PB81-128522
Cost Comparisons of Treatment and  Disposal Alternatives for
Hazardous Wastes Volume II.  Appendices
SCS Engineers, Inc.
Redmond,  WA
Prepared for

Municipal Environmental Research Lab.
Cincinnati, OH
December 1980
                   U.S.  DEPARTMENT OF COMMERCE
                 National Technical Information Service
                                  NTIS

-------
                                      EPA-600/2-80-208
                                      December 1980
    COST  COMPARISONS OF TREATMENT AND DISPOSAL
   	AL'TERNATIVES-FOR 'HAZARDOUS-WASTES	
              Volume II.   Appendices
                        by

      Warren  G.  Hansen and Howard L. Rishel
                  SCS  Engineers
      	--Redmond-,-Washington- -98052	
              Contract No.  68-03-2754
                 Project Officer

                Oscar W. Albrecht
   Solid  and  Hazardous Waste Research Division
   Municipal  Environmental  Research-Laboratory
              Cincinnati, Ohio  45268
     MUNICIPAL  ENVIRONMENTAL RESEARCH LABORATORY
         OFFICE OF  RESEARCH AND DEVELOPMENT
        U.S.  ENVIRONMENTAL PROTECTION AGENCY
               CINCINNATI, OHIO 45268

'Ci-.

-------
                NOTICE





THIS DOCUMENT HAS BEEN  REPRODUCED



FROM THE BEST  COPT  FURNISHED US BY



THE  SPONSORING AGENCY..  ALTHOUGH IT



IS RECOGNIZED  THAT. CERTAIN PORTIONS



ARE  ILLEGIBLE,  IT IS  BEING  RELEASED



IN THE  INTEREST OF MAKING  AVAILABLE



AS MUCH  INFORMATION AS  POSSIBLE.

-------
                                   TECHNICAL REPORT DATA
                            (Pleat read Irairuettoia on the reverie before completing)
1 REPORT NO.
  EPA-600/ 2-8D-208
                                               3 RECIPIENT'S ACCESSION NO
                                                   PMI    1P8S2  g
4 TITLE AND SUBTITLE
  Cost Comparisons of  Treatment and Disposal Alternatives
  for Hazardous Wastes (  Vol  II)
                                               S. REPORT DATE
                                                December 1980
                                               6 PERFORMING ORGANIZATION CODE
7 AUTHOH(S)
  Warren G.
  Howard L.
                                                           8 PERFORMING ORGANIZATION REPORT NO
Hansen
Rishel
B PERFORMING ORGANIZATION NAME AND ADDRESS
  S C S Engineers
  2875  152nd Avenue  N.E.
  Redmond, Washington  98052
                                               10 PROGRAM ELEMENT NO

                                                 T2.3     C1DC6181
                                                 CONTRACT/GRANT NO
                                                 Contract  NO.  68-03-2754
12 SPONSORING AGENCY NAME AMP ADDRESS
 Municipal Environmental Reseatch  Laboratory--Cin.>  OH.
 Office of Research and Development
 U.S.  Environmental Protection  Agency	
 Cincinnati, Ohio 45268
                                                           13. TYPE OF REPORT AND PERIOD COVERED
                                                              Final
                                               14. SPONSORING AOENCV CODE

                                                 EPA/600/14  •
IS. SUPPLEMENTARY NOTES
   Project Officer: Oscar W. Albrecht    SHWRD, CINCINNATI, Ohio  45268 (513)  684-4216
16 ABSTRACT
  Treatment and disposal  alternatives and costs for  hazardous wastes from the organic
  chemicals, inorganic chemicals, and electroplating and metal finishing industries
  are evaluated.  The  16  treatment and 5 disposal  technologies were based on
  applicability to the industry categories, availability of cost and performance
  data, and effectiveness in reducing or eliminating hazardous waste constituents.
  Costs were aggregated at the technology level and  entered in computer-linked
  models at the unit cost or component level.  Volume II contains applicable
  portions of the Resource Conservation and Recovery Act, capital unit cost and
  operation/maintenance cost data files, curve fitting for cost files, module
  descriptions, and system variable equations.  Volume II is intended for those
  desiring the supporting data for Volume I.
17.
                                KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                                              b.IDENTIFIERS/OPEN ENDED TERMS
                                                                         c. COSATI Field/Group
   cost-effectiveness
   cost  estimates
   hazardous materials
   waste treatment cost
                                   Organic Chemical Waste
                                   Inorganic Chemical Waste
                                   Hazardous Waste Costs
                                   Electroplating Waste
                                   Hazardous Waste
13B
14A
16 DISTRIBUTION STATEMENT

  General distribution
                                  19 SECURITY CLASS (TJia Ktport)

                                   Unclassified	
                                                                         21. NO. OF PAGES
                                              20 SECURITY CLASS (Thupagc)
                                               Unclassified
                                                                         22 PRICE
EPA Fora 2220.1 (R.». 4-77)

-------
                          DISCLAIMER
     This report has been reviewed by the Municipal  Environmental
Research Laboratory, U.S. Environmental Protection Agency, and
approved for publication.  Approval  does not signify that the
Environmental Protection Agency, nor does mention of trade names
or commercial products constitute endorsement or recommendation
for use.

-------
                            FOREWORD
      The U.S.  Environmental  Protection Agency was created
 because of increasing public and government concern about the
 aangers of pollution to the  health and welfare of the American
 people.  Noxious air, foul  water, and spoiled land are tragic
 testimonies to the deterioration of our natural  environment.
 The  complexity of that environment and the interplay of its
 components require a concentrated and integrated attack on the
 problem.

      Research  and development is that necessary  first step in
-problem-so-lution;-  it-invo-lves defining—th« probl-em— measuring•
 its  impact, and searching for solutions.   The Municipal Environ-
 mental  Research Laboratory  develops new and improved technology
 and  systems to treat and manage wastewater and solid and
 hazardous waste pollutant discharges from municipal and commun-
 ity  sources; to preserve and treat public drinking water
 supplies, and  to minimize the adverse economic,  social, health,
 and  aesthetic  effects of pollution.  This publication is one of
 the  products of that research and provides a most vital
 communications link between  the -researcher and the user commun-
 ity.

      The purpose of this  study is to enhance the understanding
 of hazardous waste  treatment  and disposal  economies.   The
 multitude of applicable  and  emerging technologies  in  this area
 must  be described  and priced  to allow waste managers  to make
 informed decisions.   This report provides  the user community
 with  the necessary  cost  data,  analytical  and comparative
 techniques,  and  recommendations for cost-effective management
 options  based  on the  type of  waste  and scale of  operation.
                                Francis T. Mayo,
                                Director
                                Municipal Environmental Research
                                  Laboratory
    i : £                        111

-------
                           ABSTRACT
     This project is Intended to standardize,  update,  and
evaluate cost and technological  data pertaining to treatment/dis-
posal options for hazardous wastes from the organic chemicals,
inorganic chemicals, and the electroplating and metal  finishing
industries.   Sixteen treatment and five disposal  technologies
were selected for study based on their applicability within the
industrial categories, the availability of cost and performance
data, and their overall effectiveness in reducing or eliminating-
the hazardous waste constituents.

     Each technology was assessed in terms of  its unit processes
or nodules,-and computer-linked models were developed for
calculating  capital and operation/maintenance  costs at the unit
process level.  Costs were then aggregated at  the technology
level together-with all applicable indirect capital and opera-
tion/maintenance costs.  Cost data were entered in the models at
the unit cost or cost component level (e.g., dollars'/yd3 of
concrete), and the data files were designed to accommodate
economies of scale.

     Technology costs derived from the analyses (provided in
both tabular and graph format) are presented for site prepara-
tion, structures, mechanical equipment, electrical equipment,
land and other capital.  Operation/maintenance cost categories
include three classes of labor, energy, maintenance, and
chemicals.  Final cost comparisons among treatment/disposal
technologies applicable to similar waste streams are made on a
life cycle average cost basis.

     Risks associated with the existence and operation of each
technology are also assessed.  Each technology is rated and
compared in  terms of susceptibility to catastrophic events,
unexpected downtime, and adverse environmental impacts.

     This report was submitted in fulfillment  of Contract No.
68-03-2754 by SCS Engineers under the sponsorship of the
U.S. Environmental Protection Agency.  It covers the period
September 25, 1978, to August 25, 1979, and work was completed
as of October 25, 1979.
                              iv

-------
                                  CONTENTS
Foreword	11i
Abstract	fv
Metric Conversion Factors  	  vi


     Appendices

       A.  Resource Conservation Recovery Act. Section 250.45	    1
       B.  Capital Unit Cost File	12
       C.  Operation and Maintenance Unit Cost File	16
   __  D._ Curve Fitting for Cost Files._. ._. _._._. ^_ ._. _._ .__._. ._._ 18
      "E.  Modu^"Descriptions '. ,~~. ."".."	".  .  24
       F.  System Variable Equations 	  32

                                      'V                                       -

-------
                 LIST OF ABBREVIATIONS AND METRIC CONVERSIONS
Abbreviation
                     Definition
      Metric Equivalent
                each
                square feet            x
                linear feet            x
                feet                   x
              , diameter (in inches)   x
               -diameter (in feet)     x
                horsepower-hour        x
               ipounds                 x
 „_ _GAL_	gallons-•	_x
 EA
 SF
 LF
 FT
 DIA"
 DIA1
 HP
 IBS
JSAL
 GPM
 GPD
 CF
 BTU
 LBS/HR
 TONS/HR
 IN
 CY
 BDFT
 KWH
 0C
 PPM

 PSIG
 BOD
 TSS
               .galIons"per minute     x
               •gallons per day        x
                cubic feet             x
               •British Thermal Unit   x
                pounds per hour        x
                tons per hour          x
                inch                   x
               •cubic yard             x
                board feet             x
               •kilowatt-hour
               •degrees centigrade     x 9/5+32
                parts per million     !
                (milligrams per liter)'
                pounds per square inch x 703.1
               .biological oxygen demand
                total suspended solids'
 0.0929
 0.3048
 0.3048
 2.54
 0.3048

 0.454
.3.785
 3.785
 3.785
 0.028
 1.06 x
 0.454
 0.907
 2.54
 0.765
 0.3048
      N.A.
= square meters
= linear meters
= meters
= centimeters
= meters
= 0.7457 KWH
-= kilograms
° liters	
= liters 'per minute
= liters per day
= cubic meters
1010  = ergs
= kilograms per hour
= metric tons per hour
= centimeter
= cubic meter
= board meters
      N.A.
3 degrees Fahrenheit
      N.A.

= kilograms per sq. meter
      N.A.
      N.A.
                                     vi

-------
                                       APPENDIX  A

                     RESOURCE  CONSERVATION  RECOVERY  ACT
                                    SECTION  250.45*
     I ZM.4S  Standards for treatment/disposal.
       (a) Where practical, disposal of haz-
     ardous waste shall be avoided and al-
     ternatives such  a* destruction, treat-
     ment to render the waste non-hazard-
     ous, or treatment (or purposes of re-
     source recovery and reuse shall be em-
     ployed.
       Tb) All faculties which dispose of dis-
     crete radioactive wastes  shall be li-
     censed by the-DA Nuclear Regulatory ,
     Commission, or an Agreement State.
       (c> An  owner/operator of a facility
     shall not treat or dispose of hazardous
     waste In a ***••* *"1. surface Impound-
     ment, basin, or landfarm  If the waste
     has  any one of  the following charac-
     teristics
       (1) Ignltable  waste,  as defined in
     ( 250.13(a). Subpart A:
       (11) Reactive  waste,  as defined tat
     1250.13(0. Subpart A:
       (ill) Contains chemical groups which
     are Incompatible with wastes In the fa-
     cility with which they may  become
     mixed (see Appendix X): or
       (lv> Volatile waste.
       Note.—A ludfllL surface Impoundment.
     basin, or landfann facility may be uied to
     treat or dispose el Iznltable. reactive, vola-
     tile, or Incompatible vaste provided that the
     owner/operator can demonstrate to the Ra-
     tional Administrator, at the time a permit It
     Issue* pursuant to Subpart  X. that  such
     treatment or disposal will not: (1) contribute
     any  airborne contaminant to the atmos-
     phere such that eoncemrsuoni above the
     source have the potential:  pursuant to
     the Occupational Safety and Health An of
     ino. or (II) to contribute two or more listed
     airborne contaminants m a manner srtuca
     emuses the sun of  the foUovtni expression
     to exceed unity:
 Where:
 E. to the equivalent exposure of a mixture
 of airborne eonlamlnanu. C ta the conceit-
 traUoa of a particular contaminant. L u the
 exposure limit for that  contaminant (39
 CPU 1910.1000. Table Z-l. Z-2. z-li. and «>
 daiaate the stnietaral tnietrtty of the land-
 fill, surface Impoundment, or basin, or
 affect the attenuation capacity  of a land-
 farm, Ihroucb heal tenerauon. fires, or ei
 plosive reactions.


 tZM.tS-1  Incineration.
  (a) An owner/operator of an Inciner-
 ator shall comply with the require-
•menu of this Section  when burning
 hazardous wane.
  (b) Trial burnt, (1) The owner/oper-
 ator shall conduct  a trial burn  for
 each hazardous  waste which is signifi-
 cantly different  In physical and chemi-
 cal characteristics from  any previously
 demonstrated under ecjuivalent condi-
 tions. The trial burn shall Include as a
 minimum  the  following  determina-
 tions:
  (1) An  analysis of the hazardous
 waste  for concentrations of  halogens
 and principal hazardous components:
  (U) An analysis of the ash residues
 and scrubber effluent for the principal
 hazardous components;
  (Ul) An analysts of the exhaust  gas
 for the concentrations of the principal
 hazardous components,  hydrogen  ha-
 lides. CO. CO* Ok and total partlcu-
 lates
*Reprinted  from  the  Federal  Register;  Monday,  December  18,  1978,
  Part  IV;  Environmental  Protection  Agency;  Hazardous  Waste.

-------
   (Iv) An Identification of sources of
 fugitive emissions and their  means of
 control:
    A computation of combustion ef-
 ficiency and destruction efficiency.
   (Til) A  computation of scrubber effi-
 ciency in removing halogens:
   (2) The result! from each trial burn
 shall be submitted to the Regional Ad-
   CO Monitoring. The owner/operator
 shall monitor and record the following
 in each Mai burn and each operation-
 al burn:
   (l) Combustion temperature:
   (2)  Carbon monoxide  and  oxygen
 concentrations in the exhaust gas on a
 continuous basis, and
   (3)  The  rate of  hazardous  waste.
 fuel and excess air fed to the combus-
 tion system at regular Intervals of no
* longer than 15 minutes.
   (d) Comouition criteria. (1) The in-
 cinerator shall operate at greater than
 1000*   C   combustion  temperature.
 gr^at^T M%«M j seconds retention time.
 and greater than  2  percent  excess
 oxygen during incineration of hazard-
 ous waste, unless the waste is hazard-
 ous because it  contains  balogenated
 aromatic hydrocarbons, in which case
 the Incinerator shall operate at great-
 er than 1200* C combustion tempera-
 ture, greater than two seconds reten--
 Uon time, and greater than > percent
 excess  oxygen during  incineration of
 the hazardous waste.
   (2) The incinerator shall be operated
 at a combustion efficiency equal to or
 greater than 99.0 percent, as defined
 In the following equation:
  d •  eo;
                             X 100
                 CO
 Where:

 CE-combuitlon efficiency
 ^•"•-concentration of CO. In ezhaiot cai
 CTBe>«ooDcentrf*.tiofi of CO in
   Incinerators that burn waste that Is
 hazardous only because it Is listed In
 { 250.14(bXl) are exempt from this re-
 quired.

  Nan To (b) (1) Am <»x— Indnenlon
 may operate tt other condition* of tempera-
 ture. retention time, and combuslon effi-
 ciency If the facility  owner/operator can
 demonstrate that ma equivalent detne of
 combustion will be provided under alternate
 combustion criteria to the conditions one-
 •CtlDCQ eMOVC?
   (3) The Incinerator shall be operated
 with a functioning device to  cut off
 automatically waste feed to the Incin-
 erator wnec significant changes occur
 In  flame  combustion  temperature,
 excess air. or scrubber water pressure.
   (e) Destruction and emitnon control
 criteria. (1) The  Incinerator shall be
 designed, constructed, and operated to
 maintain • a destruction  efficiency of •
 99.99 percent as defined in the  follow-
 ing equation:
            t'ln  - *eut\X

              "in     j
                                                                            100
 Where:

 DE-destnictlan efficiency -
 WB«matj feed rate of principal tofdc com-
    ponenu of waste going into the Inciner-
    ator 
-------
 {tSO.45-2  Landfills.
  (a) Site Selection.
  (1) A landfill shall be located,  de-
 signed,  constructed,  and operated  to
 prevent direct  contact  between the
 landfill and navigable water.
  (2) A landfill shall be located,  de-
 signed,  and constructed so  that the
 bottom of Its liner system or natural
 ln-place solL  barrier Is at  least  1.5 '
 meters  (9  feet) above  the historical
 high water table.,
  NOR.—The bottom of any Uner cyitem or
 natural In-plaee soQ  banter may be located
 leu that 1.5 meters  (S feet) above the bl»-
 torleal  high water  table,  provided  the
 owner/operator can demonstrate, to the Re-
 gional Administrator, at the **?•• • a permit is
 loued punuant to Subpan E. that no direct
 contact wul occur between the landfill and
 the water table and a Icsehau monitoring
 system at required by 1250.43-S can be ade-
 quately Installed  and  maintained la  the
  (3) A  landfill shall'be at least ISO
meten (500 feet) from any functioning
public or private water supply or live-
stock water supply.
  NOR.-A  Undfffl may be leas than 150
meten .
  <4) Waste, containerized or non-con-
tainerized,  that Is  Incompatible  (see
Appendix  I)  shall  be disposed of  in
separate landfill cells.
   (5) Each container of liquid hazard-
 ous waste shall  be surrounded by  an
 amount of sorbenl Inert material capa-
 ble of absorbing all of the  liquid con-
 tents of the container.
   (6)  The following hazardous  waste
 shall not be disposed In a landfill:
   (I)  Ignltable  waste, as   defined  In
 12S0.13(a) of Subpart A;
.  (11) Reactive  waste, as   defined  In
 | S50.13(c) of Subpart A;
   (111) Volatile waste:
   Nom-Sec Note In I UO.tKe).
   (iv)  Bulk  liquids, semi-solids, and
 sludges.
   Hon.—Bulk  liquids,  semi-solids,  and
 sludges mar be disposed of at a landfill pro-
 vided such waste ti pretreated and/or stabi-
 lized  (e.g. chemically  fixed,  evaporated.
 mixed with dry Inert absorbonl). or treated
 and/or stabilised In the landfill  and wul not create
 a flammable or explosive atmosphere.

-------
  (10) A minimum of 15 centimeters (6
Inches) of cover material shall be  ap-
plied dally  on  active  portions  of a
landfill Active portions which will not
haie additional waste placed on them
for at least one week shall be covered
with  30  centimeters (12  Inches)  of
cover material
  Nan—An owner/operator may use coven
of different thicknesses and/or apply them
at different frequencies If be can demon*
strait to the Regional Administrator, at the
time a permit ta Issued pursuant to Subpart
E, that the possibility of fire or expiation or
the harboring, feeding, and breeding of land
burrowing animals and rectors will be con-
trolled to an equivalent degree.        ,
  (11) In areas where evaporation  ex-
ceeds precipitation by 20  Inches  or
more and where natural geologic con-
ditions allow, a landfill shall have a
natural In-place  soil barrier on the
entire bottom and sides of the landfill.
This barrier shall  be at least 3 meters
(10 feet) la thickness and  consist of
natural la-place soil which has a per-
meability of  less  than  or equal to
1 x 10-' cm/sec, and  meets the  re-
quirements of { 250.4KbX14).
  Hon.—A natural  la-place  soD barrier
uilng auural  In-plaee  sofu  of  different
thicknesses and penneabOiUei nay be used.
provided the barrier has a thickness greater
than or equal to 1J meters (ft feet), and pro-
vided that the owner/operator of the land-
fill can demonstrate M the Regional Admin-
istrator, at the time  a permit Is Issued pur-
suant to Subpart E. that It will provide
equivalent containment of leichite.
  (12) An owner/operator of a landfill'
using the design in paragraph (bXll)
or any similar design which does not
have a leaehate collection system shall
demonstrate to the Regional Adminis-
trator, at the time a permit Is Issued
pursuant to  Subpart E. that  liquids
will not accumulate in  the landfill to
the extent  that  they  may  be  dis-
charged to the surface or to ground-
water.
  (13) In areas where climatic and nat-
ural geologic conditions do not allow
meeting  the  requirements of  para-
graph  (bXll). a  landfill shall  have
either  one of the following Uner sys-
tems covering the entire bottom and
sides of the landfill:
  (1) Derlyn L The liner system shall
have a slope of at least 1 percent at all
points and  be connected-at all  low
points to one or more leaehate collec-
tion sumps, (which meet the specifica-
tions In  paragraph (bXIT)).  so  that
leaehate  formed In the landfill will
flow by gravity into the leaehate col-
lection sumpxs) from which the  lea-
ehate can be removed and treated or
  disposed  of as  specified herein.  The
  liner system shall consist of:
   (A) A son liner which is at least 1.5
  meters (5 feet)  in thickness and com-
  posed of natural in-place soil or em-
  placed  son  which has a permeability
  less than or equal to 1 X 10*' on/sec,
  and meets  the  requirements of para-
  graph (bX14): and
   (B) A leaehate collection and remov- -
  al  system  overlying  the  soil  liner
  which  Is at least 30  centimeters  (12
  Inches) In thickness and composed of
  permeable soil  capable of  permitting
  leaehate to move rapidly through the
  system and Into the  leaehate  collec-
  tion sumpXs).
   (Ill) Design II The liner system shall
  have a slope of aMeast 1 percent at all
  points  and  be  connected  at all  low
  points to one or'more leaehate collec-
  tion sumps  (which meet the specifica-
  tions of  paragraph (bX17». so that
  leaehate  formed in  the landfill  wfll
  flow by gravity?into the leaehate col-
_lection sumpCs)*from.which the-lea-
  chate can be removed and treated  or
  disposed  of as  specified herein. The
  landfill Uner system shall consist of:
   (A) A leaehate detection and remov-
  al system, placed on  the natural base
  of the landfill, which shall consist of a i
 'minimum of IS  centimeters (6 inches):
  of permeable soQ capable  of permit-
  ting leaehate to move rapidly through
  the system  and Into the leaehate col-
  lection sumps:
   (B) A memorane liner system overly-
  ing the leaehate detection and removal
  system composed of a  15 centimeter (6
  Inch) layer of clean permeable sand or
  soil  overlaid with a •synthetic mem-
  brane liner  which meets the specifica-
  tions In paragraph (bX17)  and  which
  Is overlaid  with a  15 centimeter  (6
  Inch) layer of clean permeable sand or
  sou; _
   (C) A sou liner overlying 
-------
 the alternate liner mum Include a Uner
 and  a  leachate  eoUeetloo  and removal
 system that  provide* equivalent  or dealer
 Ipyfhal^  rftnTilfifnfnT  collection, and  re-
 moval.

   (14) The sods used In a soil liner or
 natural inplaee soil barrier shall meet
 the following minimum criteria:
   (1)  Be classified under  the Unified
 Soil Classification System CU CH. SC
 and OH (ASTM Standard D2«87-69).
   (11) Allow greater than 30 percent.
 passage  through  a  no.  200  sieve
 (ASTM Test D1140).                  ,
   (111) Have a liquid limit equal to or
 greater  than 30  units (ASTM Test
 D423),
   (Iv) Have plasticity  greater than or
 equal to IS units (ASTM Test D424).
   (v)  Have a pH of 7.0 or higher (see
 Appendix IV), and
   (vl) Have a permeability not adverse-
 ly affected by anticipated waste.
   Non.—Soil not meeting the above criteria
 may be used provided the owner/operator
. can demonstrate to the Regional Adminis-
 trator, at the Ume-m permit I* Issued pursu-
 ant to Subpan E. that such son wfll provide
 equivalent or greater structural stability
 •nrf waste rantalnraynt ***** attenuation,
 and will not be adversely affected by the an-
 ticipated waste.
   (IS) A synthetic  membrane Uner
 shall  meet the following minimum cri-
 teria:
   (1)  Be  of adequate strength  and
 thickness to Insure mechanical Integri-
 ty and have a minimum thickness of
 20mQc
   (U)  Be compatible with the waste to
 be Undf Uled;
   (111) Be resistant to attack from sofl
 bacteria and fungus;
   (Iv) Have ample weather resistance
 to withstand the  stress  of  extreme
 heat, freezing, and thawing;
   (v)-Have  adequate tensile  strength
 to elongate sufficiently and withstand
 the stress of installation and/or use-of
 machinery *>*^ equipment;
~  (vi)'Be of uniform thickness;''free
 from  thin spots, cracks, tears, blisters.
 and foreign particles: _
   (vU) Be placed on a stable base; and
   (vtll) Have a permeability less than
 or equal to 1 x 10- » cm/sec or its equiv-
 alent.
   (18) A landfill overlying an under-
 ground  drinking  water source  shall
 have   a   groundwater   monitoring
 system  and a  leachate  monitoring
 system as specified in 12S0.43-8.
   (17) A leachate  collection  sump  (as
 required In the Uner systems specified
 in paragraph (bXIS)) shall be designed
 and constructed:
   (i)  Of materials  both  compatible
 with and Impermeable to the i
 formed In the landfill;
  (U) So that the sump Is accessible for
 removal of leachate U the sump pump
 becomes Inoperative and/or the stand
 pipe for removal of leachate becomes
 damaged; and
  (111) With a volume equal to or great-'
 er than three-months expected volume
 of leachate but no less than 1.000 gal-
lons.
  (18)   The   owner/operator   shall •
 remove leachate from a leachate col-
 lection  sump  as frequently as neces-
 sary to maintain gravity  Qow In the
 leachate   collection   and   removal
 system  and shall check the  leachate
collection sump  at least  monthly to
 assure compliance with *hl« require-
 ment.
  (19) Landfill Uner systems and natu-
 ral In-place soil barriers shall not be
placed over earth irml^f1"'* exhibiting
 a permeability of greater than IxlO*4
on/sec.
  (c)  Closure,  (1)  At  closure,  the
owner/operator  of a  landfill  shall
 place a final, cover over the landfill.
This final cover  shall  consist of at
least IS centimeters (8 Inches) of sou
with a permeability less than or equal
to 1x10-' cm/see which meets the cri-
teria of |2S0.4S-2(bX14). underlying
45 centimeters (18 inches)  of soQ capa-
ble of supporting Indigenous vegeta-
tion. The top IS centimeters (8 Inches)
of this cover shall be topsolL
  Non.—A final cover uslnt different thick-
nesses and permeabilities may be used pro-
vided the owner/operator can demonstrate
to the Regional Administrator that It win
provide equivalent control of InfDlradon of
water, equivalent control of sublimation or
evaporation of harmful pollutants Into the
air. and equivalent erosion  control  The
owner/operator must also demonstrate that
the final cover will support Indigenous vecv
  (2) Where trees or other deep-rooted
vegetation are to be  planted on the
completed landfill,  the   final cover
shall  consist of the 15 -centimeter (8
Inch) soil layer specified in paragraph
(CXI) underlying at least 1 meter (3
feet) of soil capable of supporting the
deep-rooted vegetation and Indigenous
vegetation.
 ~Non.-The .upper layer son thickness for
deep-rooted vegetation may be less than 1
meter IS feet) provided the owner/operator
can demonstrate to the Regional Adminis-
trator that the roots of the vegetation will
not penetrate the_a-lneh clay caver.
  (3) The final grade of the final cover
•haQ  not  exceed  33  percent. Where
final  grades exceed 10 percent, hori-
zontal terraces shall  be  constructed.
Terraces shall be of sufficient width
and height to withstand a 24-hour. 25-
year storm. A terrace shall be placed
at every  10  feet of rise  In elevation
when the slope to less than 20 percent


-------
 and at every 20 feet or Use In elevation
 when the slope l> greater than 20 per-
 cent.

   Hon.—The final inde may be of differ-
 ent design tad slope provided Uu owner/op-
 erator can demonstrate to the Regional Ad-
 ministrator that water will not pool on the
 final cover and that erosion will be- mini-
   (d) Post-closure eon. (11 During the
 post-closure period,  which shall con-
 tinue at the landfill  lor a period of at
 least 20 yean  (see (250.43-7).  the
 owner-operator of the landfill:
   (1) Shall *"****t*J*>  the soQ Integrityv
 slope, and vegetative cover of the final
 cover and all  diversion and drainage
 structures;
   (ID shall ""•I*»*«*T» the groundwater
 and leachate monitoring systems and
 collect and analyze samples from these
 systems and collect  and  analyze sam-
 ples from these systems In the manner
 and frequency specified In 1250.43-6;
   (ill) ^HffH  mgjot&in surveyed  bench
 marks:
   (Iv) Shall m«hi*«i»i and monitor the
 gas  collection  and  control  system
 where such a system Is  Installed to
 control  the vertical and horizontal
 escape of gases; and
   (v) Shan restrlct.aceess to the land-
 fill as appropriate for Its post-closure
 use.

   NOT*.—The owner or "operator of a landfill
 mar request that  certain post-closure re-
 quirement! be discontinued earlter **••»• 10
 years  after closure. The  faculty owner or
 operator  shall submit  Information  to  the
 Regional Administrator  lo Indicate  that
 such post-clonire care  need not continue:
 (a*, no leaks have been detected, techno!-
 00 ha* advanced, alternate disposal tech-
 niques are* to be employed.) The  Regional
 Administrator shall have the  discretion to
 allow discontinuance of  one  or  more of
 these post-closun requirements,

   (2) No buildings intended for habita-
 tion shall be constructed over a land-
 fill where radioactive waste aa listed In
 Subpart A has been disposed.
 {250.45-3  Surface Impoundments.
 • (a) Site selection. (DA surface Im-
 poundment shall be located, designed.
 constructed,  and operated  to  prevent
 direct contact between  the surface Im-
 poundment and navigable water.
   (2) A  surface Impoundment shall be
• located,  designed, and constructed so
 that the bottom  of Its  liner system or
 natural In-place soil barrier Is at least
 1.5 meters (5 feet) above the historical
 high water table.
   Nont-The 'bottom of any Uner system or
 natural uvelaee son banter may be located
 ^SarTl Jmeun (t  feet) above the his-
 torical   high  water table  provided  the
 owner/operator can demonstrate uithe Re-
 gional Administrator, at the time a permit Is
 Issued pursuant to Subpart E. that no direct
 contact wul occur between the surfsct Im-
 poundment and the water table, and a lea-
 chate monitoring  system as required  In
 •| 250.43-1 can be adequately Installed and
• maintained In the lesser space.

   (3) A surface impoumlmfnt shaH be
 located at least 150 meters (500 feet)
 front any functioning public or private
• water supply or livestock water supply.

  Hers,— A surface Impoundment may be lo-
 cated less than ISO -meters (500 feet) (rom
• any  functioning public or private  water
 supply or  livestock water supply provided
 Use owner/operator can demonstrate to the
 Regional Administrator.  at  the  time a
 permit  to  Issued pursuant to  fiubpart  E.
   (I) No direct contact win occur between
 the surface  of Subpart A.
   (Ill) Reactive  waste,  as defined  In
 ( 250.13(0 of Subpart A. or
   (tv) Volatile waste.
   Non.-4RelaUm to U. HI. and tv) see Note
 associated with I SMMMe).
   (2) Hazardous waste which Is incom-
 patible  (see Appendix  I) shall not  be
 unplaced together  in a  surface  Im-
 poundment.
 " (3) All 'hazardous waste   shall  be
 tested, prior to placement In a surface
 impoundment, for  compatibility with
 the Intended liner  materials to  deter-
 mine whether it will have any  detri-
 mental effect (e.g., cause cracks, disso-
 lution, decrease mechanical strength.
 or Increase  permeability) on the soils
 or  lining materials  used to  prevent
 leakage  from the  surface  impound-
 ment.
   (c) Dctiffn and construction.  (DA
 surface  Impoundment  shall  be  de-
 signed and constructed so as to  be ca-
 pable of preventing discharges  or  re-
 leases to the groundwater or navigable
 water.
                                      -'•2:. Nw  '~l:

-------
  (2) Where natural  geologic condi-
 tions allow, a  surface Impoundment
 shall have a natural in-place sou bar-
 rier on the entire bottom and aides of
 the Impoundment  This barrier shall
 be  at least 3 meters (10 feet) In thick-
 ness and composed  of natural In-place
 soil which meets the specifications of
 paragraph (CX4).
  Norn.—An  owner/operator of a surface "
 Impoundment may use  a natural  In-place
 soil buner of different thicknenei and dif-
 ferent ipedftcauoni If the owner/operator
 cut  demonstrate  to the Regional Adminis-
 trator, at the  time a permit b iuued purtu-
 ant to Subpart K. that equivalent or greater
 wule containment can be achieved. Howev-
 er,  under no eireumnaneei ahall the thick-
 ness of the natural In-plaee toll barrier be
 lea than 1.B m (5 feet), or It* -permeability
 be greater than 10-' em/see.
  (3) Where geologic conditions do not
 allow use of the design In paragraph
.. a surface Impoundment shall
 have a liner  system covering the entire
 bottom and sides of the Impoundment.
 This liner system shall consist of top
 liner, a bottom liner and a leacbate de-
 tection system which meet the .follow-
 ing specifications:
  (1) The top liner shall consist of em-
 placed soil at least  30 centimeters (12
 Inches) In thickness which meets the
 criteria In paragraph (cX4). or -an arti-
 ficial liner which meets the criteria in
 paragraph (eXS).
  (U) The bottom liner shall consist of
 natural  In-place soil or emplaeed soil
 which meets the criteria In paragraph
 (CX4) and Is at least-1.5 meters  (5 feet)
 In  thickness,  or  an  artificial  liner
 which meeta the criteria-In (CXS).
  (Ill) The  leachate detection  system
 shall be  a gravity flow drainage system
 Installed between the top and  bottom
 liners and ahall be capable of detecting
 any leachate that passes through the
 top liner. Provisions shall be made for
 pumping out any leachate that passes
 through the top liner and for removal
 of  noxious  gases  that occur  In  the
 system.
  Note.—An owner/operator may use • dif-
 ferent design If he emn demonstrate that an
 equivalent or  greater degree  of watte con-
 tainment  b achieved. The Regional Admin-
 istrator ahall take leto account the length
 of time the surface Impoundment has been
 In existence, projected facility life, and arti-
 ficial liner, natural In-plaee soli,  or em-
 placed soil permeability and thickness when
 arriving at a decision regarding whether an
 equivalent decree of containment exists. In
 the caw  of exlsttni facilities, the faculty
 owner/operator may conduct leachate (cone
 of  aeration)  monitoring  lo  deteimlne
 whether  any  slsnlflcant Increase  la the
 background  levels of chemical species has
 occurred.  If no significant Increase b ob-
 served, the  design shall  be  considered to
 provide the same or greater degree of per-
 formance.
  (4) Soils used for surface Impound-
ment  liners or natural in-place  soil
bamen shall:
  (1)  Be classified under  the Unified
Soil Classification Systems as CL.  CH.
SC, or OH. (ASTM Standard D2487-
<9r.
  (U) Allow more than 30  percent  pas-
sage  through a No. 200 sieve (ASTM
TestDlMO);
  (111) Have a liquid limit equal to or
greater than 30 (ASTM Test D423):
  (Iv) Have a plasticity Index equal to
or greater than IS (ASTM Test D424):
  (v) Have a pH of 7.0 or higher (See
Appendix IV):
  (rt) Have a permeability equal to or
less than 1x10" cm/sec. (ASTM Test
D2434X and
  (vll) Have a permeability not ad-
versely affected by the waste  to be
placed In the Impoundment.
  Nora.— Sou not meeting the above criteria
may be used provided that the owner/opera-
tor can demonstrate to the Regional Admin- '
tstrator. at the time a permit U tamed pur-
suant to Subpart X. that such soil will pro-
vide equivalent or greater structural stabil-
ity  and waste containment properties and
wul not be adversely affected by the waste
lo be placed In the impoundment.
  (8) Artificial liners  for surface Im-
poundment* (e4-  concrete,  plastic)
  (I) Be of sufficient strength to insure
mechanical integrity?
  (U) Have a minimum thickness of 30
mils:
  (111) Be compatible with the waste to
be placed In the Impoundment;
  (Iv) Have a permeability leas than or
equal to I x 10*' em/see;
  (v> Have an  expected service life at
least  25 percent longer  than the ex-
pected time of  facility usage;
  (vt) Be placed on a stable base:
  (vll) Satisfactorily resist attack from
ozone, ultraviolet rays,  soil  bacteria,
and fungus: _
  (vltl) Have ample weather resistance
to withstand the stress of freezing and
thawing:
  (U) Have adequate  tensile  strength
to elongate sufficiently and withstand
the stress of Installation and/or  the
use of machinery or equipment:
  (xr Resist laceration, abrasion and
puncture from any  matter that nay
be contained In the fluids It will hold:
  (si) Be of uniform thickness, free of
thin gpota. cracks, tears.- blisters, and
foreign particles: and
  (xil) Be easily repaired.
  (6) To  prevent their  rupture, all arti-
ficial liners In a surface Impoundment
where  mechanical equipment Is used
for operation  (e.g.  sludge  dredging
and collecting) shall have « protective
                                      ~' - 2= !\ J''2E~

-------
 cover of selected clean earth material.
 not  less  than  45  centimeters  (18
 lnch.es) thick, placed directly on top of
 the liner.
   (7)  A  mrface  impoundment shall
 have   a   groundwater   monitoring
 system  and  a  leachate  monitoring
 system that meet the specifications Irr
 < 250.43-8.
   (8)  All surface Impoundment dikes.
 shall  be designed and constructed In a
 manner that will prevent discharge or
 release of waste from the facility, both
 horizontally and vertically.
   (9)  All earthen dikes at  the facility
 shall  be constructed jof clay-rich  soil
 with a permeability less than or equal
 to 1 x 10-tan/sec.
   (10) All earthen dikes shall have an
 outside  protective  cover (e.g..  grass.
 shale, rock) to  mintmiM  erosion  by
 wind and water.
   (11) Those  surface   Impoundments
 which are Intended to be closed with-
 out  removing  the hazardous  waste
- shall  meet the  landfill requirements -
 under Section 250.45-2.
   (d)  Operation and maintenance. (1)
 A surface Impoundment shall be oper-
 ated  and  maintained  so  that  dis-
 charges  or  releases  to groundwater
 and navigable water do not occur.
   (2)  The freeboard maintained In a
 surface impoundment shall be capable
 of containing rainfall from a 24-hour.
 25-year storm but shall be no less than
 to centimeters (2 feet).
   (3) Records shall be kept of the con-
 tents and location of each  surface Im-
 poundment. These records shall  be
 maintained  as specified  In  1250.43-
 Kb).
   (f)  The Integrity  of  the  natural  In-
 place son barrier or the liner system
 Installed In a  surf ace'Impoundment
 shall  be maintained until closure of
 the Impoundment. The liner system or
 natural ID-place son barrier shall  be
 repaired Immediately  upon detection
 of any failure (e.g.. Uner puncture).
   (5) Surface Impoundment dikes shall
 be visually inspected dally, as specified
 under Section  250.43-6. for the pur-
 pose  of detecting and  correcting any
 deterioration. Any maintenance or cor-
 rective action necessary to restore the
 dike to Its original condition shall be
 accomplished expedltlously.
   (6)  Any system provided for detect-•
 Ing the failure of a Uner system or nat-
 ural In-place soil barrier Shan be visu-
 ally  Inspected dally,  as specified In
 1250.43-6. to Insure that It Is operat-
 ing properly for the purpose Intended.
   (e)  CZoture  and poif-clofiire,   (1)
 Upon final close-out,  all  hazardous
 waste and hazardous  waste residuals
 shall be removed from the surface Im-
 poundment. If the impoundment does
 not  meet  the  landfill  requirements
 under (250.45-2. and disposed  of as
 hazardous  waste pursuant to the re-
 quirements of this Part.
   (2) Upon final close-out of a surface
 impoundment which meets the criteria
 for landfills under  f 250.4S-2. all haz-
 ardous waste and hazardous waste re-
. siduals shall be:
   (I) Removed and disposed as hazard-
 ous  waste pursuant  to the require-
 ments of this Part, or
   (U) Treated  In the  impoundment
 pursuant   to  the   note  following
 1250.45-2(6) (6) (Iv). and then the Im-
 poundment shall be  closed according
 to the closure requirements for land-
 fills under { 250.45-Xc).
   (3> Emptied surface Impoundments
 Shan be filled with an Inert fill materi-
 al and seeded with  a suitable grass or
 ground  cover crop,  or converted to
 some other acceptable use that meet*
 the requirement under 1250.43-7.
   (4) Those  surface Impoundments
 which were closed as landfills shall
 meet all post-closure  requirements for
 landfills under 1250.45-2(d).

 fIM.it-4  Bubts.
   (a) A basin shall be constructed of
 impermeable materials of sufficient
 strength "*d thickness to  ensure  me-
 chanical Integrity and to prevent the
 discharge of waste to navigable waters
 or groundwater.
   (b) A basin shall not be used to con-
 tain hazardous waste which Is:
   (1) Detrimental to  the  basin's con-
 struction materials:
   (2) Ignltable waste, as  defined In
 12WUS(a> of Subparr A:
   (3) Reactive  waste, as  defined  in
 12S0.13(e) of Subpart A: or
   (4) Volatile waste.
   Non,-Wlth respect to (b) (S. I and 4). see
 Mote itsodated vita 12M.4MO.
   (e) Hazardous waste which Is incom-
 patible (see Appendix I) shall not.be
 placed together in a basin.

 ~"(d> A hazardous  waste shall be
 tested prior to placement In a basin to
 determine  whether It wfll  have any
 detrimental effect (e.g. cause dissolu-
 tion or  corrosion, increase permeabil-
 ity, decrease mechanical strength) on
 materials used for construction of the
 baslnl
   (e) The materials used for construc-
 tion of basins shall be compatible with
 the  hazardous  waste and treatment'
 chemicals to  be used under expected
 operating conditions (Le.. temperature.
 pressure) or shall be protected by a
 Uner compatible with the hazardous
 waste and  treatment  chemicals  to be

-------
used under expected operating condi-
tions.
  (f) A basin shall be monitored or vi-
sually  inspected dally in  accordance
with the requirements under {.250.43-
8 (or leaks, corrosion, cracks, or other
damages.  Any damage detected shall
be repaired Immediately.
  (g) A basin shall have a groundwater
monitoring system meeting the spedfl- .
cations of f 250.43-*.
  Non.-A buio does not need a round-
water raonltortni system If  the (aellUy
owner/opemor can demonstrate to th* Re-
(tonal Administrator, at the time a permit b
tnucd pursuant to Subpart E. that any leak-
Inf esa be detected by Usual  Inspeetloa or
  (b) At final  closure, all  hazardous
waste and  hazardous waste  residues
shall have been removed from a basin
and disposed of  as hazardous waste
pursuant to the requirements  of Sub-
parts B. C. and D.

2SO.U-S  Landfarma,
  (a) Hoiantou*  watte not amenaMe
to lanOfarming. The tollowlng hazard-
ous waste shall  not be land/armed:
  U> Ignitable  waste,  as  defined  In
{ 350.13U) of Subpart A:
  (3) Reactive  waste,  u  defined  in
I JM.lS(c) of Subpart A;
  (9) Volatile waste:
  (4)  Waste which  is Incompatible
when mixed (see Appendix I).
  Non.-6ee   Note   associated   *Uh
| ZM.4MO.
  (b) General requirement*. (1) A land-
farm shall  be  located, designed, con-
structed, and  operated  to   prevent
direct  contact  between  the  treated
area and navigable water.
  12) A landfann shall be located, de-
signed, constructed, and operated  to
minimi**   erosion*   landslides,  and
slumping In the treated area,
  (3) A landfann shall be located, de-
signed,  constructed and  operated  so
that the treated  area Is-at least U
meters  (9  feet) above the  historical
high water  table.
  Hon.—The treated ana nay be located
less Una Lfl aeten tt reel) above, the his-
torical bl«b water table U the owner/opera-
tor can demonstrate la the Retlonal Admin-
istrator, at the time a permit Is Issued pur-
suant to Subpart E. that no direct contact
will occur between tlu treated ana and the
water table.
  (4) The'treated  area of a landfann
shall be at  least 150 meters (500 feet)
from any functioning public or private
water supply or livestock water supply.
  Hon.—Th* treated area of a Undfam
may be less than ISO meters (MO feet) from
any (unctlonlns-public or private  water
supply or livestock  water supply, provided
the  facility  owner/operator  can  demon-
strate to the Retlonal Administrator, at the
time a penult la Issued pursuant to Eubpan
Cthat
  (I) No direct contact will occur between
the treated area of the landfarm and any
fufi^in.iii.t; public or private water supply
or livestock water supply."
  (11)  No  migration of  hazardous constitu-
ents from the soil In the treated area of the
huidfll to any public or private water supplr
of livestock water supply will occur, and
  (Ul) A sou monitoring  system u ipeetfted
ta fZ50.4t-5 Site  preparation.    Surface
slopes of a landfarm shall be less than
5 percent, to minimt» erosion In the
treated  area by  waste or surface run-
off, but greater than sera percent  to
prevent the waste or water from pond-
ing  or standing for periods that will
cause the treated area to become an-
aerobic.

   Non.-^6urtacc  slopes of the landfann
may be greater than B percent provided the
owner/operator can demonstrate to the Re-
gional Administrator, at the time a permit ii
Issued pursuant to Subpart  E.  that such
slopes will not result In erosion caused by
waste or surface run-off In the treated area.

   <2>"Caves. wells (other  than active
monitoring  wells),  and other direct
connections to the subsurface environ-
ment within the treated  area of  a
landfarm. or  wlthm 30 meters (100
•feet) thereof, shall be seated.
   (3) Soil pH In  the zone of Incorpora-
tion shall be equal to or -greater than
IS (see Appendix IV).
  Norm.—Sail pH In the tone of Incorpora-
tion may be -leas than «.S  provided  the
owner/operator can demonstrate to the Re-

-------
tional Administrator, at the time • permit b
Issued pursuant to Subpart E. that hazard-
out eonsUtutenta, especially  heavy metals.
will not misrate vertically a distance that
exceed* three times the depth of the tone of
Incorporation or 30 centimeter! (12 Inches).
whichever ti neater.
  (d)  WaiU .application and ineorpo-
return.  (1) Waste application and In-
corporation practices shall prevent the
cone  of Incorporation  (ram becoming
anaerobic.
  (2) Waste shall not be applied to the
sou when It Is saturated with water.
  NcTL-Waste may be applied to the toll
when It If saturated with water provided the
owner/operator can demonstrate to the Re-
gional Administrator, at the time a permit li
Issued pursuant to Subpart E. that the soil-
wane mixture will remain aerobic and that
hazardous constituent*,  especially  heavy
metals, will not migrate vertically a distance
that exceeds three times the depth of the
cone of  Incorporation or w centimeters (12
Inches), whichever tt greater.  .

  (3) Waste shall not be applied U> the
sou when the soil temperature Is less
than or equal to 0* C.
  (4) The pR of the soil-waste mixture
in the  sone of  Incorporation shall be
equal to or greater than 6.5 and main-
tained  until the time of. facility clo-
sure.
  Nort-The pH  of the soO-vaste mixture
In the sone  of Incorporation may be less
than (.5 provided the owner/operator can
demonstrate to the Regional Administrator.
at the time a permit Is Issued pursuant to
Subpart E. that hazardous constituents, es-
pecially heavy metals, will not vertically mi-
grate a distance that exceeds  three tunes
the depth of the sone of Incorporation or JO
centimeters fi2 Inchesi. whichever ta crat-
er
  (5) Supplemental nitrogen and phos-
phorous added to the soil of the treat-
ed ares, for the purpose of Increasing
the rate of waste biodegradatlon. shall
not exceed the rates of application rec-
ommended  for agricultural  purposes
by the United  States  Department of
Agricultural or Agricultural Extension
Service.'                       	
   Sou of-the treated areaXs) of a
 new or existing facility  that  does not
 comply with paragraph (gXIXI) or (U).'
IS..
X
                                            10
                                                                                                v-.:

-------
 respectively, shall  be analyzed to de-
 termine if It meets the characteristics
 of a  hazardous  waste as  defined  In •
 Subpart A. In the event the sofl is de-
 termined  to  be a hazardous waste. It
 shall  be removed and managed  as a
 hazard-jus waste in accordance with all
 applicable requirements of this Part.
   Hon.-The soil at a landiana. IT deter-
 mined to be a hazardous waste, need not be '
 removed provided the owner/operator can
 demonstrate to the Regional Administrator
 thflt because of its Biff rial dnlgn and/or be-
 cause of Its location, the landf arm provides
 lone term Integrity and environmental pro-
 tection equivalent to a landfill as specified
 In I ISO.ii-J. In the event of such a show-
 ing, the owner/operator shall comply with
 the applicable closure and post-closure pro-
 visions ot 11M.4S-T and Z50.4S-3IC and d).

 f ZH.43-4  Chemical, physical, and biologi-
    cal treatment facilities.
   (a) The  materials used In construc-
 tion of the treatment facility shall be
 compatible, under  expected operating
. conditions  (e.g-  temperature,  pres- .
 sure), with the hazardous waste and
 any treatment chemicals or reagents
 used in the treatment process.
   (b> The hazardous waste  shall be
  analyzed,  as appropriate, prior to se-
  lection of a treatment technique to de-
  termine:
   (1) The  proper treatment technique.
  the  proper  feed rates of  treatment
  chemicals or reagents, and the proper
  operating conditions  (e.g..  'tempera-
  uire. pressure, flow rate):
   (2) If the waste or treatment chemi-
  cals or reagents will have  any detri-
  mental effect (e.g..  cause  corrosion.
  dissolution, saltings or scaling*) on the
  materials used for construction:
   (3) If the waste contains any compo-
  nents or contaminants which may In-
  terfere with the intended  treatment
  process (e.g, biological treatment, so-
  lidification,  adsorption processes)  or
  decreases  the  effectiveness of  the
  treatment:
   (4) If the waste contains components
  or g*"i^3"*ilniint)t which ****y caii^r the
  uncontrolled release of toxic gases or
  fumes (e*. HA HCN) during the In-
  tended treatment;
   (8) If the waste contains components
  or  ftftntarnlriantii  which  y^y  form
  highly  toxic  components  with  the
  treatment chemicals or reagents (e-g..
  halogenated hydrocarbons) during the
  intended treatment
   Hon.—The  analyse* of hazardous  waste
  m^y og onHttf^f  provided the owner/opera-
  tor ean demonstrate to the Regional Admin-
  istrator  that  the Information  provided In
  the manifest to adequate to make the deter-
  mination]  required In paragraph fbl. or the
  faculty owner/operator has sufficient Infer-
        nation
                          that the subject haz-
        ardous vane Is similar to a hazardous waste
        which has been previously treated at the fa-
        cility where the same treatment conditions
        and the same treatment chemleali or rea-
        cenu were used.
          (c)  Trial tests  (bench  scale, pilot
        plant scale, or other appropriate tests)
        shall be performed for each hazardous
        waste which Is new or significantly dlf • .
        f erent from hazardous waste previous-
        ly  treated to  determine  treatment
        technique  and  operating conditions.
        and to evaluate the effectiveness of
        the  treatment  process  and  conse-
        quences of the proposed treatment.
          (d) All treatment chemicals or  rea-
        gents used In a treatment process shall
        be stored In such a manner as to mini-
        mize the potential for spills, fires, ex-
        plosions. or uncontrolled discharges or
        releases.
          (e)  All uncovered reaction  vessels
        shall be sized to provide no less than
        60  centimeters  (3  feet) freeboard U>
        prevent splashing  or spillage  of haz-
        ardous  waste  during  the  treatment
        (e.g, neutralization, precipitation).
          (f ) A facility shall have the capacity
        to receive emergency transfer of reac-
        tor contents, or shall have emergency
        storage capacity  to be used   In  the
        event of an equipment breakdown or
        malfunction*
          (g)  A  facility which continuously
        feeds  hazardous waste Into the treat-
        ment  process shall be equipped with
        an automatic waste food  cutoff or a
        by-pass  system which  Is  activated
        when a malfunction In the treatment
        process occurs.
          (h) Upon final closure, all hazardous
        waste and hazardous waste residuals
        shall be removed from the facility, and
        treated or disposed of as hazardous
        waste pursuant to the requirements of
        this Part.
          (1) All residuals or by-products from
        a  treatment process  (e.g»  sludges.
        spent resins) shall be analyzed to de-
        termine whether they an hazardous
        waste within the meaning of Subpan
        A. or assumed to be a hazardous waste.
          Non-^-Analysa of treatment residuals or
        by-producu may  be omitted provided, the
        owner/operator ean  demonstrate  that the
        subject  residuals and/or by-products an
        similar to those previously produced at the
        faculty.
11

-------
.11 1'
ii j ;••
, ••: (..'
i'i ;•
i
- 1 •
s
y !<•

• •















ro


i

-













^
'I '







































1
1
i
TABLE B-l. CAPITAL UNIT COST FILE |
Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
Mnemonic
GENER
COKEQ
HTRK
FKLFT
FELDR
TKDZR
PUTRK
HTANK
LNRCL
LEACH
GHHON
PLDSN
ROADI
ROAD2
ETHHL
DBASN
FENCE
LFOFF
STOR1
STOR2
CLEXC
PIPE1
PIPE2
PIPES
PIPE4
PIPES
PIPE6
LINER
AER50
AERSS
AERCS
GATE
HEIR
See footnotes at
1
-ii- 11 1 1 i i -•
•' T. 0 "". -t
i i }• .'. 1 ' ' '
i i" ,u '
i . t ' i , >
' . i-" ii

t,1
li
''•



Cost
T
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9.3
0.0
0.0
52940
88211
0.0
0.0
end of







Equation Coefficients*
B C D
4000 .0 .0
500
20000
20000
70000
100000
10000
10000
2.09
6.10
600
75000
214.90
64.31
7.20
3000
8.10
48
31
31
1.31
246
8.80
32.09
32.09
21.42
3.955
.44
14000
277914 1
21009
120
60.
table.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
75
.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 1.0







Description
Electric Generator
Coominlcatlons Equipment
Hater Truck
Fork Lift
Front End Loader
Track Dozer
Pickup Truck
10000 Gal Hater Tank
Liner with clay layer
Leachate collection system
Ground Mater monitor (well)
Planning and design
Permanent access road
Temporary access road
Earth Hall
Debris Basin
Industrial chatnllnk fence 6*
Office Building
Maintenance Storage
PCB storage
Landfill clear/excavate
Corrugated metal pipe 30"
2* perforated feed pipe
6* Discharge pipe
6* Sludge pipe
3" Pipe and connectors
Industrial steel pipe
Pond Liner
50 HP Aerator
Stainless steel aerator
Carbon Steel Aerator
14* Slide Gate
Overflow Heir







source
Units Codet
ea
ea
ea
ea
ea
ea
ea
ea
sf
If
ea
ea
ft
ft
ft
ea
ft
sf
sf
sf
If
If
















:





If 2
If 2
If 2
If 2
Ola* 2
sf 3
ea 4
hp 4
hp 4
ea 5
If 6
(Continued)
1





,
z
I—I
r*
      SJ
      »~4
      X

      CD

-------
 I  1
   I






Code
36
37
38
39
40
41
42
43
44
45
46
47
48
49
SO
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
70












Cost
Mnemonic "A
CSAST
PRTNK
CSPLT
SSPL1
SSPL2
SSTSH
ACOMP
AFLTT
ARFLT
ULTFL
OSHOS
BUILD
DEARA
MEDIA
LAND
HEAT
INCIN
6ASCO
COVER
PUHP1
PUHP2
PUMP3
SLAKE
VIBFD
VESS1
VESS2
DIMIX
TROUG
SLCOL
CLARI
RDVAC

0.0
1.6867E11
0.0
0.0
0.0
36.4
0.0
28.22
5.9420
7.487E09
20947
7.0496
6.6348E09
0.0
0.0
17960
90000
0.0
5.0983
1400
-125
1000
18700
3.0594E08
39413003
1.4966E08
17413
0.0
14100
0.0
2720.5





T/\BLE B-l.
Equation Coefficients*
6 C B
101.52
3.9413E07
1.15
2.40
3.00
105.33
1409
195.4
0.30668
2.008EOS
334.08
3.991
24799.2
2.50
.744
0.02468
5073
8982
0.017156
6.5
9.23
1.953
2.14
.0 1.0
.0 2.0
.0
.0
.0
.5
.0
.0
.0
.0
.0
.0
.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
I.4381E06 3.0
393305 2.0
872968 2.0
183.4 1.0
1 1.0
121.43 1.0
1025 3.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
o
'.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
62. OSS 2.0 .0

A

1
1
(Continued) '

Description
Cylinder safety stand
Pressurized tank
Coated carbon steel platewk
Stainless platework d1an<10
Stainless platework 10
-------
                                        TABLE  B-l.   (Continued)
Code
71
i "
1 73
1 74
75
76
77
78
79
BO
81
82
83
84
• 85
86
87
88
89
90
91
92
93
94
95
96
97
98
' 99
100
101
102
Mnemonic
OISTR
OFFIC
RLABS
FLOCP
STGEN
COAG
PLATE
EVAP
CKVLV
CLR1
CLR2
GRADE
EXCV1
EXCV2
EXCV3
BKFLI
BKFL2
PAVE
FOUH1
FOUN2
FOUH3
FOUN4
SLAB!
SLAB2
UALL1
UALL2
HALL3
WALL4
WALLS
MAILS
UOBM1
WOBH2
	 C6TF
A
8.142
0.0
0.0
0.0
11000
1700
0.0
2787.8
156.94
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Equation coefficients"
BCD
0.22458 1.0 ' 1.0
38.88 -1.258-04 1.0
65.56 -1.005-04 1.0
5000.
2.89
171.57
90.20
67.545
13.263
.05
.84
.025
2.12
5.88
1.82
.06
6.41
.92
12
16
21
7.5
154
78.92
240
221
210
200
229
226
.7
.9
.0
.0
.0
.0
.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
Description
Rotary dlstrlbutor-trl *1000S
Office
Small research labs
Floculator paddle
Steam generator
Coag Blender
Oil/water sep plates stk
Spray film evaporator M000$
Check Valve
Clearing surface only
Clearing surface 1 subsurface
Grading
Excavation struct, w/hauling
Excavation footings .» piers
Excavation struct, w/sfte dlsp.
Backfill dozer spread
Backfill spread. ft compacted
Paving 3* asphalt on 8" rock
Pile foundations-drecast
Pile foundations-steel "H"
Pile foundations-pipe
Pile foundations-wood
Concrete base slab
Concrete base slab 6" rein/dp
8' concrete 10' dbl curtain, rein
8* ( up concrete 10" dbl curtain
8' concrete 6* sgl curtain dp .
8' & up concrete 6" sgl curtain
8' concrete 8" sgl curtain rein
8' S up concrete 8" sgl curtain
Doug. Fir pres trtd 4" x 12*
Coug. Fir pres trtd 6' x 10*
Units
ft
sf
sf
ea
Ibs/hr
(width) In
ft
gpm
dla-
sf
sf
sf
cy
cy
cy
cy
cy
sf
If
If
If
If
ey
cy
cy
cy
cy
cy
cy
cy
bdrt
bdft
source
Codet
015
2
2
026
027
006
028
029
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
                                                                                          (Continued)
.! !-: ,'! " <' "- T

-------
        ill  in
         n ;• "i
          I'".<•'
        ru
.1
I.)
        ,V. •:
                                                   TABLE  B-l.   (Continued)
Code
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121


Knemonlc A
WDDK
HNDftL
SONO
KILN
HEART
CONK
REB01
EXCHA
OILWA
VAPOR
DISTL
MOTOR
ACCAR
VAULT
COAL
SAND
STRST
FTANK
ENCAP
0.0
0.0
0.0
135939
15312
Cost Equation Coefficients
BCD
.54
15.36
225
5616.8
35.525
5.0469E095J0398E08
2923281
1863624
50035
0.0
490000.
30.
0.0
0.0
0.0
0.0
0.0
1466.
0.0
21091
13446
384.36
3500.
2300.
14.
.40
2800.
126.45
388.42
0.6
0.39
75.
.0
.0
.0
.4
.5
.5
.5
.5
.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
Description
Redwood wood decking
1-V aluminum handrail
12" rnd. sonotubeclp anchr.
Rotary kiln Incinerator
Multiple hearth Incinerator
Condensor
Reboller
Heatexdianger
Oil water separator tank
Chlorlnator
Distillation column-SO trays
Units
bdft
If
cy
lbs/hr
Ibs/hr
gpm
sf
sf
Ibs
ea
ea
Elec drive ntr-1800RPM-no str hp
Activated carbon
Utility vault
Anthraclt coal filter media
Silica sand
Structural steel framework
Fiberglass tank
Encapsulation equipment
Ib
ea
cy
ey
Ib
gal
tons/yr
Source
Codet
2
2
2
031
013
031
031
031
028
032
031
002
091
002
034
034
002
041
046
 -» T > '

'-. '"i

'."'."' •
 ,  i

   n  ' *
                    •Cost • (A+Bxun1ts°){1/e}.

                    tSee source list In Volume 1.

-------
                     TABLE  C-l.   OPERATION  AND  MAINTENANCE UNIT COST  FILE
Code  Mnemonic
                  Cost Equation Coefficients*
                  Ti         B      C     D
                      Description
                                                                    Source
                                                             Units   Code*
      WATER
                  0.0
0.026    1.0   1.0  Chicago water rate
                                                                                       gal
                                                                                               33
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
POWER
OPER1
OPER2
LABOR
MECH1
KECH2
ELEC1
ELEC2
HELPR
SUPER
FORMA
PAINT
STRKP
CUSTO
5PTNT
ASSPT
OPSUP
SHFOR
AUTO
CHEN
LABTE
CLERK
ALSU1
ALSU2
ALSU3
CA01
CA02
CAHY1
CAHY2
FECL3
COACL
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.035
7.77
9.19
6.76
9.40
11.20
9.99
11.75
7.70
12.94
12.45
9.05
6.43
6.76
18.32
15.37
12.21
9.19
8.75
8. SI
7.33
6.03
0.045
0.042
0.27
0.013
0.017
0.015
O.OT7
0.44
3.31
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 •
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1.0
1.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
                   Chicago electrical  rate
                   Operator level 1
                   Operator level 2
                   Laborer
                   Maintenance mechanic t
                   Maintenance mechanic 2
                   Electrician 1
                   Electrician 2
                   Maintenance helper
                   Halntenance supervisor
                   Mechanical maintenance  foreman
                   Painter
                   Storekeeper
                   Custodian
                   Superintendent
                   Asst. superintendent
                   Operations Supervisor
                   Shift foreman
                   Automotive equipment operator
                   Chemist
                   Lab technician
                   Clerk/typist
                   US AL203 bags
                   USAL203 bulk
                   3X ALZ03-liquid
                   Calcium oxide  931-98%  bulk
                   Calcium oxide 93X-98S bags
                   Calcium hydroxide 72-74* bulk
                   Calcium hydroxide 72-74S bags
                   Ferric Chloride liquid
                   Calcium hypochlorite drums
kwh
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
hr
Ib
Ib
Ib
Ib
Ib
Ib
Ib
gal
 »l
35
SO
50
50
50
SO
50
SO
SO
SO
SO
SO
SO
50
50
SO
50
SO
50
SO
50
50
48
48
48
48
48
48
48
48
                                                                                                           i-t   -o
                                                                                                           SI   X
                                                                                                           r>
                                                                                                           o
                                                                                                           o
                                                                                                           t/t
 See footnotes  at end of table.
                                                                                       Continued)

-------
Code  Mnemonic
                        TABLE C-l.   (Continued)
                  Cost Equation Coefficient;
                  A         BCD
Description
       Source
Units  Coilet
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
FUEL
KGAS
OMPWT
POLYH
GAS
AMHON
PHOS
CHFX1
CHFX2
INCIN
ACCAR
DEMUL
CLBOT
CLCYL
ENCAP
CAPCH
TRUK1
TRUK2
RAIL1
H2S04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.20
0.0
0.0
0.0
.61
3.475-03
148
0.002
.85
0.56
0.014
0.10
0.45
0.125
0.40
9.58
0.13
0.29
89.70
0.44
4.64-03
7.90
6.90
0.038
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
12 dlesel fuel 1979 figure
Natural gas 1979 figure
Dumping fee disposal site
Air flotation solid
Gasoline
Liquid amnonla
Phosphoric acid
Chem fix ser. solids <10S
Chan fix ser. solids >10S
Hazardout Hq Incln. fee
Activated carbon
Oil/water deoulslfler
Chlorine bottles
Chlorine cylinders
Encapsulation service
Encapsulation chemicals
Intrastate trucking
Interstate trucking
Interstate rail Chi -Sea
Sulfuric acid
gal
cf
ton
bs
gal
gal
gal
gal
gal
gal
Ibs
gal
Ibs
Ibs
ton
ton
lOOlb-nlle
lOOwt
lOOwt
gal
010
049

012
010
047
044
039
039
010
045
042
040
040
046
046
023
024
025
043
•Cost- (A+Bx Un1ts°)Wcl
tSee list of sources.

-------
                                 APPENDIX D

                         CURVE FITTING FOR COST FILES
     In estimating capital and operating costs for the various technology
module or module components (Appendices B and C), cost functions were
developed to predict component costs for various -seal ing factors.  Although
many will be simple linear or multiplicative functions of capacity or
throughput, certain special pieces of equipment, in particular, may have
other than linear relationships between their costs and their scale.   Once
costs are determined for the components in Appendices 6 and C, they are
utilized in the module cost equations in Appendix F.

     For this reason, a curve fitting methodology has been developed for
determining the most appropriate functional form to use.  As with most
statistical techniques, the use of this methodology requires two things:
(1)  that an adequate number of cost/size data points be available and (2)
that the included data points be from the same population - that is, if the
component to be costed is a pump, then the costs data points differ only
because of pump size, and not because they are for differing kinds of pumps.
Particular emphasis is placed on this last point, and manufacturers were
contacted to develop a sufficient number of cost data points for each such
special piece of equipment.

     The curve fitting methodology Involves a series of regression attempts
to fit particular cost/size data points to various candidate functional
forms.  As an absolute minimum, 3 data points are required.  But, for
practical application of the methodology, more statistically meaningful
results are obtained using 5 to 10 data points.  Assuming these data points
are available, the following functional forms are attempted:

             (1)  Y = a + bX
             (2)  ey = aXb    y = In(aXb)

             (3)  InY = a + bX   Y = e*a + bx)
             (4)  Y = aXb
             (5)  Y = a + bX2
             (6)  Y2 = a + bX   Y = SQRT (a + bX)
             (7)  Y2 = a + bx2  Y = SQRT (a + bX2)
             (8)  YC = a + bXD  Y = (a'+ bXD) £                 l

             (9)  
-------
     In these equations:  Y is the dependent cost variable; X Is the
Independent size variable, and a and b are constants that are using lease-
squares technique, estimated as a  and B.   As example Figure D-l shows,
these equations are special cases of the general form:

            (lnY)L =.A + B (lnX)M

where the natural logs (In's) are optional; where-B is 8; and where A may be
a or Ina.-

     After the first seven regressions are performed, the results are analyz-
ed and as many as three additional models may be attempted.  In the example,
significant F statistics were developed under the first, sixth and seventh
forms; but two additional functional forms were tested using an approximation
of the B-inverse under Form 4 as the exponent of Y (i.e., 1/0.89332 1.5) and
single and squared exponents for X.

     Although the seventh and eighth forms in this example proved to be more
significant (higher F statistics) with slightly higher percent explanation
(I.e.,-the R2 coefficients-of-determination were slightly.higher),-the simple
linear form, Form 1, was chosen for estimating this component's costs as a
function of diameter, in feet.  The reason for this choice is that Form 1 is
adequately significant (at greater than 99 percent confidence) and substant-
ially more simple to use than either Forms 7 or 8.  By making this selection,
only 2 or 3 percent explanation is sacrificed, but any ultimate comprehension
by the reader is substantially enhanced.

     If 10 forms are tested for a particular component, and all yield
insignificant F statistics, the methodology requires that additional data
points be developed before further curve fitting analysis Is attempted.

     The results of the curve fitting analysis for speciality equipment
cost data not demonstrating definite linearity (graphic method) are shown
in Table 0-1.  Table 0-2 lists the relevant ranges for the curve fitting
result.  Where possible, these ranges should not be exceeded.
                                      19

-------
ro
o
im
• 16 usinq oroqram GR)
Camp. Flacq. Clalrlfler
XI In
Diameter
1
2
3
4
5
6
7
e
9
,10
11
12
13
14
15
16
30
40
45
65
80
B5
100









Y1 In
I
38.600
46.350
71.900
86.300
96.000
101 .500
114,100









B a • 10- Ft • *4 06
B n • .OS: Ft • fi fil
a » o ni • Ft .IK ?«
H0:B • P can be
at the 1 • a co
level If comput
F > tabular F f
1 for nun. and
dencm.
rejected
nfldence
ed
or d.f. of
n - 2 for
In - 7
JJ . .
y • a + 0 X

2 1 „ „
	 ' y • (.no +,Btn X
or ey • aX6
—^ tnV • a+8 X

4 1 tuY • lm t BtnX .
He,.;.s.; j ,
•^ V = « + R X2

6 1 9 A A
— J rz • « + B x
1ev « q + e x
, 1 » 
-------
TABLE D-l.  CURVE FITTING RFSULTS

Level of Confidence
Sample Size.
Title
Tank - Stainless Steel
Ultra Filtration
Air Flotation
Reverse Osmosis
Aerators. CFSS S TFNI
Steel Buildings
Aerators, SS
Serfllco Pressurized Tank
Vlb. Feeders
Glass R. Vessel U/o Mixer
Glass R. Vessel H. Mixer
Com. Flacq. Clarlfier
RD Vacuum Filter

Rotory Distributor
(Trickling filter)
Gas Holder Dgester Cover
Air Flotation (w/o tank)
Spray Film Evaporator
Check Valve
De Aerator (f 1)
De Aerator (f 2)

Oe Aerator (f 3)
Rotary Kiln Incinerator
Multiple Hearth Incenerator
Condenser
Heat Exchanger
Re Boiler
Oil Water Separator
Concrete Pit
*A11 $ are In mid '.78.
tNote: "E9", means 10>
General equation form
Y-wil'ift?
$
1.000'
$
I
1.000*
(
J
I

(
1.000'
1.000*

1.000'
1.000'
1.000'
1.000'

s $


s *





s $
s $

s $
s t
s $
s $
Land Am. in
FtZ
Steam
1,000'
\
I
1,000-
I

$

,-:etc
1s:
In
s *


s J




• .. *>
VL
.; X-uniits L
Gal
Flow In GPM
Sq. Ft
Gal /Day
H. P.
1,000*5 sq.ft
II. P.
Gal
Ton Sand/Mr
Gal
Gal
Ola. In ft
Sq.Ft Filter
area
Tank Ola.
in ft
Dia. In ft
Sq.Ft
Gal/Mln.
Inches Ota.
Gal/Mln.

Gal/HIn
Gal/Mln.
Lbs/llr
Lbs/Hr
Gal/Mln.
Area In sqft
Area In sqft

CBS.

M
= a + BXM.
1.5
2
2
a
36.40 .
7.487E9t
195.4
1 20947
1.5 88211
1
1.75
3
3
2
2
2.25

2
1


.5
.85

.8
2.5
1.4
1.5
2.5
1.5
1.5

1.5



7.0496
52940
I.6867E1I
3.0594E8
39313003
I.4966E8
2126.2

2720.5
8.1420
5.0983
5.9420
2787.8
156.94
99.831

1.1347
6.6348E9
135939
35.525
5.0469E9
1863624
2923281

50035



B
105.33
2.00BE5
28.22
.696008
21009
3.0991
277919
3.9413E7
1.43B1E6
393305
872968
3.7359

62.055
.22458
.017156
.30668
67.545
13.263
18.B88

.11184
247992
5616.8
15312
5.0398E8
13446
21091

384.36



M
2
1
1
1
1
1
2
2
1
1
2

1
1
2
5
1
2
1

1
2
1
1
1
1
1

1



R*
.9999
.998
.986
.998
.951
.9997
.944
.952
.997
.995
.994
.963

.997
.997
.9999
.946
.999
.996
.990

.999
.996
.998
.996
.989
.994
.994

.982



F
91237
305.47
127.25
222
46.41
46.92
50.44
42.73
1044
610.8
337.16
104.78

313.83
83.005
180.78
25.48
1342
635.49
654.42

4568
8S1.74
1725.19
500. 18
266.30
415.24
415.24

41.10




3
4
4
5
5
5
5
5
6
6
6
7

8
10
4
4
5
9
9

9
9
6
5
5
5
S

3




99*
99»
99*
99*
99*
99*
99*
99*
99+
99 >
99*
99*

99*
99+
99*
95*
99*
99*
99*

99*
99*
99*
99*
99*
99*
99*

90*




-------
ro
ro
TABLE D~2. RELEVANT RANGES FOR
•j*- .
CURVEFITTING
- Y-- Range
Tttt« - Y-urttt^
Tank - Stainless Steel
Ultra Filtration
Atr Flotation
Reverse Osmosis
Aerators. CFSStTFNI
Steel Buildings
Aerators. SS
Serf 11 co Pressurized Tank
VI b. Feeders
Glass R. Vessel H/0
Mixer
Glass R. Vessel U.
Mixer
Comp. Flacq. Clarlfter
RD Vacuume Filter

Rotory Distributor
(Trickling filter)
Gas Holder Digester
Cover
Atr Flotation (w/o Tank)
Spray Film Evaporator
Check Valve
De Aerator (11)

De Aerator (12)


De Aerator (1 3)
$
$
1.000's $
$
$
1.000's $
t
t
s

$

$
1.000's $
1.000'S $


1.000's $

1.000's $
1.000'S $
1.000's $
$
Land Am. In
ft?
Steam In
1.000's Ibs/
hr
$
. From
291
68.000
45.5
20.000
4.148
19
5.034
5.940
267

14.000

22.000
36.8
86.5


14.5

20.893
100
284
190.4

26

7

7,339
- T6 ^
1.411
455.000
109
365.000
13.387
69
14,645
, 13,301
1.256

40,500
i t
60,000
• 108.8
196.0


52.7

115.158
136 ''
2.651
2.784

180.3

280

31.165
X- units
Gal
Flow In GPH
Sq. Ft
Gal /day
H.P.
1.000's sq.ft
H.P.
Gal
Ton Sand/hr

Gal

Gal
Diameter in ft
Sq. Ft Filter
area

Tank Dia. In ft

Ola. In ft
Sq. ft
Gal/Hln.
Inches Ola.

Gal/Hln.

Gal/Hln.

Gal/Hln.
RESULTS

• X,: Range
From
47.43
100
50
10.000
10
4
10
35
2

300

300
30
60


25

30
600
50
2

28.7

28.7

28.7
. To
503
1.000
400
500.000
75
20
75
226
25

4.000

4.000
100
575


200

80
1.200
2.000
14

805.1

805.1

805.1
                                                                                         (Continued)

-------
TABLE 0-2 (Continued)
Y Range
Title
Rotary Kiln Incinerator
Multiple Hearth
Incinerator
Condenser
Heat Exchanger
Reboller
Oil Hater Separator
Concrete Pit
Y-unltfc
1.000's $
$
i
$
From
31.888
1,481
14,704
35,431
47,832
4,900
To
212.587
8. 185
43.403
212.587
286.992
13.900
X-un1ts
Lbs/Hr
Lbs/Hr
Ga1/H1n.
Area In Sq.ft
Area In Sq.ft
CBS
X Range
From
300
700
60
200
200
950
To
5.000
20.000
800
7.000
7.000
4.200

-------
Nodule
                                 APPENDIX  E
                          MODULE  DESCRIPTIONS
                     Description
Technologies
Where used
Lifetime
 (Hears)
                                                 Preelpltatlon/floc-
                                                 ulatlon/sedl-
                                                 aentatlon
                                                 Precipitation/floe-
                                                 ulatlon/sedl-
                                                 nentitlon
Flocculator        Horizontal, type with  paddle
                   mixers.,  Each paddle  cell  Is
                   3600 ft3  In volume and has
                   a mean retention  tine of
                   15 fflin.

Flash mixer        Basin where one or more
                   chemicals are combined with
                   the wastestream under
-------
Module
                     Description
                               TechnologiesLifetime
                               Where Used	(Years)
waste stabili-
zation pond
Chemical fixation
 Incinerator
Sedimentation
basin
passed through the bed where
the biological film fixed to
the media decomposes the
organic compounds.

Large shallow basin
where organic compounds
are retained and degraded
under both aerobic and
anaerobic conditions.  The
structure consists of
ecavated soil basins
with soil or concrete
linked dikes.  Liners
are also provided to
prevent leaching.

A two-part. Inorganic
chemical system that
reacts with all poly-
valent metal Ions and
with certain other
waste components.  Also
reacts with Itself to
form a chemically and
mechanically stable
solid for landfllUng.
The system 1s based on
reactions between sol-
uble silicates and
silicate setting agents
to produce a solid
matrix for binding
the Inorganic contam-
inant.

Rotary kiln Incinerator.
Includes afterburner and
scrubber.

Rectangular basin where
solid particles  In the
wastestream are  removed
from suspension  through
gravity settling.  Clari-
fied waste flows over a
weir and out of  the basin.
Concentrated solids are
removed  (wasted)  from the
Haste stabilization       5
pond
                                                  Land disposal
                                                                           N.A.
                                                  Incineration
 Precipitation/
 flocculatlon/sedl-
 mentatlon,  aerated
 lagoon,
 trickling filter.
 activated sludge
                                                                           10
                                                                (Continued)
                                      25

-------
Module
  Description
                               Technologies
                               Where Used
Lifetime
 (Years).
Clarlfler
Rotary drum
vacuum filter
Air flotation
Oil/water
separator
Multimedia
filter
                               Precipitation/
                               flocculatlon/sedl-
                               nentatlon filtration.
                               flotation,
                               trickling filter.
                               ameroblc digestion,
                               activated sludge
basin through a sludge
descharge line (sludge
underflow).

Circular basin where solid     Aerated lagoon,          10
particles are removed from     trickling filter,
waste suspensions through      activated sludge
gravity settling.  The unit
1s designed to Include
coagulation and flocculatlon
1n certain zones.  There Is,
therefore, optional chemical
feed.

Used for dewaterlng process
sludges by drawing the water
(filtrate) through the filter
media which retains the solid
fraction (filter cake).  The
module Includes the vacuum
pump, sludge conditioning
equipment, and all'other
necessary components.

Solid components are removed   Air flotation            10
by flotation rather than by
gravity settling.  Energy Is
added to the system In the
form of bubbles, which adhere
to the suspended solids.  The
solIds then rise and agglomerate
at the surface where they are
removed by a skinner.

Accomplishes gravity separa-   Oil/water separation     10
tlon of two liquid phases
having different densities.
This module Involves
coalescing separation — a
process where plates. In-
serted In the rise path of
oil droplets, tend to coalesce
the droplets Into larger
masses that rise faster.
Accomplishes the separation
of suspended matter from
the wastestream by passing
It through a porous material.
                                                  Filtration
                                                                           10
                                                                (Continued)
                                     26

-------
Module
                     Description
                               Technologies
                               Hhere Used
                   Lifetime
                    [Years!
Distillation
Evaporator
Reverse
osmosis
Pressure filters have media
contained In a steel tank.
Haste Is pumped through the
filter under pressure, and
the nedla are washed by
reversing flow through the
filter bed (backwashlng).  The
multimedia filter In beds
functions on similar principals
under gravity f'ow.

Distillation Is a technique    Distillation
for separating reusable
components from a feed stream.
The nodule consists of a dis-
tillation tower, reboller,
condenser, and other ancillary
components.  Steam generation
Is accomplished by a separate
nodule.

Used for recovery of eoncen-   Evaporator
trated solvents or volatile
organic compounds.  Heat is
provided by condensation of
steam on metal tubes Inside
a chamber of the evaporator.
The wastes flowing Inside the
tubes are heated and the
volatile components are drawn
off as a vapor.  The process
differs from distillation
In that the vapor 1s usually
a single component or un-
separated mixture.  Module
Includes condenser and
external separator.
Cylindrical vessels con-
taining cartridges composed
of bundles of fine hollow
fibers or spirally wound
oeobrane sheets.  Dilute
wastestreams containing
metals or other low-molecular
weight substances and low
suspended solids are applied
to the fibers or membranes
under high pressure.  The
Reverse osmosis
                                                               (Continued)
                                    27

-------
Module
                     Description
                                lecnnoiogies
                                Where Used
                   Lifetime
                    (Vears)
Ultra-
filtration
Carbon
adsorption
decanter
Chemical
storage:  gas
 effluent product may be either
 very pure water or a high
 concentration of a desired
 chemical product.

 UF modules resemble those      Ultraflltratlon
 used in reverse osmosis except
 that the range of pore size In
 the former (0.02 to 0.04 ran)
 limits the Ultraflltratlon
 application to that of re-
 moval of finely emulsified
 oils, or other high-molecular
 weight chemicals and fine
 suspended soJIds.. Operating
 pressure Is In the range of
 10 to 100 pslg. compared
 with the 500 to 1500 pslg
 typical of reverse osmosis.
• Backflushlng 1r readily
 accomplished to maintain
 adequate flow rate.

 The carbon adsorption.module   Carton adsorption
 Includes the contactor columns,
 carton storage, carton charging
 system, carbon generation
 (multiple earth furnace In-
 cluding afterburner and scrubber).

 Oecantatlon Is frequently em-  Hydrolysis
 ployed for separating precipi-
 tated solids-from liquids or
 for density separation of
 liquid mixtures.  The unit
 consists of a tank which
 provides sufficient retention
 time for separation.  The
 separated materials are
 continuously drawn off at
 different levels In the tank.
                                                                           10
 Pressure vessels housed 1n a •
 building contain gases used
 In oxidation or reduction
 reactions.  Gases are matered
 Into "the wistestrearo using a
 chlorlnator.
Oxidation/reduction
                                                            (Continued}
15
                                    28

-------
Module
  Description
iecnnoionic
Where Used
(Years)
Chemical
storage: liquid
Chemical
storage: solid
Sludge
equalization
Hazardous
Haste land
disposal site
Storage for any liquids re-    All technologies
quired during waste treat-
ment.  Appropriate liquids
are stored In a flat bottom
cone top steel tank (AIMA
Dl-0-76, API 620. or API 650
depending on contents).  Other
liquids are stored 1n pres-
surized vessels (annonla) or
in fiberglass tanks (caustic
mixtures).

Storage of granular or         Precipitation/
powdered chemicals for use     flocculatlon/sedl-
1n waste treatment.  Con-      mentation,
ponents Include a dry chemical oxidation/reduction
storage hopper vibratory,
feeder, slaking tank, and
metered feed.
                         IS
                                                                           IS
A tank that serves as a
flow equalizer and serves
as a site for sludge blend-
Ing.  It can serve as a
buffer zone between the
highly sensitive anaerobic
digestion process and
can prevent shock loading
of toxic substances.  It also
is a unit process where
chemicals nay be added to
precipitate heavy metals or
buffer add pH.

A land disposal site approved
for acceptance of liquid
and solid hazardous wastes.
The main disposal technique
1s waste burial, with solid
debris deposited In trenches
and covered with soil.
Leachate monitoring systems
are Included In this module.
Evaporation of liquid wastes
In shallow basins 1s con-
ducted In a separate module
(see evaporation pond).
Anaerobic/digestion
     10
Land disposal
                                                                           20
                                                            (Continued)
                                     29

-------
nodule
  Description
lecnnoiogies
mere Used
                                                                      (Years)
Encapsulation
Deaerator
Evaporation
pond
A process whereby waste
solids are dewatered, fixed
In a resin, compacted, con-
solidated (by heat) Into a
block, and Jacketed 1n a final
sealing resin.*  Disposal In
an approved site Is still
required after the wastes
are encapsulated.

The deaerator removes dis-
solved oxygen from wastes
so that corrosion of nodular
components or piping Is
minimized.  The waste Is
sprayed Into a steam-filled'
chamber and Its temperature
1s brought within 2 or ,3  .
degrees of that, of the
stream, at which time nost
of the dissolved gases are
released.  Collected and again
atomized, the water 1s Im-
pinged by high-velocity
steam heated to full steam
saturation temperature.
The essentially gas-free
water Is then condensed
and stored below baffles
In a main retaining tank.
Encapsulation
Hydrolysis
The solar evaporator Is a
large, shallow lagoon used
for reducing the volume of .
dilute, oil-free aqueous
wastes.  Often, the evapor-
ation pond Is actually a
disposal process In that.
residual salts and other
solids are left In the
lagoon.  In some operations,
such sludges are periodically
removed.  Effective performance
requires that the climate be
relatively dry.  The annual
evaporation rate should
exceed the annual precipitation.
Evaporation pond
                                                                          20
                                                               (Continued)

-------
Module
Steam
generator
Description
Converts feed water and high
pressure return condensate
Into high pressure steam for
use In modules requiring
steam as a heat source.
lecnnoiogies LI retime
Where Used (Years)
Evaporator,
distillation
carbon adsorption
7
Building
Transport
Yard piping
Pumps
This optional module may be    As specified
used for housing equipment
(storage) to provide office
space for plant personnel
and laboratory facilities
for waste testing and process
monitoring.
                        15
Delivery of solid or liquid
wastes between processing
sites or to disposal.  Trans-
port options:  truck or rail.

Piping and valves for
conducting wastestreams
and sludges between the
various modules.

Three types of pumps are
Included as options:
aqueous waste pumps.
sludge pumps, and chenlcal
feed pumps.
As specified
All technologies
All technologies
N.A.
IS
10
                                      31

-------
                               APPENDIX  F
                     SYSTEM  VARIABLE EQUATIONS


FLOCCULATOR MODULE



System Variables


      NCELLS=RNDUP(QINF/1795.2)    ;  Number  of  Cells  in Module
      NPADS=RNDUP(NCELLS/4.)    ;  Number of  Paddles  1n Module

      LANDAM * NCELLS*280.56+NPADS*31.22   ; Land Area
      LANDAR - LANDAM+24.*SQRT(LANDAM}+144.   ; Land  Area  Including Buffer

      HRSYR = DAYS*HRS   ; Hours  of  Operation  Per Year

      TSS=TSS


Performance


      CFCM(CLR1 )=COST(CLR1 , CAPCF, LANDAR, I RCODE)
      CFCM( GRADE )=COST( GRADE, CAPCF, LANDAR, I RCODE)

      CM(1)=(CFCM(CLR1 )+CFCM( GRADE)

      CFCM( CLAB2)=COST(CLAB2 , CAPCF .LANDAR/27 ., IRCODE)
      CFCM(WALL2)=COST(WALL1, CAPCF, (NCELLS*420.66+NPADS*94.96)/27. ,
      1 IRCODE)

      CM(2)=CFCM(SLAB2)+CFCM(WALL1)

      CFCM(FLOCP)=COST(FLOCP, CAPCF, NCELLS, IRCODE)
      CFCM(MOTOR)=COST(MOTOR,CAPCF,NCELLS, IRCODE)

      CM(3)=CFCM(FLOCP)+CFCM(MOTOR)

      CM(4)=0.    ;Not applicable

      CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)


-------
      CM(5)=CFCM(LAND)

      CM96)=0.

      CFOM(OPER1)=COST(OPER 1,OMMCF,MSTAFF*HRSYR*0.002,IRCODE)
      CFOM(gPER2)_=COST(OPER 2.jMHCF.MSTAFF*HRSYR*0.001,IRCODE)

      CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR*0.042,IRCODE)

      OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)

      CFOM(POWER)=COST(POWER,OMMCF,17.9*HRSYR,IRCODE)

      OMM(2)=CFOM(POWER)

      OMM(3)=0.05*CM(3)

      OM(4)=0.   ;None

      OMM(8)=   ;Not Applicable
Module Specific Parameters. Parameter Definitions


              -HRSYR        Hours Operation Per Year
       Integer-I,           Misc. Counter
       Integer-J,           Misc. Counter
       Real   -LANDAM       Module Land Area (Ft*Ft)
              -LANDAR       Total Module Land Area With Buffer(Ft*Ft)
              -NCELLS       Number of Cells .
              -NPADS        Number of Paddles
              -QINF         Working Flow (Gal/M1n)
              -QINFL        I/O Flow (Gal/M1n)
              -TSS          Total Suspended Solids

FLASH MIXER MODULE


System Variables
      NMIX=RUNDUP(QINF/700.)
      RATIO=100./(100.-EFF)
      DETENT=NMIX/KRATE)*(RATIO**(1./NMIX)-1.)
      VOL=(QINF/7.48)*DETENT/NMIX
      SURFAR=VOL**0.667)*NMIX
      LANDAM=SURFAR+0.33*VOL**0.33+2.778)*NMIX
      SQDAM=SQRT(LANDAM)
      LANDAR=(SQDAM+6.)*(SQDAM+6.)
      HRSYR=DAYS*HRS
                                     33


-------
      EFF is user defined.  Default value is 90 percent and no attributes are
modified.  See description of MODSP Parameters.

      KRATE is user defined.  A default value of 1 is used.
      See description of MODSP Parameters.

     Quantities of chemicals demanded are user defined.  See description of
MODSP Parameters and demand streams.
Performance


      CFCM(CLR1 )=COST(CLR2 ,CAPCF,LANDAR,IRCODE)
      CFCM(GRADE)=COST(GRADE.CAPCF.LANDAR,IRCODE_

      CM(1)=CFCM(CLR1 )+CFCM(GRADE)

      CFCM(SLAB1)=COST(SLAB1,CAPCF,LANDAM/27.,IRCODE)
      CFCM(WALLSKOST(WALLS,CAPCF,(LANDAM-SURFAR)*(VOL**.33)/17.,
      1  IRCODE)

      CN(2)=CFCM(SLAB1)+CFCM(WALL5)

      CFCM(COAG )=COST(COA6 , CAPCF,VOL**0.33,IRCODE)

      CM(3)=CFCM(COAG )

      CM(4)=0,1*CM(3)
      CFCM(LAND)=COST(LAND,CAPCF,LANDARTlRCdDE)~

      CM(5)=CFCM(LAND)

      NOT  APPLICABLE


Module Specific Parameters. Parameter  Definitions"~


      02 EFJ        Reaction Efficiency  (Per cent)
      03 KRATE      Reaction Rate  (Moles/(L1tre*Sec))
      04 QAL        Quantity of AL (2) 0(3)' Needed for Module   (GPM)
      05 QFE        Quantity of FE CL(3) Needed  for  Module   (GPM)
      06 QCA        Quantity of C A 0  CL Needed  for  Module  (GPM)
      07 QPHOS      Quantity of Phosphoric Acid  Needed for Module  (GPM)
      08 QALS       Quantity of AL S 0 (3)  Needed for Module  (GPM)
      09 QCAO-      Quantity of C A 0  Needed for Module  (GPM)
      10 QCAHY      Quantity of Calcium Hyrdoxide Needed for Module   (GPM)
      11 QPOLY      Quantity of Polymer Needed for Module  (GPM)
      12 QGAS       Quantity of Gases  Needed for Module  (GPM)
          	•       ——  —	               \

                                      34	._     __                	

-------
               -DETENT      Detention Time
               -HRSYR       Hours operation per year
       Integer -I .         Misc Counter
       Integer -J           Misc Counter
               -LANDAM      Module Land Area (Ft*Ft)
               -LANDAR      Module Land Area with Buffer (Ft*Ft)
               -NMIX        number of Mixers
               -QINF        Working Flow (Gal/Min)
               -QINFL       i/o Flow (Gal/Min)
               -RATIO       Efficiency Ratio (Ref 106)
               -SURFAR      Surface Area
               -VOL         volume

JACKETED  FLASH MIXER MODULE

System Variables


      RATIO* 100./(100.-EFF)
      DETENT=1./FRATE*(RATIO-1. )
      VOL=QINF*DETENT
      DIA=4.375*ALOG{VOL)-7.4
      DIAAG=160.*ALOG(VOL)-1.16
      LANDAM=0.785*DIA**2.
      LANDAR=LANDAM+23. *SQRT(LANDAM)+144.
      CONST=l.E-4/(.1413*RTEMP+2.)
      HORSP=163.6*VOL*CONST
      HRSYR-DAYS*HRS
      HOUS=0.
      IF(BLDG.EQ.2.) HOUS=1
      SITE=1.-HOUS

      EFF is user defined.    Default value is 90 and no attributes are
modified.  See description of MODSP Parameters.

      Quantities of chemicals demanded are user defined.  See description
of MODSP Parameters and demand streams.
Performance
      CFCM(CLR1 )=COST(CLR1 , CAPCF,LANDAM*HOUS+LANDAR*SITE,IRCODE)
      CFCM(GRADE)=COST(GRADE,CAPCF,LANDAM*HOUS+LANDAR+SIDE,IRCODE)

      CM(1)=CFCM(CLR1 )+CFCM(GRADE)   _ _ |

      CFCM(SLAB2)-COST(SLAB2,CAPCF,LANDAM/27.,IRCODE)
      CFCM(SLAB1)=COST(SLAB1,CAPCF,HOUS*LANDAM/27..IRCODE)
      CFCM(BUILD)=COST(BUILD,CAPCf.,HQyS*LANDAR,IRCODE)

                                  ..... 3.5 __ 1

-------
       CM(2)+CFCM(SLAB2KFCM(SLAB1)+CFCM(BUILD)
       CFCM(VESS2(=COST(VESS2,CAPCF,VOL,IRCODE)
       CFCM(MOTORKOST(MOTOR,CAPCF,HORSP,IRCODE)
       CM(3)=CFCM(VESS2+CFCM(MOTOR)
       CM(4)=0.1*CFCM(MOTOR)	.
        CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
        CM(5)«CFCM(LAND)
        Not applicable
        CFOM(OPER1)=COST(OPER1,OMMCF,MSTAFF*HRSYR*  .003.IRCODE)
        CFOM(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR*  .002.IRCODE)
        CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR*  .098.IRCODE)
        OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
        CFOM(POWERKOST(POSER,OMMCF,8.218E-3*QINF*HRSYR,IRCODE)
        OMM(2)-CFOM( POWER)
        OMH(3)=0.05*CH(3)
        Not applicable; costed  1n  storage module
        OMM(4)=0
        Not applicable
        OMM(8)=0

  Module Specific  Parameters, Parameter  Definitions
        02  EFF        Reaction  Efficiency  (per cent)
        03  KRATE      Reaction  Rate  (Moles/(Litre*Sec))
        04  RTEMP      Reactor Temperature  (Deg C)
        05  BLDG       Building  Flag
        06  QAL        Quantity  of AL (2) 0(3) Needed  for Module   (6PM)
        07  QFE        Quantity  of FE CL  (3)  Needed  for Module    (GPM)
        08  QCA        Quantity  of C  A 0  CL Needed for Module    (GPM)
        09  QPHOS      Quantity  of Phosphoric Add Needed for Module    (GPM)
        10  QALS       Quantity  of AL S 0 (3) Needed for Module    (GPM)
        11  QCAO       Quantity  of C  A 0  Needed for  Module    (GPM)
        12  QCAHY      Quantity  of Calcium  Hydroxide Needed  for Module    (GPM)
        13  QPOLY      Quantity  of Polymer  Needed for .Module  (GPM)
r B^
•
                                       36

-------
               -LANDAM     Module Land Area (Ft*Ft)
               -LANDAR     Module Land Area with Buffer (Ft*Ft)
               -QINF       Working Flow (Gal/Min)
               -QINFL      I/O Flow (Gal/Min)
               -ftATIO      Efficiency Ratio (See Ref 106}
               - SITE       Counter
               -VOL        Volume

               -CONST       Correction Factor for HP
               -DETENT .     Detention Time
               -DIA         Diameter of Mixer
               -OIAAG       Diameter of Agitator
               -HORSP       Horse Power Required by Agitator
               -HRSYR       Hours operation per year
       Integer -I           Misc.Counter
      "Integer -J           Misc.Counter

 AERATED  LAGOON MODULE

System Variables


      CEFL=CINF*(100.-EFF)*0.01
      SURFAR=16.*QINF*CINF-CEFL)/(KRATE*CEFL)
      SQSUR=SQRT(FURFAR)
      LANDAR=(SQSUR-H32.)*(SQSUR 132.)
      VOLEX=87.6* SQSUR
      NOAER=RNDUP(2.41E-4*SURFAR)
      HRSYR*DAYS*HRS
      HORSP=((SURFAR*12.)/1000.)*.5
      KWH=HORSP*.7457

      EFF 1s user defined.  A default value of 90 percent removal  is  in
the program.  Note that the varying degradability of hazardous compounds is
taken into account by specifying 'KRATE1.   See the descriptions  under
MODSP Parameters.

      IFF (CINF/TOTN.GT.20)
           QAM=(CINF/TOTN-20.)*QINF*2.13E-5
      ELSE
           QAM=UNDEF
      ENDIFF

      IFF (CINF/TOTP.GT.100.)
           QPHOS=(CINF/TOTP-100.)*QINF*2.47E-5
      ELSE
           QPHOS=UNDEF
      ENDIFF

      TOTN=0.
      TOTP=0.                   .	
                                     37

-------
Performance
      CFCM(CLR2 XOST(CLR2 ,CAPCF,LANDAR,IRCODE)
      CFCM(EXCV3KOST(EXCV3,CAPCF,VOLEX,IRCODE)
      CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,IRCODE)

      CM(1XFCM(CLR2 )KFCM(EXCV3_MGRADED

      CFCM(WALL6)=COST(WALL6,CAPCF,5.5,IRCODE)
      CFCM(SLAB1)=COST(SLAB1,CAPCF,3.1,IRCODE)
      CFCM(WALL5)=COST(WALL5,CAPCF,1.8,IRCODE)
      CFCM(SLAB2)=COST
      CFCM
      CFCM
      CFCM
WDBM2
WDBN2
WDDK
'COST
=COST
=COST
SLAB2,CAPCF,0.5,IRCODE)
WDBM2.CAPCF.25..IRCODE)
WDBM1,CAPCF,600.,IRCODE)
WDDK ,CAPCF,400.,IRCODE)
      CM(2)=CFCM(WALL6)+CFCM(SLAB1)+CFCM(WALL5)+CFCM(SLAB2)+
            CFCM(WDBM2)+CFCM(WDBM1)+CFCM(WDDK)

      CFCM(AER50)=COST(AER50,CAPCF,NOAER,IRCODE)
      CFCM(GATE )=COST(GATE  .CAPCF.4.,  IRCODE)

      CM(3)=CFCM(AER50)+CFCM(GATE  )

      Included 1n Aerator  Costs

      CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)

      CM(5)=CFCM(LAND)

      CFCM(LINER)=COST(LINER,  CAPCF.SURFAR,IRCODE)
      CFCM(HNDRL)=COST(HNDRL,  CAPCF,104..IRCODE)
      CM(6)=CFCM(LINER)+CFCM(HNDRL)

      CFOM(OPER1)=COST(OPER1,OMMCF,MSTAFF*HRSYR*  .06  .IRCODE)
      CFOM(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR*  .012,IRCODE)
      CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR*  .66  .IRCODE)

      OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)

      CFOM(POWER)=COST(POSER,OMMCF,KWH*HRSYR,IRCODE)

      OMM(20=CFOM(POWER)

      OMM(3)=0.05*CM(3)

      Not applicable                                                          ."^r.".

      OMM(8)=0                                                            — T.'.J.'.'L
                      	 ~-r".-.-_:.
                                                                            v •  • •
      '•'=-.                      38                        	••''-"''

-------
Module Specific Parameters. Parameter Definitions


      02 EFF   Efficiency (Per cent)
      03 KRATE Reaction Rate (Per day)

               -CEFL        Effluent Bod Concentration
               -CINF        Influent Bod Concentration
               -HRSYR      Hours Operation Per Year
       Integer -I           M1sc Counter
       Integer -J           Nisc Counter
               -LANDAR     Module Land Area with Buffer (Ft*Ft)
               -NOAER      Number of Surface Aerators
               -QAM        Liquid Ammonia (Demand) (Gal/Min)
               -QINF       Working Flow (Gal/Min)
               "QINFL      I/O Flow (Gal/Min)
               -QPKOS      Phosphoric Acid (Demand) (Gal/Min)
               -SQSUR-      Square Root of Surface Area
               -SURFAR     Surface Area
               -TOTN       Total Nitrogen
               -TOTP       Total Phosphorus
               -VOLEX      Volume of Excavation for Lagoon(s)

 AERATED BASIN MODULE

 System Variables


       CEFL=CINF*(100.-EFF)*0.01
       SURFAR=0.042*QINF*(CINF^CEFL)/(l.+10.*Krate)
       SQSUR=SQRT(FURFAR)
       LANDAR=(SQSUR+12.)*(SQSUR+12.)
       NOAER+RNDUP(2.41E-4*SURFAR)
       HRSYR=DAYS*HRS
       LBSDY=HRSYR*835E-6
       HORSP=((SURFAR*20.)*.001)*.5
       KWH=HORSP*0.7457
       RATN=CINF*0.05
       RATP=CINF*0.01

       Performance (EFF)  1s  user defined.   Default value =  90  percent
 removal.   Note  that varying degradability  of hazardous compounds  is  taken
 into account  by  specifying  "KRATE".   See MODSP description.

       IFF  (TOTN.GT.RATN)
            QAM=(RATN-TOTN)*QINF*2.13E-5
            TOTN=0.
       ELSE
            QAM=UNDEF
	TOTN=TOTN-RATN	__=	

                                      39

-------
      ENDIFF
      IFF (TOTP.GT.RATP)
          QPHOS=(RATP-TOTP)*QINF*2.47E-5
          TOTP=0.
      ELSE
          QPHOS=UNDEF
          TOTP=TOTP-RATP
      ENDIFF
Performance
      CFCM(CLR1 )=COST(CLR1 , CAPCF.LANDAR,IRCODE}
      CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,IRCODE)
      CFCM(EXCV2)=COST(EXCV2,CAPCF,SURFAR/9,IRCODE)

      CM(1)=CFCM(CLR1 )+CFCM(GRADE)+CFCM(EXCV2)

      CFCM(SLABl)=COST(SLABl,CAPCF,((SQSUR+2.)/27.,IRCODE)
      CFCM(WALL6)=COST(WALL6,CAPCF,1.2*SQSUR,IRCODE)

      CM(2)=CFCM(SLAB1)+CFCM(WALL6)

      CFCM(AER50)=COST(AER50,CAPCF,NOAER,IRCODE
      CFCM(PIPE2KOST(PIPE2,CAPCF,SQSUR,IRCODE
      CFCM(WEIR )=COST(WEIR ,CAPCF,SWSUR,IRCODE

      CM(3)=CFCM(AER50)+CFCM(PIPE2)+CFCM(WEIR )

      INCLUDED IN AERATOR COSTS

      CM(4)=0

      CFCM(LAND)=COST(LAND,CAPCF;LANDAR.IRCODE)

      CM(5)=CFCM(LAND)

      NOT APPLICABLE

      CM(6)=0
      CFOM(OPER1)=COST
      CFOM(OPER2)=COST
      CFOM(LABOR)=COST
OPER1,OMHCF,MSTAFF*HRSYR* .06 .IRCODE)
OPER2.OMMCF,MSTAFF*HRSYR* .012,1RCODE)
LABOR,OMMCF,MSTAFF*HRSYR* .66 ,IRCODE)
      OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)

      CFOM(POWER)=COST(POWER,OMMCF,KWH*HRSYR,IRCODE)

      OMM(2)=CFOM(POWER)


     :                                40

-------
             OMM(3)=0.2*CM(3)

             NOT APPLICABLE-COSTED IN STORAGE MODULE

             OMM(4)=0

             NOT APPLICABLE

             OMM(8)=0


        Module Specific Parameters. Parameter Definitions
             02 EFF   Reaction Efficiency (Per Cent)
             03 KRATE Reaction Rate (Per Day)
                      -CEFL
                      -CINF
                     -HRSYR
              Integer-I
                     -LANDAR
                     -NOAER
                     -QAM
                     -QINF
                     -QINFL
                     -QPHOS
                     -RATN
                     -SQSUR
                     -SURFAR
                     -TOTN
                     -TOTP

         SEDIMENTATION BASIN MODULE

        System  Variables
Effluent BOD Concentration
Influent BOD  Concentration

Hours Operation Per Year
M1sc. Counter
Module Land Area With Buffer (Ft*Ft)
Number of Surface Aerators
Liquid Ammonia (Demand) (Gal/Min)
Working Flow (Gal/Min)
I/O Flow (Gal/Min)
Phosphoric Acid (Demand) (Gal/Min)
Required Nitrogen to BOD -Level
Required Phosphorus to  BOD Level
Square Root of Surface Area
Surface Area
Total Nitrogen
Total Phosphorus
OF TEXT »-
              VOL=QINF*DETENT
              DEPTH=10.
              A=QINF/HYDRAL
              B=VOL/10.
              IFF  (A.  GE.  B)
                   LANDAM=A
              ELSE
                   LANDAM=B
              ENDIFF
                                                   ::,— 31.'
                                                                                       i -- ' i.^'Z
                                              41
                'Cm

-------
     WIDTH*SQRT(LANDAM/5.)
     LENGTH-SQRT(LANDAM*5.)
     IFF (WIDTH.  LE.  20.)
          HOPWID=WIDTH
     ELSE
          HOPWID+20.
     ENDIFF
     HOPDEP=0.8*HOPWID-1.
     HOPVOL=(0.33)*(6*HOPWID+4+SQRT(6*HOPWID+4))*HOPDEP
     HOPAR=(HOPWID+10.)*HOPDEP
     HORN=RNDUP(WIDTH/20.)
     LANDAR=LANDAM+24*SQRT{LANDAM)+144
     WALCY=(2*WIDTH*DEPTH+1*LENGTH*DEPTH+HOPAR)*.03
     WEIRL=1.33*LEN6TH+WIOTH-1.
     HRSYR= DAYS*HRS

     Performance should be  defined by user In calculating results  of
settling test and Input as  MODSP Parameters.   Defaults supplies  are:

          TSS=30.
          PCTSO=8.

     If a sludge wasting rate 1s not defined  by user (see MODSP  par
description)  "SLUDG" Is defined as a function a Influent flow.

     IFF (SLUDG.EQ.UNDEF)
         SLUDG=0.1*QINF
     ENDIFF

     QEFF=QINF-SLUDG   	
Performance
     CFCM
     CFCM
     CFCM
CLR2 )=COST(CLR2 .CAPCF.LANDAR,IRCODE)
GRADE)=COST(GRADE,CAPCF,LANDAR,IRCORE)
EXCV1KOST(EXCV1,CAPCF,HOPVOL/27.,IRCODE)
     CM(1)=CFCM(CLR2 )+CFCM(GRADE)+CFCM(EXCVl)'

     CFCM(WALL1)=COST(WALL1,CAPCF,WALCY,IRCODE)
     CFCM(SLABl)=COST(SLABl,CAPCF,(LANDAM+4.)/27..IRCODE)

     CF(2)=CFCM(WALL1)KFCM(SLAB1)
     CFCM(SLCOL
     CFCM(PIPE4
     CFCM(WEIR
      'COST
      =COST
      =COST
SLCOL,CAPCF,HOPN*LENGTH,IRCODE)
PIPE4.CAPCF.HOPDEP+10..IRCODE)
WEIR,CAPCF.WEIRL,IRCODE)
     CM(3)=CFCM(SLCOL)+CFCM(PIPE4)+CFCM(WEIR

     CM(4)=0.01*CFCM(SLCOL)	

    :-•:••                       42  .

-------
     CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)

     CM(5)=CFCM(LAND)

     NOT APPLICABLE

     CM(6)*0

     CFOM (OPER1)=COST(OPER1,OMMCF,MSTAFF*HRSYR* .05 .IRCODE)
     CFOM (OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR* .003.IRCODE)
     CFOM (LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR.*0.6  .IRCODE)

     OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)

     CFOM(POWER)=COST(POWER,OMMCF,1.4*HRSYR,IRCODE)

     OMM(2)=CFOM(POWER)

     OMM(3)=0.1*CM{3)

     NOT APPLICABLE

     OMM(4)=0

     NOT APPLICABLE

     OMM(8)=0

Module Specific Parameters, Parameter Definitions


     02 DETENT  Detention Time in Minures
     03 SLUDG   Sludge Wasting Rate (Lb/Hr)
     04 HYDRAL  Hydrallc Loading
     05 TSS     Output TSS as Estimated from Settling Test
     06 PCTSO   Output PCTSO as Estimated from Settling Test

               -DEPTH       Basin Depth
               -HOPAR       Hopper Area
               -HOPDEP      Hopper Depth
               -HOPN        Number of Hoppers
               -HOPVOL      Hopper Volume
               -HOPWID      Hopper Width
               -HRSYR       Hours Operation Per Year
               -I           Misc. Counter
               -0           Misc. Counter
               -LANDAM      Module Land Area (Ft+Ft)
               -LANDAR      Module Land Area with Buffer (Ft*Ft)              i:~-
               -LENGTH      Module Length (Ft)                                '  ----
               -OEFF        Outout Flow (Stream 1) (GPM)                  	;- ; -


    : 2  '-                              43                                       - '- '

-------
               -QINF        Working Flow (GPM)
               -QINFL       Input Flow (GPM)
               -SLUDG       Modsp Par and Output Sludge Wasting Rate
               -TSS         Modsp Par and Total Suspended Solids
               -VOL         Basin Volume (Gallons)
               -WALCY       Walk Volume In Cubic Yards
               -WIDTH       Basin Width
               -WEIRL.      Weir Length

CLARIFIER MODULE

System Variables

     SURFAR=QINF/HYDRAL
     SQSUR=SQRT(SURFAR)
     LANDAR=SURFAR+14.18*SQSUR+50.27
     LANDAM=SURFAR+10.63*SQSUR+27.27
     VOLEX=0.148*SURFAR+1.57*SQSUR+7.45
     VCON=0.16*SURFAR+0.034*SURFAR**1.5
     VFIL=SURFAR+5.32*SQSUR+7.07
     BDECK=8.04*SURFAR**0.483
     BDBEAM=.0.68^SURFAR**0.- 978
     DIAM=2.*SQRT(SURFAR/PI)
     CIRC*PI*DIAM
     KWHS=10.53*S.URFAR
     HRSYR=DAYS*HRS

     Performance should be defined by user in.calculating results  of
settling test,  and input as MODSP Parameters.  Defaults supplied are:

          TSS=30.
          PCTSO=8.

     If a sludge wasting rate  is not defined by user (see MODSP Par
Description) 'SLUDG1  is defined as a function a influent flow.

     IFF (SLUDG.EQ.UNDEF)
          SLUDG=0.1*QINF
     ENDIFF

     QEFF = QINF-SLUDG

     QSULF=0.123*SURFAR
     QCAHY=8.0*SURFAR
     QCOAG=0.17*SURFAR
Performance
     CFCM(CLR2 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
     CFCM(GRADE)=COST(GRADE,CAPCF,LANDAM,IRCODE)
                                     44

-------
CFCM(EXCV1)=COST(EXCV1,CAPCF,VOLEX,IRCODE)

CM(1)=CFCM(CLR1 )+CFCM(GRADE)+CFCM(EXCVl)
CFCM(WALL1)=COST
CFCM(BKFL2)=COST
CFCM(WDBM2)=COST
      WALLl.CAPCF.VCON,IRCODE}
      BKFL2,CAPCF,VFIL,IRCODE)
      WDBM2,CAPCF.BDBEAM,IRCODE)
CFCM(WDDK )=COST(WDDK .CAPCF.BDECK,IRCODE)

CM(2)=CFCM(WALL1)+CFCM(BKFL2)+CFCM(WDBM2)+CFCM(WDDK

CFCM(SLCOL)=COST(SLCOL,CAPCF.DIAM,IRCODE)
CFCM(CLAR1
CFCM(PIPE4
CFCM(WEIR
 COST(CLAR1,CAPCF,DIAM,IRCODE)
=COST(PIPE4,CAPCF,DIAM/2.,IRCODE)
=COST(WEIR .CAPCF,CIRC,IRCODE)
CM(3)=CFCM(SLCOL)+CFCM(CLAR1)+CFCM(PIPE4)+CFCM(WEIR

CM(4)=0.01*CFCM(SLCOL)

CFCM(LAND)=COST(LAND,CAPCF.LANDAR,IRCODE)

CM(5)=CFCM(LAND)

NOT APPLICABLE

CM(6)=0.
CFOM(OPER1
CFOM(OPER2
CFOM(LABOR
=COST(OPER1,OMMCF,MSTAFF*HRSYR* .05 .IRCODE)
=COST(OPER2.OMMCF,MSTAFF*HRSYR* .003.IRCODE)
*COST(LABOR,OMMCF,MSTAFF*HRSYR*0.6  .IRCODE)
OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)

CFOM(POWER)=COST(POWER,OMMCF.KWHS*HRSYR,IRCODE)

OMM(2)=CFOM(POWER)

OMM(3)=0.1*CM(3)

CHEMICALS COSTED  IN THE STORAGE MODULE(S)

OMM(4)=0.

NOT APPLICABLE

OMM(8)-0
                                 45

-------
Module Specific Parameters, Parameter Definitions
     02 DEBUG   Local Debug Flag
     03 HYRDRAL Hydraulic  Loading
     04 TSS     Output TSS as Estimated from Settling Rate
     05 PCTSO   Output PCTSO
               -BDBEAM
               -BDECK
               -CIRC
               -DIAM
               -HRSYR
      Integer  -I
      Integer  -«J
      Real     -KWHS
               -LANDAM
               -LANDAR
               -PCTSOA
               -QEFF
               -QINF
               -QINFL
               -SURFAR
               -VCON
               -VFIL
               -VOLEX

 ROTARY  DRUM VACUUM MODULE'
Board Beams (LF)
Surface Area of Board Deck (Ft*Ft)
ClarifierCircumference  (Ft)
Clarifier Diameter (Ft)
Hours Operation Per Year
Misc. Counter
Misc. Counter
Killowatts/Hr
Module Land Area (Ft*Ft)
Module Land Area With Buffer (Ft*Ft)
Aqueous Percent Solids Output (Zero)
Effluent Flow Rate (GPM)
Working Flow (GPM)
Influgent Flow (GPM)
Filter Surface Area
Volume of Concrete (CY)
Volume of Backfill (CY)
Volume of Excavation (CY)
 Systeti Variables
      NOFILT=RNDUP(SLUDG
      QINFU  -SLUDG/NOFILT
      SURFAR=QINFU*5.   •
      LANDAM=0.95*SURFAR*NOFILT
      LANDAR=2.33*LANDAM
      LBSHR=SURFAR*NOFILT
      HRSYR=DAYS*HRS
      VOL=(1.23E-4*SURFAR**3.+0.13*SURFAR*SURFAR+30.68*SURFAR)
      KWHS=(0.003*VOL+7.9E-3*SURFAR)*NOFILT
      YIELD=LBSHR
      FILTRT=SLUDG-(YIELD/(10.42*60.))
      HOUS=0.
      IF(BLDG.EQ.2.) HOUS=1
      SITE=1.-HOUS

      Performance:  Solids output=QINFS  (1bs/hr)ey1e1d  QFE   and  Lime
Additions (as GPM  and  Tbs/hr) are  user  speciffeed.  Otherwise = 0
                                      46

-------
Performance
     CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAM*HOUS+LANDAR*SITE,IRCODE)
     CFCM(GRADE)=COST(GRADE,CAPCF,LANDAM*HOUS+LANDAR*SITE,IRCODE)
     CM(1)=CFCM(CLR1 )+CFCM(GRADE)
     CFCM(SLAB2
     CFCM(SLAB1
     CFCM(BUILD
=COST
=COST
=COST
SLAB2.CAPCF.LANDAM/27..IRCODE)
SLAB1,CAPCF,HOUS*LANDAM/27.,IRCODE)
BUILD,CAPCF,HOUS*LANDAR,IRCODE)
     CM(2) =CFCM(SLAB2)+CFCM(SLAB1)+CFCM(BUILD)
     CFCM(RDVAC)=COST(RDVAC,CAPCF,SURFAR,IRCODE)*1000.
     CM(3KFCM(RDVAC)*NOFILT
     CM(4)=0.01*CM(3)
     CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE).
     CM(5)=CFCM(LAND)
     NOT  APPLICABLE
     CM(6)=0
     CFOM(OPERl)=COST(OPERl,OhWCF,MSTAFF*HRSYR*  .05  .IRCODE
     CFOM(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR*'  .013,IRCODE
     CFOM(LABOR)=COST(LABOR.OMMCF,MSTAFF*HRSYR*0.6   ,1RCODE
     OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
     CFOM(POWER)=COST(POWER,OMMCF,KWHS*HRSYR,IRCODE)
     OMM(2)=CFOM(POWER)
     CFOM(MECH2)=COST(MECH2,OMMCF,20.*NOFILT,IRCODE)
     CFOM(HELPR)=COST(HELPR,OMMCF,20.*NOFILT,IRCODE)
     OMM(3)=CFOM(MECH2)+CFOM(HELPR)+0.008*CM(3)
     CFOM(CAHY1)=COST(CAHY1,OMMCF,LIME*HRSYR,IRCODE)
     CFOM(FECL3)=COST(FECL3,OMMCF,FECL3V*HRSYR,IRCODE)
     OMM(4)=CFOM(CAHY1)+CFOM(FECL3)
     NOT  APPLICABLE
     OMM(8)=0.
                                      47

-------
Module Specific Parameters. Parameter Definitions
     03 LIME    Lime Addition Rate (Lbs/Hr)
     04 FECL3   Ferric Chloride Addition Rate (GPM)
               -FILTRT
               -HOUS
               -HRSYR
      Integer  -I
      Integer  -J
      Real     -KWHS
               -LBSHR
               -LANDAM
               -LANDAR
               -NOFILT
               -QINFL
               -QINFS
               -QINFU
               -SITE
               -SLUDG
               -SURFAR
               -VOL
               -YIELD

REVERSE OSMOSIS MODULE

System Variables
 Filtrate Flow Rate
 Counter Set by 'Bldg'
 Hours  Operation Per Year
 Misc.  Counter
 Misc.  Counter
 Kilowatts Per Hour
 Yeild  in Lbs/Hr
 Module Land Area (Ft*Ft)
 Module Land Area With  Buffer (Ft*Ft)
 Number of Filter Units
 I/O  Flow - Filtrate (GPM)
 I/O  Loading Rate - Filter  Cake  (Ibs/hr)
 Flow Per Filter Unit (GPM)
 Counter Set by 'BLDG'   	
Influent Sludge Flow Rate (GPM)
Total Filter Surface Area
Vacuum Drum Volume
Filter Cake Produced (Ibs/hr)
     LANDAR=2.25E-2*QINF**1.76+54.
     VCON=4.17E-4*QINF**1.76+1.
     KWHS=0.215*QINF
     HRSYR=HRS*DAYS

     QCA=5.61E-4*QINF
     SLUDG =7.21E-3*QINF
     QEFF=QINF-SLUDG
Performance
     CFCM(CLR1 )=COST(CLR1 .CAPCF.LANDAR,IRCODE)
     CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,IRCODE)

     CM(1)=CFCM(CLR1 )+CFCM(GRADE)

     CFCM(SLAB2)=COST(SLAB2,CAPCF,VCON,IRCODE)
                                     48
                                                V-,-.:
                                                   Tr. - ~

-------
      CM(2)
-------
ULTRAFILTRATION MODULE

System Variables
     IFF(QINF.LE.200.J
        LANDAM=21.3*QINF
        VEXC*0.47*QINF
     ELSE

        LANDAM=35.6
        VEXC=0.79*QINF
     ENDIFF
      VCON=VEXC
      LANOAR=1.54*LANDAM
      KWH=0.36*QINF
      HRSYR=HRS*DAYS

     QCA=8.83ET5*QINF
     SLUDG=7.21E-3*QINF
Performance


     CFCM(CLR1  )=COST(CLR1  ,CAPCF,LANDAR,IRCODE)
     CFCM(GRADE)=COST(GRADE,CAPCF,LANDAM,IRCODE)
     CFCM(EXCV1}=COST(EXCV1,CAPCF,VEXC,IRCODE)

     CM(1)=CFCM(CLR1  )+CFCM(GRADE)+CFCM(EXCVl)

     CFCM( SLAB2 KOST(SLAB2,CAPCF ,VCON, IRCODE)

     CM(2}=CFCM(SLAB2)

     CFCM(ULTFL)-COST(ULTFL,CAPCF.QINF,IRCODE1

     CM(3)=CFCM{VLTFL)

     CM(4)»0.05*CM(3)

     CFCM(LAND)=COST(LAND,CAPCK,LANDAR,IRCODE)

     CM(5)=CFCM(LAND)

     CM(6}=0.  NOT APPLICABLE

     CFOM(OPER1)=COST(OPER1,OMMCF,KSTAFF*HRSYR*0.300,IRCODE
     CFOH(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR*0.075,IRCODE
     CFOH{LABOR)=COST{LABOR.OMMCF,MSTAFF*HRSYR*0.400,IRCODE
                                     50

-------
         OMM(1)=CFOM(OPER1)+CFOM(OPER2)=CFOM(LABOR)

         CFOM(POWER)=COST(POWER,OMMCF,KWH*HRSYR,IRCODE)

         OMM(2)=CFOM(POWER)

         CFOM(MECH1)=COST(MECH1,OMMCF,100.,IRCODE)

         OMM(3)=CFOM(MECH1)

         OMM(4)=0.   NOT APPLICABLE

         OMM(8)=0.   NOT APPLICABLE


    Module Specific Parameters,  Parameter Definitions
                   -HRSYR       Hours  Operation Per Year
          Integer  -I            Misc.  Counter
          Integer  -J            Misc.  Counter
          Real      -KWH         Kilowatts  Per Hour
                   -LANDAM      Module Land Area (Ft*Ft)
                   -LANOAR      Module Land Area with Buffer (Ft*Ft)
                   -QCA         Required Calcium Hypochlorite Demand
                   -QINF        Working Flow (Gal/Min)
                   -QINFL       I/O Flow (Gal/Min)
                   -SLUDG       Sludge Wasting Rate (GPM)
                   -VCON        Volume of  Concrete (CY)
                   -VEXC        Volume of  Excavation (CY)

   ' CARBON  ADSORPTION  MODULE

    System Variables
         XAREA=QINF/HYDRAL
         SXAREA-SQRT(XAREA)
         APIER=3.57E-4 *DENTEN*QINF+(6.63E-4 *DENTEN*HYDRAL+4.22E-5*
        +     DETEN*DETEN*HYDRAL*HYDRAL)*SXAREA
         DFEED=8.711E-2*XAREA**0.417*DETEN**0.512
         DHOLD=9.95E-2*XAREA**0.417*. DETEN**0.512
         IF(DFEED.LT.12.) GO TO 01
         M=RNDUP((DFEED/11.)**3)
         OFEED=DFEED/M**0.33
         N=RNDUP((DHOLD/11.)**3)
         DHOLD=DHOLD/M**0.33
       GO TO 02
    01 M=l
       N=l
\ - 02 CONTINUE
                                         51

-------
     ASEC=1.074E-4 *DETEN*QINF+(9.49E04 *DETEN*HYDRAL+1.27E-5*
          OETEN*DETEN*HYRDAL*HYRDAL)*SXAREA
     LANDAR»2.*APIER+3.36*SQRT(APIER*XAREA)+1.28*XAREA)+1.38*XAREA+1.101*DFEED
          **2,223*M+1.437E-3**AREA**1.026*DETEN**1.336+1.098*DHOLD**
          2.184*N+2.104E-2*XAREA**0.712*DETEN**0.926
     VEXC=2.85E-3*DETEN*QINF+(5.31E-3*DETEN*HYDRAL+3.38E-4 *DETEN*
          DETEN*HYDRAL*HYDRAL)*
          SXAREA+7.15E-3 * DFEED**2.645*M+1.372E-4*XAREA**0.859
          *DETEN**1.118+5.15E-3 *DHOLD**2,678*N+1.564E-4 *XAREA**0.7
          *DETEN**0.911

     VCONP=7.93E-5*DETEN*QINF+(1.47E-4*DETEN*HYDRAL+9.38E-6*DETEN**2
          *HYDRAL**2.)*SXAREA+8.94E-3 *DFEED**2.645*M+1.615E-5
          *XAREA**1.06*OETEN**1.38+6.92E-3 *DHOLD**2.649*N+1.955E-4
          *AREA**0.7*DETEN**0.911
     VSLAB=6.558E-7 *XAREA**1.25*DETEN**1.627+4.395E-4 *XAREA**0.625*
          DETEN**0.814+7.363E-2
     WSTR=7.66*ASEC*(8.87+SXAREA)+30.18*DFEED**2.192*M+3.OE-2*
          XAREA**0.913*DETEN**1.189+6.47*DHOLD**2.291-*N+9.32E-2*XAREA
          **0.735*DETEN**0.957
     WVES06.06*XAREA+6.04*DETEN*HYDRAL*SXAREA+78.7*DFEED**2.039*
          M+22.81*DHOLD**3*N+1.367E-4 *XAREA**1.376*DETEN**I.791+600.
     LBSHR=3.54E-4 *XAREA**1.25* DETEN**1.627
     NGASV=5.68E-2*XAREA**1.26*DETEN**1.641

     KMHS=0.209*XAREA**0.686*DETEN**0.894-1897"
   MECHA=2.22E-5 *QINF**0.83+3.9E-5 *XAREA**0,88*DETEN**1.156+.208
   MECHB=7.42E-5 *QNIF**0.83+5.3E-5 *XAREA**0.88*DETEN**1.156+.284
   KELP=5.19E-5*QINF**.83*4.96E-5*XAREA**88*DETEN**1.156+.265
     FOILV=1.96E-5*XAREA**1.26*DETEN**1.641
          IF (.NOT. (MODE.EQ.1.))  GO TO 9008
               OIL=0
               GAS=1
               GO TO 9009
9008      IF (NOT. (MODE.EQ.2.))  GO TO 9009
               OIL=1
               GAS=0
9009 CONTINUE
          CHARG=(QINF/DETEN)*4.45
          HRSYR=DAYS*HRS

     COD=0.2*COD
     QSTM=5.61E-6*XAREA*1.67*DETEN**2.174+6.632E2


Performance
     CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
     CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,IRCODE)
     CRCM(EXCV2)«COST(EXCV2.CAPCF,VEXC,IRCODE)

     CM(1)=CFCM(CLR1 )+CFCM(GRAD_E)+CFCM(EXCV2)
                                      52       '              	"•"-"•-

-------
     CFCM(SLAB2
     CFCM(SLAB1
     CFCM(CSPLT
      =COST(SLAB2,CAPCF,VCONP,IRCODE)
      =COST(SLAB1,CAPCF,VSLAB,IRCODE)
      =COST(CSPLT,CAPCF,WSTR,IRCODE)
     CM(2)=CFCM(SLAB2)+CFCM(SLAB1)+CFCM(CSPLT)

     CFCM(SSPL2)=COST(SSPL2,CAPCF,WXES,IRCODE)
     CFCM(HEART)=COST(HEART,CAPCF,LBSHR,IRCODE)
     CFCM(ACCAR)=COST(ACCAR,CARCF,CHARG,IRCODE)

     CM(3KFCM(SSPL2)+CFCM(HEART)+CFCM(ACCAR)

     CM(4)=0.001*CM(3)

     CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)

     CM(5)-CFCN(LAND)

     CM(6)=0;   NOT APPLICABLE
     CFOM
     CFOM
     CFOM
OPER1
OPER2
LABOR
=COST(OPER1,OMMCF,MSTAFF*HRSYR*0.300,IRCODE
'COST(OPER2,OMMCY,MSTAFF*HRSYR*0.075,IRCODE
'COST(LABOR,OMMCF,MSTAFF*HRSYR*0.400,IRCODE
     OMM(1)=CFOM(OPER1)+CROM(OPER2)+CFOM(LABOR)

     CFOM(NGAS )=COST(N6AS ,OMMCF,NGASV*GAS*HRSYR,IRCODE)
     CFOM(POWER)=COST(POWER,OMMCF,KWHS*HRSYR,IRCODE)
     CFOM(FUEL )=COST(FUEL ,OMMCF,FOILV*OIL*HRSYR,IRCODE)

     OMM(2)=CFOM(NGAS )+CFOM(POWER)+CFOM(FUEL )

     CFOM(MECH1)=COST(MECH1,OMMCF,MECHA*HRSYR,IRCODE)
     CFOM(MECH2)=COST(MECH2,OMMCF,MKHB*HRSYR,IRCODE)
     CFOM(HELPR)=COST(HELPR,OMMCF,HELP*HRSYR,IRCODE)

     OMM(3)=CFOM(MECH1)+CFOM(MECH2)-K:FOM(HELPR)

     CFOM(OACCAR)=COST(OACCAR,OW1CF,LBSHR*HRSYR,IRCODE)

     OMM(4)=CFOM(OACCAR) ;  MAKE-UP CARBON

     OMM(8)=0;  NOT APPLICABLE


Module Specific Parameters. Parameter Definitions


     02 MODE    GAS (1. ) OR OIL (2. ) FIRED FLAG
     03 DETEN   CONTACT TIME (MIN)
     04 HYDRAL  HYDRALIC LOADING RATE (GPM/FT*FT))
                                      53

-------
              -APIER
              -ASEC
              -CHARG
              -COO
              -DFEED
              -DHOLD
      REAL    -FOILV
              -HELP
              -HRSYR
      INTEGER -I
      INTEGER -J
      REAL    -KWHS
              -LANDAR
              -LBSHR
              -M
              -MECHA
              -MECHB
              -N
              -NGASV
              -.QINF
              -QINFL
              -QSTM
              -VCOMP
              -VEXC
              -VSLAB
              -WSTR
              -WVES
              -XAREA

 LAND  DISPOSAL SITE MODULES"

System Variables
PLATFORM AREA CONCRETE PIER (FT*FT)
INTERMEDIATE VARIABLE
CARBON REQ. FOR START UP CHARGE (LBS)
I/O CHEMICAL OXYGEN DEMAND (PPM)
DIA OF FURNACE FEED TANK (FT)
DIA OF HOLDUP TANK (FT)
FUEL/OIL VOLUME (GAL/HR)
HELPER COEFFICIENT
HOURS OPERATION PER YEAR
MISC. COUNTER
MISC. COUNTER
KILOWATT HOURS
MODULE LAND AREA (FT*FT)
CARBON DEMAND (LBS/HR)
NUMBER OF FURNACE FEED TANKS
MECH1 COEFFICIENT
MECH2 COEFFICIENT
NUMBER OF HOLD UP TANKS
NATURAL GAS VOLUME (CF/HR)
WORKING FLOW (GAL/MIN)
I/O FLOW (GAL/MIN)
STEAM DEMAND,(LBS/HR)
VOLUME OF CONCRETE PIERS (CY)
VOLUME "OF EXCAVATIONJCY)
VOLUME OF CONCRETE.SLAB FLOORS (CY)
WEIGHT OF SUPPORT'STEEL (LBS)
WEIGHT OF CONTACTOR (LBS)
CROSS-SECTIONAL'AREA OF CONTACTOR (FT*FT)
     LANDAR=9.75*QINFD+405963.02
     SQRTLA=SQRT(LANDAR)
     HRSYR=DAYS*HRS

     NO EQUATIONS

     IFF (MODE EQ. 1)


Performance
     CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
     CFCM(GRADE)=COST(GRADE,CAPCF, LANDAR, IRCODE)
     CFCM(CLEXC)=COST(CLEXC,CAPCF,LANDAR*0. 164, IRCODE)

     CM(1 )=CFCM(CLR1 )+CFCM(GRADE)+CFCM(CLEXC)
                                     54

-------
  CFCM(ROAD1 )=COST{ROAD1 .CAPCF.SQRTLA+4641.03,IRCODE)
  CFCM(ROAD2)=COST(ROAD2,CAPCF,SQRTLA,IRCODE)
  CFCM(PIPE1)=COST(PIPE1,CAPCF,SQRTLA*3.,IRCODE)
  CFCM(ETHWL)=COST(ETHWL,CAPCF,(SQRTLA-459.)*4.,IRCODE)
  CFCM(D8ASN)=COST(DBASN,CAPCF,1..IRCQDE)
  CFCM(FENCE)=COST(FENCE,CAPCF,SQRTLA*4.,IRCODE)

  CM(2)=CFCM(ROAD1}+CFCM(ROAD2)+CFCM(PIPEl}+CFCM{ETHWL)+
1  CFCM(DBASN)+CFCM(FENCE)

  CFCM(FKLFT)=COST(FKLFT,CAPCF,1.,IRCODE)
  CFCM(FELDR)=COST(FELDR,CAPCF,L,IRCODE
  CFCM(TKDZR)=COST(TKDZR,CAPCF,1..IRCODE
  CFCM(PUTRK)=COST(PUTRK,CAPCF,1..IRCODE
  CFCM(WTRK )=COST(WTRK .CAPCF.l..IRCODE)
  CFCM(WTANK)=COST(WTANK,CAPCF,1..IRCODE)

  CM(3)=CFCM(FKLFT)+CFCM(FELDR)+CFCH(TKDZR)*CFCM(PUTRK)+
1  CFCM(WTRK)+CFCM(WTANK)

  CFCM(GENER)=COST(GENER,CAPCF,1..IRCODE)

  CM(4)=CFCM(GENER)

  CFCH(LAND)=COST(LAND.CAPCF.LANDAR,IRCODE)

  CM(5)=CFCM(LAND)

  CFCM(LEACH)=COST(LEACH,CAPCF,SQRTLA-360,IRCODE)
  CFCM(6WMON)=COST(GWMON,CAPCF,3.,IRCODE)
  CFCM(LNRCL)-COST(LNRCL,CAPCF,LANDAR*0.135,IRCODE)

  CM(6)=CFCM(LEACH)+CFCM(6WMON)+CFCM{LNRCL)

  CFOM(OPER1)=COST(OPER1,OMMCF,0.2*HRSYR,IRCODE)
  CFOM(OPER2)=COST(OPER2,OMMCF,1.0*HRSYR,IRCODE)
  CFOM(LABOR)=COST(LABOR.OMMCF,1.0*HRSYR,IRCODE)

  O^W(^)=CFOM(OPER1)+CFOM(OPER2)+CFOH(LABOR)

  CFOM(FUEL)=COST(FUEL,OHMCF,13600.,IRCODE)

  OMM(2)=CFOM(FUEL)

  OMM(3)=0.01*CM(3)

  OMM(4)=0.

  CFOM{DMPWT)=0.

  OMM(8)=0.
                                 55

-------
      ELSE


      FOR (1=1,6,1)
        CM(I)=0.
      ENDFOR
      FOR (1=1,4,1)
        OMM(I)=0.
      ENDFOR


      CFOM(DMPWT)=COST(DMPWT,OMMCF,QINFD*8.337,IRCODE); HAZ.  WASTE DISPO


      OMM(8)=CFOM(DMPWT)


      ENDIFF



 Module Specific Parameters, Parameter Definitions
           IF MODE = 1 - PURCHASE AND SELF OPERATE
           IF MODE =_2 - DISPOSAL AS SERVICE CHARGE

              ' -HRSYR        HOURS OPERATION PER YEAR
       INTEGER -I            MISC. COUNTER
       INTEGER -J            MISC. COUNTER
       REAL    -LANDAM       MODULE LAND AREA (FT*FT)
               -LANDAR       MODULE LAND AREA WITH BUFFER (FT*FT)
               -QINFD        WORKING FLOW (GAL/DAY)
               -QINFL        I/O FLOW (GAL/MIN)
               -QINFS        I/O SOLIDS 'FLOW'-(LBS/HR)
               -SQRTLA       SQUARE ROOT OF LAND AREA

"SLUDGE DIGESTER

 System Variables
      NODIGE=AINT(QINF/55  )
      SURFAR=193*QINF/NODIGE
      LANDAR=(15.7*SQRT(QINFH6)**2/NODIGE

      HRSYR=NRS*DAYS


      TVS=0.5*TVS
      TSS=0.7*TSS
 Performance
      CFCM(CLR1 )=COST(CLR1  .CAPCF.LANDAR.IRCODE)
      CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,IRCODE)
      CFCM(EXCV2)=COST(EXCV2.CAPCF.SURFAR/10.IRCODE)
                                      56

-------
      CM{1)=(CFCM(CLR1 )+CFCM KRADE}+CFCM(EXCV2))*NODIGE
      CFCM(SLAB1KOST(SLAB1,CAPCF,SURFAR*0.15,IRCODE)
      CFCM(WALL2)=COST(WALL2,CAPCF,33*SQRI(QINF)+1.8,IRCODE)
      CFCMtCOVERKOST(COVER,CAPCF,15.7*SQRI(QINF},IRCODE}*1000
      CM(2)=(CFCM(SLABll+CFCMCWALL2l+CFCMCCOVERl)*NODIGE
      CFCM(GASCO)=COST(GASCO,CAPCF,NODIGE,IRCODEi
      CM(3)=CFCM(GASC01
      CM(4)=0.05*CM3
      CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODEl
      CM( 5 ) = ( CFCM(LANDU*NODI GE
      CMC6)=0
      CFOM(OPERl).=COST(OPERl,OMMCF,MSTAFF*HRSYR*:095;iRCODE)
      CFOM( OPER2 }"=COST( OPER2 .OMMCF ,MSTAFF*HRSYR*, 025 ,1 RCODE'
      CF_OM( LABOR) "COSTCUBOR .OMMCF ,MSTAFF*HRSYR*. 675 ,1 RCODE |
      OMH(a>CFOM(OPER1)+CFOM(OPER2)+CFOH{ LABOR)
      OMM(2)=0"
      CFOM(SUPER)=COST(SUPER,OMMCF,16,IRCOOE)
      CFOM(MECH1)=COST(MECH1,OMMCF,32,IRCODE)
      CFOM(«ELPR)=COST{HELPR,OMMCF,40,IRCODE)
      OMM(3)=CFOM(SUPER)+CFOM(MECH1)+CFOH{HELPR)0.1*CM(3)
Module Specific Parameters. Parameter Definitions
      NODIGE               Number of digesters required
      QINF                 Influent flow rate
      TVS                  Total volatile sol Ids (ppm)
      TSS                  Total suspended solids (ppm)
TRICKLING FILTER"           ------
System Variables
     IF(RECIRC.LE.O)RECIRC=20.0
     RECYC=OINF*RECIRC*0.01
                                      57

-------
     IF(EFF.LE.O),EFF=90
     CEFL=CINF*(100-EFF)*0.01
     SURFAR=((CINF+RECYC*CEFL)/((HRECYC)*CEFL)-l)**2*QINF/9.5
     LANDAR=(2*SQRT(SURFAR/3.14)+12)**2
     WALL=2.96*SQRT(SURFAR)+2.83
     SLAB=0. 3*SURFAR+0. 88+SQRT(SURFAR)+2
     DIA=SQRT(SURFAR*4/3.14)
     HRSYR=HRS*DAYS

     IF(CINF/TOTN.6T.20),QAM=(CINF/TOTN-20)*QINF*2.13E-5
     IF(CINF/TOTN.LE.20),QAM=0
     IF(CINF/TOTP.6T.100)QPHOS=(CINF/TOTP-100)*QINF*2.47E-5
     IF(CINF/TOTP.LE.100)QPHOS=0
*    CINF=CEFL


Performance

     CFCM(CLR1 )=COST(CLR1 .CAPCF.LANDAR.IRCODE)
     CFCM( GRADE )=COST(GRADE .CAPCF .LANDAR, IRCODE)
     CFCM(EXCV2KOST(EXCV2,CAPCF,SURFAR/9,IRCODE)

     CM(1)=CFCM(CLR1 )+CFCM(GRADE)+CFCM(EXCV2)

     CFCM(WALL2)=COST(WALL2, CAPCF .WALL, IRCODE)
     CFCM(SLAB1)=COST(SLAB1,CAPCF,SLAB, IRCODE)

     CM(2)=CFCW(WALL2)+CFCM(SLAB1 )

     CFCM(DISTRXOST(DISTR,CAPCF,DIA,IRCODE)*1000
     CFCM(GATE)=COST(GATE,CAPCF,1, IRCODE)

     CM(3)=CFCM(DISTR)+CFCM(6ATE)

   _CM_(4)=0                _
     CFCM(LAND)=COST(LAND,CAPCF,LANbAR,IRCODE)

     CM(5)=CFCM(LAND)

     CFCM(MEOIA)=COST(MEDIA,CAPCF,SURFAR*30, IRCODE)

     CM(6)=CFCM(MEDIA)

     CFOM(OPER1)=COST(OPER1 ,OMMCF,MSTAFF*HRSYR*0.02  .IRCODE)
     CFOM(OPER2)=COST(OPER2,OHMCF,MSTAFF*HRSYR*0.003,IRCODE)
     CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR*0.38  .IRCODE)

     OMM( 1 )=CFOM(OPER1 )+CFOM(OPER2)+CFOM(LABOR)
                                     58

-------
     CFOM(MECH2)=COST{MECH2,OMMCF,16,IRCODE)
     CFOM(SUPERKOST(SUPER,OMMCF,4 .IRCODE)
     CFOM(FORMAKOST{FORMA,OMMCF,4 .IRCODE)
     CFOM(HELPR)=COST(HELPR,OMMCF,32,IRCODE)

     OMM(3)=CFOM(MECH2)+CFOM(SUPER)+CFOM(FORMA)+CFOM(HELPR)0.1*CH(3)

     OMM(4)=0

     OMM(8)=0


Module Specific Parameters. Parameter Definitions

     EFF                 Percent BOD removal efficiency

     CINF                Influent BOD concentration (ppm)

     CEFL                Effluent BOO concentration

     QINF                Influent flow

     RECIRC              Recirculatlon flow (designated as
                         a percent of the Influent flow rate

     WALL                Volume of walls 1n CY

     SLAB                Volume of slab in CY

     DIA                 Diameter of the filter



 WASTE STABILIZATION POND


 System Variables


      SURFAR=1.69*QINF*CINF*C1.085**C35-TEHI»l
      SQSUF=SQRT(SURFAR}
                                                  ,GO TO 02
      i r i ounrni\« w i * v • fc/^-Ttaw • rti«»*«wi>	* —. ., - ~ - - -' *       »
      IF(SURFAR.GT.1.307E6.AND.SURFAR.LE.2.614E6),GO TO 03
      IF(SURFAR.GT.2.614E6),GO TO 04
   01 LANDAR=SURFAR+0.92*SQSUF+9148
      VOLEX=22.68*SQSUF
      GO TO 05
   02 LANDAR=SURFAR+0.74*SQSUF+11761
      VOLEX=34.02*SQSUF
  _  GO TO 06	-

                                    59

-------
  03 LANDAR=SURFAR+1.2*SQSUF+15246
     VOLEX=45.36*SQSUF
     GO TO 06
  04 LANDAR=SURFAR+1.3*SQSUF+18295
     VOLEX=56.70*SQSUF
     GO TO 06
  05 SIZE=1
     GO TO 07
  06 SIZE=2
  07 HRSYR=HRS*DAYS
     CINF*0.8*CINF


Performance
     CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
     CFCM(EXCV3KOST(EXCV3,CAPCF,VOLEX,IRCODE)
     CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,IRCODE)

     CM(1)=CFCM(CLR1 )+CFCM(EXCV3)+CFCM(6RADE)
     CFCM(SLABl)
     CFCM(WALL5
     CFCM(WDBM1)
=COST(SLAB1,CAPCF,SIZE*2,IRCODE)
=COST(WALL5,CAPCF,SIZE*1.5,IRCODE)
'COST(WDBM1,CAPCF,SIZE*160,IRCODE)
     CFCM(WDDK)=COST(WDDK,CAPCF,SIZE8192,IRCODE)

     CM(2)=CFCM(SALB1)+CFCM(WALL5)+CFCM(WDBM1)+CFCM(,WDDK)

     CFCM(6ATE)=COST(6ATE,CAPCF,SIZE*3,IRCODE)

     CM(3)=CFCM(GATE)
     CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)

     CM(5)=CFCM(LAND)

     CFCM(LINER)=COST(LINER,CAPCF,SURFAR,IRCODE)
     CFCM(HNDRL)=COST(HNDRL,CAPCF,52,IRCODE)

     CM(6)=CFCM(LINER)+CFCM(HNDRL)

     CFOM(OPER1)=COST(OPER1 ,OMMCF,MSTAFF*HRSYR* .125.IRCODE)
     CFOM(OPER2)-COST(OPER2,OMMCF,MSTAFF*HRSYR* .065.IRCODE)
     CFOM(LABOR)=COST( LABOR, OMMCF ,MSTAFF*HRSYR* .342.IRCODE)

     OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
                                     60

-------
      OMM(2}=0
      OMM(3)=0.1*(CM2+CM3)
      OMM(4)=0
      OMM(8)=0
 Module Specific Parameters. Parameter Definitions
      QINF                Influent flow rate (GPM)
      CINF                Influent BOD (ppm)
      TEMP                Temperature of the influent
                          waste (°C)
      SIZE                A Counter
      VOLEX               Volume of excavation for lagoons
 CHEMICAL FIXATION
 System Variables

      GALYR=QINFL*DAYS*HRS*60
      CORECT=1
      COREX=0
      IFF(PCTSOL.GT.IO)
      CORECT=0
      COREX=1
      ENDIFF
      QINFS=QINFL*1.79E-4
 Performance
      CM(1)=0
      CH(2}=0
      CM(3)=0
      CM(4)=0
      CFCM(LAND)=COST(LAND,CAPCF
__                             _

-------
      CM(5)=0

      CM(6)=0

      CFOM(OPER1KOST(OPER1,OMMCF,MSTAFF*HRSYR*  .    .IRCODE
      CFOM(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR*  .    ,IRCODE
      CFOM(LABORKOST( LABOR,OMMCF,MSTAFF*HRSYR*  .    .IRCODE

      OMM(1)=0

      OMM(2)=0

      OMM(3)=0

      OMM(4)=0
     CFOM(CHFX1)=COST(CHFX1,OMMCF,6ALYR*CORECT,IRCODE)
     CFOM(CHFX2)=COST(CHFX2.OMMCF,GALYR*COREX,IRCODE)

     OMM(8)=CFOM(CHFX1)+CFOM(CHFX2)


Module Specific Parameters. Parameter Definitions


     SALYR               Gallons/yr of waste Input

     QINFL               Influent flow rate

     PCTSOL              Percent solids 1n Influent («wt/wt)

     CORECT              Counter

     COREX               Counter



  INCINERATOR

'System Variables
      LANDAM=55+0.0674*QINFS**1.074
      LANDAR=88+0.108*QINFS**1.074
      VOLEX=1.222+0.0015*QINFS**1.074
      VSLAB=VOLEX
      KWA=6.6*QINFS**0.431
      HRSYR=HRS*DAYS
      GALYR=QINFL*60*HRSYR
                                     62

-------
Performance
     CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
     CFCM(GRADEXOST(GRADE,CAPCF,LANDAR,IRCODE)
     CFCH(EXCV2)=COST(EXCV2,CAPCF,VOLEX1IRCODE)
     CM(1)=CFCM(CLR1 )+CFCM(GRADE)+CFCM(EXCV2)
     CFCM(SLAB1)=COST(SLAB1.CW>CF,VSLAB,IRCODE}
     CM(2)=CFCM(SLAB1)
     CFCM(INCIN)=COST(INCIN.CAPCF.QINFS.IRCODE)
     CM(3)=CFCM(INCIN)
     CM(4)=0.001*CM{3)
     CFCM{LAND)-COST(LAND,CAPCF,LAHDAR,IRCODE)
     CM{5)=CFCH(LAND)
     CM(6}=0
     CFOM(OPER1)=COST(OPER1,OMMCF,MSTAFF*HRSYR*0.6  .IRCOOE)
     CFOM(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR* .225,IRCODE)
     CFOM{LABOR)=COST(LABOR,OHMCF,HSTAFF*HRSYR*0.1  .IRCODE)
     OWm=fFOM(OPERl)+CFOM(OPER2)+CFOM(LABOR).
     CFOMCPOWER)-COST(POWER,OHMCF,KWH*HRSYR,IRCODE)
     OMH(2)=CFOM(POWER)
     CFOMCMECH1) =COST(MECH 1 ,OWCF ,HRSYR*0.6, IRCODE}
     OMM(3)-CFOM(MECH1)+25245+205.4*LBSHR**0.585
     OMM(4)=0
     CFOM(INCIN)=COST(INCIN.OMHCF.CALYR,IRCODE)
     OMM(8)=CFOM(INCIN)
Module Specific Parameters. Parameter Definitions
     QINFS                 Solids loading rate (Ibs/hr)
     QUNFL                 Liquid Influent rate GPM
   '  : -'                             63

-------
        VOLEX                 Volume  of excavation (CY)

        VSLAB                 Volume  of concrete slab(CY)

        GALYR                 Gallons of  liquid waste per yr

        KWH                  Kilowatts per hour

   AIR FLOTATION

   System Variables
        LANDAM=QINFnSS  *2.22E-4
        LANDAR=LANDAM+12*SQRT(LANDAM)-H44
        WIDTH=SQRT(LANDAM/2.  )
        LENGTHS. *WIDTH
        DEPTH*10.
        WALL=1.666*DEPTH*(LENGTH+WIDTH)
        BLD=0.
        NOBLD=1.
        IFF{QINF.GT.500.)
            BLD=1.
            NOBLD=0.
        ENDIFF
        KWHS=(0.1616*LANDAM+5.97)
        HRSYR=DAYS*HRS

        TSS=TSS*0.014
        PCTSO=5.8
        SLUDG=0.08*QINF
        QPOLY=2.05E-4*LANDAM
   Performance
        CFCM(CLR1  )=COST(CLR1  ,CAPCF,LANDAR,IRCODE)
        CFCM(GRADE)=COST(GRADE,CAPCF,LANDAM,IRCODE)

        CM(1)=CFCM(CLR1  )+CFCM(GRADE)
        CFCM(SLAB1)=COST
        CFCM(WALL1)=COST
        CFCM(BUILD)=COST
      SLAB1.CAPCF.LANDAR/27..IRCODE)
      WALL1.CAPCF,(WALL/27.)*BLD,IRCODE)
      BUILO,CAPCF,LANDAR*BLD,IRCODE)*1000.
        CM(2)=CFCM(SLAB1)+CFCM(WALL1)CFCM(BUILD)
i—
        CFCM(AFLH
        CFCM(ARFLT
        CFCM(ACOMP
=COST(AFLTT,CAPCF,LANDAM*NOBLD,IRCODE)*1000.
=COST(ARFLT,CAPCF,LANDAM*BLD,IRCODE)*1000.
=COST(ACOMP, CAPCF .BLD.IRCODE)
                                       64

-------
     CM(3)=CFCM(AFLTT)+CFCM(ARFLT)+CFCM(ACOMP)
     CM(4)=0
     CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
     CM(5)=CFCM(LAND)
     CM(6)=0
     CFOM(OPER1)=COST(OPER1,OMMCF,MSTAFF*HRSYR* .038,IRCODE)
     CFOM(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR* .007,IRCODE)
     CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR*0.8  .IRCODE)
     OMM(1)=>CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
     CFOM(POWERXOST(POWER,OMMCF,KWHS*HRSYR,IRCODE)
     OMM(2)=CFOM(POWER)
     CFOM(MECH1)=COST(MECH1.OMMCF.16..IRCODE)
     CFOM(HELPR)=COST(HELPR,OMMCF,16.,IRCODE)
     OMM(3)=CFOM(MECH1)+CFOM(HELPR)+0.05*CM(3)
     OMM{4)=0
     OMM(8)=0
Module Specific Parameters. Parameter Definitions

     QINF                  Influent flow rate GPH
     WIDTH                 Width of flotation unit (ft)
     LENGTH                Length of flotation unit (ft)
     DEPTH                 Depth of flotation unit (ft)
     WALL                  Volume of concrete (ft3)
     BLD                   Counter (turns on & off building
                           for smaller (<500 gpm)units
     NOBLD                 Same as Bldg (set by QINF)
     KWHS                  Kilowatts/hr
     TSS                   Influent total suspended solids(ppm)
     PCTSO                 Percent solIds (% wt/wt)
                                     65

-------
Module Specific Parameters. Parameter Definitions (continued)


     SLUDG                 Sludge wasting rate (GPM)

     QPOLY                 Polymer Inflow rate (GPM)

 OIL/WATER SEPARATOR


 System Variables
      NOSEP=QINF/150.
      QINFU=QINF/NODEP
      IFF=(TEMP.LE.20.)
      EXP1=1301./(998.333+8.1855*(TEMP-20)-1.053E-3*(TEMP-20.)**2.)-3.30233
      NUMI=10.**EXP1
      VISCOS-NUMl/100.
      ELSE
      EXP2=(13272.*(20.-TEMP)-1.053E-3*(TEMP-20.)**2.)/TEMP+105.
      NUM2=10.**EXP2
      VISCOS-NUM2/100.
      ENDIFF
      VRISE=(1.29E-3*(1.-OILSG)*DROPUM*DROPUM)/VISCOS
      TRISE=0.25/VRISE
      VPLATE=QINFU*TRISE*0.1337
      LANDAM=VPLATE*0.8*NOSEP
      LANDAR=(LANDAM+12.*SQRT(LANDAM)-(-144.)
      PLTSTK*(VPLATE/1.9)*NOSEP
      WEIGHT=VPLATE*34.*NOSEP
      HRSYR=DAYS*HRS
      IFF(MODE.EQ.2)
         BLD=1.
         NOBLD-0.
      ELSE
         BLD=0.
         NOBLD^l.
      ENDIFF
      SLUDGE=OIL*QINF*l.llE-6
      OIL=15.
      QDM USER DEFINED AS  GPM  DEMULSIFIER  REQUIRED. OTHERWISE;

      IF(QDM.LT.O),QDM=0


Performance
     CFCM(CLR1  )=COST(CLR1  ,CAPCF,LANDAR,IRCODE)
     CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR.IRCODE)

     CM(1)=CFCH(CLR1  )+CFCM(GRAD£l

                                    66

-------
     CFCM(SLAB2)=COST(SLAB2.CAPCF.LANDAR/27..IRCODE)
     CFCM(BUILO)=COST(8UILO,CAPCF,LANDAR*BLD,IRCODE)*1000.
     CM(2)=CFCM(SLAB2)+CFCM(BUILD)
     CFCM(OILWA)=COST(OILWA,CAPCF,WEIGHT,IRCODE)
     CFCM(PLATE)=COST(PLATE,CAPCF,PLTSTK,IRCODE)
     CM(3)=CFCM(OILWA)+CFCM(PLATE)
     CM(4)=0
     CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCOOE)
     CM{5)=CFCM(LAND)
     CM(6)=0
     CFOM OPER1)=COST(OPER1,OMMCF,MSTAFF*HRSYR*0.038.IRCODE)
     CFOH OPER2)=COST(OPER2.OMMCF,MSTAFF*HRSYR*0.007,1RCODE)
     CFOM LABORKOST(LABOR,OMMCF,MSTAFF*HRSYR*0.8  .IRCODE)
     OMM(1)=CFOH(OPER1)+CFOM(OPER2)+CFOM(LABOR)
     OMM(2)=0
     CFOM(MECm)=COST(MECH1 .OMMCF.16.,IRCODE)
     CFOM(HELPR)=COST(HELPR,OMMCF,16.,IRCODE)
     OMM(3)=CFOH(MECH1)+CFOM(HELPR)+0.05*CFCM(PLATE)
     OMM(4)=0
     OMM(8)=0.
Module Specific Parameters. Parameter Definitions
     NOSEP                 Number of separators
     QINFU                 Flow to an Individual  unit (GPM)
     QINF                  Overall Influent flow rate
     TEMP                  Waste temperature (°C)
     EXPI
     NUMI
     VISCOS                  factors (see handbot
     EXP 2                            chemicals)
     MUM 2
                                    67
Calculates Viscosity correction
factors (see handbook of

-------
Module Specific Parameters. Parameter Definltions(continued)
     VRISE

     TRISE

     VPLATE

     PLTSTK

     WEIGHT

     BID

     NOBLD

     MODE


 MULTI-MEDIA FILTRATION

 System Variables
Oil droplet rise rate

Oil droplet rise rate in a plate

Plate volume

Height of plates (total)

Weight of plates -(lbs)

Counters to include/exclude

Building options (set by MODE)

MODE = 1 excludes building
MODE = 2 includes building
     SURFAR=QINF/5.
     SQSUF=SQRT(SURFAR)
     IFF(QINF.LT.5000.)
       LANDAR=0.79*(SURFHR+SQSUF+36.)
       FOUNDED.5*SURFAR
         VOLM1.14*SURFAR
         VOLEX=0.
         WALL=0.
         TROAG=0.
     ENDIFF
     INFfQINF.GE.5000.}
       LANDAR-SURFAR+27.33*SQSUF+186.78
       FOUND=SLJRFAR+3.33*SQSUF+2.78
       WALL'S.5*(FOUND-SURFAR)
       VOLEX=LANDAR/9.
         VOL=0.
       TROA6=INT(SQSUF/6+l)*SQSUF
     ENDIFF
     HRSYR=HRS*DAYS
     VOLMED=QINF/540

     QWA=0.3*QINF
     TSS=0.4*TSS
     PCTSO=0.4*PCTSO
     SLUDG=QWA
                                     68

-------
Performance
     CFCM(CLR2 XOST(CLR2 ,CAPCF,LANDAR,IRCODE)
     CFCM(GRADEXOST(GRADEtCAPCF,SURFAR,IRCODE}
     CFCM(EXCV2)=COST(EXCV2,CAPCF,VOLEX,IRCODE)
     CM(1)=CFCM(CLR2 )+CFCM(GRADE)+CFCM(EXCV2)
     CFCM(SLAB2)=COST(SLAB2,CAPCF,FOUND,IRCODE)
     CFCM(WALL1)=COST(WALL1,CAPCF,WALL,IRCODE)
     CFCM(VAULT)=COST(VAULT,CAPCF,1.0  .IRCOOE)
     CM(2XFCM(SLAB2)+CFCM(WALL1)+CFCM(VAULT)
     CFCM(PIPElXOST(PIPEl,CAPCF,2.5*SQSUFfIRCODEl
     CFCM(PRTNK)=COSTCPRTNK,CAPCF,VOL,IRCODEl
     CFCM(PROUG)=COST{TROUG,CAPCF,TROAG,IRCODE)
     CM(3)=CFCM(PIPE1)+CFCM(PRTNK)+CFCM(TROUG)
     CM(4)=0; Not applicable
     CFCM(LAND)=COST{LAND,CAPCF,LANDAR.IRCODE)
     CM(5)=CFCM(LAND)
     CFCM(COAL)=COST(COAL,CAPCF,VOLMED*6.IRCODE)
     CFCM(SAND)=COST(SAND,CAPCF,VOLMED*4,IRCODE)
     CM(6)=CFCM(COAL)+CFCM(SAND)
     CFOM(OPER1)*COST(OPER1.OMMCF,MSTAFF*HRSYR*0.010,IRCODE
     CFOM(OPER2)=COST(OPER2.OMMCF,MSTAFF*HRSYR*0,038,IRCODE
     CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR*0.488,IRCODE;
     OMH(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
     OMM(2}=0; (GRAVITY FEED)
     CFOM(MECH1)=COST(MECH1.OHMCF,40,IRCODE)
     CFOM(HELPR)=COST(HELPR,OMMCF,80,IRCODEi
     OMM(3)=CFOM(MECH1)+CFOMCHELPR)+0,1*CM(3)+0,5*CM(6)
     OMM(4)=0; Not applicable
     OMM(8)-0; Not applicable
                                     69

-------
Module Specific Parameters, Parameter Definitions

     QINF                  Influent flow rate (6PM)

     VOLEX                 Volume of excavation (CY)

     WALL                  Volume of walls (CY)

     TROAG                 Length of backwash
                           troughs equipped w/ag1tators(LF)

     FOUND                 Volume of foundation (CY)

     VOLMED                Volume of media (CY)(A common factor multiplied by
                           6 for coal,and 4 for sand; see cost category^CM6)

DISTILLATION

System Variables


     VAPQEF=QINF*SEPVAP*VAPDEN*2.228E-5
     LIQQEF=QINF*(100-SEPVAP)*LIQDEN*2.228E-5
     DENRA"LIQDEN/VAPDEN
     MFLOR=LIQQEF/VAPQEF
     SURFAR=1,945E-3.*QINF*SQRT(DENRA)/((MFLOR-H)*MFLOR**-0.067*DENR '
            A**0.0335-1))
     LANDAM=1.91*SURFAR
     LANDAR=4*LANDAM
       VEXC=0,15*SURFAR
       SQSUF=SQRT(SURFAR)
       NSTR=35.*SURFAR+11.5*SQSUF+34.2
       WCOL=292.*SURFAR
       WTRAY=35.*SURFAR
     WLAPL=24.4*SURFARt203,*SQSUF+600.
       KWH=802.88*QINF
       HRSYR=HRS*DAYS
       QANF=QINF

     QSTM=1.08E3*QINF
     SLUD6=QINF*(100-SEPVAP)*.01
     QINF=QINF*SEPVAP*.01
Performance
     CFCM(CLR1
     CFCM(GRADE
     CFCM(EXCV1
>COST(CLR1  .CAPCF.LANDAR.IRCODE)
'COST(GRADE,CAPCF,LANDAM.IRCODE)
=COST(EXCV1.CAPCF.VEXC,IRCODE)
     CH(1)=CFCM(CLR1 )+CFCM(GRADE)+CFCM(EXCVl)
                                                             L, l.

                                                             P Y

-------
      CFCM(SLAB2)=COST(SLAB2,CAPCF,?COr,IRCODE)
      CFCN(STRSTKOST(STRST,CAPCF,WSTR,IRCODE)
      CM(2)=CFCM(SLAB2)+CFCM(STRST)
      CFCM(SSPL1)=COST(SSPL1,CAPCF,WCOL,IRCODE)
      CFCM(CSPLT)°COST(CSPLT.CAPCF.WTRAYJ,IRCODE)
     CFCM(CONDE)=COST(CONDE,CAPCFfQANF(IRCODE)
     CFCM{REB01)=COST(REB01,CAPCF,QANF**0.67,IRCODE}
     CFCM(STRST)=COST{STRST,CAPCF,WLAPL,IRCODE)
     CM(3)=CFCM(SSPL1)+CFCM(CSPLT)+CFCM(CONDE}+CFCH(REB01)+CFCM(STRST)
     CM(4)=0.05*CM(3)
     CFCM(LAND)=COST(LAND.CAPCF,LANDAR.IRCODE)
     CM(5)=CFCM(LAND)
     CM(6)=0; Not applicable
     CFOM(OPER1)*COST(OPER1,OMMCF,HSTAFF*HRSYR*0.30 ,IRCODE)
     CFOM(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR*0.15 .IRCOOE)
     CFOM(LABOR)=COST(LABOR,OHMCF,HSTAFF*HRSYR*0.40 .IRCODE)
     OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
     CFOM(POWER)=COST(POWER,OMNCF,KWH*HRSYR,IRCODE)
     OMM(2)=CFOM(POWER)-
     CFOM(MECH1)=COST(HECH1,OMMCF,0.01*QANF*HRSYR,IRCOOE)
     CFOM(MECH2)=COST(MECH2,OMMCF,0.009*QANF*HRSYR,IRCODE)
     CFOM(HELPR)=COST(HELPR,OMMCF,0.002*QANF*HRSYR,IRCODE)
     OMM(3)=CFOM(MECH1)+CFOM{MECH2)+CFOM(HELPR)+0.005*CMC3)
     OMM(4)=0; Not applicable
     OMM(8)-0: not applicable
Module Specific Parameters, Parameter Definitions
     LIQDEN                Liquid phase density Ob/ft3)
     VAPDEN                Vapor Phase density (lb/ft3)
     LIQQEF                Liquid phase discharge rate (Ib/sec)
     VAPQEF	Vapor phase discharge rate (Ib/sec)
    ' l'~        "                     71

-------
      DENRA
      MFLOR
      VEXC
      WSTR
 Density  ratio =  liqden/vapden
 Liqqef/vapqef •  1/seprat
 Volume of excavation  (CY)
 Weight of suppt.  steel  (Ibs)
Module Specific Parameters. Parameter Definitions
     WOOL
     WTRAY
     WLAPL
     KUH
     SEPVAP

     QSTM
     QINF
     SLUDG

 EVAPORATOR
System Variables
     LANDAM=0.46*QINF
     LANDAR=4.0*LANDAM
     SURFAR=LANDAR/1.91
       VEXC-0.15*SURFAR
       VCON=0.17*SURFAR
     SQSUF=SQRT(SURFAR).
       WSTR=35.*SURFAR+11,5*SQSUF+34;
     WLAPL=24,4*SURFAR+203*SQSUFt600
       KWH=802.88*QINF
       HRSYR=HRS*DAYS
       QANF=QINF
     QSTM=40*QINF
     SLUDG=QINF*(100-SEPVAPl*0,01
     QINF=QINF*SE"PVAP*0,01
Weight of dlst. column (Ibs)
Weight of packing trays (Ibs)
Weight of ladders and platforms '(Ibs)
Kilowatts per hour
Percent of total discharge1 flow (6PM)
represented by the condensate
(expressed as c. %)
Steam demand, Ibs/hr
Influent flow rate (GPM)
Sludge (heavy fraction)
wasting rate
                                     72

-------
 Performance
      CFCM{CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
      CFCM(GRADE)=COST GRADE,CAPCF,LANDAM,IRCODE)
      CFCM(EXCV1)=COST(EXCV1,CAPCF,YEXC,IRCODE}

      CM(1)=CFCM(CLR1 )+CFCM(GRADE)+CFCM(EXCVl)

      CFCM(SLAB2KOST(SLAB2,CAPCF,VCON,IRCODE)
      CFCM(STRST)=COST(STRST,CAPCF,HSTR,IRCODE)

      CM(2)=CFCM(SLAB2}+CFCM(STRST)

      CFCM(EVAP)=COST(EVAP ,CAPCF,QANF*1000.IRCODE)
      CFCM(CONDE)=COST(CONDE,CAPCF,QANF,IRCODE)
      CFCM(STRST)=COST(STRST,CAPCF,WLAPL,IRCODE)

      CMC3l=CFCMCEVAPl+CFCMtCONDEl*CFCfttSTRSTi

      CMC4)=0,05*CMC3}

      CM(5)=CFCM(LAND)
      CM(6)=0;  Not applicable
      CFOM
      CFOM
      CFOM
OPER1
OPER2
LABOR
=COST
"COST
=COST
OPER1,OMMCF,MSTAFF*HRSYR*0.30 .IRCOOE)
OPER2,OHMCF,MSTAFF*HRSYR*0.15 ,IRCODE}
LABOR,OMMCF,MSTAFF*HRSYR*0.40 ,IRCODE)
      OMM(1)=CFOM{OPER1)+CFOM(OPER2)+CFOM(LABOR)

      CFOM(POWER)=COST(POWER,OMMCF,KWH*HRSYR,IRCODE)

      OMM(2)=CFOM(POWER)
      CFOM
      CFOM
      CFOM
MECHI)=COST(MECH1,OMMCF,0.01*HRSYR,IRCODE
MECH2)=COST(MECH2,OMMCF,.009*HRSYR,IRCODE
HELPR)=COST(HELPR,OMMCF,.002*HRSYR,IRCODE
      OMM(3)=CFOM(MECH1)+CFOM(MECH2)+CFOM(HELPR)+0.005*CM(3)

      OMM(4)=0; Not applicable

      OMM(8)=0 Not applicable


 Module Specific Parameters, Parameter Definitions

      QINF                 Influent flow rate (GPM)

:      VEXC                 Volume of excavation (CY)
                                       73

-------
      VCON                 Volume of concrete (CY)

      WSTR                 Weight of support steel (Ibs)

      WLAPL                Weight of ladders and platforms (Ibs)

      KWH                  Kilowatts/hour

      SEPVAP               Percent of total discharge flow (GPM)
                           represented by the condensate
                           (expressed as a %)

      QSTM                 Steam demand (Ibs/hr)

      SLUDG                Sludge (concentrate) wasting rate


 DECANTER

 System  Variables

      IF(SL.GT.O.),  GO TO  1
      IF(011SG.GT.O.),SL=OILSG
      IF(VISCON.LE.O.),GOTO 2
      IF(SH.LE.O.),GOTO 2
      IF(SL.LE.O.),GO  TO 2
      DETENT=6.0*VISCON/(SH-SL)
      IF(DETENT.LE.O.),DETENT=20.

      VOL«OETENT*QINF*0.134
      LEN*1.084*VOL**0.333
      LANDAM=0.922*VOL**0.667
      LANDAR=(SQRT{LANDAM}+6.0}**2.0
      HRSYR=HRS*DAYS
      WTNK=150.*QINF**0.736
      PIPDIA=10.**(ALOGID(QINF)*0.4)
      MECHA=4.71E-6*QINF**0.831
      MECHB=3.76E-6*QINF**0.831
      HELP=9.42E-7+QINF**0.831

      QSIDE=QINF*OIL*1.0E-4
      QINF=QINF-QSIOE


Performance


      CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)                              c---
      CFCM(GRADE)=COST(GRAOE.CAPCF,LANDAR,IRCODE)                              ,~.,-\ .'-

     CM(1)=CFCM(CLR1  )+CFCM(GRADE)                                            :.":'.::
—_       .                           _                              _.    :

-------
      CFCM(SLAB2)=COST(SLAB2,CAPCF,LANDAR/27,IRCODE)
      CM(2)*CFCM{SLAB2)
      CFCM(CSPLT)=COST{CSPLT,CAPCF,tfTNK,IRCODE)
      CFCM{PIPE6)=COST(PIPE6,CAPCF,PIPDIA*3*LEN,IRCODF)
      CM(3)=CFCH(CSPLT)+CFCM{PIPE6)
      CM(4)=0:  Not applicable
     CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
     CM(5)=CFCM(LAND)
     CM(6)=0; Not applicable
     CFOM{OPER1
     CFOM(OPER2
     CFOM(LABOR
=COST(OPER1,OMMCF,MSTAFF*HRSYR*0.001.IRCODE)
»COST{OPER2.OHMCF,MSTAFf*HRSYR*0.001.IRCODE)
'COST{LABOR,OWCF,MSTAFF*HRSYR*0.018,IRCODE)
     OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
     OMM{2)»0: Not applicable
     CFOM{ HECH1 )=CO?T( MECH1 .OMMC.F ,HECHA*HRSYR, IRCODE)
     CFOM(HECH2)TCOST(MECH2.0MMCF,HECHB*HRSYR,IRCODE)
     CFOM{HELPR)=COST{HELPR,OHMCF,HELPR*HRSYR,IRCODE)
     OMM(3)=CFOH(MECK1)+CFOM(HECH2)+CFOH(HELPR)
     OMM(4)=0; Not applicable
     OMM(8)=0; Not applicable

Module Specific Parameters. Parameter Definitions
    • VISCON               Viscosity of the continuous phase
                          (cent1 poise)
     SH                   Specific gravity of the heavy phase
     SL                   Specific gravity of the light phase
     DETENT               Detention time in unit
     QINF                 Influent flow (liquid)(GPM)
     VOL                  Volume of unit (ft3)
     LEN                  Length (ft)
 '   "~            " — - - -r_n.T_.        — - •-	—        *
     - :  :       i                      75

-------
     WTNK                 Weight of the decanter tank (Ibs)

     PIPDIA               Diameter of piping (Inches)

     MECHA                Coefficient for MECH 1

     MECHB                Coefficient for MECH 2

     HELP                 Coefficient for HELPR
 Module Specif1c~Parameters. Parameter'uetinltions'


    OILSG                Specific gravity of oil (lighter phase)

    OIL                  Concentration of oil (lighter phase (ppm)

    QSIDE                Wasting rate of the -lighter fraction to
                         an accumulator (6PM)
"CHEMICAL'STORAGE:  GAS

System Variables
     DUR=30./DELMO
     VOI.=DUR*QGAS*60.*HRS
     IFF(VOL.LT.2000.)
       LANDAR=VOL*0.02
       CYCLNO=RNDUP(VOL/150,1
     ENDIFF
     IFF(VOL.GE.2000.}
       LANDAR»VOL*0.04
       CYLNO=RNDUP(VOL/2000.L
       BOT=0.
       CYL=1.
     ENDIFF
     HRSYR=HRS*DAYS
Performance
     CFCM(CLR1 )=COST(CLR1 .CAPCF.LANDAR.IRCODE)
     CFCM(GRADEKOST(GMDE,CAPCF.LANDAR,IRCODE)

     CM(1)=CFCM(CLR1 )+CFCM(GRADE)

     CFCM(SLAB2)=COST(SLAB2.CAPCF.LANDAR/27,IRCODE)
     CFCM( BUI LDKOST (BUI ID .CAPCF .LANDAR, I RCODE)

      : -"      '.                      76

-------
    CM(2)=CFCM{SLAB2)+CFCM(BUILD)
    CFCM(VAPOR)=COST(VAPOR,CAPCF,1,IRCOPE)
    CFCM(CSASTKOST(CSAST,CAPCF,CYLNO,IRCODE)
    CM(3)=CFCM(VAPOR)+CFCM(CSAST)
    CM(4)=0; Not  applicable
    CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
    CM(5)=CFCM(LAND)
     CM(6)«0; Not applicable
     CFOM(OPER1
     CFOM(OPER2
     CFOM(LABOR
=COST(OPER1,OMMCF,MSTAFF*HRSYR*0.001.IRCODE)
=COST(OPER2,OMMCF,MSTAFF*HRSYR*0.001,IRCODE)
=COST(LABOR,OMMCF,MSTAFF*HRSYR*0.009,IRCODE)
     OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
     OMM(2)=0; Not applicable
     OMM(3)=0.01*CM(3)
     CFOM(CLBOT)=COST(CLBOT.OMMCF,VOL*BOT*DAYS/DUR.IRCODE)
     CFOM(CLCYL)=COST(CLCYL,OMMCF,VOL*CYL*DAYS/DUR,IRCODE)
     OMM(4)=CFOM(CLBOT)+CFOM(CLCYL)
     OMM(8)=0; Not applicable
Module Specific Parameters. Parameter Definitions
     DELMO                  Deliveries per month
     DUR                    Duration between deliveries (days)
     VOL                    Volume of delivery (and of
                            storage capacity)
     CYLNO                  Number of containers
     BOT                    Equals 1 if bottles are used
     CYL                    Equals 1 1f cylinders are used
     QGAS                   Gas output (demand) (Ibs/min)
                                     77


-------
CHEMICAL STORAGE: LIQUID

System Variables
   DUR=30/DELMO
   VOL=DUR*QLIQ*60*HRS
   LANDAM=VOL/10
   LANDAR=LANDAM+12*SQRT(LANDAM}+144
   VEXC=LANDAM/13.5
   VRING*LANDAM/16.2
   MECHA=9.79E-3*QLIQ**0.831
   MECHB=7.83E-3*QLIQ**0.831
   HELP=1.96E-3*QLIQ**0.831
   IBTNK=1
   WA=AL=FE=CA=FUELO=GASO=AM=PH=DM=0
   IF(MODL.EG.1),WA=1
   IF(MODL.EQ.2),AL=1
   IF(MODL.EQ.3),FE=1
   IF(MODL.EQ.4),CA=1
   IF(MODL.EQ.5),Fi;ELO=1
   IF(MODL.EQ.6),GASO=1
   IF(MODL.EQ.7
   IF(MODL.EQ.8
   IF
   IF
MODE.EQ.9
WA.EQ.
          ,AM=1
          ,PH=1
               ,TANK«=1
    IF WA.EQ.  ,FIBTNK=0
    IF WA.EQ.  ,AMTNK=0
    IF AM.EQ.  ,TANK=0
    IF AM.EQ.  .FIBTNK-0
    IF AM.EQ.  ,AMTNK=1
    IF AM.EQ.  ,TANK«=0
    IF AM.EQ.  ,FIBTNK=0
    IF AM.EQ.  ,AMTNK=1
    HRSYR=DAYS*HRS
    CONSUM=VOL*DAYS/DUR
    IF(MODL.EQ.O),TANK=1
    IF(MODL.EQ.O),FIBTNK=0
Performance "
    CFCM(CLR2 )=COST
    CFCM( GRADE XOST
    CFCM(EXCV1)=COST
               CLR2 .CAPCF.LAWDAR.IBCODE)
               GRADE,CAPCF.LANDAM.IRCODE)
               EXCV1,CAPCF,VEXC,IRCODE)
    CM(1)=CFCM(CLR2 )+CFCM(GRADE)+CFCM(EXCVl)

    CFCM(WALL1)»COST(WALL1,CAPCF,VRING,IRCODE)

    CM(2)=CFCM(WALL1)
                                   78

-------
     CFCM(SSTSH)=COST(SSTSH,CAPCF,VOL*TANK,IRCODE)
     CFCM(PRTNK)=COST(PRTNK,CAPCF,VOL*AMTNK,IRCODE)
     CFCM(FTANK)=COST(FTANK,CAPCF,VOL*FIBTNK,IRCODE)

     CM(3)=CFCM(SSTSH)+CFCM(PRTNK)+CFCM(FTANK)

     CM(4)-0; Not applicable

     CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)

     CM(5)=CFCM(LAND)

     CM(6)=0; Not applicable
     CFOM
     CFOM
     CFOM
OPER1
OPER2
LABOR
=COST(OPER1,OMMCF,MSTAFF*HRSYR*0.001.IRCODE]
'COST(OPER2,OMMCF,MSTAFF*HRSYR*0.001,IRCODE)
'COST(LABOR,OMMCF,MSTAFF*HRSYR*0.018,IRCODE)
     OMM( 1 HFOM(OPER1 )+CFOM(OPER2)+CFOM(LABOR)

     OMM(2)=0; Not applicable
      CFOM
      CFOM
      CFOM
MECH1)=COST(MECH1,OMHCF,MECHA*HRSYR,IRCODE)
MECH2)=COST(MECH2,OMMCF,MECHB*HRSYR,IRCODE)
HELPR)=COST(HELPR,OMMCF,HELP*HRSYR,IRCODE)
      OMM(3)=CFOM(MECH1)+CFOM(MECH2)+CFOM(HELPR)
      CFOM(WATER)=COST
      CFOM(ALSU3)=COST
      CFOM(FECL3)=COST
      CFOM(COACL)=COST
            WATE R.OMMCF,WA*CONSUM,IRCODE)
            ALSU3,OMMCF,AL*CONSUM,IRCODE)
            FECL3,OMMCF,FE*CONSUH,IRCODE)
            COACL, OMMCF ,CA*CONSUM, I RCODE )'
      CFOM(FUEL)=COST(FUEL  ,OHMCF,FUELO*CONSUM,IRCODE)
      CFOM(GAS  HOST(GAS   ,OMMCF,GASO*CONSUM, IRCODE)
      CFOM(AMMON)=COST(AMMON,OMMCF,AM*CONSUM,IRCODE)
      CFOM(PHOS)=COST(PHOS  ,OMMCF,PH*CONSUM, IRCODE)
      CFOM(DEMUL)=COST(DEMUL,OMMCF,DM*CONSUM,IRCODE)
      OMM(4)+CFOM(WATER)+CFOM(ALSU3)+CFOM(FECL3)+CFOM(COACL)+CFOM(FUEL)+
      CFOMfaASHCFOM(AMMON)+CFOM(PHOS)-«-CFOMtDEMUL)
              ; Not applicable

 CHEMICAL STORAGE :  SOLIDS "

System Variables
     AL=CAO=CAHY=DOLY=0
     IF(MODS.EQ.l) AL=1 ,CONC=14.29,DENS=2.71
     IF(MODS.EQ.2)CAO=1 ,CONC= 1.05,DENS=3.30
     IF(MODS.EQ.3)CAHY=1,CONC= 1 .37,DENS=2.24
     IF(MODS.EQ.4)POLY=1,CONC= 1.0 ,DENS=2.00

                                   79

-------
     IF(PERCENT.LE.0)PERCENT=20
     AEFBIN*AEFSLA*5.0*PERCENT
     DUR=(30/DELMO)*0.66*HRS
     VOLBIN=DUR*QEFBIN*CONC*(1/DENS)*0.12
     VOLSLA»QEFSLA*1.0
     LANDAM=((VOLBIN+VOLSLA)*0.134)**0.667
     LANDAR=1.5XLANDAR
     VCON=LANDAM/27
     WSTR=17.5*LANDAMf5.75*SQRT(LANDAM)+17.
     PIPLEN=SQRI(QEFSLA)
     HRSYR=HRS*DAYS
     MECHA=6.0E-4*QEFSLA**0.831
     MECHB*5.OE-4*QEFSLA**0.831
     HELP =1.0E-4*QEFSLA**0.831
Performance
     CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
     CFCM(GRADE)-COST(GRADE,CAPCF,LANDAN,IRCODE)

     CM(1)=CFCM(CLR1 )+CFCM(GRADE)

     CFCM(SLAB2KOST(SLAB2,CAPCF,VCON,IRCODE)
     CFCM(STRST)*COST(STRST,CAPCF,WSTR,IRCODE)

     CM(2)=CFCM(SLAB2)+CFCM(STRST)

     CFCM(PIPE5)=COST(PIPE5,CAPCF,PIPLEN,IRCODE)
     CFCM(SSTSH)=COST(SSTSH,CAPCF,VOLBIN,IRCODE)
     CFCM(SLAKEO+COST(SLAKE,CAPCF,QEFBIN,IRCODE)
     CFCM(VIBFD)=COST(VIBFD.CAPCF,QEFBIN/2000,IRCODE)

     CM(3)-CFCM(PIPES)+CFCM(SSTSH)+CFCH(SLAKE)-i-CFCM(VIBFD)

     CW(4)=0; Not applicable

     CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)

     CM(5)=CFCM(LAND)

     CM(6)=0; Not applicable
     CFOM(OPER1)"COST
     CFOM(OPER2)=COST
     CFOM(LABOR)=COST
OPER1,OMMCF,MSTAFF*HRSYR*0.001.IRCODE)
OPER2.OMMCF,MSTAFF*HRSYR*0.001,IRCODE)
LABOR.OMMCF^TAFF*HRSYR*0.018,IRCODE)
     OMM(1)=CFOM(OPER1)+CFOM{OPER2)+CFOM(LABOR)

     OMN(2)=0; Not applicable
                                   80

-------
      CFOM{MECH1)*COST(MECH1,OMMCF,MECHA*HRSYR,IRCODE)
      CFOM(MECH2)-COST(HECH2,OMMCF,MECHB*HRSYR,IRCODE)
      CFOM(HELPR)=COST (HELPR.OMMCF,HELP*HRSYR,IRCODE)

      OMM(3)=CFOM(HECH1)+CFOM(MECH2)+CFOM(HELPR)

      CFOM(ALSU2)=COST(ALSU2,OMHCF,QEFBIN*AL*HRSYR,IRCOOE)
      CFOM(CA01  KOST(CA01 ,OMMCF,QEFBIN*CAO*HRSYR,IRCODE)
      CFOM(CAHY1)=COST(CAHY1,OMMCF,QEFBIN*CAHY*HRSYR,IRCOOE}
      CFOM(POLYM)=COST(POLYM,OMMCF,QEFBIN*POLY*HRSYR,IRCODE)

      OHM(4)=CFOM(ALSU2)+CFOH(CA01 )+CFOM(CAHYl)+CFOM(POLYM)

      OMH(8)=0;  Not applicable

 SLUDGE EQUALIZATION

 System Variables
      NOTNKS=RNDUM(IMPT 155.)
      LENGTH=AMAX1(8.0,(INPT/NOTNKS)*.OA47)
      LANDAR=LENGTH*12.
      HRSYR=HRS*DAYS
      KWH=37.29*NOTNKS
,Performance
      CFCM(CLR1  )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
      CFCMCGRADEJ^COSTtGRADE.CAPCF.LANOAR.IRCOOE)

      CM{1)=(CFCM(CLR1  )+CFCM(GRADE))*NOTNKS

      CFCM(SLAB1)=COST(SLAB1,CAPCF,LENGTH*0.3,IRCOOE)
      CFCM(WALL5)=COST(WALL5,CAPCF,2.8*0.35*LENGTH.IRCODE)
      CFCM(COVER)=COST(COVER,CAPCF,300,IRCODE)

      CM(2)=CFCM(SLAB1)=CFCM(HALL5)+CFCM(COVER)*1000)*NOTNKS

      CFCM(AER50)=COST(AER50,CAPCF,NOTHKS,IRCODE)

      CM(3)=CFCM(AER50)

      CM(4)=0; Not applicable

      CFCM(LAND)=COST(LAND.CAPCF,LANDAR*NOTNKS,IRCODE)

      CM(5)=CFCM(LAND)
                                    81

-------
      CM(6)-0; Not applicable

      CFOM(OPER1)=COST(OPER1,0!WCF,MSTAFF*HRSYR*0.125,IRCODE
      CFOM(OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR*0.007,IRCODE
      CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR*0.900,IRCODE

      OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)

      CFOM(POWER)=COST(POWER,OMMCF,KWH*HRSYR,IRCODE)

      OMM(2)=CFOM(POWER)

      CFOM(SUPER)=COST(SUPER,OMMCF,16,IRCODE)
      CFOM(MECH1)=COST(MECH,OMMCF,32,IRCODE)
      CFOM(HELPR)=COST(HELPR,OMMCF,40,IRCODE)
      OMM(3)=CFOM(SUPER)+CFOM(MECH1)+CFOM(HELPR)

      OMM(4)=0; Not applicable

      OMM(8)=0; Not applicable


Module Specific Parameters. Parameters Definitions


      SLUDG                Input/output flow for sludge (GPM)

      NOTNKS               Number of tanks

      LENGTH               Basin length (ft)

      KWH                  Kllowatts/hr

      INDT                 Sludge flow Input (GPM)

 ENCAPSULATION

 System Variables
      HRSYR=HRS*DAYS
      TONSYR=QINFS*HRSYR/2000.
      LNADAR=25.0*TONSYR
      WORKER=1.60E-3*TONSYR
      KWH=2.06E-2*TONSYR
      CHEM»0.647*TONSYR
      IFF(MODE.EQ.l.)
       MODE1=1.
       MOOE2=0.
      ENDIFF


      - : '      -                      82

-------
     IFF(MODE.EQ.2.)
      MODE1=0.
      MODE2=1.
     ENDIFF
     QINFS=1.647*QINES

Performance

     CFCM(CLR1 )=COST(CLR1 ,CAPCF,LANDAR,IRCODE)
     CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,IRCODE)
     CH(1)=(CFCM(CLR1 )+CFCM(GRADE))*MOD£1
     CFCM(SLAB2)=COST{SLAB2,CAPCF,LANDAR/27,IRCODE)
     CFCM(BUILD)=COST{BUILD,CAPCF,LANDAR,IRCODE)
     CM(2)=(CFCM(SLAB2)+CFCM{BUILD))*MODE1
     CFCM(ENCAP)=COST(ENCAP,CAPCF,TONSYR,IRCODE)
     CM(3)=CFCMtENCAP)*MODEl
     CM(4)=0.05*CM(3)
     CFCM(LAND)=COST(LAND.CAPCF.LANDAR,IRCODE}
     CM(5)=CFCM(LAND)*MODE1.
     CM(6)=0; Not applicable
     CFOM(OPER1)=COST(OPER1.OMMCF,WORKER*HRSYR,IRCODE)
     OMM(1)=CFOM(OPER1)*MODE1
     CFOH(POWER)«COST(POWER,OMMCF,KWH*HRSYR,IRCODE)
     OHM(2)=CFOM(POWER)*MODE1
     Om(3)=0.01*CM(3)*MODEl
     CFOM(CAPCMKOST(CAPCM,OMMCF,CHEM, IRCODE)
     OMM(4)=CFOH(CAPCFM)*MODE1
     CFOM(ENCAP)»COST(ENCAP,OMMCF,TONSYR,IRCODE)
     OHM(8)=CFOM{ENCAP)*MODE2
                                   83

-------
 Module Specific Parameters. Parameter Definitions

      QINFS                Solids loading rate (Ibs/hr)
      TONSYR               Tons per year input
      WORKER               Coefficient for OPER1
      KWH                  Kilowatts/hr
      CHEN                 Chemical demands (tons)
      MODE                 Mode=l -^purchased .plant
                           Mode=2 ->-serv1 ce fee
DEAERATOR
System Variables
     NODEA=RNDUP(QINF/80.)
     INFLOW=QrNF/NODEA
     LANDAM=(99.85+18.89*INFLOW)**0.54*NODEA
     LANDAR-(SQRT(LANDAM)+6)**2
     HRSYR=HRS*DAYS
     OXY=0.01*OXY
     QSTM*1.1347+0.11184*INFLOW)**1.25*NODEA/1000.
     .CFCH(CLR1  )=COST(CLR1  .CAPCF.LANDAR,IRCODE)
     CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,IRCODE)
     CM(1)=CFCM(CLR1  )+CFCM(6RADE)
     CFCM(SLAB2}=COST(SLAB2,CAPCF.LANDAR/27,IRCODE)
     CFCM(BUILD)=COST(BUILD,CAPCF,LANDAM,IRCODE)
     CM(2)=CFCM(SLAB2)+CFCM(BUILD)
     CFCM(DEARA)=COST(DEARA,CAPCF,INFLOW,IRCODE)
     CM(3)=CFCM(DEARA)*NODEA
     CM(4)=0;  Not applicable
      CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
      CM(5)=CFCM(LAND)
      CM(6)=0;  Not applicable
     -  -        -                      84

-------
     CFOM(OPER1)=COST(OPEH1 ,CMMCF,MSTAFF*HRSYR*0.001 .IRCODE
     CFOM(OPER2KOST(OPER2,OMMCF,MSTAFF*HRSYR*0. 001 .IRCODE)
     CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR*0.018, IRCODE)
     OMM{1)=CFOM(OPER1)+CFOM(OPER2)+CFOM( LABOR)
              ; Not applicable
     OMM(4)=0; Not applicable
     OMM(8)=0; Not applicable
Module Specific Parameters, Parameters Definitions
     QINF                 Influent liquid flow (GPM)
     NOOEA                Number of de aerators required
     INFLOW               Flow rate to a single aerator(GPM)
     OXY                  oxygen concentration tppm)
     QSTM                 Steam demand Ibs/hr
 EVAPORATION POND
System Variables
     VOLW=BATLH*Q IN F*60 . *HRS
     SURFAR»1 ,6*VOLN/(EVAP-RAIN)
     LANDAR=(SQRT(SURFAR)+92)**9.
     VEXC=(RAIN/12+VOLW/(&.$**SURFAR))*SURFAR
     HRSYR=DAYS*HRS
     QINF»0

Performance
     CFCM(CLR2 )=COST(CLR2  .CAPCF.LANDAR, IRCODE)
     CFCM(GRADE)=COST(GRADE,CAPCF,LANDAR,1RCOOE)
     CFCM(EXCV3)=COST(EXCV3,CAPCF,VEXC, IRCODE)
     CM(1)=CFCH(CLR2 )+CFCH(GRADE)+CFCM(EXCV3)
     CM(2)=0; Not applicable                                                 i.
  r :' '=                              85                                       ::

-------
      CM(3)=0; Not applicable
      CM(4)=0; Not applicable
      CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE)
      CM(5)=CFCM(LAND)
      CFCM(LINER)=COST(LINER,CAPCF,1.05*LANDAR,IRCODE)
      CFCM(GWMON)=COST(GWMON,CAPCF,4,IRCODE)
      CM(6KFCM(LINER)+CFCM(GWMON)
      CFOM(OPER1)=COST
      CFOM(OPER2)=COST
      CFOMCLABOR)=COST
[OPER1.OMMCF,MSTAFF*HRSYR*0.125,IRCODE)
OPER2,OMMCF,MSTAFF*HRSYR*0.065,IRCODE)
LABOR,OMMCF,MSTAFF*HRSYR*0.342,IRCIDE)
      OMM( 1 )=CFOM(OPER1 )+CFOM(OPER2)+CFOMCLABOR)
      OMM(2)=0; Not aooli cable   .
      CFOM(LABOR)=COST(LABOR,OMMCF,30,IRCODE)
      OMM(3)»CFOM(LABOR)
      OMM(4)=0; Not applicable
      OMM(8)=0; Not applicable

 Module Specific Parameters. Parameters Definitions

      QINF                 Influent flow (liquid)  (GPM)
      VOLW                 Volume of water to  be retained (gal)
      EVAP                 Evaporation rate (inches per year)
      RAIN                 Rainfall (Inches per year)
      BATCH                Duration of retention of a  batch (days)
      VEXC                 Volume of excavation (CY)
"STEAM GENERATOR
 System Variables
      NOBOIL=RNDUP)QSTM/17250.)
      OUTPUT=QSTM/NOBOI L _ „
       ':                             86

-------
     LANDAM=4.33E-3*QSTM
       OIL=8.61E-3*QSTM
       GAS=1.103*QSTM
       HZO=0.1719*QSTH
       HP=2.833E-3*QSTM
       KWH=HP*0.7457
       HRSVR=HRS*DAYS
       LANDAR=LANDAM+12.*SQRT{LANDAM)*144.
     IFF(MODE.EQ.l.)
       NAT=0.
       F=l.
     ENDIFF
     IFF(MODE.EQ.2.)
       NAT=1.
       F=0.
     ENDIFF
     TOTAL OUTPUT(LBS/HR)AS QSTM


Performance


     CFCM(CLR1 XOST{CLR1 ,CAPCF,LANDAR,IRCODE)
     CFCM(GRADE)=COST{GRADE,CAPCF,LANDAR,IRCODE)

     CM(1)=CFCM(CLR1 )+CFCM( GRADE)

     CFCM(SLAB2)=COST(SLAB2,CAPCF,LANDAR/27,IRCODE)
     CFCM(BUILD)=COST(BUILD,CAPCF,LANDAR,1RCODE)

     CM(2)=CFCM(SLAB2)+CFCM(BUILD)

     CFCM(STGEN)=COST(STGEN,CAPCF,OUTPUT,IRCODE)

     CM(3KFCM(STGEN)*NOBOIL
    CM(4)=0; Not applicable

     CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODEJ

     CM(5)=CFCM(LAND)

     CM(5)=0; Not applicable

     CFOM(OPER1)=COST(OPER1,OMMCF,MSTAFF*HRSYR*0.020,IRCODE)
     CFOM(OPER2)=COST(OPER2,OMMCF,M5TAFF*HRSYR*0.003,IRCODE)
     CFOM( LABOR)=COST{ LABOR .OMMCF ,MSTAFF*HRSYR*0. 304 .IRCODE )

     OMM( 1 )=CFOH(OPER1 )+CFOM(OPER2)_CFOM{LABOR)


   : : -        r                      87

-------
     CFOM(FUEL).=COST(FUEL ,OMMCF,F*OIL*HRSYR,IRCODE)
     CFOM(NGAS)+COST(NGAS .OMMCF,NAT*GAS*HRSYR,IRCODE)
     CFOM(POWER)=COST(POWER,OMMCF,KWH*HRSYR,IRCODE)
     OMM(2)=CFOM(FUEL)+CFOM(NGAS)+CFOM(POWER)
     CFOM(MECH1)=COST(MECH1,OMMCF,32,IRCODE)
     CFOM(MECH2)=COST(MECH2,OMMCE,16,IRCODE)
     CFOM(HELPR)=COST(HELPR,OMMCF,32,IRCODE)
     OMM(3)=CFOM(MECH1)+CFOM(MECH2)+CFOM(HELPR)+0.005*CM(3)
     CFOM(WATER)=COST(WATER,OMMCF,HZO*HRSYR,IRCODE)
     OMM(4)*CFOM(WATER)
     OMM(8)=0: Not applicable
Module Specific Parameters. Parameters Definitions

     QSTM                 Steam demand-(Ibs/hr)
     NOBOIL               Number of boilers required
     OUTPUT               Steam required from one boiler (Ibs/hr)
     OIL                  Gallons of fuel oil required {gal)
     GAS                  Natural gas required (ft3)
     H20                  Gallons of water required (gal)
     HP                   Horsepower required
     KWH                  Kilowatts/hr

Module Specific Parameters. Parameters Definitions
     MODE                 If MODE = 1 , then boilers are oil  fired
                          If MODE =1". then boilers are fired
                                        by natural gas
     NAT)                 Counters controlled by MODE
       F)
                                   88

-------
    BUILDING

    System Variaoles
         +CLR]   = 80
         +GRADE = 62
         +OFFIC = 72
         +RLABS = 73
         +LAND  = 50


         +HELPR = 12

         IQ1NFL = 01
         IQINFS = 02

         SCALE=QINFL
         IF(SCALE.LE.O)SCALE=QINFS*2.0E-3
         LANDAM=150.*(1.81E-3*SCALE+5.48)+500.
    Performance


         CFCH(CLR1 }=COST(CLR1 .CAPCF.LANDAR.IRCODE)
         CFCH(GRADE)=COST(GRADE,CAPCF,LANDAM,IRCODE)

         CM(1)=CFCM(CLR1 )+CFCM(GRADE)

         CM(2)=0; Included in CM-3

         CFCM(OFFICE)=COST(OFFICE,CAPCF,LANDAM,IRCODE}
         CFCM(RLABS)=COST(RLABS,CAPCF,500 .IRCODE)

         CH931=CFCM(OFFICE)+CFCMCRLABSl

         CH(4)=0; Included in CH-3

         CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE1

         CM(5)=CFCM(LAND)

         CM(6)=0; Not applicable

         OMM(1}=0; Not applicable

         OMM(2)=0; Not applicable


:	     CFOH(HELPR)=COST(HELPR,OMHCF,52,IRCODE)
 ___       -                     ._

-------
      OMM(3)=CFOM(HELPR)

      OMM(4)=0; Not applicable

      OMM(8)=0; Not applicable


 Module Specific Parameters. Parameters Definitions


      QINFL                Liquid flow rate input to the
                           associated technology (GPM)

      QINFS                Solids loading rate to the
                           associated technology (Ibs/hr)

      SCALE                Relates QINFS or QINFL to
                           sizing variables^
 —    	   "    _  	 _,  '"•  	 	 	 ^^^	^^^                   -    	 __ _   i, ,
I   -—— • •"  —  •  - '•  ^— C I  .  ^~~ 	 fill -   —— • i  —^ - 11 	 *jn ^^— ' •-— - T  ^^         I •
  PIPING "AND "VALUES	'^^             ~   ^^	:	

  System Variables


       IF(LENGTH.LE.O),LENGTH=QINF
         LANDAR»LENGTH*3.0
         DIA=12.*(3.14E-11*LENGTH*QINF*QINF)**0.2


  Performance
• 
-------
      CFOM{OPER1)=COST(OPER1,OHMCF,MSTAFF*HRSYR*0.000,IRCODE)
      CFOM{OPER2)=COST(OPER2,OMMCF,MSTAFF*HRSYR*0.000,IRCODE)
      CFOM(LABOR)=COST(LABOR,OMMCF,MSTAFF*HRSYR*0.010,IRCODE

      OMM(1)
-------
Performance
     CH(1)=0; Not applicable
     CM{2)=0; Not applicable
     CFCM( PUMPS KOST(PUMP3,CAPCF,FLOWPP*AQ,IRCODE)
     CFCM(PUMP2)=COST(PUMP2,CAPCF,FLOWPP*SL,IRCODE)
     CFCM(PUMP1)=COST{PUMP1,CAPCF,FLOWPP*CM,IRCODE)
     CM(3)»CFCM(PUMP3)+CFCM(PUMP2)+CFCM(PUMP1)*NOPUMPS
     CM(4)=0,005*CM(3)
     CFCM(LAND)=COST(LAND,CAPCF,LANDAR,IRCODE).
     CM(5)=0;  Not applicable
     CM(6)=0;  Not applicable
     CFOM(OPER1)=COST(OPER1,OMMCF,HSTAFF*HRSYR*0.001.IRCODE)
     CFOM(OPER2)=COST(OPER2,OMMeF,MSTAFF*HRSYR*0.001 ,'IRCODE)
     CFOM(LABOR)=CDST(LABOR.OHMCF.HSTAFF*HRSYR*0.051,IRCODE)
     OMM(1)=CFOM(OPER1)+CFOM(OPER2)+CFOM(LABOR)
     CFOM(POWER)=COST(POMER,OMMCF,KWH*HRSYR,IRCODE)
     OHM(2)=CFOM(POWER)
     OHM(3)-0.01*CM(3)
     OMM(4)=0;  Not applicable
     OMM(8)=0;  Not applicable
                                                                           \ „• • •
                                    92                                       - -"- ".•

-------