EPA REPORT NUMBER 74-SRY-l
AIR POLLUTION
EMISSION TEST
STANDARD OIL OF CALIFORNIA
El Segundo, California
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Air Quality Planning and Standards
Emission Measurement Branch
Research Triangle Park. North Carolina
-------
P.O. Box 13454UNIVERSITY STATION GAINESVILLE. FLORIDA 32604-904/372-3318 Q_
-------
SOURCE TEST REPORT
REPORT NO: 74-SRY-l
PLANT TESTED: Standard Oil Company of California
El Segundo, California
EMISSIONS FROM: Sulfur Recovery Plant
TESTOR: Environmental Science and Engineering, Inc.
Post Office Box 13454
University Station
Gainesville, Florida 32604
CONTRACT NO: 68-02-0232, Task Order No. 34
-------
TABLE OF CONTENTS
Page
1.0 INTRODUCTION 1
2.0 SUMMARY AND DISCUSSION OF RESULTS 3
3.0 PROCESS DESCRIPTION 9
4.0 LOCATION OF SAMPLING POINTS 18
5.0 ANALYTICAL PROCEDURES 21
APPENDICES
A. EMISSIONS TEST RESULTS
A-l. CALCULATIONS A-l
A-2. SULFUR COMPOUNDS BY GAS CHROMATOGRAPHY A-4
A-3. CO, C02 AND 02 BY CONTINUOUS MONITORING A-8
A-4. HYDROCARBONS AS METHANE (CH4) BY FLAME IONIZATION ... A-ll
A-5. SULFUR DIOXIDE EMISSION DATA A-l4
A-6. SOURCE TEST CALCULATIONS A-20
A-7. VISIBLE EMISSIONS A-23
A-8. NOV SOURCE EMISSIONS TEST DATA BY EPA METHOD 7 .... A-24
A
A-9. DRY MOLECULAR WEIGHT DETERMINATION - ORSAT BY EPA
METHOD 3 A-30
A-10. ODOR EMISSIONS BY EPA DRAFT METHOD (DILUTION METHOD). . A-35
A-ll. OUTLET FLOW CALCULATIONS A-39
B. FIELD DATA
B-l. SULFUR COMPOUNDS BY GAS CHROMATOGRAPHY B-l
B-2. HYDROCARBONS B-34
B-3. S02 BY EPA METHOD 6 B-35
environmental science and engineering* inc.
-------
TABLE OF CONTENTS (continued)
B-4. MOISTURE ........................ B'41
B-5. TRAVERSE POINTS .................... B-47
B-6. VISIBLE EMISSIONS ................... B-51
B-7. ODOR EMISSIONS ..................... B'66
C. LABORATORY REPORT
C-l. S02 BY EPA METHOD 6 ................... C-l
C-2. N0₯ BY EPA METHOD 7 ................... C-4
A
D. CALIBRATION STANDARDS
E. PROJECT PARTICIPANTS
environmental science and engineering, inc.
-------
1.0 INTRODUCTION
Under Section III of the Clear Air Act of 1970, as ammended, the Environ-
mental Protection Agency is charged with the establishment of standards of
performance for new stationary sources which may contribute significantly
to air pollution. A performance standard is based on the best emission
reduction systems which have been shown to be technically and economically
feasible.
In order to set realistic performance standards, accurate data on pollutant
t
emissions is normally gathered from the stationary source category under
consideration.
The sulfur recovery system at Standard Oil Company of California's El Segundo
Refinery at El Segundo, California, was designated as a well controlled
stationary source and was thereby selected by the Office of Air Quality
Planning and Standards (OAQPS) for an emission testing program. Tests were
conducted on Sulfur Recovery Unit No. 10 during March 11-13, 1974. The
tests were performed by personnel from Environmental Science and Engineering,
Inc., Gainesville, Florida, and the Environmental Protection Agency, Emission
Measurement Branch, OAQPS, Research Triangle Park, North Carolina.
The sulfur recovery system tested consists of a 150 LT/D (long tons/day) Claus
Sulfur Recovery Plant followed by a Well man-Lord tail gas treatment plant. The
Well man-Lord Unit treats the tail gas from the Claus Unit to remove additional
sulfur before the gas is released to the atmosphere. The Wellman-Lord Unit
1.
environmental science and engineering, inc.
-------
is followed by a gas reheater to aid plume rise.
Tests were conducted at a point downstream from the Wellman-Lord Unit
(prior to the reheater) and also after the reheater. The tests were
designed to determine the average emission rates during four-hour sampling
periods on each of three days. The emissions measured were: sulfur com-
pounds (hydrogen sulfide, carbonyl sulfide, carbon disulfide, sulfur dioxide),
hydrocarbons, carbon monoxide, nitrogen oxides, visible emissions and odors.
Personnel from Standard Oil of California conducted parallel tests during the
test periods. Data obtained from the parallel tests are not included in this
report.
2.
environmental science and engineering, inc.
-------
2.0 SUMMARY AND DISCUSSION OF RESULTS
2.1 A complete summary of all data collected for the three tests completed
at Standard Oil of California, El Segundo, California, is included
as Table 1. To facilitate a comparison of results, all concentrations
are presented a ppmv dry (except % dry for C02 and 02), and all
emission rates are standardized as grams per hour (gm/hr). Sample
calculations and conversions are presented in Appendix A.
2.2 Sulfur compound concentrations were determined by gas chromatography
(COS, CS2, H2S, S02, and total sulfur), and EPA Method 6 (S02).
Additional total sulfur data which was scheduled to be collected from
the Meloy Sulfur Analyzer was not obtained, due to instrument malfunc-
tion.
Sulfur dioxide concentrations obtained by EPA Method 6 varied from 215
to 363 ppmv at the outlet and from 5.9 to 21.8 ppmv at the inlet
sampling location. Average concentrations of sulfur dioxide obtained
by gas chromatography varied from 510 to 2200 ppmv at the outlet sampling
location and from 10 to 38 ppmv at the inlet sampling location. The
values obtained at the inlet are considered to be in good agreement,
especially since EPA Method 6 cannot be expected to yield accurate
results when very low concentrations are present.
The gas chromatographic value of 510 ppmv at the outlet sampling location
is biased high due to abnormal conditions which occurred during the
test. When placed in the proper perspective, the average value obtained
3.
environmental science and engineering, inc.
-------
TABLE 1.
DATA SUMMARY FOR SULFUR RECOVERY UNIT SOURCE TEST
STANDARD OIL OF CALIFORNIA
EL SEGUNDO, CALIFORNIA
tut
HIM tjtt
Onil kit
res, roj
*ll(
CO. PS-r (I) M>i (I)
to, (t)
6n QimUmnffi
ISj 15)
CsnftmrillC*
"04. pvv (7) THC. PPn (8) CU/SC' (I)
Vtlltlt
(10)
II Kirck 1174
II N.IXH 19)4
12 Kjrcll 19)4
12 turcll 19)4
1) H.IXH l))4
11 Kircn 19)4
Oulltt
Inltt
Outltt
Inltt
Outlit
Inlrl
«;CMCl (OvniT)
«V[UU (IKllT)
J'/O.O
117.1
126 S
llt.t
»»
203 7
172 0
180.4
(.4
110
4.C
101 .
10.7
11. 1
7.1
11 t
I 17
.,
1.07
7 20
1 It
t.M
1.1
«.l
1)07
..
12.1
0.8
11.4
1 It
11 1
1.1
0.0
..
00
00
0.0
0.0
00
0.0
2.8
4.1
1.1
S.i
1.1
1.8
1.)
4.6
lO.t
0.1
11.7
0 I
10.0
l.t
10.1
O.I
4S
IS
40
109
110
M
tt
78
161
S.t
lit
21.8
MI
7.4
111
11.7
mm
18
110*
It
1290*
10
11M*
11
1.6
I.I
4.1
I.I
1.7
0.11
t.s
I.O
I.I
l.t
1 1
1.4
1.4
1.1
1.4
I.I
0 1
0.1
O.I
O.I
O.I
O.I
0.1
0.1
mm
41 2
M
22.0
2210
11 1
1400
26.8
12.1
17.2
1 8
1.0
11.)
21.0
11.7
11.7
1 1
7.S
1.7
(.1
t.O
4.«
7.7
6.1
1
-
4
2t
M
1
II
14
0
"
0
0
0
*"
MSS IKISStO'. UIK. fit/lir
*..
II Hired 1974
II Km* 1974
II nircl 1974
II M.rcn 19)4
11 feixn 11)4
II Kirch 1974
AttWCC
lOClllcn
Outltt
Inlil
Outlit
Inltt
Oulltt
Inltl
(OUIUT)
(IMIT)
COI2)
1.70 IO1
1.21 10*
0 90 I01
0.11 . I0]
1 02 . IOJ
O.M 10'
1.71 IO1
0.11 > 10*
t02(4) SOj(S)
1.22 .
1 8).
1.10 >
4 64 .
1.81 .
t 41 >
1.74 >
1.96 >
10'
10?
I0«
IO2
10*
IO2
IO2
' Imt at llal'.td dl'.l. turning condition! «rt «tnon
" MnorMl conilltlon dot to l»l«r,t irounij b/.ptll Mint.
1) Or/ nomil cuilc nun/aln. Jl'C., 769 a US
2) »OIJ
4) in HO INK! 6
S) bt CrroMtUgrApH
..
1.18
2 <2
O.M
118
0 1)
8 21
0 62
.10>
104
. IO1
. io'«
I9J
10*.
..o3
C05IH
0.92 . 10'
0.91 IO2
2 » IO2
O.U * IO2
1.0 P iO2
0 28 IO2
1.11 IO2
0 SI IO1
H}S(» Ct,(t)
It 21)
1.6 91.9
7.7 211
1.1 8S.6
).) It)
«1.7 41.8
1.1 111
l.i 7).i
HID
ll.f
1.0'
S.IS
11.8
4.2*
8.43
7.M
ID2
I04.
-IO2
. 10*.
.IO1
.10*
.\ 10(
8.61 > 10* 0.71 ' 10* 12 t 10S ~
4.M > 10* 0.38 10* 1.16 10*
1.87 . 10* 1.10 10* » ' 10* "
l.M . 10* 0.41 . 10* »' ' 1B'
Hi during ttlll dv* to Iflkjgt ireund 4 6/-MU Mil*.
6) ToKI Sulfur t\ SO. (Smullui Of C.C. iul'ur Ce^owdl)
7) IH Kcixad 7 '
«) Tatil ti)Cracirx«i iivliww (CMi), t/ fl« InllttlM
9) CM trifl Kjilwx (Ollullon HUM])
U) [M Hilliod 1
-------
during the major portion of this test is around 300 ppmv which agrees
reasonably well with the value obtained by EPA Method 6. The S02
value of 2200 ppmv is based on one observation and cannot be considered
a valid number to compare against the value obtained by EPA Method 6.
The abnormal operating condition mentioned previously refers to the fact
that an emergency by-pass valve from the Claus Unit directly to the
-^outlet stack was not properly seating, thereby allowing untreated tail
gas from the Claus Unit to by-pass the tail gas treatment unit and
discharge to the atmosphere through the outlet stack.
The total sulfur results were obtained by summation of the individual
sulfur compounds as sulfur dioxide. The values obtained from the inlet
sample ranged from 13.1 to 44.2 ppmv, with an average value of 26.8 ppmv
for the three tests. The outlet sample values are not representative
due to the abnormal operating condition previously mentioned.
Hydrogen sulfide, as determined by gas chromatography, was below
detectable during the testing period.
Carbonyl sulfide concentrations ranged between 1.6 and 4.2 ppmv for
the outlet and 0.9 and 3.2 ppmv for the inlet sample. Mean values for
the three tests completed were 3.4 ppmv for the outlet and 2.3 ppmv
for the inlet.
Carbon disulfide concentrations, as determined by gas chromatography,
varied from 3.2 to 3.5 ppmv for the outlet and 1.1 to 3.4 ppmv for
the inlet samples.
5.
environmental science and engineering, inc.
-------
2.3 Carbon dioxide, carbon monoxide, and oxygen were determined by contin-
uous method (NDIR and paramagnetic) and by the Orsat Method. A compar-
ison of the results is summarized in the paragraphs which follow.
Carbon dioxide concentrations were determined by NDIR and by Orsat. The
results obtained varied from 2.97 to 3.15 percent at the outlet and
5.35 to 7.20 percent at the inlet as determined by Orsat. Carbon
dioxide values obtained by NDIR varied from 2.8 to 3.9 percent at the
outlet and 3.8 to 5.6 percent at the inlet. These values are in good
\
agreement, especailly since the Orsat is essentially a measurement
of the concentration at one point in time and the NDIR values are the
average obtained for the entire test.
Oxygen concentrations were determined by Orsat and by paramagnetic
analyzer. Average values obtained for the Orsat Method varied from
11.4 to 13.07 percent at the outlet sampling location and from 0.8
to 2.95 percent at the inlet location. Average values obtained by
the paramagnetic method ranged from 10.0 to 11.2 percent at the outlet
and 0.2 to 1.5 percent at the inlet. These values are considered
to be in reasonably good agreement.
Carbon monoxide concentrations were measured by NDIR and Orsat. The
concentrations determined by NDIR ranged from 45 to 110 ppmv at the
outlet location and from 39 to 100 ppmv at the inlet sampling location.
Carbon monoxide could not be determined by Orsat, since it is below
the applicable range of measurement by the method.
6.
environmental science and engineering, inc.
-------
2.4 Nitrous oxides were determined by EPA Method 7. The concentration of
NO varied from 9.8 to 19.3 ppmv at the outlet and 9.0 to 21.0 ppmv
A
at the inlet during the test period.
2.5 Visible emissions were determined by qualified observers in accordance
with EPA Method 9. The average visible emissions obtained for the
three tests was zero.
2.6 Hydrocarbon concentrations were determined during the tests using a
flame ionization detector. Values obtained varied from 5.0 to 8.3
ppmv at the outlet and between 4.6 and 7.5 ppmv at the inlet
sampling location.
2.7 Odor concentrations were determined according to an EPA Draft Method
(Dilution Method). The odor concentration ranged from 3 to 30
odor units per standard cubic foot (ou/scf) at the outlet and 3 to 25
ou/scf for the inlet sample. These values are calculated at the point
where the odors were non-detectable by 50% of the evaluation panel. The
values obtained at the inlet and outlet locations, respectively,
are not in good agreement. The discrepencies in agreement are probably
the result of the abnormal operating conditions during the three tests.
/The odor panel performed as well as could be expected and it should be
mentioned that the odor panel results were the first to indicate that the
by-pass valve from the Claus Unit was not operating properly.
2.8 Moisture and flow rates were determined at the inlet and outlet sampling
locations according to EPA Method 1, 2 and 4. The moisture content
of the inlet varied from 10.6 to 13.0 percent, with an average value of
7.
environmental science and engineering, inc.
-------
11.6 percent. The moisture content of the outlet ranged from 4.6
to 10.7 percent, with an average value of 7.2 percent. Flow rates for
the inlet and outlet averaged 180.4 DNM3/min and 372.0 DNM3/min,
respectively.
2.9 The overall results from the various tests (SOg, CO, C02, THC, COS,
CSo, H2S, etc.) agree as well as could be expected due to the abnormal
operating condition encountered while testing the process. The results
obtained at the inlet sampling location for the sulfur compounds are
considered to be in reasonable agreement and are probably representative
of the process. The results obtained for sulfur compounds at the outlet
location probably should not be considered as representative of the
process.
8.
environmental science and engineering, inc.
-------
3.0 PROCESS DESCRIPTION
3.1 Claus Sulfur Recovery
In petroleum refining, various processes generate "sour" gas streams
which contain not only sufficient amounts of hydrocarbons to be used
as a fuel gas, but also contain contaminants such as carbon
dioxide and hydrogen sulfide. These fuel gases are treated to remove
C02 and ^S, and in regenerating the treating solutions by steam strip-
ping "acid" gases are evolved which contain concentrated H.S and some
C02.
Most refineries recover the H2S as elemental sulfur by the Claus process
shown below:
Reheat
Reheat
Reheat
Acid Gas
To Tail Gas Sulfur
Removal Unit
Boiler Feed Water
i^ Liquid
Sulfur
Figure 1. Schematic diagram of Claus Process.
For the high concentrations of HgS usually found in refinery acid gases,
the "straight through" variation of the Claus process is used.
9.
environmental science and engineering, inc.
-------
3.2 Wellman-Lord Process - Commercial Status
The Wellman-Lord Process is licensed by Davy-Powergas, successor to
Wellman-Powergas. Several Wellman-Lord units are in operation on Claus
tail gases in the United States and Japan. A number of other units
have been contracted for. The following table summarizes their status:
Company/Location
Onstream Data
Number/Capacity of
Claus Plant. LT/D
Standard Oil of California/
Richmond, California
Kashima Oil Company/
Kashima, Japan
Toa Nenryo/Arita,
Japan
Toa Nenryo/Matsushima,
Japan
Toa Nenryo Refinery/Kawasaki,
Japan
Standard Oil of California/
El Segundo, California
Standard Oil of California
El Segundo, California
Standard Oil of California
January 1975
February 1974
October 1974
October 1974
August 1971
September 1972
January 1975
August 1974
1/290
1/180
2/150
1/80
2/200
3/150*
1/290
2/150
Richmond, California
*During EPA tests, sulfur recovery averaged 121 LT/D.
3.3 Wellman-Lord Process - Process Description
A basic flow diagram for the Wellman-Lord Process is shown as Figure 2.
Sulfur fed to the process must be in the form of SOg. Therefore,
Claus plant tail gases must be incinerated. The incinerated tail gas
10.
environmental science and engineering, inc.
-------
Figure 2. Basic flow diagram of Wellman-Lord
S02 Recovery Process.
Exit Gas
Claus Unit
Tail Gas
ABSORBER
SOLUTION
STORAGE
EVAPORATOR
CRYSTALLIZER
Condenser
Return to
Claus Unit
Separator
DISSOLVING
TANK
Figure 2. Basic Flow Diagram of Uellman-Lord S02 Recovery Process,
-------
is quenched in direct contact tower to cool the gas before entering an
absorption column. In the absorption column, the S0? reacts with lean
sodium sulfite solution to form sodium bisulfite and sodium pyrosulfite
per the following equations:
H20 + S02 + Na2S03 2NaHS04 (sodium bisulfite)
+ 3Na2S03 2Na2S04 (sodium sulfate) + N62S203 (sodium
thiosulfate)
2NaHS04 Na2s2°5 (s"°dium pyrosulfite) + H20
Side reactions which form non-regenerable sulfates and thiosulfates are:
Na SO +1/20 - ^ Na2s04 (sodium sulfate)
2Na2S03 + S03 - > Na2S04 + Na2$205
Na2S03 + S - » Na2S203 (thiosulfate)
The gas exits the absorber at 500 ppm SO, or less and is reheated to
'^^"^^^^~^~~~MII n __ _, ___ i ____ n i ! ~ jjiua^L- i ___ ,>^__ »' r\ ^ lv^ -»-*"" "~*
about 600°F before being sent to a stack. The heating protects against
condensation and resultant corrosion in the stack and also gives better
dispersion of the S02-
The rich solution from the absorber is fed to an evaporator where the
S02 is removed per the following equations:
Na2S2°5 - * S02 + Na2S03
2NaHS03 - » Na2S03 + S02 + H20
As the evaporator operates under a partial vacuum, the S02 roust be
recompressed before returning it to the inlet of the Claus reactors.
12.
environmental science and engineering* inc.
-------
The regenerated solution is withdrawn as a slurry. The undissolved
crystals are redissolved and the lean solution returned to the absorp-
tion column.
3.4 Plant Operation During Emission Measurement
Process variables were monitored during the test periods to assure that
measured emissions were representative of normal plant operation. Vari-
ables monitored were acid gas feed rates, absorber liquid flow rates,
absorber pH, absorber off gas flow rates, incinerator fuel gas and air
feed rates and incinerator temperature. During the test period all monitored
variables were very steady, except for one minor excursion in the acid gas
feed rate on 3/12 which was of short duration.
From the acid gas feed rate and HgS concentration, sulfur feed rates were
calculated:
Date Sulfur Feed, LT/D
3/11 117
3/12 90
3/13 130
The Claus plant operated near capacity (150 LT/D) despite the oil embargo,
since only one sulfur plant was being operated. Normally the plant operates
two sulfur plants at one time.
*
Corresponding process data taken during these emission tests are summarized in
Tables 2, 3 and 4. Data pending confidential determination are stored in the
confidential files of the Emission Standards and Engineering Division,
OAWPS, Research Triangle Park, North Carolina 27711.
13.
environmental science and engineering, inc.
-------
PROCESS DATA SHEET - SOCAL TEST
Emissions From Sulfur Plant Measured March 11-13, 1974
OBSERVER: C. Sedman
LOCATION: El Segundo, California
DATE: March 11, 1974
Time
Acid gas flow, MSCFH
Absorber liquid flow, GPM
(Lean Sol'n)
Absorber, pH (Rich Sol'n)
Absorber off gas, MSCFH
Fuel gas to inc., SCFH
Air to inc. , SCFH
Inc. temp., °F
1230
156
Cor
Cor
300
7500
260,000
1040
1300
156
if identic
if identic
300
7500
270,000
1100
1330
159
,1 Statu;
il Statu;
300
7500
270,000
1080
1400
150
Being E
Being [
288
7500
280,000
1020
1430
150
le termint
letermi n<
288
7500
280,000
1040
1500
159
d
:d
288
7500
280,000
1050
1530
150
288
7500
280,000
1050
1600
150
285
7500
280,000
1080
1630
150
288
7500
270,000
1100
1700
150
294
7500
270,000
mo
Sulfur Feed: 153,000 SCFH x 0.85 x 24 hr/day x 32 Ifa/mole 1V7 ,T/n
Rtif U C 1 *'' *'/*'
H2b 380 fr/mole x 2240 Ib/LT
-------
3.
PROCESS DATA SHEET - SOCAL TEST
Emissions From Sulfur Plant Measured March 11-13, 1974
O&SERVER: C. Sedman
LOCATION: El Segundo, California '
Da to: March 12, 1974
Time
>V:iei gas flow, MSCFK
Absorber liquid flow, BPD
Absorber, pH
Absorber off gas, MSCFH
luel gas to inc. , SCFH
Air to -me. , SCFH
Inc. Temp., °F
1000
114
1030
114
Confidential
Confidential
204
7200
210,000
1080
201
7200
205,000
1080
1100
126
1130
138
1200
114
1230
114
Status Being Determined
Status Being Deterrr.ined
201
7200
210,000
1100
198
7500
180,000
1120
198
7500
175,000
1140
198
7500
180,000
1130
1300
120
-
-
-
1120
1330
117
-
-
-
mo
1400
120
198
7500
180,000
1100
1430
120
195
7500
160,000
1070
1500
120
198
7500
180,000
1090
1530
120
198
7500
200,000
1100
-------
TABLE 3., Continued
PROCESS DATA SHEET - SOCAL TEST
Emissions From Sulfur Plant Measured March 11-13, 1974
OBSERVER: C. Sedman
LOCATION: El Segundo, California .
DATE: March 12, 1974
Time
Acid gsi flow, MSCFH
Absorber liquid flow, GPM
Absorber, pH
Absorber off gas, MSCFH
Fuel goJ. to inc., SCFH
Air to inc., SCFH
Inc. ter-ip. , °F
1600
120
1630
120
Confidential
Confidential
198
7500
200 ,000
1110
198
7500
200,000
mo
Status Being Determined
Status Being Determined
Sulfur Feed! 120,000 fr/hr x .83 x 24 x 32 _
(380)(2240)
83% H2S
-------
4.
PROCESS DATA SHEET - SOCAL TEST
Emissions From Sulfur Plant Measured March 11-13, 1974
OBSERVER: C. Sedman
LOCATION': El Segundo, California
DATE: March 13, 1974
Time
A-:id gc-s flow, MSCFH
Absorber liquid flow, GPM
Absorbrr, pH
Absorber off gas, MSCFH
Fuel tji.5 to inc., SCFH
Air tc inc., MSCFH
Inc. temp., CF
1200
168
Confi
Confi
300
7500
270
1070
1230
162
dential
dential
306
7500
270
1060
1300
171
Status E
Status E
303
7500
280
1070
1330
180
eing Dei
ieing Del
309
7500
280
1060
1400
171
ermined
:e mined
312
7500
290
1060
1430
168
312
7500
290
1100
1500
171
312
7500
290
1080
Sulfur Feed: 170.000 ft3/hr x 24 hr/day x 32 Ib/mole x (0.85)
(853! H2S)
380 fr/mole x 2240 Ib/LT
= 130 LT/D
-------
4.0 LOCATION OF SAMPLING POINTS
The sampling points selected for emission tests at Standard Oil of
California, El Segundo, California, are shown in Figure 3.
A point prior to the gas reheater and downstream from the Wellman-Lord
Absorber Unit was selected as the location where samples representative
of the process off gas could be obtained. Two ports were available
between the Absorber Unit and the gas reheater. The port located nearer
the Absorber Unit was selected as the sampling point and designated as
the inlet location for the tests conducted. Sample gases were obtained
at this location for the EPA Mobile laboratory (gas chromatographic
systems and hydrocarbons), sulfur dioxide, moisture, integrated bag,
carbon monoxide, carbon dioxide, oxygen, and odor analysis. The sampling
port at this point was a 2 1/2" diameter opening in the main off gas pipe.
The outlet sample location was a 2 1/2" diameter opening located approxi-
mately thirty feet from the base of the outlet stack. This point is
downstream from the gas rehsater and samples were obtained at this location
for the determination of sulfur dioxide, other sulfur compounds (gas chroma-
tographic systems in EPA Mobile Laboratory) moisture, velocity, Orsat,
and odor analysis.
The only problem encountered in the use of these points for sampling
was caused by a leaking valve in the by-pass (normally closed-see Figures. )
18.
environmental science and engineering, inc.
-------
to the reheater which effectively reduced the concentrations of sulfur
compounds monitored at the inlet location and increased the concentrations
observed at the outlet sampling point.
19.
environmental science and engineering, inc.
-------
The sampling points chosen for the emission tests conducted at Standard
Oil of California are shown in Figure 3.
To Atos|,!;erc
Existing Stainless Steel
Sanple Line
Sample
Location
Inlet Sample
Location
Two, 2j" Dia. Ports
Process Gas Inlet Fror.i
Hell.'nan-Lord Absorber
30" Oia.
1
_±1
(X- 1 ByPass (Closed)
- 1" Dia.
Port
M tfcy.
(Not"' 1 -- -Reheater
.Use) j 1 Gas Inlet
Figure 3. Schematic diagram of sampling locations,
Standard Oil of California, El Segundo,
California.
20.
environmental science and engineering, inc.
-------
5.0 ANALYTICAL PROCEDURES
A brief summary of each procedure is presented in this section.
5.1 Sampling Procedures
Sample gases were extracted from the emission source for the deter-
mination of sulfur-containing compounds using a 3/16" FEP Teflon
tubing sample line, heated and maintained at 100°C. This sample
line terminated in the dilution manifold in the EPA mobile laboratory.
Either direct or diluted sample could be withdrawn from the system as
dictated by the analytical range of the instruments. The samples
were simultaneously analyzed for total sulfur, carbon disulfide,
sulfur dioxide, hydrogen sulfide and carbonyl sulfide. FEP Teflon
parts or Teflon coated parts (including the sample pump heads) were
used throughout the system to take advantage of-the minimum reactivity
of the Teflon to low level concentrations of sulfur compounds. Figures
4, 5, and 6 show the sample dilution system in the EPA mobile laboratory
the sample handling system for CO, C02 and 02, and a flow system for
the sample from the source to the collection and analysis locations.
Sample gases for the determination of CO, C02 and 02 were obtained
from the EPA sample line and the concentrations of the gases were
determined by instruments located in a truck adjacent to the EPA
mobile laboratory. An integrated bag sample was obtained at the same
source point as the EPA sample and this sample was used for NOX analysis
and Orsat determination of CO, C02 and 02- NOX and S02 were determined
in situ in the mobile laboratories assembled by ESE.
21.
cnvironmcntali neicrtcv and engineering* inc.
-------
Probe
=0-
Filter
(glass wool)
ro
ro
Heating Sample Line-
Stack Wall
Filter
Permeation
Tube
Calibration
Gas
Diaphragm
Pump
(Heated)
TO INSTRUMENTS
,2.
10:1 10^:1 10°:1
3
- ^
t?
T
i-O
Vent
v
P
4
^ Vent
Posi
I Disp
]_. Pump
jAT (150
>-
Val
.ive
acement
cc/min. )
'ay
re
Diluent Air
Vent
Vent
Dilution Box Heated
To 100°C
£-1350 cc/min
txl ta
o o o
fc-Flowmeter
25 PSI
Clean
Dry Air
Figure 4.0. Sample Dilution System in
EPA Mobile Laboratory
-------
ro
oo
To Atmosphere
Standard
Cdllbrdlun
J-, (CO)
C- Sample Inlet
J
Atnosphcrc {-~='>
Figure 5.0. Schematic of sampling system for CO-, CO, and 02..
-------
Emission Source
ro
Swagelok
Tee
SO:
EPA
6
Heated Teflon Lines
EPA
4
r->
ESE
Truck
H20
Odor
Bag
OrsaV
NOX
B.iq
Non-Heated Lines
Pump and Dry
Gas Meter
Pump and Flowmeter
Figure 6.0. Schematic of sampling systems.
-------
5.2 Analytical Procedures for Sulfur Compounds
Sulfur compounds were measured by qas chromatography and by wet
chemical methods. The analytical methods for the various sulfur
compounds are described in the following paragraphs.
5.2.1 Sulfur compounds by Gas Chromatography
Sulfur compounds, when introduced into a hydrogen-rich flame, produce
strong luminescent emissions between 300 and 423 nm. Through the
use of a narrow band optical filter that permits transmission at
394 nrr, a flame photometric detector (FPD) can measure the chemilum-
inescent emissions produced by the $2 species and can differentiate
between sulfur containing and non-sulfur containing compounds.
Through the use of a gas chromatograph (GC) equipped with the
appropriate analytical columns, it is possible to separate and
quantify the various sulfur compounds.
Applicability of Method
The compounds of interest in emissions from sulfur recovery systems
are hydrogen sulfide (I^S), carbon disulfide (CS2), sulfur dioxide
(SOz) and carbonyl sulfide (COS).
The two GC/FPD systems available in the EPA mobile laboratory are
capable of the separation and quantitation of all of the compounds
25.
environmental science anil engineering, inc.
-------
of interest v/ith the exception that COS and I^S could not be determined
simultaneously on any one system due to the relatively small dif-
ference in the retention times and the relatively large differences
in concentration which results in the overlap of peaks. The
difficulty presented by the HgS - COS separation and determination
was overcome through the use of a scrubbing system which effectively
removes one component (I^S) from the sample. Silver wool, which
reacts readily with H^S, was installed in one of the GC systems
between the sample loop and the analytical column. Removal of the
HgS makes possible the determination of COS while the other system
determines H^S + COS. The difference between the two systems
gives the H£$ concentration.
Instrumentation and Standards
GC/FPD System - The system provided in the EPA mobile laboratory
was assembled from components available from various commercial
sources.
Sulfur Compound Permeation Tubes - Provided by EPA and gravi-
metrically calibrated by EPA personnel.
Analysis of Samples
The sample gas was extracted from the test source and diluted with
clean, dry, sulfur-free air in the dilution system. Diluted sample
was continuously flowed through the sample loop and injected at
fifteen minute intervals throughout the test. The fifteen minute
interval was selected due to the retention time of C$2.
26.
environmental science and engineering, inc.
-------
Responses obtained from each compound were compared to the
standard curve for that component and the concentrations were
determined. In the series of tests conducted, two GC/FPD
systems v/ere utilized. GC#1 was equipped with a scrubbing sys-
tem and was used for a direct determination of COS concentration.
GC#2 was used to determine S02, CS2, and H2S was determined on
GS#2 by subtracting the COS concentration found with GC#1 from
the H2S + COS concentration. The analytical methods used for
the analysis of sulfur compounds in this series of tests v/ere
the same as described in an EPA preliminary draft method entitled
"Semicontinuous Determination of Malodorus Reduced Sulfur Emis-
sions From Stationary Sources". Example calculations for the
determination of H2S by difference are given in Appendix A.
5.2.2 Titrimetric Method for the Determination of Sulfur Dioxide
Sulfur dioxide was oxidized to sulfate in the presence of hydrogen
peroxide according to EPA Method 6 as outlined in the Federal
Register. 3£, No. 59, Part II, Aguust 17, 1971. The sulfate
which was formed and collected was subsequently titrated with a
standardized solution of barium perchlorate in the presence of
thorin indicator, and the sulfur dioxide concentration was
calculated.
27.
vcianci' and engineering^ inc.
-------
5.3 Analytical Procedures for Carbon Monoxide, Carbon Dioxide and Oxygen.
Carbon monoxide, carbon dioxide and oxygen were monitored continuously
from the source during the three four-hour tests. The sample was
obtained as described in section 5.1.
Instrumentation and Standards
Carbon Dioxide - Beckman Model 315A NDIR configured for 0-5/a carbon
dioxide.
Carbon Monoxide - Beckman Model 315B NDIR configured for 0-1000 ppm
carbon monoxide.
Oxygen - Beckman Model F-3, paramagnetic oxygen analyzer capable of
measuring 0-25% oxygen.
Standard Gases - Obtained from Matheson Gas Products, Inc., Cucamonga,
California. All standards were either primary or certified and were
analyzed by Matheson Gas Products, Inc. All standards consisted of
the component of interest with the balance of the mixture as nitrogen.
Analysis of Samples
The sample gas was extracted from the test source and flowed through
the instruments. In the case of the carbon dioxide the sample was
diluted with clean, dry, carbon-dioxide free nitrogen in order to
maintain the concentration within the operating range of the instrument.
A schematic of the instrument flow system is presented as Figure 5.
Responses obtained from the instrument were displayed on a strip chart
recorder and these responses were compared to the appropriate standard
curve to obtain the concentrations of the different constitutents.
28.
environmental science and engineering^ inc.
-------
EPA Method 10 (Federal Register. 39_, No. 47, March 8, 1974) was used
as a guideline in the determination of carbon monoxide concentrations.
5.4 Determination of Hydrocarbons by Flame lonization
Hydrocarbons (as methane, CH^) were measured by a flame ionization
detector according to the instruction manual as provided by the manu-
facturer. Sample gas was obtained from the dilution system in the EPA
Mobile Laboratory and diluted as necessary to maintain the concentration
within the operating range of the instrument.
Instrumentation and Standards
Hydrocarbons - Beckman Model 400 Total Hydrocarbon Analyzer with a range
of 0 - 1000 ppm hydrocarbons as methane.
Standard Gases - obtained from Matheson Gas Products, Inc., Cucamonga,
California. The standards consisted of methane in air and concentrations
were certified and analyzed by Matheson Gas Products, Inc.
5.5 Analytical Procedure for Nitrogen Oxides
Nitrogen oxides were measured according to EPA Method 7 (Federal Register,
39, No. 47, March 8, 1974). A portion of the contents of the -integrated
bag sample was collected in an evacuated flask which contained sulfuric
acid and hydrogen peroxide. After the oxides of nitrogen had been oxidized
to nitrate, the nitrate was reacted with phenoldisulfonic acid and a spectro-
photometric method was used to determine concentration.
29.
environmental science and engineering, inc.
-------
5.6 Procedure for the Determination of Moisture
The moisture content was measured in accordance with EPA Method 4
which appeared in Federal Register, 36, No. 59, Part II, August 17,
1974.
5.7 Procedure for the Determination of Stack Gas Velocity
The stack gas velocity was determined after sample and velocity traverse
points were located. EPA Method 1 and 2 as they appeared in Federal
Register. 36, No. 59, Part II, August 17, 1974 were used for these
determinations.
5.8 Procedure for the Determination of Visible Emissions
EPA Method 9, as outlined in the Federal Register. 36_, No. 247, Part II,
December 23, 1971 was used as the guideline in the determination of
visible emissions. A certified observer was used to observe emissions
from the sample source.
5.9 Carbon Dioxide, Oxygen and Carbon Monoxide by Orsat
Orsat determinations were made on the integrated bag sample in accordance
with EPA Method 3 which appeared in Federal Register, 36_, No. 247, Part II,
December 23, 1971.
5.10 Analytical Method for Odor Emissions
The Determination of Odor Potential from Stationary Sources (Dilution
Method), an EPA draft method, was used as a guideline for the odor
emissions portion of the report. This method is based on the fact that
30.
environmental science and engineering, inc.
-------
the human olfactory sense is very perceptive to trace quantities of
odorous compounds and that by standardizing the selection of the odor
panel, methods of dilution of sample gas, etc., odor potentials may
be determined.
Selection of the Odor Panel
Students from a local high school were selected by conducting a screen-
ing test as outlined in Figure 7.0. In the screening test the potential
panel members were required to identify the odd sample in each set of 3.
Sample concentrations ranged from 1% to .001% of vanilla extract and
methyl salicylate in benzyl benzoate. Additional information on the
screening test is found in Section A-10 of Appendix A.
Collection and Analysis of Samples
The samples for odor analysis were collected in the apparatus shown in
Figure 8.0.
Analysis of Samples
The samples were collected at each site as prescribed by the project
officer. The teflon bags containing the samples were transported to
the high school by the personnel responsible for the analysis. The
samples were diluted with clean, dry, odor-free air and analyzed by
the panel on a detectable, non-detectable basis. Blank samples (clean,
dry, odor-free air) were given to the panel periodically to insure the
integrity of the odor panel procedure.
31.
environmental, science and engineering, inc.
-------
The data obtained were plotted on log probability paper and the best
line through the plotted data was determined by the method of least
squares. The odor concentration for each sample was used to calculate
the odor emission rate according to the equation E = CVA, where:
E = odor emission rate, odor units/minute
C = odor concentration, odor units/SCF
V = velocity of source, feet/minute
and A = cross-sectional area of the stack, square feet.
32.
environmental science and engineering, inc.
-------
Fjcu:-.;:_7.o_
Layout of Sciorinin Tec I
V---Vcinin,-i Lxlroa 1'.-= I'.r.-Lhyl Sulicyfllc
lili= tcnzyl
l.OS
0.5%
0.12
0.012
0.001S
©v 11 / v r> /
\iix iyi>/
o.oou;
33.
-------
Vacuum
Pressure Pump
P.ubbar T-jbir.g
Stainless Stsel
Swaga Lck
ic:t^d Tcf.cn Sarr.;
Lir.e to Probe
Rubber Gasket
Teflon Bag
Rigid Container
- -~7^*
fJ£«i
Sampling Bag Assembly
Figure 8.0
-------
A.
COMPLETE EMISSION TEST RESULTS
WITH SAMPLE CALCULATIONS
environmental science and engineering, inc.
-------
A-l CALCULATIONS
A.1.1 General Calculations
A. 1.1.1 Flow Rate
= flow rate dry in DNM3/min
QSTPD =/V,ft\ (A,ft2) (F) ( 530 VPS ^ x 2.032 x
Imin I VV" '""
\ / » a
where V = stack velocity in ft/min,
2
A = stack area in ft ,
F = fraction of dry air
Ts= stack temperature in degrees F,
.and PS= stack pressure in inches of Hg
A.1.1.2 Emission Rate in gms/hr
gms/hr = jppmv x rrr.v /mcj\l x flow ratef m p
247451 m-V \min/
u *
-------
e.g. a) on 11 March 1974 at 1422 hrs a response of 7.5 x 10"
amps was obtained for S02
b) from the calibration curve in Appendix B, the corresponding
concentration was 0.27 ppm SC^
c) The dilution factor for the sample was 100:1 and the
true concentration of S02 in the sample is 27 ppmv (wet).
A.1.2.2 Hydrogen Sulfide Determination by Difference (G.C.1)
GUI
'COS
Time, t
COS
Concentration, ppmv
GCS
Time, t
cos-
Concentration, ppmv
A-2
environmental science and engineering, inc.
-------
a. Calibration plots were prepared on GC#1 for COS and GC#2 for
H2S and COS.
b. The response for COS (icos) and for cos + H2S O'l) were deter~
mined for each injection sample.
c. The COS concentration (Ccos) was determined from the calibration
curve for GC#1 and subsequently converted to an equivalent
response for GC#2 (iCOS').
d. The equivalent COS response (icos') was subtracted from i to
determine the hLS response (i^ the hydrogen sulfide concentration (CH s) was deter-
mined from the calibration curve.
A. 1.2. 5. Total Sulfur Calculations from G.C. Data
S
total as SO
e.g. at 1522 hrs on 11 March 1974
Stotal as S02 = 45 + ° + 1'8 + 2(2'9) = 52'6 ppmv as S°2
A. 1.3. Calculations for NOX, C02, 02, CO, S02 and moisture are found in the
raw data sheets in Appendix B.
A. 1.4. Gas Chromatograph Dilution Factor
rx--, a.- r * /n r \ Concentration before dilution
Dilution Factor (D.F.) = Concentration determined after dilution
Test #1 D.F. = g^o = 11.0
Test #2 D.F. = i_ = 10.0
AVERAGE DILUTION FACTOR = 11.0 + 10.0 = 10 5
2
A-3
environmental science and. engineering, inc.
-------
A-2
SULFUR COMPOUNDS BY GAS CHROMATOGRAPHY
STANDARD OIL CO.
11 MARCH 1974
EL SEGUNDO, CALIFORNIA
Source Time
Inlet 1247
Outlet 1302
Inlet 1317
Outlet 1332
Inlet 1352
Outlet 1407
Inlet 1422
Outlet 1437
Inlet 1452
Outlet 1507
Inlet 1522
Outlet 1537
Inlet 1552
Outlet 1607
Inlet 1622
Outlet 1637
(Maximum
Inlet (Minimum
(Mean
(Maximum
utlet (Minimum
(Mean
COS, ppmv(l)
0.48
0.34
5.5
1.6
5.5
1.7
<1 .7
1.6
1.8
_
1.8
1.6
<1 .7
<1 .6
1.7
<1.6
5.5
0.48
3.2
1.7
0.34
1.6
S02, ppmv(l) H2S, ppmv(l)
16 <0.1
<0. 1
<0. 1
<0. 1
55 <0.1
<0.1
31 <0.1
<0.1
44 <0.1
<0.1
45 <0.1
<0. 1
<0. 1
<0. 1
39 <0.1
<0.1
55 <0.1
16 <0.1
38 <0.1
<0.1
<0.1
<0.1
CS2, ppmv(l)
0.60
0.37
6.7
-
2.6
1.8
1.7
-
2.0
3.5
2.9
7.7
2.0
1.6
2.0
1.6
6.7
0.60
2.5
7.7
0.37
3.2
Total S
as S02,
ppmv(l)
17.7
-
-
-
65.7
-
34.4
-
49.8
-
52.6
-
-
-
44.7
17.7
-
-
-
(1) All values reported on a dry gas basis.
A-4
environmental science and engineering, inc.
-------
SULFUR COMPOUNDS BY GAS CHROMATOGRAPHY
STANDARD OIL CO.
12 MARCH 1974
EL SEGUNDO, CALIFORNIA
Source
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Outlet
Outlet
Time
1026
1041
1056
1111
1126
1141
1156
1211
1226
1241
1256
1311
_
1340
1355
1410
1425
1440
1455
1510
1525
1540
1558
1613
1628
COS, ppmv(l)
1.8
l!7
<1 .6
1.7
<1.6
<1 .7
8.4
-------
Source Time
(Maximum
Inlet (Minimum
(Mean
(Maximum
Outlet (Minimum
(Mean
COS, ppmv(l)
3.1
1.0
1.9
8.4
0.94
4.2
S02, ppmv(l)
43
3.1
16
2600
140
510
H2S, ppmv(l) CS2, ppmv(l)
<0.1 7.6
<0.1 1.2
<0.1 3.4
<0.1 52
<0.1 1.2
<0.1 35
Total S
as S02,
ppmv(l)
49.2
9.2
22.0
2600 *
255
380
(1) All values reported on a dry gas basis
* considered non-representative
A-6
environmental science and engineering, inc.
-------
SULFUR COMPOUNDS BY GAS CHROMATOGRAPHY
STANDARD OIL CO.
13 MARCH 1974
EL SEGUNDO, CALIFORNIA
Source
Outlet
Outlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
let
tlet
Time
1213
1226
1235
1252
1307
1322
1337
1352
1405
1420
1435
1450
(Maximum
(Minimum
(Mean
(Maximum
(Minimum
(Mean
COS, ppmv(l)
1.7
-
1.5
1.4
1.4
0.88
0.72
0.42
0.74
0.84
0.77
0.55
1.5
0.42
0.91
-
-
1.7
S02> ppmv(l) h
2200
8.3
15
15
12
8.7
16
8.0
7.2
6.1
5.9
16
5.9
10
-
-
2200*
I2S, ppmv(l) C$2> ppmv(l)
<0.1 3.4
< 0.1
<0.1 1.6
<0.1 1.5
<0.1 1.5
<0.1 1.1
<0.1 0.97
-------
A-3
Carbon Monoxide (NDIR)
Carbon Dioxide (NDIR)
Oxygen (Paramagnetic)
STANDARD OIL COMPANY
11 MARCH, 1974
EL SEGUNDO, CALIFORNIA
Source
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Time
1318-1336
1336-1356
1356-1411
1411-1426
1426-1441
1441-1456
1456-1511
1511-1526
1526-1552
1552-1601
1601-1610
1610-1620
1620-1635
(Maximum
(Minimum
(Mean
(Maximum
(Minimum
(Mean
CO (ppmv)
170
70
-
55
150
205
450
70
180
60
145
120
500+
95
220
120
45
100
C02 (X)
2.8
5.0
2.9
-
3.3
5.3
3.1
5.4
3.3
5.8
3.1
-
5.9
5.8
4.3
5.4
5.9
2.8
3.5
02 (X)
10.8
1.7
10.8
1.5
10.7
1.6
11.0
0.9
10.9
2.0
10.9
1.8
11.0
2.0
0.9
1.6
11.1
10.5
11
A-8
environmental science and engineering, inc.
-------
Carbon Monoxide (NDIR)
Carbon Dioxide (NDIR)
Oxygen (Paramagnetic)
STANDARD OIL COMPANY
12 MARCH, 1974
EL SEGUNDO, CALIFORNIA
Source Time
Inlet 1057-1112
Outlet 1112-1127
Inlet 1127-1140
Outlet 1140-1155
Inlet (upset) 1155-1210
Outlet (upset) 1210-1230
Inlet (upset) 1230-1240
Outlet 1240-1255
Inlet (upset) 1255-1310
Inlet (upset) 1310-1325
Inlet (upset) 1325-1340
Outlet 1340-1355
Inlet (upset) 1355-1410
Outlet 1410-1425
Inlet (upset) 1425-1440
Outlet (upset) 1440-1455
Inlet (upset) 1455-1510
Outlet 1510-1525
Inlet 1525-1540
Outlet 1540-1600
Inlet 1600-1614
Outlet 1614-1625
(Maximum
Inlet (Minimum
(Mean
(Maximum
Outlet (Minimum
(Mean
CO (ppmv)
-
300
100
340
-
-
150
180
400
800
200
500
50
500
700
1000+
45
170
70
230
85
1000+
100
440
1000+
40
175
C02 (X)
4.9
5.8
3.8
6.9
3.6
6.7
3.8
6.5
7.0
7.0
3.5
6.9
3.8
7.1
3.4
6.4
3.3
5.9
3.2
6.0
3.3
7.6
5.6
6.6
4.9
3.1
3.7
02 (%)
1.3
11.7
1.6
12.1
1.5
11.8
1.0
11.8
1.8
1 .2
2.2
12.0
1.0
12.0
1.0
11.5
1.0
11.8
1.7
11.6
2
11.7
4.2
0.2
1.4
12.3
11.2
11.8
environmental science and engineering, inc.
-------
Carbon Monoxide (NDIR)
Carbon Dioxide (NDIR)
Oxygen (Paramagnetic)
STANDARD OIL COMPANY
13 MARCH, 1974
EL SEGUNDO, CALIFORNIA
Source
Time
CO (ppmv) C02 (%)
(%)
Outlet
Outlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet-
1205-1220
1220-1235
1235-1250
1250-1305
1305-1320
1320-1335
1335-1350
1350-1405
(Maximum
(Minimum
{Mean
(Maximum
Outlet (Minimum
(Mean
120
130
253
221
188
138
45
148
288
39
166
138
110
125
4.7
4.2
5.0
5.8
6.2
6.1
6.6
6.0
6.8
3.8
6.0
5.4
3.9
4.5
10.3
10.3
1.5
1.7
2.2
2.5
10.0
9.3
10.5
, 1.5
7.8
10.5
10
10.3
A-10
environmental science and engineering, inc.
-------
A-4
HYDROCARBONS AS METHANE (CH4) BY FLAME IONIZATION
STANDARD OIL CO.
11 MARCH 1974
EL SEGUNDO, CALIFORNIA
Source Time Maximum(l), ppmv Minimum(l), ppmv Mean(l), ppmv
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
1237
1247
1302
1317
1332
1352
1407
1422
1437
1452
1507
1522
1537
1552
1607
1622
1637
3.3
6.0
8.4
11.8
7.9
9.6
9.8
9.4
8.5
9.7
8.8
8.3
8.3
7.2
7.9
7.7
8.0
9.8
11.8
2.9
5.2
8.4
8.8
7.8
9.5
7.6
9.0
8.4
9.5
8.2
7.6
7.6
7.0
7.7
7.1
7.8
2.9
5.2
3.1
5.6
8.4
10.3
7.8
9.6
8.7
9.2
8.5
9.6
8.5
7.8
7.8
7.1
7.8
7.4
7.9
7.5
8.3
(I ) All values reported on a dry gas basis.
A-ll
environmental science and engineering, inc.
-------
HYDROCARBONS AS METHANE (CH4) BY FLAME IONIZATION
STANDARD OIL CO.
12 MARCH 1974
EL SEGUNDO, CALIFORNIA
Source Time Maximum(l), ppmv Minimum(l), ppmv Mean(l), ppmv
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Outlet
Inlet
Inlet
Outlet
1026
1041
1056
1111
1126
1141
1156
1211
1226
1241
9.4
7.9
7.8
6.8
7.0
6.0
6.5
5.9
31
6.7
7.9
31
9.4
7.4
7.2
6.3
5.9
5.7
6.5
5.7
6.1
5.6
5.6
5.9
9.4
7.6
7.4
6.5
6.8
5.8
6.5
5.8
18.8
5.0
6.2
9.7
(1) All values reported on a dry gas basis.
A-12
environmental science and engineering, inc.
-------
HYDROCARBONS AS METHANE (CH4) BY FLAME IONIZATION
STANDARD OIL CO.
13 MARCH 1974
EL SEGUNDO, CALIFORNIA"
Source
Outlet
Outlet
Outlet
Outlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
Time
1210
1215
1220
1225
1245
1250
1255
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1500
Mean(l), ppmv
5.2
4.9
4.8
4.9
4.4
4.5
4.6
4.7
4.8
4.8
4.6
4.6
4.5
4.2
4.2
4.7
4.8
4.6
4.6
4.6
4.5
4.6
4.6
4.5
4.5
4.5
4.7
4.7
4.8
4.8
4.8
4.8 -
(1) All values reported on a dry gas basis.
A-13
environmental science and engineering, inc.
-------
A-5
suiruii DIOXIU:
EMISSION DATA
(EPA Method 6)
PL A!!T ££/ " /'/ w nir. rn.
STACK 5V
p prrnvn?:' utJT?
Run Ho.
Date
Time of Serai e
Barometric Pressure, "HG
Stack pressure, "HG
, Final I'.sler R?adinq, FT3
Initial I'.eler P.eedino, FT
0
Averaae i-teter Ter:p. F
0
Averaqo Stack Tepo. F
Gas Voli.r.2 Sc:ir,pled. FT3, VSTPD
SQ2 Conc.,LB/FT3 (CSO)
S02 Cone., P. P.M. (PP:':1
i-/
3/11/74
1 :05-2 :55
30
30
lUfl .04
147,1
80
120
1.7143
1.0872/7 G
6.5682
1-7?
3/11/74
3 : 3 3 - 5 : 0 0
30
30
150. 45
149.08
80
120
1 .3472
8.559" 7
5 .1709
* VSTPD = Dry, 29.92 "HG, 70°F
VSTPD -Vrf f'^r + AH^ rl^
CSO = (7.05 x
PPM = CSO x 60^1500
VKS1U
A-14
-------
PLA!IT_
S1ACK
/// A ^t
SUU'UU D10X1 DC
EMISSION UATA
(EPA Method 6)
'v ;/,-T
Run l-!n
Date
Tim0 of ScP.olG
Barercetn'c Pressure, "HG
Steck pressure, "HG
Final f'.cter R^adina, FT3
Initial 1'etor Readinn, FT
o
Averaoe ilrter Tenp. F
o
Averaoc Stack Teno. F
Gas Voli:-.2 Sar.-.pled, R3, VSTPD
SQ2 Cone. ,LB/FT3 (C^O^
S02 Cone., P. P.M. (PP.'rt
I-/
3/ll/7'(
1 :05-2 :50
30
30
11?. 07
110.1
02
'i3n
2.00CB
6.
-------
SULI'UIJ UIOXllJu
CMISSIO:! DATA
(EPA Method 6)
PLANT
07 1, CO.
r.I, srnunnn. r/r
STACK sur.run prrpyr-py UVT-:
Run Uo.
Date
Time of Sci.'ole
Barometric Pressure, "HG
Stack pressure, "HG
Final I'.ater Reading, FT
3
Initial I'.CtGr P.eadinq, FT
o
Averaoe i-'cter Ter.ip. F
0
Average Stack Tcmo. F
Gas Yoli:-.3 Sc;n-,pled, FT3, VSTPD
SQ2 Conc.,LB/FT3 (CSO)
S02 Cone., P. P.M. (PP!rt
2-/1
3/12/74
10 :30-12:15
30
30
152.12
150.7
82
120
1.3084
3.8099." G
23 .018
2-fi
3/12/74
2:02-3:45
30
30
153.77
152.5
83
120
1.24^9
3.424T 6
20.686
* VSTFD = Dry, 29.92 "HG, 70°F
v<:TPn -VM
YSIIU - \il
'Pbar
Pstd
CSO - (7.05 x ID'5 X -^
PPM - CSO x 60-111)00
(VT-VTB)(fQ(Vr.o1n)
VA
viTsiu
A-16
-------
SULFUR D10XIDC
EMISSION DATA
(EPA Method 6)
PLANT
STACK
OTL rn.
/:/, r>^c,u;ir>nt
y 1/7177
Run l.'o.
Date
Time of Serolo
Barometric Pressure, "MG
Stack pressure, "HG
Final \-'.?i?.r RoacMno, FT3
Initial "el or Reedinn, FT3
o
Average i!?ter Te.^p. F
o
Average Stack Ter^a. F
Gas Volur.3 Sampled, FT3, VSTPD *
SQ2 Cone. ,LB/FT3 fcsO)
2 Cone. , P. P.M. (PPM
2-/
3/12/74
10 : 30-12 : 15
30
30
119.54
117 .5
50
455
2.0077
2.H20'tr? 5
170.39
2-7?
3/12/74
2 :02
30
30
122.35
120.3
Gl
470
2;094
4.2975^*5
259.63
VSTPD = Dry, 29.92 "HG, 70°F
bar
13.6
VSTPD = VH
v:>lpu U1
CSO = (7.05 x ID'5 X -L^4) (VT-VTB)(N)(Vsoln)
g-mr __ VA
VMSTD
PPM = CSO x 6041500
A-17
-------
PLAliT _;-//
SULFUR DIOXIDC
EMISSION DATA
(EPA Method 6)
rn. '-r ^"'-j- ;..r- ,
STACK .?.', "i'r '-/
Run l.'o.
Date
Time of Scr'plc
BaroT.et»"ic Pressure, "H3
Stack pressure, "MG
Final MstT Readinn, FT3
Initial ::?ier Readinn, FT3
o
Average I^ter Teiip. F
0
Averaqc Stack TCTO. F
Gas Volur.2 Senpled, FT3, VSTPD *
SQ2 Cor.c.,LB/FT3 (CSO)
SO
2 Cone. , P. P.M. (pp;.0
2 -/.
3/3 3/7i4
12:15 - 2:00
30
30
156.75
1 5 a . 7 1
31
120
2.0010
1 . 2255T D
7 . ';04:
-
'
.
* VSTPD = Dry, 29.92 "HG, 70°F
VSTPD =
viiKU -
Pbar
Pstd
"5
CSO= (7.05 x ID" X -
PPM = CSO x 6041500
(VT-VTB)(H)(Vso1n)
VA
VMSTD
A-18
-------
PLANT ZT.-I '"/ "''
SULFUR DJ OX I DC
EMISSION DATA
(EPA Method 6)
STACK
'" "'''
i'.".7":1 r,c? ?,'".*
Run It'o.
Date
Tin.s of Ser,:nlo
Baro.T.2tric Pressure, "HG
Stack pressure, "HG
Final tet>r Rsadina, FT3
3
Initial M?ior Reedinn, FT
0
Average i'rter Terr.p. F
o
Average Stack Temp. F
Gas Volur.2 Sampled, FT3, VSTPD *
SQ2 Cone. ,LB/FT3 fC50)
2 Cone., P. P.M. (PPM)
W
3/13/7't
12:15 - 2:00
30
30
1 26. E?
1 25
G2
i; 25
1 .^2'!!
j .00 2C." b
of) 2. 13
"
.
* VSTPD = Dry, 29.92 "HG, 70°F
VSTPD = VM
CSO=
PPM = CSO x 6041500
g-ml
TH
(VT-VT8)(K)(Vsoln)
VA
VMSTD
A-19
-------
A- 6
SOURCE TEST CALCULATION
PLAHT
STACK
**»***
DATE 3-J''?V RUN HO. '
BAR. PRESS, PB 3* "He. STACK PRESS, PS "Kg, STACK DJKEKSIOJ1S
STACK AREA, AS 'f-* 1 FT2. EFF. STACK AREA, AS*
TO.
0.52.5
AVB. METER TE1?, TM 8"^ *F. AVE.yv^L. KEAD.H O-&+^ "HgO. AVE. KETER ORIFICE AH
FT2. AVE. STACK TEMP, TS_JL££__"F
"H2°
METER VOL, VH
HOZ2LE DIA,
_FT3, MOISTURE PLUS SILICA GEL, VC_f/£__Klf SAMPLE TEfS_
Kin
JR. NOZZLE AREAS i 1/8 0.000085 FT2! 3/16 0.0001916 FT2! I/ft 0.0003W FT2
*, 02
3/8 0.00076? FT2| 1/2 0.0013 FT2. ORSAT i C02
, CO
(O.OWO X (VC)
VSTPD - (17.71) x (v::) x (PO) -f- (TM + Wo) , whew PO
VT (VWV) + (VSTPD)
V » MOISTURE FRACTION = (VWV) -f- (VT)
FDA - FRACTION OF DRY AIR = (1.0) - (W)
KD « [(O.W) X ( .-fcOz)] + [(0.32) X ( Jtogj] + [(0.28) X ( JfK2+ jfcO
KS » [fta» X (FDA)] + [(18) X frf)J
GS « SPECIFIC GRAVITY REFERRED TO AIR = (KS) 4- (28.99) . .
[( *°2)-
_SCF
/S
SCF
SCF
. 9?
. 9
EA » EXCESS AIR
£(0.266)
X 100
0 » AVE. VELOCITY = (17ft) X (CP) X
OS " GAS FLOW RATE = (U) X (AS1)
FPM
ACFM
QSTPD = GAS nan RATS AT S.T.?. = (QS) X (FDA) X (TS
VI » ISOKIIETIC VOL. = (U) X (AM) X (FDA) X (TIKE) X
X 100
X (2579?)
PERCENT ISOKDrETIC BY E.S.E. = (100 X VSTPD) 4- (VI)
PracrsT isnrr-^ric BY i- P A = ^0.0026? T VC X ?s3 *lf?0 f. ?S X V! 4- TX)J
PERCENT ISOXL.-STIC Bf E.P.A. = [(TZIS X U X ?5 X A!0j
PARTICULATS COIC. 3 S.T. P., ESTP = (15.^3 X G?JV::S) -i- (VSTPD)
PARTICULA7E CCIC. 3 STACX COLT)., EACF = (SSTP) X (1?.?1) X (F3) X (FDA) ^- (TS +
PARTICULATS CCI.'C. CC?-°.=:=TiD TO 12* C02, E12 a (12 X E5T?) 4- (* CO^)
PARTICULATE CC::C. CCSR3CTE3 TO 502 HjCCSSS AIR. E50 = (ESTP) X (EA + 100) -7- (150)
PARTICULATE S'.ISSIC:! R.VTE, S5 = (ISTP) X (QSTFD) X (0.00=57)
_SCFXD
SCF
LAB ANALYSIS, GRAMS
PARTICULATE CCI.'C^.TRATIOXS
GRAINS/ FT-'
A-20
PART. EMISSION RATS
LBS/ KR
-------
SOURCE TEST CALCULATION
PIAHT Srp. O
STACK
DATE
RUH N0._
_IK, C,
BAR. PRESS, P3 7° "He. STACK PRESS. PS 3 ° "Hg. STACK DIMENSIONS
STACK AREA, AS 4*4 7 FT2. EFF. STACK AREA, AS' FT2, AVE. STACK TEMP, TS /***> "F
AVE. HSTER TEM?, TM &*> *F. AVE.yVEL. KEAD.H O- 3> 2. «H20. AVE. METER ORIFICE AH "H20
KETER VOL, W 2.1. ?& 1 FT?. MOISTURE PLUS SILICA GEL. VC SV Ml. SAMPLE TIME Min
ROZZLE DIA, IB, NOZZLE AREAS i 1/8 0.000085 FT2: 3/16 0.0001916 FT2! l/*v 0.0003^1 FT2
3/8 0.000767 FT2: 1/2 0.0013 FT2. ORSAT i COg.
. 02.
-------
SOURCE TEST CALCULATION
FLAM JXg *£ STACK SSXrf "£*'*' s+*.fr DATE .?-//-7«/ BOH jjo._
BAR. PRESS, P3_ 7* ^He. STACK PRESS. PS 3 « "Kg. STACK DIMENSIONS TJ. Cp
STACK AREA. AS
.FT2, EFF. STACK AREA. AS1.
«F, AVE.yVEL. KEAD/Hj
FT2, ME. STACK TEMP, TS
"H20. AVE. KETER ORIFICE AH
"H20
. MOISTURE PLUS SILICA GEL, VC /? Ml. SAMPLE T3HS
Min
ATE. HETER TEMP, TM
KETER VOL. VM £-?
HOZZLE DIA, _ TJ, NOZZLE AREAS i 1/8 0.000085 FT2; 3/16 ~ 0.0001916 FT2! !/*» 0.0003^1 FT2
3/8 0.00076? FT2| 1/2 0.0013 FT2. ORSAT I C02 _ <, 03 _ <, CO _ «
VWV » (0.047*0 2 (VC)
VSTPD » (17.71) X (Vil) X (PO) -r (TM +
VT (VWV) + (VSTPD)
W » KOISTDRE FRACTION = (VWV) -f- (VT)
FDA « FRACTION OF DRY AIR - (1.0) - 0*0
KD B Ro.Wt) X (iiSjfcQz)! + [(0.32) X
J5CF
Where PO
_SCF
9.
_SCF
US » [(CT) X (FDA)] + |(18) X (H)J
G5 « SPECIFIC GRAVITY R2FESRSD TO AIR - (MS) -f (28.99)
[( _ Jtog) - f z fco)
x ( 9/ L fe,» Q.Z fcoj
EA o EXCESS AIR =
£(0.266) X ( W2)1 [( *02) (_____.jiCO)
0 = AVE. VELOCITY = (17*) X (CP) X (^/K) X^^-lJt6^)
QS *> CAS FLO/ RATS = (U) X (AS*)
QSTPD = GAS FLO/ RATE AT S.T.P. = (QS) X (FDA) X (^
VI = ISOKIK2TIC VOL. = (0) X (AH) X (FDA) X (TIKE) X
X 100
' *
FPH
JICFM
x (5575?)
;SCFMD
SCF
PERCENT ISOXECSTIC BY E.S.E. = (100 X VSTPD) -f- (VI)
Vf* T TBM
PERCENT ISOKUCTIC BY E.P.A.
V "-C T V-1
"
-1 T/M
..... X
10°
rr..- . Y - Y-n
l_lTj-.i X J X ro A A.iJJ
PARTICULATS CC::C. 3 S.T.P., ESTP = (15.1*3 X GRATIS) ^- (VSTPD)
PARTICULATE CC:.C. 3 STACK COOT., EACF = (1ST?) X (17-71) X (F3) X (FDA) -r- (TS +
PARTICU1-\TS CC:.'C. CC?°ECT2D TO \2t C02, S12 = (12 X E3T?) -r (* COg)
PARTICULATE CC::C. COSP.ECTiD TO 50'J ETCZSS AIR, S50 = (SSTP) X (EA + 100) -r (150)
PARTICULATE S:iSSIC:i RATS, El = (SSTP) X (3S7PD) X (0.00=57)
LAB ANALYSIS, GRAMS
PARTICULATS CO"CS:.7RATIONS
GRAINS/ FTJ
A-22
PART. E'ISSION RATE
LBS/ HR
-------
A-7
VISIBLE EMISSIONS
STANDARD OIL OF CALIFORNIA
EL SEGUNDO, CALIFORNIA
Date
11 March
12 March
13 March
1974
1974
1974
Time
1305 -
1030 -
1030 -
Avg. Visible Emissions
1705
1430
1430
0
0
0
(1)
(2)
(3)
(1) Observer located 300 feet southeast of stack. Wind was from
south, approximately 10-20 mph, and the sky was blue and
clear.
(2) Observer located 300 feet southeast of stack. Wind was from the
south at 10 - 15 mph, and the sky was clear and blue.
(3) Observer located 300 feet southeast of stack. Wind was from the
south at 10 - 15 mph and the sky was clear and blue.
A-23
environmental science and engineering, inc.
-------
A-8
ZXl*ZL2'2 ZCZZ
BY EPA METHOD 7.
TEST ;;u;t3Ez
:JA::S
TYPE OF PLA'JT - Ojf,
COUTXOL ZIUIP::F.;IT-
POLLUTA;:? SAHPLZD-
2} DA TS -! *r.-r1 ,i-£
i ,£.JM i £^L__1__£L__
5)7* - =-W5?X-3 W£V Wry- 7L -1 ^ -1 ^ 1 ^~<
6)7,4 - A330P.3IUG SOLUTION VOLUME, HL lIII_o?_£:_II~lc^ 1 ^^ '
7)P5 - SAROISETZIC P3i:5S'J?.5, III ?.G J. t7^- J[ J^ 1 -5^"'
8)?5 - STAC}: P.?r.?J^.7£7t J// W£7 I <%) | 30 I 3f\'
^^^^^"^a^^^^ ** ^^^^ -1 _TJ'.VB
9)?J - INITIAL FLASK VACUUM, III UG 1 i3£-& I &&J& i _£?&.£
IO)PP - FI;:AL fi lIII^2- il~IIiII_^i^. Il" Q3~l
I2)rr - PJ.V/L " " n'^" "u\\ i"~21rfl~il^?~22l "'
13)7jrPZJ - VOL OF GAS SX.YPLZ73, I'.L, S.T.P. i~^C^£Z3§^ii~ ""
15)PCr .7 - STACK GAS ::GISZ>L!3Et PC? VOL lllldsTH?? 1~
lIII^^^-IIIl
17)///V(?2 - .7/4SJ Or1 ,V02 J.7 SAMPLE, ff.'/xl. 056 lIIj2<£~'2^~Sl""5;''-/^ ./S~
22).T?ri/'S PiT/? 'IO:JH I'!PUT J_ Jyv J_ I -
23)inj ::o2/;iiLLiou ISTU . lIII-HIIIIIlIIIIZiIIIIl" zr~~'
VSTPD = (17.71) x (yr-w) x[((pj.j»r)*r=i)-((?5-?j)*rj)3
TX = (35.31) x (
U FT = (6.25~5)x (
?. P. .'/. = (8.U05£G) x' (£55 :,'02/CU FT)
L3S 11011 nO'JR - (GO) x (QSTPD) x (135 302/CU FT)
LSS t:o2/;:iiLio:; ITU = (LBS .702//.?) * CIILLIOU DTU /HE . nipu?}
***J. 7. x'. i-«-^.Ty, 70 ^u.TtJJ r". 29.92 -,"£;{£S .'.'Z
A-24
-------
tLQZ. SfittZGG ZZLSZlQiL
BY EPA METHOD 7.
tft S* ^ *fP "" ft * / JJ ^* O
4 £«J 1 itUllOLiA*
F£/i/;r ;;/;.'£
SOURCE TESTED
TXPS OF PLA:IT
coiiTnoL EO.UIP::E;;T-
POLLUTAi.'T SAMPLED-
ii:i:2::::::i:::_y:__::i;
THIS i ~^J^~~IT~~Y'^- _
VF - FLASK .A;;D VALVE VOLUME. ;IL i Y*IGZi SETl
"' - A3S033IHG SOLUTION VOLUME, 11L lIH_^r _ 1 ^^ 1
- 3Azo::£?ptic pzzssi'p.E. i:r ?.G ±~ 33- i ,?3 i
PS - STAC:-: PJ^ESSU.IE. in HG ± _J5I '
9)?J - INITIAL FLASK VACUUM, III HG J~ "4.C.2 T
o)?? - ?J;.ML «« « ti i "~ <^ 7I
11)?J - IfflTIAL FLASK TEIIPEZATVP.E. 55ff F I AT I
12)r" - ?j;w£ « j^ ^ i
13)VSTPD - VOL OF GAS SAMPLED, XL. S.T.P. i /^"^^"l
1«»)Z2 - STAC-: GAS TZI'PEl'AT'JZE. DEG F I ^JJ I
15)?Cr .V - STACK GAS HOISZUJE. PC? VOL I 773 |
1 - '\ ^y->-3 C-I-IV " - - ->--ff -im ^.r. », ...... .""~~jy£ L Jf«- b_
lo^vsiS^r1^- i_/L iy/.o :LiU.: RTE tCU FT/Hit.t STP I jpf&i£ I ^Ji52 I
17)//i7c32 - .V/So 0^ //02 J.V SAMPLE.G:ixl.oS6 1 J^2 1 '
1B):1ILLIGXA:!S ."02/CU :.'ETE.l. STP I _g^5^£ I
19)L3S .702 /CV 7J . 5TP J[ 2-5S^~Zt
20)?^.72'5 PJ;? :;ILLIO:,' OF ;/02, 5T? 1 "/L57,-/ i""1"*"^
21)LJ5 J02/20U3 tSife | Sj-jv
22)3?u's PEH ::ouz I::FUT \TS*J!** i "_f>"J
23)L3j ::o2/:iiLLio:f DTU f £~ "c^"^ j. eT/f
= (17.71) x (jr?-jrji) xc((?j.pr)*r?)-((?s-?j)*?j)]
UG ff02/cu ::TR = (35.31) x (;/;;02) * (75r?5)
£B5 i/02/Cy FT = (6.2?~5)x (-7//02) * ( VSTPD)
?« ? '/. = (O.MOGZTC) x' (£55 ','02/CU FT)
L3S H02/ tlOUn = (GO) x (QSTPD) x (L3S 302/CU FT)
L3S E02/::iLLIOX ITU = (L3S .702/.₯.?) * (I1ILLIOU DTU /HX . Iff PUT)
~D.i*t 70 DEGREES F. 29.92 J;:C;!ZS '.lEXCUR.
ml
I
A-25
-------
SfiJKEE ZZLSZi&I ZCSZ G£Z«i
BY EPA METHOD 7.
..
SOURCE TESTED - ^A>^T- <5^- &** **e *>" *"/
TYPE or PLA:IT
COt'IT.lOL Z
POLLUTA::?
2)DATE l-II^a/jJSClIlIIj^-^^ 1
3)TIilE J[ j&ld£L_IIIiH ^J~l^~ 1
*)FLASy.' l!'Jl!3EZ ± ^ 1 a£~ i
s)7? - FLASK .A;;D VALVE VOLUHZ. ;IL i I2s?"^ 1 ~/£2? i"
6)'//J - A330R3Il;G SOLUTION VOLUME, IIL i J? I J_/ l"
7)P3 - 3AZO:JE?3IC PXESSi'ZE, 1,7 .?C 1 3O~- J_ ^" i"
8)PS - 3TACZ PRZS3U3E. II! HG J. gS i Jo l"
9)?J - INITIAL FLASZ VACUUU, III UG i 3/.T i ^/T? l"
IO)P? - FI::AL " " « X <2J£ l"!^."^ l"
i7)/;;;02 - ://i5o 0? ;/02 j;/ s/i:/?zii:,c;./xi.or6 j. ~~^Tj T ~~ ""^
:,02/cu ;/srr<7t sr? -
i3S .702 /CU FT t ^
2Q)PA3TS PEJ :;ILLIO:I OF ;;02. 52*? IZIISlSIIIIIL/iSScl.
21)L3S ii02/'.:OVP. J[ 0.j£& l""~ O>J^~~ \
22).'?2't/l5 PZ7.7 .70-7.7 I2PUT I ~"""""- "" i _Z""~ T"
23)L3s ::02/;iiLLio:i 3TU m lIIIjEIIIIIIlIIII!:" l"
= (17.71) x (yr-W) x
::TR = (35.31) x (
V02/CU FT = (6.25"5)x (;//V02) *
? ? '/. = (B.MOoSG) x' (£55 H02/CU FT)
L3S ,702/ /70^.? = (GO) x (QSTPD) x (£3S ,702/Ct/ T
no2/;:iLLio:; ITU = (LBS .702/.v.?) * CIILLIO:/ DTU /HR , IIIPUT)
***.,. -. ^>. ^..o.?vf 70 3ZJZZZ3 p% 29. D2 IKCdS
A-26
-------
ZEZZ
BY EPA METHOD 7.
;;U;IBEZ
PL/1 AT .V/J.VS
TXPE OF PLA'JT -
couTZOL EWIP::E;IT~
POLLUTAH? SAXPLZD-
iIILS^SIIiIISiSZlllIS^"
s)7? - FLASZ .A;;D VALVE VOLUIIE. ;JL i ~/£?3\~~~/fT76\~7w%
6)VA - A330P.3II-G SOLUTION VOLUME. HL lIII-25_IIIIiII_&H~~l £?'
o\r>~ ~ r"1'^""""^^?'1'^^-"^; ^'"' "^ ! v?~' ^ j-^2. i &&..
9)?j - j;/jrjxi FL/.sTvAcuuii'. in JIG JLlI5^I2IIIIlIII^SlI""iJ?J
ll)^J - IUITIAL FLASK. TE:!P En A TUP.E. J^C p llll^VlIIIIiZII^tll" 1 ~£ '"'/.T n^v: ? i"
15)P£7
VO9 / f*?t r* *n CT7!
v t / O i/ » v j U i
~ Y s\*i ^^-i « A M, «*«M«^ ~I --- ^^g^ j&s,^-^.-^,
i/JO./ 0? <;02. 52*P J_ ^L^f_ 1 ^^/ I 7. V<^
1 ^£^__IIIl!II^IPZ~IIIlIISii~"
Z02/11ILLIOU 3TU I Q.7&~'~~~~ I"""" &7/O~~"~~ \ ~~~0,2)J~"
21) £35 I/02/.V0M?
= (17.71) x (ST
;/c U02/CJ ::TR = (35.31) x (;/;;o2) 5 (VSTPI»
LBS H02/CV FT = (6.2r~5)x (///V02) * (VSTPD)
? ?. '/. = (8.UOG27G) x" (L3S ."02/CU FT)
L3S :i02/ noun = (GO) x (QSTPD) x (LSS ::o2/cu
LBS uo2/::iLLio:: ITU = (LDS .702/.v.?) * CJILLIO:/ DTU /HP . IIIPUT)
««*o. 7. P. **J.?v. 70 DZJ3EZ3 F. 29.92 IXC.-i&S /.T,
A-27
-------
BY EPA METHOD 7.
TEST ;;u;iasR
PL/AT :JA:.'S
SOUHCE TZ372D
TYPE OF PLA:IT
con T.I OL u0.uip::r.n y -
POLLUTA ,7 SA.'.'PLZD-
i -^ ...I.
ivcr.v3r.?
s)w - FLASZ .A;JD VALVE VOLUHZ. ;IL
6)74 - A330!*.3I-;G SOLUTION VOLUME. IIL I~_ ^£_ 1 w
7)P2? - 3A30::ET3IC PRZSS'J?.!. Ill HG J[~ ~_i£<9 1 T|o ~ ~t
a)PS - STAC:-: PXZSSUXE. in HG 1 je j_
9)PI - INITIAL FL/.S:'. VACUUM. Ill JIG J. "
0 ) PF - Fill A L ' ' ' ' J^
TI - INITIAL FLASK FHXPSXATVRZ. 2££ P 1
12)?? - FI:JAL " " « " 1
13)V3TPD - VOL OF GAS SA'.IPLZD. i.'l. S.T.P. £"~J£jf.J?J~~\
l«*)ir - STACZ GAS TSHP3ZATU3E. DUG F 1~ J&& I
i5)prr ;/ - STACK GAs-::ois?-J3Et pci1 VOL lII_^SIIIIIl
17 )/;/;2 - .V/45o OP ,702 J.7 Sd.VPLJ.ff.'/xl. OE& lIII^L^III~i^
*/C/2
....J.V 07 ,V02. 5TP i «5?yV I I
21)L3S ii02/:-OUX J_ /^7 I I
22).'?rt/'5 Pi7i? ::oc'.? I::FUT j_ i 7
23)L3j ::o2/uiLLio:i 3TU . lIIII-rIIII"~l £1II
^ ^^^^^*^^^^^"^^^^^^^"" ^^^^^^^^ ^^^^^^^,
VSTPD = (17.71) x (pr-JU> xC((PJ-?r)f^)-((?S-PJ)*?J)]
;/c ito2/cu :;TR = (35.31) x (:v;/o2) * (757?^)
LBS U02/CU FT = (6.25"5)x (;//702) * (VSTPD}
P. P. //. = (8.UOGZTG) x' (155 :,'02/CU FT)
L3S ,702/ /707.7? = (GO) x (C.STPD) x (L3S .Y02/Ci/ TT)
L35 t.'02/;:iLLio:: ITU - (LUS :/02/.v.?) * CIILLIO:/ ZTU /HR . in PUT)
? ^« -^.^y. 70 D303EZJ t. 29.92 .r,Vi7.-.'i'5 :.Ti7 Ci/;? Jf * *"
A-28
-------
SfilECE ZZLSZ12U. ZEZZ
BY EPA METHOD 7.
-3
PJMWT .7/.VZ
/;?cr rrjrra
E OF PLA:IT
iTZOL EQUIP:
POLLUTAUT SA-1PLZD-
3)TItIE J.__.sL'!s££i L__^'<£^ ~~ 1__2^'-^
s)re - FLASK A:;D VALVE VOLUME, ML j. "*I2^1i 1 2^ \~~/fr2
6)7/1 - A3SOR3i:-G SOLUTION VOLUME, .V£ lII-^^lIIIIlIIIj^^'I"! P"^I"
* ^ *"" ^L^H«B^B^£^b«»^K^B^B^M^K^L^H t^X ~^ I ^jf £/
O ^ ^3 ? ^ " '^J f*" ^^ ^* ^^/T^ T tl ^3 ^ I *"^ ^\ ^ *^ i ""^"^^~^Jt»^^^~"**"^ ^^»^»^ ^^^M
9)?J - IUITIAL FL/.SZ VACUUM. Ill HG LTIs&S*' 1 L?/-"^7 T5/7^
.o)PF - PI3AL '' ' j[ ^^ _[S7/ 1"^73
.1)!?J - INITIAL FLASK TEMPERATURE. 3SG F i $5' I "{& I "^T
,2)-r - FI:;AL j^ 2r i ^J^""~Tl?3r
VOL OF GAS SAMPLED. ML. S.T.P. ± " """ -='
STACi: GAS TEMPERATURE. DZG F J."
STAC'/. GAS MOISTU3E. PC? VOL ±~
:iAS* OF U02 J.v s/:-;?L^,£;.;/xi.o^6 j.
4.75 :S02/CU METER. STP ll
:/02 /cy rj . ST?
pr;? :;ILLIO:! OF ,702. 52-p
21)L35 J02/"OUR
22).7?^«5 p£,7 ::o:'j? j.vpi/r I"~5Z^T^T""9T^~&T""^/^7^"
23)L3j ::o2/;iiLLio:f 3TU --~^ *"---«A^~
" "»^»^» ^^^»^» ^B ^« ^BW^B^B^B^H^BM
= (17.71)
= (35.31)
LBS 11021CU FT - (6.2£~5)x (M1102) T (VSTPD)
P- P. '/. = (8.U05ZTG) x" (£35 ."02/CU P7)
L35 «Y02/ yTO^.7? = (GO) x (QSTPD) x (£jj ;.'02/C'J FT)
L3S U02/MILLIO:; 3TU = (L35 .Y02/.Y.7) * (HILLIO-I 3TV /HR . I11PUT)
70 DZS3EZ3 F. 29.92 ZZCXSS MS
A-29
-------
PLANT
DATE
//. /Q
do,
A-9
DRY MOLECULAR WEIGHT DETERMINATION
ORSAT BY EPA METHOD 3
COMMENTS:
SAMPLING TIME (24-hr CLOCK)
SAMPLING LOCATION <5yvgC/fer
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS) X"T£o
NET
z*
/3./
£>.O
84.0
ACTUAL
READING
3.0
/6>.O
/(>.o
et.o
I
NET
3.0
/3.0
o.o
B4.o
ACTUAL
READING
3. O
/6>J
/£>./
83.9
\
NET
3.0
/3.I
O-O
83.9
AVERAGE
NET
VOLUME
3.97
13.07
0.0
13.17
MULTIPLIER
44/100
1
32/ioo
T i
28/100
28/100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib/lb-mole
/.3t
^y,/?
o.o
Ad.g)
£9-"°
?»
o
EPA (Our) 230
4/72
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
DATE.
COMMENTS:
SAMPLING TIME (24-hr CLOCK)
SAMPLING LOCATION
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS) X»T.
ANALYTICAL METHOD
AMBIENT TEMPERATURE
OPERATOR
^NV^^ R\}^
GAS ^^\
C02
02 (NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N £ (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
7.*
&. o
8.0
K.o
NET
7.1
£>.&
Q.O
9Z.O
2
ACTUAL
READING
7.2.
e.o
8.0
qz.o
NET
7.2.
0.8
0.0
n.o
3
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
-r.SL
O-^b
o.o
W*
MULTIPLIER
44/ioo
|
32/ioQ
'."" i
28/100
28/100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib/lb-mole
^ry / " f
^^i ^^} f j
0.0
3S-.71
tf.M
to
EPA (Dui) 230
4/72
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE
/2.
COMMENTS:
SAMPLING TIME (24 hr CLOCK)
SAMPLING LOCATION
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS).
ANALYTICAL METHOD
AMBIENT TEMPERATURE
OPERATOR
T 73
"^^^^^ RUN
GAS ^^
C02
02(NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
3.-Z
!$.£>
/6.t>
Gt,^
NET
3.Z
IZ.4
0.0
84.4-
2
ACTUAL
READING
3.0
/£.3
/£.3
g3.7
NET
3.0
73,3
o.o
83.7
3
ACTUAL
READING
3.0
/£.£>
H>.o
84..0
NET
3-0
/3.0
o.o
8t.o
AVERAGE
NET
VOLUME
^.#7
111
$.0
W'3
MULTIPLIER
4Vioo
1 . .1
32/iQo
L~ 1
28/ioo
28/100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib/lb-mole
/.&
4-13
O.o
23 &
Af.ol
oo
ro
EPA (Out) 230
4/72
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
OATE_
CJD,
/3 . /? 74-
COMMENTS:
SAMPLING TIME (24-hr CLOCK)
SAMPLING LOCATION
SAMPLE TYPE (BAG. INTEGRATED, CONTINUOUS)^
ANALYTICAL METHOD
AMBIENT TEMPERATURE
OPERATOR *3
L.
^^ RUN
GAS ^^^^
C02
02 (NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N£ (NET IS 100 MINUS
ACTUAL CO READING)
G>*e4&l//j*h
ACTUAL
READING
^.2.
7.C
7.*
<)^.^
NET
5,z
2.*
0.2
12.2
&1G1
ACTUAL
READING
5:^
?.o
9.o
9s.*
NET
£.4
Z.6
0.0
9/.t>
/%4-k
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
ff.&
3-tf
.A
qu
MULTIPLIER
44/100
i.__.r
3Z/100
'."" 1
28/100
Z8/100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib/lb-mole
2.3*1-
' q^F-l ,
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE
Oft. C,Q.
COMMENTS:
SAMPLING TIME (24 hr CLOCK)
SAMPLING LOCATION
/+£ /j-TG'/S.
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS) -ZT/E/77
ANALYTICAL METHOD Q/2.S&T
AMBIENT TEMPERATURE
OPERATOR
"^N. RUN
GAS ^^\
C02
02 (NET IS ACTUAL Oz
READING MINUS ACTUAL
CO; READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (NET IS 100 MINUS
ACTUAL CO READING)
6*te \
ACTUAL
READING
z. e
fr-4
14.4
K.t
4*,3\
NET
z.e
ILL
0,0
&*>
K#£ 2
ACTUAL
READING
3.S
/U
144
8*-t
NET
3^
//./
0.0
9&
KAt*
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
j,/^
11.3*
0.0
&*
MULTIPLIER
«/»
i ...r
r" i
».
28/100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib/lb-mole
/.&£
5^
0.0
0 ^ ^^/
^.^
f>
I
co
EPA(Dur)230
4/72
-------
A-10
ODOR EMISSIONS
STANDARD OIL COMPANY
EL SEGUNDO, CALIFORNIA
MARCH 11-12-13, 1974
Odor by EPA Draft Method (Dilution Method)
C=ODOR CONCENTRATION IN ODOR UNITS PCR CUBIC FOOT
(DERIVED AT 50 PERCENTILE DETECTION POINT)
VA= VOLUME FLOW RATE IN STACK, STANDARD CONDITIONS, SCFM
(70°F AND 29.92 IN Hg)
SOURCE
E= ODOR EMISSION RATE, IN ODOR UNITS PER MINUTE,
DATE/. C VA E
INLET INLET
OUTLET
INLET
OUTLET
INLET
OUTLET
'
.
3/11/74
3/11/74
3/12/74
3/12/74
3/13/74
3/13/74
-
NA
3.
25.
4.
3.
30.
C
A-35
6052.33
12118.86
4273.32
10316.76
6545.45
12520.8
36,400.
10.700.
41,300.
19,600.
376,000.
-
-------
A-10
SOURCE
OUTLET
Odor by EPA Draft Method (Dilution Method)
SUMMARY OF ODOR SURVEY
STANDARD OIL CO.
EL SEGUNDO, CALIFORNIA
MARCH, 74.
DATE
3/11/74
INLET
3/12/74
OUTLET
3/12/74
INLET
3/13/74
OUTLET
3/13/74
DILUTION FACTOR
10.
10.
50.
50.
100.
10.
20.
50.
100.
500.
1.
2.
5.
10.
10.
50.
1.
2.
10.
10.
5.
10.
10.
20.
20.
50.
100.
200.
200.
PERCENT REPORTING
POSITIVE RESPONSE
50.
83.
67.
50.
17.
60.
60.
40.
30.
10.
100.
50.
30.
30.
10.
30.
80.
30.
40.
0.
60.
90.
80.
70.
60.
20.
20.
30.
10.
A-36
-------
A-10
ODOrt RY EPA DRAFT METHOD (DILUTION METHOD)
ODOR PANEL SCREENING TEST
UNION OIL COMPANY
Wilmington, California
Participant No. Age % Positive Response StabilityQ) Acceptability(2) Selected(3)
1 15 71.4 0 OK
2 16 57.1 0 OK -
3 17 57.1 0 OK
4 16 71.4 + OK +
5 17 57.1 + OK +
6 15 71.4 + OK +
7 17 57.1 0 OK -
8 17 42.8 0
9 17 14.3 +
10 17 28.6 + OK +
11 17 85.7 +
12 17 71.4 + OK +
13 17 57.1 0 OK
14 17 57.1 + OK +
15 17 42.8 + OK +
16 17
17 17 57.1 +
18 17 71.4 + OK +
19 15 71.4 + OK
20 16 42.8 + OK +
21 16 42.8 + OK +
22 16 . 28.6 + OK +
23 17 28.6 + OK
24 17 42.8 + OK +
25 16 14.3 + OK
26 18 71.4 + OK
27 15 57.1 0
Based on consistency of response as concentrations decreased.
Based on personal observation of conduct during screening test.
Based on stability, acceptability, and % positive response (as compared with the group
as a whole).
A-37
science and. engineering, inc.
-------
12
* No. of Participants - 26
* 10 Panel Members and 2 Alternates were selected using the results of this plot and
other factors
10
GJ
00
Ol
to
c
o
o.
to
O
OL.
5
10
O
-Q
8
10
20
30
40
w
50
60
\
\
70
\
\
\
\
\
\
\
80
i
o
90
100
Percent Correct Response
Figure 10 . Odor Panel Screening Test Plot.
-------
A-ll
OUTLET FLOW CALCULATIONS
STANDARD OIL OF CALIFORNIA
EL SEGUNDO, CALIFORNIA
11 March 1974
Time 13:00
Air from K 102 (SCFH) 275,000
Total Air Flow (SCFH) 675,000
Fuel Gas (SCFH) 9,000
Absorber Gas °F 120
Outlet Stack Gas Temp. °F 425
QT = 13,773 SCFMD
Qj = Qi+Q2+°.3 = Outlet Flow Rate
Q-j = Traverse Taken at Inlet
Q2 = (Total Air Flow) - (Air From K 102)
Q3 = Fuel Gas Flow (Stack Heater)
A-39
environmental science ana. engineering, inc.
-------
A-ll
OUTLET FLOW CALCULATIONS
STANDARD OIL OF CALIFORNIA
EL SEGUNDO, CALIFORNIA
12 March 1974
Time
1030
1100
1130
1200
1230
Plant
1400
1430
1500
1530
AVERAGE
QT = 11.
Air from K102,
SCFH
205,000
210,000
180,000
175,000
180,000
Opened By-Pass Valve
180,000
160,000
180,000
200,000
185,555
540 SCFMD
Total Air Flow,
SCFH
600,000
577,500
592,500
585,500
570,500
about 1305 Closed about 1335
570,500
570,000
570,000
618,750
583,750
Fuel Gas,
SCFH
7,200
7,200
7,500
7,500
7,500
7,500
7,500
7,500
7.500
7,433
A-40
environmental science and engineering, inc.
-------
A-11
OUTLET FLOW CALCULATIONS
STANDARD OIL OF CALIFORNIA
EL SEGUNDO, CALIFORNIA
13 March 1974
Time
1200
1230
1300
1330
AVERAGE
Air from K102,
SCFH
270,000
270,000
280,000
280,000
275,000
Total Air Flow,
SCFH
660,000
660,000
682,000
682,000
671,250
Fuel Gas,
SCFH
7,500
7,500
7,500
7,500
7,500
QT = 14,100 SCFMD
A-41
environmental science and engineering, inc.
-------
APPENDIX B
FIELD DATA
environmental science and engineering, inc.
-------
B-l
B-l
-------
n
l&fjt "ff"
I
A
3
fL
^j
(c '
7
?
9
It)
II
a
/3
H
AT
f;
-10
- loo
/oo
/oo
/*»
/^6
/OO
100
loo
/to
/oo
ftx>
/Ob
160
/4 \ loo
i
O, O^io
1 ^. 0.3
0. o*4^
J *.<>3
\ ±,oi
*. 03
+ .03
*.03
0.037
^.03
0.021
*,03
*,03
*.03
O.O3~1
<-,03
'
r i r u*~ *» ^*TVw
iot
1.4
£4?
O.J5-
.
0.3U
' ..
0.3L,
0 '..«_
0,33
, > >
d). il
O.IO
o.cr/4
<«7
^,07
-f. 07
^-^7 ..
-£.07
^.07
O.o9i
o.so
*.«>7...
^.p? .
^ . A7 _
<.A7
. ^-67
V
I ^'*M KJ
O.OVi
O.OJA
O.O4S
o.orr
O.oVg
O.OIU
-*d.d/5-
0.0/6"
o.o /c
-
C . O/ 6"
^A.tf/r
-**.*/r
^.^>/^~
-^A^/r
AV
O. 4 8
0.37
0.3%
o. 3f
/. ^
-r-
ajy.
-:
-
0i0£L
0.03i-
o.oss
0,0*2
0- 01*7
o . o i .sr
O.OI7
0.033
O.O3S~
0.0 7i,
^m
6.016- .
0.0/7
0-0/6"
...
.
B-2
-------
ll
OIL
117V
CALIBRATION CURVE
Di
« -i j
* u u
|.o a 10
zuirn i^Lii
. |
!i ~~M i- i I ": .-! iTil P
;__i Uj..!\ .
*
t t-j- -r
\ ;
t
10.o
B-:
-------
CM <
CM
*!-- SO,
CALIBRATION CURVE
-M
-r
-C.
1.0 * '0
|.0*10
-8
l.o Vid
-1
jj !
zrm nun
rn i 5 rT~~ t ~T"!""i~!~i~i
M'j~[ T"j""t' iT^'^jZ"'iri'TT'L
_:_j_i L_ ' ; I _i_ 1_^__
if I I t
L\ : I
-l~\- 1
i-i"
lO.o
.o i
B-4
-------
OIL.
111+
CALIBRATION CURVE
!j ! j ;'"i : ! i
......
' _JV : L '
±
Eh
i . | ' _' , 4 _ J
DlLLl r T -J'LL' !]U1'
rii~! r i '"i i
Ltlfe
10.0
B-5
-------
d(L *J - - COS
11
OIL
CALIBRATION CURVE
4 L; !J_:
i
_^ ^ u_I _|_ ___|__ 1__' _ ' _ _;__ _ _ i
_J-.i JI
; r V v
__:A UJ_Ll--L_i_L_j_L_4_ 4-
tinimiz
-------
CALIBRATION CURVE
M ; ~\ . i i
_ !
"
-
i \~
L..1.J .!_.-! .', : - _ ' _\ :J"_
J.Li_u^IL
i-; r-4- -!- -1 i
(0.
(.00
O.JO
0.0)
B-7
-------
Oil-
CALIBRATION CURVE
; : ; :
"i: n :"
!__]__- ij4.Li.,L._Li_4_.r__\._:j_u_L_i4_i._ IL
'
Hrf-rtf
: ,_ . i i
" '
i .1. i i .
U_L U._4l_j_4 -------- L
LIT; !..:.;:._..
ITHDZLKl
rrrr:i- ..n.
0-0]
B-8
-------
OIL
M
CALIBRATION CURVE
C ONCSTMTfc ATI OAJ
B-9
-------
n
1 U ' ' n7r?7TT"i"T"rrn~i
TTmzw \/?T₯~\ r isg. \a// \
*u/ta(.&:.
I I I f lli| /I i j ri 'X l
r^7~^~rhirrrT~
"^ ^Zr^l^j34±
0*_._J
n i i
niJ^[Sj i | Jjfnu^^
-*-
so i i iCS- .
l"^! I ! ^ !
-------
_ j_»X
-
* '"
TTTTiTTT-j i~n-|TTT1 Ml
1 !
~\~\"\YT\ i*Tl_l i *'; M
h Ti~j~r*M"n ; i '""n
I '"TTl"T"i |~ ' i n~r
__
_: LJ_
i i i i i i i j i | t -j_L,J_-I-__rjj ! ; j j I ^ i
~2^>W^ 2. Jy/fl'4 -Jr/o;^: i !/^J/: j tf>/^"f j [^2^)0
* a f ** ' ' ' * %r ^ a[ _ j -- ' , . i i ---! ^V*_.T^
11,i s 11 rrT''!! t!!j 11 i
I ! i -I --... -. . 1 . -~ . - t I , i *f - » -"^T i
I ! I I i ! I I i I I J i I I i I
i i i .A , » : ' j»r-
100:1
I I
-f
m
^6
I I
A ?7_i_
-
J O
J'LlL
I Li r ii
J L
i
r rr
-i. i
i i
- CD,
v/o:
i
-
! i
I i
i
i i
-H-
I~T
i I
U.
i i
I I I I i
-------
B-12
-------
/'/£
300
3.S
3 00
3/0
M//J
/3d
< 2.
II
I!
n
B-13
-------
- rft*
t 3
, k
t- 7
loo
(00
I DO
/DO
/DO
/CO
700
9 ft /000
fOD
/60t>
/I* /606
/S /OOO
"? /6
/OOO
ID
2/
f" 72.
.017
. <3 A5
.037
.azr
(UL
SO*.
*:7
o.n
3.7
o.n
0.17.
3,7
O.IS"
0,4-3
0. IB
0,/v/
0.13
0.13
ifro
O.048
4.61S
77T
0. Iff
97*8-6
O.3.0
Cos^s
.017
, Of$
.696
B-14
3.0
J.O
o.n
3.0
3.0
o.u
3.0
6.03&
0.14
o.u
o.oio
o.u
0.31
O.fO
/.(*
0.13
.02.4
013 .
.Ob*
5. //
o.ofo
ol(
o
-------
Crd*l -
CAL1BRATI01I CURVL
0*1-
1.0*10*
i ;
£.6 fo CCiO TC AT ID w
B-15 '
-------
0"L
U
CALIBRATION CURVE
J.Otflft
-7
I.**!*1
rrr^H
4J - J...1
in
LLL1-U144A-4
J,__Jli I i_L4.U{-i_
^^-^^tii: ±tz
iliirr'1"'"
-rr
.-U4-SU4 ..... 1-U-U.
,
Tl "I"
1
1
1
_.
--
__
_
r -
^__
I
.: L
: !
;
_~.."T..
i
I'JZ
. J
1
: 1
. 1
4-
__
i
1
j
i
|
i"
:--
1
- .. .
j.
' .
i
,
1
|
I
!
t
_...
-
i
!
n
zt
1
1
- -!
- -
.
. ,
1
t :
!
I
L i i'
. 1 ' ' ]
i
j
| ~~" j
:....;__
! i
1:
1 i
i ' ,
I
\
^_
-
\
^
_
-.-:
-. -
-----
\
\
i_-
>
--i-:-
:.
'
. ^
v
\
A
;
i'
i
\
\
\
O.oio
B-16
-------
li
CALIBRATION CUKVE
to.
O.ioo
B-17
-------
OIL
IX mftto_H
CALIBRATION CURVE
I.of to
-4
l,6fr*
-6
\.o*io
il)
W
I
tt
(U
|.0^<6
-7
1.0*1°
r*
_o
(.0^(0 '
._ _., _ ..... .\.L- .. . ,~ , ~,
Vi_ ,_J_ _L.
MM !: ;;'..
L.L J_j_J
JJ._. .__;_L-
B-1
-------
U
CHL-
CALIBRATION CURVE
_ _LJ44--- '-L-',--1
i. : -_i
r\ M.'
-,
r ^ r~r~i~
;u-i -. i
' i
~l . 1 ~1 I T'
Q.O I
B-19
-------
-,-i-il
.»!
2
3_
!
-yrr
J^t-*u-*> /<>./
&&ctfr*4*».
i r
T
r
i
_-. i i .- *
-------
V?7,SJ;i^M^^^^
iTTTTTT] ' I ? ^'"LLL^ -
-------
I ; 1 i M: *, ^ ^
i i ! M~ M 'i Ml
_
If 7 "D
'3./x/0~. ' '
rrj in
' ' ' '
i' ' l t ! ' j i
;"
__ i_j ____ __' I
J_M_..J .:1L
Ml « M
-7
S.I HO'7
1-*--vv>s^w^vvi^l&rjti;w_sr-Ck ^
-------
B-23
-------
i^f± &
1 - top
3~-f
f -J
VUA.cJL RlV
0. 1*3
i.?
:i
O.^i
/. /
O. *4 U
o^s
o.oto
o.at*
o .^
o.n
o. i^"
O. l(p
c.\7
o.n
O.I3
V
S±oL .O-^
-
o.oif
^'^
o /A
C> . O io^
0.037
O.OUU
0.075"
O.OfcS
0.04^
.
_
0,1^
1.3
0.77
\.4
o.n
o.M
o.^-V
o.tfa.
O-030
0~
o, 13.
0. 13
0.<*
-------
OIL
13
CALIBRATION CURVE
B-25
-------
* i - -
Cu-
ll
CALIBRATION CURVE
B-Z6
-------
CALIBRATION CUIIVE
, . , .,..,...
Pttllli
n ti i
ill | -. M i
B-27
-------
II
CALIBRATION CURVE
"
-7
O-loo
B-28
-------
- so.
CALIBRATION CURVE
13
t-0
B-29
-------
i3
CALIURATIOFl CUfiVC
T
B-30
-------
13
CALISRATIOfl CURVE
i.o yto
n-3i
-------
jfm.im'tri'i* rV* -w*"
r
TSIflAKtHJW
i I
I i
USE.
X ,
! i ; i ; i __U__i_i_L_!_
! _r T'i'^i^i i "i i I i ij i i TI MM T"u ! i ! :j i '
! 11 ^Tnt"'' i'ir/n~r'!"M | i I I r ii ^"1', ! ! ' i
n~" t-" i i ! i i i i i i i i r i" i i i i i i~Ti ! I i i i I
1 PI~A~' 7 * i ' i I i i I ' i i i i i
i ' 7f' ij r rUi°T^L4i"/ i i I I i ' I i I I i I ' ! i ' ! I
IQS.L^J.SO^-^ J-^S..^--]-
j I
c,s
I i i
,-7
= 7
U_L
1_L
....
.
1 I , 1
i
IT
J_M
I
R
! !
1 !
Mli
JJIL
J_U
I'll.
*,.ȣ!
i i i i a.
T"T
!
T
.^
'* '
-------
^Ck-L^i;^
LUfLLdOS.
#!*>.. !j[-l
...TIL.
'"9 I i //>_>! \
LJ_J_L
7J~rrj.
r^^ ^.^^f
. ,
-------
B-2
'/' '
If. Vh. C.'
.-'u i
/ 0 ' f
// fflu
/ / //
1
/ V- U
/HI
/I Sir: ;'
O
~J,
O
" I
o
o
r
9. o
(5. c\
r, L
.. I
s-;S
f. r
12-
0
(.,7
6~- */
fe ' 2
6. O
-...,J
1, f
-7,4
(o , /
fe,7
7, /
r,*
6,
/7,9
i; c
o
i M
B-34
-------
B-3
SAMPLING DATA SHEET FOR <5O
Plant
Remarks
fig. rtfatie
Stack
Run No.
Date
Time of Sample
Barometric Pressure, "Hg
Stack Pressure, "Hg
Final Dry Test Meter Reading, Ft3
Initial Dry Test Meter Reading, Ft3
Meter Volume Sampled @ Meter Cond., Ft3
Average Meter Temperature, °F
Average Stack Temperature, °F
Average Meter Vacuum, "Hg
Average Meter Orifice AH, "HgO
Observed Sampling Rate, tfMC^/*^
Gas Volume Sampled, Ft3, Dry, 70°F, 29.92 "Hg
/#-
3//'/7
'/»' />s*
/:&-&.'&
5&
3&
/V$,Z/*
3:33/tt>0
30
3*
tf&
-------
Plant
Remarks
SAMPLING DATA SHEET FOR _!
d f fal'.f.
Stack
_
PA \nifTThcfl A/fl. - (U\4h
TfoUfT:i& U
iF/k-
A/
Run No.
Date
Time of Sample
Barometric Pressure, "Hg
Stack Pressure, "Hg
Final Dry Test Meter Reading, Ft3
Initial Dry Test Meter Reading, Ft3
Meter Volume Sampled @ Meter Cond,, Ft3
Average Meter Temperature, °F
Average Stack Temperature, °F
Average Meter Vacuum, "Hg
Average Meter Orifice AH, "H20
Observed Sampling Rate, bP44- Cffn
Gas Volume Sampled, Ft3, Dry, 70°F, 29.92 "Hg
I-A
3-ll-7*?>
3o
112,073
1 IOJ00
/ 973
fa 2
430
£F?
.0-22.
/-B
3-//-7^l
PyW
=5; ?^3- -T;
Jo
r%>
f / ^. 6^J
//Z .^60
2.05-0
6!
^25"
/^
. ozo
1
IG
i
i
Calculations:
B-36
-------
SAMPLING DATA SHEET TOR
Plant
Remarks
Stack
-
Run No.
Date
Time of Sample
Barometric Pressure, "Hg
Stack Pressure, "Hg
Final Dry Test Meter Reading, Ft3
Initial Dry Test Meter Reading, Ft3 -
Meter Volume Sampled @ Meter Cond., Ft^
Average Meter Temperature, °F
Average Stack Temperature, °F
Average Meter Vacuum, "Hg
Average Meter Orifice AH, "H20
Observed Sampling Rate, ±OT /»/yy
Gas Volume Sampled, Ft3, Dry, 70°F, 29.92 "Hg
C*?/?'
. //sfaS
Arf'jfrt
rt.wM't?
.f*
J&
jt&.//6
/rt>< 7W
/.W
%J*
^^
/^£7
,0/3
-
dtf
3J&M
ft" / M
rff>3/l&S
JO
3t>
J&77/
M2. f&>
/an
$3°
J£0*
/&=?
.6/3
\
i
!
Calculations:
B-37
-------
SAMPLING DATA SHEET FOR
Plant £,
Remarks g PA
(/
Stack r
Run No.
Date
Time of Sample jcni***
fOvf
-------
SAMPLING DATA SHEET FOR
Plant
Remarks
Stack
Run No.
Date
Time of Sample
Barometric Pressure, "Hg
Stack Pressure, "Hg
Final Dry Test Meter Reading, Ft3
Initial Dry Test Meter Reading, Ft3
Meter Volume Sampled @ Meter Cond., Ft3
Average Meter Temperature, °F
Average Stack Temperature, °F
Average Meter Vacuum, "Hg
Average Meter Orifice AH, "H20
Observed Sampling Rate, TJPff s~/z/y
Gas Volume Sampled, Ft3, Dry, 70°F, 29.92 "Hg
ifV0-
3/'3/7
-------
SAMPLING DATA SHEET FOR
so,
plant
Remarks
. Oal;f, Stack 57;/-jC/?
, I - Cu-\)fi-
Run No.
Date
Time of Sample
Barometric Pressure, "Hg
Stack Pressure, "Hg
Final Dry Test Meter Reading, Ft3
Initial Dry Test Meter Reading, Ft3
Meter Volume Sampled @ Meter Cond,, Ft-*
Average Meter Temperature, °F
Average Stack Temperature, °F
Average Meter Vacuum, "Hg
Average Meter Orifice AH, "HgO
Observed Sampling Rate, -tPM CftiL
Gas Volume Sampled, Ft3, Dry, 70°F, 29.92 "Hg
*>-4
3 -I3-7/
fM
iz:t<>-?x.
3°
3o
/2 (e.&iO
I 25, OO
I.K10
&2
475
^
t=7
,ei$
:;
i
!
Calculations:
B-40
-------
B-4
SAMPLING DATA SHEET FOR
Plant <
Remarks
stack
Run No.
Date
Time of Sample
Barometric Pressure, "Hg
Stack Pressure, "Hg
Final Dry Test Meter Reading, Ft3
Initial Dry Test Meter Reading, Ft3
Meter Volume Sampled @ Meter Cond., Ft^
Average Meter Temperature, °F
Average Stack Temperature, °F
Average Meter Vacuum, "Hg
Average Meter Orifice AH, "H20
Observed Sampling Rate, t=PfT /JZM
Gas Volume Sampled, Ft3, Dry, 70°F, 29.92 "Hg
/
Sliilrt
M', r'M
/'os'/J.'M
3d
SO
Jd.oW
^.{00
/S'.W
?d°
Md*
/
I'^fr^
,t>6$
-
-
i
!
Calculations:
B-41
-------
SAMPLING DATA SHEET FOR
Plant fct Slz
i (LGIH-,
Remarks
/ / u4-//7
s >iC?-T~-
Run No.
Date
Time of Sample
Barometric Pressure, "Hg
Stack Pressure, "Hg
Final Dry Test Meter Reading, Ft3
Initial Dry Test Meter Reading, Ft3
Meter Volume Sampled @ Meter Cond,, Ft3
Average Meter Temperature, °F
Average Stack Temperature, °F
Average Meter Vacuum, "Hg
Average Meter Orifice AH, "H20
Observed Sampling Rate, -4PM dfM
Gas Volume Sampled, Ft3, Dry, 70°F, 29.92 "Hg
/
3-1 /-?
PM.
i.OS-S&O
30
J&
2W.024
-zSl.iOO
n.^zt
-70
-------
SAMPLING DATA SHEET FOR -tf* d
Plant
stack
Remarks
Run No.
Date
Time of Sample
Barometric Pressure, "Hg
Stack Pressure, "Hg
Final Dry Test Meter Reading, Ft3
Initial Dry Test Meter Reading, Ft3
Meter Volume Sampled @ Meter Cond., Ft3
Average Meter Temperature, °F
Average Stack Temperature, °F
Average Meter Vacuum, "Hg
Average Meter Orifice aH, "H20
Observed Sampling Rate, feW xy^
Gas Volume Sampled, Ft3, Dry, 70°F, 29.92 "Hg
*/
^0,£OQ
d/. &4
$0*
fee0
/,67
Qi/6%
-
&/,*
-------
SAMPLING DATA SHEET FOR
Plant
Remarks
'J
Stack
Wif - A.r///r
Run No.
Date
Time of Sample
Barometric Pressure, "Hg
Stack Pressure, "Hg
Final Dry Test Meter Reading, Ft3
Initial Dry Test Meter Reading, Ft3
Meter Volume Sampled @ Meter Cond., Ft^
Average Meter Temperature, °F
Average Stack Temperature, °F
Average Meter Vacuum, "Hg
Average Meter Orifice AH, "H20
Observed Sampling Rate, -tPM-^T^
Gas Volume Sampled, Ft3, Dry, 70°F, 29.92 "Hg
?
?-r?-74
10:50-10?.
3&
3&
11\.£B*>
^5"/ . qoo
2,Ot<93
&P,
470
/. ^
,-&£&
. 077
z/'oz-
1
:
Calculations:
/ , Z
B-44
-------
SAMPLING DATA SHEET FOR
Plant
Remarks
Stack
T
Run No.
Date
Time of Sample
Barometric Pressure, "Hg
Stack Pressure, "Hg
Final Dry Test Meter Reading, Ft3
Initial Dry Test Meter Reading, Ft3
Meter Volume Sampled @ Meter Cond., Ft3
Average Meter Temperature, °F
Average Stack Temperature, °F
Average Meter Vacuum, "Hg
Average Meter Orifice AH, "H20
Observed Sampling Rate, tPff /0/^tf
Gas Volume Sampled, Ft3, Dry, 70°F, 29.92 "Hg
Jf
.37/7/7/1
wr i
d.'frly.w
&&
30
49./I3
W.330
6.7*3
tfa°
1&*
/,67
,°76
-
\
!
Calculations:
B-45
-------
SAMPLING DATA SHEET FOR
Plant £/ '
Remarks
O',t d
Q
Stack
V
Run No.
Date
Time of Sample
Barometric Pressure, "Hg
Stack Pressure, "Hg
Final Dry Test Meter Reading, Ft3
Initial Dry Test Meter Reading, Ft3
Meter Volume Sampled @ Meter Cond. , Ft^
Average Meter Temperature, °F
Average Stack Temperature, °F
Average Meter Vacuum, "Hg
Average Meter Orifice AH, "H20
Observed Sampling Rate, tfW C-Fni
Gas Volume Sampled, Ft3, Dry, 70°F, 29.92 "Hg
3
3'l*>-7{
&* -
t7.:&-2&
3&
S'o
*288. &I
zri.soo
&&5I
(o&
4-25
-
j / ^
^3
}
i
!
Calculations: J/
B-46
-------
B-5
TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS
//. /?
To
PLANT.
DATE .
SAMPLING LOCATION
INSIDE OF FAR WALL TO
OUTSIDE OF NIPPLE, (DISTANCE A) _
INSIDE OF NEAR WALL TO
OUTSIDE OF NIPPLE. (DISTANCE B) _
STACK I.D.. (DISTANCE A - DISTANCE B).
NEAREST UPSTREAM DISTURBANCE
NEAREST DOWNSTREAM DISTURBANCE
CALCULATOR =Q
29
Zf
o o
"
^
Z/'
D
SCHET.1ATIC OF SAMPLING LOCATION
TRAVERSE
POINT
NUMBER
/
2
3
4-
£
£
7
B
1
/f>
//
/Z-
/3
fr
FRACTION
OF STACK I.D.
STACK I.D.
2***
<
1
.
PRODUCT OF
COLUMNS 2 AND 3
(TO NEAREST 1,8 INCH)
to.
/^/B
^7/8
4-'/+
6 7'*
7 7/?
/o*/+
/8 '/*.
2,1 3/B
Z33/e
Z$
2^ 3/B
Z7'/*-
ZB3/
-------
PRELIMINARY VELOCITY TRAVERSE
C.O.
LOCATION
STACK
y-o
BAROMETRIC PRESSURE, in. Hg
STACK GAUGE PRESSURE, in. H20
taww»»»»»t f i^^-~^
bo"-** i L.
EPA(Djr)233
4/72
TRAVERSE
POINT
NUMBER
/
2
3
4
^
C
7
B
9
/o
//
/z
/3
/4
AVERAGE
VELOCITY
HEAD
Ups),in.H20
-
0, 2
d.2-6
0. 30
0. 3-Z
0.47
o.4£
-7^. 5V f
STACK
TEIflPERATURE
(Ts), °F
-
IZOV
^
\
t
r-~
SCHEfrtATIC OF TRAVERSE POINT LAYOUT
TRAVERSE
POINT
NUMBER
/
z
3
4
^
£
7
g
?
/o
//
JZ.
J3
74
AVERAGE
VELOCITY
HEAD
(ips), in.H20
O. 36
£>. 30
0.40
0.38
0.37
0.3(*
o.4v
0.3&
0.41
o.4^
0.41
<0,3Z
-iTs.&t
STACK
TEMPERATURE
(Ts). °F
/ZO"F
\
\
\
)
/
1
*
CO
B-48
-------
PRELIMINARY VELOCITY TRAVERSE
PLANT.
DATE
LOCATION ,
STACK 1.0..
~
It /I 7 4
2?
BAROMETRIC PRESSURE, in. Hg
STACK GAUGE PRESSURE, in. H20
tfogtZLQfTsH-
TRAVERSE
POINT
NUMBER
/
Z-
3
+
3
6
7
fr
f
10
H
fr
/3
14-
VELOCITY
HEAD
Clp ),in.H20
O.It)
o./o
o./o
0.11
O.ll
O.ll
f)./t
0.13
o.tf
b.lt>
O.ll
o./t
STACK
TEMPERATURE
rrs). °F
/oo
>
k
'
AVERAGE | -y^T~ /J^l
SCHBrlATIC OF TRAVERSE POINT LAYOUT
TRAVERSE
POINT
NUMBER
/
2.
3
f
5
6
7
0
f
/o
//
/t
/3
ft
AVERAGE
VELOCITY
HEAD
(^Pe'i In.HoO
*M
OJ3
0.1$
OJ£
O.l£
O.l£
O.t4
0.13
0.13
0.13
0.14
O.lt
0.13
-lfc~=,32C
STACK
TEMPERATURE
(Ts), °F
/oo
1
1
EPA (Dut) 233
4/72
B-49
-------
PRELIMINARY VELOCITY TRAVERSE
?LANT__i
LOCATION
STACK I.D..
BAROMETRIC PRESSURE, in. Hg
STACK GAUGE PRESSURE, in. H20
TRAVERSE
POINT
NUMBER
/
z
3
4
^
£
7
B
9
10
If
/i
S3
fr
AVERAGE
VELOCITY
HEAD
(ips).in.H20
O.30
0.5/
. 4-$
0.4-1
-r-
STACK
TB1PERATURE
(Ts), °F
IIJ?
(
*
-
EPA (Our) 233
4/72
B-50
-------
B-6
Sou,co ol Air Coa,OTin0n,s
Type of Air >--'"-.
il C
Point of Discharge: Stack
Other
Point of Observation:
Distance to Base of Point of Discharge, feet
i
Height of Point of Discharge Above Ground Level, feet
Background Description ffl^e. 3 fry,
I 5 ^
Weather: Clear IXl Overcast
Wind Direction
Partly Cloudy
Other
Wind Velocity, mi/hr
Plume Description:
Detached. Yes
Color: Black
/Y& i«e-
No
White
Other
Plume Dispersion Behavior: Looping
Lofting
Coning
Fumigating
Fanning
See Comments
Estimated Distance (feet) Plume Visible (Maximum)
(Minimum)
Comments
/'\r k
T-QV GL
/I'.s "i
f^.v-ff' J
v u
ra
//
L f^>\- UJ',*t\ ~L>:si «*-(_ J yOU. cat,/
v/ .
Signed
Title
ec.
B-51
-------
COMPANY NAME
EQUIPMENT LOG ATION ( ADDRESS)
ENVIRONMENTAL PROTECTION AGENCY
J V I I -Q . L.' fl
or
VISIULT CMISSIONS
TIME OF ODSERVATION: FROM h OS P.M io^i2^i'.M. r>
>.'">. 01 02 O'J 04 00 (.S (>; ij't (!-,
4-i--;-U ..-
i|i j mtnxu i i
--. H---
Jimf 444 4if
i i: i:l! i
jTit uTnTTT
4-ij_:-jj... JjJ-i U-4- ^-Li-j. - J-tjJ -U-i
' i ! ' ' ; ' . . i ' ' . I . : i : . . i ' '} i i I
E^c^rTi^
4>s
4't
i^iimtoMSp=
'5 i' i i ;T1 i 11 Ml i! i !' i!!: i ! ' i"n~!"rT~!l";"
J3 59 40
J-J.O4:4.U^j4-;+!JJ4...!. :-:-lu443Ip4_LLi4iU
jmiLLLL-Cj.'!'i-Hii j i i i ! i 111 H iTT TTti
I j I i I i nTi~!Ti !~iTP !: H"!! i
^^mmjtglj^^
NOTE: Each smoll SCIU.TP represents nn individual ip
-------
ENVIRONMENTAL PROTECTION AGENCY
COMPANY NAME.
EQUIPMENT LOCATION (
TIME OF OBSERVATION: PROM
nticono or
vir.iBLr (-MISSIONS
I
TE _/?&»tA XX
IZTZEZI
i ri iiiir~i
:-
|T|ppE||g^|gj^|i[i^j:r
iliill'.jiti'njii4:44l!liuliiiiTiiiii±jji jtrfi i f"
I rf l-M-i-! ' ' i M I I'' ' ! '-J-i-i Hit I I vri4-J~i ; I i ' i_>
!!,!!. I i U-L-Lu.i-4-Li.
23 2? 30 3: 32 33 34
' I ' ' ! ' T~ . r t :
I . , . i : i I I'll' i . ! TTiM '
1 ; ( *-~-i-t-i .i.J , i M , i ;
: I :: : . : : i ; r, :
f^Mfflffi?
: i i! i ' ! 'Tt~r r; . , j H-*-
U4 JJ-LJJ-U-UJjIjj_i_L!JJ_LlLn
^J4JaJjJj4-U-U-L.J_!-L:.lL.I_LL
NOTE: Each small sq..are represents nn .ndividual rc-admg of intensity coirosrond.ng to that shown in the left-hand column
over a time span of ', mmutf. Ins-l an ' S" in llu- top row of blank squnrcs to indicate the CXHOI mmuli- of the slart of
observation. In the n-xt souaie aftor 111- 'S' . insert the hour in which thu measurement was mailu. Each page of this form
C6n thus be used to record 1 hour of nv-ar-urpnients.
B-53
-------
ENVIRONMENTAL PROTECTION AGENCY
COMPANY NAME
EQUIPMENT LOCATION ( ADOPES
TIME OF OBSERVATION
RECORD or
VISIIiLC EMISSIONS
Mm. 01 02 03 04 c"j TO (.7
ijfijjiiujtt^
''
m 11 11 i 1111 m MiliTTi rPTIT
Slori
'/hour'
R. No. I '-i.. Mm. ~ | 22 ;
;>9 2? 25 V9 'I")
3?
3H
..31-'.
3-3 39 to
(I M i ^l:_j.i_j.' irp
I^ni3lj-iILi4J
U-iOJJ-LUJJ^J.^LLLU
t=fhN«pllpggg»|E
'-1 ^"h^i: i4iJiiiiEj^ i"t;'Hi^t~~N- i^r^H-rHrj-^H-i^i- ~-~t~
53 C-0
itffijjjjjjj^TJi^^ iji
H^
^zurrt
fBSl 5l^*H-4r|~^H-rTT^
i-^L-j-Dj-i.;-LiTTT! j i t"!~J':"n':"r1'i lit rM"^f~!~;"n"T" i; i! i ,
NOTE: Each snail sq.,,vr represents nn .nd.v.dunl readinn of i.-.tens.ty coriespondmg to thnt sliov.n ,« th" loft-hand colu
' "
over a t,mo span of '. m.nute. Ins ». .--, S" in th,. to;, ,ow of blank squ.ws to md.Ci.te the oxncl minute of the start of
observe. on. In the r.ext scu.ve nftei !'. S' . insert the hour in wl,,ch the mensurement was nndc. Each payo of this form
can thus ba used to looo.-cl 1 hcur ul rv-.-ir.uti-iiierts.
B-54
-------
ENVIRONMENTAL PnOTCCTION AGENCY
COMPANY NAME
EQUIPMENT LOC ATIOH (ADDRESS)
t,' If
TIME OF ODIEDVATION: FROM y-^S
RKCORD OP
viMui.r. EMISSIONS
.M. DATE /^t^xA- (t, ?/
iWJifWfflfiE^ffit
I^^HtiMFSi^fet
?'.' 28 ?9 3.1 31 ;<2 33 , 34 35
I j ; , i I.I.M i [ in i i ; j_ijj
inim^T^Jir^^
^-HlLU Jfl 3t,.r 4.UJTLU.I Jl M±!tTLUiTpl. J. LUHI
JjjjJlfeEJi;
D '.!.! lP ! 1 i ! ! I
NOTE: Each small siiuJre represonts .'in individual rradmo of intensity corresponding to that shov.n in tlie left-hand column
over a timo span of ; minuto. Ins -t an "S" in the top low of hlnnk squares to indicate ihc pxm:t minute of the stnrt of
observation. In the m;xt squnro .iflor lh- 'S' . insert thu hour m which tho mfinsurcmcnt vvos made. Each pat;o of this form
can thus bo used to rccoid 1 hour of nii-nr.uroiiiei:is.
B-55
-------
Source of Air Contaminants
Type of A.r Contaminants
R
e«,«Ne*y
4 5i»*U«l O\\ C*
^ S .
Point of Discharge: Stack IX
^ Other .
Point of Observation: So^jkC ETVz-fJr
Distance to Base of Point of Discharge, feet
Height of Point of Discharge Above Ground Level, feet
Background Description Cltu.\r>
Weather: Clear [XJ Overcast
Wind Direction -jvt>w> Si
Partly Cloudy I I Other
Wind Velocity. mi/hr_
/Q-/S"
Plume Description:
Detached: Yes
Color: Black
No
White
Other
Plume Dispersion Behavior: Looping
Lofting
Coning
Fumigating
Fanning
See Comments
Estimated Distance (feet) Plume Visible (Maximum)
(Minimum)
Comments
ble "T
a.*\\>
-
"f"o »
-------
ENVIRONMENTAL PROTECTION AOENCY
COMI'ANY NAME «-" WHA°"-OV /3 I ) Cp- C^K^^OU )
EQUIPMENT LOC ATION (ADDRESS)
TIME or OBSERVATION: FROM /0>30
ore ODD OF
VISIIII.I: CMISSIOHS
. OATE
r^LJ2s
R. No.
_LJ_i.J LJLJ.
''. Mm. 01 02 03 04 (, row of blank squares to inclicnte the p\act minuti- of tho stnrt of
"Observation. In the next squnre aftor l'ic S . insert the hour in which the mtuisurcment wns niaJu. Each paye of this form
Can thus bo used to record 1 hour of nir;>surrmfi:ts.
B-57
-------
ENVinONf.'.i-fJTAL PROTL'CTION AGENCY
COMPANY MAME
EQUIPMENT LOCATION (ADDRESS)
TIME or OD:;i:nvATioij: FDOM //-3i
f'd'coRo or
VISIDLE EMISSIONS
TO;
P.M. DATE
2 i>.U
~re
j .L...J. rT
" " "
mmtrrhrtrtm-M
uiiinj.uiiJjiiii-tiji
iIJ^iHi{j^ii4y444^i;
£ RjiTLL! 11 n . TT^: DlU
_25_ I | jTT: ,
JJ!L- *. '''" 01 p2 o? __i'i . °:L-I,":.v.j'v1.A'-i f'3 'o..'! '?" "p" ~
M
Siiib
/U
Jjjtllpi^^^^^^^^g
li.[_i-i...i }! 11 ; i''"i'j ' j"l i : M j i |
' " ..'J-U.:.J_J.!-1J_J.
tfiLtddjtHdjH
^SM
44^
NOTE: Ench small square represents an individual reading of iriensity corresponding to that sho-.-.n m the left-hand colu.Tin
over o timo span of '; minute. Ins -I an S' in the top iow of Wank squares to indicnto the exnct minuti- of the Start of
observation. In the next square after tnc S' . insert the hour in which the measurement v,as r.,.-ido. Each payc of this lonn
can thus be usod to recoul 1 hour of ni'-nsurpn-unts.
B-58
-------
ENVIRONMENTAL. PROTECTION AGENCY
COMPANY NAME.
EQUIPMENT LOCATION (At)OP.ESS]
nrcono OF
VI 51 OLE EMISSIONS
TIME or OBSERVATION: FROM /2'3o «ea- -m /-J<5 P M DATE f*> * A) /
< Mm. C.I 02 0?) 04 (:'} f!_ I! i! i ! . .> : ; ! i
.Ai I ,
4^-jH-H-! i:':: jrh-ffr^t ^^liljl: jlLi J ^n^tdFE'^JZilP'
1 ' ' i ! i ! : ' ; i : ! ! i ill ft : i ' ! :'li i i i ' i ' ! T"- "Tl ^n~~~i~ *"~i : C'', ;
R. No. I =«. Mm. Tl 22 T
g^iyg^rjr^^jij^
^4±^+~Mfe 4^-J2 .
C-.S
I I.' . j ! . ' | ! ; ; ' '!!1'ji- jT^ ^ii"Tii : i i ' ' ill! ''^~~; i'l~! i ,'.! i.""i~l i ', ! : ' I ', ' i i'i ' ! i - ' i I i , i
|j-!ijjirniLU-L1^-_nnuL-^ 'jjiLLj^LJj -rr^"-11!-! _~'r~iT~'"h" i \:-',' ! I !TL
U..:i JM . ! I! ' : : ! !J.JJ'!:.;!I I ;.: ! i .; ! :; ' i ' Jifi ! i : i | |- p .''< ' I ' H !"''! i i' I ! 'i ! ! ! i
: l.:.j !i.JJ ,. ,.i , . . , ,
; ' i i : . ' U-iaU^-i-lU
w * , i « i i . .^»i. ..t. >. . .. i.i.. ,_^-t-.-^.-.-^_-..
' I | I I 1 I < . . i I ' . | | ) HI.' ' I i : 1
i-f-H-"^-"-H-^-i-' 'Mi- *--^-L<-i! . i i i_u^__ _!..'
ilj ! i . ; .' : ! ' ' ! L:_l 'Jl J.. , ! Li ! '. < ,
.! i I LM ! i irn !"n'i'i'JT: 'IJHI
. .'!: !^-L-L' i i i:i.:.j :* -iji ;; i .: ijij i. ; j.j.i; i;;; i;; ;i
^jJjJ-i^.L.4_|..' .'j ; ! :;; i i. j : j; I.:, !.j .:! : n M.
^jj-iiiiii. .
i i |"i i ; i i i . | | I I I : ' , : ! i . i .
i±i I n;~ ! r<;; r!,; I.: :~i; "T! \ rr~ \ ~. \ "ri ; , \
I :.: L I - - ; i ' . '. \ : I \ ] I j i : I , | i i '' ! ' ; i ' I ; ; ' | :_LH_L!_! .;_! ' I : ' j _j__.__ _ i ! ' i ! I I I I
~' j ;" i. ; i~~~j :'!,!: n~ i Jhnrnijj-iJjL^iiiT'QiLijix^iuLuinzj "TT '. \ n 'TT
_IJJJ1.{_.^.U : I'-iLlL:
s,J 'M" i > ! i P"iT.
NOTE: Ench smnll squJ'p ri'presonis -in nuliviclunl r(>aciino of irlensity co.'icsponding to Ihnt shov.n in Iht? lolt-hand coluTin
Over a time span o' 'i ninuSc. Ins "I ;m ' S in iho lop row of M;iak sqj.ir^s io indici'te the exfiot ininutf of ttie start of
observation. In the next scj-jnte aftei t'lc 'S' . msen the l-.our in which tho mr-nsuremenl was made. Each page of Ihis lonn
C8n thus be usod to rccoid 1 hour of nv;ir.i.roiv.ci'ts.
B-59
-------
ENVIRONMENTAL PROTECTION AGENCY
COMPANY NAME
EQUIPMENT LOCATION ( ADORITSS
TIME or OBSERVATION: FPOM
OF
VISIBLE [.'MISSIONS
"-, Mm. 01 02 0") 04 df> OS 07 03 fit 10 11 1?
rrriT "
M If, 1G ! / la 13 ';0
R. No.
Mn.
I SO
3^.
2
T?T
2' 2S 29 33 3: 32 33 3-S .11, 30 37 3.3 39
dO
.
ifrti^^
-h^
ri-^ 4:H^-lrH^-t^&
70
30
niniigiiiiuujiidiiiiatr^
'XTTTi.;rr7iTPTii..iLU-[ ''"~
^1
T-
! I i ! , ;.' I i i . I ;JJ-I '-L I T! I ! I iTrM
rj^feiir^
:+piiiiil±^
4J--l4^--^--!J-^-
: I 1 ! I . | ; : , I I ! i
I.L !! I i ^U.4-i-i-^-LJ-i-UJ
'::'! i :;::.; : ' , ! < .'ii
.1 ; ' 1 i I ' I ' ' I I ( ' ' ' ' i '. I ! ' II t I ] i ' ' ' f I
TF
=fc
NOTE: Each small square represents .in individual reading of intensity corresponding to that slioi'.n in the left hand column
over a time span of 'i minute. Ins ! ,-m S" in the top row of blank squares to injliciite the cxiict minute of the start of
observation. In the next sciuare after fie 'S' . insert the hour in winch tho meusureme.-it was made.. Each page of this form
Cfln thus be used to record 1 hour of m'-asuienie^ts.
B-60
-------
Source of Air Contaminants
KlCo
Type Of Air rnntaminants
Point of Discharge: Stack IX
Othor
Point of Observation:
Jr
300
Distance to Base of Point of Discharge, feet _
Height of Point of Discharge Above Ground Level, feet ' 5O - f % Q
Background Description
Oe&v*
Weather: Clear
Overcast
Wind Direction
Partly Cloudy
Other
Wind Velocity, mi/hr /0~
Plume Description:
Detached- Yes
Color: Black
No
White
D
Plume Dispersion Behavior: Looping
Lofting
Other
Coning I I
Fumigating
Fanning
See Comments
Estimated Distance (feet) Plume Visible (Maximum)
Comments
1\
V/
(Minimum)
vfsi
L/e.
Signed
Title Tec.
B-61
-------
COMPANY NAME.
ENVIRONMENTAL PROTECTION AGENCY
&\\ C0. ^"^ £ y ^0 O
EQUIPMENT LOCATION ( ADDRESS).
TIME OF OBSERVATION: FHQM f
PEC OHO OF
VISIMLC EMISSIONS
__L_J L_J L_
Mm. 01 0? 03 04 05 '.*
4 ' PrJ
4- -U: Ui-: J U.;JJ..lT
- !
nmttrnmrMi^
MiftbiirtiHM^^
»iii:!ptM:tii&^
i4Wi^4WH-H4W4htifetoilH^
15
10
TTrHirjl-fi rlTHiRH4,,
^^yrrnTtr'Tii-rrMlii^'
I , ~ ii*~ ~7TrT"'"7i1~T->-' «-f «-<-f-i--i-f-,-t-f1-u^,^-;_.--;--,_,j-j-i_:.,44_u^.:,
^p!^^^{M|pp^±it^ii%t
l
...- "HTt'LTtT. :: H"!' ' '
Start
/hour
R. No.
t\.
3*
Mn
22 ?3 :< ?5 :-o
T"
too
-Ut-P-^T
qj_r i i i i i
_/3 :'? 3J 31 :? 33_, "-i .15 y, ;-7 ;tj 5-3 40
' ~j~ r*"" *
' , ; , r i ~i T ;"":~"T~"1 i
t^J4Tgjp_l:^ij^^^
ztniitidtxtilitdi^
jjjTn_i rnT~! >. ,Ttr
I 5
tiii^tLLH'!'hLi^ti T^H^^H^^4LH~H~L^T;~--1i;! i r i' i iii
jj-tL'-jii ni.:.!... -j-d!.,;. i. jidirDjiiinj iii. ^...iJiidinitiiitliij
Slan
/hour
R. Mo.
S"j
cr,
l-G 59 C-0
jllJ-L'T1. . !' i : iTrtTiiTii '_!' ! i rrn";"f:';":'| ~r:-t-:-riT:Tr
i
ri^^
I .U- rrhT-r-^:r-[-Hrrr-- --pj-L, ; H-rr^.^
:!'.:! '.-jTL:_:T:Tn~ .; i;;: 1 : T'_ .\_r:\ . "I : i: i i'
NOTE: Ench small square tppresrnts ;in individual rcad'nn of intensity co;ies|)onding to thni shov.n in ihc left-hand column
over a time span of '< minuie. Ins ! ;tn ' S" in the ioji row of blank sciuaros to mdicute the p.xnct minute of the start of
observation. In the next sifjaro alic-i the S' . insert thu hour in which the measurement was made. Each pago of this form
can thus ha usod to iccord 1 hour of ni'-.'ipuioiw.ts.
B-62
-------
ENVIRONMENTALPROTECTION AGENCY
COMPANY I;AME
EQUIPMENT LOCATION ( ADDRESS)
TIME OF OBSERVATION: FROM tt'ZO
PtiCORO OF
VIKIULi: ("MISSIONS
A. M.
____
E fi4~«J+ (^)y
TZEIIZL_J.._.l._L_J~riTJZII]
i,^,9^'' 'on.^uj3 ^_... _jnzifi»jt* "
7
^i}^
tg»
-
Ht^HrH-M^jj^
; L. i *: LLLLLL' r-HT^fi^PtfrT^-11^
f==j^a^
SlBfl
/hour
23 29 :>.1 3!
~rrrrr
3? 33 . 3-! v, \f.
. .
^-:K^
s»^^
'
£ ,~ 1 ! i I 11 ' ! I ' i ', i ' I I ' ; I i ! ' i : ! , i ' ! i i ! fTiTl ii i i ! i i ! i i ! T~, . \ i~"~. I ; '. '~\~'. ! , ! !r
;s
J-!l
{J-a-Uj.. ___.
lj 04^j_L_(_LU-UJ-L4^-i-
s'a"
/hour
3T
iTrr
eo
_d^^i|j^jH..L.U;lL|^^
_^ t-n-T- f . jj J _. i ' '. I J _: i_T"^ T i "7 ! i J Trj ! "j~i TI "'" ' ; '~ ; " ' j"T~'""J "7
1
NOTE: Each small square rcpresrnis nn .ndiviciual reading of intensity cormsp-rnding to that shc.v.n in the lofl-l.ond column
Over o limo ?p.in of ; m.uutc. Ins -I ;.n ' S m the top row of blank scjuaros to mdiciile the exncl minuti- of the start of
observation. In the next squiiro ;.f!e: in- 'S' . insert the hour in winch the mi.-;-surcmenl was niiidc. Each pacj" of this form
can thus bo used to rccoid 1 hci;r of nviisuiO'iici-.ts.
B-63
-------
COMPANY NAME
EQUIPMENT LOCATION (ADOriESS).
TIME OF ODSERVATION: rr?OM
ENVIRONMENTAL PROTECTION AGENCY
Oil
P.M. 10/-'7Qp.M. DATE
( ' '.'3 fO 10 1)1?
Siart .
'hour
R. No.
2'..
/a /9 3) 3: ;i? 23
.LI
?.3 33 40
.jffU4
'o ; tTT4"~"*~;T'';' "''''^^^^~'"-^~-j----' '-
2
T5T
-LTrprn;' i [Tli i ~\ j_n^j^ ._ijJ_LLM_i JilTL* i: ;~JMl
Iffij_LLJ_- L_;.!.!
11
i | i i . | ] i _ '. I j ; I ; , ' i |~j i i i !"*! I : ;_{ r ;j'i ! ~!~' j~] : ' j ' >' i ' i C\
| j 11.. il-U^-jlallir_L^j^^:dTi^|L:j | jITl: :j; i!!'!. FTj :.J-li-iJ^
: ' ! ' ' "' ' ~~~~ ' ~ " '
!' -i : , i i::
Sg^g
Siari/llou,
<>
100
"
_
i i 1 i
!_. i_: J j ; : !_L!_L;.!..!.1J ! , ' i :: : : ' I !
^'i ! :!'!: ':J~Ti!', J i .'! i!
l4!_[J i.l ! i ' i I j 1 1 | i J I I ; r. j : p \~^T\ ! ;.;J_.;.. |IITj~n_[^|
~ ~ r ' r^~~'~ "' T '' ' ' '
. . r:M :,- , - - - ' '
NOTE: Each sniiill sqjan1 ropresrnts nn individual reading of intensity cortpspo.'iding to that fliov.n in si'C left-hand
Over a timo span of '; minute. Ins -I ;m S" in the lo;> ro\v pf L->!ank squares to indicate '.he evnct minute of the start of
observation. In the i-,r>xt stjuarc after i'ic S" . insert the hour in which the measurement was notiu. Earli page of this form
C8n thus be used to iecord 1 hour ot ri"r
-------
ENVIRONMENTAL PROTECTION AGENCY
COMPANY NAME
EQUIPMENT LOG ATION ( ADDRESS)
I'.M. Tol.P.M. DATE
TIME OF OBSERVATION: FROM J_j£
-2^- -^,,;,°;.," " o* gjLf*; fvI^2'dr- i°_uu^. J,£~. r^rrn r^rnrnr
~~iitl~^ nfrH H^-fil^-H-:J-H^if!fi H^|tij-"i ""rLlil-UTf. j"J-':li"-7]ir|jtnT.izl"LiJl if'"
T| T-" 1 trj! i^ji1itjl[H~: |rr f-u - IT{-J-!T: H~H' ^m | Kfi L[ -!-irpT^-|-[i-! |4 !-f-(-|-t-j -j- - --
~₯> ^ Jfrl^iTrri-T- -frrH^iT-fitn-f-i h -i JfH4 iTrT*!-LH4^-r-r4-il ^^t4-u£-.T Iu!T.iH - ill I
?!)
TO rrrH-f: j i! i 11!' i i i-Lj-H-J4f+-t-i-H-t
nm
r;-riTT
ifeStettiffi
p-
Stan,
R. No.
6
3*4
29
j|f |jt|^ir4i^n±L j. 14.1., ri4tinj4u^"±i.rL':tiSij:
frlTj-^-i-1 ffrf M^rH ^fi^f^i^-i t! j4tH-uHJ--l fHr^
33 40
3'- i f-5
2'i
i i : ' ; ''''!> i t . . I ; i I , I 1 , i J ft \- , T , . T ~ TT >
-*-*pJ-f-<--f-«-4-*-J--i-^_-l-.-faj^;-j.4-^4-4-4 -f-4--<-|--i-t-.-.;-.J.(_i-iJJ_L]-t.i J\- . I I \ .!_ j ' j j^ j I
-*"i J -.j4-l-*Ji-^ .'I,;} i . _j.j_i_'_Lj ' i_.L_i_J_i i J . ( ! I - ' ! ' ' ' i i ' f ! ! : I fi
TV
r^iHirp
a
Start
/hour
R. Mo.
4'.
2
~nr
!;__,! ;.2 53
~^ ' 11 n~i
-w-« f f r ; 1-^- . i i 1 1
-2- ni!J__i-!J_J J _
jo ! ; ! ' i . i i ; . , i
_ __^ to 59 60
SrR^^R=^-[
jjlirriiiiijfjit^^
'"^ ' irdiiriilir^^
4r:r^- J^7i3iy?Ii4^-^^^
"
NOTE: Bach small sqjore rcpresonts nn mdiviriiial rrading of ir.iensny conor.ppndmg to that shov.n in the left hand column
Over a time span of '. nmuti-. Ins -i ;m ' S' in the top row cf blank squares to indiciile the i-xacl minute of the start of
observation. In the next SQ'./me after fu- S mseit the hour in v,h.ch the rrwcsuremont was nadu. Each pace of this form
CBn thus be used to record 1 hour ot rv.isuirripr.ts.
B-65
-------
ODOR PANEL RESPONSES
Source JfcmoUvof 0]\ Co.
* i
Port _
Date
Panel Member
-*?/ ft K
2. "Bvuce S-dkvUJl
3 ^v i^^
6. jVLi^W >W
" / 'fc\ IA V\ O
7. J^|;t /HexvUe
8. 7- . , .
Oft.Vi iC^ t-.| VO
10.
Number of Positive Responses
Percent Positive Responses
Dilution
>7o
-rf9
'U?
-*-
.-^
©_
... .
.
-
1
Uvk
y^
&
H©-
(9
^^''
4-
-------
ODOR PANEL RESPONSES
Source
Port
Date
Q'.l Co . (c U
7V.
//
Panel Member
.
Dilution
g- 7
-f-
-h
-f-
-J-
-f-
/QO
H-
Number of Positive Responses
3
r
Percent Positive Responses
IL
33
ftSfc
-------
pERCENiAr,i: P0»;f.v«
so r,o 7o
11.0
7.0
B-68
-------
ODOR PANEL RESPONSES
Source S4a^&c^Jj G'>1
Port
Date
Tes-f *fr
Panel Member
Dilution
ho
0/
/r
>L
00
VO
1.
3.
4.
5.
6- "DolV
5*
k;
y
9.
10.
t:
-h
4-
4-
1-
-h
Number of Positive Responses
loo
Percent Positive Responses
30
to
-------
ODOR PANEL RESPONSES
Source Sfawaw Q'. I C0.
Port I
Date Afetr
Test
Panel Member
I5»*uce ^u^\c.vl<\\^of
2C Lf'
**o via n i VM
3. H.J*. To^e
4. JoJ',^ /^fct^^le,
5. T"- / ',,.
«-'a/l'iict« Ir-lu.
6. PftUy U^g^l-V
7. /^^e H"iv>,so^/
°« M V A/I
v*v\ /l'iO«-iA.u\ O
1 \
1 0 ^f " "?» \JT
number of Positive Responses
Percent Positive Responses
Dilution
*°
+
-t-
-f-
+
_L
'
-1-
(o
60
^p
t-
-r-
t
f-
-f-
^
-1-
&
Co
A^
H
^».
«-!
^^«
^I^VH
.
^W
*
I
-r
?'
^
*~~~
-f-
.
-*-
&
50
%o
-h
+.
-h"
<^
+
V
^0
^s*
^jfloo
~
-/-
_
/
10
\
-------
3.0
i i r- i i ii i i i i i i
4.5 5.0 5.5
PROBITS
7.0
B-71
-------
ODOR PANEL RESPONSES
Source S'fa^go*'* Oil Co.
Port Ou-Vlet
Date A'UvJk
, ?V
Panel Member
1. JWe S^e-Uj
2. «SottQ *Ti 1*1
3'D Ix T"
l\ * C*S / OV*f lA^" &
*-J AV^ ic* ^^
6" J"-1- /^U*
8. A1»iciru/ocO|
1i_.i_ c j.
m ^V^T^y Tfh/eeTtietm
I U. Ot ;uw 11 ^»C^JBV>
Number of Positive Responses
Percent Positive Responses
Dilution
Vo
4-
4-
4-
4-
4-
4-
4-
f
+
4-
^
4
4-
q
4-
4-
^
^0
4*
4-
4-
~~
4-
+
-
4-
+*
7
10
4 00
-*-
-f-
4-
___
/
30
-sj
t\3
-------
ODOR PANEL RESPONSES
Source
Port
Date
?y
Ted
CO
I
1 IP
I J>
2. S
5.
6.
7.
8.
9.
10.
Panel Member
.,1
Joe
Dilution
-f-
4-
4-
+
4-
1
1
/
7
T*
4-
t-
+
-V
-V-
-r1
4-
4-
4-
4-
Number of Positive Responses
10
0
Percent Positive Responses
HO
/oo
3|o
V0
JO
0
-------
PERCEMTAGC
30 40 10 CO
1'.".. ". " '.: i n.".-.;: ;z:," "Z"-_ .~ i~.~ .!:~".:;: N.'~.~ir"!rr^~':'~~^"~"~~-1~:-
1 ; , Sfc _-"
. ~ - * * i ".~:-~.~ .. x' r "j.; ,
3.0
3.5
6.0
I i I I I i I I
6.5 7.0
I/.
B-74
-------
APPENDIX C
LABORATORY REPORT
environmental science and engineering, inc.
-------
C-l
]I:O:;!:L;:T/I. i.;;ci!;LTf:i:;:;, inc.
LAFl DATA Sli:CT
SULFUR DIOX1DL A.'.V-LYSIS
PI out i;c.--.,//^,,,
Analy?c-d Ly
Date Analyzed J* -/%.-
Hours
Stock
St!r:,;jlc Uo.
lister
«
OUTLET
/,
-z^/rr
v,
^«ri^r
/<
i fj / /.
v->'5x <-<'-> ' n
,,
w^., //
f\.J.' **-> III
a
u
^Zvu 18
tt
(A^ / &
/'
.
V.T.
6..0t
6.61
a.0 f
6 .01
6.01
6 . <3 /
o.ot
\\.
t.O'K
a 6/f(o
6.0 / /&
0.0*1
*.*//{,
c. 6,/e.
6.tlf&
-------
Li.'vif/j.'.r.i.MT/.L Li;G]!;:.iTi;;ri, inc.
LAB DATA Slim
suirip. DIOXIL: /.:;/-LVSIS
Plant, \\ir-'
Analyzed
Stock
I^tsLCT
It
OUT i rr
n
ruLzr
n
Curt^-r
n
j ^/X* rf V ' /),, ^/ U'jf
Jy .4-^
S^le No.
L£^ ^
/I
Wg/.^ ^X^
/^
C/^0 c?P
//
^?,,o *3
n
,
fr \
V.T.
/.»(.
6 A//&
6 ' . G/f&
a. //&
t.tvt
6. 0//&
a.e*l
o.**6
'-? - 7'/
V.Soln.
^
y^
£/ s~
J^^
&£.
6*
43L
^
V.A.
/o
so
^
^
/*
/d
^
^
V.T. = Volure of Bariu-n rcrchloreto titrent used for ssrple (nl)
V.T.B. = Volu.-o of D^rit.T, pcrchlorstc titrant used for blank (r.-.l)
N. = Korruli ty of 33rim perchlorcte
V.Soln. = Tct:l solution volL1.-^
V.A. = VolL-o of sc-plc cliq'-ot titrated (nl)
C-2
-------
cii\']i:c:;:f.;.!!T/.L u.'Mi.'Lr..".!;;:,, iiic.
LAB [JATA si 1:1:1
suirurt uio/iDL' /.:;/-LYSIS
PI cut IK ;:/.
. ^£v
c Analyzed .? - AT -
Hours
Steel;
r<* rr
,,
0 (trier
n
Sar-plc No. V.T.
\j n
^KJJsJ O /) *~F /*J
if) . .
^
.
0 ^0
0 L£ &*
*.3
^.37
*U-».
m
V.T.B.
0.01
t.oi
0.0 t
6.O f
0 ***.
\{.
***t
0.6*il
0. Gf/£
t.Cifl
Ts> rJ
V.Soln.
^c
&
«tf
+V
-------
Project Titlc:
0
Project Ccordinalor:_
Date: j/:
/
No. Hours;
Notes:
-------
Project No.
Proj oc t Tit! z\ _
ANALYSIS:
i S t. ~s'-r>
f.<-* >
Pro'CCt Coordinator:
No. Hours:
Cakulittcn:
-------
v/
rrojoct
Project Ccordir.ator:
"*.. ^ ..,..-
Dolc:
No. Hours:
i.i plo
:;- '-LT
/f
1
ADS.
OIL
037
031*
u-n
Size
Volume
DiluLion
Factor
Cone
$7.7
Z./.S
z/.s
0.7
0.C
Calculation:
Notes;
-------
.0
Project Title \
Project Coordinator:
Mi x
/? '' 7
< £ -V J
Lhcnust:
X
Date: 3J
No. Hours:
S:rplc Calculation:
Notes:
-------
APPENDIX D-
CALIBRATION STANDARDS
environmental science and engineering^ inc.
-------
POST OFFICE BOX 6O8
CUCAMONGA CALIFORNIA 9173O
TELEPHONE <714l 987-4611
Environmental Sc ience '&
P.O. Box 13W ,
University Station ''
Gainesville, Fl. 32601
Attn: Charles L. Stratton
"
,
"
A DIVISION OF WILL ROSS. INC
Hate
2-25-74
Our ImiiiLi No
Your I'O Nil
C98823
hit N'o ^ -2-21
(icntlemcn
Melow arc tlu results of the analysis jou requested, as reported by our Inl-orntory Results arc in \olumc percent unless
otherwise indicated
LABORATORY REPORT ON GAS ANALYSIS
Cyl N0IT^767 Cyl No £F2_1809 Cyi. NO F£2 8.731
Requested Actual Requested Actual Requested Actual
COMPONENT
CARBON DIOXIDE
OXYGEN
HYDROGEN
CARBON MONOXIDE
NITROGEN
ARGON
AIR
METHANE
HELIUM
SOOOppm 5175ppm
BAL. BAL. BAL.
BAL.
9.9%
10.21%
BAL.
BAL.
The onlv liihilitv nf tins Cnmp.inx fur j;.is which
h\ the (oinp.m\ uithoiit extra cost
D-l
Analyst
KEN ROPER
u> compl\ «itli this .mil\.sis shall be rt placement thereof
MANUFACTURERS AND DISTRIBUTORS OF LABORATORY COMPRESSED GASES AND ASSOCIATED EQUIPMENT
-------
LABORATORY REPORT ON GAS ANALYSIS - Cont'cl
Your PO =
COMPONENT
CARBON DIOXIDE
OXYGEN
HYDROGEN
CARBON MONOXIDE
NITROGEN
ARGON
AIR
METHANE
HELIUM
Dale 2-26-7*4
Cyl No FF18905
Requested Actual
1.0% 1.03%
Cyl NoFF29515
Requested Actual
Cyl No
Requested
Actual
2.5%
2.58%
BAL.
BAL.
BAL.
BAL.
COMPONENT
CARBON DIOXIDE
OXYGEN
HYDROGEN
CARBON MONOXIDE
NITROGEN
ARGON
AIR
METHANE
HELIUM
Cyl No
Requested
Actual
Cyl No
Requested
Actual
Cyl No
Requested
Actual
D-2
Analyst KEN__ROPER .. .. _.... ______
MA1HESOIM GAS PRODUCIS
1 IK Kiil\ li.iiiilin 01 dm (.ompiiu lui <;is uhuh t.nK 10 n>:ii|-U \\ith ih;^ .inih^iN --li.ill
In (hi- ( i)iiip.in\ v iili>ii'[ i\T' i>>vi
ri/pl.\ami.m
-------
POST OFFICE uox iea / A DIVISION OF WILL ROSS, INC
NEWARK. CALIFORNIA 94060
TELEPHONE 1415) 793 2559 / TWX 910 .181 GOD 1 ' 0-1Q-7U
Date
Our Invoice No C98823
PO V crfrfc YOUR P.O
MATHESON GAS PRODUCTS
POST OFFICE BOX 608
CUCAMONGA, CALIFORNIA
91730
LABORATORY REPORT ON GAS ANALYSIS
cyi f 5-29*+l cvi # FF-28768
Mixture Reg Analysis Mixture Reg Analysis
5.py GARBON DIOXIDE5.058% * .02%20.0% OXYGEN La*-98% '.02%
BAL NITROGEN BAL BAL NITROGEN BAL
Cyl# FF-10068 Cyl# FF-26737
Mixture Reg Analysis Mixture Reg Analysis
500 PPM CARCQN MQNQXIDE\99 PPM I OOP PPM CARBON MONOXIDE'99 PPM
BAL NITROGEN BAL BAL NITROGEN BAL
-0% OF COMPONENT /. ' 1.0^ OF COMPONENT
Cyi # Cyl #
Mixture Reg Analysis Mixture Reg Analysis
D-3
flnalua R. L. KUNDE/ / ,-. ", - -..
MATHESON GAS PRODUCTS
The only liability of this Company for gas which fails to comply with this analysis shall be replacement
thereof by the Company without extra cost
G.l Division Cumpui'iiL'll O.isrs .mil Commit M.u'irscin Cult.Mii.iii Ki d.-ll [livi-.ion RiMguMI Clirnnr.ils
-------
POST OFFICE BOX 60S
CUCAMONGA CALIFORNIA 9173O
TELEPHONE (7141 987-4611
Environmental Science
£ Engineering
P.O. Box 13454
University Station
Gainesvi1le, Fl. 32601
Attn: Charles L. Stratton
A DIVISION OF WILL ROSS. INC
Our huiiiii N'o C99509
Your I'O No Add1)
Lot NII ^ -2-4?
(itnilemin
Iklow an- the results of die analysis you requested, as reported by our labor.uorj Rtsulis .ire in volume percent unkss
oilier wise- indicated
COMPONENT
CARBON DIOXIDE
OXYGEN
HYDROGEN
CARBON MONOXIDE
NITROGEN
ARGON
AIR
METHANE
HELIUM
LABORATORY REPORT ON GAS ANALYSIS
Cyl No FF32629
Requested Actual
Cyl. No FF 30085
Requested Actual
BAL. BAL. BAL. BAL.
SOOppm 486ppm 100ppm 106ppm
Cyl No.
Requested
Actual
Analyst _MOQPER
I lie onK li.il)iln\ nf this Comp.inv foi
!>> thf fompim without ixtr.i cost
D-4
which faiU d> compK with ihis .inil\>is .slull he n-pl.ictmi.ni tlurettf
MANUFACTURERS AND DISTRIBUTORS OF LABORATORY COMPRESSED GASES AND ASSOCIATED EQUIPMENT
-------
APPENDIX E.
PROJECT PARTICIPANTS
environmental science and engineering, inc.
-------
E-l
PROJECT PARTICIPANTS
Winton E. Kelly
Charles Sedman
Frank Butler
Gary McAllister
Environmental Protection Agency
Project Officer
Project Officer
Chemist
Chemist
Environmental Science and Engineering, Inc.
John R. Dollar, M.S.
John D. Bonds, Ph.D.
A. L. Wilson, M.S.
Al Linero, M.S.
Mary L. Smith, B.S.
Lee Roby
Greg Benton
Mike Jackson
Project Manager/Engineer
Project Manager/Chemist
Engineer
Engineer
Chemist
Technician
Technician
Technician
No longer associated with Environmental Science and Engineering, Inc.
E-l
environmental science and enrjinvering, CKC.
------- |