United States
Environmental Protection
Agency
Environmental Research
Laboratory
Corvall's OR 97330
EPA 600 3-4fO-O34
February 1 980
Research and Development
Workbook/Users
Manual for
Prediction of
Instantaneously
Dumped Dredged
Material
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development. U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. 'Special" Reports
9. Miscellaneous Reports
This report has been assigned to the ECOLOGICAL RESEARCH series. This series
describes research on the effects of pollution on humans, plant and animal spe-
cies, and materials. Problems are assessed tor their long- and short-term influ-
ences. Investigations include formation, transport, and pathway studies to deter-
mine the fate of pollutants and their effects. This work provides the tecnnical basis
for setting standards to minimize undesirable changes in living organisms in the
aquatic, terrestrial, and atmospheric environments.
This document is available to the public through the National Technical Informa-
tion Service. Springfield, Virginia 22161.
-------
EPA-600/3-80-034
February 1980
WORKBOOK/USERS MANUAL FOR PREDICTION OF INSTANTANEOUSLY
DUMPED DREDGED MATERIALS
By
L. R. Davis
Freshwater Division
Corvallis Environmental Research Laboratory
Con/all is, Oregon 97330
and
G. W. Bowers*
M. K. Goldenblatt
JBF Scientific Corporation
Wilmington, Massachusetts 01887
R-804994
CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CORVALLIS, OREGON 97330
^Presently at E. G. & G., Waltham, Massachusetts
-------
DISCLAIMER
This report has been reviewed by the Corvallis Environmental Research
Laboratory, U.S. Environmental Protection Agency and approved for publication.
Approval does not signify that the contents necessarily reflect the views and
policies of the U.S. Environmental Protection Agency, nor does the mention of
trade names or commercial products constitute endorsement or recommendation
for use.
11
-------
FOREWORD
Effective regulatory and enforcement actions by the Environmental Protec-
tion Agency would be virtually impossible without sound scientific data on
pollutants and their impacts on environmental stability and human health.
Responsibility for building this data base has been assigned to the EPA's
Office of Research and Development and its 15 major installations, one of
which is the Corvallis Environmental Research Laboratory (CERL).
The primary mission of the Corvallis Laboratory is research on the ef-
fects of environmental pollutants on terrestrial, freshwater and marine eco-
systems; the behavior, effects and control of pollutants in lake and stream
systems; and development of predicted models on the movement of pollutants in
the biosphere.
This report describes the procedure for using a computer model that
predicts the fate of instantaneously dumped dredged material into a water
column and presents a series of workbook tables to be used for quick approxi-
mate answers to dredged material disposal problems. The work was partially
done by JBF Scientific under EPA Grant No. R-804994.
Thomas A. Murphy
Director, CERL
i n
-------
ABSTRACT
This manual describes the operation and use of a computer model developed
by Koh and Chang, modified in 1976 for the Corps of Engineers and further
updated by JBF Scientific Corp., that predicts the physical fate of dredged
material instantaneously released into a water column. The model predicts the
spatial distribution of various components of the dumped material as a function
of time. Outputs include material concentration and position while in the water
column, and material mound height and concentration after bottom impact.
Included in this report are a description of the model's structure, a
complete explanation of its input/output formats, and in addition, the model has
been run for a matrix of input conditions. Both the input and output of these
runs are presented as tables in dimensionless form. These working tables can be
used to approximate the fate of dredged material for a wide variety of input
conditions without requiring the user to actually run the model. Several
examples showing how these tables can be used are also given.
The first phase of this work was done by JBF Scientific under sponsorship
of the U.S. Environmental Protection Agency through Grant R-804994. The
workbook portion of this report was done in-house at the EPA Corvallis Envi-
ronmental Research Laboratory. The report covers the period from August 1976 to
July 1979.
-------
CONTENTS
Foreword iii
Abstract iv
Figures vi
Tables vii
1. Introduction 1
2. Model Description 3
3. Program Format 13
A. Complete INPUT/OUTPUT Format 13
B. Simplified INPUT/OUTPUT Format 61
4. Description of Workbook Tables and Examples 78
A. General Description 78
B. Examples of Use 83
C. Workbook Tables 93
References 131
Appendix A - Computer Listing 132
-------
FIGURES
Number
1. Typical long term diffusion grid network .......... 4
2. Velocity option one, representative velocity profile
in x direction. Velocity assumed invarient in time
and horizontal plane .................... 6
3. Velocity option two, representative velocity profile
in x direction. Velocity variable in horizontal
plane and time
4. Velocity option three, representative velocity profile
in x direction. Velocity variable in horizontal
plane and time 7
5. Velocity option four, representative velocity profile
in x direction. Velocity variable in horizontal plane
and time 7
6. Typical dredged material grain size distribution and
model representation 9
7. Estimations of settling velocity versus sphere diameter
according to Rubey, Jenke, Stokes, Newton and Gibbs .... 10
8-30 Input cards for long version 14-36
31-46 Input cards for simplified version 62-77
47. Assumed ambient velocity profile for workbook tables ... 79
48. Definition ellipse for material settled on bottom 82
49. Predicted shape and location of material settled on
bottom for example #1 85
50. Predicted shape and location of different types of
material settled on bottom for example #2 90
51. Composite shape, location and maximum thickness of
material settled on bottom for example #2 91
52. Contour line where thickness is one-half the maximum
thickness for example #3 92
VI
-------
TABLES
Number Page
1-16. Typical computer output - long version 39
17-18. Cross-reference tables for workbook -
Output table No.'s vs Input variables 93
19-54. Workbook tables 95
-------
SECTION 1
INTRODUCTION
Guidelines for evaluating applications for permits to dispose of dredged
material in a specific aquatic environment require the prediction of the
effects of the proposed discharge program. Because rigid rules cannot be
applied generally, it is most desirable to provide local and regional regula-
tory authorities with a definite set of analytic procedures. One element of
such a set of procedures is the standard elutriate test. Another desirable
element is a mathematical model which predicts the fate of the discharged
material under specific conditions.
Currently, there exist a number of mathematical models to describe the
fate of dredged material after discharge. The model described in this manual
was originally developed by Koh and Chang in 1973 (1).
The original model has been modified considerably since its inception.
Most of these modifications were made for the U.S. Army Engineer Waterways
Experiment Station (WES) by Tetra Tech, Inc. (2). Consequently, the model JBF
has modified and is presenting in this manual is significantly different from
the original 1973 model. For example, the original model attempted to de-
scribe three possible methods of dredged materials discharge: Instantaneous
dumped release into the water column, hydraulic pipeline or hopper dredge
discharge as a jet, and continuous release into the wake of a barge. The WES
version is composed of two models: instantaneous dump and jet discharges.
This manual describes only the instantaneous dump version. Similarly, the
original model used a method of moments to solve the long term diffusion
equations. The simplifications implicit in this method were: flat bottom,
current invariant over a horizontal plane, and no bounds to the dump area.
The current mooel was updated for estuarine use, and allows bottom bathymetry
and estuary bounds as well as spatially time varying current as inputs.
The model predicts the course of dynamic behavior of the discharged
material in terms of three different phases: convective descent, collapse,
and long-term diffusion. The convective descent phase describes the history
of the dumped material from injection into the water column until either
neutral buoyancy or bottom impact is reached. During this phase, the material
is driven by its initial momentum and negative buoyancy. The next phase
commences when either neutral buoyancy is reached or the bottom impact is
achieved and the material proceeds to collapse vertically. During collapse
the vertical descent of the material is reduced and the predominant velocity
of the material is in a horizonta"1 (or parallel to the bottom) plane. Long-
term diffusion commences when the cloud spreading velocity due to collapse
becomes less than that due to turbulent diffusion, so that material loses its
own dynamic character and is driven by ambient fluid dynamics.
The JBF modification to the WES model (3) consisted of tuning input
coefficients to a comprehensive set of laboratory tank test data. Empirical
equations giving certain coefficients as a function of material cohesiveness
(beyond limit) were built into the model. In addition input and output for-
mats were simplified for easier use and clarity.
1
-------
The primary function of this manual is to describe the operation of the
JBF instantaneous dump version of the model. It is not the purpose of th.s
document to describe the mathematical foundation of the computer program.
Consequently the manual will describe in great detail the input/output formats
of the model, give an insight as to their meaning, explain the procedures
necessary to develop the input data and present a series of workbook tables
with explanations of use. Formal descriptions of the evolution of the model
and its foundation are presented in references 1, 2, and 3.
-------
SECTION 2
MODEL DESCRIPTION
JBF has developed two versions of the instantaneous dump program. Both
are similar in mathematical structure and are based on the original WES pro-
gram (2). The differences are in input/outpux format and program flexibility.
The first version has options for handling up to thirteen material components,
and modeling the dump location with a large grid network. Comprehensive
tabular and graphical output of relevant parameters as functions of time is
available. Since its input/output formats are long and tedious and because
the program requires a large amount of computer storage, a second or
"modified" version was developed which has slightly less flexibility but
simpler input/ output formats and requires significantly less computer stor-
age. The first program version has an option to simplify input/output formats
but does not have an option for reducing its core size requirements.
The instantaneous dump model requires three categories of information as
input data: ambient conditions (including bottom topography), material pro-
perties and a description of the material location and dynamics at discharge.
Location and dynamics refer to the centroid of the dredged material, as the
material is assumed to be a hemispherical cloud of uniform concentration.
Ambient fluid properties consist of density and velocity profiles. Bottom
topography requires input of bathymetry, digitized to conform to the long-term
diffusion grid network. Material properties include aggregate density, voids
ratio, liquid limit and radius of the bulk cloud; and density, concentration,
fall velocity and voids ratio of the component solids. The material location
and dynamics required as input are cloud centroid position in the long term
grid, and centroid velocity at release. Also required as input are the ini-
tial time of drop, the duration of the simulation, and the long-term inte-
gration time step size.
Program outputs include individual component solid concentrations and
position, velocity and concentration of the aggregate material cloud as a
function of time after the drop. During the stages where solid components
begin to settle out of the cloud, program outputs include the quantity and
mound height of the material that has settled to the bottom during passive
diffusion.
The program requires defining the geometry of the estuary into which the
material is to be dumped. This is done by specifying the bathymetry of the
estuary. The program is designed to model an area by specifying physical
parameters at discrete grid points. That is, the area to be examined is
divided into rows and columns. The intersection of a row with a column is a
grid point at which depth and position are specified. Figure 1 represents a
typical grid for an irregular boundary. By specifying DX and DZ, the position
of each grid point from the origin is fixed. The values of DX and DZ selected
will dictate the number of grid points necessary to define a given boundary.
For example, if the value of DX is halved, twice the number of grid points
will be necessary to define the same special distance.
-------
1, 1)
C2, 1)
3, 1)
1, 3)
\
Zero Elevation
SxlLand
Figure 1. Typical Long Term Diffusion Grid Network
-------
The program defines the geometry of the estuary by specifying the verti-
cal position of the grid points relative to the water surface: for example,
zero depth for a grid point represents a land boundary. In addition to defin-
ing the estuary's geometry, the grid also serves to define the points at which
long-term diffusion calculations are performed.
Having defined the estuary with the grid network, the drop position
within the grid must be specified. It is not necessary to position the mater-
ial drop at a grid point. Rather the material should be positioned close to,
if not at, the center of the grid if an open water drop in zero ambient velo-
city is being simulated, since, for computational reasons, it is desirable to
avoid having the dropped material reach the grid boundaries. Similarly,
simulation of a drop into an ambient current will require some prior insight
into potential dynamics, as the initial placement should allow the cloud to
convert into the center of the grid to maximize utility in the long-term
diffusion phase. The ambient fluid density and velocity profiles must also be
defined. The density profile is defined (independently of the grid network)
in depth only and, consequently, must be defined for the deepest point in the
estuary. The program is capable of handling the specification of ambient
density at up to ten individual depths.
There are four options for specifying the ambient velocity field. The
simplest assumes a constant depth environment and that the two orthogonal
velocity profiles vary only with depth: ambient velocity does not vary in
either a horizontal plane or time (Figure 2). The inputs for this velocity
option are specified on a single input card. The second option is not re-
stricted to a constant depth and allows for the velocity field to be varied
both in the horizontal plane and time (Figure 3). It does, however, require
that the velocity profile be averaged in the vertical direction and that the
velocity field satisfy the following constraint (continuity equation):
|x(huh) ^ (hwh) = o
where:
h = water depth (ft)
U, = average velocity in X direction at h (ft/sec)
W. = average velocity in Z direction at h (ft/sec)
Inputs from this option are specified on a mass storage device such as a
magnetic tape for each long-term time step. Reference 3 presents a computer
program used to define an example of this option.
The third velocity input option also requires the input to be vertically
averaged velocities at each grid point as a function of long-term time step.
The program then assumes a logarithmic profile for the velocity which, when
integrated, will have the same vertical average velocity (Figure 4). Inputs
for this option are also specified on a storage device at each grid point as a
function of long-term time step.
-------
r
UUl
Figure 2. Velocity option one, representative velocity profile in X
Direction. Velocity assumed invariant in time and horizontal plane.
r
U Specified
-
Figure 3. Velocity option two, representative velocity profile in X
direction. Velocity variable in time and horizontal plane.
-------
r
U Specified - Profile Assumed
Figure 4. Velocity option three, representative velocity profile in
X direction. Velocity variable in horizontal plane and time.
Figure 5. Velocity option four, representative velocity profile in X
direction. Velocity variable in horizontal plane and time,
-------
The last velocity option available is representative of the velocity field
to be expected in a stratified estuary and is again supplied from a storage
device. At each grid point, ambient velocity is specified at two depths in a
similar manner as was done in the first velocity option (see Figure 5). The
velocity field at each grid point must satisfy the following continuity
equation:
9U + §W = Q
ax az u
where:
X, I = horizontal axes
U, W = X and Z velocities
As a consequence, the input data for this velocity option requires a great
deal of effort to prepare.
For velocity input options two, three, and four, each input tape (or
equivalent storage device) should contain sufficient data for one 25-hour
tidal cycle. The cycle is assumed to repeat itself and, consequently, the
simulation can be arbitrarily started at any point in the tidal cycle and
continued for any duration desired.
Material geometry and disposition at discharge must be specified. This
is performed by defining the size (radius), and centroidal position and velo-
city of the material at discharge. Since the program assumes that the dis-
charged material is initially in the shape of a hemisphere, the hemisphere's
radius must be estimated at the time of discharge by equating the volume of
the dredged material in the barge to 2/3/ir3 and solving for the radius, r.
Centroidal velocity for the hemisphere is the velocity of the material rela-
tive to the barge at time of release. Lastly, the position of the hemis-
phere's centroid at discharge can be estimated by setting it equal to the
center of the dredge material in the barge relative to the surface of the
water.
The program also requires a description of both the bulk properties of
the aggregate material and the properties of the individual particles that
compose the dredged material. These properties include density, voids ratio,
liquid limit, concentration and fall velocity. It was determined (4) that
three representative grain sizes, defining three solid component fall velo-
cities, are sufficient to categorize a typical dredged material.
Figure 6 is a gradation curve for a typical dredged sediment. The curve
can be divided into three segments with the breakpoints at 33.3 percent and
66.7 percent by weight. The median grain size in each of these segments is
then used to describe that segment's grain size distribution.
The program required as input the individual solid component fall velo-
cities which can be determined from the material grain size distribution. For
example, Figure 7 is a typical graph of particle diameter versus settling
velocity (from reference 5). The curves due to Janke, Rubey, Stokes and
Newton are proposed equations. The curve due to Gibbs is based on gathered
8
-------
100
• Actual Grain Size Distribution
• 3-Component Model Representation
100
o.oi
0.001
GRAIN SIZE MILLIMETERS
GRAVEL
COARSE
FINE
SAND
COARSE | MEDIUM
FINE
SILT OR CLAY
Figure 6. Typical dredged material grain size distribution and model representation,
-------
o
QJ
CO
1
•H
O
O
bO
4-1
4-1
0)
0.0
Sphere Diameter in Millimeters
0.1 1
0.01
10
100 1000
Sphere Diameter in Microns
10,000
Figure 7. Estimations of settling velocity versus sphere diameter
according to Rubey, Jenke, Stokes, Newton, and Gibbs.
(Source Ref. 5)
10
-------
from observations of spheres settling in a column of water. Using an average
grain size as determined from Figure 6, Figure 7 can be used to determine a
component's fall velocity. For a complete explanation of fall velocity as it
relates to various solid components, see references 5 and 6.
The liquid limit of a material is the moisture content (expressed as
percent of dried material) at which the material just begins to flow when
lightly jarred (see reference 5 for a complete description of how to calculate
a material's liquid limit). Liquid limit will vary with the grain size, or-
ganic content, and minerology of the sediment particles. Typical volumes
range from 40-120%.
The volume concentration, sv, of a dredged material can be expressed:
sv =
where: sv = material concentration, volume ratio (FT3/FT3)
sw = material concentration, weight ratio (percent solids)
ys = density of solid (lb/FT3)
yH20 = density of fluid (lb/FT3)
Similarly the voids ratio of a material can be expressed:
n = 1 - -=-= ^
S-G'solids
where: n = voids ratio
ys = dry density of solids (lb/FT3)
yH20 = density of entrained water (lb/FT3)
(For further information on calculating n see reference 5)
A typical value of voids ratio is 0.78.
The output of the program describes the location, velocity, and concentration
of the material as it descends and spreads in the water. This information is
divided into three phases: convective descent, collapse, and long-term diffu-
sion. The long version of the computer output allows as an option a detailed
printout of information concerning dynamics simulated in the program. The
program will always terminate when the final time specified is reached.
However, when all the effluent has dropped out of the water column, the height
and accumulated solid volume of the material on the bottom remains constant.
n
-------
The long and simplified program versions are presented in full in appen-
dices to this manual. Explanations for each input and output value are given
as well as a complete computer listing of the program source deck and a repre-
sentative example. Input formats are presented in a pictorial representation
of the required computer cards.
12
-------
SECTION 3
PROGRAM FORMAT
The computer simulation has two format options. The long version allows
for complete flexibility in setting up the problem to be simulated, the output
format and the coefficients to be used in the options. It requires a thorough
understanding not only of the process being modeled but of many of the equa-
tions used in the program and the underlying assumptions used in their devel-
opment. The short version option eliminates some of the program's flexibility
but significantly reduces the amount of input data required of the user and
consequently is much simpler and cheaper to use. This chapter will explain
the use of both versions.
A. Complete Input/Output Format (long version)
The input sequence is initiated by specifying the type of format desired.
Since for this case a complete set of output data is desired, the value of
KAYMAX on the first card should be set to 1 (Figure 8). This in turn dictates
to the program that a complete set of input/output data will be forthcoming.
Figures 8 to 30 represent the input cards and parameters required to
execute a run of the long version of the program, and complete definitions of
the variables specified on the input cards.
The program's output is in two stages. The first stage prints out a
summary of the input parameters and the key parameters set internally by the
program. This allows for a verification that the input data was correctly
submitted. The second stage is the presentation of computational results and
is divided into three phases: convective descent, collapse and long-term
diffusion. Each phase has important parameters concerning the dynamic be-
havior of the dredged material listed as a function of time from the start of
the run.
Figures 28 through 30 represent cards that are specified only when the
user desires to over-ride various coefficients set internally in the program.
Because it is not anticipated that the typical user will desire to do so, an
in depth discussion of the ramifications of modifying these numbers will not
be presented in this users manual. For a complete discussion as to the sig-
nificance of these numbers the user is referred to references 2, 3, and 4.
Table 1 is a reproduction of a typical first stage print-out summary of
input data. All these parameters have been previously defined in Figures 8 to
The first output of the second stage is a coded array which indicates the
geometry of the estuary to be modeled. This array is inserted in the first
stage output immediately after the depth grid, and is shown in Table 2. A
value of 1 in a grid point indicates that it represents a part of the water
column being modeled. A value of 2 represents a zero depth for the water
column at that grid point and is representative of a physical boundary point
(i.e. land). A value of 3 represents the boundary of the grid matrix being
13
-------
-NOT USED
i j i 4 ! t i i i »n i:n Mil « " iniaii nnK ninnnuiiinMii » t »»«'T«i"iu»«!JIJSSI>$!)
« il i«ii !»iNiiuiiMUUtHi*a3iennar!i&aBVBnMa»u»aM
-------
NMAX
NMAX
NVL
NSC
-NOT OSED-
I
I I
t iitt leongg ono tiiBti eeieot nigiBoggto i eoeng gim goto DC nooge DIE no oiooooo ODD ot o»
i l ) " i i i i « uii iiuuii uinnian nci4UB7i n nnu u n>.ii»iiaB unui, 4. ,i«,, U.MISI u uuii SII-UIIMU unu UBIIUH >iii n n :, mi ii nnn
I 1 111 1 II II 11 1 I I I I I I 1 I I I I II 11 I I It I 1 I I I I I I 11 Ml 1 I II I 1 II II 1 II I 1 11 II I I 1 It I I 11 I II 1 | II
mil in 111111111111111111111111111111111111111111111111:1111111111111111111 mi
33333 JJ}3J3J3Jn33J333 3333333 333 3333333 3 3 1 3 13 J 3 3 3 3 3 3 J J 3 3 i 33 3 J 3 J J 3 3 3 3 3 3 3 J 3 3 3 3333 I
4444444444444444<44444«444444444444444444)4444444444t44444444444444444444>1444444
5S55555SiS55555555S5SS!555555 5S5 555555S 55S55555i5i5:5555Ii55555555555S555S55555S
S6SSSIS6SSSS SSSSSStSSS EE65S6S SiS 6SE££E6 i:S£S6E£E5 t E 6£SE£ 65E6SSES 65 S£ESSIS5iSS6S6
71J77777777777777777J7177717I J77 777717711777771111777 17)7717 1777777777771 J777I77
IIIIIIIIIIII ill 891SI9II I !(I98 lilt Mf if i IlililllHi I i! ii I II jf I ttl( I itllll! t
SS9!) 9!9!9JJ 999 JS9S999 S9 99993 999 9993939 99)3593 993 9 9 !3 9 93 3935 9399 3! 3333933 93 39S9>
i t i < i i i i i nu u nun tin it u nun nan; » a n sn EH u BK » a n mi uuu nu » uu u» 111114 11 x » itiiuu nu x u u nun 11 ;: nn » anirunn
* _ , ____ _ __ RSC/«»-Soai _ _ __ -
Format (1615)
VARIABLE
DEFINITION
NMAX
MMAX
NS
NVL
NSC
Array size in Z direction (NMAX<31)
Array size in X direction (MMAX<31)
Number of dredged material solid components
(NS<12)
Number of velocity array levels (0
-------
KEYI
KEY 2
KEY 3
KEY 4
•NOT USED-
I I
iiiiiiiiiiiiiiiiiiiiiiigiiiiiiiiigiiBtggigiiiigggggggggggjiiiiigggggggciiigiiigi
i i > 4 I • i • • itii auHnuiruiinnnaiinnn»nuuuun&Kiinttu«iu4i«*«itt<>iiuu}iUuutt«siiiHuiii!uuBKi!uiinnni]!i nntinnn
11111 in ii mi 1111111111111 n mi 111 in i ii ii inn 11111111111111111111 in 111 in 11
3333333J1333J3J3333333JJ33333J33333J13333333333J133J3333133333333333331333333333
4444444444444444'44444444444444444444444444444«i44444444444444444444444444444444
55555SSS5555555555555555555555555555555555555555555555555J5555555555555555555SS5
lEitmiiillltiflEiEilEEISEEifSEEtSEfEEEiESiEEEESEEfESESESGESiESESfSEiiEEtEECiCi
1 J II111 J-7 J 1 ? 1 J J 1 7 7 111 J 11J 1 7 7 7 1 J 7 7 7 J I 111 J J J 7 J 7 7 I J 7 1)7 II 17 7 7 i T J 1 7 7 11 T 11 7 I 7 I 7 111 7 7 I
IIIIIIIIIIIIIItlllSllllllllllllliltlMllllllllilllUCIIIIIIIIIIMSBSSIItilllllll
19i99Hll99J9M3393991)91I99I>9S99J99999999MJ9I9S99999339JS93999199i319J9!9J9M
i i i 4 i i i i i MII uaM n mi utiNji nOHni l>BiiBiil}li»tt»uan««ui:«ii«uiiiiMii»iuMuuHHiii)unoiinittiiiaiinnnMnHnnnii
Format (1615)
VARIABLE
DEFINITION
KEYI
KEY2
KEY3
KEY4
The option exists to redefine various equa-
tion coefficients in the model. This option
is only of value to those familiar with the
program and the ramifications of varying these
coefficients. For a complete examination of
these coefficients and their application see
reference 2. If KEYI equals 1 no action is
taken. If KEYI equals 2 the user is required
to supply these coefficients.
The program will cease execution at the end
of the convective descent, dynamic collapse
or long-term diffusion if KEY2 equals 1, 2
or 3 respectively.
If long-term diffusion for the fluid com-
ponent is desired set KEY3 equal to 1.
Otherwise set KEY3 equal to zero.
If repeated runs are to be made and user
desires to speciiy descent and collapse
time steps (DT) KEY4 should be set to 1.
Otherwise KEY4 should be set to zero.
Figure 10. Input Card Number Three
16
-------
IGCN
IGCL
IPCN
IPCL
IPLT
IDEP
-NOT USED
i i l i ) < l • i ii it H ii it H « IMI it » )i n a n n » i' 11 n » n i; u » K n n 11 » « « « 4i w u tt u it ti u si u u w » » « y u u p K o (* n u n u n it n 11 n n » i» n n ti *
1 II 11 I 1 I 1 1 1 I 1 1 11 U 1 I I I I I I II I I I I I I I I I! I I I I I t 1 I I I I II I I I I ! I 1 I I I 1 I I ! I I 11 1 M 1 1 I 1 !! I 1 I
44444444«4444444M4444444«44444444«t44444444<44444UM4444444<44444<44444444444{
555555555555 5555555S5555S555555555SS5S555S555555555S5555; J555 55 55S555S555S555555
ISI5Slt!SS5Si6(St SS666 S£66t5S6t 5BE5M5! ISE5S6E t£5E£5£ 5££ES56£ t S S55ES£5tSt6SS$SS£
Illll IllltllSili ill Sll till t ! Ml! 8 Mltll IBIlin
tilllil 1 il MllllUSSISt!
S)SSS!S9S83S9!SSS333S995!3S3S3S359593SS5!S)S1993S9SS»S3S!5S9!S)9999S3339S53!3!39
It / IJ i i i i luuirnxisuiMiniiijiinna; iijinttiiiiJiiijiMiraBiiiiuKutttttiutiuuunMuuutattniibauaKtitinnnnnHnHiiunM j
_ ___ ^^^ __ PSC/NH-5OBI _ . __ ^X
Format (1615)
VARIABLE
DEFINITION
IGCN
IGCL
IPCN
IPCL
IPLT
IDEP
A value of zero will eliminate graphs of
convective descent while a value of 1 will
result in one extra graph and a value of 2
in two extra graphs.
A value of zero will eliminate all graphs of
the dynamic collapse phase while a 1 will
result in one graph.
A zero will eliminate tabular output from the
convective descent phase while a 1 will
result in the tabular data being printed.
The same as IPCN except for the collapse
phase.
A value- of zero will result in the long term
results being printed at 1/4, 1/2, 3/4 and
4/4 of the simultaneous stop time. Other-
wise the long-term diffusion results will be
printed IPLT times for IPLT less than 13.
If IDEP equals 1 an NMAX x MMAX constant
depth array is assumed with a depth H. If
IDEP equals zero array depth parameters are
required.
Figure 11. Input Card Number Four
17
-------
ID .
I
l I it I l l • i»MHn»OMMttn»«na*n»n»a*»«»*B*wM»««c
-------
DX
-NOT USED-
I
M 1 1 1 n ii 1 1 1 n 1 1 ii 1 1 1 1 1 1 1 it 1 1 1 ii 1 1 1 1 n 1 1 1 1 1 n 1 1 1 1 1 ii 1 1 M i ii n 1 1 1 1 i 1 1 1 1 1 1 1 1 1 • 1 1 1 1
2222222!J22222Z2Z2Z222Z22222Z22JZ22222222222222Z2ZZZ22ZZ:iZ2Z2222222Z22222Z22222I
3 J313333 333333 3 333333311J 3333333 3333 33J333 33333 33 3i3 33! Ji 33 33333333333333153 333J
4444444444444444*444444444444444444444444444444444444444444444444444444444444444
55555555 555555i555555S5555555S55 5S5555S5555SS5555 55S 55S5S J55555S55 555555 15555555
17111711117177? 777771177 111 71 J7 JJ] 71 7? Jill 7171111)11 111 Mil MI 1711 7717717711)111
iiiiiiiiiiiiiiiiiiiiinii nun ttniiiiii t tiiiisnii tut a ia 1 1 111 it in in sit i mi
j J JJJS J5M3S339595SSS5SS9 SSSS99S SS3 S3S38S9 399S!9595S S9S99 99 9 S3 !9)333SS333SS3 33SS
i i i . i i i > i KII IMJUH u iiu iinn n!i».i) nanair anno mmBu
-------
-DEPTH (N,M)-
I I I I I I I I I I I I I I I
Illl
i > i i > *
ini
i inniMiiii in H IMI i n 11 iiiiin 1 1 1 1 MI ii nil ti iiiii i iin i IMII
3J3JJJJJJ33 333 3 J131J 3 J1333 33333 33 3333 333333333 3333 J3J1 135 J31 3:33 JJ3J3 3133 3 IJ311J
4444444444444444l«44«444444«44«4«44444444444444444444444444«44444444444444444444
55mSSSJi55555555555SS5S55SSSS55SS55S5S5S55S55S5Si55i5SSJSSS5SSS5S55i555SS55SSS
(IISStSSHIttttttSttttEtlStf StJI666EJtlt£tt56EEEtfE£E5tS5S6(5(SStSS£E£J5!f tttttt
iiitigiiiiiiMiiiiiuiiiMiiiiiiiuiiiiiiiiiiiiMiiniiigiMiM niiiiiiiiMiign
||||llMlllJllllJS§illMM»S§Mill§MMIJl!»MJIJIMIIllJll!!iIllMMMSJSSMSn
vi:
Format (16F5.0)
VARIABLE
DEFINITION
DEPTH(N,M)
Depths of grid point N,M. The grid is defined
first by row and then by column. If a grid
greater than 16 by 16 is specified the 7. grid
points in the first row (x grid point 1) from
17 to 31 will be defined on a second input card
After all the 7. grid points in the first row
have been defined the 7. grids points in the
second row will be defined in the next input
card(s). This will continue until the entire
array is filled. Thus for a 31 x 31 array 62
input cards will be necessary (txvo to describe
each row in the grid). Depth is defined in
feet. If IDEP equals one the program will
assume a constant depth estuary and only H =
DEPTH (.1,1) need be specified in columns 1
through 5.
Figure 14. Input Card Set Number Seven
20
-------
XBARGE
ZBARGE
-NOT USED-
I I I I I
MiiiiiiiiiiiiiiiiiiiiitiiiiiniiMoiciiiiiiieiiinoiiiiuimiimiiuiaitiiiii
I I I 4 s I I I tMiinnMUiiinl!innanpa0ir»naii&UMrixuN»«!>inN
1 1 1 1 n ti 1 1 1 1 1 1 1 ii 1 1 11 1 1 1 1 ii i ! 1 1 1 11 1 1 1 1 1 1 1 1 n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 n i n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
»llZI2Illl22222222ZZZ222Z7227772ZZZ7Z7772Z2222277222Z22ZrZ22ZZZ222222277222222Z2
J333J333333333333333333333333333333333333333333333333333i333333333333333J3333333
44444444444444441444444444444444444444444444444444444444444444444444444444444444
SSJ3S5SS55555S5S55S5SS555555555i5555SS5555555555iSS555555S5555S5555555S55555555S
lllllllllllEiiSffilSSItiiiiliEitlllflfliiCfiitCSitEiCSEStfifllfSiliSCiSSSiiiCISt
II 7 7 J 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 I 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 J 7 7 7 7 7 7 7 7 7 7 7 J 7 7 7 7 7 7 7 7 i 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
IEIIIEII III III I II I III II II II 1 1 Illli I I II ......... IllgllllllttllllHIIIIIIIIIIIIIII
!3!U3S)S)SS31!5S
BSC/NH-3OKI
Format (8E10.0)
VARIABLE
DEFINITION
XBARGE
ZBARGE
X-coordinate of barge at time of discharge.
This coordinate is measured from the grid
point 1,1 (see Figure 1) and does not have
to be at a grid point itself. XBARGE is
defined in feet.
Z-coordinate is measured from the grid point
1,1 (see Figure 1), and does not have to be
at a grid point itself. ZBARGE is defined
in feet.
Figure 15. Input Card Number Eight
21
-------
INROA
— NOT USED-
I I i
I 1 I I I I I I I I I ' I I I
ggggggggggsggggggiggggggciugggggggBggtggiggggggggggggggiBiggtggeggitggggeggaiiii
l l i 4 » • i i i nniMiuiiuliuitnnnBMnniraannunuaMjiuMwiiuuMauuuiiMuuiiuttiiuuiiBiiiiuuiiicuiiRnnnnnaiiniinB
II1111 It 1 I II I 1 I I 1 I I I III II I I I I I I 1 I 1 I 11 I I I I II I I I I I 1 I I I 11 I It I I 111 I 11 11 I I 111 It I I I I! I
22222222222222222222222222222222222222222222222222222222722222222222222222222222
1333:132333333333332333:33331333333333133333333333333333313333333333333331333531
44444444444444444444444444444444444444444444444444444444444444444444444444444444
S55555555555555S555S55555555S555S55S555S55555555555555555J555555SS55555555555555
9(giSg(9EiSEfEEEIESEEfSEEEEECEEEEEEEEEEE{ESSEtE!EESEESCEESEEEEEStfiES{ESEEEEtESSi
7777777777777771)777171777777777777777777777777777777777771777777777777777717777
gtigaiiiiiiiiiiiiiiiiiiii mi siiisitmiiii tin minium HUM inn tiiieitiii
39133939999I93333333S3333933939339333333333H9993J9339399I933393933S9S33333I3J33
Format (1615)
VARIABLE
NROA
DEFINITION
Number of depths at which ambient density
specified (NROA<10) .
is
Figure 16. Input Card Number Nine
22
-------
I I I I I I I
lint oi BII t ggooit oti:mo t OBtoii iigatttiGi ti tt g osooc tctei
i r i * i i > I iMnifiiiDfifuiinff/titjiiiniiiinnKiiruiiiJiiiiiiiiMiitMiH^auiiHttvuuiiuuiisiuaitiiiiuaKiiiiHnriiinnnitiTunii
It t I I I I tl I ! 1 II 1 I 1 1 1 II 1 1 I I II I I I I I II II I I I 11 I II 1 1 ! I I I I 1 II III! II I 11 1 | I | | | | | | | n 1 I I II
mint iii nun j 11 tin lit) mi ii tin 11 11 211 1 2111 mutt? i
31333ni]33]3 13333333333353 3333333 3333133 J33J333 3333331113333333 333333333333333 J
4444444444444444M44444444444444444444444444444444444444444444444444444444444444
55J55S5555555555S5S555!55555555555555555i5555555555;55S5Sj555555555555555555555S
(tl!SISi(flllE[((l((tilCSSit(SCSCt(((Elt:ftSGCE:St£SCSCSt$StSi(StSiSEttiiSieSS{S
77 J7777 7717777771 7711 7J1 7777717777177777)7171117171 J7777J7i777717J JJ7777777 7717 J
Illlllllll IIIIIIISIIISII III II Illll IIIIIIIIII8! II Illlllllll IlliltlllSlllilllillll
399999993339399999999993939999S9999993999993S!999999999939993M9i999993J999993M
• t l l « s I i • l H it iiu M u u u M it n it R n >t n > irnnBiinniinBiiiiii3nii:f>iii
______ ^_ ___ ______ __ PSC/NH-5O81 _ ___ _ _
Format (8E10.0)
VARIABLE
DEFINITION
Depths at which density is defined and the
quantity of Y(I) must be equal to NROA. The
greatest depth in the drop zone must be equal
to Y(NROA). Since (I) can vary up to 10 a
second input card will be necessary to define
Y(9) and Y(10). Y(I) is defined in feet.
Figure 17. Input Card Set Number Ten
23
-------
U» _ ROA (I ) —
I I I I I I I
iiiniiiit iiiiiiiiiiiiiiiB tt ioaiigsci:im niBgooeotiODiotii
ill«lliiimiiniuiiiiiruii»tinnBn!ii:uiii
-------
-NOT USED-
IFORM . _ _.
( II I 111 l( 1 «l I I fl'« B l« « I B BIBB 0 «0 1 0 0 B t B 6 8 C fl ! I B B 8 BB t BOj'c B »8 BO C 8 » I I Q 8 I! 1 fl 0 BC ( CO t 8 « ( fl »B«
I I l • ) I i I I H ti IMI H u i» ii ii il a n n n » » n 71 n n c p r uw JJ )* " MM M «i « 4i« o u «r ««i H i; u u » u » u u » u n u u M ti a n u ti 1 !> R n I* n 11 it 11 ft to
1 I 1 1 I I 1 II I I 1 1 I 11 I I I 1 I I 1 I I !1 1 1 I 1 1 I 1 II I I I I 1 1 I I 11 I ! I I I I 1111 I 1 1 II il I I I 1 I i) I I ! 1 1 I I I I 1
2JZlJlIJZI22Z22222JZ2J222l2222222222222222J72l22222Z22Z7mZJ22ZI222222III?2222I
1113131331311 3333333333333J33333333313333333331J33J33333Sn3J333J3333J3331333J3J
4444444444444444*444444444444444444444444444444444444444444444444444444444444444
55555555555555555555555555555555555555555555555555555555!J55S5555555555555555551
ttl 55tS6t6SSE ESSSSES 66£ E!S 6 ES! 66 6 EEEECSE E S ESBEESEE ESESESESEt S 6S 56 56 CEE ESBS E6666S
i in IT IMF i mini n uninn i MJT j j mini m mi in mi n zn 7777; immmni
iiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiitiiiiiiiiiiitiiiiiiiiiiiiitiiiiitiiitiiiiiiiit
S!JSSJSSSSSnS!S)SSS3!3S)SSSSi 9953)!39JSMS 5S5S9395JSSSS5SSS»SSS595SS93!99?JSSSS
t I i « i i i i i M M u it M u u nil it» n n n i* a f n M n B n u n » a » n u n « 41 «»: M 4i« u i, ouiiuuMUuuuuuuaawaautitinHRnitnHTtjinH
Format (1615)
VARIABLE
DEFINITION
IFORM
If IFORM equals one, vertically averaged
ambient velocities which are variable in the
horizontal and in time, are read from logical
unit 7
If IFORM equals 2, the program will generate a
logarithmic velocity profile whose average
value is that value of velocity read in at each
time step. The format is the same as for
IFORM = 1, and velocity may vary in the hori-
zontal plane and in time.
If IFORM equals three the ambient velocity will
be two layers and assumed variable in the hori-
zontal and vertical directions as well as in
time
If IFORM equals four the two layer ambient
velocity profile is assumed constant in both
the horizontal plane and time.
Figure "Jg Input Card Number Nine, Simplified Input/Output
25
-------
DUI
DU2
UUI
UU2
DWI
DW2
WWI
WW2
1 1 J 1 1 i 1 1 1 2 1 1 III J I J I J11 1 J I J I J J 1 1 1 1 1 1 2 2 1 1 Z 2 I 2 2 Z Z 122 2 Z Z 1 1 1 1 .- 1 2 J I I J Z 2 2 1 1 1 2 Z 1 Z J j I Z 2 I 2
11 333331333333333333313333 133 3333333333333333333 13313133533113333353 3 33333333333
444(4444444444444444444444444444444144 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 « 4 4 4 « 4 4 4 4 4
3ii555b55SS555555iSS3i55S55555S555555i55555i55S555!;55555i55S55555S5 55555555555 5
II JIJI Jl 777 77 J ? J7 J 71J7I J J77 J J 7?7 J7777I7? 11711171771 77 J 77711 JIJ 171717 JI7TJ777J JIT
mi mil ii mini minium HI ii i n i, ,,,,,,,,,,,,,,,,,,,,,,
Format (8E10.0)
VARIABLE
DEFINITION
DUI
DU2
UUI
UU2
DWI
DW2
WWI
WW2
Depth at which upper X velocity is specified
(see Figure 2). DUI is defined in feet.
Depth at which lower X velocity is specified
(see Figure 2). DU2 is defined in feet.
Upper X velocity. UUI is defined in ft/sec.
Lower X velocity. UU2 is defined in ft/sec.
Depth at which upper Z velocity is specified
(see Figure 2). DWI is defined in feet.
Depth at which lower Z velocity is specified
(see Figure 2). DW2 is defined in feet.
Upper Z velocity. WWI is defined in ft/sec.
Lower Z velocity. WW2 is defined in ft/sec.
Figure 20. Input Card Number Thirteen (Omit if IFOKM
26
-------
TOUMP
TSTOP
DTL
-NOT USED
i 1 1 n i 1 1 1 1 H 1 1 1 1 1 1 1 ii 1 1 M 1 1 1 M 1 1 1 1 1 i 1 1 1 1 ii 1 1 1 1 ii 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 1 1 1 it
1 J 1 3 3 3 i 3 3 J 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 J 3 3 3 3 3 3 3 3 3 3 J i 3 1 3 3 3 J J 3 3 3 3 3 3 3 3 3 3 3 1 J J 3 3
4444444444444444*444 •444444444444444444'44444444«4444444444444444444444444444«444
SiSSJSS55S55i5SiJJ5iSS55iSS5S5S5i5SSSSSSS55S5SSSS!iSi5S!i5iS5SSS5SSS5SJ5iSi51S5SS
II1JI 7IJ77 777 771 777 J ' 771 77771 7 7777 7 JT771 7 117711 111 7 77 J717771? 71? 7 JT117I J7J71I J Jl
IIUIIIII I ill III III! Ill 1U IHI I III II I I I I I1IIJII III 5 Hill! ll«« I II IHIII I I ! SJIIII I
||J|JJJMmMIH1Ullillll'ilUJSJJI»HIJIISSMMM!UIl»llJM»Sllllll»»S»)IUU
i i it I i i i i»nuiiwDi*niitiiini»nji:»; nan»»'niii*»]»i'aa««tt«*""««:'««|i»wyu»»iiw»i«»
-------
DTIU
DT2U
NOT USED-
1 1 1 i i i i i 1 in 11 u i' 1 1 HI 1 1 1 1 11 11 11111111111111111111111111111111111111111111111111
1I22ZZ2ZZ2ZZ222Z2ZZ2Z2Z22222 222 2Z22 222 2 2222222 22ZZZZ2ZZ2r2ZZ2Z2ZZZZZZ2Z22ZZZZZZ2
33333333331333 J 33 J 333 J 313 JJ33333313 3 133333 33 33333333 J33JJJ1333J333J33JI333 31 33 33
4444444444444444444444444M44444444444 4 4444444444444144444444444444444*444444444-
SiJSSJSSS555S55SS55J5S55SS555S5555i5S5S$SS5S5555555SS555SJ5iSS55S5S555555S55555S
77777?7777777777771717777177771177777777777777777777777777i?n77177177l777777T77
MIMIJ99399M999999999999SJ9939993999999993999999999999999S9999399339S939999J99
iijnini«»aiii4«ini«iiii»»nii»»»»ii»ii»iiii»»»»«««"«'««««"'''»«»»»»«»»»"""il"**ll""»n111"4""11""" J
" _ ______ _ ntcmmoii ~S
"~ ~~~~ Format (8E10.0)
VARIABLE
DEFINITION
DTIU
DT2U
Convective descent phase time step. DTIU is
defined in seconds.
Dynamic collapse time step. DT2U is defined
in seconds.
Figure 22. Input Card Number Fifteen (Omit if KEY4 = 0)
28
-------
TPRT (I)
I
i l i « » * i i i it n ii 11 u it n it u 11 n n n 7i 11 n n i« ii n i: it u u u i) 11 1) 11 n ct ii u ti u « a 4r n i
I I til I II I I II I 1 1 1 I I I 11 I 1 I I 1 II I 1 I I I I II 1 II 1 I 11 1 I I 1 1 I
v. u u M u » 31 u u u IT o o w ti u u u u n it IT n n n n tin n i»
I II J II 1 II 1 I I || 11 I 11 t I II I 1 I I It I
7222222222222222222222272222222222222222222222222,2222222:22222222222222222222222
33333 J333333 333333 J3333J3 5333 3 133313 3333333333 J333333333i33 33 33 333 J333333 3353 J33
4(44(4444444 (444M4444 4444444 4444««« 4444 44444 4 44444 ((1(44444 4 44 44 4 44444444444444
555555555b5b 5b55b55555555Sb55 5555b5555b$5bbb555555Sbb S555i555i5 '555S555ES5 555555
1777771717777777777H71777177777771 I777777J771711771777777!J11171777717777777771
IIIIIIIIIIIIIIItllllllllllllSHlIllIlllltllllllllKIIttlftftttttlltlfilllttltlllt
J S J J J 3 ) 9 9 ! 9 9 9 9 ! J 9 9 9 9 S 9 3 3 5 9 3 9 3 S 3 3 3 9 9 9 ! 9 3 9 9 9 3 3 S S J 3 3 S 3 S 9 9 3 3 3 5 ! 3 S S 9 3 3 9 S 9 3 9 3 9 9 ) J 3 3 3 3 !
Format (8E10.0)
VARIABLE
TPRT(l)
DEFINITION
Long-term diffusion print
be IPLT values of TPRT (I)
than eight, specify TPRT
times. There should
If IPLT is greater
on a second card.
Figure 23. Input Card Number Sixteen (Omit if IPLT = 0)
29
-------
RB
OREL
CU(I)
CV(I)
CW(I)
ROO
BVOID
LLIM
iiiiigiiiiiiiiiiiiiiiiiiiiiiiigieitiiciiiiiiiiiiniiigiiiiiiiitigogiiitgiiititiio
illtiiitinniiiii.nmiiiiinnnoiiaaii»ni:i1i;ii>aiiiiji»«.iuii«ii«m
-------
SGAVE
HOT USED
n i n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 n 1 1 1 1 1 1 1 1 1 1 1 1 1 n 11 1 1 1 1 1 1 1 1 M 1 1 1 1 1 1 1 1 1 n 1 1 1 n i ii 1 1 1 1 1 1
12522222222221222221222212121222222222222222222222222222. -22Z22222222Z222ZZ22222Z
33333333333333333333333333333333333333333333333333333333i3313333333131333J33JJJJ
44444<4444444444444444444«4444444444444444444444444444444444444444444444«4444t
555555555555 5555555 5553555555 555S555555555555555555;5555i5i5555555}55i55555535J5
giiiigiiiiiisstMiiiiMiiitiiiiiiiiisiigittiiiiisiiiiiiitiiiiigititiitiigiMiiit
SI!II9iSS)Siin91!J]9S9S19ni!S9i9S9 9911! 19 SU! ! i I 3 9 S 3 3 i J ) 3 3 S J 1 91193 tJSlIMUSJJ
iiniiiiimiiniMU«u«»iiiinn!«ainiimijininni»uim«i4nic»««.ituSiiiiiai<»i»iiitm- __ IIIC/NH-»n»l ___ _ .^f
Format (8E10.0)
VARIABLE
SGAVE
DEFINITION
Average Specific gravity for the aggregate
dredge material.
Figure 25. Input Card Number Eighteen
31
-------
ICOHES (K) [-• NOT USED
I
PARAM(K) ROAS(K) CS(K) VFALL (K) VOIDS(K)
II >i
9199
mi nil 111 mi i ii ii ii 1111 ii 11 n 1111 in 111 ii 1111111111 in i n 111111 n i n it 111 ii it
4444444444444444M44444444444444444444 4 4 444444444444444444444444444444444444444 4
SSi5SSiSSSS555SSS5SSS555SJ555S5S5S55SSi5S5S5S555555!S55S5SS5S5J555S55555SS55SSSS
iflISiSttittit(IISEiESEE(iEEEiIIEEiftSIESISSiEEESESEE$CSt5iEIfEiESCEEiSlif(IE(i(
iiitiiiiiitiiiiiiiintiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiii
J9999IM999999999999999999999S399999J9999999999999I99999999999999999M999999999J
Format (A10, 4E10.0, 15)
VARIABLE
DEFINITION
PARAM(K)
ROAS(K)
CS(K)
VFALL(K)
70IDS(K)
ICOHES(K)
Descriptive identifier for solid component (K) .
PARAM(K) can be any numeric and/or alphabetical
combination.
Solid density of solid component (K). ROAS is
defined in gm/cc.
Volume concentration of solid component (K) in
bulk cloud.
Tall velocity of solid component (K). VFALL
is defined in ft/sec.
Voids ratio of solid component (K).
If ICOHES equals zero the cohesive model in
the long-term diffision phase is bypassed.
If ICOHES equals one the long term diffusion
phase employs the cohesiveness model.
Figure 26. Input Card Set Number Nineteen (Repeat NS times, one
for each solid component)
32
-------
TRACER CINIT
CBACK
NOT USED
11 l < > l l I i « ii u ii »n n uunnnnnKiiliiialiaiixiJi* n » n uim 41 u u u « mi
-------
DINCRI DINCR2 ALPHAO BETA CM CD h" - NOT USEO-
I I
1 1 1 1 1 1 1 1 1 1 1 1 1 a i e 1 1 1 1 1 1 1 1 1 1 1 1 1 o 1 0 1 1 1 1 1 : 1 1 1 1 1 1 1 1 1 1 g g 1 1 1 1 o 1 1 1 1 1 1 1 1 « i B g g o i o 1 1 g a i g 1 1 1
i i i t $ i l l ••nuiiunNtiunaRBnnaxi>MnxiiuuybHunauuu«Maai>iiMUUiIUMU*uyttii«uuuiiHuiitiiinniiKiin>iMaii
111 11 mil mi 1 11 nit mini ii 1 1 ii 1 1 n 1 1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 mi 1 1 1 IT 1 1 1 1 1 mi i tin
1J3JJ31J333333333333J33J33333333J33333J33333333333333 333133333133333333333333 J3J
444444444444444444444444444444444444444'44444444444444444444444444444444444444444
{(ItSItlf CKSIIilltMiidllEdf (tlCEtCliC ttSttCSS ESCSCSCSKSCS (SCEt lEICCt CitC
777)77)777)7) m mil 77)7 7777 777 777 77)m77 77777 1 ) )77im 7m777imm 7177177)7
itiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiitiiiiiiiiiiiiiiiitii
199199I9999999M9J9999999999S99999199999999999S9S999999999999999J99999M999999J9
Format (8E10.0)
VARIABLE
DEFINITION
DINCRI
DINCR2
ALPHAO
BETA
CM
CD
Allows user to influence program1s estimation
of convective descent time step.
Allows user to influence program's estimation
of dynamic collapse time step.
Turbulent thermal entrainment coefficient.
Coefficient which influences material settling
Virtual mass coefficient
Drag coefficient
Figure 28. Input Card Number Twenty-One (Omit if KEY! - 1)
34
-------
CAMA
CDRAG
CFRIC
CD3
CD4
ALPHAC
FRICTN
11111ii111ii1111ii 1111111111111111111111111111111111 ii 1111 n H n 1111111111111111
111111111121211111111 linn 1211111111122212 222111111121 tr iiiiiiiiiiiiiiiiiiiiiit
1133333333:333:333333333333333333)3133313333333333:3:333333333333333333333333211
4444444444444444*444444444444444444444444444444444444444444444444444444444444444
S555J53S5S5555555S5i555S555555555555555555555555 5SSS5S555 J555S55555555555S555S5S
llllllllllflllfllillllilllllllllilillllllllllllMIIMIIIIIIIIIIIIimiltllSISIII
J19 ! 3)))M 9 9 9 9 9 3)3 9 3 9 9 9 S 9 9 9 S 9 3 9 3 3 S J 3 3 3 S 9 3 J!3 9 3 9 9 3 3 3 3 9 9 3 3 3 3 S S J 3 3 3 9 S 9 9 S S 5 S 5 9 9 9 3 ! S 5
Format (8E10.0)
VARIABLE
DEFINITION
GAMA
CDRAG
CFRIC
CD3
CD4
ALPHAC
FRICTN
Fl
Dredge material density gradient coefficient.
Collapse phase form drag coefficient.
Collapse phase skin friction coefficient.
Ellipsoidal wedge drag coefficient.
Plate drag coefficient.
Collapse phase entrainment coefficient.
Coefficient of friction between effluent and
estuary bottom.
Collapse phase friction force modifier.
Figure 29. Input Card Number Twenty Two (Omit if KEY! = 1)
35
-------
ALAMDA
AKYO
NOT USED-
I 1 II I I I 1 I I I 1 1 M I HI II I I I I 1 I 1 I 1 I I I 1 I I 1 1 I I 1 I 1 1 1 1 1 I I 1 I I I 1 1 I ! I I I I I 11 II 1 I 1 1 ! 1 H I 1 I I 1 I
lI2222I222222ZZ22J222222I222222222222222222222I222Z22I22r2222222222I21222227Z»2
1J3JJJ13333 333 J 3333 J3 333133 J 3333 3 3333 33! J3J 33 333 33 3J13J 31113133 3 J33J 3 J333JJ33133
4444444444444444M444444444444444444444 4 4444444444444444444444444444444444444444
JJ5SSJSSS5S55S5Si55SSS555555S5SS555S5SSi55S5S555i5S:SS555J55555555SS555Si5S5iS5S
||liJIS|||tiSillilttlJStittttlSIIttltlil5iSSSI££ft£E£Sl5tSSSSIISIStSEStlSJHSSH
Illllllllllllllllllllllllllllllllllllllllllltllllllllltllllllllllllllllllttllllt
lJ|IJMMMSM»JMIJJlllJJ!M!J»JSUimSS!M!JSJI!lJMJJH!JlHilJ!!MJISJS!iSl
tl .11 I it. »u liana. ..a.m. mis si n a »»» an* »mm»«i. «u« ««4, ^.11.1. uu»im» nu.BHai. UBII no »n a IIH an «» t*
__ , _ »«c/m«-»on - --
Format (8E10.0)
VARIABLE
ALAMDA
AKYO
DEFINITION
Horizontal diffusion coefficient dissipation
factor.
Vertical diffusion coefficient upper limit.
Figure 30. Input Card Number Twenty Three (Omit if KEY! = 1 )
36
-------
used. Note that the grid network shown is a square with no land boundaries
and contains a range of 31 points in both the X and Z directions.
Making computations for the convective descent phase, the program selects
a time step (DT) based upon the cloud dynamics. If either the bottom or
neutral buoyancy has not been reached in 100 time steps, a second time step is
selected and the process repeated. When either the bottom or neutral buoyancy
has been reached between 100 to 200 time steps, the program progresses to the
next phase. However, if neither the bottom or neutral buoyancy has been
reached in 5 of these trials (NTRIAL), the program will terminate.
When the cloud hits the bottom during descent, the variable IPLUNG will
change from 0 to 1 if the event occurred in subroutine DUMP, and from 0 to 2
if the event occurred in subroutine COLAPS (Appendix A). However, if the
program predicts the cloud will rise off the bottom, IPLUNG will be set to 4.
If the material reaches neutral buoyancy before encountering the bottom, the
variable NUTRL will be changed from 0 to 1. However, if diffusive spreading
is greater than dynamic spreading during this phase NUTRL will be set to 3.
Lastly, ISTEP represents the number of time steps needed to either reach
neutral buoyancy or the bottom for the associated NTRIAL.
The value of ISTEP for the last NTRIAL listed should be between 100 and
200, as previously mentioned. Table 2 is a representative program printout
for these parameters.
The program next prints out a summary of those parameters important in
describing the material's dynamics during convective descent, as a function of
time. X and Z are the material's horizontal centroidal coordinates with
respect to the water surface. U, V, and W are the X, Y and Z velocities of
the cloud's centroid. The buoyancy of the cloud is a function of the density
difference between the ambient and the material and thus the program prints
out DEN-DIF. Next the program lists the radius, diameter and vorticity of the
descending cloud. The program assumes that during convective descent, the
shape of the material cloud is that of a hemisphere and thus prints out the
hemisphere's radius and diameter as a function of time. Vorticity is gener-
ated at the cloud's boundaries by sheer forces and is printed out as an indi-
cation of the amount of entrainment taking place. The last three parameters
printed in this format block are fluid concentration, and solid volumes and
concentrations of the individual solid components within the cloud. The fluid
concentration is the volume concentration of fluid internal to the cloud, or
unity, minus the sum of the concentrations of the individual solid components.
The solid-volume is the individual concentration of each solid component
multiplied by the volume of the material cloud. Table 3 is a typical repre-
sentation of the digital output for the convective descent phase.
In addition to the tabular output for the convective descent phase, the
program prints out a plot of the material's X, Y and Z coordinates and hemi-
spherical radius as a function of time. The plot has time as the ordinate and
the normalized values for coordinates on the abcissa. Normalizing values and
a description of symbol definitions for a typical run are shown in Table 4. A
typical computer-generated plot of X, Y and Z coordinates and cloud hemi-
spherical radius is shown in Table 5.
37
-------
Following the plot of the dredged material's position and size during
convective descent is a tabular description of the important parameters during
collapse. The output is similar to that generated for convective descent with
the exception of geometric parameters. Since the collapsing cloud is assumed
to be an oblate spheroid rather than a hemisphere as in the convective descent
phase, semi-major (BB) and semi-minor (AA) axes are output instead of cloud
hemispherical radius. Also, since cloud vorticity is assumed to be zero
during collapse, vorticity is eliminated from the program's output. A typical
computer output for collapse is shown in Table 6.
Similar to the plots generated for the convective descent phase, the
program plots material properties for the collapse phases. These properties
include spheroid size (vertical and horizontal) depth and concentration.
Definitions and normalization values for material size, concentration and
depth are shown in Table 7 while a plot of these parameters as a function of
time is shown in Table 8 for a typical simulation. Note the decreasing ver-
tical size and increasing horizontal size of the cloud as it collapses.
For computational reasons, the computer program makes the transition to
the passive diffusion stage by creating small clouds of material. These
clouds are tracked individually until diffusion causes them to expand to the
size of a long-term passive diffusion grid square. They are then injected
into the passive diffusion grid. The output for the passive diffusion phase
reflects this computational method and is presented for each material present.
Table 9 represents the program's descriptive output for the small clouds
created for the material called "100-90", representing the coarsest 10% of the
sample.
T(sec) is the time at which the new cloud has been created by the pro-
gram. TX and TZ represent the horizontal position of the clouds with respect
to the grid coordinates. TSIDE, TTOP and TTHK are the horizontal dimension,
distance from the water's surface and thickness of the associated cloud.
TMASS is the total component mass in the small cloud. TEMAS represents an
attempt to allow for the entrainment into the small cloud of material in the
ambient environment. It is not a currently executed option.
NEWT and LAST are, respectively, the time step at which the small clouds
are injected into the long-term passive diffusion phase and the time step at
which they were first created.
During the course of long-term diffusion, a summary of the material
suspended in the water column, as well as the amount of material accumulated
on the bottom, is printed. This can be seen in Table 10. Printout of this
table will terminate when all the material has settled out of the water col-
umn.
The program presents a graphic summary of each component's position and
thickness as a function of time and grid location. Tables 11 and 12 are
typical of this type of output. The program also prints out a graphic summary
of the amount of each component that has settled on the estuary bottom, as
well as the concentration of the material remaining in the water column
(Tables 13 and 14). At the final print time, the program prints the total
accumulation and thickness of material settled on the bottom. Tables 15 and
16 are a typical example of total bottom accumulation and thickness respec-
38
-------
TABLE 1. COMPUTER GENERATED INPUT SUMMARY
'STORAGE ALLOOAriON PARAMETERS
SM4X H!MU NS NVL NSC NEED
31 3i '4 1 30 0
CO
vo
(1 of 7)
-------
TABLE 1. COMPUTER GENERATED INPUT SUMMARY (Cont.)
FATE OP OUOGM HAfWWI. OEPOSlTEO tM AN MTMW Bf
.
2 VERIFICATIDM »u5 - FftU'RUtfER SILT - 50) PCH
NU1BER OF LONG TERM OHIO POINTS IN Z-OIRSCTXOM INMXI « 31
OF LONG TER^ G«0 MM" XH X-OIR'-CTION IMMAKI » 31
SRIO SPA3IN& 130
(2 of 7)
-------
TABLE 1. COMPUTER GENERATED INPUT SUMMARY (Cent.)
3*taE SODRDINIUES...
X343GE (FT) ' 30.0* ZBIUSi tFTl « 11.08
DEPTH «FTI ' '0. i».DOO
AMBIENT
DENSITY (3H/CC) 1.000 1.000
Oi»FH AT DUMP ^OOSOI'iATESt H » «»tBOa FT.
(3 Of 7)
-------
TABLE 1. COMPUTER GENERATED INPUT SUMMARY (Cont.)
TWO VELOCITY PROFILES SPECIFY n x AMD z oiR-rsrum FO* — jurcic LOOKS-!-
OEl»TH ASSUtEO CONSTANT AN3 VELOCITIES CONSIDERED STEADY IN TIHE
•XELOCITY PtiQFILI CARAHSrdS FOLLOW*,.
OUt « 1.00 3U2 « 2.DJ UU1 • 0. UU2 « 0. .
DWl e 1.00 DW2 « '2.OB WWl « 0. '< MHZ « 0| ~ - - •--
ro
me pA^^HErERs FOLLOW...
THE OF DUMP * O.uO SECOOS AFTER START 3F TI3AL CYCLE
DURATION OF SI1JLATION » ' 500.00 SECONDS AFTER DJH»
LON3 T-RM IIHE 5TEf» (DTL) * 15.00 SECONDS
.2530
i PARA^lTERS...
INITIAL RAJIUS OF :LOUOf %3 > ,5b680D9
INITIAL DEPTH OF CL3UO CEHTROI3t DIEL =
INITIAL CLOUU ;EUO:iTIES.. .3U11) » 0.
CMfi) «
3ULK
aevsiTir, ROD = i.nsooo
AG3REGAT? VOIDS RATIO, BV3IO
LHUIO LIMIT » 116.0
AVERAGE SPECIFI: GRAVITY «
7400
z.sso
k SDIIOS, PARAMETERS FDLLOH, .,.,.,
3ESCRPTION O^SIT/IGM/CC)
100-93
90-60
80-30
,LT, 38
FLUID
CALCULATiO £»
FAH.-VEU061TYIFT/SEC)-
RMIO'
2. 560
2,560
2,350
2.550
- i.ooj •••" ' '""• — '
UU CONTENT * 500.3280
miNMENT COEFFICIENT =
I36Z3E-01
,*9275
« 4,3135 • FINES
.29195'+
,(«fl00i-0t
.2500E-01
.1330E-01
,5000t-03
LIQUID LIMIT
.7300
.7500
.7)00
.7900
'
(4 of 7)
-------
TABLE 1. COMPUTER GENERATED INPUT SUMMARY (Cont.)
USE RE4Q IK CO-FFI5IENTS
3JMCR1 1,0000 OI.MCR2 l.OCOO
I tAO .23JD BETA O.QOOO 31 1.0000 CD ,500'
3. . .25 CORAG 1.00 OF?IC .010 C13 .10 L 1.00 M-PrUC .0910
FRICTN .0100 Fl .1000
AHHOA .0050 A
-------
TABLE 1. COMPUTER GENERATED INPUT SUMMARY (Cont.)
3RID FOLLOWS...
TrN«
i
2
3-—
(.
5
~ 6
7
9
9 "
10
11
12
13
l
t.
t.
t .
f .
t.
t.
t.
f.
f.
f .
t. "'
t.
4,
f ,
4.
it
f .
t .
f ,
t.
f .
t .
t .
t.
3~
•4.
if.
!f .
•
4.
'4.'
4.
'4.
4.
if.
4.
'4,
if.
4.
if.
If.
4.
4.
4.
If .
if.
if.
if.
'4.
if.
4.
4.
if.
4.
'4.
4.
~llf ~ "
'4.
4.
4.
If.
tf, "
4.
If.
" 4.
4.
4.
""if.
4.
If.
4.
if.
4.
.. - ^
4*
if.
. -_. . —
4.
4.
4.
4.
4.
, .«.^»
4!
V.
4, •—
4.
(6 of 7)
-------
TABLE 1. COMPUTER GENERATED INPUT SUMMARY (Cont.)
H N«E5
"2 (4.
5 4.
6 4.
7 <4t
It 4.
12 H.
'14 •" 4.
15 4.
17 4.
20 "~ H.
21 H.
iJ2 *•
23 4.
24 4.
25 4.
26 H.
27 H.
28 k •
29 4.
JO H.
31 4,
26
'4.
4.
4 .
- I,,-'
'4.
'+•
'4 . '
'+•
4.
W"
4*
4.
!j ,
'4.
4.
..... /+>~-
4.
4.
'+.
V.
<4.
27
4.
4.
4,
"••
" H.
'4.
4.
4.
4.
4.
1*.
4.
4.
l».
4.
4.
V.
4.
tt.
28
4.
4.
4.
4.
4.
»».
4. '
* •
4.
»•
4.
4.
4.
4.
4.
H.
».
4.
4.
4.
4.
4.
4.
4.
4. '
"**
"*'
4.
<4t
H.
4.
4.
(4.
(4.
>».
<4 .
<4.
<4.
4.
30
4.
4.
*.
4.
14*
4.
<4.
4.
" <4.
4.
' 4.
l» •
U.
4 .
<4 «
4.
4,
14 .
<4 •
4.
l| •
4.
31
4.
4.
!».
».
4.
4.
(4.
4.
4.
"4.
4.
4.
V.
""I*.
(4.
4.
'4.
4.
4.
4.
<4.
*4 t
4.
4.
It.
(7 of 7)
-------
CTi
TABLE 2. REPRESENTATIVE GRID GEOMETRY FOR TYPICAL EXAMPLE RUN
ED ARK*Y FULOWS...
3F N IS 1 TO 31
3 B
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 3
3
I
i
1
t
i
1
1
1
1
I
1
1
1
1
1
1.
1
1
1
1
1
1
1
1
1
1
3
3
1
1
1
1
1
1
1
1
I
1
1
i
1
1
1
1
1
1
1
1
I
1
1
I
1
3
3
1
1
I
1
1
i
1
1
i
1
1
1
i
1
1
i
1
1
t
t
i
1
i
1
1
3
3
1
i
1
i
I
1
1
1
I
1
1
1
1
1
I
I
1
1
1
I
L
t
1
1
t
3
3
1
1
1
1
i
1
i
i
1
1
1
i
i
1
i
i
i
i
1
1
i
1
1
1
1
3
3
1
i
r
i
i
i
i
L
i
i
i
i
i
i
t
i
i
i
i
i
i
i
t
i
3
3
1
1
1
L
1
i
L
1
I
t
1
I
1
i
1
1
1
1
1
1
i
I
L
1
3
3
1
1
1
1
1
1
1
1
1
i
1
I
t
1
1
1
1
1
i
1
t
1
1
1
3
3
1
1
i
1
1
1
1
1
1
i
i
1
1
1
1
i
1
1
1
1
i
1
1
1
3
I
i
t
L
I
L
1
I
L
L
t
t
L
1
t
1
I
t
1
I
L
L
L
1
1
J
3333333333333JSJ333
llllllllllllllllll*
11111. 1111111111111*
lllllllllliillilll*
1111111111111111113
lllllilltlllllllll*
llllllllllllllllll*
1111111111111111113
llllllllllllllllll*
llllllllllllllilll*
tllllllllllillil.il*
1111111111111111113
1111111111111111113
llillllllllilillil*
lllllliillllllllllJ
llllllillllllllllll
1111111111111111113
lllllili-lillllllll*
llilllllllllllilli*
llllillllllllillllS
11111111111111 '11113
1111111-111111111113
1 1 1 1 1 1 1 1 1 I 1 1 I I 1 I 11 3
llllillllllllillllS
3I3933333333333I333
SU1BER 0? GRID »OWS WITHIN ESTUW « fl<»l
-------
TABLE 3. MATERIAL PROPERTY CHARACTERIZATION DURING CONVECTIVE DESCENT
NTRIAL OT IPLJNG NUTRL ISTEP
1 ,18829015 1 C H
2 .2385C085E-D1 1 C l<»3
X ANH I ARE MFASURiO
TO BARJt POSITION
TIME
1.03
.05
.10
.!<•
.19
X
0,00
O.LO
O.GC
O.CO
0.00
Y Z U
.25 C.CG c.ac
.25 3.": C.C3
.26 C.rc O.OC
.28 C.GC 0.00
.31 C .CO C.GC
V «
0 . 0 C 0 0 . <. 0
. 1 55 C , . C
.306 U.P
.<»<49 U.OC
.580 O.CO
OEN-OIF
.1130E«-OC
.,«««,
.1112E*00
. 1091E»CO
.136<.E*eu
RAJIUS OIA VORT.
.67 1.33 C.OOQO
.67 1.34 3.0000 .9239E+DC
FLUIO CONC. 334.IO-VOL.
.9275E*00 ."»499ti-02
.i«<«99E-02
.2250E-Q1
.1355E-C1
.I.1.91E-C2
.i»<.98£-02
,22i»9£-ul
.1350E-G1
.67 1.31. u.CObJ .9133E+CO
.67 1.35 C.OOOO .8962E»OC
.68 1.36 O.OOCu ,8735t*lC
O.OC .3U Q.CL C.OO .697 C.vO .1031E»00 .69 1.37 O.OOCG
.29 0.00 .37 t.CO t.OO .8G1 Q.t.0 .99i»OE-:i .7u 1.39 C.OCC'G .8162E + 06
.".1.91E-C2
.'»'*98e-lj2
.1350E-C1
.|»<»98E-02
,22'»9E-C1
.1350E-ai
.'.'.91E-C2
.22I.9E-131
.1350E-11
."«i*98e-G2
.22i»9t;-l,l
.1350t-«;i
.1»<*91E-C2
CONCtNTriATIOV
.72<»6E-Q2
.21 65E-J1
.7122E-u2
.7133E-L2
.69t»8t-t2
.6812E-L 2
.5822E-t2
.2J47E- Jl
.660 lc~ u 2
.bbllt-:2
.330o£-ul
• 198I.L-L1
.636"«E-u2
- .2
-------
TABLE 4. CONVECTIVE DESCENT MATERIAL PROPERTY PLOT DEFINITIONS AND
NORMALIZATION VALUES FOR DISCHARGED MATERIAL CONVECTIVE DESCENT
PL3T OF :LOUQ »ATH AND RADIUS AS SEEN FROM POW OF RELEASE - '
IVDEPENDENr VAmOL- IS TIME J3E3I OVER *ANGE 0. 3.U06
3E»ENDENT /ARUBLESt ALL NORHALIZ-D FOR- PLOTTH3 ON UNIT AXIS
SrtBOL If 3 x I
MAX PLDTTEO 3.i»7J2 l.i»2«»J 0, B.
o. o. o. o.
DEPTH R40IUS HORDISTICXI HORDISTCZI
HAX,*IN,INC, OF
5.0000000 • 8. .100DOOODE»00
MAX.HINiINC, OF OEP.
i.ccoooco Of .loooaoopE-ot
-------
TABLE 5. PLOT OF MATERIAL PROPERTIES DURING CONVECTIVE DESCENT
n.O .2 • "» •» •' *•'
I 1 j J....I----I 1 1.—I 1-*-1 1 1 1 1 1 1 1 1 1 1
IZ Y BO
IZ Y B
II YY 8
IZ Y Y R0
IZ Y Y d
IZ Y Y 33
IZ Y Y 01)
IZ Y Y 3r>
IZ YY 5d
l.COCv I!!"-I 1 1 1 I IY--V-I 1 1 1 1 I89--I I 1 1 1 1 1 i
IZ Y YY BE
12 Y Y BJ
IZ Y Y 83
H Y Y BB
IZ Y Y B
IZ Y Y 68
H Y Y 3b
IZ Y Y 0
IZ YY JB
J(OQO" IZ —I 1 1 1 1 1 1 I 1 I 1 I — W 1 1 —BB 1 1 1 1
IZ * *! '«i*°
IZ Y Y U
TZ YY B8
iz " a
IZ YY bti
IZ
IZ
IZ
IZ
YY J
YY Bfl
YY 88
YY a
3. £00" II — I 1 1 1 I 1 1 I 1 1 * * : : l ! X —yl"'ri?""1
T7 Y T oo
IZ YYY3b
IZ yrb
li »0
IZ
I
I
I
ft.tC'V I 1 1-...I--.-I 1 1 1 1 1 1 1 1 —--1 1- 1- I----I 1 I I
I
I
1
I
I
I
I
I
5.0003 I 1 I 1 1 1 I----I 1 1----1 1----I 1 1 1 1 1 1 1 1
-------
TABLE 6. MATERIAL CHARACTERIZATION DURING COLLAPSE
COLLAPSE PHAS* OF 3LOUU
COMPUTATIONAL INDICATORS...
NTRIAL OT IPLUN6 NJT"L ISTCP I1EO HEAVt
1 .i>3»5':-Cl 1 3 517 1U 1(9
X AND 2 MEASUREU F»01 JAPGt POSITION
FLUID CONC. SOLIJ-VOL. CONCtSTkAT UN
in
o
3.39 'LCD 3.28 .9519E-C1 .>t292t-C2
.13"t9E-,i
f.OC .I>e>.3
I222KE-J2
.69Clt-w3
.2228C-I.2
.21l»9E-Ct
-------
TABLE 7. COLLAPSE PHASE MATERIAL PROPERTY PLOT DEFINITIONS
AND NORMALIZATION VALUES FOR DISCHARGED MATERIAL
PLOT OF 30LLAPSING 3LOUD CHARACTERISTICS '
INDEPENDENT VAUABLc IS TIME OVER RANGE 0. 12.330 '
DEPENDENT VARHBLEt ALL NOXMAUI?EO FOR PLOTTIN; OS JNIT AXIS "
SY100L A B 3 I
MAX PLOITTEO 1.3973 f.2<»55 .92751* 3.
IIS PLOTTED 0. 0. 0. 0.
RMARKS i/ERT SIZE HDR SIZi C3SCENTRATI3N DEPTH
HAX,1IN,TNa, OF ISD.VAR.
— ..... -".15.000000 - 0.' -' ........... - ........ .30000001
MAX, HIM, IMC, OF OEP. VA?.
1.0000000 0. .1QOOOOODE-01
-------
TABLE 8. PLOT OF MATERIAL PROPERTIES DURING COLLAPSE
J.OCOO
6.0COO
en
ro
9,0000
12.0 DC
o.o .2 .it
I YY p
1C Y 1 0 3
I Y
I 03 Y r ;
I 0 C Y
I C CBO
i c : so
.9 .S
AA
A A C C
C A
C A A
A
V Y A A
' Y Y A A
l.C
C
C J Y A
CC SB Y Y A A
I....I.-B-I 1 1 1 i-8—j 1 1 1 1 1 r i--¥-r----r 1 1 1
CC £8 Y Y A
AC ti Y A
C C b A A Y Y
C A 3A J YY
C A3 Y
C A A u a YY
C A 8 .V
C AA B 8 YV
I C A BY
j 1 18 —I 1 !-»--! 1 1 1 1 1 1 1 1 1--8-II 1 1 1—¥1
I C AA tlB YY
I C A B - Y
I C AA Bu Y
I C A J Y
1 C A Bd Y
r c A BY
I C A BY
I C A Bb r
I C A BY
j—..j....ie—i—*•!»•—i—-1-.—i—-1——i-..-i.—i 1 1 1 i....i....i 1 is-—r
I C A u Y
I C » lib y
I C A 0 Y
C » 63Y
C A UY
C » BY
C A r
C
15.COO
I
I"
I
rr
i
i
i
I
i
i
j
I—
-16-
C
A
A
-IA---I-
A
-------
TABLE 9. MATERIAL CHARACTERIZATION DURING LONG-TERM DIFFUSION
BEGIN LONG TEP* SIMJLATION IF F4T£ OF 1JO-9C
NEW CLOUD CRESTED, NTCLO * 1
TISECI TX TZ T3IOE TOP
1.216 15.00 15.U 1.670 1.77k
TTHK TMASS TEMA3
."•865E-01 .80<««tE-05 0.
NEMT
52
LAST
1
NEH CLOUO CREATED, NTCLO = ?
TISECI TX TZ TSIOE TJP
3.61.9 15.CO 15.03 3.965 3.903
TTHK TMASS TEMAS
.97J1E-C1 .S875E-ii( 0.
NEWT
151*
LAST
52
NEK CLOUtl CREATED, NTCLO = t
T(SEC) TX TZ TSIOE TJP
"••865 15.00 15.00 !..3itZ 3.951
TTH< TMASS TEMAS
.<«865£.-01 .I»71UE-03 0.
NEMT
luS
LAST
154
NEW CLOUO CHEATED, NTCLO = ?
T(SEC) TX rz TSIOE TDP
6.C8Z 15.00 15.00 5.Z01 3.951
TTH< TMASS TEMAS
.l«865E-Ol .6
NtHT
Z56
LAST
2C5
O1
OO
NEW CLOUO CREATED, NTCLO = ?
T(SEC) TX rZ TSIOE TOP
7.29S 15.00 15.00 5.750 3.951
TTH< TMASS TEMAS
.S865E-01 .71C5t-U 0.
NEMT
3C7
LAST
256
NEW CLOUO CREATED, NTCLD * ?
TfSEO TX TZ TSIDE TDP
8.51<4 15.00 15."j 6.C81 3.951
TTHK TMASS TEMAS
.i»865E-01 .6361E-C3 0.
NEMT
358
LAST
3C7
NCM CLOun CPEATEO, NTCLD « !
T(SEC) TX TZ TSIDE TOP
9.731 15.tU 15.li) 6,2o» 3.951
TTHK TMASS TEMAS
,<,8b5;-Ci .5150E-C3 0.
NEMT
i(C9
LAST
35b
MEM CLOUO CREATED, NTCLO * ?
nSEC) TX TZ TSIDE TOP
l'J.95 15,01) 15.c; 6.368 3.951
TTHK T.1ASS TEMAS
.1.S65E-C1 .393JE-C3 0.
NEMT
i«6u
LAST
I.C9
MEM CLOUO CRtATEO, NTCLD * '.
riseci TX rz TSIOE TOP
12.16 IS.ufl 15.00 6.1.2C 3.951
TTHK TMASS TEMAS
,<<8b5£-;i .29L6E-C3 0.
NbMT
511
LAST
l>60
NEK CLO'Jt) CREATED, NTCLO = >
T(SEC) TX TZ
12.31 15.00 15. SJ
TSIDE
TOP
3.775
TTHK TMASS TEMAS
,?250 ./'•36E-C3 0.
NtHT
517
LAST
511
-------
TABLE 10. MATERIAL STATUS AS A FUNCTION OF TIME DURING LONG-TERM DIFFUSION
'WITH N
SJMHARY'OF 100-30 DISTRIBUTIONS AFTER " 30.0) SEC; '
TOTAL SUSPENDED KATEUAL C3UFH « , mJSE-05
SUSPEMO-0 MtTiSIAL IN LONG TERM GRID (2JFTI » 0.
SUSPENDED MATERIAL IS SHALL CLOUDS (5JFD * .60U5E-Q5
TOTAL MATERIAL SETTLED TO BOTTOM 13UFT) * .t»i»nJE-OZ
OUTPUT SUPPRESSED I<4 LOCATIONS 4ITH NO MATERIAL PRESENT
SUNMA4Y OF 100-90 OISTRI3UTI3NS AFTER tS.OO SEC*
TOTAL SJSPENDEO MATERIAL CCUFT) « .JQi»39E-05
SUSPENDED MATERIAL IN LONG TERM 3RIO CUFf) = .SOUSE-OS
SUSPENDED M4TEUAL IM SHALL CLOJ3S CCJFH = 0.
TOTAL MATERIAL SETT.ED TO OOTT3K iS'JFTI « ,i»l»91J£-02
OUTPUT SUPPRESSED IV LOCATIONS WITH NO MATERIAL PRESENT
SUMMARY OF 100-90 DISTRIBUTIONS AFTER 60.0) SEC.
TOTAL SUSPENDED MAT-HAL CUFT) * 0.
SUS'cSD-D MATERIAL IN LONG TERM G1ID CJFFI .« 0.
SUSPESQiD MATERIAL n SMALL CLOU3S CCJFTJ » ''" 0.
TOTAL MATERIAL SETTLED TO BOTTDM (SUFD = ,i|i»99JE-02
OJTPUT SUPPRESSED IV LOCATIONS
-------
TABLE 11. COMPONENT POSITION AS A FUNCTION OF GRID LOCATION DURING PASSIVE DIFFUSION
en
en
...MULTIPl
1 N* 1
1 000001
2 0000
.1 OOOD
<> oooo
5 OOOD
6 0000
7 oooo
8 OOOO
9 OOOO
10 OOOO
11 oooo
12 OOOO
u oooo
tt oooo
15 OOOO
16 OOOO
17 OOOO
IS OOOO
19 OOOO
?: oooo
21 OOOO
12 OOOO
23 OOOO
?". oooo
25 OOOO
26 OOOO
27 OOOO
21 0000
29 0003
30 OOOO
.1 nisPHYEo vaiuis B» i.cct IIICEIO... > « .LI. .01 . • .LT. .0001 o « .LT. .cuoi
2 3 i. 5 6 7 S 9 It 11 12 iJ lli 15 Ib 17 IS 19 1} ii It i3 2<« 25
300 00 0000000000000000 UO 00000 00 00000 00 OOOOOOUO 00 00 000 00000000 000000000000000000000 OOOO 00000000000!
OOCGC30QUJQl'ji}u'JCCiuCGOOL
tCu"COCOOJw02COCO'*''^'QOlJu
0
0
•
0 0
a i
OQQOOGCQOOuOCOOOCOOOOOOO
OQOC07GOJQu0^33C3iJHUGOJj
COOOOGCCCOOOJuOOIlliOOOflOO
OOOOfijOQt]08(f303k300QCOQO
OQOOOlCOOUOOOODOOOCOCiOOO
31)
ib 27 2B
DOOOOOOOO 0001
: ; c.
a 3 i
J J C
J 0
a L ii
aoc
0 » 0
J J L
3 J L
] J J
0 3 b
0 u C
000
3 0 u
0 u L
3 4 t,
0 0 C
0 0 C
0 0 u
a o u
3 i I
0 0 1
0 0 i
0 G 0
000
I) 0 u
0 6 0
000
24 30 31
JG00000030J
; goooi
u OOJO]
u 10003
CODOJ
u COOOJ
„ COOOJ
; 00301
C IUOOJ
c toaoj
C C0001
t cuooj
c tooo>
C uOJOJ
t COOOJ
i, vOOOJ
c uoooj
„ ^oao)
c ;ODOJ
J 00301
„ (030)
a iiBaai
i !,030J
0 0030}
g 0000}
C 00003
o coaoj
I 00303
o OOOOJ
-------
TABLE 12. COMPONENT THICKNESS AS A FUNCTION OF GRID LOCATION
DURING LONG-TERM DIFFUSION
T«IC*H«S OF .it. at CLOUD «*m»
SECONDS
DUMP
tn
01
i
J
S
b
5
6
T
I
1
11
11
ii
13
I".
15
16
17
11
11
2?
*1
[c l £ J H 5 0 ' • ~ •» * * ** * ** * — —
00000000000000000000000000000000000OOOOOOOOOOOUOOOOOOOOOOOOOOD0000030000000000000000000000000000000000000000000000000000000J
Z5
oooo
0009
oooo
0003
oooo
OOOO
0003
oooo
oooo
oooo
oooo
OOOD
oooo
oooo
0003
oooo
oooo
oooo
oooo
0003
oooo
oooo
oooo
oooo
oooo
oooo
oooa
oooo
9
0
fl
g
g
g
3
g
9
g
3
J
o
3
9
9
0
g
0
9
9
g
g
g
g
g
g
c
9
0
9
e
0
g
c
g
0
0 9
0 9
a 5
'4 J
c
0
c
e
0
c
0
0
c
1
}
g
3
)
9
)
g
J
! ) >.
: 3 .15
C .15 .15
0 .19 .15
.15 .1! .15
.15 .If .15
.15 .15 .15
.15 .!> .10
.15 .15 .15
,15 ,15 .15
9 .15 .15
C .15 .15
) ) .15
C .19 .15
.15 .15 .15
,11 .15 ,15
.15 .15 .15
.15 .15 .15
.15 .15 .15
.15 .15 .15
.IS .15 .15
.15 .15 .15
.15 .15 .15
.15 .15 .15
.15 .15 .15
.15 .15 ,15
.15 .15 .15
.15 .15 .15
.15 .15 ,15
9 .15 .1*
C i 0
933
9 <1 'i
C D 9
3 0 3
.15 .15 .15
.15 .15 .15
.15 .15 .15
.15 .15 .15
.15 .15 .15
.15 .15 .15
.15 .15 .15
.15 .15 .15
.15 .15 .15
.15 .15 .15
.15 ,15 .15
.15 .15 .15
.15 ,15 .15
.15 .15 .15
.15 .15 .15
,15 .15 ,15
,15 .15 ,15
.15 .15 .15
.15 .15 .15
It.
J
9 3
i 3
0 3
0 9
.15 .15 ,
.15 .15
.15 .15
.15 .15
.!*< .15
.15 .15
.15 .15
.15 .15
.15 .15
.15 .15
.15 .15
.15 .15
.15 .15
.15 .15
.15 .15
,15 ,1>
.15 .15
.15 .15
.15 .15
b 1
9 3
9 II
0 1
0 3
9
0 3
U C'
g i
15 .15
15 .IS
15 .15
>15 .15
,15 .15
,15 .15
,15 .15
,15 .15
.15 .15
,15 .15
.15 .Ii
.15 .15
.15 .15
.15 .15
.15 .14
,15 ,i>
,15 .15
.15 . 1>
.15 .15
C
a 3
g c
s, :
( c
,15 .15
.15 .Ii
.15 .15
.15 .15
.15 .15
.15 .15
.15 .19
.15 ,15
.15 ,15
.15 .15
.15 .15
.15 .15
.15 .15
.15 .15
.15 .15
.15 .15
t i.
3 C
9 9
g v
i,
0
0
i)
g
o
.15
.15 .15
.15 .15 ,15
.15 .15 .15
.15 .15 .15
.15 .1$ .15
,15 .15 .15
.15 .15 .15
.15 .15 .15
.15 .15 .15
.15 ,15 ,15
.15 .15 .15
.15 .19 .15
,15 .15 i
,t5 a 'i
0:0
a b 5
b u '1
g
g
g
c
g
g
«
g
9
g
.15
.15
.15
.15
.15
.15
.15
3
0
t
g
g
o
o
3
g
9
3
3
a
g
g
g
a
g
3
9
g
g
o
9
o
ii
o
g
9
bOOOl
oooo)
COdOJ
:ODOJ
COO 05
COOOJ
CU003 .
tOOOJ
C0303
10003
£030)
00003
6 OOOD
C030J
0000.1
tODOJ
9030)
COJOJ
ii)00)
oooo c g 3 t o ' o « ' - " c ° " ° ' °
00000000000000000000000000030000300OOOOOOOOOOOOOUOJ00003000000030000CUJOOD
b 10301
t ) i t i j c o b coooj
£ J J 9 „ JObb COOOJ
O;gc3ti39)bu 3000)
OlOCjj.Ouii COOOj
,0003300000U0300000COOOl)l)30000')OOOOOOOi)UO<)OU00030}
-------
TABLE 13, COMPONENT BOTTOM ACCUMULATION AS A FUNCTION OF GRID LOCATION
DURING LONG TERM DIFFUSION
cn
IOTTOM ACCUMULATION Of .LI. 11 luy'f'j
..NUlTIi>L» OISPLA»eO VALUES (IY .UGtE-
IK 1U
i n
il4U**KC 1 i 3 v i
ILlGiNO... '
It 1 7 It 1 it
'» .LT. . ci . = .Lr. .coai
1S 1=1 17 1H t<3 23 21
1 0000000000 000000000000000000 OOOOOOOOOOOOOOOOCOOO J00000030000u03000UOOOO 000000003 000001
3
4
5
b
7
3
1
1 Q
11
12
13
11.
15
16
17
19
1 3
2J
21
22
2 ?
25
26
27
29
29
39
,
OOOO 3 0 0 £'
0003 •! £ 3 I
oooo o o r> o
OOOO 000?
OOOO C 0 0 0
JOOO 0000
0009 i. Q 0 »
OOOO 0 0 Q C
00 00 0 G 0 I
•)000 0 0 3 f
oooo oooo
OOOO 1 0 ti V,
OOOO 3300
oooo coco
OOOO i) 0 C 5
OOOO C 0 0 0
OOOO 0 0 0 C
0000 0 0 0 0
OOOO 0 0 t) C
oooo oooo
0003 S 0 5 9
oooo oooo
OOOO (t 0 8 C
oooo o i o n
JOOO OOOO
oooo o o o c
OOOO 0 000
1
o : o
* : c o
o ; o o
fl L r c
C J j Q
> » .Cl.
• t * . t <•
. > » .Oli
. • ' .Cli
. < * .C 9.3 >..! 1.3
5.9 5.9 5.6 l».3 1 .
22 S3 21 25 25 27
30000000COOOOOUOOC
j i o ;
C j 0 C
J 11 J J
c : - .
0 0 0 C
ij ) 0 «
» * . il
» * . 1'
* * . u
> » . u
• . G i>
ii ? C fl
g o o o
0 t) 0 J
C 0 0 d
0903
a J 0 0
0 0 0 b
0 J 0 3
10000001
J 0
0 9
o ;
J b
0 G
0 G
j J
0 3
3 j
3 u
Q G
0 u
0 i
9 :
J 0
3 0
o a
0 0
0 0
0 3
o u
0 0
0 0
0 0
0 0
0 0
0 u
0 d
0 0
211
3301
b
G
t
•
0
[,
b
0
0
c
G
-
"
G
fl
U
1
o
o
c
G
1)
C
0
•
0
I)
'.'JJOJ
-OOOJ
10303
1.000)
C0003
:ooo3
L 0003
1.0003
COQ03
110003
CUOOJ
COOOJ
00003
00003
IOOOJ
G0003
G030J
^0003
CU003
001)03
00003
00003
00003
-------
TABLE 14. COMPONENT CONCENTRATION AS A FUNCTION OF GRID LOCATION
DURING PASSIVE DIFFUSION
cn
oo
.. .MULTIPLY DISPLAYED VALUE; 3Y
1 0000000000000000000000030303(
2 oooo c o ? c o :
3 OOOO 0 0 0 0 C 3
li OOOO 0 0 d ff fi J
fi OOOO 00(011
r oooo o o p ; o 3
9 OOOO C 0 3 0 0 5
9 OOP9 1 i 0 5 0 ;
t'l 0003 C C 1 C 0 .
11 0000 C 0 J C [• ,
12 0003 0 0 0 0 . t
!<• OOOO 0 0 0 C . .
15 OOOO * 0 9 ] . >
19 OOOO 0 0 0 C . »
14 OOOO 0 0 0 0 C .
20 0003 3 0 i) fl 0 .
21 OOOO 0 0 0 G 0 g
2! OOOO 0 0 5 C 8 ]
23 OOOO 0 f 0 3 5 )
2« oooo o o ij a i ;
25 OOOO 0 0 0 0 0 :
26 oooo o o i o c :
?' OOOO 0 C 9 ; J J
29 OOOO C 0 0 9 g )
Z1 OOOO 0 C 0 C 0 J
3C OOOO 00000)
• 9 10 It 12 13 1» 15 16 17 11 19 20 21 22 21 2* 25 26 27 2> 29
1000000 OOOOJOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 00 0000001
c c ° « o t o o o c » o o o o o g o o o o o
0 ° " « ' » 3 0 « 0 0 0 9 0 0 a 0 3 0 0 0 li
* ' ' •"! -01 .12 .« .J? .tZ .01 » • . . j o a J 0 (j o
» » > .n3 .19 .11 ,12 .12 ,12 .11 .J6 .03 » » • . o 0 0 j d o
* • ,u3 ,1J .31 .1,1 .1.1, .1,1, ,»(, ,41 .Jl .13 ,;j » » . j j B , 4 ^
• .(1 .09 .Jl .fc7 .99 .96 .49 .16 .99 ,»7 .31 . : 9 . t 1 f . . ; j 0 t ;
• .C2 .1Z .im .96 1.2 1.3 l^ i.3 1 .Z .96 ,m» .1Z . 02 * » . ^ fl 0 C
* .tZ ,12 ,t|i> .48 l.J !.(» l,c» i.i, 1.3 .94 .Wk . 1Z . 02 * » .
-------
TABLE 15. TOTAL MATERIAL ACCUMULATED ON BOTTOM
0.00 SECONDS »FIER DUMP
en
to
out «cum)t»reo soiio VOI.UNE ON OOTTON icuFT/taio SURI, ";u ci LT oooi o- LT .0001,011
29 30 31
1 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODOOOOOOOOOOOOOOOOOOOOUOOOOOOOOOCOOOOOOOOOOOO),
2 OOOO C
i oooo o
it OOOO 0
5 OOOO 0
6 OOOO C
7 OOOO 0
» 0000 C
9 0003 5
10 OOOO 0
11 0000 0
12 OOOO C
U OOOO 0
IK JOOO 0
15 OOOO 0
16 OOOO 0
17 OOOO ?
11 OOOO 3
11 ouoo o
20 OQOO 0
21 JOOO 0
22 OOOO '.
2! OOOO 9
21, 0000 0
25 0003 0
?f> OOOO 0
27 OOOO C
>( OOOO C
29 OOOO C
3C OOOO 0
_3_1 OOOOOOPOP
„ „ C 0 ! C 0 0. 0 0 G' " 0 0 0 I 0 C G 3 0 0 „ 0 0 t
jdOQOOCOOO
3 o c o : <; c
0 o c . . , « f * . .1/1 .ci .ei .01 .m • * * * * • • J " " c
B 0 . • • » .LI .1,2 .'5 .19 .12 .13 .in .13 .12 .09 .C5 .S2 '.Cl . . * . 0 0 «
c . . » , . .02 .17 .15 .26 .3* .38 .39 .38 . In .26 .15 .1/7 ,C2 •• » » • . i u
_.-.--,.. M
0 , » . » .Cl .05 .15 ..!<• .79 .98 1.0 1.0 1.0 .9» .79 .31. .15 .us .01 •
. . , » » .C2 .09 .26 .79 6.8 7 . U 7.5 7.6 7.S 7.1, 6.8 .79 .25 .11 .02 • * » • • '
Cl .01 .12 .1* .9« ?.* "•' ••« "J »•" «•' '•" -9" •'" >IJ '-' ."*•••''
. , . .Cl .lU .13 .38 l.i 7.5 8.9 9.2 9.2 9.2 8.9 7., l.G .38 .13 ..!. .51 » * . • d
. . , > .01 ,t» .m .59 l.« F.6 9.0 9.2 9.J 9.2 9.E 7.4 1.0 .M .!«. .£«• .01 » » . • U
. , t ,01 .U .13 ,J8 l.J 7.5 1.9 9.2 9.2 9.2 8.9 7.5 1.0 .3D .13 ..<. .01 * » . • »
i,l ..;; .12 .31. .98 7.1, S.7 8.9 9.0 8.9 8.7 7.<. .98 .34 .12 ..J .«»».•»
, , , .02 .09 .26 .79 6.8 7.1. 7.5 7.6 7,5 7.1, fc.» .79 .26 .C9 .02 . t » . . 0
„ ii .C5 .15 .3". .79 .« 1.0 1.0 1.3 .98 .79 .31. .15 ..« .U t » » . i »
0 0 Cl -C2 .05 .U9 ,12 .U .1- .13 .12 .09 ,C5 .12 .01 • ' • • » " »
, a , . , » . t .Cl .ti ..4 •<•<• ••-<• '"• -"I .02 ,tl »»»»••» ° '
..GnOOJDu'
.ItOilOOiSuC
OT.OCOOuU..***
nn .'.. iltDDQjOuO
fljrojs^ooooooowji'fltojuj"""
i/1i*i,00»C('l|
QUCO"iC^')01'J^''"J "
, f r. ^ir'naOCOOiJOli
jacooctf5^co-03C-fl3g
o cooo}
u 00003
0 0030)
I tDDOJ
0 10003
u COOOJ
C u0003
c OJQOJ
t, C0003
C C0003
C, J0003
b 00003
t COO 03
v 00303
a too oo
j 00303
g 00003
C0303
0 C0003
u UflJOJ
t 1.-030J
U LUOOJ
w bOOOJ
, C030J
i, vUOOJ
C COOOJ
C 00003
; C'0003
t 00303
VWWSWSSWW™™™™™™^^^
-------
TABLE 16. TOTAL THICKNESS OF ACCUMULATED BOTTOM MATERIAL
t1T»L TNICKNCSS (FT) OF NtH 1«i:ol»L ON JOTTOH,
C.J; S-CONJS AFTER UUM»
CTl
O
...MULTIPL* 01
M N« 1 2
1 0000000001
2 0000
1 0000 0
i< oooo :
•5 0000 j
6 0000 i
7 0000 1
» 3000 0
9 0000 0
10 0000 0
11 0000 0
12 0000 0
1! 0003 C
li< 0000 0
15 0000 0
16 0000 0
17 0000 C
IS 0000 C
19 0003 0
20 0000 0
21 0000 C
22 0000 9
23 0000 f
2<. 0000 C
25 0000 3
26 0000 C
27 0000 3
2» 0000 0
29 0000 O
^30 0000 0
ISPLAYEO VALUES m .ItC.E-Ci
3 It I 5 7 t 9 13
) 00 00000000000000000000000 OOOU01
0 3 C i ' it 0 I
t! 0 C . 0 3 C 0 0
OOCOOCOu
0 0 . . t • f
o . . » « « .: i
t . • » > • .. 1
0 , , > • > .Cl
0 0 . . . » > »
0 0 , , t • •
Q 0 0 3 C C ,
0 3 0 0 C C 0
0 0 0 0 J 0 0
o c c c : o c
0 0 0 1 ; 0 0
0 f> D U C 0 C
t
,1.2
.02
.Cl
»
0
0
0
0
0
lUGi-NO.
11 12 13
1300000000001
0 C C
3 0 i
.01
.06
,06
.02
.01
0
c
0
0
,01
.111
,11
. C".
.01
0
c
0
a
.02
.17
.17
.06
.02
0
0
0
0
,. • » ,LT, ,
It li It
100000COOOOOC
coo
3 0 t
.62 .02
. 1'J .19
.19 .19
.06 .17
.02 ,C2
0 0
0 0
3 0
e c
.92
.19
.19
.J6
.02
0
3
0
0
id
ir
10001
c
0
.02
,17
.17
,02
0
C
3
0
. « .LI
U 19
300000001
3 I
1 0
.n .n
.11 .[6
,1!> .C6
.01. .C2
.01 .Cl
d 0
0 0
0 0
0 0
r. .OCCl 0 > .LT. .OGOJull
2: 21 22 23 it 29 26 tT
)0000000300000000GOOOOOOOOOOOOOOOi
^coooooc
0 0 L 3 0 J 3 0
00u303u3
**»»..
,C2 ,C1 » « » ,
.UZ .Cl * » » ,
000000
3 0 li 0 0 0
000000
3 0 0 1) 0 *
d 0 0 0 0 0
] 3
9 0
C
0 0
0
. J
o c
0 0
d u
0 0
3 a
0 3
0 0
0 0
0 0
0 0
0 0
2« 24
D 00000001
il '..
C 0
0 '.
c. ;
U y
C b
U v
U u
0 0
c c
c -
C J
U V
0 b
t1 w
C b
0 0
d b
0 u
L M
U 0
a o
0 0
a o
0 0
JO 31
3000003
C0003
COOOJ
00003
CODOJ
00303
1.000)
00303
C030J
00303
1.0303
00303
00003
OOOOJ
tiOOOJ
00303
.000]
i.0303
COOOJ
Loao}
OOOOJ
C0303
10003
COOOJ
00003
OOOOJ
00003
-------
tively. In this case the grid was 31 by 31 with 1-foot spacing, a typical
tank-scale run where the size of the tank was increased to eliminate wall
effects. A real dump might involve thousands of cubic yards of discharged
material and cover several hectares. By running the model at tank scale to
achieve tank-scale predictions, problems in scale-up of tank discharges were
avoided. Appendix A contains a complete listing of the program.
B. Simplified Input/Output Format
This section presents the simplified input/output format option of the
long program version. It was developed to simplify the use of the program and
to eliminate superfluous output necessary for the person only interested in
the program results.
The type of input format is again specified by the value of KEYMAX.
Thus, for the simplified input/output version the value of KEYMAX should be
set to 0 (Figure 31). Figures 32 through 46 represent the input cards and
parameters required to execute a run of this version specified in the input
cards as well as descriptions of how to calculate these parameters. As can be
seen, many of the option parameters have been eliminated. This program ver-
sion requires only 3 material components and assumes a value of 20 for the
number of transition levels allowed between long and short term models.
Equation coefficients are fixed and the program will run to the time spe-
cified. No option is allowed for varying the print output. The user will
obtain plots describing material characteristics for the convective descent
and collapse phases as a function of time. Material characteristics for the
total cloud as a function of time and grid location are presented for the
long-term passive diffusion stage. These characteristics include cloud loca-
tions, size, and concentration as well as the quantity and height of the
material that settled to the bottom. For this version it was assumed that
only the total material properties are of importance.
It should be noted that the grid can still be defined by a 31 x 31 matrix
and the bottom is not assumed flat unless IDEP is set equal to 1. By setting
KEYMAX to 0 the capabilities of the program are not reduced, only the input/
output formats are simplified.
61
-------
KEYMAX
I
I
I
I
I
-NOT USED
I I I
I
I
I
II I IIII1I1 I 111 I II I III I 111 II I I I I I J I I 1 I 1 1 1 II II I I II I t I III II lit II II III II 111 I II I I till
222222Z222222222222222222222222222222222222222222222222272222222Z222222222222222
J33J3JJ33333333333333333333333333333333J3333333333333333i33333331333333J33333333
4444444444444444*444444444444444444444444444444444444444444444444444444444444444
iJ555}S5555b555S55S5S555i55555S5i555S555555i555S55S5555i5i55555555S5SS5555555S55
IIISSifltl(St(tfii((C!iC(flCSi[i!fiffECfSfSSSCECtC£CeStSf5t(SS(5tSfSEfffSli(SiSC
777771l?777777777I771777777777177777777777777727377777777liJI777I777 7 7 7777777717
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII8IIIIIIIIIIII1IIIIIIIII1IIIIIIIIIIIIIIIIIIIIII
V 11 i • i
BSC/MM-3OSI
Format (15)
VARIABLE
Keymax
DEFINITION
Flag which specifies
format. KEYMAX = 0
format option and is
simplified format of
desired input/output
specifies simplified
used when using the
the long program version.
Figure 31. Input Card Number One, Simplified Input/Output
62
-------
NMAXI NMAX I IDEP
NOT USED-
i I
I i' I i i I i I I I I i
8 : 11 1111 « Q 0 11 0 ! » a I B 8 9 B 6 8 B a 81 S 0 B B B fl 0 0 B : « t fl 6 0 fl II B 0 0 0 B 1 0 0 08B B I B B B 8 0 0 B « 0 B a C 0 B J 8 0 I 6 « B t
i l 1 * I I l I 9unni]uniiii!iiiniiani4nniinnnlii:u>HHHunti*iwtluuuJMiitMsiuiiM&)t}iuMHi!i7Buttlfliunnnnni»nniiiinn
1II I I I I 1 I I 1111 I I 1 I I I I I I I I 11 I 11 I !I I 1 I 1! I 1 I I I I 1 II I I I I 1 11 IIII1II1 I II I I I 11!I 1 I 1 I I II I
2222 mn2Z222 2?2!222n22 J J! 2!! 22 22 !!2 ! 2?3 2 Z2222 2Z27227IT22212222 2222222222222J2
3 3 3 3 J 3 J 3 3 33 3 3 J 3 3 3 3 J J 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 3 1 3 3 3 3 3 J 3 3 3 3 3 3 3 3 3 3 13 i 3 J 3 J 3 1 3 3 13 3 3 3 3 3 113 J J 3 J3
44444444444<4444'44444444444< 44 4444444 444 444444444444444444444 4444444444 4444(444
55555555555555555555555555555555555555 5555555555555555555J5555555555555555555555
SSISS6SB6I6S S6S5SSS66 EE t66S6SBS E6E6EEE BSE 6! S5EEE 66EEE5E SSSEISSSSESiEESSB SB! EESES
1777777777I777777777J7777777777777777777777777777777777777777777777717777777J777
IIII III 1111III i 8 1118 I i B 1111 ! 8 il 11 I ! I ! B 1 S I I 3 III 11 1 B !l IIIIII IMS 1111 Si Bl IS III II III
S 3 3 9 S 9 9 ! 9 9 9 9 9 3 ! 3 3 9 9 9 3 9 9 3 9 9 9 9 3 3 3 9 3 9 S 3 3 3 J 3 9 9 3 3 3 3 3 9 9 9 3 9 9 9 3 9 9 3 3 3 3 3 9 3 9 ! 9 9 9 9 9 9 9 S J 3 3 3 9 9
___ . »SC/NM-50ai -^S
Format (1615)
VARIABLE
DEFINITION
NMAX
NMAX
IDEP
Array size in Z direction (NMAX_^31)
Array size in X direction (MMAX_£31)
If IDEP equals 1 then the program will assume a
constant depth estuary and consequently require
only one value of estuary depth, H.
Figure 32. Input Card Number Two, Simplified Input/Output
63
-------
II 111111 II I I 1 II I 1 1 HI I 1 I II I I 1 1 I 1 I I I II I I 111 I 11 I U I I 111 I 111 II I Jl I I II It 1 II I I I I I I I II
22122222222222222222222222222222222222I2222222222222222ZrZ2Z2Z222ZZZZ22222222222
333333333333J333333333333333J333333333333333333333333333i333333333333J3333333333
4444444444444444<44444444444<444444444444444444444444444444444444444444444444444
555555S55S555S55S5SiS5555555555SS5i555S55555S555SS5S55S55J555555555iS5555555SSSS
ICIISIilStiESESfSEEEEEEEEEEEEEEtEEEESEEEEEEStEESSCEECSEEEitSIEESESESEEEIISEEEEEl
77)7777)7J7777771711M777) 1 717777771177717J77117777717777777T7777)))7777777777J7
I E B I B B 11 B B 11111 ! I 11111111111 11111 I S 1111111 B 11111111111111111 B 1111111 11 B 1 B B 111 B I B
M1MIM3M939933333333339333339S3399313333393I3J3393993H33J3339339399I99399999
Format (8A10)
VARIABLE
ID
DEFINITION
All 80 columns can be used
being made. Symbols can be
alphabetical .
to describe the run
either numeric or
Figure 33. Input Card Number Three, Simplified Input/Output
64
-------
DX
-NOT USED
IBB tiaiaiigieiioiiaatita ata agaet aoaacaiaiiiiit oatDieioisitH a t aooaaaa t tiiteeiii
1 1 1 1 1 1 n 11 1 1 n i n 1 11 1 1 1 1 1 1 1 1 1 1 1 1 n 11 1 1 n 1 1 ti 1 1 1 1 1 in 1 1 in mi 1 11 11 1 1 it 1 11 1 1 it iii
3 33333! 333 3 J3333J3333331S33 33 33333 333333333 J333333J3J333iJ 333 3 J333 3 333333 JJ3 13 31
44444444444444441444444444444444444444444444444444444444444444444444444444444444
55555555555553555 5555555555 555555555555555555555555555555 J555 55555 5S555S5555555S
(CKSESSttilEiESISKEf CCEEEEIff SEE CEEEEESSEt CEEEEEEEES ESESEESSESSS ESEE SEES CCCiEC
77777717777777777777177777777777777777777777777777777777717777777777777777777777
iniaaiiii iiittiini mini nuns ID t tin 1 1 1 titiiiiiiiiiitii unit ma iiiiinii
M5M3JM3MM99S399 9933999 SMMM993 99M99M9999SM9989S999! 9M)MM95393)S99 99
i l l t t l i i i mi mi n n ii niiiin!i nnx.i; n aniij ouuniiM UBUIMM; u u«in..mii iiiinBiiiraiiiiii unuuuirun nn nun onnnnm
Format (8E10.0)
VARIABLE
DEFINITION
DX
Grid space size (see Figure 1). The grid
spacing is assumed symmetrical in the X and Z
directions and as a result the values of DY is
specified by specifying DX. DX is defined in
feet.
Figure 34. Input Card Number Four, Simplified Input/Output.
65
-------
-DEPTH (N,M)-
I I I
I I I I I I I I I I I I
1 1 1 1 1 1 1 1 1 1 1 1 1 1 g 1 1 1 1 1 1 1 1 1 1 1 B 1 1 3 1 1 1 1 1 1 1 : 1 1 1 a M 1 1 1 1 1 1 1 1 1 1 1 1 1 B 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
I I I 1 I I I I I 1 I I I I 1 1 I I II I I I 1 1 11 I I I I 1 I 1 1 1 11 I I I I I I M I II I 1 1 1 1 I I II II I I I 1 I I I I 1 1 I I I 1 1 II I 1 1
I2222I22I22222222222222222222222222222222222222222222222r22ZI222222222J222222l22
J33331331333333333333333333333333333333333333333333333I3i33333333333333333J33333
l(ISSIEEIiESMEIESSEE(EiEEEEC(tEEEftiEiEEESCIEEEeEESESESE$ESSEJ17)777777)17771)717•J7JIJ1771117)J777J7i;j17771JI
9I9993939999HI999399999999999S9399999999999999999999$99999999339993999999999999
„ HSC/NM-5081 JL
Format (16F5.0)
VARIABLE
DEFINITION
DEPTH(N,M)
Depths of grid point N,M. The grid is defined
first by row and then by column. If a grid
greater than 16 by 16 is specified, the 7. grid
points in the first row (x grid point 1) from
17 to 31 will be defined on a second input card
After all the 7, grid points in the first row
have been defined the Z grids points in the
second row will be defined in the next input
card(s). This will continue until the entire
array is filled. Thus for a 31 x 31 array 62
input cards will be necessary (two to describe
each row in the grid). Depth is defined in
feet. If IDEP equals one the program will
assume a constant depth estuary and only H =
DEPTH(1»1) need be specified in columns 1
through 5.
Figure 35. Input Card Number Five, Simplified Input/Output.
66
-------
XBARGE
ZBARGE
•NOT USED-
I
t I i i ) I i i I H n il 11 H it it ti ii 11 n n & n n n B l> a n u n & 111* I* » u » 11 u 41414i u 41 u 4i ii M ti» 11
I 1 I 1 II I 1 I 11 1 1 1 I 1 1 I I 1J 1 I I 11 I 1 1 I 1 I I I I 1 II I 1 I I I I I I I 1 I I I 1
g o o i o o t a o o o e g D oo o g 9 c B o 11 g
1111111111111111111 n 1111
I22!2!!l!nZ222MZ22I2222}2222tm2222222222Z22222?22!l!r!122:722222222222!22!12
J33333333333333313333)3533333333333333333J33133] ] 3333333133333J33333333333333333
44444444444444441444444444444444444444444444444444444444444444444444444444444444
S5555S55555555555555555555555555555555555555555555555555555555555555555555555555
SEIS St S6f It f 66 SS6St6E6EE ESS 5 t 61 SEte-ESE 6S£ C6S 6£E£ 6 5 E6ESESE 5 BiSSS SE 66EEESB E 5 E 66566
117 I 7 7 ? 7 J 7 7 7 7 7 J 7 7 7 7 J1J 7 7 7 17 7 7 7 7 7 7 7 ? 7 71J17 J 7 7 J J 7 7 J 1 7 7 7 7 IJ J 7 7 J 7 JII717 7 7177 7 7 J J 7 7 J 7
ItlllllllllllllllllllllltlltllllilillSSIXIIIillltllltttlBllltllllllllllSIIISIlI
U!S9S5S933M393SJ39999319!9!SSM39S9S9 S3 999SS99 999993SS!9393999S3S9S5S939599599
I i i i I I I i i tt n 11 u ii n if ii ii n n ti n IIN a} linnaiiBlivUKlianMiitMiuKuiifctiutiuUMUUliuuiiiilluwtttsiiiiitntinnMnKniinji
Format (8E10.0)
VARIABLE
DEFINITION
XBARGE
ZBARGE
X—coordinate of barge at time of discharge.
This coordinate is measured from the grid
point 1,1 (see Figure 1) and does not have
to be at a grid point itself. XBARGE is
defined in feet.
Z-coordinate is measured from the grid point
1,1 (see Figure 1), and does not have to be
at a grid point itself. ZBARGE is defined
in feet.
Figure 36. Input Card Number Six, Simplified Input/output
67
-------
NROA
•NOT USED-
I I
iiiiiiiiiiiiigiiiiiiiiitiigiinigiiiiciiiiiiiiiigiiititiiiiiiiigiigiiieigitiiiii
i I > • l l l • tuiiunHnuiiunnnannantinnBHUijMiiKUxaNMiiiiMttiiifMMMvuuHuittJMHBniiDiiHKUaifnnnnnnnniinB
I I 1 11 1 I I I I II 1 11 II 1 I I I I I I I 1 1 1 I I I 1 1 I I I 1 I 1 t I I I 1 1 I I I I 1 I I 1 I I II I I I 1 I I 1 I I I II I I 11 1 I I I 1 I I
2I222ZZZ2222ZZ2ZZ2i2Z22222ZZ2]Z2Z222222ZlZ2ZZZ:22222222ZrzZ2Z22222ZZZ2ZZZZ2ZZZ22
J311I3333 333 3 333 33313333333 333 133 3333 33331333 3333 3 33 3333 113131333333333333133333
4444444444444444*444444444444444444444444444444444444444 4444444444444444444444ii
II»77J7J;7]J111 7777 Jl J7JI777J7I77 J777I7;)?71)7))1 )7II777I7IJJ J J771I) J1IIT77J77J7
llltllllllllllllllllliiliiiiiillligillllllllMlllllllllliiiiiMiiiinigiiiiiiiii
VIL^
f»SC/MM-SO«l
Format (1615)
VARIABLE
NROA
DEFINITION
Number of depths at which ambient density
defined (NROA<10) .
is
Figure 37. Input Card Number Seven, Simplified Input/Output
68
-------
I I 1,1 I I II
«CIUIflH086BSHfll8U«tBaOBIJ90(H«lltBC:S80CUalI[lliaOBHH8Ba«H6(U800l)««l!»IIltSB«BS
n 1111> 11111111 n 11 n 1111111 ii 111 n i n n 111111111 n 11 ii 11 r n 1111111 n ii i ti 1111 ii
2222222222222222222222222!2222222222222222222!2222222222TZ222 2222222222222222222
13333333333333333333333333333333333333333333333333333333333333333333333333333333
4444444444 4444444444444444444444444444444444444444444444444444444444444444444444
55555555555555555555555555555555555555555555555555555555555555555555555555555555
tSISS6S6SSESSE6SB5S6B6EE6£S!ES66$56EEeSS:6BS6EEESB£E£S£JESESSf»$6S6££SSSSSSSEStS
777?777777 7777777 7771771777 777777777777777777771777 7777771577 7777777777777777777
Illllllll I I 1)11 II III IIS8II8 I 138 i II ill t IIS I II SIMIM illll! t III I III! 13 111 Illllllll
)!!SMJM999J!9S99S9MSS!!99S3933999993399)9S99999999393S339S9J93S99S9!9S9J399S9
i i l i s I T i i ii ii u n M ii u u u n N 11 IT n n n' nnnaiinnvDuiiii»uiiui:uii*t4ii,«iuituuuuuuu»HHtin(iuBtiiiiinii n n » n » lui n »
Format (8E10.0)
VARIABLE
DEFINITION
Depths at which density is defined. The
quantity of Y(I) must be equal to NROA. The
greatest depth in the drop zone must be equal
to Y(NROA). Since (I) can vary up to 10 a
second input card will be necessary to define
Y(9) and Y(10). Y(I) is defined in feet.
Figure 38. Input Card Number Eight, Simplified Input/Output
69
-------
ROA (I)
I
iiiiiiiiiJiiiiiiiiiiiiiiiiiiiiiiiiDiitiiiiiiiitiiieiiiitiiiiiiiiiiiBiiiitiiitiii
i I i i I I I i lun Bu»»»imH»»n»»s»n»aB»»»»»Miiii»«ii««ii'««««iiii»i»ii!i»»»»»»ii»»M"«»i'»ii'!'i'»iin»iiiiii»
Mini mi 11 n i it i ti 111111 n i n 11 ii i it 11 it 1111111 ii 111 it 1111111 ii n 11 in it ii 1111
33313133333333133333333331333333333333333333333333333313313333333333333313133331
444444444444444<'4444444444444444444«4444444444444444444444444444444444444444444
555555555555555555555555555555555555555555555535555551555j535555555555555555555i
IIIISIICilftiiEttSillSiSIEitifttililietiSilEtECESIECESEttSSilCSSIEtEEttCtSttCltt
I7177II17777777I777717777I77J7777777I77777777777777777771I7777I7777777777777777I-
itiiiiiiiiiriiiin iiiiiiinii iiiiiiniiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiuiii
UHIIJ§m999J99H99S9JM999M99999J9J9999*999M9»99999J9999J999)9999S9S99JJ999
I t 1 • I I I « I Wll UUMn«IIIIHIIlll?ll»37 DBaltltB&llBJIVllBNUIIVMISMVIillllll BBIiaKU»Uaillll)«aBI'tiaill!l>QHnHBIIIt«
Format (8E10.0)
VARIABLE
DEFINITION
ROA(I)
Density in ambient water at corresponding
depths, Y(I). Since (I) can vary up to 10 a
second input card will be needed to define
ROA(9) and ROA(IO). ROA(I) is defined in
grams/cc.
Figure 39. Input Card Number Nine, Simplified Input/Output
70
-------
I FORM
-NOT USED-
i i i • i i i i i ti n ii n u u ii ii it ti n n a n » a » i' n n i: 11 u 11 ^ u » i' u a u it « 4i « u u « u n u j: u u M u H » u u u u u u (4 u K ti u M n n n n it n ii ir >• n •
1 ! I 1 I I! I I II ! I 1 II 1 I I 1 I I 1 I 1 t M 1 M II I II 1 I I I 1 1 I I I I I I I 1 I I 1 11 I 1 1 I I I
222272I2222JI2222 222 2122222 2222 2 2! 222 2! ! J222ZZZ2ZJ2 22Z2Zr272 J
J 3 3 3 J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 J 3 3 3 3 3] 3 3 3 3 3 3 3 1 3 3 1 3 J 3 3 3 i 1 3 J 3
444444I444444444M4444444444444444444444444444444444444444444
S555S55555555555555555555555Si55SS55555$55555'. 55555'. 55555 J555
S5USf56S5 it! t S6f S!6!55E«SS6«SS 5E66S 5 £f S J 655 SEES5555E! E55S6S 5
77777717777777777777I77J7777J7777777777777777777777777777I7II
Ill Illll II III 1 liilll t H II I i Mi 18 I 91 i I Ililiiilll illl 8 IISSIMII
S3SS3!»3MS!)SSS»5953993S3!S9999399S39!9!9S39S99999S9J393539S
I t t 4 ) I > I I H II II II II U » U II II 1* II R 11 T* 71 7 imnBIIllllWttllUllltllllUUMIiUIII, IlilHUUMUUUUUHH
II I M I I I 1 I I I 1 1 I I I I 1
2722ZZ2Z2222222ZZZZ
3333333333333333J33
4444444444444444444
5555555555555555555
6SSE5E5E6SSBS ESBSJS
7777777777777777777
I i I II11II11111Illll
3333339933339JS9S35
Format (1615)
VARIABLE
DEFINITION
IFORM
If IFORM equals one, vertically averaged
ambient velocities which are variable in the
horizontal and in time, are read from logical
unit 1 (see Appendix C).
If IFOKM equals 2, the program will generate a
logarithmic velocity profile whose average
value is that value of velocity read in at each
time step. The format is the same as for
IFORM = 1, and velocity may vary in the hori-
zontal plane and in time.
If IFORM equals three the ambient velocity will
be two layers and assumed variable in the hori-
zontal and vertical directions as well as in
time (see Appendix C).
If IFORM equals four the two layer ambient
velocity profile is assumed constant in both
the horizontal plane and time. (see Appendix
C).
Figure 40. Input Card Number Ten, Simplified Input/Output
71
-------
RB
OREL
CU (I)
CV(|)
CW(I)
ROD
BVOID
LLIM
iiiiiiiiiiiiiiiiiiiiiiiiiiiiniiigiiigciiiiiiietiitiitiiiiitigiiBiiBOtgiMiiiiiiei
i i 1 1 i t i I fHHUunnHuuiiMiino]iaiiniiiijiii]:uuu]iiiuiitt4(ui:iiuii»iiHUHH(iiiu«niiiJii*i»nifnnnannnii
I II I I I 1 1 1 I 1 I I II I I 1 1 I 1 I I I t t 1 I II 1 I I 1 I I I 1 I I 1 1 I I I I ! 1 I I 1 1 1 1 11 II 1 1 I 1 I I 1 I I 1 I 1 1 I I I I I 1 I I 1
23222222Z222222222222222222222222222222222222222Z222222Zr22ZZ2Z2222Z22222Z222Z2Z
33333 33333311333333333333333333333 33333333333333 3133 33331 333333333 3333133 J333 333
4444444444444444*444444444444444444444444444444444444444444444444444444444444444
I555S55555555555555555555555555SS555555555b5555:555i55555J5555555555555555555SSS
SIIIiSIEICtlfltSEflCfiEEIidCCfSEEEtECtSCiEEtCEEEEESESEEEStlSEtSESfSEfifltEICtEt
ifiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniii
S1999999999999999991999999999S999999999999999999M9999993999 9 9 999999991999999999
Format (8E10.0)
VARIABLE
DEFINITION
RB
OREL
CU(1)
CV(1)
CW(1)
ROO
BVOID
LLIM
Radius of hemispherical dredge material cloud
at discharge (see page 10 ). RB is defined in
feet.
Depth of cloud centroid at discharge. OREL
is defined in feet.
Initial velocity of cloud centroid at release
in the x, y, and z directions respectively
(see page 10). CU(1), CV(1), and CW(1) are
defined in feet/second.
Bulk density of aggregate dredge material.
ROO is defined in gm/cc.
Voids ratio of aggregate dredge material.
Liquid limit of aggregate dredge material.
Figure 43. Input Card Number Thirteen, Simplified Input/Output
72
-------
TOUMP
TSTOP
DTL
-NOT
I
USED
'iggiiiHggggtoBgniggeooggagggoD0oD«O:nit)gtoogoogggaggoggtogi logooaocgstg
i 1 3 « l I I I I ii ii ini H n ii IMMI ii :i n n » n n 7UI n n ii r u u K x » H H u *i u u u it u •> u ti * t: u u H u u u ji *> u ii c Q u n K i> n n n n n n !i n N it ii n a
I II I I I 1 t 1 I I I I 1 1 I I I 1 I I I 1 I 1 I 1 ! 1 1 I 1 II 1 I 1 I I 1 I I I I 1 I I I 1 I I I ! 1 1 1 I I I I 1 I I I I I I I t 1 1 I I I 1 1 1 I I I
22222222222 I 111 I 222227272 222 2222 222 222 2227272222 22222ZZ2rZ2ZZZ22ZZ2222222ZZ2m2
3 J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 J 3 3 3 3 J 3 3 3 3 3 3 3 3 3 3 3 3 3 313 3 3 3 J 3 3 3 3 3 3 3 3 3 5 3 i 3 3 3 3 3 3 3 3 3 3 3 3 23 3 3 : 3 3 3 3 3 3
4444444444444444M44444444444444444444444444444444444444444444444444444444444444
5555SS5S5S5S55555SS555i5S555S555555b55S5S55S5S55555S5S555»S555555555555555555S5S
SStSSISSitS£SE(SEtJBEEEESS6EEf!£E£E£E£ ES£S£ESEEEEEEEES££ESSS£S(SESEEEiSESSIEESSt
M777}71777777M7777T717F777777777777777)r?77777T777?7I777ilI7}17M?l?!lT?7717M
minim i nuts mi i i i >! s 8 ia 11 ist is i mi 111 is i iiitsst iiiaiet 11111 mi! t M MIII
J99S5MSS395!!9S9939999393999SS999S99339)333S!S33S99993S3333!SS9SJ3933939!3!3!)!
Format (8E10.0)
VARIABLE
DEFINITION
TDUMP
TSTOP
DTL
Time of dump relative to the start of tidal
cycle (to the nearest DTL seconds).
Duration of simulation (to the nearest DTL
seconds).
Long term integration time increment as well
as the time increment between velocity data
points. DTL is expressed in seconds.
Figure 42. Input Card Number Twelve, Simplified Input/Output
73
-------
DUI
DU2
UUI
UU2
DWI
DW2
WWI
WW2
iggigigiggggggggggiggggggigggggggggggcgggggiggggggggggigggggggggggggnggigggiiggi
i i i i l l i • l uuil!iMAU!tananRn*BHJ'nnu}i3:8fcBK!inK**i
-------
h
SGAVE h- NOT USED
t M M t 0 I n 0 m B 1 ! D I » M 0 B M 0 J « «' t B B » 0 B fl C « 8 B fl 0 0 8 « « 0 0 t 0 0 B «I » 6 5 B ! C 1 « fl J 0 fl fl I! B 0 « « B B J S B fl 8
ili4)iiiiiiuiii}umii)iin»nt!nnnn7i)initiii!uitu)iiiuHt*«ic*i«<«u4tiii)ui!uuwuiiviiutiiii7nuui(ituitTintTniinii>in>iM
I II I I I I I 1 I I 111 I II I II 1 I I I I IIII I I 1 I 11 I I I I 11 I I 1JI II I I I II It I I I I I I II I I 1 I I I 1 I I 71 t 1 11 I I
I22222222222Z2222222Z22222ZZ22222222222222Z222Z22222Z2ZZrZ2ZZ2ZZZZZZZZZ2ZZ22222Z
33133333133333333333333333333333333J33333333333333333333i333333313333333J31333)3
4444 444444 4 4*4 44*44444444 4444 H 4444*44 444 4444444 444 444*444444 444444444444444(444
55555555555555555555555555555555555555555 5555555555555555J5555555555555555555555
IEI55ESS6BESUS(SSE6EEEE£5i6iSS6BSBEEEEiEEESEEEEESE SESE5SSBE6SBS65ESEESES6SSS5E6
DIM?) 17 11711)17171 '777)77171)77777777777717)7 77777771771 7177 J 7 J 7 7 7 7 7 I 7 7 J 7 ) 7 Jl 7
III!IllII1BSSItaillliIII illSMj!!I Sill !IIM8I8ISSiBiiillillll!l!S18i!lI III!IIIII
5SSS9SMS33SSSS9JSSS9]!J!5S9S539S99939SS9JSJ99S9 3S9S53S!3!3S59393S3SS3SSS33SJS9!
il>
-------
PARAM(K)
ROAS{K)
CS (K)
VFALL(K)
VOIDS (K) ICOHES (K)
•NOT USED-
i i i i % t i i t • M ti ti M a u u M iri^ n n H B » i> u n n y u 8 » u x ir N n a it 414i 44 it u « M n u ii u u u u x y u u u B a u M a u u a B • ii >r R n n M ir it n •
It HI I I I t 11 1 I II I 1 I II I I 1 I II I 1 II I 1 1 I I I I I I 1 I 1 I 11 I I I I 1 II 1 I 1 I t I I II I I I 1 111) 1 I I I I I 1 I II I
2Z222Z222222222ZZZZ2ZZ2222222222222ZZZZZ222222Z2Z222222Z:2222222222222222Z2222ZZ
JJ3J313J] 133133333333333J3333333333333 3333333333J33J33:153J3J3J3333333333J333333
4444444444444444*444444444444444444444444444<44444444444444444444444444444444444
55555555555555555555555555555555555555555555555555555555545555555555555'. Si5S555S
iliSifECEItEiEEEESEiEESIEEEEEEEiEEiEEEEEEfESEEEESEEEESESEiEISEISESESEEEiEEESEEIi
17777117777717777777'77777777777777777777777777717777777717777777777777777717777
iiMigiiiiiit.iiiiiitiiiiiiiiiiiiiiiiiiiiiiitiiiiiiisiiiiiiiintiiiiiiiitiiiiiii
iSS!SSS!3!9S!S!)S!!S!!J3!!S!!>S!iSSS!!!!!S!)lSiSSSS!J>1!S!SSJ]!J!)!!]!)))Sll!Sl!
t i > • i i i i i nituauiinirtttii>itnnT*ar tfaiiiiitnnMBxiiKiiMiiaaMUMui.rtuiiuuMiiKuusinttirBfiafiiiuuiiriiinM n ttn nnu
•^ - - HSC/NM-SQII
Format (A10, 7E10.0)
VARIABLE
DEFINITION
PARAM(K)
ROAS(K)
CS(K)
VFALL(K)
VOIDS(K)
ICOHES(K)
Descriptive identifier for solid component (K).
PARAM(K) can be any numeric and/or alphabetical
combination.
Solid density of solid component (K). ROAS is
defined in gm/cc.
Concentration of solid component (K) in bulk
cloud.
Fall velocity of solid component (K). VFALL
is defined in ft/sec. (see Appendix D).
"Voids ratio of solid component (K) . (See
Appendix D).
If ICOHES equals zero the cohesive model in
the long term diffusion phase is Bypassed. If
ICOHES equals one the long term diffusion
phase employs the cohesiveness.
Card Fourteen will be repeated NS times.
Figure 45. Input Card Number Fifteen, Simplified Input/Output
76
-------
-NOT USED-
i B 11 o 1111 e o g 1111111 o g 11 g 11 o o B o o g ii D i o o: B i B g i o o o B o o o o D 11 > 111111 B 111 G D e 11 e 111111 g 11
i i l i i i i i i u ii 11 n iru ti a n n n » n » :i» n i! i> a ii n ii x ii ii a u « u u u u u » u « n i: u n >4 » » v u » HN e u » uou » " n n 17 n n n H 11 n R »
I I I I I I I I I I I I I I I I I I I M I I I I I! 1 I I I II 11 I M I I I I I I M I M I I ! I I M 1 I I I 1 I 1 I I M II I I 1 M I I I I ) I
122222I22222222222222222ZZ222222222222222Z22Z22222222222:'7222Z2Z2222Z2I122ZZ2222
J J 3 53 3 J 3 3 3 3 3 3 3 3 3 3]3 3 3 3 3 J 3 3 3 3 3 3 3 3 3 3 3 3 I 3 3 3 3 3 3 3 3 3 3 3 j 3 J313 I 31!3 3 3 3 3 3 33 3 3 3 3 3 J 3 3 3 3 3 3 3 3
4444444444444444*444444444444444444444444444444444444444444444444444444444444444
55S555555555555555555S55S55555 555 5S5555S5555555555 SJS555:J5555555555555555555S55
iC(SSE((tiSSSCS(SSiE(CSCiEC((SilS(fEBE5SEE£SS£ £J56E£ £S£EESSSE15SE55JE£t£ 6SCSS(IS
n 17 7111111717 717 7 7117111 n 1717 7 7 7 7 7 7 717 7 7 7 7171111 ? ? 7 ? 7 7 71 n 7111117 n 1111 T 11 m i
I HUB I til 11 IS! Mil 11II Ml II It III ItltllllllllllllllllllllllltlllllllBlltlll tlllt
!SJ)!SSJ335SSS)!S3S5JJS33S3SS5SS35S93Sn9S9S53S5!339SSSS3)J9!S))SS99SS5SSJ5SS3)J
i i i i i i i i i uti uiiutiiiiMinniiRnKar jinnni'iiiiiiBttjiniiiiitucuiiit"!.uniiMBiiHaflu»ii*ipn*iBtti'iinii»wai«nRMiiHB
Format (A10, 2E10.0)
VOLUME
DEFINITION
Since KEY3 =
card number
0, a blank card
fifteen.
may be used for
Figure 46. Input Card Number Sixteen, Simplified Input/Output
11
-------
SECTION 4
DESCRIPTION OF WORKBOOK, TABLES AND EXAMPLES
A. General Description
There are many people who need information regarding the fate of dredged
materials discharged into a water column and do not have the capabilities or
facilities to run large computer models. Through the use of pre-calculated
values, this section provides information which approximates desired charac-
teristics of discharged materials. This information is found in a series of
tables containing the predicted fate of dredged material as calculated by the
model described in this report for a wide matrix of input conditions. The input
values, as well as the resulting computer output, have been non-dimensionalized
in order to have them as general as possible and applicable to any set of units.
Due to the large number of variables involved, restrictions were estab-
lished to keep the report within a reasonable length. Discharged material
variables considered were bulk density, volume, composition and liquid limit.
Receiving water variables considered were density, current velocity and depth.
Limitations on variables considered are as follows:
Three bulk densities were considered. When expressed in dimensionless form
as excess density, (p - p )/p = p1 these three values were 0.4, 0.25, and 0.10.
Odd
The initial dump is assumed to be hemispherical in shape after release. Thus,
1/3
the diameter, D = (12V/n) , was selected as a scaling variable where V is the
volume of the dump.
The composition of the dumped material was assumed to be primarily of three
types of material: a) fine gravel or coarse sand of 1,000 to 10,000 jj equivalent
diameter that has a fall velocity of 0.15 m/s (0.5 ft/s), b) fine to medium sand
of 200-300 p sphere diameter with a fall velocity of .015 m/s (.05 ft/s), and c)
silt or clay of 30-40[j diameter with a fall velocity of .0003 m/s (.001 ft/s).
The density of all solid material was assumed to be 2.65 gm/cc. Variations in
components a, b, and c are as follows: equal concentration of all three
components coded 3-3-3; 80% component a and 20% component b coded 8-2-0; 10%
component a, 80% component b and 10% component c coded 1-8-1, and finally 20%
component b and 80% component c coded 0-2-8. Thus 8-2-0 is primarily gravel
with a little sand whereas 0-2-8 is primarily silt or clay with a little sand and
1-8-1 is primarily sand with a little gravel and silt.
The liquid limit of the dumped material as defined earlier was assumed to
be either 40, 80, or 120. Due to the inconsistency of high liquid limit with low
bulk density and large particles, only realistic combinations of bulk density,
liquid limit and composition were considered.
The ambient receiving water velocity, Ua was assumed to be constant and
have a profile as shown in Figure 47, where H is the ambient water column depth.
1/2
Variation in Ua were expressed as the dimensionless variable R= Ua/(Dg p')
where g is the gravitational constant. The other variables have been
78
-------
H
H/2
I
U(
BOTTOM
7
Figure M'. Assumed ambient velocity profile for workbook tables
-------
defined previously. R values of 0, 0.02, 0.1 and 0.5 were considered. Since
most of the solid particles of a dredged material are only slightly affected by
ambient stratification, a uniform density ambient was assumed.
The depth of the water column is assumed to be constant. Depths of 5, 10,
and 20 times the initial dump diameter, D, were considered. Tables 17 and 18
give the input variables in matrix form. Also given are the table numbers where
the output is found corresponding to combinations of these input variables.
Since barge velocity and initial downward velocity of the dump have little
effect on the ultimate fate of the dumped material, they have both been set at
zero.
The procedure for locating the table where the output can be found corre-
sponding to a desired set of input conditions is as follows:
1. From preliminary tests, determine the liquid limit, LL, of the
material to be dumped. If the liquid limit of the material cannot be
determined, use LL=120 for materials that are cohesive and fall as a
clump when released. Use LL=40 for materials that are non-cohesive
and for materials with high moisture content giving low initial
density differences. For materials that are only moderately cohesive
with high initial density difference (of the order of 0.4) use LL=80.
2. Determine the approximate composition of the material as to gravel,
sand and silt, such as 10% gravel, 80% sand, and 10% silt, 1-8-1.
3. Determine the density of material to be released and of the receiving
water and determine excess density ratio p1 = (p^ - p0)/p=.
O a a
4. From the volume of material to be dumped, determine effective hemi-
spherical diameter D = (12V/n)1/3.
1/2
5. From ambient current Ua, determine R = Ua/(gDp')
Use g = 32.2 for Ua in ft/s and D in ft.
Use g = 9.8 for Ua in m/s and D in meters.
6. From depth of receiving water determine H = depth/D.
7. From LL determine correct set of sub matrices (Tables 17 or 18).
8. From composition and excess density ratio determine correct sub-
matrix.
9. From R and H determine table where output values are listed for case
in question.
For example for LL = 40, p1 = 0.4, composition = 3-3-3, R = 0.1, and H = 10, see
Table 20. For most cases, exact agreement between desired values and input
values used for generating the tables will not be reached. Using the closest
tabulated values will yield satisfactory results in most cases. Higher accuracy
can be obtained by interpolating between tabulated values.
80
-------
Output Variables
The characteristics of the discharged material after it has diffused with
the ambient and settled to the bottom are presented in the tables as a func-
tion of time after being dumped.
The variables presented are location, extent and maximum thickness of
material settled on the bottom; and location, extent and maximum concentration
of the suspended cloud. Unfortunately, the program would not run for a few of
the cases. In addition, during transition from dynamic calculations to long-
term diffusion, the program divides the suspended material into a series of
small clouds that grow and diffuse with time. When the size of a particular
small cloud exceeds the size of the long-term diffusion grid, it is injected
into the long-term grid for further calculations. If small clouds still exist
when printout occurs, the concentrations given are in error. As a result,
concentrations for many cases have been omitted. Settled material information
for these cases is correct and has been given.
Output variables are all dimensionless as follows:
1/2
1. Time is given as T = 0 (gp'/O)
where 6 is the time from discharge in seconds.
2. Xm is the distance from the point of discharge (divided by the dia-
meter D) to the point of maximum thickness of material settled on
the bottom,
3. X is the distance from the point of discharge to the centroid of
tRe settled material divided by D.
4. The shape of settled material on the bottom has been approximated by
an ellipse having total major and minor axes of A and B, respec-
tively. The boundary of the ellipse is defined when the thickness
of the material settled on the bottom is approximately 0.01 times
the maximum mound thickness. This is shown in Figure 48. Again,
all lengths and thicknesses have been normalized by the diameter D.
5. The normalized maximum mound height is given by the symbol t.
Intermediate thickness can be approximated by assuming a Gaussian
distribution from the maximum thickness to the edge. This assump-
tion gives the following:
a. At one-fourth of the distance from the maximum mound thickness
to the edge, the thickness will be 0.75t.
b. At one-half the distance from the maximum thickness to the
edge, the thickness will be 0.32t.
c. At three-fourths the distance from the maximum thickness to the
edge, the thickness will be 0.07t.
5. The values of Xm, X , A, and B are also given for the suspended
cloud when meaningful information could be calculated. The value,
81
-------
CURRENT, Ua
CO
f\3
POINT OF MAXIMUM
THICKNESS, t
CENTER OF
ELLIPSE
DUMP POINT
Y-
Figure 48. Definition Ellipse for material settled on bottom.
-------
Xm is the horizontal distance from the point of discharge to the point of
maximum concentration of the cloud. The maximum concentration, Cm, is given as
a volume fraction of suspended material to the total. The vertical location and
thickness of the cloud have not been given since this information was not
reliable.
B. Examples of Use
The accuracy of the prediction obtained from this model will depend to a
great extent on how well the actual dump matches the assumptions used in the
model. Users should, therefore, realize that large deviations from the condi-
tions used in the model will result in considerable error. For example, it is
very difficult to have an instantaneous dump. However, for a barge dump, the
material leaves fairly quickly and can be approximated by an instantaneous
release. Care must also be taken in determining material properties and ambient
conditions.
The following examples have been given to familiarize the reader with the
use of the tables. An attempt was made to develop more or less realistic problem
statements. However, due to the wide variety in variables, only a limited
number are presented. For the sake of calculation, many numbers have been
conveniently rounded off.
Example #1
A barge contains 200 cu yd of dredged material consisting of 20% silt-clay,
8% sand and 72% water by volume. The bulk density is 1.46. With this
composition, 29% of the solid material is sand and 71% silt-clay. The dump site
is 110 ft deep and the average current is one-knot. The ambient density is 1.02.
The liquid limit of the dredged material is 53.
It is desired to know where the material will settle on the bottom as time
progresses, and the maximum concentration of the suspended cloud as it passes in
imaginary vertical plane 1/2 mile from the dump site.
Solution:
Determine input parameters:
Effective Diameter
Volume = 200 yds3 x 27 ftVyd3 = 5400 ft3
D = (12 x 5400/Tt)1/3 = 27.42 ft
Excess density ratio
p1 = (1.46 - 1.02)71.02 = 0.43
Depth
H = 110/27.42 = 4.01
83
-------
Dimensionless current
R =
Ua = 1.0 knot = 1 . 688 f t/s
R = 1.6887(32.2 x 27.4 x .AS)17^ = 0.09
The closest tabulated input values to these are LL = 40, 0-2-8 composi-
tion, p' = 0.4, R = 0.1 and H = 5.
From reference Table 17 the tabulated output for these conditions is
found on Table 46. For the settled material the following values are found:
T =
T =
T =
T =
400
800
1200
1600
Xm
0
0
0
0
Xo
10
25
45
65
A
30
60
105
130
B
30
30
35
40
t
3.7 E-5
3.7 E-5
3.7 E-5
3.7 E-5
11?
Since T is defined as 6 (gp'/D)17 , the time
6 (sec) = T/ (gp'/D)1/2
Therefore T = 400 corresponds to a
time of 6 = 400/(32.2 x .43/27.4)1/2 = 562.7 sec=10 min
T = 800 = 20 min
T = 1200 = 30 min
T = 1600 * 40 min
With D = 27.4 ft, the values for this case are:
Time (min) Xm (ft) Xo (ft) " " " ""
10
20
30
40
0
0
0
0
274
685
1233
1781
822
1649
2802
3562
822
822
959
1086
.001
.001
.001
.001
This can be plotted to give the approximate shape of the settled material at
the given time as shown in Figure 49.
The maximum concentration of ,the cloud is located 80 x 27.4 = 2,192 ft
downstream 30 min after the dump, and 110 x 27.4 = 3,014 ft downstream 40
minutes after the dump. The maximum concentration is about 3.7 x 10-5 for
both cases. Since 1/2 mile is 2,640 ft, the maximum concentration of the
cloud as it passes this point is about 3.7 x 10-5 ftVft3.
84
-------
o
o
o
GO
tn
UJ
O
z
10 MIN.
20MIN. ,30 MIN
40 MIN.
POINT OF MAXIMUM THICKNESS
DISTANCE DOWNSTREAM OF DROP POINT (FT)
Figure 49. Predicted shape and location of material settled on
bottom for example #1.
-------
Example #2
A 500 m3 barge contains dredged material in five separate hoppers, each
containing 100 m3. The makeup of the material in each hopper is as follows:
Hopper
2
3
4
5
Bulk Density
1.25
1.25
1.4
1.4
1.4
Gravel
5%
5%
2%
2%
0%
Sand
5%
5%
20%
20%
4%
Silt
5%
5%
2%
2%
20%
Liquid
85%
85%
76%
76%
76%
LL
40
40
40
40
120
The hopper doors are opened simultaneously at a dump site that is 90 m
deep. The average ambient current and density at the site are 25 cm/s and
1.025, respectively.
Determine the location and distribution of settled material on the bottom
twenty minutes after release.
Solution:
There are three different ways the five hopper release can be handled.
One is to treat each independently, another is to lump them all together into
one equivalent dump, and the third is to lump like material together and tn at
them separately, i.e., treat hoppers 1 and 2 as one, 3 and 4 as one, and 5 as
one.
The third method is probably the most realistic in this case. It will be
used in the example.
Hoppers 1 and 2
Determine equivalent hemispherical diameter;
D = (12 x 200/7t)1/3 = 9.14 m
Excess density ratio:
p' = (1.25 -1.025)71.025 = 0.22
Dimensionless depth:
H = 90/9.14 = 9.8
Dimensionless current:
R = 0.257(9.8 x 9.14 x .22)1/2 = .056
Composition:
With equal parts gravel, sand, and silt, use 3-3-3
The closest tabulated input values are LL = 40, 3-3-3, p' = 0.25, H = 10,
and R between 0.02 and 0.1. For R = 0.02 the correct table is 39. For a time
86
-------
of 20 minutes, T = 20 x 60(9.8 x .22/9.14)1/2 or T = 583^600. From the table, it
is found that:
Xm = 5 or 5 x 9.14 = 46 m
Xo = 5 = 46 m
A = 40 = 366 m
B = 30 = 279 m
t = 5.2 x 10-5 = .000475 m
For R = 0.1 use Table 40, where the following are found
Xm = 10 or 10 x 9.14 = 91 m
Xo = 35 = 320 m
A = 70 = 640 m
B = 50 = 460 m
t = 1.9 x 10-5 = .000174 m
Linearly interpolating between these values to an R = .056 yield
Xm = 66 m
Xo = 169 m
A = 489 m
B = 358 m
t = .00034 m
Interpolation between the other input variables could be done if the user
wished.
Hoppers 3 and 4 D = 9.14
Excess Density: p'= (1.4 -1.025/1.025) = 0.37
Dimensionless Depth: H = 9.8 same as 1 and 2 ,,„
Dimensionless Current: R = 0.257(9.8 x 9.14 x 0.37)17 = .043
Composition:
With the mixture being 2% gravel, 20% sand and 2% silt, the solids
composition is (2/24) x 100 = 8.3% gravel, (20/24) x 100 = 83% sand, and
(2/24) x 100 = 8.3% silt use 10-80-10 or 1-8-1 code.
The closest input values to these are LL = 40, 1-8-1, p'= 0.4, H = 10,
and R between 0.02 and 0.1. For a time of 20 minutes T = 20 x 60 (9.8 x
-I/O
. 37/9.14) IX^ or T = 756. Use 800.
For R = 0.02 with the above conditions use Table 21, where the following are
found
Xm = 0 or 9.14 x 0 = 0 m
Xo = 5 = 46 m
A = 40 = 366 m
B = 30 = 274 m
t = .00015 = .00137 m
87
-------
For R = 0.1 and Table 22, the following are found
Xm = 10 = 91 m
Xo = 30 = 274 m
A = 80 = 73 m
B = 70 = 548 m
t = .000043 = .00039 m
Interpolating to a R = .043 yields
Xm = 26 m
Xo = 112 m
A = 470 m
B = 352 m
t = .0011 m
Hopper 5
Equivalent Hemispherical Density:
D = (12 x 100/Ti)173 = 7.26 m
Excess Density Ratio:
p' = 0.37 (same as 3 and 4)
Dimensionless depth:
H = 90/7.26 = 12.4
Dimensionless Current: 1/9
R = .257(9.8 x 7.26 x .37)IX^ = .05
Composition:
Since the mixture composition is 4% sand and 20% silt, the
solid composition is (4/24) x 100 = 17% sand and (20/24) x 100 = 82%
silt. We will use 0-2-8
The closest tabulated input values to these are: LL= 120,
0-2-8, p'= 0.4, H = 10 and R between .02 and 0.1. T for this case
is, T = 20 x 60 (9.8 x 0.37/7.24)172 = 848. Use 800.
For R = 0.02 use Table 37, where the following are found
Xm = 0 or 7.26 x 0 = 0 m
Xo = 3 = 22 m
A = 20 = 145 m
B = 15 = 109 m
t = 1.9 x 10-4 = .0014 m
88
-------
For R = 0.1 use Table 38, in where the following are found
Xm = 0 = 0 m
Xo = 20 = 145 m
A = 40 = 290 m
B = 15 = 109 m
t = 1.9 x 10-4 = .0014 m
Interpolating between these values to an R = 0.5 yields:
Xm = 0 m
Xo = 68 m
A = 199 m
B = 109 m
t = .0014 m
Figure 50 is a plot of the settled material for each of the three types
of material considered in this example superimposed on one plot. It is noted
that the high liquid limit material (120) spread much less than the low liquid
limit material (40). Figure 51 is the same plot after the settled material
from the three are added to give a total settled material.
Example #3
For the input condition of example #1, determine the location of the
contour line where the thickness of the settled material is one-half the
maximum value 40 min after the dump.
Solution:
It can be assumed with reasonable accuracy that the settled material will
distribute itself such that the thickness will approximate a Gaussion curve in
any particular direction. Mathematically this is:
Where t is the local thickness, t is the maximum thickness and be is a
characteristic length in the direction of r. Since the edge of the ellipse
used to approximate the edge of the settled material was selected where t/t
illctxv
= 0.01, the value of (r/b),, nl =2.15 to the edge of the ellipse. When t/t v
U . U IMaX
= 0.5 (r/b)0 j- = 0.83. Since the characteristic length b is the same in a
given direction, rQ 5/rQ 0-, = 0.83/2.15=0.4. Thus, the location where the
local thickness is 1/2 the maximum, is about 0.4 times the distance from the
point of maximum thickness to the edge as shown in Figure 52. Other contour
lines could be found in a like manner.
89
-------
IO
o
HOPPERS 384
HOPPERS I & 2
DISTANCE DOWNSTREAM OF DROP POINT (m)
Figure 50. Predicted shape and location of different types of
material settled on bottom for example #2.
-------
I I I I
MAXIMUM THICKNESS-2.5m
DISTANCE DOWNSTREAM OF DROP POINT (m)
Figure 51. Composite shape, location and maximum thickness of
material settled on bottom for example #2.
-------
ro
o
o
p
.01 t
MAXIMUM THICKNESS, t - .001 FT
DISTANCE DOWNSTREAM OF DROP POINT
(FT)
Figure 52. Contour line where thickness is one-half the maximum
thickness for example #3.
-------
C. Workbook Tables
Table 17. Cross-Reference Table for Workbook
Output Table No.'s vs. Input Variables with LL
= 40
Composition 3-3-3
*i-
O
ii
a.
\H
RX
0
.02
0.1
0.5
5 10 20
19 19 19
19 19 19
20 20 20
20 20 20
in
C\J
•
0
ii
Q.
X H
R^
0
.02
0.1
0.5
5 10 20
39 39 39
29 29 29
40 40
40 40 40
O
II
Q.
V
RV^
0
.02
0.1
0.5
5 10 20
47 47
47 47 47
48 48 48
48 48 48
8-2-0
5 10 20
21 21 21
21 21 21
22 22 22
22 22 22
5 10 20
41 41 41
41 41 41
42 42 42
42 42
5 10 20
49 49 49
49 49 49
50 50
50 50 50
1-8-1
5 10 20
23 23 23
23 23 23
24 24 24
24 24 24
5 10 20
43 43 43
43 43 43
44 44 44
44 44
5 10 20
51 51 51
51 51 51
.52 52 52
52 52 52
0-2-8
5 10 20
25 25 25
25 25 25
26 26 26
26 26 26
5 10 20
45 45 45
45 45 45
46 46 46
46 36
5 10 20
53 53 53
53 53 53
54 54 54
54 54 54
93
-------
Table 18. Cross-Reference Table for Workbook
Output Table No.'s vs. Input Variables with LL = 80 and 120
LL = 80
Composition 3-3-3
«*
o
ii
Q.
\H
R x.
0
.02
0.1
0.5
5 10 20
27 27 27
27 27 27
28 28 28
28 28 28
8-2-0
5 10 20
29 29 29
29 29 29
30 30 30
30 30
1-8-1
5 10 20
31 31 31
31 31 31
32 32 32
32 32 32
0-2-8
5 10 20
33 33 33
33 33 33
34 34 34
34 34 34
LL = 120
1-8-1
<3-
*
0
II
ex
\ H
R X
0
.02
0.1
0.5
5
35
35
36
36
10
35
36
36
20
35
35
36
36
5
37
37
38
38
10
37
37
38
38
20
37
37
38
38
0-2-8
94
-------
Table 19. Settled and Suspended Material Distribution
for 33% Gravel, 33% Sand, 33% Silt (3-3-3), with
LL = 40 and p1 =0.4
Dimensionless Ambient Current, R =
Settled Material
H
T
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
10
30
30
30
30
50
70
70
30
50
50
70
B
10
30
30
30
30
50
70
70
30
50
50
70
Dimensionless
H
T
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 1600
= 3200
= 4800
= 6400
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
0
0
0
0
0
0
0
0
0
0
0
0
0
10
20
20
0
5
10
15
5
5
5
10
60
65
80
80
30
70
80
80
30
30
40
50
60
60
60
60
30
50
50
60
30
30
30
30
t
7.3E-4
7.4E-4
7.4E-4
7.4E-4
2.1E-4
2.3E-4
2.4E-4
2.6E-4
l.OE-6
l.OE-4
l.OE-4
l.OE-4
Ambient
1.7E-4
1.7E-4
1.7E-4
1.7E-4
1.7E-4
1.9E-4
2.0E-4
2.0E-4
l.OE-4
l.OE-4
l.OE-4
l.OE-4
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Current,
60
100
0
0
10
15
10
10
10
Xo
0
0
0
0
0
0
0
0
0
0
0
0
R =
60
90
0
0
10
15
10
15
20
= 0
Suspended Material
A
30
70
no
30
70
90
no
30
70
90
120
0.02
no
140
30
60
70
70
50
80
100
B
30
70
no
30
70
90
no
30
70
90
120
60
80
30
50
50
50
30
50
70
Cm
8.3E-6
4.3E-6
2.8E-6
7.3E-6
3.0E-6
1.9E-6
1.2E-6
3.3E-6
1.8E-6
l.OE-6
7.3E-7
4.4E-6
3.6E-6
1.1 E-5
7.9E-6
4.6E-6
3.5E-6
1.2E-6
8.6E-7
5.4E-7
95
-------
Table 20. Settled and Suspended Material Distribution
for 33% Gravel, 33% Sand, 33% Silt (3-3-3), with
LL = 40 and p1 =0.4
Dimensionless
Ambient Current, R = 0.1
Settled Material
H =
j =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
400
800
1200
1600
Xm
0
0
0
0
0
0
0
60
60
60
60
Xo
10
15
40
45
25
50
80
160
180
200
200
A
30
40
100
120
80
120
160
280
280
300
300
B
30
30
30
30
20
20
20
80
80
100
100
Dimensionless
H =
T =
T =
H =
T =
H =
T =
T =
j =
T =
5
3200
6400
10
3200
6400
20
400
800
1200
1600
40
40
80
80
150
150
150
150
160
160
560
560
210
300
420
465
400
400
100
100
210
240
570
660
160
160
120
120
90
90
90
90
t
5.3E-4
5.3E-4
5.3E-4
5.4E-4
l.OE-4
l.OE-4
l.OE-4
8.0E-5
8.0E-5
8.0E-5
8.1E-5
Xm
60
95
130
60
100
140
440
440
440
Ambient Current,
1.1E-5
1.1E-5
4.6E-6
4.6E-6
3.0E-5
3.0E-5
3.0E-5
3.0E-5
310
480
660
Suspended
Xo
60
95
130
60
100
140
280
300
340
R = 0.5
310
480
660
A
<10
80
110
130
100
120
140
500
500
540
240
250
250
Material
B
<10
50
90
110
60
80
100
140
160
180
140
150
150
Cm
6.2E-6
3.0E-6
2.1E-6
3.6E-6
2.5E-6
1.3E-6
1.2E-7
1.2E-7
1.2E-7
2.5E-7
2.1E-7
1.8E-7
96
-------
Table 21. Settled and Suspended Material Distribution
for 80% Gravel, 20% Sand, 0% Silt (8-2-0), with
LL = 40 and p' =0.4
Dimension! ess Ambient Current, R = 0
Settled Material
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 800
T = 1600
T = 2400
T = 3200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
30
40
30
35
40
40
60
65
70
70
B
30
30
30
40
30
35
40
40
60
65
70
70
Suspended
t Xm Xo A
5.5E-4
5.7E-4
5.9E-4
6.0E-4 0 0 40
3.8E-4
3.9E-4 0 0 30
4.0E-4 0 0 35
4.0E-4 0 0 40
5.4E-5
6.0E-5
6.3E-5
6.5E-5
Material
8 Cm
40 3.7E-6
30 2.5E-6
35 1.8E-6
40 1.3E-6
Dimensionless Ambient Current, R = 0.02
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 800
T = 1600
T = 2400
T = 3200
H = 20
T = 800
T = 1600
T = 2400
T = 3200
0
0
0
0
5
5
5
10
10
10
10
10
2
5
5
10
5
5
5
10
10
10
10
10
30
40
45
55
50
50
50
60
100
110
110
110
30
30
35
35
50
50
50
60
100
110
110
no
8.9E-4
9.0E-4
9.0E-4 10 10 60
9.0E-4 20 20 60
1.3E-4
1.3E-4 0 10 50
1.3E-4 10 10 70
1.4E-4 15 15 75
4. 1E-5
4. 1E-5
4. 1E-5
4.1E-5
40 2.1E-6
40 1.4E-6
50 1.8E-7
70 5.8E-8
75 2.1E-8
97
-------
Table 22. Settled and Suspended Material Distribution
for 80% Gravel, 20% Sand, 0% Silt (8-2-0), with
LL = 40 and p1 = 0.4
Dimensionless
Settled Material
H =
T =
T =
T =
T =
H =
T =
T =
T =
T -
H =
T =
T —
5
400
800
1200
1600
10
800
1600
2400
3200
20
1600
3200
Xm
5
5
5
5
20
20
20
20
240
240
Xo
10
10
20
35
30
30
30
40
160
160
A
50
55
80
110
80
80
90
100
300
300
B
30
40
40
40
60
60
60
60
100
100
Dimensionless
H =
j =
T =
T =
H =
T =
T =
H =
T =
T =
T =
T =
5
1600
3200
4800
6400
10
3200
6400
20
400
800
1200
1600
40
40
40
40
80
80
360
360
360
80
100
100
100
560
560
260
310
360
160
240
240
240
960
960
200
300
400
120
720
120
120
120
120
100
100
100
Ambient Current, R = 0. 1
Suspended
t Xm Xo A
1.6E-4
1.7E-4 0 5 50
1.7E-4 30 40 60
1.7E-4 70 70 80
1 . 8E-4
1.8E-4 80 20 80
1.8E-4 60 60 120
1.8E-4 120 120 130
1.4E-5
1.4E-5
Ambient Current, R = 0.5
1.3E-5
1.3E-5 880 880 140
1.3E-5
1.3E-5
1.1E-5
1.1E-5
5.8E-5
5.8E-5
5.8E-5
Material
B Cm
40 2.6E-6
40 l.OE-6
60 8.9E-7
60 2.3E-7
70 l.OE-7
70 5.1E-8
50 2.3E-10
98
-------
Table 23. Settled and Suspended Material Distribution
for 10% Gravel, 80% Sand, 10% Silt (1-8-1), with
LL = 40 and p1 = 0.4
Dimensionless Ambient Current,
Settled Material
H
T
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 800
= 1600
= 2400
= 3200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
40
40
30
30
40
40
60
65
70
70
B
30
30
40
40
30
30
40
40
60
65
70
70
t
1.4E-4
2.0E-4
2.9E-4
3.5E-4
1.1 E-4
1.4E-4
1.7E-4
1.9E-4
2.4E-5
4.3E-5
5.4E-5
6.1E-5
Xm
0
0
0
0
Dimensionless Ambient Current,
H
T
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 1600
= 3200
= 4800
= 6400
0
0
0
0
0
0
0
0
20
20
20
20
2
5
10
15
5
5
5
10
10
10
10
10
30
45
55
65
40
40
40
50
100
110
110
110
30
30
30
40
30
30
30
30
100
100
100
100
1.5E-4
1.9E-4
2.0E-4
2.0E-4
1.1E-4
1.5E-4
1.7E-4
1.7E-4
2.6E-5
2.6E-5
2.6E-5
2.6E-5
20
0
5
10.
0
40
80
R = 0
Suspended
Xo A
0 40
0 30
0 50
0 50
R = 0.02
20 60
5 40
5 60
10 70
20 140
60 140
80 160
Material
B Cm
40 2.5E-5
30 l.OE-5
50 7.7E-6
50 6.2E-6
40 1.1 E-5
30 l.OE-5
50 5.2E-6
50 3.6E-6
140 4.2E-8
140 3.9E-8
140 3.7E-8
99
-------
Table 24. Settled and Suspended Material Distribution
for 10% Gravel, 80% Sand, 10% Silt (1-8-1), with
LL = 40 and p' =0.4
Dimension! ess
Ambient Current, R = 0.1
Settled Material
H =
1 =
T =
T =
T" —
H =
T =
T =
T =
T =
H =
T =
T =
5
400
800
1200
1600
10
800
1600
2400
3200
20
1600
3200
Xm
0
0
0
0
10
20
20
20
60
60
Xo
5
5
25
40
30
35
40
60
140
140
A
40
50
90
120
80
90
110
160
280
280
B
30
40
40
40
60
70
80
80
100
120
Dimension! ess
H =
T =
T =
T =
H =
T =
T =
5
1600
3200
4800
6400
10
3200
6400
40
40
40
40
340
340
100
100
100
100
560
560
200
200
200
200
1000
1000
120
120
120
120
120
120
2.
2.
2.
2.
3.
4.
4.
4.
1.
1.
Suspended
t Xm Xo A
3E-4
8E-4 0 5 50
8E-4 40 40 75
8E-4 70 80 80
1E-5
3E-5 20 20 110
3E-5 60 90 180
3E-5 180 140 220
OE-5
OE-5 110 140 260
Material
B Cm
40 1 . 2E-5
60 7.3E-6
60 4.3E-6
100 l.OE-6
100 3.6E-7
120 1.5E-7
180 1.4E-8
Ambient Current, R = 0.5
4.
4.
4.
4.
2.
2.
9E-5
9E-5
9E-5
9E-5
3E-6
3E-6
100
-------
Table 25. Settled and Suspended Material Distribution
for 0% Gravel, 20% Sand, 80% Silt (0-2-8), with
LL = 40 and p1 = 0.4
Dimensionless
Ambient Current,
Settled Material
H =
T =
T =
T -•-"-
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
800
1600
2400
3200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
5
5
10
10
0
0
0
0
A
30
30
40
40
40
45
50
60
60
70
70
80
B
30
30
40
40
40
45
50
60
60
70
70
80
Dimensionless
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
800
1600
2400
3200
20
1600
3200
4800
6400
0
0
0
0
5
5
5
5
0
0
0
0
0
5
10
15
5
5
15
20
10
15
20
50
30
40
55
65
40
45
65
85
80
90
120
160
30
30
40
40
30
35
50
55
60
70
70
t
3.3E-5
5.5E-5
8.0E-5
l.OE-4
1.7E-5
2.7E-5
3.2E-5
3.4E-5
4.3E-6
l.OE-5
1.2E-5
1.4E-5
Xm
0
0
0
0
0
0
Ambient Current,
3.3E-5
5.0E-5
5.3E-5
5.3E-5
2.2E-5
3.0E-5
3.1E-5
3.2E-5
6.8E-6
6.9E-6
6.9E-6
80 6.9E-6
20
20
5
20
35
10
20
70
R = 0
Suspended
Xo
0
0
0
0
0
0
R = .02
10
15
5
20
35
10
20
70
A
60
70
80
80
100
110
60
70
60
65
90
100
120
160
Material
B
60
70
85
80
100
110
40
40
50
55
75
100
100
no
Cm
7.1E-6
5.5E-6
5.1E-6
1.3E-6
1.1E-6
l.OE-6
4.4E-5
4.0E-5
5.0E-6
4.4E-6
4.1E-6
5.6E-7
5.4E-7
5.2E-7
101
-------
Table 26. Settled and Suspended Material Distribution
for 0% Gravel, 20% Sand, 80% Silt (0-2-8), with
LL = 40 and p1 =0.4
Dimensionless Ambient Current, R = 0. 1
Settled Material
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
5
400
800
1200
1600
10
800
1600
2400
3200
20
3200
6400
Km
0
0
0
0
0
20
20
20
140
140
Xo
10
25
45
65
30
30
60
100
260
260
A
30
60
105
130
80
90
140
220
560
560
B
30
30
35
40
60
70
70
70
320
320
3.
3.
3.
3.
7.
1.
1.
1.
2.
2.
Suspended
t Xm Xo A
7E-5
7E-5
7E-5 80 75 70
7E-5 110 110 80
4E-6
OE-5 20 20 100
OE-5 100 100 140
OE-5 180 180 180
2E-6
2E-6 200 280 600
Material
B Cm
40 3.8E-5
40 3.6E-5
70 1.4E-6
100 1.2E-6
110 1.2E-6
440 9.3E-8
Dimensionless Ambient Current, R = 0.5
H =
T =
T =
T =
H =
j =
T =
H —
T =
T =
T =
T =
5
1600
3200
4800
6400
10
3200
6400
20
400
800
1200
1600
40
40
40
40
340
340
260
260
260
60
480
480
480
560
560
280
310
340
160
960
960
960
1000
1000
180
280
380
120
120
120
120
120
120
100
110
120
1.
1.
1.
1.
6.
6.
2.
2.
2.
2E-5
2E-5
2E-5
2E-5
OE-7
OE-7
9E-8
9E-8
9E-8
102
-------
Table 27. Settled and Suspended Material Distribution
for 33% Gravel, 33% Sand, 33% Silt (3-3-3), with
LL = 80 and p' = 0.4
Dimensionless Ambient Current,
<;ptt1Pri Material
H -
T =
T -
T -
T -
: 5 Xm
: 400 0
: «00 0
: 1200 0
: 1600 0
H = 10
T - 400 0
T - 800 0
T =
T =
H =
T =
T
T
T
H_
T
T
T
H
T
T
T
T
H
T
T
T
=1200 0
= 1600 0
= 20
- 400 0
- 800 0
- 1200 0
-1600 0
= 5
- 400 0
- 800 0
- 1200 0
- 1600 0
= 10
- 400
- 800 0
- 1200 5
- 1600 5
= 20
- 400 0
- 800 0
- 1200 0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
10
10
10
30
30
30
50
50
30
50
50
70
B
10
in
in
30
311
bl)
50
SI)
sn
/o
Dimensionless
0
c
10
15
C
5
10
10
10
20
25
50
25
25
30
40
50
70
in
10
t Xm
7OC— A
. £t H
7.6E-4
7.6E-4 0
7.6E-6 0
5.3E-4
5.6E-4 0
5.8E-4 0
4.0E-4 0
4.1E-4 0
4.1E-4 0
4.2E-4 0
Ambient Current,
7.3E-4
i 7.3E-4
15 7.3E-4 15
15
IS
20
25
30
40
50
7.3E-4 25
3.0E-4 5
o.Ut 4 3
3.1E-4 5-
4.0E-4 5
4.1E-4 10
4.1E-4 ZO
R = 0
Suspended Material
Xo A
0 30
0 70
0 50
0 90
0 100
0 30
0 70
0 90
0 120
R = 0.02
15 50
25 100
5 25
5 25
10 50
TO 90~~
20 130
B Cm
30 7.3E-6
70 4.5E-6
50 4.9E-6
90 2.5E-6
100 1.6E-6
30 3.2E-6
70 1.8E-6
90 l.OE-6
120 7.3E-7
30 7.4E-6
70 3.8E-6
15 3.0E~5
20 3.0E-5
25 9.2E-6
30 3.4E-6
70 1.5E-6
110 8.7E-7
103
-------
Table 28. Settled and Suspended Material Distribution
for 33% Gravel, 33% Sand, 33% Silt (3-3-3), with
LL = 80 and p' =0.4
Dimensionless Ambient Current, R = 0.1
Settled Material
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 400
T = 800
T = 1200
T = 1600
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
10
20
20
40
10
20
60
80
0
0
0
0
A
40
60
60
80
40
60
100
160
30
50
50
60
B
20
20
20
20
20
20
20
20
30
50
50
60
Suspended
t Xm Xo A
1.7E-4
1.7E-4
1.7E-4
1.8E-4
l.OE-4
l.OE-4
1 . OE-4
1.1E-4
4. OE-4 0 0 30
4. 1E-4 0 0 60
4. 1E-41 0 0 90
4.2E-4 0 0 120
Material
B Cm
30 3.3E-6
60 1.8E-6
90 l.OE-6
120 7.3E-7
Dimensionless Ambient Current, R = 0.5
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 400
T = 800
T = 1200
T = 1600
20
20
20
20
40
40
40
40
20
20
20
40
140
230
300
45
130
210
300
30
50
70
100
280
420
600
80
160
440
560
50
90
150
20
20
20
20
20
20
20
20
10
10
10
8-1E-5
8. 1E-5
8. 1E-5
8. 1E-5
8.1E-5
8.1E-5
8.1E-5
8.1E-5
4.0E-5
4.0E-5
4.0E-5
104
-------
Table 29. Settled and Suspended Material Distribution
for 80% Gravel, 20% Sand, 0% Silt (8-2-0), with
LL = 80 and p' =0.4
Dimensionless
Settled Material
H
T
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
10
15
15
15
30
30
30
30
30
30
35
40
Dimension!
H
T
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
0
0
e
0
0
0
0
0
10
10
5
5
5
5
0
5
5
10
5
5
15
20
20
20
30
35
40
50
35
40
B
10
15
15
15
30
30
30
30
30
30
35
40
ess
10
15
15
15
30
30
30
30
30
Ambient Current, R = 0
Suspended
t Xm Xo A
l.OE-3
l.OE-3
l.OE-3
l.OE-3
5.7E-4 0 0
5.9E-4 0 0 30
6.0E-4 0 0 30
6.1E-4 0 0 35
3.2E-4
3.4E-4
3.5E-4 0 0 35
3.6E-4 0 0 40
Ambient Current, R = .02
l.OE-3
l.OE-3
l.OE-3
l.OE-3
5.5E-4
5.6E-4 10 5 40
5.6E-4 10 10 50
5.7E-4 20 20 60
1.6E-4
Material
B Cm
30 4.6E-6
30 3.7E-4
35 3.0E-6
35 2.7E-6
40 2.1E-6
30 2.4E-6
30 1.8E-6
40 1.3E-6
35 1.7E-4
105
-------
Table 32. Settled and Suspended Material Distribution
for 10% Gravel, 80% Sand, 10% Silt (1-8-1), with
LL = 80 and p1 = 0.4
Dimensionless Ambient Current, R = 0.1
Settled Material
H
T
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
Xm
0
0
0
0
0
0
0
0
10
10
10
Xo
15
20
30
50
15
30
40
60
30
30
30
A
40
45
70
100
40
60
90
130
70
70
70
B
30
30
30
30
30
30
30
30
50
50
50
Suspended
t Xm Xo A
5.8E-4
6.1E-4
6.1E-4
6.1E-4 100 100 80
2.5E-5
2.6E-5 30 35 40
2.6E-5 70 70 70
2.6E-5 100 100 70
6.5E-5
9.0E-5
1.1E-4 10 15 55
Material
B Cm
40 4.3E-6
30 l.OE-5
30 8.4E-6
30 6.8E-4
55 2.9E-5
Dimensionless Ambient Current, R = 0.5
H
T
T
T
H
T
H
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 20
~ 400
= 800
= 1200
= 1600
30
30
30
30
50
50
50
40
90
140
180
240
240
260
80
160
260
350
460
460
400
40
40
40
40
80
85
80
8.8E-5
8.8E-5
8.8E-5
4.2E-5
2.9E-5
3.5E-5
9.0E-5
106
-------
Table 31. Settled and Suspended Material Distribution
for 10% Gravel, 80% Sand, 10% Silt (1-8-1), with
LL = 80 and p' = 0.4
Dimensionless Ambient Current, R = 0
Settled Material
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 400
T = 800
T = 1200
T = 1600
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
30
30
30
30
30
30
30
35
40
40
B
30
30
30
30
30
30
30
30
30
35
40
40
t
5.8E-4
7.7E-4
7.8E-4
7.9E-4
1.2E-4
1.7E-4
2.4E-4
2.6E-4
6.4E-5
1.1 E-4
1.4E-4
1.6E-4
Suspended
Xm Xo A
0 0 35
0 0 35
0 0 30
0 0 30
0 0 30
0 0 50
0 0 60
Material
B Cm
35 1.3E-5
35 1.1 E-5
30 2.5E-5
30 2.1E-5
30 1.7E-5
50 6.9E-6
60 4.9E-6
Dimensionless Ambient Current, R = .02
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 400
T = 800
T = 1200
T = 1600
0
0
0
0
0
0
0
0
0
0
0
0
0
5
5
10
0
5
10
10
0
5
5
5
30
35
40
50
30
40
55
55
30
40
50
50
30
30
30
30
30
30
30
35
30
30
35
35
5.8E-4
7.8E-4
7.8E-4
7.8E-4
1.3E-4
1.6E-4
1.7E-4
1.7E-4
6.3E-5
1.1E-6
1.3E-4
1.4E-4
10 5 40
20 10 70
0 5 60
5 10 70
30 1.8E-5
40 8.1E-6
50 5.2E-6
50 2.8E-6
107
-------
Table 30. Settled and Suspended Material Distribution
for 80% Gravel, 20% Sand, 0% Silt (3-3-3), with
LL = 80 and p1 =0.4
Dimensionless
Settled Material
H =
T =
T =
T =
T =
H =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
400
800
1200
1600
Xm
0
0
0
0
0
0
0
0
10
10
10
Xo
5
20
30
30
10
10
10
20
15
15
15
A
15
40
50
50
50
50
60
70
90
95
100
B
15
30
30
30
30
30
30
30
50
55
60
Dimensionless
H =
T =
T =
T =
H =
T =
T =
T •- *
T =
5
400
800
1200
1600
20
400
800
1200
1600
20
20
20
120
120
120
10
35
60
120
120
120
80
110
140
200
200
200
40
40
40
80
80
80
Ambient Current, R = 0.1
Suspended
t Xm Xo A
l.OE-3
l.OE-3
l.OE-3 60 60 50
l.OE-3 90 95 70
3.2E-4
3.4E-4 0 10 40
3.4E-4 20 20 60
3.4E-4 40 40 60
1 . 3E-4
1.3E-4
1.3E-4 10 15 70
Ambient Current, R = 0.5
1.3E-4
1.3E-4
1 . 3E-4
5.4E-5
5.4E-5
5.4E-5 50 60 100
Material
B Cm
30 4.9E-7
40 3.2E-7
30 4.0E-6
35 2.2E-6
35 1.2E-6
70 3.6E-7
80 1.9E-7
103
-------
Table 33. Settled and Suspended Material Distribution
for 0% Gravel, 20% Sand, 80% Silt (0-2-8), with
LL = 80 and p' =0.4
Dimensionless Ambient Current,
Settled Material
H
T
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
30
35
30
30
35
40
30
35
45
50
Dimension!
H_
T
T
T
H
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
0
0
0
0
0
0
0
0
0
0
0
0
0
5
10
10
0
10
10
20
5
5
10
10
30
35
40
50
30
40
50
60
40
50
60
60
B
30
30
30
35
30
30
35
40
30
35
45
50
t
7.6E-5
1.3E-4
1.5E-4
1.6E-4
3.5E-5
4.5E-5
5.7E-5
6.7E-5
1.3E-5
2.7E-5
3.5E-5
4.0E-5
Xm
0
0
0
0
0
ess Ambient Current,
30
30
30
30
30
30
30
35
30
40
50
50
7.6E-5
1.3E-4
1.3E-4
1.3E-4
3.5E-5
4.1E-5
4.2E-5
4.3E-5
1.3E-5
2.7E-5
3.3E-5
3.6E-5
20
25
15
30
0
5
10
, R = 0
Suspended
Xo
0
0
0
0
0
R = .02
10
10
10
30
5
10
15
A
35
35
40
50
55
50
60
55
55
60
70
80
Material
B
35
35
40
50
55
35
40
35
35
50
50
55
Cm
8.5E-5
4.8E-5
4.4E-5
5.4E-6
4.3E-6
4.2E-5
4.0E-5
2.1E-5
2.0E-5
6.3E-6
4.3E-6
3.2E-6
109
-------
Table 34. Settled and Suspended Material Distribution
for 0% Gravel, 20% Sand, 80% Silt (0-2-8), with
LL = 80 and p1 =0.4
Dimensionless Ambient Current, R = 0. 1
Settled Material
H
T
T
T
T
H
T
T
T
T
H
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
Xm
0
0
0
0
0
0
0
0
10
10
10
Xo
5
30
50
70
5
30
50
60
15
15
15
A
30
60
100
130
30
60
100
120
40
50
55
B
30
30
30
30
30
30
30
30
30
35
40
Suspended
t Xm Xo A
8.0E-5
8.0E-5
8.0E-5 70 70 50
8.0E-5 110 110 70
4.0E-5
4.3E-5
4.3E-5 80 70 70
4.3E-5 110 110 80
2.1E-5
2.6E-5
3.1E-5
Material
B Cm
30 4.2E-5
40 3.6E-5
40 2.2E-5
50 1.9E-5
Dimensionless Ambient Current, R = 0.5
H
T
T
T
H
T
T
T
T
H_
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
10
10
10
20
20
20
50
60
70
10
50
100
30
70
140
60
80
100
60
100
140
60
190
320
100
130
160
40
40
40
40
40
40
80
90
100
2.9E-5
2.9E-5
2.9E-5
1.1E-5
1.25E-5
1.4E-5
6.9E-6
8.8E-6
l.OE-5 160 120 160
120 1.2E-6
no
-------
Table 35. Settled and Suspended Material Distribution
for 10% Gravel, 80% Sand, 10% Silt (1-8-1), with
LL = 120 and p1 = 0.4
Dimensionless Ambient Current, R = 0
Settled Material
H =
1 =
T =
T =
T =
H =
T =
T =
T =
H =
T =
T =
1 =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
400
800
1200
1600
Xm
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
A
15
15
16
17
15
15
17
17
B
15
15
16
17
15
15
17
17
Suspended
t Xm Xo A
1.1E-3
1.5E-3
1.7E-3
1.7E-3 0 0 30
l.OE-3
1.4E-3
1.5E-3 0 0 25
1.6E-3 0 0 30
Material
B Cm
30 4.4E-5
25 3.4E-5
30 2.3E-5
Dimensionless Ambient Current, R = 0.02
H =
T =
T =
T =
T =
H =
T =
1 =
T =
T =
H =
T --.-
r =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
400
800
1200
1600
0
0
0
0
0
0
0
0
0
0
0
0
0
5
5
10
5
5
5
5
5
5
5
7
15
20
30
37
20
20
20
20
15
20
25
30
15
15
17
20
10
10
10
10
15
15
17
20
1.1E-3
1.3E-3
1.3E-3 10 12 35
1.3E-3 20 20 40
6.5E-4
l.OE-3
l.OE-3
l.OE-3
1.1E-3
1.4E-3
1.5E-3 5 5 30
1.5E-3 5 8 35
25 3.7E-5
30 2.4E-5
15 2.0E-5
25 l.OE-5
in
-------
Table 36. Settled and Suspended Material Distribution
for 10% Gravel, 80% Sand, 10% Silt (1-8-1), with
LL = 120 and p1 = 0.4
Oimensionless
Settled Material
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 400
T = 800
T = 1200
T = 1600
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
5
12
30
45
5
5
5
5
10
10
10
15
A
15
30
60
90
20
20
20
20
20
25
30
40
B
15
15
15
20
10
10
10
10
15
15
20
20
Dimensionless
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 400
T = 800
T = 1200
T = 1600
2
2
2
2
0
0
0
0
15
15
15
15
17
17
17
17
5
5
5
5
15
35
35
35
30
30
30
30
20
20
20
20
15
65
65
65
15
15
15
15
1C
10
10
10
15
15
15
15
Ambient Current, R = 0.1
Suspended
t Xm Xo A
1.2E-3
1.2E-3
1.2E-3 55 60 50
1.2E-3 90 100 60
6.5E-4
l.OE-3
l.OE-3
l.OE-3
1.1E-3
1.2E-3
1.2E-3 15 22 50
1.2E-3 30 45 90
Ambient Current, R = 0.5
3.4E-4
3.4E-4
3.4E-4
3.4E-4
6.5E-4
l.OE-3
l.OE-3
l.OE-3
6.7E-4
7.1E-4
7.1E-4
7.1E-4
Material
B Cm
25 2.4E-5
30 1.3E-5
17 1.5E-5
30 7.6E-6
112
-------
Table 37. Settled and Suspended Material Distribution
for 0% Gravel, 20% Sand, 80% Silt (0-2-8), with
LL = 120 and p1 = 0.4
Dimensionless Ambient Current, R = 0
Settled Material
H
1
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
- 1600
= 10
= 400
= 800
= 1200
- 1600
= 20
= 400
- 800
= 1200
= 1600
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
15
15
17
20
15
15
17
17
15
15
16
17
B
15
15
17
20
15
15
17
17
15
15
16
17
t
1.8E-4
2.5E-4
3.0E-4
3.3E-4
1.7E-4
2.2E-4
2.5E-4
2.6E-4
1.7E-4
2.2E-4
2.5E-4
2.6E-4
Suspended Material
Xm Xo A
0 0 25
0 0 30
0 0 25
0 0 30
B Cm
25 2.5E-4
30 2.0E-4
25 6.9E-5
30 5.4E-5
Dimensionless Ambient Current, R = .02
H_
T
T
T
H
T
T
T
H
T
T
T
T
= 5
~^~400
= 800
= 1200
- 1600
= 10
= 400
= 800
= 1200
- 1600
= 20
= 400
= 800
= 1200
= 1600
0
0
0
0
0
0
0
0
0
0
0
0
0
5
7
10
0
3
5
10
0
3
7
7
15
20
30
40
15
20
30
35
15
22
27
27
15
15
17
17
15
15
15
17
15
15
17
17
1.8E-4
2.1E-4
2.1E-4
2. 1E-4
1.8E-4
1.9E-4
1.9E-4
1.9E-4
1.7E-4
2.1E-4
2.2E-4
2.2E-4
5 12 20
15 15 30
20 20 32
10 12 30
20 20 40
10 10 37
15 15 40
15 2.1E-4
17 1.3E-4
25 1.1 E-4
25 7.1E-5
30 5.6E-5
25 4.3E-5
30 3.0E-5
113
-------
Table 38. Settled and Suspended Material Distribution
for 0% Gravel, 20% Sand, 80% Silt (0-2-8), with
LL = 120 and p1 = 0.4
Dimensionless Ambient Current, R = 0.1
Settled Material
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 400
T = 800
T = 1200
T = 1600
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
15
35
50
5
20
35
60
5
15
25
35
A
15
50
85
120
15
40
75
120
15
30
55
85
B
15
15
20
20
15
15
17
17
15
15
20
20
Suspended
t Xm Xo A
1.8E-4
1.8E-4
1.8E-4 70 65 40
1.8E-4 105 105 45
1.4E-4
1.9E-4
1.9E-4
1.9E-4 95 80 75
1.9E-4
2.1E-4
2.1E-4 45 35 55
2.1E-4 70 60 75
Material
B Cm
20 1.6E-4
25 1.1 E-6
30 5.7E-5
25 3.1E-5
30 2.4E-5
Dimensionless Ambient Current, R = 0.5
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 400
T = 800
T = 1200
T = 1600
0
0
0
0
5
5
5
5
10
10
10
10
5
15
15
15
5
35
35
35
10
50
60
60
15
35
35
35
15
70
70
70
15
85
95
95
15
15
15
15
15
15
15
15
15
15
15
15
1.3E-4
1.3E-4
1.3E-4
1.3E-4
1 . 2E-4
1.3E-4
1.3E-4
1.3E-4
1 . 7E-4
1.7E-4
1 . 7E-4
1 . 7E-4
114
-------
Table 39. Settled and Suspended Material Distribution
for 33% Gravel, 33% Sand, 33% Silt (3-3-3), with
LL = 40 and p' = 0.25
Dimensionless
Ambient Current
Settled Material
H =
1 =
1 -
T -
T =
H =
T -
T -
T =
H =
-i-
T -
T -
T -
5
300
600
900
1200
10
300
600
900
1200
20
300
600
900
1200
Xm
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
A
10
10
30
30
30
50
50
70
30
60
90
B
10
10
30
30
30
50
50
70
30
60
90
t Xm
4.5E-4
4.6E-4 0
4.6E-4 0
4.6E-4 0
1.2E-4 0
1.4E-4 0
1.4E-4 0
1.6E-4 0
3.4E-5
4.4E-5
4.4E-5
Dimensionless Ambient Current.
H =
T -
T -
T -
H =
T =
T =
T =
-
H =
T =
T -
T -
T =
5
300
600
900
1200
10
600
1200
1800
2400
20
300
600
900
1200
0
0
0
0
5
5
5
5
0
0
0
5
10
10
15
5
5
10
15
10
15
20
30
40
45
50
40
45
55
70
60
80
180
30
30
30
30
30
40
50
60
60
60
60
1.6E-4
1.7E-4
1.7E-4
1.7E-4 20
5.2E-5
6.0E-5 0
6.2E-5 10
6.2E-5 25
6.3E-5
6.7E-5
7.7E-5 10
, R = 0
Suspended
Xo A
0 30
0 70
0 90
0 30
0 70
0 90
0 120
R =.02
20 60
5 60
20 75
30 80
10 100
Material
B Cm
30 5.2E-6
70 2.6E-6
90 1.7E-4
30 4.6E-6
70 1.9E-4
90 1.2E-6
120 7.9E-7
40 1.1 E-5
50 1.7E-6
60 1.3E-6
60 1.1 E-6
60 5.7E-7
115
-------
Table 40. Settled and Suspended Material Distribution
for 33% Gravel, 33% Sand, 33% Silt (3-3-3), with
LL = 40 and p1 = 0.25
Dimensionless Ambient Current, R = 0.1
Settled Material
H = 5
T = 300
T = 600
T = 900
T = 1200
H = 10
T = 300
T = 600
T = 900
T = 1200
H = 20
T = 300
T = 600
T = 900
T = 1200
Xm
10
10
10
10
10
10
10
10
Xo
10
10
10
10
10
35
40
45
A
30
30
30
40
30
70
90
120
B
30
30
30
30
30
50
50
50
Suspended
t Xm Xo A
3.0E-4
3.0E-4 45 45 80
3.0E-4 75 75 100
3.3E-4 105 105 120
1.9E-4 30 35 60
1.9E-4 50 50 90
1.9E-4. 70 70 110
1.9E-4 90 90 140
Material
B Cm
50 3.5E-6
90 1.9E-6
90 1.2E-6
30 4.6E-6
70 1.8E-6
90 l.OE-6
120 6.8E-7
Dimensionless Ambient Current, R = 0.5
H = 5
T = 300
T = 600
T = 900
T = 1200
H = 10
T = 300
T = 600
T = 900
T = 1200
H = 20
T = 300
T = 600
T = 900
T = 1200
50
50
50
50
120
180
180
180
150
150
150
150
50
90
150
150
120
180
210
210
210
300
360
450
150
210
360
360
150
390
390
390
180
330
480
630
30
30
30
30
30
60
60
60
90
90
90
90
2.5E-5
2.6E-5
2.6E-5
2.6E-5
1.1E-5
1.1E-5
1.1E-5
1.1E-5
2.0E-5
2.0E-5 390 390 240
2.0E-5 560 540 240
2.0E-5 660 660 300
150 1.2E-7
150 l.OE-7
210 l.OE-7
116
-------
Table 41. Settled and Suspended Material Distribution
for 80% Gravel, 20% Sand, 0% Silt (8-2-0), with
LL = 40 and p1 = 0.25
Dimensionless
H =
T =
T =
T =
T =
H =
T =
T =
H =
T =
T =
T =
T =
5
300
600
900
1200
10
300
600
900
1200
20
300
600
900
1200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Settl
Xo
0
0
0
0
0
0
0
0
0
0
0
0
Ambient Current, R = 0
ed Material
A
30
30
30
35
30
40
40
45
30
35
40
40
B
30
30
30
35
30
40
40
45
30
35
40
40
Dimensionless
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T "-~
5
300
600
900
1200
10
600
1200
1800
2400
20
2400
4800
0
0
0
0
5
5
5
5
10
10
0
5
10
10
5
5
5
5
10
10
30
40
45
50
40
50
50
50
120
120
30
30
30
30
30
40
40
40
100
t
5.8E-4
5.9E-4
6.0E-4
6.1E-4
2.1E-4
2.2E-4
2.2E-4
2.3E-4
2.1E-4
2.2E-4
2.2E-4
2.3E-4
Xm
0
0
0
0
0
0
0
0
0
Ambient Current,
5.4E-4
5.4E-4
5.4E-4
5.4E-4
l.OE-4
1.1E-5
1.1E-5
1.1E-5
1.7E-5
100 1.7E-5
10
10
20
0
10
10
20
Suspended
Xo
0
0
0
0
0
0
0
0
0
R = .02
5
10
15
5
10
15
20
A
30
40
40
40
45
45
40
40
40
40
60
70
60
70
80
180
Material
B
30
40
40
40
45
45
40
40
40
30
40
40
50
60
70
180
Cm
4.1E-6
2.7E-6
1.8E-6
2.4E-6
1.9E-6
1.6E-6
2.4E-6
1.9E-6
1.6E-6
2.6E-6
1.6E-6
8.8E-7
5.9E-7
2.0E-7
8.8E-8
9.2E-1,
-------
Table 42. Settled and Suspended Material Distribution
for 80% Gravel, 20% Sand, 0% Silt (8-2-0), with
LL = 40 and p1 = 0.25
Dimensionless
Settled Material
H = 5
T = 300
T = 600
T = 900
T = 1200
H = 10
T = 300
T = 600
T = 900
T = 1200
H = 20
T = 300
T = 600
T = 900
T = 1200
Xm
5
5
5
5
20
20
20
40
40
40
40
Xo
5
5
15
30
25
25
25
20
60
60
60
A
40
40
65
95
60
60
60
60
100
100
100
B
30
30
40
40
50
50
50
60
60
60
60
Dimensionless
H = 5
T = 300
T = 600
T = 900
T = 1200
H = 10
T = 300
T = 600
T = 900
T = 1200
H = 20
T = 300
T = 600
T = 900
T = 1200
40
40
40
280
280
280
280
60
60
65
320
420
420
420
160
165
170
280
520
520
520
40
40
40
120
120
120
120
Ambient Current, R = 0.1
Suspended
t Xm Xo A
l.OE-4
l.OE-4 0 5 50
l.OE-4 30 30 60
l.OE-4 60 50 80
7.1E-5
7.2E-5
7.3E-5 10 20 70
5.8E-5
5.8E-5
5.8E-5
5.8E-5
Ambient Current, R = 0.5
1.9E-5
1.9E-5
2.0E-5
1.8E-5
1.8E-5
1.8E-5
1.8E-5
Material
B Cm
40 2.9E-6
40 1.7E-6
60 l.OE-6
70 1.9E-7
118
-------
Table 43. Settled and Suspended Material Distribution
for 10% Gravel, 80% Sand, 10% Silt (1-8-1), with
LL = 40 and p1 = 0.25
Dimension less
Ambient Current, R = 0
Settled Material
H —
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
5
300
600
900
1200
10
300
600
900
1200
20
300
600
900
1200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
30
40
30
40
4G
45
30
40
40
40
B
30
30
30
40
30
40
40
45
30
40
40
40
Dimensionless
H =
T =
T •—
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
300
600
900
1200
10
300
600
900
1200
20
1200
2400
3600
4800
0
0
0
0
0
0
0
0
0
0
0
0
0
5
10
10
5
5
5
5
0
20
20
20
30
40
55
55
40
50
50
65
120
130
130
130
30
30
30
30
30
40
40
40
120
120
120
120
t
1.8E-4
2.1E-4
2.6E-5
2.9E-5
4.8E-5
7.9E-5
l.OE-4
1.2E-4
4.8E-5
7.9E-5
l.OE-4
1.2E-4
Xm
0
0
0
0
0
0
0
0
0
Ambient Current,
1.9E-4
2.2E-4
2.3E-4
2.3E-4
8.0E-5
l.OE-4
1.1E-4
1.2E-4
2.0E-5
2.1E-5
2.1E-5
2.1E-5
10
10
20
0
5
10
40
60
Suspended
Xo
0
0
0
0
0
0
0
0
0
R = .02
5
10
15
5
5
10
40
60
A
30
40
40
40
60
60
40
60
60
40
60
70
55
70
80
180
200
Material
B
30
40
40
40
60
60
40
60
60
30
40
45
50
60
60
120
120
Cm
2.4E-5
1.8E-5
1.3E-5
l.OE-5
8.1E-6
6.6E-6
l.OE-5
8.1E-6
6.6E-6
1.2E-5
8.6E-6
5.6E-6
6.5E-6
3.5E-6
2.2E-6
3.5E-8
2.4E-8
119
-------
Table 44. Settled and Suspended Material Distribution
for 10% Gravel, 80% Sand, 10% Silt (1-8-1), with
LL = 40 and p1 = 0.25
Dimensionless Ambient Current, R = 0.1
Settled Material
H = 5
T = 300
T = 600
T = 900
T = 1200
H = 10
T = 300
T = 600
T = 900
T = 1200
H = 20
T = 2400
T = 4800
Km
0
0
0
0
20
20
20
140
140
Xo
5
5
15
30
20
20
25
200
200
A
40
50
65
95
80
90
100
200
200
B
30
35
40
40
60
70
80
120
120
Suspended
t Xm Xo A
l.OE-4
1.2E-4 0 5 50
1.2E-4 35 35 70
1.2E-4 60 60 80
1.6E-5
2.1E-5
2.6E-5 20 30 100
4.6E-6
4.6E-6 160 200 200
Material
8 Cm
40 1.2E-5
60 7.8E-6
60 4.8E-6
80 l.OE-6
120 1.2E-8
Dimensionless Ambient Current, R = 0.5
H = 5
T^~300
T = 600
T = 900
T = 1200
H = 10
T = 300
T = 600
T = 900
T = 1200
H = 20
T = 300
T = 600
T = 900
T = 1200
40
40
40
280
280
280
280
60
60
70
320
400
400
400
160
170
180
280
520
520
520
40
40
60
120
120
120
120
2.8E-5
3.0E-5
3.1E-5
2.2E-6
2.2E-6
2.2E-6
2.2E-6
120
-------
Table 45. Settled and Suspended Material Distribution
for 0% Gravel, 20% Sand, 80% Silt (0-2-8), with
LL = 40 and p' = 0.25
Dimensionless
Ambient Current, R = 0
Settled Material
H =
T =
T =
T =
T ...._
H =
T =
j =
T =
T =
H =
T =
T =
T =
5
300
600
900
1200
10
300
600
900
1200
20
300
600
900
1200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
40
40
30
40
40
45
30
40
45
45
Dimension!
H =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
5
300
600
900
1200
10
300
600
900
1200
20
1200
2400
3600
4800
0
0
0
0
0
0
0
0
0
0
0
0
0
5
10
15
5
5
5
10
0
20
40
70
30
40
50
70
40
50
50
60
80
120
160
200
B
30
30
40
40
30
40
40
45
30
40
45
45
ess
30
30
40
40
30
40
40
40
80
TOO
100
120
t
1.7E-5
3.0E-5
4.6E-5
5.6E-5
l.OE-5
1.5E-5
1.9E-5
2.2E-5
l.OE-5
1.5E-5
1.9E-5
2.2E-5
Xm
0
0
0
0
0
0
0
0
Ambient Current,
l.OE-5
2.7E-5
3.0E-5
3.1E-5
l.OE-5
1.6E-5
1.9E-5
2.0E-5
6.9E-6
7.0E-6
7.0E-6
7.0E-6
20
0
5
10
40
60
80
Suspended
Xo
0
0
0
0
0
0
0
0
R = .02
15
5
5
15
20
60
80
A
40
40
50
60
65
50
60
65
70
60
80
90
160
160
200
Material
B
40
40
50
60
65
50
60
65
40
50
60
60
80
80
120
Cm
5.9E-5
5.4E-5
5.2E-6
4.7E-6
4.5E-6
5.2E-6
4.7E-5
4.5E-5
2.3E-5
4.3E-6
3.5E-6
3.2E-6
4.7E-7
3.6E-7
3.5E-7
121
-------
Table 46. Settled and Suspended Material Distribution
for 0% Gravel, 20% Sand, 80% Silt (0-2-8), with
LL = 40 and p1 = 0.25
Dimensionless
Ambient Current, R = 0.1
Settled Material
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T -i—
5
300
600
900
1200
10
300
600
900
1200
20
2400
4800
Xm
0
0
0
0
10
15
20
160
160
Xo
10
30
40
50
30
30
30
200
200
A
30
55
90
120
80
90
100
200
200
B
30
30
40
40
60
70
80
200
200
Dimensionless
H =
j =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
y =
T =
T =
5
300
600
900
1200
10
300
600
900
1200
20
300
600
900
1200
40
40
40
400
680
680
680
60
120
220
320
440
440
440
160
300
440
280
560
560
560
120
120
120
120
120
120
120
2.
2.
2.
2.
3.
5.
6.
1.
1.
Suspended
t Xm Xo A
7E-5
9E-5
9E-5 60 60 65
9E-5 90 85 70
6E-6
1E-6
3E-6 20 30 100
2E-6
2E-6 200 260 280
Material
B Cm
40 2.6E-5
40 2.3E-5
80 1.1E-6
280 7.5E-8
Ambient Current, R = 0.5
6.
7.
7.
9.
3.
3.
3.
8E-6
1E-6
5E-6
4E-8
1E-7
1E-7
1E-7
122
-------
Table 47. Settled and Suspended Material Distribution
for 33% Gravel, 33% Sand, 33% Silt (3-3-3), with
LL = 40 and p' =0.1
Dimensionless Ambient Current,
H =
T =
T =
j =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
800
1600
2400
3200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Sett!
Xo
0
0
0
0
0
0
0
0
0
0
0
0
ed Material
A
30
30
40
40
30
40
40
45
50
50
60
60
B
30
30
40
40
30
40
40
45
50
50
60
60
t
2.5E-5
2.8E-5
3.4E-5
3.7E-5
1.9E-5
2.3E-5
2.6E-5
2.7E-5
1.2E-5
1.2E-5
1.3E-5
1.3E-5
Xm
0
0
0
0
0
0
0
0
0
Dimensionless Ambient Current,
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
j =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
400
800
1200
1600
0
0
5
5
5
5
5
5
20
20
20
20
5
10
10
10
5
5
5
5
20
20
20
20
30
45
55
65
40
50
50
60
120
120
120
120
30
30
40
40
30
40
40
40
100
100
100
100
2.9E-5
3.0E-5
3.1E-5
3.1E-5
2.3E-5
2.6E-5
2.8E-5
2.8E-5
5.0E-6
5.0E-6
5.0E-6
5.0E-6
10
20
30
0
10
15
10
40
80
R = 0
Suspended
Xo
0
0
0
0
0
0
0
0
0
R = .02
10
15
20
10
10
15
20
60
80
A
30
50
60
50
60
80
70
80
100
50
70
80
60
80
90
140
160
180
Material
B
30
50
60
50
60
80
70
80
100
30
40
50
50
60
70
140
140
140
Cm
l.OE-5
8.2E-6
7.0E-6
1.1 E-6
9.3E-7
8.0E-7
1.1 E-7
l.OE-7
l.OE-7
7.2E-6
4.7E-6
3.3E-6
9.3E-7
6.2E-7
5.0E-7
2.7E-8
2.7E-8
2.6E-8
123
-------
Table 48. Settled and Suspended Material Distribution
for 33% Gravel, 33% Sand, 33% Silt (3-3-3), with
LL = 40 and p1 =0.1
Dimensionless Ambient Current, R = 0.1
Settled Material
H =
T =
T =
T =
T =
H =
T =
T =
T =
H =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
400
800
1200
1600
Xm
20
20
20
20
20
20
Xo
20
70
40
30
30
30
A
60
75
90
80
80
80
B
50
55
60
60
60
60
2.
2.
2.
1.
1.
1.
Suspended Material
t Xm Xo A B Cm
5E-5
5E-5
5E-5
3E-5
3E-5
3E-5
Dimensionless Ambient Current, R = 0.5
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
400
800
1200
1600
120
120
120
260
260
260
410
410
410
140
150
160
240
250
260
360
360
360
260
270
280
440
480
520
440
440
440
60
60
60
60
60
60
100
100
100
1.
1.
1.
3.
3.
3.
1.
1.
1.
1E-5
1E-5
1E-5
8E-6
8E-6
8E-6
2E-5
2E-5
2E-5
124
-------
Table 49. Settled and Suspended Material Distribution
for 80% Gravel, 20% Sand, 0% Silt (8-2-0), with
LL = 40 and p1 =0.1.4
Dimensionless Ambient Current,
Settled Material
H =
j =
T =
T =
T =
H =
T =
T -i-
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
800
1600
2400
3200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
40
40
30
40
45
45
60
70
70
70
B
30
30
40
40
30
40
45
45
60
70
70
70
t
3.8E-5
4.0E-5
4.0E-5
4.4E-5
3.1E-5
3.4E-5
3.5E-5
3.6E-5
9.4E-6
l.OE-5
l.OE-5
l.OE-5
Xm
0
0
0
0
0
0
0
0
0
Dimensionless Ambient Current,
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
1600
3200
4800
6400
0
0
0
0
10
10
10
10
40
40
40
40
0
10
10
10
5
5
5
10
100
no
120
120
30
40
45
45
40
40
45
50
160
200
240
240
30
30
30
30
40
40
45
50
120
120
120
120
1.6E-4
1.6E-4
1.6E-4
1.6E-4
4.3E-5
4.4E-5
4.4E-5
4.5E-5
8.4E-6
8.4E-6
8.4E-6
8.4E-6
10
20
30
0
10
10
180
180
R = 0
Suspended
Xo
0
0
0
0
0
0
0
0
0
R = 0.02
5
15
20
0
10
10
220
220
A
30
40
70
40
50
55
100
110
120
45
50
80
55
70
75
180
180
Material
B
30
40
70
40
50
55
100
no
120
30
40
40
55
70
75
120
120
Cm
5.7E-7
1.7E-7
5.4E-8
2.9E-7
1.7E-7
l.OE-7
4.4E-11
4.3E-11
4.2E-11
4.3E-7
l.OE-7
2.6E-8
1.9E-7
7.5E-8
4.0E-8
2.3E-10
2.3E-10
125
-------
Table 52. Settled and Suspended Material Distribution
for 10% Gravel, 80% Sand, 10% Silt (1-8-1), with
LL = 40 and p1 =0.1
Dimensionless Ambient Current, R = 0.1
Settled Material
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
800
1600
2400
3200
20
400
800
1200
1600
Xm
0
0
0
0
10
10
10
10
Xo
10
20
30
40
30
30
50
50
A
70
90
100
no
80
90
120
120
B
60
60
60
60
60
70
70
70
Suspended
t Xm Xo A
4.2E-5
4.7E-5
4. 7E-5
4.7E-5 120 110 140
l.OE-5
l.OE-5 20 20 120
l.OE-5 100 100 140
l.OE-5 170 170 180
Material
B Cm
80 3.3E-7
100 5.0E-8
110 8.2E-8
120 3.9E-8
Dimensionless Ambient Current, R = 0.5
H =
T =
T =
T =
T =
H =
T —
T =
X —
J =
H =
T =
T =
T =
T =
5
800
1600
2400
3200
10
800
1600
2400
3200
20
800
1600
2400
3200
60
60
60
60
720
720
800
800
160
160
160
160
400
400
520
560
390
390
390
390
800
800
840
920
60
60
60
60
120
120
120
120
7. 1E-6
7. IE- 6 520 500 280
7. 1E-5
7.1E-6
2.4E-6
2.4E-6
l.OE-6
1 . OE-6
100 7.4E-8
126
-------
Table 51. Settled and Suspended Material Distribution
for 10% Gravel, 80% Sand, 10% Silt (1-8-1), with
LL = 40 and p1 =0.1
Dimensionless
Ambient Current, R = 0.0
Settled Material
H =
1 =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
800
1600
2400
3200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
40
40
30
40
50
60
60
70
80
80
B
30
30
40
40
30
40
50
60
60
70
80
80
Dimensionless
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
1600
3200
4800
6400
0
10
10
10
0
0
0
0
10
20
20
0
5
10
10
5
5
5
5
20
30
30
30
40
55
70
40
50
65
70
100
110
110
30
30
40
40
30
45
55
60
100
100
100
t
2.7E-5
3.5E-5
4.7E-5
5.1E-5
2.1E-5
3.2E-5
3.8E-5
4.2E-5
6.9E-6
8.4E-6
8.5E-6
8.5E-6
Xm
0
0
0
0
0
0
0
0
0
Ambient Current,
3.0E-5
3.5E-5
4.0E-5
4.0E-5
2.3E-5
3.3E-5
3.6E-5
3.7E-5
5.6E-6
5.7E-6
5.7E-6
10
20
25
0
0
10
20
50
Suspended
Xo
0
0
0
0
0
0
0
0
0
R = 0.02
5
15
25
5
10
15
20
50
A
30
35
40
40
60
70
100
no
120
40
70
70
70
80
90
140
150
Material
B
30
35
40
40
60
70
100
no
120
30
40
40
70
80
80
140
140
Cm
5.0E-6
3.0E-6
2.2E-6
1.3E-6
8.9E-7
6.0E-7
2.6E-8
2.6E-8
2.5E-8
3.5E-6
1.7E-6
1.7E-6
8.8E-7
3.4E-7
2.0E-7
8.3E-9
8.1E-9
127
-------
Table 50. Settled and Suspended Material Distribution
for 80% Gravel, 20% Sand, 0% Silt (8-2-0), with
LL = 40 and p1 =0.1
Oiraensionless Ambient Current, R = 0.1
Settled Material
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 800
T = 1600
T = 2400
T = 3200
H = 20
T = 400
T = 800
T - 1200
T = 1600
Xra
10
20
20
20
20
20
20
20
Xo
10
30
30
40
30
30
30
30
A
60
90
90
100
80
80
80
80
B
60
60
60
60
60
60
60
60
Suspended Material
t Xm Xo A B Cm
4.8E-5
4.8E-5
4.8E-5 80 80 100 80 4.9E-9
4.8E-5 120 110 140 80 1.8E-9
3.6E-5
3.6E-5 20 30 120 100 l.OE-10
3.6E-5 100 100 140 120 8.5E-11
3.6E-5 180 180 160 120 7.5E-11
Dimensionless Ambient Current, R = 0.5
H = 5
T = 800
T = 1600
T = 2400
T = 3200
H = 10
T = 800
f = 1600
T = 2400
T = 3200
H = 20
T = 800
T = 1600
T = 2400
T = 3200
120
120
120
120
480
480
800
800
150
150
150
150
480
480
500
500
280
280
280
280
840
840
840
840
60
60
60
60
120
100
120
120
2.4E-5
2.4E-5
2.4E-5
2.4E-5
2.2E-6
2.2E-6
7.8E-6
7.8E-6
128
-------
Table 53. Settled and Suspended Material Distribution
for 0% Gravel, 20% Sand, 80% Silt (0-2-8), with
LL = 40 and p1 =0.1
Dimensionless Ambient Current,
Settled Material
H =
T =
T =
T =
T =
H -
T -
T =
T =
T =
H =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
800
1600
2400
3200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
40
40
30
45
60
70
60
70
80
80
B
30
30
40
40
30
45
60
70
60
70
80
80
t
6.4E-6
9.0E-6
1.4E-5
1.7E-5
4.9E-6
7.5E-6
9.4E-6
l.OE-5
1.5E-6
2.0E-6
2.0E-6
2.1E-6
Xm
0
0
0
0
0
0
0
0
0
Dimensionless Ambient Current,
H =
T =
T =
T =
H =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
1600
3200
1200
1600
0
10
10
10
0
0
0
0
0
0
0
0
10
10
15
5
5
10
10
20
20
40
30
50
60
65
40
45
70
80
100
100
140
30
30
40
40
30
40
60
65
100
100
110
6.4E-6
7.6E-6
l.OE-5
l.OE-5
4.7E-6
7.4E-6
8.3E-6
8.6E-6
1.2E-6
1.3E-6
1.3E-6
10
20
30
0
10
20
0
40
, R = 0.0
Suspended
Xo
0
0
0
0
0
0
0
0
0
R = 0.02
5
15
20
5
10
20
20
40
A
30
40
40
50
60
65
100
no
120
40
50
80
60
80
85
120
160
Material
B
30
40
40
50
60
65
100
110
120
30
40
70
50
60
65
120
140
Cm
2.2E-5
1.9E-5
1.6E-5
1.8E-6
1.7E-6
1.6E-6
2.2E-7
2.1E-7
2.1E-7
1.6E-5
1.1 E-5
7.8E-6
1.4E-6
1.2E-6
1.1E-6
7.2E-8
7.0E-8
129
-------
Table 54. Settled and Suspended Material Distribution
for 0% Gravel, 20% Sand, 80% Silt (0-2-8), with
LL = 40 and p' =0.1
Dimensionless Ambient Current, R = 0.1
Settled Material
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 800
T = 1600
T = 2400
T = 3200
H = 20
T = 400
T = 800
T = 1200
T = 1600
Xm
0
0
0
0
0
0
0
0
Xo
0
30
50
70
30
30
70
100
A
30
80
110
150
80
90
160
210
B
30
60
60
60
60
70
80
80
Suspended
t Xm Xo A
1.1E-5
1.3E-5
1.3E-5
1.3E-5 120 110 140
2.5E-6
2.5E-6 20 30 120
2.5E-6 100 100 140
2.5E-6 170 170 180
Material
B Cm
80 2.7E-6
100 4.1E-7
120 3.5E-7
120 3.1E-7
Diraensionless Ambient Current, R = 0.5
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 800
T = 1600
T = 2400
T = 3200
H = 20
T = 800
T = 1600
T = 2400
T = 3200
60
60
60
760
760
920
920
100
170
240
400
400
480
520
180
330
480
800
800
840
920
60
60
60
120
120
120
120
1.8E-6
1.8E-6
1.8E-6
6.4E-7
6.4E-7
2.3E-7
2.4E-7
130
-------
REFERENCES
1. Koh, R. C. Y. and Chang, Y. C., "Mathematical Model for Barged Ocean
Disposal of Wastes," Environmental Protection Technology Series EPA
660/2-73-029, December 1973, U.S. EPA, Washington, D.C.
2. Brandsma, M. G. and Divoky, D. I., "Development of Models for Prediction
of Short-Term Fate of Dredged Material Discharged in the Estuarine
Environment," Contract Report D-76-5, U.S. Army Engineer Waterways
Experiment Station, Vicksburg, MS, 1976.
3. Bowers, G. and Goldenblatt, M., "Calibration of a Prediction Model for
Instantaneously Discharged Dredged Material," EPA-660/3-78-089,
September 1978, U.S. Environmental Protection Agency, Corvallis, OR.
4. Department of the Interior, "Earth Manual," U.S. Government Printing
Office, Washington, 1968.
5. Gibbs, R. J., Matthews, M. D. and Link, D. A., "The Relationship Between
Sphere Size and Settling Velocity," Journal of Sedimentary Petro-
logy, Vol. 41, No. 1, pp. 7-18, March 1971.
6. Krishnappan, B. G., "Dispersion of Granular Material in Deep Water,"
Canada Centre for Inland Waters Hydraulics Division Project 3-IW-HY-
019.
131
-------
APPENDIX
COMPUTER LISTING
PROGRAM DMF ,AAau,31.31) »AA3(»AAM»
1 KEYMAX
C COMMON A(l) C CDC ONLY
C COMMON A(SET DIMENSION=NEED) OTHERS
10 C REWIND 7
DIMENSION DEPTH(31.31>
DIMENSION SUM(31.31).C(31.31).THICK(31,31)
1, COUT(31»31).TOP(31.31).ACCOM(31,31)
C
15 C
READ(5.15>KEYMAX
IF (KEYMAX.NE.1)60 TO 100
NEED * 0
HEAD(5.15> NMAX.MMAX.NS.NVL.NSC
20 WRITE(6.36) NMAX,MMAX.NS,NVL,NSC»NEED
15 FORMATU6I5)
GO TO 110
J", 100 CONTINUE
ro REAO(5»15) NMAX.MMAX.IOEP
35 NS a 3
NVL = 1
NSC = 20
NEED = 0
110 CONTINUE
30 CALL MAIN(NMAX,MMAX«DEPTH.SUM»C.THICK.COUT.TOP.ACCUM,IDEP)
C NMAX-LONG TEHM ARRAY DIMENSION IN Z-DIRECTION
C MMAX-LONG TEKM ARRAY DIMENSION IN X-OIHECTION
C NS-NUMBER OF SOLID FRACTIONS
C NVL-NUM8ER OF VELOCITY PLANES
35 C NSC-MAXIMUM NUMBER OF SMALL CLOUDS ALLOWED
C
C SET ARRAY POINTERS
C NSP1=NS»1
C LDIrtsNMAX«MMAX
40 C Nl=l X
C N3=N1»LDIM Z
C N3=Na»LDIM DEPTH
C N4=N3*LDIM ICODE
MODEL LISTING (1 of 85)
-------
PROGRAM
DMF
SO
GO
GJ
60
70
75
CDC 6*00 FTN V3.0- BPA OPT=1 05/81/79 17.21.59,
PAGE
C N5=N4«LDIM CP
C N6=N5»LDIM THICKP
C N7=N6«LDIM TOPP
C N8=N7»LDIM SUM
C N9=N8+LOIM C
C N10=N9«LOIM THICK
C N11=N10«LDIM TOP
C N12=N11»LDIM ACCUM
C N13=N12»LDIM»NS U
C N14=N13*LOIM«NVL W
C N15=N14»LDIM«NVL SS
C N16=N15»600*NS TSIDE
C N17=N16»NSC TTHK
C N18=N17»NSC TTOP
C N19=N18»NSC TMASS
C N20=N19»NSC TX
C N21=N20»NSC TZ
C NEED=N21»NSC
C
C FIND PRESENT FIELD LENGTH. ADD LENGTH OF ARRAYS(NEED) AND REQUEST CDC ONLY
C NEW FIELD-LENGTH CDC ONLY
C LENF=MEHGET(658) « 1 CDC ONLY
c NEWLEN=LENF*NEED CDC ONLY
26 FOHMAT(/////10X»39HSTORAGE ALLOCATION PARAMETERS FOLLOW.../10X,
1 4HNMAX,lX,4HMMAX,3X.2HNS»2X.3HNVLt2X,3HNSC»4Xf4HNEED/10X»I3f2X
2. I3»4X.I2«1X.I3«2X.I3«2X»I6 )
C CALL XRFL(NEWLEN) CDC ONLY
C
C CALL MAIN(A(N1),A(N2).A(N3),A(N4),A(N5).A»A
-------
SUBROUTINE MAIN CDC 6400 FTN V3.0- BPA OPT*1 05/21/79 17.21.59. PAGE
SUBKOUT1NE MAIN(NMAXtMMAXfDEPTH.SUMfCfTHICKfCOUTtTOPfACCUMfIDEP)
C SUBROUTINE MAIN tCU(600)tCV(600)
It CM (600)fDENOIF(600)tBC(600)fAA(600)«FC(600)fVF
COMMON/FLEF/ I TO.TD(6)fDC<6)fCINIT.CSACK(1J).CTHACE1600)
15 COMMON/GPI/ GfPIfRB
COMMON/CHECK/TOTAL
COMMON/LOST/ GONE
COMMON/USEHDT/ K£Y4fDT1U.DT2U
COMMON/GP/IGCN.IGCLfIGLTfIPCNfIPCL.IPLT
20 COMMON/P/ PRT
COMMON/HA/AA1(4t3i.31)fAA2(4,31«31)»AA3(4»31»31)fAA4(4f31»31)f
1 KEYMAX
COMMON/ID/IDTL
COMMON/PIECES/ PARAM<13)fROAS(13)tCS(13)fVFALL(13)»VOIDS(13)tBVOID
25 If ICOHESU2) »VFALLC(13) , VFALSC (20t 13) t VFALLD (31. 31,13)
LOGICAL PRT
DIMENSION ID(8)fTPRT(12)
DIMENSION DEPTH<31t31)
DIMENSION ICODE(31,31)
30 DIMENSION SUMU1131) f C (31f 31) .THICK (31.31)
If COUT(31f31)»TOP(31.31)fACCUM(31f31)
DIMENSION U(31f31f2)«W(31f31f2)fSS(600fl2)
DIMENSION THICKP(31f31)»TOPP(31f31)fCP(31.31)
DIMENSION TSIDE(100)fTTHK(lOO).TTOP(IOO)fTMASSt100)fTX(100)
35 1 fTZ(lOO)«X(31«31>,Z(31t31)
C
DATA G«PI /32.2f3.14159/ NON-ANSI
DATA TPRT/12«0./ NON-ANSI
DATA ITD/l/f(DC(I).I = lf6)/.lf.01».001..0001f.0000Ifl.E-30/ NON-ANSI
40 C
NPASSsNMAX
MPASS=MMAX
NSP1=NS+1
MODEL LISTING (3 of 85)
-------
SUBROUTINE MAIN CDC 6400 FTN V3.0- BPA OPT=1 05/21/79 17.21.59. PAGE
CALL SECOND(Tl)
45 IF(KEYMAX.NE.1)GO TO 10
WRITE16.5)
b FORMAT(1H1///10X.59HFATE OF DREDGED MATERIAL DEPOSITED IN AN ESTUA
1HY BY DUMPING )
C READ EXECUTION MANAGEMENT PARAMETERS
50 REAO(5tl5) KEYl»KEY2tKEY3.KEY4
READ(5.15) IGCN.IGCL.IPCNtlPCLtIPLT.IDEP
15 FORMATU6I5)
WRITE(6,35) KEYl.KEY2.KEY3.KEY4.IGCN.IGCL.IPCN,IPCL.IPLT• IDEP
25 FORMAT(//10X«30HEXFCUTION PARAMETERS FOLLOW..,/lOXf60MKEY1 KEY2
55 1KEY3 KEY4 IGCN IGCL IPCN IPCL IPLT IDEP /7X.10I6)
GO TO 20
10 CONTINUE
KEY1 = 1
KEY2 = 3
60 KEY3 = 0
KEY4 = 0
IGCN = 1
IGCL = 1
IPCN s 0
65 IPCL = 0
IPLT s 0
20 CONTINUE
IDTL = 0
C
70 C READ ALPHAMERIC IDENTIFICATION FOR THIS HUN
READ(5t35>ID
35 FORMAT(8A10)
WRITEI6.105) ID
105 FORMATUOX.8A10.//)
75 C
C DEFINE ESTUARY GEOMETRY AND ARRAYS GOVERNING LONG TERM COMPUTATION
CALL ESTGEOIDEPTH.ICODE.NMAX.MMAX.IDEP)
C
C READ DUMP LOCATION COORDINATES AND DENSITY STRUCTURE ...
80 C ...ALSO NUMBER OF VELOCITY LAYERS AND LOG PROFILE INDICATOR
CALL AMBC(DEPTH.NMAX.MMAX.IDEP)
C
C READ TIME OF DUMPCW/R TO START OF TIDAL CYCLE)» DURATION OF
C SIMULATION. AND TIME STEP IN LONG TERM
85 READ<5»45> TDUMP.TSTOP.DTL
45 FORMAT(SEIO.O)
MODEL LISTING (4 of 85)
-------
SUBROUTINE MAIN CDC 6400 FTN V3.0- BPA OPT»1 05/21/79 17.21.59. PAGE
WRITE(6,125) TDUMP,TSTOP»DTL
125 FORMAT//10X,25HTIME PARAMETERS FOLLOW.../10X,15HTIME OF DUMP = t
1 F10.2.35H SECONDS AFTER START OF TIDAL CYCLE/10X,25HOURATION OF S
90 SIMULATION = fF10.2.19H SECONDS AFTER OUMP/10X,28HLONG TEHM TIME ST
3EP (DTD = ,F10.2,flH SECONDS)
IF1KEY4 ,EO. 0) GO TO 124
READI5.45) DT1U.DT2U
WR1TEI6.119) DT1U.OT2U
95 119 FOHMATI/////10X.40HINTFGRATION TIME STEPS SPECIFIED BY USER /10X
It 14HIN DUMP. DT = »G14.5»5X,16HIN COLAPS, OT a tG14.5)
124 CONTINUE
C
C
100 C SET PRINTING TIMES ACCORDING TO IPLT
IF(IPLT)150.150.170
C HERE TO SET DEFAULT PRINTING TIMES
150 DTPsTSTOP/4.
INC=OTP/DTL*.0001
105 IF(DTP .LT. OTLJ INC=1
DTP=FLOAT(INC)«OTL
00 160 1=1*4
160 TPRT(I>=FLOAT(I)»OTP
IF(TPRT(4) .GT. TSTOP) TPRT(4)=TSTOP
llu GO TO 180
C HERE TO SET USER SPECIFIED PRINTING TIMES
170 CONTINUE
READ(5«45)< TPRTII).I=1,IPLT)
C
115 C KEAD INITIAL VELOCITY FIELD
180 CALL UW (O..U.W.NMAX.MMAX)
C CONVECTIVE DESCENT...
CALL DUMP
IND=NUTRL+IPLUNG
120 IF(KEY2 .EG. 1) GO TO 800
IFUPLUNG .EO. 1) GO TO 250
C CHECK DENSITY GRADIENT AT CLOUD LOCATION
NN=NROA-1
DO 200 1=1,NN
125 IF(CYdSTEP) .GE. Yd) .AND. CYUSTEP) .LE. Y(I*1)> OENQKA =
1 «OAU«\)-ROA(I>
200 CONTINUE
IF(DENGRA .GT. l.OE-10) GO TO 250
WRITEI6.205)
MODEL LISTING (5 of 85)
-------
SUBROUTINE MAIN CDC 6400 FTN V3.0- BPA OPT=1 05/21/79 17.21.5V. PAGE
130 205 FOWMATUH1,10X»56HOENSITY GRADIENT = 0. GO DIRECTLY TO LONG TERM 0
1IFFUSION )
C ....IF KEY2=2.TERMINATE COMPUTATION....
IF(KEY2 .EQ. 2) 800*250
C DYNAMIC COLLAPSE...
135 250 CALL COLAPS(SS.U.W,DEPTH.NS,NMAX,MMAX,NVL)
IF(KEY2 .EQ. 2) GO TO 800
C
C LONG TERM DIFFUSION FOLLOWS
C DETERMINE NUMBER OF COMPLETE TIDAL CYCLES AND FRACTION OF LAST
1*0 C TIDAL CYCLE TO PUN
TSUM=(TDUMP»TSTOP)/3600.
NCYCLE=TSUM/25.».0001
XS=TDUMP*TSTOP-25.«3600.*FLOAT(NCYCLE)
IFtNCYCLE .EQ. 0) NCYCLE=1
145 C CLEAR SUM OF BOTTOM ACCUMULATION
DO 260 M=1,MMAX
DO 260 N=1,NMAX
260 SUM(N,M)=0.
C
ISO C LOOP ON COMPONENTS
TMAXT=0.
TMAX1 = 0.
DO 400 K=1.NSP1
GONE=0.
15b ETS=0.
IDTL = 0
IF(K .EO. NSP1 .AND. KEY3 .Eti. 0) GO TO 400
IF(KEYMAX.NE.1)GO TO 600
WRITE(6,265) PARAM(K)
160 600 CONTINUE
265 FORMATUH1//10X.38HBEGIN LONG TERM SIMULATION OF FATE OF tA10>
C CLEAR ARRAYS
DO 270 M=1,MMAX
DO 270 N=1,NMAX
165 C(N«M)=CBACK(K)
THICK(NtM)=0.
TOP(NtM)=0.
ACCUM(N,M)=0.
270 CONTINUE
170 C DO BOOKKEEPING FOR MASS TRANSFER FROM SHORT TERM TO LONG TERM
CALL BOOKS(K,SS.TSlDE.TTHK,TTOP,TMASS.TX.TZ,NStDEPTH.ACCUM.U.*
1. NMAX.MMAX.NSCtNVL)
MODEL LISTING (6 of 85)
-------
SUBWOUTINE MAIN CDC 6400 FTN V3.0- BPA OPT=1 05/21/79 17.21.59. PAGE
INOPRT=1
C
175 00 300 ICYCLE=1.NCYCLE
IFST=1
ILST*25.»3600./DTL * .0001
IFdCYCLE .EO. 1) IFSTsTDUMP/OTL * .0001
IFUFST .LT. 1) IFST = 1
1BO IFdCYCLE .EO. NCYCLE) ILST=XS/DTL » .0001
DO 300 IDTL2 = IFSTtlLST
C ETS IS ELAPSED TIME FROM DUMP (IN SECONDS)
ETS=ETS*DTL
C UPDATE VELOCITIES
1«5 CALL UW(ETS»U»W»NMAX»MMAX)
C SET PRINT INDICATOR PRT
PRT=.FALSE.
IF(ABS(ETS-TPRT(INOPRT)) .GT. .01) GO TO 280
PRT=.TRUE.
190 INDPRT=INOPRT«1
280 CONTINUE
C CALL ROUTINE TO MOVE AND DIFFUSE CLOUDS
CALL MAO
-------
SUBHOUTINE MAIN CDC 6400 FTN V3.0- BPA OPT = 1 05/21/79 17.21.S9. PAGE
340 SUM(N.M)=SUM
-------
SUBROUTINE MAIN CDC 6400 FTN V3.0- BPA OPT*1 05/31/79 17.31.59. PAGE
WHITEI6.405)
260 405 FORMAT
00 410 M=1,MMAX
DO 410 N=1,NMAX
410 COUT.ETS.b.I CODE>
C1*U.*BVOID)/AREA
00 440 M=1»MMAX
DO 440 N=1«NMAX
440 COUT(N«M)r SUM « .001
295 WRITE(6»515) IDL»TO(I>
515 FOHMAT(10X,12HOILUTION IS »I6»13H TO 1 WITHIN .F10.3.19H SECONDS A
1FTEW DUMP )
530 CONTINUE
WRITE(6»535)
300 535 FOHMAT(//10Xt 54HDILUTION TIMES ARE FOR POINT OF MAXIMUM CONCENTHA
1TION. »
305 800 CALL SECONDIT2)
T3=T2-T1
WRITE(6.805)T3
805 FORMAT(27H1RUN COMPLETED* CPU TIME = .F7.3.5H SEC.)
RETURN
310 END
MODEL LISTING (9 of 85)
-------
SUBROUTINE ESTGEO CDC 6400 FTN V3.0- BPA OPT=1 05/31/79 17.31.59. PAGE
SUBROUTINE ESTGEO (DEPTH. I CODE .NMAX* MM AX , IOEP)
C ROUTINE TO DEFINE ESTUARY GEOMETRY AND CODED ARRAY
COMMON/BAY/ OX ,OTL .XBARGE » £BARGE »DXH»DXRf ARE A
COMMON/GUIDE2/NINO.NL1NE < 150 > »MF < 150) tML ( 150 )
1) COMMON/HA/ AA1 (4»31»31) t AA2 (4.31 131 ) » A A3 (4 » 31 » 31 ) »AA4<4«31»31>»
1 KEYMAX
COMMON/ID/IDTL
DIMENSION f)EPTH(31,31)
DIMENSION ICODE(31,31)
10 C READ GRID SPACE STEP
READI5.45) OX
45 FORMAT (8E10.0)
IFfKEYMAX.NE. 1)60 TO 180
WRITE(6<65 ) NMAX,MMAX,DX
15 GO TO 181
180 WRirE(6,190)DX
190 FORMAT (/. 10X»20HGRID SPACING (DX) = «F13.5)
181 CONTINUE
6b FORMAT ( 1 OX , 56HNUM8FH OF LONG TERM GRID POINTS IN 2-DIKECTION H
DO 210 M=1.MMAX
35 DO 210 N=1,NMAX
DEPTH(N,M) =H
210 CONTINUE
300 CONTINUE
C GENERATE CODED ARRAY
40 IWPT=0
DO 20 M=1.MMAX
DO 20 N=1,NMAX
ICODE (N,M) =1
MODEL LISTING (10 of 85)
-------
SUBROUTINE ESTGEO CDC 6400 FTN V3.0- BPA OPT«1 05/21/79 17.21.5V. PAGE
IF«24> .EQ. NMAX> NCP=NCP-1
IN2 = 0
DO 130 IP=1.NCP
80 IN1=IN2*1
IN2=IN2+24
IF(NMAX .LT. IN2) IN?=NMAX
IF 260 CONTINUE
117 FORMAT(2X.4HM N=.I?»24I5X)
MODEL LISTING (11 of 85)
-------
SUBROUTINE ESTGEO CDC 6400 FTN V3.0- BPA OPT=1 05/21/79 17.21.S9. PAGE
DO 120 M=1,MMAX
IF(KEYMAX.NE.1)GO TO 270
WHITE<6»119) Mi(DEPTH(NfM)iN=INlfIN2)
90 270 CONTINUE
119 FORMATUX.I2.1X.24F5.0)
120 CONTINUE
IF
-------
SUBROUTINE AMBC CDC 6*00 UN V3.0- BPA OPT = 1 05/81/79 17.21.59. PAGE
SUBHOUTINE AMRC(DEPTH»NMAX,MMAX,IDtP)
DIMENSION OEPTHU1.31)
COMMON/DIMEN/ NS.NSP1.NVL.NSC
COHMON/AMB/ NROA.IY.Y(10)iROA(10)»H
5 COMMON/BAY/ DX,DTL.XBARGE.ZBARGE.OXH»DXR»AREA
COMMON/VSPECS/ IFOHM,DUl»DU2»UUl,UU2»DWl»OW2.WWl»WW2tDLl»DL2
COMMON/HA/AA1(4,31,31) »AA2<4,31,31> »AA3(4,31«31> »AA4(4,31,31> »
1 KEYMAX
c
10 C HEAD X AND Z COORDINATES (W/R TO LONG TERM GRID. IN FEET) OF
C BARGE POSITION
REAO(StS) XBARGE»ZBARGE
5 FORMAT(BEIO.O)
510 CONTINUE
15 C ....READ NUMBER OF POINTS WHERE AMBIENT DENSITY SPECIFIED....
READ<5,15) NROA
15 FOHMATU6I5)
C ....HEAD VERTICAL DISTANCES FROM FREE SURFACE WHEHE DENSITY SPECIFIED....
REAUC5, 5) ,!=J,JJ)
55 FORMAT(9X.7HAMBIENT/9X,15HDENSITY (GM/CC)»5X,8G12.4)
60 CONTINUE
C
40 C ....CONVERT AMBIENT DENSITY FROM UNITS OF GM/CC TO SLUGS/CUFT...
DO 70 1=1,NROA
70 ROA(I)=ROA(I)«1.94
C SET H EQUAL TO DEPTH INTERPOLATED FROM FOUR GRID POINTS SURROUNDING BARGE
MODEL LISTING (13 of 85)
-------
SUBROUTINE AM9C CDC 6400 FTN V3.0- BPA OPT = 1 05/21/79 17.21.59. PAGE
CALL DINT(X8ARGE»28ARGE»H»DEPTH»NMAX»MMAX)
45 WRITE(6»75) H
75 FORMAT//10X,44HINTERPOLATEO DEPTH AT DUMP COORDINATES. H = »
1 G12,4»4H FT. »
WRIFE(6,95)
95 FORMATI/10X.10I8H ))
50 C
READ (5,165) IFORM
165 FOHMATU6I5)
IFdFORM .GE. 4) HEAD<5»5) DU1 ,DU2,UU1 ,UU2«DW1 ,DW2,WW1,WW2
GO TO (430,440,450,460). IFORM
55 430 WRITE<6,435)
435 FORMAT(///10X,68HSINGLE VELOCITY PLANE USED WITH VELOCITIES CONSTA
INT IN THE VERTICAL )
GO TO 480
440 WRITE<6»445)
60 445 FORMAT(///10X,53HSINOLE VELOCITY PLANE USED WITH LOGARITHMIC VELOC
1ITY / 10X.65HDISTRIBUTION SUCH THAT VERTICAL AVERAGE EQUALS SPECIF
2IED VELOCITY )
GO TO 480
450 WRITE<6,455)
65 45b FORMAT(///10X,96HTwO VELOCITY PLANES USED WITH STRAIGHT LINE INTER
1POLATION (SEE FIGURE 6.2(C) FOR INTERPRETATION) )
GO TO 480
460 WRITE(6,465) DU1.OU2.UU1»UU2»DW1,DW2tWW1,WW2
465 FORMAT(//10X,73HTWO VELOCITY PROFILES SPECIFIED IN X AND L DIRECT
70 1IONS FOR --OUICK LOOKS--/1OX.63HDEPTH ASSUMED CONSTANT AND VELOCIT
2IES CONSIDERED STEADY IN TIME/10X.37HVELOCITY PROFILE PARAMETERS F
30LLOW... /1-OX,6HOU1 = »G11.3.IX«6HDU2 = »G1 1.3,1X.6HUU1 = »G11.3»
4 1X.6HUU2 = »G11.3/10X,6HDW1 = »G11.3,1X,6HDW2 = ,611.3»1X.6HWW1 =
5 ,G11.3,1X,6HWW2 = ,611.3)
75 480 CONTINUE
RETURN
END
MODEL LISTING (14 of 85)
-------
SUBROUTINE DUMP CDC 6400 FTN V3.0- BPA OPT«1 05/21/79 17.21.59. PAGE
SUBROUTINE DUMP(SS.U.W,DEPTH,NS,NMAX»MMAX.NVL>
C THREE-DIMENSIONAL AXI-SYMMETKIC INSTANTANEOUS RELEASE OF ENTIRE
C LOAD FROM BARGE
C
5 EXTERNAL OERIVO
DIMENSION DEPTH(31,31)
COMMON/AMB/ NROA.IY.Y(10)tROA(lO)»H
COMMON/CLOUD/T(600)fCX(600),CY(600),CZ(600>.CU(600),CV<600)
It CW(600)fOENDlF(600)fRC<600)«AA(600>»FC(60Q)»VF
10 COMMON/PIECES/ PARAM(13).ROAS(13)«CS(13).VFALL(13).VOIDS(1J)»HVOID
l«ICOHESU2)tVFALLC<13>tVFALSC<20»13),VFALLD(31.31»13>
COMMON/GUIDE I/ TOUMP.TSTOPtI STEP.IPLUNG.NUTRL.NTRIAL»I LEAVE*
1 KEY1.KEY2.KEY3
COMMON/GPI/ G.PItRR
15 COMMON/STCOEF/ ALPHA,ALPHAO,ALPHACtBETA,CORAG.CFR1C»CD,CD1»CD2
1« C03,CD4,CM,DINCR1»OINCH2,FRICTN,GAMA,F1
COMMON/LTCOF/ ALAMOA»DIFtAKYO
COMMON/DTEFS/ DT»DTltOT2
COMMON/COL/ AO.IBEOtFBED
20 COMMON/SWITCH/ ITF
COMMON/GP/IGCN.IGCL»IGLTfIPCN.IPCL»IPLT
COMMON/USEROT/ KEY4.DT1U.DT?U
js. COMMON/FLEE/ ITDfTD(6)fOC(61«CINITtCBACK(13)fCTRACE(600)
cn COMMON/COMP1/ E(22l
25 COMMON/BAY/ OXtDTLfXBARGEf£BARGEtDXH»DXR»AREA
COMMON/HA/AAl(4t31t31)»AA2U»31.31)«AA3(4.31f31)»AA4(4•31f31> «
1 KEYMAX
DIMENSION VORT(600).ACONC(12)»SAVE(?2>
DIMENSION U(3U31t2)fW(31«31*2) »SS(600il2)
30 REAL MLL*LLIM
C
NTR1AL=0
KV = 1
IBED=0
3S ILEAVE=999
NSP1=NS»1
C
c ....HERE TO SET INITIAL CONDITIONS....
READ(5,25) RB.DREL.CU(1).CV(1).CW(1)»HOO.BVOIO,LLIM,SGAVE
40 WRITE(6»125)RB,DHEL»CU(1)tCV(l)«CW(1>.ROO.BVOID^LLIM.SGAVE
125 FORMAT(//10X.23HDISCHARGF PARAMETERS.../10X.30HINITIAL RADIUS 0
IF CLOUOt RR » ,G15.7/10Xt40HINITIAL DEPTH OF CLOUD CENTROIU* DHEL
2= .G12.4/10X.35HINITIAL CLOUO VELOCITIES...CU(1) « ,612.4,3X,
MODEL LISTING (15 of 85)
-------
SUBROUTINE DUMP CDC 6400 FTN V3.0- 8PA OPT = 1 05/31/79 17.31.59. MAGE
3 BHCVU) = »G12.4,3X.8HCW<1) = .G12.4//10X,18HBULK PARAMETERS.../
45 4 10X»15HDENSITY. ROD = «G15.7/10X»31HAGGP-EGATE VOIDS RATIOt BVOID
5= .G12.4./10X,15HLIQUID LIMIT = .G12.4,/10X.27HA»/ERAGE SPECIFIC GR
6AVITY = .613.4)
WRITE<6«135)NS
135 FORMATC//10X.10HTHERE ARE «I2»34H SOLIDS. PARAMETERS FOLLOW...
50 1....//10X.90HDESCRIPTION DENSITY(GM/CC) CONCENTRATION(CUFT/CUFT)
3 FALL VELOCITY(FT/SEC) VOIDS RATIO /)
IFfKEYMAX.£0.1)60 TO 310
DO 300 KJ=ltNS
PEAD(5»35)PARAM(KJ).POAS(KJ),CS(KJ).VFALL(KJ)«VOIDS(KJ).ICOHES(KJ)
5b ROAS(KJ) = SGAVE
300 CONTINUE
GO TO 330
310 CONTINUE
DO 150 K=1,NS
60 READ(5.35) PARAM(K),POAS(K),CS(K).VFALL(K).VOIDS(K).ICOHES(K)
35 FORMATIA10.4E10.0.I5)
150 CONTINUE
330 CONTINUE
DO 151 KK*1.NS
65 WRITE(6.145) PARAM(KK),ROAS(KK),CS(KK),VFALL(KK)»VOIDS(KK)
U5 FOHMAT(llX»A10.3XtG12.4»9XtG12.4,15X.G12.4t 5X,613.4)
151 CONTINUE
C READ INFO FOR DILUTION OF CHEMICAL TRACER
READ(5»192)PARAM(NSP1) .C IMT .CBACK (NSP1 )
70 193 FORMATIA10.3E10.0)
C CHANGE TRACER CONCENTRATION FROM MG/L TO MG/(CU FT)
CBACK(NSP1)=CBACK«»3/3.
80 CIVS=CIV
CIM=ROO»CIV
DO 170 Kr^l.NS
C SET SOLIDS 9ACKGROUND TO BE ZERO
C PROGRAM CAN NOT HANDLE NON-ZERO SOLIDS BACKGROUND
85 C8ACK(K)=0.0
SV=CS(K)«CIVS
MODEL LISTING (16 of 85)
-------
SUBROUTINE DUMP CDC 6400 FTN V3.0- BPA OPT = 1 05/21/79 17.21.59. PAGE
SM=SV*ROAS(K>
CS(NSP1)=CS(NSP1) - C5(K)
CIV=CIV-SV
90 C1M=CIM-SM
170 CONTINUE
FD=CIM/CIV
WHITE(6.145) FLUID»FD»CS.VFALL(NSP1)
IFIFD .GE. .97) GO TO 190
95 WRITE<6,185)
185 FORMAT/!OX»44HFLUID DENSITY LESS THAN .97 GM/CC» CALL EXIT )
CALL EXIT
190 CONTINUE
C ....CONVERT UNITS FROM GM/CC TO SLUGS/CUFT....
100 00 200 1=1,MS
200 ROAS(I) =ROASU)*1.94
ROO=ROO«1.94
PCM=100.*CS(NSP1>/(SGAVE«(1.-CS(NSP1)))
MLL=PCM/LLIM
1U5 IF(MLL.GT.2.9) GO TO 850
1FIMLL.LT.1.43) GO TO 820
ALFANO=-0.0021eS^IMLL*"*1*0.0440555*(MLL««3)-.3119«(MLL*«2)
1+.91839«(MLL)-.67273
GO TO 900
110 820 IF(MLL.LE.1.22) GO TO 840
ALFANO=.58286*(MLL-1.22)
GO TO 900
840 ALFANO=0.001
GO TO 900
lib B50 ALFANO = 0.285*0.00493*(MLL-2.9)
900 CONTINUE
IF(KEYMAX.NE.1)GO TO 324
V(RITE(6«965) PCM,MLLtALFANO
324 CONTINUE
120 965 FORMAT(//10X,27HPEHCfNT MOISTURE CONTENT = .Fl 0.4 , 1H»»F10.4,
123H TIMES LIQUID LIMIT,/10X,37MCALCULATED ENTRAINMENT COEFFICI
2ENT = ,F10.6)
CDNEW=0.7-0.5«TANH(3.2*(MLL-1.875))
CMNEW=1.075-0.675*(TANH(3.2»
-------
SUBROUTINE: DUMP coc 6*00 FTN vj.o- BPA OPT=I 05/21/79 17.21.59. PAGE
130 330 CONTINUE
65 FORMAT/////10X,37HUSE TETRA TECH SUGGESTED COEFFICIENTS )
DINCR1=1.
DINCR2=1.
ALPHAO=ALFANO
135 BETA=0.
CM=CMNEW
CD=CDNEW
CDRAG=1.
GAMA=0.25
140 CFRICr.Ol
CD3=.l
ALPHAC=.001
FRICTN=.01
1*5 Fl=0.1
ALAMDA=.005
AKYO=.05
GO TO 80
C
1^0 C ....HERE TO READ IN COEFFICIENTS....
70 WRITE(6t75>
75 FORMAT /////! OX. 24HUSF REAO IN COEFFICIENTS )
READ(5»25) DINCR1»DINCR2
REAO(5.25) ALPHAO.RETA.CM.CD
155 IFIALPHAO.LE.IO.) GO TO 950
AUPHAOsALEANO
950 CONTINUE
IFfCD.LE.10.) GO TO 975
CO=CONEW
160 975 CONTINUE
IF (CM.LT.10.) GO TO 985
CM=CMNEW
985 CONTINUE
REAO(5.25)GAMA.CDRAG,CFRIC.CD3,CD4»ALPHAC.FRICTN,F1
READI5.25) ALAMDAtAKYO
25 FORMAT(8E10.0)
C
C ....HERE TO WRITE COEFFICIENTS....
80 IF(KEYMAX.NE.l) GO TO 350
WRITEI6.85) OINCR1 .DINCR2
85 FORMAT ( 1 OX .6HDINCH1 »F10. 4. 7H DINCR2.F10.4)
WRITE(6,95) ALPHAO,BETA.CM,CD
MODEL LISTING (18 of 85)
-------
SUBROUTINE DUMP CDC 6400 FTN V3.0- BPA OPT*1 05/21/79 17.Z1.59. PAGE
95 FORMAT < 10X( 6HAI_PHAO»MO.*»5H BETA.F10.4»3H CM.F10.4.3M CD.F10.4)
WRITE (6* 105) GAMA«CDRAG»CFRlC.C03tC04»ALPHACtFHICTN»Fl
175 105 FORMAT U OX. 4HGAMA.5X *F5.2f 3X.5HCORAG*2X,F5.2.3X.5HCFHIC» 1X.F5.3.
I 2Xt 3MC03«2XtF5.2»lX»3HCD4*lX.F5.2*lX«6HALPHAC»f 10.4/10X»6HFKICTN»
2 F10.4.1X.2HF1»F10.4 )
WRITE (6,1 15) ALAMOA.AKYO
115 FORMAT (10X»6HALAMDAfF 10. 4» IX. 4HAKYO.F1 0.4/1
180 3bO CONTINUE
C ....SAVE AMBIENT DENSITY AT Yd)....
ROAA*ROA<1>
Cl*
EE1*E1«R8/C1
C TOTAL NUMBER OF EQUATIONS
C LONG TERM DIFFUSION PARAMETER
190 C THE HORIZONTAL SCALE OF THE AMBIENT DIFFUSION PHENOMENON
HAS BEEN SET AT 30 FT IN THIS MODEL SO AS TO BE INDEPENDENT
OF OHIO SPACING. THE ORIGINAL VERSION HAD A DX IN PLACE
C OF THE 30. IN THE FOLLOWING STATEMENT
D1F«ALAMDA»30.»»1 ,333333*DTL/DX»«2
195 IF(DIF .GT. .2) DIF*.2
C ....END OF INITIAL CONDITIONS....
C
C ....SELECT TIME STEP FOR INTEGHAT IONS. . . .
IF(ROA(NROA) .NE. ROA < 1 ) ) GO TO 230
ZOO IF(CVd) .NE. 0.) GO TO 220
210 ACEL«32.21*(ROO-ROA(1))/(ROO»0.5«ROA(1)>
DT»«2.)
IF(DT-DTl) 250*240*240
240 OT *DU
C
C ....INITIAL POSITION OF CLOUD CENTROID (W/R TO BARGE)
215 250 EQIsO.
MODEL LISTING (19 of 85)
-------
SUBROUTINE DUMP COC 6400 FTN V3.0- BPA OPT=1 05/21/79 17.21.59. PAGE
E(2I=OREL
E<3)=0.
C ....INITIAL MASS OF CLOUD....
VOLUME=2.»PI «RB«»3/3.
220 E(4)=ROO«VOLUME
C ....INITIAL MOMENTA....
CMMASS=CM»E(4)
E(5)=CMMASS«CU(1)
E(6)=CMMASS»CV<1>
225 E(7)=CMMASS«CW(1)
C ....INITIAL BUOYANCY....
E(8)=(HOA(1)-ROD)»VOLUME
C ....INITIAL VOWTICITY..,.
E(9)=RB*CV(1)«FLOATCKV)
230 C ....SUBTRACT VOLUME OF VARIOUS SOLID COMPONENTS FROM TOTAL WASTE
C VOLUME. VF, AND PLACE IN E ARRAY. REMAINDER IN VF IS
C VOLUME OF FLUID WASTE....
VF=VOUUME
DO 260 K=1,NS
23b E(K«9)=CS(K)»VOLUME
260 VF = VF-E(K»9)
DO 270 1 = 1,NE
270 SAVE(I)=F
-------
SUBROUTINE DUMP coc 6400 FTN V3.0- BPA OPT«1 05/21/79 17.21.59. PAGE
NUTHL«0
260 IPLUNG'O
DO 410 1*1, NE
410 E(I>«SAVE
C
C ....HERE TO BEGIN COMPUTATIONAL LOOP IN TIME....
265 C ....STORE RESULTS FROM INITIAL CONDITIONS OR PREVIOUS COMPUTATION
C IN APPROPRIATE ARRAYS....
420 CX(ISTEP)*E(1)
CY(ISTEP)=E<2)
CZ
C BCaDIAMETER OF CLOUD
—i AA(ISTEP)*(1.5*VOLUME/PI)««.333333
280 BCUSTEP)=2.«AAUSTEP>
C SS IS SOLID CONCENTRATION IN VOLUME RATIO
DO 430 K=1,NS
430 SSUSTEP»K)=E(K*9)/VOLUME
C FLUID CONCENTRATION
285 FCt ISTEP) aVF/VOLUMf.
VlNIT*2.»PI«WB«»3/3.
CTRACE< ISTEP) = (CINIT«VINIT«(VOLUME-VINIT)«C8ACK(NSP1»)/VOLUME
DR«CTRACE(ISTEP)/CINIT
IF(DR ,GT. OC(ITD)) GO TO 460
290 TO(ITO)=TUSTEP>
ITO*ITD»1
460 CONTINUE
C NEW OVERALL DENSITY OF WASTE CLOUD
ROO=E(4)/VOLUME
295 C INTERPOLATE FOR AMRtlENT DENSITY AT VERTICAL POSITION E(2)
ROAA=ROA(IY) *(F.(2)-Y(IY) ) « (ROA (IY* 1) -ROA (IY) )/(Y(IY»l)-Y(IY))
C CONVERT DENSITY DIFFERENCE BACK TO GM/CC AND STOHE IN DENDIF
DENDIFIISTEP)=(ROO-ROAA)«.51545
C TEST FOR BOTTOM ENCOUNTER
300 IF((CY(ISTEP)*3.«AA(ISTEP)/B.> .GE. H) IPLUNG=1
C TEST FOR LOOP EXIT
MODEL LISTING (21 of 85)
-------
SUBROUTINE DUMP CDC 6400 FTN V3.0- BPA OPT=1 05/21/79 17.21.59. PAGE
IFUPLUNG .EO. 1) GO TO 500
IFINUTRL .EO. 1) GO TO 500
IFUSTEP .GE. 600) GO TO 500
305 C SOLVE EQUATION SET FOR NEXT TIME STEP
CALL RUNGS(OERIVD»NE»U,W,DEPTH,NMAX,MMAX,NVL)
ISTEP=ISTEP*1
T(ISTEP)=T(ISTEP-1)*DT
GO TO 420
310 C ....END OF LOOP IN TIME....
C
500 IF(KEYMAX.NE.1)GO TO 502
C PRINT OUT VARIABLES GUIDING JUST COMPLETED SOLUTION TRIAL
WRITE<6»505) NTRIAL»DT,IPLUNG.NUTRL,ISTEP
315 505 FORMAT! 9X,I5,G16.8,2X,316)
502 CONTINUE
C ITF SAVES LAST TIME STEP OF DESCENT PHASE
ITF=ISTEP
C TEST FOR PROPER NUMBER OF TIME STEPS IN CONVECTIVE CALCULATIONS
320 IFUSTEP .LT. 100 .OR. ISTEP .GT. 200)510.520
510 DT = DT«FLOATUSTEP) »DINCR/150.
_, C IF FIFTH TRIAL COMPLETED, GO TO OUTPUT SECTION, IF NOT RETURN FOR
tn C NEXT TRIAL
w IF=2.«PI «AA(J)««3«SS(J,K )/3.
340 WRITE(6,535) T(J),CX(J),CY(J),CZ(J),CU(J)»CV(J)»CH(J) ,DENt)IF(J)
1,AA(J), BC(J), VORT(J),FC(J),ACONC(1),SS(J,1)
535 FORMAT! 4X,4F8.2,F6.2,F7,3,F6.2,E12.4.2F7.2,1X.F7.4.3E12.4)
IF(NS .EO. 1) GO TO 560
DO 540 K=2,NS
Model listing (22 of 85)
-------
SUBROUTINE DUMP C0c 6400 FTN V3.0- 8PA OPT*1 05/21/79 17.Z1.59. PAGE
345 540 WRITE<6,545> ACONC,SS(J.K)
545 FOHMATU01Xt2E12.4)
560 CONTINUE
600 IF(IGCN.EO.O) GO TO 700
C ....HERE FOR GRAPHING...,
350 ISTEP1«ISTEP*1
T
CX(IST£Pn*2.«CMISTEP)-CXtISTEP-l>
CZ(ISTEP1)=2.»CZUSTEP)-CZ*0.
355 AA(ISTEP1)=0.
CTRACEUSTEP1)«0.0
CALL DRAW*0.
NG=4
IF
IFINS ,LE. 4) GO TO 700
77! 365 NG=4
4Si JF(NS ,LT. 8) NG=NS-4
CALL DRAW(T.T.TtTiSS(1.5).SSIIt6),SSI1»7)»SS(1.8).ISTEP1.4.NG>
IF(NS ,LE. 8> GO TO 700
NG=4
370 IF(NS .LT. 1Z) NG=NS-8
CALL D«AW(T,T.T.T,SS(1.9).SS(1.10).SS(1111)»SS11.12)tlSTEPl .7.NG)
700 CONTINUE
C
C ....SHIFT DATA TO PREPARE FOR COLLAPSE PHASE....
375 DTlsDT
DO 730 K=1,NS
I=NS-K
730 E(I»11)=E(I«10)
E<9)=AA(ISTEP)
360 AOaAA(ISTEP)
IFdPLUNG .EO. 1) GO TO 720
E(10)=0.
RETURN
C ....HERE IF CLOUD HAS HIT BOTTOM....
3B5 720 E(10)=ROO«PI «E(9)««3«(2.666666«CV(ISTEP))/32.
IBED=ISTEP
RETURN
END
MODEL LISTING (23 of 85)
-------
SUBROUTINE MAD CDC 6400 FTN V3.0- BPA OPT=1 05/Z1/79 16.53.32. PAGE
SUBROUTINE MAD(K»ETS»X.Z»U»W»C.THICK*TOP.DEPTHtACCUM»CP»THICKP»
1 TOPP»COUT.ICOOE»TSIDE»TTMK.TTOP»TMASS»TX»TZtNMAX,MMAX)
C ROUTINE TO COMPUTE MOVEMENT AND DIFFUSION
DIMENSION OEPTH(31,31)
5 DIMENSION U(31,31,2).W<31»31,2)
DIMENSION ICOnE(31,31)
DIMENSION C(31,31).THICK(31,31).TOP(31.31)
l.ACCUMt31,31),CP<31,31)
2, TOPP (31,31) tCOUTOl t31) ,TMASS(100) .TSIDE(IOO) »TTOP (100) »
10 3TXU001 tTZ< 100) tTTHM 100) tTHICKP(31.31 >
4, X(31,31),2(31.31)
COMMON/GUIDE2/NIND,NLINEI150)tMFU50).ML(150)
COMMON/BAY/ OX,DTL,XBARGE»ZBARGE»DXH»DXR,AREA
COMMON/DIMEN/ NS.NSP1.NVL.NSC
15 COMMON/HA/AA1(4,31,31),AA2(4,31,31),AA3(4,31»31)•AA4(4,31,31)t
1 KEYMAX
COMMON/NVIDTL
COMMON/PIECES/ PARAMIIS) »ROAS
-------
SUBROUTINE MAO CDC 6400 FTN V3.0- BPA OPT-1 06/21/79 16.S3.3Z. PAGE
CMAX'O.
*5 1*0
B«0.
A«0.
DO 20 Msl.MMAX
00 20 N«1,NMAX
50 IFUHICMN.M) ,EQ. 0.) GO TO 18
A»A*THICMN»Ml
B»B+TOP(N,M)
l«I«l
IS CONTINUE
55 CMAX«AMAX1(CMAX»C
75 DO 300 MST=MFST»MLST
IF( ICODE(NST,MST) .GT.l) GO TO 200
C NST AND MST ARE INDEX OF GRID POINT X(NST.MST) AND Z
-------
SUBROUTINE MAD CDC 6400 FTN V3.0- BPA OPT=1 05/31/79 16.53.32. PAGE
CP(N,M)=CBACK(K)
THICKP(N.M>=0.
330 TOPP(N,M)=0.
90 C
C COMPUTE NEW CONCENTRATIONS FOR ALL POINTS IN BAY
CM = 0.
DO 510 NUM=liNIND
NST=NLINE(NUM)
95 MFST=MF(NUM)
MLST=ML(NUM)
DO 510 MST=MFST.MLST
ZN=Z
CALL AVE5PT(N«1,M ,C3.TH2.T2.ISUM.1,C.THICK,TOP»ICODE.NMAXf
1MMAX,DEPTH(N+1,M),K)
CALL AVE5PT(N+l.M+l,C3.TH3.T3»ISUM.2.C»THICK.TOP«ICODE»NMAX»
1MMAX.DEPTH(N»1,M*1),K)
115 CALL AVE5PT(N .M»l.C*»TH4»T4«ISUM*3tC»THICK»TOP»ICODE.NMAX.
1MMAX,DEPTH(N,M*1).K)
CP(NST»MST)=C8ACK(Kt
THICKP(NST,MST)=0.
TOPP(NST»MST)=0.
120 TN=AMAX1
-------
SUBROUTINE MAO CDC 6400 FTN V3.0- BPA OPT=1 05/21/T9 16.53.33. PAGE
130 TOPP(NST»MST)sTl
GO TO 500
402 CP(NST,MST)«C2
TOPP(NST,MST)=T2
GO TO 500
135 404 CP(NST»MST)=C3
TOPP(NST,MST)=T3
GO TO 500
408 CP(NST.MST)»C4
TOPP(NST.MST)«T4
140 GO TO 500
403 CP(NST.MST)*(C2-C1)»EN»C1
TOPP(NST.MST)a(T2-Tl)«EN»Tl
IF(T1 .LT. Q .OR. T2 .LT. Q) TOPCNSTtMST)*AMAX1«EM+C2
—' 150 TOPP(NST»MST)s(T3-T2)«EM«T2
OD IF(T2 .LT. Q ,0f». T3 .LT. Q)TOPP(NST.MST)»AMAX1(T2»T3)
GO TO 500
409 CP(NST»MST)=(C4-C1I«FM»C1
TOPP(NST»MST)=(T4-Tl)«fM«Tl
155 IFU1 .LT. 0 .OR. T4 .LT. 0) TOPP (NSTiMST) =AMAX1 (T 1 *T4>
GO TO 500
405 IF (EN«EM-.25) 401,421,404
421 CP(NST,MST)=.5«(C1+C3)
TOPP(NST»MST)=.5«(T1»T3)
160 1F(T1 .LT. Q .OR. T3 .LT. Q)TOPPTOPP(NST,MST)»AMAX1(T2,T4)
GO TO 500
407 AO=EN1«EM
IF (AD .EQ. 0.0) (iO TO 402
CP(NST,MST)=(EN1«((C2-C1)«EN«C1)»EM»((C3-C2)«EM«C2))/AO
170 TOP1*(T2-T1)«EN»T1
IFIT1 .LT. 0 .OR. T2 .LT. Q)TOP1=AMAX1(Tl,T2)
TOP2=(T3-T2)«EM«T2
MODEL LISTING (27 of 85)
-------
SUBROUTINE MAO CDC 6400 FTN V3.0- BPA OPT*1 05/21/79 16.53.32. PAGE
IMT2 .LT. 0 .OR. T3 .LT. Q)TOP2=AMAX1
TOPP (NST.MST) = (ENHTOP1 »£M«TOP2) /AD
17b IFUOP1 .LT. 0 .OR. TOP2 .LT. 0)TOPP(NST,MST>=AMAX1(TOPI.TOP2)
GO TO 500
411 AD= EN*EM
IF (AD .EO. 0.0) GO TO 401
CP(NST.MST)=»EM
TOP2=(T4-T1)«EM«T1
IFIT1 .LT. 0 .OR. T4 .LT. 0)TOP2=AMAX1(Tl»T4)
TOPP(NST.MST)=/AO
IHS IF(TOP1 .LT. Q .OR. TOP2 .LT. Q)TOPP(NST.MST)=AMAX1(TOPI.TOR.2)
GO TO 500
413 AD=EN+EM1
IF (AD .EO. 0.0) GO TO 408
CP(NST.MST) = =(EN1»((C3-C4)«EN*C4)»EM1«((C3-C2)»EM»C2))/AD
200 TOP1=(T3-T4)«EN«T4
IF(T3 .LT. Q .OS. T4 .LT. 0)TOP1=AMAX1(T3»T4)
TOP2=(T3-T?)«EM»T2
IF(T2 .LT. 0 .OH. T3 .LT. 0)TOP?=AMAX1(T2.T3)
TOPP(NST,MST)=(EN1»TOP1+EM1«TOP2)/AD
205 IFUOPJ ,LT. 0 .0«. TOP2 .LT. 0> TOPP (NSTfMST) =AHAX1 (TOP] ,TOP2)
GO TO 500
415 CONE=(C2-C1>»F.N»C1
CTWO=(C3-C4)«EN*C4
CP
TOP2=(T3-T4)«EN»T4
IF(T3 .LT. Q .OR. T4 .LT. GU TOP2=AMAX1(T3»T4)
TOPP(NST,MST) = (TOPa-TOP 1)*tM»TOPl
215 IF(EM .LT. .0001) GO TO 500
MODEL LISTING (28 of 85)
-------
SUBROUTINE MAO
CDC 6400 FTN V3.0- BPA OPT = 1 05/21/79 16.53.32.
PAGE
CM
O
230
225
230
235
240
2*5
250
255
IF'THICK(NSTtMST)•
1 AREA»CBACK(K)«(DEPTHJNST»MST)-THIC1<(NST»MST))»AREA
C(NST»MST) =CP
-------
SUBROUTINE MAD CDC 6400 FTN V3.0- BPA OPT = 1 Ob/21/79 16,53.32. PAGE
1AREA»CBACK(K)«(DEPTH(NST.MST)-THICK(NST,MST))"AREA
260 C DTOP ESTIMATES VARIATION OF CLOUD DEPTH DUE TO CONVECTION OVEH
C VARIABLE DEPTHS
CALL DINT(X(NST»MST),Z(NST,MST)»DO1.DEPTH.NMAX.MMAX)
DTOP=(001-DEPTH(NST,MST))«TOP(NST,MST)/DD1
550 TOP(NST,MST)=TOPP(NST»MST>-DTOP
265 GONE=GONE«C1-C?
IF( (CMAX-CRACK(K)) .LT. l.E-20) 60 TO 55b
C ADD MASS LOST RV DIFFUSION LIMITING
C
275 MLST=ML(NUM)
DO 680 MST=MFST»MLST
1F .F.O. 0) GO TO 610
cn IF(C(NST,MST) ,LE. 0.0000096) VFALLD(NST.MsT»K)=0.0017
—' 280 IF(C(NST,MST) .GT. 0.0000096 .AND. C(NST.MST) .LE. 0.000115)
1VFALLD(NST,MST»K)=(,00713s(C(NST,MST)*2600000.)»»1.33333)/304.8
IF=0.0f7
610 DIST=VFALLD(NST.MST,K)»DTL
IF( (C(NST.MST)-CBACK(K)) .EQ. 0. .OR. ICODE(NST,MST) .GT. 1) GO
285 1TO 680
611 XS=OEPTH(NST,MST)-TOP(NST,MST)-THICK(NST,MST)
IF(XS .GE, DIST) SO TO 6*0
IF
-------
SUBROUTINE MAO CDC 6400 FTN V3.0- SPA OPT*1 05/31/79 16.53.32. PAGE
C(NST,MST)=CBACK(K)
TOP
THICK(NST.MST)sO.
305 GO TO 680
640 CONTINUE
TOP) .GT. DEPTH (NST.MSTM
1 TOP
DONK=2.0*SQRT(DCO«DTL/10.0>
OBOT=OBOT«OONK
IF
-------
SUBROUTINE MAD CDC 6400 FTN V3.0- BPA OPT=1 05/21/79 16.53.32. PAGE
345 MFST=MF(NUM)
MLST=ML(NUM)
DO 696 MST=MFST.MLST
IF(CINST.MST) .LT. CMAX2) GO TO 696
CMAA2=C(NST,MST)
350 NSTSV=NST
MSTSV=MST
696 CONTINUE
IF( (CMAX2-CBACKJK)) ,LE. l.E-30) GO TO 698
DR=CMAX2/CINIT
355 IF(OR .GT. DC(ITD)) GO TO 698
TD(ITD)=ETS
ITD=ITD»1
698 CONTINUE
C CHECK FOR MASS CONSERVATION
360 699 TNOWMsO.
TACCUM=0.
GMASS=0.0
DO 704 NUM=1,NIND
NST=NLINE(NUM>
365 MFST=MF(NUM)
MLST=ML(NUM)
DO 704 MST=MFST.MLST
TACCUM=TACCUM»ACCUM(NST.MST>
GMASS=GMASS»CBACK(K)»DEPTH(NST,MST)»AREA
370 IF(THICKtNST.MST) .EG. 0.0 .AND. ICODE(NST.MST) .NE. 2) TNORM=
1TNORM*CBACK(K)«AREA«DEPTH14.5
2/5X.46HSUSPENDED MATERIAL IN LONG TERM G«IO (CUFT) = .614.5
3/5X.44HSUSPENDED MATERIAL IN SMALL CLOUDS (CUFT) = .614.b
MODEL LISTING (32 of 85)
-------
SUBROUTINE MAD CDC 6400 FTN V3.0- BPA OPT«1 05/21/79 16.53.32. PAGE 10
4/5Xt42HTOTAL MATERIAL SETTLED TO BOTTOM (CUFT) « «G14.5
5//SXt55HOUTPUT SUPPRESSED IN LOCATIONS WITH NO MATERIAL PRESENT »
390 IF .GT. 1.) MRITE(6t715) GONE
910 CONTINUE
715 FOHMATI/10X.G12.5.72H CUFT OF MATERIAL (CUMULATIVE) LOST BY PA5SIN
16 THROUGH GRID BOUNDARIES >
395 IF(.NOT.PRT) RETURN
IDTL « IDTL « 1
C
C
C PRINT RESULTS IF REQUESTED BY INPUT DATA
400 IF(TNORM .LT. l.OE-06) GO TO 725 C
719 CONTINUE
DO 720 M«1,MMAX
DO 720 N>ltNMAX
900 FORMAT(//»7HVFALLD«»F14.6)
405 COUT(N,M)«C(N,M)-C8ACK(K)
AA1(IDTL»N»M) = AA1(IDTL«N»M) t C (N,M)-CBACK (K)
720 IF(K .EQ. NSP1) COUT(N,M)»COUT(N.M)/28.31602
IFIKEYMAX.NE.DGO TO 722
CALL PRINTC(COUTiNMAX»MMAX tPARAM(K)>ETStItICODE)
410 722 CONTINUE
DO 770 M*1.MMAX
DO 770 N*1«NMAX
AA3M * AMIN1(AA3(IDTL»N«M)«TOP(N»M))
IF(AA3(IDTL,N,M).LT.0.00001)AA3M=TOP(N,M)
415 AA3(IDTL«NtM) = AA3M
770 COUT(NfM)=TOP(N.M)
IF(KEYMAX.NE.1)GO TO 772
CALL PRINTC(COUT«NMAX*MMAXtPARAM(K),ETS,3.ICODE)
772 CONTINUE
420 DO 780 M>1,MMAX
DO 780 N=1,NMAX
AA4M * AMAX1 (AA4(IDTLtN«M) tTHKK(N,M»
AA4(IDTLtNtM) • AA4M
780 COUT(N»M)»THICK(N.M)
425 IFIKEYMAX.NE.DGO TO 782
CALL PRINTC(COUT»NMAX»MMAX»PARAM(K),ETSt4.ICODE)
782 CONTINUE
72b IF(K .Ed. NSP1) GO TO 760
IF(TOTAL.GT.1,OE-06)GO TO 1002
430 DO 1003 IDTL-IDTL.4
MODEL LISTING (33 of 85)
-------
SUBROUTINE MAO CDC 6400 FTN V3.0- BPA OPT = 1 05/21/79 16.53.32. PAGE 11
DO 1003 M=ltMMAX
DO 1003 N=1»NMAX
1003 AA2(IDTL,NtM)=AA2(IDTL.N»M)»ACCUM(N,M)
GO TO 732
435 1002 DO 730 M=1,MMAX
DO 730 N=1,NMAX
AA2UDTL.N.M) = AA2 (IDTL»NtM) + ACCUM(N»M)
730 COUT
IF(KEYMAX.NE.l) GO TO 732
440 CALL PRINTC ETS.PARAM(K)
445 980 CONTINUE
805 FORMAT(18H1 SMALL CLOUDS AT .F10.2.27H SECONDS ELAPSED TIME FOH
X»A10»//
1 2X»lHNt7X.lHX»13X«IHZtlIX.5HTMASS»9X.5HTSIDE»10X»4HTTHKt9X.4HTTOP
2 )
450 WRIT£(6f81S> (N.TX(N)«TZ(N)«TMASS(N),TSIDE(N),TTHK(N),TTOP(N)t
1VFALSC(N,K),N=1,NTCLD)
990 CONTINUE
815 FORMAT(1X,I2,1X,7G14.4)
&90 RETURN
455 END
MODEL LISTING (34 of 85)
-------
SUBROUTINE THNSPT CDC 6400 FTN V3.0- BPA OPT-1 05/21/79 16.53.32. PAGE
SUBROUTINE TRNSPT (ZZ.XX.YY.U.W.DEPTH.ICODE.NMAX.MMAX.NVL)
DIMENSION OEPTH(31,31)
DIMENSION ICOOE(31.31)
DIMENSION U<31,31t2).W<31«31»2)
5 COMMON/BAY/ DX.DTL.XBAR6E.ZBAR6EjDXH.DXR.AHEA
COMMON/POINT/ MST.NST
N*ZZ»DXR«.5
M«XX«DXR«.5
C DETERMINE VELOCITIES
10 CALL VEL1
ZZ=FLOAT(NE)«DX
1 IF(NE .LE. NMAX) 60 TO 2
20 NEcNMAX
ZZ«FLOAT(NE)»DX
3 IF(ME ,6T. 0) 60 TO 3
ME=1
XXsFLOAT(M£l»DX
3i> 3 IF 60 TO 4
ME'MMAX
XX=FLOAT(ME>»DX
4 CONTINUE
ITMP=ICOOE
30 IF (ITMP .NE. 2) 60 TO 50
ZZ»FLOAT(N)«DX
XX=FLOAT(M)«DX
50 RETURN
END
MODEL LISTING (35 of 85)
-------
SUBROUTINE AVE5PT CDC 6400 FTN V3.0- BPA OPT=1 05/21/79 16.53.32. PAGE
SUBROUTINE AVE5PT
COMMON/BAY/ OXtOTLtXBARGE,ZBARGE«DXH»DXR.AREA
10 COMMON/COR/ CM.CMAX
COMMON/LTCOF/ ALAMOA«DIF»AKYO
COMMON/FLEE/ ITD»TD(6),DC<6),CINIT,CBACK<13)»CTRACE(600)
EPSLN=2.QE-05»(CMAX-CBACMK))
COCEAN=0.
15 IF(N.LT.1)N=1
IF(M.LT.1)M=1
IF(N.6T.NMAX)N=NMAX
IF(M.GT.MMAX)M=MMAX
IF(ICODE(N,M)-2)1,2.3
_, 20 2 CONC=0.0
en XTOP=0.
-^ THK=0.
RETURN
3 CONC=CBACK(K)
25 XTOH=0.
THK=0.
GO TO 200
C
I C1=C(N,MI
30 T1=TOP(N,M)
TH1=THICK(N,M)
IF«C1-CBACK(K)).GT. EPSLN) GO TO 7
CM=CM»(C1-CBACK(K))«THl«AWtA
C1=CBACK(K)
35 C(N,M)=CBACK(K>
TOP(N,M)=0.
THICK(N»M)=0.
7 CONTINUE
C
40 C2=C(N-1,M)
T2=TOP(N-1,M1
TH2=THICK(N-1,M)
IF«C2-CBACK(K) ) .GT. EPSLN) GO TO 9
MODEL LISTING (36 of 85)
-------
SUBROUTINE AVE5PT CDC 6400 FTN V3.0- BPA OPT«1 05/21/79 16.53.32. PAGE
CM=CM»(C2-CBACK(K))«AREA«THICK(N-l.M)
45 C2=CBACK(K>
C(N-1»M)=CBACK
60 T3=TOP(N*1,M)
TH3=THICK(N«ltM)
IF((C3-CBACKIK)) .GT. EPSLN) GO TO 27
CM=CM«(C3-CBACK(K))"THICK(N*1»M)»AREA
_, C3=CBACK(K)
01 65 C(N«1»M)=CBACK(K)
00 TOP(N»1,M)=0.
TH1CK(N*1,M)=0.
27 CONTINUE
IF(ICOD£(N*ltM) .NE. 2) GO TO 30
70 C3=C1
T3=T1
TH3=TH1
30 IF(ICOOE(N+ltM) ,N£. 3) GO TO 40
C3=CBACK(K)
75 T3=T1
TH3=TH1
C
40 C4=C(N,M»1>
T4aTOP(N.M»l)
80 TH4=THICK(N»M»1)
IF( (C4-CBACK(K) ) .GT. EPSLN) GO TO <»7
CM=CM«(C4-CBACK(K)>»THICK(N,M«1)»AREA
C4=CBACK(K>
C(NtM»l)=CBACK(K)
85 TOP(N,M»1)=0.
THICK(N»M»1)=0.
MODEL LISTING (37 of 85)
-------
SUBROUTINE AVE5PT CDC 6400 FTN V3.0- BPA OPT = 1 05/21/79 16.53.3H. PAGE
47 CONTINUE
iFiicoDE(N,M»i> .NE. 2> GO TO so
C4 = C1
90 T4 = T1
TH4=TH1
50 IF (ICODE(NiM*l) .NE. 3) GO TO 60
C4=CBACK(K)
T4 = T1
95 TH4=TH1
C
60 C5=C(NtM-l)
T5=TOP(N,M-1>
TH5=THICK(NtM-l)
100 IF((C5-CBACKIK)) .GT. EPSLN) GO TO 67
CM=CM+ (C5-C8ACK (K» « THICK* N.M-1) *AHt"A
C5=CBACK(K)
C(NtM-l)=CflACK(K)
TOP(N,M-1)=0.
105 THICK(N,M-1)=0.
67 CONTINUE
IFUCODE(N»M-i> .NE. 2) GO TO 70
C5=C1
T5=T1
110 TH5=TH1
70 IF(ICOOE(N,M-1> ,N£. 3) GO TO 80
C5=CBACK(K)
T5 = T1
TH5=TH1
115 80 CONTINUE
C
c SET THICKNESS AND TOP OF NEW ELEMENT TO AVERAGE OF CONTRIBUTING ELEMENTS
INUM=0
TOPSUM=0.
120 IF(TH1.EQ. O.I GO TO 63
INUM=INUM*1
TOPSUM=TOPSUM«T1
83 IF(TH2.EQ. 0.) GO TO 84
INUM=INUM+1
125 TOPSUM=TOPSUM*T2
84 IF(TH3.EO. 0.) GO TO 86
INUM=INUM*1
TOPSUM=TOPSUM+T3
86 IFUH4.EQ. 0.) GO TO 88
MODEL LISTING (38 of 85)
-------
SUBROUTINE AVE5PT
CDC 6400 FTN V3.0- BPA OPT«l 05/21/79 16.53.32.
PAGE
130
135
1*0
1*5
150
C
C
INUM*INUM«1
TOPSUMsTOPSUM»T4
88 IFUH5.EO. 0.) GO TO 92
92
TOPSUM«TOPSUM»T5
IFUNUM .EQ. 0) 60 TO 190
THK*AMAM»AREA»
CEF**
CONC*CEFl-OIF«(4.»CEFl- »P(2400)
IB5*IB/5
UB*LIA«IB5«1
DECODE (5. 1000, P(LIB» BUF
1000 FOHMATI5AU
INTO PROPER PRINT
BUM IRES) =SYM
ENCODE(5tlOOO,P1
NON-ANSI
NUN ANS1
MODEL LISTING (39 of 85)
-------
SUBROUTINE PRINTC CDC 6400 FTN V3.0- BPA OPT=1 05/21/79 16.53.32. PAGE
SUBROUTINE PRINTC(OUT»NMX«MMXtPARAM,ET»L8L,ICODE)
DIMENSION OUT(31»31)
DIMENSION ICODE<31,31)
DIMENSION IPRU2B),NUM(10)
5 DATA IB.LND.ISEA.IPLUS,IDOT /IH , 1HL»1HO»1H»»1H./
DATA NUM(l),NUM<2>,NUM<3),NUMU),NUM<5),NUM<6),NUM(7>.NUMI8)»
1 NUM<9> .NUMUO) /1HO,1H1.1H2«1H3,1H4»1H5»1H6»1H7,1H8»1H9/
C
C SCALE ARRAY FOR OPTIMUM PRINTOUT
10 NMAX = NMX
PMAX=0.
DO 50 M=1,MMX
DO SO N=1,NMX
50 PMAX=AMAX1(PMAX»OUT(N,M))
15 P10=l.
IP10=1
IF(PMAX .GT. 0.) IP10=ALOG10(PMAX)
IFdPIO .GF. 3) P10=10.»«(IP10-2)
IFIIPIO ,LT. 0) P10=10.««(IP10-1)
20 DO 60 M=1,MMX
DO 60 N=1,NMX
60 OUT(N.M)=OUT(N,M)/P10
C
GO TO (150,200,250,300,350»400,«50),LBL
25 150 WRITE(6.155) PARAM.ET
155 FOHMAT<19H1CONC£NT«ATIONS OF tA10.29H (VOLUME HATIOJ IN THE CLOUD
1» F10.2.19H SECONDS AFTER DUMP )
GO TO 500
200 WRITE(6.215) PARAM.ET
30 215 FORMAT
-------
SUBROUTINE PRINTC CDC 6400 FTN V3.0- BPA OPT = 1 05/21/79 16.53.32. PAGE
GO TO 500
45 400 WRITEI6.405) ET
405 FORMAT(59H1TOTAL ACCUMULATED SOLID VOLUME ON BOTTOM (CUFT/GRIO SQR
lit .F10.2.19H SECONDS AFTER DUMP )
GO TO 500
450 WRITE<6,455)ET
50 455 FORMAT(48H1TOTAL THICKNESS (FT) OF NEW MATERIAL ON BOTTOM. •
1F10.2»19H SECONDS AFTER DUMP )
BOO CONTINUE
WRHE(6«505> P10
505 FORMATO3H ...MULTIPLY DISPLAYED VALUES BY ,G11.4.5X,60H(LEGEND...
55 1*3 .LT. .01 . = .LT. .0001 0 = .LT. .000001))
C
C SET UP PAGE DIVISIONS FOR PRINTING OF ARRAY
NCP=NMX/32«1
IF«NCP-1>»32 .Ed. NMAX) NCP=NCP-1
60 IN2=0
DO 1000 IP=1»NCP
IN1=IN2*1
IN2=IN2«32
IFINMX .LT. IN2)IN2=NMX
65 WRITE(6«605)
C
DO 100 M=1,MMX
DO 10 Isltl28
70 10 IHR(I)=IB
DO 1 N=IN1,IN3
J=4«N
L=OUT(NtM)».5
IF(1COOE(N,M) ,EO. 2) GO TO 2
75 IF(ICOOE(N»M) .EO. 3) GO TO 7
IF (L.GE. 1000) GO TO 6
IF (L .GE. 100) GO TO 3
IF (L .GE. 10) GO TO 4
IF(OUT(N,M) ,GF. 1.) GO TO 30
80 IF(OUT(N,M) .LT. l.OE-06) GO TO 25
IF(OUT .LT. .01) GO TO 8
IF(OUT(N,M) .LT. .1) GO TO 20
IPR(J-2)=IDOT
85 N1=10.«OUT(N,M)
IPR(J-1)=NUM(N1«1)
MODEL LISTING (41 of 85)
-------
SUBROUTINE PRINTC CDC 6400 FTN V3.0- BPA OPT*1 05/21/79 16.53.32. PAGE
N2=100.«OUT(N,M)-10.«FLOAT(N1)
IPR(J)=NUM(N2»1>
GO TO 1
90 30 LF=OUT(N,M)
LL=10.«(OUT-FLOAT
IPR(J)=NUM(N2»1)
GO TO 1
105 2 IPR(J)=LND
IPR(J-1)=LNO
^ IPR(J-2)=LND
oo IPR(J-3)=LND
GO TO 1
110 7 IPR(J)=ISEA
IPR(J-1)=1SEA
IPR(J-2)=ISEA
IPH(J-3)=1SEA
GO TO 1
115 6 N1 = L/1000 '
IPRIJ-3)=NUM(N1+1)
N1=L-1000*N1
N2=N1/100
IPR(J-2)=NUM(N2+1)
120 N2=N1-100*N2
N3=N2/10
IPR(J-1)=NUM(N3*1)
N1=N2-10*N3
IPR(J)=NUM(N1»1)
125 GO TO 1
3 N1=L/100
IPR(J-2)=NUM(N1+1)
N1=L-100«N1
N2=N1/10
MODEL LISTING (42 of 85)
-------
SUBROUTINE PRINK CDC 6400 FTN V3.0- BPA OPT»1 05/21/79 16.53.32. PAGE
130 IPR(J-l)sNUM(N2»l)
N1=N1-10«N3
IPRU)sNUM IN ESTUARY COORDINATES. RETURNS DEPTH (OEP)
5 DIMENSION DEPTH<31.31)
COMMON/BAY/ DX.DTL«XBARGE»ZBARGE.OXH»DXH»AREA
ZN=ZD»OXR
XM=XO«DXR
N=ZN».0001
10 M=XM«.0001
ENrZN-FLOAT(N)
EM=XM-FUOAT(M)
IFIEN .LT. .0001) EN=0.
IF(EM .LT. .0001> EM=0.
15 D1=DEPTH(N,M)»EN»(DEPTH(N»1,M)-DEPTH(N,M))
D3=DEPTH(NfM»1)«EN»(DEPTH
DEP*D1*EM«(02-01)
RETURN
END
MODEL LISTING (43 of 85)
-------
SUBROUTINE VOIFCO CDC 6400 FTN V3.0- BPA OPT=1 05/21/79 16.53.32. PAGE
SUBROUTINE VDIFCO(N,M»YY.AKY»U»WtDEPTH»NMAX«MMAX»NVL)
C ROUTINE TO COMPUTE VERTICAL DIFFUSION COEFFICIENTS
DIMENSION DEPTH(31,31)
DIMENSION U(31»31t2)tW<31»31f2)
5 COMMON/BAY/ DX,OTL.XflARGE»Z8ARGE»DXH»DXRtAREA
COMMON/GPI/ G.P1
COMMON/LTCOF/ ALAMQAtDIF,AKYO
COMMON/AM8/ NROA.IY.Y(IO),ROA(10)»H
C DETERMINE DENSITY AND VELOCITY GRADIENTS
JO IF(N.GT.NMAX) N=NMAX
IF(M.GT.MMAX) M=MMAX
IY = 0
10 IY=IY+1
IFCYY .GE. Y(IY) .AND. YY ,LE. Y(IY»D) GO TO 20
15 GO TO 10
20 RHO=ROA(IY)+(ROA(IY»1)-ROA(IY>)»(YY-Y(IY))/«OX
ZZ = FLOAT(N)»DX
CALL VEL(XX»Yl,Z2.UAlfWAl»UtWtDEPTH»NMAXfMMAX)
CALL VEL(XX»Y2,ZZtUA2tWA2»U,WfDEPTH,NMAX»MMAX)
VELGRA=SQRT«UA2-UA1)«»2 + (WA2-WA1) «»2)/2.
25 IF/OEPTH(N,M)
C DETERMINE RICHARDSON NO.
30 IFtVELGRA '.ME. 0.) GO TO 40
AKY=0.
IF(DENGRA.LT.l.OE-aO) AKY=AKYO
RETURN
40 RI=G»DENGRA/(RHO»VELGRA«»2)
35 C CHECK BOUNDS
IFIRI .LT. 0.) RI=0.
IF(RI ,GT. 3.999999) RI=3.999999
C COMPUTE DIFFUSION COEFFICIENT
AKY=AKYO«(1.-.25«RI)
40 RETURN
END
MODEL LISTING (44 of 85)
-------
SUBROUTINE DEHIVD CDC 6*00 FTN V3.0- BPA OPT»1 Ob/21/79 17.07.05. PAGE
SUBROUTINE DEHIVD(E»U»W.DEPTH»NMAX»MMAX)
C ....CALLED PROM DUMP VIA RUNGS....
DIMENSION E<22)
DIMENSION OEPTMO1.31)
b COMMON/OPASS/ NPASS»HPASS
COMMON/DIMEN/ NS.NSP1.NVL.NSC
COMMON /A/ EP(22)
DIMENSION U(31,31.2).W(31.31,2>
COMMON/BAY/ DX.DTL.XBARGEf28AHGE.OXH»DXR,AREA
10 COMMON/AMB/ NROA,IY»Y<10>.WOA(10)tH
COMMON/PIECES/ PARAM<13),ROASU3>,CS<13I»VFALLU3>.VOIDSU3>.BVOID
1»ICOHES(12>.VFALLC(13).VFALSC(20,13)»VFALLD(31»31.13)
COMMON/GUIDEl/ TDUMP.TSTOP»ISfEP.IPLUNGfNUTRL»NTHIAL.ILEAVE.
1 KEYl.KEr2.KEV3
Ib COMMON/GPI/ G.PI.Rfl
COMMONXSTCOEF/ ALPHA,ALPHAO.ALPHAC.BETA.CDRAG.CFRIC.CO.CD1»CD2
It CD3.CD«.CM,DINCR1,DINCW2.FRICTN,GAMA,F1
COMMON/COL/ AO.IBEO.FBED
C
20 IF(E(2).GE.O.) GO TO 30
W»ITE(6.15)
15 FORMAT(IX .S1HDEPTH Y .LT. 0—CHANGE INPUT DATA TO ENSURE DESCENT)
CALL EXIT
C SET IY SO THAT CLOUD DEPTH E(2) IS BRACKETED BY YUY) AND Y(IY»D
25 30 IF(E(2) .LE. Y(IY»1» GO TO 40
IY=IY»1
GO TO 30
40 IF(E(2I-Y(IY)) 50.100.100
SO IY=IY-1
30 GO TO 30
C INTERPOLATE FOR AMBIENT DENSITY AT DEPTH OF CENTROID OF CLOUD...
100 ROAAaROAdYl »(E<2)-Y(IY) ) • (ROA (I Y»l)-ROA (I Y) )/(Y(IY»l)-Y(im
CEs(ROA(IY»l)-ROA(IY))/(YUY»l)-Y(IY)>
VOLUME=(E(4)»E(8))/ROA(1)
35 ROO=E(4)/VOLUME
IF (ROO .LE. ROAA) NUTRL=1
Bs(1.5«VOLUME/PI)»».333333
C
C DETERMINE HORIZONTAL VELOCITIES AT CLOUD
40 XXrXBARGE*EU)
2Z=/BARGE»E<3)
CALL VELIXX.EI2).22.UA.WA.U.W.DEPTH.NPASS.MPASS)
MODEL LISTING (45 of 85)
-------
SUBROUTINE DEHIVD CDC 6400 FTN V3.0- BPA OPT=1 05/ei/79 17.07.06. PAGE
IFIE19)) 110.110.120
45 110 ALPMA=ALPHAO
GO TO 200
120 ALPHA=ALPHAO«SQRT( TANH (tO'VOLUME*(ROO-ROAA)/(2.«PI «.1«>«ROO«
. E(9)»«2«ALPHAO))««2))
C
50 C MAIN COMPUTATIONS
200 CMMASS=CM»E(4)
UU=£<5)/CMMASS
VV=E(6)/CMMASS
WW=E(7)/CMMASS
55 PHI=SOHT<(UU-UA)»»2»VV*«2*(WW-WA)««2>
C ENTRAINED VOLUME IS...
ENTRV=2.«PI «B»*2*ALPHA»PMI
EP(1)=UU
EP(2)=VV
tO EP(3)=WW
EP(*)=ENTRV«ROAA
DRAG=CD«ROAA °PI «B««2'PHI».5
EP(b)=ENTKV*ROAA*UA -DRAG0(UU-UA)».5
EP(6)=VOLUME «(ROO-ROAA)»G-OHA6«VV
65 £P».b
EP(8)=ENTRV«(KOA(1)-ROAA)
EP(9)=-3.»B»*2«G«CE/ROA(1)
DO 250 K=1,NS
ABSWS=ABS(VFALL(K))
70 IF(ABSWb-ABS(VV)1220.220.830
C IF FALL VEL. IS SMALLER THAN THE CONVECTIVE VEL. NO SETTLING OCCURS
220 BETAA=1.
GO TO 240
230 8ETAA=HETA
75 240 SETLV=PI»B«*2»ABS(VFALL(Kn«(l.-BETAA)«E(K*9)/VOLUME
EP(4)=EP(4)-SF_TLV»(ftOAS(K) )
EP(5)=EP(5)-SETLV«(ROAS(K))«UU
EP(6)=EP(6)-SETLV»(ROAS(K))«VV
EP(7)=EP(7)-SETLV»(ROAS(K) ) «W*J
80 EP(8)=EP(8)-SETLV»(ROA<1)-ROAS(K))
EP(K»9)=-SETLV
250 CONTINUE
RETURN
END
MODEL LISTING (46 of 85)
-------
SUBROUTINE COLAPS CDC 6400 FTN V3.0- BPA OPT*1 05/21/79 17.07.05. PAGE
SU8HOUTINE COLAPS (SS.U.W, DEPTH. NS.NMAX, UMAX, NVL>
DIMENSION nEPTH(31,31>
DIMENSION U<31,31,2>.W<31,31,2),SS«SOO,12)
COMMON/ AMB/ NROA. IV.Y(IO) .ROAUO) »H
5 COMMON/CLOUO/T<600)»CX<600).CY(600>,CZ(600).CUI600).CVI600)
1« CM(600> .DENDIF (600) »BC (600) . A A (600) »FC (600) . VF
COMMON/PIECES/ PARAM ( 13) ,ROAS ( 13) .CS ( 1 3) . VFALL ( 13> . VOIDS ( 13) .BV01D
l.ICOHESU2>,VFALLCU3>,VFALSC<20,13),VFALLD<31.31,13)
COMMON/GUIDE!/ TOUMP.TSTOP. 1STEP, IPLUNG.NUTHL.NTRIAL* ILEAVE*
10 1 KEYl.KEYa,KEY3
COMMON/COL/ AO,IBED»FHED
COMMON/COMP1/ E2)
COMMON/GPI/ G.PI.HB
COMMON/STCOEF/ ALPHA. ALPHAO. ALPMAC tBET A.CDHAG.CFRIC.CO.COl »CDH
15 It C03.CD4fCM,OINC«l,DlNCR2»FHICTN.GAMA.Fl
COMMON/LTCOF/ ALAMOA.DIF. AKYO
COMMON/DTEES/ DT.DT1.DT3
COMMON/GP/IGCN.IGCL.IGLT.IPCN.IPCL.IPLT
COMMON/USEWDT/ KEY4.DTlU,Dr?U
20 COMMON/FLEE/ ITD.TD (ft) .DC (6) .CIN1T .CBACK ( 13) tCTRACE (600)
COMMON/HA/ AAK 4.31.31 >.AA2 (4, 31 «31) , AA3(4.31«31> • AA4U.31 «31> t
_, 1 KEYMAX
^l DIMENSION SAVEI22) ,ACONC(12)
00 EXTERNAL DEHIVC
25 C
OINCR=DINCP2
NSP1=NS»1
NTRIAL=0
ISAV=ISTEP
30 IFdSTEP .EQ. IBED) GO TO 10
C ....HEHE IF CLOUD HAS NOT ENCOUNTERED BOTTOM....
E1»(ROA(IY«1)-ROA(IY) )/(ROA( D«(Y
Bl= (AA(1STEP)««3«.84«EG»1 000. >**. 42857
35 DT2=.001«(B1/AA(ISTEP) )««3/EG«. 1
DT=DT2
GO TO 20
C ....HEHE IF CLOUD IS ON BOTTOM....
10 DT=DT1
40 IFfKEYMAX.NE.llGO TO 24
20 WRITE(6.25)
25 FORMATUH1.10X.23HCOLLAPSE PHASE OF CLOUD ///10X.27HCOMPUT ATIONAL
1 INDICATORS... /5X.6HNTR I AL.4X.2HDT,6X,6HlPLUNG,2X,5HNUTRL»2Xt
MODEL LISTING (47 of 85)
-------
SUBROUTINE COLAPS CDC 6400 FTN V3.0- BPA OPT*1 05/21/79 17.07.05. PAGE
? 5HISTEHt?X,4HIBEO*3X.6HILEAVE )
45 24 CONTINUE
IFIKEY4 .EG. 1) DT=DT2U
NE=NS»10
C SAVE STARTING VALUES IN E ARRAY...
DO 100 KK=1»NE
50 100 SAVE(KK)=E(KK)
C
C ....HERE TO BEGIN A TRIAL....
400 DO 410 KKsltNE
410 E(KK)=SAVE(KK)
55 NTRIAL=NTRIAL+1
ISTEP=ISAV
VOLUME*
C ....HERE TO BEGIN MAIN COMPUTATIONAL LOOP IN TIME....
C ....SAVE RESULTS OF PREVIOUS COMPUTATIONS....
420 CX( ISTEP)=E( 1)
70 CY(ISTEP)=E(2)
CZ(ISTEP)=E(3)
VOLUME=(E(4)«E(8))/ROA(1)
CMMASS=CM»E(4)
C E(9) IS SEMl-MAJOK AXIS
75 C BC IS HORIZONTAL DIMENSION OF CLOUD
BC(ISTEP)=2.«E(9)
C AA IS VERTICAL DIMENSION OF CLOUD
AA(ISTEP)=6."VOLUME/(PI»BC(ISTEP)»»2>
CU(ISTEP)=E(5)/CMMASS
80 CV
-------
SUBROUTINE COLAPS CDC 6400 FTN V3.0- BPA OPT*! 05/21/79 17.07.OS. PAGE
430 SS/CINIT
IF)/DT
C ....EXIT TESTS....
C IF CLOUD TOUCHES FREE SUHFACE . EXIT TO PRINTOUTS...
IF(CY(ISTEP)-AA(ISTEP).LE.O.) GO TO b70
IFUSTEP .LE. ISAV*5) GO TO 450
105 C IF CHANGE OF CLOUD MAJOR AXIS BY DIFFUSION IS .GT. OR EQUAL TO
C CHANGE IN MAJOR AXIS IN ONE TIME STEP. ATTEMPT EXIT TO BEGIN
C LONG TERM DIFFUSION....
IFUKX .GE. DBOT)NUTPL=3
—• 450 IF(NUTRL .EO. 3) GO TO 550
22 110 C IF CLOUD HIT BOTTOM WHILE COLLAPSING GO CALL BOTTOM1
IF (IPLUNG .EO. 2) GO TO 500
IFUSTEP .GE. 599) GO TO 550
460 VFALLC(NS»1)=VFALL(NS»1)
DO 455 K*1«NS
115 VFALLC(K)sVFALL(K)
IF««1.33333)/304.8
120 IF(SSdSTEP.K) .GT. 0.000115) VFALLC (K) =0.047
455 CONTINUE
CALL RUNGS(DERIVC.NE.U.W.DEPTH,NMAX.MMAX.NVL)
ISTEP=-ISTEP«1
T (ISTEP)=T(ISTEP-1)»DT
125 GO TO 420
C ....END OF MAJOR LOOP....
C
C ....HERE TO COMPUTE COLLAPSE ON BOTTOM....
500 IBEO=ISTEP
MODEL LISTING (49 of 85)
-------
SUBROUTINE COLAPS CDC 6400 FTN V3.0- BPA OPT»1 05/31/79 17.07.Ob. PAGE
HO DBT=£I10>»16,/(PI«.5«AA11 STEP)«,25«BC(I STEP)*°2»KOO)
E UO)=ROO*PI«.5'>AA(ISTF.P)«.25*BC»»2
1 «/<.5»AA
GO TO (530,540,550),NEXT
135 530 E<6)=CM»E<4>«CVUSTEP>
F<2)*CYUSTEP)
DBT=E<10>»9./«.2b«BCUSTEP)«»2»ROO)
E<10>=ROO«PI «AA tCV(J> »CW(J)»DENDIF(J)
1»AA(J),BC(J)»FC(J),ACONC(1),SS(J»1)
585 FORMAT! 1X,2F10.2,F8.2,G11.4,F6.2.F7.3,F6.2.E12.4,F7.2,G11.4,
» 3E12.4)
170 IF(NS ,EO. 1) GO TO 599
DO 590 K=2»MS
590 WRITE(6»59S)ACONC(Kl,SS(J.K)
MODEL LISTING (50 of 85)
-------
SUBROUTINE COLAPS CDC 6400 FTN V3.0- BPA OPT*! 05/21/79 17,07.05. PAGE
595 FORMATU01X.3EI2.4)
599 CONTINUE
175 00 615 K=l,NS
IFIICOHtS(K) .EQ. 0) GO TO 615
WRITE(6,605> P«RAM(K)»VFALLC=0.
FC(ISTEP1>=0.
CX(ISTEPl)=a.»CX(ISTEP)-CX(ISTEP-l>
CALL DHAW
190 CALL DHAW
-------
SUBROUTINE DERIVC CDC 6400 FTN V3.0- BPA OPT=1 05/21/79 17.07.05. PAGE
SUBROUTINE DERIVC(EtUtWtDEPTHtNMAX.MMAX>
C ....CALLED FROM COLAPS1 VIA RUNGS....
DIMENSION E(22)
DIMENSION DEPTH<31,31>
5 COMMON/DPA5S/ NPASSfMPASS
COMMON /A/ EPI22)
COMMON/BAY/ DX.DTL.XBARGEtZBARGEtDXH.DXRtAREA
COMMON/AMB/ NROA.1Y,Y<10)»ROA(10)»H
COMMON/PIECES/ PARAM(13)»ROAS(13)»CS(13).VFALLU3)»VOIDS(13)»BVOID
10 1.ICOHESO2) tVFALLC<13) • VFALSC (20. 1 3) tVFALLO<31»31t13)
COMMON/GPI/ G,PI«RR
COMMON/STCOEF/ ALPHAtALPHAO•ALPHAC»BETAtCDRAG.CFRICtCDtCD1tCD2
It C03tCD4»CM.DINCRl,PINCR2»FHlCTNtGAMAtFl
COMMON/COL/ AO.IBEO.FBED
15 COMMON/GUIDE!/ TDUMP»TSTOP»ISTEPtIPLUNGtNUTHL»NTHIALtILEAVE»
1 KErltKEY2tKEY3
COMMON/DIMEN/ NS.NSP1»NVLtNSC
DIMENSION U(31t31t2)tW(31»31t2)
C
20 IF(E(2).GE.O.) GO TO 30
_, WRITE<6tl5)
CD 15 FORMAT( 47H Y LT 0 — CHANGE INPUT DATA TO ENSURE DESCENT )
to CALL EXIT
30 IF(E(2) .LE. YUY+D) GO TO 40
25 IY=IY«1
GO TO 30
40 IF(E(2)-Y(ir)) BO.lOOtlOO
50 IY=IY-1
GO TO 30
30 100 ROAA=ROA(I¥)»(E(2>-Y(IY))»
-------
SUBROUTINE DERIVC CDC 6400 FTN V3.0- BPA OPT«1 05/21/79 17.07.05. PAGE
CMMASS=CM«E<4)
45 UU=E<5)/CMMASS
VV=E (6) / «A
WW=K Ot/CMMASS
PHl=SQRT( (UU-UA)««2*VV««2»
C CONTRIBUTION OF COLLAPSE TO THE TIP VELOCITY OF CLOUD
50 EP(9)*E <10)*16./
A2=.5»(A«*2»B/RT)«ALOG«B + RT)/(B-RT))
1AO ENTHVe?.«PI«(Al»A2)«(PHI«ALPHA »ALPHAC«EP <9) )
C
C MAIN COMPUTATIONS
60 EP(D=UU
EP(4)=ENTHV«ROAA
ORAG= PI «ROAA«PHI«.5
&5 EP (5) =ENTRV«ROAA«UA-ORAG*A*B« (UU-UA) «CD3
FP(6) =VOLUME« (ROO-ROAA) «G-ORAG»B«»2»VV«C04
EPm=ENTRV»ROAA«WA-DRAG«A*B«
-------
SUBROUTINE BOTTOM COC 6400 FTN V3.0- 8PA OPT = 1 05/21/79 17.07.05. PAGE
SUBROUTINE BOTTOM(SS.U,W»DEPTH,NS»NEXT.NMAX.MMAX»NVL)
EXTERNAL DERIVB
DIMENSION OEPTH(3l,31)
DIMENSION U<31,31.2).W<31»31,2).SS(600.12)
5 COMMON/AMB/ NROA.IY,Y(10)»ROA(10)«H
COMMON/CLOUO/T(600).CX(600).CV(600).CZ(600).CU(600)»CV(600)
1, CW(600).OENOIF(600).BC(600)tAA(600)fFC(600)»VF
COMMON/PIECES/ PARAM(13) «ROAS(13> «CS<13) .VFALL(13) .VOIDS (13) .8VOIO
1.ICOHESU2).VFALLCI13)•VPALSC(20t13)»VFALLO(31«31»13)
10 COMMON/GUIOE1/ TOUMP»TSTOP«IST£P»IPLUNG»NUTRL»NTRIAUtILEAVEt
1 Kfn,KEY2,KEY3
COMMON/GPI/ G.PI»RH
COMMON/STCOEF/ ALPHA*ALPHAO»ALPHAC»BETA«COHAtt»CFRIC»CD»CDl»CD2
1» CD3.C04.CM,OINCRHOINCR2»FRICTN.GAMA»F1
15 COMMON/LTCOF/ ALAMOA.DIF*AKYO
COMMON/COMP1/ E<2?)
COMMON/COL/ AO.IBEO.FBEO
COMMON/FLEE/ ITD.TDI6).00(6)tCINIT,CBACK(13),CTHACE(600)
COMMON/OTEfS/ OT»DTltOT2
20 C
VFALLC(NS»1)=VFALL(NS»1)
DO 105 K=1,NS
VFALLC(K)=VFALL(K)
105 CONTINUE
25 NE=10+NS
NSP1=NS«1
100 VOLUME=(E(4)«E(6))/ROA(l)
C E(9) IS SEMIMAJOR AXIS
BC(ISTEP)=?.«E(9)
30 AA(ISTEPJ=3.*VOLUME/(2.*PI «E<9)»«2)
ROO=E(4)/VOLUMF
IFdSTEP .NE. IBEO)120.130
C COMPUTE INITIAL BED REACTION FORCE ON PORTION OF HEMISPHERICAL
C CLOUD THAT HAS —PASSED THRU BOTTOM—
35 110 CONTINUE
RI=H-CY(JB£D>O.»E<9>/8.
VB=.333333«PI»RI»»2*(3.»E(9)-RI>
FBED=FBED»VB«G*(ROO-POA(NROA))»CM*VB*ROO*CV(IBED)/DT
GO TO 170
40 C
C START OF COMPUTATIONAL LOOP....
120 CX(ISTEP)=E<1)
CY /8.
MODEL LISTING (54 of 85)
-------
SUBROUTINE BOTTOM CDC 6400 FTN V3.0- BPA OPT*1 05/21/79 17.07.05. PAGE
CZ«. 51545
130 FBED*0.
DO 160 K«1.NS
IF(ABS(CV(1STEP)> .GT. ABS(VFALLC
^ . «<1.-8ETAA)«CV(ISTEP>
CT> 65 160 CONTINUE
IFdSTEP .EO. IBED) GO TO 110
FCUSTEPUVF/VOLUME
VINIT«2.»PI«RB»*3/3.
CTRACE(ISTEP)=(CINIT«VINIT»(VOLUME-VINIT)*CBACK(NSP1))/VOLUME
70 DR=CTRACE(ISTEP)/CINIT
IF(DR .GT. DC(ITD)) GO TO 460
TO(ITD>=T(ISTEP)
ITD=1TD»1
460 CONTINUE
75 FBED=FBED«.666666«PI »AA(ISTEP)«E(9) «»2*(ROO-ROAA)«G
1 -CM»(E(4)«CV(ISTEP)-E(6)«CV
-------
SUBROUTINE BOTTOM
CDC 6400
V3.0- BPA OPT=1 05/31/79 17.07.05.
PAGE
90
95
RETURN
210 IFUPLUNG .HE. 4) GO TO 230
ILEAVE=ISTFP
NEXT=1
RETURN
230 IFUSTEP ,LT. 599) GO TO 250
NEXT=2
RETURN
250 CALL RUNGS
AMX=A(1)
JMX=1
AMN=A(1)
JMN=1
00 100 J=2.N
IF(A(J).LT.AMX) GOTO 50
JMX=J
AMX=A(J)
50 CONTINUE
IF(A(J) .GT..AMN) GOTO 100
JMN=J
AMN=A(J)
100 CONTINUE
RETURN
ENO
MODEL LISTING (56 of 85)
-------
SUBROUTINE OERIV8 CDC 6400 FTN V3.0- BPA OPT«1 05/21/79 17.07.OS. PAGE
SUBROUTINE DERIV8(E»U»W»OEPTH»NMAX.MMAX)
C ....CALLED FROM BOTTOM VIA RUNGS....
DIMENSION E<22>
DIMENSION DEPTH(31»31)
5 DIMENSION U(31,31.2),W(31.31.2)
COMMON/OIMEN/ NS«NSP1tNVLtNSC
COMMON/OPASS/ NPASStMPASS
COMMON /A/ EP(22)
COMMON/BAY/ OXtDTL»XBARGE»ZBAHGEtDXH.DXR.AREA
10 COMMON/AMB/ NROAtIV.Y(10)»ROA(10)tH
COMMON/PIECES/ PARAM<13).ROAS(13>.CSU3)»VFALL<13)»VOIDS(13).BVOID
l»lCOHES(12)«VFALLCU3)»VFAL5C<20»13)»VFALLDC31»31tl3)
COMMON/COL/ AO.IBED.FBEO
COMMON/6PI/ G,PI»RR
15 COMMON/STCOEF/ ALPHA.ALPHAO.ALPHAC.BETA.CORAG.CFR1C.CO.CD1»CD2
It CD3»CD4,CM»OINCR1»DINCR2.FRICTN»GAMA»F1
COMMON/GUIDei/ TDUMP.TSTOP.ISTEPtlPLUNG.NUTRL.NTRIAL.ILEAVE*
1 KEY1.KEY2.KEY3
COMMON/DTEES/ DT.DT1.0T2
20 IF(E<2) .GT. H) E<2)«H
IF(EI2).GE.O.) GO TO 30
WRITEI6.15)
15 FORMAT( 47H Y LT 0 — CHANGE INPUT DATA TO ENSURE DESCENT )
CALL EXIT
25 30 IF(E(2) .LE. Y(IY»1» GO TO 40
1Y=IY*1
GO TO 30
40 IF(E<2>-Y(IY» 50.100.100
50 IY«IY-1
30 GO TO 30
100 ROAA»ROA(IY)«(E(2)-Y(IY))•(ROA(E(4)«E(B»/ROA(1)
ROOaE(4l/VOLUME
35 C A IS SEMIMINOR AXIS B IS SEMIMAJOR AXIS
B=E(9I
A*3.«VOLUME/(2.»PI »B»»2)
C
C DETERMINE HORIZONTAL VCuOCITIES AT CLOUD
40 XX=XBARGE»E(1)
ZZ*ZBARGE«E<3>
CALL VEL(XX.E(2)»ZZ»UA,WAtU,W.DEPTH,NPASS.MPASS)
MODEL LISTING (57 of 85)
-------
SUBROUTINE DERIVB
C CONTRIBUTION OF COLLAPSE TO TIP VELOCITY OF CLOUD
45 EP(9)=E(10)«16./(PI «A«B««2«ROO>
CMMASS=CM«E14>
UU=E(5)/CMMASS
WW=E(7)/CMMASS
PHI=SORT((UU-UA)«»2 +
-------
SUBROUTINE DEMIVB COC 64.J FTN V3.0- BPA OPT«1 05/21/T9 17.07.05. PAGE
EP(5J*ENTRV»ROAA»UA-D«AG«A*B»(UU-UA> »C03».5-FBED»FR1C TN»UU»PH
1 »TCOR
EP<6)»0.
90 EP<7>«ENTRV«ROAA«WA-DRAG*A«BMWW-WA)»CD3«.5-FBEO«FR1CTN»WW*PH
1 »TCOR
EP(8)*ENTRV»(ROA(1)-ROAA)
EP(10»* PI »<1.-GAMA«AO/A)»CE«G«A»«3«8/16.
•«»EP(5)-SETLV»tHOAS(K))«UU
EP(7)s£P(7)-SETLV*(ROAS(K))«WW
110 CP(8)sEP<8)-SETLV»(ROA(U-WOAS(Kn
EP(K»10 )=-S£TLV
OV«OV-SETLV»ROAS(K)
250 CONTINUE
C CONTRIBUTION OF ENTRAINMENT TO TIP VELOCITY OF CLOUD
115 EP<9)*EP<9)*DV« 0.75/(PI «A«B»HOO)
RETUKN
END
MODEL LISTING (59 of 85)
-------
SUBROUTINE UW CDC 6400 FTN V3.0- BPA OPT=1 05/21/79 17.07.05. PAGE
SUBROUTINE UW(ETS»UtW.NMAX.MMAX)
C ROUTINE TO READ A SET OF VELOCITIES FROM TAPE. THESE VELOCITIES
C AWE CONSTANT FOR ONE TIME STEP.DTL.
DIMENSION U<31,31»2)»W<31.31.2>
5 COMMON/OIMEN/ NS,NSP1.NVL.NSC
COMMON/BAY/ DX.DTL.XBARGE«Z8ARGE«DXH.DXR»AHEA
COMMON/GUIDE I/ TOUMP.TSTOP.ISTEPtIPLUNG.NUTRL.NTRIAL»ILEAVEt
1 KEYlfKEYZtKEY3
COMMON/VSPECS/ IFORM,DUl»DU2«UUl.UU2tDWl»0*2»WWl«WW2»DLl»DL2
10 INTEGER SKIP
IFIIFORM .EO. 4) RETURN
ICYCLE=ETS/90000.+1.
SKIP=1
C TTAPE RELATES TAPE TIME TO ELAPSED TIME
15 TTAPE=ETS»TOUMP
TSHIFT=FLOAT(1CYCLE-11*90000.
TTAPE=TTAPE-TSHIFT
IF1NVL ,GT. 1) GO TO 200
C
20 C HERE FOR SINGLE LAYER
50 REALM7) TUW
IF«TUW».01) .LT. 90000.) GO To 70
REWIND 7
GO TO 50
25 70 CONTINUE
IF(ABS(TUW-TTAPE) .LT. .01) S«IP=0
READ (7) ((U(N,M.l),N=1.NMAX).M=liMMAX)
1 .((W(N.M.l),N=1.NMAX)«M=1,MMAX)
IF(SKIP .EO. 1) GO TO 50
JO RETURN
C
C HERE FOR MULTI-LAYER VELOCITIES
200 CONTINUE
250 READ (7) TUW
35 IF((TUW«.01> .LT. 90000.) GO TO 270
REMIND 7
GO TO 250
270 CONTINUE
IF(A8S(TUW-TTAPE) .LT. .01) SKIP=0
40 READI7) DL1»DL2
DO 280 L=1,NVL
READ (7) ((U(N,M,L)»N=1.NMAX)»M=1»MMAX)
1 »«W(N,M,L) «N = 1.NMAX) .M=1,MMAX)
260 CONTINUE
45 IF(SKIP .EQ. 1) GO TO 250
RETURN
END
MODEL LISTING (60 of 85)
-------
SUBROUTINE VEL COC 6400 FTN V3.0- BPA OPT«1 05/21/79 17.07.05. PAGE
SUBROUTINE VEL
C SUBROUTINE TO SUPPLY HORIZONTAL VELOCITY DATA. GIVEN X.Y.Z.T
DIMENSION OEPTH(31,31)
COMMON/BAY/ OX,DTL,XRARGE,ZBARGE»OXH»OXR,AREA
b COMMON/DIMEN/ NS»NSP1tNVL»NSC
COMMON/VSPECSX IFORM,DU1»DU2.UU1»UU2»DW1,OW2.WW1»WW2»OL1»DL2
DIMENSION U<31,31.2)»W<31,31,2>
DIMENSION UIU),W1<4)
IFUFORM .EO. 4» GO TO 500
10 XX=XA
ZZ*ZA
C DETERMINE HORIZONTAL COORDINATES OF 4 POINTS SURROUNDING (XXtZZ) AND
C WEIGHT FACTORS FOR INTERPOLATION
30 ZN»ZZ»DXR
15 XMsXX»DXR
N=ZN».0001
MsXMt.OOOl
EN=ZN-FLOAT(N)
EM=XM-FLOAT(M)
20 1F(EN .LT. .0001) F.N = 0.
IF(EM .LT. .0001) EM=0.
C IF MORE THAN ONE LAYER, BRANCH
IFdFORM .EO. 3) GO TO 300
C HERE TO INTERPOLATE FOR VELOCITIES IN SINGLE LAYER
25 UA1=U(N»M,1)«EN*(U(N»1*M»})-U(N*M,1))
WA1=W(N,M,1)*EN*(W(N«1,M,1)-W(N,H,1))
UA2=U»€N«(W(N»1,M»1,1)-W(N,M«1,1))
UA=UA1*EM«(UA2-UA1)
30 WA=WA1»EM»(WA2-WA1)
C IF USING LOG PROFILE CORRECT VELOCITIES AS APPROPRIATE...IF NOT. RETURN
IFUFORM .EO. 1) GO TO 100
CALL DINT
-------
SUBROUTINE VEL CDC 6400 FTN V3.0- 8PA OPT=1 05/21/79 17.07.05. PAGE
45
00 380 1 = 1,4
NI=N
MI=M
IFU .EO. 2
IF(I .EQ. 3
IF+FRAC« / (DEPTH -DD2>
UKI»=U0.
380 CONTINUE
UA1=UI(1)»EN«(UI (2)-UI(l) J
WA1=W!U)»EN«|WI (2)-WI(l»
70 UA2=U1(3)»EN«(UI(4)-UI(3))
WA2*WI(3)*EN«(WI(4)-WI(3))
UA=UA1»EM»(UA2-UA1)
WA=WA1»EM»|WA2-WA1)
RETURN
75 C ...HERE TO INTERPRET — QUICK LOOK-- VELOCITY PROFILES.
500 CONTINUE
IF(YA .LE. DU1) GO TO 510
IF(YA .GE. OU2) GO TO 520
UA=UU1»(UU2-UUD«(YA-DU1)/(DU2-DU1)
80 GO TO 550
510 UA=UU1
GO TO 550
520 CALL DINT(XA«ZA«DO, DEPTH, NMAXtMMAX)
UA=UU2» (0.-UU2) • ( YA-OU2) / (00-DU2)
85 550 CONTINUE
IF(YA .LE. DW1) GO TO 560
MODEL LISTING (62 of 85)
-------
SUBROUTINE VEL CDC 6400 FTN V3.0- BPA OPT*1 05/Z1/T9 17.07.05. PAGE
IFIYA .GE. OW2) 60 TO 570
WA*WW1«(WW2-WW1>•(YA-DW1I/(OWZ-OWD
GO TO 600
90 560 MA'MWl
GO TO 600
570 CALL DINT(XA,ZA»DD.DEPTH,NMAX»MMAX>
WA«WW2«(0.-WW2)•(YA-DW2)/(DD-DW2)
600 RETURN
95 END
SUBROUTINE RUNGS CDC 6400 FTN V3.0- BPA OPT*1 05/21/79 17.07.05. PAGE
SUBROUTINE RUNGS(DERIVE»NE»U»W.D.NMAX»MMAX,NVL)
COMMON/COMP1/ E(22)
COMMON /A/ EP(22)
_, COMMON/DTEES/ DT.DT1.DT2
10 5 DIMENSION Wl(22)tW2(22>*W3<22>*W4<22>»Z(22)
-^ DIMENSION 0(31t31),U(31.31.2) .WO1.31.2)
C
c
CALL DERIVE(E.U.W.O.NMAX.MMAX)
10 DO 2 1=1.NE
W1(1>*OT*EPU>
2 Z(D=E(1>» W1(I)*0.5
CALL OERJVE(Z.U.W»0»NMAX,MMAX)
DO 3 1*1,NE
15 W2(I)*DT»EP(I)
3 Z(I)=E(I)»W2(I)»0.5
CALL DERIVE(Z,U»W,O.NMAX.MMAX)
00 4 1=1.NE
W3(I)*DT»EP(I)
20 4 Z(D=E(I)+W3(I)
CALL DERIVE
DO 7 1*1,NE
W4(I)=DT«EP(I)
7 E(I)=E(I>•(2.«(W2
-------
SUBROUTINE DKAW CDC 6400 FTN V3.0- BPA OPTsl 05/31/79 17.07.05. PAGE
SUBROUTINE DRAW (XI.X2.X3.X4.Yl«Y8.Y3,Y4.N,IGfNCURV>
C GRAPHING ROUTINE
C X1.X2.X3.X4--INDEPENDENT VARIABLES
C Y1.Y2.Y3.Y4--DEPENDENT VARIABLES
b C N--NUMBER OF POINTS AVAILABLE FOR PLOTTING
DIMENSION Xl(600>*Xa(600>»X3(600>tX4(600>»Yl(600)fVZ(600).
lY3(600)«Y4(600)tX(600>*
«Y(600)»YY(600)»SYM(4)»SIM(20)»P(3400)
DATA SIM/lHY»lHB»lHC»lHS.lHA,lHl.lH2,lH3tlH4.1H5.1H6»lH7»lH8tlHT.
10 • lHX»lHZ.lH..lH«tlH«.lHO/ NON-ANSI
IP(NCURV.LT.U RETURN
C NX IS NUMBER OF LINES FOR INOEPENDENT VARIABLE
C NY IS NUMBER OF COLUMNS FOR DEPENDENT VARIABLE
NX = 50
15 NY=101
NSCALE=60
IN = N/NSCALE
IF(IN.LT.l) IN=1
C
^0 C PLACE VARIABLES IN PLOT ARRAYS
J=0
r^ DO 1 I=lfN,IN
01 J=J»1
X(J)=X1 (I)
25 1 Y(J)=Y1(I)
J=J«1
X(J)=X1(N)
Y(J)=Y1(N)
NN=J
30 IF(NCUHV.EQ.1» GO TO 5
DO a I=1»N,IN
J=J*1
X(J»=X2(I)
2 Y(J)=Y2(I)
35 J=J»1
X(J)=X2(N)
Y(J)=Y2(N)
IFINCURV.EQ.2) GO TO 5
DO 3 1=1.N,IN
40 J r J+l
X(J)=X3(1)
3 Y(J)=Y3(I)
J=J»1
MODEL LISTING (64 of 85)
-------
SUBROUTINE DRAW CDC 6400 FTN V3.0- 8PA OPT»1 05/21/79 17.07.05. PAOE
X«J)=X3(N)
45 YU)«Y3(N>
IFBY4(I)
J«J«1
X(J)=X4(N)
Y,YY(NN1>,NN.1.0.0.»AMXC,AMNC)
NN1>NN1»NN
CALL NORM (Y(NN1).YY(NN1),NN»1.0.0.,AMXS.AMNS)
WRITE<6«15) XU)»XNN«1
CALL NORM (Y(NN1)»YY(NN1),NN,1..0.,AMXB.AMNB)
MODEL LISTING (65 of 85)
-------
SUBROUTINE DRAW CDC 6400 FTN V3.0- BPA OPTsl 05/21/79 17.07.05. PAGE
NN1=NN1+NN
CALL NORM (Y(NN1>«YY(NN1>,NN,1.,0.•AMXC.AMNC)
NN1=NN1»NN
90 CALL NORM (Y(NN1)»YY(NN1).NN.l. .0..AMXY.AMNY)
WHITE(6.25) X(l).X(NN),AMXA.AMXB.AMXC.AMXY,AMNA,AMN8.AMNC*AMNY
25 FOHMATUH1/////10X.40HPLOT OF COLLAPSING CLOUD CHARACTERISTICS///
1.10X.39HINDEPENDENT VARIABLE IS TIME OVER RANGE.2X,2613.5///10X,
2 60HOEPENDENT VARIABLE, ALL NORMALIZED FOR PLOTTING ON UNIT AXIS//
95 3 10X.6HSYMBOL.13X,1HA»17X»1HB»13X.1HC»13X,1HY/10X.11HHAX PLOTTED.
4 3X»G12.5.4X,3(2X,G12.5)/10X,11HMIN PLOTTED.3X,G12.5,4X,3(2X.G12.5
5)/10X»7HREMARKS,8X,9HVFRT SIZE.9X.8HHOR SUE.4X,13HCONCENTRATION
6 .3X.6HDEPTH )
CALL SPLOT(YY.X»P»J»NY.NX»NN,4,SYM)
100 RETURN
C
50 DO 51 1=1,4
51 SYM(I)=SIM(I*5)
52 CALL RANGE(Y,J,AMXS,AMNS.JMX,JMN)
105 WRITE(6.500) X (1)»X(NN).AMNS.AMXS
CALL SPLOTt Y,X*P.J,NY,NX.NN,NCURV,SYM)
500 FORMATUH1,/////,2X.31HGRAPH OF WASTE CONCENTRATIONS »//.
« 2X.12HRANGE OF X .20X,2G20.fl./ .2X.32HRANGE OF CONCENTRATIONS PL
10TTED , 2620.8. 8(/»)
,rj 110 RETURN
^J C
60 DO 61 1=1,4
61 SYM(I)=SIM(I»9)
GO TO 52
115 C
1000 DO 1001 1=2,4
1001 SYM(I)=SIM(I»4)
SYM(1I=SIM(3)
GO TO 52 •
120 C
3000 CONTINUE
DO 3001 1=1,4
3001 SYM
GO TO 52
125 C
2000 SYM(1)=SIM(15)
CALL RANGE(Y,J,AMX,AMN,JMX»JMN)
IF(AMN.EO.O..AND.AMX.EO.O.) RETURN
WRITE(6,?001> X(l)»X(NN),AMN.AMX
130 2001 FORMATUH1.1H/) »2oX. 15HGRAPH OF X VS 2,//,2X, 10HHANGE OF X»
•2G20.8,/,2X»10HRAN6E OF Z.2G20.8)
CALL SPLOT(Y.X.P,J.NY.NX.NN.NCURV.SYM)
RETURN
END
MODEL LISTING (66 of 85)
-------
SUBROUTINE SPLOT CDC 6400 FTN V3.0- BPA OPT«1 05/21/79 17.07.05. PAGE
SUBROUTINE SPLOT 00> .SYMU) ,P<2*00) .0(20) »H(10>
DATA 0/20«5M ---- I/ NON-ANSI
DATA BL5/5H /
DATA EYE/1HI/
10 C SET GRAPH FIELD TO BLANKS
LOLD*L
LS=L/5
L«5»L5
LG=L5-1
15 ML=(M»1)«ML5»1>
DO 10 J«1,ML
10 P AMXtAMN.DA
30 2000 FORMAT(/////«lXt26HMAX,MIN*INC« OF IND.VAR. ,/. IX. 6620. 8)
WRITE(6t2001) BMX.BMN.DB
2001 FORMAT(//tlX»26HMAXtMINtINC« OF DEP. VAR. ./» 1X.6G20.8)
WRITE(6t2002>
2002 FORMAT (1H1)
35 C DETERMINE AND PRINT TOP (DEPENDENT AXIS) LABEL AND LINE
JZA*0
TESTA*AMX«AMN
TESTRsBMX«BMN
40 IF(TESTA)50»60«60
50 JZA*-AMN/DA
60 IF(TESTB) 70.90.90
70 IB=-BMN/DB
MODEL LISTING (67 of 85)
-------
SUBROUTINE SPLOT CDC 6400 FTN V3.0- BPA OPT = 1 05/21/79 17.07.Ob. PAGE
UA=-I_5
45 00 60 J=1»M
LIA=LIA»L5
80 CALL PFIX(P.IB.LIA.EYE)
90 L10=LOLO/20+1
D820=20.»DB
50 DO 100 J=1,HO
100 H(J)=BMN«FLOAT(J-1)«DB20
HMAX=ALOG10(ABS(H(L10)))».OOOl
IFCHMAX .LT. 0.) GO TO 106
IFIHMAX .GE. 1.) GO TO 109
55 WRITEC6.105) (H(J)iJ=l,L10>
105 FORMAT(14X,F3.1»5(17XtF3.1M
GO TO 114
106 *RITE(6»10B)(H
110 FORMAT(12X«F6.2.5«14X»F6.2))
114 WRITE(6tll5 > (0(J),J=lf20)
115 FORMAT(15XtlHI,20A5)
65 C
_ C ENCODE PLOT POINTS
UD DO 200 J=1,N
10 IA=(A(J)-AMN)/DA
LIA=L5«IA
70 IB=IB(J)-BMN)/DB
J2Z=(J-1)/NREP
ISYM=JZZ-(JZZ/NSYM>«NSYM*1
CALL PFIX(PtIB«LlA»SYM(ISYM>)
200 CONTINUE
75 C
C PRINT GHAPH
00 300 J=1.M
JO=(J/10)»10
JLO=J«L5-LO
60 JHI=JLO*LO
WRITE(6»255> (P
355 FOHMATU5X.1HI.20A5)
IF(J.EQ.JZA) W«ITE(6»265 > ZROt(OIK)»K=1
265 FORMATUH»,G13.5«2X»20A5)
85 IF
-------
SUBROUTINE BOOKS CDC 6400 FTN V3.0- BPA OPT*l 05X21X79 17.06.04. PAGE
SUBROUTINE BOOKS «W<31t31.2).SS(600.12)
DIMENSION DEPTHO1.31)
10 COMMON/HA/AAU4»31 ,31)»AA2<4»31.31 > tAA3(4.31.3D.AA4(4,31,3D t
1 KEYMAX
COMMONXNCX NTCLD
COMMON/CLOUD/T<600>tCX<600)tCY(600>tCZ<600)tCU(600)tCV(600)
It CW<600)tDENDIF(600).BC<600).AA(600)tFC(600)»VF
15 COMMON/PIECES/ PARAM(13)»ROAS(13)»CS<13)i VFALL<13)tVOIDS<13)tBVOID
UICOHESU2),VFALLC(13),VFALSC(20t13).VFALLO(31.31.13)
COMMONXGUIDE1X TDUMPtTSTOP*ISTEP.IPLUNGtNUTRL.NTHIAL*ILEAVE*
1 KEVl,KEY2tKEY3
COMMON/BAY/ OXtDTL.XBARGE»ZBARGE»DXH»DXR»AREA
J^ 20 COMMON/COL/ AO.IBED»FBED
O COMMON/LTCOF/ ALAMDAtDIFtAKYO
COMMON/SWITCH/ ITF
COMMON/GPI/ GtPIfRB
COMMON/FLEE/ ITD»TD(6)tDC(6).CINIT.CBACK(13).CTRACEC600)
25 COMMONXENTRANX TEMAS(100).VOLSC(100)
NSP1=NS*1
DO 50 1=1.100
VOLSC(11*0.0
50 TEMAS(I)rO.O
30 NTCLD«0
Ci=2.»PIX3.
NEWT=1
INCT=1STEPX10
C INCT IS INCREMENT OF STEPS TO CHECK SHORT TERM
35 C
IF(K .EO. NSP1) GO TO 300
100 CONTINUE
LAST=NEWT
102 NEWT=NEWT»INCT
40 C AT LAST STEP IN SHORT TERM SET TO CREATE FINAL CLOUD OF THIS
C MATERIAL
IF NEWT=ISTEP
MODEL LISTING (69 of 85)
-------
SUBROUTINE BOOKS CDC 6400 FTN V3.0- BPA OPT=1 05/21/79 17.06.04. PAGE
C ...HERE TO CHECK IF SOLIDS HAVE LEFT CLOUD IN LATEST TIME INTERVAL
45 C L IS INDICATOR OF CHANGE OF COMPUTATION PHASE DURING SHORT
C TERM
C VLOSS IS SOLID VOLUME LOSS FROM CLOUD
IFU(NEWT) ,LE. TUTFM GO TO 120
IF(T(LAST) .GT. T«»2
L=2
55 GO TO 200
C
C IN CONVECTIVE DESCENT PHASE
120 CONTINUE
VV=C1«SS(LAST,K)«AA(LAST)«»3
60 VLOSS=VV-C1«SS(NEWTtK)«AA(NEWT)«»3
^ GO TO 200
O C
-1 C IN DYNAMIC COLLAPSE PHASE
65 140 CONTINUE
VV=.25«Cl"SS(LASTtK)«AA(LAST>«BC(LAST)«»2
VLOSS=VV-.25»C1»SS(NEWT»K)»AA(NEWT)»BC(NEWT)»«2
200 CONTINUE
70 C AT FINAL SHORT T<_«M TIME STEP* VOLUME OF NEW CLOUD IS ALL
C REMAINING MATERIAL IN CLOUD
IF
-------
SUBROUTINE BOOKS CDC 6400 FTN V3.0- BPA OPT*1 05/Z1/T9 17.06.0*. PAGE
7MASS(NTCLD)«VLOSS
TTHK(NTCLD)-VFALLC(K)»
IFINEWT .EQ. ISTEP)TTHK(NTCLD)*TTHK,L
220 TTOP(NTCLO)*CY(NEWT)+3.«AA(NEWT)/B.
1F(NEWT .EQ. ISTEP)TTOP(NTCLD>3TTOP-AA(NEWT>
250 CONTINUE
IF<(TTOP(NTCLD)»TTHK(NTCLDM .GT. D3> TTOP(NTCLD>=D3-TTHK(NTCLD)
105 C TSIDE IS SIDE OF SQUARE WITH AREA EQUAL TO AREA OF CIRCULAR
C SHORT TERM CLOUD
TSIDE(NTCLD)=0.886266«BC(NEWT)
VFALSC(NTCLD»K)=VFALL(K)
g IFdCOHES(K) .EQ.O) GO TO 251
ro HO SCONC»(TMASSINTCLD) /(TSIDE (NTCLD) ««2«TTHMNTCLD» > "2600000.
IF(SCONC .LE. 25.)VFALSC(NTCLD.K)=0.0017
IFISCONC .GT. 25. .AND. SCONC .LE. 300.) VFALSCiNTCLD
1fK)*(0.00713»SCONC««1.333331/304.8
IF(SCONC .GT. 300.) VFALSC(NTCLDtK)=0.047
115 251 CONTINUE
IF(KEYMAX.NE.1)GO TO 500
253 WRITE(6.255) NTCLD.T(NEWT)»TX(NTCLD)»TZ(NTCLD).TSIDE(NTCLD)
1,TTOP(NTCLO)»TTHK(NTCLD).TMASS(NTCLD).TEMAS(NTCLD).NEWT.LAST
500 CONTINUE
120 255 FORMAT(//!Xt27HNEW CLOUD CREATED. NTCLD = ,I5/3X.6HT(SEC).8X.2HTX
1.10X.2HTZ.9X»5HTS1DE.8X.3HTOP.8X,4HTTHK,8X,5HTMASS.8X,5HTEMAS.8X»
24HNEWT.7X*4HLAST«/lXt8G12.4.4X,I4t6X*I4)
GO TO 400
C
125 C ...HERE TO CREATE FINAL FLUID CLOUD...
300 NTCLD*NTCLD»1
NEWT=ISTEP
TX(NTCLD)=CX«ISTEP)«XBARGE
TZ (NTCLD) =CZUSTEP)*ZBARGE
MODEL LISTING (71 of 85)
-------
SUBROUTINE BOOKS CDC 6400 FTN V3.0- BPA OPT = 1 05/21/79 17.06.04. PAGE
130 CALL DINTUX(NTCLD) .TZ(NTCLO) »D3,OEPTH.NMAX.MMAX)
TSIDE(NTCLD)=.fl86226«BC».5
IFIIBED .NE. 0 .AND. NEWT .GT. 1BED .AND. NEWT .LT. ILEAVE)
140 1 TTOP(NTCLD)=D3-AA(ISTEP)
TEMAS(NTCLD)=
IF((TTOP(NTCLD)*TTHK(NTCLD)) .GT. D3) TTOP(NTCLO)=D3-TTHK(NTCLD)
GO TO 253
400 DELT=DTL -T(NEWT)
IFJDELT.GE.O.) GO TO 402
150 WRITE(6»2001)
2001 FORMAT(//54H DTL .LT. SHORT TERM CALCULATIONS - ADJUST AND RERUN
. )
CALL EXIT
C ...UPDATE LATEST CLOUD TO 1/2 HOUR AFTER DUMP
155 402 IF(K .EO. NSPl) VOL=TTHK(NTCLD)«TS1DE(NTCLD)««2
DTOP=0.
CALL DINT(TX(NTCLD)»TZ(NTCLD)»D1»DEPTH»NMAX»MMAX)
IF(TTOP(NTCLD) .EQ. DDGO TO 410
C ...CONVECT...
160 C DETERMINE HORIZONTAL VELOCITIES
YY=TTOP(NTCLD)+.5»TTHK(NTCLD)
CALL VEL(TX(NTCLD).YY.TZ(NTCLD)»UA»*A»U»W.OEHTH.NMAX.MMAX)
TX(NTCLD)=TX(NTCLO)»UA«DELT
TZ(NTCLO>=TZ(NTCLO)+WA«OELT
165 C CHECK FOR SMALL CLOUD PASSING OUT OF GRID BOUNDARY
NCHK=TZ(NTCLD)«DXR
MCHK=TX(NTCLD)«DXR
IF(NCHK .LT. 1 .OR. NCHK .GT. NMAX .OR. MCHK .LT. 1 .OR. MCHK .GT.
1 MMAX) WRITE(6.405)
170 405 FORMAT(/5X.101H WARNING A SMALL CLOUD HAS PASSED OUT OF GRID B
10UNOARY IN SUBROUTINE BOOKS...ERRORS WILL OCCUR )
CALL DINT(TX(NTCLD)»TZ(NTCLD).02.DEPTH,NMAX.MMAX)
MODEL LISTING (72 of 85)
-------
SUBROUTINE BOOKS CDC 6400 FTN V3.0- BPA OPT»1 05/21/79 17.06.04. PAGE
C DTOP ESTIMATES VARIATION OF CLOUD DEPTH DUE TO CONVECTION OVER
C VARYING DEPTHS
175 DTOP»(01-D2)«TTOP(NTCLD)/D1
C ...OIFUSE HORIZONTALLY...
TSIDE(NTCLDI«TSIDE(NTCLD)•(!.*(!.333333*ALAMDA/TSIDE(NTCLD)«»
1 .666666)•DELT)«»1.5
C ...DIFUSE VERTICALLY...
180 DO 1000 IDELT«1»10
OTOP=TTOP(NTCLO)
MX*TX(NTCLD)«DXR».5
NZaTZ(NTCLO>«DXR«.S
CALL VDIFCO(NZ.MX.OTOP,DCO.U»W.DEPTH.NMAX»MMAX»NVL)
185 DINK»2.0»SQRT(OCO«OELT/10.0)
TTOP(NTCLD)«TTOP(NTCLO)-DINK
IFUTOP(NTCLD) .LT. 0.) TTOP (NTCLD) =0.
OBOTsOTOP«TTHK(NTCLD)
IF(080T .GT. D2> OBOT»D2
190 CALL VOIFCO(N2.MX.OBOT.DCO.U.W,DEPTH.NMAX.MMAX.NVL)
DONK»2.0»SORT(DCO»DELT/10.0)
IF((OBOT«OONK) .GT. D2) DONK=D2-OBOT
TTHK(NTCLO)=TTH«INTCLD)+DINK»DONK
IF«(OTOP«TTHK(NTCLD)) .GT. 02) TTHK(NTCLD)=D2-TTOP(NTCLD)
195 VOLSC(NTCLD)«TTHK(NTCLO)«TSIDE(NTCLD)*«2
1000 CONTINUE
C ...SETTLE...
410 IF(K .EQ. NSPD GO TO 440
DIST=VFALSC(NTCLD.K)«DELT
200 MX=TX(NTCLD)«DX««.5
NZ=TZ(NTCLD)«DXH».5
411 XS=D2-TTOP(NTCLDI-TTHK(NTCLD)-DTOP
HS=0.5«TSIDE(NTCLD)
XU=TX(NTCLO)-HS
205 XD=TX(NTCLD)»HS
ZL=TZ(NTCLO)-HS
ZR=TZ(NTCLD)»HS
C DETERMINE GRID SQUARES FOR PLACEMENT OF MATERIAL ON B
C ASSUME EQUAL DISTRIBUTION AMONG GRID POINTS
210 NL=ZL/DX»0.5
MU=XU/DX»0.5
NR=ZR/DX«O.S
MD=XD/OX»0.5
IF(NL .LT. 1) NL=1
215 1F
-------
SUBROUTINE BOOKS
CDC 6400 FTN V3.0- BPA OPT
05/21/79 17.06.0*.
PAGE
220
225
230
235
240
245
250
255
IF(MU .LT. 1) MU=1
IFfMD .GT. MMAX) MD=MMAX
NSQHS= (MD-MU+ 1 1 « (NR-NL* 1 )
IFtNSQHS ,GE. 4) 60 TO 830
NSQRS=1
MD = MX
MU=MX
NR = NZ
NL=NZ
830 CONTINUE
IF(XS .GE. DIST> GO TO 430
IF(XS .GE. 0.) GO TO 412
IFUBSIXS) .GT. TTHMNTCLD) ) GO TO 420
IF
DO 810 MM=MU»MD
00 810 NN=NU»NR
810 ACCUM(NN.MM>=ACCUM(NN(MM)»KALOUT/FLOAT(NSQRS)
TMASS ( NTCLD)=TM ASS ( NT CLD) -FALOUT
TTHMNTCLD) =TTHMNTCLO>- (DIST-XS)
TTOP(NTCL.O)=TTOP(NTCLD)*DIST-DTOP
GO TO 440
420 DO 820 MM=MU»MD
DO 820 NN=NL«NR
820 ACCUM(NN»MM)=ACCUM(NN»MM) » TMASS (NTCLD) /FLOAT (NSQRS)
ERASE CLOUO
TMASS(NTCLO>=0.
TX(NTCLO)=0.
T2(NTCL[)>=0.
TSIDE(NTCLD>=0.
TTHK(NTCLD)=0.
TTOP(NTCLO)=0.
VOLSC(NTCLD)=0.0
TEMAS(NTCLO)=0.0
NTCLD=NTCLD-1
MODEL LISTING (74 of 85)
-------
SUBROUTINE BOOKS CDC 6400 FTN V3.0- BPA OPT»1 05/21/79 17.06.04. PAGE
GO TO 440
260 430 TTOH(NTCLD)=TTOP(NTCLD)*DIST-DTOP
440 CONTINUE
IM (TTOP(NTCLD>»TTHK(NTCLDI ).GT. 02)TTOP(NTCLO)»D2-TTHK(NTCLO)
C
VOLSC(NTCLD)»TTHK(NTCLD)«TSIDE(NTCLD)*»2
265 IF(K ,NE. NSP1) GO TO 700
TEMAS(NTCLD)*TEMAS(NTCLD)»«CBACK(NSP1)
TMASS(NTCLD)=TMASS(NTCLD)»(VOLSC(NTCLD)-VOL)»CBACK(NSP1)
IF(TMASSINTCLO) .LT. l.OE-10) GO TO 700
DH=(TMASS(NTCLD)/VOLSC(NTCLD))/CINIT
270 IF1DR .GT. DC GO TO 700
TD(ITD)=»DTL
_ ITD=ITO«1
O 700 IFINEWT .EQ. ISTEP) RETURN
m GO TO 100
27S END
MODEL LISTING (75 of 85)
-------
SUBROUTINE ACAO COC 6400 FTN V3.0- BPA OPT*1 05/21/79 17.06.04. PAGE
SUBROUTINE ACAD,TXI100),TZ<100>
3 ,0(31,31)
COMMON/NC/ NTCLD
COMMON/DIMEN/ NStNSPltNVLtNSC
15 DIMENSION U(31,31.2)»W(31.31.3)
COMMON/BAY/ DX.DTL.XBARGE,ZBARGE«DXH,DXR,AREA
COMMON/PIECES/ PARAMOS) ,ROAS(i3) »cs .VFALLOS) ,VOIDS<13) »BVOID
1»ICOHES<12)»VFALLC(13),VFALSC<20»13>»VFALLD(31,31»13)
COMMON/LTCOF/ ALAMQA,DIF»AKYO
20 COMMON/LOST/ GONE
COMMON/GPI/ G.PItRB
COMMON/ENTRANX TEMftS(lOO)«VOLSC(100)
O COMMON/FLEE/ ITD»TD<6),DC(6).CINIT.CBACK<13).CTRACE(600)
--J COMMON/CLOUD/T(600),CX(600),CY(600),CZ(600),CU(600),CV(600)
25 1, CW(600),DENDIF<600),BC(600),AA(600),FC(600),VF
C
C CHECK CLOUD FOR INJECTION TO LONG TERM GKID
N=l
NTEMP=NTCLD
30 60 CONTINUE •
C CHECK CLOUD SIZE...IF LARGE ENOUGH, INJECT INTO NORMAL GRID
IERASE=0
IF(TMASS(N) ,EQ. 0.) GO TO 70
C CHECK FOR SMALL CLOUDS ON OR OUTSIDE OF GRID BOUNDARIES
35 MXC=TX(N)»DXR+.0001
NZC=TZ(N)«DXR«.0001
IF(MXC .GT. MMAX .OR. MXC .LT. 1 .OR. NZC .GT. NMAX .OR. NZC .LT.
1 1) GO TO 250
IF(TSIOE(N) .GE. 2.»OX) GO TO 200
40 IF(TSIDE(N) .LT. DX) GO TO 100
C ....HERE TO INJECT A SMALL CLOUD INTO THE NORMAL GRID
C ASSIGN CLOUD MATERIAL TO FOUR NEAREST GRID POINTS
MX=TX(N)/DX».0001
MODEL LISTING (76 of 85)
-------
SUBROUTINE ACAD CDC 6400 FTN V3.0- BPA OPT*1 05/21/T9 17.06.0*. PAGE
NZ*TZ(N)/DX*.0001
45 PROPX*UX
XVOL2=PHOPX«VOLSC /OX
IF(PROPZ .LT. .0001) PROPZ*0.
TMASS2=PROPZ«XMASS1
55 VOLi!=PROPZ»XVOLl
TMASS1»XMASS1-TMASS2
VOL1*XVOL1-VOL2
TMASS4«PROPZ»XMASSa
VOL4sPROPZ«XVOt2
60 TMASS3«XMASS2-TMASS4
VOL3»XVOL2-VOL4
C
IFtTMASSl .60. 0.) GO TO 61
IF(ClNZfMX) .NE. C8ACK(K» GO TO 610
po 65 C HERE TO ADD MATL TO EMPTY GRID
Co C
GO TO 61
610 CONTINUE
C HERE ADD MATL TO NON-EMPTY GRID
OM=C (NZ» MX) «THICK (NZ.MX) «AR£A
75 81«TOP(NZtMX)»THICK(NZtMX)
B2sTTOP *TTHK (N) »VOL1/VOL
IFJBOT .GT. DEPTH(NZtMX) )BOT=DEPTH (NZtMX)
TOP
80 OTHK=THICK (NZ.MX)
THICK(NZ.MX)«80T-TOP
-------
SUBROUTINE ACAD CDC 6400 FTN V3.0- BPA OPTsl 05/21/79 17.06.04. PAGE
GVOL=OTHK«AREA
THICK(NZ,MX)=(GVOL»VOL1)/AREA
IF< (TOP) TOP =
90 1DEPTH(NZ.MX)-THICK(NZ»MX)
C(NZ»MX)=(OM*TMASS1)/ (THICK »THICK(NZ»1.MX) > ,6T. DEPTH (NZ* 1 »MX )>
1 TOP (NZ* l.MX)=DEPTH(NZ+l.MX) -THICK (NJ>«1. MX)
100 GO TO 62
620 CONTINUE
C HERE TO ADD MATL TO NON-EMPTY GRID
OM=C(NZ*1,MX)»THICK(NZ»1»MX>»AREA
B1 = TOP
105 B2=TTOP(N)*TTHK(N)«VOL2/VOL
BOT=AMAX1(B1»B2)
^ IFIBOT .GT. DEPTH(NZ»1»MX) ) BOT=DEPTH (NZ+ 1 .MX)
O TOP(NZ»1.MX)=AMIN1 (TOP (NZ+ 1 .MX) » TTOP (N»
10 OTHK=THICK{NZ»1.MX)
110 TH1CK(NZ»1,MX)=BOT-TOP(NZ»1,MX)
THOIF=THICK(NZ»1»MX) -OTHK-TTHK (N) «VOL2/VOL
IFITHDIF ,GE. 0. 0) C (NZ» 1 .MX) = (OM+TMASS2»C8ACK
120 C(NZ«l,MX)=(OM+TMASS2)/(THICK(NZ*l.MX)»AftEA)
62 IFITMASS3 .EQ. 0.) GO TO 63
IF(C (NZ.MX»1) .NE. CBACK(K)) GO TO 630
C HERE ADD MATL TO EMPTY GRID
C (NZ»MX*1)=TMASS3/VOL3
125 THICMNZ»MX*1)= TTHK (N) »VOL3/VOL
TOH(NZ ,MX*1) =TTOP(N)
IF( (TOP
-------
SUBROUTINE ACAO CDC 6400 FTN V3.0- BPA OPT*1 OS/21/79 17.06.04. PAGE
130 630 CONTINUE
C HERE ADD MATL TO NON-EMPTY GRID
OM=C(NZ«MX»1>«THICK(NZ.MX*1)«AREA
B1=TOP(NZ.MX*1)«THICK
IF
140 THDIF=THICK(NZ.MX»1)-OTHK-TTHK(N>»VOL3/VOL
IF= TOP(NZ»1.MX*1)=TTOP(N)
IF((TOP(NZ*1»MX*1)»THICK(NZ+1»MX»1)) .GT. DEPTH(NZ»1»MX»1))
lTOP
-------
SUBROUTINE ACAO CDC 6400 FTN V3.0- HPA OPT = 1 05/21/79 17*06.04. PAGE
c MAKE SURE THICKNESS RESULTS IN VOLUME CONSERVATION
GVOL=OTHK»AREA
175 THICK(NZ»lfMX+l) = (GVOL»VOL<»)/AREA
IF«TOP(NZ»1.MX»1>»THICK(N2»1,MX»1) ) .UT. DEPTH (NZ* 1 ,MX» 1 ) )TOP(NZ*
11,MX+1)=DEPTH=(OM»TMASS4)/ TOP (NNtMM)
21S 1DEPTH(NN»MM>-THICK(NN»MM>
MODEL LISTING (80 of 85)
-------
SUBROUTINE ACAO CDC 6400 FTN V3.0- BPA OPT = 1 05/31/79 17.06.04. PAGE
CINNtMM)s(TMASS
GO TO 215
210 CONTINUE
C HERE ADO MAIL TO NON-EMPTY GRIP
220 OM=C(NN,MM>"THICK
IFITHDIF .GE. 0.0)C(NN.MM)=«
230 ITHDIF'AREA)/(THICK(NNtMM)«ARKA)
IF(THOIF .GE. 0.0) GO TO 21S
C MAKE SURE THICKNESS RESULTS IN VOLUME CONSERVATION
GVOL=OTHK«AREA
THICK(NN.MM)=(GVOL+WOLSC(N)/FLOAT(NSQHS)J/AREA
235 C(NN,MM)=(OM*TMASS(N)/FLOAT(NSORS))/(THICK(NNtMM)«AHEA)
215 CONTINUE
220 CONTINUE
IV) C HERE COLLECT MASS SPILLED OUT OF BOUNDARY FROM LARGE CLOUD
r^ GO TO 70
240 250 CONTINUE
C HERE COLLECT MASS PASSING THROUGH GRID BOUNDARY
GONE=GONE*TMASSfN)-TEMAS(N)
C
C ERASE TRANSITION CLOUD AND MOVE CLOUDS BEHIND IT UP ONE SLOT
245 70 NTEMP=NTEMP-1
IERASE=1
DO «0 I=N,NTEMP
TSIDE(I)=TSIDE(I«1)
TTHK(I)=TTHK(I*1)
250 TTOP(I)=TTOP(I»1)
TMASS
TEMAS(I»=TEMAS(I»1)
VOLSC(I»=VOLSCU*1)
TX(I)=TX(I*1)
255 TZ(I)=TZ(I»1)
80 CONTINUE
TSIDE(NTEMP«1)=0.
TTHK(NTEMP»1)=0.
MODEL LISTING (81 of 85)
-------
SUBROUTINE ACAD CDC 6400 FTN V3.0- BPA OPT=1 05/21/79 17.06.04. PAGE
TTOH(NTEMP«1)=0.
260 TMASS=0.
TEMAS(NTEMP»1)=0.0
VOLSCtTZ=0.0017
IF(SCONC .GT. ?5. .AND. SCONC .LE. 300.) VFALSC(N,K)=
1 (0.00713«SCONC««1.33333)/304.8
IF(SCONC .GT. 300.)VFALSC(N,K)=0.047
300 407 CONTINUE
TSIDE(N)=TSIDE(N)«(1.«(1.333333«ALAMDA/TSIDE(M)»».666666)*DTL)
MODEL LISTING (82 of 85)
-------
SUBROUTINE ACAO CDC 6*00 FTN V3.0- BPA OPT»1 05/21/79 17.06.04. PAGE
1 ««1.5
C SETTLE....
IF »DX« « .5
HS=0.5*TS10E(N)
XU=TX(N)-HS
310 XO=TX(N)»HS
2L=T2(N)-HS
ZR=TZ(N)»HS
C DETERMINE GRID SOUARES FOK PLACEMENT OF MATERIAL ON BOTTOM
C ASSUME EQUAL DISTRIBUTION AMONG GRID POINTS
315 NL=ZL/DX«0.5
MU=XU/DX»0.5
NR=ZR/DX»O.S
MD=XD/OX»0.5
IFINL .LT. 1)NL=1
320 IF(NR.GT. NMAX) NRsNMAX
IF(MU .LT. 1) MU=1
IF(MD ,GT. MMAX) M(3=MMAX
NSQRS=(MD-MU*1)•(NR-NL*1)
IFINSQRS .GE. 4) GO TO 730
35 NSQRS = 1
MD=MX
MU=MX
NR=NZ
NL=NZ
330 730 CONTINUE
411 XS=OEPTH(NZ«MX)-TTOP(N)-TTHK(N)-OTOP
IF(XS .GE. DIST) GO TO 40
IF(XS .GE. 0.) GO TO 413
IFUBSUS) .GT. TTHK(N)) GO TO 30
335 FALOUT=ABS(XS)/TTHK(N)«TMASS(N)
DO 740 MM=MUtMD
DO 740 NN=NLtNR
740 ACCUM(NN.MM)sACCUM(NN.MM)*FALOUT/FLOAT(NSQRS)
TMASS(N)=TMASS(N)-FALOUT
340 TTHK(N)=TTHK(N)-A8S(XS)
GO TO 411
412 IF(TTHMN) ,LT. (OIST-XS) ) GO TO 30
FALOUT =(DIST-XS)/TTHK(N)«TMASS(N)
DO 710 MM=MU«MO
MODEL LISTING (83 of 85)
-------
SUBROUTINE ACAD CDC 6400 FTN V3.0- BPA OPT=1 05/21/79 17.06.04. PAGE
345 DO 710 NN=NLtNR
710 ACCUM(NN»MM)=ACCUM(NN,MM>»FALOUT/FLOAT(NSGRS)
TMASS(N)=TMA5S(N)-FALOUT
TTHK(N)=TTHK » DIST-OTOP
50 CONTINUE
C ...DIFUSE VERTICALLY...
DO 53 IDTL=lflO
360 OTOP=TTOP(N)
MX=TX(N)*DXR«.5
NZ=TZ(N)»DXR*.5
CALL VDIFCO(NZ»MX»OTOPtDCO»UfW,DEPTH»NMAX,MMAX»NVL>
DINK=2.0«SQRT(DCO»DTL/10.0)
365 TTOP(N)=TTOP(N)-DIHK
IF(TTOP(N) ,LT. 0.> TTOP(N)=0.
OBOT=OTOP«TTHK(N)
IF(080T .GT. DEPTH(NZtMX)) OROT=DEPTH(NZ»MX)
CALL VDIFCO(NZ»MX,OSOT,DCO.U»W,DEPTH,NMAX.MMAX.NVL)
370 OONK = 2.0«SORT(OCO*DTL/10.0I
IF((080T»OONK) .GT. DEPTH(NZ,MX»DONK=DEPTH(NZ.MX)-080T
TTHK(N)=TTHK(N)»UINK»DONK
IF((TTOP(N)+TTHK(N» .GT. DEPTH(NZ,MX))TTOP
MODEL LISTING (84 of 85)
-------
SUBROUTINE ACAD CDC 6400 FTN V3.0- BPA OPT=1 OS/21/79 17.06.04. PAGE 10
TSIDEU)=TSIDE(I»1>
TTHK(I)=TTHK(I»1)
390 TTOP(l)=TTOP(I»l)
TX=ETS
410 ITD=ITD»1
460 CONTINUE
RETURN
END
MODEL LISTING (85 of 85)
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1.
4.
7.
9.
12
15
16
17
a.
18
REPORT NO.
EPA-600/3-80-034
2.
TITLE AND SUBTITLE
Workbook/Users Manual for Prediction of
Instantaneously Dumped Dredged Material
AUTHOR(S)
L. R. Davis, G. W. Bowers, and M. K. Goldenblatt
PERKORiyUNG ORGANIZATIONUMAME Ah
U.S. Tnvironmentai Frotec-
Corvallis, Oregon 97330
and
JBF Scientific Corporatior
Wilmingtoni Massachusetts
JD ADQflESS ~rm
;ion agency, CERL
i
nifiR?
. SP'ONSORfNG AGENCY NAME AND ADDRESS
Con/all is Environmental Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Corvallis, Oregon 97330
. SUPPLEMENTARY NOTES
3. RECIPIENT'S ACCESSION NO.
5. REPORT DATE
February 1980 issuing date
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
1 BA608
11. CONTRACT/GRANT NO.
R-804994
13. TYPE OF REPORT AND PERIOD COVERED
Final - Aug. 1976 - July 1979
14. SPONSORING AGENCY CODE
EPA/600/02
ABSTRACT
This manual describes the operation and use of a computer model developed to
predict the physical fate of dredged material instantaneously released into the water
column. The model predicts the spacial distribution of various components of the
dumped material as a function of time. Output includes material concentration
and position while in the water column and material mound height and concentration
after bottom impact. Included in this report are a description of the model's
structure and a complete explanation of its input/output formats. In addition,
the model has been run for a matrix of input conditions. Both the input and
output of these runs are presented as tables in dimensionless form. These working
tables can be used to approximate the fate of dredged material without requiring
the user to actually run the model. Several examples showing how these tables can
be used are also given. The first phase of this work was done by OBF Scientific
under sponsorship of the U.S. Environmental Protection Agency. The workbook portion
was done in-house at the EPA Con/all is Environmental Research Laboratory.
DESCRIPTORS
Dredged material disposal
Waste disposal
Mathematical models
. DISTRIBUTION STATEMENT
Unlimited
KEY WORDS AND DOCUMENT ANALYSIS
b. IDENTIFIERS/OPEN ENDED TERMS C. COSATI Field/Group
Dredge Spoil 13-B
19. SECURITY CLASS (This Report/ 21. NO. OF PAGES
Unclassified 224
20. SECURITY CLASS (This page) 22. PRICE
Unclassified
EPA Form 2220-1 (Rev. 4-77)
PREVIOUS EDITION IS OBSOLETE
217
------- |