xvEPA
Prott
Research and Development
Analysis of
Organic Air
Pollutants by Gas
Chromatography and
Mass Spectroscopy
Final Report
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the ENVIRONMENTAL PROTECTION TECH-
NOLOGY series. This series describes research performed to develop and dem-
onstrate instrumentation, equipment, and methodology to repair or prevent en-
vironmental degradation from point and non-point sources of pollution. This work
provides the new or improved technology required for the control and treatment
of pollution-sources to meet environmental quality standards.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/2-79-057
March 1979
ANALYSIS OF ORGANIC AIR POLLUTANTS BY
GAS CHROMATOGRAPHY AND MASS SPECTROSCOPY
Final Report
by
Edo D. Pellizzari
Research Triangle Institute
Post Office Box 12194
Research Triangle Park, North Carolina 27709
Contract No. 68-02-2262
Project Officer
Kenneth Krost
Atmospheric Chemistry and Physics Division
Environmental Sciences Research Laboratory
Research Triangle Park, North Carolina 27711
ENVIRONMENTAL SCIENCES RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711
-------
DISCLAIMER
This report has been reviewed by the Environmental Sciences Research
Laboratory, U. S. Environmental Protection Agency, and approved for publi-
cation. Approval does not signify that the contents necessarily reflect the
views and policies of the U. S. Environmental Protection Agency, nor does
mention of trade names or commercial products constitute endorsement or
recommendation for use.
-------
ABSTRACT
Development, perfection and evaluation of analytical methods and
instrumentation for collecting and analyzing hazardous vapor-phase organics
occurring in ambient air was conducted. The areas of investigation included
(a) the evaluation of Tenax GC sorbent for variations in the breakthrough
volumes for different lots; (b) studies on in situ reactions which might
occur during the collection of organic vapors from ambient air; (c) evalua-
tion of a permeation system for delivering precise quantities of organic
vapors for calibrating instruments; (d) development of software programs
for quantification of volatile organics using high resolution gas chromato-
graphy/mass spectrometry/computer (hrgc/ms/comp); (e) determination of
relative molar response factors (RMR) for quantitative hrgc/ms/comp analysis;
and (f) the identification and quantification of organic pollutants in
ambient air from several geographical areas within the Continental U.S.
This report was submitted in fulfillment of contract No. 68-02-2262 by
the Research Triangle Institute under the sponsorship of the U. S. Environ-
mental Protection Agency. This report covers the period from November 10,
1975 to August 9, 1978 and work was completed as of August 9, 1978.
ill
-------
CONTENTS
Abstract iii
Figures vi
Tables viii
Acknowledgements x1 V
1. Introduction 1
2. Conclusions . 4
3. Recommendations 6
4. Program Objectives 8
5. Studies on Potential In Situ Reactions Occurring on
Tenax GC Sorbent 9
6. Development of Methodology for Quantitative Analysis of
Ambient Air Pollutants 25
7. Identification and Quantification of Organic Pollutants
in Ambient Air from Several Geographical Area. ... 67
References 116
Appendices
A. Method for Sampling and Analysis of Volatile Organic
Compounds in Ambient Air by GC/MS/COMP 119
B. Volatile Organics Identified in Ambient Air 146
Part I - Iberville Parish and Baton Rouge, LA 147
Part II - Linden and Deepwater, NJ. 177
Part III - Camden, NJ-Philadelphia, PA. . 214
-------
FIGURES
Number
1 Research components encompassing analysis of organic vapors
in ambient air by high resolution gas chromatography/
mass spectrometry/computer (HRGC/MS/COMP) 2
2 Schematic of instrumentation and devices for examining in
situ formation of halogenated hydrocarbons on solid
sorbent surfaces 11
3 Linear regressions for benzene and phenylacetylene 35
4 Linear regressions for chlorobenzene and dichlorobenzene. . . 36
5 Linear regressions for methylene chloride and chloroform. . « 37
6 Linear regressions for toluene and ethyl acetate 38
7 Linear regressions for tetrachloroethylene 39
8 Area ratio calculation 42
9 Map depicting locations of ambient air sampling network in
Iberville Parish, LA 77
10 Map depicting sampling locations near industrial complex in
Iberville Parish, LA 78
11 Sampling site and locations for Baton Rouge, LA area 83
12 Sampling site and locations in Baton Rouge, LA 84
13 General location of American Cyanamid Corp. with respect to
Tremley's Point and Staten Island 88
14 Sampling locations on American Cycnamid Corp. plant site. . . 89
15 General location of E. I. DuPont de Nemours 90
16 Sampling locations on E. I. DuPont de Nemours plant site . . 91
17 Map of Chester, Camden, Philadelphia areas along the
Delaware River 93
18 Mass spectrum of unknown (peak No. 46, Table B33) compound
in ambient air from Linden, NJ . . . 109
vi
-------
FIGURES
Number Page
Al Vapor collection and analytical systems for analysis of
organic vapors in ambient air 121
A2 Sampling head for housing cartridge sampling train 129
A3 Profile of ambient air pollutants for Wood River, IL using
high resolution gas chromatography/mass spectrometry/
computer 136
A4 Background profile for Tenax GC cartridge blank 137
A5 Schematic diagram of gc-ms computer system 139
A6 Mass fragmentograms of characteristic ions representing
carbon tetrachloride (m/e 117), tetrachloroethylene
(m/e 166) and m-dichlorobenzene (m/e 146) in ambient air 142
A7 Mass fragmentograms of characteristic ions representing
methylene chloride (m/e 49) and chloroform (m/e 83) in
ambient air 143
vii
-------
TABLES
Number
1 Operating Parameters for GLC-MS-COMP System 13
2 Effects of Reactant Gases and Molecular Chlorine on in
situ Formation of Halogenated Ethanes on Tenax GC . . 15
3 Effect of NO, NO,, and 03 on Chlorination of Ethylene ... 16
4 Effects of Standard Pollutants, Molecular Chlorine, and
Olefins on In Situ Formation of Halogenated Compounds
on Tenax GC ( 17
5 Effect of NO, N02 and 0^ on Chlorination of Olefins. ... 19
6 Effects of Reactant Gases and Molecular Bromine on In Situ
Formation of Halogenated Ethanes on Tenax GC 21
7 Effects of Reactant Gases and Molecular Bromine on In Situ
Formation of Halogenated Ethanes on Tenax GC 22
8 Effects of Standard Pollutants, Molecular Bromine, and
Olefins on In Situ Formation of Halogenated Compounds
on Tenax GC 23
9 Comparison of Breakthrough Volumes for Virgin, Virgin-
Solvent Extracted and Recycled Tenax GC ....... 27
10 Comparison of Permeation Rates at 20°C and 30°C for a
Number of Selected Organics 29
11 Chemicals Selected for RMR Determinations 44
12 Operating Parameters for GLC-MS-COMP System 48
13 Statistical Data for Relative Molar Response Factor of
Chloroform Based on M/Z 83 and M/Z 186 for Perfluoro-
benzene 50
14 Relative Molar Response for Normal Alkanes Using Selected
Mass Ions 51
15 . Relative Molar Response Factors for Statistical Deviations
for Several Hydrocarbons and Aromatics Using Perfluoro-
benzene Standard 52
Vlll
-------
TABLES
Number Page
16 Relative Molar Response Factors and Statistical Devia-
tions for Chlorinated Hydrocarbons Using Perfluoro-
benzene Standard 54
17 Relative Molar Response Factors and Statistical Deviations
for Chlorinated Aromatics Using Perfluorobenzene
Standard 58
IS Relative Molar Response Factors and Statistical Deviations
for Several Oxygenated Compounds using Perfluoro-
benzene Standard 59
19 Relative Molar Response Factors and Statistical Deviations
for Several Hydrocarbons and Aromatics Using Per-
fluorotoluene Standard 60
20 Relative Molar Response Factors and Statistical Deviations
for Methylene Chloride and Chloroform Using Perfluoro-
toluene Standard 62
21 Relative Molar Response Factors and Statistical Deviations
for Chlorinated Aromatics Using Perfluorotoluene
Standard ., 65
22 Relative Molar Response Factors and Statistical Deviations
for Oxygenated Compounds Using Perfluorotoluene
Standard. . 66
23 Potential Emissions from Chemical Industry in Baton Rouge,
LA . . 68
24 Potential Organic Compounds Associated with E. I. DuPont
de Nemours Facility (Chambers Works), Deepwater, NJ . 71
25 Representative Chemical Industry Along the Delaware
River of the Camden, NJ and Philadelphia, PA Areas. . 72
26 Priority Organic Vapors Selected for Detection and/or
Quantification in Ambient Air from Camden-Philadel-
phia Area 74
27 Ambient Air Sampling Protocol for Plaquemine, LA Area. . . 75
28 Ambient Air Sampling Protocol for Baton Rouge, LA Area . . 80
29 Key to Major Industrial Plants .............. 85
ix
-------
TABLES
Number Page
30 Ambient Air Sampling Protocol for Linden and Deepwater,
NJ 86
31 Ambient Air Sampling Protocol for Camden/Philadelphia Area . 92
32 Summary of Volatile Halogenated Organics in Ambient Air
from Iberville Parish in Louisiana 95
33 Summary of Organic Vapors Identified in Ambient Air in
Baton Rouge, LA and Vicinity 97
34 Concentrations of Ambient Air Pollutants in Iberville
Parish, LA 100
35 Concentrations of Ambient Air Pollutants in Iberville
Parish, LA 101
36 Volatile Organic Vapors Estimated in Ambient Air of Baton
Rouge, LA and Vicinity 102
37 Minimum Total Halogenated Hydrocarbon Vapor in Ambient Air
of Baton Rouge, LA 103
38 Volatile Organics Identified in Ambient Air at American
Cyanamid Co, Linden, NJ 105
39 Volatile Organics Identified in Ambient Air at E. I.
DuPont de Nemours, Deepwater, NJ 107
40 Ambient Air Levels of Several Volatile Organic Vapors Sur-
rounding American Cyanamid Corp,, Linden, NJ Ill
41 Ambient Air Levels of Several Volatile Organic Vapors Sur-
rounding E. I. DuPont de Nemours, Deepwater, NJ . . . .112
42 Estimation of Levels of Kalogenated Hydrocarbons in the
General Area of Camden, NJ/Philadelphia, PA 114
Al Overall Theoretical Sensitivity of High Resolution Gas
Chromatography/Mass Spectrometry/Computer Analysis
for Atmospheric Pollutants 122
A2 Tenax GC Breakthrough Volumes for Several Atmospheric Pol-
lutants 130
A3 Operating Parameters for GLC-MS-COMP System 135
-------
TABLES
Number Page
Bl Volatile Organics in Ambient Air from Iberville Parish in
Louisiana 148
B2 Volatile Organics in Ambient Air from Iberville Parish in
Louisiana 149
B3 Volatile Organics in Ambient Air from Iberville Parish,
Louisiana 151
64 Volatile Organics in Ambient Air from Iberville Parish,
Louisiana. < 153
B5 Volatile Organics in Ambient Air from Iberville Parish,
Louisiana 155
B6 Volatile Organics in Ambient Air from Iberville Parish,
Louisiana 157
B7 Volatile Organics in Ambient Air from Iberville Parish,
Louisiana. 159
B8 Volatile Organics in Ambient Air from Iberville Parish,
Louisiana 161
B9 Volatile Organic Vapors in Ambient Air of Baton Rouge, LA
at Location #17. 162
BIO Volatile Organic Vapors in Ambient Air of Baton Rouge, LA
at Location #21 163
Bll Volatile Organic Vapors in Ambient Air of Baton Rouge, LA
at Location #23 165
B12 Volatile Organic Vapors in Ambient Air of Baton Rouge, LA
at Location #26 167
B13 Volatile Organic Vapors in Ambient Air of Baton Rouge, LA
at Location #27 169
B14 Volatile Organic Vapors in Ambient Air of Baton Rouge, LA
at Location #28 171
B15 Volatile Organic Vapors in Ambient Air of Baton Rouge, LA
at Location #30 173
B16 Volatile Organic Vapors in Ambient Air of Baton Rouge, LA
at Location #26 175
xi
-------
TABLES
Number
B17 Volatile Organics in Ambient Air at American Cyanamid
Corp. (PI/LI) 178
B18 Volatile Organics in Ambient Air at American Cyanamid
Corp. (P1/L2) 181
B19 Volatile Organics in Ambient Air at American Cyanamid
Corp. (P2/L1) 183
B20 Volatile Organics in Ambient Air at American Cyanamid
Corp. (P2/L1) 185
B21 Volatile Organics in Ambient Air at American Cyanamid
Corp. (P2/L3) 187
B22 Volatile Organics in Ambient Air at American Cyanamid
Corp. (P3/L4) 189
B23 Volatile Organics in Ambient Air at E. I. DuPont (P4/L4). . 191
B24 Volatile Organics in Ambient Air at E. I. DuPont (P5/L1). . 193
B25 Volatile Organics in Ambient Air at E. I. DuPont (P5/L4). . 195
B26 Volatile Organics in Ambient Air at E. I. DuPont (P6/L1). . 197
B27 Volatile Organics in Ambient Air at E. I. DuPont (P6/L2). . 199
B28 Volatile Organics in Ambient Air at E. I. DuPont (P6/L8). . 201
B29 Volatile Organics in Ambient Air at American Cyanamid
Corp. (PI/LI) . 203
B30 Volatile Organics in Ambient Air at American Cyanamid
Corp. (P1/L2) 205
B31 Volatile Organics in Ambient Air at American Cyanamid
Corp. (P1/L4) 207
B32 Volatile Organics in Ambient Air at American Cyanamid
Corp. (PI/12) 209
B33 Volatile Organics in Ambient Air at American Cyanamid
Corp. (P2/L3) 211
B34 Volatile Organics in Ambient Air at American Cyanamid
Corp. (P3/L3) 212
B35 Volatile Organics Identified in Air in Bristol, PA
(Pl/LLA) ..... 215
-------
TABLES
Number Page
B36 Volatile Organics Identified in Air in Bristol, PA
(PI/LIB) 216
B37 Volatile Organics Identified in Ambient Air from North
Philadelphia, PA (P3/L3A) 218
B38 Volatile Organics Identified in Ambient Air in Philadelpha,
PA (P3/L3B) 220
B39 Volatile Organic Vapors Identified in Ambient Air from
Philadelphia, PA (PA/L4B) 222
B40 Volatile Organics Identified in Ambient Air from Marcus
Hook, PA (P5/L5A) 224
B41 Volatile Organics Identified in Ambient Air from Logan
Township, NJ (P8/L8A) 227
xiii
-------
ACKNOWLEDGEMENTS
The valuable assistance of Messrs. J. Bunch and R. Williams who per-
formed laboratory and field experiments is gratefully appreciated. Ms. N.
Castillo, D. Smith and Dr. J. T. Bursey provided expert interpretation of
mass spectra and sample analyses, a sincere thanks for their support.
The author wishes to thank the personnel at EPA Regions II and VI,
Texas Air Board, Louisiana Air Board, and the Department of Environment in
New Jersey for their assistance throughout the program.
The constant encouragement of Mr. K. Krost and Dr. E. Sawicki are
deeply appreciated.
x1v
-------
SECTION 1
INTRODUCTION
During the past several years, research has been conducted on the
development of a method for the collection and analysis of vapor-phase
organics including carcinogenic and mutagenic substances (1-27). The
3
developed techniques were to achieve a sensitivity of ng/m . While develop-
ing these techniques, it became apparaent that a number of facets required
attention for successful completion of this concept. Figure 1 depicts
these research components which encompass the analysis of organic vapors in
ambient air using high resolution gas chromatography/mass spectrometry/com-
puter (hrgc/ms/comp).
There have been two major areas of effort. One area involves the
design and fabrication of devices while the second involves experimental
evaluation. With regard to a collection method, design criteria and the
preparation of appropriate sorbent media must be undertaken. These aspects
have been previously discussed and reported (1-11). In addition, upon
collection of organic vapors, a provision for their transfer to the instrumen-
tal method must be made. The design criteria, fabrication of an inlet
manifold and associated capillary technology for use with mass spectrometry
have also been briefly described (1-5,27). Finally, computer software must
be developed with features which allow for rapid data interpretation.
Concommitant with the design and fabrication of devices, experimental
evaluation has been conducted to varying degrees at each step of this
method (Fig. 1). Collection efficiences, breakthrough volumes and research
on displacement chromatography have been previously discussed (1-5). More
recent work has centered on the examination of in situ reactions potentially
associated with the collection device, as well as, the effects of storage
on sample integrity. As an integral part of the instrumental method of
analysis, the accuracy and reproducibility of sample recovery, and separation
and resolution of components in the ambient air sample has been briefly
-------
-a
T«
I
a
4J
I
VI
I
• Sorption Media
• Collection Device
• Sampling System
I Sample Collection
•'Collection efficiencies,
Breakthrough Volumes,
Displacement chromatography
• In situ Reactions
• Storage Capability
• Vapor vs Aerosol Discrimination
ifold
• Inlet
Capillary Technology
• Mass Spectrometry
Computer Software Development
Instrumental Analysis
MData Reduction
[Accuracy Reproducibility|
Sample Recovery
S eparat ion/ResolutIon
Electron impact, Positive Chemical lonization.
Negative Chemical lonization, Mass-analyzed
ion kinetic energy (MIKE) spectrometry.
-| Reportj
Qualitative Techniques
Quantitative Methods
Figure 1. Research components encompassing analysis of organic vapors in ambient air by high
resolution gas chromatography/mass spectrometry/computer (HRGC/MS/COMP).
-------
investigated (1-5). The assorted mass spectrometric techniques available
for ambient air characterization includes electron impact, positive chemical
ionization, negative chemical ionization, mass analyzed ion kinetic energy
spectrometry as well as others. Virtually no research has been conducted
with the latter three.
Finally, qualitative and quantitative techniques are needed for data
reduction which expedites the overall sample analysis,
Many of the components in the two general areas outlined in Figure 1
have been examined over the past several years, however considerable effort
is still required, in particular, their evaluation and validation.
To-date a considerable amount of qualitative and quantitative data has
been accumulated utilizing the developed methods. Ambient air sampling has
been conducted involving many types of industrial atmospheres located
throughout the Continental U.S. (1-27).
In this report, we continue to provide information on experimental
evaluation and validation of the previously developed methods as well as
the acquisition of information on the composition of atmospheres asssociated
with industrial activity.
-------
SECTION 2
CONCLUSIONS
Studies were conducted on in situ reactions potentially occurring as a
result of the presence of criteria pollutants (ozone, NO, NO,, NO ), mole-
fa A
cular halogens and olefins occurring simultaneously in the atmospheres sam-
pled. Under laboratory simulated conditions, no in situ reactions were
observed when sampling atmospheres using a Tenax GC cartridge containing
molecular chlorine or molecular bromine in the presence of criteria pol-
lutants and ethylene, propylene and 1-butene. However, traces of 2,3-di-
chlorobutanes were detected from 2-butene. Also, very small quantities of
1,2-dichlorocyclohexane was detected as a reaction between chlorine and
cyclohexene. The formation of these two halogenated hydrocarbons occurred
under high levels of molecular chlorine and olefins. The incorporation of
sodium thiosulfate into the glass fiber filter prior to a Tenax GC sampling
cartridge for removing particulates inhibited the formation of chlorinated
or brominated substances.
Development of computer software programs to assist in quantitation of
the vapor-phase organics collected from ambient air substantially increased
the efficiency of the overall technique. Two computer programs were develo-
ped, one provided the capability to sum ions representing classes of com-
pounds over the mass spectra obtained in a gas chromatograra for a sample
while the other provided the capability of determining the response (peak
height or area) for a selected ion with subsequent ratioing of the intensity
of the selected ion with respect to an internal standard to yield response
factors as well as the quantity of the individual unknown component.
A series of relative molar response factors was determined for a
number of hydrocarbons, aromatics, halogenated hydrocarbons and oxygenated
compounds. The combined use of a permeation system for synthesizing air/va-
por mixtures high resolution gas chromatography and mass spectrometry
yielded RMR data for individual selected ions of each specific compound
-------
with a reproducibility of at least +10% for replicate analysis. A statisti-
cal evaluation was conducted to compare the relative molar response factors
within replicate determinations as well as to determine the variation of
the RMR between compounds for the same selected ions. It was concluded
that in some cases, ions common to several compounds within a homologeous
series provided similar RMR values and thus an "average" RMR value could be
used to extrapolate concentrations of compounds for which authentic material
did not exist.
The collection and analysis techniques employing the Tenax GC cartridge
and high resolution gas chromatography/mass spectrometry/computer was
applied to the analysis of vapor-phase organics in ambient air for three
major geographical areas (7 sites) in order to validate the technique by
characterizing atmospheres where the composition of the industrial atmosphe-
res was partially known. A group of halogenated hydrocarbons were identified
in the atmospheres collected from the Houston, TX vicinity, Baton Rouge, LA
area and New Jersey. Many of the compounds appeared to be site-specific.
For example, some site-specific pollutants were chloroacetylene, vinyl
chloride, chloroethane, vinylidene chloride, dichlorobutene isomers, 1,1,2-
trichloroethane, bis(2-chloroisopropyl)ether, dichlorobutadiene isomers,
1,3-hexachlorodibutadiene, 1,3-dichloropropane, trichloropropene isomers,
1,1,2,2-tetrachloroethane, tetrachloropropane, hexachloroethane, perchloro-
butadiene and chlorotoluene isomers which were identified in the Plaquemine,
LA area. Other site-specific compounds were also detected in Geismar and
Baton Rouge, LA Deer Park and Pasadena, TX and Deepwater and Linden, NJ.
-------
SECTION 3
RECOMMENDATIONS
During the course of this research program, a number of areas have
come to light which need further attention. Eleven major phases of research
should be expanded and pursued. (1) New polymeric sorbent substances
should be developed for the collection of the very polar hazardous substances
which are not retained by Tenax GC. This may involve the synthesis of
analogs which are modified polymer bases of Tenax in order to incorporate
the desired retention volume properties for organics without increasing the
overall background contribution and retention of inorganic gases and water.
(2) Potential displacement chromatography should be examined for the sorbents
Tenax GC and a new polymeric substance when it is developed under field
sampling conditions. This information is needed in order to ascertain
whether the breakthrough volumes that have been determined under ideal
(laboratory) conditions are relevant to field sampling where high pollution
may cause competition between pollutants for adsorption sites. (3) An
evaluation of the collection media for in situ reactions with particular
emphasis devoted to examination of potential artifacts under field sampling
conditions. This activity should delineate problems associated with sampling
of atmospheres containing molecular chlorine, bromine or iodine in combina-
tion with olefins, NO , SO. and ozone. Other potential in situ reactions
X M """""' -•—•-—'
on the sorbent bed should also be examined such as the ozonization of
olefins under field sampling conditions. (4) An evaluation study should be
made for drying the sorbent collection device albeit Tenax GC or a new
synthesized polymer with a dehydrating agent such as calcium sulfate (or
equivalent). Storage studies should be conducted to determine the accuracy
and reproducibility of such a technique. (5) Further research is needed in
regard to flow controls and the maintenance of a constant temperature on
the sampling device to improve quantitative collection of atmopsheric
vapors. Because the collection device is potentially subjected to variations
-------
in temperature and thus breakthrough volumes the use of a constant tempera-
ture bath for housing of the collection device should be investigated.
This may include studies on the effects of condensation on collection
efficiency and the storage of organic vapors on the sorbent medium. (6)
Research should be initiated on evaluating the accuracy of the sampling
device under field sampling conditions. This may require the use of radio-
isotopes incorporated in permeation tubes which are used to spike the
endogenous organic pollutants followed by the subsequent determination of
the accuracy of collection by measuring the radiotracer substance. (7) The
reproducibility of storing the field collected organic vapors should be
evaluated. This should include the reproducibility of storage for the
individual components in the sample and the total organic vapor profile
which was collected. (8) Substantial effort should be devoted to developing
capillary technology for the analysis of hazardous (mutagenic, carcinogenic,
toxic) substances collected from the ambient air. This should include the
investigation of suitable stationary phases coated in glass capillary
columns (SCOT and WCOT) as single pure phases as well as multiple phase
combinations. (9) Research should begin on examining alternate methods to
electron impact mass spectrometric techniques such as negation ion chemical
ionization for halogenated hydrocarbons, selective chemical ionization for
specific chemical classes, and mass analyzed ion kinetic energy (MIKE)
spectrometry. (10) Evaluation and development of new qualitative and
quantitative software techniques should be undertaken to handle large
quantities of mass spectrometric data. This development and perfection
should provide a single software package allowing for the characterization
and quantitation of mass spectral information contained in a single sample
run. Particular emphasis should be devoted to a capability which allows
for bulk data processing at low cost. (11) Efforts should begin on develop-
ing concepts for overall automation of the developed collection and analysis
methods for vapor-phase organic substances occurring in ambient air.
-------
SECTION 4
PROGRAM OBJECTIVES
The general objective of this program was to fabricate the necessary
instrumentation to collect and evaluate urban air samples using the services
of a gas chromatograph in combination with a mass spectrometer. Preliminary
emphasis was to be placed on developing a collection system of such suf-
ficiency as to meet the sensitivity limitations of the analyzer combination.
A major emphasis of this program was the quantitated determination of urban
air organic pollutants, The specific aims of this program were: (a) to
formulate a sample collection system which would permit in the minimum the
q
analysis of pollutants in the vapor-phase present at low ng/m concentra-
tions. This included delineation of those parameters which are important
in striving for a quantitative method of analysis; (b) demonstration of any
limitations with regard to chromatographic resolution of urban air pol-
lutants; (c) demonstration of the quantitative sensitivity of the overall
collection and analysis systems for several classes of potential pollutant
candidates, and (d) the analysis of vapor-phase ambient air pollutants by
the use of gas chromatography in tandem with mass spectrometry with special
emphasis on demonstrating the overall analysis method as a quantitative
technique for atmospheric organic vapors which can be used concurrently
with qualitative characterization.
8
-------
SECTION 5
STUDIES ON POTENTIAL IN SITU REACTIONS OCCURRING ON TENAX GC SORBENT
An approach to the detection, identification and quantification of
halogenated hydrocarbons in the ambient air has been previously described
and has been further studied in this program (1-27). Ambient air was
sampled using a Tenax GC cartridge technique and sample analysis employed
high resolution (glass capillary) gas chromatography/mass spectrometry/com-
puter (hrgc/ms/comp) methods. Many halogenated hydrocarbons have been
identified and quantified in ambient air from several geographical regions
throughout the Continental U.S.
In view of the potency and the broad spectrum of carcinogenic activity
for the identified halogenated hydrocarbons in experimental animals, the
detection of these compounds in the atmosphere has generated considerable
interest in their origin. Many of the studies reported in Section 7 were
initiated to determine their emission from stationary and fugitive sources
as well as their potential formation through photochemical reaction from
precursors.
In order to determine whether halogenated hydrocarbons may be present
in the atmosphere from industrial sources or as an atmospheric chemical
reaction, it was first necessary to know the extent to which it may form at
trace levels as an "artifact" of the technique employed or the sample col-
lection process. Furthermore, the experimental methods should differentiate
between homogeneous and heterogeneous reaction mechanisms.
Our primary concern has been with the use of the Tenax GC sampling
cartridge which has been extensively employed for collecting organic vapor
from ambient air for characterization and quantification purposes. Since
the Tenax GC cartridge may concentrate reactive compounds including ozone,
NO and for example molecular chlorine or bromine, the possibility for in
situ formation of artifact compounds may occur. This may occur eventhough
-------
inorganic gases do not appreciably accumulate on the sorbent (8). It was
the purpose of this study to further supplement the previously reported
observations, i.-e., the in situ formation of N-nitrosamines, as to whether
other additional in situ reactions could occur on the Tenax GC sampling
cartridge (11,14).
Since urban air often contains substantial concentrations of ozone, we
conducted a series of laboratory experiments to determine whether air
containing both NO and ozone might be more effective in converting olefins
A
plus molecular halogens than air containing only NO . Experiments were
«m
designed to delineate the transformation of olefins whether adsorbed on the
Tenax GC or occurring in low concentrations in air via homogenous atmospheric
reactions or heterogeneous reactions which might take place on the walls of
the sample inlet tube. In addition to the halogenation of olefins, we were
interested in the possibility of reactions between ozone and olefins produc-
ing polar products which also might be considered as artifacts of the
collection process.
EXPERIMENTAL
The apparatus used to determine whether air containing ozone, NO
(Matheson, Coleman, Bell), N0» (Matheson, Coleman, Bell), olefins, molecular
halogens and water might convert olefins to halogenated compounds on Tenax
GC (35/60, Applied Science, State College, PA) is depicted in Figure 2.
Nitric oxide was measured! into the stream with a rotameter and a metering
valve from a supply tank which contained ppra of NO and nitrogen (Scott .
Environmental), Ozone was generated by an ultraviolet lamp equipped with a
sliding cover for obtaining different concentrations. Concentrations of
NO, N02 and ozone were monitored with a Bendix NO analyzer (Model 5513802)
and a Bendix Ozone analyzer. Intakes for these instruments were at the
same point as the intake for the Tenax GC glass cartridge sampler (1.5 cm
i.d. x 6.0 cm bed length) through which air was drawn by a Nutech Model
221-A (Nutech Corp., Durham, NC) sampler. The sampling cartrige and the
analyzer inlet tubes were centered in the air flow pattern from the reaction
tube. Various levels of relative humidity in the air stream were produced
by changing the temperature of the humdifier bath.
10
-------
SCRUBBER
TRAIN
A
AIR
surriY
ACTIVATED
CARMM
ORIERITE
MOLECULAR
SIEVES
ROTOHETER 1=
TEFLON MEMBRANE
FILTER
CONNECTOR
HRMEATION
TUBE CHAHBER
SLIDING COVER
UVLAHP
ROTOHETER
a
HUMIDIFIER
NO-HOfNO,
ANALYZER
OZONE
MONITOR
MX1N6
CHAMtEM
NITHIC
OXIDE
INLET
^COMNECTOR
GLASS REACTION TUBE
ETHYLENE
IN
Figure 2. Schematic of instrumentation and devices for examining in situ formation
of halogenated hydrocarbons on solid sorbent surfaces.
-------
Permeation tubes (TFE) of molecular chlorine and bromine were prepared
and gravimetrically calibrated with a MS-5A Mettler balance after their
equilibration to a constant rate.
Prior to its use, Tenax GC was purified by Soxhlet extraction for 18
hrs with methanol and n-pentane, respectively. After drying under nitrogen
atmosphere, Tenax GC was heated to 150°C for 2 hrs in a vacuum oven (12" of
water), sized into a 35/60 range and packed into glass tubes. All sample
cartridges were preconditioned by heating to 275°C for 20 rain under a helium
®
purge for 20-30 ml/min. After cooling in precleaned Kimax culture tubes,
the containers were sealed to prevent contamination of the cartridge.
Replicate samples and blanks were analyzed by gas chromatography equip-
ped with flame ionization detection. Thermal desorption was used to transfer
vapors from the cartridge sampler to the analytical system using a specially
designed manifold (1-5). In a typical thermal desorption cycle, sampling
cartridges were placed in the desorption chamber (275°C) and helium gas was .
passed through the cartridge ("^20 ml/min) to purge the vapors into the
liquid nitrogen cooled nickel capillary trap. After desorption (4 min), the
six-port valve was rotated and the temperature on the capillary loop was
rapidly raised (>150°C/min). The carrier gas introduced the vapors onto the
capillary glc column. The 100 m glass SCOT column containing OV-101 statio-
nary phase and was programmed from 30°C to 240°C at 4°C/min.
A Varian MAT CH-7 glc/ms 620L computer system equipped with an inlet
manifold was used for analyzing Tenax GC cartridges where structural confir-
mation was required. The software programs available with this system
provides for reconstructed gas chromatograms and mass fragmentograms for
correlation between mass spectrum number and retention time. Operating
parameters for the hrgc/ms/comp system are given in Table 1. A single stage
glass jet separator interfaced the SCOT capillaries to the mass spectrometer.
RESULTS AND DISCUSSION
A series of experiments were conducted which examined the potential in
situ formation of chemical substances or their decomposition on the surface
of the solid sorbent Tenax GC. The experimental conditions chosen were
selected to allow the detection of potential in situ formation of organics
12
-------
Table 1, OPERATING PARAMETERS FOR GLC-MS-COMP SYSTEM
Parameter
Setting
Inlet-manifold
desorption chamber
valve
capillary trap - minimum
maximum
thermal desorption time
GLC
100 m glass SCOT-OV-101
carrier (He) flow
transfer line to ms
270°C
220°C
-195°C
+180°C
4 min
30-240°C, 4°C/min
^3 ml/min
240°C
MS
scan range
scan range, automatic-cyclic
filament current
multiplier
ion source vacuum
ro/e. 20 + 300
1 sec/decade
300 yA
6.0 ,
^4 x 10" torr
13
-------
substances under typical atmospheric conditions encountered during field
sampling.
Table 2 presents the series of experiments which were conducted utilizing
different combinations of ozone, NO , NO, NO-, chlorine and ethylene. The
•A £•
volume of air stream sampled was 16 Si in all cases. In all experiments
(Expts. 1-15) with or without the presence of a glass fiber filter in front
of the Tenax cartridge, no dichloroethane was detected. In Expt. 16-18,
standard amounts of authentic dichloroethane were loaded onto cartridges to
obtain a standard curve response for the flame ionization detector. The
detection limit was vLO ng/cartridge.
Table 3 presents additional experiments on the effect of NO, N02 and
ozone on chlorination of ethylene. In these experiments, higher concentra-
tions of ozone were added to the extent that in some cases (Expt. 19 and 22)
excess ozone was present. In other experiments, high concentrations of NO,
and N02 were created to provide extreme atmospheric conditions to determine
whether it was possible to produce chlorinated ethylene. As depicted in
this table, no 1,2-dichloroethane or other products as the results of reac-
tions between these reagent gases could be detected. The detection limit
was VLO ng using a flame ionization detector.
Table 4 presents experiments employing various concentrations of standard
pollutants and a mixture of olefins. Other olefins which might be more
reactive were used to determine whether any halogenated hydrocarbons might
be formed. The olefin mixture consisted of ethylene (10 ppm), propylene
(9.92 ppm), 1-butene (12.8 ppm), cis-2-butene (7.82 ppm) and trans-2-butene
(8.40 ppm). The flow rate was 250 ml/min into the mixing chamber prior to
the reaction tube. Thus the various concentrations of olefins as indicated
in Table 4 were produced. These olefin concentrations and the relative pro-
portions remained the same for all experiments (Table 4). Molecular chlorine
was introduced from a permeation tube (Metronix Assoc. Inc.) which had been
calibrated to determine its permeation rate.
Again, no dichloroethane was detected in these experiments (Table 4).
However, 2,3-dichlorobutanes (racemic and meso forms) were detected. Their
formation also occurred in the absence of standard pollutants (Expt. 3).
Indicated in this table are the relative amounts of each product based upon
14
-------
Table 2. EFFECTS OF REACTANT GASES AND MDLECDl
HALOGENATED ETHANES
Reactant Gas
Concentrations
Experiment 0 °3
No. (added) (excess) NOX
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
0
0
0
0
160
250
880
1290
0
0
840
740
1220
0
760
-
•
0
0
0
0
160
120
880
570
o
0
0
740
620
0
0
-
—
C
0
0
0
0
130
0
720
200
800
1720
0
600
920
1520
-
—
NO
0
0
0
0
0
0
0
0
200
800
880
0
0
920
760
-
— -
N02
0
0
0
0
0
130
0
720
0
0
840
0
600
0
60
-
—
AR CHLORINE
ON TENAX GC
ON IN SITU FORMATION OF
(ppb)
Volume Sampled C2H4C12 detected
C12 C2H* (Jt) (ng) Remarks
86
0
86
86
86
86
86
86
86
86
86
86
86
86
86
-
-
590
0
0
590
590
590
590
590
590
590
590
590
590
590
590
-
-
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
-
-
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
840 ^S
420 >
210 J
Blank control
With GFF
With GFF
With GFF
With GFF
S for response
curve
-------
Table 3. EFFECT OF NO, N02, and 03 ON CHLORINATION OF ETHYLENE
Experiment Mo.
19
20
21
22
23
0. Added
3(W>1>>
840
900
0
1020
600
0. Excess
3(ppb)
840
0
0
520
0
SO
(pp£>
0
900
840
500
1320
NO
(ppb)
0
0
840
0
720
NO,
(ppb)
0
900
0
500
600
C£-
(ppB)
86
86
86
86
86
C2H4
2.04
2.04
2.04
2.04
2.04
Vol. Stapled
(1)
16
16
16
16
•16
1 , 2-dichloro«th«n«
(ng)
0
0
0
0
0
Reatve humidity - 50%, no GFF was used, sampling rate = 1 liter/min and all reactants
and C12 were introduced at beginning of flight tube (see Quarterly No. 5, Fig. 1).
-------
Table 4. EFFECTS OF STANDARD POLLUTANTS, MOLECULAR CHLORINE, AND OLEFINS ON
IN SITU FORMATION OF HALOGENATED COMPOUNDS ON TENAX GC
Reactant Gas Concentration (ppb)
Experlsnt Oj Oj
Ho. (added) (excess)
K>
(cis)
2,3-DCB (rac.) 2,3-DCB (Meso)
ValwK Sailed detected detected C3II6C12 C ".C'j
(trans) (I) Feat lit. (c») Feak Ht. (cm) (ng>
1 0
2 0
3 0
4 120
S SCO
t 0
7 0
» 200
» S2O
0
0
0
120
860
0
0
0
O
0
0
0
0
0
200
940
200
920
0
0
0
0
0
200
940
0
0
00 86
00 86
00 86
00 86
00 86
00 86
o 86
200 86
920 86
581
581
581
581
581
581
581
581
581
577
577
577
577
577
577
577
577
577
7U
744
744
744
744
744
744
744
744
455
455
455
455
455
455
455
455
455
488
488
488
488
488
488
488
488
488
16
16
16
16
16
16
16
16
16
0
0
10.
6.
2.
2.
2
0
9
9
6.8
6.
7.
5
3
0
0
8.2
4.8
2.9
2.2
5.5
5.4
5.9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-------
peak height response to the flame ionization detector. These results suggest
that small quantities of chlorinated substances may be produced when molecular
chlorine and 2-butenes (with or without standard pollutants) are presented
to a Tenax GC sampling cartridge.
Table 5 presents experiments concerning the effect of NO, NCL and ozone
on the chlorination of olefins (581 ppb ethylene, 577 ppb propylene, 744 ppb
1-butene, 455 ppb cis-2-butene and 488 trans-2-butene were the chamber
concentrations). Ethylene, propylene and 1-butene did not yield detectable
chlorinated hydrocarbons (detection limits VLO ng using flame ionization).
On the otherhand, significant quantities of 2,3-dichlorobutane (racemic and
meso) were detected. In the absence of ozone, NO , NO and N0« molecular
X fc
chlorine and 2-butene did react whether it was introduced immediately in
front of the Tenax GC cartridge or in the front of the flight tube to produce
dichlorobutane mixtures (Expt. 17). On the otherhand, the addition of NO to
the reaction between chlorine and 2-butene appeared to suppress the chlorina-
tion reaction (Expt. 12). In cases in which ozone was added or ozone plus
NO, NO-, low yields of chlorinated butanes were found.
Experiments 18-22, 24 and 28-31 were conducted in which the olefins
were introduced at the beginning of the flight tube and sampling was conduc-
ted using a glass fiber filter impregnated with 10% sodium thiosulfate in
front of the Tenax GC cartridge. In all of these experiments, regardless of
the concentration of ozone, NO , and NO,,, no chlorinated products were
X *•
detected. These experiments are contrasted with Expts. 23 and 27 which a
glass fiber filter was used which had not been impregnanted with sodium
thiosulfate.
The capacity of filters which have been impregnated with 10% sodium
thiosulfate was tested using an ozone concentration of 200 ppb. A volume of
400 $, of air was pulled through the filter. The filter was then placed in-
line with the ozone monitor and no ozone was detected. The filter was not
tested to its breakthrough limit since field sampling does not generally
exceed a sampling volume of 200 S, and ozone levels seldom exceed 200 ppb.
The reaction products from the reactions between NO, NOj and ozone,
chlorine and butene appear to increase by removing the glass wool plug which
18
-------
Table 5. EFFECT OF NO, N02> and 03 ON CHLORINATION OF OLEFINS
vo
Experiment No. Condition(s)a 0. Added 0, Excess NO
(ppb) J(ppb) (PPT>)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
3
A = olefins
B » olefins
C = olefins
D = olefins
E = olefins
A
A
A
A
A
A
A
A
B
B
B
B
B
C
-S
D
E
C
B
B
B
B
introduced
introduced
introduced
introduced
introduced
860
860
0
880
100
100
200
0
200
220
200
200
0
200
200
200
0
200
0
200
400
200
860
860
0
0
100
0
100
0
200
220
200
200
0
200
200
200
0
200
0
0
200
0
immediately
at
at
at
at
beginning
beginning
beginning
beginning
0
0
840
880
0
100
100
0
0
0
0
0
0
0
0
0
0
0
200
200 .
200
400
NO
(ppb)
0
0
840
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
200
0
0
200
in front of
of flight
of flight
of flight
of flight
NO
(ppb)
0
0
0
880
0
100
100
0
0
0
0
0
0
0
0
0
0
0
0
200
200
200
(ppb)
86
0
86
86
86
86
86
86
86
86
0
0
0
86
86
86
86
0
86
86
86
86
cartridge
tube,
tube,
tube,
tube.
2-butene 2,3-dichlorobutane formed
(ppb) (ng)
943
954
936
936
943
942
942
943
943
943
954
954
954
943
943
943
943
954
940
940
940
940
(see Quarterly
GFF impregnated with
200
0
32
50
217
182
152
365
0
0
0
0
0
15
0
260
62
0
0
0
0
0
No. 5, Fig.
10% Na.S-O,
(rac.) 2,3-DCBfMeso)
(ng)
165
0
27
32
185
147
115
320
0
0
0
0
0
10
0
210
40
0
0
0
0
0
1).
j was used.
Polar Material
(pic. hgt., cm)
26
22
0
0
16
0
21
0
0
0
0
0
0
16
0
22
0
22
0
0
0
0
GFF used.
glass
wool used to anchor Tenax
was removed.
-------
was used to anchor the Tenax or when the glass fiber filter on the intake
to the Tenax cartridge was removed. The presence of the glass wool and
glass fiber filter thus appeared to decrease the amount of artifact since
seen which is in contrast to observations on the in situ reactions for the
formation of N-nitrosamines (14). These observations indicate that the
artifact reaction occur on the Tenax sorbent to a significant extent since
yield as high as 300 ng were observed.
Furthermore, an additional artifact apparently occurred as indicated
by the presence of polar compound during gas chromatography. In Table 5,
the amount of polar material formed based upon peak height is given for the
various experiments conducted. The polar material was identified subsequen-
tly by gc/ms to be propionic acid. Traces of acetone, acetic acid, acetalde-
hyde, propionaldehyde and methyl ethyl ketone were also detected. Formation
of the major polar compound was also prevented using a sodium thiosulfate
impregnated filter. New artifacts as the result of the impregnation of the
glass fiber filter with sodium thiosulfate were not observed.
Potential in situ reaction experiments have also been conducted using
ethylene and bromine. No artifacts have been observed. The detection
limit for ethylene dibromide was approximately 50 ng when using flame
ionization detection. Tables 6 and 7 present the effects of reagent gases
and molecular bromine on in situ formation of halogenated ethanes on Tenax
GC.
Table 8 gives the effects of standard pollutants, molecular bromine
and olefins on in situ formation of halogenated compounds on Tenax GC. For
the combination of reactive gases plus the olefin mixture as listed in the
Expts. 1-16, no 2,3-dibromobutane was detected.
These results suggest that the formation of 2,3-dichlorobutane to be a
rather unusual reaction since no other olefins appear to react with molecular
chlorine and bromine in the presence or absence of criteria pollutants.
The incorporation of sodium thiosulfate into the glass fiber filter may
provide a new avenue for eliminating potential in situ formation reactions
as a results of the presence of molecular halogens and/or ozone. It would
be interesting to conduct further studies in light of these new observations
as to whether the in situ formation of nitrosamines can be eliminated or
20
-------
Table 6. EFFECTS OF REACTANT GASES AND MOLECULAR BROMINE ON IN SITU FORMATION OF
HALOGENATED ETHANES ON TENAX GC
is?
Reactant Gas Concentrations (ppb)
Experiment 0,
No.a (added)
1
2
3
4
5
6
7
0
0
200
0
0
140
600
°3
(excess) NO
0
0
200
0
0
0
600
0
0
0
0
100
0
0
N02
0
0
0
0
0
140
0
N0x
0
0
0
0
100
140
0
Br2
45
45
45
45
45
45
45
Volume Sampled
2
2
2
2
2
2
2
,000
,000
,000
,000
,000
,000
,000
16
16
16
16
16
16
16
1 , 2-Dibromoethane
ng
0
0
0
0
0
0
0
Kxpt. Nos. 1-3 and 5 did not employ a glass fiber filter; Expts. 4, 6, 7 used Na_S~0- im-
pregnated glass fiber filters.
-------
ro
to
Table 7. EFFECTS OF REACTANT GASES AND MOLECULAR BROMINE ON IN SITU FORMATION OF
HALOGENATED ETHANES ON TENAX GC
Reactant Gas Concentrations (ppb)
Experiment Oo
No.3 (added)
1
2
3
4
5
6
7
0
0
200
0
0
140
600
03
(excess) NO NO-
0
0
200
0
0
0
600
0
0
0
0
100
0
0
0
0
0
0
0
140
0
NO
X
0
0
0
0
100
140
0
Br2
45
45
45
45
45
45
45
Volume Sampled
2,000
2,000
2,000
2,000
2,000
2,000
2,000
16
16
16
16
16
16
16
1 , 2-Dibromoethane
ng
0
0
0
0
0
0
0
Tfcpt. Nos. 1-3 and 5 did not employ a glass fiber filter; Expts. 4, 6, 7 used Na0S000 impregnated
glass fiber filters. 223
-------
Table 8. EFFECTS OF STANDARD POLLUTANTS, MOLECULAR BROMINE, AND OLEFINS ON IN SITU FORMATION
ro
OF HALOGENATED COMPOUNDS ON TENAX GC
Reactant Gas
Experiment 03
No.a (added)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
0
0
140
0
0
0
800
760
540
700
1200
700
600
600
0
0
°3
(excess)
0
0
140
0
0
0
800
0
0
0
600
700
400
0
0
0
Concentration
NO
0
0
0
120
0
100
0
760
260
0
0
0
0
150
600
0
-2
0
0
0
0
120
120
0
0
540
700
600
0
200
600
0
0
(ppb)
NO
X
0
0
0
120
120
220
0
760
800
700
600
0
200
750
600
0
Olefin Volume Sampled
Br2 Mix.b (A)
0 +
45 +
45 +
45 +
45 +
45 +
45 +
45 +
45 +
45 +
45 +
45 +
45 +
45 +
45 +
45 +
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
2 , 3-Dibromobutane
ng
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A glass fiber filter impregnated with Na-S-O, was used in each experiment.
^Olefin mixture = ethylene (580 ppb), propylene (580 ppb), 1-butene (740 ppb), cis 2-butene (455 ppb)
and trans-2-butene (490 ppb).
-------
suppressed by the incorporation of a sodium thiosulfate or an equivalent
material impregnated into the filter prior to analysis.
24
-------
SECTION 6
DEVELOPMENT OF METHODOLOGY FOR QUANTITATIVE ANALYSIS OF
AMBIENT AIR POLLUTANTS
As discussed earlier there are many facets (Fig. 1) in the development
of a technique for the analysis of organic vapors in ambient air by high
resolution gas chromatography/mass spectrometry/ computer (hrgc/ms/comp).
Among the experimental parameters which need evaluation in order to ascertain
whether a method can become a quantitative tool are collection efficiency
and breakthrough volumes for the sorbent medium under consideration, sample
recovery and transfer to the analytical system, and development of methods
for data reduction to obtain concentrations of individual components which
originally occurred in the sample. This section addresses aspects of the
method for quantitative analysis of ambient air pollutants by hrgc/ms/comp.
DETERMINATION AND COMPARISON OF BREAKTHROUGH VOLUMES FOR VIRGIN AND RECYCLED
TENAX GC
Introduction
During the past few years, the density of commercially available
virgin Tenax GC has decreased considerably. We addressed the possibility as
to whether the previously determined breakthrough volumes were also decreasing
with a decrease in density. In order to test this possibility, three batches
of Tenax were examined. These were: virgin, virgin solvent-extracted and
recycled sorbent.
Experimental
Virgin Tenax GC was purchased from Applied Science (State College, PA).
Also Tenax GC purchased from the same source which had been recycled more
than twenty times and was more than three years old was selected for evalua-
tion.
25
-------
Breakthrough volumes for five chemicals were determined using previously
described techniques (5,8). The elution volume for vapors was determined
on a chromatographic column at several decreasing temperatures and by the
use of linear regression analysis. Extrapolation to ambient temperatures
allowed the calculation of breakthrough volumes. The ambient temperature
selected for comparison of breakthrough volumes between the different
batches of Tenax was 21.1°C.
Virgin Tenax GC was also extracted in a Soxhlet apparatus for 18 hrs
each with methanol and n-pentane, respectively. The recycled Tenax GC (> 3
years in age) was also solvent extracted prior to use in this study. All
solvent was sized to 35/60 mesh before testing.
Results and Discussion
Comparison of breakthrough volumes for virgin, virgin-solvent extracted
and recycled Tenax GC is given in Table 9. The breakthrough volumes were
expressed in £/g and in A/cartridge volume. By comparing the three batches
of Tenax using these units of expression, changes in the breakthrough volume
from one batch to another whether it depended upon the density or surface
area could be determined. For methylene chloride, a variation as large as
14% was observed between virgin and virgin solvent-extracted. A 30% differ-
ence was observed for the breakthrough volume for n-hexane between virgin
and recycled Tenax. In general, the breakthrough volume of Tenax GC appeared
to be lower for the material which had been recycled (and had the highest
density) as compared to virgin or virgin solvent-extracted batches. The
least variation was changes observed between virgin and virgin solvent-
extracted sorbent. No changes were detected in the breakthrough volume
values between the originally purchased Tenax and the same material which
had been recycled for more than 3 years.
Recently purchased Tenax vs that which was several years old, exhibited
32% lower density.
These results indicate that the breakthrough volumes for organic
vapors on Tenax GC may decrease or differ slightly between batches. This
phenonmen complicates quantification using this sorbent and thus a dual
cartridge system should be used, i.e. two cartridges in tandem
26
-------
Table 9. COMPARISON OF BREAKTHROUGH VOLUMES FOR VIRGIN, VIRGIN-SOLVENT EXTRACTED
AND RECYCLED TENAX GC3
Compound
Methylene chloride
n-Hexane
n-Propylmercaptan
Benzene
Methyl ethyl ketone
B.P.
°C
41
68.7
67.8
80.1
80.2
Virgin
A/g
5.34
41.83
29.07
65.55
36.32
£/cart.
7.04
55.14
38.33
85.09
47.87
Virgin/Extracted13
A/g-
5.01
37.41
28.35
63.63
35.29
Jl/cart.
6.57
49.13
37.14
83.35
46.23
Recycled0
A/g
2.97
7.58
22.27
24.64
17.89
!L/cart.
6.6
17.0
49.0
54.0
39.0
NS
^"^ ft- '
Breakthrough volumes are at 21.1°C.
bVirgin Tenax GC was extracted with methanol and n-pentane in a soxhlet for 18 hrs, respectively.
°Tenax sorbent that had been re-used for more than 20 times and was purchased at least three
years ago was selected for testing.
-------
should be employed during field sampling so that the amounts of organic
vapors on the first and second cartridge can be determined and related to
breakthrough volume under field sampling conditions. Using this approach,
the variation in the breakthrough volumes between lots of Tenax as well as
any variation in displacement of organic vapors occurring as a competitive
adsorption-desorption process can be evaluated. A higher degree of accuracy
and reproducibility in quantitative studies using this sorbent can be expected
with this approach.
COMPARISON AND EFFECT OF TEMPERATURE (20°C and 30°C) ON PERMEATION RATES
THROUGH PLASTIC MATERIALS
Introduction
In previous reports (4,5), a permeation system was described for the
generation of air/vapor mixtures of known concentrations. The permeation
system was designed to operate at 20°C, however adsorption of organic vapors
to the glass surfaces and teflon transfer lines was experienced and thus a
study was undertaken to ascertain whether the permeation system might function
adequately at a higher temperature (e.g. 30°C).
Experimental
The design of the flow system was previously described (4,5). The
pyrex permeation tube (25 mm i.d. x 44 cm in length) was enclosed in the
jacket through which an ethanol/water mixture was circulated from a con-
stant temperature bath (Haake Model FE Circulating Bath and Thermostated
Heater). The thermostated heater was set to control the temperature at
30°C + 0.1°C.
The permeation tubes were gravimetrically calibrated on a weekly basis.
A Mettler MS-5A (microgram) balance was used.
Results and Discussion
Table 10 presents the permeation rates for a series of hydrocarbons,
halogenated hydrocarbons, aromatics, nitrogen- and oxygen-containing compounds
at 20°C and 30°C. In general, there is a 2-4 fold increase in the permeation
rate between the two temperatures; however, this increase did not interfere
with the utilization of the permeation tubes at their new permeation rates.
Furthermore, it is desirable to have the permeation rates adjusted for each
23
-------
Table 10. COMPARISON OF PERMEATION RATES AT 20°C and 30°C FOR A NUMBER OF SELECTED ORGANICS
N>
Chemical
Class Compound Tube Length/Material
Halogenated methylene chloride
Hydrocarbons - . . , .. ,
J trichloroethylene
chloroform
K-dichlorobenzene
m-dichlorobenzene
1, 1, 1-trichloroetbane
tetrachloroethylene
chlorobenzene
carbon tetrachloride
11
7.
10.
5.
5.
5.
5
2
6
8
8
2
5
8
cm
cm
cm
cm
cm
cm
cm
cm
cm
FEP
FEP
TFE
TFE
FEP
TFE
TFE
TFE
PE w/
3.
1.
1.
6-
3.
1.
1.
6.
g/min
20°C
1494 x 10~7
245 x 10"6
9346 x 10"7
8197 x 10~9
4207 x 10"8
8949 x 10"7
5523 x 10"7
0834 x 10"6
30°C
6-
1.
2.
1.
8.
4.
2.
1.
9766
8707
9794
5697
3768
3178
2901
2400
x
X
X
X
X
X
X
X
io-7
io-6
io-7
io"8
io-8
io-7
io-9
io"5
glass reservoir
1, 2-dicbloroethane
1, 2-dichloropropane
bis-2-chloroetbyl ether
2-chloro-l, 3-butadiene
7.
8.
9.
8
7
3
5
cm
cm
cm
cm
TFE
TFE
TFE
TFE
2.
1.
1.
6.
0001 x 10~7
4369 x 10~8
o
7441 x 10 °
7380 x 10"8
4.3466
1.
2.
1.
9207
8220
7908
X
X
X
X
io-7
io-7
-8
10 °
io-7
(chloroprene)
3-chloro-l-butene
perfluorobenzene
9 cm TFE
2.5 cm FEP w/
glass reservoir
2.8736 :
3.2487 x
6.3748 x 10
.-6
(continued)
-------
Table 10 (cont'd)
10
O
Chemical
Class Compound
perfluoro toluene
dibromomethane
dibromomethane
methyl bromide
1 , 2-dibromopropane
bronodichloromethane
bromodichloromethane
l-bromo-2-chloro ethane
Hydrocarbons n-heptane
1-pentyne
cyclopentane
Aromatics benzene
toluene
benzene-dfi
benzene-d.
a-methylstyrene
1,2, 3-trlmethylbenzene
phenylacetylene
Tube Length/Material
4.5 cm FEP w/
glass reservoir
6.4 cm FEP
6.2 cm TFE
6 cm FEP
9.8 cm TFE
5.7 cm FEP
5.2 cm TFE
9.8 cm TFE
12.3 cm TFE
10 cm TFE
12.25 cm TFE
12.5 cm TFE
7 cm TFE
8 cm TFE
8 cm FEP
13.9 cm TFE
13.7 cm TFE
6 cm TFE
g/min
20PC
8.3052 x 10~8
1,4219 x 10~6
5.9383 x 10~7
1.6811 x 10~7
5.8948 x 10~9
3.9341 x 10~7
1.7104 x 10~7
2.0605 x 10~7
4.3353 x 10~7
8.8957 x 10~9
2.4087 x 10~7
1.0819 x 10~7
1.7034 x 10~7
2.8003 x 10~7
2.4886 x 10~8
5.1066 x 10~8
3.8153 x 10~8
30*C
3.7115 x 10~6
9.3067 x 10~8
9.2725 x 10~7
1.3174 x 10~6
2.4410 x 10~7
4.1538 x 10~8
1.2473 x 10~7
3.3472 x 10~7
6.6725 x 10~7
7.9355 x 10~7
1.8092 x 10~7
5.0473 x 10~7
2.0214 x 10~7
3.9505 x 10~7
1.8680 x 10~7
9.4223 x 10~8
2.3030 x 10~8
8.7830 x 10~8
(continued)
-------
Table 10 (cont'd)
Chemical
Class
Nitrogenous
Oxygenated
Compound
dime thy 1-d g-amine
dime thy lamine
dimethylamine
dime thy 1-dg-amine
N, N-dimethylf ormamide
benzonitrile
acetone
methyl ethyl ketone
methyl vinyl ketone
ethyl acetate
methyl acrylate
furan
n-butyl ether
t-amy lalcoho 1
heptanal
Tube Length/Material
8 cm FEP
7 cm FEP
7 cm TFE
7.5 cm TFE
8.75 cm TFE
9.75 cm TFE
12.5 cm TFE
4.8 cm PE w/
glass reservoir
8.6 cm TFE
2.8 cm PE w/
glass reservoir
6.9 cm TFE
6.2 cm TFE
6.2 cm TFE
6.9 cm PE
10.1 cm TFE
g/min
20°C
2.6297 x 10"7
—8
9.7171 x 10
5.2915 x 10"7
7.5030 x 10~7
— ft
3.9659 x 10
2.6366 x 10~7
3.8730 x 10~7
—f\
1.1901 x 10
1.5982 x 10~7
1.3092 x 10~6
4.7977 x 10~7
8.5109 x 10"7
8.1499 x 10~8
_0
4.5901 x 10 °
— 8
2.4886 x 10
30°C
8.2204 x 10~7
-7
1.2606 x 10
/•
1.1500 x 10~°
1.5886 x 10~6
-8
4.5242 x 10
3.2857 x 10~7
8.0447 x 10"7
-6
2.7582 x 10
6.4973 x 10~8
£*
3.2589 x 10
1.0020 x 10~6
£
1.7729 x 10
9.6937 x 10~8
_7
3.5927 x 10
-8
1.0980 x 10
tetrafluoroethylene polymer, PE = polyethylene, FEP - fluorinated ethylene (perfluoro).
-------
organic compound to within 1 x 10 to 5 x 10 g/min. Permeation rates in
this range are convenient for loading vapors onto Tenax GC cartridges.
Since it had been previously observed that substantial quantities of
the less volatile organic vapors (e.g. chlorobenzene) were adsorbed to the
surfaces of the permeation system, accurate delivery of vapors to the Tenax
GC cartridges was not possible. By increasing the temperature of the per-
meation system to 30°C and then subsequently maintaining the transfer lines
to the Tenax GC cartridges at > 40°C, the adsorption of the less volatile
vapors to the surface of the system were minimized.
EXAMINATION OF THE COMBINED PERFORMANCE OF THE PERMEATION SYSTEM, INLET-
MANIFOLD, AND HIGH RESOLUTION GAS-LIQUID CHROMATOGRAPHY
Introduction
In a previous report (4), modifications to a flow system for delivering
vapors from a permeation tube to Tenax cartridges for the purpose of accura-
tely loading cartridges to calibrate instruments were described. In that
study the performance of the flow system was evaluated in terms of stability
of the signal from the flame ionization detector (FID) with respect to the
criteria, of noise and drift. Noise was defined as variations in the signal
level over a period of 15 sec or less and it consisted substantially of
oscillations about the mean signal level. This noise was expressed as the
percentage of the lowest observed signal level. Part of the noise originated
in the FID electrometer but some of it also originated in the flow system.
Drift consisted of variations in signal level over a period exceeding 15
sec. It also was expressed as a percentage of the lowest observed signal
level. The noise and drift problems were believed to be due to the instabi-
lity of the pressure and flow through the air/vapor permeation device.
Modifications were made in the regulation of the flow and pressure in this
system. Noise was minimal and drift was slight except for one observation
which lasted for about 4 1/2 hrs. The behavior of the signal level when
changing from one Tenax cartridge to another was observed at pressures up to
6 in of water. No significant flucuations and signal level occurred at 4 in
of water and above. The influence of pressure on the time required for this
signal level to stabilize after insertion of permeation tubes into the
system was also observed and found to be insignificant. The signal level
32
-------
approached its final level within 20 min and sometimes required a short
additional period to completely stabilize.
It was concluded that the best method of delivering carrier gas to the
permeation tube flow system was to control the pressure in the chamber with
a low pressure regulator and control the flow rates only with the valves
which were used to split the flows. Increasing the pressure from 2-6 in of
water minimized signal fluctuations due to differences and flow resistance
of individual cartridges.
Additional studies were conducted and are described here in order to
determine the performance of the permeation system in delivering reproducible
and accurate quantities of organic vapors from permeation tubes and the
reprodubility of analysis by high resolution gas-liquid chromatography in
combination with the cartridge thermal desorption inlet-manifold.
Experimental
Standard curves were prepared for 9 compounds ranging from non-polar
to semi-polar. In each case, a minimum of triplicate analysis was performed
for each absolute weight of the organic vapor employed. Linear regression
analysis was performed on the response of the flame ionization detector vis
quantity of the organic vapor which had been delivered from the permeation
system to the Tenax GC cartridge.
The previously described thermal desorption inlet-manifold (1-5) was
used for recovering the vapors from Tenax GC cartridges (1.5 cm i.d. x 6.0
cm bed length). Thermal desorption was accomplished at 270°C. A Perkin-
Eliner 900 gas-liquid chromatograph equipped with flame ionization detection
was used. The chromatographic column was a 100 m glass SCOT coated with
OV-101 stationary phase (5). The carrier flow was ~2.5 ml/min, the hydrogen
and air flows to the fid were 35 and 225 ml/min, respectively. The thermal
desorption time was 5 min and a 2 min hold period followed by temperature
programming of the SCOT column from ambient temperature to 240°C at A°/min
was employed.
For linear regression analysis, peak heights were used of the compounds
under study and expressed vs quantity of compound loaded on the Tenax GC
cartridge.
33
-------
Results and Discussion
Figures 3-7 present the standard response curves for each of the com-
pounds studied. The variations are a reflection of the combination of:
(1) the delivery of the organic vapor from the permeation device to the
Tenax GC cartridge; (2) the trapping of the organic vapor by the Tenax GC
cartridge; (3) the efficiency of thermal desorption and transfer to the
high resolution glass capillary column; (4) the transmission of the organic
vapors through the high resolution column; (5) the linear dynamic range of
the capacity of the high resolution column coated with OV-101 phase; (6)
the specific organic vapor and (7) the linearity and reproducibility of the
flame ionization detector to the organic vapor.
The results shown in Figures 3-7 indicate that the technique of deliver-
ing non-polar and semi-polar organic vapors from permeation tubes utilizing
the previously described permeation device for synthesizing multi-component
air/ vapor mixtures can be achieved in a reproducibile and linear fashion.
The one exception was methylene chloride in which some non-linearity was
observed throughout the concentration range examined. In most cases, it
can seen that the variation was less than 5% with the exception occurring
at the higher concentrations. Statistical analysis was performed on these
data and the R values at the 95% conference level are also shown in these
figures.
The linear regression analyses for these compounds in all cases yield
a zero x-y intercept. This is important since it is conceivable that for
the quantification of many components in a given sample of ambient air will
require the use of response factors based on a "one point response curve"
since the use of standard curves of this nature will be excessively time
consuming and undesirable for quantification of many compounds. Because
the x-y intercept is zero in these cases, the feasibility of using relative
molar response (RMR) factors is greatly enhanced.
DEVELOPMENT OF SOFTWARE PROGRAMS FOR QUANTIFICATION OF VOLATILE ORGANICS
USING HRGC/MS/COMP
Introduction
Since the information which is generated and available from the mass
spectrometer is accumulated on a dedicated computer system, it would be
34
-------
160
120
> 80
-------
80-
2b 30
yg chlorobenzene
8
***
4J
•&
eg
u
CM
80'
60.
40-
20-
R - 0.9692
1.25 2.50 3.75 5.00
yg dichlorobenzene
Figure 4. Linear regressions for chlorobenzene and dichlorobenzene.
36
-------
12 18 24 30 36
Ug methylene chloride
3 4 , 5
Ug chloroform
Figure 5. Linear regressions for methy1ene chloride and chloroform.
37
-------
00
•H
41
SB
•3
a)
PL,
80-
601
AO.
20-
R .- 0.9984
5 10
yg toluene
f
15
50-
CM Q-T t
I 37.5-
o
•a
25-
S 12.5,
Bu
R • 0.9A26
) 8 16 24 32
pg ethyl acetate
Figure 6. Linear regressions for toluene and ethyl acetate.
38
-------
200-
24
tetrachloroethylene
Figure 7. Linear regressions for tetrachloroethylene.
39
-------
highly desirable to utilize the speed and accuracy of a computer system for
the calculation of levels of volatile organic vapors present in the original
sample. A previous report (5) described the use of the method of relative
molar response factors for quantification of organic vapors in ambient air
samples.
This section describes software programs which were fabricated in order
to allow the expedient determination of quantities of organic vapors present
in samples analyzed by hrgc/ms/comp.
Design of Computer Software Programs
The computer programs were written in BASIC and all quantification
was based on mass fragmentography. Two programs were written, one was called
"quantiate" and the second "area ratio calculation". The BASIC "quantitate"
was designed to search a specified range of spectra for maximum intensity of
standard mass and then to search for a different range of spectra for maximum
intensity and "unknown" mass followed by calculation of the ratio of their
intensities. A printout included maximum intensity for standard mass and
spectrum number of maximum intensity and then the maximum intensity for the
unknown mass and the spectrum number of maximum intensity and finally the
ratio of unknown to standard intensities. Also an option was provided for
calculating nanograms of unknown from this information using the RMR fac-
tor. The "quantitate" program executed the following mathematical rela-
tionships :
ng(unknown) = R g^ ^N1
R = ratio of unknown: standard itensities
Ml = M. Wt. standard
M2 = M, Wt. unknown
Nl = ng standard
R1 " ^unk/std
- Aunk/molesunk
' wtunk
AStd/n*8td/m' WtStd
A = area, or intensity
40
-------
The "area ratio" program was designed to calculate the area ratio of a
selected ion to one specified (or the sum of specified ions up to 8 in number)
over a selected range of mass spectra in the gas chromatogram. The program
utilized a subroutine for searching spectra stored on the fixed disk. Sub-
sequently the program printed the "sum or ion areas" which was either a
specified ion or a series of ions and "selected ion area" as well as the
area ratio and then indicated "saturated ion" if any intensity of an ion was
>32,736 (A/D converter saturation point). The program was used to sum ions
representing classes of compounds over most of the mass spectra obtained in
a gas chromatogram of the individual samples. The m/z 186 ion was used as
the "selected ion" since it is representative of the two external standards,
perfluorobenzene and perfluorotoluene and the mass spectra corresponding to
these two standards was summated. The area measurements were of prime
interest in most cases; however the use of "area ratios" was useful for
comparison between samples without the use of RMR factors since comparisons
could be made in this fashion on a relative basis (e.g. comparison of upwind
and downwind across a point source of pollution). Figure 8 depicts the area
ratio calculation.
The described computer software programs were written for a 6201 computer
on a Varian CH-7 mass spectrometer system; however, the principal concept
described here was developed as the basis for use in future analysis of
ambient air samples whereby quantitative information would be desired for
the individual components occurring in the sample.
DETERMINATION OF RELATIVE MOLAR RESPONSE FACTORS (RMR) FOR QUANTIATIVE HRGC/
MS/COMP ANALYSIS
Introduction
Described above was the development of computer software programs for
quantification of volatile organics by hrgc/ms. These software programs
were written in order to expedite the quantification of many organic vapors
in air samples.
Because the ambient air samples contain a multitude of organic compounds,
it is not feasible to generate standard curves for every single compound for
which quantitative information is desired. Instead a relative molar response
ratio concept would allow more expeditious estimation of the levels of the
41
-------
2
111
Area Ratio
N M
TIME, MASS SPECTRUM NO.
M
'SELECTED
N
M
Sumofion(s)
for specified ion(s)
Selected ion
n
N
or
Area Ratio R « —
Al
where : A_ = sum of intensities of selected ion
over spectrum range N to M
sum of intensities of specified
ion(s) over spectrum range N to M
_
I
Figure 8. Area Ratio Calculation
42
-------
components if the method proved to be relatively accurate and reproducibile.
Another problem associated with the quantification of many organic vapors
occurring in ambient air is that authentic standards are not available for
every compound identified. Thus it would be desirable to determine whether
empirical correlations could be derived for chemicals within a chemical
class in order that extrapolations could be made for substances for which
authentic material was unavailable commercially for determining the relative
molar response factor. Another objective of this study was to determine the
RMR factors for a series of compounds within a chemical class in order to
ascertain the sensitivity of the gc/ms/comp system and to assess the possibi-
lity of utilizing an average RMR to represent the chemical class and quanti-
fication.
Experimental
Table 11 presents the substances which have been selected for RMR
determinations. The chemical classes include ketones, aldehydes, alcohols,
ethers, esters, nitriles, sulfur compounds, alkanes, aromatics, halogenated
aliphatics, and halogenated aromatics.
In order to obtain RMR factors from the hrgc/ms/comp system, synthetic
air/vapor mixtures were prepared from a permeation system. Permeation tubes
were prepared for a series of compounds listed in Table 10. Six replicate
Tenax GC cartridges were simultaneously loaded with the same concentration
of 6-8 organic vapors. The general range of the absolute mass used for
determining RMR factors were 200-300 ng.
Tenax cartridges were subsequently thermally desorbed and analyzed by
hrgc/ms/comp and full mass spectra were acquired. An SE-30 glass SCOT
column 100 m in length was used throughout the study. The operating para-
meters are given in Table 12.
Using the previously described "quantitate" program, the relative molar
response factors for each selected ion of the organic compound and the
external standards (perfluorobenzene and perfluorotoluene) were calculated.
The resulting RMR factor for each replicate cartridge was then subjected to
statistical analysis.
43
-------
Table 11. CHEMICALS SELECTED FOR RMR DETERMINATIONS
Chemical
Class
Compound
Chemical
Class
Compound
Ketones
Aldehydes
Alcohols
Misc. Nitrogenous
Compounds
Sulfur compounds
acetone
methyl ethyl ketone
methyl vinyl ketone
2-pentanone
3-pentanone
2-heptanone
3-heptanone
cyclohexanone
acetophenone
acetaldehyde
acrolein
2-furaldehyde
benzaldehyde
m-tolualdehyde
phenyl acetaldehyde
1-butanol
Jt-butanol
phenol
nitromethane
nitrobenzene
N,N-dimethylforraamide
pyrrole
pyridine
dimethylnitrosamine
diethylnitrosamine
carbon disulfide
carbonyl sulfide
Ethers
Esters
Nitriles
Alkanes
diethy1 ether
di-n-butyl ether
tetrahydrofuran
furan
2-methylfuran
2-ethylfuran
dihydropyran
cyclohexene oxide
styrene oxide
anisole
benzofuran
dibenzofuran
methylbenzofuran
diethyl fumarate
diethyl maleate
ethyl acetate
methyl methacrylate
acetonitrile
propionitrile
butyronitrile
pentane nitrile
benzonitrile
n-pentane
n-hexane
n-heptane
n-octane
n-nonane
n-decane
(continued)
-------
Table 11 (cont'd)
Chemical
Class
Compound
Chemical
Class
Compound
Sulfur compounds
(cont'd)
in
Aromatics
2-me thylthiophene
3-methylthlophene
thiophene
2-thiapropane
thiacyclohexane
2,3-dithlabutane
2,3-dithiapentane
3,4-dithiahexane
benzothiazole
2,3-benzothiophene
ethyl methane sulfonate
sulfolane
dimethyl sulfoxlde
2-mercap toethano1
benzene
toluene
o^-xylene
m-xylene
£-xylene
ethylbenzene
£-ethyltoluene
m-ethyltoluene
p_-ethyltoluene
1,2,3-trimethyIbenzene
1,2,4-trimethyIbenzene
1,3,5-trimethyIbenzene
n-propyIbenzene
cumene '
2-phenylpropene
phenylactylene
Alkanes
(cont'd)
Halogenated
Aliphatics
n-tridecane
1-pentene
2-pentene
1-pentyne
isoprene
isopentane
1-hexene
1-heptene
1,3-hexadiene
2-methylhexane
cyclopentane
cyclohexane
cycloheptane
cyclooctatetraene
cyclohexene
4-vinylcyclohexene
methylcyclopentane
methylcyclohexane
methylene chloride
chloroform
carbon tetrachloride
chloroethane
1-chloropropane
2-chloropropane
1-chlorobutane
2-chlorobutane
1-chloropentane
2-chloropentane
3-chloropentane
1-chlorohexane
(continued)
-------
Table 11 (cont'd)
Chemical
Class
Compound
Chemical
Class
Compound
Aromatlcs
(cont'd)
Halogenated
Aromatlcs
n-butylbenzene
n-pentylbenzene
styrene
o-methylstyrene
Indan
Indene
ot-pinene
bromobenzene
fluorobenzene
chlorobenzene
o-chlorotoluene
m-chlorotoluene
p_-chlorotoluene
benzyl chloride
2-chloros tyrene
3-chlorostyrene
4-chlorostyrene
Halogenated
Aliphatlcs
(cont'd)
1-chloroheptane
1-chlorooctane
1-chlorononane
1-chloro-l-butene
4-chloro-l-butene
2-chloro-2-butene
3-chloro-1-butene
2-chloroethyl ethyl ether
bis-(chloromethyl) ether
1,1-dichloroethane
1,2-dichloroethane
1,1-dichloropropane
1,2-dichloropropane
1,3-dichloropropane
1-bromohexane
1-bromoheptane
1-bromooctane
methylene bromide
1,1-dibromoethane
1,2-dlbromoethane
1,1-dibromoethylene
1,2-dibromoethylene
1,2-dibromopropane
1,3-dibromopropane
bromoform
1-bromo-2-chloroethane
bromodichloromethane
l-chloro-3-bromopropane
1,2-dibromo-3-chloropropane
1,1-dichloropropene
vinylidene chloride
methallyl chloride
(continued)
-------
Table 11 (cont'd)
Chemical
Class
Compound
Chemical
Class
Compound
Halogenated
Aliphatics
(cont'd)
phosgene
1,A-dichloro-2-butyne
trichloroethylene
1,1,1-trichloroethane
1,1,2-trichloroethane
1,1,2-trichloropropane
1,2,3-trichloropropane
tetrachloroethylene
1,1,1,2-tetrachloroethane
1,1,2,2-tetrachloroethane
pentachloroethane
hexachloroethane
hexachloro-1,3-butadiene
bromoethane
bromoethylene
1-bromoethene
1-bromopropane
2-bromopropane
1-bromobutane
2-bromobutane
1-bromopentane
2-bromopentane
3-bromopentane
o-dichlorob enzene
m-dichlorobenzene
2rdichlorobenzene
2,6-dichlorotoluene
1,2,4-trichlorobenzene
1,2,3-trichlorobenzene
1,3,5-trichlorobenzene
-------
Table 12, OPERATING PARAMETERS FOR GLC-MS-COMP SYSTEM
Parameter Setting
Inlet-manifold
desorption chamber 270°C
valve 220°C
capillary trap - minimum -195°C
maximum • +180°C
thermal desorption time 4 min
GLC
100 m glass SCOT-SE/30 25-240°C, 4°C/min
carrier (He) flow ^3 ml/min
transfer line to ms 240°C
MS
scan range m/e 20 -»• 300
scan range, automatic-cyclic 1 sec/decade
filament current 300 yA
multiplier 6.0 -
ion source vacuum ^4 x 10 torr
aThese analyses utilized an inlet-manifold with a new cryo-heater
module- see Ref. 27.
48
-------
Results and Discussion
An example of statistical data for the RMR factors of chloroform based
on m/z 83 and m/z 186 for perfluorobenzene is given in Table 13. Data of
this nature was obtained for all the ions selected for all the compounds
understudy. As indicated in Table 13, the arithmetic mean for the RMR
factor was 0.66 and the standard deviation was ±7.8%.
The RMR factors for several normal alkanes using selected mass ions are
listed in Table 14. The selection of several ions for each of the compounds
as well as for the external standard assures that quantification can be
conducted by mass fragmentography in lieu of complex mixtures being inade-
quately resolved by the high resolution gas chromatographic column. The
selection of ions and use of mass fragmentography provides additional speci-
ficity which is not available utilizing total ion current from the mass
spectrometer. Since full mass spectra are obtained during the acquisition
of data, it was possible to subsequently select an ion representative of the
compounds cracking pattern and displaying this vs time (mass chromatogram).
Since all of this data was automatically acquired during full scanning, the
subsequent calculations require simply executing the software programs for
determining the relative molar response factors according to the previously
described equation.
The RMR factors for several hydrocarbons and aromatic compounds and the
statistical deviation obtained for the RMR factors for each of the selected
ions is presented in Table 15. As indicated by this data, the deviation is
generally <±10% of the determined RMR valuei Data obtained by expanding
known quantities of the compound into an air space of a glass vessel and the
subsequent transfer of an aliquot to a Tenax GC cartridge, was less accurate
and reproducible than that obtained from the use of a permeation system..
The RMR factors and statistical deviations for chlorinated hydrocarbons
using perfluorobenzene as the internal standard is given in Table 16. For
each compound, a series of m/z ions which represent the mass cracking pat-
tern of that compound was selected for determining the RMR with respect to
several ions of the internal standard (e.g. m/z 186, 117, 167 and 155).
This data suggests that for a predominant number of cases the reproducibility
for determining RMR's is better than +10%.
49
-------
Table 13. STATISTICAL DATA FOR RELATIVE MOLAR RESPONSE FACTOR OF
CHLOROFORM BASED ON M/Z 83 and M/Z 186 FOR
PERFLUOROBENZENE
Description
Numerical Value
Number of Values (replicates)
Arithmetic Mean
Standard Deviation
Sample Variance
Estimated True Variance
Standard Error of the Mean
6
0.66
0.0518
0.0022
0.0027
0.0211
50
-------
Table 14. RELATIVE MOLAR RESONSE FACTORS FOR NORMAL ALKANES USING
SELECTED MASS IONS
Perfluorobenzene Ions (m/z)
Compound
n-pentarie
ii-hexane
ii-heptane
ja-nonane
n-decane
Ion (m/z)
43
42
41
57
72
57
43
41
56
86
43
41
57
71
56
100
43
57
85
71
56
42
128
43
57
71
85
56
42
142
186
0.75 + 0.10
0.53 + 0.12
0.41 + 0.07
0.09 + 0.02
0.09 + 0.02
0.49 + 0.19
0.42 + 0.07
0.60 + 0.13
0.30 + 0.07
0.16 + 0.05
1.13 + 0.11
0.74 + 0.09
0.43 + 0.02
0.45 + 0.05
0.29 + 0.04
0.19 + 0.02
1.71 + 0.27
1.24 + 0.24
0.42 + 0.04
0.32 + 0.04
0.30 + 0.02
0.29 + 0.04
0.23 + 0.07
2.99 + 0.34
2.45 + 0.38
0.94 + 0.08
0.53 + 0.07
0.49 + 0.09
0.48 + 0.05
0.30 + 0.05
117
0.97 + 0.11
0.63 + 0.10
0.52 + 0.07
0.12 + 0.01
0.12 + 0.02
0.64 + 0.28
0.53 + 0.24
0.79 + 0.15
0.39 + 0.0£
0.20 + 0.06
1.43 + 0.10
0.94 + 0.07
0.55 + 0.04
0.58 + 0,06
0.37 + 0.05
0.24 + 0.03
2.21 + 0.48
1.61 + 0.39
0.55 + 0.11
0.41 + 0.03
0.38 + 0.05
0.37 + 0.04
0.31 + 0.02
3.86 + 6.30
3.15 + 0.36
1.21 - 0.07
0.69 + 0.07 ;
0,63 + 0.11
0.62 + 0.04
0.39+0.04
167
4.89 + 0.99
3.20 + 0.76
2.64 + 0.60
0.64 + 0.14
0.62 + 0.16
3.23 + 1.45
3.06 + 0.91
3.98 + 1.08
2.00 + 0.61
1.03 + 0.37
7.38 + 1.29
4.83 + 0.68
2.85 + 0.37
3.02 + 0.55
1.91 + 0.44
1.28 + 0.28
10.98 + 2.33
7.80 + 1.72
2.72 + 0.50
2.03 + 0.33
2.39 + 0.75
1.85 + 0.29
1.53 + 0.55
19.16 + 2.91
15.74 + 1.11
6.05 -f 0.85
3.28 + 0.44
3.12 + 0.73
3.12 + 0.48
1.94 + 0.44
155
4.50 + 0.50
2.99 + 0.82
2.43 + 0.67
0.58 + 0.11
0.57 + 0.11
3.01 + 1.45
3.26 + 1.43
3.72 + 1.26
1.87 + 0.60
1.48 + 0.54
6.90 + 0.47
4.52 + 0.30
2.68 + 0.44
2.82 + 0.44
1.80 + 0.24
1.20 + 0.20
10.28 + 2.80
7.49 + 2.29
2.55 -f 0.60
1.77 + 0.33
1.78 + 0.35
1.73 +0.40
1.43 + 0.57
17.74 + 3.95
14.57 + 3.78
5.49 + 0.93
3.10 + 0.26
2.92 + 0.89
2.88 + 0.64
1.73 + 0.39
51
-------
Table 15. RELATIVE MOLAR RESPONSE FACTORS AND STATISTICAL DEVIATIONS
FOR SEVERAL HYDROCARBONS AND AROMATIC USING PERFLUOROBENZENE STANDARD
m/z 186
Compound
ii-pentane
tk-hexane
n-heptane
cyclopentane
n-pentyne
btnzene
•thylbenzene
£-xylene
n-propylb enzene
Ion (m/z)
43
42
41
57
72
57
43
41
56
86
43
41
57
71
56
100
42
70
55
41
67
53
42
66
77
52
50
79
74
91
92
106
105
78
77
91
92
106
105
78
77
91
92
120
105
78
77
RMR
0.75
0.52
0.41
0.98
0.08
0.39
0.50
0.56
-
-
1.13
-
0.41
0.41
0.29
0.21
0.66
0.12
0.24
0.22
0.286
0.107
0.064
0.009
0.36
0.28
0.25
0.10
0.07
3.80
0.29
1.11
0.16
0.31
0.38
3.95
0.30
1.72
0.73
0.27
0.61
8.00
0.93
1.02
0.24
0.27
0.61
SD
0.061
0.083
0.049
0.013
0.010
0.085
0.069
0.007
-
-
0.127
-
0.009
0.0238
0.009
0.006
0.081
.0.015
0.025
0.040
O.'OSS
0.015
0.008
0.0005
0.009
0..015
0.035
0.021
0.003
0.340
0.025
0.098
0.035
0.006
0.104
1.421
0.096
0.596
0.196
0.104
0.193
0.731
6.111
0.040
0.010
0.104
0.193
117
RMR
0.97
0.63
0.52
0.12
0.11
0.71
.61
0.79
0.40
0.20
1.34
-
0.54
0.54
0.38
0.29
0.75
o:i3
0.27
0.25
0.418
0.147
0.081
0.013
0.44
0.37
0.32
0.12
0.09
5.07
0.38
1.51
0.23
0.37
0.52
4.77
.36
2.08
0.88
.32
.73
9.89
..14
1.16
0.27
0.32
.73
SD
0.128
0.025
0.035
0.011
0.0009
0.157
0.116
0.143
0.094
0.050
0.117
-
0.021
0.009
0.009
0.009
0.089
0.006
0.039
0.050
0.048
0.026
0.008
0.001
0.052
0.028
0.033
0.023
0.007
0.716
0.042
0.271
0.032
0.041
0.152
1.441
0.941
0.624
0.168
0.106
0.176
0.337
0:149
0.151
0.038
0.106
0.176
167
RMR
4.36
3.19
2.62
0.64
0.53
3.05
2.72
3.46
1.28
0.92
6.47
4.07
2.54
2.55
1.81
1.32
5.34
1.07
1.97
1.95
1.995
0.722
0.402
0.064
2.88
2.28
1.95
0.78
0.62
29.17
2.26
8.49
1.34
2.21
2.90
25.25
2.43
13.96
-
-
-
65.58
.47
9.07
2.18
-
-
SD
0.473
0.843
0.229
0.047
0.054
0.731
0.693
0.769
0.297
0.282
0.755
0.184
0.115
0.134
0.046
0.050
.571
0.168
0.548
0.799
0.260
0.133
0.068
0.005
0.065
0.009
0.337
0.177
0.010
.718
0.147
0.659
0.126
0.123
0169
4.36
0.97
5.90
-
-
-
11.07
1.44
1.34
0.23
-
-
155
RMR
4.50
2.97
2.39
0.58
0.50
2.99
2.88
3.72
1.19
0.97
6.53
4.32
2.41
2.53
1.64
1.168
4.76
0.96
1.77
1.97
1.838
0.645
0.360
0.058
2.30
1.80
1.62
0.67
0.49
27.72
2.06
8.10
1.24
2.02
3.04
:
-
-
-
-
52.77
6.00
7.36
1.68
-
-
SD
0.509
0.771
0.371
0.100
0.055
0.895
0.805
1.030
0.330
0.307
0.105
0.091
0.256
.0.087
0.153
0.023
0.342
-0.125
0.442
0.441
0.176
0.104
0.039
0.005
0.133
0.096
0.151
0.160
0.036
4.904
0.289
1.739
0.210
0.290
0.746
^
-
-
-
—
2.89
0.67
1.09
0.31
«•
-
(continued)
52
-------
Table 15 (cont'd)
m/2 186
Compound Ion (m/z) RMR
pheny lace ty lane
cumene
n-butylbenzene
benzaldehyde
fluorobenzene
a-methylstyrene
102
76
103
51
74
75
105
120
77
79
106
91
92
134
105
78
77
106
105
78
74
51
96
95
97
70
75
118
117
78
77
115
50
0.69
-
0.06
0.12
0.10
0.08
2.33
0.56
0.47
0.46
0.18
2.79
1.95
0.58
0.55
0.26
0.57
0.39
0.40
0.09
0.05
0.28
1.43
0.13
0.92
0.37
0.11
1.205
1.035
0.485
0.390
0.'420
0.155
SO
0.437
-
0.037
0.048
0.052
0.048
0.931
0.209
0.198
0.206
0.047
0.577
1.194
0.100
0.095
0.030
0.062
0.019
0.035
0.011
0.003
0.032
0.070
0.008
0.005
0.038
0.015
0.106
0.105
0.029
0.035
0.034
0.006
117
RMR
0.78
0.25
0.06
0.13
0.11
0.09
2.62-
0.64
0.52
0.52
0.20
3.45
1.68
0.72
0.68
0.32
0.71
0.50
0.50
0.12
0.07
0.35
1.71
0.16
0.11
0.46
—
1.642
1.422
0.682
0.550
0.585
0.202
SD
0.499
0.138
0.041
0.053
0.058
0.056
1.047
0.239
0.225
0.238
0.051
0.348
0.120
0.051
0.060
0.006
0.021
0.035
0.025
0.020
0.007
0.026
0.264
0.020
0.019
0.081
-
0.217
0.121
0.041
0.042
0.053
0.016
167
RMR'
5.45
1.73
0.43
0.91
0.78
0.65
18.32
4.48
3.67
3.61
1.42
23.01
2.09
_
4.56
2.15
4.67
3.28
3.32
0.77
0.43
2.33
11.74
1.09
0.73
3.17
0.94
8.202
6.710
3.450
2.750
2.915
1.082
SD
2.929
0.786
0.245
0.283
0.335
0.318
5.413
1.230
1.216
1.271
0.285
5.960
0.080
1.183
0.384
0.703
0.461
0.554
0.153
0.066
0.478
0.563
0.066
0.089
0.052
0.012
1.082
0.679
0.361
0.310
0.343
0.138
155
RMR
4.85
1.54
0.39
0.81
0.66
0.55
16.39
4.36
3.30
3.23
1.27
18.48
11.14
3.86
3.64
1.73
3.77
2.65 '
2.67
0.62
0.35
1.88
9.11
0.86
0.60
2.47
0.75
7.305
6.272
2.947
2.375
2.532
0.910
SD
2.455
0.652
0.210
0.231
0.325
0.298
4.381
0.831
0.975
1.047
0.202
2.903
0.272
0.499
1.900
0.112
0.217
0.110
0.161
0.095
0.030
0.170
1.064
0.063
0.069
0.328
0.081
0.695
0.582
0.083
0.133
0.212
0.034
53
-------
Table 16. RELATIVE MOLAR RESPONSE FACTORS AND STATISTICAL DEVIATIONS FOR
CHLORINATED HYDROCARBONS USING PERFLUOROBENZENE STANDARD
mlz 186
117
167
155
01
Compound ion (m/£) RMR
methylene chloride
chloroform
carbon tetrachloride
1, 2-dichloroethane
49
84
86
51
47
88
83
85
47
49
87
50
117
119
121
47
82
49
62
64
63
61
98
100
0.44
0.33
0.23
0.14
0.07
0.04
0.66
0.45
0.20
0.07
0.07
0.03
0.278
0.286
0.080
0.047
0.067
0.032
0.287
0.085
0.052
0.033
0.037
0.018
SD
0.078
0.051
0.044
0.032
0.009
0.006
0.052
0.038
0.012
0.009
0.009
0.003
0.053
0.0416
0.012
0.019
0.019
0.004
0.021
0.008
0.007
0.003
0.003
0.004
RMR
0.62
0.47
0.32
0.21
0.10
0.01
0.95
0.62
0.28
0.10
0.10
0.04
0.394
0.404
0.113
0.104
0.094
0.045
0.382
0.111
0.069
0.044
0.046
0.026
SD
0.072
0.062
0.050
0.035
0.009
0.000
0.057
0.046
0.015
0.013
0.013
0.005
0.061
0.058
0.017
0.024
0.025
0.005
0.035
0.012
0.009
0.004
0.001
0.005
RMR
4.17
3.17
2.16
1.40
0.67
0.36
6.01
4.12
1.81
0.68
0.67
0.27
2.307
2.280
0.675
0.632
0.508
0.265
2.295
0.672
0.400
0.260
0.292
0,155
SD
0.818
0.627
0.474
0.346
0.108
0.076
0.762
0.460
0.087
0.052
0.113
0.041
0.675
0.664
0.179
0.327
0.124
0.029
0.204
0.076
0.072
0.042
0.025
0.033
RMR
2.36
1.79
1.22
0.79
0.37
0.20
3.60
2.37
1.01
0.39
0.42
0.16
1.532
1.582
0.440
0.406
0.372
0.176
1.840
0.530
0.307
0.212
0.207
0.122
SD
0.262
0.190
0.151
0.134
0.029
0.025
0.095
0.115
0.046
0.057
0.027
0.015
0.274
0.266
0.078
0.114
0.122
0.029
0.185
0.010
0.030
0.026
0.033
0.026
(continued)
-------
Table 16 (cont'd)
in
Ui
m/z 186
Compound
1,1, 1-trlchloro-
ethane
tetrachloro-
ethane
1,2-dichloro-
propane
bromodlchloro-
methane
Ion (m/z)
97
99
117
119
101
60
166
164
168
129
131
96
63
62
65
64
112
114
83
85
87
47
129
127
BMR
0.550
0.357
0.094
0.089
0.059
0.047
0.616
0.502
0.305
0.480
0.470
0.144
1.342
1.054
0.425
0.348
0.046
0.031
0.543
0.390
0.055
0.123
0.061
0.047
SD
0.059
0.025
0.010
0.009
0.005
0.003
0.059
0.058
0.037
0.042
0.041
0.018
0.215
0.135
0.066
0.055
0.008
0.003
0.056
0.018
0.012
0.006
0.007
0.002
117
RMR
0.728
0.478
0.117
0.117
0.078
0.062
0.766
0.660
0.412
0.680
0.667
0.198
1.840
1.352
0.557
0.462
0.061
0.040
0.733
0.520
0.077
0.167
0.081
0.062
SD
0.102
0.051
0.005
0.016
0.010
0.006
0.129
0.101
0.071
0.117
0.095
0.034
0.074
0.065
0.030
0.029
0.006
0.003
0.061
0.042
0.012
0.006
0.008
0.003
167
RMR
4.370
2.770
0.746
0.700
0.470
0.363
3.460
2.800
1.734
2.856
2.734
0.842
8.395
6.178
2.582
2.085
0.283
0.170
4.300
2.970
0.550
0.980
0.480
0.367
SD
0.368
0.233
0.089
0.030
0.043
0.021
0.479
0.354
0.242
0.340
0.273
0.091
0.238
0.210
0.100
0.053
0.030
0.014
0.559
0.087
0.046
0.072
0.073
0.022
155
RMR
3.586
2.330
0.600
0.577
0.386
0.313
3.552
2.717
1.692
2.820
2.710
0.926
7.590
6.035
2.518
2.060
0.273
0.182
3.536
2.562
0.456
0.830
0.405
0.320
SD
0.405
0.099
0.010
0.025
0.034
0.006
0.148
0.075
0.023
0.110
0.174
0.022
0.861
0.796
0.371
0.322
0.048
0.013
0.421
0.065
0.025
0.062
0.068
0.037
(continued)
-------
Table 16 (cont'd)
m/z 186
Compound
l-bromo-2-
chloro ethane
methylene
bromide
1,2-dibromo-
propane
Ion (m/z)
63
65
144
142
93
146
93
174
95
172
176
91
121
123
107
42
41
RMR
1.005
0.317
0.099
0.064
0.036
0.020
0.538
0.582
0.464
0.310
0.296
0.082
1.003
0.993
0.039
0.150
1.420
SD
0.061
0.018
0.007
0.008
0.006
0.003
0.081
0.073
0.063
0.034
0.035
0.015
0.078
0.068
0.006
0.030
0.026
117
RMR
1.387
0.432
0.127
0.091
0.052
0.028
0.760
-
0.562
0.486
0.408
0.113
1.316
1.300
0.056
0.230
1.953
SD
0.064
0.019
0.009
0.007
0.005
0.001
0.137
-
0.090
0.049
0.040
0.017
0.111
0.104
0.008
0.017
0.040
167
RMR
6.035
1.922
0.607
0.405
0.200
0.123
4.686
5.126
4.114
2.764
2.660
0.732
7.927
7.867
0.317
1.170
11.363
SD
0.391
0.095
0.099
0.024
0.025
0.006
1.302
1.063
1.174
0.519
0.521
0.208
0.533
0.495
0.044
0.209
0.770
155
RMR
5.913
1.870
0.598
0.362
0.214
0.116
2.910
3.150
2.512
1.700
1.616
0.446
7.070
6.993
0.250
1.130
8.323
SD
0.768
0.112
0.030
0.056
0.034
0.018
0.402
0.355
0.268
0.132
0.119
0.067
0.764
0.739
—
0.195
1.106
-------
Table 17 presents RMR factors and statistical deviations for chlorinated
aromatics using perfluorobenzene as the internal standard.
Table 18 likewise gives relative molar response factors and standard
deviations; however, for several oxygenated compounds using perfluorobenzene
as the internal standard. As with the halogenated hydrocarbons, the percent
deviation was less than +10% for each case.
Tables 19-22 also present RMR factors, however the values are calculated
with respect to perfluorotoluene as the internal standard using the ions m/z
236, 217, 186, 117 and 167.
This study is the beginning of a long-term study to obtain relative
molar response factors for many organic compounds. Data of this nature will
be examined to ascertain whether compounds may be selected for the determina-
tion of RMR's such that they are represented of their chemical class in
order to allow extrapolation to other homologues within a chemical class for
which RMR data is not available because of the unavailability of the authentic
compound for its determination.
57
-------
Table 17. RELATIVE MOLAR RESPONSE FACTORS AND STATISTICAL DEVIATIONS FOR
CHLORINATED AROMATICS USING PERFLUOROBENZENE STANDARD
en
00
m/z 186
Compound Ion (m/z) RMR
chlorobenzene 112
77
114
74
75
113
m-dichlorobenzene 146
148
149
150
111
113
0.962
0.720
0.310
0.087
0.076
0.064
1.232
0.793
0.056
0.135
0.553
0.173
SD
0.067
0.072
0.018
0.007
0.008
0.029
0.178
0.060
0.002
0.006
0.021
0.012
117
RMR
1.347
1.010
0.435
0.120
0.105
0.090
1.740
1.053
0.077
0.180'
0.743
0.253
167
SD
0.142
-
0.040
0.014
0.006
0.005
0.101
0.055
0.003
0.008
0.015
0.021
RMR
8.204
6.094
2.640
0.752
0.614
0.560
9.853
6.127
0.443
1.033
4.307
1.393
SD
1.713
1.506
0.506
0.150
0.128
0.064
0.264
0.446
0.021
0.042
0.257
0.072
155
RMR
5.026
3.696
1.622
0.458
0.394
0.354
8.310
5.200
0.363
0.910
3.825
1.173
SD
0.386
0.464
0.105
0.040
0.051
0.029
0.637
0.703
0.012
0.065
0.471
0.112
-------
Table 18. RELATIVE MOLAR RESPONSE FACTORS AND STATISTICAL DEVIATIONS FOR SEVERAL
OXYGENATED COMPOUNDS USING PERFLUOROBENZENE STANDARD
Cn
vc
m/z 186
Compound Ion (m/z) RMR
acetone
ethyl acetate
methyl ethyl ketone
furan
43
58
42
44
43
45
61
88
43
72
44
68
40
42
69
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
672
230
057
019
683
102
087
023
502
084
019
244
050
092
016
SD
0.062
0.023
0.086
0.001
0.138
0.018
0.012
0.005
0.058
0.011
0.001
0.025
0.008
0.006
-
117
RMR
0.920
0.310
0.079
0.026
0.822
0.111
0.097
0.024
0.702
0.127
0.027
0.325
0.067
0.122
0.022
SD
0.083
0.025
0.013
0.004
0.134
0.017
0.016
0.006
0.065
0.012
0.018
0.006
0.009
0.011
—
167
RMR
4.948
1.747
0.44
0.140
4.230
0.567
0.570
0.137
3.822
0.694
0.138
1.832
0.362
0.647
0.120
SD
0.351
0.114
0.035
0.008
0.884
0.105
0.104
0.026
0.444
0.080
0.008,
0.308
0.076
0.046
-
155
RMR
4
1
0
0
4
0
0
0
3
0
0
1
.134
.412
.356
.116
.426
.580
.505
.125
.115
.625
.122
.527
0.312
0
0
.565
.100
SD
0.386
0.132
0.058
0.016
0.838
0.129
0.090
0.025
0.421
0.069
0.004
0.189
0.051
0.041
-
-------
Table 19. RELATIVE MOLAR RESPONSE FACTORS AND STATISTICAL DEVIATIONS FOR
SEVERAL HYDROCARBONS AND AROMATICS USING PERFLUOROTOLUENE STANDARD
m/B 236
Compound
n-pantane
n-htxane
o-h«ptan«
i»-octan«
ti-nonane
n-decane
cyclopentan*
£-pentyne
benzene
Ion m/z
43
42
41
57
72
57
43
41
56
86
43
41
57
71
56
100
43
41
57
85
56
71
114
43
57
85
71
42
128
43
57
71
85
56
42
142
42
70
55
41
67
53
42
66
78
77
52
50
79
74
RMR
1.20
0.96
0.64
0.17
0.14
1.09
0.92
1.19
0.59
0.32
1.67
1.03
0.86
0.65
0.47
0.37
3.51
1.58
1.11
1.09
0.56
0.63
0.37
2.95
2.59
0.73
0.53
0.43
0.43
5.03
4.17
1.47
_
0.81
0.83
0.51
0.85
0.17
0.31
0.29
0.306
0.218
0.360
0.602
1.93
0.45
0.36
0.38
0.14
0.11
SD
0.150
0.111
0.088
0.015
0.010
0.153
0.055
0.119
0.094
0.021
0.106
0.179
0.015
0.025
0.047
0.04
0.258
0.216
0.055
0.099
0.053
0.114
0.017
6.546
0.311
0.085
0.058
0.042
0.195
0.224
0.248
0.009
_
0.044
0.045
0.021
0.093
0.026
0.060
0.062
0.029
0.019
0.028
0.034
0.081
0.010
0.035
0.017
0.018
0.013
217
RMR
1.04
0.65
0.56
0.13
0.12
0.83
0.70
0.90
0.45
0.24
0.48
0.92
0.49
0.49
.0.40
0.28
3.20
1.23
0.86
0.85
0.44
0.49
0.29
1.86
_
0.52
0.41
0.33
0.34
3.64
3.23
1.17
0.65
0.63
0.63
0.41
0.60
0.12
0.22
0.20
0.117
0.083
0.128
0.222
0.41
0.33
0.27
0.25
0.10
0.07
SD
0.021
0.126
0.052
0.056
0.009
0.095
0.050
0.081
0.079
0.026
0.129
0.021
0.031
0.025
0.024
0.032
0.373
0.194
0.056
0.041
0.030
0.059
0.096
0.295
_
0.107
0.050
0.015
0.005
0.176
0.131
0.038
0.046
0.055
0.010
0.015
0.132
0.036
0.080
0.077
0.018
0.011
0.09
0.022
0.025
0.006
0.015
0.026
0.015
0.002
186
RMR
1.64
1.00
0.95
0.22
0.20
1.36
1.15
1.48
0.70
0.40
2.59
0.72
0.99
0.96
0.66
0.51
4.91
2.21
0.49
0.55
0.83
0.91
-
3.32
2.39
0.85
0.65
0.59
0.80
7.23
5.93
2.19
1.28
1.17
1.04
0.65
0.87
0.18
0.38
0.31
0.059
0.043
0.069
0.122
2.19
0.51
0.41
0.41
0.16
0.11
SD
0.104
0.021
0.107
0.009
0.014
0.168
0.110
0.153
0.147
0.052
0.065
0.021
0.044
0.048
0.021
0.050
0.556
0.541
0.239
0.135
0.117
0.096
-
0.271
0.292
0.064
0.025
0.021
0.019
0.185
0.229
0.040
0.035
0.165
0.035
0.047
0.180
0.055
0.129
0.134
0.009
0.007
0.010
0.012
0.045
0.000
0.030
0.074
0.028
0,006
117
RMR
2.41
1.51
1.29
0.29
0.30
1.99
1.71
2.17
1.08
0.59
3.54
2.53
1.22
1.55
0.86
0.61
_
-
-
-
-
1.16
0.73
4.21
3.03
1.09
0.82
0.76
0.79
8.37
9.01
2.88
2.07
1.88
1.76
-
1.18
0.24
0.44
0.41
0.009
0.007
0.011
0.019
3.59
0,91
0.67
0.65
0.26
0.19
167
SD
0.216
0.132
0.081
0.030
0.036
0.217
0.301
0.302
0.240
0.145
0.295
0.221
0.055
0.089
0.017
0.077
_
-
-
-
-
0.144
0.064
0.106
0.225
0.031
0.023
0.067
0.066
1.300
0.810
0.317
0.279
0.336
0.140
-
0.081
0.042
0.108
0.124
0.001
0.000
0.001
0.001
0.458
0.159
0.044
0.071
0.063
0.030
RMR
5.70
3.58
2.95
0.83
0.73
3.99
3.37
4.74
2.15
1.10
8.52
6.16
3.49
3.50
2.10
1.52
16.62
7.54
5.23
5.73
3.01
3.35
2.05
11.52
8.24
3.41
2.50
2.54
1.84
-
-
-
-
-
-
—
3.59
0.62
1.39
1.24
-
-
-
-
8.93
2.08
1.84
1.82
0.62
0.46
SD
0.300
0.184
0.473
0.015
0.026
0.184
0.245
0.407
0.140
0.156
0.497
0.328
0.233
0.144
0.143
0.116
0.965
1.224
0.631
0.680
0.466
0.764
0.314
1.989
1.079
0.428
0.144
0.117
0.409
-
-
-
-
-
-
~
0.410
0.201
0.245
0.382
-
-
-
•
0.683
0.146
0.377
0.112
0.056
0.040
(continued)
60
-------
Table 19 (cont'd)
m/c 236
Compound Ion m/z
ethyl benzene
£-xylene
n-propylbenzene
phtnyltcetylene
cunene
n-butylbenxene
benzeldehyde
fluorobenzene
a-mtthyl
•tyrtnt
91
92
106
105
78
77
91
92
106
105
78
91
92
120
105
78
102
76
103
51
74
75
105
120
77
79
106
91
92
134
105
78
77
106
105
78
74
51
96
95
77
70
75
118
117
78
77
115
50
not
5.48
0.42
1.65
0.25
0.39
0.60
6.66
0,49
2.90
0.93
0.36
10,11
1.51
1.70
0.33
0.56
0.83
0.26
Q.06
0.14
0.09
0.10
2.89
0,71
0.58
0.57
0.22
3.54
2.14
0.74
0.69
0.32
0.73
0.59
0.53
0.12
0.07
0.36
1.84
0.17
0.12
0,50
0.15
1.282
1.114
0.524
0.418
0,442
0.168
3D
0.469
0.025
0.175
0.026
0.040
0.136
1.233
0,081
0.472
0.200
0.106
0.387
0.282
0.310
0.085
0.110
0.344
0.091
0.030
0.030
0.018
0.036
0.651
0.131
0.140
0.161
0.021
0.378
0.145
0.026
0.035
0.145
0.057
0.369
0.040
0.017
0.007
0.015
0.300
0.026
0.021
0.096
0.026
0.252
0.226
0.083
0.074
0.082
0.031
217
RMR
2.62
0.20
0.78
0.11
0.20
0.26
3.77
0.23
1.36
0.53
0.21
4.65
0.54
0.83
0.20
0.33
0.56
0.18
0.04
0.09
0.08
0.07
2.07
0.48
0.39
0.39
0.15
2.04
1.23
0.42
0.39
0.18
0.38
0.26
0.27
0.07
0.03
0.16
0.86
0.08
0.07
0.23
0.07
0.970
0.842
0.398
0.320
0.338
0.120
SD
0.189
0.010
0.072
0.011
0.025
0.057
0.589
0.091
0.512
0.206
0.090
0.336
0.079
0.205
0.500
0.085
0.144
0.035
0.013
0.007
0,013
0,015
0.287
0.020
0,038
0.039
0,011
0.741
0.410
0.113
0.092
0.044
0.153
0.088
0.088
0.016
0.012
0.021
0.145
0.012
0.019
0.044
0.016
0.186
0.166
0.067
0.057
0.065
0.021
186
not
6.80
0.51
2.06
0.31
0.40
0.77
0.42
0.55
3.23
1.28
0.67
0.89
1.24
0.52
0.35
0.56
0.83
0.27
0.05
0.14
0.12
0.09
2.90
0.71
.
0.57
0.23
3.84
2.31
0.80
0.75
0.36
0.79
0.54
0.55
0.13
0.07N
0,39
1.98
0,18
0.13
0.49
0.15
1.610
1.350
0.510
0.637
0,538
0.302
SD
0.640
0.046
0.226
0.023
0.075
0.021
1.302
0.802
0.483
0.201
0.342
0.633
0.045
0.190
0.061
0.134
0.240
0.056
0.002
0.006
0.023
0.032
0.159
0.039
_
0.062
0.029
0.664
0.161
0.085
0.075
0.036
0,090
0.036
0.021
0.011
0.003
0.015
0.261
0.025
0.017
0.110
0.029
0.242
0.276
0.098
0.111
0,100
0.043
117
RMR
8.71
0.66
2.62
0.39
0.63
0.94
0.58
0.49
4.79
1.89
0.52
16.06
1.83
2.25
0.52
0.88
1.17
0.39
0.09
0.19
0.17
0.14
4.03
0.98
0.80
0.79
0.31
5.62
3,41
1.18
1.11
0,53
1.34
0.81
0.82
0,19
0.10
0.57
2.93
2.55
0.18
0.75
0,23
2.625
2.275
1.077
0.861
0.910
0.345
SD
0.802
0.046
0.290
0.051
0.067
0.217
1.959
0.078
1.019
0.418
0.178
0.653
0.185
0.436
0.125
0.165
0.491
0.114
0.040
0.040
0.53
0.049
0.794
0.161
0.179
0.202
0.023
0.659
0.241
0.045
0.047
0.026
0.764
0.062
0.042
0.032
0.012
0.017
0.483
0,042
0.033
0.167
0.046
0.555
0.475
0.194
0.169
0.184
0.072
167
RMR
23.37
1.66
0.49
0.98
1.47
2.37
21.24
1.43
8.79
3.43
1.38
40.24
4.49
5.51
1.27
2.16
3.72
1.18
0.30
0.62
0.54
0.45
12.47
3.05
2.50
2.47
0.96
•»
8,39
2.90
2.74
1.31
2.84
1.98
2.01
0.45
0.26
1.41
0.19
0,67
0.47
1.95
0,55
—
_
_
_
_
-
SD
0.961
0.170
1.122
0.176
0.273
0.678
6.341
0.489
2.389
0.943
0.419
1.033
0.199
0.715
0.229
0.278
2.180
0.593
0.185
0,225
0.254
0.237
4.314
0.982
0.953
0.992
0,228
_
0.537
0.296
0.266
0.118
0.311
0.092
0.050
0.061
0.010
0.060
0.942
0.075
0.058
0.335
0.106
_
_
M
_
_
-
61
-------
Table '20. RELATIVE MOLAR RESPONSE FACTORS AND STATISTICAL DEVIATIONS FOR METHYLENE CHLORIDE AND
CHLOROFORM USING PERFLUOROTOLUENE STANDARD
ON
m/z 236
Compound
methylene chloride
chloroform
carbon tetrachloride
1, 2-dichloroethane
Ion (m/z)
49
84
86
51
47
88
83
85
47
49
87
50
117
119
121
47
82
49
62
64
63
61
98
100
RMR
0.59
0.45
0.31
0.20
0.09
0.05
_
-
0.27
0.10
0.10
0.04
0.442
0.460
0.128
0.120
0.108
0.0512
0.390
0.107
0.073
0.047
0.049
0.027
SD
0.140
0.098
0.072
0.057
0.213
0.012
_
-
0.029
0.017
0.013
0.099
0.107
0.085
0.029
0.038
0.038
0.007
0.062
0.005
0.010
0.002
0.008
0.004
217
RMR
0.41
0.31
0.21
0.14
0.66
0.03
0.63
0.43
0.18
0.07
0.07
0.03
0.312
0.326
0.085
0.084
0.076
0.036
0.283
0.084
0.049
0.035
0.036
0.020
SD
0.080
0.049
0.042
0.036
0.010
0.068
0.036
0.059
0.037
0.013
0.087
0.004
0.069
0.059
0.013
0.027
0.029
0.006
0.025
0.001
0.005
0.001
0.003
0.004
186
RMR
0.67
0.51
0.35
0.23
0.10
0.06
1.01
0.69
0.31
0.13
0.11
0.05
0.506
0.534
0.146
0.133
0.120
0.059
0.443
0.127
0.083
0.055
0.058
0.032
SD
0.123
0.087
0.064
0.050
0.013
0.011
0.098
0.108
0.039
0.057
0.017
0.072
0.129
0.095
0.030
0.044
0.041
0.009
0.061
0.005
0.004
0.002
0.009
0.005
117
RMR
1.03
0.78
0.53
0.78
0.16
0.09
1.54
1.06
0.47
0.17
0.18
0.07
0.762
0.788
0.218
0.200
0.170
0.089
0.697
0.220
0.132
0.089
0.092
0.051
SD
0.155
0.100
0.083
0.100
0.021
0.012
0.098
0.143
0.056
0.340
0.028
0.012
0.157
0.118
0.041
0.055
0.040
0.014
0.090
0.017
0.005
0.008
0.006
0.010
167
RMR
2.39
1.96
1.34
0.87
0.48
0.22
3.99
2.61
1.22
0.44
0.45
0.27
_
_
_
—
_
-
_
_
-
-
_
—
SD
0.738
0.390
0.300
0.233
0.140
0.049
0.405
0.229
0.213
0.100
0.079
0.243
_
_
_
—
—
-
_
—
—
-
_
—
(continued)
-------
Table 20 (cont'd)
CO
Compound
1,1, 1-trichloroethane
tetrachloroethylene
1, 2-dichloropropane
bromodichloromethane
m/z
Ion (m/z) RMR
97
99
117
119
101
60
166
164
168
129
131
96
63
62
65
64
112
114
83
85
87
47
129
0.803
0.555
0.146
0.130
0.083
0.076
0.890
0.640
0.398
0.682
0.646
0.190
1.755
1.295
0.540
0.437
0.058
0.036
0.817
0.590
0.093
0.183
0.090
236
SD
0.127
0.058
0.026
0.028
0.009
0.002
0.063
0.063
0.051
0.065
0.064
0.014
0.151
0.122
0.053
0.033
0.088
0.017
0.125
0.101
0.020
0.025
0.008
217
RMR
0.602
0.395
0.097
0.097
0.058
0.054
0.585
0.447
0.278
0.465
0.435
0.135
1.227
0.905
0.377
0.310
0.042
0.025
0.573
0.420
0.067
0.133
0.061
SD
0.055
0.021
0.009
0.012
0.003
0.009
0.049
0.039
0.033
0.035
0.029
0.010
0.110
0.088
0.039
0.026
0.066
0.017
0.045
0.051
0.012
0.011
0.002
186
RMR
0.917
0.617
0.145
0.160
0.100
0.089
0.930
0.715
0.447
0.717
0.695
0.212
1.978
1.455
0.605
0.495
0.067
0.040
0.960
0.647
0.099
0.213
0.108
SD
0.116
0.047
0.013
0.029
0.018
0.002
0.062
0.042
0.038
0.039
0.021
0.013
0.142
0.114
0.055
0.031
0.009
0.003
0.181
0.105
0.018
0.021
0.013
117
RMR
1.550
1.065
0.245
0.247
0.172
0.133
1.406
1.802
0.670
1.106
1.046
0.318
3.058
2.250
0.937
0.762
0.102
0.064
1.527
1.120
0.200
0.356
0.177
167
SD RMR
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
036 -
075 -
017 -
006 -
009 -
006
107 -
063 -
057 -
084 -
046 -
026 -
149 -
121 -
056 -
039 -
012 -
005 -
210 -
093 -
026
030
029 -
SD
—
—
—
—
-
_
-
—
-
—
-
_
-
—
-
-
-
_
-
-
-
-
(continued;
-------
Table 20 (cont'd)
Compound
1-broaio— 2-chloroethane
•etbylene dibromide
1 , 2-dibronopr opane
m/z
Ion (ra/z) RMR
63
65
144
142
93
146
93
174
95
172
176
91
121
123
107
42
41
1.285
0.400
0.125
0.082
0.047
0.027
0.710
0.792
0.612
0.416
0.396
0.109
1.730
1.710
0.064
0.273
2.337
236
SD
0.087
0.028
0.019
0.002
0.002
0.002
0.108
0.077
0.105
0.054
0.048
0.021
0.117
0.117
0.013
0.021
0.078
212
RMR
0.900
0.285
0.086
0.056
0.032
0.018
0.517
0.558
0.432
0.296
0.284
0.275
1.125
1.187
0.045
0.190
1.633
SD
0.071
0.024
0.008
0.002
0.002
0.002
0.111
0.026
0.058
0.029
0.022
0.013
0.154
0.042
0.009
0.026
0.136
186
RMR
1.447
0.450
0.140
0.095
0.052
0.029
0.806
0.910
0.696
0.484
0.460
0.122
2.027
2.000
0.074
0.323
2.737
SD
0.109
0.031
0.017
0.009
0.005
0.003
0.126
0.069
0.112
0.043
0.037
0.018
0.248
0.249
0.013
0.038
0.071
117 167
RMR
2
0
0
0
0
0
.450
.712
.223
.15
.799
.046
1.204
1
1
0
0
0
3
3
0
0
3
.322
.026
.702
.664
.180
.190
.153
.108
.507
.345
SD RMR
0.512 -
0.026
0.018
0.017 -
0.006
0.004
0. 105
0.092
0.051
0.038
0.048 -
0.019 -
0.442
0.428
0.017
0.101
0. 782
SD
-
-
-
—
-
_
_
_
_
_
-
nL
_
_
—
-
-------
Table 21. RELATIVE MOLAR RESPONSE FACTORS AND STATISTICAL DEVIATIONS FOR CHLORINATED
AROMATICS USING PERFLUOROTOLUENE STANDARD
o\
Ul
m/z 263
Compound
chlorobenzene
m-dichlorobenzene
Ion (m/z)
112
77
114
74
75
113
146
148
149
150
111
113
RMR
1.240
0.914
0.398
0.112
0.098
0.087
1.952
1.215
0.087
0.205
0.862
0.285
SD
0.153
0.170
0.042
0.018
0.016
0.008
0.176
0.110
0.013
0.021
0.045
0.025
217
RMR
0.874
0.642
0.280
0.079
0.068
0.061
1.395
0.872
0.066
0.150
0.617
0.200
SD
0.084
0.102
0.021
0.010
0.011
0.007
0.094
0.085
0.011
0.012
0.021
0.022
186
RMR
1.484
1.056
0.464
0.132
0.113
0.101
2.285
1.425
0.100
0.237
1.010
0,330
SD
0.123
0.157
0.032
0.013
0.019
0.009
0.182
0.099
0.014
0.019
0.066
0.020
117
RMR
2.152
1.484
0.694
0.198
0.168
0.152
3.757
2.345
0.167
0.392
1.662
0.547
SD
0.211
0.251
0.055
0.031
0.024
0.018
0.269
0.260
0.024
0.034
0.161
0.051
-------
Table 22. RELATIVE MOLAR RESPONSE FACTORS AND STATISTICAL DEVIATIONS FOR
OXYGENATED COMPOUNDS USING PERFLUOROTOLUENE STANDARD
m/z 236
Compound Ion (m/z) RMR
acetone
ethyl acetate
methyl ethyl ketone
furan
43
58
42
44
59
43
45
61
88
43
72
44
68
40
42
69
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
772
265
062
019
024
780
116
097
026
580
106
022
272
058
102
016
SD
0.051
0.019
0.011
0.001
-
0.117
0.017
0.009
0.005
0.053
0.011
0.003
0.038
0.011
0.009
-
217
RMR
0.555
.0.192
0.045
0.014
0.077
0.596
0.083
0.072
0.018
0.415
0.074
0.015
0.198
0.044
0.074
0.012
SD
0.
0.
0.
0.
-
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
—
025
009
007
001
075
014
009
004
043
007
001
018
006
005
186
RMR
0.857
0.300
0.072
0.023
0.027
0.946
0.130
0.115
0.029
0.628
0.112
0.023
0.327
0.069
0.115
0.018
SD
0.049
0.008
0.010
0.002
-
0.129
0,025
0.017
0.066
0.071
0.012
0.001
0.026
0.009
0.006
—
117
RMR
1.475
0.452
0.122
0.039
0.046
1.604
0.224
0.194
0.050
1.110
0.197
0.041
0.540
0.113
0.197
0.032
SD
0.118
0.076
0.024
0.005
—
0.278
0.051
0.036
0.012
0.109
0.021
0.003
0.044
0.015
0.005
—
-------
SECTION 7
IDENTIFICATION AND QUANTIFICATION OF ORGANIC POLLUTANTS IN AMBIENT AIR
FROM SEVERAL GEOGRAPHICAL AREAS
INTRODUCTION
Three major geographical areas were selected for study. These included:
Plaquemine, Geismar and Baton Rouge, LA; Linden, Deepwater and Camden, NJ;
and Philadelphia, PA. The Plaquemine, Geismar and Baton Rouge, LA area was
chosen because of the high concentrations of synthetic organic chemical
producers and petroleum refining operations located along the Mississippi
River. Also reported for these three areas, has been a high incidence of
cancer (28,29). Thus, these areas would provide an excellent opportunity
for further methods development, identification of possible toxic organic
chemicals and formulation of pollution profiles.
The main thrust of this program has been to delineate the strengths and
weaknesses of the collection and analysis system for vapor phase organic
compounds utilizing the techniques of hrgc/ms/comp. This study was under-
taken to determine whether the collection and analysis techniques were
capable of analyzing for an assortment of chemical classes - oxygen, nitrogen
and sulfur-containing compounds.
For the Plaquemine, Geismar and Baton Rouge, LA area the potential
emissions and plant locations were examined (30,31) and it was decided that
essentially four sites would be studied. These areas included clusters of
chemical producers located at Scotts Bluff just north of Baton Rouge, the
downtown complex and the industrial sites near Plaquemine and Geismar which
are both down river from Baton Rouge. Table 23 presents the potential
emissions from chemical industry in Baton Rouge, LA.
The continuing principal objective for including Linden and Deepwater,
NJ in this program was to further validate the collection and analysis
method for halogenated, aromatic, oxygenated and nitrogen-containing
67
-------
Table 23. POTENTIAL EMISSIONS FROM CHEMICAL INDUSTRY IN BATON ROUGE, LA£
Chemical
Total Production
(mmlb/yr)
Raw Material
Company(s)
chlorodifluoromethane (101)
dichlorodifluoromethane (12)
dichloroetetrafluoroethane (114)
ethylene dichloride
polyethylene resin
trichlorofluoromethane (11)
1,1,2-trichloro-l,2,2-trifluoroethane
(113)
g) vinyl chloride
ethyl chloride
methyl chloride
perchloroethylene
tetraethyl lead
1,1,1-trichloroethane
trichloroethylene
PVC
benzene
butadiene
jn-butyl alcohol
NA
1100
460
NA
480
210
75
100
312
40
32
144
440
428
NA
chloroform
carbon tetrachloride
perchloroethylene
ethylene
ethylene
perchloroethylene
ethylene dichloride
ethylene
methanol
ethylene dichloride
ethyl chloride
1,1-dichloroethane
ethylene
petroleum
ethane, etc.
ACC
ACC
ACC, EC
ACC
ACC
ACC
ACC, EC
EC
EC
EC
EC
EC
EC
EC
EXCC
EXCC, CRCC
EXCC
(continued)
-------
Table 23 (cont'd)
Chemical
decanol
dlisodecylphthalate
dodecene
-ethylene
isobutylene
isodecanol
Isooctyl alcohol
isoprene
isopropanol
neopentanoic add
nonene
phthaiic anhydride
propylene resin
toluene
ethylbenzene
styrene
vinyl toluene
Total Production
(mmlb/yr)
-
NA
100
700
NA
-
10
680
5.5
300
90
320
378
900
800
NA
Raw Material
nonene
phthaiic anhydride,
isodecanol
propane/propylene
ethane, etc.
petroleum
nonene
neptene
ethylene by-product
propylene
isobutylene
propane/propylene
o— xylene
ethylene
petroleum
benzene
ethylbenzene
toluene, ethylene
Company (s)
EXCC
EXCC
EXCC
EXCC
EXCC
EXCC
EXCC
EXCC
EXCC
EXCC
EXCC
EXCC
EXCC
EXCC, FGC
FGC
FGC
FGC
fData provided by the Louisiana State Air Board.
Involves production of other alcohols also, C6, Cg, Cg, CIQ* C13» C16*
CACC = Allied Chemical Corp., EC = Ethyl Corp., EXCC = Exxon Chem. Corp., FGC
Foster-Grant Co. Inc.
-------
hydrocarbons associated with the chemical industry. Table 24 presents some
of the potential organic compounds associated with the E. I. DuPont de
Nemours Facility (Chambers Works) in Deepwater, NJ. Several halogenated
hydrocarbons as well as aromatic and oxygenated compounds were suspected to
be potentially present in ambient air. Sampling conducted in Linden, NJ at
American Cyanamid Corp. was to determine whether N-nitrosoamines were associa-
ted with their pesticides synthesis facility. On-site sampling at the
DuPont and American Cyanamid Corp. was conducted with the permission of the
two industrial companies.
The major portion of the chemical industry in the Catnden-Philadelphia
area was located in an area 3 or 4 miles north of the Commodore Barry Bridge
along both sides of the Delaware River in Chester, PA and Greenwich Township,
NJ. Table 25 presents the representative chemical industry along the Delaware
River of the Camden, NJ and Philadephia areas (32). The priority organic
vapors which were selected for detection and/or quantification, the ambient
air for the Camden-Philadelphia area is given in Table 26.
This section describes the characterization of vapor phase organics and
their quantification in ambient air for three major geographical areas
within the Continental U.S.
EXPERIMENTAL
The sampling methods and qualitative and quantitative techniques used
throughout this program are described and incorporated herein as Appendix A.
The procedure described in Appendix A essentially is a composite of the
techniques which have been developed under previous EPA contracts for the
collection of vapor phase, carcinogenic and toxic organic compounds with
their subsequent analysis by hrgc/ms/comp (1-27).
The ambient air sampling protocol for Plaquemine is shown in Table 27.
Figures 9 and 10 depict the sampling locations. A water tower off the
Bayou Road (Location 1) and a Church tower off of the Thesis Street (Location
2) were utilized for overnight sampling. Personal samplers were placed at
these two locations and the winds at that time were out of the north from
the industrial site (Fig. 9). The sampler on the church tower was in the
better position of the two samplers. On the following day (Tuesday), samp-
lers were placed at the corner of David Street and LA988 (Location 3, Fig.
70
-------
Table 24. POTENTIAL ORGANIC COMPOUNDS ASSOCIATED WITH
E. I. DUPONT DENEMOURS FACILITY (CHAMBERS WORKS), DEEPWATER, NJa
Chemical Class Compound
Halogenated Hydrocarbons carbon tetrachloride
vlnylidene chloride
trichloroethylene
tetrachloroethylene
ethylene dichloride
ethylene dibroraide
Aromatics benzene
toluene
Oxygenates methyl methacrylate
methyl alcohol
acetone
phthalic anhydride
dimethyltetephthalate
Nitrogenous Compounds nitrobenzene
acrylonitrile
a Provided by Dr. P. Preuss of the New Jersey State Air Board.
71
-------
Table.25. REPRESENTATIVE CHEMICAL INDUSTRY ALONG THE
DELAWARE RIVER OF THE CAMDEN, NJ AND
PHILADELPHIA, PA AREAS
Site No. Site Identification
Site Location or Description
2
3
4
5
6
7
8
9
10
11
Hercules, Inc.
Rohm Haas
Tenneco Plastic
Rohm Haas
Overall Philadelphia-
Camden view
Overall Philadelphia-
Camden view
Overall Philadelphia
view
Overall Philadelphia
view
Harshaw Chemical Corp,
Texaco Oil
Mobil Oil Corp.
Paulsboro Refinery
Neck Rd., Burlington, NJ
Chemical Mfg.
Emp: 125
Bristol, PA
Beverly Rd., Burlington, NJ
Resins, PVC
Emp: 230
North Philadelphia, PA
Betsy Ross Bridge
Ben Franklin Bridge
Between Ben Franklin and
Betsy Ross Bridges
Between Walt Whitman and
Ben Franklin Bridges
Foot of Water Street
Gloucester, NJ
Industrial Metals Inorganic
and Organic Chemicals
Emp: 96
West Deptford, NJ
Organic Chemicals
Billingsport Rd.
Paulaboro, NJ
Petroleum Prod., Lubricating
Oils, Waxes
Emp: 1365
72
(continued)
-------
Table 25 (cont'd)
Site No.
Site Identification
Site Location or Description
12
13
14
15
16
17
18
19
Hercules, Inc.
E. I. DuPont deNetnours
& Co., Inc.
Rollins Corp.
Monsanto Co.
B. F. Goodrich-
Chemicals Division
Chester, FA Industrial
Area View
Sunoco
Hercules, Inc.
British Petroleum
Congoleum
Fisher Tank
Distant Philadelphia
view
Distant Philadelphia
view
Market St., Gibbstown, NJ
Organic Chemicals
Emp: 60
Rapauno Ave., Gibbstown, NJ
Bulk Chemicals
Emp: 850
Bridgeport, NJ
Bridgeport, NJ
Pedricktown, NJ
Commadore Barry Bridge
Gibbstown - Paulsboro, NJ
Pittman, NJ
73
-------
Table 26. PRIORITY ORGANIC VAPORS SELECTED FOR DETECTION AND/OR
QUANTIFICATION IN AMBIENT AIR FROM CAMDEN-PHILADELPHIA AREA
Chemical
Chemical
1,2-dichloroethane
chloroform
1,1,1-trichloroethane
carbon tetrachloride
benzene
o-xylene
£-xylene
m-xylene
methylmethacrylate
dimethyIterephthalate
1,2-dibromoethane
1,1,2-trichloroethylene
1,1-dlchloroethylene
nitrobenzene
acrylonitrile
phthalic anhydride
1,1,2,2-tetrachloroethylene
l-chloro-2,3-epoxypropane
74
-------
Table 27. AMBIENT AIR SAMPLING PROTOCOL FOR PLAQUEMINE, LA AREA
en
Sampling Time
Sampling Locations (min)
Plaquemine, LA
City Water Tower, 1363
Bayou Rd (LI)
St. John Evangelist
Church Tower, 1330
Church and Main St.
(L2)
LA 988 & Davis St. 250
(L3)
50 yd East off 190
LA IN (L4)
East off LA 1 (L5) 190
Off LA 1 (L6) 1095
Off LA 1 on Ms. 990
Armalline Caillouet
Volume Sampled
(&) Remarks
1/31-2/1/77
136 44°F-49% RH
133 1/31-2/1/77
44°F-49%RH
439 2/1/77
44°F-47% RH
289 2/1/77
44°F-47% RH
129 2/1/77
44°F-36% RH
109 2/1-2/2/77
44°F-36% RH
99 2/1-2/2/77
43°F-36Z RH
1437-1320
0°/1-12 mph
1540-1350
0°/1-12 mph
1255-1705
70°/1-12 mph
1430-1740
70V 1-12 mph
1445-1755
70 °/ 1-12 mph
1600-1015
90°/1-12 mph
1745-1015
90 °/ 1-12 mph
Property (L7)
Plaquemine Evergreen
Plantation (L8)
Plaquemine Evergreen
Plantation (L9)
275
230
191
202
2/2/77 1250-1725
57°F-55% RH 80°/l-3 mph
2/2/77 1325-1715
57°F-61% RH Variable Winds
-------
Table 27 (cont'd)
Sampling Locations
Sampling Time
(min)
Volume Sampled
Remarks
Plaquemine Evergreen
Plantation (L10)
Plaquemine Evergreen
Plantation (Lll)
150
1035
100
103
2/2/77 1400-1630
56°F-55% RH 90°/variable
2/2-2/3/77 1705-1020
45°F-99% RH 90Vvariable
-------
INDUSTRIAL
COMPLEX L 10 •
Figure 9. Map depicting locations of ambient air sampling network in
Iberville Parish, LA.
'
-------
Figure 10. Map depicting sampling locations near industrial
complex in Iberville Parish, LA.
78
-------
9) which constituted an upwind sample and on the west side of the industrial
site (Locations 4 and 7, Fig. 10). Overnight sampling was conducted just
west at the industrial site at Location 6 and 7 (Fig. 10). According to the
meteorological data, these samplers were in an excellent downwind position
from the industrial site. Location 7 was located on private property. On
Wednesday, a different industrial area was examined. Samplers were placed
downwind on the edge of a sugarcane field off an adjourning road between LAI
and LA405 (Locations 8 and 9, Fig. 9). An upwind sample was taken on a
farm at the east side of the industrial area (Location 10). Distinct odors
from these plants were detected throughout the entire sampling period.
Overnight sampling was conducted under a shed just north of the sugarcane
field at Location 11 (Fig. 9). This sampling location representated a good
downwind position for only a portion of the sampling period since the winds
changed to the north toward the morning hours. A meterological research
incorporated weather station was used to provide a continuance readout of
wind direction, speed, humidity and temperature at the sampling site (5).
Meterological data was also obtained from the local airport. Hand-held
instrumentation was also used occassionally to check the performance of the
air MRI weather station (5).
Ambient air sampling protocol for Baton Rouge, LA is provided in Table
28. The corresponding sampling locations are presented in Figures 11 and
12. The general sampling strategy was to place at least one sampler in an
upwind position with the subsequent location of three or four samplers in an
arc downwind from the industrial sites. A key to these plants is given in
Table 29.
Table 30 presents the ambient air sampling protocol for Linden and
Deepwater, NJ. In both cases a total of three sampling periods were incorpo-
rated in the study, one of which involved overnight sampling utilizing
personal samplers. The corresponding sampling locations are given in Figures
13 and 14 for American Cyanaraid Corp. and Figures 15 and 16 for E. I. DuPont
de Nemours site.
Sampling protocols for the Camden-Philadelphia areas are given in Table
31 and the locations are provided on Figure 17.
79
-------
Table 28. AMBIENT AIR SAMPLING PROTOCOL FOR BATON ROUGE, LA AREA
Sampling Location
Off U.S. 61 North of
Plant A
(L17)
Off unpaved, unmarked rd.
(L18)
Northwest of Plant A on
Mr. Ewell's ranch
(L19)
Northwest of Plant A on
g Mr. Ewell's ranch
(L20)
Off unpaved, unmarked rd.
(L21)
East side of LA 61
(L22)
Northwest of Plant A on
Mr. Ewell's ranch
(L20)
Off of Turning Basin Rd.
(L23)
Graveyard Area
C1.2A1
Sampling Time
(min)
1400
1435
235
260
30
265
195
1190
1070
Sampling Volume
tt)
140
143
156
184
195
146
129
119
107
Remarks
3/3-3/4/77
-99% RH
3/3-3/4/77
-99% RH
3/3/77
rain
3/4/77
93% RH
3/4/77
93% RH
3/8/77
49% RH
3/8/77
49% RH
3/8-3/9/77
50% RH
3/8-3/9/77
50% RH
1150-1110
120°/light
1135-1130
120° /light
1220-1615
120° /light
1125-1545
9O>120° /4 mph
1207-1237
90°/4 mph
1205-1630
180° /4 mph
1235-1550
180° /4 mph
1625-1215
180° /5 mph
1640-1030
180° /5 mph
-------
Table 28 (cont'd)
oo
Sampling Location
Mengel Rd.
(L25)
Off LA 61
(L26)
Off Mengel Rd.
(L27)
Off LA 190
(L28)
Off Mengel Rd.
(L25)
Off LA 61
(L26)
Off Mengel Rd.
(L27)
Off LA 61
(L28)
Off Mengel Rd.
(L25)
Off LA 61
(L26)
Sampling Time
(min)
190
180
1090
1080
190
180
1090
1080
240
250
Sampling Volume
a)
124
121
109
108
124
121
109
108
162
152
Remarks
3/9/77
54% RH
3/9/77
54% RH
3/9-3/10/77
54% RH
3/9-3/10/77
54% RH
3/9/77
54% RH
3/9/77
54% RH
3/9-3/10/77
78% RH
3/9-3/10/77
78% RH
3/10/77
54% RH
3/10/77
54% RH
1330-1640
180 °/7 mph
1400-1700
100° /7 mph
1650-1100
180°/8-9 mph
1715-1115
180°/8-9 mph
1330-1650
100 e/7 mph
1400-1700
100 °/7 mph
1650-1100
180° /8-9 mph
1715-1115
180°/8-9 mph
1105-1505
180° /7 mph
1140-1550
180 °/7 mph
-------
Table 28 (cont'd)
Sampling Location
Choc tow Rd. and Pholox St.
(L29)
LA 1 and LA 190
(L30)
Sampling Time
(min)
235
960
Sampling Volume
tt)
173
96
Remarks
3/10/77
54% RH
3/10-3/11/77
75% RH
1215-1610
180 °/ 7 mph
1700-0900
100 °/6 mph
00
ro
-------
Figure 11. Sampling site and locations for Baton Rouge, LA Area.
83
-------
SCOTLANDVILLE
Figure 12. Sampling site and locations in Baton Rouge, LA.
-------
Table 29. KEY TO MAJOR INDUSTRIAL PLANTS
Plant A - Rollins Environmental Services
Plant B - Allied Chemical Corporation, Plastics Plant
Plant C - Uniroyal Inc.
Plant D - Foster-Grant Co.
Plant E - Stauffer Chemical Co.
Plant F - Kaiser Aluminum & Chemical Corp.
Plant G - Copolymer Rubber & Chemical Co.
Plant H - Allied Chemical North Works, Industrial Chem.
Plant I - Ethyl Corporation
Plant J - Uniroyal Inc., Gulf States Road Plant
Plant K - Exxon USA, refinery
Plant L - Allied Chemical South Works, Specialty Chem.
Plant M - Borden Chemical Company
Plant N - Monochem, Inc.
Plant 0 - Uniroyal, Inc.
Plant P - Rubicon Chemical, Inc.
Plant Q - BASF Wyandotte Chemical Corp.
Plant R - Shell Chemical Co.
Plant S - Vulcan Materials, Inc.
85
-------
Table 30. AMBIENT AIR SAMPLING PROTOCOL FOR LINDEN AND DEEPWATER, NJ
OB
Sampling Period/
Site Location
Linden, NJ/ PI/LI (upwind
(American Cyanamid) sample)
P1/L2
P1/L3
P1/L4
P2/L1
P2/L2
P2/L3
P2/L4
P3/L1
P3/L2
P3/L3
P3/L4
Sampling Time Volume Sampled
(min) W Remarks
140
137
139
138
1122
1150
1145
1145
150
150
150
150
(continued)
267
194
228
205
101
62
103
103
236
164
222
202
6/21/77
48%
6/21/77
48%
6/21/77
48%
6/21/77
48%
6/21-22/77
57%
6/21-22/77
57%
6/21-22/77
57%
6/21-22/77
57%
6/22/77
46%
6/22/77
46%
6/22/77
46%
6/22/77
46%
76°F
0- 30V 10 kts
76°F
0-30V10 kts
76°F
0-30° /10 kts
76°F
0-30°/10 kts
60°F
310°/8-10 kts
60°F
310°/8-10 kts
60°F
310V8-10 kts
60°F
310°/8-10 kts
80°F
330°/l-7 kts
80°F
330°/l-7 kts
80°F
330° /I- 7 kts
80°F
330° /1-7 kts
-------
Table 30 (cont'd)
00
Sampling Period/
Site Location
Deepwater, NJ P4/L5
(E. I. DuPont de Nemours)
P4/L6
P4/L7
P4/L8
P5/L5
P5/L6
P5/L7
P5/L8
P6/L5
P6/L6
P6/L7
P6/L8
Sampling Time
(min)
141
136
127
120
973
1000
1018
1040
120
120
120
120
Volume Sampled
(A) Remarks
222
147
192
188
87.6
90
55
91.8
189
128
172
183
6/23/77
53%
6/23/77
53%
6/23/77
53%
6/23/77
53%
6/23-24/77
56%
6/23-24/77
56%
6/23-24/77
56%
6/23-24/77
56%
6/24/77
47%
6/24/77
47%
6/24/77
47%
6/24/77
47%
79°F
210°/5 kts
79°F
2lO°/5 kts
79°F
210° /5 kts
79°F
210° /5 kts
58°F
170°/2 kts
58°F
170° /2 kts
58°F
170° 12 kts
58°F
170° 12 kts
78°F
10°/4 kts
78°F
10° / 4 kts
78°F
10°/4 kts
78°F
10°/4 kts
-------
Figure 13.
General location of American Cyanamid Corp. with respect
to Tremley's Point and Staten Island.
88
-------
A RT H U R KI L L
Figure 14. Sampling locations on American Cyanamid Corp. plant site,
89
-------
TOTAL ACREAGE
DEVELOPED ACREAGE
WET LANDS ACREAGE
DEVELOPABLE ACREAGE
CHAMOEHS
WORKS. .
737
500
20
130
CAFWEY3
PQINT WOSK5
718
150
160
350
CARNEYS
POINT
WORKS
CHAMBERS \ \** WORKS
Vv
\ \ '•%.. :
jSftP
CHAMBERS WORKS
AND
CARNEYS POINT WORK'
Figure 15. General location of E. I. DuPont de Nemours
90
-------
Figur
Sampling locations on E. 1. DuPont deN,
-------
Table 31. AMBIENT AIR SAMPLING PROTOCOL FOR CAMDEN/PHILADELPHIA AREA
Site Sampling Period/Location
Bristol, NJ
Burlington, NJ
North Philadelphia, PA
>
>
Markus Hook, NJ
Logan Township, NJ
P1/L1A
PI/LIB
P2/L2A
P3/L3A
P3/L3B
P4/L4A
P4/L4B
P5/L5A
P6/L6A
P7/L7A
P8/L8A
Sampling Time
(min)
60
60
60
60
60
60
60
60
60
60
60
Volume Sampled
(&) Remarks
55
58
54
63
54
62
54
62
55
65
37
9/19/77
52% RH
9/19/77
52% RH
9/19/77
53% RH
9/21/77
85% RH
9/21/77
85% RH
9/21/77
85% RH
9/21/77
85% RH
9/22/77
74% RH
9/22/77
74% RH
9/22/77
78% RH
9/22/77
78% RH
87°F
270°/5 kts
87°F
270°/5 kts
92°F
340° /I- 3 kts
59°F
30V1-3 kts
59°F
30° / 1-3 kts
59°F
30°/l-3 kts
59°F
30°/l-3 kts
62°F
100° /5 kts
62°F
100° /5 kts
67°F
80c/5 kts
69°F
75°/5 kts
-------
uc
Figure 17. Map of Chester, Camden, Philadelphia areas along the Delaware River
-------
RESULTS AND DISCUSSION
Plaquemine, Geismar, and Baton Rouge, LA and Vicinity
Qualitative Analysis--
The vapor phase organic pollutants which were identified in several
ambient air samples taken from the Plaquemine are given in Appendix B.
Table 32 lists the summary of the volatile halogenated organics in ambient
air which were identified from this sampling site. Over 30 halogenated
hydrocarbons were identified. Many of the compounds which were characterized
appeared to be site-specific to the industrial complex, particularly for
those samples which were taken at downwind locations. The probable site-
specific pollutants were: chloroacetylene, vinyl chloride, chloroethane,
vinylidene chloride, dichloropropene isomers, 1,1,2-trichloroethane, bis-(2-
chloroisopropyl)ether, tetrachlorobutadiene isomers, 1,3-hexachlorobutadiene,
1,3-dichloropropane, trichloropropene isomers, 1,1,2,2-tetrachloroethane,
tetrachloropropane, pentachloroethane, hexachloroethane, pentachlorobutadiene
and chlorotoluene isomers.
A selected number of samples (8) were thoroughly characterized for all
oganic pollutants present in the ambient air of Baton Rouge, LA. These
results are given in Appendix B. Samples were chosen for complete interpre-
tation based on the most favorable meteorological conditions during sampling
which would potentially yield the largest number of compounds and the highest
concentrations. Tables B1-B16 in Appendix B provide a detailed listing of
organic vapors which were identified in these samples.
Table 33 presents a summary of the organic vapors which were identified
in ambient air in Baton Rouge, LA. A total of 18 halogeaated hydrocarbons
and 25 oxygenated compounds were identified. The downwind positions from
various industrial sites were given by locations nos. 21, 26 and 27. In
these samples, two new compounds were identified which had not been previously
determined in ambient air samples collected and analyzed by the described
technique. These compounds were B-chlorostyrene and a chloroprene dimer.
Chloroprene had been previously identified in samples from Milby Park in
Deer Park, TX (4). Furthermore, we have detected 1,3-hexachlorobutadiene
which was also present in samples from Plaquemine, LA and the Houston, TX
94
-------
Table 32. SUMMARY OF VOLATILE HALOGENATED ORGANICS IN AMBIENT AIR
FROM IBERVILLE PARISH IN LOUISIANA
Compound
•
Location
L2
LA
L5
L6
L7
L8
L9
Lll
vo
wn
Dichlorodifluoromethane
Trichlorofluoromethane
Methylene chloride
Chloroform
1,1,1-Trichloroethane
1,2-Dichloroethane
Carbon tetrachloride
Dichlorobutane isomer
Tetrachloroethylene
1,2-Dichloropropane
Trichloroethylene
Chloroacetylene
Vinyl chloride
Chloroethane
Vinylidene chloride
1,1-Dichloroethane
Dichloropropene isomer(s)
1,1,2-Trichloroethane
Dichlorobenzene isomer(s)
Bis-(2-chloroisopropyl)ether
Tetrachlorobutadiene isomer(s)
*
-------
Table 32 (cont'd)
Compound
1, 3-Hexachlorobutadiene
1 , 3-Dichlor opropane ( ten t . )
Trichloropropene isomer(s)
Location
L2 L4 L5 L6 L7 L8
--- + + -
____ + -
d
-H-
L9 Lll
- -
— —
1,1,2,2-Tetrachloroethane
Tetrachloropropane
Fentachloroe thane
Hexachloroethane
Pentachlorobutadiene (tent.)
Chlorobenzene
Chlorotoluene isomer(s)
(tent.)
+
+
aSee Table 27 and Fig. 11 and 12 for protocol and sampling locations.
+ = detected
£
- = not detected
more than one isomer detected
-------
Table 33. SUMMARY OF ORGANIC VAPORS IDENTIFIED IN AMBIENT AIR IN BATON ROUGE, LA AND VICINITY
Chemical Class
Halogenated
hydrocarbons
Compound
chlororaethane
dichloromethane
chloroform
chloroprene
1,1,1-trichloroethane
1 , 2-dichloroe thane
carbon tetrachloride
Sampling
L-17 L-21 L-23
_b + _
4-4-4-
4-4-4-
- 4- -
4-4-4-
4- - 4-
4- + 4-
L-26
.L
4-
4-
-
-
4-
4-
Locationsa
L-27
^
4-
4-
-
4-
4-
4-
L-28
_. _
4-
4-
-
-
4-
4-
L-30
_
4-
4-
-
4-
4-
4-
L-26A
_
4-
-
-
-
4-
4-
Oxygenated
compounds
trichloroethylene
tetrachloroethylene
2,3-dichlorobutane (tent.)
1,2-dichlorobutane (tent.)
1,1,2-trichloroethane
8-chlorostyrene
dichlorobenzene isomer
1,1,1,2-tetrachloroethane
chloroprene dimer
chlorohydrocarbon (unknown)
1,3-hexachlorobutadiene
acetaldehyde
propranol
propenal
acetone (tent.)
n-heptanal
benzaldehyde
phenol
acetophenone
n-nonanal
cresol isomer
tt-decanal
diethy1 ether
dimethyl ether
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
-------
Table 33 (cont'd)
„,.,„, ~ j Sampling Locations
Chemical Class Compound L-17 L-21 L-23 L-26 L-27 L-28 L-30 L-26A
isopropanol - -4- - + +---
t-butanol - + - - --- +
n-butanol - + -+ +- + -
methyl ethyl ketone -+-- +---
2-tetradecanone - - + - ____
furan (tent.) ___+ ____
pentanol isomer (tent.) ---+ ____
hexanone isomer ---+ ____
cyclopentanone (tent.) ---+ ____
acetic acid (tent.) ____ +___
n-undecanal ____ +___
di-isopropyl ether ____ _+_+
£ 3See Table 28 and Fig. 13 and 14 for protocol and sampling locations.
- = not detected, + = detected.
-------
area. Several ethers, alcohols, and other compounds were identified in the
sample taken at Location No. 21.
Quantitative Analysis--
Table 23 presented the potential emissions from some chemical industries
in this area. Much of the chemical industry was associated with the produc-
tion of halogenated hydrocarbons and assorted fine chemical products. The
availability of chemical emission data provided a good opportunity to apply
the collection and analysis methods which were developed over the past few
years. The ability to sample ambient air for which some compositional
information was available allowed fcr further validation of the method.
In addition to the chemical industry, an incineration facility was
located near Baton Rouge which destroys aliphatic hydrocarbons, aromatic
hydrocarbons, alcohols, viscous oils, polyglycols, tars, chlorinated alipha-
tics, chlorinated benzenes and other aromatics, waxes and rubber. The waste
materials which are treated at the Rollins Environmental facilities are of a
diverse origin.
Twenty-two halogenated hydrocarbons were quantified at 11 locations in
the Iberville Parish. In addition, the levels of benzene in ambient air
were also estimated. These results are shown in Table 34. Of particular
interest was the sample from Location No. 7 which contained the largest
total number of halogenated hydrocarbons. 1,1,1-Trichloroethane exhibited
3
the highest level (8,760 ng/m ). Furthermore, the highest concentration for
3
bis-(2-chloroisopropyl)ether (363 ng/m ) was observed at location No. 7.
Table 35 lists the concentration of four halogenated organics that were
detected on the carbon backup cartridge. The concentrations of chloroacety-
lene, vinyl chloride, chloroethane and vinylidene chloride appeared to be
elevated also in the sample taken at location No. 7 (Fig. 10).
Several chemicals were quantified in the samples taken in the Baton
Rouge, LA area and these results are summarized in Table 36. The predominant
halogenated compound was chloroform which was found at considerably higher
levels throughout all sampling periods at all locations relative to other
halogenated compounds which were quantified. Table 37 presents the minimum
halogenated hydrocarbon vapors which were quantified in the ambient air for
99
-------
Table 34. CONCENTRATIONS OF AMBIENT AIR POLLUTANTS IN IBERVILLE PARISH,
O
O
UCMiMM
Cmpwrf
l.l.Hridilonxfhw!
U-cficWomtbam
vwyl cUoiiM
r a «, . . i.i-.iit-
UroOT tCtnCMBflOi
j*_^i • *
UfclllUlaPgiaHB
»_. •_• -• •
tetncMonwiiryiaH
MZ2-MracMoro«ftM8
cMorafonn
* ^ Jir tiln in ni • -
•jZ'ACMoropnpait*
cMororttom
^^ub^^M I fctaiiila
vnynovnc cnwnav
1,1-«cWBiMttane
dMhnprapcM
1,U-tricManwllwM
MncUoratwtKfeM
hexKfclore-l^biflidicnc
» ^ |lMll»lj»«» • *tl
•(j-wovofiipfvpcnff
tiTilila •• • mm m m i
uKMonpropnt
pentKhtoreetluM
t.1^. f^ i liloaiiM iiiniiii.ill ^A^v
Do- W 'UPUI UIM^H UJI y If CDICr
tiBJUdiloroetlunt
pentacWorobotrfiew
•^loa^Av^^^^iA
UNWVCMCHE
_^j—_-j_^_ ^^__
dMmiwcnv
bMSM
LI
IIOOtM
172Ct34S
HO11
SOOiBOO
1S3t70
82t20
S2t1
1 388 t 122
9Mtl72
NO
MO
NDC
NO
580*60
NO
NO
10fS
NO
NO
NO
G6 122
NO
NO
NO
NO
1808i 163
L2
1820t1GO
1219tO
NO
NO
2714i2000
977t900
264i191
419iO
735*37
NO.
NO
ND
NO
ND
IffliTO
NO
NO
ND
32*30
ND
ND
ND
ND
ND
NO
1727
U
68-8
9i7
NO
Mi 10
7U45
ND
NO
ND
1015-620
NQ
NQ
ND
ND
ND
ND
ND
ND
ND
NO
ND
NO
ND
ND
ND
ND
1990*436
U
1500i 20
1590*45
NQ
NO
NO
21 sO
ND
633*10
ND
NO
NO
ND
ND
NO
ND
NO
ND
ND
ND
ND
ND
ND
ND
ND
ND
586.23
LS
430*50
399*28
NQ
ND
ND
54*3
T
956*112
209*4
NO
NQ
ND
ND
36*0
ND
ND
T
ND
ND
T
ND
ND
ND
ND
NO
1423*41
LS
2680tO
3727t1t27
NQ
T
7285*1571
489.70
NO
2433t100
1363*33
NQ
NO
T
106*4
260*18
T
18*3
ND
T
242*36
ND
T
T
NO
ND
ND
1904*86
L7
8760*1160
4709i200
NQ
4628*1100
1332*178
1224i173
1S73i243
5866i688
2239*136
NQ
NQ
478*56
261 i92
1840*440
17tH
37.15
NO
24*9
13*6
13*5
363-152
T
T
NO
ND
1904,86
LI
155GtO
362.4
NO
33S>250
ND
153*170
ND
1080-468
T
NQ
NO
ND
ND
ND
ND
ND
ND
ND
ND
NO
ND
ND
ND
3S>7
29.10
16077*3714
LI
524*61
304*36
NO
667*200
54t2S
27*3
148.133
51U327
ND
NQ
NQ
ND
ND
ND
NO
NO
NO
ND
NO
ND
NO
NO
ND
NO
NO
6181.2480
L1D
416.27
146*24
NO
277 t 18
ND
30.10
NO
1 387 .161
ND
NO
NQ
NO
NO
ND
NO
ND
NO
ND
ND
ND
NO
ND
ND
ND
NO
1668*188
L11
112.56
91*30
NQ
ND
ND
16.8
ND
1113*274
ND
NQ
NQ
NO
ND
ND
ND
ND
ND
ND
ND
NO
ND
ND
ND
NO
ND
421.71
values are in ng/m with reproducibility for duplicate cartridges.
NQ = not quantitated, these compounds were collected and analyzed from carbon cartridges.
°ND = not detected.
-------
Table 35. CONCENTRATIONS OF AMBIENT AIR POLLUTANTS IN IBERVILLE PARISH, LAa
Compound
Chloroacetylene
Vinyl chloride
Chloroethane
Vinylidene chloride
Location
LI
ND
192
ND
128
L2
ND
1,230
ND
36
L3
12
30
ND
ND
L4
ND
T
ND
ND
L5
58
59
ND
ND
L6
ND
534
ND
132
L7
45
1,334
1,378
990
L8
T
64
ND
ND
L9
T
76
ND
ND
L10
ND
ND
ND
ND
Lll
ND
ND
ND
ND
Bb
ND
ND
ND
ND
^Pollutants which passed through the Tenax GC cartridge were collected on carbon then
transferred to Tenax in the lab via thermal desorption, values are in ng/m^.
B = blank carbon cartridge.
-------
Table 36. VOLATILE ORGANIC VAPORS ESTIMATED IN AMBIENT AIR OF
BATON ROUGE, LA AND VICINITY
Locations
Chemical
1,1,1-trichloroe thane
1,2-dich I o roe thane
carbon tetrachloride
tetrachloroethylene
chloroform
dichlorobutane
] , 2-dich loropropane
chloroethane
vinylidene chloride
1 , 1-dichloroethane
'. , l,2-trii:hloroe thane
hexachloro-1 . 3-butadienc
., chloroprene
Q benzene
to acetone
methylene chloride
f.-chlorostyrene
d ich 1 o robcnzene isomer(s)
chlor.iprene dirtier
chlorobenzene
1 ,1,2, 2-tetrachloroethane
LI?
178
137
874
84
6,710
193
ND
ND
ND
ND
ND
ND
ND
11,050
1,035
2,800
ND
ND
ND
ND
ND
118
ND
712
452
34
6,968
ND
ND
ND
ND
ND
ND
ND
ND
2,678
1,482
2,160
ND
ND
ND
ND
ND
L19
ND
458
289
32
1,290
ND
ND
ND
ND
ND
ND
ND
ND
2,535
176
280
ND
ND
ND
ND
ND
L20A
ND
585
ND
ND
181
ND
ND
ND
ND
ND
ND
-ND
ND
80
729
ND
ND
ND
ND
ND
ND
ui
178
78
74
60
4,775
ND
ND
ND
ND
ND
ND
ND
X
1,220
682
1,999
X
ND
X
ND
ND
L_'2
ND
ND
ND
11
387
ND
ND
ND
ND
ND
ND
ND
' ND
8,099
1,521
160
ND
ND
ND
ND
ND
L20B
ND
887
311
44
542
ND
ND
ND
ND
68
ND
ND
ND
9,217
1,835
280
ND
ND
ND
ND
ND
L23
200
731
592
53
1,484
ND
30
ND
ND
ND
ND
ND.
ND
2,132
2,941
840
ND
X
ND
ND
ND
L24
178
712
533
43
1,097
ND
ND
ND
ND
ND
80
ND
ND
1,456
3,294
440
ND
ND
ND
HD
ND
L25A
222
10,341
311
33
560
ND
ND
ND
ND
90
ND
ND
ND
676
1,447
240
ND
ND
ND
ND
ND
L26A
ND
751
533
64
368
ND
ND
ND
ND
ND
54
ND
ND
650
988
160
ND
ND
ND
ND
T
L27
78 + 24
322 4- 0
148 -1- 0
20 + 0
568 + 13
ND
ND
ND
ND
ND
ND
ND
ND
533
68 -4- 23
320 + 76
ND
ND
ND
ND
ND
L28
ND
3,229
429
364
839
ND
ND
ND
ND
ND
ND
ND
ND
2,665
729
200
ND
ND
ND
ND
ND
L25B
ND
2,000
163
13
387
13
ND
ND
ND
34
ND
ND
ND
1,248
188
280
ND
ND
ND
ND
ND
L26B
ND
1,522
119
47
464
ND
ND
ND
ND
64
ND
23
ND
3,796
423
320
ND
ND
ND
ND
ND
L29
200
ND
74
17
258
ND
ND
ND
ND
ND
ND
ND
ND
273
329
160
ND
ND
ND
10
ND
LF.3
ND
5,024
1,037
250
2,129
ND
ND
ND
ND
233
533
117
ND
1 .OiO
1,765
680
ND
ND
ND
ND
ND
L30
167
302
192
18
477
ND
vn
iiLt
ND
ND
vn
AU
vn
MJ
Vn
I\U
ND
1 , 326
71Q
j£y
i fin
-LOU
N'D
\'n
nil
•J11
iiU
71
Downwind of several petroleum facilities.
-------
Table 37. MINIMUM TOTAL HALOGENATED HYDROCARBON VAPOR IN
AMBIENT AIR OF BATON ROUGE, LA
Location3
L17
L18
L19
L20A
L21
L22
L20B
L23
L24
/ 3
ng/m
10,976
10,326
2,349
762
7,164
558
2,132
3,930
3,083
Location
L25A
L26A
L27
L28
L25B
L26B
L29
LE
L30
, 3
ng/m
11,797
1,925
1,456
6,517
9,407
2,559
709
10,003
1,387
aSee Table 28 and Fig. 13 and 14 for protocol and sampling locations.
103
-------
this area. In some cases the concentrations of halogenated compounds
3
surpassed 10,000 ng/m .
Linden and Deepwater,NJ Areas
Qualitative Analysis—
A few samples were selected for full characterization and these detailed
results are given in Appendix B. A summary of the volatile organics which
were identified in ambient air taken on American Cyanamid Co. property in
Linden, NJ is given in Table 38. As in previous sampling of other sites,
many halogenated hydrocarbons were identified; however, it was difficult to
ascertain which of these were site-specific. Several sulfur compounds were
also characterized. Many of these compounds represent the first report of
their detection in ambient air using the method of sampling and analysis
described from this laboratory. Two nitrogen compounds, acrylonitrile and
cyanobenzene, were also identified. Furthermore, many oxygenated compounds
were characterized with the predominant number represented by samples Pl/2
P2/3 and P3/4. These sampling locations (Fig. 14) were downwind positions.
A summary of the vapor phase organics which were identified in the
atmosphere taken onsite at E. I. DuPont deNemours are given in Table 39.
Again many halogenated hydrocarbons were identified and several were of par-
ticular interest since these were potential emission (Table 24). These were
vinylidene chloride (dichloroethylene isomer), 1,2-dibromoethane (ethylene
dibromide), trichloroethylene, carbon tetrachloride and tetrachloroethylene.
Two sulfur compounds were identified (2,3-benzothiophene and methylbenzyl
thiophene isomer). Several oxygenated compounds were also characterized.
Methyl methacrylate and acetone were also listed as potential priority
compounds of interest (Table 24). The most surprising results were reflected
by the number of nitrogen compounds in these samples since in Table 39 only
two compounds were reported, nitrobenzene and acrylonitrile. The sample
with the most number of chemical classes was P4/L4.
In addition to the analysis of these samples on an OV-101 SCOT column,
a number of duplicate samples were chromatographed on a Carbowax 20M capil-
lary. The results of these analyses are also given in Appendix B. One
constituent of interest whose abundance was relatively large could not be
identified. Its mass spectrum is given in Figure 18. The isotopic cluster
104
-------
Table 38. VOLATILE ORGANICS IDENTIFIED IN AMBIENT AIR AT
AMERICAN CYANAMID CO, LINDEN, NJ
Period /Locations6
Chemical Class
Halogenated Compounds
chloromethane
bromome thane
chloroe thane
dichloromethane
chloroform
1, 2-dichloro ethane
1,1, 1- tr ichloroethane
carbon tetrachloride
trichloroethylene
tetrachloroethylene
chlorobenzene
dichlorobenzene isomer
£-dichlorobenzene
trichlorobenzene isomer
Sulfur Compounds
2-thiapropane
2,3-dithiabutane
carbon disulfide
dithiapentane isomer
3, 4-dithiahexane
Oxygenated Compounds
acetaldehyde
furan
propanal
acetone
J^-butanol
2-butenal (tent.)
dimethyl ether
isopropanol
butanal
acrolein
methyl ethyl ketone
n-hexanal
n-heptanal
PI/LI P1/L2 P1/L4
-b 4- -
4-
_ _ _
4- 4-
4-4-4-
-
4-4-4-
4- 4- 4-
- + 4-
4- 4- 4-
4- + 4-
4- 4-
4- 4- -
_ _ _
4-
-4-4-
_ _ _
_ - _
_
4-4-4-
+ - 4-
4- 4- +
4-4-4-
4- 4- 4-
4- - 4-
+
4-
4-
•4- *.
4-4-4-
_ _ _
-
P2/1L
_
-
-
4-
4-
-
4-
4-
4-
4-
-
4-
4-
-
—
-
-
—
-
4-
4-
4-
4-
4-
4-
-
4-
-
-
4-
-
_
P2/L3
4-
4-
4-
4-
-
+
4-
4-
4-
4-
4-
4-
4-
4-
-
4-
4-
4-
+
4-
4-
4-
4-
4-
4-
-
4-
4-
-
4-
-
-
P3/L4
4-
-
4-
4-
4-
-
+
+
4-
4-
+
4-
4-
4-
-
4-
+
4-
4-
4-
4-
4-
4-
4-
4-
-
-
4-
-
4-
4-
4-
(continued)
105
-------
Table 38 (cont'd)
Period/Locations3
Chemical Class PI/LI P1/L2
Oxygenated Compounds (cont'd)
CgH-j^G (ketone) isomer 4 4
benzaldehyde 4 4
phenol 4 4
acetophenone + 4
ii-nonanal + 4-
C2~alkyl phenol isomer 4- 4
jn--decanal 4- +
2~methylpropenal - 4
methyl vinyl ketone - 4
cyclohexanone - 4
anisole - 4-
n-octanal - 4
dimethyl phenol isomer - 4-
diethyl maleate - 4-
diethyl fumarate - -
acetic acid (tent.) 4
dibenzofuran - 4
benzophenone - +
Cl5H30° isomer 4- 4-
1-acetoxy-butene-l (tent.)
diethyl phthalate - 4
4-tnethyl-2-pentanone - -
tolualdehyde isomer (tent.)
ethyl phenol isomer - -
C3~alkyl phenol isomer
C2~alkyl phenol isomer - -
_n-undecanal -
Nitrogenous Compounds
acrylonitrile - -
cyanobenzene - -
P1/L4 P2/L1 P2/L3
_ _. _
444
_. _ -j-
+ 4 4
4-44
_^ I
4-44
_ _ _
4
4
_ _ _
4-44
+
4 - 4
4-
4-44
_ _ _
_ _
_
- 4 -
- 4 -
- 4 4
- - 4
_ _ ,L
- - 4
- - 4
4
4
- 4 4
P3/L4
4
4
-
4
-4-
4
4
-
-
-
—
_
4
4
4
4
-
4
+
4
4
4
-
-
-
-
4
-
4
See Table 30 and Fig. 15 and 16 for protocol and sampling locations,
- = not detected, + = detected.
106
-------
Table 39,, VOLATILE ORGANICS IDENTIFIED IN AMBIENT AIR Ai
E, I. DUPONT DE NEMOURS, DEEPWATER, NJ
Chemical Class
Period/Locations
P4/L4 P5/L1 P5/L4 P6/L1 P6/L2
Halogenated Compounds
chloromethane +
dichloromethane 4
chloroform 4-
1,2-dichloroethane 4
1,1,1-trichloroethane +
carbon tetrachloride 4
trichloroethylene 4
1,2-dibromoethane 4
tetrachloroethylene 4
chlorobenzene 4
dichlorobenzene isomer +
o-dichlorobenzene isomer 4-
(dichlorotoluene or 4
benzyl chloride
trichlorobenzene isomer 4
trichlorobenzene isomer 4
dichloroethylene isomer
Sulfur Compounds
2,3-benzo thiophene -
methylbenzothiphene isomer **
Oxygenated Compounds
acetaldehyde 4-
furan 4-
propenal +
propanal 4
acetone +
C^sO (aldehyde) isomer 4
2-methylpropenal 4
methyl ethyl ketone 4
methyl vinyl ketone 4
methyl methacrylate 4
acetic acid (tent.) 4
4
4
4
107
(continued)
-------
(cont* d)
Period/Loca v ions'
Chemical Class P4/L4 P5/L1 P5/U P6/L1 P6/L2
Oxygenated Compounds (cont'd)
4-methyl-2-pentanone 4- 4- + - -
n-hexanal + + + + -
dibenzofuran ____+.
2-methylcyclohexanone +
benzaldehyde 4- 4- 4- 4- +
phenol + - + + +
n_-octanal + + + + +
benzoic acid (tent.) +
iv-de canal 4- + + 4- 4-
n-butanal - 4- 4- 4- +
n_-pentanal - 4- 4- 4- -
n-heptanal - 4- - 4- 4-
phenyl acetaldehyde - 4- - + 4-
ethyl phenol isomer _ + - 4- 4-
dimethylphenol isomer + + 4- +
dimethylphenol isomer - + + + -
C3-alkyl phenol isomer + +
diethyl ether +
Nitrogen Compounds
cyanobenzene + + + + +
aniline or methylpyridine +
nitrobenzene + - + - -
chloroaniline isomer + _ - - +
nitrophenol isomer +
CglljjN isomer (tent.) +
£-nitro toluene + _ _ 4- -
£-nitrotoluene +
chloronitrobenzene isomer + - + - -
chloronitrobenzene isomer 4- - 4- - -
dichloronitrobenzene or + - + - -
dichloroaniline isomer
dichloronitrobenzene or +
dichloroaniline isomer
quinoline _ ~ ~ ~
methylquinollne _ - - - 4-
Table 30 and Fig. 17 and 18 for protocol and sampling locations,
b_ = not detected, 4- = detected.
108
-------
1 LI U -=
c, 0 .|
& o --:
>. ~
±1 7 ° ---
•H -
C =
2 to-i
c =
M -
4J c; f| .r
0) ;
S N-O-I
3 0 -|
£ 0 -j
1 0-1
o--:
67 63
.Uk,
93
126
-1 0
156
! | I
j-;iWjii;tt:™i!^:M^ptiiif:4rSr'Hi;(;::^;sj!4;i^,f;;,;;^|;:v,:;;:-rM
1 5 0
m/e
£00
£50
300
Figure 18. Mass spectrum of unknown (peak No. 46, Table B33) compound in ambient
air from Linden, NJ.
-------
for the parent ion suggests the presence of sulfur. As represented by one
of the samples which was chromatographed on a Carbowax 20M capillary, this
component was the major constituent.
Quantitative Analysis—
Several vapor phase organic compounds were selected for quantification
in all of the samples collected from Linden and Deepwater, NJ. The ambient
air levels for selected halogenated hydrocarbons, sulfur, oxygen and nitro-
gen-containing compounds and aromatics are given in Tables 40 and 41 for
3
Linden and Deepwater sites, respectively. In general ng/m quantities were
detected for most organics. The general conclusion that can be drawn from
these data is that the halogenated compounds measured appeared to be ubiqui-
tous and not site-specific since they occurred at relatively equivalent
levels in both upwind and downwind positions with respect to the American
Cyanamid site. The sulfur compounds and benzene were detected primarily in
downwind locations and suggest that they may be site-specific in origin.
This was also the case for the nitrogenous chemicals measured at the Deepwater
site. No appreciable levels of any of these materials were found in the
control sample (Tenax GC blank).
Camden, NJ and Philadelphia, PA Areas
Qualitative Analysis—
A detailed listing of the vapor phase organic pollutants occurring in
ambient air samples collected from Camden, NJ-Philadelphia, PA area is given
in Appendix B.
Quantitative Analysis--
Table 42 presents the estimated concentrations of several halogenated
hydrocarbons which were quantified in ambient air samples from this area.
The predominant compounds detected were methylene chloride, chloroform, 1,2-
dichloroethane, methyl chloroform, tetrachloroethylene and chlorobenzene.
These halogenated hydrocarbons are probably ubiquitous since they have been
found in many previous samples taken from other geographical areas.
GENERAL CONCLUSIONS
The results of the sampling analysis conducted for the three described
geographical areas has yielded considerable information concerning the
presence of vapor phase organic pollutants in the ambient atmosphere.
110
-------
Table 40. AMBIENT AIR LEVELS OF SEVERAL VOLATILE ORGANIC VAPORS SURROUNDING
AMERICAN CYANAMID CORP., LINDEN, NJ
Chemical Class
Halogenated
Hydrocarbon
Sulfur
Compounds
Arotnatics
Oxygenated
Compounds
Compound
methylene chloride
chloroform
1,2-dichloroethane
1, 1, 1-trichloroethane
carbon teCrachloride
trichloroethylene
chlo robenzene
o-dichlorobenzene
dichlorobenzene isomer
trlchlorobenzene isomer
2- thiopropane
2, 3-dithiabutane
dithiapentane isomer
3,4-dithiahexane
benzene
cyanobenzene
furan
_t-butanol
isopropanol
methyl ethyl ketone
benzaldehyde
acetophenone
methyl vinyl ketone
cyclohexanone
anisole
diethyl maleate
diethyl fumarate
tolualdehyde
PI/LI
100
50
-
13
21
-
3
2
T
-
_
-
-
—
490
—
20
1,745
-
30
119
173
15
158
-
-
-
87
P1/L2
258
154
14
735
22
139
15
-
30
2
T
T
-
—
890
23
18
160
25
45
127
232
19
-
-
-
488
31
P1/L3
168
133
9
9
28
11
123
-
-
-
T
-
-
—
1,342
49
46
129
4
69
164
251
10
-
4.4
-
882
54
P1/L4
58
99
42
13
10
6
272
-
1
-
_
T
-
—
613
8
9
87
4
40
36
131
45
22
-
-
863
17
P2/L1
52
41
12
9
14
8
11
-
-
-
_
-
-
-
174
14
23
202
59
84
83
205
-
-
-
-
40
61
P2/L2
324
195
9
13
14
2
4
-
-
-
_
T
-
—
43
—
-
-
-
-
-
-
-
-
-
-
-
-
P2/L3
369
178
47
39
71
242
30
-
13
7
_
T
T
T
21,309
18
-
247
-
T
557
1,167
16
629
T
-
251
83
P2/L4
134
150
34
244
51
25
222
74
T
T
_
-
-
-
8,239
T
-
219
-
T
344
459
-
-
T
1,085
586
T
P3/L1
81
86
T
T
T
-
-
-
-
-
_
-
-
-
224
T
-
-
-
T
-
-
-
-
-
83
T
T
P3/L2
261
229
38
3,116
32
17
T
20
T
T
_
-
-
-
223
T
-
-
-
-
136
322
-
-
-
60
62
T
P3/L3
972
773
9
1,440
T
T
T
-
T
-
_
-
-
-
1,226
T
-
-
-
-
328
300
-
-
-
T
T
T
P3/L4
418
190
8
24
T
T
T
T
T
T
_
T
T
T
1,342
T
-
-
-
T
158
241
-
T
T
447
406
T
-------
Table 41. AMBIENT AIR LEVELS OF SEVERAL VOLATILE ORGANIC VAPORS SURROUNDING
E. I. DuPONT deNEMOURS, DEEPWATER, NJa
Chemical Class
Halogenated
Hydrocarbons
Sulfur
Oxygenated
Compounds
Nitrogen
Compounds
Compound
methylene chloride
chloroform
1,2-dichloroethane
1,1, 1- trichloroethane
carbon tetrachloride
trichloroethylene
1,2-dibromoe thane
tetrachloroethylene
chlorobenzene
o-dichlorobenzene
dichlorobenzene isomer
trichlorobenzene isomer
dichloroethylene
dichloro toluene
2 , 3-benzothiophene
methylbenzothiophene
fur an
acetone
methyl ethyl ketone
methyl vinyl ketone
methyl methacrylate
dibenzofuran
phenylacetladehyde
cyanobenzene
aniline (or methylpyridine)
nitrobenzene
chloroaniline isomer
nitrophenol
o-nitro toluene
£-nitro toluene
P4/L5
65
152
12
-
19
4
-
6
14
17
19
T
-
-
_
-
T
T
T
T
-
-
—
T
-
-
-
-
-
-
P4/L6
405
-
-
-
-
-
-
13
15
554
12
T
-
-
_
-
-
-
-
-
-
184
28
_
-
-
-
-
_
-
P4/L7
35
-
-
2,842
-
-
T
T
11
-
-
-
-
-
_
—
-
-
-
-
-
-
33
12
-
-
-
-
-
-
P4/L8
437
T
T
T
-
-
-
60
512
51
1,240
136
-
59
T
-
-
-
-
-
25
-
—
21
28
123
146
73
T
59
P5/L5 P5/L6
75 486
150 439
-
-
-
-
-
69
55
25
21
-
-
-
_
- -
-
-
-
-
-
138
— —
35
-
-
-
-
-
-
P5/L7 P5/L8
625
64
53
67
- -
56
-
218
305
-
T
150
-
61
_
- —
_
-
-
-
95 27
29
— —
— -
-
-
-
-
-
86
P6/L5
345
-
-
-
-
-
-
22
25
T
101
13
-
-
_
-
59
-
-
72
-
-
—
_
-
-
-
-
-
-
P6/L6 P6/L7
248 261
70 90
-
-
-
_
-
29
17 12
_
404
-
-
107
536
116
_
-
-
-
21
3,279
41 T
_ —
-
-
5,960
-
47
-
P6/L8 Tenax Blank
81
13
24
14
32
5
-
57
669
1,319
14
113
-
29
T
T
-
-
-
-
16
-
—
-
-
105
T
24
-
-
T
T
-
-
-
-
-
-
-
-
-
-
-
-
..
-
—
-
-
-
-
-
-
—
-
-
-
-
-
-
(continued)
-------
Table 41 (cont'd)
Chemical Class Compound P4/L5 P4/L6 P4/L7 P4/L8 P5/L5 P5/L6 P5/L7 P5/L8 P6/L5 P6/L6 P6/L7 P6/L8 Tenax Blank
chloronitrobenzene isomer - - - 360 ___x_---
(or chloroaniline)
dichloronitrobenzene - 2,704 ---T---32
(or dichloroaniline)
quinoline - 41 ________--
methylquinoline - - - - - - - - - 1,478 - -
values are in ng/m .
-------
Table 42. ESTIMATION OF LEVELS OF HALOGENATED HYDROCARBONS IN THE GENERAL AREA OF
CAMDEN, NJ/PHILADELPHIA, PA
PERIOD/LOCATION*
Compound
methylene chloride
chloroforn
carbon tetrachloride
vinylidene chloride
1, 2-dichloroethylene
1 , 1-dichloroethane
1 , 2-d ichloroethane
1,1, 1-tr ichloroethane
1 , 1, 2-trichloroethane
trichloroethylene
tetrachloroethylene
1,1,1, 2- tetrachloroethane
1,1,2,2- tetrachloroethane
pentachloroethatie
hexachloroe thane
chlorobenzene
o-dlchlorobenzene
n-d Ichlorobenzene
£-d ichlorobenzene
1 , 2 , 4-t r Ichlorobenzene
1,3, 5-tr ichlorobenzene
1,2,3-trtchlorobenzene
P1/L1A
T(714)
146 4- 21
T(95)
<333
<333
<357
T(258)
T(333)
<250
T(100)
118 4- 2
<109
<109
<90
<90
<272
<182
T(182)
<163
<109
<90
<109
Pl/tlB
T(571)
262 4- 137
T(95)
1(333)
<333
<357
T(258)
T(267)
<250
T(100)
775 4- 665
<103
<103
<86
<86
448 4- 190
T(172)
TC172)
<155
T{103)
T(86)
<103
P2/t2A
T(1000)
T(167)
T(125)
<454
<454
<348
<667
T(294)
<131
T(92)
185 ± 56
<111
<111
<92
<92
T(278)
T(185)
T(185)
<167
<111
<92
<111
P3/L3A P3/L3B
562 4- 7
T(97)
T(74)
<263
<263
22S
167 4- 77
325 4- 108
<167
T(lll)
94 4- 31
<95
<95
<79
<79
T(238)
<159
T(159)
<143
<95
<79
<95
T(555)
T(97)
1(74)
<263
<263
<228
1(195)
T(278)
<217
T(92)
7(74)
<111
•illl
<92
92
T(278)
185
1(185)
167
111
92
111
P4/L4A
T<555)
T(96)
1(74)
<263
<263
<228
465 4- 21
T(277)
<217
1(83)
142 4- 25
<100
<100
<83
<83
1(250)
T(167)
1(167)
<150
<100
<83
<100
P4/L4B
1(555)
1(96)
1(74)
T(263)
<263
<228
927
T(278)
<217
<92
292
<111
<111
<92
<92
1(278)
1(185)
1(185)
<167
-------
Coupled with the information concerning the chemical industries usage,
storage, or production of chemicals, the Tenax GC sampling and the hrgc/ms/
cc.Tip analysis methodology has been applied and demonstrated to coborate much
of the chemical activity occurring at these industrial sites. Furthermore,
many new compounds have been identified particularly those which are sulfur-
and nitrogen-containing as well as many site-specific halogenated hydrocarbons
which have not been previously reported. Since the developed methodology
for collection and analysis of vapor phased organics has yielded information
concerning the specific chemicals occurring, the next phase of research
should pursue a more rigorous establishment of the accuracy and reproducibi-
lity of this technique for the chemical classes reported.
As more information is accumulated concerning the composition of the
atmosphere, it is becoming increasingly evident that many organic vapors may
be considered ubiquitous eventhough they may be of anthropogenic nature
while others are more site-specific and more directly associated with indus-
trial activity at specific sites within the Continental U.S.
115
-------
REFERENCES
1. Pellizzari, E. D. , Development of Method for Carcinogenic Vapor
Analysis in Ambient Atmospheres", EPA-650/2-74-121, Contract No.
68-02-1228, 148 pp., July, 1974.
2. Pellizzari, E. D., Development of Analytical Techniques for Measuring
Ambient Atmospheric Carcinogenic Vapors, EPA-600/2-75-076, Contract
No. 68-02-1228, 186 pp., November, 1975.
3. Pellizzari, E. D., The Measurement of Carcinogenic Vapors in Ambient
Atmospheres", EPA-600/7-77-055, Contract No. 68-02-1228, 288 pp.,
June, 1977.
4. Pellizzari, E. D., Measurement of Carcinogenic Vapors in Ambient Atmos-
pheres, EPA-600/7-78-062, Contract No. 68-02-1228, 224 pp., April,
1978.
5. Pellizzari, E. D., Analysis of Organic Air Pollutants by Gas Chroma-
tography and Mass Spectroscopy", EPA-600/2-77-100, Contract No. 68-02-
2262, 104 pp., June, 1977.
6. Pellizzari, E. D., Bunch, J. E., Carpenter, B. H., Sawicki, E.,
Environ. Sci. Tech., 9, 552 (1975).
7. Pellizzari, E. D., Carpenter, B. H., Bunch, J. E., Sawicki, E.,
Environ. Sci. Tech., 9, 556 (1975).
8. Pellizzari, E. D., Bunch, J. E., Berkley, R. E., McRae, J., Anal.
Lett., 9, 45 (1976).
9. Pellizzari, E. D., Bunch, J. E., Berkley, R. E., McRae, J., Anal.
Chem., 48, 803 (1976).
10. Pellizzari, E. D., Bunch, J. E., Berkley, R. E., Bursey, J. T.,
Biomed. Mass Spec., 3, 196 (1976).
11. Pellizzari, E. D., Bunch, J. E., Bursey, J. T., Berkley, R. E.,
Sawicki, E., Krost, K., Anal. Lett., 9, 579 (1976).
12. Fine, D. H., Runbehler, D. P., Pellizzari, E. D., Bunch, J. E., Ber-
kley, R. E., McRae, J., Bursey, J. T., Bull. Environ. Contain, and Tox.
15, 739 (1976).
116
-------
13. Bursey, J. T., Smith, D., Bunch, J. E., Williams, R. N., Berkley,
R. E., Pellizzari, E, D., American Lab., Feb., 1978.
14. Berkley, R. E., Pellizzari, E. D., Anal. Letters, 4, 327 (1978).
15. Berkley, R. E., Pellizzari, E. D., McRae, J., Bunch, J., 1976 Pitt
Conf. Anal. Chem. Appl. Spect., 2/29-3/5/76, Cleveland, OH.
16. Pellizzari, E. D., Bunch, J. E., Berkley, R. E., Bursey, T., 24th
Ann. ASMS Conf., May, 1976, San Diego, CA.
17. Pellizzari, E. D., Bunch, J. E., Berkley, R. E., Bursey, J. T., 24th
Ann. ASMS Conf., May, 1976, San Diego, CA.
18. Berkley, R. E., Pellizzari, E. D., Bunch, J. E., Williams, R. N.,
173rd Nat. ACS Mrg., March, 1977, New Orleans, LA.
19. Berkley, R. E., Pellizzari, E. D., Bursey, J. T., 173rd Nat. ACS Mtg.,
March, 1977, New Orelans, LA.
20. Pellizzari, E. D., Berkley, R. E., Bunch, J., Bursey, J. T., Smith,
D., Williams, R., Willis, S., 25th Ann. ASMS Conf., May, 1977,
Washington, DC.
21. Pellizzari, E. D., Williams, R., Bunch, J., Pardow, N., Bursey, J.,
FACSS, Nov., 1977, Detroit, MI.
22. Bursey, J., Erickson, M. D., Michael, L., Zweidinger, R., Pellizzari,
E., AICHet Nat. Mtg., June, 1978, Philadelphia, PA.
23. Pellizzari, E., Symp. on App. Short-Term Bioassays to Complex Environ.
Mix., Williamsburg, VA, Feb., 1978.
24. Smith, D. J., Pellizzari, E. D., Bursey, J. T., ASMS, St. Louis, MO,
May, 1978.
25. Pellizzari, E. D., 10th Ohio Valley Chrom. Symp., Hueston Woods St.
Prk. Ldge., OH, June, 1978.
26. Pellizzari, E. D., Symp. on Sampling and Preconcentration Tech. for
Ultra-Trace Gases, U.S.E.P.A., RTP, NC, October 19, 1978.
27. Pellizzari, E. D., Improvement of Methodologies for the Collection
and Analysis of Carcinogenic Vapors, EPA Contract No. 68-02-2764,
in prep.
28. Atlas of Cancer Mortality for U. S. Counties: 1950-1969, DHEW, (NIH)
75-780.
29. U. S. Cancer Mortality by County: 1959-1969, DHEW (NIH) 74-615.
117
-------
30. Louisiana Directory of Manufacturers, Louisiana Department of Commerce,
Baton Rouge, 1968.
31. VonBodungen, G., Louisiana State Air Board, private communication,
1977.
32. 1974 New Jersey State Industrial Directory, New Jersey State Indus-
trial Directory, 2 Penn Plaza, New York, NY 10001.
118
-------
APPENDIX A
METHOD FOR SAMPLING AND ANALYSIS OF VOLATILE ORGANIC COMPOUNDS
IN AMBIENT AIR BY GC/MS/COMP
119
-------
SAMPLING AND ANALYSIS OF VOLATILE ORGANIC COMPOUNDS IN AMBIENT AIR
1.0 Principle of Method
Volatile organic compounds are concentrated from ambient air on
Tenax GC in a short glass tube (1-3). Recovery of the volatile organics
is accomplished by thermal desorption and purging with helium into a
liquid nitrogen cooled nickel capillary trap (1,2,4) and then the vapors
are introduced into a high resolution glass gas chromatographic column
where the constituents are separated from each other (2,5), Charac-
terization and quantification of the constituents in the sample are
accomplished by mass spectrometry either by measuring the intensity of
the total ion current signal or mass fragmentography (2,6). The collec-
tion and analysis systems are shown in Figure A-l.
2-0 Range and Sensitivity
The linear range for the analysis of volatile organic compounds
depends upon two principal features. The first is a function of the
breakthrough volume of each specific compound which is trapped on the
Tenax GC sampling cartridge and the second is related to the inherent
sensitivity of the mass spectrometer for each organic (2,7). Thus, the
range and sensitivity is a direct function of each compound which is
present in the original ambient air. The linear range for the quantita-
tion on the gas chromatograph/mass spectrometer/computer (gc/ms/comp) is
generally three orders of magnitude. Table Al lists the overall theore-
tical sensitivity for some examples of volatile organics which is based
on these two principles (7).
The sensitivity of this technique for the very volatile organic
compounds (C^ to C^ alkanes) is inadequate for the purpose of this
study. Alternate methods for their collection and analysis are sug-
gested (11).
3.0 Interferences
The potential difficulties with this technique are primarily asso-
ciated with those cases where isomeric forms of a particular substance
cannot be resolved by the high resolution chromatographic column and
when the mass cracking pattern of each of the isomers are identical. An
example of such a problem is seen with the C5~alkyl aromatics of which
120
-------
GAS
METER
FLOW
/METER
J-0-
t
PUMP
^
CARTRIDGE
NEEDLE
VALVE
GLASS
FIBER
FILTER
VAPOR COLLECTION SYSTEM
PURGE
GAS
ION
CURRENT
RECORDER
GLASS
JET
SEPARATOR
rwo
POSITION
VALVE
THERMAL
DESORPTION
CHAMBER
CAPILLARY
GAS
CHROMATOGRAPH
HEATED
BLOCKS
EXHAUST
CAPILLARY
TRAP
ANALYTICAL SYSTEM
Figure Al. Vapor collection and analytical systems for analysis of
organic vapors in ambient air.
121
-------
Table Al. OVERALL THEORETICAL SENSITIVITY OF HIGH RESOLUTION
GAS CHROMATOGRAPHY/MASS SPECTROMETRY/COMPUTER ANALYSIS
FOR ATMOSPHERIC POLLUTANTS
N5
NO
Estimated Detection
Limit
Chemical
Class
Halogenated
hydrocarbon
Compound
Vinyl bromide
Bromoform
B romodi chlo rome thane
Dibromochlorome thane
l-Bromo-2-chloroe thane
Allyl bromide
1-Bromopropane
l-Chloro-3-bromopropane
l-Chloro-2 , 3-dibromopropane
1 , l-Dibromo-2-chloropropane
1 , 2-Dibromoethane
1 ,3-Dibromopropane
Epichlorohydrin
(l-Chloro-2 , 3-epoxypropane)
Epibromohydrin
(l-Bromo-2,3"ep°xypropane)
Bromobenzene
Methyl bromide
Methyl chloride
Vinyl chloride
Methylene chloride
Chloroform
Carbon tetrachloride
ng/m
250
0.340
1.300
0.667
1.00
5.00
5.200
0.150
M).100
M).100
0.530
M).100
9.600
0.300
0.100
500
2000
800
700
200
250
ppt
57
0.03
0.22
0.07
0.67
1.04
1.06
0.01
<0.01
<0.01
0.07
M3.01
2.50
0.05
0.02
135
1000
3?3
200
420
400
(continued)
-------
Table Al (cont'd)
N5
Estimated Detection
Limit
Chemical
Class
Halogeuated
hydrocarbon
(cont'd)
Halogenated
ethers
Nitrosamines
Oxygenated
hydrocarbons
Compound
1 , 2-Dichloroethane
1,1, 1-Trichloroethane
Tetrachloroethylene
Trichloroethylene
l-Chloro-2-methylpropene
3-Chloro-2-methylpropene
3-Chloro-l-butene
Allyl chloride
4-Chloro-l-butene
l-Chloro-2-butene
Chlorobenzene
o-Dichlorobenzene
m-Dichlorobenzene
Benzylchloride
2-Chloroethyl ethyl ether
Bis-(chloromethyl)ether
N-Nitrosodimethylamine
N-Nitrosodiethylamine
Acrolein
Glycidaldehyde
Propylene oxide
3
ng/m
32
66
2.5
10
62
62
83
83
38
13
2.10
1.00
0.75
0.65
4.15
1.0
5.0
3.0
M.OO
•^•59
^60
ppt
8.15
12.45
0.38
1.92
21.5
21.5
28.8
28.8
13.2
4.5
0.47
0.06
0.01
0.01
0.97
1.10
1.67
0.74
56.5
9.5
25.5
(continued)
-------
Table Al (cont'd)
Chemical
Class
Compound
Estimated Detection
o
Limit
ng/m
ppt
Oxygenated
hydrocarbons
(cont'd)
Nitrogenous
Compounds
Sulfur
Compounds
Butadiene diepoxide
Cyclohexene oxide
Styrene oxide
Acetophenone
p-Propiolactone
Nitromethane
Aniline
Diethyl sulfate
Ethyl methane sulfate
2
-x-2
8
3.0
•^5.0
6.7
2.5
0.415
•N-0.415
VL.2
•\-2.4
0.78
Limits are calculated on the basis of the breakthrough volume for 2.2 g of Tenax GC, (at 70°F)
capillary column performance and sensitivity of the mass spectrometer to that compound in the
mass fragmentography mode of most intense ion.
-------
there are 53 isomers. As the number of carbon atoms increases in the
hydrocarbons and aromatics, the number of potential isomers becomes
increasingly large and difficult to completely resolve by gas chroma-
tography and/or by their corresponding mass cracking patterns. However,
differentiation between the hydrocarbons, that is alkanes, alkenes,
aromatics, oxygenated, etc. can be accomplished.
4.0 Reproducibility
The reproducibility of this method has been determined to range
from ±10 to ±30% of the relative standard deviation for different subs-
tances when replicate sampling cartridges are examined (5). The inhe-
rent analytical errors are a function of several factors: [1] the
ability to accurately determine the breakthrough volume for each of the
identified organic compounds, [2] the accurate measurement of the am-
bient air volume sampled, [3] the percent recovery of the organic from
the sampling cartridge after a period of storage, [A] the reproduci-
bility of thermal desorption for a compound from the cartridge and its
introduction into the analytical system, [5] the accuracy of determining
the relative molar response ratios between the identified substance and
the external standard used for calibrating the analytical system, [6]
the reproducibility of transmitting the sample through the high resolu-
tion gas chromatographic column and, [7] the day-to-day reliability of
the ms/comp system (1-8).
The accuracy of analysis is generally ±30% but depends on the
chemical and physical nature of the compound (2,8).
5.0 Advantages and Disadvantages of the Method
The gas chromatograph/mass spectrometer interfaced with a glass jet
separator, is extremely sensitive and specific for the analysis of many
volatile organic compounds in ambient air. High resolution gas chroma-
tographic separation provides adequate resolution of the substances
found in ambient air for their subsequent quantification. The com-
bination of the high resolution gas chromatographic column and the
selection of specific or unique ions representing the various compounds
of interest identified in the air samples yields a relatively specific
assay method for these compounds (1-8).
125
-------
Collected samples can be stored up to one month with less than 10%
losses for most of the chemical classes (2,8). Because some of the
compounds of interest may be hazardous to man, it is extremely important
to exercise safety precautions in the preparation and disposal of liquid
and gas standards, cleaning of used glassware, etc. in the analysis of
air samples.
Since the mass spectrometer cannot be conveniently mobilized,
sampling must be carried out away from the instrument.
The efficiency of air sampling increases as the ambient air de-
creases (i-.e. , sensitivity increases) (8).
The retention of water by Tenax is low; its thermal stability is
high; and its background is negligible allowing sensitivity analysis
(1,2,5,8).
6.0 Apparatus
6.1 Sampling Cartridges
The sampling tubes are prepared by packing a ten centimeter long by
1.5 cm i.d. glass tube containing 6 cm of 35/60 mesh Tenax GC with glass
wool in the ends to provide support (2,5). Virgin Tenax (or material to
be recycled) is extracted in a Soxhlet apparatus for a minimum of 18
hours each time with acetone and hexane prior to preparation of cart-
ridge samplers (2,5). After purification of the Tenax GC sorbent and
drying in a vacuum oven at 100°C for 3 to 5 hours at 28 inches of water,
all the sorbent material is meshed to provide a 35/60 particle size
range. Cartridge samplers are then prepared and conditioned at 270°C
with helium flow at 30 ml/min for 30 min. The conditioned cartridges
are transferred to Kinoax (2.5 cm x 150 cm) culture tubes immediately
sealed using Teflon-lined caps and cooled. This procedure is performed
in order to avoid recontamination of the sorbent bed (2,5).
Cartridge samplers with longer beds of sorbent may be prepared
using a proportionally increased amount of Tenax in order to achieve a
larger breakthrough volume for compounds of interest, and thus increa-
sing the overall sensitivity of the technique (8).
6.2 Gas Chromatographic Column
A 0.35 mm i.d. x 100 m glass SCOT capillary column coated with SE-
30 stationary phase and 0.1% benzyltriphenylphosphonium chloride is used
126
-------
for effecting the resolution of the volatile organic compounds (5). The
capillary volume is conditioned for 48 hrs. at 245° at 2.25 ml/min of
helium flow.
A glass jet separator on a Varian MAT CH-7 gc/ms/comp system is
employed to interface the glass capillary column to the mass spectro-
meter. The glass jet separator is maintained at 240°C (2,5).
6.3 Inlet Manifold
An inlet manifold for thermally recovering vapors trapped on Tenax
sampling cartridges is used and is shown in Figure Al (1,2,4,5).
6.4 Gas Chromatograph
A Varian 1700 gas chromatograph is used to house the glass capil-
lary column and is interfaced to the inlet manifold (Figure Al).
6.5 Mass Spectrometry/Computer
A Varian MAT CH-7 mass spectrometer with a resolution of 2,000
equipped with a single ion monitoring capability is used in tandem with
a gas chromatograph (Figure Al). The mass spectrometer is interfaced to
a Varian 620/L computer (Figure Al).
7.0 Reagents and Materials
All reagents used are analytical reagent grade.
8.0 Procedure
8.1 Cleaning of Glassware
All glassware, sampling tubes, cartridge holders, etc. are washed
in Isoclean/water, rinsed with deionized distilled water, acetone and
air dried. Glassware is heated to 450-500°C for 2 hours to insure that
all organic material has been removed prior to its use.
8.2 Preparation of Tenax GC
Virgin Tenax GC is extracted in a Soxhlet apparatus for a minimum
of 18 hours with acetone or methanol prior to its use. The Tenax GC
sorbent is dried in a vacuum oven at 100°C for 3-5 hours and then sieved
to provide a fraction corresponding to 35/60 mesh. This fraction is
used for preparing sampling cartridges. In those cases where sampling
cartridges of Tenax GC are recycled, the sorbent is extracted in a
Soxhlet apparatus with acetone or methanol as described for the virgin
material, but the sorbent is further extracted with a non-polar solvent,
127
-------
hexane, in order to remove the relatively non-polar and non-volatile
materials which might have accumulated on the sorbent bed during previous
sampling periods.
8.3 Collection of Volatile Organics in Ambient Air
Continuous sampling of ambient air is accomplished using a Nutech
Model 221-A portable sampler (Nutech Corp., Durham, NC, see Figure Al,
Reference 2). Flow rates between 1-10 Jfc/min are available with this
sampling system. Flow rates are generally maintained at 1 £ using
critical orifices and the total flow is monitored through a calibrated
flow meter. The total flow is also registered by a dry gas meter. Con-
concomitant with these parameters the temperature is continuously recorded
with a Meterological Research, Inc. Weather Station since the breakthrough
volume is important in order to obtain quantitative data on the volatile
organics. This portable sampling unit operates on a 12 volt storage
battery and is capable of continuous operation up to a period of 24
hours. However, in most cases at the rates which are employed in the
field, the sampling period is generally 1-3 hours. This portable sampling
unit is generally utilized for obtaining "high volume" samples. Duplicate
cartridges are deployed on each sampling unit utilizing a sampling head
as shown in Figure A2.
In addition to the Nutech samplers, DuPont personnel samplers are
also used to acquire "low volumes" of ambient air as well as long-term
integrated samples (12-36 hrs). Identical Tenax GC sampling cartridges
are employed in this case, and the sampling is conducted in duplicate.
The flow rate is balanced between duplicate cartridges using critical
orifices to maintain a rate of 25-100 ml/min per cartridge.
For large sample volumes, it is important to realize that a total
volume of air may cause the elution of compounds through the sampling
tube if their breakthrough volume is exceeded. The breakthrough volumes
of some of the volatile organics are shown in Table A2 (2,4,7,8). These
breakthrough volumes have been determined by a previously described
technique (2). The breakthrough volume is defined as that point at
which 50% of a discrete sample introduced into the cartridge is lost.
Although the identity of a compound during ambient air sampling is not
known (therefore, also its breakthrough volume), the compound can still
be quantified after identification by gc/ms/comp once the breakthrough
128
-------
Figure A2. Sampling head for housing cartridge sampling train.
129
-------
Table A2. TENAX GC BREAKTHROUGH VOLUMES FOR SEVERAL ATMOSPHERIC POLLUTANTS
u>
o
Temperature (°F)
Chemical
Class
Halogenated
hydrocarbon
Compound
methyl chloride
methyl bromide
vinyl chloride
methylene chloride
chloroform
carbon tetrachloride
1 , 2-dichloroethane
1,1, 1-trichloroethane
tetrachloroethylene
trichloroethylene
l-chloro-2-methylpropene
3-chloro-2-methylpropene
1 , 2-dichloropropane
1,3-dichloropropane
epichlorohydrin (1-chloro-
2,3-epoxypropane)
3-chloro-l-butene
allyl chloride
4-chloro-l-butene
l-chloro-2-butene
chlorobenzene
o-dichlorobenzene
m-dichlorobenzene
b.p.
(°C)
-24
3.5
13
41
61
77
83
75
121
87
68
72
95
121
116
64
45
75
84
132
181
173
50
8
3
2
11
42
34
53
23
361
90
26
29
229
348
200
19
21
47
146
899
1,531
2,393
60
6
2
1.5
9
31
27
41
18
267
67
20
22
162
253
144
15
16
36
106
653
1,153
1,758
70
5
2
1.25
7
24
21
31
15
196
50
16
17
115
184
104
12
12
27
77
473
867
1,291
80
4
1
1.0
5
18
16
23
12
144
38
12
13
81
134
74
9
9
20
56
344
656
948
90
3
1
0.8
4
13
13
18
9
106
28
9
10
58
97
54
7
6
15
40
249
494
697
100
2.5
0.9
0.6
3
10
10
14
7
78
21
7
8
41
70
39
6
5
12
29
181
372
510
(continued)
-------
Table A2 (cont'd)
Temperature (°F)
Chemical
Class
Halogenated
hydrocarbons
(cont'd)
Halogenated
Ethers
Nitrosamines
Oxygenated
hydrocarbons
Nitrogenous
Hydrocarbons
Sulfur
Compounds
Compound
benzyl chloride
bromoform
ethylene dibromide
bromobenzene
2-chloroethyl ethyl ether
Bis- (chloromethyl ) ether
N-nitrosodimethylaraine
N-nitrosodiethylamine
acrolein
glycidaldehyde
propylene oxide
butadiene diepoxide
cyclohexene oxide
styrene oxide
phenol
acetopheonone
p-propiolactone
nitromethane
aniline
diethyl sulfate
ethyl methane sulfate
b.p.
179
149
131
155
108
-
151
177
53
—
34
-
132
194
183
202
57
101
184
208
86
50
2,792
507
348
2,144
468
995
385
2,529
19
364
35
1,426
2,339
5,370
2,071
3,191
721
45
3,864
40
5,093
60
2,061
386
255
1,521
336
674
280
1,836
14
247
24
1,009
1,644
3,926
1,490
2,382
514
34
2,831
29
3,681
70
1,520
294
188
1,079
241
456
204
1,330
10
168
17
714
1,153
2,870
1,072
1,778
366
25
2,075
21
2,564
80
1,125
224
138
764
234
309
163
966
8
114
11
506
811
2,094
769
1,327
261
19
1,520
15
1,914
90
830
171
101
542
124
209
148
700
6
77
8
358
570
1,531
554
991
186
14
1,134
11
1,384
100
612
131
74
384
89
142
107
508
4
52
5
253
400
1,119
398
740
132
11
817
8
998
(continued)
-------
Table A2 (cont'd)
CO
to
Temperature (°F)
Chemical
Class
Amines
Ethers
Esters
Ke tones
Aldehydes
Alcohols
Compound
dimethylamine
isobutylamine
t-butylamine
di - (n-butyl ) amine
pyridine
aniline
die thy 1 ether
propylene oxide
ethyl acetate
methyl acrylate
methyl methacrylate
acetone
methyl ethyl ketone
methyl vinyl ketone
acetophenone
acetaldehyde
benzaldehyde
methanol
n-propanol
allyl alcohol
b.p.
(°C)
7.4
69
89
159
115
184
34.6
35
77
80
100
56
80-2
81
202
20
179
64.7
97.4
97
50
9
71
6
9,506
378
8,128
29
13
162
164
736
25
82
84
5,346
3
7,586
1
27
32
60
6
47
5
7,096
267
5,559
21
9
108
111
484
17
57
58
3,855
2
5,152
1
20
23
70
4
34
4
4,775
189
3,793
15
7
72
75
318
12
39
40
2,767
2
3,507
0.8
14
16
80
3
23
3
3,105
134
2,588
11
5
48
50
209
8
27
28
2,000
1
2,382
0.6
10
11
90
2
16
2
2,168
95
1,766
8
4
32
34
137
6
19
19
1,439
0.9
1,622
0.4
7
8
100
1
11
1
1,462
67
1,205
5
3
22
23
90
4
13
14
1,037
0.7
1,101
0.3
5
6
(continued)
-------
Table A2 (cont'd)
u>
CO
Temperature (°F)
Chemical
Class
Aromatics
Hydrocarbons
Inorganic
gases
Compound
benzene
toluene
ethylbenzene
cumene
n-hexane
n-heptane
1-hexene
1-heptene
2 , 2-dimethylbutane
2 ,4-difljethylpentane
4 -me thy 1- 1 -pentene
cyclohexane
nitric oxide
nitrogen dioxide
chlorine
sulfur dioxide
water
b.p.
(°C)
80.1
110.6
136.2
152.4
68.7
98.4
63.5
93.6
49.7
80.5
53.8
80.7
-
-
100
50
108
494
1,393
3,076
32
143
28
286
0.5
435
14
49
0
0
0
0.06
0.06
60
77
348
984
2,163
23
104
20
196
0.4
252
10
36
0
0
0
0.05
0.05
70
54
245
693
1,525
17
75
15
135
0.3
146
8
26
0
0
0
0.03
0.04
80
38
173
487
1,067
12
55
11
93
0.2
84
6
19
0
0
0
0.02
0.03
90
27
122
344
750
9
39
8
64
0.2
49
4
14
0
0
0
0.02
0.01
100
19
86
243
527
6
29
6
44
0.1
28
3
10
0
0
0
0.01
0
Breakthrough volume is given in £/2.2 g Tenax GC used In sampling cartridges.
-------
volume has subsequently been established. Thus, the last portion of the
sampling period is selected which represents the volume of air sampled
prior to breakthrough for calculating their concentration. For cases in
which the identity of a volatile organic compound is not known until
after glc/ms, the breakthrough volume is subsequently determined.
Previous experiments have shown that the organic vapors collected
on Tenax GC sorbent are stable and can be quantitatively recovered from
the cartridge samplers up to 4 weeks after sampling when they are
tightly closed in cartridge holders and placed in a second container
that can be sealed, protected from light and stored at 0°C (1,2).
8.4 Analysis of Samples
The instrumental conditions for the analysis of volatile organics
on the sorbent Tenax GC sampling cartridge is shown in Table A3. The
thermal desorption chamber and the six port valco valve are maintained at
270° and 240°, respectively. The glass jet separator is maintained at
240°. The mass spectrometer is set to scan the mass range from 25-350.
The helium purge gas through the desorption chamber is adjusted to 15-20
ml/min. The nickel capillary trap on the inlet manifold is cooled with
liquid nitrogen. In a typical thermal desorption cycle, a sampling
cartridge is placed in the preheated desorption chamber and the helium
gas is channeled through the cartridge to purge the vapors into the
liquid nitrogen capillary trap [the inert activity of the trap has been
shown in a previous study (5)]. After the desorption has been completed,
the six-port valve is rotated and the temperature on the capillary loop
is rapidly raised (greater than 10°/min); the carrier gas then introduces
the vapors onto the high resolution gc column. The glass capillary
column is temperature programmed from ambient to 240°C at 4°C/min and
held at the upper limit for a minimum of 10 min. After all the
components have been eluted from the capillary column, the analytical
column is then cooled to ambient temperature and the next sample is
processed (2).
An example of the analysis of volatile organics in ambient air is
shown in Figure A3 and the background from a blank cartridge is shown in
Figure A4. The high resolution glass capillary column was coated with
SE-30 stationary which is capable of resolving a multitude of compounds
134
-------
Table A3. OPERATING PARAMETERS FOR GLC-MS-COMP SYSTEM
Parameter
Setting
Inlet-manifold
desorption chamber
valve
capillary trap - minimum
maximum
thermal desorption time
GLC
100 m glass SCOT-SE/30
carrier (He) flow
transfer line to ms
270°C
220°C
-195°C
+180°C
4 min
25-240°C, 4°C/min
^3 ml/min
240°C
MS
scan range
scan range, automatic-cyclic
filament current
multiplier
ion source vacuum
m/e 20 •» 300
1 sec/decade
300 |JA
6.0 6
~4 x 10 torr
135
-------
Ul
Figure A3. Profile of a.bient air pollutants for Wood River, IL using high
resolutxon gas chroratography/mass spectrometry/computer?
-------
90p
80-
TO-
i
-------
to allow their subsequent identification by ms/romp techniques; in this
case over 120 compounds were identified in this chromatograph.
8.4.1 Operation of the MS/CQMP System (Figure A5)
Typically the mass spectrometer is first set to operate in the
repetitive scanning mode. In this mode the magnet is automatically
scanned exponentially upward from a preset low mass to a high mass
value. Although the scan range >nay be varied depending on the particular
sample, typically the range is set from m/e ?5 to fn/e 300. The scan is
completed in approximately 1.8 seconds. At this time the instrument
automatically resets itself to the low mass position in preparation for
the next scan, and the information is accumulated by an on-line 620/L
computer and written onto magnetic tapes or the dual disk system. The
reset period requires approximately 2.0 seconds. Thus, a continuous
scan cycle of 3.8 seconds/scan is maintained and repetitively executed
throughout the chromatographic run. The results is the accumulation of
a continuous series of mass spectra throughout the chromatographic run
in sequential fashion.
Prior to running unknown samples, the system is calibrated by
introducing a standard substance, perfluorokerosene, into the instrument
and determining the time of appearance of the known standard peaks in
relation to the scanning magnetic field. The calibration curve which is
thus generated is stored in the 620/L computer memory. This calibration
serves only to calibrate the mass ion over the mass scanning range.
While the magnet is continuously scanning, the sample is injected
and automatic data acquisition is initiated. As each spectrum is acquired
by the computer, each peak which exceeds a preset threshold is recognized
and reduced to centroid time and peak intensity. This information is
stored in the computer core while the scan is in progress. In addition,
approximately 30 total ion current values and an equal number of Hall
probe signals are stored in the core of the computer as they are acquired.
During the two-second period between scans this spectral information,
along with the spectrum number, is written sequentially on disks, and
the computer is reset for the acquisition of the next spectrum.
This procedure continues until the entire gc run is completed. By
this time there are from 800-1400 spectra on the disk which are then
subsequently processed. Depending on the information required, that day
138
-------
Gc column
(capillary)
Random
access
disk
Variau CH-7
mass
spectrometer
Sample
inlet/
manifold
Separator
Vnrian
620L
computer
u>
vo
States
plotter
Figure A5. Schematic diagram of gc-ms computer system.
Modem
interface
1200 Baud
modern
Telephone
Cyphernetics
time shared
PDP/10
-------
may then either be processed immediately or additional samples may be
run, stored on magnetic tape and the results examined at a later time.
The mass spectral data are processed in the following manner.
First, the original spectra are scanned and the total ion current (TIC)
information is extracted. Then the TIC intensities are plotted against
the spectrum number on the States 31 recorder. The information will
generally indicate whether the run is suitable for further processing,
since it provides some idea of the number of unknowns in the sample and
the resolution obtained using the particular gc column conditions.
The next stage of the processing involves the mass conversion of
the spectral peak times to peak masses which is done directly via the
dual disk system. The mass conversion is accomplished by use of the
calibration table obtained previously using perfluorokerosene. Normally
one set of the calibration data is sufficient for an entire day's data
processing since the characteristics of the Hall probe are such that the
variation in calibration is less than 0.2 atomic mass units/day. A
typical time required for this conversion process for 1,000 spectra is
approximately 30 min.
After the spectra are obtained in mass converted form, processing
proceeds either manually or by computer. In the manual mode, the full
spectrum of scans for the gc run is recorded on the States 31 plotter.
The TIC information available at this time is most useful for deciding
which spectra are to be analyzed. At the beginning of the runs where
peaks are very sharp nearly every spectrum must be inspected
individually to determine the identity of the component. Later in the
chromatographic run when the peaks are broader only selected scans need
to be analyzed.
Identification of resolved components is achieved by comparing the
mass cracking patterns of the unknown mass spectra to an eight major
peak index of mass spectra (9). Individual difficult unknowns are
searched by the use of the Cornell University STIRS and PBM systems.
Unknowns are also submitted to EPA MSSS system for identification. When
feasible, the identification of unknowns are confirmed by comparing the
cracking pattern and elution temperatures for two different chroma-
tographic columns (SE-30 and Carbowax SCOT capillaries) for the unknown
and authentic compounds. The relationship between the boiling point of
140
-------
the identified halogenated hydrocarbon and the elution temperature on a
non-polar column (the order of elution of constituents is predictable in
homologous series since the SE-30 SCOT capillary separates primarily on
the basis of boiling point) is carefully considered in making structure
assignments.
Mass spectral search programs are operational at the Triangle
Universities Computation Center (TUCC). RT1 maintains twice daily
service to TUCC, which is a one-quarter mile distance from the RTI
campus. Additional information about each magnetic tape containing the
mass spectra of halogenated hydrocarbons is entered directly into the
TUCC job stream using a remote job entry processing. This is normally
done at TUCC using one of the five terminals located within the Analytical
Sciences Laboratory. The control information contains selected spectrum
numbers of instructions to process entire gc runs. The computer program
systems compare simultaneously either the entire library of 25,000
compounds or some subset of this library. The complete reports showing
the best fits for each of the unknowns is produced at TUCC and printed
out at the high speed terminals located on the RTI campus of TUCC.
Thus, the processing of the mass spectral data obtained for the halogena-
ted hydrocarbons in the samples collected is processed by one of three
routes. Each consists of a different level of effort. The first level
is strictly a manual interpretation process which proves to be the most
thorough approach. The second level is executed when the interpretation
at the first level has not yielded conclusive results.
8.4.2 Quantitative Analysis
In many cases the estimation of the level of pollutants by capil-
lary gas chromatography in combination with mass spectrometry is not
feasible utilizing only the total ion current monitor (See Figure A3 for
example). Since baseline resolution between peaks is not always achieved,
we employ the techniques which have been previously developed under
contract whereby full spectra are obtained during the chromatographic
separation step and the selected ions are presented as mass fragmentograms
using computer software programs which allow the possibility of deconvolu-
ting constituents which were not resolved in the total ion current
chromatogram (6). Examples are depicted in Figures A6 and A7 which
represent an ambient air sample with a TIC profile as in Figure A3.
141
-------
to
•»/• 166
«•/• 117
ccr
I. i. i. i. i. I. i
-------
\
| . | . | . I . I . j . I . I . I . I . I . I . I . I . I . I . I . I . I . I . I . I . I . I . I . I . I . I . I . I
50
100 150 200
MASS SPECTRUM NO.
250
Figure A7. Mass fragmentograms of characteristic ions representing methylene chloride
(m/e 49) and chloroform (m/e 83) in ambient air.
-------
The standard added can be added as an internal standard during
sampling, however, since the volume of air taken to produce a given
sample is accurately known, it is also possible and more practical to
use an external standard whereby the standard is introduced into the
cartridge prior to its analysis. Two standards, hexafluorobenzene and
perfluorotoluene are used for the purpose of calculating RMR's. From
previous research it has been determined that the retention times for
these two compounds are such that they elute from the glass capillary
column (SE-30) at a temperature and retention time which does not inter-
fere with the analysis of unknown compounds in ambient air samples.
Since the volume of air taken to produce a given sample is accura-
tely known and an external standard is added to the sample, then the
weight can be determined per cartridge and hence the concentration of
the unknown. The approach for quantitating ambient air pollutants
requires that the RMR is determined for each constituent of interest.
This means that when an ambient air sample is taken, the external standard
is added during the analysis at a known concentration. It is not impera-
tive at this point to know what the RMR of each of the constituents in
the sample happens to be. However, after the unknowns are identified
then the RMR can be subsequently determined and the unknown concen-
tration calculated in the original sample using the RMR. In this manner
it is possible to obtain qualitative and quantitative information on the
same sample with a minimum of effort.
9.0 References
1. Pellizzari, £. D., Development of Method for Carcinogenic Vapor
Analysis in Ambient Atmospheres. Publication No. EPA-650/2-74-121,
Contract No. 68-02-1228, 148 pp., July, 1974.
2. Pellizzari, £. D., Development of Analytical Techniques for
Measuring Ambient Atmospheric Carcinogenic Vapors. Publication No.
EPA-600/2-75-075, Contract No. 68-02-1228, 187 pp., November, 1975.
3. Pellizzari, £. D., J. E. Bunch, B. H. Carpenter and E. Sawicki,
Environ. Sci. Tech., 9, 552 (1975).
4. Pellizzari, E. D., B. H. Carpenter, J. E. Bunch and E. Sawicki,
Environ. Sci. Tech., 9, 556 (1975).
144
-------
5. Pellizzari, £. D., The Measurement of Carcinogenic Vapors in
Ambient Atmospheres. Publication No. EPA-600/7-77-055, Contract
No. 68-02-1228, 288 pp., June, 1977.
6. Pellizzari, E. D., J. E. Bunch, R. E. Berkley and J. McRae,
Anal. Chem., 48, 803 (1976).
7. Pellizzari, E. D., Quarterly Report No. 1, EPA Contract No.
68-02-2262, February, 1976.
8. Pellizzari, E. D., J. E. Bunch, R. E. Berkley and J. McRae,
Anal. Lett., 9, 45 (1976).
9. "Eight Peak Index of Mass Spectra", Vol. 1, (Tables 1 and 2) and
II (Table 3), Mass Spectrometry Data Centre, AWRE, Aldermaston,
Reading, RF74PR, UF, 1970.
10. Pellizzari, E. D., Quarterly Report No. 3, EPA Contract No.
68-02-2262, in preparation.
11. Pellizzari, E. D., "Measurement of Carcinogenic Vapors in
Ambient Atmospheres", EPA Contract No. 68-02-1228, Final Report,
in press.
Written analytical protocol prepared 1/24/77.
145
-------
APPENDIX B
VOLATILE ORGANICS IDENTIFIED IN AMBIENT AIR
Part I Iberville Parish and Baton Rouge, LA
Part II Linden and Deepwater, NJ
Part III Camden, NJ-Philadelphia, PA
146
-------
Part I
Iberville Parish and Baton Rouge, LA
147
-------
Table Bl. VOLATILE ORGANICS IN AMBIENT AIR FROM
IBERVILLE PARISH IN LOUISIANA
Chroma to-
graphic
Peak No.
1
2
3
4
5
6
7
e
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
EluCion
Temp.
43
43
45
46
48
52
53
55
55
57
57
62
64
66
66
68
71
74
76
76
76
77
78
80
80
82
83
84
88
90
90
93
95
97
97
98
102
105
110
114
116
120
I2r
123
126
Compound
N2 + 02
co2
dlchlorodlfluorome thane
(freon 12)
C^H. Homer
C4H1Q Homer
C.H.. itomer
trlchlorofluorome thane
C,H,. Homer
acetaldehyde
cs2
nethylene chloride
C6H14 lgomer
C6H14 1'oner
perf luorobenzene (atd.)
C6H14 t*OBer
chloroform
perf luorotoluene (ttd.)
1,1,1-trichloroethane _
1 , 2-dlehloroethane
benzene
carbon tetrachloride
cyclohexane
C7»16 1§om
-------
Table B2. VOLATILE ORGANICS IN AMBIENT AIR FROM
IBERVILLE PARISH IN LOUISIANA
a
Chrom* to-
graphic
Peak No.
1
2A
3
4
4B
4C
5
5A
5B
5C
5D
6
6A
7
7A
8
8A
9
9A
10
IDA
10B
IOC
10D
11
11A
12
13
13A
14
14A
15
16
17
17A
17B
18
19
20
20A
21
21A
22
22A
22B
23
Elutlon
Temp.
CO
43
45
47
51
52
53
53
54
55
57
57
59
61
61
62
63
64
65
66
68
68
70
71
72
73
74
75
77
78
79
80
81
86
88
91
92
94
96
97
100
101
102
103
104
106
108
Compound
CO,
chloromethane
1-butene + n- butane
iiopantane
C5H10 iaomer
ri-pentane
acetaldahyde
C.HJQ Itomer
dichloromathane
propanal
propenal
2-Bethylpentane
dimethyl ether
3-nethylpentane
acetone
hexafluorobenzene (et)
n-hexane
chloroform
C.H.O iaomer
*t 0
perfluorotoluene (et)
aethylcyclopentane (tent.)
jn- but anal
1,1,1-trichloroethane
1, 2-dichloroethane
benzene + carbon tetrachloride
cyclohexane
2-methylhexane
3-methylhexane
C.H., isomer
CjjHjg itomer
1,2-dlchloropropane (tent.)
n-haptane
methylcyclohexane
C-jHjg iaomer
CgH.g Itomer
C8H18 ltomtr
toluene
CgH,g Itomer
C8H16 liOB*r
CnH. , laoner
B lo
n-octane
C8H16 iiomer
tetrachloroethylene
C9H20 itomer
C9H20 1§0»er
ethylcyclohexane
hronato-
raphic
eak No.
23A
23B
23C
24
24A
24B
24C
25
26A
26
27
27A
28
28A
28B
29
30
31
31A
32
32A
33
33A
33B
34
34A
34B
34C
34D
34E
35
35A
35B
35C
35D
35E
36
37
38
39
39A
40
40A
41
Ilutlon
Temp. Compound
CO
109
113
114
115
115
117
118
119
120
121
125
127
128
131
132
133
135
138
139
139
143
144
147
148
149
149
150
153
154
155
157
159
161
164
167
170
171
173
166
187
188
202
203
210
C,HJ8 Homer
ethylbanzene
C,H20 laomer
£-xylene
C,H20 iaomer
CjH20 iaomer
CjH18 iaomer
o-xylene
atyrene
n-nonane
C10H22 1§om'r
C10H20 ltomer (tent.)
C10H22 1*OB*r
ri-propylbenzene
£-ethyl toluene
C10K22 i'OIBcr
Cj-alkyl benzene 4- CIQH
itomert
C.-alkyl benzene iaomer
benzaldehyde
n-decane
22
C..H,, + C.-alkyl benzene
11 ZZ 3
itomert
C11H24 lBomer
C12H26 ltol"er
C.-alkyl benzene iaomer
C^-alkyl benzene laooer
C11H22 it
-------
Table B2 (cont'd)
Chromato-
graphic
Peak No.
42
43
44
45
Elution
Temp.
214
215
218
226
C15H3L
Compound
Isotoer
n-pentadecane
tripropylene glycol methyl
ether
C16H3;
, isotner
Chromato-
graphic
Peak No.
46
48
49
49A
Elution
Temp.
227
237
239
240
Compound
£-hexadecane
C
C
C
17
17
17
H
H
H
34
34
36
1 soner
lioraer
iiooer
See Table 27 for sampling protocol and Fig. 11 (L4) for sampling location.
150
-------
Table B3. VOLATILE ORGANICS IN AMBIENT AIR FROM
IBERVILLE PARISH, LOUISIANA3
Chromato-
graphic
Peak No.
1
3
3A
4
4A
5
5A
6
6A
6B
6C
60
7
8
8A
9
9A
10
n
11A
11B
12
12A
13
13A
14
14A
15
ISA
15B
16
16A
17
18
ISA
19
19A
20
20A
21
21A
22
23
24
25
25A
Elution
Temp.
CO
43
48
49
52
54
55
55
57
58
58
60
61
62
64
65
66
66
68
70
73
75
76
76
77
78
79
80
81
82
83
83
85
87
89
91
93
94
95
96
96
97
97
99
102
104
108
Compound
co2
n-butane + 1-butene
C,H. laomer + 2-butene
laopentane
C5H10 ieomer
n_-p«ntane
acetaldehyde
C6H14 1»°"er
nethylene chloride
C5K10 Homer
n-propanal
C.H.. leaner
C6H14 1'oner
3-methylpentane
CfiH12 iiouer
perf luorobenzene (el)
n-htxane
chloroform
perfluorotoluene (el)
1,1, 1-trlchloroethene
1,2-dlchloroe thane
benzene + CC1.
CfcH12 Uomer
2-methylhexane
C,H., iiomer
C,H,, iiomer
7 Zo
C,H. . iiomer
CgHlg iiomer
1,2-dichlor opropene
trlchloroethylene (tent.)
n- heptane
C?H14 Iiomer
C,H1A iiomer
CgHj. Iiomer
C8H16 lBtmer
C8H18 + C»H16 1§omer
C8H16 l.o»er
toluene
CgH.g laomer
CgH.g ieomer
CgHJ6 Iiomer
C9H20 1'0n*r
CgH16 leomer
tetrachloroethylene
C9H2Q laooer
Chrome to-
[raphlc
Peak No.
26
26A
26B
27
27A
28
28A
29
30
31
31B
31C
31D
31E
31F
31G
32
33
33A
34
35
35A
35B
35C
36
37
37A
38
38A
38B
38C
38D
39
39A
39B
39C
39D
40
41
41A
4 1C
42
42A
42B
42C
Elution
Temp.
CC)
109
109
110
113
114
115
116
116
119
121
122
122
125
127
128
128
129
131
131
132
133
133
134
135
136
137
140
141
142
143
145
146
146
148
148
150
151
1S2
154
153
155
157
160
161
162
Compound
C0H1t Itomer
o Jo
C9H20 UoBer
C9H18 laomer
ethylbenzene
C9Hj8 laomer
xylene iaomer
C9H20 iaomer
C10H22 1'omer
CgH.g laomer
n-nonane
CjHjg iaomer
C10H22 i'onier
C.-alkyl benzene laomer
C.H.g ieomer
C10H22 1§om"
n-propylbenzene
C.-alkyl benzene iaomer
C._H.. leomer
C.-alkyl benzene Iiomer
C10H22 1>OIner
C.-alkyl benzene Iiomer
C10H22 1§OBer
C10H20 i80B*r
C10H20 lgoIDer
benzaldehyde + Cj-alkyl
benzene Iiomer
i^-decane
C^-alkyl benzene isomer
C.-alkyl benzene ieomer
C11H24 t§omer
C10H20 liomer
C11H24 i*om'r
C.-alkyl benzene laomer
C.-alkyl benzene iaomer
C11H24 tsol!ier
C4-alkyl benzene iaomer
C4-alkyl benzene laomer
C4-alkyl benzene ieomer
acetophenone
n-nonanal
n-undecane
C11H22 lionl*r
C^-alkyl benzene Iiomer
£-creiol
P U ^KOnAF
C11H22 ii°*tr
m-creiol
(continued)
151
-------
Table B3 (cont'd)
Chroma to-
graphic
Peak No.
42D
42E
42F
42G
42H
Elution
Temp . Compound
CO
162
163
164
166
169
in dan + methylstyrene Isoner
C,-»lkyl benzene Isomer
C,-alkyl benzene isomer
C.-H-, + C.-alkyl benzene
isomer
naphthalene
Chroma to-
graphic
Peak No.
43
43A
43B
44
44A
45
Elution
Temp.
CO
170
171
177
211
221
225
Compound
ri-dodtccne
C12H24 Uontr
C.-phenol laoner
n-pentadecane
dlethyl phthalate
n_-hexadecane
See Table 27 for sampling protocol and Fig. 11 (L5) for sampling location.
152
-------
Table B4. VOLATILE ORGANICS IN AMBIENT AIR FROM
IBERVILLE PARISH, LOUISIANA3
Chroma to-
graphic
Peak No.
1
2
2A
3
4
4A
4B
4C
4D
3
6
6A
7
7A
7B
8
8A
BB
ac
BD
8E
9
9A
10
10A
11
12
13
14
14A
14B
13
ISA
16
16A
17
17A
16
19
20
20A
21
21A
22
Elution
Temp . Conpound
CO
42
43
45
43
46
46
47
48
49
49
SO
SI
51
52
52
S3
54
53
55
36
56
57
38
39
60
61
61
63
63
66
67
67
68
71
72
73
73
74
76
77
78
79
79
84
co2
chloroacetylene (tent.) 4
propyltnt
propane 4 chloroMthane
vinyl ehlorlda
ii-butani
butadiene iaoner
C4H8 Uon"
chlerotthane 4 C.H.. itoner
5 10
ntoptntan*
laoptntane
1-ptnttnt
£-pentane
actttldthydt 4 ieoprene
vlnylldtnt chloride 4 CjH1Q
laontr
propanal
dichloromathant
CjH6 laontr 4 CSj
C.Hg Isontr
dlmthyl ether
cyeloptntena
acetone
2-aithylptntini
1 , 1-dlchloroethane
3-mthylptnttnt
CgH.. laomer
htxafluorobtnttnt (tl)
n-htxane
chloroform
ptrfluorotolutnt (tl)
Mthyleycloptntani
n-butanal
1, 2-dlchloroithani
1.1,1-trlchloioe thane (ttnt.)
btnitnt 4 carbon tttraehlorldt
eyclohaxant
2-BithylhtxiM
2,3-diaithylpentant
3-Btthylhtxane
C.H. . leomer
1, 2-dlchloropropant
trlchlorotthyltne
n-heptane
dlchloroproptnt itomtr (ttnt.)
Btthylcyclohtxant
Chroma to-
graphic
Peak No.
22A
23
24
25
26
26A
26B
27
27A
27B
27C
28
29
29A
30
30A
30B
31
32
32A
33
33A
34
34A
33
35A
33B
36
36A
36B
37
37A
38
38A
38B
38C
39
39A
39B
40
40A
41
41A
41B
41C
42
Elution
Temp . Compound
CO
85
86
87
90
91
92
93
94
96
96
98
100
101
107
108
110
111
112
114
113
116
119
120
124
125
126
126
127
130
131
133
134
133
136
137
137
138
138
139
139
140
143
143
144
146
147
C8H16 l.o«r
CgH.g leomer
C?H14 laontr (ttnt.)
CjH.g Itonr
1,1, 2-trlehlorotthant
tolutnt
C.H,. itOMT
8 16
CBH18 1*<>Mt
C.H,, Itomer
B 16
CgH18 Itontr
CgH16 ilOBCT
n-octane
tttrachlorotthyltnt
Cj-alkyl cyclohtxane ieoner
C?H20 liontr
acetic acid (ttnt.)
CjHjg iiomtr
tthylbtnttnt
2-xylene
C*H*^ lionir
oj-xyltni 4 ityrtnt
C9H18 1""Btr
ti-nonant
C|QiiBM iionir
lioprepylbtnimt
C?H140 liomer (ttnt.)
SfJ 4 •!->«>* T
»18 *••<"**
C10H22 iioo*r
n-propylbtnitni
•••thyltolutni
Cil«24 tio"r
C10H22 tionM
C.-alkyl btniana lionar
C10H20 tiomM
C10H18 liw"*t
C10H20 1§omar
1,2, 4-trlmi thylbinfine
btntaldthydt
C10H20 tie°tr
n-dicana
dlchlorobtnitni iioaer (tint.)
1,2, 3-trlntthy Ibtnimi
C11H24 liOMt
C11H24 iiontr 4 phtnol
C^-alVcyl cyclohtxani Ivomtr
bli- (2-chloroliopropyl ) tthtr
(continued)
153
-------
Table E-'-i (cont'd)
Chromato-
graphic
Peak No.
42A
42E
42C
42D
42E
42F
42G
42H
421
43
43A
43B
44
45
46
46A
47
48
49
Elution
Tei,\p . Compound
CO
143
149
149
150
152
152
154
155
156
157
158
159
164
167
171
172
173
176
180
C.-alkyl benzene isomer
C^-alkyl benzene isomer
C11H22 isomer
C11H24 isolner
C11H22 isomer
C.-alkyl benzene Isomer
C,-alkyl benzene Isomer
acetophenone -f C..H-- Isomer
tetrachlorobutadiene isomer
ji-undecane
cresol isomer
C.-alkyl benzene isomer
dlmethylphenol Isomer
dimethylphenol isomer
naphthalene
C12H24 tsoner
n-dodecane
1 , 3-hexachlorobu tadiene
tripropylene glycol
Chromato-
graphic
Fuak No.
49A
49B
49C
50
50A
51
52
53
53A
54
55
56
57
57A
58
59
Elution
Temp.
TO
181
185
187
188
189
191
198
202
214
215
216
219
225
227
227
228
Compound
Cj-alkyl phenol Isomer
C.-alkyl phenol Isoraer
C. ,H_, isomer
1 3 ^0
jv-tridecane
methylnaphthalene isoaer
unknown
Isobutyl isobutyrate
n-tetradecane
Cj.H.gO isoner
C15H30 1S°mer
n-pentadecane
tripropylene glycol methyl
ether
dlethyl phthalate
C14H28° I80mer
2,2,4-trimethylpenta-l,3-diol
di-isobutyrate (BKG)
n-hexadecane
See Table 27 for sampling protocol and Fig. 12 (L6) for sampling location.
154
-------
Table B5. VOLATILE ORGANICS IN AMBIENT AIR FROM
IBERVILLE PARISH, LOUISIANA3
Chroma to-
graphic
Peak No.
1
3
4
4A
4B
4C
5
5B
6
6A
7
S
8A
SB
8C
8D
9
9A
10
10A
11
11A
12
13
13A
14
14A
15
ISA
16
16A
17
18
ISA
IBB
18C
19
20
21
21A
21B
21C
22
22A
23
24
Elutlon
Temp.
CO
43
43
46
46
48
49
49
50
51
51
52
53
54
54
55
56
57
58
59
60
60
61
63
65
65
67
67
70
71
72
73
74
76
77
78
78
79
84
85
86
87
87
89
90
90
92
Compound
co2
chlorooethane
vinyl chloride
n-butane 4 butene iaoner
CjHJO laoner
chloroethane
laopentane
cs"io itom"
acetaldehyde
n-pentane
vinyl id ene chloride
dlchlorone thane
piopanal -i propenal
CS. + C.H, liomer
•* JO
dimethyl ether
acetone + C.Hg lioner
2-methylpentane
1,1-dlchloroethane
3-methy Ipentane
C6H12 isoDer
hexafluorobenzene (el)
n-hexane
chloroform
perf luorotoluene (el)
nethylcyclopentane
1 , 2-dlchloroethane
1,1) 1-tr ichloroe thane
benzene
carbon tetrachlorlde
2-nethylhexane
2 , 3-diaethy Ipentane
3-methylhexane
1 ,2-dichloropropane
C.H.g laomer
trlchloraethylene
dichloropropene laomer
ii- heptane
methylcyclohexane
CgH.g iaoner
CgHle ieoner
1,3-dichloropropane (tent.)
C.H,. leoner
0 lv
C6H18 i*OD'T
n-pentana 1 ( tent . )
1,1, 2-trlchloroethane
toluene
Chroma to-
graphic
Peak No.
24A
25
25A
2SB
25C
250
26
27
27A
27B
27C
27D
27E
28
28A
29
30
30A
31
31A
31B
32
32A
33
33A
33B
33C
34
34A
34B
34C
34D
34E
35
35A
35B
36
36A
36B
37
38
38A
Elution
Temp. Compound
CO
93
94
95
96
98
98
100
101
106
107
108
108
111
112
113
113
114
117
118
118
119
120
122
124
125
125
126
127
128
129
130
131
132
133
133
134
135
136
134
137
139
140
C.H,. Isoner
o lo
C8H18 Homer
C8H16 i*0!ner
C8H16 ittmel
C9H20 1'OB"
C9H18 1>oner
CnH.g ieoner
ethylbenzene
C.H.. 4- trlchloropropene
Isoner s
£-xylene
C9H20 10er
Itopropylbenzene + trlchloro-
propene liomer (tent.
C10H20 I50ner
C10H22 1*omer
C9H18 iBoa"
C10H22 1*omer
C10H22 l"m"
C10H20 1*OBer
n-propylb*nzene
n-ethyl toluene
)
tetrachloropropane iaoner
C..HHJ Isooer
11 24
pentachloroethane +1,3,
triaethylbenzene
C10H22 Uomer
o-ethyl toluene
C11H24 + C10H18 i'OBers
C10H20 1'0n"
benzaldehyde 4 1.2,4-
trlmethylbenzene
n-decene
C10H20 lton"
5-
(continued)
155
-------
Table B5 (cont'd)
Chromaco-
graphic
Feak No.
3 SB
38C
38D
39
39A
39B
39C
39D
40
41
41A
41B
42
43
43A
43B
44
44A
45
45A
Elution
Temp . Compound
CO
141
142
142
143
143
144
144
145
146
147
148
149
150
152
153
154
155
156
157
159
dlchlorobenzene iiomer (tent.)
C,,H-. Isomer
11 24
C^-alkyl benzene iioner
1,2, 3-triaethylbenzene
C,,H,. Isomer
11 24
phenol (tent.)
C11H24 i8oner
C..H.. isomer
C10H20 i80Der
bis- (2-chloroisopropyl ) ether
C,-alkyl benzene Isomer
C^-alkyl benzene laoner
C11H24 iiomer
hexachloroethane
C.nH.. Isomer
10 12
C.-alkyl benzene isotner
acctophenone
tetrachlorobutadlene liomer
n-undec»ne
C12H26 i'omer
Chromato-
graphlc
Peak No.
46
47
48
48A
48B
49
49A
49B
49C
50
50A
51
52
52A
53
54A
55
56
57
Elutlon
Temp.
CO
160
162
163
164
165
166
167
168
169
172
172
173
176
188
201
214
216
225
228
Compound
C^-alkyl benzene tiomer
C H itoaitr
13 28
C11H22 1>oncl
Cj-alkyl benzene Isomer
C,nH,_ Isomer
10 12
C.jH,, 4- C,-alkyl benzene
i*omers
C12H24 Isomer
pentachlorobutadlene (tent.)
C12H26 l8onier
naphthalene
C..H..O isomer (tent.)
IU ZO
£-dodecane
1, 3-hexachlorobutadlene
C,-H.n iaoner
13 28
unknovn
C15H30 t8omer
ii-pentadecane
dlethyl phthalate
n-hexadecane
See Table 27 for sampling protocol and Fig. 12 (L7) for sampling location,
156
-------
Table B6. VOLATILE ORGANICS IN AMBIENT AIR FROM
IBERVILLE PARISH, LOUISIANA
Chromato-
graphlc
Paak No.
1
2A
3
4
4B
5
SA
6
6A
6B
6C
6D
7
7A
7B
7C
8
8A
9
10
10A
10B
IOC
11
12
13
13A
13B
13C
14
14A
15
16
16A
16B
17
17A
17B
17C
17D
17E
18
ISA
16B
18C
Hut ion
Tamp. Coapound
CO
44
47
48
33
55
53
56
37
38
60
61
61
62
63
64
63
66
67
69
71
74
74
75
76
78
80
81
82
84
85
87
89
91
92
95
97
98
99
100
101
103
105
106
106
107
CO,
chloronathana
vinyl ehlorida (tant.) +
1-butana 4 n-butana
liopantana
CjH10 laonar
n-pantina
C3H10 Uo"tr
acttaldehydt
dlehloronathana
propanal
propanal
C.H.. laontr
2-nathylpanttna
diaethyl athtr
3-nathylpantana
aeatona
haxafluorobaniana (at)
n-haxane
ehlerofom
parfluorotoluena (al)
1,1, 1-trichloroathana
£-butanal
1 , 2-dlehloroathana
baniana > carbon tatrachlorlda
2-nathylhaxana
3-nathylhaxana
C-H. , laonar
C.H.. iaontr
B IB
trichloroathylana
ti-haptana
jn-pant anal ( tant . )
nathylcyclohaxana
CgHlg laontr
C.H,, laonar
B lo
C8H18 tiOIBtr
toluana
CgH-g iaonar
C8H18 llon*T
C8*16 1§OBM
C.V.-O iaonar
C8H16 Uomtr
*-ectana
Cg«16 laonar
tatrachloroathylana
2-haxanona
Chronato-
graphlc
Paak No.
18D
18E
19
19A
19B
19C
20
21
21A
21B
22
22A
23
23A
24
24A
25
25A
25B
25C
26
26A
26B
27
27A
28
2BA
29
29A
29B
30
30A
31
31A
31B
31C
32
32A
32B
33
34
34A
34B
34C
35
Ilution
Tamp . Coapound
(*C)
110
111
112
113
114
115
116
117
119
120
122
123
124
126
128
130
131
134
134
135
136
137
138
139
140
141
142
143
144
145
147
148
149
150
151
152
154
155
155
158
160
163
164
168
170
C9H20 1§OMr
Cj-alkyl cyclohaxana lionar
C.H.Q iaomar
C9»18 lie"r
chlorobantant
CjHj. Iaomar
ethylbaniana
£-xylana
C9H20 1'om'r
phanylacatylana
£-xylana
CjHjfl laoaar + atyrana (tant.)
in-nonana
C,Hlg iaenar
laopropylbanzana
Cj-tlkyl eyclohaxana iaomtr
C10H22 lie™r
n-propylbtnztnt
C10H22 110Mr
chlorotoluant laooar (tant.)
£-athyltoluana
C10H22 liOBtr
C10H22 1§OBtr
iB-athyltoluana
C10H20 lltra*r
banzaldahyda
C^-alkyl banzant laonar
ii-dacana
C.nH,. iaonar
10 20
dlchlorobenccn* i»om«r (t*nt.)
C..H-, iaonar 4- banzonitrlla
(ttnt.)
phanol
C10H20 lgomer
C,,H-. iaomar
11 24
C.-alkyl banzana Iaomar
C..H,. iaomar
C. nH>e 19OIDAa7
12 26
C11H22 1§OBtr
C12H26 Ii0aier
acatophanone
n-undacana
C^-alkyl baniana Iaomar
craaol laonar
•thy 1 phanol laomar
dlnathylphanol iaomar
(continued)
157
-------
Table B6 (cont'd)
Chromato-
graphlc
Peak No.
36
36A
36B
37
37A
37B
38
39
Elution
Temp. Compound
CO
174
175
175
176
177
179
184
191
192
naphthalene
C12H24 isoner
i^-decanal
n-dodecane
C.-alkyl phenol Isomer
C13H28 i80mer
aliphatic alcohol isomer
(tent.)
ri-tridecane
B-raethylnaphthalene
Chroma to-
graphic
Peak No.
41
42
43
44
45
45A
46
47
47A
Elution
Temp.
CC)
201
204
205
214
217
217
218
230
231
Compound
butyl butyrate
biphenyl (tent.)
n-tetradecane
C^-H.-j Isomer
tridecanone isomer
C15H30 i80mer
2,2,4-trlmethylpenta-l,3-diol
di-laobutyrate
n-hexadecane
See Table 27 for sampling protocol and Fig. 11 (L8) for sampling location,
158
-------
Table B7. VOLATILE ORGANICS IN AMBIENT AIR FROM
IBERVILLE PARISH, LOUISIANA*1
Chroma to-
graphic
Peak No.
1
IB
2
2A
2B
3
4
4A
4B
4C
4D
5
5A
5B
6
7
7A
7B
8
8A
9
10
11
12
12A
12B
13
14
14A
15
16
16A
16B
17
17A
18
18A
19
19A
20
20A
20B
20C
21
2 LA
Elutlon
Temp . Compound
CO
43
45
46
46
47
49
50
51
51
52
53
53
54
55
57
58
59
59
60
61
62
64
67
69
70
71
71
73
75
76
78
79
82
83
84
85
88
91
92
93
94
95
97
99
100
co2
chloromethane (tent.)
1-butene
ri- butane
2-butene
la open tine
acetaldehyde
n-ptntane
furan
CjH10 Isomer
dichloromethane
propanal + propenal +
C6H14 1»omer
dimethyl ether
acetone
2-methylpentane
3-methylpentane
C^HgO liomer
n-butanal + C,H-2 Homer
hexaf luorobenzene (el)
n-hexane + methyl furan laomer
chloroform
perfluorotoluene (el)
1,1, 1- trichloroethane
benzene
carbon tetrachlorlde
cyclohexane (tent.)
C7H16 iion«r
C7H16 Homer
C7H14 llom
-------
Table B7 (cont'd)
Chromato-
graphlc
Peak No.
35
36
Elution
Temp.
CC)
171
172
173
188
189
198
Compound
naphthalene
C10H20° iioln'r
ri-dodecane
C12H26 * C11H14 Ii0mers
dlnethylphenol liomer
butyl butyrate (tent.)
Chroma to-
graphic
Peak No.
37
38
39
40
41
Elutlon
Temp.
CO
225
227
239
240
240
Compound
dlethyl phthalate
aliphatic hydrocarbon
C,.H,nO alkyl keton*
13 jO
ii-haxadecane
unknown
iiomer
iiorner
See Table 27 for sampling protocol and Fig. 11 (L9) for sampling location.
160
-------
Table B8. VOLATILE ORGANICS IN AMBIENT AIR FROM
IBERVILLE PARISH, LOUISIANA3
Chromato-
graphlc
Peak No.
1
2A
2B
2C
2D
2E
2F
3
4
4A
4B
5
5A
5B
6
6A
7
7A
7B
7C
7D
7E
IT
7G
7H
71
7J
7K
7L
7M
7N
70
7P
7Q
7R
7S
8
8A
8B
9
9A
9B
10
10A
11
12
Elutlon
Temp . Compound
CO
43
46
48
52
54
54
55
55
57
59
60
62
63
64
65
67
70
72
73
75
77
79
81
82
83
87
89
93
95
96
101
103
104
106
110
114
116
117
120
122
124
124
126
133
134
136
co2
C4H10 1§OI"r
n-butane -f C.H. laooar
™~ *t 0
iaopentane
C.H.- laooer
n-pentane
fur an
acataldehyde
C6H14 iiomtr
propanal
propenal
dimethyl ether
C6HU laomer
acetone
peifluorobenzene (el)
chloroform
perfluorotoluene (el)
n-butanal
1,1, 1-trlchloroethenc
benzene + carbon tetrachlorlde
C6H16 ilm"
C7H14 iiontr
C.B., laoaar
trlchloroethylane
tt-heptane
CjHj, leoaer
C8H18 1§CO"
unaaturatad hydrocarbon
toluene
CJU, iaomer
C8H16 ltoo*r
n-cctane
tetrachloroethylene -f haxanal
C8H16 1§onir
unaaturatad hydrocarbon
ethylbenzene
2-xylena
C9H20 1§OMr
o-xyl«n« + etyrene
n-nonane
C9«18 lBOBtr
n-heptanal
iaopropylbencen*
Cj-alkyl benzene laomer
C10H20 lecmar + C^22 laooar
Cj-alkyl benzene liooer
Chroma to-
graphlc
Peak No.
13
13A
14
14A
15
16
16A
17
17A
18
19
19A
20
21
22
23A
24
25
26
26A
27
28
29
30
Elutlon
Temp . Coopound
CO
138
139
141
142
144
148
150
151
153
155
158
161
167
171
173
186
197
202
218
225
228
230
240
240
ben (aldehyde
C.-alkyl benzene ieomer
n_-decane
ri-octanal
phenol + Cj-alkyl benzene
eaturated hydrocarbon
C^-alkyl benzene laomer
uneaturated hydrocarbon
C10H20 lioln*r
acetophanone
n-undecane
C^-alkyl benzene 4 unaaturated
hydrocarbon laoneri
dlmethylphanol
unaaturatad hydrocarbon -t
naphthalene
n_-dodecane
aaturated hydrocarbon
alkyl laobutyrate
eaturatad hydrocarbon
saturated hydrocarbon
dlethyl phthalate
c«rHAH laooer
15 32
n-haxtdec«ne
unknown
unknown
See Table
27 for sampling protocol and Fig,
161
11 (Lll) for sampling location.
-------
Table B9. VOLATILE ORGANIC VAPORS IN AMBIENT AIR
OF BATON ROUGE, LA AT LOCATION #173
Chroma to-
graphic
Peak No.
1
2
3
3A
4
5
6
«A
6B
«C
6D
7
7A
I
9
10
11
11A
12
12A
13
13A
14
14A
15
16
17
18
ISA
19
19A
19B
20
20A
20B
21
22
22A
22B
22C
23
23A
23B
23C
23D
23E
Elution
Temp.
40
44
47
48
49
50
52
52
53
53
55
56
57
57
59
60
61
64
65
65
67
68
69
70
70
71
73
76
77
78
79
80
82
85
86
91
92
93
94
97
98
100
105
107
110
116
Compound
co2
1-butene
Isopentane
C5H1Q isomer
n-pentane
acetaldehyde
dichloromethane
cs2
propanal
propenal
C5H1C iaomer
2-methylpentane
acetone (tent)
3-metnylpentane
hexafluorobanzene (el)
jn-hexane
chloroform
C.H.6 Isomer
methylcyclopentane
per fluoro toluene (el)
1,1, 1-tr ichloroethane
1 , 2-d Ichloroethane
benzene
carbon tetrachloride
cyclohexane
2 -me thy Ihexane
3-methylhexane
7 14 •OBer
trlchloroethylene
Il-heptane
n-heptanal
C,Hj, Isomer
aethylcyclohexane
C8Hlg iaomer
CgH16 Isomer (tent)
toluene
C8H18 isoner
C8H18 lBomer
ethylcyclohexane
C.H, , Isomer
ti-octane
tetrachloroethylene
ethylcyclohexane
C9«18 1«on"
ethylbeozene or xylene isooer
C..H,, iaomer (tent)
10 22
Chromato-
graphlc
Peak No.
23F
24
24A
24B
25
26
27
27A
28
28A
26B
28C
29
30
31
32
33
34
35
38
Elution
Temp.
117
119
121
122
131
133
137
U7
154
162
165
168
170
186
196
199
208
211
213
225
Compound
C9H18 1(onhexadccane
a
See Table 28 for sampling protocol.
162
-------
Table BIO. VOLATILE ORGANIC VAPORS IN AMBIENT AIR
OF BATON ROUGE, LA AT LOCATION #21*
Chroaato-
graphlc
Peak No.
1
1A
2
2A
3
3A
4
4A
4»
5
5A
5B
5C
6
7
7A
8
8A
9
9A
10
IDA
11
11A
11B
11C
12
12A
12B
12C
13
13A
13B
13C
14
15
16
17
18
ISA
19
20
21
22
Elutlon
Tenp.
CC)
40
42
43
44
47
48
49
49
SO
51
51
52
52
53
55
56
57
58
58
59
60
62
63
64
66
67
68
69
69
70
72
73
74
75
76
81
83
65
88
86
90
94
96
97
CoBpound
co2
chloroaethane (tent.) + propane
1-butene + n-butane
2-butene
Iaopentane
C5H10 laomer
n-pentane + furan
acetaldehyde
C,H]0 liomer
dichloronethane
carbon dlaulflde + propanal
+ propenal
dlethyl ether
dlaethyl ether
acetone
2-methylpentane
laopropanol
3-methylpentane + ter-butanol
chloroprene
hexafluorobenzene (et)
n^hexane
chloroform
n-butanal
perfluorotoluene (el)
•ethylcyclopentane
1,1, 1-trlchloroethane
methyl ethyl ketone
benzene
carbon tetrachlorlde (tent.)
cyclohexane
2-methylhexane
3-methylhexane
C7H14 1§OBer
C,H, . laomer
7 14
trlehloroethylene
n-heptane
•ethylcyclohexane
C8H18 1*°"er
C8H16 lfoo>cr (tent-)
toluene
C.U10 laomer
O JB
CgHlg laomer + 2,3-dlchloro-
butane (tent.)
1,2-dlehlorobutane (tent.)
n-octane
tetrachloroethylane
Chroaa to-
graphic
Peak No.
24
25
26
26A
27
28
28A
29
29A
30
31
32
32A
33
34
34A
35
36
36A
36E
37
38
39
39A
39B
40
40A
41
42
42A
42B
43
43A
43B
44
45
45A
46
47
47A
48
49
50
Elutlon
Temp.
CC)
108
109
111
113
114
116
118
120
122
123
125
127
128
128
130
131
133
135
136
138
138
139
140
141
141
142
143
143
144
146
146
147
147
148
148
150
151
152
153
154
155
156
157
Compound
athylbenzene
£-xylene
C9H20 1.0B.T
atyrene
o-xylene
n-nonane
C9H1B laooer
laopropylbinzcne + cioH22
laomer
C10H22 l801"r
C10H22 1§OBer
n-propylbenzene
ethyltoluene laomer
C10H22 1§ooer
C11H24 lBomer
benzaldehyde •*• C.-alkyl
benzene laomer
C10H22 I80ner
C.-alkyl benzene isooer
n-decane
phenol
C4-alkyl benzene Isomer
1,2, 3-trlmethy Ibenrene
C11H24 ig0mer
C.-alkyl benzene laomer
Indan (tent.)
C.-alkyl cyclohexane isoner
C11H24 1'8mer
C4-alkyl benzene Isomer
C.-alkyl benzene laomer
C4-alkyl benzene iaomer
C11H24 Ii0net
C,-alkyl benzene Isomer
C..H-. laomer
11 24
6-chloroatyrene (tent . )
C4-alkyl benzene laomer
•cetophenone
creaol •* C4~alkyl benzene
laomera
C11H22 i>omer
n-nonanal
n-undacane
C.-alkyl benzene laomer
C11H22 lsOTer
C^-alkyl benzene laooer
C12H26 1>0mer
(continued)
163
-------
Table BIO (cont'd)
Chromato-
graphtc
Peak. No.
51
51A
MB
52
53
54
54A
54B
55
56
57
58
58A
Elution
Temp . Compound
CO
159
160
161
162
163
164
166
167
167
168
171
173
180
dimethylphenol + C.-alkyl
benzene isomeri
C,-alkyl benzene Isomer
C,-alkyl benzene isomer
C,,H,g isomer
dimethylphenol Isomer
CUH28 isomer
naphthalene
C12H24 isomer
n-decanal
n-dodecane
C13H28 igomer
chloroprene diner
CUH3Q isomer (tent.)
Chromato-
graphlc
Peak No.
58B
59
61
62
63
65
66
67
68
69
71
73
74
77
Elution
Temp.
CO
183
183
189
192
193
197
206
211
214
220
223
233
235
240
Compound
methylnaphthalene isomer
n-trldecane
chloro compound unknown
alkyl isobutyrate (cent.)
alkyl butyrate (tent.)
ti-tetradecane
C11H16°2 lsolner (t«nt.)
C15H32 lsoner
unknown
dlethyl phthalate (BKC)
unknown
C16H32 isomer
ri-hexadecane
unknown
See Table 28 for sampling protocol.
164
-------
Table Bll. VOLATILE ORGANIC VAPORS IN AMBIENT AIR
OF BATON ROUGE, LA AT LOCATION #23*
Chromi to-
graphic
Paak No.
1
2
2A
3
3A
4
5
5A
5B
6
7
8
9
10
10A
10B
11
1LA
11B
12
12A
13
13A
14
14A
13
16
16A
17
18
ISA
19
19A
19B
20
21
22
23
24
23
26
27
28
28A
29
29A
Elutlon
Tamp.
CO
40
43
44
47
49
49
50
51
51
52
56
57
58
59
59
61
63
64
64
66
67
68
69
70
71
72
74
75
76
80
82
83
85
86
86
87
88
89
91
92
93
95
96
»7
98
102
Compound
co2
propana {tant.)
1-butana + o-butana
laopantana
CjH10 laomar
n-pantana
aeataldahyda
C.H.. laomar
5 10
dichloromathana (tant.)
acaton*
2-mathylpane«na
3-oathylpantana
CjH12 iaomar
haxafluorobaniana (at)
n-haxtna
chloroform
parfluorotoluana (at)
mathylcyclopantana
C7»16 iin"r
1,1, 1- trlchloroathana
1,2-dlchloroathana
banzana
carbon tatrachlorlda
eyelohaxana
2-mathylhaxana
3-mathylnaxana
C,H, , iaomar
trlehloroathylant
n-haptana
ma thy 1 eye lohaxan*
C8H16 *•"*"*
CgH,. laomar
CnH« e iaonar
8 16
C8H16 ilOB"
C-H.a iaomar
8 IB
CgH,. iaonar
toluana
C8H18 1§00"r
C8H18 1§on"
dlmathylcyclohaxana iaonar
C0H2£) Iaonar (tant.)
CBH16 itOMr
jn-octana
CeHu iaomar
tatraehloroaehylana
C.H.. laomar
Chromato-
grtphic
Paak No.
29B
30
30A
30B
30C
31
32
33
33A
34
33
36
3«A
37
37A
37B
38
39
39A
39B
40
41
42
42A
43
43A
44
45
45A
45B
46
47
48
49
50
51
52
32A
53
54
53
55A
Elutlon
Top.
102
103
104
104
107
107
109
110
111
112
113
116
117
119
121
122
122
124
125
126
127
128
129
130
131
132
132
134
136
138
139
140
141
142
144
145
147
148
149
151
152
154
Compound
CjHJO laomar
CjH16 Iionar
CjHJ(j Iionar
C-H.. Iionar
CjHie laomar
athylbaniana
p_-xylana + cgH20 ilOMr
C-H,- iionar
9 20
COB.. iaomar
•tyrana
o-xylana
n-nonana
CjH18 iiomar
liopropylbancana * C10H22
Iionar
C10H22 ito*n
C9H18 1*OMr
C10H22 1§OMr
C10*20 1§OBtr
n-propylbancana
C10H22 lio"r
athyltoluana
C1QH22 iiomar
C10H22 UoMr
Cj-«lkyl bantana Iiomar
C1QH22 iaonar
C10H20 + C4"*lkyl baniana
liooara
bantaldahyda
-------
Table Bll (cont'd)
Chromato-
graphlc
Peak No.
56
56A
57
58
58A
59
60
60A
60B
61
62
63
63A
64A
65
Elutlon
Temp . Compound
155
157
159
161
162
162
163
164
165
166
167
167
169
181
182
C,-alkyl benzene isomer
C,-alkyl benzene isomer
dimethylphenol isomer
C.-H,, Isomer
if. £D
C,-alkyl benzene isomer
C12H26 isomer ('«"'•)
C..H-, isomer
12 26
ethylphenol isomer
naphthalene
C12H24 iaom"
n-decanal
n-dodecane
C12H24 isomer
C13H26 i90mer
ii-tridecane
Chromato-
graphic
Peak No.
65A
67
68
69
69A
70
71
72
73
76
77
79
80
80A
Elutlon
Temp.
CC)
183
192
195
196
200
205
210
213
219
233
234
240
240
240
Compound
B-inethylnaphthalene
C14H30 lsomer ("nt->
C14H28 i80ner
n-tetradecane
Cj-alkyl naphthalene Isoner
C. cH,- isomer
ii-pentadecane
unknown
dlethyl phthalate (BKG)
2-tetradecanone
ji-hexadecane
unknown
dialkyl phthalate isomer
dialkyl phthalate isomer
(BKG)
(SKG)
See Table 28 for sampling protocol.
166
-------
Table B12. VOLATILE ORGANIC VAPORS IN AMBIENT AIR
OF BATON ROUGE, LA AT LOCATION #26*
Chromato-
graphlc
Peak No.
1
LA
IB
1C
ID
2
3
3A
4
4A
5A
5B
5C
5D
5E
6
7
7A
8
9
10
10A
11
11A
11B
12
13
13A
13B
14
15
ISA
16
17
17A
18
ISA
19
19A
20
20A
20B
21
22
21
24
Elutlon
Temp.
CO
41
43
44
44
45
47
49
49
50
50
51
52
52
53
54
55
56
57
58
59
60
61
62
63
64
65
67
68
68
69
71
73
73
75
78
80
81
82
85
86
86
87
87
88
90
91
Coapound
co2
n-propane (tent)
C,H- laomer
n-bucane
butadiene -f C^Hg laomera
iaopentane
C5H10 i'OB*r
n-pentane •*• furan (tent)
acetaldehyde
C.H10 isomer
dichloronethane
propanal
propenal
dimethyl ether
acetone + CgH.- laomer
2-nethylpectane
3-ffiSthylpentane
C6H12 + alcohol (tent) iaomera
hexafluorobenzene (el)
n-hexane
chloroform
pentanol iaomer (tent)
perfluorotoluene (ef)
nethylcyclopentane
n-butanal
1 , 2-d Ichloroe thane
benzene
carbon tetrachlorlde (tent)
cyclohexane
2-methylhexane
3-methylbenzene
C,H. . Isomer
7 14
CgH.g liomer
n-htptane
C.H, , Isomer
nethylcyclohexane
C8H16 1>omer
C8H18 lioner
C8H16 i'omer
CgH. o isomer
C9H2Q isomer
CgH., isomer
toluene
C8Hlg laoner
C8H18 itomer
C8H16 liomer
Chroma to-
graphic
Peak No.
25
25A
26
26A
27
28
28A
28B
29
29A
29B
29C
30
30A
31
32
33
34
34A
35
35A
36
37A
37B
38
39
39A
40
40A
40B
40C
41
42
42A
42B
43
44
45
45A
45B
45C
46
47
Elutlon
Temp.
CO
92
93
94
95
96
97
99
100
102
103
104
106
108
108
109
111
114
116
118
120
123
124
126
126
128
129
130
130
131
132
133
134
136
139
139
140
142
143
144
145
146
147
145
Compound
CoH20 1*°™er
hexanone laoner
cyclopentanone (tent)
C.H,, iaomer
O jlD
n-oetane
tetrachloroethylene
C9B18 laoner (tent)
aaturated hydrocarbon
4-vlnyl-l-cyclohexene
CgH. , iaomer
CgHjg laomer
CjHjp iaomer
ethylbeniene
C9H20 1*omer
xylene + C.H.. laomera
CgH,.. iaomer
•tyrene or_ cyclooctatatraene
+ o-xylene
n-nonane
C9H18 iaomer
laopropylbenzene
C.-alkyl cyclohexane iaomer
C10H22 lBO""r
C10H20 1'oner
n-propylbenzene
•thyltoluene Isomer
C10H22 lioner
1,3,5-trlmethylbenzen* (tent)
C10H22 1"c"ner
o-athyltoluene
bentaldehyde
CinH.n laomer
10 20
1,2. 4-tr imcthylbeniene
n-dacane
C.-alkyl benzene iaomer
1 , 2 , 3-tr lm« thy Ibenz ene
C..H., iaomer + phenol (tent)
C10H2Q iaomer
C11H24 iiom"
C.-alkyl benzene +• C,. Hj^
(tent) iaomers
C4-«lkyl benzene + ii-butyl-
benzene
C11H22 lton"r (tent)
C..H.. laomer
11 24
C.-alkyl benzene laomer
(continued)
167
-------
Table B12 (cont'd)
Chronato-
graphic
Peak No.
47A
48
49
50
51
5U
51B
51C
5 ID
51E
52
52A
52B
53
53A
54
55
56
Elutlon
Temp. Compound
("O
149
150
153
153
156
157
158
159
160
161
162
164
166
167
169
170
172
178
C,,H_. Iiomer
11 22
icetophtnont
C11H22 ltOB*r
£-undecane
C.-alkyl benzene i»oraer
cretol liomer (tent.)
C12H26 Homer
C.-alkyl benzene liomer
C12H24 lBooar
nethyllndan lioner (tent.)
dinethylphenol liomer
C.-alkyl benzene iiomer
C.-tlkyl phenol iiomer
naphthalene
C..H-, iiomer
12 24
n-dodecane
1,3-hexachlorobutadiene
unknown
Chromato-
graphle
Peak No.
56A
57
57A
58
59
60
60A
61
61A
62
63
65A
66A
67
68
70
Elutlon
Temp.
CC)
181
184
185
187
194
198
202
207
210
211
214
225
231
235
236
240
Compound
C.,H,n lioner
14 30
ti-trldecane
m«thyln*phthalen«
C.H.gO iiomer or_ unknown
C.-alkyl butyrate liooer
ii-tetradecane
C--alkyl naphthalene itoner
C15H32 iiomlr
C15H30 lgomtr
n-pentadecane
alcohol or unknown
C14H22° •^''y1 phenol iiomer
(t«nt.)
eaturated hydrocarbon
C,,H,, leomer
17 36
jt-hcxadeeane or eat.
hydrocarbon
unknown
See Table 28 for sampling protocol.
168
-------
Table B13. VOLATILE ORGANIC VAPORS IN AMBIENT AIR
OF BATON ROUGE, LA AT LOCATION ,'!27a
Chroraato-
griphlc
Peak No.
1
1A
IB
2
3
3A
A
AA
5
5A
6A
6B
6C
6D
7
7A
8
9
9A
10
10A
11
HA
11B
lie
12
13
13A
13B
14
14A
15
15A
1SB
16
17
18
ISA
18B
19
20
20A
21
22
23
Elutlon
Temp.
(•C)
Al
A3
A3
AA
A7
A8
A9
50
50
51
52
52
53
55
55
56
57
59
59
61
63
63
64
65
66
66
68
69
69
70
71
72
73
73
74
76
81
82
82
83
86
87
88
89
91
Compound
co2
n-propane
butene laomer
£-butane
liopentane
C.H.. iaomer
n-pentane
C5H10 Loner
acetaldehyde
C.H.jj laomer
dlchloromethane + C,H
(tent)
propanal
propenal (tent)
CjH.j laooer
2-nethylpentane
methyl ethyl ketone
3-methylpentanc
14 laomer
hexafluorobenzene (el)
n-hexane
chloroform
alcohol (tent)
perfluorotoluene (el)
nethylcyclopentane
n-bucanal
1,1, 1-trlchloroethane
1,2-dlchloroethane
benzene
carbon tetrachlorlde
cyclohexane
2-methylhexane
2 , 3-dimethylpentane
3-oethylhexane
CjH100 laomer (tent)
C7H14 itoa"
CgH.g ieoner
iv-heptane
methylcyclohexane
£-pentanal (tent)
C.H,, Iaoner
0 10
CgH.g leoner
CgHj. laomer
C6H18 iiOBCr
toluene
C.H. . laomer
0 Ad
C.H.. laomer
0 10
Chronato-
graphic
Peak No.
23A
23B
23C
24
24A
24B
24C
24D
24E
24F
24G
25
26
26A
27
27A
28
28A
29
29A
29B
30
31
31A
31B
32
33
33A
33B
34
34A
35
35A
36
36A
36B
36C
36D
36E
37
37A
37B
38
38A
38B
Elutlon
Trap . Compound
CO
92
93
94
96
97
98
100
101
102
103
107
108
109
110
111
114
114
115
116
118
119
120
123
125
126
127
128
129
130
131
132
133
13A
135
137
138
139
140
141
142
143
144
146
148
150
CjjHj, laomer
CgH20 laomer
C.H. , laomer
8 10
ii-octane
C8H16 iioo*r
tetraehloroethylene
C9H20 itom"
acetic acid (tent)
C9H20 laomer
ethylcyelohexane
C9H18 laomer (tent)
ethylbenzene
xylene iaoner
C9H20 itom"
CjH20 leoner
atyrene
£-xylene
C.H. . laomer
7 ID
n-nonane
C,H18 leomer
C10H22 i§OIner
laopropylbcnzene
C10H22 UoMr
n~propylbenzene
C10H22 iion'r
ethyltoluene laomer
C10H22 Uoiwr
1,3.5-trimethylbenzene (tent)
o_-«thyltoluene
C10H22 itom**
C10H20 iiom'r
1,2. 4-trloethylbenzene
benzaldahyde
i^-decane
C.-alkyl benzene
1,2,3-trlmethylbenzene
Cll«24
Indan
C10H20
C11B24
C^-alkyl benzene
n-butylbeniene •«• C^-alkyl
benxena leoaer
Cll«24
C.-alkyl benzene
acetophenone
(continued)
169
-------
Table 01. 3 (cont'c1)
Chromato-
graphic
Peak No.
38C
39
40
40A
4CB
40C
41
41A
42
42A
43
43A
44
44A
Eiution
Temp . Compound
150
151
152
153
154
157
160
162
165
166
167
167
175
182
C11H22
n-nonanal
n_~undecane
cre
-------
Table B14. VOLATILE ORGANIC VAPORS IN AMBIENT AIR
OF BATON ROUGE, LA AT LOCATION #28*
Chromato-
graphic
Feak Ho.
1
1A
IB
2
3
3A
3B
4A
4B
4C
4D
5
5A
6
6A
7
7A
7B
7C
8
9
9A
10
10A
11
11A
HE
12
12A
13
13A
13B
14
15
16
16A
17
17A
18
19
20
21
21A
21B
21C
22
Elutton
Temp.
41
44
45
47
49
50
51
52
52
53
54
56
56
57
56
59
60
61
61
62
64
64
66
66
69
69
70
71
71
73
74
75
75
77
82
83
84
85
87
89
90
92
93
94
96
97
Toa>poi:nd
CO,
propane
n-butane
liopentane
n-pentane
acetaldehyde
C,H._ laomer
dichloromethane
C.H. laomer (tent)
j b
propenal (tent) + propanal
C6H12 ltoaer
2 -me thylpentane
acetone
3-mt thylpentane
C6H12 iaomer
hexafluorobenzene (ef)
n-hexane
C.H. . laomer
chloroform
dl-lsopropy) ether
pert luorotoluene (el)
methylcyclopentane
1,2-dlchloroethane
C.H. . isomer
7 14
benzene
carbon tetrtchloride
cyclohexane
2-methylhexjne
2, 3-dlnethylpentane
3-methylhexane
C.H., laomer
C.H. , iiomer
7 14
CgH.g Iiomer
n-heptane
methylcyclohexane
C.H., laomer
0 ID
C.H... laomer
CgH.g Isomer
C8Hlg isomer
toluene
C8H18 liomer
C.H^. iaomer
CgH1(i laomer
CgH.g laomer
C8H16 lsoo*r
ri-oc cane
Chromato-
graphic
>eak No.
22A
23
24
25
25A
25B
26
27
28
29
30
30A
31
31A
32
32A
33
33A
34
35
35A
35B
35C
36
36A
37
37A
378
38
38A
38B
38C
39
40
41
42
42A
43
43A
44
45
45A
Elutlon
Temp.
Co
98
99
102
104
104
106
109
111
112
114
115
116
lie
119
121
124
124
127
128
130
132
133
134
134
135
136
139
140
141
142
142
143
144
145
147
149
150
150
151
153
153
154
Compound
C.H., laomer
8 16
tetrachloroethylene
C9H20 ifeaaer
4-vinyl-l-cyclohexene
ethylcyclohexane
C9H18 tomer + 1,3,5-trl-
methylbenzene
o-ethylcoluene
l-methyl-4-isopropylcyc lo-
hexane
benzaldehyde
1,2, 4-trloe thylbenzene
C..H..n iaomer (tent)
10 20
n-decane
C,-«lkyl benzene iioner
1 , 2, 3-trlmethylbenzene
C11H24 l80ner
phenol
Indan (tent)
C11H24 lBOmer
C,-alkyl benzene Iiomer
C^-alkyl benzene iioaer +
n-butylbenzene
C..H., •»• C,-alkyl benzene
itomera
C,-ilky] benzene iaomer
C11H22 1>omer
C^-alkyl benzene laomer
acetophenone
n-nonanal
n-undecane
C^-alkyl bcnzeoe Iiomer
(continued)
171
-------
Table BU (cont'd)
Chroma to-
graphic
Peak No.
45B
45C
46
47
48
49
50
50A
51
52
52A
52B
Elution
Temp.
154
155
156
161
165
167
168
169
169
177
178
183
Compound
creaol isomer
C.jH-* isomer
C.-alkyl benzene isomer
dimethylphenol isomer
C.-alkyl phenol isomer
naphthalene
Cj-alkyl phenol +
C,,H_, isomers
n-decanal
n-dodecane
alkylhydroxy butyrate isoner
or unknown
C.-alkyl phenol Isomer
C.-H,, isomer
1J ib
graphic
Ptak No.
53
53A
54
57
57A
58
59
62A
63
64
65
66
67
68
Elution
Temp.
184
184
187
198
205
206
211
224
224
230
234
235
240
240
Compound
n-trldecane
B-methylnaphthalene
C,Hj,0 alcohol isomer (tent.)
n-tetradecane
biphenylene
•at. hydrocarbon (tent.)
ri-pentadecane
ri-hexadecane
C.-alkyl phenol isomer (tent.)
unknown
C..H..O isomer (tent.)
ii-heptadecanc
unknown
saturated hydrocarbon
See Table 28 for sampling protocol.
172
-------
Table B15. VOLATILE ORGANIC VAPORS IN AMBIENT AIR
OF BATON ROUGE, LA AT LOCATION #30*
ChroMto-
graphic
Peak No.
1
1A
2
2A
3
4
4A
5A
SB
6
7
7A
8
9
9A
9B
10
10A
10B
IOC
100
11
11A
12
13
13A
14
14A
15
ISA
16
16A
17
18
18A
19
19A
20
20A
21
22
23
24
25
26
27
Elution
Temp . Compound
CO
41
45
49
51
51
52
33
35
37
58
60
61
62
63
65
66
67
67
70
71
71
72
72
73
74
74
75
77
78
78
79
82
84
86
87
87
88
89
90
91
92
94
95
96
98
100
co2
n_-butane + butane laoaar
l.o pen tan*
C.H.n laoa.r
} 10
£-pentene
acetaldehyde
C.H.. laonar
3 10
dlchlorooathane (tent)
C4H12 Iaoner
2-ne thy Ipeatane
3-methylpcntane
C6H12 i.oB.r
hexafluorobenzen. (el)
n-hexane
chloroforn
C.HgO iaoaer (tent)
perfluorotoluene (el)
net hylcyclopen cane
1,1, 1-trlchloroethane
n-butanal
1 , 2-d Ichloroa thane
benzene
carbon tetrachlorlde (tent)
cyelohexane
2-n*thylhexane
2,3-diaethylpentane (tent)
3-o.thylh.x«n«
C.H,^ i.omer
C7K14 lso"tr
C8H18 1>OBtr
n-heptMC
C.H., Iaoner
nechylcyclohaxane
C6H18 t'°"tr
C6H120 Iaoner
C8H16 1'on*r
C,H., iaoaer
B 16
C.H.. I.omer
8 18
C8H18 i""wr
toluene
CgH.g laoaer
C8*18 1>0"*r
dlnethylcyclohexan* laoner
CgHj. iaoner
C8H16 It0"*r
n-octane
Chronato-
ar.phie
Peak He.
27A
27B
28
29
29A
30
30A
31
32
33
33A
33B
34
34A
35
35A
35B
36
36A
368
37
38
38A
39
40
40A
41
42
42A
43
43A
44
45
45A
46
47
47A
47B
48
49
49A
49B
30
SOA
Elution
Teap . Compound
CO
101
102
103
103
105
106
109
110
112
113
114
115
116
116
118
120
121
122
123
124
125
126
128
129
130
130
131
132
134
135
136
136
140
141
143
144
145
146
147
149
149
150
151
152
C8«16 Uontt
C9H20 1'OB"r
C0H2g i.om.r
C.B.. laomer
9 20
ethylcyelohaxana
CgH.g i.omtr
C.H.. iaomer
9 IB
ethylbenzene
CgH.g + xylene laomere
C9H20 U8m"
C.H18 iaoner
C9B16 iaomer
£-xylene
C0B.g I.om.r <+ atyrene
ii-nonane
CjBlg laomer
C10H22 1§oatr
laopropylbenzene
C10H22 l*OB"r
propylcyc lohexane
C10H22 i80Ber
C,nH,, i loner (tent)
1U il
i>-propylbenz*ne •(• C.-H-Q
laoner
ethyl toluene l.oroer
CJOH22 iaoner
C.-alkyl benzene l.oner
C^AH^h iaoner
ethyl toluene iaomer
C10H20 Uoa*r
1 , 2 , 4-trlmethylbenoncr
C10H12 lBOn'r
acetophenone
(continued)
173
-------
Table B15 (cont'd)
Chromato-
graphic
Peak No.
51
51A
52
52A
53
53A
53B
54
55
56
56A
56B
56C
57
57A
Elution
Temp . Compound
153
155
156
160
162
162
165
167
169
171
173
176
183
184
185
n-undecane
C.-alkyl benzene isomer
C,,H-, isoner
12 26
C,.-alkyl benzene isomer
C2-alkyl phenol + C4~alkyl
benzene Isomers
C,-alkyl benzene isomer
C.-alkyl phenol isomer
naphthalene •(• C,-H_, isoner
r 12 24
n-dodecane
C13H28 lsoi"er
C12H24 lsomer
C,-alkyl cyclohexane isomer
C, ,H-, isomer
13 26
n-tridecane
methylnaphthalene isomer
Chroma to-
graphic
Peak No.
57B
57C
58
59
59A
59B
59C
60
61
62
65
67
68
69
Elution
Temp.
186
192
194
198
199
202
205
207
210
211
223
234
235
237
Compound
methylnaphthalene + C^-alkyl
cyclohexane isomers
C,.H,- Isomer (tent.)
14 30
alkyl butyrate (BKG)
n-tetradecane
C.,H,g isomer
C2-alkyl naphthalene isomer
C, ,H_- isomer (tent.)
14 io
C _H isomer
unsat. hydrocarbon (tent.)
ii-pentadecane
£-hexadecane
C17H., Isomer (tent.)
17 36
ti-heptadecane
unsaturated hydrocarbon
See Table 28 for sampling protocol.
174
-------
Table B16. VOLATILE ORGANIC VAPORS IN AMBIENT AIR
OF BATON ROUGE, LA AT LOCATION #26
Chromato-
graphic
Peak No.
1
1A
2
2A
28
3
3A
4
4A
5
6A
7
8
8A
9
11
12
13
14
15
ISA
15B
16
17
17A
17B
18
19
19A
20
20A
21
22
23
23A
24
24A
25
2SA
26
27
28
29
30
Elutlon
Tenp.
CC)
41
44
45
46
47
48
49
50
50
51
52
53
54
55
56
59
59
60
60
64
64
65
66
69
69
70
71
73
74
75
76
77
79
82
83
84
86
87
89
89
90
92
93
95
Compound
co2
butene leonir
1,3-butadiene
C.H, leoner (tent)
1,2-butadlene (tent)
laopentane
C.H.. leoner
n-pentane
C.H. leoner
J 0
C.H.. leoner + eceteldehyde
dlehloronethane + C.H. liooer
C4H10° i§oner
cyclopentene
£-butanol + cjHi2 liom*r
2-ae thy Ipentane
C,H,, ieoner
hexafluorobenzene (el)
n-hexane
dl-ltopropyl ether
perfluorotoluen* (el)
nethyleyelopentane
C,H.,0 itoner
1, 2-d ichloroethan*
benzene
carbon tetrachloride
cyclohexane
2-oethylhexane
3-nethylhexane
C7H14 llomtr
C8H18 1§0"«r
trlchloroethylen*
i>-heptane
CgH.c Itoner
nethylcyelohexane
CgH16 Itomer
C8Hlg iioner
C.H,, leoner
5 10
C8H18 ilomitm"
n-propylbenten*
ethyl toluene itoner
1,3,5-trlnethylbenzene -f
C10H22 1§OB'r
C10H22 1§olner
o-ethyltolu«ne
C10H22 Uon«r
C10H20 U°"*r
1,2,4-trlmethylbenzene
nethylttyrene or CjH1Q Itoner
n_-decane
benzaldehydt (tent)
C.-alkyl benzene Itoner (tent)
1,2.3-trlnethylbenzen*
Indan or C_H.. Itomer
C^-tlkyl benzene Itoner
n-butylbeazene -f Cft-tlkyl ben-
zene Itoner
C11H22 1'00
-------
Table B16 (cont'd)
Chromato-
graphlc
Peak No,
53A
54
55
55A
55B
56
56A
56B
57
57A
57B
58
59
59A
60
60A
Elution
Temp.
CO
151
152
153
154
155
156
157
159
161
162
165
166
168
169
171
174
Compound
acetophenone
n-nonanal
n-undecane
creaol isomer (tent.)
C11H22 isoner
C.-alkyl benzene isomer
cresol isomer
C.-alkyl benzene isomer
dimethylphenol isomer
C,-alkyl benzene Isomer
Cj-alkyl phenol isomer
naphthalene
r>-decanal
ri-dodecane
1 , 3-hexachlorobutadiene
unsaturated hydrocarbon
Chromato-
graphic
Peak No.
61
62
63
66
66A
67
68
69
70
71
73
74
75
77
Elution
Temp.
CO
177
183
166
197
200
206
209
211
214
220
223
234
235
240
Compound
unknown
n-tridecane + 0-methyl-
naphthalene
a-methylnaphthalene
ri-tetradecane
dimethylnaphthalene isomer
sat. hydrocarbon (tent.)
C..H.Q isomer (tent.)
ii-pentadecane
unknown
diethylphthalate (BKG)
ri-hexadecane
C15H30° lsoner (tent-)
ii-heptadecane
unknown
See Table 28 for sampling protocol.
176
-------
Part II
Linden and Deepwater, NJ
177
-------
Table B17. VOLATILE ORGANICS IN AMBIENT AIR AT
AMERICAN CYANAMID CORP. (Pl/Ll)3
Chroma to-
graphic
Peak No.
1
1A
2A
2B
3
3A
4
5
6A
6B
7
7A
7B
7C
7D
8
10A
10B
11
11A
12
12A
13
14
14A
15
ISA
15B
16
16A
17
17A
18
ISA
IBB
19
19A
19B
20
21
22
22A
23
Elution
Temp.
CO
45
48
52
53
54
57
59
62
64
64
65
66
66
68
68
69
76
77
78
80
81
82
83
84
85
86
87
88
90
90
91
93
94
96
97
98
99
99
100
101
102
104
105
Compound
co2
n-propane (tent.)
n-butane
butene isomer
acetaldehyde
C,HgO isomer (tent.)
C5H10 isomer
Isopentane
C.H.. isomer
5 10
furan
n-pentane
prop anal
C5H10 UoBer
C.IU. Isomer
dlchloromethane
acetone
jt-butanol
C.H-0 isomer (tent.)
2-methy Ipentane
2-butenal or C,HfiO isomer
3-methy Ipentane
C,H. . isomer + unknown
hexafluorobenzene (el)
n-hexane
C,Hn, isomer
6 12
chloroform
C.H, , isomer
0 1 1
methyl ethyl ketone
perf luoro toluene (el)
C-.H., isomer
/ lo
C,H., isomer +• methylcyclo-
pentane
C.H., Isomer
7 16
1,1,1-trichloroethane
^6H10 lsomer
benzene
3, 3-dimethy Ipentane
carbon tetrachloride
cyclohexane
2-methy Ihexane
2,3-dlmcthylpentsne
3-methy Ihexane
dime thy Icy clopentane or C7H14
Isomer
dimethylcyclopentane or
C-Hj, Isomer
Chrooa to-
graphic
Peak Ho.
24
25
25A
25B
26
27
27A
28
28A
29
30
30A
31
31A
32
33
33A
34
36A
346
35
35A
37
38
38A
39
40
40A
41
42
42A
42B
43
44
44A
45
45A
46
46A
47
47A
47B
48
49
49A
49B
Elutlnri
Trap.
106
107
108
110
113
114
115
116
117
118
120
121
122
123
124
127
129
130
131
131
132
133
136
137
137
138
139
139
141
142
143
144
144
145
147
147
148
149
150
151
153
154
155
156
156
157
Compound
1-heptene * trlchloroethylene
n-heptane
C.H isomer
7 14
acetic acid (tent.)
C_H, „ Isomer
O 10
methylcyclohexane
C8H18 itoatr
C8H18 l80aer
CaH,, Isomer
6 16
C-H..,, Isomer (tent.)
O 10
C.H,, isooer
5 ID
C.H..O ketone isoner (tent.)
o 1^
toluene
CgH.g Isomer
CgHIg isomer
C8«16 liooer
C8H16 isomeT
ri-octane
CgH16 isomer
C.H. . Isomer (tent.)
B 14
tetrachloroethylene
C8H16 l901Ber
CqHjQ isomer
CgH,. isomer
C.H.,, Isomer
9 18
CgH.Q isoaer
C.-alkyl cyclohexane isoner
chlorobenzene (tent.)
CgH.g Isomer
ethylbenrene
C9H18 Isomer
CjHjQ Isomer
xylene isoner
C9H20 isoner
C.H.,, Isomer
C..H.. isomer (tent.)
C-H.- Isomer + styrene
9 18
is-xylene
C?H g Isoner
n-nonane
C10H20 lBOBtr
C9Hlg isomer
C..K.. Isomer
Isopropylbenzene
C10H22 Uo™r
C9H16 isomer
(continued)
178
-------
Table B17 (cont'd)
Chroma to-
graphic
Peak No.
50
51
51A
51B
52
52A
53
53A
54
54A
54B
55
56
57
58
58A
58B
59
60
60A
61
61A
62
62A
62B
63
63A
64
64A
65
65A
66
67
68
68A
69
70
70A
71
7JA
71B
72
r.lutlon
Temp .
CO
158
159
160
160
161
162
162
163
164
164
165
166
168
169
169
171
172
172
173
174
174
176
177
177
178
179
179
180
180
181
182
182
184
185
186
187
188
189
189
190
190
191
Compound
C10H22 I8oner
propylcyclohexan* or
C.H,. isomer
9 18
C1QH22 laomer
C10H20 1*OT'r
n-propylbenzene
benzaldehyde + phenol
ethylbenzene isomer
C10H22 liOBer
1,3,5-trimethylbenzene
C11H24 i$00"r (tent.)
cir>H2f) iioo"r
o-ethylbeniene
C10H20 1'CB*r
1,2, 4-triaethylbenzene
ii-decane
C,-H, isoner
10 20
C,-alkyl benzene + dichloro-
benzene (tent.) Isomer
C11H24 i'OB'r
C.-alkyl benzene isoner
C,,H,. isomer
11 24
1,2,3-trimethylbenzene
o-dlehlorobenzene
indan
C.-alkyl cyclohexane iiomer
C11H22 lsomer
C.-alkyl benzene iaoner
£-propyltoluene
ii-butylbenzene + die thy 1-
benzene isomer
C.,H,. Isomer
11 24
acetophenone
C^-alkyl benzene isoner
C, ,H_. isoner
11 24
dlmethylethylbenzene ieomer
n-nonanal
methylindan + CiiH22 i*oner>
n-undecane
C.-alkyl benzene +
C11H22 i80ners
C.-alkyl benzene laomer
C.-alkyl benzene Isomer
C,.H_, iiomer
12 24
C12H26 lio"*r
tetranethylbenzene is otter
Chromato-
(.raphic
Peak No.
73
73A
73B
74
75
76
77
Elutlon
Temp.
CO
192
192
193
193
195
196
197
Compound
C12H24 ltomer
C.-alkyl phenol Isooer (tent
Comer
C.-alkyl benzene isomer
ii-decanal
n-dodecane -f naphthalene
C.-alkyl benzene Iiomer
C..H.. isoner
12 24
C13H28 i*oner
C.-alkyl benzene lsomer
C12H22 i>omeT
C13H26 itoneT (tent.)
C.-H.. iiomer
12 24
C.H- benzene leaner
Cu«30 Corner
C. .«., isomer
J.J Aw
ii-trldecane
C13H26 iioner
B-methylniphthalene
C14H28 lsol"*r
a-methylnaphthalene
CnH26 i»oner
C.,H.n iioner
14 30
saturated hydrocarbon isomer
(tent.)
C, -!)„ iaoner
15 30
n-tetradecane
C14H28 Iiooer
C2-«lkyl naphthalene isomer
C,-«lkyl naphthalene Isomer
C15H30 * dimethylnaPhthalen<
isomers
C16H32 i'°""
C16H34 iton"
C. ,H.n itomer
15 30
ketone (?)
C15H30 ltomer
!
(continued)
179
-------
Table B17 (cont'd)
Chromato-
graphic
Peak No.
100
103
104
Elution
Temp.
(°c>
240
240
240
Compound
n- pent ad e cane
ri-hexadecane
C15H30° lsomer (tent-)
Chroma to-
graphic
Peak No.
105
106
Elution
Temp.
CO
240
240
Compound
n-heptadecane
C17H34 i80lner
See Table 30 for protocol. An OV-101 SCOT was used.
180
-------
Table B18. VOLATILE ORGANICS IN AMBIENT AIR AT
AMERICAN CYANAMID CORP. (P1/L2)*
Chroma to-
graphic
Peak No.
1
2A
2B
2C
2D
2E
3
3A
4
4A
5
6A
7
7A
7B
7C
7D
7E
7F
8A
8B
9
9A
10
11
12
13
13A
13B
14
14A
15
16
16A
16B
16C
17
17A
18
19
20
21
22
Elutlon
Temp.
CO
44
50
51
52
53
54
54
56
58
59
61
65
65
66
66
67
68
69
70
74
79
60
82
83
85
86
87
88
89
91
92
93
95
95
98
98
99
100
101
102
104
106
107
Compound
co2
chloromethane
propane (tent . )
C4H10 Isomer
butene Isomer
ii- butane
acetaldehyde
brononethane (tent.)
CjHgO Isomer (tent.)
C-H... Isomer
liopentane
acroleln
n-pentane
n-propanal
C.Hg isomer
CjH1(j laomer
2-thlapropane
dlchloromethane
acetone
C,H.O isomer
A B
^-butanol
2-nethylhexane
2-oethylpropenal
3-methylhexane
hexafluorobenzene (el)
n-hexane
chloroform
methyl vinyl ketone (tent.) +
C6H12 isomer
methyl ethyl ketone
per fluoro toluene (el)
C7H16 liol"r
C-B.x Isomer
trinethylbutane laoner
1,1, 1-trlchloroethane
C6H10 1§OBltr
benzene
3, 3-dlnethylpentane
carbon tetrachlorlde +
cyclohexane
2-methylhexane
2,3-dinethylpentane
3-ma thy lhaxane
3-ethylpentane
C7H14 1>OBer *
trlchloroethylene
Chroma to-
graphic
Peak No.
23
23A
24
25
26
26A
27
28
29
29A
30
31
31A
32
33
34
35
36
36A
37
38
39
39A
40
40A
41
41A
42
43
43A
44
44A
44B
45
46
46A
A6B
47
47A
48
49
SO
50A
51
52
Elutlon
Tenp *
(*C)
109
110
115
116
116
118
120
122
124
125
126
129
131
132
134
136
140
141
142
144
146
147
148
149
150
ISO
151
152
153
154
156
157
157
159
160
162
162
163
163
164
165
166
167
168
169
CcBpound
n-heptane
C.H. , laomer
C.H.. laomer
methylcyclohexane
C8Hlfl isomer
2,3-dlthiabutane
C.H., laomer
O 10
C8H16 * C6H12° liomer§
toluene
Ce>H«g lalOIDCr
Vis 1§OB"
C6»16 lMMr
C8H16 1'°"er
n-octane
tetrachloroethylene
unknown + CgHjQ Isomer
C-H.... Isomer
chlorobenzene
C-H.. Isomer
ethylbenzene
xylene Isomer
C9H20 liomtr
C10H22 Uooer
styrene + cgHig Isomer
cyclohexanone
o-xylene
CgH.g Isomer
ii-nonane
C9HI8 1(omcr
enlsole (tent.)
C9H18 Uoner
Isopropylbenzene
C10H22 1§omer
C10H22 1OBer
C10H20 1>OMr
o-ethyl toluene
n-octanal
(continued)
181
-------
Table B18 (cont'd)
Chromato-
graphlc
Peak No.
52A
53
54
54A
54B
54C
54D
55
55A
56
56A
56B
56C
57
58
58A
59
60
60A
61
61A
62
62A
62B
63
63A
63B
64
65
65A
653
66
67
68
69
71
72
Elution
Temp . Compound
170 CioH20 isomer
170 1,2,4-trimethylbenzene
171 iv-detane
173 isobutylbenzene +•
dichlorobenzene isoraer
174 C,-alkyl benzene isomer
174 cnH24 iso1Iier
175 C^-alkyl benzene isomer
176 ciiH24 isomer
176 1,2,3-trimethylbenzene
178 o-dichlorobenzene
179 indan
179 C10H20 isomer
180 C4-alkyl benzene +
C11H24 lsomer3
180 C,-alkyl benzene +
C11H22 isomers
181 C4-alkyl benzene isomer
182 n-butylbenzene
182 acetophenone
184 C4-alkyl benzene isomer
184 cnH24 isomer
186 C,-alkyl benzene isomer
186 ciiH22 isomer
187 n-nonanal
188 C,H, -benzene isomer
4 7
188 cuH22 isomer
189 n-undecane
190 C.-alkyl benzene Isomer
191 C4-alkyl benzene isoner
191 CnH22 isomer
193 tetranethylbenzene Isomer
194 ci2H26 isomel
194 dinethylphenol isomer
195 diethyl maleate
196 unknown
197 C2-alkyl phenol +
C, H.,-benzene isomers
4 7
199 unknown
204 ii-decanal
205 n-dodecane + naphthalene
Chromato- Elution
graphic Temp. Compound
Peak No. (°C)
72A 206 Cj-alkyl benzene isomer
72B 206 ci2H24 lsonier
72C 207 C5Hj-benzene isomer
73 208 C13H2g Isomer
74 209 ci2H24 iaomet
75 212 C13H26 isomer
76 213 C6-alkyl cyclohexane Isomer
77 215 C13H28 isomer
78 217 unknown
79 218 C,-alkyl benzene 4
o
C13H26 lsoBier8
80 220 n-tridecane
80A 221 ci3H26 lsomer
SOB 222 c1i,H2g l8OIDer
81 223 6-methylnaphthalene
81A 223 ci4H3Q i8<""er
82 225 o-methylnaphthalene
83 226 unknown
83A 227 cj.4H28 iscmer
84 229 C14H28 isomer
85A 233 ci4H28 isomer
85B 234 blphenyl
86 235 n-tetradecane
B6A 237 C15H30 isomer
86B 238 C2-alkyl naphthalene isomer
86C 240 dimethylnaphthalene isomer
87 isothermal dimethyl isophthalate (tent.)
87A
87B
88
90
91
9U
93
95
97
97A
99
101
102
103
dioethylnaphthalene Isomer
C..H... isomer
C15H32 isomer
C15H.Q Isomer
n-p «n tad ecane
acenaphthenc
dlbenzofuran
diethyl phthalate
ii-hexadecane
C..H-, isomer (tent.)
10 32
benzophenone
C15H30° Ii0n*r
n^-heptadecane
C17H34 l80mer
aSee Table 30 for protocol. An OV-101 SCOT was used.
182
-------
Table B19. VOLATILE ORGANICS IN AMBIENT AIR AT
AMERICAN CYANAMID CORP. (P2/L1)3
Chroma to-
graphic
Peak No.
1
2A
26
3
3A
4
4B
4C
4D
5
5A
5B
5C
6
7
7A
8
8A
9
9A
10
10A
11
11A
118
11C
12
13
13A
13B
14
14A
14B
14C
15
16
17
17A
18
19
20
20A
2 OB
Elutlon
Temp.
45
51
52
53
57
62
63
64
65
65
66
67
68
69
72
77
78
80
81
82
83
84
85
86
87
88
90
92
94
97
98
98
99
100
100
101
103
103
105
106
108
110
111
Compound
co2
butene Iaomer
butane (tent.)
acetaldehyde
unknown
Isopentane
C5H10 i80B1"
furan or C.Hg iaoner
C5H10 lsem"r
n-pentane
C,Hg Isomer
propanal (tent.) +
dimethyl ether
C5H10 lsOB"r * dlchloromethane
acetone -f acrylonltrlle
iaopropanol
ter-butanol (tent.)
2-methylpentane
butenal
3-methylpentane
C6H12 lsoDer
hexafluorobenzene (el)
but anal
n-hexane
chloroform + C,H,. Isomer
o n
methyl vinyl ketone
methyl ethyl ketone
perf luorotoluenc (et)
methylcyclopentane or
C.H. r. leomer
6 12
1,1, 1-trichloroethane
C6H1Q Iaomer
benzene
C7H16 1'°"er
carbon tetrachloride (tent.)
C7H14 ito»«r
2-methylhexane
2, 3-dlmethylpentane
3-aethylhexane
CjH^ Iaomer
CjH^ iaomer
trichloroethylcne •*•
C7H14 1*OBtr
it-heptane
acetic acid (tent.)
C,H. Iaomer
7 14
Chromato-
graphlc
Peak No.
20C
21
21A
22
22A
22B
23
23A
24
25
25A
26
26A
27
28
28A
29
29A
30
30A
31
32
32A
32B
33
33A
34
35
36
36A
37
38
38A
38B
38C
39
39A
40
40A
41
42
42A
43
44
45
4SA
Elutlon
Temp . Compound
CO
114
115
116
117
121
121
123
124
126
128
130
131
133
134
138
140
141
142
144
145
146
147
149
150
150
151
152
153
157
159
160
162
163
163
164
164
165
165
166
166
168
168
169
170
171
175
C8H18 i.omer
uethylcyclohexane
CflH18 iaomer
2,3-dlthiabutane
C8H16 lson*r
CgHjg Iaomer (tent.)
toluene
C8Hlg iaomer
C8Hlg Uomer
C8H18 1'omer
C8H16 iBoner
£-octine
CgH., iaomer
tetrachloroethylene
C.H.. Iaomer
C9H18 i"m"
chlorobenzene
C.H.g iaoner
ethylbenzene
caK20 losBer
xylene iaomer
C9H20 i80mer
ttyrene or cyclooctatetraene
C.Hj. Iaomer
o-xylene
cyelohexanone
ii-nonane
ketone Iaomer (tent.)
laopropylb*ncen<
C10H22 Ii0ner
C9H18 UolBer
bentaldehyde
£-propylbensene
C10H22 liom'r
ethyl toluene iioaer
unknown
C10H22 1>on"r
1,3,5-trlnethylbenzene
C11H24 1§om'r (*•»*•)
C10H20 1§OB"r
£-ethyltoluene
C10H18 1'omtr (tent>>
n-octanal + C1QH20 iaomer
1.2,4- 1 rime thy Ibenzene
n-decane
C,-alkyl benzene
(continued)
183
-------
Table B19 (cont'd)
Chromato-
graphic
Peak No.
45B
46
46A
47
47A
48
49
50
50A
51
51A
52
53
53A
54
54A
54B
54C
5AD
Elutlon
Temp. Compound
(°C)
175
176
178
179
180
181
182
183
184
184
185
186
188
188
189
190
191
192
193
C11H24 Uomer
1,2, 3-trimethylbenzene
dlchlorobenzene Isomer
indan +• C1QH20 isomer
C^-alkyl benzene Isoaer
propyltoluene Isomer
ii-butylbenzene + C,-alkyl
benzene isomer
•cetophenone
C11H24 lsomer
C.-alkyl benzene Isomer
CUH22 isomer
C.-alkyl benzene isomer
n-nonanal
C.H, benzene Isomer
4 7
ii-undecane
C.-alkyl benzene isomer
C.-alkyl benzene +
C11H22 isomers
C12H26 *Bomer
tetramethylbenzene Isomer
Chromato-
graphlc
Peak No.
55
56
57
58
58A
59
60
61
61A
62
62A
63
64
65
66
67
68
69
71
72
Elutlon
Temp .
CC)
195
197
199
200
201
202
205
206
207
208
211
214
216
218
221
223
226
229
234
235
Compound
dlethyl maleate
C/H~ benzene + C. *HA *
dlethyl fumarate
unknown
isomers
Cj-elkyl benzene isomer
C.-alkyl benzene isomer
n^-decanal
naphthalene 4 n-dodecane
C12H24 1§ww«
C13H2g isomer
C12H24 isomer (tent.)
C13H26 lsoner
C. .H., isomer
1 J £O
C..H,0 Isoner (tent.)
1 J to
n-tridecane
6-me thy Inaph t ha 1 ene
a-me thy Inapht ha 1 ene
C14H28 1>oner
C15H30 l80ner
ii-tetradecane
See Table 30 for protocol. An OV-101 SCOT was used.
184
-------
Table B20. VOLATILE ORGANICS IN AMBIENT AIR AT
AMERICAN CYANAMID CORP. (P2/L1)
Chroma to-
graphic
Peak No.
1
2A
2B
2C
3
4
4B
4C
4D
5
5A
5C
SO
5E
6A
6B
7
7A
8
8A
9
10
10A
11
11A
12
13
13A
14
14A
15
15A
15B
16
17
18
19
20
20A
21
21A
21B
21C
22
22A
23
Elution '
Tenp . Compound i
(*r) '
45 CO2
SO C4H10 itomer
butint laomir
54 n-butana
54 acitaldahyde
62 iaopantani
64 CjH1Q iioner
65 furan
65 C«H10 itonar
66 n-pantant
67 propanil
68 C.H.Q iiontr
69 dlchlorontthani
70 acatom
74 iiopropanol (tint.)
76 ttr-butanol
78 2-nithylptntana
80 butanal lionar (tint.)
81 3-oathylptntani
82 CjHi2 I*00**
83 hixafluorobansani (at)
85 n-hixii»
86 nathyl athyl kitcni
86 chloroform
88 C,H., Iionir
0 A*
90 ptrf luorotolutnt (af)
92 nathylcyclopantana
92 C7H , lacmar
f 4.W
94 1,1,1-trichlorotthmnt
97 CfiH10 !•«•«?
98 banzana
98 carbon tatrachlorldi
99 eyclohaxtna
100 2-Bit hylhixint
101 2,3-dlmathylpantani
102 3-»athylhtx«nt
105 C7Hj4 iionir
106 trlchloroathylane
107 C?H14 iiontr
108 n-h*ptant
109 C7Hi4 laooir
110 acitlc acid
112 C7HJ4 iionir
115 mathylcyclohaxana
116 CgHl6 iiomar
116 C.H.. iioaiir
Ihronato-
raphic
>cak Ho.
24
24A
25
26
26A
27
28
28A
28B
29
29A
30
30A
31
32
32A
33
33A
34
34A
34B
35
35A
35B
36
37
37A
37B
37C
38
38A
39
39A
39B
40
40A
40B
40C
40D
41
41A
418
41C
41D
42
42A
Elution
Tcnp . Compound
118 CgHJ6 leomar
119 4-Dithyl-2-p»tanone
120 CgH18 iaoMt
122 telutnt
123 CgH1g laonar
125 CgH18 laooar
127 dlmathylcyclohaxana iaomar
128 CgHlfi laoBar
129 CgH16 lionar
130 n-octtnt
132 dinathylcyclohaxana laontr
132 tttrtchloroathyltn*
133 CgH16 iioMr
136 C,H20 laonar (tint.)
137 CjH20 iaomir
138 CjH16 ilomtT
139 CjH20 iaonir
139 ithylcyclohixant
141 CjHi8 iiomtr
141 eyelopantanona
142 CjH18 Iiomtr
143 ithylbiniant
144 C9Hlg i»o«ar
144 C9H2Q iaomar
145 xyltnt iaonar
146 CjHjQ iiotttr
148 C9H20 iaoaar (tint.)
149 ityrtnt
149 C9H18 iaonar
150 o- xyltnt
151 C.-alkyl cyclohaxani iiomtr
151 n-nonani
152 alkyl butyraea (tint.)
153 1-acatoxy-butana-l (tant.)
155 C9H18 lionar
156 laopropylbancana
1S7 C10H22 iionir
158 C?H18 laonir
158 ceHi6 I*00*1
159 C10H22 IMMI
160 propylcyclohaxana
160 C1QH22 laouir
"1 C10H20 laoBtr
162 n-propylbans«ta
163 baualdahyda
163 athyltoluana iionar
(continued)
185
-------
Table B20 (cont'd)
Chtomato-
graphlc
Peak No.
42B
43
43A
43B
43C
44
44A
44B
45
46
46A
46B
46C
46D
46E
46F
47
47A
48
48A
48B
48C
49
50
50A
51
Elution
Temp.
164
165
165
166
167
167
169
169
170
171
172
173
173
174
175
175
176
176
178
179
179
180
180
181
182
182
Compound
C10H22 lsomer
1, 3,5-trlmethylbenzene
C10H22 lsomer
C._H-O isomer
cyanobenzene (tent.)
o-ethyl toluene
C10B20 I80mer
ri-octanal (tent.)
1,2,4- trlmethylbenzene
n-decane
diethyl phthalate
C10H20 I80ner
dichlorobenzene Isomer
C^-alkyl benzene isomer
C,-alkyl benzene isomer
^11^24 ieoaer
1,2, 3-trlmethy Ibenzene
C. ,H,, isoner
12 26
o-dichlorobenzene
indan
C^-alkyl cyclohexane Isomer
C, -alkyl benzene +
C11H22 lsonerB
C, -alkyl benzene isomer
C^-alkyl benzene isomer
C11H24 l80mer (cenc-)
acetophenone
Chroma to-
graphic
Peak No.
51A
51B
52
52A
53
53A
54
54A
55
55A
56
57
58
59
60
61
61A
62
63
63A
64
65
66
66A
67
68
69
Elution
Temp.
CO
183
184
186
187
187
188
189
189
193
195
196
197
200
201
204
205
206
208
214
216
217
221
223
226
229
233
235
Compound
C11H24 lsooer
C, -alkyl benzene Isomer
C.-alkyl benzene isomer
C,-alkyl benzene isomer
n-nonanal
C11H22 iaomer
ti-undecane
alkyl butyrate (tent.)
tetramethylbenzene isomer
C12H26 lsoner
C, -alkyl benzene Isomer
C_-alkyl cyclohexane Isomer
C12H24 i80Ber
C,-alkyl benzene Isomer
n-decanal
ii-dodecane + naphthalene
C13H26 I80mer
C..H.0 lsoner
13 26
C,,H-, Isomer
C13H26 isomer
C13H28 1>oner
jn-tridecane
6-uethylnaphthalene
a-methy Inapt) thalene
hydrocarbon
C14H30 I80mer
jri-tetradceane
See Table 30 for protocol. An OV-101 SCOT was used.
186
-------
Table B21. VOLATILE ORGANICS IN AMBIENT AIR AT
AMERICAN CYANAMID CORP. (P2/L3)3
Chromato-
graphlc
Peak No.
1
4
4A
4B
5
5A
5B
6
6B
6C
7
7A
7B
8
9
9B
9C
9D
10
10A
10B
11
11A
12
13
14
14A
UB
15
16
16A
17
17A
IS
ISA
IBB
19
20
21
21A
22
23
23A
24
24A
25
Elutlon
Temp.
CO
45
50
52
52
53
55
57
62
65
65
66
67
67
69
70
72
75
77
78
80
81
82
83
84
85
86
87
90
91
92
93
94
97
98
99
100
101
102
103
104
105
107
107
108
111
115
Compound
co2
chlorooethane
n-but.ane
butene laoner
acetaldehyde
brononethane (tent.)
chloroethane
laopentane
furnn
CjH.. iaoner
n-pentane
propanal
C.H.. laooer
dlchloroaethane
acetone
carbon dlaulflde
liopropanol (tent.)
t«r-butanol
2-methylpentane
but anal
butenal
3-methylpentane
C/H.j la oner
h»xaf luorobenzene (el)
n-hexane
C&H12 laomer 4 chloroform
methyl ethyl ketone
C6H12 1>oaer
pcrf luorotoluene (el)
methylcyclopentane
1,2-dlchloroethane
1,1, 1-trlchloroethane
C6H10 Uomer
benzene
carbon tetraehlorlde
cyclohexane
2-aethylhexane
2, 3-dlnethylpentane
3-methylhexane
C6H10 I80"*r
C-H, , laooier
ttlchloroethylene
C7H14 1§ol"r
n-heptane
acetic acid (tent.)
mthylcyclohexane
Chroma to-
traphlc
Peak No.
25A
26
26A
27
28
29
29A
30
30A
31
32
32A
32B
32C
33
34
35
35A
36
37
38
39
40
41
42
42A
43
44
45
45A
45B
46
46A
47
47A
48
48A
48B
48C
49
50
51
52
52A
Elutlon
Temp.
CO
116
117
119
119
122-6
128
130
131
132
133
137
138
139
139
140
142
144
149
146
147
149
150
152
156
157
157
159
160
161
162
162
163
163
164
165
165
166
167
167
168
170
170
171
173
Compound
C8H1Q laomer
2,3-dlthiabutane or
C.H.S. liomer
C-H,, laoner
o xo
4-nethy 1- 2-pentanone
toluene
GoH.* laoioer
8 16
C.H., laomer
o 10
£-octane
C.H., laomer
0 10
tetrachloroethylene
SH20 1'°»"
dithlapentane Isomer
CgH.- laomer
CaH.g laomer
chlorobeczene
CjHjg laomer
ethylbenzene
C9H20 1"OBer
xylene laomer
C9H2Q isomer
cyclohexanone
o-xylene
n-nonane
3 , 4-d 1 thlahexane
laopropylbenzene
C10H22 iBOner
C10H22 1§0mer
C,-»lkyl cyclohaxane laoner
C.-H, „ laomer (tent.)
1U 1.0
C10H20 Ig00ier
n-propylbenzene
bentaldehyde
phenol
ethyl toluene laoner
unknown
1 , 3, 5-trlmethy Ibeniene
C11H24 i>OIIier
C10H20 i80ner
cyanobenzene
o-ethyl toluene
n-oc t anal ( tent . )
1,2,4-trimethylbetuene -f
C10H20 1*00er
n-decane
C10H20 1'OBer
(continued)
187
-------
Table B21 (cont'd)
Chromato-
graphic
Peak No.
53
53A
53B
54
54A
55
55A
55B
55C
56
56A
57
58
59
59A
60
60A
61
61A
62
62A
62B
62C
62D
63
64
64A
Elution
Temp.
CO
173
175
176
176
178
178
179
179
180
181
181
182
182
183
184
185
187
187
188
189
191
191
192
193
195
196
196
Compound
dlchlorobenzene isomer
C.-alkyl benzene isomer
C11H24 l80mer
1 , 2, 3-trbnethylbenzene
tolualdehyde Isomer (tent.)
o-dichlorobenzene
Indan + C^H^ Isomer
C^-alkyl cyclohexane Isomer
C,-alkyl benzene isomer
propyltoluene iaomer
cresol Isomer
n-butylbenzene +
C.-alkyl benzene isomer
acetophenone
C11H24 l80nier
C^-alkyl benzene Isoner
C.-alkyl benzene isomer
C.-alkyl benzene isomer
n-nonanal
C11H22 1'omer
£-undecane
C.-alkyl benzene isomer
^11H22 ison"r
ethylphenol Isomer
tetramethylbenzene +•
C12H24 lBOneI»
dlmethylphenol isomer
diechyl oaleate
unknown
Chroma to-
graphic
Peak No.
65
66
66A
67
67A
68
69
69A
69B
70
70A
71
72
73
73A
74
74A
75
76
77
78
78A
79
79A
79B
79D
80
80A
81
Elution
Temp.
CC)
197
199
201
202
203
204
205
206
207
208
213
214
215
217
220
221
222
223
226
228
232
234
235
240
240
240
240
240
240
Compound
C.-alkyl phenol Isomer
unknown
C.-alkyl phenol Isomer
C.-alkyl phenol isomer
trlchlorobenzene isomer
n-decanal
naphthalene + ri-dodecane
C.-alkyl benzene isomer
C12H24 lBODeT
C13H28 lsomet
C.,H,, Isomer (tent.)
1J Zo
C,-alkyl cyclohexane Isomer
C.Hg-benzene Isomer
unknown
n-undecanal
n-tridecane
C13H26 lBomer
6-oethylnaphthalene
a-methylnaphthalene
C14H28 I80mer
C14H30 I80»er
biphenyl
ii-tetradecane
C.-alkyl naphthalene Isomer
C.-alkyl naphthalene iaomer
C15H30 1*oner
n^-pentadecane
C16H32 it
-------
Table B22. VOLATILE ORGANICS IN AMBIENT AIR AT
AMERICAN CYANAMID CORP. (P3/L4)*
Chronato-
iraphie
Faak No.
1
2A
2B
2C
2D
3
4
3
6A
6B
6C
7
7A
7B
7C
a
9A
9B
10
10A
10B
11
1U
12
13
14
14A
13
16
16A
16B
16C
17
17A
17B
18
19
20
21
22
22A
23
23A
24
24A
Ilutlon
43
30
31
32
31
33
33
61
63
63
64
64
63
63
67
67
70
73
77
76
79
ao
81
82
83
84
86
88
90
91
93
96
97
97
98
99
100
101
104
103
103
107
108
110
113
Compound
co2
chloroaathana
C4H,0 iao»ar
butana laonar
pbutana (tant.)
acataldahyda
ehloroathana
laopantana
C3H10 t
-------
Table B22 (cont'd)
Chromato-
graphic
Peak No.
52A
53
53A
54
55
55A
55B
56
56A
57
57A
58
58A
58B
59
59A
60
61
61A
62
63
63A
64
64A
65
66
66A
67
67A
68
69
69A
70
70A
71
72
73
Elution
Temp.
168
168
169
169
170
172
173
174
175
175
177
178
178
179
180
181
181
182
182
183
185
186
187
188
188
190
192
193
194
195
195
196
197
197
198
199
200
Compound
C11H24 lsoaier
n-octanal
C10H20 is°mer
1,2, 4- trimethy Ibenzene
n-decane
isobutylbenzene +
dlchlorobenzene isbmer
sec-bu ty Ibenzene
C.-H.. + C.-alkyl
10 20 4 '
benzene Isomer
^11^24 *somer
1, 2, 3- trimethy Ibenzene
o_-dichlorobenzene +
C11H24 lsomer
indan -f C^H,- isomer
C^-alkyl cyclohexane isomer
C.-alkyl benzene isomer
C^-alkyl benzene isomer
cresol isomer
ji-buty Ibenzene + C.-alkyl
benzene isomer
acetophenone
C. ,H.. isomer
11 24
C,-alkyl benzene Isomer
C^-alkyl benzene isomer
C^-alkyl benzene isomer
n-nonanal
C11H22 lsomer
ti-undecane
C4-alkyl benzene +
C11H22 isomers
C12H26 iaoaet
tetramethylbenzene Isomer
dimethylphenol Isomer
diethyl maleate
unknown
C,-alkyl phenol Isomer
C^.Knn + C,H»— benzene isomers
C.-alkyl benzene isoraer
diethyl fumarate
unknown
C.-alkyl benzene isooer
Chromato-
graphic
Peak No.
74
74A
74B
74C
75
76
76A
76B
76C
77
79
BOA
81
81A
82
83
84
85
86
87
87A
88
88A
89
89A
89B
89C
89D
90
Elution
Temp . Compound
201
201
202
202
204
205
205
206
207
207
213
216
217
218
219
220
222
225
226
228
231
232
233
234
239
240
240
240
240
91A isothe
92
92A
92B
93
94
95
96
97
98
99
100
•mal
C.-alkyl benzene isomer
C10H20° lso»er
C12H24 tsooer
trichlorobenzene isomer
n-decanal
n-dodecane + naphthalene
C.-alkyl benzene Isomer
C,H_-benzene Isomer
C12H24 i80mel:
C13H28 isomer
C13H26 isomer
C13H28 lsomer
unknown
C13H26 lsonier
n-undecanal
ri-tridecane
B-methylnaphthalene
a-me thy Inaph thalene
unknown
C14H30 l80lner
C15H32 isomer
C14H30 l80IBer
C14H28 i80ner
ti-tetradecane
biphenyl
C,,Hno Isomer (tent.)
14 28
C15H30 l80Der
C.-alkyl naphthalene igomer
C16H34 l80ner
C1en.,n Isomer
15 30
n-pentadecane
C..H..O alcohol Isomer (tent.)
acenaphthene
unknown
diethyl phthalate
n-hexadecane
benzophenone
saturated hydrocarbon
C15H30° isoner
n-heptadecane
saturated hydrocarbon
See Table 30 for protocol. An OV-101 SCOT was used.
190
-------
Table B23. VOLATILE ORGANICS IN AMBIENT AIR AT E. I. DuPONT
(P4/L4)a
Chromato-
graphlc
Peak No.
1
2A
2B
2C
2D
3
3A
4A
4B
4C
5
6
7A
7B
8
8A
9
9A
10
11
12
12A
12B
13
14
14A
15
15A
16
16A
16B
16C
17
18
19
19A
20
21
22
22A
23
23A
23B
24
25
25A
• Elution
Tenp.
CO
45
50
50
53
53
54
61
63
64
65
65
68
72
77
78
79
81
82
83
84
86
87
88
89
91
92
94
96
97
98
99
99
100
101
102
104
105
106
107
108
109
111
113
114
116
118
Covp ound
co2
propane (tent.)
chloronethane (tent.)
C4Hg iaoner
n-butane
acetaldehyde
iaopentane
C.Hj, iaoner
furan
propenal
propanal
dichloronethane + acetone
CjHgO laomer
C^HgO aldehyde iaoner
2-nethylpentane
2-nethylpropenal
3-nethylpentan*
C,H., iaomer
6 12
hcxafluorobenzene (el)
n_-hexane
chloroform
nethyl vinyl ketone
methyl ethyl ketone
perfluorotoluene (at)
methylcyclopentane
1,2-dichloroe thane
1,1,1-trichloroethane
C6H10 isomer
benzene
dinethylpentane iaouer
carbon tetrachlorlde
cyclohexane
2-aethylhexane
2, 3-dlnethylptntane
3-methylhexane
3-ethylpentane
CjH., iaoner
trichloroethylene
n-heptane
CjH.-O iaoner
methyl aethacrylate
acetic acid (tent,)
CgH.g laomer
nethylcyclohexane
C8H1B 1>ooer
C8H16 t*ODCT
Chroma to-
graphic
Peak No.
26
26A
27
28
28A
28B
29
30
31
31A
31B
32
33
34
34A
34B
34C
34D
35
35A
36
36A
37
37A
37B
38
38A
39
40
40A
41
42
42A
43
44
45
45A
46
47
47A
48
48A
48B
48C
Elution
Tamp . Compound
CO
118
120
123
125
127
129
129
130
133
136
139
140
144
145
146
147
148
149
150
151
152
154
157
159
160
161
162
163
163
164
165
166
168
169
170
171
173
173
176
177
178
180
181
181
4-methyl-2-pentanone
C8H16 iaoner
toluene
C8H18 lloner
C-H,, iaomer
o ID
hexanal (tent.)
1 ,2-dibromoethane
ti-octane
tetrachloroethylene
C9H20 iiomer
Cgd.. iaoner
chlorobenzene
ethy Ibenzene
xylene iaomer
SH20 liomer
CjHjg iaoner
CjHjo laoner
atyrene
.o-xylene
C^H18 iaoner
ii-nonane
C9«18 laoner
laopropy Ibenzene
C10H22 lio
-------
Table B23 (cont'd)
Chromato-
graphic
Paak No. _
49
SO
SOA
31
31A
32
52A
53
54
S4A
55
35A
56
56*
58
5»
(1
42
«
64
Elution
Tamp.
(*C)
182
183
185
186
187
187
186
189
189
191
193
194
193
196
198
200
203
204
203
208
Compound
acatophanona
craaol + ciiH24 liolntri
C^-alkyl ban i ana laonar
nitrebantana
C^-alkyl baniana laomar
ri-nonanal
C,,H,, iaomar
n-undaeana
Cj-alkyl bantana laonar
alkyl iaobutyrata (tant.)
chloroanlllna liomar
nitrophanol laonar
dichlorotoluana or
C^H.Cl, iaomar
CgHj^N iaomar (tant.)
o-ni:rotoluana
C12H24 liOBM +
banaoie acid (tant.)
trichlorobaniana Iaomar
n-dt canal
naphthalan* + n-dodacana
£-nltrotoluana
Chromato-
graphie
P«ak No.
65
66
67
68
69
70
71
72
73
73A
74
73
76
77
76
78A
78B
78C
76D
79
Elution
Tamp. Compound
CO
210
210
212
214
217
221
223
223
226
227
229
233
234
235
237
239
240
240
240
240
trichlorobaniana Iaomar
chloroni trobaniana iaonar
chloronitrobaniana laonar
C.-Hj. liomar
CUH30 l|om*r
ii-trldacana
B-mathylnaphthalana
dichlorontcrobaniana or
dlchloroanilina Iaomar
o-oa thy Inaphthalana
C14H28 Ii0mem'1
alkyl phthalita (tant.)
CjjH,, iaomar
C13H30 itomtr
n-pantadacana
See Table 30 for protocol. An OV-101 SCOT was used.
192
-------
Table B24. VOLATILE ORGANICS IN AMBIENT AIR AT E.
(P5/Ll)a
I. DuPONT
Chrooi to-
graphic
Peak No.
1
2A
2B
3
3A
3&
3D
3£
3F
4
5
5A
6
6A
6B
6C
7
8
9
9A
9B
9C
10
11
11A
11B
12
12A
12B
13
14
15
ISA
16
17
17A
17B
18
ISA
19
20
21
22
22A
23
23A
Elution
Teap.
rc)
45
52
S3
54
55
61
64
65
66
67
69
70
78
79
80
81
83
84
86
86
88
89
89
91
93
94
97
98
98
99
100
101
103
104
105
105
106
107
108
110
112
113
US
117
118
119
Compound
co2
n-propane (tent.)
butenc (tent.)
ecetaldahyde
n-butana (tent.)
laopentane
C.H.Q laoaer
n-pentane
propenal + propanal
dlchloronethane
dlethyl ether
acetone
2-methylpent«ne
C^HgO la oner (tent.)
2-methylpropenal
3-nechylpentenc
hexafluorohexana (el)
n-hexane
chloroform
butanal (tent.)
•ethyl vinyl ketone
methyl ethyl ketone
perfluorotoluene (el)
methylcyclopentani
1,2-dichloroethane (tent.)
1.1,1- trlchloroathane
benzene + C^H^g liomer
carbon tetrachlorlde
cyclohaxane
2-nethylhexane
2, 3-dlmethylpentana
3-methylhexane
C.H. , laooar
3-ethylpentane
C7H14 laoaer
trlchloroethylent (tent.)
£-pentenal
n-heptan*
acetic acid
C7H,4 laoaer
C8HI8 iaeoer
methy Icyc lohexane
CjH18 laoner
C8H16 li°"*r
4-aet hy 1- 2-pen tanone
C8H16 1'n"T (cent.)
Chroma to-
iraphic
Peak No.
24
24A
25
26
27
28
26A
29
29A
29B
30
30A
31
31A
32
32A
32B
33
33A
34
34A
34B
SAC
35
36
36A
37
37A
37B
37C
37D
38
39
40
AOA
41
4 LA
42
42A
43
43A
44
Elution
Temp.
CO
121
122
124
126
128
129
131
132
136
138
139
140
142
143
144
145
148
149
149
150
154
155
160
161
162
163
164
165
166
166
167
168
169
170
171
172
174
175
176
177
178
179
Compound
toluene
CgH.. laoner
C8H18 iiomer
CgHJ6 leoner
n-hexanal +• C.H., Itoner
— o ID
ii-octane
CgH,, leoner
tetrachloroethylene
C9H18 lio1Mr
C9H20 lsoBltr
chlorobenzene
C9H18 UoB"
•thylbenzene laooar
CgH2g ieoner
xylene lioner
C9H20 1'OMr
•tyrene
e-xylene
C.H,8 taoner +
n-hiptanal (tent.)
n_-nonane
C9H18 liOBtr
C..H.. iaoner (tent.)
10 22
n-propylbenzene
bencaldehyde
phenol
ethyltoluene ieoner
C10H22 it
-------
Table B24 (cont'd)
Chromato-
graphlc
Peak No .
44A
45
46
47
48
49
49A
49B
49C
50
50A
51
52
Elution
Temp.
180
181
182
184
186
187
189
190
191
192
194
195
197
Compound
C,-alkyl benzene isomer
acetophenone
C11H24 isolner
C^-alkyl benzene +•
C0H1D0 isoaers
9 18
n-nonanal
n-undecane
C11H22 isolner
Cj-alkyl phenol isomer (tent.)
C,-alkyl benzene isomer
dimethylphenol iaomer
Cj-alkyl benzene +•
C11H22 isomer8 (tent.)
Cj-alkyl phenol Isomer
C12H24 (tent-> + C2-alkyl
phenol + caHio0 lsomers
Chromato-
graphic
Peak No.
52A
53
54
55
55A
56
57
58
59
60
60A
62
62A
63
67
68
Elution
Temp.
199
200
202
203
205
212
215
218
219
221
223
230
232
233
240
240
Compound
C,-alkyl phenol isomer
C.-H.-jO Isomer
j>-decanal
n-dodecane + naphthalene
C. ,H,. isomei
12 24
C12H24 1'°nCT
C, ,H-- Isomer
13 28
ri-undecanal
n-tridecane
6-methy Inaph t ha 1 ene
a-methylnaphthalene
alkyl butyrate
C15H32 lBOnier (tent.)
n-tetradecane
ji-pentadecane
unknown
a.
See Table 30 for protocol. An OV-101 SCOT was used.
194
-------
Table B25. VOLATILE ORGANICS IN AMBIENT AIR AT E.
(P5/L4)3
I. DuPONT
Chroaato-
grbphic
Peak No.
1
2A
2B
3
3A
3B
3C
5
5A
6
6A
7
7A
8
8A
9
10
11
12
13
13A
13B
13C
14
14A
14B
15
16
17
18
19
20
20A
20B
21
22
23
24
25
25A
26
27
27A
28
29
Elution
Temp.
CO
46
50
52
53
54
55
59
63
64
65
66
74
75
77
78
79
80
82
85
88
88
89
90
94
95
95
96
97
98
101
102
104
105
J06
107
110
111
112
115
J16
117
119
120
122
125
Compound
co2
propane (tent. )
butene
acetaldehyde
n-butsne (teitt.)
C5H10 isoaer
isopentane
propanal + n-pentane (tent.)
C5HJO Loner
acetone
dichloromethane
2-methylpent«ne
2-nethylpropenal
3-me thyl pentane
n-butanal
hexafluorobenzene (el)
n-hexane
chloroform
perfluorotoluene (et)
methylcyclopentane
methyl ethyl keton*
1,2-dichloroethane
1,1, 1- tr ichloroe thane
benrene + 3,3-dimtthylpentane
carbon tetrachlorlde
cyclohexane
2-methylhexane
2,3-dioethylpentanc
3-methylhexane
3-ethylpentane + CjH,4 isomer
C.H., isoner +
tr ichloroe thy lene
n-heptane
ii-pentanal
acetic acid (tent.)
CgH16 Isoner
CgH.g isoner
methylcyclohexane
C8H18 1*aner
C.H., isomer
0 10
4-nethyl- 2-pentanone
CgH,fc isoner (tent.)
toluene
CgH18 iscoer
C8H18 t<00"r
C.H., Isomer
0 .10
Chrouto-
[raphic
Peak No.
30
30A
31
32
32A
33
33A
34
34A
35
35A
35B
36
36A
37
37A
37B
39
39A
40
40A
41
41A
42
42A
43
44
44A
45
46
47
48
48A
49
49A
50
51
52
52A
53
54
55
56
56A
57
Elution
Te*p.
126
127
127
130
136
137
138
141
141
142
144
146
148
148
149
154
155
161
162
163
163
J64
165
167
168
168
169
170
171
174
176
179
179
180
183
1B4
185
187
186
193
195
197
200
201
202
Compound
1, 2-dlbromoethane
ii-hexanal
it-octane
tetrachloroe thy lene
CgH,, isomer
chlorobenzene
CnH. A IB one IT
9 18
ethylbeniene
CnHlft Isomer
xylene isomer
C10H22 I80n>er
styrene
o-xylene
C?H18 isoner
n-oonane
isopropylbenzene
C10H20 lson'er
benzaldehyde + phenol
ethyltoluene Isomer
1,3, 5-tr imethylbenzene
C10H22 1§omer
cyanobenzene + cjo')20 *somer
C^-alkyl benzene isoner
n-octanal
C1QH20 isoner
1,2, 4-tr in* thy Ibenz en e
n-decane
C10H2Q i«oaer
dlchlorobenzene isoner
C^-alkyl benzene isomer
o-dichlorobcnzene
cresol isoner
C.-alkyl benzene Isomer
•cetophanone
C^-alkyl benzene isomer
nitrobenzene
n-noiwnal
n-undecane
C,-alkyl benzene isomer
dlchlorotoluene -*•
dime thyl phenol isomers
Cj-alkyl phenol isomer
C,.H.. isomer (tent.)
if j.ft
C12H2« lBOmer
Cj-alkyl phenol isoner
trichlorobenzene Isomer
(continued)
195
-------
Table B25 (cont'd)
Chroma to-
graphic
Peak No.
58
59
60
61
61A
62
63
64
65
66
67
68
Elution
Temp.
203
204
206
208
209
210
212
213
214
218
219
221
Compound
n-decanal
naphthalene + n-dodecane
C12H24 1>OD>ei
trlchlorobenzene isomer
chloronitrobenzene iaomer
chloronitrobenzene iaomer
C13H26 itomer
C12H24 iionier
C13H26 isomer (tent.)
n-undecanal
ii-tridecane
8-nethylnaphthalena -f C.-H,,
isomera
Chromato-
graphic
Peak No.
68A
69
Elution
Temp . Compound
("0
224
227
a-methylnaphthalene
dlchloronltrobenzene
or
dichloroanlline liomer
70
71
72
73
74
75A
76
77
231
232
233
235
238
240
240
240
C,,H.,v isomer (tent.)
14 30
blphenyl + Ci4^28 isomer
n-tetradecane
dlphenyl ether
alkyl phthalate (BKG)
C15H30 i80aier
ti-pentadecane
unknovm
See Table 30 for protocol. An OV-101 SCOT was used.
196
-------
Table B26. VOLATILE ORGANICS IN AMBIENT AIR AT E. I. DuPONT
(P6/L1)
a
ChroBito-
iraphic
Faak No.
1
2A
3
3A
3B
3C
4
4A
5
5A
6A
6B
6C
7
8
8A
BB
9
9A
9B
9C
9D
10
IDA
10B
11
12
13
14
15
15A
16
16A
17
17A
17B
IB
18A
19
19A
20
21
21A
22
23
Elution
TiBp.
CC)
44
50
51
53
57
59
60
60
63
63
71
72
74
76
78
79
80
82
84
85
87
89
91
92
93
93
94
95
9B
99
100
101
106
108
109
110
116
117
119
124
125
128
131
135
139
Compound
COj
butana
•eitaldahyda
n-butini (tant.)
iiopantana (tant,)
furan
propanal + cjNin laomer
propanal + n-pantani
acatona
dichloroBithana (tant.)
2-aathylpantana
2-n*thylprop«nal
3-aathylpintana
haxafluorobiniana (al)
jn-haxana
chloroform
£-butanal (tant.)
pirfluorotoluana (al)
C,Hi6 iionir
Btthyleyeloptntana
1,1, 1-triehloroathan* (tant.)
bmiana
3,3-dlmathylpantani
carbon tatrachlorida
eyelehaxana
2-aathylhaxana
2, 3»dlaathylpantana
3*>nithylhaxana
J-»thylp»nt«n«
CjH14 lionar +
trlehleroathylani (tant.)
n.-pantanal
H-hiptint
CgH18 laoBar
Bathyleyelohaxana
C8H18 laoaar
C,H16 iaoBar
toluana.
C8H16 1§e"ir
C8H18 liomir
g-hixanal
n,-oetana
tatriehloreathylani
CjH16 lioair
ehlorobaniana
athylbantana
Chroma to-
graphic
Paak Do.
24
24A
24B
24C
25
26
26A
26B
27
28
28A
29
29A
29B
30
30A
31
31A
32
32A
33
34
33
36
37
38
38A
39
39A
39B
39C
40
40A
41
42
43
43A
44
45
46
47
48
Ilution
Taap.
CC)
141
142
145
145
146
148
133
134
138
159
160
161
163
164
166
167
168
170
173
174
175
178
179
181
183
184
185
186
187
189
191
191
193
195
196
199
200
201
203
205
209
211
Compound
xylam lioaar
phanylaeatylana (tant.)
ityrana (tant.)
CgHjg iaonar
o-xylioa + n.-haptanal
£-i>enana
laopropylbaniani (tint.)
C10H22 tlWMr
bantaldahydi
phanol
ithyltoluini iiomir
C10K22 tlOMr
cyanebaniana
C11H24 1>omil (tmt.)
g-octanal
1,2,4-trimithylbantana *
C10*20 lMMr
j)-dacana
dtchlorebaniina laomar
C4-alkyl bantam *
C11H24 llOB«t§
phanylacaealdahyda
£»d ichlor obiniana
eraiol iiooir
acatephanona
CI.H«I< laomar (tant.)
11 24
Cll»22 * V11"1
baniana iioaara
j»-noaanal
C11H22 1§cmir
ji-undacina
C12H24 lioaar
•thylphanel iionar
C^-ilkyl bantam laoaar
dlaithylphanol IIOBII
C11H22 liom*r
diBithylphanol lieaar
£-nltrotoluani
Cj-alkyl phanol itoBar
trlehlorobaniana lioair
ji-dacanal
jn-dodicina
C12H24 * ^3-alkyl
phanol laonara (tant.)
unknown
C12M24 Uw"r
(continued)
197
-------
Table B26 (cont'd)
Chrotnato- Elution
graphic Teirp. Compound
Peak No. (°C)
49 213 C13H2g isomer
50 217 n-undecanal
51 218 ri-tridecane
Chroma to- Elution
graphic Temp.
Peak No. (°C)
52 226 ci4H3o ls<»»er
54 233 n-tetradecane
Compound
(cent.)
Table 30 for protocol. An OV-101 SCOT was used.
198
-------
Table B27. VOLATILE ORGANICS IN AMBIENT AIR AT E. I. DuPONT
(P6/L2)a
Chromato-
graphic
Peak No.
1
2A
2B
3
3A
4A
4B
5
5A
5B
5C
6
7A
7B
8
8A
8B
9
10
11
12
13
13A
14
15
ISA
15B
16
16A
16B
17
18
19
20
21
22
22A
22B
22C
22D
23
24
25
25A
26
27
Elutlon
Temp.
CC)
44
51
51
52
59
61
62
63
64
65
65
66
68
73
75
76
77
78
80
81
83
86
86
87
90
92
93
94
94
95
97
98
99
102
103
105
106
107
110
111
111
113
119
120
122
128
Compound
co2
butene
£- butane
acetaldehyde
Isopentane (tent.)
furan -f CjH10 isomer
propenal
propanal + n-pentane
C,Hj0 isomer
dichloroethylene isoner
dichlorotnethane
acetone
CyH. , isomer
butanal
2-aethylpentane
2-methylpropenal
C.H.. isoner
3-nethylpentane
hexafluorobenzene (el)
n-hexane
chloroform
perf luorotoluene (el)
C,H., Isomer
7 16
otthylcyclopentane
1,1,1- tr iehloroethane
C,H.0 isomer
benzene
C7H16 i*0lner
carbon tetrachlorlde
cyclohexane
2-methylhexane
2, 3-dlnethylpentane
3-mechylhexane
3-ethylpentane
C.H. , isomer
n-heptane
C7H16 liOTer
acetic acid (tent.)
C8H18 itm"
C.H... Isoner
o io
oethylcyclohexane
C.H.Q isoner
U i
toluene
C8H18 i§CB1€r
CgH18 isoner
n-octane
hromato-
raphic
eak No.
28
28A
28B
29
30
31
32
32A
32B
33
33A
34
34A
34B
34C
35
36
36A
37
38
39A
39
40
40A
41
42
42A
42B
43
43A
43B
44
44A
45
45A
46
47
48
48A
49
50
50A
50B
51
Elution
Temp.
<*C)
130
135
136
137
141
143
144
147
148
148
149
150
152
153
154
160
161
162
163
164
165
167
168
168
169
171
171
172
173
174
175
176
176
178
179
180
182
184
185
186
187
189
190
191
Compound
tetrachloroethylene
cyclopentanone
CgH.. isoner
chlorobenzene
ethy Ibenzene
zylene isooer
CgH-- isoner
styrene
n-heptanal
o^xylene
C9H18 lsomer
ji-nonane
CgH18 isomer
isopropy Ibenzene
C10H22 I80mer
benzaldehyde
phenol
ethyltoluene lsomer
C10H22 i80lner
cyanobenzene
C--alkyl benzene isomer
ii-octanal
1,2, 4-trime thy Ibenzene
C10H20 lsomer
n-decane
dichlorobenzene (tent.) +
C.-alkyl benzene isomer s
C10H20 I80nier
C.-alkyl benzene isomer
1,2,3-trinethy Ibenzene
C11H24 it
-------
Table B27 (cont'd)
Chromite-
graphlc
Paik. No.
S1A
32
33
34
54A
35
36
37
36
60
61
62
63
63A
64
64A
63
63A
66
Elutlon
Tamp . Compound
191
192
193
197
198
200
202
203
206
212
213
219
220
221
222
223
224
226
227
C.-alkyl baniana laomar
dinathylphanol laonir
Cg-alkyl phanol laonar
C^-bantana iaonar
C.-alkyl baniana laonar
Cj»alkyl phanol +
C12H24 Ii0mtri
ri-d*ein»l
naphthtltna
2( 3-biniothiophana
C12H24 llomtr
quinollna
CjjHjj lionar (tant.)
n-tridacana
mathylbaniothlophana iaonar
6-nathylnaphthalana
mathylquinollna iaonar
a-nathylnaphthalana
alkyl phthilata (tant.)
C14H28 tiOBir
Chromato-
iraphlc
Paak No.
67
68
69
70
71
72
Elutlon
Tamp . Conpound
CO
231
232
233
236
238
240
73 liotha
74
74A
73
73A
76
77
78
78A
61
83
84
•nal
butyl butyrata
biphanyl
ii-titradaeana
athyltuphthalani lionar
dinithylnaphthalani iaonar
dinathylnaphthalana laonar
dinithylnaphthalana iaonar
blphanylana
C13H30 1>OMr
ii-ptnt«decana -f
mtthylblphanyl lionar
aathylbiphanyl iaonar (tant.)
aeanaphthana
Cj-alkyl naphthalana iiomar
dibiniofuran
Cj-*lkyl naphthalana laonar
fluerana
4-phanyl-bancaldahyda (cant.)
C13H10° i>OMr
a.
See Table 30 for protocol. An OV-101 SCOT was used.
200
-------
Table B28. VOLATILE ORGANICS IN AMBIENT AIR AT E.
(P6/L8)3
I. DuPONT
Chromato-
graphlc
Peak No.
1
2A
2B
2C
3
3A
3B
3D
3E
3F
3G
3H
31
3K
3L
3M
3N
30
4
5
5A
56
6
6A
6B
6C
7
7A
7B
7C
8
8A
9
10
10A
11
11A
11B
12
12A
13
13A
13B
13C
14
14A
Elution
Temp. Compound
CO
45 C02
51 propane (tent.)
54 butene leomer
55 butane
56 acetaldehyde
60 C5Hi2 1>ODCr
64 itopcntane
66 furan
66 C5Hin lsomer
67 ii-pentane
69 propanal
70 bromoethane +• piopenal
70 dichloronethane
73 dimethyl ether (tent.)
74 methylpropanal laomer
75 acetone
80 2-methylpintene
83 3-methylpentane
85 hexafluorobenzene (el)
86 n-hexane
87 n-butanal
88 chloroform
91 perfluorotoluene (el)
93 nethylcyclopentane
94 methyl ethyl ketone
96 1,1,1-trlchloroethane
99 benzene
99 C7Hife iaom**
100 carbon tetraehloride
101 cyclohexane
101 2-methylhexane
102 2,3-dlmethylpentane
103 3-methylhcxane
106 C-H,4 iaomer
107 trichloroethylene (tent.)
109 n-heptane
110 n-pentanal
110 acetic acid (tent.)
Ill methyl nathaerylate
114 CgHlg liomer (tent.)
115 nethylcyclohexane
116 CgHlfc Homer
116 CgHlg Itoner
120 4-methyl-2-pentanone
123 toluene
124 C8H18 iaoner
;hromato-
iraphic
>eak No.
14B
14C
14D
15
ISA
16
16A
17
17A
17B
18
19
19A
20
20A
20B
20C
20D
20E
21
22
22A
23
23A
23B
23C
23D
24
24A
24B
25
25A
25B
25C
26
26A
27
28
28A
29
30
31
31A
32
Elution
Temp . Compound
CO
125 C8H18 leomer
128 CgH., leomer
129 CgHlg leomer
130 1,2-dlbromoe thane
131 n-hexanal
131 n-octane
132 2-h«xanone
133 tetrachloroethylene
138 C9H2Q ieoner
139 C9H2Q liomer
140 chlorobenzene
143 ethylbenzene
144 C9H2Q llon*r
145 xylent leomer
146 C9H20 liomer
147 C9H18 laoner
148 3-heptanone
149 2-heptanone * acyrene
149 n-heptanal
150 o- xylent
151 n-nonane
153 coHi8 l*°mer
156 isopropylbenzene
156 C1()H22 itomer
157 C1QH22 liooer
159 C5Hlfi ieooer
160 C1JH24 leomer
160 C.H..O ketone
O 16
161 2-nethylcyclohexanone (tent.)
161 n-propylbenzene
162 benzaldehyde
162 phenol
163 ethyl toluene iiontr
163 cinH22 iiooer
168 C11H24 leomer +
1,3. 5-trimethylbentene
166 cyanobenzene
167 Cj-alkyl benzene +
octanone iaomer»
168 n-octanal
169 ^10*20 It0mtr
169 1,2,4-trimethylbenzene
170 rr-decane
172 tTilaobutylene
172 dlchlorobenzene ieomer
173 C12H24 tiomer (tent.)
(continued)
201
-------
Table E28 (cont'd)
?hroW<.
graphic
Pflak No
32A
1i
31A
34
35
3bA
36
37
37A
3S
3KA
39
30A
40
40A
4CB
40C
4GC
4PE
40F
41
41A
41B
41C
42
43
44
44A
45
45A
46
47
48
i- Elusion
Temp.
("C)
174
175
176
177
179
180
J81
132
184
184
186
187
186
188
189
190
192
192
193
193
194
194
195
196
196
198
159
200
200
201
202
203
204
Compound
C..H.,, Isomcr
C -alkyl benzene Isomer
(4H24 l«"»"
o-dichlortibenzeiK!
C.-alkyl benzene Isomer
crssol + C-alkvl
6
56A
57
57A
58
58A
59
60
61
62
62A
63
63A
64
65
66
67
68
69
70
Elutlon
Temp .
( C)
205
206
207
208
209
209
210
212
2.13
216
2.17
218
219
220
221
222
224
226
227
231
232
233
234
235
238
240
240
240
240
240
240
240
Conpound
C.jH,,, Isomer
C,,H,, Isomcr
i J iD
ni tr o toluene p or m
trlchjlo.-obenjene isoropr
chloronitrobnnzenc Isomor
C H. isoinfr
.1 3 t-U
chlortmitrobenzene isomer
C12H24 ls-im«
C13H2b ls™er
C14H30 is°mer
C.-H^O Isomer
ri- u nde canal
n-trldecane
C13H26 is™er
P-methylnaphtlialene
C,,!^,. Isomer
a-methylnaphthalene
C ,H.p isoiner (tent.)
dichloronittobenzene or
dlchloroatitl ine tdoner
alkyl but>care
blphenyl
^-tetradecane
CUH28 isoraer
dipheTiyl ether
rilreetbylnaphthalene tsooier
dlmcthylnaphthaletie isoraer
C,,H-, Isomer (tent.)
15 32
n-pentadecane
acenaphthene
diberzofuian
diethyl phthalate
n-hexadecane + 2,2,4-tritnethyl-
penta-l,3-dlol dl-isobuty-
rate
*See Table 30 for protocol. An OV-101 SCOT was used.
202
-------
Table B29. VOLATILE ORGANICS IS AMBIENT AIR
AMERICAN CYANAMID CORP. (Pl/Ll)aa
Chrottato—
graphic
Peak Mo.
1
1A
IB
1C
ID
IE
IF
1C
2
3
3A
3B
4
4A
4B
5
5A
6
6A
6B
6C
7
8
8A
9
10
11
11A
11B
11C
11D
HE
11F
12
13
14
14A
15
15A
15B
16
16A
16B
Elutlon
Teap.
. JL'f ).
9J
94
95
95
96
97
97
98
98
100
101
101
102
103
103
104
105
105
106
106
107
108
109
110
111
112
113
114
114
115
115
116
117
118
119
122
123
124
125
126
126
127
128
Compound
co2
C6H14 i»00er
C.H., isomer
/ 10
hexafluorobenzene (el) +
perfluorotoluene (ef)
C8H18 lto*er
jj-octane
C.Hj, isomer
CJL, isomer
D XO
C-H,, iaomer
o lo
ti-nonane
dlchloromethane +
C10H22 lsoBer
C.H,. isomer
benzene
CgH.g isomer
C10H20 lloner
jn-decane
C11H24 ±'on"
chloroform
C1()H20 isomer
tetrachloroethylene
C11H24 lBOlner
toluene
n-undecane
C11H22 lgooer
C12H26 lson"r
•thylbenzene
xylenc Isoaer
C12H26 iiooer
C10H18 Uomer
C11H22 lBomer
C12H24 i'oa"
Cj-alkyl benzene isomer
Cj.H-, isomer
<>-xylene
ri-propylbenzene
ethyltoluene Isomer
C^-alkyl benzene +
C13H26 Uone™
trinethylbenzene Isomer
n-tridecane
C14H30 lsoiDer
C.-alkyl benzene isomer
C^-alkyl benzene Isomer
C14H2g isomer (tent.)
ChroMto-
graphic
Peak He.
17
17A
17B
16
ISA
19
20
20A
20B
20C
21
22
23
23A
24
24A
25
25A
26
26A
27
27A
27B
27B
28
28A
29
29A
30
30A
30B
31
32
32A
33
34
34A
35
35A
36
37
37A
Elution
Temp.
("CJ
129
130
130
131
132
132
134
134
135
135
136
137
138
139
139
140
141
142
142
143
144
144
145
146
147
148
149
151
153
154
155
156
158
159
162
165
167
169
171
174
177
178
„
Compound
triiietliylbenzene isoner
ii-octanal
1-acetoxy-butene-l (tent..
(BKG)
C^-alkyl benzene isomer
C14H28 l80""
C^-alkyl benzene isomer
C^-alkyl benzene Isomer
Cj-alkyl benzene isomer
C.-alkyl benzene iaomer
C^-alkyl benzene iaomer'
trinethylbenzene isomer
C.-alkyl benzene isomer
C^-alkyl benzene Isomer
C15H30 isonier
C^-alkyl benzene isomer
C.-alkyl benzene isomer
C.H.-benzenc isoaier
C9H18° ketone + C.-alkyl
benzene icomers
ii-nonanal
C.-alkyl benzene Isomer
C^H^-benzene isomer
C.-alkyl benzene Isomer
C4-alkyl benzene +
CjrH,., isomers
Cj-alkyl uenzene isomer
C^-alkyl benzene iaomer
C15H30 isolD£r
C^-alkyl benzene Isomer
unsaturated hydrocarbon
C16H34 l8omer
CjH- -benzene isomer
C10H20° keton« isonier
n-decanal
C,H.-benzene isomer
C.-alkyl benzene isomer
benza Idehy de
C^-alkyl benzene + C5H9"
benzene isomers (tent.)
saturated hydrocarbon
n_-undecanal
C, Hg**bencene Isocter
unsaturated hydrocarbon
acetophenone
C^H^-banzene Isoaer (tent.)
203
(continued)
-------
Table B29 (ccnt'd)
Chromato-
graphic
Peak No.
39
40
41
41A
42
43
44
Elution
Temp ,
136
188
193
198
200
203
208
Compound
unknown
naphthalene
unsaturated hydrocarbon (tent.)
alkyl butyrate (BKG)
methylnaphthalene isomer
methylnaphthalene leomer
hydrocarbon
Chromato-
Pcak No.
45
46
46A
47
47A
49
Elur in-,
Temp.
213
216
217
220
221
230
Compound
phenol
alkyl ketone (tent.)
Cj-alkyl naphthalene isoner
dimethylphenol Isomer
cresol isomer
C.-alkyl phenol Isoner
aSee Table 30 for protocol. A Carbowax 20 M SCOT was used.
204
-------
Table B30. VOLATILE ORGANICS IN AMBIENT AIR AT
AMERICAN CYANAMID CORP. (P1/L2)3
Chroma to-
iraphic
Peak No.
1
2
3
3A
4
5
5A
6
6A
7
8
9
9A
10
10A
11
12
12A
13
13A
13B
13C
14
15
1JA
16
16A
16B
17
17A
17B
18
ISA
19
20
21
21A
21B
22
23
23A
24
25
Elution
Tenp.
CO
93
94
96
97
97
98
99
100
101
102
103
104
105
106
107
108
110
110
111
111
112
113
114
115
116
117
118
119
120
121
122
122
127
125
126
127
128
129
130
131
132
133
134
Compound
CO,
n-hcptene 4 hexafluorobenzene
(el) 4 pert luoro toluene (el)
ii-octane
C8H16 1>OD>T
C9H20 1§co"r
ci-nonane
C10H22 liomtr
benzene
C9Hlg itomer
n-decane 4 trlchloroethylene
(tent.)
C10H20 lioner
tetrachloroethylene
C11H24 ii0mer
toluene
C11H22 llomer
C12H26 itoner
Cj-alkyl benzene Itomer
C. .HA. Itoner
12 26
C2-alkyl benzene ieoner
C12K24 1>ODer
C12H24 1§omer
C14H30 1>0"er
xylene itomer
n-propylbenztne
C11H20 1§0-er
Cj-alkyl benzene Itomer
C13H26 lsoatr
n-trldecane
Cj-alkyl benzene ieomer
C13H26 1§OB'r
C4-alkyl benzene itoner
Cj-alkyl benzene ieoner
C14H30 1§omar
Cj-alkyl benzene iioner
n-octanal 4 C^-alkyl
benzene iioner
1-acetoxy-butene-l (tent.)
C^-alkyl benzene ieomer
C14H28 lla"r
C^-elkyl benzene liomer
cyclohexenone
C^-elkyl benzene Itooer
Cj-elkyl benzene leaner
n-tetredecene
Chroneto-
trephic
Peek Ho.
26
27
27A
27B
28
28A
29
30
31
31A
31B
32
32A
33
33A
34
35A
36
37
38
38A
39
39A
39B
39C
40
41
42
44
45
45A
45B
46
47
48A
49
50
51
52
53A
54
55A
56
57
Elution
Tenp.
CO
135
136
137
138
139
139
140
141
143
143
144
145
146
147
148
149
151
152
153
154
155
156
157
157
158
160
161
163
167
169
171
173
173
176
179
180
185
186
187
191
195
199
201
205
Compound
C^-elkyl benzene iioner
Cj-elkyl benzene Iioner
C^-elkyl benzene iioner
C14H28 *->oner
C^-beniene Itoner
CjHj-benzene liomer
C.-ilkyl benzene Iioner
C15H32 i>omcr
benzaldehyde
unknown
uneaturated hydrocarbon
n-undecanal
unknown
cyanobenzene
uneaturated hydrocarbon
diethyl funarate
ecetophenone
C17H36 itcmer
C17H34 1>OTier
unknown
diethyl naleete
naphthalene
C H,R iaoner
unknown
alkyl butyrate (BKG)
•ethylnaphthalene Itoner
nethylnaphthalene iioner
(continued)
205
-------
Table B30 (cont'd)
Chroraato-
graphic
Peak No.
58
59
59A
60
60A
61
Elution
Temp.
CC)
208
212
214
215
217
220
Compound
unsaturated hydrocarbon (tent.)
phenol
blphenyl (cent.)
alkyl ketone
Cj-alkyl naphthalene Isomer
C--alkyl phenol Isomer
Chroma to-
graphic
Peak No.
62
63
64
65
67
Elution
Temp.
(°C)
221
227
230
231
240
Co
cresol isomer
C_-alkyl phenol
C.-alkyl phenol
acenaphthene
dibenzofuran
mpound
Isomer
isomer
See Table 30 for protocol. A Carbowax 20 M SCOT was used.
206
-------
Table B31. VOLATILE ORGANICS IN AMBIENT AIR AT
AMERICAN CYANAMID CORP. (P1/L4)3
Chroma to-
graphic
Peak No.
1
1A
2
2A
3
3A
4
5
6
6A
7
7A
8
8A
9
10
10A
11
12
13
13A
13B
13C
14
15
16
16A
17
17A
17B
18
ISA
18B
19
19A
19B
20
20A
20B
20C
21
21A
22
Blution
Temp.
CO
93
94
95
95
96
97
98
99
100
100
101
102
103
104
105
107
107
109
111
112
113
113
114
116
119
120
121
123
124
125
125
126
127
128
129
129
130
131
132
133
133
134
135
Compound
CO,
C7H16 1§OBler
hexafluorobenzene (el) +
perfluoro toluene (el)
CgHlg laomer
n-octane
C8H16 i'aaeT
C,H20 Isomer
tr-nonane
dlchloromethane
C10H22 1*omer
benzene
C9H18 1>aner
ti-decane
chloroform
C10H20 Uomer +
tetrachloroethylene
toluene
C11H24 licmer
C, .H«. iaooer
11 22
cthylbenzene
xylene Iaooer
C, rflfif Isomer
12 26
C10H18 lioner (twit.)
iaopropylbenzene
o-xylent
n-propylbeuzene
chlorobenzene
C3-alkyl benzene itomer
trlmethylbenzene 1 toner
n-tridacane
C13H26 1§on€r
C3-alkyl benzene liomer
C^-alkyl benzene itomer
C12B24 iioner
trlmethylbenzene laomer
n-oetanal
1-acetoxy-butene-l (tent.)
C^-alkyl benzene iaoner
C^-alkyl benzene laomei
C13H26 igoner
C^-alkyl benzene Iaoner
cyclohaxanone
C4-alkyl benzene Isomer
triaethylbenzene +
C13H26 *•«'•«•
Chroma to-
graphic
Peak No.
23
23A
24
25
25A
26
27
27A
28
28A
2BB
29
29A
30
30A
31
32
33
34
34A
34B
35
35A
35B
36
37
38
39
40
41
41A
41B
42
42A
43
44
44A
45
46
47
48
Elutlon
Tamp.
CO
136
136
137
138
139
140
142
142
143
145
145
146
147
148
149
149
152
154
155
156
157
158
159
159
161
162
164
167
169
170
171
172
174
176
177
179
182
186
187
188
191
Compound
C^-alkyl benzene laomer
n-tetradecane
C^-alkyl benzene iaomer
Cj-alkyl benzene +
C^-alkyl benzene laomera
unaaturated hydrocarbon
CjHj-benzene iaomer
ji-nonanal
Cj-alkyl benzene Iaoner
C4H7-benzene + Cj-alkyl
benzene isomers
C^-alkyl benzene isomer
Cj-alkyl benzene iaoner
C^-alkyl benzene +
°15H30 istmers
C.,B,p + C.-alkyl
X3 AO J
benzene laomers
C^-alkyl benzene iaomer
Cj-alkyl benzene iaomer
saturated hydrocarbon
C15H32 iton*r
C^H^-benzene Iaoner
ji-decanal
Cj-alkyl benzene isomer
C16H30 lsemer
C/HK— benzene iaooer
Cj-alkyl benzene iaomer
CjHo-benren* laomer
benzaldehyde
unknown
unsaturated hydrocarbon +
Cg-alkyl benzene iaoner
.n-hexadecane
n-undecanal
unknown
cyanobenzcne
CjH^^-benzene iaoner (tent.)
dlethyl fumarate
unaaturated hydrocarbon
acetophenone
ti-heptadecane
unaaturated hydrocarbon
unknovn
diethyl maleata
naphthalene
C18H38 1»°»«r
(continued)
207
-------
Table B31 (cont'd)
Chromato-
graphic
Peak No.
49
49A
50
51A
52
53
34
54A
55
Elution
Temp.
CO
195
197
198
201
203
205
207
212
213
Compound
unknown
unsaturated hydrocarbon
alkyl butyrate Isomer
methylnaphthalene isomer
C. .Hj.O isomer
oethylnaphchalene isomer
acrylamide
dimethylnaphthalene isorner
phenol
Chromato-
graphlc
Peak No.
56A
57
58
59
60
62
63
64
Elutlon
Temp.
CO
215
216
220
221
223
227
231
232
Compound
Cj-alkyl naphthalene Itoner
dlmethylnaphthalene itomer
C^-alkyl phenol iaomer
cresol isomer
C,-alkyl phenol Isomer
Cj-alkyl naphthalene isomer
(tent.)
Cj-alkyl phenol isomer
N,N-dimethylbenzamlde
See Table 30 for protocol. A Carbowax 20 M SCOT was used.
208
-------
Table B32. VOLATILE ORGANICS IN AMBIENT AIR AT
AMERICAN CYANAMID CORP. (P1/L2)
ChroMto-
traphlc
Peak Ho.
1
2
3
3A
3B
4
4A
4B
5
6
6A
6B
7
7A
8
9
9A
10
IDA
11
11A
11B
12
12A
13
14
14A
14B
14C
14D
15
15A
15B
16
17
18
ISA
19
19A
19B
20
20A
Elutlon
Ta«p.
CO
93
94
93
96
97
97
98
99
99
100
100
101
102
103
104
105
106
106
107
108
109
110
111
111
112
113
114
114
115
116
117
118
118
119
121
124
125
126
127
127
129
129
Compound
co2
n-haxane
C,H. , iaonar 4 hexafluoro-
/ ID
banzana (••) 4
p«rfluorotolu«na (at)
C7»14 llomer
C8H18 1>OB"r
CjHl6 leonar
CjH18 lacnar
1,1, 1-trichloroathana
n-nonant
•athyl athyl katona
dlchloromathant (tant.)
C10H22 liOBtr
banaana
CaH18 iaonar
trichloroathylani 4 n-dacana
chloroform
C10H20 l*el"r
tatrachloroathylana
C11H24 1>OBK
toluana
C11H24 Uol"r
C..H., lionar
C12H26 lic"r
C11H22 1) * dlchloro-
bantana laonari (tant.)
C..H,, laonar (tant.)
la 34
C.H.-banxana laomar
n**daeanal
dlchlorobantana iaonar
C^H.-baniana iaonar
C15H30 1§OBtr
bantaldahyda
unknown
C15*30 1*OB*r
unaaturatad hydrocarbon
n.-haxadacant
n^undacanal (tant»)
unknown
cyanobantant
unaaturatad hydrocarbon
dodacanal (tant.)
diathyl funarata
C17»34 liolntr
acatophanona
£-haptadacana
unknown
naphthalana
C..U,. laonar (tent.)
10 JO
unknown
unaaturatad hydrocarbon
^ . • V
(continued)
209
-------
Table B32 (cont'd)
Chroma to-
graphic
Peak No.
47
48
49
SO
53
53A
53B
54
Elution
Temp.
<°C)
202
203
206
209
214
216
218
220
Compound
2,2, 4- t rimethyl-penta-1 , 3-diol
di-isobutyrate
aethylnaphthalene isomer
nethylnaphthalene laomer
saturated hydrocarbon (tent.)
phenol
biphenyl
C.-alkyl naphthalene Isomer
C.-alkyl phenol isoner
Chromato-
graphic
Peak No.
55
56
57
58
59
60
60A
61
Elution
Temp.
(°C)
221
223
224
227
228
231
232
235
Compound
Cj-alkyl phenol isoner
cresol Isomer
C -allcyl phenol Isoner
trl-butyl phosphate (tent.)
Cj-alkyl phenol Isomer
C.-alkyl phenol isomer
acenaphthene (tent.)
C,-alkyl phenol Isomer
See Table 30 for protocol. A Carbowax 20 M SCOT was used.
210
-------
Table B33. VOLATILE ORGANICS IN AMBIENT AIR AT
AMERICAN CYANAMID CORP. (P2/L3)3
Chromato-
graphic
Peak No.
1
2
3
3A
4
4A
5
5A
6
6A
6B
7
7A
7B
8
8A
9
9A
9B
10
11
11A
12
13
14
14A
15
16
16A
16B
17
17A
18
19
19A
20
20A
21
2LA
22
23
24
Elutlon
Temp.
<°c)
93
94
95
96
97
97
98
99
99
100
100
101
102
103
103
104
105
107
108
110
111
111
113
115
117
118
119
122
122
124
124
125
127
128
129
130
131
132
133
135
136
137
Compound
co2
n-hexane
n-heptane 4 hexafluorobenzene
(el) 4 perf luorotoluene (et)
CgHlg Isomer
ii-octane
CpH1 , Isomer
CqH-g Isomer
C
138
139
141
143
145
146
147
148
152
154
155
157
160
161
164
165
168
169
171
173
174
176
179
180
186
188
190
195
197
200
201
204
212
213
217
221
222
Compound
C^-alkyl benzene isomer
C,H -benzene ieomer
n-nonanal
saturated hydrocarbon (tent.) 4
C,-alkyl benzene Isomer
C,-alkyl benzene isomer
C.-alkyl benzene isomer
C.-alkyl benzene isomer
dichlorobenzene isomer +
unknown
C,,H0/. isomer (tent.)
15 30
j^-decanal
dichlorobenzene isomer
C.H,-benzene isoner
4 7
benzaldehyde isomer
unknown
unsaturated hydrocarbon
C,-alkyl benzene isomer
(tent.)
unsaturated hydrocarbon
C13H10°2 i80ner (tent.)
cyanobenzene
diethyl fumarate
unsaturated hydrocarbon
acetophenone
C,,H,, Isomer
17 jo
C17H34 lsolner
diethyl maleate
naphthalene
C18H38 iS°mer
unknown
unsaturated hydrocarbon
alkyl butyrate 4 cresol Isomer
methylnaphthalene isomer
methylnaphthalene isomer
cresol Isoner
phenol
C,-alkyl naphthalene isomer
C2-alkyl phenol isomer
cresol Isomer
See Table 30 for protocol. A Carbowax 20 M SCOT was used.
211
-------
Table B34. VOLATILE ORGANICS IN AMBIENT AIR AT
AMERICAN CYANAMID CORP. (P3/L3)3
Chroma to-
graphic
Peak No.
1
1A
IB
2
2A
:B
3
3A
3B
3C
4
5
6
7
8
8A
8B
sr
9
10
10A
10B
IOC
10D
11
12
12A
13
14
15
16
16A
16B
16C
17
17A
18
19
19A
19B
20
21
Elutlon
Temp.
93
94
94
95
96
96
97
98
98
99
99
100
101
102
103
104
104
105
106
108
109
110
110
111
112
114
115
116
119
121
123
124
124
125
126
127
129
130
131
131
132
133
Compound
co2
n-pentane + acetaldehyde
(tent.)
dlethyl ether + n-hexane
C,H-,, isomer + hexafluoro-
7 lo
benzene (el) + perfluoro-
toluene (el)
C-H c isomer
C,H, , isomer
7 14
n-oc tane
C6H16 isoner
C.H... isomer
9 20
dichloromethane
ri-nonane
benzene
C10H22 + C9H18 l80B!ers
C10H22 l80nier
chloroform
C11H24 Ist>1Ber
n-decane
tetrachloroethylene +
C10H20 isonier
toluene
ri-undecane
C11H22 isooer
^11^22 isomer
C12H26 isamet
ethylbenzene
xylene Isomer
C12H26 isomer
C, -alkyl benzene isomer
o-xylene
n-propylbenzene
C,-alkyl benzene isomer
C,-alkyl benzene isomer
C^-alkyl benzene isomer
C13H26 isomer
C.-alkyl benzene isomer
C,-alkyl benzene isooer
C13H28 lsomer
trimethylbenzene Isomer
C.-alkyl benzene isomer
C13H28 isoner
C.-alkyl benzene isomer
cyclohexanone
C4-alkyl benzene isoner
Chromato-
graphic
Peak No.
2 LA
21B
22
23
24
25
25A
26
26A
27
27A
27B
27C
27D
27E
28
28A
29
30
30A
31
31A
31B
32
32A
32B
33
34
34A
34B
35
36
37
37A
38
38A
38B
39
39A
Elution
Temp.
CO
134
135
136
137
138
139
140
140
141
142
143
143
144
145
146
147
148
149
150
151
151
152
153
154
155
155
156
158
159
160
161
161
166
167
170
172
173
174
175
Compound
C.-alkyl benzene isomeT
(tent.)
C,-alkyl benzene isomer
trlnethylbenzene Isoner
C.-alkyl benzene +
C14H28 iBOBle"
C.-alkyl benzene Isoner
C, -alkyl benzene Isomer
C.-alkyl benzene Isoner
C,-alkyl benzene 4
C,H, -benzene Isomers
C..H,, isomer
14 26
C.-alkyl benzene isomer
n-tetradecane
C.H. -benzene isomer
4 7
C.-alkyl benzene +
C15H30 I8ome"
C, -alkyl benzene isomer
C, -alkyl benzene iaoner
C,-alkyl benzene Isomer
C.-alkyl benzene isomer
C.-alkyl benzene isomer
C15H32 i80ner
C.-alkyl benzene isomer
C.-alkyl benzene isomer +
saturated hydrocarbon
C,-«lkyl benzene isomer
C15H30 i*°m"
C^Hj-benzene isomer
£-pentadecane
C.H. -benzene isomer
C.-alkyl benzene -t-
C17H34 I80"*rs
C.H. -benzene + C,-alkyl
benzene isomers
C.H. -benzene isomer
C.-alkyl benzene Isomer
benzaldehyde
unknown
C^-alkyl benzene isomer
unsaturated hydrocarbon
unknown
CjH9-benzene isomer
o-tolualdehyde (tent.)
dlethyl fumarate
C17H34 + C5H9~b*nsene i'omers
(continued)
212
-------
Table B34 (cont'd)
Chroma to-
graph ic
Peak No.
40
41
42
43
45
46
47
49
Elution
Temp .
(°C)
177
185
187
189
195
198
201
205
Compound
acetophenone
unknown
diethyl maleate
naphthalene
unknown
unknown
methylnaphthalene isomer
methylnaphthalene isotner
Chromato-
graphic
Peak No.
49A
50
50A
51
52
53
54
Elution
Temp.
(°C)
209
213
217
220
221
227
230
Compound
C,.H 0 isomer (tent.)
14 10
phenol
dime thy Iphenol isomer
C.-alkyl phenol isomer
cresol isomer
C.-alkyl phenol isomer
C.-alkyl phenol isomer
aSee Table 30 for protocol. A Carbowax 20 M SCOT was used.
213
-------
Part III
Camden, NJ-Philadelphia, PA
214
-------
Table B35. VOLATILE ORGANICS IDENTIFIED IN AIR IN BRISTOL, PA
(Pl/LLA)8
Chromico-
graphic
Peak No.
1
2A
3
3A
4
4A
5A
6
6A
6B
7
7A
7B
8
8A
9
9A
9B
10
11
12
12A
13
13A
14
14A
15
15A
16
17
18
18A
19
20
21
21A
22
23
23A
23B
24
25
25A
26
26A
27
EluUon
Trap.
CO
49
54
55
56
63
66
73
77
78
79
82
83
83
85
87
88
88
89
90
91
92
94
95
96
97
101
102
103
104
106
109
110
112
117
119
122
128
130
132
134
135
137
143
145
146
147
Compound
CO,
C.H. Isomer
acetaldehyde
n-butane (tent.)
acetone
methylene chloride
2-methylpentane
hexafluorobenzene (el)
ii-hexane
methyl ethyl ketone
perfluorotoluena (el)
C.H., isomer
7 10
1,2-dlchloroe thane
1,1, 1-trlchloroethane
benzene
C6H16 1§omer
carbon tetrachloride (traces)
cyclohexane
2-methylhexane
2, 3-dlmethylpentane
3-methylhaxane
C7H14 1>omer
3-ethylpentane
C.H,, isomer
n-heptane
CgHlg isomer
methylcyclohexane
C8H18 isOBier
acetic acid
C.H,. isomer
0 18
toluene
C.H.. leaner
D 10
CgH.g isomer
^-octane
tetrachloroethylene
C.H., Isamer
0 10
ethylbenzene
xylene isomer
C9H20 UoB"r
styrene
o- xylene
n-nonane
laopropylbeazene
bsnzaldehyde
n-propylbenzene
ethyltolusne isomet
iromato-
raphie
sak Ho.
27A
28
28A
29
30
31
31A
31B
32
32A
33
33A
33B
33C
33D
34
34A
35
35A
36
37
37A
37B
37C
3B
38A
39
39A
40
40A
40B
40C
41
41A
42
43
43A
44
46
47
49A
52
53
54
Elution
Temp.
CO
148
149
151
152
153
155
156
159
161
163
164
165
168
169
169
170
171
172
175
177
180
182
184
185
186
187
188
200
202
203
203
20}
212
213
216
217
220
221
229
231
240
240
240
240
Compound
C.-alkyl benzene isoner +
benzonitrlle
phenol
C.-alkyl benzene Isomer
i>-octanal
1,2,4- tr imethy Ibenzene
n-decane
Cj-alkyl benzene Isoner
C.-alkyl benzene isoaer
C11H22 lBOner
C.-alkyl benzene Isoner
acetophenone
cruel + C,,H., i*olners
C4-alkyl benzene isomer
C12H24 i'OIDer
C^-slkyl benzene isomer
ii-nonanal
CUH22 isoaer
n-undecane
C^-alkyl benzene Isomer
C.-alkyl phenol isomer
C --alkyl phenol Isomer
C.-alkyl phenol +
C12H24 1'0ne"
C^-alkyl benzene isomer
C.-alkyl phenol isomer
naphthalene
n-decanal + C12H24 isoner
n-dodecane
C.-alkyl phenol isomer
i^-tridecane
6-methylnaphthalene
C13N26 1>oneT
a-methylnaphthalene
alkyl butyrate
C14H30 i80mer
n-tetradacane
C12H18°2 UoMr (tent')
C.-alkyl naphthalene Isomer
C15K30 iBOae*
£-psntadecane
unknown
n-hexadecane
alkyl phenol
i>-heptad«cane
•at. hydrocarbon
See Table 31 for protocol.
215
-------
Table B36. VOLATILE ORGANICS IDENTIFIED IN AIR IN BRISTOL, PA
(Pl/LLB)3
Chroma to-
graphic
Peak No.
1
2
2A
2B
2C
2D
3
3A
4
5A
6
7
7A
e
9
9A
10
11
12
13
13A
14
15
15A
16
16A
17
17A
18
ISA
19
20
21
22
23
24
25
25A
26
27
27A
28
Elutlon
leap.
(*C)
48
51
51
52
53
54
59
62
63
67
70
72
73
74
75
76
80
81
82
85
86
87
87
88
89
91
91
92
92
93
94
96
98
99
101
103
107
108
109
110
111
112
Cozrpound
co2
laobutane
C^Hg liooer
n-butane
C.H. leaner
^ o
acetaldehyde
•cetone
dichloroethylene leaner
(tracei)
methylene chloride
C^HgO Ieoner (tent.)
2-nethylpentane
3-nethylpentane
methyl ethyl ketone
hexafluorobenzene (el)
ji-hexane
ethyl acetate
C7»16 itoa" +
perfluorotoluene (el)
C7H16 1§£>lntr *
•ethylcyclopentane
1,1,1-trichloroethane
bencen*
C^H., iaomer
cyclohexane
2-nethylhexane
2, 3-dlnethylpentene
3-nethylhexane
C,Hj, laomer
3-ethylpentana
C.H, , Iaomer
C8H18 1|OO*T * trlchloro-
ethylene (tracee)
2.5-dlmethylfuran
11- heptane
2,5-dimethyltetrahydrofuran
acetic acid
•ethylcyclohexane
C8H18 *•"*"
C6H12° 1*OB*r (t«nt.)
toluene
CgHlg Iiomer (tent.)
3-hexanone
2-hexanone
C8H16 leoner
C8Hlg lamer
Chroma to-
graphic
Peak Ha.
29
30
31
32
32A
33
34
34A
35
36
37
38
39
39A
40
40A
40B
41
41A
42
42A
42B
43
44
44A
45
45A
455
45C
47
48
48A
48B
48C
49
49A
SO
51
52
53
54
54A
55
55A
56
Elutlon
Temp.
CO
113
114
115
116
119
122
126
127
127
129
130
131
132
133
134
135
136
137
138
143
144
145
145
146
147
148
149
151
151
153
154
157
157
158
159
161
162
164
166
167
168
169
170
171
173
Compound
tertiary amyl alcohol
alcohol leomar (tent.)
n-octane
tetraehloroethylene
CfiH16 laooer (tent.)
chlorobenzene
ethylbenzene
C.H^g Iaomer
xylene iaoner
CgH.Q Iaomer
butyl acrylete
•tyrene
o_- xylene
CgH.g Iaoner
ii-nonane
C8H14 i§om*r
dime thy Ipyrrole iaomer (tent.)
CgH.^ liomer or unknown
leopropylbenzene
benxaldehyde
n-propylbenzene
C9H18 itoa"
ethyltoluene iaomer
benzonltrile
phenol
CBH10 lion'r
C.-alkyl benzene ieoner
C7«140 iaoner (tent.)
benzofuran
it-da cane
dichlorobenzene Itoner
C4-alkyl benzene +
trlmethylbenzene Iaomer a
C11H24 1§01Mr
dichlorobenzene leomer
unknown
C^-alkyl benzene iaomer
acetophenone
C..H./ Iaomer
C^-elkyl benzene Iaomer
•ethyl benzoate
n-nonanal
C11H22 li8Btr
ri-undecane
C.H.-benzene laomer
C.-alkyl benzene laomer
(continued)
216
-------
Table B36 (cont'd)
Chroma to-
graphic
Peak No.
57
57A
59
60
60A
61
62
62A
63
64
64A
Elution
T«mp.
CO
176
178
183
184
185
186
188
190
200
201
203
Compound
dimtthylphenol lioner
banzolc acid (ctnt.) +
C.-alkyl phenol itom«r
trichlorobanzant laomar
naphthalana
banxothlophant
ii-dodacana
C13H26 1>on*r
naphthaol laomar (ttnt.)
C14H28 UoB*r
ti-tridacane
8-mathylnaphthalant
Chromato-
graphic
Peak No.
64B
66
67
68
69
71
72
73
76
76A
76B
Elution
Ttnp.
CO
204
211
212
215
220
227
229
232
240
240
240
Compound
a-otthylnaphthal«nt
alkyl butyratt laonar (BKG)
blphtnyl
dlphtnyl athar
unaaturatad hydrocarbon (tant.)
n-pentadacana
unknown
dlbanzofuran
banzophanona
C14M10 1§OMr
n-htptadacant
See Table 31 for protocol.
217
-------
Table B37. VOLATILE ORGANICS IDENTIFIED IN AMBIENT AIR FROM
NORTH PHILADELPHIA, PA (P3/L3A)a
Chronato-
graphic
Peak No.
1
2A
2B
2C
3
3A
4
4A
5
7
8
8A
9
10
10A
11
12
12A
12B
13
13A
14
14A
14B
15
ISA
16
16A
17
17A
17B
17C
18
ISA
18B
19
20
20A
21
21A
22
22A
23
24
25
25A
Elutlon
Temp.
CC)
49
52
53
54
55
58
59
62
63
69
72
73
73
74
75
76
78
80
80
81
83
84
85
86
87
88
89
90
91
91
92
92
94
95
98
99
101
103
107
108
109
111
112
I1 5
116
121
Compound
CO,
£.
iaobutane
C.Hg isooer
n-butane
acetaldahyde
iaopentane
acetone
dicbloroethylene iaonar
methylene chloride
2-nathylpentane
3-methylpentane •»• butane!
methyl ethyl ketone
hexafluorobenzene (ef)
ji-hexane
chloroform (trace*)
ethyl acetate
perfluorotoluene (el)
C6H12 iiomer
1.2-dichloroethane
1,1. 1-trichloroethan*
CSH100 aldehyde (traces)
benzene
C?H16 laoner
cyclohexane
2-nethylhexane
2 . 3-diDethylp«ntane
3-nethylhexane
pentanal (tent)
1 , 2-dlchloropropane
3-ethylpentane
C,H-4 iaoner
trlchloroethylene
ij-heptane
C.H. . isomer
C8H18 UoBer
nethylcyclohexane
acetic acid
C-H.. ieoner
o Io
toluene
CgH18 iaooer
C8H18 iBOffler
C8H16 isomer
CgH., iaoner
jn_-octane
tetraehloroethylene
C8H16 Uo"*r
Chroma to-
graphic
Peak No.
26
26A
27
27A
28
28A
29
30
31
3U
32
33
33A
34
35
35A
36
36A
37
37A
37B
38
38A
39
40
40A
41
41A
42
42A
42B
42C
42D
42E
43
43A
43B
44
44A
4J
45A
46
46A
46B
Elutlon
Temp.
123
124
126
127
128
128
130
132
133
134
135
139
140
142
144
145
146
147
148
149
149
149
150
151
152
153
154
155
158
159
160
161
162
163
163
164
166
167
168
169
170
171
172
174
Compound
C.H., •*• C0H,n icomcra
8 16 9 20
CgH.. iaoner
ethylbenzene
C.H.. iaomer
xylene iaoner
C9H20 iaoner
C9H20 U0mer
etyrene
oj-xylene
C9H18 lsonet
£-nonane
iaopropy Iben ztne
C10H22 i>OBtr
C10H22 1>OBer
benialdehyde
n-propylbenzene
•thyltoluene iaomer
1,3,5-trlmethylbenzene +
benzonltrlle (trace*)
phenol
C10H22 i>omtr
a-nethylatyrene
£-ethyltoluene
C10H22 1§OBer
n-octanal
1.2, 4- trine thy Ibenzene
C10H20 lsoner
Q-decane
dlchlorobenzene iaoner
1,2,3-tTlmethylbeniene
C11H24 1
-------
Table B37 (cont'd)
Chronato-
graphic
Peak No.
47
48
48A
49
49A
49B
49C
49D
50
30A
51
51A
52
53
Elutlon
Temp.
(°C)
174
176
178
179
179
183
163
185
185
186
187
191
201
202
Compound
C.-alkyl benzene laoner
dimethylphenol iaoner
C.-alkyl benzene l*omer
C.-alkyl phenol Isomer
C,H--btnzne leoner
C -alkyl benzene Isomer
C.-alkyl phenol Isomer
naphthalene .
ti-decanal
C12H24 l.o»er
n-dodecane
C.-alkyl phenol isoner
o-undecanal
ti-tridecane
Chroma to-
graphic
Peak No.
53A
53B
53C
53D
54
55
55A
56
58
58A
59
60
61A
Elutlon
Temp.
CO
203
205
208
209
211
212
213
215
224
227
228
231
240
Compound
B-nethylnaphthalene
a-ncthylnaphthalene
C14H28 1BOU"C
CnH26 Loner
C15H32 l80mer (tent)
alkyl butyrate
C14H28 i'OBer
n-tetradecane
C16H32 t"™
C15H30 lB01Der
n-pentadecane
unknown
C16H32 lM-"r
a
See Table 31 for protocol.
219
-------
Table B38. VOLATILE ORGANICS IDENTIFIED IN AMBIENT AIR IN
PHILADELPHIA, PA (P3/L3B)3
Chroma co-
graphic
Peak No.
1
2A
2B
2C
2D
2E
3
3A
4
6
7
7A
8
8A
SB
9
9A
9B
10
11
11A
11B
11C
12
12A
13
14
14A
14B
14C
14D
15
16
17
18
19
20
21
22
22A
23
23A
24
24A
23
Elution
Temp.
CO
48
52
52
53
53
57
58
60
62
68
71
71
72
73
74
77
78
79
80
83
84
85
86
86
87
88
89
90
91
91
92
93
98
100
105
107
108
111
114
114
115
121
122
123
125
Compound
co2
Hobutane (tent.)
C^H. iiomer
_n-bucane
icetaldehyde
Hopentane
acetone
jn-pentane (tent.)
nethylene chloride
2-methylpentane
3-methylpentane
butanal
hexif luorobenzene (el)
n-hexane
chloroform
perfluorotoluene (el)
methylcyclopentane
1,2-dichloroethane
1,1, 1- t richloroethane
benzene
C.H liomer + carbon
/ lo
tetraehlorlde
eyclohexane
C?H16 Homer
C?H16 Homer
C5H10° liomer (tent.)
3-methylhexane
1 , 2-dichloropropane
C.H., liomer
/ JO
trlchloroethylene
CjH^ iiomer
pentanal (tent.)
rj-heptane
methylcyclohexane
acetic acid
toluene
C8H18 Homer
CgH.g iiomer
C.H., Iiomer
B lo
jj-octane
C.H., lioner
o lo
tetrachloroethylene
chlorobenzene (tent.)
CgH2- iiomer
CaH.a iiomer
y 10
ethylbenzene
Chromato-
graphic
Peak No.
25A
26
26A
27
27A
28
29
29A
29B
30
31
32
33
33A
34
34A
35
36
37
38
38A
39
39A
39B
39C
39D
39E
40
40A
40B
40C
40D
40E
41
41A
41B
42
42A
42B
43
43A
44
44A
44B
Elution
leap.
CO
126
128
128
129
130
131
132
133
134
135
139
142
144
144
146
147
147
149
151
152
152
153
154
155
156
156
157
157
158
159
160
161
162
163
163
165
166
167
168
169
169
171
171
172
Compound
CgH20 iiomer
xylene lioner
C9H20 Iiomer
C,_H-_ 1 toner
10 22
CjHj^O aldehyde (tent.)
icyrene
o_- xylene
CqHi8 liomer
C.H.g iiomer
n_-nonane
itopropy Ibenzene
CgH.g iiomer
benzaldehyde
n-propylbenzene
ethyltoluene (el)
C10H22 1>olner
phenol
a-methylityrene
ti-oc canal
1 , 2 ,4-trlmethy Ibenzene
C.nH.n Homer
10 20
ii-decane
dlchlorobenzene Homer
C,-alkyl benzene iiomer
C,-alkyl benzene iiomer
indan
C..H.. iiomer
1,2, 3- crime thy Ibenzene
C,,H.. Iiomer
11 24
C«H»— benzene laomer
C11H22 1>ODer
C^-alkyl benzene Iiomer
C,-alkyl benzene Iiomer
acetophenone
C^-alkyl benzene +
creiol iiomera
C^-alkyl benzene liomer
2-phenyl-2-propanol (tint.)
C4-alkyl benzene liomer
C,-alkyl benzene iiomer
n-nonanal
C11H22 iso""
n-und«cant
C,-alkyl bcnsene iioner
C^-alkyl benzene +
C..H,. iaomeri
(continued)
220
-------
Table B38 (cont'd)
Chroma to-
graphic
Peak No.
45
46
46A
47
47A
48
49
49A
50
50A
51
51A
51B
52
52A
Elutlon
Temp.
(*C)
174
176
178
179
180
181
183
184
185
186
187
189
190
192
195
Compound
C.-alkyl benzene t joiner
C.-alkyl phenol laomer
C11H22 lsoll"r
C.-alkyl phenol iaomer
C.-alkyl benzene Isoner
C.-alkyl phenol Isomer
Cj-alkyl phenol lionet
naphthalene
ri-decanal
C12H24 l8OTier
n_-dodecane
C.-alkyl phenol laomer
C.-alkyl phenol laonter
unknown
C13H2fi isomer
Chromato-
graphlc
Peak No.
52B
53
54
54A
54B
54C
55
56
56A
56B
57
56
60
61
Elution
Temp.
CO
196
201
202
204
209
210
211
212
213
214
216
221
229
231
Compound
C13H28 iooner
ji-undecanal
ti-tridecane +
-------
Table B39. VOLATILE ORGANIC VAPORS IDENTIFIED IN AMBIENT AIR FROM
PHILADELPHIA, PA (P4/L4B)3
Chroma to-
graphic
Peak No.
1
2A
2B
2C
2D
2E
3
3A
3B
4
5A
5B
6
6A
68
6C
6D
7
7A
7B
7C
8
8A
9
9A
10
10A
10B
11
11A
12
13
13A
14
15
16
17
1&
ISA
18B
19
19A
20
21
21A
Elutlon
Temp.
48
51
52
53
53
57
59
60
61
62
65
68
69
70
71
71
72
73
74
75
76
78
79
80
81
85
85
86
86
87
39
90
91
92
94
96
98
99
100
100
101
102
103
104
105
Compound
CO
Isobutane
CjHg isomer
ji- butane
acetaldehyde
isopentane
acetone
r>-pentane
dichloroethylene
methylene chloride
CS2 (tent.)
butenal or C.H,,. isomer
5 10
2-nethylpentane
methyl isopropyl ketone (tent.)
n-butanal
3-nethylpencane
methyl ethyl ketone
hexafluorobenzene (el)
ji-hexane
chloroform
ethyl acetate
perf Juorotoluene (el)
methylcyclopentane
1,2-dlchloroethane
1,1,1-trichloroethane
benzene
CjH16 isomer
carbon tetrachlorlde
cyclohexane
C-H.., Isooer
3-methylhexane
1,2-dichloropropane
C-H,^ iscmer
trichloroethylene +
C.H., isomer
n-heptane
C8Hlfc Homer
acetic acid
methylcyclohexane
C8H16 isomer
CgHlg isoiner
C H fi isoiner
CgH20 tsomer
C.H. , isoner
CgH,, isomer
C8H18 isomer
Chromato-
graphic
Peak No.
22
23
24
24A
24B
24C
25
26
26A
27A
27B
28
29
30
30A
31
31A
32
33
33A
34
35
35A
35B
36
37
36
38A
39
40
41
41A
42
42A
43
43A
43B
43C
44
44A
45
45A
46
46A
Elutlon
Temp.
CO
106
108
109
111
113
114
115
116
US
120
120
121
123
124
125
126
127
128
130
131
131
133
133
134
135
139
140
142
142
144
144
145
146
147
147
147
148
149
149
151
151
152
152
153
Compound
toluene
CgH.g isomer
CgH.g isoiner
C.H., isomer
C.H.JJ isoiner
o 10
C-H., isoiner
o lt>
ii-octane
tetractiloroethylene
C-H., isoiner
CaH_n isomer
C9H18 lsolner
C.H. . isomer
9 18
chlorobenzene
CgH g isomer
C0H,D Isomer
7 10
ethylbenzene
C.H . Uoaer
xylene
C?H20 lnonier
C.H.,0 isomer
•tyrene
o-jcylene
C10H22 is°mer
CgH.g isomer
i)-nonane
isopropylbenzene
C10M22 l80nier
C10H22 iaoaer
C9H18 t80mer
benzaldehyde
n-propylbenz«ne
C10H20 is°Ber
ethyl toluene
C..H-. isomer
1,3,5-trinethylbenzene +
benzonltrile
phenol
C10H22 i*OBler
C10H22 I800er
o-ethyltoluene + CgH,,0 iaomer
(tent.)
C10H20 llOBer
ji-octanal
C10H20 *««*"
1,2, 4-tr ioe thy Ibenzene
C1QH20 i.o»er
(continued)
222
-------
Table B39 (cont'd)
Chromato-
graphic
Peak No.
47
48
48A
48B
48C
49
49A
50
51
51A
51B
52
53
53A
5)B
54
54A
54B
54C
55
55A
56
57
57A
Elution
Temp.
154
155
155
156
157
157
158
158
159
160
161
162
163
163
164
165
167
168
168
169
170
171
172
174
Compound
n-decane
dichlorobenzene
C.-alkyl benzene Isomer
C11H22 lsomer
C^-alkyl benzene Isomer
1,2, 3- trimethylbenzene
C.-alkyl benzene isomer
C11H24 lsomer
dichlorobenzene +
C11H24 lsonlerB
indan
C H, isomer
C,-alkyl benzene isomer
acetophenone
C.-alkyl benzene isomer
cresol isomer (tent.)
C.-alkyl benzene +
C11H24 l90ne"
C^-alkyl benzene Isomer
CjHj-benzene
C^-alkyl benzene isomer
ji-nonanal
C H.. Isomer
j]-undecane
nethylindene
C.-alkyl benzene Isomer
Chromato-
graphic
Peak No.
58
58A
59
59A
59B
60
60A
6 OB
61
61A
62
63
64
64A
64B
65
66
66A
66B
67
67A
68
68A
69
70
Elution
Temp.
175
175
176
179
180
180
184
184
185
186
187
201
202
202
205
208
212
213
214
216
220
221
228
229
231
Compound
C^-alkyl benzene isomer
unsat. hydrocarbon
C.-alkyl phenol
C2-alkyl phenol
C.H.,-benzene
4 7
Cj-alkyl benzene +
C13H28 lsolner8
C10H20° lsolner
C12H24 1SOmer
naphthalene + i^-decanal
C12"24 isoln*r
jn-dodecane
unsat. hydrocarbon
ji-trldecane
6-nethylnaphthalene
a-raethylnaphthalene
tetraisobutylene (tent.)
alkyl butyrate
blphenyl
C. ,H._ Isomer
n_-tetradecane + diphenyl ether
C.-alkyl naphthalene
unsat. hydrocarbon
C15H30 i80Ber
n-pentadecane
unknown
See Table 31 for protocol.
223
-------
Table B40. VOLATILE ORGANICS IDENTIFIED IN AMBIENT AIR FROM
MARCUS HOOK, PA (P5/L5A)3
OIT out to-
graphic
Peak No.
1
2
3
3A
4
5
5A
5B
6
7
8
8A
9
10
11
11A
12
12A
13
13A
14
15
16
17
18
19
20
20A
21
22
23
24
24A
25
26
26A
26B
26C
27
27A
28
26A
29
29A
29B
30
Ilution
Tenp.
CO
48
51
53
53
54
55
57
58
59
60
61
61
62
63
64
68
69
70
70
71
73
73
74
75
76
77
78
78
79
80
81
83
84
85
86
86
87
88
89
90
91
91
93
94
95
95
Compound
co2
Lobucane
C^Hg Loner
n- butane
C.Hg Loner
C,Hg iaoner
CjB1Q Loner
C5H10 t§OBK
Lopentane
C5H1Q Loner
»-pentane
CjH1() Loner
C5H10 Loner
C5ll10 ltomer
C5H10 tmo»er
cyclop kntanc
C6H12 llcnon"r
C6H10 ^Boner
C6H12 liomtE
perfluorotoluene (el)
C6H12 i*OBtr
l.l,l>trlchloToethane
C.H., Loner
C6H10 l§OBtr
benzene
C7H16 lionier
C7H14 i§OBtr
cyeloh*x«aa
2-nethylhexaoe
2, 3-dlnethylpentane
3-nethylhexane
C7HJ4 i«oner
C^j^ Loner
C8H18 1100"r
C?HIA Loner
n-hept4»*
Chronato-
graphlc
Peek No.
30A
30B
31
32
32A
33
34
34A
35
3SA
36
36A
36B
36C
37
37A
38
39
40
41
42
43
44
45
45A
45B
46
46A
47
48
48A
49
49A
50
51
52
53
54
54A
55
55A
56
57
58
59
59A
Elution
T*np.
CO
96
96
97
98
100
101
102
102
103
104
104
106
106
106
107
107
108
110
111
113
113
115
115
117
117
118
118
120
120
122
122
123
124
124
126
128
129
130
130
131
133
134
135
136
137
138
Compound
C,H,4 Loner
CjH.- iiontr
C7U14 Loner
C.H. * + C»H^i Loncre
C^IL. Loner
methylcyelohexane
CgH.g Loner
acetic acid
CgH,- Lomer
C7H12 Itoner
CgH16 Itoner
C8H14 1§OB*r
C.H., Loner
O J.D
C7H,2 ieooer
C8H18 ieoner
C8H16 1""aer
toluene
CgH,g leoner
C8H18 lsolMr
C8H16 liOBer
CBB16 Loner
C8H16 ltOT"r
C8H16 Loner
£-oct«n«
CgH., Loner
tetrachloroe thy lane
CgH16 leoner
C9H18 i>01"r
C,H20 Loner
CjHjQ leoner
C,HJ6 Loner
C9H20 itom"
CgH,, ieoner
C9H2Q Loner
C.H.g leoner
ethylbenzene
C,H18 Loner
xyl*ne ttoner
C9H2Q leoner
C,H20 Loner
C9H18 lionet
C9H18 ttoner
^-xylene
C,H18 Loner
n-nonane
f* U 4 mmn**
C10M20 1>OB*r
(continued)
224
-------
Table B40 (cont'd)
Chromato-
graphic
Peak No .
60
61
62
63
64
64A
65
66
66A
67
67A
68
69
70
71
71A
72
72A
73
74
74A
75
76
77
78
78A
79
79A
80
81
82
83
83A
84
84A
65
85A
86
87
87A
87B
Elutlon
Temp.
CC)
140
141
142
144
146
146
146
148
149
149
150
151
151
152
153
154
154
155
156
157
157
159
159
160
161
162
163
163
164
165
166
167
168
168
169
170
171
171
173
173
174
Compound
C.H.. isomer
iaopropylbenzene +
C10H22 1»°ffl«r
C9H16 + C10H22 itome"
C9H18 + C10H22 l80me"
benzaldehyds
CinH.n Isomer
10 20
t>-propylbenzene
ethyltoluene Iaomer
C.-H.. isooer
1,3,5-trlmethylbenzene +
C10H22 isomer
C11H24 lsomer
C10H22 l80ner
o_-ethy 1 toluene
C10H22 l80ner
C10H20 l80ner
C1()H20 isomer
1,2, 4-trlmethylbenzene
C10H20 l80mer
ti-decane
C10H20 l8Cmer
C.-alkyl benzene isomer
C.-alkyl benzene +
C11H24 l80mer8
1,2, 3-trlnethylbenzene
C11H24 l80Bier
C11H24 lBOmer
Indan
C16H20 I80mer
C^-alkyl benzene Isomer
C.-alkyl benzene iaomer
acetophenone +• C.-alkyl
benzene iaomer
C* • HHA iSOtttCr
11 22
C,,H_. + C.-alkyl benzene
11 Z4 4
iaomers
C10H18 1»°""r
C11H24 Ii0n"
C.-alkyl benzene Isomer
C^-alkyl benzene isomer
C^H^-benzene iaomer
C..H-, liomer
11 22
ii-undecane
C.-alkyl benzene la oner
C^-alkyl benzene Isomer
Chromato-
graphlc
Peak No.
88
89
90
90A
90B
91
91A
91B
92
92A
93
94
95
95A
95B
96
96A
97
97A
972
97C
98
99
100
100A
101
101A
101B
102
103
104
105
106
106A
107
107A
107B
108
109
110
110A
111
Elution
Temp.
174
176
178
178
180
180
181
181
182
183
183
185
187
187
188
189
190
191
192
195
196
197
199
200
201
203
204
205
206
211
212
214
215
215
217
218
219
220
222
226
228
230
Compound
C11H22 t8omtr
C.-alkyl benzene Isomer
C12H26 * C2~*1'cyl phenol
Iaomers
C^-alkyl benzene iaomer
C11H22 I80mer
C, ,H.n laoner
11 20
C.-alkyl benzene +
C.-alkyl phenol iaomera
C^H^-benzene isomer
C12H26 l80mer
Cj-alkyl benzene Isomer
C.-alkyl benzene 4-
C12H26 Uome"
Cj-alkyl benzene Iaomer
naphthalene
n-decanal (tent.)
C12H24 I80ner
n-dodecane
Cg-alkyl benzene iaomer (tent.)
C13H28 I80ner
C,-alkyl benzene Isomer
C13H26 l80IDer
C12H24 i80dier
CjHj-benzene 4- Ci3H2fi isomera
C13H28 l8OT"r (tent')
C14H30 l80Ber
C14H28 i80mer
n-trldecane
B-me thy Inaph thai ene
C14H28 1*on"
a-methylnaphthalene
C13H26 Uoner
C1AHJO isomer
alkyl butyrate
C,,H,, laomar
15 32
C1«H28 liomer
n-tetradecane
C2-alkyl naphthalene
C-.H-o Isomer
14 28
Cj-alkyl naphthalene
Cj-alkyl naphthalene 4-
C..H.n Isomers
15 30
C16H34 i"MMr
C15H30 l80Mr
^-pentadecane
225
(continued)
-------
Table B40 (cont'd)
Chrcima to-
graphic
Peak No.
1-12
11".
137
Elutloi)
Temp.
(°C)
232
240
240
Compound
unknown
sat. hydrocarbon
C,rH,Q0 isoraer (tent.)
Chroma to-
graphic
Peak No,
118
119
Elution
Temp .
Cc)
240
240
Compound
ri-heptadecane
sac. hydrocarbon
See Table 31 for protocol.
226
-------
Table BA1. VOLATILE ORGANICS IDENTIFIED IN AMBIENT AIR FROM
LOGAN TOWNSHIP, NJ (P8/L8A)a
Chrosa to-
graphic
Peak No.
1
2A
3
3A
4
4A
4B
4C
5
6A
7
7A
8
9
9A
9B
9C
10
10A
11
12
12A
12B
12C
13
13A
14
14A
14B
15
16
17
18
ISA
19
20
20A
21
21A
21B
22
22A
23
24
24A
Klutlon
Teap.
CC)
49
53
54
58
60
61
62
62
63
68
69
71
71
73
75
76
77
79
80
82
85
85
86
87
87
86
89
90
91
91
92
94
99
100
101
103
106
107
109
110
112
113
115
116
123
Compound
co2
C,H, ieoner
ft 0
acetaldehyde
laopentane
acetone
n-pentaoe (tent.)
dlethyl ether (tent.)
dlchloroethylcne
•ethylene chloride
butenal leomer
2-nethylpentane
butanal
3-m*thylpentane
hexafluorobenzene (el)
n-hexane
chloroform
ethyl acetate
perf luorotoluene (el)
•ethylcyclopentane
1,1,1-trlchloroethane
benzene
C7H16 iiOB"
carbon tetrachlorlde (tent. )
cyclohexane
2-nethylhexane
2 , 3-dlnethylpentnae
3— Mthylhexane
n-pentanal
C,H, , iioner
7 14
3-ethylpentane
C7H14 t'»" +
trlchloroethylene (tent.)
it- heptane
•cetlc acid
nethylcyclohexane
C8H-8 leaner
C,H._ Iioner
8 IS
C8H16 itaa"
toluene
C8H18 leoner
CgH,o leoner
n-hexanal
C8H16 Iioner
n-oct»ne
tetreehloroethylene
chlorobenzene
Chroaato-
raphlc
eak Mo.
25
25A
26
26A
26B
26C
27
27A
28
28A
28B
29
29A
30
31
31A
31B
32
32A
33
33A
33B
34
34A
35
35A
35B
35C
35D
36
37
37A
38
39
40A
41
41A
42
42A
43
44
45
45A
46
47
48
Elutlon
Teap.
CO
12;
127
128
129
131
132
133
133
136
138
139
145
146
147
149
149
150
152
153
154
155
158
160
163
164
165
165
166
169
170
172
175
177
181
185
186
187
188
190
193
201
202
203
209
211
213
Conpound
echylbenzene
C.H^8 ieoner
xylene laoner
C?Hlg laoner
C,H20 iaoner
etyrene
n-heptanal
o-xylene
li-nonan«
C10H22 lMMt
C^Hj M laoaer
benzaldehyde
ii-propylbenzene
ethyltoluene + C^ti^ liomera
phenol + cnN24 lloaer
C.H.g laoner
C,-«lkyl benzene laoner
n-octenal
1,2, 4-tr Inethy Ibenzene
n-decane
dlehlorobenzene Iconei (tent.)
1,2,3-trlmethylbenzene
C11H24 l*°°"
C.-alkyl benzene leoner
acetophenone
C,-alkyl benzene leoner
creaol laooer
C.-alkyl benzene leoner
C,,H,, Iioner
11 22
jn-nonanal
n.-undecane
C.-alkyl benzene leoner
Cj-alkyl phenol Iioner
Cj-alkyl phenol leoner
naphthalene
n^-decanal
C. ,H,, liomer
12 24
n-dodecene
Cj-alkyl phenol leoner
unknown
C11H22° Uo"r
(i-trldecane
E-nethylnaphthalene
unaat. hydrocarbon (tent.)
eat. hydrocarbon (tent.)
alkyl butyrate
(continued)
227
-------
Table B41 (cont'd)
Chromato-
graphic
Peak No.
48A
49
SO
51
Elution
Temp.
CO
214
216
221
223
Compound
blphcnyl (traces)
ii-tatradecana
unknown
unaat. hydrocarbon
Chroma to-
graphic
Peak No.
52
53
54
55
Elution
Temp.
(°C)
225
228
229
231
Compound
sat. hydrocarbon
C15H30 tiOB"
n-ptntad«cant
unknown
See Table 31 for protocol.
228
-------
TECHNICAL REPORT DATA
(Please read Inuructlom on the reverse before completing)
1. REPORT NO.
EPA-600/2-79-057
3. RECIPIENT'S ACCESSION>NO.
4. TITLE AND SUBTITLE
ANALYSIS OF ORGANIC AIR POLLUTANTS BY GAS CHROMATOGRAPHY
AND MASS SPECTROSCOPY
Final Report
5. REPORT DATE
March 1979
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Edo D. Pellizzari
B. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORG \NIZATION NAME AND ADDRESS
Research Triangle Institute
P. 0. Box 12194
Research Triangle Park, N.C. 27709
10. PROGRAM ELEMENT NO.
1AD712 BB-08 (FY-77L
11. CONTRACT/GRANTTTO.
68-02-2262
12. SPONSORING AGENCY NAME AND ADDRESS
Environmental Sciences Research Laboratory-RTP, NC
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final in/75-Q/7fl
14. SPONSORING AGENCY CODE
EPA/600/09
IB. SUPPLEMENTARY NOTES
16. ABSTRACT
Analytical methods and instrumentation for collecting and analyzing hazardous vapor
phase organics occurring in ambient air were developed and evaluated. The areas of
investigation included (a) the evaluation of Tenax GC sorbent for variations in the
breakthrough volumes for different lots; (b) studies on 1n situ reactions wh.lch might
occur during the .collection of organic vapors from ambient air; (c) evaluation of a
permeation system for delivering precise quantities of organic vapors for calibrating
instruments; (d) development of software programs for quantification of volatile organ-
ics using high resolution gas chromatography/mass spectrometry/computer (hrgc/ms/comp);
(e) determination of relative molar response factors (RMR) for quantitative hrgc/ms/comp
analysis; and (f) the identification and quantification of organic pollutants in ambient
air from several geographical areas within the Continental U.S.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIEFiS/OPEN ENDED TERMS
COSATI Field/Group
*Air pollution
*0rganic compounds
*Gas chromatography
*Mass spectroscopy
Computers
13B
07C
07D
14B
09B
18. DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
19. SECURITY CLASS {This Report)'
UNCLASSIFIED
21. NO. OF PAGES
243
20. SECURITY CLASS (This page}
UNCLASSIFIED
22. PHICE
EPA Form 2220-1 (9-73)
229
*U.S.GOVERNMENTPRINTINGOFFICE:1979 .640-01^ 4216 REGION NO. 4
------- |