PB81-128522
Cost Comparisons of Treatment and Disposal Alternatives for
Hazardous Wastes Volume II. Appendices
SCS Engineers, Inc.
Redmond, WA
Prepared for
Municipal Environmental Research Lab.
Cincinnati, OH
December 1980
U.S. DEPARTMENT OF COMMERCE
National Technical Information Service
NTIS
-------
EPA-600/2-80-208
December 1980
COST COMPARISONS OF TREATMENT AND DISPOSAL
AL'TERNATIVES-FOR 'HAZARDOUS-WASTES
Volume II. Appendices
by
Warren G. Hansen and Howard L. Rishel
SCS Engineers
--Redmond-,-Washington- -98052
Contract No. 68-03-2754
Project Officer
Oscar W. Albrecht
Solid and Hazardous Waste Research Division
Municipal Environmental Research-Laboratory
Cincinnati, Ohio 45268
MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268
'Ci-.
-------
NOTICE
THIS DOCUMENT HAS BEEN REPRODUCED
FROM THE BEST COPT FURNISHED US BY
THE SPONSORING AGENCY.. ALTHOUGH IT
IS RECOGNIZED THAT. CERTAIN PORTIONS
ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSIBLE.
-------
TECHNICAL REPORT DATA
(Pleat read Irairuettoia on the reverie before completing)
1 REPORT NO.
EPA-600/ 2-8D-208
3 RECIPIENT'S ACCESSION NO
PMI 1P8S2 g
4 TITLE AND SUBTITLE
Cost Comparisons of Treatment and Disposal Alternatives
for Hazardous Wastes ( Vol II)
S. REPORT DATE
December 1980
6 PERFORMING ORGANIZATION CODE
7 AUTHOH(S)
Warren G.
Howard L.
8 PERFORMING ORGANIZATION REPORT NO
Hansen
Rishel
B PERFORMING ORGANIZATION NAME AND ADDRESS
S C S Engineers
2875 152nd Avenue N.E.
Redmond, Washington 98052
10 PROGRAM ELEMENT NO
T2.3 C1DC6181
CONTRACT/GRANT NO
Contract NO. 68-03-2754
12 SPONSORING AGENCY NAME AMP ADDRESS
Municipal Environmental Reseatch Laboratory--Cin.> OH.
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AOENCV CODE
EPA/600/14 •
IS. SUPPLEMENTARY NOTES
Project Officer: Oscar W. Albrecht SHWRD, CINCINNATI, Ohio 45268 (513) 684-4216
16 ABSTRACT
Treatment and disposal alternatives and costs for hazardous wastes from the organic
chemicals, inorganic chemicals, and electroplating and metal finishing industries
are evaluated. The 16 treatment and 5 disposal technologies were based on
applicability to the industry categories, availability of cost and performance
data, and effectiveness in reducing or eliminating hazardous waste constituents.
Costs were aggregated at the technology level and entered in computer-linked
models at the unit cost or component level. Volume II contains applicable
portions of the Resource Conservation and Recovery Act, capital unit cost and
operation/maintenance cost data files, curve fitting for cost files, module
descriptions, and system variable equations. Volume II is intended for those
desiring the supporting data for Volume I.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
cost-effectiveness
cost estimates
hazardous materials
waste treatment cost
Organic Chemical Waste
Inorganic Chemical Waste
Hazardous Waste Costs
Electroplating Waste
Hazardous Waste
13B
14A
16 DISTRIBUTION STATEMENT
General distribution
19 SECURITY CLASS (TJia Ktport)
Unclassified
21. NO. OF PAGES
20 SECURITY CLASS (Thupagc)
Unclassified
22 PRICE
EPA Fora 2220.1 (R.». 4-77)
-------
DISCLAIMER
This report has been reviewed by the Municipal Environmental
Research Laboratory, U.S. Environmental Protection Agency, and
approved for publication. Approval does not signify that the
Environmental Protection Agency, nor does mention of trade names
or commercial products constitute endorsement or recommendation
for use.
-------
FOREWORD
The U.S. Environmental Protection Agency was created
because of increasing public and government concern about the
aangers of pollution to the health and welfare of the American
people. Noxious air, foul water, and spoiled land are tragic
testimonies to the deterioration of our natural environment.
The complexity of that environment and the interplay of its
components require a concentrated and integrated attack on the
problem.
Research and development is that necessary first step in
-problem-so-lution;- it-invo-lves defining—th« probl-em— measuring•
its impact, and searching for solutions. The Municipal Environ-
mental Research Laboratory develops new and improved technology
and systems to treat and manage wastewater and solid and
hazardous waste pollutant discharges from municipal and commun-
ity sources; to preserve and treat public drinking water
supplies, and to minimize the adverse economic, social, health,
and aesthetic effects of pollution. This publication is one of
the products of that research and provides a most vital
communications link between the -researcher and the user commun-
ity.
The purpose of this study is to enhance the understanding
of hazardous waste treatment and disposal economies. The
multitude of applicable and emerging technologies in this area
must be described and priced to allow waste managers to make
informed decisions. This report provides the user community
with the necessary cost data, analytical and comparative
techniques, and recommendations for cost-effective management
options based on the type of waste and scale of operation.
Francis T. Mayo,
Director
Municipal Environmental Research
Laboratory
i : £ 111
-------
ABSTRACT
This project is Intended to standardize, update, and
evaluate cost and technological data pertaining to treatment/dis-
posal options for hazardous wastes from the organic chemicals,
inorganic chemicals, and the electroplating and metal finishing
industries. Sixteen treatment and five disposal technologies
were selected for study based on their applicability within the
industrial categories, the availability of cost and performance
data, and their overall effectiveness in reducing or eliminating-
the hazardous waste constituents.
Each technology was assessed in terms of its unit processes
or nodules,-and computer-linked models were developed for
calculating capital and operation/maintenance costs at the unit
process level. Costs were then aggregated at the technology
level together-with all applicable indirect capital and opera-
tion/maintenance costs. Cost data were entered in the models at
the unit cost or cost component level (e.g., dollars'/yd3 of
concrete), and the data files were designed to accommodate
economies of scale.
Technology costs derived from the analyses (provided in
both tabular and graph format) are presented for site prepara-
tion, structures, mechanical equipment, electrical equipment,
land and other capital. Operation/maintenance cost categories
include three classes of labor, energy, maintenance, and
chemicals. Final cost comparisons among treatment/disposal
technologies applicable to similar waste streams are made on a
life cycle average cost basis.
Risks associated with the existence and operation of each
technology are also assessed. Each technology is rated and
compared in terms of susceptibility to catastrophic events,
unexpected downtime, and adverse environmental impacts.
This report was submitted in fulfillment of Contract No.
68-03-2754 by SCS Engineers under the sponsorship of the
U.S. Environmental Protection Agency. It covers the period
September 25, 1978, to August 25, 1979, and work was completed
as of October 25, 1979.
iv
-------
CONTENTS
Foreword 11i
Abstract fv
Metric Conversion Factors vi
Appendices
A. Resource Conservation Recovery Act. Section 250.45 1
B. Capital Unit Cost File 12
C. Operation and Maintenance Unit Cost File 16
__ D._ Curve Fitting for Cost Files._. ._. _._._. ^_ ._. _._ .__._. ._._ 18
"E. Modu^"Descriptions '. ,~~. ."".." ". . 24
F. System Variable Equations 32
'V -
-------
LIST OF ABBREVIATIONS AND METRIC CONVERSIONS
Abbreviation
Definition
Metric Equivalent
each
square feet x
linear feet x
feet x
, diameter (in inches) x
-diameter (in feet) x
horsepower-hour x
ipounds x
„_ _GAL_ gallons-• _x
EA
SF
LF
FT
DIA"
DIA1
HP
IBS
JSAL
GPM
GPD
CF
BTU
LBS/HR
TONS/HR
IN
CY
BDFT
KWH
0C
PPM
PSIG
BOD
TSS
.galIons"per minute x
•gallons per day x
cubic feet x
•British Thermal Unit x
pounds per hour x
tons per hour x
inch x
•cubic yard x
board feet x
•kilowatt-hour
•degrees centigrade x 9/5+32
parts per million !
(milligrams per liter)'
pounds per square inch x 703.1
.biological oxygen demand
total suspended solids'
0.0929
0.3048
0.3048
2.54
0.3048
0.454
.3.785
3.785
3.785
0.028
1.06 x
0.454
0.907
2.54
0.765
0.3048
N.A.
= square meters
= linear meters
= meters
= centimeters
= meters
= 0.7457 KWH
-= kilograms
° liters
= liters 'per minute
= liters per day
= cubic meters
1010 = ergs
= kilograms per hour
= metric tons per hour
= centimeter
= cubic meter
= board meters
N.A.
3 degrees Fahrenheit
N.A.
= kilograms per sq. meter
N.A.
N.A.
vi
-------
APPENDIX A
RESOURCE CONSERVATION RECOVERY ACT
SECTION 250.45*
I ZM.4S Standards for treatment/disposal.
(a) Where practical, disposal of haz-
ardous waste shall be avoided and al-
ternatives such a* destruction, treat-
ment to render the waste non-hazard-
ous, or treatment (or purposes of re-
source recovery and reuse shall be em-
ployed.
Tb) All faculties which dispose of dis-
crete radioactive wastes shall be li-
censed by the-DA Nuclear Regulatory ,
Commission, or an Agreement State.
(c> An owner/operator of a facility
shall not treat or dispose of hazardous
waste In a ***••* *"1. surface Impound-
ment, basin, or landfarm If the waste
has any one of the following charac-
teristics
(1) Ignltable waste, as defined in
( 250.13(a). Subpart A:
(11) Reactive waste, as defined tat
1250.13(0. Subpart A:
(ill) Contains chemical groups which
are Incompatible with wastes In the fa-
cility with which they may become
mixed (see Appendix X): or
(lv> Volatile waste.
Note.—A ludfllL surface Impoundment.
basin, or landfann facility may be uied to
treat or dispose el Iznltable. reactive, vola-
tile, or Incompatible vaste provided that the
owner/operator can demonstrate to the Ra-
tional Administrator, at the time a permit It
Issue* pursuant to Subpart X. that such
treatment or disposal will not: (1) contribute
any airborne contaminant to the atmos-
phere such that eoncemrsuoni above the
source have the potential: pursuant to
the Occupational Safety and Health An of
ino. or (II) to contribute two or more listed
airborne contaminants m a manner srtuca
emuses the sun of the foUovtni expression
to exceed unity:
Where:
E. to the equivalent exposure of a mixture
of airborne eonlamlnanu. C ta the conceit-
traUoa of a particular contaminant. L u the
exposure limit for that contaminant (39
CPU 1910.1000. Table Z-l. Z-2. z-li. and «>
daiaate the stnietaral tnietrtty of the land-
fill, surface Impoundment, or basin, or
affect the attenuation capacity of a land-
farm, Ihroucb heal tenerauon. fires, or ei
plosive reactions.
tZM.tS-1 Incineration.
(a) An owner/operator of an Inciner-
ator shall comply with the require-
•menu of this Section when burning
hazardous wane.
(b) Trial burnt, (1) The owner/oper-
ator shall conduct a trial burn for
each hazardous waste which is signifi-
cantly different In physical and chemi-
cal characteristics from any previously
demonstrated under ecjuivalent condi-
tions. The trial burn shall Include as a
minimum the following determina-
tions:
(1) An analysis of the hazardous
waste for concentrations of halogens
and principal hazardous components:
(U) An analysis of the ash residues
and scrubber effluent for the principal
hazardous components;
(Ul) An analysts of the exhaust gas
for the concentrations of the principal
hazardous components, hydrogen ha-
lides. CO. CO* Ok and total partlcu-
lates
*Reprinted from the Federal Register; Monday, December 18, 1978,
Part IV; Environmental Protection Agency; Hazardous Waste.
-------
(Iv) An Identification of sources of
fugitive emissions and their means of
control:
A computation of combustion ef-
ficiency and destruction efficiency.
(Til) A computation of scrubber effi-
ciency in removing halogens:
(2) The result! from each trial burn
shall be submitted to the Regional Ad-
CO Monitoring. The owner/operator
shall monitor and record the following
in each Mai burn and each operation-
al burn:
(l) Combustion temperature:
(2) Carbon monoxide and oxygen
concentrations in the exhaust gas on a
continuous basis, and
(3) The rate of hazardous waste.
fuel and excess air fed to the combus-
tion system at regular Intervals of no
* longer than 15 minutes.
(d) Comouition criteria. (1) The in-
cinerator shall operate at greater than
1000* C combustion temperature.
gr^at^T M%«M j seconds retention time.
and greater than 2 percent excess
oxygen during incineration of hazard-
ous waste, unless the waste is hazard-
ous because it contains balogenated
aromatic hydrocarbons, in which case
the Incinerator shall operate at great-
er than 1200* C combustion tempera-
ture, greater than two seconds reten--
Uon time, and greater than > percent
excess oxygen during incineration of
the hazardous waste.
(2) The incinerator shall be operated
at a combustion efficiency equal to or
greater than 99.0 percent, as defined
In the following equation:
d • eo;
X 100
CO
Where:
CE-combuitlon efficiency
^•"•-concentration of CO. In ezhaiot cai
CTBe>«ooDcentrf*.tiofi of CO in
Incinerators that burn waste that Is
hazardous only because it Is listed In
{ 250.14(bXl) are exempt from this re-
quired.
Nan To (b) (1) Am <»x— Indnenlon
may operate tt other condition* of tempera-
ture. retention time, and combuslon effi-
ciency If the facility owner/operator can
demonstrate that ma equivalent detne of
combustion will be provided under alternate
combustion criteria to the conditions one-
•CtlDCQ eMOVC?
(3) The Incinerator shall be operated
with a functioning device to cut off
automatically waste feed to the Incin-
erator wnec significant changes occur
In flame combustion temperature,
excess air. or scrubber water pressure.
(e) Destruction and emitnon control
criteria. (1) The Incinerator shall be
designed, constructed, and operated to
maintain • a destruction efficiency of •
99.99 percent as defined in the follow-
ing equation:
t'ln - *eut\X
"in j
100
Where:
DE-destnictlan efficiency -
WB«matj feed rate of principal tofdc com-
ponenu of waste going into the Inciner-
ator
-------
{tSO.45-2 Landfills.
(a) Site Selection.
(1) A landfill shall be located, de-
signed, constructed, and operated to
prevent direct contact between the
landfill and navigable water.
(2) A landfill shall be located, de-
signed, and constructed so that the
bottom of Its liner system or natural
ln-place solL barrier Is at least 1.5 '
meters (9 feet) above the historical
high water table.,
NOR.—The bottom of any Uner cyitem or
natural In-plaee soQ banter may be located
leu that 1.5 meters (S feet) above the bl»-
torleal high water table, provided the
owner/operator can demonstrate, to the Re-
gional Administrator, at the **?•• • a permit is
loued punuant to Subpan E. that no direct
contact wul occur between the landfill and
the water table and a Icsehau monitoring
system at required by 1250.43-S can be ade-
quately Installed and maintained la the
(3) A landfill shall'be at least ISO
meten (500 feet) from any functioning
public or private water supply or live-
stock water supply.
NOR.-A Undfffl may be leas than 150
meten .
<4) Waste, containerized or non-con-
tainerized, that Is Incompatible (see
Appendix I) shall be disposed of in
separate landfill cells.
(5) Each container of liquid hazard-
ous waste shall be surrounded by an
amount of sorbenl Inert material capa-
ble of absorbing all of the liquid con-
tents of the container.
(6) The following hazardous waste
shall not be disposed In a landfill:
(I) Ignltable waste, as defined In
12S0.13(a) of Subpart A;
. (11) Reactive waste, as defined In
| S50.13(c) of Subpart A;
(111) Volatile waste:
Nom-Sec Note In I UO.tKe).
(iv) Bulk liquids, semi-solids, and
sludges.
Hon.—Bulk liquids, semi-solids, and
sludges mar be disposed of at a landfill pro-
vided such waste ti pretreated and/or stabi-
lized (e.g. chemically fixed, evaporated.
mixed with dry Inert absorbonl). or treated
and/or stabilised In the landfill and wul not create
a flammable or explosive atmosphere.
-------
(10) A minimum of 15 centimeters (6
Inches) of cover material shall be ap-
plied dally on active portions of a
landfill Active portions which will not
haie additional waste placed on them
for at least one week shall be covered
with 30 centimeters (12 Inches) of
cover material
Nan—An owner/operator may use coven
of different thicknesses and/or apply them
at different frequencies If be can demon*
strait to the Regional Administrator, at the
time a permit ta Issued pursuant to Subpart
E, that the possibility of fire or expiation or
the harboring, feeding, and breeding of land
burrowing animals and rectors will be con-
trolled to an equivalent degree. ,
(11) In areas where evaporation ex-
ceeds precipitation by 20 Inches or
more and where natural geologic con-
ditions allow, a landfill shall have a
natural In-place soil barrier on the
entire bottom and sides of the landfill.
This barrier shall be at least 3 meters
(10 feet) la thickness and consist of
natural la-place soil which has a per-
meability of less than or equal to
1 x 10-' cm/sec, and meets the re-
quirements of { 250.4KbX14).
Hon.—A natural la-place soD barrier
uilng auural In-plaee sofu of different
thicknesses and penneabOiUei nay be used.
provided the barrier has a thickness greater
than or equal to 1J meters (ft feet), and pro-
vided that the owner/operator of the land-
fill can demonstrate M the Regional Admin-
istrator, at the time a permit Is Issued pur-
suant to Subpart E. that It will provide
equivalent containment of leichite.
(12) An owner/operator of a landfill'
using the design in paragraph (bXll)
or any similar design which does not
have a leaehate collection system shall
demonstrate to the Regional Adminis-
trator, at the time a permit Is Issued
pursuant to Subpart E. that liquids
will not accumulate in the landfill to
the extent that they may be dis-
charged to the surface or to ground-
water.
(13) In areas where climatic and nat-
ural geologic conditions do not allow
meeting the requirements of para-
graph (bXll). a landfill shall have
either one of the following Uner sys-
tems covering the entire bottom and
sides of the landfill:
(1) Derlyn L The liner system shall
have a slope of at least 1 percent at all
points and be connected-at all low
points to one or more leaehate collec-
tion sumps, (which meet the specifica-
tions In paragraph (bXIT)). so that
leaehate formed In the landfill will
flow by gravity into the leaehate col-
lection sumpxs) from which the lea-
ehate can be removed and treated or
disposed of as specified herein. The
liner system shall consist of:
(A) A son liner which is at least 1.5
meters (5 feet) in thickness and com-
posed of natural in-place soil or em-
placed son which has a permeability
less than or equal to 1 X 10*' on/sec,
and meets the requirements of para-
graph (bX14): and
(B) A leaehate collection and remov- -
al system overlying the soil liner
which Is at least 30 centimeters (12
Inches) In thickness and composed of
permeable soil capable of permitting
leaehate to move rapidly through the
system and Into the leaehate collec-
tion sumpXs).
(Ill) Design II The liner system shall
have a slope of aMeast 1 percent at all
points and be connected at all low
points to one or'more leaehate collec-
tion sumps (which meet the specifica-
tions of paragraph (bX17». so that
leaehate formed in the landfill wfll
flow by gravity?into the leaehate col-
_lection sumpCs)*from.which the-lea-
chate can be removed and treated or
disposed of as specified herein. The
landfill Uner system shall consist of:
(A) A leaehate detection and remov-
al system, placed on the natural base
of the landfill, which shall consist of a i
'minimum of IS centimeters (6 inches):
of permeable soQ capable of permit-
ting leaehate to move rapidly through
the system and Into the leaehate col-
lection sumps:
(B) A memorane liner system overly-
ing the leaehate detection and removal
system composed of a 15 centimeter (6
Inch) layer of clean permeable sand or
soil overlaid with a •synthetic mem-
brane liner which meets the specifica-
tions In paragraph (bX17) and which
Is overlaid with a 15 centimeter (6
Inch) layer of clean permeable sand or
sou; _
(C) A sou liner overlying
-------
the alternate liner mum Include a Uner
and a leachate eoUeetloo and removal
system that provide* equivalent or dealer
Ipyfhal^ rftnTilfifnfnT collection, and re-
moval.
(14) The sods used In a soil liner or
natural inplaee soil barrier shall meet
the following minimum criteria:
(1) Be classified under the Unified
Soil Classification System CU CH. SC
and OH (ASTM Standard D2«87-69).
(11) Allow greater than 30 percent.
passage through a no. 200 sieve
(ASTM Test D1140). ,
(111) Have a liquid limit equal to or
greater than 30 units (ASTM Test
D423),
(Iv) Have plasticity greater than or
equal to IS units (ASTM Test D424).
(v) Have a pH of 7.0 or higher (see
Appendix IV), and
(vl) Have a permeability not adverse-
ly affected by anticipated waste.
Non.—Soil not meeting the above criteria
may be used provided the owner/operator
. can demonstrate to the Regional Adminis-
trator, at the Ume-m permit I* Issued pursu-
ant to Subpan E. that such son wfll provide
equivalent or greater structural stability
•nrf waste rantalnraynt ***** attenuation,
and will not be adversely affected by the an-
ticipated waste.
(IS) A synthetic membrane Uner
shall meet the following minimum cri-
teria:
(1) Be of adequate strength and
thickness to Insure mechanical Integri-
ty and have a minimum thickness of
20mQc
(U) Be compatible with the waste to
be Undf Uled;
(111) Be resistant to attack from sofl
bacteria and fungus;
(Iv) Have ample weather resistance
to withstand the stress of extreme
heat, freezing, and thawing;
(v)-Have adequate tensile strength
to elongate sufficiently and withstand
the stress of installation and/or use-of
machinery *>*^ equipment;
~ (vi)'Be of uniform thickness;''free
from thin spots, cracks, tears, blisters.
and foreign particles: _
(vU) Be placed on a stable base; and
(vtll) Have a permeability less than
or equal to 1 x 10- » cm/sec or its equiv-
alent.
(18) A landfill overlying an under-
ground drinking water source shall
have a groundwater monitoring
system and a leachate monitoring
system as specified in 12S0.43-8.
(17) A leachate collection sump (as
required In the Uner systems specified
in paragraph (bXIS)) shall be designed
and constructed:
(i) Of materials both compatible
with and Impermeable to the i
formed In the landfill;
(U) So that the sump Is accessible for
removal of leachate U the sump pump
becomes Inoperative and/or the stand
pipe for removal of leachate becomes
damaged; and
(111) With a volume equal to or great-'
er than three-months expected volume
of leachate but no less than 1.000 gal-
lons.
(18) The owner/operator shall •
remove leachate from a leachate col-
lection sump as frequently as neces-
sary to maintain gravity Qow In the
leachate collection and removal
system and shall check the leachate
collection sump at least monthly to
assure compliance with *hl« require-
ment.
(19) Landfill Uner systems and natu-
ral In-place soil barriers shall not be
placed over earth irml^f1"'* exhibiting
a permeability of greater than IxlO*4
on/sec.
(c) Closure, (1) At closure, the
owner/operator of a landfill shall
place a final, cover over the landfill.
This final cover shall consist of at
least IS centimeters (8 Inches) of sou
with a permeability less than or equal
to 1x10-' cm/see which meets the cri-
teria of |2S0.4S-2(bX14). underlying
45 centimeters (18 inches) of soQ capa-
ble of supporting Indigenous vegeta-
tion. The top IS centimeters (8 Inches)
of this cover shall be topsolL
Non.—A final cover uslnt different thick-
nesses and permeabilities may be used pro-
vided the owner/operator can demonstrate
to the Regional Administrator that It win
provide equivalent control of InfDlradon of
water, equivalent control of sublimation or
evaporation of harmful pollutants Into the
air. and equivalent erosion control The
owner/operator must also demonstrate that
the final cover will support Indigenous vecv
(2) Where trees or other deep-rooted
vegetation are to be planted on the
completed landfill, the final cover
shall consist of the 15 -centimeter (8
Inch) soil layer specified in paragraph
(CXI) underlying at least 1 meter (3
feet) of soil capable of supporting the
deep-rooted vegetation and Indigenous
vegetation.
~Non.-The .upper layer son thickness for
deep-rooted vegetation may be less than 1
meter IS feet) provided the owner/operator
can demonstrate to the Regional Adminis-
trator that the roots of the vegetation will
not penetrate the_a-lneh clay caver.
(3) The final grade of the final cover
•haQ not exceed 33 percent. Where
final grades exceed 10 percent, hori-
zontal terraces shall be constructed.
Terraces shall be of sufficient width
and height to withstand a 24-hour. 25-
year storm. A terrace shall be placed
at every 10 feet of rise In elevation
when the slope to less than 20 percent
-------
and at every 20 feet or Use In elevation
when the slope l> greater than 20 per-
cent.
Hon.—The final inde may be of differ-
ent design tad slope provided Uu owner/op-
erator can demonstrate to the Regional Ad-
ministrator that water will not pool on the
final cover and that erosion will be- mini-
(d) Post-closure eon. (11 During the
post-closure period, which shall con-
tinue at the landfill lor a period of at
least 20 yean (see (250.43-7). the
owner-operator of the landfill:
(1) Shall *"****t*J*> the soQ Integrityv
slope, and vegetative cover of the final
cover and all diversion and drainage
structures;
(ID shall ""•I*»*«*T» the groundwater
and leachate monitoring systems and
collect and analyze samples from these
systems and collect and analyze sam-
ples from these systems In the manner
and frequency specified In 1250.43-6;
(ill) ^HffH mgjot&in surveyed bench
marks:
(Iv) Shall m«hi*«i»i and monitor the
gas collection and control system
where such a system Is Installed to
control the vertical and horizontal
escape of gases; and
(v) Shan restrlct.aceess to the land-
fill as appropriate for Its post-closure
use.
NOT*.—The owner or "operator of a landfill
mar request that certain post-closure re-
quirement! be discontinued earlter **••»• 10
years after closure. The faculty owner or
operator shall submit Information to the
Regional Administrator lo Indicate that
such post-clonire care need not continue:
(a*, no leaks have been detected, techno!-
00 ha* advanced, alternate disposal tech-
niques are* to be employed.) The Regional
Administrator shall have the discretion to
allow discontinuance of one or more of
these post-closun requirements,
(2) No buildings intended for habita-
tion shall be constructed over a land-
fill where radioactive waste aa listed In
Subpart A has been disposed.
{250.45-3 Surface Impoundments.
• (a) Site selection. (DA surface Im-
poundment shall be located, designed.
constructed, and operated to prevent
direct contact between the surface Im-
poundment and navigable water.
(2) A surface Impoundment shall be
• located, designed, and constructed so
that the bottom of Its liner system or
natural In-place soil barrier Is at least
1.5 meters (5 feet) above the historical
high water table.
Nont-The 'bottom of any Uner system or
natural uvelaee son banter may be located
^SarTl Jmeun (t feet) above the his-
torical high water table provided the
owner/operator can demonstrate uithe Re-
gional Administrator, at the time a permit Is
Issued pursuant to Subpart E. that no direct
contact wul occur between the surfsct Im-
poundment and the water table, and a lea-
chate monitoring system as required In
•| 250.43-1 can be adequately Installed and
• maintained In the lesser space.
(3) A surface impoumlmfnt shaH be
located at least 150 meters (500 feet)
front any functioning public or private
• water supply or livestock water supply.
Hers,— A surface Impoundment may be lo-
cated less than ISO -meters (500 feet) (rom
• any functioning public or private water
supply or livestock water supply provided
Use owner/operator can demonstrate to the
Regional Administrator. at the time a
permit to Issued pursuant to fiubpart E.
(I) No direct contact win occur between
the surface
-------
(2) Where natural geologic condi-
tions allow, a surface Impoundment
shall have a natural in-place sou bar-
rier on the entire bottom and aides of
the Impoundment This barrier shall
be at least 3 meters (10 feet) In thick-
ness and composed of natural In-place
soil which meets the specifications of
paragraph (CX4).
Norn.—An owner/operator of a surface "
Impoundment may use a natural In-place
soil buner of different thicknenei and dif-
ferent ipedftcauoni If the owner/operator
cut demonstrate to the Regional Adminis-
trator, at the time a permit b iuued purtu-
ant to Subpart K. that equivalent or greater
wule containment can be achieved. Howev-
er, under no eireumnaneei ahall the thick-
ness of the natural In-plaee toll barrier be
lea than 1.B m (5 feet), or It* -permeability
be greater than 10-' em/see.
(3) Where geologic conditions do not
allow use of the design In paragraph
.. a surface Impoundment shall
have a liner system covering the entire
bottom and sides of the Impoundment.
This liner system shall consist of top
liner, a bottom liner and a leacbate de-
tection system which meet the .follow-
ing specifications:
(1) The top liner shall consist of em-
placed soil at least 30 centimeters (12
Inches) In thickness which meets the
criteria In paragraph (cX4). or -an arti-
ficial liner which meets the criteria in
paragraph (eXS).
(U) The bottom liner shall consist of
natural In-place soil or emplaeed soil
which meets the criteria In paragraph
(CX4) and Is at least-1.5 meters (5 feet)
In thickness, or an artificial liner
which meeta the criteria-In (CXS).
(Ill) The leachate detection system
shall be a gravity flow drainage system
Installed between the top and bottom
liners and ahall be capable of detecting
any leachate that passes through the
top liner. Provisions shall be made for
pumping out any leachate that passes
through the top liner and for removal
of noxious gases that occur In the
system.
Note.—An owner/operator may use • dif-
ferent design If he emn demonstrate that an
equivalent or greater degree of watte con-
tainment b achieved. The Regional Admin-
istrator ahall take leto account the length
of time the surface Impoundment has been
In existence, projected facility life, and arti-
ficial liner, natural In-plaee soli, or em-
placed soil permeability and thickness when
arriving at a decision regarding whether an
equivalent decree of containment exists. In
the caw of exlsttni facilities, the faculty
owner/operator may conduct leachate (cone
of aeration) monitoring lo deteimlne
whether any slsnlflcant Increase la the
background levels of chemical species has
occurred. If no significant Increase b ob-
served, the design shall be considered to
provide the same or greater degree of per-
formance.
(4) Soils used for surface Impound-
ment liners or natural in-place soil
bamen shall:
(1) Be classified under the Unified
Soil Classification Systems as CL. CH.
SC, or OH. (ASTM Standard D2487-
<9r.
(U) Allow more than 30 percent pas-
sage through a No. 200 sieve (ASTM
TestDlMO);
(111) Have a liquid limit equal to or
greater than 30 (ASTM Test D423):
(Iv) Have a plasticity Index equal to
or greater than IS (ASTM Test D424):
(v) Have a pH of 7.0 or higher (See
Appendix IV):
(rt) Have a permeability equal to or
less than 1x10" cm/sec. (ASTM Test
D2434X and
(vll) Have a permeability not ad-
versely affected by the waste to be
placed In the Impoundment.
Nora.— Sou not meeting the above criteria
may be used provided that the owner/opera-
tor can demonstrate to the Regional Admin- '
tstrator. at the time a permit U tamed pur-
suant to Subpart X. that such soil will pro-
vide equivalent or greater structural stabil-
ity and waste containment properties and
wul not be adversely affected by the waste
lo be placed In the impoundment.
(8) Artificial liners for surface Im-
poundment* (e4- concrete, plastic)
(I) Be of sufficient strength to insure
mechanical integrity?
(U) Have a minimum thickness of 30
mils:
(111) Be compatible with the waste to
be placed In the Impoundment;
(Iv) Have a permeability leas than or
equal to I x 10*' em/see;
(v> Have an expected service life at
least 25 percent longer than the ex-
pected time of facility usage;
(vt) Be placed on a stable base:
(vll) Satisfactorily resist attack from
ozone, ultraviolet rays, soil bacteria,
and fungus: _
(vltl) Have ample weather resistance
to withstand the stress of freezing and
thawing:
(U) Have adequate tensile strength
to elongate sufficiently and withstand
the stress of Installation and/or the
use of machinery or equipment:
(xr Resist laceration, abrasion and
puncture from any matter that nay
be contained In the fluids It will hold:
(si) Be of uniform thickness, free of
thin gpota. cracks, tears.- blisters, and
foreign particles: and
(xil) Be easily repaired.
(6) To prevent their rupture, all arti-
ficial liners In a surface Impoundment
where mechanical equipment Is used
for operation (e.g. sludge dredging
and collecting) shall have « protective
~' - 2= !\ J''2E~
-------
cover of selected clean earth material.
not less than 45 centimeters (18
lnch.es) thick, placed directly on top of
the liner.
(7) A mrface impoundment shall
have a groundwater monitoring
system and a leachate monitoring
system that meet the specifications Irr
< 250.43-8.
(8) All surface Impoundment dikes.
shall be designed and constructed In a
manner that will prevent discharge or
release of waste from the facility, both
horizontally and vertically.
(9) All earthen dikes at the facility
shall be constructed jof clay-rich soil
with a permeability less than or equal
to 1 x 10-tan/sec.
(10) All earthen dikes shall have an
outside protective cover (e.g.. grass.
shale, rock) to mintmiM erosion by
wind and water.
(11) Those surface Impoundments
which are Intended to be closed with-
out removing the hazardous waste
- shall meet the landfill requirements -
under Section 250.45-2.
(d) Operation and maintenance. (1)
A surface Impoundment shall be oper-
ated and maintained so that dis-
charges or releases to groundwater
and navigable water do not occur.
(2) The freeboard maintained In a
surface impoundment shall be capable
of containing rainfall from a 24-hour.
25-year storm but shall be no less than
to centimeters (2 feet).
(3) Records shall be kept of the con-
tents and location of each surface Im-
poundment. These records shall be
maintained as specified In 1250.43-
Kb).
(f) The Integrity of the natural In-
place son barrier or the liner system
Installed In a surf ace'Impoundment
shall be maintained until closure of
the Impoundment. The liner system or
natural ID-place son barrier shall be
repaired Immediately upon detection
of any failure (e.g.. Uner puncture).
(5) Surface Impoundment dikes shall
be visually inspected dally, as specified
under Section 250.43-6. for the pur-
pose of detecting and correcting any
deterioration. Any maintenance or cor-
rective action necessary to restore the
dike to Its original condition shall be
accomplished expedltlously.
(6) Any system provided for detect-•
Ing the failure of a Uner system or nat-
ural In-place soil barrier Shan be visu-
ally Inspected dally, as specified In
1250.43-6. to Insure that It Is operat-
ing properly for the purpose Intended.
(e) CZoture and poif-clofiire, (1)
Upon final close-out, all hazardous
waste and hazardous waste residuals
shall be removed from the surface Im-
poundment. If the impoundment does
not meet the landfill requirements
under (250.45-2. and disposed of as
hazardous waste pursuant to the re-
quirements of this Part.
(2) Upon final close-out of a surface
impoundment which meets the criteria
for landfills under f 250.4S-2. all haz-
ardous waste and hazardous waste re-
. siduals shall be:
(I) Removed and disposed as hazard-
ous waste pursuant to the require-
ments of this Part, or
(U) Treated In the impoundment
pursuant to the note following
1250.45-2(6) (6) (Iv). and then the Im-
poundment shall be closed according
to the closure requirements for land-
fills under { 250.45-Xc).
(3> Emptied surface Impoundments
Shan be filled with an Inert fill materi-
al and seeded with a suitable grass or
ground cover crop, or converted to
some other acceptable use that meet*
the requirement under 1250.43-7.
(4) Those surface Impoundments
which were closed as landfills shall
meet all post-closure requirements for
landfills under 1250.45-2(d).
fIM.it-4 Bubts.
(a) A basin shall be constructed of
impermeable materials of sufficient
strength "*d thickness to ensure me-
chanical Integrity and to prevent the
discharge of waste to navigable waters
or groundwater.
(b) A basin shall not be used to con-
tain hazardous waste which Is:
(1) Detrimental to the basin's con-
struction materials:
(2) Ignltable waste, as defined In
12WUS(a> of Subparr A:
(3) Reactive waste, as defined in
12S0.13(e) of Subpart A: or
(4) Volatile waste.
Non,-Wlth respect to (b) (S. I and 4). see
Mote itsodated vita 12M.4MO.
(e) Hazardous waste which Is incom-
patible (see Appendix I) shall not.be
placed together in a basin.
~"(d> A hazardous waste shall be
tested prior to placement In a basin to
determine whether It wfll have any
detrimental effect (e.g. cause dissolu-
tion or corrosion, increase permeabil-
ity, decrease mechanical strength) on
materials used for construction of the
baslnl
(e) The materials used for construc-
tion of basins shall be compatible with
the hazardous waste and treatment'
chemicals to be used under expected
operating conditions (Le.. temperature.
pressure) or shall be protected by a
Uner compatible with the hazardous
waste and treatment chemicals to be
-------
used under expected operating condi-
tions.
(f) A basin shall be monitored or vi-
sually inspected dally in accordance
with the requirements under {.250.43-
8 (or leaks, corrosion, cracks, or other
damages. Any damage detected shall
be repaired Immediately.
(g) A basin shall have a groundwater
monitoring system meeting the spedfl- .
cations of f 250.43-*.
Non.-A buio does not need a round-
water raonltortni system If the (aellUy
owner/opemor can demonstrate to th* Re-
(tonal Administrator, at the time a permit b
tnucd pursuant to Subpart E. that any leak-
Inf esa be detected by Usual Inspeetloa or
(b) At final closure, all hazardous
waste and hazardous waste residues
shall have been removed from a basin
and disposed of as hazardous waste
pursuant to the requirements of Sub-
parts B. C. and D.
2SO.U-S Landfarma,
(a) Hoiantou* watte not amenaMe
to lanOfarming. The tollowlng hazard-
ous waste shall not be land/armed:
U> Ignitable waste, as defined In
{ 350.13U) of Subpart A:
(3) Reactive waste, u defined in
I JM.lS(c) of Subpart A;
(9) Volatile waste:
(4) Waste which is Incompatible
when mixed (see Appendix I).
Non.-6ee Note associated *Uh
| ZM.4MO.
(b) General requirement*. (1) A land-
farm shall be located, designed, con-
structed, and operated to prevent
direct contact between the treated
area and navigable water.
12) A landfann shall be located, de-
signed, constructed, and operated to
minimi** erosion* landslides, and
slumping In the treated area,
(3) A landfann shall be located, de-
signed, constructed and operated so
that the treated area Is-at least U
meters (9 feet) above the historical
high water table.
Hon.—The treated ana nay be located
less Una Lfl aeten tt reel) above, the his-
torical bl«b water table U the owner/opera-
tor can demonstrate la the Retlonal Admin-
istrator, at the time a permit Is Issued pur-
suant to Subpart E. that no direct contact
will occur between tlu treated ana and the
water table.
(4) The'treated area of a landfann
shall be at least 150 meters (500 feet)
from any functioning public or private
water supply or livestock water supply.
Hon.—Th* treated area of a Undfam
may be less than ISO meters (MO feet) from
any (unctlonlns-public or private water
supply or livestock water supply, provided
the facility owner/operator can demon-
strate to the Retlonal Administrator, at the
time a penult la Issued pursuant to Eubpan
Cthat
(I) No direct contact will occur between
the treated area of the landfarm and any
fufi^in.iii.t; public or private water supply
or livestock water supply."
(11) No migration of hazardous constitu-
ents from the soil In the treated area of the
huidfll to any public or private water supplr
of livestock water supply will occur, and
(Ul) A sou monitoring system u ipeetfted
ta fZ50.4t-5 Site preparation. Surface
slopes of a landfarm shall be less than
5 percent, to minimt» erosion In the
treated area by waste or surface run-
off, but greater than sera percent to
prevent the waste or water from pond-
ing or standing for periods that will
cause the treated area to become an-
aerobic.
Non.-^6urtacc slopes of the landfann
may be greater than B percent provided the
owner/operator can demonstrate to the Re-
gional Administrator, at the time a permit ii
Issued pursuant to Subpart E. that such
slopes will not result In erosion caused by
waste or surface run-off In the treated area.
<2>"Caves. wells (other than active
monitoring wells), and other direct
connections to the subsurface environ-
ment within the treated area of a
landfarm. or wlthm 30 meters (100
•feet) thereof, shall be seated.
(3) Soil pH In the zone of Incorpora-
tion shall be equal to or -greater than
IS (see Appendix IV).
Norm.—Sail pH In the tone of Incorpora-
tion may be -leas than «.S provided the
owner/operator can demonstrate to the Re-
-------
tional Administrator, at the time • permit b
Issued pursuant to Subpart E. that hazard-
out eonsUtutenta, especially heavy metals.
will not misrate vertically a distance that
exceed* three times the depth of the tone of
Incorporation or 30 centimeter! (12 Inches).
whichever ti neater.
(d) WaiU .application and ineorpo-
return. (1) Waste application and In-
corporation practices shall prevent the
cone of Incorporation (ram becoming
anaerobic.
(2) Waste shall not be applied to the
sou when It Is saturated with water.
NcTL-Waste may be applied to the toll
when It If saturated with water provided the
owner/operator can demonstrate to the Re-
gional Administrator, at the time a permit li
Issued pursuant to Subpart E. that the soil-
wane mixture will remain aerobic and that
hazardous constituent*, especially heavy
metals, will not migrate vertically a distance
that exceeds three times the depth of the
cone of Incorporation or w centimeters (12
Inches), whichever tt greater. .
(3) Waste shall not be applied U> the
sou when the soil temperature Is less
than or equal to 0* C.
(4) The pR of the soil-waste mixture
in the sone of Incorporation shall be
equal to or greater than 6.5 and main-
tained until the time of. facility clo-
sure.
Nort-The pH of the soO-vaste mixture
In the sone of Incorporation may be less
than (.5 provided the owner/operator can
demonstrate to the Regional Administrator.
at the time a permit Is Issued pursuant to
Subpart E. that hazardous constituents, es-
pecially heavy metals, will not vertically mi-
grate a distance that exceeds three tunes
the depth of the sone of Incorporation or JO
centimeters fi2 Inchesi. whichever ta crat-
er
(5) Supplemental nitrogen and phos-
phorous added to the soil of the treat-
ed ares, for the purpose of Increasing
the rate of waste biodegradatlon. shall
not exceed the rates of application rec-
ommended for agricultural purposes
by the United States Department of
Agricultural or Agricultural Extension
Service.'
Sou of-the treated areaXs) of a
new or existing facility that does not
comply with paragraph (gXIXI) or (U).'
IS..
X
10
v-.:
-------
respectively, shall be analyzed to de-
termine if It meets the characteristics
of a hazardous waste as defined In •
Subpart A. In the event the sofl is de-
termined to be a hazardous waste. It
shall be removed and managed as a
hazard-jus waste in accordance with all
applicable requirements of this Part.
Hon.-The soil at a landiana. IT deter-
mined to be a hazardous waste, need not be '
removed provided the owner/operator can
demonstrate to the Regional Administrator
thflt because of its Biff rial dnlgn and/or be-
cause of Its location, the landf arm provides
lone term Integrity and environmental pro-
tection equivalent to a landfill as specified
In I ISO.ii-J. In the event of such a show-
ing, the owner/operator shall comply with
the applicable closure and post-closure pro-
visions ot 11M.4S-T and Z50.4S-3IC and d).
f ZH.43-4 Chemical, physical, and biologi-
cal treatment facilities.
(a) The materials used In construc-
tion of the treatment facility shall be
compatible, under expected operating
. conditions (e.g- temperature, pres- .
sure), with the hazardous waste and
any treatment chemicals or reagents
used in the treatment process.
(b> The hazardous waste shall be
analyzed, as appropriate, prior to se-
lection of a treatment technique to de-
termine:
(1) The proper treatment technique.
the proper feed rates of treatment
chemicals or reagents, and the proper
operating conditions (e.g.. 'tempera-
uire. pressure, flow rate):
(2) If the waste or treatment chemi-
cals or reagents will have any detri-
mental effect (e.g.. cause corrosion.
dissolution, saltings or scaling*) on the
materials used for construction:
(3) If the waste contains any compo-
nents or contaminants which may In-
terfere with the intended treatment
process (e.g, biological treatment, so-
lidification, adsorption processes) or
decreases the effectiveness of the
treatment:
(4) If the waste contains components
or g*"i^3"*ilniint)t which ****y caii^r the
uncontrolled release of toxic gases or
fumes (e*. HA HCN) during the In-
tended treatment;
(8) If the waste contains components
or ftftntarnlriantii which y^y form
highly toxic components with the
treatment chemicals or reagents (e-g..
halogenated hydrocarbons) during the
intended treatment
Hon.—The analyse* of hazardous waste
m^y og onHttf^f provided the owner/opera-
tor ean demonstrate to the Regional Admin-
istrator that the Information provided In
the manifest to adequate to make the deter-
mination] required In paragraph fbl. or the
faculty owner/operator has sufficient Infer-
nation
that the subject haz-
ardous vane Is similar to a hazardous waste
which has been previously treated at the fa-
cility where the same treatment conditions
and the same treatment chemleali or rea-
cenu were used.
(c) Trial tests (bench scale, pilot
plant scale, or other appropriate tests)
shall be performed for each hazardous
waste which Is new or significantly dlf • .
f erent from hazardous waste previous-
ly treated to determine treatment
technique and operating conditions.
and to evaluate the effectiveness of
the treatment process and conse-
quences of the proposed treatment.
(d) All treatment chemicals or rea-
gents used In a treatment process shall
be stored In such a manner as to mini-
mize the potential for spills, fires, ex-
plosions. or uncontrolled discharges or
releases.
(e) All uncovered reaction vessels
shall be sized to provide no less than
60 centimeters (3 feet) freeboard U>
prevent splashing or spillage of haz-
ardous waste during the treatment
(e.g, neutralization, precipitation).
(f ) A facility shall have the capacity
to receive emergency transfer of reac-
tor contents, or shall have emergency
storage capacity to be used In the
event of an equipment breakdown or
malfunction*
(g) A facility which continuously
feeds hazardous waste Into the treat-
ment process shall be equipped with
an automatic waste food cutoff or a
by-pass system which Is activated
when a malfunction In the treatment
process occurs.
(h) Upon final closure, all hazardous
waste and hazardous waste residuals
shall be removed from the facility, and
treated or disposed of as hazardous
waste pursuant to the requirements of
this Part.
(1) All residuals or by-products from
a treatment process (e.g» sludges.
spent resins) shall be analyzed to de-
termine whether they an hazardous
waste within the meaning of Subpan
A. or assumed to be a hazardous waste.
Non-^-Analysa of treatment residuals or
by-producu may be omitted provided, the
owner/operator ean demonstrate that the
subject residuals and/or by-products an
similar to those previously produced at the
faculty.
11
-------
.11 1'
ii j ;••
, ••: (..'
i'i ;•
i
- 1 •
s
y !<•
• •
ro
i
-
^
'I '
1
1
i
TABLE B-l. CAPITAL UNIT COST FILE |
Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
Mnemonic
GENER
COKEQ
HTRK
FKLFT
FELDR
TKDZR
PUTRK
HTANK
LNRCL
LEACH
GHHON
PLDSN
ROADI
ROAD2
ETHHL
DBASN
FENCE
LFOFF
STOR1
STOR2
CLEXC
PIPE1
PIPE2
PIPES
PIPE4
PIPES
PIPE6
LINER
AER50
AERSS
AERCS
GATE
HEIR
See footnotes at
1
-ii- 11 1 1 i i -•
•' T. 0 "". -t
i i }• .'. 1 ' ' '
i i" ,u '
i . t ' i , >
' . i-" ii
t,1
li
''•
Cost
T
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9.3
0.0
0.0
52940
88211
0.0
0.0
end of
Equation Coefficients*
B C D
4000 .0 .0
500
20000
20000
70000
100000
10000
10000
2.09
6.10
600
75000
214.90
64.31
7.20
3000
8.10
48
31
31
1.31
246
8.80
32.09
32.09
21.42
3.955
.44
14000
277914 1
21009
120
60.
table.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
75
.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 1.0
Description
Electric Generator
Coominlcatlons Equipment
Hater Truck
Fork Lift
Front End Loader
Track Dozer
Pickup Truck
10000 Gal Hater Tank
Liner with clay layer
Leachate collection system
Ground Mater monitor (well)
Planning and design
Permanent access road
Temporary access road
Earth Hall
Debris Basin
Industrial chatnllnk fence 6*
Office Building
Maintenance Storage
PCB storage
Landfill clear/excavate
Corrugated metal pipe 30"
2* perforated feed pipe
6* Discharge pipe
6* Sludge pipe
3" Pipe and connectors
Industrial steel pipe
Pond Liner
50 HP Aerator
Stainless steel aerator
Carbon Steel Aerator
14* Slide Gate
Overflow Heir
source
Units Codet
ea
ea
ea
ea
ea
ea
ea
ea
sf
If
ea
ea
ft
ft
ft
ea
ft
sf
sf
sf
If
If
:
If 2
If 2
If 2
If 2
Ola* 2
sf 3
ea 4
hp 4
hp 4
ea 5
If 6
(Continued)
1
,
z
I—I
r*
SJ
»~4
X
CD
-------
I 1
I
Code
36
37
38
39
40
41
42
43
44
45
46
47
48
49
SO
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
70
Cost
Mnemonic "A
CSAST
PRTNK
CSPLT
SSPL1
SSPL2
SSTSH
ACOMP
AFLTT
ARFLT
ULTFL
OSHOS
BUILD
DEARA
MEDIA
LAND
HEAT
INCIN
6ASCO
COVER
PUHP1
PUHP2
PUMP3
SLAKE
VIBFD
VESS1
VESS2
DIMIX
TROUG
SLCOL
CLARI
RDVAC
0.0
1.6867E11
0.0
0.0
0.0
36.4
0.0
28.22
5.9420
7.487E09
20947
7.0496
6.6348E09
0.0
0.0
17960
90000
0.0
5.0983
1400
-125
1000
18700
3.0594E08
39413003
1.4966E08
17413
0.0
14100
0.0
2720.5
T/\BLE B-l.
Equation Coefficients*
6 C B
101.52
3.9413E07
1.15
2.40
3.00
105.33
1409
195.4
0.30668
2.008EOS
334.08
3.991
24799.2
2.50
.744
0.02468
5073
8982
0.017156
6.5
9.23
1.953
2.14
.0 1.0
.0 2.0
.0
.0
.0
.5
.0
.0
.0
.0
.0
.0
.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
I.4381E06 3.0
393305 2.0
872968 2.0
183.4 1.0
1 1.0
121.43 1.0
1025 3.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
o
'.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
62. OSS 2.0 .0
A
1
1
(Continued) '
Description
Cylinder safety stand
Pressurized tank
Coated carbon steel platewk
Stainless platework d1an<10
Stainless platework 10
-------
TABLE B-l. (Continued)
Code
71
i "
1 73
1 74
75
76
77
78
79
BO
81
82
83
84
• 85
86
87
88
89
90
91
92
93
94
95
96
97
98
' 99
100
101
102
Mnemonic
OISTR
OFFIC
RLABS
FLOCP
STGEN
COAG
PLATE
EVAP
CKVLV
CLR1
CLR2
GRADE
EXCV1
EXCV2
EXCV3
BKFLI
BKFL2
PAVE
FOUH1
FOUN2
FOUH3
FOUN4
SLAB!
SLAB2
UALL1
UALL2
HALL3
WALL4
WALLS
MAILS
UOBM1
WOBH2
C6TF
A
8.142
0.0
0.0
0.0
11000
1700
0.0
2787.8
156.94
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Equation coefficients"
BCD
0.22458 1.0 ' 1.0
38.88 -1.258-04 1.0
65.56 -1.005-04 1.0
5000.
2.89
171.57
90.20
67.545
13.263
.05
.84
.025
2.12
5.88
1.82
.06
6.41
.92
12
16
21
7.5
154
78.92
240
221
210
200
229
226
.7
.9
.0
.0
.0
.0
.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
Description
Rotary dlstrlbutor-trl *1000S
Office
Small research labs
Floculator paddle
Steam generator
Coag Blender
Oil/water sep plates stk
Spray film evaporator M000$
Check Valve
Clearing surface only
Clearing surface 1 subsurface
Grading
Excavation struct, w/hauling
Excavation footings .» piers
Excavation struct, w/sfte dlsp.
Backfill dozer spread
Backfill spread. ft compacted
Paving 3* asphalt on 8" rock
Pile foundations-drecast
Pile foundations-steel "H"
Pile foundations-pipe
Pile foundations-wood
Concrete base slab
Concrete base slab 6" rein/dp
8' concrete 10' dbl curtain, rein
8* ( up concrete 10" dbl curtain
8' concrete 6* sgl curtain dp .
8' & up concrete 6" sgl curtain
8' concrete 8" sgl curtain rein
8' S up concrete 8" sgl curtain
Doug. Fir pres trtd 4" x 12*
Coug. Fir pres trtd 6' x 10*
Units
ft
sf
sf
ea
Ibs/hr
(width) In
ft
gpm
dla-
sf
sf
sf
cy
cy
cy
cy
cy
sf
If
If
If
If
ey
cy
cy
cy
cy
cy
cy
cy
bdrt
bdft
source
Codet
015
2
2
026
027
006
028
029
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
(Continued)
.! !-: ,'! " <' "- T
-------
ill in
n ;• "i
I'".<•'
ru
.1
I.)
,V. •:
TABLE B-l. (Continued)
Code
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
Knemonlc A
WDDK
HNDftL
SONO
KILN
HEART
CONK
REB01
EXCHA
OILWA
VAPOR
DISTL
MOTOR
ACCAR
VAULT
COAL
SAND
STRST
FTANK
ENCAP
0.0
0.0
0.0
135939
15312
Cost Equation Coefficients
BCD
.54
15.36
225
5616.8
35.525
5.0469E095J0398E08
2923281
1863624
50035
0.0
490000.
30.
0.0
0.0
0.0
0.0
0.0
1466.
0.0
21091
13446
384.36
3500.
2300.
14.
.40
2800.
126.45
388.42
0.6
0.39
75.
.0
.0
.0
.4
.5
.5
.5
.5
.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
Description
Redwood wood decking
1-V aluminum handrail
12" rnd. sonotubeclp anchr.
Rotary kiln Incinerator
Multiple hearth Incinerator
Condensor
Reboller
Heatexdianger
Oil water separator tank
Chlorlnator
Distillation column-SO trays
Units
bdft
If
cy
lbs/hr
Ibs/hr
gpm
sf
sf
Ibs
ea
ea
Elec drive ntr-1800RPM-no str hp
Activated carbon
Utility vault
Anthraclt coal filter media
Silica sand
Structural steel framework
Fiberglass tank
Encapsulation equipment
Ib
ea
cy
ey
Ib
gal
tons/yr
Source
Codet
2
2
2
031
013
031
031
031
028
032
031
002
091
002
034
034
002
041
046
-» T > '
'-. '"i
'."'."' •
, i
n ' *
•Cost • (A+Bxun1ts°){1/e}.
tSee source list In Volume 1.
-------
TABLE C-l. OPERATION AND MAINTENANCE UNIT COST FILE
Code Mnemonic
Cost Equation Coefficients*
Ti B C D
Description
Source
Units Code*
WATER
0.0
0.026 1.0 1.0 Chicago water rate
gal
33
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
POWER
OPER1
OPER2
LABOR
MECH1
KECH2
ELEC1
ELEC2
HELPR
SUPER
FORMA
PAINT
STRKP
CUSTO
5PTNT
ASSPT
OPSUP
SHFOR
AUTO
CHEN
LABTE
CLERK
ALSU1
ALSU2
ALSU3
CA01
CA02
CAHY1
CAHY2
FECL3
COACL
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.035
7.77
9.19
6.76
9.40
11.20
9.99
11.75
7.70
12.94
12.45
9.05
6.43
6.76
18.32
15.37
12.21
9.19
8.75
8. SI
7.33
6.03
0.045
0.042
0.27
0.013
0.017
0.015
O.OT7
0.44
3.31
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 •
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1.0
1.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
Chicago electrical rate
Operator level 1
Operator level 2
Laborer
Maintenance mechanic t
Maintenance mechanic 2
Electrician 1
Electrician 2
Maintenance helper
Halntenance supervisor
Mechanical maintenance foreman
Painter
Storekeeper
Custodian
Superintendent
Asst. superintendent
Operations Supervisor
Shift foreman
Automotive equipment operator
Chemist
Lab technician
Clerk/typist
US AL203 bags
USAL203 bulk
3X ALZ03-liquid
Calcium oxide 931-98% bulk
Calcium oxide 93X-98S bags
Calcium hydroxide 72-74* bulk
Calcium hydroxide 72-74S bags
Ferric Chloride liquid
Calcium hypochlorite drums
kwh
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
Ib
Ib
Ib
Ib
Ib
Ib
Ib
gal
»l
35
SO
50
50
50
SO
50
SO
SO
SO
SO
SO
SO
50
50
SO
50
SO
50
SO
50
50
48
48
48
48
48
48
48
48
i-t -o
SI X
r>
o
o
t/t
See footnotes at end of table.
Continued)
-------
Code Mnemonic
TABLE C-l. (Continued)
Cost Equation Coefficient;
A BCD
Description
Source
Units Coilet
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
FUEL
KGAS
OMPWT
POLYH
GAS
AMHON
PHOS
CHFX1
CHFX2
INCIN
ACCAR
DEMUL
CLBOT
CLCYL
ENCAP
CAPCH
TRUK1
TRUK2
RAIL1
H2S04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.20
0.0
0.0
0.0
.61
3.475-03
148
0.002
.85
0.56
0.014
0.10
0.45
0.125
0.40
9.58
0.13
0.29
89.70
0.44
4.64-03
7.90
6.90
0.038
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
12 dlesel fuel 1979 figure
Natural gas 1979 figure
Dumping fee disposal site
Air flotation solid
Gasoline
Liquid amnonla
Phosphoric acid
Chem fix ser. solids <10S
Chan fix ser. solids >10S
Hazardout Hq Incln. fee
Activated carbon
Oil/water deoulslfler
Chlorine bottles
Chlorine cylinders
Encapsulation service
Encapsulation chemicals
Intrastate trucking
Interstate trucking
Interstate rail Chi -Sea
Sulfuric acid
gal
cf
ton
bs
gal
gal
gal
gal
gal
gal
Ibs
gal
Ibs
Ibs
ton
ton
lOOlb-nlle
lOOwt
lOOwt
gal
010
049
012
010
047
044
039
039
010
045
042
040
040
046
046
023
024
025
043
•Cost- (A+Bx Un1ts°)Wcl
tSee list of sources.
-------
APPENDIX D
CURVE FITTING FOR COST FILES
In estimating capital and operating costs for the various technology
module or module components (Appendices B and C), cost functions were
developed to predict component costs for various -seal ing factors. Although
many will be simple linear or multiplicative functions of capacity or
throughput, certain special pieces of equipment, in particular, may have
other than linear relationships between their costs and their scale. Once
costs are determined for the components in Appendices 6 and C, they are
utilized in the module cost equations in Appendix F.
For this reason, a curve fitting methodology has been developed for
determining the most appropriate functional form to use. As with most
statistical techniques, the use of this methodology requires two things:
(1) that an adequate number of cost/size data points be available and (2)
that the included data points be from the same population - that is, if the
component to be costed is a pump, then the costs data points differ only
because of pump size, and not because they are for differing kinds of pumps.
Particular emphasis is placed on this last point, and manufacturers were
contacted to develop a sufficient number of cost data points for each such
special piece of equipment.
The curve fitting methodology Involves a series of regression attempts
to fit particular cost/size data points to various candidate functional
forms. As an absolute minimum, 3 data points are required. But, for
practical application of the methodology, more statistically meaningful
results are obtained using 5 to 10 data points. Assuming these data points
are available, the following functional forms are attempted:
(1) Y = a + bX
(2) ey = aXb y = In(aXb)
(3) InY = a + bX Y = e*a + bx)
(4) Y = aXb
(5) Y = a + bX2
(6) Y2 = a + bX Y = SQRT (a + bX)
(7) Y2 = a + bx2 Y = SQRT (a + bX2)
(8) YC = a + bXD Y = (a'+ bXD) £ l
(9)
-------
In these equations: Y is the dependent cost variable; X Is the
Independent size variable, and a and b are constants that are using lease-
squares technique, estimated as a and B. As example Figure D-l shows,
these equations are special cases of the general form:
(lnY)L =.A + B (lnX)M
where the natural logs (In's) are optional; where-B is 8; and where A may be
a or Ina.-
After the first seven regressions are performed, the results are analyz-
ed and as many as three additional models may be attempted. In the example,
significant F statistics were developed under the first, sixth and seventh
forms; but two additional functional forms were tested using an approximation
of the B-inverse under Form 4 as the exponent of Y (i.e., 1/0.89332 1.5) and
single and squared exponents for X.
Although the seventh and eighth forms in this example proved to be more
significant (higher F statistics) with slightly higher percent explanation
(I.e.,-the R2 coefficients-of-determination were slightly.higher),-the simple
linear form, Form 1, was chosen for estimating this component's costs as a
function of diameter, in feet. The reason for this choice is that Form 1 is
adequately significant (at greater than 99 percent confidence) and substant-
ially more simple to use than either Forms 7 or 8. By making this selection,
only 2 or 3 percent explanation is sacrificed, but any ultimate comprehension
by the reader is substantially enhanced.
If 10 forms are tested for a particular component, and all yield
insignificant F statistics, the methodology requires that additional data
points be developed before further curve fitting analysis Is attempted.
The results of the curve fitting analysis for speciality equipment
cost data not demonstrating definite linearity (graphic method) are shown
in Table 0-1. Table 0-2 lists the relevant ranges for the curve fitting
result. Where possible, these ranges should not be exceeded.
19
-------
ro
o
im
• 16 usinq oroqram GR)
Camp. Flacq. Clalrlfler
XI In
Diameter
1
2
3
4
5
6
7
e
9
,10
11
12
13
14
15
16
30
40
45
65
80
B5
100
Y1 In
I
38.600
46.350
71.900
86.300
96.000
101 .500
114,100
B a • 10- Ft • *4 06
B n • .OS: Ft • fi fil
a » o ni • Ft .IK ?«
H0:B • P can be
at the 1 • a co
level If comput
F > tabular F f
1 for nun. and
dencm.
rejected
nfldence
ed
or d.f. of
n - 2 for
In - 7
JJ . .
y • a + 0 X
2 1 „ „
' y • (.no +,Btn X
or ey • aX6
—^ tnV • a+8 X
4 1 tuY • lm t BtnX .
He,.;.s.; j ,
•^ V = « + R X2
6 1 9 A A
— J rz • « + B x
1ev « q + e x
, 1 »
-------
TABLE D-l. CURVE FITTING RFSULTS
Level of Confidence
Sample Size.
Title
Tank - Stainless Steel
Ultra Filtration
Air Flotation
Reverse Osmosis
Aerators. CFSS S TFNI
Steel Buildings
Aerators, SS
Serfllco Pressurized Tank
Vlb. Feeders
Glass R. Vessel U/o Mixer
Glass R. Vessel H. Mixer
Com. Flacq. Clarlfier
RD Vacuum Filter
Rotory Distributor
(Trickling filter)
Gas Holder Dgester Cover
Air Flotation (w/o tank)
Spray Film Evaporator
Check Valve
De Aerator (f 1)
De Aerator (f 2)
Oe Aerator (f 3)
Rotary Kiln Incinerator
Multiple Hearth Incenerator
Condenser
Heat Exchanger
Re Boiler
Oil Water Separator
Concrete Pit
*A11 $ are In mid '.78.
tNote: "E9", means 10>
General equation form
Y-wil'ift?
$
1.000'
$
I
1.000*
(
J
I
(
1.000'
1.000*
1.000'
1.000'
1.000'
1.000'
s $
s *
s $
s $
s $
s t
s $
s $
Land Am. in
FtZ
Steam
1,000'
\
I
1,000-
I
$
,-:etc
1s:
In
s *
s J
• .. *>
VL
.; X-uniits L
Gal
Flow In GPM
Sq. Ft
Gal /Day
H. P.
1,000*5 sq.ft
II. P.
Gal
Ton Sand/Mr
Gal
Gal
Ola. In ft
Sq.Ft Filter
area
Tank Ola.
in ft
Dia. In ft
Sq.Ft
Gal/Mln.
Inches Ota.
Gal/Mln.
Gal/HIn
Gal/Mln.
Lbs/llr
Lbs/Hr
Gal/Mln.
Area In sqft
Area In sqft
CBS.
M
= a + BXM.
1.5
2
2
a
36.40 .
7.487E9t
195.4
1 20947
1.5 88211
1
1.75
3
3
2
2
2.25
2
1
.5
.85
.8
2.5
1.4
1.5
2.5
1.5
1.5
1.5
7.0496
52940
I.6867E1I
3.0594E8
39313003
I.4966E8
2126.2
2720.5
8.1420
5.0983
5.9420
2787.8
156.94
99.831
1.1347
6.6348E9
135939
35.525
5.0469E9
1863624
2923281
50035
B
105.33
2.00BE5
28.22
.696008
21009
3.0991
277919
3.9413E7
1.43B1E6
393305
872968
3.7359
62.055
.22458
.017156
.30668
67.545
13.263
18.B88
.11184
247992
5616.8
15312
5.0398E8
13446
21091
384.36
M
2
1
1
1
1
1
2
2
1
1
2
1
1
2
5
1
2
1
1
2
1
1
1
1
1
1
R*
.9999
.998
.986
.998
.951
.9997
.944
.952
.997
.995
.994
.963
.997
.997
.9999
.946
.999
.996
.990
.999
.996
.998
.996
.989
.994
.994
.982
F
91237
305.47
127.25
222
46.41
46.92
50.44
42.73
1044
610.8
337.16
104.78
313.83
83.005
180.78
25.48
1342
635.49
654.42
4568
8S1.74
1725.19
500. 18
266.30
415.24
415.24
41.10
3
4
4
5
5
5
5
5
6
6
6
7
8
10
4
4
5
9
9
9
9
6
5
5
5
S
3
99*
99»
99*
99*
99*
99*
99*
99*
99+
99 >
99*
99*
99*
99+
99*
95*
99*
99*
99*
99*
99*
99*
99*
99*
99*
99*
90*
-------
ro
ro
TABLE D~2. RELEVANT RANGES FOR
•j*- .
CURVEFITTING
- Y-- Range
Tttt« - Y-urttt^
Tank - Stainless Steel
Ultra Filtration
Atr Flotation
Reverse Osmosis
Aerators. CFSStTFNI
Steel Buildings
Aerators. SS
Serf 11 co Pressurized Tank
VI b. Feeders
Glass R. Vessel H/0
Mixer
Glass R. Vessel U.
Mixer
Comp. Flacq. Clarlfter
RD Vacuume Filter
Rotory Distributor
(Trickling filter)
Gas Holder Digester
Cover
Atr Flotation (w/o Tank)
Spray Film Evaporator
Check Valve
De Aerator (11)
De Aerator (12)
De Aerator (1 3)
$
$
1.000's $
$
$
1.000's $
t
t
s
$
$
1.000's $
1.000'S $
1.000's $
1.000's $
1.000'S $
1.000's $
$
Land Am. In
ft?
Steam In
1.000's Ibs/
hr
$
. From
291
68.000
45.5
20.000
4.148
19
5.034
5.940
267
14.000
22.000
36.8
86.5
14.5
20.893
100
284
190.4
26
7
7,339
- T6 ^
1.411
455.000
109
365.000
13.387
69
14,645
, 13,301
1.256
40,500
i t
60,000
• 108.8
196.0
52.7
115.158
136 ''
2.651
2.784
180.3
280
31.165
X- units
Gal
Flow In GPH
Sq. Ft
Gal /day
H.P.
1.000's sq.ft
H.P.
Gal
Ton Sand/hr
Gal
Gal
Diameter in ft
Sq. Ft Filter
area
Tank Dia. In ft
Ola. In ft
Sq. ft
Gal/Hln.
Inches Ola.
Gal/Hln.
Gal/Hln.
Gal/Hln.
RESULTS
• X,: Range
From
47.43
100
50
10.000
10
4
10
35
2
300
300
30
60
25
30
600
50
2
28.7
28.7
28.7
. To
503
1.000
400
500.000
75
20
75
226
25
4.000
4.000
100
575
200
80
1.200
2.000
14
805.1
805.1
805.1
(Continued)
-------
TABLE 0-2 (Continued)
Y Range
Title
Rotary Kiln Incinerator
Multiple Hearth
Incinerator
Condenser
Heat Exchanger
Reboller
Oil Hater Separator
Concrete Pit
Y-unltfc
1.000's $
$
i
$
From
31.888
1,481
14,704
35,431
47,832
4,900
To
212.587
8. 185
43.403
212.587
286.992
13.900
X-un1ts
Lbs/Hr
Lbs/Hr
Ga1/H1n.
Area In Sq.ft
Area In Sq.ft
CBS
X Range
From
300
700
60
200
200
950
To
5.000
20.000
800
7.000
7.000
4.200
-------
Nodule
APPENDIX E
MODULE DESCRIPTIONS
Description
Technologies
Where used
Lifetime
(Hears)
Preelpltatlon/floc-
ulatlon/sedl-
aentatlon
Precipitation/floe-
ulatlon/sedl-
nentitlon
Flocculator Horizontal, type with paddle
mixers., Each paddle cell Is
3600 ft3 In volume and has
a mean retention tine of
15 fflin.
Flash mixer Basin where one or more
chemicals are combined with
the wastestream under
-------
Module
Description
TechnologiesLifetime
Where Used (Years)
waste stabili-
zation pond
Chemical fixation
Incinerator
Sedimentation
basin
passed through the bed where
the biological film fixed to
the media decomposes the
organic compounds.
Large shallow basin
where organic compounds
are retained and degraded
under both aerobic and
anaerobic conditions. The
structure consists of
ecavated soil basins
with soil or concrete
linked dikes. Liners
are also provided to
prevent leaching.
A two-part. Inorganic
chemical system that
reacts with all poly-
valent metal Ions and
with certain other
waste components. Also
reacts with Itself to
form a chemically and
mechanically stable
solid for landfllUng.
The system 1s based on
reactions between sol-
uble silicates and
silicate setting agents
to produce a solid
matrix for binding
the Inorganic contam-
inant.
Rotary kiln Incinerator.
Includes afterburner and
scrubber.
Rectangular basin where
solid particles In the
wastestream are removed
from suspension through
gravity settling. Clari-
fied waste flows over a
weir and out of the basin.
Concentrated solids are
removed (wasted) from the
Haste stabilization 5
pond
Land disposal
N.A.
Incineration
Precipitation/
flocculatlon/sedl-
mentatlon, aerated
lagoon,
trickling filter.
activated sludge
10
(Continued)
25
-------
Module
Description
Technologies
Where Used
Lifetime
(Years).
Clarlfler
Rotary drum
vacuum filter
Air flotation
Oil/water
separator
Multimedia
filter
Precipitation/
flocculatlon/sedl-
nentatlon filtration.
flotation,
trickling filter.
ameroblc digestion,
activated sludge
basin through a sludge
descharge line (sludge
underflow).
Circular basin where solid Aerated lagoon, 10
particles are removed from trickling filter,
waste suspensions through activated sludge
gravity settling. The unit
1s designed to Include
coagulation and flocculatlon
1n certain zones. There Is,
therefore, optional chemical
feed.
Used for dewaterlng process
sludges by drawing the water
(filtrate) through the filter
media which retains the solid
fraction (filter cake). The
module Includes the vacuum
pump, sludge conditioning
equipment, and all'other
necessary components.
Solid components are removed Air flotation 10
by flotation rather than by
gravity settling. Energy Is
added to the system In the
form of bubbles, which adhere
to the suspended solids. The
solIds then rise and agglomerate
at the surface where they are
removed by a skinner.
Accomplishes gravity separa- Oil/water separation 10
tlon of two liquid phases
having different densities.
This module Involves
coalescing separation — a
process where plates. In-
serted In the rise path of
oil droplets, tend to coalesce
the droplets Into larger
masses that rise faster.
Accomplishes the separation
of suspended matter from
the wastestream by passing
It through a porous material.
Filtration
10
(Continued)
26
-------
Module
Description
Technologies
Hhere Used
Lifetime
[Years!
Distillation
Evaporator
Reverse
osmosis
Pressure filters have media
contained In a steel tank.
Haste Is pumped through the
filter under pressure, and
the nedla are washed by
reversing flow through the
filter bed (backwashlng). The
multimedia filter In beds
functions on similar principals
under gravity f'ow.
Distillation Is a technique Distillation
for separating reusable
components from a feed stream.
The nodule consists of a dis-
tillation tower, reboller,
condenser, and other ancillary
components. Steam generation
Is accomplished by a separate
nodule.
Used for recovery of eoncen- Evaporator
trated solvents or volatile
organic compounds. Heat is
provided by condensation of
steam on metal tubes Inside
a chamber of the evaporator.
The wastes flowing Inside the
tubes are heated and the
volatile components are drawn
off as a vapor. The process
differs from distillation
In that the vapor 1s usually
a single component or un-
separated mixture. Module
Includes condenser and
external separator.
Cylindrical vessels con-
taining cartridges composed
of bundles of fine hollow
fibers or spirally wound
oeobrane sheets. Dilute
wastestreams containing
metals or other low-molecular
weight substances and low
suspended solids are applied
to the fibers or membranes
under high pressure. The
Reverse osmosis
(Continued)
27
-------
Module
Description
lecnnoiogies
Where Used
Lifetime
(Vears)
Ultra-
filtration
Carbon
adsorption
decanter
Chemical
storage: gas
effluent product may be either
very pure water or a high
concentration of a desired
chemical product.
UF modules resemble those Ultraflltratlon
used in reverse osmosis except
that the range of pore size In
the former (0.02 to 0.04 ran)
limits the Ultraflltratlon
application to that of re-
moval of finely emulsified
oils, or other high-molecular
weight chemicals and fine
suspended soJIds.. Operating
pressure Is In the range of
10 to 100 pslg. compared
with the 500 to 1500 pslg
typical of reverse osmosis.
• Backflushlng 1r readily
accomplished to maintain
adequate flow rate.
The carbon adsorption.module Carton adsorption
Includes the contactor columns,
carton storage, carton charging
system, carbon generation
(multiple earth furnace In-
cluding afterburner and scrubber).
Oecantatlon Is frequently em- Hydrolysis
ployed for separating precipi-
tated solids-from liquids or
for density separation of
liquid mixtures. The unit
consists of a tank which
provides sufficient retention
time for separation. The
separated materials are
continuously drawn off at
different levels In the tank.
10
Pressure vessels housed 1n a •
building contain gases used
In oxidation or reduction
reactions. Gases are matered
Into "the wistestrearo using a
chlorlnator.
Oxidation/reduction
(Continued}
15
28
-------
Module
Description
iecnnoionic
Where Used
(Years)
Chemical
storage: liquid
Chemical
storage: solid
Sludge
equalization
Hazardous
Haste land
disposal site
Storage for any liquids re- All technologies
quired during waste treat-
ment. Appropriate liquids
are stored In a flat bottom
cone top steel tank (AIMA
Dl-0-76, API 620. or API 650
depending on contents). Other
liquids are stored 1n pres-
surized vessels (annonla) or
in fiberglass tanks (caustic
mixtures).
Storage of granular or Precipitation/
powdered chemicals for use flocculatlon/sedl-
1n waste treatment. Con- mentation,
ponents Include a dry chemical oxidation/reduction
storage hopper vibratory,
feeder, slaking tank, and
metered feed.
IS
IS
A tank that serves as a
flow equalizer and serves
as a site for sludge blend-
Ing. It can serve as a
buffer zone between the
highly sensitive anaerobic
digestion process and
can prevent shock loading
of toxic substances. It also
is a unit process where
chemicals nay be added to
precipitate heavy metals or
buffer add pH.
A land disposal site approved
for acceptance of liquid
and solid hazardous wastes.
The main disposal technique
1s waste burial, with solid
debris deposited In trenches
and covered with soil.
Leachate monitoring systems
are Included In this module.
Evaporation of liquid wastes
In shallow basins 1s con-
ducted In a separate module
(see evaporation pond).
Anaerobic/digestion
10
Land disposal
20
(Continued)
29
-------
nodule
Description
lecnnoiogies
mere Used
(Years)
Encapsulation
Deaerator
Evaporation
pond
A process whereby waste
solids are dewatered, fixed
In a resin, compacted, con-
solidated (by heat) Into a
block, and Jacketed 1n a final
sealing resin.* Disposal In
an approved site Is still
required after the wastes
are encapsulated.
The deaerator removes dis-
solved oxygen from wastes
so that corrosion of nodular
components or piping Is
minimized. The waste Is
sprayed Into a steam-filled'
chamber and Its temperature
1s brought within 2 or ,3 .
degrees of that, of the
stream, at which time nost
of the dissolved gases are
released. Collected and again
atomized, the water 1s Im-
pinged by high-velocity
steam heated to full steam
saturation temperature.
The essentially gas-free
water Is then condensed
and stored below baffles
In a main retaining tank.
Encapsulation
Hydrolysis
The solar evaporator Is a
large, shallow lagoon used
for reducing the volume of .
dilute, oil-free aqueous
wastes. Often, the evapor-
ation pond Is actually a
disposal process In that.
residual salts and other
solids are left In the
lagoon. In some operations,
such sludges are periodically
removed. Effective performance
requires that the climate be
relatively dry. The annual
evaporation rate should
exceed the annual precipitation.
Evaporation pond
20
(Continued)
-------
Module
Steam
generator
Description
Converts feed water and high
pressure return condensate
Into high pressure steam for
use In modules requiring
steam as a heat source.
lecnnoiogies LI retime
Where Used (Years)
Evaporator,
distillation
carbon adsorption
7
Building
Transport
Yard piping
Pumps
This optional module may be As specified
used for housing equipment
(storage) to provide office
space for plant personnel
and laboratory facilities
for waste testing and process
monitoring.
15
Delivery of solid or liquid
wastes between processing
sites or to disposal. Trans-
port options: truck or rail.
Piping and valves for
conducting wastestreams
and sludges between the
various modules.
Three types of pumps are
Included as options:
aqueous waste pumps.
sludge pumps, and chenlcal
feed pumps.
As specified
All technologies
All technologies
N.A.
IS
10
31
-------
APPENDIX F
SYSTEM VARIABLE EQUATIONS
FLOCCULATOR MODULE
System Variables
NCELLS=RNDUP(QINF/1795.2) ; Number of Cells in Module
NPADS=RNDUP(NCELLS/4.) ; Number of Paddles 1n Module
LANDAM * NCELLS*280.56+NPADS*31.22 ; Land Area
LANDAR - LANDAM+24.*SQRT(LANDAM}+144. ; Land Area Including Buffer
HRSYR = DAYS*HRS ; Hours of Operation Per Year
TSS=TSS
Performance
CFCM(CLR1 )=COST(CLR1 , CAPCF, LANDAR, I RCODE)
CFCM( GRADE )=COST( GRADE, CAPCF, LANDAR, I RCODE)
CM(1)=(CFCM(CLR1 )+CFCM( GRADE)
CFCM( CLAB2)=COST(CLAB2 , CAPCF .LANDAR/27 ., IRCODE)
CFCM(WALL2)=COST(WALL1, CAPCF, (NCELLS*420.66+NPADS*94.96)/27. ,
1 IRCODE)
CM(2)=CFCM(SLAB2)+CFCM(WALL1)
CFCM(FLOCP)=COST(FLOCP, CAPCF, NCELLS, IRCODE)
CFCM(MOTOR)=COST(MOTOR,CAPCF,NCELLS, IRCODE)
CM(3)=CFCM(FLOCP)+CFCM(MOTOR)
CM(4)=0. ;Not applicable
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
-------
CM(5)=CFCM(LAND)
CM96)=0.
CFOM(OPER1)=COST(OPER 1,OMMCF,MSTAFF*HRSYR*0.002,IRCODE)
CFOM(gPER2)_=COST(OPER 2.jMHCF.MSTAFF*HRSYR*0.001,IRCODE)
CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR*0.042,IRCODE)
OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
CFOM(POWER)=COST(POWER,OMMCF,17.9*HRSYR,IRCODE)
OMM(2)=CFOM(POWER)
OMM(3)=0.05*CM(3)
OM(4)=0. ;None
OMM(8)= ;Not Applicable
Module Specific Parameters. Parameter Definitions
-HRSYR Hours Operation Per Year
Integer-I, Misc. Counter
Integer-J, Misc. Counter
Real -LANDAM Module Land Area (Ft*Ft)
-LANDAR Total Module Land Area With Buffer(Ft*Ft)
-NCELLS Number of Cells .
-NPADS Number of Paddles
-QINF Working Flow (Gal/M1n)
-QINFL I/O Flow (Gal/M1n)
-TSS Total Suspended Solids
FLASH MIXER MODULE
System Variables
NMIX=RUNDUP(QINF/700.)
RATIO=100./(100.-EFF)
DETENT=NMIX/KRATE)*(RATIO**(1./NMIX)-1.)
VOL=(QINF/7.48)*DETENT/NMIX
SURFAR=VOL**0.667)*NMIX
LANDAM=SURFAR+0.33*VOL**0.33+2.778)*NMIX
SQDAM=SQRT(LANDAM)
LANDAR=(SQDAM+6.)*(SQDAM+6.)
HRSYR=DAYS*HRS
33
-------
EFF is user defined. Default value is 90 percent and no attributes are
modified. See description of MODSP Parameters.
KRATE is user defined. A default value of 1 is used.
See description of MODSP Parameters.
Quantities of chemicals demanded are user defined. See description of
MODSP Parameters and demand streams.
Performance
CFCM(CLR1 )=COST(CLR2 ,CAPCF,LANDAR,IRCODE)
CFCM(GRADE)=COST(GRADE.CAPCF.LANDAR,IRCODE_
CM(1)=CFCM(CLR1 )+CFCM(GRADE)
CFCM(SLAB1)=COST(SLAB1,CAPCF,LANDAM/27.,IRCODE)
CFCM(WALLSKOST(WALLS,CAPCF,(LANDAM-SURFAR)*(VOL**.33)/17.,
1 IRCODE)
CN(2)=CFCM(SLAB1)+CFCM(WALL5)
CFCM(COAG )=COST(COA6 , CAPCF,VOL**0.33,IRCODE)
CM(3)=CFCM(COAG )
CM(4)=0,1*CM(3)
CFCM(LAND)=COST(LAND,CAPCF,LANDARTlRCdDE)~
CM(5)=CFCM(LAND)
NOT APPLICABLE
Module Specific Parameters. Parameter Definitions"~
02 EFJ Reaction Efficiency (Per cent)
03 KRATE Reaction Rate (Moles/(L1tre*Sec))
04 QAL Quantity of AL (2) 0(3)' Needed for Module (GPM)
05 QFE Quantity of FE CL(3) Needed for Module (GPM)
06 QCA Quantity of C A 0 CL Needed for Module (GPM)
07 QPHOS Quantity of Phosphoric Acid Needed for Module (GPM)
08 QALS Quantity of AL S 0 (3) Needed for Module (GPM)
09 QCAO- Quantity of C A 0 Needed for Module (GPM)
10 QCAHY Quantity of Calcium Hyrdoxide Needed for Module (GPM)
11 QPOLY Quantity of Polymer Needed for Module (GPM)
12 QGAS Quantity of Gases Needed for Module (GPM)
• —— — \
34 ._ __
-------
-DETENT Detention Time
-HRSYR Hours operation per year
Integer -I . Misc Counter
Integer -J Misc Counter
-LANDAM Module Land Area (Ft*Ft)
-LANDAR Module Land Area with Buffer (Ft*Ft)
-NMIX number of Mixers
-QINF Working Flow (Gal/Min)
-QINFL i/o Flow (Gal/Min)
-RATIO Efficiency Ratio (Ref 106)
-SURFAR Surface Area
-VOL volume
JACKETED FLASH MIXER MODULE
System Variables
RATIO* 100./(100.-EFF)
DETENT=1./FRATE*(RATIO-1. )
VOL=QINF*DETENT
DIA=4.375*ALOG{VOL)-7.4
DIAAG=160.*ALOG(VOL)-1.16
LANDAM=0.785*DIA**2.
LANDAR=LANDAM+23. *SQRT(LANDAM)+144.
CONST=l.E-4/(.1413*RTEMP+2.)
HORSP=163.6*VOL*CONST
HRSYR-DAYS*HRS
HOUS=0.
IF(BLDG.EQ.2.) HOUS=1
SITE=1.-HOUS
EFF is user defined. Default value is 90 and no attributes are
modified. See description of MODSP Parameters.
Quantities of chemicals demanded are user defined. See description
of MODSP Parameters and demand streams.
Performance
CFCM(CLR1 )=COST(CLR1 , CAPCF,LANDAM*HOUS+LANDAR*SITE,IRCODE)
CFCM(GRADE)=COST(GRADE,CAPCF,LANDAM*HOUS+LANDAR+SIDE,IRCODE)
CM(1)=CFCM(CLR1 )+CFCM(GRADE) _ _ |
CFCM(SLAB2)-COST(SLAB2,CAPCF,LANDAM/27.,IRCODE)
CFCM(SLAB1)=COST(SLAB1,CAPCF,HOUS*LANDAM/27..IRCODE)
CFCM(BUILD)=COST(BUILD,CAPCf.,HQyS*LANDAR,IRCODE)
..... 3.5 __ 1
-------
CM(2)+CFCM(SLAB2KFCM(SLAB1)+CFCM(BUILD)
CFCM(VESS2(=COST(VESS2,CAPCF,VOL,IRCODE)
CFCM(MOTORKOST(MOTOR,CAPCF,HORSP,IRCODE)
CM(3)=CFCM(VESS2+CFCM(MOTOR)
CM(4)=0.1*CFCM(MOTOR) .
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
CM(5)«CFCM(LAND)
Not applicable
CFOM(OPER1)=COST(OPER1,OMMCF,MSTAFF*HRSYR* .003.IRCODE)
CFOM(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR* .002.IRCODE)
CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR* .098.IRCODE)
OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
CFOM(POWERKOST(POSER,OMMCF,8.218E-3*QINF*HRSYR,IRCODE)
OMM(2)-CFOM( POWER)
OMH(3)=0.05*CH(3)
Not applicable; costed 1n storage module
OMM(4)=0
Not applicable
OMM(8)=0
Module Specific Parameters, Parameter Definitions
02 EFF Reaction Efficiency (per cent)
03 KRATE Reaction Rate (Moles/(Litre*Sec))
04 RTEMP Reactor Temperature (Deg C)
05 BLDG Building Flag
06 QAL Quantity of AL (2) 0(3) Needed for Module (6PM)
07 QFE Quantity of FE CL (3) Needed for Module (GPM)
08 QCA Quantity of C A 0 CL Needed for Module (GPM)
09 QPHOS Quantity of Phosphoric Add Needed for Module (GPM)
10 QALS Quantity of AL S 0 (3) Needed for Module (GPM)
11 QCAO Quantity of C A 0 Needed for Module (GPM)
12 QCAHY Quantity of Calcium Hydroxide Needed for Module (GPM)
13 QPOLY Quantity of Polymer Needed for .Module (GPM)
r B^
•
36
-------
-LANDAM Module Land Area (Ft*Ft)
-LANDAR Module Land Area with Buffer (Ft*Ft)
-QINF Working Flow (Gal/Min)
-QINFL I/O Flow (Gal/Min)
-ftATIO Efficiency Ratio (See Ref 106}
- SITE Counter
-VOL Volume
-CONST Correction Factor for HP
-DETENT . Detention Time
-DIA Diameter of Mixer
-OIAAG Diameter of Agitator
-HORSP Horse Power Required by Agitator
-HRSYR Hours operation per year
Integer -I Misc.Counter
"Integer -J Misc.Counter
AERATED LAGOON MODULE
System Variables
CEFL=CINF*(100.-EFF)*0.01
SURFAR=16.*QINF*CINF-CEFL)/(KRATE*CEFL)
SQSUR=SQRT(FURFAR)
LANDAR=(SQSUR-H32.)*(SQSUR 132.)
VOLEX=87.6* SQSUR
NOAER=RNDUP(2.41E-4*SURFAR)
HRSYR*DAYS*HRS
HORSP=((SURFAR*12.)/1000.)*.5
KWH=HORSP*.7457
EFF 1s user defined. A default value of 90 percent removal is in
the program. Note that the varying degradability of hazardous compounds is
taken into account by specifying 'KRATE1. See the descriptions under
MODSP Parameters.
IFF (CINF/TOTN.GT.20)
QAM=(CINF/TOTN-20.)*QINF*2.13E-5
ELSE
QAM=UNDEF
ENDIFF
IFF (CINF/TOTP.GT.100.)
QPHOS=(CINF/TOTP-100.)*QINF*2.47E-5
ELSE
QPHOS=UNDEF
ENDIFF
TOTN=0.
TOTP=0. .
37
-------
Performance
CFCM(CLR2 XOST(CLR2 ,CAPCF,LANDAR,IRCODE)
CFCM(EXCV3KOST(EXCV3,CAPCF,VOLEX,IRCODE)
CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,IRCODE)
CM(1XFCM(CLR2 )KFCM(EXCV3_MGRADED
CFCM(WALL6)=COST(WALL6,CAPCF,5.5,IRCODE)
CFCM(SLAB1)=COST(SLAB1,CAPCF,3.1,IRCODE)
CFCM(WALL5)=COST(WALL5,CAPCF,1.8,IRCODE)
CFCM(SLAB2)=COST
CFCM
CFCM
CFCM
WDBM2
WDBN2
WDDK
'COST
=COST
=COST
SLAB2,CAPCF,0.5,IRCODE)
WDBM2.CAPCF.25..IRCODE)
WDBM1,CAPCF,600.,IRCODE)
WDDK ,CAPCF,400.,IRCODE)
CM(2)=CFCM(WALL6)+CFCM(SLAB1)+CFCM(WALL5)+CFCM(SLAB2)+
CFCM(WDBM2)+CFCM(WDBM1)+CFCM(WDDK)
CFCM(AER50)=COST(AER50,CAPCF,NOAER,IRCODE)
CFCM(GATE )=COST(GATE .CAPCF.4., IRCODE)
CM(3)=CFCM(AER50)+CFCM(GATE )
Included 1n Aerator Costs
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
CM(5)=CFCM(LAND)
CFCM(LINER)=COST(LINER, CAPCF.SURFAR,IRCODE)
CFCM(HNDRL)=COST(HNDRL, CAPCF,104..IRCODE)
CM(6)=CFCM(LINER)+CFCM(HNDRL)
CFOM(OPER1)=COST(OPER1,OMMCF,MSTAFF*HRSYR* .06 .IRCODE)
CFOM(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR* .012,IRCODE)
CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR* .66 .IRCODE)
OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
CFOM(POWER)=COST(POSER,OMMCF,KWH*HRSYR,IRCODE)
OMM(20=CFOM(POWER)
OMM(3)=0.05*CM(3)
Not applicable ."^r.".
OMM(8)=0 — T.'.J.'.'L
~-r".-.-_:.
v • • •
'•'=-. 38 ••''-"''
-------
Module Specific Parameters. Parameter Definitions
02 EFF Efficiency (Per cent)
03 KRATE Reaction Rate (Per day)
-CEFL Effluent Bod Concentration
-CINF Influent Bod Concentration
-HRSYR Hours Operation Per Year
Integer -I M1sc Counter
Integer -J Nisc Counter
-LANDAR Module Land Area with Buffer (Ft*Ft)
-NOAER Number of Surface Aerators
-QAM Liquid Ammonia (Demand) (Gal/Min)
-QINF Working Flow (Gal/Min)
"QINFL I/O Flow (Gal/Min)
-QPKOS Phosphoric Acid (Demand) (Gal/Min)
-SQSUR- Square Root of Surface Area
-SURFAR Surface Area
-TOTN Total Nitrogen
-TOTP Total Phosphorus
-VOLEX Volume of Excavation for Lagoon(s)
AERATED BASIN MODULE
System Variables
CEFL=CINF*(100.-EFF)*0.01
SURFAR=0.042*QINF*(CINF^CEFL)/(l.+10.*Krate)
SQSUR=SQRT(FURFAR)
LANDAR=(SQSUR+12.)*(SQSUR+12.)
NOAER+RNDUP(2.41E-4*SURFAR)
HRSYR=DAYS*HRS
LBSDY=HRSYR*835E-6
HORSP=((SURFAR*20.)*.001)*.5
KWH=HORSP*0.7457
RATN=CINF*0.05
RATP=CINF*0.01
Performance (EFF) 1s user defined. Default value = 90 percent
removal. Note that varying degradability of hazardous compounds is taken
into account by specifying "KRATE". See MODSP description.
IFF (TOTN.GT.RATN)
QAM=(RATN-TOTN)*QINF*2.13E-5
TOTN=0.
ELSE
QAM=UNDEF
TOTN=TOTN-RATN __=
39
-------
ENDIFF
IFF (TOTP.GT.RATP)
QPHOS=(RATP-TOTP)*QINF*2.47E-5
TOTP=0.
ELSE
QPHOS=UNDEF
TOTP=TOTP-RATP
ENDIFF
Performance
CFCM(CLR1 )=COST(CLR1 , CAPCF.LANDAR,IRCODE}
CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,IRCODE)
CFCM(EXCV2)=COST(EXCV2,CAPCF,SURFAR/9,IRCODE)
CM(1)=CFCM(CLR1 )+CFCM(GRADE)+CFCM(EXCV2)
CFCM(SLABl)=COST(SLABl,CAPCF,((SQSUR+2.)/27.,IRCODE)
CFCM(WALL6)=COST(WALL6,CAPCF,1.2*SQSUR,IRCODE)
CM(2)=CFCM(SLAB1)+CFCM(WALL6)
CFCM(AER50)=COST(AER50,CAPCF,NOAER,IRCODE
CFCM(PIPE2KOST(PIPE2,CAPCF,SQSUR,IRCODE
CFCM(WEIR )=COST(WEIR ,CAPCF,SWSUR,IRCODE
CM(3)=CFCM(AER50)+CFCM(PIPE2)+CFCM(WEIR )
INCLUDED IN AERATOR COSTS
CM(4)=0
CFCM(LAND)=COST(LAND,CAPCF;LANDAR.IRCODE)
CM(5)=CFCM(LAND)
NOT APPLICABLE
CM(6)=0
CFOM(OPER1)=COST
CFOM(OPER2)=COST
CFOM(LABOR)=COST
OPER1,OMHCF,MSTAFF*HRSYR* .06 .IRCODE)
OPER2.OMMCF,MSTAFF*HRSYR* .012,1RCODE)
LABOR,OMMCF,MSTAFF*HRSYR* .66 ,IRCODE)
OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
CFOM(POWER)=COST(POWER,OMMCF,KWH*HRSYR,IRCODE)
OMM(2)=CFOM(POWER)
: 40
-------
OMM(3)=0.2*CM(3)
NOT APPLICABLE-COSTED IN STORAGE MODULE
OMM(4)=0
NOT APPLICABLE
OMM(8)=0
Module Specific Parameters. Parameter Definitions
02 EFF Reaction Efficiency (Per Cent)
03 KRATE Reaction Rate (Per Day)
-CEFL
-CINF
-HRSYR
Integer-I
-LANDAR
-NOAER
-QAM
-QINF
-QINFL
-QPHOS
-RATN
-SQSUR
-SURFAR
-TOTN
-TOTP
SEDIMENTATION BASIN MODULE
System Variables
Effluent BOD Concentration
Influent BOD Concentration
Hours Operation Per Year
M1sc. Counter
Module Land Area With Buffer (Ft*Ft)
Number of Surface Aerators
Liquid Ammonia (Demand) (Gal/Min)
Working Flow (Gal/Min)
I/O Flow (Gal/Min)
Phosphoric Acid (Demand) (Gal/Min)
Required Nitrogen to BOD -Level
Required Phosphorus to BOD Level
Square Root of Surface Area
Surface Area
Total Nitrogen
Total Phosphorus
OF TEXT »-
VOL=QINF*DETENT
DEPTH=10.
A=QINF/HYDRAL
B=VOL/10.
IFF (A. GE. B)
LANDAM=A
ELSE
LANDAM=B
ENDIFF
::,— 31.'
i -- ' i.^'Z
41
'Cm
-------
WIDTH*SQRT(LANDAM/5.)
LENGTH-SQRT(LANDAM*5.)
IFF (WIDTH. LE. 20.)
HOPWID=WIDTH
ELSE
HOPWID+20.
ENDIFF
HOPDEP=0.8*HOPWID-1.
HOPVOL=(0.33)*(6*HOPWID+4+SQRT(6*HOPWID+4))*HOPDEP
HOPAR=(HOPWID+10.)*HOPDEP
HORN=RNDUP(WIDTH/20.)
LANDAR=LANDAM+24*SQRT{LANDAM)+144
WALCY=(2*WIDTH*DEPTH+1*LENGTH*DEPTH+HOPAR)*.03
WEIRL=1.33*LEN6TH+WIOTH-1.
HRSYR= DAYS*HRS
Performance should be defined by user In calculating results of
settling test and Input as MODSP Parameters. Defaults supplies are:
TSS=30.
PCTSO=8.
If a sludge wasting rate 1s not defined by user (see MODSP par
description) "SLUDG" Is defined as a function a Influent flow.
IFF (SLUDG.EQ.UNDEF)
SLUDG=0.1*QINF
ENDIFF
QEFF=QINF-SLUDG
Performance
CFCM
CFCM
CFCM
CLR2 )=COST(CLR2 .CAPCF.LANDAR,IRCODE)
GRADE)=COST(GRADE,CAPCF,LANDAR,IRCORE)
EXCV1KOST(EXCV1,CAPCF,HOPVOL/27.,IRCODE)
CM(1)=CFCM(CLR2 )+CFCM(GRADE)+CFCM(EXCVl)'
CFCM(WALL1)=COST(WALL1,CAPCF,WALCY,IRCODE)
CFCM(SLABl)=COST(SLABl,CAPCF,(LANDAM+4.)/27..IRCODE)
CF(2)=CFCM(WALL1)KFCM(SLAB1)
CFCM(SLCOL
CFCM(PIPE4
CFCM(WEIR
'COST
=COST
=COST
SLCOL,CAPCF,HOPN*LENGTH,IRCODE)
PIPE4.CAPCF.HOPDEP+10..IRCODE)
WEIR,CAPCF.WEIRL,IRCODE)
CM(3)=CFCM(SLCOL)+CFCM(PIPE4)+CFCM(WEIR
CM(4)=0.01*CFCM(SLCOL)
:-•:•• 42 .
-------
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
CM(5)=CFCM(LAND)
NOT APPLICABLE
CM(6)*0
CFOM (OPER1)=COST(OPER1,OMMCF,MSTAFF*HRSYR* .05 .IRCODE)
CFOM (OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR* .003.IRCODE)
CFOM (LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR.*0.6 .IRCODE)
OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
CFOM(POWER)=COST(POWER,OMMCF,1.4*HRSYR,IRCODE)
OMM(2)=CFOM(POWER)
OMM(3)=0.1*CM{3)
NOT APPLICABLE
OMM(4)=0
NOT APPLICABLE
OMM(8)=0
Module Specific Parameters, Parameter Definitions
02 DETENT Detention Time in Minures
03 SLUDG Sludge Wasting Rate (Lb/Hr)
04 HYDRAL Hydrallc Loading
05 TSS Output TSS as Estimated from Settling Test
06 PCTSO Output PCTSO as Estimated from Settling Test
-DEPTH Basin Depth
-HOPAR Hopper Area
-HOPDEP Hopper Depth
-HOPN Number of Hoppers
-HOPVOL Hopper Volume
-HOPWID Hopper Width
-HRSYR Hours Operation Per Year
-I Misc. Counter
-0 Misc. Counter
-LANDAM Module Land Area (Ft+Ft)
-LANDAR Module Land Area with Buffer (Ft*Ft) i:~-
-LENGTH Module Length (Ft) ' ----
-OEFF Outout Flow (Stream 1) (GPM) ;- ; -
: 2 '- 43 - '- '
-------
-QINF Working Flow (GPM)
-QINFL Input Flow (GPM)
-SLUDG Modsp Par and Output Sludge Wasting Rate
-TSS Modsp Par and Total Suspended Solids
-VOL Basin Volume (Gallons)
-WALCY Walk Volume In Cubic Yards
-WIDTH Basin Width
-WEIRL. Weir Length
CLARIFIER MODULE
System Variables
SURFAR=QINF/HYDRAL
SQSUR=SQRT(SURFAR)
LANDAR=SURFAR+14.18*SQSUR+50.27
LANDAM=SURFAR+10.63*SQSUR+27.27
VOLEX=0.148*SURFAR+1.57*SQSUR+7.45
VCON=0.16*SURFAR+0.034*SURFAR**1.5
VFIL=SURFAR+5.32*SQSUR+7.07
BDECK=8.04*SURFAR**0.483
BDBEAM=.0.68^SURFAR**0.- 978
DIAM=2.*SQRT(SURFAR/PI)
CIRC*PI*DIAM
KWHS=10.53*S.URFAR
HRSYR=DAYS*HRS
Performance should be defined by user in.calculating results of
settling test, and input as MODSP Parameters. Defaults supplied are:
TSS=30.
PCTSO=8.
If a sludge wasting rate is not defined by user (see MODSP Par
Description) 'SLUDG1 is defined as a function a influent flow.
IFF (SLUDG.EQ.UNDEF)
SLUDG=0.1*QINF
ENDIFF
QEFF = QINF-SLUDG
QSULF=0.123*SURFAR
QCAHY=8.0*SURFAR
QCOAG=0.17*SURFAR
Performance
CFCM(CLR2 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
CFCM(GRADE)=COST(GRADE,CAPCF,LANDAM,IRCODE)
44
-------
CFCM(EXCV1)=COST(EXCV1,CAPCF,VOLEX,IRCODE)
CM(1)=CFCM(CLR1 )+CFCM(GRADE)+CFCM(EXCVl)
CFCM(WALL1)=COST
CFCM(BKFL2)=COST
CFCM(WDBM2)=COST
WALLl.CAPCF.VCON,IRCODE}
BKFL2,CAPCF,VFIL,IRCODE)
WDBM2,CAPCF.BDBEAM,IRCODE)
CFCM(WDDK )=COST(WDDK .CAPCF.BDECK,IRCODE)
CM(2)=CFCM(WALL1)+CFCM(BKFL2)+CFCM(WDBM2)+CFCM(WDDK
CFCM(SLCOL)=COST(SLCOL,CAPCF.DIAM,IRCODE)
CFCM(CLAR1
CFCM(PIPE4
CFCM(WEIR
COST(CLAR1,CAPCF,DIAM,IRCODE)
=COST(PIPE4,CAPCF,DIAM/2.,IRCODE)
=COST(WEIR .CAPCF,CIRC,IRCODE)
CM(3)=CFCM(SLCOL)+CFCM(CLAR1)+CFCM(PIPE4)+CFCM(WEIR
CM(4)=0.01*CFCM(SLCOL)
CFCM(LAND)=COST(LAND,CAPCF.LANDAR,IRCODE)
CM(5)=CFCM(LAND)
NOT APPLICABLE
CM(6)=0.
CFOM(OPER1
CFOM(OPER2
CFOM(LABOR
=COST(OPER1,OMMCF,MSTAFF*HRSYR* .05 .IRCODE)
=COST(OPER2.OMMCF,MSTAFF*HRSYR* .003.IRCODE)
*COST(LABOR,OMMCF,MSTAFF*HRSYR*0.6 .IRCODE)
OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
CFOM(POWER)=COST(POWER,OMMCF.KWHS*HRSYR,IRCODE)
OMM(2)=CFOM(POWER)
OMM(3)=0.1*CM(3)
CHEMICALS COSTED IN THE STORAGE MODULE(S)
OMM(4)=0.
NOT APPLICABLE
OMM(8)-0
45
-------
Module Specific Parameters, Parameter Definitions
02 DEBUG Local Debug Flag
03 HYRDRAL Hydraulic Loading
04 TSS Output TSS as Estimated from Settling Rate
05 PCTSO Output PCTSO
-BDBEAM
-BDECK
-CIRC
-DIAM
-HRSYR
Integer -I
Integer -«J
Real -KWHS
-LANDAM
-LANDAR
-PCTSOA
-QEFF
-QINF
-QINFL
-SURFAR
-VCON
-VFIL
-VOLEX
ROTARY DRUM VACUUM MODULE'
Board Beams (LF)
Surface Area of Board Deck (Ft*Ft)
ClarifierCircumference (Ft)
Clarifier Diameter (Ft)
Hours Operation Per Year
Misc. Counter
Misc. Counter
Killowatts/Hr
Module Land Area (Ft*Ft)
Module Land Area With Buffer (Ft*Ft)
Aqueous Percent Solids Output (Zero)
Effluent Flow Rate (GPM)
Working Flow (GPM)
Influgent Flow (GPM)
Filter Surface Area
Volume of Concrete (CY)
Volume of Backfill (CY)
Volume of Excavation (CY)
Systeti Variables
NOFILT=RNDUP(SLUDG
QINFU -SLUDG/NOFILT
SURFAR=QINFU*5. •
LANDAM=0.95*SURFAR*NOFILT
LANDAR=2.33*LANDAM
LBSHR=SURFAR*NOFILT
HRSYR=DAYS*HRS
VOL=(1.23E-4*SURFAR**3.+0.13*SURFAR*SURFAR+30.68*SURFAR)
KWHS=(0.003*VOL+7.9E-3*SURFAR)*NOFILT
YIELD=LBSHR
FILTRT=SLUDG-(YIELD/(10.42*60.))
HOUS=0.
IF(BLDG.EQ.2.) HOUS=1
SITE=1.-HOUS
Performance: Solids output=QINFS (1bs/hr)ey1e1d QFE and Lime
Additions (as GPM and Tbs/hr) are user speciffeed. Otherwise = 0
46
-------
Performance
CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAM*HOUS+LANDAR*SITE,IRCODE)
CFCM(GRADE)=COST(GRADE,CAPCF,LANDAM*HOUS+LANDAR*SITE,IRCODE)
CM(1)=CFCM(CLR1 )+CFCM(GRADE)
CFCM(SLAB2
CFCM(SLAB1
CFCM(BUILD
=COST
=COST
=COST
SLAB2.CAPCF.LANDAM/27..IRCODE)
SLAB1,CAPCF,HOUS*LANDAM/27.,IRCODE)
BUILD,CAPCF,HOUS*LANDAR,IRCODE)
CM(2) =CFCM(SLAB2)+CFCM(SLAB1)+CFCM(BUILD)
CFCM(RDVAC)=COST(RDVAC,CAPCF,SURFAR,IRCODE)*1000.
CM(3KFCM(RDVAC)*NOFILT
CM(4)=0.01*CM(3)
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE).
CM(5)=CFCM(LAND)
NOT APPLICABLE
CM(6)=0
CFOM(OPERl)=COST(OPERl,OhWCF,MSTAFF*HRSYR* .05 .IRCODE
CFOM(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR*' .013,IRCODE
CFOM(LABOR)=COST(LABOR.OMMCF,MSTAFF*HRSYR*0.6 ,1RCODE
OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
CFOM(POWER)=COST(POWER,OMMCF,KWHS*HRSYR,IRCODE)
OMM(2)=CFOM(POWER)
CFOM(MECH2)=COST(MECH2,OMMCF,20.*NOFILT,IRCODE)
CFOM(HELPR)=COST(HELPR,OMMCF,20.*NOFILT,IRCODE)
OMM(3)=CFOM(MECH2)+CFOM(HELPR)+0.008*CM(3)
CFOM(CAHY1)=COST(CAHY1,OMMCF,LIME*HRSYR,IRCODE)
CFOM(FECL3)=COST(FECL3,OMMCF,FECL3V*HRSYR,IRCODE)
OMM(4)=CFOM(CAHY1)+CFOM(FECL3)
NOT APPLICABLE
OMM(8)=0.
47
-------
Module Specific Parameters. Parameter Definitions
03 LIME Lime Addition Rate (Lbs/Hr)
04 FECL3 Ferric Chloride Addition Rate (GPM)
-FILTRT
-HOUS
-HRSYR
Integer -I
Integer -J
Real -KWHS
-LBSHR
-LANDAM
-LANDAR
-NOFILT
-QINFL
-QINFS
-QINFU
-SITE
-SLUDG
-SURFAR
-VOL
-YIELD
REVERSE OSMOSIS MODULE
System Variables
Filtrate Flow Rate
Counter Set by 'Bldg'
Hours Operation Per Year
Misc. Counter
Misc. Counter
Kilowatts Per Hour
Yeild in Lbs/Hr
Module Land Area (Ft*Ft)
Module Land Area With Buffer (Ft*Ft)
Number of Filter Units
I/O Flow - Filtrate (GPM)
I/O Loading Rate - Filter Cake (Ibs/hr)
Flow Per Filter Unit (GPM)
Counter Set by 'BLDG'
Influent Sludge Flow Rate (GPM)
Total Filter Surface Area
Vacuum Drum Volume
Filter Cake Produced (Ibs/hr)
LANDAR=2.25E-2*QINF**1.76+54.
VCON=4.17E-4*QINF**1.76+1.
KWHS=0.215*QINF
HRSYR=HRS*DAYS
QCA=5.61E-4*QINF
SLUDG =7.21E-3*QINF
QEFF=QINF-SLUDG
Performance
CFCM(CLR1 )=COST(CLR1 .CAPCF.LANDAR,IRCODE)
CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,IRCODE)
CM(1)=CFCM(CLR1 )+CFCM(GRADE)
CFCM(SLAB2)=COST(SLAB2,CAPCF,VCON,IRCODE)
48
V-,-.:
Tr. - ~
-------
CM(2)
-------
ULTRAFILTRATION MODULE
System Variables
IFF(QINF.LE.200.J
LANDAM=21.3*QINF
VEXC*0.47*QINF
ELSE
LANDAM=35.6
VEXC=0.79*QINF
ENDIFF
VCON=VEXC
LANOAR=1.54*LANDAM
KWH=0.36*QINF
HRSYR=HRS*DAYS
QCA=8.83ET5*QINF
SLUDG=7.21E-3*QINF
Performance
CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
CFCM(GRADE)=COST(GRADE,CAPCF,LANDAM,IRCODE)
CFCM(EXCV1}=COST(EXCV1,CAPCF,VEXC,IRCODE)
CM(1)=CFCM(CLR1 )+CFCM(GRADE)+CFCM(EXCVl)
CFCM( SLAB2 KOST(SLAB2,CAPCF ,VCON, IRCODE)
CM(2}=CFCM(SLAB2)
CFCM(ULTFL)-COST(ULTFL,CAPCF.QINF,IRCODE1
CM(3)=CFCM{VLTFL)
CM(4)»0.05*CM(3)
CFCM(LAND)=COST(LAND,CAPCK,LANDAR,IRCODE)
CM(5)=CFCM(LAND)
CM(6}=0. NOT APPLICABLE
CFOM(OPER1)=COST(OPER1,OMMCF,KSTAFF*HRSYR*0.300,IRCODE
CFOH(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR*0.075,IRCODE
CFOH{LABOR)=COST{LABOR.OMMCF,MSTAFF*HRSYR*0.400,IRCODE
50
-------
OMM(1)=CFOM(OPER1)+CFOM(OPER2)=CFOM(LABOR)
CFOM(POWER)=COST(POWER,OMMCF,KWH*HRSYR,IRCODE)
OMM(2)=CFOM(POWER)
CFOM(MECH1)=COST(MECH1,OMMCF,100.,IRCODE)
OMM(3)=CFOM(MECH1)
OMM(4)=0. NOT APPLICABLE
OMM(8)=0. NOT APPLICABLE
Module Specific Parameters, Parameter Definitions
-HRSYR Hours Operation Per Year
Integer -I Misc. Counter
Integer -J Misc. Counter
Real -KWH Kilowatts Per Hour
-LANDAM Module Land Area (Ft*Ft)
-LANOAR Module Land Area with Buffer (Ft*Ft)
-QCA Required Calcium Hypochlorite Demand
-QINF Working Flow (Gal/Min)
-QINFL I/O Flow (Gal/Min)
-SLUDG Sludge Wasting Rate (GPM)
-VCON Volume of Concrete (CY)
-VEXC Volume of Excavation (CY)
' CARBON ADSORPTION MODULE
System Variables
XAREA=QINF/HYDRAL
SXAREA-SQRT(XAREA)
APIER=3.57E-4 *DENTEN*QINF+(6.63E-4 *DENTEN*HYDRAL+4.22E-5*
+ DETEN*DETEN*HYDRAL*HYDRAL)*SXAREA
DFEED=8.711E-2*XAREA**0.417*DETEN**0.512
DHOLD=9.95E-2*XAREA**0.417*. DETEN**0.512
IF(DFEED.LT.12.) GO TO 01
M=RNDUP((DFEED/11.)**3)
OFEED=DFEED/M**0.33
N=RNDUP((DHOLD/11.)**3)
DHOLD=DHOLD/M**0.33
GO TO 02
01 M=l
N=l
\ - 02 CONTINUE
51
-------
ASEC=1.074E-4 *DETEN*QINF+(9.49E04 *DETEN*HYDRAL+1.27E-5*
OETEN*DETEN*HYRDAL*HYRDAL)*SXAREA
LANDAR»2.*APIER+3.36*SQRT(APIER*XAREA)+1.28*XAREA)+1.38*XAREA+1.101*DFEED
**2,223*M+1.437E-3**AREA**1.026*DETEN**1.336+1.098*DHOLD**
2.184*N+2.104E-2*XAREA**0.712*DETEN**0.926
VEXC=2.85E-3*DETEN*QINF+(5.31E-3*DETEN*HYDRAL+3.38E-4 *DETEN*
DETEN*HYDRAL*HYDRAL)*
SXAREA+7.15E-3 * DFEED**2.645*M+1.372E-4*XAREA**0.859
*DETEN**1.118+5.15E-3 *DHOLD**2,678*N+1.564E-4 *XAREA**0.7
*DETEN**0.911
VCONP=7.93E-5*DETEN*QINF+(1.47E-4*DETEN*HYDRAL+9.38E-6*DETEN**2
*HYDRAL**2.)*SXAREA+8.94E-3 *DFEED**2.645*M+1.615E-5
*XAREA**1.06*OETEN**1.38+6.92E-3 *DHOLD**2.649*N+1.955E-4
*AREA**0.7*DETEN**0.911
VSLAB=6.558E-7 *XAREA**1.25*DETEN**1.627+4.395E-4 *XAREA**0.625*
DETEN**0.814+7.363E-2
WSTR=7.66*ASEC*(8.87+SXAREA)+30.18*DFEED**2.192*M+3.OE-2*
XAREA**0.913*DETEN**1.189+6.47*DHOLD**2.291-*N+9.32E-2*XAREA
**0.735*DETEN**0.957
WVES06.06*XAREA+6.04*DETEN*HYDRAL*SXAREA+78.7*DFEED**2.039*
M+22.81*DHOLD**3*N+1.367E-4 *XAREA**1.376*DETEN**I.791+600.
LBSHR=3.54E-4 *XAREA**1.25* DETEN**1.627
NGASV=5.68E-2*XAREA**1.26*DETEN**1.641
KMHS=0.209*XAREA**0.686*DETEN**0.894-1897"
MECHA=2.22E-5 *QINF**0.83+3.9E-5 *XAREA**0,88*DETEN**1.156+.208
MECHB=7.42E-5 *QNIF**0.83+5.3E-5 *XAREA**0.88*DETEN**1.156+.284
KELP=5.19E-5*QINF**.83*4.96E-5*XAREA**88*DETEN**1.156+.265
FOILV=1.96E-5*XAREA**1.26*DETEN**1.641
IF (.NOT. (MODE.EQ.1.)) GO TO 9008
OIL=0
GAS=1
GO TO 9009
9008 IF (NOT. (MODE.EQ.2.)) GO TO 9009
OIL=1
GAS=0
9009 CONTINUE
CHARG=(QINF/DETEN)*4.45
HRSYR=DAYS*HRS
COD=0.2*COD
QSTM=5.61E-6*XAREA*1.67*DETEN**2.174+6.632E2
Performance
CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,IRCODE)
CRCM(EXCV2)«COST(EXCV2.CAPCF,VEXC,IRCODE)
CM(1)=CFCM(CLR1 )+CFCM(GRAD_E)+CFCM(EXCV2)
52 ' "•"-"•-
-------
CFCM(SLAB2
CFCM(SLAB1
CFCM(CSPLT
=COST(SLAB2,CAPCF,VCONP,IRCODE)
=COST(SLAB1,CAPCF,VSLAB,IRCODE)
=COST(CSPLT,CAPCF,WSTR,IRCODE)
CM(2)=CFCM(SLAB2)+CFCM(SLAB1)+CFCM(CSPLT)
CFCM(SSPL2)=COST(SSPL2,CAPCF,WXES,IRCODE)
CFCM(HEART)=COST(HEART,CAPCF,LBSHR,IRCODE)
CFCM(ACCAR)=COST(ACCAR,CARCF,CHARG,IRCODE)
CM(3KFCM(SSPL2)+CFCM(HEART)+CFCM(ACCAR)
CM(4)=0.001*CM(3)
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
CM(5)-CFCN(LAND)
CM(6)=0; NOT APPLICABLE
CFOM
CFOM
CFOM
OPER1
OPER2
LABOR
=COST(OPER1,OMMCF,MSTAFF*HRSYR*0.300,IRCODE
'COST(OPER2,OMMCY,MSTAFF*HRSYR*0.075,IRCODE
'COST(LABOR,OMMCF,MSTAFF*HRSYR*0.400,IRCODE
OMM(1)=CFOM(OPER1)+CROM(OPER2)+CFOM(LABOR)
CFOM(NGAS )=COST(N6AS ,OMMCF,NGASV*GAS*HRSYR,IRCODE)
CFOM(POWER)=COST(POWER,OMMCF,KWHS*HRSYR,IRCODE)
CFOM(FUEL )=COST(FUEL ,OMMCF,FOILV*OIL*HRSYR,IRCODE)
OMM(2)=CFOM(NGAS )+CFOM(POWER)+CFOM(FUEL )
CFOM(MECH1)=COST(MECH1,OMMCF,MECHA*HRSYR,IRCODE)
CFOM(MECH2)=COST(MECH2,OMMCF,MKHB*HRSYR,IRCODE)
CFOM(HELPR)=COST(HELPR,OMMCF,HELP*HRSYR,IRCODE)
OMM(3)=CFOM(MECH1)+CFOM(MECH2)-K:FOM(HELPR)
CFOM(OACCAR)=COST(OACCAR,OW1CF,LBSHR*HRSYR,IRCODE)
OMM(4)=CFOM(OACCAR) ; MAKE-UP CARBON
OMM(8)=0; NOT APPLICABLE
Module Specific Parameters. Parameter Definitions
02 MODE GAS (1. ) OR OIL (2. ) FIRED FLAG
03 DETEN CONTACT TIME (MIN)
04 HYDRAL HYDRALIC LOADING RATE (GPM/FT*FT))
53
-------
-APIER
-ASEC
-CHARG
-COO
-DFEED
-DHOLD
REAL -FOILV
-HELP
-HRSYR
INTEGER -I
INTEGER -J
REAL -KWHS
-LANDAR
-LBSHR
-M
-MECHA
-MECHB
-N
-NGASV
-.QINF
-QINFL
-QSTM
-VCOMP
-VEXC
-VSLAB
-WSTR
-WVES
-XAREA
LAND DISPOSAL SITE MODULES"
System Variables
PLATFORM AREA CONCRETE PIER (FT*FT)
INTERMEDIATE VARIABLE
CARBON REQ. FOR START UP CHARGE (LBS)
I/O CHEMICAL OXYGEN DEMAND (PPM)
DIA OF FURNACE FEED TANK (FT)
DIA OF HOLDUP TANK (FT)
FUEL/OIL VOLUME (GAL/HR)
HELPER COEFFICIENT
HOURS OPERATION PER YEAR
MISC. COUNTER
MISC. COUNTER
KILOWATT HOURS
MODULE LAND AREA (FT*FT)
CARBON DEMAND (LBS/HR)
NUMBER OF FURNACE FEED TANKS
MECH1 COEFFICIENT
MECH2 COEFFICIENT
NUMBER OF HOLD UP TANKS
NATURAL GAS VOLUME (CF/HR)
WORKING FLOW (GAL/MIN)
I/O FLOW (GAL/MIN)
STEAM DEMAND,(LBS/HR)
VOLUME OF CONCRETE PIERS (CY)
VOLUME "OF EXCAVATIONJCY)
VOLUME OF CONCRETE.SLAB FLOORS (CY)
WEIGHT OF SUPPORT'STEEL (LBS)
WEIGHT OF CONTACTOR (LBS)
CROSS-SECTIONAL'AREA OF CONTACTOR (FT*FT)
LANDAR=9.75*QINFD+405963.02
SQRTLA=SQRT(LANDAR)
HRSYR=DAYS*HRS
NO EQUATIONS
IFF (MODE EQ. 1)
Performance
CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
CFCM(GRADE)=COST(GRADE,CAPCF, LANDAR, IRCODE)
CFCM(CLEXC)=COST(CLEXC,CAPCF,LANDAR*0. 164, IRCODE)
CM(1 )=CFCM(CLR1 )+CFCM(GRADE)+CFCM(CLEXC)
54
-------
CFCM(ROAD1 )=COST{ROAD1 .CAPCF.SQRTLA+4641.03,IRCODE)
CFCM(ROAD2)=COST(ROAD2,CAPCF,SQRTLA,IRCODE)
CFCM(PIPE1)=COST(PIPE1,CAPCF,SQRTLA*3.,IRCODE)
CFCM(ETHWL)=COST(ETHWL,CAPCF,(SQRTLA-459.)*4.,IRCODE)
CFCM(D8ASN)=COST(DBASN,CAPCF,1..IRCQDE)
CFCM(FENCE)=COST(FENCE,CAPCF,SQRTLA*4.,IRCODE)
CM(2)=CFCM(ROAD1}+CFCM(ROAD2)+CFCM(PIPEl}+CFCM{ETHWL)+
1 CFCM(DBASN)+CFCM(FENCE)
CFCM(FKLFT)=COST(FKLFT,CAPCF,1.,IRCODE)
CFCM(FELDR)=COST(FELDR,CAPCF,L,IRCODE
CFCM(TKDZR)=COST(TKDZR,CAPCF,1..IRCODE
CFCM(PUTRK)=COST(PUTRK,CAPCF,1..IRCODE
CFCM(WTRK )=COST(WTRK .CAPCF.l..IRCODE)
CFCM(WTANK)=COST(WTANK,CAPCF,1..IRCODE)
CM(3)=CFCM(FKLFT)+CFCM(FELDR)+CFCH(TKDZR)*CFCM(PUTRK)+
1 CFCM(WTRK)+CFCM(WTANK)
CFCM(GENER)=COST(GENER,CAPCF,1..IRCODE)
CM(4)=CFCM(GENER)
CFCH(LAND)=COST(LAND.CAPCF.LANDAR,IRCODE)
CM(5)=CFCM(LAND)
CFCM(LEACH)=COST(LEACH,CAPCF,SQRTLA-360,IRCODE)
CFCM(6WMON)=COST(GWMON,CAPCF,3.,IRCODE)
CFCM(LNRCL)-COST(LNRCL,CAPCF,LANDAR*0.135,IRCODE)
CM(6)=CFCM(LEACH)+CFCM(6WMON)+CFCM{LNRCL)
CFOM(OPER1)=COST(OPER1,OMMCF,0.2*HRSYR,IRCODE)
CFOM(OPER2)=COST(OPER2,OMMCF,1.0*HRSYR,IRCODE)
CFOM(LABOR)=COST(LABOR.OMMCF,1.0*HRSYR,IRCODE)
O^W(^)=CFOM(OPER1)+CFOM(OPER2)+CFOH(LABOR)
CFOM(FUEL)=COST(FUEL,OHMCF,13600.,IRCODE)
OMM(2)=CFOM(FUEL)
OMM(3)=0.01*CM(3)
OMM(4)=0.
CFOM{DMPWT)=0.
OMM(8)=0.
55
-------
ELSE
FOR (1=1,6,1)
CM(I)=0.
ENDFOR
FOR (1=1,4,1)
OMM(I)=0.
ENDFOR
CFOM(DMPWT)=COST(DMPWT,OMMCF,QINFD*8.337,IRCODE); HAZ. WASTE DISPO
OMM(8)=CFOM(DMPWT)
ENDIFF
Module Specific Parameters, Parameter Definitions
IF MODE = 1 - PURCHASE AND SELF OPERATE
IF MODE =_2 - DISPOSAL AS SERVICE CHARGE
' -HRSYR HOURS OPERATION PER YEAR
INTEGER -I MISC. COUNTER
INTEGER -J MISC. COUNTER
REAL -LANDAM MODULE LAND AREA (FT*FT)
-LANDAR MODULE LAND AREA WITH BUFFER (FT*FT)
-QINFD WORKING FLOW (GAL/DAY)
-QINFL I/O FLOW (GAL/MIN)
-QINFS I/O SOLIDS 'FLOW'-(LBS/HR)
-SQRTLA SQUARE ROOT OF LAND AREA
"SLUDGE DIGESTER
System Variables
NODIGE=AINT(QINF/55 )
SURFAR=193*QINF/NODIGE
LANDAR=(15.7*SQRT(QINFH6)**2/NODIGE
HRSYR=NRS*DAYS
TVS=0.5*TVS
TSS=0.7*TSS
Performance
CFCM(CLR1 )=COST(CLR1 .CAPCF.LANDAR.IRCODE)
CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,IRCODE)
CFCM(EXCV2)=COST(EXCV2.CAPCF.SURFAR/10.IRCODE)
56
-------
CM{1)=(CFCM(CLR1 )+CFCM KRADE}+CFCM(EXCV2))*NODIGE
CFCM(SLAB1KOST(SLAB1,CAPCF,SURFAR*0.15,IRCODE)
CFCM(WALL2)=COST(WALL2,CAPCF,33*SQRI(QINF)+1.8,IRCODE)
CFCMtCOVERKOST(COVER,CAPCF,15.7*SQRI(QINF},IRCODE}*1000
CM(2)=(CFCM(SLABll+CFCMCWALL2l+CFCMCCOVERl)*NODIGE
CFCM(GASCO)=COST(GASCO,CAPCF,NODIGE,IRCODEi
CM(3)=CFCM(GASC01
CM(4)=0.05*CM3
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODEl
CM( 5 ) = ( CFCM(LANDU*NODI GE
CMC6)=0
CFOM(OPERl).=COST(OPERl,OMMCF,MSTAFF*HRSYR*:095;iRCODE)
CFOM( OPER2 }"=COST( OPER2 .OMMCF ,MSTAFF*HRSYR*, 025 ,1 RCODE'
CF_OM( LABOR) "COSTCUBOR .OMMCF ,MSTAFF*HRSYR*. 675 ,1 RCODE |
OMH(a>CFOM(OPER1)+CFOM(OPER2)+CFOH{ LABOR)
OMM(2)=0"
CFOM(SUPER)=COST(SUPER,OMMCF,16,IRCOOE)
CFOM(MECH1)=COST(MECH1,OMMCF,32,IRCODE)
CFOM(«ELPR)=COST{HELPR,OMMCF,40,IRCODE)
OMM(3)=CFOM(SUPER)+CFOM(MECH1)+CFOH{HELPR)0.1*CM(3)
Module Specific Parameters. Parameter Definitions
NODIGE Number of digesters required
QINF Influent flow rate
TVS Total volatile sol Ids (ppm)
TSS Total suspended solids (ppm)
TRICKLING FILTER" ------
System Variables
IF(RECIRC.LE.O)RECIRC=20.0
RECYC=OINF*RECIRC*0.01
57
-------
IF(EFF.LE.O),EFF=90
CEFL=CINF*(100-EFF)*0.01
SURFAR=((CINF+RECYC*CEFL)/((HRECYC)*CEFL)-l)**2*QINF/9.5
LANDAR=(2*SQRT(SURFAR/3.14)+12)**2
WALL=2.96*SQRT(SURFAR)+2.83
SLAB=0. 3*SURFAR+0. 88+SQRT(SURFAR)+2
DIA=SQRT(SURFAR*4/3.14)
HRSYR=HRS*DAYS
IF(CINF/TOTN.6T.20),QAM=(CINF/TOTN-20)*QINF*2.13E-5
IF(CINF/TOTN.LE.20),QAM=0
IF(CINF/TOTP.6T.100)QPHOS=(CINF/TOTP-100)*QINF*2.47E-5
IF(CINF/TOTP.LE.100)QPHOS=0
* CINF=CEFL
Performance
CFCM(CLR1 )=COST(CLR1 .CAPCF.LANDAR.IRCODE)
CFCM( GRADE )=COST(GRADE .CAPCF .LANDAR, IRCODE)
CFCM(EXCV2KOST(EXCV2,CAPCF,SURFAR/9,IRCODE)
CM(1)=CFCM(CLR1 )+CFCM(GRADE)+CFCM(EXCV2)
CFCM(WALL2)=COST(WALL2, CAPCF .WALL, IRCODE)
CFCM(SLAB1)=COST(SLAB1,CAPCF,SLAB, IRCODE)
CM(2)=CFCW(WALL2)+CFCM(SLAB1 )
CFCM(DISTRXOST(DISTR,CAPCF,DIA,IRCODE)*1000
CFCM(GATE)=COST(GATE,CAPCF,1, IRCODE)
CM(3)=CFCM(DISTR)+CFCM(6ATE)
_CM_(4)=0 _
CFCM(LAND)=COST(LAND,CAPCF,LANbAR,IRCODE)
CM(5)=CFCM(LAND)
CFCM(MEOIA)=COST(MEDIA,CAPCF,SURFAR*30, IRCODE)
CM(6)=CFCM(MEDIA)
CFOM(OPER1)=COST(OPER1 ,OMMCF,MSTAFF*HRSYR*0.02 .IRCODE)
CFOM(OPER2)=COST(OPER2,OHMCF,MSTAFF*HRSYR*0.003,IRCODE)
CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR*0.38 .IRCODE)
OMM( 1 )=CFOM(OPER1 )+CFOM(OPER2)+CFOM(LABOR)
58
-------
CFOM(MECH2)=COST{MECH2,OMMCF,16,IRCODE)
CFOM(SUPERKOST(SUPER,OMMCF,4 .IRCODE)
CFOM(FORMAKOST{FORMA,OMMCF,4 .IRCODE)
CFOM(HELPR)=COST(HELPR,OMMCF,32,IRCODE)
OMM(3)=CFOM(MECH2)+CFOM(SUPER)+CFOM(FORMA)+CFOM(HELPR)0.1*CH(3)
OMM(4)=0
OMM(8)=0
Module Specific Parameters. Parameter Definitions
EFF Percent BOD removal efficiency
CINF Influent BOD concentration (ppm)
CEFL Effluent BOO concentration
QINF Influent flow
RECIRC Recirculatlon flow (designated as
a percent of the Influent flow rate
WALL Volume of walls 1n CY
SLAB Volume of slab in CY
DIA Diameter of the filter
WASTE STABILIZATION POND
System Variables
SURFAR=1.69*QINF*CINF*C1.085**C35-TEHI»l
SQSUF=SQRT(SURFAR}
,GO TO 02
i r i ounrni\« w i * v • fc/^-Ttaw • rti«»*«wi> * —. ., - ~ - - -' * »
IF(SURFAR.GT.1.307E6.AND.SURFAR.LE.2.614E6),GO TO 03
IF(SURFAR.GT.2.614E6),GO TO 04
01 LANDAR=SURFAR+0.92*SQSUF+9148
VOLEX=22.68*SQSUF
GO TO 05
02 LANDAR=SURFAR+0.74*SQSUF+11761
VOLEX=34.02*SQSUF
_ GO TO 06 -
59
-------
03 LANDAR=SURFAR+1.2*SQSUF+15246
VOLEX=45.36*SQSUF
GO TO 06
04 LANDAR=SURFAR+1.3*SQSUF+18295
VOLEX=56.70*SQSUF
GO TO 06
05 SIZE=1
GO TO 07
06 SIZE=2
07 HRSYR=HRS*DAYS
CINF*0.8*CINF
Performance
CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
CFCM(EXCV3KOST(EXCV3,CAPCF,VOLEX,IRCODE)
CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,IRCODE)
CM(1)=CFCM(CLR1 )+CFCM(EXCV3)+CFCM(6RADE)
CFCM(SLABl)
CFCM(WALL5
CFCM(WDBM1)
=COST(SLAB1,CAPCF,SIZE*2,IRCODE)
=COST(WALL5,CAPCF,SIZE*1.5,IRCODE)
'COST(WDBM1,CAPCF,SIZE*160,IRCODE)
CFCM(WDDK)=COST(WDDK,CAPCF,SIZE8192,IRCODE)
CM(2)=CFCM(SALB1)+CFCM(WALL5)+CFCM(WDBM1)+CFCM(,WDDK)
CFCM(6ATE)=COST(6ATE,CAPCF,SIZE*3,IRCODE)
CM(3)=CFCM(GATE)
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
CM(5)=CFCM(LAND)
CFCM(LINER)=COST(LINER,CAPCF,SURFAR,IRCODE)
CFCM(HNDRL)=COST(HNDRL,CAPCF,52,IRCODE)
CM(6)=CFCM(LINER)+CFCM(HNDRL)
CFOM(OPER1)=COST(OPER1 ,OMMCF,MSTAFF*HRSYR* .125.IRCODE)
CFOM(OPER2)-COST(OPER2,OMMCF,MSTAFF*HRSYR* .065.IRCODE)
CFOM(LABOR)=COST( LABOR, OMMCF ,MSTAFF*HRSYR* .342.IRCODE)
OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
60
-------
OMM(2}=0
OMM(3)=0.1*(CM2+CM3)
OMM(4)=0
OMM(8)=0
Module Specific Parameters. Parameter Definitions
QINF Influent flow rate (GPM)
CINF Influent BOD (ppm)
TEMP Temperature of the influent
waste (°C)
SIZE A Counter
VOLEX Volume of excavation for lagoons
CHEMICAL FIXATION
System Variables
GALYR=QINFL*DAYS*HRS*60
CORECT=1
COREX=0
IFF(PCTSOL.GT.IO)
CORECT=0
COREX=1
ENDIFF
QINFS=QINFL*1.79E-4
Performance
CM(1)=0
CH(2}=0
CM(3)=0
CM(4)=0
CFCM(LAND)=COST(LAND,CAPCF
__ _
-------
CM(5)=0
CM(6)=0
CFOM(OPER1KOST(OPER1,OMMCF,MSTAFF*HRSYR* . .IRCODE
CFOM(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR* . ,IRCODE
CFOM(LABORKOST( LABOR,OMMCF,MSTAFF*HRSYR* . .IRCODE
OMM(1)=0
OMM(2)=0
OMM(3)=0
OMM(4)=0
CFOM(CHFX1)=COST(CHFX1,OMMCF,6ALYR*CORECT,IRCODE)
CFOM(CHFX2)=COST(CHFX2.OMMCF,GALYR*COREX,IRCODE)
OMM(8)=CFOM(CHFX1)+CFOM(CHFX2)
Module Specific Parameters. Parameter Definitions
SALYR Gallons/yr of waste Input
QINFL Influent flow rate
PCTSOL Percent solids 1n Influent («wt/wt)
CORECT Counter
COREX Counter
INCINERATOR
'System Variables
LANDAM=55+0.0674*QINFS**1.074
LANDAR=88+0.108*QINFS**1.074
VOLEX=1.222+0.0015*QINFS**1.074
VSLAB=VOLEX
KWA=6.6*QINFS**0.431
HRSYR=HRS*DAYS
GALYR=QINFL*60*HRSYR
62
-------
Performance
CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
CFCM(GRADEXOST(GRADE,CAPCF,LANDAR,IRCODE)
CFCH(EXCV2)=COST(EXCV2,CAPCF,VOLEX1IRCODE)
CM(1)=CFCM(CLR1 )+CFCM(GRADE)+CFCM(EXCV2)
CFCM(SLAB1)=COST(SLAB1.CW>CF,VSLAB,IRCODE}
CM(2)=CFCM(SLAB1)
CFCM(INCIN)=COST(INCIN.CAPCF.QINFS.IRCODE)
CM(3)=CFCM(INCIN)
CM(4)=0.001*CM{3)
CFCM{LAND)-COST(LAND,CAPCF,LAHDAR,IRCODE)
CM{5)=CFCH(LAND)
CM(6}=0
CFOM(OPER1)=COST(OPER1,OMMCF,MSTAFF*HRSYR*0.6 .IRCOOE)
CFOM(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR* .225,IRCODE)
CFOM{LABOR)=COST(LABOR,OHMCF,HSTAFF*HRSYR*0.1 .IRCODE)
OWm=fFOM(OPERl)+CFOM(OPER2)+CFOM(LABOR).
CFOMCPOWER)-COST(POWER,OHMCF,KWH*HRSYR,IRCODE)
OMH(2)=CFOM(POWER)
CFOMCMECH1) =COST(MECH 1 ,OWCF ,HRSYR*0.6, IRCODE}
OMM(3)-CFOM(MECH1)+25245+205.4*LBSHR**0.585
OMM(4)=0
CFOM(INCIN)=COST(INCIN.OMHCF.CALYR,IRCODE)
OMM(8)=CFOM(INCIN)
Module Specific Parameters. Parameter Definitions
QINFS Solids loading rate (Ibs/hr)
QUNFL Liquid Influent rate GPM
' : -' 63
-------
VOLEX Volume of excavation (CY)
VSLAB Volume of concrete slab(CY)
GALYR Gallons of liquid waste per yr
KWH Kilowatts per hour
AIR FLOTATION
System Variables
LANDAM=QINFnSS *2.22E-4
LANDAR=LANDAM+12*SQRT(LANDAM)-H44
WIDTH=SQRT(LANDAM/2. )
LENGTHS. *WIDTH
DEPTH*10.
WALL=1.666*DEPTH*(LENGTH+WIDTH)
BLD=0.
NOBLD=1.
IFF{QINF.GT.500.)
BLD=1.
NOBLD=0.
ENDIFF
KWHS=(0.1616*LANDAM+5.97)
HRSYR=DAYS*HRS
TSS=TSS*0.014
PCTSO=5.8
SLUDG=0.08*QINF
QPOLY=2.05E-4*LANDAM
Performance
CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
CFCM(GRADE)=COST(GRADE,CAPCF,LANDAM,IRCODE)
CM(1)=CFCM(CLR1 )+CFCM(GRADE)
CFCM(SLAB1)=COST
CFCM(WALL1)=COST
CFCM(BUILD)=COST
SLAB1.CAPCF.LANDAR/27..IRCODE)
WALL1.CAPCF,(WALL/27.)*BLD,IRCODE)
BUILO,CAPCF,LANDAR*BLD,IRCODE)*1000.
CM(2)=CFCM(SLAB1)+CFCM(WALL1)CFCM(BUILD)
i—
CFCM(AFLH
CFCM(ARFLT
CFCM(ACOMP
=COST(AFLTT,CAPCF,LANDAM*NOBLD,IRCODE)*1000.
=COST(ARFLT,CAPCF,LANDAM*BLD,IRCODE)*1000.
=COST(ACOMP, CAPCF .BLD.IRCODE)
64
-------
CM(3)=CFCM(AFLTT)+CFCM(ARFLT)+CFCM(ACOMP)
CM(4)=0
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
CM(5)=CFCM(LAND)
CM(6)=0
CFOM(OPER1)=COST(OPER1,OMMCF,MSTAFF*HRSYR* .038,IRCODE)
CFOM(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR* .007,IRCODE)
CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR*0.8 .IRCODE)
OMM(1)=>CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
CFOM(POWERXOST(POWER,OMMCF,KWHS*HRSYR,IRCODE)
OMM(2)=CFOM(POWER)
CFOM(MECH1)=COST(MECH1.OMMCF.16..IRCODE)
CFOM(HELPR)=COST(HELPR,OMMCF,16.,IRCODE)
OMM(3)=CFOM(MECH1)+CFOM(HELPR)+0.05*CM(3)
OMM{4)=0
OMM(8)=0
Module Specific Parameters. Parameter Definitions
QINF Influent flow rate GPH
WIDTH Width of flotation unit (ft)
LENGTH Length of flotation unit (ft)
DEPTH Depth of flotation unit (ft)
WALL Volume of concrete (ft3)
BLD Counter (turns on & off building
for smaller (<500 gpm)units
NOBLD Same as Bldg (set by QINF)
KWHS Kilowatts/hr
TSS Influent total suspended solids(ppm)
PCTSO Percent solIds (% wt/wt)
65
-------
Module Specific Parameters. Parameter Definitions (continued)
SLUDG Sludge wasting rate (GPM)
QPOLY Polymer Inflow rate (GPM)
OIL/WATER SEPARATOR
System Variables
NOSEP=QINF/150.
QINFU=QINF/NODEP
IFF=(TEMP.LE.20.)
EXP1=1301./(998.333+8.1855*(TEMP-20)-1.053E-3*(TEMP-20.)**2.)-3.30233
NUMI=10.**EXP1
VISCOS-NUMl/100.
ELSE
EXP2=(13272.*(20.-TEMP)-1.053E-3*(TEMP-20.)**2.)/TEMP+105.
NUM2=10.**EXP2
VISCOS-NUM2/100.
ENDIFF
VRISE=(1.29E-3*(1.-OILSG)*DROPUM*DROPUM)/VISCOS
TRISE=0.25/VRISE
VPLATE=QINFU*TRISE*0.1337
LANDAM=VPLATE*0.8*NOSEP
LANDAR=(LANDAM+12.*SQRT(LANDAM)-(-144.)
PLTSTK*(VPLATE/1.9)*NOSEP
WEIGHT=VPLATE*34.*NOSEP
HRSYR=DAYS*HRS
IFF(MODE.EQ.2)
BLD=1.
NOBLD-0.
ELSE
BLD=0.
NOBLD^l.
ENDIFF
SLUDGE=OIL*QINF*l.llE-6
OIL=15.
QDM USER DEFINED AS GPM DEMULSIFIER REQUIRED. OTHERWISE;
IF(QDM.LT.O),QDM=0
Performance
CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR.IRCODE)
CM(1)=CFCH(CLR1 )+CFCM(GRAD£l
66
-------
CFCM(SLAB2)=COST(SLAB2.CAPCF.LANDAR/27..IRCODE)
CFCM(BUILO)=COST(8UILO,CAPCF,LANDAR*BLD,IRCODE)*1000.
CM(2)=CFCM(SLAB2)+CFCM(BUILD)
CFCM(OILWA)=COST(OILWA,CAPCF,WEIGHT,IRCODE)
CFCM(PLATE)=COST(PLATE,CAPCF,PLTSTK,IRCODE)
CM(3)=CFCM(OILWA)+CFCM(PLATE)
CM(4)=0
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCOOE)
CM{5)=CFCM(LAND)
CM(6)=0
CFOM OPER1)=COST(OPER1,OMMCF,MSTAFF*HRSYR*0.038.IRCODE)
CFOH OPER2)=COST(OPER2.OMMCF,MSTAFF*HRSYR*0.007,1RCODE)
CFOM LABORKOST(LABOR,OMMCF,MSTAFF*HRSYR*0.8 .IRCODE)
OMM(1)=CFOH(OPER1)+CFOM(OPER2)+CFOM(LABOR)
OMM(2)=0
CFOM(MECm)=COST(MECH1 .OMMCF.16.,IRCODE)
CFOM(HELPR)=COST(HELPR,OMMCF,16.,IRCODE)
OMM(3)=CFOH(MECH1)+CFOM(HELPR)+0.05*CFCM(PLATE)
OMM(4)=0
OMM(8)=0.
Module Specific Parameters. Parameter Definitions
NOSEP Number of separators
QINFU Flow to an Individual unit (GPM)
QINF Overall Influent flow rate
TEMP Waste temperature (°C)
EXPI
NUMI
VISCOS factors (see handbot
EXP 2 chemicals)
MUM 2
67
Calculates Viscosity correction
factors (see handbook of
-------
Module Specific Parameters. Parameter Definltions(continued)
VRISE
TRISE
VPLATE
PLTSTK
WEIGHT
BID
NOBLD
MODE
MULTI-MEDIA FILTRATION
System Variables
Oil droplet rise rate
Oil droplet rise rate in a plate
Plate volume
Height of plates (total)
Weight of plates -(lbs)
Counters to include/exclude
Building options (set by MODE)
MODE = 1 excludes building
MODE = 2 includes building
SURFAR=QINF/5.
SQSUF=SQRT(SURFAR)
IFF(QINF.LT.5000.)
LANDAR=0.79*(SURFHR+SQSUF+36.)
FOUNDED.5*SURFAR
VOLM1.14*SURFAR
VOLEX=0.
WALL=0.
TROAG=0.
ENDIFF
INFfQINF.GE.5000.}
LANDAR-SURFAR+27.33*SQSUF+186.78
FOUND=SLJRFAR+3.33*SQSUF+2.78
WALL'S.5*(FOUND-SURFAR)
VOLEX=LANDAR/9.
VOL=0.
TROA6=INT(SQSUF/6+l)*SQSUF
ENDIFF
HRSYR=HRS*DAYS
VOLMED=QINF/540
QWA=0.3*QINF
TSS=0.4*TSS
PCTSO=0.4*PCTSO
SLUDG=QWA
68
-------
Performance
CFCM(CLR2 XOST(CLR2 ,CAPCF,LANDAR,IRCODE)
CFCM(GRADEXOST(GRADEtCAPCF,SURFAR,IRCODE}
CFCM(EXCV2)=COST(EXCV2,CAPCF,VOLEX,IRCODE)
CM(1)=CFCM(CLR2 )+CFCM(GRADE)+CFCM(EXCV2)
CFCM(SLAB2)=COST(SLAB2,CAPCF,FOUND,IRCODE)
CFCM(WALL1)=COST(WALL1,CAPCF,WALL,IRCODE)
CFCM(VAULT)=COST(VAULT,CAPCF,1.0 .IRCOOE)
CM(2XFCM(SLAB2)+CFCM(WALL1)+CFCM(VAULT)
CFCM(PIPElXOST(PIPEl,CAPCF,2.5*SQSUFfIRCODEl
CFCM(PRTNK)=COSTCPRTNK,CAPCF,VOL,IRCODEl
CFCM(PROUG)=COST{TROUG,CAPCF,TROAG,IRCODE)
CM(3)=CFCM(PIPE1)+CFCM(PRTNK)+CFCM(TROUG)
CM(4)=0; Not applicable
CFCM(LAND)=COST{LAND,CAPCF,LANDAR.IRCODE)
CM(5)=CFCM(LAND)
CFCM(COAL)=COST(COAL,CAPCF,VOLMED*6.IRCODE)
CFCM(SAND)=COST(SAND,CAPCF,VOLMED*4,IRCODE)
CM(6)=CFCM(COAL)+CFCM(SAND)
CFOM(OPER1)*COST(OPER1.OMMCF,MSTAFF*HRSYR*0.010,IRCODE
CFOM(OPER2)=COST(OPER2.OMMCF,MSTAFF*HRSYR*0,038,IRCODE
CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR*0.488,IRCODE;
OMH(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
OMM(2}=0; (GRAVITY FEED)
CFOM(MECH1)=COST(MECH1.OHMCF,40,IRCODE)
CFOM(HELPR)=COST(HELPR,OMMCF,80,IRCODEi
OMM(3)=CFOM(MECH1)+CFOMCHELPR)+0,1*CM(3)+0,5*CM(6)
OMM(4)=0; Not applicable
OMM(8)-0; Not applicable
69
-------
Module Specific Parameters, Parameter Definitions
QINF Influent flow rate (6PM)
VOLEX Volume of excavation (CY)
WALL Volume of walls (CY)
TROAG Length of backwash
troughs equipped w/ag1tators(LF)
FOUND Volume of foundation (CY)
VOLMED Volume of media (CY)(A common factor multiplied by
6 for coal,and 4 for sand; see cost category^CM6)
DISTILLATION
System Variables
VAPQEF=QINF*SEPVAP*VAPDEN*2.228E-5
LIQQEF=QINF*(100-SEPVAP)*LIQDEN*2.228E-5
DENRA"LIQDEN/VAPDEN
MFLOR=LIQQEF/VAPQEF
SURFAR=1,945E-3.*QINF*SQRT(DENRA)/((MFLOR-H)*MFLOR**-0.067*DENR '
A**0.0335-1))
LANDAM=1.91*SURFAR
LANDAR=4*LANDAM
VEXC=0,15*SURFAR
SQSUF=SQRT(SURFAR)
NSTR=35.*SURFAR+11.5*SQSUF+34.2
WCOL=292.*SURFAR
WTRAY=35.*SURFAR
WLAPL=24.4*SURFARt203,*SQSUF+600.
KWH=802.88*QINF
HRSYR=HRS*DAYS
QANF=QINF
QSTM=1.08E3*QINF
SLUD6=QINF*(100-SEPVAP)*.01
QINF=QINF*SEPVAP*.01
Performance
CFCM(CLR1
CFCM(GRADE
CFCM(EXCV1
>COST(CLR1 .CAPCF.LANDAR.IRCODE)
'COST(GRADE,CAPCF,LANDAM.IRCODE)
=COST(EXCV1.CAPCF.VEXC,IRCODE)
CH(1)=CFCM(CLR1 )+CFCM(GRADE)+CFCM(EXCVl)
L, l.
P Y
-------
CFCM(SLAB2)=COST(SLAB2,CAPCF,?COr,IRCODE)
CFCN(STRSTKOST(STRST,CAPCF,WSTR,IRCODE)
CM(2)=CFCM(SLAB2)+CFCM(STRST)
CFCM(SSPL1)=COST(SSPL1,CAPCF,WCOL,IRCODE)
CFCM(CSPLT)°COST(CSPLT.CAPCF.WTRAYJ,IRCODE)
CFCM(CONDE)=COST(CONDE,CAPCFfQANF(IRCODE)
CFCM{REB01)=COST(REB01,CAPCF,QANF**0.67,IRCODE}
CFCM(STRST)=COST{STRST,CAPCF,WLAPL,IRCODE)
CM(3)=CFCM(SSPL1)+CFCM(CSPLT)+CFCM(CONDE}+CFCH(REB01)+CFCM(STRST)
CM(4)=0.05*CM(3)
CFCM(LAND)=COST(LAND.CAPCF,LANDAR.IRCODE)
CM(5)=CFCM(LAND)
CM(6)=0; Not applicable
CFOM(OPER1)*COST(OPER1,OMMCF,HSTAFF*HRSYR*0.30 ,IRCODE)
CFOM(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR*0.15 .IRCOOE)
CFOM(LABOR)=COST(LABOR,OHMCF,HSTAFF*HRSYR*0.40 .IRCODE)
OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
CFOM(POWER)=COST(POWER,OMNCF,KWH*HRSYR,IRCODE)
OMM(2)=CFOM(POWER)-
CFOM(MECH1)=COST(HECH1,OMMCF,0.01*QANF*HRSYR,IRCOOE)
CFOM(MECH2)=COST(MECH2,OMMCF,0.009*QANF*HRSYR,IRCODE)
CFOM(HELPR)=COST(HELPR,OMMCF,0.002*QANF*HRSYR,IRCODE)
OMM(3)=CFOM(MECH1)+CFOM{MECH2)+CFOM(HELPR)+0.005*CMC3)
OMM(4)=0; Not applicable
OMM(8)-0: not applicable
Module Specific Parameters, Parameter Definitions
LIQDEN Liquid phase density Ob/ft3)
VAPDEN Vapor Phase density (lb/ft3)
LIQQEF Liquid phase discharge rate (Ib/sec)
VAPQEF Vapor phase discharge rate (Ib/sec)
' l'~ " 71
-------
DENRA
MFLOR
VEXC
WSTR
Density ratio = liqden/vapden
Liqqef/vapqef • 1/seprat
Volume of excavation (CY)
Weight of suppt. steel (Ibs)
Module Specific Parameters. Parameter Definitions
WOOL
WTRAY
WLAPL
KUH
SEPVAP
QSTM
QINF
SLUDG
EVAPORATOR
System Variables
LANDAM=0.46*QINF
LANDAR=4.0*LANDAM
SURFAR=LANDAR/1.91
VEXC-0.15*SURFAR
VCON=0.17*SURFAR
SQSUF=SQRT(SURFAR).
WSTR=35.*SURFAR+11,5*SQSUF+34;
WLAPL=24,4*SURFAR+203*SQSUFt600
KWH=802.88*QINF
HRSYR=HRS*DAYS
QANF=QINF
QSTM=40*QINF
SLUDG=QINF*(100-SEPVAPl*0,01
QINF=QINF*SE"PVAP*0,01
Weight of dlst. column (Ibs)
Weight of packing trays (Ibs)
Weight of ladders and platforms '(Ibs)
Kilowatts per hour
Percent of total discharge1 flow (6PM)
represented by the condensate
(expressed as c. %)
Steam demand, Ibs/hr
Influent flow rate (GPM)
Sludge (heavy fraction)
wasting rate
72
-------
Performance
CFCM{CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
CFCM(GRADE)=COST GRADE,CAPCF,LANDAM,IRCODE)
CFCM(EXCV1)=COST(EXCV1,CAPCF,YEXC,IRCODE}
CM(1)=CFCM(CLR1 )+CFCM(GRADE)+CFCM(EXCVl)
CFCM(SLAB2KOST(SLAB2,CAPCF,VCON,IRCODE)
CFCM(STRST)=COST(STRST,CAPCF,HSTR,IRCODE)
CM(2)=CFCM(SLAB2}+CFCM(STRST)
CFCM(EVAP)=COST(EVAP ,CAPCF,QANF*1000.IRCODE)
CFCM(CONDE)=COST(CONDE,CAPCF,QANF,IRCODE)
CFCM(STRST)=COST(STRST,CAPCF,WLAPL,IRCODE)
CMC3l=CFCMCEVAPl+CFCMtCONDEl*CFCfttSTRSTi
CMC4)=0,05*CMC3}
CM(5)=CFCM(LAND)
CM(6)=0; Not applicable
CFOM
CFOM
CFOM
OPER1
OPER2
LABOR
=COST
"COST
=COST
OPER1,OMMCF,MSTAFF*HRSYR*0.30 .IRCOOE)
OPER2,OHMCF,MSTAFF*HRSYR*0.15 ,IRCODE}
LABOR,OMMCF,MSTAFF*HRSYR*0.40 ,IRCODE)
OMM(1)=CFOM{OPER1)+CFOM(OPER2)+CFOM(LABOR)
CFOM(POWER)=COST(POWER,OMMCF,KWH*HRSYR,IRCODE)
OMM(2)=CFOM(POWER)
CFOM
CFOM
CFOM
MECHI)=COST(MECH1,OMMCF,0.01*HRSYR,IRCODE
MECH2)=COST(MECH2,OMMCF,.009*HRSYR,IRCODE
HELPR)=COST(HELPR,OMMCF,.002*HRSYR,IRCODE
OMM(3)=CFOM(MECH1)+CFOM(MECH2)+CFOM(HELPR)+0.005*CM(3)
OMM(4)=0; Not applicable
OMM(8)=0 Not applicable
Module Specific Parameters, Parameter Definitions
QINF Influent flow rate (GPM)
: VEXC Volume of excavation (CY)
73
-------
VCON Volume of concrete (CY)
WSTR Weight of support steel (Ibs)
WLAPL Weight of ladders and platforms (Ibs)
KWH Kilowatts/hour
SEPVAP Percent of total discharge flow (GPM)
represented by the condensate
(expressed as a %)
QSTM Steam demand (Ibs/hr)
SLUDG Sludge (concentrate) wasting rate
DECANTER
System Variables
IF(SL.GT.O.), GO TO 1
IF(011SG.GT.O.),SL=OILSG
IF(VISCON.LE.O.),GOTO 2
IF(SH.LE.O.),GOTO 2
IF(SL.LE.O.),GO TO 2
DETENT=6.0*VISCON/(SH-SL)
IF(DETENT.LE.O.),DETENT=20.
VOL«OETENT*QINF*0.134
LEN*1.084*VOL**0.333
LANDAM=0.922*VOL**0.667
LANDAR=(SQRT{LANDAM}+6.0}**2.0
HRSYR=HRS*DAYS
WTNK=150.*QINF**0.736
PIPDIA=10.**(ALOGID(QINF)*0.4)
MECHA=4.71E-6*QINF**0.831
MECHB=3.76E-6*QINF**0.831
HELP=9.42E-7+QINF**0.831
QSIDE=QINF*OIL*1.0E-4
QINF=QINF-QSIOE
Performance
CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE) c---
CFCM(GRADE)=COST(GRAOE.CAPCF,LANDAR,IRCODE) ,~.,-\ .'-
CM(1)=CFCM(CLR1 )+CFCM(GRADE) :.":'.::
—_ . _ _. :
-------
CFCM(SLAB2)=COST(SLAB2,CAPCF,LANDAR/27,IRCODE)
CM(2)*CFCM{SLAB2)
CFCM(CSPLT)=COST{CSPLT,CAPCF,tfTNK,IRCODE)
CFCM{PIPE6)=COST(PIPE6,CAPCF,PIPDIA*3*LEN,IRCODF)
CM(3)=CFCH(CSPLT)+CFCM{PIPE6)
CM(4)=0: Not applicable
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
CM(5)=CFCM(LAND)
CM(6)=0; Not applicable
CFOM{OPER1
CFOM(OPER2
CFOM(LABOR
=COST(OPER1,OMMCF,MSTAFF*HRSYR*0.001.IRCODE)
»COST{OPER2.OHMCF,MSTAFf*HRSYR*0.001.IRCODE)
'COST{LABOR,OWCF,MSTAFF*HRSYR*0.018,IRCODE)
OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
OMM{2)»0: Not applicable
CFOM{ HECH1 )=CO?T( MECH1 .OMMC.F ,HECHA*HRSYR, IRCODE)
CFOM(HECH2)TCOST(MECH2.0MMCF,HECHB*HRSYR,IRCODE)
CFOM{HELPR)=COST{HELPR,OHMCF,HELPR*HRSYR,IRCODE)
OMM(3)=CFOH(MECK1)+CFOM(HECH2)+CFOH(HELPR)
OMM(4)=0; Not applicable
OMM(8)=0; Not applicable
Module Specific Parameters. Parameter Definitions
• VISCON Viscosity of the continuous phase
(cent1 poise)
SH Specific gravity of the heavy phase
SL Specific gravity of the light phase
DETENT Detention time in unit
QINF Influent flow (liquid)(GPM)
VOL Volume of unit (ft3)
LEN Length (ft)
' "~ " — - - -r_n.T_. — - •- — *
- : : i 75
-------
WTNK Weight of the decanter tank (Ibs)
PIPDIA Diameter of piping (Inches)
MECHA Coefficient for MECH 1
MECHB Coefficient for MECH 2
HELP Coefficient for HELPR
Module Specif1c~Parameters. Parameter'uetinltions'
OILSG Specific gravity of oil (lighter phase)
OIL Concentration of oil (lighter phase (ppm)
QSIDE Wasting rate of the -lighter fraction to
an accumulator (6PM)
"CHEMICAL'STORAGE: GAS
System Variables
DUR=30./DELMO
VOI.=DUR*QGAS*60.*HRS
IFF(VOL.LT.2000.)
LANDAR=VOL*0.02
CYCLNO=RNDUP(VOL/150,1
ENDIFF
IFF(VOL.GE.2000.}
LANDAR»VOL*0.04
CYLNO=RNDUP(VOL/2000.L
BOT=0.
CYL=1.
ENDIFF
HRSYR=HRS*DAYS
Performance
CFCM(CLR1 )=COST(CLR1 .CAPCF.LANDAR.IRCODE)
CFCM(GRADEKOST(GMDE,CAPCF.LANDAR,IRCODE)
CM(1)=CFCM(CLR1 )+CFCM(GRADE)
CFCM(SLAB2)=COST(SLAB2.CAPCF.LANDAR/27,IRCODE)
CFCM( BUI LDKOST (BUI ID .CAPCF .LANDAR, I RCODE)
: -" '. 76
-------
CM(2)=CFCM{SLAB2)+CFCM(BUILD)
CFCM(VAPOR)=COST(VAPOR,CAPCF,1,IRCOPE)
CFCM(CSASTKOST(CSAST,CAPCF,CYLNO,IRCODE)
CM(3)=CFCM(VAPOR)+CFCM(CSAST)
CM(4)=0; Not applicable
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
CM(5)=CFCM(LAND)
CM(6)«0; Not applicable
CFOM(OPER1
CFOM(OPER2
CFOM(LABOR
=COST(OPER1,OMMCF,MSTAFF*HRSYR*0.001.IRCODE)
=COST(OPER2,OMMCF,MSTAFF*HRSYR*0.001,IRCODE)
=COST(LABOR,OMMCF,MSTAFF*HRSYR*0.009,IRCODE)
OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
OMM(2)=0; Not applicable
OMM(3)=0.01*CM(3)
CFOM(CLBOT)=COST(CLBOT.OMMCF,VOL*BOT*DAYS/DUR.IRCODE)
CFOM(CLCYL)=COST(CLCYL,OMMCF,VOL*CYL*DAYS/DUR,IRCODE)
OMM(4)=CFOM(CLBOT)+CFOM(CLCYL)
OMM(8)=0; Not applicable
Module Specific Parameters. Parameter Definitions
DELMO Deliveries per month
DUR Duration between deliveries (days)
VOL Volume of delivery (and of
storage capacity)
CYLNO Number of containers
BOT Equals 1 if bottles are used
CYL Equals 1 1f cylinders are used
QGAS Gas output (demand) (Ibs/min)
77
-------
CHEMICAL STORAGE: LIQUID
System Variables
DUR=30/DELMO
VOL=DUR*QLIQ*60*HRS
LANDAM=VOL/10
LANDAR=LANDAM+12*SQRT(LANDAM}+144
VEXC=LANDAM/13.5
VRING*LANDAM/16.2
MECHA=9.79E-3*QLIQ**0.831
MECHB=7.83E-3*QLIQ**0.831
HELP=1.96E-3*QLIQ**0.831
IBTNK=1
WA=AL=FE=CA=FUELO=GASO=AM=PH=DM=0
IF(MODL.EG.1),WA=1
IF(MODL.EQ.2),AL=1
IF(MODL.EQ.3),FE=1
IF(MODL.EQ.4),CA=1
IF(MODL.EQ.5),Fi;ELO=1
IF(MODL.EQ.6),GASO=1
IF(MODL.EQ.7
IF(MODL.EQ.8
IF
IF
MODE.EQ.9
WA.EQ.
,AM=1
,PH=1
,TANK«=1
IF WA.EQ. ,FIBTNK=0
IF WA.EQ. ,AMTNK=0
IF AM.EQ. ,TANK=0
IF AM.EQ. .FIBTNK-0
IF AM.EQ. ,AMTNK=1
IF AM.EQ. ,TANK«=0
IF AM.EQ. ,FIBTNK=0
IF AM.EQ. ,AMTNK=1
HRSYR=DAYS*HRS
CONSUM=VOL*DAYS/DUR
IF(MODL.EQ.O),TANK=1
IF(MODL.EQ.O),FIBTNK=0
Performance "
CFCM(CLR2 )=COST
CFCM( GRADE XOST
CFCM(EXCV1)=COST
CLR2 .CAPCF.LAWDAR.IBCODE)
GRADE,CAPCF.LANDAM.IRCODE)
EXCV1,CAPCF,VEXC,IRCODE)
CM(1)=CFCM(CLR2 )+CFCM(GRADE)+CFCM(EXCVl)
CFCM(WALL1)»COST(WALL1,CAPCF,VRING,IRCODE)
CM(2)=CFCM(WALL1)
78
-------
CFCM(SSTSH)=COST(SSTSH,CAPCF,VOL*TANK,IRCODE)
CFCM(PRTNK)=COST(PRTNK,CAPCF,VOL*AMTNK,IRCODE)
CFCM(FTANK)=COST(FTANK,CAPCF,VOL*FIBTNK,IRCODE)
CM(3)=CFCM(SSTSH)+CFCM(PRTNK)+CFCM(FTANK)
CM(4)-0; Not applicable
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
CM(5)=CFCM(LAND)
CM(6)=0; Not applicable
CFOM
CFOM
CFOM
OPER1
OPER2
LABOR
=COST(OPER1,OMMCF,MSTAFF*HRSYR*0.001.IRCODE]
'COST(OPER2,OMMCF,MSTAFF*HRSYR*0.001,IRCODE)
'COST(LABOR,OMMCF,MSTAFF*HRSYR*0.018,IRCODE)
OMM( 1 HFOM(OPER1 )+CFOM(OPER2)+CFOM(LABOR)
OMM(2)=0; Not applicable
CFOM
CFOM
CFOM
MECH1)=COST(MECH1,OMHCF,MECHA*HRSYR,IRCODE)
MECH2)=COST(MECH2,OMMCF,MECHB*HRSYR,IRCODE)
HELPR)=COST(HELPR,OMMCF,HELP*HRSYR,IRCODE)
OMM(3)=CFOM(MECH1)+CFOM(MECH2)+CFOM(HELPR)
CFOM(WATER)=COST
CFOM(ALSU3)=COST
CFOM(FECL3)=COST
CFOM(COACL)=COST
WATE R.OMMCF,WA*CONSUM,IRCODE)
ALSU3,OMMCF,AL*CONSUM,IRCODE)
FECL3,OMMCF,FE*CONSUH,IRCODE)
COACL, OMMCF ,CA*CONSUM, I RCODE )'
CFOM(FUEL)=COST(FUEL ,OHMCF,FUELO*CONSUM,IRCODE)
CFOM(GAS HOST(GAS ,OMMCF,GASO*CONSUM, IRCODE)
CFOM(AMMON)=COST(AMMON,OMMCF,AM*CONSUM,IRCODE)
CFOM(PHOS)=COST(PHOS ,OMMCF,PH*CONSUM, IRCODE)
CFOM(DEMUL)=COST(DEMUL,OMMCF,DM*CONSUM,IRCODE)
OMM(4)+CFOM(WATER)+CFOM(ALSU3)+CFOM(FECL3)+CFOM(COACL)+CFOM(FUEL)+
CFOMfaASHCFOM(AMMON)+CFOM(PHOS)-«-CFOMtDEMUL)
; Not applicable
CHEMICAL STORAGE : SOLIDS "
System Variables
AL=CAO=CAHY=DOLY=0
IF(MODS.EQ.l) AL=1 ,CONC=14.29,DENS=2.71
IF(MODS.EQ.2)CAO=1 ,CONC= 1.05,DENS=3.30
IF(MODS.EQ.3)CAHY=1,CONC= 1 .37,DENS=2.24
IF(MODS.EQ.4)POLY=1,CONC= 1.0 ,DENS=2.00
79
-------
IF(PERCENT.LE.0)PERCENT=20
AEFBIN*AEFSLA*5.0*PERCENT
DUR=(30/DELMO)*0.66*HRS
VOLBIN=DUR*QEFBIN*CONC*(1/DENS)*0.12
VOLSLA»QEFSLA*1.0
LANDAM=((VOLBIN+VOLSLA)*0.134)**0.667
LANDAR=1.5XLANDAR
VCON=LANDAM/27
WSTR=17.5*LANDAMf5.75*SQRT(LANDAM)+17.
PIPLEN=SQRI(QEFSLA)
HRSYR=HRS*DAYS
MECHA=6.0E-4*QEFSLA**0.831
MECHB*5.OE-4*QEFSLA**0.831
HELP =1.0E-4*QEFSLA**0.831
Performance
CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
CFCM(GRADE)-COST(GRADE,CAPCF,LANDAN,IRCODE)
CM(1)=CFCM(CLR1 )+CFCM(GRADE)
CFCM(SLAB2KOST(SLAB2,CAPCF,VCON,IRCODE)
CFCM(STRST)*COST(STRST,CAPCF,WSTR,IRCODE)
CM(2)=CFCM(SLAB2)+CFCM(STRST)
CFCM(PIPE5)=COST(PIPE5,CAPCF,PIPLEN,IRCODE)
CFCM(SSTSH)=COST(SSTSH,CAPCF,VOLBIN,IRCODE)
CFCM(SLAKEO+COST(SLAKE,CAPCF,QEFBIN,IRCODE)
CFCM(VIBFD)=COST(VIBFD.CAPCF,QEFBIN/2000,IRCODE)
CM(3)-CFCM(PIPES)+CFCM(SSTSH)+CFCH(SLAKE)-i-CFCM(VIBFD)
CW(4)=0; Not applicable
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
CM(5)=CFCM(LAND)
CM(6)=0; Not applicable
CFOM(OPER1)"COST
CFOM(OPER2)=COST
CFOM(LABOR)=COST
OPER1,OMMCF,MSTAFF*HRSYR*0.001.IRCODE)
OPER2.OMMCF,MSTAFF*HRSYR*0.001,IRCODE)
LABOR.OMMCF^TAFF*HRSYR*0.018,IRCODE)
OMM(1)=CFOM(OPER1)+CFOM{OPER2)+CFOM(LABOR)
OMN(2)=0; Not applicable
80
-------
CFOM{MECH1)*COST(MECH1,OMMCF,MECHA*HRSYR,IRCODE)
CFOM(MECH2)-COST(HECH2,OMMCF,MECHB*HRSYR,IRCODE)
CFOM(HELPR)=COST (HELPR.OMMCF,HELP*HRSYR,IRCODE)
OMM(3)=CFOM(HECH1)+CFOM(MECH2)+CFOM(HELPR)
CFOM(ALSU2)=COST(ALSU2,OMHCF,QEFBIN*AL*HRSYR,IRCOOE)
CFOM(CA01 KOST(CA01 ,OMMCF,QEFBIN*CAO*HRSYR,IRCODE)
CFOM(CAHY1)=COST(CAHY1,OMMCF,QEFBIN*CAHY*HRSYR,IRCOOE}
CFOM(POLYM)=COST(POLYM,OMMCF,QEFBIN*POLY*HRSYR,IRCODE)
OHM(4)=CFOM(ALSU2)+CFOH(CA01 )+CFOM(CAHYl)+CFOM(POLYM)
OMH(8)=0; Not applicable
SLUDGE EQUALIZATION
System Variables
NOTNKS=RNDUM(IMPT 155.)
LENGTH=AMAX1(8.0,(INPT/NOTNKS)*.OA47)
LANDAR=LENGTH*12.
HRSYR=HRS*DAYS
KWH=37.29*NOTNKS
,Performance
CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
CFCMCGRADEJ^COSTtGRADE.CAPCF.LANOAR.IRCOOE)
CM{1)=(CFCM(CLR1 )+CFCM(GRADE))*NOTNKS
CFCM(SLAB1)=COST(SLAB1,CAPCF,LENGTH*0.3,IRCOOE)
CFCM(WALL5)=COST(WALL5,CAPCF,2.8*0.35*LENGTH.IRCODE)
CFCM(COVER)=COST(COVER,CAPCF,300,IRCODE)
CM(2)=CFCM(SLAB1)=CFCM(HALL5)+CFCM(COVER)*1000)*NOTNKS
CFCM(AER50)=COST(AER50,CAPCF,NOTHKS,IRCODE)
CM(3)=CFCM(AER50)
CM(4)=0; Not applicable
CFCM(LAND)=COST(LAND.CAPCF,LANDAR*NOTNKS,IRCODE)
CM(5)=CFCM(LAND)
81
-------
CM(6)-0; Not applicable
CFOM(OPER1)=COST(OPER1,0!WCF,MSTAFF*HRSYR*0.125,IRCODE
CFOM(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR*0.007,IRCODE
CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR*0.900,IRCODE
OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
CFOM(POWER)=COST(POWER,OMMCF,KWH*HRSYR,IRCODE)
OMM(2)=CFOM(POWER)
CFOM(SUPER)=COST(SUPER,OMMCF,16,IRCODE)
CFOM(MECH1)=COST(MECH,OMMCF,32,IRCODE)
CFOM(HELPR)=COST(HELPR,OMMCF,40,IRCODE)
OMM(3)=CFOM(SUPER)+CFOM(MECH1)+CFOM(HELPR)
OMM(4)=0; Not applicable
OMM(8)=0; Not applicable
Module Specific Parameters. Parameters Definitions
SLUDG Input/output flow for sludge (GPM)
NOTNKS Number of tanks
LENGTH Basin length (ft)
KWH Kllowatts/hr
INDT Sludge flow Input (GPM)
ENCAPSULATION
System Variables
HRSYR=HRS*DAYS
TONSYR=QINFS*HRSYR/2000.
LNADAR=25.0*TONSYR
WORKER=1.60E-3*TONSYR
KWH=2.06E-2*TONSYR
CHEM»0.647*TONSYR
IFF(MODE.EQ.l.)
MODE1=1.
MOOE2=0.
ENDIFF
- : ' - 82
-------
IFF(MODE.EQ.2.)
MODE1=0.
MODE2=1.
ENDIFF
QINFS=1.647*QINES
Performance
CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,IRCODE)
CH(1)=(CFCM(CLR1 )+CFCM(GRADE))*MOD£1
CFCM(SLAB2)=COST{SLAB2,CAPCF,LANDAR/27,IRCODE)
CFCM(BUILD)=COST{BUILD,CAPCF,LANDAR,IRCODE)
CM(2)=(CFCM(SLAB2)+CFCM{BUILD))*MODE1
CFCM(ENCAP)=COST(ENCAP,CAPCF,TONSYR,IRCODE)
CM(3)=CFCMtENCAP)*MODEl
CM(4)=0.05*CM(3)
CFCM(LAND)=COST(LAND.CAPCF.LANDAR,IRCODE}
CM(5)=CFCM(LAND)*MODE1.
CM(6)=0; Not applicable
CFOM(OPER1)=COST(OPER1.OMMCF,WORKER*HRSYR,IRCODE)
OMM(1)=CFOM(OPER1)*MODE1
CFOH(POWER)«COST(POWER,OMMCF,KWH*HRSYR,IRCODE)
OHM(2)=CFOM(POWER)*MODE1
Om(3)=0.01*CM(3)*MODEl
CFOM(CAPCMKOST(CAPCM,OMMCF,CHEM, IRCODE)
OMM(4)=CFOH(CAPCFM)*MODE1
CFOM(ENCAP)»COST(ENCAP,OMMCF,TONSYR,IRCODE)
OHM(8)=CFOM{ENCAP)*MODE2
83
-------
Module Specific Parameters. Parameter Definitions
QINFS Solids loading rate (Ibs/hr)
TONSYR Tons per year input
WORKER Coefficient for OPER1
KWH Kilowatts/hr
CHEN Chemical demands (tons)
MODE Mode=l -^purchased .plant
Mode=2 ->-serv1 ce fee
DEAERATOR
System Variables
NODEA=RNDUP(QINF/80.)
INFLOW=QrNF/NODEA
LANDAM=(99.85+18.89*INFLOW)**0.54*NODEA
LANDAR-(SQRT(LANDAM)+6)**2
HRSYR=HRS*DAYS
OXY=0.01*OXY
QSTM*1.1347+0.11184*INFLOW)**1.25*NODEA/1000.
.CFCH(CLR1 )=COST(CLR1 .CAPCF.LANDAR,IRCODE)
CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,IRCODE)
CM(1)=CFCM(CLR1 )+CFCM(6RADE)
CFCM(SLAB2}=COST(SLAB2,CAPCF.LANDAR/27,IRCODE)
CFCM(BUILD)=COST(BUILD,CAPCF,LANDAM,IRCODE)
CM(2)=CFCM(SLAB2)+CFCM(BUILD)
CFCM(DEARA)=COST(DEARA,CAPCF,INFLOW,IRCODE)
CM(3)=CFCM(DEARA)*NODEA
CM(4)=0; Not applicable
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
CM(5)=CFCM(LAND)
CM(6)=0; Not applicable
- - - 84
-------
CFOM(OPER1)=COST(OPEH1 ,CMMCF,MSTAFF*HRSYR*0.001 .IRCODE
CFOM(OPER2KOST(OPER2,OMMCF,MSTAFF*HRSYR*0. 001 .IRCODE)
CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR*0.018, IRCODE)
OMM{1)=CFOM(OPER1)+CFOM(OPER2)+CFOM( LABOR)
; Not applicable
OMM(4)=0; Not applicable
OMM(8)=0; Not applicable
Module Specific Parameters, Parameters Definitions
QINF Influent liquid flow (GPM)
NOOEA Number of de aerators required
INFLOW Flow rate to a single aerator(GPM)
OXY oxygen concentration tppm)
QSTM Steam demand Ibs/hr
EVAPORATION POND
System Variables
VOLW=BATLH*Q IN F*60 . *HRS
SURFAR»1 ,6*VOLN/(EVAP-RAIN)
LANDAR=(SQRT(SURFAR)+92)**9.
VEXC=(RAIN/12+VOLW/(&.$**SURFAR))*SURFAR
HRSYR=DAYS*HRS
QINF»0
Performance
CFCM(CLR2 )=COST(CLR2 .CAPCF.LANDAR, IRCODE)
CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,1RCOOE)
CFCM(EXCV3)=COST(EXCV3,CAPCF,VEXC, IRCODE)
CM(1)=CFCH(CLR2 )+CFCH(GRADE)+CFCM(EXCV3)
CM(2)=0; Not applicable i.
r :' '= 85 ::
-------
CM(3)=0; Not applicable
CM(4)=0; Not applicable
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
CM(5)=CFCM(LAND)
CFCM(LINER)=COST(LINER,CAPCF,1.05*LANDAR,IRCODE)
CFCM(GWMON)=COST(GWMON,CAPCF,4,IRCODE)
CM(6KFCM(LINER)+CFCM(GWMON)
CFOM(OPER1)=COST
CFOM(OPER2)=COST
CFOMCLABOR)=COST
[OPER1.OMMCF,MSTAFF*HRSYR*0.125,IRCODE)
OPER2,OMMCF,MSTAFF*HRSYR*0.065,IRCODE)
LABOR,OMMCF,MSTAFF*HRSYR*0.342,IRCIDE)
OMM( 1 )=CFOM(OPER1 )+CFOM(OPER2)+CFOMCLABOR)
OMM(2)=0; Not aooli cable .
CFOM(LABOR)=COST(LABOR,OMMCF,30,IRCODE)
OMM(3)»CFOM(LABOR)
OMM(4)=0; Not applicable
OMM(8)=0; Not applicable
Module Specific Parameters. Parameters Definitions
QINF Influent flow (liquid) (GPM)
VOLW Volume of water to be retained (gal)
EVAP Evaporation rate (inches per year)
RAIN Rainfall (Inches per year)
BATCH Duration of retention of a batch (days)
VEXC Volume of excavation (CY)
"STEAM GENERATOR
System Variables
NOBOIL=RNDUP)QSTM/17250.)
OUTPUT=QSTM/NOBOI L _ „
': 86
-------
LANDAM=4.33E-3*QSTM
OIL=8.61E-3*QSTM
GAS=1.103*QSTM
HZO=0.1719*QSTH
HP=2.833E-3*QSTM
KWH=HP*0.7457
HRSVR=HRS*DAYS
LANDAR=LANDAM+12.*SQRT{LANDAM)*144.
IFF(MODE.EQ.l.)
NAT=0.
F=l.
ENDIFF
IFF(MODE.EQ.2.)
NAT=1.
F=0.
ENDIFF
TOTAL OUTPUT(LBS/HR)AS QSTM
Performance
CFCM(CLR1 XOST{CLR1 ,CAPCF,LANDAR,IRCODE)
CFCM(GRADE)=COST{GRADE,CAPCF,LANDAR,IRCODE)
CM(1)=CFCM(CLR1 )+CFCM( GRADE)
CFCM(SLAB2)=COST(SLAB2,CAPCF,LANDAR/27,IRCODE)
CFCM(BUILD)=COST(BUILD,CAPCF,LANDAR,1RCODE)
CM(2)=CFCM(SLAB2)+CFCM(BUILD)
CFCM(STGEN)=COST(STGEN,CAPCF,OUTPUT,IRCODE)
CM(3KFCM(STGEN)*NOBOIL
CM(4)=0; Not applicable
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODEJ
CM(5)=CFCM(LAND)
CM(5)=0; Not applicable
CFOM(OPER1)=COST(OPER1,OMMCF,MSTAFF*HRSYR*0.020,IRCODE)
CFOM(OPER2)=COST(OPER2,OMMCF,M5TAFF*HRSYR*0.003,IRCODE)
CFOM( LABOR)=COST{ LABOR .OMMCF ,MSTAFF*HRSYR*0. 304 .IRCODE )
OMM( 1 )=CFOH(OPER1 )+CFOM(OPER2)_CFOM{LABOR)
: : - r 87
-------
CFOM(FUEL).=COST(FUEL ,OMMCF,F*OIL*HRSYR,IRCODE)
CFOM(NGAS)+COST(NGAS .OMMCF,NAT*GAS*HRSYR,IRCODE)
CFOM(POWER)=COST(POWER,OMMCF,KWH*HRSYR,IRCODE)
OMM(2)=CFOM(FUEL)+CFOM(NGAS)+CFOM(POWER)
CFOM(MECH1)=COST(MECH1,OMMCF,32,IRCODE)
CFOM(MECH2)=COST(MECH2,OMMCE,16,IRCODE)
CFOM(HELPR)=COST(HELPR,OMMCF,32,IRCODE)
OMM(3)=CFOM(MECH1)+CFOM(MECH2)+CFOM(HELPR)+0.005*CM(3)
CFOM(WATER)=COST(WATER,OMMCF,HZO*HRSYR,IRCODE)
OMM(4)*CFOM(WATER)
OMM(8)=0: Not applicable
Module Specific Parameters. Parameters Definitions
QSTM Steam demand-(Ibs/hr)
NOBOIL Number of boilers required
OUTPUT Steam required from one boiler (Ibs/hr)
OIL Gallons of fuel oil required {gal)
GAS Natural gas required (ft3)
H20 Gallons of water required (gal)
HP Horsepower required
KWH Kilowatts/hr
Module Specific Parameters. Parameters Definitions
MODE If MODE = 1 , then boilers are oil fired
If MODE =1". then boilers are fired
by natural gas
NAT) Counters controlled by MODE
F)
88
-------
BUILDING
System Variaoles
+CLR] = 80
+GRADE = 62
+OFFIC = 72
+RLABS = 73
+LAND = 50
+HELPR = 12
IQ1NFL = 01
IQINFS = 02
SCALE=QINFL
IF(SCALE.LE.O)SCALE=QINFS*2.0E-3
LANDAM=150.*(1.81E-3*SCALE+5.48)+500.
Performance
CFCH(CLR1 }=COST(CLR1 .CAPCF.LANDAR.IRCODE)
CFCH(GRADE)=COST(GRADE,CAPCF,LANDAM,IRCODE)
CM(1)=CFCM(CLR1 )+CFCM(GRADE)
CM(2)=0; Included in CM-3
CFCM(OFFICE)=COST(OFFICE,CAPCF,LANDAM,IRCODE}
CFCM(RLABS)=COST(RLABS,CAPCF,500 .IRCODE)
CH931=CFCM(OFFICE)+CFCMCRLABSl
CH(4)=0; Included in CH-3
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE1
CM(5)=CFCM(LAND)
CM(6)=0; Not applicable
OMM(1}=0; Not applicable
OMM(2)=0; Not applicable
: CFOH(HELPR)=COST(HELPR,OMHCF,52,IRCODE)
___ - ._
-------
OMM(3)=CFOM(HELPR)
OMM(4)=0; Not applicable
OMM(8)=0; Not applicable
Module Specific Parameters. Parameters Definitions
QINFL Liquid flow rate input to the
associated technology (GPM)
QINFS Solids loading rate to the
associated technology (Ibs/hr)
SCALE Relates QINFS or QINFL to
sizing variables^
— " _ _, '"• ^^^ ^^^ - __ _ i, ,
I -—— • •" — • - '• ^— C I . ^~~ fill - —— • i —^ - 11 *jn ^^— ' •-— - T ^^ I •
PIPING "AND "VALUES '^^ ~ ^^ :
System Variables
IF(LENGTH.LE.O),LENGTH=QINF
LANDAR»LENGTH*3.0
DIA=12.*(3.14E-11*LENGTH*QINF*QINF)**0.2
Performance
•
-------
CFOM{OPER1)=COST(OPER1,OHMCF,MSTAFF*HRSYR*0.000,IRCODE)
CFOM{OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR*0.000,IRCODE)
CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR*0.010,IRCODE
OMM(1)
-------
Performance
CH(1)=0; Not applicable
CM{2)=0; Not applicable
CFCM( PUMPS KOST(PUMP3,CAPCF,FLOWPP*AQ,IRCODE)
CFCM(PUMP2)=COST(PUMP2,CAPCF,FLOWPP*SL,IRCODE)
CFCM(PUMP1)=COST{PUMP1,CAPCF,FLOWPP*CM,IRCODE)
CM(3)»CFCM(PUMP3)+CFCM(PUMP2)+CFCM(PUMP1)*NOPUMPS
CM(4)=0,005*CM(3)
CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE).
CM(5)=0; Not applicable
CM(6)=0; Not applicable
CFOM(OPER1)=COST(OPER1,OMMCF,HSTAFF*HRSYR*0.001.IRCODE)
CFOM(OPER2)=COST(OPER2,OMMeF,MSTAFF*HRSYR*0.001 ,'IRCODE)
CFOM(LABOR)=CDST(LABOR.OHMCF.HSTAFF*HRSYR*0.051,IRCODE)
OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
CFOM(POWER)=COST(POMER,OMMCF,KWH*HRSYR,IRCODE)
OHM(2)=CFOM(POWER)
OHM(3)-0.01*CM(3)
OMM(4)=0; Not applicable
OMM(8)=0; Not applicable
\ „• • •
92 - -"- ".•
------- |