EPA-650/4-74-003


February 1974
Environmental  Monitoring Series

                                                                ;
                                                                $
                                                                ;;
                                                                1
                                                                ft


-------
                                 EPA-650/4-74-003
   DEVELOPMENT OF  MODELING
TECHNIQUE FOR  PHOTOCHEMICAL
            AIR  POLLUTION
                     by

           L. H. Tcuscher and L. E. Mauser

            Systems , Science and Software
                 P.O. Box 1620
             La Jolla, California 92037
              Contract No. 68-02-0272
             Program Element No. 1A1009
         EPA Project Officer:  Kenneth L. Calder

              Meteorology Laboratory
         National Environmental Research Center
       Research Triangle Park, North Carolina 27711
                  Prepared for

        OFFICE OF RESEARCH AND DEVELOPMENT
       U.S. ENVIRONMENTAL PROTECTION AGENCY
             WASHINGTON, D.C. 20460

                 February 1974

-------
This report has been reviewed by the Environmental Protection Agency
and approved for publication.  Approval does not signify that the
contents necessarily reflect the views and policies of the Agency,
nor does mention of trade names or commercial products constitute
endorsement or recommendation for use.

-------
                                   TECHNICAL REPORT DATA
                            (Please read Instructions on the reverse before completing)
 1 REPORT NO
  EPA-650/4-74-003
                                                          3. RECIPIENT'S ACCESSION-NO.
4 TITLE AND SUBTITLE
  Development of Modeling Technique for Photochemical
  Air Pollution
                                                           5. REPORT DATE
                                                              February 1974
6. PERFORMING ORGANIZATION CODE
7 AUTHOR(S)

  L. H. Teuscher and  L.  E.  Hauser
                                                          8. PERFORMING ORGANIZATION REPORT NO
9 PERFORMING ORGANIZATION NAME AND ADDRESS

  Systems, Science  and  Software
  P.  0. Box 1620
  La Jolla, Ca.  92037
                                                           10 PROGRAM ELEMENT NO
     1A1009
11 CONTRACT/GRANT NO
  68-02-0272
 12. SPONSORING AGENCY NAME AND ADDRESS
  Meteorology Laboratory,  EPA
  National Environmental  Research Center
  Research Triangle  Park,  N.  C.   27711
13. TYPE OF REPORT AND PERIOD COVERED
  Final Report.	
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16 ABSTRACT
       A new particle-in-cell  code has been developed and  applied  to the simulation
  of photochemical air  pollution  in the Los Angeles basin.  The method is a
  Lagrangian one in which  a  parcel  of air is followed and  the chemistry takes place
  within it, in contrast to  an earlier method in which the photochemical kinetics
  is considered in a three-dimensional space of fixed Eulerian cells.   Although it
  can be shown that inherent errors are associated with the Eulerian scheme of
  computation it has not previously been clear how important these errors would
  be in actual simulations,  when  compared to the results of Lagrangian chemistry.
  In the present study  the two methods were compared with  actual measurements of
  photochemical air pollution  for a selected day in the Los Angeles basin.  The
  results obtained indicated that in the present rough state-of-the-art as regards
  modeling the chemical kinetics  there is little to choose between the two methods.
  Some calculations were also  made to test the sensitivity of the  results to the
  input data.  These emphasized the non-linearities of the problem and the dangers
  in extrapolating air  quality levels simply from changes  in emissions.  The
  report documents the  new Lagrangian code and provides a  users guide  to its
  operation.
17.
                               KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                                             b. IDENTIFIERS/OPEN ENDED TERMS
              c. COSATI Field/Group
  Air Pollution

  Mathematical Modeling
18 DISTRIBUTION STATEMENT
                                              19. SECURITY CLASS (This Report)
                                                Unclassified	
              21 NO OF PAGES

              	91
                                              2O SECURITY CLASS (Thispage)
                                                Unclassified
                                                                        22 PRICE
EPA Form 2220-1 (9-73)

-------
                                                          INSTRUCTIONS

    1.   REPORT NUMBER
         Insert the EPA report number as it appears on the cover of the pubbcation.

    2.   LEAVE BLANK

    3.   RECIPIENTS ACCESSION NUMBER
         Reserved for use by each report recipient

    4.   TITLE AND SUBTITLE
         Title should indicate clearly and briefly the subject coverage of the report, and be displayed prominently. Set subtitle, if used, in smaller
         type or otherwise subordinate it to main title. When a report is prepared in more than one volume, repeat the primary title, add volume
         number and include subtitle for the specific title.

    5.   REPORT DATE
         Each report shall carry a date indicating at least month and year.  Indicate the basis on which it was selected (eg, dale of issue, date of
         approvcl, date of preparation, etc )

    6.   PERFORMING ORGANIZATION CODE
         Leave blank.

    7.   AUTHOR(S)
         Give name(s) in conventional order (John R. Doe, J Robert Doe. etc.)   List author's affiliation if it differs from the performing organi-
         zation.

    8.   PERFORMING ORGANIZATION REPORT NUMBER
         Insert if performing organization wishes to assign this number

    9.   PERFORMING ORGANIZATION NAME AND ADDRESS
         Give name, street, city, state, and ZIP code. List no more than two levels of an organizational hirearchy

    10.  PROGRAM ELEMENT NUMBER
         Use  the program element number under which the report was prepared.  Subordinate numbers may be included in parentheses

    11.  CONTRACT/GRANT NUMBER
         Insert contract or grant  number under which report was prepared

    12.  SPONSORING AGENCY NAME AND ADDRESS
         Include ZIP code.

    13.  TYPE OF REPORT AND PERIOD COVERED
         Indicate interim final, etc., and if applicable, dates covered.

    14.  SPONSORING AGENCY CODE
         Leave blank.

    15.  SUPPLEMENTARY NOTES
         Enter information not included elsewhere but useful, such as  Prepared in cooperation with, Translation of, Presented at conference of,
         To be published in, Supersedes, Supplements, etc

    16.  ABSTRACT
         Include a brief (200 words or less) factual summary of the most significant information contained in the report. If the report contains a
         significant bibliography or literature survey, mention  it here

    17.  KEY WORDS AND DOCUMENT ANALYSIS
         (a) DESCRIPTORS - Select from the Thesaurus of Engineering and  Scientific Terms the proper authorized terms that identify the major
         concept of the research  and are sufficiently specific and precise to be used as index entries for cataloging.

         (b) IDENTIFIERS AND OPEN-ENDED TERMS - Use identifiers for project names, code names, equipment designators, etc  Use open-
         ended terms written in descriptor form for those subjects for which no descriptor exists

         (c) COSATI FIELD GROUP - Field and group assignments are to be taken from the 1965 COSAT1 Subject Category List   Since the ma-
         jority of documents are multidisciplmary in nature, the Primary Field/Group assignment(s) will be specific discipline, area of human
         endeavor, or type of physical object.  The application(s) will be cross-referenced with secondary Field/Group assignments that will follow
         the primary postmg(s)

    18.  DISTRIBUTION STATEMENT
         Denote releasability to the public or limitation for reasons other than security for example "Release Unlimited." Cite any  availability to
         the public, with address and price.

    19. & 20. SECURITY CLASSIFICATION
         DO NOT submit classified reports to the National Technical Information service.

    21.  NUMBER OF PAGES
         Insert the total number  of pages, including this one and unnumbered pages, but exclude distribution list, if any.

    22.  PRICE
         Insert the price set by the National Technical Information Service or the Government Printing Office, if known
EPA Form 2220-1 (9-73) (Reverse)

-------
                                             SSS-R-74-1756


                      TABLE OF CONTENTS
                                                        Page
PART I - THEORY AND TECHNICAL RESULTS
1.   INTRODUCTION 	    1
     1.1   Errors in Eulerian Chemistry 	    2
     1.2   Initial Evaluation of Errors for Observed
           Concentrations 	    4

2.   DESCRIPTION OF THE LAGRANGIAN METHOD 	    7
     2.1   The Diffusion Equation 	    7
     2.2   Particle Advection 	    8
     2.3   Eulerian Cell Concentration  	   12
     2.4   Sources	   13
     2.5   Chemical Reactions 	   16
     2.6   General Code Operation	   16

3.   TESTING OF THE NEXUS/L CODE	   18

4.   PHOTOCHEMICAL MECHANISM AND SIMULATION 	   21

5.   SUMMARY AND CONCLUSIONS	   39

References	   40

PART II - OPERATIONS MANUAL
1.   INTRODUCTION	   41

2.   DISCUSSION OF THE NEXUS/L CODE	   42
     2.1   Grid Labeling Conventions	   42
     2.2   The Nexus/L Particles	   42
     2.3   Flow Logic of the Nexus/L Code	   44
     2.4   Glossary of Key Quantities	   48
                               ii

-------
                                             SSS-R-74-1756


                  TABLE OF CONTENTS, contd.
                                                        Page

     2.5   How Problems are Generated	    49
           2.5.1  Namelist "START"  	    49
           2.5.2  Namelist "SPECS"  	    49
           2.5.3  Namelist "GEN"	    52

3.    CODE LISTING	    54

4.    A SAMPLE TEST CALCULATION	    85
     4.1   Code Changes	    85
     4.2   Input to Generate Test Calculation	    86
     4.3   Cycle 1 Output	    88
     Reference	    88
                              111

-------
            SYSTEMS.  SCIENCE  AND  SOFTWARE
                                           SSS-R-74-1756
                        PART  I




             THEORY AND TECHNICAL RESULTS
P.O. BOX 1620, LA JOLLA, CALIFORNIA 92037, TELEPHONE (714) 453-O06O

-------
                                             SSS-R-74-1756
                      1,  INTRODUCTION
        During the past years, the Environmental Protection
Agency (EPA) and predecessor organizations have funded the
development of photochemical simulation models which are to
be used in the evaluation of present photochemical air pollu-
tion problems, the prediction of potential control strategies
and the impact of new industrial plant siting on an urban re-
gion.
        Two general methods of approach have evolved for
photochemical simulation.  The first model, typified by the
models developed by Eschenroeder, et.al.  (1971) and System
Development Corporation  (1970) is a Lagrangian method where a
parcel of air is followed and chemistry takes place inside
the packet of air.  The other approach that has been consid-
ered is an Eulerian approach where the three-dimensional space
is divided into subvolumes or cells and during each time in-
crement pollutants are allowed to move from cell to cell by
wind advection and diffusion.  Roth, et.al.  (1971) have devel-
oped a model along these lines.  Systems, Science and Software
(1971) developed a composite model using the PICK method
(Particle-In-Cell with K-theory diffusion) which has Lagrangian
characteristics but does chemistry in fixed Eulerian cells.
        The objective of the research effort described in this
report was to extend the model developed by Systems, Science
and Software  (S3) so that the photochemical kinetics can be
considered in a Lagrangian framework and comparisons between

-------
                                             SSS-R-74-1756
results using Eulerian and Lagrangian chemistry can be made to
determine  in actual practice if significant differences be-
tween the methods occur.  It can be shown that some inherent
errors do exist in Eulerian chemistry; however, it is not clear
how important quantitatively these errors will be when com-
pared to the results of the Lagrangian chemistry in actual
simulations.
1.1
ERRORS IN EULERIAN CHEMISTRY
        This illustration of the basis for the inherent errors
in Eulerian chemistry was originally presented in the S3 Final
Report in partial fulfillment of EPA Contract 68-02-0006.
        Consider a one-dimensional problem as illustrated in
Figure 1.
        CELL    1
0.0
1.0
1.0
1.0
0.0
0.0
   Figure 1.  Initial distribution of primary pollutant A.
Initially, cells 2-4 each have only primary pollutant, A, with
cell concentration equal to 1.0.  The effects of advection for
a wind blowing four-tenths of a cell in time step At are simu-
lated first, resulting in the distribution shown in Figure 2.
If a quadratic chemical mechanism   (A + A •* B)  is hypothesized
to illustrate the non-linearities in chemical kinetics rate
equations, the rate equations can be written as

-------
        CELL
                                             SSS-R-74-1756
0.0
0.6
1.0
1.0
0.4
0.0
       Figure 2.   Distribution of primary pollutant A
                  after advection.
         dt
             __ .. . 2
             ~   l J
Furthermore, if  k  is small, then  k[A]2 At « [A]   and the
effects of the chemical reaction on the concentration of  A
can be ignored in order to focus on the secondary pollutant
production.  With  [A]  approximately constant during the re-
actions the equation for production of   [B]  can be integrated

        [B] = k[A] 2 At  .

That is, the production of the secondary pollutant is propor-
tional to the square of the concentration of the primary pol-
lutant.  If, as an Eulerian technique would require, the cell
concentrations of  A  are used in this equation, the distribu-
tion of  B  would be as shown in Figure 3.
CELL  1
0.0
0.36 kAt
1.0 kAt
1.0 kAt
0.16 kAt
0.0
     Figure 3.  Distribution of secondary pollutant, B,
                calculated from cell concentrations
                given in Figure 2.

-------
                                             SSS-R-74-1756
On the other hand,  the  concentration of  A  inside the puff
is 1.0 and outside  0.0.  That is, in a Lagrangian frame the
production of  B  would be as shown in Figure 4.
CELL
0.0
0.6 kAt
1.0 kAt
1.0 kAt
0.4 kAt
0.0
     Figure 4.  Distribution of secondary pollutant, B,
                calculated  from Lagrangian concentration,
This is the physically  correct picture.  The methodology used
in chemical simulation  with Eulerian cell concentrations in-
troduced errors of  40%  in cell 2 and 60% in cell 5 when com-
pared to the correct  Figure 4.

1.2     INITIAL EVALUATION OF ERRORS FOR OBSERVED CONCENTRA-
        TIONS
        In this section, observed concentrations at the Down-
town Los Angeles and  Pasadena stations of the Los Angeles
County Air Pollution  Control District  (APCD) are used to illu-
strate and evaluate the Eulerian concentration errors.  At
7:00 a.m., on September 30, 1969, the  following concentrations
were observed:
                        Downtown
                       Los Angeles
Pasadena
NO
NO 2
HC
0,
51 pphm
1 pphm
9 ppm
3 pphm
19 pphm
9 pphm
5 ppm
1 pphm

-------
                                             SSS-R-74-1756
These sets of concentrations can be used as initial conditions
for a chemical reaction simulation.  In this illustration, the
simulation uses the CHEM computer code as described in the pre-
viously referenced S3 Final Report.  The results after 5 and 10
minutes are shown in the first column of Table I.
                           TABLE I
TIME
0



5



10



POLLUTANT
NO
N02
HC
°3
NO
N02
HC
°3
NO
N02
HC
°3
LOS
ANGELES
51.0
1.0
9.0
3.0
46.0
5.8
9.0
0.02
43.0
8.9
9.0
0.04
PASADENA
19.0
9.0
5.0
1.0
16.0
11.0
5.0
0.1
14.0
14.0
5.0
0.2
MIXED CELL
LAGRANGIAN
19.0
9.0
5.0
1.0
28.0
9.2
6.6
0.08
37.0
9.8
8.2
0.07
EULERIAN
19.0
9.0
5.0
1.0
27.0
10.0
6.6
0.06
37.0
7.8
8.2
0.03
        The Lagrangian and Eulerian results  listed under
 "Mixed Cell"  correspond to a position  intermediate between
 Downtown  Los  Angeles and Pasadena.  Initially,  the air at this
 position  corresponds to that over Pasadena.   It has been as-
 sumed for this  illustration that "Downtown"-type air replaces
 four-tenths of  the  "Pasadena"  air over this  position each five

-------
                                             SSS-R-74-1756
minutes.  Corresponding  to Figure  1, the position being exam-
ined is similar to cells 2 or  5.   The Lagrangian results are
just the proper proportions of the two  types of air.  The
Eulerian results show  the effects  of performing the chemical
simulation with "mixed"  cell concentrations - an error of ap-
proximately 10% in O3  and 20%  in N02 in only two cycles (10
minutes).  After a few hours errors inherent in the Eulerian
simulation may be compounded and the results may be meaningless
or, on the other hand, the errors  may tend to average out.
        This illustration is,  like the  first illustration, a
gross over-simplification.  These  inherent errors dominate only
where large gradients  are present.  The objective of the pre-
sent research is to  examine the potential differences by com-
pleting comparison calculations of the  Los Angeles basin using
both the Eulerian and  Lagrangian chemistry, and then evaluating
the two techniques if  significant  differences occur.

-------
                                             SSS-R-74-1756
          2,  DESCRIPTION OF THE LAGRANGIAN METHOD
2.1     THE DIFFUSION EQUATION
        In this report a Lagrangian approach to the solution
of the "K-theory" equation describing the advection and dis-
persion of pollutants in the atmosphere is presented.  In a
previous study, Systems, Science and Software (1971)  describes
the PICK method where each particle represents an amount of
mass which is transported by winds and dispersion is accounted
for by a "turbulent flux velocity."  The PICK method has been
applied to two- and three-dimensional air pollution problems
with good results.  Artificial dispersion usually found in
Eulerian codes is greatly reduced and good definition of dis-
tributions can be maintained.
        In the Lagrangian approach, it is necessary that the
particles do not represent mass but represent concentration of
pollutant so that chemistry can be accomplished within each
particle as it moves along.  The basic ideas of particle repre-
sentation used by S3 (1971) are utilized in the development of
the new computer simulation model.
        The basic Eulerian equation which is to be solved is
a set of coupled K-theory equations for each chemical specie
as shown in Eq.  (1).

-------
                                             SSS-R-74-1756
         3C±     3^     3^     3C,
         3t   +  U3x   +  V3v   + WTz~

where
              C.
           x,y,z
           u,v,w
        K ,K  ,K
         x  y  z
9ci\
•^r— I
   /
              S.
            chem
                      concentration of  ith specie
                      Cartesian coordinates
                      wind  velocities
                      diffusivities
                      source  rate of ith specie
                      rate of change of  ith specie due to
                      chemical reactions
Equation  (1) is not completely general, since the diffusivity
should be considered as a  tensor and  the  x,yfz  axes are not
necessarily principle axes as would be  inferred from Eq.  (1) .
However, the current knowledge of diffusivity variation in the
atmosphere does not allow  a more detailed description than im-
plied by Eq.  (1) so the developed model does not consider a
more general formulation.
2.2
        PARTICLE ADVECTION
        In the Lagrangian  PICK code each particle represents a
specific concentration;  that  is, associated with each particle
is a concentration of pollutant.  Therefore, the concentration
in an  (Eulerian) cell can  be  determined by appropriately aver-
aging over th« total numbers  of particles in the cell.  The
averaging method used is discussed in  Section 2.3.  If more
than one pollutant is being considered, such as in photochemical
                               8

-------
                                             SSS-R-74-1756
simulations, then concentrations of several pollutant species
can be associated with the same particle.  For example, a
single particle could be associated with the concentrations
of HC, NO, NO,, HNO2 and O.,.  Chemical reactions would be
carried out for each particle as it travels through the grid.
Thus, the description of the change of pollutant concentrations
due to the chemical reactions and advection will be described
in a purely Lagrangian manner.  However, for the purpose of
(1) editing the results,   (2) introducing pollutant sources
into the problem,   (3) calculating diffusion fluxes, and
(4) inputing a wind field, an Eulerian grid system is still
used.  This grid system is identical to that used in NEXUS
and the method of computing particle velocity by volume aver-
aging is identical to that used for calculating particle
velocity in NEXUS.  Each cell has a velocity vector located
at the cell center.  The particles in the cells are then moved
for each time step with a velocity obtained by linear inter-
polation according to the position of the particle between the
centers of adjacent cells.  This is illustrated for two dimen-
sions in Figure 5.  Using  v1^  to denote the total particle
velocity vector   (u,v)
                                    Ax

                                          Ax
The  shaded rectangular area  in Figure  5  is cell-sized  and
centered  at the particle position.   Rearranging the  terms  in
Eq.  (2) gives:

-------
                                             SSS-R-74-1756
           Figure  5.  Area weighting  interpolation
                      for total velocity.
                                                             (3)
                   +  (x,^,-
The product   (x-xi) (y-y^)   multiplying   v^+i  -j + i   is the
shaded area overlapping  cell   (i+l,j+l)   in Figure  5.  Simi-
larly, the other  products  give  the  areas of the overlap with
the other cells.   To  simplify notation,  the commas  used to
separate the  subscripts  will  be suppressed for the  remainder
of this report.
                               10

-------
                                             SSS-R-74-1756
        In three dimensions, the analogous volume overlap is
used.  Therefore, in three dimensions, the velocity for a
particle would be determined by the volume fraction in each
of the surrounding cells.  This would be computed as:
        vp = V v    fp
        *    Z-f  ijk  ijk
             ijk
where
          vp  =  particle velocity
        v. .,   =  velocity in cell ijk
         IJK
        fp.,   =  the fraction of the pth particle volume
         1DK     in the ijk cell

The sum is over the cells (ijk) where  f..,  is non-zero.
                                        1]K
This will normally be eight cells.   (For example, four in a
plane as shown in Figure 5 and four in the level above or be-
low) .
        In the PICK method, the calculation to advance the
particle configuration in time proceeds in steps or cycles,
each of which calculates the desired quantities for time
t+At  in terms of those at time  t   (an "explicit" time advance-
ment procedure)

        x(t+At) = x(t) + uAt
                                                             (4)
        y(t+At) = y(t) + vAt   .

The velocities are the total velocities determined for the
beginning of the time interval and interpolated to initial
particle positions.  These are held constant throughout any
elementary time interval.  It  is evident that the magnitude
                               11

-------
                                             SSS-R-74-1756
of the time interval  At  must be restricted, as otherwise a
particle could pass through many cells in a cycle and well out
of the region for which its velocity was interpolated.  This
could result in large inaccuracies and instabilities in the
solution.  Limiting the time step so that no particle moves
more than four-tenths of a cell within any one cycle has been
used as an empirical rule to avoid this problem.

2.3     EULERIAN CELL CONCENTRATION
        The pollutant concentration in each cell is also com-
puted by volume averaging of the particle concentrations.
Since each particle carries concentration, it is necessary to
have particles everywhere in the domain of interest.  The
method of computing the Eulerian cell concentrations is to
associate with each particle a volume equal to a cell volume.
It is not necessary to choose the particle volume to be equal
to the cell volume; any choice would be valid.  However, if
the particle volume were equal to several cell volumes, the
pollutant distributions would be necessarily spread out and
"smeared."  The other choice would be to choose a particle
volume smaller than a cell volume.  This would increase the
number of particles necessary to carry out a calculation,
since sufficient particles are required to cover all of the
Eulerian grid.  It would also increase the computational com-
plexity.  Since the fixed grid is governing all other aspects
of the problem, such as velocity input and source input, it
seems reasonable to assume a particle volume equal to a cell
volume.
        The Eulerian cell concentration is calculated by com-
puting a volume average from Eq.  (5):
                              12

-------
where
                                             SSS-R-74-1756
NP
£
p=i
cpfP.k
                                                             (5)
                   £.
               p=l
          c^
          NP
        f
      =  concentration in cell ijk
      =  particle concentration
      =  total number of particles in the problem
      =  the fraction of the pth particle volume
         in the ijk cell
2.4
SOURCES
        The method of attributing sources to a particle is al-
most the reverse procedure.  All sources are treated as volume
sources and are expressed in units of concentration per unit
time (for example, ppm/min).  As with any grid method, the
smallest resolvable scale is one cell.  Thus, treatment of
sources as volume sources is not a serious deficiency.  The
method of computing the source rate for each particle is to
take the fraction of the particle volume in the cell times the
source rate of that cell to determine the particle source rate.
This procedure is followed for all cells within which a por-
tion of the particle volume lies, resulting in the expression:
sP - L Z v
      i   J
S...  f?.
 i3k  --
                                                            (6)
                              13

-------
                                           SSS-R-74-1756
where
      S..,  =   source  strength  in  ijk  cell

      f?    =   fraction  of  pth  particle volume in
        1Dk      cell  ijk

For inert pollutants,  the change  in concentration of a
particle due to sources  is  simply  computed  by multiplying
the particle source  rate by the total  time  step of  the compu-
tation  cycle.   For photochemical  pollutants, the source  is
incorporated into the  chemistry routine.
      In this  model, diffusion  is  also treated as a source
or sink.  After the  concentration is obtained in each of the
Eulerian cells, then the time rate of  concentration change
in each Eulerian cell  is computed using the usual centered
difference  scheme.   The  resulting difference equation is:
                K.
                 i+Sjk
  /Ci+ljk"Cijk\   „     /Cijk"Ci-ljk
1k\    Ax     / " Ki-Sik\    Ax
               A"x
I\ • •
           Ay
                                          „     (Cijk"Cij-lk\
                                        "  ij-'skV    Ay     /
          Az
                                                    Az
                                      Az
                                                           (7)
 v/here
              =  diffusion source in the ijk cell
                              14

-------
                                             SSS-R-74-1756
               =  concentration in the ijk cell

               =  diffusivity at center of cell ijk  (sub-
                  scripts in Eq. (7) with-t^ added to the
                  integer subscripts indicate boundary
                  values; see Figure 6)
     Ax,Ay,Az  =  cell dimensions
            (1-l.J.k)
                   (i.j.k)
        Figure 6.  Location of centers of cells and
                   interfaces in  (i,jfk) notation.
        The Lagrangian version of Eq.  (1) is assumed to hold

for each Lagrangian particle in the system, so that the equa-

tion solved for each particle is:
DC    dC. v
_ i _ _ i \
Dt    3t /
         /
                   ,
                  chem
                          sources
                                                             (8)
where  ^r-  represents the time rate of change moving with a

fluid particle (which is represented by the particles used in
the numerical method.
                         represents the particle
                        sources
source rates, including diffusion, which are computed  from
the cell source rates using Eq.  (6).  Thus, the change in con-

centration of a particle is due  to chemistry, diffusion and

sources.
                              15

-------
                                             SSS-R-74-1756
2.5     CHEMICAL REACTIONS
        As in the NEXUS/P code developed by S3  (1972), the
chemistry module is such that it is very simple to implement
another chemical reaction system.  The basic input to the
chemistry routine is:   (1) the concentration of each pollutant
species, and  (2) the source rate of the pollutant due to
sources and diffusion.  The chemistry routine then solves the
coupled non-linear equations:
            - Fi - RiCi + Si
where
        F.  =  f.(C-) - formation rate of C.

        R.C. = r.(C.)C. -  removal rate of Ci

        S.  =  source rate of C.
2.6     GENERAL CODE OPERATION
        Figure 7 depicts the  logical sequence used in each
cycle of calculation.  Because each particle contains the con-
centration of all species,  the total number of particles re-
quired in the calculations  are less than required in a NEXUS/P
calculation.  Consequently, some  savings in the use of auxili-
ary storage is provided.
                               16

-------
                                           SSS-R-74-1756
                     READ INPUT
                WINDS, DIFFUSIVITIES
                     AND SOURCES
                 CALCULATE DIFFUSION
                   SOURCE FOR EACH
                      PARTICLE
                   COMPUTE CHANGE
                 IN EACH PARTICLE DUE
                  TO PHOTOCHEMISTRY
                 ADVECT EACH PARTICLE
                   BY THE AMBIENT
                     WIND FIELD
                   COMPUTE NEW CON-
                    CENTRATION IN
                      EACH CELL
Figure 7.   A typical cycle in the  NEXUS/L code,
                           17

-------
                                             SSS-R-74-1756
               3,  TESTING OF THE NEXUS/L CODE
        Since each particle in the NEXUS/L code represents a
concentration of pollutant, it is necessary to have sufficient
particles distributed throughout the grid so that all space is
occupied by at least one particle volume.  Another difficulty
with a Lagrangian code  is the accuracy with which the distri-
bution can be interpolated onto the Eulerian grid.  If a
sharply peaked distribution is being advected then the posi-
tion of the gradients within a cell can cause the distribution
to appear to be distorted.  However, when the distribution re-
turns to a position similar to the original, the Eulerian re-
sults will agree with the actual distribution.
        In a previous report, S3  (1971), describing the PICK
method, a test problem  used to study the accuracy of the code
was the advection of a  Gaussian distribution.  The same test
problem was considered  using the NEXUS/L code.  The distribu-
tion was defined initially by

        C(x,y,0) = 71.l(exp -[(x-9)2 +  (y-9)2/l2.5] }  .

The velocities were chosen as  v  = lOm/sec  and  v  = 5 m/sec.
Figure 8 shows the motion of the Gaussian distribution across
the grid.  There is no  distortion of the distribution.  The
peak concentration in each cell remained at its initial con-
centration value.  This particular test problem was run with
1, 2 and 4 particles in each cell.  The results were independent
                               18

-------
                                                     SSS-R-74-1756

                  i ' i- r «

                                                 rtrt-r rrt.-rfifrrrrnB"-c.-;r-r-.'


                                                        , v, .. .,
                                        •! 4* M I* t I
                        f.r--,,






                             ^
Figure 8.  Advection  of a Gaussian distribution  v  =  10 m/sec
            and  v  =  5  m/sec.
                                  19

-------
                                             SSS-R-74-1756
of the number of particles used.  This test problem indicates
that advection is properly treated using the modified particle
method and the advantages attributed to the particle method
applied in the modified  approach.
                               20

-------
                                             SSS-R-74-1756
          ,   PHOTOCHEMICAL MECHANISM AND SIMULATION
        The photochemical mechanism used for the simulation
results presented is a mechanism developed by Eschenroeder and
Martinez (1972).   Table II gives the mechanism and the rate
coefficients used.  This mechanism contains three branching
factors, b,,b2,b_ in Eqs. (3),  (4) and (5), which account for
the production of RO-, the generalized oxidant radical, and
one yield factor, y, in Eq.   (6), which affects the amount of
OH radical produced.
        By carefully selecting these parameters, the resulting
rate of change of pollutants can be made to agree with almost
any desired result.  The method of selecting these parameters
was to examine the behavior of a "basin average" obtained by
averaging the actual pollutant measurements from the APCD sta-
tions for the simulation day, September 30, 1969.  An average
source rate was determined for each pollutant and a series of
chemical simulations was made varying the branching factors
and yield factor to provide a reasonable fit to the average
chemical behavior of the basin.  The reason these "free" param-
eters exist is that the exact composition of the hydrocarbons
present is not known and if it were, the chemistry required to
include each hydrocarbon species would make the system too com-
plex to be manageable.  Thus, a "generalized lumped hydrocarbon"
is used and consequently the "free" parameters appear and must
be adjusted for any hydrocarbon mix.  Eschenroeder and Martinez
(1972) discuss this point at some length.
                              21

-------
                                                 SSS-R-74-1756
                             TABLE II


                  PHOTOCHEMICAL KINETICS SYSTEM
     Reaction
                                     Rate Constants
 la.



 2.



 3.



 4.



 5.



 6.



 7.



 8.



 9.



10.
(hv) + N02  •+ NO + 0



O +  (O2)  +  M •* O3 + (M)
      NO
                 (02)
O + HC •*  (b;L)R02



OH + HC •+  (b2)RO2
       O3 •*• HC H



       RO^ + NO
                  (y)OH
RO
             NO
             PAN
        '2   —2


       OH  + NO -»• MONO



       OH  + NO •*• HNO3



       (hv) + HONO -+ OH  + NO




               H2O

11".    NO  + N02 •*• 2HONO



12.



13.
         ^



14-    N2°5*   o


15.    N.O- +  (H-0) •*  2HNO-.
        «  O     fc          W



where  b. = 10, b_ =  10 / b.
                   N2°5
         -1*
0.267 min



2.64 x io6 min"1



26.7 ppm   min



2.81 x 10~  ppm   min"


        4    -1    -1
1.5 x 10  ppm   min



4.0 x 10~  ppm"  min



1.0 x 10  ppm   min


        2    -1    -1
2.0 x 10  ppm   min



1.5 x 10  ppm   min



3.0 x 10  ppm   min



1.0 x io~3 min"1*
                                 1.0 x 10~3 min"1


                                         -2    -1     -1
                                 5.0 x 10   ppm   min



                                 4.5 x- 10  ppm"  min"



                                 1.4 x 10  ppm"  min"



                                 6.05 x  io1 min"1
                              = 0.1, and y = 0.1.
Corresponding to noon value of solar insolation.
                                 22

-------

-------
     .3)

     V)
                               /qpc  D.    j.c

        ^ol  Ocrw^/^Hxj-  _T


TJ /vuiJ-   T    /h^tAoJ-  AJLtM.C,l-
  1                                    .  d     f
     t)    fji*-* smc*^  cnxx^   £Ltoe^>p^^-^  c^a^^o  ^co/- cu^ cu*cl£t~.^  4^ (*-*-*-*£ \—
                                                                                     d
           u
              P  .^ L.  -ii*. ,
        a.

-------
                                             SSS-R-74-1756
        Photochemical smog in the Los Angeles basin on Septem-
ber  30, 1969, was  simulated using NEXUS/P.  This calculation
was  a repeat of the calculation reported by S3  (1971) with a
revised chemical mechanism.  The chemical mechanism used was
the  mechanism by Eschenroeder and Martinez, shown in Table II,
with five calculated species (NO, N02/ HC, O3 and HN02) and
three species in pseudo-equilibrium  (0, RO- and OH).  The
source inventory used was reported by Roberts, et.al.  (1971).
The  required meteorological wind data were obtained from
Dickson and Start  (1971) and Roth (1971) provided inversion
height data.  The  16-hour real time simulation required 1.5
hours on a UNIVAC  1108.  Approximately one-half hour was
spent in chemical  simulation and one-half hour in data manipu-
lation.
        The NEXUS/L code was used to perform a comparison to
the  updated NEXUS/P calculation.  The same winds, diffusivities
and  sources were used for this photochemical simulation.  A
conparison of the  results provided by the two codes is shown
in Figures 9 through 18.  The available APCD data are also
presented.
        An examination of the basin averaged results, the aver-
age of results at  all APCD stations, shown in Figure 9, yields
some general conclusions regarding the differences exhibited
between the two calculations.   The N02 levels in the NEXUS/P
calculations show  a general trend of being larger than in the
NEXUS/L calculation.  The peak value is 15% higher.   The NO,
levels remain above the 10 pphm level throughout the afternoon
in the NEXUS/P results, whereas the NO- disappears between
1:00 and 2:00 p.m.  in the NEXUS/L results.  The disparity be-
tween the N02 results from each calculation causes the oxidant
levels, represented by 03 in the chemical model, to also be
different in the two calculations.   The basin average results
indicate peak values 30% higher for the NEXUS/L calculation and
the peak values occur l-l's hours later in the day.

                              23

-------
                                  Baain Avaraqe — NO
NJ
           50
        _  40 -
           10
        g  20 H

        I
        S  10 -I
                                                                                                    Baiin *v«r«g« — MO_
                                                         NCXUS/P
                                                         NEXUS/L
                                                         APCD
                  7     I     9   • 10
                                      11    12
                                     Tine (hour)
                                                     214
               S 20
               S
               5 10
                                                            	 HEXUS/P
                                                            	 NEXUS/L
                                                            	APCD
                                       10   11    12    1
                                            Time (hour)•
          U •
          1J •
        c
        o
        tt
        z  •
        S
                                 &»ln Averag* -
                                                     	 NEXUS/P
                                                     	 MEXUS/L
                                                     	APCD
\
                                                              \
                       •     9    10
                                     11    12    1
                                    Ti«e  (hour)
                                                     23     4
                                                                                                    Batin Averaga — HC
                                                                                    \
                           \
                                                             	 HEXUS/P
                                                             	 NEXUS/L
                                                             	APCD
                                   9 .  10    11    12    1

                                            Tina (hour)
                                                                                                                        214
                                                                                       cn
                                                                                       CO
                                                                                       CO
                                                                                        I
                                                                                                                                                  -J
                                                                                                                                                  ^
                                                                                                                                                   I
                                                                                                                                                  Ul
                                                                                                                                                  en
                                  Figure  9.   Basin  average  pollutant  concentrations

-------
                          MO - Downtown Loi Anoal**
                                                                                       - Downtown Lot Ang«l«i
10   11   12

 lima (hour)
                                                                         60,
                                                                                             10    11   12
                                                                                              Tin (hour)
to
Ul
         21
       I
        5  ,.
                            - Downtown Lo* »ng«l««
                                                  	NEXUS/P
                                                  	NEXUS/I
                                                  	APCD
                              10    11   12
                                  TIM (hour)
                                                                         10
                                         &  4.
                                                                                        BC — Downtown Los
                                                                                  	NEXUS/P
                                                                                  	 NEXUS/L
                                                                                  	APCD
                                                               10    11    12

                                                                  Tin* (hour)
                                                                                                                 234
                                                                                                                                          Cfi
                                                                                                                                          en
                                                                                                                                          en
                                                                                                                                           i
                                                                                                                                          ui
                          Figure 10.   Downtown  Los  Anaeles  pollutant concentrations.

-------
                                                                                                - Mhittltr
        so
        40
         10
               \
                  \
                             HO - Whlttltr
                                                    -NEXU3/P
                                                    -NEXUS/L
                                                    -APCD
                              10    11   12
                               TlJM (hour)
                                                                           40
                                                                           10
                                                                                                                   — NEXUS/P
                                                                                                                   	 NEXUS/L
                                                                                                                   	APCD
10    11    12
  Ti»o (hour)
cn
                                                        ]    4
                                                                         -  a
                                                                                               HC - Mhlttl«r
                                                                                                                    	NEXUS/P
                                                                                                                    	NEXUS/L
                                   Tin* (hour)
                                                                                                10    11   12

                                                                                                    Tine (hour)
                                                                                                                                            cn
                                                                                                                                            cn
                                                                                                                                            cn
                                                                                                                                             I
                                                                                                                                            f
                                                                                                                                             I
                                                                                                                                             H
                                                                                                                                             ^J
                                                                                                                                             Ul
                                   Figure  11.    Whittier  pollutant concentrations

-------
to
                             NO - long B«.ch
                                                                                            NO, - Long B««ch
         JO-
         40
        u 20
        8
                                                  	NEXUS/?
                                                  	NEXUS/L
                                                  	APCD
                              10
                                  11   12 '

                                     (hour)
                                                                         10.
                    	 NEXUS/P
                    	 NEXUS/L
                    	APCD
10    11   1]

   Tin (hour)
                            0. — Long Beach
                                                                                              DC - Long 6««ch
                                                                                7    I
                                                                                              10   11   12   1

                                                                                                  Time (hour)
                                                                                                                 	 NEXUS/P
                                                                                                                 	 NEXUS/L
                                                                                                                  2    3
                                                                                                                                          en
                                                                                                                                          M
                                                                                                                                          I
                                                                                                                                          V
                                  Figure  12.    Long  Beach pollutant concentrations.

-------
                              NO - Burbank
         70 ,
                              10   11    12    1

                                  TlJM (hour)
                                                 	NEXUS/P
                                                 	NEXUS/L
                                                 	A PCD
                                                  2    3
                                                                      !4C

                                                                      §30
                                                                      «l
                                                                      4
                                                                      3
                                                                      8 20
- Burbank
                                                                                                                	NEXUS/P
                                                                                                                	NEXUS/L
                                                                                                                	APCD
                                                                               7     e
                                                                                         9    10
  11   12

  TlM (hour)
00
                                                                                             BC - Burbtnk
                                                                                                                 	 NEXUS/P
                                                                                                                 	 NEXUS/L
                                      (hour)
                                                                                                 Tln» (hour)
                                                                                                                                          Cfi
                                                                                                                                          w
                                                                                                                                          en
                                                                                                                                          Ul
                                                                                                                                          en
                                   Figure  13.    Burbank pollutant  concentrations

-------
                           NO - P«i»d«n«
        40 •

      L
      §
              \
                  \
                                               	NEXUS/P
                                               .	NEXUS A

                                               	APCU
                   I    1
                           10    11    11

                               TiM (hour)
                                                                     50
                                                             I
                                                                                   10   11    1}    1

                                                                                      Tine (hour)
                                                                                                      2    }
KJ
  36-



  32 -



  28 -


  24-

I


  "'
      5
      S
      0 12
                   a    9    10
                                11   12     1

                                TlM (hour)
                                                   3    4
                                                                    I
                                                                    £ 8
                                                                                       HC -
                                                                                                            	NEXUS/P
                                                                                                            	 HEXUS/L
                                                                                                              »I>CD
                                                                            \
                                                                                             \
                                                                              \
                                                                                                     \
                                                                                I   9   10
                                                                                        11   12

                                                                                       Time (hour)
0}
Cfi
en
 i
                                                                                                                                   tn
                                 Figure  14.   Pasadena pollutant  concentrations.

-------
U)
o
          50,
                               NO - ««««d.
                               10    11   11
                                Tim« (hour)
                                                   	 NEXUS/P
                                                   — NEXUS/L
                                                   — APCD
                                                                         50
                                                                       g
                                                                       o 10
                       NEXUS/P
                       NEXUS/L
                       WCD
10    11   11
  Time (hour)
                                                                                              HC - «.««d
         JO-i
          16
        a,

        §
                           /
                                                  	 NEXUS/P
                                                  	NEXUS/T.
                                                  	 WCD
                                             1    2
                                                                         10 i
                    —• NEXUS/P
                    	NEXUS/L
                    	APCD
 I     I     I
 10    U   12
    Tim (hour)
                                                                                                                                          w
                                                                                                                                          en
                                                                                                                                          U1
                                                                                                                                          cr,
                                     Figure  15.    Reseda  pollutant  concentrations

-------
                            HO - WMt Loi JhngalM
         SO .



       l<0-I
         10
                                                	NEXUS/?
                                                	NEXUSA
                                                	APCO
                             10    11   12   1

                                Time (hour)
                                                                       50-
                                                                     _


                                                                     I
                                                                       20
                   	 NEXUS/?
                   	 NEXUS/L
                   	RPCD
10    11   13

   Tina (hour)
U>
         J8 -
                            10   11   12

                               TiM (hour)
                                                                                         BC - W*lt LOI
10    11    12    1

   TlH (hour) '
                                                                                                                                     W
                                                                                                                                     W
                                                                                                                                     cn
                                                                                                                                     I
                                                                                                                                     a
                                                                                                                                     Ln
                            Figure  16.    West  Los  Angeles  pollutant concentrations.

-------
                                                                                               NO, - AIUI*
        20 i
        12
                \
                 \
                                 HO - Atuil
—  NEXUS/P
	  NEXUS/L
	XPCD
                             10
                                  11    12
                                 Tina (hour)
                                                     3    4
                                                                       50-,
                                                                     _ 40

                                                                     I
                     8 10
	 HEXUS/P
	 NEXUS/L
.	 XPCD
                                                                                           10
                                                11    12

                                               Ti«» (hour)
U)
K)
                                                                       10 -i
                                                                        2 -
                                                                                                RC — AIUBA
                                                                                            10
                                                 I     I
                                                 11   12
                                               Tina (hour)
                                                                                                                                        cn
                                                                                                                                        en
                                    Figure  17.    Azusa  pollutant  concentrations,

-------
                                 NO - Lennox
        «n
        SO-
        20-
        10-
              7    I
                                                	 KFXUS/P
                                                	KEXUSA
                                                	 APCD
                            10
                                 11   12

                                Tim* (hour)
                                                                      JO -
                                                                    - 40
                                                                     e 30
                                                                                                                 NEXUS/r
                                                                                                                 NEXUS/L
                                                                                                                 APCD
10    11    12   1

    Tine (hour)
Ui
UJ
                                                                                              IK - Lennox
                                                                                           10   11   12
                                                                                               Tine  (hour)
                                                                                                                                      en
                                                                                                                                      en
                                                                                                                                      en
                                   Figure  18.    Lennox pollutant concentrations.

-------
                                              SSS-R-74-1756
         The general  character of  the NEXUS/L results is that
 they are much  smoother  than the NEXUS/P results.  One reason
 for this is the averaging technique used to relate particle
 concentrations to  cell  concentrations  for editing purposes.
 The general smoothing of the results is also indicated by exam-
 ining the peak 0,  concentrations  at each station.  These re-
 sults are shown in Table III.  The NEXUS/L results over-predict
 at the stations near the coastline and underpredict in the high
 oxidant areas of Pasadena and Azusa.
                           TABLE III
                  PEAK OXIDANT CONCENTRATION
STATION
Pasadena
Long Beach
Lennox
West Los Angeles
Whittier
Azusa
Downtown
Burbank
Reseda
NEXUS/P
18
18
4
12
12
12
22
21
2
NEXUS/L
20
20
18
26
24
20
22
24
16
APCD
36
8
8
12
9
28
22
20
8
        An examination  of the comparison of the two different
simulation results  and  the actual measurements indicate no
trends which would  allow one to choose one simulation as being
superior to the other.   From the results it is possible to
determine that inherent errors in the Eulerian photochemistry
are not so large  that they cannot be overcome by adjusting the
chemical reaction parameter.  The examination of the chemical
reaction system prior to the simulations to determine the rate
                                34

-------
                                             SSS-R-74-1756
constants and branching factors has shown that the system is
extremely sensitive to these parameters.  The results of the
calculations can be significantly affected by rather minor
changes in these parameters.  Therefore, the parameters them-
selves are the controlling factors in any simulation, not the
simulation technique.
        This draws one to the conclusion, that either Eulerian
or Lagrangian chemistry is satisfactory given the current
state-of-the-art in photochemical lump-parameter modeling.
        A second photochemical simulation was run for Los
Angeles for the same day using the NEXUS/L code.  The purpose
of this simulation was to test the sensitivity of the results
to the input data.  For the second simulation the sources
were doubled so that twice as much total emissions were intro-
duced into the problem.  Some comparative results are shown
in Figures 19 through 21.  The calculated results do show a
change in the general behavior of the pollutant concentra-
tions.  In particular, the NO- peak is much increased.  How-
ever, the ozone peak is not increased particularly but is
moved later in time.  The same trend is noted at the Burbank
and Downtown Los Angeles locations.
        These results point out that a photochemical model
such as NEXUS/L can be used for sensitivity calculations and
will show differences because of changes in emissions.
                              35

-------
CT\
         50
         40 J
       g  10
       a
       M

       I"
          10
                                Baiin
   - NO




— NEXUS/L Actuil Eklnlon*

	 NEXUS/L Ealiiloni Doubled
                          »   10   11    12   1

                                  Tim  (hour)
                                                                        50
                                                                        40
                                                                        30
                                                                        10
                                                                                             BMin Av»rug« - NO
                                                                       	 NCXUS/L Actual Emlnioni

                                                                       	NEXUS/L EmUlloni Doubled
                                                              10    11   1)    1'

                                                                 TIM (hour)
          20,
                                 B«lln Average -
                                         — NEXUS/L Actual Eoiiiioni
                                         -— NEXUS/L BmUiloni Doubled
10   11    11

    rim* (hour)
                                                                         5 ,
                                                                       r
                                                                       i,
                                                                       u
                                                                       S
                                                              •••In
                                                                                                      — NEXUS/L Actual EaUnloni

                                                                                                      	 NEXUS/L [millions Doubled
                                                                                             10   11    11

                                                                                               TlM (hour)
           Figure  19.    Comparison  of basin-average  NEXUS/L  results  using actual  emissions

                            and double  emission.
                                                                                                                                     en
                                                                                                                                     M
                                                                                                                                     I
                                                                                                                                     LT1

                                                                                                                                     (Tv

-------
                    NO - Downtown Lo*
                               	 NEXUS/L Actual E«i8«ion.
                               —- NEXUS/L Eaiaiiona Doubled
                     10    11    12

                         Tine  (hour)
                                                                60,
                                                                                      - Donntonn Lot Angelea
         	 NEXUS/L Actual EBleeloni
         	 NEXUS/L B»tiaion« Doubled
10   11    11
   TlH (hour)
16
                    0 - Downtown Los Angela.
                                	 NEXUS/L Actual EBlolone
                                	NEXUS/L Enlaelona Doubled
                      10    11   12   1

                         TIM (hour)
                                                                 12
                                                               i ,
                                                                 6
                                                                                    HC - Downtown Lo. Angelea
          	 NEXUS/L Actual EBlaliona
          	NEXUS/L Enl»lon> Doubled
10    11   12

   Tine (hour)
 Figure  20.   Comparison  of Downtown Los  Angeles  NEXUS/L results  for  actual  emis-
                  sions  and double  emissions.
                                                                                                                               en
                                                                                                                               en
                                                                                                                               -J
                                                                                                                               Ul

-------
                                  NO - Burbank
UJ

00
          to
        - 40
          30
          10
           1»
           24 .
         -  20
         c  U
            ,L
                                          	 NEXUS/L Actual E»liilon§
                                          	NEXUS/L EmUlloni Doubled
                                10    11   12

                                     TlM (hoar)
                                          	 NEXUS/L Actual Bnitaloni
                                          	NEXUS/L Emliiloni Doubled
10   11    12    1     114

  TlM (hour)
                                                                          70
                                                                          50
° 40
4J
4

B


I"
s

  20
                                                                          10 |
                                                                                                         — NEXUS/L Actual Bioiailoni
                                                                                                         	 NEXUS/L Bmilllonl Doubled
                                                                                                          \
                                                                                                             \
                                                                                               10
                           11    12

                          TlM (hour)
                                                                                               BC - (urbank
                                 	 NEXUS/L Actual
                                 — NEXUS/L Eniiaioni Doubled
                                                                                               10    11   12

                                                                                                 TlM (hour)
           Figure 21.    Comparison of  Burbank  NEXUS/L  results  for  actual  emissions  and

                            double  emissions.
                                                                                                                                        en
                                                                                                                                        tn
                                                                                                                                        en
                                                                                                                                        I
                                                                LTl

                                                                CTl

-------
                                             SSS-R-74-1756
                 5,  SUMMARY AND CONCLUSIONS
        A new particle-in-cell code has been developed which
employs Lagrangian chemistry and applied to the simulation of
photochemical air pollution in the Los Angeles basin.  These
results are compared with NEXUS/P results and APCD measure-
ments for the selected day.  The results of the calculations
indicate that either approach, the Eulerian or Lagrangian
chemistry, can be used.
        An additional calculation was made doubling all of the
emissions.  The oxidant levels as computed by the simulation
were not significantly greater.  This is consistent with the
expectation that oxidant levels are effected by the NO /HC
                                                      X
ratio rather than the actual emission levels.  These results
indicate that care must be taken in extrapolating air quality
levels from change in emissions.
                              39

-------
                                               SSS-R-74-1756
                         REFERENCES
1.   Dickson, C.R. and G. Start, private communication (1971).

2.   Eschenroeder, A.Q. and J.R. Martinez, "Concepts and Ap-
     plications of Photochemical Smog Models," Report No. TM
     1516  (June 1971), General Research Corporation, Santa
     Barbara, California.

3.   Eschenroeder, A.Q. and J.R. Martinez, "Evaluation of a
     Photochemical Pollution Simulation M flel," Contract No.
     68-02-0336 (September 15, 1972), General Research Corpo-
     ration, Santa Barbara, California.

4.   Roberts, P.J., P.M. Roth and C.L. Nelson, "Contaminant
     Models in the Los Angeles Basin — Their Sources Rates
     and Distribution," Report No. 71SAI-6 (1971), Systems
     Applications, Inc., Beverly Hills, California.

5.   Roth, P.M., S.D. Reynolds, P.J. Roberts and J.H. Sein-
     feld, "Development of a Simulation Model for Estimating
     Ground Level Concentrations of Photochemical Pollutants,"
     Report No. 71SAI-21 (July 1971), Systems Applications,
     Inc., Beverly Hills, California.

6.   "Reactive Pollution Environment Simulation Model (REM) —
     User's Guide,"  (June 1970), Systems Development Corpora-
     tion, Santa Monica, California.

7.   "A Particle-In-Cell Method for Numerical Solution of the
     Atmospheric Diffusion Equations, and Applications to
     Air Pollution Problems," Contract No. 68-02-0006, Report
     .No. 3SR-844 (November 1971), Systems, Science and Software,
     La Jolla, California.

8.   "Mathematical Modeling of Photochemical Smog Using the
     PICK Method," Contract No. 68-02-0006, APCA Paper No.
     72-140 (June 1972), Systems, Science and Software, La
     Jolla, California.
                              40

-------
            SYSTEMS, SCIENCE AND SOFTWARE
                                            SSS-R-74-1756
                         PART II




                    OPERATIONS MANUAL
P O. BOX 1620. LA JOLLA. CALIFORNIA 92O37,  TELEPHONE (714) 453-O06O

-------
                                               SSS-R-74-1756
                      1,  INTRODUCTION
        Systems, Science and Software (S3) has previously
developed and documented the computer codes NEXUS/P and
SETUP.tlj
        A new code, NEXUS/L, has been developed and tested.
It differs from the NEXUS/P code in that the photochemical
kinetics are considered in a Lagrangian framework, within
which each particle contains a specific concentration of
each pollutant specie being considered.   Previously, in the
NEXUS/P code, each particle represented a fixed mass of an
inidividual pollutant.
        The purpose of this volume is to document the
NEXUS/L code and provide a users guide to its operation.
                             41

-------
                                               SSS-R-74-1756
             2,  DISCUSSION OF THE NEXUS/L CODE
2.1     GRID LABELING CONVENTIONS
        It is useful to be  able  to reference the Eulerian
grid in both cell space  (dimensionless) and measured space
(meters).  The principal axes  are noted x, y, and z.  The
horizontal planes form x-y  space, and  z is the vertical co-
ordinate .
        The cells have dimensions DX,  DY, and DZ , and the
full grid has NX, NY, and NZ cells in  the principal axis di-
rections, respectively.  Figure  1 shows a two-dimensional
cross-section of the grid.  The  labeling conventions are the
same as with the NEXUS/P code.   In cell space, the cell
centers are integer triplets  [I,J,K] in the x, y, and z di-
rections, respectively.  The origin  in cell space is  [0.5,
0.5, 0.5],  In measured  space, the origin is at  [0, 0, 0]
meters.  The center of cell [I,J,K], defined in  meters, is
[(I-O.S)DX,  (J-O.S)DY,  (K-O.S)DZ].

2.2     THE NEXUS/L PARTICLES
        Each pollutant specie  has an individual  concentration
within each particle.  The  particles have arbitrarily been
sized as exactly one Eulerian  cell,  DX, DY, DZ,  in volume.
The concentrations are attributed to the entire  particle
volume.  The position of particle  N   is defined by the posi-
tion of its center   [XN/ YN ,  ZN].   It  is convenient to use
cell space notation  for  particle position.

                             42

-------
U)
          3(DY)      3.5
          2(DY)      2.5
                                [1,2]
             DY      1.5
                        DY
                                [1,1]
               0      0.5
    [2,1]
                                      ..5       2.5        3.5        4.5    ...    Cell Space
DX       2(DX)      3(DX)       4(DX)
                                                                                Measured Space
                                                                                   (meters)
                                                                                                -j
                             Figure 1.  Grid labeling  conventions,

-------
                                               SSS-R-74-1756
2 . 3     FLOW LOGIC OF  THE  NEXUS/L CODE

        The calculational  sequence of a typical  cycle  of  the

NEXUS/L code is  as  follows:


        (1)  advance  the cycle  counter

        (2)  obtain updated  wind field, diffusivities,
             and source emission rates (Eulerian
             framework)

        (3)  advance  the problem time

        (4)  calculate rate  of  change of concentration
             due to diffusion (Eulerian framework)

        (5)  update the particle concentrations  to  re-
             flect  the effects  of source emissions  and
             diffusion and photochemical reactions
              (Lagrangian  framework)

        (6)  advect the particles by the wind field to
             new positions (Lagrangian framework)


        A  flow chart  of the NEXUS/L main program is given in

Figures 2(a),  (b) ,  and (c) .
                              44

-------
                                       SSS-R-74-1756
ICYCL =
0
                            determine if problem is to
                            be restarted or generated
                            fresh.   Set up all control
                            parameters.
                         •  set up certain indices and
                            constants
                         •  initialize cycle counter


                         •  initialize location and
                            concentration of Lagrangian
                            parcels
                         •  main loop,  advance cycle
                            counter
                         •  obtain winds,  diffusivities,
                            and sources for this cycle
                            in Eulerian framework

                         •  advance the problem time


                         •  obtain diffusion contribution
                            of each specie in Eulerian
                            framework
Figure 2(a).   Flow logic of NEXUS/L main program.
                      45

-------
                                          SSS-R-74-1756
      B
 /Begin loop A
 \pver parcels/
     Call
  VOLFAC(NP)
 CP(N,NP)=CP(N,NP)
  + DUM(N)*DT
   Call CHEM
Call
ADVECT
 30
    End loop
   wer parcels
~N
s/
1

Call CONCEN
Call PRTTST
i

              •  obtain fractional volumes of  this
                 parcel with respect to the
                 Eulerian framework

              •  use fractional volumes to develop
                 the parcel source term for  each
                 specie as a function of  the
                 Eulerian sources

              •  the concentration of each specie
                 is adjusted to reflect the  dif-
                 fusion and new source emissions
                 contributions

              •  the effects of photochemical
                 reactions are incorporated

              •  the parcel is advected by the
                 winds to a new coordinate position
                           relate  concentrations in the
                           Lagrangian  parcels to the Eulerian
                           grid  framework
                           determine if  this cycle's results
                           are to  be printed, plotted, or
                           saved on a  dump file
Figure  2(b).   Flow logic of NEXUS/L main program.
                         46

-------
                                           SSS-R-74-1756
Call
EDIT
        Printer\Ye
        output?
         Save
        this cycle
         on dump
         file?
     Perform final
         output
• write output on  printer
                                    • write  contour plots
                                     on printer
• save this cycle's data
  on dump file  for
  restarting


• write ground  level con-
  centration of all species
  on a dump file for hour
  averaging
Figure 2(c).   Flow logic of NEXUS/L main program.
                         47

-------
                                                SSS-R-74-1756
2.4

Quantity

DX
DY
DZ
NX
NY
NZ
NPM
NSP
ICYCL
TIME
DT
U(I,J,K)

V(I,J,K)

W(I,J,K)

EX(I,J,K)


EZ (I,J,K)

S(NSP,K,J,I)

C(NSP,K,J,I)

X(NP)

Y(NP)

Z(NP)

CP (NSP,NP)
GLOSSARY OF KEY QUANTITIES
       Description
       x-direction cell width
       y-direction cell width
       z-direction cell width
       number of cells in x-direction
       number of cells in y-direction
       number of cells in z-direction
       number of Lagrangian particles
       number of pollutant species
       current problem cycle number
       current problem time
       current cycle  time step
       x-direction velocity at center
          of cell i , j ,k
       y-direction velocity at center
          of cell i/j ,k
       z-direction velocity at center
          of cell i,j,k
       eddy diffusivity for x- and
          y-direction at center of
          cell i,j ,k
       eddy diffusivity for z-direction
          at center of cell i,j,k
       specie source  rate at center of
          cell i,j ,k
       specie concentration in Eulerian
          cell i,j ,k
       x-coordinate of particle NP in
          cell space
       y-coordinate of particle NP in
          cell space
       z-coordinate of particle NP in
          cell space
       specie concentration in particle
          NP
Units
m
m
m
sec
sec

m/sec

m/sec

m/sec

m2/sec

mz/sec

PPM/sec

PPM
                                                      PPM
                               48

-------
                                               SSS-R-74-1756
2.5
HOW PROBLEMS ARE GENERATED
        Subroutine INPUT directs the initialization of calcu-
lation.  A flow chart of this subroutine appears in Figure 3.
Code variables designated "not currently used" exist to per-
mit easy implementation of new code options without major
changes to BLANK COMMON and/or subroutine INPUT.

2.5.1   Namelist "START"

        "START" is used to provide an overview of the problem
to be computed.
        RESTRT;   If zero, the problem is to be gen-
                 erated new;
                 If > 0, the problem is to be re-
                 started and continued.

        ISTART;   Defines the cycle number at which
                 the problem is to be restarted.

        TMAX;    A time  (in seconds) which, if ex-
                 ceeded in the calculational time,
                 the calculation is to stop.

        CYCMAX;   A cycle number, which, if exceeded
                 in the calculational process, the
                 calculation is to stop.

        CHANGE:   If zero, has no effect;
                 If > 0, and the problem is a re-
                 start, requests the variables in
                 namelist "SPECS" to be redefined
                 (see 2.5.2 below).
2.5.2   Namelist "SPECS"

        "SPECS" is used to define output control parameters,

printer edits, printer contour plots, and dumps on permanent

files.
                             49

-------
                                           SSS-R-74-1756
CALL RTAPE


     100
       READ "SPECS"
        READ "GEN"
      (  RETURN   J
                                    read data in namelist
                                    "START"
                                  • space through restart
                                    data file and read data
                                    for appropriate start
                                    cycle
•  read data in namelist
   "SPECS"
•  read data in namelist
   "GEN"
Figure 3.   Flow  Logic  of subroutine  INPUT.
                        50

-------
                                                SSS-R-74-1756
        IPLOT:


        TPLOT;


        LEVELS;




11,12,13,14,15;

        NXY;


        NXZ:


        NYZ;

        XYP(3):


        XZP(3):




        YZP(3) :
 IDUMP;  Controls dumps of blank common.

         If non-zero, dumps will be performed
         whenever MOD(ICYCL,IDUMP)  is zero.

TDUMP:   Permits control of dumps on problem
         calculational time instead of cycle
         number.

         If non-zero, dumps will be performed
         each time k*DUMP exceeds TIME.
         Note;  after each such dump, the inte-
                ger k is incremented by 1.

IPRINT;  Controls printer edits.  Works like
         IDUMP.

TPRINT;  Works like TDUMP for printer edits.

                                          Works
Controls printer contour plots.
like IDUMP.

Controls printer contour plots.
like TDUMP.
                                          Works
         Used to shorten printer edits, if de-
         sired.  The z-levels edited are
         1-LEVELS rather than 1-NZ.

         Not currently used.

         Number of x-y plane contour plots de-
         sired (maximum of 3).

         Number of x-z plane contour plots de-
         sired (maximum of 3).

         Number of y-z plane contour plots desired.

         Used to specify the z-cross sections
         desired for the (NXY)  x-y plane contour plots

         Used to specify the y-cross sections
         desired for the (NXZ)  x-z plane contour
         plots.

         Used to specify the x-cross sections
         desired for the (NYZ)  y-z plane contour
         plots.
                               51

-------
                                               SSS-R-74-1756
        ISP(5):  Used to choose which species are to be
                 contour plotted.
                 If ISP(K) = 0, specie  k  is not plotted.
                 If ISP(K) > 0, specie  k  is available
                 for plotting.
2.5.3   Namelist  "GEN"
        "GEN" is used  to define the grid characteristics,
and in the case of certain  test problems,  "GEN" can be used
to define the winds and diffusivities.
        NX;

        NY;

        NZ;

        NSP;

        DX:

        DY:

        D£:

        NPC:


        NS;

        TIME;


        DT:

        FLAG1,
        FLAG2,
        IFLAG1,
        IFLAG2;

        CONST:
Number of x-direction cells.

Number of y-direction cells.

Number of z-direction cells.

Number of pollutant species.

Width of a cell in x-direction.

Width of a cell in y-direction.

Width of a cell in z-direction.

Number of Lagrangian parcels to be
created for each Eulerian grid cell.

Not currently used.

Calculation time (sec) at which the
problem is to be initialized.

Calculational time step to be used.
Not currently used.

 (Logical Variable) Used to quickly set
up test problems.
If input as  .TRUE.,  then winds and dif-
fusivities will be constant throughout
the calculation:
                               52

-------
                                       SSS-R-74-1756
         The following are input if CONST = .TRUE.
         UFIX:  u-velocity in each cell
         VFIX:  v-velocity in each cell
         WFIX;  w-velocity in each cell
         EXFIX: x,y diffusivities in each cell
         EZFIX; z diffusivity in each cell
GROUND;   (Logical Variable)  Set to .TRUE, if it
         is desired to dump ground level con-
         centrations on a permanent file each
         cycle.
                      53

-------
                                               SSS-R-74-1756
                      3,  CODE LISTING
        The NEXUS/L code, as used to run the Los Angeles
photochemical simulation, is documented below.  The code ele-
ments are in the following order:
          procedure
          subroutine
          subroutine
          subroutine
          subroutine
          subroutine
          subroutine
          subroutine
          subroutine
          subroutine
          program
          subroutine
          subroutine
          subroutine
          subroutine
          subroutine
          subroutine
          subroutine
BLANK
ADVECT
CHEM
CONCEN
CONTUR
DATA
DEFINE
DIFFUS
EDIT
INPUT
MAIN
OUTPUT
PL
PRTTST
RTAPE
SETUP
VOLFAC
WTAPE
                              54

-------
              BLANK  COMMON
U1
in
 2
 3

 S
 A
 7
 ft
 9
 10
 II
 12
 13
 M
 IS
 16
 17
 IB
 19
 20
-21
 72
 23
 71
 75
                     .BLANK
                    BLANK  PPOC
                    c
                    C*****««*»PAR*MEUR STATEMENTS
                    c
                          PAPATTLR  nXl«22,ilYl.Zl ,NZ |.l .NSPI •S,H»»-2772
                          PAPAHCU* Nyn.nsP|«NX|.MY|.NZi .LUM>HXI«N» I «wzi
                    c	
                    C                         BLANK COMMON

                          COMMON l,UM( 1Q) , lOUIHlO) .NX.NY.NZ.IISP.NPC.NP.NS.NPM.NCOMM.
 BLANKOOI
 BLAMKOC2
 BLANKOQ3
 BLANlCQOH
 BLAHKOCS
 BLANKOOA
• BLANn.007
 BLANKQ08
 BLANKOIO
 BLANUCII
 BLAIUCI 2
 BLANKCI3
 OLANKQIH <
          END
 BLAI110I6
 BLANKOI7
 BL.ANKOI8
 BLANKCIf
 BLANKG20
 BLANKQ2I
 BLANK022
 BLANK023
 BLANK02S
 BLANK02&
                                                                                                                                                       en
                                                                                                                                                       en
                                                                                                                                                        i
                                                                                                                                                       »
                                                                                                                                                       >j
                                                                                                                                                       *.
                                                                                                                                                        i
                                                                                                                                                       Ul
                                                                                                                                                       cr>

-------
             ADVECT
in
o\
2
3
1
S
6
7
8
9
10
II
12
13
11
15
16
17
IK
19
20
•21
22
23
7S
25
26
27
28
29
39
31
32
33
31
35
36
37
38
39
10
11
12
13
11
IS
16
17
18
19
SO
SI
52
S3


C
C
C




c«






C
C



C


C



C



C



C



C




C




C

                     .ADVECT
                          SUBROUTINE ADVECT
                          INCLUOr BLANK
                          COHHON /PAKCEL/ I I,JJ.KK,F|,F2,F3,F1,FS,F6,F7,F8,1,J.K
                          VI- U< I, J,KI»FI»U< I I ,J,K>«F2»UI I I , JJ,K>«F3«U< I.JJ.M.FH »
                         I     U{|IJ,M(|*FS»UI|IIJIKK|*F6*U(|IIJJIKKI>F7.UI||JJ,KKI*F8
                          V2» VI | ,J,KI«FI*V( l| |J|K»F2*V(I I•JJ|KI*F3*VI|,JJ,KI*F1 •
                         2    V(|lJ,KKl*FS«VI|l ,J,Mf>«F6*V(|I,JJ,KK)»F7«V<|,JJ,KKI«FB
                    C*****«»»SPECIAL DEAL FOR THE BOTTOM LEVEL
                          IF "I I,JiK)»FI»*lI I•JiK)«F2«»tI I,JJ.K).F3»B(|,JJ,KI«F1 »
                         3    »< |,J|KM'FS*W( |IIJIKK|«F6»W(II|JJ,KKI*F7«»(I|JJ,KKI*F8
                          CO TO 8
                          V3-(Z*0.5>(lFI«FS>*«(ltJ,2)«(F2»F6l*W(||,JJ,2l
                         |   «*(F1«F8l*ftlI,JJ,2)I
                          XCNPI"
                          Y(NP)i
                          ZtNPI-
           YINPi  +
           i(NP|  *
VI
V2
V3
DTOX
DTDY
OTDZ
    ZCRO'OtU
    IF 11 IMP I  >  NX*0>S
    XIMPI-XINPI-NX
    ZERO* I.V)
 20 IFITINP)  .CiL.  0.51  GO TO 30
   • •V  <  0.!>
    Y|NP|«T(HPI«NT
    ZEUO'I.O
 30 IFITKIPl  -LI.  NT*OiS> GO TO SO
   «•»  >  MY+O'S
    Y|NP|BY(NP).NY
    ZERA'I.J
 10 IF.IZIIiPI  .Ot.  O.Sl  GO TO SO
   •*Z  <  0.5
    Z(»PI>.SO I
 SO IFIZINP)  .LT.  NZ*0«SI GO TO 100
    ZO.U
ISO CONTINUE

200 RETURN
                                                                 TEMPORARY B.C.
AOVECTGI
ADVECT02
ADVECTOJ
ADVECICH
ADVECTOS
AOVECT06
AOVECT07
AOVEcroa
AOVECTCf
ADVECIIO
ADVECTI I
AOVECTI2
AOVECTI3
ADVECTIH
ADVECTIS
AUVECTI6
ADVECII7
AO.VECTIB
ADVECTIV
AUVECTZO
AOVECT2I
AUVLCT22
AUVECT23
AOVECT2H
ADVECT2S
AUVECT26
ADVECT27
ADVECT28
ADVECT29
AOVECT30
ADVECT3I
ADVECT32
AUVECT33
AOVCCTJ1
AUVECT3S
AOVECTii
ADVECT37
AOVECT18
AOVECT39
ADVECTSO
AOVECT1I
ADVECT42
ADVECT13
ADVECTH1
AOVECT1S
ADVECT16
ADVECTH7
AOVECTHB
AOVECT19
ADVECTSO
ADVtCTSI
AOVECTS2
ADVECTS3
                                                                                                                                                    cn
                                                                                                                                                    CO
                                                                                                                                                    CO
                                                                                                                                                    Oi
                                                                                                                                                    en

-------
              AOVCCT
             55
                             END
U1
-J
                                                                                                      ADVECTS1

                                                                                                      ADVECTSS
                                                                                                                                                                  C/l
                                                                                                                                                                  cn
                                                                                                                                                                  en
                                                                                                                                                                   I

                                                                                                                                                                  7
                                                                                                                                                                  ^i
                                                                                                                                                                  its.
                                                                                                                                                                   I
                                                                                                                                                                  H
                                                                                                                                                                  •vl
                                                                                                                                                                  Ul

-------
               ANSCHK
                       .ANSCHK
                            SUBROUTINE ANSCHK(XXiXY)
                            LOGICAL XY
                            XY«.FALSE.
                                  .CO. iYES   •) GO TO SO
                                  .CO. •  YES  •) GO TO SO
                                  .tO. •   YES •) GO TO SO
                                  ,ta.
              19
              II
              12
              I)
    IFIXX
    IFIXK
    IFIXX
    GO TO 100
 SO XY'iYRULi

100 RETURN

    END
YES*I  GO TO 50
U1
00
                                                                                                                                                    cn
                                                                                                                                                    en
                                                                                                                                                    en
                                                                                                                                                    -O
                                                                                                                                                    U1

-------
              CHEM
in
vo
1
2
3
1
S
6
7
B
9
10
1 1
12
13
|i
IS
Ik
17
IB
19
20
21
72
23
21
75
26
27
2fl
29
30
31
32
33
31
35
36
37
3D
39
•-0
"1
••2
13
MM
MS


C
C












C





















C
C


C


iOUH 3 ,UUMH ,DUMb ,
17

19
50
SI
52
S3
                      .CMEM
                           SUBROUTINE cHEM(ONO,ON02i003iOHN02iOHC,DUMl
                          I   OELTAT.TIM)
                           THIS RouTiKt  SOLVES  THE  CHEMICAL  RATE  CHANGE  EQUATIONS AND KCTUR
                           THE FRACTIONAL  CHANGE  IN CONCENTRATION OF EACH SPECIE.
                           DATA CPnE, CIA,  C2i  C3.  C".  CS,  C6.  C7,  CB,  C9, CTEN, Cll. CU.
                          I Cll.  Cll, CIS  / .267,  2.6HE6,  24.7, 2.BIE-S, I.&E4, .001,
                          2 I.ES,  2Cf..  IbQG.i  3rCO«i  tOOli  .OOii iQSi  1500. i  1 1 . i  6Q.S /
                           DATA R|,  R2,  BJ. »i  '  2>10.i 2».l/
                           DEAL ''0,  NO! , 1,03,  N2os
                           DIHEMS1UII tllCI. TS(IO>> AISI,  BISI, RISli EIDi LF tj|
                           DATA FR  / .(,25  /
                           IOUIVALENCL  (Tll).NOl,  IYl2l,N02), lvm,03), (V(1I,HN02>.
                          I (YlSl.riCI,  (Tlfcl.OI.  (rl7).OH),   (Y(8I,R02), (Y(9|,hO]|,
                          2 I Y I 1C) ,N2Ubl
                           NA^ELISI  "our'  /  c i * .cz.cJ.ci ,ci,c6 ,c? ,cs,c9 .CTEN.C 1 1 ,c 12 .ci 3 .
                          I   C|1,C|5,L I .b2,H3,PM,FR
                                                                                  CI3»NU3
          t I  >  C6»NO  «  C7«N02
  DEFINE  F2  •  C6«Pi»'-0
  DEFINE  (3  •  Cl1*  *  CIS
  DEFINE  F1  •  CI'MC  •  C8»MO »  C9«N02
  OCFI"F  fS  *  C6«ni«R07«N(> »  CIO«HN07
  DEF^F  FI.O . Cl«N02  •  CIO*HN02
  DEFp-F  Fc'.'O •. C2«03 «  C6»R02  • C8>OH • CII»NQ2
  DEFINE  »N02  *  U2«03  » C6*R02I*NO • CM'NZOS
  OEF^F  RN02  .1.1. C'«R02 •  C?*OM « C i I »NO * Cl2»03
  UFF|>'F  f03 . CIA03 • C^»SO «  CS«HC  • CI2»N02
  OFFIKE  fHNb* •  CB>OH>K>0 « 2,«CII«NO»N02
  DEFIKF  kHNQ, «  CIO
          hHC • C3«0  «  Ci«OH •  CS«03
          EO  '  CI>I>02/(C|A • C3*HC)
  DEFINE  LOH « IF^«C3*B1*0*HC  * F2tcS>B3<03*HC • FI«cI0«MN02I/

  DEFINE  CRC2  .  HC*IC3*Bl*0 •  C1*B2»OH «  cS*B3*03)/F|
  OF.FPE  LN03  •  CI2*03*F3/ICI3*CI5I
  DEFINE  EN20b •  CI3«N02«N03/F3
  DEFINE  KATLH)  . (All) - B I I I • Y I I I I • T T
                          3  ITEST.C
                                                                                CHEHOOOI
                                                                                CHEhOCOZ
                                                                               SCHEHQOQ3
                                                                                CHEnOOCM
                                                                                CHEM300S
                                                                                CHEMOC04
                                                                                CMEM0007
                                                                                CHEfOOCB
                                                                                CHEHQ009
                                                                                CnEnOOIQ
                                                                                CHEMOOI I
                                                                                CHEM30I2
                                                                                CHLMOOI]
                                                                                CnEMOOl «
                                                                                CHEM03IS
                                                                                CHC.HOOI6
                                                                                CHLMCOI7
                                                                                CHEMOOI8
                                                                                CHEMOOI9
   PHOrG(r

-------
             CHEN
cn
o
51
55
56
57
SB
59
60
61
62
63
61
6S
66
67
68
69
70
7|
72
73
71
75
76
77
76
79
CO
fll
02
83
OS
05
86
07
P8
A9
90
91
92
93
9i|
95
96
•7
98
«9
ICO
ICI
102
103
ICM
ICS
106
107
      IFISINC .LT. O'CI  S|Nc«0«0                                        CHEKOOSH
      Cl  • CO»C*S|NC                                                    CHEH0055
      Cio • crCN*51NC                                                   CMt«OOS6
   |2 0 • EO                                                            CMEH0057
      OH • EOH                                                          CHEMCObB
      R02 • Eh02                                                        CMEH0059
      N03 • EII03                                                        CMEHG060
      N20S • tN2ub                                                      CMEM006I
c    ««AOD SOURCE RATES TO FORMATION'RATES                              c»«FHII02*(,UH1                                                   CHEH0066
      AI5I-PUM5                                                         CHEH0067
      Bill   hNO                                                        CMEMG06B
      0(2)   HN02                                                       CHEH0069
      6(31   h03                                                        CHENOC70
      Bill   KKNO^                                                      CHEH007I
      BIS)   hHC                                                        CMEMOC72
      IF IHT ,CQ.  21 GO TO 38                                           CHEMC073
      NT • 2                                                            CHEM007M
c     TEST TO SEL  IF SIGNIFICANT PHOTOCHEMICAL REACTION *UL OCCUH TMI  cnEHOo/b
C     TIKE STEP,  AND. IF NOT, USE SIMPLE RATE EQUATION AND RETUHN       CHEH0076
      IF (ITE5T  .liEi 01 GO TO 19                                        CMEKGG77
      ITEST . I                                                         CMEH0078
      DO 15  l.l.b                                                       CMEM0079
      NIII'PATEMl                                                      CHEH0080
   IS CONTINUE                                                          CMEMCOBI
      XTEST .   «BSI(Y(I) • RID   I/IYI2) * RI2I    |l / ABS I Y 11 I/f I 2 I I  CHEMOOB2
      IFIABSUI III  .LT. I.CE-IO  .AND.  ABSIRI2II  .LT. I.GE-IOI XUiT.  .CHEH0083
      IF uesiumi  >bT. .01 .OR. XTEST .GT.  1.1  .OP. ITEST .LT.  .91    CHEMOOSM
      I GO  TO  |9                                                         CMEHOC85
      00 16  I •  I,  3                                                    CNEH0086
      LFIII - 0                                                         CMEMOOB7
      till • A(1)/B(II                                                  CHEMOOBS
      IF  IYIM  .LI.  Lllll LFIII • I                                     CMEM0089
   16 CONTINUL                                                          CHEH0090
      DO  17  l.l.b                                                      CMEH009I
      QI«E>P|-BIII*OTI                                                  CHEMCC92
      QTEST'll.O-blI*AI|I/BIl)*gi«Y(ll                                  C«EnCC»J
      T1I|.H»XIO.L,OT£ST)                                               CMEH009S
   17 CONTIMUL                                                          CHEM0095
      EI3I • F03/R03                                                    CHEM0096
      DO  l«  I •  I, 3                                                    CHCN0097
       IF  mil  .LI.  LID  .AND.  LFIII  .eo. o  .OR.  vip  .GT. EIII  .AIID.  CMEMOOVB
      I LFIII  .EO. ||  Till •  CID                                        CMEMOC99
   18 CONTINUE                                                          CMEMOIOO
       XTEST  •  IYIH/YI2II/CONO/ON02I                                    CHEHOIOI
       IFIXTEST.GT.O.V.AND.XTEST.LT.I.II GO  TO 900                      CHENOI02
       GO TO  5                                                           CMEHOI03
   19 CONTPlUt                                                          CMEHOIOH
       00 30  I - I. 5                                                   CHEH0105
       YSIM  • Till                                                     CHEHOI06
       IF IB(ll»OT .GT.  I.C-TI  GO  TO ZO                                 CNEBOI07
                                                                                                                                                   cn
                                                                                                                                                   CO
                                                                                                                                                   cn
                                                                                                                                                   i
                                                                                                                                                   U1
                                                                                                                                                   CM

-------
              CMEM
 - Alll/BIIIMFXPI-BIII'DTI  •  TlllK.S
                       10 CONTINUE
                          GO TO 12
                       3fl 00 50 I •  I i 5
                          IF 
DT • H||J|CH/c*bTi TT - TIME)
GO TO 10
• •IIPfttTE CP(*I AR»AY AND1 RETURN TO MAIM PROGRAM
900 ONQ.NO
OHC-HC
OOliOl
OMN02«HN02
RETURN
END
CHEMDU5
CHCH3I26
CHCHOI27
CnEHOlZB
CHEHOllO
CnEnOlll
CHEHOlJj
CnEHOIl]
CMCMOl JH
CNEHOI15
CHEHOI16
CHEHOI17
                                                                                                                                                 V)
                                                                                                                                                 en
                                                                                                                                                 en
                                                                                                                                                 i
                                                                                                                                                 I
                                                                                                                                                 M
                                                                                                                                                 -J
                                                                                                                                                 tn

-------
              CONCEN
N>
 n
 9
10
1 1
12
I)
II
IS
16
17
IB
19
20
71
72
21
20
25
26
27
?l
29
30
II
32
33
30
35
36
37
in
39
             12
             43
             «m
             IS
                      .CONfEN
                           SUBROUTINE CONUN
                           INCLUDF BLAIIK
                           COMMON /PARCEL/ 11,JJ,KK,FI,F2,FJ,FM,FS,FA,F7,FB,I,J,K
                     C
                     C    XZERO OUT C.S ARRAYS
                     C
                           CALL S3ZEROIC,"UHI
                           CALL S3ZERUIS.NUH)
                     C
                           00 100 IJP-I.NPH
                     c
                           CALL VOLFACINPI
                           DO SO M»l ,NSP
                           CtN.K.J.ll
                           StN.K.J.II
                           CIN.K.J.II
                           SIN.K.J.II
                           CIN.K.JJ,
                           SIN.K.JJ,
                           C|N,K,JJ,
                           SI»,K,JJ,
                           CIN,Kr,J,
                           CIM.KK.J,
                           SIN.KK.J,
                           CIN.KK.jJ,
                           S|N,KK,JJ,I1|
                           C|N,Kr,jJ,|)
                           SCN.Kr.JJ.I)


                        SO CONTINUE

                        100 CONTINUE
    On 2CO !•!.NX
    00 200 J>l>NY
    00 200 K'l>N{
    00 700 N'lilkSP
    C^,K,J,I)«C(
200 CONTINUE

    RETURN
    END
               • CUl.K.J.t)  * F|*CPIN,NP|
               • SIM,K,J,|I  * Ft
               • CtH.K.J.II)» F2«CPIN,NP)
               • Siri.k.J.III* F2
               I.CIN.K.JJ.III»FI>CPIN,NPI
               I>SIN.K,JJ,I|I*F3
                .CIU.K.JJ.II* FH*CPIN,NP)
                • SIN.K.JJ.D* FH
                   CIH.KK.J.II « F5*CPIN,NP|
                   SIN.KK.J.lI « FS
                   Clh.KK.J.III* F6*CPIN,NP|
                   SIN.KK.J.III* FA
                   Clfl.KK.JJ.il I»F7*CPIN,NP|
                  SIN.KIC.JJ.I I )»F7
                   CCN.KK.JJ.I)* FO»CP(N,NP)
                   SIN.KK.JJ.II* FB
CONCENOI
CUNCCN02
CONCEN03
CONCLNQH
CONCENOS
CONCLN06
CONCESC7
CONCENOB
CONCEN09
CONCtlilO
CONClNll
CONCLM2
CONCLNIJ
CUNClNIH
CONCEMS
CONCENI6
CONCENI7
CONCLNIB
COSCENI9
CONCCN20
CONCEN2I
CONCLN22
COMCLN23
CONCEN2H
CUHCEN2S
CONCEi«26
CONCLN27
CONCEN2B
COKCLN29
CUNCLlilO
CONCCN3I
CONCEN32
COHCtNJ3
CONCEN31
COMCEN3S
CONCEN16
CONCEN37
CONCCM3B
CCNCEN39
CONCEN10
CONCEN-II
CONCEN12
CONCENS3
CONCEN11
CONCENSS
                                                                                                                                       cn
                                                                                                                                       in
                                                                                                                                       CO

                                                                                                                                       to
                                                                                                                                       •vj
                                                                                                                                       4^
                                                                                                                                       I
                                                                                                                                                    Ul
                                                                                                                                                    cn

-------
             CONTUR

2
3
1
5
t
J
o
9
1C
ii
i?
13
11
IS
16
17
IB
19
.CQNfUR
COFHCK /TF|A/|CVCLiTlME
Dlr>Fp>SluN T *8 | i 1 t X < 1 * K A X i I Y \
DATA nc •C'MN.CMAH .toGFl / IO,0.iOt
C *>Anjl'ST PRIME" SPACING
CALL PRTCNI iH,66,o!•! >Z) tlCYCL
CILL PL(NC,*,I*il'',|»M»X,CMIN,CW»X
c ••PFSr.T I
                                                                                                                                                            I
                                                                                                                                                            »
                                                                                                                                                            Ul

-------
             DATA
                     .DAT*
01
1
2
3
it
5
6
7
8
9
10
II
12
13
1 H
IS
1 A
IB
19
70
SUBROUTINE
bAlA
INCIUDF BLANK
DIMENSION
EQIMVUtNC
1 UKI ,11
DIMFHSION
COUIVALINC
Ul(NX|,MY|) ,U2,IVl,NY),|B|,NII


72
73
7«
75
76
77
7S
29
30
31
32
33
is
35.
36
37
38
39
10
II
12
             US
             It
             1*
             IB
             19
             SC
             SI
             52
             S3
   IFIQT  .LT.  U.OI  STOP NEC OT
   ROT»I.O/OT
   00 20  !•!,N»
   00 20  j»l,NT
   Ull,J.2)«U(I,J.I I
   UlI.J,3)»-UII.J.I)
   U(I,J.«)'UII,J,3I
   Vl!,J,2l>Vl|,J,ll
   VI I.J.JI'-VII,J,I)
   VI I.J,M)»V(I,J,3I
   Wl I ,Jil )«0.(,

   HI I ,J,3l**lI.JiZI

   DO 19  r-l,NI
   EXI,J,KI*LXII,J,KI*ROT
   Ezii,J.Ki>tz(i,J,KI*ROT
19 CONTINl L
20 CONTINUE

  ••MOVE  SS ARHAY  TO S ARRAY AND CONVERT KG TO PpM

   CO 50  ?«!ihZ
   00 SO J.I,NY
   DO SO l«l.NX
   S(S,K,J.I>.iS(3.K,J,ll
   SI3,K,J,ll-t.O
 A|R DENSITY  1,23 K6/H**3I HOLE "tIGIIT 2B.1
   DO IS L»l (NbP
   IF(FACToRIL) .LT. I.CE-81 GO TO IS
   SIL>KiJ,l>BSIL,K,J,|)*28«M*liOE6*ROT/IF«CTORlLl*l»23*VOLUNCI
IS CONTINUL
SO CONTI"Uf
OATAOOOI
DAIA0002
0*TA0033
0*T*0001
DATAOOOS
DATA0006
DATA0007
DATAOOOB
DATA0009
DATAOOIO
DATAOOI I
DATAOOI2
DATAOOI3
DAT*COI1
UATAOOIS
DATA0016
DATAOOI7
OATkCOIB
0*T«OC|9
DATA0020
DATA002I
DATA0042
OATA0023
DATAOC21
DATA002S
DATA0026
DATA0027
DATA0028
DATA0029
OATA0030
OATA003I
DATA0032
DATAOOJ
DATA003S
OATA003&
OATA0036
OATA0037
DATA003B
OATA0039
DATACOHO
DATkOCHI
DATA0012
                                                                                OATAOQ1M
                                                                                UATAOOIS
                                                                                DATAOOH6
                                                                                DATAOOM7
                                                                                OATA001B
                                                                                DATA0019
                                                                                DATAOO&O
                                                                                OATA005I
                                                                                DATAOO&2
                                                                                D*T*00&3
                                                                                                                                                    cn
                                                                                                                                                    C/)
                                                                                                                                                    CO
                                                                                                                                                    I
                                                       in
                                                       o\

-------
 DATA

SS
S5
S6
*7
SB
S9
AC
Al
1-3
46
A7
AP
A9
7C
71
77
7J
7-4
7*
76
77
                            IFiri«Gl iLTi  I.Or-6)  GO  TO 200
                      C    ••OPTICri TO TURN  OFF  DIFFUSION
                            CALL ?H£ROIE»iLOM)
                            CALL S3..ERGIEZ iLUMl
                            GO TO 2UO
                      C
                      C*"*«*«*DA'A SPtClFICD  BY  INPUT
                      C
                        100 00 I'.P  !•! itix
                            00 ISO  J-l ,I,Y
                            On l^r  i.«| ,1.2
                            EXf I i J,K)-L»FI»
                            CZ( I i J,KI«L(F|X
                            Ul I , J,CI«UFIX
                            VI I ,J,r I-VF |X
                            «ll I i JiCIXFIX
                        ISO CONTINUL
                      C
                        ZOO DTOX>DT>RD(
                            DTOZ.IM.RDi
                             RFTURH
                             END
en
ui
DATAOObS
0«T»OObS
DATAOC&6
DATAOOb7
DATAOO&B
DATAOO&V
DATA0060
DATA006I
OATA0062
OATA0063
UATAOQ6H
DATA0066
OATA0067
0*1*0068
OATAOC69
OATA0070
DATACQ7I
OAT»0072
OATA007]
DATA007H
OATA007S
OATA0076
OATA0077
                                                                                                                                                        cn
                                                                                                                                                        CO
                                                                                                                                                        cn
                                                                                                                                                        Ln
                                                                                                                                                        cn

-------
DEFINE
10
II
12
13
M
IS
l&
17
IB
i«
20
        .DE.FIKE
             SUBROUTINE  DEFINE
             INCLUPC BlAIlK
             OAT* nuiinr/b/
             NXPI«NX«I
             NYPI«HT»I
             NZP|>'IZ*I
             NXMI-UX-I
             NYHI.NY-I
             HQKI.O/DX
             hor.i.c/OT
             HOZ-I.C/07
             RD»?""OX«RDX
             N[
-------
             DIFFUS
                      .OIFFUS
                           SURROUTINF  DlFFUSIN)
UlFFU&OI
a\
2
3
M
s
6
7
R
9
10
1 1
17
13
It
IS
14
17
IP
19
20
71
22
23
21
2S
76
27
7P
29
30
31
32
33
31
^£
34
37
>B
19

HI
12
13
11
IS
H6

C
C



c

c
c
c
c


c
c
c

c
c
c

100


c
c












c
c


INCLUPE BLAhK


DO IDO I'l.iiX
DO IGO J«l if. Y
DO ICO K*l iNZ

CALL IHUE* ( i , J.K i


..... r.f DIFFUSION

T£tiM] • F X 1 1 • J » K Ml 1 1 C I M • K i J I |P| )"2.0*C(NIK.J, I |*C
| *J,l)-2,0«C(H|IClJill»Cl

• •••• iriCMEHLllT SOURCE A'RAY

S(N,"t,J,ll"b(N,K,J,ll»TERMl.TEl'M2
CONTIMUL
HETURI'
SUBROUTINE INDEXII.J.K)

TEMP B.C.
IPI-1*
IM I « | -
JPI- !•
JMI-J-
KPI IK*
KM 1 • K •
IFII.FQ.I) |»|-N»
IFIJ.FC.I) J'I|«NY
IFIIC .EU. 1) KH|«|
irii.rq.Nii |P»- 1
IFIJ.FQ.NTI JPI* 1
IFIK .re. mt KPI»"Z


RETURN
END
DIFf OiC2
OIFFUS03
OlFFUSCt
OIFf USDS
OIFFUSCA
OlFFUbC?
01FFUS04
OIFFUS09
DlFFUSIO
01FFUS1 1
DIFFUSI2
OIFFUSI J
IN.K.J, IH| | I.KljI 10IFFUS11
urzi OIFFOSIS
D|FFU^I6
DIFFUSI7
OIFFUSI8
N.KMl , J, | ) I»«UZZ OIFFUSI9
OIFFUS20
DIFFUS2I
DIFFUS22
UIFFUS23
DIFFUS21
DIFFUS2&
OIFFUS27
OIFFU&28
OIFFUS29
OIFFUS10
DIFFUS11
OIFFUS32
OIFFUS13
DIFFUSJH
DIFFUSJb
DIFFUS16
OIFf USJ7
OIFFUS38
OIFFUS39
UIFFUSSO
BIFFUStl
D 1 FFUSH2
OIFFUS13
DIFFUStl
DlFFUSt6
                                                                                                                                                      CO
                                                                                                                                                      CO
                                                                                                                                                      CO

-------
                EDIT
CO
                         .EDIT
1
2
1
1
S
6
7
8
9
1C
1 1
12
1 1
11
IS
16
17
18
l»
20
21
22
23
2t
25
26
77
2fl
29
13
31
32
3}
31
3S
36
SUBROUTINE tOlT
INCLUDE 8LAHK
DIMENSION CUNIHXII
DIMENSION FACTIS)
DATA FACT /M'loo-o, i -n/
c
c
C '"ISP SELECTi *MICH SPECIES »R£ EDITED
C
SS 00 ICQ .1-1 iNSP
IFI ISPliil -k.1. 0) CO TO 1 00
SH-TITLLS(N)
C
SIJM.Q.O
00 60 ro| .LLVCL5
lr(MOn«»l,^l .CO. 0> PRINT AOOS
4005 FORMAT i i H i i
T I"EXoT (KC/jAOU.
PRINT (.JIO.SP.K.TIME", ICTCL
6019 FO^i'»T( lx,itOIJCLNTRAT|OHS OF '.Ab,' IN X-Y SPACE FOR LEVEL
1 /iSr.'TIME ° ' ,Ffl.2ilX ,'CTCI E • 'iI5i/l
00 SO j • NT . i . -1
00 •*' !»l (NA
CLlNIM'FACrlNI'CIN.K.J,!)
SUH.SIJHtCLlNI 1 1
M* CONTIHUET
SO PRINT 6T50, (CLINI 1 1 i 1-1 iNXMI )
6050 FOPHATI2* .21F6.2)
60 CONTINUE
*R|TEIA,IOO(il SUM
looo FORH»T (//. u ,«SUM or ALL CONCENTRATIONS • '.F|2.J>
100 CONTINIIL
c
sooo RITURM
END
EDIT003I
EOU0002
EOIT0003
LDITOOOS
EOlTOOuS
EOIT0006
EOU300B
tUIT0039
EOIIOOIO
EDIT001 1
IOIT03I2
EOI TCOI3
EOITOOM
EOI IOOIS
EDITOOI6
EDITOOI7
EDI TOOI8
EOITCOI9
EUIT0020
1,12 EOM002I
EOIT0022
EOIT0023
EOIT002H
IDITOO^S
EOIT0026
EOIT0027
EUIT0028
EOIT0029
EDITOQJO
EOIT30JI
EOITOOJ2
EOIT0033
EOITOOJS
EOIT003S
EOII0036
                                                                                                                                                                   UJ
                                                                                                                                                                   en
                                                                                                                                                                    i
                                                                                                                                                                    I
                                                                                                                                                                   M
                                                                                                                                                                   •>J
                                                                                                                                                                   Ln

-------
               INPUT
vo
                       .INPUT
                            SUBROUTINE  INPUT
                            INCLUDE  BLANK
                            NAMELIST /START/RESTRT,iSTART,TMAX,CTCMAX,CHANGE
s
A
7
8
9
10
1 1
1 Z
13
11
11
1 »
IT
18
19
2T
Zl
22
23
2"
75
26
2»
29
29
30
11
12
C
C








C

C

c
c
c

c









                                                                      , 10. ( 10. . 10. . .THUL.

                                                                            I»MHC
    DATA  MI . NY )NZ.NSP,D» .DY.OZ .CONST / i ,1 , i
    DATA   NHC.OT.TIHE  /  i ,600. ,zi6co. /
    DATA  TITLES  /6«r.o     .AHNOZ   ,*H03    ,6HHiioz
    DATA  is?  /&•)  /
    NA«ELIST  /SPEC*/  IOUHP.TOUMP, IPRINT.TPRINT, IPI.OT ,TPLOT.
   I    LEVELS! I I ,|2, 13, |M.|5,NX¥,N«ZiNYZ.KYP,XZP,rZP,ISP
    NAHELlsr  /GCN/ HX .IJY ,HZ ,M5P,OX .OY.nZ iNPC,NS,T| ME iOT,FLAtl,FLAl.J.
   i    iFL«ui , irtAGZ.couST .uFix.vrix.wrix.EXf ix ,Ezri*,(,KOuNo

    REAOIS, jTART)

    IFIRESTNTiLTil >C-6)   GO TO 100

    TAPE  RESTART

    CALL  RTAPE

    lriCHANGC.LI.IiC-6)  GO  TO ZOO
100 CONTINUE
    REAOII.SPECi)
    IF IRESTKT.&I . I .t-6)  GO  TO 200
                        200 CONTIMUt
INPUTOOI
INPUTQ02
INPUTQC]
INPUTOOH
INPUTQQ&
INPUIOC6
INPUTOO'
INPUTOC8
INPUTQC9
INPUTOIO
INPUTOI i
INPUTOIZ
INPUTOI3
ISPUIOIH
INPUTOIS
INPUTOIA
INPUTOI7
INPUTOIS
|NPUTOI«
INPUTU20
IUPUTQ2I
INPUT022
                                                                                               INPUTQ2M
                                                                                               (NPUT02&
                            RFTURn
                            END
INPUTQ27
INPUT028
INPUT029
INPUTOIO
INPUTQ3I
INPUTOJ2
                                                                                                                                                     CO
                                                                                                                                                     CO
                                                                                                                                                     en
                                                                                                                                                     •«j
                                                                                                                                                     £>
                                                                                                                                                      i
                                                                                                                                                     M
                                                                                                                                                     >J
                                                                                                                                                     Ln

-------
                          .HAlN
-J
O
1
2
3
F7 , FB , 1 . J .1



CALL INPUT

IFIRESTMT.6I.O.QI GO TO 10

CALL DEFINE
••IMITIALIZL ICfCL.SAVE
IfVCL-O
SAVE'.F.LSE.
IFITOdHP  • Sln.K.J,I)»n»SIN,K,J,ll)»F2»S(N.»C, Jj,l l)»Fl
| SlN.KiJJill*F1*S(N,KKiJi|l>F&*SIN|KK,JiI||*F
2 S(N,KKiJJ,| |l*F7«S(NlrK,JJ,|l»Fa
S COHTIMUE

MAlNOOOl
C HAIN0002
NAIN0003
MAINOOOt
MAlNOOOb
MAINOOO*
HAIN0007
MAIN30C8
HAIN0009
HAIN0010
HAINOOI 1
HAINOOI2
HAINOOI3
NAIN0011
MAIN001S
HAINOOI6
HAlNOOl'
HAIMOOIB
HAINOOI9

HAINOC2Z
nA'IK0023
HAlNOOJI
NAIN002S
MAIN0026
HAINOG47
MAiNoo^a
*1AIN0029
HAIN0030
HAIN003I
HAINOQ32
HAIN0033
HAINC03H
MAIN001&
HAIr.003*
HAIN0037
HAIN003B
HAIN0039
HAIN0010
HAIUOOH2
HAIN0013
MAIN0014
rtAlnCOSb
MAINOOt6
HAIN0017
nAINOOia
* HAINOO>|9
6* HAINOO&O
HAINOOSI
hAINOObi
HAINOOS3
                                                                                                                                                                                    (A
                                                                                                                                                                                    CO
                                                                                                                                                                                    CO
                                                                                                                                                                                     I

-------
51
SS
56
57
58
59
AO
61
AJ
63
6H
65
A6
67
tB
69
70
71
72
73
7«
75
76
7 7
78
79
ec
PI
AZ
83
PI
PS
86
87
88
P9
90
«l
92
93
91
95
9*
97
98
99
100
1C1
102
IC3
101
IOS
106
107
CPSUC-0.0
00 8 N.| ,NSP
CPIN,NP|«CP(N,NP>tDlJM|li)>DT
IFICPIK.NPI iLT. 0>0> CP(N,NPI"0.0
CPSUM«crsun»cPiN,Npi
8 COMINl't
c
C ••PHOTOCHEMICAL CONTR | PllT | ONS
c
c AVOID CHEMISTRY IF SUM or CONCENTRATIONS is < o.oi PPM
IriCPSi'M .LI. 0.01 ) GO TO 25,
C PPfPAPL CP ARRAY FPR CHEMISTRY
DP 9 N.| , Nsp
CP(N.»P|»C»'IM,NPI-CliMtHI«OT
IF(Cpli,NF| ,LT. OiO> CF.F«LbE.
ouMp-.r /,LSt .
CALL PRTTS1
C «*SELECT OUTPUT ROUTINES
IFIPRIM XI C»LL EDIT
IFIPLOT) CALL OUTPUT
IF(t)UMp) CALL »TAI'E
IFI.NOT. CHOUNUI GO TO 100
C ••r.RITF UUT (.ROUND LEVFL CONCENTRATIONS
»R|TE I 1 1 1 IC*CL,T|Mf
DO 7S N=l iNiP
••RITE III) KC(N,l,J,l>iJ"l iNYI,l«l,NX|
75 CONTIMUL
PRINT 1250, 1C»CL
TX2«TICKERITV)
TELAPS.TH2-TXI
PRINT I200.T|ML,OT,TEL»PS
(200 FORMAT! 1». 'T1ML • • ,F |Q. 3 ,tX . • DT • • .F8 .3 , 1» , .ELAPSED • ',F9.5>
1250 roRMATtlX.'trci-E . • ,1M,5», ••••LEVEL 1 CONCENTRATIONS OUHPCO****
C
C >*IS THIS "UN COMPLETED*
MAlNOQbH
MA|NOOb5
NAIN3056
HA INOO'j7
MAINOC58
MAINOC59
MAIUOP4C
HA IN006I
MAIN3062
HAIN0061
MAIN006S
MAIN006S
MAIU0066
MAII.C067
MAINCC6B
nA|N006f
MAIN0070
MAIN007I
MAIN0072
HAIN0071
HAIN007S
MAINOQ75
MAIN0076
•MAINOC77
MAIN0078
MAIN0079
MAINOOBO
MAINOOB!
MAINOOB2
MAIN0063
MAlNCObt
MAlNOOBb
MAINOC86
MAINOCV7
MAINOOD8
MAINOCB9
MAlNOCfO
MAINOOf 1
MAIN0092
MAlNOOfl
MAlNOOft
MAIN009S
MAIN0096
HAIN0397
MAIN0096
HAIN0099
MAINOIOO
HAINOIOI
MAINOI02
MAINOIOJ
MAINOI01
HAINOIOS
HAINOI06
NAINOI07
cn
en
CO
 i
»

-j
4^
 I
M
^J
t/l

-------
            100      C
            109        100 IFCTIME .01. TMAX  .AND.  TMAX .GT. 0.01 GO TO 200                 HAINOI09
            |IO            IFIICYCL «Cl. CTChAX  .AND.  CUMAX .GT. 0.01 GO TO  200            HAlNOllO
            III      c                                                                        MAINOIII
            ii7      c    ••RETURN TO MAIN LOOP FOR ANOTHER CVCLF                             MAinoii2
            | 1 3      C                                                                        HA I NO 113
            HI            GO TO  IJ                                                           HAINOIIH

            lit      C	•	......•••••••	••••	•	••••..•••  .MAINOI 16
            ||7      C                                                                        HAINOII7
            lie      c    ••NORMAL EXIT                                                       HAiNoiia
            ii9        200 iFiSAvr .*NL). I.NOT. DUMPII CALL HTAPF                             MAINOII?
            120            IFI.NOT. PLUTI CALL OUTPUT                                         HAINOI20
            |2I            IFI.NOT. PR|NTX) CALL FOU                                         MAIN012I
            122            STOP NOKHAL                                                        MAI no 122
            |?1      C    ••S3WAPN TERMINATION                                                HAINCI23
            |2«        300 CALL KTAPE                                                         MAIN012S
            125            CALL FOIT                                                          HAINOI2S
            |26            STOP S3UARN                                                        HAINOI26
            127      C                                                                        HAINOI27
            I2B      C                                                                        HAINOI28
            129            END                                                                HAIN01Z9
'-J
to
                                                                                                                                                    cn
                                                                                                                                                    CO
                                                                                                                                                     I
                                                                                                                                                    »
                                                                                                                                                    •vl
                                                                                                                                                    en
                                                                                                                                                    en

-------
              OUTPUT
Ul
1C
11
12
13
IN
IS
It
17
IB
19
20
21
22
73
7H
25

27

79
30
31
32
33
3t
)5

37
3B

"0

"2

11
IS

ij
IB
H«
10
II

13
                      .OUTPUT
                           SUBROUTINE OUTPUT
                           ItiCLUPC BLANK
                           CnnnON /TFU/ 108,T0«
                           DIMENSION BIGPLTI70GI , XTPL (NX I tH1 \ I ,
                           DIMENSION T«BI2I
                           EOU[V«Lk."CL  IMPLl I •! > .BIGPUTI I)J . (XZPL < I , I ) , B I (>PLT I I I I i
                          I    fY7PL« |,|| .BI&PLTI I I I
                           TOC-Tiri

                          • •DETFP»H|»E CONTOUR PLOTS DESIRED

                           00 ICOO H«l.NSH
                           NQ.H

                          ••ISP SELECTS WHICH SPECIES  »RE  PLOTTED
                               11
                           TAB i2i«6HPLUT
                           IFIISPllll  •(.!!. 01  GO  TO  1000
                           IFINIT  .co. oi oo  TO  too
                          • ••••i-f COMOUR  PLOTS
                           DO  so L«I >mt
                           on  10  I-I.N*
                           oo  13  j»i,NY
      *YPLII,j)«ClNUiLEVELiJill
   10 COIMJNUL
      CULL cnNTUffiNiihiz
c
      on 110 l«l ,h>
      PO I 10 H-I ,hi
      LrVll-x:PlLI
      (ZPLI I ,|. I'CINOiKiLEvELt I )
  1 10 CONTIMIL
      CALL CnilTllfUNHI iN»1Ml,»7PLiOiTiOiT»Btl )
  ISO CONTINUL
  200 IFINYZ .EQ. 0) CO TO 300
(•••••••••v-z CONIOUS PLOTS
      DO 2SO k>I,H1l
c
      00 210 J«l ,t,1
      on 210 <*i,m
      LEVEL-YIPIH
      »2PLIJ.Kl'CINQifcfJ,LEVEL)
  210 CONTINut
      CALL COtlTUHlHYl ,NY ,nl, TIPL id T tOiTAB , I t
OUTPU10I
OUTPU1C2
OUTPUIOJ
OUTPUTC1
ourpuios
OUTPUTC6
OUTPUT07
OUTPUTOB
OUTPUI09
OUTPUTIO
OUTPUT!I
OUTPUT 12
OUTPUT I 1
OUTPUriH
OUTPUTli
OUTPUT16
OUTPUT 17
OUTPUTIB
OUTPUT If
OUT PUT 20
OUTPUT2I
OUTPUT22
OUTPUTJ3
OUTPUT2t
DUTPUT2S
OUTPUT^t
OUTPUT27
OUTPUT28
OUTPUT29
OUTPUT30
OUTPUTJl
OUTPUI32
OUTPUT3J
OUTPUI31
OUTPUT3S
OUTPOT36
OUTPUI37
OUTPUI3B
OUTPUT39
OUTPUTMO
OUTPUTHI
OUTPUTHZ
OUTPUHi
OUTPUFIM
OUTPUTtS
OUTPUTH6
OUTPUIH7
ouTpuria
OUTPOT1i9
ODTPUISO
OUTPUTS!
OUTPUIbl
OUTPUT&3
                                                                                                                                                     cn
                                                                                                                                                     en
                                                                                                                                                     en
                                                                                                                                                     i
                                                                                                                                                     (Jl
                                                                                                                                                     a\

-------
 OUTPUT
56
57
SB
59
*0
61
 250  CONTIIIUL

 300  COMTIHUL

I 000  CONTINUC
     HETURU
              CND
OUTPUTbt
OUTPUT!, b
OUTPUTS*
OUTPUTb?
OUTPUTS8
OUTPUTbf
OUTPUT60
OUTPUTtl
OUTPUT62
                                                                                                                                         -o
                                                                                                                                         tn
                                                                                                                                         tn

-------
                      .PL
-j
ui
 a
 9
10

12
13
II
IS
16
17
IB
19
29
21
22
2)
21
2S
26
27
2A
29
13
31
32
3)
31
3S
36
37
38
19
13
II
12
13
11
IS
16
IT
IB
19
50
51
S2
S3
                           SUBROUTINE PlM'IIC, Zi NX, NY, NXMX, AM|Ni AMAX, LOGFLI
                           DIMENSION LUC72), Lll3l)i ZINXMX.IIT)
                           DATA LQ / 'bfi ' '« 'I1. ' 'i *2'i  • •, '3', • ',  'I1,  •  «,  "b".
                          I  •  '. •«•'. •  '. "71. • •, '8', • •, «9i, «  tt  .A', •  t.  •„.,  i  t

                          2  !c!' ', ',' I0!1 ! ',' !E!' !  I1 !r!' ! I1 I6!1  ! !• IM>1  '  '•  M'
                          1  10IY
                           IFIAnSl^HAA-ZMIN) .QT. I.OE-SI GO TO 20
                           ZMAX • ii I ,u
     DO M i  • i. NX
     on 10 j • i . NT
     ZH«X • IAXUMAX. Zllljl)
  10 ZMIN a n|UUM|S, Zl I ijl)
     irdnSiZHAX-ZMiNi  .LT.  i.oc-20) RETURN
  70 IF ILOGI^L .tO. 01  GO TO 30
     IF IZMM .61. U.I  GO TO 2S
     PRINT 6J20
6020 FORMATI  ///// • •« ......... • ........ NON-P05|T|VF.  VALUE  IN  AHTAT
    i  nr cni.rouRtn LOG*" i THMICALL».  PL  is RETURNING WITHOUT PLOTTING,
     RETURN
     H?MAX • ZMAX
                        25
     {MAX • ALOblOIZIIAXI
     ZMIN • ALObioiZMINI
  33 Sc • IMC*?* - I.E-Sl/lZMAX -
     OX • ANX/IMAX
     DY • ANT/JMAK
     Y • ANY « D»
     On 80 J • JIIAXi  I i -I
     T • Y . DY
     M . Y
     IF IM ,LE. 01 "  •  I
     IF IM ,GE. NY) M  • NY -  I
     DM • Y - M
     X • 0.
     00 70 I • I,
     X « X * OX
     IF I|*J .EQ.
     IF II .tO> I
                                        IMAX

                                        I
                 OR. I.J .EQ. |MAX»JMAXI GO TO 60
               AND. J .EO. JMAX .OR. J .£«• I .ANL
I  I  .CO.  I"AX) GO TO 60
 N • X
 IF  IN .LE. o) f • i
 IF  IN .(,£* NXI N • NX - I
 ON  • x - N
 PLOOOOOI
 PL000002
 PLOOOQ03
 PLOOOOOI
 PLOOGOOS
 PL000006
 PLOOOOC7
 PLOOOOOB
 PLOOOOC9
 PLOOOOIO
 PLC0001I
 PLCOOOI2
 PLOOOOI3
 PLOOOOM
 PLCOOCIS
 PLCOOOI6
 PLCOOOI7
 PLOOOOI8
 PLOOCOI9
 PL000020
 PL00002I
 PL000022
 PL000023
 PL300021
 PLC0002S
 PLC00026
OPL000027
IPLC0002B
 PL000029
 PlOOOOJO
 PLOOC03I
 PLOOOOJ2
 PL000033
 PLOOOOJ1
 PL00003&
 PL000036
 PL00003'
 PLCOOOJ8
 PL00003V
 PLOOOOIO
 PLOOOOHI
 PL000012
 PLOOl/OHi
 PLOOC01H
 PL00001&
 PL000016
 PL000017
 PLOOOOH8
 PLOOOOIf
 PL000050
 PLOOOO&I
 PLOOOOS.2
 PLOOOOS3
                                                                                                                                                    cn
                                                                                                                                                    en
                                                                                                                                                    en
                                                                                                                                                    (Jl
                                                                                                                                                    (Ti

-------
(I. - DN»
 PL

SI            IF ILOGFL .NT. 0> GO TO 10
1,5            C • DH»tDH«/tll«l ,M»1 I  » Hi  -  DM»»71N»1,

S7            GO TO Su
SB         10 C " ON>II/M«ALOi>IOIZ('l»l ,M«|I )  «  (!•  - DMMALOGIOIZ IN*| ,rll I
SQ           |  ||. . ON)>iON«ALOClO(Z|N,IUI I )  « (I. . OM».»LOGIO 2            IFIINO .Ot.  2«NC> 1ND.Z.NC
43            Lll) • L8IIHDI
»1            GO TO 70
AS         40 LI!I • ISTArf
At         70 CONTINUt."
A7         RO PRINT 6U80,  IU P ,!•! .!«»»>
60        6080 FOB'tn | IX,  I3I«I I
(,1            IF (LQGfL  -tQ«  0) CO TO TO
73            7MiX
71            ZHIN
72         93 PRINT tUVO.  ZM1N. Z»»X
7J        4090 FORMAT I'OMJNIMUM VALUE • ', IPEfi^i S«, 'MAXIMUM VALUE
7S       C
75            RETUBf:
76            CSD
      PLOOOObt
      PLCOOCbS
      PLOOCOS6
      PLGOCOb?
>      PLOOOObB
      PLOOOObf
      PLOOQ06C
      PLCOOC6I
      PL00006Z
      PL00006J
      PL00306H
      PLOOC06&
      P 1.000066
      PLCOC047
      PLOOOC6B
      PLOC0069
      PL0020/0
      PLC0007I
      PL000072
 tv. IPLC00073
                     PLOOu07b
                     Pi.COG076
                                                                            Ul
                                                                            tn
                                                                            CO

                                                                            t
                                                                            -o
                                                                            U1

-------
PRTTSI

1
2
3
1
S
6
7
B
9
1C
1 1
12
11
II
1 *
16
17
IB
19
20
21
?Z
J3
21
2S
?<•
27
28
29
3C
31
3?
33
31
35
36
37
38
39
10
11
.PRTTST
SURROiJT,NE PRTTST
INCLUDE BLANK

C
C ••THIS SUBROUTINE CONTROLS PRINTER EDITS, PLOTS, AND TtPC DUMPS
C
C 	 PLOTS
IFI (PLOT .tg. 01 GO TO 3d
IFIHODl IC»CL, |PLOT> • f,T. Oil) GO TO 30
PLOT..TKUE.
30 IFITFLOT .LI. I.OE-Dl GO TO SO
DUMSI.T IM0«TPLOT
IFITIMf. .LT. DUMISM GO TO SO
T|MO*Dl'l!(S)
PLOT..TKUE.
C • ••••PHJIlTER EDITS
SO IFHPRINT .tg. 0) r,n TO 60
IFIMOm ICUL. IPRINT) .GT, 0.11 GO TO 60
PRIIiTX..TRl>E.
60 IFITPR|||T .LT. I.OE-8) GO TO 80
OUMI6I.T IMIt.TPRINT
IFlTlnr. .LT. DUHI6II GO TO 80
T|r^.Puh(6l
PR 1 NT t m . TRUL .
C •••••TAPE DUMPS
80 IFIICUMP .th. 0) GO Tp 90
IFINODl |C»CLi IDUMP) . C.T. 0.1) GO TO 90
OUPP'.TRUE.
90 IFITPUKP .LI. I.OE-Bl GO TO 100
OUt" (7 I.TIMN.TOUMP
IFITIMf .LT. DUHI7II GO TO 100
T (MN'Olihl 71
OIIHP..TRUE.
C *>AL''AYS PLOT CTCLE ONE, AND DUMP IF DUMPS HAVE BEEN REQUESUD
100 IFI ICUl «N[. II GO TO ISO
PLOT. .TRUE.
PRINT!. .TRUl.
IFISAVEI DUHPxTRUE.
C
iso RETURN
END

PRTTSTOI
PRTIiIOZ
PHTTMC3
PRTTSTQS
PRTTST05
PNTTS1G6
PI.TTSI07
PNTTSTOB
PRTTSTO*
PRTTST10
PKTTST 1 1
PRTTST12
PRTTST 13
PRTTST 11
PHTTST1S
PhTTST |6
PRTTMI7
PhTTST|8
PRTTST 19
PRTTST20
PRTTST2I
PRTTST22
PRTTST23
PRTTiTiH
PNTTST2S
PRTTST26
PRTTST27
PRTTST28
PNTTST29
PRTTST30
PRTTST3I
PKTTST32
PRTTST33
PRTTST31
PRTTiTii
PRTTST36
PRTTSTJ7
PKTTST3B
PNTTST 29
PHTTST10
PRTTST1I
                                                                                                                                                     CO
                                                                                                                                                     C/5
                                                                                                                                                     W
                                                                                                                                                     Ul
                                                                                                                                                     Oi

-------
oo
             10
             11
             12
             13
             M

             If.
             17
             IB
             19
             2C
             71
             77
7S
76
27
7fl
79
3C
31
37
36
37
38
39
"0
"I
12
13

IS
«6
17
IB

SO
SI
52
S3
                     .RTAPE
                          SUBROUTINE  RTAPE
                          INCLUDE BLANK
                    c
                    C    >«SAVE FCSTAKTING DATA
                          SAVEI-PLSTK1
                          SAVF?«TIU«
          •ISTAKT

    I.RITE It, 1000)  1ST ART
 25 READ  ll/l   ICYCLiTlHE.NCOMH
    »RiTE(6,ioui  ICYCL.TIME
    IFIICYCL  .Eh.  ISTARTI  GO TO 100
    RF>D  114)
    GO TP  2b

   ••READ  BLANK COMMON

100 READII7)  IDUMI1). I.I.NCOMMI

   ••RESTOPE  RESTARTING DATA
    RESTRT.SAVLI
    Tl'AX>S*VE2
    C T C H A |i • S A ¥ t J
    [START.|SAVtl

   ••OFT  SETUP 1APE SPACER CORRECTLY FOR RESTART

    TTEST-21600.
        SPACE  PAST INITIAL CONCENTRATIONS
    READ  ito)  OUMM

125 READ  IIQI  OTT .OUMM^UMM.OUMH.DUMM.OUMM

    TTEST-TTEST.DTT
    CHECK-AUSI UEST-T |M£ I
    IFICHECK  "LI.  I.OE-fll  GO TO I MO
    00 TO I2S
110 TRINT I700.TTEST
   • •GET GROUND LE»L'_ I"N;FNTHAT ION FILE SP»CEO CO"«:CCTL»

    IM.NOT. GROUND! GO TO 200
iso READ ii11 IIEST.TTEST
    DO  160 11*1 iNSP
    CEAO mi
160 CONTINUE
    IFlMEST .EU.  ISTARTI GO TO 190
    GO  TO IbO
190 PRINT 1600
RTAPEOOI
RTAPE002
RTAPtOOJ
RTAPEOOH
HTAPtOOS
RTAPL006
RMPEOC7
RTAPEOCO
RTAPLOOV
RTAPEOIO
RTAPEOI I
RTAPEOI2
RtAPLOIl
HTAPE01H
KTAPS.QIS
RTAPEOI6
RTAPEOI7
RTAPEOIB
RTAPE.OI9
RTAPL320
RTAPL02I
RTAPE322
RTAPE32J
RTAPE024
RTAPLJ^S
RTAPL026
RTAPEC27
RTAPLQ26
RTAPL02V
RTAPL010
RTAPE01I
RTAPLOJZ
RTAPE031
RTAPE031
RTAPEOJS
RTAPL016
RTAPLOJ7
RTAPEOJB
                                                                                             RtAPEOHl]
                                                                                             MTKPEOHI
                                                                                             RTAPEOH2
                                                                                             HTAPLOtJ
                                                                                             RTAPLOtl
                                                                                             RTAPEOM&
                                                                                             RTAPEOH6
                                                                                             RTAPLQH;
                                                                                             RTAPL01S
                                                                                             RTAPLOH9
                                                                                             RTAPLO&O
                                                                                             RTAPtObl
                                                                                             RTAPEObi
                                                                                             RTAPEOSJ
                                                       CO
                                                       CO
                                                        I
                                                       Ul
                                                       a\

-------
             RTAPC

            st         200 RETURN                                                             RT«PCO<>H
            ?S       C                                                                        NTAPLObb
            S6       C    ••FORMATS                                                           RlAPtO&i
            S7       C                                                                        RTAPEOS7
            58        1000 FORMAT! IHl ,///.M3H	TAPE RESTART REQUESTED FOR  CULl  ,IS   RTAPEO&8
            ^«            |   2li|c)H«««»	///)                                          RTAPLO&9
            60        1010 FOPMATllX, 6HCTCLE ,IS|2XiItHFOUNDt T|M£ -  .1PFIH.A)               RTAPC060
            A|        |700 fOKMATljXi'SETUP TAPE SPACED FOR RESTART. TTEST .  <,F10.3I         RTAPL06I
            «2        1600 FORMAT)1'i'bROUND LEVEL CONC FILE SPACED TOR RESTART'!             R1APE062
            A)             END                                                                RTAPE061
VO
                                                                                                                                                    cn
                                                                                                                                                    en
                                                                                                                                                    en
                                                                                                                                                    -J
                                                                                                                                                    U1
                                                                                                                                                    cn

-------
              SETUP
CO
O
1
2
3
H
6
7
e
9
13
1 1
12
1 3
M
IS
16
17
IS
19
70
21
22
73
?M
2S
26
77
28
29
30
32
33
31
3S
t*
37
3R
39
MO
••I
M7
M3
MM
MS
M6
M7
MR
M9
SO
SI
S2
51




C

C
c

c

c










c


c
c
c
c









c

c

c








                      .SETUP
                           SUBROUTINE SETUP
                           INCLUnr  BLANK
                           COMMON /PANLEL/  ii•JJ,KK,FI,F2,F3,FM,FSiF41F7,Fe,i,J,K
                           DIMENSION CLlSl"Z| |NY| ,NX| I
                           EQUIVALENCE  (C.CC)
                           •«INITULlZt CONCENTRATIONS
                           CALL S34ERU(Ci
                         9 HP-0

                           READ (10)  I I I ICCILiXiJiD iL*li3l iK-l ,NZI ij-l iNTI ,|.i.NXI
                           on 13 r«
                           uo 10 j»
                           uo 13 i.
                           CIS.K,J,
                           CI3iK,J,
                        10 CONTINUE
                           URITE ||
                           DO 22 N.
                           ARITE l|
                        22 CQMTPlUt
              • N:
              |NT
              I MA
              I-CCI3,K.J.I I
              l-u.O

              )  ICTCLiTlHE
              • NiP
              I   (KIN,I,J,||,J-I,NYI,1-1,NX)
     I'RINT USD. ICTCL
|2SO FORMATI Hi'CTCLE • •i11.MX.••«LEVEL I CONCENTRATIONS OUMPEO«»'I
                           LOOP OVER  CLLLS

                           DO SO KP>IiNZ
                           DO SO IP-I ifiX
                           DO SO JP*IiNT
                           NPCC-'IPC
                           00 MO t.ol ,NPCC
                           IFIL -CJ.  2   .AND.
                           XINPI-IP
                                                KP  ,GT.  21  GO TO 10
    • •cOM"iiiE VOLUME FACTORS
     CALL VOLFACINPI
    ••COMPUTE INITIAL ?«fiCt^ CONCENTRATIONS
     DO 30 UN* I . liSP

     CP I Nil, IIP I* CINN,K|J,I I*FMCINN,K,J,| | I«F2«C INNiKiJJi | | I
    |         * «.INh,K,JJi | I«F«(«CINN,K>;) Ji I )»FS«C(NN,KK, J, | | |«F6
    2         « CINN.KK,JJ.III«F7»CINN,KK,JJ,|)»rB
  30 CONTINUE
  10 CONTINUL
     IF IMP.GT.MAX) RETURN 0
  SO CONTINUE
     NPM'NP
SETUPOOI
SETUP002
SETUP003
SETuPOOM
SLTuPOCS
SLTUPOOo
SLTUP007
SETUPQ08
SETUPOC*
SETUPOIO
SETUPOII
SLTUPOI2
SETUPOIJ
SETUPQIM
SETUPOIS
SLTUPQI6
SETUPOI7
SETUPOI8
SETUPOI9
SETUPQ20
SETUPQ2I
SETUP022
SETUPQ23
SETUP02M •
SETUP02S
SLTUPC26
SETUH027
SITUPQ28
SETUPQ29
SETUP030
SETUP03I-
StTUPQ32
SETUPQ33
SLTUP03H
SETUPQ3S
SETUP036
SETUP037
SETUPQ38
SETUPOMO
StTufOMI
SLTUPON2
SETUP01J
SETUPOMM
SETUPOHS
SETUPQM6
SETUPO1*?
SETUPOIB
SETUPOH9
SETuPOSO
SETUPOSI
SETUPOSZ
SETUPOS3
                                                                                                                                                     cn
                                                                                                                                                     w
                                                                                                                                                     en
                                                                                                                                                     i

-------
             SET'JP
            SM
            51
            5*
            57
            SB
            5?
            40
            (.1
            62
            A3
            AN
            A1
            66
            67
            AA
            *.•»
            70
            71
     PRIMT  151•  NPM
 ISI  roRH»T(IX,••••••NUMBER OF PARTICLES

     CALL EDIT

     RETURN

    • •FORMAT!,
    ••FORMATS

1000 FQRM«T(i
1100 FORM»T(/.I«,•USC": REPLY YES TO ENTER  INITIAL CONCENTRATIONS   >l
1110 FORMAT I 1«.'USE*! CUTER I,J,K   M
1120 FORMAT!|X,>bSC»: ENTER Cl'iKiJill VALUES    'I
I IDS FORMAT!A6I
     CNO
SETUPOSH
SETUPOSS
SETUPO&6
SETUPOS7
SETUPQSB
SETUPOS9
SETUPQ60
SETUKQ6I
SETUPQ62
SETUP06J
SETUP06S
SETUPC6S
SETUPQ66
SETUPQ67
SLTUP068
SETUP069
SETUP070
SETUP07I
CO
                                                                                                                                                     en
                                                                                                                                                     cn
                                                                                                                                                     »
                                                                                                                                                     tn

-------
              VOLFAC
00
to
                      .VOLFAC
              I             SUBROUTINE  «OLF«C|N)
              2            INCLUDE  BLANK
              3            COMMON /PARCEL/  I I•JJ.KKiFl,F2,F3,FM,F5,F6,F7,F8,|.J.K
              1      C
              5            I.XINI
              6            J.Y(N)
              7            K.ZIN)
 i
10
11
12
II
II
IS
16
17
ie
19
20
21
77
23
21
25
2*
27
28
29
30
31
12
33
It
35
36
37
38
39
10
II
12
tj
11
15
16
47
48
4«
SO
                           JJ«J»I
                           nr»K*|
                           FXI-XEU' 01 I-NX
    IFIJ  .FU
    IFIK  .NL
    F5-FS«Fl
    F6«F6«F2
    F7«F7»F3
                                     (il  J-NY
                                     01  GO  TO  50
                           FI-0.0
                           F2«0.0
                           FloQ.C

                           GO  TO  IJO
                        SO IFK--  .HE. NZPII  GO  TQ  lOQ
    F3-F)«F7
    Fl.F1«r8
    FS'0.0
    FA.0.0
    F7-0.0
    F8-0.0

too RETURN
    END
VOLFACOI
VOLFACC2
VOLF«C03
VOLFACd
VOLFACOS
VULFAC06
VOLFACC7
VOLFACG8
VOLFAC09
VOLFACIO
VOLFACII
VOLFACI2
VOLFACI3
VOLF»CHi
VOLFACIb'
VOLFACI6
VOLFACI7
VOLFAC18
VOLFACIf
VOLFAC20
VOLFAC2I
VOLFAC22
VOLFAC23
VOLFAC21
VOLFAC2S
VULFAC26
VOLFAC27
VOLFAC28
VOLFAC29
VOLFAC30
VULFAC3I
VOLFAC32
VOLFAC33
VOLFAC34
VOLFAC3S
VOLFACJ6
VOLFAC17
VOLFAC38
VOLFAC)*
VOLFACHO
VOLFACII
VOLFAC12
VOLFAC13
VOLFACII
VOLFAC1&
VOLFAC46
VOLFACS7
VOLFAC48
VOLFAC19
VOLFACSO
                                                                                                                                                      CO
                                                                                                                                                      W
                                                                                                                                                      C/5
                                                                                                                                                      I
                                                                                                                                                      I
                                                                                                                                                      M
                                                                                                                                                      •>!
                                                                                                                                                      (J1

-------
            10
            li
            12
            II
                     .•TAPE
                          SUBROUTINE *TAPE
                                  BLANK
                          MTAPE-H
                          i«RI TEI"TAPE| IC»CLiTlME,NCOHM
                          niiiTEMTAPE) IUUMII i ,1-1 .NCOMMI
                          «RiTE(6,ioout IC»CL,TI*E
     RETURN

1000 FORMATI
    I
     END
IX,       •	CYCLE • '•15,2X.'TIME • •.IPEIH.6 . 2» ,
'DUMPED  ON  TAPE******")
•TAPEOOI
NTAPE002
KTAPLOOJ
•TAPEOCM
»TAPEOOS
•TAPE006
•TAPE007
«TAPECOB
•TAPLOOf
•TAPEOIO
•TAPEOII
•TAPEOI2
•TAPEOIJ
CO
u>
                                                                                                                                                    CO
                                                                                                                                                    CO
                                                                                                                                                    CO
                                                                                                                                                     I
                                                                                                                                                    »
                                                                                                                                                    -J
                                                                                                                                                    U1

-------
             10
             II
             12
             13
 ,*T»PE
      SUBROUTINE  »TAPE
      INCLUT  BLANK

      NTAPE-12
      »RITE(MT»PL|  ICYCLiTlME.NCOMM
      AKITCIHTAPCl  (OUNI I I ,1-1 iNCOMMI
      «R|TE(6,IOOjl ICTCL,T|Hp
C
      RETURN
c
 1000 fORHATIIX,       '	CYCLE • 'iIS•ZX,•T|ME • ••IP£IH.6,2x •
     |        • DUMPED ON
      END
UTAPEOOI
WTAPE002
M1APLQ01
HTAPEQOH
•TAPEOOb
HTAPE006
DTAPL007
•TAPCC08
•TAPCOOV
•TAPEQIO
•TAPtOII
DTAPEOI2
•TAPEOI3
00
                                                                                                                                                    CO
                                                                                                                                                    cn
                                                                                                                                                    en
                                                                                                                                                    •vl
                                                                                                                                                    U1

-------
                                               SSS-R-74-1756
                  ,  A SAMPLE TEST CALCULATION
        In this section a test calculation is presented, in-
cluding copies of the computer print output.
        The calculation considered is the advection of a
Gaussian distribution, previously considered in Reference 1,
page 32.

4.1     CODE CHANGES
        Some modifications to the NEXUS/L code used in the
Los Angeles photochemistry simulation and documented in the
report were made.  In particular,

        (a)  the structure of blank common was reorganized
to permit a grid 50 x-cells by 30 y-cells.  Thus, J:he pro-
cedure BLANK was modified so that NXI=50, NYI=30, NZI-1,
NSPI=1, MAX=9000.

        (b)  a change to subroutine SETUP was made to pro-
perly initialize the concentrations to the desired distribu-
tion,
             c(x,y) = 71.1 exp{-[(x-9)2 + (y-9)2]/12.5}
Here, a  = a  =2.5 km.  Also, as before, the concentration
       x    y
at the center of cell <9,9> is set to 69.0.
                              85

-------
                                                SSS--R-74-1756
         (c)   subroutine SETUP was further changed  to  permit
the initial positions of some of the Lagrangian  particles
to be away from the  cell center.  For the fair Lagrangian
parcels per cell case documented here,  the initial positions
for cell I,J  are

                (i)    x = I  -  0.3
                      y = J  +  0.3

               (ii)    x = I  +  0.3
                      y = J  -  0.3

              (iii)    x = I  -  0.3
                      y = J  -  0.3

               (iv)    x = I  -  0.3
                      y = J  +  0.3

        Figure  4 displays the Fortran coding o'."  subroutine
SETUP used.

4.2     INPUT TO GENERATE TEST CALCULATION
        The problem  configuration was maintained exactly as
the previous Gaussian advection reported  in Reference 1.

        (1)  The cells are  1  km cubes,  (DX=DY=DZ=1000 m).
        (2)  There are 50 x-direction cells, 30  y-direction
             cells.   There  is only one  level (NX=50,  NY=30,
             NZ=1).
        (3)  The u-velocity is everywhere 10 m/sec. the
             v-velocity is  everywhere 5 m/sec, cre?.ting an
             off-axis net wind direction.   (UFIX=10,  VFIX*
             5,  WFIX=0)
        (4)  The initial Gaussian distribution is  set to
             zero in  all cells more than  eight cells  from
             the center of  the distribution.
                               86

-------
                                                                      SSS-R-74~1756
— oni 01 •
   ooios
   oni 11
   oun?
   nni !•»
   Otlll?
— 0011»
   CLll'
   nni n
   roi?s
  -001 II
   C01H
   001 17
   no no
   oni ii
— oon» -
   00111
-  001 tut
   nous
   001 m
•  oois i
_. nr?i « .
   00157
   noi «»
   IOI53
.  ORiss
   nniei;
—001 57—
   oni 70
-- 001 71
   0017:
   oni 71
   00171
	001 7S._
   0017?
   nn< 77
   00:00

   0070*
	0020J -
   00701
   0020V

-  00301;
   00207
— on-»o7

  - CO] 12
   UU?1 2
-  on: ii
   orizis
— oni n -
   C0?71
  on? Ji
  00? 3 2
	00'11
 • -1«-
 2.


 1.


 S«


 7.
  0.

 I-
 !•».-
 M«
 11.
 IS"

 17"
.-I a.
 in.
            21"
                       -tupaniiriMF  CF.TUD-
                              1  Bl eM«
                              /Paqca/ TI. jj. KK. FI . r->, rit Fn.r-;. rFi r 7i rp, I. J.K
                        PF«P IN Tl «L  P»T « FOO N

                        pn  in TitNx
                        n«  in j-iiii«
                        01  1 n r r 11N'
                                                 Upr
                     10
                                  r 7i .I.EXPI-I
                        CM.
                                                                          -OJlTlAL
                                                                          ij>ii i i/^i_
                  -e	
                   r     tin" ji/fP  CF1L'
                        D1  so K°-lt
                        [<" SO L rliNTC
                        N°:SPt]
                        irn  .n .  31 m rr  11
                        6(1 11 111. Ifi lit 1SI 
d «.
IS.
«3«
5O
51"
5r..
57«
51"
fir-.
T INC 1 ~ J"" 0. \
TIN" IrH"
GO TO ?C-

"
?o r»u VOL ricitip)
pi 10 fcGQUf->
	 ... ._ . 	
	 	 - 	 	 	 --
r^tNNifC 1 : r )^»i K> J« II" Fl >C (»'N> Ki Ji ! I 1 "F 2 • f ( \Ni K f JJ« II I«F*
1 • CtMNiKi J J. Tl .F 1«rt «J», KK, J,T ) «F«« PI NN.HKi J, II l.«6 	 ---
! » C l"Mt KXt J J. III-F7 •rINN. KKt JJi Tl •' B
in r»n' 1','U' 	 	
»0 C">l!TMUr
SO CO'lt IMUF
<">IMT I'l. MP"
IS! F"''**'! IXf '.... .M».1°C» OF PtPTHLfS r'.ISI • . . .
o r FIJQV
r ti p _ _. . ,
                                NO  1TirN9STT.es.
   Figure  4.    Subroutine SETUP  version used  for Gaussian advec
                   tion  test  problem.
                                             87

-------
                                               SSS-R-74-1756
         (5)  The  time  step  is  400  sec/cycle  (DT=400).

         (6)  There  is  no  diffusion, only advec^: on
              (EXFIX=0,  EZFIX=0).
        The namelist  input  used  to  generate  this test calcu-
lation is shown  in  Figure 5.


4.3     CYCLE 1  OUTPUT

        Figure 6 displays the printer putput, cell-by-cell,
of the problem configuration resulting  at the end of Cycle 1,
Figure 7 presents a contour plot representation of the same
data.
REFERENCE

Sklarew, R.C., et.al.,  "A  Particle-In-Cell Method for Numeri-
        cal Solution  of the Atmospheric Diffusion Equation,
        And Application to Air Pollution Problems," Report No.
        3SR-844  (November, 1971), Systems, Science and Soft-
        ware, La Jolla, Calif.
                              88

-------
                                  ;•>.;-
00
vo
•Sr 'or
r r f g^ t
. -•. «
»-•»-• T
F31- • •
•"I"'
r a i_ ^ •
t rvt r
- i
*'
*• »
•^
» e
"»«
•rir »nc
• p
«p
• n
.r ... _ . _ _
• p
• r
• i
• p
• 0
. i»ii( uo.i.ir»Pii .£uuuti(iiiQr«OGf .onoooiionf «on
. oui. i.jonrr ,cr. . uji;ui.ooo''»on. .onnocoooE
                                                                                                                          **i
                                                                                                                          en
                               Figure 5.   Namelist  input to generate  test calculation,

-------
                                       •• ITl







.r

. n


•
•
. i
. n
. n






m r.



,r
. o





-r











! . 7

" "



.1






.r.
_

.-.














.n








7.1








. ii .p




•!.' J'.'






























.L
fi

















.(1
p

















.0
rj


.P

11.1












.n











-





.n







i 7 "*



..





. P

.p
.n




nn
n. «








.n

,p

.1
ir.s



S.I








.0



.1
q .»





.0






.0




1 .
1


1.1








.p



.1
.r












.0




.1



• i








.n


.0
.0
.0
.0












.3



.0
•c

•l

.0
.0


1


„


•\



.r












.1


.r

.3
• r




.0







.3



.3
!p
Bp


.3
.r











-.3
.1
.r
Bf



.r










.r
n
.3
.0
, j
,p


.1





. f,

.P



.1

• *i
. n •
.n
.n
.p
.0.
.r
.0
.n
. 0
.n
.n
.n


.n

. n



.n

. r
.0
. L
.n
. i<
.0
.p
.c
. p
.0
. (•
.0
. n
.0
.0


• •

. it


.'
."

. •)
.'
. i>
. i>
.'i
.n
.0
. n
.!'
• !>
."
.1)
. J
. r,


.0

. n



.n

.r
.n
. u
.1
.0
.0
.n
.0
. P
.n
. u
.i'
. fi
.a
.0


. n

.r



.n

.P
r
.(
.r,
.r
.n
.p
.1
.r
• Ii
,f-
.c
.i1


.c

.p



.0

.fl
.0
.n
,n
.n
.n
.u
.P
.fi
.n
.u
.p
.a
.n


.n

.fl



.p

.p
. r.
.P
.P
.p
.P
.p
.P
.r
.P
.p
.P
.r
.r


.0

.(>



.0

.(j
,c
.p
.(
.a
.0
.l>
. 0
.(1
.n
.r
.P


.n

.<;


p
.n

•n
.n
.n
.r
.0
.r
.0
.c
.0
.0
.p
.n
.p


.0

.P


,i»
.u

.r
.n
.n
.r
.n
.p
. r
.p
.0
.n
.0
.0
.0


.p

.P


.t>
.n

.p
.c
.p
.P
.0-
.P
.0
.n
.0
.n
.P
.0
.0


.0

.0


.p
.n

.r.
,r
.p
.n
.0
.0
> 0
.u
. 0
.n
.0
.n
.0
.r

.n
.0

.0

o
.r
. n

..i
. P
.P
.P
.r -
.R
JO
.r
.p
.c
. 0
.c


.0

.0

Bp
.p
.n

.P
.0
.p
.n
.0
.0
.n
.0
.P
.0
.0
.0


.0

.P

•0
.n
.0
.n
.p
.n
.P
,r
.n
.P
.0
.0
.p
.0
.0
.n


.u

.0


.c
.(i

.t
.0
.C'
r»
.n
.i>
.0
.0
.P
• c
.n
.0


.n

.P



.0

,p
.0
.P
.r
• 0
.n
.P
.0
.P
.n
.0
.P


.0

.P



.0

,c
.0
.p
.0
-• .0
.0
.0
.0
.0
.0
.0
.0


.0

.p



.p

.n
.!•
.p
.n
.P
.P
.n
.0
.n
.p
.u


.1-
T
.C

.3-

.3

• C
.3
.P
.0
	 j
• C
.0
.3 -
.0
-- .J —
.3
.0
,1

.•)
i
.r
T

T

t T

."
T
.r
( i
.p
^
•
.r
.•>
B T
• 0


.3
.3
.P

i

.1
i
.1
.P
T
r
.3
.r
,p
.1
.p
.1
.1
.n


.3
.3
.0

j

• J •
.3
• C
.3
.C
.r
.3- .
• r
.0
.3
.C
.3
.3
.0

• W
- .••


H
T

.••
( .•»
I .3
; .r
' .r
i .1
C ••"
r .c
1 .3
r .r
1 .3
1 .3
P .0
                                                                                              cn
                                                                                              w
                                                                                              en
                                                                                              i
u- f HI eri.:rii'->«r T-'
                       I."!
 Figure 6.  Concentrations in Eulerian cells  at end of  cycle 1

-------
                                                              ryrtr -      i       rfur -      HO .('IT
                         .   .
                      r{ ni LI .,c.or'':!' i.t;i . ('i;('i i'i,i-i i i.nr i 01:1 r'(jDi i'Lrii:i'(ipi (iLirrrrnnui (.PI rrncrrtunonrrrTrrrr rrr.ntrrrcrrnr(Tnpr.rnpp.-rrrccrnrccrcrrrrrcrrcrrcrrr'r
                      '• . j j'- :'.iL'ji.'.j3'...;c';i''iiJci':iji.c.i ^.nu'iGfinocnrouoonanr.ncnijrr nrnnrnniinrnnnrnnanrncnnornronrnnnproonnnnnnnr??^^? ''DO ?}':;'! 'r3TWr;:3??33"*:
                      '•i -'if ii,r i ci f i • :>ni"-C!.i "UM ( ocftiijfji <~i < rr.f riopi'iTPf nniLPPii tnnnrr n'rnrf rr r PPPPP GRIT r>rr POP TOC-CCC rrr rrccrrcrrrrccccrrrcrcr'p
                                              .
                      i .• !/Lti!:':t-r i »'. ' !•:•( '..' r-:>i'i I'M '. ' ''Hi i (. oi. i! Lpi'i cr -LPI TIT prr c rpr( cnrutif nnn MPP rocrnr one nrr rr nrrrr-rorrnrnrrnr rrcccrr r r rr irccc rcrr r rcc r err cc err T
                      r,i,n-:r;'.f ')<:< ",-.<: •• "tr:'. o:o.'ir:i -n •"•"!«'•• •.cii:i;i;(;(jot.oPUi|on';nnnnrrnrinRni:nnnonnnnPPnnnnnrnnnnnrr;nnn'1onQoonor"ino!in333:3:;::i?':DD:?::?30'!': r??3"r
                      r' iii uu.'GrKMi i ••(.•!  i -iium-M r i oi'i'ur.'i nrc -i.iart nctit-.nrr.rrnnrnrn'Of rpprnrntrrnt rc^rnnr rnrprrrrDnrpftu pnPrroorTcrccrcrr^rrr'rccrrrccrrc:rr.
                       .         .     .
                       i HI r.i (,(:( r:-t 1 1 :•(..' i ''(PI ( f i 1 1 '. Mi'H i. c ! '. '. r(  t UP! r;i'Ci. [ of i PP. or ff prrr nf.noTP r nrn t npp i pppr r-rrrpr rr PIIPPPTP opprrni-por crcccc c rrr c TC rrr cr rr rccrcr"rcccr "C
                       :.;:.T i"i'i "( '.: '";'.'.. ':n."j i. '.'.'.• 1:1111 i.ni MUOI. (ioii|Hiprf'rc)noTrflr,nni'iinroDnonnppppnprnr;nrnrnnrprnnnonpnnnnpapr?33;:-rr" ;??? r :3r~:r ?;;: .^"3;;": ?
                       | ,  j ^j. [ ;.( • ( [  , .i, ; i n i.[-.( i'i i 1 1 i (•(  '[•('•! "r IK i' 1 1 11 HI [i[ t ! i i fTp noci' tn i ppi1 pnn cc PC r r i ncprr ( f rprf pt opt-'p pnc-pop "^cocr r rr r r rr TCCC r r rcrrrncccrrrT
                       ' n . r.i •  c<'' •.' r' -:.-n jT^.rsr. .id'1 rnr' nii^nurr'iijncfinniicnrinnpnnnnnnnnnnnpnpnnnnnnonnDiprnPrprnnnoonnnn'ircir'^rD.i ;:: rr?T3? 3 "• 3:c :" 103 3;?D:ir". " 3
                       i fji di ;.uif '('(.pi '.OLi'1 i-iui't i i '. i TI  K!, ' '.T^TIHII. r.'h. :rnii cni Ptoi'i.-QiinnnnnnronrTripnGnDnGnpppPnrnnnnpOPPnpnnpnrppnrnorKtnnnopnn'TH^r: j?3 " 3 ^ 1~r^3;r ; ?c;-r;TD j2~r ;
                      M'M'-.-I -.i.pt "f ?•- ujf "  criifii-T'i i •: •nM-ccira-c-K.iri n t.n.pc.niT.rnrpcri.nt rrn i.ni'i'rnr. prr rprnrrrprrrrrppprrppn'OPTOCcrccr^rrcrfr ccrr rccccnrccrcrx-r-
                                                                                                                                        ''"""
                      i ', |:f(_( r j cr rrp.-.r CM P           or [iOiLutLiC.crc.onnrrccrrrprPOPcrrr.r nrppp rprppn.nrppprrrpr n TOPPPPPI pnr Tpocrrccrcrrrrrcccr rccrrrrcpcccr:
                      ... :r,rr v. JN( __.rr , ,,       m 1 1 1       uiiuorooiiDncnTrinnnpnnnon'jrnnonoppprpnppnDnnopronppn rooonor,pnrpon-"'33::3':3D:i::T?t:c:'cc::":r3j::r'
                      r.'.r (LLi.cnt rro     11 1         in     DOiT-nr.i.ciiOi.tirrrprtipnonpprrt-CiiJiirntnr.prctiiicpprrt pprrpppppprpt'iop'-''Ecrrrrrrccccrrcrrcrccrrrcccccrrc
                      -•"•I'jT.noijU   MI   "      •"?   11   i)iiui)rnnni,nc'Oonpnrinn{i'inpnnncnonpnnnoGPnorinri)nrnrnPnooonor('r iipr-nrirrrrprppppnrppprnDPpTccf rrrrrfccrrrrccrccccccccccc""
                      •: •.?:"!.' ' :L  i   •"  'i :   '  e33 '   c   i "• i  nunconi,nn']n(inon[)0(in[]np.nnnnnrinnpprnnnnprf;prripnnnnonnonrnrip^"!3Tr:?: 3i':Tn"733rr"Cj::?r::?'"
                      M :.'.L.CL-O  : ? T-I    'B  ??s °    r»   r !    r^t ni cciiirprnriPoi'rrprt-uMitot.cppC'r rr'pnor rn nrrppnot PCP"rpprrrorrr rcrrrccrrrrrcrrcrrrrrccccrr
                         "                                                                                                      "                 "           *"
                                                        .
                      r.rj-i'i.-r ;..!•  n" ?'  cf   3    •> ";    *?  '- J   t^ccnr ui'Oi ui'r.nnornipr.p'jpi'ui'i) iPprrrrPOCurcpfTr'-fTPonprnriipPrrcccrrrrrcrccrrrrcrrccccrrrrpcrrr- -
                      t -irriL, '".c;   ' '  "<5   '3 "I9!i"'  i   'ri   ; i   Rnnnrnr.nnnrinpnnnpnnnnnonnpnnPPpnopnonnrnrnpf)nnooonnnnnoo3C133333:3:3?j'?l:';3^3:: ^oro'^jjD????
                      ! i i,LL,c.M.   i   7  r   ?  o.6"» 7 E f •  '  ?  !   n'C'tioi c(. iii cr per nncucppPOPiiQ i pnppTPnoor cr rpr rrpcoprpprrpp rr rocrr rr rr r c rrrr rcrrrcrcc -crrrcrrr
                      r-'-ir'n^Kt    i   ••  i a-,  s  77   <•  •;   i  •> 1 1  n[;nprrnponnpnnnuni.iinnnuopr.pnnnncnopooanr;prorr!nccDoncrr'lcr!'''33::3::ic'!3: j:"c::?c;]??rrJ3":"
                      • uaJi i IT  i!  •> '   if-1    f  i  3 •"  i ?   POLi'tmLM OLnrppPor'i'prrinpMJUPcrnprnnt'npnrr r pprcpcppprnpcopcrrrrrrrcrcoccrcrrccrrcrcrcrrrcrrc
                      'f.Vrji.'i :':')'i  "  :  '   T  wtn  'i  •>   n  c.ufjc:n(!Oi'Rcnr.nnnnonr;ii[]nn!innnnnnonnnnnnnf!nrnrnnpnnroonnnnnnrnT-33::3:3:o' 33?i3333:?3:Dr?r3;?'1'?
                      ..,./, |.[ ;,i_r.rn   '; i   ?T        -?  11    Li-iini-injutjciiPrnrpi.-noci nr rimiji!(.[irpppn(ippr pppcpf rfprippr.cnroilppprrcccrrrcpccrcrrrrcrrcoc rrrfcrcrrr -
                      r •,'0t( i-LfiM^cni r t.^r-r Dcot'i'Oti-ura i I'ffr.pr pntpppopimrppppunprpppprppppprrpr prrrrrpnppppppprrocorcrcrcccccrrrcrrcrrrpccrccrrc
                                  ;       .    ^
                      i.:.:ir.GLi:CPrnrciL.: ui'-iir-rini.cLi.M (.iinr crjLM.Pi.ciciiipiitincficni.PCPtPordfiprr.noririornpppr.tpr.nc.nrr.rnnir-ppooPOorrioPrroocrcrcccpcr-cocrcrrcorcf 'Tcrcr.rr -
                      .•jonnoco30cuo(;njO':jGOcnnuGrji;f,nonuoorniD(jOunDnnnoPDnoopnononanonoaoonoonooQOonnoonoprnpnooooonnnnnnn0333 333 33303 J3333JO:: 303 33 3233333 «    ^

                                                                                                                                                                       cn
                      --N-»UM  v«tur  -   o.oon         »ax:-ii" v.'L'jf  -   E.JBJ»OI                                                                                       j

                                                                                                                                  1                         _______ 7
                                                                         •         "    ......  " ...........          ""                                                  >4
                                                                                                                                                                       *>
                                                                                                                                                                        I
                                                                                                                                                                       (-1

                      Figure  7.    Printer  contour  representation   of  concentrations  at  end  of  cycle  1.         ^

-------