United States
Environmental Protection
Agency
Environmental Research
Laboratory
Corvall's OR 97330
EPA 600 3-4fO-O34
February 1 980
Research and Development
Workbook/Users
Manual for
Prediction of
Instantaneously
Dumped Dredged
Material

-------
                RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development. U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology.  Elimination  of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:

      1.  Environmental  Health Effects Research
      2.  Environmental  Protection Technology
      3.  Ecological Research
      4.  Environmental  Monitoring
      5.  Socioeconomic Environmental Studies
      6.  Scientific and Technical Assessment Reports (STAR)
      7.  Interagency  Energy-Environment Research and Development
      8.   'Special" Reports
      9.  Miscellaneous Reports

This report has been assigned to the ECOLOGICAL RESEARCH series. This series
describes research on the effects of pollution on humans, plant and animal spe-
cies, and materials. Problems  are assessed tor their long- and short-term  influ-
ences. Investigations include formation, transport, and pathway studies to deter-
mine the fate of pollutants and their effects. This work provides the tecnnical basis
for setting standards to minimize undesirable changes in living organisms in the
aquatic, terrestrial, and atmospheric  environments.
 This document is available to the public through the National Technical Informa-
 tion Service. Springfield, Virginia  22161.

-------
                                                EPA-600/3-80-034
                                                February 1980
WORKBOOK/USERS MANUAL FOR PREDICTION OF INSTANTANEOUSLY

               DUMPED DREDGED MATERIALS
                          By
                      L. R. Davis
                  Freshwater Division
      Corvallis Environmental Research Laboratory
                Con/all is, Oregon 97330

                           and

                     G. W. Bowers*
                   M. K. Goldenblatt
              JBF Scientific Corporation
            Wilmington, Massachusetts 01887
                       R-804994
       CORVALLIS  ENVIRONMENTAL  RESEARCH  LABORATORY
           OFFICE OF  RESEARCH AND  DEVELOPMENT
          U.S.  ENVIRONMENTAL PROTECTION  AGENCY
                 CORVALLIS, OREGON 97330
    ^Presently  at  E.  G.  & G.,  Waltham,  Massachusetts

-------
                                  DISCLAIMER
     This  report  has  been  reviewed by  the Corvallis  Environmental  Research
Laboratory, U.S. Environmental Protection Agency and approved for publication.
Approval does not signify  that the contents necessarily reflect the views and
policies of the U.S.  Environmental  Protection Agency, nor does the mention of
trade names  or  commercial  products  constitute endorsement  or recommendation
for use.
                                      11

-------
                                   FOREWORD


     Effective regulatory and enforcement actions by the Environmental Protec-
tion Agency  would be  virtually  impossible without  sound scientific  data on
pollutants and their  impacts on  environmental  stability  and  human health.
Responsibility  for building  this  data  base  has been  assigned to  the  EPA's
Office  of Research  and Development  and its 15  major installations, one of
which is the  Corvallis Environmental Research Laboratory (CERL).

     The  primary  mission of  the  Corvallis Laboratory  is research  on the ef-
fects  of  environmental  pollutants  on terrestrial, freshwater  and  marine eco-
systems;  the  behavior,  effects and  control of pollutants in  lake  and stream
systems;  and  development  of predicted models on the movement of pollutants in
the biosphere.

     This  report  describes  the  procedure  for  using  a  computer   model  that
predicts  the  fate  of  instantaneously  dumped  dredged  material into  a  water
column and presents  a series of workbook tables to be  used for quick approxi-
mate answers  to dredged  material  disposal problems.   The work was partially
done by JBF Scientific under EPA Grant No.  R-804994.
                                                  Thomas A.  Murphy
                                                  Director,  CERL
                                       i n

-------
                                   ABSTRACT


     This manual describes the operation and use of a computer model developed
by  Koh and  Chang,  modified in  1976  for the  Corps of  Engineers  and further
updated  by  JBF  Scientific  Corp.,  that predicts the physical  fate of dredged
material  instantaneously released  into a water column.  The model predicts the
spatial distribution of various components of the dumped material as a function
of time.  Outputs include material  concentration and position while  in the water
column, and material mound height and concentration after bottom impact.

     Included  in this report  are  a  description  of the  model's  structure,  a
complete explanation of its  input/output formats, and in addition, the model has
been run  for a matrix of input conditions.  Both the input and output of these
runs are presented as tables in dimensionless form.  These working tables can be
used to  approximate the  fate of dredged material  for  a wide variety of input
conditions  without  requiring  the  user  to actually  run  the  model.   Several
examples showing how these tables can be used are also given.

     The first phase of this work was done by JBF Scientific under sponsorship
of  the  U.S.   Environmental  Protection  Agency through  Grant R-804994.   The
workbook portion of this  report  was done in-house  at  the EPA Corvallis Envi-
ronmental Research Laboratory.  The report covers the period from August 1976 to
July 1979.

-------
                                   CONTENTS


Foreword	iii

Abstract	   iv

Figures	vi

Tables	vii

1.   Introduction  	    1
2.   Model Description 	    3
3.   Program Format	   13
          A.   Complete INPUT/OUTPUT Format  	   13
          B.   Simplified INPUT/OUTPUT Format  	   61

4.   Description of Workbook Tables and Examples 	   78
          A.   General Description 	   78
          B.   Examples of Use	83
          C.   Workbook Tables	93

References	131

Appendix A - Computer Listing  	  132

-------
                                    FIGURES


Number

  1.  Typical  long term diffusion grid network ..........    4

  2.  Velocity option one,  representative velocity profile
     in x direction.  Velocity assumed invarient in time
     and horizontal plane  ....................    6
  3. Velocity option two, representative velocity profile
     in x direction.  Velocity variable in horizontal
     plane and time
  4. Velocity option three, representative velocity profile
     in x direction.  Velocity variable in horizontal
     plane and time	     7

  5. Velocity option four, representative velocity profile
     in x direction.  Velocity variable in horizontal  plane
     and time	     7

  6. Typical dredged material grain size distribution and
     model representation	     9

  7. Estimations of settling velocity versus sphere diameter
     according to Rubey, Jenke, Stokes, Newton and Gibbs ....    10

  8-30 Input cards for long version	    14-36

 31-46 Input cards for simplified version  	    62-77

 47. Assumed ambient velocity profile for workbook tables  ...    79

 48. Definition ellipse for material settled on bottom 	    82

 49. Predicted shape and location of material settled on
     bottom for example #1	    85

 50. Predicted shape and location of different types of
     material settled on bottom for example #2 	    90

 51. Composite shape, location and maximum thickness of
     material settled on bottom for example #2 	    91

 52. Contour line where thickness is one-half the maximum
     thickness for  example #3	    92
                                       VI

-------
                                    TABLES



Number                                                           Page

1-16.      Typical  computer output -  long version 	    39

17-18.    Cross-reference tables for workbook -
          Output table No.'s vs Input variables   	    93

19-54.    Workbook tables  	    95

-------
                                   SECTION 1

                                 INTRODUCTION
     Guidelines for evaluating  applications  for permits to dispose of dredged
material  in  a  specific aquatic  environment  require  the  prediction of  the
effects  of  the  proposed discharge  program.    Because  rigid rules  cannot  be
applied generally, it  is most desirable to provide local and regional regula-
tory authorities with  a definite set of analytic  procedures.   One element  of
such a set  of  procedures  is the standard  elutriate  test.   Another desirable
element  is  a  mathematical  model which predicts  the  fate of  the discharged
material under specific conditions.

     Currently,  there  exist a  number of mathematical  models  to  describe the
fate of  dredged material after discharge.   The model  described in this manual
was originally developed by Koh and Chang in 1973 (1).

     The  original  model has  been modified  considerably since its inception.
Most of these  modifications  were made  for  the U.S.  Army Engineer Waterways
Experiment Station (WES) by Tetra Tech,  Inc. (2).  Consequently, the model JBF
has modified  and is  presenting in this manual   is  significantly different from
the original  1973 model.   For  example, the original  model attempted to de-
scribe  three  possible  methods  of dredged  materials discharge:  Instantaneous
dumped  release  into  the water column, hydraulic pipeline or  hopper dredge
discharge as  a jet,  and continuous  release  into the wake  of a  barge.  The WES
version  is  composed  of two models:   instantaneous  dump  and  jet discharges.
This  manual   describes  only the  instantaneous dump  version.   Similarly, the
original  model  used  a  method  of  moments to  solve  the  long  term diffusion
equations.  The simplifications  implicit  in this method  were:   flat bottom,
current  invariant over  a  horizontal plane, and   no bounds  to the dump  area.
The current  mooel  was  updated  for estuarine use,  and allows bottom bathymetry
and estuary bounds as well as spatially time varying current as inputs.

     The  model  predicts the  course of  dynamic  behavior of  the discharged
material  in  terms of  three different  phases:   convective descent, collapse,
and  long-term  diffusion.  The  convective  descent  phase describes the history
of  the  dumped material  from  injection  into   the water  column  until either
neutral  buoyancy or bottom  impact is reached.   During this phase,  the  material
is  driven by  its  initial  momentum and  negative buoyancy.   The next  phase
commences  when  either  neutral  buoyancy is reached  or the bottom impact is
achieved  and  the  material  proceeds  to collapse  vertically.  During  collapse
the  vertical  descent  of the material  is reduced  and the  predominant  velocity
of  the material is in  a horizonta"1  (or parallel  to the bottom)  plane.   Long-
term  diffusion  commences when  the  cloud  spreading velocity  due  to  collapse
becomes  less  than that  due to  turbulent diffusion, so  that  material  loses  its
own dynamic character and is driven by ambient fluid dynamics.

     The  JBF  modification  to  the  WES model   (3) consisted  of  tuning  input
coefficients  to a comprehensive  set of laboratory tank test  data.   Empirical
equations  giving certain coefficients  as  a function of material  cohesiveness
(beyond limit) were built into  the  model.   In addition input  and  output for-
mats were simplified for easier use and  clarity.

                                      1

-------
     The primary  function  of  this manual is to  describe  the operation of the
JBF instantaneous  dump version of  the  model.   It is not the  purpose  of th.s
document to  describe  the  mathematical  foundation  of  the  computer  program.
Consequently the manual will  describe in great detail the input/output formats
of  the  model, give  an insight as  to  their  meaning,  explain  the  procedures
necessary to  develop the  input data and present a  series  of  workbook tables
with explanations  of  use.  Formal  descriptions of the evolution  of  the model
and its  foundation are presented in references  1,  2, and 3.

-------
                                   SECTION 2

                               MODEL DESCRIPTION
     JBF  has  developed two versions of  the  instantaneous  dump program.   Both
are similar in  mathematical  structure and are  based  on  the original WES pro-
gram (2).  The differences are in input/outpux format and program flexibility.
The first version has options for handling up to thirteen material components,
and  modeling  the  dump  location with  a  large  grid  network.   Comprehensive
tabular  and  graphical output  of relevant parameters as functions  of time is
available.  Since  its input/output  formats  are long  and  tedious and because
the  program  requires  a  large  amount  of  computer  storage,   a   second  or
"modified"  version  was   developed  which  has  slightly  less  flexibility  but
simpler  input/  output formats and  requires  significantly  less computer stor-
age.  The first program version has an option to simplify input/output formats
but does not have an option for reducing  its core size requirements.

     The  instantaneous dump  model  requires three categories of information as
input  data:   ambient conditions (including  bottom  topography),  material pro-
perties  and a description of the material location and dynamics at discharge.
Location  and  dynamics refer  to  the centroid of the  dredged  material,  as  the
material  is   assumed  to   be  a hemispherical  cloud of  uniform concentration.
Ambient  fluid properties  consist  of density and  velocity profiles.  Bottom
topography requires input of bathymetry, digitized to conform to the  long-term
diffusion grid  network.   Material  properties include aggregate density, voids
ratio,  liquid limit  and  radius of the bulk cloud; and density, concentration,
fall velocity and  voids  ratio of the component solids.  The material location
and dynamics  required as  input  are cloud centroid position  in  the long term
grid, and centroid  velocity  at release.  Also  required as  input are the ini-
tial time  of  drop,  the  duration  of  the simulation,  and  the long-term inte-
gration time step size.

     Program  outputs  include  individual component  solid  concentrations  and
position,  velocity and  concentration  of  the  aggregate  material cloud as  a
function  of  time  after  the  drop.   During  the  stages where  solid components
begin  to settle out  of  the  cloud,  program  outputs  include  the quantity  and
mound  height  of the  material  that  has  settled to the bottom during passive
diffusion.

     The program requires  defining the  geometry of the estuary into which the
material  is  to  be dumped.  This  is done by  specifying the bathymetry  of  the
estuary.  The  program is designed  to  model an  area by  specifying physical
parameters at discrete  grid  points.   That  is,  the  area  to be  examined is
divided  into  rows  and columns.   The intersection of  a  row with  a column is a
grid point at which  depth and position  are  specified.  Figure 1  represents a
typical  grid for an irregular boundary.   By specifying DX and DZ, the position
of each  grid point from the origin  is fixed.  The values of DX and DZ selected
will dictate  the number  of grid points  necessary  to  define a given boundary.
For example,  if the  value of DX  is  halved, twice the number of grid  points
will be necessary to define the same special distance.

-------
        1, 1)
        C2, 1)
        3, 1)
1,  3)
                               \
                                Zero Elevation
                           SxlLand
Figure  1.  Typical  Long Term Diffusion Grid Network

-------
     The program defines  the  geometry of the estuary by specifying the verti-
cal position of  the  grid points relative to  the  water surface:   for example,
zero depth for a grid point represents a land boundary.  In addition to defin-
ing the estuary's geometry, the grid also serves to define the points at which
long-term diffusion calculations are performed.

     Having  defined  the  estuary  with  the  grid  network,  the drop  position
within the grid must be specified.  It is not necessary to position the mater-
ial drop  at  a  grid point.  Rather the material should be positioned close to,
if not  at,  the center of the grid if an open water drop in zero ambient velo-
city is  being  simulated,  since, for computational reasons, it is desirable to
avoid  having  the  dropped material  reach  the  grid  boundaries.   Similarly,
simulation of  a  drop into an ambient current will  require some prior insight
into potential  dynamics,  as  the  initial placement  should  allow  the cloud to
convert  into  the  center  of  the  grid  to  maximize  utility  in  the long-term
diffusion phase.  The ambient fluid density and velocity profiles must also be
defined.  The  density  profile is  defined (independently  of the grid network)
in depth  only  and, consequently,  must be defined for  the deepest point in the
estuary.  The  program  is capable  of  handling  the  specification  of ambient
density at up to  ten  individual depths.

     There  are four options  for  specifying  the  ambient velocity  field.  The
simplest  assumes  a  constant  depth environment  and  that  the  two orthogonal
velocity  profiles  vary  only  with depth:   ambient  velocity  does  not vary in
either  a horizontal  plane or time (Figure  2).   The inputs for this velocity
option  are  specified  on  a single  input card.  The  second option is not re-
stricted  to a constant  depth and allows for  the  velocity  field to be varied
both in  the horizontal plane and  time  (Figure 3).   It does,  however, require
that the  velocity  profile be averaged  in  the vertical direction and that the
velocity field satisfy the following constraint (continuity equation):


                              |x(huh) ^ (hwh) = o


where:

               h = water depth (ft)

               U,  = average velocity in  X direction at h (ft/sec)

               W.  = average velocity in  Z direction at h (ft/sec)

 Inputs  from this  option are  specified  on  a  mass  storage  device such as  a
 magnetic  tape  for each  long-term  time  step.   Reference 3 presents  a  computer
 program used to define an example of this option.

     The  third velocity  input  option also  requires  the input to  be vertically
 averaged velocities  at each  grid  point as a  function  of  long-term time  step.
 The  program then  assumes a  logarithmic  profile  for  the velocity  which,  when
 integrated,  will  have the same vertical average velocity  (Figure  4).   Inputs
 for  this  option  are  also specified on a storage  device at each grid point as  a
 function of  long-term time step.

-------
                r
                                       UUl
Figure 2.  Velocity option one,  representative velocity profile in X
           Direction.  Velocity assumed invariant in time and horizontal  plane.
                r
                                      U Specified
                          -
Figure 3.   Velocity option two,  representative velocity profile in X
           direction.   Velocity  variable in time and horizontal plane.

-------
                    r
                                          U  Specified  - Profile Assumed
Figure 4.  Velocity option three, representative velocity profile in
           X direction.  Velocity variable in horizontal plane and time.
Figure 5.   Velocity option four,  representative velocity profile  in  X
           direction.   Velocity variable in horizontal  plane  and  time,

-------
     The last velocity option available is representative of the velocity field
to  be  expected in a  stratified  estuary and is again  supplied  from  a storage
device.  At each  grid point,  ambient velocity is specified at two depths in a
similar manner  as  was done in the first  velocity  option (see Figure 5).  The
velocity  field  at each  grid  point  must satisfy  the  following  continuity
equation:

                              9U  +  §W  = Q
                              ax     az    u

where:

               X, I =  horizontal axes

               U, W =  X and Z velocities

As  a  consequence, the  input  data for  this velocity  option  requires a great
deal of effort to prepare.

     For  velocity input  options two,  three,  and four,  each input  tape  (or
equivalent  storage device)  should  contain  sufficient  data  for one 25-hour
tidal  cycle.   The cycle  is  assumed  to  repeat itself  and,  consequently,  the
simulation  can be arbitrarily  started at  any point  in  the  tidal   cycle  and
continued for any duration desired.

     Material  geometry  and disposition at  discharge  must be  specified.  This
is performed  by  defining  the  size (radius), and centroidal position and velo-
city of  the material  at  discharge.   Since the program  assumes  that the dis-
charged material  is  initially in the shape of a  hemisphere,  the hemisphere's
radius must be estimated at  the  time  of discharge by  equating  the  volume of
the dredged material  in  the  barge  to  2/3/ir3  and solving  for  the  radius, r.
Centroidal  velocity for  the  hemisphere is the velocity  of the  material rela-
tive to  the barge at time of  release.  Lastly,  the  position  of  the  hemis-
phere's centroid at  discharge  can be  estimated  by  setting  it equal  to  the
center of  the dredge  material  in the  barge   relative  to the surface  of  the
water.

     The program  also requires  a description  of both  the  bulk  properties of
the aggregate  material  and the  properties of the individual  particles  that
compose the dredged material.  These properties include density, voids ratio,
liquid  limit,  concentration  and  fall   velocity.  It  was determined  (4)  that
three  representative  grain sizes, defining three solid  component  fall velo-
cities, are sufficient to  categorize a typical dredged  material.

     Figure 6  is  a gradation  curve for a typical dredged sediment.   The curve
can be divided into  three  segments  with the  breakpoints  at  33.3 percent  and
66.7 percent  by weight.  The median grain size in each  of these segments is
then used  to describe  that segment's grain size  distribution.

     The program  required as  input the individual solid  component  fall velo-
cities which can be determined from the material grain size distribution.  For
example,  Figure 7  is a  typical  graph of  particle  diameter versus settling
velocity  (from reference  5).  The  curves due  to Janke,  Rubey,  Stokes  and
Newton are  proposed   equations.   The curve due to Gibbs  is based on gathered

                                      8

-------
100
                   • Actual Grain Size Distribution
                   • 3-Component Model Representation
 100
                                                                              o.oi
                                                                                                 0.001
                                  GRAIN SIZE MILLIMETERS

GRAVEL
COARSE
FINE
SAND
COARSE | MEDIUM
FINE
SILT OR CLAY
  Figure  6.   Typical  dredged material  grain size distribution and  model  representation,

-------
     o
     QJ
     CO


     1


     •H
     O

     O
     bO
     4-1

     4-1

     0)
          0.0
Sphere Diameter in Millimeters


      0.1              1
      0.01
          10
      100             1000

  Sphere Diameter in Microns
10,000
Figure 7.  Estimations of settling velocity versus sphere diameter

           according to Rubey, Jenke, Stokes, Newton, and Gibbs.

           (Source Ref. 5)
                                 10

-------
from observations of  spheres  settling in a column of water.  Using an average
grain size  as  determined from Figure 6,  Figure  7 can be used  to  determine  a
component's fall velocity.  For  a  complete  explanation of fall  velocity as it
relates to various solid components, see references 5 and 6.

     The  liquid limit  of a  material  is the  moisture content  (expressed as
percent  of dried material)  at which the material just  begins to  flow  when
lightly jarred (see reference 5 for a complete description of how to calculate
a material's liquid  limit).   Liquid  limit will vary with the  grain size, or-
ganic  content,  and  minerology  of  the  sediment  particles.  Typical  volumes
range from 40-120%.

     The volume concentration,  sv, of a dredged material can be expressed:
                              sv =
where:    sv = material  concentration, volume ratio (FT3/FT3)

          sw = material  concentration, weight ratio (percent solids)

          ys = density of solid (lb/FT3)

        yH20 = density of fluid (lb/FT3)

     Similarly the voids ratio of a material  can be expressed:
                                   n = 1 - -=-=	^	
                                            S-G'solids
where:         n = voids ratio

              ys = dry density of solids (lb/FT3)

            yH20 = density of entrained water (lb/FT3)

(For further information on calculating n see reference 5)
A typical value of voids ratio is 0.78.
The output  of the program describes the location, velocity, and concentration
of the  material  as it descends and spreads  in the water.  This information is
divided  into  three phases:  convective descent, collapse, and long-term diffu-
sion.   The  long  version  of the computer output allows as an option a detailed
printout  of  information  concerning dynamics  simulated in  the  program.   The
program  will   always  terminate  when  the  final  time  specified  is  reached.
However, when all the effluent has dropped out of the water column, the height
and accumulated solid volume of the material on the bottom remains constant.
                                     n

-------
     The long and  simplified  program versions are presented in full  in appen-
dices to this manual.   Explanations  for each input and output value  are given
as well  as a complete computer listing of the program source deck and a repre-
sentative example.   Input formats are  presented in a pictorial representation
of the required computer cards.
                                    12

-------
                                   SECTION 3

                                PROGRAM FORMAT
     The computer  simulation  has two format options.  The long version allows
for complete flexibility in setting up the problem to be simulated, the output
format  and the coefficients to be used in the options.  It requires a thorough
understanding not  only of the process being modeled but  of many of the equa-
tions used  in  the program and the underlying assumptions used in their devel-
opment.   The short version option eliminates some of the program's flexibility
but  significantly reduces the amount  of input data required of  the  user and
consequently  is  much  simpler  and cheaper to  use.   This  chapter  will  explain
the use  of both versions.

A.   Complete Input/Output Format (long version)

     The input sequence is initiated by specifying the type of format desired.
Since for  this case  a complete  set  of  output data is desired,  the  value of
KAYMAX  on the first card should  be set to 1 (Figure  8).  This in turn dictates
to the program that a complete set of  input/output data will be forthcoming.

     Figures  8 to  30 represent the input cards  and parameters  required to
execute a run  of  the  long version of the program, and complete definitions of
the variables specified on the input cards.

     The program's output  is  in two  stages.   The  first  stage prints  out  a
summary of the  input parameters  and the key parameters  set internally by the
program.  This  allows for a  verification  that  the  input  data  was correctly
submitted.   The second stage  is  the  presentation of computational results and
is  divided   into  three phases:   convective descent,  collapse and long-term
diffusion.    Each  phase  has  important parameters  concerning the  dynamic be-
havior  of the  dredged material   listed as a function of time from the start of
the run.

     Figures 28  through  30  represent  cards that are  specified only when the
user desires to over-ride  various coefficients set internally in the program.
Because it is  not anticipated that the  typical  user will  desire to do so, an
in depth discussion  of the ramifications of modifying these  numbers  will not
be presented in this  users manual.   For a complete  discussion  as to the sig-
nificance of these numbers the user is referred  to references 2, 3,  and 4.

     Table 1 is a reproduction of a typical first  stage  print-out summary of
input data.   All these parameters have been previously defined in Figures 8 to


     The first output of the second stage is a coded array which indicates the
geometry of  the estuary to  be modeled.  This  array is inserted  in  the first
stage output immediately after  the  depth  grid,  and is shown  in  Table 2.  A
value of 1  in  a grid  point indicates that  it  represents  a part  of  the water
column  being modeled.   A value  of  2 represents  a  zero  depth  for the  water
column at that grid  point and is representative of  a  physical  boundary point
(i.e.  land).  A  value of 3  represents the  boundary of the grid  matrix being

                                     13

-------
                        -NOT   USED
i j i 4 ! t i i i »n i:n Mil « " iniaii nnK ninnnuiiinMii » t »»«'T«i"iu»«!JIJSSI>$!)
« il i«ii !»iNiiuiiMUUtHi*a3iennar!i&aBVBnMa»u»aM
-------
 NMAX
     NMAX
               NVL
                    NSC
                                   -NOT OSED-

                                     I
                                        I    I
 t iitt leongg ono tiiBti eeieot nigiBoggto i eoeng gim goto DC nooge DIE no oiooooo ODD ot o»
 i l ) " i i i i « uii iiuuii uinnian nci4UB7i n nnu u n>.ii»iiaB unui, 4. ,i«,, U.MISI u uuii SII-UIIMU unu UBIIUH >iii n n :, mi ii nnn
 I 1 111 1 II II 11 1 I I I I I I 1 I I I I II 11 I I It I 1 I I I I I I 11 Ml 1 I II I 1 II II 1 II I 1 11 II I I 1 It I I 11 I II 1 | II

 mil in 111111111111111111111111111111111111111111111111:1111111111111111111 mi

 33333 JJ}3J3J3Jn33J333 3333333 333 3333333 3 3 1 3 13 J 3 3 3 3 3 3 J J 3 3 i 33 3 J 3 J J 3 3 3 3 3 3 3 J 3 3 3 3333 I

 4444444444444444<44444«444444444444444444)4444444444t44444444444444444444>1444444

 5S55555SiS55555555S5SS!555555 5S5 555555S 55S55555i5i5:5555Ii55555555555S555S55555S

 S6SSSIS6SSSS SSSSSStSSS EE65S6S SiS 6SE££E6 i:S£S6E£E5 t E 6£SE£ 65E6SSES 65 S£ESSIS5iSS6S6

 71J77777777777777777J7177717I J77 777717711777771111777 17)7717 1777777777771 J777I77

 IIIIIIIIIIII ill 891SI9II I !(I98 lilt Mf if i IlililllHi I i! ii I II jf I ttl( I itllll! t
 SS9!) 9!9!9JJ 999 JS9S999 S9 99993 999 9993939 99)3593 993 9 9 !3 9 93 3935 9399 3! 3333933 93 39S9>
 i t i < i i i i i nu u nun tin it u nun nan; » a n sn EH u BK » a n mi uuu nu » uu u» 111114 11 x » itiiuu nu x u u nun 11 ;: nn » anirunn
* _ , ____ _ __ RSC/«»-Soai _ _ __              -
                                                             Format  (1615)
   VARIABLE
            DEFINITION
   NMAX
   MMAX
   NS

   NVL
   NSC
Array size in  Z direction  (NMAX<31)
Array size in  X direction  (MMAX<31)
Number of dredged material solid components
 (NS<12)
Number of velocity  array levels (0
-------
KEYI
    KEY 2
         KEY 3
             KEY 4
                                •NOT  USED-

                                   I    I
iiiiiiiiiiiiiiiiiiiiiiigiiiiiiiiigiiBtggigiiiigggggggggggjiiiiigggggggciiigiiigi
i i > 4 I • i • • itii auHnuiruiinnnaiinnn»nuuuun&Kiinttu«iu4i«*«itt<>iiuu}iUuutt«siiiHuiii!uuBKi!uiinnni]!i nntinnn
11111 in ii mi 1111111111111 n mi 111 in i ii ii inn 11111111111111111111 in 111 in 11
3333333J1333J3J3333333JJ33333J33333J13333333333J133J3333133333333333331333333333

4444444444444444'44444444444444444444444444444«i44444444444444444444444444444444

55555SSS5555555555555555555555555555555555555555555555555J5555555555555555555SS5

lEitmiiillltiflEiEilEEISEEifSEEtSEfEEEiESiEEEESEEfESESESGESiESESfSEiiEEtEECiCi

1 J II111 J-7 J 1 ? 1 J J 1 7 7 111 J 11J 1 7 7 7 1 J 7 7 7 J I 111 J J J 7 J 7 7 I J 7 1)7 II 17 7 7 i T J 1 7 7 11 T 11 7 I 7 I 7 111 7 7 I

IIIIIIIIIIIIIItlllSllllllllllllliltlMllllllllilllUCIIIIIIIIIIMSBSSIItilllllll

19i99Hll99J9M3393991)91I99I>9S99J99999999MJ9I9S99999339JS93999199i319J9!9J9M
i i i 4 i i i i i MII uaM n mi utiNji nOHni l>BiiBiil}li»tt»uan««ui:«ii«uiiiiMii»iuMuuHHiii)unoiinittiiiaiinnnMnHnnnii
                                                       Format  (1615)
  VARIABLE
                 DEFINITION
  KEYI
  KEY2
  KEY3
  KEY4
The option exists to redefine  various  equa-
tion  coefficients in the model.   This  option
is only of value to those familiar with the
program and  the ramifications  of varying these
coefficients.   For a complete  examination of
these coefficients and  their application see
reference 2.   If KEYI  equals 1 no action is
taken.   If KEYI equals  2 the user is required
to supply these coefficients.

The program  will cease  execution at the end
of the convective descent, dynamic collapse
or long-term diffusion  if KEY2 equals  1, 2
or 3  respectively.

If long-term diffusion for the fluid com-
ponent is desired set KEY3 equal to 1.
Otherwise set KEY3 equal to zero.

If repeated  runs are  to be made and user
desires to speciiy descent and collapse
time  steps (DT) KEY4  should be set to  1.
Otherwise KEY4 should  be set  to zero.
                 Figure 10.   Input Card Number  Three
                                   16

-------
 IGCN
    IGCL
         IPCN
             IPCL
                  IPLT
                      IDEP
                                       -NOT  USED
i i l i ) < l • i ii it H ii it H « IMI it » )i n a n n » i' 11 n » n i; u » K n n 11 » « « « 4i w u tt u it ti u si u u w » » « y u u p K o (* n u n u n it n 11 n n » i» n n ti *
1 II 11 I 1 I 1 1 1 I 1 1 11 U 1 I I I I I I II I I I I I I I I I! I I I I I t 1 I I I I II I I I I ! I 1 I I I 1 I I ! I I 11 1 M 1 1 I 1 !! I 1 I
44444444«4444444M4444444«44444444«t44444444<44444UM4444444<44444<44444444444{

555555555555 5555555S5555S555555555SS5S555S555555555S5555; J555 55 55S555S555S555555

ISI5Slt!SS5Si6(St SS666 S£66t5S6t 5BE5M5! ISE5S6E t£5E£5£ 5££ES56£ t S S55ES£5tSt6SS$SS£
Illll IllltllSili ill Sll till t ! Ml! 8 Mltll IBIlin
                                                 tilllil 1 il MllllUSSISt!
S)SSS!S9S83S9!SSS333S995!3S3S3S359593SS5!S)S1993S9SS»S3S!5S9!S)9999S3339S53!3!39
It / IJ i i i i luuirnxisuiMiniiijiinna; iijinttiiiiJiiijiMiraBiiiiuKutttttiutiuuunMuuutattniibauaKtitinnnnnHnHiiunM  j
_ ___ ^^^ __ PSC/NH-5OBI _ . __ ^X
                                                        Format  (1615)
  VARIABLE
                DEFINITION
  IGCN
   IGCL
   IPCN
   IPCL
   IPLT
   IDEP
A value of zero will eliminate graphs  of
convective descent while a value of  1  will
result in one  extra graph  and a value  of 2
in  two extra graphs.

A value of zero will eliminate all graphs of
the dynamic collapse phase while a 1 will
result in one  graph.

A zero will eliminate tabular output from the
convective descent phase while a 1 will
result in the  tabular data being printed.

The same as IPCN  except for  the collapse
phase.

A value- of zero will result  in the long term
results being  printed at 1/4, 1/2, 3/4 and
4/4 of the simultaneous stop time.   Other-
wise the long-term diffusion results will be
printed IPLT times for IPLT  less than  13.

If  IDEP equals 1  an NMAX x MMAX constant
depth array is assumed with  a depth  H.  If
IDEP equals zero  array depth parameters are
required.
                 Figure  11.   Input  Card Number Four
                                 17

-------
                                        ID .
I
   l I it I l l • i»MHn»OMMttn»«na*n»n»a*»«»*B*wM»««c
-------
   DX
                                -NOT  USED-
                                                       I
M 1 1 1 n ii 1 1 1 n 1 1 ii 1 1 1 1 1 1 1 it 1 1 1 ii 1 1 1 1 n 1 1 1 1 1 n 1 1 1 1 1 ii 1 1 M i ii n 1 1 1 1 i 1 1 1 1 1 1 1 1 1 • 1 1 1 1

2222222!J22222Z2Z2Z222Z22222Z22JZ22222222222222Z2ZZZ22ZZ:iZ2Z2222222Z22222Z22222I

3 J313333 333333 3 333333311J 3333333 3333 33J333 33333 33 3i3 33! Ji 33 33333333333333153 333J

4444444444444444*444444444444444444444444444444444444444444444444444444444444444

55555555 555555i555555S5555555S55 5S5555S5555SS5555 55S 55S5S J55555S55 555555 15555555
17111711117177? 777771177 111 71 J7 JJ] 71 7? Jill 7171111)11 111 Mil MI 1711 7717717711)111

iiiiiiiiiiiiiiiiiiiiinii nun ttniiiiii t tiiiisnii tut a ia 1 1 111 it in in sit i mi

j J JJJS J5M3S339595SSS5SS9 SSSS99S SS3 S3S38S9 399S!9595S S9S99 99 9 S3 !9)333SS333SS3 33SS
i i i . i i i > i KII IMJUH u iiu iinn n!i».i) nanair anno mmBu
-------
                         -DEPTH  (N,M)-
     I     I    I    I    I     I    I    I    I     I    I    I     I    I    I
     Illl
  i > i i > *
    ini
             i  inniMiiii in H IMI i n 11 iiiiin 1 1 1 1 MI ii nil ti iiiii i iin i IMII
  3J3JJJJJJ33 333 3 J131J 3 J1333 33333 33 3333 333333333 3333 J3J1 135 J31 3:33 JJ3J3 3133 3 IJ311J

  4444444444444444l«44«444444«44«4«44444444444444444444444444«44444444444444444444

  55mSSSJi55555555555SS5S55SSSS55SS55S5S5S55S55S5Si55i5SSJSSS5SSS5S55i555SS55SSS

  (IISStSSHIttttttSttttEtlStf StJI666EJtlt£tt56EEEtfE£E5tS5S6(5(SStSS£E£J5!f tttttt
  iiitigiiiiiiMiiiiiuiiiMiiiiiiiuiiiiiiiiiiiiMiiniiigiMiM niiiiiiiiMiign
  ||||llMlllJllllJS§illMM»S§Mill§MMIJl!»MJIJIMIIllJll!!iIllMMMSJSSMSn
vi:
                                                   Format  (16F5.0)
     VARIABLE
     DEFINITION
     DEPTH(N,M)
Depths  of grid point  N,M.   The grid is defined
first by row and  then by column.   If a grid
greater than 16 by  16 is specified the 7. grid
points  in the first row (x grid point 1) from
17  to 31 will be  defined on a second input card
After all the 7. grid  points in the first row
have been defined the 7. grids points in the
second  row will be  defined in the next input
card(s).  This will continue until the entire
array  is filled.   Thus for a 31 x 31 array  62
input  cards will  be necessary  (txvo to describe
each row in the  grid).  Depth is  defined in
feet.   If IDEP equals one the program will
assume a constant depth estuary  and only H  =
DEPTH (.1,1) need  be specified  in  columns 1
through 5.
      Figure 14.   Input Card Set Number Seven
                                  20

-------
XBARGE
         ZBARGE
                                     -NOT USED-
                           I         I         I         I         I
MiiiiiiiiiiiiiiiiiiiiitiiiiiniiMoiciiiiiiieiiinoiiiiuimiimiiuiaitiiiii
I I I 4 s I I I tMiinnMUiiinl!innanpa0ir»naii&UMrixuN»«!>inN
1 1 1 1 n ti 1 1 1 1 1 1 1 ii 1 1 11 1 1 1 1 ii i ! 1 1 1 11 1 1 1 1 1 1 1 1 n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 n i n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

»llZI2Illl22222222ZZZ222Z7227772ZZZ7Z7772Z2222277222Z22ZrZ22ZZZ222222277222222Z2

J333J333333333333333333333333333333333333333333333333333i333333333333333J3333333

44444444444444441444444444444444444444444444444444444444444444444444444444444444

SSJ3S5SS55555S5S55S5SS555555555i5555SS5555555555iSS555555S5555S5555555S55555555S

lllllllllllEiiSffilSSItiiiiliEitlllflfliiCfiitCSitEiCSEStfifllfSiliSCiSSSiiiCISt

II 7 7 J 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 I 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 J 7 7 7 7 7 7 7 7 7 7 7 J 7 7 7 7 7 7 7 7 i 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

IEIIIEII III III I II I III II II II 1 1 Illli I I II ......... IllgllllllttllllHIIIIIIIIIIIIIII
                 !3!U3S)S)SS31!5S
                                      BSC/NH-3OKI
                                                     Format  (8E10.0)
     VARIABLE
                                      DEFINITION
     XBARGE
      ZBARGE
X-coordinate of  barge  at time of discharge.
This  coordinate  is measured  from the grid
point 1,1  (see Figure  1) and does not have
to  be at a grid  point  itself.  XBARGE is
defined in feet.

Z-coordinate is  measured from the grid point
1,1 (see Figure  1), and does not have to  be
at  a grid  point  itself.  ZBARGE is  defined
in  feet.
                   Figure 15.   Input Card Number Eight
                                       21

-------
INROA
                             — NOT  USED-
                              I     I     i
         I     1     I     I     I     I     I     I     I     I     I  '   I    I     I
ggggggggggsggggggiggggggciugggggggBggtggiggggggggggggggiBiggtggeggitggggeggaiiii
l l i 4 » • i i i nniMiuiiuliuitnnnBMnniraannunuaMjiuMwiiuuMauuuiiMuuiiuttiiuuiiBiiiiuuiiicuiiRnnnnnaiiniinB
II1111 It 1 I II I 1 I I 1 I I I III II I I I I I I 1 I 1 I 11 I I I I II I I I I I 1 I I I 11 I It I I 111 I 11 11 I I 111 It I I I I! I
22222222222222222222222222222222222222222222222222222222722222222222222222222222
1333:132333333333332333:33331333333333133333333333333333313333333333333331333531
44444444444444444444444444444444444444444444444444444444444444444444444444444444
S55555555555555S555S55555555S555S55S555S55555555555555555J555555SS55555555555555
9(giSg(9EiSEfEEEIESEEfSEEEEECEEEEEEEEEEE{ESSEtE!EESEESCEESEEEEEStfiES{ESEEEEtESSi
7777777777777771)777171777777777777777777777777777777777771777777777777777717777
gtigaiiiiiiiiiiiiiiiiiiii mi siiisitmiiii tin minium HUM inn tiiieitiii
39133939999I93333333S3333933939339333333333H9993J9339399I933393933S9S33333I3J33
                                                                Format  (1615)
VARIABLE
NROA
DEFINITION
Number of depths at which ambient density
specified (NROA<10) .
is
                         Figure 16.   Input Card Number Nine
                                         22

-------
         I          I          I         I          I         I          I
                 lint oi BII t ggooit oti:mo t OBtoii iigatttiGi ti tt g osooc tctei
 i r i * i i > I iMnifiiiDfifuiinff/titjiiiniiiinnKiiruiiiJiiiiiiiiMiitMiH^auiiHttvuuiiuuiisiuaitiiiiuaKiiiiHnriiinnnitiTunii
 It t I I I I tl I ! 1 II 1 I 1 1 1 II 1 1 I I II I I I I I II II I I I 11 I II 1 1 ! I I I I 1 II III! II I 11 1 | I | | | | | | | n 1 I I II
 mint iii nun j 11 tin lit) mi ii tin 11 11 211 1 2111 mutt? i

 31333ni]33]3 13333333333353 3333333 3333133 J33J333 3333331113333333 333333333333333 J

 4444444444444444M44444444444444444444444444444444444444444444444444444444444444

 55J55S5555555555S5S555!55555555555555555i5555555555;55S5Sj555555555555555555555S

 (tl!SISi(flllE[((l((tilCSSit(SCSCt(((Elt:ftSGCE:St£SCSCSt$StSi(StSiSEttiiSieSS{S

 77 J7777 7717777771 7711 7J1 7777717777177777)7171117171 J7777J7i777717J JJ7777777 7717 J

 Illlllllll IIIIIIISIIISII III II Illll IIIIIIIIII8! II Illlllllll IlliltlllSlllilllillll

 399999993339399999999993939999S9999993999993S!999999999939993M9i999993J999993M
• t l l « s I i • l H it iiu M u u u M it n it R n >t n > irnnBiinniinBiiiiii3nii:f>iii
______ ^_ ___ ______ __ PSC/NH-5O81      _ ___ _ _

                                                       Format  (8E10.0)
   VARIABLE
DEFINITION
                   Depths  at which density is  defined  and  the
                   quantity of  Y(I)  must  be  equal  to NROA.   The
                   greatest depth in the  drop  zone must be equal
                   to  Y(NROA).   Since  (I) can  vary up  to 10 a
                   second  input card will be necessary to  define
                   Y(9) and Y(10).   Y(I)  is  defined in feet.
           Figure 17.   Input Card Set Number Ten
                                 23

-------
U»	_	ROA (I ) 	—	
I         I          I         I          I         I          I
iiiniiiit iiiiiiiiiiiiiiiB tt ioaiigsci:im niBgooeotiODiotii
ill«lliiimiiniuiiiiiruii»tinnBn!ii:uiii
-------
                          -NOT  USED-
IFORM                        . _     _.
( II I 111 l( 1 «l I I fl'« B l« « I B BIBB 0 «0 1 0 0 B t B 6 8 C fl ! I B B 8 BB t BOj'c B »8 BO C 8 » I I Q 8 I! 1 fl 0 BC ( CO t 8 « ( fl »B«
I I l • ) I i I I H ti IMI H u i» ii ii il a n n n » » n 71 n n c p r uw JJ )* " MM M «i « 4i« o u «r ««i H i; u u » u » u u » u n u u M ti a n u ti 1 !> R n I* n 11 it 11 ft to
1 I 1 1 I I 1 II I I 1 1 I 11 I I I 1 I I 1 I I !1 1 1 I 1 1 I 1 II I I I I 1 1 I I 11 I ! I I I I 1111 I 1 1 II il I I I 1 I i) I I ! 1 1 I I I I 1

2JZlJlIJZI22Z22222JZ2J222l2222222222222222J72l22222Z22Z7mZJ22ZI222222III?2222I

1113131331311 3333333333333J33333333313333333331J33J33333Sn3J333J3333J3331333J3J

4444444444444444*444444444444444444444444444444444444444444444444444444444444444

55555555555555555555555555555555555555555555555555555555!J55S5555555555555555551

ttl 55tS6t6SSE ESSSSES 66£ E!S 6 ES! 66 6 EEEECSE E S ESBEESEE ESESESESEt S 6S 56 56 CEE ESBS E6666S

i in IT IMF i mini n uninn i MJT j j mini m mi in mi n zn 7777; immmni

iiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiitiiiiiiiiiiitiiiiiiiiiiiiitiiiiitiiitiiiiiiiit

S!JSSJSSSSSnS!S)SSS3!3S)SSSSi 9953)!39JSMS 5S5S9395JSSSS5SSS»SSS595SS93!99?JSSSS
t I i « i i i i i M M u it M u u nil it» n n n i* a f n M n B n u n » a » n u n « 41 «»: M 4i« u i, ouiiuuMUuuuuuuaawaautitinHRnitnHTtjinH
                                                        Format  (1615)
    VARIABLE
                DEFINITION
    IFORM
If IFORM equals  one, vertically averaged
ambient velocities which  are variable in the
horizontal and  in time, are read from logical
unit  7

If IFORM equals  2, the program will generate  a
logarithmic velocity profile whose  average
value is that value of velocity read in at  each
time  step.  The format is the same  as for
IFORM = 1, and  velocity may vary in the hori-
zontal plane  and in time.

If  IFORM equals three  the ambient velocity  will
be  two layers and assumed variable  in the hori-
zontal and vertical directions as well as  in
time

If  IFORM equals four  the two  layer  ambient
velocity profile  is assumed constant in both
the horizontal plane  and time.
   Figure "Jg   Input  Card Number Nine,  Simplified  Input/Output
                                 25

-------
   DUI
           DU2
                   UUI
                            UU2
                                    DWI
                                             DW2
                                                     WWI
                                                             WW2
1 1 J 1 1 i 1 1 1 2 1 1 III J I J I J11 1 J I J I J J 1 1 1 1 1 1 2 2 1 1 Z 2 I 2 2 Z Z 122 2 Z Z 1 1 1 1 .- 1 2 J I I J Z 2 2 1 1 1 2 Z 1 Z J j I Z 2 I 2

11 333331333333333333313333 133 3333333333333333333 13313133533113333353 3 33333333333

444(4444444444444444444444444444444144 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 « 4 4 4 « 4 4 4 4 4

3ii555b55SS555555iSS3i55S55555S555555i55555i55S555!;55555i55S55555S5 55555555555 5
II JIJI Jl 777 77 J ? J7 J 71J7I J J77 J J 7?7 J7777I7? 11711171771 77 J 77711 JIJ 171717 JI7TJ777J JIT
mi mil ii mini minium HI ii i n i, ,,,,,,,,,,,,,,,,,,,,,,
                                                 Format (8E10.0)
    VARIABLE
           DEFINITION
   DUI


   DU2


   UUI

   UU2

   DWI


   DW2


   WWI

   WW2
Depth at  which upper  X velocity is  specified
(see Figure 2).  DUI  is defined in  feet.

Depth at  which lower  X velocity is  specified
(see Figure 2).  DU2  is defined in  feet.

Upper X velocity.  UUI is defined in  ft/sec.

Lower X velocity.  UU2 is defined in  ft/sec.

Depth at  which upper  Z velocity is  specified
(see Figure 2).  DWI  is defined in  feet.

Depth at  which lower  Z velocity is  specified
(see Figure 2).  DW2  is defined in  feet.

Upper Z velocity.  WWI is defined in  ft/sec.

Lower Z velocity.  WW2 is defined in  ft/sec.
    Figure 20.   Input Card Number Thirteen  (Omit if IFOKM
                                    26

-------
 TOUMP
           TSTOP
                     DTL
                                          -NOT  USED
 i   1 1 n i  1 1 1 1 H 1 1 1 1 1 1 1 ii 1 1 M 1 1 1 M 1 1 1 1 1 i 1 1 1 1 ii 1 1 1 1 ii 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 1 1 1 it
 1 J 1 3 3 3 i 3 3 J 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 J 3 3 3 3 3 3 3 3 3 3 J i 3 1 3 3 3 J J 3 3 3 3 3 3 3 3 3 3 3 1 J J 3 3


 4444444444444444*444 •444444444444444444'44444444«4444444444444444444444444444«444


 SiSSJSS55S55i5SiJJ5iSS55iSS5S5S5i5SSSSSSS55S5SSSS!iSi5S!i5iS5SSS5SSS5SJ5iSi51S5SS
 II1JI 7IJ77 777 771 777 J ' 771 77771 7 7777 7 JT771 7 117711 111 7 77 J717771? 71? 7 JT117I J7J71I J Jl


 IIUIIIII I ill III III! Ill 1U IHI I III II I I I I I1IIJII III 5 Hill! ll«« I II IHIII I I ! SJIIII I


 ||J|JJJMmMIH1Ullillll'ilUJSJJI»HIJIISSMMM!UIl»llJM»Sllllll»»S»)IUU
 i i it I i i i i»nuiiwDi*niitiiini»nji:»; nan»»'niii*»]»i'aa««tt«*""««:'««|i»wyu»»iiw»i«»
-------
  DTIU
            DT2U
                                        NOT  USED-
 1 1 1 i i i i i 1 in 11 u i' 1 1 HI 1 1 1 1 11 11 11111111111111111111111111111111111111111111111111
 1I22ZZ2ZZ2ZZ222Z2ZZ2Z2Z22222 222 2Z22 222 2 2222222 22ZZZZ2ZZ2r2ZZ2Z2ZZZZZZ2Z22ZZZZZZ2
 33333333331333 J 33 J 333 J 313 JJ33333313 3 133333 33 33333333 J33JJJ1333J333J33JI333 31 33 33
 4444444444444444444444444M44444444444 4 4444444444444144444444444444444*444444444-
 SiJSSJSSS555S55SS55J5S55SS555S5555i5S5S$SS5S5555555SS555SJ5iSS55S5S555555S55555S
 77777?7777777777771717777177771177777777777777777777777777i?n77177177l777777T77
 MIMIJ99399M999999999999SJ9939993999999993999999999999999S9999399339S939999J99
 iijnini«»aiii4«ini«iiii»»nii»»»»ii»ii»iiii»»»»«««"«'««««"'''»«»»»»«»»»"""il"**ll""»n111"4""11"""  J
  "    _ ______ _ ntcmmoii                               ~S
"~                            ~~~~                           Format  (8E10.0)
     VARIABLE
                                     DEFINITION
     DTIU
     DT2U
Convective descent  phase  time  step.   DTIU is
defined  in seconds.
Dynamic  collapse time step.  DT2U  is defined
in  seconds.
     Figure  22.   Input  Card Number Fifteen  (Omit  if KEY4 =  0)
                                       28

-------
                                  TPRT (I)
                                       I
i l i « » * i i i it n ii 11 u it n it u 11 n n n 7i 11 n n i« ii n i: it u u u i) 11 1) 11 n ct ii u ti u « a 4r n i
I I til I II I I II I 1 1 1 I I I 11 I 1 I I 1 II I 1 I I I I II 1 II 1 I 11 1 I I 1 1 I
                                                 v. u u M u » 31 u u u IT o o w ti u u u u n it IT n n n n tin n i»
                                                 I II J II 1 II 1 I I || 11 I 11 t I II I 1 I I It I
7222222222222222222222272222222222222222222222222,2222222:22222222222222222222222

33333 J333333 333333 J3333J3 5333 3 133313 3333333333 J333333333i33 33 33 333 J333333 3353 J33

4(44(4444444 (444M4444 4444444 4444««« 4444 44444 4 44444 ((1(44444 4 44 44 4 44444444444444

555555555b5b 5b55b55555555Sb55 5555b5555b$5bbb555555Sbb S555i555i5 '555S555ES5 555555
1777771717777777777H71777177777771 I777777J771711771777777!J11171777717777777771
IIIIIIIIIIIIIIItllllllllllllSHlIllIlllltllllllllKIIttlftftttttlltlfilllttltlllt
J S J J J 3 ) 9 9 ! 9 9 9 9 ! J 9 9 9 9 S 9 3 3 5 9 3 9 3 S 3 3 3 9 9 9 ! 9 3 9 9 9 3 3 S S J 3 3 S 3 S 9 9 3 3 3 5 ! 3 S S 9 3 3 9 S 9 3 9 3 9 9 ) J 3 3 3 3 !


                                                              Format  (8E10.0)
VARIABLE
TPRT(l)
DEFINITION
Long-term diffusion print
be IPLT values of TPRT (I)
than eight, specify TPRT
times. There should
If IPLT is greater
on a second card.
    Figure  23.   Input Card Number Sixteen (Omit  if  IPLT  = 0)
                                         29

-------
   RB
           OREL
                    CU(I)
                             CV(I)
                                      CW(I)
                                                ROO
                                                        BVOID
                                                                  LLIM
iiiiigiiiiiiiiiiiiiiiiiiiiiiiigieitiiciiiiiiiiiiniiigiiiiiiiitigogiiitgiiititiio
illtiiitinniiiii.nmiiiiinnnoiiaaii»ni:i1i;ii>aiiiiji»«.iuii«ii«m
-------
  SGAVE
                                  HOT  USED
 n i n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 n 1 1 1 1 1 1 1 1 1 1 1 1 1 n 11 1 1 1 1 1 1 1 1 M 1 1 1 1 1 1 1 1 1 n 1 1 1 n i ii 1 1 1 1 1 1
 12522222222221222221222212121222222222222222222222222222. -22Z22222222Z222ZZ22222Z
 33333333333333333333333333333333333333333333333333333333i3313333333131333J33JJJJ
 44444<4444444444444444444«4444444444444444444444444444444444444444444444«4444t
 555555555555 5555555 5553555555 555S555555555555555555;5555i5i5555555}55i55555535J5
 giiiigiiiiiisstMiiiiMiiitiiiiiiiiisiigittiiiiisiiiiiiitiiiiigititiitiigiMiiit
 SI!II9iSS)Siin91!J]9S9S19ni!S9i9S9 9911! 19 SU! ! i I 3 9 S 3 3 i J ) 3 3 S J 1 91193 tJSlIMUSJJ
 iiniiiiimiiniMU«u«»iiiinn!«ainiimijininni»uim«i4nic»««.ituSiiiiiai<»i»iiitm-                     __ IIIC/NH-»n»l  ___ _  .^f
                                                                  Format  (8E10.0)
VARIABLE
SGAVE
DEFINITION
Average Specific gravity for the aggregate
dredge material.
                Figure 25.    Input Card  Number  Eighteen
                                           31

-------
                                           ICOHES (K) [-•	NOT USED
                                                            I
PARAM(K)   ROAS(K)   CS(K)    VFALL (K)   VOIDS(K)
                         II                 >i
                                                                 9199

mi nil 111 mi i ii ii ii 1111 ii 11 n 1111 in 111 ii 1111111111 in i n 111111 n i n it 111 ii it
4444444444444444M44444444444444444444 4 4 444444444444444444444444444444444444444 4

SSi5SSiSSSS555SSS5SSS555SJ555S5S5S55SSi5S5S5S555555!S55S5SS5S5J555S55555SS55SSSS

iflISiSttittit(IISEiESEE(iEEEiIIEEiftSIESISSiEEESESEE$CSt5iEIfEiESCEEiSlif(IE(i(
iiitiiiiiitiiiiiiiintiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiii
J9999IM999999999999999999999S399999J9999999999999I99999999999999999M999999999J
                                            Format (A10, 4E10.0, 15)
    VARIABLE
                                 DEFINITION
    PARAM(K)



    ROAS(K)


    CS(K)


    VFALL(K)


    70IDS(K)

    ICOHES(K)
                 Descriptive identifier for solid component (K) .
                 PARAM(K)  can be  any numeric  and/or alphabetical
                 combination.

                 Solid  density of solid component (K).   ROAS is
                 defined in gm/cc.

                 Volume concentration of solid component (K) in
                 bulk cloud.

                 Tall velocity of solid component (K).   VFALL
                 is  defined in ft/sec.

                 Voids  ratio of  solid component  (K).

                 If  ICOHES equals zero the cohesive model in
                 the long-term diffision phase is bypassed.
                 If  ICOHES equals one the  long term diffusion
                 phase  employs the cohesiveness model.
   Figure 26.  Input  Card Set Number Nineteen   (Repeat NS  times, one
                for each solid component)
                                     32

-------
TRACER    CINIT
                  CBACK
                                           NOT USED
11 l < > l l I i « ii u ii »n n uunnnnnKiiliiialiaiixiJi* n » n uim 41 u u u « mi 
-------
 DINCRI     DINCR2   ALPHAO    BETA       CM        CD     h" - NOT USEO-
                                                     I         I
1 1 1 1 1 1 1 1 1 1 1 1 1 a i e 1 1 1 1 1 1 1 1 1 1 1 1 1 o 1 0 1 1 1 1 1 : 1 1 1 1 1 1 1 1 1 1 g g 1 1 1 1 o 1 1 1 1 1 1 1 1 « i B g g o i o 1 1 g a i g 1 1 1
i i i t $ i l l ••nuiiunNtiunaRBnnaxi>MnxiiuuybHunauuu«Maai>iiMUUiIUMU*uyttii«uuuiiHuiitiiinniiKiin>iMaii
111 11 mil mi 1 11 nit mini ii 1 1 ii 1 1 n 1 1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 mi 1 1 1 IT 1 1 1 1 1 mi i tin
1J3JJ31J333333333333J33J33333333J33333J33333333333333 333133333133333333333333 J3J
444444444444444444444444444444444444444'44444444444444444444444444444444444444444
{(ItSItlf CKSIIilltMiidllEdf (tlCEtCliC ttSttCSS ESCSCSCSKSCS (SCEt lEICCt CitC
777)77)777)7) m mil 77)7 7777 777 777 77)m77 77777 1 ) )77im 7m777imm 7177177)7
itiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiitiiiiiiiiiiiiiiiitii
199199I9999999M9J9999999999S99999199999999999S9S999999999999999J99999M999999J9
                                                      Format  (8E10.0)
   VARIABLE
                 DEFINITION
   DINCRI


   DINCR2


   ALPHAO

   BETA

   CM

   CD
Allows user  to influence program1s  estimation
of  convective descent time  step.

Allows user  to influence program's  estimation
of  dynamic collapse time step.

Turbulent thermal  entrainment coefficient.

Coefficient  which  influences material settling

Virtual mass coefficient

Drag coefficient
    Figure  28.  Input Card  Number Twenty-One (Omit  if KEY! -  1)
                               34

-------
 CAMA
         CDRAG
                  CFRIC
                            CD3
                                     CD4
                                            ALPHAC
                                                     FRICTN
11111ii111ii1111ii 1111111111111111111111111111111111 ii 1111 n H n 1111111111111111
111111111121211111111 linn 1211111111122212 222111111121 tr iiiiiiiiiiiiiiiiiiiiiit
1133333333:333:333333333333333333)3133313333333333:3:333333333333333333333333211
4444444444444444*444444444444444444444444444444444444444444444444444444444444444
S555J53S5S5555555S5i555S555555555555555555555555 5SSS5S555 J555S55555555555S555S5S
llllllllllflllfllillllilllllllllilillllllllllllMIIMIIIIIIIIIIIIimiltllSISIII
J19 ! 3)))M 9 9 9 9 9 3)3 9 3 9 9 9 S 9 9 9 S 9 3 9 3 3 S J 3 3 3 S 9 3 J!3 9 3 9 9 3 3 3 3 9 9 3 3 3 3 S S J 3 3 3 9 S 9 9 S S 5 S 5 9 9 9 3 ! S 5

                                                  Format (8E10.0)
    VARIABLE
                 DEFINITION
   GAMA
   CDRAG
   CFRIC
   CD3
   CD4
   ALPHAC
   FRICTN

   Fl
Dredge material density  gradient  coefficient.
Collapse phase form drag coefficient.
Collapse phase skin friction coefficient.
Ellipsoidal wedge drag coefficient.
Plate drag coefficient.
Collapse phase entrainment coefficient.
Coefficient of friction between  effluent  and
estuary bottom.
Collapse phase friction force modifier.
     Figure 29.   Input Card  Number Twenty Two (Omit  if KEY! =  1)
                               35

-------
 ALAMDA
            AKYO
                                      NOT  USED-
 I 1 II I I I 1 I I I 1 1 M I HI II I I I I 1 I 1 I 1 I I I 1 I I 1 1 I I 1 I 1 1 1 1 1 I I 1 I I I 1 1 I ! I I I I I 11 II 1 I 1 1 ! 1 H I 1 I I 1 I


 lI2222I222222ZZ22J222222I222222222222222222222I222Z22I22r2222222222I21222227Z»2

 1J3JJJ13333 333 J 3333 J3 333133 J 3333 3 3333 33! J3J 33 333 33 3J13J 31113133 3 J33J 3 J333JJ33133


 4444444444444444M444444444444444444444 4 4444444444444444444444444444444444444444


 JJ5SSJSSS5S55S5Si55SSS555555S5SS555S5SSi55S5S555i5S:SS555J55555555SS555Si5S5iS5S


 ||liJIS|||tiSillilttlJStittttlSIIttltlil5iSSSI££ft£E£Sl5tSSSSIISIStSEStlSJHSSH
 Illllllllllllllllllllllllllllllllllllllllllltllllllllltllllllllllllllllllttllllt


 lJ|IJMMMSM»JMIJJlllJJ!M!J»JSUimSS!M!JSJI!lJMJJH!JlHilJ!!MJISJS!iSl
 tl .11 I it. »u liana. ..a.m. mis si n a »»» an* »mm»«i. «u« ««4, ^.11.1. uu»im» nu.BHai. UBII no »n a IIH an «» t*
__ ,    _ »«c/m«-»on - --

                                                                Format  (8E10.0)
VARIABLE
ALAMDA
AKYO
DEFINITION
Horizontal diffusion coefficient dissipation
factor.
Vertical diffusion coefficient upper limit.
          Figure 30.    Input  Card Number  Twenty Three  (Omit if  KEY!  = 1 )
                                      36

-------
used.   Note  that the grid network  shown  is a square with  no  land boundaries
and contains a range of 31 points in  both the X and Z directions.

     Making computations for the convective descent phase, the program selects
a  time  step  (DT) based  upon  the  cloud  dynamics.  If  either the  bottom  or
neutral  buoyancy has not been reached in 100 time steps,  a second time step is
selected and  the process repeated.  When either the bottom or neutral buoyancy
has been reached between 100 to 200 time  steps, the program progresses to the
next  phase.   However,  if  neither  the bottom  or  neutral  buoyancy  has  been
reached in  5 of these trials (NTRIAL), the program will terminate.

     When the cloud  hits the bottom during  descent, the variable IPLUNG will
change from  0 to 1  if the event occurred  in subroutine DUMP, and from 0 to 2
if  the  event occurred  in  subroutine COLAPS  (Appendix  A).  However,  if the
program predicts  the  cloud will rise off the bottom, IPLUNG will be set to 4.
If the material  reaches  neutral buoyancy before  encountering  the bottom, the
variable NUTRL will  be changed  from 0 to  1.   However,  if diffusive spreading
is  greater  than dynamic spreading  during  this  phase NUTRL will  be  set to 3.
Lastly,  ISTEP represents  the  number  of  time  steps  needed to  either reach
neutral buoyancy or the bottom for the associated NTRIAL.

     The value of ISTEP  for the  last  NTRIAL listed should be between 100 and
200,  as  previously mentioned.   Table  2 is  a  representative program printout
for these parameters.

     The program next prints  out a summary of  those  parameters important in
describing the material's dynamics  during convective descent, as  a function of
time.   X and Z  are  the  material's  horizontal  centroidal  coordinates  with
respect to  the water surface.  U,  V,  and  W are the X,  Y  and  Z  velocities of
the cloud's  centroid.  The buoyancy of the cloud is a function of the density
difference  between  the  ambient and the material and  thus the program prints
out DEN-DIF.   Next the program  lists the radius, diameter and vorticity of the
descending  cloud.  The  program assumes that  during convective  descent, the
shape  of the material cloud  is that of a hemisphere and  thus  prints out the
hemisphere's  radius  and  diameter as a function  of time.  Vorticity is gener-
ated  at  the cloud's boundaries  by  sheer forces and  is printed out as an  indi-
cation of  the amount of entrainment  taking  place.   The  last three  parameters
printed  in this  format  block  are  fluid concentration,  and solid volumes and
concentrations of the  individual  solid components within the cloud.  The  fluid
concentration is the  volume concentration of fluid  internal  to  the cloud, or
unity, minus  the sum of  the concentrations of the individual solid components.
The  solid-volume  is  the  individual  concentration of  each  solid component
multiplied  by the volume of the material  cloud.   Table  3 is a typical repre-
sentation of the digital  output  for  the convective descent phase.

      In  addition to  the tabular output for  the convective descent  phase, the
program  prints out  a plot of the  material's X, Y and Z coordinates and  hemi-
spherical  radius as a  function  of time.  The plot has time as the ordinate and
the  normalized values for coordinates on  the abcissa.   Normalizing  values and
a  description of symbol  definitions for a  typical  run are  shown  in  Table  4.   A
typical  computer-generated  plot of  X,  Y and  Z coordinates  and cloud  hemi-
spherical radius is  shown in Table 5.

                                     37

-------
     Following the  plot of  the  dredged material's  position and  size  during
convective descent is a tabular description of the important parameters during
collapse.   The output is similar to that generated for convective descent with
the exception of  geometric  parameters.   Since the collapsing cloud is assumed
to be an oblate spheroid rather than a hemisphere as in the convective descent
phase, semi-major  (BB) and  semi-minor  (AA) axes are output  instead  of cloud
hemispherical  radius.   Also,  since cloud  vorticity  is  assumed  to  be  zero
during collapse, vorticity is eliminated from the program's output.  A typical
computer output for  collapse is shown in  Table  6.

     Similar  to  the  plots  generated  for  the  convective descent  phase,  the
program plots  material properties for  the  collapse  phases.   These properties
include  spheroid size (vertical  and  horizontal)  depth and  concentration.
Definitions  and  normalization  values  for  material  size,  concentration  and
depth are  shown  in  Table  7 while a  plot of these parameters as a function of
time is shown  in  Table 8 for a typical simulation.   Note the decreasing ver-
tical size and increasing horizontal size of the  cloud as it collapses.

     For  computational  reasons,  the computer program makes  the transition to
the  passive  diffusion stage by  creating  small clouds  of  material.   These
clouds are tracked  individually  until  diffusion causes them  to expand to the
size  of  a long-term  passive  diffusion  grid  square.   They are then  injected
into the  passive  diffusion  grid.   The output for the  passive diffusion phase
reflects this computational  method and  is presented for each material  present.
Table  9   represents  the program's  descriptive  output for  the  small  clouds
created for the material called "100-90", representing the coarsest 10% of the
sample.

     T(sec)  is  the  time at which the new cloud has been created by  the pro-
gram.  TX  and TZ  represent  the  horizontal position of the clouds with respect
to the grid  coordinates.  TSIDE,  TTOP  and  TTHK are  the horizontal dimension,
distance  from the  water's   surface  and  thickness  of  the associated  cloud.
TMASS  is  the total  component mass  in  the small  cloud.   TEMAS represents an
attempt to allow  for the  entrainment into  the  small  cloud of material in the
ambient environment.  It is not a currently executed option.

     NEWT  and LAST  are, respectively,  the time step at which the small clouds
are  injected  into the long-term passive diffusion phase  and the time step at
which they were  first created.

     During  the  course  of  long-term   diffusion,  a  summary  of  the  material
suspended  in  the  water column,  as well  as  the  amount of material accumulated
on the  bottom,  is  printed.   This  can be seen  in Table 10.   Printout of this
table will terminate when  all the material has settled out of the water col-
umn.

     The  program  presents  a graphic summary  of each  component's position and
thickness  as a  function of  time  and  grid  location.  Tables  11  and  12 are
typical of this type of output.  The program also prints out a  graphic summary
of the  amount of each component  that  has settled on  the  estuary bottom, as
well  as  the concentration  of the  material  remaining  in  the  water  column
(Tables  13 and 14).   At  the final  print  time, the program prints the total
accumulation  and  thickness  of material  settled  on the  bottom.   Tables 15 and
16 are  a  typical example  of total  bottom  accumulation and thickness respec-

                                     38

-------
                                       TABLE 1.   COMPUTER GENERATED INPUT SUMMARY
                       'STORAGE ALLOOAriON PARAMETERS
                       SM4X H!MU   NS  NVL  NSC    NEED
                        31   3i     '4   1   30       0
CO
vo
                                    (1 of  7)

-------
             TABLE 1.  COMPUTER GENERATED INPUT SUMMARY (Cont.)
FATE OP  OUOGM HAfWWI. OEPOSlTEO tM AN MTMW  Bf
                                       .
  2  VERIFICATIDM »u5 - FftU'RUtfER SILT - 50)  PCH
NU1BER OF  LONG  TERM OHIO POINTS IN Z-OIRSCTXOM INMXI  «   31
       OF  LONG  TER^ G«0 MM" XH X-OIR'-CTION IMMAKI  »   31
SRIO SPA3IN& 130
               (2  of 7)

-------
              TABLE 1.  COMPUTER GENERATED  INPUT SUMMARY  (Cent.)
 3*taE SODRDINIUES...
 X343GE (FT)  '    30.0*       ZBIUSi  tFTl «    11.08
      DEPTH «FTI '       '0.          i».DOO
AMBIENT
DENSITY (3H/CC)         1.000       1.000
              Oi»FH AT  DUMP ^OOSOI'iATESt H »    «»tBOa     FT.
              (3  Of 7)

-------
                                  TABLE 1.  COMPUTER GENERATED INPUT SUMMARY (Cont.)
                      TWO VELOCITY  PROFILES  SPECIFY  n x AMD z oiR-rsrum FO* — jurcic LOOKS-!-
                      OEl»TH ASSUtEO CONSTANT AN3  VELOCITIES CONSIDERED STEADY IN TIHE
                     •XELOCITY  PtiQFILI  CARAHSrdS FOLLOW*,.
                      OUt «    1.00     3U2  «     2.DJ     UU1 •    0.       UU2 «    0.      .
                      DWl e    1.00     DW2  «    '2.OB     WWl «    0.    '<   MHZ «    0| ~ - -  •--
ro
                      me pA^^HErERs  FOLLOW...
                      THE OF  DUMP  *       O.uO SECOOS AFTER START 3F TI3AL CYCLE
                      DURATION OF SI1JLATION  »   '  500.00 SECONDS AFTER DJH»
                      LON3 T-RM IIHE 5TEf»  (DTL) *      15.00 SECONDS
                                           .2530
                              i  PARA^lTERS...
                      INITIAL  RAJIUS OF :LOUOf %3 >    ,5b680D9
                      INITIAL  DEPTH OF CL3UO CEHTROI3t DIEL =
                      INITIAL  CLOUU ;EUO:iTIES.. .3U11) »    0.
                                                                         CMfi)  «
3ULK
aevsiTir,  ROD =    i.nsooo
AG3REGAT? VOIDS RATIO,  BV3IO
LHUIO LIMIT »    116.0
AVERAGE SPECIFI: GRAVITY «
                                                         7400
                                                    z.sso
           k SDIIOS,   PARAMETERS FDLLOH, .,.,.,

3ESCRPTION  O^SIT/IGM/CC)
                       100-93
                       90-60
                       80-30
                        ,LT,  38
                       FLUID
                      CALCULATiO  £»
                                                       FAH.-VEU061TYIFT/SEC)-
                                                                                                          RMIO'
2. 560
2,560
2,350
2.550
- i.ooj •••" ' '""• — 	 '
UU CONTENT * 500.3280
miNMENT COEFFICIENT =
I36Z3E-01
,*9275 	
« 4,3135 • FINES
.29195'+
,(«fl00i-0t
.2500E-01
.1330E-01
,5000t-03
LIQUID LIMIT
.7300
.7500
.7)00
.7900
'
                                    (4 of 7)

-------
                                  TABLE 1.  COMPUTER GENERATED  INPUT SUMMARY  (Cont.)
                      USE  RE4Q IK CO-FFI5IENTS
                      3JMCR1    1,0000 OI.MCR2    l.OCOO
                      I   tAO     .23JD BETA    O.QOOO 31    1.0000  CD      ,500'
                      3.  .       .25   CORAG   1.00   OF?IC  .010   C13     .10  L     1.00  M-PrUC     .0910
                      FRICTN     .0100 Fl     .1000
                      AHHOA     .0050 A
-------
                     TABLE 1.   COMPUTER GENERATED INPUT SUMMARY (Cont.)
3RID FOLLOWS...
TrN«
i
2
3-—
(.
5
~ 6
7
9
9 "
10
11
12
13
l
t.
t.
t .
f .
t.
t.
t.
f.
f.
f .
t. "'
t.
4,
f ,
4.
it
f .
t .
f ,
	 t.
f .
t .
t .
t.
3~
•4.
if.
!f .
•
4.
'4.'
4.
'4.
4.
if.
4.
'4,
if.
4.
if.
If.
4.
4.
4.
If .
if.
if.
if.
'4.
if.
4.
4.
if.
4.
'4.
4.
~llf ~ "
'4.
4.
4.

If.
tf, "
4.
If.
" 4.
4.
4.
""if. 	
4.
If.
4.
if.
4.
.. - ^ 	
4*
if.
. -_. . —
4.
4.
4.
4.
4.
	 , .«.^»
4!
V.
4, •—
4.
                   (6 of 7)

-------
  TABLE 1.   COMPUTER GENERATED INPUT SUMMARY (Cont.)
H N«E5
"2 	 (4.

5 4.
6 4.
7 <4t

It 4.
12 H.
'14 •" 4.
15 4.
17 4.

20 "~ H.
21 H.
iJ2 *•
23 4.
24 4.
25 4.
26 H.
27 H.
28 k •
29 4.
JO H.
31 4,
26


'4.
4.
4 .
- I,,-'
'4.
'+•
'4 . '
'+•
4.

W"
4*
4.
!j ,
'4.
4.
..... /+>~-
4.
4.
'+.
V.
<4.
27


4.
4.
4,


"••
" H.
'4.

4.
4.
4.
4.
1*.
4.
4.
l».
4.
4.
V.
4.
tt.
28
4.
4.
4.
4.
4.


»».
4. '
* •
4.

»•
4.
4.
4.
4.
4.
H.
».
4.
4.
4.
4.



4.
4.
4.
4. '

"**

"*'


4.
<4t
H.
4.
4.
(4.
(4.
>».
<4 .
<4.
<4.
4.
30
4.

4.
*.
4.
14*
4.
<4.
4.

" <4.


4.
' 4.
l» •
U.
4 .
<4 «
4.
4,
14 .
<4 •
4.
l| •
4.
31
4.
4.
!».
».
4.
4.
(4.
4.
4.
"4.
4.
4.
V.
""I*.
(4.
4.
'4.
4.
4.
4.
<4.
*4 t
4.
4.
It.
(7  of 7)

-------
CTi
                         TABLE 2.  REPRESENTATIVE GRID GEOMETRY FOR TYPICAL EXAMPLE RUN
                                ED ARK*Y FULOWS...



                                  3F N IS   1 TO  31
3 B
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 3
3
I
i
1
t
i
1
1
1
1
I
1
1
1
1
1
1.
1
1
1
1
1
1
1
1
1
1
3
3
1
1
1
1
1
1
1
1
I
1
1
i
1
1
1
1
1
1
1
1
I
1
1
I
1
3
3
1
1
I
1
1
i
1
1
i
1
1
1
i
1
1
i
1
1
t
t
i
1
i
1
1
3
3
1
i
1
i
I
1
1
1
I
1
1
1
1
1
I
I
1
1
1
I
L
t
1
1
t
3
3
1
1
1
1
i
1
i
i
1
1
1
i
i
1
i
i
i
i
1
1
i
1
1
1
1
3
3
1
i
r
i
i
i
i
L
i
i
i
i
i
i
t
i
i
i
i
i
i
i
t
i
3
3
1
1
1
L
1
i
L
1
I
t
1
I
1
i
1
1
1
1
1
1
i
I
L
1
3
3
1
1
1
1
1
1
1
1
1
i
1
I
t
1
1
1
1
1
i
1
t
1
1
1
3
3
1
1
i
1
1
1
1
1
1
i
i
1
1
1
1
i
1
1
1
1
i
1
1
1
3
I
i
t
L
I
L
1
I
L
L
t
t
L
1
t
1
I
t
1
I
L
L
L
1
1
J
3333333333333JSJ333
llllllllllllllllll*
11111. 1111111111111*
lllllllllliillilll*
1111111111111111113
lllllilltlllllllll*
llllllllllllllllll*
1111111111111111113
llllllllllllllllll*
llllllllllllllilll*
tllllllllllillil.il*
1111111111111111113
1111111111111111113
llillllllllilillil*

lllllliillllllllllJ
llllllillllllllllll
1111111111111111113
lllllili-lillllllll*
llilllllllllllilli*
llllillllllllillllS
11111111111111 '11113
1111111-111111111113
1 1 1 1 1 1 1 1 1 I 1 1 I I 1 I 11 3
llllillllllllillllS
3I3933333333333I333
                            SU1BER 0? GRID  »OWS WITHIN ESTUW «   fl<»l

-------
         TABLE  3.  MATERIAL PROPERTY CHARACTERIZATION DURING  CONVECTIVE DESCENT
NTRIAL         OT       IPLJNG NUTRL  ISTEP
   1   ,18829015           1     C    H
   2   .2385C085E-D1       1     C    l<»3
X ANH I ARE MFASURiO
                         TO BARJt POSITION
TIME
1.03
.05
.10
.!<•
.19
X
0,00
O.LO
O.GC
O.CO
0.00
Y Z U
.25 C.CG c.ac
.25 3.": C.C3
.26 C.rc O.OC
.28 C.GC 0.00
.31 C .CO C.GC
V «
0 . 0 C 0 0 . <. 0
. 1 55 C , . C
.306 U.P
.<»<49 U.OC
.580 O.CO
OEN-OIF
.1130E«-OC
.,«««,
.1112E*00
. 1091E»CO
.136<.E*eu
                                                            RAJIUS   OIA    VORT.
                                                              .67    1.33   C.OOQO
                                                              .67   1.34   3.0000    .9239E+DC
                     FLUIO CONC. 334.IO-VOL.
                     .9275E*00   ."»499ti-02
                                 .i«<«99E-02
                                 .2250E-Q1
                                 .1355E-C1
                                 .I.1.91E-C2
                                 .i»<.98£-02
                                 ,22i»9£-ul
                                 .1350E-G1
.67   1.31.  u.CObJ   .9133E+CO
                                                              .67   1.35  C.OOOO    .8962E»OC
                                                             .68   1.36  O.OOCu    ,8735t*lC
       O.OC     .3U    Q.CL  C.OO   .697  C.vO    .1031E»00     .69    1.37   O.OOCG
.29    0.00     .37    t.CO  t.OO   .8G1  Q.t.0   .99i»OE-:i     .7u   1.39   C.OCC'G    .8162E + 06
                                                                                               .".1.91E-C2
                                                                                               .'»'*98e-lj2
                                                                                               .1350E-C1
                                                                                                .|»<»98E-02
                                                                                                ,22'»9E-C1
                                                                                                .1350E-ai
                                                                                                .'.'.91E-C2
                                                                                               .22I.9E-131
                                                                                               .1350E-11
                                 ."«i*98e-G2
                                 .22i»9t;-l,l
                                 .1350t-«;i
                                 .1»<*91E-C2
                                                                                                            CONCtNTriATIOV
                                                                                                            .72<»6E-Q2
                                                                                                            .21 65E-J1
                                                                                                            .7122E-u2
                                                                                                            .7133E-L2
                                                                                                           .69t»8t-t2
                                                                                                           .6812E-L 2
                                                                                                           .5822E-t2
                                                                                                           .2J47E- Jl
                                                                                                           .660 lc~ u 2
                                                                                                           .bbllt-:2
                                                                                                           .330o£-ul
                                                                                                           • 198I.L-L1
                                                                                                           .636"«E-u2
                                                                                                                 - .2

-------
   TABLE 4.  CONVECTIVE DESCENT MATERIAL PROPERTY  PLOT DEFINITIONS AND
             NORMALIZATION VALUES  FOR DISCHARGED MATERIAL CONVECTIVE  DESCENT
          PL3T  OF  :LOUQ  »ATH AND RADIUS AS SEEN FROM POW  OF  RELEASE  -   '


          IVDEPENDENr VAmOL- IS TIME J3E3I  OVER *ANGE      0.           3.U06


          3E»ENDENT /ARUBLESt ALL NORHALIZ-D FOR- PLOTTH3  ON  UNIT AXIS

          SrtBOL             If                 3              x               I
         MAX PLDTTEO     3.i»7J2            l.i»2«»J             0,                B.
                         o.                o.                 o.                o.
                        DEPTH             R40IUS             HORDISTICXI      HORDISTCZI
HAX,*IN,INC, OF
        5.0000000    •       8.                  .100DOOODE»00
 MAX.HINiINC, OF OEP.
       i.ccoooco           Of                  .loooaoopE-ot

-------
    TABLE 5.   PLOT  OF MATERIAL  PROPERTIES  DURING  CONVECTIVE  DESCENT
         n.O                 .2                 • "»                 •»                 •'                *•'
          I	1	j	J....I----I	1	1.—I	1-*-1	1	1	1	1	1	1	1	1	1	1
          IZ      Y                                   BO
          IZ      Y                                   B
          II       YY                                  8
          IZ         Y Y                                R0
          IZ            Y Y                                d
          IZ              Y  Y                              33
          IZ                 Y Y                             01)
          IZ                    Y Y                           3r>
          IZ                        YY                          5d
l.COCv     I!!"-I	1	1	1	I	IY--V-I	1	1	1	1	I89--I	I	1	1	1	1	1	i
          IZ                             Y YY                       BE
          12                                  Y Y                      BJ
          IZ                                     Y  Y                     83
          H                                       Y Y                   BB
          IZ                                          Y Y                  B
          IZ                                             Y Y                68
          H                                                Y  Y                3b
          IZ                                                  Y Y               0
          IZ                                                     YY              JB
J(OQO"     IZ —I	1	1	1	1	1	1	I	1	I	1	I — W	1	1 —BB	1	1	1	1
          IZ                                                          * *!           '«i*°
          IZ                                                             Y Y           U
          TZ                                                                YY          B8
          iz                                                                   "        a
          IZ                                                                     YY       bti
IZ
IZ
IZ
IZ
                                                                                    YY       J
                                                                                      YY      Bfl
                                                                                         YY    88
                                                                                          YY    a
3. £00"     II — I	1	1	1	I	1	1	I	1	1	*	*	:	:	l	!	X —yl"'ri?""1
          T7                                                                                   Y T oo
          IZ                                                                                     YYY3b
          IZ                                                                                        yrb
          li                                                                                         »0
          IZ
          I
          I
          I
ft.tC'V     I	1	1-...I--.-I	1	1	1	1	1	1	1	1 —--1	1-	1-	I----I	1	I	I
          I
          I
          1
          I
          I
          I
          I
          I

5.0003     I	1	I	1	1	1	I----I	1	1----1	1----I	1	1	1	1	1	1	1	1

-------
                                         TABLE  6.   MATERIAL  CHARACTERIZATION  DURING  COLLAPSE
                                COLLAPSE  PHAS*  OF 3LOUU
                               COMPUTATIONAL INDICATORS...

                           NTRIAL    OT     IPLUN6  NJT"L  ISTCP  I1EO   HEAVt

                             1   .i>3»5':-Cl     1      3    517    1U   1(9
                               X  AND 2 MEASUREU  F»01 JAPGt POSITION
                                                                                                     FLUID CONC.   SOLIJ-VOL.  CONCtSTkAT UN
in
o
3.39 'LCD 3.28 .9519E-C1 .>t292t-C2
.13"t9E-,i
f.OC .I>e>.3
I222KE-J2
.69Clt-w3
.2228C-I.2
                                                                                                                .21l»9E-Ct

-------
       TABLE  7.   COLLAPSE PHASE MATERIAL PROPERTY PLOT DEFINITIONS
                  AND NORMALIZATION VALUES FOR DISCHARGED MATERIAL
         PLOT OF 30LLAPSING 3LOUD CHARACTERISTICS	'	


         INDEPENDENT VAUABLc IS TIME OVER RANGE     0.	 12.330  '


         DEPENDENT VARHBLEt  ALL NOXMAUI?EO FOR PLOTTIN; OS JNIT AXIS  	"

         SY100L             A                B             3             I
         MAX PLOITTEO     1.3973           f.2<»55        .92751*        3.
         IIS PLOTTED     0.                0.            0.            0.
         RMARKS        i/ERT  SIZE        HDR SIZi    C3SCENTRATI3N   DEPTH
 HAX,1IN,TNa, OF ISD.VAR.
— ..... -".15.000000      -     0.' -'  ........... - ........ .30000001
MAX, HIM, IMC, OF OEP.  VA?.
       1.0000000            0.                  .1QOOOOODE-01

-------
                                     TABLE 8.   PLOT OF MATERIAL PROPERTIES  DURING COLLAPSE
                         J.OCOO
                         6.0COO
en
ro
                         9,0000
                         12.0 DC
o.o .2 .it
I YY p
1C Y 1 0 3
I Y
I 03 Y r ;
I 0 C Y
I C CBO
i c : so
.9 .S
AA
A A C C
C A
C A A
A
V Y A A
' Y Y A A
l.C
C






                C              J                          Y                   A
             CC                SB                              Y   Y             A A
 	I....I.-B-I	1	1	1	i-8—j	1	1	1	1	1	r	i--¥-r----r	1	1	1
          CC                       £8                                     Y   Y         A
 AC                          ti                                          Y    A
          C                              C   b           A          A             Y Y
          C                                A     3A  J                                YY
          C                            A3                               Y
          C                      A   A                    u  a                         YY
          C                    A                              8                      .V
          C                AA                                    B 8                    YV
I         C               A                                          BY
j	1	18 —I	1	!-»--!	1	1	1	1	1	1	1	1	1--8-II	1	1	1—¥1
I         C          AA                                                  tlB             YY
I         C          A                                                      B      -      Y
I         C        AA                                                        Bu           Y
I         C        A                                                           J         Y
1         C       A                                                             Bd       Y
r         c       A                                                                BY
I         C       A                                                                 BY
I         C      A                                                                   Bb    r
I         C      A                                                                    BY
j—..j....ie—i—*•!»•—i—-1-.—i—-1——i-..-i.—i	1	1	1	i....i....i	1	is-—r
I         C     A                                                                     u  Y
I         C     »                                                                     lib y
I         C     A                                                                      0 Y
          C     »                                                                      63Y
          C     A                                                                       UY
          C     »                                                                       BY
          C    A                                                                         r
          C
                         15.COO
I
I"
I
rr
i
i
i
I
i
i
j
I—
                                           -16-
                                            C
  A
  A
-IA---I-
  A

-------
                                 TABLE 9.    MATERIAL CHARACTERIZATION  DURING  LONG-TERM  DIFFUSION
                                   BEGIN  LONG  TEP*  SIMJLATION IF F4T£ OF 1JO-9C
                          NEW  CLOUD CRESTED,  NTCLO *     1
                            TISECI         TX          TZ         T3IOE        TOP
                             1.216        15.00       15.U       1.670       1.77k
                                                               TTHK        TMASS        TEMA3
                                                               ."•865E-01   .80<««tE-05   0.
                                      NEMT
                                       52
            LAST
             1
                          NEH  CLOUO  CREATED,  NTCLO =     ?
                            TISECI         TX          TZ         TSIOE        TJP
                            3.61.9        15.CO       15.03       3.965       3.903
                                                               TTHK        TMASS        TEMAS
                                                               .97J1E-C1   .S875E-ii(   0.
                                      NEWT
                                      151*
            LAST
            52
                          NEK  CLOUtl CREATED, NTCLO =     t
                            T(SEC)         TX          TZ         TSIOE        TJP
                            "••865       15.00       15.00       !..3itZ       3.951
                                                               TTH<        TMASS        TEMAS
                                                               .<«865£.-01    .I»71UE-03    0.
                                      NEMT
                                      luS
           LAST
          154
                          NEW CLOUO CHEATED, NTCLO =     ?
                            T(SEC)        TX          rz         TSIOE        TDP
                            6.C8Z       15.00       15.00       5.Z01       3.951
                                                               TTH<        TMASS        TEMAS
                                                               .l«865E-Ol    .6
                                      NtHT
                                      Z56
           LAST
          2C5
O1
OO
 NEW CLOUO CREATED, NTCLO =     ?
  T(SEC)        TX          rZ         TSIOE        TOP
   7.29S       15.00       15.00       5.750       3.951
TTH<        TMASS        TEMAS
.S865E-01   .71C5t-U   0.
                                                                                                                             NEMT
                                                                                                                             3C7
           LAST
          256
                         NEW CLOUO CREATED, NTCLD *     ?
                           TfSEO        TX          TZ         TSIDE        TDP
                            8.51<4       15.00       15."j       6.C81       3.951
                                                               TTHK         TMASS         TEMAS
                                                               .i»865E-01    .6361E-C3   0.
                                      NEMT
                                      358
           LAST
          3C7
                         NCM CLOun CPEATEO, NTCLD «     !
                           T(SEC)        TX          TZ         TSIDE        TOP
                            9.731       15.tU       15.li)        6,2o»       3.951
                                                               TTHK         TMASS         TEMAS
                                                               ,<,8b5;-Ci    .5150E-C3   0.
                                      NEMT
                                      i(C9
           LAST
          35b
                         MEM CLOUO CREATED, NTCLO *     ?
                           nSEC)        TX          TZ          TSIDE         TOP
                            l'J.95       15,01)       15.c;        6.368        3.951
                                                               TTHK        T.1ASS        TEMAS
                                                               .1.S65E-C1   .393JE-C3   0.
                                      NEMT
                                      i«6u
           LAST
          I.C9
                         MEM CLOUO CRtATEO,  NTCLD *     '.
                           riseci         TX           rz          TSIOE         TOP
                            12.16        IS.ufl        15.00        6.1.2C       3.951
                                                               TTHK        TMASS        TEMAS
                                                               ,<<8b5£-;i   .29L6E-C3   0.
                                      NbMT
                                      511
           LAST
          l>60
NEK CLO'Jt) CREATED,  NTCLO  =      >
  T(SEC)         TX           TZ
   12.31        15.00        15. SJ
                                                                TSIDE
                                                                             TOP
                                                                           3.775
TTHK        TMASS         TEMAS
,?250        ./'•36E-C3    0.
NtHT
517
 LAST
511

-------
TABLE 10.  MATERIAL STATUS  AS A FUNCTION OF TIME DURING LONG-TERM DIFFUSION
                                   'WITH N
    SJMHARY'OF 100-30	DISTRIBUTIONS AFTER	" 30.0)  SEC;  '

    TOTAL SUSPENDED KATEUAL C3UFH  «     , mJSE-05
    SUSPEMO-0 MtTiSIAL IN LONG  TERM  GRID (2JFTI  »     0.
    SUSPENDED MATERIAL IS SHALL CLOUDS  (5JFD  *      .60U5E-Q5
    TOTAL MATERIAL SETTLED TO BOTTOM 13UFT)  *      .t»i»nJE-OZ

    OUTPUT SUPPRESSED  I<4 LOCATIONS  4ITH NO MATERIAL PRESENT
    SUNMA4Y OF 100-90      OISTRI3UTI3NS  AFTER      tS.OO  SEC*

    TOTAL SJSPENDEO  MATERIAL  CCUFT)  «      .JQi»39E-05
    SUSPENDED MATERIAL IN  LONG  TERM  3RIO CUFf)  =     .SOUSE-OS
    SUSPENDED M4TEUAL IM  SHALL CLOJ3S  CCJFH  =      0.
    TOTAL MATERIAL  SETT.ED TO OOTT3K iS'JFTI  «      ,i»l»91J£-02

    OUTPUT SUPPRESSED  IV LOCATIONS WITH  NO MATERIAL PRESENT
    SUMMARY  OF 100-90      DISTRIBUTIONS AFTER      60.0)  SEC.

    TOTAL  SUSPENDED  MAT-HAL  CUFT)  *     0.
    SUS'cSD-D  MATERIAL  IN  LONG  TERM  G1ID CJFFI .«     0.
    SUSPESQiD  MATERIAL  n  SMALL CLOU3S CCJFTJ » ''"   0.
    TOTAL  MATERIAL SETTLED TO BOTTDM (SUFD  =     ,i|i»99JE-02

    OJTPUT  SUPPRESSED  IV LOCATIONS 
-------
              TABLE 11.  COMPONENT POSITION AS A FUNCTION  OF  GRID LOCATION DURING PASSIVE DIFFUSION
en
en
...MULTIPl
1 N* 1
1 000001
2 0000
.1 OOOD
<> oooo
5 OOOD
6 0000
7 oooo
8 OOOO
9 OOOO
10 OOOO
11 oooo
12 OOOO
u oooo
tt oooo
15 OOOO
16 OOOO
17 OOOO
IS OOOO
19 OOOO
?: oooo
21 OOOO
12 OOOO
23 OOOO
?". oooo
25 OOOO
26 OOOO
27 OOOO
21 0000
29 0003
30 OOOO
.1 nisPHYEo vaiuis B» i.cct IIICEIO... > « .LI. .01 . • .LT. .0001 o « .LT. .cuoi
2 3 i. 5 6 7 S 9 It 11 12 iJ lli 15 Ib 17 IS 19 1} ii It i3 2<« 25
300 00 0000000000000000 UO 00000 00 00000 00 OOOOOOUO 00 00 000 00000000 000000000000000000000 OOOO 00000000000!
OOCGC30QUJQl'ji}u'JCCiuCGOOL
tCu"COCOOJw02COCO'*''^'QOlJu

0



0



•

0 0





a i
OQQOOGCQOOuOCOOOCOOOOOOO
OQOC07GOJQu0^33C3iJHUGOJj
COOOOGCCCOOOJuOOIlliOOOflOO
OOOOfijOQt]08(f303k300QCOQO
OQOOOlCOOUOOOODOOOCOCiOOO
31)
ib 27 2B
DOOOOOOOO 0001
: ; c.
a 3 i
J J C
J 0
a L ii
aoc
0 » 0
J J L
3 J L
] J J
0 3 b
0 u C
000
3 0 u
0 u L
3 4 t,
0 0 C
0 0 C
0 0 u
a o u
3 i I
0 0 1
0 0 i
0 G 0
000
I) 0 u
0 6 0
000
24 30 31
JG00000030J
; goooi
u OOJO]
u 10003
CODOJ
u COOOJ
„ COOOJ
; 00301
C IUOOJ
c toaoj
C C0001
t cuooj
c tooo>
C uOJOJ
t COOOJ
i, vOOOJ
c uoooj
„ ^oao)
c ;ODOJ
J 00301
„ (030)
a iiBaai
i !,030J
0 0030}
g 0000}
C 00003
o coaoj
I 00303
o OOOOJ

-------
                                         TABLE 12.    COMPONENT  THICKNESS AS A FUNCTION  OF GRID  LOCATION
                                                          DURING  LONG-TERM  DIFFUSION
                               T«IC*H«S OF   .it. at   CLOUD «*m»
                                                                             SECONDS
                                                                                          DUMP
tn
01
 i
 J
 S
 b
 5
 6
 T
 I
 1
11
11
ii
13
I".
15
16
17
11
11
2?
*1
                                   [c  l   £   J   H   5   0   '   •   ~  •»  * *   **  * **  *                      —   —
                                   00000000000000000000000000000000000OOOOOOOOOOOUOOOOOOOOOOOOOOD0000030000000000000000000000000000000000000000000000000000000J
                                 Z5
oooo
0009
oooo
0003
oooo
OOOO
0003
oooo
oooo
oooo
oooo
OOOD
oooo
oooo
0003
oooo
oooo
oooo
oooo
0003
oooo
oooo
oooo
oooo
oooo
 oooo
oooa
 oooo
9
0
fl
g
g
g
3
g
9
g
3
J
o

 3
 9
 9
 0
 g
 0
9
9
g
g
g
g
g
g
c
9
0
9
e
0
g
 c
 g
 0
              0   9
              0   9
              a   5
              '4   J
c
0

c
e
0
c
0

0
c
1

 }
 g
     3
     )
     9
     )
     g
     J
  !   )   >.
  :   3 .15
  C  .15 .15
  0  .19 .15
.15  .1! .15
.15  .If .15
.15  .15 .15
.15  .!> .10

.15  .15 .15
,15  ,15 .15
  9  .15 .15
  C  .15  .15
  )    ) .15
  C  .19  .15
.15  .15  .15
,11  .15  ,15
.15  .15  .15
.15  .15  .15
.15  .15  .15
.15  .15  .15
.IS  .15  .15
.15  .15  .15
.15  .15  .15
.15 .15  .15
.15 .15  .15
.15 .15  ,15
.15 .15  .15
.15 .15  .15
.15 .15  ,15
  9 .15  .1*
  C   i   0
  933
  9   <1   'i
  C   D   9
  3   0   3
.15  .15 .15
.15  .15 .15
.15  .15 .15
.15  .15 .15
.15  .15 .15
.15  .15 .15
.15  .15 .15
.15  .15 .15
.15  .15 .15
.15  .15 .15
.15  ,15  .15
.15  .15  .15
.15  ,15  .15
.15  .15  .15
.15 .15  .15
,15 .15  ,15
,15 .15  ,15
.15 .15  .15
.15 .15  .15
  It.
                                                                                        J
  9   3
  i   3
  0   3
  0   9
.15  .15 ,
.15  .15
.15  .15
.15  .15
.!*<  .15
.15  .15
.15  .15
.15  .15
.15  .15
.15  .15
.15  .15
.15  .15
.15  .15
.15  .15
.15 .15
,15 ,1>
.15 .15
.15 .15
.15 .15
  b   1
  9   3
  9   II
  0   1
  0   3
 9
 0   3
 U   C'
 g   i
15 .15
15 .IS
15 .15
>15 .15
,15 .15
,15 .15
,15 .15
,15 .15
.15 .15
,15 .15
.15 .Ii
.15 .15
.15 .15
.15 .15
.15 .14
,15 ,i>
,15 .15
.15 . 1>
.15 .15
  C
  a   3
  g   c
  s,   :
  (   c
,15  .15
.15  .Ii
.15  .15
.15  .15
.15  .15
.15  .15
.15  .19
.15  ,15
.15  ,15
.15  .15
.15  .15
.15  .15
.15  .15
.15  .15

.15 .15
.15 .15
  t   i.
  3   C

  9   9
  g   v
                                                                                                                  i,
                                                                                                                  0
                                                                                                                  0
                                                                                                                  i)
                                                                                                                  g
                                                                                                                  o
                                                                                                                .15
.15  .15
.15  .15  ,15
.15  .15  .15
.15  .15  .15
.15  .1$  .15
,15  .15  .15
.15  .15  .15
.15  .15  .15
.15  .15  .15
.15  ,15  ,15
.15  .15  .15
.15  .19  .15
,15  .15    i
,t5    a    'i
  0:0
  a    b    5
  b    u    '1
 g
 g
 g
 c
 g
 g
 «
 g
 9
 g
.15
.15
.15
.15
.15
.15
.15
  3
  0
  t
  g
  g
  o
  o
  3
g
9
3
3
a
g
g
g
a
g
3

9
g
g
 o

 9
 o
 ii
 o
 g
 9
                                                                                              bOOOl
                                                                                              oooo)
                                                                                              COdOJ
                                                                                              :ODOJ
                                                                                              COO 05
                                                                                              COOOJ
CU003 .
tOOOJ
C0303
10003
£030)
00003
6 OOOD
C030J
0000.1

tODOJ


9030)
COJOJ
ii)00)
                                    oooo   c    g   3   t   o   '    o   «   '   -    "   c   °   "   °    '   °
                                    00000000000000000000000000030000300OOOOOOOOOOOOOUOJ00003000000030000CUJOOD
                                                                                               b   10301
                                                                 t   )    i   t   i   j   c    o   b   coooj
                                                                 £   J    J   9   „   JObb   COOOJ
                                                          O;gc3ti39)bu   3000)
                                                          OlOCjj.Ouii   COOOj
                                                         ,0003300000U0300000COOOl)l)30000')OOOOOOOi)UO<)OU00030}

-------
                    TABLE  13,   COMPONENT  BOTTOM ACCUMULATION AS A FUNCTION OF  GRID  LOCATION
                                  DURING LONG TERM DIFFUSION
cn
IOTTOM ACCUMULATION Of .LI. 11 luy'f'j
..NUlTIi>L» OISPLA»eO VALUES (IY .UGtE-
IK 1U
i n
il4U**KC 1 i 3 v i
ILlGiNO... '
It 1 7 It 1 it
'» .LT. . ci . = .Lr. .coai
1S 1=1 17 1H t<3 23 21
1 0000000000 000000000000000000 OOOOOOOOOOOOOOOOCOOO J00000030000u03000UOOOO 000000003 000001

3
4
5

b
7
3
1
1 Q
11
12
13
11.
15
16
17
19
1 3
2J
21
22
2 ?
25
26
27
29
29
39
,
OOOO 3 0 0 £'
0003 •! £ 3 I
oooo o o r> o
OOOO 000?

OOOO C 0 0 0
JOOO 0000
0009 i. Q 0 »
OOOO 0 0 Q C
00 00 0 G 0 I
•)000 0 0 3 f
oooo oooo
OOOO 1 0 ti V,
OOOO 3300
oooo coco
OOOO i) 0 C 5
OOOO C 0 0 0

OOOO 0 0 0 C
0000 0 0 0 0
OOOO 0 0 t) C
oooo oooo
0003 S 0 5 9
oooo oooo
OOOO (t 0 8 C
oooo o i o n
JOOO OOOO
oooo o o o c
OOOO 0 000
1
o : o
* : c o
o ; o o
fl L r c

C J j Q




> » .Cl.
• t * . t <•
. > » .Oli
. • ' .Cli
. < * .C 9.3 >..! 1.3
5.9 5.9 5.6 l».3 1 . 
22 S3 21 25 25 27
30000000COOOOOUOOC
j i o ;
C j 0 C
J 11 J J
c : - .
0 0 0 C
ij ) 0 «





» * . il

» * . 1'
* * . u
> » . u

• . G i>

ii ? C fl
g o o o
0 t) 0 J
C 0 0 d
0903
a J 0 0
0 0 0 b
0 J 0 3
10000001
J 0
0 9
o ;
J b
0 G
0 G
j J
0 3
3 j
3 u
Q G
0 u
0 i
9 :
J 0
3 0
o a
0 0
0 0
0 3
o u
0 0
0 0
0 0
0 0
0 0
0 u
0 d
0 0
211
3301
b
G
t
•
0
[,

b
0
0

c
G
-
"
G
fl
U
1
o
o
c
G
1)
C
0
•
0
I)
                                                                                                             '.'JJOJ

                                                                                                             -OOOJ

                                                                                                             10303

                                                                                                             1.000)
C0003

:ooo3

L 0003

1.0003

COQ03

110003
                                                                                                             CUOOJ

                                                                                                             COOOJ

                                                                                                             00003

                                                                                                             00003

                                                                                                             IOOOJ

                                                                                                             G0003

                                                                                                             G030J

                                                                                                             ^0003

                                                                                                             CU003

                                                                                                             001)03

                                                                                                             00003

                                                                                                             00003

                                                                                                             00003

-------
                               TABLE 14.   COMPONENT CONCENTRATION AS  A  FUNCTION OF  GRID LOCATION

                                             DURING  PASSIVE  DIFFUSION
cn
oo
.. .MULTIPLY DISPLAYED VALUE; 3Y
1 0000000000000000000000030303(
2 oooo c o ? c o :
3 OOOO 0 0 0 0 C 3
li OOOO 0 0 d ff fi J

fi OOOO 00(011
r oooo o o p ; o 3
9 OOOO C 0 3 0 0 5
9 OOP9 1 i 0 5 0 ;
t'l 0003 C C 1 C 0 .
11 0000 C 0 J C [• ,
12 0003 0 0 0 0 . t
!<• OOOO 0 0 0 C . .
15 OOOO * 0 9 ] . >

19 OOOO 0 0 0 C . »
14 OOOO 0 0 0 0 C .
20 0003 3 0 i) fl 0 .
21 OOOO 0 0 0 G 0 g
2! OOOO 0 0 5 C 8 ]
23 OOOO 0 f 0 3 5 )

2« oooo o o ij a i ;
25 OOOO 0 0 0 0 0 :
26 oooo o o i o c :
?' OOOO 0 C 9 ; J J
29 OOOO C 0 0 9 g )
Z1 OOOO 0 C 0 C 0 J
3C OOOO 00000)

• 9 10 It 12 13 1» 15 16 17 11 19 20 21 22 21 2* 25 26 27 2> 29
1000000 OOOOJOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 00 0000001
c c ° « o t o o o c » o o o o o g o o o o o
0 ° " « ' » 3 0 « 0 0 0 9 0 0 a 0 3 0 0 0 li




* ' ' •"! -01 .12 .« .J? .tZ .01 » • . . j o a J 0 (j o
» » > .n3 .19 .11 ,12 .12 ,12 .11 .J6 .03 » » • . o 0 0 j d o
* • ,u3 ,1J .31 .1,1 .1.1, .1,1, ,»(, ,41 .Jl .13 ,;j » » . j j B , 4 ^
• .(1 .09 .Jl .fc7 .99 .96 .49 .16 .99 ,»7 .31 . : 9 . t 1 f . . ; j 0 t ;
• .C2 .1Z .im .96 1.2 1.3 l^ i.3 1 .Z .96 ,m» .1Z . 02 * » . ^ fl 0 C
* .tZ ,12 ,t|i> .48 l.J !.(» l,c» i.i, 1.3 .94 .Wk . 1Z . 02 * » . 
-------
                                     TABLE 15.   TOTAL  MATERIAL ACCUMULATED ON BOTTOM
                                                                 0.00 SECONDS »FIER DUMP
en
to
out «cum)t»reo soiio VOI.UNE ON OOTTON icuFT/taio SURI, ";u ci LT oooi o- LT .0001,011
29 30 31
1 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODOOOOOOOOOOOOOOOOOOOOUOOOOOOOOOCOOOOOOOOOOOO),
2 OOOO C

i oooo o

it OOOO 0

5 OOOO 0

6 OOOO C
7 OOOO 0

» 0000 C
9 0003 5
10 OOOO 0

11 0000 0
12 OOOO C
U OOOO 0
IK JOOO 0
15 OOOO 0
16 OOOO 0
17 OOOO ?
11 OOOO 3
11 ouoo o

20 OQOO 0
21 JOOO 0
22 OOOO '.

2! OOOO 9

21, 0000 0

25 0003 0

?f> OOOO 0

27 OOOO C

>( OOOO C

29 OOOO C

3C OOOO 0
_3_1 OOOOOOPOP
„ „ C 0 ! C 0 0. 0 0 G' " 0 0 0 I 0 C G 3 0 0 „ 0 0 t
jdOQOOCOOO


3 o c o : <; c 	




0 o c . . , « f * . .1/1 .ci .ei .01 .m • * * * * • • J " " c


B 0 . • • » .LI .1,2 .'5 .19 .12 .13 .in .13 .12 .09 .C5 .S2 '.Cl . . * . 0 0 «
c . . » , . .02 .17 .15 .26 .3* .38 .39 .38 . In .26 .15 .1/7 ,C2 •• » » • . i u
_.-.--,.. M
0 , » . » .Cl .05 .15 ..!<• .79 .98 1.0 1.0 1.0 .9» .79 .31. .15 .us .01 •
. . , » » .C2 .09 .26 .79 6.8 7 . U 7.5 7.6 7.S 7.1, 6.8 .79 .25 .11 .02 • * » • • '
	 Cl .01 .12 .1* .9« ?.* "•' ••« "J »•" «•' '•" -9" •'" >IJ '-' ."*•••''
. , . .Cl .lU .13 .38 l.i 7.5 8.9 9.2 9.2 9.2 8.9 7., l.G .38 .13 ..!. .51 » * . • d
. . , > .01 ,t» .m .59 l.« F.6 9.0 9.2 9.J 9.2 9.E 7.4 1.0 .M .!«. .£«• .01 » » . • U
. , t ,01 .U .13 ,J8 l.J 7.5 1.9 9.2 9.2 9.2 8.9 7.5 1.0 .3D .13 ..<. .01 * » . • »
	 i,l ..;; .12 .31. .98 7.1, S.7 8.9 9.0 8.9 8.7 7.<. .98 .34 .12 ..J .«»».•»
, , , .02 .09 .26 .79 6.8 7.1. 7.5 7.6 7,5 7.1, fc.» .79 .26 .C9 .02 . t » . . 0
„ 	 ii .C5 .15 .3". .79 .« 1.0 1.0 1.3 .98 .79 .31. .15 ..« .U t » » . i »


0 0 	 Cl -C2 .05 .U9 ,12 .U .1- .13 .12 .09 ,C5 .12 .01 • ' • • » " »
, a , . , » . t .Cl .ti ..4 •<•<• ••-<• '"• -"I .02 ,tl »»»»••» ° '






..GnOOJDu'

.ItOilOOiSuC
OT.OCOOuU..***
nn .'.. iltDDQjOuO
fljrojs^ooooooowji'fltojuj"""
i/1i*i,00»C('l|
QUCO"iC^')01'J^''"J "
, f r. ^ir'naOCOOiJOli
jacooctf5^co-03C-fl3g
o cooo}
u 00003

0 0030)

I tDDOJ

0 10003

u COOOJ
C u0003

c OJQOJ
t, C0003
C C0003

C, J0003
b 00003
t COO 03
v 00303
a too oo
j 00303
g 00003
C0303
0 C0003

u UflJOJ
t 1.-030J
U LUOOJ

w bOOOJ

, C030J

i, vUOOJ

C COOOJ

C 00003

; C'0003

t 00303

VWWSWSSWW™™™™™™^^^

-------
                                 TABLE 16.  TOTAL THICKNESS OF ACCUMULATED BOTTOM MATERIAL
                        t1T»L TNICKNCSS (FT) OF NtH 1«i:ol»L ON JOTTOH,
                                                              C.J; S-CONJS AFTER UUM»
CTl
O
...MULTIPL* 01
M N« 1 2
1 0000000001
2 0000
1 0000 0
i< oooo :
•5 0000 j
6 0000 i
7 0000 1
» 3000 0
9 0000 0
10 0000 0
11 0000 0
12 0000 0
1! 0003 C
li< 0000 0
15 0000 0
16 0000 0
17 0000 C
IS 0000 C
19 0003 0
20 0000 0
21 0000 C
22 0000 9
23 0000 f
2<. 0000 C
25 0000 3
26 0000 C
27 0000 3
2» 0000 0
29 0000 O
^30 0000 0
ISPLAYEO VALUES m .ItC.E-Ci
3 It I 5 7 t 9 13
) 00 00000000000000000000000 OOOU01
0 3 C i ' it 0 I
t! 0 C . 0 3 C 0 0
OOCOOCOu



0 0 . . t • f
o . . » « « .: i





t . • » > • .. 1
0 , , > • > .Cl
0 0 . . . » > »
0 0 , , t • •


Q 0 0 3 C C ,
0 3 0 0 C C 0
0 0 0 0 J 0 0
o c c c : o c
0 0 0 1 ; 0 0
0 f> D U C 0 C



t
,1.2






.02
.Cl
»



0
0
0
0
0
lUGi-NO.
11 12 13
1300000000001
0 C C
3 0 i




.01
.06






,06
.02
.01




0
c
0
0




,01
.111






,11
. C".
.01




0
c
0
a




.02
.17






.17
.06
.02




0
0
0
0
,. • » ,LT, ,
It li It
100000COOOOOC
coo
3 0 t




.62 .02
. 1'J .19






.19 .19
.06 .17
.02 ,C2




0 0
0 0
3 0
e c




.92
.19






.19
.J6
.02




0
3
0
0
id
ir
10001
c
0




.02
,17






.17
,02




0
C
3
0
. « .LI
U 19
300000001
3 I
1 0




.n .n
.11 .[6






,1!> .C6
.01. .C2
.01 .Cl




d 0
0 0
0 0
0 0
r. .OCCl 0 > .LT. .OGOJull
2: 21 22 23 it 29 26 tT
)0000000300000000GOOOOOOOOOOOOOOOi
^coooooc
0 0 L 3 0 J 3 0
00u303u3



**»»..
,C2 ,C1 » « » ,






.UZ .Cl * » » ,



000000
3 0 li 0 0 0
000000
3 0 0 1) 0 *
d 0 0 0 0 0
] 3
9 0
C
0 0
0





. J
o c
0 0
d u
0 0
3 a
0 3
0 0
0 0
0 0
0 0
0 0
2« 24
D 00000001
il '..
C 0
0 '.
c. ;
U y
C b
U v
U u
0 0
c c
c -
C J
U V
0 b
t1 w
C b
0 0
d b
0 u
L M
U 0
a o
0 0
a o
0 0
JO 31
3000003
C0003
COOOJ
00003
CODOJ
00303
1.000)
00303
C030J
00303
1.0303
00303
00003
OOOOJ
tiOOOJ
00303
.000]
i.0303
COOOJ
Loao}
OOOOJ
C0303
10003
COOOJ
00003
OOOOJ
00003

-------
tively.   In  this  case the  grid was  31  by 31 with 1-foot  spacing,  a typical
tank-scale  run  where the  size of  the  tank  was  increased to  eliminate  wall
effects.   A  real  dump might  involve thousands  of  cubic yards  of discharged
material  and  cover several  hectares.   By  running the model at  tank scale to
achieve tank-scale  predictions,  problems in  scale-up of  tank  discharges  were
avoided.  Appendix A contains a complete  listing of the program.

B.    Simplified Input/Output Format

     This section  presents the  simplified input/output  format  option  of the
long program version.  It was developed to simplify the use of the program and
to eliminate  superfluous output  necessary for the person  only interested in
the program  results.

     The  type  of  input  format  is  again  specified  by  the value of KEYMAX.
Thus, for the  simplified  input/output  version  the value of  KEYMAX  should be
set  to 0 (Figure  31).   Figures 32  through 46 represent the  input  cards and
parameters  required  to  execute  a  run of this version specified  in  the input
cards as well as descriptions of how to calculate these parameters.  As can be
seen, many  of the  option parameters have  been eliminated.  This  program  ver-
sion requires  only 3 material  components  and  assumes  a value of 20 for the
number of   transition  levels  allowed  between  long  and  short  term models.
Equation  coefficients  are  fixed  and the  program will   run  to the  time  spe-
cified.   No  option  is allowed  for varying  the  print output.   The  user  will
obtain plots  describing  material  characteristics for the  convective descent
and  collapse phases  as a function of time.   Material characteristics for the
total cloud as  a  function of  time  and grid  location  are presented for the
long-term passive diffusion stage.   These  characteristics include cloud loca-
tions,  size,  and  concentration as  well  as the quantity  and height  of the
material  that  settled to  the  bottom.  For  this  version  it  was  assumed  that
only the  total material properties are of importance.

     It should be noted that the grid can still  be defined by a 31 x 31 matrix
and  the bottom  is  not assumed  flat unless  IDEP is set equal to 1.  By setting
KEYMAX to 0 the  capabilities of the  program are  not reduced, only the input/
output formats  are  simplified.
                                     61

-------
  KEYMAX
           I
                I
                     I
                          I
                               I
-NOT  USED	
 I     I     I
                                                            I
                                                                 I
                                                                      I
   II I IIII1I1 I 111 I II I III I 111 II I I I I I J I I 1 I 1 1 1 II II I I II I t I III II lit II II III II 111 I II I I till

   222222Z222222222222222222222222222222222222222222222222272222222Z222222222222222

   J33J3JJ33333333333333333333333333333333J3333333333333333i33333331333333J33333333

   4444444444444444*444444444444444444444444444444444444444444444444444444444444444

   iJ555}S5555b555S55S5S555i55555S5i555S555555i555S55S5555i5i55555555S5SS5555555S55

   IIISSifltl(St(tfii((C!iC(flCSi[i!fiffECfSfSSSCECtC£CeStSf5t(SS(5tSfSEfffSli(SiSC

   777771l?777777777I771777777777177777777777777727377777777liJI777I777 7 7 7777777717

   IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII8IIIIIIIIIIII1IIIIIIIII1IIIIIIIIIIIIIIIIIIIIII
V  11 i • i
                                          BSC/MM-3OSI
                                                                 Format  (15)
VARIABLE
Keymax
DEFINITION
Flag which specifies
format. KEYMAX = 0
format option and is
simplified format of
desired input/output
specifies simplified
used when using the
the long program version.
     Figure  31.   Input Card Number One,  Simplified  Input/Output
                                           62

-------
 NMAXI NMAX I IDEP
                                   NOT  USED-
                                     i     I
                   I    i'    I    i     i     I     i    I     I    I     I     i
 8 : 11 1111 « Q 0 11 0 ! » a I B 8 9 B 6 8 B a 81 S 0 B B B fl 0 0 B : « t fl 6 0 fl II B 0 0 0 B 1 0 0 08B B I B B B 8 0 0 B « 0 B a C 0 B J 8 0 I 6 « B t
 i l 1 * I I l I 9unni]uniiii!iiiniiani4nniinnnlii:u>HHHunti*iwtluuuJMiitMsiuiiM&)t}iuMHi!i7Buttlfliunnnnni»nniiiinn
 1II I I I I 1 I I 1111 I I 1 I I I I I I I I 11 I 11 I !I I 1 I 1! I 1 I I I I 1 II I I I I 1 11 IIII1II1 I II I I I 11!I 1 I 1 I I II I

 2222 mn2Z222 2?2!222n22 J J! 2!! 22 22 !!2 ! 2?3 2 Z2222 2Z27227IT22212222 2222222222222J2

 3 3 3 3 J 3 J 3 3 33 3 3 J 3 3 3 3 J J 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 3 1 3 3 3 3 3 J 3 3 3 3 3 3 3 3 3 3 13 i 3 J 3 J 3 1 3 3 13 3 3 3 3 3 113 J J 3 J3

 44444444444<4444'44444444444< 44 4444444 444 444444444444444444444 4444444444 4444(444

 55555555555555555555555555555555555555 5555555555555555555J5555555555555555555555

 SSISS6SB6I6S S6S5SSS66 EE t66S6SBS E6E6EEE BSE 6! S5EEE 66EEE5E SSSEISSSSESiEESSB SB! EESES

 1777777777I777777777J7777777777777777777777777777777777777777777777717777777J777

 IIII III 1111III i 8 1118 I i B 1111 ! 8 il 11 I ! I ! B 1 S I I 3 III 11 1 B !l IIIIII IMS 1111 Si Bl IS III II III

 S 3 3 9 S 9 9 ! 9 9 9 9 9 3 ! 3 3 9 9 9 3 9 9 3 9 9 9 9 3 3 3 9 3 9 S 3 3 3 J 3 9 9 3 3 3 3 3 9 9 9 3 9 9 9 3 9 9 3 3 3 3 3 9 3 9 ! 9 9 9 9 9 9 9 S J 3 3 3 9 9
	___	.	 »SC/NM-50ai 	-^S
                                                            Format (1615)
    VARIABLE
                  DEFINITION
    NMAX

    NMAX

    IDEP
Array size in Z direction  (NMAX_^31)

Array size in X direction  (MMAX_£31)

If  IDEP  equals  1 then the  program will assume a
constant depth  estuary and consequently require
only one value  of estuary  depth,  H.
     Figure 32.   Input  Card Number  Two,  Simplified Input/Output
                                       63

-------
II 111111 II I I 1 II I 1 1 HI I 1 I II I I 1 1 I 1 I I I II I I 111 I 11 I U I I 111 I 111 II I Jl I I II It 1 II I I I I I I I II




22122222222222222222222222222222222222I2222222222222222ZrZ2Z2Z222ZZZZ22222222222



333333333333J333333333333333J333333333333333333333333333i333333333333J3333333333



4444444444444444<44444444444<444444444444444444444444444444444444444444444444444



555555S55S555S55S5SiS5555555555SS5i555S55555S555SS5S55S55J555555555iS5555555SSSS



ICIISIilStiESESfSEEEEEEEEEEEEEEtEEEESEEEEEEStEESSCEECSEEEitSIEESESESEEEIISEEEEEl



77)7777)7J7777771711M777) 1 717777771177717J77117777717777777T7777)))7777777777J7



I E B I B B 11 B B 11111 ! I 11111111111 11111 I S 1111111 B 11111111111111111 B 1111111 11 B 1 B B 111 B I B



M1MIM3M939933333333339333339S3399313333393I3J3393993H33J3339339399I99399999
                                                              Format  (8A10)
VARIABLE
ID
DEFINITION
All 80 columns can be used
being made. Symbols can be
alphabetical .
to describe the run
either numeric or
 Figure  33.   Input Card Number  Three, Simplified Input/Output
                                      64

-------
   DX
                                  -NOT  USED
IBB tiaiaiigieiioiiaatita ata agaet aoaacaiaiiiiit oatDieioisitH a t aooaaaa t tiiteeiii
1 1 1 1 1 1 n 11 1 1 n i n 1 11 1 1 1 1 1 1 1 1 1 1 1 1 n 11 1 1 n 1 1 ti 1 1 1 1 1 in 1 1 in mi 1 11 11 1 1 it 1 11 1 1 it iii
3 33333! 333 3 J3333J3333331S33 33 33333 333333333 J333333J3J333iJ 333 3 J333 3 333333 JJ3 13 31
44444444444444441444444444444444444444444444444444444444444444444444444444444444
55555555555553555 5555555555 555555555555555555555555555555 J555 55555 5S555S5555555S
(CKSESSttilEiESISKEf CCEEEEIff SEE CEEEEESSEt CEEEEEEEES ESESEESSESSS ESEE SEES CCCiEC
77777717777777777777177777777777777777777777777777777777717777777777777777777777
iniaaiiii iiittiini mini nuns ID t tin 1 1 1 titiiiiiiiiiitii unit ma iiiiinii
M5M3JM3MM99S399 9933999 SMMM993 99M99M9999SM9989S999! 9M)MM95393)S99 99
i l l t t l i i i mi mi n n ii niiiin!i nnx.i; n aniij ouuniiM UBUIMM; u u«in..mii iiiinBiiiraiiiiii unuuuirun nn nun onnnnm
                                                      Format  (8E10.0)
   VARIABLE
                 DEFINITION
    DX
Grid space size  (see  Figure 1).   The grid
spacing  is assumed symmetrical in the  X and  Z
directions and as a result  the values  of DY  is
specified  by specifying DX.  DX  is defined in
feet.
  Figure  34.   Input Card Number Four, Simplified Input/Output.
                                     65

-------
                        -DEPTH  (N,M)-
                         I     I    I
                I     I    I    I    I     I    I    I    I     I    I    I
1 1 1 1 1 1 1 1 1 1 1 1 1 1 g 1 1 1 1 1 1 1 1 1 1 1 B 1 1 3 1 1 1 1 1 1 1 : 1 1 1 a M 1 1 1 1 1 1 1 1 1 1 1 1 1 B 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 I I I 1 I I I I I 1 I I I I 1 1 I I II I I I 1 1 11 I I I I 1 I 1 1 1 11 I I I I I I M I II I 1 1 1 1 I I II II I I I 1 I I I I 1 1 I I I 1 1 II I 1 1

 I2222I22I22222222222222222222222222222222222222222222222r22ZI222222222J222222l22

 J33331331333333333333333333333333333333333333333333333I3i33333333333333333J33333
 l(ISSIEEIiESMEIESSEE(EiEEEEC(tEEEftiEiEEESCIEEEeEESESESE$ESSEJ17)777777)17771)717•J7JIJ1771117)J777J7i;j17771JI
 9I9993939999HI999399999999999S9399999999999999999999$99999999339993999999999999

„	HSC/NM-5081        	                  JL
                                                  Format (16F5.0)
   VARIABLE
                      DEFINITION
   DEPTH(N,M)
                 Depths of  grid point N,M.   The grid  is  defined
                 first by row and then by  column.  If a  grid
                 greater than 16 by 16 is  specified, the  7. grid
                 points in  the first row  (x grid point 1) from
                 17 to 31 will be defined  on a second input card
                 After all  the 7, grid points in the first row
                 have been  defined the Z  grids points in the
                 second row will be defined in the next  input
                 card(s).   This will continue until the  entire
                 array is filled.  Thus for a 31 x 31 array 62
                 input cards will be necessary (two to describe
                 each row in the grid).   Depth is defined in
                 feet.  If  IDEP equals one the program will
                 assume a constant depth  estuary and  only H =
                 DEPTH(1»1) need be specified in columns 1
                 through 5.
  Figure 35.   Input Card  Number Five,  Simplified  Input/Output.
                                   66

-------
XBARGE
         ZBARGE
                                     •NOT USED-
                           I
t I i i ) I i i I H n il 11 H it it ti ii 11 n n & n n n B l> a n u n & 111* I* » u » 11 u 41414i u 41 u 4i ii M ti» 11
I 1 I 1 II I 1 I 11 1 1 1 I 1 1 I I 1J 1 I I 11 I 1 1 I 1 I I I I 1 II I 1 I I I I I I I 1 I I I 1
                                                  g o o i o o t a o o o e g D oo o g 9 c B o 11 g

                                                  1111111111111111111 n 1111

I22!2!!l!nZ222MZ22I2222}2222tm2222222222Z22222?22!l!r!122:722222222222!22!12

J33333333333333313333)3533333333333333333J33133] ] 3333333133333J33333333333333333

44444444444444441444444444444444444444444444444444444444444444444444444444444444

S5555S55555555555555555555555555555555555555555555555555555555555555555555555555

SEIS St S6f It f 66 SS6St6E6EE ESS 5 t 61 SEte-ESE 6S£ C6S 6£E£ 6 5 E6ESESE 5 BiSSS SE 66EEESB E 5 E 66566

117 I 7 7 ? 7 J 7 7 7 7 7 J 7 7 7 7 J1J 7 7 7 17 7 7 7 7 7 7 7 ? 7 71J17 J 7 7 J J 7 7 J 1 7 7 7 7 IJ J 7 7 J 7 JII717 7 7177 7 7 J J 7 7 J 7

ItlllllllllllllllllllllltlltllllilillSSIXIIIillltllltttlBllltllllllllllSIIISIlI

U!S9S5S933M393SJ39999319!9!SSM39S9S9 S3 999SS99 999993SS!9393999S3S9S5S939599599
I i i i I I I i i tt n 11 u ii n if ii ii n n ti n IIN a} linnaiiBlivUKlianMiitMiuKuiifctiutiuUMUUliuuiiiilluwtttsiiiiitntinnMnKniinji
                                                    Format  (8E10.0)
     VARIABLE
                                     DEFINITION
     XBARGE
     ZBARGE
                    X—coordinate of barge at time  of discharge.
                    This  coordinate is measured from the  grid
                    point 1,1  (see Figure 1) and does not have
                    to be at a grid point itself.   XBARGE is
                    defined in feet.

                    Z-coordinate is measured from  the grid point
                    1,1  (see Figure 1), and does not have to be
                    at a  grid  point itself.  ZBARGE is  defined
                    in feet.
  Figure  36.  Input Card  Number Six, Simplified  Input/output
                                  67

-------
   NROA
                             •NOT  USED-
                               I     I
   iiiiiiiiiiiiigiiiiiiiiitiigiinigiiiiciiiiiiiiiigiiititiiiiiiiigiigiiieigitiiiii
   i I > • l l l • tuiiunHnuiiunnnannantinnBHUijMiiKUxaNMiiiiMttiiifMMMvuuHuittJMHBniiDiiHKUaifnnnnnnnniinB
   I I 1 11 1 I I I I II 1 11 II 1 I I I I I I I 1 1 1 I I I 1 1 I I I 1 I 1 t I I I 1 1 I I I I 1 I I 1 I I II I I I 1 I I 1 I I I II I I 11 1 I I I 1 I I

   2I222ZZZ2222ZZ2ZZ2i2Z22222ZZ2]Z2Z222222ZlZ2ZZZ:22222222ZrzZ2Z22222ZZZ2ZZZZ2ZZZ22

   J311I3333 333 3 333 33313333333 333 133 3333 33331333 3333 3 33 3333 113131333333333333133333

   4444444444444444*444444444444444444444444444444444444444 4444444444444444444444ii
  II»77J7J;7]J111 7777 Jl J7JI777J7I77 J777I7;)?71)7))1 )7II777I7IJJ J J771I) J1IIT77J77J7

  llltllllllllllllllllliiliiiiiillligillllllllMlllllllllliiiiiMiiiinigiiiiiiiii
VIL^
                                          f»SC/MM-SO«l
                                                                 Format  (1615)
VARIABLE
NROA
DEFINITION
Number of depths at which ambient density
defined (NROA<10) .
is
   Figure 37.   Input  Card  Number Seven,  Simplified  Input/Output
                                         68

-------
         I         I         1,1         I          I         II
«CIUIflH086BSHfll8U«tBaOBIJ90(H«lltBC:S80CUalI[lliaOBHH8Ba«H6(U800l)««l!»IIltSB«BS

n 1111> 11111111 n 11 n 1111111 ii 111 n i n n 111111111 n 11 ii 11 r n 1111111 n ii i ti 1111 ii

2222222222222222222222222!2222222222222222222!2222222222TZ222 2222222222222222222

13333333333333333333333333333333333333333333333333333333333333333333333333333333

4444444444 4444444444444444444444444444444444444444444444444444444444444444444444

55555555555555555555555555555555555555555555555555555555555555555555555555555555

tSISS6S6SSESSE6SB5S6B6EE6£S!ES66$56EEeSS:6BS6EEESB£E£S£JESESSf»$6S6££SSSSSSSEStS

777?777777 7777777 7771771777 777777777777777777771777 7777771577 7777777777777777777

Illllllll I I 1)11 II III IIS8II8 I 138 i II ill t IIS I II SIMIM illll! t III I III! 13 111 Illllllll

)!!SMJM999J!9S99S9MSS!!99S3933999993399)9S99999999393S339S9J93S99S9!9S9J399S9
i i l i s I T i i ii ii u n M ii u u u n N 11 IT n n n' nnnaiinnvDuiiii»uiiui:uii*t4ii,«iuituuuuuuu»HHtin(iuBtiiiiinii n n » n » lui n »
                                                      Format  (8E10.0)
   VARIABLE
DEFINITION
                   Depths at which  density is  defined.  The
                   quantity of Y(I)  must  be equal  to NROA.   The
                   greatest depth in the  drop  zone must be  equal
                   to Y(NROA).  Since  (I) can  vary up to  10 a
                   second input card will be necessary to define
                   Y(9)  and Y(10).   Y(I)  is defined  in feet.
  Figure 38.   Input Card Number Eight,  Simplified  Input/Output
                                     69

-------
                                   ROA (I)
                                     I
iiiiiiiiiJiiiiiiiiiiiiiiiiiiiiiiiiDiitiiiiiiiitiiieiiiitiiiiiiiiiiiBiiiitiiitiii
i I i i I I I i lun Bu»»»imH»»n»»s»n»aB»»»»»Miiii»«ii««ii'««««iiii»i»ii!i»»»»»»ii»»M"«»i'»ii'!'i'»iin»iiiiii»
Mini mi 11 n i it i ti 111111 n i n 11 ii i it 11 it 1111111 ii 111 it 1111111 ii n 11 in it ii 1111
33313133333333133333333331333333333333333333333333333313313333333333333313133331
444444444444444<'4444444444444444444«4444444444444444444444444444444444444444444
555555555555555555555555555555555555555555555535555551555j535555555555555555555i
IIIISIICilftiiEttSillSiSIEitifttililietiSilEtECESIECESEttSSilCSSIEtEEttCtSttCltt
I7177II17777777I777717777I77J7777777I77777777777777777771I7777I7777777777777777I-
itiiiiiiiiiriiiin iiiiiiinii iiiiiiniiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiuiii
UHIIJ§m999J99H99S9JM999M99999J9J9999*999M9»99999J9999J999)9999S9S99JJ999
I t 1 • I I I « I Wll UUMn«IIIIHIIlll?ll»37 DBaltltB&llBJIVllBNUIIVMISMVIillllll BBIiaKU»Uaillll)«aBI'tiaill!l>QHnHBIIIt«
                                                         Format (8E10.0)
     VARIABLE
                  DEFINITION
     ROA(I)
Density  in ambient  water  at corresponding
depths,  Y(I).   Since (I)  can vary up to  10 a
second input  card will be needed to define
ROA(9) and ROA(IO).  ROA(I) is defined  in
grams/cc.
   Figure  39.  Input Card Number  Nine,  Simplified Input/Output
                                       70

-------
I FORM
                          -NOT  USED-
i i i • i i i i i ti n ii n u u ii ii it ti n n a n » a » i' n n i: 11 u 11 ^ u » i' u a u it « 4i « u u « u n u j: u u M u H » u u u u u u (4 u K ti u M n n n n it n ii ir >• n •
1 ! I 1 I I! I I II ! I 1 II 1 I I 1 I I 1 I 1 t M 1 M II I II 1 I I I 1 1 I I I I I I I 1 I I 1 11 I 1 1 I I I
222272I2222JI2222 222 2122222 2222 2 2! 222 2! ! J222ZZZ2ZJ2 22Z2Zr272 J

J 3 3 3 J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 J 3 3 3 3 3] 3 3 3 3 3 3 3 1 3 3 1 3 J 3 3 3 i 1 3 J 3

444444I444444444M4444444444444444444444444444444444444444444

S555S55555555555555555555555Si55SS55555$55555'. 55555'. 55555 J555

S5USf56S5 it! t S6f S!6!55E«SS6«SS 5E66S 5 £f S J 655 SEES5555E! E55S6S 5

77777717777777777777I77J7777J7777777777777777777777777777I7II

Ill Illll II III 1 liilll t H II I i Mi 18 I 91 i I Ililiiilll illl 8 IISSIMII

S3SS3!»3MS!)SSS»5953993S3!S9999399S39!9!9S39S99999S9J393539S
I t t 4 ) I > I I H II II II II U » U II II 1* II R 11 T* 71 7 imnBIIllllWttllUllltllllUUMIiUIII, IlilHUUMUUUUUHH
                                    II I M I I I 1 I I I 1 1 I I I I 1

                                    2722ZZ2Z2222222ZZZZ

                                    3333333333333333J33

                                    4444444444444444444

                                    5555555555555555555

                                    6SSE5E5E6SSBS ESBSJS

                                    7777777777777777777

                                    I i I II11II11111Illll

                                    3333339933339JS9S35


                                      Format (1615)
    VARIABLE
                DEFINITION
    IFORM
If IFORM equals  one, vertically averaged
ambient velocities which are variable  in the
horizontal and  in time, are  read from  logical
unit  1  (see Appendix C).

If IFOKM equals  2, the  program will  generate a
logarithmic velocity profile whose average
value is that value of  velocity read in at each
time  step.  The format  is  the same as  for
IFORM = 1, and  velocity may vary in  the hori-
zontal plane and in time.

If IFORM equals three  the  ambient velocity will
be two layers  and assumed  variable in the hori-
zontal and vertical directions as well as in
time  (see Appendix C).

If IFORM equals four  the  two layer ambient
velocity profile is assumed constant in both
the  horizontal plane  and  time.   (see Appendix
C).
   Figure 40.  Input  Card Number Ten, Simplified Input/Output
                                  71

-------
   RB
           OREL
                    CU (I)
                              CV(|)
                                       CW(I)
                                               ROD
                                                       BVOID
                                                                 LLIM
iiiiiiiiiiiiiiiiiiiiiiiiiiiiniiigiiigciiiiiiietiitiitiiiiitigiiBiiBOtgiMiiiiiiei
i i 1 1 i t i I fHHUunnHuuiiMiino]iaiiniiiijiii]:uuu]iiiuiitt4(ui:iiuii»iiHUHH(iiiu«niiiJii*i»nifnnnannnii
I II I I I 1 1 1 I 1 I I II I I 1 1 I 1 I I I t t 1 I II 1 I I 1 I I I 1 I I 1 1 I I I I ! 1 I I 1 1 1 1 11 II 1 1 I 1 I I 1 I I 1 I 1 1 I I I I I 1 I I 1

23222222Z222222222222222222222222222222222222222Z222222Zr22ZZ2Z2222Z22222Z222Z2Z

33333 33333311333333333333333333333 33333333333333 3133 33331 333333333 3333133 J333 333

4444444444444444*444444444444444444444444444444444444444444444444444444444444444

I555S55555555555555555555555555SS555555555b5555:555i55555J5555555555555555555SSS

SIIIiSIEICtlfltSEflCfiEEIidCCfSEEEtECtSCiEEtCEEEEESESEEEStlSEtSESfSEfifltEICtEt
ifiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniii
S1999999999999999991999999999S999999999999999999M9999993999 9 9 999999991999999999
                                                    Format (8E10.0)
   VARIABLE
                 DEFINITION
   RB
   OREL
   CU(1)
   CV(1)
   CW(1)
   ROO


   BVOID

   LLIM
Radius of hemispherical dredge material  cloud
at discharge (see page 10 ).   RB  is defined in
feet.

Depth of cloud centroid at discharge.  OREL
is defined  in feet.

Initial velocity of  cloud centroid at release
in the x, y, and z directions respectively
(see page 10).  CU(1), CV(1), and CW(1)  are
defined in  feet/second.

Bulk density of aggregate dredge material.
ROO  is defined in gm/cc.

Voids ratio of aggregate  dredge  material.

Liquid limit of aggregate dredge material.
 Figure 43.   Input  Card Number Thirteen,  Simplified Input/Output
                                   72

-------
 TOUMP
           TSTOP
                     DTL
                                           -NOT
                                             I
                                                USED
'iggiiiHggggtoBgniggeooggagggoD0oD«O:nit)gtoogoogggaggoggtogi logooaocgstg
 i 1 3 « l I I I I ii ii ini H n ii IMMI ii :i n n » n n 7UI n n ii r u u K x » H H u *i u u u it u •> u ti * t: u u H u u u ji *> u ii c Q u n K i> n n n n n n !i n N it ii n a
 I II I I I 1 t 1 I I I  I 1 1 I I I 1 I I I 1 I 1 I 1 ! 1 1 I 1 II 1 I 1 I I 1 I I I I 1 I I I 1 I I I ! 1 1 1 I I I I 1 I I I I I I I t 1 1 I I I 1 1 1 I I I

 22222222222 I  111 I 222227272 222 2222 222 222 2227272222 22222ZZ2rZ2ZZZ22ZZ2222222ZZ2m2

 3 J 3 3 3 3 3 3 3 3 3 3  3 3 3 3 3 3 3 J 3 3 3 3 J 3 3 3 3 3 3 3 3 3 3 3 3 3 313 3 3 3 J 3 3 3 3 3 3 3 3 3 5 3 i 3 3 3 3 3 3 3 3 3 3 3 3 23 3 3 : 3 3 3 3 3 3

 4444444444444444M44444444444444444444444444444444444444444444444444444444444444

 5555SS5S5S5S55555SS555i5S555S555555b55S5S55S5S55555S5S555»S555555555555555555S5S

 SStSSISSitS£SE(SEtJBEEEESS6EEf!£E£E£E£ ES£S£ESEEEEEEEES££ESSS£S(SESEEEiSESSIEESSt

 M777}71777777M7777T717F777777777777777)r?77777T777?7I777ilI7}17M?l?!lT?7717M

 minim i nuts mi i i i >! s 8 ia 11 ist is i mi 111 is i iiitsst iiiaiet 11111 mi! t M MIII

 J99S5MSS395!!9S9939999393999SS999S99339)333S!S33S99993S3333!SS9SJ3933939!3!3!)!
                                                        Format (8E10.0)
   VARIABLE
                 DEFINITION
    TDUMP
    TSTOP
    DTL
Time  of dump relative to  the start of  tidal
cycle (to  the nearest DTL seconds).

Duration of simulation  (to the  nearest DTL
seconds).

Long  term  integration time increment  as well
as  the time increment between velocity data
points.  DTL is  expressed in seconds.
  Figure 42.   Input  Card Number Twelve,  Simplified Input/Output
                                    73

-------
   DUI
            DU2
                     UUI
                              UU2
                                       DWI
                                               DW2
                                                        WWI
                                                                 WW2
 iggigigiggggggggggiggggggigggggggggggcgggggiggggggggggigggggggggggggnggigggiiggi
 i i i i l l i • l uuil!iMAU!tananRn*BHJ'nnu}i3:8fcBK!inK**i
-------
          h
SGAVE   h-	         NOT  USED
 t M M t 0 I n 0 m B 1 ! D I » M 0 B M 0 J « «' t B B » 0 B fl C « 8 B fl 0 0 8 « « 0 0 t 0 0 B «I » 6 5 B ! C 1 « fl J 0 fl fl I! B 0 « « B B J S B fl 8
 ili4)iiiiiiuiii}umii)iin»nt!nnnn7i)initiii!uitu)iiiuHt*«ic*i«<«u4tiii)ui!uuwuiiviiutiiii7nuui(ituitTintTniinii>in>iM
 I II I I I I I 1 I I 111 I II I II 1 I I I I IIII I I 1 I 11 I I I I 11 I I 1JI II I I I II It I I I I I I II I I 1 I I I 1 I I 71 t 1 11 I I

 I22222222222Z2222222Z22222ZZ22222222222222Z222Z22222Z2ZZrZ2ZZ2ZZZZZZZZZ2ZZ22222Z

 33133333133333333333333333333333333J33333333333333333333i333333313333333J31333)3

 4444 444444 4 4*4 44*44444444 4444 H 4444*44 444 4444444 444 444*444444 444444444444444(444

 55555555555555555555555555555555555555555 5555555555555555J5555555555555555555555

 IEI55ESS6BESUS(SSE6EEEE£5i6iSS6BSBEEEEiEEESEEEEESE SESE5SSBE6SBS65ESEESES6SSS5E6

 DIM?) 17 11711)17171 '777)77171)77777777777717)7 77777771771 7177 J 7 J 7 7 7 7 7 I 7 7 J 7 ) 7 Jl 7

 III!IllII1BSSItaillliIII illSMj!!I Sill !IIM8I8ISSiBiiillillll!l!S18i!lI III!IIIII

 5SSS9SMS33SSSS9JSSS9]!J!5S9S539S99939SS9JSJ99S9 3S9S53S!3!3S59393S3SS3SSS33SJS9!
 il>
-------
 PARAM(K)
           ROAS{K)
                     CS (K)
          VFALL(K)
                                     VOIDS (K)  ICOHES (K)
                                                           •NOT USED-
 i i i i % t i i t • M ti ti M a u u M iri^ n n H B » i> u n n y u 8 » u x ir N n a it 414i 44 it u « M n u ii u u u u x y u u u B a u M a u u a B • ii >r R n n M ir it n •
 It HI I I I t 11 1 I II I 1 I II I I 1 I II I 1 II I 1 1 I I I I I I 1 I 1 I 11 I I I I 1 II 1 I 1 I t I I II I I I 1 111) 1 I I I I I 1 I II I

 2Z222Z222222222ZZZZ2ZZ2222222222222ZZZZZ222222Z2Z222222Z:2222222222222222Z2222ZZ

 JJ3J313J] 133133333333333J3333333333333 3333333333J33J33:153J3J3J3333333333J333333

 4444444444444444*444444444444444444444444444<44444444444444444444444444444444444

 55555555555555555555555555555555555555555555555555555555545555555555555'. Si5S555S

 iliSifECEItEiEEEESEiEESIEEEEEEEiEEiEEEEEEfESEEEESEEEESESEiEISEISESESEEEiEEESEEIi

 17777117777717777777'77777777777777777777777777717777777717777777777777777717777

 iiMigiiiiiit.iiiiiitiiiiiiiiiiiiiiiiiiiiiiitiiiiiiisiiiiiiiintiiiiiiiitiiiiiii

 iSS!SSS!3!9S!S!)S!!S!!J3!!S!!>S!iSSS!!!!!S!)lSiSSSS!J>1!S!SSJ]!J!)!!]!)))Sll!Sl!
 t i > • i i i i i nituauiinirtttii>itnnT*ar tfaiiiiitnnMBxiiKiiMiiaaMUMui.rtuiiuuMiiKuusinttirBfiafiiiuuiiriiinM n ttn nnu
•^ -  -                                 HSC/NM-SQII
                                                 Format (A10,  7E10.0)
     VARIABLE
                 DEFINITION
     PARAM(K)



     ROAS(K)


     CS(K)


     VFALL(K)


     VOIDS(K)


     ICOHES(K)
Descriptive  identifier for  solid component  (K).
PARAM(K) can be any  numeric and/or  alphabetical
combination.

Solid density of solid component  (K).   ROAS is
defined in gm/cc.

Concentration of solid component  (K) in bulk
cloud.

Fall velocity of solid component  (K).   VFALL
is  defined in ft/sec.  (see Appendix D).

"Voids ratio  of solid component  (K) .  (See
Appendix D).

If  ICOHES equals zero the cohesive  model  in
the long term diffusion phase is Bypassed.   If
ICOHES equals one  the long term diffusion
phase employs the  cohesiveness.
        Card Fourteen will be repeated  NS times.
  Figure 45.   Input Card  Number  Fifteen,  Simplified  Input/Output
                                  76

-------
                                   -NOT  USED-
i B 11 o 1111 e o g 1111111 o g 11 g 11 o o B o o g ii D i o o: B i B g i o o o B o o o o D 11 > 111111 B 111 G D e 11 e 111111 g 11
i i l i i i i i	i u ii 11 n iru ti a n n n » n » :i» n i! i> a ii n ii x ii ii a u « u u u u u » u « n i: u n >4 » » v u » HN e u » uou » " n n 17 n n n H 11 n R »
I I I I I I I I I I I I I I I I I I I M I I I I I! 1 I I I II 11 I M I I I I I I M I M I I ! I I M 1 I I I 1 I 1 I I M II I I 1 M I I I I ) I
122222I22222222222222222ZZ222222222222222Z22Z22222222222:'7222Z2Z2222Z2I122ZZ2222
J J 3 53 3 J 3 3 3 3 3 3 3 3 3 3]3 3 3 3 3 J 3 3 3 3 3 3 3 3 3 3 3 3 I 3 3 3 3 3 3 3 3 3 3 3 j 3 J313 I 31!3 3 3 3 3 3 33 3 3 3 3 3 J 3 3 3 3 3 3 3 3
4444444444444444*444444444444444444444444444444444444444444444444444444444444444
55S555555555555555555S55S55555 555 5S5555S5555555555 SJS555:J5555555555555555555S55
iC(SSE((tiSSSCS(SSiE(CSCiEC((SilS(fEBE5SEE£SS£ £J56E£ £S£EESSSE15SE55JE£t£ 6SCSS(IS
n 17 7111111717 717 7 7117111 n 1717 7 7 7 7 7 7 717 7 7 7 7171111 ? ? 7 ? 7 7 71 n 7111117 n 1111 T 11 m i
I HUB I til 11 IS! Mil 11II Ml II It III ItltllllllllllllllllllllllltlllllllBlltlll tlllt
!SJ)!SSJ335SSS)!S3S5JJS33S3SS5SS35S93Sn9S9S53S5!339SSSS3)J9!S))SS99SS5SSJ5SS3)J
i  i i i i i i i i uti uiiutiiiiMinniiRnKar jinnni'iiiiiiBttjiniiiiitucuiiit"!.uniiMBiiHaflu»ii*ipn*iBtti'iinii»wai«nRMiiHB
                                                      Format  (A10,  2E10.0)
VOLUME

DEFINITION
Since KEY3 =
card number
0, a blank card
fifteen.
may be used for
  Figure 46.   Input Card Number Sixteen, Simplified  Input/Output
                                        11

-------
                                   SECTION 4

                  DESCRIPTION OF WORKBOOK, TABLES AND EXAMPLES


A.   General Description

     There  are many  people  who need information regarding the fate of dredged
materials discharged  into a water column and do  not have the capabilities or
facilities  to  run large  computer models.  Through  the  use  of pre-calculated
values,  this  section provides information which  approximates  desired charac-
teristics of discharged materials.   This information is found  in  a series of
tables containing  the predicted  fate of dredged material as calculated by the
model described in this report for a wide matrix of input conditions.  The input
values,  as well as the resulting computer output,  have been non-dimensionalized
in order to have them as general as possible and applicable to any set of units.

     Due  to the  large number of  variables involved,  restrictions  were estab-
lished  to  keep the  report  within  a reasonable  length.   Discharged  material
variables considered  were bulk density, volume, composition and liquid limit.
Receiving water variables considered were density, current velocity and depth.
Limitations on variables considered are as follows:

     Three bulk densities were  considered.  When expressed in dimensionless form
as excess density, (p  - p )/p  = p1  these three values were 0.4,  0.25, and 0.10.
                     Odd
The  initial  dump  is  assumed to be hemispherical in shape after  release.  Thus,
                         1/3
the  diameter, D =  (12V/n)   , was selected as a scaling variable where  V is the
volume of the dump.

     The composition of the  dumped material was assumed to be primarily of three
types of material: a) fine gravel or coarse sand of 1,000 to 10,000 jj equivalent
diameter that has a fall velocity of 0.15 m/s (0.5 ft/s), b) fine to medium sand
of 200-300 p sphere diameter with a fall  velocity  of .015 m/s  (.05 ft/s), and c)
silt or  clay of 30-40[j diameter with a fall velocity of .0003 m/s (.001 ft/s).
The  density of all solid material was assumed to  be 2.65 gm/cc.  Variations in
components  a,  b,  and  c  are  as  follows:  equal  concentration of  all  three
components  coded  3-3-3;  80% component a and 20%  component b coded 8-2-0; 10%
component a, 80%  component  b and  10% component c coded  1-8-1, and finally 20%
component b  and 80%  component c  coded  0-2-8.  Thus  8-2-0  is primarily gravel
with a little sand whereas 0-2-8 is primarily silt  or clay with a  little sand and
1-8-1 is primarily sand with a little gravel and silt.

     The liquid limit of the dumped material  as defined earlier was assumed to
be either 40, 80,  or  120.  Due to  the inconsistency of high liquid limit with low
bulk density and large particles, only realistic combinations of bulk density,
liquid limit and composition were considered.

     The ambient  receiving  water velocity,  Ua was assumed  to  be constant and
have a profile as shown in Figure 47, where H is the ambient water column depth.
                                                                           1/2
Variation in Ua were expressed as the dimensionless variable R= Ua/(Dg p')
where  g  is  the  gravitational   constant.    The  other variables  have  been

                                      78

-------
      H
             H/2
       I
                              U(
BOTTOM
                                                      7
Figure M'.   Assumed ambient velocity profile for workbook tables

-------
defined previously.  R values  of  0,  0.02, 0.1 and 0.5 were considered.  Since
most of the solid particles of a dredged material are only slightly affected by
ambient stratification, a uniform density ambient was assumed.

     The depth of the water column is assumed to be constant.   Depths  of 5, 10,
and 20 times  the initial  dump diameter, D, were considered.  Tables 17 and 18
give the input variables in matrix form.  Also given are the table numbers where
the output  is found  corresponding to combinations  of  these  input variables.
Since  barge  velocity and  initial  downward velocity of  the  dump  have little
effect on the ultimate fate of the dumped material, they  have both been set at
zero.

     The procedure for locating the table where the output can be found corre-
sponding to a desired set of input conditions is as follows:

     1.   From  preliminary  tests,  determine  the  liquid  limit,  LL, of the
          material to be dumped.  If the liquid limit of the material  cannot be
          determined, use LL=120 for materials that are cohesive and fall as a
          clump  when released.   Use  LL=40 for materials  that are non-cohesive
          and  for materials  with  high  moisture  content  giving  low initial
          density  differences.  For materials that are only moderately cohesive
          with high initial  density difference (of the order of 0.4) use LL=80.

     2.   Determine  the  approximate  composition of the material as to gravel,
          sand and silt,  such as 10% gravel, 80% sand,  and  10% silt,  1-8-1.

     3.   Determine  the density of material to be released and of the  receiving
          water  and determine excess  density ratio p1 = (p^ - p0)/p=.
                                                         O   a   a

     4.   From the volume  of material to be dumped,  determine effective  hemi-

          spherical diameter D = (12V/n)1/3.
                                                         1/2
     5.   From ambient current Ua,  determine R = Ua/(gDp')
               Use g = 32.2 for Ua in ft/s and D in ft.
               Use g = 9.8  for Ua in m/s  and D in meters.

     6.   From depth of receiving water determine H = depth/D.

     7.   From LL determine correct set of sub matrices (Tables 17 or 18).

     8.   From  composition  and  excess  density ratio  determine  correct sub-
          matrix.

     9.   From R and H determine table where output  values  are listed for case
          in question.

For example for  LL = 40, p1 =  0.4, composition = 3-3-3, R = 0.1, and H = 10, see
Table  20.   For  most  cases, exact agreement between desired  values and  input
values  used  for  generating the tables will not  be  reached.   Using the closest
tabulated values will yield satisfactory results  in most cases. Higher accuracy
can be obtained by interpolating between tabulated values.


                                     80

-------
Output Variables

     The characteristics of the discharged material after it has diffused with
the ambient  and settled to the bottom  are  presented in the tables as a func-
tion of time  after being dumped.

     The  variables  presented  are location,  extent  and maximum  thickness  of
material settled on the bottom; and location, extent and maximum concentration
of  the  suspended cloud.  Unfortunately, the program would not run for a few of
the cases.   In  addition,  during transition from dynamic calculations to long-
term  diffusion, the  program  divides  the suspended  material  into  a series of
small  clouds that  grow and diffuse with  time.   When the size of a particular
small  cloud  exceeds the size  of  the  long-term  diffusion grid, it is injected
into  the  long-term  grid for further calculations.  If small clouds still exist
when  printout  occurs,  the concentrations given  are in error.   As  a result,
concentrations  for  many cases  have been omitted.   Settled material information
for these cases is correct  and  has been given.

      Output  variables are all  dimensionless as follows:
                                        1/2
      1.   Time  is given as  T =  0 (gp'/O)

          where 6 is the time  from discharge in seconds.

      2.   Xm is the distance  from the  point  of  discharge  (divided  by the dia-
          meter D)  to  the point of  maximum  thickness  of material settled on
          the bottom,

      3.   X   is the  distance from the point of discharge to the centroid of
          tRe settled material divided by D.

      4.   The shape of settled material on  the  bottom has  been approximated by
          an ellipse  having  total  major  and minor  axes  of A and B,  respec-
          tively.   The boundary  of the ellipse is defined when  the  thickness
          of the material settled on  the  bottom is approximately 0.01  times
          the  maximum  mound  thickness.  This  is  shown in  Figure  48.   Again,
           all lengths and  thicknesses have been  normalized by the diameter D.

      5.  The  normalized  maximum  mound  height  is given  by the  symbol t.
           Intermediate thickness  can  be approximated  by assuming a  Gaussian
           distribution from  the  maximum thickness  to  the  edge.   This  assump-
           tion gives  the following:

           a.   At one-fourth  of  the  distance from the maximum mound  thickness
                to the edge, the thickness will be 0.75t.

           b.   At  one-half  the  distance from  the  maximum  thickness  to  the
                edge, the thickness will be 0.32t.

           c.   At three-fourths the distance from the maximum thickness to the
                edge, the thickness will be 0.07t.

      5.   The  values of  Xm,  X , A, and  B are  also given for  the  suspended
           cloud when meaningful information could be calculated.  The value,
                                      81

-------
                  CURRENT,   Ua
CO
f\3
POINT  OF  MAXIMUM
THICKNESS,  t
                                              CENTER  OF
                                              ELLIPSE
            DUMP   POINT
       Y-
            Figure 48. Definition Ellipse for material settled on bottom.

-------
Xm is  the horizontal  distance  from the  point of  discharge  to the  point of
maximum concentration of the cloud.  The maximum concentration,  Cm,  is given as
a volume fraction of suspended material  to the total.  The vertical location and
thickness  of  the cloud  have not  been  given  since this  information was  not
reliable.

B.   Examples of Use

     The accuracy of  the prediction obtained from this model  will  depend to a
great extent  on  how well the actual dump  matches  the assumptions  used in the
model.   Users should, therefore, realize that large deviations from the condi-
tions used in the model  will  result  in  considerable error.   For example, it is
very difficult  to  have an instantaneous dump.  However, for a barge dump, the
material  leaves  fairly  quickly  and can be  approximated  by  an instantaneous
release.  Care must also  be taken in determining material properties and ambient
conditions.

     The following examples have been given to familiarize the reader with the
use of the tables.  An attempt was made to develop more or less realistic problem
statements.   However,  due to the  wide variety  in variables,  only  a limited
number  are presented.   For  the  sake of  calculation, many numbers  have been
conveniently rounded off.

Example #1

     A barge  contains 200 cu yd of  dredged material  consisting  of 20% silt-clay,
8%  sand  and  72%  water  by  volume.   The  bulk  density is  1.46.   With  this
composition,  29% of the  solid material  is sand and 71% silt-clay. The dump site
is 110 ft deep and the average current is one-knot.  The ambient density is 1.02.
The liquid limit of  the dredged material  is  53.

     It  is desired to know where the material will  settle on the bottom as time
progresses, and the maximum concentration of the suspended cloud as  it passes in
imaginary vertical  plane  1/2  mile from the dump site.


     Solution:

           Determine input parameters:

       Effective Diameter

           Volume = 200 yds3 x 27 ftVyd3 = 5400 ft3

           D = (12 x 5400/Tt)1/3 = 27.42  ft

       Excess density ratio

           p1 =  (1.46 - 1.02)71.02  = 0.43

       Depth

           H = 110/27.42 = 4.01
                                     83

-------
       Dimensionless current
          R =

          Ua = 1.0  knot = 1 . 688 f t/s

          R = 1.6887(32.2 x 27.4 x .AS)17^ = 0.09

     The closest tabulated input  values  to these are  LL = 40,  0-2-8 composi-
tion, p' =  0.4, R = 0.1 and H = 5.

     From  reference  Table  17 the  tabulated output  for  these conditions  is
found on Table 46.  For the settled material the following values  are found:

T =
T =
T =
T =

400
800
1200
1600
Xm
0
0
0
0
Xo
10
25
45
65
A
30
60
105
130
B
30
30
35
40
t
3.7 E-5
3.7 E-5
3.7 E-5
3.7 E-5
                                              11?
              Since T is defined as  6 (gp'/D)17 , the time

               6 (sec) = T/ (gp'/D)1/2

               Therefore T = 400 corresponds to a

               time of 6 = 400/(32.2 x .43/27.4)1/2 = 562.7 sec=10 min


                    T = 800 = 20 min
                    T = 1200 = 30 min
                    T = 1600 * 40 min
     With D = 27.4 ft, the values for this case are:
Time (min)     Xm (ft)   Xo (ft)      " "    "  ""
10
20
30
40
0
0
0
0
274
685
1233
1781
822
1649
2802
3562
822
822
959
1086
.001
.001
.001
.001
This  can  be plotted to give the  approximate shape of the settled material at
the given time as shown in Figure 49.

      The  maximum concentration of ,the  cloud is located 80 x  27.4  = 2,192 ft
downstream  30 min  after  the dump,  and 110  x  27.4 =  3,014  ft downstream 40
minutes  after the  dump.   The  maximum  concentration  is about  3.7  x 10-5 for
both  cases.   Since  1/2  mile is  2,640 ft,  the maximum concentration  of the
cloud as it passes this point is about 3.7 x 10-5 ftVft3.

                                     84

-------
        o
        o
        o
GO

tn
     UJ

     O

     z
10 MIN.
            20MIN.   ,30 MIN
40 MIN.
                        POINT OF  MAXIMUM   THICKNESS
              DISTANCE  DOWNSTREAM  OF  DROP    POINT     (FT)
              Figure 49.  Predicted shape and location of material settled on

                        bottom for example #1.

-------
Example #2
     A 500 m3  barge  contains  dredged material in  five  separate  hoppers, each
containing 100 m3.  The makeup  of the material in each hopper is as follows:
Hopper
2
3
4
5
Bulk Density
1.25
1.25
1.4
1.4
1.4
Gravel
5%
5%
2%
2%
0%
Sand
5%
5%
20%
20%
4%
Silt
5%
5%
2%
2%
20%
Liquid
85%
85%
76%
76%
76%
LL
40
40
40
40
120
     The hopper  doors  are opened simultaneously  at  a dump site that  is  90 m
deep.  The  average  ambient current  and density  at  the site are  25  cm/s and
1.025, respectively.
     Determine the location and distribution of settled material on the bottom
twenty minutes after release.
     Solution:
     There  are  three  different  ways the five hopper  release can  be  handled.
One  is  to  treat  each  independently, another is to lump them all together into
one equivalent dump,  and the third is to lump like material together and tn at
them  separately,  i.e.,  treat  hoppers 1 and 2 as one, 3 and 4 as one,  and 5 as
one.
     The third method is probably the most realistic  in this case.  It will be
used in the example.
     Hoppers  1 and 2
          Determine equivalent hemispherical  diameter;
            D = (12 x 200/7t)1/3 = 9.14 m
          Excess density ratio:
            p' = (1.25 -1.025)71.025  = 0.22
          Dimensionless depth:
            H = 90/9.14  = 9.8
          Dimensionless current:
            R = 0.257(9.8 x 9.14 x .22)1/2 = .056
          Composition:
            With equal  parts gravel,  sand, and silt, use 3-3-3
      The closest tabulated input values are  LL = 40, 3-3-3, p' = 0.25, H =  10,
and  R between 0.02 and  0.1.   For R = 0.02 the correct  table is  39.  For a time
                                     86

-------
of 20 minutes, T = 20 x 60(9.8 x .22/9.14)1/2 or T = 583^600.  From the table, it
is found that:

               Xm = 5   or   5 x 9.14 = 46 m
               Xo = 5                 = 46 m
               A  = 40                = 366 m
               B  = 30                = 279 m
               t  = 5.2 x 10-5        = .000475  m

For R = 0.1 use Table 40, where the following are found

               Xm = 10  or  10 x 9.14 = 91 m
               Xo = 35                = 320 m
               A  = 70                = 640 m
               B  = 50                = 460 m
               t  = 1.9 x 10-5        = .000174 m

Linearly interpolating between these values to an R = .056 yield

               Xm = 66 m
               Xo = 169 m
               A  = 489 m
               B  = 358 m
               t  =  .00034 m

Interpolation  between  the other input variables could be done if the user
wished.

     Hoppers 3 and 4        D = 9.14
     Excess Density:        p'= (1.4 -1.025/1.025) = 0.37
     Dimensionless Depth:    H = 9.8 same as 1 and 2     ,,„
     Dimensionless Current:  R = 0.257(9.8  x 9.14 x 0.37)17  = .043
     Composition:

           With the  mixture being 2% gravel, 20%  sand  and 2% silt, the solids
composition  is  (2/24) x  100  = 8.3%  gravel,  (20/24)  x  100  = 83%  sand,  and
(2/24) x 100 = 8.3% silt use 10-80-10 or 1-8-1 code.

     The  closest input values to these are LL  = 40, 1-8-1, p'=  0.4,  H = 10,
and  R between 0.02  and  0.1.   For  a  time  of  20 minutes  T = 20  x  60 (9.8 x
          -I/O
. 37/9.14) IX^ or T = 756.  Use 800.

For  R  = 0.02  with the above  conditions use Table 21, where the following are
found

                Xm =  0   or  9.14 x 0  =  0 m
                Xo =  5               =  46 m
                A =  40             =  366 m
                B =  30             =  274 m
                t =  .00015          =  .00137 m
                                     87

-------
 For R = 0.1 and Table 22, the following are found

               Xm = 10              = 91 m
               Xo = 30              = 274 m
               A  = 80              = 73 m
               B  = 70              = 548 m
               t  = .000043         = .00039 m

 Interpolating to a R = .043 yields

               Xm = 26 m
               Xo = 112 m
               A  = 470 m
               B  = 352 m
               t  = .0011 m

     Hopper 5

          Equivalent Hemispherical Density:

            D = (12 x 100/Ti)173 = 7.26 m

          Excess Density Ratio:
            p' = 0.37 (same as 3 and 4)

          Dimensionless depth:
            H = 90/7.26 = 12.4

          Dimensionless Current:      1/9
            R = .257(9.8 x 7.26 x .37)IX^ = .05

          Composition:

               Since the  mixture  composition  is  4% sand  and 20%  silt,  the
          solid composition is (4/24) x 100 = 17% sand and (20/24) x 100 = 82%
          silt.  We will use 0-2-8

               The closest  tabulated  input values  to these  are:   LL=  120,
          0-2-8,  p'= 0.4, H  = 10 and R between  .02  and 0.1.   T for this case
          is,  T = 20 x 60 (9.8 x 0.37/7.24)172 = 848.   Use 800.

For R = 0.02 use  Table  37,  where the following  are found

               Xm =  0   or 7.26 x 0  = 0 m
               Xo =  3                = 22 m
               A   =  20               = 145 m
               B   =  15               = 109 m
               t   =  1.9 x 10-4      = .0014  m
                                    88

-------
For R = 0.1 use Table 38,  in where the following are found

               Xm = 0                = 0 m
               Xo = 20               = 145  m
               A  = 40               = 290  m
               B  = 15               = 109  m
               t  = 1.9 x 10-4  = .0014 m

Interpolating between these values to an R  =  0.5 yields:

               Xm = 0 m
               Xo = 68 m
               A  = 199 m
               B  = 109 m
               t  = .0014 m

     Figure  50  is a plot of the  settled  material for each of the three types
of  material  considered  in  this example superimposed  on one plot.  It is noted
that the high liquid limit material (120) spread  much less than the low liquid
limit  material  (40).  Figure  51  is the  same plot after  the  settled material
from the three are added to give a total settled material.

Example #3

     For  the  input condition  of  example  #1,  determine  the  location  of the
contour  line where the thickness  of the  settled material   is  one-half the
maximum value 40 min after the dump.

     Solution:

     It can  be  assumed with  reasonable accuracy that  the  settled material will
distribute itself such that  the thickness will approximate a Gaussion curve  in
any particular direction. Mathematically  this is:
 Where  t  is  the local  thickness,  t     is  the maximum  thickness  and be is  a

 characteristic  length  in  the direction of  r.   Since  the edge of the ellipse

 used to  approximate  the edge  of  the  settled  material was selected  where  t/t
                                                                           illctxv
 = 0.01,  the value of (r/b),, nl  =2.15 to the edge of the ellipse.  When  t/t   v
                           U . U                                             IMaX
 = 0.5 (r/b)0 j-  = 0.83.   Since  the characteristic  length  b  is the same in  a

 given  direction,  rQ 5/rQ 0-,  =  0.83/2.15=0.4.   Thus,  the  location  where the

 local  thickness is  1/2  the maximum,  is about 0.4 times the  distance  from the
 point  of maximum thickness to  the edge as  shown  in Figure 52. Other contour
 lines  could be found in a like manner.
                                     89

-------
IO
o
                                                         HOPPERS  384
                                                                HOPPERS   I & 2
                          DISTANCE   DOWNSTREAM   OF  DROP  POINT    (m)
                     Figure 50.  Predicted shape and location of different types of
                               material settled on bottom for example #2.

-------
           I     I	I	I
         MAXIMUM  THICKNESS-2.5m
   DISTANCE  DOWNSTREAM  OF DROP  POINT   (m)
Figure 51.  Composite shape, location and maximum thickness of
          material settled on bottom for example #2.

-------
ro
         o
         o

      p
                                                            .01 t
                        MAXIMUM   THICKNESS,   t - .001 FT
              DISTANCE  DOWNSTREAM  OF  DROP   POINT
(FT)
             Figure 52.  Contour line where thickness is one-half the maximum

                       thickness for example #3.

-------
C.   Workbook Tables
            Table 17.   Cross-Reference  Table for Workbook
               Output  Table No.'s vs.  Input Variables  with  LL
= 40
Composition 3-3-3
*i-
O
ii
a.
\H
RX
0
.02
0.1
0.5
5 10 20
19 19 19
19 19 19
20 20 20
20 20 20

in
C\J
•
0
ii
Q.
X H
R^
0
.02
0.1
0.5
5 10 20
39 39 39
29 29 29
40 40
40 40 40

O
II
Q.
V
RV^
0
.02
0.1
0.5
5 10 20
47 47
47 47 47
48 48 48
48 48 48
8-2-0
5 10 20
21 21 21
21 21 21
22 22 22
22 22 22

5 10 20
41 41 41
41 41 41
42 42 42
42 42

5 10 20
49 49 49
49 49 49
50 50
50 50 50
1-8-1
5 10 20
23 23 23
23 23 23
24 24 24
24 24 24

5 10 20
43 43 43
43 43 43
44 44 44
44 44

5 10 20
51 51 51
51 51 51
.52 52 52
52 52 52
0-2-8
5 10 20
25 25 25
25 25 25
26 26 26
26 26 26

5 10 20
45 45 45
45 45 45
46 46 46
46 36

5 10 20
53 53 53
53 53 53
54 54 54
54 54 54
                                     93

-------
Table 18.   Cross-Reference Table for Workbook
   Output  Table No.'s  vs.  Input  Variables  with  LL  =  80  and  120
                             LL = 80
Composition 3-3-3
«*
o
ii
Q.
\H
R x.
0
.02
0.1
0.5
5 10 20
27 27 27
27 27 27
28 28 28
28 28 28
8-2-0
5 10 20
29 29 29
29 29 29
30 30 30
30 30
1-8-1
5 10 20
31 31 31
31 31 31
32 32 32
32 32 32
0-2-8
5 10 20
33 33 33
33 33 33
34 34 34
34 34 34
                              LL =  120

                                 1-8-1
<3-
*
0
II
ex
\ H
R X
0
.02
0.1
0.5
5
35
35
36
36
10

35
36
36
20
35
35
36
36
5
37
37
38
38
10
37
37
38
38
20
37
37
38
38
0-2-8
                        94

-------
Table 19.   Settled and Suspended Material Distribution
   for 33% Gravel, 33% Sand, 33% Silt (3-3-3), with
                 LL = 40 and p1  =0.4

Dimensionless Ambient Current, R =
Settled Material
H
T
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
10
30
30
30
30
50
70
70
30
50
50
70
B
10
30
30
30
30
50
70
70
30
50
50
70
Dimensionless
H
T
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 1600
= 3200
= 4800
= 6400
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
0
0
0
0
0
0
0
0
0
0
0
0
0
10
20
20
0
5
10
15
5
5
5
10
60
65
80
80
30
70
80
80
30
30
40
50
60
60
60
60
30
50
50
60
30
30
30
30
t
7.3E-4
7.4E-4
7.4E-4
7.4E-4
2.1E-4
2.3E-4
2.4E-4
2.6E-4
l.OE-6
l.OE-4
l.OE-4
l.OE-4
Ambient
1.7E-4
1.7E-4
1.7E-4
1.7E-4
1.7E-4
1.9E-4
2.0E-4
2.0E-4
l.OE-4
l.OE-4
l.OE-4
l.OE-4
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Current,


60
100
0
0
10
15

10
10
10
Xo
0
0
0
0
0
0
0
0
0
0
0
0
R =


60
90
0
0
10
15

10
15
20
= 0

Suspended Material
A

30
70
no
30
70
90
no
30
70
90
120
0.02


no
140
30
60
70
70

50
80
100
B

30
70
no
30
70
90
no
30
70
90
120


60
80
30
50
50
50

30
50
70
Cm

8.3E-6
4.3E-6
2.8E-6
7.3E-6
3.0E-6
1.9E-6
1.2E-6
3.3E-6
1.8E-6
l.OE-6
7.3E-7


4.4E-6
3.6E-6
1.1 E-5
7.9E-6
4.6E-6
3.5E-6

1.2E-6
8.6E-7
5.4E-7
                           95

-------
Table 20.   Settled and Suspended Material Distribution
   for 33% Gravel, 33% Sand, 33% Silt (3-3-3), with
                 LL = 40 and p1  =0.4

Dimensionless
Ambient Current, R = 0.1
Settled Material
H =
j =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
400
800
1200
1600
Xm
0
0
0
0

0
0
0
60
60
60
60
Xo
10
15
40
45

25
50
80
160
180
200
200
A
30
40
100
120

80
120
160
280
280
300
300
B
30
30
30
30

20
20
20
80
80
100
100
Dimensionless
H =
T =
T =
H =
T =
H =
T =
T =
j =
T =
5
3200
6400
10
3200
6400
20
400
800
1200
1600
40
40
80
80
150
150
150
150
160
160
560
560
210
300
420
465
400
400
100
100
210
240
570
660
160
160
120
120
90
90
90
90
t
5.3E-4
5.3E-4
5.3E-4
5.4E-4

l.OE-4
l.OE-4
l.OE-4
8.0E-5
8.0E-5
8.0E-5
8.1E-5
Xm

60
95
130

60
100
140

440
440
440
Ambient Current,
1.1E-5
1.1E-5
4.6E-6
4.6E-6
3.0E-5
3.0E-5
3.0E-5
3.0E-5




310
480
660

Suspended
Xo

60
95
130

60
100
140

280
300
340
R = 0.5




310
480
660

A
<10
80
110
130

100
120
140

500
500
540




240
250
250

Material
B
<10
50
90
110

60
80
100

140
160
180




140
150
150

Cm

6.2E-6
3.0E-6
2.1E-6

3.6E-6
2.5E-6
1.3E-6

1.2E-7
1.2E-7
1.2E-7




2.5E-7
2.1E-7
1.8E-7

                         96

-------
Table 21.  Settled and Suspended Material Distribution
   for 80% Gravel, 20% Sand, 0% Silt (8-2-0), with
                 LL = 40 and p'  =0.4

Dimension! ess Ambient Current, R = 0
Settled Material
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 800
T = 1600
T = 2400
T = 3200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
30
40
30
35
40
40
60
65
70
70
B
30
30
30
40
30
35
40
40
60
65
70
70
Suspended
t Xm Xo A
5.5E-4
5.7E-4
5.9E-4
6.0E-4 0 0 40
3.8E-4
3.9E-4 0 0 30
4.0E-4 0 0 35
4.0E-4 0 0 40
5.4E-5
6.0E-5
6.3E-5
6.5E-5
Material
8 Cm



40 3.7E-6

30 2.5E-6
35 1.8E-6
40 1.3E-6




Dimensionless Ambient Current, R = 0.02
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 800
T = 1600
T = 2400
T = 3200
H = 20
T = 800
T = 1600
T = 2400
T = 3200
0
0
0
0
5
5
5
10
10
10
10
10
2
5
5
10
5
5
5
10
10
10
10
10
30
40
45
55
50
50
50
60
100
110
110
110
30
30
35
35
50
50
50
60
100
110
110
no
8.9E-4
9.0E-4
9.0E-4 10 10 60
9.0E-4 20 20 60
1.3E-4
1.3E-4 0 10 50
1.3E-4 10 10 70
1.4E-4 15 15 75
4. 1E-5
4. 1E-5
4. 1E-5
4.1E-5


40 2.1E-6
40 1.4E-6

50 1.8E-7
70 5.8E-8
75 2.1E-8




                          97

-------
Table 22.   Settled and Suspended Material Distribution
   for 80% Gravel, 20% Sand, 0% Silt (8-2-0), with
                 LL = 40 and p1 = 0.4

Dimensionless
Settled Material
H =
T =
T =
T =
T =
H =
T =
T =
T =
T -
H =
T =
T —
5
400
800
1200
1600
10
800
1600
2400
3200
20
1600
3200
Xm
5
5
5
5
20
20
20
20
240
240
Xo
10
10
20
35
30
30
30
40
160
160
A
50
55
80
110
80
80
90
100
300
300
B
30
40
40
40
60
60
60
60
100
100
Dimensionless
H =
j =
T =
T =
H =
T =
T =
H =
T =
T =
T =
T =
5
1600
3200
4800
6400
10
3200
6400
20
400
800
1200
1600
40
40
40
40
80
80

360
360
360
80
100
100
100
560
560

260
310
360
160
240
240
240
960
960

200
300
400
120
720
120
120
120
120

100
100
100
Ambient Current, R = 0. 1
Suspended
t Xm Xo A
1.6E-4
1.7E-4 0 5 50
1.7E-4 30 40 60
1.7E-4 70 70 80
1 . 8E-4
1.8E-4 80 20 80
1.8E-4 60 60 120
1.8E-4 120 120 130
1.4E-5
1.4E-5
Ambient Current, R = 0.5
1.3E-5
1.3E-5 880 880 140
1.3E-5
1.3E-5
1.1E-5
1.1E-5

5.8E-5
5.8E-5
5.8E-5
Material
B Cm

40 2.6E-6
40 l.OE-6
60 8.9E-7

60 2.3E-7
70 l.OE-7
70 5.1E-8



50 2.3E-10








                         98

-------
Table 23.  Settled and Suspended Material Distribution
   for 10% Gravel, 80% Sand, 10% Silt (1-8-1), with
                 LL = 40 and p1  = 0.4

Dimensionless Ambient Current,
Settled Material
H
T
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 800
= 1600
= 2400
= 3200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
40
40
30
30
40
40
60
65
70
70
B
30
30
40
40
30
30
40
40
60
65
70
70
t
1.4E-4
2.0E-4
2.9E-4
3.5E-4
1.1 E-4
1.4E-4
1.7E-4
1.9E-4
2.4E-5
4.3E-5
5.4E-5
6.1E-5
Xm



0

0
0
0




Dimensionless Ambient Current,
H
T
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 1600
= 3200
= 4800
= 6400
0
0
0
0
0
0
0
0
20
20
20
20
2
5
10
15
5
5
5
10
10
10
10
10
30
45
55
65
40
40
40
50
100
110
110
110
30
30
30
40
30
30
30
30
100
100
100
100
1.5E-4
1.9E-4
2.0E-4
2.0E-4
1.1E-4
1.5E-4
1.7E-4
1.7E-4
2.6E-5
2.6E-5
2.6E-5
2.6E-5



20

0
5
10.

0
40
80
R = 0
Suspended
Xo A



0 40

0 30
0 50
0 50




R = 0.02



20 60

5 40
5 60
10 70

20 140
60 140
80 160
Material
B Cm



40 2.5E-5

30 l.OE-5
50 7.7E-6
50 6.2E-6







40 1.1 E-5

30 l.OE-5
50 5.2E-6
50 3.6E-6

140 4.2E-8
140 3.9E-8
140 3.7E-8
                          99

-------
Table 24.  Settled and Suspended Material Distribution
   for 10% Gravel, 80% Sand, 10% Silt (1-8-1), with
                 LL = 40 and p'  =0.4

Dimension! ess
Ambient Current, R = 0.1
Settled Material
H =
1 =
T =
T =
T" —
H =
T =
T =
T =
T =
H =
T =
T =
5
400
800
1200
1600
10
800
1600
2400
3200
20
1600
3200
Xm
0
0
0
0
10
20
20
20
60
60
Xo
5
5
25
40
30
35
40
60
140
140
A
40
50
90
120
80
90
110
160
280
280
B
30
40
40
40
60
70
80
80
100
120
Dimension! ess
H =
T =
T =
T =
H =
T =
T =
5
1600
3200
4800
6400
10
3200
6400
40
40
40
40
340
340
100
100
100
100
560
560
200
200
200
200
1000
1000
120
120
120
120
120
120

2.
2.
2.
2.
3.
4.
4.
4.
1.
1.
Suspended
t Xm Xo A
3E-4
8E-4 0 5 50
8E-4 40 40 75
8E-4 70 80 80
1E-5
3E-5 20 20 110
3E-5 60 90 180
3E-5 180 140 220
OE-5
OE-5 110 140 260
Material
B Cm

40 1 . 2E-5
60 7.3E-6
60 4.3E-6

100 l.OE-6
100 3.6E-7
120 1.5E-7

180 1.4E-8
Ambient Current, R = 0.5
4.
4.
4.
4.
2.
2.
9E-5
9E-5
9E-5
9E-5
3E-6
3E-6






                         100

-------
Table 25.  Settled and Suspended Material Distribution
   for 0% Gravel, 20% Sand, 80% Silt (0-2-8), with
                 LL = 40 and p1  = 0.4

Dimensionless
Ambient Current,
Settled Material
H =
T =
T =
T -•-"-
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
800
1600
2400
3200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
5
5
10
10
0
0
0
0
A
30
30
40
40
40
45
50
60
60
70
70
80
B
30
30
40
40
40
45
50
60
60
70
70
80
Dimensionless
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
800
1600
2400
3200
20
1600
3200
4800
6400
0
0
0
0
5
5
5
5
0
0
0
0
0
5
10
15
5
5
15
20
10
15
20
50
30
40
55
65
40
45
65
85
80
90
120
160
30
30
40
40
30
35
50
55
60
70
70
t
3.3E-5
5.5E-5
8.0E-5
l.OE-4
1.7E-5
2.7E-5
3.2E-5
3.4E-5
4.3E-6
l.OE-5
1.2E-5
1.4E-5
Xm





0
0
0

0
0
0
Ambient Current,
3.3E-5
5.0E-5
5.3E-5
5.3E-5
2.2E-5
3.0E-5
3.1E-5
3.2E-5
6.8E-6
6.9E-6
6.9E-6
80 6.9E-6


20
20

5
20
35

10
20
70
R = 0

Suspended
Xo





0
0
0

0
0
0
R = .02


10
15

5
20
35

10
20
70
A





60
70
80

80
100
110


60
70

60
65
90

100
120
160
Material
B





60
70
85

80
100
110


40
40

50
55
75

100
100
no
Cm





7.1E-6
5.5E-6
5.1E-6

1.3E-6
1.1E-6
l.OE-6


4.4E-5
4.0E-5

5.0E-6
4.4E-6
4.1E-6

5.6E-7
5.4E-7
5.2E-7
                         101

-------
Table 26.  Settled and Suspended Material Distribution
   for 0% Gravel, 20% Sand, 80% Silt (0-2-8), with
                  LL = 40 and p1 =0.4

Dimensionless Ambient Current, R = 0. 1
Settled Material
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
5
400
800
1200
1600
10
800
1600
2400
3200
20
3200
6400
Km
0
0
0
0
0
20
20
20
140
140
Xo
10
25
45
65
30
30
60
100
260
260
A
30
60
105
130
80
90
140
220
560
560
B
30
30
35
40
60
70
70
70
320
320

3.
3.
3.
3.
7.
1.
1.
1.
2.
2.
Suspended
t Xm Xo A
7E-5
7E-5
7E-5 80 75 70
7E-5 110 110 80
4E-6
OE-5 20 20 100
OE-5 100 100 140
OE-5 180 180 180
2E-6
2E-6 200 280 600
Material
B Cm


40 3.8E-5
40 3.6E-5

70 1.4E-6
100 1.2E-6
110 1.2E-6

440 9.3E-8
Dimensionless Ambient Current, R = 0.5
H =
T =
T =
T =
H =
j =
T =
H —
T =
T =
T =
T =
5
1600
3200
4800
6400
10
3200
6400
20
400
800
1200
1600
40
40
40
40
340
340

260
260
260
60
480
480
480
560
560

280
310
340
160
960
960
960
1000
1000

180
280
380
120
120
120
120
120
120

100
110
120
1.
1.
1.
1.
6.
6.

2.
2.
2.
2E-5
2E-5
2E-5
2E-5
OE-7
OE-7

9E-8
9E-8
9E-8










                          102

-------
Table 27.  Settled and Suspended Material Distribution
   for 33% Gravel, 33% Sand, 33% Silt (3-3-3), with
                  LL = 80 and p' = 0.4

Dimensionless Ambient Current,
<;ptt1Pri Material
H -
T =
T -
T -
T -
: 5 Xm
: 400 0
: «00 0
: 1200 0
: 1600 0
H = 10
T - 400 0
T - 800 0
T =
T =
H =
T =
T
T
T
H_
T
T
T
H
T
T
T
T
H
T
T
T
=1200 0
= 1600 0
= 20
- 400 0
- 800 0
- 1200 0
-1600 0
= 5
- 400 0
- 800 0
- 1200 0
- 1600 0
= 10
- 400
- 800 0
- 1200 5
- 1600 5
= 20
- 400 0
- 800 0
- 1200 0
Xo
0
0
0
0
0
0 	
0
0
0
0
0
0
A
10
10
10
30
30
30
50
50
30
50
50
70
B
10
in
in
30
311
bl)
50
SI)
sn
/o
Dimensionless
0
c
10
15
C
5
10
10
10
20
25
50
25
25
30
40
50
70
in
10
t Xm
7OC— A
. £t H
7.6E-4
7.6E-4 0
7.6E-6 0
5.3E-4
5.6E-4 0
5.8E-4 0
4.0E-4 0
4.1E-4 0
4.1E-4 0
4.2E-4 0
Ambient Current,
7.3E-4
i 7.3E-4
15 7.3E-4 15
15
IS
20
25
30
40
50
7.3E-4 25
3.0E-4 5
o.Ut 4 3
3.1E-4 5-
4.0E-4 5
4.1E-4 10
4.1E-4 ZO
R = 0

Suspended Material
Xo A

0 30
0 70
0 50
0 90
0 100
0 30
0 70
0 90
0 120
R = 0.02


15 50
25 100
5 25
5 25
10 50
TO 90~~
20 130
B Cm

30 7.3E-6
70 4.5E-6
50 4.9E-6
90 2.5E-6
100 1.6E-6
30 3.2E-6
70 1.8E-6
90 l.OE-6
120 7.3E-7


30 7.4E-6
70 3.8E-6
15 3.0E~5
20 3.0E-5
25 9.2E-6
30 3.4E-6
70 1.5E-6
110 8.7E-7
                             103

-------
Table 28.   Settled and Suspended Material Distribution
   for 33% Gravel, 33% Sand, 33% Silt (3-3-3), with
                  LL = 80 and p' =0.4

Dimensionless Ambient Current, R = 0.1
Settled Material
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 400
T = 800
T = 1200
T = 1600
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
10
20
20
40
10
20
60
80
0
0
0
0
A
40
60
60
80
40
60
100
160
30
50
50
60
B
20
20
20
20
20
20
20
20
30
50
50
60
Suspended
t Xm Xo A
1.7E-4
1.7E-4
1.7E-4
1.8E-4
l.OE-4
l.OE-4
1 . OE-4
1.1E-4
4. OE-4 0 0 30
4. 1E-4 0 0 60
4. 1E-41 0 0 90
4.2E-4 0 0 120
Material
B Cm








30 3.3E-6
60 1.8E-6
90 l.OE-6
120 7.3E-7
Dimensionless Ambient Current, R = 0.5
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 400
T = 800
T = 1200
T = 1600
20
20
20
20
40
40
40
40

20
20
20
40
140
230
300
45
130
210
300

30
50
70
100
280
420
600
80
160
440
560

50
90
150
20
20
20
20
20
20
20
20

10
10
10
8-1E-5
8. 1E-5
8. 1E-5
8. 1E-5
8.1E-5
8.1E-5
8.1E-5
8.1E-5

4.0E-5
4.0E-5
4.0E-5












                          104

-------
Table 29.   Settled and Suspended Material Distribution
   for 80% Gravel, 20% Sand, 0% Silt (8-2-0), with
                  LL = 80 and p' =0.4

Dimensionless
Settled Material
H
T
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
10
15
15
15
30
30
30
30
30
30
35
40
Dimension!
H
T
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
0
0
e
0
0
0
0
0

10

10
5
5
5
5
0
5
5
10

5

5
15
20
20
20
30
35
40
50

35

40
B
10
15
15
15
30
30
30
30
30
30
35
40
ess
10
15
15
15
30
30
30
30

30

Ambient Current, R = 0
Suspended
t Xm Xo A
l.OE-3
l.OE-3
l.OE-3
l.OE-3
5.7E-4 0 0
5.9E-4 0 0 30
6.0E-4 0 0 30
6.1E-4 0 0 35
3.2E-4
3.4E-4
3.5E-4 0 0 35
3.6E-4 0 0 40
Ambient Current, R = .02
l.OE-3
l.OE-3
l.OE-3
l.OE-3
5.5E-4
5.6E-4 10 5 40
5.6E-4 10 10 50
5.7E-4 20 20 60

1.6E-4

Material
B Cm





30 4.6E-6
30 3.7E-4
35 3.0E-6


35 2.7E-6
40 2.1E-6





30 2.4E-6
30 1.8E-6
40 1.3E-6



35 1.7E-4
                          105

-------
Table 32.   Settled and Suspended Material  Distribution
   for 10% Gravel, 80% Sand, 10% Silt (1-8-1),  with
                  LL = 80 and p1  = 0.4
Dimensionless Ambient Current, R = 0.1
Settled Material
H
T
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
Xm
0
0
0
0
0
0
0
0

10
10
10
Xo
15
20
30
50
15
30
40
60

30
30
30
A
40
45
70
100
40
60
90
130

70
70
70
B
30
30
30
30
30
30
30
30

50
50
50
Suspended
t Xm Xo A
5.8E-4
6.1E-4
6.1E-4
6.1E-4 100 100 80
2.5E-5
2.6E-5 30 35 40
2.6E-5 70 70 70
2.6E-5 100 100 70

6.5E-5
9.0E-5
1.1E-4 10 15 55
Material
B Cm



40 4.3E-6

30 l.OE-5
30 8.4E-6
30 6.8E-4



55 2.9E-5
Dimensionless Ambient Current, R = 0.5
H
T
T
T
H
T
H
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 20
~ 400
= 800
= 1200
= 1600

30
30
30

30

50
50
50

40
90
140

180

240
240
260

80
160
260

350

460
460
400

40
40
40

40

80
85
80

8.8E-5
8.8E-5
8.8E-5

4.2E-5

2.9E-5
3.5E-5
9.0E-5










                          106

-------
Table 31.   Settled and Suspended Material  Distribution
   for 10% Gravel, 80% Sand,  10% Silt (1-8-1),  with
                  LL = 80 and p' = 0.4

Dimensionless Ambient Current, R = 0
Settled Material
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 400
T = 800
T = 1200
T = 1600
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
30
30
30
30
30
30
30
35
40
40
B
30
30
30
30
30
30
30
30
30
35
40
40
t
5.8E-4
7.7E-4
7.8E-4
7.9E-4
1.2E-4
1.7E-4
2.4E-4
2.6E-4
6.4E-5
1.1 E-4
1.4E-4
1.6E-4
Suspended
Xm Xo A


0 0 35
0 0 35

0 0 30
0 0 30
0 0 30


0 0 50
0 0 60
Material
B Cm


35 1.3E-5
35 1.1 E-5

30 2.5E-5
30 2.1E-5
30 1.7E-5


50 6.9E-6
60 4.9E-6
Dimensionless Ambient Current, R = .02
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 400
T = 800
T = 1200
T = 1600
0
0
0
0
0
0
0
0
0
0
0
0
0
5
5
10
0
5
10
10
0
5
5
5
30
35
40
50
30
40
55
55
30
40
50
50
30
30
30
30
30
30
30
35
30
30
35
35
5.8E-4
7.8E-4
7.8E-4
7.8E-4
1.3E-4
1.6E-4
1.7E-4
1.7E-4
6.3E-5
1.1E-6
1.3E-4
1.4E-4






10 5 40
20 10 70


0 5 60
5 10 70






30 1.8E-5
40 8.1E-6


50 5.2E-6
50 2.8E-6
                         107

-------
Table 30.  Settled and Suspended Material Distribution
   for 80% Gravel, 20% Sand, 0% Silt (3-3-3), with
                  LL = 80 and p1 =0.4

Dimensionless
Settled Material
H =
T =
T =
T =
T =
H =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
400
800
1200
1600
Xm
0
0
0
0
0
0
0
0

10
10
10
Xo
5
20
30
30
10
10
10
20

15
15
15
A
15
40
50
50
50
50
60
70

90
95
100
B
15
30
30
30
30
30
30
30

50
55
60
Dimensionless
H =
T =
T =
T =
H =
T =
T =
T •- *
T =
5
400
800
1200
1600
20
400
800
1200
1600

20
20
20

120
120
120

10
35
60

120
120
120

80
110
140

200
200
200

40
40
40

80
80
80
Ambient Current, R = 0.1
Suspended
t Xm Xo A
l.OE-3
l.OE-3
l.OE-3 60 60 50
l.OE-3 90 95 70
3.2E-4
3.4E-4 0 10 40
3.4E-4 20 20 60
3.4E-4 40 40 60

1 . 3E-4
1.3E-4
1.3E-4 10 15 70
Ambient Current, R = 0.5

1.3E-4
1.3E-4
1 . 3E-4

5.4E-5
5.4E-5
5.4E-5 50 60 100
Material
B Cm


30 4.9E-7
40 3.2E-7

30 4.0E-6
35 2.2E-6
35 1.2E-6



70 3.6E-7







80 1.9E-7
                         103

-------
Table 33.   Settled and Suspended Material  Distribution
   for 0% Gravel, 20% Sand, 80% Silt (0-2-8),  with
                  LL = 80 and p'  =0.4

Dimensionless Ambient Current,
Settled Material
H
T
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
30
35
30
30
35
40
30
35
45
50
Dimension!
H_
T
T
T
H
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
0
0
0
0
0
0
0
0
0
0
0
0
0
5
10
10
0
10
10
20
5
5
10
10
30
35
40
50
30
40
50
60
40
50
60
60
B
30
30
30
35
30
30
35
40
30
35
45
50
t
7.6E-5
1.3E-4
1.5E-4
1.6E-4
3.5E-5
4.5E-5
5.7E-5
6.7E-5
1.3E-5
2.7E-5
3.5E-5
4.0E-5
Xm



0


0
0


0
0
ess Ambient Current,
30
30
30
30
30
30
30
35
30
40
50
50
7.6E-5
1.3E-4
1.3E-4
1.3E-4
3.5E-5
4.1E-5
4.2E-5
4.3E-5
1.3E-5
2.7E-5
3.3E-5
3.6E-5


20
25


15
30

0
5
10
, R = 0

Suspended
Xo



0


0
0


0
0
R = .02


10
10


10
30

5
10
15
A



35


35
40


50
55


50
60


55
55

60
70
80
Material
B



35


35
40


50
55


35
40


35
35

50
50
55
Cm



8.5E-5


4.8E-5
4.4E-5


5.4E-6
4.3E-6


4.2E-5
4.0E-5


2.1E-5
2.0E-5

6.3E-6
4.3E-6
3.2E-6
                         109

-------
Table 34.   Settled and Suspended  Material  Distribution
   for 0% Gravel,  20% Sand,  80% Silt  (0-2-8), with
                  LL = 80 and p1  =0.4

Dimensionless Ambient Current, R = 0. 1
Settled Material
H
T
T
T
T
H
T
T
T
T
H
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600
Xm
0
0
0
0
0
0
0
0

10
10
10
Xo
5
30
50
70
5
30
50
60

15
15
15
A
30
60
100
130
30
60
100
120

40
50
55
B
30
30
30
30
30
30
30
30

30
35
40
Suspended
t Xm Xo A
8.0E-5
8.0E-5
8.0E-5 70 70 50
8.0E-5 110 110 70
4.0E-5
4.3E-5
4.3E-5 80 70 70
4.3E-5 110 110 80

2.1E-5
2.6E-5
3.1E-5
Material
B Cm


30 4.2E-5
40 3.6E-5


40 2.2E-5
50 1.9E-5




Dimensionless Ambient Current, R = 0.5
H
T
T
T
H
T
T
T
T
H_
T
T
T
= 5
= 400
= 800
= 1200
= 1600
= 10
= 400
= 800
= 1200
= 1600
= 20
= 400
= 800
= 1200
= 1600

10
10
10

20
20
20

50
60
70

10
50
100

30
70
140

60
80
100

60
100
140

60
190
320

100
130
160

40
40
40

40
40
40

80
90
100

2.9E-5
2.9E-5
2.9E-5

1.1E-5
1.25E-5
1.4E-5

6.9E-6
8.8E-6
l.OE-5 160 120 160











120 1.2E-6
                        no

-------
Table 35.   Settled and Suspended  Material Distribution
   for 10% Gravel, 80% Sand,  10%  Silt  (1-8-1), with
                  LL = 120  and p1 =  0.4

Dimensionless Ambient Current, R = 0
Settled Material
H =
1 =
T =
T =
T =
H =
T =
T =
T =
H =
T =
T =
1 =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
400
800
1200
1600
Xm
0
0
0
0




0
0
0
0
Xo
0
0
0
0




0
0
0
0
A
15
15
16
17




15
15
17
17
B
15
15
16
17




15
15
17
17
Suspended
t Xm Xo A
1.1E-3
1.5E-3
1.7E-3
1.7E-3 0 0 30




l.OE-3
1.4E-3
1.5E-3 0 0 25
1.6E-3 0 0 30
Material
B Cm



30 4.4E-5






25 3.4E-5
30 2.3E-5
Dimensionless Ambient Current, R = 0.02
H =
T =
T =
T =
T =
H =
T =
1 =
T =
T =
H =
T --.-
r =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
400
800
1200
1600
0
0
0
0
0
0
0
0
0
0
0
0
0
5
5
10
5
5
5
5
5
5
5
7
15
20
30
37
20
20
20
20
15
20
25
30
15
15
17
20
10
10
10
10
15
15
17
20
1.1E-3
1.3E-3
1.3E-3 10 12 35
1.3E-3 20 20 40
6.5E-4
l.OE-3
l.OE-3
l.OE-3
1.1E-3
1.4E-3
1.5E-3 5 5 30
1.5E-3 5 8 35


25 3.7E-5
30 2.4E-5






15 2.0E-5
25 l.OE-5
                         in

-------
Table 36.   Settled and Suspended Material Distribution
   for 10% Gravel, 80% Sand, 10% Silt (1-8-1), with
                  LL = 120 and p1  = 0.4

Oimensionless
Settled Material
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 400
T = 800
T = 1200
T = 1600
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
5
12
30
45
5
5
5
5
10
10
10
15
A
15
30
60
90
20
20
20
20
20
25
30
40
B
15
15
15
20
10
10
10
10
15
15
20
20
Dimensionless
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 400
T = 800
T = 1200
T = 1600
2
2
2
2
0
0
0
0
15
15
15
15
17
17
17
17
5
5
5
5
15
35
35
35
30
30
30
30
20
20
20
20
15
65
65
65
15
15
15
15
1C
10
10
10
15
15
15
15
Ambient Current, R = 0.1
Suspended
t Xm Xo A
1.2E-3
1.2E-3
1.2E-3 55 60 50
1.2E-3 90 100 60
6.5E-4
l.OE-3
l.OE-3
l.OE-3
1.1E-3
1.2E-3
1.2E-3 15 22 50
1.2E-3 30 45 90
Ambient Current, R = 0.5
3.4E-4
3.4E-4
3.4E-4
3.4E-4
6.5E-4
l.OE-3
l.OE-3
l.OE-3
6.7E-4
7.1E-4
7.1E-4
7.1E-4
Material
B Cm


25 2.4E-5
30 1.3E-5






17 1.5E-5
30 7.6E-6












                          112

-------
Table 37.   Settled and Suspended Material  Distribution
   for 0% Gravel,  20% Sand,  80% Silt (0-2-8),  with
                  LL = 120 and p1  = 0.4

Dimensionless Ambient Current, R = 0
Settled Material
H
1
T
T
T
H
T
T
T
T
H
T
T
T
T
= 5
= 400
= 800
= 1200
- 1600
= 10
= 400
= 800
= 1200
- 1600
= 20
= 400
- 800
= 1200
= 1600
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
15
15
17
20
15
15
17
17
15
15
16
17
B
15
15
17
20
15
15
17
17
15
15
16
17
t
1.8E-4
2.5E-4
3.0E-4
3.3E-4
1.7E-4
2.2E-4
2.5E-4
2.6E-4
1.7E-4
2.2E-4
2.5E-4
2.6E-4
Suspended Material
Xm Xo A


0 0 25
0 0 30






0 0 25
0 0 30
B Cm


25 2.5E-4
30 2.0E-4






25 6.9E-5
30 5.4E-5
Dimensionless Ambient Current, R = .02
H_
T
T
T
H
T
T
T
H
T
T
T
T
= 5
~^~400
= 800
= 1200
- 1600
= 10
= 400
= 800
= 1200
- 1600
= 20
= 400
= 800
= 1200
= 1600
0
0
0
0
0
0
0
0
0
0
0
0
0
5
7
10
0
3
5
10
0
3
7
7
15
20
30
40
15
20
30
35
15
22
27
27
15
15
17
17
15
15
15
17
15
15
17
17
1.8E-4
2.1E-4
2.1E-4
2. 1E-4
1.8E-4
1.9E-4
1.9E-4
1.9E-4
1.7E-4
2.1E-4
2.2E-4
2.2E-4

5 12 20
15 15 30
20 20 32


10 12 30
20 20 40


10 10 37
15 15 40

15 2.1E-4
17 1.3E-4
25 1.1 E-4


25 7.1E-5
30 5.6E-5


25 4.3E-5
30 3.0E-5
                          113

-------
Table 38.   Settled and Suspended Material  Distribution
   for 0% Gravel,  20% Sand,  80% Silt (0-2-8), with
                  LL = 120 and p1  = 0.4

Dimensionless Ambient Current, R = 0.1
Settled Material
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 400
T = 800
T = 1200
T = 1600
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
15
35
50
5
20
35
60
5
15
25
35
A
15
50
85
120
15
40
75
120
15
30
55
85
B
15
15
20
20
15
15
17
17
15
15
20
20
Suspended
t Xm Xo A
1.8E-4
1.8E-4
1.8E-4 70 65 40
1.8E-4 105 105 45
1.4E-4
1.9E-4
1.9E-4
1.9E-4 95 80 75
1.9E-4
2.1E-4
2.1E-4 45 35 55
2.1E-4 70 60 75
Material
B Cm


20 1.6E-4
25 1.1 E-6



30 5.7E-5


25 3.1E-5
30 2.4E-5
Dimensionless Ambient Current, R = 0.5
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 400
T = 800
T = 1200
T = 1600
H = 20
T = 400
T = 800
T = 1200
T = 1600
0
0
0
0
5
5
5
5
10
10
10
10
5
15
15
15
5
35
35
35
10
50
60
60
15
35
35
35
15
70
70
70
15
85
95
95
15
15
15
15
15
15
15
15
15
15
15
15
1.3E-4
1.3E-4
1.3E-4
1.3E-4
1 . 2E-4
1.3E-4
1.3E-4
1.3E-4
1 . 7E-4
1.7E-4
1 . 7E-4
1 . 7E-4












                         114

-------
Table 39.  Settled and Suspended Material Distribution
   for 33% Gravel, 33% Sand, 33% Silt (3-3-3), with
                  LL = 40 and p'  = 0.25
Dimensionless
Ambient Current
Settled Material
H =
1 =
1 -
T -
T =
H =
T -
T -
T =
H =
-i- 	
T -
T -
T -
5
300
600
900
1200
10
300
600
900
1200
20
300
600
900
1200
Xm
0
0
0
0
0
0
0
0

0
0
0
Xo
0
0
0
0
0
0
0
0

0
0
0
A
10
10
30
30
30
50
50
70

30
60
90
B
10
10
30
30
30
50
50
70

30
60
90
t Xm
4.5E-4
4.6E-4 0
4.6E-4 0
4.6E-4 0
1.2E-4 0
1.4E-4 0
1.4E-4 0
1.6E-4 0

3.4E-5
4.4E-5
4.4E-5
Dimensionless Ambient Current.
H =
T -
T -
T -
H =
T =
T =
T =
-
H =
T =
T -
T -
T =
5
300
600
900
1200
10
600
1200
1800
2400
20
300
600
900
1200
0
0
0
0
5
5
5
5

0
0
0
5
10
10
15
5
5
10
15

10
15
20
30
40
45
50
40
45
55
70

60
80
180
30
30
30
30
30
40
50
60

60
60
60
1.6E-4
1.7E-4
1.7E-4
1.7E-4 20
5.2E-5
6.0E-5 0
6.2E-5 10
6.2E-5 25

6.3E-5
6.7E-5
7.7E-5 10
, R = 0
Suspended
Xo A

0 30
0 70
0 90
0 30
0 70
0 90
0 120




R =.02



20 60

5 60
20 75
30 80



10 100
Material
B Cm

30 5.2E-6
70 2.6E-6
90 1.7E-4
30 4.6E-6
70 1.9E-4
90 1.2E-6
120 7.9E-7







40 1.1 E-5

50 1.7E-6
60 1.3E-6
60 1.1 E-6



60 5.7E-7
                         115

-------
Table 40.   Settled and Suspended Material Distribution
   for 33% Gravel, 33% Sand, 33% Silt (3-3-3), with
                  LL = 40 and p1 = 0.25
Dimensionless Ambient Current, R = 0.1
Settled Material
H = 5
T = 300
T = 600
T = 900
T = 1200
H = 10
T = 300
T = 600
T = 900
T = 1200
H = 20
T = 300
T = 600
T = 900
T = 1200
Xm
10
10
10
10
10
10
10
10




Xo
10
10
10
10
10
35
40
45




A
30
30
30
40
30
70
90
120




B
30
30
30
30
30
50
50
50




Suspended
t Xm Xo A
3.0E-4
3.0E-4 45 45 80
3.0E-4 75 75 100
3.3E-4 105 105 120
1.9E-4 30 35 60
1.9E-4 50 50 90
1.9E-4. 70 70 110
1.9E-4 90 90 140




Material
B Cm

50 3.5E-6
90 1.9E-6
90 1.2E-6
30 4.6E-6
70 1.8E-6
90 l.OE-6
120 6.8E-7




Dimensionless Ambient Current, R = 0.5
H = 5
T = 300
T = 600
T = 900
T = 1200
H = 10
T = 300
T = 600
T = 900
T = 1200
H = 20
T = 300
T = 600
T = 900
T = 1200
50
50
50
50
120
180
180
180
150
150
150
150
50
90
150
150
120
180
210
210
210
300
360
450
150
210
360
360
150
390
390
390
180
330
480
630
30
30
30
30
30
60
60
60
90
90
90
90
2.5E-5
2.6E-5
2.6E-5
2.6E-5
1.1E-5
1.1E-5
1.1E-5
1.1E-5
2.0E-5
2.0E-5 390 390 240
2.0E-5 560 540 240
2.0E-5 660 660 300









150 1.2E-7
150 l.OE-7
210 l.OE-7
                         116

-------
Table 41.  Settled and Suspended Material Distribution
   for 80% Gravel, 20% Sand, 0% Silt (8-2-0), with
                  LL = 40 and p1 = 0.25

Dimensionless

H =
T =
T =
T =
T =
H =
T =
T =
H =
T =
T =
T =
T =

5
300
600
900
1200
10
300
600
900
1200
20
300
600
900
1200

Xm
0
0
0
0
0
0
0
0
0
0
0
0
Settl
Xo
0
0
0
0
0
0
0
0
0
0
0
0
Ambient Current, R = 0
ed Material
A
30
30
30
35
30
40
40
45
30
35
40
40
B
30
30
30
35
30
40
40
45
30
35
40
40
Dimensionless
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T "-~
5
300
600
900
1200
10
600
1200
1800
2400
20
2400
4800
0
0
0
0
5
5
5
5
10
10
0
5
10
10
5
5
5
5
10
10
30
40
45
50
40
50
50
50
120
120
30
30
30
30
30
40
40
40
100
t
5.8E-4
5.9E-4
6.0E-4
6.1E-4
2.1E-4
2.2E-4
2.2E-4
2.3E-4
2.1E-4
2.2E-4
2.2E-4
2.3E-4
Xm

0
0
0

0
0
0

0
0
0
Ambient Current,
5.4E-4
5.4E-4
5.4E-4
5.4E-4
l.OE-4
1.1E-5
1.1E-5
1.1E-5
1.7E-5
100 1.7E-5

10
10
20

0
10
10

20
Suspended
Xo

0
0
0

0
0
0

0
0
0
R = .02

5
10
15

5
10
15

20
A

30
40
40

40
45
45

40
40
40

40
60
70

60
70
80

180
Material
B

30
40
40

40
45
45

40
40
40

30
40
40

50
60
70

180
Cm

4.1E-6
2.7E-6
1.8E-6

2.4E-6
1.9E-6
1.6E-6

2.4E-6
1.9E-6
1.6E-6

2.6E-6
1.6E-6
8.8E-7

5.9E-7
2.0E-7
8.8E-8

9.2E-1,

-------
Table 42.   Settled and Suspended Material Distribution
   for 80% Gravel, 20% Sand, 0% Silt (8-2-0), with
                  LL = 40 and p1  = 0.25

Dimensionless
Settled Material
H = 5
T = 300
T = 600
T = 900
T = 1200
H = 10
T = 300
T = 600
T = 900
T = 1200
H = 20
T = 300
T = 600
T = 900
T = 1200
Xm
5
5
5
5

20
20
20
40
40
40
40
Xo
5
5
15
30

25
25
25
20
60
60
60
A
40
40
65
95

60
60
60
60
100
100
100
B
30
30
40
40

50
50
50
60
60
60
60
Dimensionless
H = 5
T = 300
T = 600
T = 900
T = 1200
H = 10
T = 300
T = 600
T = 900
T = 1200
H = 20
T = 300
T = 600
T = 900
T = 1200

40
40
40




280
280
280
280

60
60
65




320
420
420
420

160
165
170




280
520
520
520

40
40
40




120
120
120
120
Ambient Current, R = 0.1
Suspended
t Xm Xo A
l.OE-4
l.OE-4 0 5 50
l.OE-4 30 30 60
l.OE-4 60 50 80

7.1E-5
7.2E-5
7.3E-5 10 20 70
5.8E-5
5.8E-5
5.8E-5
5.8E-5
Ambient Current, R = 0.5

1.9E-5
1.9E-5
2.0E-5




1.8E-5
1.8E-5
1.8E-5
1.8E-5
Material
B Cm

40 2.9E-6
40 1.7E-6
60 l.OE-6



70 1.9E-7
















                          118

-------
Table 43.   Settled and Suspended Material Distribution
   for 10% Gravel, 80% Sand, 10% Silt (1-8-1), with
                  LL = 40 and p1 = 0.25

Dimension less
Ambient Current, R = 0
Settled Material
H —
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
5
300
600
900
1200
10
300
600
900
1200
20
300
600
900
1200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
30
40
30
40
4G
45
30
40
40
40
B
30
30
30
40
30
40
40
45
30
40
40
40
Dimensionless
H =
T =
T •—
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
300
600
900
1200
10
300
600
900
1200
20
1200
2400
3600
4800
0
0
0
0
0
0
0
0
0
0
0
0
0
5
10
10
5
5
5
5
0
20
20
20
30
40
55
55
40
50
50
65
120
130
130
130
30
30
30
30
30
40
40
40
120
120
120
120
t
1.8E-4
2.1E-4
2.6E-5
2.9E-5
4.8E-5
7.9E-5
l.OE-4
1.2E-4
4.8E-5
7.9E-5
l.OE-4
1.2E-4
Xm

0
0
0

0
0
0

0
0
0
Ambient Current,
1.9E-4
2.2E-4
2.3E-4
2.3E-4
8.0E-5
l.OE-4
1.1E-4
1.2E-4
2.0E-5
2.1E-5
2.1E-5
2.1E-5

10
10
20

0
5
10


40
60
Suspended
Xo

0
0
0

0
0
0

0
0
0
R = .02

5
10
15

5
5
10


40
60
A

30
40
40

40
60
60

40
60
60

40
60
70

55
70
80


180
200
Material
B

30
40
40

40
60
60

40
60
60

30
40
45

50
60
60


120
120
Cm

2.4E-5
1.8E-5
1.3E-5

l.OE-5
8.1E-6
6.6E-6

l.OE-5
8.1E-6
6.6E-6

1.2E-5
8.6E-6
5.6E-6

6.5E-6
3.5E-6
2.2E-6


3.5E-8
2.4E-8
                           119

-------
Table 44.  Settled and Suspended Material Distribution
   for 10% Gravel, 80% Sand, 10% Silt (1-8-1),  with
                  LL = 40 and p1 = 0.25
Dimensionless Ambient Current, R = 0.1
Settled Material
H = 5
T = 300
T = 600
T = 900
T = 1200
H = 10
T = 300
T = 600
T = 900
T = 1200
H = 20
T = 2400
T = 4800
Km
0
0
0
0

20
20
20
140
140
Xo
5
5
15
30

20
20
25
200
200
A
40
50
65
95

80
90
100
200
200
B
30
35
40
40

60
70
80
120
120
Suspended
t Xm Xo A
l.OE-4
1.2E-4 0 5 50
1.2E-4 35 35 70
1.2E-4 60 60 80

1.6E-5
2.1E-5
2.6E-5 20 30 100
4.6E-6
4.6E-6 160 200 200
Material
8 Cm

40 1.2E-5
60 7.8E-6
60 4.8E-6



80 l.OE-6

120 1.2E-8
Dimensionless Ambient Current, R = 0.5
H = 5
T^~300
T = 600
T = 900
T = 1200
H = 10
T = 300
T = 600
T = 900
T = 1200
H = 20
T = 300
T = 600
T = 900
T = 1200

40
40
40




280
280
280
280

60
60
70




320
400
400
400

160
170
180




280
520
520
520

40
40
60




120
120
120
120

2.8E-5
3.0E-5
3.1E-5




2.2E-6
2.2E-6
2.2E-6
2.2E-6












                          120

-------
Table 45.   Settled and Suspended Material Distribution
   for 0% Gravel, 20% Sand, 80% Silt (0-2-8), with
                  LL = 40 and p' = 0.25

Dimensionless
Ambient Current, R = 0
Settled Material
H =
T =
T =
T =
T ...._
H =
T =
j =
T =
T =
H =
T =
T =
T =
5
300
600
900
1200
10
300
600
900
1200
20
300
600
900
1200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
40
40
30
40
40
45
30
40
45
45
Dimension!
H =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
5
300
600
900
1200
10
300
600
900
1200
20
1200
2400
3600
4800
0
0
0
0
0
0
0
0
0
0
0
0
0
5
10
15
5
5
5
10
0
20
40
70
30
40
50
70
40
50
50
60
80
120
160
200
B
30
30
40
40
30
40
40
45
30
40
45
45
ess
30
30
40
40
30
40
40
40
80
TOO
100
120
t
1.7E-5
3.0E-5
4.6E-5
5.6E-5
l.OE-5
1.5E-5
1.9E-5
2.2E-5
l.OE-5
1.5E-5
1.9E-5
2.2E-5
Xm


0
0

0
0
0

0
0
0
Ambient Current,
l.OE-5
2.7E-5
3.0E-5
3.1E-5
l.OE-5
1.6E-5
1.9E-5
2.0E-5
6.9E-6
7.0E-6
7.0E-6
7.0E-6



20

0
5
10

40
60
80
Suspended
Xo


0
0

0
0
0

0
0
0
R = .02



15

5
5
15

20
60
80
A


40
40

50
60
65

50
60
65



70

60
80
90

160
160
200
Material
B


40
40

50
60
65

50
60
65



40

50
60
60

80
80
120
Cm


5.9E-5
5.4E-5

5.2E-6
4.7E-6
4.5E-6

5.2E-6
4.7E-5
4.5E-5



2.3E-5

4.3E-6
3.5E-6
3.2E-6

4.7E-7
3.6E-7
3.5E-7
                          121

-------
Table 46.   Settled and Suspended Material  Distribution
   for 0% Gravel, 20% Sand,  80% Silt (0-2-8),  with
                  LL = 40 and p1  = 0.25

Dimensionless
Ambient Current, R = 0.1
Settled Material
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T -i—
5
300
600
900
1200
10
300
600
900
1200
20
2400
4800
Xm
0
0
0
0

10
15
20
160
160
Xo
10
30
40
50

30
30
30
200
200
A
30
55
90
120

80
90
100
200
200
B
30
30
40
40

60
70
80
200
200
Dimensionless
H =
j =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
y =
T =
T =
5
300
600
900
1200
10
300
600
900
1200
20
300
600
900
1200

40
40
40




400
680
680
680

60
120
220




320
440
440
440

160
300
440




280
560
560
560

120
120
120




120
120
120
120

2.
2.
2.
2.

3.
5.
6.
1.
1.
Suspended
t Xm Xo A
7E-5
9E-5
9E-5 60 60 65
9E-5 90 85 70

6E-6
1E-6
3E-6 20 30 100
2E-6
2E-6 200 260 280
Material
B Cm


40 2.6E-5
40 2.3E-5



80 1.1E-6

280 7.5E-8
Ambient Current, R = 0.5

6.
7.
7.




9.
3.
3.
3.

8E-6
1E-6
5E-6




4E-8
1E-7
1E-7
1E-7












                         122

-------
Table 47.  Settled and Suspended Material Distribution
   for 33% Gravel, 33% Sand, 33% Silt (3-3-3), with
                  LL = 40 and p' =0.1

Dimensionless Ambient Current,

H =
T =
T =
j =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =

5
400
800
1200
1600
10
400
800
1200
1600
20
800
1600
2400
3200

Xm
0
0
0
0
0
0
0
0
0
0
0
0
Sett!
Xo
0
0
0
0
0
0
0
0
0
0
0
0
ed Material
A
30
30
40
40
30
40
40
45
50
50
60
60
B
30
30
40
40
30
40
40
45
50
50
60
60
t
2.5E-5
2.8E-5
3.4E-5
3.7E-5
1.9E-5
2.3E-5
2.6E-5
2.7E-5
1.2E-5
1.2E-5
1.3E-5
1.3E-5
Xm

0
0
0

0
0
0

0
0
0
Dimensionless Ambient Current,
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
j =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
400
800
1200
1600
0
0
5
5
5
5
5
5
20
20
20
20
5
10
10
10
5
5
5
5
20
20
20
20
30
45
55
65
40
50
50
60
120
120
120
120
30
30
40
40
30
40
40
40
100
100
100
100
2.9E-5
3.0E-5
3.1E-5
3.1E-5
2.3E-5
2.6E-5
2.8E-5
2.8E-5
5.0E-6
5.0E-6
5.0E-6
5.0E-6

10
20
30

0
10
15

10
40
80
R = 0

Suspended
Xo

0
0
0

0
0
0

0
0
0
R = .02

10
15
20

10
10
15

20
60
80
A

30
50
60

50
60
80

70
80
100

50
70
80

60
80
90

140
160
180
Material
B

30
50
60

50
60
80

70
80
100

30
40
50

50
60
70

140
140
140
Cm

l.OE-5
8.2E-6
7.0E-6

1.1 E-6
9.3E-7
8.0E-7

1.1 E-7
l.OE-7
l.OE-7

7.2E-6
4.7E-6
3.3E-6

9.3E-7
6.2E-7
5.0E-7

2.7E-8
2.7E-8
2.6E-8
                          123

-------
Table 48.   Settled and Suspended Material Distribution
   for 33% Gravel, 33% Sand, 33% Silt (3-3-3), with
                  LL = 40 and p1 =0.1

Dimensionless Ambient Current, R = 0.1
Settled Material
H =
T =
T =
T =
T =
H =
T =
T =
T =
H =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
400
800
1200
1600
Xm

20
20
20

20
20
20




Xo

20
70
40

30
30
30




A

60
75
90

80
80
80




B

50
55
60

60
60
60






2.
2.
2.

1.
1.
1.




Suspended Material
t Xm Xo A B Cm

5E-5
5E-5
5E-5

3E-5
3E-5
3E-5




Dimensionless Ambient Current, R = 0.5
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
400
800
1200
1600

120
120
120

260
260
260

410
410
410

140
150
160

240
250
260

360
360
360

260
270
280

440
480
520

440
440
440

60
60
60

60
60
60

100
100
100

1.
1.
1.

3.
3.
3.

1.
1.
1.

1E-5
1E-5
1E-5

8E-6
8E-6
8E-6

2E-5
2E-5
2E-5
                         124

-------
Table 49.   Settled and Suspended Material  Distribution
   for 80% Gravel, 20% Sand,  0% Silt (8-2-0),  with
                  LL = 40 and p1 =0.1.4
Dimensionless Ambient Current,
Settled Material
H =
j =
T =
T =
T =
H =
T =
T -i-
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
800
1600
2400
3200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
40
40
30
40
45
45
60
70
70
70
B
30
30
40
40
30
40
45
45
60
70
70
70
t
3.8E-5
4.0E-5
4.0E-5
4.4E-5
3.1E-5
3.4E-5
3.5E-5
3.6E-5
9.4E-6
l.OE-5
l.OE-5
l.OE-5
Xm

0
0
0

0
0
0

0
0
0
Dimensionless Ambient Current,
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
1600
3200
4800
6400
0
0
0
0
10
10
10
10
40
40
40
40
0
10
10
10
5
5
5
10
100
no
120
120
30
40
45
45
40
40
45
50
160
200
240
240
30
30
30
30
40
40
45
50
120
120
120
120
1.6E-4
1.6E-4
1.6E-4
1.6E-4
4.3E-5
4.4E-5
4.4E-5
4.5E-5
8.4E-6
8.4E-6
8.4E-6
8.4E-6

10
20
30

0
10
10

180
180

R = 0

Suspended
Xo

0
0
0

0
0
0

0
0
0
R = 0.02

5
15
20

0
10
10

220
220

A

30
40
70

40
50
55

100
110
120

45
50
80

55
70
75

180
180

Material
B

30
40
70

40
50
55

100
no
120

30
40
40

55
70
75

120
120

Cm

5.7E-7
1.7E-7
5.4E-8

2.9E-7
1.7E-7
l.OE-7

4.4E-11
4.3E-11
4.2E-11

4.3E-7
l.OE-7
2.6E-8

1.9E-7
7.5E-8
4.0E-8

2.3E-10
2.3E-10

                         125

-------
Table 52.  Settled and Suspended Material  Distribution
   for 10% Gravel, 80% Sand, 10% Silt (1-8-1), with
                  LL = 40 and p1 =0.1
Dimensionless Ambient Current, R = 0.1
Settled Material
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
800
1600
2400
3200
20
400
800
1200
1600
Xm
0
0
0
0
10
10
10
10




Xo
10
20
30
40
30
30
50
50




A
70
90
100
no
80
90
120
120




B
60
60
60
60
60
70
70
70




Suspended
t Xm Xo A
4.2E-5
4.7E-5
4. 7E-5
4.7E-5 120 110 140
l.OE-5
l.OE-5 20 20 120
l.OE-5 100 100 140
l.OE-5 170 170 180




Material
B Cm



80 3.3E-7

100 5.0E-8
110 8.2E-8
120 3.9E-8




Dimensionless Ambient Current, R = 0.5
H =
T =
T =
T =
T =
H =
T —
T =
X —
J =
H =
T =
T =
T =
T =
5
800
1600
2400
3200
10
800
1600
2400
3200
20
800
1600
2400
3200
60
60
60
60

720

720

800

800
160
160
160
160

400

400

520

560
390
390
390
390

800

800

840

920
60
60
60
60

120

120

120

120
7. 1E-6
7. IE- 6 520 500 280
7. 1E-5
7.1E-6

2.4E-6

2.4E-6

l.OE-6

1 . OE-6

100 7.4E-8










                          126

-------
Table 51.   Settled and Suspended Material  Distribution
   for 10% Gravel, 80% Sand,  10% Silt (1-8-1), with
                  LL = 40 and p1  =0.1

Dimensionless
Ambient Current, R = 0.0
Settled Material
H =
1 =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
800
1600
2400
3200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
40
40
30
40
50
60
60
70
80
80
B
30
30
40
40
30
40
50
60
60
70
80
80
Dimensionless
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
1600
3200
4800
6400
0
10
10
10
0
0
0
0
10
20
20

0
5
10
10
5
5
5
5
20
30
30

30
40
55
70
40
50
65
70
100
110
110

30
30
40
40
30
45
55
60
100
100
100

t
2.7E-5
3.5E-5
4.7E-5
5.1E-5
2.1E-5
3.2E-5
3.8E-5
4.2E-5
6.9E-6
8.4E-6
8.5E-6
8.5E-6
Xm

0
0
0

0
0
0

0
0
0
Ambient Current,
3.0E-5
3.5E-5
4.0E-5
4.0E-5
2.3E-5
3.3E-5
3.6E-5
3.7E-5
5.6E-6
5.7E-6
5.7E-6


10
20
25

0
0
10

20
50

Suspended
Xo

0
0
0

0
0
0

0
0
0
R = 0.02

5
15
25

5
10
15

20
50

A

30
35
40

40
60
70

100
no
120

40
70
70

70
80
90

140
150

Material
B

30
35
40

40
60
70

100
no
120

30
40
40

70
80
80

140
140

Cm

5.0E-6
3.0E-6
2.2E-6

1.3E-6
8.9E-7
6.0E-7

2.6E-8
2.6E-8
2.5E-8

3.5E-6
1.7E-6
1.7E-6

8.8E-7
3.4E-7
2.0E-7

8.3E-9
8.1E-9

                          127

-------
Table 50.  Settled and Suspended Material Distribution
   for 80% Gravel, 20% Sand, 0% Silt (8-2-0), with
                  LL = 40 and p1 =0.1

Oiraensionless Ambient Current, R = 0.1
Settled Material
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 800
T = 1600
T = 2400
T = 3200
H = 20
T = 400
T = 800
T - 1200
T = 1600
Xra
10
20
20
20
20
20
20
20




Xo
10
30
30
40
30
30
30
30




A
60
90
90
100
80
80
80
80




B
60
60
60
60
60
60
60
60




Suspended Material
t Xm Xo A B Cm
4.8E-5
4.8E-5
4.8E-5 80 80 100 80 4.9E-9
4.8E-5 120 110 140 80 1.8E-9
3.6E-5
3.6E-5 20 30 120 100 l.OE-10
3.6E-5 100 100 140 120 8.5E-11
3.6E-5 180 180 160 120 7.5E-11




Dimensionless Ambient Current, R = 0.5
H = 5
T = 800
T = 1600
T = 2400
T = 3200
H = 10
T = 800
f = 1600
T = 2400
T = 3200
H = 20
T = 800
T = 1600
T = 2400
T = 3200
120
120
120
120

480

480

800

800
150
150
150
150

480

480

500

500
280
280
280
280

840

840

840

840
60
60
60
60

120

100

120

120
2.4E-5
2.4E-5
2.4E-5
2.4E-5

2.2E-6

2.2E-6

7.8E-6

7.8E-6
                          128

-------
Table 53.  Settled and Suspended Material Distribution
   for 0% Gravel, 20% Sand, 80% Silt (0-2-8), with
                  LL = 40 and p1 =0.1

Dimensionless Ambient Current,
Settled Material
H =
T =
T =
T =
T =
H -
T -
T =
T =
T =
H =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
800
1600
2400
3200
Xm
0
0
0
0
0
0
0
0
0
0
0
0
Xo
0
0
0
0
0
0
0
0
0
0
0
0
A
30
30
40
40
30
45
60
70
60
70
80
80
B
30
30
40
40
30
45
60
70
60
70
80
80
t
6.4E-6
9.0E-6
1.4E-5
1.7E-5
4.9E-6
7.5E-6
9.4E-6
l.OE-5
1.5E-6
2.0E-6
2.0E-6
2.1E-6
Xm

0
0
0

0
0
0

0
0
0
Dimensionless Ambient Current,
H =
T =
T =
T =
H =
T =
T =
T =
H =
T =
T =
T =
T =
5
400
800
1200
1600
10
400
800
1200
1600
20
1600
3200
1200
1600
0
10
10
10
0
0
0
0
0
0
0

0
10
10
15
5
5
10
10
20
20
40

30
50
60
65
40
45
70
80
100
100
140

30
30
40
40
30
40
60
65
100
100
110

6.4E-6
7.6E-6
l.OE-5
l.OE-5
4.7E-6
7.4E-6
8.3E-6
8.6E-6
1.2E-6
1.3E-6
1.3E-6


10
20
30

0
10
20

0
40

, R = 0.0

Suspended
Xo

0
0
0

0
0
0

0
0
0
R = 0.02

5
15
20

5
10
20

20
40

A

30
40
40

50
60
65

100
no
120

40
50
80

60
80
85

120
160

Material
B

30
40
40

50
60
65

100
110
120

30
40
70

50
60
65

120
140

Cm

2.2E-5
1.9E-5
1.6E-5

1.8E-6
1.7E-6
1.6E-6

2.2E-7
2.1E-7
2.1E-7

1.6E-5
1.1 E-5
7.8E-6

1.4E-6
1.2E-6
1.1E-6

7.2E-8
7.0E-8

                          129

-------
Table 54.   Settled and Suspended Material Distribution
   for 0% Gravel, 20% Sand, 80% Silt (0-2-8), with
                  LL = 40 and p' =0.1
Dimensionless Ambient Current, R = 0.1
Settled Material
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 800
T = 1600
T = 2400
T = 3200
H = 20
T = 400
T = 800
T = 1200
T = 1600
Xm
0
0
0
0
0
0
0
0




Xo
0
30
50
70
30
30
70
100




A
30
80
110
150
80
90
160
210




B
30
60
60
60
60
70
80
80




Suspended
t Xm Xo A
1.1E-5
1.3E-5
1.3E-5
1.3E-5 120 110 140
2.5E-6
2.5E-6 20 30 120
2.5E-6 100 100 140
2.5E-6 170 170 180




Material
B Cm



80 2.7E-6

100 4.1E-7
120 3.5E-7
120 3.1E-7




Diraensionless Ambient Current, R = 0.5
H = 5
T = 400
T = 800
T = 1200
T = 1600
H = 10
T = 800
T = 1600
T = 2400
T = 3200
H = 20
T = 800
T = 1600
T = 2400
T = 3200

60
60
60

760

760

920

920

100
170
240

400

400

480

520

180
330
480

800

800

840

920

60
60
60

120

120

120

120

1.8E-6
1.8E-6
1.8E-6

6.4E-7

6.4E-7

2.3E-7

2.4E-7












                          130

-------
                                  REFERENCES







1.    Koh, R.  C.  Y.  and Chang,  Y.  C.,  "Mathematical Model  for Barged Ocean



          Disposal  of Wastes," Environmental Protection Technology Series EPA



          660/2-73-029, December 1973, U.S.  EPA, Washington, D.C.







2.    Brandsma, M. G. and Divoky, D.  I., "Development of Models for Prediction



          of Short-Term Fate of Dredged Material Discharged in the Estuarine



          Environment,"  Contract Report D-76-5, U.S. Army Engineer Waterways



          Experiment Station, Vicksburg, MS, 1976.







3.    Bowers, G. and Goldenblatt, M., "Calibration of a Prediction Model for



          Instantaneously Discharged Dredged Material,"  EPA-660/3-78-089,



          September 1978, U.S. Environmental Protection Agency, Corvallis, OR.







4.   Department of  the  Interior, "Earth Manual,"  U.S. Government Printing



          Office, Washington, 1968.







5.   Gibbs,  R. J.,  Matthews,  M. D. and  Link, D. A.,  "The Relationship  Between



          Sphere Size  and Settling Velocity,"   Journal of  Sedimentary  Petro-



          logy, Vol. 41, No.  1, pp. 7-18, March 1971.







6.   Krishnappan, B. G., "Dispersion  of Granular  Material  in  Deep Water,"



          Canada Centre for  Inland Waters Hydraulics Division Project  3-IW-HY-



          019.
                                      131

-------
                                                      APPENDIX


                                                   COMPUTER  LISTING



                                            PROGRAM DMF ,AAau,31.31) »AA3(»AAM»
                                            1 KEYMAX
                                      C     COMMON A(l)                                                 C     CDC ONLY
                                      C     COMMON A(SET DIMENSION=NEED)                                      OTHERS
                           10          C     REWIND 7
                                            DIMENSION DEPTH(31.31>
                                            DIMENSION SUM(31.31).C(31.31).THICK(31,31)
                                            1, COUT(31»31).TOP(31.31).ACCOM(31,31)
                                      C
                           15          C
                                            READ(5.15>KEYMAX
                                            IF (KEYMAX.NE.1)60 TO  100
                                            NEED  * 0
                                            HEAD(5.15> NMAX.MMAX.NS.NVL.NSC
                           20                WRITE(6.36)  NMAX,MMAX.NS,NVL,NSC»NEED
                                          15 FORMATU6I5)
                                            GO TO 110
J",                                       100 CONTINUE
ro                                          REAO(5»15) NMAX.MMAX.IOEP
                           35                NS a  3
                                            NVL = 1
                                            NSC = 20
                                            NEED  = 0
                                         110 CONTINUE
                           30                CALL  MAIN(NMAX,MMAX«DEPTH.SUM»C.THICK.COUT.TOP.ACCUM,IDEP)
                                      C     NMAX-LONG TEHM ARRAY  DIMENSION IN Z-DIRECTION
                                      C     MMAX-LONG TEKM ARRAY  DIMENSION IN X-OIHECTION
                                      C     NS-NUMBER OF SOLID FRACTIONS
                                      C     NVL-NUM8ER OF VELOCITY PLANES
                           35          C     NSC-MAXIMUM  NUMBER OF SMALL CLOUDS ALLOWED
                                      C
                                      C     SET ARRAY POINTERS
                                      C     NSP1=NS»1
                                      C     LDIrtsNMAX«MMAX
                           40          C     Nl=l                                                              X
                                      C     N3=N1»LDIM                                                        Z
                                      C     N3=Na»LDIM                                                        DEPTH
                                      C     N4=N3*LDIM                                                        ICODE
                                                    MODEL  LISTING  (1  of 85)

-------
              PROGRAM
              DMF
            SO
GO
GJ
60
            70
            75
                                                                 CDC 6*00 FTN V3.0- BPA OPT=1  05/81/79  17.21.59,
                                                                                                            PAGE
C     N5=N4«LDIM                                                        CP
C     N6=N5»LDIM                                                        THICKP
C     N7=N6«LDIM                                                        TOPP
C     N8=N7»LDIM                                                        SUM
C     N9=N8+LOIM                                                        C
C     N10=N9«LOIM                                                       THICK
C     N11=N10«LDIM                                                      TOP
C     N12=N11»LDIM                                                      ACCUM
C     N13=N12»LDIM»NS                                                   U
C     N14=N13*LOIM«NVL                                                  W
C     N15=N14»LDIM«NVL                                                  SS
C     N16=N15»600*NS                                                    TSIDE
C     N17=N16»NSC                                                       TTHK
C     N18=N17»NSC                                                       TTOP
C     N19=N18»NSC                                                       TMASS
C     N20=N19»NSC                                                       TX
C     N21=N20»NSC                                                       TZ
C     NEED=N21»NSC
C
C     FIND PRESENT FIELD LENGTH. ADD LENGTH OF ARRAYS(NEED) AND REQUEST CDC ONLY
C     NEW FIELD-LENGTH                                                  CDC ONLY
C     LENF=MEHGET(658) « 1                                              CDC ONLY
c     NEWLEN=LENF*NEED                                                  CDC ONLY
   26 FOHMAT(/////10X»39HSTORAGE ALLOCATION PARAMETERS FOLLOW.../10X,
     1 4HNMAX,lX,4HMMAX,3X.2HNS»2X.3HNVLt2X,3HNSC»4Xf4HNEED/10X»I3f2X
     2. I3»4X.I2«1X.I3«2X.I3«2X»I6 )
C     CALL XRFL(NEWLEN)                                                 CDC ONLY
C
C     CALL MAIN(A(N1),A(N2).A(N3),A(N4),A(N5).A»A
-------
  SUBROUTINE  MAIN                                   CDC 6400 FTN V3.0- BPA OPT*1  05/21/79   17.21.59.      PAGE

                  SUBKOUT1NE MAIN(NMAXtMMAXfDEPTH.SUMfCfTHICKfCOUTtTOPfACCUMfIDEP)
            C     SUBROUTINE MAIN tCU(600)tCV(600)
                 It CM (600)fDENOIF(600)tBC(600)fAA(600)«FC(600)fVF
                  COMMON/FLEF/ I TO.TD(6)fDC<6)fCINIT.CSACK(1J).CTHACE1600)
15                COMMON/GPI/ GfPIfRB
                  COMMON/CHECK/TOTAL
                  COMMON/LOST/ GONE
                  COMMON/USEHDT/ K£Y4fDT1U.DT2U
                  COMMON/GP/IGCN.IGCLfIGLTfIPCNfIPCL.IPLT
20                COMMON/P/ PRT
                  COMMON/HA/AA1(4t3i.31)fAA2(4,31«31)»AA3(4»31»31)fAA4(4f31»31)f
                 1 KEYMAX
                  COMMON/ID/IDTL
                  COMMON/PIECES/ PARAM<13)fROAS(13)tCS(13)fVFALL(13)»VOIDS(13)tBVOID
25               If ICOHESU2) »VFALLC(13) , VFALSC (20t 13) t VFALLD (31. 31,13)
                  LOGICAL PRT
                  DIMENSION ID(8)fTPRT(12)
                  DIMENSION DEPTH<31t31)
                  DIMENSION ICODE(31,31)
30                DIMENSION SUMU1131) f C (31f 31) .THICK (31.31)
                 If COUT(31f31)»TOP(31.31)fACCUM(31f31)
                  DIMENSION U(31f31f2)«W(31f31f2)fSS(600fl2)
                  DIMENSION THICKP(31f31)»TOPP(31f31)fCP(31.31)
                  DIMENSION TSIDE(100)fTTHK(lOO).TTOP(IOO)fTMASSt100)fTX(100)
35               1 fTZ(lOO)«X(31«31>,Z(31t31)
            C
                  DATA G«PI /32.2f3.14159/                                          NON-ANSI
                  DATA  TPRT/12«0./                                                 NON-ANSI
                  DATA ITD/l/f(DC(I).I = lf6)/.lf.01».001..0001f.0000Ifl.E-30/        NON-ANSI
40          C
                  NPASSsNMAX
                  MPASS=MMAX
                  NSP1=NS+1
                                          MODEL LISTING (3 of 85)

-------
  SUBROUTINE  MAIN                                   CDC 6400 FTN V3.0- BPA OPT=1  05/21/79  17.21.59.      PAGE

                  CALL SECOND(Tl)
45                IF(KEYMAX.NE.1)GO TO 10
                  WRITE16.5)
                b FORMAT(1H1///10X.59HFATE OF DREDGED MATERIAL DEPOSITED IN AN ESTUA
                 1HY BY DUMPING  )
            C     READ EXECUTION MANAGEMENT PARAMETERS
50                REAO(5tl5) KEYl»KEY2tKEY3.KEY4
                  READ(5.15) IGCN.IGCL.IPCNtlPCLtIPLT.IDEP
               15 FORMATU6I5)
                  WRITE(6,35) KEYl.KEY2.KEY3.KEY4.IGCN.IGCL.IPCN,IPCL.IPLT• IDEP
               25 FORMAT(//10X«30HEXFCUTION PARAMETERS FOLLOW..,/lOXf60MKEY1  KEY2
55               1KEY3  KEY4  IGCN  IGCL  IPCN  IPCL  IPLT   IDEP  /7X.10I6)
                  GO TO 20
               10 CONTINUE
                  KEY1 = 1
                  KEY2 = 3
60                KEY3 = 0
                  KEY4 = 0
                  IGCN = 1
                  IGCL = 1
                  IPCN s 0
65                IPCL = 0
                  IPLT s 0
               20 CONTINUE
                  IDTL = 0
            C
70          C     READ ALPHAMERIC IDENTIFICATION FOR THIS HUN
                  READ(5t35>ID
               35 FORMAT(8A10)
                  WRITEI6.105)  ID
              105 FORMATUOX.8A10.//)
75          C
            C     DEFINE ESTUARY GEOMETRY AND ARRAYS GOVERNING LONG TERM COMPUTATION
                  CALL ESTGEOIDEPTH.ICODE.NMAX.MMAX.IDEP)
            C
            C     READ DUMP LOCATION COORDINATES AND DENSITY STRUCTURE ...
80          C     ...ALSO NUMBER OF VELOCITY LAYERS AND LOG PROFILE INDICATOR
                  CALL AMBC(DEPTH.NMAX.MMAX.IDEP)
            C
            C     READ TIME OF DUMPCW/R TO START OF TIDAL CYCLE)» DURATION OF
            C     SIMULATION. AND TIME STEP IN LONG TERM
85                READ<5»45> TDUMP.TSTOP.DTL
               45 FORMAT(SEIO.O)
                                           MODEL  LISTING  (4 of 85)

-------
   SUBROUTINE  MAIN                                   CDC 6400 FTN V3.0- BPA OPT»1  05/21/79  17.21.59.      PAGE

                   WRITE(6,125) TDUMP,TSTOP»DTL
               125 FORMAT=FLOAT(I)»OTP
                   IF(TPRT(4) .GT.  TSTOP) TPRT(4)=TSTOP
llu                GO TO 180
             C     HERE TO SET USER SPECIFIED PRINTING TIMES
               170 CONTINUE
                   READ(5«45)< TPRTII).I=1,IPLT)
             C
115          C     KEAD INITIAL VELOCITY FIELD
               180 CALL UW (O..U.W.NMAX.MMAX)
             C     CONVECTIVE DESCENT...
                   CALL DUMP
                   IND=NUTRL+IPLUNG
120                IF(KEY2 .EG. 1)  GO TO 800
                   IFUPLUNG .EO. 1) GO TO 250
             C     CHECK DENSITY GRADIENT AT CLOUD LOCATION
                   NN=NROA-1
                   DO 200 1=1,NN
125                IF(CYdSTEP) .GE. Yd) .AND. CYUSTEP)  .LE. Y(I*1)>  OENQKA =
                  1    «OAU«\)-ROA(I>
               200 CONTINUE
                   IF(DENGRA .GT. l.OE-10)  GO TO 250
                   WRITEI6.205)
                                             MODEL LISTING (5 of 85)

-------
   SUBROUTINE  MAIN                                   CDC 6400 FTN V3.0- BPA OPT=1  05/21/79  17.21.5V.      PAGE

130            205 FOWMATUH1,10X»56HOENSITY GRADIENT = 0. GO DIRECTLY TO LONG TERM 0
                  1IFFUSION )
             C     ....IF KEY2=2.TERMINATE COMPUTATION....
                   IF(KEY2 .EQ. 2) 800*250
             C     DYNAMIC COLLAPSE...
135            250 CALL COLAPS(SS.U.W,DEPTH.NS,NMAX,MMAX,NVL)
                   IF(KEY2 .EQ. 2) GO TO 800
             C
             C     LONG TERM DIFFUSION FOLLOWS	
             C     DETERMINE NUMBER OF COMPLETE TIDAL CYCLES AND FRACTION OF LAST
1*0          C     TIDAL CYCLE TO PUN
                   TSUM=(TDUMP»TSTOP)/3600.
                   NCYCLE=TSUM/25.».0001
                   XS=TDUMP*TSTOP-25.«3600.*FLOAT(NCYCLE)
                   IFtNCYCLE .EQ. 0)  NCYCLE=1
145          C     CLEAR SUM OF BOTTOM ACCUMULATION
                   DO 260 M=1,MMAX
                   DO 260 N=1,NMAX
               260 SUM(N,M)=0.
             C
ISO          C     LOOP ON COMPONENTS
                   TMAXT=0.
                   TMAX1 = 0.
                   DO 400 K=1.NSP1
                   GONE=0.
15b                ETS=0.
                   IDTL = 0
                   IF(K .EO. NSP1 .AND. KEY3 .Eti. 0) GO TO 400
                   IF(KEYMAX.NE.1)GO TO 600
                   WRITE(6,265)  PARAM(K)
160            600 CONTINUE
               265 FORMATUH1//10X.38HBEGIN LONG TERM SIMULATION OF FATE OF tA10>
             C     CLEAR ARRAYS
                   DO 270 M=1,MMAX
                   DO 270 N=1,NMAX
165                C(N«M)=CBACK(K)
                   THICK(NtM)=0.
                   TOP(NtM)=0.
                   ACCUM(N,M)=0.
               270 CONTINUE
170          C     DO BOOKKEEPING FOR MASS TRANSFER FROM SHORT TERM TO LONG TERM
                   CALL BOOKS(K,SS.TSlDE.TTHK,TTOP,TMASS.TX.TZ,NStDEPTH.ACCUM.U.*
                  1.  NMAX.MMAX.NSCtNVL)
                                             MODEL  LISTING  (6 of 85)

-------
           SUBWOUTINE  MAIN                                   CDC 6400 FTN V3.0- BPA OPT=1  05/21/79  17.21.59.      PAGE

                           INOPRT=1
                     C
         175                00 300 ICYCLE=1.NCYCLE
                           IFST=1
                           ILST*25.»3600./DTL * .0001
                           IFdCYCLE .EO. 1) IFSTsTDUMP/OTL * .0001
                           IFUFST .LT. 1) IFST = 1
         1BO                IFdCYCLE .EO. NCYCLE) ILST=XS/DTL » .0001
                           DO 300 IDTL2 = IFSTtlLST
                     C     ETS IS ELAPSED TIME FROM DUMP (IN SECONDS)
                           ETS=ETS*DTL
                     C     UPDATE VELOCITIES
         1«5                CALL UW(ETS»U»W»NMAX»MMAX)
                     C     SET PRINT INDICATOR PRT
                           PRT=.FALSE.
                           IF(ABS(ETS-TPRT(INOPRT))  .GT. .01) GO TO 280
                           PRT=.TRUE.
         190                INDPRT=INOPRT«1
                       280 CONTINUE
                     C     CALL ROUTINE TO MOVE AND DIFFUSE CLOUDS
                           CALL MAO
-------
    SUBHOUTINE   MAIN                                   CDC 6400 FTN V3.0- BPA OPT = 1   05/21/79   17.21.S9.       PAGE

                340 SUM(N.M)=SUM
-------
            SUBROUTINE  MAIN                                   CDC 6400 FTN V3.0- BPA OPT*1  05/31/79   17.31.59.      PAGE

                           WHITEI6.405)
        260            405 FORMAT
                           00 410 M=1,MMAX
                           DO 410 N=1,NMAX
                       410 COUT.ETS.b.I CODE>
                           C1*U.*BVOID)/AREA
                           00 440 M=1»MMAX
                           DO 440 N=1«NMAX
                       440 COUT(N«M)r  SUM  « .001
        295               WRITE(6»515)  IDL»TO(I>
                       515 FOHMAT(10X,12HOILUTION  IS »I6»13H TO  1 WITHIN .F10.3.19H SECONDS A
                           1FTEW DUMP  )
                       530 CONTINUE
                           WRITE(6»535)
        300           535 FOHMAT(//10Xt 54HDILUTION TIMES ARE  FOR POINT  OF  MAXIMUM CONCENTHA
                           1TION.  »
        305           800 CALL SECONDIT2)
                           T3=T2-T1
                           WRITE(6.805)T3
                       805 FORMAT(27H1RUN COMPLETED*  CPU TIME =  .F7.3.5H  SEC.)
                           RETURN
        310               END
                                                      MODEL LISTING (9 of 85)

-------
  SUBROUTINE  ESTGEO                                 CDC 6400 FTN V3.0- BPA OPT=1  05/31/79   17.31.59.       PAGE

                  SUBROUTINE ESTGEO (DEPTH. I CODE .NMAX* MM AX , IOEP)
            C     ROUTINE TO DEFINE ESTUARY GEOMETRY AND CODED ARRAY
                  COMMON/BAY/ OX ,OTL .XBARGE » £BARGE »DXH»DXRf ARE A
                  COMMON/GUIDE2/NINO.NL1NE < 150 > »MF < 150) tML ( 150 )
 1)                COMMON/HA/ AA1 (4»31»31) t AA2 (4.31 131 ) » A A3 (4 » 31 » 31 ) »AA4<4«31»31>»
                 1 KEYMAX
                  COMMON/ID/IDTL
                  DIMENSION f)EPTH(31,31)
                  DIMENSION ICODE(31,31)
10          C     READ GRID SPACE STEP
                  READI5.45) OX
               45 FORMAT (8E10.0)
                  IFfKEYMAX.NE. 1)60 TO 180
                  WRITE(6<65 )  NMAX,MMAX,DX
15                GO TO  181
              180 WRirE(6,190)DX
              190 FORMAT (/. 10X»20HGRID SPACING (DX)   = «F13.5)
              181 CONTINUE
               6b FORMAT ( 1 OX , 56HNUM8FH OF LONG TERM  GRID POINTS IN 2-DIKECTION   H
                  DO 210 M=1.MMAX
35                DO 210 N=1,NMAX
                  DEPTH(N,M) =H
              210 CONTINUE
              300 CONTINUE
            C     GENERATE CODED ARRAY
40                IWPT=0
                  DO 20 M=1.MMAX
                  DO 20 N=1,NMAX
                  ICODE (N,M) =1
                                              MODEL  LISTING  (10 of  85)

-------
  SUBROUTINE  ESTGEO                                 CDC 6400 FTN V3.0- BPA OPT«1  05/21/79  17.21.5V.      PAGE

                  IF«24> .EQ. NMAX> NCP=NCP-1
                  IN2 = 0
                  DO 130 IP=1.NCP
80                IN1=IN2*1
                  IN2=IN2+24
                  IF(NMAX .LT. IN2) IN?=NMAX
                  IF            260 CONTINUE
              117 FORMAT(2X.4HM N=.I?»24I5X)
                                            MODEL LISTING (11  of 85)

-------
          SUBROUTINE  ESTGEO                                 CDC 6400 FTN V3.0- BPA OPT=1  05/21/79  17.21.S9.      PAGE

                          DO 120 M=1,MMAX
                          IF(KEYMAX.NE.1)GO TO 270
                          WHITE<6»119) Mi(DEPTH(NfM)iN=INlfIN2)
        90            270 CONTINUE
                      119 FORMATUX.I2.1X.24F5.0)
                      120 CONTINUE
                          IF
-------
  SUBROUTINE  AMBC                                   CDC 6*00 UN V3.0- BPA OPT = 1  05/81/79  17.21.59.      PAGE

                  SUBHOUTINE AMRC(DEPTH»NMAX,MMAX,IDtP)
                  DIMENSION OEPTHU1.31)
                  COMMON/DIMEN/ NS.NSP1.NVL.NSC
                  COHMON/AMB/  NROA.IY.Y(10)iROA(10)»H
 5                COMMON/BAY/ DX,DTL.XBARGE.ZBARGE.OXH»DXR»AREA
                  COMMON/VSPECS/ IFOHM,DUl»DU2»UUl,UU2»DWl»OW2.WWl»WW2tDLl»DL2
                  COMMON/HA/AA1(4,31,31) »AA2<4,31,31> »AA3(4,31«31> »AA4(4,31,31> »
                 1 KEYMAX
            c
10          C     HEAD X AND Z COORDINATES (W/R TO LONG TERM GRID.  IN FEET) OF
            C     BARGE POSITION
                  REAO(StS) XBARGE»ZBARGE
                5 FORMAT(BEIO.O)
              510 CONTINUE
15          C     ....READ NUMBER OF POINTS WHERE  AMBIENT DENSITY SPECIFIED....
                  READ<5,15) NROA
               15 FOHMATU6I5)
            C     ....HEAD VERTICAL DISTANCES FROM FREE SURFACE WHEHE DENSITY SPECIFIED....
                  REAUC5, 5) ,!=J,JJ)
               55 FORMAT(9X.7HAMBIENT/9X,15HDENSITY (GM/CC)»5X,8G12.4)
               60 CONTINUE
            C
40          C     ....CONVERT AMBIENT DENSITY FROM UNITS OF GM/CC TO SLUGS/CUFT...
                  DO 70 1=1,NROA
               70 ROA(I)=ROA(I)«1.94
            C     SET H EQUAL TO DEPTH INTERPOLATED FROM FOUR GRID POINTS SURROUNDING BARGE
                                           MODEL  LISTING  (13 of 85)

-------
  SUBROUTINE  AM9C                                   CDC 6400 FTN V3.0- BPA OPT = 1  05/21/79  17.21.59.      PAGE

                  CALL DINT(X8ARGE»28ARGE»H»DEPTH»NMAX»MMAX)
45                WRITE(6»75)  H
               75 FORMAT
-------
            SUBROUTINE  DUMP                                   CDC 6400 FTN V3.0- BPA OPT«1   05/21/79  17.21.59.       PAGE

                            SUBROUTINE  DUMP(SS.U.W,DEPTH,NS,NMAX»MMAX.NVL>
                      C     THREE-DIMENSIONAL AXI-SYMMETKIC INSTANTANEOUS RELEASE OF  ENTIRE
                      C     LOAD FROM BARGE
                      C
           5                EXTERNAL  OERIVO
                            DIMENSION DEPTH(31,31)
                            COMMON/AMB/  NROA.IY.Y(10)tROA(lO)»H
                            COMMON/CLOUD/T(600)fCX(600),CY(600),CZ(600>.CU(600),CV<600)
                           It  CW(600)fOENDlF(600)fRC<600)«AA(600>»FC(60Q)»VF
          10                COMMON/PIECES/ PARAM(13).ROAS(13)«CS(13).VFALL(13).VOIDS(1J)»HVOID
                           l«ICOHESU2)tVFALLC<13>tVFALSC<20»13),VFALLD(31.31»13>
                            COMMON/GUIDE I/ TOUMP.TSTOPtI STEP.IPLUNG.NUTRL.NTRIAL»I LEAVE*
                           1 KEY1.KEY2.KEY3
                            COMMON/GPI/ G.PItRR
          15                COMMON/STCOEF/ ALPHA,ALPHAO,ALPHACtBETA,CORAG.CFR1C»CD,CD1»CD2
                           1«  C03,CD4,CM,DINCR1»OINCH2,FRICTN,GAMA,F1
                            COMMON/LTCOF/ ALAMOA»DIFtAKYO
                            COMMON/DTEFS/ DT»DTltOT2
                            COMMON/COL/ AO.IBEOtFBED
          20                COMMON/SWITCH/ ITF
                            COMMON/GP/IGCN.IGCL»IGLTfIPCN.IPCL»IPLT
                            COMMON/USEROT/ KEY4.DT1U.DT?U
js.                          COMMON/FLEE/ ITDfTD(6)fOC(61«CINITtCBACK(13)fCTRACE(600)
cn                          COMMON/COMP1/ E(22l
          25                COMMON/BAY/ OXtDTLfXBARGEf£BARGEtDXH»DXR»AREA
                            COMMON/HA/AAl(4t31t31)»AA2U»31.31)«AA3(4.31f31)»AA4(4•31f31> «
                           1 KEYMAX
                            DIMENSION VORT(600).ACONC(12)»SAVE(?2>
                            DIMENSION U(3U31t2)fW(31«31*2) »SS(600il2)
          30                REAL MLL*LLIM
                      C
                            NTR1AL=0
                            KV = 1
                            IBED=0
          3S                ILEAVE=999
                            NSP1=NS»1
                      C
                      c     ....HERE  TO SET INITIAL CONDITIONS....
                            READ(5,25)  RB.DREL.CU(1).CV(1).CW(1)»HOO.BVOIO,LLIM,SGAVE
          40                WRITE(6»125)RB,DHEL»CU(1)tCV(l)«CW(1>.ROO.BVOID^LLIM.SGAVE
                        125    FORMAT(//10X.23HDISCHARGF PARAMETERS.../10X.30HINITIAL RADIUS 0
                           IF CLOUOt  RR » ,G15.7/10Xt40HINITIAL DEPTH OF CLOUD CENTROIU*  DHEL
                           2= .G12.4/10X.35HINITIAL CLOUO VELOCITIES...CU(1) « ,612.4,3X,
                                                     MODEL LISTING (15 of 85)

-------
  SUBROUTINE  DUMP                                   CDC 6400 FTN V3.0- 8PA OPT = 1   05/31/79   17.31.59.       MAGE

                 3 BHCVU) =  »G12.4,3X.8HCW<1) =  .G12.4//10X,18HBULK PARAMETERS.../
45               4 10X»15HDENSITY. ROD =  «G15.7/10X»31HAGGP-EGATE VOIDS RATIOt BVOID
                 5=  .G12.4./10X,15HLIQUID LIMIT = .G12.4,/10X.27HA»/ERAGE SPECIFIC GR
                 6AVITY = .613.4)
                  WRITE<6«135)NS
              135    FORMATC//10X.10HTHERE ARE «I2»34H SOLIDS.  PARAMETERS FOLLOW...
50               1....//10X.90HDESCRIPTION  DENSITY(GM/CC)  CONCENTRATION(CUFT/CUFT)
                 3   FALL VELOCITY(FT/SEC)   VOIDS RATIO  /)
                  IFfKEYMAX.£0.1)60 TO 310
                  DO 300 KJ=ltNS
                  PEAD(5»35)PARAM(KJ).POAS(KJ),CS(KJ).VFALL(KJ)«VOIDS(KJ).ICOHES(KJ)
5b                ROAS(KJ) = SGAVE
              300 CONTINUE
                  GO TO 330
              310 CONTINUE
                  DO 150 K=1,NS
60                READ(5.35) PARAM(K),POAS(K),CS(K).VFALL(K).VOIDS(K).ICOHES(K)
              35  FORMATIA10.4E10.0.I5)
              150 CONTINUE
              330 CONTINUE
                  DO 151 KK*1.NS
65                WRITE(6.145) PARAM(KK),ROAS(KK),CS(KK),VFALL(KK)»VOIDS(KK)
              U5 FOHMAT(llX»A10.3XtG12.4»9XtG12.4,15X.G12.4t 5X,613.4)
              151 CONTINUE
            C     READ INFO FOR DILUTION OF CHEMICAL TRACER
                  READ(5»192)PARAM(NSP1) .C IMT .CBACK (NSP1 )
70            193 FORMATIA10.3E10.0)
            C     CHANGE TRACER CONCENTRATION FROM MG/L TO MG/(CU FT)
                  CBACK(NSP1)=CBACK«»3/3.
80                CIVS=CIV
                  CIM=ROO»CIV
                  DO 170 Kr^l.NS
            C     SET SOLIDS 9ACKGROUND TO BE ZERO
            C     PROGRAM CAN NOT HANDLE NON-ZERO SOLIDS BACKGROUND
85                C8ACK(K)=0.0
                  SV=CS(K)«CIVS
                                             MODEL LISTING  (16  of 85)

-------
   SUBROUTINE  DUMP                                   CDC 6400 FTN V3.0- BPA OPT = 1  05/21/79  17.21.59.      PAGE

                   SM=SV*ROAS(K>
                   CS(NSP1)=CS(NSP1)  - C5(K)
                   CIV=CIV-SV
 90                C1M=CIM-SM
               170 CONTINUE
                   FD=CIM/CIV
                   WHITE(6.145)  FLUID»FD»CS.VFALL(NSP1)
                   IFIFD .GE. .97)  GO TO 190
 95                WRITE<6,185)
               185 FORMAT/(SGAVE«(1.-CS(NSP1)))
                   MLL=PCM/LLIM
1U5                IF(MLL.GT.2.9)  GO TO 850
                   1FIMLL.LT.1.43)  GO TO 820
                   ALFANO=-0.0021eS^IMLL*"*1*0.0440555*(MLL««3)-.3119«(MLL*«2)
                  1+.91839«(MLL)-.67273
                   GO TO 900
110            820 IF(MLL.LE.1.22)  GO TO 840
                   ALFANO=.58286*(MLL-1.22)
                    GO TO  900
               840  ALFANO=0.001
                   GO TO 900
lib            B50 ALFANO  = 0.285*0.00493*(MLL-2.9)
               900 CONTINUE
                   IF(KEYMAX.NE.1)GO TO 324
                   V(RITE(6«965)  PCM,MLLtALFANO
               324 CONTINUE
120            965 FORMAT(//10X,27HPEHCfNT MOISTURE CONTENT = .Fl 0.4 , 1H»»F10.4,
                  123H     TIMES LIQUID LIMIT,/10X,37MCALCULATED ENTRAINMENT COEFFICI
                  2ENT = ,F10.6)
                   CDNEW=0.7-0.5«TANH(3.2*(MLL-1.875))
                    CMNEW=1.075-0.675*(TANH(3.2»
-------
    SUBROUTINE:  DUMP                                   coc 6*00 FTN vj.o- BPA OPT=I  05/21/79  17.21.59.      PAGE

 130            330 CONTINUE
                65 FORMAT
                75 FORMAT 
-------
   SUBROUTINE  DUMP                                   CDC  6400  FTN V3.0-  BPA  OPT*1   05/21/79  17.Z1.59.       PAGE

                95 FORMAT < 10X( 6HAI_PHAO»MO.*»5H BETA.F10.4»3H CM.F10.4.3M CD.F10.4)
                   WRITE (6* 105)   GAMA«CDRAG»CFRlC.C03tC04»ALPHACtFHICTN»Fl
175            105 FORMAT U OX. 4HGAMA.5X *F5.2f 3X.5HCORAG*2X,F5.2.3X.5HCFHIC» 1X.F5.3.
                  I 2Xt 3MC03«2XtF5.2»lX»3HCD4*lX.F5.2*lX«6HALPHAC»f 10.4/10X»6HFKICTN»
                  2  F10.4.1X.2HF1»F10.4 )
                   WRITE (6,1 15) ALAMOA.AKYO
               115 FORMAT (10X»6HALAMDAfF 10. 4» IX. 4HAKYO.F1 0.4/1
180            3bO CONTINUE
             C     ....SAVE AMBIENT DENSITY AT Yd)....
                   ROAA*ROA<1>
                   Cl*
                   EE1*E1«R8/C1
             C     TOTAL NUMBER  OF EQUATIONS
             C     LONG TERM DIFFUSION PARAMETER
190          C    THE HORIZONTAL SCALE OF THE AMBIENT DIFFUSION PHENOMENON
                  HAS BEEN SET AT 30 FT IN THIS MODEL SO AS TO BE INDEPENDENT
                  OF OHIO SPACING.  THE ORIGINAL VERSION  HAD A DX IN PLACE
             C     OF THE 30. IN THE FOLLOWING STATEMENT
                   D1F«ALAMDA»30.»»1 ,333333*DTL/DX»«2
195                IF(DIF .GT. .2) DIF*.2
             C     ....END OF INITIAL CONDITIONS....
             C
             C     ....SELECT TIME STEP FOR INTEGHAT IONS. . . .
                   IF(ROA(NROA)  .NE. ROA < 1 ) )  GO TO 230
ZOO                IF(CVd) .NE. 0.) GO TO 220
             210   ACEL«32.21*(ROO-ROA(1))/(ROO»0.5«ROA(1)>
                   DT»«2.)
                   IF(DT-DTl) 250*240*240
               240 OT *DU
             C
             C     ....INITIAL POSITION OF CLOUD CENTROID  (W/R TO BARGE)
215            250 EQIsO.
                                             MODEL LISTING (19 of  85)

-------
   SUBROUTINE  DUMP                                   COC 6400 FTN V3.0- BPA OPT=1  05/21/79  17.21.59.      PAGE

                   E(2I=OREL
                   E<3)=0.
             C     ....INITIAL MASS OF CLOUD....
                   VOLUME=2.»PI «RB«»3/3.
220                E(4)=ROO«VOLUME
             C     ....INITIAL MOMENTA....
                   CMMASS=CM»E(4)
                   E(5)=CMMASS«CU(1)
                   E(6)=CMMASS»CV<1>
225                E(7)=CMMASS«CW(1)
             C     ....INITIAL BUOYANCY....
                   E(8)=(HOA(1)-ROD)»VOLUME
             C     ....INITIAL VOWTICITY..,.
                   E(9)=RB*CV(1)«FLOATCKV)
230          C     ....SUBTRACT VOLUME OF VARIOUS SOLID COMPONENTS FROM TOTAL WASTE
             C         VOLUME. VF, AND PLACE IN  E  ARRAY.  REMAINDER IN  VF  IS
             C         VOLUME OF FLUID WASTE....
                   VF=VOUUME
                   DO 260 K=1,NS
23b                E(K«9)=CS(K)»VOLUME
               260 VF = VF-E(K»9)
                   DO 270 1 = 1,NE
               270 SAVE(I)=F
-------
          SUBROUTINE  DUMP                                   coc 6400 FTN V3.0- BPA OPT«1  05/21/79  17.21.59.      PAGE

                          NUTHL«0
       260                IPLUNG'O
                          DO 410 1*1, NE
                      410 E(I>«SAVE
                    C
                    C     ....HERE TO BEGIN COMPUTATIONAL LOOP IN TIME....
       265          C     ....STORE RESULTS FROM INITIAL CONDITIONS OR PREVIOUS COMPUTATION
                    C         IN APPROPRIATE ARRAYS....
                      420 CX(ISTEP)*E(1)
                          CY(ISTEP)=E<2)
                          CZ
                    C     BCaDIAMETER OF CLOUD
—i                         AA(ISTEP)*(1.5*VOLUME/PI)««.333333
      280                BCUSTEP)=2.«AAUSTEP>
                    C     SS IS SOLID CONCENTRATION IN VOLUME RATIO
                          DO 430 K=1,NS
                      430 SSUSTEP»K)=E(K*9)/VOLUME
                    C     FLUID CONCENTRATION
       285                FCt ISTEP) aVF/VOLUMf.
                          VlNIT*2.»PI«WB«»3/3.
                          CTRACE< ISTEP) = (CINIT«VINIT«(VOLUME-VINIT)«C8ACK(NSP1»)/VOLUME
                          DR«CTRACE(ISTEP)/CINIT
                          IF(DR  ,GT.  OC(ITD)) GO TO 460
       290                TO(ITO)=TUSTEP>
                          ITO*ITD»1
                      460 CONTINUE
                    C     NEW OVERALL DENSITY OF WASTE CLOUD
                          ROO=E(4)/VOLUME
       295          C     INTERPOLATE FOR AMRtlENT DENSITY AT VERTICAL POSITION  E(2)
                          ROAA=ROA(IY) *(F.(2)-Y(IY) ) « (ROA (IY* 1) -ROA (IY) )/(Y(IY»l)-Y(IY))
                    C     CONVERT DENSITY DIFFERENCE BACK TO GM/CC AND STOHE IN  DENDIF
                          DENDIFIISTEP)=(ROO-ROAA)«.51545
                    C     TEST FOR BOTTOM ENCOUNTER
       300                IF((CY(ISTEP)*3.«AA(ISTEP)/B.> .GE. H) IPLUNG=1
                    C     TEST FOR LOOP EXIT
                                                     MODEL LISTING  (21  of 85)

-------
            SUBROUTINE  DUMP                                   CDC 6400 FTN V3.0- BPA OPT=1  05/21/79  17.21.59.      PAGE

                            IFUPLUNG .EO. 1) GO TO 500
                            IFINUTRL .EO. 1)  GO TO 500
                            IFUSTEP .GE. 600) GO TO 500
         305          C     SOLVE EQUATION SET FOR NEXT TIME STEP
                            CALL RUNGS(OERIVD»NE»U,W,DEPTH,NMAX,MMAX,NVL)
                            ISTEP=ISTEP*1
                            T(ISTEP)=T(ISTEP-1)*DT
                            GO TO 420
         310          C     ....END OF LOOP IN TIME....
                      C
                        500 IF(KEYMAX.NE.1)GO TO 502
                      C     PRINT OUT VARIABLES GUIDING JUST COMPLETED SOLUTION TRIAL
                            WRITE<6»505) NTRIAL»DT,IPLUNG.NUTRL,ISTEP
         315            505 FORMAT! 9X,I5,G16.8,2X,316)
                        502 CONTINUE
                      C     ITF SAVES LAST TIME STEP OF DESCENT PHASE
                            ITF=ISTEP
                      C     TEST FOR PROPER NUMBER OF TIME STEPS IN CONVECTIVE CALCULATIONS
         320                IFUSTEP .LT. 100 .OR. ISTEP .GT. 200)510.520
                        510 DT = DT«FLOATUSTEP) »DINCR/150.
_,                    C     IF FIFTH TRIAL COMPLETED, GO TO OUTPUT SECTION, IF NOT RETURN FOR
tn                    C     NEXT TRIAL
w                          IF=2.«PI  «AA(J)««3«SS(J,K )/3.
         340                WRITE(6,535) T(J),CX(J),CY(J),CZ(J),CU(J)»CV(J)»CH(J) ,DENt)IF(J)
                           1,AA(J),  BC(J),   VORT(J),FC(J),ACONC(1),SS(J,1)
                        535 FORMAT! 4X,4F8.2,F6.2,F7,3,F6.2,E12.4.2F7.2,1X.F7.4.3E12.4)
                            IF(NS .EO. 1) GO TO 560
                            DO 540 K=2,NS
                                                     Model listing  (22  of 85)

-------
            SUBROUTINE   DUMP                                   C0c  6400 FTN  V3.0- 8PA OPT*1   05/21/79   17.Z1.59.       PAGE

         345            540 WRITE<6,545>  ACONC,SS(J.K)
                        545 FOHMATU01Xt2E12.4)
                        560 CONTINUE
                        600 IF(IGCN.EO.O) GO  TO 700
                     C     ....HERE FOR  GRAPHING...,
         350               ISTEP1«ISTEP*1
                           T
                           CX(IST£Pn*2.«CMISTEP)-CXtISTEP-l>
                           CZ(ISTEP1)=2.»CZUSTEP)-CZ*0.
         355               AA(ISTEP1)=0.
                           CTRACEUSTEP1)«0.0
                           CALL DRAW*0.
                           NG=4
                           IF
                           IFINS ,LE. 4) GO  TO 700
77!       365               NG=4
4Si                         JF(NS ,LT. 8) NG=NS-4
                           CALL DRAW(T.T.TtTiSS(1.5).SSIIt6),SSI1»7)»SS(1.8).ISTEP1.4.NG>
                           IF(NS ,LE. 8> GO  TO 700
                           NG=4
         370               IF(NS .LT. 1Z) NG=NS-8
                           CALL D«AW(T,T.T.T,SS(1.9).SS(1.10).SS(1111)»SS11.12)tlSTEPl  .7.NG)
                        700 CONTINUE
                     C
                     C     ....SHIFT DATA TO PREPARE FOR  COLLAPSE  PHASE....
         375               DTlsDT
                           DO 730  K=1,NS
                           I=NS-K
                        730 E(I»11)=E(I«10)
                           E<9)=AA(ISTEP)
         360               AOaAA(ISTEP)
                           IFdPLUNG .EO.  1) GO  TO  720
                           E(10)=0.
                           RETURN
                     C     ....HERE IF CLOUD HAS HIT BOTTOM....
         3B5            720 E(10)=ROO«PI  «E(9)««3«(2.666666«CV(ISTEP))/32.
                           IBED=ISTEP
                           RETURN
                           END
                                                   MODEL LISTING  (23 of 85)

-------
  SUBROUTINE  MAD                                    CDC 6400 FTN V3.0- BPA OPT=1  05/Z1/79  16.53.32.      PAGE

                  SUBROUTINE MAD(K»ETS»X.Z»U»W»C.THICK*TOP.DEPTHtACCUM»CP»THICKP»
                 1 TOPP»COUT.ICOOE»TSIDE»TTMK.TTOP»TMASS»TX»TZtNMAX,MMAX)
            C     ROUTINE TO COMPUTE MOVEMENT AND DIFFUSION
                  DIMENSION OEPTH(31,31)
 5                DIMENSION U(31,31,2).W<31»31,2)
                  DIMENSION ICOnE(31,31)
                  DIMENSION C(31,31).THICK(31,31).TOP(31.31)
                 l.ACCUMt31,31),CP<31,31)
                 2, TOPP (31,31) tCOUTOl t31) ,TMASS(100) .TSIDE(IOO) »TTOP (100) »
10               3TXU001 tTZ< 100) tTTHM 100) tTHICKP(31.31 >
                 4, X(31,31),2(31.31)
                  COMMON/GUIDE2/NIND,NLINEI150)tMFU50).ML(150)
                  COMMON/BAY/ OX,DTL,XBARGE»ZBARGE»DXH»DXR,AREA
                  COMMON/DIMEN/  NS.NSP1.NVL.NSC
15                COMMON/HA/AA1(4,31,31),AA2(4,31,31),AA3(4,31»31)•AA4(4,31,31)t
                 1 KEYMAX
                  COMMON/NVIDTL
                  COMMON/PIECES/ PARAMIIS) »ROAS
-------
  SUBROUTINE  MAO                                    CDC 6400 FTN V3.0-  BPA OPT-1   06/21/79  16.S3.3Z.       PAGE

                  CMAX'O.
*5                1*0
                  B«0.
                  A«0.
                  DO 20 Msl.MMAX
                  00 20 N«1,NMAX
50                IFUHICMN.M)  ,EQ. 0.)  GO TO 18
                  A»A*THICMN»Ml
                  B»B+TOP(N,M)
                  l«I«l
            IS    CONTINUE
55                CMAX«AMAX1(CMAX»C
75                DO 300 MST=MFST»MLST
                  IF( ICODE(NST,MST) .GT.l) GO TO 200
            C     NST AND MST ARE INDEX OF GRID POINT X(NST.MST)  AND Z
-------
             SUBROUTINE  MAD                                    CDC 6400 FTN V3.0- BPA OPT=1  05/31/79   16.53.32.      PAGE

                             CP(N,M)=CBACK(K)
                             THICKP(N.M>=0.
                         330 TOPP(N,M)=0.
           90          C
                       C     COMPUTE NEW CONCENTRATIONS FOR ALL POINTS IN BAY
                             CM = 0.
                             DO 510 NUM=liNIND
                             NST=NLINE(NUM)
           95                MFST=MF(NUM)
                             MLST=ML(NUM)
                             DO 510 MST=MFST.MLST
                             ZN=Z
                             CALL AVE5PT(N«1,M  ,C3.TH2.T2.ISUM.1,C.THICK,TOP»ICODE.NMAXf
                            1MMAX,DEPTH(N+1,M),K)
                             CALL AVE5PT(N+l.M+l,C3.TH3.T3»ISUM.2.C»THICK.TOP«ICODE»NMAX»
                            1MMAX.DEPTH(N»1,M*1),K)
          115                CALL AVE5PT(N   .M»l.C*»TH4»T4«ISUM*3tC»THICK»TOP»ICODE.NMAX.
                            1MMAX,DEPTH(N,M*1).K)
                             CP(NST»MST)=C8ACK(Kt
                             THICKP(NST,MST)=0.
                             TOPP(NST»MST)=0.
          120                TN=AMAX1
-------
             SUBROUTINE  MAO                                    CDC 6400 FTN V3.0- BPA OPT=1  05/21/T9  16.53.33.      PAGE
          130                TOPP(NST»MST)sTl
                             GO TO 500
                         402 CP(NST,MST)«C2
                             TOPP(NST,MST)=T2
                             GO TO 500
          135            404 CP(NST»MST)=C3
                             TOPP(NST,MST)=T3
                             GO TO 500
                         408 CP(NST.MST)»C4
                             TOPP(NST.MST)«T4
          140                GO TO 500
                         403 CP(NST.MST)*(C2-C1)»EN»C1
                             TOPP(NST.MST)a(T2-Tl)«EN»Tl
                             IF(T1 .LT. Q .OR. T2 .LT. Q)  TOPCNSTtMST)*AMAX1«EM+C2
—'         150                TOPP(NST»MST)s(T3-T2)«EM«T2
OD                            IF(T2 .LT. Q ,0f». T3 .LT. Q)TOPP(NST.MST)»AMAX1(T2»T3)
                             GO TO 500
                         409 CP(NST»MST)=(C4-C1I«FM»C1
                             TOPP(NST»MST)=(T4-Tl)«fM«Tl
          155                IFU1 .LT. 0 .OR. T4 .LT. 0) TOPP (NSTiMST) =AMAX1 (T 1 *T4>
                             GO TO 500
                         405 IF (EN«EM-.25)  401,421,404
                         421 CP(NST,MST)=.5«(C1+C3)
                             TOPP(NST»MST)=.5«(T1»T3)
          160                1F(T1 .LT. Q .OR. T3 .LT. Q)TOPPTOPP(NST,MST)»AMAX1(T2,T4)
                             GO TO 500
                         407 AO=EN1«EM
                             IF (AD .EQ. 0.0) (iO TO 402
                             CP(NST,MST)=(EN1«((C2-C1)«EN«C1)»EM»((C3-C2)«EM«C2))/AO
          170                TOP1*(T2-T1)«EN»T1
                             IFIT1 .LT. 0 .OR. T2 .LT. Q)TOP1=AMAX1(Tl,T2)
                             TOP2=(T3-T2)«EM«T2
                                                     MODEL  LISTING  (27 of  85)

-------
   SUBROUTINE  MAO                                    CDC 6400 FTN V3.0- BPA OPT*1   05/21/79   16.53.32.       PAGE

                   IMT2 .LT. 0 .OR. T3 .LT. Q)TOP2=AMAX1
                   TOPP (NST.MST) = (ENHTOP1 »£M«TOP2) /AD
17b                IFUOP1 .LT. 0 .OR. TOP2 .LT. 0)TOPP(NST,MST>=AMAX1(TOPI.TOP2)
                   GO TO 500
               411 AD= EN*EM
                   IF (AD .EO. 0.0) GO TO 401
                   CP(NST.MST)=»EM
                   TOP2=(T4-T1)«EM«T1
                   IFIT1 .LT. 0 .OR. T4 .LT. 0)TOP2=AMAX1(Tl»T4)
                   TOPP(NST.MST)=/AO
IHS                IF(TOP1 .LT. Q .OR. TOP2 .LT. Q)TOPP(NST.MST)=AMAX1(TOPI.TOR.2)
                   GO TO 500
               413 AD=EN+EM1
                   IF (AD .EO. 0.0) GO TO 408
                   CP(NST.MST) = =(EN1»((C3-C4)«EN*C4)»EM1«((C3-C2)»EM»C2))/AD
200                TOP1=(T3-T4)«EN«T4
                   IF(T3 .LT. Q .OS. T4 .LT. 0)TOP1=AMAX1(T3»T4)
                   TOP2=(T3-T?)«EM»T2
                   IF(T2 .LT. 0 .OH. T3 .LT. 0)TOP?=AMAX1(T2.T3)
                   TOPP(NST,MST)=(EN1»TOP1+EM1«TOP2)/AD
205                IFUOPJ ,LT. 0 .0«. TOP2 .LT. 0> TOPP (NSTfMST) =AHAX1 (TOP] ,TOP2)
                   GO TO 500
               415 CONE=(C2-C1>»F.N»C1
                   CTWO=(C3-C4)«EN*C4
                   CP
                   TOP2=(T3-T4)«EN»T4
                   IF(T3 .LT. Q .OR. T4 .LT. GU TOP2=AMAX1(T3»T4)
                   TOPP(NST,MST) = (TOPa-TOP 1)*tM»TOPl
215                IF(EM .LT. .0001) GO TO 500
                                            MODEL  LISTING  (28 of 85)

-------
             SUBROUTINE  MAO
                                         CDC  6400 FTN V3.0- BPA OPT = 1   05/21/79  16.53.32.
                                                                                                                       PAGE
CM
O
          230
          225
          230
          235
          240
          2*5
          250
          255
      IF'THICK(NSTtMST)•
     1 AREA»CBACK(K)«(DEPTHJNST»MST)-THIC1<(NST»MST))»AREA
      C(NST»MST)    =CP
-------
            SUBROUTINE  MAD                                    CDC 6400 FTN V3.0- BPA OPT = 1  Ob/21/79  16,53.32.      PAGE

                           1AREA»CBACK(K)«(DEPTH(NST.MST)-THICK(NST,MST))"AREA
         260          C      DTOP ESTIMATES  VARIATION OF CLOUD DEPTH DUE TO CONVECTION OVEH
                      C      VARIABLE  DEPTHS
                            CALL DINT(X(NST»MST),Z(NST,MST)»DO1.DEPTH.NMAX.MMAX)
                            DTOP=(001-DEPTH(NST,MST))«TOP(NST,MST)/DD1
                        550 TOP(NST,MST)=TOPP(NST»MST>-DTOP
         265                GONE=GONE«C1-C?
                            IF( (CMAX-CRACK(K))  .LT.  l.E-20)  60 TO 55b
                      C      ADD MASS  LOST  RV DIFFUSION LIMITING
                            C
         275                MLST=ML(NUM)
                            DO  680  MST=MFST»MLST
                            1F  .F.O. 0)  GO  TO 610
cn                          IF(C(NST,MST)  ,LE.  0.0000096)  VFALLD(NST.MsT»K)=0.0017
—'       280                IF(C(NST,MST)  .GT.  0.0000096 .AND.  C(NST.MST)  .LE. 0.000115)
                           1VFALLD(NST,MST»K)=(,00713s(C(NST,MST)*2600000.)»»1.33333)/304.8
                            IF=0.0f7
                        610 DIST=VFALLD(NST.MST,K)»DTL
                            IF( (C(NST.MST)-CBACK(K)) .EQ.  0.  .OR. ICODE(NST,MST)  .GT.  1)  GO
         285               1TO  680
                        611 XS=OEPTH(NST,MST)-TOP(NST,MST)-THICK(NST,MST)
                            IF(XS .GE, DIST)  SO  TO 6*0
                            IF
-------
   SUBROUTINE  MAO                                    CDC 6400 FTN V3.0- SPA OPT*1  05/31/79  16.53.32.      PAGE

                   C(NST,MST)=CBACK(K)
                   TOP
                   THICK(NST.MST)sO.
305                GO TO 680
               640 CONTINUE
                   TOP)  .GT. DEPTH (NST.MSTM
                  1 TOP
                   DONK=2.0*SQRT(DCO«DTL/10.0>
                   OBOT=OBOT«OONK
                   IF
-------
   SUBROUTINE  MAD                                    CDC 6400 FTN V3.0- BPA OPT=1  05/21/79  16.53.32.      PAGE

345                MFST=MF(NUM)
                   MLST=ML(NUM)
                   DO 696 MST=MFST.MLST
                   IF(CINST.MST) .LT. CMAX2) GO TO 696
                   CMAA2=C(NST,MST)
350                NSTSV=NST
                   MSTSV=MST
               696 CONTINUE
                   IF( (CMAX2-CBACKJK)) ,LE. l.E-30) GO TO 698
                   DR=CMAX2/CINIT
355                IF(OR .GT. DC(ITD)) GO TO 698
                   TD(ITD)=ETS
                   ITD=ITD»1
               698 CONTINUE
             C     CHECK FOR MASS CONSERVATION
360            699 TNOWMsO.
                   TACCUM=0.
                   GMASS=0.0
                   DO 704 NUM=1,NIND
                   NST=NLINE(NUM>
365                MFST=MF(NUM)
                   MLST=ML(NUM)
                   DO 704 MST=MFST.MLST
                   TACCUM=TACCUM»ACCUM(NST.MST>
                   GMASS=GMASS»CBACK(K)»DEPTH(NST,MST)»AREA
370                IF(THICKtNST.MST) .EG. 0.0 .AND. ICODE(NST.MST) .NE. 2) TNORM=
                  1TNORM*CBACK(K)«AREA«DEPTH14.5
                  2/5X.46HSUSPENDED MATERIAL IN LONG TERM G«IO (CUFT)  = .614.5
                  3/5X.44HSUSPENDED MATERIAL IN SMALL CLOUDS (CUFT) = .614.b
                                             MODEL LISTING (32  of 85)

-------
    SUBROUTINE  MAD                                    CDC 6400 FTN V3.0- BPA OPT«1  05/21/79  16.53.32.      PAGE     10

                  4/5Xt42HTOTAL MATERIAL SETTLED TO BOTTOM (CUFT) « «G14.5
                  5//SXt55HOUTPUT SUPPRESSED IN LOCATIONS WITH NO MATERIAL PRESENT »
390                IF .GT. 1.) MRITE(6t715) GONE
               910 CONTINUE
               715 FOHMATI/10X.G12.5.72H CUFT OF MATERIAL (CUMULATIVE) LOST BY PA5SIN
                  16 THROUGH GRID BOUNDARIES   >
395                IF(.NOT.PRT) RETURN
                   IDTL « IDTL « 1
             C
             C
             C     PRINT RESULTS IF REQUESTED BY INPUT DATA
400                IF(TNORM .LT. l.OE-06) GO TO 725                                         C
               719 CONTINUE
                   DO 720 M«1,MMAX
                   DO 720 N>ltNMAX
               900 FORMAT(//»7HVFALLD«»F14.6)
405                COUT(N,M)«C(N,M)-C8ACK(K)
                   AA1(IDTL»N»M) = AA1(IDTL«N»M) t C (N,M)-CBACK (K)
               720 IF(K .EQ. NSP1) COUT(N,M)»COUT(N.M)/28.31602
                   IFIKEYMAX.NE.DGO TO 722
                   CALL PRINTC(COUTiNMAX»MMAX tPARAM(K)>ETStItICODE)
410            722 CONTINUE
                   DO 770 M*1.MMAX
                   DO 770 N*1«NMAX
                   AA3M * AMIN1(AA3(IDTL»N«M)«TOP(N»M))
                   IF(AA3(IDTL,N,M).LT.0.00001)AA3M=TOP(N,M)
415                AA3(IDTL«NtM) = AA3M
               770 COUT(NfM)=TOP(N.M)
                   IF(KEYMAX.NE.1)GO TO 772
                   CALL PRINTC(COUT«NMAX*MMAXtPARAM(K),ETS,3.ICODE)
               772 CONTINUE
420                DO 780 M>1,MMAX
                   DO 780 N=1,NMAX
                   AA4M * AMAX1 (AA4(IDTLtN«M) tTHKK(N,M»
                   AA4(IDTLtNtM) • AA4M
               780 COUT(N»M)»THICK(N.M)
425                IFIKEYMAX.NE.DGO TO 782
                   CALL PRINTC(COUT»NMAX»MMAX»PARAM(K),ETSt4.ICODE)
               782 CONTINUE
               72b IF(K .Ed. NSP1) GO TO 760
                   IF(TOTAL.GT.1,OE-06)GO TO 1002
430                DO 1003  IDTL-IDTL.4



                                             MODEL LISTING  (33  of 85)

-------
            SUBROUTINE  MAO                                    CDC 6400 FTN V3.0- BPA OPT = 1  05/21/79  16.53.32.      PAGE      11

                            DO 1003 M=ltMMAX
                            DO 1003 N=1»NMAX
                       1003 AA2(IDTL,NtM)=AA2(IDTL.N»M)»ACCUM(N,M)
                            GO TO 732
         435           1002 DO 730 M=1,MMAX
                            DO 730 N=1,NMAX
                            AA2UDTL.N.M) = AA2 (IDTL»NtM) + ACCUM(N»M)
                        730 COUT
                            IF(KEYMAX.NE.l) GO TO 732
         440                CALL PRINTC ETS.PARAM(K)
         445            980 CONTINUE
                        805 FORMAT(18H1  SMALL CLOUDS AT .F10.2.27H SECONDS ELAPSED TIME  FOH
                           X»A10»//
                           1 2X»lHNt7X.lHX»13X«IHZtlIX.5HTMASS»9X.5HTSIDE»10X»4HTTHKt9X.4HTTOP
                           2 )
         450                WRIT£(6f81S> (N.TX(N)«TZ(N)«TMASS(N),TSIDE(N),TTHK(N),TTOP(N)t
                           1VFALSC(N,K),N=1,NTCLD)
                        990 CONTINUE
                        815 FORMAT(1X,I2,1X,7G14.4)
                        &90 RETURN
         455                END
                                                      MODEL LISTING  (34 of 85)

-------
  SUBROUTINE  THNSPT                                 CDC 6400 FTN  V3.0-  BPA  OPT-1   05/21/79   16.53.32.       PAGE
                  SUBROUTINE TRNSPT  (ZZ.XX.YY.U.W.DEPTH.ICODE.NMAX.MMAX.NVL)
                  DIMENSION OEPTH(31,31)
                  DIMENSION ICOOE(31.31)
                  DIMENSION U<31,31t2).W<31«31»2)
 5                COMMON/BAY/ DX.DTL.XBAR6E.ZBAR6EjDXH.DXR.AHEA
                  COMMON/POINT/ MST.NST
                  N*ZZ»DXR«.5
                  M«XX«DXR«.5
            C     DETERMINE VELOCITIES
10                CALL VEL1
                  ZZ=FLOAT(NE)«DX
                1 IF(NE .LE. NMAX) 60 TO 2
20                NEcNMAX
                  ZZ«FLOAT(NE)»DX
                3 IF(ME ,6T. 0) 60 TO 3
                  ME=1
                  XXsFLOAT(M£l»DX
3i>              3 IF 60 TO 4
                  ME'MMAX
                  XX=FLOAT(ME>»DX
                4 CONTINUE
                  ITMP=ICOOE
30                IF  (ITMP .NE. 2) 60 TO 50
                  ZZ»FLOAT(N)«DX
                  XX=FLOAT(M)«DX
               50 RETURN
                  END
                                              MODEL LISTING  (35 of 85)

-------
          SUBROUTINE  AVE5PT                                 CDC 6400 FTN V3.0- BPA OPT=1   05/21/79  16.53.32.       PAGE

                          SUBROUTINE AVE5PT
                          COMMON/BAY/ OXtOTLtXBARGE,ZBARGE«DXH»DXR.AREA
        10                COMMON/COR/ CM.CMAX
                          COMMON/LTCOF/ ALAMOA«DIF»AKYO
                          COMMON/FLEE/ ITD»TD(6),DC<6),CINIT,CBACK<13)»CTRACE(600)
                          EPSLN=2.QE-05»(CMAX-CBACMK))
                          COCEAN=0.
        15                IF(N.LT.1)N=1
                          IF(M.LT.1)M=1
                          IF(N.6T.NMAX)N=NMAX
                          IF(M.GT.MMAX)M=MMAX
                          IF(ICODE(N,M)-2)1,2.3
_,      20              2 CONC=0.0
en                        XTOP=0.
-^                        THK=0.
                          RETURN
                       3  CONC=CBACK(K)
        25                XTOH=0.
                          THK=0.
                          GO TO 200
                    C
                        I C1=C(N,MI
        30                T1=TOP(N,M)
                          TH1=THICK(N,M)
                          IF«C1-CBACK(K)).GT. EPSLN)  GO  TO 7
                          CM=CM»(C1-CBACK(K))«THl«AWtA
                          C1=CBACK(K)
        35                C(N,M)=CBACK(K>
                          TOP(N,M)=0.
                          THICK(N»M)=0.
                        7 CONTINUE
                    C
        40                C2=C(N-1,M)
                          T2=TOP(N-1,M1
                          TH2=THICK(N-1,M)
                          IF«C2-CBACK(K) ) .GT.  EPSLN)  GO TO  9
                                                    MODEL LISTING (36  of 85)

-------
          SUBROUTINE  AVE5PT                                 CDC 6400 FTN V3.0- BPA OPT«1  05/21/79  16.53.32.      PAGE

                          CM=CM»(C2-CBACK(K))«AREA«THICK(N-l.M)
        45                C2=CBACK(K>
                          C(N-1»M)=CBACK
        60                T3=TOP(N*1,M)
                          TH3=THICK(N«ltM)
                          IF((C3-CBACKIK)) .GT. EPSLN) GO TO 27
                          CM=CM«(C3-CBACK(K))"THICK(N*1»M)»AREA
_,                        C3=CBACK(K)
01      65                C(N«1»M)=CBACK(K)
00                        TOP(N»1,M)=0.
                          TH1CK(N*1,M)=0.
                       27 CONTINUE
                          IF(ICOD£(N*ltM) .NE. 2) GO TO 30
        70                C3=C1
                          T3=T1
                          TH3=TH1
                       30 IF(ICOOE(N+ltM) ,N£. 3) GO TO 40
                          C3=CBACK(K)
        75                T3=T1
                          TH3=TH1
                    C
                       40 C4=C(N,M»1>
                          T4aTOP(N.M»l)
        80                TH4=THICK(N»M»1)
                          IF( (C4-CBACK(K) ) .GT. EPSLN) GO TO <»7
                          CM=CM«(C4-CBACK(K)>»THICK(N,M«1)»AREA
                          C4=CBACK(K>
                          C(NtM»l)=CBACK(K)
        85                TOP(N,M»1)=0.
                          THICK(N»M»1)=0.
                                                     MODEL  LISTING (37 of  85)

-------
   SUBROUTINE  AVE5PT                                 CDC 6400 FTN V3.0- BPA OPT = 1   05/21/79  16.53.3H.       PAGE

                47 CONTINUE
                   iFiicoDE(N,M»i>  .NE. 2>  GO TO so
                   C4 = C1
 90                T4 = T1
                   TH4=TH1
                50 IF (ICODE(NiM*l)  .NE. 3)  GO TO 60
                   C4=CBACK(K)
                   T4 = T1
 95                TH4=TH1
             C
                60 C5=C(NtM-l)
                   T5=TOP(N,M-1>
                   TH5=THICK(NtM-l)
100                IF((C5-CBACKIK))  .GT.  EPSLN)  GO TO 67
                   CM=CM+ (C5-C8ACK (K» « THICK* N.M-1) *AHt"A
                   C5=CBACK(K)
                   C(NtM-l)=CflACK(K)
                   TOP(N,M-1)=0.
105                THICK(N,M-1)=0.
                67 CONTINUE
                   IFUCODE(N»M-i>  .NE. 2)  GO TO 70
                   C5=C1
                   T5=T1
110                TH5=TH1
                70 IF(ICOOE(N,M-1>  ,N£. 3)  GO TO 80
                   C5=CBACK(K)
                   T5 = T1
                   TH5=TH1
115             80 CONTINUE
             C
             c     SET THICKNESS  AND  TOP  OF NEW  ELEMENT TO AVERAGE OF CONTRIBUTING  ELEMENTS
                   INUM=0
                   TOPSUM=0.
120                IF(TH1.EQ.  O.I  GO  TO 63
                   INUM=INUM*1
                   TOPSUM=TOPSUM«T1
                83 IF(TH2.EQ.  0.)  GO  TO 84
                   INUM=INUM+1
125                TOPSUM=TOPSUM*T2
                84 IF(TH3.EO.  0.)  GO  TO 86
                   INUM=INUM*1
                   TOPSUM=TOPSUM+T3
                86 IFUH4.EQ.  0.)  GO  TO 88
                                            MODEL LISTING (38  of 85)

-------
   SUBROUTINE  AVE5PT
                                                      CDC 6400 FTN V3.0- BPA OPT«l   05/21/79  16.53.32.
                                                                                                             PAGE
130
135
1*0
1*5
150
             C
             C
                   INUM*INUM«1
                   TOPSUMsTOPSUM»T4
                88 IFUH5.EO. 0.)  GO TO 92
                92
                   TOPSUM«TOPSUM»T5
                   IFUNUM .EQ. 0)  60 TO 190
                   THK*AMAM»AREA»
                   CEF**
                   CONC*CEFl-OIF«(4.»CEFl- »P(2400)
                   IB5*IB/5
                   UB*LIA«IB5«1
                    DECODE (5. 1000, P(LIB» BUF
              1000  FOHMATI5AU
                                                         INTO PROPER PRINT
                    BUM IRES) =SYM
                    ENCODE(5tlOOO,P1
                                                                                     NON-ANSI
                                                                                     NUN ANS1
                                              MODEL  LISTING  (39 of 85)

-------
  SUBROUTINE  PRINTC                                 CDC 6400 FTN V3.0- BPA OPT=1  05/21/79  16.53.32.      PAGE

                  SUBROUTINE PRINTC(OUT»NMX«MMXtPARAM,ET»L8L,ICODE)
                  DIMENSION OUT(31»31)
                  DIMENSION ICODE<31,31)
                  DIMENSION IPRU2B),NUM(10)
 5                DATA IB.LND.ISEA.IPLUS,IDOT /IH , 1HL»1HO»1H»»1H./
                  DATA NUM(l),NUM<2>,NUM<3),NUMU),NUM<5),NUM<6),NUM(7>.NUMI8)»
                 1 NUM<9> .NUMUO) /1HO,1H1.1H2«1H3,1H4»1H5»1H6»1H7,1H8»1H9/
            C
            C     SCALE ARRAY FOR OPTIMUM PRINTOUT
10                NMAX = NMX
                  PMAX=0.
                  DO 50 M=1,MMX
                  DO SO N=1,NMX
               50 PMAX=AMAX1(PMAX»OUT(N,M))
15                P10=l.
                  IP10=1
                  IF(PMAX .GT. 0.) IP10=ALOG10(PMAX)
                  IFdPIO .GF. 3) P10=10.»«(IP10-2)
                  IFIIPIO ,LT.  0) P10=10.««(IP10-1)
20                DO 60 M=1,MMX
                  DO 60 N=1,NMX
               60 OUT(N.M)=OUT(N,M)/P10
            C
                  GO TO (150,200,250,300,350»400,«50),LBL
25            150 WRITE(6.155) PARAM.ET
              155 FOHMAT<19H1CONC£NT«ATIONS OF tA10.29H (VOLUME HATIOJ IN THE CLOUD
                 1» F10.2.19H SECONDS AFTER DUMP )
                  GO TO 500
              200 WRITE(6.215) PARAM.ET
30            215 FORMAT
-------
  SUBROUTINE  PRINTC                                 CDC 6400 FTN V3.0- BPA OPT = 1  05/21/79  16.53.32.      PAGE

                  GO TO 500
45            400 WRITEI6.405)  ET
              405 FORMAT(59H1TOTAL ACCUMULATED SOLID VOLUME ON BOTTOM (CUFT/GRIO SQR
                 lit .F10.2.19H SECONDS AFTER DUMP  )
                  GO TO 500
              450 WRITE<6,455)ET
50            455 FORMAT(48H1TOTAL THICKNESS (FT)  OF NEW MATERIAL ON BOTTOM. •
                 1F10.2»19H SECONDS AFTER DUMP  )
              BOO CONTINUE
                  WRHE(6«505>  P10
              505 FORMATO3H ...MULTIPLY DISPLAYED VALUES BY ,G11.4.5X,60H(LEGEND...
55               1*3 .LT. .01   . = .LT. .0001   0 = .LT. .000001))
            C
            C     SET UP PAGE DIVISIONS FOR PRINTING OF ARRAY
                  NCP=NMX/32«1
                  IF«NCP-1>»32 .Ed. NMAX) NCP=NCP-1
60                IN2=0
                  DO 1000 IP=1»NCP
                  IN1=IN2*1
                  IN2=IN2«32
                  IFINMX .LT. IN2)IN2=NMX
65                WRITE(6«605)  
            C
                  DO 100 M=1,MMX
                  DO 10 Isltl28
70             10 IHR(I)=IB
                  DO 1 N=IN1,IN3
                  J=4«N
                  L=OUT(NtM)».5
                  IF(1COOE(N,M) ,EO. 2) GO TO 2
75                IF(ICOOE(N»M) .EO. 3) GO TO 7
                  IF (L.GE. 1000) GO TO 6
                  IF (L .GE. 100) GO TO 3
                  IF (L .GE. 10) GO TO 4
                  IF(OUT(N,M) ,GF. 1.) GO TO 30
80                IF(OUT(N,M) .LT. l.OE-06) GO TO 25
                  IF(OUT .LT. .01) GO TO 8
                  IF(OUT(N,M) .LT. .1) GO TO 20
                  IPR(J-2)=IDOT
85                N1=10.«OUT(N,M)
                  IPR(J-1)=NUM(N1«1)
                                               MODEL  LISTING (41 of 85)

-------
           SUBROUTINE   PRINTC                                  CDC  6400  FTN  V3.0-  BPA  OPT*1   05/21/79  16.53.32.       PAGE

                           N2=100.«OUT(N,M)-10.«FLOAT(N1)
                           IPR(J)=NUM(N2»1>
                           GO  TO  1
         90              30  LF=OUT(N,M)
                           LL=10.«(OUT-FLOAT
                           IPR(J)=NUM(N2»1)
                           GO  TO  1
        105               2  IPR(J)=LND
                           IPR(J-1)=LNO
^                         IPR(J-2)=LND
oo                         IPR(J-3)=LND
                           GO  TO  1
        110               7  IPR(J)=ISEA
                           IPR(J-1)=1SEA
                           IPR(J-2)=ISEA
                           IPH(J-3)=1SEA
                           GO  TO  1
        115               6  N1 = L/1000 '
                           IPRIJ-3)=NUM(N1+1)
                           N1=L-1000*N1
                           N2=N1/100
                           IPR(J-2)=NUM(N2+1)
        120                 N2=N1-100*N2
                           N3=N2/10
                           IPR(J-1)=NUM(N3*1)
                           N1=N2-10*N3
                           IPR(J)=NUM(N1»1)
        125                 GO  TO  1
                         3  N1=L/100
                           IPR(J-2)=NUM(N1+1)
                           N1=L-100«N1
                           N2=N1/10
                                                    MODEL LISTING (42 of 85)

-------
   SUBROUTINE  PRINK                                 CDC 6400 FTN V3.0- BPA OPT»1  05/21/79  16.53.32.      PAGE

130                IPR(J-l)sNUM(N2»l)
                   N1=N1-10«N3
                   IPRU)sNUM IN ESTUARY COORDINATES. RETURNS DEPTH (OEP)
  5                DIMENSION DEPTH<31.31)
                   COMMON/BAY/ DX.DTL«XBARGE»ZBARGE.OXH»DXH»AREA
                   ZN=ZD»OXR
                   XM=XO«DXR
                   N=ZN».0001
 10                M=XM«.0001
                   ENrZN-FLOAT(N)
                   EM=XM-FUOAT(M)
                   IFIEN .LT. .0001)  EN=0.
                   IF(EM .LT. .0001>  EM=0.
 15                D1=DEPTH(N,M)»EN»(DEPTH(N»1,M)-DEPTH(N,M))
                   D3=DEPTH(NfM»1)«EN»(DEPTH
                   DEP*D1*EM«(02-01)
                   RETURN
                   END
                                             MODEL LISTING (43  of 85)

-------
   SUBROUTINE  VOIFCO                                 CDC 6400 FTN V3.0- BPA OPT=1  05/21/79  16.53.32.      PAGE

                  SUBROUTINE VDIFCO(N,M»YY.AKY»U»WtDEPTH»NMAX«MMAX»NVL)
            C     ROUTINE TO COMPUTE VERTICAL DIFFUSION COEFFICIENTS
                  DIMENSION DEPTH(31,31)
                  DIMENSION U(31»31t2)tW<31»31f2)
 5                COMMON/BAY/ DX,OTL.XflARGE»Z8ARGE»DXH»DXRtAREA
                  COMMON/GPI/ G.P1
                  COMMON/LTCOF/ ALAMQAtDIF,AKYO
                  COMMON/AM8/  NROA.IY.Y(IO),ROA(10)»H
            C     DETERMINE DENSITY AND VELOCITY GRADIENTS
JO                IF(N.GT.NMAX) N=NMAX
                  IF(M.GT.MMAX) M=MMAX
                  IY = 0
               10 IY=IY+1
                  IFCYY .GE. Y(IY)  .AND. YY ,LE. Y(IY»D)  GO TO 20
15                GO TO 10
               20 RHO=ROA(IY)+(ROA(IY»1)-ROA(IY>)»(YY-Y(IY))/«OX
                  ZZ = FLOAT(N)»DX
                  CALL VEL(XX»Yl,Z2.UAlfWAl»UtWtDEPTH»NMAXfMMAX)
                  CALL VEL(XX»Y2,ZZtUA2tWA2»U,WfDEPTH,NMAX»MMAX)
                  VELGRA=SQRT«UA2-UA1)«»2 +  (WA2-WA1) «»2)/2.
25                IF/OEPTH(N,M)
            C     DETERMINE RICHARDSON NO.
30                IFtVELGRA '.ME. 0.) GO TO 40
                  AKY=0.
                  IF(DENGRA.LT.l.OE-aO) AKY=AKYO
                  RETURN
               40 RI=G»DENGRA/(RHO»VELGRA«»2)
35          C     CHECK BOUNDS
                  IFIRI .LT. 0.) RI=0.
                  IF(RI ,GT. 3.999999) RI=3.999999
            C     COMPUTE DIFFUSION COEFFICIENT
                  AKY=AKYO«(1.-.25«RI)
40                RETURN
                  END
                                           MODEL  LISTING  (44 of  85)

-------
  SUBROUTINE  DEHIVD                                 CDC 6*00 FTN V3.0- BPA OPT»1   Ob/21/79  17.07.05.      PAGE

                  SUBROUTINE DEHIVD(E»U»W.DEPTH»NMAX»MMAX)
            C     ....CALLED PROM DUMP VIA RUNGS....
                  DIMENSION E<22)
                  DIMENSION OEPTMO1.31)
 b                COMMON/OPASS/ NPASS»HPASS
                  COMMON/DIMEN/ NS.NSP1.NVL.NSC
                  COMMON /A/ EP(22)
                  DIMENSION U(31,31.2).W(31.31,2>
                  COMMON/BAY/ DX.DTL.XBARGEf28AHGE.OXH»DXR,AREA
10                COMMON/AMB/  NROA,IY»Y<10>.WOA(10)tH
                  COMMON/PIECES/ PARAM<13),ROASU3>,CS<13I»VFALLU3>.VOIDSU3>.BVOID
                 1»ICOHES(12>.VFALLC(13).VFALSC(20,13)»VFALLD(31»31.13)
                  COMMON/GUIDEl/ TDUMP.TSTOP»ISfEP.IPLUNGfNUTRL»NTHIAL.ILEAVE.
                 1 KEYl.KEr2.KEV3
Ib                COMMON/GPI/ G.PI.Rfl
                  COMMONXSTCOEF/ ALPHA,ALPHAO.ALPHAC.BETA.CDRAG.CFRIC.CO.CD1»CD2
                 It CD3.CD«.CM,DINCR1,DINCW2.FRICTN,GAMA,F1
                  COMMON/COL/ AO.IBEO.FBED
            C
20                IF(E(2).GE.O.) GO TO 30
                  W»ITE(6.15)
               15 FORMAT(IX .S1HDEPTH Y .LT. 0—CHANGE INPUT DATA TO ENSURE DESCENT)
                  CALL EXIT
            C     SET IY SO THAT CLOUD DEPTH E(2)  IS BRACKETED BY YUY) AND Y(IY»D
25             30 IF(E(2)  .LE. Y(IY»1» GO TO 40
                  IY=IY»1
                  GO TO 30
               40 IF(E(2I-Y(IY)) 50.100.100
               SO IY=IY-1
30                GO TO 30
            C     INTERPOLATE FOR AMBIENT DENSITY  AT DEPTH OF CENTROID OF CLOUD...
              100 ROAAaROAdYl »(E<2)-Y(IY) ) • (ROA (I Y»l)-ROA (I Y) )/(Y(IY»l)-Y(im
                  CEs(ROA(IY»l)-ROA(IY))/(YUY»l)-Y(IY)>
                  VOLUME=(E(4)»E(8))/ROA(1)
35                ROO=E(4)/VOLUME
                  IF (ROO .LE. ROAA) NUTRL=1
                  Bs(1.5«VOLUME/PI)»».333333
            C
            C     DETERMINE HORIZONTAL VELOCITIES  AT CLOUD
40                XXrXBARGE*EU)
                  2Z=/BARGE»E<3)
                  CALL VELIXX.EI2).22.UA.WA.U.W.DEPTH.NPASS.MPASS)
                                            MODEL  LISTING  (45 of 85)

-------
  SUBROUTINE  DEHIVD                                 CDC 6400 FTN V3.0- BPA OPT=1  05/ei/79   17.07.06.      PAGE

                   IFIE19))  110.110.120
45            110  ALPMA=ALPHAO
                   GO TO 200
              120  ALPHA=ALPHAO«SQRT( TANH  (tO'VOLUME*(ROO-ROAA)/(2.«PI «.1«>«ROO«
                 .                E(9)»«2«ALPHAO))««2))
            C
50          C      MAIN COMPUTATIONS
              200  CMMASS=CM»E(4)
                   UU=£<5)/CMMASS
                   VV=E(6)/CMMASS
                   WW=E(7)/CMMASS
55                 PHI=SOHT<(UU-UA)»»2»VV*«2*(WW-WA)««2>
            C      ENTRAINED VOLUME IS...
                   ENTRV=2.«PI «B»*2*ALPHA»PMI
                   EP(1)=UU
                   EP(2)=VV
tO                 EP(3)=WW
                   EP(*)=ENTRV«ROAA
                   DRAG=CD«ROAA   °PI «B««2'PHI».5
                   EP(b)=ENTKV*ROAA*UA -DRAG0(UU-UA)».5
                   EP(6)=VOLUME «(ROO-ROAA)»G-OHA6«VV
65                 £P».b
                   EP(8)=ENTRV«(KOA(1)-ROAA)
                   EP(9)=-3.»B»*2«G«CE/ROA(1)
                   DO 250 K=1,NS
                   ABSWS=ABS(VFALL(K))
70                 IF(ABSWb-ABS(VV)1220.220.830
            C      IF FALL VEL. IS SMALLER  THAN THE CONVECTIVE VEL. NO SETTLING OCCURS
              220  BETAA=1.
                   GO TO 240
              230  8ETAA=HETA
75            240  SETLV=PI»B«*2»ABS(VFALL(Kn«(l.-BETAA)«E(K*9)/VOLUME
                   EP(4)=EP(4)-SF_TLV»(ftOAS(K) )
                   EP(5)=EP(5)-SETLV«(ROAS(K))«UU
                   EP(6)=EP(6)-SETLV»(ROAS(K))«VV
                   EP(7)=EP(7)-SETLV»(ROAS(K) ) «W*J
80                EP(8)=EP(8)-SETLV»(ROA<1)-ROAS(K))
                   EP(K»9)=-SETLV
              250 CONTINUE
                  RETURN
                  END
                                            MODEL  LISTING  (46 of  85)

-------
          SUBROUTINE   COLAPS                                  CDC 6400  FTN V3.0-  BPA OPT*1   05/21/79  17.07.05.       PAGE

                          SU8HOUTINE  COLAPS (SS.U.W, DEPTH. NS.NMAX, UMAX, NVL>
                          DIMENSION nEPTH(31,31>
                          DIMENSION U<31,31,2>.W<31,31,2),SS«SOO,12)
                          COMMON/ AMB/  NROA. IV.Y(IO) .ROAUO) »H
         5                COMMON/CLOUO/T<600)»CX<600).CY(600>,CZ(600).CUI600).CVI600)
                         1«  CM(600> .DENDIF (600) »BC (600) . A A (600) »FC (600) . VF
                          COMMON/PIECES/ PARAM ( 13) ,ROAS ( 13) .CS ( 1 3) . VFALL ( 13> . VOIDS ( 13) .BV01D
                         l.ICOHESU2>,VFALLCU3>,VFALSC<20,13),VFALLD<31.31,13)
                          COMMON/GUIDE!/ TOUMP.TSTOP. 1STEP, IPLUNG.NUTHL.NTRIAL* ILEAVE*
        10               1  KEYl.KEYa,KEY3
                          COMMON/COL/ AO,IBED»FHED
                          COMMON/COMP1/ E.AA2 (4, 31 «31) , AA3(4.31«31> • AA4U.31 «31> t
_,                       1  KEYMAX
^l                        DIMENSION SAVEI22) ,ACONC(12)
00                        EXTERNAL  DEHIVC
        25          C
                          OINCR=DINCP2
                          NSP1=NS»1
                          NTRIAL=0
                          ISAV=ISTEP
        30                IFdSTEP  .EQ. IBED)  GO TO  10
                    C      ....HEHE  IF CLOUD HAS NOT  ENCOUNTERED BOTTOM....
                          E1»(ROA(IY«1)-ROA(IY) )/(ROA( D«(Y
                          Bl= (AA(1STEP)««3«.84«EG»1 000. >**. 42857
        35                DT2=.001«(B1/AA(ISTEP) )««3/EG«. 1
                          DT=DT2
                          GO TO 20
                    C     ....HEHE IF CLOUD IS ON BOTTOM....
                       10 DT=DT1
        40                IFfKEYMAX.NE.llGO TO 24
                       20 WRITE(6.25)
                       25 FORMATUH1.10X.23HCOLLAPSE PHASE  OF CLOUD  ///10X.27HCOMPUT ATIONAL
                         1 INDICATORS... /5X.6HNTR I AL.4X.2HDT,6X,6HlPLUNG,2X,5HNUTRL»2Xt
                                                   MODEL LISTING  (47  of 85)

-------
  SUBROUTINE  COLAPS                                 CDC 6400 FTN V3.0- BPA OPT*1  05/21/79   17.07.05.      PAGE

                 ? 5HISTEHt?X,4HIBEO*3X.6HILEAVE )
45             24 CONTINUE
                  IFIKEY4 .EG. 1) DT=DT2U
                  NE=NS»10
            C     SAVE STARTING VALUES IN  E  ARRAY...
                  DO 100 KK=1»NE
50            100 SAVE(KK)=E(KK)
            C
            C     ....HERE TO BEGIN A TRIAL....
              400 DO 410 KKsltNE
              410 E(KK)=SAVE(KK)
55                NTRIAL=NTRIAL+1
                  ISTEP=ISAV
                  VOLUME*
            C     ....HERE TO BEGIN MAIN COMPUTATIONAL LOOP IN TIME....
            C     ....SAVE RESULTS OF PREVIOUS COMPUTATIONS....
              420 CX( ISTEP)=E( 1)
70                CY(ISTEP)=E(2)
                  CZ(ISTEP)=E(3)
                  VOLUME=(E(4)«E(8))/ROA(1)
                  CMMASS=CM»E(4)
            C     E(9)  IS SEMl-MAJOK AXIS
75          C     BC IS HORIZONTAL DIMENSION OF CLOUD
                  BC(ISTEP)=2.«E(9)
            C     AA IS VERTICAL DIMENSION OF CLOUD
                  AA(ISTEP)=6."VOLUME/(PI»BC(ISTEP)»»2>
                  CU(ISTEP)=E(5)/CMMASS
80                CV
-------
         SUBROUTINE  COLAPS                                 CDC 6400 FTN  V3.0- BPA OPT*!  05/21/79   17.07.OS.      PAGE

                     430  SS/CINIT
                          IF)/DT
                   C      ....EXIT  TESTS....
                   C      IF  CLOUD  TOUCHES FREE  SUHFACE . EXIT  TO  PRINTOUTS...
                          IF(CY(ISTEP)-AA(ISTEP).LE.O.) GO  TO  b70
                          IFUSTEP  .LE.  ISAV*5)  GO  TO 450
       105          C      IF  CHANGE OF  CLOUD MAJOR  AXIS BY  DIFFUSION IS  .GT.  OR EQUAL  TO
                   C      CHANGE  IN MAJOR  AXIS  IN ONE TIME  STEP. ATTEMPT EXIT TO  BEGIN
                   C      LONG TERM DIFFUSION....
                          IFUKX  .GE.  DBOT)NUTPL=3
—•                    450  IF(NUTRL  .EO.  3) GO TO  550
22      110          C      IF  CLOUD  HIT  BOTTOM WHILE COLLAPSING GO  CALL BOTTOM1
                          IF  (IPLUNG .EO.  2) GO  TO  500
                          IFUSTEP  .GE.  599) GO  TO  550
                     460  VFALLC(NS»1)=VFALL(NS»1)
                          DO  455 K*1«NS
       115                 VFALLC(K)sVFALL(K)
                          IF««1.33333)/304.8
       120                 IF(SSdSTEP.K)  .GT. 0.000115) VFALLC (K) =0.047
                     455  CONTINUE
                          CALL RUNGS(DERIVC.NE.U.W.DEPTH,NMAX.MMAX.NVL)
                          ISTEP=-ISTEP«1
                          T (ISTEP)=T(ISTEP-1)»DT
       125                 GO  TO 420
                   C      ....END OF MAJOR LOOP....
                   C
                   C      ....HERE  TO  COMPUTE COLLAPSE  ON BOTTOM....
                      500  IBEO=ISTEP
                                                     MODEL  LISTING (49 of  85)

-------
            SUBROUTINE  COLAPS                                 CDC 6400 FTN V3.0- BPA OPT»1  05/31/79  17.07.Ob.      PAGE

         HO                DBT=£I10>»16,/(PI«.5«AA11 STEP)«,25«BC(I STEP)*°2»KOO)
                            E UO)=ROO*PI«.5'>AA(ISTF.P)«.25*BC»»2
                           1     «/<.5»AA
                            GO TO (530,540,550),NEXT
         135            530 E<6)=CM»E<4>«CVUSTEP>
                            F<2)*CYUSTEP)
                            DBT=E<10>»9./«.2b«BCUSTEP)«»2»ROO)
                            E<10>=ROO«PI «AA tCV(J> »CW(J)»DENDIF(J)
                           1»AA(J),BC(J)»FC(J),ACONC(1),SS(J»1)
                        585 FORMAT!  1X,2F10.2,F8.2,G11.4,F6.2.F7.3,F6.2.E12.4,F7.2,G11.4,
                           »       3E12.4)
         170                IF(NS ,EO.  1) GO TO 599
                            DO 590 K=2»MS
                        590 WRITE(6»59S)ACONC(Kl,SS(J.K)
                                                    MODEL  LISTING  (50 of 85)

-------
   SUBROUTINE  COLAPS                                 CDC 6400 FTN V3.0- BPA OPT*!   05/21/79  17,07.05.       PAGE

               595 FORMATU01X.3EI2.4)
               599 CONTINUE
175                00 615 K=l,NS
                   IFIICOHtS(K)  .EQ.  0)  GO TO 615
                   WRITE(6,605>  P«RAM(K)»VFALLC=0.
                   FC(ISTEP1>=0.
                   CX(ISTEPl)=a.»CX(ISTEP)-CX(ISTEP-l>
                   CALL DHAW
190                CALL DHAW
-------
        SUBROUTINE  DERIVC                                 CDC 6400 FTN V3.0- BPA OPT=1  05/21/79   17.07.05.      PAGE

                        SUBROUTINE DERIVC(EtUtWtDEPTHtNMAX.MMAX>
                  C     ....CALLED FROM COLAPS1  VIA RUNGS....
                        DIMENSION E(22)
                        DIMENSION DEPTH<31,31>
       5                COMMON/DPA5S/ NPASSfMPASS
                        COMMON /A/ EPI22)
                        COMMON/BAY/ DX.DTL.XBARGEtZBARGEtDXH.DXRtAREA
                        COMMON/AMB/  NROA.1Y,Y<10)»ROA(10)»H
                        COMMON/PIECES/ PARAM(13)»ROAS(13)»CS(13).VFALLU3)»VOIDS(13)»BVOID
      10               1.ICOHESO2) tVFALLC<13) • VFALSC (20. 1 3) tVFALLO<31»31t13)
                        COMMON/GPI/ G,PI«RR
                        COMMON/STCOEF/ ALPHAtALPHAO•ALPHAC»BETAtCDRAG.CFRICtCDtCD1tCD2
                       It C03tCD4»CM.DINCRl,PINCR2»FHlCTNtGAMAtFl
                        COMMON/COL/ AO.IBEO.FBED
      15                COMMON/GUIDE!/ TDUMP»TSTOP»ISTEPtIPLUNGtNUTHL»NTHIALtILEAVE»
                       1 KErltKEY2tKEY3
                        COMMON/DIMEN/ NS.NSP1»NVLtNSC
                        DIMENSION U(31t31t2)tW(31»31t2)
                  C
      20                IF(E(2).GE.O.) GO TO 30
_,                      WRITE<6tl5)
CD                   15 FORMAT(  47H Y LT 0 — CHANGE INPUT DATA TO ENSURE DESCENT   )
to                      CALL EXIT
                     30 IF(E(2) .LE. YUY+D) GO TO 40
      25                IY=IY«1
                        GO TO  30
                     40 IF(E(2)-Y(ir)) BO.lOOtlOO
                     50 IY=IY-1
                        GO TO  30
      30            100 ROAA=ROA(I¥)»(E(2>-Y(IY))»
-------
  SUBROUTINE  DERIVC                                 CDC 6400 FTN V3.0- BPA OPT«1  05/21/79  17.07.05.      PAGE

                  CMMASS=CM«E<4)
45                UU=E<5)/CMMASS
                  VV=E (6) /  «A
                  WW=K Ot/CMMASS
                  PHl=SQRT( (UU-UA)««2*VV««2»
            C     CONTRIBUTION OF COLLAPSE TO THE TIP VELOCITY OF CLOUD
50                EP(9)*E <10)*16./
                  A2=.5»(A«*2»B/RT)«ALOG«B + RT)/(B-RT))
              1AO ENTHVe?.«PI«(Al»A2)«(PHI«ALPHA »ALPHAC«EP <9) )
            C
            C     MAIN COMPUTATIONS
60                EP(D=UU
                  EP(4)=ENTHV«ROAA
                  ORAG=   PI «ROAA«PHI«.5
&5                EP (5) =ENTRV«ROAA«UA-ORAG*A*B« (UU-UA) «CD3
                  FP(6) =VOLUME« (ROO-ROAA) «G-ORAG»B«»2»VV«C04
                  EPm=ENTRV»ROAA«WA-DRAG«A*B«
-------
  SUBROUTINE  BOTTOM                                 COC 6400 FTN V3.0- 8PA OPT = 1  05/21/79  17.07.05.      PAGE
                  SUBROUTINE BOTTOM(SS.U,W»DEPTH,NS»NEXT.NMAX.MMAX»NVL)
                  EXTERNAL DERIVB
                  DIMENSION OEPTH(3l,31)
                  DIMENSION U<31,31.2).W<31»31,2).SS(600.12)
 5                COMMON/AMB/  NROA.IY,Y(10)»ROA(10)«H
                  COMMON/CLOUO/T(600).CX(600).CV(600).CZ(600).CU(600)»CV(600)
                 1, CW(600).OENOIF(600).BC(600)tAA(600)fFC(600)»VF
                  COMMON/PIECES/ PARAM(13) «ROAS(13> «CS<13) .VFALL(13) .VOIDS (13) .8VOIO
                 1.ICOHESU2).VFALLCI13)•VPALSC(20t13)»VFALLO(31«31»13)
10                COMMON/GUIOE1/ TOUMP»TSTOP«IST£P»IPLUNG»NUTRL»NTRIAUtILEAVEt
                 1 Kfn,KEY2,KEY3
                  COMMON/GPI/ G.PI»RH
                  COMMON/STCOEF/ ALPHA*ALPHAO»ALPHAC»BETA«COHAtt»CFRIC»CD»CDl»CD2
                 1» CD3.C04.CM,OINCRHOINCR2»FRICTN.GAMA»F1
15                COMMON/LTCOF/ ALAMOA.DIF*AKYO
                  COMMON/COMP1/ E<2?)
                  COMMON/COL/ AO.IBEO.FBEO
                  COMMON/FLEE/ ITD.TDI6).00(6)tCINIT,CBACK(13),CTHACE(600)
                  COMMON/OTEfS/ OT»DTltOT2
20          C
                  VFALLC(NS»1)=VFALL(NS»1)
                  DO 105 K=1,NS
                  VFALLC(K)=VFALL(K)
              105 CONTINUE
25                NE=10+NS
                  NSP1=NS«1
              100 VOLUME=(E(4)«E(6))/ROA(l)
            C     E(9)  IS SEMIMAJOR AXIS
                  BC(ISTEP)=?.«E(9)
30                AA(ISTEPJ=3.*VOLUME/(2.*PI «E<9)»«2)
                  ROO=E(4)/VOLUMF
                  IFdSTEP .NE. IBEO)120.130
            C     COMPUTE INITIAL BED REACTION FORCE ON PORTION OF  HEMISPHERICAL
            C     CLOUD THAT HAS —PASSED THRU BOTTOM—
35            110 CONTINUE
                  RI=H-CY(JB£D>O.»E<9>/8.
                  VB=.333333«PI»RI»»2*(3.»E(9)-RI>
                  FBED=FBED»VB«G*(ROO-POA(NROA))»CM*VB*ROO*CV(IBED)/DT
                  GO TO 170
40          C
            C     	START OF COMPUTATIONAL LOOP....
              120 CX(ISTEP)=E<1)
                  CY /8.
                                           MODEL  LISTING  (54 of 85)

-------
        SUBROUTINE   BOTTOM                                  CDC  6400  FTN  V3.0-  BPA  OPT*1   05/21/79   17.07.05.       PAGE

                        CZ«. 51545
                    130  FBED*0.
                        DO  160  K«1.NS
                        IF(ABS(CV(1STEP)>  .GT.  ABS(VFALLC
^                     .      «<1.-8ETAA)«CV(ISTEP>
CT>    65            160  CONTINUE
                        IFdSTEP  .EO.  IBED)  GO  TO 110
                        FCUSTEPUVF/VOLUME
                        VINIT«2.»PI«RB»*3/3.
                        CTRACE(ISTEP)=(CINIT«VINIT»(VOLUME-VINIT)*CBACK(NSP1))/VOLUME
      70                DR=CTRACE(ISTEP)/CINIT
                        IF(DR .GT.  DC(ITD))  GO  TO 460
                        TO(ITD>=T(ISTEP)
                        ITD=1TD»1
                    460  CONTINUE
      75                FBED=FBED«.666666«PI »AA(ISTEP)«E(9)      «»2*(ROO-ROAA)«G
                       1  -CM»(E(4)«CV(ISTEP)-E(6)«CV 
-------
         SUBROUTINE  BOTTOM
                                                           CDC 6400
                                                      V3.0- BPA OPT=1  05/31/79  17.07.05.
PAGE
      90
      95
      RETURN
  210 IFUPLUNG .HE. 4) GO TO 230
      ILEAVE=ISTFP
      NEXT=1
      RETURN
  230 IFUSTEP ,LT. 599) GO TO 250
      NEXT=2
      RETURN
  250 CALL RUNGS
       AMX=A(1)
       JMX=1
       AMN=A(1)
       JMN=1
       00 100 J=2.N
       IF(A(J).LT.AMX)  GOTO 50
       JMX=J
       AMX=A(J)
 50    CONTINUE
       IF(A(J) .GT..AMN)  GOTO 100
       JMN=J
       AMN=A(J)
 100   CONTINUE
       RETURN
       ENO
                                                 MODEL LISTING (56  of 85)

-------
  SUBROUTINE  OERIV8                                 CDC 6400 FTN V3.0- BPA OPT«1  05/21/79  17.07.OS.      PAGE

                  SUBROUTINE DERIV8(E»U»W»OEPTH»NMAX.MMAX)
            C     ....CALLED FROM BOTTOM  VIA RUNGS....
                  DIMENSION E<22>
                  DIMENSION DEPTH(31»31)
 5                DIMENSION U(31,31.2),W(31.31.2)
                  COMMON/OIMEN/ NS«NSP1tNVLtNSC
                  COMMON/OPASS/ NPASStMPASS
                  COMMON /A/ EP(22)
                  COMMON/BAY/ OXtDTL»XBARGE»ZBAHGEtDXH.DXR.AREA
10                COMMON/AMB/  NROAtIV.Y(10)»ROA(10)tH
                  COMMON/PIECES/ PARAM<13).ROAS(13>.CSU3)»VFALL<13)»VOIDS(13).BVOID
                 l»lCOHES(12)«VFALLCU3)»VFAL5C<20»13)»VFALLDC31»31tl3)
                  COMMON/COL/ AO.IBED.FBEO
                  COMMON/6PI/ G,PI»RR
15                COMMON/STCOEF/ ALPHA.ALPHAO.ALPHAC.BETA.CORAG.CFR1C.CO.CD1»CD2
                 It CD3»CD4,CM»OINCR1»DINCR2.FRICTN»GAMA»F1
                  COMMON/GUIDei/ TDUMP.TSTOP.ISTEPtlPLUNG.NUTRL.NTRIAL.ILEAVE*
                 1 KEY1.KEY2.KEY3
                  COMMON/DTEES/ DT.DT1.0T2
20                IF(E<2) .GT. H) E<2)«H
                  IF(EI2).GE.O.) GO TO 30
                  WRITEI6.15)
               15 FORMAT(  47H Y LT 0 — CHANGE INPUT DATA  TO ENSURE DESCENT   )
                  CALL EXIT
25             30 IF(E(2) .LE. Y(IY»1» GO TO 40
                  1Y=IY*1
                  GO TO 30
               40 IF(E<2>-Y(IY» 50.100.100
               50 IY«IY-1
30                GO TO 30
              100 ROAA»ROA(IY)«(E(2)-Y(IY))•(ROA(E(4)«E(B»/ROA(1)
                  ROOaE(4l/VOLUME
35          C     A IS SEMIMINOR AXIS      B IS SEMIMAJOR AXIS
                  B=E(9I
                  A*3.«VOLUME/(2.»PI »B»»2)
            C
            C     DETERMINE HORIZONTAL  VCuOCITIES  AT  CLOUD
40                XX=XBARGE»E(1)
                  ZZ*ZBARGE«E<3>
                  CALL VEL(XX.E(2)»ZZ»UA,WAtU,W.DEPTH,NPASS.MPASS)
                                           MODEL  LISTING  (57 of  85)

-------
   SUBROUTINE   DERIVB

            C     CONTRIBUTION OF COLLAPSE TO TIP VELOCITY OF CLOUD
45                EP(9)=E(10)«16./(PI «A«B««2«ROO>
                  CMMASS=CM«E14>
                  UU=E(5)/CMMASS
                  WW=E(7)/CMMASS
                  PHI=SORT((UU-UA)«»2      +
-------
         SUBROUTINE  DEMIVB                                 COC 64.J FTN V3.0-  BPA  OPT«1   05/21/T9   17.07.05.       PAGE

                         EP(5J*ENTRV»ROAA»UA-D«AG«A*B»(UU-UA> »C03».5-FBED»FR1C TN»UU»PH
                        1 »TCOR
                         EP<6)»0.
       90                EP<7>«ENTRV«ROAA«WA-DRAG*A«BMWW-WA)»CD3«.5-FBEO«FR1CTN»WW*PH
                        1 »TCOR
                         EP(8)*ENTRV»(ROA(1)-ROAA)
                         EP(10»*     PI »<1.-GAMA«AO/A)»CE«G«A»«3«8/16.
                        •«»EP(5)-SETLV»tHOAS(K))«UU
                         EP(7)s£P(7)-SETLV*(ROAS(K))«WW
      110                CP(8)sEP<8)-SETLV»(ROA(U-WOAS(Kn
                         EP(K»10 )=-S£TLV
                         OV«OV-SETLV»ROAS(K)
                     250 CONTINUE
                   C     CONTRIBUTION OF ENTRAINMENT  TO TIP VELOCITY OF  CLOUD
      115                EP<9)*EP<9)*DV« 0.75/(PI «A«B»HOO)
                         RETUKN
                         END
                                                   MODEL  LISTING  (59 of 85)

-------
   SUBROUTINE  UW                                     CDC 6400 FTN V3.0- BPA OPT=1   05/21/79  17.07.05.       PAGE

                   SUBROUTINE UW(ETS»UtW.NMAX.MMAX)
             C      ROUTINE  TO READ A SET  OF VELOCITIES FROM TAPE.   THESE VELOCITIES
             C      AWE  CONSTANT  FOR ONE  TIME STEP.DTL.
                   DIMENSION U<31,31»2)»W<31.31.2>
  5                COMMON/OIMEN/ NS,NSP1.NVL.NSC
                   COMMON/BAY/ DX.DTL.XBARGE«Z8ARGE«DXH.DXR»AHEA
                   COMMON/GUIDE I/ TOUMP.TSTOP.ISTEPtIPLUNG.NUTRL.NTRIAL»ILEAVEt
                  1 KEYlfKEYZtKEY3
                   COMMON/VSPECS/ IFORM,DUl»DU2«UUl.UU2tDWl»0*2»WWl«WW2»DLl»DL2
 10                INTEGER  SKIP
                   IFIIFORM .EO. 4)  RETURN
                   ICYCLE=ETS/90000.+1.
                   SKIP=1
             C      TTAPE  RELATES TAPE TIME TO ELAPSED  TIME
 15                TTAPE=ETS»TOUMP
                   TSHIFT=FLOAT(1CYCLE-11*90000.
                   TTAPE=TTAPE-TSHIFT
                   IF1NVL  ,GT. 1)  GO TO  200
             C
 20          C      HERE FOR SINGLE LAYER
                50  REALM7)  TUW
                   IF«TUW».01)  .LT. 90000.)  GO To  70
                   REWIND  7
                   GO TO  50
 25             70  CONTINUE
                   IF(ABS(TUW-TTAPE)  .LT.  .01) S«IP=0
                   READ (7)  ((U(N,M.l),N=1.NMAX).M=liMMAX)
                  1        .((W(N.M.l),N=1.NMAX)«M=1,MMAX)
                   IF(SKIP  .EO.  1)  GO TO  50
 JO                RETURN
             C
             C      HERE FOR MULTI-LAYER  VELOCITIES
               200  CONTINUE
               250  READ (7)  TUW
 35                IF((TUW«.01>  .LT. 90000.)  GO TO  270
                   REMIND  7
                   GO TO  250
               270  CONTINUE
                   IF(A8S(TUW-TTAPE)  .LT.  .01) SKIP=0
 40                READI7)  DL1»DL2
                   DO 280 L=1,NVL
                   READ (7)  ((U(N,M,L)»N=1.NMAX)»M=1»MMAX)
                  1        »«W(N,M,L) «N = 1.NMAX) .M=1,MMAX)
              260 CONTINUE
45                 IF(SKIP .EQ.  1) GO TO 250
                  RETURN
                  END
                                            MODEL LISTING  (60 of 85)

-------
  SUBROUTINE  VEL                                    COC 6400 FTN V3.0- BPA OPT«1  05/21/79  17.07.05.      PAGE

                  SUBROUTINE VEL
            C     SUBROUTINE TO SUPPLY HORIZONTAL VELOCITY DATA. GIVEN X.Y.Z.T
                  DIMENSION OEPTH(31,31)
                  COMMON/BAY/ OX,DTL,XRARGE,ZBARGE»OXH»OXR,AREA
 b                COMMON/DIMEN/ NS»NSP1tNVL»NSC
                  COMMON/VSPECSX IFORM,DU1»DU2.UU1»UU2»DW1,OW2.WW1»WW2»OL1»DL2
                  DIMENSION U<31,31.2)»W<31,31,2>
                  DIMENSION UIU),W1<4)
                  IFUFORM .EO. 4»  GO TO 500
10                XX=XA
                  ZZ*ZA
            C     DETERMINE HORIZONTAL COORDINATES OF 4 POINTS SURROUNDING (XXtZZ)  AND
            C     WEIGHT FACTORS FOR INTERPOLATION
               30 ZN»ZZ»DXR
15                XMsXX»DXR
                  N=ZN».0001
                  MsXMt.OOOl
                  EN=ZN-FLOAT(N)
                  EM=XM-FLOAT(M)
20                1F(EN .LT. .0001) F.N = 0.
                  IF(EM .LT. .0001) EM=0.
            C     IF MORE THAN ONE LAYER, BRANCH
                  IFdFORM .EO. 3)  GO TO 300
            C     HERE TO INTERPOLATE FOR VELOCITIES IN SINGLE LAYER
25                UA1=U(N»M,1)«EN*(U(N»1*M»})-U(N*M,1))
                  WA1=W(N,M,1)*EN*(W(N«1,M,1)-W(N,H,1))
                  UA2=U»€N«(W(N»1,M»1,1)-W(N,M«1,1))
                  UA=UA1*EM«(UA2-UA1)
30                WA=WA1»EM»(WA2-WA1)
            C     IF USING LOG PROFILE CORRECT VELOCITIES AS APPROPRIATE...IF NOT. RETURN
                  IFUFORM .EO. 1)  GO TO 100
                  CALL DINT
-------
  SUBROUTINE  VEL                                    CDC 6400 FTN V3.0- 8PA OPT=1  05/21/79   17.07.05.      PAGE


45
00 380 1 = 1,4
NI=N
MI=M
IFU .EO. 2
IF(I .EQ. 3
IF+FRAC« / (DEPTH -DD2>
                  UKI»=U0.
              380 CONTINUE
                  UA1=UI(1)»EN«(UI (2)-UI(l) J
                  WA1=W!U)»EN«|WI (2)-WI(l»
70                UA2=U1(3)»EN«(UI(4)-UI(3))
                  WA2*WI(3)*EN«(WI(4)-WI(3))
                  UA=UA1»EM»(UA2-UA1)
                  WA=WA1»EM»|WA2-WA1)
                  RETURN
75          C     ...HERE TO INTERPRET — QUICK LOOK-- VELOCITY PROFILES.
              500 CONTINUE
                  IF(YA .LE. DU1) GO TO 510
                  IF(YA .GE. OU2) GO TO 520
                  UA=UU1»(UU2-UUD«(YA-DU1)/(DU2-DU1)
80                GO TO 550
              510 UA=UU1
                  GO TO 550
              520 CALL DINT(XA«ZA«DO, DEPTH, NMAXtMMAX)
                  UA=UU2» (0.-UU2) • ( YA-OU2) / (00-DU2)
85            550 CONTINUE
                  IF(YA .LE. DW1) GO TO 560
                                          MODEL LISTING (62 of 85)

-------
        SUBROUTINE  VEL                                    CDC 6400 FTN V3.0- BPA OPT*1  05/Z1/T9  17.07.05.      PAGE
                        IFIYA .GE. OW2)  60 TO 570
                        WA*WW1«(WW2-WW1>•(YA-DW1I/(OWZ-OWD
                        GO TO 600
      90            560 MA'MWl
                        GO TO 600
                    570 CALL DINT(XA,ZA»DD.DEPTH,NMAX»MMAX>
                        WA«WW2«(0.-WW2)•(YA-DW2)/(DD-DW2)
                    600 RETURN
      95                END
         SUBROUTINE   RUNGS                                   CDC  6400  FTN V3.0-  BPA OPT*1   05/21/79  17.07.05.       PAGE

                         SUBROUTINE  RUNGS(DERIVE»NE»U»W.D.NMAX»MMAX,NVL)
                         COMMON/COMP1/  E(22)
                         COMMON  /A/  EP(22)
_,                       COMMON/DTEES/  DT.DT1.DT2
10      5                DIMENSION Wl(22)tW2(22>*W3<22>*W4<22>»Z(22)
-^                       DIMENSION 0(31t31),U(31.31.2) .WO1.31.2)
                  C
                  c
                         CALL  DERIVE(E.U.W.O.NMAX.MMAX)
       10                DO 2  1=1.NE
                         W1(1>*OT*EPU>
                       2  Z(D=E(1>»  W1(I)*0.5
                         CALL  OERJVE(Z.U.W»0»NMAX,MMAX)
                         DO 3  1*1,NE
       15                W2(I)*DT»EP(I)
                       3  Z(I)=E(I)»W2(I)»0.5
                         CALL  DERIVE(Z,U»W,O.NMAX.MMAX)
                         00 4  1=1.NE
                         W3(I)*DT»EP(I)
       20              4  Z(D=E(I)+W3(I)
                         CALL  DERIVE
                         DO 7  1*1,NE
                         W4(I)=DT«EP(I)
                       7  E(I)=E(I>•(2.«(W2
-------
           SUBROUTINE  DKAW                                   CDC 6400 FTN V3.0- BPA OPTsl   05/31/79  17.07.05.      PAGE

                           SUBROUTINE  DRAW  (XI.X2.X3.X4.Yl«Y8.Y3,Y4.N,IGfNCURV>
                     C      GRAPHING ROUTINE
                     C      X1.X2.X3.X4--INDEPENDENT  VARIABLES
                     C      Y1.Y2.Y3.Y4--DEPENDENT  VARIABLES
          b          C      N--NUMBER OF POINTS  AVAILABLE  FOR PLOTTING
                           DIMENSION Xl(600>*Xa(600>»X3(600>tX4(600>»Yl(600)fVZ(600).
                          lY3(600)«Y4(600)tX(600>*
                          «Y(600)»YY(600)»SYM(4)»SIM(20)»P(3400)
                           DATA  SIM/lHY»lHB»lHC»lHS.lHA,lHl.lH2,lH3tlH4.1H5.1H6»lH7»lH8tlHT.
         10               • lHX»lHZ.lH..lH«tlH«.lHO/                                         NON-ANSI
                           IP(NCURV.LT.U RETURN
                     C      NX IS NUMBER OF LINES FOR INOEPENDENT  VARIABLE
                     C      NY  IS NUMBER  OF  COLUMNS  FOR  DEPENDENT VARIABLE
                           NX = 50
         15                NY=101
                           NSCALE=60
                           IN =  N/NSCALE
                           IF(IN.LT.l)  IN=1
                     C
         ^0          C      PLACE VARIABLES IN PLOT ARRAYS
                           J=0
r^                         DO 1  I=lfN,IN
01                         J=J»1
                           X(J)=X1 (I)
         25              1  Y(J)=Y1(I)
                           J=J«1
                           X(J)=X1(N)
                           Y(J)=Y1(N)
                           NN=J
         30                IF(NCUHV.EQ.1» GO TO 5
                           DO a  I=1»N,IN
                           J=J*1
                           X(J»=X2(I)
                         2  Y(J)=Y2(I)
         35                J=J»1
                           X(J)=X2(N)
                           Y(J)=Y2(N)
                           IFINCURV.EQ.2) GO TO 5
                           DO 3  1=1.N,IN
         40                J  r J+l
                           X(J)=X3(1)
                         3  Y(J)=Y3(I)
                           J=J»1
                                                    MODEL LISTING (64  of 85)

-------
  SUBROUTINE  DRAW                                   CDC 6400 FTN V3.0- 8PA OPT»1  05/21/79  17.07.05.      PAOE

                  X«J)=X3(N)
45                YU)«Y3(N>
                  IFBY4(I)
                  J«J«1
                  X(J)=X4(N)
                  Y,YY(NN1>,NN.1.0.0.»AMXC,AMNC)
                  NN1>NN1»NN
                  CALL NORM (Y(NN1).YY(NN1),NN»1.0.0.,AMXS.AMNS)
                  WRITE<6«15)  XU)»XNN«1
                  CALL NORM (Y(NN1)»YY(NN1),NN,1..0.,AMXB.AMNB)
                                            MODEL LISTING  (65 of 85)

-------
          SUBROUTINE  DRAW                                   CDC 6400 FTN V3.0- BPA OPTsl   05/21/79   17.07.05.       PAGE

                          NN1=NN1+NN
                          CALL NORM  (Y(NN1>«YY(NN1>,NN,1.,0.•AMXC.AMNC)
                          NN1=NN1»NN
        90                CALL NORM  (Y(NN1)»YY(NN1).NN.l.  .0..AMXY.AMNY)
                          WHITE(6.25)  X(l).X(NN),AMXA.AMXB.AMXC.AMXY,AMNA,AMN8.AMNC*AMNY
                       25 FOHMATUH1/////10X.40HPLOT OF  COLLAPSING CLOUD CHARACTERISTICS///
                         1.10X.39HINDEPENDENT VARIABLE IS  TIME OVER RANGE.2X,2613.5///10X,
                         2 60HOEPENDENT VARIABLE,  ALL NORMALIZED FOR PLOTTING ON UNIT AXIS//
        95               3 10X.6HSYMBOL.13X,1HA»17X»1HB»13X.1HC»13X,1HY/10X.11HHAX PLOTTED.
                         4 3X»G12.5.4X,3(2X,G12.5)/10X,11HMIN PLOTTED.3X,G12.5,4X,3(2X.G12.5
                         5)/10X»7HREMARKS,8X,9HVFRT SIZE.9X.8HHOR SUE.4X,13HCONCENTRATION
                         6 .3X.6HDEPTH )
                          CALL SPLOT(YY.X»P»J»NY.NX»NN,4,SYM)
       100                RETURN
                    C
                       50 DO 51 1=1,4
                       51 SYM(I)=SIM(I*5)
                       52 CALL RANGE(Y,J,AMXS,AMNS.JMX,JMN)
       105                WRITE(6.500) X (1)»X(NN).AMNS.AMXS
                          CALL SPLOTt  Y,X*P.J,NY,NX.NN,NCURV,SYM)
                      500 FORMATUH1,/////,2X.31HGRAPH OF  WASTE  CONCENTRATIONS  »//.
                         « 2X.12HRANGE OF  X  .20X,2G20.fl./ .2X.32HRANGE OF CONCENTRATIONS PL
                         10TTED   ,  2620.8. 8(/»)
,rj     110                RETURN
^J                  C
                       60 DO 61 1=1,4
                       61 SYM(I)=SIM(I»9)
                          GO TO 52
       115          C
                     1000 DO 1001 1=2,4
                     1001 SYM(I)=SIM(I»4)
                          SYM(1I=SIM(3)
                          GO TO 52 •
       120          C
                     3000 CONTINUE
                          DO 3001 1=1,4
                     3001 SYM
                          GO TO 52
       125          C
                     2000 SYM(1)=SIM(15)
                          CALL RANGE(Y,J,AMX,AMN,JMX»JMN)
                          IF(AMN.EO.O..AND.AMX.EO.O.) RETURN
                          WRITE(6,?001> X(l)»X(NN),AMN.AMX
       130           2001 FORMATUH1.1H/) »2oX. 15HGRAPH  OF X VS  2,//,2X, 10HHANGE OF X»
                         •2G20.8,/,2X»10HRAN6E  OF  Z.2G20.8)
                          CALL SPLOT(Y.X.P,J.NY.NX.NN.NCURV.SYM)
                          RETURN
                          END
                                                  MODEL  LISTING  (66 of  85)

-------
          SUBROUTINE  SPLOT                                   CDC 6400 FTN V3.0-  BPA OPT«1   05/21/79  17.07.05.       PAGE

                          SUBROUTINE SPLOT 00> .SYMU) ,P<2*00) .0(20) »H(10>
                          DATA 0/20«5M ---- I/                                               NON-ANSI
                          DATA BL5/5H     /
                          DATA EYE/1HI/
        10          C     SET GRAPH FIELD TO BLANKS
                          LOLD*L
                          LS=L/5
                          L«5»L5
                          LG=L5-1
        15                ML=(M»1)«ML5»1>
                          DO 10 J«1,ML
                       10 P AMXtAMN.DA
        30           2000 FORMAT(/////«lXt26HMAX,MIN*INC« OF IND.VAR.   ,/. IX. 6620. 8)
                          WRITE(6t2001) BMX.BMN.DB
                     2001 FORMAT(//tlX»26HMAXtMINtINC«  OF DEP.  VAR.    ./» 1X.6G20.8)
                          WRITE(6t2002>
                     2002 FORMAT (1H1)
        35          C     DETERMINE AND PRINT TOP (DEPENDENT AXIS)  LABEL AND  LINE
                           JZA*0
                           TESTA*AMX«AMN
                           TESTRsBMX«BMN
        40                 IF(TESTA)50»60«60
                       50  JZA*-AMN/DA
                       60 IF(TESTB)  70.90.90
                       70  IB=-BMN/DB
                                                     MODEL  LISTING  (67 of  85)

-------
           SUBROUTINE   SPLOT                                   CDC  6400  FTN  V3.0-  BPA  OPT = 1   05/21/79   17.07.Ob.       PAGE
                            UA=-I_5
         45                00  60  J=1»M
                            LIA=LIA»L5
                        80   CALL  PFIX(P.IB.LIA.EYE)
                        90   L10=LOLO/20+1
                            D820=20.»DB
         50                DO  100 J=1,HO
                       100 H(J)=BMN«FLOAT(J-1)«DB20
                          HMAX=ALOG10(ABS(H(L10)))».OOOl
                          IFCHMAX .LT.  0.) GO  TO  106
                          IFIHMAX .GE.  1.) GO  TO  109
         55                WRITEC6.105)  (H(J)iJ=l,L10>
                       105 FORMAT(14X,F3.1»5(17XtF3.1M
                          GO  TO  114
                       106 *RITE(6»10B)(H
                       110 FORMAT(12X«F6.2.5«14X»F6.2))
                       114   WRITE(6tll5  >  (0(J),J=lf20)
                       115 FORMAT(15XtlHI,20A5)
         65          C
_                  C     ENCODE PLOT POINTS
UD                        DO  200 J=1,N
10                          IA=(A(J)-AMN)/DA
                            LIA=L5«IA
         70                  IB=IB(J)-BMN)/DB
                          J2Z=(J-1)/NREP
                            ISYM=JZZ-(JZZ/NSYM>«NSYM*1
                            CALL  PFIX(PtIB«LlA»SYM(ISYM>)
                     200    CONTINUE
         75          C
                    C     PRINT  GHAPH
                            00 300 J=1.M
                            JO=(J/10)»10
                            JLO=J«L5-LO
         60                  JHI=JLO*LO
                          WRITE(6»255>  (P
                      355 FOHMATU5X.1HI.20A5)
                            IF(J.EQ.JZA) W«ITE(6»265 > ZROt(OIK)»K=1
                      265 FORMATUH»,G13.5«2X»20A5)
         85                  IF
-------
         SUBROUTINE  BOOKS                                  CDC 6400 FTN V3.0- BPA OPT*l  05X21X79  17.06.04.      PAGE

                         SUBROUTINE BOOKS «W<31t31.2).SS(600.12)
                         DIMENSION DEPTHO1.31)
       10                COMMON/HA/AAU4»31 ,31)»AA2<4»31.31 > tAA3(4.31.3D.AA4(4,31,3D t
                        1 KEYMAX
                         COMMONXNCX NTCLD
                         COMMON/CLOUD/T<600>tCX<600)tCY(600>tCZ<600)tCU(600)tCV(600)
                        It CW<600)tDENDIF(600).BC<600).AA(600)tFC(600)»VF
       15                COMMON/PIECES/ PARAM(13)»ROAS(13)»CS<13)i VFALL<13)tVOIDS<13)tBVOID
                        UICOHESU2),VFALLC(13),VFALSC(20t13).VFALLO(31.31.13)
                         COMMONXGUIDE1X TDUMPtTSTOP*ISTEP.IPLUNGtNUTRL.NTHIAL*ILEAVE*
                        1 KEVl,KEY2tKEY3
                         COMMON/BAY/ OXtDTL.XBARGE»ZBARGE»DXH»DXR»AREA
J^     20                COMMON/COL/ AO.IBED»FBED
O                       COMMON/LTCOF/ ALAMDAtDIFtAKYO
                         COMMON/SWITCH/ ITF
                         COMMON/GPI/ GtPIfRB
                         COMMON/FLEE/ ITD»TD(6)tDC(6).CINIT.CBACK(13).CTRACEC600)
       25                COMMONXENTRANX TEMAS(100).VOLSC(100)
                         NSP1=NS*1
                         DO 50 1=1.100
                         VOLSC(11*0.0
                     50  TEMAS(I)rO.O
       30                NTCLD«0
                         Ci=2.»PIX3.
                         NEWT=1
                         INCT=1STEPX10
                   C     INCT IS  INCREMENT OF STEPS TO CHECK SHORT TERM
       35          C
                         IF(K  .EO. NSP1) GO TO 300
                     100 CONTINUE
                         LAST=NEWT
                     102 NEWT=NEWT»INCT
       40          C     AT LAST STEP IN SHORT TERM SET TO CREATE FINAL CLOUD OF THIS
                   C     MATERIAL
                         IF NEWT=ISTEP
                                                    MODEL  LISTING  (69 of 85)

-------
         SUBROUTINE  BOOKS                                  CDC 6400 FTN V3.0- BPA OPT=1  05/21/79  17.06.04.      PAGE

                   C     ...HERE TO CHECK IF SOLIDS HAVE LEFT CLOUD IN LATEST TIME INTERVAL
       45          C        L  IS INDICATOR OF CHANGE OF COMPUTATION PHASE DURING SHORT
                   C           TERM
                   C        VLOSS IS SOLID VOLUME LOSS FROM CLOUD
                         IFU(NEWT) ,LE. TUTFM GO TO 120
                         IF(T(LAST) .GT. T«»2
                         L=2
       55                GO TO 200
                   C
                   C     IN CONVECTIVE DESCENT PHASE
                     120 CONTINUE
                         VV=C1«SS(LAST,K)«AA(LAST)«»3
       60                VLOSS=VV-C1«SS(NEWTtK)«AA(NEWT)«»3

^                       GO TO 200
O                 C
-1                 C     IN DYNAMIC COLLAPSE PHASE
       65            140 CONTINUE
                         VV=.25«Cl"SS(LASTtK)«AA(LAST>«BC(LAST)«»2
                         VLOSS=VV-.25»C1»SS(NEWT»K)»AA(NEWT)»BC(NEWT)»«2

                     200 CONTINUE
       70          C     AT FINAL SHORT T<_«M TIME STEP* VOLUME OF NEW CLOUD IS ALL
                   C     REMAINING MATERIAL IN CLOUD
                         IF
-------
           SUBROUTINE  BOOKS                                  CDC 6400 FTN V3.0- BPA OPT*1  05/Z1/T9  17.06.0*.      PAGE

                          7MASS(NTCLD)«VLOSS
                          TTHK(NTCLD)-VFALLC(K)»
                          IFINEWT .EQ. ISTEP)TTHK(NTCLD)*TTHK,L
                      220 TTOP(NTCLO)*CY(NEWT)+3.«AA(NEWT)/B.
                          1F(NEWT .EQ. ISTEP)TTOP(NTCLD>3TTOP-AA(NEWT>
                      250 CONTINUE
                          IF<(TTOP(NTCLD)»TTHK(NTCLDM .GT. D3>  TTOP(NTCLD>=D3-TTHK(NTCLD)
       105          C     TSIDE IS SIDE OF SQUARE WITH AREA EQUAL TO AREA OF CIRCULAR
                    C     SHORT TERM CLOUD
                          TSIDE(NTCLD)=0.886266«BC(NEWT)
                          VFALSC(NTCLD»K)=VFALL(K)
g                        IFdCOHES(K) .EQ.O) GO TO 251
ro     HO                SCONC»(TMASSINTCLD) /(TSIDE (NTCLD) ««2«TTHMNTCLD» > "2600000.
                          IF(SCONC .LE. 25.)VFALSC(NTCLD.K)=0.0017
                          IFISCONC .GT. 25. .AND.  SCONC .LE. 300.) VFALSCiNTCLD
                         1fK)*(0.00713»SCONC««1.333331/304.8
                          IF(SCONC .GT. 300.) VFALSC(NTCLDtK)=0.047
       115            251 CONTINUE
                          IF(KEYMAX.NE.1)GO TO 500
                      253 WRITE(6.255) NTCLD.T(NEWT)»TX(NTCLD)»TZ(NTCLD).TSIDE(NTCLD)
                         1,TTOP(NTCLO)»TTHK(NTCLD).TMASS(NTCLD).TEMAS(NTCLD).NEWT.LAST
                      500 CONTINUE
       120            255 FORMAT(//!Xt27HNEW CLOUD CREATED. NTCLD = ,I5/3X.6HT(SEC).8X.2HTX
                         1.10X.2HTZ.9X»5HTS1DE.8X.3HTOP.8X,4HTTHK,8X,5HTMASS.8X,5HTEMAS.8X»
                         24HNEWT.7X*4HLAST«/lXt8G12.4.4X,I4t6X*I4)
                          GO TO 400
                    C
       125         C     ...HERE TO CREATE FINAL FLUID CLOUD...
                      300 NTCLD*NTCLD»1
                          NEWT=ISTEP
                          TX(NTCLD)=CX«ISTEP)«XBARGE
                          TZ (NTCLD) =CZUSTEP)*ZBARGE
                                                    MODEL LISTING  (71  of 85)

-------
   SUBROUTINE  BOOKS                                  CDC 6400 FTN V3.0- BPA OPT = 1  05/21/79  17.06.04.      PAGE

130                CALL DINTUX(NTCLD) .TZ(NTCLO) »D3,OEPTH.NMAX.MMAX)
                   TSIDE(NTCLD)=.fl86226«BC».5
                   IFIIBED .NE. 0 .AND. NEWT .GT. 1BED .AND. NEWT .LT. ILEAVE)
140               1 TTOP(NTCLD)=D3-AA(ISTEP)
                   TEMAS(NTCLD)=
                   IF((TTOP(NTCLD)*TTHK(NTCLD)) .GT. D3) TTOP(NTCLO)=D3-TTHK(NTCLD)
                   GO TO 253
               400 DELT=DTL  -T(NEWT)
                   IFJDELT.GE.O.) GO TO 402
150                WRITE(6»2001)
              2001 FORMAT(//54H DTL .LT. SHORT TERM CALCULATIONS - ADJUST AND RERUN
                  .  )
                   CALL EXIT
             C     ...UPDATE LATEST CLOUD TO 1/2 HOUR AFTER DUMP
155            402 IF(K .EO. NSPl)  VOL=TTHK(NTCLD)«TS1DE(NTCLD)««2
                   DTOP=0.
                   CALL DINT(TX(NTCLD)»TZ(NTCLD)»D1»DEPTH»NMAX»MMAX)
                   IF(TTOP(NTCLD) .EQ. DDGO TO 410
             C     ...CONVECT...
160          C     DETERMINE HORIZONTAL VELOCITIES
                   YY=TTOP(NTCLD)+.5»TTHK(NTCLD)
                   CALL VEL(TX(NTCLD).YY.TZ(NTCLD)»UA»*A»U»W.OEHTH.NMAX.MMAX)
                   TX(NTCLD)=TX(NTCLO)»UA«DELT
                   TZ(NTCLO>=TZ(NTCLO)+WA«OELT
165          C     CHECK FOR SMALL  CLOUD PASSING OUT OF GRID BOUNDARY
                   NCHK=TZ(NTCLD)«DXR
                   MCHK=TX(NTCLD)«DXR
                   IF(NCHK .LT. 1 .OR. NCHK .GT. NMAX .OR. MCHK .LT. 1 .OR. MCHK .GT.
                  1  MMAX) WRITE(6.405)
170            405 FORMAT(/5X.101H	WARNING	A SMALL CLOUD HAS PASSED OUT OF GRID B
                  10UNOARY IN SUBROUTINE BOOKS...ERRORS WILL OCCUR	  )
                   CALL DINT(TX(NTCLD)»TZ(NTCLD).02.DEPTH,NMAX.MMAX)
                                           MODEL  LISTING  (72 of  85)

-------
   SUBROUTINE  BOOKS                                  CDC 6400 FTN V3.0- BPA OPT»1  05/21/79  17.06.04.       PAGE

             C     DTOP ESTIMATES VARIATION OF CLOUD DEPTH DUE TO CONVECTION OVER
             C     VARYING DEPTHS
175                DTOP»(01-D2)«TTOP(NTCLD)/D1
             C     ...OIFUSE HORIZONTALLY...
                   TSIDE(NTCLDI«TSIDE(NTCLD)•(!.*(!.333333*ALAMDA/TSIDE(NTCLD)«»
                  1 .666666)•DELT)«»1.5
             C     ...DIFUSE VERTICALLY...
180                DO 1000 IDELT«1»10
                   OTOP=TTOP(NTCLO)
                   MX*TX(NTCLD)«DXR».5
                   NZaTZ(NTCLO>«DXR«.S
                   CALL VDIFCO(NZ.MX.OTOP,DCO.U»W.DEPTH.NMAX»MMAX»NVL)
185                DINK»2.0»SQRT(OCO«OELT/10.0)
                   TTOP(NTCLD)«TTOP(NTCLO)-DINK
                   IFUTOP(NTCLD) .LT.  0.) TTOP (NTCLD) =0.
                   OBOTsOTOP«TTHK(NTCLD)
                   IF(080T .GT.  D2>  OBOT»D2
190                CALL VOIFCO(N2.MX.OBOT.DCO.U.W,DEPTH.NMAX.MMAX.NVL)
                   DONK»2.0»SORT(DCO»DELT/10.0)
                   IF((OBOT«OONK) .GT.  D2) DONK=D2-OBOT
                   TTHK(NTCLO)=TTH«INTCLD)+DINK»DONK
                   IF«(OTOP«TTHK(NTCLD))  .GT. 02) TTHK(NTCLD)=D2-TTOP(NTCLD)
195                VOLSC(NTCLD)«TTHK(NTCLO)«TSIDE(NTCLD)*«2
              1000 CONTINUE
             C     ...SETTLE...
               410 IF(K  .EQ. NSPD  GO TO 440
                   DIST=VFALSC(NTCLD.K)«DELT
200                MX=TX(NTCLD)«DX««.5
                   NZ=TZ(NTCLD)«DXH».5
               411 XS=D2-TTOP(NTCLDI-TTHK(NTCLD)-DTOP
                   HS=0.5«TSIDE(NTCLD)
                   XU=TX(NTCLO)-HS
205                XD=TX(NTCLD)»HS
                   ZL=TZ(NTCLO)-HS
                   ZR=TZ(NTCLD)»HS
             C     DETERMINE GRID SQUARES FOR PLACEMENT OF MATERIAL ON B
             C     ASSUME EQUAL DISTRIBUTION AMONG GRID POINTS
210                NL=ZL/DX»0.5
                   MU=XU/DX»0.5
                   NR=ZR/DX«O.S
                   MD=XD/OX»0.5
                   IF(NL .LT. 1) NL=1
215                1F
-------
SUBROUTINE  BOOKS
                                                      CDC 6400 FTN V3.0- BPA OPT
                                                                      05/21/79  17.06.0*.
                                                                                               PAGE
220
225
230
235
240
245
250
255
     IF(MU .LT. 1) MU=1
     IFfMD .GT. MMAX) MD=MMAX
     NSQHS= (MD-MU+ 1 1 « (NR-NL* 1 )
     IFtNSQHS ,GE. 4) 60 TO 830
     NSQRS=1
     MD = MX
     MU=MX
     NR = NZ
     NL=NZ
 830 CONTINUE
     IF(XS .GE. DIST> GO TO 430
     IF(XS .GE. 0.) GO TO 412
     IFUBSIXS) .GT.  TTHMNTCLD) )  GO TO 420
     IF
     DO 810 MM=MU»MD
     00 810 NN=NU»NR
810  ACCUM(NN.MM>=ACCUM(NN(MM)»KALOUT/FLOAT(NSQRS)
     TMASS ( NTCLD)=TM ASS ( NT CLD) -FALOUT
     TTHMNTCLD) =TTHMNTCLO>- (DIST-XS)
     TTOP(NTCL.O)=TTOP(NTCLD)*DIST-DTOP
     GO TO 440
 420 DO 820 MM=MU»MD
     DO 820 NN=NL«NR
 820 ACCUM(NN»MM)=ACCUM(NN»MM) » TMASS (NTCLD) /FLOAT (NSQRS)
     ERASE CLOUO
     TMASS(NTCLO>=0.
     TX(NTCLO)=0.
     T2(NTCL[)>=0.
     TSIDE(NTCLD>=0.
     TTHK(NTCLD)=0.
     TTOP(NTCLO)=0.
     VOLSC(NTCLD)=0.0
     TEMAS(NTCLO)=0.0
     NTCLD=NTCLD-1
                              MODEL LISTING (74 of 85)

-------
          SUBROUTINE  BOOKS                                  CDC 6400 FTN V3.0- BPA OPT»1  05/21/79  17.06.04.      PAGE

                          GO TO 440
       260            430 TTOH(NTCLD)=TTOP(NTCLD)*DIST-DTOP
                      440 CONTINUE
                          IM (TTOP(NTCLD>»TTHK(NTCLDI ).GT. 02)TTOP(NTCLO)»D2-TTHK(NTCLO)
                    C
                          VOLSC(NTCLD)»TTHK(NTCLD)«TSIDE(NTCLD)*»2
       265                IF(K  ,NE. NSP1) GO TO  700
                          TEMAS(NTCLD)*TEMAS(NTCLD)»«CBACK(NSP1)
                          TMASS(NTCLD)=TMASS(NTCLD)»(VOLSC(NTCLD)-VOL)»CBACK(NSP1)
                          IF(TMASSINTCLO) .LT.  l.OE-10)  GO TO 700
                          DH=(TMASS(NTCLD)/VOLSC(NTCLD))/CINIT
       270                IF1DR .GT. DC GO  TO  700
                          TD(ITD)=»DTL
_                        ITD=ITO«1
O                    700 IFINEWT  .EQ.  ISTEP) RETURN
m                        GO TO 100
       27S                END
                                                    MODEL  LISTING  (75 of  85)

-------
          SUBROUTINE  ACAO                                   COC 6400  FTN V3.0- BPA OPT*1   05/21/79  17.06.04.      PAGE

                          SUBROUTINE ACAD,TXI100),TZ<100>
                         3 ,0(31,31)
                          COMMON/NC/ NTCLD
                          COMMON/DIMEN/  NStNSPltNVLtNSC
        15                DIMENSION U(31,31.2)»W(31.31.3)
                          COMMON/BAY/ DX.DTL.XBARGE,ZBARGE«DXH,DXR,AREA
                          COMMON/PIECES/ PARAMOS) ,ROAS(i3) »cs .VFALLOS) ,VOIDS<13) »BVOID
                         1»ICOHES<12)»VFALLC(13),VFALSC<20»13>»VFALLD(31,31»13)
                          COMMON/LTCOF/  ALAMQA,DIF»AKYO
        20                COMMON/LOST/ GONE
                          COMMON/GPI/ G.PItRB
                          COMMON/ENTRANX TEMftS(lOO)«VOLSC(100)
O                        COMMON/FLEE/ ITD»TD<6),DC(6).CINIT.CBACK<13).CTRACE(600)
--J                        COMMON/CLOUD/T(600),CX(600),CY(600),CZ(600),CU(600),CV(600)
        25               1,  CW(600),DENDIF<600),BC(600),AA(600),FC(600),VF
                    C
                    C     CHECK CLOUD FOR INJECTION  TO  LONG  TERM GKID
                          N=l
                          NTEMP=NTCLD
        30             60 CONTINUE •
                    C     CHECK CLOUD SIZE...IF  LARGE ENOUGH,  INJECT  INTO NORMAL GRID
                          IERASE=0
                          IF(TMASS(N)  ,EQ. 0.)  GO TO 70
                    C     CHECK FOR SMALL CLOUDS  ON  OR  OUTSIDE OF GRID BOUNDARIES
        35                MXC=TX(N)»DXR+.0001
                          NZC=TZ(N)«DXR«.0001
                          IF(MXC .GT.  MMAX .OR.  MXC  .LT.  1 .OR.  NZC .GT.  NMAX .OR.  NZC .LT.
                         1   1) GO TO 250
                          IF(TSIOE(N)  .GE. 2.»OX) GO TO 200
        40                IF(TSIDE(N)  .LT. DX)  GO TO 100
                    C     ....HERE TO INJECT  A  SMALL CLOUD INTO  THE NORMAL GRID
                    C     ASSIGN CLOUD MATERIAL  TO FOUR NEAREST  GRID  POINTS
                          MX=TX(N)/DX».0001
                                                 MODEL LISTING (76  of 85)

-------
          SUBROUTINE  ACAD                                   CDC 6400 FTN V3.0- BPA OPT*1  05/21/T9  17.06.0*.      PAGE
                          NZ*TZ(N)/DX*.0001
        45                PROPX*UX
                          XVOL2=PHOPX«VOLSC  /OX
                          IF(PROPZ .LT. .0001) PROPZ*0.
                          TMASS2=PROPZ«XMASS1
        55                VOLi!=PROPZ»XVOLl
                          TMASS1»XMASS1-TMASS2
                          VOL1*XVOL1-VOL2
                          TMASS4«PROPZ»XMASSa
                          VOL4sPROPZ«XVOt2
        60                TMASS3«XMASS2-TMASS4
                          VOL3»XVOL2-VOL4
                    C
                          IFtTMASSl .60. 0.) GO TO 61
                          IF(ClNZfMX) .NE. C8ACK(K» GO TO 610
po      65          C     HERE TO ADD MATL TO EMPTY GRID
Co                        C
                          GO  TO 61
                      610 CONTINUE
                    C     HERE ADD MATL TO NON-EMPTY GRID
                          OM=C (NZ» MX) «THICK (NZ.MX) «AR£A
        75                81«TOP(NZtMX)»THICK(NZtMX)
                          B2sTTOP  *TTHK (N) »VOL1/VOL
                           IFJBOT  .GT. DEPTH(NZtMX) )BOT=DEPTH (NZtMX)
                           TOP
        80                 OTHK=THICK (NZ.MX)
                           THICK(NZ.MX)«80T-TOP
-------
           SUBROUTINE  ACAD                                   CDC 6400 FTN V3.0- BPA OPTsl  05/21/79   17.06.04.       PAGE

                           GVOL=OTHK«AREA
                           THICK(NZ,MX)=(GVOL»VOL1)/AREA
                           IF< (TOP) TOP  =
         90               1DEPTH(NZ.MX)-THICK(NZ»MX)
                           C(NZ»MX)=(OM*TMASS1)/ (THICK  »THICK(NZ»1.MX) > ,6T. DEPTH (NZ* 1 »MX )>
                          1 TOP (NZ* l.MX)=DEPTH(NZ+l.MX) -THICK (NJ>«1. MX)
        100                GO TO 62
                       620 CONTINUE
                     C     HERE TO ADD MATL TO NON-EMPTY GRID
                           OM=C(NZ*1,MX)»THICK(NZ»1»MX>»AREA
                           B1 = TOP
        105                B2=TTOP(N)*TTHK(N)«VOL2/VOL
                           BOT=AMAX1(B1»B2)
^                         IFIBOT .GT. DEPTH(NZ»1»MX) ) BOT=DEPTH (NZ+ 1 .MX)
O                         TOP(NZ»1.MX)=AMIN1 (TOP (NZ+ 1 .MX) » TTOP (N»
10                         OTHK=THICK{NZ»1.MX)
        110                TH1CK(NZ»1,MX)=BOT-TOP(NZ»1,MX)
                           THOIF=THICK(NZ»1»MX) -OTHK-TTHK (N) «VOL2/VOL
                           IFITHDIF ,GE. 0. 0) C (NZ» 1 .MX) = (OM+TMASS2»C8ACK 
        120                C(NZ«l,MX)=(OM+TMASS2)/(THICK(NZ*l.MX)»AftEA)
                        62 IFITMASS3 .EQ. 0.) GO TO 63
                           IF(C (NZ.MX»1) .NE. CBACK(K)) GO TO 630
                     C     HERE ADD MATL TO EMPTY GRID
                           C (NZ»MX*1)=TMASS3/VOL3
        125                THICMNZ»MX*1)= TTHK (N) »VOL3/VOL
                           TOH(NZ  ,MX*1) =TTOP(N)
                           IF( (TOP
-------
           SUBROUTINE  ACAO                                   CDC 6400 FTN V3.0- BPA OPT*1  OS/21/79   17.06.04.      PAGE

        130            630 CONTINUE
                     C     HERE ADD MATL TO NON-EMPTY GRID
                           OM=C(NZ«MX»1>«THICK(NZ.MX*1)«AREA
                           B1=TOP(NZ.MX*1)«THICK
                           IF
        140                THDIF=THICK(NZ.MX»1)-OTHK-TTHK(N>»VOL3/VOL
                           IF=                TOP(NZ»1.MX*1)=TTOP(N)
                           IF((TOP(NZ*1»MX*1)»THICK(NZ+1»MX»1)) .GT. DEPTH(NZ»1»MX»1))
                          lTOP
-------
   SUBROUTINE  ACAO                                   CDC 6400 FTN V3.0- HPA OPT = 1  05/21/79  17*06.04.      PAGE

             c     MAKE SURE THICKNESS RESULTS IN VOLUME CONSERVATION
                   GVOL=OTHK»AREA
175                THICK(NZ»lfMX+l) = (GVOL»VOL<»)/AREA
                   IF«TOP(NZ»1.MX»1>»THICK(N2»1,MX»1) )  .UT. DEPTH (NZ* 1 ,MX» 1 ) )TOP(NZ*
                  11,MX+1)=DEPTH=(OM»TMASS4)/ TOP (NNtMM)
21S               1DEPTH(NN»MM>-THICK(NN»MM>
                                            MODEL  LISTING  (80 of  85)

-------
          SUBROUTINE   ACAO                                   CDC 6400 FTN V3.0-  BPA OPT = 1   05/31/79  17.06.04.       PAGE

                          CINNtMM)s(TMASS
                          GO TO  215
                      210  CONTINUE
                   C      HERE  ADO MAIL  TO NON-EMPTY GRIP
       220                OM=C(NN,MM>"THICK 
                          IFITHDIF .GE.  0.0)C(NN.MM)=«
       230               ITHDIF'AREA)/(THICK(NNtMM)«ARKA)
                          IF(THOIF .GE.  0.0)  GO TO  21S
                   C      MAKE  SURE THICKNESS RESULTS IN VOLUME CONSERVATION
                          GVOL=OTHK«AREA
                          THICK(NN.MM)=(GVOL+WOLSC(N)/FLOAT(NSQHS)J/AREA
       235                C(NN,MM)=(OM*TMASS(N)/FLOAT(NSORS))/(THICK(NNtMM)«AHEA)
                      215  CONTINUE
                      220  CONTINUE
IV)                 C      HERE  COLLECT MASS SPILLED OUT OF BOUNDARY FROM LARGE CLOUD
r^                        GO TO 70
       240            250  CONTINUE
                   C      HERE  COLLECT MASS PASSING THROUGH GRID BOUNDARY
                          GONE=GONE*TMASSfN)-TEMAS(N)
                    C
                    C      ERASE TRANSITION CLOUD AND MOVE  CLOUDS BEHIND IT UP ONE SLOT
       245             70  NTEMP=NTEMP-1
                          IERASE=1
                          DO «0 I=N,NTEMP
                          TSIDE(I)=TSIDE(I«1)
                          TTHK(I)=TTHK(I*1)
       250                TTOP(I)=TTOP(I»1)
                          TMASS
                          TEMAS(I»=TEMAS(I»1)
                          VOLSC(I»=VOLSCU*1)
                          TX(I)=TX(I*1)
       255                TZ(I)=TZ(I»1)
                       80  CONTINUE
                          TSIDE(NTEMP«1)=0.
                          TTHK(NTEMP»1)=0.
                                                     MODEL  LISTING  (81  of 85)

-------
   SUBROUTINE  ACAD                                   CDC 6400 FTN V3.0- BPA OPT=1  05/21/79   17.06.04.       PAGE

                   TTOH(NTEMP«1)=0.
260                TMASS=0.
                   TEMAS(NTEMP»1)=0.0
                   VOLSCtTZ=0.0017
                   IF(SCONC .GT. ?5. .AND. SCONC .LE. 300.) VFALSC(N,K)=
                  1 (0.00713«SCONC««1.33333)/304.8
                   IF(SCONC .GT. 300.)VFALSC(N,K)=0.047
300            407 CONTINUE
                   TSIDE(N)=TSIDE(N)«(1.«(1.333333«ALAMDA/TSIDE(M)»».666666)*DTL)
                                            MODEL  LISTING (82 of 85)

-------
   SUBROUTINE  ACAO                                   CDC 6*00 FTN V3.0- BPA OPT»1  05/21/79  17.06.04.      PAGE

                  1 ««1.5
             C     SETTLE....
                   IF »DX« « .5
                   HS=0.5*TS10E(N)
                   XU=TX(N)-HS
310                XO=TX(N)»HS
                   2L=T2(N)-HS
                   ZR=TZ(N)»HS
             C     DETERMINE GRID SOUARES FOK PLACEMENT OF MATERIAL ON BOTTOM
             C     ASSUME EQUAL DISTRIBUTION AMONG GRID POINTS
315                NL=ZL/DX«0.5
                   MU=XU/DX»0.5
                   NR=ZR/DX»O.S
                   MD=XD/OX»0.5
                   IFINL .LT. 1)NL=1
320                IF(NR.GT. NMAX) NRsNMAX
                   IF(MU .LT. 1) MU=1
                   IF(MD ,GT. MMAX)  M(3=MMAX
                   NSQRS=(MD-MU*1)•(NR-NL*1)
                   IFINSQRS .GE. 4)  GO TO 730
3
-------
   SUBROUTINE  ACAD                                   CDC 6400 FTN V3.0- BPA OPT=1  05/21/79   17.06.04.       PAGE

345                DO 710 NN=NLtNR
               710 ACCUM(NN»MM)=ACCUM(NN,MM>»FALOUT/FLOAT(NSGRS)
                   TMASS(N)=TMA5S(N)-FALOUT
                   TTHK(N)=TTHK » DIST-OTOP
                50 CONTINUE
             C     ...DIFUSE VERTICALLY...
                   DO 53 IDTL=lflO
360                OTOP=TTOP(N)
                   MX=TX(N)*DXR«.5
                   NZ=TZ(N)»DXR*.5
                   CALL VDIFCO(NZ»MX»OTOPtDCO»UfW,DEPTH»NMAX,MMAX»NVL>
                   DINK=2.0«SQRT(DCO»DTL/10.0)
365                TTOP(N)=TTOP(N)-DIHK
                   IF(TTOP(N)  ,LT. 0.> TTOP(N)=0.
                   OBOT=OTOP«TTHK(N)
                   IF(080T .GT. DEPTH(NZtMX)) OROT=DEPTH(NZ»MX)
                   CALL VDIFCO(NZ»MX,OSOT,DCO.U»W,DEPTH,NMAX.MMAX.NVL)
370                OONK = 2.0«SORT(OCO*DTL/10.0I
                   IF((080T»OONK) .GT. DEPTH(NZ,MX»DONK=DEPTH(NZ.MX)-080T
                   TTHK(N)=TTHK(N)»UINK»DONK
                   IF((TTOP(N)+TTHK(N» .GT. DEPTH(NZ,MX))TTOP
                                            MODEL  LISTING  (84 of  85)

-------
   SUBROUTINE  ACAD                                   CDC  6400  FTN  V3.0-  BPA  OPT=1   OS/21/79   17.06.04.      PAGE     10

                   TSIDEU)=TSIDE(I»1>
                   TTHK(I)=TTHK(I»1)
390                TTOP(l)=TTOP(I»l)
                   TX=ETS
410                ITD=ITD»1
               460 CONTINUE
                   RETURN
                   END
                                            MODEL  LISTING  (85 of 85)

-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1.
4.
7.
9.
12
15
16
17
a.

18
REPORT NO.
EPA-600/3-80-034
2.
TITLE AND SUBTITLE
Workbook/Users Manual for Prediction of
Instantaneously Dumped Dredged Material
AUTHOR(S)
L. R. Davis, G. W. Bowers, and M. K. Goldenblatt
PERKORiyUNG ORGANIZATIONUMAME Ah
U.S. Tnvironmentai Frotec-
Corvallis, Oregon 97330
and
JBF Scientific Corporatior
Wilmingtoni Massachusetts
JD ADQflESS ~rm
;ion agency, CERL
i
nifiR?
. SP'ONSORfNG AGENCY NAME AND ADDRESS
Con/all is Environmental Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Corvallis, Oregon 97330
. SUPPLEMENTARY NOTES
3. RECIPIENT'S ACCESSION NO.
5. REPORT DATE
February 1980 issuing date
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
1 BA608
11. CONTRACT/GRANT NO.
R-804994
13. TYPE OF REPORT AND PERIOD COVERED
Final - Aug. 1976 - July 1979
14. SPONSORING AGENCY CODE
EPA/600/02

ABSTRACT
This manual describes the operation and use of a computer model developed to
predict the physical fate of dredged material instantaneously released into the water
column. The model predicts the spacial distribution of various components of the
dumped material as a function of time. Output includes material concentration
and position while in the water column and material mound height and concentration
after bottom impact. Included in this report are a description of the model's
structure and a complete explanation of its input/output formats. In addition,
the model has been run for a matrix of input conditions. Both the input and
output of these runs are presented as tables in dimensionless form. These working
tables can be used to approximate the fate of dredged material without requiring
the user to actually run the model. Several examples showing how these tables can
be used are also given. The first phase of this work was done by OBF Scientific
under sponsorship of the U.S. Environmental Protection Agency. The workbook portion
was done in-house at the EPA Con/all is Environmental Research Laboratory.

DESCRIPTORS
Dredged material disposal
Waste disposal
Mathematical models
. DISTRIBUTION STATEMENT
Unlimited
KEY WORDS AND DOCUMENT ANALYSIS
b. IDENTIFIERS/OPEN ENDED TERMS C. COSATI Field/Group
Dredge Spoil 13-B
19. SECURITY CLASS (This Report/ 21. NO. OF PAGES
Unclassified 224
20. SECURITY CLASS (This page) 22. PRICE
Unclassified
EPA Form 2220-1 (Rev. 4-77)
                             PREVIOUS EDITION IS OBSOLETE
                                                          217

-------