53-3>
arsenic trisulfide<1303-33-9>
arsenic<7440-38-2>
asbestos<1332-21-4>
atrazine<1912-24-9>
aura«lne<2465-27-2>
bariioi cyan! de< 5 42-62- 1>
bariua<7440-39-3>
benoayl<17804-35-2>
benzal chlorlde<98-87-3>
benzene<71-43-2>
benzenesulfonyl chloride<98-09-9>
benzene thiol<108-98-5>
benzidlne<92-87-5>
benzo(a)anthracen«<56-55-3>
benzo(a)pyrene<50-32-8>
benzole acid<65-85-0>
benzoni tr ile<100-47-0>
benzotrichloride<98-07-7>
benzoyl chloride<98-88-4>
benzyl chloride<100-44-7>
beryl 11 un chloride<7787-47-5>
bcrylllua fluoride<7787-49-7>
berylliuB nitrate<13597-99-4>
berylliua<7440-4i-7>
bhc (lindane)-gaaaa<58-89-9>
bhc-alpha<319-84-6>
bhc-beta<319-85-7>
bhc-delta<319-86-8>
biphenyl<92-52-4>
bls(2-chloroethoxy)ae thane
bis(2-chloroethyl)ether
bis(2-chloroisopropyl)ether
   <39638-32-9>
bls(2-ethylhexyl)phthalate
bis(chloroaethyl)ether<542-88-l>
bisauth coapounds<7440-69-9>
boron coapounds<7440-42-8>
broaine<7726-95-6>
broaobenzene<108-86-l>
bromodichloro«ethane<75-27-4>
broaoaethane<74-83-9>
brucine<357-57-3>
butyl acetate<123-86-4>
butyl benzyl phthalate<85-68-7>
butylaaioe<109-73-9>
butyric acid<107-92-6>
cacodylic acid and salts<75-60-5>
cadaiua acetate<543-90-8>
cadaiua bromide<7789-42-6>
cadalua<7440-43-9>
calciua arsenate<7778-44-l>
calciua carbide<75-20-7>
calciua chroaate<13765-19-0>
calciua cyanide<592-01-8>
calciua dodecylbenzenesulfonate
   <26264-06-2>
calcium hydroxide<1305-62-0>
calciua hypochlorite<7778-54-3>
                         937

-------
                         Accession Ro.  7301700904
                  (cont)
calciu» oxide<1305-78-8>
captan
carbaryl<63-25-2>
carbon disulfide<75-15-0>
carbon Bonoxide<630-08-0>
carbon tetrachloride<56-23-5>
carbonyl fiuoride<353-50-4>
chloral<75-87-6>
chloranil<118-75-2>
chlorine<7782-50-5>
chloroacetaldehyde<107-20-0>
chlorobenzene
chlcrobenzilate<510-15-6>
chlorodibroBO«ethane<124-48-l>
chloroethane<75-00-3>
chloroethene<75-01-4>
chloroethyl vinyl ether<110-75-8>
chloro for»<67-66-3>
chloro»ethane<74-87-3>
chloronethyl  aethyl ether
   <107-30-2>
chloroprene<126-99-8>
chlorosulfonic  acid<7790-94-5>
chroalc acetate<1066-30-4>
chroalc acid<7738-94-5>
chrcmlc sulfate<10101-53-8>
chrOMiiiM<7440>47-3>
chrysene<218-01-9>
cis-l,2-dichloroethylene<156-59-2>
coal tar<8007-45-2>
cobalt<7440-48-4>
cobaltous for«ate<544-18-3>
copper cyanlde<544-92-3>
cr eoso te<8 021-3 9-4>
cresol<1319-77-3>
cresylic acid<1319-77-3>
crotonaldehydc<4170-30-3>
cu««n«<98-82-8>
cupric acetate<142-7l-2>
cuprlc chloride<7447-39-4>
cupric nitrate<3251-23-8>
cuprlc oxalate<8!4-91-5>
cupric sulfate<7758-98-7>
cuprlc tartrate<815-82-7>
cyaiside<57-12-5>
cyanogen bro«lde<506-68-3>
cyanogen chloride<506-77-4>
cyarogen<460-19-5>
cyclohexanc<110-82-7>
cyclohexanone<108-94-l>
di-isopropylfluorophosphate
   <55-91-4>
di-n-butyl phthalate<84-74-2>
dl-n-octyl phthalate<117-84-0>
d i-n-propyIni tros a>ine<621-64-7 >
diazinon<333-41-5>
dibenzo(a^h)anthracene<53-70-3>
d ibenzofur anC132-64-9>
dibro«ochloromethane<124-48-l>
dlbrOBO«ethane<74-95-3>
dlbutyl phthalate<84-74-2>
dichlone
dlchlorobroao>ethane<75-27-4>
dichlorodifluoro«ethane<75-71-8>
dichloro«ethan«<75-09-2>
dlchlorophenylarslne<696-28-6>
dichloropropane<78-87-5>
dlchloropropene<542-75-6>
dlchlorvos (ddvp)<62-73-7>
diepoxybutane<1464-53-5>
dlethyl phthalate<84-66-2>
dlethyla«lne<109-89-7>
dlhydrosafrolc<94-58-6>
di»ethoate<60-51-5>
dlaethyl phthalate<131-ll-3>
dimethyl sulfate<77-78-l>
dUethylamine<124-40-3>
diBethylcarbavoyl chloride
   <79-44-7>
dUethylnitrosa«ine<62-75-9>
dinltrotoluene<25321-14-6>
dioxan«<123-91-l>
dioxin<828-00-2>
dlpropyla«lne<142-84-7>
dluron<330-54-l>
dodecylbenzenesulfonic acid
   <27176-87-0>
edta<60-00-4>
epichlorohydrln<106-89-8>
ethyl ac€tate<141-78-6>
ethyl acrylate<140-88-5>
ethyl chloride<75-00-3>
ethyl eth«t<60-29-7>
ethyl iethacrylate<97-63-2>
ethyl •ethanesulfonate<62-50-0>
ethylb«nzene<100-41-4>
ethylcyanide<107-12-0>
ethylene dibrovlde (edb)<106-93-4>
ethylene dichloride<107-06-2>
ethylene oxide<75-21-8>
ethylene thlourea<96-45-7>
ethylenedia»ine
ethylenci«ine<151-56-4>
ferric ai«onlu» citrate<1185-57-5>
                          938

-------
                         Accession No.   7301700904
                  (cont)
ferric anaonlui  oxalate
   <14221-47-7>
ferric chloride<7705-08-0>
ferric fluoride<77 83-50-8>
ferric nitrate<10421-48-4>
ferric sulfate<10028-22-5>
ferrous aaaoniua sulfatc
   <10045-89-3>
ferrous chlorlde<7758-94-3>
ferrous sulfate<7720-78-7>
fluoranthene<206-44-0>
fluorene<86-73-7>
fluorine<7782-41-4>
fluorotrichloroaethane<75-69-4>
foraaldehyde<50-00-0>
foraic acid<64-18-6>
fuaaric acid
furan<110-00-9>
furfural<98-01-l>
hexachlorobenzene<118-74-l>
hexachlorobutadiene< 87-68- 3>
hexachlorocyclohexane<58-89-9>
hexachlorocyclopentadiene<77-47-4>
hexachloroethane<67-72-l>
hexachlorophene<70-30-4>
hexachloropropene< 188 8-71-7>
hydrazine<302-01-2>
hydrochloric  acid<7647-01-0>
hydrocyanic acid<74-90-8>
hydrofluoric  acid<7664-39-3>
hydrogen cyanide<74-90-8>
hydrogen sulfide<7783-06-4>
hydroxydiaethyl  arsine  oxide
   <75-60-5>
indeno 
lodome thane<74-88- 4>
lron<7439-89-6>
isobutyl alcohol<78-83-l>
Isocyanlc  acid,  aethyl  ester
   <624-83-9>
isopho rone<7 8-59-1 >
lsoprene<78-79-5>
isosaf role
lead acetate<301-04-2>
lead chloride<7758-95-4>
lead fluoride<7783-46-2>
lead fluoroborate<13814-96-5>
lead iodide
lead nitrate<10099-74-8>
lead phosphate<7446-27-7>
lead stear ate< 1072-35-1>
lead subacetate<1335-32-6>
lead suUate<7446-14-2>
lead sulfide<1314-87-0>
lead thiocyanate<592-87-0>
lead<7439-92-l>
lindane<58-89-9>
lithium and coapounds<7439-93-2>
lithium chroaate<14307-35-8>
«-cresol<108-39-4>
ra-xylene<108-38-3>
•aleic acid<110-16-7>
•aleic anhydride<108-31-6>
naleic hydrazlde<123-33-l>
•alononitrile<109-77-3>
•anganese<7439-96-5>
nercurlc cyanide<592-04-l>
nercurlc nitrate<10045-94-0>
•ercuric sulfate<7783-35-9>
mercuric thiocyanate<592-85-8>
•ercury<7439-97-6>
•ethane th iol< 7 4-93-l>
»ethanol<67-56-l>
methyacrylonitrile<126-98-7>
methyl chlorocarbonate<79-22-l>
•ethyl chlorofori<71-55-6>
•ethyl ethyl ketone  (nek)<78-93-3>
•ethyl ethyl ketone peroxide
   <1338-23-4>
•ethyl hydrazine<60-34-4>
•ethyl iodide<74-88-4>
•ethyl isobutyl ketone<108-10-1>
•ethyl «ercaptan<74-93-l>
•ethyl •ethacrylate<80-62-6>
•ethylthiouracil<56-04-2>
nolybdenua and coapounds
   <7439-98-7>
monoethylaaine<75-04-7>
aono«ethyla«ine<74-89-5>
•onuron
n-butyl alcohol<71-36-3>
n-butyl phthalate<84-74-2>
n-nethyl-n'-nitro-n-nitrosoguanidi
   ne<70-25-7>
n-nitroso-n-ethylurea<759-73-9>
n-nitroso-n-«ethylurea<684-93-5>
n-nltroso-n-aethylurethane
   <615-53-2>
n-nltrosodi-n-butyla«ine<924-16-3>
n-nitrosodi-n-propylamine
   <621-64-7>
n-nitrosodiethanolaalne<1116-54-7>
n-nitrosodiethyla«ine<55-18-5>
n-nitrosodiaethylamine<62-75-9>
                         939

-------
                         Accession No.  7301700904
                  (cent)
n-nitrosodiphenylaaine<86-30-6>
n-nitrosopiperidine<100-75-4>
n-nitrosopyrrolidine<930-55-2>
n-ph«nylthiourea<103-85-5>
n-propylamine<107-10-8>
naphthaiene<91-20-3>
naphthenlc acid
nickel chloride<7718-54-9>
nickel cyanide<557-19-7>
nickel hydroxide
nickel nitrate<13138-45-9>
nickel sulfate<7786-81-4>
nlckel<7440-02-0>
nicotine and salts<54-ll-5>
nitric acld<7697-37-2>
nitric oxid«<10102-43-9>
nitrobenzene<98-95-3>
nitrogen dioxide<10102-44-0>
nitrogen peroxide<10102-44-0>
nitrogen tetroxide<10544-72-6>
nitrogen<7727-37-9>
nitroglycerine<55-63-0>
nitrosoaethylurea<684-93-5>
o-cresol<95-48-7>
o-««thoxyphenol<90-05-l>
o-toluidine hydrochloride
   <636-21-5>
o-xylene<95-47-6>
octavethylpyrophosphoraside 
osaiua tetroxide<20816-12-0>
ozone<10028-15-6>
p-chloro-a-cresol<59-50-7>
p-chloroaniline<106-47-8>
p-cresol<106-44-5>
p-dichlorobenzene<106-46-7>
p-dinethyla«ijioazobei\zene<60-ll-7>
P-nitroanillne<100-01-6>
p-xylene<106-42-3>
parafor»aldehyde<30525-89-4>
par ald«hyd
pen tachlorob enzene<6 08-93-5>
pentachloroethane<76-01-7>
pentachloronltrobenzene (PCNB)
   <82-68-8>
pentachlorophenol<87-86-5>
perchloroethylene<127-18-4>
phenacetin<62-44-2>
phenanthrene<85-01-8>
phenol<108-95-2>
phenyl dichloroarsine<696-28-6>
phenylacetic acid<103-82-2>
phenylaercury acetate<62-38-4>
phosgene<75-44-5>
phosphine<7803-51-2>
phosphoric acid<7664-38-2>
phosphorus oxychloride<10025-87-3>
phosphorus pentasulfide<1314-80-3>
phosphorus sulfide<1314-80-3>
phosphorus trichloride<7719-12-2>
phosphorus<7723-14-0>
phthalic acid<88-99-3>
phthalic anhydride<85-44-9>
piperonyl butoxide<51-03-6>
potassium arsenat«<7784-41-0>
potassiun bichroBate<7778-50-9>
potassluM chro«ate<7789-00-6>
potassiui cyanide<151-50-8>
potassium hydroxide<1310-58-3>
potassiu* pemanganate<7722-64-7>
potassiu* silver cyanide<506-61-6>
potass!u»<7440-09-7>
prop ionic acid<79-09-4>
propionic anhydride<123-62-6>
propionitrile<107-12-0>
proplyene oxide<75-56-9>
propylene oxide<75-56-9>
pyrene<129-00-0>
quinoline<91-22-5>
reserpine<50-55-5>
resorcinol<108-46-3>
s^s^s-tributyl phosphorotrithioate
   <78-48-8>
saccharin<81-07-2>
safrole<94-59-7>
selenious acid<7783-00-8>
seleniua oxide<12640-89-0>
seleniuK7782-49-2>
selenourea<630-10-4>
silver cyanide<506-64-9>
silver nitrate<7761-B8-8>
silver<7440-22-4>
siBazine<122-34-9>
sodluB and conpounds<7440-23-5>
sodiua arsenate<7631-89-2>
sodiuB arsenite<7784-46-5>
sodium azide<26628-22-8>
sodium bichroBate<10588-01-9>
sodiua bifluoride<1333-83-l>
sodiuB bisulfite<7631-90-5>
sodiuB chro»ate<7775-ll-3>
sodlua cyanide<143-33-9>
sodiua dodecylbenzenesulfonate
   <25155-30-0>
                         940

-------
                            Accession Ho.  7301700904
                  (cont)
   sodium fluoride<7681-49~4>
   sodium fluoroacetate (1080)
      <62-74-8>
   sodium hydrosulfide<16721-80-5>
   sodium hydroxide<1310-73-2>
   sodiue hypochlorite<7681-52-9>
   sodium aethylate<124-41-4>
   sodium nitrite<7632-00-0>
   sodium phosphate, dibasic
      <75 58-79-4>
   sodium phosphate, tribasic
      <7601-54-9>
   sodium selenit
   sodiuB<7440-23-5>
   strontium chromate<7789-06-2>
   strontium sulflde<1314-96-l>
   strychine<57-2 4-9>
   styrene<100-42-5>
   sulfur dioxide<7446-09-5>
   sulfur •onochloride<10025-67-9>
   sulfuric acid<7664-93-9>
   te trachloroethene<127-18-4>
   tetrachloroethylene<127-18-4>
   tetrachloromethane<56-23-5>
   tetraethyl lead<78-00-2>
   tetrahydofuran<109-99-9>
   tetcanitromethane<509-14-8>
   thallic oxide<13!4-32-5>
   thallium acetate<563-68-8>
   thai HUB chloride<7791-12-0>
   thallium nitrate<10102-4S-l>
   thallium sulfate<7446-18-6>
   thalliura<7440-28-0>
   thioaceta*ide<62-55-5>
   thioseraicarbazide<79-19-6>
   thiourea<62-56-6>
   thiura«<137-26-8>
   titaniun<7440-32-6>
   toluene diisocyanate<26471-62-5>
   toluene<108-88-3>
   toluenediaaine<25376-45-8>
   tribro«omethane<75-25-2>
   tributyl phosphorotrithioate
      <78-48-8>
   trichloroethene<79-01-6>
trichloroethylene<79-01-6>
trichlorofluoro«ethane<75-69-4>
trichlorophenol (TCP)<25167-82-2>
triethanolamine dodecylbenzenesul
   onate<27323-41-7>
triethylaiine<121-44-8>
trine thylanlne<7S-SO-3>
trinitrobenzene<99-35-4>
trls(2^3-dibroaopropyl)phosphate
   <126-72-7>
trypan blue<72-57-l>
uranius<7440-61-l>
uranyl acetate<541-09-3>
uranyl nitrate<10102-06-4>
urethane<51-79-6>
vanadlc acid, amonlua salt
vanadium pentoxide<1314-62-l>
vanadiun<7440-62-2>
vanadyl sulfate<27774-13-6>
vinyl acetate<108-05-4>
vinyl chloride<75-01-4>
vinylidene chloride<7 5-35-4 >
xylene<1330-20-7>
xylenol<1300-71-6>
zinc ace tate< 557-3 4-6>
zinc borate<1332-07-6>
zinc bro«ide<7699-45-8>
zinc carbonate<3486-35-9>
zinc chloride<7646-85-7>
zinc fluoride<7783-49-5>
zinc for»ate<557-41-5>
zinc hydrosulfite<7779-86-4>
zinc nitrate<7779-88-6>
zinc phenol sulfonate<127-82-2>
zinc phosphidc<1314-84-7>
zinc silicofluoride<16871-71-9>
zinc sulfate<7733-02-0>
zinc<7440-66-6>
zirconium nitrate<13746-89-9>
zirconium potassium fluoride
   <16923-95-8>
zirconium sulfate<14644-61-2>
zirconium tetrachloride
   <10026-ll-6>
(CAS)  CAS  registry numbers of substances included in data base:  83-32-9
   > 208-96-8;  75-07-0;  64-19-7;      108-24-7; 75-86-5; 67-64-1;
   75-05-8;  98-86-2;  506-96-7; 75-36-5;      107-02-8; 79-06-1;
   79-10-7;  124-04-9; 107-18-6; 107-05-1;  80-15-9;    122-09-8;
   100-44-7;  71-55-6; 79-34-5; 79-00-5; 79-01-6; 75-34-3;
   75-35-4;  57-14-7;  120-82-1; 95-94-3; 96-12-8; 106-93-4; 95-50-1;
   107-06-2;  78-87-5; 563-54-2; 122-66-7;  57-55-6; 156-60-5; 120-82-1;
                            941

-------
                         Accession No.  7301700904     (cent)

541-73-1; 542-75-6; 504-60-9; 1120-71-4; 110-57-6; 106-46-7;
123-91-1; 130-15-4; 5344-82-1; 106-89-8; 86-88-4; 134-32-7;
75-99-0;       95-95-4; 93-76-5; 93-72-1; 88-06-2; 94-75-7;
120-83-2; 94-75-7;       105-67-9; 51-28-5; 121-14-2; 541-53-7;
87-65-0; 606-20-2; 1338-23-4;       110-75-8; 91-58-7; 95-57-8;
640-19-7; 80-62-6; 75-55-8; 75-86-5;      91-59-8; 88-75-5;
79-46-9; 109-06-8; 107-19-7; 88-85-7; 91-94-1;      119-90-4;
56-49-5; 72-55-9; 50-29-3; 101-14-4; 534-52-1; 504-24-5;
101-55-3; 3165-93-3; 7005-72-3; 100-02-7; 2763-96-4; 99-55-8;
39196-18-4; 20859-73-8; 10043-01-3; 7429-90-5; 61-82-5; 7664-41-7;
631-61-8; 1863-63-4; 1066-33-7; 7789-09-5; 1341-49-7; 10192-30-0;
1111-78-0; 506-87-6; 12125-02-9; 7788-98-9; 7632-50-0; 13826-83-0;
12125-01-8; 1336-21-6; 1113-38-8; 131-74-8; 16919-19-0; 7773-06-0;
12135-76-1; 10196-04-0; 3164-29-2; 1762-95-4; 7783-18-8; 628-63-7;
62-53-3; 120-12-7; 7647-18-9; 11071-15-1; 10025-91-9; 7783-56-4;
1309-64-4; 7440-36-0; 1327-52-2; 1303-28-2; 7784-34-1; 1327-53-3;
1303-33-9; 7440-38-2; 1332-21-4; 1912-24-9; 2465-27-2; 542-62-1;
7440-39-3; 17804-35-2; 98-87-3; 71-43-2; 98-09-9; 108-98-5;
92-87-5;       56-55-3; 50-32-8; 65-85-0; 100-47-0; 98-07-7;
98-88-4; 100-44-7;      7787-47-5; 7787-49-7; 13597-99-4;
7440-41-7; 58-89-9; 319-84-6;       319-85-7; 319-86-8; 92-52-4;
111-91-1; 111-44-4; 39638-32-9;     117-81-7; 542-88-1; 7440-69-9;
7440-42-8; 7726-95-6; 108-86-1;   75-27-4; 74-83-9; 357-57-3;
123-86-4; 85-68-7; 109-73-9; 107-92-6;    75-60-5; 543-90-8;
7789-42-6; 7440-43-9; 7778-44-1; 75-20-7;     13765-19-0; 592-01-8;
26264-06-2; 1305-62-0; 7778-54-3; 1305-78-8;    133-06-2; 63-25-2;
75-15-0; 630-08-0; 56-23-5; 353-50-4; 75-87-6;     118-75-2;
7782-50-5; 107-20-0; 108-90-7; 510-15-6; 124-48-1; 75-00-3;
75-01-4; 110-75-8; 67-66-3; 74-87-3; 107-30-2; 126-99-8; 7790-94-5;
1066-30-4; 7738-94-5; 10101-53-8; 7440-47-3; 218-01-9; 156-59-2;
8007-45-2; 7440-48-4; 544-18-3; 544-92-3; 8021-39-4; 1319-77-3;
1319-77-3; 4170-30-3; 98-82-8; 142-71-2; 7447-39-4; 3251-23-8;
814-91-5; 7758-98-7; 815-82-7; 57-12-5; 506-68-3; 506-77-4;
460-19-5;      110-82-7; 108-94-1; 55-91-4; 84-74-2; 117-84-0;
621-64-7; 333-41-5;   53-70-3; 132-64-9; 124-48-1; 74-95-3;
84-74-2; 117-80-6; 75-27-4;     75-71-8; 75-09-2; 696-28-6;
78-87-5; 542-75-6; 62-73-7; 1464-53-5;    84-66-2; 109-89-7;
94-58-6; 60-51-5; 131-11-3; 77-78-1; 124-40-3;     79-44-7;
62-75-9; 25321-14-6; 123-91-1; 828-00-2; 142-84-7; 330-54-1;
27176-87-0; 60-00-4; 106-89-8; 141-78-6; 140-88-5; 75-00-3;
60-29-7;       97-63-2; 62-50-0; 100-41-4; 107-12-0; 106-93-4;
107-06-2; 75-21-8;    96-45-7; 107-15-3; 151-56-4; 1185-57-5;
14221-47-7; 7705-08-0;   7783-50-8; 10421-48-4; 10028-22-5;
10045-89-3; 7758-94-3; 7720-78-7;       206-44-0; 86-73-7;
7782-41-4; 75-69-4; 50-00-0; 64-18-6; 110-17-8;    110-00-9;
98-01-1; 118-74-1; 87-68-3; 58-89-9; 77-47-4; 67-72-1;
70-30-4; 1888-71-7; 302-01-2; 7647-01-0; 74-90-8; 7664-39-3;
74-90-8;      7783-06-4; 75-60-5; 193-39-5; 74-88-4; 7439-89-6;
78-83-1; 624-83-9;       78-59-1; 78-79-5; 120-58-1; 301-04-2;
7758-95-4; 7783-46-2;      13814-96-5; 10101-63-0; 10099-74-8;
7446-27-7; 1072-35-1; 1335-32-6;       7446-14-2; 1314-87-0;
592-87-0; 7439-92-1; 58-89-9; 7439-93-2;   14307-35-8; 108-39-4;


                         942

-------
                             Accession No.   7301700904     (cont)

    108-38-3;  110-16-7;  108-31-6;  123-33-1;     109-77-3; 7439-96-5;
    592-04-1;  10045-94-0;  7783-35-9;  592-85-8;        7439-97-6;
    74-93-1;  67-56-1;  126-98-7;  79-22-lj 71-55-6; 78-93-3;
    1338-23-4;  60-34-4;  74-88-4; 108-10-1; 74-93-1; 80-62-6;  56-04-2;
    7439-98-7;  75-04-7;  74-89-5; 150-68-5; 71-36-3; 84-74-2;  70-25-7;
    759-73-9;  684-93-5;  615-53-2;  924-16-3;  621-64-7; 1116-54-7;
    55-18-5;       62-75-9; 86-30-6;  100-75-4;  930-55-2; 103-85-5;
    107-10-8;  91-20-3;     1338-24-5;  7718-54-9; 557-19-7; 12054-48-7;
    13138-45-9; 7786-81-4;    7440-02-0; 54-11-5; 7697-37-2;
    10102-43-9; 98-95-3;  10102-44-0;       10102-44-0; 10544-72-6;
    7727-37-9;  55-63-0;  684-93-5;  95-48-7;    90-05-1; 636-21-5;
    95-47-6;  152-16-9; 20816-12-0; 10028-15-6;     59-50-7; 106-47-8;
    106-44-5;  106-46-7;  60-11-7; 100-01-6; 106-42-3;   30525-89-4;
    123-63-7;  608-93-5;  76-01-7; 82-68-8; 87-86-5; 127-18-4;
    62-44-2;  85-01-8;  108-95-2;  696-28-6; 103-82-2; 62-38-4;  75-44-5;
    7803-51-2;  7664-38-2;  10025-87-3; 1314-80-3; 1314-80-3; 7719-12-2;
    7723-14-0;  88-99-3;  85-44-9; 51-03-6; 7784-41-0; 7778-50-9;
    7789-00-6;  151-50-8;  1310-58-3;  7722-64-7;  506-61-6; 7440-09-7;
    79-09-4;  123-62-6; 107-12-0; 75-56-9; 75-56-9; 129-00-0;  91-22-5;
    50-55-5;  108-46-3; 78-48-8;  81-07-2; 94-59-7; 7783-00-8;
    12640-89-0;       7782-49-2; 630-10-4; 506-64-9; 7761-88-8;
    7440-22-4;  122-34-9;    7440-23-5; 7631-89-2; 7784-46-5; 26628-22-8;
    10588-01-9; 1333-83-1;   7631-90-5; 7775-11-3; 143-33-9;
    25155-30-0; 7681-49-4; 62-74-8;        16721-80-5; 1310-73-2;
    7681-52-9;  124-41-4;  7632-00-0;  7558-79-4;      7601-54-9;
    10102-18-8; 7440-23-5; 7789-06-2; 1314-96-1; 57-24-9;
    100-42-5;  7446-09-5;  10025-67-9;  7664-93-9; 127-18-4; 127-18-4;
    56-23-5;  78-00-2;  109-99-9;  509-14-8; 1314-32-5; 563-68-8;
    7791-12-0;       10102-45-1;  7446-18-6; 7440-28-0; 62-55-5; 79-19-6;
    62-56-6;      137-26-8; 7440-32-6; 26471-62-5; 108-88-3; 25376-45-8;
    75-25-2;        78-48-8; 79-01-6;  79-01-6;  75-69-4; 25167-82-2;
    27323-41-7; 121-44-8;      75-50-3; 99-35-4; 126-72-7; 72-57-1;
    7440-61-1;  541-09-3;  10102-06-4;       51-79-6; 11115-67-6;
    1314-62-1;  7440-62-2;  27774-13-6; 108-05-4;      75-01-4; 75-35-4;
    1330-20-7;  1300-71-6;  557-34-6;  1332-07-6;      7699-45-8;
    3486-35-9;  7646-85-7;  7783-49-5;  557-41-5;  7779-86-4;
    7779-88-6;  127-82-2;  1314-84-7;  16871-71-9; 7733-02-0; 7440-66-6;
    13746-89-9; 16923-95-8; 14644-61-2; 10026-11-6
(CUM)   Contact  nane(s):  Nouak,G.
(ROR)   Responsible Organization: Office of Pesticides and Toxic
    Substances.Offlee  of  Toxic Substances.Management Suppo
                             943

-------
                             Accession Mo.  7301700905

(DQ)  Date of Questionalre: 12-02-82
(•AN)  Name of Data Base of Model: Scientific Parameters for Health and
    the Environment*  Retrieval and Estimation
(ACR)  Acronym of Data Base or Models SPHERE
(MED)  Media/Subject of Data Base or Model: Other Toxicological end
    effects ;0ther Environmental fate data
(ABS)  Abstract/Overview of Data Base or Model: This system Is the
    Office of Toxic Substances*    repository for known toxicological
    and environmental effects     and environmental fate data on
    chemicals*  It will store    scientific data collected for or
    generated by OTS and uill  provide a mechanism whereby these data
    can be manipulated   and retrieved as required for the assessment
    of chemicals.
(CTC)  CONTACTS: Subject matter  Paula Miles (202) 755-8963  ;
    Computer-related  Paula Miles
(DTP)  Type of data collection or monitoring: Combination/Other data
    collection: literature and toxic  substances data
(STA)  Data Base status: Discontinued
(GRP)  Groups of substances represented in Data Base: 54 TSCA
    assessment
(MPP)  Ron-pollutant parameters included in the data base: Health
    effects ^Environmental effects >Environmental fate
(OS)  Time period  covered by data base: 10-01-81 TO 05-15-82
(TRM)  Termination of data collection: lot anticipated
(FRQ)  Frequency of data collection or sampling: as needed
(•OB)  Number of observations in data base: 1000(Estimated)
(•El)  Estimated annual increase of observations in data base: 3000
(IMF)  Data base Includes: Reference data/citations
(ITS)  Total number of stations or sources covered In data base: (H/A)
(ffCs)  no. stations or sources currently originating/contributing data:
    (•/A)
(•OF)  Number of facilities covered In data base (source monitoring): (N
    /A)
(GEO)  Geographic  coverage of data base: International-literature
(LOC)  Data elements identifying location of station or source include.
    lot applicable
(FAC)  Data elements identifying facility include: lot applicable
(LIM)  Limitation/variation In data of which user should be aware: Conce
    ntratlons/levels of a chemical In a particular    media are not
    included in this data base*  Toxicity, physical-   chemical and
    environmental  fate data are Included.  Summary con- centration may
    be added in the future*
(DPR)  Data collect./anal, procedures conform to ORD guidelines: Conform
    to ORD QA Guidelines-lot applicable
(AH.)  Lab analysis based on EPA-approved or accepted methods? Lab
    analysis Is not applicable*
(ADD)  Lab Audit:  Lab audit is not applicable.
(PRE)  Precision:  Precision and accuracy estimates will exist for all
    measurements*
(EOT)  Editting: Mo known edit procedures exist.
(CBT)  Data collected by: Contractor ?EPA headquarters Office of Toxic
    Substances


                             944

-------
                            Accession No.  7301700905     (cont)

(ABY)  Data analyzed by: Contractor
   EPA headquarters Office of Toxic Substances Data base identifies
   specific document references.
UOT)  Authorization for data collection: Statutory authorization is
   P.L. 94-469 Section 10
(OMB)  Data collected/submitted using OMB-approved EPA  reporting forms:
   QC
(REP)  Form of available reports and outputs of data base: Unpublished
   reports - to be established*    }     Printouts on  request
   On-line computer
(USR)  Current regular users of data base: EPA headquarter offices
   Office of Toxic Substances
(CNF)  Confidentiality of data and limits on access: Limits on access
   within EPA and outside agency for all  data
(DLC)  Primary physical location of data: Contractor
(DST)  Form of data storage: Magnetic disc
(DAC)  Type of data access: EPA software: unknown at this time
(CHG)  Direct charge for non-EPA use: Mo outside use/access permitted.
(0PDT)  Frequency of data base Master file up-date: Other-Unknown at
   this time.
(CMP)  Completion of fora:
   Paula Miles
   OFC: EPA/OPT S/OTS/MSD
   AD: 401 M Street, S.W., Washington, D.C. 20460
   PH: (202) 755-8963
(OF)  Date of form completion: 12-10-82
(IMAT)  Number of substances represented in data base:  55
(ICAS)  Number of CAS registry numbers in data base: 52
(NAT)  Substances represented in data base:
   l,l,l-trichloroethane<71-55-         chlorinated naphthalenes
      6>                                chloroethane<75-00-3>
   1,1,2,2-tetrachloroethane<79-34-5>   chlorofluorocarbons
   l,l,2-trlchloroethene<79-01-6>       chloroform<67-66-3>
   l,l-dlchloroethane<75-34-3>          chloromethane<74-87-3>
   l,2-dibromoethane<106-93-4>          chloroprene<126-99-8>
   l,2-dichlorobenzene<95-50-l>         chromlum<7440-47-3>
   l,2-dichloroethane<107-06-2>         dichloromethane<75-09-2>
   l,2-dichloropropane<78-87-5>         dioxin<828-00-2>
   1,3-dichlorobenzene<541-73-l>        ethylbenzene<100-41-4>
   1,4-dichlorobenzene<106-46-7>        formaldehyde<50-00-0>
   2,4-dinitrotoluene<121-14-2>         hexachlorobenzene<118-74-l>
   2-nltropropane<79-46-9>              hexachlorobutadlene<87-68-3>
   acetaldehyde<75-07-0>                hexachlorocyclopentadiene<77-47-4>
   acrolein<107-02-8>                   hexacloroethane
   acrylonitrile<107-13-1>              isophorone<78-59-l>
   antimony<7440-36-0>                  lead<7439-92-l>
   arsenic<7440-38-2>                   m-cresol<108-39-4>
   asbestos<1332-21-4>                  m-xylene<108-38-3>
   benzene<71-43-2>                     maleic anhydride<108-31-6>
   benzidine<92-87-5>                   aercury<7439-97-6>
   benzyl chlorlde<100-44-7>            methyl iodide<74-88-4>
   cadmium<7440-43-9>                   nltrobenzene<98-95-3>


                            945

-------
                             Accession Mo.  7301700905     (cent)

    o-cresol<95-48-7>                    polychlorlnated biphenyls (PCBs)
    o-xylene<95-47-6>                       <1336-36-3>
    p-cresol<106-44-5>                   toluene<108-88-3>
    p-xylene<106-42-3>                   trichloroethane<25323-89-l>
    pbosgene<75-44-5>                    vinylldene chloride<75-35-4>
    polybro«inated biphenyls (PBBs)
(CAS)  CAS registry numbers of substances Included in data base:  71-55-6
    ; 79-34-5; 79-01-6; 75-34-3; 106-93-4;      95-50-1; 107-06-2;
    78-87-5; 541-73-1; 106-46-7; 121-14-2; 79-46-9;    75-07-0;
    107-02-8; 107-13-1; 7440-36-0; 7440-38-2; 1332-21-4;    71-43-2;
    92-87-5; 100-44-7; 7440-43-9; 75-00-3; 67-66-3; 74-87-3;
    126-99-8; 7440-47-3; 75-09-2; 828-00-2; 100-41-4; 50-00-0;
    118-74-1;       87-68-3; 77-47-4; 78-59-1; 7439-92-1; 108-39-4;
    108-38-3; 108-31-6;   7439-97-6; 74-88-4; 98-95-3; 95-48-7;
    95-47-6; 106-44-5; 106-42-3;    75-44-5; 1336-36-3; 108-88-3;
    25323-89-1; 75-35-4
(CUM)  Contact nane(s): Miles,?.  ;    Miles,?.  ;    Miles,P.
(ROR)  Responsible Organization: Office of Pesticides and Toxic
    Substances.Offlee of Toxic Substances.Management Suppo
                             946

-------
                            Accession Mo.   7407000517

(DQ)  Date of Questionaire:  12-02-82
(IAH)  Kane of Data Base of  Model: Stability Array  Data File
(ACR)  Acronya of Data Base  or Model: STAR
(HED)  Media/Subject of Data Base or Model:  Air
(IBS)  Abstract/Overview of  Data Base or Model:  The STAR data  files
   contain meterological  data    for 394 first  order Heather  stations
   in the continental OS.   STAR     data consists  of frequencies  of
   Hind direction by wind speed classes  for  each  of up to seven
   atmospheric stability  categories.  Hind  directions are given  for
   16 sectors corresponding to coupass points   and there are 6 Hind
   speed categories.  The data are vailable as  annual average
   frequencies based on at  least five consecutive  years   of  data*
(CTC)  CONTACTS: Subject natter  Loren Hall  (202) 382-3931  ;
   Computer-related  Loren  Hall (202) 382-3931   ;   EPA Office William
   Hood - OTS  (202) 382-3928
(DTP)  Type of data collection or aonitoring:  Aabient
(STA)  Data Base status: Presently Operational/Ongoing
(1PP)  lion-pollutant parameters included in  the  data base: Hind
   direction ; wind velocity
(IMF)  Data base includes: Aggregate or sunoary  observations
(CEO)  Geographic coverage of data base: National
(LOG)  Data elements identifying location of station or source include:
   Latitude and longitude
(DPR)  Data collect./anal, procedures confora  to ORD guidelines: NO
(IIL)  Lab analysis based  on EPA-approved or accepted methods? NO
(ADD)  Lab Audit: N/A: data  not based on laboratory analysis
(PRB)  Precision: None available
(EOT)  Editting: No known  edits
(CBY)  Data collected by:  Other- National A  Heather Service
(ABT)  Data analyzed by: Other- National Cliaatic Center
(IDL)  Laboratory identification: NO
UOT)  Authorization for data collection: NO
(OMB)  Data collected/subaitted using OMB-approved  EPA reporting forms:
   NO
(REP)  Fora of available reports and outputs of  data base: On-line
   computer terminal
(IDS)  Nuaber of regular users of data base: 10-15
(VSR)  Current regular users of data base: EPA Headquarters Offices,
   Office of Toxic    Substances, OPRM
(CIF)  Confidentiality of  data and Halts on access: None
(OLC)  Primary physical location of data: NCC/RTP
(DST)  Fora of data storage: Magnetic disc
(DAC)  Type of data access:  EPA Software Systea: Systea  Naae-  OTS
   Graphical   Exposure Modeling System/  Hardware- VAX 11/780
(CHG)  Direct -charge for non-EPA use: No outside use/access permitted
(OPDT)  Frequency of data  base master file up-date: None
(RSS)  Related EPA automated systems which use data base:  Related  EPA
   Systems: ATM/SCCPOP  (model)
(RDBBPA)  Related EPA  data bases used in conjunction with  this data  base

(RDB)  Non-EPA data bases  used in conjunction  with  this  data base: None
(CMP)  Coapletion of form: f Mllliam P.  Hood*  OFC: OPTS/OTS/EEDf  AD:


                            947

-------
                             Accession lo.   7407000517     (cont)

    EPA/ Headquarters!   PH: (202) 382-39281
(DF)  Date of for* completion: 01-25-83
(CUM)  Contact naae(s): Hall,L.  ;  Hall,L.  ;  Wood,*.
(COR)  Contact organization: OTS
(ROR)  Responsible Organization: Office of Pesticides and Toxic
    Substances.Office of Toxic Substances.Exposure Evaluat
                              948

-------
                            Accession Mo.  7407000518

(DQ)  Date of Questionalre: 12-02-82
(IAM)  Name of Data Base of Model: 1977 Economic Census
(ACR)  Acronym of Data Base or Model: Rone
(NED)  Media/Subject  of Data Base or Model: N/A data not related to
   specific *edla: Economic Data
(ABS)  Abstract/Overview of Data Base or Model: Data Base has 4
   components:  CD Census of    manufacturers (geographic area series.
   Industry series,  location of   manufacturing plants, fuels and
   electricity  consumed 1977 and 1978),  (2) Census of Wholesale Trade
   (geographic  area  series), (3) Census    of Selected Service
   industries,  (4) Census of Transportation (commodity
   transportation survey and truck inventory and  use survey)*
(CTC)  CONTACTS: Subject matter  Loren Hall 382-3931  ;  Computer-
   related  Loren Hall 382-3931  ;  EPA Office  Hilliam P.  Hood,
   Office  of Toxic  Substances  382-3928
(STA)  Data Base status: Presently Operational/Ongoing
(IPP)  Non-pollutant  parameters included in the data base: Cost or
   economic data > Information includes number of industries or
   establishments by SIC code, number of    employees  and their wagtJ,
   number of production workers, receipts     or  value added by
   manufacturer for  1977*
(DS)  Time period covered by data base: Single date: 1977
(tRM)  Termination of data collection! lot applicable
(PRO)  Frequency of data collection or sampling: Every  S years
(IMF)  Data base includes: Aggregate or summary observations
(CEO)  Geographic coverage of data bases iational
(LOG)  Data elements  identifying location of station or source include:
   State > county ;  smsa (standard metropolitan statistical area)  >
   city
(PAC)  Data elements  identifying facility include: SIC  code
(LlM)  Limitation/variation  in data of which user  should be  auare:  The
   location of  manufacturing plants is as    lightly misleading name,
   since the  file only provides the number of establishments in 7
   employee size categories.
(DPR)  Data collect./anal, procedures  conform  to  QRD guidelines: Ho,
   but  other  documentation  available  for  each     of the following:
   collection method
(AIL)  Lab  analysis based  on EPA-approved  or  accepted methods? MO
(AOD)  Lab  Audit: N/A:  data  not based  on laboratory analysis
(PRE)  Precision: None  available
(EOT)  Editting: No known  edits
(CBY)  Data collected by:  Other- Bureau of Census
(ABY)  Data analyzed  by:  Other- Bureau of  Census
(IDL)  Laboratory  identification:  NO
(PR1)  Primary purpose  of  data collection: Trend  assessment
(PR2)  Secondary purpose  of  data  collection:  None
(AUT)  Authorization  for  data collection:  NO
(OMB)  Data collected/submitted using  OMB-approved EPA  reporting  forms:
   NO
(REP)  Form of available  reports  and  outputs  of  data base: On-line
   computer  terminal
(•OS)  Number  of regular  users  of  data base:  10-15


                             949

-------
                             Accession Ho.  7407000518     (cont)

(OSR)  Current regular users of data base: EPA Headquarters Offices*
    Office of Toxic Substances
(CMF)  Confidentiality of data and 1inits on access: Hone
(OLC)  priaary physical location of data: HCC/RTP
(DST)  For* of data storage: Magnetic Disc
COAC)  Type of data access: EPA Software Systea: System Haae- OTS
    Graphical   Exposure Modeling System (GEMS),  Hardware- ?AX 11/780
(CHG)  Direct charge for non-EPA use: Ho outside use/access permitted
(OPDT)  Frequency of data base master file up-date: 5 years
(RSS)  Related EPA automated systems which use data base: Hone
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    Hone
(ROB)  Non-EPA data bases used in conjunction with this data base:  lone
(CMP)  Completion of fora: f William P. Hoodf  OFC: OPTS/OfS/BBDf  AD:
    EPA/ Headquarters!   PH: (202) 382-3928f
(DF)  Date of fora completion: 01-20-83
(CHM)  Contact na»e(s): Hall,L.  ;  Hall,L.  ;  Nood,tf.P.
(COR)  Contact organization: Office of Toxic Substances
(ROR)  Responsible Organization: Office of Pesticides and Toxic
    Substances.Office of Toxic Substances*Exposure Evaluat
                             950

-------
                            Accession No.  7407000519

(DQ)  Date of Questionaire: 12-02-82
(IAN)  Kane of Data Base of Model: Geoecology
(ACR)  Acronym of Data Base or Model: None
(MED)  Kedia/Subject of Data Base or Model: Air > Soil  ; Surface Water
   ; Other- terrain, wildlife, climate
(ABS)  Abstract/Overview of Data Base or Model: Data Base contains
   county level data on a variety of environmental parameters.
   Categories Include agriculture, climate,     vegetation, forestry,
   air quality, terrain, wildlife (endangered species).  Each of these
   contains files of interest in the exposure   assessment process.
   For example the agricultural files contain area  under cultivation
   and yield statistics for a variety of  commercially   important crops
   from 1978 Census of Agriculture.
(CTC)  CONTACTS: Subject natter  Lor en Hall  (202) 382-3931  ;
   Computer-related  Loren Hall (202) 382-3931  ;  EPA Office  William
   P. Wood, Office of Toxic Substances  (202) 382-3928
(DTP)  Type of data collection or monitoring: Combinations and other:
   county level
(STA)  Data Base status: Presently Operational/Ongoing
(NPP)  Non-pollutant parameters included in  the data base: Geographic
   subdivisions: county ; precipitation ; temperature  ; Climatic
   variables include  annual average  and monthly   maximum and minimum
   temperature and monthly precipitation  and potential
   evapotranspiration.  Soil types by county with some physical and
   chemical properties for general soil classes.
(DS)  Time period covered  by data base:  1940 TO  1980
(TRH)  Termination of  data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: Ongoing:  as  needed
(INF)  Data base includes: Aggregate  or  summary  observations
(6EO)  Geographic coverage of data base: National
(LOC)  Data elements  identifying  location  of station or source include:
   County
(DPR)  Data collect./anal, procedures conform  to ORD  guidelines:  No,
   but  other documentation available for  each     of  the following:
   collection method                                     ^  *  ~ «n
(ANL)  Lab analysis based  on  EPA-approved or accepted  methods? NO
(AOD)  Lab Audit: N/A: data  not  based on laboratory  analysis
(PRE)  Precision: None available
(EOT)  Editting: No known  edits
(CBY)  Data collected by:  Department  of  Energy
UBY)  Data  analyzed  by:  Department  of Energy
(IDL)  Laboratory  identification:  NO
(PR1)  Primary  purpose of  data  collection: Exposure Assessment
(PR2)   Secondary  purpose  of data collection: None
(AOT)  Authorization  for  data collection:  NO
(OMB)  Data  collected/ submit ted using OMB-approved EPA reporting forms.

(RBP)   Form  of  available  reports and outputs of data base:  On-line
    computer  terminal
(•OS)   Number of  regular  users of data base: 10-15
(OSR)   Current  regular users of data base: EPA Headquarters Office,
    Office of Toxic  Substances


                             951

-------
                             Accession Ho.   7407000519     (cont)

(CHF)  Confidentiality of data and Halts on access:  None
(DLC)  Prlaary physical location of data: HCC/RTP
(DST)  form of data storage: Magnetic Disc
CDAC)  Type of data access: EPA Software Syste»:  Systea Naae- OTS
    Graphical   Exposure Modeling Systea (GEMS),   Hardware- VAX 11/780
(CHG)  Direct charge for non-EPA use: Ho outside  use/access permitted
CRSS)  Related EPA automated systems which use data base: None
(ROBEPA)  Related EPA data bases used in conjunction with this data base
    Hone
(RDB)  lon-EPA data bases used in .conjunction tilth this data base:  None
(CMP)  Completion of fora: f Willlaa P. Voodf  OFC: OPTS/OTS/EEDf   AD:
    EPA/ Headquarters*   PH: (202) 382-3928*
(DP)  Date of fora completion: 01-20-83
(CUM)  Contact naae(s): Hall/L.  j  Hall/L.  ;  Wood,*.P.
(COR)  Contact organization: Office of Toxic Substances
(ROR)  Responsible Organization: Office of Pesticides and Toxic
    Substances.Offlee of Toxic Substances*Exposure Evaluat
                             952

-------
                            Accession No.  7407000520

(DQ)  Date of Questionaire: 12-02-82
(•AM)  Name of Data Base of Model: Master Area Reference File of the
   1980 Census
(ACR)  Acronym of Data Base or Model: MARF
(MED)  Media/Subject of Data Base or Model: N/A data not related to
   specific media. Population Data
(ABS)  Abstract/Overview of Data Base or Model: The complete corrected
   MARF of 1980 Census with   geographic coordinates for s»all
   geographic areas.  The file has a variety of location
   identification, information, including region,  state, county,
   place, census tracts, and enumeration districts or     block
   groups, population country races, number of occupied and   ouner
   occupied housing units, and number of families for all the
   enumeration districts/block groups*
(CTC)  CONTACTS: Subject Batter  Loren Hall (202) 382-3931  }
   Computer-related  Loren Hall (202) 382-3931  ;  EPA Office  William
   Mood - OTS (202) 382-3928
(STA)  Data Base status: Presently Operational/Ongoing
(IPP)  Non-pollutant parameters included in the data base: Geographic
   subdivisions ; population demographics ;    population density
(DS)  Tine period covered by data base: Single date: 1980
(TRM)  Termination of data collection: Hot applicable
(FRQ)  Frequency of data collection or sampling: 10 year Census
(INF)  Data base includes: Aggregate or summary observations
(CEO)  Geographic coverage of data base: National
(LOC)  Data elements identifying location of station or source include:
   State ; county ; congressional district ; sisa(   standard
   metropolitan statistical area) > city ; tonn/tovnship ; latitude
   and longitude
(FAC)  Data elements identifying facility include: Not applicable
(DPR)  Data collect./anal, procedures conform to ORD guidelines: No,
   but other documentation available for each    of the following:
   Analysis method
(AIL)  Lab analysis based on EPA-approved or accepted methods? NO
(ADD)  Lab Audit: N/A: data not based on laboratory analysis
(PRE)  Precision: None available
(EOT)  Fditting: YES, documented edits
(CBY)  Data collected by: Other- Census Bureau
(ABY)  Data analyzed by: Other- Contractor, Donnelly Marketing Inc.
(IDL)  Laboratory identification: NO
(PR1)  Primary purpose of data collection: Risk assessment
(PR2)  Secondary purpose of data collection: Trend assessment
(AOT)  Authorization for data collection: YES, citation: NON-EPA
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
   NO
(REP)  Form of available reports and outputs of data base: On-line
   computer terminal
(•OS)  Number of regular users of data base: 10-15
(USR)  Current regular users of data base: EPA Headquarters Offices,
   Office of Toxic    Substances, ORP, OPRM, OAQPS
(CNF)  Confidentiality of data and limits on access: Some data
   confidential, limits on access outside  the agency


                            953

-------
                             Accession No.   7407000520      (cont)

(DLC)  Primary physical location of data:  NCC/RTP
(DST)  Fora of data storage: Magnetic Disc
(DAC)  type of data access: EPA Software System:  System Same-  OTS
    Graphical   Exposure Modeling System (GEMS),   Hardware- ¥AX 11/780
(CHG)  Direct charge lor non-EPA use: Ho outside  use/access permitted
(OPDT)  Frequency of data base master file up-date:  annually
(RSS)  Related EPA automated systems which use data base:  Related  EPA
    Systems: ATM/SECPOP
(RDBEPA)  Related EPA data bases used in conjunction with  this data base
    Hone
(RDB)  Von-EPA data bases used in conjunction with this data base:  Hone
(CMP)  Completion of form: f William P. Wood*  OFC:  OPTS/OTS/EEDf   AD:
    EPA/ Headquartersf   PR: (202) 382-3928f
(DP)  Date of form completion: 01-25-83
(CNN)  Contact name(s): Hall,L.  ;  Hall,L.  ;  Wood,*.
{COR)  Contact organization: OTS
(ROR)  Responsible Organization: Office of Pesticides and  Toxic
    Substances.Offlee of Toxic Substances*Exposure Evaluat
                             954

-------
                             Accession Mo.   8213000513

(DQ)   Date  of  Questionaire:  12-02-82
(VAN)   Name of Data Base of  Model:  Whole-Body Count and Bioassay
(ACR)   Acronym of Data Base  or Model:  NBC
(NED)   Media/Subject of Data Base or Model:  Tissue: Hunan whole body,
   urine
(ABS)   Abstract/Overview of  Data Base or Model:  Ingested and inhaled
   radionnclides and humans,    radiation  workers and general public,
   relative to Nevada Test  site    operations and laboratory
   activities.  Data collected since 1963  is   being prepared for
   entry into computer data base*   Data is fron  reports/ internal
   memoranda, monitoring logs, and raw data stored     in various
   formats on hard copy, paper tape,  magnetic tape, and disk.
(CTC)   CONTACTS:  Subject matter  Director,  Nuclear Radiation
   Assessment Division  545-2305  ;  Computer-related  Anita A. Mullen
   545-2650  ;  EPA Office   Charles F. Costa; Dir., Nuclear Radiation
   Assessment Div., EMSL-LV  545-2305
(DTP)   Type of data collection or monitoring: Combinations and other:
   Whole-body counting for    gamma and X rays, urine analysis for
   tritium
(STA)   Data Base status: Presently Operational/Ongoing
(GRP)   Croups of substances  represented in Data Base: Other- CS-137,
   K-40, 1-131, 1-133, 1-135, H-187,  PO-238, PO-239, H-3, and other
   miscellaneous gamma-emitting radionuclides detected in humans.
(IPP)   Non-pollutant parameters included in the data base: Biological
   data ;  concentration measures ;   expousre data ; location ;
   physical data ; political subdivisions /   sampling date ;
   volume/mass measures ; subject name, address and social security
   number
(OS)   Tine  period covered by data base: 06-63 TO 12-82
(TRM)   Termination of data collection: Not anticipated
(FRQ)   Frequency of data collection or sampling: Ongoing: semi-annually
   ;  ongoing: annually ; ongoing: as needed
(IOB)   Number of observations in data base: 8000(Estimated to date)
(•El)   Estimated annual increase of observations in data base: 800
(INF)   Data base includes: Raw data/observations ; Other- Software for
    data  summary under development
(ITS)   Total number of stations or sources covered in data base: 44
(ICS)   No.  stations or sources currently originating/contributing data:
    37
(•OF)   Number of facilities covered in data base (source monitoring): 2
(GEO)   Geographic coverage of data base: Geographic Region: Nevada,
    Utah, California
(LOG)   Data elements identifying location of station or source include:
    State ; town/township ; street address ;     Name, social security
    number
(FAC)   Data elements identifying facility include: Other
(CDE)   Pollutant identification data are: Oncoded
(LIM)   Limitation/variation in data of which user  should be aware: Past
    data not yet entered into data base/    specific data are personal
    and private until released by subject(s)   for use by other
    organizations.
(OpR)   Data collect./anal, procedures conform to QRD guidelines: NO,


                             955

-------
                             Accession Mo.   8213000513     (cont)

    but other documentation available for each    of the following:
    sampling plan, collection method/ and analysis method
(ANL)  Lab analysis based on EPA-approved or accepted methods?  YES
(ADD)  Lab Audit: YES, urine ; M/A: data not based on laboratory
    analysis- whole body count
(PRE)  Precision: Not included in data base, precision and  accuracy
    measurements available from other sources
(EOT)  Edittlng: YES, undocumented
(CBY)  Data collected by: EPA Lab- Environmental Monitoring Systems
    Laboratory, Las Vegas, NV ; other Federal Agency- US Public Health
    Service, Las Begas, NV
(ABY)  Data analyzed by: EPA Lab: E-M-S-L-, Las Vegas, NV ; other
    Federal  Agency: OS P-H-S- Las Vegas MV
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection:  Risk Assessment
(PR2)  Secondary purpose of data collection: Other- Historical  trends
(AOT)  Authorization for data collection: NO, data collection is part
    of the total radiation     safety program further Nevada Test  Site
    and the EMSL-LV.
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    •o
(REP)  Form of available reports and outputs of data base:  Publications:
    Offsite Environmental Monitoring    Report for Nevada Test  Site
    published annually.  Occasional Journal   articles on specific
    aspects. ; Printouts on request ; machine-readable   raw data,
    current only
(NOS)  Number of regular users of data base: 3
(OSR)  Current regular users of data base: EPA Laboratories ; other
    Federal Agencies ;  Other-    EC&G
(CNF)  Confidentiality of data and limits on access: All data
    confidential, limits on access both within EPA and outside  the
    agency
(DLC)  Primary physical location of data: EPA Lab
(DST)  Fora of data storage: Presently, portions of data are A, B  &  D
(DAC)  Type of data access: Commercially available software for recent
    data   System Name- MIDAS , Hardware- Nuclear Data 6620
(CHG)  Direct charge for non-EPA use: NO
(UPDT)  Frequency of data base master file up-date: Monthly
(RSS)  Related EPA automated systems which use data base: None
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    Related EPA data bases: Historical Dosimetry (film badge),
    Thermoluminescent Dosimitry
(RDB)  Non-EPA data bases used in conjunction with this data base:  None
(CMP)  Completion of form: f A. A. Mullenf     OFC:
    EPA/ORD/OMTS/EMSL-LVf    AD: P.O. Box 15027, Las vegas, MV  89114*
    PH: (702) 798-2650f
(DF)  Date of form completion: 12-13-82
(NMAT)  Number of substances represented in data base: 9
(NCAS)  Number of CAS registry numbers in data base: 0
                             956

-------
                             Accession No.   8213000513      (cont)

(MAT)   Substances represented in data base:
    CS-137                                M-187
    K-40                                 P0-238
    1-131                                PO-239
    1-133                                H-3
    1-135
(CNM)   contact naae(s):  Nullen,A.A.   ;  Costa,C.F
(COR)   Contact organization:  Nuclear Radiation Assessment Division/
    EMSL-LY
(ROR)   Responsible Organization: Office of Research and
    Development.Office of Monitoring Systems and Quality Assurance
                             957

-------
                             Accession No.   8213000514

(DQ)  Date of Questionaire: 12-02-82
(VAN)  Kane of Data Base of Model: Pressurized Ion Chamber
(ACR)  Acronym of Data Base or Model: PIC
(MED)  Media/Subject of Data Base or Model: Emissions: Radioactives  ;
    Measure external gamma  -ray dose
(ABS)  Abstract/overview of Data Base or Model: Environmental radiation
    data collected since 1/82 in the Mevand Test Site Offsite area
    California, Nevada and Otah, data base contains measurements of
    external gamma-ray exposure  at 15 stations*
(CTC)  CONTACTS: Subject matter  Director, Nuclear Radiation
    Assessment Division 545-2305  ;  Computer-related  Robert 6. Patzer
    545-2324  j  EPA Office  Charles F. Costa; Dlr. Nuclear Radiation
    Assessment Div., EMSL-L?  545-2305
(DTP)  Type of data collection or monitoring: Combinations and other:
    Ambient radiation,   natural and man-made
(STA)  Data Base status: Presently Operational/Ongoing
(CRP)  Croups of substances represented in Data Base: Other- Externaly
    gamma-ray exposure
(NPP)  Non-pollutant parameters included in the data bases Collection
    method or instrument ; elevation >     exposure data ; location  ;
    political subdivisions ; sampling date
(OS)  Time period covered by data base: 01-82 TO 12-82
(TRM)  Termination of data collection: Hot anticipated
(FRQ)  Frequency of data collection or sampling: Ongoing: less than
    hourly: maximum, minimum  and average every 5 minutes
(NOB)  Number of observations in data base: 2,300,000(Estimated to
    date)
(NED  Estimated annual increase of observations in data base: 2,300,000
(INF)  Data base includes: Raw data/observations ? aggregate or summary
    observations
(NTS)  Total number of stations or sources covered in data base: 15
(NCS)  No. stations or sources currently originating/contributing data:
    IS
(NOF)  Number of facilities covered In data base (source monitoring):  1
(CEO)  Geographic coverage of data base: Geographic region: Nevada,
    Utah, and California
(LOC)  Data elements identifying location of station or source include:
    State ; town/township 1 street address
(FAC)  Data elements identifying facility include: Not applicable
(CDE)  Pollutant identification data are: Oncoded
(DPR)  Data collect./anal, procedures conform to ORD guidelines: No,
    but other documentation avlilable for each    of the following:
    sampling plan, collection method, analysis method,
(AM.)  Lab analysis based on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: N/A: data not based on laboratory analysis
(PRfi)  Precision: YES, for all measurements
(EOT)  Fditting: YES, undocumented
(CBY)  Data collected by: EPA Lab, EMSL-LY
(ABY)  Data analyzed by: EPA Lab, EMSL-L?
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Trend assessment
(PR2)  Secondary purpose of data collection: Special study


                             958

-------
                            Accession No.  8213000514     (cont)

(OMB)  Data collected/submitted using OMB-approved EPA  reporting forms:
   •o
(REP)  For* of available reports and outputs of  data base: Publications:
   Offsite Environmental Monitoring    Report for the  Nevada Test
   Site/ published annually / Machine-   readable ran  data
(IBS)  Nunber of regular users of data base: 2
(HSR)  Current regular users of data base: EPA laboratories, EMSL-LV  ;
   other Federal    Agencies/ DOE
(GIF)  Confidentiality of data and 1 in its on access: Some data
   confidential/ limits on assess     outside the agency
(DLC)  Prinary physical location of data: EPA Lab
(DST)  Fora of data storage: Magnetic Disc
(OAC)  Type of data access: EPA Software System: System Sane- CDC 6400,
   Hardware- EPA
(CHG)  Direct charge for n on-EPA use: NO
(UPDT)  Frequency of data base master file up-date: Monthly
(RSS)  Related EPA automated systems which use data base: None
(ROBEPA)  Related EPA data bases used in conjunction with this data base
   environmental Monitoring Systems Laboratory- Las Vegas Historical
   Dosimetry (film badge)/ Thermoluminescent    dosimetry
(RDB)  Mon-EPA data bases used in conjunction with this data base: Rone
(CMP)  Completion of for*: f Robert G. Patzer* OFC:
   EPA/ORD/OMTS/EMSL-LVf    AD: P.O. Box 15027, Las Vegas, NV  89114f
   PH: (702) 798-2324*
(OF)  Date of form completion: 12-13-82
(CIM)  Contact natne(s): Patzer,R.€.  ;  Costa/C.F.
(COR)  Contact organization: Nuclear Radiation Assessment Division
   EMSL-LV
(ROR)  Responsible Organization: Office of Research and
   Development.Office of Monitoring Systems and Quality Assurance
                             959

-------
                             Accession Ho.   8213000515

(DQ)  Date of Questionaire: 12-02-82
CHAM)  Hame of Data Base of Model: Contract Laboratory Program Quality
    Assurance
(ACR)  Acronym of Data Base or Model: CLPQA
(MED)  Media/Subject of Data Base or Model: Runoff: near Hazardous
    Haste Sites j sediment ;   soil ; solid waste ; surface water:  near
    Hazardous Haste Sites
(ABS)  Abstract/Overview of Data Base or Model: Quality Assurance data
    base for Superfund    contract Laboratory Program,  QA/QC
    parameters for both organic  and inorganic samples collected  at
    hazardous waste sites and     analyzed under Contract Laboratory
    Program.  Current contents    include surrogate and matrix spike
    data as a function of contract,    media, concentration, and
    laboratory.
(CTC)  CONTACTS: Subject matter  Mike HOBSher, Lockhead Data  Audits
    Section Chief  PTS 545-2633  ;  Computer-related  Hancy   Fisher,
    CSC Programmer/Analyst FTS 545-2665  ;   EPA Office John  M. Moore,
    Quality Assurance Division/ EMSL-LV  FTS 545-2132
(Dtp)  Type of data collection or monitoring: Point source: Hazardous
    Haste Site Sampling
(STA)  Data Base status: Presently Operational/Ongoing
(MPP)  Ron-pollutant parameters Included In the data base: Chemical
    data } collection method or instrument ; location
(DS)  Time period covered by data base: 06-82 TO 12-82
(TRM)  Termination of data collection: Hot anticipated
(FRQ)  Frequency of data collection or sampling: Ongoing: daily
(HOB)  number of observations in data base: 800(Estimated to date)
(HEI)  Estimated annual increase of observations in data base: 2000
(IHF)  Data base Includes: Raw data/observations
(HTS)  Total number of stations or sources covered in data base:  200
(HCS)  Ho. stations or sources currently originating/contributing data:
    200
(HOF)  Number of facilities covered in data base (source monitoring): 20
    0
(GEO)  Geographic coverage of data base: National
(LOC)  Data elements Identifying location of station or source include:
    Other- Region
(CDE)  Pollutant identification data are: Oncoded
(LIN)  Limitation/variation in data of which user should be aware:  User
    should be aware that comparisons can be affected by concentration
    level, method of analysis, and media.
(DPR)  Data collect./anal- procedures conform to ORD guidelines:  YES
(AHL)  Lab analysis based on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: YES
(PRB)  Precision: Partial: accuracy, yes j precision implicitly
    calculated
(EOT)  Bdittlng: YES, documented edits
(CBY)  Data collected by: State agency ; regional office > EPA Lab j
    contractor
(ABY)  Data analyzed by: Contractor Lab
(IOL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Compliance or enforcement


                             960

-------
                            Accession No.  8213000515      (cont)

(PR2)  Secondary purpose of data collection: None
(AW)  Authorization for data collection: Yes, citation- CERCLA
(OMB)  Data collected/submitted using OMB-approved  EPA  reporting forms:
   NO
(REP)  Form of available reports and outputs of  data base:  Machine-reada
   ble ran data ; on-line computer terminal
(BOS)  Run her of regular users of data base: 15
(HSR)  Current regular users of data base: EPA Headquarters Offices-
   OS ME R (OHER) ; EPA Regional Offices  ; EPA Laboratories
(CNF)  Confidentiality of data and Halts on access: Some data
   confidential. Units on both within     EPA  and outside the Agency.
(DLC)  Primary physical location of data: EPA Lab
(OST)  Forn of data storage: Magnetic Disc
(DAC)  Type of data access: EPA Software System: System Name- INFORM
   Language,     Hardware- PDP-11
(CHG)  Direct charge for non-EPA use: Ho outside use/access permitted
(OPDT)  Frequency of data base master file up-date: Weekly
(RSS)  Related EPA automated systems which use data base: None
(RBBEPA)  Related EPA data bases used in conjunction with this data base
   Hone
(RDB)  Hon-EPA data bases used in conjunction with  this data base:  None
(CMP)  Completion of form: f John N. Moore*    OFC: Quality Assurance
   Division, EMSL-L?f    AD: 944 E. Harmon, P.O. Box  15027, Las Vegas,
   HV  89114f    PH: (702) 798-2132f
(OF)  Date of form completion: 12-14-82
(CUM)  Contact name(s): Homsher,M.  >  Fischer,N.   /   Moore,J.M.
(COR)  Contact organization: Quality Assurance Division, EMSL-LV
(ROR)  Responsible Organization: Office  of Research and
   Development.Office of Monitoring Systems and Quality Assurance
                             961

-------
                             Accession Mo.   8411000521

fOQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Turbidity
(ACR)  Acronym of Data Base or Model: TURB
(MED)  Media/Subject of Data Base or Model:  Air
(ABS)  Abstract/Overview of Data Base or Model: The data base includes
    daily (Heather permitting) turbidity and supporting Meteorological
    •easure*ents taken in the     Research  Triangle Park, N.C.  fora
    July 13, 1969 to the present.  A    sunphotometer is used to
    directly Measure the. sun's intensity at 380  and 500 namometer
    wavelengths*
(CTC)  CONTACTS: Subject latter  Dr. James  Peterson / Director,
    GMCC, ARL FTS 320-6811  ;  Computer-related  national Climatic
    Center,     Turbidity Section FTS 672-0683  ;  EPA Office  John
    Rudislll, Meteorology  & Assessment Div., EPA (919) 541-4551
(DTP)  Type of data collection or monitoring: Ambient
(STA)  Data Base status: Presently Operational/Ongoing
(NPP)  Non-pollutant parameters included in the data base: Collection
    method or instrument- sunphotometer ;  location ; sampling date }
    temperature ; wind direction ; wind velocity ;  Dew point,  sky
    cover, visibility, turbidity
(DS)  Time period covered by data base: 07-69 TO 02-83
CFRQ)  Frequency of data collection or samplings Ongoing: daily-
    Heather permitting
(MOB)  Number of observations in data bases 13,000 (Estimated to  date)
(MEI)  Estimated annual increase of observations in data bases  1,000
(INF)  Data base includes: Rau data/observations ; aggregate or summary
    observations
(NTS)  Total number of stations or sources  covered in data bases  1
(NCS)  No* stations or sources currently originating/contributing data:
    1
(MOF)  Number of facilities covered In data base (source monitoring): 0
(GEO)  Geographic coverage of data base: Single county or smaller
    location- one site
(LOC)  Data elements identifying location of station or source Includes
    State ; city ; latitude and longitude,  OTM, or    other coordinates
(FAC)  Data elements identifying facility include: Other- site number
(LIM)  Limitation/variation in data of which user should be aware:  1980'
    1981 data instrument calibration needs  verification
(DPR)  Data collect./anal, procedures conform to ORD guidelines:  NO
(ANL)  Lab analysis based on EPA-approved or accepted methods? NO
(AUD)  Lab Audits N/A: Data not based on laboratory analysis
(PRE)  Precision: None available
(EOT)  Edltting: Tes, undocumented
(CBY)  Data collected bys EPA Lab- Environmental Protection Agency
(ABY)  Data analyzed bys Other Federal Agency, National Oceanic fc
    Atmospheric Administration
(IDL)  Laboratory identifications NO
(PR1)  Primary purpose of  data collections  Trend assessment
(PR2)  Secondary purpose of data collection: Antlcipatory/researcn
(ACT)  Authorization for data collections Yes, citation- Clean Air  Act
    / Section 103                                            m
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms.


                             962

-------
                            Accession No.  8411000521      (cont)

   10
(IV)  Fora of available reports and outputs of data base:  Publications-
   •Atmospheric Turbidity Over Central North Carolina", Journal of
   Applied Metorology Sporadic ; Printouts   on  request ;
   machine-readable ran data ; on-line computer  terminal
(MS)  Number of regular users of data base: Unknown
(VSR)  Current regular users of data base: Other  Federal Agencies  ;
   Other- National Climatic Center
(CIF)  Confidentiality of data and limits on access: None
(DLC)  Primary physical location of data: Other-  National Climatic
   Center
(DST)  Form of data storages Magnetic tape
(DAC)  Type of data access: Other- User Software
(CflC)  Direct charge for non-EPA use: YES
(OPDT)  Frequency of data base master file up-date: Annually
(RSS)  Related EPA automated systems which use data base: None
(ROBEPA)  Related EPA data bases used in conjunction uith this  data  base
   Hone
(ROB)  Non-EPA data bases used in conjunction uith  this data  base: None
(CMP)  Completion of form: #Joan H. Novafcf     GFC: ORD, ESRL,  MAD#
   AD: MD-80, EPA, RTP, NC 27711f     PH: (919)  541-544545*
(DF)  Date of form completion: 09-09-81
(GIN)  Contact name(s): Peterson/Dr.J. ; Rudisill,J.
(COR)  Contact organization: Meteorology & Assessment  Div./ EPA
(ROR)  Responsible Organization: Office of Research and
   Development.Office of Environmental Processes and  Effects Rese
                             963

-------
                             Accession Mo.   8412000526

(DQ)  Date of Questionaire: 12-02-82
(•AM)  Naae of Data Base of Model: Villaaette Valley Stream Survey
(ACR)  Acronym of Data Base or Model: UVSS
(MED)  Media/Subject of Data Base or Model:  Sediaent ; Surface  water-
    Streaas
CABS)  Abstract/Overview of Data Base or Model: Data base currently
    contains fish coMunity  information for 21 sites throughout  the
    Villaaette Valley/ Oregon*    Data includes total nuabers,  total
    weights, relative coaaunity   coaposition,  nuabers per unit area,
    and weight per unit area.  Hater  quality and physical habitat
    characteristics, as well as, aicro  Invertebrate data were
    collected but are not yet stored on the  CERL   coaputer.
(CTC)  COWTACTS: Subject Matter  Jaaes D. Giattina, Senior   Scientist
    (503) 757-4900  }  Computer-related  Joanne C. Oshi.ro, Coaputer
    Technician (503) 757-4813  ;  EPA Office Corvailis Enivronaental
    Research Lab., Freshwater Division (503) 757-4605
(DTP)  Type of data collection or Monitoring: Combinations and  other
(STA)  Data Base status: Presently operational/ongoing
(6RP)  Groups of substances represented in Data Base: Other- Mo
    specific pollutants were aeasured- aost  sites saapled were  largely
    affected by diffuse non-point source  probleas, such as sediaent
    runoff, in addition to possible cheaical   pollutants.
(VPP)  Non-pollutant paraaeters included in  the data base: Biological
    data ; cheaical data ; flow rates ;   geographic subdivisions }
    location y physical data ; sampling date ;   site description  }
    teaperature
(DS)  Tiae period covered by data base: 06-82 TO 09-82
(TRM)  Termination of data collection: Has occurred 82-09
(FRQ)  Frequency of data collection or sampling: Ongoing:aonthly
(•OB)  Ruaber of observations in data base:  62(Actual to date)
(•SI)  Estiaated annual Increase of observations in data base:  H/A
(IMF)  Data base includes: Raw data/observations ; aggregate or suaaaxy
    observations
(ITS)  Total number of stations or sources covered in data base:  22
(VCS)  No. stations or sources currently originating/contributing data:
    •/A
(•OF)  Mumber of facilities covered in data  base (source aonltoring): N/
    A
(GEO)  Geographic coverage of data base: Single state- Willamette
    Valley, Oregon
(LOC)  Data eleaents identifying location of station or source  include:
    State ; county ; latitude and longitude, OTM,     or other
    coordinates
(FAC)  Data eleaents identifying facility Include: Not applicable
(LIM)  Limitation/variation in data of which user should be aware: Data
    was collected for valley bottoa streaas  only and only during  the
    months of June, August, and Septeaber 1982.
(DPR)  Data collect./anal, procedures conform to CRD guidelines:  Mo,
    but other documentation available for each    of the following-
    Sampling plan. Collection method. Analysis method,  and QA
    procedures
(AWL)  Lab analysis based on EPA-approved or accepted aethods?  YES


                             964

-------
                            Accession No.  8412000526     Ccont)

(100)   Lab Audit:  N/A:data not based on laboratory analysis
(PRE)   Precision:  Not included in data base, precision and     accuracy
   Measurements  available from other sources
(EOT)   Editting:  Partial- All data entered into computer data based has
   been checked  against origional field data sheets and edited
   appropriately.
(CBY)   Data  collected by: EPA Lab
(|B¥)   Data  analyzed by: EPA Lab
(IDL)   Laboratory Identification: N/A
(PR1)   Primary purpose of data collection: Anticipatory/research
(PR2)   Secondary  purpose of data collection: Special study
(iOT)   Authorization for data collection: No.  No specific requirement
   for data collection; research initiated to aid In the development
   of field assessment techniques.
(OMB)   Data  collected/ submit ted using OMB-approved EPA reporting forms:
   HO
(REP)   Form  of available reports and outputs of data base: Printouts on
   request  ; on-line computer terminal
(IDS)   Number of  regular users of data base: 1
(BSR)   Current regular users of data base: EPA Laboratories
(CIF)   Confidentiality of data and limits on access: None
(BLC)   Primary physical location of data: EPA Lab
fllST)   Form  of data storage: Magnetic tape ; origional fora/ hardcopy,
   readings, etc.
flUC)   Type  of data access: Manually only ; commercially available
   software ; EPA Software System- System name: INFORM, Cortex
   Corporation,     Hardware: POP 11/70
(CHG)   Direct charge for non-EPA use: NO
(UPDT)  Frequency of data base master file up-date: Weekly
(ESS)   Related EPA automated systems which use data base: None
(8DBEPA)  Related EPA data bases used in  conjunction  with this data  base

(IDE)  Non-EPA data bases used in conjunction with  this data base: None
(C»)  Completion of form: i James D. Giattinaf     OFC: Northrop
   Environmental services, Corvallis Env.  Res. Lab.f AD:  1350  SE
   Goodnight Avenue, Corvallis, OR   97333f    PH:  (503) 757-4900f
(IF)  Date of form completion: 12-14-82
(CIN)  Contact name(s):  Giattina,J.D.  ;  Oshiro,J.C.
CCOR)  Contact organization: Corvallis Environmental  Research  Lab.,
   Freshwater Division
(ROR)  Responsible Organization: Office  of  Research and
   Development.Off ice  of Environmental  Processes  and Effects  Rese
                             965

-------
                             Accession No.  8661262155


-------
                            Accession Mo.  8661262155     (cont)

   be analyzed) } contractor* E. C. Jordan Co., Inc. (collected data
   iron permittee for analysis)
(ABY)  Data analyzed by: Contractor, E. C. Jordan Co.,  Inc.  (analyzed
   data; permittee analyzed saaples)
(IDL)  Laboratory identification: NO
(PR1)  Primary purpose of data collection: Development  of  regulations
   or standards
(PR2)  Secondary purpose of data collection: None
(HUT)  Authorization for data collection: Yes,  citation- Clean Water
   Act of 1977, P.L.     95-217, Section 308
(OMB)  Data collected/submitted using OMB-approved  EPA  reporting forms:
   NO
(REP)  Form of available reports and outputs of data base: Other-
   Printouts on request if EPA-EGD authorization   received
(•OS)  Number of regular users of data base: 2
(OSR)  Current regular users of data base: EPA  Headquarters  Offices,
   Effluent Guidelines    Division ; Other, E. C.  Jordan  Co., Inc.
(CUF)  Confidentiality of data and limits on access: Some  data
   confidential, limits on access both    within EPA and  outside  the
   agency
(DLC)  Primary physical location of data: Contractor
(DST)  Form of data storage: Other, Magnetic Diskette
(DAC)  Type of data access: Manually only
(CHC)  Direct charge for non-EPA use: No outside use/access  permitted
   without EPA Authorization
(OPDT)  Frequency of data base master file up-date: Other, as necessary
   to correct data
(CMP)  Completion of form: fRobert E. Handy, Jr.f   OFC: E. C. Jordan
   Co., Inc.*  AD: P. 0. Box 7050, DTS; Portland ME  04112* PH:  (207)
   775-5401*
(DP)  Date of for* completion: 02-03-83
(•NAT)  Number of substances represented in data base:  2
(ICAS)  Number of CAS registry numbers  in  data  base:  0
(NAT)  Substances represented  in  data base:
   BOD5                                 TSSS
(CUM)  Contact name(s): Warren,H.C.   ?   Ryan,D.J.   >  Dellinger,R.W.
(COR)  Contact organization: Effluent Guidelines Division
(ROR)  Responsible organization: Office  of  Hater.Office of Hater
   Regulations and Standards.Effluent Guidelines  Divisi
                             967

-------
                             Accession Ho.   9015000901

(DQ)  Date of Questlonaire: 12-02-82
(HAM)  Name of Data Base of Model: Rational Pollutant Discharge
    Elimination System (HPDES)  Discharge Monitoring Re
CACR)  Acronym of Data Base or Model: HPDES DMR
(MED)  Media/Subject of Data Base or Model: Effluents Municipal  and
    nonmunlcipal
(ABS)  Abstract/Overvieu of Data Base or Model: The data base consists
    of the results of the Discharge Monitoring Reports  that are
    required as part of the Rational Pollutant Discharge Elimination
    System (RPDES) permit.  The data is manually maintained for  the
    major municipal and nonmunlcipal dischargers in Maine*  and
    computerized for     Massachusetts/ Hew Hampshire and Rhode  Island*
    is and automated system.
(CTC)  COIfTACTS: Subject matter   Larry Brill  (617) 223-5330;    EPA
    Office  Enforcement Dlvls
(DTP)  Type of data collection or monitoring: Point source data
    collection effluent
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented in Data Base: 129 307 CtfA ;11
    conventional uater
(HPP)  Non-pollutant parameters included in the data base:  Compliance
    data ;Discharge points >Temperature
(DS)  Time period covered by data base: 01-01*75 TO 12-31-82
(TRM)  Termination of data collection: Rot anticipated
(FRQ)  Frequency of data collection or sampling: quarterly ;semi
    annually ;annually ;as needed ?0ther Monthly:  most of data
(ROB)  Number of observations in data base: 200000.(Estimated) manual,
    60,000 automated
(RED  Estimated annual increase of observations in data base: 60000.
(IMF)  Data base includes: Summary aggregate observations
(ITS)  Total number of stations or sources covered in data base: 432.
(HCS)  Mo. stations or sources currently originating/contributing data:
    432.
(HOF)  Rumber of facilities covered in data base (source monitoring):  43
    2.
(CEO)  Geographic coverage of data base: Selected federal region Region
    I }Geographic region Rev England
(LOC)  Data elements identifying location of station or source include:
    State ;County jCity ;Town/township ;Street address  ;ProJect
    identifier
(FAC)  Data elements identifying facility Include: Plant facility name
    /Plant location ;Parent corp location ^Street address ; SIC  code
    ;NPDES ^program Identifier
(CDE)  Pollutant identification data are: coded
(LIM)  Limitation/variation In data of which user should be aware: Param
    eters and frequency vary by permittee,  numbers of facilities and
    observations are for major   dischargers only, minor dischargers
    represent a data base   of approximately equal size.
(DPR)  Data collect./anal, procedures conform to CRD guidelines: ORD
    Guidelines
(AML)  Lab analysis based on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: Lab audit is satisfactory for 85%.


                             968

-------
                            Accession Mo.   9015000901      (cont)

(PRE)  Precision: Precision  and  accuracy estimates  exist but are not
   included in data base
(EOT)  Editting: Edit  procedures used  and documented.
(CBY)  Data collected  bys  Self reporting Permittees ^Regional  office
   Region I
(ABY)  Data analyzed by: Self reporting Pernittees
   Regional office Region I
(IDL)  Laboratory identification:  NO
(PR1)  Primary purpose of  data collection:  Compliance or enforcement
(AUT)  Authorization for data collection: Statutory authorization  is P
   L  92-500, sections 301,  308  and 402 (Clean     Hater Act-CMA)
(ONB)  Data collected/submitted  using  OMB-approved  EPA  reporting forms:
   QQ
(REP)  Form of available reports and outputs of data base:  Unpublished
   reports Quarterly  Non-Compliance Report
(MUS)  Number of regular users of data base:  80-100
(OSR)  current regular users of  data base:  EPA headquarter  offices
   Office of Enforcement
   EPA  regional offices
   EPA  laboratories
   States
(CNF)  Confidentiality of  data  and limits on access: No limits on
   access to data
(DLC)  Primary physical  location of data: Regional  office
(DST)  Form of data storage: Microfich/film, computer
(DAC)  Type of data access:  automated  for 1 year of data
(CHG)  Direct charge  for non-EPA use:  yes
(OPDT)  Frequency  of  data  base  master  file  up-date: Semi-annually
(ROBEPA)  Related  EPA  data bases used  in conjunction yith this data base
   Permit Compliance  System (PCS)
(RDB)  Non-EPA data bases  used  in conjunction with  this data base: Maine
   -automated Discharge     Monitoring Report (ONR) file.
(CMP)  Completion  of  form:
   Larry Brill
   OFC: EPA/Region I/Enforcement Division
   AD:  JFK Building  Boston, MA 02203
   PH:  (617) 223-5330
(DF)   Date  of  form completion:  01-20-82
(•MAT)  Number  of  substances represented in data base:  140
(•CAS)  Number  of  CAS registry  numbers in data base: 129
(MAT)  substances  represented in data base:
    l,l,l-trichloroethane<71-55-         l,2-dichloropropylene<563-54-2>
       6>                                l,2-diphenylhydrazine<122-66-7>
    1,1,2,2,-tetrachloroethane            1,2-trans-dichloroethylene
      <79-34-5>                            <156-60-5>
    l,l,2-trichloroethane<79-00-5>       l,3-dichlorobenzene<541-73-l>
    l/l-dichloroethane<75-34-3>          l,4-dichlorobenzene<106-46-7>
    1,1-dlchlo ro e thy lene<7 5-35- 4>        2, 4, 6-tr ichlorophenoK 8 8-06-2>
    l,2,4,-trichlorobenzene<120-82-l>    2,4,7,8-tetrachlorodibenzo-p-
    l,2-dichlorobenzene<95-50-l>            dioxin  (tcdd)
    l,2-dichloroethane<107-06-2>         2,4-dichlorophenol<120-83-2>
    l,2-dichloropropane<78-87-5>         2,4-dimethylphenol<105-67-9>


                             969

-------
                         Accession Ho*  9015000901
                  (cont)
2, 4-dini trophenoK 51-2 8-5>
2, 4-dinitrotoluene<121-14-2>
2,6-dlnitrotoluene<606-20-2>
2-chloroethylvinyl ether<110-75-8>
2-chloronaphthalene<91-58-7>
2-chlorophenol<95-57-8>
2-nitrophenol<88-75-5>
3, 3 •-dlchlorobenzidine<91-94-l>
3, 4-benzof luoranthene<205-99-2>
4,4"-ddd(p,p'tde>
4,4'-dde
4,4'-ddt<50-29-3>
4,6-dinltro-o-cresol<534-52-l>
4-broMophenyl phenyl ether
   <101-55-3>
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nitrophenol<100-02-7>
acenaphthene<83-32-9>
acenaphthy lene<208-96- 8>
acidity
acrolein<107-02-8>
acrylonitrile<107-13-l>
aldrin<309-00-2>
alkalinity
anthracene<120-12-7>
an ti«ony<7 440-36-0 >
ar senic<7440-38-2>
asbestos<1332-21-4>
benzene<71-43-2>
ben2idine<92-87-5>
benzo
benzo(a)pyrene<50-32-8>
benzo(g,h, i)perylene<191-24-2>
ben20
beryll iu»<7440-41-7>
bhc (llndane)-gaaBa<58-89-9>
bhc-alpha<319-84-6>
bhc-beta<3 19-85-7>
bhc-delta<319-86-8>
bis(2-chloroethoxy)«ethane
bis(2-chloroethyl)ether
bis(2-chloroisopropyl)ether
   <39638-32-9>
bis( 2-ethy IhexyDphthalate
bis€chloro«ethyl)eth«r<542-88-l>
bro«oaethane<74-83-9>
butyl benzyl  phthalate<85-68-7>
cad»iu»<7440-43-9>
carbon tetrachloride<56-23-5>
chlordane<5?-74-9>
chlorobenzene
chlorodibroao*ethane<124-48-l>
chloroethane<75-00-3>
chlorofora<67-66-3>
chloro«cthane<74-87-3>
chro«iu»<7440-47-3>
chrysene<218-01-9>
copper<7440-50-8>
cyanide<57-12-5>
di-n-butyl phthalate<84-74-^>
di-n-octyl phthalate<117-84-0>
d ibenzo(a,h)anthracene<53-70-3>
dichlorobro>o>ethane<75-27-4>
dlchlorodifluoroietliane<7S-71-8>
dichloroaethane<75-09-2>
dleldrin<60-57-l>
diethy1 phthalate<84-66-2>
dUethyl phthalate<131-ll-3>
dissolved oxygen
dissolved solids
endosulfan sulfate<1031-07-8>
endosulfan-alpha<959-98-8>
endosulfan-beta<332!3-65-9>
endrin aldehyde<7421-93-4>
endrin<72-20-8>
ethylbenzene<100-41-4>
fecal colifor*
fluoranthene<206-44-0>
fluorene< 86-7 3-7>
heptachlor epoxide<1024-57-3>
heptachlor<76-44-8>
hexachlorobenzene
hexachlorobutadiene<87-68-3>
hexachlorocyclopentadiene<77-47-4>
hexachloro«thane<67-72-l>
indeno (l/2^3-cd)pyrene<193-39-5>
isophorone<78-59-l>
lead<7439-92-l>
»ercury<7439-97-6>
n-nitrosodi-n-propyla«ine
   <621-64-7>
n-nitrosodi»ethyla«ine<62-75-9>
n-nitrosodiphenyla»ine<86-30-6>
naphthalene<91-20-3>
nickel<7440-02-0>
nitrobenzene<98-95-3>
nitrogen<7727-37-9>
oil  and grease
oxygen demand
p-chloto-»-cresol<59-50-7>
PH
                          970

-------
                             Accession No.  9015000901     (cont)

    pcb-1016 (arochlor 1016)             phenol<108-95-2>
      u<}2674-ll-2>                      phosphorus<7723-14-0>
    pcb-1221 (arochlor 1221)             pyrene<129-00-0>
      v                      seleniu«<7782-49-2>
    pcb-1232 (arochlor 1232)             silver<7440-22-4>
       <1114l-16-5>                      suspended solids
    pcb-1242 (arochlor 1242)             tetrachloroethylene<127-18-4>
       <53469-21-9>                      thailiu»<7440-28-0>
    pcb-1248 (arochlor 1248)             toluene<108-88-3>
       <12672-29-6>                      toxaphene<8001-35-2>
    pcb-1254 (arochlor 1254)             tribroaonethane<75-25-2>
       <11097-69-l>                      trichloroethylene<79-01-6>
    pcb-1260 (arochlor 1260)             trichlorofluororaethane<75-69-4>
       <11096-82-5>                      vinyl chloride<75-01-4>
    pentachlorophenol<87-86-5>           zlnc<7440-66-6>
    phenanthrene<85-01-8>
(CAS)   CAS  registry numbers of substances included in data base:  71-55-6
    ;  79-34-5;  79-00-5; 75-34-3;  75-35-4;       120-82-1? 95-50-1;
    107-06-2;  78-87-5; 563-54-2;  122-66-7; 156-60-5;   541-73-1;
    106-46-7;  88-06-2; 120-83-2;  105-67-9; 51-28-5; 121-14-2;
    606-20-2;  110-75-8; 91-58-7;  95-57-8; 88-75-5; 91-94-1; 205-99-2;
    72-55-9;  50-29-3;  534-52-1;  101-55-3; 7005-72-3; 100-02-7; 83-32-9;
    208-96-8;  107-02-8; 107-13-1; 309-00-2; 120-12-7; 7440-36-0;
    7440-38-2;  1332-21-4; 71-43-2;  92-87-5; 56-55-3; 50-32-8; 191-24-2;
    207-08-9;  7440-41-7;  58-89-9; 319-84-6; 319-85-7; 319-86-8;
    111-91-1;       111-44-4; 39638-32-9;  117-81-7; 542-88-1; 74-83-9;
    85-68-7;       7440-43-9; 56-23-5;  57-74-9;  108-90-7; 124-48-1;
    75-00-3; 67-66-3;     74-87-3; 7440-47-3;  218-01-9; 7440-50-8;
    57-12-5; 84-74-2;  117-84-0;        53-70-3;  75-27-4; 75-71-8;
    75-09-2; 60-57-1;  84-66-2; 131-11-3;        1031-07-8; 959-98-8;
    33213-65-9; 7421-93-4;  72-20-8;  100-41-4;    206-44-0; 86-73-7;
    1024-57-3;  76-44-8; 118-74-1; 87-68-3; 77-47-4;    67-72-1;
    193-39-5;  78-59-1;  7439-92-1; 7439-97-6;  621-64-7; 62-75-9;
    86-30-6; 91-20-3;  7440-02-0;  98-95-3; 7727-37-9; 59-50-7;
    12674-11-2;      11104-28-2;  11141-16-5;  53469-21-9; 12672-29-6;
    11097-69-1;      11096-82-5;  87-86-5; 85-01-8; 108-95-2; 7723-14-0;
    129-00-0;      7782-49-2; 7440-22-4; 127-18-4;  7440-28-0; 108-88-3;
    8001-35-2;       75-25-2;  79-01-6; 75-69-4;  75-01-4; 7440-66-6
(CUM)   Contact  naae(s):  Brill,L.
(COR)   Contact  organization: Enforcement  Division  Region I
(KOR)   Responsible  Organization:  Region I*Administrative Services
    Division.
                            971

-------
                             Accession No.  9016000001

(DQ)  Date of Questionaire: 12-02-82
(RAN)  Have of Data Base of Model: Tetrachloroethylene Honitorlng Study
(ACR)  Acronym of Data Base or Model: PCC
(MED)  Media/Subject of Data Base or Model: Drinking water
(ABS)  Abstract/Overview of Data Base or Model: Gathering water quality
    data (pH, corrosivity,    alkalinity, hardness), pipe data (length,
    diameter and age),     location and tetrachloroethylene
    concentration*  Data is    used to perfor* trend analyses and
    correlations*
(CTC)  CONTACTS: Subject Batter   David Chin  (617) 223-4600 ;
    Computer-related  Steve Matt
(DTP)  Type of data collection or monitoring: Point source data
    collection from home taps. Hater main locations and "dead ends."
(STA)  Data Base status: Discontinued
(NPP)  Non-pollutant parameters included in the data base: Chemical
    data ^Concentration measures ^Location ;Sampling date
(OS)  Time period covered by data base: 01-01-80 TO 09-30-80
(TRM)  Termination of data collection: Occurred  09/30/80
(PRQ)  Frequency of data collection or sampling: Not applicable
(NOB)  lumber of observations in data base: 800.(Estimated)
(NEI)  Estimated annual Increase of observations in data base: 0
(INF)  Data base Includes: Ray data/observations
(NTS)  Total number of stations or sources covered in data base: 400.
(NCS)  No* stations or sources currently originating/contributing data:
    0
(HOP)  Number of facilities covered in data base (source monitoring): (N
    /A.)
(CEO)  Geographic coverage of data base: Selected federal region Region
    I ?Geographic region Hen England
(LOC)  Data elements identifying location of station or source include:
    State ;Town/township ;Street address ;City
(FAC)  Data elements identifying facility include: N/A
(CDE)  Pollutant Identification data are: STORET parameter codes
(LIM)  Limitation/variation in data of which user should be aware: Data
    is Indicative of New England region     only.  Due to many
    variables only specific pipe   correlation could be generated*
(DPR)  Data collect./anal, procedures conform to CRD guidelines: Samplin
    g plan documented ;Collection method documented ^Analysis method
    document
(AML)  Lab analysis based on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: Data is not based on laboratory analysis.
(PRE)  Precision: Precision and accuracy estimates exist for some
    measurements.     Measurements were assumed or estimated for pH,
    temperature, alkalinity and hardness.  All other measurements were
    precise.
(EOT)  Editting: No known edit procedures used.
(CBY)  Data collected by: State agency five water supply sections of
    New England state agencies excluding New Hampshire
(ABY)  Data analyzed by: State agency five water supply sections of New
    England state agencies, excluding New Hampshire.
(IDL)  Laboratory identification: NO
(PR1)  Primary purpose of data collection: Trend assessment


                             972

-------
                            Accession No*   9016000001.     (cont)

(AUT)  Authorization for data collection: Statutory  authorization  is  P
   L 95-190, Section 1442(2b),  (Safe Drinking     Mater Act-SDHA)
(OMB)  Data collected/submitted  using OMB-approved EPA reporting for»s:
   QQ
(REP)  For* of available reports and outputs of data base:  Printouts  on
   request
(IDS)  Hunter of regular users of data base: 1
(OSR)  Current regular users of  data base:  EPA  Regional Offices:
   Region I
(C1F)  Confidentiality of  data and Units on access: No Units on
   access to data
(DLC)  Primary physical location of data:  Regional office and state
   agency
(DST)  Fora of data  storage: Magnetic tape
(DAC)  Type of data  access: Commercial  softnare HYLBUR ;EPA softuare
   TCE-Nonitoring Study ;  EPA hardware IBM 370/168
(CHC)  Direct charge for non-EPA use: Yes D
(OPDT)  Frequency  of data  base master  file  up-date:  None (terminatedinch
(CMP)  Completion  of form:
   David Chin
   OFC: EPA/Region  I/Hater  Supply Branch,  Water Management Div.
   AD: JFK Bldg.  Ra 2113  Boston, MA  02203
   PH: (617) 223-4600
(OF)  Date of form completion: 01-26-83
(IMAT)  Number of  substances  represented in data base: 12-02-82      1
(1CAS)  Number of  CAS  registry  numbers  in data base: 12-02-82      1
(MAT)  Substances  represented in data base:
   tetrachoroethylene<127-18-4>
(CAS)  CAS registry  numbers of  substances included in data base: 127-18-

(CIM)  Contact name(s):  Chln,D.    ;    watt,S.   ;    I/R«
(ROR)  Responsible Organization: Region I.Administrative Services
   Division.
                             973

-------
                             Accession Mo.   9018000901

(DQ)  Date of Questionaire: 12-02-82
(RAM)  Name of Data Base of Models Priority Pollutants
(ACR)  Acronym of Data Base or Model: PRTYPOLS
(MED)  Media/Subject of Data Base or Model: Sediment ;Surface water
    River
(ABS)  Abstract/Overview of Data Base or Model: River, water, and
    sediment samples were analyzed  for priority pollutants*   The water
    samples were reported in     ail11grans per liter*  Sedi»ent
    samples were reported in    Milligrams per kilogram.
(CTC)  CORTACTS: Subject Batter   Charles Porfert  (617)861-6700   }
    EPA Office  William Hals
(DTP)  type of data collection or monitoring: Ambient data collection
(STA)  Data Base status; Operational/ongoing
(GRP)  Croups of substances represented in Data Bases 129 307 CtfA
(HPP)  Non-pollutant parameters included in the data base:  Location
    ;Sampling date ;Site description
(OS)  Time period covered by data base: 04-01-80 to 12-31-82
(TRW)  Termination of data collection: Mot anticipated
(FRQ)  Frequency of data collection or sampling* Other one time per
    site
(MOB)  Number of observations in data base: 617  (samples(Estimated)
(NED  Estimated annual Increase of observations in data base: 50*
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base:  177.
(MCS)  No. stations or sources currently originating/contributing data:
    0.
(HOT)  Number of facilities covered in data base (source monitoring): QA procedures documented
(AML)  Lab analysis based  on EPA-approved or  accepted methods? YES
(ADD)  Lab Audit: Lab audit is unknown-contractors do analysis.
(PRE)  Precision: Precision and accuracy estimates exist but are not
     included in data base
(EOT)  Edittings Edit procedures  used but undocumented.
(CSV)  Data collected by:  Regional office Region I, Surveillance and
     Analysis Division                                     .••••«
(ABf)  Data  analyzed by: EPA  lab  Region I, Surveillance and  Analysis
     Division
     Contractor  lab  as used by Surveillance and Analysis Laboratory
(IDL)  Laboratory  identifications NO
CPRi)  Primary  purpose  of  data collections Risk assessment
(AOf)  Authorization  for data collections Ho  statutory  requirements


                             974

-------
                           Accession No.  9018000901
                  (cont)
  Data collection requirement is    the measuring of trends in the
  concentrations of priority pollutants in    sediment and surface
  vater.
(OMB)  Data  collected/submit ted using OMB-approved EPA reporting forms:
  lo QQ
(IEP)  Form  of available reports and outputs of data base: Unpublished
  reports  "Ambient Toxic Monitoring" in a given river
(105)  Number  of  regular users of data base: 8
(DSD)  Current regular users of data base: EPA headquarter offices
  Monitoring and Data Support Division;    Effluent Guidelines
  Division
  EPA regional  offices
  States
(CIF)  Confidentiality of data and limits on access: No limits on
  access to  data
(DLC)  Primary physical location of data: EPA  lab
(DSt)  Form  of data storage: Original form (hardcopy, readings)
(OIC)  Type  of data access: Manually
(CHG)  Direct  charge for non-EPA use: no
(OPOT)  Frequency of data base master file up-date: Other  Samples  are
  collected  once at each location
(CMP)  Completion of form:
  Charles  porfert
  OFC: EPA/Region I/Surveillance and Analysis Division
  ID: 60 tfestvieu St. Lexington, MA 02173
  PH: (617)  861-6700
(DF)  Date of  form completion: 01-18-83
(NUT)  Number of substances represented in data base:  129
(ICiS)  Number of CAS registry numbers in data base:  127
(NIT)  Substances represented in data base:
   1/1,1- tr ichlor oe thane< 71-55-
     6>
   1,1,2,2,-tetrachloroethane
     <79-34-5>
   l,l,2-trichloroethane<79-00-5>
   l/l-dichloroethane<75-34-3>
   l/l-dichloroethylene<75-35-4>
   l,2,4,-trichlorobenzene<120-82-l>
   l,2-dichlorobenzene<95-50-l>
   l/2-dichloroethane<107-06-2>
   l,2-dichloropropane<78-87-5>
   l,2-diphenylhydrazine<122-66-7>
   1,2-trans-dichloroethylene
     <156-60-5>
   lf 3-dichlorobenzene< 541-73-l>
   l,3-dichloropropylene< 542-75-6>
   l/4-dichlorobenzene<106-46-7>
   2,4,6-trichlorophenol<88-06-2>
   2, 4,7,8- tetrachlor odibenzo-p-
     dioxin (tcdd)
   2,4-dichlorophenoKl 20-83-2>
   2,4-dimethylphenol<105-67-9>
2,4-dinitrophenol<51-28-5>
2^4-dinitrotoluene<121-14-2>
2,6-dinitrotoluene<606-20-2>
2-chloroethylvinyl ether<110-75-8>
2-chloronaphthalene<91-58-7>
2-chlorophenol<95-57-8>
2-nitrophenol<88-75-5>
3,3'-dichlorobenzidine<91-94-l>
3^ 4-benzofluoranthene<205-99-2>
4r4*-ddd(p/p*tde)
4,4*-dde
4,4"-ddt<50-29-3>
4,6-dinitro-o-cresol<534-52-l>
4-bromophenyl phenyl ether
   <101-55-3>
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nitrophenol<100-02-7>
acenaphthene<83-32-9>
acenaphthylene<208-96-8>
acrolein<107-02-8>
acrylonitrile<107-13-l>
                            975

-------
                         Accession Mo.  9018000901
                  (cont)
aldrin< 309-0 0-2>
anthracene<120-12-7>
anti»ony<7440-36-0>
arsenic<7440-38-2>
asbestos<1332-21-4>
benzene<71-43-2>
b«nzidlne<92-87-5>
benzo( a) an thracene<56- 55-3>
benzo(a)pyrene<50-32-8>
benzo(g,h, i)perylene<191-24-2>
benzo(lc)fluoranthene<207-08-9>
b«rylliu»<7440-4l-7>
bhc (lindane)-gaM8< 58-89- 9>
bhc-alpha< 31 9* 84-6>
bhe-beta<319-85-7>
bhc-delta<319-86-8>
bis( 2-chloroethoxy)aethane
bis(2-chloroethyl)ether
bisC2-chloroisopropyl)«th«r
   <39638-32-9>
bls(2-ethylh«xyl)phthalat«
bis(chloroM«thyl)«th«r<542-88-l>
bro«o««than«<74-83-9>
butyl benzyl phthalate<85-68-7>
cad»luX7440-43-9>
carbon tetrachlori
chlordane<57-74-9>
chlorobenzene< 10 8-90-7>
chlorodibro«o««than«<124-48-l>
chlcroet ha ne<7 5-00-3 >
chlorofor»<67-66-3>
chloro»«thane<74-87-3>
chro«luB<7440-47-3>
chrysene<218-01-9>
copper <7440-50-8>
cyanid«<57-12-5>
dl-n-butyl phthalat«<84-74-2>
dl-n-octyl phthalate<117-84-0>
dlbenzo( a, h) anthracen«<53-70-3>
dichlorobro«o««thane<75-27-4>
dlchlorodlfluoro»ethan«<75-71-8>
dlcbloro«ethaD«<75-09-2>
dleldrln<60-57-l>
die thy I phthalate<84-66-2>
dleethyl phthalate<131-ll-3>
endosulfan sulfate<1031-07-8>
endosu If an-a lpha< 959-9 8- 8>
endosulf an-be t a<3321 3-65-9>
endrin aldehyde<7421-93-4>
ethylbenzene
f luoranthene<206-44-0>
f luor ene<86-7 3-7>
heptachlor epoxide< 10 24-57- 3>
heptachlor<76-44-8>
hexachlorobenzene<118-74-l>
hexachlorobutadlene<87-68-3>
hexachlorocyclopentadiene<77-47-4>
h«xachloroethane<67-72-l>
Indeno (1^2,3-cd)pyrene<193-39-5>
isophorone<78-59-l>
lead<7439-92-l>
«ercury<7439-97-6>
n-nltrosodl-n-propylaalne
   <621-64-7>
n-nltroaodl«ethylaBln«<62-75-9>
n-nltrosodiphenyla«lne<86-30-6>
naphthalene<91-20-3>
nickel<7440-02-0>
nl tr obenzene< 98-95- 3>
p-chloro-«-cresol<59-50-7>
pcb-1016 (arochlor 1016)
   <12674-ll-2>
pcb-1221 (arochlor 1221)
   <11104-28-2>
pcb-1232 (arochlor 1232)
pcb-1242 (arocblor 1242)
   <53469-21-9>
pcb-1248 (arochlor 1248)
   <12672-29-6>
pcb-1254 (arochlor 1254)
   <11097-69-l>
pcb-1260 (arochlor 1260)
   <11096-82-5>
pentachlorophenol<87-86-5>
phenanthrene<85-01-8>
phenol<108-95-2>
pyrene<129-00-0>
sel«niue<7782-49-2>
sllver<7440-22-4>
tetrachloro«thylene<127-18-4>
thalliu»<7440-28-0>
toluene <108-88-3>
toxaphene<8001-35-2>
trlbro«o«ethane<75-25-2>
trichloroethylene<79-01-6>
trlchlorofluoro»ethane<75-69-4>
vinyl chloride<75-01-4>
zinc<7440-66-6>
                         976

-------
                            Accession No.  901800090)     (cont)

(CAS)  CAS registry lumbers of substances included in data base: 71-55-6
   ; 79-34-5; 79-00-5; 75-34-3; 75-35-4;       120-82-1; 95-50-1;
   107-06-2; 78-87-5; 122-66-7* 156-60-5; 541-73-1;   542-75-6;
   106-46-7; 88-06-2; 120-83-2; 105-67-9; 51-28-5; 121-14-2;
   606-20-2; 110-75-8; 91-58-7* 95-57-8; 88-75-5; 91-94-1; 205-99-2;
   72-55-9;  50-29-3; 534-52-1; 101-55-3; 7005-72-3; 100-02-7; 83-32-9;
   208-96-8; 107-02-8; 107-13-1; 309-00-2; 120-12-7; 7440-36-0;
   7440-38-2; 1332-21-4; 71-43-2; 92-87-5; 56-55-3; 50-32-8; 191-24-2;
   207-08-9; 7440-41-7; 58-89-9; 319-84-6; 319-85-7; 319-86-8;
   111-91-1;      111-44-4; 39638-32-9; 117-81-7; 542-88-1; 74-83-9;
   85-68-7;       7440-43-9; 56-23-5; 57-74-9; 108-90-7; 124-48-1;
   75-00-3;  67-66-3;    74-87-3; 7440-47-3; 218-01-9; 7440-50-8;
   57-12-5;  84-74-2; 117-84-0;       53-70-3; 75-27-4; 75-71-8;
   75-09-2;  60-57-1; 84-66-2; 131-11-3;       1031-07-8; 959-98-8;
   33213-65-9; 7421-93-4; 72-20-8; 100-41-4;   206-44-0; 86-73-7;
   1024-57-3; 76-44-8; 118-74-1; 87-68-3; 77-47-4;    67-72-1;
   193-39-5; 78-59-1; 7439-92-1; 7439-97-6; 621-64-7; 62-75-9;
   86-30-6;  91-20-3; 7440-02-0; 98-95-3; 59-50-7; 12674-11-2;
   11104-28-2; 11141-16-5; 53469-21-9; 12672-29-6; 11097-69-1;
   11096-82-5; 87-86-5; 85-01-8; 108-95-2; 129-00-0; 7782-49-2;
   7440-22-4; 127-18-4; 7440-28-0; 108-88-3; 8001-35-2; 75-25-2;
   79-01-6;  75-69-4; 75-01-4; 7440-66-6
(CIM)  Contact naae(s): Porfert,C.;    Malsh/H.
(ROR)  Responsible Organization: Region I.Environmental Services
   Division.
                             977

-------
                             Accession Mo.   9018000902

(DQ)  Date of Questionaire: 12-02-82
(RAN)  Ra*e of Data Base of Model: Region I Source Test  File
(ACR)  Acronyn of Data Base or Model: SORTST
(HBO)  Media/Subject of Data Base or Model: Air ;Emissions  Ren Source
    Perforsanee standards (MSPS) ;Emissions  State Imp 1 em Emissions
    Rational Emission Standards for Hazardous Air Pollutants    (MESHAP)
    ;Eilssions  Prevention of Significant Deterioration  (PSD)
(ABS)  Abstract/Overview of Data Base or Model: Results  of  Air  Emission
    tests with associated process and   operating data  at the ti»e of
    the testing are the contents of    this data base.
(CTC)  COWTACTS: Subject Batter   John M. Carlson  (617) 861-6700  ;
    EPA Office  Donald P. Po
(DTP)  Type of data collection or monitoring: Co»bination/0ther point
    source and process and operating data     pertinent  to  test
(STA)  Data Base status: Operational/ongoing
(CRP)  Groups of substances represented in Data Base: 5  HESRAPS ;7
    criteria RAAQS
(RPP)  Don-pollutant parameters included in the data base:  Collection
    •ethod Concentration Measures ;Flon rates ^Location ;  Production
    levels ;Sampling date jSite description ;Temperature ;
    Test/analysis »ethod ^Treatment devices ;Yolume/mass measures
(DS)  Time period covered by data base: 01-01-73 to 12-03-82
(TRM)  Termination of data collection: Rot anticipated
(PRO)  Frequency of data collection or sampling: as needed
(ROB)  number of observations in data base: 230.(Estimated)
(HEI)  Estimated annual increase of observations in data base:  40*
(IRF)  Data base includes: Raw data/observations ;Summary aggregate
    observations ;Reference data/citations
CRTS)  Total number of stations or sources covered in data  base: 120.
(HCS)  Mo. stations or sources currently originating/contributing  data:
    (R/A.)
(ROT)  number of facilities covered In data base (source monitoring): 55

(CEO)  Geographic coverage of data base: Selected federal region Region
    I ^Geographic region Mew England
(LOC)  Data elements identifying location of station or source  Include:
    State >City jstreet address jProject Identifier
Plant location ^Parent corp name ;Street address
(COB)  Pollutant identification data are: Uncoded
(LDO  Limitation/variation in data of which user should be aware: Rone
(DPR)  Data collect./anal. procedures conform to ORD guidelines: Samplln
    g plan documented Collection method documented /Analysis method
    document QA procedures documented
(AML)  Lab analysis based  on EPA-approved  or accepted methods?  YES
(ADD)  Lab Audit: Lab audit is satisfactory for SO* for these with
    audit samples, no samples  for total suspended particulates (TSP).
(PRE)  Precision: Precision and accuracy estimates are not  available
(EOT)  Editting: Edit procedures used and  documented.
(CBY)  Data collected by:  Self reporting
(ABf)  Data analyzed by: Self reporting primarily analysis
    State agency secondary analysis, verification


                             978

-------
                            Accession  No.   9018000902      (cont)

   Regional office secondary  analysis, verification
   EPA lab secondary analysis, verification
   Contractor as hired by sources
(IDL)  Laboratory identification: YES
CPR1)  Primary purpose of data collection: Compliance or  enforcement
(A0T)  Authorization for data  collection: Statutory  authorization  is  P
   L 88-206 as amended. Sections 111 & 114    (Clean Air  Act-CAA);
   State Implementation Plans (SIPS)
(OMB)  Data collected/submit ted using OMB-approved EPA  reporting forms:
   QQ
(SEP)  Form of available reports and outputs of  data base:  none
(IDS)  Number of regular users of data  base: 2 offices
WSR)  Current regular users of data base: EPA regional offices
   States
(Cm?)  Confidentiality of data and  limits on access:  Limits on outside
   access for some data
ftUC)  primary physical location of data: EPA  lab
(DST)  Form of data storage: Original form (hardcopy, readings)
(0AC)  Type of data access: Manually
(CiC)  Direct charge for non-EPA use: no
(OPDT)  Frequency of data base master file up-date:  Other as test  files
   completed
(CMP)  Completion of form:
   John M. Carlson
   OFC: EPA/Region I/Surveillance  and  Analysis  Division/
   Air Section
   AD: 60 Westview St. Lexington, MA 02173
   PH: (617) 861-6700
(OF)  Date of form completion: 01-18-83
(IMAT)  Number of substances represented in data base:  4
(ICAS)  Number of CAS registry numbers  in data base:  3
(NAT)  Substances represented  in data base:
   nltrogendioxide<10102-44-0>          total suspended  participates
   sulfur dioxide<7446-09-5>            vinyl chloride<75-01-4>
(CAS)  CAS registry numbers of substances included in data  base: 10102-4
   4-0; 7446-09-5; 75-01-4
(CM)  Contact name(s): Carlson,J.M.    ;    Porteous,D.P.
(ROR)  Responsible Organization: Region I.Environmental Services
   Division.
                            979

-------
                             Accession Ho.   9024000001

Summary aggregate
    observations
(NTS)  Total number of stations or sources  covered in data base: 40.
(NCS)  No. stations or sources currently originating/contributing data:
    (N/A.)
(•OF)  Number of facilities covered in data base (source monitoring): (N
    /A.)
(GEQ)  Geographic coverage of data base: Geographic region Region II
    (Neu York and New Jersey only)
(LOC)  Data elements identifying location of station or source include:
    State ;County ^Coordinates latitude/longitude
(FAC)  Data elements identifying facility Include: N/A
(CDE)  Pollutant identification data are: Storet parameter
(LIM)  Limitation/variation in data of which user should be aware: Time
    variations:  during the first year (1966)    samples were  taken
    weekly to bi-weekly, then quarterly,     and then, in about
    1968-1974, only irregular sampling was   done.  No audit samples
    were performed to test    laboratory performance standards.
(ANL)  Lab analysis based on EPA-approved or accepted methods? YES
(PRE)  Precision: Precision and accuracy estimates are not available
(EOT)  Editting: Edit procedures used but undocumented.
(CBY)  Data collected by: Regional office Surveillance and Analysis
    Division  Laboratory, Region II
(ABY)  Data analyzed by: Regional office Surveillance and Analysis
    Division     Laboratory, Region II
(IDL)  Laboratory identification: YES
(PAD  Primary purpose of data collection:  Trend assessment
(PR2)  Secondary purpose of data collection: Special study
(AOT)  Authorization for data collection: No statutory requirement:


                             980

-------
                            Accession Ho.   9024000001     (cont)

   Data collection  requirement  is     foilOH up on pre-EPA water
   sampling network.
(Offi)  Data collected/submitted  using QMS-approved EPA reporting  forms:
   QQ
(Iff)  Fora of available  reports and outputs of data base: Printouts on
   request
   Machine-readable raw  data
   On-line computer
(IBS)  Number of regular  users of data base: 1 office
(USR)  Current regular users of  data base:  EPA regional offices
(Cm?)  Confidentiality of data and  limits on access: Mo limits on
   access to data
(DLC)  Primary physical location of data: HCC/IBM
(DST)  Form of data  storage: Magnetic disc
(D4C)  Type of data  access:  EPA  software STORET (Storage and Retrieval
   of Hater Quality Data)   M1DS:5303000101 ;BPA hardware IBM 370
   Computer System
(CBG)  Direct charge for  non-EPA use: yes
(IPOT)  Frequency of data base master file up-date: Other survey
   discontinued in  1974
(Cm?)  Completion of form:
   George Hossa
   OFC: EPA/Region  II/Planning  and Management Div.
   AD: 26 Federal Plaza  NY, NY  10278
   PR: (212) 264-9850
(DF) Date of fora completion: 02-08-83
(MAT)  Number of substances represented in data base: 18
OCAS)  Number of CAS  registry numbers in data base: 9
OUT)  Substances represented in data base:
   acidity                               mercury<7439-97-6>
   alkalinity                            nickel<7440-02-0>
   cadmium<7440-43-9>                    nitrogen<7727-37-9>
   chromium<7440-47-3>                   oil and grease
   copper<7440-50-8>                     oxygen demand
   dissolved oxygen                     pH
   dissolved solids                     phosphorus<7723-14-0>
   fecal  coliform                        suspended solids
   leac<7439-92-l>                       xinc<7440-66-6>
(CAS)  CAS registry  numbers of substances Included in data base:  7440-43
   -9; 7440-47-3; 7440-50-8; 7439-92-1;   7439-97-6; 7440-02-0;
   7727-37-9; 7723-14-0; 7440-66-6
(CW)  Contact name(s):  Brezenskl,F.   ;    0'Hare,Tom  ;    I1VR.
(BOB)  Responsible  Organization: Region  II.Assistant Regional
   Administrator  for  Policy.
                            981

-------
                             Accession Ho*  9024000002

(DQ)  Date of Questionaire: 12-02-82
(VAN)  name of Data Bas« of Model: State 208 Agencies Data
(ACR)  Acronym of Data Base or Model: Rone
(MED)  Media/Subject of Data Base or Model: Surface water estuaries and
    rivers
(ABS)  Abstract/Overview of Data Base or Model: Hater quality analysis
    (with a small amount of    effluent data taken at a few industries)
    of estuaries and   rivers in Region II on physical parameters,
    bacteriological parameters, nutrients, and some heavy metals.  This
    data    can be retrieved from STORET (Storage and Retrieval of
    Hater Quality Data) by unit agency code REGII 208.
(CTC)  CONTACTS: Subject matter   J. Delama/M. Savedoff  (212)
    264-0958/(212)    ;     Computer- related Tom O'Rare  (212)
    264-9850 ;  EPA Office Region II
(DTP)  Type of data collection or monitoring: Ambient data collection
(STA)  Data Base status: Discontinued
(GRP)  Croups of substances represented in Data Base: 11 conventional
    water
(HPP)  Ion-pollutant parameters included in the data base: Location
    ^Physical data ;Sampling date jSite description ^Temperature
(DS)  Time period covered by data base: 04-01-75 TO 07-30-78
(TRM)  Termination of data collection: Occurred 07/30/78
(FRQ)  Frequency of data collection or sampling: Other special surveys
    for varying and limited sampling periods.
(•OB)  lumber of observations in data base: 100000.(Estimated)
(•El)  Estimated annual Increase of observations in data base: (R/A.)
(IRF)  Data base includes: Raw data/observations ;Summary aggregate
    observations
(VTS)  Total number of stations or sources covered in data base: 850.
(RCS)  Mo. stations or sources currently originating/contributing data:
    0.
(•OF)  Rumber of facilities covered in data base (source monitoring): (•
    /A.)
(CEO)  Geographic coverage of data base: Selected federal region Region
    II
(LOC)  Data elements Identifying location of station or source include:
    State ;County ^Coordinates Latitude/Longitude
(FAC)  Data elements identifying facility include: Plant facility name
    iPlant location ;«PDES
(CDE)  Pollutant identification data are: Storet parameter
(LIM)  Limitation/variation in data of which user should be aware: As
    stated above, surveys are varied with respect  to sampling time and
    locations,  fery few audit samples performed.
(AIL)  Lab analysis based on EPA-approved or accepted methods? YES
(PRE)  Precisions precision and accuracy estimates are not available
(EOT)  Editting: Edit procedures used but undocumented.
(CBf)  Data collected by: Contractor various contractors collected this
    data.
(ABT)  Data analyzed by: Contractor lab various contractors analyzed
     this data   (analyses spot-check by EPA-Edison labs)
(IDL)  Laboratory identification: HO
(PR1)  Primary  purpose of data collection: Special study


                             982

-------
                             Accession  No.   9024000002      (cont)

(AUT)   Authorization for  data collections  Statutory authorization  is  P
   L 92-500  as  amended,  Section 208 (Clean Water  Act-CifA)
(OMB)   Data collected/submitted using OMB-approved EPA  reporting forms:
   QQ
(REP)   Form of available  reports and outputs of data base:  Printouts  on
   request
   Machine-readable raw  data
   On-line computer
(IDS)   Number of regular  users of data  base: 20
(USR)   Current regular  users of data base:  EPA regional offices
   Freedom of Information Requests
: 26 Federal Plaza  MY, MY 10278
   PH: (212) 264-9850
(DF)   Date  of form completion: 02-08-83
(•MAT)   Number of substances represented in data base: 11
(ICAS)   Number of CAS registry numbers in data base: 2
(MAT)   Substances represented in data base:
    acidity                              oil and grease
    alkalinity                           oxygen  demand
    dissolved oxygen                     Pj         „,,.,, *- AN
    dissolved solids                     phosphorus<7723-14-0>
    fecal coliform                       suspended  solids
    nitrogen<7727-37-9>                                    K™.
 (CAS)  CAS registry numbers  of  substances  included  in data base.
    •g. 7723-14-0
 (CiM)  Contact name(s): Delama,J.  ;    0*Hare,Tom  ;    «'*•
 (ROR)  Responsible  Organization:  Region II.Assistant Regional
    Administrator for Policy.
                              983

-------
                             Accession Do.  9024000005

(DQ)  Date of Questionaire: 12-02-82
(MAM)  lame of Data Base of Model: Hater Enforcement Regional System
(ACR)  Acronym of Data Base or Model: HERS
(MED)  Media/Subject of Data Base or Model: Effluents Industrial,
    •unicipal and federal facilities
(ABS)  Abstract/Overview of Data Base or Model: Rational Pollutant
    Discharge Elimination System (UPDBS)     permittees and permit
    applicants in Region II regulated under the     Clean Water Act.
    The data base contains facility Identification information (such as
    name, facility/ location/ SIC codes)/ milestone  dates in the
    permit development process/ compliance action events     (such as
    reports required by the permit and associated dates/    inspections
    performed/ enforcement actions and referrals) influent    and
    effluent limit dates/ and reported dates.
(CTC)  COBIACTSI Subject matter   Steve Rubin  (212) 264-9850;
    Computer-related  Steve Rubin (212) 264-9850  /
(DTP)  Type of data collection or monitoring: Point source data
    collection industrial/ municipal and federal    facilities
(STA)  Data Base status: Operational/ongoing
(•PP)  Ion-pollutant parameters included in the data base: Collection
    method /Compliance data /Concentration measures /Discharge points /
    Pi on rates /Geographic subdivision /Inspection data /Location /
    Political subdivisions /Salinity /Sampling date /Temperature /
    Treatment devices /conductivity /gallons distilled /discharge
    duration /   velocity
(OS)  Time period covered by data base: 03-01-77 TO 01-31-83
(TRM)  Termination of data collection: Mot anticipated
(PRO)  Frequency of data collection or sampling: Meekly /monthly /Other
    varies by parameter In the reported data
(•OB)  lumber of observations in data base: 600000.(Estimated)
(•CI)  Estimated annual Increase of observations in data base: 150000.
(IIP)  Data base Includes: Summary aggregate observations
(ITS)  Total number of stations or sources covered in data base: 7500.
(MCS)  Mo. stations or sources currently originating/contributing data:
    5000.
(•OP)  lumber of facilities covered in data base (source monitoring): 50
    00.
(CEO)  Geographic coverage of data base: Selected federal region Region
    II
(LOC)  Data elements identifying location of station or source include:
    State /County /City /Town/township /Coordinates Latitude and
    longitude /    Project identifier
(PAC)  Data elements identifying facility include: Plant facility name
    /Plant location /SIC code >HPDBS
(CDS)  Pollutant identification data are: Storet parameter
    Other coding scheme
(LIN)  Limitation/variation in data of which user should be aware: Since
    summary data is from permittees/ quality    assurance methods are
    questionable.
(AIR.)  Lab analysis based on EPA-approved or accepted methods? YES
(PRE)  Precision: Precision and accuracy estimates are not available
(EOT)  Editting: Edit procedures used and documented.


                             984

-------
                            Accession No.  9024000005     (cont)

(CBY)  Data collected by: Self reporting Discharge Monitoring Reports
   (99%) ;Regional office enforcement &
(ABY)  Data analyzed by: Self reporting
   State agency
   Regional office Region II
   EPA lab Regional Lab
(IDL)  Laboratory identification: NO
(PR1)  Primary purpose of data collection: Compliance or enforcement
(PR2)  Secondary purpose of data collection: Trend assessment
(IUT)  Authorization for data collection: Statutory authorization is P
   L 92-500 as amended. Sections 301, 308, &402   (Clean Hater
   Act-CUA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
   158-R-0073
(REP)  Form of available reports and outputs of data base: Quarterly/»on
   thly Hater Enforcement reports.  Regional System    Users Manual
   Printouts on request
   Microfilm
(•OS)  Number of regular users of data base: 50
(OSR)  Current regular users of data base: EPA headquarter offices
   Office of Hater Enforcement
   EPA Region II
   EPA laboratories
   States
   Freedom of Information requests
(CIF)  Confidentiality of data and limits on access: No limits on
   access to data
(DLC)  Primary physical location of data: NCC/IBM
(OST)  Form of data storage: Magnetic tape ^Magnetic disc
(DAC)  Type of data access: EPA software HERS 3 components:  Status of
   Permit Development     (facility ID), Status of Permit Compliance,
   Local Effluent Data System     (parameter data)  MIDS:9024000905
   ;EPA hardware IBM 370/168 ;    retrieval package
(CHG)  Direct charge for non-EPA use: yes
(OPDT)  Frequency of data base master file up-date: Other 4 components
   of VERS are updated monthly; 1 is updated bi-ueekly.
(RSS)  Related EPA automated systems which use data base: Permit
   Compliance System (PCS); Facilities   Index System  (FINDS)
(ROBEPA)  Related EPA data bases used in conjunction with this data base
   Penit Compliance System (PCS); Facilities   Index  Systems (FINDS)
(RDB)  Non-EPA data bases used in conjunction Hith this data base: Hen
   fork Department of Environmental    Conservation State Pollutant
   Discharge Elimination System   (SPDES) data base
(ODB)  Other pertinent non-EPA data bases: New York Department of
   Environmental    Conservation's Industrial Chemical Survey; New
   Jersey Department of Environmental Protection's Manifest System;
   Delaware River Basin   Commission's Industrial Exotic Haste Survey
(CMP)  completion of form:
   George Nossa
   OFC: EPA/Region II/lnformation Systems Branch
   AD:  26 Federal Plaza NY, NY  10278
   PH:  (212) 264-9850


                            985

-------
                             Accession No.   9024000005
                  (cont)
(OF)  Date of form completion: 02-08-83
(RMAT)  Runber of substances represented in data base; 132

    2,2,dibromo-3-nitrilopropionamide
    2*4,6-trichlorophenol<88-06-2>
    acidity
    alglcides
    alkalinity
    alumlnum<7 429-90-5>
    ammonia<7664-41-7>
    antimony<7440-36-0>
    arsenic<7440-38-2>
    asbestos<1332-21-4>
    barium<7440-39-3>
    baroid §2 |7
    ben*ene<71-43-2>
    benzidine<92-87-5>
    benzisothiozote
    beryllium<7440-41-7>
    bismuth co»pounds<7440-69-9>
    boron compounds<7440-42-8>
    bro»ine<7726-95-6>
    bro»odichlorOBethane<75-27-4>
    cad«lum<7440-43-9>
    calcium
    carbofuran
    carbon tetrachlorlde<56-23-5>
    chloral<75-87-6>
    chloride
    chlorinated hydrocarbons
    chlorinated organics
    chlorioe< 7782-50-5>
    chlorobenzene<108-90-7>
    chlorodibr omomethane<124-48-1>
    chlorofor»<67-66-3>
    chro»iu^7440-47-3>
    cob al t<7 440- 48- 4>
    color
    copper<7440-50-8>
    cyanid«<57-12-5>
    cyclohexlaaine
    diceyldimethyl  auoniua chloride
    dichlorobenzene<25321-22-6>
     dichloro«ethane<75-09-2>
    dichlorovinyl dimethyl  phosphate
    dicyclopentadine<77-73-6>
     dlethylhexyl phthalate
    dissolved oxygen
     dissolved solids
dithiocarbonates
ethylbenzene<100-41-4>
ethylene dichlorlde<107-06-2>
fecal colifora
ferric cyanide
fluorides
fluoroborates
formaldehyde<50-00-0>
gold
gross alpha
gross beta
hardness
hexamethyl benzene
hydrazine<302-01-2>
hydrocarbons
iodine
iodine 129<15046-84-l>
iron<7439-89-6>
isotopic gamma
lead<7439-92-l>
magnesium
•anganese<7439-96-5>
mercury<7439-97-6>
methylene bis-thiocycanate
mirex<2385-'85-5>
molybdenum and compounds
   <7439-98-7>
nickel<7440-02-0>
nitrates/nitrites
nitrobenzene<98-95-3>
nitrofurans
nitrogen<7727-37-9>
odors
oil  and  grease
ortho-phosphate
oxygen demand
PH
palladium,total
pesticides
phenol<108-95-2>
phosphorus<7723-14-0>
phthalate  esters
phthalic acid<88-99-3>
platinum                      .
polybrominated  biphenyls  (PBBs)
polybrominated  dlphenyl oxides
polychlorinated biphenyls 
                              986

-------
                            Accession Mo.   9024000005     (cont)

   seleniu»<7782-49-2>                   total organic carbon (TOO
   settleable  solids                    total phosphates
   silica                                total strontium
   silver<7440-22-4>                    total telluriu
   sodlun  nitrite<7632-00-0>            tribro«o>ethane<75-25-2>
   sodiu«<7440-23-5>                    trichloroethane<25323-89-l>
   strontium 90<10098-97-2>             trichloroethylene<79-01-6>
   styrene<100-42-5>                    tritiu»<10028-17-8>
   sulfates                              turbidity
   sulfldes                              uranil
   sulfite                              uranium 235<15117-96-l>
   surfactants                          uraniua 238<7440-61-1>
   suspended solids                     uraniua<7440-61-l>
   tetrachloroethylene<127-18-4>        vanadlu*<7440-62-2>
   thalliua<7440-28-0>                   vinyl acetat«
   tin                                  vinyl chloride<75-01-4>
   titaniu«<7440-32-6>                   volatile acids
   toluene<108-88-3>                    xylene<1330-20-7>
   total kjeldahl nitrogen              zinc<7440-66-6>
(CIS)   CAS  registry nuabers of substances included in data base: 120-82-
   1;  88-06-2; 7429-90-5;  7664-41-7;      7440-36-Oj 7440-38-2;
   1332-21-4;  7440-39-3;  71-43-2; 92-87-5;    7440-41-7; 7440-69-9;
   7440-42-8;  7726-95-6;  75-27-4; 7440-43-9;       1563-66-2; 56-23-5;
   75-87-6; 7782-50-5;  108-90-7; 124-48-1; 67-66-3;       7440-47-3;
   7440-48-4;  7440-50-8;  57-12-5; 25321-22-6; 75-09-2;   77-73-6;
   100-41-4; 107-06-2;  50-00-0; 302-01-2;  15046-84-11      7439-89-6;
   7439-92-1;  7439-96-5;  7439-97-6; 2385-85-5; 7439-98-7;
   7440-02-0;  98-95-3;  7727-37-9; 108-95-2; 7723-14-0; 88-99-3;
   7440-09-7;  7782-49-2;  7440-22-4; 7632-00-0; 7440-23-5; 10098-97-2;
   100-42-5; 127-18-4;  7440-28-0; 7440-32-6; 108-88-3; 75-25-2;
   25323-89-1; 79-01-6; 10028-17-8; 15117-96-1; 7440-61-1; 7440-61-1;
   7440-62-2;  108-05-4; 75-01-4; 1330-20-7; 7440-66-6
(CM)   Contact  naae(s):  Rub in, S.  ;    Rub in, S.  ;    Ludin,C.
(KOR)   Responsible Organization: Region II.Assistant Regional
   Administrator for Policy.
                            987

-------
                             Accession Ho.  9026000101

(OQ)  Date of Questionaire: 12-02-82
CHAM)  Kane of Data Base of Model: Carbon Monoxide Special Study
(JLCR)  Acronym of Data Base or Model: Hone
(MED)  Media/Subject of Data Base or Model: Air ;Mobile source
    emissions
(ABS)  Abstract/Overview of Data Base or Model: This is a regional
    study to correct     deficiencies in carbon monoxide network and to
    determine hotspots and extent of carbon Monoxide problem.
(CTC)  COMTACTS: Subject Batter   Ray Werner  (212) 264-2517;   EPA
    Office Ray Werner (212) 264-2517
(DTP)  Type of data collection or monitoring: Ambient data collection
(STA)  Data Base status: Discontinued
(CRP)  Croups of substances represented in Data Base: 7 criteria HAAQS
    (Carbon Monoxide)
(HPP)  Non-pollutant parameters included in the data base: Chemical
    data ^Concentration measures ^Exposure data ;Geographic subdivision
    ;   Location ;Population density ;Sampling date ;Site description ;
    Hind direction ;Hind velocity ;temperature
(OS)  Time period covered by data base: 10-01-79 TO 10-30-80
CTRM)  Termination of data collection: 04/30/81
(PRO)  Frequency of data collection or sampling: hourly ;dally ;weekly
(HOB)  Rumber of observations in data base: 56000.(Estimated)
(IHP)  Data base Includes: Raw data/observations ;Summary aggregate
    observations ;Reference data/citations
(HTS)  Total number of stations or sources covered in data base: 38*
(HCS)  Ho. stations or sources currently originating/contributing data:
    0.
(HOP)  Humber of facilities covered in data base (source monitoring): 0.
(GBO)  Geographic coverage of data base: Geographic region upstate Hew
    York, Hew York City, and Hew Jersey.
(LOC)  Data elements identifying location of station or source includes
    State ;County ;City ;Town/tounship ;Street address
(PAC)  Data elements identifying facility include: H/A
(CDE)  pollutant Identification data are: Oncoded
(LDO  Limitation/variation in data of which user should be aware: This
    data base is made up of data from  three studies, with three months
    of continuous    sampling in each.
(DPR)  Data collect./anal, procedures conform to ORD guidelines: Samplln
    g plan documented Collection method documented ;Analysis  method
    document QA procedures documented
(AWL)  Lab analysis based on BPA-approved or accepted methods? YES
(ADD)  Lab Audit: Lab audit is satisfactory for 85%.
(PRE)  Precision: Precision and accuracy estimates exist for all
    measurements
(EOT)  Editting: Ho known edit procedures exist.
(CBY)  Data collected by: Contractor Hew York State Department of
    Transportation;  Environmental Research and Technology; HAPORA
(ABY)  Data analyzed by: Contractor Hew York State Department  of
    Transportation;  Environmental Research and Technology; HAPORA
(IDL)  Laboratory identification: YES
(AOT)  Authorization for data collection: Ho statutory requirement:
    Data collection requirement is    to determine "notspots"  and


                             988

-------
                            Accession No*  9026000101     (cont)

   correct  deficiencies in carbon monoxide network
(0»)  Data  collected/sub»itted using OMB-approved EPA reporting forms:
   QQ
(Iff)  Fora  of  available reports and outputs of data base: Unpublished
   reports  carbon monoxide hotspot study  for Men jersey, upstate Hen
   fork.  New  York City report     anticipated by Fall, 1983.
(IIS}  Number of regular users of data base: 50 or aore
(VSR)  Current  regular users of data bases EPA headquarter offices
   Office of Air Quality Planning and  Standards*
   SPA regional offices
   States
(Cm?)  Confidentiality of data and limits on access: Mo limits on
   access to data
0>LC)  Primary  physical location of data: Regional office
(BST)  Form  of  data storage: Original fora (hardeopy, readings)
(DiC)  Type  of  data access: Manually
(CMC)  Direct charge for non-EPA use: yes
(SPOT)  Frequency of data base master file up-date: other one time
   only-report being written
(ODB)  Other pertinent non-EPA data bases: Staten Island Benzine Study
(CMP)  Completion of fora:
   Ray tferner
   OFC: EPA/Region II/Air  and Hazardous Materials Division
   AD: 26 Federal Plaza Men York, NY 10007
   PH: (212) 264-2517
(DP)  Date of fora completion: 01-14-83
(MAT)  Number  of substances represented in data base: 1
(ICIS)  Number  of CAS registry numbers in data base: 1
OAT)  Substances represented in data base:
   carbon aonoxide<630-08-0>
(CAS)  CAS registry numbers of substances included in data base: 630-08-
   0
(CIH)  Contact  naae(s): tferner/R. ;    Verne r/R.
(tOR)  Responsible Organization: Region II.Air and Haste Manageaent
   Division*
                            989

-------
                             Accession Mo.   9026000102


-------
                             Accession Ho.   9026000102     Ccont)

(MUS)   number of regular  users of data base: 50
(OSR)   Current regular  users of data base:  EPA headquarter offices
    Office  of Air Quality Planning and Standards
    EPA regional offices
    States
(CMF)   Confidentiality  of data and limits on access: Ho limits on
    access  to data
(DLC)   Primary physical location of data: State agency
(DSt)   Fora of data storage: Original fora (hardcopy, readings)
(DAC)   Type of data access: Manually
(CHG)   Direct charge for  non-EPA use: yes
(OPDT)   Frequency of data base master file up-date:  Other data base
    update  terminated
(CHP)   Couplet ion of for*:
    Debbie  Broae
    OFC: EPA/Region II/Air and Hazardous Materials Division
    AD: 26  Federal Plaza  Room 900 Hen York, HV 10007
    PH: (212) 264-2517
(DF) Date  of fora completion: 01-14-83
(•NAT)   Number of substances represented in data base: 1
(NAT)   Substances represented in data base:
    total suspendedparticulates
(CNN)   Contact name(s): Kerr,G.
(COR)   Contact organization: Air and Hazardous Materials Division/
    Region  II
(ROR)   Responsible Organization: Region II.Air and Haste Management
    Division.
                             991

-------
                             Accession Mo.   9027000101

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model:  Federal  Reporting Data System
(ACR)  Acronym of Data Base or Model: FRDS
(NED)  Media/Subject of Data Base or Model:  Drinking water
(ABS)  Abstract/Overview of Data Base or Model:  FRDS contains
    identification and statistical summary  information  for each public
    water supply (PUS).     Inventory data  includes capacity, source
    information,  monitoring requirements,  data  pertaining to
    infringements of EPA standards by a specific PHS, data pertaining
    to EPA authorized exceptions to the    standard which are granted
    to a specific PHS, and information pertaining to actions taken
    against a PHS.
(CTC)  COBTACTS: Subject matter   Jaime A.  Referent* (212) 264-1800
    ;     Computer-related  J  Computer-related  John Baglivi (212)
    264-9580; EPA Office Jaime A. Reference     (212) 264-1355
(DTP)  Type of data collection or monitoring:  Combination/Other Public
    Hater Supply inventory and monitoring and      surveillance.
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented in  Data  Base: 22  drinking Hater
    standards
(WPP)  Ron-pollutant parameters included in the  data base: Compliance
    data ;Inspectiondata ;Location ^Physical data jPolitleal
    subdivisions Population density ^Production  levels  *Sampling date
    ;Test/analysis method ;    Treatment devices
(DS)  Time period covered by data base: 10-01-78 TO 09-30-82
(TRM)  Termination of data collection: Not  anticipated
(FRQ)  Frequency of data collection or sampling: quarterly ;annually
(NOB)  Number of observations in data base:  590000 observations
    (per(Estimated)
(INF)  Data base includes: Raw data/observations ;Summary aggregate
    observations ^Reference data/citations
(NTS)  Total number of stations or sources  covered in data base: 65,115
    Approx. (Region II) over 400,000  (nationally).)
(NCS)  Ho. stations or sources currently originating/contributing data:
    Approx. 63,285
(HOF)  Number of facilities covered in data base (source  monitoring): 21
    ,705 (public water supplies.)
(CEO)  Geographic coverage of data base: Selected federal region Region
    II
(LOG)  Data elements Identifying location of station or source includes
    State jCounty ;Clty ;Town/township jStreet address  ^Coordinates
    Latitude/long!tu Project Identifier
(FAC)  Data elements identifying facility include: Plant  facility name
    ;Plant location jStreet address ;SCC ^Program identifier
(CDE)  Pollutant identification data are: Other  coding  scheme
(LIH)  Limitation/variation in data of which user should  be aware: None
(DPR)  Data collect./anal, procedures conform  to ORD guidelines: Samplln
    g plan documented ^Collection method documented ^Analysis method
    document QA procedures documented
(ANL)  Lab analysis based on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist  but are not


                             992

-------
                             Accession No.  9027000101     (cont)

    included in data base
(EOT)  Editting: Edit procedures used and docunented.
(CBY)  Data collected by: Self reporting Primary responsibility for
    both aonitoring  and violation data co Local agency Soaetlmes
    County Dept. of Health collects for  purveyor. ;    State agency
    has primacy, receives data from purveyor. ;Regional office
    Occasionally state Dept, of Environmental Protection collect data.
    occasionally regional office samples where   lore sophisticated
    equipment is necessary. Contractor lab for permittee (purveyor) ;
    Contractor for permittee (purveyor)
(ABY)  Data analyzed by: EPA lab Surveillance and Analysis Lab; and
    occasionally     Cincinnati lab
    EPA/state certified labs
(IOL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Compliance or enforcement
(PR2)  Secondary purpose of data collection: Inventory
(AOT)  Authorization for data collection: Statutory authorization is P
    L 93-523, Sections 1412, 1415, 1416, 1421 and  1422. (Safe Drinking
    Water Act of 1974-SDWA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    158-R-0155
(REP)  Form of available reports and outputs of data base:  Printouts on
    request
    Microfilm
    Machine-readable ran data
    On-line computer
(MUS)  Number of regular users of data base: 2 offices
(OSR)  Current regular users of data base: EPA headquarter offices
    Office of Drinking Hater
    EPA regional offices
(CNF)  Confidentiality of data and limits on access: No limits on
    access to data
(DLC)  Primary physical location of data: NCC/IBM
(DST)  Form of data storage: Magnetic Disc:  national rftDS system
    Original form:  data from FY 1978
(DAC)  Type of data access: Commercial software System 2000 ;EPA
    hardware IBM 370    ^Manually:  data from F
(CHG)  Direct charge for non-EPA use: yes
(OPDT)  Frequency of data base master file up-date: Quarterly
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    Model State Information System (MSIS)
(CMP)  Completion of form:
    Jaice A. Referente
    OFC: EPA/Region II/Uater Division
    AD: 26 Federal Plaza New York, NY 10278
    PH: (212) 264-1800
(DF)  Date of form completion: 03-23-83
(NMAT)  Number of substances represented in data base:  21
(HCAS)  Number of CAS registry numbers in data base: 17
                             993

-------
                             Accession No.   9027000101     (cont)

(MAT)  Substances represented in data base:
    2f4-dichlorophenoxyacetic            «ethoxychlor<72-43-5>
       add (2,4-d)<94-75-7>             Microbiology colifora bacteria
    arsenic<7440-38-2>                   nitrate<14797-55-8>
    bariu»<7440-39-3>                    radiua 226<13982-63-3>
    cad«iuaK7440-43-9>                   radiua 228<15262-20-1>
    chro«iu«<7440-47-3>                  seleniua<7782-49-2>
    endrin<72-20-8>                      silver<7440-22-4>
    gross alpha                          silvex<93-72-l>
    lead<7439-92-l>                      toxaphene<8001-35-2>
    lindane<58-89-9>                     turbidity
    nannade beta                         trihalo«cthane
    •ercury<7439-97-6>
(CAS)  CAS registry numbers of substances included in data base: 94*75-7
    ; 7440-38-2; 7440-39-3; 7440-43-9;     7440-47-3; 72-20-8;
    7439-92-1; 58-89-9; 7439-97-6; 72-43-5;      14797-55-8;
    13982-63-3; 15262-20-1; 7782-49-2; 7440-22-4; 93-72-1;    8001-35-2
(CNM)  contact nane(s): Referente,J.A. ;    Bagllui,J.;
    Referente/J.A.
(ROR)  Responsible Organization: Region II.Hater Manageaent Division.
                             994

-------
                             Accession No.  9028000511

(DQ)  Date of Questionaire: 12*02-82
(NAM)  Name of Data Base of Model: Niagara Frontier - Lake Erie
(ACR)  Acronym of Data Base or Model: None
(MEO)  Media/Subject of Data Base or Model: Sediment
(ABS)  Abstract/Overview of Data Base or Model: The data base contains
    priority pollutant values  for about 40 stations in Lake Erie  and
    the Niagara River.  Sediment   was only examined and not the water
    column.
(CIC)  CONTACTS: Subject matter  Roland B. Hemmett (201) 321-6687  ;
    Computer-related  George Hossa (212) 264-9850  ;  EPA Office
    Roland  B. Hemmett, Environmental Services Div.  (201) 321-6687
(DTP)  Type of data collection or monitoring: Ambient
(STA)  Data Base status: Presently Operational/Ongoing
(6RP)  Groups of substances represented in Data Base: 129 307 CWA  ;
    Other- Particle size. Volatile solids
(NPP)  Non-pollutant parameters Included in the data base: Precipitation
    ; Sampling date } Site description
(OS)  Time period covered by data base: 06-82 TO 09-82
(TRM)  Termination of data collection: Not applicable
(FRQ)  Frequency of data collection or sampling: Ongoing: as needed
(NOB)  Number of observations in data base: 5000(Estlmated to date)
(NEI)  Estimated annual increase of observations in data base: N/A
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base: 40
(NCS)  No. stations or sources currently originating/contributing  data:
    40
(NQF)  Number of facilities covered In data base (source monitoring): 0
(GEQ)  Geographic coverage of data base: International
(LOC)  Data elements Identifying location of station or source include:
    State / latitude and longitude, OTM, or other     coordinates
(FAC)  Data elements identifying facility include: Not applicable
(CDE)  Pollutant identification data are: coded, storet parameter  codes
(DPR)  Data collect./anal, procedures conform to ORD guidelines: No,
    but other documentation available for each    of the following:
    sampling plan, collection method, analysis method,  and QA
    procedures
(ANL)  Lab analysis based on EPA-approved or accepted methods? YES
(AUD)  Lab Audit: YES
(PRE)  Precision: Not included in data base, precision and accuracy
    measurements available form other sources
(EOT)  Fdltting: YES, documented edits
(CBY)  Data collected by: Regional Office ; EPA Lab ; Contractor Lab  >
    EPA Headquarters
(ABY)  Data analyzed by: EPA Lab ; Contractor Lab
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Special Study
(PR2)  Secondary purpose of data collections None
(ADT)  Authorization for data collection: YES, citation: PL92-500
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    NO
(REP)  Form of available reports and outputs of data base: Printouts  on
    request ; Files


                             995

-------
                             Accession No.   9028000511
                  (cont)
(NOS)  Number of regular users of data base:  10
(OSR)  Current regular users of data base:  EPA Regional  Offices  ;  EPA
    Laboratories ; states
(CNF)  Confidentiality of data and Halts on  access:  Hone
(DLC)  Primary physical location of data: Regional Office
(DST)  For» of data storage: Magnetic Disc
(DAC)  Type of data access: EPA Software System:  System  Name- STORE!,
    Hardware- IBM/168
(CHG)  Direct charge for non-EPA use: YES
(OPDT)  Freguendy of data base master file up-date: Unknown
(RSS)  Related EPA automated systems which use data base: Unknown
(RDBEPA)  Related EPA data bases used in conjunction  with this data base
    Hone
(ROB)  Non-EPA data bases used in conjunction with this  data base:  None
(CMP)  Completion of fora: I Randy Braunf OFC: U.S.E.P.A., Region  II,
    Edison, N.J.f    AD: Hoodbridge Ave., Edison, N.J.   08837f    PH:
    (201) 32l-6692f
(DF)  Date of fora completion: 01-11*83
(RMAT)  Number of substances represented in data  base: 129
(NCAS)  Number of CAS registry numbers in data base:  0128
(MAT)  Substances represented in data base:
    Acenaphthene <83-32-9>
    Acenaphthylene <208-96-8>
    Acrolein    <107-02-8>
    Acrylonitrile <107-13-1>
    Aldrin <309-00-2>
    Anthracene  <120-12-7>
    Antimony <7440-36-0>
    Arsenic <7440-38-2>
    Asbestos  <1332-21-4>
    BHC-. Alpha.  <319-84-6>
    BHC-.Beta. <319-85-7>
    BBC (llndane)-. Gamma. <58-89-9>
    BHC-. Delta.  <319-86-8>
    Benzene <71-43-2>
    Benzidlne <92-87-5>
    Ben2o( a) anthracene  <56-55-3>
    3, 4-Benzofluoranthene <205-99-2>
    Benzo(k)  fluoranthene <207-08-9>
    Benzo
    BenzoCalpyrene <50-32-8>
    Beryllium <7440-41-7>
    Bis (2-     chloroethoxy) me thane
    Bis(2-chloroethyl)ether
    Bis(2-chloroisopropyl) ether
       <39638-32-9>
    Bis   (chloromethyl) ether
       <542-88-l>
    Bis(2-ethylhexyl)phthalate
Bromomethane <74-83-9>
4-Bromophenyl phenyl ether
   <101-55-3>
Butyl benzyl phthalate <85-68-7>
Cadmium  <7440-43-9>
Carbon tetrachloride <56-23-5>
Chlordane <57-74-9>
Chlorobenzene <108-90-7>
Chiorodibromomethane   <124-48-l>
Chloroethane <75-00-3>
2-chloroethylvinyl ether
   <110-75-8>
Chloroform <67-66-3>
p-Chloro-m-cresol <59-50-7>
Chloromethane <74-87-3>
2-Chloronaphthalene <91-58-7>
2-Chlorophenol <95-57-8>
4-Chlorophenyl phenyl ether
   <7005-72-3>
Chromium <7440-47-3>
Chrysene <218-01-9>
Copper <7440-50-8>
Cyanide <57-12-5>
4,4''-DDD(p,p*-TDE)   <72-54-8>
4,4--DDB
4,4'-DDT <50-29-3>
DlbenzoCa,h]anthracene <53-70-3>
Dl-n-butyl phthalate <84-74-2>
1,2-Dichlorobenzene <95-50-l>
1,3-Dlchlorobenzene     <541-73-l>
1,4-Dichlorobenzene <106-46-7>
                             996

-------
                           Accession No.   9028000511
                  (cont)
   3/3'- Dichlorobenzidine  <91-94-l>
   Dichlorobronomethane <75-27-4>
   Dichlorodifluoromethane  <75-71-8>
   1,1-Dichloroethane  <75-34-3>
   1,2-Dichloroethane  <107-06-2>
   1,1-Dichloroethylene   <75-35-4>
   1,2-trans-Dichloroethylene
      <156-60-5>
   Dichloronethane <75-09-2>
   2,4-Dichlorophenol  <120-83-2>
   1,2-Dichloropropane <78-87-5>
   1,2-Dichloropropylene  <563-54-2>
   Dieldrin  <60-57-l>
   Die thy 1 ph thai ate <84-66-2>
   2,4- Diaethylphenol <105-67-9>
   Dimethyl  phthalate  <131-ll-3>
   4,6-Dinitro-o-cresol <534-52-l>
   2,4-Dinitrophenol <51-28-5>
   2,4-Dinitrotoluene  <121-14-2>
   2,6-Dlnitrotoiuene  <606-20-2>
   Di-n-octyl  phthalate <117-84-0>
   1,2-Diphenylhydrazine  <122-66-7>
   Endosulfan-.Alpha.  <959-98-8>
   Endosulfan-.Beta.     <33213-65-9>
   Sndosulfan  sulfate  <1031-07-8>
   Endrin <72-20-8>
   Endrin aldehyde <7421-93-4>
   Ethylbenzene <100-41-4>
   Fluoranthene <206-44-0>
   Fluorene  <86-73-7>
   Heptachlor      <76-44-8>
   Heptachlor  epoxide  <1024-57-3>
   Hexachlorebenzene     <118-74-l>
   Hexachlorobutadiene <87-68-3>
   Hexachlorocyclopentadiene
      <77-47-4>
   Hexachloroethane  <67-72-l>
   Indeno  
   Isophorone  <78-59-l>
   Lead <7439-92-l>
   Hercury  <7439-97-6>
   Naphthalene <91-20-3>
   iickel <7440-02-0>
2-Nitrophenol   <88-75-5>
4-Nitrophenol <100-02-7>
N-Nitrosodiaethylaiine <62-75-9>
N-Nitrosodiphenylaaine <86-30-6>
N-Hitrosodi-n- propylaaine
   <621-64-7>
Pentachlorophenol <87-86-5>
Phenanthrene    <85-01-8>
Phenol <108-95-2>
PCB-1016 (Arochlor 1016)
   <12674-ll-2>
PCB-1221 (Arochlor 1221)
   <11104-28-2>
PCB-1232   (Arochor 1232)
PCB-1242 (Arochlor 1242)
   <53469-21-9>
PCB-1248 (Arochlor 1248)
   <12672-29-6>
PCB-1254    (Arochlor 1254)
   <11097-69-l>
PCB-1260 (Arochlor 1260)
   <11096-82-5>
Pyrene <129-00-0>
Selenium <7782-49-2>
Silver <7440-22-4>
2,4/7/8-fetrachlorodibenzo-p-
   dioxio (TCDD)
If If2f2-T etrachloroethane
   <79-34-5>
Tetrachloroethylene <127-18-4>
Thallium <7440-28-0>
Toluene    <108-88-3>
Toxaphene <8001-35-2>
Tribroaocethane <75-25-2>
1,2f4-Trichlorobenzene <120-82-l>
1,1,1-Trichloroethane    <71-55-6
1,1,2-Trichloroethane <79-00-5>
Trichloroethylene    <79-01-6>
Trichlorofluoronethane <75-69-4>
2,4,6-    Trichlorophenol
   <88-06-2>
Vinyl chloride <75-01-4>
Zinc <7440-66-6>
   Nitrobenzene <98-95-3>
(CAS)  CAS registry numbers of substances Included in data base:  83-32-9
   } 208-96-8; 107-02-8; 107-13-1;   309-00-2; 120-12-7; 7440-36-0;
   7440-38-21 1332-21-4; 319-84-6;   319-85-7; 58-89-9; 319-86-8;
   71-43-2; 92-87-5; 56-55-3; 205-99-2;     207-08-9; 191-24-2;
   50-32-8; 7440-41-7; 111-91-1; 111-44-4;      39638-32-9; 542-88-1;
   117-81-7; 74-83-9; 101-55-3; 85-68-7;      7440-43-9; 56-23-5;
   57-74-9. 108-90-7; 124-48-1; 75-00-3; 110-75-8;   67-66-3J 59-50-7;
   74-87-3; 91-58-7; 95-57-8; 7005-72-3; 7440-47-3;    218-01-9;
                            997

-------
                             Accession Ho*  9028000511     (cont)

    7440-50-8; 57-12-5; 72-54-8; 72-55-9; 50-29-3; 53-70-3;
    84-74-2; 95-50-1; 541-73-1; 106-46-7.; 91-94-1; 75-27-4; 75-71-8;
    75-34-3; 107-06-2; 75-35-4; 156-60-5; 75-09-2; 120-83-2; 78-87-5;
    563-54-2; 60-57-1; 84-66-2; 105-67-9; 131-11-3; 534-52-1; 51-28-5;
    121-14-2; 606-20-2; 117-84-0; 122-66-7; 959-98-8; 33213-65-9;
    1031-07-8; 72-20-8; 7421-93-4; 100-41-4; 206-44-0; 86-73-7;
    76-44-8;       1024-57-3; 118-74-1; 87-68-3; 77-47-4; 67-72-1;
    193-39-5; 78-59-1;    7439-92-1; 7439-97-6; 91-20-3; 7440-02-0;
    98-95-3; 88-75-5; 100-02-7;      62-75-9; 86-30-6; 621-64-7;
    87-86-5; 85-01-8; 108-95-2; 12674-11-2;   11104-28-2; 11141-16-5;
    53469-21-9; 12672-29-6; 11097-69-1;      11096-82-5; 129-00-0;
    7782-49-2; 7440-22-4; 79-34-5; 127-18-4;   7440-28-0; 108-88-3;
    8001-35-2; 75-25-2; 120-82-1; 71-55-6; 79-00-5;       79-01-6;
    75-69-4; 88-06-2; 75-01-4; 7440-66-6
CCHM)  Contact naae(s): He»*ett,R.B.  ;  Nossa,G.  ;  Heuett,R.B.
(COR)  Contact organization: Environmental Services Division
(ROR)  Responsible Organization: Region II.Environmental Services
    Division.
                             998

-------
                             Accession No.   9028000512

(DQ)   Date of Questionaire:  12-02-82
(NAM)   Name of Data Base of  Model: Arthur Kill
(ACR)   Acronym of Data Base  or Model:  None
(MED)   Media/Subject of Data Base or Model:  Sediment ;  Surface water:
    River
(ABS)   Abstract/overview of  Data Base  or Model:  20 Stations on the
    Arthur Kill were sampled. Samples  uere collected of both the
    sediment and water column.    Sediment samples uere grams and water
    column stations were composited over depth.   Classical  parameters
    and priority  pollutants  were   analyzed  for.
(CTC)   CONTACTS:  Subject matter  Roland B. Hemmett (201) 321- 6687   ;
    Computer-related  George Nossa (212) 264-9850  }  EPA   Office
    Roland B.  Hemmett (201)  321-6687
(DTP)   Type of data collection or monitoring: Anbient
(STA)   Data Base status: Presently Operational/Ongoing
(GRP)   Groups of  substances  represented in Data  Base: 129 307 CWA ;
    Other- TSS, Chloride, Oil &    Grease, Phenol, Total Coliform,
    Fecal Coliform, Cyanide, TOC,   Temperature, Dissolved Oxygen
(NPP)   Non-pollutant parameters included in  the  data base:  Physical
    data ; precipitation ; sampling date ;    site description ?
    temperature
(DS)   Time period covered by data base: 04-82 TO 11-82
(TRM)   Termination of data collection: Has occurred: 82-11
(FRQ)   Frequency of data collection or sampling:  Other- Two times only
(HOB)   Number of  observations in data  base:  7000(Estimated  to date)
(NED   Estimated  annual increase of observations in data base: N/A
(INF)   Data base  includes: Raw data/observations
(ITS)   Total number of stations or sources covered in data  base: 20
(NCS)   No. stations or sources currently originating/contributing data:
    20
(NOF)   Number of facilities  covered in data  base (source monitoring): N/
    A
(GEO)   Geographic coverage of data base: Single  county  or smaller
    location: one River the  Arthur Kill
(LOG)   Data elements identifying location of station or source include:
    Latitude and longitude,,  UTM, or other coordinates
(FAC)   Data elements identifying facility include: Not  applicable
(CDS)   Pollutant  identification data are: Coded, storet parameter codes
(DPR)   Data collect./anal, procedures  conform to CRD guidelines: YES
(ANL)   Lab analysis based on EPA-approved or accepted methods? YES
(AUD)   Lab Audit: Partial 90%
(PRE)   Precision: Not included in data base, precision  end  accuracy
    measurements available from other  sources
(EDT)   Editting:  YES, documented edits
(CBY)   Data collected by: Regional Office of EPA
(ABY)   Data analyzed by: EPA Lab
(IDL)   Laboratory identification: YES
(PR1)   Primary purpose of data collection:  Special study
(PR2)   Secondary purpose of  data collection: Trend assessment
(AOT)   Authorization for data collection: YES, citation: PL92-500,
    Section 106 and 305
(OMB)   Data col lee ted/submit ted using  OMB-approved EPA  reporting forms:


                             999

-------
                             Accession Ho.   9028000512
                  (cont)
    NO
(REP)  Form of available reports and outputs of data base:  Unpublished
    reports: Arthur Kill Hater Quality    Survey ;  Printouts on request
(MOS)  Number of regular users of data base: 10
(USR)  Current regular users of data base:  EPA Regional Offices ;  EPA
    Laboratories ;    other Federal Agencies ; States ? Other- ISC
(CNF)  Confidentiality of data and Halts on access: None
(DLC)  Primary physical location of data: Regional  Office
(DST)  Fora of data storage: Magnetic Disc ; Origional Fora, Hardcopy,
    Readings, etc.
(DAC)  Type of data access: EPA Software System: System Name- STORET,
    Hardware- IBM 370/168
(CHG)  Direct charge for non-EPA use: YES
(UPDT)  Frequency of data base master file up-date: Unknown
(RSS)  Related EPA automated systems which use data base: Unknown
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    None
(ROB)  Non-EPA data bases used in conjunction with  this data base:  None
(CMP)  Completion of for*: f Randy Braunf OFC: U.S.E.P.A.,  Region  II,
    Edison, N.J.f    AD; Woodbridge Ave., Edison, N.J.  088371    PH:
    (201) 321-6692f
(OF)  Date of for* completion: 12-28-82
(NMAT)  NuBber of substances represented in data base: 138
(IfCAS)  Number of CAS registry numbers in data base: 0128
(MAT)  Substances represented in data base:
    Acenaphthene < 83-32- 9>
    Acenaphthylene <208-96-8>
    Acrolein    <107-02-8>
    Acrylonitrile <107-13-1>
    Aldrin <309-00-2>
    Anthracene  <120-12-7>
    Antimony <7440-36-0>
    Arsenic <7440-38-2>
    Asbestos  <1332-21-4>
    BHC-. Alpha.  <319-84-6>
    BHC-«Beta. <319-85-7>
    BHC (lindane)-.Ga««a. <58-89-9>
    BHC-.Oelta.  <319-86-8>
    Benzene <71-43-2>
    Benzldlne <92-87-5>
    Benzo( a) anthracene  <56-55-3>
    3,4-Benzofluoranthene <205-99-2>
    Benzo(k)  fluoranthene <207-08-9>
    Benzo(g,h, Operylene <191-24-2>
    BenzoCalpyrene <50-32-8>
    Beryllium <7 44 0-41-7 >
    Bis (2-     chloroethoxy) me thane
Bis   (chloromethyl)ether
   <542-88-l>
Bis(2-ethylhexyl)phthalate
    Bis(2-chloroethyl) ether
    Bis(2-chloroisopropyl) ether
       <39638-32-9>
Bromomethane <74-83-9>
4-Broaophenyl phenyl ether
   <101-55-3>
Butyl benzyl phthalate <85-68-7>
Cadmium  <7440-43-9>
Carbon tetrachlorlde 
Chlordane <57-74-9>
Chlorobenzene <108-90-7>
Chlorodibromomethane   <124-48-l>
Chi or oe thane <75-00-3>
2-chloroethyl vinyl ether
   <110-75-8>
Chloroform <67-66-3>
p-Chloro-m-cresol <59-50-7>
Chi or OB ethane <74-87-3>
2-Chloronaphthalene <91-58-7>
2-Chlorophenol <95-57-8>
4-Chlorophenyl phenyl ether
   <7005-72-3>
Chromium <7440-47-3>
Chrysene <218-01-9>
Copper <7440-50-8>
Cyanide <57-12-5>
                             1000

-------
                         Accession No.  9028000512
                  (cont)
4,4'-DDD(p,p'-TDE)   <72-54-8>
4,4--DDE(p,p*-nDX) <72-55-9>
4,4--DDT <50-29-3>
Dibcnzotaxhlanthracene <53-70-3>
Di-n-butyl phthalate <84-74-2>
It2-Dichlorobenzene <95-50-l>
1,3-Dichlorobenzene     <541-73-l>
1,4-Dichlorobenzene <106-46-7>
3,3*- Dichlorobenzidine <91-94-l>
Dichlorobronone thane <75-27-4>
Dichlorodifluoroaethane <75-71-8>
1,1-Dichloroethane  <75-34-3>
1,2-Dichloroethane <107-06-2>
1/1-Dichloroethylene   <75-35-4>
It2-trans-Dichloroethylen«
   <156-60-5>
Dichloroaethane <75-09-2>
2,4-Dichlorophenol <120-83-2>
1,2-Dichloropropane <78-87-5>
1/2-Dichloropropylene <563-54-2>
Dieldrin <60-57-l>
Dlethyl phthalate <84-66-2>
2,4-  Dimethylphenol <105-67-9>
Dimethyl phthalate <131-ll-3>
4/6-Dinitro-o-cresol <534-52-l>
2/4-Dinitrophenol <51-28-5>
2,4-Dinltrotoluene <121-14-2>
2/6-Dlnitrotoluene <606-20-2>
Di-n-octyl phthalate <117-84-0>
1,2-Diphenylhydrazlne <122-66-7>
Endosulfan-.Alpha. <959-98-8>
Endosulfan-.Beta.     <33213-65-9>
Sndosulfan sulfate <1031-07-8>
Endrln <72-20-8>
Endcin aldehyde <7421-93-4>
Ethylbenzene <100-41-4>
Fluoranthene <206-44-0>
Fluorene <86-73-7>
Heptachlor     <76-44-8>
Heptachlor epoxide <1024-57-3>
Hexachlorobenzene     
Hexachlorobutadiene <87-68-3>
Hexachlorocyclopentadlene
   <77-47-4>
flexachloroethane  <67-72-l>
Indeno (l,2,3-cd)pyrene <193-39-5>
Isophorone <78-59-l>
Lead <7439-92-l>
Mercury <7439-97-6>
naphthalene <91-20-3>
Nickel <7440-02-0>
Nitrobenzene <98-95-3>
2 -N it ro phenol   <88-75-5>
4-Nitrophenol <100-02-7>
N-Nitrosodiaethyla«lne <62-75-9>
N-Nitrosodiphenylanine <86-30-6>
N-Nitrosodi-n- propylaaine
   <621-64-7>
Pentachlorophenol <87-86-5>
Phenanthrene    <85-01-8>
Phenol <108-95-2>
PCB-1016 (Arochlor 1016)
   <12674-ll-2>
PCB-1221 < Arochlor 1221)
   <11104-28-2>
PCB-1232   (Arochor 1232)
PCB-1242 (Arochlor 1242)
   <53469-21-9>
PCB-1248 (Arochlor 1248)
   <12672-29-6>
PCB-1254    (Arochlor 1254)
   <11097-69-l>
PCB-1260 (Arochlor 1260)
   <11096-82-5>
Pyrene <129-00-0>
Seleniun <7782-49-2>
Silver <7440-22-4>
2,4,7, 8-Tetrachlorodibenzo-p-
   dioxin (TCDD)
1,1,2,2-Tetrachloroethane
   <79-34-5>
Tetrachloroethylene <127-18-4>
Thallium <7440-28-0>
Toluene    
Toxaphene <8001-35-2>
TribroBone thane <75-25-2>
1,2, 4-T r ichlorobenzene <120-82-l>
1,1,1-Trichloroethane    <71-55-6>
1,1,2-Trichloroethane <79-00-5>
Trichloroethylene    <79-01-6>
Trichlorofluoroaethane <75-69-4>
2,4,6-    Trichlorophenol
   <88-06-2>
Vinyl chloride <75-01-4>
Zinc <7440-66-6>,TSS
Oil and Grease
total Coliforn
Chloride
Phenol
Fecal Colifora
Cyanide
TOC
Dissolved Oxygen
                         1001

-------
                             Accession Mo.  9028000512     (cont)

(CAS)  CAS registry numbers of substances included in data base: 83-32-9
    ; 208-96-8* 107-02-8; 107-13-1;   30*-00-2; 120-12-7; 7440-36-0;
    7440-38-2; 1332-21-4; 319-84-6;   319-85-7; 58-89-9; 319-86-8;
    71-43-2; 92-87-5; 56-55-3; 205-99-2;     207-08-9; 191-24-2;
    50-32-8; 7440-41-7; 111-91-1; 111-44-4;      39638-32-9; 542-88-1;
    117-81-7; 74-83-9; 101-55-3; 85-68-7;      7440-43-9; 56-23-5;
    57.74-9. 108-90-7; 124-48-1; 75-00-3; 110-75-8;   67-66-3; 59-50-7;
    74-87-3; 91-58-7; 95-57-8; 7005-72-3; 7440-47-3;    218-01-9;
    7440-50-8; 57-12-5; 72-54-8; 72-55-9; 50-29-3; 53-70-3;
    84-74-2; 95-50-1; 541-73-1; 106-46-7; 91-94-1; 75-27-4; 75-71-8;
    75-34-3; 107-06-2; 75-35-4; 156-60-5; 75-09-2; 120-83-2; 78-87-5;
    563-54-2; 60-57-1; 84-66-2; 105-67-9; 131-11-3; 534-52-1; 51-28-5;
    121-14-2; 606-20-2; 117-84-0; 122-66-7; 959-98-8; 33213-65-9;
    1031-07-8; 72-20-8; 7421-93-4; 100-41-4; 206-44-0; 86-73-7;
    75.44.3;       1024-57-3; 118-74-1; 87-68-3; 77-47-4; 67-72-1;
    193-39-5; 78-59-1;    7439-92-1; 7439-97-6; 91-20-3; 7440-02-0;
    98-95-3; 88-75-5; 100-02-7;      62-75-9; 86-30-6; 621-64-7;
    87-86-5; 85-01-8; 108-95-2; 12674-11-2;   11104-28-2; 11141-16-5;
    53469-21-9; 12672-29-6; 11097-69-1;      11096-82-5; 129-00-0;
    7782-49-2; 7440-22-4; 79-34-5; 127-18-4;   7440-28-0; 108-88-3;
    8001-35-2; 75-25-2; 120-82-1; 71-55-6; 79-00-5;       79-01-6;
    75-69-4; 88-06-2; 75-01-4; 7440-66-6
(CMN)  Contact naie(s): Heraett,R.B.  ;  Nossa,G.  ;  He»nett,R.B.
(COR)  Contact organization: Roland B. Renaett
(ROR)  Responsible Organization: Region II.Environmental Services
    Division*
                             1002

-------
                             Accession No.  9028000901

(OQ)  Date of Questionalre: 12-02-82
(HAH)  Name of Data Base of Model: PCBs in Lower Hudson River Sediments
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Sediment
(ABS)  Abstract/Overview of Data Base or Model: Data base contains
    results of 60 sediment samples which were analyzed for
    polychlorlnated biphenyls (PCBs).   Samples were collected from
    Troy, N.Y. to New York City during   December, 1976.
(CTC)  CONTACTS: Subject matter   Roland Henmett  (201) 321-6687   ;
    Computer-related    Robert Messina  (212) 264-9850 } EPA Office
    Roland Henmett (201) 321-6687
(DTP)  Type of data collection or monitoring: Ambient data collection
(STA)  Data Base status: Update terminated
(NPP)  Non-pollutant parameters included in the data base: Location
    ;Sampling date
(DS)  Time period covered by data base: 12-01-76 TO 10-22-81
(TRM)  Termination of data collection: Occurred 12/30/76 ; another set
    of samples was collected in October 1981.
(FRQ)  Frequency of data collection or sampling: twice
(NOB)  Number of observations in data base: 60(estimated)
(INF)  Data base includes: Raw data/observations
(ITS)  Total number of stations or sources covered in data base:  40.
(NCS)  No. stations or sources currently originating/contributing data:
    0.
(NOF)  Number of facilities covered in data base (source monitoring): 0.
(CEO)  Geographic coverage of data base: Geographic region Lower  Hudson
    River/ New York and Upper Hudson River
(LOG)  Data elements identifying location of station or source include:
    Coordinates latitude/longitude
(CDE)  Pollutant identification data are:  Storet parameter
(LIM)  Limitation/variation In data of which user should be aware: See
    abstract for study limitations.
(DPR)  Data collect./anal, procedures conform to ORD guidelines:  Samplln
    g plan documented ^Collection method documented ^Analysis method
    document QA procedures documented
(ANL)  Lab analysis based on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but are  not
    included in data base
(EOT)  Editting: ~YYes
(CBY)  Data collected by: Regional office Environmental Services
    Division
(ABY)  Data analyzed by: Regional office Environmental Services
    Division
(IDL)  Laboratory identification: NO
(PR1)  Primary purpose of data collection: Compliance or enforcement
(PR2)  Secondary purpose of data collections Trend assessment
(AUT)  Authorization for data collection:  Statutory authorization is  P
    L 92-500 as amended. Section 106 and 305  (Clean Hater Act-CVA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting  forms:
    QQ
(REP)  Form of available reports and outputs of data base: Publications


                             1003

-------
                             Accession No.   9026000901      (cont)

    PCBs In Lover Hudson River Sediments:   a preliminary     survey
    On-line computer
(NOS)  Number of regular users of data base: 10
(USR)  Current regular users of data base:  EPA regional offices
    States
(CNF)  Confidentiality of data and li*its on access: No limits on
    access to data
(DLC)  Primary physical location of data:  Regional office

-------
                             Accession No.  9028000902

(DQ)   Date of Questionaire: 12-02-82
(HAN)   Kane of Data Base of Model: Newark Bay
(ACR)   Acronym of Data Base or Model: None
(MED)   Media/Subject of Data Base or Model: Surface water estuary
(ABS)   Abstract/Overview of Data Base or Model: Data base contains
    dissolved oxygen and sulfide   data from twenty stations within
    Newark Bay.  The saaples   are collected at low slack tide from  one
    foot below the     surface and one foot off the bottom.
(CTC)   CONTACTS:  Subject «atter   Roland Hemaett  (201) 321-6687  ;
    Computer-related  Jack S
(DTP)   Type of data collection or monitoring: Ambient data collection
(STA)   Data Base  status: Complete
(HPP)   Non-pollutant parameters included in the data base: Location
    ;Sampling date
(DS)   Tine period covered by data base: 07-01-80 TO 10-30-80
(TRM)   Termination of data collection: 10/30/80
(FRQ)   Frequency  of data collection or sampling: as needed
(•OB)   Number of  observations in data base: 20000.(Estimated)
(NEI)   Estimated  annual increase of observations in data base:  None.
(INF)   Data base  includes: Raw data/observations
(NTS)   Total number of stations or sources covered in data base: 20.
(NCS)   No. stations or sources currently originating/contributing data:
    20.
(NOF)   Number of  facilities covered in data base (source monitoring): 0.
(GEO)   Geographic coverage of data base: County/smaller location Newark
    Bay
(LOC)   Data elements identifying location of station or source include:
    State ^Coordinates latitude/longitude
(CDE)   Pollutant  identification data are: Storet parameter
(LIM)   Limitation/variation in data of which user should be aware: None
(DPR)   Data collect./anal, procedures conform to ORD guidelines: Samplln
    g  plan documented ^Collection method documented ^Analysis method
    document QA procedures documented
(ANL)   Lab analysis based on EPA-approved or accepted methods? YES
(PRE)   Precision: Precision and accuracy estimates exist but are not
    included in data base
(EDT)   Fditting:  Edit procedures used and documented.
(CBY)   Data collected by: Regional office Environmental Services
    Division, Region II
(ABY)   Data analyzed by: Regional office Environmental Services
    Division/ Region II
(IDL)   Laboratory identification: NO
(PR1)   Primary purpose of data collection: Compliance or enforcement
(PR2)   Secondary  purpose of data collection: Trend assessment
(AUT)   authorization for data collection: No statutory requirement:
    Data collection requirement is    State requested assistance
    monitoring a  sewage treatment plant by passing  raw sewage into  the
    bay.
(OMB)   Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)   Form of available reports and outputs of data base: On-line
    computer


                             1005

-------
                             Accession No.   9028000902     (cont)

(NUS)  Number of regular users of data base:  50
(OSR)  Current regular users of data base:  EPA regional offices
    States
(CNF)  Confidentiality of data and Halts on access: No Units on
    access to data
(DLC)  Primary physical location of data: Regional office
COST)  Fora of data storage: Magnetic disc
(DAC)  Type of data access: EPA software STORET  MIDS:5303000101 ;EPA
    hardware IBM 370/168
(CHG)  Direct charge for non-EPA uses yes
(OPDT)  Frequency of data base master file up-date: Other originally
    weekly now monthly
(CMP)  Completion of form:
    Roland Hemmett
    OFC: EPA/Region II/Environmental Services Division
    AD: Hoodbridge Ave, Edison, NJ
    PH: (201) 321-6687
(DP)  Date of form completion: 01-14-63
(NMAT)  Number of substances represented in data base: 2
(MAT)  Substances represented in data base:
    dissolved oxygen                     sulfide
(CNM)  Contact name(s): Hemmett,R.;    Messina,R. ;    Henmett/R
(ROR)  Responsible Organization: Region II.Environmental Services
    Division.
                             1006

-------
                             Accession No.  9028000903

tDQ)  Date of Questionaire: 12-02-82
(MAM)  Name of Data Base of Model: New York Bight Ocean Monitoring
    Program
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject Of Data Base or Model: Surface water Ocean (Bight
    apex)
(ABS)  Abstract/Overview of Data Base or Model: Data Base contains
    results from 177 sampling locations spread over the nearshore
    waters of the New York Bight.  Samples are collected weekly in the
    water column (1 meter below surface and 1 aeter off    botton) from
    May 15 to September 30.
(CTC)  CONTACTS: Subject natter   Roland Hemaett  (201) 321-6687  ;
    Computer-related    Messina,R.  (212) 264-9850 ; EPA Office  Roland
    Hemaett (201) 321-6687
(DTP)  Type of data collection or monitoring: Ambient data collection
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented in Data Base: 129 307 CMA ;11
    conventional water
(NPP)  Non-pollutant parameters included in the data base: Location
    ;Sampling date ;Site description ;Temperature
(DS)  Time period covered by data base: 05-01-77 TO 12-28-82
(TRM)  Termination of data collection: Hot anticipated
(FRQ)  Frequency of data collection or sampling: as needed ;0ther
    weekly:  temperature and dissolved oxygen ;0ther monthly:  othe
    Other as needed:  129 sediment samples
(NOB)  Number of observations in data base: 45000.(Estimated)
(NEI)  Estimated annual increase of observations in data base: 7650.
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base: 250.
(NCS)  No. stations or sources currently originating/contributing data:
    250.
(NOF)  Number of facilities covered in data base (source monitoring): 0.
(GCO)  Geographic coverage of data base: Geographic region New York
    Bight
(LOG)  Data elements identifying location of station or source include:
    Coordinates latitude/longitude
(FAC)  Data elements identifying facility include: N/A
(CDE)  Pollutant identification data are: Storet parameter
(L1M)  Limitation/variation in data of which user should be aware:  Prior
    ity pollutants sampled in sediment only.   Not ail 177 stations are
    sampled for the 129    priority pollutants.
(DPR)  Data collect./anal, procedures conform to ORD guidelines: Samplin
    g plan documented Collection method documented /Analysis method
    document QA procedures documented
(AML)  Lab analysis based on EPA-approved or accepted methods? YES
(AUD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base
(EOT)  Editting:  Edit procedures used and documented.
(CBY)  Data collected by: Regional office Region II, Surveillance and
    Analysis Division
(ABY)  Data analyzed by:  Regional office Region II,  Surveillance and


                             1007

-------
                         Accession No.   9028000903
                                                           (cont)
    Analysis Division
(IDL)  Laboratory identification: NO
(PR1)  Primary purpose of data collection: Compliance or enforcement
(PR2)  Secondary purpose of data collection: Trend assessment
(AOT)  Authorization for data collection: Statutory authorization is P
    L 92-500 as amended (Sections 403 and 405 (Clean Hater Act-CHA)
(OMB)  Data col lee ted/ submit ted using OMB- approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base: Publications
    Rev York Bight Report
    On-line computer
(HUS)  Number of regular users of data base: 10
(OSR)  current regular users of data base: EPA regional offices
(CRF)  Confidentiality of data and limits on access: No limits on
    access to data
(DLC)  Primary physical location of data: Regional office
(DST)  Form of data storage: Magnetic disc
(DAC)  Type of data access: EPA software STORE?  MIDS: 5303000101 ;EPA
    hardware IBM 370/168
(CHG)  Direct charge for non-EPA use: yes
(OPDT)  Frequency of data base master file up-date: Veekly
(CMP)  Completion of form:
    Roland Hemmett
    QFC: EPA/Region II/Surveillance and Analysis Division
    AD: Hoodbridge Ave Edison, NJ
    Pfl: (201) 321-6687
(DF)  Date of form completion: 01-14-83
(RMAT)  Number of substances represented in data base: 134
(•CAS)  Number of CAS registry numbers in data base: 127
(MAT)  Substances represented in data base:
   f l-trichloroethane<71-55-
   6>
1,1,2, 2,-tetrachloroethane
   <79-34-5>
1, l,2-trlchloroethane<79-00-5>
1, l-dichloroethane<75-34-3>
If l-dlchloroethylene<75-35-4>
l,2,4,-trichlorobenzene<120-82-l>
1, 2-dlchlorobenzene<95-50-l>
l,2-dichloroethane<107-06-2>
l,2-dichloropropane<78-87-5>
l,2-dichloropropylene<563-54-2>
l,2-diphenylhydrazine<122-«6-7>
1,2-trans-dlchloroethylene
   <156-60-5>
l,3-dlchlorobenz«ne<541-73-l>
l,4-dlchlorobenzene<106-46-7>
2,4,6-trichlorophenol<88-06-2>
2, 4,7, 8- te trachlorodibenzo-p-
   cioxin (tcdd)
2f 4-dichlorophenol<120-83-2>
2, 4-dimethylphenol<105-67-9>
                                         2,4-dlnitrophenol<51-28-5>
                                         2,4-dlnitrotoluene<121-14-2>
                                         2,6-dinitrotoluene<606-20-2>
                                         2-chloroethylvinyl ether<110-75-8>
                                         2-chloronaphthalene<91-58-7>
                                         2-chlorophenol<95-57-8>
                                         2-nit rophenol<88-75-5>
                                         3,3*-dichlorobenzidlne<91-94-l>
                                         3,4-benzof luoranthene<205-99-2>
                                         4,4'-ddd(p,p'tde)
                                         4,4'-dde
                                         4,4'-ddt<50-29-3>
                                         4,6-dinltro-o-cresol<534-52-l>
                                         4-bromophenyl phenyl ether
                                            <101-55-3>
                                         4-chlorophenyl phenyl ether
                                            <7005-72-3>
                                         4-nitrophenol<100-02-7>
                                         acenaphthene<83-32-9>
                                         acenaphthylene<208-96-8>
                                         acrolein<107-02-8>
                                         acrylonitrile<107-13-l>
                             1008

-------
                         Accession Mo.  9028000903
                  (cont)
aldrin< 309-0 0-2>
anthracene<120-12-7>
antiraony<7440-36-0>
arsenic<7440-38-2>
asbestos<1332-21-4>
benzene<71-43-2>
benzidine< 92-87-5>
benzo( a) anthracene<56-55-3>
benzo(a)pyrene<50-32-8>
benzo( g, h, i) pery lene< 1 91-24-2>
ben20< k) f luo ranthene<207-08-9>
berylllu«<7440-41-7>
bhc (lindane)-ga«»a<58-89-9>
bhc-alpha<319-84-6>
bhc-beta<319-85-7>
bhc-de lta<31 9-86-8>
bis( 2-chloroethoxy )aethane
bis(2-chloroethyl)eth«r
bis( 2-chloroisopropy 1) ether
   <39638-32-9>
bis(2-ethylhexyl)phthalate
bis(chloro»ethyl)ether<542-88-l>
bro»OBethane<74-83-9>
butyl benzyl phthalate<85-68-7>
cad»lu«<7440-43-9>
carbon tetrachloride<56-23-5>
chlordane<57-74-9>
chlorobenzene<108-90-7>
chlorodibro«oBethane<124-48-l>
chloroethane<75-00-3>
chlorofora<67-66-3>
chloromethane<74-87-3>
chro»lu»<7440-47-3>
chrysene<218-01-9>
copper<7440-50-8>
cyanide<57-12-5>
di-n-butyl phthalate<84-74-2>
dl-n-octyl phthalate<117-84-0>
dibenz o< a, h) an thr acene<53-70-3>
dichlorobro«o«ethan«<75-27-4>
dichlorodifluoro»ethane<75-71-8>
dichloropethane<75-09-2>
dieldrln<60-57-l>
dl ethyl phthalate<84-66-2>
dimethyl phthalate<131-ll-3>
dissolved solids
endosulfan sulfate<1031-07-8>
endosulfan-alpha<959-98-8>
endosulfan-beta<33213-65-9>
endrln aldehyde<7421-93-4>
endrin<72-20-8>
ethylbenzene<100-41-4>
fluoranthene<206-44-0>
fluorene<86-73-7>
heptachlor epoxide<1024-57-3>
heptachlor<76-44-8>
hexachlorobenzene<118-74-l>
hexachlorobutadiene<87-68-3>
hexachlorocyclopentadlene<77-47-4>
hexachloroethane<67-72-l>
indeno (l,2,3-cd)pyrene<193-39-5>
1 sophor one<78-59-l>
lead<7439-92-l>
»ercury<7439-97-6>
n-n 1 1 rosed i-n-propy laai ne
   <621-64-7>
n-ni t ro sodiae thyl an lne<62-7 5-9>
n-nitrosodiphenyla«ine<86-30-6>
naphthalen«<91-20-3>
nlckel<7440-02-0>
nitrobenzene<98-95-3>
p-chloro-B-cresol<59-50-7>
pcb-1016  (arochlor 1016)
   <12674-ll-2>
pcb-1221  (arochlor 1221)
   <11104-28-2>
pcb-1232  {arochlor 1232)
pcb-1242  (arochlor 1242)
   <53469-21-9>
pcb-1248  (arochlor 1248)
   <12672-29-6>
pcb-1254  (arochlor 1254)
   <11097-69-l>
pcb-1260  (arochlor 1260)
   <11096-82-5>
p en tach 1 or ophenoK 87* 86-5>
Ph
phenanthrene<85-01-8>
phenol<108-95-2>
pyrene<129-00-0>
selenlua<7782-49-2>
sllver<7440-22-4>
tetrachloroethylene<127-18-4>
thalliu«<7440-28-0>
toluene<108-88-3>
total kjeldahl  nitrogen
total suspended solids (TSS)
t oxaphene< 8001-35-2>
transparency
tribroBO«€thane<7 5-25-2 >
trichloroethylene<79-01-!-6>
                          1009

-------
                             Accession Ho.  9028000903     (cont)

    trlchlorofluoroMethane<75-69-4>      zinc<7440-66-6>
    vinyl chloride<75-01-4>
(CAS)  CAS registry numbers of substances included in data base: 71-55-6
    ; 79-34-5; 79-00-5; 75-34-3; 75-35-4;       120-82-1; 95-50-1;
    107-06-2; 78-87-5; 563-54-2; 122-66-7; 156-60-5;   541-73-1;
    106-46-7; 88-06-2; 120-83-2; 105-67-9; 51-28-5; 121-14-2;
    606-20-2; 110-75-8; 91-58-7; 95-57-8; 88-75-5; 91-94-1; 205-99-2;
    72-55-9; 50-29-3; 534-52-1; 101-55-3; 7005-72-3; 100-02-7; 83-32-9;
    208-96-8; 107-02-8; 107-13-1; 309-00-2; 120-12-7; 7440-36-0;
    7440-38-2; 1332-21-4; 71-43-2; 92-87-5; 56-55-3; 50-32-8; 191-24-2;
    207-08-9; 7440-41-7; 58-89-9; 319-84-6; 319-85-7; 319-86-8;
    111-91-1;      111-44-4; 39638-32-9; 117-81-7; 542-88-1; 74-83-9;
    85-68-7;      7440-43-9; 56-23-5; 57-74-9; 108-90-7; 124-48-1;
    75-00-3; 67-66-3;    74-87-3; 7440-47-3; 218-01-9; 7440-50-8;
    57-12-5; 84-74-2; 117-84-0;       53-70-3; 75-27-4; 75-71-8;
    75-09-2; 60-57-1; 84-66-2; 131-11-3;       1031-07-8; 959-98-8;
    33213-65-9; 7421-93-4; 72-20-8; 100-41-4;   206-44-0; 86-73-7;
    1024-57-3; 76-44-8; 118-74-1; 87-68-3; 77-47-4;    67-72-1;
    193-39-5; 78-59-1; 7439-92-1; 7439-97-6; 621-64-7; 62-75-9;
    86-30-6; 91-20-3; 7440-02-0; 98-95-3; 59-50-7; 12674-11-2;
    11104-28-2; 11141-16-5; 53469-21-9; 12672-29-6; 11097-69-1;
    11096-82-5; 87-86-5; 85-01-8; 108-95-2; 129-00-0; 7782-49-2;
    7440-22-4; 127-18-4; 7440-28-0; 108-88-3; 8001-35-2; 75-25-2;
    79-01-6; 75-69-4; 75-01-4; 7440-66-6
(CUM)  Contact na*e(s): Renett,R.;    Sweeney,J.;    Hem»ett,R.

-------
                             Accession Ho.  9026000904

(DQ)   Date of Questionaire: 12*02-82
(NAM)   Name of Data Base of Model: ALDICARB Data Base
(ACR)   Acronym of Data Base or Model: Hone
(MED)   Media/Subject of Data Base or Model: Drinking Hater
(ABS)   Abstract/Overview of Data Base or Model: The ALDICARB data base
    Has collected from    8 drinking Mater Hells on Long Island/  NY,
(CTC)   CONTACTS:  Subject natter   Francis Brezenski  (201)321-6706;
    Computer-related  Robert
(DTP)   Type of data collection or monitoring: Anbient data  collection
(STA)   Data Base  status: Discontinued
(BPP)   Non-pollutant paraaeters included in the data base:  Collection
    method ;Location ;Physical data ;Sampling date ;Site description
(DS)   Ti»e period covered by data base: 07-00-79
(TRM)   Termination of data collection: Not applicable
(FRQ)   Frequency of data collection or sampling: one time only
(NOB)   Number of  observations in data base: 8.(Actual)
(NED   Estimated annual increase of observations in data base: (N/A.)
(INF)   Data base includes: Raw data/observations
(NTS)   Total number of stations or sources covered in data base:  8«
(NCS)   No. stations or sources currently originating/contributing data:
    0.
(NOT)   Number of facilities covered in data base (source monitoring): 0.
(GEO)   Geographic coverage of data base: County/smaller location Long
    Island, NY
(LOG)   Data elements identifying location of station or source include:
    State /City ;Street address
(FAC)   Data elements identifying facility include: N/A
(CDE)   Pollutant identification data are: Uncoded
(LIM)   Limitation/variation in data of nhich user should be auare: Analy
    ses done by U.S. Department of     Agriculture Lab-unknown
    performance evaluation.
(DPR)   Data collect./anal, procedures conform  to ORD guidelines: Collect
    ion method documented
(AHL)   Lab analysis based  on EPA-approved or accepted methods? YES
(PRE)   Precision: Precision and accuracy estimates exist but are not
    included in data base
(EOT)   Editting: Edit procedures used but undocumented.
(CBY)   Data collected by:  Local agency local health department
    jRegional office Surveillance and Analysis
(ABY)   Data analyzed by: Other federal agency U.S. Department of
    Agriculture    Lab-Beltsville, MD
(IDL)   Laboratory identification: NO
(PR1)  Primary purpose  of  data collection: Risk assessment
(AOT)  Authorization for data collection: No statutory requirements
    Data  is collected due  to a   special request to investigate
    aldicarb in drinking nater-folloH up  turned over  to county.
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports  and outputs of data base: Machine-reada
    ble raw data
(•OS)  Number of regular users of data base: 4 offices
(OSR)  Current regular  users of data base: EPA laboratories


                             1011

-------
                             Accession  lo.   9028000904
(cont)
    Other federal agencies
    States
(CNF)  Confidentiality of data and Ililts on access:  Mo limits on
    access to data
(DLC)  Primary physical location of data: Regional office
(DST)  Fora of data storage:  Original fora (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: yes
(OPDT)  Frequency of data base vaster file up-date: Other one ti»e  study
(CMP)  Completion of fora:
    Randy Braun
    OFC: EPA/Region II
    AD: Edison, N.J.
    PH: (201)321-6692
(OF)  Date of fora completion: 01-14-83
(•NAT)  Number of substances represented in data base: 1
(NCAS)  Number of CAS registry numbers in data basei 1
(MAT)  Substances represented in data bases
    Aldicarb<116-06-3>
(CAS)  CAS registry numbers of substances included in data base:  116-06-
    3
(CMM)  Contact name(s): Messlna,R«  ;  Brezenskl/F.
(ROR)  Responsible Organization: Region II.Environmental Services
    Division.
                             1012

-------
                             Accession Ho.   9028000905

(DQ)  Date of Questionaire: 12-02-82
(MAN)  Mane of Data Base of Model: Humacao Ambient Data Base
(ACR)  Acronyn of Data Base or Model:  Hone
(MED)  Media/Subject of Data Base or Model: Effluents industrial
    ^Sediment ;Surface water creek
(ABS)  Abstract/Overview of Data Base or Model:  Intensive survey  of
    Frontera Creek in   Humacao, Puerto Rico.  Industries,  creek
    sedinent,     and creek water column Here all sampled for metals
    and selected organics.
(CTC)  CONTACTS: Subject matter   Roland Hemnett  (201)321-6687    ;
    Computer-related    Archdeacon,B.   (201)321-6787  ;  EPA Office
    Region II, Edison, NJ (201)321-6687
(DTP)  Type of data collection or Monitoring: Ron point source data
    collection
(STA)  Data Base status: Discontinued
(GRP)  Groups of substances represented in Data Base: 129 307 CtfA ;11
    conventional water ;15 netals
(NPP)  Non-pollutant parameters included In the data base:  Collection
    •ethod ^Physical data
(OS)  Tine period covered by data base: 10-00-79
(TRM)  Termination of data collection: Not applicable
(FRQ)  Frequency of data collection or sampling: one tine only
(NOB)  Number of observations In data base: 300.(Estimated)
(NEI)  Estinated annual increase of observations in data base: 0.
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base:  20.
(NCS)  No. stations or sources currently originating/contributing data:
    0.
(•OF)  Number of facilities covered in data base (source monitorIng): 6.
(GEO)  Geographic coverage of data base: County/smaller location
    Frontera Creek, Humacao, Puerto Rico
(LOG)  Data elements identifying location of station or source include:
    State ;County ;City ;Town/township ;Project identifier
(FAC)  Data elements identifying facility include: Plant facility name
    ;PIant location ;street address ;NPDES
(CDE)  Pollutant identification data are: Storet parameter
(LIM)  Limitation/variation in data of which user should be aware: Varyi
    ng samples  and parameters for different stations
(DPR)  Data collect./anal, procedures conform to ORD guidelines:  Samplin
    g plan documented Collection method documented ;Analysis method
    document QA procedures documented
(ANL)  Lab analysis based  on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but are  not
    included in data base
(EOT)  Editting: Edit procedures used but undocumented.
(CBY)  Data collected by:  Regional office Environmental Services
    Division, Region II
(ABY)  Data analyzed by: Regional office Environmental Services
    Division, Region II
(IDL)  Laboratory Identification: YES
(AOT)  Authorization for data collection: No statutory requirement:


                             1013

-------
                             Accession Mo.  9028000905     (cont)

    Data collection requirement is    at request of Environaental
    Quality Board (Puerto Rico) to assist in  evaluating local problea.
COMB)  Data collected/submitted using OMB-approved EPA reporting foras:
    QQ
(REP)  Form of available reports and outputs of data base: Unpublished
    reports Frontera Creek Survey, Huaacao, Puerto Rico
    Printouts on request
CMOS)  Number of regular users of data base: 50
(OSR)  Current regular users of data base: EPA regional offices
    Other federal agencies
    States
(CNF)  Confidentiality of data and Halts on access: No Halts on
    access to data
(DLC)  Priaary physical location of data: Regional office
(DST)  Fora of data storage: Magnetic disc
(DAC)  Type of data access: EPA software STORET  NIDS:5303000101 ;EPA
    hardware IBM 370/168
(CHG)  Direct charge for non-EPA use: yes
(OPDT)  Frequency of data base Master file up-date: Other study update
    terminated
(CMP)  Completion of fora:
    Randy Braun
    OFC: EPA/Region II
    AD: Edison, N.J.
    PH: (201)321-6692
(DF)  Date of fora completion: 01-14-83
(NMAT)  Nuaber of substances represented in data base: 140
(NCAS)  Number of CAS registry nuabers in data base: 133
(MAT)  Substances represented in data base:
    l,l,l-trichloroethane<71-55-         2,4-dinitrotoluene<121-14-2>
       6>                                2,6-dinitrotoluene<606-20-2>
    1,1,2,2,-tetrachloroethane           2-chloroethylvinyl ether<110-75-8>
       <79-34-5>                         2-chioronaphthalene<91-58-7>
    l,l,2-trichloroethane<79-00-5>       2-chloroi>henol<95-57-8>
    l,l-dichloroethane<75-34-3>          2-nitrophenol<88-75-5>
    l,l-dichloroethylene<75-35-4>        3,3*-dichlorobenzidine<91-94-l>
    l,2,4*-trichlorobenzene<120-82-l>    3,4-benzofluoranthene<205-99-2>
    l,2-dichlorobenzene<95-50-l>         4,4'-ddd(p,p*tde)
    l,2-dichloroethane<107-06-2>         4,4--dde
    l,2-dichloropropane<78-87-5>         4,4*-ddt<50-29-3>
    l,2-dichloropropylene<563-54-2>      4,6-dinitro-o-cresol<534-52-l>
    l,2-dlphenylhydrazlne<122-66-7>      4-broaophenyl phenyl ether
    1,2-trans-dichloroethylene              <101-55-3>
       <156-60-5>                        4-chlorophenyl phenyl ether
    1,3-dichlorobenzene<541-73-l>           <7005-72-3>
    l,4-dichlorobenzene<106-46-7>        4-nitrophenol<100-02-7>
    2/4,6-trichlorophenol<88-06-2>       acenaphthene<83-32-9>
    2/4,7,8-tetrachlorodibenzo-p-        acenaphthylene<208-96-8>
       dioxin (tcdd)                     acidity
    2,4-dichlorophenol<120-83-2>         acrolein<107-02-8>
    2,4-diaethylphenol<105-67-9>         acrylonitrile<107-13-1>
    2,4-dinitrophenol<51-28-5>           aldriiK309-00-2>


                             1014

-------
                         Accession No*  9028000905
                  (cont)
alkalinity
anthracene<120-12-7>
anti«ony<7440-36-0>
arsenic<7440-38-2>
asbestos<1332-21-4>
benzene<71-43-2>
benzidine<92-87-5>
benzo( a)anthracene<56-55-3>
benzo(a)pyrene<50-32-8>
benzo(g,h,i)perylene<191-24-2>
benzo(k)fluoranthene<207-08-9>
berylliu«K7440-41-7>
bhc (lindane)-ganaa<58-89-9>
bhc-alpha<31 9-84-6>
bhc-beta<319-85-7>
bhc-delta< 31 9-86-8>
bis(2-chloroethoxy)nethane
bis(2-chloroethyl)ether
bis(2-chloroisopropyl) ether
   <39638-32-9>
bis(2-ethy Ihexy 1 )phthalate
bis(chloro»ethyl)ether<542-88-l>
broaomethane<74-83-9>
butyl benzyl phthalate<85-68-7>
cadBiua<7440-43-9>
carbon tetrachloride<56-23-5>
chlordane<57-74-9>
chlorobenz ene< 10 8-90-7>
chlcrodibroaomethane<124-48-l>
chloroethane<75-00-3>
chlorofor«<67-66-3>
chloronethane<74-87-3>
chro«iun<7440-47-3>
chrysene<218-01-9>
copper<7440-50-8>
cyanide<57-12-5>
di-n-butyl phthalate<84-74-2>
di-n-octyl phthalate<117-84-0>
dibenz o( a, h) anthrac«ne<53-70-3>
dichlorobrofflonethane<75-27-4>
dichlorodifluoroaethane<75-71-8>
dichloromethane<75-09-2>
dieldrin<60-57-l>
diethyl phthalate<84-66-2>
diiethyl phthalate<131-ll-3>
dissolved oxygen
dissolved solids
endosulfan sulfate<1031-07-8>
endosulfan-alpha<959-98-8>
endosulf an-beta< 3321 3-65-9>
endrin aldehyde<7421-93-4>
endrin<72-20-8>
ethylbenzene<100-41-4>
fecal coliforn
f luoranthene<206-44-0>
fluorene<86-73-7>
heptachlor epoxide<1024-57-3>
hep t achlor <76-44-8>
hexachlorobenzene<118-74-l>
hexachlcrobutadiene<87-68-3>
hexachlorocyclopentadiene<77-47-4>
hexachloroethane<67-72-l>
indeuo (1^2,3-cd)pyrene<193-39-5:
isophorone<78-59-l>
lead<7439-92-l>
mercury<7439-97-6>
n-ni t ro sodi-n-propy lamina
   <621-64-7>
n-nitrosodiBethyla«ine<62-75-9>
n-nitrosodiphenyla«ine<86-30-6>
nap h tha lene<91 -20 -3>
nickel<7440-02-0>
nitrobenzene<98-95-3>
nitrogen<7727-37-9>
oil and grease
oxygen deaand
p-chloro-»-cresol<59-50-7>
PH
pcb-1016 (arochlor 1016)
   <12674-ll-2>
pcb-1221 (arochlor 1221)
   <11104-28-2>
pcb-1232 (arochlor 1232)
pcb-1242 (arochlor 1242)
   <53469-21-9>
pcb-1248 (arochlor 1248)
   <12672-29-6>
pcb-1254 (arochlor 1254)
   <11097-69-l>
pcb-1260 (arochlor 1260)
   <11096-82-5>
pentachlorophenol<87-86-5>
phenanthrene<85-01-8>
phenol<108-95-2>
phosphorws<7723-14-0>
pyrene<129-00-0>
selenium<7782-49-2>
silver<7440-22-4>
suspended solids
tetrachloroethylene<127-18-4>
thalliu«<7440-28-0>
                         1015

-------
                             Accession No.  9028000905     (cont)

    toluene<108-88-3>                    trichlorofluoro«ethane<75-69-4>
    toxaphene<8001-35-2>                 vinyl chloride<75-Oi-4>
    tribrow»ethane<75-25-2>             zinc<7440-66-6>
    trichloroethylen«<79-01-6>
CCAS)  CAS registry numbers of substances included in data base: 71-55-6
    ; 79-34-51 79-00-5; 75-34-3; 75-35-41       120-82-U 95-50-1;
    107-06-21 78-87-51 563-54-21 122-66-71 156-60-51   541-73-H
    106-46-71 88-06-21 120-83-21 105-67-91 51-28-51 121-14-21
    606-20-21 110-75-81 91-58-71 95^57-81 88-75-51 91-94-U 205-99-21
    72-55-91 50-29-31 534-52-U 101-55-31 7005-72-31 100-02-71 83-32-91
    208-96-81 107-02-81 107-13-11 309-00-21 120-12-71 7440-36-01
    7440-38-21 1332-21-41 71-43-21 92-87-51 56-55-31 50-32-81 191-24-21
    207-08-91 7440-41-71 58-89-91 319-84-61 319-85-71 319-86-81
    111-91-U      111-44-41 39638-32-91 117-81-71 542-88-U 74-83-91
    85-68-71      7440-43-91 56-23-Sl 57-74-91 108-90-71 124-48-U
    75-00-31 67-66-31    74-87-31 7440-47-31 218-01-91 7440-50-81
    57-12-51 84-74-21 117*84-0i       53-70-31 75-27-41 75-71-81
    75-09-21 60-57-H 84-66-21 131-11-31       1031-07-8; 959-98-8;
    33213-65-9; 7421-93-4; 72-20-8; 100-41-4;   206-44-0; 86-73-7;
    1024-57-3; 76-44-8; 118-74-1; 87-68-3; 77-47-4;    67-72-1;
    193-39-5; 78-59-1; 7439-92-1; 7439-97-6; 621-64-7; 62-75-9;
    86-30-6; 91-20-3; 7440-02-0; 98-95-3; 7727-37-9; 59-50-7;
    12674-11-2;      11104-28-2; 11141-16-5; 53469-21-9; 12672-29-6;
    11097-69-1;      11096-82-5; 87-86-5; 85-01-8; 108-95-2; 7723-14-0;
    129-00-0;     7782-49-2; 7440-22-4; 127-18-4! 7440-28-01 108-88-31
    8001-35-2;       75-25-2; 79-01-6; 75-69-41 75-01-41 7440-66-6
CCNM)  Contact naae(s): Heuett,R.i    S«ith,R.  ;    II,R.
CROR)  Responsible Organization: Region II,Environmental Services
    Division.
                              1016

-------
                             Accession No.   9028000906

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: U.S. Virgin Islands-St.  Thomas,  St.
    Croix
(ACR)  Acronym of Data Base or Model: Rone
(MED)  Media/Subject of Data Base or Model: Sediment ^Surface water
    ocean
fABS)  Abstract/Overview of Data Base or Model: Data consists of
    station heading, location,  time, date, and parameters  (dissolved
    oxygen, bacti,   metals, nutrients) for water and priority
    pollutants   for sediment samples.  Sampled every five  years-next
    sampling FY 84.
(CTC)  CONTACTS: Subject matter   R. Hemmett  (201)321-6687  ;
    Computer-related  R. Smith  (
(DTP)  Type of data collection or monitoring: Ambient data  collection
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented in Data Base: 129 307 CtfA
(NPP)  Non-pollutant parameters included in the data base:  Location
    ;physical data ^Sampling date ;Site description ^Temperature
(DS)  Time period covered by data base: 03-01-74 TO 11-30-79
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: as needed  ;Other
    regularly every 5 years
(NOB)  Number of observations in data base: 29520.(Estimated)
(NEI)  Estimated annual increase of observations in data base: 1500.(O6
    00 (samples) every )5 (years)
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data  base:  150.
(NCS)  NO. stations or sources currently originating/contributing data:
    0.
(NOF)  Number of facilities covered in data base (source monitoring): 0.
(GEO)  Geographic coverage of data base: Selected federal region  Region
    II (Virgin Islands)
(LOG)  Data elements identifying  location of station or source include:
    State
(FAC)  Data elements identifying facility include: N/A
(CDE)  Pollutant identification data are: Storet parameter
(LiM)  Limitation/variation in data of which user should be aware:
    1,200  samples to date-90% water samples.
(DPR)  Data collect./anal, procedures conform to QRD guidelines:  Samplin
    g plan documented Collection method documented ^Analysis method
    document QA procedures documented
(ANL)  Lab analysis based on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base
(EOT)  Editting: Edit procedures used  and documented.
(CBY)  Data collected by: Regional office Surveillance and Analysis
    Division, Region II
(ABY)  Data analyzed by: Regional office Surveillance and Analysis
    Division, Region II
(IDL)  Laboratory identification: NO
(AOT)  Authorization for data collection: Statutory authorization  is P


                             1017

-------
                             Accession Ho.  9028000906
                  (cont)
    L 92-500 (Clean Hater Act-CM A)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base:  Unpublished
    reports "U.S. Virgin Islands Ambient Hater Quality"-Surveillance
    and Analysis Division
(MOS)  Number of regular users of data base: 10
(USR)  Current regular users of data base: EPA regional offices
    Surveillance and Analysis Division, Region II
(CNF)  Confidentiality of data and Units on access: Ho Units on
    access to data
(DLC)  Primary physical location of data: Regional office
(DST)  Fora of data storage: Magnetic tape
(DAC)  Type of data access: EPA software STORET  MIDS:5303000101 ;EPA
    hardware IBM 370/168
(CH6)  Direct charge for non-EPA use: yes
(UPDT)  Frequency of data base master file up-date: Other every 5 years
(RSS)  Related EPA automated systems which use data base: STORET
    (Storage and Retrieval of   Hater Quality Data)
(CMP)  Completion of for*:
    Billie Jo Johnson
    OFC: EPA/Region Il/Surveillance and Analysis Division
    AD: Hoodbridge Ave Edison, H.J. 08817
    PH: (201)321-6713
(OF)  Date of fora completion: 01-14-83
(HMAT)  Number of substances represented in data base: 133
(MCAS)  Number of CAS registry numbers in data base: 127
(MA?)  Substances represented in data base:
    l,l,l-trichloroethane<71-55-
       6>
    1, If 2, 2, -tetr achloroe thane
       <79-34-5>
    Iflf2-trichloroethane<79-00-5>
    l,l-dichloroethane<75-34-3>
    l,l-dichloroethylene<75-35-4>
    l,2,4,-trlchlorobenzene<120-82-l>
    1,2-dichlo robenzene<95-50-l>
    l,2-dichloroethane<107-06-2>
    1,2-dichloropropane<78-87-5>
    l,2-dichloropropylene<563-54-2>
    1,2-diphenylhydrazine<122-66-7>
    1,2-trans-dichloroethylene
       <156-60-5>
    1,3-dichlorobenzene<541-73-l>
    l,4-dlchlorobenzene<106-46-7>
    2,4,6-tr ichloropheno1<88-0 6-2>
    2,4,7,8-tetrachlorodibenzo-p-
       dloxin (tcdd)
    2,4-dichlorophenol
    2,4-dlaethylphenol<105-67-9>
    2,4-dinitrophenol<51-28-S>
    2,4-dinitrotoluene<121-14-2>
2,6-dinitrotoluene<606-20-2>
2-chloroethylvinyl ether<110-75-8>
2-chloronaphthalene<91-58-7>
2-chlorophenol<95-57-8>
2-nitrophenol<88-75-5>
3,3 *-dichlorobenzidine< 91-94-l>
3,4-benzofluoranthene<205-99-2>
4,4*-ddd(p,p*tde)
4,4»-dde(p,p'-ddx)<72-55-9>
4,4*-ddt<50-29-3>
4,6-dinitro-o-cresol<53 4-52-l>
4-bromophenyl phenyl ether
   <101-55-3>
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nitrophenol<100-02-7>
acenaphthene<83-32-9>
acenaph thylene<20 8-96-8>
acrolein<107-02-8>
acrylonitrile<107-13-l>
aldrin<309-00-2>
anthracene<120-12-7>
antiaony<7440-36-0>
arsenic<7440-38-2>
                             1018

-------
                         Accession No.  9028000906
                  (cont)
asbestos
benzene<71 -43- 2>
benzid in e< 92-87- 5>
ben2o(a)anthracene<56-55-3>
benzo(a)pyrene<50-32-8>
benzo(g,h,i)perylene<191-24-2>
benzo(k)fluoranthene<207-08-9>
beryllium<7440-41-7>
bhc (lindane)-gamaa<58-89-9>
bhc-alpha< 31 9-84-6>
bhc-beta<3 19-85-7>
bhc-delta<319-86-8>
bis(2-chloroethoxy)nethane
bis(2-chloroethyl)ether
bis(2-chloroisopropyl) ether
   <39638-32-9>
bis(2-ethylhexyl)phthalate
bls(chlorofflethyl)ether<542-88-l>
bro«omethane<74-83-9>
butyl benzyl phthalate<85-68-7>
cad»lum<7440-43-9>
carbon tetrachlorlde<56-23-5>
chlordane< 57-7 4- 9>
chlorobenzene<108-90-7>
chlcrodibroaomethane<124-48-l>
chloroe thane<7 5-00-3>
chlorofor«<67-66-3>
chloronethane<74-87-3>
chro«lu«<7440-47-3>
chrysene<218-01-9>
copper<7440-50-8>
cyanide<57-12-5>
di-n-butyl phthalate<84-74-2>
di-n-octyl phthalate<117-84-0>
dlbenzo(a,h) anthracene<53-70-3>
dichlorobro«omethane<75-27-4>
dichlorodifluoromethane<75-71-8>
dictiloronethan€<75-09-2>
dieldrin<60-57-l>
diethyl phthalate<84-66-2>
diaethyl phthalate<131-ll-3>
dissolved oxygen
endosulfan sulfate<1031-07-8>
endosulfan-alpha<959-98-8>
endosulfan -bet a< 3321 3-65-9>
endrin aldehyde<7421-93-4>
endrin<72-20-8>
ethylbenzene<100-41-4>
fecal collfora
fluoranthene<206-44-0>
fluorene<86-73-7>
heptachlor epoxide<1024-57-3>
heptachlor<76-44-8>
hexachiorobenzene<118-74-l>
hexachlorobutadiene<87-68-3>
hexachlorocyclopentadiene<77-47-4>
hexachloroethane<67-72-l>
indeno (l,2,3-cd)pyrene<193-39-5>
isophorone<78-59-l>
lead<7439-92-l>
nercury<7439-97-6>
n-nitrosodi-n-propylamine
   <621-64-7>
n-nitrosodlB€thyla»ine<62-75-9>
n-nltrosodiphenylaaine< 86-30-6>
naphthalene<91-20-3>
nickel<7440-02-0>
nltrobenzene< 98-95-3>
nutrients
p-chlor o-B-cresol< 59- 50 -7>
pcb-1016 (arochlor 1016)
   <12674-ll-2>
pcb-1221 (arochlor 1221)
   <11104-28-2>
pcb-1232 (arochlor 1232)
pcb-1242  (arochlor 1242)
   <53469-21-9>
pcb-1248  (arochlor 1248)
   <12672-29-6>
pcb-1254  (arochlor 1254)
   <11097-69-l>
pcb-1260  (arochlor 1260)
   <11096-82-5>
pentachlorophenol<87-86-5>
phenanthrene<85-01-8>
phenol<108-95-2>
pyrene<129-00-0>
seleniu«<7782-49-2>
silver<7440-22-4>
tetrachloroethylene<127-18-4>
thalliu»<7440-28-0>
toluene<108-88-3>
total coll form
toxaphene<8001-35-2>
tribroao«ethane<75-25-2>
tr ichloroethylene<79-01 -6>
trichlorofluoro«ethane<75-69-4>
vinyl chloride<75-01-4>
zinc<7440-66-6>
                          1019

-------
                             Accession No.  9028000906     (cont)

(CAS)  CAS registry numbers of substances included in data base: 71-55-6
    ; 79-34-5; 79-00-5; 75-34-3; 75-35-4;       120-82-1; 95-50-1;
    107-06-2; 78-87-5; 563-54-2; 122-66-7; 156-60-5;   541-73-1;
    106-46-7; 88-06-2; 120-83-2; 105-67-9; 51-28-5; 121-14-2;
    606-20-2; 110-75-8; 91-58-7; 95-57-8; 88-75-5; 91-94-1; 205-99-2;
    72-55-9; 50-29-3; 534-52-1; 101-55-3; 7005-72-3; 100-02-7; 83-32-9;
    208-96-8; 107-02-8; 107-13-1; 309-00-2; 120-12-7; 7440-36-0;
    7440-38-2; 1332-21-4; 71-43-2; 92-87-5; 56-55-3; 50-32-8; 191-24-2;
    207-08-9; 7440-41-7; 58-89-9; 319-84-6; 319-85-7; 319-86-8;
    111-91-1;      111-44-4; 39638-32-9; 117-81-7; 542-88-1; 74-83-9;
    85-68-7;      7440-43-9; 56-23-5; 57-74-9; 108-90-7; 124-48-1;
    75-00-3; 67-66-3;    74-87-3; 7440-47-3; 218-01-9; 7440-50-8;
    57-12-5; 84-74-2; 117-84-0;       53-70-3; 75-27-4; 75-71-8;
    75-09-2; 60-57-1; 84-66-2; 131-11-3;       1031-07-8; 959-98-8;
    33213-65-9; 7421-93-4; 72-20-8; 100-41-4;   206-44-0; 86-73-7;
    1024-57-3; 76-44-8; 118-74-1; 87-68-3; 77-47-4;    67-72-1;
    193-39-5; 78-59-1; 7439-92-1; 7439-97-6; 621-64-7; 62-75-9;
    86-30-6; 91-20-3; 7440-02-0; 98-95-3; 59-50-7; 12674-11-2;
    11104-28-2; 11141-16-5; 53469-21-9; 12672-29-6; 11097-69-1;
    11096-82-5; 87-86-5; 85-01-8; 108-95-2; 129-00-0; 7782-49-2;
    7440-22-4; 127-18-4; 7440-28-0; 108-88-3; 8001-35-2; 75-25-2;
    79-01-6; 75-69-4; 75-01-4; 7440-66-6
(CRN)  Contact name(s): HeanettsR.;    Archdeacon, B.
(ROR)  Responsible Organization: Region II.Environmental Services
    Division.
                             1020

-------
                             Accession No.   9028000907

(DQ)  Date of Questionalre: 12-02-82
(NAM)  Name of Data Base of Model: Con da do  Lagoon-San Juan,  Puerto Rico
(ACR)  Acronym of Data Base or Model: Hone
(MED)  Media/Subject of Data Base or Model: Surface water lagoon
(ABS)  Abstract/Overview of Data Base or Model: Data consists of
    station headings, location, date sampled,  tine of day, and
    parameters    (conforms).
(CTC)  CONTACTS: Subject aatter   R. Hemmett  (201)321-6687  ;    EPA
    Office  Region II  (201)3
(DTP)  Type of data collection or monitoring:  Ambient data collection
(STA)  Data Base status: Operational/ongoing
(NPP)  Ron-pollutant parameters included in the data base: Location
    ;Sampling date ;Site description
(DS)  Time period covered by data base: 03-01-74 TO 11-30-79
(TRM)  Termination of data collection: Not  anticipated
(FRQ)  Frequency of data collection or sampling: as needed ;0ther
    generally some sampling each year
(NOB)  Number of observations in data base: 200.(Estimated)
(NEI)  Estimated annual Increase of observations in data base: 100.
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base: 8.
(NCS)  No. stations or sources currently originating/contributing data:
    0.
(NOF)  Number of facilities covered in data base (source monitoring): 0.
(GEO)  Geographic coverage of data base: Geographic region Condado
    Lagoon, Puerto Rico
(LOC)  Data elements identifying location  of station or source include:
    State jCity ;TOHn/township ^Project identifier
(FAC)  Data elements identifying facility  include: N/A
(CDE)  Pollutant identification data are:  Storet parameter
(LIM)  Limitation/variation in data of which user should be aware: 100
    samples; lab identification not in machine  form.
(DPR)  Data collect./anal, procedures conform  to ORD guidelines: Samplin
    g plan documented ^Collection method documented ;Analysis method
    document QA procedures documented
(AND  Lab analysis based  on EPA-approved  or accepted methods? YES
(AUD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy esti»ates exist but are not
    included in data base
(EOT)  Editting: Edit procedures  used  and  documented.
(CBY)  Data collected by:  Regional  office  Surveillance and Analysis
    Division, Region II
(ABY)  Data analyzed by: Regional  office Surveillance and Analysis
    Division, Region II
(IDL)  Laboratory  identification:  YES
(PR1)  Primary  purpose  of  data collection: Program evaluation
(PR2)  Secondary purpose of data  collection: Special  study
(AOT)  Authorization  for data collection:  No statutory requirement:
     Data collection requirement  is    Environmental  Quality  Board of
     Puerto Rico requested  ambient monitoring of lagoon to supplement
     local monitoring
(OMB)  Data  collected/submitted  using OMB-approved EPA reporting forms:


                              1021

-------
                             Accession Ho.  9028000907     (cont)

    QQ
(REP)  For* of available reports and outputs of data base: Unpublished
    reports "Condado Lagoon"-Surveillance And Analysis   Division,
    Region II
(NOS)  Runber of regular users of data base: 6
(USR)  Current regular users of data base: EPA regional offices
(CNF)  Confidentiality of data and limits on access: Ho Halts on
    access to data
(DLC)  Primary physical location of data: Regional office
(DST)  Fora of data storage: Magnetic disc
(DAC)  Type of data access: EPA softMare STORET  HIDS:5303000101 ;EPA
    hardware IBM 370/168
(CHG)  Direct charge for non-EPA use: yes
(OPDT)  Frequency of data base vaster file up-date: Annually
(RSS)  Related EPA automated systems uhich use data base: STORET
    (Storage and Retrieval of   Hater Quality Data)
(CMP)  Completion of for*:
    Billle Jo Johnson
    OFC: EPA/Region H/Surveillance and Analysis Division
    AD: Uoodbridge Ave Edison, HJ
    PH: (201)321-6713
(DF)  Date of form completion: 01-14-83
(HHAT)  Number of substances represented in data base: 2
(MAT)  Substances represented in data base:
    fecal coliform                       total coliforn
(CNM)  Contact naae(s): Hemaett,R.;    II,R.
(ROR)  Responsible Organization: Region II.Environmental Services
    Division.
                             1022

-------
                             Accession No.   9028000908

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Puerto Rico Beaches-San  Juan
(ACR)  Acronym of Data Base or Model: Rone
(MED)  Media/Subject of Data Base or Model: Surface water ocean
(ABS)  Abstract/Over view of Data Base or Model: Data base consists of
    station designation    (initial number), location, date sampled/
    tine of day, depth, and parameters identified.
(CTC)  CONTACTS: Subject natter   R. Hemaett  (201) 321-6687 ;
    Computer-related  R. Smith  (
(DTP)  Type of data collection or monitoring: Anbient data  collection
(STA)  Data Base status: Operational/ongoing
(NPP)  Non-pollutant parameters included in the data base:  Location
    ^Physical data ;Sampling date ;Site description
(OS)  Time period covered by data base: 03-01-74 TO 11-30-79
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: Other As needed:
    basically annually
(NOB)  Number of observations in data base: 1400.(Estimated)
(NEI)  Estimated annual increase of observations in data base: 400.
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data  base: 36.
(NCS)  No* stations or sources currently originating/contributing  data:
    0.
(NOF)  Number of facilities covered in data base (source monitoring):  0.
(6EO)  Geographic coverage of data base: County/smaller location San
    Juan, Puerto Rico
(LOG)  Data elements identifying location of station or source include:
    State ;City
(FAC)  Data elements identifying facility include: N/A
(CDE)  Pollutant identification data are: Storet parameter
(LIM)  Limitation/variation in data of uhich user should be ay arc: 700
    samples included in the data base.
(DPR)  Data collect./anal, procedures conform to ORD guidelines: Samplin
    g plan documented ^Collection method documented ^Analysis method
    document QA procedures documented
(AND  Lab analysis based on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base
(EOT)  Editting: No known edit procedures exist.
(CBY)  Data collected by: Regional office Surveillance and  Analysis
    Division, Region II
(ABY)  Data analyzed by: Regional office Surveillance and Analysis
    Division, Region II
(IDL)  Laboratory identification: NO
(AOT)  Authorization for data collection: No statutory requirement:
    Data collection requirement is    requested by Puerto Rico
    Environmental Quality Board
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base:  Unpublished
    reports Surveillance and Analysis Report:  "San Juan Beaches1*


                             1023

-------
                             Accession No.  9028000908     (cont)

    Printouts on request
(MOS)  NuBber of regular users of data base: 6
(OSR)  Current regular users of data base: EPA regional offices
(CNF)  Confidentiality of data and Hilts on access: No Halts on
    access to data
(DLC)  Primary physical location of data: Regional office
COST)  Fora of data storage: Magnetic disc
(DAC)  Type of data access: EPA software STORET  MIDS:5303000101 ;EPA
    hardware IBM 370/168
    Saith,R.  ;    Heaaett,R.
(ROR)  Responsible Organization: Region II.Environmental Services
    T*vision.
                             1024

-------
                             Accession Ho.  9028000909

(DQ)  Date of Questionaire: 12-02-82
(NAN)  Name of Data Base of Model: San Juan,  Puerto Rico Outfalls
(ACR)  Acronym of Data Base or Model: Rone
(MED)  Media/Subject of Data Base or Model:  Effluents sewage treatment
    plant outfalls ;Surface Hater ocean
(ABS)  Abstract/Overview of Data Base or Model: This data base consists
    of station headings, locations, date sampled, time of day, depth,
    and  parameters identified.
(CTC)  CONTACTS: Subject matter   R. Hemmett  (201)321-6687  ;
    Computer-related  R. Smith  (
(DTP)  Type of data collection or monitoring: Point source data
    collection sewage treatment plants
(STA)  Data Base status: Operational/ongoing
(NPP)  Non-pollutant parameters included in the data base: Discharge
    points ;Location ;Physical data ^Sampling date ;Site description
(DS)  Time period covered by data base: 02-01-78 TO 11-30-79
(TRM)  Termination of data collection: Hot anticipated
(FRQ)  Frequency of data collection or sampling: Other annually
    (generally)
(NOB)  Number of observations in data base:  600.(Estimated)
(NEI)  Estimated annual increase of observations in data base: 200.
(IMP)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base: 35.
(NCS)  No. stations or sources currently originating/contributing  data:
    0.
(NOF)  Number of facilities covered in data base (source monitoring):  5,
(GEO)  Geographic coverage of data base: Geographic region San Juan
    area, Puerto Rico
(LOC)  Data elements identifying location of station or source include:
    State ;City ; Town/township jProject identifier
(FAC)  Data elements identifying facility include: outfall identified
    only
(CDE)  Pollutant Identification data are: Storet parameter
(LIM)  Limitation/variation in data of which user should be aware: 300
    samples taken; performance samples do not exist for bacti.
(DPR)  Data collect./anal, procedures conform to ORD guidelines: Samplin
    g plan documented ^Collection method documented ;Analysis method
    document QA procedures documented
(ANL)  Lab analysis based on EPA-approved or accepted methods? YES
(AUD)  Lab Audit: Data not based on lab analysis.
(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base
(EDT)  Editting: Edit procedures used and documented.
(CBY)  Data collected by: Regional office Surveillance and Analysis
    Division, Region II
(ABY)  Data analyzed by: Regional office Surveillance and Analysis
    Division, Region II
(IDL)  Laboratory identification: NO
(PR1)  Primary purpose of data collection: Program evaluation
(PR2)  Secondary purpose of data collection:  Special study
(AOT)  Authorization for data collection: Statutory authorization  is P
    L 92-500 (Clean Hater Act)


                             1025

-------
                             Accession No.  9028000909     (cont)

(OMB)  Data collected/submitted using OMB-approved EPA reporting foras:
    QQ
(REP)  For* of available reports and outputs of data base: Unpublished
    reports Surveillance and Analysis Division: "San Juan     Outfalls*
    Printouts on request
(NUS)  Nuaber of regular users of data base: 10
(OSR)  Current regular users of data base: EPA Regional Office: Region

(CNF)  Confidentiality of data and Halts on access: No liaits on
    access to data
(DLC)  Primary physical location of data: Regional office
(DST)  Form of data storage: Magnetic disc
(DAC)  Type of data access: EPA software STORET  MIDS:5303000101 ;EPA
    hardware IBM 370/168
(CHG)  Direct charge for non-EPA use: yes
(DPDT)  Frequency of data base master file up-date: Annually
(RSS)  Related EPA automated systems which use data base: STORET
    (Storage and Retrieval of   Hater Quality Data)
(CMP)  Completion of fora:
    61 Hie Jo Johnson
    OFC: EPA/Region II/Surveillance and Analysis Division
    AD: Uoodbridge Ave Edison, NJ 08817
    PH: (201)321-6713
(DF)  Date of fora completion: 01-14-83
(RMAT)  Nuaber of substances represented in data base: 2
(MAT)  Substances represented In data base:
    fecal colifora                       total colifora
(CNM)  Contact naae(s): Heaaett,R.;    Archdeacon,B.  ;    Hemmett,R.
(RQR)  Responsible Organization: Region II.Environmental Services
    Division.
                             1026

-------
                             Accession No.   9028000910

(DQ)  Date of Questioaaire: 12-02-82
(NAM)  Name of Data Base of Hodel:  Puerto Rico Reservoirs
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model:  Sediment ^Surface water
    reservoirs
(ABS)  Abstract/Overview of Data Base or Model: Data consists of
    station heading/ location/  sample date/ time of day/ and
    parameters for sediment (priority pollutants/ metals).
(CTC)  CONTACTS: Subject matter   Roland Hemmett  (201)321-6687    ;
    Computer-related  Jack S
(DTP)  Type of data collection or monitoring: Ambient data collection
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented in Data Base: 129 307 CMA ;15
    metals
(NPP)  Non-pollutant parameters included in the data base:  Location
    ?Sampling date ;Site description
(DS)  Time period covered by data base: 03-01-74 TO 12-28-82
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: as needed
(NOB)  Number of observations in data base: 4700.(Estimated)
(NEI)  Estimated annual increase of observations in data base: 1000.
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base:  37.
(NCS)  No. stations or sources currently originating/contributing data:
    0.
(HOP)  Number of facilities covered in data base (source monitoring): 0.
(GEO)  Geographic coverage of data base: Geographic region Puerto Rico
(LOC)  Data elements identifying location of station or source include:
    State jCity Coordinates Latitude and longitude ;Project identifier
(CDE)  Pollutant identification data are: Storet parameter
(LIM)  Limitation/variation in data of which user should be aware: Total
    of 50 samples.  No water samples  taken since 1974.  Priority
    pollutants sampled only    in sediment.
(DPR)  Data collect./anal, procedures conform  to ORD guidelines:  Samplin
    g plan documented ^Collection method documented ;Analysis method
    document QA procedures documented
(AND  Lab analysis based  on EPA-approved or accepted methods? YES
(AUD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base
(EOT)  Editting: Edit procedures used and documented.
(CBY)  Data collected by:  Regional  office Surveillance and Analysis
    Division/ Region II
(ABY)  Data analyzed by: Regional office Surveillance and Analysis
    Division/ Region II
(IDL)  Laboratory identification: NO
(PR1)  Primary purpose of  data collection:  Special study
(AOT)  Authorization for data collection: Statutory  authorization is P
    L 92-500 as amended/ Sections 403 and 405  (Clean Water Act-CMA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
     QQ
(REP)  Form  of available reports and outputs of data base: Unpublished


                              1027

-------
                             Accession Bo.  9028000910
                   (cont)
    reports "Puerto  Rico Reservoirs"-Survelllance and    Analysis
    Division.
(•OS)  Number of regular users of data base: 6
COSR)  current regular users of data base: EPA regional offices
(CUP)  Confidentiality of data and Halts on access: Ho Halts on
    access to data
(DLC)  Primary physical location of data: Regional office
(DST)  Por« of data  storage: Magnetic disc
(DAC)  Type of data  access: EPA software STORE?  MIDS:5303000101 jEPA
    hardware IBM 370/168
(CHG)  Direct charge for non-EPA use: yes
(UPDT)  Frequency of data base aaster file up-date: Other as
    needed-tnice in  5 years to date
(RSS)  Related EPA autoaated systeas which use data base: STORET
    (Storage and Retrieval of   Hater Quality Date)
(CMP)  Completion of fora:
    Billie Jo Johnson
    OFC: EPA/Region  II/Surveillance and Analysis Division
    AD: Uoodbridge Ave Edison/ MJ 08817
    PH: (201)321-6713
(DP)  Date of fora completion: 01-14-83
(HMAT)  Muaber of substances represented in data base: 129
(NCAS)  Muaber of CAS registry nuabers in data base: 134
(MAT)  Substances represented in data base:
    l,l,l-trichloroethane<71-55-
       6>
    I*ls2,2,-tetrachloroethane
       <79-34-5>
    Ifl*2-trichloroethane<79-00-5>
    1*l-dichloroethane<75-34-3>
    l,l-dichloroethylene<75-35-4>
    l,2,4,-trichlorobenzene<120-82-l>
    If2-dlchlorobenzene<95-50-1>
    l,2-dichloroethane<107-06-2>
    1,2-dichloropropane<78-87-5>
    ls2-dlchloropropylene<563-54-2>
    1,2-diphenylhydrazine
    1^2-trans-dichloroethylene
       <156-60-5>
    l/>3-dichlorobenzene< 541-73-1 >
    ls4-dichlorobenzene<106-46-7>
    2,4,6-trichlorophenol<88-06-2>
    2*4*7,8-tetr achlorodibenzo-p-
       dioxin (tcdd)
    2f 4-dichlorophenol
    2,4-diaethylphenol<105-67-9>
    2f4-dinitrophenol<51-28-5>
    2,4-dinitrotoluene<121-14-2>
    2f6-dinltrotoluene<606-20-2>
    2-chloroethylvinyl ether<110-75-8>
    2-chloronaphthaiene< 91-5 8-7>
    2-chlorophenol<95-57-8>
2-nitrophenol<88-75-5>
3,3*-dichlorobenzidine<91-94-l>
3,4-benzofluoranthene<205-99-2>
4^4'-dde(p/p*-ddx)<72-55-9>
4^4'-ddt<50-29-3>
4/6-dinltro-o-cresol<534-52-l>
4-broaophenyl phenyl ether
   <101-55-3>
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nitrophenol<100-02-7>
acenaphthene<83-32-9>
acenaphthylene<208-96-8>
acrolein<107-02-8>
acrylonitrile<107-13-l>
aldrln<309-00-2>
anthr acene<120-l 2-7>
antiaony<7440-36-0>
arsenic<7440-38-2>
asbestos<1332-21-4>
benzene<71-43-2>
benzidine<92-87-5>
benzo( a) anthr acene< 56-55- 3>
benzo(a)pyrene<50-32-8>
benzo(g,h,i)perylene<191-24-2>
benzo(k)fluoranthene<207-08-9>
berylliua<7440-41-7>
                             1028

-------
                             Accession No.  9028000910
                  (cont)
    bhc (lindane)-gamma<58-89-9>
    bhc-al pha<31 9-84-6>
    bhc-beta<319-85-7>
    bhc-delta<319-86-8>
    bis(2-chloroethoxy)aethane
    bis(2-chloroethyl)ether
    bis(2-chloroisopropyl) ether
       <39638-32-9>
    bis<2-ethylhexyl)phthalate
    bis(chloromethyl)ether<542-88-l>
    broaoiiethane<74-83-9>
    butyl benzyl phthalate<85-68-7>
    cadftiun<7440-43-9>
    carbon tetrachloride<56-23-5>
    chlordane<57-74-9>
    chlorobenzene<108-90-7>
    chlorodibronoaethane<124-48-l>
    chloroethane<75-00-3>
    chloroforia<67-66-3>
    chloronethane<74-87-3>
    chro«iu»<7440-47-3>
    chrysene<218-01-9>
    copper<7440-50-8>
    cyanide<57-12-5>
    di-n-butyl phthalate<84-74~2>
    di-n-octyl phthalate<117-84-0>
    dibenzo(a*h) anthracene<53-70-3>
    dichlor obr OB one t hane<7 5-27-4>
    dichlorodifluoromethane<75-71-8>
    dichloromethane<75-09-2>
    dieldrin<60-57-l>
    diethyl ph thai at e< 84-66- 2>
    diiethyl phthalate<131-ll-3>
    endosulfan sulfate<1031-07-8>
    endosulfan-alpha<959-98-8>
    endosulf an-be ta<3321 3-65-9>
    endrin aldehyde<7421-93-4>
    endrin<72-20-8>
    ethylbenzene<100-41-4>
    fluoranthene<206-44-0>
    £luorene<86-73-7>
    heptachlor epoxide<1024-57-3>
    heptachlor<76-44-8>
hexachlorobenzene<118-74-l>
hexachlorobutadiene<87~68-3>
hexachlotocyclopentadiene<77-47-4
hex achl oro e thane<67-7 2-1 >
indeno (l,2,3-cd)pyrene<193-39-5>
isophorone<78-59-l>
lead<7439-92-l>
•ercury<7439-97-6>
n-nitroscdi-n-propylaaine
   <621-64-7>
n-nltrosodimethyla«ine<62-75-9>
n-nitrosodiphenyla«ine<86-30-6>
naphthalene< 91-20-3>
nickel<7440>02-0>
nitrobenzene<98-95-3>
p-chloro-«-cresol<59-50-7>
pcb-1016 (arochlor 1016)
   <12674-ll-2>
pcb-1221 (arochlor 1221)
   <11104-28-2>
pcb-1232 (arochlor 1232)
pcb-1242 (arochlor 1242)
   <53469-21-9>
pcb-1248 (arochlor 1248)
   <12672-29-6>
pcb-1254 (arochlor 1254)
   <11097-69-l>
pcb-1260 (arochlor 1260)
   <11096-82-5>
pentachlorophenol<87-86-5>
phenanthrene<85-01-8>
phenol<108-95-2>
pyr ene< 129-00-0>
selenlu«<7782-49-2>
sllver<7440-22-4>
tetrachloroethylene<127-18-4>
thalllu«<7440-28-0>
toluene<108-88-3>
toxaphene<8001-35-2>
tribroBo«ethane<75-25-2>
trichloroethylene<79-01-6>
trlchlorof luoro«fethane<75-69-4>
vinyl chloride<75-01-4>
zinc<7440-66-6>
(CAS)  CAS registry numbers of substances included In data base:  71*55-6
    > 79-34-5;  79-00-5J 75-34-3> 75-35-4;       120-82-1;  95-50-1;
    107-06-2;  78-87-5; 563-54-2; 122-66-7; 156-60-5;   541-73-1;
    106-46-7;  88-06-2; 120-83-2; 105-67-9; 51-28-5; 121-14-2;
    606-20-2;  110-75-8; 91-58-7; 95-57-8; 88-75-5; 91-94-1;  205-99-2;
    72-55-9;  50-29-3; 534-52-1; 101-55-3; 7005-72-3; 100-02-7;  83-32-9;
    208-96-8;  107-02-8; 107-13-1; 309-00-2; 120-12-7; 7440-36-0;
                             1029

-------
                             Accession No.   9028000910     (cont)

    7440-38-21  1332-21-4*  71-43-2;  92-87-5?  56-55-3; 50-32-8; 191-24-2;
    207-08-9; 7440-41-7; 58-89-9;  319-84-6;  319-85-7; 319-86-8;
    111-91-1;       111-44-4;  39638-32-9;  117-81-7; 542-88-1;  74-83-9;
    85-68-7;       7440-43-9;  56-23-5; 57-74-9; 108-90-7; 124-48-1;
    75-00-3; 67-66-3;   74-87-3;  7440-47-3; 218-01-9; 7440-50-8;
    57-12-5; 84-74-2; 117-84-0;        53-70-3; 75-27-4; 75-71-8;
    75-09-2; 60-57-1; 84-66-2;  131-11-3;        1031-07-8; 959-98-8;
    33213-65-9; 7421-93-4; 72-20-8; 100-41-4;   206-44-0; 86-73-7;
    1024-57-3;  76-44-8; 118-74-1;  87-68-3; 77-47-4;    67-72-1;
    193-39-5;  78-59-1; 7439-92-1;  7439-97-6; 621-64-7; 62-75-9;
    86-30-6; 91-20-3; 7440-02-0; 98-95-3; 59-50-7; 12674-11-2;
    11104-28-2; 11141-16-5; 53469-21-9; 12672-29-6; 11097-69-1;
    11096-82-5; 87-86-5; 85-01-8;  108-95-2;  129-00-0; 7782-49-2;
    7440-22-4;  127-18-4; 7440-28-0; 108-88-3; 8001-35-2; 75-25-2;
    79.01-6; 75-69-4; 75-01-4;  7440-66-6
(CNN)  Contact  na«e(s): HeuettsR.;    Sweeney/J.;    Ueuett/R*
CROR)  Responsible Organization: Region ll.Environnental Services
    Division*
                              1030

-------
                             Accession No.  9028000911

(DQ)  Date of Questionaire: 12-02-82
(HAM)  Same of Data Base of Model: Manasquan Rivec
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Sediment ;Surface
    water-river ;Tlssue fish
CABS)  Abstract/over view of Data Base or Model: The data base contains
    water quality and sediment data on the Manasquan River.   Fish
    tissue samples were also collected.
(CTC)  CONTACTS: Subject natter  Roland Hemaett, Chief Surveillance
    and?     Computer-related  B
(DTP)  Type of data collection or monitoring: Ambient data collection
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented in Data Base: 129 307 CHA
(NPP)  Non-pollutant parameters included in the data base: Location
    ^Sampling data ;Site description
CDS)  Time period covered by data base: 02-01-81 TO 12-28-82
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: as needed
(NOB)  Number of observations in data base: 3000(Estiaated)
(NEI)  Estimated annual increase of observations in data base:  (N/A)
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base:  12
(NCS)  No. stations or sources currently originating/contributing data:
    12
(NOF)  Number of facilities covered in data base (source monitoring): 0
(CEO)  Geographic coverage of data base: County/smaller
    location-Nonmouth County
(LOC)  Data elements identifying location of station or source  include:
    State ;County ;Coordinates-latitude/longitude
(FAC)  Data elements identifying facility include: N/A
(CDE)  Pollutant identification data are: Storet parameter
(DPR)  Data collect./anal, procedures conform to CRD guidelines:  Conform
    to ORD QA Guidelines
(ANL)  Lab analysis based on EPA-approved or accepted methods?  YES
(AUD)  Lab Audit: Lab audit is satisfactory
(PRE)  Precision: Precision and accuracy estimates exist for all
    measurements
(EDT)  Editting: Edit procedures used and documented
(CBY)  Data collected by: State agency-N.J. Dept. of Environmental
    Protection ;Regional office-Region II,  Division
(ABY)  Data analyzed by: Regional office-Region II, Environmental
    Services
    Contractor lab-varies Hith each analysis
(IDL)  Laboratory identification: YES
(A(ft)  Authorization for data collection: No statutory requirement:
    Data collection requirement is to  perform a required number  of
    analysis per year.  Type of analysis     depends on state of  N.J.
    Department of Environmental Protection's     need.
(OMB)  Data collected/submitted using OMB-approved EPA reporting  forms:
    QQ
(REP)  Form of available reports and outputs of data base: Printouts  on
    request


                             1031

-------
                             Accession Ho.  9028000911
                  (cont)
(MOS)  Umber of regular users of data base: ttio agencies
(OSR)  Current regular users of data base: EPA regional offices
    States
(CNF)  Confidentiality of data and Halts on access: ffo Units on
    access to data
(DLC)  primary physical location of data: Regional office
(OST)  Fora of data storage: STQRET
(DAC)  Type of data access: EPA software: STORET
(CHG)  Direct charge for non-EPA use: Mo
(UPDT>  Frequency of data base Master file up-date: Other as necessary
(CMP)  Completion of fora:
    Randy Braun
    OFC: USEPA-Region II/Environmental Services Division
    AD: Hoodbridge Avenue/ Edison, N.J.  08837
    PH: (201) 321-6692
(DF)  Date of fora completion: 01-14-83
(NMAT)  Number of substances represented in data base: 139
(RCAS)  Number of CAS registry numbers in data base: 131
(MAT)  Substances represented in data base:
    If If l-trichloroethane<71-55-
       6>
    1,1,2,2,-tetrachloroethane
       <79-34-5>
    l,l,2-trichloroethane<79-00-5>
    l,l-dichloroethane<75-34-3>
    If1-dichloroethylene<75-35-4>
    If2,4,-trichlorobenzene<120-82-l>
    1,2-dlchlorobenzene< 95-50-l>
    If2-dichloroethane<107-06-2>
    l,2-dlchloropropane<78-87-5>
    If2-dlchloropropylene<563-54-2>
    If2-diphenylhydrazine<122-66-7>
    1,2-trans-dichloroethylene
       <156-60-5>
    If3-dlchlorobenzene<541-73-l>
    1,4-dlchlorobenzene<106-46-7>
    2,4,6~trichlorophenol<88-06-2>
    2, 4,7, 8-te tr achlorodibenzo-p-
       dioxin (tcdd)
    2,4-dichlorophenol<120-83-2>
    2,4-dimethylphenol<105-67-9>
    2,4-dinitrophenol<51-28-5>
    2,4-dlnitrotoluene<121-14-2>
    2,6-dinitrotoluene<606-20-2>
    2-chloroethylvinyl ether<110-75-8>
    2-chloronaph thal«ne< 91-58-7>
    2-chloroph«nol<95-57-8>
    2-nitrophenol<88-75-5>
    3,3'-dichlorobenziaine<91-94-l>
    3,4-benzofluor anthene< 20 5-99-2>
    4,4*-ddd(p,p*tde)<72-54-8>
    4,4'-dde(p,p'-ddx<72-55-9>
4,4*-ddt<50-29-3>
4,6-dinitro-o-cresol<534-52-l>
4-bromophenyl phenyl ether
   <101-55-3>
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nitrophenol<100-02-7>
Total KJeldajl Nitrogen (TKN)
Total Organic Carbon (TOC)
acenaphthene<83-32-9>
acenaphthylene<208-96-8>
acrolein<107-02-8>
acrylonitrile<107-13-l>
aldrin<309-00-2>
ammonia<7664- 41-7>
anthracene<120-12-7>
antimony<7440-36-0>
arsenic<7440-38-2>
asb«stoa<1332-21-4>
benzene<71-43-2>
benzidine<92-87-5>
benzo (a) anthr acene<56-55-3>
benzo(a)pyrene<50-32-8>
benzo (g,h, Dp eryien«<191-24-2>
benzo()c)f luor anthene< 207-0 8-9>
beryllium<7440-41-7>
bhc (lindane)-gamma<58-89-9>
bhc-alpha<319-84-6>
bhc-beta<319-85-7>
bhc-delta<319-86-8>
bis(2-chloroethoxy)ne thane
bis(2-chloroethyl)ether
                             1032

-------
                             Accession No.   9028000911
                  (cont)
    bis(2-chloroisopropyl) ether
       <39638-32-9>
    bis(2-ethylhexyl)phthalate
    bis(chloromethyl)ether<542-S8-l>
    brononethane<74-83-9>
    butyl benzyl phthalate<85-68-7>
    c a daiuuK 7 4 40 - 43- 9>
    carbon tetrachloride<56-23-5>
    chlordane<57-74-9>
    chlorobenzene<108-90-7>
    chlorodibrononethane<124-48-l>
    chloroethane<75-00-3>
    chloroform<67-66-3>
    chloronethane<74-87-3>
    chro«iua<7440-47-3>
    chrysene<218-01-9>
    copper<7440-50-8>
    cyanide<57-12-5>
    dl-n-butyl phthalate<84-74-2>
    di-n-octyl phthalate<117-84-Q>
    dibenz o( a, h) an thracene<5 3-7 0-3>
    dichlorobroiBO«ethane<75-27-4>
    dichlorodifluoronethane<75-71-8>
    dichloromethane<75-09-2>
    dieldrin<60-57-l>
    diethyl Phthalate<84-66-2>
    dimethyl phthalate<131-ll-3>
    dissolved oxygen
    endosulfan sulfate<1031-07-8>
    endosulfan-alpha<959-98-8>
    endcsulfan-beta<33213-65-9>
    endrin aldehyde<7421-93-4>
    endrin<72-20-8>
    ethylbenzene<100-41-4>
    fluoranthene<206-44-0>
    fluorene<86-73-7>
    heptachlor epoxide<1024-57-3>
    heptachlor<76-44-8>
    hexachlorobenzene<118-74-l>
    hexschlorobutadiene<87-68-3>
    hexachlorocyclopentadiene<77-47-4>
    hexachloroethane<67-72-l>
    indeno 
    isopho rone<78-59-l>
(CAS)  CAS registry numbers of substances
      79-34-5; 79-00-5; 75-34-3; 75-35-4;
lead<7439-92-l>
»ercury<7439-97-6>
n-nitroscdi-n-propylanine
   <621-64-7>
n-n i t rosodine thy 1 an ine<62-75-9>
n-nitrosodiphenylaaine<86-30-6>
naphthalene<91-20-3>
nickel<7440-02-0>
nltrobenzene<98-95-3>
nitrogen dioxide and nitrate
nitrogen dioxlde<10102-44-0>
orthophosphate<14265-44-2>
p-chloro-»-cresol<59-50-7>
PH
pcb-1016 (arochlor 1016)
   <12674-ll-2>
pcb-1221 (arochlor 1221)
   <11104-28-2>
pcb-1232 (arochlor 1232)
pcb-1242 (arochlor 1242)
   <53469-2l-9>
pcb-1248 (arochlor 1248)
   <12672-29-6>
pcb-1254 (arochlor 1254)
   <11097-69-l>
pcb-1260 (arochlor 1260)
   <11096-82-5>
pentachlorophenol<87-86-5>
phenanthrene< 85-01- 8>
phenol<108-95-2>
pyrene<129-00-0>
selenium<7782-49-2>
silver<7440-22-4>
temperature
tetrachloroethylene<127-l 8-4>
thalliu«<7440-28-0>
toluene<108-88-3>
total phosphate
toxaphene<8001-35-2>
tribrononethane<75-25-2>
trichloroethylene<79-01-6>
trichloro£luorom«thane<75-69-4>
vinyl chloride<75-01-4>
zinc<7440-66-6>
 included in data base: 71-55-6
       120-82-1; 95-50-1;
    107-06-2; 78-87-5; 563-54-2; 122-66-7; 156-60-5;   541-73-1;
    106-46-7; 88-06-2; 120-83-2; 105-67-9; 51-28-5; 121-14-2;
    606-20-2; 110-75-8; 91-58-7; 95-57-8; 88-75-5; 91-94-1; 205-99-2;
    72-54-8; 72-55-9; 50-29-3; 534-52-1; 101-55-3; 7005-72-3; 100-02-7;
    83-32-9; 208-96-8; 107-02-8; 107-13-1; 309-00-2; 7664-41-7;
                             1033

-------
                             Accession Ho.  9028000911     (cont)

    120-12-7;      7440-36-0; 7440-38-2; 1332-21-4; 71-43-2; 92-87-5;
    56-55-3; 50-32-8;       191-24-2; 207-08-9; 7440-41-7; 58-89-9;
    319-84-6; 319-85-7; 319-86-8;      111-91-1; 111-44-4; 39638-32-9;
    117-81-7; 542-88-1; 74-83-9; 85-68-7;      7440-43-9; 56-23-5;
    57-74-9; 108-90-7; 124-48-1; 75-00-3; 67-66-3;    74-87-3;
    7440-47-3; 218-01-9; 7440-50-8; 57-12-5; 84-74-2; 117-84-0;
    53-70-3; 75-27-4; 75-71-8; 75-09-2; 60-57-1; 84-66-2; 131-11-3;
    1031-07-8; 959-98-3; 33213-65-9; 7421-93-4; 72-20-8; 100-41-4;
    206-44-0; 86-73-7; 1024-57-3; 76-44-8; 118-74-1; 87-68-3; 77-47-4;
    67-72-1; 193-39-5; 78-59-1; 7439-92-1; 7439-97-6; 621-64-7;
    62-75-9;       86-30-6; 91-20-3; 7440-02-0; 98-95-3; 10102-44-0;
    14265-44-2;    59-50-7; 12674-11-2; 11104-28-2; 11141-16-5;
    53469-21-9; 12672-29-6;       11097-69-1; 11096-82-5; 87-86-5;
    85-01-8; 108-95-2; 129-00-0;    7782-49-2; 7440-22-4; 127-18-4;
    7440-28-0; 108-88-3; 8001-35-2;       75-25-2; 79-01-6; 75-69-4;
    75-01-4; 7440-66-6
(CNN)  Contact na»e(s): Hemnett,R.;    S«ith,B,
(COR)  Contact organization: Roland Heaaett, Surveillance & Analysis/
(ROR)  Responsible Organization: Region II.Environmental Services
    Division.
                             1034

-------
                             Accession No.   9028000912

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Passaic  River
(ACR)  Acronym of Data Base or Model: Hone
(MED)  Media/Subject of Data Base or Model: Sediment ;Surface
    water-river ;Tissue - fish
(ABS)  Abstract/Overview of Data Base or Model:  This data  base contains
    water quality and sediment     data on  the Passaic River.  Fish
    tissue samples were also   collected.
(CTC)  CONTACTS: Subject matter  Roland Hemmett, Chief Environmental
    Svcs. Div.  ;     Computer-related Archdeacon,  Barbara,  Data
    Handler (201) 321-6787  ;  EPA Office Ronald Hemmett,  Environmental
    Services
(DTP)  Type of data collection or monitoring:  Ambient data collection
(GRP)  Groups of substances represented in  Data Base: 129  307 CVA
(NPP)  Non-pollutant parameters included in the data base: Location
    ^Sampling data ;Site description
(DS)  Tine period covered by data base: 03-01-81 TO 10-31-81
(TRM)  Termination of data collection: Not  anticipated
(FRQ)  Frequency of data collection or sampling: as needed
(NOB)  Number of observations in data base: 160(Estimated)
(NEI)  Estimated annual Increase of observations in data base: (N/A)
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources  covered  in data base: 19
(NCS)  No. stations or sources currently originating/contributing  data:
    19
(NOF)  Number of facilities covered in data base (source monitoring): 0
(GEO)  Geographic coverage of data base: Single state New  Jersey
(LOG)  Data elements identifying location of station or source include:
    State >County ^Coordinates latitude/longitude
(FAC)  Data elements identifying facility include:  Not applicable
(CDE)  Pollutant identification data are: Storet parameter
(DpR)  Data collect./anal, procedures conform to ORD guidelines: Conform
    to ORD QA Guidelines
(ANL)  Lab analysis based on EPA-approved or accepted methods? YES
(AUD)  Lab Audit: Lab audit is satisfactory
(PRE)  Precision: Precision and accuracy estimates  exist for all
    measurements
(EOT)  Fditting: Edit procedures used but undocumented
(CBY)  Data collected by: Regional office-Region II, Environmental
    Services Div.
(ABY)  Data analyzed by: Regional office-Region II, Environmental
    Services Div.
(IDL)  Laboratory identification: YES
(AUT)  Authorization for data collection: No statutory requirement:
    Data collection requirement is dependent     on what the state of
    New Jersey feels is needed at that time.  The    state decides what
    types of tests are run.
(OMB)  Data collected/submitted using OMB-approved  EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base: Printouts on
    request
(USR)  Current regular users of data base:  EPA regional offices


                             1035

-------
                             Accession No.  9028000912
                  (cont)
    States
    2 agencies
(CNF)  Confidentiality of data and Halts on access: Ho limits on
    access to data
(DLC)  Prinary physical location of data: Regional office
(DST)  Form of data storage: STORET
(DAC)  Type of data access: EPA software: STORET
(CHG)  Direct charge for non-EPA use: Mo
(UPDT)  Frequency of data base Master file up-date: Other as necessary
(CNP)  Completion of fora:
    Randy Braun
    OFC: U.S.EPA/ Environmental Services Division/ Region II
    AD: Voodbridge Avenue* Edison/ N.J.  08837
    PH: (201) 321-6692
(OF)  Date of fora conpletion: 01-14-83
(NMAT)  Nuaber of substances represented in data base: 143
CNCAS)  Nuaber of CAS registry numbers in data base: 131
(MAT)  Substances represented in data base:
    1, l,l-trichloroethane< 71-55-
       6>
    l,l,2,2-tetrachloroethane<79-34-5>
    l,l,2-trichloroethane<79-00-5>
    1, l-dichloroethane<75-34-3>
    l,l-dichloroethylene<75-35-4>
    l,2,4,-trichlorobenzene<120-82-l>
    l,2-dichlorobenzene< 95-50- 1>
    I/ 2-di chloro ethane< 1 07-06-2>
    If 2-dichloropropane<78-87-5>
    If 2-di chloropropyl ene< 563-54-2>
    l,2-dlphenylhydrazine
    \f 2-trans-dichloroethy lene
       <156-60-5>
    If 3-dlchlorobenzene<541-73-l>
    l,4-dichlorobenzene<106-46-7>
    2/ 4,6- trichlorophenoK 88-06- 2>
    2f 4flf 8- tetr achlorodibenzo-p-
       dioxin (tcdd)
    2/ 4-di chlorophenoKl 20 -83-2>
    2,4-diaethylphenol<105-67-9>
    2f 4-dinitrophenol<51-28-5>
    2,4-dinitrotoluene<121-14-2>
    2,6-dinltrotoluene<606-20-2>
    2-chloroethylvinyl ether<110-75-8>
    2-chloronaphthalene<91-58-7>
    2-chlorophenol<95-57-8>
    2-ni tropheno 1< 88-75-5>
    3,3'-dichiorobenzidine<91-94-l>
    3
    4,4'-ddd(p,p'tde)<72-54-8>
    4, 4--dde(p/p*-ddx<72-55-9>
4-bronophenyl phenyl ether
   <101-55-3>
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nltrophenol< 100-0 2-7>
Total Kjeldahl Nitrogen (TKN)
Total Organic Carbon (TOC)
Total Suspended Solids (TSS)
acenaphthene<83-32-9>
acenaphtby lene<20 8-96-8 >
acrolein<107-02-8>
acrylonitrile<107-13-l>
aldrin<309-00-2>
aaiionia<7664-41-7>
anthracene
ant i«ony<7 440-36-0>
arsenlc<7440-38-2>
asbestos<1332-21-4>
benzene<71-43-2>
benzidine<92-87-5>
beozo(a)anthracene<56-55-3>
benzo(a )pyrene<50-32-8>
benzo(g/h, i)perylene<191-24-2>
benzo(k)fluoranthene<207-08-9>
berylliu»<7440-41-7>
bhc (lindane)-gaa«a<58-89-9>
bhc-alpha<319-84-6>
bhc-beta<319-85-7>
bhc-delta<319-86-8>
bis (2-chloroethoxy)«e thane
    4/6-dinitro-o-cresol<534-52-l>
bis(2-chloroethyl)ether
bis(2-chloroisopropyl)ether
   <39638-32-9>
                             1036

-------
                             Accession Ho.   9028000912
                  (cont)
    bis(2-ethylhexyl)phthalate
    bis(chloro«ethyl)ether<542-88-l>
    bronoBethane<74-83-9>
    butyl benzyl phthalate<85-68-7>
    cad«iura<7440-43-9>
    carbon tetrachloride<56-23-5>
    chlordane<57-74-9>
    chlorine residuals
    chlorobenzene<108-90-7>
    chlorodibroRoaethane<124-48-l>
    chloroethane<75-00-3>
    chlorofor«<67-66-3>
    chloronethane<74-87-3>
    chro«ium<7440-47-3>
    chrysene<218-01-9>
    copper<7440-50-8>
    cyanide<57-12-5>
    di-n-butyl phthalate<84-74-2>
    di-n-octyl phthalate<117-84-0>
    dibenzo( a, h) anthracene<53-70-3>
    dichlorobrofflowethane<75-27-4>
    dichlorodifluoronethane<75-71-8>
    dichloroaethane<75-09-2>
    dieldrin<60-57-l>
    diethyl phthalate<84-66-2>
    dimethyl phthalate<131-ll-3>
    dissolved oxygen
    endosulfan sulfate<1031-07-8>
    endosulf an-alpha< 959-9 8- 8>
    endosulfan-beta<33213-65-9>
    endrin aldehyde<7421-93-4>
    endrin<72-20-8>
    ethylbenzene<100-41-4>
    fluoranthene<206-44-0>
    fluorene<86-73-7>
    heptachlor epoxide<1024-57-3>
    heptachlor<76-44-8>
    hexachlorob«nzene<118-74-l>
    hexachlorobutadiene<87-68-3>
    hexachlorocyclopentadiene<77-47-4>
    hexachloroethane<67-72-l>
    indeno (1, 2,3-cd)pyren«<193-39-5>
    isophorone<78-59-l>
    lead<7439-92-l>
n-nitrosodl-n-propylamine
   <621-64-7>
n-nitrosodi»ethyla«lne<62-75-9>
n-nitrosodiphenylamine<86-30-6>
naphthalene<91-20-3>
nickel<7440-02-0>
ni trobenzene< 98-95-3>
nitrogen dioxide and nitrate
nitrogen dioxide<10102-44-0>
orthophosphate<14265-44-2>
p-chloro-«-cresol<59-50-7>
PH
pcb-1016 (arochlor 1016)
   <12674-ll-2>
pcb-1221 (arochlor 1221)
   <11104-28-2>
pcb-1232 (arochlor 1232)
pcb-1242 (arochlor 1242)
   <53469-21-9>
pcb-1248 (arochlor 1248)
   <12672-29-6>
pcb-1254 (arochlor 1254)
   <11097-69-l>
pcb-1260 (arochlor 1260)
   <11096-82-5>
pentachlorophenol<87-86-5>
phenanthrene<85-01-8>
phenol<108-95-2>
pyrene<129-00-0>
selenium<7782-49-2>
silver<7440-22-4>
tenperature
tetrachloroethylene<127-18-4>
thalliu»<7440-28-0>
toluene<108-88-3>
total dissolved solids
total phosphate
total solids
toxaphene<8001-35-2>
tribrononethane<75-25-2>
trichloroethylene<79-01-6>
trlchlorof luoron«thane<75-69-4>
vinyl chlorid«<75-01-4>
2lnc<7440-66-6>
    •ercury<7439-97-6>
(CAS)  CAS registry numbers of substances included in data base:  71-55*6
    } 79-34*5; 79-00-5; 75-34-3; 75-35-4;       120-82-1; 95-50-1;
    107-06-2? 78-87-5; 563-54-2; 122-66-7; 156-60-5;   541-73-1;
    106-46-7; 88-06-2; 120-83-2; 105-67-9; 51-28-5; 121-14-2;
    606-20-2; 110-75-8; 91-58-7; 95-57-8; 88-75-5; 91-94-1; 205-99-2;
    72-54-8; 72-55-9; 50-29-3; 534-52-1; 101-55-3; 7005-72-3; 100-02-7;
                             1037

-------
                             Accession No*  9028000912     (cent)

    83-32-9; 208-96-8; 107-02-8; 107-13-1; 309-00-2; 7664-41-7;
    120-12-7;      7440-36-0; 7440-38-2; 1332-21-4; 71-43-2; 92-87-5;
    56-55-3; 50-32-8;       191-24-2; 207-08-9; 7440-41-7; 58-89-9;
    319-84-6; 319-85-7; 319-86-8;      111-91-1; 111-44-4; 39638-32-9;
    117-81-7; 542-88-1; 74-83-9; 85-68-7;      7440-43-9; 56-23-5;
    57-74-9; 108-90-7; 124-48-1; 75-00-3; 67-66-3;    74-87-3;
    7440-47-3; 218-01-9; 7440-50-8; 57-12-5; 84-74-2; 117-84-0;
    53-70-3; 75-27-4; 75-71-8; 75-09-2; 60-57-1; 84-66-2; 131-11-3;
    1031-07-8; 959-98r8; 33213-65-9; 7421-93-4; 72-20-8; 100-41-4;
    206-44-0; 86-73-7; 1024-57-3; 76-44-8; 118-74-1; 87-68-3; 77-47-4;
    67-72-1; 193-39-5; 78-59-1; 7439-92-1; 7439-97-6; 621-64-7;
    62-75-9;       86-30-6; 91-20-3; 7440-02-0; 98-95-3; 10102-44-0;
    14265-44-2;    59-50-7; 12674-11-2; 11104-28-2; 11141-16-5;
    53469-21-9; 12672-29-6;       11097-69-1; 11096-82-5; 87-86-5;
    85-01-8; 108-95-2; 129-00-0;    7782-49-2; 7440-22-4; 127-18-4;
    7440-28-0; 108-88-3; 8001-35-2;       75-25-2; 79-01-6; 75-69-4;
    75-01-4; 7440-66-6
(CNM)  Contact na«e(s): Hemett,R.;    Archdeacon,B.
(COR)  Contact organization: Roland Hewlett, Environmental Services
(ROR)  Responsible Organization: Region II.Environmental Services
    Division.
                             1038

-------
                             Accession No.   9038000528

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: National Pollutant Discharge
    Elimination System
(ACR)  Acronym of Data Base or Model: SPDES
(MED)  Media/Subject of Data Base or Model: Effluents-  Industrial  &
    Municipal
(ABS)  Abstract/Overview of Data Base or Model: Data Base consists of
    files containing NPDES applications, permits, discharge
    nonitoriports (DMR's),     inspection reports, and  correspondence
    regarding waste water discharge.
(DTP)  Type of data collection or monitoring: Point source
(STA)  Data Base status: Presently operarional/ongoing
(GRP)  Groups of substances represented in Data Base: 129 307 CMA  ;  11
    conventional water ; 41 Of A potential criteria
(NPP)  Non-pollutant parameters included in the data base: biological
    data ; compliance data ; concentration     measures ; discharge
    points ; flow rates ;  industry ; inspection data ;  location ;
    production levels ; sampling  date ; temperature ;   treatment
    devices or processes ; volume/mass measures
(DS)  Tine period covered  by data base: 07-71 TO 02-83
(TRM)  Termination of data collection: Not anticipated
(FRO)  Frequency of data collection  or sampling: Other- Varies
    according to State & Discharge Type &  size
(NOB)  Number of observations in  data base:  l,000,000(Estimated to

(NED  Estimated annual increase  of  observations in data base: 250,000
(INF)  Data base includes: Aggregate or summary  observations
(NTS)  Total number of stations or  sources covered in data base: 9000

-------
                             Accession Ho.   9038000528     (cont)

    office ; EPA Lab ; EPA Headquarters
(ABT)  Data analyzed by: Self-reporting ? state agency ; regional
    office ;  EPA Lab ; EPA Headquarters
               3,4-Benzofluoranthene <205-99-2>
    Acenaphthylene <208-96-8>            Benzotk)  fluoranthene <207-08-9>
    Acrolein   <107-02-8>                Benio(g,h,i)peryiene <191-24-2>
    Acrylonitrile <107-13-1>             Benzotaapyrene <50-32-8>
    Aldrin <309-00-2>                    Beryllium <7440-41-7>
    Anthracene  <120-12-7>               Bls(2-     chloroethoxy)aethane
    Antimony <7440-36-0>                    <111-91-1>
    Arsenic <7440-38-2>                  Bls(2-chloroethyl)ether
    Asbestos  <1332-21-4>                   
    BHC-.Alpha. <3l9-84-6>               Bls(2-chloroisopropyl)ether
    BHC-.Beta. <319-85-7>                   <39638-32-9>
    BHC (lindane)—Gaaaa. <58-89-9>      Bis   (ctiloroaethyl)ether
    BHC-.Delta. <319-86-8>                  <542-88-l>
    Benzene <7l-43-2>                    Bis(2-ethylhexyl)phthalate
    Benzldtne <92-87-5>                     <117-81-7>
    Benzo(a)anthracene <56-SS-3>        Broaoaethane <74-83-9>


                             1040

-------
                         Accession No.  9038000528
                  (cont)
4-Bromophenyl phenyl ether
   <101-55-3>
Butyl benzyl phthalate <85-68-7>
CadRium  <7440-43-9>
Carbon tetrachloride <56-23-5>
Chlordane <57-74-9>
Chlorobenzene <108-90-7>
Chlorodibromomethane   <124-48-l>
Chloroethane <75-00-3>
2-chloroethylvinyl ether
   <110-75-8>
Chloroform <67-66-3>
p-Chloro-m-cresol <59-50-7>
Chloromethane <74-87-3>
2-Chloronaphthalene <91-58-7>
2-Chlorophenol <95-57-8>
4-Chlorophenyl phenyl ether
   <7005-72-3>
Chromium <7440-47-3>
Chrysene <218-01-9>
Copper <7440-50-8>
Cyanide <57-12-5>
4,4*-DDD(p,p'-TDE)   <72-54-8>
4, 4*-rDE(p,p'-DDX) <72-55-9>
4,4'-DDT <50-29-3>
Dlbenzota^Manthracene <53-70-3>
Dl-n-butyl phthalate <84-74-2>
1,2-Dichlorobenzene <95-SO-l>
1,3-Dichlorobenzene     <541-73-l>
1,4-Oichlorobenzene <106-46-7>
3^3*- Dichlorobenzidine <91-94-l>
Oichlorobromomethane <75-27-4>
Olchlorodifluoromethane <75-71-8>
1^1-Dlchloroethane  <75-34-3>
1,2-Dlchloroethane <107-06-2>
1,1-Dichloroethylene   <75-35-4>
1,2-trans-Dichloroethylene
   <156-60-5>
Olchloromethane <75-09-2>
2,,4-Dichlorophenol <120-83-2>
1^2-Dlchloroi>ropane <78-87-5>
1^2-Dichloropropylene <563-^54-2>
Dieldrin <60-57-l>
Dlethyl phthalate <84-66-2>
2,4-  Dimethylphenol <105-67-9>
D lire thy I phthalate <131-ll-3>
4,6-Oinltro-o-cresol <534-52-l>
2,4-Dlnltrophenol <51-28-5>
2/4-Dlnitrotoluene <121-14-2>
2/6-Dlnltrotoluene <606-20-2>
Di-n-octyl phthalate <117-84-0>
1^2-Oiphenylhydrazlne <122-j66-7>
Endosulf an-. Alpha. <959-98-8>
Endosulfan-.Beta.     <33213-65-9>
Endosulfan sulfate <1031-07-8>
Endrln <72-20-8>
Endrin aldehyde <7421-93-4>
Ethylbenzene <100-41-4>
Fluor anthene <206-44-0>
Fluorene <86-73-7>
Heptachlor     <76-44-8>
Heptachlor epoxide < 102 4-57 -3>
Hexachlorobenzene     <118-74-l>
Hexachlorobutadiene <87-68-3>
Hexachlorocyclopentadlene
   <77-47-4>
Hex achloro ethane  <67-72-l>
Indeno (l,2,3-cd)pyrene <193-39-5>
Isophorone <78-59-l>
Lead <7439-92-l>
Mercury <7439-97-6>
Naphthalene <91-20-3>
Nickel <7440-02-0>
Nitrobenzene <98-95-3>
2-Nitrophenol   <88-75-5>
4-Hitrophenol <100-02-7>
N-Nltrosodlnethylanlne <62-75-9>
N-Nltrosodiphenylaraine <86-30-6>
N-Kitrosodi-n- propylamlne
   <621-64-7>
Pentachlorophenol <87-86-5>
Phenanthrene    <85-01-8>
Phenol <108-95-2>
PCB-1016 (Arochlor 1016)
   <12674-ll-2>
PCB-1221 {Arochlor 1221)
   <11104-28-2>
PCB-1232   (Arochor 1232)
PCB-1242 (Arochlor 1242)
   <53469-21-9>
PCB-1248 (Arochlor 1248)
   <12672-29-6>
PCB-1254    (Arochlor 1254)
   <11097-69-l>
PCB-1260 (Arochlor 1260)
   <11096-82-5>
Pyrene <129-00-0>
Selenium <7782-49-2>
Silver <7440-22-4>
1f \t If 8-t etrachlorodlbenzo-p-
   dloxin (TCDO)
1,1/2,2-Tetrachloroethane
   <79-34-5>
                         1041

-------
                             Accession Ho.  9038000528
                  (cont)
    Tetrachloroethylene <127-18-4>
    Thallium <7440-28-0>
    Toluene    <108-88-3>
    Toxaphene <8001-35-2>
    Tribroaoaethane <75-25-2>
    1,2,4-Trichlorobenzene <120-82-l>
    1,1,1-Trichloroethane    <71-55-6>
    1,1,2-Trichloroethane <79-00-5>
    Trichloroethylene    <79-01-6>
    Trichlorofluoroaethane <75-69-4>
    It 4,6-    Trichlorophenol
       <88-06-2>
    ?inyl chloride <75-01-4>
    Zinc <7440-66-6>
    Acidity
    Alkalinity
    Dissolved Oxygen
    Dissolved Solids
    Fecal colifora
    Nitrogen <7727-37-9>
    Oil and Grease
    Oxygen deaand
    PH
    Phosphorus <7723-14-0>
    Suspended solids Acetone <67-64-1>
    n-alkanes (clO - c30)
    Aluiinua <7429-90-5>
    Aaaonia <7664-41-7>
    Barium <7440-39-3>
    Biphenyl <92-52-4>
    Bisauth and compounds <7440-69-9>
    Boron and compounds <7440-42-8>
    Broaine <7726-95-6>
    Chlorine <7782-50-5>
2,4-d acid <94-75-7>
Deraeton <8065-48-3>
Dialkyl ethers
Dibenzofuran <132-64-9>
Diphenyl ether     <101-84-8>
Fluorides
Guthion <86-50-0>
Iron <7439-89-6>
Kepone <143-50-0>
Lithiun and compounds <7439-93-2>
Malathion  <121-75-5>
Manganese and conpounds
   <7439-96-5>
Hethoxychlor <72-43-5>
Methyl ethyl ketone (NEK)
   <78-93-3>
Mirex <2385-85-5>
Molybdenun and compounds
   <7439-98-7>
Nitrates/Nitrites
Nitriloacetates
Parathion <56-38-2>
Phosphorus <7723-14-0>
Polybroninated biphenyls (PBBS)
Secondary aalnes
Sodiua <7440-23-5>
Styrene <100-42-5>
Sulfates
Sulfides
Terpenes
If*r5-Trichlorophenoxypropionic
    acid (TP) <93-72-l>
Uraniua <7440-61-1>
Vanadiun <7440-62-2>
    Cobalt <7440-48-4>
(CAS)  CAS registry nuabers of substances included in data base:  83-32-9
    ; 208-96-8; 107-02-8; 107-13-1;   309-00-2; 120-12-7; 7440-36-0;
    7440-38-2; 1332-21-4; 319-84-6;   319-85-7; 58-89-9; 319-86-8;
    71-43-2; 92-87-5; 56-55-3; 205-99-2;     207-08-9; 191-24-2;
    50-32-8; 7440-41-7; 111-91-1; 111-44-4;      39638-32-9; 542-88-1;
    117-81-7; 74-83-9; 101-55-3; 85-68-7;      7440-43-9; 56-23-5;
    57-74-9; 108-90-7; 124-48-1; 75-00-3; 110-75-8;   67-66-3; 59-50-7;
    74-87-3; 91-58-7; 95-57-8; 7005-72-3; 7440-47-3;    218-01-9;
    7440-50-8; 57-12-5; 72-54-8; 72-55-9; 50-29-3; 53-70*3;
    84-74-2; 95-50-1; 541-73-1; 106-46-7; 91-94-1; 75-27-4; 75-71-8;
    75-34-3; 107-06-2; 75-35-4; 156-60-5; 75-09-2; 120-83-2; 78-87-5;
    563-54-2; 60-57-1; 84-66-2; 105-67-9; 131-11-3; 534-52-1; 51-28-5;
    121-14-2; 606-20-2; 117-84-0; 122-66-7; 959-98-8; 33213-65-9;
    1031-07-8; 72-20-8; 7421-93-4; 100-41-4; 206-44-0; 86-73-7;
    76-44-8;       1024-57-3; 118-74-1; 87-68-3; 77-47-4; 67-72-1;
    193-39-5; 78-59-1;    7439-92-1;  7439-97-6; 91-20-3; 7440-02-0;
    98-95-3; 88-75-5; 100-02-7;      62-75-9; 86-30-6; 621-64-7;
                             1042

-------
                             Accession No.  9038000528     (cont)

    87-86-5; 85-01-8; 108-95-2; 12674-11-2;   11104-28-2; 11141-16-5;
    53469-21-9; 12672-29-6; 11097-69-1;      11096-82-5; 129-00-0;
    7782-49-2; 7440-22-4; 79-34-5; 127-18-4;   7440-28-0; 108-88-3;
    8001-35-2; 75-25-2; 120-82-1; 71-55-6; 79-00-5;       79-01-6;
    75-69-4; 88-06-2; 75-01-4; 7440-66-6; 7727-37-9; 7723-14-0;
    67-64-1; 7429-90-5; 7664-41-7; 7440-39-3; 92-52-4; 7440-69-9;
    7440-42-8; 7726-95-6; 7782-50-5; 7440-48-4; 94-75-7; 8065-48-3;
    132-64-9; 101-84-8; 86-50-0; 7439-89-6; 143-50-0; 7439-93-2;
    121-75-5; 7439-96-5; 72-43-5; 78-93-3; 2385-85-5; 7439-98-7;
    56-38-2;      7723-14-0; 7440-23-5; 100-42-5; 93-72-1; 7440-61-1;
    7440-62-2
(ROR)  Responsible Organization: Region III.Environmental Services
    Division.
                             1043

-------
                             Accession No.   9038000901

(DQ)  Date of Questionaire: 12-02-82
(NAN)  Rarae of Data Base of Model: Unleaded Fuel Sanpling Program
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Other gasoline
(ABS)  Abstract/Overview of Data Base or Model: Lead content of
    unleaded gasoline sold to    consumers  is the subject of the
    contents of this data  base.
(CTC)  CONTACTS: Subject Batter   Steve Copeland  (215)597-3989   ;
    EPA Office  Robert Krame
(DTP)  Type of data collection or nonitoring: Combination/Other
    gasoline pumps and storage tanks
(STA)  Data Base status: Discontinued
(NPP)  Non-pollutant parameters included in the data base: Concentration
    measures ;Inspect!on data ^Location ^Sampling date ;     Site
    description
(DS)  Time period covered by data base: 01-01-75 TO 09-30-79
(TRM)  Termination of data collection: Occurred 09/30/79
(FRQ)  Frequency of data collection or sampling: annually
(NOB)  Number of observations in data base: 4300.(Estimated)
(NEI)  Estimated annual Increase of observations in data base:  0.
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources  covered in data base: 4300.
(NCS)  No. stations or sources currently originating/contributing data:
    0.
(NOF)  Number of facilities covered in data base (source monitoring):  43
    00.
(GEO)  Geographic coverage of data base: Selected federal region Region
    III
(LOC)  Data elements identifying location of station or source  include:
    State ;County /City ;Town/township ^Street address ^Project
    identifier
(FAC)  Data elements identifying facility include: Plant facility name
    ;Plant location ^Parent corp name
(CDE)  Pollutant identification data are: Oncoded
(LIN)  Limitation/variation in data of which user should be aware:  None
(DPR)  Data collect./anal, procedures conform to ORD guidelines: Samplln
    g plan documented ;Collection method documented ^Analysis method
    document QA procedures documented
(ANL)  Lab analysis based on EPA-approved or accepted methods?  YES
(AUD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base
(EOT)  Editting: Edit procedures used and documented.
(CBY)  Data collected by: Regional Office Environmental Services
    Division
(ABY)  Data analyzed by: Regional Office Environmental Services
    Division
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection:  Compliance or enforcement
(AUT)  Authorization for data collection: Statutory authorization is P
    L 88-206 as amended, Section 223 (Clean Air    Act-CAA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:


                             1044

-------
                             Accession Mo.   9038000901      (cont)

    QQ
(REP)  Form of available reports and outputs of data base:  ray data
(NOS)  Number of regular users of data base: 1 office
(DSR)  Current regular users of data base:  EPA headquarter  offices
    Mobile Source Division
(CNF)  Confidentiality of data and Halts on access: No Halts on
    access to data
(DLC)  Primary physical location of data: Headquarters office
(DST)  Form of data storage: Original fora (hardcopy, readings)
(OAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: no
(UPDT)  Frequency of data base master file up-date: Other progra*
    terminated at Wheeling Office
(CMP)  Completion of form:
    Steve Copeland
    OFC: EPA/Region ill/
    Environmental Services Division!   AD: 6th & Walnut St.,
    Philadelphia, PA  I9106f    PH: (215)597-3989
(OF)  Date of form completion: 01-13-83
(RMAT)  Number of substances  represented in data base: 12-02-82      l
(ICAS)  Number of CAS registry numbers In data base: 12-02-82      1
(MAT)  Substances represented In data base:
     lead<7439-92-l>                                        .
(CAS)  CAS registry numbers  of substances included  in data base:

(CUM)  Contact name(s): Copeland,S.    9    Kramer,R,
(ROR)  Responsible Organization: Region III.Environmental Services
     Division*
                              1045

-------
                             Accession Mo.  9038000903

(DQ)  Date of Questionaire: 12-02-82
(RAM)  Kane of Data Base of Model: State Intensive Survey Files:  MY,
    VA, MO, DE, PA, OC
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model:  Effluents Municipal and
    industrial ;Surface water estuary stream
(ABS)  Abstract/Overview of Data Base or Model:  Intensive survey  data
    that is not stored in STORET     is usually  included in the States*
    reports on intensive surveys  which Bust be  conducted to support
    AWT/AST Justifications and    Basic Water Monitoring Program.   Most
    used to support 201   grants (AWT/AST).
(CTC)  CONTACTS: Subject Batter   Larry S. Miller, Chief Toxics and
    Hater    Monitoring Section Region III  ; EPA Office Toxics  and
    Water Monitoring   Section, Region III  (215) 597-9823
(DTP)  Type of data collection or Monitoring: Combination/Other
    effluents and receiving streams
(STA)  Data Base status: Operational/ongoing
(CRP)  Groups of substances represented in Data  Base: 11 conventional
    water
(NPP)  Non-pollutant parameters included in  the  data base: Biological
    data ;Concentration Measures ^Discharge  points ;Flou rates }
    Location ;Sampling date ;Site description jTenperature ;Volume/aass
    measures
(OS)  Time period covered by data base: 06-01-78 TO 09-30-82
(TRM)  Termination of data collection: Not anticipated
(FRO)  Frequency of data collection or sampling: one time only
(HOB)  Number of observations in data base:  5000.(Estimated)
(NEI)  Estimated annual increase of observations in data base: 2000.
(INF)  Data base includes: Raw data/observations ;SuMmary aggregate
    observations
(NTS)  Total nuMber of stations or sources covered in data base:  300
    (estimated).
(NCS)  No. stations or sources currently originating/contributing data:
    100 (estimated).
(•OF)  Number of facilities covered in data  base (source Monitoring): 30
    (estimated).
(GEO)  Geographic coverage of data base: Selected federal region  Region
    III
(LOG)  Data elements identifying location of station or source include:
    Hot applicable
(FAC)  Data elements identifying facility include: Not applicable
(CDE)  Pollutant identification data are: encoded
(LIM)  Limitation/variation in data of which user should be aware:  Few
    observations are made for each survey -   only 15 or 20 surveys  per
    year.
(DPR)  Data collect./anal, procedures conform to ORD guidelines:  Samplin
    g plan documented ^Analysis Method documented ;QA procedures
    documented
(ANL)  Lab analysis based on EPA-approved or accepted Methods? YES
(ADD)  Lab Audit: Lab audit Is satisfactory  for  various labs over
    time-recent observations    better.
(PRE)  Precision: Precision and accuracy estimates exist but are  not


                             1046

-------
                             Accession Ho.   9038000903     (cont)

    included in data base
(EDT)  Editting: No known edit procedures exist.
(CBY)  Data collected by: State agency States of Vest Virginia,
    Virginia/ Maryland,  Delaware* Pennsylvani
(ABY)  Data analyzed by: State agency States of West Virginia,
    Virginia, Maryland,   Delaware, Pennsylvania and District of
    Columbia
(IDL)  Laboratory identification: YES
(ADT)  Authorization for data collection: Statutory authorization  is  P
    L 92-500 as amended, Sections 106 and 201 (Clean Water  Act-CHA),
    Basic Hater Monitoring Program
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Forn of available reports and outputs of data base:  Unpublished
    reports
(ROS)  Number of regular users of data base: 2 EPA Offices, 6 States
(USR)  Current regular users of data base:  EPA regional offices
    States
(CNF)  Confidentiality of data and limits on access: Limits on outside
    access for some data
(DLC)  Primary physical location of data: State agency
(DST)  Form of data storage: Original form (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: yes
(UPDT)  Frequency of data base master file up-date: Annually
(RSS)  Related EPA automated systems which use data base: Hater  Quality
    Models
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    None
(RDB)  Non-EPA data bases used in conjunction with this data base:  Hone
(CMP)  Completion of form:
    John Ruggero
    OFC: EPA/Region Ill/Environmental Services Division/Toxics and
    Hater  Monitoring Section* AD: 6th and Halnuts St., Philadelphia,
    PA 19106
    PH: (215) 597-9839
(OF)  Date of form completion: 01-14-83
(NCAS)  Number of CAS registry numbers in data base: 2
(MAT)  Substances represented in data base:
    alkalinity                           oxygen demand
    dissolved oxygen                     pH
    dissolved solids                     phosphorus<7723-14-0>
    ni trogen<7727-37-9>
(CAS)  CAS registry numbers of substances included in data base:  7727-37
    -9; 7723-14-0
(CNM)  Contact nane(s): John Ruggero
(COR)  Contact organization: Toxics and Hater Monitoring Section,
    Region III
(ROR)  Responsible Organization: Region III.Environmental Services
    Division.
                             1047

-------
                             Accession No.   9038000904

COQ)  Date of Questionaire: 12-02-82
(STATUS)  Status of entry: Inactive
(MAM)  Nave of Data Base of Model: National Air Sampling Network
(ACR)  Acronym of Data Base or Model: NASH
(MED)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: Checked operation of
    National Air Sampling   Network (NASN)  sites vhich were run by
    states or  volunteers.  If heeling Field  Office (Vest Virginia)
    collected filters at end of 12 day (one 24 hour run    cycle),
    neighed them* and sent them to Research triangle    Park, NC.
    35-40 stations in the netuorfc collecting    particulate and sulfur
    dioxide level data.
County ;City ;Tonn/township
(FAC)  Data elements identifying facility Include: N/A
(COB)  Pollutant identification data are: Saroad parameter
(LIN)  Limitation/variation in data of which user should be aware: Hot
    all stations had sulfur dioxide     (S0(2)).  Sulfur dioxide
    samples processed by     Annapolis.
(DPR)  Data collect./anal, procedures conform to ORD guidelines: Samplln
    g plan documented ^Collection method documented ^Analysis method
    document QA procedures documented
(AM.)  Lab analysis based on EPA-approved or accepted methods? YES
(AUD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base
(EOT)  Editting: Edit procedures used and documented.
(CBY)  Data collected by: Local agency various agency volunteers ;State
    agency various agency volunteers
(ABY)  Data analyzed by: EPA lab Region III Surveillance and Analysis
    Division, Research Triangle Park and Annapolis Field Office*
(IDL)  Laboratory identification: YES


                             1048

-------
                             Accession No.   9038000904     (cont)

(PR1)  Primary purpose of data collection:  Development of regulations
    or standards
(PR2)  Secondary purpose of data collection:  Program evaluation
(AUT)  Authorization for data collection: Statutory authorization  is P
    L 88-206 as amended/ Section 309 (Clean Air    Act-CAA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base: Printouts on
    request
    raw data
(KUS)  Number of regular users of data base: 8
(USR)  Current regular users of data base:  EPA headquarter offices
    Office of Air Quality Planning and Standards
    States
(CNF)  Confidentiality of data and limits on access: Ho limits on
    access to data
(DLC)  Primary physical location of data: Headquarters office
(DST)  Form of data storage: Magnetic tape
(DAC)  type of data access: EPA software SAROAD  NIDS:4504000918  ;EPA
    hardware UNIVAC 1110
(OPDT)  Frequency of data base master file up-date: Monthly  OFC:
    EPA/Region Ill/Surveillance and Analysis  Division/Wheeling Field
    AD: 303 Methodist Bldg. llth and Champline Streets  Wheeling,  ¥?
    26003     PH:  (304) 923-1049
(DF)  Date of form completion: 01-28-83
(NMAT)  Number of substances represented in data base: 2
(NCAS)  Number of CAS registry numbers in data base: 1
(MAT)  Substances represented in data base:
    sulfur dioxide<7446-09-5>            total suspended particulates
(CAS)  CAS registry numbers of substances  included in data base:  7446-09
    -5
(CNM)  Contact name(s): 0*Brien,D.
(COR)  Contact organization: Air Quality Monitoring Branch Region III
(ROR)  Responsible Organization: Region III.Environmental Services
    Division.
                              1049

-------
                             Accession No.   9038000905

(DQ)  Date of Questionalre: 12-02-82
(HAN)  Name of Data Base of Model: Waste Load Allocation-Model
    Verification
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model:  Effluents municipal  sewage
    treatment plants ^Surface Hater receiving streams (ri
(ABS)  Abstract/Overview of Data Base or Model: Data in this data  base
    is derived from  verifying waste load allocations and sampling
    river    reach upstream and downstream  over 3-4 day periods.
    Three to five different plants per year-1 tine per     plant-were
    sampled.
(CTC)  CONTACTS: Subject matter   Dale Wismer  (215)597-9991 ;      EPA
    Office  Technical Assista
(DTP)  Type of data collection or Monitoring: Combination/Other  ambient
    & point source (municipals)
(STA)  Data Base status: Funded for development
(OPO)  Projected operational date of Data Base: 09-00-79
(GRP)  Groups of substances represented in  Data Base: 11 conventional
    water
(MPP)  Non-pollutant parameters included in the data base:  Chemical
    data ^Concentration measures ;Flow rates ;Inspection data ;
    Location ;Sampling date ;Site description ;ti»e data ;travel data
(DS)  Time period covered by data base: 01-01-77 TO 09-30-79
(TRM)  Termination of data collection: Occurred 09/30/79
(FRQ)  Frequency of data collection or sampling: as needed
(ROB)  Number of observations in data base:  3426.(Estimated)
(INF)  Data base Includes: Raw data/observations
(NTS)  Total number of stations or sources  covered in data base: 65
    ((approximately).)
(NCS)  No. stations or sources currently originating/contributing  data:
    (N/A.)
(HOP)  Number of facilities covered in data base (source monitoring): 7.
(GEQ)  Geographic coverage of data base: Geographic region West
    Virginia, Western Pennsylvania, Southwest  Virginia
(LOC)  Data elements identifying location of station or source include:
    State /County ^Coordinates latitude/longitude and river mile points
(FAC)  Data elements identifying facility include: Plant facility  name
    ;Plant location ;NPDES
(CDE)  Pollutant identification data are: Storet parameter
(LiM)  Limitation/variation in data of which user should be aware: None
(DPR)  Data collect./anal, procedures conform to ORD guidelines: Samp1in
    9 plan documented Collection method documented ;Analysis method
    document QA procedures documented
(AND  Lab analysis based on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: Lab audit is satisfactory for .
(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base
(EOT)  Editting: Edit procedures used and documented.
(CBY)  Data collected by: Regional office Surveillance Analysis
    Division, Wheeling  Field Office, Region I
(ABY)  Data analyzed by: Regional office Surveillance and Analysis
    Division, Wheeling     Field Office, Region III


                             1050

-------
                             Accession No.  9038000905     (cont)

(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Development of regulations
    or standards
(AUT)  Authorization for data collection: Statutory authorization  is P
    L 92-500 Sections 208 and 303 (Clean Mater     Act-CHA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Forn of available reports and outputs of data base:  Trip reports
    and tabulated raw data
(NUS)  Number of regular users of data base: 3
(USR)  Current regular users of data base: EPA regional offices
    States
(CNF)  Confidentiality of data and Units on access: No Halts on
    access to data
(DLC)  Primary physical location of data: Regional office
(DST)  Form of data storage: Original fora (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: no
(OPDT)  Frequency of data base master file up-date: Other As requested
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    Storage and Retrieval of Hater     Quality Data (STORET)
(RDB)  Non-EPA data bases used in conjunction with this data base: U.S.
    Geological Survey:  Stream Flow Data (if available).
(CMP)  Completion of form:
    John Ruggero
    OFC: EPA/Region III/
    Environmental Services Division^   AD: 6th & Walnut St.,
    Philadelphia, PA  19106#    PH: (215)597-9839
(DF)  Date of form completion: 02-24-83
(NMAT)  Number of substances represented in data base: 7
(MCAS)  Number of CAS registry numbers in data base: 12-02-82      1
(MAT)  Substances represented in data base:
    acidity                              nitrogen<7727-37»9>
    alkalinity                           oxygen demand
    dissolved oxygen                     pH
    dissolved solids
(CAS)  CAS registry numbers of substances included in data base:  7727-37
    -9
(CNM)  Contact name(s): Hismer,D.
(COR)  Contact organization: Technical Assistance  and Special Program
    Section,
(ROR)  Responsible Organization: Region  III.Environmental Services
    Division.
                             1051

-------
                             Accession No.  9038000910

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Naae of Data Base of Model: Spill Report Date Base
(ACR)  Acronym of Data Base or Model: WILBUR
(MED)  Media/Subject of Data Base or Model:  Other Spills
(ABS)  Abstract/Overview of Data Base or Model: This data base is a
    record of spills reported to EPA   and includes information on
    quantity and type of pollutant spilled,    the discharger, and Spill
    Prevention Control and Counteraeasure  Systea (SPCCS) inforaation/
    if appropriate.  WILBUR, a national  systea, is concerned only with
    oil spills; however, Regional     Manual Logs include oil and
    hazardous waste spills.  Data   Regional Logs are used as input to
    WILBUR.
(CTC)  CONTACTS: Subject Batter   Vivienne Villiaas  215-597-4554    ;
    Coaputer-related  Oil
(DTP)  Type of data collection or aonitoring: Coablnation/Other Spills
(STA)  Data Base status: Operational/ongoing
(NPP)  Non-pollutant paraaeters included in the data base: Industry
    ^Location ;Voluae/aass aeasures Jpollutant type
(DS)  Tiae period covered by data base: 01-01-71 TO 09-30-81
(TRM)  Teraination of data collection: Not anticipated
(FRQ)  Freguency of data collection or saapling: as needed
(MOB)  Nuaber of observations in data base:  11217.(Actual)
(NED  Estiaated annual increase of observations in data base: 1998.
(IMF)  Data base includes: Raw data/observations
(NTS)  Total nuaber of stations or sources covered in data base:  11217.
(NCS)  No. stations or sources currently originating/contributing data:
    (N/A.)
(NOF)  Nuaber of facilities covered in data base (source aonitoring): (N
    /A.)
(CEO)  Geographic coverage of data base: Selected federal region Region
    III
(LOC)  Data eleaents identifying location of station or source include:
    State jCounty ;City
(FAC)  Data eleaents identifying facility include: Plant facility name
    ;plant location ^Street address jcase nuaber
(CDE)  Pollutant identification data are: Oncoded
(LIM)  Liaitation/variation in data of which user should be aware: Hazar
    dous waste spills beginning in March 1978.   Oil spill data since
    1971.  FY 1980 spills (1820) included
    79.6% oil spills, 6.4% PCB spills, 14% other hazardous waste
    spills.  Not all spills require    lab analysis.  Where required,
    analysis is done by EPA labs (covered by quality assurance) or
    non-EPA labs (quality assurance     is covered by a national
    prograa.)
(EOT)  Emitting: HO known edit procedures exist.
(CBY)  Data collected by: Self reporting anyone seeing a spill or its
    effects ;Local agency various ones a State agency various ones
    ^citizens seeing spill take place or its effects
(ABY)  Data analyzed by: Regional office Region III
(IDL)  Laboratory identification: MO
(PR1)  Priaary purpose of data collection: Coapliance or enforceaent
(PR2)  Secondary purpose of data collection: Prograa evaluation


                             1052

-------
                             Accession No.   9038000910      (cont)

(AOT)  Authorization foe data collection: Statutory authorization is P
    L 92-500 as amended. Section 311 (Clean Water  Act)  Monitor  against
    Spill Prevention Control and Countermeasure system     (SPCCS) plan;
    and log phone calls in compliance with 24 hour access   phone
    required in President's Contingency Plan
(OMB)  Data collected/submitted using OMB-approved EPA  reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base:  Unpublished
    reports Manual Logs of Spills
    Printouts on request
(MUS)  Number of regular users of data base: 2 offices
(OSR)  Current regular users of data base:  EPA headquarter offices Oil
    and Special Materials Control Division    (oil portion)
    EPA regional offices
(CNF)  Confidentiality of data and Halts on access: No limits on
    access to data
(DLC)  Primary physical location of data: Regional office ^Headquarters
    office
(DST)  For* of data storage: Original fora (hardcopy/ readings)
(OAC)  type of data access: EPA software WILBUR (for Spill Prevention
    Control and  Countermeasure System) ;  Manually:  hazardous  waste
    portion
(CHG)  Direct charge for non-EPA use: no
(OPDT)  Frequency of data base master file up-date: Quarterly
(RSS)  Related EPA automated systems which use data base: Spill
    Prevention Control and  Countermeasure System (SPCCS)
(CMP)  Completion of form:
    Bruce Smith
    OFC: EPA/Region Ill/Environmental Services Division*   AD: 6th &
    Walnut Philadelphia, PA 19106
    PH: (215) 597-9075
(DF)  Date of form completion: 01-28-83
(NMAT)  Number of substances represented in data base:  2
(MAT)  Substances represented in data base:
    oil and grease                       polychlorinated biphenyls (PCBs)
(CNM)  Contact name(s): 215,B.P.  ;    DIvision,O.S.
(COR)  Contact organization: Oil and Special Materials Control Division
(ROR)  Responsible Organization: Region III.Environmental Services
    Division.
                             1053

-------
                             Accession No.   9038000911

CDQ)  Date of Questionaire: 12-02-82
(HAM)  Nave of Data Base of Model:  Potomac  River
(ACR)  Acronym of Data Base or Model:  None
(MED)  Podia/Subject of Data Base or Model: Surface water estuary  and
    river
CABS)  Abstract/Overview of Data Base or Model:  Long tern uater  quality
    monitoring of the    Potomac River and  estuary for  nutrient
    cheatstry, selected  physical,  chemical, and biological  parameters.
    Data includes    some fresh water and sewage treatment plant
    sampling also.
(CTC)  CONTACTS: Subject matter   Orterio filla. Jr.  (301)  224-2740
    }     Computer-related  M
(DTP)  Type of data collection or monitoring:  Ambient data collection
(STA)  Data Base status: Terminated 09/30/81
(GRP)  Groups of substances represented in  Data  Base: 11 conventional
    water
(NPP)  Non-pollutant parameters Included in the  data base: Biological
    data ;Chemical data ;Salinity ^Sampling date ;Site  description /
    Temperature ^Physical data
(OS)  Time period covered by data base: 06-01-65 TO 09-30-81
(TRM)  Termination of data collection: Hot  anticipated
(FRO)  Frequency of data collection or sampling: monthly ;as needed
    ;Qther monthly, plus various special studies.
(HOB)  Number of observations in data base: 135000.(Estimated)
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources  covered in data base: 30.
(NCS)  No. stations or sources currently originating/contributing  data:
    22.
(NOF)  Number of facilities covered in data base (source monitoring): (N
    /A.)
(GEO)  Geographic coverage of data base: Geographic region Potomac
    Estuary
(LOG)  Data elements identifying location of station or source include:
    State ^Coordinates Latitude/longitude
(FAC)  Data elements identifying facility include: N/A
(CDE)  Pollutant identification data are: Storet parameter
    Oneoded
(LIM)  Limitation/variation in data of which user should be  aware: Frequ
    ency of sampling varies year to year;   not  all stations sampled
    each year; light studies in 1978-80.
(DPR)  Data collect./anal, procedures conform to ORD guidelines: Samplin
    g plan documented Collection method documented ^Analysis method
    document QA procedures documented
(ANL)  Lab analysis based on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base    Edit data since 1972 has more complete
    editing and quality control.
(CBY)  Data collected by: EPA lab Central Regional Lab-Region III
(ABY)  Data analyzed by: EPA lab Central Regional Lab-Region III
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection:  Trend assessment


                             1054

-------
                             Accession Ho.   9038000911      (cont)

(AUT)  Authorization for data collection: Statutory authorization is P
    L 92-500 as amended (Clean Mater Act-CWA)
(OMB)  Data collected/submitted using OMB-approved EPA  reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base:  Publications
    Technical Reports of Region III, Central Regional   Laboratory
    printouts on request
(NOS)  Number of regular users of data base: 50
(USR)  Current regular users of data base:  EPA regional offices
    EPA laboratories
    Other federal agencies
    States
    research institutes
(CNF)  Confidentiality of data and Units on access: No limits on
    access to data
(DLC)  primary physical location of data: EPA lab
(DST)  Fora of data storage: Magnetic tape
(DAC)  Type of data access: EPA software STORET  HIDS:5303000101 ;EPA
    hardware IBM 370/168
(CHG)  Direct charge for non-EPA use: no
(UPDT)  Frequency of data base master file up-date: Annuallyeg
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    STORET (Storage and Retrieval of   Mater Quality Data)
(ROB)  flon-EPA data bases used in conjunction with this data base:  Resea
    rch Institutions in Delaware and Chesapeake Bay areas;  U.S.
    Geological     Survey, Hater Resources Division-National Hater  Data
    Storage and Retrieval System (HATSTORE)
(ODB)  Other pertinent non-EPA data bases: States of Maryland and
    Virginia
(CMP)  Completion of fora:
    Dan Donnelly
    OFC: EPA/Region Ill/Central Regional Laboratory
    Annapolis/Surveillance and Analysis Division
    AD: 839 Bestgate Road Annapolis, MD 21401
    PH: (301) 224-2740
(DP)  Date of for* completion: 01-19-83
(HMAT)  Number of substances represented in data base: 22
(NCAS)  Number of CAS  registry numbers in data base: 2
(NAT)  Substances represented in data base:
    acidity                              algal identifications
    alkalinity                           chlorophyll
    dissolved oxygen                     photometry
    dissolved solids                     photosynthetic rate
    fecal  coliform                       polonium  210
    nitrogen<7727-37-9>                  respiration rate
    oxygen demand                        secchi disk
    pH                                   total carbon  (TO
    phosphorus<7723-14-0>                total coliform
    suspended solids                     total organic carbon (TOO
    NBOD                                 turbidity
(CAS)  CAS  registry  numbers  of  substances included in  data base: 7727-37
    -9; 7723-14-0


                             1055

-------
                             Accession No.  9038000911     (cont)

       £onta<* na»e
-------
                             Accession No.   9038000912

(DQ)  Date of Questionaire: 12-02-82
(MAM)  Name of Data Base of Model: Delaware River Estuary
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Surface Hater  estuary
(ABS)  Abstract/Overview of Data Base or Model: The Delauare  Estuary
    Mater Quality Study uas a three year   study of nutrients, oxygen
    demand, and selected physical and     chemical paraaeters in
    estuarine portion of the river.
(CTC)  CONTACTS: Subject natter   Leo Clark  (301) 224-2740  ;
    Computer-related  Central Reg
(DTP)  Type of data collection or monitoring: Ambient data collection
(STA)  Data Base status: Discontinued
(GRP)  Groups of substances represented in Data Base: 11 conventional
    water
(NPP)  Non-pollutant parameters included in the data base: Biological
    data ;Chemical data ^Location ;Salinity ;Sampllng date /     Site
    description ;Temperature ^Physical data
(DS)  Time period covered  by data base: 04-01-74 TO 12-30-78
(TRM)  Termination of data collection: Occurred 12/30/78
(FRQ)  Frequency of data collection or sampling: as needed
(NOB)  Number of observations in data base: 13700.(Estimated)
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base:  180.
(NCS)  No. stations or sources currently originating/contributing data:
    (N/A.)
(NOF)  Number of facilities covered in data base (source monitoring):  (N
    /A.)
(GEO)  Geographic coverage of data base: Geographic region Delauare
    River
(LOC)  Data elements identifying location of station or source include:
    State Coordinates latitude/longitude
(FAC)  Data elements identifying facility  include: N/A
(CDE)  Pollutant identification data are: Storet parameter
(LIM)  Limitation/variation in data of which user should be aware: Three
    year study  of selected stations of Delauare estuary monthly during
    growing season; seasonally in remainder   of year.
(DPR)  Data collect./anal, procedures conform  to ORD guidelines: Samplin
    g plan documented ^Collection method documented ;Analysis method
    document QA procedures documented
(ANL)  Lab analysis based  on EPA-approved  or accepted methods? YES
(ADD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and  accuracy estimates exist but are not
     included in data base
(EOT)  Editting: Edit procedures  used and  documented.

-------
                             Accession No.  9038000912     (cont)

(REP)  Form of available reports and outputs of data base: Publications
    Technical Reports of Region III, Central Regional   Lab.
    Printouts on request
(BUS)  Dumber of regular users of data base: 40
(USR)  Current regular users of data base: EPA regional offices
    Other federal agencies
    States
    Research Institutions
(CNF)  Confidentiality of, data and Units on access: No limits on
    access to data
(DLC)  Primary physical location of data: EPA lab
(DST)  Form of data storage: Magnetic tape
                  secchi disk
    oxygen demand                        total carbon (TC)
    pH                                   total coliform
    phosphorus<7723-14-0>                total organic carbon (TOO
    suspended solids
(CAS)  CAS registry numbers of substances included in data base: 7727-37
    -9; 7723-14-0
(CUM)  Contact name(s): Clark/L.  ;    Lab,C.R.  ;    Lab,C.R.
(ROR)  Responsible Organization: Region III.Environmental Services
    Division.
                             1058

-------
                             Accession No.   9038000913

(DQ)  Date of Questionaire: 12-02-82
(NAN)  Name of Data Base of Model; Chesapeake Bay
(ACR)  Acronym of Data Base or Model: None
(NED)  Media/Subject of Data Base or Model: Surface water  estuary
CABS)  Abstract/Overview of Data Base or Model: Long term  water  quality
    monitoring of upper Chesapeake Bay for nutrient chemistry  and
    selected physical, biological,    and chemical parameters.
CCTC)  CONTACTS: Subject matter   Orterio Villa, Jr.  (301)  224-2740
    ;     Computer-related  S
(DTP)  Type of data collection or monitoring: Ambient data collection
(STA)  Data Base status: Terminated  09/79
(GRP)  Groups of substances represented in Data Base: 11 conventional
    water
(NPP)  Non-pollutant parameters included in the data base: Biological
    data ;Chemical data ^Location ^Physical data ;Salinity ;
    Sampling date /Site description  ;Temperature
(DS)  Time period covered by data base: 04-01-67 TO 09-30-79
(TRM)  Termination of  data collection: Occurred  07/30/79
(FRQ)  Frequency of data collection  or sampling: monthly ;as needed
    ;0ther monthly, plus various  special studies
(NOB)  Number of observations in  data base: 145000.(Estimated)
(NEI)  Estimated annual increase  of  observations in data base: 0.
(INF)  Data base includes: Ran data/observations
(NTS)  Total number of stations or sources covered in data base: 65.
(NCS)  No. stations or sources currently originating/contributing  data:
    25.
(NOF) *Number of facilities covered  in data base (source monitoring):  (N
    /*•>                                        ...
(GEO)  Geographic coverage of data base: Geographic region upper
    Chesapeake Bay
(LOC)  Data elements identifying  location  of  station or source include:
    State Coordinates Latitude and  longitude
(FAC)  Data elements identifying  facility  include: N/A
(CDE)  Pollutant identification data are:  Storet parameter
    Uncoded
(LIM)  Limitation/variation in data  of yhich  user  should be aware: Frequ
     ency of sampling varies year  to  year;  not    all stations sampled
     each year;  light studies  in 1978-79.
(DPR)  Data collect./anal, procedures conform to CRD guidelines: Saaplin
     g plan documented  ;Collection method  documented  ;Analysis method
     document QA  procedures documented
(AND  Lab analysis based  on  EPA-approved  or  accepted methods? YES
(ADD)  Lab Audit: Lab  audit is satisfactory.
(PRE)  Precision: Precision and  accuracy  estimates exist but are not
     included in data base     Edit data since  1972  has more  complete
     editing and quality  control..
(CBY)  Data collected  by:  EPA lab Central  Regional Lab  - Region III
(ABY)  Data analyzed  by: EPA  lab  Central  Regional  Lab - Region III
(IDL)  Laboratory  identification: YES
(PR1)  Primary  purpose of  data  collection: Trend  assessment
(AOT)  Authorization  for  data collection:  Statutory  authorization is P
     L  92-500  as amended (Clean  Water Act)


                              1059

-------
                             Accession No.   9038000913      (cont)

(OMB)  Data collected/submitted using OMB-approved EPA  reporting forms:
    QQ - lab sheets used
(REP)  Fora of available reports and outputs of data base:  Publications
    Technical Reports of Region III* Central Regional   Lab.
    Printouts on request
(HOS)  Vunber of regular users of data bases 50
(OSR)  Current regular users of data base:  EPA regional offices
    EPA laboratories
    Other federal agencies
    States
    research institutes
(CHF)  Confidentiality of data and limits on access: Mo 1inits on
    access to data
(DLC)  priaary physical location.of data: EPA lab
(DST)  Fora of data storage: Magnetic tape
(DAC)  Type of data access: EPA software STORET  «IDS:5303000101  ;EPA
    hardware IBM 370/168
(CHG)  Direct charge for non-EPA use: no
(OPDT)  Frequency of data base master file up-date: Annuallyeg
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    STORET (Storage and Retrieval of Hater  Quality Data)
(ROB)  Hon-EPA data bases used in conjunction with this data base: Resea
    rch institutions in Delaware  and Chesapeake Bay area; U.S.
    Geological Surveys/ Mater     Resource Division - National Water
    Data Storage and Retrieval    Systea (HATSTORE)
(ODB)  Other pertinent non-EPA data bases: States of Maryland and
    flrglnia
(CMP)  Completion of fora:
    Dan Donnelly                                          ,.  .
    OFC: EPA/Region Ill/Central Regional Laboratory-Annapolis/
    Surveillance and Analysis Division
    AD: 839 Bestgate Road Annapolis/ MD  21401
    PH: (301)  224-2740
(DF)   Date of  fora completion: 01-19-83
(RMAT) Muaber of  substances  represented in  data base:  16
(•CAS) Muaber of CAS  registry numbers in  data base: 2
(MAT)   Substances  represented in data base:
     HBOD
     algal  identifications
     dissolved  oxygen
     dissolved  solids
     fecal  colifora
     ni trogen<7727-37-9>
     oxygen demand
     PH
     phosphorus<7723-14-0>
     polonium 210
     respiration rate
     seechi disk
     suspended solids
     total  coliform
     total  organic carbon (TOC)


                              1060

-------
                             Accession Mo.  9038000913     (cont)

    turbidity
(CAS)  CAS registry numbers of substances included In data base: 7727-37
    -9; 7723-14-0
(CNN)  Contact naae(s): Vllla,0.  ;    Couger*S. ;    Lab,C.R.
(ROR)  Responsible Organization: Region III.Environmental Services
    Division.
                              1061

-------
                             Accession No.   9038000914

(DQ)  Date of Questionaire: 12-02-82
(8AM)  Mane of Data Base of Model:  Ocean Dmping
(ACR)  Acronym of Data Base or Model: None
(MED)  Pedia/Subject of Data Base or Model: Surface water narine
(ABS)  Abstract/Overview of Data Base or Model:  Environmental  surveys
    of ocean dump sites off aid-     Atlantic coast of U.S.  are the
    sources of the contents of this   data  base.
(CTC)  CONTACTS: Subject matter   Donald Lear  (301) 224-2746;      EPA
    Office  Region III Philad
(DTP)  Type of data collection or nonitoring: Ambient data collection
(STA)  Data Base status: Terminated  09/30/81
(NPP)  Non-pollutant parameters included in the  data base: Biological
    data ;Chemlcal data ^Location ;Salinity ;Temperature ; secchi disk
    ;benthic invertebrates >Sediment size ;bacteriological data
(DS)  Time period covered by data base: 06-01-73 TO 09-30-81
(TRM)  Termination of data collection: Occurred   09/30/81
(FRQ)  Frequency of data collection or sampling: semi annually  ;as
    needed
(NOB)  Number of observations in data base: 43500.(Estimated)
(INF)  Data base includes: Ran data/observations ^Summary aggregate
    observations ;Reference data/citations
(NTS)  Total number of stations or sources  covered in data base:  200.
(NCS)  No. stations or sources currently originating/contributing data:
    150.
(NOF)  Number of facilities covered in data base (source monitoring):  (N
    /A.)
(GEO)  Geographic coverage of data base: Geographic region coastal
    mid-Atlantic area
(LOC)  Data elements identifying location of station or source  include:
    Coordinates
(FAC)  Data elements identifying facility include: N/A
(CDE)  Pollutant identification data are: Storet parameter
    Uncoded
(LIM)  Limitation/variation in data of vhich user should be  auare: Data
    from various laboratories documented in survey reports.   Some
    pollutant data coded with STORET codes     and other data is  not
    coded at all.
(DPR)  Data collect./anal, procedures conform to ORD guidelines:  Samplin
    g plan documented ^Collection method documented ;Analysis method
    document QA procedures documented
(ANL)  Lab analysis based on EPA-approved or accepted methods?  YES
(ADD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but are  not
    included in data base
(EOT)  Editting: Edit procedures used but undocumented.
(CBY)  Data collected by: Regional office Region III Ocean Dumping
    Program
(ABY)  Data analyzed by: Regional office Region III Central  Regional
    Laboratory
(IDL)  Laboratory identification: YES
(AUT)  Authorization for data collection: Statutory authorization is P
    L 92-532 (Marine Protection, Research and Sanctuaries Act of  1972)


                             1062

-------
                             Accession No.  9038000914      (cont)

(OMB)  Data collected/submitted using OMB-approved EPA  reporting foras:
    QQ
(REP)  Form of available reports and outputs of data base:  Publications
    Technical Reports of Region III
(NOS)  Nuaber of regular users of data base: 50
(USR)  Current regular users of data base: EPA regional offices
    EPA laboratories
    Other federal agencies
    States
    research institutes
(CNF)  Confidentiality of data and limits on access: No limits on
    access to data
(OLC)  Primary physical location of data: EPA lab
(DST)  Form of data storage: Original form (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: yes
(OPDT)  Frequency of data base master file up-date: Annually
(ODB)  Other pertinent non-EPA data bases: Oceanographic Research
    Institutes  in the Middle Atlantic area.
(CMP)  Completion of form:
    Dan Donnelly
    OFC: EPA/Region Ill/Central Regional
    Laboratory-Annapolis/Surveillance
    and Analysis Division
    AD: 839 Bestgate Road, Annapolis, MD 21401
    PH: (301) 224-2740
(DF)  Date of form completion: 01-19-83
(NMAT)  Number of substances represented in data base:  13
(RCAS)  Number of CAS registry numbers in data base: 9
(MAT)  Substances represented in data base:
    zinc<7440-66-6>                      aercury<7439-97-6>
    cad«ium<7440-43-9>                   nickel<7440-02-0>
    chromiura<7440-47-3>                  polychlorinated biphenyls (PCBs)
    copper<7440-50-8>                    silver<7440-22-4>
    dissolved oxygen                     total carbon (TO
    iron<7439-89-6>                      total organic carbon (TOO
    lead<7439-92-l>                                              ,,^A
(CAS)  CAS registry numbers of substances included  in data base:  7440-66
    -6> 7440-43-9; 7440-47-3; 7440-50-8;    7439-89-6; 7439-92-1;
    7439-97-6; 7440-02-0; 7440-22-4
(CNM)  Contact narae(s): Lear,D.    ;    Philadelphia,R.I.
(ROR)  Fesponsible Organization: Region  III.Environmental Services
    Division.
                             1063

-------
                             Accession Wo.  9038000915

(DQ)  Date of Questions!re: 12-02-82
(NAN)  Mate of Data Base of Model: Dredging-Special Studies Metals
(ACR)  Acronym of Data Base or Model: Hone
(MED)  Media/Subject of Data Base or Model: Sediment
(ABS)  Abstract/Overview of Data Base or Model:  Elizabeth River and
    Baltimore Harbor grid sampling     for metals in sediments.
(CTC)  CONTACTS: Subject natter   P.C. Johnson  (301) 224-2740    ;
    EPA Office  Central Regi
(DTP)  Type of data collection or Monitoring:  Ambient data collection
(STA)  Data Base status: Discontinued
(IfPP)  Non-pollutant parameters included in the  data base: Location
    ;Sampling date ;Site description ;Test/analysis method
(DS)  Time period covered by data bases 09-01-74 TO 04-30-75
(TRM)  Termination of data collection: Occurred  04/30/75
(FRQ)  Frequency of data collection or sampling: one time only
(NOB)  Number of observations in data base: 2700.(Estimated)
(NED  Estimated annual increase of observations in data base: 0.
(IMF)  Data base includes: Raw data/observations ; Summary aggregate
    observations ;Reference data/citations
(NTS)  Total number of stations or sources covered in data base: 272.
(NCS)  No. stations or sources currently originating/contributing  data:
    0.
(NOF)  Number of facilities covered in data base (source monitoring): 0.
(GEO)  Geographic coverage of data base: Geographic region Baltimore
    Harbor; Elizabeth River/Hampton Roads/    Virginia
(LOG)  Data elements identifying location of station or source include:
    State jmaps in reports
(FAC)  Data elements identifying facility include: N/A
(CDS)  Pollutant identification data are: Oncoded
(LIM)  Limitation/variation in data of Which user should be anare: Hone
(DPR)  Data collect./anal, procedures conform to QRD guidelines: Samplin
    g plan documented Collection method documented ^Analysis method
    document QA procedures documented
(AML)  Lab analysis based on EPA-approved or accepted methods? YES
(PRB)  Precision: Precision and accuracy estimates exist but are not
    included in data base
(EOT)  Edittlng: Edit procedures used and documented*
(CBT)  Data collected by: EPA lab Central Regional Lab, Region III
(AST)  Data analyzed by! EPA lab Central Regional Lab/ Region III
(IDL)  Laboratory identification: YES
(AOT)  Authorization for data collection: Statutory authorization  is P
    L 95-217 (Clean Hater Act of 1977)   Statutory authorization is P L
    91-611 (River and Harbor Act of 1970)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ-laboratory sheet* used
(REP)  Form of available reports and outputs of  data base: Publications
    Annapolis Field Office Technical Reports not. 59 & 61
(•OS)  Mumber of regular users of data base! 30
(OSR)  Current regular users of data base: EPA regional offices
    Other federal agencies
    States
    research institutes


                             1064

-------
                             Accession No.   9038000915      (cont)

(CNF)  Confidentiality of data and liaits on access: Ho  Units on
    access to data
(DLC)  Primary physical location of data: EPA lab
(DST)  Form of data storage: Original fora (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: no
(OPDT)  Frequency of data base master file up-date:  Other  None - study
    completed
(CMP)  Completion of form:
    Dan Donnelly
    OFC: EPA/Region Ill/Central Regional Lab Annapolis/
    Surveillance and Analysis Division
    AD: 639 Bestgate Road Annapolis, MD 21401
    PH: (301)224-2740
(DF)  Date of form completion: 01-19-83
(NMAT)  Number of substances represented in data base: 15
(NCAS)  Number of CAS registry numbers in data base: 11
(MAT)  Substances represented in data base:
    cadmium<7440-43-9>                   nickel<7440-02-0>
    chemical oxygen demand (COD)         oil and grease
    chrc»ium<7440-47-3>                  silver<7440-22-4>
    copper<7440-50-8>                    total organic carbon (TOO
    iron<7439-89-6>                      total volatile  solids
    lead<7439-92-l>                      trihaloaethanes
    raanganese<7439-96-5>                 zinc<7440-66-6>
    raercury<7439-97-6>
(CAS)  CAS registry numbers of substances included in data base: 7440-43
    -9; 7440-47-3; 7440-50-8; 7439-89-6;   7439-92-1; 7439-96-5;
    7439-97-6; 7440-02-0; 7440-22-4; 7440-66-6
(CNM)  Contact name(s): Johnson^P.G.   ;    LabsC.R.
(ROR)  Responsible Organization: Region III.Environmental  Services
    Division.
                             1065

-------
                             Accession No.  9038000916


-------
                             Accession No.  9038000916     (cont)

(NUS)  Number of regular users of data base: 2
(USR)  Current regular users of data base: EPA laboratories
(CNF)  Confidentiality of data and Units on access: No limits on
    access to data
(DLC)  primary physical location of data: EPA lab
(DST)  Forra of data storage: Original form (hardcopy/ readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: no
(UPDT)  Frequency of data base master file up-date: Other discontinued
    sampling
(ODB)  Other pertinent non-EPA data bases: State drinking water  data
(CMP)  Completion of form:
    Dan Donnelly
    OFC: EPA/Region Ill/Central Regional Lab-Annapolis/
    Surveillance and Analysis Division
    AD: 839 Bestgate Road Annapolis, MD 21401
    PH: (301)244-2740
(DF)  Date of form completion: 01-19-83
(NMAT)  Number of substances represented in data base: 13
(NCAS)  Number of CAS registry nuabers in data base: 9
/MAT)  Substances represented in data base:
    arsenic<7440-38-2>                   microbiology coliform bacteria
    bariu«<7440-39-3>                    nitrate<14797-55-8>
    cadnium<7440-43-9>                   residual chloride
    chromiua<7440-47-3>                  seleniua<7782-49-2>
    fluoride                             silver<7440-22-4>
    lead<7439-92-l>                      turbidity
    mercury<7439-97-6>
(CAS)  CAS registry numbers of substances included  in data base: 7440-38
    -2; 7440-39-3; 7440-43-9; 7440-47-3;   7439-92-1; 7439-97-6;
    14797-55-8; 7782-49-2; 7440-22-4
(CNM)  Contact naae(s): Villa,0.  ;    Lab,C.R.
(ROR)  Responsible Organization: Region  III.Environmental Services
    Division.
                              1067

-------
                             Accession So,  9038010902

(DQ)  Date of Questionaire: 12>02-82
(HAN)  Kame of Data Base of Model: national Pollutant Discharge
    Elimination System (NPDES)  Perait Compliance
(ACR)  Acronym of Data Base or Model: NPDES
(MED)  Media/Subject of Data Base or Model: Effluents industrial and
    •unicipal jSurface water receiving
(ABS)  Abstract/Overview of Data Base or Model:  Data from compliance
    inspections of discharging   facilities comprise the NPDES data
    base.
(CTC)  CONTACTS: Subject matter   Orterlo filla, Jr.  (301) 224-2740
    ;     Computer-related  N
(DTP)  Type of data collection or monitoring: Combination/Other
    effluents and receiving stream
(STA)  Data Base status: Operational/ongoing
(CRP)  Groups of substances represented in Data Base: 11 conventional
    water ;15 metals
(HPP)  lion-pollutant parameters included in the data base: Chemical
    data ;Collection method ;flow rates flnspectiondata ;    Location
    ^Manufacturer ;Physical data ^Political subdivisions ;  Production
    levels ;Sampling date ;Slte description ^Temperature >
    Treatment devices ;Yolume/mass measures
(DS)  Time period covered by data base: 09-01-74 TO 12-31-82
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: as needed
(ROB)  Number of observations in data base: 15000.(Estimated)
(IMF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base:  650.
(NCS)  So. stations or sources currently originating/contributing data:
    (not available.)
(NOF)  Number of facilities covered in data base (source monitoring): 19
    0.
(GEO)  Geographic coverage of data base: Selected federal region Region
    III
(LOC)  Data elements identifying location of station or source include:
    State ;City ;Town/township ^street address ;Project identifier
(FAC)  Data elements identifying facility include:  Plant facility name
    ;PIant location ;NPDES
(CDE)  Pollutant identification data are: Storet parameter
(LlM)  Limitation/variation in data of which user should be aware: Param
    eters vary from site to site*  Frequency is  irregular and depends
    on program needs of Enforcement Division*
(OPR)  Data collect./anal, procedures conform to CRD guidelines: Collect
    ion method documented >Analysis method documented ;QA procedures
    document
(AND  Lab analysis based on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base
(BUT)  Editting: Fdit procedures used and documented.
(CBY)  Data collected by: Regional office Central Regional
    Lab-Annapolis, Surveillance and Analysis Division Region III
(ABY)  Data analyzed by: Regional office Central Regional


                             1068

-------
                             Accession No.  9038010902     (cont)

    Lab-Annapolis,   Environmental Services Division, Region  III.
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Compliance or enforcement
(AOT)  Authorization for data collection: Statutory authorization  is P
    L 92-500 as amended, Sections 308 and 402 (Clean Water  Act-CMA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base:  Facility
    Inspection Reports
(NUS)  Number of regular users of data base: 157
(OSR)  Current regular users of data base: EPA regional offices
    States
    permittees
(CNF)  Confidentiality of data and limits on access: No limits on
    access to data
(DLC)  Primary physical location of data: EPA lab
(DST)  Form of data storage: Original form (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: no
(OPDT)  Frequency of data base master file up-date: Other as  requested
    by Enforcement Division
(ROB)  Non-EPA data bases used in conjunction tilth this data  base: State
    and Permittee Data Bases
(OOB)  Other pertinent non-EPA data bases: State and Remitter effluent
    data
(CMP)  completion of form:
    Dan Donnelly
    OFC: EPA/Region Ill/Central Regional Lab-Annapolis
    AD: 839 Bestgage Road, Annapolis, MD 21401
    PH: (301) 224-2740
(DF)  Date of form completion: 01-19-83
(NMAT)  Number of substances represented in data base: 32
(NCAS)  Number of CAS registry numbers in data base: 17
(MAT)  Substances represented In data base:
    acidity                              fluoride
    alkalinity                           iron<7439-89-6>
    dissolved oxygen                     lead<7439-92-l>
    dissolved solids                     «ercury<7439-97-6>
    fecal coliform                       nlckel<7440-02-0>
    nltrogen<7727-37-9>                  phenols
    oil and grease                       sulfur and compounds
    oxygen demand                         tltanlu«<7440-32-6>
    pH                                   vanadiun<7440-62-2>
    phosphorus<7723-14-0>                 a««ooia<7664-41-7>
    suspended solids                     benztnt<71-43-2>
    arsenic<7440-38-2>                   chlorine
    b"Jlllum                               <7782-50-S nitrat«<14797-55-8>
       <7440-41-7 chro«tu«<7440-47-3>    suifates
    copper<7440-50-8>                     sulfides


-------
                             Accession No.  9038010902     (cent)

    7439-92-1;  7439-97-6; 7440-02-0; 7440-32-6;     7440-62-2;
    7664-41-7;  71-43-2; 7782-50-5
(CRN)  Contact  nane(s): ?illa,0.  ;    Lab,C.R.
(ROR)  Responsible Organization: Region III.Environmental Services
    Division.
                             1070

-------
                             Accession No.  9038010906

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Same of Data Base of Model: Priority Pollutants
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Effluents municipal and
    industrial ;Sediient ;Surface water rivers ;   Tissue fish and
    shellfish
(ABS)  Abstract/Overview of Data Base or Model: Support of Effluent
    Guidelines Program and Monitoring  and Data Support Division (MDSD)
    Anbient Program-Risk Assessment?     guideline developnent.
(CTC)  CONTACTS: Subject natter   Orterio Villa, Jr.  (301) 224-2740
    ;     Computer-related Envir. Services Div., Central Reg.   ;  EPA
    Office    Central Regional Lab-Annapolis, Region III (301)
(DTP)  Type of data collection or monitoring: Combination/Other Anbient
    and municipal and industrial effluents and   receiving water.
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented in Data Base: 129 307  CW.A
(NPP)  Non-pollutant parameters included in the data base: Discharge
    points ;Flow rates ;Industry ;Location ^Production levels  ;
    Sampling date ;Site description  ;Temperature ;Treatnent devices
(DS)  Time period covered by data base: 01-01-78 TO 12-31-82
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection  or sampling: one time only
(NOB)  Number of observations in data base: 28000.(Estimated)
(NED  Estimated annual increase of  observations in data base: 500.
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base: ISO.
(NCS)  No. stations or sources currently originating/contributing data:
    l(/facility.)
(NOF)  Number of facilities covered  in data base (source monitoring): 15

(GEO)  Geographic coverage of data base: Selected federal region Region

(LOC)  Data elements  identifying location  of  station or source include:
    State  ;City  }town/township ^Street address  Coordinates
(FAC)  Data elements  identifying  facility  include: Plant facility name
    ;Plant location ;NPDES
(CDE)  Pollutant identification  data are:  Storet parameter
(LIM)  Limitation/variation  in data  of which  user  should be aware: None
(DPR)  Data collect./anal, procedures conform to CRD guidelines: Samplin
     g  plan documented Collection  method  documented  ;Analysis  method
     document  QA  procedures documented
(AND  Lab analysis based  on EPA-approved or  accepted methods? YES
(AOD)  Lab Audit: Lab audit  is satisfactory.
(PRE)  Precision: Precision  and  accuracy  estimates  exist  but are not
     included  in  data  base
(EDT)  Editting: Edit procedures  used and documented.
(CBY)  Data  collected by:  Regional office ESD,  Central    Regional
     Lab-Annapolis,  Region  III. ^Contractor lab  various  under contract
     to Effluent  Guidelines   Division
(ABY)  Data  analyzed  by:  Regional  office  ESD, Central   Regional
     Lab-Annapolis,  Region  III
(IDL)  Laboratory  identification:  YES


                              1071

-------
                             Accession No.  9036010906
                  (cont)
(PR1)  Primary purpose of data collection: Development of regulations
    or standards
(PR2)  Secondary purpose of data collection: Risk assessment
(AUT)  Authorization for data collection: Statutory authorization is P
    L 92-500, Section 307 (Clean Water Act-CWA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base: On-line
    computer
    Lab Data Sheets
(BOS)  number of regular users of data base: 6
(OSR)  Current regular users of data base: EPA headquarter offices
    Effluent Guidelines Division
    States
(CMP)  Confidentiality of data and limits on access: Limits on access
    within EPA and outside agency for some  data
(DLC)  Primary physical location of data: EPA lab ;Headquarters office
(DST)  Form of data storage: Magnetic tape ;Original form (hardcopy,
    readings)
(DAC)  Type of data access: Manually JEPA softuare STORET
    MIDS:5303000101 ;EPA hardware IBM 370/168
(CHG)  Direct charge for non-EPA use: yes
(OPDT)  Frequency of data base master file up-date: Annuallyna
(CMP)  Completion of form:
    Dan Donnelly
    OFC: EPA/Region Ill/Central Regional Lab-Annapolis/Surveillance and
    Analysis Division
    AD: 839 Bestgate Road,  Annapolis, MD 21401
    PH: (301) 244-2740
(OF)  Date of form completion: 01-28-83
(HMAT)  Number of substances represented in data base: 134
(•CAS)  lumber of CAS registry numbers in data base: 129
(NAT)  Substances represented in data base:
    l,l,l-trichloroethane<71-55-
       6>
    l,l,2,2s-tetrachloro«thane
       <79-34-5>
    l/l,2-trichloroethane<79-00-5>
    1,l-dichloroethane<75-34-3>
    1,1-dlchlorotthyl«nt<75-35-4>
    l,2,4,-trichlorobtnzen*<120-82-l>
    1,2-dichlorobenz«ne<95-50-l>
    1,2-dichloroeth«ne<107-06-2>
    l/2-dlchloropropane<78-87-5>
    l,2-diph«nylhydrazine<122-66-7>
    I/2-trans-dlchloroethylent
       <156-60-5>
    l,3-dichlorobenzene<541-73-l>
    l/3-dlchloropropyl«ne<542-75-6>
    It4-dichlorobenzene<106-46-7>
    2,4,6-trlchlorophenol<88-06-2>
2,4,7,8-tetracblorodibenzo-p-
   dloxin (tcdd)
2,4-dlchlorophenol<120-83-2>
2,4-dlmethylphenol<105-67-9>
2,4-dinltrophenol<51-28-5>
2,4-dinltrotoluene<121-14-2>
2,6-dinitrotoluent<606-20-2>
2-chloroethylvlnyl ether<110-75-8>
2-chloronaphthaUne<91-58-7>
2-chlorophenol<95-57-8>
2-nltrophenol<88-75-5>
3/3'-dichlorobenzidine<91-94-l>
3f4-btnzofluoranth«ne<205-99-2>
4,4'-ddd(p,p'tde)
4,4'-dde(p/p'-ddx)<72-55-9>
4,4'-ddt<50-29-3>
4/6-dinitro-o-cresol<534-52-l>
4-bromophenyl phenyl ether
   <101-55-3>
                             1072

-------
                         Accession No.  9038010906
                  (cont)
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nitrophenol<100-02-7>
acenaphthene<83-32-9>
acenaphthyiene<208-96-8>
acrolein<107-02-8>
acrylonitrile<107-13-l>
aldrin<309-00-2>
anthracene<120-12-7>
antimony<7440-36-0>
arsenic<7440-38-2>
asbestos<1332-21-4>
benzene<71-43-2>
benzidine<92-87-5>
benzo(a)anthracene<56-55-3>
benzo(a)pyrene<50-32-8>
benzo(g,h,i)perylene<191-24-2>
benzo(k)fluoranthene<207-08-9>
berylliun<7440-41-7>
bhc (lindane)-ga«ffla<58-89-9>
bhc-alpha<319-84-6>
bhc-beta<319-85-7>
bhc-delta<319-86-8>
biological oxygen demand (BOD)
bis(2-chloroethoxy)nethane
bis(2-chloroethyl)ether
bis(2-chloroisopropyl) ether
   <39638-32-9>
bis(2-ethylhexyl)phthalate
bis
bro»omethane<74-83-9>
butyl benzyl phthalate<85-68-7>
cadmiun<7440-43-9>
carbon tetrachloride<56-23-5>
chemical oxygen demand (COD)
chlordane<57-74-9>
chlorobenzene<108-90-7>
chl r»rodibromca«thane<124-48-l>
chlcroethane<75-00-3>
chloroform<67-66-3>
chloroi»ethane<74-87-3>
chromium<7 440- 47-3>
chrysene<218-01-9>
color analysis
copper<7440-50-8>
cyanide<57-12-5>
di-n-butyl phthalate<84-74-2>
di-n-octyl phthalate<117-84-0>
dibenzo(a/-h)anthracene<53-70-3>
dichlorobronomethane<75-27-4>
dichlorodifluoro«ethane<75-71-8>
dlchloronethane<75-09-2>
dieldrin<60-57-l>
diethyl phthalate<84-66-2>
diaethyl phthalate<131-ll-3>
endosulfan sulfate<1031-07-8>
endosul£an-alpha<959-98-8>
endosulfan-beta<33213-65-9>
endrin aldehyde<7421-93-4>
endrin<72-20-8>
ethylbenzene<100-41-4>
f Uioranthene<206-44-0>
fluorene<86-73-7>
heptachlor epoxide<1024-57-3>
heptachlor<76-44-8>
hex achlorobenzene< 118-7 4-l>
hexachlorobutadiene<87-68-3>
hexachlorocyclopentadiene<77-47-4>
hexachloroethane<67-72-l>
indeno (l,2,3-cd)pyrene<193-39-5>
i sophorone<78-59-l>
lead<7439-92-l>
nercury<7439-97-6>
n-nitrosodi-n-propylamine
   <621-64-7>
n-nitrosodimethylamlne<62-75-9>
n-nitrosodiphenyIanine<86-30-6>
naphthalene<9l-20-3>
nickel<7440-02-0>
nitrobenzene<98-95-3>
p-chloro-«-cresol<59-50-7>
pcb-1016 (arochlor 1016)
   <12674-ll-2>
pcb-1221 (arochlor 1221)
   <11104-28-2>
pcb-1232 (arochlor 1232)
pcb-1242 (arochlor 1242)
   <53469-21-9>
pcb-1248 (arochlor 1248)
   <12672-29-6>
pcb-1254 (arochlor 1254)
   <11097-69-l>
pcb-1260 (arochlor 1260)
   <11096-82-5>
pentachlorophenol<87-86-5>
phenanthrene<85-01-8>
phenol<108-95-2>
pyrene<129-00-0>
seleniu»<7782-49-2>
silver<7440-22-4>
suspended solids
                         1073

-------
                             Accession No.  9038010906     (cont)

    tetrachloroethylene<127-18-4>        tri.broraoraethane<75-25-2>
    thalliu»<7440-28-0>                  trichloroethylene<79-01-6>
    toluene<108-88-3>                    trichlorofluororaethane<75-69-4>
    total coliforn                       vinyl chloride<75-01-4>
    toxaphene<8001-35-2>                 zinc<7440-66-6>
(CAS)  CAS registry nunbers of substances included in data base: 71-55-6
    - 79-34-5; 79-00-5? 75-34-3; 75-35-4;       120-82-1; 95-50-1;
    107-06-2; 78-87-5; 122-66-7; 156-60-5; 541-73-1;   542-75-6;
    106-46-7; 88-06-2; 120-83-2; 105-67-9; 51-28-5; 121-14-2;
    606-20-2; 110-75-8; 91-58-7; 95-57-8; 88-75-5; 91-94-1; 205-99-2>
    72-55-9; 50-29-3; 534-52-1; 101-55-3; 7005-72-3? 100-02-7; 83-32-9;
    208-96-8; 107-02-8; 107-13-1; 309-00-2; 120-12-7; 7440-36-0;
    7440-38-2; 1332-21-4; 71-43-2; 92-87-5; 56-55-3; 50-32-8; 191-24-2;
    207-08-9; 7440-41-7; 58-89-9; 319-84-6; 319-85-7; 319-86-8;
    111-91-1;      111-44-4; 39638-32-9; 117-81-7; 542-88-1; 74-83-9;
    85-68-7;      7440-43-9; 56-23-5; 57-74-9; 108-90-7; 124-48-1;
    75-00-3; 67-66-3;    74-87-3; 7440-47-3; 218-01-9; 7440-50-8;
    57-12-5; 84-74-2; 117-84-0;       53-70-3; 75-27-4; 75-71-8;
    75-09-2; 60-57-1; 84-66-2; 131-11-3;       1031-07-8; 959-98-8;
    33213-65-9; 7421-93-4; 72-20-8; 100-41-4;   206-44-0; 86-73-7;
    1024-57-3; 76-44-8; 118-74-1; 87-68-3; 77-47-4;    67-72-1;
    193.39-5. 78-59-1; 7439-92-1; 7439-97-6; 621-64-7; 62-75-9;
    86-30-6; 91-20-3; 7440-02-0; 98-95-3; 59-50-7; 12674-11-2;
    11104-28-2; 11141-16-5; 53469-21-9; 12672-29-6; 11097-69-1;
    11096-82-5; 87-86-5; 85-01-8; 108-95-2; 129-00-0; 7782-49-2;
    7440-22-4; 127-18-4; 7440-28-0; 108-88-3;  8001-35-2; 75-25-2;
    79.01-6; 75-69-4; 75-01-4; 7440-66-6
(CUM)  contact naae(s): Villa,Q.  ;    Div.,S.A. ;    Lab/C.R.
(ROR)  Responsible Organization: Region III.Environmental Services
    Division.
                              1074

-------
                             Accession No.  9038010907

CDS)  Date of Questionaire: 12-02-82
(NAN)  Name of Data Base of Model: Hazardous and Toxic Hastes
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Effluents leachates  ;Ground
    water ;Sediraent ;Soil  ;Surface water streams
(ABS)  Abstract/Overview of Data Base or Model: Data base consists  of
    abandoned waste site surveys,    sanitary landfills,  chemical dump
    sites, waste storage areas,    etc. - parameters include general
    organics scans (by GC/MS),     netals, cyanide, phenols, etc.
(CTC)  CONTACTS: Subject matter   Bob Allen  (215) 597-0980;    EPA
    Office  Region III, Centr
(DTP)  Type of data collection or monitoring: Combination/Other  ambient
    and non-point and point source data     collection Methods used
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented in Data Base: 129 307  CHA ;15
    •etals
(NPP)  Non-pollutant parameters included in the data base: Chemical
    data ^Discharge points ;industry ; Inspection data ^Location  ;
    Sampling date ;Site description ^Temperature /Treatment devices
(OS)  Time period covered  by data base: 01-01-78 TO 12-31-82
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: as needed
(NOB)  Number of observations in data base: 215000.(Estimated)
(NED  Estimated annual increase of observations in data base: 50,000.
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base: 1500.
(NCS)  No. stations or sources currently originating/contributing data:
    (N/A.)
(NOT)  Number of facilities covered in data base (source monitoring):  90
    •
(6EO)  Geographic coverage of data base: Selected federal region Region
    III
(LOG)  Data elements identifying location of station or source include:
    State ;City jTown/township ^Street address
(FAC)  Data elements identifying facility include: Plant facility name
    ;Plant location
(CDE)  Pollutant identification data are: Storet parameter
    Uncoded
(LIM)  Limitation/variation in data of which user should be aware:  par an
    eters vary from station to station
(DPR)  Data collect./anal, procedures conform  to ORD guidelines: Collect
    ion method documented  ^Analysis method documented ;QA procedures
    document
(ANL)  Lab analysis based  on EPA-approved or accepted methods? YES
(ADO)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist for all
    measurements
(EOT)  Editting: Edit procedures used and documented.
(CBY)  Data collected by:  Regional office Surveillance and Analysis
    Division,  Annapolis Lab ;   Contractor lab ARL, JTC, Mead,  Nest
    Coast Technology and   Versar ;    Contractor Ecology and Environment
(ABY)  Data analyzed by: Regional office Surveillance and Analysis


                             1075

-------
                             Accession Mo.  9038010907     (cont)

    Division Annapolis     Lab
    Contractor lab nationally contracted labs (HQ contract)
CIDL)  Laboratory identifications YES
(PR1)  Primary purpose of data collection: Compliance or enforcement
(PR2)  Secondary purpose of data collection: Risk assessment
(AOT)  Authorization for data collection: Statutory authorization is P
    L 92-500 as amended/ Section 311 (CMA)    Statutory authorization
    is P L 94-580 as amended (RCRA 3001)     Statutory authorization is
    P L 94-469 as amended (TSCA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base:  lab data
    reports
(RUS)  Number of regular users of data base: 8
(USR)  Current regular users of data base: EPA headquarter  offices Oil
    and Special Materials Control Division/   Office of Enforcement
    EPA regional offices
    EPA laboratories
    States
    other federal agencies - Department of Justice
(CNF)  Confidentiality of data and limits on access: Some data
    confidential-limits on access both  within and outside  the Agency
(DLC)  Primary physical location of data: Regional office
(DST)  Form of data storage: Original form (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: yes
(OPDT)  Frequency of data base master file up-date: Other as needed
(RDB)  Hon-EPA data bases used in conjunction with this data base: contr
    actor lab data; state    agency data    OFC: EPA/Region
    Ill/Surveillance and Analysis     Division/Central Regional Lab AD:
    839 Bestgate Rd, Annapolis, MD 21401     PH: (301) 224-2760
(OF)  Date of form completion: 01-28-83
(NMAT)  Number of substances represented in data base: 136
(RCAS)  Number of CAS registry numbers in data base: 142
(MAT4)  Substances represented in data base:
    l,l,l-trichloroethane<71-55-         2,4,6-trichlorophenol<88-06-2>
       6>                                2,4,7/8-tetrachlorodibenzo-p-
    1,1,2,2,-tetrachloroethane              dioxin (tcdd)
       <79-34-5>                         2,4-dichlorophenol<120-83-2>
    I/If2-trichloroethane<79-00-5>       2,4-dimethylphenol<105-67-9>
    l,l-dichloroethane<75-34-3>          2,4-dinitrophenol<51-28-5>
    l,l-dichloroethylene<75-35-4>        2,4-dinitrotoluene<121-14-2>
    l/2,4/-trichlorobenzene<120-82-l>    2,6-dinitrotoluene<606-20-2>
    l,2-dichlorobenzene<95-50-l>         2-chloroethylvinyl ether<110-75-8>
    l,2-dichloroethane<107-06-2>         2-chloronaphthalene<91-58-7>
    l,2-dichloropropane<78-87-5>         2-chlorophenol<95-57-8>
    l,2-diphenylhydrazine<122-66-7>      2-nitrophenol<88-75-5>
    1,2-trans-dichloroethylene           3,3'-dichlorobenzidine<91-94-l>
       <156-60-5>                        3,4-benzofluoranthene<205-99-2>
    l,3-dichlorobenzene<541-73-l>        4,4'-ddd(p,p'tde)
    I/3-dichloropropylene<542-75-6>      4,4*-dde(p,p'-ddx)<72-55-9>
    l,4-dichlorobenzene<106-46-7>        4,4*-ddt<50-29-3>


                             1076

-------
                         Accession No.  9038010907
                  (cont)
4, 6-dinitro-o-cresol<534-52-l>
4-bromophenyl phenyl ether
   <101-55-3>
4-chlorophenyl phenyl  ether
   <7005-72-3>
4-nitrophenol<100-02-7>
acenaphthene< 83-32-9>
aceraphthylene<208-96-8>
acrolein<107-02-8>
acryloni tr ile<107-13-l >
aldrin<309-00-2>
anthracene<120-12-7>
antimony<7440-36-0>
arsenic<7440-38-2>
asbestos<1332-21-4>
barluffl<7440-39-3>
benzene<71-43-2>
benzidine<92-87-5>
benzo(a)anthracene<56-55-3>
benzo(a)pyrene<50-32-8>
benzo(g,h, l)perylene<191-24-2>
benzoOOf luoranthene<207-08-9>
beryll iu«<7440-41-7>
bhc (lindane)-ganaa<58-89-9>
bhc-alpha<319-84-6>
bhc-beta<319-85-7>
bhc-delta<319-86-8>
bis(2-chloroethoxy)«ethane
bis(2-chloroethyl)ether
bis(2-chloroisopropyl) ether
   <39638-32-9>
bis(2-ethylhexyl)phthalate
bls(chloromethyl)ether<542-88-l>
bronowethane<74-83-9>
butyl benzyl phthalate<85-68-7>
cadBlu»<7440-43-9>
carbon tetrachloride<56-23-5>
chlordane<57-74-9>
chlorobenzene
chlorodibromomethane<124-48-l>
chloroethane<75-00-3>
chlorofor»<67-66-3>
chl orome thane<7 4-87- 3>
chro»lua<7 440-47-3>
chrysene<218-01-9>
cobalt<7440-48-4>
copper<7440-50-8>
cyanide<57-12-5>
di-n-butyl phthalate<84-74-2>
di-n-octyl phthalate<117-84-0>
dlbenzo(a,h)anthracene<53-70-3>
dlchlorobro«omethane<75-27-4>
dichlorodifluoromethane<75-71-8>
dlchloroiethane<75-09-2>
dleldrin<60-57-l>
dlethyl phthalate<84-66-2>
dimethyl phthalate<131-ll-3>
endosulfan sulfate<1031-07-8>
•ndosulfan-alpha<959-98-8>
endosulfan-beta<332!3-65-9>
endrin aldehyde<7421-93-4>
endrirK72-20-8>
ethylbenzene<100-41-4>
fluoranthene<206-44-0>
fluorene<86-73-7>
heptachlor epoxlde<1024-57-3>
heptachlor<76-44-8>
hex achlorobenzene
hexachl or o but adiene<87- 68-3 >
hexachlorocyclopentadlene<77-47-4>
hexachloroethane<67-72-l>
Indeno 
lron<7439-89-6>
isophorone<78-59-l>
l«ad<7439-92-l>
•anganese<7439-96-5>
•ercury<7439-97-6>
n-nltrosodl-n-propylamlne
   <621-64-7>
n-nitrosodinethylanine<62-75-9>
n-nltrosodiphenyla«lne<86-30-6>
naphthalene<91-20-3>
nickel<7440-02-0>
nltrobenzene<98-95-3>
organic GC/NS scans for slgnlfican
   t organics
p-chloro-«-cresol<59-50-7>
pcb-1016 (arochlor 1016)
   <12674-ll-2>
pcb-1221 (arochlor 1221)
   <11104-28-2>
pcb-1232 (arochlor 1232)
pcb-1242 (arochlor 1242)
   <53469-21-9>
pcb-1248 (arochlor 1248)
   <12672-29-6>
pcb-1254 (arochlor 1254)
   <11097-69-l>
pcb-1260 (arochlor 1260)
   <11096-82-5>
pentachlorophenol<87-86-5>
                         1077

-------
                             Accession No.  9038010907     (cont)

    phenanthrene<85-01-8>                toluene<108-88-3>
    phenol<108-95-2>                     toxaphene<8001-35-2>
    pyrene<129-00-0>                     tribronoiethane<75-25-2>
    seleniun<7782-49-2>                  trichloroethylene<79-01-6>
    silver<7440-22-4>                    trichlorofluoro«ethane<75-69-4>
    tetrachloroethylene<127-18-4>        vanadiu»<7440-62-2>
    thalliun<7440-28-0>                  vinyl chloride<75-01-4>
    titanium<7440-32-6>                  zinc<7440-66-6>
(CAS)  CAS registry nuabers of substances included in data base: 71-55-6
    ; 79-34-5; 79-00-5; 75-34-3; 75-35-4;       120-82-1; 95-50-1;
    107-06-2; 78-87-5; 122-66-7; 156-60-5; 541-73-1;   542-75-6;
    106-46-7; 88-06-2; 120-83-2; 105-67-9; 51-28-5; 121-14-2;
    606-20-2; 110-75-8; 91-58-7; 95-57-8; 88-75-5; 91-94-1; 205-99-2;
    72-55-9; 50-29-3; 534-52-1; 101-55-3; 7005-72-3; 100-02-7; 83-32-9;
    208-96-8; 107-02-8; 107-13-1; 309-00-2; 120-12-7; 7440-36-0;
    7440-38-2; 1332-21-4; 7440-39-3; 71-43-2; 92-87-5; 56-55-3;
    50-32-8;       191-24-2; 207-03-9; 7440-41-7; 58-89-9; 319-84-6;
    319-85-7; 319-86-8;      111-91-1; 111-44-4; 39638-32-9; 117-81-7;
    542-88-1; 74-83-9; 85-68-7;      7440-43-9; 56-23-5; 57-74-9;
    108-90-7; 124-48-1; 75-00-3; 67-66-3;    74-87-3; 7440-47-3;
    218-01-9; 7440-48-4; 7440-50-8; 57-12-5; 84-74-2;      117-84-0;
    53-70-3; 75-27-4; 75-71-8; 75-09-2; 60-57-1; 84-66-2;
    131-11-3; 1031-07-8; 959-98-8; 33213-65-9; 7421-93-4; 72-20-8;
    100-41-4; 206-44-0; 86-73-7; 1024-57-3; 76-44-8; 118-74-1; 87-68-3;
    77.47.4. 67-72-1; 193-39-5; 7439-89-6; 78-59-1; 7439-92-1;
    7439-96-5;      7439-97-6; 621-64-7; 62-75-9; 86-30-6; 91-20-3;
    7440-02-0; 98-95-3;   59-50-7; 12674-11-2; 11104-28-2; 11141-16-5;
    53469-21-9; 12672-29-6;       11097-69-1; 11096-82-5; 87-86-5;
    85-01-8; 108-95-2; 129-00-0;    7782-49-2; 7440-22-4; 127-18-4;
    7440-28-0; 7440-32-6; 108-88-3;       8001-35-2; 75-25-2; 79-01-6;
    75-69-4; 7440-62-2; 75-01-4; 7440-66-6
(CUM)  Contact naae(s): S»ith,B.
(COR)  Contact organization: Region III, Central Regional Lab
(ROR)  Responsible Organization: Region III.Environmental Services
    Division.
                             1078

-------
                             Accession No.   9038010909

(DQ)  Date of Questionaire: 12*02*82
(MAM)  Name of Data Base of Model: Drinking Mater
(ACR)  Acronym of Data Base or Model: None
(MED)  fedia/Subject of Data Base or Model: Drinking water ;Ground
    water ;Sediment ;Soil ^Surface water intake
(ABS)  fbs tract/Over view of Data Base or Model: Data fro- studies to
    define contamination problems of  water and sources of
    contamination are contained in this data    base*
(CTC)  CONTACTS: Subject natter   Orterio ¥illa, Jr.  (301) 224-2740
    ;     EPA Office  Region
(DTP)  Type of data collection or monitoring: Combination/Other
    Ambient, Point source (treated and untreated wells   distribution
    systems) and non-point source.
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented in Data Base: 129 307 CHA ;21
    drinking water standards ;9 potential drinking water ; 29 drinking
    water monitoring
(NPP)  Non-pollutant parameters included in the data base: Location
    ^Physical data ;Sampling date ;Site description ^Temperature ;
    Test/analysis method
(DS)  Time period covered by data base: 06-01-78 TO 12-31-82
(TRM)  Termination of data collection: Hot anticipated
(FRQ)  Frequency of data collection or sampling: as needed
(NOB)  Number of observations in data base: 4500.(Estimated)
(NEI)  Estimated annual increase of observations in data base: 1000.
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base: 350.
(NCS)  No. stations or sources currently originating/contributing data:
    (N/A.)
(NOF)  Number of facilities covered in data base (source monitoring): (N
    /A.)
(GEO)  Geographic coverage of data base: Selected federal region Region
    III
(LOC)  Data elements identifying location of station or source include:
    State ;City ?Town/township jStreet address
(FAC)  Data elements identifying facility include: Plant facility name
    ;Plant location
(CDE)  Pollutant identification data are: Oncoded
(LIM)  Limitation/variation in data of which user should be aware: Param
    eters vary from site to site.  Sampling frequency is irregular and
    depends on program needs.
(DPR)  Data collect./anal, procedures conform to ORD guidelines: Collect
    ion method documented ^Analysis method documented ;QA procedures
    document
(AND  Lab analysis based on EPA-approved or accepted methods? YES
(AUD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precisions Precision and accuracy estimates exist but are not
    Included in data base
(EOT)  Editting: Edit procedures used and documented.
(CBY)  Data collected by: Regional office Environmental Services
    Division, Central     Regional Lab-Annapolis, Region III
(ABY)  Data analyzed by: Regional office Environmental  Services


                             1079

-------
                             Accession No.   9038010909     (cont)

    Division, Central    Regional Lab-Annapolis* Region III
(IDL)  Laboratory identification: YES
(AOT)  Authorization for data collection: Statutory authorization  is P
    L 93-523 as amended (Safe Drinking Hater  Act-SDHA)
COMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Fora of available reports and outputs of data base:  nemos and
    lab data sheets
(MOS)  Umber of regular users of data base: 50 or over
(USR)  Current regular users of data base:  EPA headquarter  offices
    Office of Drinking Water
    EPA regional offices
    EPA laboratories
    States
    facilities saapled
(CNF)  Confidentiality of data and Halts on access: No limits on
    access to data
(DLC)  Primary physical location of data: EPA lab
(DST)  Form of data storage: Original fora (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: no
(UPDT)  Frequency of data base master file up-date: Other as studies
    completed (one time studies)
(ODB)  Other pertinent non-EPA data bases:  Slailar State Data bases
(CMP)  Completion of for*:
    Dan Donnelly
    OFC: EPA/Region Ill/Central Regional Lab-Annapolis/Surveillance
    Analysis
    Division
    AD: 839 Bestgate Road Annapolis, MD 21401
    PH: (301) 224-2740
(DF)  Date of form completion: 01-19-83
(WHAT)  Number of substances represented in data base: 37
(NCAS)  Number of CAS registry numbers in data base: 33
(MAT)  Substances represented in data base:
    l,l,l,2-tetrachloroethane<63         chlorobenzene<108-90-7>
       0-20-6>                           chlorofor»<67-66-3>
    l,l,l-trichloroethane<71-55-6>       chro«iu«<7440-47-3>
    l,l,2-trichloroethane<79-00-5>       cis-l,2-dichloroethylene<156-59-2>
    l,2-dlchlorobenzene<95-50-l>         dichloroiodo«ethane<594-04-7>
    1,2-dichloroethane<107-06-2>         endrin<72-20-8>
    1,2-trans-dichloroethylene           fluoride
       <156-60-5>                        lead<7439-92-l>
    l,3-dichlorobenzene<541-73-l>        lindane<58-89-9>
    l,4-dlchlorobenzene<106-46-7>        »ercury<7439-97-6>
    2^4-dichlorophenoxyacetic acid (2*   •ethoxycfclor<72-43-5>
       4-d)<94-75-7>                     microbiology coliform bacteria
    arsenic<7440-38-2>                   nitrate<14797-55-8>
    bariu«<7440-39-3>                    seleniu»<7782-49-2>
    bro«odichloro«ethane<75-27-4>        silver<7440-22-4>
    cad»iu»<7440-43-9>                   silvex<93-72-l>
    carbon tetrachloride<56-23-5>        tetrachloroethylene<127-18-4>


                             1080

-------
                             Accession No.  9038010909     (cont)

    toxaphene<8001-35-2>                 trihalonethanes
    tribronomethane<75-25-2>             turbidity
    trichloroethylene<79-01-6>           vinyl chloride<75-01-4>
(CAS)  CAS registry numbers of substances included in data base: 630-20-
    6; 71-55-6; 79-00-5; 95-50-1;     107-06-2; 156-60-5; 541-73-1;
    106-46-7; 94-75-7; 7440-38-2;      7440-39-3; 75-27-4; 7440-43-9;
    56-23-5; 108-90-7; 67-66-3; 7440-47-3;      156-59-2; 594-04-7;
    72-20-8; 7439-92-1; 58-89-9; 7439-97-6; 72-43-5;       14797-55-8;
    7782-49-2; 7440-22-4; 93-72-1; 127-18-4; 8001-35-2;       75-25-2;
    79-01-6; 75-01-4
(CNM)  Contact name
-------
                             Accession No.   9038020902

(OQ)  Date of Questionaire:  12-02-82
(NAN)  Name of Data Base of  Model:  Permit Compliance Monitoring
(ACR)  Icronya of Data Base  or Model:  NPDES
(MED)  Kedia/Subject of Data Base or Model:  Effluents municipal  and
    Industrial ;Surface water receiving stream
(ABS)  Abstract/Overview of  Data Base or Model:  Data froa compliance
    inspections of     discharging facilities.  Parameter information,
    as     contained in permittee's National Pollutant   Discharge
    Elimination System (NPDES) permit, is   also included.
(CTC)  CONTACTS:  Subject matter   Len Mangiaracina  (215)597-4564  ;
    EPA Office  Enforcement
(DTP)  Type of data collection or monitoring:  Point source data
    collection municipal & industrial effluents
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances  represented in Data  Base: 11 conventional
    water ;41 CNA potential  criteria ;15 metals
(NPP)  Non-pollutant parameters included in  the  data base: Chemical
    data ^Discharge points ;Flow rates ^Inspection data ;    Location
    ;Sampling date ;Site description
(DS)  Time period covered by data base: 09-01-74 TO 09-30-81
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: annually
(NOB)  Number of observations in data base:  4664.(Estimated)
(NEI)  Estimated annual increase of observations in data base: 242.
(INF)  Data base includes: Rau data/observations
(NTS)  Total number of stations or sources covered in data base: 341
(NCS)  No. stations or sources currently originating/contributing  data:
    17.
(NQF)  Number of facilities  covered in data  base (source monitoring):  34
    1.
(GEQ)  Geographic coverage of data base: Selected federal region Region
    III
(LOC)  Data elements identifying location of station or source include:
    State jCounty ;City ;Toun/township ^Coordinates latitude/longitude
(FAC)  Data elements identifying facility include: Plant facility  name
    ;PI ant location ;NPDES
(CDE)  Pollutant identification data are: Storet parameter
(LIM)  Limitation/variation in data of Hhich user should be  aware: None
(OPR)  Data collect./anal, procedures conform to ORD guidelines: Samplin
    g plan documented Collection method documented ;Analysis method
    document QA procedures documented
(ANL)  Lai) analysis based on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: Lab audit  Is satisfactory  for  90.
(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base
(EDT)  Editting: Edit procedures used and documented.
(CBY)  Data collected by: Regional office Surveillance  and Analysis
    Division, Wheeling Field Office, Region  III
(ABY)  Data analyzed by: Regional office Surveillance and Analysis
    Division-Wheeling Field Office, Region III
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Compliance or enforcement


                             1082

-------
                            Accession No.  9038020902     (cont)

(AOT)  Authorization for data collection: Statutory authorization is P
    L 92-500  as amended. Section 308 and 402  (Clean Water Act-CWA)
(OMB)  Data collected/submitted using OHB-approved EPA  reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base: EPA form
    3560-3
    data tabulated
(NUS)  K umber of regular users of data base: 150
(USR)  Current regular users of data base: EPA headquarter offices
    Water Enforcement Division
    EPA regional offices
    industrial and municipal facilities
(CNF)  Confidentiality of  data and limits on access: No limits on
    access to data
(DLC)  Primary physical location of data: Regional office
(DST)  Form of data storage: Original form  (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: no
(OPDT)  Frequency of data  base master file  up-date: Other as requested
(RSS)  Related EPA automated systems which  use  data base: Permit
    Compliance System (PCS)-    analytic
(CMP)  Completion of form:
    Robert Cantor
    OFC: EPA/Region III/ Surveillance and Analysis
    Division/Wheeling Field Office
    AD: 303 Methodist Bldg. Wheeling, HV 26003
    PH: (304)233-1271
CDF)  Date of form completion: 11-06-80
(NMAT)  Number of substances represented in data  base. 29
(NCAS)  Number of CAS registry numbers in data  base: 16
(MAT)   Substances represented in data base:
    ar-iditv                             lead<7439-V2-l>
     alkalinity                          nanganese<7439-96-5>
     alu*inuiB<7429-90-5>                 "f^^^ll^o^flf
     ammonia<7664-41-7>                  nickel<7440-02-0>
     arsenic<7440-38-2>                  nitrates/nitrites
     ben2ene<7t-43-2>                    nitrogen<7727-37-9>
     cad»ium<7440-43-9>                  oil and grease
     carbon tetrachloride<56-23-5>        oxygen demand
                                                       co">ounds
                                        Ph.r,z.r«
     fecal  editor.                      *"JI?S!!
     fluorides                           sulfides
     aswaraaass ?K2S! ^JS"
        contact  name(s): Mangiaracina,L«
     )  Contact  organization: Enforcement Division, Region III
                             1083

-------
                             Accession No.  9038020902     (cont)

(ROR)  Responsible Organization: Region III.Environmental Services
    Division.
                             1084

-------
                             Accession No.  9038020906

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Nane of Data Base of Model: Ambient Priority Pollutant Program
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Sediment ;Surface water
    rivers and streams ;Tissue fish
(ABS)  Abstract/Overview of Data Base or Model: This data base contains
    concentrations of    priority pollutants in navigable waters  to
    determine   possible problem areas and sources.
(CTC)  CONTACTS: Subject matter   John Ruggero  (215)597-9839;    EPA
    Office  Larry Miller  (21
(DTP)  Type of data collection or monitoring: Ambient data collection
(STA)  Data Base status: Discontinued
(6RP)  Groups of substances represented in Data Base: 129 307 CHA
(NPP)  Non-pollutant parameters included in the data base: Chemical
    data ;Concentration measures ;Inspect!on data ;Location ;
    Sampling date ;Site description
(DS)  Time period covered by data base: 05-01-78 TO 10-31-81
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: annually ;as needed
(NOB)  Number of observations in data base: 5160.(Estimated)
(NEI)  Estimated annual increase of observations in data base: 1290.
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base:  40.
(NCS)  No. stations or sources currently originating/contributing data:
    10.
(NOF)  Number of facilities covered in data base (source monitoring): 0.
(GEO)  Geographic coverage of data base: Selected federal region  Region
    III
(LOC)  Data elements identifying location of station or source include:
    State ;County ^Coordinates latitude/longitude; river mile point ;
    name of river
(FAC)  Data elements identifying facility include: N/A
(CDE)  Pollutant identification data are: Storet parameter
(LIM)  Limitation/variation in data of which user should be aware: None
(DPR)  Data collect./anal, procedures conform to CRD guidelines:  Samplin
    g plan documented Collection method documented ^Analysis method
    document QA procedures documented
(ANL)  Lab analysis based on EPA-approved or accepted methods? YES
(AUD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but are  not
    included in data base
(EDT)  Editting: Edit procedures used and documented.
(CBY)  Data collected by: Regional office Surveillance and Analysis
    Division, Wheeling Field Office, Region III
(ABY)  Data analyzed by: Regional office Surveillance and Analysis
    Division, Wheeling     Field Office, Region III
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Trend assessment
(PR2)  Secondary purpose of data collection: Risk assessment
(AOT)  Authorization for data collection: Statutory authorization is P
    L 92-500 as amended. Section 104 (Clean Mater  Act-CHA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting  forms:


                             1085

-------
                             Accession No.  9038020906
                  Ccont)
    QQ
(REP)  Form of available reports and outputs of data base:  raw data
    tabulated
(NUS)  Nunber of regular users of data base: 4 offices
(USR)  Current regular users of data base:  EPA regional offices
    States
    ORSANCO
(CNF)  Confidentiality of data and 1is its on access: No liaits on
    access to data
(DLC)  Prinary physical location of data: Regional office
(DST)  Forn of data storage: Original fora (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: no
(OpDT)  Frequency of data base Master file up-date: Other as requested
(CMP)  Completion of form:
    Robert Cantor
    OFC: EPA/Region Ill/Surveillance and Analysis
    Division/Wheeling Field Office
    AD: 303 Methodist Bldg. Wheeling, UV 26003
    PH: (304)233-1271
(OF)  Date of form completion: 02-24-83
(NMAT)  Number of substances represented in data base: 129
(NCAS)  Nunber of CAS registry nuabers in data base: 127
(HAT)  Substances represented in data base:
    l,l,l-trichloroethane<71-55-
       6>
    1,1,2,2,-tetrachloroethane
       <79-34-5>
    l,l,2-trichloroethane<79-00-5>
    l,l-dichloroethane<75-34-3>
    Ifl-dichloroethylene<75-35-4>
    l,2,4,-trichlorobenzene<120-82-l>
    l,2-dichlorobenzene<95-50-l>
    l,2-dichloroethane<107-06-2>
    It2-dichloropropane<78-87-5>
    l,2-dichloropropylene<563-54-2>
    l,2-diphenylhydrazine<122-66-7>
    \f2-trans-dichloroethylene
       <156-60-5>
    It3-dichlorobenzene<541-73-l>
    \t 4-dichlorobenzene<106-46-7>
    2,4,6-trichlorophenol<88-06-2>
    2f 4,7, 8-tetr achlorodibenzo-p-
       dioxin (tcdd)
    2f4-dichlorophenol<120-83-2>
    2, 4-di me thylphenoKl 05-67-9>
    2, 4-dinitrophenol<51-28-5>
    2,4-dinitrotoluene<121-14-2>
    2f6-dinitrotoluene<606-20-2>
    2-chloroethylvinyl ether<110-75-8>
    2-chloronaphthalene<91-58-7>
    2-chlorophenol<95-57-8>
2-nitrophenol<88-75-5>
3,3 *-dichlorobenzidine<91-9 4-l>
3,4-benzofluoranthene<205-99-2>
4,4*-ddd(p,p*tde>
At 4*-dde(p/p*-ddx)<72-55-9>
4^4'-ddt<50-29-3>
4, 6-dinitro-o-cresol<534-52-l>
4-bronophenyl phenyl ether
   <101-S5-3>
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nitrophenol<100-02-7>
acenaphthene<83-32-9>
acenaphthylene<208-96-8>
acrolein<107-02-8>
acrylonitrile<107-13-l>
aldrin<309-00-2>
anthracene<120-12-7>
antinony<7440-36-0>
arsenic<7440-38-2>
asbestos<1332-21-4>
benzene<71-43-2>
benzidine<92-87-5>
benzo(a)anthracene<56-55-3>
benzo(a>pyrene<50-32-8>
benzo(g,b^i)perylene<191-24-2>
benzo(k)fluoranthene<207-08-9>
berylliu*<7440-41-7>
                             1086

-------
                             Accession No*  9038020906
                                                       (cont)
    bhc (liadane)-gamraa<58-89-9>
    bhc-alpha<319-84-6>
    bhc-beta<319-85-7>
    bhc-delta<319-86-8>
    bis(2-chloroethoxy)ae thane
    bis(2-chloroethyl)ether
    bis(2-chloroisopropyl)ether
       <39638-32-9>
    bis(2-ethylhexyl)phthalate
    bis(chloronethyl)ether<542-88-l>
    bro»omethane<74-83-9>
    butyl benzyl phthalate<85-68-7>
    cadniun<7440-43-9>
    carbon tetrachloride<56-23-5>
    chlordane<57-74-9>
    chlorobenzene<108-90-7>
    chlorodibromomethane<124-48-l>
    chloroethane<75-00-3>
    chlorofora<67-66-3>
    chloro»ethane<74-87-3>
    chromiun<7440-47-3>
    chry sene< 218-0 l-9>
    copper <7440-50-8>
    cy anide<57-l 2-5>
    di-n-butyl phthalate<84-74-2>
    di-n-octyl phthalate<117-84-0>
    dlbenzo(a, h) anthracene<53-70-3>
    dichlorobroaomethane<75-27-4>
    dichlorodifluoro»ethane<75-71-8>
    dichloroiRethane<75-09-2>
    dieldrln<60-57-l>
    dlethyl phthalate<84-66-2>
    dimethyl phthalate<131-ll-3>
    endosulfan sulf ate<1031-07-8>
    endosulf an-alpha<959-98-8>
    endcsulfan-beta<33213-65-9>
    endrin aldehyde<7421-93-4>
    endrin<72-20-8>
    ethylbenzene
    fluoranthene<206-44-0>
    fluorene<86-73-7>
    heptachlor epoxide<1024-57-3>
    heptachlor<76-44-8>
(CAS)
                                     hex achlorobenzene
                                     hexachlorobutadiene<87-68-3>
                                     hexachlorocyclopentadlene<77-47-4
                                     hexachloroethane<67-72-l>
                                     indeno  (l,2/3-cd)pyrene<193-39-5>
                                     isophorone<78-59-l>
                                     lead<7439-92-l>
                                     nercury<7439-97-6>
                                     n-nit roscdi-n-propy laaine
                                        <621-64-7>
                                     n-nitrosodimethyla«ine<62-75-9>
                                     n-nitrosodiphenyla«ine<86-30-6>
                                     naphthalene<91-20-3>
                                     nickel<7440-02-0>
                                     nitrobenzene<98-95-3>
                                     p-chloro-«-cresol<59-50-7>
                                     pcb-1016 (arochlor 1016)
                                        <12674-ll-2>
                                     pcb-1221 (arochlor 1221)
                                        <11104-28-2>
                                     pcb-1232 (arochlor 1232)
                                     pcb-1242 (arochlor 1242)
                                        <53469-21-9>
                                     pcb-1248 (arochlor 1248)
                                        <12672-29-6>
                                     pcb-1254 {arochlor 1254)
                                        <11097-69-l>
                                     pcb-1260 (arochlor 1260)
                                        <11096-82-5>
                                     pentachlorophenol<87-86-5>
                                     phenanthrene<85-01-8>
                                     phenol<108-95-2>
                                     pyrene<129-00-0>
                                     seleniu«<7782-49-2>
                                     silver<7440-22-4>
                                     tet r achlor oethy lene
                                     thalliuiB<7440-28-0>
                                     toluene<108-88-3>
                                     toxaphene<8001-35-2>
                                     tribro«o»ethane<75-25-2>
                                     trichloroethylene<79-01-6>
                                     trichlorofluoro»ethane<75-69-4>
                                     vinyl chloride<75-01-4>
                                     zinc<7440-66-6>
   CAS registry numbers of substances  included in data base: 71-55-6
; 79-34-5; 79-00-5; 75-34-3; 75-35-4;       120-82-1; 95-50-1;
107-06-2; 78-87-5; 563-54-2; 122-66-7; 156-60-5;   541-73-1;
106-46-7; 88-06-2; 120-83-2; 105-67^9; 51-28-5; 121-14-2;
606-20-2; 110-75-8; 91-58-7; 95-57-8;  88-75-5; 91-94-1; 205-99-2;
72-55-9; 50-29-3; 534-52-1; 101-55-3;  7005-72-3; 100-02-7; 83-32-9;
208-96-8; 107-02-8; 107-13-1; 309-00-2; 120-12-7; 7440-36-0;
                             1087

-------
                             Accession Mo.  9038020906     (cont)

    744C-38-2;  1332-21-4; 71-43-2; 92-87-5? 56-55-3; 50-32-8; 191-24-2;
    207-08-9; 7440-41-7; 58-89-9; 319-84-6; 319-85-7; 319-86-8;
    111-91-1;      111-44-4; 39638-32-9; 117-81-7; 542-88-1; 74-83-9;
    85-68-7;      7440-43-9; 56-23-5; 57-74-9; 108-90-7; 124-48-1;
    75-00-3; 67-66-3;    74-87-3; 7440-47-3; 218-01-9; 7440-50-8;
    57-12-5; 84-74-2; 117-84-0;       53-70-3; 75-27-4; 75-71-8;
    75-09-2; 60-57-1; 84-66-2; 131-11-3;       1031-07-8; 959-98-8;
    33213-65-9; 7421-93-4; 72-20-8; 100-41-4;   206-44-0; 86-73-7;
    1024-57-3;  76-44-8; 118-74-1; 87-68-3; 77-47-4;    67-72-1;
    193-39-5; 78-59-1; 7439-92-1; 7439-97-6; 621-64-7; 62-75-9;
    86-30-6; 91-20-3; 7440-02-0; 98-95-3; 59-50-7; 12674-11-2;
    11104-28-2; 11141-16-5; 53469-21-9; 12672-29-6; 11097-69-1;
    11096-82-5; 87-86-5; 85-01-8; 108-95-2; 129-00-0; 7782-49-2;
    744C-22-4;  127-18-4; 7440-28-0; 108-88-3; 8001-35-2; 75-25-2;
    79-01-6; 75-69-4; 75-01-4; 7440-66-6
(CNN)  Contact naae(s): Ruggero,J.;    Miller,L.
(ROR)  Responsible Organization: Region III.Environmental Services
    Division.
                             1088

-------
                             Accession Ho.  9038020907

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Kane of Data Base of Model: Resource Conservation and  Recovery
    Act (RCRA)-  Hazardous Haste Site Inspections
(ACR)  Acronym of Data Base or Model: Hone
(MED)  Kedia/Subject of Data Base or Model: Drinking water  ;Ground
    water jRunoff leachate ;Surface water receiving streams a
(ABS)  Abstract/Overview of Data Base or Model: This data base  is
    concerned with the    presence of toxic or hazardous Materials  In
    order to determine the need for remedial or enforcenent action  on
    hazardous waste dump sites.
(CTC)  CONTACTS: Subject natter   Linda Boornazian  (215)597-9407 ;
    EPA Office  Bruce Smith
(DTP)  Type of data collection or monitoring: Son point source  data
    collection
(STA)  Data Base status: Discontinued
(GRP)  Groups of substances represented in Data Base: 129 307 CHA ;15
    metals
(NPP)  Non-pollutant parameters included In the data base:  Chemical
    data Concentration measures ;Discharge points ;Flou rates  ;
    Inspection data ;Location ^Sampling date ;Site description  ;sorae
    toxiclty data
(DS)  Time period covered by data base: 01-01-80 TO 09-30-81
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: as needed
(NOB)  Number of observations in data base: 384.(Estimated)
(NEI)  Estimated annual increase of observations in data base:  192.
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data  base: 32.
(NCS)  No. stations or sources currently originating/contributing data:
    1 (time per site.)
(NOF)  Number of facilities covered in data base (source monitoring): (N
    /A.)
(GEO)  Geographic coverage of data base: Selected federal region Region
    III
(LOG)  Data elements identifying location of station or source  include:
    State ;County ;City }Town/township
(FAC)  Tata elements identifying facility include: Plant facility name
    ;PI ant location
(CDE)  Pollutant identification data are: Storet parameter
(LIM)  Limitation/variation in data of which user should be aware:  Sampl
    es collected for this program are  not perfect.
(DPR)  Data collect./anal. procedures conform to QRD guidelines: Samplin
    g plan documented Collection method documented ;Analysis method
    document QA procedures documented
(AND  Lab analysis based on EPA-approved or accepted methods?  YES
(PRE)  Precision: Precision and accuracy estimates exist but  are not
    included in data base
(EOT)  Editting:  Edit procedures used but undocumented.
(CBY)  Data collected by: Regional office Surveillance and  Analysis
    Division,  Wheeling Field Office, Region III
(ABY)  Data analyzed by:  Regional office Surveillance and Analysis
    Division-Wheeling and Annapolis Field Office, Region III


                             1089

-------
                             Accession Ho.  9038020907
                  (cont)
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Conpliance or enforcement
(AUT)  Authorization for data collection: Statutory authorization is P
    L 94-580 as amended, Section 3007 (Resource    Conservation and
    Recovery Act-RCRA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base: trip report
    EPA form T 2070-3
    data tabulated
(BUS)  Nunher of regular users of data base: 5
(OSR)  Current regular users of data base: EPA headquarter offices
    Water Enforcement-Hazardous Haste Task Force
    EPA regional offices
    States
(CNF)  Confidentiality of data and limits on access: No limits on
    access to data
(DLC)  Primary physical location of data: Regional office
(DST)  Form of data storage: Original form (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: no
(UPDT)  Frequency of data base master file up-date: Other as requested
(CMP)  Completion of form:
    Robert Cantor
    OFC: EPA/Region Ill/Surveillance and Analysis
    Division-Wheeling Field Office
    AD: 303 Methodist Bldg. Wheeling, WY 26003
    PH: (304)233-1271
(OF)  Date of fora completion: 02-24-83
(RMAT)  Number of substances represented in data base: 131
(MCAS)  Number of CAS registry numbers in data base: 131
(NAT)  Substances represented in data base:
    l,l,l-trichloroethane<71-55-
       6>
    If If 2f 2, -tetrachloroethane
       <79-34-5>
    1, l,2-trichloroethane<79-00-5>
    l,l-dlchloroethane<75-34-3>
    lf1-dichloroethylene<75-35-4>
    It "it 4r -trichlorobenzene<120-82-l>
    1*2-dichlorobenzene<95-50-l>
    If2-dichloroethane<107-06-2>
    If2-dichloropropane<78-87-5>
    l,2-dichloropropylene<563-54-2>
    1,2-diphenylhydrazine<122-66-7>
    1,2-trans-dichloroethylene
       <156-60-5>
    If3-dichlorobenzene<541-73-l>
    l,4-dichlorobenzene<106-46-7>
    2,4,6-trichlorophenol<88-06-2>
    2f Af If 8- te tr achlorod ibenzo-p-
       dioxin (tcdd)
2,4-dichlorophenol<120-83-2>
2,4-dimethylphenol<105-67-9>
2,4-dinitrophenol<51-28-5>
2,4-dinitrotoluene<121-14-2>
2,6-dinitrotoluene<606-20-2>
2-chloroethylvinyl ether<110-75-8>
2-chloronaphthalene<91-58-7>
2-chlorophenol<95-57-8>
2-nltrophenol<88-75-5>
3,3*-dichlorobenzidlne<91-94~l>
3,4-benzofluoranthene<205-99-2>
4,4'-ddd(p/p*tde)
4,4'-dde(p,p'-ddx)<72-55-9>
4,4*-ddt<50-29-3>
4f6-dlnitro-o-cresol<53 4-52-l>
4-bromophenyl phenyl ether
   <101-55-3>
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nitrophenol<100-02-7>
                             1090

-------
                         Accession No.  9038020907
                  (cont)
acenaphthene< 83-32 -9>
acenaphthylene< 208-96- 8>
acrolein<107-02-8>
acrylonltriie<107-13-l>
aldrin<309-00-2>
anthracene<120-12-7>
antimony<7440-36-0>
arsenic<7440-38-2>
asbestos<1332-21-4>
benzene<71 -43-2>
benzidine<92-87-5>
benzo(a)anthracene<56-55-3>
benzo(a)pyrerie<50-32-8>
benzo(g,h,l)perylene<191-24-2>
benzo(k)fluoranthene<207-08-9>
beryllium<7440-41-7>
bhc (llndane)-gaBma<58-89-9>
bhc-alpha<319-84-6>
bhc-beta<319-85-7>
bhc-delta<319-86-8>
bis(2-chloroethoxy)methane
bis(2-chloroethyl)ether
bis(2-chloroisopropyl) ether
   <39638-32-9>
bis(2-ethylhexyi)phthalate
bis(chloro«ethyl)ether<542-88-l>
bro«onethane<74-83-9>
butyl benzyl phthalate<85-68-7>
cad»iuit<7440-43-9>
carbon tetrachloride<56-23-5>
cheirical oxygen demand  (COD)
chlordane<57-74-9>
chlorobenzene< 10 8- 90-7>
chlorodibromomethane
chloroethane<75-00-3>
chloroform<67-66-3>
chloromethane<74-87-3>
chroniiuni<7440-47-3>
chrysene<218-01-9>
copper<7440-50-8>
cyanide<57-12-5>
di-n-butyl phthalate<84-74-2>
di-n-octyl phthalate<117-84-0>
dibenzo(a/h) anthracene<53-70-3>
dichlorobro»onethane<75-27-4>
di chlorodl f 1 uorome thane<75-71 -8>
dichloromethane<75-09-2>
dleldrln<60-57-l>
diethyl phthalate<84-66-2>
dimethyl phthalate<131-ll-3>
endosulfan sulfate<1031-07-8>
endosulfan-alpha<959-98-8>
endosulfan-beta<3 3213-6 5- 9>
endrln aldehyde<742l-93-4>
endrln<72-20-8>
ethylbenzene<100-41-4>
f luoranthene<206-44-0>
fluorene<86-73-7>
heptachlor epoxide<1024-57-3>
heptachlor<76-44-8>
hex achlorobenzene
hexachlorobutadlene<87-68-3>
hexachlorocyclopentadiene<77-47-4>
hexachloroethane<67-72-l>
indeno (l,2,3-cd)pyrene<193-39-5>
isophorone<78-59-l>
lead<7439-92-l>
mercury<7439-97-6>
n-nitrosodi-n-propylanine
   <621-64-7>
n-nitrosodimethylaraine<62-75-9>
n-nitrosodiphenyianine< 86-30-6>
naphthalene<91-20-3>
nickel<7440-02-0>
nltrobenzene< 98-95- 3>
p-chloro-n-cresoi<59-50-7>
pcb-1016 (arochlor 1016)
   <12674-ll-2>
pcb-1221 {arochlor 1221)
   <11104-28-2>
pcb-1232 (arochlor 1232)
pcb-1242 (arochlor 1242)
   <53469-21-9>
pcb-1248 (arochlor 1248)
   <12672-29-6>
pcb-1254 (arochlor 1254)
   <11097-69-l>
pcb-1260 (arochlor 1260)
   <11096-82-5>
pentachlorophenol<87-86-5>
phenanthrene<85-01-8>
phenol<108-95-2>
pyrene<129-00-0>
seleniuni<7782-49-2>
silver<7440-22-4>
tetr achloroethylene<127-l 8-4>
thalliun<7440-28-0>
toluene<108-88-3>
total oxidizable carbon
toxaphene<8001-35-2>
t r ibr omoiae thane<7 5-25-2 >
                         1091

-------
                             Accession No.  9038020907     (cont)

    trichloroethylene<79-01-6>           vinyl chloride<75-01-4>
    trIchlorofluoroaethane<75-69-4>      zinc<7440-66-6>
(CAS)  CAS registry numbers of substances included in data base: 71-55-6
    . 79-34-5; 79-00-5; 75-34-3; 75-35-4;       120-82-1; 95-50-1;
    107-06-2; 78-87-5; 563-54-2; 122-66-7; 156-60-5;   541-73-1;
    106-46-7; 88-06-2; 120-83-2; 105-67*9; 51-28-5; 121-14-2;
    606-20-2; 110-75-8; 91-58-7; 95-57*8; 88-75-5; 91-94-1; 205-99-2;
    72-55-9; 50-29-3; 534-52-1; 101-55-3; 7005-72-3; 100-02-7; 83-32-9;
    208-96-8; 107-02-8; 107-13-1; 309-00-2; 120-12-7; 7440-36-0;
    7440-38-2; 1332-21-4; 71-43-2; 92-87-5; 56-55-3; 50-32-8; 191-24-2;
    207-08-9; 7440-41-7; 58-89-9; 319-84-6; 319-85-7; 319-86-8;
    111-91-1;      111-44-4; 39638-32-9; 117-81-7; 542-88-1; 74-83-9;
    85-68-7;      7440-43-9; 56-23-5; 57-74-9; 108-90-7; 124-48-1;
    75-00-3; 67r66-3;    74-87-3; 7440-47-3; 218-01-9; 7440-50-8;
    57-12-5; 84-74-2; 117-84-0;       53-70-3; 75-27-4; 75-71-8;
    75-09-2; 60-57-1; 84-66-2; 131-11-3;       1031-07-8; 959-98-8;
    33213-65-9; 7421-93-4; 72-20-8; 100-41-4;   206-44-0; 86-73-7;
    1024-57-3; 76-44-8; 118-74-1; 87-68-3; 77-47-4;    67-72-1;
    193-39-5; 78-59-1; 7439-92-1; 7439-97-6; 621-64-7; 62-75-9;
    86-30-6; 91-20-3; 7440-02-0; 98-95-3; 59-50-7; 12674-11-2;
    11104-28-2; 11141-16-5; 53469-21-9; 12672-29-6; 11097-69-1;
    11096-82-5; 87-86-5; 85-01-8; 108-95-2; 129-00-0; 7782-49-2;
    7440-22-4; 127-18-4; 7440-28-0; 108-88-3;  8001-35-2; 75-25-2;
    79-01-6; 75-69-4; 75-01-4; 7440-66-6
(CUM)  Contact nawe(s): Boornazian/L.  ;    Saith,B*
(ROR)  Responsible Organization: Region III.Environmental Services
    Division.
                             1092

-------
                             Accession Ho.   9038020909

(DQ)  Date of Questionaire: 12-02-82
(NAN)  Kane of Data Base of Model:  Pi*lie Mater Supplies
(ACR)  Acronym of Data Base or Model:  Hone
(MED)  Media/Subject of Data Base or Model:  Drinking water
(ABS)  Abstract/Overview of Data Base or Model: The data base  is  used
    to determine compliance with     public  drinking water  standards.
    Samples of rain water     influents are  included in the data  base.
(CTC)  CONTACTS: Subject natter   Ray Lee (215) 597-8227   ;      EPA
    Office  Ray Lee  (215) 59
(DTP)  Type of data collection or monitoring:  Combination/Other public
    water supplies-ambient and finished
(STA)  Data Base status: Discontinued
(GRP)  Groups of substances represented In Data Base: 21 drinking water
    standards ;9 potential drinking water
(NPP)  lion-pollutant parameters included in  the data base:  Chemical
    data ;Inspect!on data /Sampling date ;Site description
(OS)  Tine period covered by data base: 01-01-77 TO 09-30-81
(TRM)  Termination of data collection: Hot anticipated
(FRQ)  Frequency of data collection or sampling: as needed
(NOB)  Number of observations in data base:  164.(Estimated)
(NEI)  Estimated annual increase of observations in data base:  40.
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data  base:  22.
(NCS)  No. stations or sources currently originating/contributing data:
    (N/A.)
(NQF)  Number of facilities covered in data  base (source monitoring): 22
    •
(GEO)  Geographic coverage of data base: Selected federal region  Region
    III
(LOC)  Data elements identifying location of station or source include:
    State /County /City ;Town/township
(FAC)  Data elements identifying facility include: Plant facility name
    ;Plant location ;name of stream
(CDE)  Pollutant identification data are: Storet parameter
(LiM)  Limitation/variation in data of which user should be aware: None
(DPR)  Data collect./anal, procedures conform to ORD guidelines:  Samplin
    g plan documented ;Collection method documented ;Analysis  method
    document QA procedures documented
(AND  Lab analysis based on EPA-approved or accepted methods? YES
(AUD)  Lab Audit: Lab audit is satisfactory  for 90%.
(PRE)  Precision: Precision and accuracy estimates exist but are  not
    Included in data base
(EDT)  Editting: Edit procedures used and documented.
(CBY)  Data collected by: Regional office Surveillance and  Analysis
    Division-Wheeling  Field Office, Region  III
(ABY)  Data analyzed by: Regional office Surveillance and Analysis
    Division-wheeling Field Office/ Region III
(IDL)  Laboratory identification: YES
(AUT)  Authorization for data collection: Statutory authorization is  P
    L 93-523 (Safe Drinking Water Act (SOWA))
(OMB)  Data collected/submitted using QMB-approved EPA reporting  forms:
    QQ


                             1093

-------
                             Accession No.   9038020909     (cont)

(REP)  Fora of available reports and outputs of data base:  raw data
    tabulated
(NUS)  Number of regular users of data base: 4
(OSR)  Current regular users of data base:  EPA regional offices
    States
(CNF)  Confidentiality of data and 1inits on access: No limits on
    access to data
(DLC)  Primary physical location of data: Regional office
(DST)  Form of data storage: Original fora (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: no
(UPDT)  Frequency of data base master file up-date: Other as requested
(CMP)  Completion of form:
    Robert Cantor
    OFC: EPA/Region III/Surveillance and Analysis Division-Wheeling
    Field
    Office
    AD: 303 Methodist Bldg. Wheeling, MV 26003
    PH: (304) 233-1271
(OF)  Date of form completion: 02-24-83
(NMAT)  Number of substances represented in data base: 27
(NCAS)  Number of CAS registry numbers in data base: 25
(MAT)  Substances represented in data base:
    l,l,l-trichloroethane<71-55-         lead<7439-92-l>
       6>                                lindane<58-89-9>
    It2-dichlorobenzene<95-50-1>         mercury<7439-97-6>
    1,2-dichloroethane<107-06-2>         methoxychlor<72-43-5>
    l        microbiology coliform bacteria
    l,4-dichlorobenzene<106-46-7>        nitrate<14797-55-8>
    2,4-dichlorophenoxyacetic acid (2,   selenium<7782-49-2>
       4-d)<94-75-7>                     silver<7440-22-4>
    arsenic<7440-38-2>                   silvex<93-72-l>
    barium<7440-39-3>                    tetrachloroethylene<127-18-4>
    cadnium<7440-43-9>                   toxaphene<8001-35-2>
    carbon tetrachloride<56-23-5>        trichloroethylene<79-01-6>
    chlorobenzene<108-90-7>              turbidity
    chromium<7440-47-3>                  vinyl chloride<75-01-4>
    endrin<72-20-8>
(CAS)  CAS registry numbers of substances included in data base: 71-55-6
    ; 95-50-1; 107-06-2; 541-73-1?    106-46-7; 94-75-7; 7440-38-2;
    7440-39-3; 7440-43-9; 56-23-5;     108-90-7; 7440-47-3; 72-20-8;
    7439-92-1; 58-89-9; 7439-97-6; 72-43-5;      14797-55-8; 7782-49-2;
    7440-22-4; 93-72-1; 127-18-4; 8001-35-2;       79-01-6; 75-01-4
(CNM)  Contact name(s): Lee,R.    ;    Lee,R.
(RQR)  Responsible Organization: Region III.Environmental Services
    Division.
                             1094

-------
                             Accession No.  9038030906

(DQ)  Date of Questioaaire: 12-02-82
(HAM)  Kane of Data Base of Model: Priority Pollutants Effluent
    Guidelines
(ACR)  Acronym of Data Base or Model: None

-------
                             Accession Ho*  9038030906
                   (cont)
(ABY)  Data analyzed by: Regional office Surveillance and Analysis
    Division, Wheeling     and Annapolis Field Office, Region III
(IDL)  Laboratory Identification: YES
(PR1)  Primary purpose of data collection: Development of regulations
    or standards
CAUT)  Authorization for data collection: Statutory authorization is P
    L 92-500 as amended (Clean Hater Act-CMA)
COMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Fora of available reports and outputs of data base:  tabulated
    raw data
(ROS)  Number of regular users of data base: 2
(USR)  Current regular users of data base: EPA headquarter  offices
    Effluent Guidelines Division
(CNF)  Confidentiality of data and limits on access: Limits on access
    within EPA and outside agency for soae  data
(DLC)  Primary physical location of data: Headquarters office
(DST)  Form of data storage: Original fora (hardcopy, readings)
CDAC)  Type of data access: Manually
CCHG)  Direct charge for non-EPA use: no
(DpDT)  Frequency of data base master file up-date: Other As requested
(CMP)  Completion of fora:
    Robert Cantor
    OFC: EPA/Region Ill/Surveillance and Analysis
    Division/Wheeling Field Office
    AD: 303 Methodist Bldg. Wheeling, W? 26003
    PH: (304)233-1271
(OF)  Date of fora coupletion: 02-24-83
(NMAT)  Nuaber of substances represented in data base:  129
(HCAS)  Nuaber of CAS registry numbers in data base: 127
(MAT)  Substances represented in data base:
    1,1*1-trichloroe than e<71-55-
       6>
    1,1,2,2,-tetrachloroethane
       <79-34-5>
    1, l,2-trichloroethane<79-00-5>
    1,1-di chloroethane<75-34-3>
    l,l-dichloroethylene<75-35-4>
    1, 2,4,-trichlorobenzene<120-82-l>
    l,2-dichlorobenzene<95-50-l>
    1,2-di chlo roethane<107-06-2>
    1,2-dichloropropane<78-87-5>
    l,2-dichloropropylene<563-54-2>
    l,2-c!iphenylhydrazine<122-66-7>
    If 2-trans-dichloroethy lene
       <156-60-5>
    l,3-dichlorobenzene<541-73-l>
    1,4-dichlorobenzene<106-46-7>
    2, 4,6-trichlorophenol<88-06-2>
    2, 4,7, 8-te tr achlorodlbenzo-p-
       dloxin (tcdd)
    2,4-dichlorophenol<120-83-2>
2,4-dimethylphenol<105-67-9>
2,4-dlnitropnenol<51-28-5>
2,4-dinitrotoluene<121-14-2>
2,6-dinitrotoluene<606-20-2>
2-chloroethylvinyl ether<110-75-8>
2-chloronaphthalene<91-58-7>
2-chlorophenol<95-57-8>
2-nitrophenol<88-75-5>
3,3•-dichlorobenzidine<91-94-l>
3,4-benzofluoranthene<205-99-2>
4,4'-ddd(p,p'tde)
4,4'-dde(p,p--ddx)<72-55-9>
4,4'-ddt<50-29-3>
4,6-dlnitro-o-cresol<534~52-l>
4-broaophenyl phenyl ether
   <101-55-3>
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nitrophenol<100-02-7>
acenaphthene< 83-32-9>
acenaphthylene<208-96-8>
                             1096

-------
                         Accession No.  9038030906
                  (cont)
acrolein<107-02-8>
aery lonitrile<107- 13-1 >
aldrin<309-00-2>
anthracene
antimony<7440-36-0>
arsenic<7440-38-2>
asbestos<1332-21-4>
benzene<71-43-2>
benzidine<92-87-5>
benzo{ a) anthracene<56-55-3>
benzo(a)pyrene<50-32-8>
benzo(g,h,i)perylene<191-24-2>
benzo(k)fluoranthene<207-08-9>
berylliu«<7440-41-7>
bhc (lindane)-ga»ma<58-89-9>
bhc-alpha< 31 9-8 4-6>
bhc-beta<319-85-7>
bhc-delta<319-86-8>
bis (2-chloroet ho xy)ae thane
bis(2-chloroethyl)ether
bis(2-chloroisopropyl) ether
   <39638-32-9>
bis(2-ethylhexyl)phthalate
bis(chloromethyl)ether<542-88-l>
bronomethane<74-83-9>
butyl benzyl phthalate<85-68-7>
cadwiun<7440-43-9>
carbon tetrachloride<56-23-5>
chlordane<57-74-9>
chlorobenzene<108-90-7>
chlorodibr on one thane< 1 24-4 8-1 >
chloroethane<75-00-3>
chloroform<67-66-3>
chloromethane<74-87-3>
chronium<7440-47-3>
chrysene<218-01-9>
copper<7440-50-8>
cyanide<57-12-5>
di-n-butyl phthalate<84-74-2>
di-n-octyl phthalate<117-84-0>
dibenzo( a/ h) anthracene<53-70-3>
dlchlorobromonethane<75-27-4>
dichlorodifluoronethane<75-71-8>
dlchloromethane<75-09-2>
dleldrin<60-57-l>
die thy 1 phthalate<84-66-2>
dimethyl phthalate<13l-ll-3>
endosulfan sul£ate<103l-07-8>
endosulfan-alpha<9 59-98- 8>
endosulfan-beta<33213-65-9>
endcin aldehyde<7421-93-4>
endrin<72-20-8>
ethylbenzene<100-41-4>
f luoranthene<206-44-0>
fluorene<86-73-7>
heptachlor epoxide<1024-57-3>
hep tachlor<76-44-8>
hex achlorobenzene
hex achlorobutadiene<87- 68-3 >
hexachlotocyclopentadiene<77-47-4>
hexachloroethane<67-72-l>
indeno (1, 2,3-cd)pyrene<193-39-5>
isophorone<78-59-l>
lead<7439-92-l>
mercury<7439-97-6>
n-nitrosodi-n-propylanine
   <621-64-7>
n-nitrosodinethyla«ine<62-75-9>
n-nltrosodiphenyla«ine<86-30-6>
naphthalene<91-20-3>
nickel<7440-02-0>
nit robe nzene<98-95-3>
p-chloro-B-cresol<59-50-7>
pcb-1016 (arochlor 1016)
   <12674-ll-2>
pcb-1221 (arochlor 1221)
pcb-1232 (arochlor 1232)
pcb-1242 (arochlor 1242)
   <53469-21-9>
pcb-1248 (arochlor 1248)
   <12672-29-6>
pcb-1254 (arochlor 1254)
   <11097-69-l>
pcb-1260 (arochlor 1260)
   <11096-82-5>
pentachlorophenol<87-86-5>
phenanthrene< 85-01- 8>
phenol<108-95-2>
pyrene
seleniuffl<7782-49-2>
silver<7440-22-4>
tetrachloroethylene<127-18-4>
thalliua<7440-28-0>
toluene<108-88-3>
toxaphene<8001-35-2>
trlbroaoaethane<75-25-2>
tr ichloroethylene<79-01 -6>
trichlorofluorotnethane<75-69-4>
vinyl chloride<75-01-4>
zinc<7440-66-6>
                         1097

-------
                             Accession No.  9038030906      (cont)


-------
                             Accession No.   9043000501

(DQ)  Date of Questionaire:  12-02-82
(NAM)  Name of Data Base of Model: Sample Analyses and  Managemant
    System/ Region IV
(ACR)  Acronym of Data Base or Model:  SAAMS
(MED)  Media/Subject of Data Base or Model: Air ;Drinking Hater
    ;Effluents/ Municipal and     industrial uastewater ;Ground Water
    >Runoff ;Sediment >Soil ;Solid    Haste ;Surface Water,  stream/
    lake, estuarine ;Tissue/ aquatic plant  and   animal /oil/  gasoline
(ABS)  Abstract/Overview of Data Base or Model: The "Sample  Analyses
    and Management System** is a  computerized data storage and
    retrieval system designed and used by   EPA Region  IV.  The
    Analytical Support Branch of the Environmental   Services Division
    enters all of its sample logging information and    results of
    chemical analyses into this system.  Hard copy-formated
    retrieval of data is available at this  time.  The system also
    furnishes the lab backlog and other management information.
(CTC)  CONTACTS: Subject matter  Tom B. Bennett/ Jr.   PH:    (404)
    546-3112  FTS 250-3112 ; Computer-related  Daylor Conner   (404)
    881-2316  FTS 257-2316 ; EPA Office  Enivronmentai  Services
    Division/ Region IV, Athens/ 6A
(DTP)  Type of data collection or monitoring: Combinations and Other
(STA)  Data Base status: Presently Operational/Ongoing
(6RP)  Groups of substances represented in  Data Base: 43 air priority
    chemicals ; 5 NESHAPS except asbestos ;     129 307 CVA  ;  11
    conventional water / 41 CWA potential criteria ;     21  drinking
    water standards except Radioactive Pollutants ; 9    potential
    drinking water except Radioactive Pollutants y 29 drinking  water
    monitoring / 299 hazardous substances except Salts  of the   organic
    and inorganic compounds ; 48 cancelled  pesticides ; 9   monitoring
    pesticides ; 54 TSCA assessment ; RCRA  hazardous wastes  ;   16
    Pre-RPAR ; 15 metals ; Other-  The data base is flexible in that
    new parameters not presently in the data base can be added easily
    by  the system user,  some of the above compounds are not  in the
    data     base at present but can be added as needed.
(NPP)  Non-pollutant parameters included in the data base: Chemical
    data ; Compliance data / Concentration    measures ; Discharge
    points ; Flow rates ; Industry ; Location ; Manufacturer > Physical
    data ; Political Subdivisions ; Salinity ;    Sampling Date ;  Site
    Description ; Temperature •/ Test/Analysis method ;     Treatment
    devices or processes ; all sample collection information    (where/
    when/ how/ who/ etc.)/ all sample custody information
(DS)  Time period covered by data base: 79  TO 01-83
(TRM)  Termination of data collection: Not  anticipated
(FRQ)  Frequency of data collection or sampling: Ongoing:Daiiy ;
    Ongoing:As needed ; At least daily.
(NOB)  Number of observations in data base: 500/000(Estimated  to date)
(NEI)  Estimated annual increase of observations in data base: Not  Known
(INF)  Data base includes: Raw data/observations ; Sample logging
    information.
(NTS)  Total number of stations or sources covered in data base: Not
    Known
(GEO)  Geographic coverage of data base: Single or selected  Federal


                             1099

-------
                             Accession Ho.   9043000501      (cont)

    Regions Region IV, SB-US
                     acetic acid,methyl     chlorobenze
    2,5-furandione,3-ethyl-4-methyl         ne
       <355-33-8>                        aldehyde,endrin
    acetic acid,benzene                  alkyl acid,C14  methyl ester
    acetic acid,biphenyl                  alkyl  acid,C15 methyl ester


                             1100

-------
                         Accession No.  9043000501
                  (cont)
alkyl acid,C!6 Methyl ester
alkyl acid,C18 aehtyl ester
amlne/diethyl nethoxy trlazlnedl
amlne/n-nitrosodlphenyl
an thra cene di one
anthracenone/7H-benz(de)
benzaldehyde/hydroxy
benzaldehyde/hydroxy nethoxy
benzanthracene-1/2
benzenamide/n->ethyl  nitroso
benzene/alkyl
benzene/C6 alkyl
benzene, ethoxy aethyl
benzene  /methylene bis
benzeneacetic acld<103-82-2>
benzenepropanoic acid
   <501-52-0>
benzimldazole/ehtyl
benzo(GHI)fluoranthene<203-12-3>
benzofluoranthene,11,12<207-08-9>
benzofluoranthene/3,4<205-99-2>
benzofluoranthene/7/10<203-12-3>
benzole acid/aaino
benzole acid,C4   alkyl
benzole acid/chloro
benzole acid/dimethyl
benzonaphthlophene
benzoperylene/ lf 12<191-24-2>
benzopyrene/3,4<50-32-8>
benzylcanide/   chloronethyl
BHC(llndane)ganaa
BHC-alpha
BBC-beta
BHC-delta
BHC-gamma
blcycloheptanone/trlmethyl
blcyclooctane/dlbromo
blcyclooctane/ tribroao
blphenyl/tetrachloro<26914-33-0>
blphenyl/trlchloro<25323-68-6>
br OB ide/methyl
butane/bis methylene bls(oxy)
butanoic acid
butanolc   acid, dine thy 1
butanoic acld/aethyl
bxitanol,2-Bethyl/2
carboxyllc acid/benzendi
chlordane/alpha
chlordane/ gamma
chlordene/hydroxy
chloride/chlorobenzoyl
chlorlde/methyl
chlor Ide/methy lene
chrysene/   C2 alkyl
chrysene,methyl
cresol/parachloroaeta/
cyclohexane
cyclohexanone/trlnethyl
cyclopentanol/iethyl
cyclopentenone/hydroxy   methyl
cyclopentenone/methyl
DDD/O'P*
ODE/O-P*
DDT/0'P*
decanolc acld/nethyl ester
   <110-42-9>
decanoic acid/penta
dibenzanthracene-1/   2/5/6
   <53-70-3>
dibenzofur an/methyl
dlbenz.othlophene/methyl
debenzyl/  tetramethyl
dlchlorobenzene-l/2<95-50-l>
dichlorobenzane-1,3<541-73-l>
dichlorobenzene-l/4<106-46-7>
diphenylamine/n-nltroso<86-30-6>
dipropetryn
dodecanoic acid/methyl ester
eicosanolc acid/methyl ester    *
endosulfan-beta<32313-65-9>
endrin ketone
epoxlde/heptachlor<1024-57-3>
ethane/1/1/1-dlchloro
ethane/1,/1/1-trifluorocMoro
ethane/1/1/2/2-    tetrachloro
e thane/1/1/ 2-trlchloro
ehtane,I/2-dichloro/l/l/2-
   trifluoro
ethane/trlchloro trifluoro
ethanone/dlhydroxynethoxyphenyl
ethene/    trlfluoro-chloro
ethylene/l/2-trans
ethylene/I/2-trans-dichloro
fur an
furan/dlethyl tetrahydro
furandlone/ethyl methyl
heptachlor     epoxide<1024-57-3>
heptadecanoic acld<506-12-7>
heptadecanol
heptanolc acid
heptanol/2-propyl-l-
heptanoI/methyl
heptanone/2-<110-43-0>
heptanone/aethyl
                         1101

-------
                         Accession Ho.   9043000501
                  (cont)
hexadecanoic acid,methyl ester
hexadecanoic acid,methyl ester of
   methyl
hexanedioic acid, demethyi ester
   <627-93-0>
hexanoic acid<142-62-1>
hexanoic acid,   ethyl ester of
   ethyl
hexanoic acid,aethyl
hexanone,cyclo<108-94-l>
hydrofuran,tetra<109-99-9>
indenone,dihydro
indole,methyl
isobenzofuranone
isocyanatobenzene,chloro
ketene,aethylpropyl<29336-29-6>
ketone,     aethyl  ethyl
•ethane,chlorodibrono<124-48-l>
•ethane,dichlorobromo    <75-27-4>
•ethane,dichlorodifluoro<75-43-4>
•ethane,dichlorofluoro
   <75-43-4>
methane,trichlorofluoro<75-69-4>
nethanol,benzene<100-51-6>
•ethanol,dibutoxy<54518-04-6>
•ethanol,ethenyl benzene
•ethanone,bis  (2-ethyIhexyl)
•ethanone, diphenyl
•ethyl benzoic acid,Methyl ester
•ethyl pentanoic acid,Methyl  ester.
•ethyl ene, chloride<75-09-2>
•ycrenol
naphthalene, C5 alkyl
naphthalene/octachloro<2234-13-l>
naphthalene,phenyl
naphthalene, tri« ethyl dihydro
   <53156-12-0>
nonadecenoic acid,methyl ester
nonanedioc acid,methyl ester
nonanedioic ac i d, b is (e thy Ihexyl)
   ester of
nonanediol,methyl
nonanoic   acid
nonanoic acid,methyl ester
   <1731-84-6>
octadecadienoic  acid, Methyl  ester
octadecanoic acid<57-ll-4>
octadecanoic acid,methyl ester
octadecanoic acid, em thy 1 ester of
   •ethyl
octadecenolc acid<57-ll-4>
octadecenoic acid,aethyl ester
octanoic acid,nethyl ester
pentadecanoic acid<1002-84-2>
pentadecanolc acid, nethyl
pentadecanoic acid, methyl ester
pentadecanoic acid, methyl ester
   of Methyl
pentadiene,    pentachlorocyclo
   <25154-43-2>
pentadiene, tetrachlorocyc lo
   <29590-82-7>
pentanediotlc acid, dimethyl ester
pentanoic acid<109-52-4>
pentanone, hydroxy methoxy
pentanone,hydroxy Methyl
pent ene, octachlorocyclo
   <706  -78-5>
perylene<198-55-0>
phenanthrene, C2, alkyl
phenanthrene, C3 alkyl
phenanthrene,C4 alkyl
phenanthrene, C5 alkyl
phenanthrene, dimethyl
phenanthrene, aethyl
phenanthtenecarboxylicacid
   octahydrodimethyl
phenanthrenedione
phenol, 2,4-dimethyl
phenol, bis dimethyl ethyl
pehnol,C2 alkyl
phenol, C4 alkyl
phenol, C8 alkyl
phenol, €9 alkyl
phenol^ dichloro methyl
phenol, dim ethyl ethyl
phenol, me thoxy
phenol,   methoxypropenyl
pheno I/ Met hoxypropy 1
phenol, nitro,4<100-02-7>
phenol, tetrachloro<25167-83-3>
phosphoric acid/octyl diphenyleste
   r    <115-88-8>
phosphoric aicd/tributyl ester
   <126-73-8>
phosphoric acid   ,triphenyl
   ester<115-86-6>
phthalate, di(methylpropyl)
phthalate, dip   ropylphenyl
phtahla te, die thy 1< 84-66 -2>
phthalate, dodecyl
phthalate/   aethyl butyl
propane, 1,1-tr if luoro, 1,3-dlchloro
                         1102

-------
                         Accession So.  9043000501
                  (cont)
propanoic acid,benzene
propanolc acid,methyl
propanol,methoxy methyl ethoxy
propanone,  hydroxymethoxyphenyl
propenoic acid,phenyl
pyrene,indeno(l,2, 3-CD)
   <193-39-5>
pyrene,methyl
pyridine,methyl<1333-41-4>
qulnone,di-  tertbutyl-benzo
sinatryne
sulfonamide,butyl methyl benzene
sulfonamide,    nethyl benzene
sulfonaroide/triraethyl benzene
sulfonamide, triaethylbenzyl
sulfur<7704-34-9>
surfuric acid,dimethyl ester of
tetradecanoic acid  <544-63-8>
tetradecanoic acid,methyl ester
   <124-10-7>
tetradecanoic     acid,methyl
   ester of methyl
tetradlfon
triazine/trimethoxy
trichlorobenzene-   1*2,4
   <120-82-l>
undecanoic acid/methyl ester of
   cyclopentane
Acetaldehyde <75-07-0>
Acrolein <107-02-8>
Acrylonitrile  <107-13-1>
allyl  chloride <107-05-1>
Benzyl     chloride  <100-44-7>
Bis(chloromethyl)ether <542-88-l>
Carbon tetrachloride <56-23-5>
Chlorobenzene  <108-90-7>
Chloroform  <67-66-3>
Chloroprene  <126-99-8>
o-Cresol  <95-48-7>
m-Cresol  <108-39-4>
p-Cresol  <106-44-5>
p-Dichlorobenzene<106-46-7>
Dichloromethane  <75-09-2>
Dimethylnitrosoamine <62-75-9>
Dioxane <123-91-1>
Dioxin  <828-00-2>
 Epichlorohydrin  <106-89-8>
 Ethylene dibromide   (£DB)
    <106-93-4>
 Ethylene dichloride <107-06-2>
 Ethylene  oxide <75-21-8>
 Forffialdehyde <50-00-0>
Hexachlorocyclopentadiene
   <77-47-4>
Maleic anhydride  <108-31-6>
Manganese and compounds
   <7439-96-5>
Methyl     chloroform <71-55-6>
Methyl iodide <74-88-4>
Nickel  <7440-02-0>
Nitrobenzene <98-95-3>
2-Nitropropane <79-46-9>
N-Nitrosodiethylamine <55-18-5>
Nitrosomethylurea <684-93-5>
Nitrosonorpholine <59-89-2>
Perchloroethylene <127-18-4>
Phenol <108-95-2>
Phosgene <75-44-5>
Polychlorinated biphenyls (PCBs)
Toluene <108-88-3>
Vinylidene chloride   <75-35-4>
Xylene <1330-20-7>
o-Xylene <95-47-6>
ra-Xylene <108-38-3>
p-Xylene
   <106-42-3>    Proplyene oxide
   <75-56-9>
Trichloroethylene
   <79-01-6> Benzene  <71-43-2>
Beryllium  <7440-41-7>
Mercury <7439-97-6>
¥inyl chloride
   <75-01-4>  Acenaphthene
   <83-32-9>
Acenaphthylene  <208-96-8>
Acrolein <107-02-8>
Acrylonitrile <107-13-1>
Aldrin  <309-00-2>
Anthracene   <120~12-7>
Antimony <7440-36-0>
Arsenic <7440-38-2>
Asbestos   <1332-21-4>
BHC-.Alpha.  <319-84-6>
 BHC-.Beta.  <319-85-7>
 BHC  (lindane)-.Gamma. <58-89-9>
 BHC-.Delta.  <319-86-8>
 Benzene <71-43-2>
 Benzidine  <92-87-5>
 Benzo(a)anthracene  <56-55-3>
 3,4-Benzofluoranthene <205-99-2>
 Benzo(k)  fluoranthene <207-08-9>
 Ben2o(g,h,i)perylene <191-24-2>
 BenzoCalpyrene <50-32-8>
 Berylliui <7440-41-7>
                          1103

-------
                         Accession Mo.  9043000501
                  (cont)
Bis (2-     chloroethoxy)me thane
   <111-91-1>
Bis(2-chloroethyl)ether
Bls(2-chloroisopropyl) ether
    <39638-32-9>
Bis   (chloronethyi) ether
    <542-88-l>
Bis(2-ethylhexyl)phthalate
BroBoaethane <74-83-9>
4-Bronophenyl  phenyl  ether
    <101-55-3>
Butyl benzyl phthalate <85-68-7>
Cadmium   <7440-43-9>
Carbon tetrachloride  <56-23-5>
Chlordane <57-74-9>
Chloro benzene  <1 08-90- 7>
Chlorodlbromomethane   <124-48-l>
Chloroethane <75-00-3>
2-chloroethylvinyl ether
    <110-75-8>
Chloroform <67-66-3>
P-Chloro-m-cresol <59-50-7>
Chloromethane  <74-87-3>
2-Chloronaphthalene <91-58-7>
2-Chlorophenol <95-57-8>
4-Cfclorophenyl phenyl ether
    <7005-72-3>
Chromium  <7440-47-3>
Chrysene  <2l8-01-9>
Copper <74 40-50- 8>
Cyanide < 57-1 2-5 >
                      <72-54-8>
                   <72-55-9>
4, 4 '-DDT  <50-29-3>
Dlb«nzoCa^h3 anthracene <53-70-3>
Oi-n-butyl phthalate  <84-74-2>
1,2-Dichlorobenzene <95-50-l>
1, 3-Dichlorobenzene     <541-73-l>
1,4-Dichlorobenzene <106-46-7>
3,3'- Dichlorobenzldine <9l-94-l>
Dichlorobromomethane <75-27-4>
Dlchlorodifluoromethane <75-71-8>
1,1-Oichloroethane  < 7 5- 34-3 >
1,2-Di chloro ethane <107-06-2>
1,1-Dichloroethylene   <75-35-4>
1^2-trans-Dichloroethylene
    <156-60-5>
DlcMorome thane <75-09-2>
2/4-Dlchlorophenol <120-83-2>
1^2-Dlchloropropane <78-87-5>
1/2-Dichloropropylene <563-54-2>
Oieldrin <60-57-l>
Oiethyl phthalate <84-66-2>
2,4-  Dim ethyl phenol <105-67-9>
Dimethyl phthalate <131-ll-3>
4,6-Dinitro-o-cresol <534-52-l>
2/4-Dinitrophenol <51-28-5>
2,4-Dinitrotoluene <121-14-2>
2,6-Dinitrotoluene <606-20-2>
Di-n-octyl phthalate <117-84-0>
1/2-Diphenylhydrazine <122-66-7>
Endosul fan-, Alpha. <959-98-8>
Endosulfan-.Beta.     <33213-65-9>
Endosulfan sulfate <1031-07-8>
Endrin <72-20-8>
Endrln aldehyde <7421-93-4>
Ethylbenzene <100-41-4>
Fluoranthene <206-44-0>
Fluorene <86-73-7>
Heptachlor     <76-44-8>
Heptachlor epoxide <1024-57-3>
Hexachlorobenzene     <118-74-l>
Hexachlorobutadiene <87-68-3>
Hexachlorocyclopentadiene
   <77-47-4>
H ex ac hi or o ethane  <67-72-l>
Indeno (1, 2,3-cd)pyrene < 193-3 9-5>
Isophorooe <78-59-l>
Lead <7439-92-l>
Mercury <7439-97-6>
•aphthalene < 91-20 -3>
•ickel <7440-02-0>
Nitrobenzene <98-95-3>
2-iitrophenol   <88-75-5>
4-iitrophenol <100-02-7>
M-iitrosodimethylamine <62-75-9>
H-Mitrosodiphenylamine <86-30-6>
M-Iitrosodi-n- propylaalne
   <621-64-7>
Pentachlorophenol <87-86-5>
Phenanthrene    <85-01-8>
Phenol <108-95-2>
PCB-1016 (Arochlor 1016)
   <12674-ll-2>
PCB-1221 (Arochlor 1221)
   <11104-28-2>
PCB-1232   (Arochor 1232)
PCB-1242 (Arochlor 1242)
   <53469-21-9>
PCB-1248 (Arochlor 1248)
   <12672-29-6>
                         1104

-------
                         Accession Ho.   9043000501
                  (cont)
PCB-1254    (Arochior 1254)
   <11097-69-l>
PCB-1260 (Arochior 1260)
   <11096-82-5>
Pyrene <129-00-0>
Selenium <7782-49-2>
Silver <7440-22-4>
2,4,7,8-Tetrachlorodibenzo-p-
   dioxin 
Tetrachloroethylene <127-18-4>
Thallium <7440-28-0>
Toluene    <108-88-3>
Toxaphene <8001-35-2>
Tribromomethane <75-25-2>
1,2,4-Trichlorobenzene <120-82-l>
1,1,1-Trichloroethane    <71-55-6>
1,1,2-Trichloroethane <79-00-5>
Trichloroethylene    <79-01-6>
Trichlorofluoronethane <75-69-4>
2,4,6-    Trichlorophenol
   <88-06-2>
Vinyl chloride <75-01-4>
Zinc <7440-66-6>
Acidity
Alkalinity
Dissolved Oxygen
Dissolved Solids
Fecal colifora
Nitrogen <7727-37-9>
Oil  and Grease
Oxygen  demand
PH
Phosphorus  <7723-14-0>
Suspended solids
Arsenic <7440-38-2>
Barium  <7440-39-3>
Cadmium <7440-43-9>
Chromium <7440-47-3>
2/4t-Dichlorcphenoxyacetic  acid (2/
    4-D)      <94-75-7>
 Endrin  <72-20-8>
Lead <7439-92-l>
 Lindane <58-89-9>
 Mercury <7439-97-6>
 Methoxychlor <72-43-5>
 Microbiology-coliform bacteria
 Nitrate <14797-55-8>
 Selenium <7782-49-2>
 Silver  <7 440-2 2-4>
 Silvex <93-72-l>
Toxaphene <8001-35-2>
Turbidity
Acetone <67-64-l>
n-alkanes (clO - c30)
Aluminum <7429-90-5>
Ammonia <7664-41-7>
Bariua <7440-39-3>
Biphenyl <92-52-4>
Bismuth and compounds <7440-69-9>
Boron and compounds <7440-42-8>
Bromine <7726-95-6>
Chlorine <7782-50-5>
Cobalt <7440-48-4>
2^4-d acid <94-75-7>
Demeton <8065-48-3>
Dialkyl ethers
Dibenzofuran <132-64-9>
Diphenyl ether     <101-84-8>
Fluorides
Guthion <86-50-0>
Iron <7439-89-6>
Kepone  <143-50-0>
Lithium and compounds <7439-93-2>
Malathion  <121-75-5>
Manganese  and compounds
    <7439-96-5>
Methoxychlor <72-43-5>
Methyl  ethyl ketone  (MEK)
    <78-93-3>
Mirex <2385-85-5>
Molybdenum and  compounds
    <7439-98-7>
Nitrates/Nitrites
Nltriloacetates
Parathion  <56-38-2>
Phosphorus <7723-14-0>
Polybrominated  biphenyls  (PBBS)
Secondary  amines
Sodium <7440-23-5>
Styrene <100-42-5>
Sulfates
 Sulfides
 Terpenes
 2r4/5-Trichlorophenoxypropionic
     acid (TP)  <93-72-l>
 Vanadium
    <7440-62-2>     Carbon
    tetrachloride <56-23-5>
 Chlorobenzene <108-90-7>
 1^2-Dichlorobenzene <95-50-l>
 Ir3-Dichlorobenzene <541-73-l>
 1,,4-Dichlorobenzene <106-46-7>
                          1105

-------
                         Accession No.  9043000501
                  (cont)
1,2-Dichloroethane <107-06-2>
Radon <10043-92-2>
Tetrachloroethylene <127-18-4>
1,1,1-Trichloroethane <71-55-6>
Trichloroethylene <79-01-6>
UraniiiH <7440-61-1>
Vinyl chloride <75-01-4>
Alachlor <15972-60-8>
Atrazine <1912-24-9>
Banvel-D  <1918-00-9>
Benefln <1861-40-1>
Bromobenzene <108-86-l>
Bromochlorobenzene <28906-38-9>
Bromodichloromethane  <75-27-4>
Butachlor <23184-66-9>
ChlorodibrOBonethane
    <124-48-1>
Cyanazine <21725-46-2>
Oibutyl ph thai ate  <84-74-2>
cis-1,2-Dichloroethylene
    <156-59-2>
I/2-trans-  Oichloroethylene
    <156-60-5>
Dichlorolodoreethane <594-04-7>
Diethyl phthalate <84-66-2>
Diphenylhydrazine <38622-18-3>
Ethyl chloride <75-00-3>
0-Methoxyphenol <90-05-1>
Mitralin    <4726-14-l>
Phenylacetic acid <103-82-2>
Phorate <298-02-2>
Phthalic acid <88-99-3>
Propachlor <1918-16-7>
Propanil   <709-98-8>
Propazine <139-40-2>
Simazine
   <122-34-9>  Acetaldehyde
   <75-07-0>
Acetic acid <64-19-7>
Acetic anhydride  <108-24-7>
Acetone cyanohydrin <7S-86-5>
Acetyl bromide   <506-96-7>
Acetyl chloride <75-36-5>
Acrolein <107-02-8>
Acrylonitrile <107-13-1>
Adipic acid <124-04-9>
Aldrin    <309-00-2>
Allyl alcohol <107-18-6>
Allyl chloride <107-05-1>
Aluminum sulfate <10043-01-3>
Ammonia <7664~41-7>
Ammonium acetate <631-61-8>
Ammonium benzoate <1863-63-4>
Ammonium bicarbonate <1066-33-7>
Amnonium bichromate <7789-09-5>
Amaoniuoi bifluoride <1341-49-7>
Amnonium bisulfite    <10192-30-0>
Ammonium carbamate 
Ammoniuffl carbonate <506-87-6>
Amaonium chloride <12125-02-9>
Ammonium chroaate <7788-98-9>
Amaonium citrate <7632-50-0>
Amaonium fluoborate <13826-83-0>
Ammonium fluoride <12125-01-8>
Amaonium hydroxide <1336-21-6>
Ammonium oxalate <1113-38-8>
Ammonium silicofluoride
   <16919-19-0>
Ammoniun sulfaiate    <7773-06-0>
Ammonium sulf ide <12135-76-l>
Aoaoniua sulfite     <10196-04-0>
Ammoniun tartarate <3164-29-2>
Ammonium thiocyanate <1762-95-4>
Ammoniuffl thiosulf ate <7783-18-8>
Amyl acetate <628-63-7>
Aniline <62-53-3>
Antimony   pentachloride
   <7647-18-9>
Antimony potassium tartrate
Antimony tribromide <7789-61-9>
Antimony     trichloride
   <10025-91-9>
Antimony trifluoride <7783-56-4>
Antimony trioxide <1309-64-4>
Arsenic disulfide <1303-32-8>
Arsenic pentoxide <1303-28-2>
Arsenic trichloride <7784-34-l>
Arsenic trioxide <1327-53-3>
Benomyl <17804-35-2>
Benzac  <50-31-7>
Benzole acid <65-85-0>
Benzonitrile <100-47-0>
Benzoyl chloride <98-88-4>
Benzyl chloride <100-44-7>
Beryllium chloride <7787-47-5>
Beryllium fluoride <7787-49-7>
Beryllium nitrate <13597-99-4>
Butyl acetate <123-86-4>
Butylaraine <109-73-9>
M-Butyl phthalate <84-74-2>
Butyric acid <107-92-6>
Cadmium acetate <543-90-8>
Cadmium bromide     <7789-42-6>
                         1106

-------
                         Accession No.  9043000501
                  (cont)
Cadmium chloride
Calcium arsenate   <7778-44-l>
Calcium arsenite <52740-16-6>
Calcium carbide <75-20-7>
Calcium chroraate <13765-19-0>
Calcium cyanide   <592-01-8>
Calcium dodecylbenzenesulfonate
   <26264-06-2>
Calcium hydroxide <1305-62-0>
Calcium hypochlorite <7778-54-3>
Calcium oxide <1305-78-8>
Captan <133-06-2>
Carbaryl <63-25-2>
Carbofuran <1563-66-2>
Carbon disulfide <75-15-0>
Carbon tetrachloride <56-23-5>
Chlordane <57-74-9>
Chlorine    <7782-50-5>
Chlorobenzene <108-90-7>
Chloroform <67-66-3>
Chlorosulfonic acid <7790-94-5>
Chlorpyrifos <2921-88-2>
Chromic acetate <1066-30-4>
Chromic acid <7738-94-5>
Chromic sulfate <10101-53-8>
Chromous chloride <10049-05-5>
Cobaltous bromide <7789-43-7>
Cobaltous formate  <544-18-3>
cobaltous sulfamate <14017-41-5>
Coumaphos     <56-72-4>
Cresol <1319-77-3>
Crotonaldehyde <4170-30-3>
Cupric acetate 
Cupric acetoarsenite <12002-03-8>
Cupric chloride <7447-39-4>
Cupric nitrate <3251-23-8>
Cupric oxalate <814-91-5>
Cupric sulfate <7758-98-7>
Cupric    sulfate amreoniated
   <10380-29-7>
Cupric tartrate <815-82-7>
Cyanogen chloride <506-77-4>
Cyclohexane <110-82-7>
2,4-D acid <94-75-7>
2/4-D esters
DDT
Diazinon <333-41-5>
Dicamba <1918-00-9>
Dichlobenil <1194-65-6>
Dichlone <117-80-6>
DicMorobenzene <25321-22-6>
Dichloropropen & Dichloropropane
   mixture
2,2-Dichloropropionic   acid
   <75-99-0>
Dichlorvos (DDVP) <62-73-7>
Dieldrin <60-57-l>
Diethylamine <109-89-7>
Dimethylamine <124-40-3>
Dinitrobenzene <25154-54-5>
Dinitrophenol
Dinitrotoluene  <25321-14-6>
Diquat <2764-72-9>
Disulfoton <298-04-4>
Diuron <330-54-l>
Dodecylbenzenesulfonic acid
   <27176-87-0>
EDTA <60-00-4>
Endosulfan <115-29-7>
Endrin <72-20-8>
Epichlorohydrin <106-89-8>
Ethion <563-12-2>
Ethylbenzene <100-41-4>
Ethylenediamine <107-15-3>
Ethylene dibromide  (EDB)
   <106-93-4>
Ethylene dichloride <107-06-2>
Ferric    aamonlum citrate
   <1185-57-5>
Ferric ammonium oxalate
   <14221-47-7>
Ferric chloride <7705-08-0>
Ferric fluoride  <7783-50-8>
Ferric nitrate <10421-48-4>
Ferric sulfate    <10028-22-5>
Ferrous ammonium sulfate
   <10045-89-3>
Ferrous     chloride <7758-94-3>
Ferrous sulfate <7720-78-7>
Formaldehyde  <50-00-0>
Formic acid <64-18-6>
Fumaric acid <110-17-8>
Furfural <98-01-l>
Guthion <86-50-0>
Heptachlor <76-44-8>
Hexachlorocyclopentadiene
   <77-47-4>
Hydrochloric acid <7647-01-05
Hydrofluoric acid <7664-39-3>
Hydrogen cyanide     <74-90-8>
Hydrogen sulfide <7783-06-4>
Isoprene <78-79-5>
                         1107

-------
                         Accession No.  9043000501
                  (cont)
Isogropanolanine Dodecy I benzene
   Sulfonate <54590-52-2>
Kelthane <115-32-2>
Kepone <143-50-0>
Lead  acetate <301-04-2>
Lead  arsenate <3687-31-8>
•Lead  chloride <7758-95-4>
Lead  fluoborate <13814-96-5>
Lead  fluoride <7783-46-2>
Lead  iodide <10101-63-0>
Lead  nitrate <10099-74-8>
Lead   stearate <1072-35-l>
Lead  sulfate <7446-14-2>
Lead  sulfide <1314-87-0>
Lead  thiocyanate <592-87-0>
Lindane <58-89-9>
Lithium chronate <14307-35-8>
Malathion  <121-75-5>
Maleic acid <110-16-7>
Maleic anhydride   <108-31-6>
Mercaptodiraethur <2032-65-7>
Mercuric cyanide <592-04-l>
Mercuric nitrate <10045-94-0>
Mercuric sulfate <7783~35-9>
Mercuric thiocyanate  <592-85-8>
Mercurous  nitrate  Methoxychlor
   <72-43-5>
Methyl nercaptan <74-93-l>
Methyl  methacrylate  <80-62-6>
Methyl parathion <298-00-0>
Mevinphos  <7786-34-7>
Mexacarbate <315-18-4>
Monoethylanine     <75-04-7>
Mononethylamine <74-89-5>
Haled <300-76-5>
Naphthalen <91-20-3>
Naphthenic acid <1338-24-5>
Nickel ammonium sulfate
   <7785-20-8>
Nickel chloride    <7718-54-9>
Nickel hydroxide <12054-48-7>
Nickel nitrate  <13138-45-9>
Nickel sulfate <7786-81-4>
Nitric acid <7697-37-2>
Nitrobenzene <98-95-3>
Nitrogen dioxide <10102-44-0>
Nitrophenol <25154-55-6>
Nitrotoluene
PotassiuB  arsenate <7784-41-0>
Potassium  arsenite <10124-50-2>
Potassiui  bichroaate  <7778-50-9>
Potassia chro«ate     <7789-00-6>
Potassium cyanide <151-50-8>
Potassiua hydroxide   <1310-58-3>
PotassiuB permanganate <7722-64-7>
Propargite <2312-35-8>
Propionic acid <79-09-4>
Propionic anhydride  <123-62-6>
Pyrethrin <121-29-9>
Quinoline <91-22-5>
Resorcinol <108-46-3>
Seleniua oxide <12640-89-0>
Silver  nitrate <7761-88-8>
Sodiun <7440-23-5>
Sodiui arsenate    <7631-89-2>
Sodiun arsenile <7784-46-5>
Sodlua bichromate <10588-01-9>
Sodiun bifluoride <1333-83-l>
Sodiun bisulfite    <7631-90-5>
Sodiui chroaate <7775-ll-3>
Sodium cyanide    <143-33-9>
Sodium dodecylbenzenesulfonate
   <25155-30-0>
Sodium fluoride <7681-49-4>
Sodium hydrosufide <16721-80-5>
Sodiun hydroxide <1310-73-2>
Sodiun hypochlorite <7681-52-9>
Sodiun nethylate <124-41-4>
Sodiun nitrite    <7632-00-0>
Sodiun phosphate^ dibasic
   <7558-79-4>
Sodiun  phosphate, tribasic
   <7601-54-9>
Sodiun selenite 
Strontiun chronate <7789-06-2>
Strychnine <57-24-9>
Styrene <100-42-5>
Sulfuric acid <7664-93-9>
Sulfur  nonochlorlde <10025-67-9>
IDE <72-54-8>
Tetraethyl   pyrophosphate
   <107-49-3>
Thallium sulfate 7446-18-6>
Toluene <108-88-3>
Toxaphene <8001-35-2>
Trichlorfon <52-68-6>
Trichloroethylene <79-01-6>
Trichlorophenol (TCP)
   <25167-82-2>
2,4/5-Trichlorophenoxyacetic  acid
   (T) <93-76-5>
2,4/5-T anlnes
2,4,5-T esters
                         1108

-------
                         Accession No.   9043000501
                  (cont)
2,4,5-  Trichlorophenoxypropionic
   acid (TP) <93-72-l>
2,4,5-TP     acid esters
Triethanolanine dodecylbenzenesulf
   on-ate  <27323-41-7>
Triethylamine <121-44-8>
Trinethylamine <75-50-3>
Oraryl acetate <541-09-3>
Oranyl nitrate <10102-06-4>
Vanadium pentoxide <1314-62-l>
Vanadyl sulfate   <27774-13-6>
Vinyl acetate <108-05-4>
Vinylidene chloride <75-35-4>
Xylene <1330-20-7>
Xylenol <1300-71-6>
Zinc    acetate <557-34-6>
Zinc ammonium chloride
Zinc borate     <1332-07-6>
Zinc bronide <7699-45-8>
Zinc carbonate  <3486-35-9>
Zinc chloride <7646-85-7>
Zinc cyanide   <557-21-l>
Zinc fluoride <7783-49-5>
Zinc formate <557-41-5>
Zinc hydrosulfite
   <7779-86-4>+ Zinc nitrate
   <7779-88-6>
Zinc phenol sulfonate <127-82-2>
Zinc phosphide <1314-84-7>
Zinc silicofluoride <16871-71-9>
Zinc sulfate <7733-02-0>
Zirconium nitrate <13746-89-9>
Zirconium potassium fluoride
   <16923-95-8>
Zirconium sulfate <14644-61-2>
Zirconium     tetrachlorlde
   <10026-ll-6>
Acrylonitrile <107-13-1>
Aldrln <309-00-2>
Aaitraz (Baam) <33089-61-1>
Aramite <140-57-8>
Arsenic <7440-38-2>
Arsenic acid <1327-52-2>
Arsenic pentoxide <1303-28-2>
Arsenic trioxide <1327-53-3>
Benomyl <17804-35-2>
Benzac  <50-31-7>
Cadmium <7440-43-9>
Chloranil <118-75-2>
Chlordane <57-74-9>
Chlorobenzilate <510-15-6>
Chloroform <67-66-3>
Coal tar <8007-45-2>
Creosote <8021-39-4>
DDO(TDE)
DDT
Diallate <2303-16-4>
1*2-0ibromo-3-chloropropane (DBCP)
    <96-12-8>
Dieldrin <60-57-l>
Dimethoate <60-51-5>
Endrin <72-20-8>
EBDC's (ethylenebisdithiocarbamate
   s)
Ethylene adibromide (EDB)
   <106-93-4>
Ethylene oxide <75-21-8>
EPN (ethyl p-nitrophenyl thiono-
   benzenephosonate) <2104-64-5>
2-Fluoroacetamide (1081)
   <640-19-7>
Heptachlor     <76-44-8>
Kepone 143-50-0>
Lindane <58-89-9>
Naleic hydrazide <123-33-l>
Nirex <2385-85-5>
Honucon     <150-68-5>
Octamethylpyrophosphoramide (ONPA)
    <152-16-9>
Pentachloronltrobenzene {PCIB)
   <82-68-8>
Pentachlorophenol <87-86-5>
Phenarsazine chloride <578-94-9>
Pronamidc <23950-58-5>
Safrole <94-59-7>
Silvex <93-72-l>
Sodium arsenate <7631-89-2>
Sodium arsenlte <7784-46-5>
Sodium fluoroacetate (1060)
   <62-74-8>
Strobane <8001-50-1>
Strychnine <57-24-9>
Thiophanate methyl <23564-05-8>
Toxaphene <8001-35-2>
2,4,5-Trichlorophenol <95-95-4>
2,4/5-Trichlorophenoxyacetic acid
   (I) <93-76-5>
Trifluraline (treflan) <1582-09-8>
Trysben <50-31-7>
Carbofuran <1563-66-2>
Chlocpyrifos <2921-88-2>
2,4-D acid     <94-75-7>
Dialkyl phosphates
Dicamba <1918-00-9>
                         1109

-------
                         Accession No.   9043000501
                  (cont)
Ethyl   parathion <56-38-2>
Malathion <121-75-5>
Methyl parathion <298-00-0>
Polychlorinated blphenyls (PCBs)
Propoxur <114-26-l>
Acetaldehyde <75-07-0>
Acrolein <107-02-8>
Acrylonitrile  <107-13-1>
Antimony <7440-36-0>
Arsenic <7440-38-2>
Asbestos <1332-21-4>
Benzene <71-43-2>
Benzldine <92-87-5>
Benzyl chloride <100-44-7>
CadBium <7440-43-9)
Chlorinated     ethanes
Chlorinated  naphthalenes
Chloroethane  <75-00-3>
Chlorofluorocarbons
Chiorofora <67-66-3>
Chloromethane  <74-87-3>
Chloroprene  <126-99-8>
Chromium   <7440-47-3>
o-Cresol <95-48-7>
•-Cresol <108-39-4>
p-Cresol   <106-44-5>
1, 2-Dibroao-3-chloropropane  (DBCP)
     <96-12-8>
1,2-Dichlorobenzene  <95-50-l>
1,3-Dichlorobenzene  <541-73-l>
1,4-Dichlorobenzene <106-46-7>
1,1-Dichloroethane  <75-34-3>
1,2-Dichloroethane <107-06-2>
Dichloroaethane <75-09-2>
1,2-Dichloropropane <78-87-5>
2,4-Dinitrotoluene  <121-14-2>
Oioxin <828-00-2>
Ethylnenzene <100-41-4>
Forsaldehyde   <50-00-0>
Hexachlorobenzene <118-74-l>
flexachlorobutadiene    <87-68-3>
Rexachlorocyclopentadiene
    <77-47-4>
Hexachloroethane <67-72-l>
Isophorone <78-59-l>
Lead <7439-92-l>
Maleic anhydride <108-31-6>
Mercury <7439-97-6>
Methyl    iodide <74-88-4>
Nitrobenzene <98-95-3>
2-Nitropropane   <79-46-9>
Phosgene <75-44-5>
Polybroninated biphenyls (PBBs)
Polychlorinated biphenyls (PCBs)
If If2f2-Tetrachloroethane
   <79-34-5>
Toluene <108-88-3>
Trichloroethane <25323-89-l>
1,1,1-trichloroethane <71-55-6>
1,1,2-Trichloroethene <79-01-6>
Vinylidece chloride <75-35-4>
o-Xylene <95-47-6>
m-Xylene <108-38-3>
p-Xylene <106-42-3>
Cacodylic acid  <75-60-5>
Captan  <133-06-2>
Carbaryl <63-25-2>
Carbon  tetrachloride  <56-23-5>
Dichlorvos  (DD?P) <62-73-7>
Erbon <136-25-4>
Methanearsonates
Paraquat <4685-14-7>
Perthane <72-56-0>
Piperonyl butoxide      <51-03-6>
Ronel <299-84-3>
Rotenone <83-79-4>
Triallate   <2303-17-5>
S^S^S-Tributyl  phosphorotrithioate
     <78-48-8>
Trichlorfon <52-68-6>
-Trichlorfon <52-68-6>
Triputyl phosophorotrithioate
    <78-48-8>
Acetaldehyde <75-07-0>
Acetone <67-64-l>
Acetonitrile    <75-05-8>
Acetophenone <98-86-2>
2-Acetyla*inoflourene
Acetyl  chloride <75-36-5>
Acrolein  <107-02-8>
Acrylamide <79-06-l>
Acrylic acid <79-10-7>
Acrylonitrile <107-13-1>
Aldrin  <309-00-2>
Allyl alcohol  <107-18-6>
AlUBinuM phosphide <20859-73-8>
5-(Amino«ethyl)-3-isoxa70lol
    <2763-96-4>
4-Aiinopyridine   <504-24-5>
                         1110

-------
                         Accession No.  9043000501
                  (cont)
    8-
    (hydroxyaethyl)8-raethoxy-5-
    nethyl-carbanate aririno
    (2*,3*:3,4)pyrrolo(l,2-a)
    indole-4,7-dione (ester)
Am it role <61-82-5>
Annonium picrate <131-74-8>
Aniline     <62-53-3>
Arsenic acid <1327-52-2>
Arsenic pentoxide <1303-28-2>
Arsenic trioxide <1327-53-3>
Asbestos    <1332-21-4>
Auranine <2465-27-2>
Azaserine <115-02-6>
Barium cyanide <542-62-l>
8enzCc3 acridine  <225-51-4>
Benzal chloride <98-87-3>
Benzene <71-43-2>
Benzenesulfonyi chloride <98-09-9>
Enzenethiol <108-98-5>
Benzidine <92-87-5>
Benzo(a)anthracene <56-55-3>
BenzoCalpyrene <50-32-8>
Benzotrichloride <98-07-7>
Beryllium dust
Bis(2-chloroethozy)nethane
Bis(2-chloroethyl) ether
n.n-bis(2-chloroethyl)-2-naphthyla
   nine <494-03-l>
bis(2-chloroisopropyl) ether
   <39638-32-9>
bis(chloronethyl)ether <542-88-l>
Bls(2-ethylhexyl)phthalate
bronoacetone <598-31-2>
brofliomethane <74-83-9>
4-bronophenyl phenyl ether
   <101-55-3>
brucine <357-57-3>
2-butanone peroxide <1338-23-4>
n-Butyl alcohol <71-36-3>
2-sec Butyl-4^6-dinitrophenol
   <88-85-7>
calcium chro«ate <13765-19-0>
calcium cyanide <592-01-8>
carbob disulfide <75-15-0>
carbonyl fluoride <353-50-4>
chloroacetaldehyde <107-20-0>
chloral <75-87-6>
chloranbucil <305-03-3>
chloranil<118-75-2>
chlordane <57-74-9>
p-chloroaniline <106-47-8>
chlorobenzilate <510-15-6>
l-(p-chloroben2oyl)-5-raethoxy-2 -
   methylindole-3-acetic acid
chlorodibromonethane <124-48-l>
l-chloro-2^3-epoxypropane
   <106-89-8>
chloroethene <75-01-4>
chloroethyl vinyl ether <110-75-8>
chloroform <67-66-3>
p-chloro-m-cresol <59-50-7>
chloronethane <74-87-3>
chloronethyl nethyl ether
   <107-30-2>
2-chloronaphthalene   <91-58-7>
2-chlorophenol <95-57-8>
l-(o-chloropehnyl)     thiourea
   <5344-82-l>
3-chloropropionitrile <542-76-7>
.alpha.-chlorotoluene <100-44-7>
4-chloro-o-toluidine hydrochloride
    <3165-93-3>
chrysene <218-01-9>
cooper cyanide   <544-92-3>
Cresylic acid <1319-77-3>
Crotonaldehyde  <4170-30-3>
cumene <98-82-8>
cyanide <57-12-5>
cyanogen  <460-19-5>
cyanogen bromide <506-68-3>
cyanogen chloride  <506-77-4>
cyclohexane <110-82-7>
cyclohexanone <108-94-l>
2-cyclohexyl-4^6-dinitrophenol
   <131-89-5>
cyclophosphamide <50-18-0>
ddd(tde)
ddt
daunomvcin <20830-81-3>
diallate <2303-16-4>
dibenzoCa^hlanthracene <53-70-3>
dibenzolca^i]     pyrene
   <189-55-9>
dibroHochloromethane <124-48-l>
1^2-dibroBO-3-chloropropane Cdbcp)
    <96-12-8>
1,2-dibromoethane  <106-93-4>
dibronomethane <74-95-3>
di-n-butyl phthalate  <84-74-2>
                         1111

-------
                         Accession Ho.   9043000501
                  (cont)
1,2-dlchloro benzene <95-50-l>
If 3-dichlorobenzene    <541-73-l>
1,4-dichlorobenzene <106-46-7>
3,3'- dichlorobenzidlne <91-94-l>
l,4-dichloro-2-butene  
dichlorodifluorovethane <75-71-8>
1,1-dichloroethane  <75-34-3>
1, 2- dichloro ethane <107-06-2>
1,1-dichloroethylene   <75-35-4>
1,2-trans-dichloroethylene
   <156-60-5>
dichlorome thane <75-09-2>
2,4-dichlorophenol <120-83-2>
1t 6-dichlorophenol<87*65-0>
2/4-dichlorophenoxyacetic acid (2/
   4-d) <94-75-7>
dichlorophenylarsine <696-28-6>
1,2-    dlchloropropane <78-87-5>
1,3-dichloropropene <542-75-6>
dl«ldrin <60-57-l>
dlepoxybutane <1464-53-5>
di«thylarslna
1,2-diethylhydrazine <1615-80-1>
0, 0-diethyl-s-(2-«thylthio)
   ethyl) ester of  phosphor othioic
   acid
0,0-diethyl-s-iethyl   ester  of
   phosphorodithioic acid
   phosphoro-thioate <297-97-2>
Ox 0-di ethyl phosphoric acidr  0-p-
   nitrophenyl ester <311-45-5>
diethyl ph thai ate < 8 4- 66-2 >
diethylstilbestrol <56-53-l>
dihydrosafrole <94-58-6>
3^4 dl hydroxy- alpha- (» ethyl aaino) -
   •ethyl benzyl alcohol
di-isopropylfluorophosphate
   <55-91-4>
diaethoate <60-51-5>
3,3--diBethoxybenzidine <119-90-4>
3,3-dlBethyl-KBethylthio)   -2*
   butanone-O-C(aetiiylailno)
   car bony IJoxiae <39196-18-4>
dlaethylajiine <124-40-3>
p-di«ethylaBinoazobenzene
If 1 2-dimethy IbenzC al anthracene
   <57-97-6>
3,3*-   diaethylbenzidine
   <11 9-93-7 >
.alpha.,.alpha.-    dlaethylbenzyl
   hydro-peroxide <80-15-9>
diaethylcarba»oyl    chloride
   <79-44-7>
1,2-dUethylhydrazine <540-73-8>
diwethylnitrosoaaine <62-75-9>
• alpha*/.alpha.-  diaethylphenethy
   laaine <122-09-8>
2,4-diaethylphenol  <105-67-9>
dUethyl phthalate <131-ll-3>
diaethyl sulfate <77-78-l>
4,6-dinitro-o-cresol <534-52-l>
2f4-d initrophenol    <51-28-5>
2,4-dinitrotoluene <121-14-2>
2/6-dinitrotoluene     <606-20-2>
dl-n-octyl phthalate <117-84-0>
1,4-dioxane    <123-91-1>
1,2-diphenylhydrazine <122-66-7>
dlpropylaaine  <142-84-7>
di-n-propylnitrosaBine <621-64-7>
2,4-dlthiobluret <541-53-7>
endosulfan <115-29-7>
endrin  <72-20-8>
 ethyl acetate  <141-78-6>
ethyl acrylate <140-88-5>
ethylcyanide <107-12-0>
ethylene bisdithiocarbaiate
ethylenedia»ine <107-15-3>
ethyleneiaine  <151-56-4>
ethylene oxide <75-21-8>
ethylene     thiourea <96-45-7>
ethyl ether <60-29-7>
ethyl «ethaerylate    <97-63-2>
ethyl aethanesulfonate <62-50-0>
ferric  cyanide
fluoranthene <206-44-0>
fluorine <7782-41-4>
2-fluoroacetaaide (1081)
   <640-19-7>
fluoroacetic acid/     sodiua salt
fluorotrichloroiiethane <75-69-4>
formaldehyde <50-00-0>
foralc acid <64-18-6>
furan <110-00-9>
furfural     <98-01-l>
glycidylaldehyde
heptachlor <76-44-8>
hexachlorobenzene <118-74-1>
hexachlorobutadiene <87-68-3>
hexachlorocyclohexane <58-89-9>
hexachlorocyclopentadiene
   <77-47-4>
                         1112

-------
                         Accession No.   9043000501
                  (cont)
hexachloroethane <67-72-l>
1,2,3, 4,10,10-hexachloro-l,4, 4a,5,
   8,8a-hexahydro-l,425, 8-endo,
   endo-diraethanonaphthalene
hexachlorophene <70-30-4>
hexaethyl  tetraphosphate
   <757-58-4>
hydrazine <302-01-2>
hydrocyanic     acid <74-90-8>
hydrofluoric acid <7664-39-3>
hydrogen sulfide  <7783-06-4>
hydroxydimethyl arsine oxide
   <75-60-5>
indeno (1,  2,3-cd)pyrene
   <193-39-5>
io do me thane <74-88-4>
iron dextran    <9004-66-4>
isobutyl alcohol <78-83-l>
isocyanic acid,    methyl ester
   <624-83-9>
isosafrole <120-58-l>
kepone <143-50-0>
lasiocarpine <303-34-4>
lead acetate <301-04-2>
lead phosphate <7446-27-7>
lead subacetate <1335-32-6>
raaleic anhydride <108-31-6>
maleic hydrazide <123-33-l>
malononitrile <109-77-3>
melphalan <148-82-3>
mercury     <7439-97-6>
mercury fulminate <628-86-4>
methanethiol     <74-93-l>
methanol <67-56-l>
methapyrilene <91-80-5>
methomyl <16752-77-5>
methoxyphenol <90-05-1>
2-     methylaziridine <75-55-8>
methyl chlorocarbonate <79-22-l>
3-nethylcholanthrene <56-49-5>
4,4'-methylene-bis-(2- chloroanili
   ne) <101-14-4>
methyl ethyl ketone (nek)
   <78-93-3>
methyl ethyl ketone peroxide
   <1338-23-4>
methyl hydrazine  <60-34-4>
methyl isobutyl ketone <108-10-1>
2-methyllactonitrile <75-86-5>
methyl methacrylate <80-62-6>
2-methyl-2-(methylthio)propionalde
   hyde-o-(methylcarbonyl)oxime
n-methyl-n*-nitro-n-nitrosoguanidi
   ne <70-25-7>
methyl parathion <298-00-0>
methylthiouracil <56-04-2>
naphthalene    <91-20-3>
Ir4-naphthoquinone <130-15-4>
1-naphthylamine   <134-32-7>
2-naphthylamine <91-59-8>
l-naphthyl-2-thiourea
   <86-88-4>
nickel carbonyl <12612-55-4>
nickel cyanide     <557-19-7>
nicotine <54-ll-5>
nitric oxide <10102-43-9>
p-nitroaniline <100-Ol-6>
nitrobenzene  <98-95-3>
nitrogen dioxide <10102-44-0>
nitrogen peroxide <10l02-44-0>
nitrogen tetroxide <10544-72-6>
nitroglycerine    <55-63-0>
4-nitrophenol <100-02-7>
2-nitropropane <79-46-9>
n-ni trosodi-n-butylamine
   <924-16-3>
n-niftrosodlethanolamine
   <1116-54-7>
n-nitrosodiethylamine <55-18-5>
n-  nitrosodimethylamine <62-75-9>
n-nitrosodiphenylamine <86-30-6>
n-nitrosodi-n-propylaaine
   <621-64-7>
n-nitroso-n-    ethylurea
   <759-73-9>
n-nitroso-n-methylurea <684-93-5>
n-nitroso-n-methylurethane
   <615-53-2>
n-    nitrosomethylvinylanine
n-nitrosopiperidine <100-75-4>
n-nitrosopyrrolidine <930-55-2>
5-nitro-o-toluidine   <99-55-8>
octanethyIpyrophosphoramide (ompa)
    <152-16-9>
oleyl alcohol condensed uith 2
   •oles ethylene oxide
osmium tetroxide <20816-12-0>
7-oxabicycol(2.2.1)heptane-2x3-
   dicarboxylic acid <145-73-3>
paraldehyde <123-63-7>
parathion  <56-38-2>
pentachlorobenzene <608-93-5>
pentachloroethane <76-01-7>
                         1113

-------
                         Accession No.   9043000501
                  (cont)
pentachloronitrobenzene (pcnb)
   <82-68-8>
pentachlorophenol <87-86-5>
1,3-pentadiene <504-60-9>
phenacetin <62-44-2>
phenol <108-95-2>
phenyl dichloroarsine <696-28-6>
phenylnerucry acetate
   <62-38-4>
n-phenylthiourea <103-85-5>
phorate <298-02-2>
phosgene <75-44-5>
phosphlne <7803-51-2>
phosophorothioic acid, 0,0-
   dinethyl ester, 0-ester with n,
   n-dinethyl benzene  sulfonanide
phosphorus sulfide <1314-80-3>
phthalic anhydride <85-44-9>
2-picoline <109-06-8>
potassiun cyanide <151-50-8>
potassium silver cyanide
   <506-61-6>
pronaaide <23950-58-5>
1,2-propanediol <57-55-6>
1,3-propane sultone  <1120-71-4>
propionitrile <107-12-0>
n-propylaraine <107-10-8>
2-propyn-l-Ol <107-19-7>
pyridine     <110-86-l>
guinones
reserpine <50-55-5>
resorcinol <108-46-3>
saccharin <81-07-2>
safrole <94-59-7>
selenlous acid <7783-00-8>
seleniua sulfide <7446-34-6>
selenourea <630-10-4>
silver cyanide <506-64-9>
sodium azide <26628-22-8>
sodlua cyanide <143-33-9>
streptozotocin <18883-66-4>
strontium sulfide <1314-96-l>
strychnine <57-24-9>
1,2,4,5-tetrachlorobenzene
   <95-94-3>
1,1,1,2-tetrachloroethane
   <630-20-6>
If If7f2-tetrachloroethane
   <79-34-5>
tetrachloroethene <127-18-4>
tetrachloroaethane <56-23-5>
2,3,4,6-tetrachlorophenol
   <58-90-2>
tetraethylyl     dithiopyrophospha
   te <3689-24-5>
tetraethyl lead <78-00-2>
tetraethyl pyrophosphate
   <107-49-3>
tetrahydrofuran   <109-99-9>
tetranitronethane <509-14-8>
thallic oxide     <1314-32-5>
thallium acetate <563-68-8>
thalliun carbonate
   <29809-42-5>
thallium chloride <7791-12-0>
thalliun nitrate    <10102-45-l>
thalliun selenite
thalliun sulfate <7446-18-6>
thioacetamide  <62-55-5>
thiosenicarbazide <79-19-6>
thiourea    <62-56-6>
thiuran <137-26-8>
toluene <108-88-3>
toluenedianine <25376-45-8>
toluene diisocyanate  <26471-62-5>
o-toluidine hydrochloride
    <636-21-5>
toxaphene    <8001-35-2>
tribromonethane <75-25-2>
1,1,1-trichloroethane    <71-55-6>
trichloroethene <79-01-6>
trichlorofluoronethane
    <75-69-4>
trichloronethanethiol <75-70-7>
2,4,5-      trichlorophenol
    <95-95-4>
2^4,6-trichlorophenol <88-06-2>
2,4,5-trichlor ophenoxyacetic aci d
    (t) <93-76-5>
2,4,5-      trichlorophenoxypropion
    ic acid  (tp) <93-72-l>
trinitrobenzene  <99-35-4>
t ri s(2f3-dibronopropy1)phosphate
   <126-72-7>
trypan blue  <72-57-l>
uracil nustard  <66-75-l>
urethane   <51-79-6>
vanadic acid <11115-67-6>
vanadiun pentoxide <1314-62-l>
xylene <1330-20-7>
zinc cyanide <557-21-l>
zinc phosphide  <1314-84-7>
Arsenic <7440-38-2>
                         1114

-------
                             Accession No.   9043000501     (cont)

    BariuiD <7440-39-3>                   Manganese and compounds
    Beryllium <7440-41-7>                   <7439-96-5>
    CadeiuB <7440-43-9>                  Mercury <7439-97-6>
    ChroBiun <7440-47-3>                 Nickel <7440-02-0>
    Cobalt <7440-48-4>                   Selenium <7782-49-2>
    Copper <7440-50-8>                   Titanium <7440-32-6>
    Iron <7439-89-6>                     Vanadium <7440-62-2>
    Lead <7439-92-l>
(CAS)  CAS registry numbers of substances included in data base: 50598-5
    0-0; 103-82-2; 501-52-0; 203-12-3;     207-08-9; 205-99-2;
    203-12-3; 191-24-2; 50-32-8; 26914-33-0;     25323-68-6; 110-42-9;
    53-70-3; 95-50-1; 541-73-1; 106-46-7; 86-30-6;       1024-57-3;
    1024-57-3; 506-12-7; 111-14-8; 110-43-0; 627-93-0;    142-62-1;
    108-94-1; 109-99-9; 29336-29-6; 124-48-1; 75-27-4; 75-43-4;
    75-43-4; 75-69-4; 100-51-6; 54518-04-6; 75-09-2; 2234-13-1;
    53156-12-0; 1731-84-6; 57-11-4; 57-11-4; 111-11-5; 1002-84-2;
    25154-43-2; 29590-82-7; 109-52-4; 706-78-5; 198-55-0; 100-02-7;
    25167-83-3; 115-88-8; 126-73-8; 115-86-6; 84-66-2; 193-39-5;
    7704-34-9; 544-63-8; 124-10-7; 120-82-1; 75-07-0; 107-02-8;
    107-13-1;      107-05-1; 100-44-7; 542-88-1; 56-23-5; 108-90-7;
    67-66-3; 126-99-8;   95-48-7; 108-39-4; 106-44-5; 106-46-7;
    75-09-2; 62-75-9; 123-91-1;    828-00-2; 106-89-8; 106-93-4;
    107-06-2; 75-21-8; 50-00-0; 77-47-4;    108-31-6; 7439-96-5;
    71-55-6; 74-88-4; 7440-02-0; 98-95-3; 79-46-9;   55-18-5; 684-93-5;
    59-89-2; 127-18-4; 108-95-2; 75-44-5; 108-88-3;    75-35-4;
    1330-20-7; 95-47-6; 108-38-3; 106-42-3; 75-56-9; 79-01-6;
    71-43-2; 7440-41-7; 7439-97-6; 75-01-4; 83-32-9; 208-96-8;
    107-02-8;       107-13-1; 309-00-2; 120-12-7; 7440-36-0; 7440-38-2;
    1332-21-4;   319-84-6; 319-85-7; 58-89-9; 319-86-8; 71-43-2;
    92-87-5; 56-55-3;     205-99-2; 207-08-9; 191-24-2; 50-32-8;
    7440-41-7; 111-91-1; 111-44-4;      39638-32-9; 542-88-1; 117-81-7;
    74-83-9; 101-55-3; 85-68-7;      7440-43-9; 56-23-5; 57-74-9;
    108-90-7; 124-48-1; 75-00-3; 110-75-8;   67-66-3; 59-50-7; 74-87-3;
    91-58-7; 95-57-8; 7005-72-3; 7440-47-3;    218-01-9; 7440-50-8;
    57-12-5; 72-54-8; 72-55-9; 50-29-3; 53-70-3;     84-74-2; 95-50-1;
    541-73-1; 106-46-7; 91-94-1; 75-27-4; 75-71-8;      75-34-3;
    107-06-2; 75-35-4; 156-60-5; 75-09-2; 120-83-2; 78-87-5;
    563-54-2; 60-57-1; 84-66-2; 105-67*9; 131-11-3; 534-52-1; 51-28-5;
    121-14-2; 606-20-2; 117-84-0; 122-66-7; 959-98-8; 33213-65-9;
    1031-07-8; 72-20-8; 7421-93-4; 100-41-4; 206-44-0; 86-73-7;
    76-44-8;       1024-57-3; 118-74-1; 87-68-3; 77-47-4; 67-72-1;
    193-39-5; 78-59-1;    7439-92-1; 7439-97-6; 91-20-3; 7440-02-0;
    98-95-3; 88-75-5; 100-02-7;      62-75-9; 86-30-6; 621-64-7;
    87-86-5; 85-01-8; 108-95-2; 12674-11-2;   11104-28-2; 11141-16-5;
    53469-21-9; 12672-29-6; 11097-69-1;      11096-82-5; 129-00-0;
    7782-49-2; 7440-22-4; 79-34-5; 127-18-4;   7440-28-0; 108-88-3;
    8001-35-2; 75-25-2; 120-82-1; 71-55-6; 79-00-5;       79-01-6;
    75-69-4; 88-06-2; 75-01-4; 7440-66-6; 7727-37-9; 7723-14-0;
    7440-38-2; 7440-39-3; 7440-43-9; 7440-47-3; 94-75-7; 72-20-8;
    7439-92-1; 58-89-9; 7439-97-6; 72-43-5; 14797-55-8; 7782-49-2;
    7440-22-4; 93-72-1; 8001-35-2; 67-64-1; 7429-90-5; 7664-41-7;
    7440-39-3; 92-52-4; 7440-69-9; 7440-42-8; 7726-95-6; 7782-50-5;


                             1115

-------
                         Accession No.   9043000501     (cont)

7440-48-4; 94-75-7; 8065-48-3; 132-64-9; 101-84-8; 86-50-0;
7439-89-6; 143-50-0; 7439-93-2; 121-75-5; 7439-96-5; 72-43-5;
78-93-3; 2385-85-5; 7439-98-7; 56-38-2; 7723-14-0; 7440-23-5;
100-42-5; 93-72-1; 7440-62-2; 56-23-5; 108-90-7; 95-50-1; 541-73-1;
106-46-7; 107-06-2; 10043-92-2; 127-18-4; 71-55-6; 79-01-6;
7440-61-1; 75-01-4; 15972-60-8; 1912-24-9; 1918-00-9; 1861-40-1;
108-86-1; 28906-38-91 75-27-4; 23184-66-9; 124-48-1; 21725-46-2;
84-74-2; 156-59-2; 156-60-5; 594-04-7; 84-66-2; 38622-18-3;
75-00-3;        90-05-1;  4726-14-1; 103-82-2; 298-02-2; 88-99-3;
1918-16-7; 709-98-8;      139-40-2; 122-34-9; 75-07-0; 64-19-7;
108-24-7; 75-86-5; 506-96-7;    75-36-5; 107-02-8;  107-13-1;
124-04-9; 309-00-2;  107-18-6;  107-05-1;       10043-01-3;
7664-41-7; 631-61-8;  1863-63-4; 1066-33-7; 7789-09-5;
1341-49-7; 10192-30-0;  1111-78-0;  506-87-6;  12125-02-9; 7788-98-9;
7632-50-0; 13826-83-0;  12125-01-8;  1336-21-6; 1113-38-8;
16919-19-0;        7773-06-0; 12135-76-1; 10196-04-0; 3164-29-2;
1762-95-4; 7783-18-8;   628-63-7; 62-53-3; 7647-18-9;  11071-15-1;
7789-61-9; 10025-91-9;       7783-56-4; 1309-64-4; 1303-32-8;
1303-28-2; 7784-34-1; 1327-53-3;      17804-35-2;  50-31-7; 65-85-0;
100-47-0;  98-88-4;  100-44-7; 7737-47-5;      7787-49-7;  13597-99-4;
123-86-4;  109-73-9;  84-74-2; 107-92-6;    543-90-8; 7789-42-6;
7778-44-1; 52740-16-6;  75-20-7; 13765-19-0;       592-01-8;
26264-06-2;  1305-62-0;  7778-54-3; 1305-78-8; 133-06-2;
63-25-2; 1563-66-2; 75-15-0; 56-23-5; 57-74-9;  7782-50-5; 108-90-7;
67-66-3; 7790-94-5; 2921-88-2; 1066-30-4; 7738-94-5; 10101-53-8;
10049-05-5;  7789-43-7;  544-18-3;  14017-41-5; 56-72-4;  1319-77-3;
4170-30-3; 142-71-2; 12002-03-8;  7447-39-4;  3251-23-8; 814-91-5;
7758-98-7; 10380-29-7;  815-82-7;  506-77-4; 110-82-7; 94-75-7;
333-41-5;  1918-00-9; 1194-65-6; 117-80-6; 25321-22-6;  75-99-0;
62-73-7; 60-57-1; 109-89-7; 124-40-3; 25154-54-5; 25321-14-6;
2764-72-9; 298-04-4; 330-54-1; 27176-87-0; 60-00-4; 115-29-7;
72-20-8; 106-89-8; 563-12-2; 100-41-4; 107-15-3;  106-93-4;
107-06-2;        1185-57-5;  14221-47-7; 7705-08-0; 7783-50-8;
10421-48-4;  10028-22-5;       10045-89-3; 7758-94-3; 7720-78-7;
50-00-0; 64-18-6; 110-17-8;    98-01-1; 86-50-0;  76-44-8; 77-47-4;
7647-01-0; 7664-39-3; 74-90-8;    7783-06-4; 78-79-5;  54590-52-2;
115-32-2;  143-50-0; 301-04-2;    3687-31-8;  7758-95-4; 13814-96-5;
7783-46-2; 10101-63-0;  10099-74-8;       1072-35-1; 7446-14-2;
1314-87-0; 592-87-0; 58-89-9; 14307-35-8;       121-75-5; 110-16-7;
108-31-6; 2032-65-7; 592-04-1; 10045-94-0;    7783-35-9;  592-85-8;
72-43-5; 74-93-1; 80-62-6;  298-00-0;  7786-34-7;        315-18-4;
75-04-7; 74-89-5; 300-76-5; 91-20-3*  1338-24-5* 7785-20-8;
7718-54-9; 12054-48-7;  13138-45-9; 7786-81-4; 7697-37-2;  98-95-3;
10102-44-0;  25154-55-6; 7784-41-0; 10124-50-2;  7778-50-9;
7789-00-6;        151-50-8;  1310-58-3;  7722-64-7;  2312-35-8;
79-09-4; 123-62-6;    121-29-9; 91-22-5; 108-46-3;  12640-89-0;
7761-88-8; 7440-23-5;   7631-89-2; 7784-46-5; 10588-01-9;
1333-83-1; 7631-90-5; 7775-11-3;    143-33-9; 25155-30-0;
7681-49-4; 16721-80-5;  1310-73-2; 7681-52-9*    124-41-4;
7632-00-0; 7558-79-4; 7601-54-9;  10102-18-8;  7789-06-2;
57-24-9; 100-42-5; 7664-93-9; 10025-67-9;  72-54-8;  107-49-3;
108-88-3;  8001-35-2; 52-68-6; 79-01-6; 25167-82-2;  93-76-5;


                          1116

-------
                         Accession No.  9043000501     (cont)

93-72-1;       27323-41-7; 121-44-8; 75-50-3; 541-09-3; 10102-06-4;
1314-62-1;       27774-13-6; 108-05-4; 75-35-4; 1330-20-7;
1300-71-6; 557-34-6;   1332-07-6; 7699-45-8; 3486-35-9; 7646-85-7;
557-21-1; 7783-49-5;      557-41-5; 7779-86-4; 7779-88-6; 127-82-2;
1314-84-7; 16871-71-9;      7733-02-0; 13746-89-9; 16923-95-8;
14644-61-2; 10026-11-6; 107-13-1;       309-00-2; 33089-61-1;
140-57-8; 7440-38-2; 1327-52-2; 1303-28-2;      1327-53-3;
17804-35-2; 50-31-7; 7440-43-9; 118-75-2; 57-74-9;    510-15-6;
67-66-3; 8007-45-2; 8021-39-4; 2303-16-4; 96-12-8; 60-57-1;
60-51-5; 72-20-8; 106-93-4; 75-21-8; 2104-64-5; 640-19-7; 76-44-8;
58-89-9; 123-33-1; 2385-85-5; 150-68-5; 152-16-9; 82-68-8; 87-86-5;
578-94-9; 23950-58-5; 94-59-7; 93-72-1; 7631-89-2; 7784-46-5;
62-74-8; 8001-50-1; 57-24-9; 23564-05-8; 8001-35-2; 95-95-4;
93-76-5;      1582-09-8; 50-31-7; 1563-66-2; 2921-88-2; 94-75-7;
1918-00-9;    56-38-2; 121-75-5; 298-00-0; 114-26-1; 75-07-0;
107-02-8; 107-13-1;   7440-36-0; 7440-38-2; 1332-21-4; 71-43-2;
92-87-5; 100-44-7;     7440-43-9; 75-00-3; 67-66-3; 74-87-3;
126-99-8; 7440-47-3; 95-48-7;   108-39-4; 106-44-5; 96-12-8;
95-50-1; 541-73-1; 106-46-7; 75-34-3;    107-06-2; 75-09-2;
78-87-5; 121-14-2; 828-00-2; 100-41-4; 50-00-0;    118-74-1;
87-68-3; 77-47-4; 67-72-1; 78-59-1; 7439-92-1; 108-31-6;
7439-97-6; 74-88-4; 98-95-3; 79-46-9; 75-44-5; 79-34-5; 108-88-3;
25323-89-1; 71-55-6; 79-01-6; 75-35-4; 95-47-6; 108-38-3; 106-42-3;
75-60-5; 133-06-2; 63-25-2; 56-23-5; 62-73-7; 136-25-4; 4685-14-7;
72-56-0; 51-03-6; 299-84-3; 83-79-4; 2303-17-5; 78-48-8; 52-68-6;
52-68-6; 78-48-8; 75-07-0; 67-64-1; 75-05-8; 98-86-2; 75-36-5;
107-02-8; 79-06-1; 79-10-7; 107-13-1; 309-00-2; 107-18-6;
20859-73-8;      2763-96-4; 504-24-5; 61-82-5; 131-74-8; 62-53-3;
1327-52-2;      1303-28-2; 1327-53-3; 1332-21-4; 2465-27-2;
115-02-6; 542-62-1;       225-51-4; 98-87-3; 71-43-2; 98-09-9;
108-98-5; 92-87-5; 56-55-3;      50-32-8; 98-07-7; 111-91-1;
111-44-4; 494-03-1; 39638-32-9; 542-88-1;      117-81-7; 598-31-2;
74-83-9; 101-55-3; 357-57-3; 1338-23-4; 71-36-3;       88-85-7;
13765-19-0; 592-01-8; 75-15-0; 353-50-4; 107-20-0; 75-87-6;
305-03-3; 118-75-2; 57-74-9; 106-47-8; 510-15-6; 124-48-1;
106-89-8;       75-01-4; 110-75-8; 67-66-3; 59-50-7; 74-87-3;
107-30-2; 91-58-7;      95-57-8; 5344-82-1; 542-76-7; 100-44-7;
3165-93-3; 218-01-9;     544-92-3; 1319-77-3; 4170-30-3; 98-82-8;
57-12-5; 460-19-5; 506-68-3;      506-77-4; 110-82-7; 108-94-1;
131-89-5; 50-18-0; 20830-81-3;     2303-16-4; 53-70-3; 189-55-9;
124-48-1; 96-12-8; 106-93-4; 74-95-3;   84-74-2; 95-50-1; 541-73-1;
106-46-7; 91-94-1; 110-57-6; 75-71-8;     75-34-3; 107-06-2;
75-35-4; 156-60-5; 75-09-2; 120-83-2; 87-65-0;     94-75-7;
696-28-6; 78-87-5; 542-75-6; 60-57-1; 1464-53-5; 1615-80-1;
297-97-2; 311-45-5; 84-66-2; 56-53-1; 94-58-6; 55-91-4; 60-51-5;
119-90-4; 39196-18-4; 124-40-3; 60-11-7; 57-97-6; 119-93-7;
80-15-9;       79-44-7; 540-73-8; 62-75-9; 122-09-8; 105-67-9;
131-11-3; 77-78-1;    534-52-1; 51-28-5; 121-14-2; 606-20-2;
117-84-0; 123-91-1; 122-66-7;       142-84-7; 621-64-7; 541-53-7;
115-29-7; 72-20-8; 141-78-6; 140-88-5;       107-12-0; 107-15-3;
151-56-4; 75-21-8; 96-45-7; 60-29-7; 97-63-2;     62-50-0;
206-44-0; 7782-41-4; 640-19-7; 75-69-4; 50-00-0; 64-18-6;


                         1117

-------
                             Accession Ho.   9043000501     (cont)

    110-00-9; 98-01-1; 76-44-8; 118-74-1;  87-68-3; 58-89-9; 77-47-4;
    67-72-1; 70-30-4; 757-58-4; 302-01-2;  74-90-8; 7664-39-3;
    7783-06-4;       75-60-5; 193-39-5; 74-88-4; 9004-66-4; 78-83-1;
    624-83-9; 120-58-1;   143-50-0; 303-34-4; 301-04-2; 7446-27-7;
    1335-32-6; 108-31-6;    123-33-1; 109-77-3; 148-82-3; 7439-97-6;
    628-86-4; 74-93-1; 67-56-1;       91-80-5; 16752-77-5; 90-05-1;
    75-55-8; 79-22-1; 56-49-5; 101-14-4;    78-93-3; 1338-23-4;
    60-34-4; 108-10-1; 75-86-5; 80-62-6; 70-25-7;     298-00-0;
    56-04-2; 91-20-3; 130-15-4; 134-32-7; 91-59-8; 86-88-4;
    12612-55-4; 557-19-7; 54-11-5; 10102-43-9; 100-01-6; 98-95-3;
    10102-44-0; 10102-44-0; 10544-72-6; 55-63-0; 100-02-7; 79-46-9;
    924-16-3; 1116-54-7; 55-18-5;  62-75-9; 86-30-6; 621-64-7; 759-73-9;
    684-93-5; 615-53-2; 100-75-4;  930-55-2; 99-55-8; 152-16-9;
    20816-12-0; 145-73-3; 123-63-7; 56-38-2; 608-93-5; 76-01-7;
    82-68-8;       87-86-5; 504-60-9;  62-44-2; 108-95-2; 696-28-6;
    62-38-4; 103-85-5;    298-02-2; 75-44-5; 7803-51-2; 1314-80-3;
    85-44-9; 109-06-8; 151-50-8;       506-61-6;  23950-58-5; 57-55-6;
    1120-71-4; 107-12-0; 107-10-8;     107-19-7;  110-86-1;  50-55-5;
    108-46-3; 81-07-2; 94-59-7; 7783-00-8;   7446-34-6; 630-10-4;
    506-64-9; 26628-22-8; 143-33-9; 18883-66-4;      1314-96-1;
    57-24-9; 95-94-3; 630-20-6; 79-34-5; 127-18-4; 56-23-5;    58-90-2;
    3689-24-5; 78-00-2; 107-49-3;  109-99-9; 509-14-8;  1314-32-5;
    563-68-8; 29809-42-5; 7791-12-0;  10102-45-1; 7446-18-6; 62-55-5;
    79-19-6; 62-56-6; 137-26-8; 108-88-3; 25376-45-8;  26471-62-5;
    636-21-5; 8001-35-2; 75-25-2;  71-55-6; 79-01-6; 75-69-4; 75-70-7;
    95-95-4; 88-06-2; 93-76-5; 93-72-1; 99-35-4; 126-72-7; 72-57-1;
    66-75-1; 51-79-6; 11115-67^6;  1314-62-1; 1330-20-7; 557-21-1;
    1314-84-7; 7440-38-2; 7440-39-3; 7440-41-7; 7440-43-9; 7440-47-3;
    7440-48-4; 7440-50-8; 7439-89-6; 7439-92-1; 7439-96-5; 7439-97-6;
    7440-02-0; 7782-49-2; 7440-32-6; 7440-62-2
(CNM)  Contact naae(s): Bennett,Jr,T«B.   ;   Conner,D.
(COR)  Contact organization: Environmental Services Division/ Region
    IV, Athens, GA
(ROR)  Responsible Organization: Region IV.Environnental Services
    Division.
                             1118

-------
                             Accession  No.   9045000910

(DQ)   Date of Questionaire:  12-02-82
(NAM)  Name of Data Base of  Model:  Discharge Monitoring  Report Files
(ACR)  Acronym of Data Base  or  Model: DMRFILE
(MED)  Media/Subject of Data Base or  Model:  Effluents point  source
    discharges
(ABS)  Abstract/overview of  Data Base or Model:  Files contain discharge
    monitoring reports   (DMRs) submitted by holders of  National
    Pollutant Discharge Elimination System (NPDES)  permits.     It
    contains chemical analyses  of the effluents     for those parameters
    limited by their permit-any  pollutants  limited by a permit uould
    be included.
(CTC)  CONTACTS:  Subject natter   J.R.  Patrick,  Jr. (404)881-3973;
    Computer-related  J.R. P
(DTP)  Type of data collection  or monitoring: Point source data
    collection industrial and municipal
(STA)  Data Base  status: Operational/ongoing
(NPP)  Non-pollutant parameters included in  the  data base: Biological
    data Collection method  Compliance data Concentration  measures ;
    Discharge points ;Flou rates ^Geographic subdivision ;Industry ;
    Inspection data Manufacturer ^Political subdivisions ;Production
    levels ; Sampling date ;Site description ^Temperature
    ;Test/analysis method ;   Treatment  devices ;Use ;Volume/mass
    measures
(DS)   Time period covered by data base: 01-01-74 TO 09-30-80
(TRM)  Termination of data collection:  Not anticipated
(FRQ)  Frequency  of data collection or  sampling: quarterly ;0ther
    Monthly for major sampling
(NOB)  Number of  observations in data base:  600000.(Estimated)
(NED  Estimated  annual increase of observations in data base: 100000.
(INF)  Data base  includes: Ran  data/observations ;Summary aggregate
    observations
(NTS)  Total number of stations or sources covered in data base: 15000.
(NCS)  No. stations or sources  currently originating/contributing data:
    10000(()1800  (majors).)
(NOT)  Number of  facilities  covered in  data base (source monitoring): 15
    000.
(GEO)  Geographic coverage of data base: Selected federal region Region
    IV
(LOC)  Data elements identifying location of station or  source include:
    State ;County ;City ;Town/township  ;Street address ^Coordinates
    Latitude and  Ion Project Identifier
(FAC)  Data elements identifying facility include:  Plant facility name
    ;PI ant location ^Parent  corp name ^Parent corp location  ;    Street
    address ;SIC  code ;NPDES
(CDE)  Pollutant  identification data are: Uncoded
(LIM)  Limitation/variation  in data of  which user should be  aware: None
(ANL)  Lab analysis based on EPA-approved or accepted methods? YES
(PRE)  Precision: Precision  and accuracy estimates exist but are not
    included in data base
(EOT)  Fditting:  No known edit procedures exist.
(CBY)  Data collected by: Self reporting discharge monitoring report
    data ;State agency inspections data } Regional office Region IV,


                             1119

-------
                             Accession  No.   9045000910      Ccont)

    Surveillance and Analysis Lab  inspection data /      Contractor lab
    headquarters inspection contractor  ^Contractor inspections ;
    EPA headquarters Rational Enforcement Investigations Center
(ABY)  Data analyzed by:  Self reporting discharge monitoring report
    data
    State agency inspection data
    Regional office Region I?, Surveillance and Analysis Lab
    inspections
    Contractor lab inspections
    Contractor inspections
    EPA headquarters national Enforcement Investigations Center
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Compliance or enforcement
(AUT)  Authorization for data collection: statutory authorization is P
    L  92-500 as amended, Section 308 (Clean Hater  Act-CHA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    158-R-0073
(REP)  Form of available reports and outputs of data base: Unpublished
    reports Inspection Report (for inspection) Discharge Monitoring
    Report data used for effluent guidelines reports; 208 plans.
(NUS)  Number of regular users of data base: 15 offices
(OSR)  Current regular users of  data base: EPA headquarter offices
    Effluent Guidelines Division; Office of  Enforcement
    EPA regional offices
    EPA laboratories
    States
    EPA lab: National Enforcement Investigations Center
(CNF)  Confidentiality of  data and limits on access: 80 limits on
    access to data
(DLC)  Primary physical location of data: Regional office
(DST)  Form of data storage: Original .form (hardcopy, readings)
(DAC)  Type of data access:  Manually
(CHG)  Direct charge for non-EPA use: no
(UPDT) Frequency  of data  base master file up-date: Semi-annually
(RSS)  Related EPA  automated systems which use data base: Permit
    Compliance System II    (PCS  II); System for Consolidated Permitting
    and  Enforcement (SCOPE).
(RDBEPA)  Related EPA data  bases used In conjunction with this data base
    Permit Compliance System (PCS); STORET (Storage Retrieval of Hater
    Quality Data).
(ROB)  Non-EPA data bases  used in conjunction tilth this data base: state
    systems-Mississippi
(CMP)  Completion of form:
    J.R. Patrick/ Jr.
    QFC: EPA/Region If/Enforcement Division
    AD: 345 Courtland St HE Atlanta, 6A 30365
    PH: (404)881-3973
(DP)   Date of form  completion: 12-22-82
(NMAT) Number of substances represented in data base: 6
(NCAS) Number of CAS registry numbers in data base: 3
                             1120

-------
                             Accession io.  9045000910     (cont)

(NAT)  Substances represented in data base:
    biological oxygen de»and             nickel<7440-02-0>
       (BOD)                             ph
    chroBium<7440-47-3>                  suspended solids
    cyaitide<57-12-5>
(CAS)  CAS registry nunbers of substances included in data base: 7440-47
    -3; 57-12-5; 7440-02-0
(CNM)  Contact naae(s): Patrick,J.R.   ;    Patrick,J.R.
(COR)  Contact organizations Enforcement Division/ Region IV
(ROR)  Responsible Organization: Region IV.Water Management Division*
                             1121

-------
                             Accession No*  9046000006

(OQ)  Date of Questionalre: 12-02-82
(STATUS)  status of entry: Inactive
(NAM)  Name of Data Base of Model: Wasteload Allocation File
CACR)  Acronym of Data Base or Model: VLA
(MED)  Media/Subject of Data Base or Model: Effluents wastewater
UBS)  Abstract/Overview of Data Base or Model: The MLA is a listing of
     uasteload allocations  which have    been done by or approved by
     Region.  Pollutant data    is partial and includes observed values
     used to set    uasteload allocations as received from states and
     reviewed for impact on water  quality by EPA (vodel
     correlation).
(CTC)  CONTACTS: Subject  natter   Joseph O'Connor  (404)881-4793  ;
     Computer-related  Joseph
(DTP)  Type of data collection or Monitoring: Point source data
     collection industrial  and.municipal facilities
(STA)  Data Base status:  Operational/ongoing
(6RP)   Croups of substances  represented in Data Base: 129 307 CHA ;11
     conventional water ;15 metals
(NPP)   Non-pollutant  parameters included in the data base: Concentration
     measures ^Discharge points ;Flou rates ;Geographic subdivision ;
     Temperature
(DS)  Time period  covered by data base: 10-01-72 TO 09-30-81
(TRM)   Termination of data collection: Not anticipated
(FRQ)   Frequency of  data  collection or sampling: quarterly
(NOB)   Number of observations in  data base: 1300.(Estimated)
(NEI)   Estimated annual  increase  of observations in data base: 100.
(IMF)   Data  base includes: Summary aggregate observations
(NTS)   Total number  of stations or sources covered in data base: 300.
(NCS)   No. stations  or sources currently originating/contributing data:
     1  (time  only/facility.)
(ROF)   Number of  facilities  covered in data base (source monitoring): 30
     0.
(GEO)   Geographic  coverage of data base: Selected federal region Region
     IV
(LOO   Data  elements  identifying  location of station or source include:
     State /Project identifier
(FAC)   Data  elements identifying  facility include: Plant  facility name
     ;Plant location
(CDE)   Pollutant identification data  are: Oncoded
(LIM)   Limitation/variation  in  data  of which user should  be aware:  Recog
     nize that  data is incomplete  at  this    time.  Data is not stored
     by pollutant,  but rather on   a facility basis in individual
     reports.  Sampling Plans, collection  methods, and quality assurance
     procedures  are only  documented  in some cases (where    submitted by
     states).
(DPR)   Data  collect./anal, procedures conform  to QRD guidelines: Samplln
     g plan documented ^Collection method  documented ;QA procedures
     documented
(AMD   Lab analysis based on EPA-approved or accepted methods?  NO
(A0D)   Lab Audit:  Lab audit  is satisfactory for  generally not known.
(PRE)   Precision:  Precision  and accuracy  estimates partially -exist  for
     for some small    portion of  the  state submissions


                              1122

-------
                             Accession Mo.   9046000006     (cent)

(EDT)  Editting:  Edit procedures used but undocumented.
(CBY)  Data collected by:  State agency all  states in region I? and
    their contractors jRegional office Regi
(ABY)  Data analyzed by: Regional office Region IV, Water Division
(IDL)  Laboratory identification: NO
(PR1)  Primary purpose of data collection:  Reference system
(AUT)  Authorization for data collection: Statutory authorization  is P
    L 92-500 as amended, Section 303(d) (Clean     Water Act-CWA)
(OMB)  Data collected/submit ted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base: Printouts on
    request
(MUS)  Number of regular users of data base: 6
(USR)  Current regular users of data base:  EPA regional offices
(CNF)  Confidentiality of data and limits on access: No limits on
    access to data
(DLC)  Primary physical location of data: Regional office
(DST)  Form of data storage: Magnetic disc ;0riginal fora (hardcopy,
    readings) ;0riginal form (hardcopy, read Magnetic disc:  index only
(DAC)  Type of data access: Manually ;EPA hardware PDP II
(CHG)  Direct charge for non-EPA use: No
(DPDT)  Frequency of data base master file up-date: Quarterly
(CMP)  Completion of form:
    R. F. HeGhee
    OFC: EPA/Region IV/Water Division
    AD: 345 Courtland St., ME Atlanta, GA 30308
    Pfl: (404)881-4793
(DF)  Date of form completion: 12-22-82
(NMAT)  Number of substances represented in data base: 22
(NCAS)  Number of CAS registry numbers in data base: 15
(MAT)  Substances represented in data base:
    ammonia<7664-41-7>
    arsenic<7440-38-2>
    cadmium<7440-43-9>
    chromium<7440-47-3>
    copper<7440-50-8>
    cyanide<57-12-5>
    dissolved oxygen
    dissolved solids
     fecal coliform
     lead<7439-92-l>
    manganese<7439-96-5>
    mercury<7439-97-6>
    nickel<7440-02-0>
     ni trogen<7727-37-9>
     oil and  grease
     oxygen demand
     PH
     phenol<108-95-2>
     phosphorus<7723-14-0>
     silver<7440-22-4>
     suspended solids


                              1123

-------
                            Accession  Mo*   9046000006     (cont)

    zinc<7440-66-6>
(CAS)  CAS registry numbers of  substances includeo in data base: 7664-41
    -7; 7440-38-2; 7440-43-9; 7440-47-3;   7440-50-8; 57-12-5;
    7439-92-1; 7439-96-5;  7439-97-6;  7440-02-0;        7727-37-9;
    108-95-2; 7723-14-0; 7440-22-4; 7440-66-6
(CNN)  Contact naae(s): O'Connor,J.     ;     0'Connor,J*
(COR)  Contact organization: Region Ift Mater Division
(RQR)  Responsible Organization: Region If.Hater Manageaent Division*
                             1124

-------
                             Accession No.   9048000909

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Kame of Data Base of Model:  Bioassay Studies
(ACR)  Acronym of Data Base or  Model:  None
(MED)  Pedia/Subject of Data Base or Model: Effluents all point sources
    ;Runoff urban/ rural and industrial ; Sediment ^Surface water
    streams, lakes, estuary ;0ther  hazardous waste
(ABS)  Abstract/Overview of Data Base or Model:  Bioassay studies which
    include SIC codes/    industry/ location of  tests/  results/
    receiving   water/ along with results of organism affect lethality
    (LC50) or effect (EC 50),  Have so»e    chemical data for earlier
    studies FY75-76 in the  data base.
(CTC)  CONTACTS: Subject matter   Environmental  Research Lab - Athens/
    GA   ;     Computer-relat
(DTP)  Type of data collection or monitoring: Combination/Other
    ambient, non-point source and point source (municipal and
    industrial)
(STA)  Data Base status: Operational/ongoing
(NPP)  Non-pollutant parameters Included in the  data base:  Biological
    data ;Concentration measures ;Geographic subdivision ;  Industry
    ^Location ^Salinity ^Sampling date ;Test/analysis method ;
    Volume/mass measures ;lethality (LC 50) ;effect (EC 50)
(DS)  Time period covered by data base: 08-01-74 TO 09-30-81
(TRM)  Termination of data collection: Not  anticipated
(FRQ)  Frequency of data collection or sampling: as needed
(NOB)  Number of observations in data base: 349 bioassays.(Estimated)
(NEI)  Estimated annual increase of observations in data base: 70
    (bioassays.)
(INF)  Data base includes: Summary aggregate observations ;summary  of
    results
(NTS)  Total number of stations or sources  covered in data base: 286
    (or less.)
(NCS)  No. stations or sources currently originating/contributing  data:
    (N/A.)
(NOF)  Number of facilities covered in data base (source monitoring):  20
    0 (or less.)
(GCO)  Geographic coverage of data base: Selected federal region Region
    IY
(LOC)  Data elements identifying location of station or source include:
    State
(FAC)  Data elements identifying facility include: Plant facility  name
    ;Plant location ;Parent corp name ^Parent corp location ;   Street
    address ;SIC code JNPDES
(CDE)  Pollutant identification data are: Other coding  scheme STORET
    compatible scheme under development.
    Dncoded
(LIM)  Limitation/variation in data of which user should be aware:  Basic
    approach at all times. LC 50 (lethality) measures for more than 50%
    of tests-EC 50  (effect) measures for fewer.  Have more data on
    flow   through tests (31% of data base) than on static   tests
    (69%)
(DPR)  Data collect./anal, procedures conform to ORD guidelines: ORD
    Guidelines


                             1125

-------
                             Accession No.   9048000909     (cont)

(ANL)  Lab analysis based on EPA-approved or accepted methods? YES
(AUD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist for all
    measureaents
(EOT)  Editting: No known edit procedures exist,
(CBY)  Data collected by: Regional office Surveillance and Analysis
    Laboratory
(ABY)  Data analyzed by: Regional office Surveillance and Analysis
    Laboratory
(IDL)  Laboratory identification: NO
(AUT)  Authorization for data collection: Statutory authorization is P
    L 95-217, Section 308 (Clean Hater Act-CHA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Fora of available reports and outputs of data base: Publications
    by survey title
    Unpublished  reports so»e combined into summary
    printouts on request
    Machine-readable raw data
(NUS)  Number of regular users of data base: 1 office
(DSR)  Current regular users of data base: EPA regional offices
(CNF)  Confidentiality of data and limits on access: No limits on
    access to data
(DLC)  Primary physical location of data: EPA lab
(DST)  Form of data storage: Magnetic tape /Original form (hardcopy,
    readings)
(DAC)  Type of data access: Coaaercial software Inform 11 application
    being developed >EPA hardware IBM 370/ water quality parameters
    tracking systea software
(CHG)  Direct charge for n on-EPA use: No
(OPDT)  Frequency of data base master file up-date: Quarterly
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    STORET (Storage and Retrieval of Hater Quality    Data)
(CMP)  Completion of form:
    William H. Peltier
    OFC: EPA/Region lY/Environaental Research Lab-Athens/
    Surveillance and Analysis Division
    AD: College  Station Road, Athens, GA 30613
    PH: (404)546-2294
(OF)  Date of form completion: 02-01-83
(NMAT)  Number of substances represented in data base: 4
(MAT)  Substances represented in data base:
    alkalinity                           pH
    dissolved oxygen                     total hardness
(CNM)  Contact name{s): Lab,E.R.  ;    Lab,E.R.
(COR)  Contact organization: Environmental Research Lab - Athens, GA
(ROR)  Responsible Organization: Region IV.Environaental Services
    Division.
                             1126

-------
                             Accession No.   9048000910

(DQ)  Date of Questionaire:  12-02-82
(NAM)   Name of Data Base of  Model:  Listing  of Organic Compounds
    Identified in Region IV
(ACR)   Acronym of Data Base  or Model:  LUCIFER
(MED)   Media/Subject of Data Base or Model: Drinking vater  ;£ffluents
    industrial and municipal ;Ground water  ;     Sediment ;Soil
    ;Surface water all types ^Tissue fish
(ABS)   Abstract/Overview of  Data Base or Model:  LUCIFER contains  a
    listing of all organic compounds    identified in all environmental
    samples taken in Region  IV  during January 1971 thru December 1977,
    and analyzed by the Surveillance and Analysis Division  laboratory
    of  Region IV.  Included in the data base are:  name of
    compound, concentration, sample source, date sampled,  receiving
    stream, SIC code, CAS number, media sampled, sample type,  project
    type, chemical class, and analytical   method.  Data base  contains
    216 additional pollutants not   listed  here.  Selected  projects
    from 1978, 1979 and 1980 have also been entered.
(CTC)   CONTACTS: Subject matter   E. William Loy, Jr.   (404) 546-3165
    ;      Computer-related  U
(DTP)   Type of data collection or monitoring: Combination/Other  all
    types of data collection
(STA)   Data Base status: Discontinued
(GRP)   Groups of substances represented in  Data Base:  43 air priority
    chemicals ;5 NESHAPS ;129 307 CMA ;41 CMA potential criteria ;    21
    drinking Hater standards ;9 potential drinking yater ;29 drinking
    vater monitoring ;   299 hazardous substances >48 cancelled
    pesticides ;9 monitoring pesticides ;    54 TSCA assessment  ;16
    Pre-RPAR
(NPP)   Non-pollutant parameters included in the data base:  Chemical
    data /Collection method Compliance data ;Concentration measures  ;
    Discharge points ;lndustry ^Location ;Sampling date jTest/analysis
    method
(DS)  Time period covered by data base: 01-01-71 TO 02-20-80
(TRM)  Termination of  data collection: Terminated June   *81
(FRQ)  Frequency of data collection or sampling: Other  as time none
    available (when needed)
(NOB)  Number of observations In data base: 8333.(Actual)
(INF)  Data base includes: Ran data/observations  ;Su«mary aggregate
    observations
(NTS)  Total number of stations  or  sources covered  in data base: 649.
(NCS)  No. stations or sources currently originating/contributing data:
    0.
(NOF)  Number of  facilities covered in data base  (source monitoring):  18
    n
(€EO)  Geographic coverage  of data  base: Selected  federal region Region
    IV
(LOC)  Data  elements  identifying location  of station or  source include:
    State  >City  ;Town/township
(FAC)  Data  elements  identifying facility  include:  Plant facility name
    ;Plant location  ;SIC code
(CDE)  Pollutant  identification  data  are:  Uncoded
(LIM)  Limitation/variation in  data of  which user should be aware: Colle


                              1127

-------
                             Accession No.   9048000910      (cont)

    ction method identified,  not entity     collecting/  in data
    collection and analysis procedures documentation.
(DPR)  Data collect./anal, procedures conform to ORD guidelines:  Collect
    ion method docuaented ;Analysis method documented ;QA procedures
    document
CAUL)  Lab analysis based on EPA-approved or accepted methods? YES
(AOD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precisions Precision and accuracy estimates exist but are not
    included in data base
(EOT)  Emitting: No known edit procedures exist.
(CBY)  Data collected by: Regional office Lab Services Branch,
    Surveillance and  Analysis Division, Region
(ABY)  Data analyzed by: Regional office Lab Services Branch,
    Surveillance and  Analysis Division, Region IV
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collections Compliance or enforcement
(PR2)  Secondary purpose  of  data collection: Special study
CAOT)  Authorization  for  data collection: Mo statutory requirement:
    Data  collection requirement is    Data base needed for retrieval of
    organics identified by Region I¥ because no SfORET codes Here
    available.
COMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of  available  reports  and outputs of data base: Printouts on
    request
(HUS)  Number of regular  users  of data  base: 5 per year
(USR)  Current  regular  users of data base:  EPA headquarter offices
    Office of Toxic Substances
(CMF)  Confidentiality  of data  and  limits on access: No  limits on
     access to data
(DLC)  Primary  physical location  of data: Regional  office
(DST)  Form of  data storage: (Tape, storage)
(DAC)  Type of  data access:  EPA software LOCIFER  jEPA hardware POP  1170
     Region I?                                                    ._  ,
(CHG)  Direct charge  for  non-EPA  use:  no outside  use/access  permitted
     because no  edit  proofing of  data
(OPDT)   Frequency of  data base master file  up-date: Terminated June '82
(CMP)  Completion  of  form:
     E. Milliam  Loy, Jr.
     OFC: EPA/Region 17/Surveillance and Analysis  Division
     AD:  Athens, 6A
     PH:  (404)  546-3165
(DP)   Date of  form  completion:  01-28-83
(HMAT)   Number  of  substances represented in data  base:  373
(MCAS)   Number  of  CAS registry  numbers in data  base:  202
(MAT)   Substances represented in data base:
     l,l-dichloro«thane<75-34-3>          l,4-dichlorobenzene<106-46-7>
     l,2,4,-trichlorobenzene<120-82-l>    2,4,7,8-tetrachlorodibenzo-p-
     l,2-dichlorobenzene<95-50-l>            dioxin  (tcdd)
     l,2-dichloroethane<107-06-2>          2,4-dichlorophenol<120-83-2>
     1,2-dichloropropane<78-87-5>          2-chloroethylvinyl  ether<110-75»8>
     If3-dichlorobenzene<541-73-l>        2-nitrophenol<88-75-5>


                              1128

-------
                         Accession No.  9048000910
                  (cont)
2-nitropropane<79-46-9>
4,4--ddd(p,p'tde)
4, 4 '-dde(p,p '-ddx)<72-55-9>
4,4'-ddt<50-29-3>
4,6-dinitro-o-cresol<534-52-l>
4-nitrophenol<100-02-7>
acenaphthene< 83-32-9>
ace tal deny de<75-07-0>
acrylonitrile<107-13-l>
aldrin<309-00-2>
benzene<71-43-2>
bis(2-chloroethoxy)methane
bis{2-chloroethyl)ether
bis(2-chlorolsopropyl) ether
   <39638-32-9>
bis(2-ethylhexyl)phthalate
broBoniethane<74-83-9>
carbon tetrachloride<56-23-5>
chlordane<57-74-9>
chlorobenzene<108-90-7>
chlorodibroaomethane<124-48-l>
chloroform<67-66-3>
chlcromethane<74-87-3>
chrysene<218-01-9>
dichloroaethane<75-09-2>
dieldrin<60-57-l>
die thy 1 phthalate<84-66-2>
dimethyl phthalate<131-ll-3>
dio>ane<123-91-l>
dioxin<828-00-2>
endrin<72-20-8>
ethylbenzene<100-41-4>
fluoranthene<206-44-0>
f luorene< 86-73-7>
heptachlor<76-44-8>
hexachlorobenzene<118-74-l>
hexachlorobutadiene<87-68-3>
hexachlorocyclopentadiene< 77-47- 4>
hexachloroethane<67-72-l>
isophorone<78-59-l>
m-cresol<108-39-4>
m-xylene<108-38-3>
nitrobenzene<98-95-3>
o-cresol<95-48-7>
o-xylene<95-47-6>
p-cresol
P-xy lene< 1 06 -42-3>
pcb-1242 (arochlor 1242)
   <53469-21-9>
pcb-1248 (arochlor 1248)
   <12672-29-6>
pcb-1254 (arochlor 1254)
   <11097-69-l>
pcb-1260 (arochlor 1260)
   <11096-82-5>
pentachlorophenol<87-86-5>
phenanthrene<85-01-8>
phenol<108-95-2>
polychlorinated biphenyls (PCBs)
pyrene<129-00-0>
tetrachloroethylene<127-18-4>
toluene<108-88-3>
toxaphene<8001-35-2>
tribrooo«ethane<75-25-2>
trichloroethylene<79-01-6>
l/l-dichloroethane<75-34-3>
1,2-dichlorob 1,2-dichl or oe thane
   <107-06-2>
lf3-dichlorobenzene<541-73-l>
1^4-dichlorobenzene<106-46-7>
2^4/5-t esters
2,4,5-trichlorophenoxyacetic acid
   (T)<93-76-5>
2r4-d acid<94-75-7>
2,4-dichlorophenoxyacetic acid (2,
   4-d)<94-75-7>
2/-4-dinitrotoluene<121-14-2>
2-nitropropane<79-46-9>
acetone<67-64-l>
acrylonitrile<107-13-l>
aldrin<309-00-2>
aniline<62-53-3>
atrazine<1912-24-9>
benzene<71-43-2>
benzole acid<65-85-0>
biphenyl<92-52-4>
bromodichloroaethane<75-27-4>
carbon disulfide<75-15-0>
carbon tetrachloride<56-23-5>
chlordane<57-74-9>
chlorofor«<67-66-3>
chloroaethane<74-87-3>
cresol<1319-77-3>
ddd(tde)
ddt
dibenzofuran<132-6 4-9>
dicaaba<1918-00-9>
dichlorobenzene<25321-22-6>
dichlorofflethane<75-09-2>
dichloropropane<78-87-5>
dieldrin<60-57-l>
                         1129

-------
                             Accession No.   9048000910
                  (cent)
    diethyl phthalate<84-66-2>
    dinitrobenzene<25154-54-5>
    dini tr otoluene< 25321-14-6>
    dioxin<828-00-2>
    diphenyl ether<101-84-8>
    endrin<72-20-8>
    ethyl parathion<56-38-2>
    ethylbenzene<100-41-4>
    ethylene oxide<75-21-8>
    heptachlor<76-44-8>
    hexachlorobenzene
    hexachlorobutadiene<87-68-3>
    hexachlorocyclopentadiene<77-47-4>
    tiexacloroethane<67*72-l>
    isophorone<78-59-1>
    «-cresol<108-39-4>
    M-xylene<108-38-3>
    methyl parathion<298-00-0>
    mirex< 2385-8 5-5>
    naphthalene<91-20-3>
    nitrobenzene<98-95-3>
    nitrophenol<25154-55-6>
    nitrotoluene
    o-cresol<95-48-7>
    o-nethoxyphenol<90-05-l>
    o-xylene<95-47-6>
    p-crcsol<106-44-5>
    p-xylene<106-42-3>
    parathlon<56-38-2>
    pentachlorophenol<87-86-5>
    phenol<108-95-2>
    phosgene<75-44-5>
    phthalic acid<88-99-3>
    polychlorinated biphenyls (PCBs)
    propachlor<1918-16-7>
    propionic acid<79-09-4>
strobane<8001-50-l>
styrene<100-42-5>
tde<72-54-8>
terpenes
tetrachloroethylene<127-l8-4>
toluene<108-88-3>
toxaphene<8001-35-2>
trichloroethylene<79-01-6>
trichlorophenol (TCP)<25167-82-2>
triethylaaine<121-44-8>
xylene<1330-20-7>
xylenol<1300-71-6>
BHC-alpha<319-84-6>
BHC-beta<319-85-7>
BHC    (lindane)-ganna<58-89-9>
BHC-delta<319-86-8>
broao«ethane<74-83-9>
butyric acid<107-92-6>
chlorofor«<67-66-3>
p-chloro-«-cresol
cycloh€xane<110-82-7>
dibenzota,h3anthracene<53-70-3>
1,4-dichlorobenzene   <106-46-7>
dichlorobrononethane<75-27-4>
dichlorodifluoromethane <75-71-8>
2,4-diaethylphenol<105-67-9>
endosulfan-beta<33213-65-9>
indeno(l/2/3-cd)pyrene<193-39-5>
lindane
•ethyl ethyl   ketone (MEK)
   <78-93-3>
1^1/2,2-tetrachloroethane<79-34-5
1^1/2^2-     tetcachloroethane
   <79-34-5>
l,l,2-trichloroethane<79-00-5>
trichlorofluoronethane<75-69-4>
    propylene oxide<75-56-9>
(CAS)  CAS registry numbers of substances included in data base:  75-34-3
    ; 120-82-1; 95-50-1; 107-06-2;    78-87-5; 541-73-1; 106-46-7;
    120-83-2; 110-75-8; 88-75-5; 79-46-9;    72-55-9; 50-29-3;
    534-52-1; 100-02-7; 83-32-9; 75-07-0; 107-13-1;     309-00-2;
    71-43-2;  111-91-1; Hl-44-4; 39638-32-9;  117-81-7; 74-83-9;
    56-23-5;  57-74-9; 108-90-7; 124-48-1; 67-66-3; 74-87-3; 218-01-9;
    75-09-2;  60-57-1; 84-66-2; 131-11-3; 123-91-1; 828-00-2; 72-20-8;
    100-41-4; 206-44-0; 86-73-7; 76-44-8; 118-74-1; 87-68-3; 77-47-4;
    67-72-1;  78-59-1; 108-39-4; 108-38-3; 98-95-3; 95-48-7; 95-47-6;
    106-44-5; 106-42-3; 53469-21-9; 12672-29-6; 11097-69-1; 11096-82-5;
    87-86-5;  85-01-8; 108-95-2; 129-00-0; 127-18-4; 108-88-3;
    8001-35-2;       75-25-2; 79-01-6;  75-34-3; 107-06-2;  541-73-1;
    106-46-7; 93-76-5;     94-75-7; 94-75-7;  121-14-2; 79-46-9;
    67-64-1;  107-13-1; 309-00-2;     62-53-3; 1912-24-9; 71-43-2;
    65-85-0;  92-52-4; 75-27-4; 75-15-0;      56-23-5; 57-74-9; 67-66-3;
                             1130

-------
                             Accession No.  9048000910     (cont)

    74-87-3;  1319-77-3; 132-64-9;  1918-00-9;   25321-22-6; 75-09-2;
    78-87-5;  60-57-1; 84-66-2; 25154-54-5;      25321-14-6; 828-00-2;
    101-84-8; 72-20-8; 56-38-2; 100-41-4; 75-21-8;       76-44-8;
    118-74-1; 87-68-3; 77-47-4; 67-72-1; 78-59-1; 108-39-4;
    108-38-3; 298-00-0; 2385-85-5; 91-20-3; 98-95-3; 25154-55-6;
    95-48-7;       90-05-1; 95-47-6; 106-44-5; 106-42-3; 56-38-2;
    87-86-5;  108-95-2;     75-44-5; 88-99-3; 1918-16-7; 79-09-4;
    75-56-9;  8001-50-1; 100-42-5;    72-54-8; 127-18-4; 108-88-3;
    8001-35-2; 79-01-6; 25167-82-2;     121-44-8; 1330-20-7; 1300-71-6;
    319-84-6; 319-85-7; 58-89-9;     319-86-8; 74-83-9; 107-92-6;
    67-66-3;  59-50-7; 110-82-7; 53-70-3;     106-46-7; 75-27-4;
    75-71-8;  105-67-9; 33213-65-9; 193-39-5; 58-89-9;       78-93-3;
    79-34-5;  79-34-5; 79-00-5; 75-69-4
(CMM)  Contact nane(s): Loy/E.H.  ;    Holsomback,H.  ;    Loy/E.N.
(ROR)  Responsible Organization: Region IV.Environmental Services
    Division.
                             1131

-------
                             Accession No.   9048000911

 (DO)   Date  of  Questionaire:  12-02-82
 (NAM)   Sane of Data Base  of  Model:  State Intensive  Surveys  (water)
 (ACR)   Acronym of  Data Base  or  Model:  None
 (MED)   Fedia/Subject of Data Base or Model:  Effluents all point source*
     fRunoff urban  and rural  (occasionally) ;   Sediment ;Surface water
     streams ;Other Ground Hater:   only occasionally sampled
 (A8S)   Abstract/Over view  of  Data  Base  or Model: Under the Basic Hater
     Monitoring Program and 106  funds,     each state conducts special
     purpose studies (e.g. for waste-      load allocations. In Region
     IV:  AL, FLA,   GA, K¥, and  MS do not put  the data into STORET/NC,
     SC, and IN data are included  in    STORED.  GA maintains its own
     computer data  base without  the    station location information
     needed  by  STORET. EPA does    receive (generally) abstracts or
     reports of these studies.
 (CTC)   CONTACTS: Subject  natter   Each individual state ;     EPA
     Office   Appropriate Regional  0
 (DTP)   Type of data collection  or monitoring: Combination/Other
     Ambient, non-point source,  and point source
 (STA)   Data Base status:  Operational/ongoing
 (NPP)   Non-pollutant parameters Included in  the data base: Biological
     data ;Cheaical data ;Collection method ;Compliance data ;
     Concentration  measures /Discharge  points ^Disposal ;Elevation ;
     Flow rates ;Geographic subdivision ^Location ^Physical data ;
     Political  subdivisions ;Salinity ;Sampling date ;Site description ;
     Temperature ;Test/analysis  method  ;Yolume/mass  measures
     ^conductivity  }   transparency
 (DS)   Time  period  covered by data base:  01-01-76 TO 12-01-82
 (TRM)   Termination of data collection:  Not applicable
 (FRQ)   Frequency of data  collection or  sampling:  one time only ;as
     needed  jOther  repeated as necessary (theoretically every 5 yea
 (NOB)   Number  of observations in  database:  15000.(Estimated)
 (INF)   Data base includes: Raw  data/observations ; Summary aggregate
     observations ; whatever is needed for th
 (NTS)   Total number of stations or  sources covered  in data base:  (no
     way to  estimate.)
 (NCS)   No.  stations or sources  currently originating/contributing data:
     (no way to estimate.)
 (NOF)   Number  of facilities  covered in data base  (source monitorinq): (n
    o  way to estimate.)
 (GEO)   Geographic  coverage of data  base:  National ^Selected federal
    region  Region IV  included
 (LOC)   Data elements  identifying  location of  station or source include:
    State ;Pro3ect  identifier ;bridge number  or  station code
(FAC)  Data elements  identifying  facility include:  Plant facility name
    ^station code
(CDE)   Pollutant identification data are: Storet parameter
    Other coding scheme states may have special codes
    Oneoded
(LIM)  Limitation/variation  in data of which user should be  aware:  Every
    survey is different:  tailor-made to its     own purpose.   Quality
    assurance procedures vary from survey to survey.     Edit varies
    from state  to  state.


                             1132

-------
                             Accession No.   9048000911      (cont)

(CBY)   Data collected by:  State agency all  states
(ABY)   Data analyzed by: State  agency all  states
    Contractor  lab some under state contract
(IDL)   Laboratory identification:  NO
(AUT)   Authorization for data collection:  Statutory authorization  is  P
    L  95-217 Section 106 (Clean Water Act-CMA)
(OMB)   Data collected/submitted using OMB-approved EPA  reporting forms:
    QQ
(REP)   Form of  available reports and outputs of data base:  Publications
    By Individual survey title
(•US)   Number of regular users  of data base: 2
(OSR)   Current  regular users of data base:  EPA  regional offices
    States
(CNF)   Confidentiality of  data  and limits  on access: No limits on
    access  to data
(DLC)   primary  physical location of data:  State agency
(DST)   Fora of  data storage: Magnetic tape ;0riginal form (hardcopy*
    readings)
(OAC)   Type of  data access:  Manually-some  states by automated data
    processing
(CHG)   Direct charge for non-EPA use: no
(OPDT)  Frequency of data  base  master file up-date: Other as surveys
    are completed
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    STORE?  (Storage and Retrieval of   Hater Quality Data)
(RDB)   Non-EPA  data bases  used  in conjunction with this data base:  e.g.
    Georgia Computer System
(ODB)   Other pertinent non-EPA  data bases:  County and local health
    departments and environmental agency data from fixed   station and
    special purpose studies
(CMP)   Completion of form:
    David Hill
    OFC: EPA/Region If/Environmental Research Lab-Athens/Environmental
    Services Division
    AD: College Station Road Athens 6A 30613
    PH: (404) 546-3113
(DF)  Date of form completion:  12-07-82
(NMAT)  Number of substances represented in data base:  14
(NCAS)  Number  of CAS registry  numbers in  data base: 4
(MAT)   Substances represented in data base:
    fecal coliform                      methoxychlor<72-43-5>
    nitrogen<7727-37-9>                 total organic carbon (TOC)
    oxygen demand                       Biochemical oxygen demand (BOD)
    pH                                  chlorides
    phosphorus<7723-14-0>                metals
    suspended solids                    nitrates/nitrites
    hexachlorocyclohexane<58-89-9>      temperature
(CAS)   CAS registry numbers of substances  included in data base:  7727-37
    -9; 7723-14-0; 58-89-9; 72-43-5
(CNM)   Contact name(s): state,E.
(COR)   Contact organization: Appropriate Regional Office
(ROR)   Responsible Organization: Region IV.Environmental Services


                             1133

-------
                         Accession Mo.   9048000911     (cont)



Division*
                          1134

-------
                             Accession No.   9048000912

(DQ)  Date of Questionaire:  12-02-82
(SAM)  Name of Data Base of  Model:  Missing  Parameter Codes
(ACR)  Acronym of Data Base  or Model:  PARACDS
(MED)  Media/Subject of Data Base or Model: Effluents all point sources
    ^Ground water ;Runoff all types ;     Sediment ;Soil ;Solid waste
    ;Surface water all ;Tissue fish
(ABS)  Abstract/Overview of  Data Base or Model:  Data base contains  all
    Information necessary for STORET (Storage and Retrieval  of  Hater
    Quality Data)    storage except the parameter code.   When this  code
    is  assigned, the appropriate entries are put into  STORET  and
    purged from this data base.
(CTC)  CONTACTS: Subject natter   Margaret  Hale   (912)  250-3548  ;
    Computer-related Margaret Hale  (912) 250-3548; EPA  Office
    Environmental Services Division/ Region I? (912)
(DTP)  Type of data collection or monitoring: Combination/Other
    Ambient, non-point source, and  point source
(STA)  Data Base status: Operational/ongoing
(NPP)  Non-pollutant parameters included in the  data base: Chemical
    data ^Concentration measures ^Sampling  date
(DS)  Time period covered by data base: 01-01-79 TO 09-30-81
(TRM)  Termination of data collection: Anticipated 12/30/81
(FRQ)  Frequency of data collection or sampling: as needed
(NOB)  Number of observations in data base: 2808.(Actual)
(NEI)  Estimated annual increase of observations in data base:  500.
(INF)  Data base includes: Ran data/observations
(NTS)  Total number of stations or  sources  covered in data base: 69.
(NCS)  No. stations or sources currently originating/contributing data:
    69 (or more.)
(NOF)  Number of facilities  covered in data base (source monitoring): 50
    (or more,)
(GEO)  Geographic coverage of data  base: Selected federal region Region
    IV
(LOC)  Data elements identifying location of station or source  include:
    STORET location codes
(FAC)  Data elements identifying facility include: STORET nomenclature
(CDE)  Pollutant identification data are: Other  coding  scheme
(LIM)  Limitation/variation  in data of which user should be  aware:  None
(DPR)  Data collect./anal, procedures conform to ORD guidelines: ORD
    Guidelines
(AND  Lab analysis based on EPA-approved or accepted methods?  YES
(AUD)  Lab Audit: Lab audit  is satisfactory.
(PRE)  Precision: Precision  and accuracy estimates exist for all
    measurements
(EDT)  Editting: Edit procedures used but undocumented.
(CBY)  Data collected by: Regional  office Environmental Services Lab,
    Region I?
(ABY)  Data analyzed by: Regional office Environmental  Services Lab,
    Region IV
(IDL)  Laboratory identification: NO
(AUT)  Authorization for data collection: Statutory authorization is  P
    L 95-217, Section 106 (Clean Hater Act-CHA)
(OMB)  Data collected/submitted using OMB-approved EPA  reporting forms:


                             1135

-------
                             Accession Ho.   9048000912
                  (cont)
    QQ
(REP)  Fora of available reports and outputs of data base:  Printouts on
    request
    On-line computer
(MOS)  Sumber of regular users of data base: 10 or less
(OSR)  Current regular users of data base: EPA regional offices
    Environmental Services Division (storage only)
(CNF)  Confidentiality of data and Halts on access: Mo Halts on
    access to data
(DLC)  Primary physical location of datas Regional office
(DST)  Fora of data storage: Magnetic disc
(OAC)  Type of data access: Commercial softyare INFORM-11 ;EPA hardyare
    POP 11 ^Regionally developed data sy
(CHG)  Direct charge for non-EPA uset no
(OPDT)  Frequency of data base aaster file up-date: Other as needed
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    STORET (Storage and Retrieval of Hater  Quality Data)
(CMP)  Completion of fora:
    Ron Estes
    QFC: EPA/Region If/Environmental Services Division
    AD: College Station Rd Athens, 6A 30613
    PH: (912) 250-3301
(DP)  Date of fora completion: 12-07-82
(•MAT)  number of substances represented in data base: 483

    1,1,1, 3, 3, 3-h ex afluoro propane
    Itl,l-trichloroethane<71-55-6>
    1,1,1-trichlorofluoroaethane,
    1,1,2-chloroethyl vinyl ether
    1*l,2-trichloroethane<79-00-5>
    l,l-dichloroethane<75-34-3>
    I,1-dichloroethylene<75-35-4>
    1,1-oxy bix/2-aethoxy-etnane
    1,1-thibisethane
    1,1-thio bisethane
    If 12-benzopery lene
    1,2,3,3,3 pentafluoro-propene
    l,2,4,-trichlorobenzene<120-82-l>
    1,2,5,6-dibenzanthracene
    1,2-benzanthracene
    l,2-dlchloro-l,l,2-tribluoroethane
    l,2-dichloro-l,12-trichloroethane
    l,2-dichlorobenzene<95-50-l>
    l,2-dichloroethane<107-06-2>
    1,2-dichloropropane<78-87-5>
    1, 2-diphenylhydrazine<122-66-7>
    1,2- trans-dichloroethy lene
        <156-60-5>
l,3,5-triaethyl-l,3,5-triazine
   trlone
l,3-dlchlorobenzene<54l-73-l>
1,3-dichloropropylene
1,3-dloxolane
l,4-dichlorobenzene<106-46-7>
1,4-dioxane
1,4-dloxolane
l-C12-brethane
1-H-perfluorohexane
l-chloro-2 bromomethane
l-chloro-2-borao ethane
1-chlorobutane
1-hydroxy chlordene
ll,12-benzofluoranthene<207-08-9>
2 ethyl 1,3-dloxolane
2,4 dimethyl furan
2,4,6-trichlorophenol<88-06-2>
2,4-dichlorophenol<120-83-2>
2,4-diaethylphenol<105-67-9>
2,4-dinitrophenoK 51-28-5>
2,4-dinitrotoluene<121-14-2>
2,6*dinitrotoluene<606-20-2>
2-H-perfluorohexane
2-chloroethylvinyl ether<110-75-8>
2-chloronaphthalene<91-58-7>
                             1136

-------
                         Accession No.   9048000912
                  (cont)
2-nethyl 3-pentanone
2-«ethyl pentane
2-nethyl propanol
2-nethyl-l,3-dioxelene
2-nethy1-1,3-dioxolane
2-nethyl-l-phenyl-l-propanone
2-nethyifuran
2-nitrophenol<88-75-5>
2-pentenenitrile
3, 3'-dichlorobenzidine<91-94-l>
3,4-benzopyrene
3-hexanone
3-nonanone
4 nethyl-1-hexene
4,4'-DDE (P,P'-DDE)
4, 4 '-DDT (P,P"-DDT)
4,4'-ddd(p,p'tde)
4,6-dinitro-o-cresol
4,6-dinitro-o-cresol<534-52-l>
4-4 dimethyl-l,3-dioxane
4-broaophenyl phenyl ether
   <101-55-3>
4-cfclorophenyl phenyl ether
   <7005-72-3>
4-hydroxy-4-nethyl pentanone
4-hydroxy-4-nethyl-2-pentanone
4-nitrophenol<100-02-7>
8~nethyl-8-nonanediol
A-BBC-alpha
A-chlordane-alpha
A-chlorodane-alpha
A-endosulfan-alpha
B-BHC-beta
B-endosulfan-beta
C12 alkylphenol
C14 alkyl acid
C14 alkyl acid methyl ester
CIS alkyl acid methyl ester
C16 alkyl acid
C16 alkyl acid (2 isoners)
C16 alkyl acid methyl ester
C18 alkyl acid (2 isoners)
C18 alkyl acid methyl ester
C2 alkyl benzole acid
C2 alkyl naphthalene
C2 alkyl naphthalene (2 isoaers)
C2 alkyl naphthalene (3 isoaers)
C2 alkyl nat phthalene (2 isoners)
C2 alkyl phenanthrene
C2 alkyl phenanthrene (2 isoners)
C2 alkyl phenol (2 isomers)
C2 aikyl phenol (4 isoners)
C2 alkyl phenoxy benzene (3
   isoners)
C2 alkyl styrene
C2 alkyl styrene (2 isoners)
C2 alkylbenzoic acid (3 isoaers)
C2 alkylnaphthalene (2 isoaers)
C3 alkyl benzene
C3 alkyl benzene (2 isomers)
C3 alkyl benzene (3 isoners)
C3 alkyl benzene (5 isosers)
C3 alkyl benzoic acid
C3 alkyl naphthalene
C3 alkyl naphthalene (2 isoaers)
C3 alkyl naphthalene (3 isoners)
C3 alkyl naphthalene (4 isoners)
C3 alkyl phenanthrene
C3 alkyl phenol
C3 alkyl phenol (2 isomers)
C3 alkyl phenol (3 isoners)
C3 alkyl styrene (2 isoners)
C3 alkylbenzenesulfonanide
C3 alkylphenanthrene (2 isoners)
C3 benzene
C4 alkyl benzene
C4 alkyl benzene (2 isoners)
C4 alkyl benzene (3 isoners)
C4 alkyl benzene (5 isoners)
C4 alkyl benzoic acid
C4 alkyl naphthalene
C4 alkyl naphthalene (3 isoners)
C4 alkyl phenanthrene
C4 alkyl phenol
C4 alkyl phenol (2 isoners)
C4 alkyl styrene
C4 alkylblfaenzyl (2 isoners)
C4 alkyIcylohexanol
C4 alkylcylohexanone
C5 alkyl acid
C5 alkyl benzene
C5 alkyl benzene (2 isoners)
C5 alkyl benzene (5 isoners)
C5 alkyl naphthalene
C5 alkyl phenanthrene
C5 alkylbenzenesulfonamide
C6 alkyl acid
C6 alkyl benzene
C6 alkyl benzene (2 Isoners)
C6 alkyl naphthalene
C8 alkyl phenol
C8 alkylbenzene (2 isoners)
C9 alkyl acid
C9 alkyl phenol
                         1137

-------
                         Accession No.   9048000912
                  (cont)
N, N-dimethy If oraamide
H- methyl nitroso benzenanide
OP DOD
OP DDT
T-butanol
acenaphthene< 83-32-9>
acenaphthylene<208-96-8>
acetone<67-64-l>
acetonitrile<75-05-8>
acrolein<107-02-8>
acrylonitrile<107-13-l>
aldrin<309-00-2>
alkyl hydrocarbons
alpha chlordane
alpha chlorodane
alpha cyano pyridine
alpha- terpineol
anthracene<120-12-7>
arochlor 1256
asbestos<1332-21-4>
atrazine<1912-24-9>
benzene acetic acid
benzene triol
benzene<71-43-2>
benzenebutanoic acid
benzenediol
benzenepropanoic acid
benzidine<92-87-5>
benzo fur an
benzole acid<65-85-0>
beta-naphthonitrile
bhc  (llndane)-ga«»a< 58-89- 9>
bhc-delta< 31 9-86- 8>
biphenol
biphenyl<92-52-4>
bis  (20-ethylhexyl) ph thai ate
bisCl 2-ethylhexyl)phthalate
bis(2-chloroethoxy)methane
bis(2-chloroisopropyl)ether
   <39638-32-9>
bis<2-ethylhexyl)phthalate
bromacil
bromoform
bromomethane<74-83-9>
butoxy propanol
butoxybutanoic acid
butyl benzyl phthalate<85-68-7>
butyl ester of benzole acid
butyl aethyl benzene sulfonavide
butylMethylpropyl phthalate
butyloctanol (2 isomers)
carbon disulfide<75-15-0>
carbon tetrachloride<56-23-5>
carbophenolthion
chlordane (tech. mixture &
   metabolites)
chlordane<57-74-9>
chlordene
chlorobenzene<108-90-7>
chlorodibromonethane<124-48-l>
chloroethane<75-00-3>
chloroethoxybenzene
chlorofluoromethane
chlorofor»<67-66-3>
chloroaethane<74-87-3>
chloronethylbenzeneanine
chiorotoluene
cineol
co alcohol
cyclohexane<110-82-7>
de odecanoic acid
decanoic acid
decanoic acid, methyl ester
di-2-propenyl phthalate
di-iso-propyl ether
di-aethyl propyl-phthalate
di-n-butyl phthalate<84-74-2>
di-n-octyl phthalate<117-84-0>
dibenzothiophene
dichlorobenzene<25321-22-6>
dichlorobenzeneaalne
dichlorobromomethane<75-27-4>
dichlorodifluoroaethane<75-71-8>
dichlorofluoronethane
dichloromethyl phenol
dichlorophenol
dichlorotoluene
dieldrln<60-57-l>
diethyl dlsulfide
diethyl phthalate<84-66-2>
dihydro indenone
dihydrodiaethyl furanone
dlhydroethenonaphthalene
dihydrotrimethylpurinedlone
diaethyl butanoic acid
dimethyl disulphide
dimethyl ester of butenediolc acid
dimethyl ether
dimethyl phthalate< 131-11-3>
dimethyl pyridine (2 isomers)
dimethyl sulfide
dinethylbenzenebutanoic acid
                         1138

-------
                         Accession No.   9048000912
                  (cont)
dlmethylbenzenemethanol
dimethylbenzoic acid
dimethyIphenylmethybenzene
dioctyl adipate
dipropenyl phthalate
dipropyl phthalate
dissolved carbon
dodecanoic acid
dodecanoic acid, methyl ester
dodecanol
dodecanthiol
endosulfan sulfate<103l-07-8>
endrin aldehyde<7421-93-4>
endrin keytone
endrin<72-20-8>
ethane thiol
ethion (carbophenolthion)
ethoxy ethanol
ethoxyethanol acetate
ethoxymethylbenzene
ethyl (methylpropyl) disulfide
ethyl acetate<141-78-6>
ethyl hexanoic acid
ethylbenzene<100-41-4>
ethylhexanol
ethylmethyIpyr rolidinedione
fluoranthene<206-44-0>
flucrene<86-73-7>
gamma chlordane
haptachlornorbornene
heptachlor epoxide<1024-57-3>
heptachlor<76-44-8>
beptachloronorborene
heptanol
heptanone
hexachlornorbornadiene
hexachlorobenzene<118-74-l>
hexachlorobutadiene<87-68-3>
hexachlorocyclopentadiene<77-47-4>
hexachloroethane<67-72-l>
hexadecanoic acid
hexamethylphosporamide
hexane
hexanoic acid
hydroxy chlordene
hydroxy methoxy benzaldehyde
hydroxy methoxy phenyl ethanone
hydroxy methyl pentanone
hydr oxybenzaIdehyde
hydroxybenzthiazole
hydroxymethoxyphenyl propanone
hydroxymethyl cyclopentenone
hydroxymethyl pentanone
indeno (l,2,3*cd)pyrene
iso-propyl acetate
isodrin
isomer of trichlorophenol
isophorone<78-59-l>
isopropanol
malathion<121-75-5>
methanethiol<74-93-l>
aethly ester of benzene carboxylic
    acid
methoxy aethyl benzene
Bethoxy phenol
nethy ester of octadecanoic acid
methyl acetate
methyl benz(a)anthracene
•ethyl benzene sulfonamide
methyl benzoic acid (2 isoners)
methyl benzoic acid methylester
methyl bronide
methyl chloride
methyl cyclhexane
methyl cyclohexane
methyl cyclopentane
methyl cyclopentanol
methyl dibenzothioprene
methyl dichlorophenol
methyl ester C14 alkyl acid
methyl ester €15 alkyl acid
methyl ester C16 alkyl acid
methyl ester C17 alkyl acid
methyl ester CIS alkyl acid
methyl ester methyl pentadecanoic
   acid
methyl ester octadecenoic acid
methyl ester of hexadecanoic acid
methyl ester of methylhexadecanoic
    acid
methyl ester of octacandienoic
   acid
methyl ester of octadecatrienoic
   acid
methyl ester of oxopentanoic acid
methyl ethyl ketone (mek)<78-93-3>
methyl fluorene
methyl heptanol
methyl heptanone
methyl Isobutyl ketone<108-10~l>
methyl isopropyl ketone
methyl naphthalene
methyl naphthalene (2 isoners)
methyl parathion<298-00-0>
                         1139

-------
                         Accession No.  9048000912
                  (cont)
•ethyl pentanoic acid nethylester
•ethyl phenanthrene
•ethyl phenanthrene (2 isomers)
•ethyl phenol
•ethyl phenol (2 isoners)
•ethyl phenyl ester of benzole
   acid
•ethyl phenyl ethanone
•ethyl propyl ester of benzole
   acid
•ethyl pyrene
•ethyl pyridine
•ethyl pyrrolidinone
•ethyl styrene
•ethyl sulfide
•ethyl thioethane
•ethyl thiophene (2 isoners)
•ethylbenzoic acid
•ethylbutanoic acid
•ethylcyclopentenone
•ethylene chloride
•ethylene phenanthrene
•ethylhydroxybenzeneacetic acid
•ethylnonanediol
•ethylpentanedione
•ethylpropoxypropanol
•ethylpyrene (4 isoners)
•irex<2385-85-5>
n-nitrosodi-n-propylaaine
   <621-64-7>
n-nitrosodiphenyla»ine<86-30-6>
naphthalene<9l-20-3>
naphthopyrandione
nitrobenzene<98-95-3>
nitrosodiphenylaaine
nonadecanol
nonyl phenol
octa yldiphenylester phosphoric
   acid
octachlorcyclopentene
oc tachlorocyclop entene
octachloronaphthalene
octadecanal
octadecanoic acid
octadecanoic acid nethylester
octahydrotetra«ethylcyclopropylazu
   lene
octanoic acid
octyldiphenyl ester of phosphoric
   acid
oxazole
parachloroaeta eresol
parathion<56-38-2>
pcb-1016 (arochlor 1016)
   <12674-ll-2>
pcb-1221 (arochlor 1221)
   <11104-28-2>
pcb-1232 (arochlor 1232)
pcb-1242 (arochlor 1242)
   <53469-21-9>
pcb-1254 (arochlor 1254)
   <11097-69-l>
pcb-1260 (arochlor 1260)
   <11096-82-5>
pentachlorobenzene<608-93-5>
pentachlorocyclopentadiene
pentachlorophenol<87-66-5>
pentadecanoic acid
pentadecanoic acid lethyl-aethyl
pentadecanoic acid Methyl-Methyl
   ester
pentanoic acid
percent aoisture
perfluoropropene
phenanthrene<85-01-8>
phenanthrenedione
phenol (gc/as)
phenol<108-95-2>
phenyl ether
phenyl pyridine (2 isoners)
phenylbutanone
phenylethanone
phenylnaphthalene (2 isovers)
phosphoric acid octyldiphenylester
phosphoric acid tributyl ester
phosphoric acid triphenyl ester
phthalic acid<88-99-3>
proneton
propachlor (rairod)
propanediol
propanoic acid
pro poxy butane
propyl acetate
pyr ene< 129-00-0>
silica
sodiua chlorate
styrene<100-42-5>
sulfur
terephthalalonitrile
tetrachlorobenzene
tetrachlorobenzene (2 isoaers)
tetrachlorobiphenyl
tetrachlorodibenzo-p-dioxin (TCDD)
                         1140

-------
                             Accession No.  9048000912     (cont)

    tetrachloroethylene<127-18-4>        tridecanolc acid, methyl ester
    tetradecanal                         tri»ethyl benzene sulfonamide
    tetradecanoic acid                   triaethyl ester of phosphoric aci
    tetradecanoic acid, aethyl ester     triaethyl pyrazine
    tetrahydronaphthalenol               trlaethylbicycloheptane
    thiobisdodecane                      triaethylbicycloheptanedione
    thiophene                            trinethyIblcycloheptanone
    thlopropane                          triaethylbicycloheptanone, (2
    toluene<108-88-3>                       isoners)
    toluidie ne                          trivethylcyclohexane
    toluidine     -                       triBethylcyclohexanol
    toxaphene<8001-35-2>                 trinethyIcyclohexanone
    trans-1,2,-dichloroethylene          triaethylcyclohexene«ethanol
    traps-1, 2-dichloroethene             triaethylcyclopentenone
    trans-1,3-dichloropropene            trlphenyl ester
    tr1(2-chloroethyl)phosphate          tris-beta-chloroethylphosphate
    trlbutylester of phosphoric acid     vinyl chloride<75-01-4>
    trichlorobenzene (not 1/2,4)         uBethoxychlor
    trichlorobenzenes                    xylene (2 isovers)
    trichlorobiphenyl                    xylen«<1330-20-7>
    trichloroethylene<79-Ol-6>           y-chlordane-gama
    trichlorof luoroB0thane<75-69-»4>      ychlorone thane
    tridecanoic acid
(CAS)  CAS registry numbers of substances included in data base: 630-20*
    6; 71-55-6; 79-00-5; 75-34-3; 75-35-4;      120-82-1; 95-50-Ij
    107-06-2; 78-87-5; 122-66-7; 156-60-5; 541-73-1;   106-46-7;
    207-08-9; 88-06-2; 120-83-2; 105-67-9; 51-28-5; 121-14-2;
    606-20-2; 110-75-8; 91-58-7; 88-75-5; 91-94-1; 534-52-1; 101-55-3;
    7005-72-3;  100-02-7; 83-32-9; 208-96-8; 67-64-1; 75-05-8; 107-02-8;
    107-13-1; 309-00-2; 120-12-7; 1332-21-4; 1912-24-9; 71-43-2;
    92-87-5;      65-85-0; 58-89-9; 319-86-8; 92-52-4; 111-91-1;
    39638-32-9; 117-81-7;       74-83-9; 85-68-7; 75-15-0; 56-23-5;
    57-74-9; 108-90-7; 124-48-1;      75-00-3; 67-66-3; 74-87-3;
    110-82-7; 84-74-2; 117-84-0; 25321-22-6;   75-27-4; 75-71-8;
    60-57-1; 84-66-2; 131-11-3; 1031-07-8; 7421-93-4;   72-20-8;
    141-78-6; 100-41-4; 206-44-0; 86-73-7; 1024-57-3; 76-44-8;
    118-74-1; 87-68-3; 77*47-4; 67-72-1; 193-39-5; 78-59-1; 121-75-5;
    74-93-1; 78-93-3; 108-10-1; 298-00-0; 2385-85-5; 621-64-7; 86-30-6;
    91-20-3; 98-95-3; 56-38-2; 12674-11-2; 11104-28-2; 11141-16-5;
    53469-21-9; 11097-69-1; 11096-82-5; 608-93-5; 87-86-5; 85-01-8;
    108-95-2; 88-99-3; 129-00-0; 100-42-5; 127-18-4; 108-88-3;
    8001-35-2;       79-01-6; 75-69-4; 75-01^-4; 1330-20-7
(CffM)  Contact  naae(s): Hale,M.
(COR)  Contact  organization: Envlronaental Services Division, Region If
(ROR)  Responsible Organization: Region IV.Environaental Services
    Division.
                             1141

-------
                             Accession No.  9048000913

(DQ)  Date of Questionaire: 12-02-82
(MAM)  Mane of Data Base of Model: Whatley Standard
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Other Publicly owned
    treatment works (PQTW) operational data
(ABS)  Abstract/Overview of Data Base or Model: The data base contains
    information taken     from the EPA 7500-5 for* dealing uith
    publicly owned   treatment works (POTHs) operations.  Information
    such as permit compliance, treatment efficiency, costs of operation
    and maintenance, operational problems,    etc. is included.  Small
    amounts of data on metals,    PCBs and organics as covered in
    permits are also  Included.
(CTC)  CONTACTS: Subject matter   Charles Sweatt  (404)546-3351   ;
    Computer-related  Ron Es
(DTP)  Type of data collection or monitoring: Combination/Other
    municipal uastewater treatment plants
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented in Data Base: 11 conventional
    water
(NPP)  Non-pollutant parameters included in the data base: Chemical
    data ;Compliance data ;Concentration measures ;Cost/economic data ;
    Discharge points ^Disposal ;Flow rates ^Funding data ;Geographic
    subdivision ;  Industry ^Inspection data ^Location ;Physical data
    ^Political subdivisions ;    Population demographics ;Population
    density ;Site description J  Treatment devices
(OS)  Time period covered by data base: 08-01-77 TO 09-30-81
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: daily
(NOB)  Number of observations in data base: 32600 plus.(Estimated)
(NED  Estimated annual increase of observations in data base:  1600*
(INF)  Data base includes: Summary aggregate observations
(NTS)  Total number of stations or sources covered in data base: 2700.
(NCS)  No. stations or sources currently originating/contributing data:
    1600.
CNOF)  Number of facilities covered in data base (source monitoring): 27
    00.
(GEO)  Geographic coverage of data base: Selected federal region Region
    I?
(LOC)  Data elements identifying location of station or  source include:
    State ^County ?City jStreet address
(FAC)  Data elements identifying facility include: Plant facility name
    ;Plant location ^Street address ;NPDES
(CDE)  Pollutant identification data are: Storet parameter
(LIM)  Limitation/variation in data of which user should be aware:  Hater
    quality parameters are from Discharge Monitoring Reports (DMR)
    self-reporting data, therefore quality   assurance protocols are
    unknown.
(AM.)  Lab analysis based on EPA-approved or accepted methods? Lab
    analysis is based on EPA-approved or accepted methods.
(PRE)  Precision: Precision and accuracy estimates are not available
(EOT)  Editting:  No known edit procedures exist.
(CBY)  Data collected by:  State agency States in Region  IV (Tennessee,


                             1142

-------
                             Accession No.   9048000913     (cont)

    North Carolina,  South Carolina,  A lab ana, Florida, Georgia,  Kentucky
    & Mississippi)  ;  Regional office Surveillance and Analysis
    Division,  Region 17
(ABY)  Data analyzed by:  State agency States in Region IV (Alabama,
    Florida, Georgia,     Kentucky,  Mississippi, North Carolina, South
    Carolina,  and Tennessee)
    Regional office
(IDL)  Laboratory identification:  NO
(PR1)  Primary purpose of data collection:  Trend assessment
(PR2)  Secondary purpose  of data collection: Program evaluation
CAOT)  Authorization for  data collection:  No statutory requireaent:
    Data collection  requirement is    collected for 210 Report  to
    Congress
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    158-R-0035
(REP)  Form of available  reports and outputs of data base: Printouts on
    request
(NUS)  Nunber of regular  users of data base: 300
(USR)  Current regular users  of data base:  EPA regional offices
    States
    consultants
(CNF)  Confidentiality of data and Halts on access: Ho limits  on
    access to data
(DLC)  Primary physical location of data:  EPA lab
(DST)  Form of data storage:  Magnetic tape
(DAC)  Type of data  access: Commercial software Inform 11 JEPA  hardware
    PDP-11
(CflG)  Direct charge for  non-EPA use: no
(UPDT)  Frequency of data base master file up-date: Meekly
(CMP)  Completion of form:
    Charles Sueatt
    QFC: EPA/Region IV/Environmental Research Lab-Athens/
    Surveillance and Analysis Division
    AD: College Station Rd. Athens,  GA 30613
    PH: (404)546-3351
(DF)  Date of form  completion: 08-20-80
(NMAT)  Number of substances represented in data base: 13
(NCAS)  Number of CAS registry numbers in data base: 2
(MAT)  Substances represented in data base:
    acidity                              organics
    alkalinity                           oxygen demand
    dissolved oxygen                     pH
    fecal collform                        phosphorus<7723-14-0>
    metals                               polychlorinated biphenyls (PCBs)
    nitrogen<7727-37-9>                  suspended solids
    oil and grease
(CAS)  CAS registry numbers of substances included in data base: 7727-37
    -9; 7723-14-0
(CNM)  Contact name(s): S«eatt,C. ;    Estes,R.  ;    Sueatt,C.
(ROR)  Responsible  Organization: Region IV.Environmental Services
    Division*
                             1143

-------
                             Accession No.   9048000914

(DQ)  Date of Questionaire: 12-02-82
(HAM)  Kane of Data Base of Model: Metals Data Base
(ACR)  Acronym of Data Base or Model: Hone
(NED)  Media/Subject of Data Base or Model:  Other Municipal sludge;
    influent and effluent
(ABS)  Abstract/Overview of Data Base or Model:  Metals detected in
    municipal uastewater treatment facilities in Region I?.  Six heavy
    metals in influent and  effluent from municipal treatment plants
    reported in   milligrams per liter (mg/1).  Sludge samples reported
    in    milligrams per kilogram (mg/kg).
(CTC)  CONTACTS: Subject matter   Bruce Ferguson  404-546-3351    ;
    Computer-related  Ron Es
(DTP)  Type of data collection or monitoring: Combination/Other
    municipal wastewater treatment plants
(STA)  Data Base status: Operational/ongoing
(6RP)  Groups of substances represented in Data Base:  15 metals
(NPP)  Non-pollutant parameters included in  the data base:  Chemical
    data Inspection data ^Location ;Site description
(DS)  Time period covered by data base: 07-01-75 TO 05-27-81
(TRM)  Termination of data collection: lot anticipated
(FRQ)  Frequency of data collection or sampling: monthly
(NOB)  Number of observations in data base:  5500.(Estimated)
(NED  Estimated annual increase of observations in data base: 600.
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data  base: 960.
(NCS)  No. stations or sources currently originating/contributing data:
    50.
(NOF)  Fumber of facilities covered in data  base (source monitoring):  24
    0.
(6EO)  Geographic coverage of data base: Geographic region  Southeast US
(LOC)  Data elements identifying location of station or source include:
    State /City ^Project identifier ^sample  source
(FAC)  Data elements identifying facility include: Plant facility name
    ;Plant location ;NPDES
(CDE)  Pollutant Identification data are: Dncoded
(LIM)  Limitation/variation in data of which user should be aware: None
(DPR)  Data collect./anal, procedures conform to ORD guidelines: Analysl
    a method documented ;QA procedures documented
(AND  Lab analysis based on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist but are not
    included in data base
(EOT)  Editting: No known edit procedures exist.
(CBY)  Data collected by: Regional office Surveillance and  Analysis
    Division/ Region  IV.
(ABY)  Data analyzed by: Regional office Surveillance and Analysis
    Division/ Region IV.
(IDL)  Laboratory identification: NO
(PR1)  Primary purpose of data collection: Trend assessment
(AUT)  Authorization for data collection: No statutory requirement:
    Data collection requirement is to measure trends in the
    concentrations of metals in municipal sludge.


                             1144

-------
                             Accession No.   9048000914      (cont)

(OMB)   Data collected/ subaitted using OMB-approved EPA  reporting  for MS:
    QQ
(REP)   Form of available reports and outputs of data base:  Unpublished
    reports Metals,  PCBs and Chlordane in Municipal Sludge.
    Printouts on request
    Machine-readable ran data
(NUS)   number of regular users of data base: 50
(USR)   Current regular  users of data base:  EPA headquarter  offices Land
    Disposal Division/  Office of Hater and    Haste Management
    EPA regional offices
    States
(CNF)   Confidentiality of data and limits on access: No limits on
    access to data
(DLC)   Primary physical location of data: EPA lab
(DST)   Fora of data  storage: Magnetic disc
(DAC)   Type of data  access: EPA software STORE?  MIDS:5303000101  ;EPA
    hardware IBM 370/168
(CHG)   Direct charge for non-EPA use: No
(UPDT)  Frequency of data base naster file  up-date: Monthly
(CMP)   Completion of form:
    Bruce Ferguson
    OFC: EPA/Region  IV/Environmental Research Lab-Athens/
    Surveillance and Analysis Division
    AD: College Station Road/ Athens/ Georgia 30613
    PH: (404) 546-3351
(DF)  Date of form completion: 02-01-83
(NMAT)  Number of substances represented in data base:  6
(NCAS)  Number of CAS registry numbers in data base: 6
(NAT)   Substances represented in data base:
    cadmium<7440-43-9>                    lead<7439-92-l>
    chromium<7440-47-3>                  nickel<7440-02-0>
    copper<7440-50-8>                    zinc<7440-66-6>
(CAS)   CAS registry  numbers of substances included in data  base:  7440-43
    -9; 7440-47-3; 7440-50-8; 7439-92-1;   7440-02-0; 7440-66-6
(CNM)   Contact name(s): 404/B.F.  ;    404,R.E.  ;    Ferguson,B.
(ROR)   Responsible Organization: Region IV.Environmental Services
    Division.
                             1145

-------
                             Accession Ho.   9051700002

(DQ)  Date of Questionaire:  12-02-82
(NAM)  Kane of Data Base of Model: Great Lakes Sediment Quality Data
    and Reports
CACR)  Acronym of Data Base or Model: Hone
CUED)  Media/Subject of Data Base or Model: Sediment ;0ther Elutriate
    and bcnthic biological samples uere taken    intermittently.
(ABS)  AbstracVOverview of Data Base or Model: Describes sediment
    quality in Great Lakes' rivers and harbors.   Total sediment
    chemistry and to a »ore limited extent elutriate data, benthic
    •acrolnvertebrate data, as well as a physical descriptions of the
    samples (e.g. color, particle size, etc.) are contained in the
    reports.     Total chemistry data is also available in STORET under
    Agency   Code 1115GLSB.
(CTC)  CQBTACTS: Subject matter   Tony Kizlauskas  (312)353-3576;   EPA
    Office Great Lakes National Program Office (GLNPO)
CDTP)  Type of data collection or monitoring: Combination/Other Ambient
    monitoring, industrial monitoring, toxics    monitoring.
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances  represented in Data Base: 15 metals, 129
    consent decree priority pollutants
CMPP)  Ion-pollutant  parameters included in the data base: Biological
     data  ;Chemical  data ;Collection method ^Concentration measures >
    Elevation ^Geographic subdivision ^Location jPhysical data
     ;Sampling date  ;     Site description
(OS)   Time period  covered by data base: 01-01-60 to 09-30-82
(TRM)  Termination  of data collection: Mot anticipated
(FRQ)  Frequency of data collection or sampling: as needed
(MOB)  Number  of observations in  data base: 35000.(Estimated)
(MEI)  Estimated annual  increase  of observations in data base:  (variable

(IMF)  Data  base includes: Raw  data/observations ;Summary  aggregate
     observations                                    ,.»«.._      ^ Ann.
(UTS)  Total number of stations or  sources covered  in data base.  i*uw.
(MCS)   Mo. stations or sources  currently originating/contributing data:
     1200.                                                   ,»,>,.
(MOF)   lumber of  facilities  covered In  data base (source monitoring):  (M

 (GEO)  'Geographic  coverage of data  base: Geographic region Great  Lakes
     Basin                                                      .   ...
 (LOG)   Data elements identifying  location of  station  or source Include:
     Project identifier ;O.S. Army Corps of Engineers' maps
 (FAC)   Data elements Identifying  facility include:  N/A
 CCDE)   Pollutant  Identification data are:  Oncoded
 (LIM)   Limitation/variation in data of which user should be  aware: Sampl
     es are primarily surface grab samples from navigation  channels.
 (DPR)   Data collect./anal.  procedures conform to  ORD  guidelines:  Sanplin
     g plan documented ^Collection method documented ^Analysis method
     document QA procedures documented
 (ANL)   Lab analysis based on EPA-approved or accepted methods? YES
 (ADD)   Lab Audit:  Lab audit is satisfactory for 80.
 (PRE)   Precision:  Precision and accuracy estimates  partially exist for
     Intermittent time periods


                              1146

-------
                             Accession No.   9051700002      (cont)

(EOT)  Editting: Edit procedures used but undocumented.
(CBY)  Data collected by:  Regional office Region V Surveillance and
    Analysis Division ;     Contractor as needed ;Other  federal agency
    U.S. Army Corps of Engineers ;  Great Lakes National Program
    Office/EPA
(ABY)  Data analyzed by:  Regional office Region V Surveillance and
    Analysis Division
    EPA lab Environmental Research Lab-Duluth,  HN
    Contractor lab as needed
(IDL)  Laboratory identification: YES
(AUT)  Authorization for  data collection: statutory authorization  is  P
    L 92-500 as amended Section 104b (Clean Water  Act)
(OMB)  Data collected/submitted using OMB-approved EPA  reporting forms:
    QQ
(REP)  Form of available  reports and outputs of data base:  Unpublished
    reports Sediment Data for the Milwaukee Estuary
    Great Lakes National  Progran Office Files
(NUS)  Number of regular  users of data base: 15 organizations 50-100
(USR)  Current regular users of data base:  EPA  headquarter  offices
    Marine Activities Branch (other branches intermittently)
    EPA regional offices
    BPA laboratories
    Other federal agencies
    States
    Regions II, III and V
    U.S. Fish and Wildlife Service
    U.S. Army Corps of Engineers
    consultants
    local governments
    universities
    public interest groups
(CNF)  Confidentiality of data and limits on access: Limits on outside
    access for some data
(DLC)  Primary physical location of data: Great Lakes National Program
    Office, Chicago, IL
(DST)  Form of data storage: Original form (hardcopy, readings)
(DAC)  Type of data access: Reports: Manually;  Total Chemistry data =
    STORET   on Agency Code 1115GLSB.
(CHG)  Direct charge for  non-EPA use: yes
(OPDT)  Frequency of data base master file up-date: Other as results
    become available
(RDBEPA)  Related EPA data bases used in conjunction tilth this data base
    Great Lakes National  Program Office (GLNPO) Fish Monitoring and
    Lake Water Monitoring Programs (most of this data is in     STORET)
(RDB)  Kon-EpA data bases used in conjunction with this data base: Great
    Lakes* States - State Monitoring  Programs, U.S. Army Corps of
    Engineers, researchers and consultants data,  dredging permit
    applications.
(CMP)  Completion of form:
    Anthony Kizlauskas
    OFC: Great Lakes National Program Office
    AD: Rm 932 536 S. Clark St, Chicago, IL 60605


                             1147

-------
                             Accession Mo.   9051700002     (cont)

    PH: (312)353-3576
(OF)  Date of fora coapletion:  01-17-83
(MMAT)  Number of substances represented in data base: 25
(NCAS)  Nunber of CAS registry  numbers in data base:  12
(MAT)  Substances represented in data base:
    ammonia nitrogen                     oil and grease
    arsenic<7440-38-2>                   ortho-phosphate
    cadBiuB<7440-43-9>                   phenols
    chemical oxygen demand (COD)         total kjeldahl nitrogen
    chro«iu»<7440-47-3>                  total organic carbon (TOO
    copper<7440-50-8>                    total phosphorus
    iron<7439-89-6>                      total solids
    lead<7439-92-l>                      trace metals
    •anganese<7439-96-5>                 volatile solids
    •ercury<7439-97-6>                   aluminum<7429-90-5>
    nickel<7440-02-0>                    cyanide
    nitrate nitrogen                        <57-12  129 consent decree
    nitrite nitrogen                        Priority Pollutants
(CAS)  CAS registry numbers of  substances included in data  base: 7440-38
    -2; 7440-43-9; 7440-47-3; 7440-50-8;   7439-89-6; 7439-92-1;
    7439-96-5; 7439-97-6; 7440-02-0; 7429-90-5
(CHM)  Contact narae(s): Kizlauskas/A.
(COR)  Contact organization: Great Lakes National Program Office
    (GLNPO)
(ROR)  Responsible Organization: Region V.Great Lakes National Program.
                             1148

-------
                             Accession Mo.   9055000903

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model:  Industrial Process Evaluations
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model:  Effluents industrial
    ;Runoff Bother in plant chenical process wastes
(ABS)  Abstract/Overviey of Data Base or Model: Evaluation of specific
    industries and industrial  processes regarding the
    presence/formation of toxicants by (1) National    Pollutant
    Discharge Elimination System (NPDES) permit or   Clean Hater  Act,
    Section 308 request to industry,  (2)     EPA contractor, or  (3)
    state pollution control agency*  Toxicants     are  not United to
    the 129 Consent Decree    Priority Pollutants.  Initial worfc  is dry
    lab     paper study of industrial process folloyed  by chemical
    and/or    biomonitoring testing by facility.  Most  of the data
    <90%) is    supplied by industry.  Emphasis is placed on chemicals
    that are highly toxic, that tend to bio-accumulate, and    are
    carcinogenic or mutagenic.  Organic scans are run and the
    significant peaks are analyzed quantitatively.
Geographic subdivision ;Industry ;Location ^Production
    levels ;  Test/analysis method ^Treatment devices
(DS)  Time period covered by data base:M>1-01-79 to 01-03-83
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: as needed
(NOB)  Number of observations in data base:  1200
(NEI)  Estimated annual increase of observations in data base:  300(Estim
    ated)
(INF)  Data base includes: Raw data/observations
(NTS)  Total number of stations or sources covered in data base:  80
(NCS)  No. stations or sources currently originating/contributing  data:
    15.
(NOF)  Number of facilities covered In data  base (source monitoring): 60
    •
(GEO)  Geographic coverage of data base: Selected federal region Region
    f
(LOC)  Data elements identifying location of station or source Include:
    State ;City ; Town/township ;Street address
(FAC)  Data elements identifying facility include: Plant facility  name
    IPlant location ;Parent corp name ;Parent corp location ;   Street
    address ;SIC code /NPDES
(CDE)  pollutant identification data are: Oncoded
(LIM)  Limitation/variation in data of which user should be aware: Evalu


                             1149

-------
                             Accession No.  9055000903     (cont)

     ation  for  toxicants  only (sometimes     conventional also).
     Quality assurance  varies by  facility.  Limited amount of actual
     monitoring data.
 (DPR)   Data collect./anal. procedures conform to ORD guidelines: ORD
     Guidelines
 (ANL)   Lab analysis based on EPA-approved or accepted methods? YES
 (AOD)   Lab Audit:  Lab  audit is satisfactory for part of the data base.
 (PRE)   Precision:  Precision and  accuracy estimates partially exist for
     the data base.
 (EOT)   Editting: So known edit procedures exist.
 CCBY)   Data collected  by: Self reporting ;Regional office Surveillance
     and Analysis Division ;   Contractor State Pollution Control Agency
 (ABY)   Data analyzed by: Self reporting
     Regional office Surveillance and Analysis Division
     Contractor lab through Surveillance and Analysis Division
 (IDL)   Laboratory  identification: YES
 (PR1)   Primary purpose of data collection: Development of NPDES permit
     or  pretreatnent limitations
 (AOT)   Authorization for data collection: Statutory authorization is P
     L 92-500 as amended. Section 308 (Clean Water  Act-CHA)
 (OMB)   Data collected/submitted using OMB-approved EPA reporting forms:
     QQ
 (REP)   Form of available reports and outputs of data base: Unpublished
     reports Individual undistributed reports
 (HDS)   Number of regular users of data base:  40
 (OSR)   Current regular users of data base: EPA headquarter offices
    Effluent Guidelines Division
    EPA regional offices
    States
 (CNF)  Confidentiality of data and limits on access:  Limits on access
    outside agency for some  data
 (DLC)  Primary physical location of data: Regional office
 (DST)  Form of data storage: Original form (hardcopy, readings)
 (DAC)  Type of data access: Manually
 (CHG)  Direct charge for non-EPA use:  no
 (OPDT)  Frequency of data base master file up-date: Other as  completed
 (RDBEPA)  Related EPA data bases used in conjunction  with this data base
    Compliance Sampling Inspections for Toxicants
 (CMP)  Completion of form:
    Glenn Pratt
    OFC: EPA/Region V/Hater Division
    AD:  230 S.  Dearborn Chicago,  111 60604
    PH:  (312)353-2098
 (DP)  Date of form completion:  01-06-83
(NMAT)  Number of substances represented in data base:  13.
(NCAS)  Number of CAS registry  numbers in data base:  129
(MAT)  Substances represented in data base:
    lslxl-trichloroethane<71-55-          l,l-dichloroethane<75-34-3>
       6>                                l,l-dichloroethylene<75-35-4>
    1,1,2,2,-tetrachloroethane            1,2,4,-trichlorobenzene<120-82-l>
      <79-34-5>                          1,2-d ichlorobenzene<95-50-l>
    If 1,2-trie hi o roe than e< 79-0 0-5>        1, 2-dichloroethane< 107-06-2 >


                             1150

-------
                         Accession No.  9055000903
                                                     (cont)
2-dichloropropane<78-87-5>
2-dichloropropylene<563-54-2>
2-diphenylhydrazine<122-66-7>
2-trans-dichloroethylene
 <156-60-5>
3-dichlorobenzene<541-73-l>
4-dichlorobenzene<106-46-7>
4,6-trichlorophenol<88-06-2>
4,1, 8- te tr achl or od ibenzo-p-
 dioxin (tcdd)
4-di chlorophenoKl 20-83-2>
4-dimethylphenol<105-67-9>
4-dinitrophenol<51-28-5>
4-dinitrotoluene<121-14-2>
6-dinitrotoluene<606-20-2>
chloroethylvinyl ether<110-75-8>
chloronaphthalene<91-58-7>
chlorophenol<95-57-8>
ni t r opheno 1< 88-7 5-5>
3 '-dichlor obenzidine<91-94-l>
4-benzof luoranthene<205-99-2>
4*-ddd(p,p*tde)
l,
l,
l,
2,
2,

2,
2,
2,
2,
2,
2-
2-
2-
2-
3,
3,
4,
4,4'-ddt<50-29-3>
4, 6-dinitro-o-cresol<534-52-l>
4-broBiophenyl phenyl ether
   <101-55-3>
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nitr opheno l<100-02-7>
acenaphthene<83-32-9>
acenaphthylene<208-96-8>
acrolein<107-02-8>
acrylonitrile<107-13-l>
aldrin<309-00-2>
anthracene<120-12-7>
antimony<7440-36-0>
arsenic<7440-38-2>
asbestos<1332-21-4>
benzene<71-43-2>
benzidine<92-87-5>
benzo(a)anthracene<56-55-3>
benzo(a)pyrene<5Q-32-8>
benzo(g^h,i)perylene<19l-24-2>
benzo(k)fluoranthene<207-08-9>
berylliuu<7440-41-7>
bhc (lindane)-ga»JBa<58-89-9>
bhc-al pha<31 9-84-6>
bhc-beta<319-85-7>
bhc-delta<31 9-86-8>
bis(2-chloroethoxy)methane
bis(2-chloroethyl)ether
bis(2-chloroisopropyl)ether
   <39638-32-9>
bis(2-ethylhexyl)phthalate
bis(chloromethyl)ether<542-88-l>
bromomethane<74-83-9>
butyl benzyl phthalate<85-68-7>
cad«ium<7 440- 43-9>
carbon tetrachloride<56-23-5>
chl or dane< 57-7 4-9>
chl orobenzene<108-90-7>
chlorodibroffionethane<124-48-l>
chloroethane<75-00-3>
chl or of OOK67-66- 3>
chloronethane<74-87-3>
chronluin<7440-47-3>
chrysene<218-01-9>
copper<7440-50-8>
cyanide<57-12-5>
dl-n-butyl phthalate<84-74-2>
dl-n-octyl phthalate<117-84-0>
dibenzo(a,h)anthracene<53-70-3>
dichlorobroffloraethane<75-27-4>
dichlorodifluoroaethane<75-71-8>
dichloro»ethane<75--09-2>
dieldrin<60-57-l>
diethyl phthalate<84-66-2>
dimethyl phthalate<131-ll-3>
endosulfan sulfate<1031-07-8>
endosul f an-alpha<959-98-8>
endosulfan-beta<33213-65-9>
endrin aldehyde<7421-93-4>
endrin<72-20-8>
ethylbenzene<100-41-4>
fluoranthene<206-44-0>
f luor ene<86-73-7>
heptachlor epoxide<1024-57-3>
hep tachlor<76-44-8>
hexachlorobenzene<118-74-l>
hexachlorobutadiene<87-68-3>
hex achl orocyclopentadiene<77-47-4>
hexachloroethane<67-72-l>
indeno (U 2,3-cd)pyrene<193-39-5>
isophorone<78-59-l>
lead<7439-92-l>
mercury<7439-97-6>
n-nit rosodi-n-propy lanine
   <621-64-7>
n-nit rosodimethylainif)e<62-75-9>
n-nit rosodiphenylanine<86-30-6>
naphthalene<9l-20-3>
                         1151

-------
                             Accession No.   9055000903      (cont)

    nickel<7440-02-0>                    pentachlorophenol<87-86-5>
    nitrobenzene<98-95-3>                phenanthrene<85-01-8>
    p-chloro-B-cresol<59-50-7>           phenol<108-95-2>
    pcb-1016 (arochlor 1016)             pyrene<129-00-0>
       <12674-ll-2>                      radon<10043-92-2>
    pcb-1221 (arochlor 1221)             seleniua<7782-49-2>
       <11104-28-2>                      silver<7440-22-4>
    pcb-1232 (arochlor 1232)             tetrachloroethylene<127-18-4>
       <1114l-16-5>                      thalliu«<7440-28-0>
    pcb-1242 (arochlor 1242)             toluene<108-88-3>
       <53469-21-9>                      toxaphene<8001-35-2>
    pcb-1248 (arochlor 1248)             tribroao«ethane<75-25-2>
       <12672-29-6>                      trichloroethylene<79-01-6>
    pcb-1254 (arochlor 1254)             trlchlorofluoroaethane<75-69-4>
       <11097-69-l>                      uraniuB<7440-61-l>
    pcb-1260 (arochlor 1260)             vinyl chloride<75-01-4>
       <11096-82-5>                      zlnc<7440-66-6>
(CAS)  CAS registry numbers of substances included in data base: 71-55-6
    ; 79-34-5; 79-00-5; 75-34-3; 75-35-4;       120-82-1; 95-50-1;
    107-06-2; 78-87-5; 563-54-2; 122-66-7; 156-60-5;   541-73-1;
    106-46-7; 88-06-2; 120-83-2; 105-67-9; 51-28-5; 121-14-2;
    606-20-2; 110-75-8; 91-58-7; 95-57-8; 88-75-5; 91-94-1; 205-99-2;
    72-55-9; 50-29-3; 534-52-1; 101-55-3; 7005-72-3; 100-02-7; 83-32-9;
    208-96-8; 107-02-8; 107-13-1; 309-00-2; 120-12-7; 7440-36-0;
    7440-38-2; 1332-21-4; 71-43-2; 92-87-5; 56-55-3; 50-32-8; 191-24-2;
    207-08-9; 7440-41-7; 58-89-9; 319-84-6; 319-85-7; 319-86-8;
    111-91-1;      111-44-4; 39638-32-9; 117-81-7; 542-88-1; 74-83-9;
    85-68-7;      7440-43-9; 56-23-5; 57-74-9; 108-90-7; 124-48-1;
    75-00-3; 67-66-3;    74-87-3; 7440-47-3; 218-01-9; 7440-50-8;
    57-12-5; 84-74-2; 117-84-0;       53-70-3; 75-27-4; 75-71-8;
    75-09-2; 60-57-1; 84-66-2; 131-11-3;       1031-07-8; 959-98-8;
    33213-65-9; 7421-93-4; 72-20-8; 100-41-4;   206-44-0; 86-73-7;
    1024-57-3; 76-44-8; 118-74-1; 87-68-3; 77-47-4;    67-72-1;
    193-39-5; 78-59-1; 7439-92-1; 7439-97-6; 621-64-7; 62-75-9;
    86-30-6; 91-20-3; 7440-02-0; 98-95-3; 59-50-7; 12674-11-2;
    11104-28-2; 11141-16-5; 53469-21-9; 12672-29-6; 11097-69-1;
    11096-82-5; 87-86-5; 85-01-8; 108-95-2; 129-00-0; 10043-92-2;
    7782-49-2; 7440-22-4; 127-18-4; 7440-28-0; 108-88-3; 8001-35-2;
    75-25-2; 79-01-6; 75-69-4; 7440-61-1; 75-01-4; 7440-66-6
(CNN)  Contact naae(s): Pratt,G.D.;    Pratt/G.D.
(ROR)  Responsible Organization: Region f. Hater Management Division.
                             1152

-------
                             Accession Mo.   9055000904

(DQ)  Date of Questionaire:  12>02-82
(NAN)  Name of Data Base of  Model:  Compliance Sampling  Inspections  for
    Toxicants
(ACR)  Acronym of Data Base  or Model:  CSI-T
(MED)  Media/Subject of Data Base or Model:  Effluents of various
    industries and sewage treatment plants   with high potential for
    toxicant discharge ;Ground Hater ;In plant process  wastes  >   Sludge
(ABS)  Abstract/Overview of  Data Base  or Model: Detailed sampling
    inspections of industries (some municipalities)  with high  potential
    for toxicant discharge.   10-15 surveys  per year. Data  for
    pernit/pretreatment limit and enforcement development*   Broad
    chemical scans, specific analysis      and biomonitoring.
    Engineering analyses of  manufacturing   process  for toxicant
    formation.  Tests include algal   assay/ Ames/  static/  and other
    biomonitoring.  Emphasis     is on organic chemical industry/ and
    herbicide & pesticide  producers.   Toxicants are not limited  to 129
    Consent Decree Priority  Pollutants.  Emphasis is placed on
    chemicals that  are highly toxic/  tend  to bio-accumulate and  are
    carcinogenic    or mutagenic.  Organic  scans are run and the
    significant    peaks are analyzed  quantitatively.
(CTC)  CONTACTS: Subject matter   Glenn Pratt/Jon Barney   (312)
    353-2098    ;     EPA Office  61
(DTP)  Type of data collection or monitoring: Point  source  data
    collection industrial and municipal effluents and    groundwater
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances  represented in  Data Base: 129 307  CHA ;9
    potential drinking water
(MPP)  Non-pollutant parameters Included in the data base:  Biological
    data ;Chemical data ;Collection method  ;Compliance  data /
    Concentration measures ;Discharge  points ^Disposal  ?Flow rates  ;
    Geographic subdivision ;Industry ;Inspection data ;Location ;
    Physical data ^Production levels ; Sampling date  ;Site description ;
    Temperature ^Treatment devices
(DS)  Time period covered by data base: 10-01-79 to  01-03-83
(TRM)  Termination of data collection: Not  anticipated
(FRQ)  Frequency of data collection or sampling: as  needed
(NOB)  Number of observations in data  base: 550.(Estimated)
(NEI)  Estimated annual increase of observations in  data base: 100.
(INF)  Data base includes: Raw data/observations ;Summary  aggregate
    observations
(ITS)  Total number of stations or sources  covered in data  base:  75.
(NCS)  No. stations or sources currently originating/contributing data:
    5.
(NOF)  tiumber of facilities  covered in data base (source monitoring): 40
    .
(GEO)  Geographic coverage of data base: Selected federal region  Region
    V
(LOC)  Data elements identifying location of station or source include:
    State jCounty ;City ; Town/township ;Street address
(FAC)  Data elements identifying facility include: Plant facility name
    jPlant location ^Parent corp name  ^Parent corp location ;     Street
    address ;SIC code ;HPDES


                             1153

-------
                             Accession Ho*  9055000904     (cont)

(CDE)  Pollutant identification data are: Uncoded
(LlM)  Limitation/variation in data of which user should be auare: Soae
    plant data is confidential.   Primarily organic chemical industry
    related data.
(DPR)  Data collect./anal, procedures conform to QRD guidelines: ORD
    Guidelines
(AMD  Lab analysis based on EPA-approved or accepted methods? YES
(AUD)  Lab Audit: Lab audit is satisfactory.
(PRE)  Precision: Precision and accuracy estimates exist for all
    measurements
(EOT)  Editting: NO known edit procedures exist.
(CBY)  Data collected by: Regional office Surveillance and Analysis
    Division
(ABY)  Data analyzed by: Regional office Surveillance and Analysis
    Division
(IDL)  Laboratory identification: YES
(AUT)  Authorization for data collection: Statutory authorization is P
    L 92-500 as amended. Section 308 (Clean Hater  Act-CVA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base: Unpublished
    reports undistributed report on each facility
(USR)  Current regular users of data base: 40
    EPA regional offices
    States
(CNF)  Confidentiality of data and limits on access: Limits on outside
    access for some data
(DLC)  Primary physical location of data: Regional office
(DST)  Form of data storage: Original form (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHC)  Direct charge for non-EPA use: NoJon
(OPDT)  Frequency of data base master file up-date: Other Hone-not
    compiled as a total
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    Industrial Process Evaluations
(CMP)  Completion of form:
    Glenn Pratt, Jon Barney
    OFC: EPA/Region V/Hater Division
    AD: 230 S. Dearborn Chicago, 111 60604
    PH: (312) 353-2098
(DF)  Date of form completion: 01-06-83
(NMAT)  Number of substances represented in data base: 132
(NCAS)  Number of CAS registry numbers in data base: 129
(MAT)  Substances represented in data base:
    l,l,l-trichloroethane<71-55-         l,2-dichlorobenzene<95-50-l>
       6>                                l,2-dichloroethane<107-06-2>
    1,1,2,2,-tetrachloroethane           l,2-dichloropropane<78-87-5>
       <79-34-5>                         l,2-dichloropropylene<563-54-2>
    l,l,2-trichloroethane<79-00-5>       l,2-diphenylhydrazine<122-66-7>
    l,l-dichloroethane<75-34-3>          1,2-trans-dichloroethylene
    l,l-dichloroethylene<75-35-4>           <156-60-5>
    l*2,4,-trichlorobenzene<120-82-l>    l,3-dichlorobenzene<541-73-l>


                             1154

-------
                          Accession No.  9055000904
                   (cent)
 It 4-dichlorobenzene<106-46-7>
 2,4,6-trichlorophenol<88-06-2>
 2*4,7, 8-tetrachlorodibenzo-p-
    dioxin (tcdd)
 2,4-dichlorophenol<120-83-2>
 2, 4-dimethylphenol<105-67-9>
 2,4-dinitrophenol<51-28-5>
 2,4-dinitrotoluene<121-14-2>
 2, 6~dinitrotoluene<606-20-2>
 2-chloroethylvinyl ether<110-75-8>
 2-chloronaphthalene< 91-58-7>
 2-chlorophenol<95-57-8>
 2-nitrophenol<88-75-5>
 3,3*-dichlorobenzidine<91-94-l>
 3, 4-benzof luor anthene<205-99-2>
 4,4*-ddd(p,p'tde)
 4, 4 *-dde (p, p '-ddx) <72-55-9>
 4/4--ddt<50-29-3>
 4/6-dinitro-o-cresol<534-52-l>
 4-bronophenyl phenyl ether
   <101-55-3>
 4-chlorophenyl phenyl ether
   <7005-72-3>
 4-nitrophenol<100-02-7>
 acenaphthene<83-32-9>
 aceraphthylene<208-96-8>
 acrolein
 acrylonitrile<107-13-l>
 aldrin<309-00-2>
 anthracene<120-12-7>
 antimony<7440-36-0>
 ars€nic<7440-38-2>
 asbestos<1332-21-4>
 benzene<71-43-2>
 benzidine<92-87-5>
 benzo{a)anthracene<56-55-3>
 benzo(a)pyrene<50-32-8>
 benzo(g^h^i)perylene<191-24-2>
 benzo(k)fluoranthene<207-08-9>
 beryllium<7440-41-7>
 bhc (lindaae)-gamraa<58-89-9>
 bhc-alpha<31 9-84-6>
 bhc-beta<319-85-7>
 bhc-delta<319-86-8>
 bis(2-chloroethoxy)methane
bis(2-chloroethyl)ether
bis (2-chloroisopropyl) ether
   <39638-32-9>
bis(2-ethylhexyl)phthalate
bis(chloromethyl)ether<542-88-l>
 bronoraethane<74-83-9>
 butyl benzyl phthalate<85-68-7>
 cadniua<7440-43-9>
 carbon tetrachloride<56-23-5>
 chlordane<57-74-9>
 chlorobenzene<108-90-7>
 chlorodlbroiBomethane<124-48-l>
 chloroethane<75-00-3>
 chlorofor«<67-66-3>
 chloromethane<74-87-3>
 chrooiura<7440-47-3>
 chrysene<218-01-9>
 copper<7440-50-8>
 cyanide<57-12-5>
 di-n-butyl phthalate<84-74-2>
 di-n-octyl phthalate<117-84-0>
 dibenzo(a,h)anthracene<53-70-3>
 dichlorobroffloraethane<75-27-4>
 dichlorodifluoromethane<75-71-8>
 dichloro»ethane<75-09-2>
 dieldrin<60-57-l>
 diethyl phthalate<84-66-2>
 dinethyl  phthalate<131-ll-3>
 endosulfan sulfate<1031-07-8>
 endosulfan-alpha<959-98-8>
 endosulfan-beta<332!3-65-9>
 endrin aldehyde<7421-93-4>
 endriiK72-20-8>
 ethylbenzene<100-41-4>
 fluorantbene<206-44-0>
 fluorene<86-73-7>
 heptachlor epoxide<1024-57-3>
 heptachlor<76-44-8>
 hexachlorobenzene<118-74-l>
 hexachlorobutadiene<87-68-3>
 hexachlcrocyclopentadiene<77-47-4>
 hexachloroethane<67«72-l>
 indeno  (l/2,3-cd)pyrene<193-39-5>
 isophorone<78-59-l>
 lead<7439-92-l>
 mercury<7439-97-6>
 n-nitrosodi-n-propylamin
 n-nitrosodimethylamine<62-75-9>
 n-nitrosodiphenyla»ine<86-30-6>
 naphthalene<91-20-3>
 nickel<7440-02-0>
 nitrobenzene<98-95-3>
 organics
P-chloro-B-cresol<59-50-7>
pcb-1016 (arochlor 1016)
   <12674-ll-2>
                         1155

-------
                             Accession Ho.  9055000904      (cont)

    pcb-1221 (arochlor 1221)             pyrene<129-00-0>
       <11104-28-2>                      radon<10043-92-2>
    pcb-1232 (arochlor 1232)             seleniuu<7782-49-2>
       <11141-16-5>                      silver<7440-22-4>
    pcb-1242 (arochlor 1242)             tetrachloroethylene<127-18-4>
       <53469-21-9>                      thalliu«<7440-28-0>
    pcb-1248 (arochlor 1248)             toluene<108-88-3>
       <12672-29-6>                      toxaphene<8001-35-2>
    pcb-1254 (arochlor 1254)             tribromo«ethane<75-25-2>
       <11097-69-l>                      trichloroethylene<79-01-6>
    p   J?J° 
       <11096-82-5>                      uraniu«<7440-61-l>
    pentachlorophenol<87-86-5>           vinyl chloride<75-01-4>
    phenanthrene<85-01-8>                zinc<7440-66-6>
    phenol<108-95-2>
      -£AS re9is*ry nuabers of substances included in data base: 71-55-6
      Z9"34"5; 79-°°-5* 75-34-3; 75-35-4;       120-82-1; 95-50-1;
    107-06-2; 78-87-5; 563-54-2; 122-66-7; 156-60-5;   541-73-1;
    106-46-7; 88-06-2; 120-83-2; 105-67-9; 51-28-5; 121-14-2;
    606-20-2; 110-75-8; 91-58-7; 95-57-8; 88-75-5; 91-94-1; 205-99-2;
    72-55-9; 50-29-3; 534-52-1; 101-55-3; 7005-72-3; 100-02-7; 83-32-9;
    208-96-8; 107-02-8; 107-13-1; 309-00-2; 120-12-7; 7440-36-0;
    7440-38-2; 1332-21-4; 71-43-2; 92-87-5; 56-55-3; 50-32-8; 191-24-2;
    207-08-9; 7440-41-7; 58-89-9; 319-84-6; 319-85-7; 319-86-8;
    111-91-1;      111-44.4. 39638-32-9; 117-81-7; 542-88-1; 74-83-9;
    85-68-7;      7440-43-9; 56-23-5; 57-74-9; 108-90-7; 124-48-1;
    75-00-3; 67-66-3;    74-87-3; 7440-47-3; 218-01-9; 7440-50-8;
    57-12-5; 84-74-2; 117-84-0;       53-70-3; 75-27-4; 75-71-8;
    2!;??"2£ 60-57-1; 84-66-2; 131-11-3;       1031-07-8; 959-98-8;
    33213-65-9; 7421-93-4; 72-20-8; 100-41-4;    206-44-0; 86-73-7;
    1024-57-3;  76-44-8; 118-74-1; 87-68-3; 77-47-4;    67-72-1;
    193-39-5; 78-59-1; 7439-92-1; 7439-97-6; 621-64-7; 62-75-9;
    86-30-6; 91-20-3; 7440-02-0; 98-95-3; 59-50-7; 12674-11-2;
    11104-28-2; 11141-16-5; 53469-21-9; 12672-29-6; 11097-69-1;
    11096-82-5; 87-86-5; 85-01-8; 108-95-2; 129-00-0; 10043-92-2;
    7782-49-2;  7440-22-4; 127-18-4; 7440-28-0; 108-88-3; 8001-35-2;
    75-25-2; 79-01-6; 75-69-4; 7440-61-1; 75-01-4; 7440-66-6
(CNM)  Contact  name(s): Pratt,G.  ;    Pratt,G.  ;   Barney,J.
(ROR)  Responsible Organization: Region f.Water Management Division.
                             1156

-------
                              Accession No.  9055000905

 (DQ)  Date of Questionaire: 12-02-82
 (»AM)  Name of Data Base of Model: Toxicant Control Fish Tissue
     Analyses
 (ACR)  Acronym of Data Base or Model: Hone
 (MED)  Media/Subject of Data Base or Model: Tissue fish
 (ABS)  Abstract/Overview of Data Base or Model:  As part of Region ?*s
     surface water toxicant control program, fish from major tributaries
     ar«  JLin,, fef,   £ef and the Ohio and Mississippi Rivers basins
     are  being analyzed for persistant bioaccumulative toxicants.
     Toxicant problems surfaced by this work will result in specific
     li.i?na P«nh^tanJ Difcha^« Elimination System    (HPDES) permit
     limit.   Emphasis is placed on chemicals that are  highly toxic,
     that tend to bio-accumulate and are carcinogenic   or  mutagenic.
     °ur?nm™?yare CUn and the si*>«ica«< »•*•   a«  analyzed

 
        Type of data collection or monitoring:  Ambient data collection
        Tata Base status:  Operational/ongoing
        Non-pollutant parameters included in the  data base:  Biological
     data ;Chemical  data Collection method  ;Exposure data  $
     C^M^<	.,,..,_,._  .Location  ?Saapling date  slte
       Tlme period  covered  by  data base: 02-01-78  to 01-03-83
        Termination of  data collection: Anticipated 03-84
        Frequency of data collection or sampling:  Other As needed in the
     summer and fall, 1 to  5 times per site
        2U?ber °! observations in data base: 3100. {Estimated)
        Estimated annual increase of observations  in data base: 350
 CIRF)   Data base includes: Ran data/ observations
 /JJ!%   T,°tal nuwber of stations or sources covered in data base: 146.
     30     sta*lons or sources currently originating/contributing data:

 «HOF>   N«»ber of facilities covered in data base  (source monitoring): C
     /A» )
 C6EO)   Geographic  coverage of data base: Selected federal region Region
       Data elements identifying location of station or source include:
    State ;Project identifier >river mile
(FAC)  Data elements identifying facility include: M/A
(CDE)  Pollutant identification data are: Uncoded
aiM)  Limitation/variation in data of which user should be aware: locat
    ions may be sampled from one to five times.

-------
                             Accession No.  9055000905     (cont)

    federal agency Fish and Wildlife Service
(ABY)  Data analyzed by: Regional office Region V
    EPA lab Environmental Research Lab-Duluth
    Contractor lab various Environmental Research Lab contractors
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Development of regulations
    or standards
(PR2)  Secondary purpose of data collection: Compliance or enforcement,
    surveillance
(AOT)  Authorization for data collection: Statutory authorization is P
    L 92-500 as amended, (Clean Water Act-CWA)
                   mercury<7439-97-6>
    chromium<7440-47-3>                  organic GC/KS scans  for signified
    copper<7440-50-8>                       t organics
    lead<7439-92-l>                      zinc<7440-66-6>
(CAS)  CAS registry numbers of substances Included in data base: 7440-43
    -9;  7440-47-3; 7440-50-8; 7439-92-1;   7439-97-6; 7440-66-6
(CNM)  Contact name(s): Pratt,G.  ;    Pratt,G.  ;   Barney,J.
(ROR)  Responsible Organization: Region Y.Water Management Division.
                             1158

-------
                              Accession  No.   9055000906

 (DQ)   Date  of  Questionaire:  12-02-82
 (JAM)   Name of Data  Base  of  Model:  Hazardous Materials  Site Files
 lACR)   Acronym of  Data  Base  or  Model: HMS
 (MED)   Media/Subject of Data Base or Model:  Drinking water ;Ground
    water ;Soil ;Surface  water
 (ABS)   Abstract/overview  of  Data Base or Model: The files contain
    information relating  to  hazardous    waste sites in Region V.  They
    are arranged alphabetically by    site name and state, and contain
    tne following  items as      appropriate:   site identification,
    preliminary assessment,   tentative  dispostion, final disposition,
    and site inspection     forms and reports.  Internal enforcement
    records and records     of  formal state  and federal enforcement
    actions are kept,   as well as  relevant  correspondence and
    communication  records.
 (CTC)   CONTACTS: Subject  matter   Arnold Leder  (312) 353-2114    ;
    Computer-related Arnold
 (DTP)   Type of data  collection  or monitoring: Point source data
    collection hazardous  waste  sites
 (STA)   Data Base status:  Discontinued
 (CRP)   Groups  of substances  represented in Data Base: RCRA hazardous
    wastes
 (NPP)   Non-pollutant parameters included in  the data base: Chemical
    data Compliance data ;Disposal ;Location ^Sampling date ;    Site
    description
 (OS)  Time  period  covered by  data base: 02-01-80 TO 09-30-81
 (TRM)   Termination of data collection: Not anticipated
 (FRQ)   Frequency of  data  collection or sampling: Other As needed varies
    by  site
 (NOB)   Number  of observations in data base:  over 100.(Estimated)
 (MED   Estimated annual increase of observations in data base: 50-100.
 (INF)   Data base includes: Summary aggregate observations
 (MTS)   Total number  of stations or sources covered in data base: 160,
 (WCS)   ho.  stations  or sources currently originating/contributing data:
    10  (or less.)
 (NOF)   number  of facilities  covered in data base (source monitoring): 16
    0 •
 (GEO)   Geographic coverage of data base: Selected federal region Region

 (LOC)   Data elements identifying location of station or source include:
    State ;County ;City ;Town/township ;street address ^Project
    identifier
(FAC)  Tata elements identifying facility include: Plant facility name
    ;Plant location ;Street address ;Program identifier
(CDE)  Pollutant identification data are:  Oncoded
(LlM)   Limitation/variation in data of which user should be  aware:  Infor
    nation is  generated internally and also comes from state  agencies.
    Level of detail may vary from   one file to another.  Approximately
    400 sites are covered   in the file.  Sampling has been  carried out
    on 160 of those sites.
(DPR)   Data collect./anal, procedures  conform to ORD guidelines:  Saaplin
    g plan documented ^Collection method documented  ;Analysis  method
    document QA procedures documented


                             1159

-------
                              Accession No.   9055000906      (cent)

 (ANL)   Lab analysis based on EPA-approved or accepted Methods? NO
      Leder,A.
(ROR)  Responsible Organization: Region V.Water Management  Division.
                             1160

-------
                              Accession No*   9055000907

 (DQ)  Date of Questionaire:  12-02-82
 (NAM)  Name of Data Base of Model:  Rational Pollutant Discharge
     Elimination System  (NPDES)  Compliance  Files
 (ACR)  Acronym of Data Base or Model:  None
 (MED)  Jedia/Subject of Data Base or Model: Effluents from  National
     pollutant Discharge Elimination System  (NPDES)  permitted
     facilities.
 (ABS)  Abstract/Overview of Data Base  or  Model: Files containing
     information relating to the  compliance  status of  permit holders
     under the National Pollutant Discharge  Elimination  System  (NPDES)
     pernit  program.  Files are  arranged  in alphabetical order by
     State in the Water and Hazardous Materials Compliance   Section.
     ?i™-»ontaln Natlonal Pollutant Discharge   Elimination System
     (NPDES)  permits, self monitoring   reports, state  and  federal
     inspection reports, state   and federal enforcement actions,
     notices  of  noncompliance from  permittees and other correspondence
     relating to the status of permittee compliance.
 (CTC)   CONTACTS:  Subject matter   Arnold  Leder  (312)353-2114s     EPA
     Office  Arnold Leder  (31
 (DTP)   Type  of data collection or monitoring: Point source  data
     collection industrial and municipal
 (STA)   Data  Base  status:  Operational/ongoing
 (CRP)   Groups of  substances  represented in  Data Base: 11 conventional
     Hater
 (NPP)   Non-pollutant parameters  included  in the data base:  Compliance
     data  Discharge points ;Flow rates ;Inspection data ;   Location
     /Sampling  date
 (OS)  Time period covered by  data base: 09-01-74 TO 09-30-81
 (TRM)   Termination  of data collection: Not  anticipated
 (FRQ)   Frequency  of data collection  or sampling: daily Bother monthly
     discharge  monitoring reports contain  data typically     collected
     daily, some may vary  in frequency.
 (NOB)   Number  of  observations  in data base:  500000 or more.(Estimated)
 (NEI)   Estimated  annual  increase of  observations in data base:  90000.
 (INF)   Data  base  includes: Raw data/observations ^Summary aggregate
     observations
 (NTS)   Total number  of stations or sources covered in data base:  1069
     (majors.)
 (NCS)   No. stations  or sources currently originating/contributing data:
     1069  (majors.)
 (NOF)  Number  of  facilities covered  in data base (source monitoring): 10
    69  (majors.)
 (GEO)  Geographic coverage of data base:  Selected federal  region  Region

 (LOC)  Data elements identifying  location of station or  source  include:
    State ;City ;Toun/township ;Street address jProject  Identifier
    NPDES number
 (FAC)  Data elements identifying  facility include:  Plant facility name
    jPlant location ;NPDES
(CDE)  Pollutant identification data are:  Dncoded
 (LIM)  Limitation/variation in data of  uhich user should be aware:  Typic
    ally there is a three month delay  in receipt  of discharge


                             1161

-------
                             Accession Ho.  9055000907     (cont)

    monitoring reports.  Variations in pernit requireaents nay cause
    variations in data being available.
(DPR)  Data collect./anal, procedures conforn to ORD guidelines:  Samplin
    g plan documented
(AML)  Lab analysis based on EPA-approved or accepted Methods? NO
(PRE)  Precision: Precision and accuracy estiaates exist but are  not
    included in data base    (froa compliance evaluation sampling only)
(EOT)  Editting: No known edit procedures exist.
(CBY)  Data collected by: Self reporting Permittees ;State agency
    perform compliance evaluation inspection compliance sampling
    inspections. ^Regional office Surveillance and Analysis Divisions
(ABY)  Data analyzed by: Self reporting Permittees
    State agency state environmental protection agencies
    Regional office Surveillance and Analysis Divisions
(IDL)  Laboratory identification: HO
(PR1)  Primary purpose of data collection: Compliance or enforcement
(PR2)  Secondary purpose of data collection: Program evaluation
(AUT)  Authorization for data collection: Statutory authorization is P
    L 92-500 as amended. Section 309 (Clean Hater  Act-CHA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting  forms:
    QQ
(REP)  Form of available reports and outputs of data base: Unpublished
    reports Quarterly Mon-Compliance Evaluation/Report
(ROS)  Number of regular users of data base: 1 office
(USR)  Current regular users of data base: EPA regional offices
(CNF)  Confidentiality of data and limits on access: No limits on
    access to data
(DLC)  Primary physical location of data: Regional office
(DST)  Form of data storage: Original form (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: yes
(DPDT)  Frequency of data base master file up-date: Monthly
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    Permit Compliance System (PCS);    National Pollutant Discharge
    Elimination System (NPDES);    Grants Information and Control
    System (GICS), ENF-Q    (Region V-report on violations and actions)
(ODB)  Other pertinent non-EPA data bases: State maintained National
    Pollutant Discharge Elimination System (NPDES) permit  and
    compliance files for minor discharges
(CMP)  Completion of form:
    S.K. Swanson
    OFC: EPA/Region V/Compliance Section
    AD: 230 So. Dearborn Chicago, IL 60604
    PH: (312)886-6708
(OF)  Date of form completion: 01-06-83
(NMAT)  Number of substances represented in data base: 11
(NCAS)  Number of CAS registry numbers in data base: 2
(MAT)  Substances represented in data base:
    acidity                              fecal collform
    alkalinity                           nitrogen<7727-37-9>
    dissolved oxygen                     oil and grease
    dissolved solids                     oxygen demand


                             1162

-------
                             Accession lo.  9055000907     (cont)

    PH                                   suspended solids
    phosphorus<7723-14-0>
(CAS)  CAS registry numbers of substances Included in data base* 7727*37
    -9; 7723-14-0
(CUM)  Contact nane(s): Leder,A.  *    Led«r,A.
(ROR)  Responsible Organization: Region f. Mater Nanagesient Division.
                             1163

-------
                             Accession Mo.   9057000002


-------
                             Accession Mo.   9057000002     (cont)

    Contractor lab University of Nebraska
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection:  Compliance or enforcement
(AUT)  Authorization for data collection: Ho statutory requirement:
    Data collection requirement is    to determine whether health
    complaints could be linked to a specific  incinerator*
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base: Published
    paper & raw data
(IfUS)  Number of regular users of data base: 6
(USR)  Current regular users of data base:  EPA headquarter offices
    EPA regional offices
    States
    University of Illinois
(CNF)  Confidentiality of data and limits on access: No limits on
    access to data
(DLC)  Primary physical location of data: Regional office ;State agency
(DST)  Form of data storage: Original form (hardcopy* readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: no
(UPDT)  Frequency of data base master file up-date: Other one time
    sampling program only
(CMP)  Completion of form:
    Carolyn Hesse
    OFC: EPA/Region ?/Toxic Substances Office
    AD: 230 S. Dearborn St. Chicago, IL 60604
    PH: (312)353-2291
(DF)  Date of form completion: 01-27-83
(IIMAT)  Number of substances represented in data base: 23
(NCAS)  Number of CAS registry numbers in data base: 14
(MAT)  Substances represented in data base:
    aluminum<7429-90-5>                  molybdenum and compounds
    antimony<7440-36-0>                     <7439-98-7>
    arbenzodioxin(s)                     organic 6C/MS scans for signified
    arsenic<7440-38-2>                      t organics
    broffide                              palladium
    cadmium<7440-43-9>                   polybrominated biphenyls  (PBBs)
    calcium                              polychlorinated biphenyls (PCBsJ
    chloride                             silver<7440-22-4>
    chrcmium<7440-47-3>                  sodium<7440-23-5>
    copper<7 440-50-8>                    tIn
    dibenzofuran<132-64-9>               titanium<7440-32-6>
    lead<7439-92-l>                      zinc<7440-66-6>
    mercury<7439-97-6>
(CAS)  CAS registry numbers of substances included in data base: 7429-90
    -5; 7440-36-0; 7440-38-2; 7440-43-9;   7440-47-3; 7440-50-8;
    132-64-9; 7439-92-1; 7439-97-6; 7439-98-7;      7440-22-4;
    7440-23-5; 7440-32-6; 7440-66-6
(CNN)  Contact name(s): Hesse/C.
(COR)  Contact organization: Toxic Substance Office/ Region T
(ROR)  Responsible Organization: Region V.Air Management Division.


                             1165

-------
 Accession Ho.  9057000002     (cont)
1166

-------
                              Accession No.   9057000003

 (DQ)   Date of  Questionaire:  12-02-92
 (NAM)  Name of Data Base of  Model:  Hemlock,  Michigan Environmental
     Samples
 (ACR)  Acronym of Data Base  or  Model:  HEMLOCK
 (MED)  Kedia/Subject of Data Base  or Model:  Drinking water JGround
     water ;Sediment ;Soil ^Surface  water fish  from  rivers, bi Tissue
     fish, goose,  chicken, squirrel, deer, con.
 UBS)  Abstract/Overview of  Data Base  or Model: Data collection was a
     one tine study to determine if  the Hemlock, MI  area had been
     contaminated  yith toxic     substances.   Numerous samples Here
     collected  and analyzed for    a variety  of parameters.  This is not
     a continuous  program.
 (CTC)  CONTACTS:  Subject natter  Karl Breaer  (312) 353-2291;     EPA
     Office  Karl  Bremer  (312
 (DTP)  Type of data collection  or monitoring: Ambient data collection
 (STA)  Data Base  status:  Discontinued
 (GRP)  Groups  of  substances  represented in Data Base: 129 307 CHA ;41
     CWA potential criteria ;9 potential drinking Mater j   48 cancelled
    pesticides ;9 monitoring pesticides
 (NPP)  Non-pollutant  parameters included in  the data base: Health
    Effects Center for  Disease  Control  generated
 (OS)   Tine  period covered by data base: 10-00-79
 (TRM)  Termination of data collection:  Not applicable
 (FRQ)  Frequency  of data collection or  sampling: one time only
 (NOB)  Number  of  observations in data  base:  500 or more.(Estimated)
 (NED  Estimated  annual increase of observations in data base: 0.
 (INF)  Data base  includes: Summary aggregate observations
 (NTS)  Total number  of  stations or sources covered in data base:  (about
    /15.
 (NCS)   No.  stations  or  sources  currently originating/contributing data:
    V.
 (NOF)   Nuiiber  of  facilities covered in  data base (source monitoring):  1.
 (GEO)   Geographic  coverage of data base: County/smaller location
    Hemlock, Michigan area
 (LOC)   Data elements  identifying location of station or source include:
    State /County  ;Toun/tounship ;Street address
 (FAC)   Data elements  identifying facility include: Plant facility name
    ;PI ant location ^Parent corp name
 (CDE)   Pollutant identification data are: Oncoded
 (LIM)   Limitation/variation in data of which user should be aware:  Rone
 (DPR)  Data collect./anal, procedures conform to ORD guidelines:  Samplin
    g plan documented ^Analysis method documented
 (ANL)  Lab analysis based on EPA-approved or accepted methods? YES
 (A00)  Lab Audit:  Lab audit is satisfactory.
 (PRE)  Precision:  Precision and accuracy estimates exist but  are  not
    included in data base
 (EOT)  Editting: Edit procedures used but undocumented.
 (CBY)  Data collected by: Regional  office Surveillance  and Analysis
    Division

-------
                             Accession Mo.  9057000003     (cont)

    Nebraska; (fright State University
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collections Special study
(AOT)  Authorization for data collection: No statutory re quire sent:
    Data collection requirement is    Senate Coaaittee mandated special
    study in response to public complaints.
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base:  Report in
    document fora
(NOS)  Number of regular users of data base: 5 or »ore
(DSR)  Current regular users of data base: EPA regional offices
    local populace (toun Meeting)
(CNF)  Confidentiality of data and Halts on access: No Halts on
    access to data
(DLC)  Primary physical location of data: Regional office
(OST)  Fora of data storage: Original fora (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: Mo
(UPDT)  Frequency of data base aaster file up-dates Other data was
    gathered for a special study
(QDB)  other pertinent non-EPA data bases: Center for Disease Control
    conducted health study in conjunction with EPA's  environaental
    aonitoring in Hemlock, Michigan
(CMP)  Completion of fora:
    Carolyn Hesse
    OFC: EPA/Region V/Toxic Substances Office
    AD: 230 S. Dearborne St. Chicago, IL 60525
    PH: (312) 353-2291
(OF)  Date of fora completion: 01-27-83
(MHAT)  Number of substances represented in data base: 145
(IICAS)  Nuaber of CAS registry numbers In data base: 147
(MAT)  Substances represented in data base:
    l,l,l-trichloroethane<71-55-         2,4,6-trlchlorophenol<88-06-2>
       6>                                2,4,7,8-tetrachlorodibenzo-p-
    1,1,2, 2,-tetrachloroethane              dtoxin (tcdd)
       <79-34-5>                         2,4-dichlorophenol<120-83-2>
    l,l,2-trlchloroethane<79-00-5>       2,4-dimethylphenol<105-67-9>
    1, l-dichloroethane<75-34-3>          2,4-dinltrophenol<51-28-5>
    l,l-dlchloroethylene<75-35-4>        2,4-dlnitrotoluene<121-14-2>
    l,2,4,-trichlorobenzen«<120-82-l>    2,6-dinitrotoluene<606-20-2>
    l,2-dichlorobenzene<95-50*l>         2-chloroethylvlnyl ether<110-75-8>
    1,2-dichloroethane<107-06-2>         2-chloronaphthalene<91-58-7>
    l,2-dichloropropane<78-87-5>         2-chlorophenol<95-57-8>
    l,2-dlchloropropylene<563-S4-2>      2-nitrophenol<88-75-5>
    l,2-diph«jiylhydrazine<122-66-7>      3,3'-dichlorobenzldin«<91-94-l>
    1,2-trans-dichloroethylene           3,4-benzofluoranthene<205-99-2>
       <156-60-5>                        4,4'-ddd(p,p'td«)
    l,3-dichlorobenzene<541-73-l>        4,4'-dde(p,p'-ddx)<72-55-9>
    l/4-dichlorobenzene<106-46-7>        4,4'-ddt<50-29-3>
    2f 4^5-trlchlorophenoxyproplonlc      4/6-dinitro-o-cresol<534-52-l>
       acid (TP)<93-72-l>


                             1168

-------
                         Accession No.  9057000003
                  (cont)
4-broBiophenyl phenyl ether
   <101-55-3>
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nitrophenol<100-02-7>
acenaphthene<83-32-9>
acenaphthylene<208-96-8>
acetone<67-64-l>
acrolein<107-02-8>
acrylonitrile<107-13-l>
aldrin<309-00-2>
anthracene<120-12-7>
arsenic<7440-38-2>
benzene<71-43-2>
benzidine<92-87-5>
benzo(a)anthracene<56-55-3>
benzo(a)pyrene<50-32-8>
benzo(g,h,i)perylene<191-24-2>
benzo(k)fluoranthene<207-08-9>
berylliuin<7440-41-7>
bhc (lindane)-ga««a<58-89-9>
bhc-alpha<31 9-84-6>
bhc-beta<319-85-7>
bhc-delta<319-86-8>
biphenyl<92-52-4>
bis(2-chloroethoxy)nethane
bis(2-chloroethyl)ether
bis (2-chloroisopropyl) ether
   <39638-32-9>
bis(2-ethylhexyl)phthalate
bis(chloromethyl)ether<542-88-l>
bro«ine<7726-95-6>
broffio«Bethane<74-83-9>
butyl benzyl phthalate<85-68-7>
cadniuB<7440-43-9>
carbon tetrachloride<56-23-5>
chlordane<57-74-9>
chl orine<778?-50-5>
chlorobenzene
chlorodibr omo0ethane
chloroethane<75-00-3>
chloroform<67-66-3>
chloroaethane<74-87-3>
chrysene<218-01-9>
copper <7440-50-8>
cyaride<57-12-5>
dene ton< 8065-48- 3>
di-n-butyl phthalate<84-74-2>
di-n-octyl phthalate<117-84-0>
dlalkyl ethers
d Ibenzo (a, h)anthracene<53-70-3 >
dibenzofuran<132-64-9>
dichlorobroBoaethane<75-27-4>
dichlorodifluoro«ethane<75-71-8>
dichloro«ethane<75-09-2>
dieldrin<60-57-l>
diethyl phthalate<84-66-2>
dimethyl phthalate<131~ll-3>
diphenyl ether<101-84-8>
endosulfan sulfate<1031-07-8>
endosulfan-alpha<959-98-8>
endosulfan-beta<33213-65-9>
endrin aldehyde<7421-93-4>
endrin<72-20-8>
ethylbenzene<100-41-4>
£luoranthene<206-44-0>
t luor ene< 86-7 3-7>
fluorides
heptachlor epoxide<1024-57-3>
heptachlor<76-44-8>
hexachlorobenzene< 118-7 4-l>
hexachlorobutadiene<87-68-3>
hexachlorocyclopentadiene<77-47-4>
hex achloroe thane< 67-7 2-l>
indeno (l/2/3-cd)pyrene
isophorone<78-59-l>
kepone<143-50-0>
lead<7439-92-l>
•alathion<121-75-5>
»ercury<7439-97-6>
methoxychlor<72-43-5>
•ethyl ethyl ketone (nek)<78-93-3>
airex<2385-85-5>
n-alkanes clO-c30
n-nitrosodi-n-propylamine
   <621-64-7>
n-nitrosodiBethyla«ine<62-75-9>
n-ni trosodiphenyl aaine< 86-30-6>
naphthalene<91-20-3>
nitriloacetates
nitrobenzene<98-95-3>
p-chloro-«-cresoi<59-50-7>
parathion<56-38-2>
pcb-1016 (arochlor 1016)
   <12674-ll-2>
pcb-1221 (arochlor 1221)
   <1 11 04-28- 2>
pcb-1232 (arochlor 1232)
pcb-1242 (arochlor 1242)
   <53469-21-9>
                         1169

-------
                             Accession Ho.   9057000003     (cont)

    pcb-1248 (arochlor 1248)             sodium and compounds<7440-23-5>
       <12672-29-6>                      styrene<100-42-5>
    pcb-1254 (arochlor 1254)             terpencs
       <11097-69-l>                      tetrachloroethylene
    pcb-1260 (arochlor 1260)             thalliu«<7440-28-0>
       <11096-82-5>                      toluene<108-88-3>
    pentac hloropheno1< 87-86-5>           toxaphene<8001-35-2>
    phenanthrene<85-01-8>                tribromoaethane<75-25-2>
    phenol<108-95-2>                     trichloroethylene<79-01-6>
    polychlorinated biphenyls (PCBs)     trichlorofluoro«ethane<75-69-4>
    pyrene<129-00-0>                     vinyl chloride<75-01-4>
    silver<7440-22-4>
(CAS)  CAS registry numbers of substances included in data base: 71-55-6
    ; 79-34-5; 79-00-5? 75-34-3; 75-35-4;       120-82-1; 95-50-1;
    107-06-2; 78-87-5; 563-54-2; 122-66-7; 156-60-5;   541-73-1;
    106-46-7; 93-72-1; 88-06-2; 120-83-2; 105-67-9; 51-28-5;
    121-14-2; 606-20-2; 110-75-8; 91-58-7; 95-57-8; 88-75-5; 91-94-1;
    205-99-2; 72-55-9; 50-29-3; 534-52-1; 101-55-3; 7005-72-3;
    100-02-7;       83-32-9; 208-96-8; 67-64-1; 107-02-8; 107-13-1;
    309-00-2; 120-12-7;   7440-38-2; 71-43-2; 92-87-5; 56-55-3;
    50-32-8; 191-24-2; 207-08-9;    7440-41-7; 58-89-9; 319-84-6;
    319-85-7; 319-86-8; 92-52-4; 111-91-1;       111-44-4; 39638-32-9;
    117-81-7; 542-88-1; 7726-95-6; 74-83-9;    85-68-7; 7440-43-9;
    56-23-5; 57-74-9; 7782-50-5; 108-90-7; 124-48-1;       75-00-3;
    67-66-3; 74-87-3; 218-01-9; 7440-50-8; 57-12-5; 8065-48-3;
    84-74-2; 117-84-0; 53-70-3; 132-64-9; 75-27-4; 75-71-8; 75-09-2;
    60-57-1; 84-66-2; 131-11-3; 101-84-8; 1031-07-8; 959-98-8;
    33213-65-9; 7421-93-4; 72-20-8; 100-41-4; 206-44-0; 86-73-7;
    1024-57-3; 76-44-8; 118-74-1; 87-68-3; 77-47-4; 67-72-1; 193-39-5;
    78-59-1; 143-50-0; 7439-92-1; 121-75-5; 7439-97-6; 72-43-5;
    78-93-3;       2385-85-5; 621-64-7; 62-75-9; 86-30-6; 91-20-3;
    98-95-3; 59-50-7;     56-38-2; 12674-11-2; 11104-28-2; 11141-16-5;
    53469-21-9; 12672-29-6;       11097-69-1; 11096-82-5; 87-86-5;
    85-01-8; 108-95-2; 129-00-0;    7440-22-4; 7440-23-5; 100-42-5;
    127-18-4; 7440-28-0; 108-88-3;   8001-35-2; 75-25-2; 79-01-6;
    75-69-4; 75-01-4
(CRN)  Contact nane(s): Brener,K. ;    Bre»er>K.
(ROR)  Responsible Organization: Region V.Air Management Division.
                             1170

-------
                             Accession No.   9057000004


-------
                             Accession No*   9057000004     (cont)

COSR)  Current regular users of data base:  EPA regional offices
    individual gardeners
(CNF)  Confidentiality of data and liaits on access:  No Units on
    access to data
(DLC)  prinary physical location of data: Regional office
(OST)  Forn of data storage: Manual sumary of data
COAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: No
(UPDT)  Frequency of data base naster file  up-date: Other Seasonal-Most
    calls in spring
(CMP)  Completion of fora:
    Carolyn Hesse
    QFC: EPA/Region V/Toxic Substances Office
    AD: 230 S. Dearborn St. Chicago, IL 60604
    PH: <312) 353-2291
(OF)  Date of forn completion: 01-27-83
(NMAT)  Nunber of substances represented in data base: 2
CNCAS)  Nunber of CAS registry nunbers in data base:  1
(MAT)  Substances represented in data base:
    cadniun<7440-43-9>                   ph
(CAS)  CAS registry nunbers of substances included in data base: 7440-43
    -9
(CNN)  Contact nane(s): Hesse,C«
(COR)  Contact organization: Region ?/ Toxic Substances Office
(RQR)  Responsible Organization: Region V.Air Managenent Division.
                             1172

-------
                             Accession Mo.   9065000903

(DQ)  Date of Questionalre:  12-02-82
(NAM)  Name of Data Base of Model:  Discharge Monitoring  Report Files
(ACR)  Acronym of Data Base or Model:  DMR
(MED)  Media/Subject of Data Base or Model:  Effluents point  source
    effluents
(ABS)  Abstract/Overvien of Data Base  or Model:  This data base contains
    all of the Discharge Monitoring Reports  submitted to the
    Enforcement Division    by National Pollutant Discharge  Elimination
    Systems    (NPDES) permittees in Region  YI.   It is  a manual  (non-
    automated) data base.  It covers all conventional Hater
    pollutants, as well as other pollutants  for  the  petrochemical  and
    organic chemical Industries (estimated    20-30% of  permittees).
(CTC)  CONTACTS: Subject matter   Glenn E. Bingham  (214) 767-2765;
    Computer-related  Glenn
(DTP)  Type of data collection or monitoring: Point source data
    collection industrial and municipal
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented in Data Base: 11 conventional

(NPP)  Kon-pollutant parameters Included in the data base: Collection
    method Compliance data ^Concentration measures ^Discharge points ;
    Flow rates ;Location ;Physical data ;Salinity ;Sampling date ;
    Site description ;Temperature jTest/analysis method ;Yolume/mass
    measures
(DS)  Time period covered by data base: 03-01-73 TO 08-30-80
(TRM)  Termination of data collection: Mot anticipated
(FRQ)  Frequency of data collection or sampling: dally ;Meekly >monthly
(NOB)  Number of observations in data base:  4000000 or more.(Estimated)
CNEI)  Estimated annual  increase of observations in data base: 1000000
     (or more.)
(INF)  Data base includes: Ran data/observations ^Summary aggregate
     observations
(NTS)  Total  number of stations or sources covered in data base: 538o.
(MCS)  No. stations or sources currently originating/contributing data:
     4567.                                                       f  %  __
(NOF)  Number of facilities  covered in data base (source monitoring): 53
     86.
(GEO)  Geographic coverage of data base: Selected  federal region Region
     VI
(LOC)  Data  elements  identifying location of  station or  source include:
     State  ;County  >CUy  ;Town/tounshlp jStreet  address >description of
     discharge  loc
(FAC)  Data  elements  identifying facility include: Plant facility name
     ;Plant location ;Parent  corp name ;NPDES
(CDE)  Pollutant identification  data  are: Oneoded
(LIM)  Limitation/variation in  data of Mhich  user  should be aware: Data
     is permittee supplied and,  in  most  cases,   is  unverified^overs
     both  major  and  minor discharges.
(DPR)  Data  collect./anal.  procedures conform to ORD guidelines: Samplin
     g plan documented ;Collection  method documented ^Analysis method
     document QA procedures  documented

-------
                             Accession No.   9065000903      (cont)


    fecal coliform                       suspended solids
    nitrogen<7727-37-9>
(CAS)  CAS registry numbers of substances included in data base: 7727-37
    -9; 7723-14-0
(CHH)  Contact name(s):  Bingham,G.E.   ;    Bingham,G.E.
(COR)  Contact organization: Enforcement Division, Region ?I
(ROR)  Responsible Organization: Region IT.Hater Management Division.
                             1174

-------
                             Accession No.   9067000502

(DQ)  Date of Questionalre: 12-02-82
(NAN)  Name of Data Base of Model:  Discharge Monitoring Report  Piles
(ACR)  Acronym of Data Base or Model: DMR PCS
(MED)  Kedia/Subject of Data Base or Model:  Effluents ; Runoff  Rainfall
(ABS)  Abstract/ Over view of Data Base or Model:  This au ton a ted  data
    base contains all DMRs   submitted to the Water Mgnst Division by
    NPDES permittees in Region 6. It contains major permittees  and
    selected minors*  Facilities not     included in data base  are in
    manual system - DMRs on file.
(CTC)  CONTACTS: Subject matter  Robert Stender, Chief, Admin.
    Section   767-9929 ; Computer-related Glenn Bingham, Computer
    Spec.  767-4379  ;  EPA Office  Robert Stender, Water Mgmt. Div.
    767-9929
(DTP)  Type of data collection or monitoring: Point Source
(STA)  Data Base status: Presently Operational/Ongoing
(GRP)  Groups of substances represented in Data  Base: 129 307 CHA ; 11
    conventional water
(NPP)  Non-pollutant parameters included in  the  data base:  collection
    method or instrument ; compliance data ;    concentration measures
    ; discharge points ; fIon rates ; geographic   subdivisions ;
    industry ; inspection data ; location ;  physical data   ?
    precipitation ; salinity > sampling date ; site description ;
    temperature } test/analysis method ; treatment devices  or processes
    / volume/mass measures
(DS)  Time period covered by data base: 01-73 TO 09-82
(TRM)  Termination of data collection: Not Anticipated
(FRQ)  Frequency of data collection or sampling: Ongoing:Daily  ;
    Ongoing:Weekly ; Ongoing:Monthly   ; Ongoing:guarterly
(NOB)  Number of observations in data base:  5248800(Sstimated to  Date)
(NED  Estimated annual increase of observations in data base:  583200
(INF)  Data base includes: Aggregate or summary  observations
(NTS)  Total number of stations or sources covered in data  base:  6698
(NCS)  No. stations or sources currently originating/contributing data:
    6698
(NOF)  Number of facilities covered in data  base (source monitoring): 66
    98
(GEO)  Geographic coverage of data base: Single  or selected Federal
    Regions - Region 6
(LOC)  Data elements identifying location of station or source  include:
    State ; county ; city ; town/township ;  street    address ; Other-
    description of discharge locations
CFAC)  Data elements identifying facility include: plant or facility
    name ; plant location ; parent  corporation-name / street address >
    sic code ; duns number ; NPDES number
(CDS)  Pollutant identification data are: coded, storet parameter codes
    ; uncoded for DRMs  not in PCS
(LiM)  Limitation/variation in data of vhich user should be aware: Data
    is permittee supplied and quality control    numbers may vary.
(DPR)  Data collect./anal, procedures conform to GRD guidelines:  YES
(AND  Lab analysis based on EPA-approved or accepted methods?  YES
(EOT)  Editting: partial - major DMRs in QA  program
(CBY)  Data collected by: self-reporting permittee


                             1175

-------
                             Accession No.  9067000502     (cont)

(ABY)  Data analyzed by: self-reporting ; contractor lab

-------
                         Accession No.  9067000502
                  Ccont)
2-chloronaphthalene
2-chlorophenol
chromium
4- ehlorophenyl phenyl ether
chrysene
copper
cyanide
4,4*-DDD(p,p--TDE)
4,4*-DDE{p,p*-DDX)
4,4'-DDT
dibenzoC a/hJ anthracene
di-n-butyl    phthalate
It2-dichlorobenzene
1/3-dichlorobenzene
1* 4-dichlorobenzene
3,3 '-dichlorobenzidine
dichlorobromomethane
dichlorodifluoromethane
1,1-dichloroethane
1,2-dichloroethane
1,1-dichloroethylene
1^2-trans- dichloroethylene
It4-dichlorophenol
I/2-dichloropropane
1,2-dichloropropylene
(I/3-dichloropropane)
dieldrin
diethyl phthalate
1,4-dimethylphenol
dimethyl phthalate
4/6-dinitro-o-cresol
If4-dinitrophenol
2,4-   dinitrotoluene
2,6-dinitrotoluene
di-n-octyl phthalate
1/2- diphenylhydrazine
endosulfan-alpha
endosulfan-beta
endosulfan sulfate
endrin
endrin aldehyde
ethylbenzene
fluoranthene
fluorene
heptachlor
heptachlor epoxide
hexachlorobenzene
hexachlorobutadiene
hexachlorocyclopentadiene
hexachloroethane
indeno (l,2,3-cd)pyrene
isophorone
lead
mercury
aethyl bromide(bromonethane)
methyl chloride  (ch1oroaethane)
nethylene chloride(dichloroaethane
   )
naphthalene
nickel
nitrobenzene
2-nitrophenol
4-nitrophenol
n-nitrosodinethylanine
n-nitrosodiphenylasine
n-nitrosodi-n-propylaaine
pentachlorophenol
phenanthrene
phenol
PCB-1016(arochlor 1016)
PCB-1221(arochlor 1221)
PCB-1232(arochlor 1232)
PCB-1242(arochlor(1242)
PCB-1248(arochlor     1248)
PCB-1254(arochlor 1254)
PC8-1260(arochlor 1260)
pyrene
selenium
silver
2/4,7,8-tetrachlorodibenzo-p-
   dioxin(TCDD)
1/1,2,2-tetrachloro  ethane
tetrachloroethylene
thallium
toulene
toxaphene
1/2,4-trichlor  obenzene
If If1-trichloroethane
1,1,2-trichloroethane
trichloroethylene
trichlorofluoromethane
2,4,6-trichlorophenol
vinyl chloride
zinc
acidity
alkalinity
dissolved oxygen
dissolved solids
fecal coliform
nitrogen  and compounds
oil & grease
oxygen demand
PH
phosphorus and compounds
                         1177

-------
                             Accession lo.  9067000502     (cont)

    suspended solids                     PCBs
    aluBinun and compounds               bar lira
    avaonla                              cadaius
    fluorides                            chroBiuB
    Iron and    compounds                coppar
    aolybdanuB and compounds             iron
    nltratas/nltrltas                    laad
    styrna                               aarcury
    vanadliM                             nlckal
    aldrln                               sallaniim
    dlaldrln                             vanadlua
    andrln
CCiN)  Contact naaaCs)* Sta«dar,R.   »   Btngha^C.
(COR)  Contact organization: Vatar laiisgaaant Division
(ROR)  Rasponslbla Organizations Ragion YI.Hatar Managaaont Division,
                            1178

-------
                             Accession Ho.   9067000503

(DQ)  Date of Questionaire: 12-02-82
(RAH)  Name of Data Base of Model: STORET:  Storage and Retrieval of
    W.Q. Data
(ACR)  Acronym of Data Base or Model: STQRET
(MED)  Media/Subject of Data Base or Model: Drinking water  raw ;
    Effluents (NPDES) } Ground   water ; Runoff ; Sedinent  ;  Surface
    water (all) ; Tissue (fish)
(ABS)  Abstract/Overview of Data Base or Model: Mostly aabient surface
    water quality observations sone sediment and tissue residue
    observations occasional ground water and fff effluent and runoff
    observations.  Observation can be once    in tile or composite over
    space as time.
(CTC)  CONTACTS: Subject Batter   Charles S. Conger   8-382-7220 ;
    Computer-related   Charles S. Conger   8-382-7220 } EPA Office
    Charles S. Conger   8-382-7220
(DTP)  Type of data collection or monitoring: Ambient
(STA)  Data Base status: Presently Operational/Ongoing
(GRP)  Groups of substances represented in Data Base: 129 307 CHA EPA
    Lab except asbestos & 2,3/7,8-TCDD      ; 11 conventional wate;  41
    CHA potential criteria ; 21 drinking     water standards
(NPP)  Non-pollutant parameters included in the data base:  Biological
    data ; chemical data > concentration   measures ; discharge points
    ; elevation } flow rates ; geographic     subdivisions  ;  location ;
    physical data ; political data > political  subdivision ; salinity
    ; sampling date ; site description > temperature
(DS)  Time period covered by data base: 01-01 TO 99-99
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: Gne tine only ;
    ongoing:weekly ; ongoing:monthly   } ongoing:quarterly  ;
    ongoing:semi-annually ; ongoing:annually ;     ongoing:as needed
(NOB)  Number of observations in data base: 60,000(£stimated  to date)
(NEI)  Estimated annual increase of observations in data base: 12,000
(INF)  Data base includes: Raw data/observations } aggregate  or summary
    observations
(NTS)  Total number of stations or sources covered in data  base: 1000
    state only
(NCS)  No* stations or sources currently originating/contributing data:
    1000
(NOF)  Number of facilities covered in data base (source monitoring): ?
(GEO)  Geographic coverage of data base: National
(LOC)  Data elements identifying location of station or source include:
    State ; county ; latitude and longitude, UTM, or  other coordinates
    ; Other- Agency code, basin, HRC Hydrologic Unit.
(FAC)  Data elements identifying facility include: Other- Depends who
    stores site.
(CDE)  Pollutant identification data are: coded, storet parameter codes
(LIM)  Limitation/variation in data of which user should be aware: M/0
    contacting collecting agency use - should not utilize data for more
    than indicated studies
(DPR)  Data collect./anal, procedures conform to QRD guidelines: YES
    State/EPA Data only
(AND  Lab analysis based on EPA-approved or accepted methods? YES


                             1179

-------
                             Accession No.  9067000503     (cont)

    State/EPA Data only
(AUD)  Lab Audit: Partial varys
(PRE)  Precision: None available
(EOT)  Editting: Partial
(CBY)  Data collected by: state agency, ADPC4E, LNDR, NMEID, DSHD, TDUR
    •f    regional office S&A Lab ; Other Federal Agencies, OSGS,
    CDE-Districts,     BLM, USFS, USER
(ABY)  Data analyzed by: State agency, ADDC&E, LDNR, MM, SLS ; Regional
    office, S&A Lab Contractor Lab, Several ; Other Federal agencies,
    USGS, CQE, 6LN, USFS, USBR
(IDL)  Laboratory identification: NO

-------
                            Accession No.  9067000503
                   (cont)
    •ercury
    nickel
    pentachlorophenol
    PCB~1016(arochlor  1016)
    PCB-1221(arochlor  1221)
    PCB-1232(arochlor  1232)
    PCB-1242(arochlor      1242)
    PCB-1248(arochlor  1248)
    PCB-1254(arochlor  1254)
    PCB-1260(   arochlor 1260)
    selenium
    silver
    toxaphene
    zinc
    alkalinity
    dissolved     oxygen
    dissolved  solids
    fecal colifom
    nitrogen and compounds
    oil     &  grease
    oxygen demand
    PH
    phosphorus and compounds
    suspended  solids
    ammonia
(CNN)  Contact name(s): Conger,C.s.   >
(COR)  Contact organization: Charles S.
(ROR)  Responsible Organization:  Region
 chlorine
 2,4-0
 fluorides
 iron and compounds
 •ethoxychlor
 nitrates/nitrites
 phosphorus and compounds
 sulfates
 2,4,5-TP
 arsenic
 cadniua
 chromium
 2,4-D
 endrin
 lead
 llndane
 •ercury
 •ethoxycblor
 nitrate
 selenium
 silver
 silvex
 toxaphene
 turbidity

Conger/C.S.  ;  Conger,C.S.
Conger
TI.Hater Management Division.
                             1181

-------
                             Accession No.   9067000504

(DQ)  Date of Questionaire: 12-02-82
(MAM)  Mane of Data Base of Model:  National Emissions Data System

-------
                             Accession No.   9067000504     (cent)

    YES:  OMB form number  20000022
 (REP)   Form of available  reports and outputs of data base:  Publications
    -  Refer to Hafl NEDs Description    Regional Office doesn't print
    reports ;  Printouts on request
 (HOS)   Number of regular  users of data base: 11, 10 Regional Offices &
    Hdqtrs.
 (BSR)   Current regular users of data base:  EPA Headquarters Offices,
    DAQPS,  RTP, NC ;   EPA Regional Offices ; Other Federal Agencies ;
    Other-   Consultants
 (CNF)   Confidentiality of data and Units on access: Sooe data
    confidential/ limits  on access both     uithin EPA and  outside the
    agency
 (DLC)   Primary physical location of data: NCC/RTP
 (DST)   Form of data storage: Magnetic Disc
 (OAC)   Type of data access: Refer to National Report
 (CH6)   Direct charge for  non-EPA use: No outside use/access permitted,
    could be B for   centralized ETS Ststera; none to date in Region 6.
 (UPDT)  Frequency of data base master file  up-date: Annually
 (RSS)   Related EPA automated systems uhich  use data base: Refer to
    National NEDS Description
 (RDBEPA)  Related EPA data bases used in conjunction with this data base
    Refer to National NEDS Description
 (RDB)   Non-EPA data bases used in conjunction with this data base: Refer
    to National NEDS Description
 (CMP)   Completion of form: # Ruth Tatorafc  OFC: 6#ES-SA Region 6£   AD:
    6ES-SA  EPA Region 6,  1201 Elm, Dallas,  TX  75270$  PH:  (214)
    767-9772$
 (DP)  Date  of form completion: 01-19-83
 (MMAT)  Number of substances represented in data base: 7
 (NCAS)  Number of CAS registry numbers in data base: 0005
(MAT)   Substances represented in data base:
    Carbon  monoxide <630-08-0>           Ozone <10028-15-6>
    Hydrocarbons                         Sulfur   dioxide <7446-09-5>
    Lead <7439-92-l>                     Total suspended particulates
    Nitrogen dioxide <101C2-44-0>
(CAS)   CAS  registry numbers of substances included in data  base: 630-08-
    0; 7439-92-1; 10102-44-0; 10028-15-6;       7446-09-5
(CNH)   Contact name(s): Tatom,R.  ;  Smiley,V.
(COR)   Contact organization: Environmental  Analysis Section 6ES-SA
(ROR)   Responsible Organization: Region VI.Mater Management Division.
                             1183

-------
                             Accession No.   9067000505

(DQ)  Date of Questionaire:  12-02-82
(NAN)  Name of Data Base of  Model:  Storage  and Retrieval  of  Aerometric
    Data
(ACR)  Acronym of Data Base  or Model:  SAROAD
(MED)  Media/Subject of Data Base or Model:  Air
(ABS)  Abstract/Overview of  Data Base  or Model: Refer to  Description  of
    National System
(CTC)  CONTACTS: Subject Matter  Ruth  Tatorn  Data Manager <214)
    767-97*72  ;  Computer-related  Pat Nelson  Computer Technician
    (214) 767-3542  ;  EPA Office  Environmental Analysis Section
    6ES-SaA  (214) 767-9772
(DTP)  Type of data collection or Monitoring: Anbient
(STA)  Data Base status: Presently Operational/Ongoing
(GRP)  Groups of substances represented in  Data Base: 7 criteria  NAAQS
    ; 15 metals } other - consult    SAROAD FARM FILE
(MPP)  Non-pollutant parameters included in the data base: Collection
    •ethod or instrument ; concentration   measures ; elevation ;
    physical data ; political subdivisions  ;  population  demographics >
    precipitation ; sampling date ; site   description ;  temperature  ;
    test/analysis method / volume/mass   measures ; wind  direction  >
    Hind velocity
CDS)  Time period covered by data base: 01-59 TO 09-82
(TRM)  Termination of data collection: Not  anticipated
(FRQ)  Frequency of data collection or sampling: Ongoing:hourly ;
    ongoing: daily
(MCA)  Number of observations in data base: Unknown
(NED  Estimated annual increase of observations in data  base: Unknown
(INF)  Data base Includes: Ran data/observations > aggregate or summary
    observations } reference data or citations
(ITS)  Total number of stations or sources covered in data base:  Unknown
(NCS)  No. stations or sources currently originating/contributing data:
    52 States & territories
(•OF)  Number of facilities covered in data base (source monitoring): Un
    known
(GEO)  Geographic coverage of data base: National
(LOC)  Data elements identifying location of station or source include:
    State ; county ; SMSA (Standard Metropolitan Statistical Area)  ;
    city ; town/township ; street address >  latitude  and longitude/
    UTM, or other coordinates ; individual project identifier
(CDS)  pollutant identification data are: Coded, Storet parameter codes
(OPR)  Data collect./anal, procedures conform  to ORD guidelines: YES
(AIL)  Lab analysis based on EPA-approved or accepted methods? YES
(AOD)  Lab Audit: NO
(PRE)  Precision: Partial
(EOT)  Editting: YES,  documented edits
(CBY)  Data collected  by: Local agency J State agency ; Other Federal
    Agency ;    EPA Headquarters } other
(ABY)  Data  analyzed by: Local  agency  ;  State  agency ; Other Federal
     Agency ;    EPA Headquarters ; other
(IDL)  Laboratory  identification: YES
(PR1)  Primary  purpose of data  collection:
    9067000505   40


                              1184

-------
                             Accession No.   9067000505     (cont)

(AUT)  Authorization for data collection: YES, citation 40CFR
(OMB)  Data collected/submitted using OHB-approved EPA reporting forms:
    YES, multiple forms
(REP)  Form of available reports and outputs of data base:  Publications,
    Refer to Nat'l Description Region   6 has not published SAROAD
    Reports ;  Printouts on request ; microfilm
(NUS)  Number of regular users of data base: 11, 10 Regional Offices
    and Rdgtrs.
(OSR)  Current regular users of data base:  EPA Headquarters Offices-
    OAQPS,  RfP, NC ; EPA    Regional Offices ; Other Federal Agencies ;
    States  ; Other- Consultants
(CNF)  Confidentiality of data and Units on access: None
(DLC)  Primary physical location of data: RCC/RTP
(OST)  Form of data storage: Magnetic Disc
(DAC)  Type of data access: Refer to national Report
(CH6)  Direct charge for non-EPA use: No outside use/access permitted,
    could be B for   State Agency Users of  NCC; none to date in R-6.
(UPDT)   Frequency of data base master file  up-date: Quarterly
(RSS)  Related EPA automated systems which  use data base: Refer to
    Nat'l SAROAD Description
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    Refer to Nat'l SARQAD Description
(RDB)  Non-EPA data bases used in conjunction with this data base: Refer
    to  Nat'l SAROAD Description
(CNP)  Completion of form: f Ruth Tatomf  OFC: 6ES-SA Region 6#    AD:
    6ES-SA  EPA Region 6, 1201 Elm, Dallas,  TX  75270#  PH:  (2fl4)
    767-9772*
(DF) Date  of form completion: 01-19-83
(NMAT)   Number of substances represented in data base:  22
(HCAS)   Number of CAS registry numbers in data base: 20
(NAT)  Substances represented in data base:
    Carbon  monoxide <630-08-0>           Cobalt <7440-48-4>
    Hydrocarbons                         Copper <7440-50-8>
    Lead <7439-92-l>                     Iron <7439-89-6>
    Nitrogen dioxide <10102-44-0>        Lead <7439-92-l>
    Ozone <10028-15-6>                   Manganese and compounds
    Sulfur    dioxide <7446-09-5>            <7439-96-5>
    Total suspended particulates         Mercury <7439-97-6>
    Arsenic <7440-38-2>                  Nickel <7440-02-0>
    Barium  <7440-39-3>                   Selenium <7782-49-2>
    Beryllium <7440-41-7>                Titanium <7440-32-6>
    Cadmium <7440-43-9>                  Vanadium <7440-62-2>
    Chromium <7440-47-3>
(CAS)  CAS  registry numbers of substances included in data  base:  630-08
    0;  7439-92-1; 10102-44-0; 10028-15-6;       7446-09-5;  7440-38-2;
    7440-39-3; 7440-41-7; 7440-43-9; 7440-47-3;     7440-48-4;
    7440-50-8; 7439-89-6; 7439-92-1; 7439-96-5; 7439-97-6;
    7440-02-0; 7782-49-2; 7440-32-6; 7440-62-2
(CNM)  Contact nane(s): Tatom,R.  ;  Nelson,P.
(COR)  Contact organization: Environmental  Analysis Section 6ES-SA
(ROR)  Responsible Organization: Region VI.Water Management Division.
                             1185

-------
                             Accession Ho*  9075000901

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Consolidated Permits
    Program-Application Fora l,2b*2c
(ACR)  Acronyn of Data Base or Model: Hone
(MED)  Media/Subject of Data Base or Model:  Effluents point
    soutces-nonmunicipal (industrial)
(ABS)  Abstract/Overview of Data Base or Model: National Pollutant
    Discharge Elimination Systen   (HPDES) application fora indicates
    data on pollutants  contained in wastewater discharges.  Data is
    currently Manual-Hill be automated in Permit Compliance System II
    (PCS II) or in the system for Consolidated Permitting  and
    Enforcement (SCOPE)
(CTC)  CONTACTS: Subject matter Carl f. Blomgren (816)374-2281;
    Computer-related Paul Hirth (816)374-2018; EPA Office Carl f.
    Bloagren (816)374-2281
(DTP)  Type of data collection or monitoring: Point source data
    collection nonmunicipal (industrial)
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented In Data Base: 129 307 CHA ;11
    conventional water ;41 CtfA potential criteria
(NPP)  Non-pollutant parameters included in the data base: Chemical
    data Discharge points ;Flow rates ;Industry ^Location ;  Population
    density ;Site description ^Treatment devices
(DS)  Time period covered by data base: 06-01-80 TO 09*30-81
(TRM)  Termination of data collection: Not anticipated
(FRQ)  Frequency of data collection or sampling: one time only
(NOB)  Number of observations in data base:  1080.(Estimated)
(NEI)  Estimated annual increase of observations in data base: 21600.
(INF)  Data base includes: Reference data/citations
(NTS)  Total number of stations or sources covered in data base:  10
    (current )800(projected.)
(HCS)  No. stations or sources currently originating/contributing data:
    10.
(NOF)  Number of facilities covered in data base (source monitoring): 10
    (current )800 (projected.)
(GEO)  Geographic coverage of data base: Selected federal region  Region
    ¥11
(LOC)  Data elements identifying location of station or source include:
    State ;County ;City ;street address ^Coordinates Latitude and
    longitude
(FAC)  Data elements identifying facility include: Plant facility name
    ;Plant location ;Street address ;SIC code ;   Dun Bradstreet
    ;NPDES:  Hill change to Duns number
(COE)  Pollutant identification data are: Uncoded
(LIM)  Limitation/variation in data of which user should be aware: Case
    by case variation in parameters
(DPR)  Data collect./anal, procedures conform to ORD guidelines:  Analysi
    s method documented
(AND  Lab analysis based on EPA-approved or accepted methods? YES
(PRE)  Precision: Precision and accuracy estimates exist but  are  not
    included in data base    Edit during review of application and in
    development of permit.


                             1186

-------
                             Accession  Ho.   9075000901      (cont)

(CBJO   Data collected by:  Self  reporting ^Contractor lab for
    dischargers
(ABY)   Data analyzed by:  State  agency Environmental  Quality Agencies
    Regional office  Surveillance  and  Analysis  Division, Region VII.
    Contractor lab for dischargers
(IDL)   Laboratory  identification: NO
(AUT)   Authorization for  data collection:  Statutory  authorization  is P
    L  92-500 as  amended,  Section  402  (Clean  Water  Act-CWA)
(OMB)   Data collected/submitted using OMB-approved EPA  reporting forms:
    158-R-0173
(REP)   Form of available  reports  and  outputs of data base:  Printouts on
    request
(N0S)   Nuvber of regular  users  of data  base: 10
(OSR)   Current regular users  of data  base: EPA headquarter  offices
    Office of Hater  Enforcement
    EPA regional offices
    EPA laboratories
    States
(CNF)   Confidentiality of data  and  limits  on access: Limits on outside
    access for some  data
(DLC)   Primary physical location  of data:  State agency
(DST)   Form of data  storage:  Original form (hardcopy, readings)
(DAC)   Type of data  access:  Manually
(CHG)   Direct charge for  non-EPA  use: yes
(OPDT)  Frequency of data base  master file up-date:  Other on  as need
    basis-uhen additional information available
(RSS)   Related EPA automated  systems  Mhich use data  base: STORET
    (Storage and Retrieval of uater  Quality Data):   Permit compliance
    System (PCS)
(RDBEPA)  Related EPA data bases  used in conjunction with this data base
    other consolidated permit programs:     Resource Conservation  and
    Recovery Act (RCRA),  Underground  Injection Control (UIC), Point
    Source Discharges (PSD).
(CMP)   Completion of form:
    Carl V. Bloagren
    OFC: EPA/Region  Vll/Vater Management Division
    AD: 324 E. llth  St. Kansas  City,  MO 64106
    PH: (816) 374-2281
(DF)  Date of form completion:  01-14-83
(NMAT)  Number of substances  represented in  data base:  143
(MCAS)  Number of CAS registry  numbers  in  data base: 131
(MAT)   Substances represented in  data base:
    l,l,l-trichloroethane<71-55-         l,2-dichloropropane<78-87-5>
       6>                               l,2-dichloropropylene<563-54-2>
    1,1,2,2,-tetrachloroethane           l,2-diphenylhydrazine<122-66-7>
       <79-34-5>                        1,2-trans-dichloroethylene
    l,l,2-trichloroethane<79-00-5>           <156-60-5>
    Ifl~dichloroethane<75-34-3>         l,3-dichlorobenzene<541-73-l>
    l,l-dichloroethylene<75-35-4>       l,4-dichlorobenzene<106-46-7>
    l,2,4,-trichlorobenzene<120-82-l>   2,4,6-trichlorophenol<88-06-2>
    l,2-dichlorobenzene<95-50-l>         2,4,7,8-tetrachlorodibenzo-p-
    l,2-dichloroethane<107-06-2>             dioxin  (tcdd)


                             1187

-------
                         Accession Mo.  9075000901
                  (cont)
2f 4-dichlorophenol<120-83-2>
2, 4-diaethylphenol<105-67-9>
1f 4-dinitrophenol<51-28-5>
2,4-dinitrotoluene<121-14-2>
2f 6-dini tr ot o lue ne <6 06-20-2>
2-chioroethylvinyi ether<110-75-8>
2-chloronaph thalene< 91-58- 7>
2-chlorophenol<95-57-"8>
2-nitrophenol<88-75-5>
3,3'-dichlorobenzidine<91-94-l>
3f 4-benzof luoranthene<205-99-2>
4,4*-ddd(p,p*td«)
4, 4 *-dde(p,p •-ddx)<72-55-9>
4,4'-ddt<50-29-3>
4,6-dinitro-o-cresol<534-52-l>
4-bronophenyl phenyl ether
   < 10 1-55-3 >
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nitrophenol<100-02~7>
acenaphthene<83-32-9>
acenaphthylene<208-96-8>
acrolein<107-02-8>
ac ry lonit r 11 e< 107-13 -1>
aldrin<309-00-2>
a««onla<7664-41-7>
an thracene
antl»ony<7440-36-0>
arsenlc<7440-38-2>
asbestos<1332-21-4>
benzen«<71-43-2>
ben2ldlne<92-87-5>
benzof a) anthracene<56-55-3>
ben7o(a)pyrene<50-32-8>
benzo(g,h^i)perylene<191-24-2>
ben2o(k)fluorantbene<207-08-9>
berylllu»<7440-4l-7>
bhc (Hndane)-gaB«a<58-89-9>
bhc-alpha<319-84-6>
bhc-beta<319-85-7>
bhc-delta<319-86-8>
bis(2-chloroethoxy)«ethane
bls<2-chloroethyl)ether
bis(2-chioroisopropyl) ether
   <39638-32-9>
bis(2-ethylhexyl)phthalate
bis(chloronethyl)ether<542-88-l>
bromo«ethane<74-83-9>
butyl benzyl phthalate<85-68-7>
cad«ium<7440-43-9>
carbon tetrachlorlde<56-23-5>
chlordane<57-74-9>
chlorobenzene<108-90-7>
chlorodibroaonethane<124-48-l>
chloroethane<75-00-3>
chloroform<67-66-3>
chloroaethane<74-87-3>
chro»iua<7440-47-3>
chrysene<218-01-9>
copper< 7440-50-8>
cyanide<57-12-5>
di-n-butyl phthalate<84-74-2>
di-n-octyl phthalate<117-84-0>
dibenzo(a^h)anthracene<53-70-3>
dlchlorobrono«ethane<75-27-4>
dlchlorodifluoronethane<75-71-8>
dichloroiethane<75-09-2>
dleldrin<60-57-l>
diethyl phthalate<84-66-2>
dimethyl phthalate<131-ll-3>
dissolved solids
endosulfan sulfate<1031-07-8>
endosulfan-alpha<959-98-8>
endosulfan-beta<33213-65-9>
endrin aldehyde<7421-93-4>
endrin<72-20-8>
ethylbenzene<100-41-4>
fecal colIforn
fluoranthene<206-44-0>
fluorene<86-7 3-7>
fluorides
heptachlor epoxide<1024-57-3>
heptachlor<76-44-8>
hexachlorobenzene<118-7 4-l>
hexachlorobutadiene<87-68-3>
hexachlorocyclopentadiene<77-47-4>
hex achloro ethane< 67-7 2-l>
Indeno (1,2,3-cd)pyrene<193-39-5>
iron and compounds<7439-89-6>
lsophorone<78-59-l>
lead<7439-92-l>
•ercury<7439-97-6>
n-nltrosodl-n-propylamine
   <621-64-7>
n-nitrosodimethylaalne<62-75-9>
n-nltrosodiphenylanine< 86-30-6>
naphthalene<91-20-3>
nickel<7440-02-0>
nitrates/nitrites
nitrobenzene<98-95-3>
nitrogen<7727-37-9>
oil and grease
                         1188

-------
                             Accession Ho.   9075000901     (cont)

    oxygen demand                        phenanthrene<85-01-8>
    p-chloro-»-creso 1< 59-50-7>           p henoKlO 8-95-2>
    pH                                   phosphorus<7723-14-0>
    pcb-1016 (arochlor 1016)             pyrene<129-00-0>
       <12674-ll-2>                      seleniura<7782-49-2>
    pcb-1221 (arochlor 1221)             silver<7440-22-4>
       <11104-28-2>                      sulfates
    pcb-1232 (arochlor 1232)             sulfides
       <11141-16-5>                      suspended solids
    pcb-1242 (arochlor 1242)             tetrachloroethylene<127-18-4>
       <53469-21-9>                      thalliuin<7440-28-0>
    pcb-1248 (arochlor 1248)             toluene<108-88-3>
       <12672-29-6>                      toxaphene<8001-35-2>
    pcb-1254 (arochlor 1254)             tribro«o«ethane<75-25-2>
       <11097-69-l>                      trichloroethylene<79-01-6>
    pcb-1260 (arochlor 1260)             trlchlorofluoroaethane<75-69-4>
       <11096-82-5>                      vinyl chlorlde<75-01-4>
    pentachlorophenol<87-86-5>           zinc<7440-66-6>
(CAS)  CAS registry numbers of substances included in data  base: 71-55-6
    ; 79-34-5;  79-00-5; 75-34-3; 75-35-4;       120-82-1; 95-50-1;
    107-06-2; 78-87-5; 563-54-2; 122-66-7;  156-60-5;   541-73-1;
    106-46-7; 88-06-2; 120-83-2; 105-67-9;  51-28-5; 121-14-2;
    606-20-2; 110-75-8; 91-58-7; 95-57^8; 88-75-5; 91-94-1; 205-99-2;
    72-55-9; 50-29-3; 534-52-1; 101-55-3; 7005-72-3; 100-02-7; 83-32-9;
    208-96-8; 107-02-8; 107-13-1; 309-00-2; 7664-41-7; 120-12-7;
    7440-36-0;  7440-38-2; 1332-21-4; 71-43-2; 92-87-5; 56-55-3;
    50-32-8;       191-24-2; 207-08-9; 7440-41-7; 58-89-9;  319-84-6;
    319-85-7; 319-86-8;      111-91-1; 111-44-4; 39638-32-9; 117-81-7;
    542-88-1; 74-83-9; 85-68-7;      7440-43-9; 56-23-5; 57-74-9;
    108-90-7; 124-48-1; 75-00-3; 67-66-3;    74-87-3; 7440-47-3;
    218-01-9; 7440-50-3j 57-12-5; 84-74-2;  117-84-0;       53-70-3;
    75-27-4; 75-71-8; 75-09-2; 60-57^1; 84-66-2; 131-11-3;
    1031-07-8;  959-98-8; 33213-65-9; 7421-93-4; 72-20-8; 100-41-4;
    206-44-0; 86-73-7; 1024-57-3; 76-44-8;  118-74-1; 87-68-3; 77-47-4;
    67-72-1; 193-39-5; 7439-89-6; 78-59-1;  7439-92-1; 7439-97-6;
    621-64-7; 62-75-9; 86-30-6; 91-20-3; 7440-02-0; 98-95-3; 7727-37-9;
    59-50-7; 12674-11-2; 11104-28-2; 11141-16-5; 53469-21-9;
    12672-29-6;       11097-69-1; 11096-82-5; 87-86-5; 85-01-8;
    108-95-2; 7723-14-0;   129-00-0; 7782-49-2; 7440-22-4;  127-18-4;
    7440-28-0;  108-88-3;   8001-35-2; 75-25-2; 79-01-6; 75-69-4;
    75-01-4; 7440-66-6
(CHM)  Contact nane(s): Bloagren,C.V.; Hirth,P.; Blomgren,C.V.
(ROR)  Responsible Organization: Region VII.Hater Management Division.
                             1189

-------
                             Accession No.  9075000902

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: national Pollutant Discharge
    Elimination System (IIPDES) Discharge Monitoring Reports
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Effluents National
    Pollutant Discharge Elimination System (NPDES) permittees
(ABS)  Abstract/Overview of Data Base or Model: Manually maintained
    file of discharge monitoring  reports submitted by designated major
    dischargers in Region VII.
(CTC)  CONTACTS: Subject matter Ron McCutcheon (816)374-2281;  EPA
    Office Region VII, Mater Management Division (816)374-2281
(DTP)  Type of data collection or monitoring:  Point source data
    collection National Pollutant Discharge Elimination  System (NPDES)
    permittees
(STA)  Data Base status: Discontinued
(6RP)  Groups of substances represented in Data Base: 11 conventional
    water ;41 CMA potential criteria ;15 metals
(NPP)  Kon-pollutant parameters included in the data base: Collection
    method ;Concentration measures ;Flou rates ^Sampling date ;
    Test/analysis method
(OS)  Time period covered by data base: 01-01-74 TO 09-30-81
(TRM)  Termination of data collection: Has Occurred 09-30-81
(FRQ)  Frequency of data collection or sampling: daily ;weekly ;nonthly
    ;quarterly ;semi annually ;annually
(NOB)  Number of observations in data base: 175000.(Estimated)
(REI)  Estimated annual increase of observations in data base: 0.
(IMF)  Data base includes: Raw data/observations ;Summary aggregate
    observations
(NTS)  Total number of stations or sources covered in data base:  400.
(NCS)  80. stations or sources currently originating/contributing data:
    0.
(NOF)  Number of facilities covered in data base (source monitoring): 40
    0.
(GEO)  Geographic coverage of data base: Selected federal region  Region
    VII
(LOG)  Data elements identifying location of station or source include:
    State
(PAC)  Data elements identifying facility include: Plant facility name
    ;NPDES
(CDE)  Pollutant identification data are: encoded
(LIM)  Limitation/variation in data of which user should be aware: Data
    varies as to sampling frequency,   pollutants covered, and sampling
    technique depending   on National Pollutant Discharge Elimination
    System     (NPDES) permit.
(DpR)  Data collect./anal, procedures conform to ORD guidelines:  Collect
    ion method documented ^Analysis method documented
(ANL)  Lab analysis based on EPA-approved or accepted methods? YES
(PRE)  Precision: Precision and accuracy estimates are not available
(EDT)  Edittlng: No known edit procedures exist.
(CBY)  Data collected by: Self reporting
(ABY)  Data analyzed by: Self reporting
(IDL)  Laboratory identification: HO


                             1190

-------
                            Accession No.  9075000902     (cont)

(PRl)  Primary purpose of  data collection: Compliance or enforcement
(AOT)  Authorization for data collection: Statutory authorization is P
   L 92-500 as amended. Section 402 (Clean Water  Act-CMA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forns:
   QQ
(REP)  Form of available reports and outputs of data base: data
   available to copy
(SOS)  Number of regular users of data base: 1 office
(OSR)  Current regular users of data base: EPA regional offices
(CNF)  Confidentiality of  data and  limits on access: Ho limits on
   access to data
(DLC)  Primary physical location of data: Regional office
(DST)  Form of data storage: Original fora (hardcopy, readings)
(DAC)  type of data access: Manually
(CHG)  Direct charge for non-EPA use: No
(OPDT)  Freguency  of data  base aaster file up-date: None
(RDBEPA)  Related  EPA  data bases used in conjunction with  this data base
   Permit Compliance  System (PCS)
(CMP)  Completion  of fora:
   Donald Toensing
   OFC:  EPA/Region VII/Hater Management Division
   AD: 324 E. llth St. Kansas City, Mo. 64106
   PH: 816-374-2281
(DF)  Date of form completion: 01-10-83
(NMAT)  Number of  substances represented in data base: 63
(NCAS)  Number of  CAS  registry numbers  in data base: 42
(MAT)  Substances  represented in data base:
   2,4,5-trichlorophenoxypropio         dissolved  solids
      nic acid  (TP)<93-72-l>            fecal coliform
   2,4-d acidC94-75-7>                  fluorides
   acetone<67-64-l>                     guthion<86-50-0>
   acidity                               iron  and compounds<7439-89-6>
   alkalinity                           iron<7439-89-6>
   aluwinum<7 429-90-5>                  kepone<143-50-0>
   ammonia<7664-4l-7>                  lead<7439-92-l>
   arsenic<7440-38-2>                   lithium  and compounds<7439-93-2>
   barium<7440-39-3>                    malathion<121-75-5>
   beryllium<7440-41-7>                 manganese<7439-96-5>
   biphenyl<92-52-4>                     mercury<7439-97-6>
   bismuth  compounds<7440-69-9>          methoxychlor<72-43-5>
   boron compounds<7440-42-8>           methyl  ethyl  ketone (mek)<78-93-3>
   broitine<7726-95-6>                  mirex<2385-85-5>
   cadmium<7440-43-9>                   molybdenum and  compounds
   chlorine<7782-50-5>                      <7439-98-7>
   chrcraium<7440-47-3>                   n-alkanes  clO-c30
   cobalt<7440-48-4>                     nickel<7440-02-0>
   copper<7440-50-8>                     nitrates/nitrites
   demeton<8065-48-3>                   nitriloacetates
    dialkyl  ethers                       nitrogen<7727-37-9>
    dibenzofuran<132-64-9>               oil and grease
    diphenyl ether<101-84-8>             oxygen demand
    dissolved oxygen                     pH


                             1191

-------
                             Accession Ho.  9075000902     (cont)

    parathion<56-38-2>                   styrene<100-42-5>
    phosphorus and compounds             sulfates
       <7723-14-0>                       sulfides
    phosphorus<7723-14-0>                suspended solids
    polybroainated biphenyls 
    seleniua<7782-49-2>                  uraniun<7440-61-l>
    sodiua and coapounds<7440-23-5>      vanadiu»<7440-62-2>
(CAS)  CAS registry numbers of substances included in data base: 93*72*1
    ; 94-75-7; 67-64-1; 7429-90-5;    7664-41-7; 7440-38-2; 7440-39-3;
    7440-41-7; 92-52-4; 7440-69-9;       7440-42-8; 7726-95-6;
    7440-43-9; 7782-50-5; 7440-47-3; 7440-48-4;     7440-50-8;
    8065-48-3; 132-64-9; 101-84-8; 86-50-0; 7439-89-6;    7439-89-6;
    143-50-0; 7439-92-1; 7439-93-2; 121-75-5; 7439-96-5;
    7439-97-6; 72-43-5; 78-93-3; 2385-85-5; 7439-98-7; 7440-02-0;
    7727-37-9; 56-38-2; 7723-14-0; 7723-14-0; 7782-49-2; 7440-23-5;
    100-42-5; 7440-32-6; 7440-61-1; 7440-62-2
(CNN)  Contact na«e(s): McCutcheon/R.
(COR)  Contact organization: Region VII/ Hater Management Division
(RQR)  Responsible Organization: Region VII.Water Management Division.
                             1192

-------
                             Accession  No.   9075000903

(DQ)   Date of Quest!onaire:  12-02-82
(HAM)   Name of Data Base of  Model:  Quarterly Excess Emission Reports
(ACR)   Acronym of Data Base  or Model:  None
(NED)   Media/Subject  of Data Base or Model:  Air ^Emissions  stationary
    source
(ABS)   Abstract/Overview of  Data Base  or Model: Various  categories of
    new sources are subject      to requirements of reporting and  record
    keeping (40 CFR
    60.7) related to  continuous emission monitoring
    equipment measuring any  one or a combination of  nitrogen  oxides,
    opacity/ sulfur dioxide  and particulates.  Opacity is measured in
    percent and the  other emissions in Ibs/hr or gr/scf or fos/nmBTU.
(CTC)   CONTACTS: Subject matter   A.P.  Wayne  (816)374-2576  }     EPA
    Office  A.P. Wayne  (816)
(DTP)   Type of data collection or monitoring: Point source data
    collection New Source Performance  Standards sources  required to
    have continuous emission monitors
(STA)   Cata Base status: Operational/ongoing
(6RP)   Groups of substances  represented in  Data Base: 7  criteria  HAAQS
(NPP)   Non-pollutant  parameters included in the data base: Collection
    method Concentration measures ;Flow rates ;Industry ; Production
    levels ;Sampling  date ;Treatment  devices ;compliance data  (all
    excesses)
(DS)  Time period covered by data base: 12-01-75 to 01-30-83  ongoing
(TPM)   Termination of data collection:  Mot  anticipated
(FRQ)   Frequency of data collection or sampling: quarterly
(NOB)   Number of observations in data  base: 8000.(Estimated)
(HEI)   Fstiraated annual increase of observations in data base:  1800.
(INF)   Data base includes: Raw data/observations ;Summary  aggregate
    observations
(NTS)   Total number of stations or sources  covered in data base:  25.
(NCS)   No. stations or sources currently originating/contributing data:
    12,
(NOF)   Number of facilities covered in data base (source monitoring):  2t

(GEO)   Geographic coverage of data base: Selected federal  region  Region
    VII
(LOG)   Data elements identifying location of station or source include:
    State ;County ;City ;Street address
(FAC)   Data elements identifying facility Include: Plant facility name
    ;Plant location ;Street address
(CDE)   Pollutant identification data are: Other coding scheme
    Compliance Data System
(LIM)   Limitation/variation  in data of which user should be  aware:  Does
    not  provide  information other than source  emissions over allowable
    limits
(DPR)   Data collect./anal, procedures conform  to ORD guidelines:  ORD
    Guidelines
(ABL)  Lab analysis based on EPA-approved or accepted methods? YES
(AUD)   Lab Audit: Lab  audit  Is satisfactory  for 50%,
(PRE)  precision: Precision  and accuracy estimates exist but are not
    included  in  data base


                             1193

-------
                             Accession Ho.  9075000903      (cent)

(EOT)  Editting: Edit procedures used and documented*
(CBY)  Data collected by: Self reporting ^Regional office Overvien
    inspections by Environmental Services Division/ Region 711 ;EPA
    headquarters Stationary   Source Compliance Division ;Contractor
    ^State.
(ABY)  Data analyzed by: Regional office Air & Haste Management
    Division/

    Region Vllf    EPA headquarters Stationary Source Compliance
    Division
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection: Continuous compliance or
    enforcement
(AOT)  Authorization for data collection: Statutory authorization is  P
    L 88-206 as amended/ Section 114 (40 CFR  60.7) (Clean Air Act-CAA)
(OMB)  Data collected/submitted using OMB-approved EPA  reporting forms:
    No
(REP)  Form of available reports and outputs of data base: Unpublished
    reports Quarterly excess emission report
(NDS)  Number of regular users of data base: 4 offices
(USR)  Current regular users of data base: EPA headquarter offices
    Stationary Source    Compliance Division.!     Stationary Source
    Compliance Division contractors ;Reglon Til
(CNF)  Confidentiality of data and limits on access: No limits on
    access to data
(DLC)  Primary physical location of data: Regional office
(DST)  Form of data storage: Original form (hardcopy/ readings)
(OAC)  Type of data access: Manually & Automated
(CHG)  Direct charge for non-EPA use: yes
(OPDT)  Frequency of data base master file up-date: Quarterly
(ROBSPA)  Related EPA data bases used in conjunction ulth this data base
    Compliance Data System
(ODB)  Other pertinent non-EPA data bases: Missouri excess emission
    reporting; Nebraska excess emission reporting; Iowa excess emission
  •  reporting
(CMP)  Completion of form:
    A. P. Vayne
    OFC: EPA/Region VII/Air £ Waste Management Division
    AD: 324 E. llth St. Kansas City/ Mo.
    PH: (816)374-2576
(DF)  Date of form completion: 01-20-83
(ftMAT)  Number of substances represented in data base:  5
(NCAS)  Number of CAS registry numbers in data base: 2
(MAT)  Substances represented in data base:
    hydrocarbons                         sulfur dioxide<7446-09-5>
    nitrogen dioxide<10102-44-0>         total suspended participates
    opacity
(CAS)  CAS registry numbers of substances included in  data base: 10102-4
    4-0; 7446-09-5
(CHM)  Contact name(s): Uayne/A.P.;    Vayne/A.P.
(RQR)  Responsible Organization: Region VII.Water Management Division.
                             1194

-------
                             Accession Ho.  9078000902

(DQ)   Date  of  Questionalre:  12-02-82
(NAM)   Name of Data Base  of  Model:  Publicly Owned  Treatment Works
    (POTH)  Quality   Control
UCR)   Acronym of Data Base  or  Model: lone
(MED)   Media/Subject of Data Base  or Model: Effluents Publicly Owned
    Treatment  Works
(ABS)   Abstract/Overview  of  Data Base or Model:  All  quality control
    data from  EPA and  contractor laboratories  for  the  national
    Publicly Owned  Treatment Works (POTW)  study*   Data is not in    any
    computer-readable form.
(CTC)   CONTACTS:  Subject  matter   Billy Fairless  (816)374-4461    9
    EPA Office  Region VII
(DTP)   Type of data collection  or  monitoring:  Point  source data
    collection Publicly Owned Treatment Works
(STA)   Data Base status:  Operational/ongoing*
(GRP)   Groups  of substances  represented in Data  Base: 129 307 CWA  ;15
    metals
(HPP)   Non-pollutant parameters included  in  the  data base: Chemical
    data Collection method  >Compliance data  >Concentration measures ;
    Discharge  points /Disposal  ;Flow rates geographic  subdivision >
    inspection data ;Location ^Physical data  iSalinity  ;Sampling date }
    Site description ;Temperature >Test/analysis method
(OS)  Time  period covered by data base: 08-01-78 TO 09-30-80
(TRM)   Termination of data collection:  Anticipated 12/30/80
(FRQ)   Frequency of data collection or  sampling: one time only
(NOB)   Number  of observations in data base:  180000.(Estimated)
(NED   Estimated annual increase of observations in data base:  18000*
(IRF)   Data base includes: Raw data/observations
(NTS)   Total number of stations or sources covered in data base: 200,
(NCS)   No.  stations or sources currently  originating/contributing  data:

(HOP)* number of facilities covered in data base (source monitoring):  40

(GEO)   Geographic  coverage of data base:  National
(LOO   Data elements  identifying location of station or source include:
    State  ;County  ;SMSA ;City >Town/township ;Street address
    Coordinates Latitude a Project identifier
(FAC)  Data elements  Identifying facility Include: Plant facility  name
    jPlant location ;Street  address ;SIC code >    SCC ;NPDES
(CDS)  pollutant identification data are: Oncoded
(LIM)  Limitation/variation  in data of which user should be aware: Hone
(DPR)  Data collect./anal. procedures conform to ORD guidelines:  ORD
    Guidelines ;Sampling  plan documented ;Collection method documented
    ;    Analysis  method  documented ;QA procedures documented
(ANL)  Lab analysis based on EPA-approved or  accepted methods? YES
(A00)  Lab Audit:  Lab audit  is satisfactory.
(PRE)  Precision:  Precision  and accuracy estimates exist for all
    measurements
(EOT)  Editting: Edit procedures used and documented.
(CBY)  Data collected by: Contractor lab various  ^Contractor Burns and

(ABY)  Data analyzed  by:  Regional  office Surveillance and Analysis


                             1195

-------
                              Accession No.   9078000902      (cont)

     Division,  Region VII
 (IDL)   Laboratory identification: YES
 (PR1)   Primary purpose  of  data  collection: Development  of regulations
     or standards
 (AUT)   Authorization for data collection: No statutory  requirement:
     Data collection requirement is    to collect data on toxic
     pollutants in municipal  sewer systems and their   removal by
     Publicly Owned Treatment    Works to complement data on industrial
     toxic discharges collected  to   develop criteria in  conformance with
     the consent decree.
 (OMB)   Data collected/submitted using OMB-approved EPA  reporting forms:

 SSKJ   Forf of availabl« reports and outputs of data base:  raw lab data
 (NUS)   Number  of  regular users  of data base: 100 or less
 (OSR)   Current regular  users of data base: EPA headquarter  offices
     Office of  Hater Regulations and Standards
     EPA regional  offices
     EPA laboratories
     Other federal agencies
     States
 (CNF)   Confidentiality  of  data  and  limits on access: No limits on
     access to  data
 (DLC)   Primary physical location of data: Regional office
 COST)   Form of data storage:  Original form (hardcopy, readings)
 (DAC)   Type of data access:  Manually
 (CHC)   Direct  charge for non-EPA use: yes
 (OPDT)   Frequency of data base  master file up-date: other as
     received-weekly
 JSnSL.?61^^ EPA auto"at«d  systems which use data base: STORET, TOXET
 fKDBEPA)  Related EPA data bases used in conjunction with this data base
     STORET (Storage and Retrieval of Mater Quality Data), PQTH
     Analytical Data D5302000102
 (ODB)   other pertinent non-EPA  data bases:  the state of  Missouri    has
     not used STORET for several years-considerable     environmental
     data is involved.
 (CMP)   Completion of  form:
     Billy Fairless
    OFC: EPA/Region VII/Surveillance and  Analysis Division
    AD:  25 Funston Rd. Kansas City,  KS 66115
    PH:  (816)374-4461
 (DP)  Date of form completion: 01-31-83
(NMAT)   Number  of substances represented  in  data  base: 149
(IfCAS)   Number  of CAS registry numbers in data base:  134
(NAT)  Substances represented in data base:
    l,l,l-trichloroethane<71-55-         l,2-dichlorobenzene<95-50-l>
    , ,6>                                l,2-dichloroethane<107-06-2>
    1,1,2,2,-tetracnloroethane           l*2-dichloropropane<78-87-5>
    , ,                         l,2-dichloropropylene<563-54-2>
    l,l,2-trichloroethane<79-00-5>        l,2-diphenylhydrazine<122-66-7>
    l,l-dichloroethane<75-34-3>           1,2-trans-dichloroethylene
    lsl-dichloroethylene<75-35-4>          <156-60-5>
    l/2,4,-trichlorobenzene<120-82-l>     l,3-dichlorobenzene<541-73-l>


                             1196

-------
                         Accession No.  9078000902
                  (cont)
1, 4-dichlorobenzene<106-46-7>
2,4,6-trichlorophenol<88-06-2>
2, 4,1, 8- te tr achlor odibenzo-p-
   oioxin (tcdd)
2, 4-dichiorophenol<120-83-2>
2, 4-dimethylphenol<105-67-9>
2,4-dinitrophenol<51-28-5>
2,4-dinitrotoluene<121-14-2>
2,6-dinitrotoluene<606-20-2>
2-chloroethylvinyl ether<110-75-8>
2-chloronaphthalene<91-58-7>
2-chlorophenol<95-57-8>
2-n itr opheno 1< 88-75-5>
3,3'-dichlorobenzidine<91-94-l>
3,4-benzofluoranthene<205-99-2>
4,4'-ddd(p,p-tde)
4,4*-dde(p,p*-ddx)<72-55-9>
4,4'-ddt<50-29-3>
4^6-dinitro-o-crcsol<534-52-l>
4-bronophenyl phenyl ether
   <101-55-3>
4-chlorophenyl phenyl ether
   <7005-72-3>
4-nitrophenol<100-02-7>
acenaphthene< 83-32-9>
acenaphthylene<208-96-8>
acrolein<107-02-8>
acrylonitrile<107-13-l>
aldrln<309-00-2>
alu«inuM<7429-90-5>
a»monla<7664-41-7>
anthracene
anti»ony<7440-36-0>
arsenic<7440-38-2>
asbestos<1332-21-4>
bariu«<7440-39-3>
benzene<71-43-2>
benzidlne<92-87-5>
benzo(a)anthracene<56-55-3>
benzo(a)pyrene<50-32-8>
benzo(g,bv i)perylene<191-24-2>
benzoC k) f luo ranthene<207-08-9>
beryll ium<7440-41-7>
bhc  
bhc-alpha<319-84-6>
bhc-beta<319-85-7>
bhc-delta<31 9-86-8>
biological oxygen demand (BOD)
bls(2-chloroethoxy)»ethane
 bis( 2-chloroethyl) ether
bis(2-chloroisopropyl)ether
   <39638-32-9>
bis(2-ethylhexyl)phthalate
   
bis(chloro«ethyl)ether<542-88-l>
broao»ethane<74-83-9>
butyl benzyl phthalate<8S-68-7>
cad«lu«<7440-43-9>
calcium
carbon tetrachloride<56-23-5>
cheaical oxygen demand (COD)
chlordane<57-74-9>
chlorobenzene<108-90-7>
chlorodibroaonethane<124-48-l>
chloroethane<75-00-3>
chlorofor»<67-66-3>
chloroaethane<74-87-3>
chro«iuM<7440-47-3>
chrysene<218-01-9>
copper<7440-50-8>
cyanide<57-12-5>
di-n-butyi phthalate<84-74-2>
di-n-octyl phthalate<117-84-0>
dibenzo(a/h)anthracen«<53-70-3>
dichlorobro«o»ethane<75-27-4>
dichlorodifluoro»ethane<75-71-8>
dichloro«ethane<75-09-2>
dieldrin<60-57-l>
diethyl  phthalate<84-66-2>
dimethyl phthalate<131-ll-3>
dissolved solids
endosulfan sulfate<1031-07-8>
endosulfan-alpha<959-98-8>
endosulfan-beta<33213-65-9>
endrin  aldehyde<7421-93-4>
endrin<72-20-8>
ethylbenzene<100-41-4>
fluorantbene<206-44-0>
fluorene<86-73-7>
heptachlor epoxide<1024-57-3>
hep tachlor<76-44-8>
hexachlorobenzene<118-74-l>
hexachlorobutadieae<87-68-3>
hexachlorocyclopentadiene<77-47-4>
hexachloroethane<67-72-l>
indeno  (l,2,3-cd)pyrene<193-39-5>
iron<7439-89-6>
isophorone<78-59-l>
lead<7439-92-l>
magnesium
manganese<7439-96-5>
mercury<7439-97-6>
                          1197

-------
                             Accession No.  9078000902     (cont)

    n-nitrosodi-n-propylanine            pentachlorophenol<87-86-5>
       <621-64-7>                        phenanthrene<85-Ol-8>
    n-nitrosodinethylanine<62-75-9>      phenol<108-95-2>
    n-nitrosodiphenylanine<86-30-6>      pyrene<129-00-0>
    naphthalene<91-20-3>                 seleniua<7782-49-2>
    nickel<7440-02-0>                    silver<7440-22-4>
    nltrobenzen€<98-95-3>                sodiun<7440-23-5>
    nitrogen<7727-37-9>                  suspended solids
    oil and grease                       tetrachloroethylene<127-18-4>
    p-cbloro-«-cresol<59-50-7>           thalliun<7440-28-0>
    pcb-1016 (arochlor 1016)             toluene<108-88-3>
       <12674-ll-2>                      total organic carbon (TOO
    pcb-1221 (arochlor 1221)             total phenol
       <11104-28-2>                      total solids
    pcb-1232 (arochlor 1232)             total volatile dissolved solids
       <11141-16-5>                      total volatile solids
    pcb-1242 (arochlor 1242)             total volatile suspended solids
       <53469-21-9>                      toxaphene<8001-35-2>
    pcb-1248 (arochlor 1248)             tribroaonethane<75-25-2>
       <12672-29-6>                      trichloroethylene<79-Ol-6>
    pcb-1254 (arochlor 1254)             trichlorofluoronethane<75-69-4>
       <11097-69-l>                      vinyl chloride<75-01-4>
    pcb-1260 (arochlor 1260)             zinc<7440-66-6>
       <11096-82-5>
(CIS)  CAS registry numbers of substances included in data base: 71-55-6
    ; 79-34-5; 79-00-5; 75-34-3; 75-35-4;       120-82-1; 95-50-1;
    107-06-2; 78-87-5; 563-54-2; 122-66-7; 156-60-5;   541-73-1;
    106-46-7; 88-06-2; 120-83-2; 105-67-9; 51-28-5; 121-14-2;
    606-20-2; 110-75-8; 91-58-7; 95-57-8; 88-75-5; 91-94-1; 205-99-2;
    72-55-9; 50-29-3; 534-52-1; 101-55-3; 7005-72-3; 100-02-7; 83-32-9;
    208-96-8; 107-02-8; 107-13-1; 309-00-2; 7429-90-5; 7664-41-7;
    120-12-7; 7440-36-0; 7440-38-2; 1332-21-4; 7440-39-3; 71-43-2;
    92-87-5; 56-55-3; 50-32-8; 191-24-2; 207-08-9; 7440-41-7; 58-89-9;
    319-84-6; 319-85-7; 319-86-8; 111-91-1; 111-44-4; 39638-32-9;
    117-81-7; 542-88-1; 74-83-9; 85-68-7; 7440-43-9; 56-23-5; 57-74-9;
    108-90-7; 124-48-1; 75-00-3; 67-66-3; 74-87-3; 7440-47-3; 218-01-9;
    7440-50-8; 57-12-5; 84-74-2; 117-84-0; 53-70-3; 75-27-4; 75-71-8;
    75-09-2; 60-57-1; 84-66-2; 131-11-3; 1031-07-8; 959-98-8;
    33213-65-9;      7421-93-4; 72-20-8; 100-41-4; 206-44-0; 86-73-7;
    1024-57-3; 76-44-8;       118-74-1; 87-68-3; 77-47-4; 67-72-1;
    193-39-5; 7439-89-6; 78-59-1;    7439-92-1; 7439-96-5; 7439-97-6;
    621-64-7; 62-75-9; 86-30-6; 91-20-3;      7440-02-0; 98-95-3;
    7727-37-9; 59-50-7; 12674-11-2; 11104-28-2;       11141-16-5;
    53469-21-9; 12672-29-6; 11097-69-1; 11096-82-5; 87-86-5;
    85-01-8; 108-95-2; 129-00-0; 7782-49-2; 7440-22-4; 7440-23-5;
    127-18-4; 7440-28-0; 108-88-3; 8001-35-2; 75-25-2; 79-01-6;
    75-69-4;       75-01-4; 7440-66-6
(CNM)  Contact naae(s): Fairless,B.    ;    ?II,R.
(ROR)  Responsible Organization: Region ¥11.Environmental Services
    Division*
                             1198

-------
                             Accession No.  9085000901

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: TRACK

-------
                             Accession No.  9085000901     (cent)

(AUT)  Authorization for data collection: Ho statutory requirement:
    Data collection requirement is    administrative tracking of
    perBits development predated development of     Permit compliance
    System.
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    158-R-0073
                   beryllium, total
    cadmium<7440-43-9>                   beta, total
    copper<7440-50-8>                    bod/ 5-day
    dissolved oxygen                     boron, total
    dissolved solids                     calcium, total
    fecal collform                       carbon, total organic
    lead<7439-92-1>                      chem. oxygen demand
    mercury<7439-97-6>                   chloride
    nitrogen<7727-37-9>                  chlorine, total
    oil and grease                       chlorine/ free
    oxygen demand                        chromium cr, diss
    pH                                   chromium/ hex-val
    phosphor us <7 72 3-14-0 >                chromium, total
    suspended solids                     cobalt, total
    zinc<7440-66-6> acidity, total       conform, fecal
    alkalinity, total                    colifora, total
    aluminum, dissolved                  color (pt-co units)
    aluminum, total                      copper, total
    arsenic, total                       cyanide


                             1200

-------
                         Accession No
                                            9085000901
                  (cont)
cyanide, free
sid alpha emit radium isotopes
flouride/ total
flow in conduit
floH rate
flow, stream
gold, total
hardness/ total
inflnt susp solids total
influent bod
iron/ dissolved
iron, total
lead, dissolved
lead, total
magnesium/ total
maganese, total
mercury, total
methylene blue act.subst
molybdenum, total
nickel ni, diss
nickel, total
nitrate
nitrate nitrogen
nitrite
nitrite + nitrate
          total
          influent
          ammonia tl
          ammonia, unionized
          amm/ total
nitrogen, kjeldahl, total oil
   grease, visual
oil-grease-total
oxygen,    dissolved
    nitrogen,
    nitrogen,
    nitrogen/
    nitrogen,
    nitrogen,
phenols
phosphate/ total
phosphorus, total
radium 226, diss
radium 226/ total
residue, total fixed
selenium,     dissolved
selenium, total
silver, dissolved
silver/ total
sodium/     total
solids/ dissolved
solids, settleable
solids, suspended
solids/ total diss
solids, total susp
solids, total volatile
solids, dissolved
specif/ conductance
sulfate
sulfide
sulfide,   dissolved
sulfide, diss
temperature, water
temperature/ stream
tin, total
turbidity
turbidity
uranium 238, total
uranium/ nat   total
uranium, total
uranium, nat diss
vanadium/ total
zinc, total
    PH, field
(CAS)  CAS registry numbers of substances included in data base: 7440-38
    -2; 7440-43-9; 7440-50-8; 7439-92-1;   7439-97-6; 7727-37-9;
    7723-14-0; 7440-66-6
(CNM)  Contact name(s): Afshar/P. ;    Morster/C.;    Burm/R.J.
(RDF.)  Responsible Organization: Region VIII.Hater Management Division*
                             1201

-------
                             Accession No.   9085000902

(D
    Location >Sampling date ;Temp«rature >?olume/mass measures
(DS)  Time period  covered by data base: 01-01-72 TO 12-31-82
(TRM)  Termination of data collection: Hot anticipated
(FRQ)  Frequency of data collection  or sampling: weekly ^monthly
     quarterly ;s«mi annually ;annually
(HOB)  Humber of observations in data base: 30000-40000.(Estimated)
(MED  Estimated annual increase of  observations in data base: 5000.
(IMF)  Data  base includes: Summary  aggregate observations
(MTS)  Total nu.ber of  stations or  sources covered in data base.  5000.
(BCS)   Ho. stations or  sources currently originating/contributing data.

(HOT)   number of facilities  covered in data base (source monitoring): 30

(GEO)  "Geographic  coverage  of  data base: Selected  federal region Region

(LOC^Data  elements  identifying location  of station or  source include:
     State jCity s Town/town ship  ^Street address
(FAC)   Data  elements  identifying facility  include:  Plant  facility name
     ;PIant location ;Street address >SIC code  J   HPDES
(CDE)   Pollutant identification data are:  Oncoded
 (LIN)   Limitation/variation in data of which «s«r  *5ould *»«  aMa5€; *!>??„
(DPR)   Data  collect./anal.  procedures conform  to ORD guidelines:  Samplin
     g plan documented >Collection  method documented
 (AM.)   Lab analysis based on EPA-approved or accepted methods? YES
 (AUD)   Lab Audit:  Data not  based on lab analysis.
 (PRE)   Precision:  Precision and accuracy estimates are  not available
 (EDT)  Editting: Ho known edit procedures exist.
 (CBY)   Data collected by:  Self reporting                .«,,««4« *«r
 (ABY)  Data analyzed by:  State agency State labs do the Analysis for
     permittees                                    TTT
     Regional office Enforcement Division/ Region fin
 (IDL)   Laboratory identification:  MO                         ..„.„„»
 (PR1)  Primary purpose of data collection: Compliance or enforcement

-------
                             Accession No.   9085000902      (cont)

(PR2)  Secondary purpose of data collection: Program evaluation
(AUT)  Authorization for data collection:  Statutory authorization  is  P
    L 92-500 as amended. Section 308 (Clean Water  Act-CWA)
(OMB)  Data collected/submitted using OMB-approved EPA  reporting forms:
    3320-01
(REP)  Form of available reports and outputs of data base:  Unpublished
    reports internal reports, violation reports
(NOS)  Number of regular users of data base: 75
(USR)  Current regular users of data base:  States
    Region VIII
(CNF)  Confidentiality of data and Units  on access: No Units on
    access to data
(DLC)  Primary physical location of data:  Regional office
(DST)  Fora of data storage: Original fora (hardcopy, readings)
(DAC)  Type of data access: Manually
(CHG)  Direct charge for non-EPA use: yes
(CMP)  Completion of form:
    Theresa Matassoni
    OFC: EPA/Region VIII/Enforcement Division
    AD:  1860 Lincoln St. Denver, CO 80295
    PH:  (303) 837-5094
(DP)  Date of form completion: 01-06-83
(NMAT)  Number of substances represented in data base:  17
(NCAS)  Number of CAS registry numbers in  data base: 8
(NAT)  Substances represented in data base:
    acidity                             calcium, total
    alkalinity                          carbon, total  organic
    arsenic<7440-38-2>                  chem. oxygen demand
    cadmium<7440-43-9>                  chloride
    copper<7440-50-8>                   chlorine, total
    dissolved oxygen                    chlorine, free
    dissolved solids                    chromium cr, diss
    fecal coliform                      chromium, hex-val
    lead<7439-92-l>                     chromium, total
    mercury<7439-97-6>                  cobalt, total
    nitrogen<7727-37-9>                 coliform, fecal
    oil  and grease                      coliform, total
    oxygen demand                       color (pt-co units)
    ph                                  copper, total
    phosphorus<7723-14-0>               cyanide
    suspended solids                    cyanide, free
    zinc<7440-66-6> acidity, total      sid alpha emit radium isotopes
    alkalinity, total                   flouride, total
    aluminum, dissolved                 flow in conduit
    aluminum, total                     flow rate
    arsenic, total                      flow, stream
    barium, dissolved                   gold, total
    barium total                        hardness, total
    beryllium, total                    inflnt susp solids total
    beta, total                         influent bod
    bod, 5-day                          iron, dissolved
    boron, total                        iron, total


                             1203

-------
                             Accession No.  9085000902
                  (cont)
    lead,  dissolved
    lead,  total
    •agnesiun/  total
    •aganese?  total
    mercury,  total
    methylene blue act.subst
    molybdenum, total
    nickel ni,diss
    nickel, total
    nitrate
    nitrate nitrogen
    nitrite
    nitrite + nitrate
    nitrogen, total
    nitrogen, influent
    nitrogen, ammonia tl
    nitrogen, ammonia/ unionized
    nitrogen, ama, total
    nitrogen, kjeldahl, total oil &
       grease,  visual
    oil-grease-total
    oxygen,    dissolved
    pH, field
    phenols
    phosphate,  total
    phosphorus, total
    radium 226, diss
    radlua 226, total
selenium,     dissolved
selenium, total
silver, dissolved
silver/ total
sodiui/     total
solids/ dissolved
solids, settleable
solids, suspended
solids/ total diss
solids/ total susp
solids/ total volatile
solids/ dissolved
specif/ conductance
sulfate
sulfide
sulfide,   dissolved
sulfide/ diss
temperature/ water
temperature, stream
tin, total
turbidity
turbidity
uranium 238, total
uranium/ nat   total
uranium/ total
uranium/ nat diss
vanadium/ total
zinc, total
    residue/ total fixed
(CAS)  CAS registry numbers of substances included in data base: 7440-38
    -2; 7440-43-9; 7440-50-8; 7439-92-1;   7439-97-6; 7727-37-9;
    7723-14-0; 7440-66-6
(CMM)  Contact naae(s): Skie/D.N. ;    Skie/D.M.
(ROR)  Responsible Organization: Region fill.Hater Management Division.
                             1204

-------
                             Accession No.   9095000902

(DQ)   Date of  Questionaire:  12-02-82
(RAM)   Name of Data Base of  Model:  Discharge Monitoring Report
(ACR)   Acronym of Data Base  or  Model:  DMR
(NED)   Kedia/Subject of Data Base or Model:  Effluents discharge fro»
    point sources to D.S. waters.
(ABS)   Abstract/over view of  Data Base  or Model:  Data base  contains
    measurements  of pollutant parameters specified by the  National
    Pollutant     Discharge Elimination System (ffPDES).
(CTC)   CONTACTS:  Subject Batter   Steve Fuller  (415)974-8306 ;
    Computer-related  Carey  Houk  (415)974-8271>  EPA Office Hater
    Management Division  (415)974-8306
(DTP)   Type of data collection  or monitoring: Point source data
    collection Municipal and industrial
(STA)   Data Base  status: Operational/ongoing
(GRP)   Croups  of  substances  represented In Data  Base: 11 conventional
    water ;15  aetals
(HPP)   Non-pollutant parameters Included In  the  data base: Collection
    •ethod Concentration measures ;Discharge points >      Flow rates
    ;Location  ^Precipitation ;Sampling date  ^Temperature
(OS)   Tine period covered by data base: 02-01-75 TO present
(TRM)   Termination of data collection: Rot anticipated
(PRQ)   Frequency  of data collection or sampling: less than hourly
    continuous sampling (e.g. flow) ;hourly  ;dally > weekly >monthly
    ;quarterly >seni annually ^annually >as  needed
(MOB)   Kumber  of  observations In data  base:  420000.(Estimated)
(BED   Estimated  annual increase of observations in data base:  70000.
(IKF)   Data base  includes: Summary aggregate observations
(ITS)   Total number of stations or sources covered In data base: 2100.
(MCS)   No. stations or sources  currently originating/contributing  data:
    2100.
(•OF)   Number  of  facilities  covered In data  base (source monitoring): 21
    00.
(GEO)   Geographic coverage of data base: Selected federal  region Region
    IX
(LOC)   Data elements identifying location of station or source  include:
    State /City jTown/township  ;Street address ;Coordinates Latitude
    and longitude
(FAC)   Data elements identifying facility Include: Plant facility  name
    ;Street address ;SIC code ;NPDES
(CDE)   Pollutant  identification data are: Oncoded
(LIM)   Limitation/variation  in  data of which user should be aware:  Sampl
    ing periods and measurement   parameters vary for each discharger.
    Some parameters  may be  permitted  zero discharge during certain
    periods.
(DPR)   Pata collect./anal, procedures  conform to ORD guidelines: Samplln
    g  plan documented ^Collection method documented ^Analysis method
    document QA procedures documented
(ANL)   Lab analysis based on EPA-approved or accepted methods?  YES
(AUD)   Lab Audit: Lab audit  is  satisfactory  for  majors discharges
    only-high(%).
(PRE)   Precision: Precision  and accuracy estimates exist but are not
    included in data base


                             1205

-------
                             Accession Ho.   9095000902      (cont)

(EDT)  Editting: Edit procedures used and documented.
(CBY)  Data collected by:  Self reporting
(ABY)  Data analyzed by:  Self reporting
    State agency California Regional Board,  Nevada Department of
    Environmental Protection, Arizona Department of Health Services/
    Hauaii    Department  of Health Services, Guaa EPA,  Trust
    Territories board, etc*
    Water Management Division
(IDL)  Laboratory identification: NO
(PR1)  Primary purpose of data collection: Compliance or enforcement
(AUT)  Authorization for  data collection: Statutory authorization  is  P
    L 95-217, Section 308 (Clean Mater Act of 1977-CWA)

    alkalinity                           mercury<7439-97-6>
    arsenic<7440-38-2>                   nickel<7440-02-0>
    cadmium<7440-43-9>                   nitrogen<7727-37-9>
    chromium<7440-47-3>                  oil and grease
    copper<7440-50-8>                    oxygen demand
    dissolved oxygen                     ph
    dissolved solids                     phosphorus<7723-14-0>
    fecal coliform                       selenium<7782-49-2>
    iron<7439-89-6>                      settleable solids
    lead<7439-92-l>                      suspended solids


                             1206

-------
                            Accession No.  9095000902     (cont)

   titaniu»<7440-32-6>                  total coliform
(CAS)  CAS  registry nunbers of substances included in data base: 7440-38
   -2; 7440-43-9; 7440-47-3; 7440-50-8;   7439-89-6; 7439-92-1;
   7439-96-5;  7439-97-6; 7440-02-0; 7727-37-9;     7723-14-0;
   7782-49-2;  7440-32-6
[CNH)  Contact  natnc(s): Pasek,J.  ;    Houk,C.
(COR)  Contact  organization: Hater Management Division
(ROR)  Responsible Organization: Region IX.Hater Managenent Division.
                             1207

-------
                             Accession Mo.   9096000001

(DQ)  Date of QuesUonaire:  12-02-82
CMAN)  Mane of Data Base of Model: Baseline Survey of Public Hater
    Supplies on  Indian Lands
(ACR)  Acronym of Data Base or Model: Mone
(MED)  Media/Subject of Data Base or Model: Drinking uater
CABS)  Abstract/overview of Data Base or Model: Hater Quality Files for
    Public Mater    Supplies on Indian Lands in EPA Region IX contains
    results of analysis performed for the 21     contaminants covered
    by drinking water  regulations.  There is a regional computer
    system (Safe Vater Information Module-SHIM) which tracks type of
    analyses performed i.e. inorganic, organic/ radionuclide,
    bacteriological.  SHIM is an    ad»inistrative data base which does
    not contain   environmental data                  „.»,..-
CCTC)  CONTACTS: Subject matter   Tom Berkins  1415)794-8212   ;
    Computer-related  Steven Gross  (415)974-8107 ;  EPA Office William
    M. Thurston {415)974-8226
CDTP)  Type of data collection or Monitoring: A»bient data collection
CSTA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented in Data Base: 21 drinking water
    standards
CMPP)  Non-pollutant parameters included in the data base: Biological
     data  ;Chemical data ^Collection method ^Location ;     Sampling
     date  ;Site description jTest/analysis-method  Bact.l ;  Sadler
City ;Town/township jPro^ect  identifier ; system  name
CFAC)  Data  elements  identifying  facility  include: Plant  facility name
     ;Plant location ;Program Identifier
(CDE)  Pollutant identification data are:  Oncoded
CLIM)  Limitation/variation in data of which  user  should  be  aware:  None
CDPR)  Data  collect./anal,  procedures conform to ORD guidelines: Samplin
     g plan documented jCollection method  documented  ^Analysis method

 (AUL)  Lab analysis based  on EPA-approved  or  accepted methods?  YES
 (ADD)  Lab Audit:  Lab audit is satisfactory for  83%, excluding
     radiochemistry.


                              1208

-------
                             Accession No.   9096000001      (cont)

(PR£)  Precision:  Precision and accuracy estimates  exist but  are not
    included in data base    Edit data base is edited/  procedure is not
    fully documented.
(CBY)  Data collected by: Regional office Region IX ;0ther  federal
    agency Bureau of Indian Affairs and Ind Health  Service  ;Tribal
    Organizations
(ABY)  Data analyzed by:  Regional office Region IX
    Other federal agency Bureau of Indian Affairs and Indian    Health
    Service
    Tribal Organizations
(IDL)  Laboratory identification: YES
(PR1)  Primary purpose of data collection:  Compliance or  enforcement
(PR2)  Secondary purpose of data collection: Program evaluation
(AUT)  Authorization for data collection: Statutory authorization  is  P
    L 93-523 as amended, SDMA-Safe  Drinking Mater  Act
(OMB)  Data collected/submitted using OMB-approved  EPA reporting fonts:
    QQ
(REP)  Form of available reports and outputs of data base:  hand written
    summaries for each system
(NUS)  Number of regular users of data base: 4 offices
(USR)  Current regular users of data base:  Region IX
    Bureau of Indian Affairs
    Tribal Organizations
    Indian Health Services
    Private water suppliers
{CNF)  Confidentiality of data and limits on access: No limits on
    access to data
(DLC)  Primary physical  location of data: Regional  office
(DST)  Form of data  storage: Original form (hardcopy, readings)
(DAC)  Type of data  access: Manually
(CHG)  Direct charge for non-EPA use: no
(UPDT)  Frequency of data base master file up-date: Other On-going
(RDBEPA)  Related EPA data bases used in conjunction with this data base
    Safe Hater Information   Module (SWIM)
(CMP)  Completion of form:
    Steven Gross
    OFC: EPA/Region  IX/tfater Division
    AD: 215 Fremont  St.  San Francisco, CA 94105
    PH: (415)974-8107
(DF)  Date of form completion: 12-09-82
(NMAT)  Number of substances represented in data base: 22
(NCAS)  Number of CAS registry numbers in data base: 17
(MAT)  Substances represented in data base:
    2,4-dichlorophenoxyacetic            llndane<58-89-9>
       acid (2,4-d)<94-75-7>             manmade beta
    arsenic<7440-38-2>                   mercury<7439-97-6>
    barium<7440-39-3>                    methoxychlor<72-43-5>
    cadmium<7440-43-9>                   microbiology coliform bacteria
    chromiu«<7440-47-3>                  nitrate<14797~55-8>
    endrin<72-20-8>                      photon emitters
     gross alpha                          radium 226<13982-63-3>
     lead<7439-92-l>                      radium 228<15262-20-1>


                             1209

-------
                             Accession No.   9096000001      (cont)

    selenii»<7782-49-2>                  toxaphene<8001-35-2>
    silver<7440-22-4>                    turbidity
    sil*ex<93-72-l>                                                 __
(CAS)  CKS registry nunbers of substances included in data base:  94-75-7
    ; 7440-38-2; 7440-39-3; 7440-43-9;     7440-47-3; 72-20-8;
    7439-92-1; 58-89-9; 7439-97-6; 72-43-5;      14797-55-8;
    13982-63-3; 15262-20-1; 7782-49-2; 7440-22-4; 93-72-1;    8001-35-2
(CRN)  Contact na»e(s): Gross/S.R. ;    Grosses.R.
(COR)  Contact organization: Hillia* M. Thurston
(ROR)  Responsible Organizations Region IX.Hater Management Division.
                              1210

-------
                             Accession No.  9098000901

 (DQ)  Date of Questionaire: 12-02-82
 (NAM)   Name of Data  Base of Model: Toxics Monitoring
 (ACR)   Acronym of Data Base or Model: None
 0ther
    One time only at each site
 (NOB)   Number of observations in data base: 50,000.(Estimated)
 (HEI)   Estimated annual increase of observations in data base: 10000.
 (INF)   Data base includes: Raw data/observations
 (NTS)   Total number of stations or sources covered in data base: 150.
 (NCS)   No. stations  or sources currently originating/contributing data:
    35.
 (NOF)   Number of facilities covered in data base (source monitoring): 0
 (CEO)   Geographic coverage of data base:  Selected federal region Region

 (LOC)   Data elements Identifying location of station or source include:
    State jCounty Coordinates latitude and longitude
 (FAC)   Data elements identifying facility include: Plant facility name
    ;PIant location
 (CDE)   Pollutant identification data are:  Storet parameter
 (LIM)   Limitation/variation in data of nhich user should be anare: None
 (DPR)   Data collect./anal, procedures conform to ORD guidelines: Collect
    ion method documented ^Analysis method documented ;
-------
                             Accession No.  9098000901     (cont)

(PRl)  Primary purpose of data collection: Risk assessment
(PR2)  Secondary purpose of data collection: Special study
(AUT)  Authorization for data collection: Statutory authorization is P
    L 92-500 as amended. Section 307 (Clean Hater  Act)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  Form of available reports and outputs of data base: Printouts on
    reguest
    Machine-readable raw data
    On-line computer
(NOS)  Number of regular users of data base: unknown-through STORE?
    only
(OSR)  Current regular users of data base: EPA headquarter offices
    Monitoring and Data Support Division/ OHWM
    Other federal agencies
    States
    all users cannot be identified
(CNF)  Confidentiality of data and limits on access: No limits on
    access to data
(DLC)  Primary physical location of data: NCC/IBM
(DST)  Form of data storage: Magnetic disc
(DAC)  Type of data access: EPA software STORET  MIDS:5303000101 ;EPA
    hardware IBM 370
(CHG)  Direct charge for non-EPA use: yes/ but may be waived
(OPDT)  Freguency of data base master file up-date: Weekly
(RSS)  Related EPA automated systems which use data base:  STORET-graphic
    , analytic
(ODB)  Other pertinent non-EPA data bases:
    conducted by AZ, CA/ HI/ HV; (2)Special Studies by 208 agencies;
    (3)Non-BWMP fixed station;    (4)Monitoring programs operated by
    AZ/ CA, GO, HI, MIT/ U.S. Forest Service, U.S. Water and Power
    Resources    Service/ Corps of Engineers/ Geological Survey/ Soil
    Conservation.
(CMP)  Completion of form:
    William E. Lewis
    updated by David R. Minard/    EPA Region 9/ Hater Management
    Division (415) 974-8284 OFC: EPA/Region IX/Surveillance and
    Analysis Division
    AD: 215 Fremont St. San Francisco, CA 94105
    PH: (415)556-7550
(DF)  Date of form completion: 02-15-83
(•MAT)  Number of substances represented in data base: 127
(NCAS)  Number of CAS registry numbers in data base: 126
(MAT)  Substances represented in data base:
    l/l,l-trichloroethane<71-55-         l/2-dichlorobenzene<95-50-l>
       6>                                l/2-dichloroethane<107-06-2>
    1,1,2/2,-tetrachloroethane           l,2-dichloropropane<78-87-5>
       <79-34-5>                         l,2-dichloropropylene<563-54-2>
    l,l,2-trichloroethane<79-00-5>       l,2-diphenylhydrazine<122-66-7>
    l,l-dlchloroethane<75-34-3>          1,2-trans-dtchloroethylene
    l,l-dichloroethylene<75-35-4>           <156-60-5>
    l/2/4/-trichlorobenzene<120-82-l>    l,3-dichlorobenzene<541-73-l>


                             1212

-------
                         Accession Ho.  9098000 901
                   (cont)
 If 4-dichlorobenzene<106-46-7>
 2/4,6-trichlorophenol<88-06-2>
 2, 4-dichlorophenol
 2, 4-dlaethylphenol<105-67-9>
 2, 4-dinitrophenol<51-28-5>
 2, 4-dinitrotoluene<121-14-2>
 2f 6-dini trot oluene<606-20-2>
 2-chloroethylvinyl ether<110-75-8>
 2-chlor onaphthalene< 91-58- 7>
 2- chlorophen ol< 95-57- 8>
 2-nitrophenol<88-75-5>
 3,3'-dichlorobenzidine<91-94-l>
 3,4-benzof luoranthene<205-99-2>
 4,4'-ddd(p,p*tde)
 4,4--dde(p,p'-ddx)<72-55-9>
 4,4'-ddt<50-29-3>
 4, 6-dinitro-o-cresol<534-52-l>
 4-bronophenyl phenyl ether
   <101-55-3>
 4-chlorophenyl phenyl ether
   <7005-72-3>
 4-nitrophenol<100-02-7>
 aceraphthene<83-32-9>
 acenaphthylene<208-96-8>
 acrolein<107-02-8>
 acrylonitrile<107-13-l>
 aldrln<309-00-2>
 anthracene<120-12-7>
 antimony<7440-36-0>
 arsenic<7440-38-2>
 be«2ene<71-43-2>
 benzldine<92-87-5>
 benzo( a) an thracene<56- 55-3>
 benzo(a)pyrene<50-32-8>
 benzo(g,h,i)perylene<191-24-2>
 benzo(lc)fluoranthene< 207-0 8-9>
 beryllium<7440-4l-7>
 bhc (lindane)-ga«raa<58-89-9>
 bhc-alpha<319-84-6>
 bhc-beta<319-85-7>
 bhc-delta<319-86-8>
 bis(2-chloroethoxy)Me thane
bls(2-chloroethyl)ether
bis(2-chloroisopropyl) ether
   <39638-32-9>
bis<2-ethylhexyl)phthalate
bis(chloromethyl)ether<542-88-l>
bro»oaiethane<74-83-9>
butyl benzyl phthalate<85-68-7>
cadiluiK 7440-43- 9>
 carbon  tetrachloride<56-23-5>
 chlordane<57-7 4-9>
 chlorobenzene<108-90-7>
 chlorodibroBonethane<124-48-l>
 chloroethane<75-00-3>
 chloroform<67-66-3>
 chloro«ethane<74-87-3>
 chroniun<7440-47-3>
 chrysene<218-01-9>
 copper<7440-50-8>
 cyanide<57-12-5>
 dl-n-butyl  phthalate<84-74-2>
 dl-n-octyl  phthalate<117-84-0>
 dibenzo(a/h)anthracene<53-70-3>
 dichlorobro«o»ethane<75-27-4>
 dlchlorodlfluoronethane<75-71-8>
 dichloro«ethane<75-09-2>
 dleldrln<60-57-l>
 diethyl phthalate<84-66-2>
 dlaethyl phthalate<131-ll-3>
 endosulfan  sulfate<1031-07-8>
 endosulf an-alpha< 95 9-98-8>
 endosulfan-beta<332!3-65-9>
 endrln  aldehyde<7421-93-4>
 endrin<72-20-8>
 ethylbenzene<100-41-4>
 fluoranthene<206-44-0>
 fluorene<86-73-7>
 heptachlor  epoxide<1024-57-3>
 heptachlor<76-44-8>
 hexachlorobenzene<118-74-l>
 hex achlorobutadiene<87-68-3>
 hexachlorocyclopentadlene<77-47-4>
 hexachloroethane<67-72-l>
 indeno  (1,2/3-cd)pyrene<193-39-5>
 isophorone<78-59-l>
 lead<7439-92-l>
 »ercury<7439-97-6>
 n-nltrosodi-n-propylamine
   <621-64-7>
 n-nitrosodi«ethyla«ine<62-75-9>
 n-nitrosodiphenyla>ine<86-30-6>
 naphthalene<91-20-3>
 nlckel<7440-02-0>
 nltrobenzene<98-95-3>
 p-chloro-«-cresol<59-50-7>
 pcb-1016 (arochlor 1016)
   <12674-ll-2>
pcb-1221 (arochlor 1221)
   <11104-28-2>
 pcb-1232 (arochlor 1232)
                         1213

-------
                             Accession No.  9098000901     (cent)

    pcb-1242 (arochlor 1242)             seleniu»<7782-49-2>
       <53469-21-9>                      silver<7440-22-4>
    pcb-1248 {arochlor 1248}             tetrachloroethylene<127-18-4>
       <12672-29-6>                      thalliua<7440-28-0>
    pcb-1254 (arochlor 1254)             toluene<108-88-3>
       <11097-69-l>                      toxaphene<8001-35-2>
    pcb-1260 (arochlor 1260)             tribronoBethane<75-25-2>
       <11096-82-5>                      trichloroethylene<79-01-6>
    pentachlorophenol<87-86-5>           trichlorofluoromethane<75-69-4>
    phenanthrene<85-01-8>                vinyl chloride<75-01-4>
    phenol<108-95-2>                     zinc<7440-66-6>
    pyrene<129-00-0>
(CAS)  CAS registry numbers of substances included in data base: 71-55-6
    ; 79-34-51 79-00-5; 75-34-3; 75-35-4;       120-82-1; 95-50-1;
    107-06-2; 78-87-5; 563-54-2; 122-66-7; 156-60-5;   541-73-1;
    106-46-7; 88-06-2; 120-83-2; 105-67-9; 51-28-5; 121-14-2;
    606-20-2; 110-75-8; 91-58-7; 95-57-8; 88-75-5; 91-94-1; 205-99-2;
    72-55-9; 50-29-3; 534-52-1; 101-55-3; 7005-72-3; 100-02-7; 83-32-9;
    208-96-8; 107-02-8; 107-13-1; 309-00-2; 120-12-7; 7440-36-0;
    7440-38-2; 71-43-2; 92-87-5; 56-55-3; 50-32-8; 191-24-2; 207-08-9;
    7440-41-7; 58-89-9; 319-84-6; 319-85-7; 319-86-8; 111-91-1;
    111-44-4;      39638-32-9; 117-81-7; 542-88-1; 74-83-9; 85-68-7;
    7440-43-9; 56-23-5;      57-74-9; 108-90-7; 124-48-1; 75-00-3;
    67-66-3; 74-87-3; 7440-47-3;    218-01-9; 7440-50-8; 57-12-5;
    84-74-2; 117-84-0; 53-70-3; 75-27-4;    75-71-8; 75-09-2; 60-57-1;
    84-66-2; 131-11-3; 1031-07-8; 959-98-8;    33213-65-9; 7421-93-4;
    72-20-8; 100-41-4; 206-44-0; 86-73-7;     1024-57-3; 76-44-8;
    118-74-1; 87-68-3; 77-47-4; 67-72-1; 193-39-5;    78-59-1;
    7439-92-1; 7439-97-6; 621-64-7; 62-75-9; 86-30-6; 91-20-3;
    7440-02-0; 98-95-3; 59-50-7; 12674-11-2; 11104-28-2; 11141-16-5;
    53469-21-9; 12672-29-6; 11097-69-1; 11096-82-5; 87-86-5; 85-01-8;
    108-95-2; 129-00-0; 7782-49-2; 7440-22-4; 127-18-4; 7440-28-0;
    108-88-3; 8001-35-2; 75-25-2; 79-01-6; 75-69-4; 75-01-4; 7440-66-6
(CNM)  Contact name(s): Minard,D»E.;    ffilson,E.;    Minard,D.E.
(ROR)  Responsible Organization: Region IX.Toxics and Haste Management
    Division.
                             1214

-------
                            Accession No.  9098000902

(DQ)  Date of Questionaire: 12-02-82
(MAM)  Name of Data Base of Model: DBCP Monitoring
(ACR)  Acronym of Data Base or Model: None
(NED)  Media/Subject of Data Base or Model: Ground water > Surf ace Hater
   canals, rivers
(ABS)  Abstract/Overview of Data Base or Model: DBCP monitoring of
   municipal and agricultural     water supplies is contained in this
   data base.
(CTC)  CONTACTS: Subject matter   William Thurston  (415)974-8226    ;
   EPA Office  Hilliam Thurston  (415)974-8226
(DTP)  Type of data collection or monitoring: Non point source data
   collection
(STA)  Data Base status: Update Terminated
(IPP)  Non-pollutant parameters included in the data base: Sampling
   date ;Site description ;past use of DflCP in area ;soil type ;
   geography ;nuraber of users ;well description /geology jname of
   system
(OS)  Time period covered by data base: 06-01-79 TO 10-30-80
(TRM)  Termination of data collection: Rot Applicable
(FRQ)  Frequency of data collection or sampling: as needed
(IOB)  Number of observations in data base: 1000.(Estimated)
(NED  Fstimated annual increase of observations in data base: 0.
(INF)  Data base includes: Raw data/observations ;Summary aggregate
   observations ;Reference data/citations
(ITS)  Total number of stations or sources covered in data base: 300.
(ICS)  No. stations or sources currently originating/contributing data:
   0
(MOP)  Number of facilities covered in data base (source monitoring): 0.
(GEO)  Geographic coverage of data base: Selected federal region Region
   IX
(LOG)  Data elements identifying location of station or source include:
   State ;County ;Clty ; Town/township ;street address
(FAC)  Data elements identifying facility include: Plant facility name
   yPlant location ^Parent corp name ^Parent corp location }    Public
   Hater Supply code number
(CDE)  Pollutant identification data are: Uncoded
(LIM)  Limitation/variation in data of which user should be aware: Possi
   ble quality control problems with  this data base.
(DPR)  Data collect./anal, procedures conform to ORD guidelines: Samplin
   g plan documented Collection method documented ^Analysis method
   document QA procedures documented
(ABL)  Lab analysis based  on EPA-approved or accepted methods? YES
(ADD)  Lab Audit: Data not based on lab analysis.
(PRE)  Precision: Precision and accuracy estimates  exist but are not
   included in data base
(EOT)  Editting: No known  edit procedures exist.
(CBY)  Data collected by:  State agency Hawaii Department of Health
   Arizona Department  of Health Services ;Regional office
   Surveillance and Analysis Division, Region IX
(A8Y)  Data analyzed by: State agency California Department of Food and
   Agriculture   EPA lab  Drinking Hater Technological  Support Division
   in   Cincinnati 
-------
                             Accession No.  9098000902     (cont)

 CIDL)   Laboratory  identification: YES
 
 (CAS)   CAS registry numbers of substances included in data base: 96-12-8
 (CUM)   Contact name(s): Thurston, HI 111 am;    Thurston, if ill lam
                             1216

-------
                            Accession No.   9098000903

(DQ)  Date  of  Questionaire:  12*02-82
(RAM)   Name of Data  Base  of  Model: United Nuclear Corporation (UNC)
   Spill-Rio  Puerco  Monitoring
(ACR)   Acronym of  Data Base  or  Model: None
(MED)   Media/Subject of Data Base or Model:  Ground  water ;Sediment
   ^Surface uater river
(ABS)   Abstract/Overview  of  Data Base or Model:  A monitoring program to
   detect  the effects   on  drinking water of  the United Nuclear
   Corporation    Spill  in  ChurchrocJc, New  Mexico  into the Rio Puerco
   River.
(CTC)   CONTACTS: Subject  natter  Harold Takenaka   (415)974-7484   ;
   EPA Office    Horald Takenaka  (415)974-7484
(DTP)   Type of data  collection  or Monitoring:  Point source data
   collection tailings pond spill
(STA)   Data Base status:  Operational/ongoing
(GRP)   Groups  of substances  represented  in Data  Base:  18 radioactive
   ;129 307 CWA jll conventional water  ;41  CMA  potential criteria }
   21  drinking water  standards }15  metals
(NPP)   Non-pollutant parameters included in  the  data base: Chemical
   data Collection method  ^Location ^Sampling  date >Site description
(DS)   Time  period  covered by data base:  07-01-79 TO 11-30-82
(TRM)   Termination of  data collection: Anticipated   12-30-82
(FRQ)   Frequency of  data  collection or sampling: one time only ;weekly
   ;morthly ;0ther  one time:  soil-9/26/79 ;    Other  weekly:
   groundwater-9/04/79-10/15/79 ;0ther  monthly:
   groundwater-lO/17/79-present j  Other monthly:  surface water until
   May 1980.
(NOB)   Number  of observations in data base:  1500.(Estimated)
(NEI)   Estimated  annual increase of observations in data base: (N/A.)
(INF)   Data base  includes: Raw data/observations ^Summary aggregate
    observations
(NTS)   Total number  of stations or  sources covered  in  data base:  30.
(NCS)   No.  stations  or sources currently originating/contributing data:

(NOF)   Number  of  facilities  covered in  data  base (source monitoring):  (N
    /A.)
(GEO)   Geographic coverage of data  base:  Geographic region  Arizona and
    New Mexico
(LOO   Data elements identifying  location of station or source  include:
    State ;county ;City ;Pro3ect  identifier
(CDE)   Pollutant  identification data are:  Uncoded
(LIM)   Limitation/variation in data of  which user should be aware: Sampl
    ing of surface water was very inconsistent (i.e. irregular  and
    varied in   location).  Current parameters:  sulfates,  chloride,
    gross alpha,  radium 226, and  total  uranium.
(DPR)   Data collect./anal, procedures conform to ORD guidelines:  Saaplin
    g plan documented  ^Collection method documented jAnalysis method
    document QA procedures documented
(ANL)   Lab analysis based on EPA-approved or accepted methods?  YES
(AUD)   Lab Audit:  Lab  audit is satisfactory for 50%, most  parameters
    not covered by PE   samples*  radiological only some..
(PRE)   Precision:  Precision and accuracy estimates exist but are  not


                             1217

-------
                             Accession No.   9098000903     (cent)

    Included in data base    Edit erratic results revieued and
    reanalyzed.
(CBY)  Data collected by: State agency Arizona Department of Health
    Services ^Regional office,   Office of  Technical and Scientific
    Assistance, Region IX;   Other federal  agency Indian Health Service
(ABY)  Data analyzed by: State agency Arizona Department of Health
    Services, Men     Mexico Environmental  Improvement Division
    Regional office Region VI and Region IX (through contract)
    Navajo Tribe
(IDL)  Laboratory identification: YES
(PR1)  Prlnary purpose of data collection:  Special study
(AOT)  Authorization for data collection: Statutory authorization  is P
    L 93-523 as amended, Section 141 (SDUA)   P L 95-217 as amended,
    Section 104 (CWA)
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    QQ
(REP)  For» of available reports and outputs of data base: package of
    all ran data summarized with graphs nailed out.
(•US)  Number of regular users of data base: 5
(OSR)  Current regular users of data base:  EPA headquarter offices
    Office of Enforcement Office of Radiation     Programs
    EPA regional offices
    Other federal agencies
    States
    National park Service, Nuclear Regulatory Commission
    Navajo Tribe
    Arizona & Keu Mexico state governments
(CMP)  Confidentiality of data and limits on access: No limits on
    access to data
(DLC)  primary physical location of data: Regional office
(DST)  For* of data storage: summary sheet
(DAC)  Type of data access: Manually
(OPDT)  Frequency of data base »aster file up-date: Other as data
    becomes available
(CMP)  Completion of form:
    Laura J. Tom
    OFC: EPA/Region IX
    AD: 215 Freaont St. San Francisco, CA 94105
    PH: (415)974-8379
CDF)  Date of  fora completion: 02-16-83
(•MAT)  Number of substances represented in data base: 39
(•CAS)  Number of CAS registry numbers in data base:  28
(MAT)  Substances represented in data base:
    potassiu»<7440-09-7>                 cad«ium<7440-43-9>
    uranium 234<13966-29-5>              calcium
    uranium 238<7440-61-1>               chloride
    alu»inum<7429-90-5>                  chlorine<7782-50-5>
    anti«ony<7440-36-0>                  chro«iu«<7440-47-3>
    arsenic<7440-38-2>                   cobalt<7440-48-4>
    barium<7440-39-3>                    copper<7440-50-8>
    beryllium<7440-41-7>                 gross alpha
    boron co«pounds<7440-42-8>           lron<7439-89-6>


                              1218

-------
                            Accession No*  9098000903     (cont)

   lead 210                             radium 228<15262-20-1>
   l«ad<7439-92-l>                      selenium<7782-49-2>
   •agnesiun                            silver<7440-22-4>
   manganese<7439-96-5>                 sodium and compounds<7440-23-5>
   •ercury<7439-97-6>                   specific conductivity
   molybdenum and compounds             sulfates
      <7439-98-7>                       thorium 230
   nickel<7440-02-0>                    thorium 232
   PH                                   uraniu»<7440-61-l>
   Plutonium 210                        vanadiun<7440-62-2>
   radiun 226<13982-63-3>               zinc<7440-66-6>
(CAS)  CAS registry numbers of substances included in data base: 7440-09
   -7; 13966-29-5; 7440-61-1; 7429-90-5;       7440-36-0; 7440-38-2;
   7440-39-3? 7440-41-7; 7440-42-8; 7440-43-9;     7782-50-5;
   7440-47-3; 7440-48-4; 7440-50-8; 7439-89-6; 7439-92-1;
   7439-96-5; 7439-97-6; 7439-98-7; 7440-02-0; 13982-63-3; 15262-20-1;
   7782-49-2; 7440-22-4; 7440-23-5; 7440-61-1; 7440-62-2; 7440-66-6
(CHM)  Contact name(s):  Takenaka,H.     ;    Takenaka,H.
(ROR)  Responsible Organization:  Region IX.Toxics  and Waste Management
   Division.
                             1219

-------
                             Accession Ho.   9102000516

(DQ)  Date of Questionaire:  12-02-82
(NAM)  Name of Data Base of Model: Control  and Prevention System
(ACR)  Acronym of Data Base or Model: CAPS
(MED)  Media/Subject of Data Base or Model:  Emissions:  Any stationary
    man-made* source of     air contaminants
(A8S)  Abstract/Overview of Data Base or Model: The system captures
    descriptive data regarding    companies and other sources of  air
    pollution including investigative* complaint* sampling and
    enforcement activities.   Also captured  is     permit activies for
    new point sources of emissions since 1972*   this includes emission
    description* pollutant*  process and  statement data.  Presently
    this emission data is being expanded to    include  major grand
    smothered sources.
(CTC)  CONTACTS: subject matter  Data Services Section  Chief* Technical
    Services Division  (512) 451-5711  j Computer-related Manager of
    Software Development* Data Processing Division  (512) 451-5711
(DTP)  Type of data collection or monitoring: Point source: Any
    man-made source of air contaminants
(STA)  Data Base status: Presently Operational/Ongoing
(GRP)  Groups of substances represented in  Data Base: 5 NESHAPS } 7
    criteria NAAQS except ozone ;  3 HID CAA
(MPP)  Non-pollutant parameters included in the data base: Compliance
    data ; discharge points ; industry ;   inspection data > location ;
    political subdivisions ; sampling date  ; permit data
(DS)  Time period covered by data base: 06-72 TO 01-83
(TRM)  Termination of data collection: Not  anticipated
(FRQ)  Frequency of data collection or sampling: Ongoing: annually /
    ongoing: as needed
(MOB)  Number of observations in data base: 40,000(Estimated to date)
(NED  Estimated annual increase of observations in data base: 15,000
(INF)  Data base includes: Aggregate or summary observations
(NTS)  Total number of stations or sources  covered in data base:  18K
(HOP)  Number of facilities covered in data base (source monitoring): 12
    K
(GEO)  Geographic coverage of data base: Single state:  Texas
(LOG)  Data elements identifying location of station or source include:
    State ; county ; city ; town/township ; street    address ;
    latitude and longitude* OTM, or other coordinates
(FAC)  Data elements identifying facility include: Plant or facility
    name ; plant location > parent  corporation-name ;  parent
    corporation-location ; street address ?     sic code ; sec (source
    classification code)
(CDE)  Pollutant identification data are: Coded* other  coding scheme
(DPR)  Data collect./anal, procedures conform to CRD guidelines:  No*
    but other documentation available for each    of the following:
    collection method and analysis method
(AND  Lab analysis based on EPA-approved or accepted methods? NO
(AUD)  Lab Audit: NO
(PRE)  Precision: Not included in data base* percision and     accuracy
    measurements available from other sources
(EDT)  Editting: YES* undocumented
(CBY)  Data collected by: Self-reporting* Permittee ? Local agency,


                             1220

-------
                             Accession No.   9102000516     (cent)

    Federally  Funded Program only ;  State agency, Texas Air Control
    Board
 (*BY)   Data  analyzed by:  State  agency, Texas Air Control Board
 (IDL)   Laboratory identification: NO
 (PR1)   Primary purpose of data  collection:  Compliance or enforcement
 (PR2)   Secondary purpose  of data collection: Program evaluation
 (AUT)   Authorization for  data collection: No, Data Base provides a
    management tool for state agency activities, source of data for
    modeling and provides    EPA required  reports.
 (OMB)   Data  collected/submitted using OMB-approved EPA reporting forms:
    NO
 (REP)   Fora  of available  reports and outputs of data base: Printouts on
    reguest  ;  on-line computer  terminal
 (MOS)   Number  of regular  users  of data base: 10
 (OSR)   Current regular users of data base:  EPA regional offices ;
    Other- consultants
 (CNF)   Confidentiality of data  and limits on access: None
 (DLC)   Primary physical location of  data: State agency
 (DST)   Form  of data storage: Magnetic disc
 (DAC)   Type  of data access: Commercially available Software:  System
    Same-      Burroughs DMS II,   Hardware- Burroughs 6800
 (CHG)   Direct  charge for  non-EPA use: YES
 (OPDT)   Frequency of data base  master file  up-date: Other- Daily
 (RSS)   Related EPA automated systems which  use data base: Related EPA
    systems: CDS - stationary source information management system for
    enforcement and surveillance  programs.
 (RDBEPA) Related EPA data bases used in conjunction with this data base
    None
 (ROB)   Non-EPA data bases used  in conjunction with this data base: None
 (CMP)   Completion of form: f Richard P. Leef   OFC; Texas Air Control
    Board! AD:  6330 Highway 290 East, Austin, TX  787231     PH: (512)
    451-5711f
 (•NAT)   Number of substances represented in data base: 12
 (RCAS)   Number of CAS registry  numbers in data base: 9
 (NAT)   Substances represented in data base:
    Asbestos <1332-21-4>                  Hydrocarbons
    Benzene  <71-43-2>                    Lead <7439-92-l>
    Beryllium    <7440-41-7>              Nitrogen dioxide <10102-44-0>
    Mercury  <7439-97-6>                  Sulfur   dioxide <7446-09-5>
    Vinyl chloride <75-01-4>             Total suspended particulates
    Carbon monoxide <630-08-0>
 (CAS)   CAS registry numbers of  substances included in data base: 1332-21
    -4;  71-43-2; 7440-41-7; 7439-97-6;     75-01-4; 630-08-0;
    7439-92-1;  10102-44-0; 7446-09-5
(ROR)   Responsible Organization: Texas Air  Control Board.
                             1221

-------
                             Accession No.  9104000911

(DQ)  Date of Questionaire: 12-02-82
(HAM)  Name of Data Base of Model: EPA, Region X, Point Source File
(ACR)  Acronym of Data Base or Model: PSF
(MED)  Media/Subject of Data Base or Model: Effluents National
    Pollutant Discharge Elimination System (NPDES) permittees in Region
    X ;Runoff Rain/Snowmelt ;Surface water rain/snowmelt
(ABS)  Abstract/Overview of Data Base or Model: Facility location
    information, permit   conditions, and discharge water quality data
    required for the Regional Office to conduct and   to assess the
    impact of control measures under the     National Pollutant
    Discharge Elimination System   (NPDES) permit program.
(CTC)  CONTACTS: Subject matter  Florence Carroll (206)442-2723;
    Computer-related €us ParHer (206)442-2987; EPA Office Mater
    Compliance Section, Region x (206)442-2723
(DTP)  Type of data collection or monitoring: Point source data
    collection Region 10 Permittees
(STA)  Data Base status: Operational/ongoing
(GRP)  Groups of substances represented in Data Base: 11 conventional
    water ;15 metals
(MPP)  lion-pollutant parameters included in the data base: Compliance
    data Concentration measures Discharge points ;Flow rates ;
    Industry Inspection data ;Location political subdivisions ;
    Production levels ;Site description ;Temperature jVolume/mass
    measures
(DSJ  Time period covered by data base: 01-01-79 to current
(TRM)  Termination of data collection:  Not anticipated
(FRQ)  Frequency of data collection or  sampling: daily ;weekly ^monthly
    ^quarterly ;se«i annually ;annually ;as needed
(MOB)  Number of observations in data base: 250000.(Estimated)
(MEI)  Estimated annual increase of observations in data base: 85000.
(INF)  Data base includes: Raw data/observations ^Summary aggregate
    observations ;Reference data/citations
(NTS)  Total number of stations or sources covered in data base: 750.
(NCS)  No. stations or sources currently originating/contributing data:
    i / j .
(WOF)  Number t>f facilities covered in  data base (source monitoring): 75
    0.
(GEO)  Geographic coverage of data base:  Selected federal region Region

(LOC)  Data elements identifying location of station or source Include:
    State ;County ;City ;street address
(FAC)  Data elements identifying facility include: Plant facility name
    ;PIant location ;Parent corp name ;Parent corp location ;     Street
    address ;SIC code ;NPDES
(CDE)  Pollutant identification data are:  Storet parameter
(LIM)  Limitation/variation in data of  which user should be aware:  Stree
    t address sometime not available.  Frequency varies by permit.   98%
    of data presently     covers conventional water pollutants and
    metals*  Toxics and organlcs are being added in some new   permits.
    Laboratory analysis not always based  on EPA-approved or accepted
    methods,  varying by industry.
(DPR)   Data collect./anal,  procedures conform to ORD guidelines:  Samplin


                            1222

-------
                             Accession Mo.   9104000911      (cont)

    g plan documented ;Collection method documented ;Analysls  method
    document
(AND  Lab analysis based on EPA-approved or accepted methods? YES
(AOD)  Lab Audit:  Lab audit is satisfactory for 85% compliance
    inspections conducted on  major discharges by states and/or EPA,
  Contractor to
    permittees ;0ther federal agency as permittees (e.g. shipyards.
    Forest Service campgrounds)
(ABY)  Data analyzed by: Self reporting most of data from permittees
    State agency Environmental Agencies
    Regional office Surveillance and Analysis Division
    Contractor lab to permittees
(IDL)  Laboratory identification: HO
(PR1)  Primary purpose of data collection: Compliance or enforcement
(PR2)  Secondary purpose of data collection: Program evaluation
(AOT)  Authorization for data collection: Statutory authorization is  P
    L 95-217, Sections 308 and 402 (Clean Water    Act of 1977), NPDES
    Per lit Program
(OMB)  Data collected/submitted using OMB-approved EPA reporting forms:
    158-R-0073                                                   M .   .
(REP)  Form of available reports and outputs of  data base: Unpublished
    reports Reports  related to violations and  special    conditions.
    Printouts on reguest
    Machine-readable raw data
    On-line computer
(It US)  Number  of regular users of  data  base: 46
(OSR)  Current regular users of data  base:  EPA regional offices
    EPA  laboratories
     States
     freedom of information requestors
(CNF)  Confidentiality of  data and limits on access: No limits on
     access  to  data
(DLC)  Primary physical  location  of data: Regional  office
(DST)  Form of data  storage: Magnetic disc
(DAC)  Type of data  access: EPA software Point Source File
     MIDS:9104000911  ;EPA hardware  POP 11/70
(CHG)  Direct  charge for non-£PA  use:  yes
(UPDT)   Frequency  of data  base master file  up-date:  Other  daily
(RDBEPA)  Related EPA  data bases  used in conjunction with this data  base
     Permit  Compliance  System  (PCS)
(CMP)  Completion of form:                                     «....•   *.
     Florence  Carroll/Gus ParlierS     OFC:  EPA/Region  X/Hater Division!
     AD:  1200  Sixth Ave.  Seattle,  MA 91801
     PH:  (206)442-2723
(DF)  Date  of form completion:  01-24-83


                              1223

-------
                             Accession Ho.  9104000911     (cont)

CRNAT)  Number of substances represented in data base: 21
(NCAS)  Nuaber of CAS registry nuibers in data base: 12
(MAT)  Substances represented in data base:
    acidity                              aanganese<7439-96-5>
    alkalinity                           »ercury<7439-97-6>
    arsenic<7440-38-2>                   nickel<7440-02-0>
    cad»iuio<7440-43-9>                   nitrogen<7727-37~9>
    chro«iu«<7440-47-3>                  oil and grease
    copper<7440-50-8>                    oxygen deaand
    dissolved oxygen                     pH
    dissolved solids                     pHosphorus<7723-14-0>
    fecal coliforn                       seleniu«<7782-49-2>
    iror<7439-89-6>                      suspended solids
    lead<7439-92-l>
(CAS)  CAS registry nutf>ers of substances included in data base:  7440*38
    -2; 7440-43-9; 7440-47-3; 7440-50-8;   7439-89-6; 7439-92-1;
    7439-96-5; 7439-97-6; 7440-02-0; 7727-37-9;     7723-14-0;
    7782-49-2
(CUM)  Contact naMe(s): Florence Carroll   ;   Section,h.C.
(ROR)  Responsible Organization: Region X.Management Division.
                             1224

-------
                             Accession No.   12302000901

(DQ)   Date of Questionaire:  12-02-82
(STATUS)  Status of entry:  Inactive
(NAM)  Name of Data Base of Model:  U.S. Copper Industry  Model
(ACR)  Acronym of Data Base or Model:  COPMOD1
(MED)  Pedia/Subject of Data Base or Model: Industry/economic
(ABS)  Abstract/Overview of Data Base or Model: The
    financial-econometric simulation model  of the U.S.  Copper  Industry
    has been developed to assess the industry-wide economic impact of
    compliance with the air and water pollution abatement legislation.
    The model consists of a market clearing nodule and  a dynamic
    investment module programmed in FORTRAN.  COPKOD1 was constructed
    by Arthur D. Little, Cambridge, Massachusetts.
(CTC)  CONTACTS: James Titus    EPA-OPM-Office of Planning and
    Evaluation                                               „„_  „.„,,.
    Loc: PM-220 401 M St.,  Sti Washington, DC 20460   Ph: 202-287-0725
(STA)  Data Base status: Discontinued
(DF)  Date of form completion: 01-31-83
(CAP)  Functional capabilities of model: COPMOD1 incorporates two
    versions of the U.S. Copper model, linear and nonlinear.  The model
     identifies three alternative modes of pricing behavior for the
    primary producers in the linear and nonlinear cases:
    1.  Price = Average Variable Cost   (slack demand)
    2.  Price = Average Total Cost      (normal demand)
    3.  Marginal Revenue = Marginal Cost(demand 'crunch')
    The nonlinear version permits the  introduction of capacity
    contraints in supply and cost curves, whereas the linear version
    yields unconstrained production estimates.  Plant capacity could be
     exceeded in the linear simulation  experiment. In addition,
     subroutines are included  to plot average  total cost, average
     variable cost,  average fixed cost  and compare historical period
     simulation results with actual  data.
(ASM)   Basic assumptions of model:  The model  explicity  assumes the
     following market classifications:
     1.  Primary producers
     2.  Secondary refiners
     3.  Producers of non-refined scrap
     These classifications  are based upon pricing behavior  and
     production technology.  More importantly,  primary producers  are
     analyzed  as  behaving oligopolistically  while secondary  refiners  and
     producers of  non-refined  scrap  are treated as behaving
     competitively.                                         -«»M«««
 (IHP)   Input  to  model:  Alteration  of  the scenario file  in  COPMODi can
     take  two  forms:
     1.  Card  input
     2.  File  editor                                       .         .
     Due to the  structure of  the program, modification of the scenario
     file  is  most easily accomplished  using the file  editor.
     Modification through card input can only occur if the  entire
     program subroutine  with the new cards  is reloaded into the
     computer.   As of  this  writing,  program modification remains
     non-interactive.  CQPMOD1  provides for  the following input options:
     1.   Specification of model  version:


                              1225

-------
                             Accession  No.   12302000901     (cont)

           a.   Linear
           b.   Nonlinear
           c.   Both
    2.   Printing of all endogenous and  exogenous variables*
    3.   Printing of various diagnostic  variables.
    4.   Which  of the three paranetrlc solutions (P » ATC,  P = A?C,
           MR  = MC) is «ost probable.
(OUT)  Output  of model: Depending upon  the version chosen, COPMOD1  Hill
    generate a vide range of subsidiary calculations such  as production
    estimates/ sales estimates, and payroll estimates.   Financial
    estimates (pollution abatement investment, depreciation, dividends,
    etc.) derived from primary producer's estimated fixed  costs are
    printed in constant and current dollars.
(CSR)  computational Systei Requirements: COPMODI is coded In (ASCII)
    FORTRAN V and requires approximately 65K words of core storage  for
    execution.  The program  is compatible with the Onlvac 1110 and
    requires a moderate amount of computer skills and a working
    knowledge of econometrics to modify and execute.
(APP)  Applications of model: COPMODI was developed primarily for
    estimating the impact on copper producer's costs from pollution
    abatement expenditure.  The model nay also be utilized in
    evaluating the effects of noncompllance fees on the producers  of
    copper and non-refined scrap.
(HDW)  computational system requirements - Hardware: Mainframe Onlvac
    1110 ;Disc storage 65K words
(LNG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gramning  ;Econometrics
(REF)  References - Oser manuals, documentation, etc.:
    Arthur D. Little, October 1976.  "Economic Impact
    of Environmental Regulation on the O.S. Copper Industry".
    Draft  report.
    Arthur D. Little, April 1978.  "COPMOD1 Program,
    Documentation1*, Cambridge, Massachusetts.
    Raymond S. Hartman, January 1977.  "An Oligopolistic Model
    of the U.S. Copper Industry" Ph.D  thesis, M.I.T.
(CNN)  Contact name(s): Titus,J.
(COR)  Contact  organization: EPA-OPM-Office of  Planning and  Evaluation
(ROR)  Responsible Organization: Office  of  Policy  and Resource
    Management.Office  of Policy Analysls.Economic  Analysis Division.
                              1226

-------
                             Accession No.  12302000902

(DQ)  Date of Questionaire: 12-02-82
(STATUS)  status of entry: Inactive
(RAM)  Name of Data Base of Model: Construction Model
(ACR)  Acronym of Data Base or Model: CQHMOD
(MED)  Media/Subject of Data Base or Model: Industry/economic
(ABS)  Abstract/Overview of Data Base or Model: The construction model
    is an econometric Model designed for the evaluation of sever line
    and treatment plant expenditures by the Environmental Protection
    Agency. The model estimates impacts on labor supply/ investment/
    and prices from EPA sewer-related expenditures.  CQNMOD Has
    developed by the Center for Naval Analyses (CNA).  CORMOD resides
    on the IPS/TROLL system at the Massachusetts Institute of
    Technology.
(CTC)  CONTACTS: James Titus    EPA-OPM-Office of Planning and
    Evaluation
    Loc: PM-220 401 M St., SW Washington, DC 20460   Ph: 202*287-0725
(STA)  Data Base status: Discontinued
(DP)  Date of form completion: 01-31-83
(CAP)  Functional capabilities of model: The TROLL system allows for
    direct user interaction with CQHMOD.  Simulation of any equation or
    the production of graphs is accomplished through simple
    conversation with TROLL.  This system also provides for a variety
    of output options In addition to the printing of standard
    regression statistics.  Econometric techniques ranging from OLS to
    2SLS with autocorrelation correction procedures are readily
    available.  CONMOD utilizes GLS because of the small sample sizes.
    TROLL'S unique file system allows all relevant files associated
    with a given model to be accessed automatically be referencing  the
    model Itself.  THe user doesn't need to be concerned with loading
    data or parameters.  TROLL also contains a file editor and provides
    for off line printing.
(ASM)  Basic assumptions of model: CORMOD was developed assuming the
    construction industry to be competitive.  For any type of
    construction, the composition of construction between trades
    remains fixed. Stock of structures equations imply a stock
    adjustment mechanism where actual stocks adjust to desired stocks
    at a constant rate (estimated by regression analysis).  Lastly, the
    labor supply schedule is derived from a constant elasticity of
    substitution production function (CES).
(IMP)  Input to model: Once CONMOD has been accessed, the TROLL system
    automatically provides the required data input.  The user can then
    specify the equation technique, simulation period, required
    statistics, and any graphic output desired.  After the model has
    been simulated once, TROLL will automatically create a 'data set*
    file which includes the model, data, and estimated coefficient
    values.  In this way performing a variety of simulation experiments
    at a later time is a simple task. Data can be printed when desired
    and results from the output stream can be stored for later use.
(CSR)  Computational System Requirements: There are no specific system
    resource requirements needed to run CONMOD on TROLL. The system is
    conversational and costs approximately $9.00 per CPU minute and
    $2.00 per hour connect time to operate.


                             1227

-------
                             Accession No.   12302000902    (cont)

fAPP)  Applications of model: CONMOD is used for estimating the
    economic impact resulting from the EPA"3 massive sever line and
    sewer treatment plant expenditure program.  The 00del may also be
    used for other applications involving the construction industry.
(HDH)  Computational system requirements -  Hardware: Mainframe No
    specific systea requirements
(LUG)  Conputational system requirements -  Language(s) used: Fortran
(REP)  References - User manuals, documentation, etc.:
    Center for Haval Analyses, March 1978.   "The
    Economic Effects of Environmental Regulations on the Construction
    Industry" Arlington, Virginia.
    Rational Bureau of Economic Research, June 1972.  "TROLL/1
    Users Guide** Cambridge, Massachusetts.
(CNM)  Contact name(s): Titus,J.
(COR)  Contact organization: EPA-OPM-Office of Planning and Evaluation
(ROR)  Responsible Organization: Office of  Policy and Resource
    Management.Office of Policy Analysis.Economic Analysis Division.
                             1228

-------
                             Accession No.   12302000903

(DQ)  Date of Questionaire: 12-02-82
(MAM)  Name of Data Base of Model: Steel Industry Model
(ACR)  Acronym of Data Base or Model: PTM
(MED)  Vedia/Subject of Data Base or Model: Industry/econonic
(ABS)  Abstract/Overview of Data Base or Model: PTM Has developed by
    Temple/ Barker/ and Sloane (TBS) for the purpose of systematically
    analyzing the effects on the steel industry resulting from
    environmental regulations/ input price changes/ or from other cost
    variations.  The model partially relies on a modeling effort
    previously done by Arthur D. Little in Cambridge/ Massachusetts.
    PTM contains four nodular components:  production/ pollution
    control, and finance/ and economic impact.  The three later
    components depend upon the production and capacity data from the
    production component in order to execute.  Exogenous variable
    values for siaulation were obtained through Data Resources Inc.
(CTC)  CONTACTS: Robert Greene  EPA-OPM-Office of Policy Analysis! Loci
    PM-220 401 M St./ SW Washington, DC 20460   Ph: 202-382-2780
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of fora completion: 01-31-83
(CAP)  Functional capabilities of model: PTM has the capability of
    performing many different sensitivity analyses by altering data
    inputs such as the rate of return on equity/ degree of cost pass
    through, cost of capital/ etc.   In addition, effects on energy
    usage/ production employment/ prices and the balance of trade
    stemming from environmental regulations can be estimated.  Cost
    impacts of the Clean Air Act  and other air pollution regulations
    can be calculated utilizing different engineering, cost estimated.
    The resulting revenue requirements and price effects are also
    computed by model.
(ASM)  Basic assumptions of model: The baseline forecast for steel
    shipments by 1990 is 108 million net tons. The other baseline
    indicators needed to simulate the baseline forecast are capital
    expenditures/ external financing needs/ operations and maintenance
    expenses/  revenue requirements/  and  the average price of steel per
    ton.  TBS has calculated the  following numbers for the baseline
    forecast.
                                                           Short Run
                                                           1981-1985
    Capital Expenditures             S 18.11 Financing Needs
    3.2           30.3f Revenue Requirements              52.8
    5.6*  Average Price                     554.52         556.72# (in
    1980  dollars per  ton)# The  theoretical assumptions used  in
    constructing PTM were  not available  as of  this writing.
(IMP)   Input  to  model: PTM requires  many cost  inputs.  These consist of
    production costs  and pollution control costs.  Under these  two
    headings  there  are several  subdivisions.   Pollution control costs
    can be  broken  down into  water pollution and  air pollution control
    costs.  Each type of pollution control cost  has two  (main)  cost
    categories;  operations and  maintenance expenditures and  capital
     costs.  Production costs  include capital  expenditures/ operations
     and maintenance cost/  ran materials  cost,  and  'other costs*. PTM
     (Steel) produces  the  following  outputs:


                             1229

-------
                             Accession Ho.  12302000903    (cent)

    1.  Income statement
    2.  Flow of funds suaueary
    3.  Balance sheet
tOUf)  Output of aodel: These outputs contain all the information
    necessary to analyze the impacts on the industry.  All output
    figures are in current dollars.
(CSR)  Computational Systea Requirements: PTM is coded in FORTRAH ? and
    can be run on the IBM 370/158 or UHIVAC 1110 computers, Unless
    alterations to the baseline or scenario forecasts are desired/ the
    •odel can be run immediately after being loaded into the Machine.
    Direct alterations to the program would require a working knowledge
    of FORTRAN and econometries.
(APP)  Applications of model: PTM Steel has been priaarily used for
    environmental impact/sensitivity analyses by the U.S. Environmental
    Protection Agency.  The «odel could also be used in forecasting
    impacts on the steel industry resulting from changes in factors of
    production, factor prices, or technological advancement.
CHDM)  Computational system requirements - Hardware: Mainframe IBM
    370/158 or Univac 1110
(LUG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: operator Knowledge/Skills: Pro
    grammlng ;Econometrics

-------
                             Accession  No.   12302000904

(DQ)   Date  of  Questionaire:  12-02-82
(STATUS)  Status of entry: Inactive
(HAM)   Name of Data Base of  Model:  Automobile Demand Model
(ACR)   Acronym of Data Base  or Model:  CARMOD
(MED)   Media/Subject of Data Base or  Model:  Industry/econonic
(ABS)   Abstract/Overview of  Data Base or Model:  CARMOD  is a 400
    equation simultaneous econometric model*  The model  is  concerned
    primarily yith estimating long run levels of automobile demand.
    CARMOD  was developed by  Wharton Econometric  Forecasting Associates
    (HEFA).  The model is long run and movements toward equilibrium are
    governed by a stock adjustment mechanism. CARMOD resides  on the
    IPS/TROLL system at the  Massachusetts Institute of  Technology.
(CTC)   COHTACTS: Mahesh Podar   EPA-OPM-Office of Planning  and
    Evaluation                                                   *-,.
    Locs  PM-220 401 M St., SM Washington/ DC 20460   Ph: 202-287-0734
(STA)   Data Base status: Discontinued
(DF)  Date  of fora completion: 01-31-83
(CAP)   Functional capabilities of model: The TROLL system allows for
    direct  user interaction with Carmod.  Simulation of any equation  or
    the production of graphs is accomplished through simple
    conversation with TROLL.  This system also provides for a variety
    of output options in addition to the printing of standard
    regression statistics.  Econometric techniques ranging  from OLS to
    2SLS with autocorrelation correction procedures are readily
    available.  CARMOD*s equations were estimated using ordinary least
    squares. TROLL's unique file system allows all relevant files
    associated with a  given model  to be accessed automatically be
    referencing the model itself.  The user  doesn't Heed to be
    concerned with loading data or parameters.  TROLL also contains a
    file editor and provides for off line printing.
(ASM)  Basic assumptions of model: The  assumptions concerning model
    forecasts  (baseline projection) fall into three categories;
    demographic  trends, the economic environment, and automobile
    characteristics.
    1.  The major  demographic  assumptions are:
    Slow population growth:   the growth-rate falls  from  0.17% per annum
    for 1976-1985  to  just over  0.3% for 1995-2000. Family  formation
    outspaces  population:   the  number  of family  units rises from 75.3
    million in  1975 to 87.4 million  in  1985 (a  1.5% per  annum rate)  to
    100.7  million  by  2000 (a  0.9%  per  annum rate). Families become
    smaller:   the  proportion  with  five  or more  members  falls sharply,
    while  that  for three  or  four  remains constant.  An aging population:
    the percentage between  20 and  29 years  of age  falls, especially
    after  1980.
    2.  The fcey economic  assumptions  are:
    Strong real income growth:   real GNP  growth in  excess  of 5% per
    annum  through  1978, slowing to 2%  for 1979-1980, stabilizing at
    around 3% per  annum thereafter.  Slowing inflation:   the overall  GMP
    deflator  rises at around 5.5%  per  annual through  1980,  slowing
    towards 4% by  1985, and reaching  3% per annum by 2000.  Declining
    unemployment-rate:  unemployment  falls  towards  a 5% rate by the
    mid-1980-5, then  slowly trends towards  3% by 2000.  Slowly


                              1231

-------
                            Accession Mo.  12302000904     (cont)

    increasing  'teal*  automobile  costs:  operating  costs are expected
    to outpace  the  overall consumer price index,  expecially the  price
    of gasoline - projected  to  increase  over  20%  in 1972 prices  by
    1985;  however/  'real* purchase prices are expected to be quite
    stable.
    3.  The  auto characteristics  assumptions  are:
    Sharply  reduced weights  and displacements:  a major domestic
    downsizing  program,  applied to each  size-class  in succession,
    reducing curb-weights about 30%,  and engine displacements  about
    40%, by  1990. Efficiency improvements:  technological developments
    are projected to yield Increases  in  fuel  efficiency totalling 11%
    for 1976-80; thereafter  these gains  are held  to 1% per  annum on  the
    assumption  of more stringent  pollution standards.
(IIP)  Input to model: Once  CARMOD has been accessed, the TROLL  system
    automatically provides the  required  data  input. The user  can then
    specify  the equation technique,  simulation period, required
    statistics, and any graphic output desired.  After the  model has
    been simulated  once, TROLL  Hill  automatically create a  'data set'
    file which  includes the  model, data, and  estimated coefficient
    values.   In this way performing  a variety of  simulation experiments
    at a later  time is a simple task.
(CSR)  Computational System  Requirements: There are no specific  system
    resources requirements needed to run CARMOD on  TROLL.   The system
    is conversational and costs approximately $9.00 per CPU minute and
    $2.00 per hour  connect  time to operate.
(APP)  Applications of model:  CARMOD has been used  by the Department of
    Transportation to forecast the long  run size  and composition of
    U.S. auto demand and stock.  More recently, the model has  been
    employed by the Environmental Protection  Agency in forecasting
    impacts on the U.S. automobile industry resulting from
    environmental regulations*
CHDV)  Computational system  requirements - Hardware: Mainframe No
    specific system requirements
(LUG)  Computational system  requirements - Language(s) used: Fortran
(KEF)  References - User manuals, documentation,  etc.:
    Hharton Econometric Forecasting  Associations,
    "An Analysis of the Automobile Market:  Modeling the Long
    Run Determinants of the Demand for  Automobiles" Philadelphia,
    PA, February 1977.
    National Bureau of Economic Research, "TROLL/1  User's Guide"
    Cambridge,  Massachusetts,  June 1972.
(CVM)  Contact name(s): Podar,M.
(COR)  Contact organization: BPA-OPM-Office of Planning  and Evaluation
(ROR)  Responsible Organization:  Office of Policy and  Resource
    Management.Office of Policy Analysis.Economic Analysis  Division.
                             1232

-------
                            Accession No.  12302000905

(DQ)  Date of Questionaire: 12-02-82
(STATUS)  Status of entry: Inactive
(RAN)  Name of Data Base of Model: Pulp and Paper Industry Model
(ACR)  Acronym of Data Base or Model: P&PMOO
(MED)  Media/Subject of Data Base or Model: Industry/economic
(ABS)  Abstract/Overview of Data Base or Model: PSPMQD is a
   nonsimultaneous model of the pulp and paper industry.  The model
   contains supply and demand equations for sectors of the pulp and
   paper industry and aggregate industry equations.  A flow of funds
   model is used to estimate the amount of capital and external
   financing needed to support the forecasted demand values.  The flow
   of funds model and supply/demand model are not interfaced.  P&PMOD
   was developed by Arthur D. Little, Inc. for the U.S. Environmental
   Protection Agency.
(CTC)  CONTACTS: James Titus    EPA-OPM-Office of Planning and
   Evaluation
   Loc: PM-220 401 M St., SW Washington/ DC 20460   Ph: 202-287-0725
(STA)  Data Base status: Discontinued
(DF)  Date of form completion: 01-31-83
(CAP)  Functional capabilities of model: The pulp and paper industry is
   divided into ten product sectors by the ADL study.  For each sector
   the model has supply and demand equations.  The equations can be
   estimated using any regression package with auto correlation
   correction procedures {ADL used Time Series Processor (TSP)). Mith
   the proper software, supply and demand can be forecasted for each
   product sector and the subsequent  flow of funds model which depends
   upon the result form the supply/demand is the production forecast
   froB the aggregate equation.  Assuming that the data base resides
   on the computer, the models can be interfaced by someone with
   programming experience.  The  econometric supply/demand model
   utilizes ordinary least  squares and two-stage least squares
   estimation procedures.
(ASH)  Basic assumptions of model: P&PMOD  assumes that over the
   forecast period 1976  and 1983,  the  industry  will continue to pursue
   its traditional financial policies  and to price its products
   consistent with the demand  schedule it faces  to achieve its
   required rate  of return.  Although it  is rarely the case,
   equilibrium is  assumed to exist  in  the produce  and capital matters.
   To  this extent, observed values will  fluctuate  around the
   ^orecast-v values.
(IN?';   Input  -o model: The demand equations  require macroeconoaic  data
   for simulation.  ADL  used Chase  Econometrics  macro  forecasts for
   this  input.   However,  other firms with large  scale  macro models
   would also be  able  to  produce macro  forecasts for  P&PMOD. The
   American Paper  Institute provided the capacity  utilization figures
    which were  used in  a  trend  analysis for  extrapolating capacity
   utilization  (adjusted  by the  results  from  the mill  closure
    analysis).  These  numbers  were used as inputs for  the flow of  funds

(OUT)   Output  of  model:  Outputs from the  supply/demand  model  Include
    demand (consumption)  and prices.   As  a result,  the price  increase
    necessary  for existing mills  to recover  their increase in  average


                             1233

-------
                             Accession No.   12302000905     (cont)

    total cost resulting from compliance with the studied  regulations
    can be computed.   Financial calculations are done  after the
    econometric analysis because of the dependency on  the  forecasts.
    Financial outputs include the amount of external financing required
    to Beet forecasted demand, cash flow to equity ratios,  net increase
    in working capital and more.
(CSR)  Computational  System Requirements: PiPMOO can be  run on any
    computer equipped with an econometric software package.  ADL used
    an IBM 370/135.  A programmer with a knowledge of  economics is
    required.

-------
                            Accession No.  12302000906

(DQ)  Date of Questionaire: 12-02-82
(STATUS)  Status of entry: Inactive
(•AM)  Nane of Data Base of Model: Abatement and Residual Forecasting
   Model
(KR)  Acronym of Data Base or Model: ABTRES
(MED)  Media/Subject of Data Base or Model: Industry/economic
(ABS)  Abstract/Overview of Data Base or Model: The Abatement and
   Residual Forecasting Model (ABTRES) forecasts and reports the costs
   associated with pollution control systems, and the concomitant
   residual levels.  The system is based upon "sectors*1; that is*
   processes or technologies which have Identifiable pollution control
   costs.  These sectors are aggregated to "chapters" for reporting
   purposes.  Chapters are industrial segments, organized in a manner
   determined by the analyst.  This aggregation is useful since there
   are often several sequential operations uithin an industry/ each
   with separate pollution control systems, or an industry may be
   defined in a general manner, to include several different end
   products, such as "Organic Chemicals."
(CTC)  CONTACTS: Anne Cassin    EPA-OPM-Office of Planning and
   Evaluation
   Loc: PM-220 401 M St., SH Washington, DC 20460   Ph: 202-382-2778
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-31-83
(CAP)  Functional capabilities of model: The ABTRES model allows the
   user to compute costs associated with meeting the pollution control
   standards in effect through Internal calculations based upon
   certain input parameters, or the user may enter these costs
   exogenously.  In conjunction with these cost forecasts, the nodel
   projects estimated residual levels associated with the treatment
   methods of each abatement technology sector.  There are two
   standards which apply to existing industries to meet Federal
   guidelines for water pollution control, and these are the Best
   Practicable Technology (BPT) and the Best Available Technology
   (BAT).  There are separate standards promulgated for plants
   established after a particular date (which varies by industry), and
   the set of records is referred to as New Source Performance
   Standards (NSPS).  Sectors dealing with air pollution have a single
   standard to implement, which is based upon state implementation
   plans (SIP).  There are also more stringent regulations dealing
   with new plants.  Types of pollution considered by the model
   include; particulates, sulfur oxides, nitrogen oxides,
   hydrocarbons, carbon monoxides, vinyl chloride, other gases and
   mists, biological oxygen demand, chemical oxygen demand, suspended
   solids, dissolved solids, acids, bases, and oils and greases.
(ASM)  Basic assumptions of model: ABTRES is an accounting model that
   subcategorizes industries and computes costs associated with
   meeting the pollution control standards in effect through internal
   calculations based upon certain input parameters. Costs may also be
   entered exogenously.  A straight line interpolation method is used
   to find the growth rates for years not specified as corresponding
   to these rates*  Growth is held constant for the intervals between
   interpolation years.  The conceptual growth curves are smooth; for


                            1235

-------
                             Accession No.  12302000906    (cont)

    computational purposes, the step curve is used/ allocating all
    growth to the beginning of the fiscal year.
(IMP)  Input to aodel: Input to the »odel is in card inage fora/ and
    the following types of information are included:  abatement
    technology description, number of residuals, equipment life,
    interest rates, exogenous costs, loading factors, capacity
    utilization, number of plants, average capacity, growth percentage
    by interpolation year, percentage of capacity pretreating wastes
    prior to minicipal treatment by interpolation year, residual codes
    for pollution types, base residual coefficients (to yield total
    pollutant level generated without any treatment), and fraction of
    waste treated.
(OUT)  Output of model: Once forecasts of costs and residuals have been
    generated by the computational program of ABTRES, a report
    generator is implemented using the output files.  The costs for
    several abatement technology sectors are aggregated as a "chapter
    level". Different reports are Issued for air and water treatment
    systems.
(CSR)  Computational System Requirements: Two programs must be
    implemented in the ABTRES system.  The first is a forecasting
    model, and the second a report generator.  The model requires 100K
    bytes of core storage.  Model users should have a knowledge of
    programming and an awareness of the model's theory and limitations.
(APP)  Applications of model: ABTRES can be used to forecast and report
    the cost associated with pollution control systems and the
    concomitant residual levels.  It has been applied to manufacturing
    plants and the levels of water pollution associated with these
    plants.
(RDM)  Computational system requirements - Hardware: Mainframe IBM 370
(LNG)  Computational system requirements - Language(s) used:  Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    granmlng ^Awareness of the model's theory and limitations
(REF)  References - User manuals, documentation, etc.:
    Wing, B.J., Abatement and Residual Forecasting
    Model (ABTRES), Prepared by the Professional Services Division,
    Control Data Corporation, Rockville, Maryland, for the Office
    of Planning and Evaluation,  0. S. Environmental Protection
    Agency, Washington, D.C., April, 1977.
(CNH)  Contact name(s): Titus,J.
(COR)  Contact organization:  EPA-OPM-OffIce of Planning and Evaluation
(ROR)  Responsible Organization: Office of Policy and Resource
    Management.Office of Policy Analysis.Econonic Analysis Division.
                             1236

-------
                            Accession Ho.  13403000903

(OQ)  Date of Questionaire: 12-02-82
(IAM)  Kane of Data Base of Model: S120 Noncompliance Penalty Model
UCR)  Acronym of Data Base or Model: PERALTV
(NED)  Media/Subject of Data Base or Model: Air } Indus try/ economic
(IBS)  Abstract/Overview of Data Base or Model: The Section 120
   Honcompliance Penalty Model (PENALTY) is an economic model used to
   calculate the economic benefit of delayed compliance with the
   requirements of the Clean Air Act as amended, August 1977.  The
   noncoapliance penalty is based on the concept that it is usually in
   a source's best economic interest to delay the commitment of funds
   for pollution control equipment, and that Incentive should be
   eliminated.  The program was completed in February, 1979, by
   Putnam, Hayes & Bartlett, Inc. of Newton, Massachusetts, for the
   U.S. EPA, Office of Planning and Management.
(CTC)  CONTACTS: Howard F. Wright    U.S. EPA, Stationary Source
   Compliance Division Office of Air Quality Planning & Standards Loc:
   401 M St, S.B., Washington DC 20460    Ph: (202) 382-2833
(STA)  Data Base status: Operational/Ongoing
(OP)  Date of form completion: 12-08-82
(CAP)  Functional capabilities of model: PENALTY compares two cash
   flows, that which the source would have experienced had it achieved
   compliance on the date it received a notice of noncompllance, and
   that which it is estimated it will experience as a result of its
   delay.  Because these cash flews occur at different times, a basis
   of comparison is provided by discounting them to their present
   value equivalents.  The model then calculates the difference
   between these two cash flows and the appropriate quarterly payment
   schedule that the source should follow. It can also make a final
   adjusted penalty calculation when the  source has achieved
   compliance.  The capital investment portion of the penalty is
   calculated using standard and rapid amortization.  Under both types
   of amortization the program calculates the depreciation tax savings
   using straight line, sum-of-the-years-digits, and double declining
   balance depreciation methods.  The program will automatically
   choose the method which will result in the lowest penalty.
iiSM)  Basic assumptions of model: The relative mix of debt, preferred
   stock and common equity allocated to pollution control  equipment  is
   the same as  that found in the firm's capital structure  as shown on
   its balance  sheet. Cash flows are discounted using the  equity
   method. The  noncompliance penalty is computed as a
   non-tax-deductible expense to the firm. Cash flows take place at
   the end of each month. The rate  of inflation of pollution control
   operating  and maintenance expenditures is  the same as  that for
   pollution  control capital costs. The  noncompliance penalty is
   calculated using a thirty-year  time horizon. The salvage value of
    any equipment with useful life  remaining  at  the end of  the thirty
    year  time  horizon is zero. The  discount rate is not less  than the
    inflation  rate.
(I»)  Input  to  model: Input  to  the model includes source-related data:
    facility  life,  months  of  noncompliance,  income tax rate,  discount
    rate,  and  preferred  stock dividend ratej  equipment-related data;
   capital expenditures,  operating and maintenance costs,  financing


                             1237

-------
                             Accession No.  13403000903    (cont)

    (industrial bonds; equity share, preferred stock share, and debt
    share of investment), equipment useful life and depreciation life;
    and a forecasted inflation rate.  This information nay coae fron
    the firm itself as Hell as the Internal Revenue Service, Chemical
    Engineering Plant Cost Inflation index, the Federal Trade
    Commission, and Moody*s Bond Record.
(OUT)  Output of model: Output consists of two user-selected formats; a
    lump SUB settlement, or a schedule of quarterly payments, both
    expressed in thousands of dollars.
(APP)  Applications of model: It Hill be used by HQ, EPA regional
    offices and States as Hell as sources and contractors to coapute
    noncoBpliance penalties.
(HDV)  Computational system requirements - Hardware: Mainframe IBM
    360/370
(LNG)  Computational system requireaents - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: eco
    noBics, finance (neither, however, is essential)
(OAQ)  Model reviewed and approved by OAQPS? YES
(SRC)  Source of pollutant: N/A
(REF)  References - User manuals, documentation, etc.:
    Monday, July 28, 1980 Federal Register
    Part II - EPA - Assessment and Collection of Non-conpliance
    Penalties by EPA and approval of State Noncospliance Penalty
    Program.  Appendix A - Technical Support Document
    Appendix B - CAA Section 120 Noncompl. Penalties Instruction
    Manual
(CUM)  Contact name(s): Wright,H.F.
(COR)  Contact organization: D.S. EPA, Stationary Source Compliance
    Division Office of Air Quality Planning &
(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Office of Quality Planning and Standards.Stationary
    Source Compliance Division.
                             1238

-------
                            Accession  No.  14203000001

(DQ)   Date  of  Quest!onaire:  12*02-82
(NAN)   Kane of Data Base  of  Model: High Level Radioactive
   Haste-Repository  Risk Model
(ACR)   Acronym of  Data Base  or Model: REPRISK
(NED)   Media/Subject  of Data Base or Model: Radiation
(ABS)   Abstract/Overview  of  Data Base or Model:  This conputer code
   calculates the expected  genetic and somatic  health effects at a
   generic high level radioactive waste geologic  repository*  The code
   calculates radionuclide  releases to air, land  surface/  and rivers
   or lakes from  a repository as a result of expected events and
   accident events*   The accidents are human intrusion  (drilling),
   breccia pipes, faults, meteorites and volcanoes.  The expected
   events  are shaft  and  borehole leakage and bulk rock  transport. The
   releases result either from destruction of waste packages or
   disturbance of the contaminated repository backfilled tunnels. The
   concentration  of  radioactivity in the backfilled tunnels depends on
   availability of water in the  tunnels, the dissolution of
   radionuclides  (solubility), and the characteristics  of  the waste
   matrix  and canisters. Movement of  contaminated water in the
   tunnels is either directly  to land  surface or  to aquifers overlying
   the repository.   Movement  of  the radioactivity in the aquifer is
   governed by groundwater  flow  in the aquifer  and retardation of
   radionuclides  in  the  aquifer.
(CTC)   CONTACTS: C. Bruce Smith U.S. EPA, Office of Air, Hoise and
   Radiation  Office  of Radiation Programs, Criteria and Standards Diw
   Loc:  Crystal Mall #2  1921  Jefferson Davis Hwy  Arlington, VA 22202
   Ph:
   (703) 557-7604
(STA)   Data Base status:  Operational/Ongoing
(DF)   Date  of  form completion: 02-01-83
(CAP)   Functional  capabilities of model: The model calculates the total
   release of radionuclides over a time period  and converts these
   releases to health effects.   To calculate releases  the  flow rate of
   radioactivity  in  curies  per  year  is integrated either analytically
   or numerically over the  time  period of  interest. The numerical
   integrator is  90% accurate.   Flow  in  the aquifer is  1 dimensional
   nondispersive. The tunnel mixing  volume is  assumed  homogeneous.
   Parameters are constant  over  all time,  but  flow rates of water from
   the repository are time  dependent*  The health effects  are combined
   with event probabilities to  calculate probability  consequence
   curves and overall risk.
(ASM)   Basic assumptions of  model:
   1)  1 dimensional non dispersive  aquifer
   2)  Homogeneous  mixing volumes  whose  radionuclide  concentrations
   can be described  by first  order  differential equations.
   3)  Inout  parameters are constant  over  all  time.
   4)  Probabilities of accident events  are constant  over  various
   tine bands.   A reasonable  number  of time  bands can be input.
(IBP)   Input to  model: Users Manual Hill  be published.  Representative
    input data will  be contained in the two EPA documents listed in
   Section 3  of  References.
(OUT)   Output  of  model: Two types of  output are available for  somatic


                             1239

-------
                             Accession Mo.   14203000001    (cont)

    health effects, genetic health effects, or release limit ratios.
    1)  Integrated risk or release limit ratios*
    2)  Probability consequence curves.
(APP)  Applications of model: EPA/ORP is using the code to
    conservatively evaluate 5 generic high  level uaste repositories -
    bedded salt, granite, shale, basalt. This effort is support for
    the EPA/ORP EIS and standard for high level uaste repositories.
    Subroutines and linkages IMSL Mathematical function DCAORE is  used
    as the numerical integrator.
(HDV)  Computational system requirements -  Hardware: Mainframe IBM 370
    ;Magnetic tape storage 2 tapes >Printer Li
CREF)  References - User manuals, documentation, etc.:
    Users Manual to be published.
    Smith, C.B., D.J. Eganr H.A. Williams,  J.M. Gruhlke, C-Y
    Hung, and B. Strini Population Risk from Disposal of High-Level
    Radioactive Hastes in Geologic Repositories.  EPA/520/3-80-006
    Smith, J.M., T.W. Fowler, and A.S« Goldin Environmental Pathnay
    Models for Evaluating Population Risks  from Disposal of
    High-Level Radioactive Hastes In Geologic Repositories EPA
    520/5-80-002.

-------
                            Accession No.  14203000002

(DQ)  Date of Questionaire: 12-02-82
(HAH)  Name of Data Base of Model: Maximum Individual Dose Model
(ACR)  Acronya of Data Base or Model: MAXDOSE
(MED)  Kedia/Subject of Data Base or Model: Air  ;Radiation ;Water
   /Nuclear Wastes
(ABS)  Abstract/Overview of Data Base or Model:  The  Haxdose  code
   calculates accidential releases  frosi a nuclear waste repository*
   Both geological and human events are modelled.   Each event produces
   a given set of dose rates at different times and distances.  A
   second set of tables estittate contaminated areas and individual
   risk.  Both leaching and dissolution remove  wastes from  the matrix
   into the accessible environment.  The releases are used  to
   calculate the dose table.
(CTC)  CONTACTS: Barry L. Serini     U.S. SPA, Office of Air Noise and
   Radia Office of Radiation Programs, Criteria Standards Div.
   Loc: Crystal Mall #2    Ph:  (703) 557-7604
   Loc: 1921 Jefferson Davis Hwy, Arlington, VA 22202
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 02-01-83
(CAP)  Functional capabilities of model: The code can calculate the
   dose for up to 10 distances, 13  dose times,  and  20 nuclides per
   run.  All transport models are 2 dimensional, yielding the highest
   dose along the centerline.   Error on numerical  integration is  less
   than 10%, using cautious  adaptive Romberg extrapolation.
(ASM)  Basic assumptions of irodel: For atmospheric  releasas, Maxdose
   uses AIRDOSE equations, no direction is specified for the Hind.
   Hater releases are calculated along the centerline, where the
   maximum concentration  occurs.  Area calculations assume  parabolic
   distribution for contaminates in the groundvater and a circular
   distribution for air releases.
(IMP)  Input to model: Input  to  model  includes  initial  inventories of
   waste, their falflines, retardation factors, 3  sets of dose
   conversion factors, solubilities, bioaccumulation factors.  The
   boreholes and the  flow thru  the  boreholes  are modelled.
   Peroiability and its rate of change  are  input,  numerical constants
   for approximating  the  gradient,  the  canister life,  leach rate,
   groundwater velocity,  size of tank, porosities,  dose  times and
   distances.
(DOT)  Output of model: Output consists of an  echo check of  the input
   data in a standard format.   A table  of dose rates  at various dose
   times and distances, and  areas contaminated by  a given  event are
   presented.
(APP)  Applications  of model: Two routines,  CTIME and  DCADRE are not in
   the code, they are in  the linkage  step of  the job control ? DCADRE
   is a numerical integration from  the  International Mathematics  and
   Statistics Library.  CTIME  returns  the  time of day  and  date the  Job
   is run.  The code  has  been used  to  estimate risks  to  individual  and
   in IDAR (Individual Dose  Assessment  Report).
(BDM)  Computational  system  requirements - Hardware! Mainframe  IBM 360
   ;Magnetic tape  storage  any 132 positions  p
(LiG)  Computational system  requirements - Language(s)  used: Fortran
   Machine language  is  used  in  routine  TIMER  which a subroutine  calls


                             1241

-------
                             Accession Mo.   14203000002    (cont)

(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    graiming ^Engineering >Job control language of the Intern
    Statistics Library (IMSL)
(ATP)  Air Models - Type of model: Gaussian dispersion
(OAQ)  Model reviewed and approved by OAQPS? MO
(PMP)  Production method of primary pollutant in model: Primary
    (emitted directly into atmosphere)
(MPR)  Process used to remove pollutant from atoaosphere: negligible
    removal
(TUB)  Sample averaging time used: more than 24 hours
CSRC)  Source of pollutant: Faulting-multiple point; Drilling-limited
    point
(AR)  Area where sample was collected: level or gently rolling terrain.
(RMG)  Distance traveled by pollutant fro* source: less than 60 km
(MTP)  Hater Models - Type of model: Mater quality
(EOT)  Environment(s) to Bhich model applies: Mon-polnt Aquifers
(COD  Processes and constituents included in modal: Erosion and
     sediment ^Temperature ^Biological effects jHydro Hydraulics
(CPL)  Complexity level of model: Simplified
(RED  References - User manuals, documentation, etc.:
     MAXDOSE - EPA Users Manual
(CMM)  Contact naae(s): Serini,B.L.
(COR)  Contact organization: U.S. EPA, Office of Air loise and
     Radiation, Office of Radia
(ROR)  Responsible Organization: Office  of Air, Noise  and
     Radiation.Office  of Radiation Programs.Criteria and Standards
     Division.
                              1242

-------
                             Accession No.   14203000003

(DQ)   Date of  Questionaire:  12-02-82
(IAN)   Fame of Data Base of  Model:  Great Lakes Dose/Concentration
(ACR)   Acronym of Data Base  or  Model:  GLA-1
(MED)   fedia/Subject of Data Base or Model:  Radiation ;Uater
(IBS)   Abstract/Overview of  Data Base  or Model: This model  uses a
    simplified representation of the Great Lakes along with the time
    dependent dose equations of International Conisslon on
    Radiological Protection  (ICRP)  10A to predict ambient lake
    concentrations on the dose rates resulting from chronic ingestion
    of radioactivity in Lake waters.   However, the program  is
    applicable to other pollutants.
(CTC)   CONTACTS: R.E. Sullivan  O.S. EPA, Office of Air  Noise and
    Radiation, of Radiation  Programs,  CSD
    Loc: Crystal Mall #2, 1921 Jefferson Davis Buy.  Ph: (703)557-9380
    Loc: Arlington, VA 22202
(STA)   Data Base status: Operational/Ongoing
CDF)  Date of form completion: 02-01-83
(CAP)   Functional capabilities of model: The model comprises a
    simplified physical representation of the Great Lakes chain which
    considers only total volume of each lake, assumes annual mixing but
    allows for changes in dilution volume required by thermoclines, and
    corrects for sedimentation and equilibration where required.  Dose
    rates due to chronic ingestion of  2.2 liters of water per day  are
    calculated according to ICRP 10 and ICRP 10A.
(ASM)   Basic assumptions of model: Assumes constant total volume,
    constant outflow and Inflow, and constant surface area.  Assumes
    that  thermocline exists for 1/2 year at a depth of 17 meters and
    that  Inflow and outflow are from the epilimnion during the period
    but that perfect mixing occurs during balance of the year.
    Concentration equations are convoluted with the ICRP equation for
    organ burden and solved in closed  form.  Only six Isotopes, Tritium
    (H-3), Cobalt-60 (Co-60), Strontium-90 (Sr-90), Cesium-134
    (Cs-134), and Cesium-137 (Cs-137)  are treated at present.
(IMP)  Input to model: Input required  is:  Source terms, time  results
    desired, initial concentrations, and lake volumes and outflows.  As
    currently programmed individual sources  discharging  into lakes can
    be used or  parameters for  sets of  nuclear power plants having
    differing types of rad waste systems may  be  substituted.
(DOT)  Output of model: Lake concentrations  for  the five isotopes at
    each  time specified  along  with dose rate  and  dose equivalents.
    Concentration  as  a  function  of time for  other pollutants can be
    found without  altering  the program.  Degradable pollutants can be
    treated like radlonuclides by  selection  of  an appropriate  decay
    constant.                                      ..  ^          . .

-------
                             Accession No.   14203000003    (cont)

(HTP)  Water Models - Type of model: Mater  quality
(ENV)  Environment(s) to which model applies: Lake
(COM)  Processes and constituents included  in model: Biological effects
(CPL)  Complexity level of model: transient mass balance /one
    dimensional
(REF)  References - User manuals, documentation/ etc.:
    Sullivan, R. E. and Ellett, H.H., 1977.  The
    Effect of nuclear Power Generation on Water Quality in the
    Great Lakes.  ORP/CSD-77-5.
(CNM)  Contact name(s): Sullivan,R.E.
(COR)  Contact organization: U.S. EPA, Office of Air Noise and
    Radiation, office of Radia
(ROR)  Responsible Organization: Office of  Air, Noise and
    Radiation.Office of Radiation Programs.Criteria and Standards
    Division.
                             1244

-------
                            Accession Ho.  14203000004

(DQ)  Date of Questionaire:  12-02-82
(RAM)  Kane of Data Base of  Model: Radionudide Dose Rate/Risk
(ACR)  Acronym of Data Base  or Model: RADRISK
(MED)  Media/Subject of Data Base or Model: Radiation
(ABS)  Abstract/Overview of  Data Base or Model: RADRISK  is a model
   designed to estimate the health risk due to inhalation or ingestion
   of radionuclides for arbitrary exposure periods,   the end result of
   the system is a set of values relating fatal  cancers and
   genetically significant  radiation doses to a  unit  intake of
   radionuclides. The model is a greatly revised combination of  two
   previously existing programs—IHREM II and CAIRO.  The health risk
   fros external exposures  is also estimated by  the CAIRO model  using
   dose rates from a separate model—DOSFACTER.
(CTC)  CONTACTS: R.E. Sullivan  U.S. EPA/ Office  of Air  Roise and
   Radiation/ of Rad. Programs* CSD
   Loc: Crystal Mali f2/  1921 Jefferson-Davis Hwy.
   Loc: Arlington/ VA 22202
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 02-01-83
(CAP)  Functional capabilities of model: RADRISK  calculates  the
   radiation dose rates and estimated  fatal cancers  resulting from the
   chronic Inhalation or  ingestion of  one pico Curie/yr of
   radioisotope.  All radioactive decay products of  the parent  isotope
   are  also considered.   Dose rates  are calculated  over a  110-year
   period for eighteen  organs.  Cross  irradiation dose  rates are
   incorporated using Monte Carlo results from the  S-factor  model.
   These  dose rates  are  then  combined  in  a  life  table/  using U.S.
   population mortality  rates/  to compensate  for competing  risks in
   estimating radiation health  effects.   External dose  rates/ taken
   from DOSFACTER/  are  treated  similarly  in  the  life table  analysis.
   An  integration of the  gonadal dose  rate  is  also  performed  to obtain
   the  30-year  genetically significant dose.   Input units  are pico
   Curies/yr/ pico  Curies or  squared centimeter  pico Curies/cubed
   centimeter.  Dose rates are  given in mrad/yr  for both  high-  and
    IOH-LET  radiation and the  life  table returns  estimated  premature
    deaths to  a  cohort  of  100/000  for each cancer.
(ASM)   Basic  assumptions of model:  The  dose  rate  calculational  model
    incorporates  the  International  Commission on  Radiological
   Protection (ICRP) lung and gastro-intestinal  tract models and uses
    exponential  retention functions and standard  metabolic parameters
    for  the post blood organs.   Non-  exponential  retention functions
    are fitted/  by  means of an auxiliary program/ to an exponential
    series of up to  five terms.   The life table  calculation is based on
    a cohort of  100/000 persons whose mortality  rate is that of the
    U.S. 1969-1971  population.   The additional risk/ either absolute or
    relative,  from radiation is then followed from birth (0 years) to
    death (110  years) of the cohort.  At present/  no age dependence is
    allotted in the dose rate calculation (reference man is assumed)
    although the life table dose rate or risk may be age adjusted.
 (IIP)  Input to model:  Input required for the dose rate portion of the
    code includes the physical (half life/ energy) and metabolic
    (transfer fractions/ retention functions) data for  the parent  and


                             1245

-------
                             Accession No.   14203000004    (cont)

    each daughter product.  In addition/ a  library of cross-irradiation
    terns nust be supplied.  The life table calculation/ in addition to
    the tine dependent dose/  requires specification of the risk/
    including latency and plateau periods,  associated with the
    radiation.  For relative  risk cases/ mortality rates must be
    supplied for each cancer  to be considered.
(DOT)  Output of model: Normal output comprises the total dose rate/
    for both high- and lon-LET radiation/ to each of 18 organs at  the
    •idpoint of specified tire intervals.  Options are available  for
    printing out each daughter contribution as well as the
    cross-irradiation terms.   The integrated genetically significant
    dose to the gonads, along with an average value/ is also output.
    The life table calculation outputs the  number of premature deaths/
    the average years of life lost for each/ and the decrease in
    overall life expectancy for each cancer type as well as the totals.
(APP)  Applications of model: Model has been used to produce set  of
    dose/ risk values for a unit intake/ or unit exposure/ of most
    common radioisotopes.  Program has been run extensively at Oak
    Ridge National Laboratory.  Major external link is S-Factor output*
(RDM)  Computational system requirements -  Harduare: Mainframe IBM
    360/370 ;Disc storage 500K bytes ;Printer any
(LNG)  Computational system requirements - Language(s) used: Fortran
COSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    graining ;Engineering ;Health/Medical Physics
(REF)  References - User manuals/ documentation/ etc.:
    RADRISK (to be published)
    Dunning/ D.E./ Jr./ et aI./ 1977.  S-FACTOR:  A computer
    Code for Calculating Dose Equivalent to a Target Organ per
    Microcurie-Day Residence of a Radionuclide in a Source Organ.
    Cook/ J.R./ et al./ 1978.  CAIRO:  a Computer Code for
    Cohort Analysis of Increased Risks of Death.
    EPA 520/4-78-012.
    Kocher, D.C./ 1979.  DOSFACTER:  Dose-Rate Conversion Factors
    for External Exposure to Photon and Electron Radiation from
    Radionuclides Occurring in Routine Releases from Nuclear
    Fuel Facilities.  ORNL/NOREG/TM-283.
    Killough, G.G./ et al./ 1978.  INREM-II:  A Computer
    Implementation of Recent Models for Estimating the Dose
    Equivalent to Organs of Man from an Inhaled or Ingested
    Radionuclide.  ORNL/N0REG/TM-84.
(CUM)  contact name(s): Sullivan/R.E.

-------
                            Accession No.  14203000005

(DQ)  Date  of  Questionaire: 12-02-82
(NAN)  Name of Data Base of Model: Plutonium Air Inhalation Dose
(ACR)  Acronym of Data Base or Model: PAID
(MED)  Media/Subject of Data Base or Model: Radiation
UBS)  Abstract/Overview of Data Base or Model: The model is designed
   to calculate  dose rates and doses resulting from the acute or
   chronic lifetime inhalation or ingestion of tcansuranic
   radio!sotopes.
(CTC)  CONTACTS:  R.E. Sullivan  U.S. EPA, Office of Air, Noise, and
   Radiatio Office of Radiation Programs, CSD
   Loc:  Crystal  Mall #2 1921 Jefferson-Davis Buy.   Ph: (703) 557-9380
   Loc:  Arlington, VA 22202
(STA)  Data Base  status: Operational/Ongoing
(DF)  Date  of  form completion: 02-01-83
(CAP)  Functional capabilities of model: The model is designed for
   long-live  parents or daughters.  Only one daughter is permitted
   and,  uhile gastro-intestinal tract (GIT) and blood transfer
   fractions  are used, no time delay for either is included.
(ASM)  Basic assumptions of no del: The model is, basically, a
   combination of the International Commission on Radiological
   Protection (ICRP) lung model and a standard organ model using
   exponential retention functions.  The resulting solutions are
   analytical, requiring no numerical integration, and are obtained
   rapidly and exactly for the times desired.
(IMP)  Input to model: Input required:  The acute or chronic intake,
   deposition fractions for the lung compartments, the mass for post
   blood organs  and physical and biological half-lives, transfer
   fractions, and average energies for the parent and daughter
   isotopes.
(OUT)  Output  of  model: Output is:  For all input times, the dose rates
   and doses  for each lung compartment, including lymph nodes, and for
   the reference organs.  The values for the trachiobronchial
   compartment due to clearance from the pulmonary are also given
   explicitly.
(APP)  Applications of model: Model has been used to calculate lung and
   organ doses for transuranic, and other radioisotopes. Used
   primarily  by  ORP/EPA.
(BOV)  Computational system requirements - Hardware: Mainframe IBM
   360/370 ;Printer any Standard model
(LUG)  Computational system requirements - Language(s) used: Fortran
(QSK)  Computational system requirements: Operator Knowledge/Skills: Pro
   graiming
(KEF)  References - User manuals, documentation, etc.:
   Sullivan,  R.E., 1977,  PAID:  A Code for
   Calculating Organ Doses Due to the Inhalation and
   Ingestion  of  Radioactive Aerosols.  ORP/CSD-77-4.
(CUM)  Contact name(s): Sullivan,R.E.
(COR)  Contact organization: U.S. EPA, Office of Air, Noise, and
   Radiation, Office of Rad
(80R)  Responsible Organization: Office of Air, Noise and
   Radiation.Office of Radiation Programs.Criteria and Standards
   Division.


                            1247

-------
Accession No.  14203000005    (cont)
 1248

-------
                             Accession Ho.  14203000006

.- I-gJ-f
     for radionuclide chains subsequent to deposition can be calculated
     by providing a set of ingrowth factors. Air concentrations of
     short-lived radon-222 progeny are calculated in working level units
     for a splclfIII Salue of equilibrium.  Output for DARTAB is in an
     unformatted file.  The basic  calculational methodology is that of
     ilKS-II   with modifications  for area sources, radon progeny
     conceptions, terrestrial ingrowth for radionuclide chains and an
                               1249

-------
                              Accession Mo.   14203000006     (cont)

     updated  food pathway model.
 (IMP)   Input to nodel: Model  inputs include:   grid  size values; wind
     data;  stack or  area source data; radionuclide release rates,
     deposition and  settling velocities,  scavenging  rates, and decay
     constants; arrays of neat animals, dairy cattle, crop areas, and
     population data for each  grid  location,  fraction of each food
     category consumed from outside the assessment area, fraction of
     that consulted food produced Hi thin the assessment area  which is
     produced of the grid location, ingestlon,  agricultural  model
     parameters, ingestion rates by food  category, inhalation rate;
     radionuclide decay and environmental removal rate constants soil to
     vegetation, intake to meat, and intake to  milk  conversion factors,
     radionuclide chain ingrowth factors, clearance  class, and gastro
     intestinal absorption fraction*
 (OUT)   Output of model: Printed outputs  available include:  predicted
     air concentrations; dry and wet deposition rates for each location
     and radionuclide; ground-level Chl/Q for each location  by
     radionuclide; agricultural and population  data  for each grid
     location; list  of nuclide Independent variables; list of computer
     totals of population, food production, and food consumption for
     assessment area; list of  nuclide dependent data for each nuclide;
     individual or population  weighted concentration and intake rates
     for each location by nuclide,  radon-222 progeny concentration for
     each location;  dose summaries  (supplementary * not used for
     AIRDOS-EPA/DARTAB assessments). An unformatted file is  created of
     concentration and intake  data  for each location to be used with
     OARTAB for a dose and risk assessment.
 (APP)  Applications of model: This model provides a means for the
     radiological assessment of radionuclides released to the
     atmosphere.  It has been  used by EPA and the Oak Ridge National
     Laboratory for  this purpose.   The model is generally used in
     conjunction with DARTAB for dose and risk  assessments.
 (RON)  Computational system requirements - Hardware: Mainframe IBM 360,
     370 or equivalent ;Printer 132 position 1
 (LNG)  Computational system requirements - Language(s) used: Fortran IV
     (H extended)
 (ATP)  Air Models - Type of model:  Gaussian dispersion
 (OAQ)  Model reviewed and approved by OAQPS? HO
 (PMP)  Production method of primary pollutant in model:  Primary
     (emitted directly into atmosphere)
 (MPR)  Process used to remove pollutant from atomosphere:  Physical
 (TME)  Sample averaging time used:  more than 24 hours
(SRC)  Source of pollutant:  1, 3,  4
 (AR)  Area where sample was collected:  level or gently rolling terrain.
 (RUG)  Distance traveled by pollutant from source:  less  than 60 km
(REF)  References - User manuals,  documentation,  etc.:
    Begovlch, C.L.,  E.  C.  Schlatter,  S.Y. Qhr,
    K.R. Eckerman,  1980.   DARTAB:   A  Program to Combine  Airborne
    Radionuclide Environmental Exposure Data with Dosimetric and
    Health Effects Data to Generate Tabulations of  Predicted Impacts.
    ORHL-5692 (To be published).
    Mo77  Moore,  R.E.,  1977.   The  AIRDOS-II Computer Code  for


                             1250

-------
                             Accession Ho.  14203000006     
-------
                             Accession No.   14205000903

(DQ)  Date of Questionaire:  12-02-82
(NAM)  Name of Data Base of  Model:  Exposure Rates Over  Uranium Bearing
    Soils As Function of  De
(ACR)  Acronym of Data Base  or Model:  None
(MED)  Media/Subject of Data Base or Model: Radiation
(ABS)  Abstract/Overview of  Data Base  or Model: Analytical model  of
    exposure rates at ground level and at one meter above ground  from
    all nuclides of the Uranium 238 decay chain (assuming equilibrium)
    uniformly distributed throughout a slab of finite thickness
    (variable to infinity, if required) covered with a  slab of
    overburden of finite thickness (variable to zero, if desired);  both
    slabs being of infinite  areal extent.  The model is based on
    results obtained by means of a computer implemented technique (not
    a program) described (along with the resulting model) in "Basic
    Technique and Models for Calculating Exposure Rates Over Uranium
    Bearing Soils," by George V. Qksza-Chocimowski, U.S. EPA, Las Vegas
    Facility, to be published In 1981.
(CTC)  CONTACTS: George V. Oksza-Chocimowski   U.S. EPA, Office of
    Radiation Vegas Facility
    Loc: P.O. Box 18416     Ph: (702)  798-2446
    Loc: Las Vegas, NV 89114
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 01-18-83
(CAP)  Functional capabilities of model: The model describes exposure
    rates, as described in 1), as function of tiio variables - thickness
    of uranium-bearing soil slab and depth of overburden slab. No
    limitations have been observed, although a simplified version of
    the model (also in cited publication) is expected to apply to
    depths of cover no smaller than 1  centimeter and no greater than
    200 centimeters.  A maximum error  of +/- 4% with respect to results
    obtained by H.L. Beck (used in "Guidance") has been observed.
(ASM)  Basic assumptions of model: The model is based on results
    obtained via computer employing the following:  1)  Taylor's Buildup
    Factor parameters and attenuation  coefficient for water (the  latter
    adjusted for soil density).  2) Berger's coefficients (limited  to
    producing a maximum exposure rate  term, in conjunction with
    Taylor's parameters.  3) Curve-fitting equations for all relevant
    coefficients, as functions of energy.  Basic assumptions included
    infinite areal extent of slabs, equilibrium conditions, homogeneous
    distribution, similarity of soil and cover properties, flat
    interfaces, no radon emanation and absence of soil moisture.
(INP)  Input to model: The mathematical model required two variables as
    input:
    1)  Thickness of uranium-bearing soil slab
    2)  Thickness of overburden slab
    A maximum exposure rate has been incorporated into the model,
    obtained by the sane basic techniques which produced the results on
    which the model is based.  However, the maximum exposure or
    exposure rate is independent of the model, and can be replaced by
    any required quantity, as additional input.
(DOT)  Output of model: Exposure rates, at ground level or one meter
    above ground level are the outputs of this model


                             1252

-------
                             Accession No.  14205000903    (cont)

(APP)  Applications of model: The model can be applied to uranium  mill
    tailings pile/ uith Minor adjustment in the maximum exposure rate,
    including cases uith radon penetration of the pile cover Material.
(HDH)  Computational system requirements - Hardware: Calculator
(LUG)  Computational system requirements - Language(s) used: English
(OSK)  Computational systea requlreaents: Operator Knowledge/Skills: kno
    ulecge of exponentials and logarithms

-------
                             Accession  No.   14205000904

 (DQ)   Date of Questionaire:  12-02-82
 (NAM)   Name  of Data  Base of  Model:  Generalized  Model of the
    Time-Dependent Weathering  Half-Lif
 (ACR)   Acronym of Data Base  or Model: None
 (MED)   Media/Subject of Data Base or Model:  Air ;Radiation
 (ABS)   Abstract/Overview of  Data Base or Model: The Generalized Model
    of  the time-dependent weathering half-life of the resuspension
    factor (for contaminants from soil) is an analytical aodel
    describing the changes in weathering "half-life" or "half-tine" as
    a  function of time and of local conditions, represented as initial
    and final resuspension factors observed  or expected at a given
    locality. The corresponding tine-dependent resuspension factor is
    obtained by Modifying an exponential decay function by means of the
    above time-dependent half-life.  The model was published in 1977 as
    "Generalized Model of the Time-Dependent Meathering Half-Life of
    the Resuspension Factor," by George ?. Oksza-Chocimowski, Technical
    Note ORP/LV-77-4.
 (CTC)   CONTACTS: George V. Oksza-Chocimouski   U.S. EPA, Office of
    Radiation Programs, Las  Vegas Facility
    Loc: P.O. Box 18416      Ph: (702) 798-2446
    Loc: Las Vegas,  NV 89114
 (STA)   Data Base status: Operational/Ongoing
 (DF)  Date of form completion: 01-18-83
 (CAP)   Functional capabilities of model: The model describes the
    increase in "half-life"  or "half-time" and corresponding decrease
    of  the resuspension factor, as function of time (days), for any set
    of  conditions characterized by initial resuspension factors as high
    as  10-(2) m-(l)  and final resuspension factors as Ion as 10-(13)
    m-(l), with any  combination of factors between these limits, with
    the provision that the initial resuspension factor  must be at least
    one order of magnitude greater than the final resuspension factor.
    The model conforms to empirical models obtained by  various
    investigators for specific conditions.  Neither the  "half-life" nor
    the corresponding resuspension factor model is readily integrable
    by  analytical methods, and integration requires numerical
    techniques.
(ASM)   Basic assumptions of model:  The model  is based on the
    assumptions that empirically observed "half-times"  of resuspension
    from soil at various locations,  noted to  increase with increasing
    time following pollutant deposition, represent the  "weathering
    effect" whereby pollutant particles gradually lose  their facility
    to be resuspended,  and that this rate of  increase with time of the
    "tice-dependent half-time" will  approach  asymptotically a value
    corresponding to a  constant final resuspension factor
    characteristic of the location of interest.   The model represents a
    curve-fit to data obtained by  various investigators.
(INP)    Input to  model:  Input to the  model includes observed and/or
    expected initial and final resuspension factors  for  a  given area.
    Once these  initial  and final conditions have been set,  time (in
    days) is used as the independent variable.
(ODT)   Output of model:  The model preduces  a  resuspension  factor.   Both
    the "half-time"  and resuspension factors  models  are  continuous


                             1254

-------
                             Accession No.  14205000904    (cont)

    functions of tine and can be graphed, but are not readily
    integrable except by numerical nethods.
(APP)  Applications of model: Both the models of the time-dependent
    half-time of the resuspension factor and that of the corresponding
    tiae- dependent resuspension factor may be useful criteria  in
    determining the extent to which the tine dependent behavior of
    various resuspension factor models conforms to reasonable
    expectations.  Given a set of initial and final resuspension
    factors, the model permits estimating the time interval required  to
    approach the latter value to a degree required by the user.
(HDW)  Computational system requirements - Hardware: Calculator
(LN6)  Computational system requirements - Language(s) used: English
(OSK)  Computational system requirements: Operator Knowledge/Skills:  kno
    uledge of exponential functions and logarithms
(OAQ)  Model reviewed and approved by OAQPS? NO
(PMP)  Production method of primary pollutant in model: Primary
    (emitted directly into atmosphere)
(MPR)  Process used to remove pollutant from atomosphere: Negligible
    removal
(THE)  Sample averaging time used: more than 24 hours
(SRC)  Source of pollutant: multiple point (more than 10-20)
(AR)  Area where sample was collected: level or gently rolling  terrain.
(REF)  References - User manuals, documentation, etc.:
    "Generalized Model of the Time-Dependent Weathering
    Half-Life of the Resuspension Factor,** George V.
    Oksza-Chociraowski, Technical Mote ORP/L?-77-4, February 1977,
    U.S. EPA, Office of Radiation Programs, Las Vegas Facility,
    Las Vegas, Nevada 89114
(CUM)  Contact name(s): Oksza-Chocimouski,G.
(COR)  Contact organization: U.S. EPA, Office of Radiation Programs,
    Las Vegas Facility
(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Office of Radiation Programs.Office of Radiation
    Programs, Las Vegas Facility.
                             1255

-------
                             Accession No.  14206000904

(DQ)  Date of Questionaire: 12-02-82
(HAM)  Name of Data Base of Model: Health Risk Model for Shallow Land
    Disposal of Lou-Level  Ra
(ACR)  Acronym of Data Base or Model: PRESTO
(MED)  Media/Subject of Data Base or Model: Air ;Radiation ;Ground
    Migration ;Water
(ABS)  Abstract/Overview of Data Base or Model: The Health Risk Model
    for Shallow Land Disposal of Low-Level Radioactive Haste (PRESTO)
    is a generic simulation nodel which will analyze the potential
    environmental impact and health risk froa the shallow land disposal
    of low-level radioactive waste (LLH).  The model will consider
    waste disposal "system" which includes the waste disposed of at the
    facility, the method of emplacement, the meteorology, the
    hydrogeology, release mechanisms, environmental pathways from the
    facility, receptors, and will calculate the amount of radioactivity
    released over time and in space, individual and population doses,
    and individual and population health risks.  The model is to
    estimate the health risks from several different shallow land
    disposal methods (usually from 0 to 50 meters depth) and be
    sufficiently flexible to take into account different hydrogeologic
    and meteorologic settings and changes in engineering design.  The
    purpose of the model is to identify changes in benefits (i.e.,
    reduction in health risk) from disposing of LLH by different
    methods to support cost- benefit analyses and development of a
    generally applicable environmental standard for the disposal of
    LLW. The model is under development now and is to be operational  by
    the end of FY 1982. PRESTO also has potential application to the
    analysis of amount of contaminant released and health risk from the
    shallow land disposal of hazardous waste(s) if the appropriate
    hydrogeocheaical and health risk data are available for the
    hazardous waste(s) of concern.
(CTC)  CONTACTS: Jon Broadway   U.S. EPA, Eastern Environmental
    Radiation Fa Loc: 1890 Federal Drive Ph: (205) 534-7615
    Loc: Montgomery, Alabama 36109
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-13-83
(CAP)  Functional capabilities of model: IN DEVELOPMENT - NOT COMPLETE
(ASM)  Basic assumptions of model: IN DEVELOPMENT - NOT COMPLETE
(IMP)  Input to model: IN DEVELOPMENT - NOT COMPLETE
(OUT)  Output of model: IN DEVELOPMENT - NOT COMPLETE
(APP)  Applications of model: PRESTO will be used by ORP to support the
    development of an environmental standard for the disposal of LLW
    and for making benefit-cost comparisons of various shallow land
    disposal method such as engineered surface storage, sanitary
    landfills, shallow land disposal, and Intermediate depth disposal*
    It could also be used by other Federal agencies and industry check
    whether proposed or exising disposal facilities would meet EPA's
    LLH standard.  Also, it has potential application to analysis of
    health risk from shallow land disposal of hazardous wastes if
    appropriate hydrogeochemical and health risk data is available for
    the hazardous uaste of concern.
(HDH)  Computational system requirements - Hardware: Mainframe IBM 370


                             1256

-------
                             Accession No.   14206000904    (cont)

    System
(LNG)  Computational system requirements -  Language(s)  used:  Fortran IV
    (H)
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gramming IBB OS JCL
(ATP)  Air Models - Type of wo del: Gaussian dispersion
(OAQ)  Kodel reviewed and approved by OAQPS? NO
(PHP)  Production method of primary pollutant in aodel: Primary
    (emitted directly into atmosphere and ground Hater)
(MPR)  Process used to remove pollutant from atomosphere: Physical  and
    chemical
(TME)  Sample averaging time used: more than 24 hours
(SRC)  Source of pollutant: limited area
(AR)  Area where sample was collected: level or gently  rolling terrain.
(RNG)  Distance traveled by pollutant from source: less than 60  km
(WTP)  Water Models - Type of model: Water run-off
    Ground water
(ENV)  Environment(s) to which model applies: Lake ;Stream/river
    ;Non-point
(CQN)  Processes and constituents included in model: Erosion and
    sediment ;Toxic chemicals ;Hydrology ^Hydraulics
(CPL)  Complexity level of model: one dimensional ;siaplifled
(RBF)  References - User manuals, documentation/ etc*:
    ORHL/TM-7943
(CNM)  Contact name(s): Broadway,J.
(COR)  Contact organization: U.S. EPA, Eastern Environmental Radiation
    Facility
(ROR)  Responsible organization: Office of Air, Noise and
    Radiation.Office of Radiation Programs.Eastern Environmental
    Radiation Facility.
                              1257

-------
                             Accession Ho.  14401200001

(DQ)  Date of Questionalre: 12-02-82
(HAM)  Kane of Data Base of Model: Cash Flow Model (Railroads)
(ACR)  Acronym of Data Base or Model: Hone
(MED)  Media/Subject of Data Base or Model: Hoise
(ABS)  Abstract/overview of Data Base or Model: The cash flow Model
    estimates the present discounted value of each firm's future cash
    flov streao.  To deterBine this the net north of each railroad fir«
    is subtracted fron the ? present value of future cash flow. The
    •odel yas developed by contractor in order to perform the economic
    analysis for the railroad regulation.  To date the nodel is in the
    hands of the contractor and not available for EPA's use.  The nodel
    was implicitly developed through contract funding.  At a later date
    the BOdel may become available to EPA.
(CTC)  CONTACTS: Robert C. Rose   U.S. EPA, Office of Policy and
    Evaluation,! Office of Air, Roise and Radiation! Loc: 401 M Street,
    S.V., Washington, D.C.   20460  PH: (202) 382-7758
(STA)  Data Base status: Operational/ Ongoing
(DP)  Date of fora completion: 12-13-82
(CAP)  Functional capabilities of model: Two versions of the aodel
    exist.  They support different revisions of proposed railroad
    regulations.
(ASM)  Basic assumptions of model: N/A
(HDW)  Computational system requirements - Hardware:  Mainframe Not yet
    determined ;Disc storage Not yet determine
(LNG)  Computational system requirements - Language(s) used: Fortran
(REF)  References - User manuals/ documentation, etc.:
    Hone to date.
(CUM)  Contact name(s): Robert C. Rose
(COR)  Contact organization:  O.S. EPA, Office of Policy and
    Evaluation,! office of Air, Hoise and Radiation,  401 M St., S.H.,
    Washington, D.C.   20460   (202) 382-7758
(ROR)  Responsible Organization:  Office of Air, Noise and
    Radiation.Office of Policy and Evaluation.
                            1258

-------
                             Accession No.  14401200002

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Econometric Impact Model
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Noise
(ABS)  Abstract/Over view of Data Base or Model: The Econometric  Inpact
    Model provides generalized econometric forecasts of a specified
    industry. It has been applied to light-duty trucks.  Forecasts
    Price, Output, Employment, and Energy effect associated  with noise
    impact emissions.  Based on two modules.  The affected industry
    module uses econometric analysis and the module for the  rest of the
    economy uses input-output analysis.
(CTC)  CONTACTS: Robert C. Rose   U.S. EPA, Office of Policy and
    Evaluation, Office of Air, Nois Loc: 401 M Street, S.H.,
    Washington, D.C.   20460   (202) 382-7758*
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 12-13-82
(CAP)  Functional capabilities of model: See "Model Overview" section.
(ASM)  Basic assumptions of model: See "Model Overview" section.
(INP)  Input to model: Input data are data on sectors of industry/
    elasticities, and trend projections.  The model uses 1967
    input-output table of U.S. economy, energy and employment models,
    and final demand model.
(OUT)  Output of model: The model's output is changes in Output,
    Employment, and Energy consumption by the industrial sector.
(APP)  Applications of model: The model was developed and is operated
    by Research Triangle Institute.
(HDH)  Computational system requirements - Hardware: Mainframe IBM 360
(LNG)  Computational system requirenents - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gramming ;economics
(REF)  References - User manuals, documentation, etc.:
    References not yet available.
(CNH)  Contact name(s): Robert C. Rose
(COR)  Contact organization: U.S. EPA, Office of Policy and Evaluation,
    Office of Air, Noise, Radiation 401 M Street, S.W., Washington,
    D.C.   20460   (202) 382-7758
(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Office of Policy and Evaluation.
                              1259

-------
                             Accession  No.   14401200003

 (DQ)  Date  of  Questionaire:  12-02-82
 (HAM)   Name of Data  Base of  Model: Decision  Model
 (ACR)   Acronym of  Data Base  or Model: RDM
 (MED)   Media/Subject of Data Base or Model:  Noise
 (ABS)   Abstract/Overview of  Data Base or Model: The Decision Model
    permits analysis of the  benefits and costs of noise regulation.  It
    elucidates proninant regulatory options  according to tine-phased
    implementations,  uniform annualized costs, average annual
    individual benefit metrics by baseline impact, change in input and
    output  from  the  "Health  and Welfare Model.'1
 (CTC)   CONTACTS: Robert C. Rose   U.S.  EPA,  Office of Policy and
    Evaluation,  Office of Air, Hois Loc: 401 M Street, S.W.,
    Washington,  D.C.  20460  Ph: (202)  382-7758
 (STA)   Data Base status: Operational/Ongoing
 (DF)  Date  of  fora completion: 12-13-82
 (CAP)   Functional capabilities of model: The Decision Model computes
    all possible combinations of a given product's subcategories,
    applicable standards, and lead-times, and calculates costs and
    benefits for each such combination,  it  then draws a curve
    combining  a  sub-set of these combinations similar to Pareto
    optlmality conditions.
 (ASM)   Basic assumptions of  model: Contact Mr. Rose for a description
    of  the  basic assumptions of this model.
 (IHP)   Input to  model: Machine Type Growth Rates for Equipment Types
    Hoise Levels - pre and post - Regulation D&M Costs/Yr.  of
    Timestream Prices Equipment Life Cycles Capital Investment Costs
    Plant Closings Unemployment Output  froa EPA Health and Welfare
    Models Population data of Regulated Models and Costs of Regulation
 (OUT)  Output  of Bodel:  Benefit summary measures (cumulative benefit,
    average benefit, discounted benefits). Option Cost measures,
    (cumulative cost, average cost, discounted costs), Manufacturer
    cost summary measures (capital investment, average and cumulative,
    discounted),  and Unemployment summary measures (cumulative,
    average).
 (APP)  Applications of model: The model has been used in noise
    regulation review to bring to management's attention cost effective
    options in a product regulation.
(HDtf)  Computational system requirements - Hardware:  Mainframe IBM 370
    ;Printer any model
(LHG)  Computational system requirements - Language(s)  used:  Fortran
(OSK)  Computational system requirements:  Operator Knowledge/Skills:  Pro
    gramming
(REF)  References - User manuals,  documentation,  etc.:
    Contact Mr. Rose for references describing
    the model.
(CRN)  Contact name(s):  Robert  C.  Rose
(COR)  Contact organization:  U.S.  EPA,  Office of  Policy  and Evaluation,
    Office of Air,  Hoise,  and Radiation,*  401 M Street,  S.W.,
    Washington, D.C.   20460    (202)  382-7758
(ROR)   Responsible  Organization:  Office of Air,  Noise and
    Radiation.Office of  Policy  and Evaluation.
                             1260

-------
                             Accession No.  14401200004

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Kane of Data Base of Model: Strategy Model
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Noise
(ABS)  Abstract/Overview of Data Base or Model: Determines the  minimun
    cost nix of regulations to achieve level of reduction In noise  or
    gives a cost Unit to achieve the maximum reduction of noise*
(CTC)  CONTACTS: Robert C. Rose   U.S. EPA, Office of Policy and
    Evaluation, Office of Air, Nois 401 M Street, S.H., Washington,
    D.C.   20460  (202) 382-7758
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 12-13-82
(CAP)  Functional capabilities of model: The Strategy Model prioritizes
    the cost effectiveness of a given number of products being
    considered for noise regulations.
(ASM)  Basic assumptions of nodel: Contact Mr* Rose for a description
    of the basic assumptions of this model*
(INP)  Input to model: Costs of regulation of different types of
    machines at various noise levels and the benefits of regulation are
    the inputs to this model*
(DOT)  Output of model: Listing of different regulations to achieve a
    certain fixed level of noise reduction are the outputs of the  model
(APP)  Applications of nodel: The model has been used in noise
    regulation review to bring to management's attention cost effective
    options in a set of products regulations.
(HDV)  Computational system requirements - Hardware: Mainframe  IBM 370
    ^Printer any nodel
(LNG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: pro
    granming ;economics
(REF)  References - User manuals, documentation, etc.:
    Contact Mr. Rose for references describing
    the model.
(CNM)  Contact name(s): Robert C. Rose
(COR)  Contact organization: U.S. EPA, Office of Policy & Evaluation,
    Office of Air, Noise and Radiationf 401 M Street, S.M., Washington,
    D.C.   20460  (202) 382-7758
(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Office of Policy and Evaluation.
                             1261

-------
                             Accession No.   14401200005

CDQ)  Date of Questionaire:  12-02-82
(HAM)  Kane of Data Base of  Model:  Pricing  Model
(ACR)  Acronym of Data Base  or Model:  TPRICES
(MED)  Media/Subject of Data Base or Model: Noise
(ABS)  Abstract/Overview of  Data Base  or Model: Determines price
    increase of projected sales of a given  nuaber of products or
    sub-products needed to cover increased  cost of noise regulation
    over some long period of time.
(CTC)  CONTACTS: Robert C. Rose   U.S. EPA, Office of Policy S.
    Evaluation Office of Air, Moise a 401 M Street, S.H., Washington,
    D.C.   20360  Ph: (202)  382-7758
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of fora completion: 12-13-82
(CAP)  Functional capabilities of Model: The Pricing Model gives to
    management the increased prices of products to be regulated so that
    the economic impacts of  the regulations can be measured prior to
    promulgation.
(ASM)  Basic assumptions of  model:  Contact  Mr. Rose for a description
    of the basic assumptions of this model.
(INP)  Input to model: Inputs to the model  are baseline production,
    component cost, development cost,  testing cost and enforcement cost.
(DOT)  Output of model: Original and revised sales, price increase, and
    percent price increases are produced by the model.
(APP)  Applications of model: The model has been used in noise
    regulation review to bring to management's attention cost effective
    options to proposed regulations.
(HDW)  Computational system requirements -  Hardware: Mainframe IBM
    370/168 ^Printer any model
(LNG)  Computational system requirements -  Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    graiming ;economics
(REF)  References - User manuals, documentation, etc.:
    Contact Mr. Rose for references describing
    the model.
(CNM)  Contact name(s): Rose,R.
(COR)  Contact organization: O.S. EPA, Office  of Policy  & Evaluation,
    Office of Air, Hoise and Radiation,  401 M  Street, S.W., Washington,
    D.C.   20460  (202) 382-7758
(ROR)  Responsible Organization: Office  of Air, Moise and
    Radiation.Office of Policy and Evaluation.
                              1262

-------
                             Accession No.  14402000001

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Truck Mounted Solid Haste Compactors
    Health and Welfare  Mod
(ACR)  Acronym of Data Base or Model: TNEW2
(MED)  Media/Subject of Data Base or Model: Noise
(ABS)  Abstract/Overview of Data Base or Model: Computes health and
    welfare impacts of noise of truck-Mounted solid waste compactors
    (TMSWC) for baseline condition and selected regulatory options;
    computes health and welfare benefits to the year 2000 in terns  of
    noise impact reduction for the various options.  Impacts analyzed
    include:
    1) Generalized adverse response (annoyance)., 2) Indoor and
    outdoor speech interference, 3) Sleep disturbance, and 4) Sleep
    awakening.
(CTC)  CONTACTS: R. C. Rose     U.S. EPA, Office of Air, Noise and
    Radiation Loc: 401 M Street S.W., Washington, D.C.   20460 Ph:
    (202) 382-7758
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 12-15-82
(CAP)  Functional capabilities of model: Note: No user's or
    programmer's documentation available*  (See References).
(ASM)  Basic assumptions of model: The fractional impact functions  used
    are those accepted as  of mid-1977 and  described in the Regulatory
    Analysis (EPA-550/9-79-257).
(INP)  Input to model: The data base built into the model include:
    1) Population distribution by five types  of residential areas,
    2) Population distribution of the 3  types of compactors,
    3) Frequency and duration of  refuse  collection activities  for
    the 5 types of residential areas, 4) Typical time-history  of noise
    for a refuse collection cycle,  and 5)  Sound propagation function
    for the various types  of residential areas. Energy average noise
    level (L*s for each regulatory option considered, and  Effective dates.
(OUT)  Output of model: Health and  welfare baseline impact  and Impacts
    under various regulatory options  (including  iapact reductions).
(APP)  Applications of model: Used  for calculation  (computation) of
    health and welfare impact of  refuse  vehicle noise  in regulatory
    analysis of truck-mounted solid waste compactor noise regulation.
(HDW)  Computational  system requirements - Hardware: Mainframe IBM
    370/168
(LNG)  Computational  system requirements - Language(s) used: Fortran I?
(OSK)  Computational  system  requirements:  Operator  Knowledge/Skills: Eng
     ineering
(REF)  References - User manuals,  documentation, etc.:
    Truck-mounted Solid  Waste Compactor  Regulatory
    Analysis  (EPA-550/9-79-257)  and GE-Tempo draft  final report
     on Health  and Welfare  Analysis  of  TMSWC.
(CHM)  Contact  narae(s):  Rose,R.C.
(COR)  Contact  organization:  U.S. EPA,  Office of Air,  Noise and
     Radiation     Ph:  (202)  382-7758
(ROR)  Responsible  Organization:  Office  of Air,  Noise  and
     Radiation.Office  of  Policy  and Evaluation.


                              1263

-------
Accession No.  14402000001    (cont)
1264

-------
                             Accession No.  14402000002

(DQ)  Date of Questionairc: 12-02-82
(NAM)  Name of Data Base of Model: Construction Site Health and  Welfare
    Model
(ACR)  Acronym of Data Base or Model: CSM
(MED)  Pedia/Subject of Data Base or Model: Noise
(ABS)  Abstract/Overview of Data Base or Model: The model computes
    noise impacts on the population surrounding the more than two
    million construction sites that are active every year in the U.S.
    in addition, the relief accruing to the various populations
    affected by construction site noise as a result of individual  and
    combined regulations for one or more of the operational types  of
    equipnent is analyzed.
(CTC)  CONTACTS: R. C. Rose    U.S. EPA, Office of  Air, Noise and
    Radiation
    Washington, D.C.  20460 22202    Ph: (202) 382-7758
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 12-15-82
(CAP)  Functional capabilities of model: Not all elements of the model
    are functional.  The complete model contains the following:
    1.  Time stream
    2.  Curve
    3.  Output of impact reduction
    4.  Distribution of Level Weighted Population (LHP) and
    population exposed with respect to 1 decible (Idb) level of  noise
    day-nigh average (Ldn) intervals.
    5.  Usage factors
    6.  Duration of construction site activity
    7.  Daytime population density shifts.
(ASM)  Basic assumptions of model: There are no basic assumptions.
(IMP)  Input to model:
    1) Noise levels of construction equipment, 2) Equipment usage
    factors, 3) Number of construction sites by the type of site and by
    population density category, 4) Population density, and 5) Duration
    of construction activity by phase of construction
(OUT)  Output of model:
    1) Yearly L 2) Equivalent sound level 3) Population exposed, 4)
    Level weighted population (LHP), 5) Sound propagation distance  to
    criteria levels, and 6) Relative Change in Impact (Relative  Lwp,
    LliP<2>/LWP  Applications of model: No outside use allowed unless designated
    !•••' Office jf Air, Noise and Radiation.
(HDH)  Computational system requirements - Hardware: Mainframe IBM
    370/168
(LNG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Eng
    ineering
(REF)  References - Oser manuals, documentation, etc.:
    No references are available.
(CNM)  Contact name(s): Rose, R.C.
(COR)  Contact organization: U.S. EPA, Office of  Air, Noise and
    Radiation Control   22202   Ph: (202) 382-77
(ROR)  Responsible Organization: Office of Air, Noise and


                             1265

-------
                         Accession Io.  14402000002    (cont)
Radiation.Offlee of Policy and Evaluation.
                        1266

-------
                             Accession No.  14402000003

(DQ)  Date of Questions!re: 12-02-82
(RAN)  Name of Data Base of Model; Railroad Health and Welfare Model
(ACR)  Acronym of Data Base or Model: RMBA 79N3
(MED)  Media/Subject of Data Base or Model: Noise
(ABS)  Abstract/Overview of Data Base or Model: The model estimates
    national noise exposure due to railroad operations*
(CTC)  CONTACTS: R. C. Rose   U.S. EPA, Office of Air, Noise  and
    Radiation Loc: 401 M St., S.W., Washington, D.C.  20460 Ph:  (202)
    382-7758
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 12-15-82
(CAP)  Functional capabilities of nodel: There are no provisions  for
    time stream variations.
(ASM)  Basic assumptions of model: Refer to "Description of Railroad
    Health and Welfare Model" for basic assumptions of the model.
(INP)  Input to model: Input to the model consists of 1) Engine  noise
    from locomotives and snitch engines, 2) Retarder squeal,  3)
    Refrigerator car noise, 4) Car-coupling noise, 5) Load cell
    testing, repair facilities, and locomotive service area noise,
    6) kheel/rall noise, and 7) Horns, address systems.
(DOT)  Output of model: National  assessment of level weighted
    population (LWP) and describes annualized benefits (health and
    welfare, rather than economic) of decreased noise production.
(APP)  Applications of model: Model has been used for internal
    EPA-office of Noise Abatement and Control decision-making purposes,
(HDV)  Computational system requirements - Hardware: Mainframe IBM  370
    ;Disc storage one unit ;Printer any model
(LNG)  Computational system requirements - Language(s) used:  ANSI
    Fortran
(REF)  References - User manuals, documentation, etc.:
    1.  Description of Railroad Health and Welfare
    Model
    2.  Users* Manual for  the Railroad Health and Welfare Model
    3.  Programmer's Manual for the Railroad Health and Welfare
    Model
(CUM)  Contact name(s): Rose, R.C.
(COR)  Contact organization: U.S. EPA, Office of Air, Noise and
    Radiation Control Ph:  (202) 382-7758
(ROR)  Responsible Organization:  Office of Air, Noise and
    Radlation.Qffice of Policy and Evaluation.
                              1267

-------
                             Accession No.   14402000004

(DQ)  Date of Questionaire: 12-02-82
(SAM)  Rame of Data Base of Model: Truck Transport Refrigeration Dnit
    Health and Welfare Model
(ACR)  Acronym of Data Base or Model: TTRU
(MED)  kedia/Subject of Data Base or Model: Noise
(ABS)  Abstract/Overview of Data Base or Model: The model computes
    health and welfare impacts' of noise of  Truck Transport
    Refrigeration Units (TTRU) for baseline condition and selected
    regulatory options.  lapacts analyzed include:  1) Generalized
    adverse response (annoyance),
    2) Indoor and outdoor -speech interference, 3) Sleep disturbance,
    and 4) Sleep awakening.
(CTC)  CONTACTS: R. C. Rose     U.S. EPA, Office of Air, Noise and
    Radiation Loc: 401 M Street S.W., Washington, D.C.  20460 22202
    ph: (202) 382-7758
(ST-A)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 12-15-82
(CAP)  Functional capabilities of model: See "Model Overview" for
    functional capabilities of the model.
(ASM)  Basic assumptions of model: The fractional impact functions used
    are those accepted as of mid-1977, and are described in the draft
    final report on TTRU by GE-Tempo.
(OUT)  Output of model: The data bases built into the model include:
    1) Population distribution by 5 types of residential areas, 2)
    Distribution of the population of various types of TTRU,
    3) Usage patterns and noise histories of TTRU in various types
    of residential areas, and 4) Sound propagation function for the
    various types of residential areas. Characteristic noise level of
    each type of TTRU, Regulatory noise limits, and Effective dates for
    each option. OUTPUT: The model's output consists of the health and
    welfare baseline impact and impacts under various regulatory
    options (including impact reductions).
(APP)  Applications of model: The model is used in the analysis of
    health and welfare Impact of  truck transport refrigeration unit
    •noise in pre-regulatory studies.
(HOW)  Computational system requirements - Hardware: Mainframe IBM
    370/168         -
(LNG)  Computational system requirements - Language(s) used: Fortran IV
(OSK)  Computational system* iSequfrements: Operator Knowledge/Skills:  Eng
    ineering
(REF)  References - User manuals/ documentation, etc.:
    Truck transport Refrigeration Unit Background
    Document  (draft) and GE-Tempo draft final  report. Health and
    Welfare Analysis of TTRU.
(CNM)  Contact name(s): Rose/ R.C.
(COR)  Contact organization: U.S. EPA, Office  of Air, Hoise and
    Radiation Control 22202   Ph: (202) 382-7758
(ROR)  Responsible Organization:  Office of Air, Noise and
    Radiation.Office of Policy  and  Evaluation.
                             1268

-------
                             Accession No.  14402000005

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Lawnmower Health and Welfare Model
CACR)  Acronym of Data Base or Models LAW 1 & LAW 2
(MED)  Media/Subject of Data Base or Model: Noise
(ABS)  Abstract/Over view of Data Base or Model: This model consists of
    two programs which are interrelated.  Lawn 1 sets up a data file
    containing input data required by Lawn 2.  Latin 2 calculates and
    displays hearing loss, speech interference/ annoyance, and impacts
    for a given year, regulatory option or base line/ and aachine type.
(CTC)  CONTACTS: R. c. Rose   o.s. EPA, Office of Air, Hoise and
    Radiation Loc: 401 M St., S.W.,  Washington, D.C.   20460 22202
    Phs (202-Y) 382-7758
CSTA)  Data Base status: Operational/Ongoing
(DP)  Date of for* completion: 12-15-82
(CAP)  Functional capabilities of model: There is no published
    documentation of the functional capabilities for these aodels.  The
    programs are self explanatory for the user and a program listing is
    available with explanatory comments.
(ASM)  Basic assumptions of model: The models are based on an
    analytical development by a contractor, Booz, Allen, and Hamilton,
    Inc.
(INP)  input to model: Lawn 1:  1) Mo. of geographical regions, 2) Ho.
    of cachine categories, 3) Mo. of regulatory options for each
    machine category, 4) Mo. of tiers of regulated machines per option,
    5) year in uhich tier goes into effect, 6) Regional growing season
    in weeks per year, 7) Regional cutting rates in no. of cuts per
    week, 8) Regional machine distribution,
    9) Sales figures for each category of mower by year (that
    is, 1964-2000), 10) Retirement rate for each category of mower by
    age since sale, 11) Machine sound level at the bystander and
    operator, 12) Usage duration description in hours per cut, 13)
    Maximum length of lawn mower use for each category, 14) Machine
    market saturation, 15) Mean blade width in inches, 16) Cutting
    efficiency, 17) Mower ground speed in miles per hour, 18) Lot site
    per grass area proportionality for lawn areas (less than or equal
    to 20,000 square feet, greater than 20,000 square feet, less than
    or equal to 34,000 square feet, greater than 34,000 square feet),
    19) Open space proportionality,
    20) Household size coordinates (year, size), 21) loisa
    propagation effects (dB per doubling of distance), and 22)
    Attenuation due to walls and windows of buildings. Lawn 2:  Choice
    of 1) Impact, 2) Year, 3) Regulatory option, and 4) Type of machine.
(OUT)  Output of model: The output of the Model is a summary sheet of:
    1) Environmental noise impact (EMI) for each geographical region,
    2) Ambient or background level, 3) National EMI, and 4)
    Population by distribution of levels.
(APP)  Applications of model: Lawn 1 and Lawn 2 are used in determining
    health and welfare impact of lawnmower noise and benefits (impact
    reduction) for various regulatory scenarios in pre-regulatory
    studies.
(HDW)  computational system requirements - Hardware: Mainframe Data
    General Nova 2/10


                             1269

-------
                             Accession No.  14402000005    (cont)

(LNG)  Computational system requirements - Language(s)  used:  Fortran IV
(OSK)  Computational system requirements: Operator Knouledge/Skills: Eng
    ineering
(REF)  References - User manuals, documentation/  etc.:
    Assessment of Environmental Noise Impact of
    Noise Regulations for Power Launmouers.  Booz Allen Draft
    Final Report, EPA Contract Mo. 68-01-3239, March 1978.
(CNM)  Contact nane(s):  Rose,R.C.
(COR)  contact organization: U.S. EPA, Office of  Air, Noise,  and
    Radiation control 22202   Ph: (202) 382-7758
(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Office of  Policy and Evaluation.
                             1270

-------
                             Accession No.  14402000006

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Air Conditioner Health and Me If are
    Model
(ACR)  Acronym of Data Base or Model: AGO Thru ACS
(MED)  Pedia/Subject of Data Base or Model: Noise
(ABS)  Abstract/overview of Data Base or Model: This model is Bade  up
    of 9 interrelated programs.  The output fron one is used as input
    for another* AGO through AC4 generate annoyance and hearing loss
    impacts. ACS through ACS generate sleep and speech interference
    impacts.
(CTC)  CONTACTS: R. C. Rose   U.S. EPA, Office of Air, Noise and
    Radiation Loc: 401 M Street S.V., Washington, D.C.   20460 22202
    Ph: (202) 382-7758
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 12-15-82
(CAP)  Functional capabilities of model: Interrelationship of programs
    needs to be understood from report cited below.  Execution of
    program is self-explanatory.  Program listing and explanatory
    comments given in Appendix of report cited in "Reference" section.
(ASM)  Basic assumptions of model: See model references for full
    explanation of assumptions of the model.
(IMP)  Input to model: Model input is:  1) Room correction factor,  2)
    Sound power level, 3) Distance to source in feet, 4) Distance
    between building fronts, 5) Room constant for courtyards, 6)
    Location factor, 7) Choice of impacts, 8) Years, and 9) Regulatory
    option
(DOT)  Output of model: The outputs of the model are:  1) Environmental
    Noise Impact (END, 2) Ambient or background level 3) National  ENI,
    4) Population by Distribution of Levels, and 5) National Noise
    Impact Index (LHP).
(APP)  Applications of model: This model is used in pre-regulatory
    studies of air conditioner noise, determining baseline health and
    welfare impact and impact reductions for various regulatory
    scenarios.
(HDH)  Computational system requirements - Hardware: Mainframe Data
    General Nova 2/10
(L»G)  Computational system requirements - Language(s) used: Fortran IV
(OSK)  Computational system requirements: Operator Knowledge/Skills:  Eng
    ineering
(REF)  References - User manuals, documentation, etc.:
    Noise Impact Analysis  of Room and Residential Air
    Conditioners.  Cambridge Collaborative Draft Final Report
    EPA Contract So. 68-0  No. 68-01-4411, July 1978.
(CNM)  Contact name(s): Rose,R.C.
(COR)  Contact organization: U.S. EPA, Office of NoiseAir, Noise and
    Radiation Control 22202   Ph: (202) 382-
CROR)  Responsible Organization: Office of Air, Moise and
    Radiation.Office of Policy and Evaluation.
                              1271

-------
                             Accession No.   14402000007

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Nave of Data Base of Model:  Chain Saw Health and Welfare
(ACR)  Acronyn of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Noise
(ABS)  Abstract/Overview of Data Base or Model: The Chain Sau Health
    and Welfare Model calculates individual noise exposures, cumulative
    exposure, fractional impacts and other  related quantities.
(CTC)  CONTACTS: Robert C. Rose   U.S. EPA, Office of Air, Noise and
    Radiation Loc: 401 M St., S.W., Washington, D.C.   20460 22202
    Ph: (202) 382-7758
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 12-15-82
(CAP)  Functional capabilities of »odel: The model and documentation of
    all of Its functional capabilities is not complete.
(ASM)  Basic assumptions of Model: The fractional impact functions are
    those accepted as of mid-1978, as outlined in the levels document
    and other publications by the Scientific Assistants staff.
(INP)  Input to model: Data bases include:
    1.  Population trends of chain sans by types
    2.  Estimates of chain saw usage by type
    3.  Estimates of chain sau noise emissions
    4.  Sound propagation functions for areas in which chain saws
    are used.
    5.  Fractional impact functions
    inputs are:  Regulatory scenarios (noise level Units and effective
    dates).
(OUT)  Output of nodel: Output consists of health and welfare IMPact of
    chain saw noise for baseline condition and various regulatory
    scenarios; also, reductions in impact for the regulatory scenarios.
(APP)  Applications of model: The Model is used in pre-regulatory
    studies  of chain saw noise, to provide estimates of health and
    welfare  impacts and benefits.
(HOW)  Computational system requirements - Hardware: Mainframe IBM 370
(LUG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Eng
    ineering
(REF)  References - User Manuals, documentation/ etc.:
    References are still under development
(CUM)  Contact name(s): Rose,R.C.
(COR)  Contact organization:  U.S. EPA,  Office  of Air,  Noise  and
    Radiation Control  22202   Ph:  (202) 382-7758
(ROR)  Responsible Organization: Office of Air, Noise  and
    Radiation.Offlee of Policy and Evaluation.
                              1272

-------
                             Accession No.  14402000008

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Eame of Data Base of Model: Consumer Product Health and  Welfare
    Model
(ACR)  Acronym of Data Base or Model: CONSUMER PRODUCT MODEL
(M5D)  Media/Subject of Data Base or Model: Noise
(ABS)  Abstract/Overview of Data Base or Model: The Consumer Product
    Health and Welfare Model calculates individual noise exposures,
    cumulative exposure/ fractional inpacts/ and other related
    quantities.
(CTC)  CONTACTS: R. C. Rose   U.S. EPA, Office of Air, Noise and
    Radiation Loc: 401 M St., S.W., Washington, D.C.   20460   Ph:
    (202) 382-7758
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 12-15-82
(CAP)  Functional capabilities of model: Documentation will be  complete
    by the end of FY 81.
(ASM)  Basic assumptions of model: See reference for documentation of
    basic assumptions.
(JNP)  Input to model: The input to the model  is the product noise
    emissions. Use data, Noise isolation data  between product use and
    affected populations/  and description  of persons affected.
(OUT)  Cutout of model: This model predicts sound levels at listener's
    position.
(APP)  Applications of model: The model is used in pre-regulatory
    studies of possible noise standards and/or noise labeling
    regulations for consumer products, determining health and welfare
    impact of noise of various products -  one  of the factors in
    selecting priorities for labeling.
(HDW)  Computational system requirements - Hardware: Mainframe IBM 370
(LNG)  Computational system requirements - Language(s) used: Fortran IV
(OSK)  Computational systea requirements:  Operator Knowledge/Skills: Eng
    ineering
(REF)  References - User manuals, documentation, etc.:
    Consumer Product Noise:  A Basis  for Regulation.
    Heissler, Zerdy/ and Revoile, National Bureau of Standards,
    NBSIR 74-606, Nov., 1974.
(CNM)  Contact narae(s): Rose,R«C.
(COR)  Contact organization: U.S. EPA, Office  of Air,  Noise and
    Radiation   (202) 382-7758
(ROR)  Responsible Organization:  Office of Air, Noise  and
    Radiation.Office of Policy  and  Evaluation.
                              1273

-------
                             Accession No.  14402000009

(00)  Date of Questionaire: 12-02-82
(RAN)  game of Data Base of Model: Urban High Density Traffic Noise
    Impact Model
(ACR)  Acronym of Data Base or Model: CATNIP
(NED)  Media/Subject of Data Base or Model: Noise
(ABS)  Abstract/Overview of Data Base or Model: The Urban High Density
    Traffic Noise Impact Model developed to assess the effects of urban
    traffic noise on people.  Present or future vehicle noise
    regulatory scenarios can be specified to evaluate the potential
    benefits of such regulations on the noise climate in densely
    populated areas.
(CTC)  CONTACTS: R. C. Rose   O.S. EPA, Office of Air, Noise and
    Radiation Loc: 401 M St., S.H., Washington, D.C.   20460 Ph: (202)
    382-7758
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of fora completion: 12-15-82
(CAP)  Functional capabilities of model: See "Model Overview" section
    above and documentation
(ASM)  Basic assumptions of model: See reference given for description
    of todel's basic assumptions
(INP)  Input to model: Input to the model consists of:  1) Baseline
    vehicular noise levels by vehicle and by 4 operating modes,
    acceleration, deceleration, cruise (various speeds), and Idle,  2)
    Regulatory scenario; 3) Fraction of time each vehicle spends in
    each operating mode (DVP); 4) traffic volume for each vehicle class
    by time period (DVP); 5) Vehicle speeds for each vehicle type
    (DVP); 6) Street widths; 7) Block length (DYP); 8) sidewalk width
    (DTP); 9) Building configuration; 10) Presence or absence of
    building opposite (DVP); 11) Average building height; 12) Optional
    enclosed streetuay; 13) Pedestrian flow volume; and 14) Population
    inside buildings.  DVP means default value provides.
(OUT)  Output of model: The model's output consists of the equivalent
    noise level (Leg) at a defined point and urban traffic noise levels
    and resultant health and welfare Impact (LHP).
(APP)  Applications of model: Model is available for state and local
    government use.
(BDH)  Computational system requirements - Hardware: Mainframe
    Unspecified
(LNC)  Computational system requirements - Language(s) used: Fortran IV
(OSK)  Computational system requirements: Operator Knowledge/Skills: Eng
    ineering
(REF)  References - user manuals, documentation, etc.:
    Development of an Urban High Density Traffic loise
    Impact Model, Volume I:  Model Description and Computation
    Procedures.
(CNN)  Contact name(s): Rose,R.C.
(COR)  Contact organization: O.S. EPA, Office of Air, Noise and
    Radiation, 401 M Street S.V., Washington, D.C
(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Offlee of Policy and Evaluation.
                             1274

-------
                             Accession No.  14402000010

(DQ)  Date of Questionaire: 12-02-82
(BAM)  Kane of Data Base of Model: National Roadway Traffic Noise
    Exposure Model
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Noise
(ABS)  Abstract/Overview of Data Base or Model: The nodel
    deterministically estimates extent and severity of noise exposure
    in the U.S. due to motor vehicles operating on the national roaduay
    network.  The model is used primarily for assessing the national
    impact of various noise control strategies/ including source
    control.  The structure of the model is based on extensive roaduay
    data, demographic data, and vehicle use and noise data.  Time
    series projections are also calculated on all tiae dependent
    variables where data are available.

-------
                             Accession No.   14402000010     (cont)

(ROR)  Responsible Organization:  Office of  Air,  Noise  and
    Radiation,Office of Policy and Evaluation.
                            1276

-------
                             Accession No.  14403000106

(DQ)  Date of Questionaire: 12-02-82
(NAN)  Kane of Data Base of Model: Workplace Noise Evaluation Model
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Noise
(ABS)  Abstract/Overview of Data Base or Model: Model assesses the
    occupational noise impact in industrial factory spaces.  Model
    determines the daily noise dose of exposure for each class of
    production workers, and determines the contribution of each machine
    to this dose. It will identify the benefits to be gained in terms
    of reduced exposure from reducing noise levels of one or more
    machines.
(CTC)  CONTACTS: Robert C. Rose  U.S. EPA, Office of Policy and
    Evaluation, Loc: 401 K Street, S.W., Washington, D.C.   20460
    Ph:« (202) 382-7758 Office of Air, Soise and Radiation
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 12-13-82
(CAP)  Functional capabilities of model: A weighted sound level and
    statistical confidence Units are calculated.
(ASM)  Basic assumptions of model: . Worker activities can be
    characterized by a common work assignment  schedule. . Noise levels
    generated by similar equipment is normally distributed. • Primary
    contributor to no'ise exposure is the machine being operated by
    operator in question. . Secondary sources  are grouped into the
    background level with appropriate ueighting factors. . Statistics
    used to describe noise and work assignments worker job assignments
    Number of workers Machinery noise levels at operator locations
(OUT)  Output of model: The output of the model consists of: .
    OSHA-personnel noise exposure by job description and industry .
    Distribution of noise exposure by job description i.e. mean & worst
    case . Rank ordering of noisy machines by  contribution to noise
    exposure . Calculation of minimum noise reduction requirements to
    meet OSHA . Same for EPA except impact applies rather than exposure.
(APP)  Applications of model: Model is in final review.  The model will
    support assessment and implementation of noise control programs  at
    specific plants and Health and Welfare analyses by Federal
    Regulatory and Enforcement Agencies.
(HDW)  Computational system requirements - Hardware: Mainframe IBM 360
(LNG)  Computational system requirements - Language(s) used: Fortran IV
(OSK)  Computational system requirements: Operator Knowledge/Skills: Eng
    ineering
(CNM)  Contact name(s): Robert C. Rose
(COR)  Contact organization: U.S. EPA, Office  of Policy & Evaluation,
    Office of Air, Noise and Radiation, 401 M  Street, S.H., Washington,
    D.C.   20460   (202) 382-7758
(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Office of Policy and Evaluation.
                             1277

-------
                             Accession No.   14403000107

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Kane of Data Base of Model: Urban Traffic Noise Prediction Model
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Noise
(ABS)  Abstract/QvervieM of Data Base or Model: Model based on City of
    Portland blank configurations, classes  of vehicles operating in the
    city, and related noise sources.  Model has been verified through a
    noise survey.

-------
                             Accession No.  14403000107    (cont)

(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Office of Policy and Evaluation.
                             1279

-------
                             Accession No.  14403000108


-------
                          Accession No.   14403000108     (cont)
Rad1ation.Office of Policy  and Evaluation.
                          1281

-------
                             Accession No.  14403000109

(DQ)  Date of Questionaire: 12-02-62
(RAM)  Name of Data Base of Model: Highway Noise Control Strategy
    Assessment Model
(ACR)  Acronym of Data Base or Model: HINCSAM
(M£D)  Media/Subject of Data Base or Model: Noise
(ABS)  Abstract/Overview of Data Base or Model: The model simulates the
    year to year change
    distribution of a noise source subject to regulations.  User
    specifies original distribution, regulations, and microscopic
    effects of regulations.  Any seguence or combination of new product
    standards and in-use standards »ay be specified.  Energy average
    noise level is computed for each year.
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 12-13-82
(CAP)  Functional capabilities of model: The model can handle any
    original distribution, described by a histogram tilth a
    user-specified bin width.  User specifies regulations as any
    combination of the two regulation types.  Details of regulatory
    effects, i.e. compliance ratios and distribution of
    modified/redesigned products are user-specified.
(ASM)  Basic assumptions of model: No assumptions other than
    representation of distributions by histograms and annual (rather
    than continuous) updating.
(IHP)  input to model:
    specifying year, regulatory level, compliance ratio, and
    distribution of modified/redesigned models for each regulation .
    Replacement/retirement data for each year
(OUT)  Output of »odel: Energy average noise level each year.  Also can
    output modified distribution for each year.
(APP)  Applications of model: Has been used by Kyle in various projects
    for EPA to evaluate motor vehicle regulations.
(HDH)  Computational system requirements - Hardware: Mainframe Xerox
    940 or IBM 370 ;Disc storage varies, depend! Printer line printer
    or terminal
(LUG)  Computational systen requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Kno
    uledge of mathematical basis of model  Robert C. Rose U.S. EPA,
    Office of Policy and Evaluation, Office of Air, Noise & Radiation,
    401 M Street, S.H., Washington, D.C.  20460  (202) 382-7758
(REF)  References - User manuals, documentation, etc.:
    NA Kodel for the Prediction of Highway Noise and
    Assessment of strategies for its Abatement Through Vehicle
    Noise Control", Hyle Research Report MR 74-5, September 1974.
(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Offlee of Policy and Evaluation.
                             1282

-------
                             Accession No.  14403000110

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Regulation Impact Model
(ACR)  Acronym of Data Base or Model: REGIM
(MED)  Media/Subject of Data Base or Model: Noise
(ABS)  Abstract/Over view of Data Base or Model: The model projects
    ten-city data prepared by
    totals.  Future growth, by city size, is based on census department
    projections.  User specifies a year and noise level changes  for
    automobiles and trucks at high and low speeds.  Program returns
    total population exposed to decibel level  (day-night average)  (Ldn)
    between 60-65 decibels, 65-70 decibels, 70-75 decibels, and  above
    75 decibels.
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 12-13-82
(CAP)  Functional capabilities of model: The model can handle effective
    vehicle level changes from *3 to 150 decibels (automobiles)  and  +3
    to -16 decibels (trucks), years from 1974  to 2000, Inputs are  in
    decibels, outputs in numbers of people.
(ASM)  Basic assumptions of model: Projects ten city data to nation, as
    described in cited reference.  Assumes 87/13 day/night traffic
    split.  Inputs are cases to be handled - year and vehicle noise
    level changes re: baseline.  Noise level change inputs are outputs
    from HINCSAM

-------
                             Accession lo.   14403000111

(D
-------
                             Accession Ho.  14403000112

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Highway Construction Noise
    Evaluation and Mitigation
(ACR)  Acronym of Data Base or Model: HIMCOM
(MED)  Media/Subject of Data Base or Model: Industry/economic
(ABS)  Abstract/Overview of Data Base or Model: The model allous  the
    determination of noise levels arising from highway construction
    activities.  It is site specific, that is applying to one  given
    construction site,  it Is a tool for assessing the potential  noise
    impact from construction activities, and for supporting the
    development and implementation of abatement measures.
    Specifically, the relative importance of a given piece of  equipment
    to the noise levels at a boundary can be determined.  Also, noise
    reduction benefits to be gained from various control measures,, such
    as equipment substitution and movement, or installation of
    barriers, can be readily calculated.
(CTC)  CONTACTS: Robert C. Rose,  U.S. EPA, Office of Policy and
    Evaluation, Office of Air, Noise and Radiation.  401 M Street,
    S.W., Washington, D.C.  20460 Ph: (202) 382-7758
(STA)  Data Base status: Operational/Ongoing
(DP)  Date of form completion: 12-13-82
(CAP)  Functional capabilities of model: The model's functional
    capabilities are: . full scale . time averages . units-set by user
    e.g. feet, decibels, cubic feet
(ASM)  Basic assumptions of model: The model's basic assumptions  are:  .
    Noise propagation-algorithias for point, line, area noise  sources  •
    Noise levels versus equipment operations . Equipment capacities  .
    Equip duty cycles . Cycle averaged Noise levels
(INP)  Input to model: 1. Name of various construction equipments
    2. Model of equipment
    3. Equipment location
    4. Activity level-No, of vehicles operating, hours of operation
    per day
    5. Task inter-relationships
    6. Site Geometry e.g. barrier locations
(OUT)  Cutput of model: Outputs of the model consist of:
    1. Decibel equivalency (level of noise) at each observer
    2. Decibel equivalency (level of noise) contribution from  each
    activity or task
(APP)  Applications of model: Model is in  final review.  It would be of
    use to construction contractors in construction project planning,
    and various governments for environmental planning and enforcement
(HDW)  Computational system requirements - Hardware: Mainframe IBM 360
    ;Disc storage 3 drums ^Printer any model
(LNG)  Computational system requirements - Language(s) used: Fortran IV
(OSK)  Computational system requirements? Operator Knowledge/Skills: Non
    -technical user
(REF)  References - User manuals, documentation, etc.:
    User Manuals and scientific supporting documentation
    Hill be available on completion of the project
(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Office of Policy and Evaluation.


                             1285

-------
Accession Mo.  14403000112    (cont)
 1286

-------
                             Accession Mo.   14403000113

(DQ)   Date  of  Questionaire:  12-02-82
(NAM)   Name of Data Base of  Model:  Air Pumping Noise Model for Tires
(ACR)   Acronym of Data Base  or Model: None
(MED)   Media/Subject of Data Base or Model:  Noise
(ABS)   Abstract/Overview of  Data Base or Model: The model's  primaiy use
    is to determine the noise caused by air pumping for  heavy duty
    truck tires.
(CTC)   CONTACTS:  Robert C. Rose   U.S. EPA,  Office of Policy and
    Evaluation/ Office of Air, Noise and Radiaion,  401  M Street, S.W.,
    Washington, D.C.  20460  (202) 382-7758
(STA)   Data Base status: Operational/Ongoing
(DF)   Date of  form completion: 12-13-82
(CAP)   Functional capabilities of model: The model's function is to
    determine  what effect air pumping of a heavy duty truck  tire has  on
    the noise  output of the tire
(ASM)   Basic assumptions of model: None identified to date.
(IMP)   Input to model: Under development
(OUT)   Output  of model: Under development
(HDW)   Computational system requirements - Hardware: Mainframe  PDF 11
    ;Disc storage not known as yet ;Magnetic ta Printer any  model
(LUG)   Computational system requirements - Language(s) used: Fortran
(OSK)   Computational system requirements: Operator Knouledge/Skills:  Eng
    inhering
(REF)   References - user manuals, documentation, etc.:
    Documentation to be developed
(CSM)   Contact name(s): Robert C. Rose
(COR)   Contact organization: U.S. EPA, Office  of Policy and Evaluation,
    Office of Air, Noise  and Radiation.  401 M Street, S.W.,
    Washington, D.C.  20460  (202) 382-7758
(ROR)   Responsible Organization: Office of Air, Noise and
    Radiation.Office of Policy and Evaluation.
                              1287

-------
                             Accession No.  14403000114

(DQ)  Date of Questionaire: 12-02-82
(RAM)  Name of Data Base of Model: Fleet Noise Level
(ACR)  Acronym of Data Base or Model: FNL
(MED)  Media/Subject of Data Base or Model:  Noise
(ABS)  Abstract/Overview of Data Base or Model: The aodel calculates
    noise level of aircraft fleet based on reference noise levels for
    each type of aircraft in the fleet and weighted by the number of
    operations conducted by each type.  It could be used for fleets
    other than aircraft (e.g., trucks or busses)
(CTC)  CONTACTS: Robert C. Rose   U.S. EPA,  Office of Policy and
    Evaluation/ Office of Air, Noise and Radiation, 401 M Street, S.H.,
    Washington, D.C.   20460 Ph:  (202) 382-7758
(STA)  Data Base status: Operatlonal/Ongiong
(OF)  Date of forn completion: 12-13-82
(CAP)  Functional capabilities of Model: Model includes FAR 36 aircraft
    noise levels and CY 1979 departures.
(ASM)  Basic assumptions of model: Energy averaging of noise levels.
(INP)  Input to model: Noise levels of particular types of aircraft
    when performin specified operations and number of annual departures.
(OUT)  Output of model: Fleet noise level in decibels is the model's
    output*
(HDH)  Computational system requirements - Hardware: IBM 370 at NCC
(OSK)  Computational system requirements: Operator Knouledge/Skills: Eng
    ineering
(REF)  References - User manuals, documentation, etc.:
    Documentation to be complete by end of FY 81.
(CNM)  Contact name(s): Robert C. Rose
(COR)  Contact organization: U.S. EPA, Office of Policey & Evaluation;
    Office of Air, Noise and Radiation, 401  M Street, S.V., Washington,
    D.C.  20460  (202) 382-7758
(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Office of Policy and Evaluation.
                             1288

-------
                             Accession No.  14403100509

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Computer Assisted Procedure for  the
    Design and Evaluation of Wastewater Treatment Facilities
(ACR)  Acronym of Data Base or Model: CAPDET
(MED)  Media/Subject of Data Base or Model: Water
(ABS)  Abstract/overview of Data Base or Model: The CAPDET program
    represents a Mstate-of-the- art" technique for preparation of
    facilities Planning level cost estimates.  The basic objective  of
    CAPDET is to provide a screening tool capable of simultaneously
    designing a number of vasteuater treatment system alternatives  to
    meet specified effluent criteria and then ranking these
    alternatives on the basis o£ their cost.  Conveyance costs are  not
    considered.  The CAPDET program will design four different
    uastewater treatment schemes.  A treatment scheme consists of
    blocks on the liquid line, the secondary sludge line/ and the
    primary sludge line.  A block is a treatment process location.   The
    CAPDET user specifies or selects the treatment process desired  for
    each block.  Up to ten alternative treatment processes may be used
    in each block or treatment process location.
(CTC)  CONTACTS: Wen H. Huang   O.S. EPA (WH-595) Facility Requirements
    Division   LOG: 401 M Street., S.W., Washington, D.C. 20460  PH:
    (202) 382-7288
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 02-16-83
(CAP)  Functional capabilities of model: The program contains a library
    of unit processes which may be selected by the user and placed  in
    one of the blocks to treat a waste stream.  The CAPDET model
    contains 79 liquid stream processes and 14 sludge stream processes.
    Three land treatment alternatives as well as many of the advanced
    wasteuater treatment (AWT) processes are included.  CAPDET also
    contains a separate set of treatment processes particularly
    applicable to small flows of under 500,000 gallons per day, such as
    package plants and lagoon upgrading processes.  In addition, a  user
    specified process allows the user to add innovative, alternative,
    or other processes not included In the current CAPDET library.
(ASM)  Basic assumptions of model: This program allows the user to
    specify various types of unit processes for the treatment of
    uasteuaters.  A treatment process consists of one or more of these
    unit processes.  The combination of unit processes into treatment
    processes is accomplished automatically by the CAPDET program.
    Treatment processes may then be assembled in sequence to form a
    treatment scheme.  A maximum of four treatment schemes may be
    specified.  Each scheme contains a liquid line, a secondary sludge
    scheme.  Each block may contain up to 10 alternative treatment
    processes.  This program is designed for planning tool and used for
    selecting a best planning approach.
(INP)  input to model: Input to the CAPDET program is the description
    of the wasteaater characteristics.  This input must include at
    least the average design flow rate.  The program contains built-in
    or "default" data for all other uasteuater characteristics.  These
    are mid-range values normally found in domestic uastevaters and
    include biochemical oxygen demand, suspended solids concentration,


                             1289

-------
                             Accession Ho.  14403100509    (cent)

    temperature, concentrations of nutrients, and maximum and minimum
    flov rates as ratios of the average flow.  The CAPDET user needs to
    specify only the uasteiiater characteristics which are different
    than the default values.  The program will assign the default
    values to all the uasteuater characteristics remaining unspecified.
(OUT)  Output of aodel: THO types of output nay be obtained.   The first
    output lists the cost data for up to the 100 nost cost-effective
    trains.  The user nay also specify which of these trains  (or all if
    he chooses) he desires to investigate further.  The second output
    gives detailed unit process design information for all chosen
    trains. Optionally, this output nay include the quantities of
    •aterials required for construction.
(APP)  Applications of model: This model provides a Beans for analysis
    of the sizing of unit process units and material quantities.
    Further the cost estimate Hill be made based on material  quantity
    and sizing of unit processes.  The purpose of this analysis is to
    aid in selecting the most cost effective processes and the most
    cost effective processes and the most cost effective process trains
    in facility planning processes.  CAPOET has been widely used by
    U.S. governmental agencies, states, facility owners, engineering
    communities and general public.
(HOW)  Computational system requirements - Hardware: Mainframe IBM 370
    and comparable computers ; Disc Storage (or tape) 400,000 words
    core storage. ; Magnetic Tape Storage (or disk) ; 132 Position Line
    Printer ; Card Reader/Punch or Tape/Disc (input)
(LN6)  Computational system requirements - Language(s) used:  FORTRAN
(OSK)  Computational system requirements: Operator Knowledge/Skills: Com
    puter Programming ; Engineering
(CON)  Processes and constituents Included in model: Temperature ;
    Biological Effects ; Hydraulics ; Quality Processes
(CPL)  complexity level of model: Steady State Mass Balance ; Simplified
(REF)  References - User manuals, documentation, etc.: 1.  CAPOET
    Program/ User's Guide and 2.  CAPDET Design Manual
(CNM)  Contact name(s): Wen H. Huang
(COR)  Contact organization: U.S. EPA (HH-595) Facility Requirements
    Division
(ROR)  Responsible Organization: Office of Hater.Office of Hater
    Programs Operations.Facilities Requirements Division.
                             1290

-------
                             Accession No.  14404000909

(DQ)  Date of Questionaire: 12-02-82
{STATUS)  Status of entry: Inactive
(NAM)  Name of Data ease of Model: Acoustic I»pact Prediction Model:
    Forest Facility Noise  Mod
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Noise
(ABS)  Abstract/Overview of Data Base or Model: This model is an
    engineering and psychological model to aid in laying out  forest
    facilities as a function of noise-producing elements.
(CTC)  CONTACTS: Robert C. Rose   U.S. EPA, Office of Policy  and
    (ANR-445)  401 M St., S.V., Washington, D.C.  20460 Ph:   (202)
    382-7758
(STA)  Data Base status: Operational/Ongoing
(DP)  Date of form completion: 01-14-83
(CAP)  Functional capabilities of model: The model is based on a
    detectability node! developed for the ailitary.  The accuracy of
    the model is heavily dependent on the input which may be  accurately
    measured on generally estimated*
(ASM)  Basic assumptions of model: The model is based on personal
    annoyance. The detectability and annoyance factors are considered
    in utilizing the model results in laying out a forest/park for its
    many appropriate uses.
(INP)  Input to model: . Input data required: . sound source location •
    listener atmospheric temp . mean atmospheric temp . mean elevation
    . mean wind direction . sound source description . background sound
    source description . highest barrier: - height, distance .
    predominant vegetation type . recreation opportunity . mean wind
    angle . day/night . mean relative humidity . exp. sky coner . Hind
    speed
(DOT)  Output of model: The output product of this model is the
    detectability and annoyance levels of noise in Decibles (d).
(APP)  Applications of model: Used by the 0.S. Park Service,  Forest
    Service, State and local parks to lay out a forest/park area that
    each visitor can find the type of noise environment they effect.
(HDH)  Computational system requirements - Hardware: Calculator
(REF)  References - User manuals, documentation, etc.:
    Predicting Impact of Noise on Recreationists -
    Project Record - April 1980 - USDA - Forest Service - 8023 -
    1202     1202
(CNM)  Contact name(s): Rose,R.
(COR)  Contact organization: U.S. EPA, Office of ^Policy and
    Evaluation, ONAR, (202) 382-7758.
(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Office of Policy and Evaluation.
                              1291

-------
                             Accession No.   14404000910

(DQ)  Date of Questionaire:  12-02-82
(NAM)  Name of Data Base of  Model:  Noise Optimization Models
(ACR)  Acronym of Data Base  or Model: NQIZOP
(MED)  Media/Subject of Data Base or Model:  Noise
(ABS)  Abstract/Overview of  Data Base or Model: NCIZOP provides a tool
    for rational and objective decision staking in policy and regulatory
    activity concerning a community's environmental acoustic noise from
    all sources. The objective is to distribute a given hypothetical
    SUB of money in such a way as to obtain the greatest possible
    benefit in terns of reduction of the number of people adversely
    affected by environmental noise*
(CTC)  CONTACTS: R. Rose    U.S. EPA, Office of Policy and Evaluation,
    OANRft Loc: 401 M Street, S.W.,  Washington, D.C.,  20460
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of fora completion: 01-14-83
(CAP)  Functional capabilities of model: The noise levels in the
    community are defined by the metric:  Equivalent Sound Level,
    L.  This level Is the energy average of the momentary
    A-weighted levels measured over a specified period of time.  The
    A-neight equivalent sound levels assumed in this manual for Zero
    Impact (Nil (see par* 3)) = 0 by land use and for day use are:
    Single Family Duelling - 54 Multi-Family Duelling  = 59 Commercial
    = 59 Industrial             = 70 Schools                = 50
    Hospitals              = 50 The sound levels for night use are 8
    decibels less for single family duellings, 13 for multi-family
    dwellings and same for all the other type of land use (schools are
    not applicable).
(ASM)  Basic assumptions of model:  The inherent non-linearity of the
    mathematics that describe the basic problem of this model presents
    the use of well developed methods of linear algebra*  A
    sophisticated searching algorithm is utilized in the program to
    find the nost cost-effective Hay of distributing the given sum of
    money among the alternative noise abatement measures. A quantity is
    defined that rates the quality of the environmental noise climate
    of a community.  This quantity is called the Noise Impact Index
    (Nil),  it is derived by: Nil - Number of people in a Given
    Community Impacted by Noise Total number of people in the community
    The Noise Climate quality improves with declining Nil.  In
    operations research language, the Nil is the objective function
    (i.e., it is the single function to be minimized by the judicious
    distribution of a given sum of money).   In choosing the best set of
    abatement measures NOIZOP spends money in incremental amounts until
    a preset maximum is reached.
(INP)  Input to model: Input to the model includes:  community is
    divided into cells (land use which is homogeneous in terms of land
    use, population and noise level); cell population, cost to relocate
    cells, floor area of building in each cell, noise measurements for
    up to 20 sources (obtained from Acoustical Survey), countermeasures
    (alternative noise control measures) - costs and decibel reductions
    possible, and land use areas affects; and a total societal budget
    for the noise program*
(OUT)  Cutput of model: The main output is a list of total expenditures


                             1292

-------
                              Accession No.   14404000910    (cont)

    oDtimi™ti«nf°r  each abate»«nt "easure;  these  are displayed as the
    !»P^H?tion  process proceeds in discrete  steps.  The total
    tS rf J   f It brok«« down by costs to  the local government and to
    asso 1 t d    1   society.   Accompanying  this cost breakout is the

    adverse effects  of  noise  on people in the  community. The Nil is
    t«CthfS8f  *?  an  optinal fashion as more  and more money is allocated
    «*rh *H ?     *measure"  The assoclated  degree  of implementation for
    eacn abatement measure is also given.   Each abatement measure must
    ^De evaluated  for political, social or legal feasibility.
    T* *pP*ications  of  model:  Model has been used  for Allentoun, Pa.
    I*,!* i*   *ued  fo*Kansas City,  Mo.  (data collection phase has
    started).  The model is used in a research and demonstration
    project for developing a  community noise assessment program, which
      ^Cf }     e Qulet Community Program.   A  necessary linkage to this
    model is the Community Noise Assessment  Program's Acoustical Survey
        Social Science  Workbook (Attitudinal survey).
(HDh)  Computational  system requirements  - Hardware: Mainframe Univac
    1110 ;Dlsc storage  ;Magnetic tape storage  o
5n2S!  Computational  system requirements  - Language(s) used: Fortran
(05K)  Computational  system requirements: Operator Knowledge/Skills: Pro
    granting
(REF)  References -  user  manuals,  documentation, etc.:
    Strategy Guidelines (NOIZOP)
    Community Noise  Countermeasure,
    Cost Effectiveness,  Optimization
    Computer Program  (NOIZIP),  Vol.  1
    Volume 1 of above
    Volume 3 of above.
(CUM)   Contact name(s): Rose,R.
(COR)   Contact organization: U.S.  EPA,  Office  of "Policy and
    Evaluation, OANR
(ROR)   Responsible Organization:  Office of Air, Noise and
    Radiation.Office of Policy  and Evaluation.
                             1293

-------
                             Accession No.   14404000912

 (DQ)  Date of Questionalre: 12-02-82
 (HAM)   Name of Data Base of Model: Hunan Activity Profiles
 (ACR)   Acronym of Data Base or Model: Hone
 
-------
                             Accession Ho.  14404000912     (cont)

    1975.  These data bases are described in detail within  the user
    •anual.  The only inputs required by the user is the  specification
    of the type of analyses desired and level of detail*
(OUT)  Output of model: Six forms of tabular output at level  of  detail
    as specified by the user.
(APP)  Applications of model: We are only now in the process  of
    finalizing the set up on the EPA computer system.
(HDW)  Computational system requirements - Hardware: Mainframe IBM 370
    ;Disc storage not yet known ;Printer any m
(LNG)  Computational system requirements - Language(s) used:  Fortran
(REF)  References - User manuals, documentation, etc.:
    Wyle Research Report MR 79-39, "Analysis of Human
    Activity Profiles - User Manual, prepared for the U.S.
    Environmental Protection Agency, Contract No. 68-01-4922,
    July 1980
(CNM)  Contact narae(s): Rose,R.
(COR)  Contact organization: U.S. EPA, Office of Policy and Evaluation,
    OANR (202) 382-7758
(ROR)  Responsible Organization: Office of Air/ Noise and
    Radiation.Office of Policy and Evaluation.
                              1295

-------
                             Accession No.  14504000911

(DQ)  Date of Questionaire: 12-02-82
(HAM)  Mace of Data Base of Model: The Plume visibility Model
(ACR)  Acronym of Data Base or Model: PLUYUE
(MED)  Media/Subject of Data Base or Model:  Air
(ABS)  Abstract/Overview of Data Base or Model: The design objective of
    the model is to calculate visual range reduction and atmospheric
    discoloration caused by the plumes consisting of primary
    particulates, nitrogen oxides, and sulfur oxides emitted by a
    single emissions source.  The model is designed to predict the
    impacts of a single emissions source on visibility in Federal Class
    I areas.  The model is a refinement of the plume model developed in
    1978 publications EPA450/378110a, b, c available from NTIS and PB
    293118 set.  PLUVUE predicts the transport/ atmospheric diffusion,
    chemical conversion, optical effects and surface deposition of
    point source emissions. The model uses the Gaussian formulation for
    transport and dispersion.  The spectral radiance (intensity of
    light) at 39 visible wavelengths is calculated for views with and
    without the plume; the changes in the spectrum are used to
    calculate various parameters that predict the perceptibility of the
    plume and contrast reduction caused by the plume.  PLUYUE performs
    plume optics calculations in a plume-based mode and an observer-
    based node.
(CTC)  CONTACTS: James Dicke    EPA/Office of Air Quality Planning and
    Stand Loc: RTP, MC 27711 Ph: (919) 541-5681
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-06-83
(CAP)  Functional capabilities of model: The model calculates four
    perception parameters useful for predicting visual impact:
    reduction in visual range, contrast of the plume against a viewing
    background at the 0.55 micrometer wavelength, the blue-red ratio
    (color shift) of the plume, and the color change perception
    parameter triangle E (L*a*b*). Yislbility impairment is caused by
    changes in light intensity as a result of light scattering and
    absorption in the atmosphere.  Impairment can be qualified once the
    spectral light intensities or radiance has been calculated for the
    specific lines of sight of an observer at a given location in an
    atmosphere with known aerosol and pollutant concentrations.  PLUfDE
    is a near-source plume visibility model, e.g., within 200 km of the
    source.
(ASM)  Basic assumptions of model: PLUYUE is based on Gaussian
    atmospheric dispersion assumptions, contains Briggs' plume rise
    equations, allows for surface deposition during the day and
    contains atmospheric chemistry modules that allow for conversion of
    nitric oxide to nitrogen dioxide and sulfur dioxide to sulfate
    aerosol.  Scattering and absorption properties are calculated for
    particles and gases.  For nitrogen dioxide the absorption at a
    particular wavelength is a tabulated function multiplied by the
    concentration.  The effect of particle size on the wavelength
    dependence of the scattering coefficient and the phase function is
    calculated and the Mie equations are also solved.  Calculation of
    light Intensity follows from the radiative transfer equation.
(IMP)  Input to model: The input data required for PLUVUE include: wind


                             1296

-------
                             Accession No.   14504000911    (cont)

    speed aloft/  stability category, lapse  rate nixing depth,  relative
    humidity, sulfur dioxide, nitrous oxides and particulate emission
    rates, stack  gas parameters, stack gas  oxygen content,  ambient
    temperature,  anbient nitrous oxides, nitrogen dioxide,  ozone  and
    sulfur dioxide concentrations, properties of background and eaitted
    aerosols in two size nodes, background  visual range,  deposition
    velocities for sulfur dioxide, nitrous  oxides, coarse mode and
    accumulation  mode aerosol, UTM coordinates and elevation of the
    source, UTM coordinates and elevation of the observer location.
(DOT)  Output of  model: The principal PLUVOE run output is the print
    file written on logical unit six*  All  runs have the  data  tables
    for the emissions source, meteorological and ambient  air quality,
    and background radiative transfer. Plot files can also be  written
    by PLOVUE.  if a PLUVUE run is for either observer-based or
    plume-based calculations, either an observer-based or a plume-based
    plot file will be centered.  These files are written  on DISC
    storage units.
(APP)  Applications of model: PLUVUS has been used by EPA primarily in
    a research mode and to provide estimates for hypothetical  scenarios
    such as power plant siting impact.
(HDW)  Computational system requirements -  Hardware: Mainframe Univac
    1110 series ;Disc storage 25k ;Printer  Syst System card reader
(LNG)  computational system requirements -  Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills:  Pro
    granming ;Engineering ;
(ATP)  Air Models - Type of model: Gaussian dispersion
(OAQ)  Model reviewed and approved by OAQPS? OAQPS has reviewed this
    model but made no recommendation
(PMP)  Production method of primary pollutant in model: Secondary
    (produced in atmosphere by chemical reactions)
(MPR)  process used to remove pollutant from atomosphere: Combination
(THE)  Sample averaging time used: less than 24 hours
(SRC)  Source of pollutant: limited point (less than 10-20)
(AR)  Area where sample was collected: level or gently rolling terrain.
(RNG)  Distance traveled by pollutant from source: 1-100  km
(REF)  References - User manuals/ documentation/ etc.:
    EPA, User's Manual For the Plume Visibility
    Model  (PLUVUE), November 1980, EPA-450/4-80-032 (NTIS
    #P881-163-297K
    La timer, '-.A. et. al., The Development of Mathematical
      .dels f  : the Prediction of Anthropogenic Visibility
    impairment.  1978, EPA 450/3-78-110a,b,c.
    Latimer, D.A. Power Plant Impacts on Visibility in the
    West:  Siting and Emissions Control Implications.  JAPCA,
    Vol. 30, pp.  142-146, 1980.
    Bergstrom, R.V., et. al., Comparison of the Observed and
    Predicted Visual Effects Caused by Power Plant Plumes
    Symposium on Plumes and Visibility, November  10-14,
    1980,  published in Atmospheric Environment/ 1981.
(CNM)  Contact name(s): Dicke/J.
(COR)  Contact organization: EPA/Office of Air Quality Planning and
    Standards


                             1297

-------
                             Accession Mo.   14504000911     (cont)

(ROR)  Responsible Organization:  Office of  Air/  Noise and
    Radiation.Office of Quality Planning and Standards.Monitoring  and
    Data Analysis Division.
                             1298

-------
                             Accession No.   14504000924

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data ease of Model: Modified Rollback
(ACR)  Acronym of Data Base or Model: ROLLBACK
(MED)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: The Modified Rollback
    Model is a computerized air quality si ml at ion model that has been
    used for assessing the relative air quality impacts of alternative
    control strategies which are national in scope.  Air quality
    projections for carbon monoxide and nitrogen oxides are aade  using
    the Morris-deNevers modified rollback equations.  Ozone projections
    are made using the Empirical Kinetic Modeling Approach (EKMA)
    standard isopleth diagram.  Emission inventory projections are made
    using data on mobile and stationary source emission factors,  YMf
    growth rates/ and stationary source retirement rates, growth  rates
    and control efficiencies.
(CTC)  CONTACTS: Warren P. Freas     U.S. EPA, Office of Air Quality
    Plannln Standards, Monitoring and Data Analysis Division
    Loc: MD-14 Research Triangle Park Ph: (919) 541-5522
    Loc: North Carolina 27711
(STA)  Tata Base status: Operational/Ongoing
(Dp)  Date of form completion: 01-06-83
(CAP)  Functional capabilities of model: Modified Rollback can be used
    to estimate changes in carbon monoxide (CO) and annual average
    nitrogen dioxide (N0<2» levels due to assumed changes in CO  and
    N0 emissions, respectively.  Changes in ozone air quality  levels
    are estimated using the standard isopleth diagram of EKMA. These
    procedures are best used to compare the relative air quality
    impacts of alternative area source control strategies.  The model
    requires county level, or larger, emissions inventories by major
    source category.
(ASM)  Basic assumptions of model: The simple rollback model is based
    on the assumption that the air quality concentration of a pollutant
    at a point is equal to the background concentration of that
    pollutant and some linear function of the total emission rate of
    that pollutant which influences the concentration at that point.
    Modified Rollback uses the deNevers-Morris equations to account for
    differing rates of growth/reduction in emissions from a number of
    source categories.  The model assumes that the spatial and temporal
    distributions of emissions and the meteorological conditions  remain
    constant between the base year and the projection year.  However,
    for ozone projections, the model uses the standard EKMA isopleths
    described in Reference 3.
(INP)  Input to model: For each study area, the user must furnish data
    on the base year air quality  level; background concentration;
    emissions, growth and retirement rates, and control efficiencies
    for each major mobile and stationary source category and strategy
    scenario.  The air quality data Is typically obtained from the
    Storage and Retrieval of Aerometrlc Data Base (SAROAD) and the
    emissions data from the National Emissions Data System (REDS).
(OUT)  Output of model: Output reports consist of individual source
    area  emissions inventories for the base year and each projection
    year/strategy combination and air quality  summary reports. The air


                             1299

-------
                             Accession No.   14504000924    (cont)

    quality summary reports/ grouped by strategy, display the base year
    air quality concentration and projection year air quality levels
    and expected nuaber of violations of the National Aibient Air
    Quality Standards (NAAQS) for each study area.
(APP)  Applications of model: The Modified  Rollback Model has been used
    by EPA to evaluate the relative air quality impacts of revisions to
    the automotive emission standards.  Other applications include the
    regulatory analyses conducted in association with the review of the
    ambient air quality standards.
(HDH)  Computational system requirements -  Hardware: Mainframe IBM 360,
    Onivac 1108 ;Printer 132 character line p Card reader/punch
(LNG)  Computational system requirements -  Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    grasming Engineering
(OAQ)  Model reviewed and approved by OAQPS? Y.ES
(PMP)  Production method of primary pollutant in model: Primary
    (emitted directly into atmosphere)
(MPR)  Process used to remove pollutant fron atomosphere: Negligible
    removal
(THE)  Sample averaging time used: less than 24 hours ;more than 24
    hours
(SRC)  Source of pollutant: multiple point, limited area
(AR)  Area where sample was collected: level or gently rolling terrain.
(RMG)  Distance traveled by pollutant from source: less than 60 km
(REF)  References - User manuals, documentation, etc.:
    N. deNevers and J.R. Morris, "Rollback Modeling:
    Basic and Modified," Journal of the Air Pollution Control
    Association, ¥ol. 25, September 1975.
    J. H. Wilson, Jr., "Methodologies for Projecting the Relative
    Air Quality impacts of Emission Control Strategies," Presented
    at the 71st Annual APCA Meeting, Houston, Texas, June 25-29,
    1978.
    Uses, Limitations and Technical Basis of Procedures for
    Quantifying Relationships Between Photochemical Oxidants and
    Precursors, EPA-450/2-77-021a, U.S. SPA, Research Triangle
    Park, NC, November 1977.
(CNM)  Contact name(s): Freas,U.P.
(COR)  Contact organization: U.S. EPA, Office of Air Quality Planning
    and Standards, Moni
(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Office of Quality Planning and Standards.Monitoring and
    Data Analysis Division.
                             1300

-------
                             Accession No.   14504000925

(DQ)  Date of Questionaire: 12-02-82
(HAM)  Name of Data Base of Model: Kinetics Model and Ozone Isopleth
    Plotting Package
(ACR)  Acronym of Data Base or Model: OZIPP
(MED)  Vedia/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: The Kinetics Model  and
    Ozone Isopleth Plotting Package (OZIPP) computer program can be
    used to simulate ozone formation in urban atmospheres.   OZIPP
    calculates maximum one-hour average ozone concentrations given  a
    set of input assumptions about initial precursor concentrations,
    light intensity, dilution/ diurnal and spatial emission patterns,
    trarsported pollutant concentrations/ and reactivity of the
    precursor mix.  The results of multiple simulations are used to
    produce an ozone isopleth diagram tailored to particular cities.
    Such a diagram relates maximum ozone concentrations to
    concentrations of nonmethane organic compounds and oxides of
    nitrogen, and can be used in the Empirical Kinetic Modeling
    Approach (EKMA) to calculate emission reductions necessary to
    achieve air quality standards for photochemical oxidants.
(CTC)  CONTACTS: Gerald L. Gipson    U.S. EPA/ Office of Air Quality
    Plannin Standards/ Monitoring & Data Analysis Division
    Loc: MD-14 Research Triangle Park Ph: (919) 541-5522
    Loc: North Carolina
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-06-83
(CAP)  Functional capabilities of model: The major function of the
    OZIPP Model is to generate an ozone isopleth diagram representative
    of a particular city.  The diagram explicitly depicts maximum/
    one-hour average concentrations of ozone occurring within or
    downwind of a city as  a  function of precursor levels existing
    within the city in the early morning.  These diagrams are based on
    mathematical simulations of ozone  formation occurring during a day.
    As such, the model is  limited in applicability to ozone problems
    within or immediately  downwind  of  urban areas and cannot consider
    the following:  (1) rural ozone problems;  <2) ozone problems
    occurring in the  early morning  or  at night; and  (3) contributions
    of single or snail groups of  sources to ozone problems.  The OZIPP
    model  is best used to  study the  effectiveness of areawide control
     strategies  in  reducing peak/  one-hour  average ozone concentrations
     within or downwind of  a  city.
 (ASM)  Basic assumptions  of  model:  The model underlying OZIPP is
    similar  in  concept to  a  trajectory-type photochemical model which
     simulates the  formation  of ozone  from  precursors within  a migrating
    column of air.  A  column of uniformly  mixed  air  extends  from the
     earth's  surface  throughout the  mixed layer.  The  height of the
     column rises  according to the diurnal  variation  in  mixing height/
     resulting in  dilution of pollutants  within the  column  and
     entrainment of  pollutants which were initially  above the column.
     As  the column  moves/  eaissions  of  fresh precursors  are  encountered.
     The  model mathematically calculates  the formation  of ozone  within
     the  column  as  a function of time in  accordance  with a  chemical
     kinetic  mechanism.   The  model employs  a gear-type  integration


                              1301

-------
                             Accession No.   14504000925    (cont)

    scheme to solve numerically the set of  differential evaluations
    which describe the model assumptions. To generate an ozone isopleth
    diagram, the model performs repeated simulations with differing
    pollutant levels initially within the column.   Using the results of
    these simulations, a diagram is constructed which expresses the
    calculated peak, one-hour average ozone concentrations as a
    function of the initial precursor concentrations.  The program
    incorporates a hyperbolic spline interpolation scheme to construct
    the graph.
(INP)  Input to model: Data are supplied to the model to make an ozone
    isopleth diagram specific to a particular city.  These data
    Include: latitude, longitude and time zone of  the city; the day,
    •onth and year; the minimum morning and maximum afternoon mixing
    heights; sets of emission fractions which reflect the effect of
    precursor emissions occuring throughout the day; and the
    concentrations of ozone and precursor transported into the city.
    Additional input parameters are supplied to control the generation
    of the ozone Isopleth diagram (e.g., scales of the diagram, size of
    the diagram, accuracy, interpolation smoothing, etc).  All input
    data are processed in a simple manner,  and no  extensive
    computerized data base is required.
(DOT)  Output of model: The primary output  of the  model is the ozone
    isopleth diagram.  The diagram is depicted on  a line printer plot,
    and can be generated as an option on a  Calcomp Plotter.  A report
    is also produced which summaries the Input data and results of the
    simulations that were performed to generate the diagram.
CAPP)  Applications of model: The OZIPP Model has  been used to generate
    ozone isopleth diagrams to calculate emission  reductions necessary
    to achieve the ambient air quality standard for ozone.  The model
    was used by state/local air pollution control  agencies as the  basis
    for estimating emission reductions for  1979 and 1982 submittals of
    the State Implementation Plans.
(HDH)  Computational system requirements -  Hardware: Mainframe Univac
    1100 ;Printer 132 position line printer ;Ca
(LNG)  Computational system requirements -  Language(s) used: Fortran
    Calcomp Plotter (optional)
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gramming ;Engineering
(ATP)  Air Models - Type of model: Numerical reactive
(OAQ)  Kodel reviewed and approved by OAQPS? YES
(PMP)  Production method of primary pollutant in model: Secondary
    (produced in atmosphere by chemical reactions)
(MPR)  Process used to remove pollutant from atomosphere: Chemical
(TME)  Sample averaging time used: less than 24 hours
(SRC)  Source of pollutant: multiple point  (more than 10-20)
(AR)  Area where sample was collected: level or gently rolling terrain.
(RNG)  Distance traveled by pollutant from  source: less than 60 km
(REF)  References - User manuals, documentation, etc.:
    Kinetics Model and Ozone Isopleth Plotting
    Package (OZIPP), EPA-600/8/770014b, U.S. Environmental
    Protection Agency, Research Triangle Park, NC, July 1978.
    G. Z. Hhitten and B. Hugo, User's Manual for Kinetics Model


                             1302

-------
                             Accession No.   14504000925    (cont)

    and Ozone Isopleth Plotting Package,  EPA-600/8-78-014a,
    U.S. Environmental Protection Agency, Research Triangle Park,
    NC, July 1978.
    Uses, Limitations and Technical Basis of Procedures  for
    Quantifying Relationships Between Photochemical Qxidants and
    precursors, EPA-450/2-77-021a, U.S. Environmental Protection
    Agency, Research Triangle Park, NC, November  1977.
(CNM)  Contact name(s): Gipson,G.L.
(COR)  Contact organization: U.S. EPA, Office of  Air Quality Planning
    Standards, Monito
(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Office of Quality Planning and standards.Monitoring  and
    Data Analysis Division.
                              1303

-------
                             Accession No.  14504000926

CDQ)  Date of Questionaire: 12-02-82
(NAM)  Kane of Data Base of Model: Industrial Source Complex Model
(ACR)  Acronym of Data Base or Model: ISC
(MED)  Media/Subject of Data Base or Model: Air
(ABS)  abstract/Overview of Data Base or Model: The Industrial Source
    Complex (ISC) Dispersion Model is a Gaussian plume model used to
    evaluate the air quality impact of emissions from industrial source
    complexes.  The ISC Model consists of tuo computer programs, one
    for short-term analyses and one for long-term analyses.  The
    short-term model program, ISCST, uses sequential hourly
    meteorological data to estimate concentration or deposition
    patterns from one hour to one year.  The long-term model program,
    ISCLT, uses statistical wind summaries to estimate seasonal and
    annual concentration or deposition patterns.  The ISC Model has
    rural and urban options.  Major features of the ISC Model program
    are:  (1) effects of aerodynamic building wakes and stack tip
    downwash; (2) effects of variations In terrain height; (3) plume
    rise due to momentum and buoyancy as a function of downwind
    distance; (4) dispersion of emissions from stack area, line, and
    volume sources where line sources are simulated by multiple volume
    sources; (5) physical separation of multiple sources; (6)
    time-dependent exponential decay of pollutants; and (7) effects of
    gravitational settling and dry deposlton.
(CTC)  CONTACTS: Joseph A. Tikvart   U.S. EPA, Office Air Quality
    Planning a Standards
    Loc: MD-14 Research Triangle Park Ph: (919) 541-5561
    Loc: North Carolina 27711
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 01-06-83
(CAP)  Functional capabilities of model: The ISC Model programs are
    written in FORTRAN IV and require approximately 65,000 UHIVAC 1110
    computer words.  The programs may be used on a medium to large IBM
    or CDC computer system with little or no modification. The number
    of sources and receptors are interdependent; however, 300 is the
    maximum number of sources accepted, arbitrarily located.  Receptors
    can be specified on a polar or rectangular grid and Briggs* early
    plume rise formulations, including the momentum terms, are used.
    Deposition can be calculated or allowed for only over flat terrain.
    The short-term program calculates values of average concentration
    or deposition for time periods of 1, 2, 3, 4, 6, 8, 12, and 24
    hours. Additionally, the ISCST may be used to calculate M-day
    concentration or deposition values where the maximum value of N is
    366 days.  The units option allows the user to specify the input
    emissions units and/or output concentration or deposition units.
    Applications that do not require at least one of the ISC Model
    features should utilize a less comprehensive computer model.
(ASM)  Basic assumptions of model: Meteorological homogenity is assumed
    following the conversion of surface wind-speed to that at plume
    height.  All plumes remain level, regardless of terrain elevation,
    unless significant terminal fall velocity is specified.  Emission
    rates can be varied according to specified meteorological classes
    or as a function of time (hour of day, season or month, or both).


                             1304

-------
                             Accession No.   14504000926    (cont)

    A simple time-dependent exponential decay of the pollutant  is
    optional.
(IMP)  Input to model: For ISCST meteorological data required are  mean
    «in€ speed and measurement height; average random flow vector/ wind
    profile exponents*, ambient air temperature/ height of nixing
    layer, Pasquill stability/ and vertical potential temperature
    gradient*.  These data may be input directly using the same
    preprocessed meteorological data tape as the CRSTER Model or
    alternatively input by card deck.  For ISCLT, joint frequencies of
    occurrence of wind speed and direction and stability are required.
    Source data consists of emission rate (total emissions for
    deposition); dimensions of stack/ building area or volume source;
    effluent characteristics; surface reflection coefficients for  each
    settling-velocity category; receptor data; and  receptor terrain
    elevation data.
(OUT)  Output of model: Output can be directed to a line printer and/or
    magnetic tape.  Five categories of printed output can be acquired
    from  ISCST; input source-receptor and hourly meteorological data
    listings; concentration or deposition values calculated for any
    combination of sources at all receptors  for any specified day(s) or
    time  period; highest and second-highest  such values; a maximum of
    50 such values. ISCLT  output provides input source-receptor and
    meteorological data  listings; long-term  mean concentration or
    deposition values calculated at each receptor for each source and
    for combined emission  sources; contributions of individual sources
    to the maximum 10 such values calculated for the combined emission
    sources or as contributed  to user specified receptors.
(APP)  Applications of model:  The ISC  Model  is recommended for use in
    air quality  assessments of  stack/  area  and volume  industrial
    complex sources in urban  and rural  areas where  short-term/ seasonal
     and/or  annual  air quality  concentration  estimates  of stable
    pollutants are  required.  The source program f°r this dispersion
     model is  available  as  part of ONAMAP  (Version  4),  PB81-164600 for
     $840  from Computer  Products/ NTIS/  Springfield/  VA, 22161.
(REF)  References -  User manuals/ documentation/ etc.:
     Industrial Source Complex (ISC)  Dispersion  Model
     User's  Guide/  Volume I;  NTIS  f  PB 80-133044.   Industrial
     Source  Complex  (ISC) Dispersion Model User's Guide/ Volume  II
     (Appendices  A  through I;  NTIS  # PB  80-133051.
     Magnetic  Tape of  programs; NTIS # PB 80-133036.
 (CNM)   Contact name(s):  Tikvart/J.A.                            .
 (COR)   Contact organization:  U.S.  EPA,  Office Air  Quality Planning  and

 (ROR)  Responsible Organization:  Office of Air, Noise and
     Radiation.Office of Quality Planning and Standards.Monitoring and
     Data Analysis Division.
                              1305

-------
                             Accession No.  14504000927

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Air Quality Display Model
(ACR)  Acronym of Data Base or Model: AQDM
(NED)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: The Air Quality Display
    Model (AQDM) is a three-dimensional, steady-state air model used in
    the evaluation of area sources in "rough" urban areas.  The AQDM
    treats the physical processess of both transport and diffusion.
    The model is appropriate for examining areas ranging in size from
    small localized vicinities to Hhole urban areas, and it has a
    long-term application for the evaluation of seasonal or annual air
    quality variations*
(CTC)  CONTACTS: Joe Tlkvart  O.S. EPA, Office of Air Quality Planning
    and Standards/ MD-14, RTP
    Loc: Research Triangle Park  Ph: (919) 541-5561
    Loc: North Carolina 27711
(STA)  Data Base status:  Operational/Ongoing
(OF)  Date of form completion: 01-06-83
(CAP)  Functional capabilities of model: The AQDM model does not
    simulate chemical processes, but it does treat the physical
    processes of transport and diffusion in "rough" urban areas. It
    uses a one layer discretization and a user-specified 14 x 14 grid.
    A 225 grid receptor with 12 additional receptor points is also
    user-specified.  The fixed-point meteorological data does not
    describe micrometerorological variations within the city, nor does
    it describe "urban heat island" air circulations.  The model has a
    sensitivity to effective stack height, wind speed, and wind
    stability. It is limited to S0<2> and suspended participates, and
    it is designed for annual average and seasonal applications.
(ASM)  Basic assumptions of model: The AQDM is a deterministic model
    that uses an analytically Integrated solution technique.  It
    assumes a steady state for air quality constituents, and assumes
    Gaussian diffusion and homogeneous, discrete atmospheric conditions.
(INP)  Input to model: Input to the model for initial set-up and
    calibration include:   point and area residual discharges and stack
    parameters which consist of height, diameter, temperature, and exit
    velocity; meteorological data containing wind speed and direction,
    stability, and mixing height; and several ambient air concentration
    measurements.  Model data requirements for verification incorporate
    the above meteorological data and ambient air concentration
    measurements.
(OUT)  Output of model: Output for the model include ambient
    concentration values given at grid locations, ground level, or
    other user-selected points.  These values are given in the form of
    tabular printouts or card decks for use with CALCOMP or SYMAP plot
    programs.  Some of the special features of the AQDM output are its
    statistical output routines, receptor contribution analysis, and
    calibration subroutine.
(APP)  Applications of model:  AQDM can be used in the evaluation of
    area sources in "rough" urban areas for seasonal or annual air
    quality variations.  This model has been supereeded by such models
    as CDM/CDMQC and RAM; thus AQDM Is primarily of historical


                             1306

-------
                             Accession No.  14504000927    (cont)

    interest. TECHNICAL COUTACT: Joseph Tikvart U.S. Environmental
    Protection Agency Air and Hater Programs Mutual Building 411 V.
    Chapel Hill Street Durham, NC 28801 FTS  629-5262  COM  919/541-5262
(HDU)  Computational system requirements - Hardware: Mainframe  IBM
    360/40 or equivalent ;Dlsc storage 300K bytes
(LNG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills:  Pro
    gramming ^Engineering ^Mathematical ability and experienc the model
    or access to consultations
(ATP)  Air Models - Type of model: Gaussian dispersion
(PMP)  Production method of primary pollutant in model: (emitted
    directly Into atmosphere).
(MPR)  Process used to remove pollutant from atomosphere:  Physical
(TME)  Sample averaging time used: more than 24 hours
(SRC)  Source of pollutant: multiple point and area
(AR)  Area where sample Has collected: urban areas.
(REF)  References - User manuals, documentation, etc.:
    Croke, E.J., et al., "Regional Implementation
    Plan Evaluation Process,** ANC/ES-DA-001, Argonne National
    Laboratory, Argonne, Illinois, (July 1970).
    National Air Pollution Control Administration, "Air
    Quality Display Model," PB 189 194, Washington, D.C.,
    (November 1969).
(CNM)  Contact name(s): Tikvart,J.
(COR)  contact organization: U.S. EPA, Office of Air Quality Planning
    and Standards, MO-1
(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Office of Quality Planning and Standards.Monitoring  and
    Data Analysis Division.
                             1307

-------
                             Accession No.   14504000928

(DQ)  Date of Questionaire: 12-02-82
(MAM)  Kane of Data Base of Model: Complex  Terrain Gaussian Plume
    Dispersion Algorithm
(ACR)  Acronym of Data Base or Model:  VALLEY
(MED)  Pedia/Subject of Data Base or Model: Air
CABS)  Abstract/overview of Data Base or Model: VALLEY is a
    steady-state^ univariate Gaussian Plune dispersion algorithm
    designed for estimating either 24-hour  or annual concentrations
    resulting from emissions from up to 50  (total) point and area
    sources.  Calculations of ground-level  pollutant concentrations are
    •ade for each frequency designed in an  array defined by six
    stabilities, 16 uind directions, and six speeds for 112
    program-designed receptor sites on a radial grid of variable scale.
    Empirical dispersion coefficients are used and include adjustments
    for plume rise and limited nixing. Plume height is adjusted
    according to terrain elevations and stability classes.
(CTC)  CONTACTS: D. Bruce Turner     U.S. EPA, Environmental
    Applications Br Loc: Mail Drop 80  Ph:  (919) 541-4564
    Loc: Research Triangle Park North Carolina 27711
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-06-83
(CAP)  Functional capabilities of model: This dispersion model is
    capable of estimating concentrations resulting from emissions from
    up to 50 point and area sources for a time frame of either 24 hours
    or an annual basis. The model performs  calculations of ground-level
    pollutant concentrations in an array defined by six stabilities, 16
    vind directions, and six uind speeds for 112 program-designed
    receptor sites on a radial grid of variable scale.  The model
    accounts for plume rise and limited mixing.
(ASM)  Basic assumptions of model: Source-Receptor Relationship.  Each
    point source is assigned an arbitrary location.  Each area source
    is given an arbitrary location and size.  The model provides 112
    receptors on a radial grid for 16 directions; relative radial
    distances are internally fixed, and the overall scale may be
    modified by the user.  The location of  the grid center is defined
    by the user.  A unique release height for each point and area
    source is given by VALLEY.  Receptors are at ground level, and
    ground level elevations above mean sea  level are defined by the
    user.  The total number of sources for  the model is less than or
    equal to 50. Emission Rate.  A single rate is utilized by each
    point and area source.  Each source is  treated by an effective
    point source approximation, and no temporal variation is allowed.
    Chemical Composition.  This is not applicable to VALLEY. Plune
    Behavior.  The model uses Briggs (1971, 1972) plume rise formula
    for both point and area sources. Alternately, a single constant
    plume rise value may be input for any or all sources.  VALLEY does
    not treat fumigation or dounuash.  If the plume height exceeds the
    mixing height:  1) for long-term calculations, the ground level
    concentrations are assumed to be equal  to zero, 2) for short-term
    calculations, the maximum plume height is  limited to the mixing
    height. Horizontal Mind Field.  For long-term calculations, th«
    model utilizes the following:  climatological approach, 16 Hind


                             1308

-------
                             Accession No.  14504000928    (cont)

    directions, 6 Mind speed classes, no variation in Hind speed with
    height, constant uniform (steady-state) wind assumed, and the user
    mast specify the wind speeds representative of each class (these
    are not internally defined).  For short-term calculations,
    specifically to predict the second highest 24-hour concentration
    expected in one year, a Class F stability and a 2.5 it/sec, wind
    speed with user-defined direction are assumed.  These conditions
    are assumed to exist for 25% of the 24-hour period, and an internal
    adjustment is made for this. In stable conditions, in complex
    terrain, concentrations for receptors located above the point of
    impingement are obtained by linear interpolation between the value
    obtained at the point of impingement and a value of zero at a
    height of 400 meters above that point.  The value at the point of
    impingement is taken to be equal to thevalue 10 meters below the
    plume centerline.  For receptors located below the point of
    Impingement, the effective plume height is equal to the height of
    the plume above the receptor elevation or 10 meters, whichever is
    larger.  The plume is assumed to remain at a constant elevation
    following the initial rise.  In neutral or unstable conditions, in
    complex terrain, the plume is assumed to remain at a constant
    height above the topography, following the intial rise.  The model
    assumes that there is no variation of wind speed with height, and
    that there is a constant, uniform (steady-state) wind. Vertical
    Hind Speed.  In stable conditions, this is assumed to be equal to
    zero.  In neutral and unstable conditions, the vertical wind speed
    is assumed such that the plume remains at a fixed height above the
    terrain. Horizontal Dispersion.  VALLEY uses a climatological
    approach, with sector averaging (narrow plume approximation) for
    calculating the center values of each of the 16 sectors.  The model
    uses linear interpolation between centerlines, as does the Air
    Quality Display Model (AQDM).  Averaging time for VALLEY is one
    month to one year for long-term calculations. Vertical Dispersion.
    The model uses a semi-empirical/ Gaussian plume.  In the urban
    mode, the model assumes the following:  five stability classes
    (Turner, 1964); neutral stability split internally into 60% day and
    40% night; dispersion coefficients from Pasquill (1961) and Gifford
    (1961); neutral dispersion coefficients used for all neutral and
    stable classes; no provision for variations in surface roughness;
    and stable cases are never dealt with. In the rural mode, the model
    assumes:  six stability classes (Turner, 1964); dispersion
    coefficients from Pasquill (1961) and Gifford (1961); neutral
    stability split internally into 60% day and 40% night (has no
    effect on dispersion coefficients); long term mode only; and no
    adjustments are made for variation in surface roughness.
    Chemistry/Reaction Mechanism.  VALLEY uses exponential decay and a
    user-input half-life. Physical Removal.  The model uses exponential
    decay and a user-input half-life. Background.  VALLEY does not
    treat this in any mode.
(IMP)  Input to model: Input to the model includes:  point and area
    residual discharges and stack parameters; meteorological data; and
    ambient air concentration measurements.
(OUT)  Output of model: Output from the model in the long-term mode


                             1309

-------
                             Accession No.   14504000928    (cont)

    includes long-tera arithmetic means and a source contribution  list
    for each receptor.  Output for the short-tern node includes  the
    second highest 24-hour concentration and a source contribution list
    for each receptor.
(APR)  Applications of nodel: The source program for this dispersion
    •odel is available as part of UNANAP (Version 4) PB 81 164 600 for
    $840 from Computer Products/ NTIS, Springfield, VA  22161.
    TECHNICAL CONTACT: D. Bruce Turner U.S. Environmental Protection
    Agency Hail Drop 80, EPA Environmental  Applications Branch Research
    Triangle Park, NC  27711 FTS 629-4564  COm 919/541-4564
(HDW)  Computational system requirements -  Hardware: Mainframe Univac
    1110 ;Disc storage 13K
(LNG)  Computational system requirements -  Language(s) used:  Fortran  V
(ATP)  Air Models - Type of model: Gaussian dispersion
(PMP)  Production method of primary pollutant in model: Primary
    (emitted directly into atmosphere)
(THE)  Sample averaging time used: more than 24 hours
(SRC)  Source of pollutant: multiple point, less than or equal to  50
(AR)  Area where sample was collected: level or gently rolling terrain.
    1complex: rough terrain clo of water or in valley or street  canyon.
(RNG)  Distance traveled by pollutant from  source: less than  60  km
(REF)  References - user manuals, documentation, etc.:
    Burt, E., Valley Model User's Guide, Publication
    No* EPA-450/2-77-018, Environmental Protection Agency,
    Research Triangle Park, North Carolina  27711, September,  1977.
(CNM)  Contact name(s): Turner,D.B.
(COR)  Contact organization: U.S. EPA, Environmental Applications  Branch
(ROR)  Responsible Organization: Office of  Air, Noise and
    Radiation.Office of Quality Planning and Standards.Monitoring  and
    Data Analysis Division.
                             1310

-------
                             Accession No.  14504000929


-------
                             Accession  No.   14504000929     (cont)

    are assumed to be equal to  zero.  Horizontal  Hind Field.   The aodel
    uses user-supplied hourly wind direction (nearest 10  degrees),
    internally aodified by the  addition of  a randoa integer  value
    betveen -4 degrees and +5 degrees.   Hind speeds are corrected  for
    release height based on power las variations and exponents  from
    DeMarrais(6);  different exponents are used for different stability
    classes, and the reference  height is equal to 10 aeters.  A
    constant, uniform (steady-state)  wind is assuaed within each hour.
    Vertical Hind Speed.  This  is assumed to be  equal to  zero.
    Horizontal Dispersion.  The Model assuaes a  seal-
    eapirical/Gaussian pluae.  Seven  stability classes are used:
    Turner Class 7 is an extremely stable,  elevated plume assuaed  not
    to touch the ground.  Dispersion  coefficients are froa Turner,  and
    no further adjustments are  nade for variations in surface
    roughness, transport, or averaging  time. Vertical Dispersion.   A
    sewi-empiricaI/Gaussian plume is  used,  and the model  utilizes  seven
    stability classes. Dispersion coefficients are from Turner, and no
    further adjustments are made. Chemistry/Reaction Mechanism. This
    Is not treated. Physical Removal.  This is not treated. Background.
    This Is not treated.
(IMP)  Input to model: Meteorological data  must be input to the model.
(DOT)  Output of model: Output  produced by  the model includes highest
    and second highest concentrations for the year at each receptor for
    averaging times of 1, 3, and 24-hours,  plus a user- selected
    averaging time which may be 2, 4, 6, 8, or 12-hours.  An annual
    arithmetic average at each receptor is given, and the aodel
    provides the highest 1-hour and 24-hour concentrations over the
    receptor field for each day, and hourly concentrations for each
    receptor on magnetic tape.

-------
Accession No.  14504000929    (cont)
1313

-------
                             Accession No.   14505000905

(DQ)  Date of Questionaire: 12-02-82
CHAM)  Kane of Data Base of Model: HUBan Exposure Program
(ACR)  Acronym of Data Base or Model: HEP
{MED)  Media/Subject of Data Base or Model: Air ;Toxic substances
fABS)  Abstract/Overview of Data Base or Model: The Hunan Exposure
    Program (HEP) is a digital conputer sinulation which calculates
    population exposure to airborne pollutants enitted by point,
    prototypical points and area sources, using the concentration
    patterns of those pollutants.  Additionally, the sinulation
    deternines the dosage (an integrated concentration x population)
    received by this exposed population.  The purpose of the pro gran  is
    to estimate the national inpact of the enissions from sources on
    the actual population. This program is not intended to certify a
    source as neeting a standard.  The original version of the nodel
    was conpleted in March 1980 by Systens Applications, Incorporated
    of San Rafael/ California with contributions fron Hydroscience,
    Incorporated, Knoxville, Tennessee and Mininax Research
    Corporation, Berkeley, California.  The progran was re-structured
    for use on the UNIVAC 1100 by OAQPS.
(CTC)  CONTACTS: Dave Patrick or George Duggan U.S. EPA, Office of Air
    Quali Planning and Standards, Strategies and Air Standards Division
    Loc: Research Triangle Park  Ph: (919) 541-5645 or 541-5620
    Loc: North Carolina 27711
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-27-83
(CAP)  Functional capabilities of nodel: The Hunan Exposure Progran
    conputes the dosage received by an exposed population in the
    vicinity (usually within 20 kn) of specific point sources enitting
    an airborne pollutant.  The nodel also provides neans for the
    analysis of the combined effects of point, prototypical point, and
    area sources and calculates the total dosage (M6/M3X PEOPLE)
    produced by these sources.  HEP consists of several prograns  which
    carry out the calculations.  Pollutant concentrations are obtained
    froB a Gaussian dispersion nodel which uses meteorological data
    fron over 300 star-sites across the country.  Population exposure
    is determined using 1970 Census Bureau population distribution
    estlnates adjusted by esitmated 1980 county growth factor.  For
    point source, total dosage is obtained with the aid of
    interpolation algorithms to achieve a natch of pollutant
    concentrations and population centroids.  An ancillary progran,
    STAR PICK, can be used to aid in selecting the star-site whose
    meteorological conditions nost closely approximate those of the
    location of the point source.  A support progran, DTM-CALC, is
    available to obtain the longitude and latitude of the source  in
    degrees-ninutes- seconds if the OTM coordinates are available.  For
    prototypical point sources, the country was divided into nine
    regions.  Based on enissions characteristics, photochemical
    reactivity, and the star data of pre-selected stations, the
    concentrations patterns fron modeled sources typical of those
    existing in the nine regions were determined using the sane
    dispersion nodeling techniques developed for point sources*  The
    average population density in the urbanized areas for the nine


                             1314

-------
                             Accession Ho.   14505000905     (cont)

    regions was used to estimate the population exposed  to  different
    concentrations.  For each model source  in each region,  three
    corresponding matrices were produced—one for the concentration
    pattern, one for the exposed population and one for  the dosage
    estimates.  The dosage Has estiaated by multiplying  the exposed
    population by the concentration to which it was exposed.  For area
    sources, chemical emissions Here estimated as national  totals uhich
    nere then distributed over cities Hith  populations greater  than
    2500.  Emissions from mobile sources were appor- tioned by  the
    number of motor vehicles.  Emissions from home heating  sources Here
    distributed by the product of population and per capita heating
    requirement.  Emissions from other stationary area sources  Here
    distributed by population.  A box model Has used to  estimate the
    average annual concentration in each city.  These concentrations
    Here multiplied by the estimated 1980 population of  each city  to
    produce national dosage estimates.
(ASM)  Basic assumptions of model: The Human Exposure Program assumes
    that, for point sources, the concentrations of the airborne
    pollutant can be described by a Gaussian dispersion model Hhich
    uses averaged meteorological data for a one year period.  The  model
    assumes also that the pollutant is emitted at a constant rate  over
    the entire year. Also, the density of the emissions is  considered
    to be the same as the local atmosphere.  Human population is
    assumed to be distributed uniformly over each BG/ED (Block Group/
    Enumeration District) and population growth rates (required for
    periodic updates) are considered uniform over an individual county.
    The important feature of HEP is the interpolation algorithm -  it  is
    also the most important assumption because it considers a
    distribution of pollutant concentrations and a distribution of
    population that are reasonably smooth in the vicinity of a point
    source.  The accuracy of  the concentration to nhich each unit  of
    population is  exposed is  as important to the accuracy of the  total
    exposure as is the accuracy of the populations.  Concentration
    patterns are input to HEP as polar grids Hith the source at the
    origin, the radial divisions (Hind directions) oriented along the
    compass-points, and the  circular divisions (radii) spaced closely
    (o.l km) near  the source  and less closely farther away.  Since the
    population does not array itself neatly  along these lines, a method
    for interpolating betneen concentration  points Has developed.
(INP)  Input  to model: Input  to  the model  includes the geographical
    location  of  the point source/  a Starsite whose meteorology is
    similar to  that of the source  if  desired  (if not the nearest site
    is chosen),  and a description  of  the physical parameters of the
    source.   These are the so-called  "stack  parameters" which are the
    emission  rate, stack  height, diameter  and vertical cross section
    area,  effluent velocity  and  temperature/  and  the type  of stack,
    i.e.,  vent or  tall stack.
(OUT)  Output  of model: HEP  provides  intermediate  output,  which can be
    suppressed,  as well  as "bottom-line" information  about dosage which
    is usually  of  primary interest.   Intermediate output includes
    pollutant concentrations around  the  point  source  and the
    distribution of  population  exposed  to  the  airborne pollutant.


                              1315

-------
                             Accession  No.   14505000905     (cont)

    Final output is the dosage (population  x concentration) received  by
    the exposed population foe various  concentration levels out  to  20
    km from the point source.
(APP)  Applications of model: This model provides a means for  the
    estimation of the dosage received by the national population
    exposed to an airborne pollutant emitted by a specific source
    category.  HEP calculates also the  effect of multiple sources such
    as those found in industrial areas.  HEP is a neu program  and
    represents state-of-the art for exposure models.
(HMO  Computational system requirements -  Hardware: Mainframe Univac
    1110 ;Disc storage 600 tracks permanent dat Printer  132 position
    line printer
(LHG)  Computational system requirements -  Language(s) used: Automatic
    scratch space depending on amount of data.  Oses than 45K  memory.
    Fariable scratch space not available under ASCII FORTRAN
    Fortran V
(OSK)  computational system requirements: Operator Knowledge/Skills:  Eng
    ineering
(ATP)  Air Models - Type of model: Gaussian dispersion
(OAQ)  Kodel reviewed and approved by OAQPS? YES
(PHP)  Production method of primary pollutant in model:  Primary
    (emitted directly into atmosphere)
(MPR)  Process used to remove pollutant from atomosphere: Chemical
    removal processes are those in which pollutant  rea
(THE)  Sample averaging time used: more than 24 hours
(SRC)  Source of pollutant: multiple point  (more than 10-20) and
    limited area.
(AR)  Area where sample was collected:  simple: area with level or
    gently  rolling terrain.
(RMG)  Distance traveled by pollutant from  source: short range (less
    than 60 km)
(REF)  References - User manuals, documentation, etc.:
    Human Exposure to Atmospheric Concentrations of
    Selected Chemicals, Attachment B.  EPA  Contract Ho.  68-02-
    3066, SAI No. EE-156 R, 5 March 1980.
(ROR)  Responsible Organization: Office of  Air, Noise and
    Radiation.Office of Quality Planning and Standards.Strategies  and
    Air Standards Division.
                             1316

-------
                             Accession No.   14505000906

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Coke Supply
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Industry/economic
(ABS)  Abstract/Overview of Data Base or Model: A production cost  model
    that incorporates technical relationships and engineering cost
    estimates is used with plant-specific information to compute
    separate industry supply functions, with and without EPA regulatory
    alternatives for specific emissions sources on a year-by-year  basis
    for furnace and foundry coke plants projected to be in existence
    between 1980 and 1990.  Both coke production costs and the costs
    that plants will incur to meet existing environmental regulations
    are computed in order to estimate the industry supply curve before
    any new regulations are applied.  Estimates of the costs of control
    for the regulatory alternatives are then used to compute the
    projected upward shift in that supply function.  All costs are in
    1979 dollars. Econometric estimates of  the demand for coke are used
    to get price and quantity adjustments.
(CTC)  CONTACTS: Bob Short   U.S. EPA Loc:  Research Triangle Park   Ph:
    (919) 541-5610
    Loc: North Carolina 27711
(STA)  Data Base status: Operational/Ongoing
Disc storage 50 tracks 1330 ;Printer
(LNG)  Computational system requirements -  Language(s) used: Fortran I?
(REF)  References - User manuals/ documentation/ etc.:
    1) Economic Impact of NESHAP Regulations on Coke
    Oven Batteries Research Triangle Institute
    2) An Econometric Model of the U.S. Steel Industry Research


                             1317

-------
                             Accession No.   14505000906    (cont)

    Triangle Institute
    3) Technical Approach for a Coke Production Cost Model  PedCo
    Environaental, Inc.,  Cincinnati, Ohio
(CUM)  Contact name(s):  Bob Short
(COR)  Contact organization:  U.S. E.P.A.  MD-12 Research Triangle Park
    MC 27711
(ROR)  Responsible Organization: Office of  Air, Noise and
    Radiation.Offlee of  Quality Planning and Standards.Strategies  and
    Air Standards Division.
                             1318

-------
                             Accession No.   14505000907

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Faroe of Data Base of Model: Fertilizer Supply
(ACR)  Acronym of Data Base or Model: FERTSUPPLY
(MED)  Media/Subject of Data Base or Model: Air ;Industry/economic
CABS)  Abstract/Overview of Data Base or Model: The FERTSUPPLY model is
    a quadratic programming model of the U.S. nitrogen fertilizer
    industry, designed to assess the economic impact of New  Source
    Performance Standards on urea, ammonium nitrate and ammonia
    production facilities. The model consists of a set of  linear
    programming (LP) models of production facilities to account for
    supply, a transport model to account for distribution, and a
    quadratic programming model to account for demand. The U.S. is
    divided into 10 production/consumption regions to explain domestic
    production and consumption activities and Imports are  treated as
    exogenous variables.  The parameters of the LP production models
    are developed from engineering cost data.  The parameters of the
    demand functions and the transport model are estimated
    econonetrically.
(CTC)  CONTACTS: Thomas Walton  U.S. EPA, Office Air Quality Planning
    and
    Standards, Strategies and Air Standards Division
    Loc: Research Triangle Park  Ph: (919)  541-5610
    Loc: North Carolina 27711
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-27-83
(CAP)  Functional capabilities of model: The purpose of the  model is to
    provide long run conditional forecasts for costs of regional and
    national consumption and production of major nitrogen  fertilizers
    and investment in new plants.  The model provides data on an annual
    basis and is specifically designed to assess the differential
    impacts of alternative New Source Performance Standards.
(ASM)  Basic assumptions of model:
    1)  Individual plants face Leontief production functions.
    2)  Regional demand functions can meaningfully be linearized over
    the relevant ranges of feasible solution sets.
    3)  Transport costs are independent of the level of
    interregional shipments and constant on a per unit basis.
    4)  The solution methodology is encapsulated in the Univac
    Functional
    Mathematical Programming System (FMPS) package.
(IMP)  Input to model:
    1)  Unit production costs for each product for each plant
    2)  Plant capacities
    3)  Interregional shipping costs
    4)  Linear demand function parameters
(OUT)  Output of model:
    1)  Plant product mix
    2)  Plant output by product
    3)  Regional output by product
    4)  U.S. output by product
    5)  Interregional trade flows
    6)  Total regional shipping costs


                             1319

-------
                             Accession No.  14505000907    (cont)

    7)  Total national production costs
    8)  Investment in new plant by region
    9)  Total investment in neu plants in the U.S.
    10) Total costs of alternative new source performance standards
    regulations, measured by changes in economic surplus All data are
    presented in tabular form.
(APP)  Applications of model: Model was being used to assess economic
    impacts of new source performance standards regulatory alternatives
    for urea and a»«onium nitrate facilities between 1981 and 1986.
(HD«)  Computational system requirements - Hardware: Onivac 1110 ;Disc
    storage 1 20 tracks ;Printer any model
(LUG)  Computational system requirements - Language(s) used: Fortran
    Functional Mathematical Programming System (FMPS)
(OSK)  Computational system requirements: Operator Knouledge/Skills: Pro
    granting
(ATP)  Air Models - Type of model: Econometric/linear programming
(OAQ)  Model reviewed and approved by OAQPS? YES
(PMP)  Production method of primary pollutant in model:  Primary
    (emitted directly into atmosphere)
(MPR)  Process used to remove pollutant from atomosphere: Physical
(TME)  saaple averaging time used: less than 24 hours
(SRC)  Source of pollutant: limited point, limited time
(AR)  Area where sample was collected: level or gently rolling terrain.
(RNG)  Distance traveled by pollutant from source: less  than 60 km
(REF)  References - User manuals/  documentation*  etc.:
    Report in progress.
CCNH)  Contact name(s):  Walton,?.
(COR)  Contact organization: U.S.  EPA, Office Air Quality Planning and
    Standards, Strateg

-------
                             Accession No.  14605000007

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Mobile Source Air Pollution Emission
    Model

-------
                             Accession Mo.  14605000007    (cont)

(HDW)  Computational system requireaents - Hardware: Mainfraae IBM 360
    or Unlvac ;Dlsc storage (or tape) 45/000 u Magnetic tape storage
    (or disc) ^Printer 80 or 132 coluan BOdel
(LliG)  Coaputational systea requireaents - Language(s) used: Fortran
(OSK)  Computational systea requireaents: Operator Knowledge/Skills: Pro
    graaaing ^Engineering
(REF)  References - User Manuals, documentation, etc.:
    1) Users Guide to Mobile II, EPA* 460/3-81-006,
    Feb. 1981, HTIS fPB81205619, Ann Arbor, Michigan.
    2) Coapilation of Air Pollutant Emission Factors: Hlvay Mobile
    Sources, EPA f460/3-81-005, March 1981, MTIS tfPB 81238305, Ann
    Arbor, Michigan.
(ROR)  Responsible Organization: Office of Air, Noise and
    Radiation.Office of Mobile Sources.Eaission Control Technology
    Division.
                             1322

-------
                             Accession No.   15302000107

(DQ)  Date of Questionaire: 12-02-82
(NAN)  Name of Data Base of Model: Toxics Treatment-Hastewater/Solid
    Waste
(ACR)  Acronym of Data Base or Model: OCPSPMODEL
(MED)  Media/Subject of Data Base or Model: Toxic substances /Mater
    ;Industry/economic
(ABS)  Abstract/Overview of Data Base or Model: (This model is not
    related to the ecosystem-it is a cost and treatment  technology
    performance model) The model has been designed to use input date
    fron the model itself or input by the operator defining the
    quantity and quality of waste water or solid waste to design and
    cost treatment systems.  The quality of the acceptable effluent can
    be varied to accomodate local variations in treatment and control*
(CTC)  CONTACTS: E. H. Forsht U.S. EPA, Effluent Guidelines Division
    Loc: 401 M Street, SW. Room 935 E.T.   Ph: (202) 382-7173
    Loc: Washington/ D.C. 20460
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 02-08-83
(CAP)  Functional capabilities of model: The model produces a treatment
    plant design (waste water and solid waste) which achieved the
    effluent quality targets.  Operating and capital costs are given  as
    are the energy, land and chemical requirements for the treatment
    system.
(ASM)  Basic assumptions of model: The model relies on data derived
    from the literature  (physical constants such as vapor pressure,
    log<10> P, etc.) and data gathered during  the BAT studies for the
    organic chemicals  industry.
(INP)  Input to model: The user has  the  option to input a raw uaste
    water load or quantity of solid  waste.  Alternatively, he may
    choose to study one or more of  the 150 product/process which have
    data in the system.  Many options are  available to modify labor
    rate, materials usage, etc. in  lieu  of using the default valves in
    the model.
(DOT)  Output of model: The  output  of the  model consists of a treatment
    plant  design and  associated costs.   The model predicts the effluent
    quality of all waste water parameters  on the list of 129 toxics and
    PLOD, COL, TOC, TSS  and  ammonia.  Cost data for capital and
    operation are  listed  with the materials necessary for support of
     the  operation  (chemicals  such as alum, lime, etc., and energy).

-------
                             Accession Ho.   15302000107    (cont)

(REF)  References - User Manuals,  documentation/  etc.:
    Docunentatlon Is now in progress.
(ROR)  Responsible Organization: Office of  water.Office of Hater
    Regulations and Standards.Effluent Guidelines Division.
                             1324

-------
                              Accession Ho.  15603000003

(DQ)  Date of Questionaire:  12-02-82
(HAM)  Name of Data  Base  of  Model: Waste Resources Allocation Program
(ACR)  Acronym of Data Base  or Model: WRAP
(MED)  Media/Subject of Data Base or Model: Solid waste
(ABS)  Abstract/Overview  of  Data Base or Model: WAP is a waste
    resources allocation  program which is coded in FORTRAN,  this
    Modeling program consists of a series of equations which consider
    the sources of solid  waste generation/ a set of sites, and
    processes to be  considered at those sites, as well as various site
    and process capacity  constraints.  KRAP sorts out the various
    allocation options specified by the user and indicates a preferred
    allocation solution which is the minimum cost plan that meets all
    the user-supplied constraints.  Use of the model enables users to
    study and analyze the costs and implications of all available
    alternatives under consideration.  WRAP has been used for decisions
    regarding solid  waste management in Massachusetts, in Illinois, and
    in St. Louis, Missouri.
(CTC)  CONTACTS: Frank McAllster     O.S. EPA, Office of Solid Haste
    Loc: 401 M Street, S.H.  Ph: (202) 382-2223
    Loc: Washington,  D.C. 20460
(STA)  Data Base status:  Operational/Ongoing
(OF)  Date of form completion: 12-28-82
(CAP)  Functional capabilities of model: MRAP is an optimizing model
    which selects, sizes, and locates solid waste processing and
    disposal facilities.  Costs for the solid waste systems are
    determined by a  specialized fixed charge linear programming
    algorithm.  There are two operational modes available: static and
    dynamic.  The dynamic operating mode allows for two to four
    Planning periods.  Planning periods are expressed in years, and, in
    the dynamic mode, are consecutive over the total planning period*
    The model consists of a  series of equations which consider the
    sources of solid  waste generation, a set of sites, and processes to
    be considered at  those sites, as well as various site and process
    capacity constraints.  The processes can be transfer stations,
    resource recovery processes (including the extraction of
    recoverable resources to be marketed), secondary processes (which
    receive the residue of primary processes as input) and various
    disposal processes.   KRAP further considers many transportation
    route alternatives from  sources of waste generation to sites, and
    from sites to sites,  with due allowance for site traffic
    constraints.
(ASM)  Basic assumptions  of  model: WRAP is a fixed-charge linear
    programming model, using as the optimizer an algorithm developed by
    Dr. Warren Walker of Cornell University in Ithaca, New York.  The
    fixed-charge capability  of the model permits the representation of
    economies of scale in process costs.  Since the model is
    cost-minimizing,  it will  seek out the lowest cost segment at any
    level of tonnage.  Thus  the capability of treating cost in two
    parameters (fixed and variable, or intercept and slope) permits the
    model to represent economies of scale at any level of accuracy
    desired.  In the  actual  model applications, three segment
    representations have been used for nearly all processes.


                              1325

-------
                             Accession No.  15603000003    (cont)

(IMP)  Input to model: Program execution data is input from a
    sequential data set, normally the card reader*  There are eight
    types of inputs to be prepared.  Five of the input types are
    required by every program.  Three input types are optional.  All
    data for a particular input type is input sequentially.  There is
    no special ordering required within an input type.  However, a
    special ordering is required for the types of user-supplied inputs.
    The required input sequence follows:
    1.  Control Records:  four control record inputs are
    possible.  T«o records are always required and two records are
    optional.
    2.  Source Identification Records:  an identification
    record for each original solid waste source must be supplied.  Each
    record must have a unique source identification code as well as the
    record code.
    3.  Site identification Records:  there must be one record
    for each intermediate and ultimate site.  All site records are
    input in one group.
    4.  Process Identification Records:  there are five types
    of records possible for each unique process.  Though the processes
    need not be in a particular order, the records associated with each
    process must be in a specific sequence.
    5.  Site Process Identification Records:  there is one
    record for each process at each site, and there may be a maximum of
    125 records.  These records do not need to be in any particular
    order.
    6.  Transportation Activity Records:  these records are
    optional, but generally part of the input file.  Each record must
    have an activity type code which describes the transportation
    links.
    7.  Truck constraint Identification Records:  these
    records are optional and  are required only when the user's control
    data indicates  that sites are to be subject to truck constraints.
    There must be one  record  for each  truck constraint, and  each  record
    may have a maximum of three site  identification codes.
    8.  Starting Basis Records:  these  records are optional
     and are not considered part of  the  problem identification  records.
    These records are  input only when the user has indicated their
     availability.   The number of records  is determined by  the  number of
     rows (equations)  in the matrix.
 (OUT) Output  of model: There are  six types of output  generated  In  the
    HRAP program: (1)  optional debugging variables and tables,  (2)
     error  messages  and codes, (3)  input data  reports,  (4)  punched
     transportation  and matrix decks,  (5)  intermediate  phase  solution
     tables,  and (6) final solution  punchout and reports.
 (APP)  Applications of model: MRAP  has  been used  in several  locations
     by decision-makers who  are considering regional solid  waste
     management.   In Massachusetts,  the  model  was  used  to  identify the
     most efficient  regional  system  design for that state's first
     regional resource recovery system*  WRAP was  used  in St.  Louis,
     Missouri,  to  determine  the advantages of  community participation  in
     a proposed regional solid waste management plan.   In  suburban


                              1326

-------
                             Accession No*  15603000003    (cont)

    Chicago, HRAP was used to evaluate the economic feasibility of
    various solid waste management and recovery options facing the
    decision-makers.
(HOW)  Computational system requirements - Hardware: Mainframe IBM  360
    ;Disc storage (or tape) 256,000 uords core Magnetic tape storage
    (or disk) ^Printer 132 position line printer ; or tape/disk (input)
(LNG)  Computational system requirements - Language(s) used: Fortran

-------
                             Accession No.   16301000102

(DQ)  Date of Questionaire: 12-02-82
(MAM)  Name of Data Base of Model: Strategic Environment Assessment
    System
(ACR)  Acronym of Data Base or Models SEAS
(MED)  Pedia/Subject of Data Base or Model: Air ;Noise ;Radiation
    iSolid waste ;Toxic substances ;Water Industry/economic
(ABS)  Abstract/Overview of Data Base or Model: SEAS is a policy
    sensitive emissions data base/ or alternatively a major policy
    analysis model for the environmental/ energy/economics areas and
    their interactions.  SEAS is really large in terms of numbers of
    variables.  It is estimated that SEAS has over 100,000 variables.
    As the scope and number of Federal regulatory activities have grown
    in recent years, so has the need for Federal policy-makers to
    anticipate what effects new regulations will have on the economy,
    energy and water usage as well as the environment including land
    use and/or abuse.  Both the Environmental Protection Agency (EPA)
    and the Dept. of Energy (DOE) have responded by developing a number
    of comprehensive simulation models.  The SEAS model is one of
    these.  As a computer tool, SEAS projects the magnitude and sources
    of environmental impacts resulting from input assumptions
    concerning the stringency and cost of environmental regulation,
    future levels of energy supply, and economic activity. Such
    projections can be developed on levels including the nation, EPA
    Regions, State, or Air Quality Control (AQCR) Regions. SEAS is an
    interactive computer model and associated data base, which
    functions via a set of energy, economic, regional, and
    environmental modules.  From the Energy Demand Modules, an Energy
    Retwork Simulator is fed with assumptions and energy demand
    relationships; economic assumptions together with environmental
    assumptions are fed into Economic Modules.  In turn, the Energy
    Network simulator and the Economic Modules feed into
    Regionalization Modules.  Then, the Regionalization Modules
    together with the environmental assumptions are fed into the
    Environmental Modules, which finally produce Environmental Effects
    Expected Under the selected Scenario up through the year 2000, to
    support long-range program planning, analysis, prepare
    Environmental Impact Statements, etc.
(CTC)  CONTACTS: John J. Coleman     EPA Office of Research and
    Development
    Loc: Office of Environmental Engineering and Technology    Ph:
    (202) 426-9434
    Loc: 401 M Street, SW, Washington, DC 20460
(STA)  Data Base status: Operational/Ongoing
(CAP)  Functional capabilities of model: SEAS usually projects air
    pollutants, trace elements to the air, solid haste, and land and
    water use.  The system can also project certain data regarding
    labor requirements and occupational health and safety needs.  EPA
    has used SEAS to identify the range of environmental futures likely
    to result from alternative patterns of energy and economic
    development.  SEAS contains a series of comprehensive data bases,
    including:  environmental coefficients for industrial activities
    (i.e., emission factors, land use, water use, occupational safety),


                             1328

-------
                             Accession No.  16301000102    (cont)

    pollution control costs, energy investment costs/ regional
    deployment patterns, economic factors, technological change,
    materials substitution, consunption patterns.  Eventually effects
    will include damage, disability, deaths, and disease as well  as
    cost-effectiveness of mitigation measures.
(ASM)  Basic assumptions of model: The SEAS logic is relatively simple.
    Economic and energy modules simulate national activity levels for
    over 500 SEAS sectors; the regionalization module disaggregates
    these data to one of several possible geographic subdivisions? and
    the environmental modules use data on emission coefficients,
    control strategies, economic and energy activities as well as
    eventual effects relationships, to calculate emissions, resource
    requirements, effects, and control mitigation strategies versus
    costs.
(IMP)  Input to model: SEAS modules use an extensive data base
    containing detailed environmental, energy-related, and economic
    information; and, eventually, cause-effects  relationships along
    with mitigation and recovery indices.  Every effort  is made  to
    maintain current data  through frequent updating  and  validating.
    Many types of information  are presented in a consistent manner yith
    much of the information keyed to  specific industrial activities.
    As a result, the SSAS  data base is now considered  a  resource in  its
    own right. The more than 50  files  that comprise  the  SEAS  data base
    are based upon information  from numerous  government  reports,
    documents and communications Hith  government labs, university
    personnel, contractors,  and  trade  associations.  In addition,
    indices of cause-effects  (e.g., deaths, disabilities,  damage, and
    diseases  from accidents, pollutants,  etc.)  associated  with various
    activities are planned to  be  included in  the overall SEAS data base
    system as it grows.
(OUT)  Output of model: SEAS  forecasts can be displayed  in several
     formats,  includi  graphic  presentation designed  to  provide ready
    visual reference  to impacts and trends.   Eventually, computerized
     graphs of effects and emissions over  regions and sectors  of
     interest  will be  used to  pull  together the  data with management  and
     technology  control  measures against  several  policy postures.
     (i.e., we plan  to integrate computer  graphics  into the assessment
     process,  converting endless mazes of  emissions, effects,  sectors,
     and  regionalized sources and depositions  into  colorful charts,
     graphs,  and maps that will help administrators and managers  to  spot
     trends  and  make mutually satisfactory decisions more quickly and
     efficiently than before.  Otherwise, masses of  printouts piled
     several  feet  high would offer more data indigestion than relief to
     the  problems  SEAS can help to resolve as an effective and
     efficient,  as well as accurate and comprehensive,  policy-sensitive
     emissions data base and modeling system.
 (APR)   Applications of model: Several applications of SEAS exist and
     are growing:  The comprehensive Environmental Outlooks, yearly
             to Congress, analyze national and r^ional  environmental
             of different economic/energy scenarios—a high growth and a
          r?h scenarlS. ?he Ohio'River Basin Energy Study (ORBES) used
     SEAS to obtain estimates of future trends in pollutant discharges


                              1329

-------
                             Accession No.   16301000102     (cont)

    in the Ohio River Basin area, with emphasis on energy-related
    industries.  SEAS was used to analyze changes in pollutants
    attributable to materials substitution such as aluminum and
    plastics for steel in autoaoblle construction.  The  5 year R&D  plan
    (Research Outlook) required by Congress and the Integrated
    Technology Assessment studies of energy development  within OEET are
    developed each year.   Additional applications include OSHA,  Health,
    Solid Waste, and Water Quality modeling*   Future plans include
    indoor air quality Studies, Acid Rain Mitigation studies,  etc.
(HDV)  Conputational system requireaents - Hardware: Calculator
    ^Mainframe IBM ;Disc  storage Largest amount avail Magnetic tape
    storage Varies by application ;Printer Any model
(LUG)  Computational system requirements - Language(s) used: Fortran
    Cobol
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gratmlng Engineering ;Policy analysis, physics, environm
(ATP)  Air Models - Type  of model: Gaussian dispersion /    Numerical
    dispersion;    Numerical
(OAQ)  fcodel reviewed and approved by QAQPS? NO

-------
                             Accession No.  16301000103

(DQ)  Date of Questionaire: 12-02-82
(HAM)  Name of Data Base of Model: Regional Episodic Grid Model
(ACR)  Acronym of Data Base or Model: REGMOD
(MED)  Kedia/Subject of Data Base or Model: Air
/S0<4» or fast and reversible (e.g.
    NQ/NO<2>). REGMOD is appropriate for large-scale energy growth
    studies. The model can be used in conjunction with subregional
    'trajectory* and local "straightline Gaussian* models in
    multiple-scale analyses.  In this application, local-scale NAAQS
    and PSD analyses can therefore incorporate realistic time-dependent
    'background* concentrations/ as supplied by the regional scale
    model.
(CTC)  CONTACTS: Michael Kills  Teknekron Research, Inc.
    Loc: 69 Hickory Drive Waltham, Mass. 02154  Ph: (617) 890-6270
(STA)  Data Base status: Operational/Ongoing
(CAP)  Functional capabilities of model: REGMOD computes short-term
    average pollutant concentrations and deposition patterns for a
    coupled set of pollutants.  The solution of the two-dimensional
    advection-diffusion equation is carried out in a spatially and
    temporally varying wind field using a Fast Fourier Transform (FFT)
    technique which is both accurate and computationally efficient.
    REGMOD includes first-order transformation of primary to secondary
    pollutants and the wet and dry removal of both species.
(ASM)  Basic assumptions of model: REGMOD does not explicitly account
    for pollutant diffusion—rather/ diffusion is implicitly considered
    by advection in a spatially and temporally varying wind field. The
    model assumes that the windfield is two-dimensional/ and that
    pollutants are uniformly mixed through a constant vertical depth.
(IMP)  Input to model: Inputs to the model include:  job specification/
    dispersion and removal parameters/ time sequences of gridded wind
    fields/ and gridded emissions inventory.
(OUT)  Output of model: REGMOD produces gridded sequences of
    concentration or deposition fields for each pollutant.  An output
    tape or disk file may be created for interface with post processing
    packages which allow for 1) graphical display of concentration
    fields/ and 2) concentration of output fields with those of
    sub-regional or local-scale models.
(APP)  Applications of model: REGMOD has been used by Teknekron
    Research/ Inc. for a number of regional-scale energy growth
    studies/ including . The Ohio River Basin Energy Study (ORBES) .
    Regional Air quality Impact Assessment of Hood Burning for TVA .
    Air Quality Benefits of the Increased Use of Solar Power . Analysis
    of Coal Conversion Air Quality Impacts
(ROW)  Computational system requirements - Hardware: Mainframe IBM
    360/370, 3033 ;Disc storage for tape 2000 word time step if results


                             1331

-------
                             Accession No.  16301000103    (cont)

    saved. ^Magnetic tape storage or disk jCard reader/punch a
(LNG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gramming ;Meteorology
(ATP)  Air Models - Type of model: Numerical dispersion
(QAQ)  Podel reviewed and approved by OAQPS? NO
(PMP)  Production method of primary pollutant in model: Primary
    (emitted directly into atmosphere)
(MPR)  Process used to remove pollutant from atomosphere: Combination
(THE)  Sample averaging time used: less than 24 hours
(SRC)  Source of pollutant: multiple point (more than 10-20)
(AR)  Area uhere sample was collected: level or gently rolling terrain.
(RHG)  Distance traveled by pollutant from source: more than 100 km
(REF)  References - User manuals, documentation, etc.:
    Prahm, L.P. and 0. Christensec, 1976: Long Range
    Transmission of Pollutants Simulated by a Two-Dimensional
    PSeudospectral Dispersion Model, J. Appl. Meteor.16:
    898-910.
    Nievann, B.L., M.T. Mills, A.A. Hirata, and E.Y. Tong,  1980:
    Air Quality Meteorology in the Ohio River Basin—Baseline and
    Future Impacts, Teknekron Research, Inc., 270 pp.
(CUM)  Contact name(s): Mills,M.
(COR)  Contact organization: Teknekron Research, Inc.
(ROR)  Responsible Organization: Office of Research and Development.
                             1332

-------
                             Accession No.  16301000104

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Nane of Data Base of Model: Regional Climatological Disperson
    Model
(ACR)  Acronym of Data Base or Model: RCDM
(MED)  fcedia/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: The Regional Dispersion
    Model (RCDM) is a steady-state regional-scale two-dimensional
    dispersion model for predicting long-tern average (e.g. monthly or
    yearly) concentrations from single or multiple point and area
    sources at distances greater than 50 km.  The no del is designed for
    a coupled set of pollutants linked by a mechanism which is either
    slow and Irreversible  (e.g. S0<2>/S0<4», or fast and reversible
    (e.g. NQ/NO<2».  The  long-term average concentration is based upon
    a regional scale diffusivity and a resultant average wind vector
    field. Because it is a steady state model/ RCDM enjoys a decided
    cost-advantage over trajectory or grid models for long averaging
    times and large source inventories.  RCDM is therefore especially
    useful for predicting  the effects of energy growth on seasonal or
    average annual air quality and air quality related values such as
    pollutant dry and wet  deposition.
(CTC)  CONTACTS: Carl V. Benkley     Teknekron Research/ Inc.
    Loc: 69 Hickory Drive  Ualtham, Mass. 02154  Ph: (617) 890-6270
(STA)  Data Base status: Operational/Ongoing
(CAP)  Functional capabilities of model: RCDM computes long-term
    average pollutant concentrations or deposition patterns for a
    coupled set of pollutants/ based on the analytical solution of the
    steady-state two-dimensional advection-diffusion equation. The
    model incorporates mesoscale diffusivity/ resultant wind vector/
    wet and dry removal/ and either a linear decay mechanism or an
    equilibrium mass coefficient.  The model can handle either point or
    area sources/ and any  arbitrary rectangular coordinate system.
(ASM)  Basic assumptions of model: RCDM assumes that the time averaging
    of pollutant parcels can be represented by horizontal diffusion in
    a two-dimensional steady-state wind field.  It also assumes that a
    single set of dispersion and removal parameters is appropriate for
    an individual source,  independent of distance or travel time.
(INP)  Input to model: Inputs to the model include:  job
    specifications/ dispersion and removal parameters/ resultant wind
    field, and emissions inventory.  RCDM prints all input information.
(OUT)  Output of model: RCDM produces a gridded field of time-averaged
    concentration or deposition for each pollutant.  An output tape or
    disk file may be created for interface with a post-processing
    package which allows for graphical display of output fields.
(APP)  Applications of model: RCDM has been used by Teknekron Research/
    Inc. to predict annual average S0<2> and S0<4> concentrations over
    the eastern United States for the Ohio River Basin Energy Study
    (ORBES)/ using the Sulfate Regional Experiment (SURE) emissions
    inventory.  The results have compared favorably for both pollutants
    with SURE measured values.
(HDtf)  Computational system requirements - Hardware: Mainframe IBM
    360/370, 3033 ;Disc storage (or tape) 2000 wor if results saved)
    ;Magnetic tape storage or disk ^Printer 132 position line pri Card


                             1333

-------
                             Accession No.  16301000104    (cont)

    reader/punch and tape/disk (input)
(LUG)  Computational system requirements - Language(s) used:  Fortran
(OSK)  computational system requirements: Operator Knowledge/Skills: Pro
    gramming ^Meteorology
(ATP)  Air Models - Type of model:  Numerical dispersion
COAQ)  Model reviewed and approved by OAQPS? NO
(PMP)  Production method of primary pollutant in model: Primary
    (emitted directly into atmosphere)
(MPR)  process used to remove pollutant from atomosphere: Combination
(THE)  Sample averaging time used:  more than 24 hours
(SRC)  Source of pollutant: multiple point (more than 10-20)
CAR)  Area uhere sample uas collected: level or gently rolling terrain.
(RUG)  Distance traveled by pollutant from source: more than  100 km
(REF)  References - User manuals, documentation, etc.:
    Fay, James A., and Jacob T. Rosenzwelg, 1980:
    An Analytical Diffusion Model of Long Distance Transport  of
    Air Pollutants, Atmospheric Environment 14, pp. 355-365.
    Hi em arm, B.L., M.T. Mills, A. A. Hirata, and E.Y. long, 1980:
    Air Quality Meteorology in the Ohio River Basin—Baseline and
    Fugure Impacts, Teknekron Research, Inc., 270 pp.
(CNM)  Contact name(s): Benkley,C.H.
(COR)  Contact organization: Teknekron Research, Inc.
(ROR)  Responsible Organization: Office of Research and Development.
                             1334

-------
                             Accession No.  16301000105

CDQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Interregional Coal Analysis Model
(ACR)  Acronym of Data Base or Model: ICAM
{MED)  Media/Subject of Data Base or Model: Industry/economic
(ABS)  Abstract/Over view of Data Base or Model: The ICAM is a large
    scale simulation model designed to assist in coal development
    planning and the analysis of alternative policies toward coal
    development. The model uses a mathematical programming approach but
    is constrained to replicate existing and announced coal mines,
    power plants and transportation links.  The model is run in
    cooperation with the Coal Transportation Model which simulates rail
    and barge transportation networks and generates transportation
    costs for each link.  The ICAM contains exterior data bases on coal
    mining and transport and coal preparation and electric power plants
    (see attached list).
(CTC)  CONTACTS: John Green     U.S. Dept. of Agriculture Resource
    Economics Loc: Colorado State University Ft. Collins, Colorado  Ph:
    (303) 323-5251
(STA)  Data Base status: Operational/Ongoing
(CAP)  Functional capabilities of model: The coal energy systems of the
    United States are described by a number of variables, each of which
    is linked to the others through a set of linear inegualities. An
    additional linear function of these variables, the objective
    function, is then defined and optimized. Model limitations derive
    specifically from at least three sources:  input data, systems
    structure, and appropriateness of the modeling methodology used.
    Specific problems arising from available data can be divided into
    two major parts: (1) the uncertain nature of some of the data,
    particularly that dealing with new energy systems not yet
    cofflnercially available, and (2) the problems of projecting historic
    data, however good, to future years.  An important aspect of
    projecting cost data is the choice of appropriate rates of
    escalation.
(ASM)  Basic assumptions of model: The development of operational
    policies or regulations using results of simulation analyses should
    be done carefully.  The linear relationships present within linear
    programming models may cause dramatic shifts between regional
    activity levels.  This occurs because linear programming algorithms
    set up ratios between coefficients.  These ratios are constantly
    compared and if, as demand is net, their relative magnitudes
    switch, it may cause dramatic shifts in the levels of activities.
    This problem can be clarified by performing sensitivity analyses.
    Sensitivity analysis enables the analyst to define shift points and
    to temper the description of impacts to prevent unwarranted
    reliance on shifts caused by linearity assumptions.
(INP)  Input to model: For baseline projections the model can be
    operated with existing data on current and announced mines, plants,
    etc. as input.  In addition, the user can specify on input scenerio
    deferring plants, using alternative coal sources, assuming
    differing rates of electricity demand, etc.
(OUT)  Output of model: Outputs can be detailed listings of coal
    produced by coal producing area, coal carried by each transport


                             1335

-------
                             Accession No,   16301000105    (cont)

    link, etc. or regional aggregates of these results.
(APP)  Applications of model: The complete  model has not been applied
    yet. Applications should begin by January 1981.
(HOW)  Computational system requirements -  Hardware: Mainframe Onivac
    1100 ;Disc storage or magnetic tape ;Magnet Printer any model
(LIG)  Computational systea requirements -  Language(s) used: Fortran
    Cobol
(QSK)  Computational systea requirements: Operator Knouledge/Skills: Sys
    tens analysis or operations research
(REF)  References - User Manuals/ documentation, etc.:
    Western Energy:  The Interregional Coal Analysis
    Model/ OSDA Technical Bulletin No. 1627, EPA-600/7-79-139.
(CNM)  Contact name{s): Green, J.
(COR)  Contact organization: U.S. Dept. of  Agriculture Resource
    Economics Div.
(ROR)  Responsible Organization: Office of  Research and Development.
                             1336

-------
                              Accession  No.   16301000107

(DQ)  Date of  Questionaire:  12-02-82
(NAM)  Name  of Data  Base  of  Model: Utility Simulation Model
(ACR)  Acronyan of  Data Base  or  Model: USM
(MED)  Media/Subject of Data Base or Model:  Industry/economic
(ABS)  Abstract/Over view  of  Data Base or Model: The Utility Simulation
    Model projects the nature and implication of  investaent and
    operating  decisions made by electric utility  firms in each state
    from 1976  to beyond the  year 2000,  as these decisions are
    influenced by  energy  and environmental policies, technology
    choices, and economic conditions. This highly flexible model makes
    it possible to investigate  the impact of numerous alternative
    policies while coherently and consistently accounting for many
    technical, economic,  energy, and environmental factors that
    directly influence decisions made by utility  companies.
(CTC)  CONTACTS: Edward H. Reckon
    Loc: E.H.  Peckon and  Associates, Inc., 5537 Hempstead Way,
    Loc:Springfield,  VA 22151  (703) 642-1120
(CAP)  Functional  capabilities  of model: The USM  consists of a number
    of interconnected computer  modules  and data sets that simulate
    decisions  for  system  planning and operation,  their impact on
    utility  finance  and their environmental  effects.  The model is
    driven by  a set  of exogenous scenerio elements that include
    electricity, demand levels, financial market  conditions, fuel
    prices and availability,  advanced technology  employnent, and
    environmental  regulations.  For each scenerio, the model calculates
    the following  by geographic region, for  future years up to 2000 or
    beyond. System characteristics:  Fuel use by  type, composition and
    region of  origin;  electricity generated by type of unit; capital
    requirements by  source;  plant and equipment requirements; releases
    of air and water  pollutants, and solid wastes. Financial statistics
    for utility firms Average electricity prices.
(ASM)  Basic assumptions  of  model: The  Utility Simulation Model
    operates under certain basic assumptions, each of which are
    functionally modular  so  that any may be redefined by the user.
    These assumptions include electricity demand  growth rates for peak
    and average growth, environmental regulations applicable to each
    fossil generating unit,  fuel prices and real  cost escalation for
    fuel and capital  items,  alternative capacity  expansion plans, and
    macro-economic conditions affecting utility finance.
(INP)  Input to model:  The data needs of the DSM  are extensive.  Each
    nodule has its own data  set, each of which can be modified to
    accomodate new or  more specific information.  The various data sets
    can be grouped into the  following functional categories:
    Generating Plant  Data; Data on Primary Energy and Fuel Supply; Data
    on Economic Factors;  and  environmental and regulatory data. Hi thin
    these categories  the  data sets are  further classified by source, as
    empirical  or modeling data. The modeling data typically undergo an
    intermediate analysis before being  specified as the part of the USN
    database.  Many sources  are used for comparison and completeness
    and the various  data  sets continually are refined and updated as
    new source data become available.
(OUT)  Output  of model: Output  from the utility simulation model may be


                              1337

-------
                         Accession Ho.   16301000107    (cont)

classified into two categories.  That which is used for interactive
analytical purposes and that which is used to produce summaries.
Here, ue only summarize the latter. Planning Input (PINI/M).  The
plan model input data are organized In a top-down fashion.  First
of all are the national data required by the OSM.  Second are the
required county data; third, the state data; and finally the unit
data.  In general the national data are default data, and include
several snitches and other scenario controls.  The user has the
ability to specify such parameters as nuclear deferral years,
siting Methodologies/ emission Halts for SIP, HSPS and RMSPS
units, specific Q&H cost data, stringent pollution controls, water
pollution control regulations, estimates for construction costs of
various generating facilities, characterization of fuels used,
assignments of fuel for any future year, a dispatch hierarchy (with
the ability to specify those generating technologies to be
dispatched on a least-cost basis), default State Implementation
Plans and construction cost spreads.  Following the national data
are county data including siting Heights; each county is assigned a
weight on the basis of its relative ability to site a coal, oil,
nuclear or minemouth coal generating facility.  State specific data
follow the county data; for each state, demand is first printed
including such variables as pumped-storage efficiency, energy loss
factor, the effective capacity factor (which is the capacity factor
of purchase power), and then peak energy demand over the entire
simulation.  The next state data required and printed out by PIMI/M
are the initial composition of the system from Forms 1 and  1M.
Data from these forms (including initial operation and maintenance
expenses and initial values) should correspond to the unit-by-unit
data. The planning input shows unit-by-unit data for all existing
and and future generating technologies.  For each unit, the data
base specifies the owner state and its reliability council; the
name of the unit; the unit number; the abbreviation of the
company's name and the FPC flag and fraction owned. The
unit-by-unit data base also shows  the state and county of location,
the type of prime mover, the rated capacity of the unit, the
primary or alternate fuels used, the year the unit came online, the
condenser cooling type, the re-rate date, and the amount of rerate,
the conversion date, and the fuel  with which the conversion will
occur, the FPC plant and unit  ID numbers, and the piece number, if
the unit is a Jointly owned facility.  For each  fossil facility,
available Unit Data  and Fuel Data  are specified.  Included  in the
Dnit Data are the heat rate, if known, (otherwise default heat
rates  are used based on the year the unit came on line), the SIP
S0<2>  limit the unit is required to meet, and the unit's  S0<2>
control device and efficiency.  As future research generates more
Unit Data the other  data fields will be  used.  Also  for each unit
at least one fuel is specified.  This fuel  is characterized by  its
heating value, its first year  of use, its sulfur and ash  content,
and its price.  In the case of unit  conversions  a second  fuel data
card in given and the data conversion is assigned in the proper
 piice. Planning Summary (PSUMI/M).   The  planning summary  is the
 first report generated by plan.   It  shows results of PLAN


                         1338

-------
                         Accession No.  16301000107    (cont)

algorithms which calculated the system composition for each state
over the entire simulation period.  Also shown are systen size,
systen need/ and peak demand.  Included in this report are
analytical reports enabling analysis of capacity expansion and
dispatch routines.  Finally the planning summary reports each steam
unit built by state; for each steam unit built, the listing shows
fuel type, size (in megawatts), the size of future "conjured*1
units, and their location. Location State Capacity Factors and
Generation Reports (LCAP).  The plan model is run for the entire
simulation and the results are stored on magnetic tape.  These
results can then be accessed by smaller post-processors.  The first
such post-processor prints out the LCAP report.  The LCAP report
takes the PLAN results which are generated on the basis of owner
state and allocated to the state of location. The LCAP report shows
capacity and generation by state over time by class of unit. The
Summary Resource and Residual Report (SUMR&R). The summary resource
and residual report aggregates emissions to air and land, and
resource consumption by state of location for any year of the
simulation and for any region; output is presented by year.  On the
first page of every output the regions are defined.  Under the
category "emissions," we show S0<2> emissions for coal and oil
units broken down into SIP, NSPS and RNSPS units.  N0 emissions
are calculated for coal oil and gas units and particulate emissions
for coal and units, with the units again broken down into the
separate classes.  If flue gas desulfurization devices were built
to meet emission limits, the sludge generated by these units is
calculated and reported.  Also reported in SUMR&R are water
consumed due to cooling and scrubbing devices.  Fuel Btu's are
calculated for coal, gas and nuclear steam units.  Distillate is
calculated for peaking units:  in the next table for SOMR&R, fuel
consumed is calculated from the fuel Btu table.  Finally the report
shovs the number of Btu's used to transport ccal from the point of
origin to the point of use. Scrubbers Build Report (SCRADDI/M).
The scrubbers built report aggregates scrubbers by major
ownerstates.  It shows, for every scrubber, the location of the
scrubber, size of the unit, "net capability," the on-line date of
the scrubber, the annual average of controlled S0<2> emissions and
pounds per million Btu, the on-line data of the unit, annual
average fraction of S0<2> scrubbed, the capital cost in millions in
1975 dollars, the fixed operating cost at a capacity factor of 1.0.
Finally the listing shows the scrubber type, and the annual average
emissions in pounds per million Btu's.  The report may be summed
for any aggregation of regions defined by the user. The Capacity
Penalty Report (CAPPEN).  The CAPPEN may be obtained for any year
or region.  The first report, Megawatts Scrubbed by FGD Device
represents the amount of flue gas that is scrubbed relative to the
total unit size. The report shows FGD by "limestone", wet
limestine, magnesium, and dry scrubbing."  When an FGD or
particulate device is installed, capacity penalties occur.  These
are summarized in the capacity penalties report.  The actual
generating capacity of the unit is then reported at the bottom of
the capacity penalty report. Financial Report (FINI/M).  Reports


                         1339

-------
                            Accession No.   16301000107     (cont)

    •ay  be  obtained  for  any  year  in  any  state.   Summary  includes
    operating results, including  price of  electricity  in terns of
    generation,  revenues,  costs and  profits.  A  balance  sheet  includes
    es assets, equities,  liabilities.  Other statistics  such return  on
    rate base after  taxes, types  of  financing, capitalization  and
    investment and pollution control equipment are  also  given.  Sources
    and  uses of  funds are summarized.  The cost  allowances  in  the  set
    price in a given year are  shoiin. Finally the report calculates
    levelized revenue requirements from  the  user specified  start period
    to the  user's specified  end period with  a given discount rate.
    MOTES  The convention of using I/M indicates whether output is
    disaggregated to private (Investor)  and  public  (municipal)
    utilities.
(HDH)  computational system  requirements - Hardware: Mainframe special
    CDC system configuration jDisc storage 1 m Magnetic  tape storage
    1-8 ^Printer any model ;Card  reader/punch
(LNG)  Computational system  requirements - Language(s) used: Fortran
(OSK)  Computational system  requirements:  Operator  Knowledge/Skills: Pro
    grarming ;Engineering ;Economics
(REF)  References - User manuals, documentation, etc.:
    Van Horn, Andrew J.  et.  al.,  "Review of  New
    Source Performance Standards  for Coal  Fired  Utility
    Boilers:"  Phase 3 Final Report, Project Officer Lowell
    Smith, Officer of R&D, Environmental Protection Agency,
    EPA-600/7-79-215, December 1979.
    Ohio River Basin Energy Study:  Air  Quality  and Related
    Impacts Volume III, "Selected Impacts  of Electric
    Utility Operations in the  Ohio River Basin (1976-2000):
    An Application of the Utility Simulation Model," by
    Teknekron Research, inc.,  Berkeley,  CA (Report  No.
    R-001-EPA-80); series edited  by  J. Stukel, University
    of Illinois, subcontract under Prime Contract  R805588.
(ROR)  Responsible Organization:  Office  of Research and  Development.
                             1340

-------
                             Accession No.   16301000108

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Kane of Data Base of Model: Coaltown lapact Assessment Model
(ACR)  Acronym of Data Base or Model: COALTOWN
(MED)  Media/Subject of Data Base or Model: Industry/econonic
    ;energy-socioeconoraic Impact
(ABS)  Abstract/Overview of Data Base or Model: COALTQWN simulates
    future employment, population, wage levels, migration,  State and
    local tax receipts, intergovernmental transfers, and local
    government expenditures for counties in Montana, Wyoming, and North
    Dakota.  The model is designed to assess impacts by comparison of
    results when one or more energy projects are included with baseline
    results. The model has three parts — socioeconomic. State and
    local government revenues, and local governnent expenditures.  The
    structure of COALTOWN is different from an economic base model
    although modified economic base concepts are used. Stochastic
    estimates of the major parameter of the model are used.  A
    multiplier Is not calculated by the model. Rather, predictions of
    "ancillary* employment are made by use of equations.  The model is
    dynamic in that it uses lagged variables, and because
    interrelationships among variables in the equations of the model
    produce reverberations in years following an initial change.
    Although the the coefficients in the equations of the model are
    representative of Northern Plains counties, the application to a
    specific county yields results which iiill be different from that of
    counties with other background conditions. The model is designed
    for near term prediction and assessment purposes.  Principal uses
    are:  1. Predict absolute levels of socioeconomic aggregates for
    planning purposes, 2. Assess impacts on socioeconomic aggregates
    for purposes of evaluation of a  facility, and 3. Test the
    sensitivity of socioeconomic and fiscal aggregates to key policy
    measures.
(CTC)  CONTACTS: Lloyd Bender   D.S.D.A., Economic Development Division
    Loc: Montana State University     Ph:  (406)585-4344
    Loc: Bozeman, Montana
(STA)  Data Base status: Operational/Ongoing
(CAP)  Functional capabilities of model: The  model has limitations and
    shortcomings.  First,  it  estimates only aggregate parameters
    because predictive accuracy declines with  the level of
    disaggregation.  Second,  accurate  results  are very much  dependent
    on the  accuracy of data  supplied by users  as as inputs.  Third, no
    capability nou exists  to  estimate  the  distribution of new people
     among  counties, and  local governments  within a  county.   Finally,
     the level  of aggregation  to some extent prevents  an analysis  of the
     distribution of Impacts  among classes  of  residents in the area.
(ASM)  Basic  assumptions  of  model:  The model  assumes  that relationships
     can be  calculated  between aggregate  socioeconomic  indicators  based
     on historical  information and  that these  estimated  relationships
     will be reasonably accurate predictors  of the same  relationships  in
     the near  and medium  term  future.
(INP)  Input  to  model: The user supplies two  types  of information:  data
     regarding the  energy  project  itself, and  background  Information
     related to the  region where  the development will  take place.   These


                              1341

-------
                             Accession Ho.   16301000108    (cont)

    are labeled 'exogenous variables". Information about the project
    itself includes the nunber of workers directly employed in
    operating and constructing the proposed facility in each year; the
    •egauatts of electricity generated or the tons of coal mined each
    year, and optionally, the labor force participation rate of the
    •igrant population.
COOT)  Output of nodel: The COALTOWN output generates the follouing
    information for each year of the simulation run: the number of
    workers employed by primary industries, the nuaber of workers
    employed in ancillary Jobs, the nunber of nonfarm proprietors
    (owners of businesses and self-employed persons), total employment,
    relative real wages in the service sector as a percent of the base
    year. Migration, population, the employment/population ratio, and
    number of school children. Summary statistics for state, county,
    school, and town revenues are also given, along with estimates of
    school and county spending. The detailed tax output breaks revenues
    into the following categories: coal severance, gross proceeds,
    taxes on electricity generation, other taxes generated by mines and
    generators, taxes on people and businesses (for example, income,
    liquor, cigarette, and auto registration taxes), and
    intergovernmental flows.  Information is also given regarding
    revenue sources peculiar to each State, such as the Myoming sales
    tax, the school foundation program, or trust funds*
(APP)  Applications of model: The COALTOMN model has been operated to
    respond to numerous requests for information from Federal agencies,
    various components of state governments, universities, national
    laboratories, congressional offices, etc.  The information provided
    has ranged from projections of local impacts from coal mines for
    environmental impact study purposes to projections of impact of
    increased synfuels development in multi-county regions.
(HOtf)  Computational system requirements - Hardware: Mainframe
    Honeywell ;Printer standard
(LNG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    grarming
(REF)  References - User manuals, documentation, etc.:
    Bender, Lloyd D., George S. Temple and Larry C.
    Parcels.  "An introduction to the COALTONS Impact Assessment
    Model."  Working Paper.  Environmental Development Division,
    U.S. Dept. of Agriculture, May I960.
(CHM)  Contact name(s): Bender,L.
(COR)  Contact organization: U.S.D.A., Economic Development Division
(RQR)  Responsible Organization: Office of Research and Development.
                             1342

-------
                             Accession No.  16301000111

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Kane of Data Base of Model: Coal Transportation Model
(ACR)  Acronym of Data Base or Model: CTM
(MED)  yedia/Subject of Data Base or Model: Industry/economic
(ABS)  Abstract/Overview of Data Base or Model: The Coal Transportation
    Model simulates existing rail and barge transportation networks in
    the contiguous U.S.  The node! can be operated independently but is
    nornally used in conjunction with the Interregional Coal Analysis
    Model (ICAM).  Data bases maintained in support of the ICAM and
    Transportation Model are briefly described on attached sheets.
(CTC)  CONTACTS: Kenneth Ebeling     North Dakota State University
    Loc: Fargo, North Dakota     Ph: (701)237-7285
(CAP)  Functional capabilities of model: The model uses a linear
    programming approach to generate a least cost transportation
    pattern for any given combination of coal production and demand
    with various user generated constraints.
(ASM)  Basic assumptions of model: The node! uses the assumptions
    associated with linear programming techniques and is limited to
    existing rail and barge networks.  The model may identify potential
    overloads of existing capacity but does not simulate additions  to
    current rail/barge networks.
(INP)  input to model: The user must specify the magnitudes and
    locations of coal production and electric utility coal demand.
    These can be the base cost existing capacity and announced plans in
    the data base or modifications of this data to reflect alternative
    sceneries.
(OUT)  Output of model: Output includes transportation volume and cost
    for each link of the rail/barge network.
(APP)  Applications of model: The model is currently being used to
    evaluate coal transportation needs for 1985 and to identify high
    volume and excess capacity areas.
(HDfcf)  Computational system requirements - Hardware: Mainframe IBM  370
    ;Disc storage less than one disk drive ;Ma Printer any model ;Card
    reader/punch
(LNG)  Computational system requirements - Language(s) used:  Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gramming ;Engineering ;economics
(REF)  References - User manuals, documentation, etc.:
    Ebeling, Kenneth A., and Dalsted, N.L., Assessment
    of Costs of Various Interregional Energy Transportation
    Systems, Final Report to be Published, North Dakota State
    University, Fargo, N.D.
(CNM)  Contact name(s): Ebeling,K.
(COR)  Contact organization: North Dakota State University
(ROR)  Responsible Organization: Office of Research and Development.
                             1343

-------
                             Accession No.   16301000112

(DQ)  Date of Questionaire: 12-02-82
(MAM)  Name of Data Base of Model: AIRTEST
(ACR)  Acronym of Data Base or Model:  AIRTEST
(MED)  Media/Subject of Data Base or Model:  Industry/economic
(ABS)  Abstract/Overview of Data Base or Model: The Air Test Model is a
    preprocessor to the Utility Simulation  Model/  which can also be
    used as a stand alone Model*  Using actual fuel and specified
    generation for each power plant or generating  unit, it calculates
    for one year the controlled and uncontrolled emission of SQ<2>,
    N0, and particulates.  In addition,  the aodel selects the least
    levelized cost fuel and pollution control option to Beet unit
    specific emissions standards.
(CTC)  CONTACTS: Edward H. Reckon
    Loc: E.H. Peckon and Associates, Inc.,  5537 Hempstead Way
    Loc: Springfield, VA 22151  Ph: (703) 642-1120
(STA)  Data Base status: Operational/Ongoing
(CAP)  Functional capabilities of model: The options to meet the
    applicable S0<2>, N0, and particulate standards currently
    include: actual 1979 for fuels burned in the generating unit, coal
    Hashing on a coal specific basis,  low sulfur coal options for each
    unit, coal-blending to meet unit specific standards, wet and dry
    F.D.G., E.S.P. *s, fabric filters,  Ion excess air, staged
    combustion, flue gas recirculation, limestone  injection burners,
    and oil hydrodesulfurizatlon.  The Air  Test Model passes each
    unit's low cost and fuel characteristics on to the Utility
    Simulation Model.
(ASM)  Basic assumptions of model: Assumes  minimization of levelized
    cost of fuel and pollution control vs.  the decision factor in
    selection of fuel and technology.
(IMP)  Input to model: Actual fuel and specified generation for each
    power plant or generating unit to be considered.
(OUT)  Output of model: Controlled and uncontrolled emissions to S0<2>,
    N0 and particulates, pollution control option and cost and fuel
    type and cost for each unit.
(APP)  Applications of model: AIRTEST is currently being used in the
    Acid Rain Mitigation Strategies research program.
(HDH)  Computational system requirements -  Hardware: Mainframe CDC 7600
    and IBM ;Disc storage 200 tracks approxim Printer Any model line
    printer
(LNG)  Computational system requirements -  Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gramming }Engineering
(REF)  References - User manuals, documentation, etc.:
    Carol Bowan, Don Clements, Michael Moffet, Andy
    Van Born.  AIRTEST USER'S GUIDE.  Nov.  1980.
    Teknekron Report Ho. (RM-060-DOE80)
(ROR)  Responsible Organization: Office of  Research and Development.
                             1344

-------
                             Accession Mo.  16302000104

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Premixed One-Dimensional Flame Code
(ACR)  Acronym of Data Base or Model: PROF
(MED)  Media/Subject of Data Base or Model: combustion
(ABS)  Abstract/Overview of Data Base or Model: The PROF code can be
    used to predict the detailed chemical kinetic combustion and/or
    pollutant formation events which occur in a Hide variety of
    experimental and practical combustion devices.  Both steady,  free
    and confined premised flames, where gaseous diffusion is important/
    can be treated by the code.  Also, Hell-stirred reactor, plug-flou
    reactor, and fixed mass time-evolution chemical kinetic problems,
    where diffusion is not explicitly treated, can be modeled by  the
    code.  The code Has completed in February 1978 by Acurex
    Corporation/Energy & Environmental Division of Mountain View,
    California. Previously called:  Modeling Studies in Combustion
    Aerodynamics/ Chemistry.
(CTC)  CONTACTS: W. Steve Lanier     U.S. EPA Industrial Environ.
    Research L Loc: Research Triangle Park, North Carolina 27711
    Ph: (919) 541-2432
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-28-83
(CAP)  Functional capabilities of model: The PROF code uas developed to
    accurately model the detailed combustion and pollutant formation
    processes occurring in premixed one-dimensional flames. Previous
    plug-flow models applied to premixed flame combustion and pollutant
    formation processes did not incorporate axial diffusion in the
    formulation.  Since ignition processes require upstream diffusion,
    these plug-flow models could not be directly applied to flames
    without making some gross assumptions as to the upstream ignition
    zone starting conditions.  In addition, the accuracy of these
    nondiffusive models is very poor in the flame zone, where diffusion
    is important.  Since the PROF code includes axial diffusion,
    predictions of combustion and pollutant formation processes can be
    achieved in the flame zone as well as downstream of this zone.  The
    accuracy of these predictions is dependent only on the adequacy of
    elementary kinetic reaction and transport data.  Thus, PROF
    predictions, combined with experimental data, can provide valuable
    insights into the complex chemical events taking place within as
    well as downstream of the flame zone.
(ASM)  Basic assumptions of model: The key program element in the PROF
    code is a stable and reliable kinetic chemistry routine.  This
    routine can be applied to any chemical system for which kinetic
    reaction data are available.  To model flame and reactor-type
    problems, appropriate drive routines are linked to the general
    chemistry routine.  The flame model includes axial gas phase
    diffusion and is mathematically, a multivariable boundary value
    problem. This problem requires a coupled grid solution procedure
    for all variables.  This grid problem is solved in PROF by using a
    predictor-linearized corrector iterative matrix procedure. The
    reactor type models do not have explicit diffusion terms. These
    models are initial value problems solved by simple time or space
    marching in the PROF code*


                             1345

-------
                             Accession No.  16302000104    (cont)

(IHP)  Input to «odel: Input to the code include:  type of solution to
    be obtained (e.g. well-stirred reactor), names and number of
    chemical species, thermochemical data for che»ical species,
    cheaical reactions and associated forward rate constants, third
    body efficiencies, initial aole fractions, temperature, pressure,
    and flow rates.
(OUT)  Output of model: The PROF code output gives complete summary
    information or flame, Hell-stirred and plug-flow reactor and
    time-evolution cheaical kinetic problems.  If called for, it can
    also provide information on intermediate iterations and chemistry
    routine solutions.  For each iteration during a flame solution the
    code always prints out a line of output which gives the flame speed
    parameter, its error, the maximum error in concentration and the
    constraint (i.e. damping) applied to the corrector step correction
    vector.  In addition, all of the input data is output along with
    the title of the run.
(APP)  Applications of aodel: The PROF code has been used widely by
    Acurex and the Environmental Protection Agency to predict the
    pollutant formation that occur in a wide variety of experimental
    and practical combustion devices.  The code has been applied to a
    variety of gas turbine, furnace and catalytic combustion, and
    pollutant formation problems.  The PROF code has also been used to
    treat the reaction of a fixed mass of gas in time as the pressure
    and temperature change.  Chemical evolution inside Internal
    combustion engines, combustion bombs and other time- dependent
    combustion systems have been predicted by this option. Of course
    the option assumes uniformly mixed and reacting mixtures within the
    system.  Therefore, applying this option to spatially nonuniform
    systems represents only an approximate modeling of the system.
(ROW)  Computational system requirements - Hardware: Mainframe Univac
    1108, IBM 360 or COC 6600 ;Disc storage 153 instrument, and 31978
    words decimal storage are needed for data. ; Magnetic tape storage
    or disk ^Printer 132 line printer >Card reader/punch or t
(LUG)  Computational system requirements - Language(s) used: Fortran
(REF)  Feferences - User manuals, documentation, etc.:
    Kendall, R. M. and J. T. Kelly, Premixed One-
    Dimensional Flame (PROF) Code User's Manual,
    EPA-600/7-78-172a, August 1978.
(CNM)  Contact name(s): Lanier,W.S.
(COR)  Contact organization: U.S. EPA Industrial Environ. Research Lab
(RQR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Engineering and
    Technology.Industrial Environmental Research Laboratory.
                             1346

-------
                             Accession No.   16302000114

(OQ)  Date of Questionaire: 12-02-82
CHAM)  Name of Data Base of Model: Cost Effectiveness Model for
    Pollution Control at Coking Fac
(ACR)  Acronym of Data Base or Model: NONE
(MED)  Media/Subject of Data Base or Model: Industry/economic
(ABS)  Abstract/Overview of Data Base or Model:  The computer model,
    developed for coking facilities, allows the  user to deteraine the
    optimum mix of pollution control devices will be determined  to
    provide the greatest reduction in pollutant  emissions.   The  model
    uill optimize on the whole population of coke batteries or any
    sub-set that is specified.
(CTC)  CONTACTS: Robert C. McCrillis Industrial  Environmental Research
    Labor Loc: RTF, NC 27711 Ph: (919)541-2733
(STA)  Data Base status: Discontinued
(DP)  Date of form completion: 01-28-83
(CAP)  Functional capabilities of model: The computer program
    calculates and displays: the associated cost for each emission
    control: the total captial and annual!zed cost for the optimum mix
    of controls; and the emission levels in pounds of pollutant  per  ton
    of coal and tons of pollutant per year  for each of the four
    pollutant types, particulates, benzene-soluble organlcs, benzo(a)
    pyrene, and benzene.
(ASM)  Basic assumptions of model: The model considers 16 emission
    sources, 64 control options, 4 air pollutants (particulates,
    benzene- soluble organics, benzo(a)pyrene, and benzene), 59  plants,
    and 26 batteries.  The controls and their costs are those that were
    current at the time the model was developed  (august 1979).   These
    can be modified as new information and  data  become available.
(INP)  Input to model: Input to the model includes: initial level of
    control coke battery population to be considered, level of control
    desired for a specific pollutant or either the annualized cost or
    capital cost.
(GOT)  Output of model: The results of this model are the calculation
    of emissions and emissions control costs and the selection of a  set
    of controls that will meet a given emission  restriction at the
    lowest cost possible.
(APP)  Applications of model: The model provides a means for developing
    regulatory strategies for achieving the greatest control of  air
    pollutant emissions from coke batteries at the lowest cost.
(HDH)  Computational system requirements -  Hardware: Mainframe Univac
    1110 ;Printer any standard model
(LNG)  Computational system requirements -  Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gramming ?Engineering
(REF)  References - User manuals, documentation, etc.:
    William F. Kemner, PEDCO Environmental, Inc.,
    Cost Effectiveness Model for Pollution  Control at Coking
    Facilities, EPA Report EPA-600/2-79-185, August 1979.
(ROR)  Responsible Organization: Office of  Research and
    Development.Office of Environmental Engineering and
    Technology.industrial Environmental Research Laboratory.
                             1347

-------
                             Accession No.   16303000108

(DQ)  Date of Questionaire: 12-02-82
(MAM)  Name of Data Base of Model:  Centralized Treatment of Industrial
    Hasteuater
(ACR)  Acronym of Data Base or Model:  Hone
(MED)  Media/Subject of Data Base or Model:  Hater ; Industry/economic
(ABS)  Abstract/Overview of Data Base  or Model: The objective of the
    Centralized Treatment model is to  produce an optimal geographic
    pattern of treatment facilities for industrial wastewater in a
    metropolitan area. An optimal pattern is one whose annual costs of
    transporting and treating industrial Hasteuater is minimal.
    Treatment facilities may be located at  wastewater-preducing
    industrial plants or at one or more candidate sites for centralized
    treatment.  Both capital and operating  costs are considered. The
    fundamental tradeoff resolved by the model is between the costs of
    transportation and the economies of scale inherent in centralized
    treatment. The model is formulated as a mixed integer program.  It
    is supported by a matrix generator and  reports programs. The model
    was developed by CSNTEC Corporation during 1979 and 1980 in
    connection with an analysis of centralized treatment as an option
    for meeting pretreatment regulations published by EPA in 1979.
    Antecedents include a model for optimizing municipal sludge
    handling and disposal systems developed by Yakir Hasit in his PhD
    dissertation at Duke University in 1978, and It RAP, Haste Resource
    Allocation Program, a model developed for EPA by Mitre Corporation
    in 1977.
(CTC)  CONTACTS: Howard Markham CENTEC Corporation
    Loc: 11800 Sunrise Valley Drive Reston,  Virginia 22091    Ph:
    (703) 476-4000
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 01-24-83
(CAP)  Functional capabilities of model: The model views the original
    wastewater workload as 1, 2, or 3  streams emanating from each
    industrial plant.  The 3 stream types are chromium, cyanide, and
    acid/ alkali.  Each stream is characterized by a flow rate,  the
    concentrations of Cr+3, Cr+6, Cn,  Zn, Fe, Ni, Cu, Cd, and Pb, and
    through its plant or identification number, a geographic location.
    Treatment processes considered are chrome reduction, cyanide
    oxidation, neutralization/precipitation, flocculation,
    clarification, thickening, and filtration.  Each process may be
    located at each industrial plant and at each candidate site  for
    central treatment* Each wasteuater source stream is required to
    undergo full treatment in the sequence
    neutralization-precipitation, flocculation, clarification,
    thickening, and filtration. In addition, chroie and cyanide  streams
    must undergo chrome reduction and  cyanide destruction,
    respectively, before entering neutralization/precipitation.
    Overflows from the clarifier and thickener go to the sanitary
    sewer.   Sludge from the filtration unit goes to a landfill.   When
    wastewater is transported from one site to another, storage  tanks
    with attendant costs are required  at each site.   Capital and
    operating costs for each treatment process reflect economies of
    scale.  In addition to wastewater treatment processes, the model


                             1348

-------
                             Accession No.  16303000108    (cont)

    considers the economics of uasteuater reduction Measures applied In
    the plant production processes to reduce the size of source
    streams.  The BOdel determines the optimal pattern of uasteuater
    reduction, the optimal size of each treatment process at each plant
    and central site, and transportation flows among sites.  Plants and
    central sites may perform full treatment, partial treatment or no
    treatment.  A typical problem size is 50-100 plants, 1-3 candidate
    central sites, and 1-2 landfills.  That translates to a typical
    model size of 4000- 8000 constraint equations with 500-1500 integer
    variables, about half of the latter for representing increasing
    returns to scale as piecewise linear equations.  For mixed integer
    programs of this size, it is not feasible to run the solution
    algorithm long enough to prove optimality, but experience indicates
    that an optimal or near-optimal solution is obtained on the 2nd or
    3rd integer-feasible solution when the search criteria are chosen
    to support that objective.
(ASM)  Basic assumptions of model: The treatment processes modeled are
    assumed adequate to meet treatment regulations uhen properly
    operated. The performance of clarifiers, thickeners and filtration
    units is modeled in terms of fixed efficiencies of solids capture
    and fixed ratios of solid to liquid weights in the underflow.
    Process sizes include a 20% safety factor.  Transportation cost is
    assumed to be a function of payload and distance*  It is further
    assumed that liquid waste is moved in 5500-galIon tank trucks only,
    filled to capacity.  Dewatered sludge is assumed moved in trucks of
    30-cubic yard capacity, fully loaded. Separate capital recovery
    factors are used for in-plant and central facilities, to permit
    inclusion of rate-of-return requirements on capital investments by
    industrial plants. The capital costs of central facilities include
    a component for site acquisition and construction.  Every plant and
    central site is assumed large enough to accommodate treatment
    equipment of sizes chosen by the model.
(IMP)  Input to model: The model requires four kinds of input:
    Technological Data.  Cost and performance characteristics of
    treatment technologies and transportation.  With the exception of
    occasional adjustments to costs, which is provided for in the model
    via appropriate standard cost indices,  this is a reasonably stable
    set of data that need not be developed anew for each model  run*
    Plant and source Stream Data:   For a region, the identity and
    location of each industrial plant whose wastewater requires
    treatment, and the flow rate and chemical composition of the
    chrome, cyanide, and acid/alkali waste streams at each plant*
    Also, the number of production lines where wastewater reduction has
    been applied and for which it is feasible.  Central Site and
    Landfill Data: Location of candidate sites for central treatment,
    and location of landfills suitable for receiving filtercake
    containing precipitated metals.   Economic Factors:   Interest rates,
    equipment lifetime. Wholesale Price Index for Industrial Chemicals,
    Chemical Engineering Plant Cost  Index,  Chemical Engineering
    Manpower Cost Index,  sewer fee,  landfill fee*
(GOT)  Output of model: Three principle output reports are produced:
    plant Report, central facility report,  and transportation report.


                             1349

-------
                             Accession No.  16303000108    (cont)

     The  plant and central  facility reports show whether a flow
     reduction or treatment process is present at a site, and, when it
     is,  its size, capital  cost, and operating cost.  Operating cost is
     broken out into labor, utilities, and chemicals.  When
     transportation is used, the costs of storage are shown.  The
     transportation report  shows the workloads and costs of transporting
     liquid wastes from plants to central facilities, and transportation
     among central facilities.  The costs  of transporting sludge from
     plants to central facilities and to landfills is also shown.
     Regional totals are reported by process and resource.  Subsidiary
     outputs include the standard linear programming report of the model
     solution, and reports  of intermediate factors generated during
     input preparation.
(APP)  Applications of model: The model was used by CENTEC Corporation
     to analyze centralized treatment in the Milwaukee region.  That
     analysis was performed in the project under whose aegis the model
     was  developed.
(ROW)  Computational system requirements - Hardware: Mainframe Univac
     1110 Series ;Disc storage Short term:  100 million bytes ^Printer
     any  132 character per  line nodel
(LMG)  Computational system requirements - Language(s) used:  FMPS and
     GAMfcA
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
     gramming ;Engineering  mathematical programming
CtfTP)  Hater Models - Type of model:  Water quality
     Regional treatment system design
(COM)  Processes and constituents included in model: Toxic chemicals
     }Quality processes
(CPL)  Complexity level of model:  steady state mass balance ;multi
     dimensional
(REF)  References - User manuals,  documentation, etc.:
     CENTEC Corporation, Centralized Treatment Model.
     User's Manual, August  1980.
     CENTEC Corporation, Centralized Haste Treatment Mixed Integer
    Programming Model -- Milwaukee Results,  July 1980
     Takir Hasit, Optimization of Municipal Sludge Handling and
    Disposal Systems, PhD  Dissertation at Duke University,
    Department of Civil Engineering,  1978.
    CENTEC Corporation, Centralized Treatment of Metal Finishing
    Hastes, September 1980
    HRAP, A Model for Regional Solid Haste Management Planninng -
    User's Guide, EPA/530/SH574, U.S. Environmental Protection
    Agency, February 1977
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Engineering and
    Technology.industrial Environmental Research Laboratory.
                             1350

-------
                             Accession No.   16304000926

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Kane of Data Base of Model: Urban Hasteuater Toxics Flow Model
(ACR)  Acronym of Data Base or Model: TOXFLO
(MED)  Media/Subject of Data Base or Model:  Toxic substances JWater
    }Industry/economic
(ABS)  Abstract/Overvieu of Data Base or Model: The Urban Hasteuater
    Toxics Flow Model provides statistical  estimation of the generation
    and fate of toxic pollutants entering into a given Municipal sewage
    treatment system.  It can also develop  a least-cost strategy of
    industrial pretreatment and municipal treatment to satisfy
    applicable environmental criteria.  Quantities computed by the
    model include flow and concentration values from each controllable
    industrial discharger, flow and concentration values from the
    domestic/ commercial sector, quality of the influent, effluent,  and
    sludge from the municipal sewage treatment plant, receiving stream
    water quality, and the total cost of the industrial/muni- cipal
    control technology utilized. The model  can aid in developing
    industrial pretreatment programs by indicating which industrial
    dischargers and toxic pollutants may be problematic under existing
    levels of treatment, and what impact alternative industrial
    pretreatraent/municipal treatment technologies may have in
    controlling toxic pollutants.  The program is run in time-sharing
    •ode over an interactive terminal.
(CTC)  CONTACTS: Lewis Rossman  U.S. SPA Municipal Environmental
    Research La Loc: 26 West St. Clair St., Cincinnati, OB 45268
    Ph: (513) 684-7636
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 01-18-83
(CAP)  Functional capabilities of model: The model computes an average,
    standard deviation, and confidence limit for the long term mean
    flows and concentrations of toxic pollutants at various points
    within an industrial/municipal wastewater treatment system*  The
    total cost of the industrial pretreatment and municipal treatment
    provided is also computed.  The model can consider up to 20
    industrial dischargers (or aggregated discharge categories), a
    maximum of 5 alternative treatment options at each discharger, and
    up to 50 pollutants.  Environ- mental criteria considered by the
    model include local or national pretreatment standards, municipal
    discharge or receiving water quality criteria, and municipal sludge
    quality criteria.
(ASM)  Basic assumptions of model: The model assumes statistical
    independence between all industrial discharges and between the
    performance of the municipal treatment plant and the flow in the
    receiving stream.  Municipal treatment plant removal capabilities
    may be described as a deterministic function of influent
    concentration coupled to a random error term.  Confidence intervals
    on long term means are developed based on assuming log normal
    probability distributions.  Cost optimization of the
    industrial/municipal level of treatment is based on average
    estimates of the long term means.
(INP)  Input to model: Input to the model consists of means and
    standard deviations for the flow and concentration of each


                             1351

-------
                             Accession Ho.   16304000926    (coot)

    pollutant of Interest discharged from each industrial source and
    the domestic/commercial sector.  A set of pollutant removal
    functions and their standard errors is required for the municipal
    treatment plant.  If a cost optimization is not being made  then the
    type of control used by each industry and the Municipality  mist
    also be specified.  Statistics of the receiving water flow,
    specification of the environmental quality criteria, and the cost
    of all individual treatment alternatives »ay also be needed. There
    is a possibility that at some future date, an internal data base
    will be added to the »odel so that the input can be reduced to
    specifying industrial sub-category types, pretreatment
    technologies, and environmental quality criteria*
(OUT)  Output of model: Standard output from TOXFLO consists of a  table
    of estimate statistics of the long term mean flows and
    concentrations of each toxic pollutant from each industrial source,
    in the Influent, effluent, and sludge of the municipal plant,  and
    of the receiving water.  Also, reported is the expected frequency
    of violation of environmental criteria and the cost of the  control
    policy being utilized.
(APP)  Applications of model: TOXFLO was developed to aid in the
    planning of industrial pretreatment programs.  It can also  be  used
    to assist in the analysis of municipal treatment facility discharge
    permit requirements.  An illustrative application of the model has
    been made to controlling heavy metals in Kokomo, Indiana.

-------
                             Accession No.   16304000927

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Karoe of Data Base of Model: Storm Hater Management Model
(ACR)  Acronym of Data Base or Model: SHMM
(MED)  Media/Subject of Data Base or Model:  Mater
(ABS)  Abstract/Overview of Data Base or Model: The EPA Storm Hater
    Management Model (SHMM) Is a comprehensive mathematical model
    capable of simulating urban stormuater  runoff and combined sever
    overflows including the spatial and temporal quality and quantity
    aspects of the precipitation/runoff (snowmelt) process, conveyance
    system transport, control measures, and receiving water responses.
    The model operates in a continuous mode for detailed planning and
    receiving water analysis or in a single event mode for indepth
    analysis.  Two transport routines are available: One is based on a
    kinematic wave formulation while the other is based on the complete
    St. Venant equations (i.e., HRE Transport) to include effects of
    backwater, flow reversal, surcharging,  looped connections and
    pressure flow.  Two receiving water models are included in SHMM:
    RECEIV and LEVEL III - RECEIVING.  RECEIV is a dynamic model
    applicable to streams, rivers, estuaries, marshes/swamps and lakes.
    LEVEL III - RECEIVING is a simplified continuous model applicable
    to streams or tidal rivers that provides dissolved oxygen frequency
    information.
(CTC)  CONTACTS:  Tom Barnwell ERC, Athens,  GA  U.S. EPA Municipal
    Environmental  Research
    Laboratory, CURRENT CONTACT:  Tom Barnwell, ERC, Athens, Georgia*
    Loc: 26 H. St. Clair St., Cincinnati, OH 45268   Ph: (513) 684-7635
(STA)  Data Base  status: Operationa/Ongoing
(DF)  Date of form completion: 01-18-83
(CAP)  Functional capabilities of model: (1) Single event or continuous
    simulation, latter has unlimited number  of time steps, former
    usually limited to 150-200 but can be unlimited also, depending on
    portions of model utilized, continuous  version simulates only
    surface runoff (including simple gutter/pipe routing) and
    storage/treatment? (2) Precipitation:  input at arbitrary time
    intervals for single event simulation (typically 1-15 min.) and at
    one-hour intervals for continuous simulation, for snownelt
    simulation daily max-min temperatures required for continuous, time
    step temperatures for single event; (3)  output at time step
    intervals (or multiples), daily, monthly, annual, and total
    summaries for continuous simulation; (4) Time step arbitrary for
    single event  (typically 5 minutes) and  one hour for continuous, HRE
    transport model time step depends on stability criteria, may be as
    small as a few seconds; (5) Small to large multiple catchments:
    (a) surface:   lumped simulation of overland flow with allowance for
    up to 200 subcatchments and six input hyetographs, up to 200
    gutter/ pipes may be simulated by one-dimensional routing, (b)
    channel/ pipes:  one-dimensional network, up to 159
    conduit/noneonduit elements for original transport model, up to 239
    conduits in HRE transport model, up to  two in-line storage units in
    original transport model, (c) catchment area may be disaggregated
    and modeled sequentially for simulation of areas too large for
    existing SWMM dimensions, (d) storage/treatment simulated


                             1353

-------
                             Accession No.   16304000927    (cont)

    separately, receiving input from upstream routing, (e) output  from
    surface, channel/pipe, or storage/treatment simulation may serve as
    new input for further simulation by the latter tuo modules.
(ASM)  Basic assumptions of model: (1) Deterministic model; (2) surface
    quantity: iterative solution of coupled continuity and Manning
    equations, integrated form of Horton infiltration (infiltration
    rate proportional to cumulative Infiltration, not time), or Green-
    Amp t; (3) Surface gutter/pipe routing,  nonlinear reservoir assuming
    water surface parallel to invert; (4) Channel/pipes: (a) original
    transport:  implicit finite difference solution to modified
    kinematic nave equation, (b) WRE transport:  explicit finite
    difference solution of complete St. Venant equations, stability may
    require short tine step:  (5) Storage/ sedimentation:  modified
    Puls method requires table look-up for calculation of outflow; (6)
    Surface quality, quality routing and treatment:  algebraic
    equations, no iterations required once flows and conduit volumes
    are known.
(IMP)  input to model: (1) Historical or synthetic precipitation
    record, uses National Heather Service precipitation tapes for
    continuous simulation, monthly evaporation rates for snoumelt:
    daily max-min (continuous) or time-step (single event)
    temperatures, monthly wind speeds, melt coefficients and base  melt
    temperatures, snow redistribution fractions and areal depletion
    curves (continuous only), other melt parameters; (2) Surface
    quantity:  area, imperviousness, slope, width, depression storage
    and Manning's roughness for pervious and impervious areas,
    infiltration parameters; (3) Channel/pipe quantity: linkages,
    shape, slope, length. Manning's roughness, URE transport also
    requires Invert and ground elevation, storage volumes at manholes
    and other structures, geometric and hydraulic parameters for weirs,
    pumps, orifices, storages, etc., infiltration rate; (4)
    Storage/sedimentation quantity:  geometry, hydraulic
    characteristics of outflows; (5) Surface quality; land use, total
    gutter length, catchbasin volume and initial residuals
    concentrations, street sweeping interval, efficiency and
    availability factor, dry days prior to initial precipitation,
    user-supplied initial residuals surface loadings, exponential
    washoff coefficient or parameters for pollutant rating curve,
    linear or nonlinear surface accumulation rates; (6) Dry-weather
    flow on basis of diurnal and daily quantity/quality variations;
    population density, other demographic parameters; (7) No input data
    required for channel/pipe quality routing; (8) Storage/ treatment:
    parameters defining exponential removal as function of residence
    time in storage/sedimentation, parameters for individual treatment
    options, e.g., particle size distribution, maximum flow rates, size
    of unit, chemical additions, optional dry-weather flow data when
    using continuous simulation; (9) Storage/treataent costs:  ERR
    Index, unit costs of excavation, land, power, chlorine, polymers,
    alum, interest rate and amortization period; (10) Data requirements
    for individual modules much less than for run of whole model, large
    reduction in data requirements possible by aggregating (lumping) of
    subcatchments and channel/pipes, especially useful for continuous


                             1354

-------
                             Accession No.   16304000927    (cent)

    simulation.
(OUT)  Output of model: (1) Input data summary including precipitation;
    (2) Hydrographs and pollutographs (concentrations and loads versus
    time) at any point in systea on time step or longer basis/  no
    stages or velocities printed; (3) WRE transport also outputs
    elevation of hydraulic grade line/ (4)  Surcharge volumes and
    required flow capacity/ original transport model Mill resize
    conduits to pass required flow (optional); (5) Removal in
    storage/treatment units/ generated sludge quantities; (6) Summaries
    of volumes and residuals loads for simulation period/ continuity
    check/ initial and final pounds of solids in conduit elements; (7)
    Daily (optional)/ monthly/ annual and total summaries for
    continuous simulation/ plus ranking of 50 highest hourly
    precipitation/ runoff and BOO values; (8) Line printer plots of
    hyetographs/ hydrographs/ and pollutographs; (9) Costs of simulated
    storage/treatment options.
(APP)  Applications of model: SWMM has been widely used in planning and
    design studies for urban stormwater and combined sever overflow
    pollution control (e.g./ under Section 108/ 201, and 208 studies).
    It is widely used for urban drainage and flooding analysis. Users
    are primarily consulting engineers/ public agency engineers and
    university researchers.  Presently semi- annual meeting of the SWMM
    User's Group are held in the U.S. and Canada.  Individual modules
    have been linked to HECSTORM/ QUAL-II model/ simplified receiving
    uater models/ and others. Individual modules have been altered and
    renamed by various groups.
(HDW)  Computational system requirements - Hardware: Mainframe IBM
    360/370 or Univac 1108 or CDC 6600 or AMDAHL 4 Disc, storage 90,000
    words core storage plus 5 units to process ; Magnetic tape storage
    or disc ;Printer 132 position line printer ; Card reader/punch for
    tape or disc (input)
(LNG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gramming Engineering ;Engineer familiar with urban hydro
(WTP)  Hater Models - Type of model: Water run-off
(EH?)  Environment(s) to which model applies: Estuary ;Stream/river
    ;Wetlands ;Non-point Urban
(CON)  Processes and constituents Included in model: Dissolved oxygen
    ;Eutrophication ;Erosion and sediment ;Toxl Salinity ;Hydrology
    ;Hydraulics ;Quality processes
(CPL)  Complexity level of model: transient  mass balance ;one
    dimensional ;multl dimensional ;
(REF)  References - User manuals/ documentation/ etc.:
    Metcalf and Eddy/  Inc./ University of Florida,
    and  Water Resources Engineers, Inc./ "Storm Hater Management
    Model, Volume I - Final Report," EPA Report 11024 FOC (NTIS
    PB 203 289)/ Environmental Protection Agency/ Washington/ D.C.,
    July  1971.
    Huber, W.C./ Heaney, J.P./ Medina/ M.A.,  Peltz, M.A., Sheikh,
    H. and Smith, G.F., "Storm Water Manageaent Model User's
    Manual - version II/"  EPA-670/2-75-017/  Environmental Protection
    Agency/ Cincinnati/ Ohio, March  1975.


                              1355

-------
                             Accession Mo.  16304000927    (cont)

    Heaney/ J.P*/ Huber, W.C., Sheikh/ H./ Medina/ M.A./ Doyle/
    J.R./ Peltz/ H.A. and Darling/ J.E./ "Urban Stormuater
    Management Modeling and Decision Making," EPA-670/2-75-022/
    Cincinnati, Ohio/ May 1975.
    Medina/ M.A./ "Receiving Mater Quality Modeling for Urban
    Stornuater Management:  Level III/ "OSEPA Report
    EPA-600/2-79-100, Environmental Protection Agency/ Cincinnati/
    Ohio, August 1979.
    Huber, W.C., Heaney/ J.P. and Mix/ S.J., "Storm Uater Managenent
    Model User's Manual - Version III/** EPA Report, Environmental
    Protection Agency, Cincinnati/ Ohio, Draft 1980.
(CMM)  Contact naae(s): Ainon/D.
(COR)  Contact organization: U.S. EPA Municipal Environmental  Research
    Laboratory

-------
                             Accession No.   16304000928

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: HATSPEC2
(ACR)  Acronym of Data Base or Model: NATSPEC2
(MED)  Media/Subject of Data Base or Model: Hater
(ABS)  Abstract/Over view of Data Base or Model: HA1SPEC2 is a chemical
    model for major element speciation of natural and drinking waters,
    plus several additional constituents such as Sr, Ba, Fe, N0<3> and
    H<2>S. HATSPEC2 is an expanded version of HATSPEC, developed by
    T.M.L. Higley (ref. 1).  The program takes analytical chemical data
    and calculates aqueous speciation and solid saturation states, and
    several indices of Hater corrosivity toward various kinds of
    drinking water piping.
(CTC)  CONTACTS: Herb Braxton O.S. EPA Municipal Environmental Research
    Laboratory
    Loc: 26 H St. Clair St., Cincinnati, OH 45268    Ph: (513) 684-7236
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-18-83
(CAP)  Functional capabilities of model: The program considers the
    effects of temperature and ionic strength on the formation of
    complexes and ion pairs.  The resulting values are used to
    calculate the free ion activities, and these are used to calculate
    some corrosion indices and saturation states of solids.  The
    accuracy of the program is dependent upon the accuracy of the
    thermochemical data, the closeness of the system to equilibrium,
    the accuracy of the species included in the model in describing the
    real system, and the accuracy of the analytical data input.       „
(ASM)  Basic assumptions of model: The program assumes chemical
    equilibrium, or a metastable state characterizable by operational
    "equilibrium1* constants.  Redox equilibrium is not assumed for
    NO<3>/NH<4> system.  The simultaneous equations are solved by a
    continuing-fraction iteration technique.  Temperature adjustment of
    equilibrium constants  are accomplished by either analytical
    Polynomials or the Van't Hoff relation.  The analytical data are
    assumed to represent dissolved concentrations.
(INP)  Input to model: HATSPEC2 accepts analytical chemical input as
    mg/L  (mg/L as CaCD<3>  for alkalinity), rather than meq/L as in
    WATSPEC.  Program input also includes some calculation options if
    some output is unnecessary, optional calculation of ionic strength
    from TDS or SPC, temperature and a redox potential (or D.O.).  The
    program can be set to  default to a particular pE.
(OUT)  Output of model: The output includes aqueous speciation,
    saturation indices for 43 solids, ion balance error, an
    approximation of the buffer capacity of the water, the (chloride «•
    sulfate)/ alkalinity ratio, the Aggressiveness Index, the
    calculated pH of saturation for calcite and a fresh calcium
    carbonate precipitate, the total inorganic carbonate concentration/
    equilibrium C0<2> partial pressure, the calculated TDS, plus some
    others.
(APP)  Applications of model: This program has been used extensively by
    the Drinking Hater Research Division, OS EPA to evaluate the
    potential corrosivity  of water supplies and to perform data
    reduction for laboratory experiments.


                             1357

-------
                             Accession Ho.   16304000928    (cont)

(HDW)  Computational systea requirements -  Hardware:  Mainframe IBM
    370/168 ;Disc storage or tape - 5 tracks ;Magn Printer 132 position
    line printer or terminal or direct terminal input ;Card reader/punch
(LUG)  Computational system requirements -  Language(s) used: ueter
    chemistry knowledge and ability to enter data by card terminal
    Fortran 61 compiler
<«TP)  Mater Models - Type of model: Mater  quality
    Ground uater
    drinking water
  Environment(s) to which model applies: Estuary ;Lake
    }Stream/river ^Marine
(COM)  Processes and constituents included  in model: Dissolved oxygen
    ;Eutrophication ;Toxic chemicals inorganics Salinity as
    constituents ^Temperature ;Quality processes
(CPL)  Complexity level of model: steady state mass balance /one
    dimensional
(REF)  references - User manuals/ documentation/ etc.:
    T.M.L. Wigley/ WATSPEC:  A Computer Program for
    Determining the Equilibrium Speciation  of Aqueous Solutions.
    British Geomorphological Research Group Tech. Bull. Ho.
    20(1977).
    Michael R. Schock/ HAT SPEC 2 program and documentation/
    unpublished/ Drinking Water Research Division/ OS EPA,
    Cincinnati/ Ohio.
(ROR)  Responsible Organization: Office of  Research and
    Development.Office of Environmental Engineering and
    Technology.Municipal Environmental Research Laboratory.
                             1358

-------
                             Accession No.   16304000929

/NH<4> system.  The simultaneous equations are solved by a
    continuing-fraction iteration technique.  Temperature adjustment of
    equilibrium constants are accomplished by either analytical
    polynomial functions or by the Van't Hoff relation. The program is
    of limited usefulness if the aqueous or  solid species present in a
    real system are not included in the model.  Additionally, the
    analytical data are presumed to represent dissolved concentrations*
(INP)  Input to model: Input to the model includes:  chemical
    analytical data, (such as pH, Ca, Mg, titration alkalinity, Cl,
    Pb), temperature, redox potential (or an estimator, such as D.O.),
    options for calculations to be performed and thermochemical data
    describing the reactions to be considered.  Test data sets are
    given in references 1 and 3.  Thermochemical data and the ordering
    of output species are contained in 4 external files that are called
    by the program if operated as a load module, or that must follow
    the program if run in-streanu
(OUT)  Output of model: The output consists  of the activities of the


                             1359

-------
                             Accession No.   16304000929    (cont)

    aqueous species,  the molarities of the  aqueous species/ calculation
    of ion balance error/ derivation of total inorganic carbonate
    concentration from titration alkalinity 
-------
                             Accession No.   16304000929    (cont)

(ROR)  Responsible Organization:  Office of  Research and
    Development.Office of Environmental Engineering and
    Technology.Municipal Environmental Research Laboratory.
                             1361

-------
                             Accession No.  16304000930

(DQ)  Date of Questions!re: 12-02-82
(NAM)  Name of Data Base of Model: REOEQL.DWRD
(ACR)  Acronym of Data Base or Model: REDEQLDWRD
(MED)  Media/Subject of Data Base or Model: Water
(ABS)  Abstract/overview of Data Base or Model: A load aodule is
    maintained/ along with a theraodynanic data deck/ of the
    REDEQL.DWRD aqueous chemical equilibrium modeling program
    originally developed by Ingle./ et al. at the Corvallis
    Environmental Research Laboratory (refs. 1 and 2). This program can
    calculate equilibrium aqueous speciation, saturation states of
    solids and calculate dissolved and solid concentrations following
    precipitation reactions.  The prograa is useful for aquatic
    toxicology studies/ titration experiment modeling (determination of
    pH or complexation changes)/ water chemical evaluation for
    corrosion control treatments and determination of solubility
    controls on constituents in natural or drinking waters.
(CTC)  CONTACTS: Herb Braxton U.S. EPA Municipal Environmental Res.
    Lab.
    Office of Vater Waste Management
    Loc: 26 tf. St. Clair St., Cincinnati, Ohio 45268 Ph: 513-684-7236
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of fora completion: 01-18-83
CCAP)  Functional capabilities of model: The model can include up to 20
    aetals and 30 ligands at any one time, many of which can be added
    by the user.  The model allows teaperature and ionic strength
    corrections to equilibrium constants.  The model allows the user to
    impose solids in contact with the solution, to prohibit
    precipitation of supersaturated solids, or to allow precipitation*
    The prograa calculates aqueous and solid speciation, interaction
    intensities and capacities, and can be used to calculate pH.
    Several other options are noted In references 1 and 2.  The
    accuracy depends on the quality of the theraochemical data, the
    accuracy of the species chosen to represent the real system, the
    nearness to equilibrium, and the quality of the analytical data
    input.
(ASM)  Basic assumptions of model: The major assumption is that the
    system in question is at equilibrium (or can be considered to be in
    a metastable state that can be treated as equilibrium). Temperature
    corrections to the equilibrium constants are done by the Van't Hoff
    relation.  Three solids and six complexes are allowed for each
    aetal-ligand pair.  Equilibrium constants can contain no aore than
    one decimal place.  Mathematical and computational limitations are
    given in references 1 and 2. Charge balance is not required.
(IMP)  Input to aodel: A program header card with Input and output
    selections is included with each run.  Ten cases can be considered
    in each run.  Concentrations of each aetal and ligand can be given
    in "ag;/Ln or "- log (aolarity)."  Cards are added to give carbon
    dioxide partial pressure, redox reactions to consider, solids to
    check saturation indices for, or for which to disallow
    precipitation, etc.  A test data set Is given In reference 2.
(OUT)  Output of model: The aodel can output solid and aqueous
    speciation in units of •* - log (aolarity)," and give a table


                             1362

-------
                             Accession No.   16304000930    (cont)

    summarizing forms by percentage.   Interaction capacities and
    intensities can be given, and the ionic strength, saturation
    indices for numerous solids, the  pH, and several other  parameters
    can be calculated.
(APP)  Applications of aodel: The model has been used extensively
    Drinking Water Research Division, US EPA to determine water  quality
    adjustments to protect asbestos-cement, lead and galvanized  pipe.
    The program has been used to gain a comprehensive understanding of
    the naturally-occurring chemical  factors involved in preventing the
    deterioration of asbestos-cement  pipe,   (see ref. 3)
(HDV)  Computational system requirements -  Hardware: Mainframe IBM
    370/168 ;Disc storage 19 Tracks ;Magnetic tape Printer  132 position
    line printer or terminal ;Card reader/punch
(LNG)  Computational system requirements -  Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills:  Kno
    nledge of water chemistry and ability to input data  via
(WTP)  fcater Models - Type of model:  Mater  quality
    Ground water
    drinking water
(EN?)  Fnvironment(s) to which model  applies: Estuary ;Lake
    ;Stream/river ;Marine
(COR)  Processes and constituents included  in model: Eutrophication
    /Toxic chemicals inorganics, organic ligands Salinity as individual
    constituents ^Temperature ;Quality processes
(CPL)  Complexity level of model: steady state mass balance ;one
    dimensional
(REF)  References - User manuals, documentation, etc.:
    Ingle, S.E. et al., A User's Guide for  REOEQL.EPA,
    A Computer Program for Chemical Equilibria in Aqueous Systems,
    EPA-600/3-78-024 (1978).
    Ingle, S.E. et al., REDEQL.EPAK  Aqueous Chemical Equilibrium
    Computer Program.  Marine and Freshwater Ecology Branch,
    Corvallis Environmental Research  Laboratory, Corvallls, Oregon
    (in press, 1980).
    Schock, Michael R. and R. W. Buelow, the Behavior of Asbestos-
    Ceient Pipe Under Various Mater Quality Conditions, A Progress
    Report.  Part 2 - Theoretical Considerations.  Jour. ANNA,
    (1961) in press.
    Schock, Michael R.  Computer Modeling of Solid Solubilities
    as a Guide to Treatment Techniques.  A  paper given at the
    seminar "Corrosion Control in Hater Distribution Systems,**
    Cincinnati, Ohio, May 20-22, (1980).
(ROR)  Responsible Organization: Office of  Research and
    Development.Office of Environmental Engineering and
    Technology.Municipal Environmental Research Laboratory.
                             1363

-------
                             Accession Ho.   16304000931

(DQ)  Date of Questionaire:  12-02-82
(MAM)  Nave of Data Base of  Model:  Hater Supply Simulation Model
(ACR)  Acronym of Data Base  or Model:  HSSM
(MED)  Hedia/Subject of Data Base or Model:  Hater
UBS)  Abstract/Overview of  Data Base  or Model: In Meeting the
    requirements of the Safe Drinking  Hater  Act, VSSM can be used to
    evaluate the trade-offs  involved in aaking decisions concerning
    water supply systems expansion, water production and facility
    location.  This model can be used  by planners to study some of the
    economic alternatives associated with regional water supply*   It
    incorporates a series of sub-models to describe the  various aspects
    of the economic/ demographic, and  hydraulic systems  that make up  a
    water utility. Extensive system hydraulic and cost data is needed
    to use the model.
(CTC)  CONTACTS: Robert M. Clark
    Loc: DHRD/MERL/Cincinnati, Ohio (513) 684-7488
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-18-83
(CAP)  Functional capabilities of model: This model can  spatially model
    the hydraulics and economies of a  water  supply system.  The results
    of the analysis is only  as good as the data that is  input to  it.
(ASM)  Basic assumptions of  models  Economies of scale exist such  that
    the unit cost of producing drinking water in smaller plants is
    higher than for larger plants.
(IMP)  Input to model: All hydraulic flows are needed based on a
    diagram of the system.  Construction costs are for piping and other
    physical equipment needed for the  system.  Operation and
    maintenance costs are for system use. Cost indices  provide for the
    effects of inflation.
(OUT)  Output of model: The computer model is capable of producing
    tabular and graphical output as well as  diagrams of  the operating
    system.
(APP)  Applications of model: Main use of model so far has been
    Internally by the economic analysis section of DVRD, MERL, EPA in
    Cincinnati, Ohio.  After the completion  of the model effort,  it
    will be made available to all who  are Interested, such as
    consultants, etc.
(HDH)  Computational system requirements - Hardware: Mainframe-IBM 370
    ;Magnetic tape storage-none ;Prlnter-stand Card reader/punch
(LUG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills:  Pro
    gramming ^Engineering
(HTP)  Hater Models - Type of model: Drinking water
(EM?)  Environment(s) to which model  applies: Hydrolic analysis model
    for drinking water networks
(CON)  Processes and constituents included  in model: Hydraulics
(CPL)  Complexity level of model: Steady state mass balance
(REF)  References - User manuals, documentation, etc.:
    Rough drafts of documentation exist at present.
(RQR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Engineering and
    Technology.Municipal Environmental Research Laboratory.


                             1364

-------
Accession  No.   16304000931    (cont)
1365

-------
                             Accession Mo.   16305000507

(DQ)  Date of Questionaire: 12-02-82
(NAN)  Name of Data Base of Model: NAAQS Exposure Model
(ACR)  Acronym of Data Base or Model: NEM
(MED)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: National Ambient Air
    Quality Standards (NAAQ's) regulate six ubiquitous pollutants (CO,
    NO, 03, SQ2, Pb and particulate natter) under Sections 108 and 109
    of the Clean Air Act.  The NAAQS Exposure Model (NEM) is a discrete
    simulation model that can be used to estiaate both current hunan
    exposure to each of these pollutants and exposure that would occur
    were various alternative standards just aet.  NEM develops
    tiae-average exposure estimates in individual urban areas based
    upon aabient air quality data, census information, huaan activity
    data, and other user-supplied inforaation needed to approximately
    describe day-to-day activities of residents.  NEM is expensive to
    run, if the number of age-occupation categories is large.  In that
    situation, costs to run the program increases approximately as the
    square of the nuaber of exposure districts increases.
(CTC)  CONTACTS: George Duggan   Strategies and Air Standards Division,
    OAQPS   LQC: EPA, MD-12, Research Triangle Park, NC   27711 PH:
    FTS 629-5611
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of fora completion: 02-07-83
(CAP)  Functional capabilities of aodel: NSM computes the following
    exposure estimates for specified urban areas:!    1.  Numbers of
    people exposed to (specified averaging tiae) concentrations in a
    year (for up to 20 user-specified concentration levels, which do
    not need to have equal intervals).  The specified averaging times
    are presently 1, 3, 8, 24 hours and one year.jf    2.  Nuaber of
    person-occurances of exposures to specified averaging
    concentrations in a year.f    3.  Nuaber of people exposed to
    (specified averaging time) aaxiaua concentrations in a year.f    4.
    The same three iteas as aentioned above but for a specified
    physiological index, such as CQHb levels in the blood.f The model
    operates upon up to 13 age-occupation (A-0) groups, up to 9
    exposure districts, up to 5 aicroenvironaents are indoor, so the
    •odel can handle indoor sources of air pollution.
(ASM)  Basic assuaptions of aodel: The aodel assuaes that an urban
    area's population can be completely defined by the age-occupation,
    etc. categories aentioned above.  It also assuaes that their
    •oveaents through tiae and space can be approximated by existing
    huaan activity (or tiae budget) surveys and by origin-destination
    inforaation obtained in 0. S. Census or in urban transport'Aation
    planning surveys.  The aodel also requires a complete set of
    aabient air quality data at centroids of exposure districts (or in
    "neighborhood types"), and that transforaation factors can be
    developed froa a literature review to relate aabient air quality to
    indoor pollutant concentrations.  In addition, the aodel requires
    "additive factors11 to account for indoor- generated and non-air
    sources of the pollutant.
(IMP)  Input to aodel:  Needed inputs include: for each selected urban
    area, a coaplete yearly set of hourly aabient air pollution


                             1366

-------
                             Accession No.   16305000507     (cont)

    concentrations for each exposure district defined for  the  urban
    area;  age-occupation specific population estimates for each
    district;  hourly activity patterns for  weekdays, Saturday,  and
    Sunday for each A-0 group;  hourly microenvironnent assignments for
    each A-0 group, with a corresponding activity level  assignment;
    tticroenvironment, transform factors; and additive factors  to
    represented indoor-generated and non- air sources.  If a
    physiological index model is used then  NEM requires  files  of the
    parameters/variables needed to completely define the equations used
    to calculate the index number(s).
(OUT)   Output  of model: Outputs are tables  and graphs depicting the
    types of information noted in Item 2 above.   Table headings, as
    well as row and column headings are specified.
(APP)   Applications of model: To date, NEM  has been applied to  CO, N02,
    and particulate matter by the Ambient Standards Branch of  the
    Office of  Air Quality Planning and Standards.  The Office  of
    Research and Development and The Office of Mobile Sources  have each
    recently begun projects in which NEM will be applied.
(HOW)   Computational system requirements -  Hardware: Mainframe  UKlVAC
    1110 ; Magnetic Tape Storage None ; Disc Storage 100 Tracks ;
    Printer
(LNG)   Computational system requirements -  Language(s) used: PL-1
(ATP)   Air Models - Type of model: N/A, NEM is not a dispersion model
(OAQ)   Model reviewed and approved by OAQPS? Yes
(PMP)   Production method of primary pollutant in model:  N/A
(MPk)   Process used to remove pollutant from atomosphere:  None  (only
    negligible removal)
(TME)   Sample  averaging time used: 24 Hours or less
(SRC)   Source  of pollutant: N/A, NEM is currently based  on air  quality
    "concentrations data.
(AR)  Area where sample was collected: N/A
(RUG)   Distance traveled by pollutant from  source:  N/A
(REF)   References - User manuals, documentation, etc.: Roy A.  Paul.
    User's Guide for NAAQS Exposure Model (NSM).  Research Triangle
    Park,  N.C.,  U.S. Environmental Protection Agency/ 1981.
(CNM)   Contact name(s): George Duggan
(COR)   Contact organization: Strategies and Air Standards  Division,
    OAQPS
(ROR)   Responsible Organization: Office of  Air,  Noise and
    Radiation.Office of Quality Planning and Standards.Strategies  and
    Air Standards Division.
                             1367

-------
                             Accession No.   16402000121

(DQ)  Date of Questionaire: 12-02-82
CHAN)  Kane of Data Base of Model: LAGRANGIAN PHOTOCHEMICAL AIR QUALITY
    SIMULATION MODEL
(ACR)  Acronym of Data Base or Model: LPAQSM
(MED)  Perila/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: LPAQSM Is designed to
    predict the concentrations of ozone produced in an urban area by
    •odeling the emissions, transport, and transformations in the
    presence of ultraviolet radiation.
(CTC)  CONTACTS: Jack Shreffler Environmental Sciences Research
    Laboratory
    Loc: Research Triangle Park  Ph: (919)541-3659
(STA)  Data Base status: Operational/Ongoing
(DP)  Date of fora completion: 03-17-83
(CAP)  Functional capabilities of model: The model is designed for
    simulation between sunrise and sunset on a single day.  It has five
    levels of vertical resolution but describes only one area of an
    urban domain at a particular time.  Concentrations are output for
    each 30 minutes along the trajectory.
(ASM)  Basic assumptions of model: The model assumes a Lagrangian
    parcel of air of dimensions typically 5x5 km by 1.5 tea high.  The
    parcel moves with wind/ entraining emissions which enter into the
    photochemical reactions.  Initial leading of pollutants is
    specified, and the parcel has a rigid upper boundary and no lateral
    diffusion.
(IMP)  Input to model: 1. Emissions Inventory for hydrocarbons,
    nitrogen oxide.
    2.  Surface network air quality and meteorological measure-
    ments.
    3.  Upper air radiosonde data.
    4.  Solar radiation data.
    The Regional Air Pollution Study (RAPS - St. Louis) data base is
    being used with LPAQSM.
(OUT)  Output of model: Output is in the form of computer printout*
    Concentrations of ozone, carbon monoxide, sulfur dioxide,
    hydrocarbons, and nitrogen oxides are supplied at 30 minute
    intervals for 5 levels in the vertical.
(APP)  Applications of model: The model builder. Environmental Research
    and Technology, Inc., has tested the model against data in Los
    Angeles as well as using it in environmental impact assessments.
    EPA is testing the model against the RAPS data base.
(HDtf)  Computational system requirements - Hardware: Mainframe Univac
    1110 ;Disc storage 60,000 words ^Magnetic t Printer standard
(LNG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    -f gramming
(ATP)  Air Models - Type of model: Numerical reactive
(OAQ)  Model reviewed and approved by OAQPS? NO
(PMP)  Production method of primary pollutant in model: Primary
    (emitted directly into atmosphere)
(MPR)  Process used to remove pollutant from atomosphere: Chemical
(THE)  Sample averaging time used: less than 24 hours


                             1368

-------
                             Accession No.  16402000121    
-------
                             Accession  No.   16402000122

(DQ)  Date of Questionalre: 12-02-82
(HAM)  Mane of Data Base of Model:  LIVERMQRE REGIONAL AIR QUALITY  MODEL
(ACR)  Acronym of Data Base or Model:  LIRAQ
(MED)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/OvervieH of Data Base  or Model: LIRAQ is a single  level
    grid nodel designed to predict ozone concentration in an urban
    area.  The model simulates emissions transport and diffusion,  and
    photo- chemical reactions.
(CTC)  CONTACTS: Jack shreffler Environmental Sciences Research
    Laboratory Loc: Research Triangle  Park   Ph: (919)541-3659
    Loc: NC, 27711
(STA)  Data Base status: Operational/Ongoing
(DP)  Date of fora completion: 03-17-83
(CAP)  Functional capabilities of nodel: The nodel is designed
    primarily for single day simulations.  It has a single level in the
    vertical although uses an analytic method to infer vertical
    profiles.  The grid is typically  20 elements in each axis.
    Pollutant outputs represent 1-hour concentrations.
(ASM)  Basic assumptions of model: The grid model can be set with
    variable grid although a mesh of  5x5 km is recommended for
    photochemistry because of storage  problems.  A wind processor
    creates a divergence free Mind field over the region.  Emissions
    are added hourly.
(IMP)  Input to model: The model requires an input data base including:
    1.  gridded emissions
    2.  a  dense network giving meteorology and air quality
    3.  upper air Hinds
    4.  solar radiation data
    The RAPS data base (St. Louis) is being used by EPA.
(OUT)  Output of model: Primary output is by microfiche with a vide
    variety of graphics.   At each station a time series of predicted
    pollutants is given.   Also, for each hour  of the simulation a
    contour nap of each pollutant is produced. A verification package
    •ill produce comparisons of predicted  and  observed valves including
    correlations.
(APP)  Applications  of model: LIRAQ is being used by the Bay Area Air
    Pollution Control District  (San Francisco) for air guality
    planning.  The model is being tested by EPA  on the RAPS data base-
WDM)  Computational system requirements - Hardware: Mainframe CDC 7600
    fDisc  storage  1.5 million words ;Magnetic  Printer standard
(LNC)  Computational system requirements - Language(s) used: Fortran
    Microfiche plotter
(ATP)  Air Models -  Type of model: Numerical reactive
(OAQ)  Model  reviewed  and  approved by  OAQPS? NO
(PHP)  Production  method of primary pollutant  in model:  Secondary
     (produced in  atmosphere by  chemical  reactions)
(MPR)  Process  used  to  remove pollutant  from atomosphere:  Chemical
(THE)  Sample averaging time used: less  than 24  hours
(SRC)  Source of  pollutant: Multiple point and limited  area
(AR)  Area where  sample  Has collected:  level or  gently  rolling  terrain.
(RIG)  Distance  traveled by pollutant  from source: 60-100  km
(RIP)  References -  User manuals,  documentation, etc.:


                             1370

-------
                             Accession No.  16402000122    (cont)

    Livernore Regional Air Quality Model (LIRAQ) -
    Transfer to EPA.
    OCRL - 52864, Laurence Livermore Laboratory, March 21/  1980.
    The EPA has United access through the Laurence Berkeley
    Laboratory Computer system.
    (see M9999 9999 04)
CROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Sciences Research Laboratory.
                             1371

-------
                             Accession No.  16402000125

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Air Resources Laboratory Atmospheric
    Transport and Diffusion
(ACR)  Acronym of Data Base or Model: TRAJ
(MED)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: The trajectory model
    developed by Jerome Hefter is a computerized post-facto trajectory
    model intended primarily for use in calculating transport/
    diffusion/ and deposition of effluents on regional and continental
    scales.
(CTC)  CONTACTS: Dale Coventry  U.S. EPA/ Environmental Sciences
    Research
    Laboratory/ Monitoring & Data Analysis
    Loc: Research Triangle Park  Ph: (919)541-3668
    Loc: North Carolina 27711
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 03-17-83
(CAP)  Functional capabilities of model: In its present form 5-day
    trajectories FORTRAN origin in North America 2) six-hour time
    intervals and 3) forward and backward in time.
(ASM)  Basic assumptions of model: The model moves the trajectory with
    the average value of the winds in the layer selected/ either
    surface or aloft.
(INP)  Input to model: 1) Location of trajectory end-point  2) Starting
    Date
    3) Number of Days  4) Direction in Time  5) Map Boundaries
    6)  Met Data provided by Asheville sorted by Time and Stored on
    Magnetic Tape.
(OUT)  Output of model: Tables of trajectories points for every six
    hours of each trajectory Tables of transport- layer depth every
    three-hours for each trajectories Tables of maximum vertical
    wind-shear in transport layer every three-hours each trajectories
    Pricier - plots of trajectories - optional Optional - vertical
    potential - temperature profiles for each STA Optional - Uooographs
    for each STA Optional - Plotted concentration and deposition
    accounts.
(APP)  Applications of model: SOURCE IDENTIFICATION and SOURCE IMPACT
    are two of this model's applications to date.
(HDU)  Computational system requirements - Hardware: Mainframe Univac
    1110 ;Disc storage 84 k ;Magnetic tape stor Printer any line
    printer ;Card reader/punch
(LNG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: operator Knowledge/Skills: Pro
    graining
(ATP)  Air Models - Type of model: Gaussian dispersion
(OAQ)  Model reviewed and approved by OAQPS? NO
(MPR)  Process used to remove pollutant from atomosphere: Negligible
    removal
(TME)  Sample averaging time used: less than 24 hours
(SRC)  Source of pollutant: limited point (less than 10-20)
(AR)  Area where sample was collected: level or gently rolling terrain.
(RNG)  Distance traveled by pollutant from source: more than 100 km


                             1372

-------
                             Accession No.   16402000125    (cont)

(REF)  References - User Manuals, docunentation, etc.:
    NOAA TECHNICAL MEMORANDUM ERL ARL-81
    (ARL-ATAD)
    Jerone L.  Hefter
(CUM)  Contact name(s): Coventry,D.
(COR)  Contact organization: U.S. EPA, Environmental Sciences Research
    Laboratory, Monito
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Erivironaental Sciences Research Laboratory.
                             1373

-------
                             Accession No.   16402000126

(DQ)  Date of Questionaire:  12-02-82
(RAM)  Name of Data Base of Model:  Reactive Plume Model
(ACR)  Acronym of Data Base or Model:  RPM-II
(MED)  Media/Subject of Data Base or Model: Air
(A8S)  Abstract/Overview of Data Base or Model: The Reactive Plume
    Model (RPM-II) is an air quality simulation nodal that provides a
    tine history of pollutant concentrations within a chemically
    reactive point source plume* Its purpose is to estimate the
    concentration levels these species will attain within the plume
    downwind of the source by simulating in the model the physical and
    chemical processes responsible for the  plume's evolution*  These
    include the emissions of primary pollutants from the source, their
    transport and dispersion downwind, their chemical transformation
    into secondary products, and the entrainment of background ambient
    air into the plume*  Simulated species  of particular interest would
    include NO, N0<2>, and 0<3>.  RPM-II was developed and tested by
    Systems Applications, Inc. (SAX) of San Rafael, California for the
    Environmental Protection Agency.
(CTC)  CONTACTS: Kenneth L.  Schere   Environmental Sciences Research
    Laborat Loc: MD-80    Ph: (919) 541-3795
    Loc: RTP, MC 27711
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 03-17-83
(CAP)  Functional capabilities of model: RPM-II simulates the reactive
    system of N0- HC-0<3> species with the Carbon Bond-ll
    generalized kinetic mechanism.   This includes a set of 68 chemical
    reactions with 35 separate species, including NO, N0<2>, 0<3>s six
    classes of organics, PAN, CO, and other intermediate products.  The
    model is constructed within a Lagrangian framework.  The plume
    parcel is followed downwind from the source as it is advected by
    the wind. The frame of reference moves  with the parcel.  The pluae
    model is composed of a fixed number of  cross-wind cells/ typically
    from 2 to 10, that can expand as they move downwind.  The rate of
    horizontal dispersion is determined by  Fickian diffusion
    considerations. The rectangular cells comprising the plume are
    considered well- mixed reactors.  The model is applicable under
    limited nixing atmospheric conditions and ground-level computed
    concentrations are relevant only after  the plume touch-down point
    has been reached.  While RPM-II is primarily designed for use as a
    point source plume model/ an urban area plume may also be modeled
    by considering the source area as a virtual upwind point source.
    The model simulates the evolving concentrations using time steps of
    less than a minute, but the model inputs and outputs are hourly
    averages.  Concentrations units are in  parts per million. The
    model's limitations include the requirement for valid ambient
    concentration estimates of reactants along the plume trajectory,
    and the specification of valid wind speeds and dispersion rates,
    especially in complex terrain applications.
(ASM)  Basic assumptions of model:  The plume is assumed to advect
    dowr.wind of the source according to the specified hour averaged
    wind speed and direction.  Fickian dispersion is assumed to govern
    the diffusion between adjacent cells in the model and all cells are


                             1374

-------
                             Accession No.  16402000126    (cont)

    assumed to be well-mixed.  The numercial solution of the set of
    cfteraical reactions is by a modified version of the GEAR routine, a
    Predictor - corrector method for stiff systems of differential
    equations,  it is implicity assumed that the Carbon Bond-II
    mechanism is an accurate description of the chemical
    transformations of NO-HC-0<3> in the real atmosphere.
(IMP)  Input to model: Inputs to the model include:  Hind speed and
    dispersion rates as a function of time and downwind distance
    respectively, average initial concentrations for all species and
    the time- varying ambient concentrations (an option), hourly source
    emission rates, and the time varying photolysis rates for the
    photolysis chemical reactions.  The reactions comprising the
    chemical kinetic mechanism are also a set of inputs.
(OUT)  Output of model: Outputs from RPM-II include:   a printout of all
    input data, a printout of the program control variables, a printout
    of plume concentrations, plume widths, plume depths, wind speed,
    and photolysis factors at various downwind distances, and printer
    plots of average plume and ambient concentrations versus time.
    Average concentrations are printed for each species within each
    plume cell as well as average concentrations for the entire plume.
(APR)  Applications of model: This model aids in the analysis of
    reactive plumes from point sources.  A limited data base from such
    sources was collected as part of the Midwest Interstate Sulfur
    Transport and Transformation (MISTT) project in and around St.
    Louis in
    1976.   SAI analyzed this data base for use with the RPM-II and
    applied the model  to 10 test cases from it for the EPA.  Despite
    problems with the  ambient HC measurements in the  data base,  model
    results are encouraging.
(HDM)  Computational system requirements - Hardware:  Mainframe Univac
    111C  or equivalent ;Disc storage about 65,0 Printer any model
 model
    predictions using  MISTT data.   Proc. of Second  Joint
    Conference on Applications of  Air Pollution Meteorology, New
    Orleans, La.  March 1980.
    Liu, M.K., D.A.  Stewart and  P.M.  Roth,  1978:   An  improved version
    of  the  Reactive  Plume  Model  (RPM-II).   Paper  presented  at  the
    Ninth NATO/CCMS  International Technical Meeting on Air Pollution


                             1375

-------
                             Accession No.   16402000126    (cont)

    Modeling/ Toronto, Canada.  August 1978.
    Only draft documentation iron EPJl exists on the «odel at this ti«e.
(CUM)  Contact na«e(s): Schere,K.L.
(COR)  Contact organization: Environmental Sciences Research Laboratory
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental processes and Effects
    Research.Environmental Sciences Research Laboratory.
                             1376

-------
                             Accession No.   16402000127

(DQ)   Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model:  SAI Airshed Model
(ACR)  Acronym of Data Base or Model: SAIASP
(MED)  Media/Subject of Data Base or Model:  Air
(ABS)  Abstract/Overview of Data Base or Model: The SAI AIRSHED Model
    Is a grid-type photochemical air quality simulation nodel.   Its
    primary purpose is to estimate the evolution of concentrations of
    urban atmospheric smog-related pollutants/ including ozone* These
    concentration estimates are based on simulating the physical and
    chemical processes occurring in the ambient atmosphere that are
    responsible for ozone production.  These include the emissions of
    organics and N0(x)/ chemical reactions of these precursors,
    advection and dispersion among grid cells/ and transport of ozone
    and its precursors into the model region from upwind areas.  The
    precursors include N0(2)/ NO/ and six classes of organics.
    Typically a model simulation period is on the order of one  day.
    This model is guite complex and is rather input data-intensive.
    Nevertheless/ it is useful for providing spatial and temporal
    resolution of ozone concentration estimates based on a detailed
    consideration of the underlying physical and chemical processes.
(CTC)  CONTACTS: Kenneth L. Scherefcb-Environmental Sciences Research
    Laborat Loc: MD-80    Ph: (919) 541-3795
    Loc: RTF/ NC 27711
(STA)  Data Base status: Operational/Ongoing
(DF)   Date of form completion: 03-17-83
(CAP)  Functional capabilities of model: The model considers emissions/
    the atmospheric chemistry of ozone formation/ advection and
    dispersion.  The chemistry embedded in the model includes 71
    reactions and 35 species including N0(2)/ NO/ six classes or
    organics/ ozone/ PAH/ CO/ and several intermediate products.
    Advection is simulated by estimating the transfer between
    neighboring cells, and dispersion is estimated by using horizontal
    and vertical diffusivity coefficients.  Hind shear can also be
    considered.  The model considers these processes in each cell of a
    three dimensional grid system.  This grid system typically includes
    four to six vertical layers of between 15 x 15 and 30 x 30 cells/
    each cell being between  two and ten kilometers square.  The model
    simulates the evolving concentrations using time steps of less than
    a minute/ but the model  inputs and outputs are hourly averages.
    The principal limitations of the model are its complexity and the
    substantial amount of data required.
(ASM)  Basic assumptions of model: The SAI Airshed Model uses a finite
    difference method to calculate the progression of pollutant
    concentrations through a series of time steps.  The model assumes
    flat terrain in estimating concentrations/ although the influence
    of the terrain on the  wind field can be considered if the user is
    able to do so.  All emissions and all concentrations are assumed
    uniformly mixed throughout each grid cell.  It is assumed that
     turbulent fluxes are linearly related to  the gradients in the mean
    concentrations so that eddy diffusivlties  are used in the diffusion
    calculations.
 (INP)  Input to model: The SAI Airshed Model  requires various


                             1377

-------
                            Accession Mo.  16402000127     (cont)

    emissions,  meteorological  and  air quality  data  for each grid cell
    in the grid system.   The emissions inventory  must be  gridded,
    hourly, and must include 110(2),  MO,  and five  classes  of organics.
    The meteorological and air quality input data are interpolated  from
    the values  measured by a relatively  dense  monitoring  network.   The
    meteorological data include yind speed, wind  direction, nixing
    height, atmospheric stability  and photolysis  rate constant and  the
    air quality data include concentrations of NOCx), organics, and
    ozone at the beginning of  the  simulation and  at the upwind
    boundary.  If an inert pollutant is  being  simulated,  only data  for
    that pollutant is necessary.
(DOT)  Output of model: The principal output of the model is a printed
    array of concentrations at ground-level or any  level  aloft
    throughout the grid for each hour for each major pollutant.  This
    array of concentrations is also put  into  disc storage in case  the
    user wishes to develop programs to  analyze the  data  further.   In
    addition, the model provides the option of estimating
    concentrations at specific sites by  interpolating  among the
    concentrations in the surrounding grid cells.
(APP)  Applications of model:  The  SAI Airshed  Model has  been used by
    EPA and some state agencies to estimate  the impact  of emission
    controls on urban ozone concentrations.   The model  is currently
    undergoing evaluation and verification as part of the EPA Regional
    Air Pollution Study (RAPS) model validation program.   The urban
    area modeled in this study is  St. Louis,  MO.
(HDIO  computational system requirements - Hardware: Mainframe Univac
    1110 or  equivalent ?Disc storage about 70,0 Printer  any model
(LUG)  Computational system requirements - Language(s)  used: Fortran

-------
                             Accession No.   16402000145

(DQ)   Date of Questionaire: 12-02-82
(HAM)  Name of Data Base of Model: Aerosol  Transport Computer Model
(ACR)  Acronym of Data Base or Model: AROSOL
(MED)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: AROSOL is a
    three-dimensional K-theory model for the urban aerosol.  AROSOL
    computes particle size and composition  distributions over a
    three-dimensional grid covering a given urban area.  The purpose of
    the program is to establish the urban aerosol source-receptor
    relationships and permit calculation of other quantities related to
    the urban aerosol such as visibility, total mass concentration, or
    hourly average respiratory dose of specific chemical species.  The
    complete model to permit these calculations is still under
    development. Completed portions of the  model have been used in
    studies of gas transport using the St.  Louis RAPS data base and in
    modeling the super micrometric portion of the urban aerosol for
    Maricopa County, Arizona; St. Louis, Missouri; and Buffalo, NeM
    York.
(CTC)  CONTACTS: Dr. Tate Tsang University of Texas at Austin
    Loc: Chemical Engineering Dept.   Ph:  (512) 471-1328
    Loc: Austin, Texas 78712
(STA)  Data Base status: Operation/Ongoing
(DP)  Date of form completion: 3-17-83
(CAP)  Functional capabilities of model: AEROSOL will calculate time
    variations in pollutant gas concentrations and aerosol size and
    cocposition distributions in  a three-dimensional grid covering a
    given urban area.  Since it is a K-theory model, it is expected
    that it will describe well most atmospheric conditions except those
    that are very stable or unstable.
(ASM)  Basic assumptions of model: The model assumes that the urban
    atmospheric concentrations of gases and aerosols can be calculated
    froB a knowledge of their sources and  the physical and chemical
    processes intervening  in the  urban atmosphere. Atmospheric
    dispersion is assumed  to be described  by the first order closure
    assumption for turbulence—WK theory.1* The model solves the
     resultant conservation equations for pollutant gases or the general
    dynamic  equation for the aerosol either by finite-difference
     techniques or by orthogonal collocation on finite  elements with
    both options available.
(IMP)   Input  to model:  Input to the  model  includes:  numerical grid for
     the urban area,  hourly primary  source  inputs  (point, line  and
     area). Hind field,  stability  conditions, and urban surface
     roughness parameters.  Calibration and verification of model
     provided  by comparisons   to  analytical solutions for single  line
     and  area  sources in numerical grid.
(DOT)   Output of model: Output for  pollutant gases is  in form  of
     concentra- tions (Hg/m(3)) at the  grid points  in the
     three-dimensional  array, extending vertically  up to  the mixing
     height.  For  the  urban  aerosol,  output  will  include particle  and
     composition distributions  at  the grid  points.  These may be
     presented in tables or  as  three-dimensional plots.
 (HDW)   Computational system  requirements - Hardware: Mainframe CDC


                              1379

-------
                             Accession No.   16402000145    (cont)

    6600, 7600, CYBER ;Disc storage 220k ;*agnetic Printer line printer
    jCaid reader/punch
CLHG)  Computational system requirements -  Language(s) used:  Fortran
(OSK)  Computational system requirenents: Operator Knowledge/Skills: Pro
    graming ; Engineer ing
(ATP)  Air Models - Type of model:  Numerical reactive
(QAQ)  Model reviewed and approved by OAQPS? NO
(PHP)  Production nethod of primary pollutant in model: Primary
    (emitted directly into atmosphere);    Secondary
(MPR)  Process used to remove pollutant from atomosphere: Combination

-------
                             Accession No.  16402000146

(OQ)  Date of Questionaire: 12-02-82
(HAM)  Name of Data Base of Model: Simulation of Photochemical Smog
    with Kinetic Mechanisms
(ACR)  Acronym of Data Base or Model: CKIN ;CHEMK
(MED)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: Mechanisms that
    describe the formation of photochemical smog are developed using a
    computer modeling technique directed toward the simulation of data
    collected in two snog chambers = an indoor chamber and a dual
    outdoor chamber.  Individual compounds for which specific
    experiments were simulated and mechanisms developed include the
    following:  formaldehyde, acetaldehyde, ethylane, propylane,
    butane/ and toluene. Experiments in both chambers were simulated
    for all these compounds.  The mechanisms reported describe the
    decay of the premium organic compounds, formation and decay of
    secondary organics/ conversion of nitrogen oxides, formation of
    nitrates, and the appearance and decay of ozone.  Special emphasis
    is given to the chemistry of toluone.  CHEMK is a fortran computer
    program which, when given a predetermined kinetic mechanism,
    computes the concentration of the various readants in time.
(CTC)  CONTACTS: C.Z. Whitten   Systems Applications, Inc.
    Loc:  950 Northgate Dr.   Ph: (415) 472-4011
    Loc:  San Rafael, CA  94903
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 03-17-83
(CAP)  Functional capabilities of model:  This program incorporates the
    Gear  Integration Package of A.  Hindmarsh of Lawrence Livermore
    Laboratories (Livermore, California).   This new version of CHEMK
    can handle chemical kinetic mechanisms containing up to 89 species
    and up to 200 reactions.  The new version can also handle
    photolysis rate constants and temperatures that very with time, and
    reaction schemes with stoichiometric  coefficients. Program requires
    approximately 44k to load.
(ASM)  Basic assumptions of model:  Calculation of the time-dependent
    concentration profiles  of a number of reacting  species in a complex
    reaction mechanism is central to the  science of chemical  kinetics.
    Such  calculations allow this validation of kinetic schemes and
    reaction rate constants through the comparison  of predicted
    concentrations with experimental data.  Efficient computer programs
    to integrate the system of ordinary differential equations (ODES)
    associated with a kinetic mechanism,  given a set of initial
    conditions,  have been developed.   CHEMK relies  on these advances.
(IMP)  Input to model:  Two  separate sets  of data are needed to execute
    program:   One set controls the  computational part of the  program,
    and is necessary to establish the integration routine.  The second
    set controls the plotter output and provides the parameters
    necessary  to specify the output format.   For details see  Reference
    f2.
(OUT)  Output  of model:  Reactions are listed along  with summary of
    Initial  conditions;  reaction rate tables;  line  printer  "plots" of
    concentration versus time.
(APP)  Applications of  model:  Tested  within Atmospheric Chemistry  &


                             1381

-------
                             Accession No.   16402000146    (cont)

    Physics Division, ESRL, EPA (Project Officer Harcia Dodge). No
    known linkage to other models.
(HDH)  Computational system requirements -  Hardware: Calculator
    /Mainframe any IBM or CDC with Fortran  IV ;Printe Card reader/punch
    reader required
(LHG)  Computational system requirements -  Language(s) used:  Fortran IV
(QSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gramming ^Chemistry
(ATP)  Air Models - Type of model: Numerical reactive
(OAQ)  Kodel reviewed and approved by OAQPS? YES
(PUP)  Production method of primary pollutant in model: Secondary
    (produced in atmosphere by chemical reactions)
(MPR)  Process used to remove pollutant from atomosphere:  Combination
(THE)  Sample averaging time used: less than 24 hours
(SRC)  Source of pollutant: multiple point  (more than 10-20)
(AR)  Area where sample was collected:  complex: rough terrain close to
    body  of water or in valley
(RNG)  Distance traveled by pollutant from  source: less than  60 km
(REF)  References - User manuals/  documentation, etc.:
    Modeling of Simulated Photochemical Smog
    with Kinetic Mechanisms, Vol.  1, Final  Report; EPA-600/3-
    80-028a. February 1980
    Modeling of Simulated Photochemical Smog with Kinetic
    Mechanisms, Vol.  2, CHEMK:  A Computer Modeling Scheme
    for Chemical Kinetics; EPA-600/3-80-028b February 1980
    (user manual)
(CNM)  Contact name(s): Whitten,G.Z.
(COR)  Contact organization: Systems Applications, Inc.
(ROR)  Responsible Organization: Office of  Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Sciences Research Laboratory.
                            1382

-------
                             Accession No.   16402000147

(DQ)   Date of Questionaire: 12-02-82
(NAM)  Karae of Data Base of Model:  Photochemical Box Model
(ACR)  Acronym of Data Base or  Model:  PBM
(MED)  Kedia/Subject of Data Base or Model:  Air
(A8S)  Abstract/Overview of Data Base or Model: The Photochemical  Box
    Model (PBM) is a stationary single cell  photochemical  air  quality
    simulation model (PAQSM) designed to simulate the concentrations  of
    particular pollutant species within a well-mixed domain. Typically
    the domain is centered on an urban area.   The horizontal dimensions
    of the cell are on the order of 20-30 km and are temporally
    invsrient/ while the vertical dimension  of the cell changes  to
    reflect the diurnally varying growth of  the mixed layer above  the
    earth's surface. The principal  species simulated by the PBM  include
    carbon monoxide, nitrogen monoxide and dioxide, ozone, and five
    lumped-hydrocarbon classes:  olefins/ paraffins/ aldehydes/
    aroroatics/ and non-reactives. The processes of transport through
    the domain/ entrainroent from aloft/ injection of source emissions
    through the bottom of the cell/ and chemical transformations within
    it are modeled.  The PBM is quite simple in comparison to  other
    PAQSM's.  It provides an hour-averaged measure of air  quality  taken
    as a spatially integrated average over the volume of the cell  for
    each hour of simulation. Spatial resolution is not possible  within
    the model's structure.
(CTC)  CONTACTS: Kenneth L. Schere#b-U.S. SPA Office of Research and
    Develop Environmental Sciences  Research  Laboratory.
    Loc; Research Triangle Park/ MD-80    Ph: (919) 541-3795
    Loc: North Carolina 27711
(STA)  Data Base status: Operational/Ongoing
(DF)   Date of form completion:  03-17-83
(CAP)  Functional capabilities  of model: The model considers emissions/
    the atmospheric chemistry of ozone formation/ and advection. The
    chemical kinetic mechanism  within the PBM contains 24  species
    participating in 36 reactions.   The horizontal extent  of the model
    domain enables only a portion of an urban area to be modeled at a
    time/ and hence an entire urban airshed  connot be considered by the
    PBM.  Typically the domain  encompasses the area where  most of  the
    emissions sources are concentrated.  The model domain  is on  the
    order of 20 km x 20 ks x 1.5 km in dimension and is considered to
    be a homogeneous volume of  air.  The meteoro logical situation of a
    prevailing stagnating anti-cyclone might be most conducive to
    application of the PBM.
(ASM)  Basic assumptions of model:  The PBM assumes a well-mixed  model
    domain at all times and a homogeneous pattern of emissions sources
    across the bottom of the cell.   The winds are assumed  to fall  into
    one of two categories: (1)  very light and directionally variable  or
    (2) above 2 m/s and directionally stable throughout the model
    simulation period.  The rates of change  of the modeled
    concentrations are described by a set of coupled ordinary
    differential equations that are solved numerically through a method
    developed by Gear.
(IMP)  Input to model: The PBM  requires various emissions/
    meteorological/ and air quality data to  be pre-processed before the


                             1383

-------
                             Accession No.   16402000147    (cont)

    nodel can be executed.  The emissions inventory must have hourly
    resolution and must include CO, N0(x),  and five classes of organic
    hydrocabons.  The Meteorological and air quality data are averaged
    over the available measurements.  Some of the monitors should be
    located outside of the model domain to give an indication of the
    upwind boundary concentrations.  The meteorological data include
    wind speed, wind direction, mixing height, and photolysis rate
    constants and the air quality data include concentrations of N0(x),
    organics, and 0(3) at the beginning of the simulation and at the
    upwind boundary.
(OUT)  Output of model: The model provides a list of simulated
    concentra tions for all species at ten-minute intervals during a
    model simulation.  The current mixing height, photolysis rate
    constants, and Mind speed are also printed out.  Also printer plots
    of the time series of predicted and observed (if available)
    concentrations are provided as well as a summary of hour-average
    model predictions for principal species.  The hour-average
    predicted and observed concentrations from a given simulation may
    be saved on disc storage at the user's discretion.
(APP)  Applications of model: The Photochemical Box Model is an
    evolving PAQSN being developed by the Modeling Sciences Section of
    EPA's Meteorology Division.  It has been used to model the air
    quality for St. Louis, Mo., and Houston, Tx.  The model is
    currently undergoing evaluation and verification as part of the EPA
    Regional Air Pollution Study (RAPS) model validation program.
(HOW)  Computational system requirements - Hardware: Mainframe Onivac
    1100 or equivalent ;Disc storage up to 25 t
(LN6)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gramming ^Engineering ^atmospheric chemist and meteorolog
(ATP)  Air Models - Type of model: Numerical reactive
(OAQ)  Model reviewed and approved by OAQPS? NO
(PMP)  Production method of primary pollutant in model: Secondary
    (produced in atmosphere by chemical reactions)
(MPR)  Process used to remove pollutant from atomosphere: Chemical
(THE)  Sample averaging time used: less than 24 hours
(SRC)  Source of pollutant: limited area sources, and multiple point
    sources included.
(AR)  Area where sample was collected: level or gently rolling terrain.
(RNG)  Distance traveled by pollutant from source: less than 60 km
(REF)  References - User manuals, documentation, etc.:
    Schere, K.L. and K.L. Demerjian, 1977.
    A photochemical box model for urban air quality simulation
    in Proceedings of the 4th Joint Conference on Sensing of
    Environmental Pollutants, New Orleans,  La., Nove. 1977,
    pp. 427-433.
    Demerjian, K.L. and K.L. Schere, 1979:   Application of a
    photochemical box model for 0(3) air quality in Houston,
    Texas, in Proceedags of Ozone/Ox id ants:  Interactions with
    the Total Environment II, Houston, Texas, October 1979,
    pp. 329-352.
(ROR)  Responsible Organization: Office of Research and


                             1384

-------
                         Accession No.  16402000147    (cont)

Development.Office of Environmental Processes and Effects
Research.Environmental Sciences Research Laboratory.
                          1385

-------
                             Accession Mo.   16402000148

(DQ)  Date of Questionaire: 12-02-82
(HAM)  Kane of Data Base of Model: Point Source Models
(ACR)  Acronym of Data Base or Model: PTMAX /PTDIS ;PTMTP
(MEO)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: These point source
    models use Briggs plume rise methods and Pasquill-Gifford
    dispersion nethods as given in EPA's AP-26, "Workbook of
    Atnospheric Dispersion Estimates/* to estinate hourly
    concentrations for stable pollutants. PTMAX is an interactive
    program that performs an analysis of the Maxima short-term
    concentrations from a single point source as a function of
    stability and uind speed.  The final plume height is used for each
    computation. PTDIS is an interactive program that estimates
    short-term concentrations directly dounuind of a point source at
    distances specified by the user.  The effect of limiting vertical
    dispersion by a mixing height can be included and gradual plume
    rise to the point of final rise is also considered.  An option
    allows the calculation of isopleth half-uidths for specific
    concentrations at each dotmuind distance. PTMTP is an interactive
    program that estimates for a number of arbitrarily located receptor
    points at or above ground-level, the concentration from a number of
    point sources.  Plume rise is determined for each source.  Dounuind
    and crossuind distances are determined for each source- receptor
    pair.  Concentrations at a receptor from various sources are
    assumed additive.  Hourly meteorological data are used} both hourly
    concentrations and averages over any averaging time from one to 24
    hours can be obtained.
(CTC)  CONTACTS: D. Bruce Turner     D.S. EPA, Environmental Operations
    Branch Loc: Mail Drop 80  Ph: (919) 541-4564
    Loc: Research Triangle Park, North Carolina 27711
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 03-17-83
(CAP)  Functional capabilities of model: PTMAX estimates maximum
    ground- level concentration and distance to maximum for
    combinations of stability class and wind speed (internal to
    program). PTDIS estimates the ground-level concentrations directly
    dounuind of source for each dounuind distance specified (maximum
    number of distances is equal to 50) for one set of specified
    meteorological conditions.  A table is produced with distance,
    height of plume, and ground-level concentration given for each
    distance.  The program may reiterate for additional meteorological
    conditions in the same run, or for additional source and
    meteorology in the same run. PTMTP estimates concentrations at
    arbitrary heights above ground for multiple sources at multiple
    receptors for multiple hourly time periods.  Input data is repeated
    in tabular form.  Total concentrations at each receptor and
    concentration contribution from each source may be tabulated
    hourly.  Average concentrations (maximum 24 hours) are given for
    each receptor.  The concentration contribution from each source for
    averaging time is optional.
(ASM)  Basic assumptions of model: A.  Source-Receptor Relationship.
    For PTMAX all receptor locations are determined internally for a


                             1386

-------
                             Accession No.   16402000148     (cont)

    point of  maximum.   For  PTOIS all  receptors are considered directly
    downwind  of the plume.   For PTMTP each  source and receptor is
    abritrarily located by  coordinates In a kilometer grid  scheme.  B.
    Emission  Rate*   A  single constant eaission rate for  each  source is
    assumed.  C.  Chemical Composition.  The models treat chemical
    composition as  a single inert pollutant.  D.   Plume Behavior.
    Gaussian  spreading is both horizontal and vertical.   Briggs (1969,
    1971, 1972) plune  rise  formulas are used*  Eddy reflection from the
    ground in all three models is assumed/  and multiple  eddy
    reflections from the ground and nixing  height are used  in PTDIS and
    PTMTP. If the  plume height exceeds the mixing height,  the
    ground-level concentration is assumed to be zero. E. Horizontal
    Hind Field.  The wind speed is internal in PTMAX/ and it  is
    user-specified  in  PTDIS.  The wind speed and direction  are
    user-specified  in  PTMTP. F.  Vertical Wind Speed. This is assumed
    to be equal to  zero. G.  Horizontal Dispersion.  A Gaussian
    horizontal plune shape  is assumed.  Dispersion parameters of
    Pasguill- Gifford  are dependent upon stability class. H.   Vertical
    Dispersion.  A  Gaussian plume shape is  assumed.  Dispersion
    parameters of Pasquill-Gifford are dependent upon stability class.
    I.  Chemistry/Reaction  Mechanism.  This is not treated. J.
    Physical  Removal.   This is not treated  by the models. 1C.
    Background.  This  is not treated  by the models.
(OUT)   Output of model: PTMAX:  Output from the model is a
    two-dimensional table giving maximum concentration/  distance to
    maximum/  and height of  final rise for each stability-wind speed
    combination. OUTPUT: PTDIS:  Output is  ground level  concentration
    for a set of meteorological conditions. OUTPUT: PTMTP model
    estimates output concentrations at various heights.  INPUT: PTMAX
    has the ability to run  additional sources in the same run.  PTDIS
    can run additional meteorological or additional sources and
    meteorology or  other distances/ additional sources and  meteorology
    in the same run. PTMTP  has optional output for hourly periods  and
    for concentration  contribution from each source for  averaging  tine.
    It can run for  additional meteorology or additional  receptors/  and
    meteorology in  the same run.  This model/ which gives estimates for
    a  single  point/ would not normally be calibrated or  verified in
    actual application/ but rather would be used for planning or design
    purposes  to find a "worst case" impact.
(APP)   Applications of model: The source program for this dispersion
    model is  available as part of UNAMAP (Version 3)/ PB 277 193,  for
    $420 from Computer Products/ national Technical Information
    Service,  Springfield, VA  22161.
(HDV)   Computational system requirements -  Hardware: Mainframe Uni
    1110 ;Disc storage 12K  core memory
(LUG)   Computational system requirements -  Language(s) used:  Fortran
(PMP)   Production method of primary pollutant in model:  Primary
    (emitted  directly  into  atmosphere)
(MPR)   process used to remove pollutant fro* atomosphere: Negligible
    removal
(THE)   Sample averaging time used: less than 24 hours
(SRC)   Source of pollutant: limited point,  multiple point/  and limited


                             1387

-------
                             Accession No.   16402000148    (cont)

    area
CAR)  Area where sample uas collected: level or gently rolling terrain.
(RNG)  Distance traveled by pollutant from  source:  less than 60 km
(REF)  References - User manuals/  documentation, etc.:
    Turner, D.B., and Busse, A.D., Users*
    Guides to the Interactive versions of Three Point Source
    Dispersion Programs:  PTMAX, PTDIS, and PTHTP,
    Preliminary Draft, Meteorology Laboratory, U.S.
    Environmental Protection Agency.   Research Triangle Park,
    NC 27711, 1973.
(CUM)  Contact name(s): Turner,D.B.
(COR)  Contact organization: U.S.  EPA, Environmental Applications  Branch
(ROR)  Responsible Organization: Office of  Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Sciences Research Laboratory.
                             1388

-------
                             Accession No.  16402000149

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Cliaatological Dispersion Models
(ACR)  Acronym of Data Base or Model: COM ;CDMQC
(MED)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: The Cliaatological
    Dispersion Models (CDMQC/ COM) determine long-term (seasonal  or
    annual) quasi-stable pollutant concentrations at any ground level
    receptor using average emission rates fron point and area sources
    and a Joint frequency distribution of wind direction, yind speed/
    and stability for the sane period.  The User's Guide for the
    Climatological Dispersion Model is available from the Environmental
    Protection Agency as EPA-R4-73-024 and from MTIS (accession number
    PB 227-346-AS). The Addendum To User's Guide For Climatological
    Dispersion Model describing the enhancements available in the CDMQC
    is available from EPA as EPA-45013-77-015 and from NTIS
    (PB-274-040).
(CTC)  CONTACTS: D. Bruce Turner     U.S. EPA, Environmental Operations
    Branch Loc: Research Triangle Park, Mail Drop 80   Ph: (919)
    541-4564
    Loc:  North Carolina 27711
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 3-17-83
(CAP)  Functional capabilities of model: All input to the models
    appears on output.  Long-term concentrations corresponding to the
    period of Joint frequency distribution of meteorological data
    (usually seasonal or annual), assuming that the emission inventory
    is valid for the same period, are produced for each receptor.  The
    two contributions to the concentration, those due to points and
    those due to areas/ are output.  Receptor locations are specified
    by the user.  An option is available to produce a pollutant
    rose-contribution to the total concentration from each direction.
(ASM)  Basic assumptions of model:
    CDMQC and CDM use an arbitrary location for each point source/ and
    area  sources are represented in uniform grid squares. Receptor
    locations are arbitrary/ as are release heights for point and area
    sources.  Receptors are assumed to be at ground level.  The model
    assumes that there are no terrain differences between the source
    and receptors. B.  Emission Rate.  A single rate is allowed for
    each  point and area source.  For area sources/ area integrations
    are done numerically/ one 22.5 degree sector at a time; sampling  at
    discrete points is defined by specific radial and angular intervals
    on a  polar grid centered on the receptor. C.  Chemical Composition.
    CDMQC and CDM treat one or two pollutants simultaneously. D.   Plume
    Behavior.  Only Briggs (1971) neutral/ unstable formula is used by
    the model.  If the stack height plus the plume rise is greater than
    the mixing height/ then the ground level concentrations are assumed
    to be equal to zero.  As an alternate to the Briggs formula/  the
    input value of the plume rise times the wind speed for each point
    source can be used.  No plume rise is calculated for area sources*
    CDMQC and CDM do not treat fumigation or downwash. E.  Horizontal
    Hind  Field.  The models use a climatoiogical approach/ and utilize
    16 wind directions and 6 wind speed classes.  The wind speed  is


                             1369

-------
                             Accession No.   16402000149    (cont)

    corrected for the release height based on the power law variation
    exponents from DeMarrais (1959).  A constant, uniform
    (steady-state) wind is assumed. F.  Vertical Hind Speed.  This is
    assumed to be equal to zero. 6.  Horizontal Dispersion.  The models
    use a clima- tological approach, and assume a uniform distribution
    within each of 16 sectors (narrow-plume approximation).  Averaging
    time for the models is one nonth to one year. H.  Vertical
    Dispersion.  The aodels use a semi- empirical/Gaussian plume with
    five stability classes as defined by Turner (1964).  Neutral
    stability is split into day/night cases on input, and dispersion
    coefficients are taken from Turner (1970).  The stability classes
    for area sources is decreased by one category from the input values
    (to account for urban effects).  Neutral dispersion coefficients
    are used for all neutral and stable classes. No provision is made
    for variations in surface roughness. I.  Chemistry/Reaction
    Mechanism*  The models use exponential decay, and a user-input
    half-life. J.  Physical Removal.  The aodels utilize exponential
    decay and a user-input half-life.  The same rate constant is aluays
    applied. K.  Background.  A single constant background value is
    Input for each pollutant.
(IMP)  Input to model: Point and area source data, as well as
    meteorological data must be input to the model.
(DOT)  Output of model: Output from the model includes:  input data;
    one month to one-year averaging time simulated (arithmetic mean
    only); arbitrary averaging time by the Larsen (1969) procedure
    (typically 1-24 hours) which assumes a lognormal concentration
    distribution and a pouer law dependence of median and maxinua
    concentrations on the averaging time; an arbitrary number and
    location of receptors; an individual point and area source
    culpability list for each receptor; and a point and area
    concentration rose for each receptor.
(APP)  Applications of model: The source programs for these dispersion
    models are available as part of UNANAP (Version 3), Computer
    Products, NTIS, Springvield, VA 22161.
(RDV)  Computational system requirements - Hardware: Mainframe Univac
    1110 ;Disc storage 49k
(Lie)  Computational system requirements - Language(s) used: Fortran V
(ATP)  Air Models - Type of model: Gaussian dispersion
(OAQ)  Model reviewed and approved by OAQPS? YES
(PMP)  Production aethod of primary pollutant in aodel: Priaary
    (emitted directly into atmosphere)
(MPR)  Process used to remove pollutant from atomosphere: Negligible
    removal ;Chemlcal
(THE)  Sample averaging time used: aore than 24 hours
(SRC)  Source of pollutant: multiple point (aore than 10-20)
(AR)  Area where saaple was collected: level or gently rolling terrain.
(RHG)  Distance traveled by pollutant from source: less than 60 km
(REP)  References - User manuals, documentation, etc.:
    Busse, A.D., and Zimmerman, J.R., User's
    Guide for the Climatological Dispersion Model, U.S.
    Environmental Protection Agency, Research Triangle Park/
    Worth Carolina, Environmental Monitoring Series,


                             1390

-------
                             Accession No.   16402000149    (cont)

    EPA-R4-73-024, 131 p. (MTIS accession number PB 227-346/AS,
    $4.75 paper copy), 1973.
    Brubaker, K.L.; Brown, P., and R.R, Cirillo, Addendum
    to User's Guide for Cliraatological Dispersion Model,
    U.S. Environmental Protection Agency, Research Triangle Park,
    Horth Carolina, EPA-450/3-77-015, 134 p. (»TIS accession
    number PB-274-040, $7.25 paper copy), 1977.
(CMM)  Contact nane(s): Turner,D.B.
(COR)  Contact organization: U.S. EPA, Environmental Operations  Branch
(ROR)  Responsible Organization: Office of  Research and
    Development.Office of Environmental Processes and Effects
    Research.Environaental Sciences Research Laboratory.
                             1391

-------
                             Accession No.   16402000150

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Naffle of Data Base of Model:  Gaussian Plume Multiple Source Air
    Quality Algorithm
(ACR)  Acronym of Data Base or Model: RAH
(MED)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: This short-term
    Gaussian steady-state algorithm estimates concentrations of stable
    pollutants from urban point and area sources*  Hourly
    meteorological data are used/ and hourly concentrations and
    averages over a number of hours can be estimated.  The Briggs plume
    rise and the Pasquill-Gifford dispersion equations with dispersion
    parameters thought to be valid for urban areas are used in the
    model.  Concentrations from area sources are determined using the
    method of Hanna, that is, sources directly upwind are considered
    representative of area source emissions affecting the receptor.
    Special features include determination of receptor locations
    downwind of significant sources and determination of locations of
    uniformly spaced receptors to ensure good area coverage with a
    minimum number of receptors.
(CTC)  CONTACTS: D. Bruce Turner     EPA-Environnental Sciences
    Research Lab Loc: Mail Drop 80  Ph: (919) 541-4564
    Loc: RTP, NC 27711
(STA)  Data Base status: Operational/Ongoing
(DP)  Date of form completion: 03-17-83
(CAP)  Functional capabilities of model: Concentrations are estimated
    hourly and for a longer averaging time (less than 24 hours) for a
    limit of 150 receptor locations (all at the same height above
    ground) from no more that 250 point sources and 100 area sources.
(ASM)  Basic assumptions of model:  Source-Receptor Relationship.  The
    model assumes an arbitary location for point sources/ and the
    receptors may be:  1) arbitrarily located/ 2) internally located
    near individual source maxima/  or 3) on a program-generated
    hexagonal grid to give good coverage to a user-specified portion of
    the region of interest.  Receptors are all assumed to be at the
    same height above (or at) ground/ and a flat terrain assumed. The
    model uses a unique stack height for each point source. The model
    user may specify up to three effective release heights for area
    sources/ each assumed appropriate for a 5 m/sec wind speed.  The
    value used for any given area source must be one of these three.  A
    unique separation for each source-receptor pair is used. Emission
    Rate.  The model assumes a unique constant emission rate for each
    point and area source.  Area source treatment encompasses:  narrow
    plume approximation; area source used as input (not subdivided into
    uniform elements): arbitrary emission heights input by user; areas
    must be squares (side length - integer multiples of basic unit);
    effective emission height equals that appropriate for a 5 m/sec
    wind; and the area source contributions are obtained by numerical
    integration along upwind distance of narrou-plume approximation
    formulae for contribution from area-sources with given effective
    release heights. Chemical Composition.  This is treated as a single
    inert pollutant. Plume Behavior.  The model uses Briggs(8),(9)/(10)
    plune rise formulas and does not treat fumigations or downwash.  If


                             1392

-------
                             Accession  Ho.   16402000150     (cont)

    the  plume  height  exceeds  the  nixing height,  the  ground  level
    concentration is  assuied  to be  zero.  Horizontal  Hind Field.  The
    model  uses user-supplied  hourly vind speeds  and  user-supplied
    hourly wind directions  (nearest 10  degrees,  internally  modified by
    addition of a random integer  value  between -4  degrees and  +5
    degrees*   Hind speeds are corrected for  release  height  based on
    power  law  variation,  exponents  from DeMarrais(6); different
    exponents  for different stability classes are  used, and the
    reference  height  is equal to  10 meters.  A constant, uniform
    (steady-state) wind is  assumed  within each hour. Vertical  Hind
    Speed. This is assumed to be equal to zero. Horizontal Dispersion.
    The  nodel  uses a  semi-empiricaI/ Gaussian plune, and hourly
    stability  class is determined internally by  TurnerO) procedure
    (six classes are  used). Dispersion  coefficients  are from McClroy
    and  Pooler(4) (urban) or  TurnerO)  (rural).  No  further adjustments
    are  made for variations in surface  roughness or  transport  tine.
    Vertical Dispersion.  A semi-empirical/Gaussian  plume is used.
    Hourly stability  class  is determined internally. Dispersion
    coeffficients are from  McElroy  and  Pooler(4) (urban) or Turner(7)
    (rural).   Ho further adjustments are made for  variations in surface
    roughness. Chemistry/Reaction Mechanism. The  model assumes and
    exponential decay with  a  user-input half life. Physical Removal.
    Exponential decay and a user-input  half-life are used.  Background.
    This is not treated.
(INP)  Input to model: Meteorological data must  be input to the model.
(OUT)  Output  of model: Output produced by the model includes:  hourly
    and  average (up to 24 hours)  concentrations  at each receptor; a
    limited individual source contribution list; and cumulative
    frequency  distribution  based  on 24-hour  averages and up to one year
    of data at a limited number of  receptors.
(APP)  Applications of model: The source program for this dispersion
    model  is available as part of UNAKAP (Version  3), PB 277 193, $420,
    from Computer Products, MTIS,
(HDH)  Computational  system requirements - Hardware: Mainframe Univac
    1110 ?Disc storage ;41K of core
(LUG)  Computational  system requirements - Language(s) used: Fortran
(ATP)  Air Models - Type of model:  Gaussian  dispersion
(OAQ)  Nodel reviewed and approved  by OAQPS? YES
(PMP)  Production method of primary pollutant in model: Primary
    (emitted directly into  atmosphere)
(MPR)  process used to remove pollutant from atomosphere: Negligible
    removal
(THE)  Sample  averaging time  used:  more than 24  hours
(SRC)  Source  of pollutant: multiple point (more than 10-20)
(AR)  Area where sample was collected:  level or  gently rolling terrain.
(RUG)  Distance traveled by pollutant from source: less than 60 km
(REF)  References - User manuals, documentation, etc.:
    Novak, J.H., and  Turner,  D.B.,  "An
    Efficient  Gaussian Plume  Multiple-Source Air Quality
    Algorithm," Journal of  the Air  Pollution Control
    Association, 26 (6), 560-575, 1976.
(CNN)  Contact narae(s): Turner,D.B.


                             1393

-------
                             Accession No.   16402000150    (cont)

(COR)  Contact organization: EPA-Environaental Sciences Research
    Laboratory
(ROR)  Responsible Organization:  Office of  Research and
    Development,Office of Environmental Processes and Effects
    Research.Environnental Sciences Research Laboratory.
                            1394

-------
                             Accession No.   16402000151

(DQ)   Date of Questionaire: 12-02-82
(MAM)  Kane of Data Base of Model: EPA HIHAY MODEL
(ACR)  Acronym of Data Base or Model: HIWAY
(MED)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: HIMAY is an interactive
    program which computes the hourly concentrations of non-reactive
    pollutants downwind of roadways.  It is applicable for uniform wind
    condictions and level terrain.  Although best suited for at-grade
    highways, it can also be applied to depressed highways (cut
    sections).  The "User's Guide for HIHAY:  A Highway Air Pollution
    Model," is available for EPA as EPA-650/4/74-008 and from HTIS
    (accession number PB 239-944/AS).
(CTC)  CONTACTS: D. Bruce Turner     EPA-Environmental Sciences
    Research Lab Loc: Mail Drop 80  Ph: (919) 541-4564
    Loc:  RTP, »C 27711
(STA)  Data Base status: Operational/Ongoing
(DP)   Date of for« completion: 02-17-83
(CAP)  Functional capabilities of model: Hourly estimates of
    concentrations for receptors off roadways are determined resulting
    from  a single at-grade or cut-section roadway segment.  The user
    specifies geometry and emissions of roadway segment, meteorological
    conditions to be simulated, and receptor coordinates and height of
    receptor above ground.
(ASM)  Basic assumptions of model: Source-Receptor Relationship:   The
    model uses a horizontal finite line with multiple line sources (up
    to 24 lines).  These are straight lines, arbitrary in orientatation
    and length.   One road or highway segment is run at a time.
    Receptors are arbitrarily located,  downwind of the source,  with a
    unique source-receptor distance defined. Arbitrary receptor heights
    and arbitrary release heights are used.  In the cut section mode
    receptors cannot be located in the  cut, and emissions are treated
    as coning from 10 equal uniform line sources at the top of  the cut.
    A flat terrain is assumed, and line sources are treated as  a
    sequence of  point sources; the number is such that convergence to
    within 2% is achieved. Emission Rate:  A constant uniform emission
    rate  for each lane is assumed. Chemical Composition:  This  is  not
    applicable to the model.  Plume Behavior:   This is not treated.
    Horizontal Hind Field.  The user specifies arbitrary wind speed and
    direction.   No variation of wind speed  and direction with height is
    allowed,  and a uniform, constant (steady-state) wind is assumed.
    Vertical  Hind Speed.   This is assumed to be equal to zero.
    Horizontal Dispersion.  The model uses  a seal-empirical/ Gaussian
    plume,  and the user specifies which of  6 stability classes  to  be
   used:   Turner (1964).   Dispersion coefficients used are from Turner
    (1969);  for  distances less than 100m, dispersion coefficients  from
   Zimmerman and Thompson (1975) are used.  In the level grade mode,
    the initial  value of the dispersion coefficient is 3 meters.   In
    the cut section mode,  the initial value of the dispersion
    coefficient  is approximated as a function of the wind speed.   No
    further adjustments to the dispersion coefficients are made.
    Vertical  Dispersion.   The model uses a  semi-empirical/  Gaussian
   Plume in which the user specifies stability class.  Dispersion


                             1395

-------
                             Accession No.   16402000151    (cont)

    coefficients used are from Turner (1969);  for distances less than
    100m, dispersion coefficients from Zimmerman and Thompson (1975)
    are used.   In the level grade mode, the initial o  is equal  to
    1.5 meters.  In the cut section mode,  the  initial o is equal to
    a function of the wind speed* Chenistry/Reaction Mechanism.  This
    is not treated. Physical Removal.  This is not treated. Background.
    This is not treated.
(IMP)  input to model: Initial set-up and  calibration needs are:  (1)
    in batch mode residual discharges for  vehicular line  sources are
    input and in interactive mode residual discharges are either input
    or they may be requested from program;  (2) meteorological data:
    wind speed, wind direction, stability  class, mixing height; (3)
    ambient air concentration measurements. For verification of the
    model, meteorological data and ambient air concentrations are
    needed.
(OUT)  Output of model: Output from the model  includes a  printout  of
    the 1-hour average concentration at each receptor.
(APP)  Applications of model: The source program for this dispersion
    model is available as part of UNAMAP (Version 3), PB  277 193 for
    $420 from Computer Products, NTIS, Springfield, VA 22161.
(RDM)  Computational system requirements - Hardware: Mainframe Univac
    1110 ;Disc storage 12K core
(LUG)  Computational system requirements - Language(s) used: Fortran
(ATP)  Air Models - Type  of model: Gaussian dispersion
(OAQ)  Model reviewed and approved by OAQPS? YES
(PMP)  Production method  of primary pollutant  in model: Primary
    (emitted directly into atmosphere)
(MPR)  Process used to remove pollutant from atomosphere: Negligible
    removal
(TME)  Sample averaging time used: less than 24 hours
(SRC)  Source of pollutant: limited point  (less than 10-20)
(AR)  Area where saaple was collected: level or gently rolling terrain.
(RNG)  Distance traveled  by pollutant from source: less than 60 km
(REF)  References - User  manuals, documentation, etc.:
    Zimmerman, J.R.:  and Thompson, R.S.,  1975:
    User's Guide for HIHAY:  A Highway Air Pollution Model.
    U.S. Environmental Protection Agency,  Research Triangle Park,
    NC. Environmental Monitoring Series, EPA-650/4-74-008, 59 p.
    (NTIS accession number PB 239-944/AS).
(CNM)  contact name(s): Turner,D.B.
(COR)  Contact organization: EPA-Environmental Sciences Research
    Laboratory
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Sciences Research Laboratory.
                             1396

-------
                             Accession No.   16402000152

(DQ)  pate of Questionaire: 12-02-82
(NAM)   Name of Data Base of Model:  Air Pollution Research Advisory
    Comirittee Model 1A
(ACR)   Acronym of Data Base or Model: APRAC-1A
(MED)   Media/Subject of Data Base or Model:  Air
(ABS)   Abstract/Overview of Data Base or Model: APRAC,  Stanford
    Research Institute's urban carbon monoxide model, computes hourly
    averages for  any urban location.  The model requires an extensive
    traffic inventory for the city of interest, and its requirements
    and technical details are documented in  User's Manual for the
    APRAC-lA Urban Diffusion Model Computer  Program which is available
    from NTIS.
(CTC)   CONTACTS:  D. Bruce Turner     EPA-Environmental  Sciences
    Research Lab  Loc: Mail Drop-80  Ph: (919)  541-4564
    Loc: RTP,  NC  27711
(STA)   Data Base  status:  Operational/Ongoing
(DF)  Date of form completion: 03-17-83
(CAP)   Functional capabilities of model: The computer program can  be
    used to make  calculations of the following types: Synoptic model:
    hourly concentrations as a function of time, for comparison and
    verification  with observed concentrations  and for operational
    application.  Climatologicai model:  the  frequency distribution of
    concentrations/ for statistical prediction of the frequency of
    occurrence of specified high concentrations in connection with
    planning activities.  Grid-point model:   concentrations  at various
    locations in  a geographical grid, providing detailed horizontal
    concentration patterns for operational or  planning  purposes.
    Roadway link  information is limited to 1200 sources.
(ASM)   Basic assumptions  of model:
    Source-Receptor Relationship.   The user  specifies the set of
    traffic links (line sources) by providing  link endpoints, road
    type,  daily traffic volume.  The traffic links nay  have arbitrary
    length and orientation.  Off-link traffic  is allocated  to a 2  x 2
    mi.  grid.   Link traffic emissions are aggregated into a receptor
    oriented area source  array.  The boundaries of the  area sources
    actually treated are  1) arcs at radial distances from the receptor
    which  increase in geometric progression; 2) the sides of a 22.5
    degree sector oriented upwind for distances greater  than 1000  ra.;
    and  3) the sides of a 45 degree sector oriented upwind  for
    distances less than 1000 ra.  A  similar area source  array is
    established for each  receptor.  Sources are assumed  to be at ground
    level,  and up to ten  receptors  are allowed in the model.   Receptors
    are  at ground level and their locations  can be arbitrary.  Four
    internally defined receptor locations on each user-  designated
    street are  used in a  special street canyon sub-model. B.   Emission
    Rate.   Daily  traffic  volume for each link  and off-link  grid square
    is  input and  modified by various factors to produce  hour-by-hour
    emissions  from each link.  Link  emissions are aggregated as
    described above:   sector area source contributions  are  obtained
    analytically,  off-link traffic  emissions on a two mile  grid square
    are  added  into the sector  area  sources.  In the street  canyon
    sub-model,  a  separate hourly emission rate is provided  by the  user


                            1397

-------
                            Accession No.  16402000152    (cont)

    for  the link  in question. C.  Plume Behavior.  The model does not
    treat  plume rise/ and it does not treat fumigation or downwash
    except in  the street canyon sub-model.  In the street canyon
    sub-model, a  helical circulation pattern is assumed. D.  Horizontal
    Mind Field.   Input  for  the aodel is hourly wind speed and direction
    in tens of degrees.  No variation of Hind speed or direction with
    height is  allowed.  A constant, uniform (steady-state) wind is
    assumed within each hour. E.  Vertical Wind Speed.  This is assumed
    to be  equal to zero except in the street canyon sub-model, where a
    helical circulation pattern is assumed. F.  Horizontal Dispersion.
    Section averaging has a uniform distribution  uithin sectors.  Each
    section larger than 1 km. is divided into sectors of 22.5 degrees;
    sections within  1 km. of size are divided into sectors of 45
    degrees. 6.   Vertical Dispersion.  The model  utilizes a semi-
    empirical/Gaussian  plume.  There are six stability classes/ and
    each stability class is determined internally from user-supplied
    meteorological data (modified by Turner,
    1964). Dispersion  coefficients from McElroy  and Pooles
    (1968) have been modified using information in Leighton and Ditmar
    (1953).  Ho adjustments are made for variations in surface
    roughness, and the  downwind distance variation of o(z) is assumed
    to ax(b) for  purposes of doing analytic integration.  In the street
    canyon sub-model, an empirical function of wind speed and street
    width  and  direction is  used. H.  Chemistry/Reaction Mechanism.
    This is not treated I.  Physical Removal.  This is not treated. J.
    Background.   The box model used to estimate contributions from
    upwind sources beyond 32 km. is based  on wind speed/ mixing height,
    and annual fuel  consumption.  In the street canyon sub-model,
    contributions from  other streets are included in  the background.
(IHP)  Input to model:  Emission and meteorological  information are
    needed for the model.   Emissions are a function of the hour of  the
    day and the day  of  the  week,  and meteorological parameters are
    functions  of  the hour of the  day.
(OUT)  Output  of  model: Output  from the model  Includes hourly
    concentration values at each  receptor  and  frequency distribution
    based on hourly  values.
(APP)  Applications  of  model: The source program  for  this  dispersion
    •odel  is  available  as part  of ONAMAP  (Version 3),  PB 277 193,  for
    $420 from  Computer  Products,  NTIS, Springfield,  VA
    22161.                                                     it  ,
(HDW)  Computational system requirements - Hardware:  Mainframe  Univac
    1110 ;Disc storage  32k  of core  memory
(LNG)  Computational system requirements  - Language(s) used:  Fortran
(ATP)  Air Models -  Type of model:  Gaussian  dispersion
(OAQ)  Vodel  reviewed and  approved  by  OAQPS?  YES
(PMP)  Production method  of primary pollutant  In  model:  Primary
    (emitted  directly into  atmosphere)
(NPR)  Process used to  remove pollutant  from atomosphere:  negligible
    removal
(TME)  Sample  averaging tine used:  more  than 24 hours
(SRC)  Source of  pollutant: limited area
(AR)  Area where  sample was collected:  level or gently rolling terrain.


                            1398

-------
                             Accession Mo.   16402000152    (cent)

(RUG)  Distance traveled by pollutant from source: less than 60 km
(REF)  References - User manuals/ documentation,  etc*:
    User's Manual for the APRAC-1A Urban Diffusion
    Model Computer Program, NTIS ACCESSION number PB 213-091
    (8 $5.25 per paper copy, $2.25 for microfiche).
    A Practical, Multipurpose Urban Diffusion Model  for
    Carbon Monoxide, NTIS Accession Number 196-003.
    Field Study for Initial Evaluation of an Urban Diffusion
    Model for Carbon Monoxide, NTIS Accession Number
    PB 203-469.
    Evaluation of the APRAC-1A Urban Diffusion Model for
    Carbon Monoxide, NTIS Accession Number PB 210-813.
    Dabbert, H.F., Luduig, F.L., and Johnson, H.8.,  Jr.,
    "Validation and Applications of an Urban Diffusion Model
    for Vehicular Pollutants", Atmos. Environ., 7, 603-618,
    1973.
    Johnson, W.B., Luduig, F.L., Dabbert, H.F., and Allen,
    R.J., "An Urban Diffusion Simulation Model for Carbon
    Monoxide", Journal of the Air Pollution Control
    Association, 23, 6, pp. 490-498, 1973.
(CNM)  Contact nane(s): Turner,D.B.
(COR)  Contact organization: EPA-Environmental Sciences Research
    Laboratory
(ROR)  Responsible organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Sciences Research Laboratory.
                              1399

-------
                             Accession No.   16402000153

(DQ)  Date of Questionaire:  12-02-82
(NAM)  Name of Data Base of  Model: Point, Area, Line Source Algorithm
(ACR)  Acronym of Data Base  or Model: PAL
(NED)  Media/Subject of Data Base or Model:  Air
CABS)  Abstract/Overview of  Data Base or Model: The Point,  Area,  Line
    Source Algorithm is a short-tern Gaussian steady state  algorithm
    that estimates concentrations of stable pollutants from point,
    area, and line sources.   Computations froa area sources include
    effects of the edge of the source.  Line source computations  can
    Include effects from a variable emission rate along the source.
    The algorithm is not intended for application to entire urban
    areas, but for smaller scale analysis of such sources as shopping
    centers, airports, and single plants.  Hourly concentrations  are
    estimated and average concentrations for 1 hour to 24 hours can be
    obtained.
(CTC)  CONTACTS: D. Bruce Turner     EPA-Environmental Sciences
    Research Lab Loc: Mail Drop 60  Ph: (919) 541-4564
    Locs Research Triangle Park, NC 27711
(STA)  Data Base status: Operational/Ongoing
(DP)  Date of fora completion: 03-17-83
(CAP)  Functional capabilities of model: Concentration estimates  are
    given for up to 99 receptor locations,  and there are concentration
    estimates for 6 different source types/  as many as 99 sources of
    each type.  The model provides concentration averages for 1 to 24
    hours for each source type.
(ASM)  Basic assumptions of  model:
    Arbitrary locations are  given for each  point, area and  line source.
    Area source sizes are specified by an X and Y dimension.  A
    horizontal finite line or curved path is utilized, as is a slant
    finite line.  Receptor location Is arbitrary. Release heights for
    point, area and line sources are arbitrary, as are receptor
    heights.  A flat terrain is assumed, and the model provides a
    unique separation for each source-receptor pair. B.  Emission Rate.
    Point sources use a single rate for each source.  Area sources also
    use a single rate for each source.  Area integrations are done by
    numerical integration in the upwind direction of the concentration
    from an infinite crossuind line source corrected for finite length.
    Horizontal finite line and curved path sources assume a constant
    uniform emission rate for each line.  Slant line and special  path
    sources assume a variable emission rate along line or path. C.
    Chemical Composition.  The model does not treat this. D.  Plume
    Behavior.  The model uses Briggs (1969,  1971,
    1972) neutral/unstable formulas.  If stack height plus
    plume rise is greater than the mixing height, ground level
    concentrations are assumed te be equal to zero.  No plume rise
    calculation is performed for area or line sources, and the model
    does not treat fumigation or dounvash.  E.  Horizontal Wind Field.
    Arbitrary wind speed and direction is user-specified.  Variation of
    ulnd speed with height is optional, and a constant, uniform
    (steady-state) Hind is assumed, f.  Vertical Hind Speed.  This is
    assumed to be equal to zero. G.  Horizontal Dispersion.  This model
    uses a semi- empirical/Gaussian plume.   The user specifies which of


                             1400

-------
                             Accession  Ho.   16402000153     (cont)

    the  six  stability  classes are  to  be used:   Turner  (1964).
    Dispersion  coefficients are  from  Turner  (1969).  For  distances  less
    than 100m,  dispersion coefficients  for line sources are from
    Zimmerman and  Thompson (1975),  The initial value  of  the dispersion
    coefficient is specified by  the user,  and  no further  adjustments  to
    the  dispersion coefficients  are made.  H.   Chemistry/Reaction
    Mechanism.   This  is not treated.  I. Physical Removal.   The model
    does not treat this.
(IHP)  Input to model:  The user  must  specify  the source types  and
    provide  meteorological data*
(OOT)  Output of model: Output from the model  includes hourly  and
    average  (up to 24  hour) concentrations at  each receptor.
(APP)  Applications of model: The  source program for this dispersion
    model is available as part of  ONAMAP (Version 3),  PB  277 193 for
    $420 from Computer Products, NTIS,  Springfield,  VA 22161   22161
(HDV)  Computational  system requirements - Uarduare: Mainframe Dnivac
    1110 ;Disc  storage 51k approximately
(LIG)  Computational  system requirements - Language(s) used: Fortran
(ATP)  Air Models  - Type of model:  Gaussian  dispersion
(OAQ)  Model reviewed  and approved by OAQPS?  NO
(PMP)  Production  method of primary pollutant  in model: Primary
    (emitted directly  into atmosphere)
(MPR)  Process  used to remove pollutant from  atomosphere:  Negligible
    removal
(THE)  Sample averaging time used:  less than  24 hours
(SRC)  Source of pollutant: Limited and multiple point, limited area,
    and  limited time
(AR)  Area where sample Has collected:  level  or gently rolling terrain.
(RIG)  Distance traveled by pollutant from source: less than 60 km
(REF)  References  - User manuals,  documentation, etc.:
    Petersen, W.B., User's Guide for  PAL,  A
    Gaussian Plume Algorithm for Point, Area,  and Line Sources,
    U.S. Environmental Protection  Agency,  Research Triangle
    Park, North Carolina, Environmental Monitoring Series,
    EPA-600/4-78-013,  1975.
    Turner,  D.B.,  and  Petersen,  W.B., A Gaussian Plume
    Algorithm for  Point,  Area, and Line Sources, NATQ/CCMS
    Sixth International Technical  Meeting  on  Air Pollution
    Modeling and Its  Application,  V 42: 185-228, 1975.
(CNM)  Contact  name(s): Turner,O.B.
(COR)  Contact  organization: EPA-Environmental Sciences Research
    Laboratory
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and  Effects
    Research.Environmental Sciences Research  Laboratory.
                             1401

-------
                             Accession No.   16402000154

(OQ>  Date of Questionaire:  12-02-82
(NAM)  Kane of Data Base of  Model: HIHAY-II
(ACR)  Acronya of Data Base  or Model: HIHAY-II
(MED)  Media/Subject of Data Base or Model: Air
CABS)  Abstract/Overview of  Data Base or Model: HIWAY-2 is a batch and
    interactive program which computes the  hourly concentrations of
    non-reactive pollutants  downwind of roadways.  It is applicable for
    uniform wind conditions  and level terrain.   Although best suited
    for at- grade highways,  it can also be  applied to depressed
    highways (cut sections).  The "User's Guide for HIHAY-2:  A Highway
    Air Pollution Model," is available for  EPA  as EPA-600-8-800-018 and
    from NTIS as PB 80-227-576.
(CTC)  CONTACTS: William Peterson    EPA/Environmental Sciences
    Research Lab Loc: Research Trinagle Park, Ph: (919) 541-4564
    Loc: NC 27711
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of fora completion: 03-17-83
(CAP)  Functional capabilities of nodel: Hourly estiaates of
    concentrations for receptors off roadways are determined resulting
    from a single at-grade or cut-section roadway setaent.  The user
    specifies geoaetry and eaisslons of roadway segment, aeteorological
    conditions to be siaulated, and receptor coordinates and height of
    receptor above ground.
(ASM)  Basic assuaptions of  aodel: Source-Receptor Relationship:  The
    aodel uses a horizontal  finite line with aultiple line sources (up
    to 24 lines).  These are straight lines, arbitrary in orientation
    and length.  Receptors are arbitrarily  located, downwind of the
    sources, with a unique source-receptor  distance defined.  Arbitrary
    receptor heights and arbitrary release  heights are used.  In the
    cut-section aode receptors cannot be located in the cut, and
    emissions treated as coaing froa 10 equal uniform line sources at
    the top of the cut.  A flat terrain is  assuaed, and line sources
    are treated as a sequence of point sources; the number is such that
    convergence to within 2% is achieved. Eaission Rate:  A constant
    uniform emission rate for each lane is  assuaed. Chemical
    Coaposition:  This is not applicable to the aodel. Pluae Behavior:
    This is not treated. Horizontal Hind Field:  The user specifies
    arbitrary wind speed and direction.  No variation of wind speed and
    direction with height is allowed, and a uniform, constant
    (steady-state) wind Is assuaed. Vertical Hind Speed:  This is  -
    assuaed to be equal to zero. Horizontal Dispersion:  The aodel uses
    a seai-eaplrical/ Gaussian pluae, and the user specifies which of 6
    stability classes to be  used. Turner (1964).  For distances less
    that 300 a empirically derived dispersion parameters are used, Rao
    et al.  (1980).  In the  level grade aode, the intial value of the
    dispersion coefficient is twice the value for the initial vertical
    dispersion coefficient.   In the cut- section node, the initial
    value of the dispersion  coefficient is  approximated as a function
    of the wind speed. Vertical Dispersion:  The aodel uses a
    seai-eaplrical/ Gaussian pluae in which the user specifies
    stability class. Dispersion coefficients used are froa Turner
    (1969); for distances less than 300 a dispersion coefficients froa


                             1402

-------
                            Accession No.   16402000154     (cont)

   Rao et al. (1980) are used.   In the  level  grade  mode,  the  initial
   o is a function of the crossroad  wind component with a  maximum
   value of 3.57 m and a minimum value  of 1.5 n.  In the  cut  section
   •ode the initial dispersion parameter is a function  of Hind  speed.
   I. Chemistry/Reaction Mechaniss.  This is  not  treated.  J.  Physical
   Removal.  This is not treated. K.  Background.   This is not  treated.
(IMP)  Input to model: Initial set-up and calibration needs are  (1)  in
   both batch and interactive node, discharges for  vehicular  line
   sources are input into the program;  (2)  meteorological data:  wind
   speed, wind direction, stability class,  mixing height; (3) anbient
   air concentration measurements. For  verification of  the nodel,
   Meteorological data and  ambient air  concentrations are needed.
(DOT)  Output of nodel: Output fro* the  nodel  includes a printout of
   the 1-hour average concentration at  each receptor.
(APP)  Applications of nodel: The source program for this  dispersion
   nodel is available as a  part  of UNANAP (Version  3),  PB 277-193  for
   $420 from Computer Products,  NTIS, Springfield,  VA
   22161.
(HDH)  Computational system  requirements - Hardware: Mainframe Univac
   1100 ;Disc storage 6K
(LUG)  Computational system  requirements - Language(s) used: Fortran
(OSK)  Computational system  requirements: Operator Knowledge/Skills: Eng
   ineering
(ATP)  Air Models - Type of  model: Gaussian  dispersion
(OAQ)  Model reviewed and approved by OAQPS? YES
(PHP)  Production method of  primary pollutant  in model:  Primary
   (emitted directly into atmosphere)
(HPR)  Process used to remove pollutant  from atomosphere:  Negligible
   removal
(THE)  Sample averaging time used: less  than 24 hours
(SRC)  Source of pollutant:  Automotive
(AR)   Area where sample was  collected:  level or gently colling terrain.
(RUG)  Distance traveled by  pollutant from source: less  than 60  km
(REF)  References - User manuals, documentation, etc.:
   Petersen, V.B., 1980.  user's Guide  for
   HIWAY-2:  A Highway Air  Pollution Nodel.  U.S.
   Environmental Protection Agency, Research  Triangle Park,
   MC., EPA-600/8-80-018, 70 p.
   Rao, S.T. and M.T. Koonan, 1980:  Suggestions for
   Improvement of the EPA-HIHAY  Model.  JAPCA, 30,  6, pp
   247-256.
(CHM)  Contact narae(s): Peterson,H.
(COR)  Contact organization: EPA/Environmental Sciences  Research
   Laboratory
(ROR)  Responsible Organization:  Office of Research  and
   Development.Office of Environmental  Processes and  Effects
   Research.Environmental Sciences Research Laboratory.
                             1403

-------
                             Accession No.   16402000155

(DQ)  Date of Questionalre: 12-02-82
(MAN)  Name of Data Base of Model: Multiple Point Gaussian Dispersion
    Algorithm with  Optional
(ACR)  Acronym of Data Base or Model: MPTER
(MED)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: MPTER is a multiple
    point-source Gaussian nodel with optional terrain adjustments.
    MPTER estimates concentrations on an hour-by-hour basis for
    relatively inert pollutants (i.e., sulfur dioxide and TSP).  MPTER
    uses Pasquill-Gifford dispersion parameters and Briggs plume rise
    nethods to calculate the spreading and  the rise of plumes.  The
    •odel is »ost applicable for source-receptor distances less than 10
    kilometers and for locations with level or gently rolling terrain.
    Terrain adjustnents are restricted to receptors whose elevation is
    no higher than the lowest stack top.  In addition to terrain
    adjustments options are also available  for wind profile exponents,
    buoyancy induced dispersion, gradual plume rise, stack downuash,
    and plume half-life.
(CTC)  CONTACTS: Tom Pierce and Bruce Turner   EPA Environmental
    Sciences Re Laboratory
    Loc: Davis Drive   Ph: (919) 641-4564
    Loc: RTP, MC 27711
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 03-17-83
(CAP)  Functional capabilities of model: MPTER computes hour-by-hour
    concentrations for relatively inert pollutants for each
    source-receptor pair. MPTER can handle  up to 250 point sources and
    180 receptors. Model users have the option of specifying elevations
    and location coordinates in either metric or English units. Hourly
    met data can be read either off cards or off disk/tape. MPTER can
    calculate concentrations for averaging  periods of 1, 3, 8 and 24
    hour for up to a year's data.  Annual concentrations can also be
    computed.
(ASM)  Basic assumptions of model: NPTER is based upon Gaussian
    dispersion theory using mean meteorology conditions on an
    hour-by-hour basis.  Dispersion coefficients used to calculate both
    vertical and horizontal spreading are those of Pasquill and
    Gifford.  The rising plume is assumed to completely reflect off the
    top of the nixing height in neutral and unstable conditions.  The
    plume rise is based on Briggs.  MPTER can also optionally consider
    stack downwash, buoyancy induced dispersion* and gradual plume
    rise.  MPTER can either utilize constant emission rates or hourly
    emission rates for each point source.  The emitted pollutants
    should be relatively inert chemically since MPTER does not consider
    complex physical removal or chemical reaction processes. Users can
    approximate exponential decay of a pollutant by supplying a
    half-life.  Hind speeds are extrapolated to stack top using user
    supplied wind profile exponents.  The optional terrain adjustment
    reduces the plume height relative to the ground.  Additional
    terrain adjustment factors can be entered which control the
    proportion of terrain adjustment        g according to stability
    class.


                             1404

-------
                            Accession No.  16402000155     (coot)

(IMP)  Input to model: Input for MPTER Includes:  control data,
   emission data, receptor information, and hourly met data.  The
   hourly met data can be read either off cards  or fron a  disk/tape
   preprocessed  from NCC surface/upper-air observations.   Hourly
   emission data can optionally be input from disk/tape.
(DOT)  Output of  model: The variety of MPTER options  allow  the user to
   output to a printer or to write to tape information required for a
   multitude of  applications.  Tape/disk files can be written
   containing hourly concentrations for each receptor for  each source,
   hourly concentrations for each receptor for all sources,
   concentrations for user specified averaging periods, and highest
   five concentrations for each receptor for each averaging period.
   MPTER allows  even more flexibility on printed output.   The range of
   options include printout for the highest five concentrations for
   each receptor to printout for hourly contributions from each source
   at each receptor.
(APP)  Applications of model: The frequent use of MPT2R is  to assess
   air quality from multiple point sources to compare with National
   Aibient Air Quality Standards for SOC2) or TSP. MPTER can estimate
   concentrations for a single source at one or  more receptors for one
   hour, or it can simulate concentrations on an hour-by-hour basis
   for as many as 250 point sources at up to 1180 receptors for up to
   a year. The types of multiple applications for which MPTER is
   suited include stack design studies, combustion source  permit
   applications, regulatory variances evaluation, monitoring network
   design, control strategy evaluation, coal conversion studies,
   control technology evaluation, new source review, and prevention of
   significant deterioration (within 10 km).
(HDH)  Computational system requirements - Hardware:  Mainframe IBM 360,
   CDC 6600, or  Univac 1100/82 ;Disc storage Magnetic tape storage or
   disc ^Printer 132 position line printer ; Card reader/punch,and/or
   tape/disc input
(LUG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
   gramming ;Air quality meteorology
(ATP)  Air Models - Type of model: Gaussian dispersion
(OAQ)  Model reviewed and approved by OAQPS? YES
(HPR)  Process used to remove pollutant from atomosphere: Negligible
   removal
(THE)  Sample averaging time used: less than 24 hours
(SRC)  Source of  pollutant: multiple point (more  than 10-20)
(AR)  Area where  sample was collected: level or gently rolling terrain.
(RUG)  Distance traveled by pollutant from source: less than 60 km
(REP)  References - User manuals, documentation,  etc.:
   Pierce, T.E.  and Turner, O.B., 1980:  User's
   Guide for MPTER:  A Multiple Point Gaussian Dispersion
   Algorithm with Optional Terrain Adjustment.   EPA-600/8-80-016,
   U.S. Environmental Protection Agency, Research Triangle Park,
   NC.  239pp.
   O.S. Environmental Protection Agency, 1980:   MPTER tape.
   (Computer programs on tape containing programs, and PTPLU
   screening model) NTIS PB 80-168156, National  Technical


                            1405

-------
                             Accession No.   16402000155    (cent)

    Information Service,  Springfield, ?A.
(CUM)  Contact nane(s): Turner,!.P.
(COR)  Contact organization: EPA Environmental Sciences Research
    Laboratory
(ROR)  Responsible Organization: Office of  Research and
    Development.Office of Environaental Processes and Effects
    Research.Environmental Sciences Research Laboratory.
                             1406

-------
                            Accession No.  16402000156

(DQ)  Date of Questionalre: 12-02-82
(NAM)  Name of Data Base of Model: Point Source  Gaussian Plume Model
(ACR)  Acronym of Data Base or Model: PTPLU
(MED)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model:  PTPLU  Is a point source
   dispersion Gaussian screening model for estimating maximum surface
   concentrations for 1-hour concentrations.  PTPLU is based upon
   Briggs plume rise methods and Pasquill-Gifford  dispersion
   coefficients as outlined in the Workbook of  Atmospheric Dispersion
   Estimates. PTPLU is an adaptation and  improvement  of PTMAX which
   allows for wind profile exponents and  other  optional calculations
   such as buoyancy induced dispersion, stack downwash, and gradual
   plune rise. PTPLU produces an analysis of concentration as a
   function of wind speed and stability class for  both wind speeds
   constant with height and wind speeds increasing with height.  Use
   of the extrapolated wind speeds and the options allows the model
   user a more accurate selection of distances  to  maximum
   concentration.
(CTC)  CONTACTS: Tom Pierce     EPA/Environmental Sciences Research
   Laborato Loc: MD-80    Ph: (919) 541-4564
   Loc: Research Triangle Park, NC 27711
(STA)  Data Base status: Operational/Ongoing
(Dp)  Date of form completion: 03-17-83
(CAP)  Functional capabilities of model: PTPLU estimates the maximum
   ground-level concentration and the distance  to  the maximum for both
   wind speeds constant with height and wind speeds increasing with
   height for each stability class.  The  user has  the option of
   selecting anemometer height, receptor  height, wind profile
   exponents, stack downwash, buoyancy induced  dispersion, gradual
   Plune rise, and mixing height.  Output consists of 2 two-
   dimensional tables listing maximum concentrations, distance to
   maximum concentrations, and effective  plume  heights for a range of
   surface wind speeds and extrapolated wind speeds in each stability
   class.
(ASM)  Basic assumptions of model: PTPLU calculates the source-
   receptor distance to the point of maximum concentration for each
   wind speed and stability class. Relatively  inert pollutants are
   modeled and emissions  are assumed to be constant.  The plume is
   spread horizontally and vertically using P-G dispersion
   coefficients.  Briggs  plume rise computations are  employed with
   options available for  buoyancy induced dispersion, stack downwash,
   and  gradual plume rise.  PTPLU does not allow  for  any depletion of
   the  plume by physical  removal or chemical reactions. Eddy
   reflection with the ground is assumed.  If  the  effective plume
   height is calculated to be below the mixing  height in neutral  and
   unstable conditions, then multiple reflections  of  the plume between
    the  ground and the mixing height are computed.  But if the
    effective plume height is above  the mixing  height  in neutral and
   unstable conditions then no calculations  are made  for ground-level
    concentrations. Mso,  ground-level concentrations  are not
    calculated if  the distance to maximum  concentration extends beyond
    100  kilometers from the source.  Cautionary  messages  are printed


                            1407

-------
                             Accession  No.   16402000156    (cont)

    for plume heights greater than 200  meters and plume resident times
    greater than that expected under normal atmospheric conditions*
(INP)  Input to model: PTPLU is extremely convenient since only nominal
    effort is needed to supply the necessary input.  Four data cards
    are needed for a single run, however/ additional separate point
    sources can be analyzed by input of two data cards for every
    source.  Information required to run PTPLU includes selection of
    options, anemometer height, wind profile exopnents, stack
    parameters (emission rate, stack height, exit velocity, stack gas
    temperature, and stack diameter), receptor height, and mixing
    height.
(DOT)  Output of model: PTPLU is a screening model and its output
    results can be helpful in more detailed modeling.  In particular,
    the tables of concentration and distance to maximum concentration
    can be examined for selection of receptor distances for use in
    detailed models.
(APR)  Applications of model: The source code of PTPLU is written in
    ASCII Fortran.  PTPLU calls six subroutines but on the DNIVAC
    1100/82 PTPLU does not require any  special software or facilities.
    approximately 12K of core memory are needed for execution on the
    UNIVAC 1100/82.
(RDM)  Computational system requirements - Hardware: Mainframe Unlvac
    1100/82, IBM 360, CDC 6600 ^Printer 132 cha
(LUG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gramming ;Air quality meteorology
(ATP)  Air Models - Type of model: Gaussian dispersion
(OAQ)  Model reviewed and approved by OAQPS? YES
(PMP)  Production method of primary pollutant in model: Primary
    (emitted directly into atmosphere)
(MPR)  Process used to remove pollutant from atomosphere: Negligible
    removal
(THE)  Sample averaging time used: less than 24 hours
(SRC)  Source of pollutant: limited point (less than 10-20)
(AR)  Area where sample was collected:  level or gently rolling terrain.
(RNG)  Distance traveled by pollutant from source: less than 60 km
(REF)  References - User manuals, documentation, etc.:
    The PTPLU source program is presently
    avaialable on the MPTER tape from COMPUTER PRODUCTS,
    NTIS, Springfield, Va 22161.  Ask for PB80-168156; the
    price is $420.  The PTPLU program will also be available
    on UNAMAP (Version 4) scheduled to arrive at NTIS in
    December 1980.  Preparation of a users guide is underway,
    and the users guide should be available by October 1981.
(CUM)  Contact name(s): Pierce,T.
(COR)  Contact organization: EPA/Environmental Sciences Research
    Laboratory
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes  and Effects
    Research.Environmental Sciences Research Laboratory.
                             1408

-------
                            Accession No.  16402000157

(DQ)  Date of Questionaire: 12-02-82
(MAM)  Name of Data Base of Model: Averaging Tine Model
(ACR)  Acronym of Data Base or Model: AV6TIME
(MED)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: AVGTIME is  a
   mathematical model based on two characteristics  that are often
   demonstrated by air quality data:  (1) air pollutant concentrations
   tend to be lognormally distributed for all averaging tines and (2)
   median (50 percentile) concentrations tend to be proportional to
   averaging tine raised to an exponent and thus plot as a straight
   line on logarithmic graph paper.  Tvo percentile concentrations  (at
   the same or at different averaging tines) are read into the  BOdel
   and concentrations for the maxima or any percentiles can then be
   calculated for any other averaging tines.
(CTC)  CONTACTS: Ralph Larsen   Environmental Sciences Research
   Laboratory
   Loc: MD-80 Research Triangle Park,     Ph: (919) 541-4564
   Loc: NC 27711
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 03-17-83
(CAP)  Functional capabilities of nodel: The detailed characteristics
   of the nodel are described by a dozen equations  on pp.  51-52 in
   Ref. 2.  Tuo input concentrations are entered into the  proper
   equation to calculate two output parameters:  the geometric  nean
   and standard geometric deviation for one averaging tine. The other
   equations are then used to calculate these two output parameters,
   the maxima, and the concentrations for any desired percentiles for
   any other averaging tines.
(ASM)  Basic assumptions of nodel: Analyses of air pollutant
   concentration data suggest that urban concentrations often tend  to
   fit a general mathenatical model having the following three
   characteristics:  (1) Pollutant concentrations are lognormally
   distributed for all averaging tines.  (2) Median concentrations  are
   proportional to averaging time raised to an exponent.   (3) Maxinun
   concentrations are approximately inversely proportional to
   averaging tine raised to an exponent.  A 2- parameter averaging
   tine nodel with the above three characteristics  has been developed
   (Refs. 1 and 2). Air pollutant concentrations measured  near
   isolated point sources often do not fit a 2-paraneter lognornal
   distribution very well.  Such data often do fit  a 3-paraneter
   lognormal distribution fairly well.  A 3-parareeter averaging tine
   nodel has therefore been developed to model such data (Ref.  3).
(IMP)  Input to model: The user inputs any tuo air quality  neasurenents
   for the 2-paraneter model.  These two input parameters  might be  the
   concentrations exceeded 0.1% and 30% of the tine for 1  hr  average
   concentrations for instance.  The two input concentrations can be
   at the same or different averaging tines.  The user inputs any
   three air quality neasurenents into the 3-paraneter nodel, at
   either the sane or at different averaging tines.
(OUT)  Output of model: The equations mentioned under "Functional
   Capabilities'* are used to calculate expected concentrations.
   Expected highest and second highest concentrations for  various


                            1409

-------
                             Accession No.   16402000157    (cont)

    averaging tines {1, 3/ 8, and 24 hr, and 1 yr) can be easily
    determined by using Table II in Ref. 3.  The 3-parawetec averaging
    tine model is sore difficult to use than is the 2-paraaeter Model.
    Trial and error techniques can be used to calculate the third
    paraneter (a constant that is added or subtracted from each of the
    three input concentration measureaents)  needed to fit the data to a
    2-parameter iognormal distribution.  Alternatively, a 500 card
    FORTRAN job deck is available that will  calculate expected maxima
    and percent!le concentrations for several averaging times based on
    three concentration neasurenents input to the Model.  The job deck
    is available on request froa the "Technical Contact" listed belou.
(APP)  Applications of aodel: As the title of Ref. 2 implies, the
    averaging tine nodel has been used to relate air quality
    measurements to air quality standards to determine overall average
    percent emission reductions neeed to achieve air quality standards.
    The input air quality data can either be Measured or
    dispersion-modeled. Air quality data for one averaging tine have
    been used to calculate percentiles and expected maxima for other
    averaging tines for Hhcih air quality standards have been written*
    Air quality aeasurenents Might be available for 24 hr average
    concentrations of sulfur dioxide for instance. The Model could be
    used to calculate expected maximum concentrations for 3 hr averages
    and these maxima could then be compared with the 3 hr sulfur
    dioxide National Ambient Air Quality standard (MAAQS).
(HDtf)  Conputational systea requirements - Hardware: Calculator
    ;Mainframe Dnivac or IBM
(LNC)  Computational systea requirements - Language(s) used: Fortran
(QSK)  Conputational systeM requirements: Operator Knowledge/Skills: Mod
    el is usually used manually.
(OAQ)  Model reviewed and approved by OAQPS? YES
(PMP)  Production method of priMary pollutant in Model: PriMary
    (emitted directly into atnosphere)

-------
                             Accession No.   16402000157     (cont)

(ROR)  Responsible Organization:  Office of  Research and
    Development.Off ice of Environmental Processes and Effects
    Research.Environmental Sciences Research Laboratory.
                              1411

-------
                             Accession No.  16404000136


-------
                             Accession No.   16404000106    (cont)

    (404) 546-3148
(CAP)  Functional capabilities of model:  The set of unit process models
    used to compute the kinetics of toxicants is the central core of
    EXAMS.  These unit models are all "second-order" models/, in other
    words/ each process equation includes a direct statement of the
    interactions between the chemistry of a toxicant and the
    environmental forces that shape its behavior in aquatic systems.
    Most of the process equations are based on standard theoretical
    constructs or accepted empirical relationships. For example/ the
    light intensity in the water column of  the system is computed using
    the Beer-Lambert law/ and temperature corrections for rate
    constants are computed using Arrhenius  functions. lonization of
    organic acids and bases/ and sorptlon of the toxicant with
    sediments and biota/ are treated as thermodynamic properties or
    (local) equilibria that constrain the operation of the kinetic
    processes.  For example/ an organic base in the water column may
    occur in a number of molecular species  (as dissolved ions/ sorbed
    with sediments/ etc.)/ but only the uncharged/ dissolved species
    can be volatilized across the air-water interface.  EXAMS allows
    for the simultaneous treatment of up to 15 molecular species of a
    toxicant.  These include the parent uncharged molecule/ and singly
    or doubly charged cations and anions/ each of which can occur in a
    dissolved/ sediment-sorbed/ or biosorbed form.  The model computes
    the fraction of the total concentration of toxicant that is present
    in each of the 15 molecular structures  (the "distribution
    coefficients/" ALPHA).  These values enter the kinetic equations as
    multipliers on the rate constants.  The model thus completely
    accounts for differences in reactivity that depend on the molecular
    form of the toxicant.  EXAMS makes no intrinsic assumptions about
    the relative transformation reactivities of the 15 molecular
    species.  These assumptions are under direct user control through
    the way the user structures the chemical input data. EXAMS computes
    the kinetics of transformations due to direct photolysis/
    hydrolysis/ biotransformation/ and oxidation reactions.  The input
    chemical data for hydrolytic/ biological/ and oxidative reactions
    can be entered either as single valued/ second-order rate
    constants/ or as pairs of values defining the rate constant as a
    function of the environmental temperature specified for each
    compartment. EXAMS includes two algorithms for computing the rate
    of photolytic transformation of a toxicant.  These algorithms were
    structured to accommodate the two more common kinds of  laboratory
    data and chemical parameters available to describe photolysis
    reactions.  The simpler of  the algorithms (subroutine PHQTOl)
    requires only an average first-order rate constant (KDP€)
    applicable to near-surface  waters under cloudless conditions at a
    specified reference latitude (RFLATG).   In order to give the user
    control of reactivity assumptions/ KDPG is coupled to user-supplied
    (normally unit-valued) reaction quantum yields (QOANTG) for each
    molecular species of  the toxicant.  The more complex algorithm
    (subroutine PHOT02) computes photolysis rates directly  from the
    absorption spectra  (molar extinction coefficients/ ABSG) of the
    compound and its ions/ measured values of the reaction  quantum


                             1413

-------
                          Accession No.   16404000106    (cont)

 yields, and the environmental concentrations of competing light
 absorbers (chlorophyll,  suspended sediments,  dissolved organic
 carbon, and water itself).  The total  rate of  hydrolytic
 transformation of a toxicant is computed by EXAMS  as the  sum of
 three contributing processes. Each of these processes can be
 entered via simple rate  constants,  or as Arrhenius functions of
 temperature.   The rate of specific acid catalyzed  reactions is
 computed from the pH of  each sector of  the ecosystem, and specific
 base catalysis is computed  from the environmental  pOH data.  The
 rate data for neutral hydrolysis of the compound is entered as  a
 set  of pseudo-first- order  rate coefficients  (or Arrhenius
 functions)  for reaction  of  the 15 (potential)  toxicant species  with
 the  water molecule. EXAMS allous the  user to  compute biodegradation
 of the toxicant in the water column,  and in the bottom sediments,
 of the system as entirely separate  functions.   Both models are
 second-order  equations that relate  the  rate of biodegration to  the
 size of the bacterial population actively degrading the compound.
 The  second-order rate constants (KBACHG for the water column,
 KBACSG for  benthic sediments) can  be entered  either as single-
 valued constants or as functions of temperature.   When a  non-zero
 value is  entered for  the  Q-10 of a  biodegradation  (parameters
 QTBAhG and  QTBASG respectively),  KBAC is interpreted as the rate
 constant  at 20 degrees C.,  and the  biotransformation rate in each
 sector  of the ecosystem is  adjusted for the local  temperature
 (BICTMG). Oxidation reactions are computed from the chemical input
 data and  the  total  environmental  concentrations of  reactive
 oxidizing species (alkylperoxy and  alkoxyl radicals,  etc) specified
 by the  user.   The chemical  data can again be entered either as
 simple  second-order rate  constants, or  as Arrhenius functions.
 Internal  transport,  and export,  of  a  toxicant  occur in EXAMS via
 advective and dispersive  movement of  dissolved,  sediment- sorbed,
 and  biosorbed materials,  and  by volatilization  losses  at  the
 air-water  interface.   EXAMS  provides  a  set  of  vectors  (JFRADG,
 etc.)  that  allows the user  to specify the location  and strength of
 both advective  and  dispersive transport  pathways.   Advection of
 water  through the system  is  then  computed from  the  water  balance,
 using  hydrologic  data (rainfall,  evaporation rates,  streamflows,
 groundwater seepages,  etc.)  supplied as  part of  the  definition of
 each environment. Dispersive  interchanges within the system, and
 across  system boundaries, are computed from the characteristic
 length  (CHARLG),  cross-sectional  area (XSTDRG), and  dispersion
 coefficient (DSPG) specified  for  each active exchange pathway.
 EXAMS can compute transport of  a  toxicant via whole-sediment
 bedloads, suspended sediment  wash-loads,  ground-water  infiltration,
 transport through the  thermocline of a lake, losses  in  effluent
 streams, etc.  Volatilization  losses are  computed using a Whitman
 model.  This  computation treats the total resistance  to transport
 across the air-water  interface as the sum of resistances in the
 liquid and vapor phases Immediately adjacent to the interface.
External  loadings of  a toxicant can enter the ecosystem via point
 sources (STRLDG), non-point sources (NPSLOG), dry fallout or aerial
drift (DRFLDG), atmospheric wash-out (PCPLDG), and  via ground-water


                         1414

-------
                             Accession Ho.   16404000106    (cont)

    seepage (IFLLDG) entering the system.  Any type of load can be
    entered for any system compartment, but the program will not
    implement a loading that is inconsistent with the system
    definition.  For example, the program Hill automatically cancel a
    PCPLD entered for the hypolimnion or benthic sediaents of a lake
    ecosystem.  When this type of corrective action is executed, the
    change is reported to the user via an error message.
(ASM)  Basic assumptions of model: EXAMS has been designed to evaluate
    the consequences of long term, time-averaged toxicant loadings that
    ultimately result in trace-level contamination of aquatic systems.
    SXAHS generates a steady-state, average floy field for the
    ecosystem.  The model thus cannot evaluate the transient
    concentrated EECs that arise, for example, from spills of toxic
    chevicals.  This limitation derives  from tyo factors: First, a
    steady flow field is not always appropriate for evaluating the
    spread and decay of a major pulse (spill)  input. Second, the
    assumption of trace-level EECs, which can be violated by spills,
    has been used to design the process  equations used in EXAMS.  The
    following assumptions were used to build the model: A first-order
    evaluation can be executed independently of the toxicant's actual
    effects on the system.  In other words, the toxicant does not
    itself radically change the environmental  variables that drive its
    transformations.  Thus, for example, an organic acid or base  is
    assumed not to change the pH  of the  system, the toxicant is assumed
    not to itself absorb a significant fraction of the light entering
    the system, and bacterial populations  do not grow  {or decline)
    simply due to the presence of the chemical. EXAMS  uses  linear
    sorption  isotherms, and second-order (rather than
    Michaelis-Menten-Monod) expressions  for biolysis.  This approach  is
    knovn to  be valid for low concentrations of pollutants? its
    validity  at high concentrations is less certain. EXAMS  controls its
    computational range to ensure that this assumption is not  grossly
    violated.  The  program will not report EECs  for loadings that
     result in aqueous-phase  toxicant  residuals greater than 50% of  the
    aqueous solubility of  the compound.  This  restraint  incidentally
     allows the model  to ignore precipitation of  the toxicant from
    solution,  and precludes  inputs of solid particles  of  the chemical.
    Sorption  is treated as a  thermodynaaic or  constitutive  property of
     each compartment  in the  system,  that is,  sorption/desorption
    kinetics  are assumed  to  be rapid  compared  to  other processes. The
     adequacy  of this  assumption  is partially  controlled by  properties
     of the  toxicant and system being  evaluated.  Extensively sorbed
     chemicals tend  to  be  sorbed  and desorbed  more slowly than  weakly
     sorbed  compounds;  desorption  half- lives  may  approach 10 days for
     the most  extensively  bound toxicants.   Experience with  the model
     has indicated,  however,  that  strongly sorbed chemicals  tend to be
     captured  by benthic  sediments, where their release to the  water
     column  is controlled  by  benthic exchange  processes.   This
     phenomenon overwhelms any accentuation of  the speed of  processes  in
     the water column that may be  caused by the assumption of  local
     equilibrium.  Steady-state solutions are obtained via Gaussian
     elimination  or sequential cascade.  Transient decay solutions are


                              1415

-------
                             Accession No.   16404000106    (cont)

    obtained via the method of lines, using a Runge-Kutta 4th-5th  order
    and a Gear stiff equation numerical integrator.
(IMP)  Input to nodeI: Input parameters include: A set of pollutant
    loading rates on each sector of the ecosystem. Toxicant molecular
    weight, solubility, and ionization constants. Sediment- and bio-
    sorption parameters:  Kp, Koc or Row, biomasses, benthic Hater
    contents and bulk densities, suspended sediment concentrations,
    sediment organic carbon, ion exchange capacities. Volatilization
    parameters:  Henry's Law constant or vapor pressure data,
    Hindspeeds, reaeration rates. Photolysis parameters:   quantum
    yields, absorption spectra, surface scalar irradiance, cloudiness,
    scattering parameters, suspended sediments, chlorophyll, dissolved
    organic carbon. Hydrolysis:  2nd-order rate constants or Arrhenlus
    functions for the relevant molecular species, pH, pOH,
    temperatures. Oxidation:  rate constants, temperature, oxidant
    concentrations. Biotransformation:  rate constants, temperature,
    total and active bacterial population densities. Parameters
    defining strength and direction of advective and dispersive
    transport pathways. System geometry and hydrology:  volumes, areas,
    depths, rainfall, evaporation rates, entering stream and
    non-point-source flows and sediment loads, ground water flows.
    Although EXAMS allows for the entry of extensive environmental
    data, the model can be run with a much reduced data set when the
    chemistry of a toxicant of interest precludes some of the
    transformation processes.  For example, pH and pQH data can be
    omitted in the case of neutral organics that are not subject to
    acid or alkaline hydrolysis reactions.   An environmental "Canonical
    Data Base1* is under development by EPA for eventual linkage to
    EXAPS.
(OUT)  Output of model: The 17 output tables include an echo of the
    input data, and tabulations giving the exposure, fate, and
    persistence of the toxicant.  The program prints a summary report
    of the results obtained.  Printer-plots of longitudinal and
    vertical concentration profiles can be invoked by the interactive
    user.
(APP)  Applications of aodel: EXAMS can be used to assess the fate,
    exposure, and persistence of organic chemicals in aquatic
    ecosystems in which the loadings can be time-averaged and residuals
    are at trace levels.  The model has been used by EPA to evaluate
    the behavior of relatively field-persistent herbicides.  EXAMS has
    beer successfully used to model volatilization of organics in
    specific field situations, and for a general assessment of the
    behavior of phthalate esters in aquatic systems.  EXAMS has been
    implemented by a number of manufacturing firms for environmental
    evaluations of newly synthesized Materials and has been used in an
    academic setting for both teaching and research.  EXAMS has been
    linked to a "multi-media" model under development by A. 0. Little,
    Inc.
(HDN)  Computational system requirements - Hardware: Mainframe IBM 370,
    CDC CYBER, POP 11, HP 3000 ;Dlsc storage: 2.5k/ENV ;Printer 80
    position line printer
(LNG)  Computational system requirements - Language(s) used: Fortran


                             1416

-------
                             Accession Ho.   16404000106    (cont)

(OSfO  Computational system requirements: Operator Knowledge/Skills:  bas
    ic ecology/chemistry
(HTP)  fcater Models - Type of model: Water  quality
(ENV)  Environraent(s) to which model applies:  Sstuary ;Lake
    jStream/river ;«ietlands
(CON)  Processes and constituents included  in model: Erosion and
    sediment ;Toxic chemicals ^Temperature  ;Biologic Hydrology
(CPL)  Complexity level of model: steady state aass balance ;transient
    mass balance ;one dimen multi dimensional ^Simplified
(RSF)  References - User manuals, documentation, etc.:
    Burns, L.A., D.M. Cline, and R. R. Lassiter. 1982.  Exposure
    Analysis Modeling
    System (EXAMS):  User Manual and System Documentation.
    a.S. Environmental Protection Agency/ Athens, GA.# SPA -
    600/3-82-023.# Baughraan, G.L. and L.A.  Burns. 1980.  Transport and
    Transformation of Chemicals: A Perspective.# In:  Handbook of
    Environmental Chemistry.   Vol.2, Part  A.# 0. Hutzinger (Ed.) New
    York, Springer-Verlag.  pp. 1-17.$ Lassiter, R.R., G.L. Baughman,
    and L.A. Burns. 1978.  Fate
    of toxic organic substances in the aquatic environment.
    pp. 219-246 In:  S.E. Jorgensen (ed.) State-of-the-Art in
    Ecological Modelling.  Proceedings of the Conference on
    Ecological Modelling, Copenhagen, Denmark, 28 August - 2
    September 1978.  International Society for Ecological Modeling,
    Copenhagen.
    Volfe, N.L., L.A. Burns, and H.C. Steen. 1980.  Use of linear
    free energy relationships and an evaluative model to assess
    the fate and transport of phthalate esters in the aquatic
    environment.  Chemosphere, 9:393-402.
(CNM)  Contact name(s): Burns,L.A.
(COR)  Contact organization: U.S. EPA (404) 546-3148
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                             1417

-------
                             Accession Mo.  16404000111

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Hydrological Simulation
    Program-Fortran
(ACR)  Acronym of Data Base or Model: HSPF
{MED)  Media/Subject of Data Base or Model: Toxic substances ;Water;
    BOO, DO, nutrients
(ABS)  Abstract/Overview of Data Base or Model: HSPF is a comprehensive
    package for sinulation of watershed hydrology and water quality
    developed for the U.S. Environmental Protection Agency (EPA).
    Simply put, the simulation model uses such information as the tine
    history of rainfall, temperature, and solar radiation; such
    characteristics of the land surface as land use patterns and soil
    types; and agricultural practices to simulate the processes that
    occur in a watershed.  The result of this sinulation is a tine
    history of the quantity and quality of the runoff.  Flow rate,
    sediment load, and nutrient and pesticide concentrations are
    predicted. The model then takes these results and information about
    the stream channels in the watershed and simulates the processes
    that occur in these streams.  This part of the simulation produces
    a time history of water quantity and quality at any point in the
    watershed—the inflow  to a lake, for example. HSPF includes a data
    management system to process the large amounts of input data for
    the simulations and equally large amounts of simulation output.
    Computer routines are  provided to statistically analyze the data
    for ease of presentation and interpretation.  HSPF can be applied
    to a wide range of water resource problems.  The key attribute that
    makes it applicable to such a wide variety of problems is its
    ability to simulate the continuous behavior of time-varying
    physical processes that occur in surface runoff and in receiving
    waters and provide statistical summaries of the results.
(CTC)  CONTACTS: Thomas 0. Barnuell  EPA Athens Environmental Research
    Labor Loc: Center for  Water Quality Modeling, College Station Road,
    Athens, GA,
    30613    Ph: (404) 546-3585 or (404) 546-3175
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: HSPF is built on a systematic
    framework in which a variety of process modules can fit.  The
    system consists of a set of modules arranged in a hierarchical
    structure that permits the continuous  sinulation of a comprehensive
    range of hydrologic and water quality processes.  HSPF currently
    contains three application modules—PERLMD, IHPLHD, and RCHRES—and
    five utility modules—COPY, PLTGEII, DISPLY, DURASL, and GENER.
    Each of these nodules  is briefly discussed below.
(ASM)  Basic assumptions of model: In a model  as comprehensive as HSPF,
    it is difficult to list all the  assumptions made in its
    development. The watershed hydrologic  algorithms generally follow
    the assumptions made in the Stanford Watershed Model.  The
    agricultural chemical  algorithms w«re  derived from the ARM model
    and the "simple** land  surface washoff  algorithms are from the NPS
    model.  Both ARM and UPS are  described elsewhere in this  catalogue*
    Stream routing uses the kinematic wave approximation and  the water


                             1418

-------
                         Accession No.  16404000111    (cont)

quality algorithms use first order kinetics except in the plankton
algorithms, yhere Monod growth kinetics are incorporated. Module
PERLNO simulates a pervious land segment with homogeneous
hydrologic and climatic characteristics.  The simulation of snow
accumulation and melt is based on an energy balance approach. Hater
movement is modeled along three flow paths—overland flow,
interflow and groundwater flow—in the Banner of the Stanford
Watershed Model.  Erosion processes include sediment detachment by
rainfall splash and man's influence and transport by overland 1
Scour in rills and gullies is also considered. Water quality
constituents may be simulated in the fashion of the NPS model using
simple relationships with sediment and Hater yield or by using the
detailed algorithms for pesticides and nutrients as in the ARM
model. Module IMPLND is designed to simulate impervious land
segments where little or no infiltration occurs.  Algorithms are
similar to PERLND except that no water movement occurs by interflow
or groundwater flow.  Solids are simulated using accumulation and
removal relationships in the manner of urban models such as SWHM
and STORM.  Water quality constituents are simulated using
empirical relationships with solids and water yield. Module RCHRES
simulates the processes that occur in a single reach of an open
channel or a completely mixed lake.  Hydraulic behavior is modeled
using the kinematic wave assumption. The outflow of an element may
be distributed across several targets that might represent normal
outflows, diversions, and multiple gates on a reservoir.
Temperature is simulated using a heat balance approach.  Sediments
may be simulated as two components--washioad and sandload.  Power
relationships to flow predict transport capacity and scour and
deposition of the sandload is modeled.  Sediment transport may also
be modeled using the Tolby or Toffaleti equations for sand
transport and the Krone and Partheniades equations for the cohesive
sediments. Conservative and nonconservative constituents are
simulated in a manner that allows maximum user flexibility.  Th-
following processes can be considered in simulating a
nonconservative constituent such as a toxic organic chemical
advection; decay by hydrolysis, oxidation, photolysis,
volatilization., or biodegradation; production of daughter products;
and adsorption/desorption on sediments. The primary dissolved
oxygen and biochemical oxygen demand balances are simulated in the
traditional manner, with provisions for decay, settling, benthal
sources, reaeration, etc.  The primary nitrogen balance is modeled
as sequential reactions from ammonia through nitrate.
Oenitrification is also considered.  Both nitrogen and pher.
are considered in modeling three types of plankton— phytopi
zooplankton, and attached algae.  Dissolved oxygen is considered in
modeling plankton and the nitrogen cycle.  Hydrogen ion activity
(PtO is calculated considering carbon dioxide, total inorganic
carbon, and alkalinity. HSPF's utility modules are designed to give
the user maximum flexibility in managing simulation input and
output.  COPY is used to manipulate time series.  The user can
change the form of the time series during the COPY operation.  A
5-minute rainfall record may be aggregated to an hourly time


                         1419

-------
                             Accession No.   16404000111    (cont)

    interval, for example*  The PLTGEN module creates a specially
    formatted sequential file for later access by a stand-alone plot
    program. DISPLY takes a time series and summarizes the data in a
    neatly formatted table.  Aggregation of the basic data is  also
    possible. DORANL performs a duration and excursion analysis on a
    tine series and computes soae elementary statistics.  It can answer
    questions like:  "How often does dissolved oxygen stay below 4 mg/1
    for 4 consecutive hours?"  It can also  perform a lethality
    analysis.  The GENSR nodule is used to  transfora a tine series (A)
    to produce a new series (C) or to combine two time series  (A+B) to
    create a new one (C).  For example, this module is useful  if one
    «ants to compute the aass outflow of a  constituent from the flow
    and concentration.
(IMP)  Input to model: Data requirements to run HSPF can be quite
    extensive and depend on the state variables selected for
    simulation.  Tables 1 and 2 (attached)  list the time series and
    parameter inputs possible for HSPF.  As a minimum, precipitation
    and evapotranspiration records are required for simulations. Many
    parameters can be defaulted but defaults are not provided  for  the
    more sensitive, site-specific parameters.
(DOT)  Output of model: System output can be obtained at several
    levels, from a detailed printout of system state variables and
    parameter values at every time step to  yearly summaries.  Printout
    formats compatible with output interval are provided.  An  Interface
    file for plotters is provided and a stand-alone program for CALCOMP
    plotters is available.
(CSR)  Computational System Requirements: HSPF requires a Fortran
    compiler that supports direct access I/O.  Twelve (12) external
    files are required.  The system requires 128K bytes of instruction
    and data storage on virtual memory machines, or about 2SOK with
    extensive overlaying on overlay-type machines. The system  was
    developed on a Hewlett-Packard 3000 minicomputer and has been  used
    on IBM 370 series computes.  It has also been installed on DEC/VAX,
    PRIfE and HARRIS minicomputers/as well  as Burroughs CDC, and ONIVAC
    mainframes. Because of its comprehensive nature, HSPF requires
    individuals with several different backgrounds to implement it.  As
    a minimum, an implementation team should consist of a systems
    programmer, a hydrologist, and a water  quality expert. Manpower
    requirements for data preparation and output interpretation will
    vary with the system being modeled but  are likely to be extensive.
(APP)  Applications of model: Although HSPF is a relatively new
    product/ having been publically released by EPA in April 1980, it
    has undergone some testing through applications to inhouse projects
    by the developer (Hydrocomp, Inc.).  It has also been used in
    projects sponsored by EPA.  Some of these applications are
    described below. In a 208 study, a prototype of the HSPF system was
    applied to the Occoquan River Basin by  the Northern Virginia
    Planning District Commission.  The Occoquan Basin Computer Model
    consists of 15 sub-basins (39 mi(2) average) linked by a network
    consisting of 12 stream channels and 3  reservoirs and was  based on
    a linkage of the NFS model and HSP.  Considerable effort went  into
    date collection to calibrate the runoff and stream quality models,


                             1420

-------
                            Accession No.  16404000111    (cont)

   resulting in one of the better general nonpoint source data bases.
   The model was used to project long-tern receiving water quality
   impacts of existing and future (year 2005) land use patterns and to
   compare the benefits of alternataive "best management practice"
   (BMP) levels.  The HSPF software was tested largely using the
   simulations of the Qccoguan basin as a reference. One of the early
   applications of HSPF was in a hydropower study for the Doninlean
   Republic.  Hydropower is a major source of electricity in this
   developing country/ which is experiencing an 11% annual increase in
   demand.  Twenty potential hydropower sites were identified and 10
   potential network configurations were hypothesized.  The analysis
   procedure consisted of the generation of 99 years of synthetic
   hourly precipitation, calculation of land surface runoff, and
   calculation of natural streamflow at 21 sites.  Power generation
   was simulated by routing the streamflou through the 10 different
   hydropower configurations.  The tine series for depth of flow
   (head) and flow rate were then analyzed using the GEHCR module to
   estimate the most efficient configuration. Another water resources
   study using HSPF has been conducted in the Clinton River Basin,
   Michigan.  The purpose of the study was to evaluate a proposed
   Corps of Engineers floodway, estimate the impact of developing wet
   lands, investigate better lake operating procedures/ and simulate
   the effect of retention ponds.  The basin is located north of
   Detroit and lies in Macomb and Oakland counties.  It is largely
   urban in the south and agricultural in the north.  The HSPF network
   consisted of four land segments  for each of nine rain gages and 128
   channel reaches in six sub-basins.  The model was calibrated on a
   ten year record (1965-1975).  Simulated annual peak flows were then
   compared with 14 USGS stream gages for the period 1927-1975.  The
   longer time period was then used  to evaluate water resource
   management options. EPA has applied,  through a contractor, HSPF
   merged with the Chemical Migration and Risk Assessment (CMRA)
   methodology to demonstrate its application as a planning tool for
   the evaluation of agricultural BMP's.  This demonstration is being
   done at two scales—the 20<2>«i(2) Four Mile Creek watershed in
   east central Iowa and  the 1200 mi(2)  Iowa River Basin above
   Coralville Reservoir.  The small  scale demonstration serves  as a
   calibration site  for  scale-up to  the  larger basin. A BMP
    implementation scenario has been  investigated relative to its
    impact on water quality.  Schemes  aimed at receiving water quality
    targets  for pesticides/ phosphorus, and nitrates were  simulated.
   HSPF has been  used by  the State  of Nebraska to  investigate the
    effect of groundwater  pumping for agriculture in the Big Blue
   Basin.  The University of Nebraska has used the  system as a  data
    management tool  for  the Dee Creek Research Watershed.  A project
    sponsored through  the  University  of North Dakota used  HSPF to
    Investigate the  effect on  wildlife habitat of proposed lake
    drainage  in  the basin  of  the  Red  River of  the North.   The current
    (July  1981) release  of HSPF is  designated  Version  7.   Another
    release  is  anticipated  in  late  1983.
(HDW)  Computational  system  requirements  - Hardware: Mainframe
    IBM/HP3000/PR!M£/HARRIS/Burroughs/UNlVAC  CDC/DEC VAX >Disc Storage


                             1421

-------
                             Accession Ho.   16404000111    (cont)

    12 files ^Printer any codel ;Card reader/punch
(LNG)  Cosputational systea requirements -  Language(s) used:  FORTRAN
(OSK)  Computational system requireaents: Operator Knowledge/Skills: Pro
    graining /Engineering
(WTP)  Water Models - Type of model:  Hater  quality
    Hater run-off
(ENV)  Cnvironaent(s) to which Model  applies:  Lake ;Stream/river
    ;Non-point Urban and non-urban
CCON)  Processes and constituents included  in  model: Dissolved oxygen
    ?Eutrophication ;Srosion and sediment y Toxic Chemicals ;Salinity
    ^Temperature ;Hydrology ;Quality  processes
(CPL)  Complexity level of model: transient mass balance ;one
    dimensional
(REF)  References - User manuals, documentation, etc.:
    J. C. Imhoff, J. L. Kittle, A. S. Donigian, R. C. Johanson, 1981
    Users 'Manual For Hydrological Simulation  Program - FORTRAN (HSPF)
    Release 7.0.  Draft Report, Environmental  Research Laboratory,
    Athens, GA., 30613& Donigian, A.S., Jr., J.L. Baker, D.A. Haith,
    and M.F. Walter. 1980.  HSPF Parameter  Adjustments to Evaluate the
    Effects of Agricultural Best Management Practices.  Draft Report.
    U.S. Environmental Protection Agency, Athens, GA. 306131 Donigian,
    A.S., Jr., J.C. Imhoff, and B.R.  Bicknell.  1981. Modeling Water
    Quality and the Effects of Agricultural Best Management Practices
    in Four Mile Creek, Iowa.  U.S. Environ mental Protection Agency,
    Athens, GA.f Hydrocomp, Inc. 1980.  Analysis of Power Generating
    Configurations in the Rio Yaque del Norte  Watershed.  Mountain
    Viet, CA.f Imhoff, J.C., B.R. Bicknell, and A.S. Donigian, Jr.
    1981. Preliminary  Application of HSPF  to  the Iowa River Basin to
    Model Water Quality and the Effects of  Agricultural Best Management
    Practices.  U.S. Environmental Protection  Agency, Athens, GA.#
    Donigian, A.S., J.C. Imhoff, B.R. Bicknell, J.L. Kittle, Guide to
    the Application of the Hydrological Simulation Program - FORTRAN
    (HSPF) 1982 Draft Report, Environmental Research Laboratory,
    Athens, GA. 30613$ Gilbert, D.P.  Development of State Water Quality
    Management Plan for the State of Nebraska 1982.  Water Resources
    Center, University of Nebraska - Lincoln,  Nebraska 68583f Johanson,
    R. C., J. C. Imhoff, and H. H. Davis.ft 1980.  User's Manual for the
    Hydrologic Simulation program-
    Fortran (HSPF).  EPA 600/9>80-015.  Environmental Research
    Laboratory, Athens, GA 30613.
    Barnwell, T. 0. and R. C. Johanson. 1980.   "HSPF:  A
    Comprehensive Package for Simulation of Watershed Hydrology
    and Water Quality.**  Presented at:  Nonpoint Pollution
    Control:  Tools and Techniques for the Future, Gettysburg,
    PA, June 1980.
    Grimsrud, G. P., D. D. Franz, R.  C. Johanson, N. H. Crawford.
    1980.  Executive Summary for the Hydrologic Simulation
    Program—Fortran (HSPF).  In Press.  Environmental Research
    Laboratory, Athens, GA  30613.
    Anderson, E. A. 1968.  "Development and Testing of Sno« Pack
    Energy Balance Equations***  Water Resources Research,
    4(l):l9-37.


                             1422

-------
                         Accession No.  16404000111    (cont)

Crawford, N. H. and A. S. Donigian, Jr. 1973.  Pesticide
Transport and Runoff Model for Agricultural Lands.  EPA-
600/2-74-013.  Environmental Research Laboratory, Athens, GA
30613.
Crawford, N. H. and R. K. Lindsey. 1966.  Digital Simulation
in Hydrology:  Stanford Watershed Model If.  Stanford Univ.
Tech. Rep. No. 39, Stanford Univ., Palo Alto, CA.
Donigian, A. s., Jr., D. C. Beyerlain, H. H. Davis, Jr.,
and N. H. Crawford. 1977.  Agricultural Runoff Management
(ARM) Model Version II:  Refinement and Testing.  EPA-
600/3-77-098.  Environmental Research Laboratory, Athens, GA
30613.
Donigian, A. S., Jr. and N. H. Crawford. 1976.  Modeling
Pesticides and Nutrients on Agricultural Lands.  SPA-
600/2-76-043.  Environmental Research Laboratory, Athens, GA
30613
Donigian, A. S., Jr. and N. H. Crawford. 1976.  Modeling
Nonpoint Pollution From The Land Surface.  EPA-600/3-76-083.
Environmental Research Laboratory, Athens, GA 30613.
Donigian, A. S., Jr. and N. H. Crawford. 1977.  Simulation of
Nutrient Loadings in Surface Runoff with the NPS Model.
EPA-600/3-77-065.  Environmental Research Laboratory, Athens,
GA 30613.
Donigian, A. S., Jr. and N. H. Crawford. 1979.  Cser's Manual
for the Nonpoint Source (NPS) Model.  Unpublished Report.
Environmental Research Laboratory, Athens, GA 30613.
Donigian, A. S., Jr. and H. H. Davis. 1978.  User's Manual
for Agricultural Runoff Management (ARM) Model.  EPA-
600/3-78-080.  Environmental Research Laboratory, Athens, GA
30613.  August 1973.
Hydrocomp, Inc. 1969.  Bydrocomp Simulation Programming:
Operations Manual, 2nd Edition, Hydrocomp/ Inc., Palo Alto,
CA.
Leytham, K. M. and R. C. Johanson. 1979.  Watershed Erosion
and Sediment Transport Model.  EPA-600/3-79-028.  Environmental
Research Laboratory, Athens, GA 30613.
Negev, M. 1967.  A Sediment Model on a Digital Computer.
Stanford Univ. Tech. Rep. No. 76,  Stanford Univ., Palo Alto,
CA, 1967.
TABLE 1
INPUTS FOR HYDROLOGY AMD HYDRAULICS
SECTIONS OF HSPF
TIMF SERIES INPUTS
air temperature(l)
precipitation
dewpoint temperature(l)
wind movement(l)
solar radiation(l)
potential evapotranspiration
channel inflows not simulated
channel diversions
surface lateral inflow to
                         1423

-------
                         Accession Ho.   16404000111    (cont)
       land segment(2)
Interflow lateral inflow to
       land segment(2)
groundwater lateral inflow
       to land segaent(2)
(l)Needed only if snow
nodule is used/ or for
water quality nodules*
(2)These inputs are optional.
If entire watershed is
modeled, these can usually
be assumed to be zero*
CONSTANT PARAMETER INPUTS
Interception storage (maximum value)
Noninal upper zone soil moisture storage
Nominal lower zone soil mositure storage
Infiltration index
Interflow index
Areal cover of deep-rooted vegetation
Seepage to deep (or inactive) groundwater
Evaporation from groundwater within reach of
       vegetation
Length of overland flow (feet)
Overland flow slope
Manning's "NM for overland flow (constant or
       monthly)
Daily interflow recession rate
Dally groundwater recession variable rate
Exponent of the infiltration curve equation
Actual upper zone soil mositure storage at
       start
Actual lower zone soil moisture storage
Groundwater storage volume
Groundwater slope parameter
Surface detention storage
Interflow detention storage
Interception storage volume
Convection-condensation melt parameter
Snow correction factor
Elevation difference in thousands of feet
Index density of new snow
Forest cover index
Dally ground melt
Hater content of snow at saturation
       (fraction)
Hater equivalent of snow-pack for complete
       areal coverage
Channel geometry
Stage discharge relationships
Channel slope
Ratio of max and mean velocities in channels
Retention (interception) storage capacity of
                         1424

-------
                         Accession No.   16404000111     (cont)

       impervious surface (constant or  monthly)
TABLE 2
INPUTS TO HATER QUALITY
SECTIONS OF HSPF
LAND SEDIMENT
Supporting management practice factor - constant
Soil Detachment coefficient and exponent - constants
Rate of soil re-attachment - constant
Land surface cover - constant or monthly
Sediment influx from atmosphere - constant or monthly
Detached sediment washoff coefficient and exponent - constant
Matrix soil scour coefficient and exponent - constant
Lateral input of sediment to segment surface - time series
       (optional)
SOIL TEMPERATURE
Slope and intercept of land surface temp to air temp
       equation - constants
Smoothing factors in temperature calculations - constants
Air  temperature - time series
DISSOLVED GAS IN LAND HATERS
Ground elevation - constant
Interflow and Groundwater concentration of DO - constant or
       monthly
Interflow and Groundwater concentration of C0<2> - constant
       or monthly
QUALITY CONSTITUENTS ASSOCIATED WITH SEDIMENT
Hashoff potency factor (each constituent) - constant or
       monthly
Scour potency factor (each  constituent) - constant or monthly
QUALITY CONSTITUENTS IN  INTERFLOW  AND GROUNDWATER
Concentration of const,  in  Interflow - constant or monthly
Concentration of const,  in  Groundwater - constant or monthly
AGFICHEMICAL QUALITY CONSTITUENTS
Solute  leaching factors  (each  soil layer) - constant
Soil layer  depths (each  of  four layers) - constant
Soil bulk densities  for  each layer  - constant
Temperature correction parameter  for pesticide  decay - constant
Pesticide solubility - constant
Pesticide  adsorption - desorption parameters -  constant
Pesticide degradation  rates (each layer) -  constant
Nitrogen  plant  uptake  rates (each layer) -  constant  or monthly
Fraction  of plant uptake from  N0<3> and NH<4> - constant
Temperature correction coefficients for various nitrogen
        reactions - constant
Ammonium  desorption  rate (each layer)  - constant
Ammonium  adsorption  rate (each layer)  - constant
Nitrate immobilization rate (each layer) -  constant
Organic N  amraonification rate  (each layer)  - constant
Denitrification rate (each  layer) - constant
Nitrification rate  (each layer)  - constant
Ammonium  immobilization  rate (each layer)  - constant
Max. solubility of  ammonium -  constant


                          1425

-------
                         Accession No.   16404000111     (cont)

Nitrogen adsorption-desorption parameters (each layer)  -
       constant
phosphorus plant uptake rates (each layer) - constant or
       Monthly
Temperature correction coefficients for various phosphorus
       reactions - constant
phosphate desorption parameters (each layer) - constant
Phosphate adsorption parameters (each layer) - constant
Phosphate immobilization rate (each layer) - constant
Organic P mineralization (each layer) - constant
Max. solubility of phosphate (each layer) - constant
IMPERVIOUS LAND WATER QUALITY
Solids washoff coefficient and exponent - constant
Rate of solids placement on surface * constant or monthly
Rate of solids removal on surface - constant or monthly
Ground elevation - constant
Air temperature to surface water temp, recession constants -
       constant or monthly
Sediment borne pollutant uashoff potency factor (each const.) -
       constant or monthly
Overland flow borne pollutant accumulation rate (each const.) -
       constant or monthly
Overland flow borne pollutant max. storage (each const.) -
       constant or monthly
Surface runoff removal rate (each const.) - constant or monthly
Lateral input of sediment to segment surface - time series
       (optional)
REACH AMD RESERVOIR HATER QUALITY
Solar radiation correction factor - constant
Longwave radiation coefficient - constant
Conduction convection heat transport coefficient - constant
Evaporation coefficient - constant
tfashload material sinking rate - constant
Sandload suspension coefficient and exponent - constants
Sediment density and stream bed porosity-constant.  Critical
bed shear stress for scour and deposition-constant.  Hydrolysis/
oxidation/ photolysis/ volatilization/ biogradation/ and
adsorption/desorption parameters-constant.
BOD benthic release characteristics and  rates - constants
BOD decay rate  and temperature correction - constants
BOD settling  rate - constant
Allowable level of DO supers at.ur at ion  -  constant
Benthai oxygen  demand rate - constant
Benthai release of BOD - constant
Reaeration characteristics and coefficients - constants
Content of carbon/ oxygen/ nitrogen  and  phosphorus  in  biomass -
       constants
Nitrogen  and  phosphorus  benthic release  rates  - constants
Oxidation rates of ammonia and nitrite - constants
Chlorophyll  "*" content  of biomass - constant
Fraction  of  algae  and  zooplankton  biomass - constant
Light  extinction coefficients - constants


                         1426

-------
                             Accession No.  16404000111    (cont)

    Maximal algal groth rate - constant
    Constants for light, nitrogen and phosphorus limited growth -
           constants
    Temperature thresholds for algal growth retardation - constants
    Algal respiration rate - constant
    High and low algal death rate - constant
    Phytoplankton death rate due to anaerobic conditions - constant
    Lower thresholds of nitrogen and phosphorus concentrations
           below which high algal death occurs - constants
    Advective characteristics of plankton - constants
    Threshold of chlorophyll "A" concentration above which high
           algal death occurs - constant
    Phytoplankton settling rate - constant
    Dead refractory organics settling rate - constant
    Maximum zooplankton ingestion rate - constant
    Zooplankton filtering rate - constant
    Zooplankton respiration rate - constant
    Natural Zooplankton death rate - constant
    Increment of Zooplankton death rate due to anaerobic conditions -
           constant
    Average weight of zooplank ton organism - constant
    Maximum benthie algae density
    Ratios of benthic algal to Phytoplankton respiration and
           growth rates - constant
    C0<2> invasion rate at water surface - constant
    Benthal release of C0<2> - constant
    Meteorological time series listed in Inputs for hydrology  -
           tine series
    inflow concentrations of all simulated constituents - tine series
(CNN)  Contact name(s): Barnwell,T.O.
(COR)  Contact organization: EPA Athens Environmental Research
    Laboratory 30613    Ph: (4
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                             1427

-------
                             Accession No.  16404000114

(DQ)  Date of Questionaire: 12-02-82
(MAM)  Name of Data Base of Model: Simplified Stream Model
(ACR)  Acronym of Data Base or Model: SSM
(MED)  Fedia/Subject of Data Base or Model: Hater
UBS)  Abstract/Overview of Data Base or Model: The Simplified Stream
    Model is a one-dimensional, steady state water quality node! for
    the evaluation of conservatives, singular non-conservatives with
    first order decay, and coupled BOD-DO deficits in streams, rivers,
    and shallow non-stratified lakes.  It was developed by
    Hydroscience, inc. for the EPA as a "first cut" planning tool to
    achieve estimates of ambient DO downstream from point sources. SSN
    requires no computer equipnent except for an electric hand
    calculator which is used to compute logs and exponentials.
(CTC)  CONTACTS: Robert B. Ambrose   U.S. EPA, ORD Environmental
    Research La Loc: College Station Rd., Athens, GA 30605  Ph: (404)
    546-3546
(STA)  Cata Base status: Operational/Ongoing
(DF)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: SSM is capable of simulating
    the physical processes of dilution, advection, reaeration, and
    temperature effects in streams, rivers, and shallow non- stratified
    lakes.  Uncoupled chemical reactions can be represented, as well as
    coupled BOD-DO deficit reactions. Constituents that can be
    represented by the model include BOD, DO, unspecified
    conservatives, and un-coupled non-conservatives with first order
    decay.  The model handles only point source residual inputs, and
    its simplified nature restricts its usage when complicated
    prototype systems or complex water quality problems are involved.
    No bio-chemical processes are represented directly, although first
    order decay for coliform bacteria may be possible. SSM has a high
    estimated sensitivity to residual loading rates and stream
    velocities, and a moderate estimated sensitivity to decay
    coefficients and total streamflow.
(ASM)  Basic assumptions of model: The model considers only
    longitudinal variations and handles only point source residual
    inputs, it assumes a constant stream velocity for each reach, and
    assumes first order decay rates for quality constituents.
(IHP)  input to model: For initial set-up/calibration needs, the
    following input data are required: Met river flow Flow velocity
    Depth Distance from point source discharges Constituent
    concentration, temperature, and background DO deficit for all
    stream inflows Loading rate for ultimate oxygen demand
    Deoxygenation coefficients Constituent concentrations throughout
    the modeled area are required for model verification.
(OUT)  Output of model: Output from the model (through hand
    calculation) includes constituent concentrations and DO deficits.
(CSR)  Computational System Requirements: The model is uncoded and
    requires no computer equipment except for an electronic hand
    calculator which is used to compute logs and exponentials. Data
    preparation and model set-up may require 1-2 man-weeks, and actual
    computation time may take from several man-hours to several
    man-days, depending on the complexity of the application and the


                             1428

-------
                             Accession No.   16404000114    (cont)

    mathematical skill of the personnel involved*  For manpower needs
    an engineer (junior level) or engineering aid with a mathematical
    orientation is required.   Ho programming experience is necessary.
(APP)  Applications of model: SSM can be applied to rivers, streams,
    and shallow/ non-stratified lakes for the evaluation of
    conservatives, non-conservatives with first-order decay, and
    coupled BOD-DO deficits.  TECHNICAL CONTACT: Robert B. Ambrose  U.S.
    Environmental Protection Agency Environmental Research Laboratory
    College Station Road Athens, Georgia 30605 FTS 250-3546 COM
    404/546-3546
(HDH)  Coaputational system requireaents -  Hardware: Calculator
(OSK)  Coaputational system requirements: Operator Knowledge/Skills: Eng
    ineering
(WTP)  Vater Models - Type of model: Hater  quality
(ENV)  Environment(s) to which model applies: Stream/river
(CON)  Processes and constituents included  in model: Dissolved oxygen,
    biochemical oxygen demand >Salinity, conse
(CPL)  Complexity level of model: steady state mass balance ;Simplified
(REF)  References - User manuals, documentation, etc.:
    Hydroscience, Inc. "Simplified Mathematical
    Modeling of Hater Quality."  Report to  Office of Hater
    Programs/ U.S. Environmental Protection Agency, Washington,
    D.C. (U.S. Government Printing Office No. 1971-444-367/392),
    1971.
    Hydroscience, Inc. "Addendum to Simplified Mathematical
    Modeling of Water Quality."  Report to  Office of Water
    Programs, U.S. Environmental Protection Agency, Washington,
    D.C. (U.S. Government Printing Office No. 1972-484-486/291),
    1972.
(CNM)  Contact name(s): Ambrose,R.B.
(COR)  Contact organization:  U.S. EPA, ORD  Environmental Research  Lab
(ROR)  Responsible Organization: Office of  Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                             1429

-------
                             Accession No.   16404000115

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Simplified Estuary Model
(ACR)  Acronym of Data Base or Model: SEM
(MED)  Media/Subject of Data Base or Model:  Water
CABS)  Abstract/Overview of Data Base or Model: The Simplified Estuary
    Model (SEM) is a one-dimensional, steady state water quality model
    for the evaluation of uncoupled chemical reactions and BOD-DO
    deficits in tidal streams and rivers, and non-stratified estuaries.
    Constituents that can be modeled include BOD, DO, unspecified
    conservatives, and uncoupled non- conservatives with first order
    decay (i.e. sone nutrients). SEM Has developed by Hydroscience,
    Inc. For the EPA as a "first cut" uater quality planning tool to
    achieve estimates of ambient DO concentrations in estuaries
    downstream from point source residual inputs.  The Bodel requires
    no computer equipment except for a hand calculator which is used to
    coapute logs and exponentials.
(CTC)  CONTACTS: Robert B. Ambrose   U.S. EPA, Environnental Research
    Labora Loc: College Station Road, Athens, GA  30605     Ph: (404)
    546-3546
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: SEN is a far-field, one-
    dimensional (horizontal plane) model that considers only
    longitudinal variations and handles only point source resi- dual
    inputs.  The model can be applied to tidal streams and rivers, and
    to non-stratified estuaries.  Physical  processes that can be
    represented include advection, longitudinal dispersion, dilution,
    reaeration, and temperature effects. The model can simulate
    uncoupled chemical reactions and coupled BOD-DO deficit reactions,
    and It can represent the following constituents:  BOD, DO,
    unspecified conservatives, and uncoupled non-conservatives with
    first order decay. No biochemical processes are represented
    directly, although the modeling of first order decay for coliform
    bacteria is possible.  The simplified nature of SEM restricts its
    usage when complicated prototype systems or complex water quality
    problems are involved. SEM has a moderate estimated sensitivity to
    residual inputs, stream flow and velocity, and decay coefficients.
(ASM)  Basic assumptions of model: The model considers only
    longitudinal variations and handles only point source residual
    inputs. It assumes a constant velocity  for each reach, and assumes
    first-order decay rates for quality constituents.
(IMP)  Input to model: The following input  data are required for
    initial setup/calibration of the model:  Net river flow exclusive of
    tidal effects Flow velocities Average depths Distance from point
    source discharges Dispersion coefficients Cross-sectional area
    Constituent concentration, temperature  and background DO for all
    stream inflows Loading rate for ultimate oxygen demand
    Deoxygenation coefficients Reaeration coefficients Salinities at
    the seaward boundary Constituent concentrations throughout the
    modeled area are needed for verification of the model.
(OUT)  Output of model: Output from the model (through hand
    calculation) includes constituent concentrations, maximum DO


                             1430

-------
                             Accession Mo,  16404000115    (cont)

    deficit, and minimurn DO concentrations.
(CSR)  Computational System Requirements: SEM is encoded and requires
    no computer equipment except for a hand calculator which is used to
    compute logs and exponentials.  Data preparation and model setput
    (including moel familiarization) requires 1-2 man-weeks/ and the
    actual computation time nay take from several man-hours to several
    nan-days depending on the complexity of the application and the
    mathematical skill of the personnel involved.  Manpower-needs
    require an engineer (junior level) or engineering aid with a
    mathematical orientation.  No programming experience is necessary.
(APP)  Applications of model: SEM has been used for various
    applications. TECHNICAL CONTACT: Robert B. Aabrose U.S.
    Environmental Protection Agency Environmental Research Laboratory
    College Station Road Athens, Georgia  30605 FTS 250-3546  COM
    404/546-3546
(HDW)  Computational system requirements - Hardware: Calculator
(OSK)  Computational system requirements: Operator Knowledge/Skills: Eng
    ineering
(WTP)  tlater Models - Type of model: Mater quality
(EMV)  Environment(s) to which model applies: Estuary
(CON)  Processes and constituents included in model: Dissolved oxygen,
    biochemical oxygen demand ;Salinity, conse
(CPL)  Complexity level of model: steady state mass balance ;one
    dimensional ;Simplified
(REF)  References - User manuals, documentation, etc.:
    Hydroscience, Inc. "Simplified Mathematical
    Modeling of Water Quality."  Report to Office of Water
    Programs, U.S. Environmental Protection Agency,
    Washington D.C.  (U.S. Government Printing Office No.
    1971-44-367/392), 1971.
    Hydroscience, Inc. "Addendum to Simplified Mathematical
    Modeling of water Quality."  Report to Office of Water
    Programs, U.S. Environmental Protection Agency, Washington,
    D.C.   (U.S. Government Printing Office No. 1972-484-486/
    291), 1972.
(CUM)  Contact name(s): Ambrose,R.B.
(COR)  Contact organization: U.S. EPA, Environmental Research Laboratory
(ROR)  Fesponsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                             1431

-------
                             Accession No.   16404000116

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Kane of Data Base of Model: Agricultural Runoff Model (Version
    ID
(ACR)  A crony* of Data Base or Model: ARM II
(MED)  Media/Subject of Data Base or Model:  Water
(ABS)  Abstract/Overview of Data Base or Model: The Agricultural Runoff
    Management Model - Version II (ARM II)  is a continous simulation
    model that estimates the movement and degradation of pollutants on
    agricultural land surfaces.  The model  can be used to study
    pollutants including pesticides, nutrients, and sediments. ARM II
    is an improved version of ARM I and the Pesticide Transport and
    Runoff (PTR) Model published in 1973.  All of these models build
    upon the Stanford Watershed Model. The  ARM II model has been tested
    on agricultural plots at Vatkinsville,  Georgia, and is currently
    being tested at other sites throughout  the United States.  The
    model is recommended for use to estimate pollutant loads from
    agricultural fields.  Applications include basin planning and
    evaluation of pesticides being considered for registra- tion.  ARM
    II vas developed by Hydrocomp, incorporated, for the U.S.
    Environmental Protection Agency*
(CTC)  CONTACTS: Lee A. Mulkey  U.S. EPA/ Office Research and
    Development,
    Environmental Research Laboratory/ Athens
    Loc: College Station Road, Athens/ GA.   30605    Ph: (404) 546-3581
(STA)  Data Base statust Operational/Ongoing
(DP)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: ARM II can be used to study
    the impact of various land use practices on pollutant loading to
    streams in agricultural areas.  It can also be used to evaluate
    loadings of pesticides based on the physio-chemical properties of
    pesticides/ recommended application rates and topographical/ soil/
    and meteorological properties of an area in uhich the pesticides
    are to be used. For the best results/ land areas simulated should
    not be larger then 2 mi(2).  Channel processes affect timing of
    loadings for areas larger than this.  Consequently, for areas
    larger than 2 mi(2), it Is recommended that ARM II be used with a
    compatible channel routing model to insure accurate representation
    of significant transport processes. The model outputs include a
    continuous recording of the following parameters: Volume flow rate
    of surface runoff. Volume flow rate of interflow. Volume flow rate
    of base flow. Volume of water contained in interception storage.
    Volume of water In upper zone soils. Volume of water in lower zone
    soil, volume of water in active groundwater storage. Rate of
    evapotranspiration water from land surface. Soil surface
    temperature, Upper zone soil temperature, Mass of pesticide on the
    watershed. Mass loading of pesticide, Concentration of dissolved
    pesticide in runoff, Concentration of adsorbed pesticide in runoff,
    Amount of pesticide degraded and volatilized. Amount of organic
    nitrogen in the soil. Amount of dissolved ammonia in the soil,
    Amount of adsorbed ammonia in the soil. Amount of dissolved nitrite
    plus intrate in the soil. Amount of nitrogen incorporated into
    plant material. Load of organic nitrogen in runoff. Load of


                             1432

-------
                             Accession No.  16404000116    (cont)

    adsorbed ammonia in runoff, Load of dissolved ammonia in runoff.
    Load of nitrite plus nitrate in runoff, Concentration of dissolved
    inorganic phosphorus in soil, Concentration of adsorbed inorganic
    phosphorus in soil. Concentration of organic phosphorus in soil,
    and Amount of phosphorus incorporated into plant material. AHR II
    is composed of six subroutines:  MAIN, LANDS, SEDT, ADSRB, DFGRAD,
    and NUTRNT.  MAIN calls and executes the other subroutines and
    establishes input and output files. LANDS performs the moisture
    balance in the soil and generates runoff*  SEDT generates and
    transports sediment loads. ADSRB partitions pesticides between
    adsorbed and dissolved phases.  DEGRAD degrades pesticides
    contained on the soil surface.  NCJTRST transforms nutrients to
    various forms and also establishes the equilibrium between adsorbed
    and dissolved phases.  The model is capable of simulating changes
    in any parameter on 5- and 15-minute intervals.  Several output
    formats can be selected to display results on 5-ninute, 15-minute,
    hourly, daily, or monthly intervals.  Simulations can be run for
    any number of years desired.

-------
                             Accession No*  16404000116    (cont)

     transformations. Nitrogen  and phosphorus parameters that define
     reaction rates  and nutrient storage. Chloride  storage parameter.
(OUT)   Output of model: Outputs produced by the model include an echo
     of  the  input data set,  the concentration on pestides and nutrients
     in  the  soil and runoff, and loads of nutrients, pesticides, and
     sediaent in runoff.  Nutrient concentrations are reported in terms
     of  the  various  foras present in the cycle.  For both pesticides and
     nutrients, concentrations  and loads for dissolved and suspended
     materials are reported  separately.  Some selection in available as
     to  the  frequency of printout.  Monthly and yearly summaries for
     loads are also  provided.
(CSR)   Computational System Requirements: On the IBM 370/168, using the
     FORTRAN H compiler, the progran requires approximately 360K bytes
     (90,000 words)  of storage  for compilation of the largest
     subroutine.  Program execution requires up to  230K bytes (57,500
     words)  of storage depending on the model operation selected.  Thus,
     a computer with relatively large storage capability is usually
     needed  for use  of the ARM model.  However, Version II of the ARM
     model has been  adapted and run on a Hewlett-Packard 3000 Series II
     computer, which is substantially smaller than  the IBM machines.
     Thus, the model can be used on relatively small computers; the
     effort  and model changes needed to adapt the ARM model to other
     computers will  depend on the specific computer installation. The
     A?M model requires no special external storage devices (tape, disc,
     etc.) other than the standard card reader input and line printer
     output   However, the model includes an option to output simulated
     runoff and sediment values to an external storage device as
     unformatted FORTRAN records.
(APP)  Applications of model:  ARM II has been used by the U.S.
     Environmental Protection Agency to evaluate potential runoff of a
     pesticde fro* agricultural lands.   Application of ARM includes
     evaluation of best management practices for agricultural lands in
     relation to basin planning.  It can also be used to evaluate
     pesticide loading in relation to registration of pesticides.
     TECHNICAL CONTACT: Lee A.  Mulkey Environmental Research Laboratory
    U.S. Environmental Protection Agency College Station Road Athens,
     Georgia  30605 FTS  250-3581   COM  404/546-3581
(HDW)  Computational system requirements - Hardware: Mainframe IBM
    370/168 or Hewlett-Packard HP 3000 Series II j  Card reader/punch
(LNG)  Computational system requirements - Language(s)  used: Fortran
(KTP)  Kater Models - Type of  model: Hater run-off
C^NV)  Environment(s) to which model applies:  Non-point non-urban

-------
                             Accession Mo.   16404000116    (cont)

    and Nutrients on Agricultural Lands."  Environmental Research
    Laboratory/ U.S. Environmental Protection Agency, Athens.
    Georgia, EPA-600/2-76-043, 1976.
    Doniglan, A. S., Jr., D. C. Beyerleln,  H. H.  Davis, Jr.,
    and N. H. Crawford.  "Agricultural Runoff Management (ARM)
    Model - Version 11, Refinement and Testing.*1   Environaental
    Research Laboratory, U.S. Environmental Protection Agency,
    Athens, Georgia, EPA-600/3-77-098, 1977.
    Donigian, A. S. Jr., and H. H. Davis, Jr.  "Agricultural
    Runoff Management (ARM) Model User's Manual:   Versions I
    and II."  Environaental Research Laboratory,  U.S. Environmental
    Protection Agency, Athens, Georgia, EPA-600/3-78-080, 1978.
CCNM)  Contact narae(s): Mulkey,L.A.
(COR)  Contact organization: U.S. EPA, Office Research and Development,
    Environmental Res
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmentai Research Laboratory.
                             1435

-------
                             Accession No.  16404000117

i'Di,-;  Date of Questionaire: 12-02-82
(HAM)  Name of Data Base of Model: Nonpolnt Source Pollutant Loading
    Model
(ACR)  Acronym of Data Base or Model: UPS
(MED)  Media/Subject of Data Base or Model: Water
(A8S)  Abstract/Overview of Data Base or Model: The Nonpoint Source
    Pollutant Loading (NPS) Model is a continuous simulation model
    which estimates the movement of pollutants on land surfaces.   The
    •odel can be used to study pollutants that are conserved or which
    degrade slowly.  The NPS model is one of a series, including the
    Agricultural Runoff Management Model (ARM) and the Pesticide
    Transport and Runoff Model (PTR), which are based on the Stanford
    Watershed Model.  The nodel was initially tested on three
    predominantly urban sites and has been used in relation to planning
    required under Section 208 of Public Law 92-500. The model is
    recommended for use to estimate nonpoint source pollutant loads in
    urban and rural areas*  Applications are primarily waste allocation
    in relation to basin planning. NPS was developed by Hydrocomp,
    Incorporated, for the U.S. Environmental Protection Agency.
(CTC)  CONTACTS: Lee A, Mulkey  U.S.EPA, Office Research and
    Development,
    Environmental Research Laboratory-Athens
    Loc: College Station Road, Athens, GA  30605     Ph: (404)546-3581
(STA)  Data Base status: Operational/Ongoing
CDF)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: NPS can be used to study the
    impact of various land management strategies on pollutant loading
    to streams in a planning area.  For best results, land areas
    simulated should not be larger than 2 square a lies.  Since channel
    processes affect timing of loadings for areas larger than 2 square
    miles; it is recommended that NPS be used with a compatible channel
    routing model to insure accurate representation of significant
    transport processes for areas of application larger than 2 square
    miles. The model outputs include a continuous recording of the
    following parameters: Runoff flow rate. Runoff temperature.
    Dissolved oxygen concentration of runoff. Amount of pollutant load
    in a given time interval for up to five pollutants. Concentration
    of up to five pollutants in runoff. Amount of sediment load in a
    given tine interval. Concentration of sediment in runoff. NPS is
    composed of three major components:  MAIN, LANDS, and QOAL.  MAIN
    calls and executes the two major subroutines in the program and
    establishes input and output files.  LANDS performs the moisture
    balance and generates runoff.  QUAL executes erosion calculations
    generating sediment loads and sediment concentration in runoff. - It
    also calculates pollutant loads and concentrations by relating
    these parameters to sediment load and concentration.  The node! is
    capable of simulating changes in any parameter on 15-minute or
    hourly intervals. Several output formats can be selected to display
    15-mlnute, hourly, daily, or monthly intervals.  Simulations  can be
    run for any number of years desired.
(ASM)  Basic assumptions of model: Both water and pollutant transport
    descriptions are based on the principle of conservation of mass.


                             1436

-------
                             Accession No.  16404000117    (cont)

    The overall model is based on the Stanford Watershed Model. Water
    transported out of the watershed Is assumed to be drawn from every
    portion of the watershed.  Consequently, water and chemical
    constituents in runoff cannot be identified with any particular
    location within the watershed. The water balance calculations
    assumes that there are five water storage zones, namely,
    interception storage, upper zone storage, lower zone storage,
    active ground-water storage, and inactive ground-water storage.
    During a storm event, rainfall is partitioned between these
    storages and also exported from the watershed by overland flow,
    interflow and baseflow.  Between storm events, export continues
    along with transfers between compartments.  In addition/ water is
    lost by evapotranspiration.  Snow accumulation and melt is also
    nodeled. The rates of water export and intercompartnent transfers
    are governed by empirical equations which contain constants
    requiring calibration for each application of the model. Where
    possible, guidance has been provided to show reasonable parameter
    estimates in various parts of the country. Calibration requires
    simultaneous rainfall and runoff records. Sediment loss from
    pervious are modeled in identical fashion as the ARM Version I
    model.  Two processes are described: detachment of fines and
    transport of fines.  For impervious surfaces, sediment particulate
    accumulates and is removed according to impirical equations during
    dry weather periods. During storms, transport of sediment particles
    are defined by the same relationship as for sediment fines from
    pervious surfaces. Conservative constituent transport is assumed to
    move at a rate proportional to the rate of movement of sediment.
(IHP)  Input to model: Input parameter list include the following: A
    set of control parameter values that defines frequency of printing
    of output, dates of simulation and whether snowmelt calculations
    are to be performed. A set of hydrology parameter values that
    specify the noninal capacity of the storage zone and specific rates
    of hater transport between zones and the rates of export of water
    by runoff and evapotranspiration. A set of parameter values that
    define show pack characteristics. A set of paraneter values that
    define sediment transport characteristics. A set of parameters that
    defines land use characteristics and for impervious surfaces,
    sediment accumulation, and removal rates during dry weather
    periods. Precipitation date for period of simulation.
(OUT)  Output of model: Outputs commonly displayed are hydrographs for
    each storm as well as base flow projected for dry weather periods,
    sediment loads and concentrations as a function of time, pollutant
    loads and concentrations as a function of time, dissolved oxygen
    concentration and temperature as a function of tine.  An echo of
    the input data set is also printed along with stora, monthly, and
    annual summaries of the output data sets.
(CSR)  Computational System Requirements:  As abstracted from the report
    documenting the NFS model, system resource requirements are as
    follows.  The NFS Model is written in the IBM FORTRAN IV language.
    The "handy minimal language** concept was adopted to the extent
    possible to produce a reasonably compatible computer code for at
    least the following computer systems:  IBM 360, UNIVAC 1108, CDC


                             1437

-------
                             Accession Ho.   16404000117    (cont)

    6000, and Honeywell Series 32. However,  at the present  tine,  model
    operation has been limited to the IBM systems.  The NFS model
    operates most efficiently in a two-step  procedure*   The first  step
    involves the compilation of the program  and the storage of the
    compiled version on disk or Magnetic tape.  In the  second step, the
    complied model is provided the necessary input data and is
    executed.  Thus, the model can operate a number of  types of
    different input data with a single compilation.
(APP)  Applications of model: NPS has been applied to small urban
    watersheds in Durham, North Carolina; Madison, Wisconsin; and
    Seattle, Washington.  It is also being used in conjunction with
    implementation of several 208 plans, including the  plan being
    developed by the Northern Virginia Planning Commission. TECHNICAL
    CONTACT: Lee A. Mulkey Environmental Research Laboratory U.S.
    Environmental Protection Agency College station Road Athens,
    Georgia  30605 FTS  250-3581  COM  404/546-3581
(HOH)  Computational system requirements - Hardware: Mainframe IBM 360
    Univac 1108, CDC 6000 and/or Honeywell,  Se II
(LNG)  Computational system requirements - Language(s)  used: Fortran
(HTP)  hater Models - Type of model: Hater run-off
(EN?)  Environment(s) to which model applies: Non-point urban and
    nonurban
(CON)  Processes and constituents included in model: Dissolved oxygen
    ;Eutrophication ;Erosion and sediment ;Hydr
(CPL)  Complexity level of model: transient mass balance ;»ulti
    dimensional
(REF)  References - User manuals, documentation, etc.:
    Donlgian, A. S., Jr., and N. U. Crawford.
    "Modeling Pesticides and Nutrients and Agricultural Lands."
    U.S. Environmental Protection Agency, Environmental Research
    Laboratory, Athens, Georgia, EPA-600/2-76-043, 317 p.,  1976.
    Donigian, A. S., Jr., and N. H. Crawford, "Modeling Nonpoint
    Pollution from the Land Surface," 0. S. Environmental
    Protection Agency, Environmental Research Laboratory, Athens,
    Georgia, EPA-600/3-76-083, 280 p., 1976.
(CNN)  Contact name(s): Mulkey,L.A.
(COR)  Contact organization: U.S.EPA, Office Research  and Development,
    Environmental Rese
(ROR)  Responsible Organization: Office of Research  and
    Development.Office of Environmental Processes  and  Effects
    Research.Environmental Research Laboratory.
                             1438

-------
                             Accession No.   16404000118

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model:  Multi-Segment Comprehensive Lake
    Ecosystem Analyzer for Envi Resources
(ACR)  Acronym of Data Base or Model: MS.CLEANER
(MED)  Media/Subject of Data Base or Model:  Hater
(ABS)  Abstract/Overview of Data Base or Model: The Multi-Segment
    Comprehensive Lake Ecosystem Analyzer for Environmental Resources
    (MS.CLEANER) is one of the more biologically realistic aquatic
    ecosystem models. Because of the attention to general process-level
    constructs, the model is appropriate for application to diverse
    types of lakes and reservoirs and is capable of addressing many
    environmental problems. The model represents over 30 man-years of
    development by a multidisciplinary team.  The precursor, CLEANER,
    was formulated by 25 investigators from several institutions under
    the aegis of the International Biological Program, Eastern
    Deciduous Forest Biome.  The model is structured to simulate up  to
    20 biotic and 20 abiotic state-variables in each of 10 spatial
    segments simultaneously.  Current development includes adaptation
    to coastal environments and coupling to a model for bioaccumulation
    of toxic substances. MS.CLEANER  was developed by Dr. Richard A.
    Park of the Center for Ecological Modeling, Rensselaer Polytechnic
    Institute, Troy, New York, for  the U.S. Environmental Protection
    Agency.
(CTC)  CONTACTS: Thomas 0. Barnyell  U.S. EPA, Office Research and
    Developme Environmental Research Lab-Athens
    Loc: college Station Road, Athens, Georgia  30605     Phs  (404)
    546-5175
(STA)  Data Base status: Discontinued
(DF)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: MS.CLEANER is an ecological
    model  capable of addressing environmental problems such as nutrient
    enrichment, thermal pollution,  siltation, impoundment, and fish
    renoval.  The model can  simulate a variety of biotic variables,
    including  four  types of  phytoplankton (two Mith internal  storage of
    nitrogen  and phophorous); up to four types of submerged aquatic
    vegetation  (macrophytes); five  types of zooplankton; tuo  or  more
    types  of  fish  with  as  many  as four  life stages* tno kinds of
    bottem-diielling  animals  (zoobenthos); and  three groups of
     ecovposers  (bacteria  and fungi).   An equal  number  of abiotic
     variables can  be simulated,  including seven types  of dissolved
     organic  matter;  four  types  of particulate  organic  matter; five
     types  of  inorganic  nutrients  in the water  column  and  sediments;  and
     four  compartments  for  dissolved oxygen  and inorganic carbon. This
     potential complexity  is  seldom  fully utilized,  however.   Normal
     applications require  a subset  of perhaps  20 state-variables. The
     model has been run  with  as  fey  as two  dynamic  state-variables.
     Several  external variables  and  all the  biotic  state variables can
     be  used  as  loadings.   External  variables  include  water  temperature,
     temperature and discharge rate  of inflowing water, wind speed,
     light, dissolved inorganic  nitrogen,  orthophosphate,  dissolved
     silica,  dissolved organic material, and particulate  organic
     material. As a user-oriented model, MS.CLEANER features a machine-


                              1439

-------
                             Accession No.   16404000118    (cont)

    independent name list editor that enables the user to list and Make
    changes in parameter values while running the model; to plot
    state-variables concentrations, rates for various processes/ and
    loadings to the model; and to transform the state- variable values
    into "environmental perception" characteristics such as turbidity/
    fish catch/ or concentrations of noxious algae. Multiple segments
    can be simulated/ each having different physical-chemical and
    biotic characteristics.  Movement of materials across the
    boundaries of the segments is specified by a linking language* The
    movement can either be intersegmental or be treated as a loss  from
    the system/ as specified by the user. The loadings of nutrients/
    temperature/ and light can be perturbed using the editing
    capability of MS.CLEARNER to set at the perturbation parameters.
    The perturbations can be either additive or multiplicative/ and
    either constant or as a pulse of user-specified duration and
    timing. An algorithm has been developed to facilitate analysis of
    the sensitivity of MS.CLEANER to changes in values of parameters
    and driving variables.  Using a random number generator/ values
    with a normal or uniform distribution are used to vary loadings or
    parameters within a specified range.  The simulation is repeated  a
    given number of times with different perturbations/ and the results
    are summarized.  The parameters are perturbed at the beginning of
    each simulation; the loadings are perturbed at each step. The model
    is coded in FORTRAN IV and is virtually machine independent.
(ASM)  Basic assumptions of model: The realism of MS.CLEANER is
    achieved by disaggregation of state-variables and by use of
    detailed process equations.  Adaptive constructs are used for  light
    and temperature response in phytoplankton.  These constructs have
    permitted application to a wide range of lakes without changing
    parameters. Onlike most ecosystem models/ MS.CLEANER can treat
    phytoplankton growth as a function of stored nutrients.  This
    uncoupling of growth and external nutrient concentrations has
    resulted in more realistic simulations with avoidance of the time
    lags between modeled and observed phytoplankton peaks that are a
    persistent problem with many models. Likewise/ process-level
    realism in simulating zooplankton has been achieved by recognizing
    variations in modes of food consumptions.  In some zooplankton the
    rate of consumption is independent of the concentration of food;  in
    others a minimum food level is necessary before feeding will occur.
    The rate of consumption follows saturation kinetics. In order to
    use MS.CLEANER in studying bioaccumulation of toxic substances/ the
    fish compartments have been disaggregated to represent age classes.
    At the time of promotion/ all/ or some fraction/ of the fish in.one
    age class is transferred to the next age class at a rate that
    follows a normal distribution. The shedding of gonadal products
    (and associated pesticides) by adults Is handled in the same
    manner. By modeling decomposers explicitly/ more realistic
    simulations of decomposition have been obtained.  This is
    particularly important In representing the differential degradation
    of different types of organic material (including oil spills)/ the
    cycling of nutrients/ and—through the production of microbial
    biomass—formulation of a high-quality food source for detritus


                             1440

-------
                             Accession  No.   16404000118     (cont)

    feeding animals.  Phosphorus,  silicon/  carbon and soluble  inorganic
    nitrogen are  the  only nutrients that can be limiting.   The
    temperature,  nutrient/ and biomass  are considered to be uniformly
    distributed in a  segment.
(INP)  Input to model:  The data required to calibrate and use the model
    fall into several categories:  Driving  Variables - a tine-series  of
    data for the  period of the simulation  (which nay be from  a  few days
    to years)/ including water temperature/ incident radiation/
    loadings of dissolved and particulates/ organic matter/ biomass,
    and nutrients. Site Constants - average water depth and light
    extinction coefficient. Initial Conditions - for all variables.
    Parameter Values  - a default set of values for the extensive
    parameter list may be used or values that are known nay be  input.
    Calibration Data  - observed values  for some state variables are
    necessary to fine-tune the model. Pertubations and Sensitivity
    Analysis - sensitivity to changes in parameters and driving
    variables may be  examined using a built-in algorithm.  All of the
    input data and parameter values used can be output as  well  as  the
    state variables simulated.  A plotting routine is available.
(CSR)  Computational  System Requirements:  MS.CLEANER requires
    approximately 250K bytes of core/ which may be reduced to about
    145K bytes using an overlay structure.  Ten files are  required for
    operation of the  program/ plus an additional number  of files equal
    to the number of  segments being simulated (up to 10  segments).
    Execution times depend on the complexity and length  of the
    simulation.
(App)  Applications of model: The model has been calibrated and
    verified with data froi  a number of lakes of diverse  types.  It was
    originally applied to Lake George/ Hew York.  Subsequent  versions
    have been calibrated  for Lock Leven,  Scotland; Slapy  Reservoir/
    Czechoslovakia; Balaton  Lake/ Hungary; Lakes d'Endine and Mergozzo,
    Italy; Lake Esrum/ Denmark; Lake Paijanne/ Finland;  and DeGray
    Reservoir/ Arkansas.  A  version that incorporates all the latest
    improvements/ including  storage of internal nutrients in
    phytoplankton/ has been  calibrated for subalpine Ovre Heimdalsvatn/
    Norway/ and verified  with data from Vorderer Finstertaler See/
    Austria/  without changing parameter values.  With only minor
    changes/  it gives  reasonable  results for Lake  Mergozzo/ a
    mesotrophic/  stratified  lake. TECHNICAL CONTACT: Mr.  Thomas 0.
    Barnwell/ Jr. Environmental Research Laboratory  0.S. Environaental
    Protection Agency  College Station  Road Athens/  Georgia  30605 FTS
    250-3175  COM  404/546-5175 Dr. Richard A.  Park  Center  for Ecologic
    Modeling  Renssselaer  Polytechnic Institute  Troy/ Sew York  12181
    COM  518/270-6494                                  , f      „„,„„„
 (HOW)   Computational system  requirements - Hardware: Mainframe IBM/CDC
    ;Disc  storage ten  files  ;Printer Any model
 (LNG)   computational system  requirements  - Language(s) used: FORTRAN
 (OSK)   Computational system  requirements:  Operator Knowledge/Skills: Pro
    g ramming  Engineering ; Bio logy/ecology
 (WTP)   Water  Models  -  Type of  model: Hater  quality
 (ENV)   Environment(s)  to which model applies:  Lake
 (CON)   Processes  and constituents included  in  model: Dissolved  oxygen


                              1441

-------
                             Accession Mo.  16404000118    (cont)

    ;Eutrophication ;Temperature ;Hydraulics ;Q
(CPL)  Complexity level of model: transient mass balance ;multi
    dimensional
(REF)  References - User manuals, documentation, etc.:
    Bloomfield, J. A., R. A. Park, D. Scavia, and
    D. S. Zahorcak, "Aquatic Modeling in the Eastern Deciduous
    Forest Biome, U.S. International Biological Program."  In:
    Middlebrooks, E. J., D, H.  Falkenborg, and T. E. Maloney
    (Editors),  Modeling the Eutrophication Process, Utah State
    University, Logan, Utah, pp. 139-158, 1973.
    Clesceri,  L.  S., R. A. Park, and J. A. Bloomfield.  "General
    Model of Microbial Growth and Decomposition in Aquatic
    Ecosystems."   Appl. Environ. Microbiol., 33<5):1047-1058,
    1977.
    deCaprarils.  P., R. A. Park, R. Haimes, J. Albanese,
    C. Collins, C. Desormeau, T. Groden, D. Leung, and B. Youngberg.
    "Utility of the Complex Ecosystem Model MS.CLEANER"  In:
    Proceedings of the International Conference on Cybernetics and
    Society, pp.  87-89, 1977,
    Desormeau,  C. J.  "Mathematical Modeling of Phytoplankton
    Kinetics with Applications  to Two Alpine Lakes."  Report #4,
    Center for  Ecological Modeling, Rensselaer Polytechnic
    Institute,  Troy, New York,  21 pp., 1978.
    Groden,  T.  H. "Modeling Temperature and Light Adaptation of
    Phytoplankton."  Report $2,  Center for Ecological Model,
    Rensselaer  Polytechnic Institute, Troy, New York, 17 pp.,
    1977.
    Leung, D.  K.  "Modeling the  Bioaccumulation of Pesticides in
    Fish."   Report #5, Center for Ecological Model, Rensselaer
    Polytechnic Institute,  Troy,  Neu York, 18 pp.,  1978.
    Leung, D.  K., R. A. Park, C.  J.  Desormeau, and J. Albanese.
    "MS.CLEANER:   An Overview."   in:  Proceedings of Plttsburg
    Modeling and  Simulation Conference, Pittsburg,  Pennsylvania,
    1978.
    Park, R.  A. "Theoretical Implications of Models of Aquatic
    Systems."   Presented at AAAS,  Biological Sciences Meeting,
    New York, Neu York 1975.
    Park, R. A. "A Model for Simulating Lake Ecosystems."  Report
    f3. Center  for Ecological Modeling, Rensselaer  Polytechnic
    Institute,  Troy, New York, 19 pp., 1978.
    Park, R. A. "Predicting the  impact of Man on Lake Ecosystems."
    (Abstract)  in:   Biro,  P. (Editor), Human Effects on Life In
    Fresh Water,  Hungarian Academy of Sciences,  Tihany,  Hungary,
    1977.
    Park, R. A.,  R.  V.  CTHeil, J.  A.  Bloomfield,  H.  H.  Shugart,  R.
    S.  Booth, R.  A.  Goldstein, J.  B.  Han kin,  J.  F.  Roonce,  0.
    Scavia,  M.  S.  Adams,  L.  S. Clesceri, E.  M.  Colon, E. H.
    Dettaann, J.  Hoopes,  D.  D. Huff,  S.  Katz,  J.  F.  Kitchell,
    R.  C. Kohberger,  E.  J.  LaRom,  D.  C.  McNaught, J.  Peterson,
    J.  Titus, P.  R.  Heller,  J. H.  Wilkinson,  and  C.  S.  Zahorcak.
    "A  Generalized Model  for Simulating Lake  Ecosystems."
    Simulation, 23 (2):   33-50, 1974.


                            1442

-------
                             Accession No.   16404000118    (cont)

    Park,  R.  A.,  D.  Scavia, and H.  L.  Clesceri.   "CLEANER,  the  Lake
    George Model."  In:   Russell, C. S. (Editor), Ecological
    Modeling  of  a Resource Management  Framework.   Resources for the
    Future, Inc., Washington, D. C. pp. 49-82,  1975.
    Park,  R*  A.  T. W.  Groden, and C. J. Desormeau.   "Modifications
    to  the Model  CLEANER Requiring  Further  Research."  In:
    Scavia, D. and A.  Robertson (Editors),  Perspectives on  Aquatic
    Ecosystem Modeling,  Ann Arbor Science Publishers, Inc., 1978.
    Park,  R.  A.,  C.  D. Collins, D.  K.  Leung,  C.  V.  Boylen,  J.
    Albanese, P.  deCaprariis, and H. Forstner.   "The Aquatic
    Ecosystem Model MS.CLEANER." Center for  Ecologic Modeling,
    Rensselaer Polytechnic Institute,  Troy, Heu York, 1978.
    Scavia, D.,  C. W.  Boylen, R. B. Sheldon,  and R. A. Park.
    "The Formulation of  a Generalized  Model for Simulating  Aquatic
    Macrophyte Production."  Fresh  Water Institute Report |75-6,
    Rensselaer Polytechnic Institute,  Troy, Neu York, 1975.
    Scavia, D. and R.  A. Park.  "Documentation of Selected  Contructs
    and Parameter Values in the Aquatic Model CLEANER."  Ecol.
    Mod.,  2(1):   33-58,  1976.
    Youngberg, R. A. "Application of the Aquatic Model CLEANER  to
    a Stratified  Reservoir System."  Report fl,  Center for
    Ecological Modeling, Rensselaer Polytechnic Institute,  Troy, Neu
    York,  22 pp., 1977.
(CNM)  Contact name(s):  Barnuell,T.Q.
(COR)  Contact organization: U.S. EPA, Office Research and  Development,
    Environmental Res
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                             1443

-------
                             Accession No.   16404000119

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Explore-I
(ACR)  Acronym of Data Base or Model: EXPLORE-I
(MED)  Vedia/Subject of Data Base or Model: Water
(ABS)  Abstract/Overview of Data Base or Model: EXPLQRE-I  is a
    comprehensive mathematical water quality model to be used in river
    basin planning and water resource studies.   This generalized river
    basin water quality model can predict the hydrodynamics and water
    quality dynamics for rivers and those well nixed estuaries where
    dispersion is negligible.  The EXPLQRE-I model is an extended and
    modified version of the Storm Hater Management Model,  receiving
    water component, which was developed for studies of DO/BOD
    dynamics. The model is capable of simulating a number  of hydraulic
    regimes in either a dynamic or steady state mode, and  it has been
    set up, calibrated, and verified on a portion of the Willamette
    River Basin, consitlng of major tributaries. EXPLORE-I was
    developed by Battelle-Northwest Laboratories for the EPA.
(CTC)  CONTACTS: Robert B. Ambrose, Jr.   EPA, Athens Environmental
    Research Center for Quality Modeling
    Loc: College Station Road, Athens, Georgia  30613     Ph: (404)
    546-3546
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: EXPLORE-I can be  used to study
    the effects of various flow conditions, waste discharge and/or
    treatment schemes on the water quality levels in the river basin.
    EXPLORE-I is capable of simulating a number of hydraulic regimes in
    either a dynamic or steady state mode.  These are:  1)  streams and
    rivers, 2) shallow lakes, and
    3) estuaries or tidally influenced rivers.  In addition,
    the behavior of the following water quality parameters can be
    studied: Carbonaceous Biochemical Demand (BOD) Nitrogenous BOD
    Benthlc BOD Total Organic Carbon {TOO Ref-t-actory Organic Carbon
    Sedimentary Phosphorous Soluble Phosphorous Organic Phosphorous
    Ammonia Nitrogen Nitrite Nitrogen Nitrate Nitrogen Organic Nitrogen
    Toxic Compunds (dissolved only) Phytoplankton Zooplankton Dissolved
    Oxygen EXPLORE-I is composed of a river basin program which is
    capable of modeling one-dimensional open channel flow in streams
    and rivers, and the predominant lateral and longitudinal flow in
    shallow lakes and estuaries.  The program consists of  a hydraulic
    code which calculates the required water velocities, depths, and
    flows, and a quality code which evaluates the quality parameter
    reactions and routes the constituents through the system.  The .
    model is capable of simulating diurnal or long-term periods, and it
    can handle constant and/or time-varying point or diffuse sources.
(ASM)  Basic assumptions of model: The overall model formulation is
    partitioned into two basic modules which can be operated
    sequentially* a hydrodynamics module and a mass  transport and water
    quality submodels nodule.  The hydrodynamics nodule is formulated
    on conservation of mass and momentum principles.  The mass
     transport and water quality submodels module is  formulated from the
    expressions for specie continuity, i.e., mass balance of a


                             1444

-------
                             Accession No.   16404000119    (cont)

    particular constituent or specie.  For  any biotic or abiotic
    substance the general mass transfer expression is the sum of  the
    individual forms of mass transfers. Diffusion is assumed to be
    negligible, and mass transfer is partitioned into simple transport
    and water quality kinetics.
(INP)  Input to model: Junction and channel data are required for  the
    hydrodynamics module.  Junction input data include: The average
    water surface elevation for the junction point The water surface
    area associated with the junction point Any significant inflows to
    the junction point from small streams,  tributaries/ or other
    sources Any significant outflows fron the junction point The
    average elevation of the bottom of the  river or estuary for the
    junction point The cartesian coordinates of the junction point
    (necessary only if the effect of wind stress on channel flow  is
    being calculated) Required input channel data include: Channel
    length Channel width Average elevation  of the channel bottom
    Manning coefficient for the channel Initial velocity in the channel
    Input for the water quality program include:  upstream node
    specification, reach boundaries, source node specification, BOD
    constants, benthic BOD constants, TOC constants, toxic constants,
    DO production by phytoplankton, DO production by benthic plants,
    reaeration constants, phosphorous constants, nitrogen constants,
    algae constants, number of constant sources, constant source
    values, time-varying source values, reach temperatures, constant
    upstream node concentrations, and time-varying upstream node
    concentrations.
(OUT)  Output of model: Output produced by  the model includes an  echo
    of the input data and BOD and loading rates for each of the
    constituents modeled.
(APP)  Applications of model: EXPLORE-I has been used by the
    Environmental Protection Agency for studies of hydrodynamics  of the
    Willamette River Sasin, and it has been tested in the Detroit
    Reservoir. Application of EXPLORE-I is  relatively inexpensive,  and
    it can be efficiently used to sound and economical solutions  to
    complex water pollution problems in many different types of water
    systems including estuaries and bays, streams and river networks,
    lakes and reservoirs, and combinations  of these. TECHNICAL CONTACT:
    Robert B. Ambrose, Jr. EPA, AERL, Center for fcater Quality College
    Station Road Athens, Georgia  30613
(HDH)  Computational system requirements -  Hardware: Mainframe IBM 370
    and Univac 1100 jDisc storage 44K word  on Printer any type
(LNG)  Computational system requirements -  Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gratnming ;Engineering ;Environmental engineer with enviro
(WTP)  Hater Models - Type of model: Hater  quality
(ENV)  Environment(s) to which model applies: Estuary ;Lake
    ;Stream/river
(CON)  Processes and constituents included  in model: Dissolved oxygen
    ;Eutrophication ;Salinity ^Temperature  ;8io Hydraulics ;Quality
    processes
(CPL)  Complexity level of model: transient mass balance ;momentum
    balance /one dimensional


                             1445

-------
                             Accession No.  16404000119    (cont)

(REF)  References - User aanuals, docuaentation, etc.:
    Thackston, E. L. and P. A. Krenke.  "Reaeration
    Predictions in Natural Streaas."  ASCE, Proc. Journal of
    the Sanitary Engineering Division, Vol. 95, No. SAI, Paper
    6407, pp. 65-94, February 1969.
    Feigner, K. D. and H. S. Harris.  "Docuaentation Report:
    FWQA Dynamic Estuary Model."  U.S. Departaent of the Interior,
    Federal Water Quality Administration, July 1970.
    Callaway, R. J., K. V. Byraa and G. R. Ditsuorth.  "Mathematical
    Model of the Columbia River froa the Pacific Ocean to Bonneville
    Dan - Part I."  Federal Water Pollution Control Adainistration,
    Pacific Northuest Water Laboratory, pp. 155, November 1969.
    Netcalf S, Eddy, Inc.  "Stora Hater Management Model."  Vol.
    1-4.  Palo Alto, California; University of Florida, Gainesville,
    Florida; and water Resources Engineers, Inc. fcalnut Creek,
    California.
(CNM)  Contact narae(s): Ambrose,R.B.
(COR)  Contact organization: EPA, Athens Environmental Research Lab,
    Center for Quality M
(ROR)  Responsible Organization: Office of Research and
    Developaent.Office of Envlronaental Processes and Effects
    Research.Environmental Research Laboratory.
                             1446

-------
                             Accession No.   16404000120

(DQ)   Date of Questionaire: 12-02-82
(HAM)  Name of Data Base of Model: Dynamic  Estuary Model
(ACR)  Acronym of Data Base or Model: DEM
(MED)  Media/Subject of Data Base or Model: Water
(ABS)  Abstract/Overview of Data Base or Model: The DSM is a "real
    time" link-node model that simulates the unsteady tidal floii and
    dispersive characteristics of an estuary.  The model can be applied
    to estuaries in which vertical stratification is either absent or
    limited to relatively small areas.  It  can accommodate both
    conservative and non- conservative constituents.  Constituents
    which have been modeled include salinity, tracer dye, dissolved
    solids, DO, BOD, total nitrogen, temperature, organic nitrogen,
    ammonia, nitrite, nitrate, phosphates,  chlorophyll a, and coliforn
    bacteria.  Given the necessary kinetics and rates, the model could
    also treat parameters such as pesticides, heavy metals, and organic
    compounds.  The DEM is often linked to  the Tidal Temperature Model
    (TTP) for heat budgets.  Ecological processes such as algal
    dynamics, nutrient transport, sediment  oxygen demand, coliform
    die-off, and first order kinetics have  been expressed in the model.
    Higher order kinetics are available on  some versions.
(CTC)  CONTACTS: Robert B. Ambrose   EPA Athens Environmental Research
    Labor Loc: College Station Road, Athens, GA 30613 Ph: (404) 546-3546
(STA)  Data Base status: Operational/Ongoing
(DF)   Date of forra completion: 01-25-83
(CAP)  Functional capabilities of model: The DEM represents the
    predominant lateral and longitudinal tidal flow pattern, basic
    transport processes (advection and dispersion), and the accretion
    or depletion of pollutants within an estuary (provided that
    vertical stratification is either absent or insignificant).  The
    estuary is represented by a network of  channels (or links) and
    junctions (or nodes).  A channel is viewed as a flow conduit with a
    length, width, tine varying depth, time varying velocity, time
    varying cross-sectional area, and frictional resistance associated
    with it.  A junction acts as a well-mixed receptable for mass and
    volume.  It is described by a constant  surface area, time varying
    head, and time varying volume. The DEM  is composed of two separate,
    but interrelated components. The first  component is a hydraulic
    model which uses a step- forward explicit finite difference scheme
    to solve the equations of motion and continuity for channels and
    junctions, respectively.  The result is a "dynamic steady-state"
    solution of the hydrodynamic behavior of the estuary applicable to
    a specific set of flow inputs and boundary tidal conditions. Some
    versions allow varying flow inputs and  boundary tidal conditions,
    resulting in a fully dynamic hydrodynamic solution. The second
    component, a quality model/ is closely  tied to the hydraulic model.
    The quality model and the hydraulic model are referenced to the
    sane network of channels and junctions. The tidally fluctuating
    velocities, flows, and heads predicted  by the hydraulic model are
    stored on tape or disk and are the basis of the hydraulic inputs to
    the quality program. Constituents in the quality program are
    subject to the processes of advection,  dispersion (including both
    eddy diffusion and dispersion due to density currents), biological


                             1447

-------
                             Accession No.  16404000120    (cent)

    and/or chemical decay, transfer between water and the atmosphere,
    and transfer betveen water and the bottom sediments.  A mass
    balance for each constituent is performed at each junction for each
    time step. The quality model predicts the dynamic (ti«e varying)
    constituent concentrations in each junction which result fro* a
    specified set of boundary conditions, inflows, waste discharges,
    and diversions.  It is important that the tine and space scales
    used in the DEM approximate as nearly as possible the physical,
    tidal, and climatic characteristics of the estuary. Special
    attention should be paid to the correspondence of model network
    features with existing sampling stations and wastewater inputs. The
    OEM is sensitive to (l) the time step in the hydraulic program
    (stability reasons), (2) net flows, (3) residuals loading rates,
    (4) frictional resistance coefficient, (5) initial conditions if
    "real time" solutions are desired, and (6) the specified reaction
    kinetics and rates. The Dynamic Estuary Model has been run for
    networks with as many as 1300 channels and 840 junctions.  Some
    versions have modeled up to 15 constituents.
(ASM)  Basic assumptions of model: The model assumes that vertical
    stratification is either absent or limited to relatively small
    areas.  It does not handle wind stress or tidal flats exposed at
    low tide. Other hydrodynamlc processes assumed negligible include
    longitudinal density gradients, Coriolis acceleration, and bottom
    slope.  The instantaneous mixing of residuals discharge throughout
    junctions is also assumed.
(IMP)  Input to model: The DEM requires a large input data base on
    disk, tape, and/or cards.  Parameters which need to be specified
    include headwater and tributary flows, wastewater flows and
    loadings, water withdrawals, seaward tidal conditions, channel and
    junction geometry, bottom roughness of each channel, constituent
    concentrations at boundaries, and decay rates for non- conservative
    constituents.  Physical data pertaining to channels and junctions
    can be obtained from navigational charts since direct measurements
    are seldom available.
(OUT)  Output of model: The model is capable of producing a wide
    variety of outputs.  Output options available are:  (1) maximum and
    minimum flows, heads,  and velocities, as well as net flows, over a
    tidal cycle for the model network, (2) maxiaui, aininum,  and
    average constituent concentrations for each junction over a
    complete tidal cycle (or other specified averaging interval), (3)
    "slack water" and "snapshot1* tables of constituent concentrations
    at desired time intervals throughout the simulation, and (4)
    line-printer plots of both spatial and temporal concentration
    profiles.
(CSR)  Computational System Requirements: The DEM is written in FORTRAN
    IV.  The hydraulic component of the model requires 2 files, either
    on disk or tape.  For  a network of 129 junctions and 131 channels,
    the hydraulic program can be run on a digital computer with 130K of
    main storage.  THe cost of a 50 hour (4 tidal cycles) hydraulic
    simulation on an IBM 370/168 is approximately $40.  The quality
    component of DEM requires from 4 to 7 files, depending of the
    output options desired.  A quality program with 6 constituents can


                             1448

-------
                             Accession No.   16404000120     (cent)

    be run on a digital computer with 200K  to 400K of main storage.
    The cost of a 1000 hour (80 tidal cycles) quality simulation for  6
    constituents and 129 junctions can range from $40 to $75.  The  DEM
    requires 5 to 20 aianweeks of effort for data preparation and output
    interpretation, one programmer, and one environmental engineer with
    experience in water quality modeling.
(APP)  Applications of model: The Dynamic Estuary Model  has been used
    by the EPA for the Pearl Harbor Water Quality Model  development
    project. It was originally developed by the Hater Resources
    Engineers for the Division of Water Supply and Pollution Control  of
    the Public Health Service/- and it has been used by the Federal
    Hater Pollution Control Administration  (FWPCA) and by the  State of
    California.  THe DFM was used by the Federal k'ater Quality
    Administration (FWQA) for water studies of the San Francisco and
    San Diego Bay estuaries, and by the EPA for water quality  studies
    of the Delaware and Potomac estuaries.   There have been other  users
    and applications of this model.
(HOW)  Computational system requirements -  Hardware: Mainframe IBM
    370/168 ;Disc storage 130K and 6 constituents main storage
(LNG)  Computational system requirements -  Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills:  Pro
    grarcming ;Engineering Experience in water quality modeli
(KTP)  Water Models - Type of model: Water  quality
(ENV)  Environment s) to which model applies: Estuary
(CON)  Processes and constituents included  in model: Dissolved oxygen
    ;Eutrophication ;Salinity ^Temperature  jBio Hydraulics
(CPL)  Complexity level of model: transient mass balance ;momentum
    balance ;one dimensional
(RSF)  References - User manuals, documentation, etc.:
    California Mater Resources Control Board.  "Final
    report - San Francisco Bay - Delta Hater Quality Control
    Program."  Preliminary Abridged edition, 1969.
    Feigner, K.D. and H-S. Karris.  "Documentation Report, FWQA
    Dynamic Estuary Model."  Report to U.S. Department of the
    Interior, Federal Water Quality Administration, 1970.
    Finnemore, E.J., G.P. Grimsrud, and H.J. Owen.  "Evaluation of
    Water Quality Models:  A Management Guide for Planners.11
    Report to Enviornmental Protection Agency, office of Research
    and Development, Washington, D.C., 1976.
    Genet, L.A., D,J. Smith, and £.B. Sonnen.  "Computer Program
    Doucmentation for the Dynamic Estuary Model."  Report by Water
    Resources Engineers, Inc., Walnut Creek, California, to U.S.
    Environmental Protection Agency, Systems Development Branch,
    Washington, D.C., 1974.
    Water Resources engineers, Inc.  "A Hydraulic Water  Quality
    Model of Suisun and San Pablo Bays."  Report to U.S. Department
    of the Interior, Federal Water Pollution Control Administration,
    Southwest Region.
    Water Resources Engineers, Inc.  "A Water Quality Model of the
    Sacramento - San Joaquin Delta."  Report by WRE to U.S. Public
    Health Service, Region IX, 1965.
    Water Resources Engineers, Inc.  "Computer Program Documentation


                             1449

-------
                             Accession No.  16404000120    (cont)

    for the Dynamic Estuary Model."  Report by HRE to Florida
    Department of Pollution Control, Tallahassee, Florida,  1974.
    Mater Resources Engineers, Inc.  "Validation and Sensitivity
    Analyses of Stream and Estuary Models Applied to Pearl  Harbor,
    Hauaii."  Report by WRE, Walnut Creek, California, to U.S.
    Environmental Protection Agency, Systeas Development Branch,
    Washington, D.C., 1974.
(CUM)  Contact naveCs): Aabrose,R.B.
(COR)  Contact organization: EPA Athens Environmental Research
    Laboratory
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                             1450

-------
                             Accession No.  16404000121

(DQ)  Date of Questionalre: 12-02-82
(NAM)  Name of Data Base of Model: Receiving Water Model
(ACR)  Acronym of Data Base or Model: RECEIV-II
(MED)  Vedia/Subject of Data Base or Model: Water
(ABS)  Abstract/Over view of Data Base or Model: RECEIV-II is a two
    dimensional receiving water model for streams, rivers, estuaries/
    lakes, and reservoirs.  The model represents the physical processes
    of advection/ dispersion, and dilution, and it can simulate flows,
    tidal movements, and water surface changes in a link-node network.
    Coupled and non-coupled chemical reactions can be simulated, and
    dissolved oxygen, BOD, coliforms/ nutrients, salinity, conservative
    constituents, chlorophyll a, and non-conservative constituents with
    first order decay can be modeled.  RECEIV-II is a modification of
    the receiving water module of the Storm Water Management Model
    (SWMM) developed by Hater Resources Engineers/ Metcalf and Eddy,
    and the University of Florida.
(CTC)  CONTACTS: USEPA, ORD, ERL/Athens
    Loc: College Station Road, Athens, GA 30613 Ph: (404) 546-3585
(STA)  Tata Base status: Operational/Ongoing
(DP)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: The RECEIV-II model can be
    applied to streams, rivers, estuaries, lakes,/ and reservoirs.
    Dynamic conditions are represented, and an option is available for
    steady state conditions.  The model is two dimensional and permits
    UP to 225 channels and up to  100 Junctions in a link- node network.
    RECEIV-II can simulate estuarine flats at Ion tide by varying
    cross-sectional area,  and it can handle multiple tidal inlets,
    upstream dams, and unsteady inflows such as residual discharges/
    storm runoff, and tides.  The physical processes of advection,
    dispersion, and dilution are  represented. Chemical processes
    represented include coupled and uncoupled reactions/ DO/ BOD/
    coliforras/ nutrients,  salinity, conservative constituents/
    chlorophyll a, 5iH<3>,  N0<2>,  and non-conservative constituents with
    first order decay.  The model does not consider stratified systems/
    but it does consider ocean  tide exchange at a single input point.
    RECEIV-II lacks the ability to simulate temperature, but it does
    consider wind stress and direct rainfall inputs.  The model is
    sensitive to quality time step size and decay coefficients.
    Lateral and vertical velocity variation within the channels can be
    broken-up laterally for  a two dimensional effect.
(ASM)  Basic assumptions of  aodel: The model is based on deterministic
    assumptions and uses a finite difference method as a solution
    technique.  RECEIV-II  assumes instantaneous mixing throughout each
    junction/ and  it  uses  a  two dimensional channel network  to simulate
    two dimensional flow and transport.
(IMP)  Input to model: Input to the model  for  Initial setup  and
    calibration includes:  constant headwater  inflow rates;  flow rate
    for each inflow (discharge, tributary,  etc.)  or withdrawal; tidal
    cycles and heights at  the seaward boundary; widths and  depths of
    each  channel;  initial  flow  velocities  and water surface  elevations
    throughout  the  system;  initial constituent  concentrations
    throughout  the  system;  residual  loading rates from discharges/


                             1451

-------
                             Accession Ho.   16404000121     (cent)

    tributaries/  and headwaters; tidal exchange coefficient;
    Meteorological data (yind speed, rainfall, and daily solar
    radiation); and first order decay rates for constituents.  Input for
    verification of the model includes:  net flow and velocities for
    each channel; data record of constituent concentration throughout
    the modeled system; and salinity data to establish concentration
    Inputs at the seaward boundary.
(OUf)  Output of nodel: The aodel produces a tabular printout  of:
    maximum, minimum, and net flows for each tidal cycle; maximum,
    minimum, and average constituent concentrations in each channel at
    specified time intervals; and depth at each junction at specified
    time intervals.  Hydrodynamic output (especially channel
    velocities) can be written onto magnetic tape or disk.
(CSR)  Computational System Requirements: RECEIV-II is coded in FORTRAN
    IV (G), and can be run on a digital computer with 400K bytes of
    core storage, FORTRAN IV (G) compiler, and two magnetic tapes or
    disks.  Application of the hydrodynamic module costs between
    $15-$100 per run, and application of the quality module ranges from
    $10-$50 per simulation run.  The actual expenses of using RECEIV-II
    is dependent upon the extent of discretization, time step size, and
    length of simulation. Depending on the model complexity, 1-5
    man-months are needed for model set-up and data preparation.
    Several manhours are necessary for output analysis.  Manpower
    requirements include one computer programmer and one hydraulics
    engineer with  a basic programming background*
(APP)  Applications of model: RECEIV-II can be linked to the
    terrestrial load routing module of the Storm iiater  Management Model
    (SV.KM), or it  can be utilized  by itself to simulate  dynamic
    conditions. RECEIV-II has been used by  the U.S. Army Corps of
    Engineers, and it  is currently being utilized by the EPA  in Regions
    III  and IV. TECHNICAL CONTACT: Center  for Water Quality Modeling
    Environmental  Research Laboratory USEPA College Station Road
    Athens, GA 3Q613 FTS:250-3585   COM:404/546-3585
(ROW)  Computational system  requirements -  Hardware: Mainframe  any
    digital computer with  400K  bytes of memory ;Ma            -„„.«.«
CLMG)  Computational system  requirements -  Language(s)  used:  FORTH**
(WTP)   hater Models  -  Type of  model: Water  quality
(ENV)   Environment(s)  to which  model  applies:  Estuary ;Lake

(COM)   Processes  and constituents  included in model: Dissolved  oxygen
     JEutrophication  ;Salinity  ;Biological  effec  Hydrology
(CPL)   Complexity  level  of model:  steady  state  mass balance ;transient
     mass balance  ;multi  dim
(REF)   References  -  User manuals,  documentation,  etc.:
     Metcalf and  Eddy,  Inc.,  University of  Florida,
     and Water  Resources  Engineeers,  Inc.,  Storm Water  Management
     Model, Volumes 1-4,  Report to  U.S. Environmental Protection
     Agency, Washington,  D.C.,  1971 (EPA  Report No.  11024DOC).
     "Stormwater Management Model User's  Guide,  Version  II",
     for the U.S.  Environmental Protection Agency -  Report No.
     5PA-670/2-75-017,  March  1975.
 (CNM)   Contact name(s):


                              1452

-------
                             Accession No.   16404000121     (cont)

   16404000121 202 OSEPA, ORD, ERL/Athens
(ROR)  Responsible Organization: Office of  Rese"c^Jnpffects
    Development.Office of Environmental Processes and Effects
    Research.Environaental Research Laboratory.
                               1453

-------
                             Accession No.  16404000122

(DQ)  Date of Questionaire: 12-02-82
(MAM)  Name of Data Base of Model: Stream Quality Model
(ACR)  Acronym of Data Base or Model: QUAL-II
(MED)  Media/Subject of Data Base or Model: Mater
(ABS)  Abstract/Overview of Data Base or Model: QUAL-II Is designed to
    simulate the dispersion and advection of conservative and reacting
    constituents in branching stream systems and rivers.  Constituents
    modeled included conservative minerals, temperature, BOD,
    chlorophyll a, phosphorus, NH<3>, nitrate, nitrite, DO, coliform
    bacteria, radioactive material, and an arbitrary nonconservative
    material. It also considers nutrient cycles and algal growth.  The
    program simulates the dynamic behavior of these constituents by
    numerical integration of the one-dimensional form of the advection-
    dispersion transport equation.  Any branching stream system can be
    simulated.
(CTC)  CONTACTS: Thomas 0. Barnuell  EPA Athens Environmental Research
    Labor Loc: Center for Hater Quality Modeling College Station Road,
    Athens, GA
    30613    Ph: (404)546-3585
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: QUAL-II nay be implemented at
    several levels of sophistication-from a simple streeter-Phelps
    BOD/DO model to a dynamic eutrophication/temperature simulation.
    QUAL-II represents the stream simulated through the use of reaches,
    a reach defined as a stretch of the stream yith uniform hydraulic
    characteristics.  Each reach is divided into computational
    elements.  A maximum of 75 reaches, each uith up to 20
    computational elements uith no more than 500 in the system, can be
    accommodated in the standard version of the program.  In addition,
    there can be a total of 15 headwater elements, 15 junction
    elements, and 90 input and uithdraual elements.  These limitations
    are arbitrary and can easily be changed by a competent programmer.
    All input is in relation to each reach, and the hydraulics
    equations are solved by incorporating advection and dispersion
    through a finite difference implicit solution technique.  The
    results on the quality constituents are obtained by numerical
    integration of the one-dimensional form of the advection-dispersion
    mass transport equation for each constituent.  The model proceeds
    to solve the relevant equations of each constituent until a steady
    state equilibrium is achieved.  QUAL-II is written in a modular
    fashion so as to facilitate the incorporation of additional
    processes.
(ASM)  Basic assumptions of model: QUAL-II assumes first order kinetics
    and it utilizes a simplified nutrient-algae cycle uith Monod
    kinetics. Only constant inflows and point source discharges are
    considered,  and each computational element is considered completely
    mixed. The model does not consider variations in depth or uithin
    stream cross-section.
(IMP)  Input to  model:  QUAL-II requires an input data base in
    card-image form. Aside from the printed report, no additional
    requirements are imposed.   The data required is varied and includes


                             1454

-------
                             Accession No.   16404000122    (cont)

    evaporation coefficients, oxygen uptake per unit of nitrogen and
    unit of algae, algal growth rates, nitrogen and phosphorus half
    saturation constants, and reaction rate constants.   Further input
    required is the identification of the computational elements and
    their hydraulic characteristics, and intial conditions of the
    system.
(DOT)  Output of Model: The printed output includes a complete history
    of every quality parameter and temperature at each  computational
    element. The hydraulic information provided includes flow, velocity
    and depth of each reach, as well as at the head of  the system.
    Water quality information provided includes the concentration of
    each quality component, temperature, and reaction rates at each
    computational element in the system.
(APP)  Applications of model: QUAL-II can be used to simulate the
    dispersionary and flow characteristics of conservative and
    non-conservative constituents in branching stream systems and
    rivers.  It is a modification of QOAL-I yhich was used by the WRE
    to simulate the Upper Mississippi River Basin, and  it has found
    many other applications.  In fact, QOAL-II is probably the most
    widely used and thoroughly tested water quality model in the United
    States.
(HDW)  Computational system requirements - Hardware: Mainfraie Any
    digital computer with 45,000 words of memory c POP  11 ^Printer  any
    model
(LNG)  Computational system requirements - Language(s)  used: FORTRAN
(OSK)  Computational system requirements: Operator Knowledge/Skills: Eng
    ineering ;Knowledge of water quality modeling
(WTP)  fcater Models - Type of model: Hater quality
(ENV)  Environment(s) to which model applies: Estuary ;Lake
    ;Stream/river
(CON)  Processes and constituents included in model: Dissolved oxygen
    ;Eutrophication ;3alinity ;Teoiperature ;Hyd Quality processes
(CPL)  Complexity level of model: steady state mass balance /one
    dimensional
(REF)  References - user manuals, documentation, etc.:
    Roesner, L.A., P.R. Giguere, and D.E. Evenson.
    Computer Program Documentation for the Stream Quality Model
    QUAL-II, prepared for the Southeast Michigan Council of
    Governments by Water Resources Engineers, Inc., 710 South
    Broadway, Walnut Creek, CA 94596.
(CNM)  Contact name(s): Barnwell,T.Q.
(COR)  Contact organization: EPA Athens Environmental Research
    Laboratory 30613    Ph: (4
(ROR)  Fesponsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                             1455

-------
                             Accession No.   16404000123

(DQ)  Date of Questlonaire:  12-02-82
(NAM)  Same of Data Base of  Model: Stormwater Management Model
(ACR)  Acronym of Data Base  or Model: SHMM
(MED)  Kedia/Subject of Data Base or Model: Hater
(ABS)  Abstract/Overview of  Data Base or Model: The SHMM is a large
    FORTRAN program which Models in a comprehensive manner the complete
    urban rainfall/runoff cycle, including  flow overland and in the
    sewerage system, in-line and off-line storage, treatment (including
    costs) of storm water flows, and which  includes a receiving water
    module to assess water quality impacts.  Program outputs consist of
    tables, hydrographs and  "pollutegraphs," which can be displayed at
    points within the system as well as in  the receiving waters.  The
    SHMM has had limited application to non-urban areas as well. The
    original SHMM was designed for single event simulation, producing
    detailed (i.e., short time increment) hydrographs and pollutographs
    for individual storm events.  This capability remains, and the
    model has been modified so that it may  run for an unlimited number
    of time steps, i.e., continuously.  In  this mode it may be used In
    a planning context, that is, for an overall assessment of urban
    runoff problems and estimates of the effectiveness and costs of
    abatement procedures.  Tradeoffs among  various control options,
    e.g., storage, treatment and street sweeping, may be evaluated.
    Complex interactions between the meterorology, e.g., precipitation
    patterns/ and the hydrology of an area  may be simulated without
    resorting to average values or very simplified methods.  In this
    manner, critical events from the long period of simulation may be
    selected for detailed analysis.  In addition, return periods for
    intensity, duration and volume (mass) of runoff (pollutant loads)
    may be assigned on the basis of  the simulated record instead of
    equating them (unjustifiably) to the same statistics of rainfall
    record.  In  this manner, the critical events chosen for study may
    be substituted for hypothetical "design storms," the latter often
    being synthesized from intensity-duration- frequency curves on the
    basis of questionable statistical assumptions. S*MM is run
    continuously using only the Runoff and Storage/Treatment blocks.
    Routing in TRANSPORT, EXTRAN or RECEIVE is avoided and is
    unnecessary  for the planning purposes to which the model is
    applied.  (However, there is no  limitation on the number of time
    steps for either EXTRAN or  RECEIVE).  A receiving water model that
    will couple  with either continuous SMMM or STORM has been developed
    and documented.
(CTC)  CONTACTS: Tom aarnwell   EPA Athens Environmental Research
    Laboratory Loc: College Station  Road Athens, GA 30613  Ph:  (404)
    546-3175
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion:  01-25-83
(CAP)  Functional capabilities  of model: The SWMM consists of 7 blocks
    of subroutines.  They are:  Executive Block.  Assigns logical units
     (disk/tape/drum), determines  the block or sequence of blocks to  be
     executed, and,  or on call,  produces  graphs of selected results on
     the line printer.  Thus, this Block  does no  computation  as  such,
     while each of  the other six blocks are set up to carry through a


                             1456

-------
                         Accession No.  16404000123    (cont)

major step in the quantity and quality computations.  All access to
the computational blocks and transfers between them pass through
subroutine MAIN of the Executive Block. Transfers are accomplished
on offline devices (disk/tape/drum) which may be saved for multiple
trials or permanent record. Combine block.  Allows manipulation of
data sets (files stored on offline devices) in order to aggregate
results of previous runs for input into subsequent blocks.  In this
manner, large complex drainage systems may be partitioned for
simulation in smaller segments. Runoff Block.  Computes the storm
water runoff and its associated pollution loadings for a given
storm for each subcatchment and stores the results in the form of
hydrographs and pollutographs at the inlets to the main seuer
system. Overland flow simulation is accomplished by a nonlinear
reservoir routing method using Manning's equation and the
continuity equation. Overland flow does not begin until depression
storages are full. Infiltration on pervious areas is computed by
Green-Ampt or Horton's exponential function, and is subtracted from
water depth existing on the subcatchment.  Gutter flows are treated
as a succession of steady-state flows, with routing accomplished
using Manning's equation and the continuity equation.  To use this
block the user must input the rainfall hydrograph and a
discretization of the drainage basin into sub-basins of constant
land form characteristics.  The location and characteristics of the
gutters and pipes also have to be described.  In addition, the user
must input street cleaning frequency and catchbasin data as well as
the land use and other features of the different areas of the
basin. Transport Block.  Routes flow through the seuer system.
Prestorm conditions in the sewers are set up by computing
dry-weather flow and infiltration and distributing them throughout
the conveyance system.  The Transport Block then routes the storm
runoff (as determined by the RUNOFF Block), the dry weather flow
(DWF), and the water that has infiltrated into the system through
the main sewer pipes, and through a naximum of two optional
"internal*1 storage tanks. The routing scheme is based the kenematic
wave formulation assuming cascade of conducts.  When a pipe is
flowing full and inflow exceeds outflow, the excess (surcharge) is
stored at the upstream manhole.  The flows are routed to a maximum
of five outlet points.  This block requires that the sewer system
be discretized into pipe segments of constant size, slope, and type
Joined by either manhole, control structures such as flow dividers,
or "internal" storage tanks* An "internal" storage tank is
described by its size, shape, outlet device, and unit cost.  The
outlet device can be either a pump specified to go on or off at a
specified tank depth, a weir, or an orifice.  The outlet device is
used to specify the operation policy of the storage tank. The DWF
quality and quantity entering the sewer system are calculated by
inputting to the model such parameters as daily and hourly
pollution correction factors, land use population of the subareas,
and average market value of the dwellings in a subarea.  If more
exact data is available such as average BOD of flows, this can be
used in place of some of the other data. Infiltration is calculated
by estimates of base dry weather infiltration and groundwater and


                         1457

-------
                             Accession No.   16404000123     (cont)

    rainwater infiltration,  and such parameters as average  Joint
    distance.  The use of sub- routines calculating CHF  quality  and
    quantity and infiltration is optional.  EXTRAN Block. This block,
    which is an alternative  to the TRARSPORT  block, provides the user
    the capability to model  sever systems with extensive surcharging,
    backwater,  flow reversal, looped sewers and a variety of flow
    control devices. EXTRAN  performs the same basic functions as the
    TRANSPORT block; however, there are two aajor differences: EXTRAN
    uses a link-node conceptual representation of the transport  system,
    totally unlike the TRANSPORT block. EXTRAN includes  the inertlal
    terns of the Navier-Stokes equations in the solution, whereas
    TRANSPORT is based on a  kinematic wave assumption. Like TRANSPORT,
    EXTRAN sets up pre-storm conditions by computing DNF and
    infiltration and distributing then throughout the conveyance
    systens.  It then performs flow routing only, picking up the runoff
    results, and producing combined flow hydrographs for the total
    drainage basin and at selected interaediate points.   EXTRAN  nay
    also be used strictly for stornwater routing with neither DHF  nor
    infiltration. The two programs are approximately the same length.
    The order of operations  in both cases is similar, although the
    software itself is quite different.  (EXTRAN is not  a direct
    derivative of the original TRANSPORT Block). Storage/Treatment
    block.  Simulates the changes in the hydrographs and pollutographs
    of the sewage as sewage  flows through a wastewater treatment
    facility. A storage/Treatment device is simulated as a
    series-parallel network  of units, each with optional storage
    routing.  Each unit consists of arbitrary user-supplied removal
    equations (e.g. removal  as exponential function of residence tine
    and/or use of sedimentation theory - coupled with particle size
    specific gravity distribution for constituents. RECEIVE Block.
    Takes output from runoff, TRANSPORT, EXTRAN or STORAGE/TREATMENT
    and conputes the impact  of the discharges upon the quality of  the
    receiving water.  The receiving body of water is discretized by the
    user to consist of a network of nodes connected by channels.   An
    option in the program allows two parallel channels to be used
    between junctions, to aid in sinulating receiving bodies such  as
    narshes.  Each channel is of constant surface and cross-sectional
    area.  Boundary conditions can be specified as a weir (outfall fron
    a lake) or some tidal condition.
(IMP)  Input to model: SHMM  requires a large amount of input data, as
    described above.  Typically, the collection and preparation  of
    input data can consume 50% or more of modeling project  resources.
    The various blocks of SHMM will accept input data in card-inage '
    forn, or fron disk or tape drives, particularly when output  from
    one block is input to the next. The SHMM is designed as a
    "deterministic" model, in that if all input parameters  are
    accurate, the physics of the processes are simulated sufficiently
    well to produce accurate results without calibration.  This  concept
    may fail in practice because the input data or the numerical
    nethods nay not be accurate enough for nost real applications.
    Furthermore, many computational procedures within the Model  are
    abased upon limited data themselves. As a result it Is  essential


                             1458

-------
                             Accession No.   16404000123    (cont)

    that some local verification/ calibration data be available at
    specific application sites to lend credibility to the predictions
    of any urban runoff model. These data are usually in the fora of
    measured flows and concentrations at outfalls or combined sever
    overflow locations.  Note the quality measurements without
    accompanying flows are of little value.  The SWMM has sufficient
    parameters that may be "adjusted," particularly in the Runoff
    Block, such that calibrating the Model  against measured data is
    usually readily accomplished.
(OUT)  Output of model: SWMM output is in the torn of tables and
    various graphs of rainfall intensity/ flow and pollutant
    concentrations or loads.  Output can be provided for selected
    points within the system, as well as in the receiving waters.  As
    implied above, successful use of the SWMM requires careful
    evaluation and interpretation of model  results.
(APP)  Applications of model: The SHMM is perhaps the World's most
    widely used hydrologic model, having been extensively applied in
    the U.S., Canada and 18 other foreign countries to such problems
    as: Analysis and design of storm and combined sewer overflow
    pollution abatement facilities. Drainage design (urban areas,
    subdivisions, airports). Analysis of storage/treatment
    alternatives. Evaluating the effects of changes in population and
    land use. Design of sytems to relieve surcharging and/or basement
    flooding. Analysis of sewer system performance. An active SHMM
    Users Group meets semi-annually, and publishes meeting proceedings
    which document a wide variety of applications. SWMM is a complex
    model both computationally and theoretically, and a successful user
    must have a thorough knowledge of hydraulics, hydrology, and water
    pollution, together with some experience in water quality modeling*
(HDH)  Computational system requirements -  Hardware: Mainframe IBM 370
    (minimum 360 K bytes of memory or other computer with adequate core
    and Fortran IV) has been run on IBM 370, UNI VAC 1108, CDC 6800,
    Amdahl 470 ;Disc storage Variable ^Magnetic tape storage Variable ;
    Printer any printer with 133 columns ;Card reader/punch
(LNG)  Computational system requirements -  Language(s) used: FORTRAN  -
    the program is approximately 25,000 statements long
(OSK)  Computational system requirements: Operator Knowledge/Skills:  Pro
    gramming ;Engineering
(HTP)  Mater Models - Type of model: Hater  quality
    Hater run-off
(ENV)  Environment(s) to which model applies: Estuary >Lake
    ;Stream/river jNon-point Urban (Limited non-ur
(CON)  Processes and constituents included in model: Dissolved oxygen
    ;Erosion and sediment ^Hydrology ^Hydraulic Quality processes
(CPL)  Complexity level of model: transient mass balance ;momentum
    balance ;multi dimensional
(REF)  References - User manuals, documentation, etc.:
    Huber, K.C., J.P. Heaney, S.J. Nix, R.E. Dickinson, D.J. Polmann,
    Storm Hater Management Model Users Manual Version III, Nov 1981,
    Draft Report, Municipal Environmental Research Laboratory,
    Cincinnati, OH  45268$ L.A. Roesner, R.P. Shubinski, J.A. Aldrich.
    Storm Hater Management Model User's Manual Version III Addendum  I


                             1459

-------
                             Accession No.   16404000123     (cont)

    EXTRAN.   November 1981.  Draft report.   Muncipal Environmental
    Research Laboratory,  Cincinnati,  OH  452681 Hetealf  and Eddy,  Inc.,
    University of Florida,^  Hater Resources Engineers, Inc.,  "Storm
    Hater Management Model,
    Vol. I Final Report," Report 110  24 DOC 07/71, (NTIS PB 203  289),
    Environmental Protection Agency,  Washington, D.C., July 1971.
    Huber, U.C., et al.,  "Storm Hater Management Model User's
    Manual,  Version II,"  EPA-670/2-75-017,  Environmental Protection
    Agency,  Cincinnati, Ohio, March 1975.
    Medina,  M.A. Jr., "Level III:  Receiving Hater Quality  Modeling
    for Urban Stormuater  Management," EPA  600/2-79-100,  Environmental
    Protection Agency, Washington, D.C., August 1979.
    Torno, H.C. (Editor), "Proceedings, Storauater Management Model
    (SHMM) Users Group Meeting, January 10-11,  1980,"  EPA
    600/9-80-017, Environmental Protection Agency, Washington, D.C.,
    March 1980.
    NOTE: Version III of the SHMM, with appropriate documentation,
    available thru University of Florida or EPA
(CUM)  Contact name(s): Barn«ell,T.
(COR)  Contact organization: EPA Athens Environmental  Research
    Laboratory
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and  Effects
    Research.Environmental Research Laboratory.
                             1460

-------
                             Accession Mo.  16404000124


-------
                             Accession No.   16404000124    (cont)

    concentrations, organic pollutants eutrophic status,  and
    hypclinnion  DO deficit; and estuary concentrations of  BOD,  DO,
    total N,  total P, and conservative pollutants by reach*
    Calculations are done by hand calculator and can be arranged to  the
    user's convenience.
(APP)  Applications of nodel: The methodology has been applied and
    tested on the Sandusky River Basin and four Chesapeake  Bay
    sub-basins: the Patuxent, Chester, Hare* and Occoquan.   This work
    was done by the Midwest Research Institute and Tetra Tech on a
    grant from EPA.  The methodology is linked to the Midwest Research
    Institute loading functions.
(HDtf)  Computational systerr requirements - Hardware: Calculator
(OSK)  Computational system requirements: Operator Knowledge/Skills: Eng
    ineering
(KTP)  hater Models - Type of model: Water quality
    Hater run-off
(ENV)  Environment(s) to which model applies: Estuary ;Lake
    ;Stream/river ;Non-point Urban and non-urban
(COM)  Processes and constituents included in model: Dissolved oxygen
    ;Eutrophication ;Erosion and sediment ;Sali Temperature
(CPL)  Complexity level of model: steady state mass balance ;one
    dimensional ;Simplified
(REF)  Peferences - User manuals, documentation, etc.:
    H. B. Mills, et.al.  Mater Quality Assessment: A Screening
    Methodology for Toxic and Conventional Pollutants/ Parts 1,  2, and
    3.  Sept. 1982, EPA6001 6-82-004a,b,c.  Environmental Research
    Laboratory, Athens, GA  30613* hater Quality Assessment:  A
    Screening Method Fort  Methodology for Nondesignated 208 Areas,  EPA
    600/9-77-023, August 1977.
    Available from MTIS (PB277161/AS for $29).
(CNM)  Contact name(s): Ambrose/R.B.
(COR)  Contact organization: EPA Athens Environmental Research
    Laboratory
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                             1462

-------
                             Accession No.   16404000125

(DQ)   Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Cornell  Nutrient Simulation
(ACR)  Acronym of Data Base or Model: CNS
(MED)  fcedia/Subject of Data Base or Model: Water ^Agricultural
    Non-Point Source Pollution
(ABS)  Abstract/Overview of Data Base or Model: The CHS model is a
    continuous simulation model. It has been developed to predict
    losses of nitrogen and phosphorus in cropland runoff and
    percolation water.  These losses are modelled as a function of crop
    selection and management, soil type, weather, and fertility
    (including fertilizers, waste applications, and crop residues).
    The model differs from other models which attempt to sinulate
    cropland nitrogen and phosphorus loss in that it requires no
    calibration. Rather, it is based on familiar models which have
    themselves been calibrated for different geographic and management
    factors:  the U.S. SCS Curve Number equation for runoff and the
    Universal Soil Loss equation for erosion.  Snow accumulation and
    snowmelt are also modelled.
(CTC)  CONTACTS: Douglas A. Haith    Cornell University
    Loc: Ithaca, KTf 14853   Ph: (607) 256-2173
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: The model operates on a daily
    hydrologic balance and a monthly nutrient balance.  It is a
    field-scale model which predicts edge-of-field losses of runoff
    water and sediwent, organic and inorganic nitrogen, and fixed and
    soluble phosphorus.  Mass balances for fixed phosphorus and organic
    nitrogen are kept for  a surface layer of 10 c«.  Mass balances for
    soluble nitrogen and phosphorus are kept for this surface layer and
    a 20 cm depth below that.  Lateral movement of water and nutrients
    in this 30 cm depth is not aodelled.
(ASM)  Basic assumptions of nodel: Potential evapotranspiration is
    modelled by Hamon's formula, and actual evapotranspiration is a
    function of the level  of soil water estimated from the previous
    day, crop canopy  development, and potential evapotranspiration.
    Actual evapotranspiration is extracted from the surface layer first
    and then from the lower level, and is subtracted before runoff is
    computed.  Precipitation accumulates as snoy «hen daily average
    temperature is below freezing and snowmelt is estimated as the
    minimum of:  the  present reservoir of snow or a degree day factor
    multiplied by daily average temperature.   Percolation from each
    zone is equal to  the account of excess water over field capacity in
    each zone.  This  assumes that drainage is  unrestricted and
    completed within  one day.  The USLE factors of P (support
    practice), LS (length-slope), and K (soil  erodibility) remain
    constant.  The C  (crop) factor varies over time and the R  (storm
    erosivity)  factor is uniquely simulated  for each storm. Input to
     the inorganic nitrogen reservoir  includes  fertilizers  and
    mineralized organic nitrogen.  Output  Includes runoff, percolation
     and crop uptake.  Input to  the organic nitrogen reservoir  includes
    crop residues and manure organic  nitrogen. An  equilibrium  between
     fixed  and soluble phosphorus  is maintained and is  a function of


                             1463

-------
                             Accession Mo.   16404000125    (cont)

    soil water and clay content of the soil.  Fertilizer phosphorus
    represents the only input to the soluble  reservoir and output
    include runoff, percolation, and crop uptake.  Crop uptake of
    nutrients follovs a sigmoldal uptake curve.
(IMP)  Input to model: Meteorological input includes daily temperature,
    precipitation, and storm duration.  Model input parameters include:
    soil physical parameters, OSLE factors K,LS,C, and P, SCS runoff
    curve numbers, initial levels of nutrients, total seasonal crop
    uptake of nutrient, fertilizer schedules. Manure organic II
    schedules, and crop residue organic N schedules.  The model can be
    verified with actual field data including monthly runoff, soil
    loss, nitrogen and phosphorus in runoff,  and nitrogen and
    phosphorus associated with the sediment.
COOT)  Output of model: Monthly model output includes reservoir levels
    of organic and inorganic nutrients, runoff, soil loss, and losses
    of nutrients in uater and sediment.  Annual totals and annual
    averages of runoff, soil loss, and nutrient losses are also
    included.                                            ,  ,.,„*.
(APP)  Applications of models The availability of meteorological data
    as nell as minimal computer requirements for time and space make
    the model yell suited for long-term simulations.  Tyenty-five year
    simulations in three US  locations allowed  for an evaluation of
    several "Best Management Practices" (BMPs) in a recent EPA Report,
    "Effectiveness of Soil and  Water Conservation Practices for
    Pollution Control."  CHS was  applied nationwide in a study by
    Resources for  the Future (soon  to be available from HTIS). In this
    application loadings yere estimated individually for the major
    crops  in all but  13 of the  156 major land  resource areas  (MLRA1 in
    the OS  with those excluded  having negligible land area under
    cultivation.  For this study, ten years  of meteorological data yere
    stochastically generated for  each MLRA.
(HDIO   Computational  system  requirements - Hardware: Mainframe FDF
    11/70,  IBM 370,  etc. ;Disc  storage  200 blocks Printer Line Printer
(LMG)   Computational  system  requirements - Language(s) used:  Fortran
(OSK)   Computational  system  requirements: Operator  Knowledge/Skills:  Pro
     gramming  ; Engineering
(MTP)   Water  Models  - Type of model:  Mater run-off
(EM?)   Environment(s) to  yhich  model  applies:  Non-point  Non-urban
(COM)   Processes  and constituents included in  model:  Erosion  and
     sediment  ; Temperature  ;Blologlcal  effects  ;Hydro              ,«*«.<•
(CPL)   Complexity level of  model:  steady state mass balance  Simplified
(REF)   References -  Oser  manuals, documentation, etc.:
     Tubbs, L. J.  and D.  A.  Halth, 1977, "Simulation of
     Nutrient  Losses  From Cropland"  for presentation at the  1977
     Winter Meetings, ASAE paper No. 77-2502, Chicago,  Illinois.
                          . Loehr (eds.), 1979, "Effectiveness of
     soil and Hater Conservation Practices for Pollution Control."
     EPA-600/3-79-106.  Chapter 6 and Appendix A.
     DRAFT.  Cianessi, L. P. and H. M. Peskin, 1980, "*/™1»c«<>J*
     for Analyzing National Water Pollution Control Policy:  Water
     Quality Impacts and Costs of Cropland Sediment Control."
                              1464

-------
                             Accession No.   16404000125    (cont)
    No. 16, 20 p.
(CNM)  Contact name(s): Haith,D.A.
                           : Cornell
    Research.Environmental Research Laboratory.
                                1465

-------
                             Accession No.  16404000126

 (DQ)   Date of Questions!re: 12-02-82
 (MAM)  Name of Data Base of Model: Dissolved Oxygen Sag Model
 (ACR)  Acronym of Data Base or Model: DOSAG-I
 (MED)  Kedia/Subject of Data Base or Model: Water
 (ABS)  Abstract/Overview of Data Base or Model: DCSAG-I is a
    mathematical model developed to predict the steady state dissolved
    oxygen concentrations in streams and canals resulting from a
    specified set of streaaflow, wasteload, and temperature conditions.
    The model Hill determine the streaaflow required to maintain a
    specified dissolved oxygen goal and will search the system for
    available storage to achieve the goal.  The model can be used to
    estimate mean monthly dissolved oxygen levels over a full year.
    Both carbonaceous and nitrogenous oxygen demands are included, and
    up to five degrees of treatment for both can be specified. It is
    one of two programs that the Texas Mater Quality Development Board
    and the EPA has for use in stream quality simulation studies.  The
    other program, QUAL-II, Has designed to be used as a non-steady
    complement to DOSAG-I.  However, the QOAL-II model has been
    modified to also include a steady-state solution and it has largely
    replaced DOSAG-I.
(CTC)  CONTACTS: Tom Barnwell   US EPA, Environmental Research Lab,
    Center f Quality Modeling
    Loc:  College Station Rd., Athens, GA 30605  Ph: (404) 546-3175
(STA)  Data Base status:  Operational/Ongoing
(DF)  Date of fora completion:  01-25-83
(CAP)  Functional capabilities of model: The purpose of this model is
    to calculate the biochemical oxygen demand and the minimum
    dissolved oxygen concentration in a particular stream system. If
    desired,  the minimum dissolved oxygen concentration in the stream
    system may be checked against a prespecified target level dissolved
    oxygen concentration.   If the minimum dissolved oxygen level is
    beloH the target dissolved  oxygen level,  the program Hill compute
    the required amount of floH augmentation to bring the dissolved
    oxygen level up to the target level in the entire system.  The
    program is designed to be run for varying climatic and hydrologic
    conditions during a twelve  month period.   Thus, it is possible to
    enter  up  to  twelve different temperatures and corresponding
    discharges to each of  the headwaters ulthin the stream system being
    modeled.  The DOSAG-I  model  is a one-dimensional,  horizontal plane
    model  for  streams,  rivers,  manmade  canals and other water
    conveyance systems.   Large  impoundments such as reservoirs cannot
    be considered by this  program.   A list of restrictions follows:
    Maximum of 10 headwater  stretches Maximum of 20 junctions Maximum
    of 50  reaches Maximum  of 20 stretches Maximum of  twelve months of
    routing for  temperature  and headwater flows; a minimum of one month
    must be used Maximum  of  four dissolved oxygen targets.   A minimum
    of one dissolved oxygen  target  must be specified.   This dissolved
    oxygen target may  be entered as  a negative  number  If  no flow
    augmentation is  desired. Maximum  of five  degrees  of treatment for
    both carbonaceous  and  nitrogenous wastes;  a  minimum of one degree
    of treatment may be specified.   If  the user  does  not  wish for the
    degree of  treatment calculations  to be used  in the  modeling


                            1466

-------
                             Accession No.   16404000126    (cont)

    process, a number less than one should  be entered as the  treatment
    factor for both types of wastes. DOSAG-I has a high sensitivity  for
    residual loads and velocities, and a moderate estimated sensitivity
    for flow and decay coefficients.
(ASM)  Basic assumptions of model: The model assumes constant stream
    velocity throughout each reach and assumes first order decay only.
    The Streeter-Phelps equation is used to calculate dissolved oxygen
    concentration, and the computation of atmospheric reaeration is
    based on the Fickian Ian of diffusion.   A Lagrangian solution
    technique is used to solve the dissolved oxygen equations.
(INP)  Input to model: The following are required for input and
    calibration needs: Reach length Mean velocity Mean discharge Mean
    depth (per reach) Average reach temperature Residuals discharge
    inflows Withdrawals and groundwater inflows Residuals inputs (as
    BOD) Dissolved oxygen concentration in each reach For verification
    of the model, streamflows, stream velocity, and observed
    constituent concentrations throughout the modeled area are required*
(OUT)  Output of model: Output from the model consists of a tabular
    printout of the concentration of dissolved oxygen for each reach,
    BOD (carbonaceous and nitrogenous) at the start and end of each
    reach, an echo of all input data, and a final summary.
(APP)  Applications of model: DOSAG-I was developed by Water Resources
    Engineers, Inc. and the Texas Water Development Board.  The model
    has been used by the Texas Water Development  Board for use in the
    San Antonio River Basin, and  it has been used for a variety of
    applications by the EPA. TECHNICAL CONTACT: Tom Barnwell Center for
    Water Quality Modeling U.S. Environmental Protection Agency
    Environmental Research Laboratory College Station Road Athens, GA
    3605 FTS 250-3175  COM 404/546-3175
(HDW)  Computational system requirements -  Hardware: Mainframe Can be
    used on many  different models jDisc storage Printer Any model ;Card
    reader/punch
(LNG)  Computational system requirements -  Language(s) used:  FORTRAN I?

(OSK)  Computational system requirements: Operator Knowledge/Skills: Jun
     ior engineer  familiar  with  water  quality  modeling
CWTP)  hater  Models - Type  of model:  Water  quality
(EH?)  Environnent(s) to  which  model  applies: Stream/river
(CON)  Processes  and  constituents included  in model: Dissolved  oxygen
(CPL)  Complexity level  of  model: steady state  mass  balance  ;one
     dimensional
(REF)   References -  Oser  manuals, documentation,  etc.:
     Texas Water  Development Board.   "DOSAG-I  -  Simulation
     of Water  Quality  in Streams and Canals:  Program Documentation
     and User's Manual."  Report by TWDB Systems Engineering
     Division,  Austin,  Texas,  1972.
     Finnemore, E.J.,  Grimsrud,  G.P.,  and Owen,  H.J.  Evaluation
     of Water  Quality  Models:   A Management  Guide for Planners,
     prepared  for the  Environmental Protection Agency,  Office of
     Research  and Development,  Washington,  D.C.,  under  Contract
     No.  68-01-2641,  July 1976.
 (CNM)   Contact name(s): Barnwell,T.


                              1467

-------
                             Accession No.   16404000126    (cont)

(COR)  Contact organization: US EPA, Environmental Research Lab, Center
    for Water Quality
(ROR)  Responsible Organization:  Office of  Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                            1468

-------
                             Accession No.   16404000127

(DQ)  Date of Questionaire: 12-02-82
(HAM)  Name of Data Base of Model: Level Ill-Receiving Water Quality
    Modeling for Urban Stormwa ment
(ACR)  Acronym of Data Base or Model: NONE
(MED)  Media/Subject of Data Base or Model: Mater
(ABS)  A bs tract/ Over view of Data Base or Model: Level Ill-Receiving is
    a simplified continuous receiving water quality model that can be
    used as a planning guide to permit preliminary screening of area
    wide wastewater treatment strategies.  The model Has designed to
    interface with hourly  continuous urban catchment hydrologic
    simulation models such as STORM or SWMM.  A large number of urban
    pollution control alternatives can be simulated and evaluated In
    terns of their impact  on receiving water quality. Evaluation is
    accomplished by evaluating either classical dissolved oxygen sag
    curves or cumulative frequency curves of dissolved oxygen
    concentration.  The model computes a minimum  inter event time to
    define statistically independent  storm events.
(CTC)   CONTACTS: Dr. Miguel A. Medina    Department of Civil
    Engineering Du University
    Loc: Durham, NC 27706   Ph:  (919)684-2434
(STA)   Lata  Base status: Operational/Ongoing
(DF)  Date of form completion: 01-25-83
(CAP)   Functional capabilities of model: Level  Ill-Receiving  can
     accommodate a  large  number of inflow combinations  of receiving
     water  flow*  dry-weather flow, and wet-weather flow.  Oxygen
     concentration  is considered  the  key  to  the  quality of natural  water
     bodies,  although  it  is certainly not  the  only viable water J"alijv
     indicator.   Urban  runoff  quantity and  quality must be computed with
     a model  like STORM  or  SWMM.   Receiving  water  effects are  computed
     using a  simplified  modeling  approach.  Advective and dispersive
     transport is modeled.   The dissolved oxygen balance includes
     carbonaceous BOD  and reaeration. Nitrogeneous oxygen demand  is
to
to
     )Basc assumptions of model: Assumptions typical of models
     limited to interim planning are made, Including: Temporal
     steady-state conditions prevail, i.e., all ^^V^-sLc
     inputs (other than stormwater inputs) are constant with respect
     times Natural system parameters (such as flow, velocity, depth,
     SeoxygenaUoi and reaeration rates, and longitudinal dispersion)
     a?e spatially constant throughout each time step? All waste inflows
     occufat one point; The effects of various Jf uraj *^?gical
     processes (algal photosynthesis and respiration, benthal
     stabilization) are incorporated into a background quality reflected
     by an upltream "o. deficit.  Any benthic buildup is incorporated
     in the BOD decay rate; Waste treatment facilities operate at
     constant efficiency, independent of hydraulic and organic loadings,
                                                                    and

          rh
     II consols  the  autocorrelation  analysis  of ^'j^* U^SX.?
     Card group III contains  input  data  common to both  the wet-weather
                               1469

-------
                             Accession No.  16404000127    (cont)

    and dry-weather flow models. Card group IV contains the Met-weather
    flow aodel input, and card group V is specific to the dry-weather
    flow aodel.
(OUT)  Output of model: Program output consists of tables and plots
    describing system response, including correlogrants of tine series,
    frequency histograms or cumulative frequency curves of D.O.
    concentrations, and tables of D.O. concentrations at specified
    locations.
(APP)  Applications of model: Level-Ill Receiving may be applied to the
    surface drainage of most urban catchments.  There is no limitation
    to the size of catchment or number of storn events modeled (other
    than computer time and costs).  Data requirements are connon to
    engineering analysis of nonpoints source problems and complete
    instructions on data preparation are provided.  Field measurements
    are necessary to calibrate model parameters and verify predicted
    values. The methodology is not applicable to systems requiring
    multi-dimensional transient analysis.  Complex water quality
    conditions such as eutrophication, non-linear kinetic interactions,
    sedimentation, and sediment exchange are not represented. TECHNICAL
    CONTACT: Pr. Miguel A. Medina Oept. of Civil Engineering Duke
    University Durham, NC  27706 (919)684-2434
(HDH)  Computational system requirements - Hardware:  Mainframe IBM
    370/165 and AMDAHL 470-V6/II ;Disc storage 100
(LNG)  Computational system requirements - Language(s) used: FORTRAN
(WTP)  hater Models - Type of model: Hater quality
(ENV)  Fnvironment(s) to which model applies: Stream/river
(CON)  Processes and constituents included in model:  Dissolved oxygen
(CPL)  Complexity level of model: steady state mass balance
(REF)  References - User manuals, documentation, etc.:
    Medina, M. A., Jr.  1979. Level III:  Receiving
    Water Quality Modeling for Urban Stormuater Management.
    EPA-600/2-79-100.  D.S. Environmental Protection Agency,
    Cincinnati, OH  45268.
(CNM)  Contact na«e(s): Medina,M.A.
(COR)  Contact organization: Department of Civil Engineering Duke
    University
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                             1470

-------
                             Accession No.  16404000128

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Water Quality for River-Reservoir
    Systems
(ACR)  Acronym of Data Base or Model: HQRRS
(MED)  ?edia/Subject of Data Base or Model: Water
(ABS)  Abstract/overview of Data Base or Model: WGRSS was developed and
    is supported by the U.S. Army Corps of Engineers" Hydrologic
    Engineering Center.  The WQRRS model (HEC, 1978a) consists of three
    separate but integrable nodules: the reservoir module, the stream
    hydraulic module/ and the stream quality module. The three computer
    programs may be integrated for complete river basin water quality
    analysis through automatic storage of results.  An output tape may
    be generated for input to a separate plotting and statistical
    program called the Statistical and Graphical Analysis of Stream
    Mater Quality Data (HEC, 1978b). The system is based on a
    comprehensive lake ecological simulation program originally
    developed by Chen and Orlob (1972 and a river simulation model
    developed by Norton (1972).  The original river routines only
    simulated steady hydraulic conditions so the capability to
    dynamically route streamflou using either the St. Venant equations,
    Kinematic Wave, Muskingum, or Modified Puls method «as added.
    Subsequent updating of the system added the capability to analyze
    branched and looped stream systems and added additional water
    quality and biological constituents (King, 1976; Smith, 1978).  A
    separate program for statistical and graphical analyses of stream
    water quality data is available (HEC, 1978b).
(CTC)  CONTACTS: R, G. Willey   Hydrologic Engineering Center
    Loc: 609 Second St.     Ph: (916)440-3292
    Loc: Davis, CA 95616
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: The methodology in the
    reservoir section is applicable to aerobic impoundments that can  be
    represented as one-dimensional systems with horizontal isotherms.
    The stream hydraulic module includes six hydraulic computation
    options capable of handling hydraulic behavior within both the
    "gradually varied" steady and unsteady flow regimes.  The stream
    quality module simulates transport of quality parameters in aerobic
    streams. Physical processes modeled in WQRRS include advection,
    diffusion, dilution, and the heat budget.  Temperature effects on
    water density and various kinetic parameters are considered.  State
    variables include 18 highly interconnected physical, chemical and
    biological parameters:  BOD, organic detritus, organic sediment,
    coliform, total carbon, phosphate, ammonia, nitrites, nitrate, DO
    pH, total alkalinity, total dissolved solids, carbon dioxide, two
    algae species, zooplankton, fish, and benthic animals. The river
    module also includes aquatic insects, benthic algae, suspended
    solids and inorganic sediment.
(ASM)  Basic assumptions of model:
    one-dimensional vertical plane; and stream segments as a
    one-dimensional horizontal plane.
(INP)  Input to model: (1) Initial setup/calibration needs: (a) flow


                             1471

-------
                             Accession  So.   16404000128     (cent)

    rate  for  all  lake and  stream inflows/  (b)  lake  and stream
    hydrogeonetric  data,  (c)  lake outflow  elevations and  locations,  (d)
    latitude  and  longitude of prototype systems,  (e) Secchi disc depth
    for light extinction,  (f) concentrations of quality constituents,
    biological parameters, and temperatures  in all  lake inflows and
    river segments  throughout the simulation period, (g)  initial
    conditions of quality  constituents, biological  parameters, and
    temperatures  in each  lake layer and river  segment, (W  all kinetic
    parameters, including  growth rates, decay  rates, respiration rates,
    settling  velocities,  mortality rates,  and  other chemical-ecologic
    reaction  rates, (i)  temperature stability  coefficients, (j)
    meteorological  data-air temperature (wet and dry bulb), atmospheric
    pressure, wind  speed,  sky cover; (2) Verification needs: (a)
    conditions of quality constituents, biological  parameters, and
    temperatures  during  the simulation period  (vertical profile  for
    lakes, horizontal profile for river segments),  (b) constituent
    concentrations, biological parameters, and temperatures at the  lake
    outflow for specified time periods, (c)  time history  of lake water
    surface elevations during simulation.
(OUT)  Output of model:  (1) Output Information: (a) time  history of
    quality constituents,  temperatures, and biological parameters  in
    each lake layer and  river segment, (b) time history of  quality
    constituents, temperatures, biological parameters in  lake outflows,
    (c) all input values specified; (2) Output format:  (a)  tabular
    printout, (b) reservoir outflows to river  system may  be recorded on
    cards or magnetic tape.
(APR)  Applications of model: Model acquisition: 
-------
                             Accession  No.   16404000128     (cont)

    Water  Resources Research/ U.S.  Dept.  of  Interior/ Washington/
    D.C.
    2.   King/  I.  P.  1976.   Flow Routing  for Branched River
    Systems/ prepared for Hydrologic  Engineering  Center/
    U.S. Army  Corps of Engineers/ Davis/  CA   95616.
    3.   Norton,  W.  R. 1972.  An Assessment of Hater  Quality  in
    the Lower  American River: Past/ Present/ and  Future/
    County of  Sacramento/ Dept. of Public Works/  Sacramento,  CA
    95616.
    4.   HEC. 1978a.  Water Quality for  River Reservoir
    Systems/ Hydrologic Engineering Center/  U.S.  Array Corps  of
    Engineers/ Davis/ CA  95616.
    5.   HEC. 1978b. Statistical and Graphical Analyses  of
    Stream Water Quality Data/ Hydrologic Engineering Center/
    U.S. Army  Corps of Engineers/ Davis,  CA    95616.
    6.   Smith/ D. J. 1978.  Revised Water Quality for River-
    Reservoir  Systems Model/ prepared for Hydrologic
    Engineering Center/ D.S. Army corps of Engineers, Davis/  CA
    95616.
    7.   Willey, R.  G. And D. Huff.  1978. Chattahoochee River
    Water Quality Analysis, Hydrologic  Engineering Center,  U.S.
    Army Corps of Engineers, Davis, CA   95616.
    8.   Willey, R.  G., J. Abbott, and M.  Gee.  1977. Oconee
    River Water Quality and Sediment  Analysis, Hydrologic
    Engineering Center, U.S. Army Corps of Engineers,  Davis, CA
    95616.
(CNM)  Contact name(s): Willey/R.G.
(COR)  Contact organization: Hydrologic Engineering Center

-------
                             Accession No.   16404000129

(DQ)  Date of Questionaire: 12-02-82
(•AM)  Kane of Data Base of Model: Receiving Mater Quality Model
(ACR)  Acronym of Data Base or Model:  RHQM
(NED)  Media/Subject of Data Base or Model: Water
(ABS)  Abstract/Overview of Data Base or Model: The Receiving Hater
    Quality Model (RHQM) was developed by Resource Analysis/ Inc.  for
    the U.S. Amy Corps of Engineers' Hydrologic Engineering Center to
    interface with STORM (Storage Treatment Overflow Runoff Model).
    RHQM (HEC, 1979), when linked with the  time history of storm and
    dry-weather flows generated by STORM, provides the capability to
    predict the impact of land surface runoff on stream water quality.
(CTC)  CONTACTS: R.G. Willey    Corps of Engineers, Hydrologic
    Engineering C Loc: 609 Second St.     Ph: (916) 440-3292
    Loc: Davis, CA 95616
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of fora completion: 01-25-83
(CAP)  Functional capabilities of model: RHQM simulates the
    one-dimensional transport and transformation of six water quality
    parameters (temperature, DQ, carbonaceous BOD, nitrogeneous BOD,
    orthophosphate, conforms) in freshwater stream networks.
(ASM)  Basic assumptions of model: RHQM simulates time-varying
    hydraulic and nater quality conditions by utilizing the law of mass
    conservation for water and pollutant volumes.  Stream routing uses
    the kinematic wave assumption.  Hater quality parameters are
    modeled using first order kinetics.
(IMP)  Input to model: RHQM input is on cards and tape files.  Input
    consists of, for each  stream  reach:  Stream reach and segmentation,
    simulation controls, I/O controls, percentile curve limits and
    location, atmospheric  temperature input, monthly stream equilibrium
    temperature, monthly heat transfer rate coefficients, reaction rate
    coefficients, reaction rate termperature modification bases, gauged
    baseflow information,  stream  hydraulics information, boundary
    conditions, tributary  flows,  point sources, nonpoint sources,
    volumetric sources and sinks, STORM runoff and dry weather flow,
    combined sewer  overflows, storage releases and treated outflow, and
    initial conditions.
(DOT)  Output of model: RHQH offers a wide range  of statistical output
    to both summarize  and  provide "snapshots'* of  simulated instream
    conditions.  Long  term average, maximum, and  miniBUM pollutant
    concentrations,  temperatures, and flows are tabulated and frequency
    (percentile) curves can be computed.   In addition, parameter
    profiles can be printed for any day or "pollutagraphs" for chosen
    locations.

-------
                             Accession No.  16404000129    (cont)

(LUG)  Computational system requirements - Language(s) used:  FORTRAN
(WTP)  Hater Models - Type of model: Mater quality
(EOT)  Environment(s) to which model applies: Stream/river

-------
                             Accession No.  16404000130

(DQ)  Date of Questionaire: 12-02-82
CMAH)  Kane of Data Base of Model: Air, Land, Mater Analysis System
(ACR)  Acronym of Data Base or Model: ALHAS
(MED)  Media/Subject of Data Base or Model: Air ;Toxic substances
    ;Hater ;0ther-surface runoff
(ABS)  Abstract/Overview of Data Base or Model: ALHAS can siaulate the
    effects on surface water quality of multimedia toxicant releases to
    the environment.  This mathematical model integrates the single
    media models DIDOT, an air model, EXAMS a water quality model, and
    NFS, a runoff nodel. It is most suitable for persistent organic
    chemicals which tend to adsorb to particulate matter.
(CTC)  CONTACTS: Dr. Kenneth F. Hedden
    Loc: C.S. EPA/ERL-Athens, Georgia  30613, (404) 546-3310
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: ALMAS is designed to assist In
    the assess ment of water quality problems associated with toxic
    chemicals released to the atmosphere.  The combined effect on
    surface water quality of toxic releases to several media; including
    air, non- point source, direct discharge, and grounduater may also
    be eval uated.  Analysis of groundwater-impacts is limited since
    the user must know the rate and quality of groundwater recharge to
    the surface water body.  The model will be useful in determining
    the most effective strategies for controlling water quality effects
    of toxic chemicals regardless of the ultimate source, and will be
    useful in evaluating the potential impacts of new chemicals enter-
    ing commerce.
(ASM)  Basic assumptions of model: The basic flow of the model is from
    air to land surface to surface water body, with the direct transfer
    from air to surface water body also accounted for.  Atmospheric
    point sources (smokestacks) and area sources (arising from
    transportation, land use, residential heating, etc.) can be
    simulated.  Vet deposition, caused by the scavenging of air- borne
    contaminants by precipitation, is simulated as well as dry
    deposition resulting from such processes as gravitational settling,
    lipaction, or dissolution of gases.  Gaseous and particulate
    contaminants are treated uniformly by the model, consistent with
    recent findings that many toxic organic con- taminants which exist
    as gases at atnospheric pressure and temperature nonetheless will
    behave as participates with respect to deposition processes, since
    the fraction of the airborne mass which is adsorbed to ambient
    aerosols is primarily responsible for atmospheric deposition.
           The aodel is designed to be applicable at a wide range of
    spatial scales ranging from that of a calibrated NFS watershed
    (litited to about 5 k«(2)) up to a major river basin covering
    10(4)ka(2).
           ALHAS is a time-dependent model whose fundamental time
    step is one hour.  DiDOT and NPSDEP respond at that time scale
    while EXAMS interfaces with those two models after temporal
    averaging over a user-determined number of days.  The time
    dependence of DiDOT is different mathematically from that exhibited
    by KPSDEP and EXAMS.  DiDOT uses a standard air dis- persion


                             1476

-------
                            Accession No.  16404000130    (cont)

   approach which  assumes  that steady state conditions exist for each
   hourly time step.
          DiDOT can handle two contaminants in a single run.  In
   order to interface  with NPSDEP/  one  of  these contaminants must be
   total suspended particulates  (TSP)/  while  the other one may be any
   toxic pollutant, either vapor  and partially vapor and partially
   adsorbed to ambient aerosol.   DiDOT  does not explicitly account for
   the particle size distribution of particulate contaminant/ so the
   deposition parameters should  represent  the mass weighted average of
   the distribution of the parameters.
          DiDQT's  usage of meteorological  and source characteristics
   data is consistent  with standard procedures used in most
   EPA-supported air quality  models,  this feature makes the model
   easy to use for those familiar with  standard air modeling
   procedures. DiDOT is also  consistent with  standard air modeling
   procedures in its use of Gaussian dispersion algorithms/ Briggs
   plume rise formula, ASVE dispersion  parameters, and stability
   classes based on wind speed and  solar radiation. Its method  for
   accounting for  limited  mixing under  an  inversion lid/ is also
   consistent with standard approaches.
          Where DIDOT  diverges from standard  air quality models is in
   its deposition  algorithms.  The  dispersion algorithms utilized in
   DiDOT represent a synthesis and  application of current research and
   mathematical analysis of the  deposition process.  In order to
   describe the dry deposition process  from point sources/ DiDOT
   applies the vigorous analytical  solution derived by Ermak which
   accounts for both gravitational  settling and surface depletion.
(IMP)   Input to model:  ALWAS requires inputs which may be separated
   into six basic  categories:
          Meteorological  data:   each sub-model of ALWAS requires
          meteorological  data of different kinds.  Both DiDOT and
          NPSDEP require hourly  meteorological data in formats  com-
          patible  with standard  reporting  formats of the National
          Weather  Service.
          Pollutant Source data:  DiDOT and EXAMS require data
          characterizing  sources of the pollutant to the environment.
          DiDOT treats three  kinds of  pollutant sources:  point sources/
          traditional  area sources/ and distant city-sized  area sources.
          Pollutant  fate  properties:   chemical  specific inputs  are
          required primarily  by  DiDOT  and  SXAMS.  DiDOT uses the  settling
          velocity/ deposition velocity/ scavenging ratio/  and  atmos-
          pheric degradation  half-life.  These/ in turn/ may be esti-
          mated  from  knowledge  of particle size/  Henry's law constant/
          vapor  pressure/  and molecular weight/  or other fundamental
          properties.   EXAMS  requires  similar inputs/  solubility  in
          water/ octanol/water partition coefficient/  rates of
          hydrolysis/  photolysis/ and oxidation.
          Calibration  data for NPSDEP:   NPSDEP  requires calibra-
          tion  data  — time series of  water  flow  and quality at the
          discharge point  of  an  upland watershed.
          Characteristics  of  the physical  environment:  NPSDEP
          requires as  input various physical  features  of the watershed


                             1477

-------
                             Accession So.   16404000130     (cent)

           area-length of overland flow path, slopes,  elevation, land
           use characteristics,  portions of watershed  which are pervious
           and impervious,  soil  characteristics,  etc.
           EXAMS relies extensively on a user-specified  description
           of the water body.
           Interfacing data:   within this category are the geo-
           metrical relationships between the DiDQT receptor locations
           (points at which deposition rates are  calculated),  NPSOEP
           catchments/ and  EXAMS cells.
(GOT)  Gutput of model: The fundamental ALMAS outputs  are the surface
    water quality outputs presented by EXAMS.  Ihese include the total
    contaminant concentrations,  as a function of  time, in each EXAMS
    cell, and the partitioning of that total contaminant among various
    ionic, dissolved, sediment adsorbed, and biosorbed forms. DiDOT
    also presents summary air quality outputs including  long-term
    average concentrations over the watershed and the  extreme hourly
    and daily average concentration.  NPSDEP provides  flow, sediment
    transport, and toxicant loading outputs at monthly and annual
    intervals, as well as short term output for major  storms.
CAPP)  Applications of model: Presently (1/83) the model has only  been
    used on the Third Fork Creek Watershed (M.C.) for  sensitivity
    analysis.
(HOW)  Computational system requirements - Hardware: Mainframe POP
    11/70 and IBM 370 ;Disc storage 64K
(LNG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills:  Eng
    ineering
(ATP)  Air Models - Type of model: Gaussian dispersion
(OAQ)  Model reviewed and approved by OAQPS? NO

-------
Accession No.  16404000130    (cont)
1479

-------
                             Accession No.  16404000131

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Chemical Migration and Risk
    Assessment Methodology
(ACR)  Acronym of Data Base or Model: CMRA
(MED)  Media/Subject of Data Base or Model: Toxic substances ;Water
(ABS)  Abstract/Overview of Data Base or Model: The CMRA Methodology
    predicts the occurrence and duration of toxic contaninants in
    stream systems.  At the sane time, it predicts the probability of
    acute and chronic damages to aquatic biota*  The methodology
    consists of the following components: 1) overload contaminant
    transport modeling; 2) in- stream contaminant transport modeling;
    3) statistical analysis of instream contaminant concentrations;
    and, 4) probabilistic risk assessment.
           CMRA is composed of three simulation models and one statis-
    tical package: The Agricultural Runoff Management (ARM) Model
    (Donigian and Crawford, 1976), the hydrodynamic component of
    EXPLORE (Baca, et al., 1973), the sediment-contaminant model
    SERATRA (Onishi, et al., 1979; Onishi and Wise, 1979, a,b), and the
    statistical program FRANCO (Olsen and Wise, 1979; Onishi, et al.,
    1979).
(CTC)  CONTACTS: Robert 8. Ambrose, Jr.
    USEPA/ERL/Athens, GA  30613  (404) 546-3546
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: ARM model predicts runoff and
    sediment and contaminant loadings at the edge of a stream.  ARM
    provides continuous simulation of contaminant loading by modeling
    hydro- logic response of watersheds, soil erosion, contaminant
    adsorp- tion and removal, and contaminant degradation.
           Instream chemical migration and fate are simulated by the
    hydrodynamic, water-quality model, EXPLORE and the sediment-con-
    taminant transport model, SERATRA.  EXPLORE is a one-dimensional,
    general water-quality model which provides discharge and depth data
    to SERATRA.  SERATRA is a finite element model uhich pre- diets
    time-varying longitudinal and vertical distributions of sediments
    and contaminants.  The model consists of the follow- ing three
    submodels coupled to describe sediment-contaminant interaction and
    migration: o sediment transport o dissolved contaminant transport o
    particulate contaminant (contaminants adsorbed by sediment)
           transport.
    The sediment transport submodel simulates transport, deposition,
    and scouring for each size fraction (or sediment type) of both
    cohesive and noncohesive sediments.  The transport of particulate
    contaminants is also simulated for those associated with each
    sediment size fraction.  The contaminant submodels include the
    mechanisms of: 1) advection and dispersion of dissolved and par-
    ticulate contaninants, 2) chemical and biological degradation,
    3) adsorption/desorption, and 4} deposition and scouring of par-
    ticulate contaminants.  SERATRA also computes changes in river bed
    conditions for sediment and contaminants.
           The computer program, FRANCO, provides statistical sum-
    marization of time-varying contaminant concentrations and is the


                             1480

-------
                             Accession No.  16404000131     (cont)

    link between simulated instream contaminant concentrations  and  risk
    assessment.  It provides the frequency of occurrence and duration
    of specified contaminant concentrations in receiv- ing waters.
    Outputs include the number of tines and the percent  of ti«e a given
    concentration-duration level is exceeded/ and the concentration
    levels involved.
           Risk is typically determined by multiplying the pro-
    bability of an event by the consequential effects.  FRANCO  pro-
    vides a measure of the probability.  The consequential effects  are
    expressed in terns of lethality and sublethality by  using a medial
    lethal concentration (LC50) and MATC (maximum accept- able  toxicant
    concentration).  The LC50 with its associated duration is defined
    as a concentration at which level 50% of an aquatic  species Hill be
    killed.  This represents an acute impact.  The MATC  range is
    located between the highest concen- tration showing  no detectable
    harmful effects and the lowest values displaying some observable
    effect.  Hence, MATC describes the effect-no effect  boundary for
    chronic toxicity.
           By selecting specific concentration duration  levels  to natch
    LCSOs and the MATC value, FRANCO provides a probabilistic risk
    assessment.  FRANCO displays consequence zones of lethality,
    possible lethality, sublethality, and no-effect with the assoc-
    iated probabilities.
(ASM)  Basic assumptions of model: The three simulation models  are
    based on mass balance considerations.  ARM and EXPLORE are
    described elsewhere in this inventory.  SERATRA is a finite-element
    sediment-con- tatninant model that solves net first-order chemical
    degradation and linear partitioning along with an unsteady  sediment
    balance that calculates local erosion and deposition.
(IMP)  Input to model: Required input for ARM includes meteorological
    data, physical and chemical properties of a contaminant,
    contaminant application rates and practices, and watershed
    characteristics.
           Required input for EXPLORE and SERATRA includes channel  and
    sediment characteristics and adsorption/desorption properties of
    the contaminants.  Because the current toxicological data base  is
    not sufficiently advanced to fully utilize the par- ticulate
    contaminant concentrations, only the cross-sectionally averaged,
    dissolved pesticide concentrations are further analyzed for risk
    assessment.  However, the capability is there to include
    particuiate contaminants adsorbed by suspended and bed sediments
    which may be important under actual field cir- cumstances,
    especially for assessment of a long-term aquatic i»- pact.
           FRANCO typically uses six concentration-duration pairs to
    define a piecewise concentration-duration curve to provide the
    number of times, duration, and frequency a given concentra-
    tion-duration curve is exceeded.  Because of the lack of avail-
    able toxicological data, the risk assessment is presently limited
    to the direct effects of the dissolved form of the chemical.
    Ingestion as a secondary route is not addressed, nor are indirect
    effects such as bioconcentration of biomagnification.
(OUT)  Output of model: Outputs for ARM and EXPLORE are described


                             1481

-------
                             Accession No.   16404000131     (cont)

    elsewhere in this inventory.  SERATRA produces tables of sediaent
    and chemical concentrations for specified model segments over  tine.
(APP)  Applications of model: Battelle NM has applied the CMRA
    Methodology to a portion of the Four Nile Creek Watershed, Four
    Mile and Wolf Creeks in central Iowa.  The toxic contaminant
    selected for the test yas the pre-emergence herbicide/ alachlor/  a
    widely used pesticide in the area.   Alachlor Is a phenylaniline
    with a moderate solubility and a snail  capacity for  adsorption to
    sediment.  Pesticide migration-fate modeling was performed for a
    three year duration between June 1971 and May 1974.
(HDW)  Computational system requirements -  Hardware: Mainframe IBM, DEC
    POP 11-70 ^Magnetic tape storage-varies w Printer-standard 132 line
    printer
(LNG)  Computational system requirements -  Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills:  Eng
    ineering
(HTP)  Hater Models - Type of model: Water  quality
    Water run-off
(CNf)  Environment(s) to which model applies: Stream/river
    ;Non-point:non-urban
(CON)  Processes and constituents included  in model: Erosion and
    sediment ;Toxic chemicals ^Biological effects ;H Hydraulics
(CPL)  Complexity level of model: Transient mass balance ;Momentum
    balance ;Multi dimensional
(REF)  References - user manuals/ documentation/ etc.:
    Baca, R. G./ W.W. Maddel, C.R. Cole/ A.  Brandstetter/
    and D.B. Cearlock.  1973.  EXPLQRE-I:  A River Basin Hater
    Quality Model,  prepared for the U.S. Environmental  Protection
    Agency by Battelle/ Pacific Northwest Laboratories/  Richland/  MA.
                   Donigian/ A.S. and N.H.  Crawford.  1976.  Modeling
    Pesticides and Nutrients on Agricultural Lands.  EPA-600/2-76-043.
    O.S. Environmental Protection Agency/ Washington/ D.C.
                   Olsen/ A.R. and S.E. Wise.  1979.  Frequency Analysis
    of Pesticide Concentrations for Risk Assessment.  Prepared for
    the O.S. Environmental Protection Agency by Battelle/ Pacific
    Northwest Laboratories/ Richland/ WA.
                   Onishl/ ¥./ and S.E. Wise.  1979a. "Finite Element
    Model for Sediment and Toxic Contaminant Transport in Streams."
    Proceedings of Conservation and Utilization of hater and Energy
    Resources.  Hydraulics and Energy Divisions/ ASCE/ San Francisco/
    CA./ pp. 144-150.
                   Onishi, Y. and S.E. Wise.  19795. Mathematical
    Model, SERATRA/ for Sediment and Contaminant Transport in
    Rivers and its Application to Pesticide Transport in Four Nile
    and Wolf Creeks in Iowa.  Prepared for  the U.S. Environmental
    Protection Agency by Battelle/ Pacific  Northwest Laboratories,
    Richland, WA.
                   Onishi, ¥., S.M. Brown/  A.R. Olsen, M.A. Park-
    hurst, S.E. Wise, and W.H. Walters.  1979.  Methodology for
    Overland and Instream Migration and Risk Assessment of Pesti-
    cides.  Prepared for the U.s. Environmental Protection Agency
    by Battelle, Pacific Northwest Laboratories, Richland/ WA.


                             1482

-------
                             Accession No.  16404000131     (cont)

(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                              1483

-------
                             Accession No.   16405000105

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Fane of Data Base of Model: Formal Name = International Ground
    Hater Modeling Center (IGWMC)
(ACR)  Acronym of Data Base or Model: None
(MED)  ftedia/Subject of Data Base or Model: Hater
(ABS)  Abstract/overview of Data Base or Model: The purpose of the
    Clearinghouse is to make available, to the ground water community,
    a description and location of over 500 of the world's ground water
    models.  Specifically, model descriptions include:  (1) aquifer
    conditions included in model/ (2) fluid conditions included in
    model, (3) model processes, (4) input data of model requirements,
    (5) basic technique for BOdel, (6) geometry of model, (7) equation
    solving technique, (8) error criteria, (9) computer specifications
    for model, (lO)model program code information, (ll)references.
    Model contributors include numerous universities, the Department of
    the Interior, the (I.S. Geological Survey, the U.S.  Corps of
    Engineers, state and local agencies, private businesses (esp.
    Battelle Pacific NH labs), as well as a number of foreign countries.
(CTC)  CONTACTS: Director, IGWMC,  Holcomb Research Institute, Butler
    University Loc: Indianapolis, Indiana   Ph: (317)283-9555
(STA)  Data Base status: Operational/Ongoing
(DP)  Date of form completion: 01-27-83
(CAP)  Functional capabilities of model: Users can search the library
    of Kodels according to the following model type and obtain a
    listing of those which would best fit their needs:  Prediction
    (flow, mass transport, heat transport, deformation); Management;
    Identification; and Data Manipulation.
(ASM)  Basic assumptions of model: The user will be able to describe
    needs in terms of goals, available monetary resources,
    sophistication of needed results.
(IMP)  Input to model: The users will supply general information
    concerning the ne model type, aquifer extent and thickness, flow
    characteristics, and data availability.
(OUT)  Output of model: Library will provide listing of model type,
    model developer of documentation, availability and past
    utilization, and special features.
(APP)  Applications of model: The clearinghouse has been used by water
    rescurce planners, reasearchers, and field investigators of ground
    water. NH: Contamination Sites Directon OFC: Holcomb Research
    Institute, Butler University AD: Indianapolis, Indiana PH:
    (317)283-9421
(HDV)  Computational system requirements - Hardware: Mainframe
    VAX11/78030 ;Disc storage 200 cylinders (15000000 Printer
(LNG)  Computational system requirements - Language(s) used: Cobol
(HTP)  Hater Models - Type of model: Ground water
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                             1484

-------
                             Accession No.  16405000114

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Feedlot Runoff Model Kansas State
    University
(ACR)  Acronym of Data Base or Model: FROMKSU
(MED)  Media/Subject of Data Base or Model: Water
(ABS)  Abstract/Overview of Data Base or Model: A continuous
    simulation, digital computer, hydrologic model of feedlot runoff
    generation and disposal has been developed by Kansas State
    University for SPA.  The purpose of the model is to establish
    guidelines and design parameters for feedlot runoff control
    facilities uhich uill meet the requirements of the Federal Hater
    Pollution Control Act Amend- merits of 1972.  The model continuously
    monitors the water bud- get of a feedlot-storage pond-irrigation
    disposal area control system using historic rainfall and
    temperature data.  It uses only readily available climate/ soil/
    and crop data so that it can be applied to all major livestock
    producing areas of the United States.  The model is expected to be
    useful in evaluating applications for "permits" to discharge and
    for planning agencies in "Best Management Practices" for feedlots.
    A user manual is included with program printout/ input data
    requirements, and an example of a 25-year simulation.
(CTC)  CONTACTS: Jerome J. Zovne
    Loc: Kansas State University/ Manhattan/ Kansas (913) 532-5580
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-27-83
(CAP)  Functional capabilities of model: FROMKSU is a continuous
    simulation digi- tal computer program written in "Ten Statement"
    Fortran for simplicity and compatibility with most machines having
    Fortran capability.  The model uses historical daily precipitations
    and temperatures to evaluate the design of a particular feedlot at
    a particular location.  This version  of FROMKSU reads the required
    precipitation and temperature data from tapes provided by the
    National Weather Service Climatic Center in Asheville/ North
    Carolina.  A magnetic tape drive is required in order to use this
    program.  Minor alterations would be  necessary in order to read
    this data from other sources.
(ASM)  Basic assumptions of model: The model is based on the assumption
    that run- off/ evaporation/ evapotranspiration/ irrigation
    disposal, scheduling/ and storage pond size can be expressed by
    mathe- matical equations uhich simulate on a continuous basis the
    actual field condition.  The  model accounts for snoumelt on  the lot
    and disposal areas differently due to surface conditions, it con-
    siders frozen  ground and crop water use for disposal timing.
(IMP)   Input to model: The model  uses information that can be obtained
    from exist- ing records and maps/ plus the design of the feedlot.
    dim a- tological needs are included - maximum and minimum daily
    temperature/ daily precipitation/ relative humidity/ percent
    sunshine, wind speed/  intensity  of solar radiation and coefficients
    for the panman equa- tion.  The  size  of the feedlot is necessary
    along  with  the volume  and  design of the retention pond system/ also
    the pumping rate/  size of  disposal area, soil type cropping  pattern
    are needed. Several  assumptions  must  be made about operation of the


                             148S

-------
                             Accession No.   16405000114    (cont)

    disposal side of the system, requiring  professional agricultural
    Judgement.

-------
                             Accession No.  16405000115

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Sane of Data Base of Model: Prediction of Mineral Quality  of
    Irrigation Return Flow

-------
                             Accession No.   16405000115    (cont)

    cheeical pro- parties of the soil profile; and a hydrologic balance
    of inflows and outflows of each node*
(OUT)  Output of model:  The model provides  statistical information on
    the quantity and quality of irrigation  return flows within each
    node.  This includes surface return flow and the percolation
    vertically through the soil profile. This information is then used
    to deter- mine the impact of irrigation practices on the quality of
    sur- face and ground water resources.
(APP)  Applications of model: The model allows us to better define and
    understand the relationship between irrigated agriculture and  the
    salt load- ing of streams.  When applied to an irrigated region of
    river basin/ it will help to answer such questions as: (1) What
    effect would improved water-use efficiency have on irrigation
    return flow water quality?  (2) Would  a change to a higher
    efficiency increase or decrease salt loading?  (3) Hhat Influence
    would development of new irrigation projects have on the salt  load
    of surface and ground waters? (4) ¥hat  effect would canal lining
    have on salinity? and (5) What is the  effect of drainage systems on
    surface water salinity?  Such questions involve many com- plexities
    and cannot be answered easily.
(HDM)  Computational system requirements -  Hardware: Mainframe IBM 360,
    CDC 6400, DEC 20 ;Disc storage (or tape) Magnetic tape storage (or
    disc) ;Printer 1200 baud printer ;Card  reader/punch o
(LNG)  Computational system requirements -  Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gravmlng ;Engineering
(WTP)  toater Models - Type of model: Mater  quality
(ENV)  Environment(s) to which model applies: Stream/river ;Non-point-
    irrigated agriculture, non-urban
(CON)  Processes and constituents included  in model: Eutrophication
    ^Salinity ^Hydrology
(CPL)  Complexity level of model: Steady state mass balance ;Multi
    dimensional
(REF)  References - User manuals, documentation, etc.:
    Hornsby, A.G.  1973.  Prediction Modeling for Sali-
    nity Control in Irrigation Return Flows.  EPA-R2-73-168, EPA,  Ada,
    Oklahoma.
                   taalker, tf.R.  1976.  Assessment of Irrigation  Return
    Flow Models.  EPA-600/2-76-219, EPA, RSKERL, Ada, Oklahoma.
                   U.S. Bureau of Reclamation.  1977.  Prediction  of
    Mineral Quality of Irrigation Return Flow: Volume 1-Summary Report
    and Verification, Volume 2-Vernal Field Study, Volume 3-Simula-
    tion Model of Conjunctive Use and Water Quality for a River
    Basin, Volume 4-Data Analysis Utility Programs, Volume 5-Detailed
    Return Flow Salinity and Nutrient Simulation Model, EPA-600/2-77-
    179 a-e* EPA, RSKERL, Ada, Oklahoma.
(ROR)  Responsible Organization: Office of  Research and
    Development.office of Environmental Processes and Effects
    Research.Robert G. Kerr Environmental Research Laboratory.
                             1488

-------
                             Accession No.   16405000116

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Cattle Feedlot Runoff Reservoir
    Design Evaluation  Simulatio
(ACR)  Acronym of Data Base or Model: NONE
(MED)  Vedia/Subject of Data Base or Model: Mater
(A8S)  Abstract/overview of Data Base or Model: The Cattle Feedlot
    Runoff Reservoir Design Evaluation Simulation and Economic
    Evaluation Models were develo- ped by Oregon State University for
    EPA.  These models can be used as one or the economic portion can
    be used separately.  The models were developed to design systems
    that would match structures to proposed management techniques,
    regional climatic data and economic considerations.  The first/  the
    sufficient design pro- gram, is a simulation model which sizes
    feedlot runoff retention ponds based upon previous climatic data
    and management dewater- ing policies.  In addition to minimum pond
    volume, the sufficient design model lists average number of yearly
    pumpings for each simulated management alternative at a selected
    pumping rate. The economic portion with a budget generator,
    determines cost of open feedlot runoff control systems.  The models
    were tested at seven selected locations in the United States to
    determine the effects  of five pumping rates and seven management
    deuatering alternatives on minimum storage volumes required to
    prevent dis- charges as defined by EPA Effluent Guidelines.
    Stations were selected from each major climatic region in the U.S.
    and repre- sented a broad spectrum of precipitation patterns.
(CTC)  CONTACTS: J. Ronald Miner
    Loc: Oregon State University, Corvallis, Oregon (503) 425-2041
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-27-83
(CAP)  Functional capabilities of model: These models  are continuous
    simulation in nature written  in Fortran IV for simplicity and
    compatibility with most machines.  The models use  historical daily
    precipita- tions  and temperatures  to design  runoff control systems
    for a particular  feedlot at a particular location, this data is
    read from tapes provided by the  National iieather Service Climatic
    Center in Asheville, North Carolina.   The  models use  seven sets of
    management alternatives  for design  and  two disposal policies for
    economic evaluation of the designs.
(ASM)   Basic assumptions of  model:  The  design  model portion assumes
    that runoff  and snowmelt runoff  can be  expressed by  a mathematical
     equation along with the  designs  of  the pond.  The  system  assumes
     that all runoff in excess  of  the  design  storm  (25  year -  24  hour
     event) can be  discharged.  The  disposal  area is sized via  the
     manage-  ment options selected and the  nitrogen  content of  the
     runoff water.  The economic portion uses two options: 1)  nutrient
    util-  ization, and 2)  strict  waste  disposal.   It accounts  for all
    cost based on  1977  dollars, but can be updated  as  necessary.
(INP)   Input  to  model: The models require  climatological  data for the
     site,  selection  of pumping  rate,  selection of  a management policy,
     physical data  regarding  the feedlot and disposal  area and  economic
     coefficients.                               .        **••*»•
(OUT)   Output  of  model: The models provide a printed  output listing


                              1489

-------
                             Accession No.   16405000116    (cont)

    retention pond size and pumping days required for each management
    option and at different pumping rates and the econonic portion pro-
    vides the cost per head capacity for each option.
(APP)  Applications of model: These models  are designed to be used by
    consul- tants, agricultural service agencies and planning or
    regulatory groups to assist the producer in selecting the most
    economical system to meet the zero discharge standard.
(HDH)  Computational system requirements -  Hardware: Mainframe-CPC
    Cyber 7-IBM 360 ;Disc storage-250K jHagnetic t Printer-132 position
    line printer ;Card reader/punch or tape/disc (input)
(LUG)  Computational system requirements -  Language(s)  used:  Fortran IV
<«fP)  Water Models - Type of model: Hater  run-off
(EH?)  Environment(s) to which model applies: Lake ;Stream/river
    ;Non-point Feedlot runoff, irrigation dis non-urban
(CON)  Processes and constituents included  in model: Hydrology
(CPL)  Complexity level of model: Steady state mass balance ;Multi
    dimensional
(REF)  References - User manuals, documentation/ etc.:
    Miner, J.R., R. B. Hensink, and R.M. McDowell.  1979.
    Design and Cost of Feedlot Runoff Control Facilities.   EPA
    600/2-79-707.
(ROR)  Responsible Organization: Office of  Research and
    Development.Office of Environmental Processes and Effects
    Research.Robert G. Kerr Environmental Research Laboratory.
                             1490

-------
                             Accession No.  16406000109

CDQ)  Date of Questionaire: 12-02-82
CHAM)  Name of Data Base of Model: tidal Temperature Model
(ACR)  Acronym of Data Base or Model: TTM
(MED)  Media/Subject of Data Base or Model: Hater
(ABS)  Abstract/overview of Data Base or Model: The Tidal Temperature
    Model (TTM) is a derivative of the Dynamic Estuary Model (DEM)  that
    can simulate the heat budget and dispersional characteristics of
    streams, well-mixed shallow impoundments, estuaries, and coastal
    waters.  The model can accomodate constituents which nay be
    conservative or non-conservative, have coupled or non-coupled
    reactions, and which undergo first order decay.  The TTM was
    developed by the EPA Pacific Northwest Laboratory and has been
    applied to the Columbia River below the Bonneville Dan.
CCTC)  CONTACTS: Richard J. Callauay U.S. EPA, Corvallis Environmental
    Resea Laboratory
    Loc: 200 S.tf. 35th Street    Ph: (503) 757-4703
    Loc: Corvallis, OR 97330
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: The TTM represents the one
    dimensional tidal and net river flow, transport processes of
    advection and diffusion, the heat budget and the dilution of up to
    four constituents within an estuary, stream, bell-mixed shallow
    impoundment, or coastal waters.  Coupled BQD-DO reactions may be
    modeled, as well as up to four constituents which may be
    conservative or non-conservative, have coupled or non-coupled
    reactions, and undergo first order decay. The model can simulate
    systems with up to 300 channels and as many as 300 junctions.  The
    TTV primarily links hydrodynamic and temperature/heat budget
    components, but additional water quality constituents may be
    possible. A standard heat budget approach and a thermal equilibrium
    approach are used to figure temperatures.
(ASM)  Basic assumptions of model: The TTM assumes that all inflows or
    withdrawals are constant, and it utilizes a simplified form of
    evaporation.  One dimensional channels are used to represent two
    dimensional flows and transports.  The model neglects wind stress
    and disregards lateral and vertical variation in channel
    cross-sectional area with tidal elevation change.  It handles
    constant residual input rates which can be put in variable form,
    and it cannot simulate tidal flats that go dry.
(INP)  Input to model: The Tidal Temperature Model allows for a large
    input data base, written in card-image form.  Parameters which can
    be specified include headwater flows, tributary flows, groundwater
    flows, water withdrawals, seaward tides, channel depths and widths,
    bottom roughness, constituents in freshwater inflows and at seaward
    boundaries, constituent concentrations throughout the modeled area,
    the quality and quantity of point-source residuals discharges, net
    solar radiation, and wet and dry bulb temperatures.
(OUT)  Output of model: Output formats include tabular printouts and
    velocities written by the hydrodynamic module.  Output information
    provided by the model includes summarized data (maximum and minimum
    values) for tidal cycles, flows, velocities, water elevation,


                             1491

-------
                             Accession No.  16406000109    (cont)

    constituent concentrations at each junction, channel velocities,
    junction depths, and constituents at user specified periods*
(APP)  Applications of model: The Tidal Temperature Model has been used
    by the EPA Pacific Northuest Mater Laboratory and has been applied
    to the Columbia River belou the Bonneville Dan.  The model has also
    beet> used by the EPA in Massachusetts, South Carolina, Florida,
    Oregon, and Washington. TECHNICAL CONTACT: Melvin O. Hinson, Jr.
    Quality of the Environment Division Resources for the Future 1755
    Massachusetts Avenue NW Washington, DC 20036 COM 703/462-4400
    Richard J. Callauay U.S. EnvironMental Protection Agency Corvallis
    Environmental Research Laboratory 200 S.U. 35th Street Corvallis,
    Oregon 97330 FTS 420-4703 COM 503/757-4703
(HDK)  Computational system requirements - Hardware: Mainframe any
    digital computer ;Disc storage 50,000 words ma
(LNG)  Computational system requirements - Language(s) used: Fortran I?

-------
                             Accession No.  16406000110

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Rarae of Data Base of Model: M.I.T. Transient Mater Quality
    Network Model
CACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Water
(ABS)  Abstract/Overview of Data Base or Model: The M.I.T. Transient
    Water Quality Network Model is a one-dimensional, real-time/
    nitrogen cycle model which can be used for nitrogen-limited,
    aerobic estuarine systems.  The BOdel solves one-dimensional
    continuity and momentum equations to generate the temporal and
    spatial variations in the tidal discharges and elevations.  This
    information is used in the solution of the conservation of mass
    equations for the water quality variables, which include salinity,
    temperature, carbonaceous BOD, nitrogen cycle variables, DO,  and
    fecal coliform.  The model combines the work of many investigators
    and has undergone a great deal of modification.  It uas originally
    developed at the Ralph M. Parsons Laboratory for Water Resources
    and Hydrodynamics at the Massachusetts Institute of Technology, and
    its broadest application has been the St. Lawrence River and
    Estuary.  The model is intended to be used in engineering decisions
    regarding the degree of eutrophication due to distributed and point
    source loadings in estuaries.
(CTC)  CONTACTS: Richard J. Callaway U.S. EPA, Corvallis Environmental
    Resea Laboratory
    Loc: 200 S.K. 35th Street    Ph: (503) 757-4703
    Loc: Corvallis, OR 20036
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of fora completion: 01-25-83
(CAP)  Functional capabilities of model: The model was developed  for
    aerobic estuarine ecosystems and includes seven storage variables
    and twelve transformations of nitrogen between those variables.
    The storage variables include:
    1) *(1), Amwonia-N, 2) S(2), Nitrite-N, 3) N(3),
    Nitrate-N, 4) N(4), Phytoplankton-N, 5) N(5), Zooplankton-N,  6)
    »(6), Particulate Organic-N, and 7) N(7), Dissolved Organic-K.  The
    transformations include:
    1) nitrification, 2) uptake of inorganic nitrogen by
    phytoplankton, 3) grazing of herbivores, 4) avmonia regeneration in
    living cells, 5) release of organic matter from living cells, 6)
    natural death of living organisms, and 7) amraouification of organic
    nitrogen. The user can specify a branching and or looping network
    of channels called reaches where each reach can be of variable
    cross-section along its longitudinal axis. Storage volumes are
    provided for along the reach and any number of concentrated or
    distributed water quality loadings can be specified along each
    reach.  The flow regime can be that of an estuarine system with an
    unsteady tidal elevation driving the circulation at the ocean
    boundaries in combination with the upstream flow. For subcritical
    flow, three possible boundary conditions can be specified, and
    these are:  1) the Discharge Qf
    2) the surface elevation Z, and 3) a relationship between
    Z and Q.  The node! can simulate control structures within the


                             1493

-------
                             Accession Mo.  16406000110    (cont)

    network itself instead of only at the boundaries, and the user is
    permitted to specify a boundary condition at the upstream side of
    the control structure.  Three possible boundary conditions
    (concentration, dispersion flux, and total flux) and a special
    ocean boundary procedure are provided.
(ASM)  Basic assumptions of model: The M.I.T. Transient Water Quality
    Network Model defines the geometry of the water body along a
    particular reach by interpolation between the cross-sectional data
    submitted by the user.  The model pays strict adherence to the IB ass
    conservation principle as applied to the element nitrogen, and Its
    ecosystem model is coupled with a real-tine hydrodynaaic transport
    system as opposed to a tidal-average or slack-tide approximation.
    The structure of the model was formulated such that the level of
    complexity would not be too complex to the point of diminishing
    returns, nor too simplified to the point where rate-governing
    parameters must be determined by curve fitting the available field
    data.  Carbonaceous BOD is handled as a first order decaying
    substance in the classical manner.
(IMP)  Input to model: Input data is divided into nine groups.  Card
    Group A includes information regarding solution options. Here it is
    stipulated which solutions (hydraulic and water quality) will be
    executed and which water quality parameters will be modeled.  Time
    parameters stipulating the duration of the run and the time step of
    integration, and the network topology (identification and sequence
    of reaches) is also provided. Card Group B provides the geometric
    information (i.e./ the physical properties of the channel), and the
    computational mesh spacing and initial conditions required for the
    hydraulic solution.  This group is repeated for each reach as given
    in Group A. Card Group C provides values of rate coefficients for
    those water quality parameters being modeled.  The coefficients may
    be specified for the entire network or may be specified for each
    individual reach.  If the user does not wish to specify values, the
    program will automatically use default values.  In this card group,
    the computational mesh spacing for water quality calculations and
    initial conditions for water quality parameters are also specified.
    Card Group D describes the location, magnitude and quality of any
    lateral inflows being considered. Lateral inflows are considered
    for both the hydraulic and water quality solutions.  Card Group E
    describes the same information for any injections (e.g. sewage
    treatment plant or waste heat discharge) of water quality
    parameters,  injections are considered only in the water quality
    solution.  For hydraulic purposes they are considered passive, that
    is, they have no effect on the flow field in the receiving water.
    Card Group F stipulates the hydraulic boundary conditions to be
    applied at each node. Card Group G allows the user to selectively
    view output from the hydraulic solution.  Card Group H stipulates
    the water quality boundary conditions to be applied at each node in
    the network, and Card Group I allows the user to selectively view
    output for the water quality solution.  The sequence of the input
    cards is important to note.  Certain card groups (D,E,F,G,H,I) for
    particular cases must be repeated several times corresponding to
    the number of periods for which the solution is executed.


                             1494

-------
                             Accession No.  16406000110    (cent)

COOT)  Output of model: The large volume of numerical information
    generated by the computer is conveniently represented in graphical
    fore,  A plotting program is available for use on an incremental
    druff plotter.  The output for the hydraulic solution can be
    requested in two forms:
    1) a hydrograph which displays the parameters at a given
    mesh point as a function of time, and 2) a hydraulic profile which
    displays the parameters at a given time as a function of distance.
    The hydraulic parameters displayed are surface elevation/ depth/
    discharge/ and velocity.  Output for the water quality solution
    also may be displayed in two forms:  1} water quality graphs/  i.e./
    parameters as a function of time/ and 2) water quality profiles/
    i.e./ parameters as a function of distance*  Special features
    permit the user to plot several variables on the same frame and
    also to plot user-supplied data points as special symbols.
CAPP)  Applications of model: The model has had a number of
    applications/ the broadest application being to the St. Lawrence
    River and Estuary/ a study sponsored by the Canadian Departments of
    the Environment and Transport and Quebec Service de Protection de
    1'Environment and Ministers des Richesses Naturelles.  Thatcher/
    Pearson and Mayor-Mora have described the application to both
    riverine and estuarine portions of  the St. Lawrence River from
    Cornwall to Montmagny/ a distance of  275 miles.  The need for a
    published user's manual was recognized by the National
    Environmental Research Center/ U.S. EPA/ Corvallis/ Oregon/ and
    their support has enabled  documentation of the model at  this stage
    of its development.  The EPA has used the model  for test purposes.
 (HDW)  computational system  requirements  - Hardware: Mainframe  Any
    model ;Disc  storage 256K for compilation; 226K  for plotting program-
 
-------
                             Accession  No.   16406000110     (cont)

     in  Unsteady  Flows," Technical  Report Ho.  175,  R.M. Parsons
     Laboratory for  Hater  Resources and  Hydrodynamics,
     Department of Civil Engineering,  M.I.T.,  November 1973,
     Harleman, D.R.F.  and  Thatcher, M.L., "Longitudinal
     Dispersion and  Unsteady  Salinity  Intrusion  in  Estuaries,"
     La  Houille Blanche/Mo. 1/2 - 1974.
     Henderson, P.M. Open  Channel Flow,  MacMillan Co.
     N.Y., 1966.
     Larsen, P.A., "Hydraulic Roughness  of Ice Covers,"
     JHD, ASCE 99, HYI, January 1973.
     Najarian, T.O.  and Harleaan, D.R.F., "A Real Time
     Model of Nitrogen-Cycle Dynamics  in an Estuarine System,"
     Technical Report  No.  204, R.M. Parsons Laboratory for
     Hater Resources and Hydrodynamics,  Department  of Civil
     Engineering, M-I.T./  July, 1975.
     Surveyor, Nenniger &  Chenevert, Inc. and  Carrier,
     Trottier, Aubin,  "Hydrodynamlc and  Hater  Quality
     Simulation Model:  Cornuall-Montmagny Section/" Report
     to  Department of  Environment,  Canada, March 1973.
     Surveyer, Nenniger &  Chenevert, Inc., and Carrier,
     Trottier, Aubin;  (In  French) "Hydrodynaaic and Mater
     Quality Simulation Model:  Cornwall-Montmagy Section,**
     Report to Service de  Protection de  1'Environment Quebec,
     March 1974.
     Thatcher, M.L. and Harleman, D.R.F., "Mathematical
     Model for the Prediction of Unsteady Salinity Intrusion
     in  Estuaries,*1 Technical Report No. 144,  R.M. Parsons
     Laboratory for Hater  Resources and Hydrodynamics,
     Department of Civil Engineering, M.I.T.,  February 1972.
     Thatcher, M.L., Pearson, H.H., and Mayor-Mora, R.E.^
     "Application of a Dynamic Network Model to Hydraulic and
     Hater Quality Studies of the St. Lawrence River," 2nd
    Annual Symposium  of the Waterways, Harbours and Coastal
    Engineering Division, ASCE, San Francisco, September 1975.
    Harleman, D.R.F., Dailey, J.E., and Thatcher, M.L.,
     Hajari an, T.O., Brocard/ D.N., and R.I. Ferrara, "User's
    Manual for the M.I.T. Transient Hater Quality Network
    Model," Report for U.S. Environmental Protection Agency,
    Office of Research and Development, Corvallis Environmental
    Research Laboratory, Corvallis, Oregon.  U.S. EPA
    Publication EPA-600/3-77-010,  January 1977.
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                             1496

-------
                             Accession No.  16406000111

(DQ)  Date of Questionaire: 12-02-82
(HAH)  Same of Data Base of Model: Enhanced Hydrodynamical-Numerical
    Model for Near Shore Proce
(ACR)  fccronym of Data Base or Model: HN
(HED)  Pedia/Subject of Data Base or Model: Water
(ABS)  Abstract/Overview of Data Base or Model: The Hansen type
    multilayer Hydrodynamical- Numerical (HN) model described by  Bauer
    has been used successfully to study the dynamics of numerous
    coastal areas.  The optimized version of the HN model combines  the
    vertically integrated single layer HN model originally developed  by
    Professor H. Hansen, University of Hamburg/ Germany/ and the
    multilayer multiple-open boundary HN model proposed by Hansen and
    developed by Dr. T. Laevastu.
(CTC)  CONTACTS: Richard J. Callauay U.S. EPA/ Corvallis Research Lab/
    Marin Freshwater Ecology Branch
    Loc: 200 Southwest 35th St.  Ph: (503) 757-4703
    Loc: Corvallis/ Oregon 97330
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: The enhanced HN model
    simulates near-shore currents and exchange processes. Enhancements
    to the multilayer Hansen type Hydrodynamical- Numerical model
    include:  non-linear tern extension to facilitate small-mesh
    studies of the near-shore/ including river dynamics; layer
    disappearance extension to enable appropriate procedures in  tidal
    flat and marshy regions/ as well as some dotm/upuelling cases;
    thermal advection enhancement for treatment of thermal pollution
    cases by method of moments coupled with heat budget procedures  for
    dynamic plume development experiments; and Monte Carlo diffusion
    enhancement to deal with dispersion via statistical methods  and
    comparison to the method of moments experiments.
(ASM)  Basic assumptions of model: The Hydrodynamical-Numerical  model
    is an explicit numerical difference scheme based on leap- frog
    integration of the two dimensional Eulerian form of the
    hydrodynamical eguations through time  to obtain a dynamical
    boundary-value solution of tidal order. Advection is simulated by
    the method of moments/ a quasi-Lagrangian method which maintains
    information on the zeroth/ first and second order moments of  the
    concentration in each cell of the grid mesh.  In order to introduce
    the random element for utilization of  Monte Carlo methods/ the
    total velocity for a particular fluid particle is assumed to  be
    composed of a Bean flow velocity component and a turbulent flux
    velocity component. The HN model provides  the mean flow velocity
    and the Monte Carlo scheme provides the turbulent flux velocity.
    Dispersion is thus modeled by simulating the diffusion process
    stochastically within the background fluid in motion.  The
    Pedersen-Prahm thermal advection scheme has been chosen since it  is
    a conservative scheme without the pseudo-diffusion of Eulerian
    difference methods.  In order to model the heat budget effects on
    the thermal discharge as it is transported by the currents
    throughout the region/ the Laevastu thermal techniques were
    selected.


                             1497

-------
                             Accession No.  16406000111    (cont)

(IMP)  Input to model: Input to the HN BOdel include grid and mesh
    size; system geometry, bathymetry, and boundaries; average
    latitude; Coriolis factor/ tidal data; wind values; outfall sources
    and sinks; storm surge/ and river inflow.  Control cards and
    library directives are necessary for the selection of subroutines*
(OUT)  Output of Model: Output provided by the model include computer
    printouts of the input variables and contour plots.
CAPP)  Applications of model: The enhanced HN model has been applied by
    the EPA to Prudhoe Bay/ and a section of the coastal area of the
    Beaufort Sea/ Alaska/ and the San Onofre outfall in California.
    The model can be used to evaluate the advection and dispersion of
    constituents in near shore coastal waters.
(HDW)  Computational system requirements - Hardware: Mainframe CDC 3300
    and CDC 6500 ;Printer
(OSK)  Computational systev requirements: Operator Knowledge/Skills: exp
    erience In environmental modeling and an understanding  o
(HTP)  Water Models - Type of model: Water quality
(ENV)  Fnvironment(s) to which model applies: Stream/river ;Metlands
(COR)  processes and constituents included in model: Temperature
    ;Hydraulics
(CPL)  Complexity level of model: Simplified
(RET)  References - User manuals, documentation/ etc.:
    Bauer, R.A. and Stroud, A.D. Enhanced
    Hydrodynamical-Nuaerical Model for Near shore Processes.
    In Press.  Prepared by Compass Systems/ Inc./ San Diego/
    California, for Corvallis Environmental Research
    Laboratory, Office of Research and Development/ U.S.
    Environmental Protection Agency/ Corvallis/ Oregon.
    EPA Contract 68-03-2225.
    Bauer/ R.A. Description of the Optimized DPRP Multi-
    Layer Hydrodynamical-Ruaerical Model.  EN7PREDRSCHFAC
    Tech. Paper No. 15-74, Environmental Prediction Research
    Facility, Monterey/ California/ 1974.
    Hansen/ V. Hydrodynamical Methods Applied to Oceanographic
    Problems.  In:  Proceedings of the Symposium on
    Matheaatical-Hydrodynamical Methods of Physical
    Oceanography, institute Fur Meereskunde der Onlversitat
    Hamburg/ Hamburg, Vest Germany, 1962.  pp. 25-34.
    Laevastu, T. and P. Stevens.  Applications of Numerical-
    Hydrodynamical Models In Ocean Analysis/Forecasting.
    FNWC Tech. Note Ho. 51, Fleet Numerical Weather Central,
    Monterey, California, 1969.
    Laevastu/ T. and K. Rabe.  A Description of The EPRF
    Hydrodynamical Models in Ocean Analysis/Forecasting.
    FNWC Tech. Note No. 51, Fleet Numerical Weather Central/
    Monterey/ California/ 1969.
    Laevastu, T.  A Vertically Integrated Hydrodynamical-
    Numerical Model (W. Hansen Type), Model Description and
    Operating/Running Instructions.  Part 1 of a series of
    four reports.  ENVPREDRSCHFAC Technical Note No. 2-74,
    Environmental Prediction Research Facility, Monterey,
    California/ 1974.


                             1498

-------
                         Accession No.  16406000111    (cent)

Laevastu, T.  A Multilayer Hydrodynamical-Nuraerical
Model (W. Hansen type), Model Description and Operation/
Running Instructions.  Part 2 of a series of four
reports.  ENVPREDRSCHFAC Technical Mote No. 2-74,
Environmental Prediction Research Facility, Monterey,
California, 1974.
Laevastu, T. in collaboration with M. Clancy and A.
Strcud.  Computation of Tides, Currents, and Dispersal
of Pollutants in Lower Bay and Approaches to Neu York
with Fine and Medium Grid size Hydrodynaraical-Nuiaerical
Models.  Part 3 of a series of four reports.
ENVPREDRSCHFAC Technical Note No. 3-74, Environmental
Prediction Research Facility, Monterey, California,
1974.
Laevastu, T. and R. Callauay in collaboration with A.
Stroud and M. Clancy.  Computation of Tides, Currents
and Dispersal of Pollutants in Neu York Bight from Block
Island to Atlantic City with Large Grid Size, Single
and Two Layer Hydrodynamical-Nunerical Models.  Part
4 of a series of four reports.  ENVPREDRSCHFAC Technical
Note No. 4-74, Environmental Prediction Research Facility,
Monterey, California, 1974.
Laevastu, T. and G.D. Hamilton.  Computations of
Real-Time Currents Off Southern California With Multilayer
Hydrodynamical-Numerical Models with Several Open
Boundaries.  ENVPRSDRSCHFAC Technical Paper No. 10-74.
Pedersen, L.B. and L.P. Prahm.  A Method for Numerical
Solution of the Advection Equation eC/et=V.VC,
Meteorological institute of Denmark, as submitted
to TELLUS, August, 1973.
Laevastu, T. and J.M. Harding. "Numerical Analysis and
Forecasting of Surface Air Temperature and Hater Vapor
pressure."  Journal of Geophysical Research, 79(30):
4478-4480, 1974,
Stroud, A.D. and Bauer, R.A. User Guide for the
Enhanced Hydrodynamical-Nuraerical Model.  In Press.
Prepared by Compass Systems, Inc., San Diego, California,
for Corvallis Environmental Research Laboratory, Office
of Research and Development, U.S. Environmental Protection
Agency, Corvallis, Oregon, under EPA Contract
No. 68-03-2225.
Young, Chen-Shyong.  Thermal Discharges into the Coastal
Haters of Southern California.  Southern California
Coastal Water Research Project (SCCV.RP), Los Angeles,
California, 1971.
Maier-Reimer, E. Numerical Treatment of Horizontal
Diffusion and Transport Phenomena in Marine Basins of
Large Size, Institut fur Meereskunde der Universitat
Hamburg, Hamburg, West Germany, as presented at IAMPA/IAPSQ
Assembly, Melbourne, Australia, January, 1974.
Thompson, R. Numerical Calculation of Turbulent
Diffusion.  Quart, J.R. Met. Soc. 97(411):93-98,
                         1499

-------
                             Accession No.   16406000111     (cont)

    1971.
CROR)  Responsible Organization:  Office of  Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                            1500

-------
                             Accession No.  16406000112

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Aqueous Chemical Equilibrium Model
(ACR)  Acronym of Data Base or Model: REDEQLEPAK
(MED)  Kedia/Subject of Data Base or Model: Hater
(ABS)  Abstract/Overview of Data Base or Model: The chemical
    equilibrium model (RBDEQL.EPAK) computes aqueous equilibria for  up
    to 20 metals and 30 ligands in a system.  The metals and ligands
    are selected from a list of 35 metals and 59 ligands for which
    thermodynamic data for complexes and solids have been stored in  a
    data file.  The equilibria vhich the program considers include
    conplexation, precipitation, oxidation-reduction, and pH-dependent
    phenomena. A user's guide for this computer program was published
    by EPA in February 1978 and a modified version of the program was
    published in May 1980.  The later version includes temperature
    corrections for equilibrium constants and activity coefficients,
    calculation of degree of saturation for selected solids, and
    theoretical attainment of an electrically neutral solution for a
    more realistic system.  An adsorption model (surface complexation)
    is also included in the later version.
(CTC)  CONTACTS: Don Schults
    Loc: EPA, Marine Science Center, Newport, Oregon 97365
    (503) 867-4039
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: The REDECL.EPAK program is
    designed to compute chemical equilibria involving solids,
    complexes, oxi-dation- reduction and mixed solids in an aqueous
    system.  The inputs for the program are the total concentrations of
    metals and ligands in the system, including quantities in solids
    and gas phases if these are allowed to interact yith the aqueous
    system.  Computation is based on thermodynamic data contained in
    the data file.  Two major limitations exist with the model: (1) the
    program is for equilibrium; kinetics  of dissolution, precipitation
    and oxidation-reduction are not considered and (2) the program is
    no better than the analytical and thermodynamic data that is used.
(ASM)  Basic assumptions of model: The program assumes the system is at
    chemical equilibrium at the specific conditions established by the
    data input.  Kinetics are not considered  in determining
    equilibrium. It's assumed that the system is strictly chemical and
    there is no biological component which will influence the chemistry.
(IMP)  Input to model: Input to the program includes: total
    concentration of metal and ligands in the system, including
    quantities in solid and gas phases if these are allowed to interact
    with the aqueous system, the pH  and the oxidation-reduction
    potential of the systei. Up to 10 cases of different total
    concentrations for a set of metals and  ligands can be treated by
    the program in one run.
(OUT)  Output of model: The output of the program  are the speciation of
    the metals and ligands and  their concentration in various forms and
    combinations. The first page  of  output is  the  input thermodynamic
    data corrected to the ionic strength  and  temperature used.  The
    second page describes  the  input  data  read  into the computer.  The


                             1501

-------
                             Accession  Ho.   16406000112     (cont)

     next page  is  the  case  progress  giving  the  total  and free
     concentration of  all species  and the total  amount of solids and
     mixed  solids  in one liter  of  solution.   The concentration of all
     metal  species and associated  ligands and the concentration of
     complexes  is  reported.  The percent distribution of metal and
     ligand species is also  reported.
(APP)  Applications of model:  This  computer  program  calculates the
     chemical equilibrium for metals and ligands in an aquatic system.
     The program has been used  to  determine Cu complexing capacity of
     natural waters, calculate  metal speciation  in soil/water systems/
     account for the fate of trace raetals in  ocean discharge, assess the
     sorption and  leaching  of heavy  netals in groundwater and relate
     species of Cu to  toxicity.  The program  has been used by EPA,
     universities,  industrial and consulting  firms.
CHDfc)  Computational  system requirements - Hardware: Mainframe-IBM
     360/370 ;Disc storage-4000 blocks (80 column b Printer-132 position
     line printer  ;Card reader/punch
CLNG)  Computational  system requirements - Language(s) used: Fortran IV
(OSK)  Computational  system requirements: Operator Knowledge/Skills: Oth
     er-Physical sciences
(HTP)  fcater Models - Type of  model: Hater quality

-------
                             Accession No.   16407000102

(DQ)  Date of Questionaire:  12-02-82
(NAM)  Name of Data Base of  Model: Mater Quality Modeling System for
    the Great Lakes
(ACR)  Acronym of Data Base  or Model: WQMSGL
(MSD)  Media/Subject of Data Base or Model: Toxic substances ;Water
CABS)  Abstract/Overview of  Data Base or Model: The Hater Quality
    Modeling System for the  Great Lakes consists of three subsystems
    which when applied together allow the user to develop/ calibrate
    and verify water quality models for aquatic systems.  Although the
    system was developed to  serve EPA's research mandates for the Great
    Lakes, it has general  applicability to any water system/ (i.e.;
    rivers/ estuaries/ snail lakes, and coastal).  Also/ the system can
    be applied to most any water quality problem, constituent/ or their
    interactions.
(CTC)  CONTACTS: William L.  Richardson    O.S. EPA/ Office of Research
    and
    Development/ Environaental Research Lab/ Duluth, MH
    Loc: 9311 Groh Rd., Grosse lie/ Michigan 48138   Ph: (313) 226-7811
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 01-28-83
(CAP)  Functional capabilities of model: WASP - The kinetic
    (biochemical structures) of the model is written by the user or he
    can apply any number of  kinetic subroutines that have been
    developed by previous  users.  The transport characteristics of the
    water system to be modeled are assumed to be known or determined by
    current meter studies  or hydrodynamic models*  Another method of
    determining transport  is to use WASP to  trace a conservative
    substance through the  system and adjust the transport parameters
    until the calculated concentration matches the measured.  HASP then
    numerically integrates the system mass balance equations in space
    and time and calculates  tine variable concentrations of the
    substances in each spacial segment.  A table of available kinetic
    subroutines/ authors,  capabilities/ applications/ and references
    follow.  EPA/ LLRS continues to support research to refine and
    verify these models and  to incorporate new substances and processes
    as they are needed. DASA - DASA consists of a small, working data
    base inputed directly  or obtained frora STQRET retrievals and
    maintained on a DEC-PDP-11/45.  A series of sub-programs are
    available which access the parameters under study and compute
    means/ standard deviations/ standard errors/ etc. for input to MVP
    or for graphical display subroutines available in HASP. HVP - MVP
    is used to make statistical comparisons between calculated
    concentrations and those measured.  It is used during calibration
    to provide an efficient  means to determine the difference between
    results of two or more "runs" which have been made varying one of
    the model coefficients.  Finally/ it can be used to judge the
    accuracy of the model  compared to the data and to compare results
    of two or more models.
(ASM)  Basic assumptions of  model: HASP - Transport structure is known
    or can be determined by  tracing a conservative substance.  Hater
    system can be divided  into large/ spacial compartments which can be
    assumed to be completely nixed.  Time scale of the problem is on


                             1503

-------
                             Accession No.  16407000102    (cent)

    the order of weeks to seasons up to decades (although smaller time
    scales could be considered). DASA - It is assumed that data are
    available through a research or surveillance program over the
    period of time corresponding to the scale of the problem and
    recorded by geographical locations (station, depth), time (Year/
    month, day, hour), and collected and analyzed according to
    prescribed quality control program. MVP - It is assumed that enough
    data exists to statistically characterize the model state variables
    in »any of the water segments over the time scale of the problem.

-------
                             Accession No.  16407000102    (cont)

    Connolly.  1980.  Mathematical Models of Mater Quality in  Large
    Lakes.  EPA Ecological Research Series.  In press.  Cons Simple
    subroutine for tracing a conservative or 1st order  reacting
    substance in a system.  Applied to Saginau Bay.
(HDfcO  Computational system requirements - Hardware: Mainframe DEC-PDF
    11/45 IBM 370/168 ?Disc storage 2000 block Printer
(LNG)  Computational system requirements - Language(s)  used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills:  Pro
    gramming ;Engineering ^Limnology, biochemistry
(HTP)  Hater Models - Type of model: Water quality
(ENV)  Environment(s) to uhich model applies: Estuary jLake
    ;Stream/river /Marine
(CON)  Processes and constituents included in model: Dissolved oxygen
    ;Eutrophication /Toxic chemicals ;Salinity Teaperature ;Quality
    processes
(CPL)  Complexity level of model: transient mass balance ;one
    dimensional ;aulti dimensional
(REF)  References - User manuals, documentation/ etc.:
    DiToro, D.M., James J. Fitzpatrick, and R.V. Thomann.
    Hater Quality Analysis Simulation Program (HASP) and Model
    Verification Program (MVP) Documentation.  Hydroscience/ Inc.
    In preparation.
    Richardson, tf.L. and K. McGunagle.  Data Analysis and Storage
    (DASA) User Manual*  EPA, Large Lakes Research Station.
    In preparation.
(CNM)  Contact natae(s): Richardson,*.L.
(COR)  Contact organization: D.S. EPA, Office of Research and
    Development, Environmental
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                              1505

-------
                             Accession No.  16407000105

(DQ)  Date of Questionaire: 12-02-82
(MAM)  Nam* of Data Base of Model: Spatially Segmented Phytoplankton
    Model
(ACR)  Acronym of Data Base or Model: 5SEG
(MED)  Media/Subject of Data Base or Model: Water
(ABS)  Abstract/Overview of Data Base or Model: The model describes
    phytoplankton growth as a function of systen hydrology, phosphorus,
    nitrogen, silicon, light, and temperature.  Phytoplankton biomass
    is partitioned into five functional groups:  diatoms, greens,
    non-N<2>- fixing blue-greens, N<2>-fixing blue-greens, and
    "others". An internal nutrient pool kinetics mechanism is included
    to describe phytoplankton nutrient uptake and growth.  Zooplankton
    are included, and are partitioned into two functional groups:
    herbivorous and carnivorous.  Compartments are included for total
    concentrations of phosphorus, nitrogen, and silicon in the
    sediments.  Sediment-water interactions for these nutrients are
    described using a wind-driven resuspension mechanism.  The model is
    spatially-segmented in the horizontal.
(CTC)  CONTACTS: Victor J. Biernan   EPA Office of Research and
    Development
    Loc: Environmental Research Lab-Karragansett, South Ferry Rd.,
    Narragansett, RI 02882S Ph: (401) 789-1071
(STA)  Data Base status: Operational/ongoing
(DF)  Date of form completion: 02-11-83
(CAP)  Functional capabilities of model: The model includes 28 state
    variables for each spatial segment.  Op to five horizontal spatial
    segirents can be included.  The model is not segmented in the
    vertical.  Values for advective  flows and dispersions, nutrient
    loads, light, temperature, and boundary conditions must be
    specified externally.  The model is typically run for a one year
    simulation, although both larger and shorter simulations can be
    conducted.  Results of a T-test  analysis between model output and
    field data for Saginaw Bay, Lake Huron, indicated that the model
    described the field data to an accuracy of approximately 85 percent.
(ASM)  Basic assumptions of model: The model is based on the principle
    of mass balance for each of the  28 constituents in each segment.
    The model is coded in FORTRAN and consists of a series of ordinary,
    non-linear, simultaneous differential equations.  An Adams- Moulton
    predictor-corrector technique is used to solve the equations
    numerically.  Typical  time steps used are  30 minutes for the
    nutrient equations and 3 hours for the phytoplankton equations.
(IMP)  Input to model: To  run the model, values for advective flows and
    dispersions, nutrient  loads,  light, temperature, and boundary
    conditions must be specified  as  input.  To calibrate the model,
    segment averages of individual sampling station concentrations are
    needed for each state  variable for the time period of interest.
(DOT)  Output of nodel: The model can produce  line printer output
    consisting of all values for  state variables and values for
    individual component  terms in each differential equation.  This can
    be clone  at daily or five-day  intervals.  The model also can produce
    a summary data file on a disk which contains values  for all state
    variables at five-day  intervals.  This file can be used off-line to


                             1506

-------
                             Accession No.  16407000105    (cont)

    produce graphical  output.  A  graphics program is available with the
/.on A     for Producln9 overlay plots of model output and field data.
(APP)  Applications of model: The model has been calibrated to two
    extensive sets of  field data  for Saginaw Bay, Lake Huron,, acquired
    during 1974 and 1975.  The calibrated model was used to generate a
    series of phosphorus load reduction simulations.  Results of these
    simulations are being compared to the outcome of a follow- up  field
    survey conducted on Saginaw Bay in 1980.
(HDW)  Computational system requirements - Hardware: Mainframe Univac
    1110, POP 11/45, or PDF 11/70 > Disc storage 64K words ; Printer
    132 column model
(LNG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Eng
    ineering ;operator oust have  applications experience with
    simulation models; scientific programming.
(WTP)  Water Models -  Type of model: Mater quality
(EN7)  Fnvironraent(s)  to which model applies: Estuary ;Lake ;Embayment
(CON)  Processes and constituents included in model: Eutrophication
    ;Temperature ;Biological effects ;Hydrology ;
(CPL)  Complexity level of model: transient mass balance ;multi
    dimensional
(REF)  References - User manuals, documentation, etc.:
    There does not exist a User's Manual at this time.
    The development and calibration of a single segment version of
    the model, including all equations and coefficients appears
    in:
    Bier man, V.J., Jr., Dolan, D.M., Stoermer, E.F., Gannon, J.E.
    and Smith, V.E.  1980.  The development and calibration of a
    spatially simplified multi-class phytoplankton node! for
    Saginaw Bay, Lake  Huron.  Great Lakes Environmental Planning Study,
    Contribution No.33, Great Lakes Basin Commission, Ann Arbor, Mich.fl
    Results of phosphorus load reduction simulations with the
    spatially segmented version appear in:
    Bierman, V.J., Jr. and Golan, D.M.  1980.  Responses of Saginaw
    Bay, Lake Huron, to reductions in phosphorus loadings from the
    Saginaw River.  Report prepared for the International Joint
    Commission. Bierman, V.J. and Dolan, D.M. 1981, Modeling The
    phytoplankton- nutrient dynamics in Saginaw Bay, Lake Huron.  J.
    Great Lakes Res.,  Vol.7, pp.409-439.
(CNM)  Contact name(s): 3ierman,V.J.
(COR)  Contact organization: EPA Office of Research and Development Ph:
    (401) 789-1071
(AOR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                             1507

-------
                             Accession Ho.  16407000106

(DQ)  Date of Questionaire: 12-02-82
(MAM)  Name of Data Base of Model: Tine-dependent, Three-dimensional,
    Variable-density Hydrodyn
(ACR)  Acronyn of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Hater
CABS)  Abstract/Overview of Data Base or Model: The tile-dependent,
    three-dimensional, variable-density hydrodynamic model Has
    developed to describe the motion in thermal discharges, harbors,
    bays, lake basins, entire lakes, estuaries. Marine coastal areas,
    etc.  The model calculates velocities and temperature (salinity,
    also, if required) as a coupled set of time-dependent, non-linear
    partial differential equations.  The results of the model can be
    used as input to a transport model (described separately).  The
    model has various versions (user specified) such that the
    calculations can be performed with the Hater surface treated as a
    rigid-lid or as a free-surface, and with the bottom boundary
    condition specified either as no-slip or slip.
(CTC)  CONTACTS: Dr. John F. Paul    EPA Office of Research and
    Development
    Loc: Environmental Research Laboratory-Narragansett, South Ferry
    Rd.,f Narragansett, RI  028821 Ph: (401) 789-1071
(CAP)  Functional capabilities of model: The model is fully
    time-dependent and three-dimensional.  The spatial resolution is up
    to the discretion of the modeler and the time step restrictions are
    dependent on the individual application.  The Coriolis, pressure
    and vertical diffusion terms in the equations are calculated
    implicitly in time, so no time step stability restriction applies
    to them.  The other terms are calculated explicitly.  The momentum
    and energy (and salinity) equations are coupled. Various
    combinations of boundary conditions can be used at the discretion
    of the modeler.  Conservation-preserving finite- difference
    techniques are used.
(ASM)  Basic assumptions of model: The equations are derived from the
    time- dependent, three-dimensional equations for conservation of.
    mass, momentum, energy and salinity.  The principal assumptions
    are:
    1) hydrostatic pressure variation; 2) rigid-lid or linearized
    free-surface approximation; 3) eddy coefficients to account for
    turbulent diffusion effects.  The program for the model is modular
    in form so the last condition can be modified to account for
    various turbulence modeling schemes.  The solution procedure is a
    modification of the simplified marker and cell technique.
(INP)  Input to model: Input to the model includes:  complete
    specification of geometry and grid layout, topography and forcing
    functions. The latter includes Hind (constant or spatial and
    temporal varying), infions/outflows and heat specification at water
    surface.  The initial conditions can be quiescent conditions, some
    user specified form, or results from a previous calculation.
(OUT)  Output of model: The basic output of the program Is a printed
    record of velocities, temperature, salinity and pressure, as
    desired. If results are stored (disc or tape), separate programs
    are available to produce graphic output on either Tektronix,


                             1508

-------
                             Accession No.  16407000106    (cont)

    Versatee, or Calcomp equipment.  The plots available include tine
    series of variables, and horizontal and vertical section plots of
    the variables.
(APP)  Applications of model: The model has been applied to the
    following: Lake Huron; Lake Erie; separate basins of Lake Erie;
    area of Lake Erie for proposed jetport; Cleveland harbor; vicinity
    of Ponroe, Michigan for proposed dredged spoil sites; Saginau Bay;
    numerous thermal discharges in Great Lakes and Baltic Sea; Sea of
    Azov; Lake Baikal; Santa Barbara Channel; and Haukegan Harbor.
    Organizations that have used the model or results of the model
    include Corps of Engineers, Swedish Meteorological and Hydrological
    Institute, Argonne National Laboratory, Rudjer Boskovic Institute
    (Jugoslavia), Hydrometeorological Institute (USSR), Ohio State
    University, University of Arizona, NASA, NOAA, University of
    California,Institute for Electrical Investigation(Mexico), and U.S.
    EPA.  The output of the model can be used directly in a separate
    transport model.
(HDW)  Computational system requirements - Hardware: Mainframe Cray,
    IBM 370/4300, Univac 1100, Vax 11/780 ;Disc Disc storage: 0-50 M
    bytes ;Magnetic tape storage 0-2 units to process ; Printer high
    speed line printer ;card reader/punch if disc input not used
(LNG)  Computational system requirements - Language(s) used: FORTRAN
(OSK)  Computational system requirements: Operator Knowledge/Skills: Wor
    king Knowledge of scientific computer programming and  hydrod
(WTP)  hater Models - Type of model: Water quality
    Thermal, hydrodynaaic transport
(EN?)  Environment(s) to which model applies: Estuary ;Lake ;Marine
(CON)  Processes and constituents included in model: Salinity
    ;Temperature ;Hydrology ;Hydraulics
(CPL)  Complexity level of model: multi dimensional, tine-dependent
(REF)  References - User manuals, documentation, etc.:
    Lick, W.J., J. Paul, and y.p. sheng.  1976.  The
    dispersion of contaminants in the near-shore region.  In:
    Modeling biochemical processes in aquatic ecosystems (R.P.
    Canale, ed.)  Ann Arbor Science Publishers, Inc. pp. 93-112.
    Paul, J.F.  1976.  Modeling the hydrodynaaic effects of large
    man-made modifications to lakes.  Proc. of the EPA Conf. on
    Environmental Modeling and Simulation (H.R. Ott, ed.).
    EPft-600/9-76-016, pp. 171-175.
    Paul, J.F. and W.J. Lick.  1973a.  A numerical mode' for a
    three-dimensional, variable-density jet.  Report Nc:•* FTAS/TR-
    73-92,  School of Engineering, C.W.R.U., Cleveland, > 
-------
                             Accession No.  16407000106    (cont)

    complete field (W.E. Dunn, A.J. Policastro and R.A. Paddock),
    A»L/hR-75-3, pp. 484-511.
    Paul, J.F. and M.J. Lick.  1976.  Application of three-dimensional
    hydrodynamic model to study effects of proposed
    jetport island on thermocline structure in Lake Erie.  Report
    17-6 of Lake Erie International Jetport Model Feasibility
    Investigation.  U.S. Army Engineer Waterways Experimental
    Station Contract Report H-75-1.
    Paul, J.F. and W.J. Lick.  1979.  An efficient, implicit method
    for calculating time-dependent, free-surface, hydrodynanic flows.
    Presented at the 22nd Conference on Great Lakes Research,
    Rochester, New York.
    Paul, J.F. and W.J. Lick.  1983.  Numerical model for
    three-dimensional, variable-density rigid-lid hydrodynamic flows:
    Volume 1.  Details of the numerical model. EPA research report in
    press.
    Paul, J.F., H.L. Richardson, A.8. Gorstko, and A.A. Natveyou.
    1979.  Results of a Joint USA/USSR hydrodynaraic and transport
    modeling project.  EPA-600/3-79-015.
    Vasseur, B., L. Funkquist, and J.F. Paul.  1980.  Verification
    of a numerical model for thermal plumes.  SMHI Hydrology and
    Oceanography Report No. 24. Heinrich,J., Lick,M., and Paul,J. 1981.
    Temperatures and currents in a stratified lake: a two-dimensional
    analysis. J. Great Lakes Res., Vol. 7, pp 264-275.  Jamaro,B.H«,
    Lick,*,, Paul,J., and Milliff,R. 1982. Numerical modeling of the
    currents on the continental shelf. Proc. Ocean Structural Dynamics
    Symposium '82, Oregon State Oniv., Corvallis.
(CNM)  Contact name(s): Paul,J.F.
(COR)  Contact organization: EPA Office of Research and Development
    Station, South Ferry Rd., Narragansett, RI  02882,  Ph:  (401)
    789-1071
(ROR)  Fesponsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                             1510

-------
                             Accession No.  16407000107

CDQ)  Date of Questionaire:  12-02-82
(NAM)  Name of Data Base of  Model: Time-dependent. Three-dimensional
    Transport Model
(ACR)  Acronym of Data Base  or Model: None
(MED)  Media/Subject of Data Base or Model: Water
CABS)  Abstract/Over view of  Data Base or Model: The time-dependent,
    three-dimensional transport model was developed to calculate the
    hydrodynaraic transport of conservative and non-conservative
    substances in various water bodies.  The model calculates the
    ti*.e-dependent concentration of the desired substance.  Input to
    this model for velocities are results from the separately described
    hydrodynamic model. Various user specified options permit
    application to conservative substances such as chloride and
    non-conservative substances such as suspended solids.
(CTC)  CONTACTS: Dr. John F. Paul    EPA Office of Research and
    Development
    Loc: Environmental Research Lab-Narragansett, South Ferry Rd.,
    Narragansett, RI  02882   Ph: (401) 789-1071
(CAP)  Functional capabilities of model: The model is fully
    time-dependent and three-dimensional.  The spatial resolution is  up
    to the discretion of the modeler but is usually the same as used  in
    the hydrodynaraic model.  The tine step restrictions are dependent
    on the particular application.  The vertical diffusion term in the
    equation is calculated implicitly in time so there is no time step
    stability restriction for this term.  The other terms in the
    equations are treated explicitly. Various combinations of boundary
    conditions can be used.  For suspended solids calculations, flux at
    the water-sedinent interface is parameterized by 2 coefficients
    determined by laboratory experiments.  Conservation-preserving
    finite-difference techniques are used.
(ASM)  Basic assumptions of  nodel: The equations are derived from the
    time-de- pendent, three-dimensional equation for conservation of
    material.  The main assumption is that eddy coefficients are used
    to account for turbulent diffusion effects.  The program for the
    model is nodular in form so this condition can be changed to
    incorporate various turbulence modeling schemes.
(INP)  Input to model: Input to the model includes:  complete
    specification of geometry and grid layout (which can be obtained
    from hydrodynamic model), topography and forcing.  The latter
    includes velocities (from hydrodynamic model), inputs/outputs and
    other things such as wind, depending on what is being modeled.  The
    initial conditions can be user specified or from results of
    previous calculation.
(OUT)  Output of model: The  basic output of the program is a printed
    record of concentrations, as desired.  If results are stored (disc
    or tape), separate programs are available to produce graphic output
    on either Tektronix or Calcomp equipment.  The plots available
    include time series of variables and horizontal and vertical
    section plots of variables.
(APP)  applications of model: The model has been applied to the
    following: Lake Erie, entire basins of Lake Erie, Saginaw Bay, Sea
    of Azov, Lake Baikal and Waukegan Harbor.  Organizations that have


                             1511

-------
                             Accession Mo.   16407000107    (cont)

    used the model include various federal  agencies and universities in
    this country and in Europe. TECHNICAL CONTACT: Dr.  John F.  Paul
    ORD, ERL Narragansett, South Ferry Rd., Narragansett, RI  02B82 Ph:
    (401) 789-1071
(HDV)  Computational system requirements -  Hardware: Mainframe Cray*
    IBM 370/4300, Onivac 1100, Vax 11/780 ?Disc Disc storage:0-50  M
    bytes ^Magnetic tape storage 0-2 units  to process } Printer High
    speed line printer ;Card reader/punch if disc input not used
(LRG)  Computational system requirements -  Language(s)  used: FORTRAN
(OSK)  Computational system requirements: Operator Knowledge/Skills: Hor
    king knowledge of scientific computer programming and hydrodynamic
    modeling
(MTP)  fcater Models - Type of model: Water  quality
    Sediment transport/resuspenslon
(ENV)  Environment(s) to which model applies: Estuary ;Lake ;Marine
(COM)  Processes and constituents included  in model: Erosion and
    sediment ;Toxic chemicals ^Temperature  ;Hydrolog Hydraulics
(CPL)  Complexity level of model: multi dimensional, timedependent
(REF)  References - User manuals, documentation, etc.:
    Lick, «. J., J. Paul, and Y. P. Sheng.   1976.
    The dispersion of contaminants in the near-shore region.
    In: Modeling biochemical processes in aquatic ecosystems,
    (R.P. Canale, ed.) Ann Arbor Science Publishers, Inc.
    pp. 93-112.
    Paul, J. F. and R. L. Patterson.  1977.  Hydrodynamic
    simulation of movement of larval fishes in Western Lake
    Erie and their vulnerability to power plant entrainment.
    Proc. of the 1977 Winter Simulation Conf (H. J. Highland,
    R. G. Sargent and J. H. Schmidt, ed.),  VSC Executive
    Committee, pp. 305-316.
    Paul, J. F., ¥.. L. Richardson, A. B. Gorstko, and A. A.
    Matveyev.  1979.  Results of a Joint OSA/OSSR hydrodynamic
    and transport modeling project.  EPA-600/3-79-015. Heinrich, J.,
    Lick, W., and Paul, J. 1981.  Temperatures and currents in a
    stratified lake: a two-dimensional analysis.  J. Great Lakes res.,
    Vol.7, PP.264-275.  Jamart, B.M., Lick, W., Paul, J., and Hilliff,
    R, 1982.  Numerical Modeling of the currents on the continental
    Shelf. Proc. Ocean structural Dynamics Symposium *82, Oregon State
    Univ., Con"rvallis.
(CflM)  Contact na*e(s): Paul,J.F.
(COR)  Contact organization: EPA Office of Research and Development
    ERL-Narragansett, South Ferry Rd., Narragansett, RI  02882  Phi
    (401) 789-1071
(ROR)  Responsible organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                             1512

-------
                             Accession No.  16502000101

(DQ)  Date of Questionaire:  12-02-82
(NAM)  Rame of Data Base of  Model: Honlonlzing Radiation Models

-------
                             Accession No.   16502000101     (cont)

    as the local SAR value at various defined locations  within the
    sphere, for a given incident frequency.  Two additional programs
    both employing ECOMP, have been developed:  PLOT is  a graphical
    routine giving plots of local SAR against radial distance for
    different aziauthal angles. ECOHX searches for the peak internal
    SAR value over a given range of RF frequencies for a given sized
    sphere.  Convergence tests are employed  in these programs in order
    to ensure that there is rapid convergence of the infinite series
    usec in the Bessel function expressions.  Convergence is generally
    obtained within 12-15 terns.  Valid solutions are obtainable for
    all combinations of sphere size and wave length including the
    important resonant region where energy  absorption reaches a peak.
    The prolate spheriodal model is composed of homogeneous muscle-like
    dielectric only and simulates large-scale objects such as humans  or
    primates.  Solutions to the problem are  based on the extended
    boundary condition method (EBCM) which has been found to be the
    most successful of the various methods available for dealing with
    lossy prolate spheriod objects.  However, for spheroids having  high
    eccentricity ratios equivalent to that of standard man (a/b =  6.3),
    the method breaks down in the resonant  frequency region owing  to
    problems of ill-conditioned matrices which the computer cannot
    handle.  The computer program, EBCQ, is  written in FORTRAN and  has
    been run on a Control Data CYBER 70, Model 73 machine.
(ASM)  Basic assumptions of model: The electromagnetic radiation is
    assumed to be a simple plan wave, as exists in the far-field of an
    antenna.  The biological objects are of  simple spherical or prolate
    spheroid shape and are composed of dissipative dielectric materials
    that are linear, homogeneous and isotropic. The heat transfer  or
    conduction aspects of the problem have not been considered.
(INP)  Input to model: a.  Inputs for sphere model.
    1)  Radius of core.
    2)  Number of outer layers and layer thicknesses.
    3)  Dielectric data (relative permittivity and conductivity)
    of all tissue equivalent materials as a  function of  frequency.
    4)  Frequency or frequency range of incident wave.
    5)  Internal spherical co-ordinates, (r  , 0 ,0) at which internal
    fields are to be computed (or range of  same).
    6)  Maximum allowable number of terms in series and  tolerance
    for convergence of series, b.  Inputs for prolate spheroid model.
    1)  Major and minor axis values.
    2)  Dielectric data of muscle-equivalent material as a
    function of frequency.
    3)  Frequency range of incident wave.
    4)  Orientation of major axis of spheriod with respect to
    E-field vector.
    5)  Angle of incident wave with respect to major axis.
(OUT)  Output of model: Outputs for both models are:
    1)  Absorption cross section and absorption efficiency
    2)  Total absorbed power.
    3)  Average SAR.
    Outputs for sphere model only are:
    1)  Local internal E-field values (r ,  0 ,0 components).


                             1514

-------
                             Accession No.  16502000101    (cont)

    2)  Local SAR or dose rate value.
(APP)  Applications of model: These models provide insight into the
    effect of nonionizing electro-magnetic energy in the RF-microwave
    frequency, and allow researchers to predict approximately the
    thermal load to which an animal is being subjected to during
    experimental irradiation.  These results can be extrapolated and
    applied to humans. TECHNICAL CONTACT: Dr. Claude M. Weil
    Experimental Biology Division  (MD-74) Health Effects Research
    Laboratory Environmental Protection Agency Research Triangle Park,
    NC 27711 FTS 629-2617  COM: 919/541-2617
(HDW)  Computational system requirements - Hardware: Mainframe Cyber 70
    Model 73 jDisc storage 75-80 thousand uor
(LNG)  Computational system requirements - Language(s) used: Fortran IV
    or V
(OSK)  Computational system requirements: Operator Knowledge/Skills: Sci
    entific programming  and electromagnetic  theory

-------
                             Accession No.   16503000107

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: A Mathematical Model for
    Fast-Screening Procedure for Testin Effects of Pollutants in Mammals
(ACR)  Acronym of Data Base or Model: None
(MED)  Media/Subject of Data Base or Model: Animals
(ABS)  Abstract/Over view of Data Base or Model: The model offers an
    "on-line" method for measuring the effect of pollutants on
    respiratory efficiency in mammals, and it applies to any biological
    system in Mhich the transport of matter is through yell- defined
    compartments. Since C0<2> excretion from the lungs (a measure of
    efficiency of respiratory function) has a well-defined distribution
    with time/ it can be used for the prediction of effects by
    pollutants entering the body system.  In this particular case/ the
    nodel was derived for  the prediction of the effect of ingested
    methylmercury (11) cloride on the excretion of (14)CO<2> from the
    lungs.  This method reduces the observation period from several
    hours to only a few minutes. It is suggested that this model or a
    similar one can be used for measuring the efficiency of other body
    functions, provided that there exists a measurable parameter that
    has a well-defined distribution with time.
(CTC)  CONTACTS: Robert L. Miller    EPA-Health Effects Research
    Laboratory
    Loc: 26 W, St. Clair Street, Cincinnati/ Ohio  45268  Ph:
    513-684-7454
(STA)  Data Base status: Discontinued
(DF)  Date of form completion: 02-07-83
(CAP)  Functional capabilities of model: The model is in the form of a
    fourth order differential equation requiring a solution of eight
    equations.  Using mathematical methods of approximation/ the model
    can be fitted precisely to a  two-parameter model of the fora:  R *
    Bt exp (-8<2>t), where R is the rate of excretion of (14)CO<2>.
    In this form/ only two measurements at the beginning of the
    experiment are required in order to predict the effects of the
    pollutants on respiratory function. The measure of effects is the
    difference of cumulated <14)CO<2> excreted CR( + ) - function<0>(t) R
    dt3 between the control animals  and the exposed animals.
(ASM)  Basic assumptions of model: It is assumed that  a two-pool open
    system exists (Shipley and Clark/ 1972) in which the blood pool is
    the central coopartment while the second pool is a conglomerate of
    peripherals such as the kidneys/ lungs/ and liver.  Peripheral
    pools can communicate  only through the central compartment.  If we
    ignore the dead space  in the  respiratory tract/ then the lung can
    be considered as composed of  two classical compartments  (Riley/
    1965):  the gas-exchange compartment/  and  the anatomical dead space
    in the alveoli.  The model is based on the fact that the blood is
    the vehicle by which the effect  of an ingested toxicant/ such as
    CH<3>HgCl, is super-imposed on all other peripherals/ thus
    influencing the (14)CO<2> pattern.  Each component is  assumed to
    follow first-order kinetics in that the (14)CO<2>  loss  rate is
    taken to be proportional to the  nunber of moles of the  (14)CQ<2>
    within a compartment.  Actually/ excretion from the blood pool is
    not linear (Piotrowski/ 1971).   But/ as we assume/ when


                             1516

-------
                             Accession  No.   16503000107     (cont)

    steady-state kinetics apply the blood pool  can  also  be  treated  as  a
    classical  compartment.   (Aris,
    1966).
(INP)  input to model:  The  model requires only  two  measurements of
    (14)CO<2>  from Gary vibrating reed  electrometers in  conjunction
    with ionlzation chambers.  Output of the model  is the  total
    cumulative value of (14)C excreted  and the  percent of  (14)C
    excreted.
(CSR)  Computational System Requirements: Solutions to the  model can be
    obtained on a digital DEC 10 computer/  but  the  model is simple
    enough that it can be solved on any other computer system  or
    calculator.
(APP)  Applications of model: The model has been used for  a series  of
    experiments by the Health Effects Research  Laboratory  of the EPA*
    and it can be used in biological investigations where  there  is  a
    need for a fast screening of pollutants (eg. heavy metals  or
    chemical compounds).  The effects on respiratory efficiency  or
    cardiac output can be predicted in a short  time/ thus  saving time/
    animals/ and personnel.  This same  approach can be developed for
    any other body function with a well defined time distribution  via  a
    contpartraental analysis. TECHNICAL CONTACT:  Rumult Iltis and  Robert
    L. Wilier  U.S. Environmental Protection Agency  Health  Effects
    Research Laboratory 26 U. St. Clair Street  Cincinnati/  OH  45268 FfS
    684-7417  COM: 513/684-7417
(HDW)  Computational system requirements - Hardware: Calculator
    jMainframe DEC 10 or any other system
(LNG)  computational system requirements - Language(s) used: User  can
    choose language
(OSK)  Computational system requirements: Operator  Knowledge/Skills: Pro
    granming
(REF)  References - User manuals/ documentation/ etc.:
    Iltis/ R./ and Miller/ R. L. "A Fast-Screening
    Procedure for Testing the Effects of Pollutants in Mammals."
    Journal of Toxicology and Environmental Health.  3:683-689/  1977.
    Iltis/ R.   "Mathematical Model for the Excretion of  (14)CO<2>
    During Radio Respirometric Studies."  Proceedings of the
    Conference of Environmental Modeling
    Proceedings of the Conference on Environmental  Modeling
    and Simulation.  U.S. EPA publication SPA 600/9-76-016/ July 1976.
    Aris/ R.  Compartmental Analysis and the Theory of Residence
    Time Distribution in Intercellular Transport/ ed. K. B.
    Warren,  New York:  Academic Press/ 1966.
    Piotrowski/ J.  The Application of Metabolic and Excretion
    Kinetics to Problems of Industrial Technology.   Washington,
    D.C.:  Department of Health/ Education/ and Welfare/ 1971.
    Riley R. L.  "Gas Exchange Transportation/"  Physiology
    and Biophysics,  eds.  T. C. Ruch and H. D. Patton.
    London:  Saunders/ 1965.
    Shipley, R. A. and Clark, R. E.  Tracer Methods for in
    vivo Kinetics.  New York:  Academic Press,  1972.
(CNH)  Contact name(s): Miller/R.L.
(COR)  Contact organization: EPA-Health  Effects Research Laboratory


                             1517

-------
                             Accession No.   1650300010?    (cent)

(ROR)  Responsible Organization: Office of  Research and
    Development.Office of Health Research.Toxicology & Microbiology
    Division.
                             1518

-------
                             Accession No.   17301300001

(Dg)  Date of Questionalre:  12-02-82
(NAM)   Name of Data Base of  Model:  Multi30:  A Computer Prograa  For   The
    Risk Assessment Of Toxi
(ACR)   Acronym of Data Base  or Model:  MULTI80G
(MED)   Media/Subject of Data Base or Model:  Toxic Substances
(ABS)   Abstract/Overview of  Data Base  or Model:  This program  was
    developed for the generation of low-dose carcinogenic risk
    assessments of toxic substances based on the generalized  multihit
    and one-hit dose-response functions applied  to animal response  data
    derived from lifetime feeding studies.
(CTC)   CONTACTS: Gary F. Grindstaff, U.S. SPA, Office of Pesticides *
    Toxic
    Substances, Office of Toxic Substances,  Health and Environmental
    Review
    Division
    Loc: E617B Waterside Mall, (TS-796) 401  M. St, S.W., Washington,
    D.C. 20460   Ph:
    (202) 382-3459
(STA)   Data Base status: Operational/Ongoing
(DF)  Date of form completion: 12-23-82
(CAP)   Functional capabilities of model: Limitations of  the model:
    There must be at least two positive (non-zero) dose  levels. There
    may be no more than 14 positive dose levels. The average run time
    may vary for the same job by as much as +20%.
(ASM)   Basic assumptions of model: The generalized multihit model is
    equivalent to assuming a ganma tolerance dist However, it is
    mathematically quite complex; thus, rather than list assumptions
    here, individuals interested in the underlying assumptions  are
    referred to the Technical Contact for copies of theoretical papers
    underlying the development of this model.
(INP)   Input to model: The inputs to the model are: the  number  of
    positive (non-zero) dose levels in the bioassay, magnitude  of each
    dose level; total numbers of animals on test at each dose level,
    estimated environmental exposure levels and their number, "on-off"
    switch for confidence limits, number of environmental exposure
    levels as input, and total numbers of animals with tumor types  of
    interest at each dose level
(OUT)   Output of model: The principal outputs of interest from  the
    model  are: a chi-square goodnes-of-fit test, an maximum likelihood
    estimate of the parameters of the generalized multihit and  one-hit
    models, point estimates and  90, 95, 97,5, 99, and 99.5 lower
    confidence limits on "virtually safe dose"  for risks from 1 in 10
    to  1 in 100,000,000, point estimates and  90, 95, 97.5, 99 and 99.5
    upper  confidence limits on risks for each environmental exposure
    level  provided  as input
(APP)   Applications of  model: The model, in conjunction with a variety
    of  other models, is used  to  estimate lifetime carcinogenic risks
    associated with various levels of  suspected human carcinogens.  The
    estimates  are then  included  in risk  assessments supporting
    regulatory actions  under  Sections  4, 5 and  6 of the Toxic
    Substances Control  Act. TECHNICAL  CONTACT:  Gary F. Grindstaff
    OTS/Health and  Environmental Review  Div.  E617B Waterside Mall,


                              1519

-------
                             Accession Ho.  17301300001    (cont)

                 M St" S'W-' Washington, D.C. 20460 382-3459
                 nal syste« requirements - Hardware: Mainframe IBM
            ;Disc storage less than 300K bytes ;Pr
       Computational system requirements - Language(s) used:  Fortran G
    }TDS0!fpu tat*onal system requirements: Operator Knowledge/Skills: MCC
    -IBM Users Conventions, WYLBUR Editing
(REF)  References - User manuals, documentation, etc.:
    User Manual for Revised MOLTI80 Program is the program
    documentation.  Several theoretical papers, including
    this documentation and method of access to the model at the
    are available from the Technical Contact.   All users must
,~. Vave a re9istered account on the EPA IBM System.
(CHM)  Contact narae(s): Grindstaf f,G.F.
tCOR)  contact organization:  Office of Toxic Substances, Health  and
    Environmental Review Division (202) 382-3459
(ROR)  Responsible Organizations Office of Pesticides and Toxic
    Substances.Office of Toxic Substances.Health and  Environmental
    Review Division.
                            1520

-------
                             Accession No.   17301300002

(DQ)  Date of Questionaire:  12-02-82
(NAN)  Kane of Data Base of  Model:  One-Hit  Low-Dose Extrapolation  Model
(ACR)  Acronym of Data Base  or Model: ONEHITMD
(MED)  Media/Subject of Data Base or Model: Toxic Substances
(ABS)  Abstract/Overview of  Data Base or Model:  This program computes
    maximum likelihood estimates of the parameters of the one-hit
    model.  Abbott's connection is incorporated so that  estimates  of
    increased risk may be generated.  The parameters generated by  the
    model are used in the assessment of lifetime carcinogenic risks at
    low environmental doses*
(CTC)  CONTACTS: Gary F. Grindstaff, Office of Toxic Substances/
    Health and Environmental Review Division
    Loc: E617B Waterside Mall, (TS-796) 401 M St., S.H., Washington,
    D.C. 20460   Ph:
    (202) 382-3459
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 12-23-82
(CAP)  Functional capabilities of model: The limitations of the model
    are: The numbers of experimental doses must not exceed 10. The
    numbers of dose levels must not exceed 20. Other limitations,  if
    any, are unknoyn.
(ASM)  Basic assumptions of model: The theory of the one-hit model says
    that there is some risk of cancer from even a slight exposure  to a
    carcinogen, and that the exponential probability law gives the
    probability that a carcinogen at a given dosage will induce cancer
    in a laboratory animal.  The detailed, mathematical assumptions
    underlying this model are provided in the program documentation,
    available from the Technical Contact.
(INP)  input to model: Inputs to the model include: number of
    experimental groups (e.g. males, females), number of dose levels,
    chi-square values for derived confidence Halts, dose levels,
    titles of experimental  groups, number of responders and number at
    risk for each control and treated group in each experimental group.
(OUT)  Output of model: The principal outputs of  this model include:
    lower confidence limits for dose at  specified attributable risks
    from 10(-1) to 10(-8) and louer confidence limits on the one-hit
    parameter. These estimates are presented first  for all dose groups
    and  then for successively smaller dose group  combinations,
    eliminating the highest dose on each iteration.
(APP)  Applications of  model: This model is used  to  estimate lifetime
    carcinogenic risks  associated with various suspected human
    carcinogens.  The model is only used,  however,  alth dichotomous
    data from animal bioassays.  The  estimates of carcinogenic risk  are
    used  in  risk assessments  supporting  regulatory  actions under
    Sections 4, 5 and 6 of  the Toxic  Substances Control Act. TECHNICAL
    CONTACT: Gary F. Grindstaff OPTS/OTS/HERD/EB. E617B Waterside
    Mall,(TS-796) 401 M St.,  SW, Washington., D.C.  20460, 382-3459
(HDW)  Computational  system requirements - Hardware: Mainframe IBM
     370/168  ;Disc storage less  than  300K bytes ^Printer  132 position 1
(LNG)  Computational  system requirements - Language(s)  used: Fortran G
(OSK)  Computational  system requirements:  Operator  Knowledge/Skills:  NCC
    -IBM User Conventions and WYLBUR  Editing


                              1521

-------
                             Accession No.  17301300002    (cont)

(REF)  References - User manuals, documentation/ etc.:
    Crump, K«S.  (1981)*  An improved procedure for
    lou-dose carcinogenic assessment for animal data.  Journal
    of Environmental pathology and Toxicology, (5(2):675-684.# Mantel,
    N., Bohidar,  N., Broun/ C«, Ciminera, J., and Tukey, J.
    (1975).  An improved Mantel-Bryan procedure for "safety" testing
    of carcinogens.  Cancer Research, 34: 865-872.
    Hartley, H.O. and Sielken, R.L., Jr. (1978). Development of
    statistical methodology for risk estimation.  Final report.
    National Center for Toxicological Research, Contract Mo.
    222-77-2001,  April, 1978.
    Hartley, H.O. and Sielken, R.L.  (1977).   Estimation of  "safe
    dose" in carcinogenic experiments.  Biometrics, 33:

    1-30.
    Rai, K. and Van Ryzin, J.   (1980).  MULTI80:  A computer program
    for risk assessment of toxic substances.   Technical Report
    No. N-1512-NIEHS, Rand Corporation, Santa Monica.
    Van Ryzin, J. and Rai, K.   (1980).  The use of guantal response
    data to make predictions.   In: The Scientific Basis of Toxicity
    Assessment.  H. Hitachi (ed.) Elsevier/North Holland, Hen
    York, 273-290.
    Rai, K. and Van Ryzin, J.   (1981).  A generalized multihit dose-
    response model for lou-dose extrapolation. Biometrics, 37:
    341-352.
    Keter, J. and Wasserman, W.  (1974).  Applied Linear Statistical
    Models.  Irwln, Inc.
    Crump, K.S.,  Daffer, D.Z., and Hasterman, M.D.  (1980).   Low-dose
    extrapolation utilizing time-to-occurrence cancer data.
    In: Final Report, National Institute of Environmental Health
    Sciences, Contract No. N01-ES-2133.
    Daffer, D.Z., Cruap, K.C., and Hasterman/ M.C. (1980).
    Asymptotic theory for analyzing dose-response survival data
    with application to the low-dose extrapolation problem.
    Mathematical  Biosciences,  50 (3/4): 204-230.
    Kreuski, D.  and Van Ryzin, J.  (1980).  Dose response models
    for quantal response toxicity data.  Research supported by the
    National Institute for Environmental Health Sciences under
    grants 1R01-ES-02222 and 7R01-ES-02557.
    The program documentation  is available from the
    Technical Contact.  All users must have a registered account
    on the EPA IBM System and  be familiar with the basic system
    conventions.
(CNM)  contact name(s): Grindstaff,G.F.
(COR)  Contact organization: Office of Toxic Substances, Health and
    Environmental Review Division (202) 382-3
(ROR)  Responsible Organization: Office of Pesticides and Toxic
    Substances.office of Toxic Substances.Health and Environmental
    Review Division.
                             1522

-------
                             Accession No.   17301300003

 corresponding to time t and additional risk, the expected
    fraction of life-shortening by time t from dose d.
(APP)  Applications of model: This model is used to estimate lifetime
    carcinogenic risks associated with various suspected human
    carcinogens.  The model is only used, however, when time-to-
    occurrence data are available from an animal bioassay.  The
    estimates of carcinogenic risk are used in risk assessments
    supporting regulatory actions under Section 4, 5 and 6 of the Toxic
    Substances Control Act. TECHNICAL CONTACT: Gary F. Grindstaff


                             1523

-------
                             Accession No.  17301300003    (cont)

    OPTS/OTS/HERD/E8. (TS-796) E617B Waterside Mall, 401 H St., S.W.,
    Washington, D,C. 20460 382-3459
(HDW)  Computational system requireaents - Hardware: Mainframe IBM
    370/168 ;Disc storage less than 300K bytes jPr
(LNG)  Computational system requirements - Language(s) used: Fortran 6
(OSK)  Computational system requirements: Operator Knowledge/Skills: NCC
    -IBM user conventions and HYL8UR editing

-------
                             Accession No.   17301300004

(DQ)  Date of Questionaire:  12-02-82
(NAM)  Name of Data Base of  Model:  Mantel-Bryan Low-Dose Extrapolation
    Model
(ACR)  Acronym of Data Base  or Model:  MANTELAN
(MED)  Media/Subject of Data Base or Model:  Toxic Substances
(ABS)  Abstract/Overview of  Data Base  or Model: This computer model  is
    an implementation of the technique for  lou-dose extrapolation
    developed by Mantel, Bohidar/ Brown, Ciminera/ and Tukey in a 1975
    paper entitled/ "An Improved Mantel-Bryan Procedure for  "Safety*
    Testing of Carcinogens."  (This paper is available from  the
    Technical Contact).
(CTC)  CONTACTS: Gary E. Grindstaff Office of Pesticides and Toxic
    Substanc Loc: E617B Waterside Hall (TS-796), 401 M St. S.H.,
    Washington, DC 20460 Ph:
    (202)382-3459
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 12-23-82
(CAP)  Functional capabilities of model: The limitations of  this  model
    are not well known - the documentation  is somewhat sparse.
(ASM)  Basic assumptions of  model:  The Mantel-Bryan model is a special
    case of the well-known probit model. Mantel-Bryan/ however/
    assumes a fixed presumed conservative slope. The methods used to
    estimate parameters and  to place confidence limits on dose are
    explained fully in a number of theoretical background papers
    available from the Technical Contact.
(INP)  Input to model: Inputs to the model  include: The assumed slope
    of the dose-response curve (usually 1.0), number of experimental
    groups (e.g. males/ females)/ number of dose levels/ number of
    confidence limits/ chi-square values for desired confidence limits/
    dose levels/ titles of experimental groups/ number of responders
    and number at risk for each control and treated group in each
    experimental group.
(OUT)  Cutput of model: The  principal  outputs of this model  include
    lower confidence bounds  for dose at specified attributable risks
    from 10(-1) to 10(-8).  These estimates are presented for all dose
    groups first and then for successively  smaller dose group
    combinations/ eliminating the highest dose on each Iteration.
(APP)  Applications of model: This model is used to estimate lifetime
    carcinogenic risks associated with various suspected human
    carcinogens.  The model  Is only used/ however/ with dichotomous
    data from animal bioassays.  The estimates of carcinogenic risk  are
    used in risk assessments supporting regulatory actions under
    Sections 4/ 5 and 6 of the Toxic Substances Control Act. TECHNICAL
    CONTACT: Gary F. Grindstaff OTS/HERD. E617B Waterside Mall
    (TS-796)/ 401 M St./ S.W. Washington/ D.C.  20460 382-3459
(HDW)  Computational system  requirements -  Hardware: Mainframe IBM
    370/168 ;Disc storage less than 300K bytes ;Pr
(LNG)  Computational system  requirements -  Language(s) used: Fortran G
(OSK)  Computational system  requirements: Operator Knowledge/Skills: NCC
    -IBP user conventions and WYLBDR editing
(REF)  References - User manuals/ documentation/ etc.:
    The program documentation/ "Example of  Input to


                             1525

-------
                             Accession No.  17301300004    (cent)

    Run Mantel-Bryan Program" is available fro» the Technical
    Contact.  Copies of a number of theoretical papers are
    also available froa the Technical Contact.  All users must
    have a registered account on the EPA IBM Systea and be
    familiar with the basic system conventions.
(CNM)  Contact name(s): Grindstaff,G.F.
tCOR)  Contact organization: Office of Toxic Substances, Health and
    Environmental Review Division {202)382-34

-------
                             Accession No.   17301300005

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Kane of Data Base of Model: GLOBAL?9 A Fortran Program to
    Extrapolate Dichotomous Anlnal Carcinogenicity Data to Lou Doses
CACR)  Acronym of Data Base or Model: GLOBAL79
(MED)  fcedia/Subject of Data Base or Model: Toxic Substances
(A8S)  Abstract/Overview of Data Base or Model: GLOBAL79 is a program
    to analyze dichotomous animal carcinogenicity data.  It is assumed
    that at each dose level/ animals have been exposed to a constant
    dose rate of the agent under test and that sove positive responses
    have occurred. The program calculates maximum likelihood estimates
    of a multistage dose response function.  The user may allow the
    program to set the degree of the polynomial function to be one
    fewer than the number of dose groups, or force the degree of the
    polynomial/ or globally maximize the likelihood over polynomials of
    arbitrary degree.  A likelihood ratio test is then performed on the
    polynomial's linear coefficient.  Next, lower statistical
    confidence limits on dose and upper statistical confidence limits
    on risk are calculated for risk levels  from 10-1 to 10-8 and for
    other dose levels input by the user.  Finally, if requested by the
    user, the program will conduct a Monte-Carlo goodness-of-fit test
    of the model to the experimental data.
(CTC)  CONTACTS: Gary F. Grindstaff,  Office of Toxic Substances,
    Health and Environmental Review Division
    Loc: E617B Waterside Mall (TS-796), 401 M St., S.U., Washington,
    D.C. 20460 Ph: (202)
    382-3459
(STA)  Data Base status: Operational/Ongoing
(Dp)  Date of form completion: 12-23-82
(CAP)  Functional capabilities of model: Limitations of the model: the
    number of dose levels must not exceed 19, the number of animals
    must not exceed 2000, the number of environmental doses input by
    the user must not exceed 50, the number of data sets that may be
    analyzed in one run must not exceed 1000.
(ASM)  Basic assumptions of model: This is  a multistage model, the
    parameters of which are estimated by the method of maximum
    likelihood. However, the model is mathematically complex, thus
    rather than list the assumptions and theory of this model here,
    individuals interested in them are referred to the Technical
    Contact for copies of theoretical papers underlying the development
    of this model.
(IMP)  Input to model: Inputs to the model  include: the number of dose
    levels, goodness of fit option, number  of animals at risk at each
    dose level, number of animals showing a positive response at each
    dose level, magnitude of each dose level, model option (multistage,
    forced stage, global optimization), degree of polynomial (for
    forced stage option), and number and level of environmental doses
    for which risks are to be computed.
(OUT)  Cutput of model: The principal outputs of the model are: loner
    statistical confidence limits for the doses producing extra risks
    from 10(-1) to 10(-8) (virtually safe dose), upper confidence
    limits on extra risk for maximum likelihood estimated doses (or
    other doses which are input by the user) corresponding to increased


                             1527

-------
                             Accession No.   17301300005    (cont)

    risks from 10(-1) to 10(-8).
(APP)  Applications of model: This model is used to estimate lifetime
    carcinogenic risks associated with various suspected hu»an
    carcinogens.  The model is only used, however, with dichotomous
    data from animal bioassays.  The estimates of carcinogenic risk are
    used in risk assessments supporting regulatory actions under
    Sections 4, 5 and 6 of the Toxic Substances Control Act.  TECHNICAL
    CONTACT: Gary F. Grindstaff QTS/HERD. E617B Waterside Mall
    (TS-796),  401 M St., S.W. Washington,  D.C.   20460   382-3459
(HDH)  Computational system requirements - Hardware: Mainframe IBM
    370/168 ;Disc storage less than 30OK bytes ;Pr
(LNG)  Computational system requirements - Language(s)  used: FORTRAN 6
(OSK)  Computational system requirements: Operator Knowledge/Skills: NCC
    -IBM User Conventions and HYL8UR editing
(REF)  References - User manuals, documentation., etc.:
    The program documentation Is:
    GLOBAL79:  A Fortran Program for Risk Assessment Using
    Dichotomous Animal Carcinogenicity Data by Crump and Watson (1979).
    Both this program documentation and a number of theoretical
    papers are available from the Technical Contact.  All users
    must have a registered account on the EPA IBM System and be
    familiar with the basic system conventions.
(CNM)  Contact name(s): Grindstaff,G.F.

-------
                             Accession No.   17301300006

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Kame of Data Base of Model: NRST:  Statistical Methodology For
    lexicological Research
(ACR)  Acronym of Data Base or Model: HARTSIEL
(MED)  fcedia/Subject of Data Base or Model:  Toxic Substances
(ABS)  Abstract/Over view of Data Base or  Model: MRST is a program
    designed to use both as a powerful research tool and a statistical
    analyzer of experimental data from lexicological studies.  The
    program will provide a statistical analysis of real experimental
    data.  In addition, the program has the  capability of simulating
    experimental data. This capability is particularly useful in
    evaluating the effectiveness of the risk estimation procedures and
    also alternative experimental designs -  especially with regard to a
    design's number and spacing of dose levels as well as the number of
    test animals assigned to each dose level.
(CTC)  CONTACTS: Gary F. Grindstaff, Office  of Toxic Substances,
    Health and Environmental Review Division
    Loc: E617B Waterside Mall (TS-796), 401  M St., S.W., Washington,
    D.C. 20460 Ph: <202)# 382-3459
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 12-23-82
(CAP)  Functional capabilities of model:  The limitations of the model
    are tied to the input specifications. Given the extent of the
    required program input, interested users are referred to the
    Technical Contact for the program documentation that will cover
    these specifications in detail.
(ASM)  Basic assumptions of model: The program is based, to some
    extent, on the simulation of time-to-death of an experimental
    anirral by a Weibull distribution.  However, the theory underlying
    this model is quite involved.  Interested users are referred to the
    Technical Contact for copies of the theoretical papers upon which
    this model is based.
(INP)  Input to model: The input requirements for this program are
    quite large - too many to list here in detail.  They include,
    however, detailed information from the bioassay, such as individual
    animal death times.  Interested users are urged to obtain a copy of
    the input specifications from the Technical Contact.
(DDT)  Output of model: The outputs from this model are too numerous to
    list here in any detail.  In general, however, estimates of
    increased risk and life-shortening are provided.  Interested
    individuals are urged to obtain a sample output listing from the
    Technical contact.
(APP)  Applications of model: This model is  used in conjunction with a
    variety of other models to estimate lifetime carcinogenic risks
    associated with various level of suspected human carcinogens.
    However, this model is used only when time-to-occurrence dose
    response data are available.  These estimates are then included in
    risk assessments supporting regulatory actions under Sections 4, 5
    and 6 of the Toxic Substances Control Act.  TECHNICAL COHTACT: Gary
    F. Grindstaff OPTS/OTS/HERD/EB. (TS-796.) E617B  Waterside Mall, 401
    M St., S.W., Washington, D.C.  20406,  382-34
(HDW)  Computational system requirements - Hardware: Mainframe IBM


                             1529

-------
                             Accession No.   17301300006    (cont)

    370/168 ;Disc storage less than 300K bytes ;Pr
(LNG)  Computational system requirements -  Language(s) used:  Fortran C
(OSK)  Computational systen requirements: Operator Knouledge/Skills: MCC
    -IBM User conventions
(REF)  References - User Manuals, documentation, etc.:
    The 1978 program documentation entitled, "Development
    of Statistical Methodology for Risk Estimation" by Hartley and
    Sielken is available from the Technical Contact.  Several
    theoretical papers are also available.   All users must have a
    registered account on the EPA IBM System.
CCNH)  Contact name(s): Grindstaff,€.F.
(COR)  Contact organization: Office of Toxic Substances,  Health and
    Environmental Review Division (202) 382-3
(ROR)  Responsible Organization: Office of  Pesticides and Toxic
    Substances.Office of Toxic Substances.Health and Environmental
    Review Division.
                            1530

-------
                             Accession No.  17301300007

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: RISK81: A Computer Program for Lou
    Dose Extrapolation  of Qu
(ACR)  Acronym of Data Base or Model: DKREWSKI
(MED)  Media/Subject of Data Base or Model: Toxic substances
(ABS)  Abstract/Overview of Data Base or Model: This program was
    developed for the generation of Ion-dose carcinogenic risk
    assessments of toxic substances based on the probit model, logistic
    regression (logit) model, Heilbull (extreme-value) model, and
    gamma-multihit model.  Any or all of these models are applied to
    aninal response data derived from lifetime feeding studies.
(CTC)  CONTACTS: Gary F. Grindstaff
    Loc: USEPA/Office of Toxic Substances/Health and Environmental
    Review Division/E617B Waterside Mall/401 M Street, S.W./Washington,
    D.C., 20460/(202) 755-6841
(CAP)  Functional capabilities of model: Limitations of the  model are
    twofold. No more than nine input environmental doses for each Job
    run can be performed.  The second drawback is that the average run
    time may very for the same job by as much as +/- 50% depending upon
    the options selected.
(ASM)  Basic assumptions of model: There are four distinct models in
    this program. Each of them are mathematicallly complex,  thus,
    rather than list assumptions here, individuals interested in the
    underlying assumptions are referred to the technical contact for
    copies of theoretical papers underlying the development  of these
    models.
(INP)  input to model: The inputs to the models are: title of the data
    set; number of dose levels; number of subjects responding at each
    dose level; number of subjects tested at each dose level; optional
    excess risks over background; optional significance levels for
    one-sided lower confidence limit evaluation; environ- mental dose
    levels for which added risk over background will be computed; and,
    nine additional model electives.
(OUT)  Output of model: The principal outputs of the interest from the
    model are: estimates of the parameters for any of four models
    chosen; point estimates and lower confidence limits on virtually
    safe doses for a range of excess risks over background;  and, point
    estimates and upper confidence limits on added risk for  selected
    environmental doses.
(APP)  Applications of model: The model, in conjunction with a variety
    of other models, is used to estimate lifetime carcinogenic risks
    assoc- iated with various levels of suspected human carcinogens.
    The estimates are then included in risk assessments supporting
    regulatory actions under Sections 4, 5, and 6 of the Toxic
    Substances Control Act.
(HDH)  Computational system requirements - Hardware: Mainframe IBM
    370/168 ;Disc storage-less than 300K bytes ;Pr
(LNG)  Computational system requirements - Language(s) used: Fortran G
(OSK)  Computational system requirements: Operator Knowledge/Skills: Hyl
    bur editing ;NCC-IBM User Conventions
(REF)  References - User manuals, documentation, etc.:
    "Dose Response Models for Quanta1 Response Toxicity


                             1531

-------
                             Accession Ho.   17301300007    (cont)

    Data11 by John Van Ryzin and Daniel Kreuski, 1980 and "User
    Instructions for RISK81: A Computer Program for Loir-Dose Extra-
    polation of Quantal Response Toxicity Data, 1981, are the program
    documentations.   Method of access to the model at the MCC-IBM,
    are available from the technical contact.  All users must have a
    registered account on the EPA IBM System.
(ROR)  Responsible Organization: Office of Pesticides and Toxic
    Substances.Office of Toxic Substances.Health and Environmental
    Review Division*
                             1532

-------
                             Accession No.   17301400906

(DQ)  Date of Questionaire:  12-02-82
(NAN)  Name of Data Base of  Model:  Environmental Partitioning Model
(ACR)  Acronym of Data Base  or Model: ENPART
(MED)  Media/Subject of Data Base or Model:  Toxic substances
(ABS)  Abstract/Over view of  Data Base or Model:  This generalized
    partitioning model integrates information about a chemical's
    production, use, and disposal Mith laboratory data describing  its
    physiochemical properties in order to provide Insight into the
    dominant processes responsible for that  substance's transport  and
    degradation in the environment.  It is intended to be used in  early
    stages of chemical risk  assessments to identify environmental  media
    through which exposure may occur, and to provide a guide for
    further assessment by indicating the media with the highest
    exposure potential.  The methodology explicity treats transfer
    between and transformation within environmental media and ranks
    media as to their exposure potential, and transformation processes
    as to the relative importance in controlling the level of exposure.
    The analysis can also be applied in the  design of a cost-effective
    testing approach to yield data on interrelated transport and
    transformation processes which when considered together, present  a
    clear picture of a substance's environmental fate.
(CTC)  CONTACTS: William p.  Mood     Office  of Toxic Substances
    Exposure Eva Dlv.
    LOG: 401 M St., S.V., Washington, DC 20460  Ph: (202) 426-0724
(STA)  Data Base status: Operational/Ongoing
(DP)  Date of form completion: 01-26-83
(CAP)  Functional capabilities of model: The equilibrium partitioning
    segnent of the model combines information on chemical releases and.
    intermedia transport processes to determine the partitioning of the
    chemical between air, water, soil, sediment, and biota. The dynamic
    partitioning segment sums first-order degradation rates to yield
    the overall transformation half-life for each medium. This is  then
    compared with the previously calculated  intermedia transfer
    half-life to determine if the chemical is degraded before it can  be
    transfered from the media to which it is released.
(ASM)  Basic assumptions of  model: The approach used in the equilibrium
    partitioning analysis assumes that each  media compartment is
    homogeneously well mixed, and that all compartments are in
    equilibrium.  The dynamic partitioning portion of the model assumes
    that inter-compartmental transfer is at  steady state with
    transformation processes such as photolysis, hydrolysis, oxidation,
    and biodegradation.  The concentration ratios are determined using
    fugacity constants describing tendencies to transfer between
    compartments which are valid for use at  low environmental
    concentrations.
(INP)  Input to model: The equilibrium partitioning of the model
    requires data on the substance's vapor pressure, water solubility,
    soil and/or sediment adsorption coefficients, and the octanol/water
    partition coefficient, or data for chemical surrogates.  The
    dynamic partitioning portion requires first order or pseudo first
    order rate constants for major chemical  transformation processes,
    including ozone and hydroxyl radical oxidation, direct photolysis,


                             1533

-------
                             Accession Ho.  17301400906    (cont)

    aqueous photolysis, hydrolysis In surface Hater and soil water, and
    biodegradation in uater and soil.
(OUT)  Output of nodel: The model provides ratios of chemical
    concentrations between Media compartments, rather than absolute
    concentrations. This allows media to be ranked in order of exposure
    potential.  The overall environmental persistence of the substance
    is calculated based upon the degradation and intermedia transfer
    rates.
(APP)  Applications of nodel: The environmental partitioning model is
    useful in the early stages of chemical risk assessment to identify
    environmental media through which exposure may occur.
(HDM)  Computational system requirements - Hardware: Mainframe TAX
    11/760 ;Disc storage
(LNG)  Computational system requirements - LanguageCs) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Bas
    ic scientific
(REF)  References - User manuals, documentation, etc.:
    Chemical Fate Branch Modeling Team, "An Environmental
    Partitioning Model (draft),** EPA Office of Toxic Substances,
    July 1982.f Mackay, Donald, "Finding fugaclty feasible,
    "Environmental
    Science and Technology, Vol. 13, No. 10, October 1979, pp.
    1218-1223.
(CNM)  Contact name(s): Wood,U.P.
(COR)  Contact organization: Office of Toxic Substances Exposure
    Evaluation Div.
(ROR)  Responsible Organization: Office of Pesticides and Toxic
    Substances.Office of Toxic Substances.Exposure Evaluation Division.
                             1534

-------
                             Accession No.   17301400907

(DQ)  Date of Questionnaire: 12-02-82
(NAM)  Name of Data Base of Model:  Unified  Transport Model - Toxics
(ACR)  Acronym of Data Base or Model:  UTM - TDX
(MED)  Vedia/Subject Of Data Base or Model: Air jToxic substances ;Hater
(ABS)  Abstract/Overview of Data Base or Model: The Unified Transport
    Model is a multimedia no del which siaulates the movement of a
    chemical through an inland watershed.  The model calculates the
    concentration of organic and inorganic  chemicals in air* water*
    soil, sediment and biota.  The UTM consists of the Atmospheric
    Transport Model (ATM) the Wisconsin Hydrologic Transport Model
    (WHTM) the Terrestial Ecosystem Hydrology Model (TEHM) and a suite
    of associated submodels.  The model Has originally developed by Oak
    Ridge National Laboratory to simulate trace element transport
    through a forested ecosystem.  The model was modified by Oak Ridge
    in 1980 for the Environmental Protection Agency to incorporate the
    transport and transforca- tion processes associated with organic
    chemicals.
(CTC)  CONTACTS: Davis Mauriello (TS-798)     EPA Office Toxic
    Substances Exposure Evaluation Division
    Loc: 401 M St.* Washington* D.C. 20460  Ph: (202) 426-0724
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-26-83
(CAP)  Functional capabilities of model: The model is applicable to
    small watersheds consisting of up to 3  land segments and 7 reaches.
    The concentration of the chemical in air is determined on a monthly
    basis.  Movement of the chemical through the terrestrial and
    aquatic environment is simulated at 15 minute intervals.  The
    average monthly and annual concentrations can be calculated with an
    accuracy of better than an order of magnitude.  The hydrologic
    submodel requires calibration.
(ASM)  Basic assumptions of model: The chemical (organic or inorganic)
    is assumed to be released from point* line or area sources into
    air* deposited onto land and subsequently transported to ground
    water and surface water.  The ATM consists of a steady state
    Gaussian algorithm.  The terrestrial model is a simulation model.
    The ecological submodels are mechanistic in character.
(IMP)  Input to model: The input data includes monthly wind roses*
    hourly precipitation, solar radiation*  daily maximum and minimum
    temperatures, soil characteristics*  topographic information,
    surface water characteristics, sediment characteristics, and the
    physiochemical properties and transformation rates associated with
    the chemical.
(OUT)  Output of model: The output consists of plots and tables
    summarizing the average monthly and  annual chemical concentrations
    in 8 wind sectors* in saturated and  unsaturated soil layers* in
    runoff* out of each reach* and in the stems, leaves, roots and
    fruits of vegetation.
(APP)  Applications of model: The model  has been used by the
    Environmental Sciences Division of Oak Ridge National Laboratory to
    study the accumulation of trace metals in  the soil and biota of two
    forested ecosystems.
(HDW)  Computational system requirements - Hardware: Mainframe IBM 370,


                             1535

-------
                             Accession No.   17301400907    (cont)

    VAX 11/780 ;Disc storage 540K bytes on  IB Printer any 132
    characters per line model
(LNG)  Computational system requirements -  Language(s) used:  Fortran IV
    extended
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    g ramming
(ATP)  Air Models - Type of model: Gaussian dispersion
(OAQ)  Model reviewed and approved by OAQPS? NO
(PHP)  Production method of primary pollutant in model: Primary
    (emitted directly into atmosphere)
(HPR)  Process used to remove pollutant from atomosphere: Combination
(THE)  Sample averaging time used: more than 24 hours
(SRC)  Source of pollutant: Combination of  all sources
(AR)  Area where sample was collected: level or gently rolling terrain*
(RNG)  Distance traveled by pollutant from  source: less than  60 km
(WTP)  Water Models - Type of model: Hater  run-off
(ENV)  Environment(s) to uhich model applies: Stream/river
(CON)  Processes and constituents included  in model: Toxic chemicals
    /Biological effects ;Hydrology
(CPL)  complexity level of model: transient mass balance ;one
    dimensional
(REP)  References - User manuals/ documentation/ etc.:
    Culkoiiski/ tf. M./ and Patterson/ M. R.  1976.
    A Comprehensive Atmospheric Transport and Diffusion Model.
    Oak Ridge national Laboratory Report ORML/NSF/EATC-17.
    Patterson/ M. R./ at al.  1974.  A User's Manual for the
    Fortran IV Version of The Wisconsin Hydrologic Transport
    Model.  Oak Ridge National Laboratory Report QRNL/NSF/BATC-7.
    Huff/ 0. D./ et al.  1977.  TEHM:  A Terrestrial Ecosystem
    Hydrology Model.  Oak Ridge National Laboratory Report QRN//
    NSF/EATC-27.
(CSM)  Contact name(s): Lefler/J.
(COR)  Contact organization: EPA Office Toxic Substances Exposure
    Evaluation Division
(ROR)  Responsible Organization: Office of  Pesticides and Toxic
    Substances.Office of Toxic Substances.Exposure Evaluation Division.
                             1536

-------
                             Accession No.   17301400908

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Mane of Data Base of Model: Seasonal Soil Model
(ACR)  Acronym of Data Base or Model: SESOIL
(MED)  Media/Subject of Data Base or Model: Toxic substances ;Vater
(ABS)  Abstract/Over view of Data Base or Model: The SESOIL model
    describes the water transport, sediment transport/ pollutant
    trarsport, and soil quality within a user specified soil column
    extending between the ground surface and the lower part of the
    saturated soil zone of a region.  SESOIL is designated as seasonal
    because it analytically estimates the pollutant distribution in the
    soil column after a season (e.g., one year or six months) directly.
    It does not estimate pollution distribution indirectly (i.e., by
    summing up pollutant distribution estimates in the soil column
    after each major storm event) as existing models in the literature
    do.  SESOIL is designed to simulate point or non- point pollutants
    from major land use categories such as urban areas and is
    sufficiently flexible to allow applications to various
    climate-soil-vegetational conditions and pollutant types.  The
    analysis of SESOIL can consider time dependent pollutant inputs to
    the soil column.  The model simulates three major cycles:  the
    water cycle, taking into account rainfall, infiltration, surface
    runoff, evapotranspiration, groundwater, and optionally snow
    pack/melt, and vegetative interception; the sediment cycle, taking
    into account sediment resuspension due to wind, and sediment
    uashload from rainstorms; and the pollutant cycle which takes into
    account volatilization, adsorption/desorption, degradation, and
    biological transformation/uptake.
(CTC)  CONTACTS: Annett Mold    EPA Office Toxic Substances Exposure
    Evaluation Div. Loc: 401 M St., S.W., Washington, D.C. 20460
    Ph: (202) 426-0724
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-26-83
(CAP)  Functional capabilities of model: The model calculates seasonal
    pollutant concentration in soil water and  water quantity in a soil
    column, making it potentially useful in studying  leaching from
    waste disposal sites and pesticide or other toxic substances
    movement on watersheds.  Model  accuracy has not yet been measured.
(ASM)  Basic assumptions of model:  The fundamental water balance
     equation in the model  sets infiltration equal  to  precipitation
    minus surface runoff,  which is  in  turn equal to net
     evapotranspiration  and groundwater recharge and loss.  There  is a
     fundamental pollutant  mass balance equation for both the upper
     (unsaturated) and lower (saturated)  soil zones, which can be  solved
     for dissolved and sorbed pollutant concentrations.
(INP)  Input to model:  In  order  to  avoid difficulties in calibration,
     SESCIL uses primarily  theoretically  derived subroutines  based on
     physical principles, there by limiting  input data requirements.
     Model parameters can be determined independently  either  from
     laboratory experiments or  from  past  field  measurements.  SESOIL
     requires continuous (time  dependent) inputs for various  parameters
     (e.g., rainfall, evapotranspiration) for a specific timestep.  The
     model  accepts  input from  the  atmospheric regime as well  as  from


                             1537

-------
                             Accession No.  17301400908    (cont)

    point and non-point sources of pollutant discharges.
(OUT)  Output of aodel: Separate concentration estimates for pollutants
    are calculated for the upper and loner soil zones.
(APP)  Applications of model: The SESQIL model has not yet been applied
    and is still under development under the direction of the Exposure
    Evaluation Division, EPA Office of Toxic Substances. A computerized
    version is operational.
    A version suitable for solving with a programmable
    calculator is described in the reference. TECHNICAL COMTACT: Annett
    Hold Exposure Evaluation Division 
-------
                             Accession No.  17407000505

 -d)  Date of Questionaire: 12-02-82
(RAM)  Name of Data Base of Model: TOX-SCRSEN
(ACR)  Acronym of Data Base or Model: TOX-SCREEN
(MED)  Media/Subject of Data Base or Model: Air; Toxic Substances;
    Hater; Soil
(ABS)  Abstract/Overview of Data Base or Model: TOX-SCREEN is a
    multimedia screening-level model for assessing the potential fate
    of chemicals released to the environment. It is intended to be used
    in the early stages of chemical risk assessments to provide a means
    of rapidly evaluating chemicals with respect to their human and
    environmental exposure potential; by design, it is overpredictive
    (conservative) in nature.  Chemical concentrations in air, surface
    water, and soil reflect both direct input to an or all of the media
    fro*, a specified source(s), and subsequent interaction via
    processes such as volatilization, atmospheric deposition, and
    surface runoff.  The user selects the types of water bodies (i.e.,
    river, lake, estuary, ocean) to be considered in any given
    simulation and specifies if the chemical is directly released to
    air or water, and/or directly applied to soil.
(CTC)  CONTACTS: Russell Kinerson   USEPA/OTS/EED (TS-798) LOC:  401 M
    St., S.H., Washington, D.C.  20460   PH: (202) 382-3929
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 02-07-83
(CAP)  Functional capabilities of model: The multimedia nature of
    TOX-SCREEN requires that physical/chemical processes which drive
    trarsport of chemicals air-water, air-soil, and soil-water
    interfaces be simulated.  Such media interactions are handeled
    explicitly in the model.  The generic nature of the model
    necessitated specification of the relative locations of media
    interfaces.  Contaminated soil areas are always adjacent to water
    bodies.  Hater bodies are assumed to intercept the plume
    immediately downwind of the point of maximum concentration if an
    atmospheric point source is present.
(ASM)  Basic assumptions of model; Downwind, ground-level chemical
    concentrations in the air are estimated for point sources and area
    sources.  The assumption of a constant wind direction throughout
    the model time application period incorporates conservatism in the
    overall estimate. An equation similar to the USEPA EXAMS model
    equation is used to estimate monthly chemical mass in each reach of
    river and in lakes. A steady-state Gaussion-type linear diffusion
    model is used to estimate dispersion of chemicals discharged to
    ocean constant waters. Dispersion in soil is handled by the Level3
    SESOIL model.
(INP)  Input to model: The data input includes monthly mean rules of
    temperature, relative humidity, and cloud cover albedo,
    evaportranspirations, storm duration, storm frequency,
    precipitation, wind speed, soil properties, chemical
    characteristics, descriptors for the simulated equative
    environments, and the transformation rates associated with the
    chemical.
(OUT)  Cutput of model: The output consists of tables summarizing the
    average monthly chemical concentrations in air, unsaturated soil


                             1539

-------
                             Accession  No.   17407000505     (cont)

    layers, in runoff, in each reach of the river,  stream,  or  estuary,
    and in the lakes and ocean.
(APP)  Applications of model: The model has been used by the Office of
    Toxic Substances to evaluate the upper  levels of cheaical  that
    might be expected in each environment.
(HDU)  Computational system requirements -  Hardware: Mainframe VAX
    11/780 ; PDP-10
(LUG)  Computational system requirements -  Language(s) used: FORTRAN
(ATP)  Air Models - Type of model: Gaussian Dispersion
(OAQ)  Model reviewed and approved by OAQPS? No
(PMP)  Production method of primary pollutant in model:  Primary
    (emitted directly into the atmosphere)
(NPR)  Process used to remove pollutant from atomosphere: Chemical-physi
    cal combination (with neither process dominant)
(THE)  Sample averaging time used: More than 24 hours
(SRC)  source of pollutant: Combination of  1-4, point or area  sources
    may be used
(AR)  Area where sample was collected:  Simple (area with level or
    gently rolling terrain)
(HTP)  Water Models - Type of model: Mater  run-off/Loading
(ENV)  Environment(s) to which model applies: Estuary; Lake;
    Stream/River; Marine
(CON)  Processes and constituents included in model: Erosion and
    Sediment; Toxic Chemicals; Temperature; Hydrology
(CPL)  Complexity level of model: Steady State Mass Balance;
    One-Dimensional
(REF)  References - User manuals, documentation, etc.: McDowell-Boyer
    L.M., Hetrick, O.M., 1982.  A Multimedia Screening-Level Model  for
    Assessing the Potential Fate of Chemical Released to the
    Environment.  ORNL/TM-8334.  Oak Ridge National Laboratory; Oak
    Ridge, TN  TOX-SCREEN User's Guide - DRAFT
(CUM)  Contact name(s): Russell Kinerson
(COR)  Contact organization: USEPA/OTS/EED  (TS-798)
(ROR)  Responsible Organization: Office of Pesticides and Toxic
    Substances.Office of Toxic Substances.Exposure Evaluation Division.
                             1540

-------
                             Accession No.   18313000510

(DQ)  Date of Questionaire: 12-02-82
(NAN)  Name of Data Base of Model:  Hydrologic Simulation on Solid Haste
    Disposal Sites
(ACR)  Acronym of Data Base or Model: HSSWDS
(MED)  Media/Subject of Data Base or Model:  Hazardous Waste
(ABS)  Abstract/Over view of Data Base or Model:  The Hydrologic
    Simulation on Solid Waste Disposal Disposal  Sites (HSSWDS) Model
    was developed to help landfill  designers and evaluators estimate
    the amount of moisture percolation through different types of
    landfill covers.  This one-dimensional/  deterministic/
    computer-based water budget model was developed and adapted froa
    the U.S. Department of Agriculture CREAMS Hydrologic model and uses
    the Soil Conservation Service curve number method for calculating
    runoff. The model takes engineering, hydrologic/ and climatologic
    input data in the form of rainfall/ average  temperatures,  average
    solar radiation/ leaf area indices and characteristics of  cover
    materials/ and performs a sequential analysis to derive a  water
    budget including runoff/ percolation/ and evapotranspiratlon*
(CTC)  CONTACTS: Douglas C. Ammon   Solid & Hazardous Waste Research
    Div/MERL   LOG: 26 West St. Clair Street, Cincinnati, OH   45268
    PH: (513) 684-7871
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-18-83
(CAP)  Functional capabilities of model: The model's function  is to
    help landfill designers and permit officials estimate the  amount  of
    moisture percolation through different types of landfill covers.
    Being one-dimensional (in the vertical direction)/ the model does
    not account for lateral inflow  or drainage,   the time step is one
    day with simulation capabilities of up to 20 years.  From  minimal
    input data the model will simulate daily/ monthly/ and annual
    values for runoff/ percolation/ temperature/ soil-water/ and
    evapotranspiration.
(ASM)  Basic assumptions of model:  The HSSWDS model is a deterministic/
    one- dimensional model that develops a long-term water balance
    based on historical or simulated daily rainfall records.
    Infiltration of moisture through the soil surface is calculated
    using the SCS curve number technique.  The SCS curve number
    technique relates runoff to soil type/ land use/ and management
    practices and uses daily rainfall records.  The actual rainfall
    intensity/ duration/ and distribution are not cons*1ered.   Average
    daily temperatures/ average daily solar radiations  and average
    leaf area indices are used to estimate water loss >v evaporation  or
    transpiration using modified Penman method.  The moc^l is not more
    complex than a manual tabulation of moisture balance but HSSWDS
    makes available a more complete data base and a state-of-the-art
    system for obtaining an accurate water budget over a wide  variety
    of climatic, soil/ and vegetative conditions.
(INP)  Input to model: The model is ordinarily used in the
    conversational mode/ which enables the user to interact directly
    with the program. Five year of  climatical default data are on files
    accessible to the user for over 104 locations.  Logical values for
    soil properties are provided as default values.  The user  specifies


                             1541

-------
                             Accession 80.  18313000510    (cont)

    the design of the cover.  If the user's overrides the default
    values, the input requirement can become very intensive especially
    for cliraatical data.
(OUT)  Output of model: The model output are daily, monthly, and annual
    values for runoff, percolation, temperature, soil-water, and
    evapotranspiration for up to 20 years of simulation.  Output is in
    tabular form.  In the conversational model the output is received
    immediately through a terminal display.
(APP)  Applications of model: The model is intended to assist permit
    officials in evaluating the adequacy of a hazardous waste or
    municipal solid waste landfill cover design.  Landfill designer can
    alsc apply the model to assist their engineering design efforts.

-------
                             Accession No.   18411000508

(DQ)  Date of Questionaire:  12-02-82
(NAN)  Name of Data Base of Model: Eastern  North American Model of  Air
    Pollution
(ACR)  Acronyra of Data Base or Model: ENAMAP-1
(MED)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: The ENAMAP-1 model
    (developed by SRI, International) is a  one-layer long-range
    transport model capable of estimating monthly, seasonal, and annual
    concentrations and net and dry depositions of two
    chemically-dependent pollutants across  a 46 by 41 grid of eastern
    North America (east of 105 degrees West longitude and in between 29
    degrees and 54 degrees North latitude).  In addition, the
    individual contributions of emissions from x source regions on  the
    concentrations or depositions over y receptor regions are
    determined. Puffs of both pollutants are released from 70-km grid
    cells every 12 hours of simulation time.  The puffs are advected
    using 12-hourly wind fields which is generated by integrating and
    grinding the observed rawinsonde uind between the surface and top
    of the constant nixing height (1150 m in winter, 1300 m in
    spring/suturnn, and 1450 n in summer). Diffusion is treated as being
    Fickian (*tl/2) in the horizontal and instantaneous and uniform in
    the vertical up to the mixing height. Dry deposition is a function
    of land-use, season, and atmospheric stability.  Wet deposition is
    function of precipitation rate.  A chemical transformation rtate of
    1%/tr is assumed.  Concentration and deposition across the 70-km
    grid cells are determined at 3-hourly time steps.
(CTC)  CONTACTS: Terry L. Clark   ORD, ESRL, MD, AMB   LOC: Research
    Triangle Park, NC  27711   PH: (FTS) 629-3372
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-28-83
(CAP)  Functional capabilities of model: In its present form, the model
    should not be applied to time periods of less than a month, because
    of the assumptions and limitations of the model (e.g., constant
    mixing height, instantaneous and uniform mixing in the vertical,
    and 12-hourly wind fields).  Monthly, seasonal, and annual wet and
    dry depositions (mg/m2 or kg/ha) and concentrations (ug/m3) of the
    two pollutants are estimated for each of the 1886, 70-km grid
    cells.  Model results of monthly-averaged S02 and S04=
    concentrations for a month in each season of 1975 through 1978 have
    been compared with observations.  Regional patterns determined by
    the model compared quite  favorably with the observed patterns.  The
    maximum estimated monthly concentrations across the domain for each
    month were within 40% of  the maximum observed monthly
    concentrations.
(ASM)  Basic assumptions of model: The model  assumes 1) a constant
    mixing height over the entire simulation  month  with a seasonal
    variation of 1150 to 1450 mj  2)  instantaneous and uniform mixing in
    the vertical below the mixing height and no flux across  the top of
    the mixed layer;  3)  a constant horizontal  diffusion rate of 36
     km2/hr;  4) a constant transformation rate  of 1%/hr; 5)  a constant
    emission rate  for each emission  grid cell;  and  6) a constant
    precipitation  rate over  a period when  precipitation was  reported.


                              1543

-------
                             Accession  Ho.   18411000508     (cont)

    The dry deposition velocity of S02  ranges  between 0.00  and  0.47
    en/sec, while that of S04= ranges between  0.00  and 0.50  cm/sec.
    Wet deposition of S02 and S04= (%/hr)  are  estimated  by  0.28R  and
    0.07R,  where R is the rate of liquid precipitation (sra/hr).

-------
                             Accession No.   18411000508    (cont)

    Wolf, K.  C.  Nitz, and M. B. Johnson Atmospheric Science Center,  SRI
    International
(CNH)  Contact narae(s): Terry L. Clark
(COR)  Contact organization: ORD, ESPL, MD,  AMB
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Sciences Research Laboratory.
                             1545

-------
                             Accession Ho.   18413000502

(DQ)  Date of Questionaire: 12*02-82
(NAM)  Name of Data Base of Model:  Mater Quality Analysis Simulation
    Program
(ACR)  Acronym of Data Base or Model: HASP
(MED)  Media/Subject of Data Base or Model:  Hater
(ABS)  Abstract/Overview of Data Base or Model:  HASP is a generalized
    modeling program for simulating the water quality of aquatic
    systems*  Based on the flexible conpartment modeling approach/  HASP
    may be applied in one- two- , or three-dimensional configurations*
    A variety of water quality problems can be addressed with the
    selection of appropriate kinetic subroutines. Time-varying
    transport processes/ including forcing  and boundary processes/
    advection/ dispersion/ and mass loading/ are represented in this
    program.  Water quality processes are represented in special
    kinetic subroutines that are either chosen from a library or
    written by the user.  WASP is structured to permit easy
    substitution of kinetic subroutines into the overall package to
    form a particular model. User-defined constants/
    spartially-variable parameters/ and time functions are input
    through HASP to drive the kinetic subroutines. Problems simulated
    with HASP include dissolved oxygen-BOD  dynamics/ nutrients and
    eutrophication/ bacterial pollution/ and toxic chemical transport
    and fate.
(CTC)  CONTACTS: Robert B. Ambrose/ Jr./   U.S. EPA/ Athens Env. Res.
    Lab./ LOG:  Athens/ GA  30613   Ph: (404) 546-3546
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 01-25-83
(CAP)  Functional capabilities of model: HASP is a dynamic compartment
    modeling program. Linked with various kinetic subroutines/ from 1
    to 19 state variables have been simulated.  Segments can be
    configurated into one-/ two-/ or three-dimensional networks that
    include the water coinin and bed. Concentrations are calculated
    explicitely every time step for every segment.  The time step
    varies at the user's discretion/ generally between an hour and  a
    day.  With the specification of appropriate driving functions and
    parameters/ divrnal to seasonal variations can be simulated.
    English units are used in the model/ but scale factors provided
    allow all input data to be specified in SI (or other) units.
    Accuracy is usually limited by scientific knowledge and precision
    of input data/ and thus varies with application. HASP is
    practically limited to those cases where the transport field can be
    specified/ either from direct measurement or from other
    hydrodynamic models.
(ASM)  Basic assumptions of model: HASP is  based on the conservation of
    mass principle/ along with the following assumptions: all segments
    are well mixed; the transport field can be adequately specified;
    and the total derivative/ at a point can be solved as the sum of
    the derivatives due to transport, mass  addition/ and kinetic
    processes. Reaction rates can vary over several orders of
    magnitude/ from 0 to approximately 5 per day.  An explicit/ finite
    difference solution methodology is used.
(IHP)  Input to model: To set up and run/ the following data are


                             1546

-------
                             Accession No.   18413000502     (cont)

    needed:  network divided into segments with length/  depth/  cross-
    sectional area/ volume; dispersion coefficients;  advective flows;
    boundary concentrations; input loads; spatially-variable parameters
    defined by the particular kinetic subroutine used;  various
    constants and time functions defined by the kinetic  subroutine;  and
    initial concentration.   To calibrate and verify the  model/ the
    above data are needed/  as well as measured concentrations
    throughout the water body at different times.
(DOT)  Cutput of model: Echo of input data.  Table of output variables
    at regular intervals.  Time plot of output variables at selected
    locations.  Spatial plot of output variables at selected tines*
    Statistical analysis and comparison with observed data using the
    Model Verfication Program.  Milwaukee River; and toxic substances
    in the Hudson River and Great Lakes.  The SPA Large Lakes Research
    Station/ who funded the later development of HASP/  has applied it
    to eutrophication problems in the Great Lakes and PCB problems in
    saginaw Bay.  The Athens Environmental Research Laboratory/ which
    now supports WASP, has applied it to eutrophication problems in
    subestuaries of Chesapeake Bay/ and has developed a compatible
    toxic chemical kinetic subroutine based on EXAMS (see TOXIWASP).  In
    addition, linkage to the hydraulic file generated by the Storm
    water Management Model (RECEIV block/ program SWFLOW) has been
    accomplished.
(APP)  Applications of model: Different versions of HASP have been
    applied to many water  resource management problms.  Most of these
    have been by the developers/ Hydroscience and Manhattan College:
    eutrophication of San  Francisco Bay/ the Great Lakes (Ontario/
    Rochester Bay/ Erie/ Huron/ Saginaw Bay/ Michigan)/ the Potomac
    Estuary, Chesapeake Bay/ and upper Mississippi; dissolved oxygen
    budget of upper Delaware/ New York Harbor, and
(HDW)  Computational system requirements - Hardware: Mainframe POP
    11-70; IBM 370; Disc Storage 32K; Printer Standard
(LNG)  Computational system requirements - Language(s) used: FORTRAN
(OSK)  Computational system requirements: Operator Knowledge/Skills:  Con
    puter Programming; Engineering
(WTP)  hater  Models - Type of model: Water Quality/Receiving Water
(ENV)  Environment(s)  to which  model applies: Estuary; Lake;
    Stream/River;  Marine
(CON)  Processes  and constituents  included in model: Dissolved Oxygen;
    Eutrophication/Nutrients; Erosion and Sediment; Toxic  Chemicals;
    Salinity; Temperature;  Quality Processes
(CPL)  Complexity  level  of model: Transient Mass  Balance;
    Multi-Dimensional
(REF)  References  - User manuals/  documentation/  etc.: DiToro/ D. M./
    J. J. Fitzpatrick,  and R. V.  Thoraann.  1982.   Water  Quality
    Analysis  Simulation  Program (WASP)  and Model  Verification  Program
     (MVP) - Documentation.  Hydroscience/  Inc./  Westwood/  NY/  for U.S.
    Environmental  Protection  Agency/ Duluth/  MN/  Contract  No.
    68-01-3872.
(CNM)  Contact  naaie(s):  Robert  B.  Ambrose/ Jr.
(COR)  Contact  organization:  U.S.  EPA/  Athens Env. Res.  Lab.
(RQR)  Responsible Organization:  Office of  Research  and


                              1547

-------
                         Accession No.  18413000502    (cent)

Development.Office of Environmental Processes and Effects
Research.Environmental Research Laboratory.
                       1548

-------
                             Accession No.   18413000503

(OQ)  Date of Questionalre: 12-02-82
(NAM)  Name of Data Base of Model: WASP Chemical Transport and Fate
    Model
(ACR)  Acronym of Data Base or Model: TOXIWASP
(MED)  Media/Subject of Data Base or Model: Toxic Substances; Water

-------
                             Accession No.   18413000503    (cont)

    variations in the chemical reaction rate.   Accuracy is limited by
    scientific knowledge and precision of input data, and varies with
    application.
(ASM)  Basic assumptions of lodel:  TOXIhASP is based on the folloving
    assumptions:  all segments are well fixed;  sorption is essentially
    instantaneous within each segment (thus local equilibrium);
    checical properties of the compound can be coupled uith pertinent
    environmental characteristics to formulate a pseudo-first-order
    rate for each of the degradation processes; and these process rates
    combine linearly to form a total degradation rate for the chemical
    in each segment.  Reaction ratey can vary  over several orders of
    magnitude/ from 0 to approximately 5 per day.  An explicit/  finite
    difference solution methodology is used.
(IHP)  Input to model: To set up and run, the  following data are
    needed: network divided into segments with length, depth,
    cross-sectional area, volume; dispersion coefficients; advective
    flow; boundary concentrations; input loads; spatially variable
    environmental parameters, such as temperature, water velocity, wind
    speed, bacterial concentrations, pH, pOH,  light extinction
    coefficients, concentration of oxidants, density and organic
    content of sedimenty, setting velocity, sediment -water dispersion
    rates, and target biomass concentration; various chemical
    constants, including second-order rate constants for hydrolysis,
    oxidation, and bacterial degradation, Henry's low constant or
    measured volatilization rates, photolysis rate, and practition
    coefficient;  seasonal variability of various environmental
    parameters, including temperature, wind speed, pH, pOU, and  light
    intensity; and finally, initial concentrations of chemical and
    sediment.  Not all of the data are needed for every application.
    Measured degradation rates, for example, can be used instead of
    •ost of the environmental parameters and chemical constants.   To
    calibrate and verify the model, the above data are needed, as well
    as measured chemical and sediment concentrations throughout  the
    water body at different seasons.
(OUT)  Cutput of model: Echo of input data.  Table of output variables
    at selected locations.  Spatial plot of output variables at
    selected times.  Descriptive statistics and cumulative frequency
    table of out put variables at selected location.  Peak event table
    of state variables when concentrations exceed specified level.
(APP)  Applications of model: As of January 1963, TGXIHASP has been
    applied by the authors to the upper Yazoo River, and successfully
    tested against predictions by HSPF and EXAMS for three of its
    canonical environments: pond, river, oligotrophic lake.  The
    following linkages are available: TQXIMASP can read nonpoint source
    loading files generated by HSPF and SHRV;  TOXIUASP can read  and
    interpolate flows in a reach between tow USGS gages; and TOXIHASP
    can read the  hydraulic file generated by the Stormwater Management
    Model, (RECEIV block, program SWFLOH).
(HOtf)  Computational system requirements - Hardware: Maniframe POP
    11-70, IBM 370 ; Disc Storage 32K ; Printer Standard
(LUG)  Computational system requirements - Language(s) used: FORTRAN
(OSK)  Computational system requirements: Operator Knowledge/Skills: Eng


                             1550

-------
                             Accession No.  18413000503    (cont)

    ineering
(MTP)  Kater Models - Type of model: Mater
CEKV)  Environment(s) to which aodel applies: Estuary ? Lake >
    Stream/River } Marine
(COM)  Processes and constituents included in model: Toxic Chemicals ;
    Quality Processes
(CPL)  Complexity level of model: Transient Mass Balance >
    Multi-Dimensional
(RSF)  References - User manuals, documentation, etc.: "Users Manual
    for the Chemical Transport and Fate Model (TOXIWASP), Version 1,"
    by Robert B. Ambrose, Jr., Sam I. Hill, and Lee A. MulJcey, U.S.
    EPA, Athens, GA, sent to printer in January, 1983.# "Water Quality
    Analysis Simulation Program (WASP) and Model Verification Program
    (MVP) - Documentation," by D. M. Ditoro, J. J. Fitzpatrick, and R.
    V. Thomann, Hydroscience, Inc, Vestuood, NJ, for U.S. TA, Duluth,
    MN, sent to NTIS in September, 1982.
(CNM)  Contact narae(s):  Robert B. Ambrose, Jr.
(COR)  Contact organization: U.S. EPA, Athens Environmental Res. Lab.
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                             1551

-------
                             Accession No.   18413000504

(OQ)  Date of Questionaire:  12-02-82
(NAM)  Name of Data Base of  Model:  Metals Exposure Analysis  Modeling
    System
(ACR)  Acronym of Data Base  or Model:  MEXAMS
(MED)  Media/Subject of Data Base or Model:  Toxic Substances ;  Hater
(ABS)  Abstract/Overview of  Data Base  or Model:  MEXAMS, the  Metals
    Exposure Analysis Modeling System/ provides  a capability for
    assessing the impact of  priority pollutant metals on aquatic
    systems.  It considers both the complex  chemistry that affects  the
    behavior of netals and the transport pro cesses that affect their
    migration and fate.  This is accomplished by linking MINTEQ,  a
    geochemical model, with  EXAMS,  an  aquatic exposure assessment
    model.#   MINTEQ is a therraodynamic equilibrium model that  computes
    aqueous speciation, adsorption and precipitation/dissolution  of
    solid phases. It has a Hell-documented  thermodynamic data base  that
    currently contains equilibrium constants and other accessary  data
    for the following priority pollutant metals  arsenic, cadmium,
    copper/ lead/ nickel, silver and zinc.   Data on other metals  Mill
    be added in the future.   The model was  developed by combining the
    best features of two other existing geochemical models:  MIMEQL  and
    HATFQ3.&   EXAMS is an aquatic exposure  assessment model designed
    for the rapid evaluation of synthetic organic pollutants.  Given
    the characteristics of a pollutant and an aquatic system, EXAMS
    computes steady-state pollutant concentrations (exposure),  the
    distribution of the pollutant in  the system  (fate), and  the time
    required for effective purification of  the system (persistence).
    Its linkage to MINTEQ required several modifications,#   To
    facilitate the use of HEXAMS, a user interactive program uas
    developed.  This program controls  the operation of MINTEQ and
    EXAPS, passes simulation results back-and-forth between  the models,
    and queries the user to  obtain water quality data for input to
    HINfEQ.tf   As it is currently structured, MEXAMS can be  used  in a
    number of ways.  It can  be used like EXAMS to perform rapid hazard
    evaluations for priority pollutant metals.  The system can  also be
    used to support the interpretation of metals bioassay data.
    Finally, and perhaps most importantly,  MEXAMS can be used as  a
    fraiteuork for defining what is and what  is not known about  the
    behavior of priority pollutant metals in aquatic systems.  This
    framework will make it possible to identify  the need for and  guide
    the performance of future research.
(STA)  Data Base status: Operational/Ongoing
(OF)  Date of form completion: 02-05-83
(CAP)  Functional capabilities of model: MEXAMS is a steady-state
    compartment raodd that calculates  the distribution of a metal
    throughout an aquatic system, including  its  aqueous speciation,
    adsorption, and precipitation or  dissolution.  Segments can be
    configured into one-, two-, or three- dimensional networks  that
    include surface and subsurface water and bed.  MEXAMS calculates
    aetel migration using the mass conservation principle.  Speciation
    Is calculated using an equilibrium constant approach wherein a
    series of mass action expressions  are solved subject to mass
    balance constraints on each chemical component. Adsorption  is


                             1552

-------
                             Accession No.   18413000504    (cent)

    treated s being analogous to aqueous speciation, with six
    algorithms available:  an activity partition coefficient,  an
    "activity" Langmuir isotherm, an "activity" Frundlich isotherm,  an
    ion exchange activity ratio, the constant capacitance model,  and
    the triple layer model.  Dissolution of solid metal or
    precipitation to the solid phase Is calculated for  equilibrium
    conditions.£   The user of MEXAMS must  be aware of  its limitations.
    First,  simulations are United to those metals with measured
    equilibrium constants an accessary data in the thermodynamic  data
    base:  As, Cd, Cu, Pb,  Ni, Ag, and Zn.  Other metals nil!  be added
    as funds permit. Second, although MEXAMS contains default values
    for fulvic and huaic acids its data base for organic complexation
    is limited.  For sites where this is important, local data should
    be gathered and used. Third, although the kinetics  of
    precipitation/dissolution, extidation/  reduction, and adsorption
    may be important, MEXAMS calculates equilibrium values only.
(ASM)  Basic assumptions of nodel: MEXAMS is based on the following
    assumptions: all segments are well mixed? environmental conditions
    and loadings are at steady state; speciation, adsorption, and
    precipitation/ dissolution reactions are at equilibrium,  and  can be
    described by a set of mass action expressions.
(INP)  Input to model: To set up and run MEXAMS, two data files are
    needed: one for EXAMS and another for MINTEQ.  EXAMS calculates the
    distribution of a metal throughout the aquatic system based on the
    following input data:  loadings for each sector; system geometry and
    hydrology, including volumes, areas, depths, rainfall, evaporation
    rates, tributary and nonpoint source inflows and sediment loads,
    and groundwater flows; advective flows; and dispersion
    coefficients. MINTEQ calculates the speciation of a metal based on
    two types of data:f 1)  thermodynamic data and  2)   water quality
    data.   The thermodynamic data are equilibrium constants,  heats of
    reaction and other basic information required to predict the
    formation of each species or solid phase.  The water quality data
    are the physical and chemical properties of the water body being
    analyzed.  The user only has to generate the water  quality data in
    order to use MINTEQ.  The thermodynamic data are contained in a
    data base that accompanies the nodel.  This data base is constantly
    being updated and expanded as new or improved data  become
    available.#   Presently, 55 chemical components can be considered
    by MINTEQ. While accuracy is generally improved with more water
    chemistry data, the user does not have to specify all components.
    Many do not react with other components, or are present only in
    very low concentrations. The following data are important: pH (most
    important). Eh or pE (for elements affected by redox reactions such
    as Fe, Mn, Cu, As, U, and V), temperature, ionic strenght
    (optional, computed internally), major anions (most important are
    carborate and sulfate), and major cations (most important are
    calcium and magnesium).  Other trace constituents may be important:
    hydrogen sulfide, orthophosphorus, fluoride, iron and manganese,
    aluminum, barium, and strontium.
(OUT)  Output of model: MEXAMS provides  the user with two sets of
    simulation results: 1) details on metal speciation, sorption and


                             1553

-------
                             Accession Ho.   18413000504    (cont)

    precipitation in each compartment and 2) exposure/ fate and
    persistence predictions for the aquatic system.   The first set of
    results are provided by MINTEQ; the second set is provided by
    EXAMS.  The EXAMS users manual and documentation report provides a
    detailed description of the EXAMS output.  The only change is  the
    addition of the quantity of precipitated netal to the tables that
    sunn arize model results.  MINTEQ output is composed of € sections:
    1. original sample description/ 2. thermodynaaic and accessory data
    for species/ 3. initial charge balance information/ 4. convergence
    pattern for first component/ 5. values for all specie types and a
    percentage distribution of components/ and 6. the final charge
    balance following aqueous speciation.
(APP)  Applications of model: Although MINTEQ and EXAMS have been
    tested on a number of problems/ the linked MEXAMS has undergone
    internal testing only (as of spring/ 1983).
(HOW)  Computational system requirements - Hardware: Disc Storage  32K
(LUG)  Computational system requirements - Language(s) used: FORTRAN
(OSK)  Computational system requirements: Operator Knowledge/Skills: Eng
    Ineering
(VTP)  Water Models - Type of model: Hater Quality/Receiving Hater
(ENV)  Environment(s) to which model applies: Lake / Stream/River  >
    Wetlands
(CON)  Processes and constituents included in model: Toxic Chemicals ;
    Quality Processes
(CPL)  Complexity level of model: Steady State Mass Balance ;
    Multi-Dimensional
(REF)  References - User manuals/ documentation/ etc.: Felmy/ A. R./
    Broun/ S. M., Qnishi, ¥./ Argo/ R. S., Yabusaki/ S. B./ "MEXAMS *
    The Metals Exposure Analysis Modeling System/* Battelle PNL/
    Rlchland, HA/ for U.S. EPA, Athens/ GA, 1983, in press.t Felmy/ A.
    R./ Jenne/ E. A./ Girvin/ D. C./ "MINTEQ - A Computer Program for
    Calculating Aqueous Geochemical Equilibria/" Battelle PNL/
    Rlchland/ HA/ for U.S. EPA/ Athens/ GA/ 1983, in press.
(CMM)  Contact name(s): Robert B. Ambrose/ Jr.
(COR)  Contact organization: U.S. EPA/ Athens Env. Res. Lab.
(ROR)  Responsible Organization: Office of Research and
    Development.Office of Environmental Processes and Effects
    Research.Environmental Research Laboratory.
                             1554

-------
                             Accession No.   13417000506

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Water Analysis Assimilation for
    Toxic Chemicals
(ACR)  Acronym of Data Base or Model: MASTOX
(MED)  Media/subject of Data Base or Model:  Toxic Substances; Water
(ABS)  Abstract/Overview of Data Base or Model:  HASTQX is a
    batch-oriented computer program which solves the mass balance
    equations that define the fate of toxic  chenicals in aquatic
    systems.  The model provides tiae variable solutions to these
    questions and will eventually handle steady state solutions.  The
    •ass balance equation for a specified volume describes the mass
    rate of change of the chemical due to the net effects of various
    fluxes and transformations.  The purposes of the modeling framework
    are twofold: the first relates to the general hazard allocation
    procedures.  Such analyses may usually be accomplished by means of
    the spatial steady state distributions.   The second general purpose
    relates to the time/variable aspects of  the problem.  Such analyses
    apply to the effects of a short-term release of a toxicant/ such as
    an accidental spill or a storm overflow  discharge,  in equally
    important application in this regard is  directed to the time
    required to build up to steady state and, perhaps more
    significantly, the time required to cleanse a system from existing
    contamination.
(CTC)  CONTACTS: John P. Connolly   Manhattan College   LOC: Bronx, NY
    10471   PH: (212) 920-0780
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 12-14-82
(CAP)  Functional capabilities of model: The framework is general in
    nature.  The "study" water system may be sectioned or segmented as
    the user chooses.  Transport is defined  by dispersion coefficients
    and flows that are specified in a series of fields that are
    individually applied to either both the  particulate and dissolved
    chemical (e.g., hydrodynamic flow), the  particulate chemical only
    (e.g., res us pension), or the dissolved chemical only (e.g.,
    interstitial water diffusion).  The kinetic subroutine returns to
    the main program that portion of the time derivative (dc/dt)
    contributed by the transfer and reaction components*  Changes say
    be cade by adding desired terms.  The variables that define a
    specific kinetic process are transmitted to the kinetic subroutine
    through a segment dependent array or parameters and an array of
    constants.  They may be altered by the user through respecfication
    of the equivalence statements.
(ASM)  Basic assumptions of model: The model assumes that an aquatic
    ecosystem can be sectioned into a series of completely mixed
    sections.  The approach used is to approximate the spatial
    derivatives that define the transport component of the mass balance
    equation.  The size of the completely mixed sections is controlled
    by the time step constraints imposed by  the stability limitations
    of the numerical schemes and the extent  of spatial resolution
    desired.
(IMP)  Input to model: Inputs to the model include: exchange
    coefficients, segment volumes, flows, boundary conditions, forcing


                             1555

-------
                             Accession  No.   18417000506     (cont)

    functions/  sediment depth/  depth of sediment  surface/  sediment
    segment area/  pH of segment/  temperature of segnent/ concentration
    of compound degrading bacteria/  rate constants  for  fate processes/
    photolysis  parameters/ and  initial  conditions.
(OUT)  Output of model: Model provides  toxicant concentration profiles
    in time and space for estuaries/ streams and  other  aquatic systems.
    It will give both disolved  and particulate concentrations and
    concentration with depth in sediment.
UPP)  Applications of model: The model can be used to  predict exposure
    concentrations of toxic substances  in estuaries/ rivers and other
    aquatic systems for both water column and sediment.   Future sub
    routines will include steady state  analysis/  food chain
    bioaccumulation and a toxicity model.  Kinetic  subroutines have
    beer developed to provide the user  with the capability to alter the
    transfer and reaction formulations  or to add  additional kinetic
    processes.
(HDW)  computational system requirements - Hardware: Mainframe PUP
    1170; Disc Storage 25/000 Word Core Storage;  Printer 132 Position
    Line Printer                                             »nn»n*u
(LNG)  Computational system requirements - Language(s)  used? FOKTKMI
(OSK)  Computational system requirements: Operator Knowledge/Skills: Eng

(WTP)  Water Models - Type of model: hater Quality/Receiving Water;
    Exposure Assessment Model
(ENV)  Environment
-------
                             Accession No.   19014000901

(DQ)  Date of Questionaire: 12-02-82

-------
                             Accession No.  19014000901    (cont)

(COR)  Contact organization:  U.S, EPA Region I
(ROR)  Responsible Organization: Region I.Adninistrative Services
    Division.
                            1558

-------
                             Accession No.   19024000001

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model:  Mater Quality Feedback Model
(ACR)  Acronym of Data Base or Model: FEDBAK03
(MED)  Bedia/Subject of Data Base or Model:  Mater
(ABS)  Abstract/Overview of Data Base or Model:  FEDBAK03 is used to
    compute the steady-state distribution of water quality variables
    undergoing consecutive reactions with feedback and following first
    order kinetics. The program has been developed in a general forn
    but is specifically applicable to the reactions observed by
    nitrogenous species and the associated dissolved oxygen uptake in
    the natural environment.  The basis for this nodel is the theory of
    conservation of aass.  The approach used to solve the equations is
    a finite difference scheme developed by Thonann, which has been
    shown to be a very effective tool in the field of water quality
    management.
(CTC)  CONTACTS: George A. liossa and Ton O'Hare    U.S. EPA,
    Information Systems Branch
    Loc: 26 Federal Plaza, New York, NY 10278   Ph: (212) 264-9850
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion? 02-24-83
(CAP)  Functional capabilities of BOdel: FEDBAK03 has been developed to
    help predict water quality parameters which react under first order
    kinetics and as a system of consecutive reactions, where any
    parameter can react in a feedback fashion.  The problem setting
    assumes an aquatic environment in which steady-state conditions can
    be applied.  The Thomann solution of solving the general estuarine
    advection/dispersion equation by replacing the derivatives with
    finite-difference approximations is the approach followed in
    FEDEAK03.  Optionally, the program can also perform system
    sensitivity analysis by varying the waste vector and re-multiplying
    by (01) and/or changing the reaction rate constants for any
    reactants and repeating several steps.  A second option is the
    comfutation of dissolved oxygen deficit and the corresponding
    dissolved oxygen concentration by selecting the reaction schemes
    producing the deficit  and the associates tochioaetric coefficients.
    As presently written,  the program can accoaodate a multi-
    dimensional system of  up to 60 sections and each section can have a
    maximum of six interfaces.  The maximum number of reactants Is such
    that when multiplied by the number of sections, it cannot exceed
    120.  This present limitation can easily be expanded.
(ASM)  Basic assumptions of model: The model assumes steady-state
    conditions in an aquatic environment.  It is based on the theory of
    conservation of mass and utilizes a finite difference scheme for
    the solution of the general estuarine advection/dispersion
    equation.  Reactants are assumed to undergo consecutive reactions
    with feedback and first order kinetics.
(IMP)  Input to model: FEDBAK03 requires the input of the physical
    characteristics of the system to be evaluated; namely, the
    geometry, temperature, hydrologic characteristics, reaction
    schemes, and corresponding reaction rates*
(OUT)  Output of model: FEDBAK03 produces the calculation of BOD
    dificit and nitrification.


                             1559

-------
                             Accession No.  19024000001    (cont)

(APP)  Applications of model: FEOBAK03 can be used for the calculation
    of BOD deficit and nitrification. TECHNICAL CONTACT: George A.
    Nossa and Ton O'hare Environmental Systems Section Information
    Systems Branch 2PM-IS U.S. Environmental Protection Agency 26
    Federal Plaza New York, New York 10278 FTS 264-9850  COM
    212/264-9850

-------
                             Accession No.   19024000002

(DQ)  Date of Questionaire:  12-02-82
(NAM)  Name of Data Base of Model:  Estuarine Water Quality  Model
(ACR)  Acronym of Data Base or Model:  ES001
(MED)  Media/Subject of Data Base or Model:  Hater
(ABS)  Abstract/Over view of Data Base or Model:  ES001 is a
    steady-state, one-dimensional,  estuarine water quality  model  uhich
    simulates BOD and DQ variations.  It was prepared by the EPA  to
    improve upon and document some water quality nodels developed for
    the EPA by Hydroscience, Inc.,  and it is particularly useful  for
    the rapid evaluation of a number of varying estuary and uasteload
    conditions.  Based on the law of conservation of mass,  the program
    is designed to model the BOD-DO deficit system, but it  is capable
    of modeling analogous systems of sequential reactions of two
    substances having first order kinetics,  like that of a  nitrogen
    reaction with ammonia and nitrate.  The model is assumed to be at
    steady state and to be tidally averaged.
(CTC)  CONTACTS: George A. Nossa and Tom O'Hare    EPA, Environmental
    Section Planning and Management
    Loc: 26 Federal Plaza, New York, N.Y. 10278 Ph: (212) 264-9850
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 02-24-83
(CAP)  Functional capabilities of model: The program segments the
    system being modeled into sections within which the various
    geonorphological, physical, and hydrological parameters of the
    estuary are constant.  For each segment the estuarine steady- state
    advective-dispersive equation with constant coefficients is
    defined, the junction points of the segments being boundary points
    where these parameters can change.  Several types of junctions are
    allowed, including triple junctions, dams, etc., which  in
    combination allow the modeling of numerous types of configurations.
    A maximum of 100 junctions and 50-100 sections can be accommodated.
    Each section can have a length of up to 20 ffiles.  Physical
    processes that can be simulated include: dilution, advectlon,
    longitudinal dispersion, temperature effects, and the processes of
    first order decay and reaeration. The model handles riverine
    estuaries well, especially when the net velocity is less than one
    foot per second.  The ES001 is sensitive to reaeration
    coefficients, dispersion coefficients, net flow velocities, and
    deoxygenation coefficients.  A number of output options are
    provided.
(ASM)  Basic assumptions of model: SS001 handles only steady-state
    flots and discharges, and it does not consider flow velocity or
    quality variations with depth or within stream cross sections.  The
    model assumes only first order kinetics for BOD and DQ, and it
    utilizes a matrix inversion technique for the solution  of
    simultaneous differential equations which are derived from the law
    of conservation of mass.
(IHP)  input to model: The ES001 requires a large amount of input data
    in card-image form.  Initial input/calibration needs include:
    estuary cross-sectional data, segment length, water depth, net
    flofc, reservoir outflows, estuary volume, tidal exchange
    coefficient, dispersion coefficient, constituent concentration for


                             1561

-------
                             Accession No.  19024000002    (cent)

    all  system inflous, temperatures, benthic oxygen demand, algal
    photosynthesis, respiration, and other rate coefficients, residual
    Inputs from point sources, uniform waste input, salinities at
    seavard boundaries, tidal exchange coefficients, and temperature
    correction factors.  Constituent concentrations throughout the
    systea and observed salinity patterns are needed for verification.
 (DOT)  Cutput of model: Output information provided by the model
    includes a tabular print-out of the input data, BOD concentration
    and  DO deficits at ten equidistant points per segment, and a number
    of tatrices 
-------
                             Accession No.  19024000002    (cont)

       Contact name(s): Nossa,G.A.

-------
                             Accession No.   19024000003

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model:  Outfall  Plume Model
(ACR)  Acronym of Data Base or Model:  PLUME
(MED)  Vedia/Subject of Data Base or Model: Nater
(ABS)  Abstract/Overview of Data Base or Model:  PLUME is a computer
    program which can be used to evaluate coastal waters/ lakes/  or
    estuaries under consideration as disposal sites.  It is designed to
    evaluate and/or predict the length of outfall needed to adequately
    dilute a proposed discharge in order to provide compliance with
    water quality standards.  The model was developed by the U.S. EPA
    Environmental Research Laboratory in Corvallis, Oregon/ and it has
    been used by the San Juan Field Office  of the U.S.  EPA to aid in
    the location and analysis of ocean outfalls.
CCTC)  CONTACTS: George A. Nossa and Ton O'Hare  (2PM-IS)     EPA, Envi
    Systems Section/ Information Systems Branch
    Loc: 26 Federal Plaza, New York/ NY 10278   Ph: (212) 264-9850
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 02-24-83
(CAP)  Functional capabilities of model: PLUME simulates the three
    dinensional (two dimensions in the horizontal plane and one
    dimension in the vertical plane) initial dilution of the effluent
    pluie of residuals in lakes/ coastal waters/ and estuaries.  Some
    of the factors which can be evaluated by PLUME include the effects
    of onshore currents/ tides/ density and salinity gradients/ ambient
    surface and hypolianetic velocities/ the initial Jet velocity/ the
    quantity of discharge/ the slope of the ocean bottom, and the rates
    of coliform die-off in the vicinity of  outfall locations.  The
    model simulates a stratified aquatic environment/ and up to 50
    layers are permitted. PLUME is sensitive to  discharged fluid
    density and flow rate, and also to extent of stratification.   The
    model is also sensitive to the physical features of the outfall -
    the diameter of openings, the number of ports, and the port depth.
(ASM)  Basic assumptions of model:  The model simulates the behavior of
    a buoyant, round effluent plume being discharged into a non-
    flowing water body where it considers the density differences
    betbeen freshwater (with residuals) and saltwater masses. The model
    does not simulate the transport of discharged residuals by
    mechanisms other than mixing and dilution of fluids with different
    densities, and it assumes no water flow other than the
    plume-induced movement.  A steady-state, stratified aquatic
    environment is assumed.
(IffP)  Input to models Input to the PLUME program should be in
    card-image form. Initial setup/calibration needs include:  (1)
    water temperature profile (with depth), (2)  salinity or density
    profile (with depth), (3) effluent flow rate/ (4) effluent density,
    and (5) the outfall features such as the port diameter/ number of
    discharge points/ depth of discharge points, and the angle of the
    discharge points to the horizontal plane.  The initial constituent
    concentration throughout the plume is needed for verification.
(OUT)  Output of model: The model provides  a tabular printout of the
    following output information:  (1) labeled input values, (2)
    constituent dilution along the plume centerline, and (3) the depth


                             1564

-------
                             Accession No.   19024000003    (cont)

     at which the plume stabilizes.
(CSR)  Computational System Requirements: PLOMS is coded in FORTRAN IV
     and  requires a FORTRAN IV compiler.  The program is compatible with
     the  IBM 370/155 and  requires 10,000 words of core storage.  Up to
     one  man-week is necessary for data preparation, and only one or two
     man-hours for output interpretation.  PLUME requires one computer
     programmer or a hydraulics engineer with environmental modeling
     experience.
(APP)  Applications of model: Outfall plume was developed by the U.S.
     EPA  Environmental Research Laboratory in Corvallis, Oregon, and the
     model has been used by the San Juan Field Office of the U.S. EPA to
     aid  in the location and analysis of ocean outfalls. PLUME has also
     found other applications and other users. TECHNICAL CONTACT:#
     Richard J. Callaway U.S. Environmental Protection Agency Corvail is
     Environmental Research Laboratory 200 SW 35th Street Corvallis,
     Oregon 97330 FTS 420-4703  COM 503/757-4703 George A. Nossa and To«
     O'Hare Environmental Systems Section Information Systems Branch
     2MP-IS 26 Federal Plaza New York, New York 10278 FTS 264-9850  COM
     212/264-9850.
(HDW)  Computational system requirements - Hardware: Mainframe IBM
     370/155 ;Disc storage 10,000 words of core sto
(LNG)  Computational system requirements - Language(s) used: Fortran IV
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
     graaming ;hydraulics engineer with environmental modeling
(HTP)  Water Models - Typ« of model:  Hater quality
(EBV)  Fnvironraent(s) to which model applies: Estuary ;Lake jMarine
(CON)  Processes and constituents Included In model: Salinity
     ;Te»perature ^Hydrology ;Quality processes
(CPL)  Complexity level of model: steady state aass balance jmulti
    dimensional
(REF)  References - user manuals, documentation, etc.:
    Bauvgartner, D.J.  and D.S.  Trent, "Ocean Outfall
    Design:   Part I, Literature Review and Theoretical Development."
    Report by FWPCA, Mashington,  D.C., 1970.
    Baucgartner, D.J.  and D.S.  Trent, "User's Guide and
    Documentation for Outfall Plume Model."  Working Paper #80
    by U.S.  EPA Pacific Northwest Mater Laboratory, Corvallis,
    Oregon,  1971,
    Burchett,  M.E.,  G.  Tchobanglous,  and A.J. Burdoln,  "A practical
    Approach to Submarine Outfall Calculations".  Public Works.
    5, 95, 1967.
    Callaway,  R.J.,  "Computer Program to Calculate ERF".  EPA
    Pacific  Northwest  Environmental Research Laboratory, Corvallis,
    Oregon,  1973.
    Guthrie,  D.L.,  "Documentation for Outfall:   A  Computer Program
    for the  Calculation of Outfall  Lengths Based upon Dilution
    Requirements."   U.S.  Environmental Protection  Agency,  San
    Juan  Field Office,  Santurce,  Puerto Rico, 1975.
(CNM)  Contact name(s):  Nossa,G.A.
(COR)  Contact organization:  EPA, Environmental  Systems Section,
    Information Systems Bran
(ROR)  Responsible  Organization:  Region II.Assistant Regional


                             1565

-------
                         Accession No.  19024000003    (cont)
Administrator for Policy,
                        1566

-------
                             Accession No.  19024000004

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: Stream Network Simulation Program
(ACR)  Acronym of Data Base or Model: SNSIM
(MED)  Media/Subject of Data Base or Model: Water
(ABS)  Abstract/Overview of Data Base or Model: SNSIM is a computer
    program for the steady-state water quality simulation of a stream
    network.  Its basis is an expanded form of the Streeter-Phelps
    equation, and it is designed to evaluate and/or predict the DO and
    the carbonaceous and nitrogenous BOD profiles in a river or stream
    where the effects of dispersion can be assumed to be insignificant.
    This environmental model is ideal for the evaluation of various
    water treatment schemes/ as its basic control variable is waste
    input.

-------
                             Accession No.   19024000004    (cont)

    A control variable which indicates if the stream depth, flow,  and
    velocity are to be computed by exponential correlation equations
    nay also be used. The section length/ stream depth, stream
    velocity, waste or effluent flow at the head of the section,
    effluent COD, effluent NOD, effluent DO deficit, tributary flow at
    the head of the section, and the ratio of ultimate to 5-day BOD are
    needed*  In addition, the tributary COD, tributary NOD, the
    tributary DO deficit, water temperature, carbonaceous BOD
    deoxygenation rate, carbonaceous BOD decay rate, nitrogenous  BOD
    decay rate, reaeration rate, algal oxygen rate, benthic oxygen
    demand, the carbonaceous and nitrogenous bank loads, and the
    altitude above sea level are required.
(OUT)  Output of model: Reports produced by the SNSIM program include
    the input parameters for each reach, as well as converted reaction
    rates, section numbers, section names,  distance downstream, CBOD,
    NBQD, DO, flow, deficit components, and the total deficit for each
    reach.
(CSR)  Computational System Requirements: The SNSIM/1 is written  in
    FORTRAN IV for use on the IBM 370/155 in a 16K area of core
    storage*  It nay also be modified for compatibility with the  IBM
    1130 (SNSIN/2).  At least one programmer or environmental engineer
    with experience in water quality modeling are needed for the  model.
(APP)  Applications of model: SNSIN has been used for various
    applications within the Environmental Protection Agency. TECHNICAL
    CONTACT} George A. Nossa and Ton O'Hare U.S. Environmental
    Protection Agency Environmental Systems Section Information Systems
    Branch 2PM-IS Management Division 26 Federal Plaza New York/  NY
    102*78 FTS 264-9850  COM 212/264-9850 Steven C. Chapra NOAA Great
    Lakes Environmental Research Laboratory 2300 hashtenaw Avenue Ann
    Arbor, Michigan 48104 FTS 378-2250  COM 313/668-2250
(HDit)  Computational system requirements - Hardware: Mainframe IBM
    370/155 ;Disc storage 16K core storage
(LNG)  Computational system requirements - Language(s) used: FORTRAN IV
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gramming }Environmental engineer with water quality model experience
(HTP)  Water Models - Type of model: Hater quality
    Hater run-off
(EffV)  environment
-------
Accession So.  19024000004    (cont)
1569

-------
                             Accession Ho.   19024000006

(DQ)  Date of Questionaire:  12-02-82
(NAM)  Name of Data Base of  Model:  Hater Quality Model
(ACR)  Acronym of Data Base  or Model:  RAR03
(NEO)  Media/Subject of Data Base or Model: Hater
(ABS)  Abstract/Overview of  Data Base or Model:  HAR03 is a computer
    program for the modeling of water quality parameters in
    steady-state multi-dimensional natural  aquatic systems*  The
    technique underlying the program is based on the Law of
    Conservation of Mass, and the program can handle up to two
    variables reacting in a  feed forward fashion with first order
    kinetics.  The computer  program from which HAR03 evolved was
    developed by Hydroscience, Inc., for the Massachusetts Hater
    Resources Commission.  HAR03 utilizes a numerical solution
    technique to a convective-diffusion equation for mass transport
    including decay and source terms.
(CTC)  CONTACTS: George A. Nossa and Tom O'Hare   U.S. EPA,
    Environmental Systems Section/  Information Sys. Branch
    Loc: 26 Federal Plaza, Hew York, NY 10278   Ph: (212) 264-9850
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 02-24-83
(CAP)  Functional capabilities of model: HAR03 is designed to model a
    number of water quality  parameters in a steady-state,
    multi-dimensional natural aquatic system.  The program has been
    constructed with the BOD-DO deficit system in mind, but with minor
    modifications the program may be used to model other variables
    which are analogous to the BOD-DO deficit system such as chlorides,
    coliform bacteria, polyphosphate-orthophosphate, etc.  HAR03 is
    capable of modeling conservative substances, single reactive
    substances, coupled reactive substances, additive coupled
    substances, estuarine coupled reactive  substances, and estuarine
    additive coupled systems.  At present the program is limited to
    simulating a system of up to 200 sections, where each section may
    have up to six interfaces.  A section may have only one interface
    to act as a boundary.
(ASM)  Basic assumptions of  model:  In an application of HAR03, it is
    assumed that the variables and parameters inputted do not vary from
    tidal cycle to tidal cycle.  The reaction coefficients are assumed
    to follow first order kinetics, and each individual segment of the
    system is assumed to be  completely mixed. An orthogonal system
    segmentation for multi-dimensional systems is used.
(IMP)  Input to model: HAR03 requires a large input data base in card
    image form. JCL cards are required, as  are cards to describe the
    general system being modeled.  The general system cards include
    data for the interface parameters, the  length, depth, temperature,
    and volume of the system.  These must be followed by specific
    constituent cards which  include data on:  the number of boundaries,
    boundary condition concentrations, photosynthetic rates, benthal
    rates and loads, and other parameters for the constituents being
    modeled.  The geometric  configuration for each section is also
    required, as well as CBOD and NBOD removal rates, deoxygenatlon
    rates and loads.
(OUT)  Output of model: Output produced by the model includes:


                             1570

-------
                             Accession No.   19024000006    (cont)

    printouts of the input system parameters,  section temperatures,
    volumes and depths, chloride boundary load, BOO rates and loads,
    correction factors, deoxygenation and reaeration rates,  and BOD-DO
    deficits for each section in the system.
(CSR)  Computational System Requirements: HAR03 has been designed  for
    an IBM System/370 computer, and it is written for a FORTRAN IV G or
    H level compiler.  The program requires approximately 184 K of
    storage, but in order to save core storage for snail systems,  HAR03
    has been compiled in three versions*   The  first version  handles a
    system of up to 50 segments and is designated HAR50; similarly,
    HAR100 and HAR200 can handle a maximum of  100 and 200 segments
    correspondingly.  The only difference between these versions is in
    the size of the arrays defined in the programs.  At least one
    programmer and environmental engineer familiar with Hater quality
    modeling are required to fulfill the  resource requirements of  the
    model.
(APP)  Applications of model: HAR03 has been used by the EPA for
    various applications. TECHNICAL CONTACT:  George A.  Nossa and Tom
    O'Hare U.S. Environmental Protection  Agency Environmental Systems
    Section Information Systems Branch 2PM-IS  26 Federal Plaza New
    York, New York 10278 FTS 264-9850  COM 212/264-9850 Steven C.
    Chapra NOAA Great Lakes Environmental Research Laboratory 2300
    tfashtenaw Avenue Ann Arbor, Michigan  48104
(HDH)  Computational system requirements  - Hardware: Mainframe IBM 370
    ;Disc storage 184K
(LNG)  Computational system requirements  - Language(s)  used: FORTRAN IV
    G or H
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gramming ;environmental engineer familiar  with water qual modeling
(HTP)  Hater Models - Type of model: Hater guality
(ENV)  Environment(s) to which model applies:  Estuary ;Lake
    ;Stream/river ;Marine
(CON)  Processes and constituents included in  model: Dissolved oxygen
    ;Eutrophication ;Salinity ^Temperature ;Hyd Quality processes
(CPL)  Complexity level of model: steady  state mass balance  ;one
    dimensional ;multi dimensiona
(REF)  References - User manuals, documentation, etc.:
    Chapra, S.C., and Moss a, G.A., Documentation for
    HAR03:  A Computer Program for the Modeling of Water Quality
    Parameters in Steady State Multi-dimensional Natural Aquatic
    Systems, U.S. Environmental Protection Agency, Region II,
    26 Federal Plaza, New York, New York, October 1974.
(CNM)  Contact naroe(s): Nossa,G.A.
(COR)  Contact organization: U.S. EPA, Environmental Systems Section,
    Information Sys. Br
(ROR)  Responsible Organization: Region II.Assistant Regional
    Administrator for Policy.
                             1571

-------
                             Accession No.  19036000101

(DQ)  Date of Questionaire: 12-02-82
(NAM)   Name of Data Base of Model: Receiving Hater Model
(ACR)   Acronym of Data Base or Model: DIURNAL
(MED)   Media/Subject of Data Base or Model: Hater
(ABS)   Abstract/Overview of Data Base or Model: As stated in the
    Instructions for Model Inventory, we have reviewed the information
    contained in the abstract on DIURNAL which was published in the
    1979 Environmental Modeling Catalogue.  He have verified the
    abstract and attach the verified copy to this page*  Also/ question
    #11 of the new EPA Form 3700-1A (8-80) is attached as requested.
    DIUPNAL is a one-dimensional (horizational plane) receiving water
    quality model.  The model represents the physical processes of
    advection and dilution and simulates receiving Hater quality
    changes in dissolved oxygen.  Coupled chemical reactions can be
    simulated, and dissolved oxygen, CBQD and MOD can be modeled.  The
    primary function of DIURNAL is to predict the diurnal fluctuations
    during periodic steady-state conditions. The model uas developed by
    Hydroscience, Inc. of Hestwood, New Jersey.
(CTC)   CONTACTS: Thomas Henry   US EPA, Region 3 Hater Division
    Loc: Curtis Bldg, 6th and Walnut Street Philadelphia, PA 19106  Ph:
    (215)
    597-8048
(CAP)   Functional capabilities of model: The DIURNAL model can be
    applied to streams and rivers under one-dimensional, steady-state
    conditions.  It allows a stream length to be analyzed with any
    number of functional segments; the number being dependent only on
    the frequency of instream characteristics changes, waste discharge
    (or withdrawal) locations and accuracy desired. Each segment,
    likewise,  can be divided into any number of functional elements,
    again dependent on desired accuracy. The following effects have not
    been included in the solution; the time variation of flow, the time
    variation of the temperature and wasterwater discharges and the
    effect of dispersion. The sources and sinks of dissolved oxygen
    considered in the model include reaeration, biochemical oxygen
    demand, nitrogenous oxygen demand, benthic oxygen demand,
    photosynthesis and respiration.  The model is best used in
    conjunction with a steady state water quality model to fix all
    parameters except respiration and photosynthesis.  DIURNAL would
    then be used to determine these two parameters on a periodic
    steady-state basis.
(ASM)   Fasic assumptions of model: The solution analysis is an
    extension of the technique based on the continuity equation for
    dissolved oxygen which includes the diurnal time-variable effect of
    photosynthetic oxygen production.  The analysis considers the
    temporal as well as spatial distributions.  The periodic extension
    of  the photosynthetic oxygen production is expressed as a Fourier
    series.
(INP)   Input to model:  Input information is basically of three types;
    initial conditions definition, individual segment characteristics
    definition and discharger information.  Initial conditions data
    Include system description (number of sections, element length,
    river mile at the head of the system) and quality description


                             1572

-------
                             Accession No.   19036000101     (cont)

    (upstream BOD,  upstream NBOD and Fourier coefficients of upstream
    DO).  The individual  segment data include the following; section
    length,  velocity,  temperature,  reaeration rate,  and  decay rates
    (carbonaceous and  nitrogenous).  Other information includes bottom
    demand,  hours of daylight,  maximum photosynthetic rate,
    respiration,  time  of  sunrise, stream flow and segment elevation.
    Discharger information includes, DO, flow, BOC and NOD.   Segment
    characteristics and discharger  information is repeated for each
    sequent  modeled.
(GUT)   Output of  model: DIURNAL produces a tabular printout  of section
    parameters and dissolved oxygen response.  The section parameters
    include; length, velocity,  temperature, flow, reaeration and decay
    rates, benthic rates  and photosynthesis and respiration  rates.   The
    DO response table  includes  hourly dissolved oxygen values, for  24
    hours, for the beginning and the end of the segment  and  any
    intermediate  point designated by the print interval.
(CSR)   Computational System Requirements: DIURNAL is coded in FORTRAN
    IV (G) and can be  run on a  digital computer uith a 40,000 word  core
    storage  capability; FORTRAN IV  (G) compiler.  Application of the
    model results !n minimal costs,  in the range of $1 - $2  per run,
    depending on  the number of  segments.  Approximately  1-man week  is
    required for  model setup and data preparation. Initial runs on  a
    companion model is necessary to establish appropriate velocities
    and rates.  Manpower  requirements include one environmental
    engineer uith a basic programming background.
(APP)   Applications of model: DIURNAL can be used on any stream where
    it is assumed that the primary  cause of the diurnal  variation of
    the dissolved oxygen is the algal oxygen production. TECHNICAL
    CONTACT: Thomas Henry (3W.A14) U.S. Environmental Protection Agency
    Region III Curtis  Building  6th and Walnut Street Philadelphia,  PA
    19106 FTS 597-8048  COM 215/597-8048
(HDW)   Computational system requirements - Hardware: Mainframe any
    digital  computer ;0isc storage  40K core
(LNG)   Computational system requirements - Language(s) used: Fortran IV
    (G)

-------
                             Accession No.  19038000913


-------
                             Accession No.   19038000913     (cont)

    referenced to the same network of channels and junctions.  The
    tidally fluctuating velocities/ flows/  and heads predicted by  the
    hydraulic model are stored on tape or disk and are the basis of the
    hydraulic inputs to the quality program.   Constit- uents  in the
    quality program are subject to the processes of advection,
    dispersion (including both eddy diffusion and disper- sion due to
    density currents)/ biological and/or chemical decay/  transfer
    between water and the atmosphere/ and transfer between water and
    the bottom sediments.  A mass balance for each con- stituent is
    performed at each junction for each time step.  The quality model
    predicts the dynamic (tine varying) constituent concentrations in
    each junction which result from a specified set of boundary
    conditions/ inflows/ waste discharges/  and diversions.  It is
    important that the time and space scales used in the  DEM
    approximate as nearly as possible the physical, tidal/ and climatic
    characteristics of the estuary.  Special attention should be paid
    to the correspondence of model net- work features with existing
    sampling stations and wastewater inputs.
           The OEM is sensitive to (1) the time step in the hydraulic
    program (stability reasons); (2) net flows; (3) residuals loading
    rates; (4) frictional resistance coefficient; (5) initial condi-
    tions if "real time" solutions are desired; and/ (6)  the  specified
    reaction kinetics and rates.
           The Dynamic Estuary Model has been run for networks with as
    many as 1300 channels and 840 junctions.   Some versions have
    modeled up to 15 constitutents.
(ASM)  Basic assumptions of model: The model assumes that vertical
    stratification is either absent or limited to relatively  small
    areas/ and it does not handle wind stress or tidal flats  exposed at
    low tide. Other hydrodynamic processes assumed negligible include
    longitudi- nal density gradients/ Coriolis acceleration/  and bottom
    slope. The instantaneous mixing of residuals discharge throughout
    June- tions is also assumed.
(IHP)  Input to model: The DEM requires a large input data base on
    disk/ tape/ and/or cards.  Parameters which need to be specified
    include headwater and tributary flows/ wastewater flows and
    loadings/ water withdrawals/ seaward tidal conditions/ channel and
    junction geometry/ bottom roughness of each channel/  constituent
    concen- trations at boundaries/ dispersion coefficients and decay
    rates for non-conservative constituents.  Physical data pertaining
    to channels and junctions can be obtained from navigational charts
    since direct measure- ments are seldom available.
(OUT)  Output of model: The model is capable of producing a wide
    variety of out- puts.  Output options available are:   (1) maximum
    and minimum flows/ heads/ and velocities, as well as net flows/
    over a tidal cycle for the model network/ (2) maximum, minimum, and
    average con- stituent concentrations for each junction over a
    complete tidal cycle (or other specified averaging interval),  <3)
    "slack water" and "snapshot" tables of constituent concentrations
    at desired time intervals throughout the simulation,  and (4)
    line-printer plots of both spatial and temporal concentration
    profiles.


                             1575

-------
                             Accession No.  19038000913    (cont)

(APP)  Applications of model: The Dynamic Estuary Model has been used
    by the SPA for the Pearl Harbor Water Quality Model development
    project. It Has originally developed by the Water Resources
    Engineers for the Division of Water Supply and Pollution Control of
    the Public Health Service, and it has been used by the Federal
    Water Pol- lution Control Adninistration (FWPCA) and by the State
    of Call- fornia.  The DEM Mas used by the Federal Water Quality
    Adainis- tration (FWQA) for water studies of the San Francisco and
    San Diego Bay estuaries/ and by the EPA for uater quality studies
    of the Delaware and Potomac estuaries.  There have been other users
    and applications of this aodel.
(HOW)  Computational systea requireaents - Hardware: Mainfraae-IBM
    370/168 ;Disc storage~130K to 400K ;Magnetic t
(LNG)  Computational systea requireaents - Language(s) used:  Fortran I?
(OSK)  Coaputational system requireaents: Operator Knowledge/Skills: Pro
    graaaing Environmental engineering with experience in  w

-------
                             Accession No.   19038000913    
-------
                             Accession  No.   19046000005

(DQ)  Date of Questionaire:  12-02-82
(NAM)  Name of Data Base of  Model:  Georgia  Dosag
(ACR)  Acronym of Data Base  or Model: GAOOSA6
(MED)  Media/Subject of Data Base or Model: Hater
(ABS)  Abstract/Overview of  Data Base or Model: A  dissolved  oxygen
    model based on the modified Streeter Phelps equation,  with  options
    for incremental runoff/  an extra non-conservative  variable/ a
    converge to set Dissolved Oxygen routine/ and  numerous waste
    inputs. The model runs on a 9845 or 9831 Hewlett Packard mini
    computer and is a user interactive  program*
(CTC)  CONTACTS: James Greenfield   Hater  Quality Standards
    Loc: EPA-Region 4 Atlanta/ GA 30365    Ph: (404) 881-4793
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 12-23-82
(CAP)  Functional capabilities of model: The model is  a  steady  state/
    one dimensional/ and one stretch model*
(ASM)  Basic assumptions of  model:  The  model is based  on the modified
    Streeter Phelps equation which predicts dissolved  oxygen deficits
    based on instream concentrations of carbonaceous and nitrogenous
    BOD and their respective reaction rates and the reaeration
    characteristics of the stream.   Inputs  are entered by modeler/
    there are no default values.
(IMP)  input to model: Haste treatment  facility effluent flow,
    carbonaceous biological  oxygen demand/  nitrogenous biological
    oxygen demand and Dissolved oxygen; Instream concentrations of
    CBOE/ NBOD/ and D.O.; and stream velocity and  flow measurements.
(OUT)  Output of model: Dissolved oxygen concentrations  along the
    modeled stream segment/  the carbonaceous biological  oxygen  demand
    and nitrogenous biological oxygen demand predicted concentrations/
    and graphs of any of the variables  in the model.
(APP)  Applications of model: Used by  the State of Georgia to set
    effluent limits for the  waste dischargers. TECHNICAL CONTACT:  James
    Greenfield Hater Quality Standards  Region IV/  EPA/ Atlanta/ GA
    30365 FTS  257-4793
(HDH)  Computational system  requirements -  Hardware: Mainframe
    Hewlett-Packard 9845 or  9831 jPrinter Thermal  80 c
(LUG)  Computational system  requirements -  Language(s) used: Basic
(OSK)  Computational system  requirements: Operator Knowledge/Skills: Kno
    iiledge of water modeling
(HTP)  Hater Models - Type of model: Hater  quality
(ENV)  Environment(s) to which model applies: Stream/river
(CON)  Processes and constituents Included  in model: Dissolved  oxygen
    ;Temperature ^Hydrology ^Hydraulics
(CPL)  Complexity level of model: steady state mass balance  ;one
    dimensional
(REF)  References - User manuals/ documentation/  etc.:
    Georgia DOSAG USER Manual
(CNM)  Contact name(s): Greenfield,J.
(COR)  Contact organization: Hater Qullty standards
(ROR)  Responsible Organization: Region IV.Hater  Management  Division.
                             1578

-------
                             Accession No.   19047000003

(DQ)  Date of Questionaire:  12-02-82
(NAM)  Name of Data Base of Model:  Multi-Source CRSTER
(ACR)  Acronym of Data Base or Model: CRSTER 2
(MED)  Media/Subject of Data Base or Model:  Air
(ABS)  Abstract/Overvie* of Data Base or Model: This model  is basically
    the same as EPA's single source CRSTER.
(CTC)  CONTACTS: Lewis H. Nagler     EPA/NOAA-Air Management Branch
    Loc: EPA Region 4 Atlanta/ GA 30365   Ph: (404) 881-4901
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-26-83
(CAP)  Functional capabilities of model: While essentially  the same in
    function as CRSTER/ CRSTER 2 will allow  separation of multiple
    emission points.
(ASM)  Basic assumptions of model:  Same as CRSTER
(INP)  Input to model: Differs from CRSTER in that distinct spacial
    coordinates can be assigned to each point of emissions.  Also/ this
    model can handle an increased number of  sources and receptors/ and
    stack data can be input in English or metric units.
(OUT)  Output of model: Basically/  the same  as CRSTER/ but stack and
    receptor coordinates can be output in a  format for use by the
    CALCOMP plotter.
(APP)  Applications of model: Same as CRSTER/ except for added
    flexibility of allowing emission source  separation.
(HDU)  Computational system requirements - Hardware: Mainframe Univac
    1110 ;Disc storage 28K core
(LNG)  Computational system requirements - Language(s) used; Fortran ¥
(ATP)  Air Models - Type of model:  Gaussian  dispersion
(OAQ)  Model reviewed and approved by OAQPS? Note: OAQPS has reviewed
    the model but has not yet approved
(PMP)  Production method of primary pollutant in model: Primary
    (emitted directly into atmosphere)
(MPR)  Process used to remove pollutant from atonosphere: Negligible
    removal
(TME)  Sample averaging time used:  less than 24 hours
(SRC)  Source of pollutant: multiple point (more than 10-20)
(AR)  Area where sample was collected:  level or gently rolling terrain.
(RNG)  Distance traveled by pollutant from source: less than 60 km
(REF)  References - User manuals/ documentation/ etc.:
    User Information for the Modified CRSTER Program
    (EPA Information Cleaning-house Files)
    Others:  Same as for CRSTER.
(CNM)  Contact name(s): Nagler/L.H.
(COR)  Contact organization: EPA/NOAA-Air Facilities Branch
(ROR)  Responsible Organization: Region I?.Air and Haste Management
    Division.
                             1579

-------
                             Accession So.   19047000004

(DQ)   Date of Questionaire:  12-02-82
(NAM)  Name of Data Base of Model:  Modified HIKAY Program
(ACR)  Acronym of Data Base or Model: MODHIWAY
(MED)  Media/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: This model is basically
    the sane as EPA's HITrfAY model.
(CTC)  CONTACTS: Lewis H. Nagler     EPA/NOAA-Air Management Branch
    Loc: EPA Region 4, Atlanta, GA    Ph: (404) 881-4901
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of fora completion: 01-26-83
(CAP)  Functional capabilities of model: SPA's HIWAY model was modified
    to allow for calculations to be made for more than one roadway at a
    time.  This allows for computation of pollutant concentra- tions
    due to intersecting roads (e.g./ intersections),
(ASK)  Basic assumptions of nodel:  Same as HIWAY
(IKP)  Input to model: Differs from HIWAY to the extent that
    coordinates for more than one roadway (and associated parameters)
    can be used.
(OUT)  Output of model: Outputs concentrations in parts per million
    (ppm), milligrams per cubic meter (mg/m(3)), and micrograms per
    cubic meter (ug/m(3)) as well as giving grid concentrations and
    road segment end points in a format suitable for a graphic plotter.
(CSR)  Computational Systea Requirements: Basically the same as HIHAY.
(APP)  Applications of model: Same as HIWAY, but allows for additional
    roadways and traffic. TECHNICAL CONTACT: Lewis H. Nagler EPA/NOAA -
    Air Management Branch EPA - Region IV/ Atlanta, GA 404/881-4901
(HOB)  Computational system requirements - Hardware: Mainframe Univac
    1110 ;Disc storage 12K Core
(LUG)  Computational system requirements - Languase(s) used: Fortran V
(ATP)  Air Models - Type of model:  Gaussian dispersion
(OAQ)  Model reviewed and approved by OAQPS? NO
(PMP)  Production method of primary pollutant  in «odel: Primary
    (emitted directly into atmosphere)
(MPR)  Process used to remove pollutant from atomosphere: Negligible
    removal
(TME)  Sample averaging time used: less than 24 hours
(SRC)  Source of pollutant: limited time
(AR)  Area where sample was collected:  level or gently rolling terrain.
(RNG)  Distance traveled by pollutant from source:  less than  60 km
(REF)  References - User manuals, documentation, etc.:
    User Information for the Modified HItfAY Program
    (EPA Information Clearinghouse files)
    Others:  Same as for HIWAY
(CUM)  Contact name(s): Nagler,L.H.
(COR)  Contact organization: EPA/NOAA-Air  Facilities Branch
(ROR)  Responsible Organization: Region I?.Air and  Waste  Management
    Division.
                              1580

-------
                             Accession No.  19048000906

(DQ)  Date of Questionaire: 12-02-82
(HAM)  Same of Data Base of Model: Non-point Runoff Model for a Rural
    Setting

-------
                             Accession No.   19048000906    (cont)

    specified or as daily loadings*
(APP)  Applications of model: EPARRB can be used in any wide area type
    non- point assessment. TECHNICAL CONTACT:  Howard A. True, Computer
    System Analyst Ambient Monitoring Section Surveillance and Analysis
    Division EPA Region IV College Station Road Athens, Georgia  30613
    FTS  250-3139   COM  404/546-3139
(HDtf)  Computational system requirements - Hardware: Mainframe any with
    greater than 120K core IBM, CDC, 01IIVAC e Printer any 132
    characters per line model ;any nodel
(LUG)  Computational system requirements - Language(s)  used: FORTRAN

-------
                             Accession Ho.   19048000907

(DQ)   Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model:  Non-point Runoff Model for a Single
    Storm Event
(ACR)  Acronym of Data Base or Model: EPAORA

-------
                             Accession No.   19048000907     (cont)

(HOW)  Computational system requirements -  Hardware:  Mainfraie Any yith
    greater than 120K core IBM, UlfI?AC CDC, e Printer Any 132
    characters per line model ?any type or  model
(LNG)  Computational system requirements -  Language(s) used:  FORTRAN
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gramming Fortran * JCL/JES ^Engineering BS
(HTP)  Mater Models - Type of model:  Water  run-off
(SNV)  Environment(s) to yhich nodel  applies: Lake jStream/river
    jNon-point Urban
(CON)  Processes and constituents included  in model:  Dissolved oxygen
    ?Eutrophication jErosion and sediment jToxi Hydrology ;aixing only
(CPL)  Complexity level of model: Simplified
(REF)  References - User manuals/ documentation/ etc.:
    True, Howard A./  "Non-Point Assessment Processes",
    April 1976/ Revised April 1977.
(CNM)  Contact name(s): of,H.A.
(COR)  Contact organization: Ambient  Monitoring Section Surveillance (
    Analysis Division
(ROR)  Responsible Organization: Region I?.Environmental Services
    Division.
                             1584

-------
                             Accession Mo.   19048000908

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model:  Reporting and Projection Planning
    Model-Point and Non-Point
(ACR)  Acronym of Data Base or Model: EPATLC
(MED)  Media/Subject of Data Base or Model:  Water ;Point and Non-point
    load manipulations
(A8S)  Abstract/Overview of Data Base or Model: EPATLC is addressed as
    Planning Model "C" of a three model group.  This model will combine
    point and non-point loads for reporting purposes and will also
    perform projections by changing treatment levels for point sources
    and land use percentages for non-point sources.  The input to this
    process which comes from NPDES permits for up to three types of
    point sources (i.e. Municipal/ Industrial and any other) and output
    from EPAURA "A" and EPARRB "BM process runs provide non-point
    information for up to five land uses.
(CTC)  CONTACTS: Howard A. True or any member of    Ambient Monitoring
    Sec/ Loc: EPA Region 4 College Station Road, Athens/ GA 30613   Ph:
    FTS: 250-3113
(STA)  Data Base status: Discontinued
(DF)  Date of form completion: 12-07-82
(CAP)  Functional capabilities of model: EPATLC was designed to provide
     a composite report of  pollutant  loads from both point and non-point
     sources  for current conditions.  The process has expanded to allow
     charges  in treatment rates for point sources and changes in land
    use for non-point  sources so that  the modification of current
     conditions provides for  a projected report being made for some
     future year.  Each parameter of  interest produces a separate
     report.  Three sets of  loads are calculated if data ranges are
     stated/  these  loads are  lowest/  highest and most probable.  The
     most  probable  load is  developed  by randomly sampling the values
     between  the input  extremes. This report shows  the relationship
     between  point  and  non- point loads and could indicate  the
     feasiblity of Advanced Waste Treatment effectivenss.
(ASM)   Basic  assumptions of  model:  This model  is a technical assistance
     process  for  simplified reporting  and projecting waste  and potential
     non-point  pollutant  loads for  an area and  its  component  sub-areas.
     The model  assumes  that required  information  is available and merely
     requires manipulation  according to changing  criteria.
(INP)   Input to  model:  The model  input requires  four  cards of  area data
     for a particular  parameter  and an unlimited  number  of  four  card
     land  unit  groups  for  this parameter.  Multiple parameter  groups can
     be  handled in  a  single machine run.
(OUT)   Output  of  model: Output  consists  of  a  single point  and  non-point
     conposite report for  each sub-area and  each parameter.  A composite
     poirt and non-point summary report is produced for  each parameter.

-------
                             Accession No.   19048000908    (cont)

    greater than 120* core IBM, ONI?AC, COC e Printer any 120 Character
    model
(LNG)  Computational system requirements - Language(s) used:  FORTRAH
(OSK)  Computational system requirements: Operator Knowledge/Skills: Exp
    erience uith statistics and random number generators. ;Pr
    Engineering BS
(WTP)  Hater Models - Type of model: Hater run-off
(EH?)  Environment(s) to which model applies: Lake ;Stream/river
    ; Non-point Drban and Non-urban
(CON)  Processes and constituents included in model: Eutrophication
    ;srosion and sediment ;Quality processes
(CPL)  complexity level of model: Simplified
(REF)  References - User manuals, documentation, etc.:
    True, Howard A., "Non-Point Assessment Processes",
    April 1976, Revised April 1977.
(CUM)  Contact nane(s): of,H.A.
(COR)  Contact organization: Ambient Monitoring Sec, S&A Oiv.
(ROR)  Responsible Organization: Region I?.Environmental Services
    Division.
                             1586

-------
                             Accession No.   19051700001


-------
                             Accession No.   19051700001    (cont)

COSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    granning ;Engineering
CWTP)  Water Models - Type of model: Water  quality
(ENV)  Environment(s) to *hich model applies:  Lake
(COR)  Processes and constituents included  in  model:  Cutrophication
    ;Temperature ;Biological effects ^Hydrology ;
(CPL)  complexity level of model: transient mass balance ;multi
    dimensional
(CNM)  Contact name(s): Connolly,J.P.
(COR) . Contact organization: Manhattan College

-------
                             Accession No.   19058000903

(OQ)  Date of Quest!onaire: 12-02-82
(NAM)  Name of Data Base of Model: TEMSTAT
(ACR)  Acronym of Data Base or Model: TEMSTAT
(MED)  yedia/Subject of Data Base or Model: Water
(ABS)  Abstract/Overview of Data Base or Model: The computer program
    TEMSTAT Is a river temperature simulation model developed for
    assessing numerous thermal loading alternatives for the Vahoning
    River (eastern border of Ohio flows through Warren and Youngstoun).
    For the program the Edinger and Geyer temperature decay equations
    were used with statistically varying inputs to compute the
    statistical distribution of temperatures at designated points along
    the river.
(CTC)  CONTACTS: Donald Schregardus  EPA, Region 5 Surveillance &
    Analysis
    Division/ Eastern District Office
    Loc: 25089 Center Ridge Road, Westlake, OH 44145 Ph:  (216) 835-5200
(STA)  Data Base status: Operational/Ongoing
(DF)  Date of form completion: 01-17-83
(CAP)  Functional capabilities of model: The model uses a one
    dimensional steady state tesperature calculation procedure
    developed by Edinger and Geyer*  Thermal loadings are input as a
    mean and standard deviation.  TEMSTAT uses a normal distribution
    random number generator to determine specific inputs  Cor each
    calculation.  Numerous repetitive stream calculations are made to
    determine the distribution of temperature In the river.
(ASM)  Basic assumptions of model: The lodel assumes heated water
    discharged to the river decays exponentially to an equilibrium
    temperature. Complete mixing of the effluent into the receiving
    stream is assumed as well as a non stratified uniform temperature
    distribution at each point in the river.  Input loadings,
    equillibrium temperatures, heat exchange, coefficients and stream
    flows are assumed to be independent variables.
(INP)  Input to model: TEMSTAT requires the mean and standard deviation
    of thermal effluent loadings, flow duration data, stream surface
    area and the mean and standard deviation of the equillibriuro
    temperature (£), and heat exchange coefficient (K).  E and K must
    be calculated by a separate program requiring hourly  meteorological
    data (air temp, wind speed, relative humidity and cloud cover).
(OUT)  Output of model: TEMSTAT outputs the statistical distribution of
    stream temperatures at selected points  in the river.   Outputs
    include maximum, minimum, mean and standard deviations of the
    calculated temperatures.  Also reported are the temperatures
    exceeded 1,5, 10 and 20 percent of the  time.
(APP)  Applications of model: TEMSTAT was used to evaluate thermal
    loading alternatives on the Mahoning River.  With some modification
    it has also used to compute temperatures in the lower Black River
    (tributary of Lake Erie, West of Cleveland) Equillibrium
    temperatures and heat exchange coefficients were determined for
    both rivers using a model developed by US Army Corp of Engineers
    and modified to fit program requirements. TECHNICAL CONTACT: Donald
    Schregardus OS EPA, Region V S&A Division Eastern District Office
    25089 Center Ridge Road, Westlake OH 44145 216/335-5200


                             1589

-------
                             Accession No.  19058000903    (cont)


-------
                             Accession No.   19058000904


-------
                             Accession No.  19058000904    (cont)

CHDIO  Computational systen requirements - Hardware: Mainframe IBM 360
    or Univac 1110 ;Disc storage Core - less t Printer medium or high
    speed ;Card reader/punch
(LUG)  Computational system requirements - Language(s) used: Fortran IV
(OSK)  Computational systea requirenents: Operator Knowledge/Skills: Eng
    ineering
(VTP)  Mater Models - Type of nodel: Hater quality
(ENV)  Environment(s) to which model applies: Stream/river
(COM)  Processes and constituents included in model: Dissolved oxygen
    ;Eutrophication ;Toxic chemicals cyanide ph Hydrology ;Quality
    processes

-------
                             Accession No.   19097000101


-------
                              Accession No.   19097000101     (cont)

     time of day  and  from  one  part  of  a city  to  another.  If  land use
     categories are not specified,  the model  assumes  that all central
     business district area  types correspond  to  the same  locale type.
     Core city areas  are assumed to be commercial.  Suburban streets are
     assumed to be commercial  if their average weekday  traffic exceeds
     10,000; otherwise the locale is taken to be residential.  The
     locale  for areas that do  not fit  specified  categories is taken to
     be rural, or unclassified. A Gaussian-plume diffusion formulation
     is used for  diffusion calculations.  The model uses  an  atmospheric
     stability algorithm derived by Ludwig and Dabbert  (1976) from the
     basic method proposed by  Pasquill (1961).   Daytime stability
     categories are based  on iiind speed and the  strength  of  the incoming
     solar radiation.
 
-------
                             Accession No.   19097000101    (cont)

(REF)  References - User manuals, documentation, etc.:
    Heffter, J.L., and Taylor, A.D., A Regional-
    Continental Scale Transport, Diffusion, and Deposition Model,
    Part I:  Trajectory Model, National Oceanic and Atmospheric
    Administration Technical Memoranda, ERL ARL-50, pp. 1-16,
    1975.
    Johnson, W.B., W.F. Dabberdt, Luduig, F.L., and Allen, R.J.,
    Field Study for Initial Evaluation of an Urban Diffusion
    Model for Carbon Monoxide, Comprehensive Report CRC and
    Environmental Protection Agency, Contract CAPA-3-68 (1-69),
    1971.
    Kircher, D.S. and Williams, M.E., Supplement No, 5 for
    Compilation of Air Pollutant Emission Factors (AP-42),
    Chapter 3 (second edition), U.S. Environmental Protection
    Agency, Office of Air Quality Planning and Standards, (OAQPS),
    1975.
    Kunselman, R., McAdams, H.T., Do«ke, C.J., and Williams, M.,
    Automobile Exhaust Emission Modal Analysis Model, EPA
    Contract 68-01-0438, Calspan Corporation, Buffalo, New York,
    1974.
    Luduig, F.L., "Urban Air Temperatures and Their Relation to
    Extra-Urban Meteorological Measurements,*1 Proceedings of the
    Semiannual Meeting of the American Society of Heating,
    Refrigeration, and Air Conditioning Engineers, (Survival
    Shelter Problems, Part II) San Francisco, pp. 40-45,
    January, 1970.
    Ludwig, F.L., and Dabberdt, W.F., Evaluation of the APRAC-
    1A  Urban Diffusion Model  for Carbon Dioxide, Final Report,
    CRC  and EPA Contract CAPA-3-68 (1-69), 1972.
    Ludvig, F.L., and Dabberdt, W.F., "Comparison of Two
    Atmospheric Stability Classification Schemes in an Urban
    Application," Journal of Applied Meteorology, 15, 1172-
    1176,  1976.
    Luduig, F.L., Johnson, W.B., Moon, A.E., and Kancuso, R.L.,
    A Practical, Multipurpose Urban Diffusion Model for Carbon
    Monoxide.  Final Report,  Coordinating Research Council  (CRC)
    Contract CAPA-3-68 and National Air Pollution Control
    Administration Contract CPA 22-69-64, 1970.
    Ludvig, F.L., and  Kealoha, J.H.S., Selecting Sites for  Carbon
    Monoxide Monitoring, Final Report, EPA Contract 68-02-1471,
    Stanford Research  Institute, Menlo Park, California,  1975.
    Mancuso, R.L., and Ludwig, F.U, User's Manual for the
     APRAC-1A Diffusion Model  Computer Program,  CRC and EPA,
    Contract CAPA-3-68 (1-69), 1972.
    Sagi,  G.,  and Campbell, L., "Vehicle Delay  at Signalized
     Intersections,"  Traffic Engineering, 1969.
     Sandys, R.C., Buder, P.A.,  and  Dabberdt, W.F., ISMAP: A
     Traffic/Emissions/Dispersion Model  for Mobile Pollution
     Sources,  prepared  for  the California Business Properties
     Association,  Hawthorne, California,  by  the  Stanford  Research
     Institution,  Menlo Park,  California, 1975.
     D.S. Department  of Transportation,  Federal  Highway


                              1595

-------
                             Accession Mo.  19097000101    (cont)

    Administration, Orban Transportation Planning, General
    Information, 1972.
tCMM)  Contact naae(s): Larson,L.

                             U-S. EPA, Region 9, Air and

-------
                             Accession No.   19102000501

(DQ)  Date of Questionaire: 12-02-82
(MAM)  Name of Data Base of Model:  Chesapeake Bay Circulation Model
(ACR)  Acronym of Data Base or Model: CBCM

-------
                             Accession No.  19102000501    (cent)

    novel numerical modeling techniques embodied in CBCM have allowed
    many time-consuming computations to be simplified at virtually no
    loss of accuracy. Those processes which CBCM is not presently able
    to simulate are:|      - systems with a strong temperature-driven
    density circulation^      - major storm and wind events^      - any
    mass constiuents which interact and are not governed by first-order
    decayt CBCM is an accurate, yet flexible and affordable, model of
    the circulation of water in Chesapeake Bay.  The latest advances in
    numerical modeling have been used, combining the produce a split-
    time/ space-staggered/ lumped-mass, finite-element numerical
    solution scheme.  New modeling techniques, such as the simulation
    of deep sub merged trenches with quasi 2-B elements, have been
    developed to meet the demands of simulating the complex Bay system
    as simply as possible without sacrificing accuracy.  The model
    structure has been designed for easy operation.  The CBCM code is
    also very understandable and easy to modify, a feature important
    when decision-making must be aided by subsequent modeling tasks to
    simulate other parameters whose motion is governed by hydrodynamic
    circulation.
(ASM)  Basic assumptions of model: To develop a 3-0 aodel of Chesapeake
    Bay which was both affordable in terras of computer costs and
    accurate in terms of hydrodynamics and mass transport calculations,
    a unique procedure was adopted.  First, the model was designed to
    handle river-bay and trench-bay connections using a linked 1-D to
    2-F, layered model which produced accurate quasi 2-D and 3-D
    representations. This provided an efficient means to model the
    complex geometric features of the Bay.  Second, numerical solution
    techniques were developed to economically approximate the boverning
    shallow water equations and conservation of mass equation.  The
    resulting solution techniques are actually the combination of four
    or five different models or modeling approaches, selected to
    develop a scheme with unusually good stability, accuracy and
    economy features.# The Chesapeakke Bay Circulation Model (CBCM) is
    comprised of two models, a hydrodynamic model and mass transport
    model,  weakly linked through an equation-of-state.  The
    hydrodynamic solution scheme is a linked quasi 2-D to 3-D/
    fixed-layered,  lumped-Bass, space- staggered, split-time finite
    element technique with tide elevations calculated at modal points,
    flow and velocities calculated at the raid-points of triangular
    cells.   The mass transport scheme is a linked quasi 2-D to 3-D,
    fixed-layered,  lumped-mass, space-staggered implicit finite-element
    technique with  concentrations calculated at nodal points.  This
    combination of  solution schemes is very stable and accurate, as
    well  as very affordable in terms of computer costs due to the
    removal of the  matrix inversions normally associated with this type
    of finite-element esturay model.   Furthermore, the lumped- mass
    approach eases  the Courant condition on the hydrodynamic time step,
    and allows a theoretically unlimited computation interval for mass
    transport simulations,  although a practical limit exists for the
    resolution of results.
CIMP)  Input to model:  Bathymetry, Salinity, Tidal Elevations, Mind
    Velocity Magnitude and Direction, Fresh Water Inflow, Atmospheric


                             1598

-------
                             Accession No.  19102000501    (cont)

    Pressure/ Current Velocities/ Turbulence, Dispersion/  Friction
    Coefficients/ Heat Source Temperatures/ Water Temperature

-------
                             Accession No.  19999999901

(DO)  Date of Questionaire: 12-02-82
(MAM)   Name of Data Base of Model: Texas Episodic Model Version 8
(ACR)   Acronym of Data Base or Model: TEM8
(MED)   Media/Subject of Data Base or Model: Air
(ABS)   Abstract/Overview of Data Base or Model: The Texas Episodic
    Model Version 8 (TEM-8) uses the steady state Gaussian plume
    hypothesis in a relatively fast FORTRAN computer program designed
    to  predict ground level, short-tern concentrations of atmospheric
    pollutants.  The Briggs plume rise and the Pasquill-Gifford-Turner
    dispersion equations are used in the «odel.  Concentrations from
    area sources are determined using the method developed by
    Gifford-Hanna. An emissions inventory and a set of meteorological
    conditions are input to the model by the user.  The TEM was
    developed by the Texas Air Control Board, Austin, Texas.
(CTC)   CONTACTS: Keith Zimmermann Texas Air Control Board Technical
    Services Division* Loc: 6330 Highway 290 East Austin, Texas 78773
    Ph: (512) 451-5711
(STA)   Data Base status: Operational/Ongoing
(DP)  Date of form completion: 01-20-83
(CAP)   Functional capabilities of model:  Concentrations for one or two
    pollutants nay be deterained for tine periods from 10 minutes to 24
    hours. The model, as supplied, may analyze up to 300 individual
    point sources and up to 50 area sources but these size limits are
    easily expanded.   Concentrations are  calculated at up to 2500
    locations in a user-defined rectilinear array of receptors. An
    automatic grid feature in the program may be used to define a grid
    that encompasses  the point of maximum concentration.  A variety of
    input and output  options are available to enhance the utility of
    the model.  Op to 24 sets of meteorological conditions may be input
    to  the model.  Exponential decay of pollutant concentration may be
    calculated as a user option.
(ASM)  Basic assumptions of model: a. Emission Rate.  The emission rate
    is constant,  b.  Mind Speed.  The pollutants are transported
    downwind at an appropriate average wind speed.  Hind speed is
    adjusted to the physical stack height,  c. Mind Shear.  There is no
    directional Hind  shear in the vertical,  d.  Plume Behavior.  The
    pluve is infinite with no plume history.   The pluae is reflected at
    the earth's surface  Mith no pollutant losses due to reaction or
    deposition at the surface,  e.  Chemistry/Reaction Mechanism.  The
    pollutants are non-  reactive  gases or aerosols and remain suspended
    in the air following the turbulent movement of the atmosphere.
    There is an option to use exponential decay of pollutants
    concentration based  upon a user input half life. f. Horizontal and
    Vertical Dispersion.   Dispersion occurring in the downwind
    direction  is  negligible compared to advection.  The concentrations
    in both the crosswind and the vertical  directions are described by
    the Gaussion  distribution about the plume centerline.   Dispersion
    coefficients  are  from Pasquill- Gifford-Turner with no additional
    adjustments being made  for  variations in  surface roughness.
    Horizontal coefficients (sigma-y)  are assumed to represent
    dispersion over a 10  minute averaging period and are  increased for
    longer averaging  times  to represent the greater  horizontal plume


                             1600

-------
                             Accession No.   19999999901    (cont)

    meander due to fluctuations in Hind direction.
(IMP)  Input to model: A. Input to the TEM-8 is as follows:  (1) Control
    parameter cards specify the input and output options grid spacing
    and orientation/ etc. (2) Scenario parameter (meteorological
    conditions) cards. (3) area source inventory cards (4)  point source
    inventory cards B. Input options: (1) Point source inventory
    parameters may be in metric or English  units. (2) Point source
    inventory may be read from cards or disk file.
{OUT)  Output of model: TEM-8 output options are: (1) list  of
    coordinates and concentrations at each  grid receptor (2) an array
    map of grid coordinates and concentrations (3) for each receptor a
    culpability list identifying the highest five major concentrations
    contributors and respective contributions (4) a list of the point
    of maximum concentration for each scenario <5) card punch output
    for input to contour plotting programs

-------
                             Accession No*  19999999901    (cont)
CROR)  Responsible Organization:  Texas Air Control Board.
                            1602

-------
                             Accession No.  19999999902

 (DQ)  Date of  Questionaire:  12-02-82
 f?iS?  ?aae of Data  Base  of  Mo^ls Texas Climatological Model Version 2
 (ACR)  Acronym of Data Base  or Model: TCM2
 (MED)  Media/Subject of Data Base or Model: Air
 UBS)  Abstract/Overview  of  Data Base or Model: The Texas
    Climatological Model  Version 2 (TCM-2) uses the steady-state
    Gaussian plume hypothesis, is a relatively fast FORTRAN computer
    program to predict ground level, long-tern concentrations of
    atmospheric pollutants.  The Briggs plume rise, the
    Pasquill-Gifford-Turner  dispersion equations, and sector averaging
    are used in this model.  Contributions from area sources are
    determined by a modification of the method developed by
    Gifford-Hanna.  An emissions inventory and a set of meteorological
    conditions are input  to  the model by the user.  The TCH was
    developed by the Texas Air Control Board, Austin, Texas.
 (CTC)  CONTACTS: Cyril Durrenbergent    Texas Air Control Board,
    Technical Services Division Section* Loc: 6330 Highway East,
    Austin, Texas 78723 Ph:  (512) 451-5711
 (STA)  Data Base status:  Operational/Ongoing
 (DF)  Date of form completion:  01-20-83
 (CAP)  Functional capabilities of model: Concentrations for one or two
    pollutants may be determined for long averaging times.  Any number
    of area and point sources may be analyzed.  Concentrations are
    calculated for up to  2500 locations in a user-defined rectilinear
    array of receptors.  Up  to 5 sets of meteorological conditions in
    the fora of a meteorlogical Joint frequency function and average
    ambient temperature may be  input to the model.  Important user
    options are exponential pollutant decay, choice of rising or final
    plume rise, choice of urban or rural dispersion,  and calibration
    with observed concentrations. A variety of other  input and output
    options are available to enhance the utility of the model.
 (ASM)  Basic assumptions of model:  A.  The emission rate is constant for
    each set of meteorological  conditions.  B.  Wind Speed - The
    pollutants are transported downwind at an appropriate average wind
    speed.  Wind speed is adjusted to physical stack  height. C.  Wind
    Shear - There is no directional wind shear in the vertical.  D.
    Plunse Behavior - The plume  is infinite with no plume history.  The
    plume is reflected at the earth's surface with no pollutant  losses
    due to reaction or deposition at the surface.  E.  Chemistry/Reaction
    Mechanisms - The pollutants are non-reactive gases or aerosols and
    remain suspended in the air following the turbulent movement of the
    atmosphere.  There is an option to  use exponential decay of
    pollutant concentration based upon  a user input half life. F.
    Horizontal and Vertical Dispersion  - The concentration in the
    vertical direction is described by  a Gaussian distribution about
    the plume centerline.   Dispersion coefficients are from
    Pasquill-Gifford-Turner with no additional adjustments being made
    for variations in surface roughness.  Horizontal dispersion is
    described by sector averaging instead of by a Gaussian
    distribution.   A meteorological joint frequency function is  used to
    describe dispersion in the  horizontal.
(I«P)   Input to model:  A.  Input to the  TCM-2 is as follows:


                             1603

-------
                             Accession No.   19999999902    (cont)

    1* Control parameter cards specify the  input and output
    options, grid spacing and orientation,  etc.
    2. Calibration factor cards*
    3. Meteorological joint frequency function value cards.
    4. Area source inventory cards.
    5. Point source inventory cards.
    6. Monitoring data cards.
    B. Input options (1) Point source inventory  parameters may be  in
    •etric or English units.  (2)  Point source inventory may be read
    from cards or disk file (3) Meteorological joint frequency function
    nay be read from cards or disk file.
(OUT)  Output of model: TCM-2 output  options are: (1) list of
    coordinates and concentration  at  each grid receptor (2) an array
    nap of grid coordinates and concentration (3) for each receptor a
    culpability list identifying the  highest five major concentration
    contributors and respective contributions (4) a list of the point
    of maximum concentration for each scenario (5) card punch output
    for input to contour plotting  programs
(APP)  Applications of model: Used by state air pollution control
    agencies* meteorological consultants and industry for:
    1. Stack parameter design studies.
    2. ^valuation of the impact of new sources or source
    modifications for permit application review.
    3. Fuel conversion studies.
    4. Monitoring network design.
    5. Control technology evaluation.
    6. Control strategy evaluation for SIP.
    7. Prevention of significant deterioration.
(ROW)  Computational system requirements -  Hardware: Mainframe
    Burroughs 6810/11 ;0isc storage  17K words ;Printer Card reader/punch
(LUG)  Computational system requirements -  Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Eng
    ineering ;Meterology, Air Pollution
(ATP)  Air Models - Type of model: Gaussian dispersion
(OAQ)  yodel reviewed and approved by OAQPS? YES
(PMP)  Production method of primary  pollutant in model: Primary
    (emitted directly into atmosphere)
(MPR)  Process used to remove pollutant from atomosphere: Combination
(THE)  Sample averaging time used: more than 24 hours
(SRC)  Source of pollutant: unlimited number of point and area sources;
    5 sets of  meteo
(AR)  Area where sample was collected: level or gently rolling terrain.
(RNG)  Distance traveled by pollutant from source: less than 60 km
(REF)  References - User manuals,  documentation, etc.:
    Texas Air Control Board, "Users Guide to the Texas
    Climatological Model**, Austin, Texas, August 1980. "Modifications
    to the Texas Climatological Model", C.  Ourrenberger, K. Zimmermann,
    B. Broberg p53 Extended Abstracts, Fifth Symposium on Turbulence,
    Diffusion, and Air Pollution,  Atlanta,  Ga.,  March, 1981.  "A
    Comparison Between Results from the TCM-2 and the CDM" C.
    Durrenberger, B. Broberg, K« Zimmermann p279 Proceedings:
    Speciality Conference on: Dispersion Modeling from Complex Sources,


                             1604

-------
                             Accession No-   19999999902     (cont)

    St. Louis, April, 1981.
(CNM)  Contact narae(s): Durrenberger,C.
(COR)  Contact organization: Texas Air Control Board,  Technical
    Services Division
(ROR)  Responsible Organization:  Texas Air  Control Board.
                              1605

-------
                             Accession Ho.   19999999903

(DQ)  Date of Questionaire:  12-02-82
(NAM)  Name of Data Base of  Model:  Storage,  Treatment,  Overflow,  Runoff
    Model
(ACR)  Acronym of Data Base  or Model:  STORK
(MED)  Media/Subject of Data Base or Model:  Water
(ABS)  Abstract/Overview of  Data Base  or Model:  The Storage,  Treatment,
    Overflow/ Runoff Model (STORM)  is  a continuous simulation model
    that provides an analysis of the quantity and quality of  runoff
    froo single (urban and/or nonurban) watersheds.  STORM coaputes
    loads and concentrations of six basic Hater  quality parameters and
    land surface erosion. The purpose  of the program is to aid in the
    sizing of storage and treatment facilities so that the quantity and
    quality of storm water runoff and  land  surface erosion say be
    controlled. The original version of the  model was completed in
    January 1973 by Water Resources Engineers, Inc. of Walnut Creek,
    California, for the Hydrologic  Engineering Center (HEC) and the
    Environmental Protection Agency.  Major  additions since then
    include the ability to compute  (or specify)  the quantity  and
    quality of dry weather flow.   The  program and its usage are
    described in the current HEC Storm Users Manual dated August 1977.
(CTC)  CONTACTS: Arlen Feldman  U.S. Army Corps  of Engineers,
    Hydrologic, En Center
    Loc: 609 Second St., Davis, CA  95616  Ph: (916) 440-2329
(STA)  Data Base status: Opertional/Ongoing
(DF)  Date of fora completion: 12-13-82
(CAP)  Functional capabilities of model: STORM provides a means for
    analysis of the quantity and quality of  runoff from single (urban
    and/or nonurban) watersheds.   The  purpose of this analysis is to
    aid in the sizing of storage and treatment facilities so  that the
    quantity and quality of  storm water runoff and land surface erosion
    may be controlled.  The  model considers  the  interaction of seven
    storm water elements (rainfall/snowaelt, runoff, dry weather flow,
    pollutant accuBulaton and washoff, land  surface erosion,  treatment
    rates, and detention reservoir  storage).  STORM computes  land
    surface erosion and loads and concentrations of six basic water
    quality parameters (suspended and  settleable solids, biochemical
    oxygen demand, total nitrogen,  orthophosphate, and total  coliform
    bacteria).  The program  is designed for  period of record  analysis
    using continuous hourly  precipitation data.   It is a continuous
    simulation model that may also be  used  for single events.  The
    aodel simulates runoff from single basins only; there is  no river
    or reservoir routing capability with which to connect the single
    subbasin results.  The HEC revised the  input and output formats of
    the program to conform to standardized  methods and made program
    modifications which include a Soil Conservation Service runoff
    curve number technique,  the use of hydrographs to define  runoff,
    pollutant accumulation in terms of pounds/acre/day, the ability to
    compute or specify quantity and quality of dry weather flow,
    specification of up to twenty land uses, and the choice of English
    or Metric units.
(ASM)  Basic assumptions of  model:  The model assumes that precipitation
    cannot be considered without the system, and a design storm can not


                             1606

-------
                             Accession No.   19999999903    (cont)

    be defined by itself/ but must be defined in the light of the
    characteristics of the storm water facilities.   The approach used
    in the STORM jnodel recognizes not only  the properties of storm
    duration and intensity, but also storm  spacing  and the storage
    capacity of the storm water system.  In this approach/ rainfall
    washes dust arid dirt and the associated pollutants off the
    watershed.  The resulting runoff is routed to the treatment-storage
    facilities where runoff greater than the treatment rate is stored
    for treatment at a later time.  If storage is exceeded/ the
    untreated excess is wasted through overflow directly into the
    receiving waters.  The magnitude and frequency  of these overflows
    are important in a storm water study/ so STORM  provides statistical
    information on washoff/ as well as overflows.  The quantity/
    quality/ and number of overflows are treated as functions of
    hydrologic characteristics/ land use/ treatment rate/ and storage
    capacity.
(INP)  Input to models Input to the model include:  job specifications/
    hourly precipitation record/ daily temperature  record/ land use
    data including runoff parameters/ pollutant accumulation and
    washoff data/ and land surface erosion  data. The hourly
    precipitation record and the daily temperature  record are available
    on magnetic tape from the National Weather Service/ Asheville/
    North Carolina.
(OUT)  Output of model: The two main types  of output are statistical
    information on the quantity and quality of washoff and overflow/
    and pollutographs for selected individual events.  The STORM
    program produces four output reports: quantity  analysis/ quality
    analysis/ pollutograph analysis/ and land surface erosion analysis.
    Input variables allow control of the level of printout which Bay be
    summary only/ all events/ and/or detailed analysis of selected
    events.  The quantity and quality reports also  include average
    annual statistics of the rainf all/snowmelt; runoff; pollutant
    washoff; and the quantity/ quality/ and frequency of overflows to
    the receiving water.  The land surface  erosion  report shows average
    annual values for sediment production and delivery to the receiving
    system.
(APP)  Applications of model: This model provides a means for analysis
    of the quantity and quality of runoff from sirgle (urban and/or
    nonurban) watersheds.  The purpose of this analysis is to aid  in
    the sizing of storage and treatment facilities so that the quantity
    and quality of storm water runoff and land surface erosion may be
    controlled.  It does not contain any river or reservoir flow
    routing. STORM has been widely used by the Hydrologic Engineering
    Center of the U. S. Army Corps of Engineers and by the
    Snviornraental Protection Agency.  The model has been linked to
    SMWM-RECEIVE.  Medina/ Duke University/ has linked STORM to his
    Simplified Continuous Receiving Hater Quality Model.
(HDtf)  Computational system requirements - Hardware: Mainframe IBM 360,
    CDC 6600/ or Univac 1108 ;0isc storage (o to process.) ;Magnetic
    tape storage or disk ;Printer 132 position lire printer
(LNG)  Computational system requirements - Language(s) used: Fortran
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro


                             1607

-------
                             Accession No,  19999999903    (cont)

    gramming ;Programming hydrologic and/or environmental
(WTP)  fcater Models - Type of model: Water run-off
(ENV)  Fnvironraent(s) to which model applies:  Non-point Urban and
    general nonurban
(CON)  Processes and constituents included in  model: Eutrophlcation
    ;Erosion and sediment ^Hydrology

-------
                             Accession No,  19999999903    (cont)

    Engineers, Davis, California, August 1977.
    Hydrologic Engineering Center "Pennypack Creek fcater Quality
    Study" Special Projects Report #79-5, OS Array Corps of
    Engineers, Davis California, November 1979. Medina, Miguel A., Jr.,
    "Simplified Continous Receiving Water Quality! Model", Proceedings
    of SWMM User Group Meeting, May 1978, Ottawa, Ontario, Canada
(CNM)  Contact name(s): Feldnan,A.
(COR)  Contact organization: O.s. Amy Corps of Engineers, Hydrologic,
    Engineer Center

-------
                             Accession No*  19999999904

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Nane of Data Base of Model: Livermore Regional Air Quality Model
 and spatial variations of
    terrain are treated.
(ASM)  Basic assumptions of model: Both of the LIRAQ models are 2-D
    horizontal models bounded on the top by a temporally and spatially
    varying inversion "lid."  Both models assume a logarithmic
    concentration profile in the vertical based on a balance of fluxes
    at the boundaries which can be different for each species. This
    vertical profile is assumed to interact uith the power law wind
    profile in determining horizontal transport.  LIRAQ-2 does not
    compensate for the effects of the vertical distribution of
    pollutants in calculating transformation by chemical reactions.
    LIRAQ-2 uses a chemical reaction mechanism of some  complexity but
    uses an approximate "lumping" schene in treating hydrocarbon
    emissions and other reactive organic species. Although developed
    uith the intention of maintaining the maximum fidelity to real
    chemical data compatible uith the model, the chemical mechanism is,
    in part, a simulation mechanism. The present version of LIRAQ-1
    assumes no chemical interactions other than a deposition velocity
    and/or exponential decay.
(IMP)  Tnput to model: Inputs for the initial set-up and calibration of
    the model include:
    1) A file specifying the topographic elevation at every grid
    point in the model domain, as uell as any map information (rivers


                             1610

-------
                             Accession No.   19999999904    (cont)

    or shore outlines/ city or station locations) to be displayed  on
    the output.
    2) Files specifying the emissions In each grid element  at  hourly
    intervals.
    3) Files giving data fields on aass consistent vertical
    (through the inversion) and horizontal  fluxes,/ inversion base
    heights (i.e. mixing depths), atmospheric transaisslvity (based on
    cloud extent)/ and horizontal and vertical eddy diffusivities.
    these files are normally supplied by a  meteorological  data
    processing code/ MASCON/ but could be provided by other processing
    routines.
    4) A file giving photodissociation rates as a function  of  solar
    zenith angle for a clear sky (LIRAQ-2 only).
    5) A file giving observed species concentrations at measuring
    stations to be used for initializing the problem.
    6) A file defining the particular problem to be run (i.e.
    title/ start time/ stop tine/ species and locations for graphical
    output, boundary conditions/ molecular  weights and specific
    emissions factors for various species).
(OUT)  Output of model: Outputs provided by the model include  the
    following:
    1) Voluminous printer files echoing all input and providing
    species concentrations at the surface and averages for  the mixed
    layer at all grid locations at every edit interval.
    2) A file containing concentrations for selected species at
    selected locations as a function of tine*
    3) A file containing information about the numerical integration
    scheme.
    4) Voluminous graphical output as described above (available from
    post-processors).#

-------
                             Accession  Ho.   19999999904    (cont)

(ATP)  Air Models - Type of model:  LIRAQ-1  (numerical  dispersion)    ;
    LIRAQ-2 (numerical reactive)
(OAQ)  Model reviewed and approved  by OAQPS? NO
(PHP)  Production method of primary pollutant in model: Primary
    (emitted directly into atmosphere);    Secondary
(THE)  Sample averaging time used:  less than 24 hours
(SRC)  Source of pollutant: Model treats emission inventory that  is
    assessed hourly and is defined  on a grid of \f 1*  or 5  km.
(AR)  Area where sample was collected:  complex: rough  terrain close to
    body  of water or in valley
(RNG)  Distance traveled by pollutant from  source: less than 60 ka
    ;LIRAQ-1 and LIRAQ-2 can treat  from 1 to 100
(COM)  Processes and constituents included  in model: LIRAQ-1 ;LIRAQ-2
(REF)  References - User manuals, documentation, etc.:
    MacCracfcen, M.C., et al. "The Live more Regional
    Air Quality Model: Concept and  Development," J. Appl.
    Meteorol., 17, 254-272, 1978.
    MacCracken, M.C., et al.. User's Guide  to the LIRAQ
    Model: An Air Pollution Model for the San Francisco Bay Area,
    Laurence Livermore Laboratory,  Livermore, California, December
    1975.
    Duewer, U.H., et al. "The Livermore Regional Air Quality
    Model: II. Verification and Sample  Application in  the San
    Francisco Bay Area," J. Appl. Mateorol., 17, 273-311,
    1978.
    Duever, H.H., et al. "Livermore Regional Air Quality Model
    (LIRAQ) Transfer to EPA" Laurence Livermore Laboratory Report
    OCRL-52864, 1980 (available from NTIS).  Also to be published
    by EPA.
    ABAC, et al "Application of Photochemical Models:  Volume I:
    The Use of Photochemical Models in  Urban Ozone Studies"
    EPA Report 450/4-79-025, 1979.  Penner,  J.E. and J.J. Walton,  Air
    Quality Model Update, Laurence Liveraore National  Laboratory
    report, UCID-19300, January 1982.
(ROR)  Responsible Organization:  Laurence Livermore Laboratory.
                             1612

-------
                             Accession No,   19999999905

(DQ)  Date of Questionaire: 12-02-82
(HAM)  Name of Data 3ase of Model:  One-Dimensional Groundwater Mass
    Transport Model
CACR)  Acronym of Data Base or Model: GWMTMI
(MED)  Media/Subject of Data Base or Model:  Water
(ABS)  Abstract/Overview of Data Base or Model: G&MTMl is a
    deterministic/ one-dimensional/ unsteady-state/ analytical model
    which simulates constituent concentrations in groundwater systems*
    It is based on the convective-dispersive mass transport equation
    modified for first order decay.  The analytical solution is based
    on £ semi- infinite medium with the following surface boundary
    condition: C - Cexp (-ot); this allows the surface concentration
    to be constant or exponentially varying (e.g./ through dilution
    processes).  It is typically applied in case of vertical
    infiltration of uasteuaters.  The soil  may be saturated or
    unsaturated (provided the moisture content is constant); the
    vertical seepage velocity must be constant.
(CTC)  CONTACTS: Prof. Robert W. Cleary  Princeton Assoc.
    Loc: P.O. Box 2010 Ph: (609) 924-4163
    Loc: Princeton/ N.J. 08540
(STA)  Tata Base status: Operational/Ongoing
(OF)  Date of form completion: 01-17-83
(CAP)  Functional capabilities of model: The program is user-oriented
    requiring no previous FORTRAN experience.  Its digital output is in
    matrix form giving concentration versus distance at given times or
    concentration versus time at given distances.  It accounts for
    advection/ dispersion and first order decay.
(ASM)  Basic assumptions of model:  The model assumes a homogeneous soil
    and a constant seepage velocity.  The constant seepage velocity
    requirement is net under steady/ saturated conditions or steady/
    constant moisture content/ unsaturated  conditions.
(INP)  Input to model: Data is inputted as  FORTRAN statements.  The
    model requires only four pieces of data:  the dispersion
    coefficient/ the kinetic decay constant/ the seepage velocity and
    the surface constant (if the surface concentration is not constant).
(OUT)  Cutput of model: Concentrations are  printed out at any number of
    specified (read in as data cards) space and time positions. It is a
    very simple model to operate.
(APP)  Applications of model: The model was developed for the
    Nassau-Suffolk Regional Planning Board  (Lee Koppelraan/ Executive
    Director) as part of a large 208 project.  It was applied to
    wastewater recharge basins where the depth to water was about 30
    feet. It has been distributed widely through short courses dealing
    with groundwater pollution and has found similar applications
    throughout the country.
(HDH)  Computational systea requireaents -  Hardware: Mainframe IBM
    360/91; also minicomputer using less than 100K Disc storage 100K
    core storage
(LNG)  Computational system requirements -  Language(s) used: Fortran IV
(OSK)  Computational system requirements: Operator Knowledge/Skills: non
    e/ 1/2 hour learning time
(WTP)  V'ater Models - Type of model: Ground water


                             1613

-------
                             Accession Mo.   19999999905    (cont)

(CPL)  Complexity level of model:  one dimensional
(REF)  References - User manuals,  documentation,  etc.:
    Cleary, R.M., Final 208 Report to the Nassau-
    Suffolk Regional Planning Board, flauppauge,  Ne« York,
    December, 1977.
(CHM)  Contact narae(s): Cleary,P.R.
(COR)  Contact organization: Princeton Assoc.
(ROR)  Responsible Organization:  Princeton Associates.
                             1614

-------
                              Accession  No.   19999999906

 (DQ)  Date of  Questionaire:  12-02-82
 (NAM)   Name  of Data  Base  of  Model:  Two-Diraensional  Grounduater Mass
    Transport  Model
 (ACR)   Acronym of  Data Base  or  Model: GHMTM2
 (MED)   Vedia/SubJect of Data Base or Model:  Water
 CABS)   Abstract/overview  of  Data Base or  Model:  GKMTM2 is based on an
    analytical solution to the  unsteady-state,  convective-dispersive
    mass  transport equation  which describes  the  concentration
    distribution in  two-dimensional groundwater  systems.  The model
    accounts for advection,  dispersion  in two dimensions, first order
    decay and  an exponentially  decaying,  Gaussian boundary condition.
    The model  can  be used as an excellent test of available two-
    dimensional, unsteady-state, numerical models;  the degree of
    numerical  models; the degree of numerical dispersion and
    oscillations for different  numerical  solution schemes can be easily
    determined.  In  addition to exactly checking numerical models, this
    Gaussian boundary condition model is  a valuable  tool, in itself,
    for estimating the two-  dimensional (areal or vertical
    cross-section) concentration pattern  doungradient from sanitary
    landfills, wastevater lagoons or other groundwater pollution
    sources.
 (CTC)   CONTACTS: Prof. Robert w. Cleary  Princeton  Assoc.
    Loc:  P.O.  Box  2010 ph: (609) 924-4163
    Loc:  Princeton,  New Jersey  08540
 (STA)   Data Base status:  Operational/Ongoing
 (DF)  Date of  form completion:  01-17-83
 (CAP)   Functional  capabilities  of model:  The time-varying Gaussian
    boundary condition is general allowing any variance, peak
    concentration  and center  location.  The exponential decay
    multiplier may be used or onitted.  The groundwater aquifer can be
    any size.
 (ASM)   Basic assumptions  of  model:  The model is  applicable where there
    is  a  uni-directional, constant  seepage velocity  and the dispersion
    coefficients (longitudinal  and  lateral) are constants.  This
    presumes steady, horizontal flow in the homogeneous aquifer.
 (IMP)   Input to model: System parameters  are inputted as FORTRAN
    statements in  the main program.   Space and tine positions where
    concentration  predictions are desired are inputted as data cards.
    The program is user-oriented requiring the punching of less than 10
    cards for  parametric  information.
 (APP)   Applications  of model: The model  was developed for the
    Nassau-Suffolk Regional Planning Board (Lee Koppleman, Executive
    Director) as part of  a large 208 project.  It was applied to
    simulate the two-dimensional chloride distribution doungradient
    from the Babylon sanitary landfill.   It was also used to check the
    numerical accuracy of several  solution schemes of two- dimensioanl,
    numerical models of groundwater  quality.   It has been distributed
    widely through short courses dealing with groundwater pollution and
    has been used principally to simulate leachate plumes from
    landfills and check the accuracy of  two-dimensional,  numerical
    models.
(HOW)   Computational  system requirements - Hardware: Mainframe IBM


                             1615

-------
                             Accession No.   19999999906    (cont)

    360/91; also mini computer using less than 100  Disc storage 10OK
    core storage.
(LUG)  Computational system requirements -  Language(s)  used:  Fortran IV
(OSK)  Computational system requirements: Operator  Knowledge/Skills: Non
    e; learning tine 1/2 hour
(HTP)  Water Models - Type of model: Ground water
(CPL)  Complexity level of model:  aulti dimensional
(REF)  References - User manuals,  documentation,  etc.:
    Cleary/ R.W., Final 208 Report to the Nassau-Suffolk
    Regional Planning Board, Hauppauge, New York, December 1977.
(CUM)  Contact naroe(s): Cleary,P.R.
(COR)  Contact organization: Princeton Assoc.
(ROR)  Responsible Organization:  Princeton  Associates.
                             1616

-------
                             Accession No.  19999999907

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Name of Data Base of Model: National Residuals Discharge
    Inventory
(ACR)  Acronym of Data Base or Model: NRDI
(MED)  Media/Subject of Data Base or Model: Water ;Industry/econoraic
(ABS)  Abstract/Overview of Data Base or Model: The NRDI is a
    quantitative assessment of residual generation and discharges
    (total suspended solids, BOD, nitrogen, phosphorous, and nutrients;
    and of residual reduction technology costs in each of 3,111
    counties or county approximations in the contiguous U.S.  Data for
    industrial, municipal, urban runoff, and non-irrigated agriculture
    sources are available  for each county.  However, the data are not
    displayed  at the county level, but rather  are aggregated for
    purposes of analysis by the Water Resources Council's 99 aggregated
    sub-areas  (ASAs), the  18 Water Resource Regions  (WRRs) and by the
    nation.  The model was developed under the auspices of the National
    Academy of Sciences, Washington, D.C.                    MM*
 (CTC)  CONTACTS: Ralph A.  Luken U.S. EPA, Planning  and Management ,
    Office of  Policy Analysis* Loc:  401 M  Street, S.K. hashington, D.C.
    20460   Ph:  (202) 382-5490
 (STA)  Data Base status: Operational/Ongoing
 (DF)   Date of  form  completion: 01-21-83
 (CAP)  Functional capabilities of  model:  The  NRDI is a series  of
    FORTRAN programs and data bases  which provide estimates  of cu"ent
     and projected discharges of wastes  (total  suspended solids, BOD,
     nitrogen  and phosphorus) to  surface  waters,  and Capital  and
     operation  and maintenance costs  of  treatment  facilities. The  model
     estimates  pollutant  discharges and  costs  by  industrial  or  municipal
     facility  for approximately  40,000  point-source  discharges, and  by
     cou^ti for urbln"storm runoff'and  non-irrigated agriculture.  These
     detailed  estimates  are then  aggregated as desired.  Discharges  and
     costs are  estimated  for  conditions of (1)  no  control,  (2)  controls
     in place  in  1973,  (3)  1977  standards, and (4)  1983 standards. The
     NRDI  allows  for an  evaluation of policy alterna*ives  *°,!?!„»?;"
     application  of  residual  reduction technologies  to  legislatively
     defined  (P L  92-500)  point  sources.   These policies "fleet
     alternatives  where  in  a given ASA or WRR, achievement of the  1983
     effluent limitations would  not make a significant  improvement in
     t"al residual  reactions  and ambient water quality,  and where  a
     given level  of residual reduction could be achieved at a lower  cost
     without the uniform application of residual reduction technology to
     point sources.
     and discharge residuals, (2) a system for
     increased industrial and population growth, J^) an index of
                               1617

-------
                             Accession No.   19999999907    (cont)

    discharges,  discharge and cost estimates are based on simulation of
    specific end-of-pipe technologies for discharge reduction.
    Discharge conditions in 1973 as veil as 1977 and 1983 standards are
    estimated for specific industrial facilities or industry  subgroups.
    For municipal facilities, the 1974 EPA  Heeds Survey is used.   For
    urban runoff, required treatment is estimated based on work done
    for the National Commission on Water Quality; for non-irrigated
    agriculture,  information from the 1967  Conservation Needs Inventory
    is used.
(IMP)  Input to  model:  Major inputs to the  NRDI  include the EPA Needs
    Survey, the  Conservation Needs Inventory,  County Business Patterns,
    City-County  Data Book, and Census data.  A detailed industrial
    source inventory was developed for the  model.  Thus, the  model
    contains information on identifiable point and areal source
    residual generating activities which cover most uaterborne  residual
    generating activities.  Information included about these
    activities,  where appropriate and available, are location of
    activity, measures  of production (physical output, employees,  land
    area, or population), type of production process, and current
    residual reduction  technologies being used.
(OUT)  Output of model: Outputs are produced by county-aggregate unit,
    and source category or subcategory.  A  variety of alternative
    policies can be selected for solution in the NRDI.  These policies
    include both uniform and non-uniform abatement policies and can
    simulate controls on areal as veil as point sources.  The outputs
    from each policy alternative are: residual generation, residual
    discharge, abatement costs/ and residuals dilution index.  The
    basic policies used to date are discussed below:
    1)  No control - This policy estimates  residuals discharge
    if no control technology is used.
    2)  1973 controls - This policy estimates discharge and
    costs based  on control technology in place in 1973.
    3)  BPT/ST - This policy estimates effects of the 1977
    standards of the P  L 92-500:  Best Practicable Treatment  for
    industry and Secondary Treatment for municipalities.
    4)  BAT/BPVTT - This policy estimates the effects of the  1983
    standards for industry and secondary treatment for municipalities
    supplemented with tertiary facilities when requested in the EPA
    Needs Survey.
    5)  BAT/BPWT* - This policy is identical to (3) for
    industrial sources  but includes filtration for all municipalities
    not requesting treatment more stringent than secondary in the  EPA
    Needs Survey.
    6)  Non-irrigated agricultural control  - Costs and residual
    implications  of implementing practices  outlined in the 1967
    Conservation  Needs  Inventory are included.
    7)  Urban stori control - Costs and residual implications
    of one of five urban storm control strategies (combined,  seperate
    storm, and unsewered) is simulated.
    8)  Ocean discharges - Effects of discharge and costs for ocean
    counties are  excluded.  This function is used to simulate lover
    levels of treatment for ocean discharges based on using a specified


                             1618

-------
                             Accession No.   19999999907     (cont)

    set of counties.
    9)   New source performance standards -  In this  policy,
    residual discharges and costs for industrial growth  are based on
    new source performance standards {approximated  by BAT).
    10)  Limited technology - Simulation of stringent effluent
    limitation policies can be United to ASA with  relatively bad water
    quality.
    11)  Cost effective strategy - This policy used data on cost
    per quantity of residuals removed to identify cost-effective
    solutions in each ASA. Combinations of  these policy  components  can
    be combined in a single run if desired.

-------
                             Accession No.   19999999907     
-------
                             Accession No.  19999999908

(DQ)  Date of Questionaire: 12-02-82
(NAM)  Kame of Data Base of Model: Regional Emissions Projection System
(ACR)  Acronym of Data Base or Model: REPS
(MED)  Kedia/Subject of Data Base or Model: Air
(ABS)  Abstract/Overview of Data Base or Model: The REPS model is a
    series of FORTRAN and PL/I programs which utilize data on existing
    air pollution sources, projected energy use to projected emissions
    (and proxy air quality measures) for five of the criteria
    pollutants (all except oxidants and lead) for the 243 Air Quality
    Control Regions (AQCR's) in the United States.  The model Has
    originally developed by the U.S. Environmental Protection Agency;
    the revised model is available from the Energy Information
    Administration of the U.S. Department of Energy.
(CTC)  CONTACTS: William tteygandt    U.S. Department of Energy
    Loc: Washington/ DC 20461    Ph: (202) 633-8505
(STA)  Data Base status: Discontinued
(DP)  Date of form completion: 01-21-83
(CAP)  Functional capabilities of model: REPS permits the examination
    of projected emissions under changes in (1) environmental control
    policy/ (2) projected energy use/ or (3) patterns of economic
    growth.  Ambient proxy measures of air quality are based on
    emission density and population exposure.  Outputs can be generated
    in tabular form or map displays.  Forecasts can be made for any
    year from 1980-2000.
(ASM)  Basic assumptions of model: The REPS model relies on the
    National Emissions Data System (NEDS) for base year (1975) and
    estimates of future emissions from present sources.  A constant
    annual retirement rate is applied to all AQCR's and fuel-burning
    source categories.  Regionallzation of expected growth is based on
    the Department of Commerce OBERS projections/ the Energy
    information Administration's fuel use projections/ and assumptions
    concerning the expected patterns of fuel switching.
(INP)  Input to model: Major inputs are the NEDS file/ OBERS
    projections by AQCR and fuel use projections by Federal Region.
    The user May also provide information on specific synthetic fuel
    facilities and/or information on the desired environmental control
    policy.
(OUT)  Cutput of model: Projected regional residual emissions
    (pollutant tons) in map or tabular form.
(APP)  Applications of model: REPS results have been used for the
    following:
    1)  The Department of Energy report/ 1985 Air Pollution
    Emissions/ a study of the regional air emission impacts of the
    National Energy Plan.
    2)  The environmental chapter in the Energy Information
    Administrator's Annual Report to Congress/ 1978.
    3)  Environmental analysis of elements of  the proposed National
    Energy Supply Strategy under development by the Department of
    Energy. TECHNICAL CONTACT: Milliam ileygandt U.S. Department of
    Energy Washington/ D.C.  20461 FTS 633-8505   COM 202/633-8505
(HDH)  Computational system requirements  - Hardware: Mainframe IBM 370
    ;Disc storage 200K bytes


                              1621

-------
                             Accession Ho.   19999999908    (cont)

(LUG)  computational system requirements -  Language(s) used:  Fortran
    PL/1
(OSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gravning ^Engineering
(ATP)  Air Models - Type of model:  Numerical reactive
(OAQ)  Model reviewed and approved  by OAQPS? NO
(PMP)  Production method of primary pollutant in model: Primary
    (emitted directly into atmosphere)
(MPR)  process used to remove pollutant from atomosphere: Physical
(SRC)  Source of pollutant: REPS is air emissions rather than air
    quality model
(REF)  References - User manuals, documentation, etc.:
    Booz/ Allen/ and Hamilton.  Regional Emission
    Projection System—Systen Documentation.  January 1977.
    Energy Information Administration.  1977 Annual Report to
    Congress.  Volume II, April 1978.
    Pechan, E.H.  An Air Emissions  Analysis of Energy Projections
    for the Annual Report to Congress, in preparation.
    Pechan, E.H.  1985 Air Pollution Emissions.  Department of
    Energy DOE/PE-0001, Government  Printing Office, December 1977.
    0. S. Environmental Protection  Agency.   AEROS Manual Series
    Volume I:  AEROS Overview.  EPA-450/2-76-001, February 1976.
    U.S. Environmental Protection Agency.  AEROS Manual Series
    Volume II:  AEROS User's Manual.  EPA-450/2-76-029,
    December 1976.
    U.S. Environmental Protection Agency.  AEROS Manual Series
    Volume V:  AEROS Manual of Codes.  EPA-450/2-76-005, April
    1976.
    U.S. Environmental Protection Agency.  Compilation of Air
    pollutant Emission Factors.  Second Edition, AP-42, Parts A
    and B, February 1976.
(CNM)  Contact name(s): Heygandt,W.
(COR)  Contact organization: U.S. Department of Energy
(ROR)  Responsible Organization: U.S. Department of Energy.
                             1622

-------
                             Accession No.   19999999909

(DQ)  Date of Questionalre: 12-02-82
(NAM)  Name of Data Base of Model:  Agricultrual Watershed Runoff Model
, grease, total
    coliforras, fecal coliforras, NH<3>, organic nitrogen, nitrite and
    nitrate,  phosphate, orthophosphate, mercury, copper, zinc, lead,
    chromium, cadmium, and arsenic.  AGRUN  is one module of a larger
    set of compatible programs which include a runoff model (AGRUN), a
    transport model, and a receiving model, and AGRUN has an interface
    subroutine to connect it with the other two. This model uses the
    Universal soil Loss Equation to compute the suspended solids source
    loading rates, and it assumes that there is no decay of BOD or
    conversion of nitrogen forms.
(C?C)  CONTACTS: Dr. Larry Roesner   Camp Dresser & McKee Inc.
    Loc: 7630 Little River Turnpike Annandale, VA 22003   Ph: (703)
    642-5500
(STA)  Data Base status: Operational/ongoing
(DF)  Date of form completion: 01-27-83
(CAP)  Functional capabilities of model: The Agricultural Watershed
    Runoff Model has the capability to simulate stora runoff
    hydrographs and pollutographs for up to 22 hiater quality parameters
    from agricultural watersheds.  The watershed Bay be subdivided into
    as many as 200 subareas, and up to two  crop types from a list of
    five say be specified for each subarea.  Crop types include corn,
    bears, pasture, oats, and hay. The tributary drainage system may be
    subdivided into as many as 200 channels, and the system must be
    dendritic in form, cross sections aay be triangular, trapezoidal,
    or rectangular in shape.  The user has  the option of representing
    infiltration by the Horton equation alone, in which case interflow
    computations are neglected, or he may specify the additional data
    which will be used to compute the contribution to interflow to
    storm runoff. Computations of water quality can be made for up to
    22 conservative constituents whose number  is specified by the user.
    Constituents modeled include:  total suspended solids, non-
    settleable suspended solids, TDS, BOD,  COD, chlorides, S0<4>,
    grease, total coliforms, fecal coliforms,  NH<3>, organic nitrogen,
    nitrite and nitrate, phosphate, orthophosphate, mercury, copper,
    zinc, lead, chromium, cadmium, and arsenic. Only total suspended
    solids, BOD, and fecal coliforns have been calibrated for this
    model.  AGRUN has been used  to simulate the surface runoff
    hydrograph for both urban and  agricultural watersheds, and because
    it assumes no decay of BOD or conversion of nitrogen forms, the
    model should be considered for  relatively  short-term storm episodes

(ASM)  Basic assumptions of model: The  AGRUN model uses the Universal


                              1623

-------
                             Accession No.  19999999909    (cont)

    Soil Loss Equation to compute the suspended solids source loading
    rates, and Morton's equation to compute infiltration rates. An
    iterative Newton-Raphson technique is the basis for the
    determination of water depth and outflov rates.  Velocity
    computations are made on the basis that flow only occurs when the
    soil Is above field capacity.  The model assumes that there is no
    decay of BOO and that there is no conversion of nitrogen foras.
(IMP)  Input to model: The Agricultural Watershed Runoff Model requires
    a large card-image input data base.  Input data for the model fall
    into seven categories, and there are: 1) input and program control
    data/ 2) precipitation data/ 3} drainage channel specifications/ 4)
    land use hydrogeoaetric data/ 5) watershed specifications/ 6) soil
    characteristics/ and 7) output control information. For each
    watershed subarea/ the surface area/ width/ and slope must be
    specified.  For each land use type specified for each subarea/ the
    Manning n/ surface depression storage/ and Horton infiltration
    coefficients must be entered as input data. Drainage channel
    specifications must include the length/ invert slope/ and Manning
    n/ plus the appropriate cross section data. If the user wishes to
    specify the additional data which will be used to compute the
    contribution of interflow to storm runoff/ rather than by
    representing infiltration by the Horton equation alone/ the
    following data are required for each subarea:
    1) number of soil layers above the groundwater table/ 2)
    depth of each soil layer/ 3) soil permeability coefficient/
    4) soil field capacity/ 5} soil saturation level/ 6) present
    field capacity available at the beginning of the storm/ and
    7) constant baseflow from the watershed.  Constituents must
    be specified by the user.
(OUT)  Output of model: Output produced by the model includes a
    print-out of the input data/ rainfall hyetographs/ runoff
    hyetographs/ and a variety of charts representing the
    concentrations of the constituents. TECHNICAL CONTACT: Dr. Larry
    Roesner Camp Dresser & McKee Inc. Little River Turnpike Annandale/
    ?A 22003 COM 703/642-5500
(HOW)  Computational system requirements - Hardware: Mainframe Univac
    1108 ;Disc storage 520k bytes ^Printer 120
(LMG)  Computational system requirements - Language(s) used: Fortran
(QSK)  Computational system requirements: Operator Knowledge/Skills: Pro
    gramming ^Engineering
CHTP)  Water Models - Type of model: Water quality
    Water run-off
(EN?)  Environment(s) to which model applies: Stream/river >Non-point
    agricultural
(COR)  Processes and constituents included in model: Erosion and
    sediment ^Hydrology ;Hydraulics ;Quality process Eutrophication/
    Nutrients
(CPL)  Complexity level of model: transient mass balance ?one
    dimensional
(REF)  References - User manuals/ documentation/ etc.:
    Roesner/ L.A./ Zison/ S.W./ Monser/ J.R./ and Lyons/
    T.C./ Agricultural Watershed Runoff Model for the lowa-


                             1624

-------
                              Accession No.   19999999909    (cont)

    Cedar River Basins,  prepared for the Environmental Protection
    Agency, Systems  Development Branch/ Washington/ D.C., by
    Hater Resources  Engineers/  Inc./ under  contract No. 68-01-0742/
    November/ 1975.
(CNM)  Contact nane(s):  Roesner/L.
(COR)  Contact organization:  Camp Dresser & McKee Inc.
(ROR)  Fesponsible Organization: Camp Dresser and McKee/ Inc..
     .8. GOVERNMENT PRINTING OFFICE: 1983 381  082 "* 1 8
                              1625

-------