U.S. ENVIRONMENTAL  PROTECTION  AGENCY
                        Delaware Estuary Water Quality
                            Standards Study
MIDDLE ATLANTIC REGION- III  6th and Wainut Street.
                                      .a Pennsy-v^.a 19106

-------
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
                          REGION II
                      26 FEDERAL PLAZA
                  NEW YORK. NEW YORK 1OOO7
                   Delaware Estuary Water Quality
                         Standards Study
                                             August 1973

-------
TABLE OF CONTENTS
Conclusions and Recommendations
Section I — Introduction
Section II — Waste Sources
Section III — Model Verification
Section IV — The Treatment of Nitrogenous Waste
Section V - Water Quality Standards Attainment
Section VI — Interpretation of Results
Appendices
A — Computer Runs
B — Glossary
ii

-------
Conclusions and Recommendations
1. Due to the very high treatment requirements only the present water
quality standards appear to b clearly feasible. For this reason
a waste load allocation program should be pursued with respect to
carbonaceous oxygen demand. However, current data would imply that
nitrogenous oxygen demand should be allocated as well. Stream conditions
resulting in the next two or three years from the current abatement
program should be carefully watched to ascertain if the dissolved oxygen
objective will be achieved. Should the Delaware River fail to respond
to meet the current objective, a program of reallocation of carbonaceous
oxygen demand with allocation of nitrogenous oxygen demand should be
undertaken. Another consideration in establishing load allocations
is the EPA National Pollution Discharge Elimination System. Evaluation
of control technology for particular waste discharges can lead to more
stringent requirements than those necessary to meet water quality standards,
in individual cases.
2. The results of the present study indicate that attainment of the present
water quality standards for the Delaware Estuary requires about 92%
removal of carbonaceous oxygen demanding waste, and about 507 removal
of nitrogenous oxygen demand, based on 1973 data.
3. Attainment of a minimum dissolved oxygen standard of 2.0 mg/i (equivalent
to a minimum daily average of 4.0 mg/i, and to a stmmier average of 4.5 mg/I)
would enhance the water quality of the Delaware Estuary above the present
standards. This would require about 96% removal of carbonaceous oxygen
demand, and about 50% removal of nitrogenous oxygen demand based on 1973 data.
4. Attainment of the Interior Department Committee dissolved oxygen standard
of a minimum of 4.0 mg/i was found to be impossible with 100% removal
of carbonous oxygen demand and 85% removal of nitrogenous oxygen demand,
based on 1973 data.
5. Nitrogenous oxygen demand allocations can be calculated as 507. of the 1973
nitrogenous discharge, as a first estimate. Further study is required
to produce improved estimates based on a more detailed analysis of the
nitrogen cycle. Other areas that should be investigated are the possible
contribution to eutrophication of oxidized nitrogen compounds, and the
cost-effectiveness of treatment technology available to achieve the waste
load allocations.
6. At very high levels of municipal and industrial waste treatment, the
pollutant waste load contributed from stormwater, benthic, and tributary
inputs becomes a significant portion of remaining load to the river.
Programs to control these sources should be initiated.
iii

-------
7. A detailed study of existing nitrogenous loadB and a comprehensive
field survey program geared specifically toward determination of
nitrogenous kinetics and oxidation mechanisms should be undertaken
in the very near future to provide the basis for the inevitable
nitrogenous waste load allocation program.
8. Increased monitoring of the Delaware Estuary water quality is extremely
necessary to provide an adequate data base for analysis. Complete
nitrogen series analysis is especially necessary for municipal and
industrial effluents, tributaries to the estuary, and combined stortuwater
overflows. Effluents should also be monitored for quality before and
after any identifiable treatment processes. All DRBC data should be
stored in the EPA STORET Water Quality System, in order to achieve
coordination of surveillance programs and facilitate data analysis.
iv

-------
Section I
Introduction
Water Quality Standards Enhancement
For the purposes of this study, the Delaware Estuary is de-
fined as the 86—mile stretch of tidal river between Trenton,
New Jersey and Liston Point, Delaware (Fig. I). From 1961
to 1969 this river was the object of intensive investigation
by the Delaware Estuary Comprehensive Study. This federally—
sponsored study had the goal of determining water quality
objectives for the estuary, the costs and benefits of these
objectives, and the treatment levels that would be necessary
to reach these objectives. Five alternative levels of water
quality were considered, which were derived from the desired
end uses for each reach of the river. These alternatives were
termed “Objective Sets”, and included twelve water quality
parameters, of which dissolved oxygen (DO) was the most im-
portant. The 1964 levels of water quality formed the lowest
set of objectives, termed “Objective Set V”. At the other ex-
treme, “Objective Set I” was composed of water quality levels
associated with maximum feasible treatment technology available
in 1964. The Objective Set I levels of DO ranged from 4.5 mg/i
(summer average) in the river adjacent to Philadelphia, to
7.5 mg/i (summer average) In the vicinity of Liston Point. It
is important to emphasize that these water quality objectives are
not uniform throughout the length of the estuary because they were
derived from the highest desirable uses that could be made of
each reach of the river. For example, the extensive commercial
port development in the Philadelphia area makes this portion
unsuitable for water contact recreation and intensive fishing,
whereas these uses can be realized in stretches of the river
above and below the Philadelphia area.’
The results of the Delaware Estuary Study as described here
have been utilized In a major fashion by the Delaware River
Basin Commission (DRBC). The DRBC was created in November, 1961
This section was prepared by Ethan T. Smith, Data Systems Branch,
U. S. Environmental Protection Agency, New York, N.Y.
1—1

-------
DELAWARE ESTUARY
COMPREHENSIVE STUDY
SECTIONS FOR
MATHEMATICAL MODEL
N
NEW JERSEY
Posnt.NiIe 48.3
FIGURE
I—1

-------
on enactment of concurrent legislation by Congress and by the
respective legislatures of the states of Delaware, New Jersey,
New York, and Pennsylvania, as an agency of the Federal govern-
ment and the signatory states. The Commission consists of the
Governors of the states plus a Federal representative and has
the authority to develop plans, policies, and projects related
to the water resources of the basin.
The DRBC held public hearings on water quality improvement
programs for the estuary, which culminated in the annual Com-
missioner’s Conference of March 1967, at which a decision was
reached. At this meeting the four Governors and the Secretary
of the Interior selected “Objective Set II” as the goal to be
sought for the Delaware Estuary. Subsequent adjustments pro-
duced the DRBC objective set, intermediate between II and il l. 2
As a result, the present DRBC Water Quality Standards for
the Delaware Estuary can be given in terms of DO as follows:
Dissolved Oxygen (mg/i)
Section MInimum
of DRBC Summer Average 1 Daily
Model Zone Average 3
1—7 2 5.5 5.0
8—14 3 4.0 3.5
15—18 4 4.0 3.5
19—21 5 4.0 3.5
22—27 5 5.0 4.5
28—30 5 6.5 6.0
As shown in the table, the DO standards can be expressed either
in terms of a minimum daily average or as an average for the
summer period (three months). The relationships among average
values for different time periods have been established for
this estuary by harmonic and power spectrum analysis. 4 This
means that for given time periods it is possible to determine
the difference between water quality measurements with well—
defined statistical analysis. Three time periods are of in—
1—2

-------
terest when considering enhancement of the water quality stand-
ards in the estuary:
1. The stnner average (three month) period,
2. The minimum of all the daily (24 hour) averages,
3. The minimum of all the one hour measurements within
a 24 hour (one day) period.
The third number is especially important because it is regarded
as representing the absolute minimum value to which the DO can
drop below the average value in the river. The specific re-
lationships between these three numbers for the Delaware Estuary
are as follows: 4
1. The Minimum Daily Average is 0.5 mg/l below the Su=er
(three month) Average,
2. The Minimum Value Is 2.0 mg/l below the Minimum Daily
Average, and 2.5 mg/l below the Summer Average.
This represents a situation where the DO in the river fluctuates
considerably during a particular day, reaching a minimum 2.0 mg/l
below the average for that day. However, within a sinner three
month period, the daily averages do not fluctuate greatly. The
lowest such daily average would be 0.5 mg/l below the average
for the three month period. In each case the minimum is two
standard deviations below its respective average.
The defined relationships among minimum and average water
quality levels permit enhanced water quality standards to be
proposed and evaluated by mathematical models. Two enhanced
standards are proposed in this study, based on the report of
the Interior Department Committee on Water Quality Criteria.
This report states:
“Dissolved oxygen concentrations in estuaries and tidal
tributaries shall not be less than 4.0 mg/l at any time or
place except in dystrophic waters or where natural conditions
cause this value to be depressed.”
“The committee would like to stress the fact that, due to
a lack of fundamental information on the DO requirements of
marine and estuarine organisms, these requirements are tenta—
[ —3

-------
tive and should be changed when additional data indicate that
they are inadequate.” 5
The objective of this evaluation is therefore to determine
the feasibility of raising the water quality standard to the
stipulated level. This would eliminate the dip in the current
standard which occurs in the middle portion of the estuary.
The minimum value standard of 4.0 mg/l at any time is pro-
posed as the highest standard for the estuary. The present
DRBC standards are the lowest set that is evaluated here, and
a third standard (minimum value of 2.0 mg/i at any time) is
proposed as intermediate between the highest and lowest stand-
ards. In no case however will any location in the estuary be
allowed to fall below the present DRBC standard. Using the
established relationships among the minimum value, minimum
daily average, and summer average, the three standards can be
expressed for any location in the estuary. The three standards
are given as follows:
Standard A
DRBC
Section Summer Minimum Minimum
of DRBC Average Daily Value
Model Zone (mg/l) Average (mg/l)
(mg / 1)
1—7 2 5.5 5.0 3.0
8—14 3 4.0 3.5 1.5
15—18 4 4.0 3.5 1.5
19—21 5 4.0 3.5 1.5
22—27 5 5.0 4.5 2.5
28—30 5 6.5 6.0 4.0
1—4

-------
Standard B
Intermediate
Minimum
Section Summer Daily Minimum
of DRBC Average Average Value
Model Zone (mg/i) (mg/i) (mg/i)
1—7 2 5.5 5.0 3.0
8—14 3 4.5 4.0 2.0
15—18 4 4.5 4.0 2.0
19—21 5 4.5 4.0 2.0
22—27 5 5.0 4.5 2.5
28—30 5 6.5 6.0 4.0
Standard C
interior Committee
Minimum
Section Summer Daily Minimum
of DREC Average Average Value
Model Zone (mg/i) (mg/i) (mg/i)
1—7 2 6.5 6.0 4.0
8—14 3 6.5 6.0 4.0
15—18 4 6.5 6.0 4.0
19—21 5 6.5 6.0 4.0
22—27 5 6.5 6.0 4.0
28—30 5 6.5 6.0 4.0
:i:—s

-------
It is now possible to see how each of these standards (A, B,
and C) compare with one another. The minimum values are useful for
comparison with the recommendations of the Interior Department
Committee on Water Quality Criteria. On the other hand, the DO
standards of the DRBC are all expressed in terms of minimum daily
average. The mathematical model of the estuary operates on
steady—state summer average conditions, which makes it necessary
to use the latter figures for evaluating the feasibility of the
enhanced standards (B and C). In each model segment the relative
differences are the same between the minimum value, the minimum
daily average, and the summer average.
1—6

-------
Present DRBC Waste Load Allocations
From 1967 up to the present, the DRBC baa used the results
of the Delaware Estuary Comprehensive Study (DECS) 1 in two
allied capacities. First, in the establishment of estuary water
quality standards; second, in the implementation of effluent carbonaceous
waste load allocations to meet these standards. 6 The waste
load allocations were derived from the DECS model results, based
on percent removal of carbonaceous oxygen demand before
treatment. For each of the DRBC Zones 2 through 5, the inaxi—
mum zone allocation allowable under DRBC standards was com-
puted. (Zone 1 refers to the portion of the Delaware River
Basin north of Trenton, and is not part of this study.) A re-
serve of about ten percent was set aside for new waste sources
that might locate in a given zone and the remainder was
distributed to the waste sources then present in the zone.
Special attention was given to any source which might be pro-
viding treatment at a level greater than the uniform percent
removal for its zone; such a source was not permitted to lower
its treatment level. All of these calculations were based on
waste load data for the year 1964, for which the model was
originally verified. The resulting zone allocations were as
follows:
DRBC Allocations 7
Carbonaceous Percent Removal
Oxygen Demand of 1964 Carbonaceous
Zone Allocation (lb/day) Oxygen Demand
2 18,600 88.5%
3 144,800 86.0%
4 91,000 89.25%
5 67,600 87.5%
The 1973 DRBC allocations for individual waste sources are
given in Appendix B.
It is important to emphasize the assumptions upon which
these allocations are based. The zone allocations determine
the”size of the pie” which is available for distribution
among waste sources along the estuary. The allocation which
1—7

-------
is given to each source Is expected to remain constant over
an extended period of time, and is closely related to the
way effluents are expected to behave under relatively high
levels of waste treatment. New waste sources which locate
along the estuary are assigned allocations using load taken
from the reserve. After some period of time, the reserve
will become exhausted under the conditions of normal eco-
nomic growth. When this occurs, the available load is re-
allocated to the larger number of sources then in existence,
and a new reserve is established for the next time period.
Using this approach, the “slice of pie” given to each source
will decrease each time reallocation occurs, since the total
“pie” available is constant. In contrast to the behavior
of the waste load allocations, the percent removal of waste
before treatment would be expected to increase over time.
This is because the allocated discharge must remain con-
stant while the raw load (i.e. load before treatment) usually
increases with time due to economic and demographic growth.
As a result, the percent removal required to meet any set of
standards must increase to counterbalance this growth. The
assignment of a waste load allocation to a source puts the
responsibility for keeping pace with raw load growth (if
any) on the individual discharger. The obvious limitation of
this responsibility depends on the feasibility of meeting
very high percent removal requirements (for example “best
practicable” or “best available” treatment in specific cases).
This can only be determined by evaluating the percent re-
moval required for each source with respect to its individual
waste characteristics.
A very important assumption underlying the present
DRBC waste load allocations is the method for handling ni-
trogenous oxygen demand. Starting in 1964 with extremely degraded
water quality, it was necessary for the DECS to simulate the
effect of both carbonaceous and nitrogenous oxygen demanding
loads on the river, and then to structure a control program
aimed at attainment of the water quality standards. Under
these conditions, the DECS program was oriented primarily toward
the reduction of carbonaceous loads. The nitrogenous oxygen
demanding loads were also input to the system, but they were
“lagged” downstream from actual point of origin as a func-
tion of net downstream flow. The displacement downstream
represented the suppression of nitrogenous biokinetic acti—
1—8

-------
vity caused by the very low DO levels in the estuary. The
control of the carbonaceous loads could then be expected to
lead to two results:
1. Some portion of the nitrogenous oxygen demand of
any effluent would also be removed from the system,
2. The remainder of the nitrogenous demand would no
longer be suppressed, but would tend to be exerted
at the point of actual discharge.
Although these effects could not be precisely quantified
by the DECS, it was felt that the two opposing phenomena
would largely counterbalance one another. The DECS did,
however, state the necessity of future investigation of the
nitrogenous loads as the next essential step in the control
of pollution in the estuary:
“In the event that an abatement program is initiated
which requires a large amount of secondary treatment, the
carbonaceous oxygen demanding load in the river wilt be
drastically reduced and the nitrogenous oxygen demanding
material will constitute the main source of oxygen demand.
It therefore seems important that an analysis be conducted
to determine the effect which nitrogenous loads have on
water quality. This would mean the development of a working
nitrogen cycle mathematical model with capabilities to com-
pute dissolved oxygen response. This would provide a means
of estimating the shift of the lpcation of nutrients such
as ammonia and nitrate. To develop this working model it
would be necessary to study further the rates of decay
associated with the separate phases of nitrification and to
develop a computer program to handle the computations in-
volved with a four system model.” 1
Therefore, under the assumptions of the DECS, the nitro-
genous oxygen demanding loads were accounted for according
to the 1964 state of the art. It was also stated that fur-
ther work would have to be done on the behavior of these
effluents in the future, as the state of the art advanced.
Inasmuch as the present DRBC carbonaceous waste load alloca-
tions are founded upon the DECS handling of the nitrogenous
loads, any change in the method for handling these nitro-
genous loads would certainly be reflected in the DRBC allo-
cations. This kind of change is documented by the present
analysis, and ultimately results in a control program which
requires allocation of both carbonaceous and nitrogenous oxy-
gen demanding loads.
1—9

-------
References
1. Delaware Estuary Comprehensive Study (DECS), Preliminary
Report and Findings, U. S. Dept. of the tnterior, Federal
Water Pollution Control Administration, July, 1966.
2. Smith, E. T. and Morris, A. R., “Systems Analysts for
Optimal Water Quality Management”, Jour. Water Pollution
Cont. Fed., September 1969.
3. Delaware River Basin Commission, Resolution No. 67—7,
Section X, Water Quality Standards for the Delaware
River Basin, April 26, 1967.
4. Tbomann, R. V., “Time—Series Analysis of Water—Quality
Data”, Jour. Sanitary Eng. Div., ASCE, February, 1967.
5. Water Quality Criteria, Report of the National Technical
Advisory Committee to the Secretary of the Interior,
Federal Water Pollution Control Administration, April 1,
1968, (Reprinted by U. S. Environmental Protection Agency,
1972).
6. Porges, Ralph, “Regional Water Quality Standards”,
Jour. Sanitary Eng. Div., ASCE, June, 1969.
7. Allocation of Stream Capacity for Acceptance of Waste
Discharges, Planning Division Staff Paper No. 111,
Delaware River Basin Commission, Trenton, N.J., July, 1971.
1—10

-------
Section El
Waste Sources
At the present time there are a total of 106 known point waste sources
which discharge to the 86 mile stretch of the Delaware Estuary under consideration.
Of this total, 54 sources are located tn the State of New Jersey, 39 in
Pennsylvania and 13 in Delaware. The total carbonaceous oxygen demand (CBOD)
exerted by these sources is 1,282,634 lbs/day while the total nitrogenous load
(NOD) is equal to 1,007,695 lbs/day. A complete listing of all waste sources
and their respective carbonaceous and nitrogenous loads to the estuary is
included in Table 1.
With regard to waste source classification, there are 52 municipal
point sources which discharge a total of 611,162 lbs/day of CBOD and 532,721
of NOD. These sources represent 50% of the ultimate oxygen demand (UOD)
discharged to the estuary. The remaining 54 industrial discharges account for
437,908 lbs/day of CBOD and 211,339 lbs/day of NOD, which in turn represents
28% of the total UOD discharged to the Delaware. Tributary loads and
stormwater overflows represent 233,564 lbs/day of CBOD and 263,635 lbs/day of
NOD or 22% of the total IJOD of 2,316,972 lbs/day discharged to the system.
The effluent data which was assembled for each particular discharger was
obtained from a number of independent sources thereby assuring more accurate
and reliable estimates. En most instances, the Delaware River Basin Commission
(DRBC) files were utilized as the primary data source. However, for some
parameters, e.g., first stage ultimate CBOD values, which were not available
for many discharges, estimates were made by using typical BOD 5 /BODu ratios
or by reference to various other files. These alternative effluent data
sources largely consisted of the following documents: (1) Refuse Act Permit
Program (R.APP) files, (2) EPA Storet files (3) the EPA Region II Delaware
Estuary Accomplishment Plan and (4) the present DRBC load allocations. The
source(s) utilized for many of the discharge parameters have been referenced in
Table 1. The organic loadings attributable to stormwater overflows and
tributary loads have been assumed identical to those used in the 1964 Delaware
Estuary Comprehensive Study (DECS) for lack of any current information
concerning these sources, ]-’ 2 , 3 (except for the proportional adjustment of the
tributary load to section 1 due to changes in flow at Trenton).
This section was prepared by James Rooney, Kevin Bricke, and Sal Nolfo, Water
Programs Branch, Environmental Protection Agency, New York, N. Y.

-------
The relative magnitude of the CBOD and NOD discharges in each particular
segment of the Delaware Estuary model due to municipal and industrial discharges
is illustrated on Fig. 11—1. It is interesting to note that the 5 major
municipal sources (the Philadelphia — NE, SE, and SW facilities, the
Camden—Main and Wilmington treatment plants) account for approximately 87%
of the total CBOD and 80% of the total UOD discharged from all municipal
sources. Likewise, the 3 major industrial CBOD sources (Gulf Oil,
Dupont—Chambers and Dupont—Repauno) contribute slightly greater than
50% of the ultimate CBOD due to industrial loads. The 3 largest industrial
NOD sources (Dupont—Chambers, Dupont—Repauno and Dupont—Carney Pt. discharge
approximately 62.1 of the total industrial NOD load. The tributary and
stormwater loads are quite significant in that they account for almost
twice the total NOD load discharged from all industrial sources.
Finally, it is noteworthy that, with the exception of 3 dischargers,
all waste sources having a CBOD allocation greater than 1000 lbs/day are
discharging more than their respective allocated loads. In fact, the 5
aforementioned municipal sources, which are located, by and large, along the
critical stretch of the estuary are alone discharging greater than 3 times
their present allocations. The analysis presented in later sections of this
report investigates the impact of these (and other) discharges on the DO
profile in the Delaware Estuary along with alternate abatement measures
needed to reach the proposed DO standards of 4.5 and 6.5 mg/l, respectively.
References
1. Preliminary Report and Findings, Delaware Estuary Comprehensive Study,
FWPCA, U. S. Department mt., July 1966.
2. Final Report, Chapter I, Delaware Estuary Comprehensive Study, EPA,
July 1971.
3. Delaware Estuary Comprehensive Study, unpublished data.
11—2

-------
TABLE 1: BOD DISCHARGE DATA FOR DELAWARE MODEL VERIFICATION
1964 (lbs/day) 1970 (lbs/day)
WASTE SOURCE SEC. CBOD NOD CBOD NOD
MORRISVILLE, PA 1 510 1960(A) 3446(G)
TRENTON, N.J. 6720 35550 16900(B) 35550(I )
TOTAL POINT SOURCES 7230 35550 18860 38996
TRIB 67674 67674 85858 85858
swo 1360 1904 1360 1904
TOTAL FOR SECTION 1 76264 105128 106078 126758
HAMILTON, N.J. 2 1810 6500 1345(B) 4830(H)
BORDENTOWN TWP, N.J. 90 585(C) 695(T)
U. S. STEEL (IND), PA 2850 4212 3298(B) 16933(G)
U. S. STEEL (SAN), PA 87(J) 209(G)
GRIFFIN PIPE, N.J. 95(J) 0(T)
STEPAN CUEM., N.J. 15(J) 5(T)
TOTAL POINT SOURCES 4750 10712 5425 22672
TRIB 4096 4096 4096 4096
SwO 0 0 0 0
TOTAL FOR SECTION 2 8846 14808 9521 26768
11—3

-------
TABLE 1 (CONT.):
1964 (1b8/day) 1970 (lbs/day)
WASTE SOURCE SEC. CBOD NOD CBOD NOD
FLORENCE, N.J. 3 345 600 440(C) 600(I)
PATTERSON PARCHMENT, PA 1880 0 1070 CE) 0(I)
LOWER BUCKS MUA, PA 3140 9640 4150(A) 14442(G)
PENNDEL, PA 95 — 131(F) 826(G )
TOTAL POINT SOURCES 5460 10240 5791 15868
TRIB 239 239 239 239
SWO 0 0 0 0
TOTAL FOR SECTION 3 5699 10479 6030 16107
BRISTOL BOROUGH, PA 4 840 850 1385(A) 1967(G)
BRISTOL TWP, PA 390 450 544(A) 1804(G)
ROHN & HAAS, PA 2750 0 2800(A) 819(G)
HERCULES, N.J. 210 0 216(A) 0(L)
BURLINGTON LAGORCE, N.J. 70 0 60(C) 0(L)
BURLINGTON CITY, N.J. 1980 3800 520(B) 3800(I)
BURLINGTON TWP, N.J. 150 — 133(C) 450(I )
TOTAL POINT SOURCES 6390 5100 5658 8840
TRIB 1154 1154 1154 1154
SWO 0 0 0 0
TOTAL FOR SECTION 4 7544 6254 6812 9994
11—4

-------
TABLE 1 (CONT.):
WASTE SOURCE
SEC
1964 (lbs/day)
CBOD NOD
1970 (lbs/day)
CBOD NOD
TENNECO CHEM., N.J. 5
1730
0
460(D)
1563(T)
FALLS TWP, PA
475
3005
1175(F)
3005(I)
BEVERLY, N.J.
265
—
164(C)
471(T)
BUR. ARMY AMMO, N.J.
—
—
11(J)
11(U)
TOTAL POINT SOURCES
2470
3005
1810
5050
TRIB
2009
2009
2009
2009
sWO
0
0
0
0
TOTAL FOR SECTION 5
4479
5014
3819
7059
BF GOODRICH, N.J. 6
340
0
340(I)
0(I)
WILLINGBORO, N.J.
RIVERSIDE, N.J.
DELRAN, N.J.
490
400
65
1
360O
J
1045(C)
845(C)
238(C)
‘
36OO(I)
______
TOTAL POINT SOURCES
1295
3600
2468
3600
TRIB
6633
6633
6633
6633
SWO
0
0
0
0
TOTAL FOR SECTION 6
7928
10233
9101
10233
NO POINT
SOURCES 7
TRIB
647
647
647
647
SWO
230
0
230
0
TOTAL FOR
SECTION 7
877
647
877
647
h—S

-------
TABLE 1 (CONT.):
1964 (lbs/day) 1970 (lbs/day)
WASTE SOURCE - — SEC. CBOD NOD CBOD NOD
RIVERTON, N.J. 8 130 11595 113(C) 1 1595()
PALMYRA, N.J. 315 i_____ 454(C ) J_____
TOTAL POINT SOURCES 445 1595 567 1595
TRIB 802 802 802 802
swo 1580 2212 1580 2212
TOTAL FOR SECTION 8 2827 4609 2949 4609
CINNANINSON SA, N.J. 9 795 1040 630(B) 1040(I)
ALLIED CHEMICAL, PA 100 0 100(I) 150(G )
TOTAL POINT SOURCES 895 1040 730 1190
TRIB 50 50 50 50
SWO 8570 11998 8570 11998
TOTAL FOR SECTION 9 9515 13088 9350 13238
GEORGIA PACIFIC, N.J. 10 7550 0 3640(B) 0(L)
PHILADELPHIA NE, PA 129000 86600 156000(A) 105000(H)
PENNSAUKEN STP, N.J. 2750 856 2680(B) 856(I)
CAMDEN N SIT, N.J. 2740 855 3660(B) 855(I )
TOTAL POINT SOURCES 142040 88311 165980 106711
TRIB 55 55 55 55
SWO 4390 6146 4390 6146
TOTAL FOR SECTION 10 146485 94512 170425 112912
11—6

-------
TABLE 1 (CONT.):
1964 (lbs/day) 1970 (lbs/day)
WASTE SOURCE SEC. CBOD NOD CBOD NOD
NATIONAL SUGAR, PA Li 10510 0 7550 ( B) 0(L )
TOTAL POINT SOURCES 10510 0 7550 0
TRIB 1006 1006 1006 1006
swo 16780 23492 16780 23492
TOTAL FOR SECTION 11 28296 24498 25336 24498
NO POINT SOURCES
12
TRIB
0
0
0
0
SwO
4480
6272
4480
6272
TOTAL FOR SECTION 12
4480
6272
4480
6272
AMERICAN SUGAR, PA
13
8000
—
4220(D)
0(D)
CAMDEN MAIN, N.J.
59510
45000
50600(B)
38262(H)
MCANDR.EWS & FORBES, N.J.
12625
0
920(C)
0(I)
PUBLICKER, PA
R. M. HOLLINGSHEAD, N.J.
TOTAL POINT SOURCES
1300
—
813W
0
—
45000
180(J)
1836(E)
5775
350(G)
0(D)
io i
TRIB
96
96
96
96
SWO
7410
10374
7410
10374
TOTAL FOR SECTION 13
88941
55470
65262
49082
11—7

-------
TABLE 1 (CONT.):
1964 (lbs/day)
CBOD NOD
1970 (lbs/day)
CBOD NOD
PHILADELPHIA SE, PA 14 130000 103920 119000(A) 95154(H)
GAl CORP. , N.J. 15910 0 14350(B) 836(T)
HARSHAW CHEM, N.J. 1789 0 1792(C) 306(T)
NEW JERSEY ZINC, N.J. 3560 0 3560(I) 0(I)
1090 (C)
BELLMAWR, N.J. 3450
564(C)
MT EPHRAIM, N.J. 580
15140 1460 (B)
564(C)
BROOKLAWN, N.J. 425
GLOUCESTER, N.J. 2150
TOTAJ. POINT SOURCES 157864 109060 142380 101436
TRIB 2646 2646 2646 2646
swO 2080 2912 2080 2912
TOTAL FOR SECTION 14 162590 114618 147106 106994
ARCO, PA. 15 21940 0 9963(B) 22338(G)
GULF OIL (IND PA 12900 1000 41900(c)
GULF OIL (SAN), PA — — 18(J)
TEXACO, N.J. 3955 592 4600(C) 592(I)
OLD FORT MIFFLIN, PA — — 5(J) 5(U)
ARMY ENG. DRED. DEPT., PA 3 0 1(J) 1(U)
WOODRURY CITY, N.J. 3320 2000 4100(C) 2470(H)
NATIONAL PARIC, N.J. 620 390 510(C) 390(I)
SHELL dEN. , N.J. 4810 0 860(C) 288(T)
UNION TANK CAR, PA 3 0 — 0(I)
TOTAL POINT SOURCES 47551 3982 61957 27084
TRIB 22943 22943 22943 22943
SWO 18860 26404 18860 26404
TOTAL FOR SECTION 15
89354 53329 103760 76431
It—B
WASTE SOURCE
SEC.
p140(I)

-------
TABLE 1 (CONT.):
1964 (lbs/day) 1970 (lbs/day)
WASTE SOURCE SEC. CBOD NOD CBOD NOD
PHILADELPHIA SW, PA 16 165000 138335 136000(B) 113298(G)
MOBIL OIL, N. J. 25652 6748 24000(B) 6313(11)
PAULSBORO, N. J. 1650 2000 1020(C) 1236(H)
HOUDRY CHEM. , N. J. 600 65(D) 65(U)
OLIN CORP. , N. J. 4700 627(C) 361(T)
PAULSBORO (ESSEX) CHEMICAL, N.J. — — 316(E) 36(D )
TOTAL POINT SOURCES 197602 147083 162028 121309
TRIB 3351 3351 3351 3351
SWO 0 0 0 0
TOTAL FOR SECTION 16 200953 150434 165379 124660
HERCULES, GIBBSTOWN, N.J. 17 8096 4000 2190(D) 4000(I)
GIBBSTOWN, N.J. 115 167(C) 329(T)
DUPONT—REPAUNO, N.J. 62184 18067 76200(B) 40372(11)
DARBY CREEK SA, PA 5580 3920(A) 10919(G)
MUCKINAPATES, PA 1930 12200 2340(A) 14791(H)
TINICUM, PA 260 119(F) 752(G)
CENTRAL DELAWARE SA, PA 16000 21870 8500 (B) 10573(G)
EDDYSTON BOROUGH, PA 840 169(F) 293(G)
UNION CARBIDE, PA 705(L) (D)
SCOTT PAPER, EDDYSTONE, PA 145 0 233(E) 55(G )
TOTAL POINT SOURCES 95150 56137 94593 82084
TRIB 3043 3043 3043 3043
SWO 1950 2730 1950 2730
TOTAL FOR SECTION 17 100143 61910 99586 87817
11—9

-------
TABLE 1 (CONT.):
1964 (lbs/day) 1970 (lbs/day)
WASTE SOURCE SEC. CBOD NOD CBOD NOD
SCOTT PAPER (CHESTER)PA18 12460 881 12950(A) 2704(G)
BP Oil, PA 16000 21800(E) 0(T)
CHESTER STP, PA 17100 8000 11260(A) 9719(G)
FMC, PA 4300 0 2220(E) 175(G)
BRYTON CHEM., PA 300 0 300(I) 0(I)
CONGOLIUN NAIRN, PA 110 0 110(I) 0(I)
PA IND CHEN., PA 45 0 45(I) 0(I )
TOTAL POINT SOURCES 50315 8881 48685 12598
TRIB 3040 3040 3040 3040
SWo 0 0 0 0
TOTAL FOR SECTION 18 53355 11821 51725 15638
MARCUS HOOK, PA 19 1520 1280 1670(F) 2231(G)
MONSANTO, N.J. 32650 10927 28600(B) 9572(H)
SUN OIL, PA 28730 0 19900(B) 2825(G)
ALLIED CHEM., Del. 2890 0 3660(E) 0(T)
PHOENIX STEEL, Del. 90 0 512(E) (D)
ROLLINS—PURLE, N.J. — — 200(D) 50(D )
TOTAL POINT SOURCES 65880 12207 54542 14678
TRIB 1331 1331 1331 1331
SwO 0 0 0 0
TOTAL FOR SECTION 19 67211 13538 55873 16009
11—10

-------
TABLE 1 (CONT.):
1964 (lbs/day) 1970 (lbs/day)
WASTE SOURCE SEC. CBOD NOD CBOD NOD
DUPONT (EDGEMOOR), Del. 20 19300** 38900**(B) 0(V)
B. F. GOODRICH, N.J. — — 112(D) 39(T )
TOTAL POINT SOURCES 0 0 41 39
TRIB 437 437 437 437
SWO 0 0 0 0
TOTAL SECTION 20 437 437 549 476
WILMINGTON, Del. 21 85970 48780 67500(A) 38300(11)
PENNS GROVE, N.J. 1140 898(C) 654(T)
DUPONT (CARNEY POINT), N.J. 8480 0 12600(B) 34951(T )
TOTAL POINT SOURCES 95590 48780 80998 73905
TRIB 12476 12476 12476 12476
swO 8320 11648 8320 11678
TOTAL SECTION 21 116386 72904 101794 98059
DUPONT CHAMBERS, N.J. 22 91000 0 102500(B) 56000(D)
ICI AMERICA (ATLAS), Del. 18800 0 12000(D) 0 (I )
TOTAL POINT SOURCES 109800 0 114500 56000
TRIB 65 65 65 65
SwO 0 0 0 0
TOTAL SECTION 22 109865 65 114565 56065
Il—li

-------
TABLE 1 (CONT.):
1964 (lbs/day) 1970 (lbs/day)
WASTE SOURCE SEC. CBOD NOD CBOD NOD
PENNSVILLE, N.J. 23 1480 900 1340(C) 622(11)
UPPER PENNS NECK, N.J. 1110 515 1150(C) 699(11 )
TOTAL POINT SOURCES 2590 1415 2490 1321
TRIB 68 68 68 68
SWO 0 0 0 0
TOTAL FOR SECTION 23 2658 1483 2558 1389
SO CHRISTIANA TEMP., Del
.24
—
—
130(D)
130(U)
TOTAL POINT SOURCES
—
—
130
130
TRIB
102
102
102
102
SWO
0
0
0
0
TOTAL FOR SECTION 24
102
102
232
232
AMOCO CHEM., Del.
25
l425 )
(D)
TOTAL POINT SOURCES
—
—
1425
(D)
TRIB
210
210
210
210
SwO
0
0
0
0
TOTAL FOR SECTION 25
210
210
1635
210
11—12

-------
TABLE 1 (CONT):
1964 (lbs/day) 1970 (lbs/day)
WASTE SOURCE SEC. CBOD NOD CBOD NOD
STANDARD CHLORINE, Del. 26 500(D) 0(D)
GETTY OIL, Del. 10400 8682 10100(B) 8432(H )
TOTAL POINT SOURCES 10400 8682 10600 8432
TRIB 345 345 345 345
SWO 0 0 0 0
TOTAL FOR SECTION 26 10745 9027 10945 8777
STAUFFER CHEM., Del. 27 100(D) 0(D)
DELAWARE CITY, Del. 170 500 255(F) 750(H)
DIAMOND SHAMROCK, Del. — — 15(E) 0(V )
TOTAL POINT SOURCES 170 500 370 750
TRIB 102 102 102 102
SwO
TOTAL FOR SECTION 27
0
272
0
602
0
472
0
852
SALEM CITY, N.J.
28
1890
1315
1650(C)
1148(H)
TOTAL POINT SOURCES
1890
1315
1650
1148
TRIB
2852
2852
2852
2852
SWo
0
0
0
0
TOTAL FOR SECTION 28
4742
4167
4502
4000
11—13

-------
TABLE 1 (CONT.):
1964 (lbs/day) 1970 (lbs/day)
WASTE SOURCE SEC. CBOD NOD CBOD NOD
PORT PENN SAN DIST 4 Del 29 — 12(D) 12(u )
TOTAL POINT SOURCES — 12 12
TRIB 974 974 974 974
SWO 0 0 0 0
TOTAL FOR SECTION 29 974 974 986 986
NO POINT
SOURCES
30
TRIB
924
924
924
924
SWO
0
0
0
0
TOTAL FOR
SECTION
30
924
924
924
924
TOTAL FOR ESTUARY 1313102 847557 1282634 1,007,695
TOTAL MUNICIPAL & INDUSTRIAL 1,097,722 602,106 1,049,070 744,060
TOTAL MUNICIPAL 655,378 547,086 611,162 532,721
TOTAL INDUSTRIAL 442,344 55,020
437,908 211,339
TRIB & swo 215,380 245,451 233,564 263,635
TOTAL NBMBER OF POINT SOURCES (MUNICIPAL & INDUSTRIAL) = 106
11—14

-------
FOOTNOTES :
(A) — BOD 5 from DRBC files & CBOD computed from typical ratios (Lo/La = 0.86
for primary, Lo/La = 0.63 for secondary, Lo/La = 0.71 for intermediate;
these ratios were calculated using typical values of k, the rate of
biochemical oxidation, for the respective treatment levels (Fair Geyer
& Okun, 1968)
(B) — CBOD from DRBC files
(C) — BOD 5 from New Jersey PBAP and CBOD computed — see (A)
(D) — Supplied by DRBC
CE) — BOD 5 from RAPP files & CBOD computed from Lo/La = 0.67 (same as A)
(F) — BOD 5 from STORET data and CBOD computed — see (A)
(G) — NOD based on 4.57 times the total Kjeldahl Nitrogen as taken from
the DRBC files; the 4.57 comes from the following relationship for
the oxygen demand of nitrogen:
NH 3 + 202 H + NO 3 + H 2 0
(14 grams N) (64 grams 02)
grams Q 2 pounds 02 4.57
grams N pounds N 14
(H) — NOD altered from 1968 or 1964 in same proportion as change in CBOD
(I) — Used 1968 or 1964 DECS data
(J) — DRBC allocation used as CBOD
(L) — Water Programs Branch estimate, EPA
(T) — Total N & Nitrate — N taken from PBAP and NBOD equivalent
computed (4.57 x ((TOTAL — N) — Nitrate))
(U) — NOD assumed equal to CBOD (by DSB)
Cv) — Data Systems Branch (EPA) Estimate
** Immediate Oxygen Demand due to sulfuric acid process
11—15

-------
Section III
Model Verification
Previous Investigations
Although studies had previously been reportedL 2 it was
not until the Delaware Estuary Comprehensive Study (DECS) that a rigorous
mathematical relationship between water quality and waste inputs in the
Delaware Estuary was formulated.
A computer program was developed by DECS, 3 which could be used to
construct a model of a steady—state, one—dimensional estSlary.* The approach
underlying the computer program was developed by Thomann’ and is considered
a classic tool in water pollution management. Typically referred to as the
“DECS model”, it has been applied successfully t o he bodies of water,
notably the Potomac Estuary and Hilisborough Bay
DECS applied the program to conditions in the estuary in the suers
of 1964 and 1966.**These s mers were chosen because during these periods
low rainfall made the flow entering the estuary relatively constant and thus
helped support the “steady—state” assumption of the model. Using as inputs
existing waste sources and various parameters which described the physical,
chemical and biological phenomena taking place in the estuary, profiles of the
dissolved oxygen concentration were generated. The agreement between the
profiles and actual sample data was reasonably good (see figure I ll—i for
1964). These verifications were then used as the basis for utilizing the
computer model to predict the affects of waste abatement programs on future
water quality.
One aspect of the DECS approach which has been a point of contention
was the manner in which the nitrogenous waste loads and their resulting
oxygen demands were handled.
**See Figure 111—2 for a map of the estuary and the segmentation scheme
of the model.
*“steady_state” — the various parameters and inputs used to describe a body
of water do not vary significantly with time.
“one—dimensional” — the estuary can be considered homogeneous with respect
to water quality variables across the river (laterally) and with depth
(vertically). The waste material then varies or ‘has a gradient’ only
along the length of the river (a longitudinal gradient).” 9
This Section was prepared by Steven C. Chapra, Data Systems Branch,
U. S. Environmental Protection Agency, New York, N. Y.
hI—i

-------
The classical measure of the strength of a waste is its Biochemical
Oxygen Demand (BOD), which is defined as “the amount of oxygen required by
bacteria wh e stabilizing decomposable organic matter under aerobic
conditions:’ The BOD usually has two components—the carbonaceous (CBOD)
and the nitrogenous (NOD). Saprophytic bacteria and other organisms
utilize the carbonaceous matter in a waste and in so doing use oxygen and
exert a CBODS In addition, autotrophic bacteria utilize the oxidizable
nitrogen in the waste and exert an NOD. Under proper conditions (adequate
oxygen, proper temperature, absence of toxic substances, etc.) evidence
suggests that these reactions proceed simultaneously. However, in cases
where the dissolved oxygen is depressed, approximately below 2 mg/i, the
exertion of NOD or nitrification will cease. 9
To simulate this phenomenon in the Delaware Estuary, the NOD waste
loads were input to sections downstream from their actual point of discharge
while the NOD removal rates were kept at a constant value across the entire
estuary. This simulated the suppression of nitrification in the stretches
where low dissolved oxygen occurred. However, the approach presented two
problems: first, a choice of how far downstream to place the loads could be
arbitrary because of its artificial nature. Second, when using the model for
predictive purposes the waste loads would have to be moved upstream to their
actual positions and a new set of removal rates would have to be formulated.
A more natural approach would be to input the NOD at their actual
locations and then depress the “removal rates” in the sections where
nitrification was believed to be suppressed. This approach has been
adopted by all subsequent studies of the estuary.
For instance, as part of its ongoing program the Delaware River
Basin Commission (DRBC) has taken the DECS model results and modified
them to account for additional knowledge it has gathered pertaining to
1964 conditions in the estuary. As well, a reverification was run for con-
ditions in the summer of 1968 ‘°wherein the nitrification was treated in the
more natural method as described above. It must be noted, however, that when
using the model for predictive purposes the DRBC never attempted to formulate
new sets of reaction rates to reflect the higher dissolved oxygen levels which
would be brought about by a reduction in carbonaceous BOD. They seem to have
left the nitrogenous component in a permanent state of suppression regardless
of the oxygen levels in the estuary.
Work by O’Connor has confirmed the adequacy of the DECS—Thomann
approach to modeling the Delaware. O’Connor also pointed out the need for
a more detailed s. udy of the nitrogenous material entering the system. In
a subsequent work’ he did this by treating the nitrogenous input as NOD
and depicted suppression by lowering the nitrogenous removal rates in the
sections of low dissolved oxygen. It was concluded that “an overly optimistic
estimate of the effects of waste treatment on river water quality may result
if the effects of nitrification are not properly considered.”
111—2

-------
Finally, the most detailed and advanced study of the nitrogen 1
phenomenon in the Delaware Estuary was that done by Rydxoscience, Inc.
In this study, the carbonaceous BOD was treated in a similar manner to
that done by DECS and DRBC. However, rather than treating the nitrogen
inputs as NOD, they were treated in their actual forms (organic nitrogen,
ammonia, nitrate and nitrite) and the oxygen demand from their reactions
was calculated directly. Verification was done on the estuary for periods
from 1964 to 1967 and good agreement between observed and calculated
concentrations was achieved. As well, some predictions of future con-
ditions under the DRBC waste removal program were attempted. Hydroscience
concluded that under the DRBC waste removal program, which presently only
addresses itself to carbonaceous BOD loads with no nitrogenous removal,
the dissolved oxygen objectives of DRBC would “probably be attained.”
They added: “However, given present understanding of the nitrogen cycle
and its behavior after treatment, a general level of watchfulness should
be pursued to monitor estuary quality response and anticipate the need
for any additional control measures if required.”
The Present Verification
The present study is an effort to incorporate technical advances
in the analysis of the Delaware, which have been made since the early
1960’s, as well as incorporating the changes in the various inputs to
the model which have occurred over that period. Due to time and data
constraints, it was necessary to asstnne that the storm water overflow,
benthic and tributary loads are essentially the same today as they were
computed by DECS in 1964 (A sumtn ry of these loads is given in Table 111—1).
There is no evidence to suppose that this is untrue but every effort should
be made in future studies to see that these rather significant loads are
as precisely estimated as possible. As well, the nitrogen loads to the
system had to be treated as NOD. By “state—of—the—art” standards, this
is not as advanced a technique as a model which treats the
components of nitrogen separately. However, until such a model is developed
for present conditions, the approach used will serve as a reasonable basis
for evaluating the relationship between waste load allocations and water
quality in the estuary.
As a first step in the analysis, the model was reverified for
1964 data using the approach to nitrification wherein the loads were input
at their actual locations and the NOD removal rates were adjusted to simulate
the suppression of nitrification. This was done by setting the rates
to 0.0/day in areas where the oxygen levels fell below 2 mg/i. Plots
of the various components of in—stream nitrogen (ammonia, organic,
nitrite, nitrate) from sampling data were also consulted to determine
the zone of suppression. In areas where nitrification occurs, rates on
the order of .05/day were used. This value is somewhat lower than the
typical value of .1/day which might be expected if pure ammonia were the
only waste source of nitrogen to the estuary]. However, since many of
the nitrogen loads to the estuary are of an organic form, this reduction
is justified to account for the hydrolysis of organic nitrogen to ammonia.
As well, the lower value can be justified on the basis that the NOD
approach implicitly assumes that the ammonia and organic nitrogen is
directly converted to nitrate while in reality it is first converted to
nitrite and then to nitrate.
111-3

-------
The results for the 1964 verification are shown in figure 111—4 and
as can be seen the agreement between the observed and the calculated values
is reasonably good. The two top plots in figure 111—4 depict the components
of the deficit due to carbonaceous and nitrogenous BOB waste loads. In each
case, the plots reflect the total deficit due to all BOB waste sources, i.e.,
municipal and industrial waste loads, storm water overflow and tributary
loads. As can be seen, the effect of the suppression of nitrification due
to depressed dissolved oxygen levels is to cause the NOB to exert itself
heaviest approximately 25 miles downstream from the peak deficit due to
carbonaceous BOB.
To see how the model agreed with present conditions, an inventory
of waste loads to the estuary in 1913 was com.pleted (see Section U) and
a steady state period from August 10 to October 10, 1970 was chosen
for a verification (see Figure 111—2). The reason that this particular
period was chosen was that it was the most recent low—flow, summer,
steady—state period available. The sners of 1971 and 1972 had untypically
high flows and no steady—state period of reasonable length could be chosen
for a verification. Using the new loads, a flow of 4167 cfs and reaction
rates based on those used in 1964, the profile shown in figure itt- S was
generated.
As can be seen, the major discrepancy occurs in the area from mile
point 125 to mile point 110. The dissolved oxygen profile in this section
is known as tithe Bristol sag” and has been one of the more difficult areas
to model on the estuary. This is because of the fact that the phenomenon
responsible for the depression of oxygen in this area is not totally understood.
However, this area is not critical and the discrepancies between the observed
and calculated values can be disregarded in a study of this nature. As to the
critical portions of the estuary (mile point 105 to mile point 75) agreement
can be seen to be excellent.
Finally, as an exercise, a run was made using a hypothetical future
condition. A flow of 3000 cfs at Trenton and a temperature of 25°C were
used as typical low flow summer conditions on the estuary. The 1973
DRBC carbonaceous BOB allocations were input along with the reaction rates
based on the 1964 and 1970 verification. Waste loads were input at locations
where they would be expected to discharge in the future. That is, if several
sources are to be collected and treated by a regional treatment plant in a
section other than their present location, this would be reflected in this run.
It was assumed that the nitrogen loads would be reduced by 20% in the process
of reaching the DRBC allocation (see Section IV) and a rate of nitrogen
removal in the order of .05/day was applied across the entire estuary. This
then depicted the conditions expected in a “healthy t ’ estuary with carbonaceous
and nitrogenous BO lD exerting simultaneously. The results are shown in
Figure III- 6. This was one of three “base profiles” used in Section V as
one step in the assignment of CBOB load allocations.

-------
As can be seen the peak dissolved oxygen concentration occurs
at approximately 98 miles above Delaware Bay and is at a level of 2.6
mg/i. The effect of the reduction in carbonaceous BOD has been to “narrow”
the critical region (D.O. below 4 mg/l) from about 35 miles to 15 miles of
the estuary.
The effect of using a constant value of the NBOD removal rate of
.05/day can be illustrated by the top plot in Figure 111—6 which shows
the deficit due to the carbonaceous and nitrogenous components of BOD. Due
to the higher levels of dissolved oxygen the nitrogenous component no
longer exerts itself heaviest at a point downstream from the carbonaceous.
Rather, the components “peak” at roughly the same spot and supplement each
other in the critical portions of the estuary.
Finally the center plot in figure 111—6 shows what might be
considered the “background” loads of the model. These loads have not been
considered as practical targets for waste abatement programs and include
immediate oxygen demands, such as benthic and photosynthetic loads,
tributary loads and storm water overflow. Their total value of approximately 2.4
mg/I at mile point 98 iS rather significant considering that it represents
about 40% of the total deficit at that point.
111-5

-------
1st Stage Carbonaceous Oxygen Demand Nitrogenous Ultimate Oxygen Demand
(pounds per day) (pounds per day)
Section Tributary 1/ Storm Water Overflow Tributary / Storm Water Overflow Benthic Demand
1 85,858 1,360 85,858 1,904 22,280 ’
2 4,096 4,096 8,622
3 239 239 4,140
4 1,154 1,154 2,700
5 2,009 2,009 4,800
6 6,633 6,633 5,040
7 647 230 647 322 890
8 802 1,580 802 2,212 2,125
9 50 8,570 50 11,998 2,250
10 55 4,390 55 6,146 2,250
11 1,006 16,780 1,006 23,492 5,760
12 0 4,480 0 6,272 1,350
13 96 7,410 96 10,374 3,240
14 2,646 2,080 2,646 2,912 3,960
15 22,943 18,860 22,943 26,404 14,700
16 3,351 3,351 6,750
17 3,043 1,950 3,043 2,730 11,475
18 3,040 3,040 7,200
19 1,331 1,331 16,200
20 437 437 15,750
21 12,476 8,320 12,476 11,648 6,930
22 65 65 6,000
23 68 68 13,050
24 102 102 11,000
25 210 210 9,300
26 345 345 12,000
27 102 102 15,000
28 2,852 2,852 15,000
29 974 974 0
30 924 924 0
TOTAL 157,554 76,010 157,554 106,414 229,762
1/ Flow @ Trenton = 4167 cfs
2/ Section 1 also receives an immediate demand of — 34500 pounds per day due to background D.0. concentrations.
Table III — 1: Immediate Oxygen Demands used in model verifications.

-------
2 4 6 8 10 12 14
I I & .1 1 I III1I [ 1L
16 18 20 22 24 26 28
MODEL SECTION
FIGURE Il l—i Steady—state verification was performed for the June through
August 1964 period.
10
OBSERVED
MEAN
1•
8
I
5
4
3
2
1
D
I I I I I I I_I 1_1_1_
MEAN
1 I
I 11—7

-------
DELIAW ARE ESTU ARY
COMPREHENSIVE STUDY
FIGURE 111—2
SECTIONS FOR
MATHEMATICAL MODEL
SCALE MILES
5
0
10
U. S. ENVIRONNENTAL PROTECTION AGENCY
Pinnypock
Creek
hester
NEW JERSEY
Point-Mile 48,3
TTT..8

-------
Figure 111—4
MODEL SECTIONS
I I ‘ 1710 1 ,1 10!111121 131hh 1 ‘ I ‘ I “ I “ I “ O I21t $$4I $424 l4 20
6’
130 120
110 100 90 80 70 60
50
10
8
6 T 0DcARBONAcEOUS COMPONENT
130 120 - 110 100 90 BO 70 - 60 50
DISTANCE-MILES ABOVE DELAWARE BAY
S
E
‘I
0
0
0
S
E
U
0
0
0
S
E
z
0
x
0
0
>
0
“I
I ,
0
110 100 90 00
DISTANCE-MILES ABOVE DELAWARE BAY
DISSOLVED OXYGEN PROFILES 6/1/64 - 8/31/64
111—10

-------
Figure 111—6
MODEL SECTIONS
I I 1 • 11 1 5101b01 1h1 121 13114( IS IS I? II II 20 I24 l$3124F$42$4 20
8
=6
a
B
04
0
0
BONACEOUS COMPONENT
TILOAD TRIO IJIA RIB S. S WI)
—j . . . .
130 120 110 100
NITROGENOUS
)WA SOAD
• • T
90 80 70 60
DISTANCE•MILRS ABOVE 0
ELAWARE BAY
COMPUTED ftOFILI FOR
DIS1ANCE-MILES
ABOVE DELAWARE BAY
:
D0SATURAU0N
7
6
5
4
2
0=3000 Ii
0
T2 SC
T •
130 120 110 100 90 80 70
DISTANCE-MILES ABOVE CELAWARE BAY
DISSOLVED OXYGEN PROFILES
(HYPOTHETICAL FUTURE CONDITIONS WITH 1973 DRBC CBOD ALLOCATIONS
AND 20% REMOVAL OF NOD SOURCES
1 11—12
60
E
‘-S
0
0
0
a
E
z
(2
I C
0
0
>
0
0

-------
References for Section III
1. Kaplovsky, A. J., “Investigation of Sanitary Water Quality in Lower
Delaware River, Part I and Part It.” Water Pollution Commission
Technical Report II (1956).
2. Pritchard, D. W., “A Study of Flushing in the Delaware Model.”
Technical Report VII, The Chesapeake Bay Institute, Johns Hopkins
University (1954).
3. DECS, Documentation for Program PRINE1 & 2, Published by Data Systems
Branch EPA Region II June 1971.
4. Thomann, R. V., 1963: Mathematical Model for Dissolved Oxygen.
Proc. ASCE , 89, No. SA 5 (October), pp 1—30.
5. Federal Water Quality Administration, 1969: Problems and Management
of Water Quality in Hillsborough Bay, Florida. Hilisborough Bay
Technical Assistance Project, South West Region FWQA.
6. Hetling Leo J. 1969 The Potomac Estuary Mathematical Model. Technical
Report No. 7, Chesapeake Technical Support Laboratory, FWQA, Annapolis,
Maryland.
7. Tracor, Inc. 1971, Estuarine Modelling: An Assessment. Prepared for the
U. S. Environmental Protection Agency, Tracor, Austin, Texas, February 1971.
8. Sawyer C. & McCarty P. ‘ t Chemistry for Sanitary Engineers” McGraw
Hill Book Company New York 1967.
9. Manhattan College, 1970: Nitrification in Natural Water Systems.
Environmental Engineering and Science Program Technical Report,
Manhattan College, Bronx, N.Y.
10. Delaware River Basin Commission, Final Progress Report, Delaware Estuary
and Bay Water Quality Sampling and Mathematical Modeling Project, DRBC,
Trenton, N.J. May 1970.
11. O’Connor “Water Quality Analysis of the Delaware River Estuary” for
Industrial Subcommittee, DECS Philadelphia, Pa. April 1966.
12. O’Connor, D. J., St. John, J. P., and DiToro D. M., Water Quality Analysis
of the Delaware River Estuary , A.S.C.E., No. SA6, December 1968, pp 1225—1252.
111—13

-------
13. Hydroscience, Inc., 1969: Nitrification in the Delaware Estuary.
Prepared for Delaware River Basin Commission. Hydroscience, Westwood,
N. J. June, 1969.
14. Smith, E. T. & Morris A. R.: Systems Analysis for Optimal Water Quality
Management, Journal of the Water Pollution Control Federation, September 1969.
15. Delaware Estuary Comprehensive Study, Preliminary Report and Findings ,
Department of the Interior, F.W.P.C.A., Philadelphia, Pennsylvania, July 1966.
Other references:
Thomann, R. V. Systems Analysis and Water Quality Management, Environmental
Research and Applications Inc. New York 1971.
111—14

-------
Section IV
The Treatment of Nitrogenous Wastes
There are two major reasons for the consideration of nitrogen in the
management of a natural water system: first, due to its high oxygen demand,
ammonia nitrogen can critically depress dissolved oxygen levels in a stream
or estuary. Second, nitrogen as a nutrient is sometimes an important factor
in the phenomenon of eutrophication.
While these problems are related, the control techniques necessary to
deal with them are significantly different. In treating nitrogen wastes
to avoid the suppression of oxygen, a process of nitrification must be used.
When the problem is one of eutrophication, some form of nitrogen removal
must be employed.
In this section, these two areas, nitrification and nitrogen removal,
will be discussed briefly. As well, a brief review of the nitrogen load
situation on the Delaware Estuary and a statemant of some possible
alternative approaches to the problem will be attempted.
The Nitrogen Cycle...
The forms of nitrogen which are of primary significance in a discussion
of water quality management are:
1) organic nitrogen
2) ammonia (NH 3 )
3) nitrite (N0 2 )
4) nitrate (N0 3 )
Figure IV—l presents a simplified representation of the way in which these
forms interact in the nitrogen cycle.
This section was prepared by Steven C. Chapra, Data Systems Branch, U. S.
Environmental Protection Agency, New York, N. Y.
TV —i

-------
Nitrification
Waste loads from municipal and industrial sources typically
contain nitrogen in an organic form (a) or as ammonia (b). The organic
nitrogen eventually undergoes a hydrolysis reaction and is converted to
ammonia (c). then the ammonia from the hydrolysis as well as that from the
waste sources is converted to nitrite and then to nitrate by bacteria with
an accompanying utilization of oxygen. Stratton and McCarty 4 ’iave expressed
these reactions as follows,
— ammonia to nitrite (d):
Nitro somonas
Bacteria —
NH 4 ++ 3/2 02 NO 2 + 21{++H 20 ...(IV—l)
— nitrite to nitrate (e):
Nitrobacter
— Bacteria —
NO 2 + 1/202 • NO 3
These reactions are typically referred to as “nitrification” and
are depicted separately in figure IV—2.
By a simple stoichiometrical balance it can be shown that the above
reactions jequire 4.57 pounds of oxygen for every pound of nitrogen
converted. Needless to say, in some bodies of water this can represent
a critical depletion in the oxygen resources whic t are so crucial to
aquatic life.
When such is the case, nitrification should be accomplished in the
treatment plant. To do this it is necessary to turn to biological treatment
as there is presently “no physical—chemical system that will convert dilute
aqueous ammonia solution into nitrate nitrogen.” 2
Conventional biological systems, like the activated sludge system
shown in Figure IV—3, have been classically designed to treat the
carbonaceous rather than the nitrogenous component of the waste. In
general, one can expect on the order of 20 percent removal of nitrogenous
oxygen demand from this sort of system for a typical municipal waste 3 ’ 4 5 .
It should be noted that this is an actual removal of nitrogen in the fan
of the digested sludge rather than a nitrification of the ammonia.
TV-2

-------
In such a situation it is assumed that the supernatant water from the
digestor is recycled into the plant. A part of the ammonia from the
sludge is often reintroduced into this supernatant in the course of
digestion which necessarily reduces the efficiency of the removal process.
If some alternative means of disposing of the supernatant can be found,
the removal of NOD can be raised to approximately 30 percent. It must be
noted that this removal is rather erratic 3 and that wide variation around
the mean values might be expected. However, the value is valid in rough
estimation of the expected removal by conventional treatment.
To achieve nitrification using an activated sludge system the
sludge retention period or sludge age, must be greater than the growth
rate of the nitrifying organisms. This is usually accomplished by
increasing the detention time and carefully regulating the wasting
of sludge. Since more oxygen is required for the reaction than for
conventional activated sludge the oxygen transfer capacity must
be increased. 3 ’ 6
In general, nitrification is advantageous because:
1) it reduces the nitrogenous oxygen demand of a waste
in cases where this may be a problem in the receiving
water. In a well designed, properly operating plant
it is reasonable to expect about 85 percent nitrification
of the total oxidizable nitrogen for a typical municipal
waste. 5 ’ 6
2) it is less costly than the removal of nitrogen (see Table IV—l
for a comparison of treatment costs)
It is disadvantageous for the following reasons:
1) in general it is more costly than conventional secondary
treatment.
2) it is fairly sensitive to toxicity, temperature and
oxygen concentration, thus requiring highly competent
plant operation and design.
3) it does not remove oxidizable nitrogen but merely
converts it to nitrate. If the particular receiving
water is susceptable to eutrophication this can cause
a problem.
IV - 3

-------
Nitrogen Removal Processes
The second aspect of nitrogen treatment of significance is
eutrophication. Eutrophication was originally applied to the
accumulated nutrients and the increase in organic matter which
are a natural part of the succession of lakes. It has come to
refer not so much to the natural succession but to the artificial
one brought about by the introduction of man made wastes to a body
of water. In general this pertains to the introduction of nutrients,
notably, nitrogen and phosphorous, in excessive quantities to the
receiving water. If conditions are favorable this can stimulate
the growth of algae to the point that they present a nuisance. To
deal with this problem, it is necessary to remove the nitrogen forms
which will serve as nutrients.
Some processes which can be used for nitrogen removal are:
1) nitrification—denitrification (biological):
several processes are available for this sort
of treatment. The basic principle involved is
that under anaerobic conditions, nitrate can
be reduced to nitrogen gas and some nitrous
oxide which can be released to the atmosphere.
Removal efficiencies from 60—95% have been
reported.
2) air stripping: by raising the pH of a waste water
containing ammonia to levels about 10, more than
85% of the ammonia present may be liberated as a
gas by agitating the waste water in the presence
of air.” 7
3) ion exchange: in this unit process “ions of a
given species are displaced from an insoluble
exchange material by ions of different species
from solution.” 7 Ion exchangers can remove either
ammonia or nitrate but not both.
In general these processes can be operated eff ctively for removal
of the various forms of nitrogen as needs dictate but their main disadvantage
is in the cost of the treatment. The technology is available but significant
economic constraints might detract from its desirability.
IV—4

-------
Nitrogen loads to the Delaware
Approximately 70 percent of the nitrogenous oxygen demand from
municipal and industrial point sources to the Delaware Estuary comes
from the municipalities.
Of this total, about 75 percent conies from the five major
municipalities:
NOD (lbs/day)
Philadelphia SW 113298
Philadelphia NE 105000
Philadelphia SE 95154
Wilmington 38300
Camden Main 38262
390014
As this represents over 50% of the total NOD point sources to the
estuary, it would be useful to review their present operation and their
plans for future upgrading.
Table IV—2 sitmm rizes the present and future status of these
plants. In general, since all of the plants are primary or intermediate
little or no nitrification can be presently expected. When upgraded to
secondary treatment with no special design for nitrogen treatment we can
apply a standard estimate of about 20% nitrification.
All of the plants have some industrial input with Philadelphia NE
being the most significant. This might cause a toxicity problem particularly
if the industries discharge heavy metals. However, the size of these plants
(into order of 100 MGD) could dampen such effects and make them less
susceptible to upset.
There seem to be no major technical reason why some sort of
nitrogen treatment cannot be applied to the estuary. Whether the
alternative is nitrification or nitrogen removal is a question for
further study.
Assuming that eutrophication is not a problem on the Delaware, it
would be interesting to investigate a number of alternatives which could
IV-5

-------
be hypothesized for future waste abatement programs using nitrification.
Three alternatives might be examined:
1) present design could be continued if only 20% nitrification
would meet the needs of the estuary.
2) partial treatment could result in the nitrification of about
50% of the effluent.
3) full nitrification could be introduced with a resulting 85%
removal of the NOD.
In the next section these alternatives are examined to see what
accompanying degree of treatment of carbonaceous BOD would be needed to
achieve various water quality objectives.
IV—6

-------
References
Section IV:
1. Stratton, F. E. and McCarty, P. L., “Prediction of Nitrification
Effects on the Dissolved Oxygen Balance of Streams.”
Env. Sd. and Technology, Volume 1, Number 5,
pp. 405—410 (May, 1967)
2. Barth, E. F., “Total Treatment Using Chemical and Physical Processes.”
FWQA, U. S. Department of the mt., Cincinnati, Ohio (June, 1970)
3. Hydroscience, “Nitrification in the Delaware Estuary.” for Delaware
River Basin Commission, Trenton, New Jersey (June, 1969)
4. Barth E. F. et al “Removal of Nitrogen by Municipal Wastewater
Treatment Plants.”
5. Barth E. F. (oral communIcation), June 7, 1973, Conversation between
Edwin F. Barth, U. S. E.P.A., National Environmental
Research Center, Cincinnati, Ohio 45268 and Steven C.
Chapra, Sanitary Engineer, EPA — Data Systems, New York, N.Y.
6. Eckenf elder W. W., Water Quality Engineering for Practicing Engineers,
Barnes and Noble, Inc. New York, 1970.
7. Eliassen, R. and Tchobanoglous G., “Removal of Nitrogen and Phosphorous
from Wastewater” Environmental Science and Technology, Volume 3
No. 6, Pp. 536—541, June 1969.
8. Tracor, Inc. 1971, Estuarine Modeling: An Assessment. Prepared for
the U. S. EPA, Tracor, Austin, Texas p. 152. February 1971.
9. Sacramento State College “Operation of Wastewater Treatment Plants
—A Field Study Program “for U.S. E.P.A. Water Quality Office,
Washington, D. C.
IV— 7

-------
a) ORGANIC NITROGEN AMMONIA
WASTE SOURCES WASTE SOURCES
N 2
C
NITRATE WASTE SOURCES
PI TTOPt.ANKTON UTIUZATION
FIGURE IV-1: MAJOR FEATURES OF THE NITROGEN CYCLE B

-------
OXYGEN RESOURCES
MUNICIPAL &
HRIAL WASTE
C
•0
BACTERIA
FIGURE JV-2: REPRESENTATION OF NITRIFICATION PHENOMENON (FROM HYDROSCIENCE 3 )

-------
PRIMARY CLARIFICATION
AERATION TANK
To
RECEIVINO
WA EElS
a
EXCESS
ACTIVATED
SLUDGE
RETURN
ACTIVATED
SLUDGE
ETFLUENT
CHLOUINATION
FIGURE IV-3 PLAN LAYOUT OF A TYPICAL ACTIVATED SLUDGE PLANT 9

-------
Delaware Estuary Water Quality
Standards Study

-------
TABLE P1-i
PLANT SIZE AND COSTS*
(reprinted from Hydroscience 3 )
Plant Size
Cost
1 MGD
Q at ion C pita1
Q/l,000 gal.
Op
10 MCD
erat ion Capit
/l .0OO gal.
al
—
Air. stripping
3.6
1.7
2.8
0.6
Biological Nitrif ication
@ 10° C
0.8
0.3
0.8
0.1
Biological
Nitr if ication—
denitrif icat ion
@ 10° C
1.4
2.6
1.4
0.8
Ion Exchange
NH 4
12
2.6
•
12
1.9
NO 3
17
2.6
17
1.9
Conventional Activated
Sludge
8.5
10.0
4.9
6.9
* Additional Costs over conventional activated sludge plant. All costs at
4—1/2% —— 25 years.
tV—Il

-------
TABLE IV—2
Present and Future Status of Major Municipal Nitrogen Dischargers on the
Delaware Estuary
Future Status
Present Status** Current
1973 Waste Loads* estimated required
Treatment CBOD NOD percent treatment current*** Additional percent treatment** future
Plant ( pounds/day) ( pounds/day) CBOD facility Connnents*** CBOD facility***
Philadelphia SW 136000 113298 45—50 Primary 89.25 Secondary
(pre—aeration (activated
flocculation) sludge or
UNOX)
Philadelphia NE 156000 105000 60—70 Intermediate Large Amount 86 Secondary
(high—rate of industrial (activated
activated waste sludge or
sludge) UNOX)
Philadelphia SE 119000 95154 40—45 Primary 86 Secondary
(pre—aeration, (activated
flocculation) sludge or
UNOX)
Wilmington, Del. 67500 38300 30—35 Primary 87.5 Secondary
(aeration)
Camden Main, N. J. 50600 38262 10—15 Primary In future will 86 Secondary
be part of a (activated
regional plant sludge)
serving Camden
area
* from Section II
** from DREC
*** from EPA: Region III

-------
Section V
Water Quality Standards Attainment
A. Theory
When designing an algorithm for assigning carbonaceous BOD load
allocations to discharge sources on a body of water there are a number
of constraints on the system. The following should be adhered to if a
feasible set of allocations are to result from the system:
1. Enough carbonaceous oxygen demanding load (CBOD) must be
removed to assure that the water quality standards will
be attained;
2. The load must be removed in an equitable fashion;
3. It must be feasible for a discharge source to reach its
allocation;
4. No source should be allowed to discharge more CBOD than
it Is currently discharging;
5. A reserve of CBOD must be maintained to allow for introduction
of new facilities.
For the particular case of the Delaware Estuary it Is also desirable
that no source be given an allocation that Is greater than the allocation
that is currently agreed upon by the source and the Delaware River Basin
Commission (DRBC).
In 1968 computer programs were designed by the Delaware Estuary
Comprehensive Study 2 ’ 3 ’ 4 (DECS) to assign load allocations subject to the
above constraints for a set of discharges on the Delaware Estuary. The
first program is a steady—state, finite—difference estuary model (PRINE) and
its use has been documented in Section III of this report. The latter two
programs (RUNN and MANG) use the steady—state transfer matrix from PRINE as an
integral part of the algorithm for determining load allocations. The remainder
of this chapter will describe this algorithm and its use In the present
analysis.
This chapter was prepared by Robert E. Braster, Data Systems Branch
Environmental Protection Agency, New York, N.Y.
V—i

-------
The initial step in the computation of load allocations is to solve
the following equation in program RUNN:
(DO)c [ (D) — (l—P) (C)J(A) . . . . .(l)
where:
(D) = a vector of upper bounds to the source loads, usually the
present DRBC allocation; (D)(A) is used as the carbonaceous
system to generate the base profiles in Table III;
(C) = a vector of raw CBOD waste loads by section;
P = a scalar quantity representing a uniform percent removal
of raw waste throughout the estuary;
(l—P) = is equal to a computed percent discharge of raw waste and
(l—P)(C) equals the computed discharge load to the estuary;
(A) = the steady—state transfer matrix from PRINE that shows the
DO response in all sections due to waste load inputs into
any or all sections;
(DO) = the DO improvement goal throughout the estuary that must be
attained.
This equation is solved in RUNM via an iterative technique that
varies the percent removal P from 0 to 100% in ten percent increments. A
ten percent range is established where equation (1) is satisfied and RUNH
is rerun for this percent range in one percent increments. The second run
will establish the exact percent removal (p) of raw waste that is required
to satisfy equation (1). The solution to this equation assures that constraint
one above will be met and by removing load in uniform percent increments
constraint two is also satisfied.
Constraint four above states that no source should be allowed to discharge
more CBOD than it is currently discharging. Also no computed allocation should
be greater than the current DRBC allocation. To prevent this from happening a
set of upper bounds to the computed allocations are read into RIJNN. These upper
bounds would normally be set at the current discharge to satisfy constraint four.
For the particular case of the Delaware Estuary CBOD load allocations already
exist and the upper bounds are set at the present allocations. A check is
imbedded in the program to assure that if (1—P)C 1 >D for source 1, then D
replaces (1—P)C in equation (1) and the D.0. improvement defaults to zero.
V- 2

-------
The load allocations could be computed manually at this point by
removing a small percent from each computed discharge. The remainder would
constitute a uniform load allocation for each source throughout the
estuary. The amount removed would be set aside as a reserve as required
by constraint five. However in the case of the Delaware Estuary treatment
zones have been established and It is necessary to treat each zone
separately. This is done in program MANG.
Before program I4ANG can be applied it is necessary to sum the computed
discharge loads by zone to establish a total zone discharge. A percent is
set aside and the remainder is now established as the zone allowable discharge
(ZAD). MANG now solves the following equation f or each zone j by varying P
from p to 100%:
E(l—P)C =ZAD . . . . . (2)
where
i = a source number;
j = a zone number;
P = a percent removal of raw waste;
C 1 = the raw lead for source I;
ZAD = the zone allowable discharge for zone j.
Again this equation is subject to the constraint that (l—P)C
-------
The initial step in the analysis is the generation of the dissolved
oxygen base profiles. These profiles represent the anticipated D.O. levels
under certain loading conditions, such as the 1973 CBOD and NOD discharge
loads. If the 1973 CBOD load allocations and 80 percent of the NOD discharge
loads are used as the forcing function, PRINE will compute a profile showing
the anticipated D.O. level in the estuary under the present DRBC program. This
profile and two derivatives of it are to be used as the base profiles for
the following analysis of the Delaware Estuary.
Table II shows the loads used in program PRINE to generate the base
profiles. The CBOD forcing function is merely the present allocations
(upper bounds) and the CBOD background loads. Three different NOD forcing
functions for the base profiles are shown for three different test cases,
along with the background loads. The 80 percent NOD discharge column reflects
the 20 percent NOD removal that one would normally expect with secondary
treatment. The 50 percent NOD discharge column reflects the anticipated
removal of NOD with partial nitrification. The 15 percent NOD discharge
column represents 85 percent removal of NOD or complete nitrification. These
percentages have been chosen based on the information in Section IV of this
report. Two other modifications were made to the input data for program PRINE
before generation of the base profiles: (1) the nitrogenous removal rates
were increased to closer resemble the anticipated instream NOD removal rate
if the sources were discharging a high secondary effluent, (2) the flow was
set at 3000 cubic feet per second (cfs) in that this is the future regulated
estuary flow as proposed by the DRBC 5 to prevent salinity intrusion at the
Schuylkill River.
Columns D, E and F of Table III are the base profiles resulting from
the above PRINE runs. Columns A, B and C are the three dissolved oxygen
standards to be evaluated. By taking each base profile and subtracting it
from each standard there results a set of nine dissolved oxygen improvement
goals. These improvement goals are defined as the dissolved oxygen improvement
in mg/i necessary to attain a standard. RUNM is now used to compute the
uniform percent removal of untreated CBOD loads that is necessary to attain
the nine goals. These percent removals are shown in Table IV. Also shown
are the total zone discharges, zone reserves and zone allowable discharges.
A figure of ten percent was chosen by the DRBC 5 as a suitable reserve for the
Delaware Estuary so the actual zone allowable discharges are only ninty percent
of the total zone discharges. In that improvement goals three, six and nine
could not be reached with 100 percent removal of all CBOD it was not necessary
to run the final program to establish new load allocations. This means that
the EPA Standard cannot be attained without additional treatment of the NOD
loads, treatment of the stormwater overflow and tributary loads, artificial
aeration or employment of some other techniques to raise the dissolved oxygen
concentration.
V—4

-------
MANG also computes the “percent removal to reach new allocations” and
the “percent removal achieved”. The former is the percent removal that
must be achieved by all sources currently treating at a lower percent
removal. The percent removal achieved is the total percent removal
achieved for the entire zone. This number will be greater than or equal
to the former depending on the existence of sources currently treating
at a higher percent removal than the “percent removal to reach new
allocations.” These numbers have been summarized in Table V. Finally
figures one through six show a comparison between the standard, the base
profile and the computed MANG Profile using the new allocations.
As can be seen from the output of MANG shown in Table V a high percent
removal of CBOD is required to meet improvement goals one, two and five.
The only feasible means of reaching the intermediate EPA standard is high
secondary treatment of CBOD at 90 to 95 percent removal coupled with 85
percent nitrification. If the current DRBC standard is adopted a choice
exists between average secondary treatment (85—90 percent removal) and 85
percent nitrification versus high secondary treatment (91—92 percent removal)
and 50 percent nitrification. The final choice of treatment alternatives
will have to be based on the choice of a dissolved oxygen standard and the relative
costs of various treatment processes. This will be discussed in greater detail
In Section VI. The allocated CBOD loads for the six feasible improvement goals
are printed in the appendix.
V—5

-------
References
1. Delaware River Basin Commission, “Basin Regulations — Water Quality.”
Resolution No. 68—2, Adopted by the DRBC, Trenton, N. 3., March 7, 1968.
2. Delaware Estuary Comprehensive Study, “Documentation for Program PRINE.”
U. S. Environmental Protection Agency, New York, N.Y. (1971).
3. Delaware Estuary Comprehensive Study, “Documentation for Program RUNM.”
U.S. Environmental Protection Agency, New York, N.Y. (1971).
4. Delaware Estuary Comprehensive Study, “Documentation for Program MANG.”
U. S. Environmental Protection Agency, New York, N.Y. (1971).
5. Delaware River Basin Commission, “Draft Comprehensive Plan for the
Delaware Estuary.” DRBC, Trenton, N.J. (1972).
6. Delaware River Basin Commission, “Water Quality Standards for the
Delaware River Basin.” Resolution No. 67—7, Adopted by the DRBC,
Trenton, N.J., April 26, 1967.
7. U. S. Environmental Protection Agency, “Standards Recommendations for
the Delaware Estuary.” Letter to State of New Jersey from EPA, New York,
N.Y. (January 1973)
8. “Report of the Committee on Water Quality Criteria.” U. S. Department
of the Interior, FWPCA, Washington, D.C. (April 1968). Reprinted by
the U. S. Environmental Protection Agency, Washington, D. C. (1972).
V— 6

-------
Table I: 1973 BOD Source Data for Allocation Programs
Waste Source Section CBOD Raw CBOD Disc. NOD Disc. DRBC CBOD
(lb/day) (lb/day) (lb/day) Alloc. (lb/day)
Morrisville, Pa. 1 4700(L) l960(*) 3446 780(D)
Trenton, N.J. 34000(L) 16900 35550 5000(D )
Total Point Sources 38700 18860 38996 5780
Tributary 618l2(**) 6l8l2(**)
Stormwater Overflow (SWO) 1904 1360
Total for Section 1 102712 68952
Hamilton, N.J. 2 17900(L) 1345 4830 2000(D)
Bordentown, N.J. 767(M) 585 695 89(r))
U.S. Steel (md), Pa. 21987(N) 3298 16933 2500(D)
U.S. Steel (San), Pa. 750(M) 87 209 87(D)
Griffin Pipe, N.J. 819(M) 95 0 95(D)
Stepan Chemical, N.J. 129(M1 15 5 15(D )
Total Point Sources 42352 5425 22672 4786
Tributary 4096 4096
SWO 0 0
Total for Section 2 26768 8882
Florence, N.J. 3 2993(N) 440 600 270(D)
Paterson Parchment Paper
Co., Pa. 3147 (N) 1070 0 440(D)
Lower Bucks County MUA, Pa. 15600(L) 4150 14442 2410(D)
Penndel, Pa. 11.50(L) 131 826 20(D )
Total Point Sources 22890 5791 15868 3140
Tributary 239 239
SWo 0 0
Total for Section 3 16107 3379
V- 7

-------
Table I (Cont.):
Waste Source Section CBOD Raw CBOD Disc. NOD Disc. DRBC CBOD
(lb/day) (lb/day) (lb/day) Alloc. (lb/day)
Bristol Boro, Pa. 4 5000(L) 1385 1967 640(D)
Bristol Twp., Pa. 3680(L) 544 1804 590(D)
Rohm & Hass, Pa. 93333(N) 2800 819 2750(D)
Hercules, N.J. 2400(N) 216 0 210(D)
Burlington Lagorce, N.J. 480(I) 60 0 55(D)
Burlington City, N.J. 1840(L) 520 3800 510(D)
Burlington Twp., N.J. 991(M) 133 450 115(D )
Total Point Sources 107724 5658 8840 4870
Tributary 1154 1154
Swo 0 0
Total for Section 4 9994 6024
Tenneco Chemical, N.J.
5
2660(I)
460(D)
1563
590(D)
Falls Twp., Pa.
2070(L)
1175
3005
220(D)
Beverly, N.J.
1780(I)
164
471
205(D)
Burlington Army Ammo,
N.J.
95(M)
11
1].
11(D)
Total Point Sources
6605
1810
5050
1026
Tributary
2009
2009
Swo
0
0
Total for Section 5
7059
3035
Wlllingboro, N.J.
Riverside, N.J.
Deiran, N.J.
Total Point Sources
6
10450(N)
5633(N)
1587(N)
17670
1045
845
238
2128
)
j3600
J
3600
490(D)
310(D)
190(D)
990
Tributary
6633
6633
SwO
0
0
Total for Section 6
10233
7623
No point sources 7 0 0 0 0
Total Point Sources 0 0 0 0
Tributary 647 647
SWO 0 230
Total for Section 7 647 877
V— 8

-------
Table I (Cont.):
Waste Source Section CBOD Raw CBOD Disc. NOD Disc. DRBC CBOD
(lb/day) (lb/day) (lb/day) Alloc. (lb/day)
Riverton, N.J. 8 850(I) 113 31595 98(D)
Palmyra, N.J. 3027(N ) 454 J____ 300(D )
Total Point Sources 3877 567 1595 398
Tributary 802 802
SWO 2212 1580
Total for Section 8 4609 2780
Cinnaminson, N.J.
Total Point Sources
Tributary
SWO
Total for Section 9
9
4100(L)
4100
630
630
1040
1040
so
11998
13088
540(D)
540
50
8570
9160
George Pacific, N. J.
Philadelphia NE, Pa.
Pennsanken, N.J.
Total Point Sources
Tributary
Swo
Total for Section 10
10
11600(I)
435000(L)
7450(L)
454050
3640
156000
2680
162320
0
105000
856
105856
55
6146
112057
1620(D)
69300(D)
1530(D)
72450
55
4390
76895
National Sugar, Pa.
Total Point Sources
Tributary
SWO
Total for Section 11
11
16778(N)
16778
7550
7550
0
0
1006
23492
24498
1800(D)
1800
1006
16780
19586
No point sources 12 0 0 0 0
Total Point Sources 0 0 0 0
Tributary o 0
SWO 6272 4480
Total for Section 12 6272 4480
v- 9

-------
Table I (Cont.):
Waste Source Section CBOD Raw CBOD Disc. NOD Disc. DRBC CBOD
(lb/day) (lb/day) (lb/day) Alloc. (lb/day)
American Sugar (AMSTAR), Pa 13 10860(D) 4220 0 1500(D)
Camden Main, N.J. 110937(D) 61015(P) 44257(P) 21000(D)
R. M. Hollingshead, N.J. 1836(0) 1836 0 248(K)
McAndrews & Forbes, N.J. 100(D) 920 0 100(D)
Publicker, Pa. 1300(I) 180 350 180(D )
Total Point Sources 125033 68171 44607 23028
Tributary 96 96
SWO 10374 7410
Total for Section 13 55077 30534
Philadelphia SE, Pa.
14
167500(L)
119000
95154
33267(D)
GAF Corp., N.J.
14350(D)
14350
836
100(D)
Harshaw Chemical, N.J.
1792(O,N)
1792
306
260(D)
N.J. Zinc, N.J.
Total Point Sources
3560(I)
3560
0
96296
500(D)
34127
187202
138702
Tributary
2646
2646
SWO
2912
2080
Total Section 14
101854
38853
ARCO Oil, Pa.
Gulf Oil (md), Pa.
Gulf Oil (San), Pa.
15
61025(I)
64462(N)
150(M)
9963
41900
18
22338
)
Ji000
2590(D)
2910
18(D)
Texaco, N.J.
7077(N)
4600
592
692(D)
Old Fort Mifflin, Pa.
42(M)
5
5
5(D)
Army Eng. Dredging Depot,
Pa.
8(M)
1
1
1(D)
Shell Chemical, N.J.
4810(I)
860
288
520(D)
Total Point Sources
137574
57347
24224
6736
Tributary
22943
22943
SWO
26404
18860
Total for Section 15
73571
48539
Philadelphia SW, Pa. 16 222951(N) 136000 113298 37000(D)
Mobil Oil, N.J. 39500(I) 24000 6313 4250(D)
Houdry Chemical, N.J. 542(M) 65 65 65(D)
Paulsboro (Essex) Chemical, NJ 316(0) 316 36 38(K)
Olin Corp., Pa. 627(0) 627 361 75(K )
Total Point Sources 263936 161008 120073 41428
Tributary 3351 3351
SWO 0 0
Total for Section 16 123424 44779
V— 10

-------
Table I (Cant.):
Waste Source Section CBOD Raw CBOD Disc. NOD Disc. DRBC CBOD
(lb/day) (lb/day) (lb/day) Alloc. (lb/day)
Hercules, N.J. 17 23100(I) 2190 4000 2480(D)
Gibbstown, N.J. 1670(N) 167 329 140(D)
DuPont Repauno, N.J. 117231(N) 76200 40372 1700(D)
Tinicum, Pa. 750(L) 119 752 310(D)
Union Carbide, Pa. 705(0) 705 0 85(K )
Total Point Sources 143456 79381 45453 4715
Tributary 3043 3043
SWO 2730 1950
Total for Section 17 51226 9708
Scott Chester, Pa.
B.P. Oil, Pa.
Chester, Pa.
Total Point Sources
18
35972(N)
33538(N)
202955(R)
272465
12950
21800
103406(R)
138156
2704
0
51581(R)
54285
3750(D)
2650(D)
18000(D)
24400
Tributary
3040
3040
SWO
0
0
Total for Section 18
57325
27440
Monsanto, N.J.
Gloucester County, N.J.
Allied Chemical, Del.
Phoenix Steel, Del.
Rollins—Purle, N.J.
Total Point Sources
19
40800(I)
9500(Q)
3660(N)
512(N)
1667(M)
56139
28600
2830(D)
3660
512
200
35802
9572
4096(Q)
0
0
50
13718
4390(D)
2830(D)
845(D)
11(D)
200(D)
8276
Tributary
1331
1331
SWo
0
0
Total for Section 19
15049
9607
Dupont Edgemoor, Del. 20 38900(0) 38900** 0 500(D)
B. F. Goodrich, N.J. 4758(M) 112 39 590(D )
Total Point Sources 43658 39012 39 1090
Tributary 437 437
SWO 0
Total for Section 20 476 1527
Oxygen Demand
v-il

-------
Table I (Cont.):
Waste Source Section CBOD Raw CBOD Disc. NOD Disc. DRBC CBOD
(lb/day) (lb/day) (lb/day) Alloc. (lb/day)
Wilmington, Del. 21 104500(L) 67500 38300 13400(D)
Pennsgrove, N.J. 1900(I) 898 654 240(D )
Total Point Sources 106400 68398 38954 13640
Tributary 12476 12476
SWO 11678 8320
Total for Section 21 63108 34436
DuPont Chambers, N.J. 22
ICI America (Atlas), Del.
Total Point Sources
170292(S)
17000(D)
187292
110690(S)
12000
122690
90951(S)
0
90951
14000(D)
4640(D)
18640
Tributary
65
65
SWO
0
0
Total for Section 22
91016
18705
Pennsville, N.J.
Upper Penns Neck, N.J.
Total Point Sources
23
2223(N)
1917(N)
4140
1340
1150
2490
622
699
1321
350(D)
230(D)
580
Tributary
68
68
SWO
0
0
Total for Section 23
1389
648
So. Christiana Temp.,
Total Point Sources
Del.
24
1048(M)
1048
130
130
130
130
130(D)
130
Tributary
102
102
SWO
0
0
Total for Section 24
232
232
Amoco Chemical, Del. 25 2419(M) 1425 0 300(D )
Total Point Sources 2419 1425 0 300
Tributary 210 210
SWO 0 0
Total for Section 25 210 510
V .- 12

-------
Table I (Cont.):
Waste Source Section CBOD Raw CBOD Disc. NOD Disc. DRBC CBOD
(lb/day) (lb/day) (lb/day) Alloc. (lb/day)
Getty Oil, Del. 26 30000(D) 10100 8432 3750(D)
Standard Chlorine, Del. 500(D).. 500 0 100(D )
Total Point Sources 30500 10600 8432 3850
Tributary 345 345
SWO 0 0
Total for Section 26 8777 4195
Delaware City, Del.
27
456(L)
255
750
36(D)
Diamond Shamrock, Del.
282(M)
15
0
35(D)
Stauffer Chemical, Del.
Total Point Sources
635(D)
1373
100
370
0
750
100(D)
171
Tributary
102
102
SWo
0
0
Total for Section 27
852
273
Salem City, N.J.
28
3150(L)
1650
1148
395(D)
Total Point Sources
3150
1650
1148
395
Tributary
2852
2852
Swo
0
0
Total for Section 28
4000
3247
Port Penn San. Dist.
Del.
29
97(M)
12
12
12(D)
Total Point Sources
97
12
12
12
Tributary
974
974
SWo
0
0
Total for Section 29
986
986
No point sources 30 0 0 0 0
Total Point Sources 0 0 0 0
Tributary 924 924
SWo 0 0
Total for Section 30 924 924
V-13

-------
References for Table I
* All unreferenced data in Table I is assumed the same as 1970 and
taken from Table I, Section II.
** The tributary loads for section one were computed as a proportion
of the 1970 loads at 4167 cfs, i.e., 61812=8585*3000/4167. This
assumes that the concentrations are the same for the verification
and the projected conditions.
(A) BOD 5 from DRRC files and CBOD computed from typical ratios:
BOD 5 /CBOD=0.86 for primary treatment, BOD 5 /CBOD=0.63 for secondary
treatment and BOD 5 /CBOD=0.71 f or intermediate treatment. (Fair,
Geyer & Okun, 1968)
(B) CBOD from DRBC files.
(C) BOD 5 from New Jersey Priority Basin Accomplishment Plans and CBOD
computed from typical ratios (A).
(D) Supplied by DRBC
CE) BOD 5 from Refuse Act Permit and CBOD computed from BOD 5 /CBOD=0.67
(Fair, Geyer & Okun, 1968)
(F) BOD 5 from STORET and CBOD computed as in (A) above.
(I) Used 1968 or 1964 DECS data.
(K) Allocation computed from the 1968 zone percent removal, i.e.,
(1—ZPR )(C ) for source I in zone j.
(L) CBOD from Water Programs files.
(M) Raw CBOD load computed from D 1 /(1—ZPRJ) where ZPR is the zone
percent removal for the jth zone and D is the raw CBOD load
for the ith source.
(N) Raw load computed from 1968 percent removal.
(0) Assumed zero percent removal.
V—l4

-------
(P) The anticipated CBOD raw and discharge loads for Camden Main were
derived by adding the raw loads of all sources scheduled to join
the regional system and applying the present percent removal. The
NOD load is merely the sum of all influent loads.
CBOD Raw NOD Discharge
( lb/day) ( lb/day )
Camden Main 92000(L) 38262
Camden North 6100(L) . 855
Mt. Ephraim 1920( I)
Bel].maur 7267 (N) ) 5140
Brookiawn 940(N)
Gloucester 2710 (L)
Camden Main 1973 Raw 110937
1970 Percent Discharge . 55
1973 Discharge 61015
(Q) All loads for Gloucester County are computed as above except the
CBOD discharge which was assumed to be the same as in (P) above except the
of 2830 lb/day.
CBOD Raw NOD Discharge
( lb/day) ( lb/day )
Woodbury 6000(D) 2470
National Park 1000(D) 390
Pau lsboro 2500(D) 1236
Gloucester County 1973 Raw 9500 4096
v —is

-------
(R) All loads for Chester are computed as in (P) above.
CBOD Raw NOD Discharge
( lb/day) ( lb/day )
Chester 22100 CL) 9719
Darby Creek 26400 CL) 10919
Muckinapates 9840 CL) 14791
CDSA 16000(L) 10573
Eddystone 309(L) 293
Scott Eddystone 1011 (N) 55
FMC 4840 (I) 175
Bryton Chemical 4600 (I) 0
Congolium—Nairn 350(I) 0
Pa. Industrial Chemical 195(I) 0
Marcus Hook 2410(L) 2231
Sun Oil 114900 (I) 2825
Chester 1973 Raw 202955 51581
1970 Percent Discharge . 55
1973 Discharge 103406
(S) All loads for Dupont Chambers are computed as in (P) above.
CBOD Raw NOD Discharge
( lb/day) ( lb/day )
Dupont Chambers 157692 (N) 56000
Dupont Carney 12600(O,N) 34951
Dupont Chambers 1973 Raw 170292 90951
1970 Percent Discharge . 65
1973 Discharge 110690
V—16

-------
Table II: Forcing Functions to Compute Base Prof iles*
Section DRBC CBOD NOD Disc 80% NOD 50% NOD 15% NOD
Alloc. (lb/day) (lb/day) Disc. (lb/day) Disc. (lb/day) Disc. (lb/day)
1 68952 102712 94912 83214 69565
2 8882 26768 22233 15432 7496
3 3379 16107 12933 8173 2619
4 6024 9994 8226 5574 2480
5 3035 7059 6049 4534 2766
6 7623 10233 9513 8433 7173
7 877 647 647 647 647
8 2780 4609 4290 3811 3253
9 9160 13088 12880 12568 12204
10 76895 112057 90885 59129 22079
11 19586 24498 24498 24498 24498
12 4480 6272 6272 6272 6272
13 30534 55077 46155 32773 17161
14 38853 101854 82594 53706 20002
15 48539 73571 68726 61459 52980
16 44779 123424 99409 63387 21361
17 9708 51226 42135 28499 12590
18 27440 57325 46468 30182 11182
19 9607 15049 12305 8190 3388
20 1527 476 468 456 442
21 34436 63108 55317 43631 29997
22 18705 91016 72825 45540 13707
23 648 1389 1124 728 266
24 232 232 206 167 121
25 510 210 210 210 210
26 4195 35420 7091 4561 1610
27 273 852 702 477 214
28 3247 4000 3770 3426 3024
29 986 986 983 980 975
30 924 924 924 924 924
*A11 numbers contain tributary and Stormwater overflow loads; all NOD
percentages are based on only effluent data from sewage treatment plants.
V—17

-------
TABLE III:
Water Quality Standards, Base Profiles and Improvement Goals
1 I
I-I W,-I
- 1J .
00 10
i .i8
U r- 1 . 1
10’ . ‘ø r4
i. p 4 1.1 .-I#.
0 10 I 10 10 ’-I
•rI ‘ D’ ‘
U 0 W 000
C) 10 i.icO 9
W 1J 101.1 1i
Cfl Cfl r4CI U
IJ’d
1J U>. 101.1
Ii 1J 9iJ 10
10 Wr 1 $.ir4
( 0 ,-I W i-I 00
U 0 )10 1-lW 10
ro 1i
fr Q.0 HO’ [ i Cl
0.-’
u-l
00
09
U
r I N
•r IO
0
U
.0
0 ,-I
0—’
U
-IN
• 1 -40
4 - un
0
U
.0
O I
.1-4
__% , - ,-,
0.-. ,-I i-I u-I i-I i-I u-I u-I ,-I u-I
u-I — — - - — - — -
0-. 00 00 00 00 00
00 9 09 8 09 8 O 8
Z ‘ ‘ Z ‘ - ‘ ‘- Z ‘-‘ ‘-‘
u-I u-I Nu-I u-I u-I Ne-I u-I
10 010 10 10 010 10 10 1fu10 10
0 00 000 0 00 IflO 0 00 r-IO 0
D ZO
u-IN N1J 1.11.1 U N1J 1.IU 1J NU UIJ 1J
rItfl O 10 O O W O ‘fl 10
4.1 ,-I 000) .u -IW ZW lA O) . iIW ZW u-lW u W ZW
0 9 9 9 . 9 9 9 9 9
11- 1 . 1W WU NO) UQJ WW NW 1.1W WW NW
• > 8> 0> > 9> 0> > 9> fl >
U WO 1 -10 000 WO 110 tAO WO 110 ,-I0
•0 (01.1 0)11 Ii (011 W1.i 11 ( 0li W Ii 1 1
Or-I UP. “P. . P. UP. i.JP. ‘ P. UP. IJP. P.
119 E 9 liE E PiE liE E PiE
p. H HH 1 u-4 PiH HH H PiH u-IH 4H
A B C D E F 1 2 3 4 5 6 7 8 9
0.1
0.7
1.1
1.2
1.0
0.5
1
5.5
5.5
6.5
8.0
8.0
8.0
2
5.5
5.5
6.5
6.7
6.8
6.8
3
5.5
5.5
6.5
6.0
6.1
6.2
4
5.5
5.5
6.5
5.7
5.9
6.0
5
5.5
5.5
6.5
5.5
5.6
5.8
6
5.5
5.5
6.5
5.6
5.8
6.0
7
5.5
5.5
6.5
5.8
6.0
6.2
8
4.0
4.5
6.5
5.6
5.8
6.1
9
4.0
4.5
6.5
4.8
5.1
5.4
10
4.0
4.5
6.5
3.9
4.3
4.7
11
4.0
4.5
6.5
3.3
3.7
4.2
12
4.0
4.5
6.5
2.9
3.4
4.0
13
4.0
4.5
6.5
2.8
3.3
3.9
14
4.0
4.5
6.5
3.0
3.5
4.2
15
4.0
4.5
6.5
3.5
4.0
4.6
16
4.0
4.5
6.5
4.3
4.8
5.4
17
4.0
4.5
6.5
4.6
5.1
5.7
18
4.0
4.5
6.5
4.7
5.3
6.0
19
4.0
4.5
6.5
5.0
5.5
6.2
20
4.0
4.5
6.5
5.1
5.7
6.3
21
4.0
4.5
6.5
5.4
5.9
6.4
22
5.0
5.0
6.5
5.6
6.0
6.6
23
5.0
5.0
6.5
5.8
6.2
6.7
24
5.0
5.0
6.5
6.0
6.3
6.8
25
5.0
5.0
6.5
6.2
6.6
6.9
26
5.0
5.0
6.5
6.5
6.8
7.1
27
5.0
5.0
6.5
6.6
6.9
7.1
28
6.5
6.5
6.5
6.9
7.1
7.3
29
6.5
6.5
6.5
7.2
7.3
7.5
30
6.5
6.5
6.5
7.6
7.6
7.7
0.6
1.2
1.6
1.7
1.5
1.0
0.2
0.5
0.4
0.3
0.8
0.6
0.5
1.0
0.9
0.7
0.9
0.7
0.5
0.7
0.5
0.3
0.9
0.7
0.4
1.7
1.4
1.1
2.6
0.2
2.2
1.8
3.2
0.3
0.8
2.8
0.3
2.3
3.6
0.6
1.1
3.1
0.5
2.5
3.7
0.7
1.2
3.2
0.1
0.6
2.6
3.5
0.5
1.0
3.0
0.3
2.3
3.0
0.5
2.5
1.9
2.2
1.7
1.1
1.9
1.4
0.8
1.8
1.2
0.5
1.5
1.0
0.3
1.4
0.8
0.2
1.1
0.6
0.1
0.9
0.5
0.7
0.3
0.5
0.2
0.3
V-lB

-------
TABLE IV: RUN)! RESULTS
Improvement Goals
Percent Removal to
Achieve Goal
1 2
95 99
3
100*
4 5 - -
95 100* 84 89
9
100*
Total CBOD Zone
Zone CBOD Allowable
Discharges (lb/day )
*Standard not reached with 100 percent CBOD removal.
Discharges (lb/day)
2
3
4
5
Estuary Total
Zone CBOD Reserve
(lb/day)
2
3
4
5
Estuary Total
9811
38936
38452
17837
105036
981
3894
3845
1784
10504
8830
35042
34607
16053
94532
0 20183
0 122204
0 81671
•Q 37665
0 261723
0 2018
0 12220
0 8167
2. 3767
0 26172
2361
7868
8678
3860
22767
236
787
868
386
2277
2125
7081
7810
3474
20490
17240
39201
69988
33881
160310
1724
3920
6999
3388
16031
0 16050
0 77767
0 66660
2. 32125
0 192602
0 1605
0 7777
0 6666
2. 3213
0 19261
0 14445
0 69990
0 59994
2. 28912
0 173341
9811
38936
38452
17837
105036
981
3894
3845
1784
10504
8830
35042
34607
16053
94532
2
3
4
5
Estuary Total
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 18165 15516
0 109984 35281
0 73504 62989
2. 33898 30493
0 235551 144279
V- 19

-------
TABLE V: MANG R.ESULTS
IIIPROVEMENT GOALS
1 2 3 4 5 6 7 8 9
Percent Removal to
Reach New Allocations
Zone 2
Zone 3
Zone 4
Zone 5
Percent Removal
Achieved
Zone 2
Zone 3
Zone 4
Zone 5
95 * 7
95.5
95.6
95.5
96. 3
95.6
96.0
95. 8
H
0
H
0
H
114
0
z
99.1
99.1
99.1
99.1
99.1
99.1
99.1
99.1
91.3
91.0
91.5
91.8
93.9
91.2
93.1
92 . 5
95.7
95.5
95.6
95.5
96.3
95.6
96.0
95.8
87.9
85.7
87.5
89.0
92.3
86.1
91.5
91.2
0
H
U)
114
90.4
95.5
91.0
90.9
93.4
95.5
92.7
92.1
V- 20

-------
FIGURE V-i PROFILE COMPARISON FOR IMPROVEMENT GOAL 1
$
7.
6
S
COMPUTED MANG PROFILE
BASE DISSOLVED OXYGEN PROFILE
3
DISSOLVED OXYGEN IMPROVEMENT GOAL NUMBER I
PRESENT WATER OUALITY STANDARD
0
2
3
4
S
6
7 S 9 10 II 12 13 14 IS 16 17
DELAWARE ESTUARY SECTIONS
IS 19
30

-------
FIGURE V-2 PROFILE COMPARISON FOR IMPROVEMENT GOAL 2
S
7
6
S
a
COMPUTED MANG PROFILE
BASE DISSOLVED OXYGEN PROFILE
INTERMEDIATE WAlER OUALITY STANDARD
I I
DISSOLVED OXYGEN IMPROVEMENT GOAL NUMBER 2
0
2
3
4
S
6
16 17 15 19 20 2,22232425262728 29 30
DELAWARE ESTUARY SECTIONS

-------
S
FIGURE V.3: PROFILE COMPARISON FOR IMPROVEMENT GOAL 4
COMPUTED MANG PROFILE
4.
BASE DISSOLVED OXYGEN PROFILE
3.
2
PRESENT WATER OUALITY STANDARD
5 DISSOLVED OXYGEN IMPROVEMENT GOAL NUMBER 4
0
2
3
4 S 6 7 B 9 10 I 12 13 14 IS 16 17
DELAWARE ESTUARY SECTIONS
18
19
29
30

-------
FIGURE V.4: PROFILE COMPARISON FOR IMPROVEMENT GOAL 5
S
7
a.
S.
COMPUTED MANG PROFILE
BASE DISSOLVED OXYGEN PROFILE
3
2
INTERMEDIATE WATER OUALITY STANDARD
DISSOLVED OXYGEN IMPROVEMENT GOAL NUMBER 5
0
I 2 3 4 5 6 7 3 9 tO II 12 13 14 15 lb 17 18 19 20 21 23 23 24 25 26 27 28 29 30
DELAWARE ESTUARY SECTIONS

-------
FIGURE V.5: PROFILE COMPARISON FOR IMPROVEMENT GOAL 7
COMPUTED MANG PROFILE
3.
BASE DISSOLVED OXYGEN PROFILE
S
4
2
0
PRESENT WATER QUALITY STANDARD
DISSOLVED OXYGEN IMPROVEMENT GOAL NUMBER 7
2
3
4
S
16 17
‘B
‘9
20 21 22 23 24 25 26 27 28
DELAWARE ESTUARY SECTIONS

-------
8
7
FIGURE V-6• PROFILE COMPARISON FOR IMPROVEMENT GOAL 8
COMPUTED MANG PROFILE
4
BASE DISSOLVED OXYGEN PROFILE I
3
2
INTERMEDIATE WATER OUALITY STANDARD
DISSOLVED OXYGEN IMPROVEMENT GOAL NUMBER 8
0
2
3
4
S
6
16
DELAWARE ESTUARY SECTIONS
17 lB 19 20 21 22 23 24 25 26 27 28 29 30

-------
DELAWARE ESTUARY
COMPREHENSIVE STUDY
FIGURE V-7
ZONES FOR
MATHEMATICAL MODEL
U.S. ENVIRONMENTAL PROTECTION AGENCY
•EGION N NEW YORK. NEW YORK
N
NEW JERSEY
Pc,ffl-MIs 4e.3

-------
Section VI
Interpretation of Results
Attainment of Water Quality Standards
In previous sections an analytical procedure has been
carried out which permits evaluation of the feasibility of
reaching enhanced DO standards (B and C) in the estuary.
Section II presents a comparison between the waste loads
used in the 1964 DECS analysis with recent waste load data
gathered from a number of sources. In terms of direct
sampling, the DRBC program is the major source of data since
the DECS sampling program ended in 1965. Analysis of Sec-
tion II Table I shows the following changes in waste loads
discharged to the estuary:
Discharge Waste Load Changes, 1964—1970, lb./day
1. Municipal Effluents
a. Carbonaceous Oxygen Demand —6.7%
b. Nitrogenous Oxygen Demand —2.6%
2. Industrial Effluents
a. Carbonaceous Oxygen Demand —1.0%
b. Nitrogenous Oxygen Demand +284.1%
3. Tributary and Stormwater Overflow
a. Carbonaceous Oxygen Demand +8.4%
b. Nitrogenous Oxygen Demand +7.4%
Total Load to Estuary
Carbonaceous Oxygen Demand —2.3%
Nitrogenous Oxygen Demand +18.9%
As can be seen, several categories of load exhibit a mild de-
crease due to current pollution control efforts. The very
large increase in nitrogenous oxygen demand is not due to
major activity by the waste sources, but rather is largely
This section was prepared by Ethan T. Smith, Data Systems Branch
U. S. Environmental. Protection Agency, New York, N. Y.
VI- ].

-------
attributable to differences in estimation procedure. In an
attempt to improve the analysis of nitrogenous load effects,
every effort was made to acquire nitrogenous data not ne-
cessarily available heretofore. In cases where little or
no data was available, the best possible estimates were made
based on sanitary engineering procedure. It is felt that this
approach is significantly preferable to assuming that nitro-
genous loads do not exist merely because sampling data is non-
existent. At the very least, the necessity of making such
estimates points to a requirement for greatly expanding the
DRBC sampling program. Complete nitrogen series analysis
is mandatory for municipal and industrial effluents, tributar-
ies to the estuary, and combined stormwater overflows. In
any event, the existence of a 19% increase in the nitro-
genous oxygen demanding waste load cannot fail to significantly
affect the resulting model computations.
In conjunction with the increase of the nitrogenous oxy-
gen demanding loads, the method of handling these loads in
the verification and allocation procedures takes on greater
significance. Section III of this analysis explains in de-
tail how this is done. In an extension of the approach used
by DECS, an attempt was made here to quantify the counter-
acting effects occurring when relatively high treatment of the
carbonaceous loads is attained. The problem can be considered
in two steps, that is: verification (the process of simulating
the present condition of the river), followed by allocation
(the process of upgrading waste treatment facilities to attain
water quality standards).
During the verification part of the analysis, it is ne-
cessary to reproduce the biokinetic reactions occurring in
the estuary under conditions of low water quality. The
most realistic way to accomplish this Is to regard the pre-
sent depression of water quality to be due to a combination of
carbonaceous and nitrogenous oxygen demand. The nitrogenous
biochemical reaction is, however, inhibited by low levels of
dissolved oxygen. In those locations where the DO falls be-
low 2.0 mg/I, the nitrogenous reaction mechanism Is suppressed;
in the computer model this is represented by setting the ni-
trogenous reaction rate to zero in such locations.
vI—2

-------
Under conditions of enhanced water quality, the assi. p—
tion of suppressed nitrogenous oxygen demand is no longer
tenable. Additions to the present waste treatment facilities
which will remove more carbonaceous oxygen demand from effluents
will result in higher levels of DO in the river. At these
higher levels (i.e. above 2.0 mg/l) the nitrogenous biochemical
reaction will become active. This in turn means that the nitro-
genous load will now begin to act as a force to drive the DO
down. Furthermore, this will occur specifically in the cri-
tical area of the estuary, where it did not heretofore. In
areas upstream and downstream of the critical portion the ni-
trogenous reaction is always active. The net result is that
higher levels of DO become very hard to achieve if only the
carbonaceous waste loads are subject to removal by treatment
facilities. In the computer model this situation is simulated
by changing the nitrogenous reaction rate from zero to
.05 1/day. The latter figure is a much more realistic re-
presentation of the behavior of nitrogenous compounds at high-
er levels of water quality.
In order to determine the feasibility of enhancing the
water quality standards it is necessary to examine the degree
of waste treatment which would be required to reach a given
standard. The degree of treatment (represented by percent
removal of raw waste) cannot only apply to the carbonaceous
portion of the effluent. There are two reasons for this.
First, commonly used biological treatment processes will
remove some percentage of both carbonaceous and nitrogenous
oxygen demand in the norm 1 course of their operation. Second,
the extremely significant increase in the nitrogenous oxygen
demand load (i.e. 19Z) makes it at least prudent to consider
waste treatment technology for the removal of these nitro-
genous loads. For these reasons an evaluation of nitrogenous
waste treatment technology was made, the results of which
are contained in Section IV. It should be emphasized that
the biological reactions that occur among the waste products
are highly interdependent. The treatment processes considered
must be reasonably compatible with current technology insofar
as it is known for the waste sources along the river. Such
processes must also be relatively well within the state of
the art, in order to avoid extreme results which in engineering
practice would not be attempted, let alone achieved. It
was determined that these conditions could best be met by
combining secondary treatment with a biological nitrification
process. This appears to meet reasonable feasibility criteria,
in that it is probably somewhere between ttbest practicable”
and “best available” treatment technology for most waste sources.
Biological nitrification, while representing the most
reasonable choice of treatment process under the circumstances,
does have certain characteristics which should not be over-
looked. It is a rather sensitive process which has been ob—
VI- 3

-------
served to be either virtually complete, or to not occur at all.
One factor contributing to this is the dependence of the pro-
cess on only two species of bacteria, in contrast to other
processes which may involve hundreds of species. This makes
the process naturally susceptible to toxic substances which
may enter the treatment plant and destroy the bacterial
population necessary to proper functioning. The process is
also highly dependent on temperature, which can act to cause
marked seasonal fluctuations in the efficiency with which
waste products are removed. Auxiliary heating would be ex-
pected to increase the normal cost of operation; it is how-
ever possible that lower treatment efficiencies would be
permissible during cold seasons, since such tines are not
the critical ones for estuary DO quality. Biological nitri—
fication requires proper design of equipment as well as com-
petent operation. If design and operation are not carefully
considered, organic nitrogen may be lost from the facility
into the river, and act to depress the DO. Perhaps the
most important cautionary note concerns provision for con-
ditions that may be expected to result from nitrification;
any treatment process which converts the organic nitrogen
and ammonia waste components to oxidized nitrogenous com-
pounds will produce an effluent containing nutrients.
These nutrients can then be utilized by naturally occurring
phytoplankton, which could contribute to eutrophication in
the estuary waters. The possible occurrence of eutrophication
is both outside the scope of this study and beyond the capa-
bilities of the computer models used here. The phenomenon
should, however, be the subject of a future injestigation
utilizing biological computer model simulation to ascertain
the effects of nutrient addition on increased algal growth
in the Delaware Estuary.
Three alternatives were examined with respect to re-
moving nitrogenous oxygen demanding load from the effluents
of the waste sources. Each alternative makes some assumption
regarding the amount of nitrogenous load which a waste source
will be allowed to discharge. This means that the choice
of an alternative implies the choice of a nitrogenous waste
load allocation which would be calculated for each waste source
according to the percent removal of nitrogenous oxygen demand
which is stipulated. The three alternatives are:
1. Conventional secondary treatment, which will remove
about 20% of nitrogenous oxygen demanding waste load. Each
source is allowed to discharge 80% of its present nitrogenous
discharge;
VI-4

-------
2. Partially successful biological nitrification treat-
ment process; this assumes the existence of some difficulties
(already discussed) in achieving treatment efficiencies of
which the process is capable. This assumes 50% removal of
nitrogenous oxygen demanding load, which means that each
source is allowed to discharge 50% of its present nitrogenous
discharge.
3. Completely successful biological nitrification pro-
cess, which will remove about 85% of the nitrogenous oxygen
demanding waste load. Each source is allowed to discharge
15% of its present nitrogenous discharge.
These three alternatives result in progressively higher
water quality, since increasing amounts of nitrogenous
oxygen demand are removed from the system. The next step in
the analysis uses these three alternatives as input to com-
puter models that determine the attainment of the three
water quality standards (Standard A, which is the current
DRBC standard, plus the two alternative enhanced standards
B and C). The resulting nine combinations are evaluated in
detail in Section V. That section is oriented entirely to-
ward the derivation of removal requirements to achieve water
quality standards; in all cases these requirements are ex-
pressed in terms of carbonaceous oxygen demanding waste load.
The results are therefore directly comparable with the waste
load allocations now under implementation by DRBC, since
both are expressed in terms of carbonaceous demand. For
each of the nine combinations, percent removal of 1973
carbonaceous oxygen demand before treatment has been cal-
culated. There are moreover a number of additional re-
quirements which must be satisfied in order to make the re—
suits conform to DRBC practice. First, no effluent modi-
fication is considered that would result in a waste discharge
greater than the current DREC allocation for that effluent.
The present DREC allocations were derived from the DECS
model work of 1961—1969, which used the same computer models
that are employed here. This study is imposing further re-
quirements in the form of enhanced water quality standards
and the necessity of restricting nitrogenous waste discharges.
Both these requirements tend to place still further restrictions
on municipal and industrial waste sources. Under these cir—
VI- 5

-------
c nnstances it is quite possible that the carbonaceous waste
load allowed for a particular waste source could decrease, but
it is highly unlikely that it could increase above the limit
imposed by DRBC. Second, the concept of a reserve load
which is set aside for possible future waste sources has been
adopted from DRBC. This reserve has been set at 10% of the
total load allowed in a DRBC zone of the estuary. This
figure has also been used by DRBC in their work. The existence
of the reserve makes it possible to admit new sources to lo—
cations along the estuary without forcing such sources to provide
treatment exceeding that required of sources already there.
Third, a regulated suer average inf low of 3000 cubic feet
per second is assumed at the head of the estuary (the falls
at Trenton, N. J.). The flow is regulated by means of U. S.
Army Corps of Engineers dams in the upper Delaware River
Basin. Most of the regulated flow is achieved by structures
now in existence. Fourth, there are several cases in which
recent information from DRBC has indicated the consolidation
of a number of smaller treatment facilities with a larger
central facility. In such cases the smaller facilities are
assumed to be converted into pump stations, and the effluent
is transferred as input to the central facility.
The results of running the computer models are given in
Appendix B. They are summarized here as follows:
Standard A (DRBC)
Percent Removal of 1973 Raw Carbonaceous Oxygen Demand Required
Percent Removal DRBC Estuary Zone
of 1973 Discharged 2 3 4 5
Nitrogenous Oxygen
Demand
20% 95.7% 95.5% 95.6% 95.5%
50% 91.3% 91.0% 91.5% 91.8%
85% 87.9% 85.7% 87.5% 89.0%
VI-6

-------
Standard B (Intermediate)
Percent Removal of 1973 Raw Carbonaceous Oxygen Demand Required
Percent Removal DRBC Estuary Zone
of 1973 Discharged 2 3 4 5
Nitrogenous Oxygen
Demand
20% 99.1% 99.1% 99.1% 99.1%
50% 95.7% 95.5% 95.6% 95.5%
85% 90.4% 95.5% 91.0% 90.9%
Standard C (Interior Committee)
Percent Removal of 1973 Raw Carbonaceous Oxygen Demand Required
Percent Removal DRBC Estuary Zone
of 1973 Discharged 2 3 4 5
Nitrogenous Oxygen
Demand
20% No Feasible Solution
50% for any
85% Combination
The unfeasible solutions for Standard C mean that it is
impossible to attain these standards even with 100% removal
of carbonaceous oxygen demanding waste. It is however pos-
sible to examine the other six combinations for their impli-
cations. Standard A with 20% nitrogenous removal is the
combination most closely resembling the existing DRBC program.
In terms of 1973 load data a carbonaceous removal on the
order of 95% is required, as compared to an average of about
88% of the 1964 load used by DRBC. As time goes on this
percentage can be expected to increase further in the presence
of normal growth. This seems to indicate a clear need to
begin design now for facilities to remove more of the nitro-
genous oxygen demand. Based on the figures shown here, a
reasonable goal to attain Standard A might be to aim for a
minimum of 92% carbonaceous oxygen demand removal plus a
minimum of 50% nitrogenous oxygen demand removal, using
1973 load data.
VI—7

-------
The enhanced Standard B shows feasible characteristics
when nitrogenous removal is considered. This standard pro-
vides for a summer DO average of 4.5 mg/l, a minimum daily
average of 4.0 mg/i, and an absolute minimum value of 2.0 mg/i.
Portions of the estuary which are already above this stand-
ard are maintained at their existing levels of quality.
To attain this standard, a carbonaceous oxygen demand removal
of about 96% appears necessary. Even with high removal of
nitrogenous demand, such a value would be required in zone
three. The goal for nitrogenous oxygen demand would be
50% removal in all four zones; again this refers to per-
centages of 1973 data. In all cases these percentages can
act as a guide for decision making, but should be supple-
mented by the exact source—by—source carbonaceous waste
load allocations presented in the Appendix.
There are of course many considerations that can in-
fluence water quality management decisions which can only
be mentioned here. In terms of cost—effectiveness, for ex-
ample, tradeoffs exist between treatment processes for car-
bonaceous versus nitrogenous waste. Especially at the pro-
gressively higher removals shown here, more detailed studies
of the options for treatment technology are highly desirable.
This becomes very important if the potential problem of
eutrophication is to be evaluated as well. As mentioned be-
fore, this implies further study of reactions within the
rivers itself, at the very least a multi—stage model of the
nitrogenous reaction mechanism, and preferably a simulation
of the aquatic biology. A part of this work should involve
the derivation of nitrogenous waste load allocations for
each source, to replace the simple percent removal concept
used herein. It is also becoming Increasingly important
to establish controls over sources of waste load other than
direct municipal and industrial effluents. Since very high
treatment levels are being applied to effluents, supple-
mentary programs directed toward stormwater, benthic, or
other loads would in fact be addressing a significant frac-
tion of the load which remains. Some examples of such
supplementary controls would include:
1. Temporary holding devices such as tanks for storm—
water overflow,
2. Dredging to remove in—place sludge deposits caus-
ing benthic loads,
VI- 8

-------
3. Artificial aeration to provide additional dis-
solved oxygen, possibly located in sheltered areas such as
tributaries. This would help to reduce the load input
from tributaries,
4. Reduction of pollutant load entering the estuary via
the tributaries. This means increasing the treatment levels
provided at facilities located upstream.
The results of this study form the most current link in
the chain of analyses done on the Delaware Estuary. The use
of information now available has made it possible to increase
knowledge of water quality management strategy for the river.
This has principally involved the action of nitrogenous oxygen
demanding loads, especially as such loads affect the pos-
sibility of attaining enhanced water quality standards. The
use of the computer models permits quantification of the
cause—effect relationships between effluents and water quality,
and allows waste load allocations to be derived. These
allocations are usable in current EPA programs, such as the
National Pollution Discharge Elimination System. There are
few if any problems which admit of a permanent solution, how-
ever, and in this case continuing programs of monitoring,
analysis, and enforcement should be pursued if the water
quality of the Delaware Estuary is to be enhanced and main-
tained at an enhanced level over time.
VI- 9

-------
References
1. DiToro, D., O ’Connor, D., and Thomann, R.; A Dynamic
Model of Phytoplankton Populations in Natural Waters;
Environmental Engineering and Science Program,
Manhattan College, Bronx, New York, Junq 1970.
V 1—10

-------
Appendices
Appendix A includes the input data and output for all computer
runs used in this report. They are in the order that they were run
and include the following:
1. 1964 verification using PRINE;
2. 1970 verification using PRINE;
3. 1973 base profiles using PRINE;
4 RUNM for all nine improvement goals;
5. MANG for the six feasible improvement goals.
Appendix B is a glossary of the symbols used throughout this
report.

-------
FINAL 1964 VERIF ICBOD) 30
SECTION FLOW REA.RATE DECAY RATE VOlUME DEFF.RATE AREA L—LOADS F—LOADS 0.0.—SAT.
C.F.S. 1.0/DAYS 1.0/DAYS CFSl. E6 MI 2/DAY I000SFTS*2 18./DAY LB./DAY MG/I
1 3303. 0.65 0.48 242. 0.40 6.50 76264. —11720. 8.100
2 3429. 0.36 0.48 364. 0.40 15.80 8846. 8622. 8.100
3 3537. 0.23 0.48 460. 0.40 21.40 5699. 4140. 8.100
4 3547. 0.23 0.48 532. 0.40 24.60 7544. 2700. 8.100
5 3580. 0.16 0.48 636. 0.40 28.50 4479. 4800. 8.100
6 3670. 0.22 0.44 756. 0.40 34.10 7928. 5040. 8.200
7 3541. 0.22 0.44 455. 0.90 41.40 877. 890. 8.200
8 3565. 0.22 0.44 504. 1.60 49.60 2827. 2125. 8.200
9 3597. 0.16 0.44 533. 2.20 51.20 9515. 2250. 8.2CC
10 3617. 0.16 0.44 582. 2.70 55.40 146485. 2250. 8.200
11 3847. 0.16 0.44 630. 3.30 60.90 28296. 5760. 8.2CC
12 3893. 0.12 0.44 655. 3.80 65.00 4480. 1350. 8.200
13 3898. 0.12 0.44 694. 4.40 66.00 88941. 3240. 8.200
14 3908. 0.19 0.44 805. 4.50 72.70 162590. 3960. 8.200
15 3973. 0.19 0.44 1860. 4.60 88.30 89354. 14700. 8.200
16 4682. 0.26 0.44 2030. 4.80 98.00 200953. 6750. 8.200
17 5051. 0.19 0.44 2184. 5.00 106.90 100143. 11475. 8.200
18 5164. 0.17 0.44 2396. 5.30 113.40 53355. 7200. 8.200
19 5239. 0.17 0.44 2692. 5.50 126.30 67211. 16200. 8.200
20 5271. 0.13 0.44 2932. 5.80 142.80 437. 35050. 8.200
21 5282. 0.18 0.40 1512. 6.00 150.40 116386. 6930. 8.400
22 5601. 0.18 0.40 1574. 6.20 151.90 109865. 6000. 8.300
23 5603. 0.18 0.40 1698. 6.30 162.90 2658. 13050. 8.300
24 5605. 0.17 0.40 1792. 6.40 176.80 102. 11000. 8.300
25 5608. 0.17 0.40 1850. 6.50 181.70 210. 9300. 8.300
26 5614. 0.18 0.40 1924. 6.60 188.40 10745. 12000. 8.300
27 5624. 0.18 0.40 2054. 6.80 196.40 272. 15000. 8.300
28 5627. 0.18 0.40 2248. 6.90 214.50 4742. 15000. 8.200
29 5697. 0.19 0.40 4896. 7.00 235.00 974. 0. 8.200
30 5722. 0.16 0.40 5620. 7.20 254.00 924. 0. 8.200
31 5759. 0.00 0.00 0. 1.50 301.40 0. 0. 8.200

-------
FINAL 1964 VERIF ICBOD)
SEC. AISE 800 PROFILE A2SF AND SYST. PROF ASE 2 SYST.DO PROF. SATURATION DOING/I) FINAL 00 PROFILE
1 2.94 —0.40 0.75 8.10 7.75
2 2.11 0.03 1.35 8.10 6.70
3 1.39 0.18 1.75 8.10 6.16
4 0.97 0.23 1.81 8.10 6.04
5 0.59 0.35 1.77 8.10 5.96
6 0.49 0.40 1.53 8.20 6.26
7 0.35 0.34 1.37 8.20 6.48
8 0.50 0.34 1.58 8.20 6.27
9 1.31 0.36 2.53 8.20 5.29
10 3.37 0.38 3.91 8.20 3.89
11 2.78 0.44 4.84 8.20 2.90
12 2.58 0.43 5.63 8.20 2.12
13 3.37 0.45 6.23 8.20 1.51
14 ).90 0.44 6.33 8.20 1.41
15 2.81 0.45 5.87 8.20 1.87
16 2.90 0.36 5.20 8.20 2.62
17 2.04 0.39 4.71 8.20 3.08
18 1.32 0.42 4.02 8.20 3.75
19 1.02 0.53 3.40 8.20 4.25
20 0.79 0.67 2.98 8.20 4.54
21 1.29 0.59 2.65 8.40 5.14
22 1.24 0.56 2.39 8.30 5.33
23 0.82 0.55 2.07 8.30 5.66
24 0.55 0.53 1.76 8.30 6.00
25 0.36 0.49 1.45 8.30 6.34
26 0.28 0.46 1.17 8.30 6.66
27. 0.19 0.41 0.92 8.30 6.95
28 0.13 0.35 0.72 8.20 7.12
29 0.07 0.21 0.46 8.20 7.51
30 0.02 0.09 0.22 8.20 7.87

-------
FINAL 1964 VERIF INBOD) 30
SECTION FLOW REA.RATE DECAY RATE VOLUME OIFF.RATE AREA 1—LOADS F—LOADS 0.0.-SAT.
C.F.S. 1.0/DAYS 1.0/DAYS CFS1.0E6 MI 2/DAY l000sFTse2 18./DAY LB./DAY MG/L
1 3303. 0.65 0.01 242. 0.40 6.50 105128. 0. 0.000
2 3340. 0.36 0.07 364. 0.40 15.80 14808. 0. 0.000
3 3440. 0.23 0.07 460. 0.40 21.40 10479. 0. 0.000
4 3449. 0.23 0.07 532. 0.40 24.60 6254. 0. 0.000
5 3479. 0.16 0.03 636. 0.40 28.50 5014. 0. 0.000
6 3519. 0.22 0.03 756. 0.40 34.10 10233. 0. 0.000
7 3719. 0.22 0.03 455. 0.90 41.40 647. 0. 0.000
8 3449. 0.22 0.05 504. 1.60 49.60 4609. 0. 0.000
9 3469. 0.16 0.05 533. 2.20 51.20 13088. 0. 0.000
10 3419. 0.16 0.01 582. 2.70 55.40 94512. 0. 0.000
11 3694. 0.16 0.01 630. 3.30 60.90 24498. 0. 0.000
12 3724. 0.12 0.00 655. 3.80 65.00 6272. 0. 0.000
13 3724. 0.12 0.00 694. 4.40 66.00 55470. 0. 0.000
14 3770. 0.19 0.00 805. 4.50 72.70 114618. 0. 0.000
15 3961.. 0.19 0.01 1860. 4.60 88.30 53329. 0. 0.000
16 4361. 0.26 0.04 2030. 4.80 98.00 150434. 0. 0.000
17 4555. 0.19 0.03 2184. 5.00 104.90 61910. 0. 0.000
18 4681. 0.17 0.05 2396. 5.30 113.40 11821. 0. 0.000
19 4741. 0.17 0.07 2692. 5.50 126.30 13538. 0. 0.000
20 4761. 0.13 0.07 2932. 5.80 142.80 437. 0. 0.000
21 4761. 0.18 0.09 15L’. 6.00 150.40 72904. 0. 0.000
22 4953. 0.18 0.09 157,. 6.20 151.90 65. 0. 0.000
23 4954. 0.18 0.10 169a. 6.30 162.90 1483. 0. 0.000
24 4959. 0.17 0.09 1792. 6.40 176.80 102. 0. 0.000
25 4959. 0.17 0.09 1850. 6.50 181.70 210. 0. 0.000
26 4964. 0.18 0.09 1924. 6.60 188.40 9027. 0. 0.000
27 4969. 0.18 0.09 2054. 6.80 196.40 602. 0. 0.000
28 4969. 0.18 0.09 2248. 6.90 214.50 4167. 0. 0.000
29 5019. 0.19 0.09 4896. 7.00 235.00 974. 0. 0.000
30 5049. 0.16 0.08 S620. 7.20 254.00 924. 0. 0.000
31 5079. 0.00 0.08 0. 7.50 307.40 0. 0. 0.000

-------
FINAL 1964 VERIF INBODI
SEC. AIsE BOO PROFiLE £2SF AND SYST. PROF ASE ? SYST.OO PROF. SATURATION DOING/LI FINAL DO PROFILE
1 5.74 0.00 0.03 0.00 —0.03
2 5.87 0.00 0.37 0.00 —0.37
3 5.19 0.00 0.73 0.00 —0.73
4 5.40 0.00 0.99 0.00 —0.99
5 5.27 0.00 0.98 0.00 —0.98
6 5.16 0.00 0.85 0.00 —0.85
7 5.47 0.00 0.90 0.00 —0.90
8 6.04 0.00 1.05 0.00 —1.05
9 7.89 0.00 1.19 0.00 —1.19
10 11.14 0.00 1.02 0.00 —1.02
11 12.64 0.00 0.92 0.00 —0.92
12 14.16 0.00 0.80 0.00 —0.80
13 15.99 0.00 0.75 0.00 —0.75
14 17.27 0.00 0.77 0.00 —0.17
15 14.96 0.00 1.03 0.00 —1.03
16 16.46 0.00 1.72 0.00 —1.72
I? 14.18 0.00 2.06 0.00 —2.06
18 11.00 0.00 2.49 0.00 —2.49
19 8.23 0.00 2.70 0.00 —2.70
20 6.22 0.00 2.63 0.00 —2.63
21 5.22 0.00 2.3B 0.00 —2.38
22 4.29 0.00 2.1? 0.00 —2.17
23 3.53 0.00 1.95 0.00 —1.95
24 2.92 0.00 1.72 0.00 —1.72
25 2.41 0.00 1.49 0.00 —1.49
26 1.99 0.00 1.26 0.00 —1.26
2? 1.60 0.03 1.05 0.00 —1.05
28 1.28 0.00 0.86 0.00 —0.86
29 0.86 0.00 0.59 0.00 —0.59
30 0.43 0.00 0.30 0.00 —0.30

-------
FINAL D.0. PROFILE
SEC. 0.0.
1 7.72
2 6.33
3 5.42
4 5.05
5 4.98
6 5.40
7 5.58
B 5.21
9 4.10
10 2.86
11 1.98
12 1.31
13 0.76
14 0.64
15 0.84
16 0.90
17 1.01
18 1.25
19 1.55
20 1.90
21 2.76
22 3.15
23 3.70
24 4.27
25 4.85
26 5.39
27 5.90
28 6.26
29 6.92
30 7.56
I-c

-------
1970 ceoo VERIFICATION OF DELAWARE 30
SECTION FLOW REA.RATE DECAY RATE V0!J4E DIFF.RATE AREA L—LOADS F—LOADS 0.0.—SAT.
C.F.S. 1.0 ’DAYS 1.OFDAYS CF’I.OEb MI ZFOAY 1000sFT’ 2 LB./DAY LB./DAY MGFL
I 4167. 0.62 0.45 242. 0.40 6.50 106078. —11720. 8.400
2 4293. 0.34 0.45 364. 0.40 15.80 9521. 8622. 8.400
3 4401. 0.22 0.45 460. 0.40 21.40 6030. 4140. 8.400
4 4411. 0.22 0.45 532. 0.40 24.60 6812. 2700. 8.400
5 4444. 0.15 0.45 636. 0.40 28.50 3819. 4800. 8.400
6 4534. 0.22 0.42 756. 0.40 V..10 9101. 5040. 8.400
7 4405. 0.22 0.42 455. 0.90 41.40 877. 890. 8.400
‘8 4429. 0.22 0.42 504. 1.60 49.60 2949. 2125. 8.400
9 4461. 0.15 0.42 533. 2.20 51.20 9350. 2250. 8.400
10 4481. 0.16 0.43 582. 2.70 55.40 170425. 2250. 8.300
Ii 4711. 0.16 0.43 630. 3.30 60.90 25336. 5760. 8.300
12 4757. 0.12 0.43 655. 3.80 65.00 4480. 1350. 8.300
13 4762. 0.12 0.43 694. 4.40 66.00 65262. 3240. 8.300
14 4772. 0.19 0.43 805. 4.50 72.70 147106. 3960. 8.300
15 4837. 0.19 0.43 1860. 4.60 88.30 103760. 14700. 8.300
16 5371. 0.26 0.43 203a. 4.80 98.00 165379. 6750. 8.300
1? 5740. 0.19 0.43 2184. 5.00 104.90 99586. 11475. 8.300
18 5853. 0.16 0.42 2396. 5.30 113.40 51125. 7200. 8.400
19 5928. 0.16 0.42 2692. 5.50 126.30 55873. 16200. 8.400
20 5960. 0.13 0.42 2932. 5.80 142.80 549. 54650. 8.400
21 5971. 0.18 0.40 1512. 6.00 150.40 101794. 6930. 8.300
22 6290. 0.18 0.40 1574. 6.20 151.90 114565. 6000. 8.300
23 6292. 0.18 0.40 1698. 6.30 162.90 2558. 13050. 8.300
24 6294. 0.3? 0.35 3792. 6.40 176.80 232. 11000. 8.300
25 6297. 0.17 0.38 1850. 6.50 181.70 1635. 9300. 8.300
26 6303. 0.17 0.38 1924. 6.60 188.40 10945. 12000. 8.300
27 6313. 0.17 0.38 2054. 6.80 196.40 472. 15000. 8.200
28 6316. 0.1? 0.38 2248. 6.90 214.50 4502. 15000. 8.200
29 6386. 0.18 0.37 4896. 7.00 235.00 986. 0. 8.200
30 6411. 0.16 0.3? 5620. 7.20 254.00 924. 0. 8.200
31 6448. 0.00 0.00 0. 7.S0 307.40 0. 0. 8.100
a-

-------
1970 C lOD VERIFICATION OF DELAWARE
SEC. AF*E800 PROFILE APP AND S l iT. PROF A•E 2 SYST.D0 PROF. SATURATION DOINGFLI FINAL DO PROFILE
1 3.52 —0.35 0.73 8.40 8.02
2 2.68 0.00 1.41 8.40 6.97
1.89 0.14 1.92 8.40 6.32
4 1.33 0.19 2.10 8.40 6.09
5 0.64 0.31 2.15 8.40 5.9
6 0.67 0.36 1.92 8.40 6.10
7 - 0.48 0.32 1.72 8.40 6.35
8 0.54 0.32 1.74 8.40 6.33
9 1.30 0.34 2.49 8.40 5.55
10 3.69 0.37 3.79 8.30 4.13
11 2.93 0.43 4.62 8.30 3.24
12 2.55 0.42 5.30 8.30 2.56
13 3.06 0.44 5.81 8.30 2.03
14 3.63 0.44 5.95 8.30 1.90
15 2.82 0.45 5.64 8.30 2.19
16 2.68 0.36 4.94 8.30 2.98
17 1.98 0.40 4.53 8.30 3.35
18 1.31 0.46 3.94 8.40 3.99
19 0.97 0.63 3.34 8.40 4.42
20 0.76 0.87 2.91 8.40 4.60
21 1.22 0.74 2.60 8.30 4.94
22 1.22 0.67 2.37 8.30 5.24
23 0.82 0.64 2.07 8.30 5.58
24 0.56 0.60 1.17 8.30 5.92
25 0.40 0.55 1.48 8.30 6.26
26 0.30 0. SL 1.21 8.30 6.57
27 0.21 0.46 0.97 8.20 6.76
28 - 0.15 0.38 0.76 8.20 7.04
29 0.08 0.23 0.50 8.20 7.45
30 0.03 0.11 0.24 8.20 7.83
a- ?

-------
1910 N800 VERIFICATION 30
SECTION FlOW REA.RATE DECAY RATE VOLUME DIFF.RATE AREA L— LOADS F—LOADS 0.0.—SAT.
C.F.S. . .. 1.0/DAYS 1.0/DAYS CF ’I.oEo NI 2/DAY 1000 FT **2 16./DAY LB./ DAY MG/L
1 4167. 0.62 0.0 1 242. 0.40 6.50 12675$. 0. 0.000
2 4293. 0.34 0.07 3t4. 0.40 15.80 26168. 0. 0.000
3. 4401. 0.22 0.07 460. 0.40 21.40 16107. 0. 0.000
4 4411. 0.22 0.07 532. 0.40 24.60 9994. 0. 0.000
5 4444. 0.15 0.03 636. 0.40 28.50 1059. 0. 0.000
6 4534. 0.22 0.03 756. 0.40 34.10 10233. 0. 0.000
7 4405. 0.22 0.03 455. 0.90 41.40 647. 0. O.CO0
8 4429. 0.22 0.05 504. 1.60 49.60 4609. 0. 0.000
9 4461. 0.15 0.05 533. 2.20 51.20 13238. 0. 0.C00
10 4481. 0.16 0.01 582. . 2.70 55.40 112912. 0. 0.000
11 4111. 0.16 0.01 630. 3.30 60.90 24498. 0. 0.000
12 4757. 0.12 0.00 655. 3.80 65.00 6212. 0. 0.000
13 -4162. 0.12 0.00 694. 4.40 66.00 49082. 0. 0.000
14 4772. 0.19 0.00 805. 4.50 12.70 106994. 0. 0.000
15 4837. 0.19 0.01 1860. . 4.60 88.30 7643 1. 0. 0.000
16 5311. 0.26 0.03 2030. 4.80 98.00 124660. 0. 0.000
17 5140. 0.19 0.03 2184. 5.00 104.90 87811. 0. 0.000
18 .5853. 0.16 0.05 2396. 5.30 113.40 15638. 0. 0.000
19 5928. 0.16 0.07 2692. 5.50 126.30 16C09. 0. 0.000
20 5960. 0.13 0.07 2932. 5.60 142.80 476. 0. 0.000
21 5971. 0.18 0.09 1512. 6.00 150.40 83278. 0. 0.000
22 6290. 0.18 0.09 1574. 6.20 151.90 56065. 0. 0.000
23 6292. 0.18 0.10 1698. 6.30 162.90 1389. 0. 0.000
24 6294. 0.17 0.09 1792. 6.40 176.80 232. 0. 0.000
25 6297. 0.17 0.09 1850. 6.50 181.70 200. 0. 0.000
26 6303. 0.17 0.09 1924. . 6.60 188.40 8177. 0. 0.000
27 6313. 0.17 0.09 2054. 6.80 196.40 852. 0. 0.000
28 6316. 0.17 0.09 2248. 6.90 214.50 4000. 0. 0.000
29 6386. 0.18 0.08 4896. 7.00 235.00 914. 0. 0.000
30 6411. 0.16 0.08 5620. 7.20 254.00 924. 0. 0.000
31. 6448. 0.00 0.01 0. 7.50 307.40 0. 0. 0.000

-------
1970 NBOO YERIFICATZON
SEC. A1 € SOD PROFILE A2 F AND SYST. PROF ASE 2 SYST.DO PROF. SATURATION DOING/LI FINAL DO PROFILE
1 5.30 0.00 0.04 0.00 —0.04
2 5.97 0.00 0.33 0.00 —0.33
3 6.12 0.00 0.67 0.00 —0.67
4 5.80 0.00 0.97 0.00 —0.97
5 5.78 0.00 0.99 0.00 —0.99
6 6.00 0.00 0.96 0.00 —0.96
7 5.78 0.00 0.97 0.00 —0.97
8 5.90 0.00 1.11 0.00 —1.11
9 7.27 0.00 1.26 0.00 —1.26
10 10.47 0.00 1.09 0.00 —1.09
11 11.64 0.00 0.90 0.00 —0.98
12 12.93 0.00 0.85 0.00 —0.85
13 14.68 0.00 0.78 0.00 —0.70
14 16.11 0.00 0.77 0.00 —0.77
15 16.05 0.00 0.96 0.00 —0.96
16 15.50 0.00 1.63 0.00 —1.63
17 13.92 0.00 2.19 0.00 —2.19
18 11.08 0.00 2.76 0.00 —2.76
19 8.57 0.00 3.06 0.00 —3.06
20 6.78 0.00 3.04 0.00 —3.04
21 6.05 0.00 2.80 0.00 —2.60
22 5.29 0.00 2.61 0.00 —2.61
23 4.40 0.00 2.40 0.00 —2.40
24 3.67 0.00 2.16 0.00 —2.16
25 3.05 0.00 1.91 0.00 —1.91
26 2.53 0.00 1.65 0.00 —1.65
27 2.05 0.00 1.40 0.00 —1.40
28 1.65 0.00 1.16 0.00 —1.16
29 1.13 0.00 0.82 0.00 —0.82
30 0.57 0.00 0.43 0.00 —0.43

-------
FINAL 0.0. PROFILE
SEC. 0.0.
I 7.97
2 6.64
3 5.65
4 5.12
5 4.93
6 5.14
7 5.37
8 5.21
9 4.28
10 3.03
11 2.26
12 1.70
13 1.25
14 1.13
15 1.22
36 1.35
17 1.16
1.23
19 1.36
20 1.56
21 2.14
22 2.63
23 3.17
24 3.75
25 4.34
26 4.91
27 5.36
20 5.87
29 6.62
30 7.40
a - ] ”

-------
PROJECT ION—DRRC CS00 ALLOC 30
SECTION FLOW REA.RATE DECAY RATE VOt iVE DIFF.RATE AREA L—LOADS F—LOADS 0.0.—SAT.
C.F.S. 1.0/DAYS 1.0/DAYS CFS..0E6 NI 2/DAY 1000 *FT*S2 LB./DAY L8.FDAY MG/I
1 3000. 0.62 0.44 242. 0.40 6.50 68952. —12220. 8.400
2 3126. 0.34 0.44 364. 0.40 15.80 8882. 8622. 8.400
3 3234. 0.22 0.44 460. 0.40 21.40 3379. 4140. 8.400
4 3244. 0.22 0.44 532. 0.40 24.60 6024. 2700. 8.400
5 3277. 0.15 0.44 636. 0.40 28.50 3035. 4800. 8.400
6 3367. 0.22 0.42 756. 0.40 34.10 7623. 5040. 8.400
7 3238. 0.2? 0.42 455. 0.90 41.40 87 1. 890. 8.400
8 3262. 0.22 0.42 504. 1.60 49.60 2780. 2125. 8.400
9 3294. - 0.15 0.42 533. 2.20 51.20 9160. 2250. 8.400
10 3314. 0.15 0.42 582. 2.70 55.40 76895. 2250. 8.400
I l 3544. 0.15 0.42 639. 3.30 60.90 19586. 5760. 8.400
12 3590. 0.12 0.42 655. 3.80 65.00 4480. 1350. 8.400
13 3595. 0.12 0.42 694. 4.40 66.00 30534. 3240. 8.400
14 3605. 0.19 0.42 805. 4.50 72.70 38853. 3960. 8.400
15 3670. 0.10 0.42 1860. 4.60 88.30 48539. 14700. 8.400
16 4379. 0.25 0.42 2030. 4.80 98.00 44779. 6750. 8.400
17 4748. o.to 0.42 2184. 5.00 104.90 9708. 11475. 8.400
18 4861. 0.17 0.42 2396. 5.30 113.40 27440. 7200. 8.400
19 4936. 0.17 0.42 269?. 5.50 126.30 9607. 16200. 8.400
20 4968. 0.13 0.42 2932. 5.80 142.80 1527. 15750. 8.400
21 4979. 0.18 0.40 1512. 6.00 150.40 34436. 6930. 8.300
22 5298. 0.18 0.40 1574. 6.20 151.90 16705. 6000. 8.300
23 5300. 0.18 0.40 1698. 6.30 162.90 648. 13050. 8.300
24 5302. 0.18 0.40 1792. 6.40 176.80 232. 11000. 8.200
25 5305. 0.18 0.40 1850. 6.50 181.70 510. 9300. 8.200
26 5311. 0.18 0.40 1924. 6.60 188.40 4195. 12000. 8.200
27 5321. 0.18 0.40 2054. 6.80 106.40 273. 15000. 8.100
28 5324. 0.18 0.40 2248. 6.90 214.50 3247. 15000. 8.100
29 5394. 0.18 0.40 4896. 7.00 235.00 986. 0. 8.000
30 5419. 0.17 0.40 5620. 7.20 254.00 924. 0. 8.000
31 9456. 0.00 0.00 0. 7.50 307.40 0. 0. 7.900
•e

-------
PROJ ECTION—DROC CBOO ALLOC
SEC. A1*E BOO PROFILE A2*F AND SYST. PROF A•L 2 SYST.DO PROF. SATURATION OOINGFL) FINAL DO PROFILE
1 2.91 —0.46 0.73 8.40 8.12
2 2.11 0.03 1.33 8.40 7.03
3 1.33 0.19 1.68 8.40 6.52
4 C.91 0.24 1.71 8.40 6.44
5 0.53 0.37 1.64 8.40 6.37
6 0.46 0.42 1.39 8.40 6.58
7 0.32 0.35 1.21 8.40 6.83
8 0.42 0.34 1.29 8.40 6.15
9 0.91 0.3? 1.78 8.40 6.23
10 1.93 0.40 2.40 8.40 5.50
11 1.57 0.46 2.73 8.40 5.20
12 1.29 0.45 2.89 8.40 5.05
13 1.37 0.46 2.90 8.40 5.03
14 1.36 0.45 2.71 8.40 5.22
15 1.08 0.45 2.32 8.40 5.62
16 0.83 0.36 1.79 0.40 6.23
17 0.47 0.38 1.44 8.40 6.57
18 0.40 0.39 1.18 8.40 6.82
19 0.25 0.45 0.94 8.40 6.99
20 0.21 0.48 0.80 8.40 7.11
21 0.33 0.46 0.69 8.30 7.13
22 0.28 0.46 0.61 8.30 7.22
23 0.19 0.47 0.52 8.30 7.29
24 0.13 0.46 0.44 8.20 7.29
25 0.09 0.44 0.36 8.20 7.38
26 0.07 0.42 0.29 8.20 7.47
27 0.05 0.39 0.23 8.10 7.47
20 0.04 0.32 0.19 8.10 7.57
29 0.02 0.20 0.12 8.00 7.67
30 0.01 0.09 0.06 8.00 7.84
a—12

-------
PROJECTION 20 PCI REM NOD 30
SECTION FLOW REA.RATE DECAY RATE VOLUME QIFF.RATE AREA L—LOADS F—LOAOS 0.0.—SAT.
C.F.S. 1.0/DAYS 1.0/DAYS CF*1.0E6 MI 2/DAY I000SFTSS2 L8.FOAY LS./OAY MG/I.
1 3000. 0.62 0.04 242. 0.40 6.50 94912. 0. 0.000
2 3126. 0.34 0.04 364. 0.40 15.80 22233. 0. 0.000
3 3234. 0.22 0.04 460. 0.40 21.40 12933. 0. 0.000
4 3244. 0.22 0.04 532. 0.40 24.60 8226. 0. 0.000
5 3277. 0.15 0.04 636. 0.40 28.50 6049. 0. 0.000
6 3367. 0.22 0.04 756. 0.40 34.10 9513. 0. 0.000
7 3238. 0.22 0.04 455. 0.90 41.40 647. 0. 0.000
8 3262. 0.22 0.04 504. 1.60 49.60 4290. 0. 0.000
9 3294. 0.15 0.04 533. 2.20 51.20 12880. 0. 0.000
10 3314. 0.15 0.04 582. 2.70 55.40 90885. 0. 0.000
It 3544. 0.15 0.04 630. 3.30 60.90 24498. 0. 0.000
12 3590. 0.12 0.04 655. 3.80 65.00 6272. 0. 0.000
13 3595. 0.12 0.04 694. 4.40 66.00 46155 . 0. 0.000
14 3605. 0.19 0.04 805. 4.50 72.10 82594. 0. 0.000
15 3670. 0.19 0.04 1860. 4.60 88.30 68726. 0. 0.000
16 4319. 0.25 0.04 2030. 4.80 98.00 99409. 0. 0.000
17 4748. 0.19 0.04 2184. 5.00 104.90 42135. 0. 0.000
10 4861. 0.17 0.05 2396. 5.30 113.40 46468. 0. 0.000
19 4936. 0.17 0.05 2692. 5.50 126.30 12305. 0. 0.000
20 4966. 0.13 0.06 2932. 5.80 142 .80 468. 0. 0.000
21 4979. 0.18 0.06 1512. 6.00 150.40 55317. 0. 0.000
22 5298. 0.18 0.06 1574. 6.20 151.90 72825. 0. 0.000
23 5300. 0.18 0.06 1698. 6.30 162.90 1124. 0. 0.000
24 5302. 0.18 0.06 1792. 6.40 176.80 206. 0. 0.000
25 5305. 0.18 0.06 1850. 6.50 181.10 210. 0. 0.000
26 5311. 0.18 0.06 1924. 6.60 188 .40 7091. 0. 0.000
27 5321. 0.18 0.06 2054. 6.80 196.40 702. 0. 0.000
28 5324. 0.18 0.06 2248. 6.90 214.50 3770. 0. 0.000
29 5394. 0.18 0.06 4896. 7.00 235.00 983. 0. 0.000
30 5419. 0.17 0 06 5620. 7.20 254.00 924. 0. 0.000
3 1 5456. 0.00 0.08 0. 7.50 307.40 0. 0. Q.000
a-iS

-------
PROJECTION 20 PCT REM NOD
SEC. ALSE BOO PROFiLE A2’F AND SYST. PROF A•E 2 SVST.OO PROF. SATURATION DO MG/L1 FINAL DO PROFILE
1 5.40 0.00 0.12 0.00 —0.1 1
2 6.16 0.00 0.30 0.00 —0.30
3 6.46 0.00 0.53 0.00 —0.53
4 6.30 0.00 0.71 0.00 —0.71
5 6.01 0.00 0.91 0.00 —0.91
6 6.11 0.00 1.01 0.00 —1.01
1 5.87 0.00 1.04 0.00 —1.04
8 6.30 0.00 1.15 0.00 —1.15
9 1.66 0.00 1.42 0.00 —1.42
10 9.81 0.00 1.68 0.00 —1.68
11 10.23 0.00 1.93 0.00 —1.93
12 10.63 0.00 2.14 0.00 —2.14
13 11.42 0.00 2.25 0.00 —2.25
14 11.88 0.00 2.21 0.00 —2.21
15 11.24 0.00 2.09 0.00 —2.09
16 10.91 0.00 1.94 0.00 —1.94
17 9.69 0.00 1.99 0.00 —1.99
18 0.31 0.00 2.08 0.00 —2.08
19 6.79 0.00 2.03 0.00 —2.03
20 5.6? 0.00 1.98 0.00 —1.98
21 5.30 0.00 1.77 0.00 —1.77
22 4.90 0.00 1.63 0.00 —1.63
23 4.21 0.00 1.48 0.00 —1.48
24 3.61 0.00 1.32 0.00 —1.32
25 3.08 0.00 1.16 0.00 —1.16
26 2.60 0.00 1.01 0.00
27 2.16 0.00 0.85 0.00 —0.85
20 1.77 0.00 0.71 0.00 —0.71
29 1.24 0.00 0.51 0.00 —0.51
30 0.63 0.00 0.27 0.00 —0.27

-------
FINAL 0.0. PROFILE
SEC. 0.0.
1 7.99
2 6.13
3 5.98
5.72
5 5.45
6 5.57
7 5.79
8 5.60
9 4.81
10 3.89
I I 3.26
12 2.90
13 2.77
14 3.01
15 3.52
16 4.29
17 4.57
18 4.73
19 4.96
20 5.12
21 5.35
22 5.58
23 5.81
24 5.96
25 6.21
26 6.46
27 6.61
26 6.66
29 7.15
30 7.57
a- 15

-------
PROJECTION 50 PCT REM NOD 30
SECTION FLOW REA.RATE DECAY RATE VOLUME OIFF.RATE AREA L—LOADS F—LOADS 0.0.—SAT.
C.F.S. 1.0/DAYS 1.0/DAYS CF L.OE6 MI 2/DAY 1000’FT**2 18./DAY L8./DAY NG/L
1 3000. 0.62 0.04 242. 0.40 6.50 83214. 0. 0.000
2 3126. 0.34 0.04 364. 0.40 15.80 15432. 0. 0.000
3 3234. 0.22 0.04 460. 0.40 21.40 8173. 0. O.OCO
4 3244. 0.22 0.04 532. 0.40 24.60 5574. 0. 0.000
5 3277. 0.15 0.04 636. 0.40 28.50 4534. 0. 0.000
6 3367. 0.22 0.04 756. 0.40 34.10 8433. 0. 0.000
7 3238. 0.22 0.04 455. 0.90 41.40 647. 0. 0.000
8 3262. 0.22 0.04 504. 1.60 49.60 3811. 0. 0.000
9 3294. 0.15 0.04 533. 2.20 51.20 12568. 0. 0.000
10 3314. 0.15 0.04 582. 2.70 55.40 59129. 0. 0.000
11 3544. 0.15 0.04 630. 3.30 60.90 24498. 0. 0.000
12 3590. 0.12 0.04 65g. 3.80 65.00 6272. 0. 0.000
13 3595. 0.12 0.04 694. 4.40 66.00 32773. 0. C.000
14 3605. 0.19 0.04 805. 4.50 72.70 53706. 0. 0.000
15 3670. 0.19 0.04 1860. 4.60 88.30 61459. 0. 0.000
16 4379. 0.25 0.04 2030. 4.80 98.00 63387. 0. 0.000
17 4748. 0.19 0.04 2184. 5.00 104.90 28499. 0. 0.000
18 4861. 0.17 0.05 23° ’ . 5.30 113.40 30182. 0. 0.000
19 4936. 0.17 0.05 26C 1 . 5.50 126.30 8190. 0. 0.000
20 4968. 0.13 0.06 29i2. 5.80 142.80 456. 0. 0.000
21 4979. 0.18 0.06 1512. 6.00 150.40 43631. 0. 0.000
22 5298. 0.18 0.06 1574. 6.20 151.90 45540. 0. 0.000
23 5300. 0.18 0.06 1698. 6.30 162.90 728. 0. 0.000
24 5302. 0.18 0.06 17q2. 6.40 176.80 167. 0. 0.000
25 5305. 0.18 0.06 1850. 6.50 181.70 210. 0. 0.000
26 5311. 0.18 0.06 1924. 6.60 188.40 4561. 0. 0.000
27 5321. 0.18 0.06 2054. 6.80 196.40 477. 0. 0.000
25 5324. 0.18 0.06 2248. 6.90 214.50 3426. 0. 0.000
29 5394. 0.18 0.06 4896. 7.00 235.00 980. 0. 0.OCO
30 5419. 0.17 0.06 5620. 7.20 254.00 924. 0. 0.000
31 5456. 0.00 0.08 0. 7.50 307.40 0. 0. 0.000
a-Ic

-------
PROJECTION 50 PCT REM NOD
SEC. A1SE BOO PROFILE 42SF AND SYST. PROF LeE 2 SYST.OO PROF. SATURATION OOIMG/L) FINAL DO PROFILE
I 4.13 0.00 0.10 0.00 —0.10
2 5.18 0.00 0.26 0.00 —0.26
3 5.28 0.00 0.44 0.00 —0.44
4 5.16 0.00 0.58 0.00 —0.58
5 4.85 0.00 0.74 0.00 —0.74
6 4.97 0.00 0.82 0.00 —0.82
7 4.76 0.00 0.8’, 0.00 —O. 4
5 5.08 0.00 0.93 0.00 —0.93
9 6.06 0.00 1.12 0.00 —1.12
LO 7.47 0.00 1.31 0.00 —1.31
LI 7.88 0.00 1.50 0.00 —1.50
12 8.12 0.00 1.65 0.00 —1.65
13 8.61 0.C0 1.72 0.00 —1.72
14 8.87 0.00 1.68 0.00 —1.68
IS 8.45 0.00 1.58 0.00 —1.58
lb 7.99 O.C0 iS ’S 0.00 —1.4’,
17 7.04 0.00 1.46 0.00 —1.46
18 5.98 0.00 1.51 0.00 —1.51
19 4.88 0.00 1.47 0.00 —1.47
20 4.07 0.00 1.43 0.00 —1.43
21 3.80 0.00 1.27 0.00 —1.27
22 3.48 0.00 1.17 0.00 —1.17
23 2.99 0.00 1.06 0.00 —1.06
24 2.56 0.00 0.94 0.00 —0.94
25 2.19 0.00 0.83 0.00 —0.83
26 1.85 0.00 0.72 0.00 —0.72
27 1.53 0.00 0.61 0.00 —0.61
28 1.26 0.00 0.51 0.00 —0.51
29 0.88 0.00 0.36 0.00 —0.36
30 0.45 0.00 0.19 0.00 —0.19
a—Il

-------
FINAL 0.0. PROFILE
SEC. D.0.
8.01
2 6.77
3 6.07
4 5.85
5 5.62
6 5.75
7 5.98
8 5.82
9 5.10
10 4.26
11 3.69
12 3.39
13 3.31
14 3.54
15 4.03
16 4.79
17 5.10
18 5.30
19 5.52
20 5.68
21 5.85
22 6.04
23 6.23
24 6.34
25 6.55
26 6.75
27 6.85
28 7.06
29 7.30
30 7.65
IS

-------
PROJECTION 85 PCT REM NOD 30
SECTION FLOW REA.RATE DECAY RATE VOLUME D IFF.RATE AREA k—LOADS F—LOADS 0.0.—SAT.
C.F.S. 1.0/DAYS 1.0/DAYS CFSL.OEb MI 2IOAY 1000SFTSS2 LB./OAY LB./OAY P GFL
1 3000. 0.62 0.0’. 242. 0.40 6.50 69565. 0. 0.000
2 3 126. 0.34 0.04 364. 0.40 15.80 7496. 0. 0.000
3 3234. 0.22 0.04 460. 0.40 21.40 2619. 0. 0.000
4 3244. 0.22 0.04 532. 0.40 24.60 2480. 0. 0.000
5 3277. 0.15 0.04 636. 0.40 28.50 2766. 0. 0.000
6 3367. 0.22 0.04 756. 0.40 34.10 7173. 0. 0.000
7 3238. 0.22 0.04 455. 0.90 41.40 647. 0. 0.000
8 3262. 0.22 0.04 504. 1.60 49.60 3253. 0. 0.000
9 3294. 0.15 0.04 533. 2.20 51.20 12204. 0. 0.000
10 3314. 0.15 0.04 582. 2.70 55.40 22079. 0. 0.000
11 3544. 0.15 0.04 630. 3.30 60.90 24498. 0. 0.000
12 3590. 0.12 0.04 655. 3.80 65.00 6272. 0. O.OCO
13 3595. 0.12 0.04 694. 4.40 66.00 17161. 0. 0.000
14 3605. 0.19 0.04 805. 4.50 72.70 20002. 0. 0.000
15 3670. 0.19 0.04 1860. 4.60 88.30 52980. 0. 0.000
16 4379. 0.25 0.04 2030. 4.80 98.00 21361. 0. 0.000
17 4748. 0.19 0.04 2184. 5.00 104.90 12590. 0. 0.000
18 4861. 0.17 0.05 2396. 5.30 113.40 11182. 0. 0.000
19 4936. 0.17 0.05 2692. 5.50 126.30 3388. 0. 0.000
20 4968. 0.13 0.06 2932. 5.80 142.80 442. 0. 0.000
21 4979. 0.18 0.06 1512. 6.00 150.40 29997. 0. 0.000
22 5298. 0.18 0.06 1574. 6.20 151.90 13707. 0. 0.000
23 5300. 0.18 0.06 1698. 6.30 162.90 266. 0. 0.000
24 5302. 0.18 0.06 1792. 6.40 176.80 121. 0. 0.000
25 5305. 0.10 0.06 1850. 6.50 181.70 210. 0. 0.000
26 5311. 0.18 0.06 1924. 6.60 188.40 1610. 0. 0.000
27 5321. 0.18 0.06 2054. 6.80 196.40 214. 0. 0.000
28 5324. 0.18 0.06 2248. 6.90 214.50 3024. 0. 0.000
29 5394. 0.18 0.06 4896. 7.00 235.00 975. 0. 0.000
30 5419. 0.17 0.06 5620. 7.20 254.00 924. 0. 0.000
31 5456. 0.00 0.08 0. 7.50 307.40 0. 0. 0.000
—J1

-------
PROJECTION 85 PCT REM NOD
SEC. AISE 800 PROFILE A2SF AND SYST. PROF A*E 2 SVST.D0 PROF. SATURATION 001MG/LI FINAL DO PROFILE
1 3.95 0.00 0.09 0.00 —0.09
2 4.04 0.00 0.20 0.00 —0.20
3 3.92 0.00 0.34 0.00 —0.34
4 3.13 0.00 0.43 0.00 —0.43
5 3.48 0.00 0.55 0.00 —0.55
6 3.63 0.00 0.60 0.00 —0.60
7 3.4? 0.00 0.61 0.00 —0.61
8 3.64 0.00 0.66 0.00 —0.66
9 4.19 0.00 0.78 0.00 —0.78
10 4.14 0.00 0.88 0.00 —O.b8
ii 5.13 0.00 0.99 0.00 —0.99
12 5.19 0.00 1.07 0.00 —1.07
13 5.34 0.00 1.10 0.00 —1.10
14 5.36 0.00 1.05 0.00 —1.05
15 5.20 0.00 0.97 0.00 —0.97
16 4.59 0.00 0.86 0.00 —0.86
17 3.94 0.00 0.85 0.00 —0.85
18 3.27 0.00 0.85 0.00 —0.85
19 2.65 0.00 0.81 0.00 —0.81
20 2.20 0.00 0.78 0.00 —0.78
21 2.05 0.00 0.69 0.00 —0.69
22 1.82 0.00 0.63 0.00 —0.63
23 1.56 0.00 0.57 0.00 —0.57
24 1.34 0.00 0.50 0.00 —0.50
25 1.14 0.00 0.44 0.00 —0.44
26 0.97 0.00 0.38 0.00 —0.38
27 0.81 0.00 0.32 0.00 —0.32
28 0.67 0.00 0.27 0.00 —0.27
29 0.47 0.00 0.19 0.00 —0.19
30 0.24 0.00 0.10 0.00 —0.10
? 2 ‘

-------
FINAL 0.0. PROFILE
SEC. 0.0.
1 8.03
2 6.82
3 6.17
4 6.00
5 5.82
6 5.98
7 6.21
8 6.09
9 5.64
10 4.69
11 4.20
12 3.97
13 3.93
14 4.16
15 4.64
16 5.37
17 5.72
18 5.96
19 6.18
20 6.32
21 6.44
22 6.58
23 6.72
24 6.78
25 6.94
26 7.09
27 7.14
28 7.30
29 7.47
30 7.74

-------
NO. SEC. SOURCE UPPER BOUND RAW LOAD PPR MPR
3 1 1 MORRISVL 780. 4700. .8340 .9999
2 1 2 TRENTON 5000. 34C00. .8529 .9999
3 2 1 HAMILTON 20C0. 17900. .8883
4 2 2 BORDENTN 89. 167. .8840 .9999
5 2 3 USSTEEL I 2500. 21987. .8863 .9999
6 2 4 USSTEELS d l. 750. .8840
7 2 5 GR IFFINP 95. 819. .8840 .9999
8 2 6 SIEPANCH 15. 129. .8837 .9999
9 3 1 FL0 ENCE 270. 2993. .9098 .9999
10 3 2 PATERSON 440. 3147. .8602 .5999
11 3 3 LWRBUCKS 2410. 15600. .8455 .9999
12 3 4 PENNOE I. 20. 1150. .9826 .9999
13 4 1 8RISDORO 640. 5000. .8720 .9959
14 4 2 BRIS TwP 590. 3660. .8397 .9999
15 3 ROHMHAAS 2750. 93333. .9705 .9999
16 4 4 HERCULES 210. 2400. .9125 .9999
17 4 5 BURLLGRC 55. 480. .8854 .9999
18 4 6 BURICITY 510. 1840. .7228 .5999
19 4 7 BURL TWP 115. 991. .8840 .9999
20 5 1 TENNECO 590. 2660. .7782 .9999
21 5 2 FALLSTWP 220. 2070. .8937 .9999
22 5 3 BEVERLY 205. 1780. .8848 .9999
23 5 4 BURLARMY 11. 95. .8842 .9999
24 6 1 WILIBORO 490. 10450. .9531 .9999
25 6 2 R IVERSDE 310. 5633. .9450 .9999
26 6 3 OELRAN 190. 1587. .8803 .9999
21 8 1 RIVEI TUN 98. 850. .8847 .9999
28 8 2 PALMYRA 300. 3027. .9009 .9999
29 9 1 CINNAMIN 540. 4100. .8683 .9999
30 10 1 GEOR—PAC 1a20. IU’00. .8603 .5999
31 10 2 PHILA NE 69300. 435000. .8401 .9999
32 10 3 PENNSAUK 1530. 7450. .7946 .99 9
33 11 1 NATSUGAR 1800. 16778. .8921 .9999
34 13 1 AMSTAR 1500. 10860. .8619 .9999
35 13 2 CAMDEN 21000. 110937. .8107 .9999
36 13 - 3 HOLLINGS 246. 1836. .8649 .9999
37 13 4 MCANDREW 100. 100. .0 .9999
38 13 5 PU8LICKR 180. 13C 0. .8615 .9999
39 34 1 PI ILA SE 33267. 161500. .80 4 .5999
40 14 2 GAF CORP ICO. 14350. .9930 .9999
41 14 3 HARSHAW 260. 1792. .8549 .9999
42 14 4 N J ZINC 5C0. 3560. .8596 .9999
43 35 1 ARCO OIL 2590. 61025. .9576 .9999
44 15 2 GULF IND ‘910. 64462. .9549 .9999
45 15 3 GULF SAN 18. I SO. .8800 .9999
46 15 4 TEXACO 692. 7017. .9022 .9999
47 15 5 F OI4IMIFF 5. 42. .8810 .9999
48 15 6 ARMYORED 1. 8. .6750 .9999
49 15 7 SHELL C I I 520. 4810. .8919 .9999
50 16 1 PHILA Sw 37000. 222951. .8340 .9999
51 16 2 MO BILO1L 4250. 39500. .8924 .9999
52 16 3 H OUORYCH 65. -2? 542. .8801 .9999
53 36 4 ESSEX CH 38. 316. .8797 .5999
54 16 S OLINCORP 75. 127. .8804 .5999
55 17 1 HERCULES 2480. 23100. .8926 .9999
56 17 2 GIBBSTWN lAO. 1670. .9162 .9999
5 1 17 3 OUPONTRP 1700. 117231. .9855 .9999
58 17 4 TINICUM 310. 750. .5867 .9999

-------
59 17 5 IJN IONCAR 85. 705. .8794 .9999
60 18 1 SCO ITCHS 3750. 35972. .8959 •9999
61 za 2 8 p on. 2650. 33538. .nto
62 18 3 CHES IER 18000. 202955. .9 113 .9999
63 19 1 M ONSA NTO 4310. 40800. .8924 .9999
64 19 2 GL OUCN IY 2830. 9500. .7021 •9999
65 19 3 ALI IE OCH 945. 3660. .7691 .9999
66 19 4 PHOEN Ix 11. 512. .9785 .9999
67 19 5 ROL—PURL 200. *667. .8800 .9999
68 20 1 OUPCNTED 500. 3 89C0. .9871 .9999
69 20 2 8 F GOOD 590. 4758. • 8760 .9999
70 21 1 WILMNG IN 13400. *04500. .8 1 18 .9999
i i 21 2 P(NNSGRV 240. 1900. .8737 .9999
72 22 - I DUPCNTCH 14000. 170292. .9118 .9999
73 22 2 IC I AMER 4640. 17000. .7211 .9999
74 23 1, PENNSY IL 350. 2233. .8433 •9999
15 23 --2 UPEK’ISN* 230. 1911. .9800 .9999
76 24 1 SCHR1STT 130. 1048. .8 60 .9999
77 25 1 AMOCO C M 300. 2419. .8760 .9999
78 26 1 GE I IYO IL 3750. 30000. .8750 .9999
79 26 2 S INCHLOR 100. 500. .8000 .9999
80 27 1 OELACITY 36. 456. .9211 .9999
81 27 2 C lANSMA n 35. 282. .8159 .9999
82 27 3 STAUFFER 100. 635. .8425 .9999
83 28 1 SALE NCTY 395. 3150. .8746
84 29 1 PORTPENN 12. 97. .8763 .9999
SECTION FLOW REA.RATE DECAY RATE VOLUME DIFF.RATE AREA L—LOAOS F—LOADS D.O.—SAT.
C.F.S. 1.0/DAYS 1.0/DAYS CF*1.OE6 NI 2/DAY L000 •FTS *2 18./DAY 18./DAY MG 1
1 3000. 0.62 0.44 242. 0.40 6.50 68952. —12220. 8.400
2 3126. 0.34 0.44 364. 0.40 15.80 8882. 8622. 8.400
3 3234. 0.22 0.44 460. 0.40 21.40 3379. 4140. 8.400
4 3244. 0.22 0.44 532. 0.40 24.60 6024. 2700. 8.400
5 3277. 0.15 0.44 6 16. 0.40 28.50 3035. 4800. 8.400
6 3361. 0.22 0.42 156. 0.40 34.10 7623. 5040. B.4C0
7 3238. 0.22 0.42 455. 0.90 41.40 871. 890. 8.4C0
8 3262. 0.22 0 .42 504. 1.60 49.60 2180. 2125. 8.400
9 3294. 0.15 0.42 533. 2.20 51.20 9160. 2250. 8.400
10 3314. 0.15 0.42 582. 2.10 55.40 76895. 2250. 8.4C0
11 3544. 0.15 0.42 630. 3.30 60.90 19586. 5760. 8.400
12 3590. 0.12 0.42 655. 3.80 65.00 4480. 1350. 8.400
13 3595. 0.12 0.42 694. 4.40 66.00 30534. 3240. 8.4C0
14 3605. 0.19 0.42 805. 4.50 72.70 38853. 3960. 8.400
15 3610. 0.19 0.42 1860. 4.60 88.30 48539. 14100. 8.400
16 4319. 0.25 0.42 2030. 4.80 98.00 44179. 6750. 8.400
17 4748. 0.19 0.42 2184. 5.00 104.90 9708. 1 1475. 8.400
18 4861. 0.17 0.42 2396. 5.30 113.40 21440. 7200. 8.400
19 4936. 0.17 0.42 2692. 5.50 126.30 9607. 16200. 8.400
20 4968. 0.13 0.42 2932. 5.80 162.80 1527. 15750. 8.400
21 4979. 0.18 0.40 1512. 6.00 150.40 34436. 6930. 8.300
22 5298. 0.18 0.40 1574. 6.20 151.90 18105. 6000. 8.300
23 5300. 0.18 0.40 1698. 6.30 162.90 648. t305O. 8.300
24 5302. 0.18 0.40 1792. 6.40 176.80 232. L1000. 8.200
25 5305. 0.18 0.40 1850. a-” 6.50 181.70 510. 9300. 8dCO
26 5311. 0.18 0.40 1924. 6.60 188.40 4195. 12C00. 8.200
27 5321. 0.18 0.40 2054. 6.80 196.40 273. 15000. 8.100
28 5324. 0.18 0.40 2248. 6.90 214.50 3241. 15000. 8.100
29 5394. 0.18 0.40 4896. 1.00 235.00 986. 0. 8.CCO
30 5419. 0.17 0.40 5620. 7.20 256.00 924. 0. 8.C00
31 5456. 0.0 0.0 0. 1.50 307.40 0. 0. 7.900

-------
PRESENT 80 NOD IMPROVEMENT GOAL
LEV•O. 950
SEC. D.O.GOAL IMPROVEMENT D.0.SOURCE COMP.DISCN. UPPER BOUND R W LOADS PPR
I - 0.0 0.0415 MORRISVL 235. 780. 4700. .8340
1 0.0 0.0415 TREhION 1700. 5000. 34000. .8529
1 0.0 0.0415
0.0 0.1059 HAWILTON 895. 2000. 17900. .8883
2 0.0 0.1059 BORDENTN 38. 89. 767. .8840
2 0.0 0.1059 USSTEEL1 1099. 2500. 21987. .8863
2 0.0 0.1059 USSTEELS 38. 87. 150. .8840
2 0.0 0.1059 GRIFFIMP 41. 95. 819. .8840
2 q.o 0.1059 STEP8NCH 6. 15. 129. .8837
2 0.0 0.1059
3 0.0 0.1736 FLORENCE 150. 270. 2993. .9098
3 0.0 0.1736 PATERSON IS ?. 440. 3147. .8602
3 0.0 0.1736 LWRBUCKS 780. 2410. 15600. .8455
3 0.0 0.1136 PE PSN OEL 20. 20. 1150. .9826
3 0.0 0.1736
4 0.0 0.2044 8RIS OORD 250. 6 0. 5000. .8720
4 0.0 0.2044 8R 15 TWP 184. 590. 3680. .8397
4 0.0 0.2044 RONM I lnAS 2750. 2750. 93333. .9705
4 0.0 0.2044 HERCULES 120. 210. 2400. .9125
4 0.0 0.2044 8URLLCRC 24. 55. 480. .8854
4 0.0 0.2044 BUALCITY 92. 510. 1840. .7228
4 0.0 0.2044 BURL TVP 50. 1 15. 991. .8840
4 0.0 0.2044
5 0.0 0.2146 TENNECO 133. 590. 2660. .7782
5 0.0 0.2146 FALL3TWP 104 . 220. 2070. .8937
5 0.0 0.2146 BEVERLY 89. 205. 1780. .8848
5 0.0 0.2146 BURLARMY 5. 1 1. 95. .8842
5 0.0 0.2146
6 0.0 0.1735 WILLOORO 490. 490. 10450. .9531
6 0.0 0.1735 R IVERSDE 282. 310. 5633. .9450
6 0.0 0.1735 0ELRAN 79. 190. 1587. .8803
6 0.0 0.1735
0.0 0. 1110 -
a- !4
B. 0.0 0.2854 RIVERTON 43. 98. 850. .8847
8 0.0 0.2854 PALMYRA 151. 300. 3027. .9009
0.0 0 .2854
9 0.0 0 .5868 CINNANIN 205. 540. 4100. .8683

-------
9 0.0
0.5868
10
0.1000
0.9156
GEOR—PAC
580.
1620.
11600.
.0603
10
0.1000
0.9156
PHILA NE
21750.
oe oo.
435000.
.8407
10
0.1000
0.9756
PEP NSAUk
373.
1530.
7450.
.7946
10
0.1000
0.9156
11
0.7000
1.1435
NATSUGAR
839.
*800.
16178.
•8927
11
0.7000
1.1433
12
1.1000
1.2309
*3
1.2000
1.2503
AMSTAR
543.
1500.
10860.
.8619
13
1.2000
L.25C3
C A 0EN
5341.
21000.
110937.
.8107
13
1.2000
1.2503
HOLLINGS
92.
240.
1836.
.8649
13
1.2000
1.2503
NCAN OREW
5.
100.
100.
.0
13
1.2000
1.2503
PUBLICKR
65.
180.
1300.
.8615
13
1.2000
1.2503
14
1.0000
1.1613
PHILA SE
8375.
33267.
167500.
.8014
14
1.0000
1.1613
GAP CORP
100.
100.
14350.
.9930
14
1.C000
1.1613
HARSHAH
90.
260.
1792.
.8349
14
1.0000
1.1613
N J ZINC
178.
500.
3560.
.8596
14
1.0000
1.1613
15
0.5000
0.9395
ARCO OIL
2590.
2590.
61025.
.9576
15
•
0.5000
0.9395
GULF IND
2910.
2910.
64462.
.9549
15
0.5000
0.9395
GULF SAN
1.
18.
150.
.8800
15
0.5000
0.9395
TEXACO
354.
692.
7077.
.9022
15
0.5000
0.9395
FORIMIFF
2.
5.
42.
.8810
15
0.5000
0.9395
ARMYDRED
0.
1.
6.
.8150
15
0.5000
0.9395
SHELL CH
241.
520.
4810.
.8919
15
0.5000
0.9395
16
0.0
0.748L
PHILA SW
11148.
37000.
222951.
.8340
16
0.0
0.7481
MOBILOIL
1975.
4250.
39500.
.8924
16
0.0
0.7401
HOUDRYCH
21.
65.
542.
.8801
16
0.0
0.1401
ESSEX CH
16.
38.
316.
.8797
16
0.0
0.7481
OLINCORP
3*.
75.
627.
.8004
16
0.0
0.7481
17
0.0
0.5949
HERCULES
1155.
2480.
2)100.
.8926
11
0.0 -
0.5949
GIBBSTWN
84.
140.
1670.
.9162
17
0.0
0.5949
OUPCNTRP
1700.
1700.
11723*.
.9855
17
0.0
0.5949
IINICUM
38.
310.
150.
.5867
17
0.0
0.5949
UNIONCAR
35.
85.
705.
.8794
17
0.0
0.5949
a— 5
18
0.0
0.4856
SC OTTCHS
1799.
3750.
35972.
.8958
10
0.0
0.4856
s P 031
1617.
2650.
33538.
.9210
18
0.0
0.4856
CHESTER
10148.
18000.
202955.
.9113
18
0.0
0.4856

-------
19 0.0 0.3837 FONSACO 2040. 4390. 40800. .8924
19 0.0 0.3837 GL0Ut.4T 1 475. 2830. 9500. .702 !
19 0.0 0.3837 ALLILOCH 183. 845. 3660. .7691
19 0.0 0.3837 PHOENIX 1 1. 1 1. 512. .9785
19 0.0 0.3837 ROt —PURL 83. 200. 1667. .8800
19 0.0. 0.3837
20 0.0 0.3137 OUPOMTEO 500. 500. 38900. .9871
20 0.0 0.3137 8 F GOOD 238. 590. 4758. .8760
20 0.0 0.3131
21 0.0 0.2657 W ILMNGTN 5225. 13400. 104500. .8718
21 0.0 0.2657 PEMISGRV 95. 240. 1900. .8737
21 0.0 0.2657
22 00 0.2339 DUPONICH 8515. 14000. 170292. .9178
22 0.0 0.2339 IC ! AMER 850. 4640. 17000. .7271
22 0.0 0.2339
23 0.0_ 0.1994 PENN IV I I. 112. 350. 2233. .8433
23 0.0 0.1994 UPENNSNK 96. 230. 1917. .8800
23 0.0 0. 1994
24 0.0 0.1674 SCHR1STT 52. 130. 1048. .8160
.24 0.0 0.1674
25 0.0 0.1381 AMOCO CH 121. 300. 2419. .8760
25 0.0 0.1381
26 0.0 0.1121 GEITTOIL 1500. 3150. 30000. .8750
26 0.0 0.1121 STNCHL OR 25. 100. 500. .8000
26 0.0 0.1121
27 0.0 0.0888 OELAC!TY 23. 36. 456. .9211
27 0.0 0.0888 DIANSHAM 14. 35. 282. .8759
27 0.0 0.0888 STAUFFER 32. 100. 635. .8425
27 0.0 0.0888
28 0.0 0.0693 SALENCTY 157. 395. 3150. .8746
28 0.0 0.0693
29 0.0 0.0449 PORTPENN 5. 12. 97. .8763
29 0.0 0.0449 a- U
30 •0.0 0.0216

-------
INTERNED. 80 NOD IMPROVEMENT GOAL
- LEVO.990
SEC. D.0.GDAL IMPROVEMENT O.O.SOURCE COMP.DISCH. UPPER BOUND RAW LOADS PPR
1 0.0 0.0583 MORRISVL 47. 780. 4700. .8340
t 0.0 0.0583 TRENTON 340. soco. 34000. .8529
I 0.0 0.0583
2 0.0 0. 1575 HAPIL T ON 179. - 2000. 17900. .0883
2 0.0 0.1575 BORDEN1N 8. 89. 767. .8840
2 0.0 0.1575 USSTEELI 220. 2500. 21987. .8863
2 0.0 0.1575 USSTEELS 8. 87. 750. .8840
2 0.0 0. 1575 GRIFFINP 8. 15. 819. .8840
2 0.0 0.1575 STEPANCH 1. 15. 129. .8837
2 0.0 0. 1575
3 0.0 0.2581 FLORENCE 30. 270. 2993. .9098
3 0.0 0.258L PATERSCN 31. 440. 3147. .8602
3 0.0 0.2b81 LWRBUCKS 156. 2410. 15600. .8455
3 0.0 0.2581 PEPINDEL 12. 20. 1150. .9826
3 0.0 0.2581
4 0.0 0.3346 BRISBORO 50. 640. SCO O. .8720
4 0.0 0.3346 8R 15 IWP 37. 590. 3680. .8397
4 0.0 0.3346 ROHNHAAS 933. 2750. 93333. .9705
4 0.0 - 0.3346 HERCULES 24. 210. 2400. .9125
4 0.0 0.3346 BURLLCRC 5. 55. 480. .8854
4 0.0 0.3346 BURLCI IY 18. 510. 1840. .7228
4 0.0 0.3346 BURL TNP 10. 115. 991. .8840
4 0.0 0.3346
5 0.0 0.3591 TEPINECO 27. 590. 2660. .7782
5 0.0 0.3591 FALLSTWP 21. 220. 2070. .8937
5 0.0 0.3591 BEVERLY 18. 205. 1780. .8848
5 0.0 0.3591 BURLARM ? 1. 11. 95. .8842
5 0.0 0.3591
6 0.0 0.3031 WILLEORO LOS. 490. 10450. .9531
6 0.0 0.3031 RIVERSOF 56. 310. 5633. .9450
6 0.0 0.3031 DELRAN 16. 190. 1587. .8803
6 0.0 0. 3031
7 0.0 0.2900
a - V
8 0.0 0.4356 RIVERTCN 9. 98. 850. .8847
8 0.0 0.4356 PALMYRA 30. 300. 3027. .9009
B 0.0 0.4356
9 0.0 0.8391 CINNAM IN 41. 540. 4100. .0683

-------
9 0.0 0.8391
10 0.6000 1.3612 GEOR—PAC 116. 1620. 11600. .8603
10 0.6000 1.3612 PHILA NE 4350. 69300. 435000. .8407
10 0.6000 1.3612 PENNSAUK 75. 1530. - 7450. .7946
10 0.6000 1.3612
11 1.2000 1.5832 NATSUGA4 168. 1800. 16778. .8921
11 1.2000 1.5832
12 .1.6000 1.6949
13 1.7000 1.7156 AMSIAR 109. 1500. 10860. .8619
13 1.7000 1.7 156 CAPOEN 1109. 21000. 110937. .8107
13 1.7000 1.71S6 HOLLINGS 18. 248. 1836. .8649
13 1.7000 1.7156 MCANOREW 1. 100. 100. .0
13 1.7000 1.7156 PU8L ICKR 13. 180. 1300. .8615
13 1.7000 1.7156
14 1.5000 1.5952 PHILA SE 1615. 33267. 167500. .8014
14 1.SCOO 1.5952 GAP CORP 100. 100. 14350. .9930
14 1.5000 1.5952 HARSHAW 18. 260. 1792. .8549
14 1.5000 1.5952 N J ZINC 36. 500. 3560. .8596
14 1.5000 1.5952
15 1.0000 1.3085 ARCO OIL 610. 2590. 61025. .9576
15 1.C000 1.3085 GULF INO 645. 2910. 64462. .9549
15 1.0000 1.3085 GULF SAN 2. 18. 150. .8800
15 1.0000 1.3085 TE xACO 71. 692. 1077. .9022
15 l.C 000 1.3085. FO RIPIFF 0. 5. 42. .8810
15 1.0000 1.3085 ARMYORED 0. 1. 8. .8750
15 I.C000 1.3085 SHELL CH 48. 520. 4810. . 919
15 1.0000 1.3085
16 0.2000 1.0554 PHILA SW 2230. 37000. 222951. .8340
16 0.2000 1.0554 NOBILOI L 395. 4250. 39500. .8924
16 0.2000 1.0554 HOU ORYCH 5. 65. 542. .8801
16 0.2000 1.0554 ESSEX CH 3. 38. 316. .8797
16 0.2000 1.0554 OLINCORP 6. 75. 627. .8804
16 0.2000 1.0554
17 0.0 0.8643 HERCULES 231. 2480. 23 100. .8926
17 0.0 - 0.8643 G I8BSThN 11. 140. 1670. .9162
17 0.0 0.8643 OUP ONTRP 1172. 1700. 117231. .9855
17 0.0 0.8643 TINICUP 8. 310. 750. .5867
17 0.0 0.8643 UNIONCAR 7. 85. 705. .8794
17 0.0 0.8643 a- ?°
• 18 0.0 0. 7312 SCOTTCHS 360. 3750. 35912. .8958
18 0.0 0.7372 8 p OIL 335. 2650. 33538. .9210
18 0.0 0.7372 CHESTER 2030. 18000. 202955. .9113
18 0.0 0.7372

-------
19 0.0 0.5931 MOhSAtd IO 408. 4390. 40800. .8924
19 0.0 0.5931 GLCUCNTV 95. 2830. 9500. .7021
19 0.0 0.5931 ALL!EDCH 37. 845. 3660. .7691
19 0.0 0.5931 PHOENIX 5. I i. 512. .9785
19 0.0 0.5931 ROt—PURL 17. 200. 1667. .88CC
19 0.0 0.593 1
20 0.0 0.4919 DUPONTED 389. 500. 38900. .9811
20 0.0 0.49 19 8 F GOOD 48. 590. 4758. .8760
20 0.0 0.4919
21 0.0 0.4208 W ILMNGTN 1045. 13400. 104500. .8718
21 0.0 0.4208 PEhNSGRV 19. 240. 1900. .8737
21 0.0 0.4208
22 0.0 0.3733 OUPONICH 1703. 14000. 170292. .9178
22 0.0 0.3733 (C l AMER 170. 4640. 17000. .7271
22 0.0 0.3733
23 0.0 o.3198 PENNSVIL n. 350. 2233. .8433
21 0.0 0.3198 UPENN INK 19. 230. 1911. .88CC
23 0.0 0.3198
24 0.0 0.2692 SCHRIS IT 10. 130. 1048. .8160
24 0.0 0.2692
25 -0.0 0.2224 AMOCO CM 24. 300. 2419. .8760
25 0.0 0.2224
26 0.0 C . 1805 GETTYCIL 300. 3750. 30000. .8750
26 0.0 0 .1805 STNCHL OR 5. 100. 5 00. .8000
26 0.0 0.1805
27 0.0 0.1430 DELACIT ’ 5. 36. 456. .9211
27 - 0.0 0.1430 ClANSMAN 3. 35. 282. .8159
27 0.0 0.1430 STAUFF iR 6. 100. 635. .8425
27 0.0 0. 1430
28 0.0 0.11 17 SALEPC.f 32. 395. 3150. .8746
28 0.0 0.1117
29 0.0 0.0724 PORTPENN 1. 12. 97. .8 163
29 0.0 0.0724
30 0.0 0.0348

-------
FEDERAL 80 NOD IMPROVEMENT GOAL
LEV .O.990
SEC. - D.O.GOAL IMPROVEMENT D.0.SOURCE COMP.DISCH. UPPER BOUND RAW LOADS PPR
1 0.0 0.0583 MORRISVL 47. 780. 4700. .8340
1 0.0 0.0583 TRENTON 340. 5000. 34CO0. .8529
1 0.0 0.0583
2 0.0 0.1575 HAP ILTCN 179. 2000. 17900. .8883
2 0.0 0.1575 8OR OENTN 8. 89. 767. .0840
2 0.0 0.1575 USSTEEL I 220. 2500. 21987. .8863
2 0.0 0.1575 USS IEELS 8. 87 . 750. .8840
2 0.0 0.1575 GRIFFINP 8. 95. 819. .8840
2 0.0 0.1575 STEPANCH 1. 15. 129. .8837
2 0.0 0.1575
3 0.5C00 0.2581 FLORENCE 30. 270. 2993. .9098
3 0.5000 0.2581 PATERSON 31. 440. 3147. .8602
3 0.5C00 0.2581 LWRBUCKS 156. 2410. 15600. .8455
3 0.5COD 0.258 % PEt.NDEL 12. 20. 1150. .9826
3 0.5000 0.2581
4 0.8000 0.3346 8R ISRORO 50. 640. 5000. .8720
4 0.8000 0.3346 ORIS IWP 37. 590. 3680. .8397
4 0.8000 0.3346 ROI IMHAAS 933. 2750. 93333. .9705
4 0.8C00 0.3346 HERCULES 24. 210. 2400. .9125
4 0.8000 0.3346 BURLLGRC 5. 55. 480. .8854
4 0.8000 0 .3346 8URLCITY 18. 510. 1840. .7228
4 0.8000 0.3346 BURL TWP 10. 115. 991. .8840
4 0.8000 0.3346
5 1.0000 0.3591 TE iPIECO 27. 590. 2660. .7782
5 1.C000 0.359% FALLSTWP 21. 220. 2070. .8937
5 t. 0000 0.359 1 BEVERLY 18. 205. 3780. .8848
S 1.0000 0.3591 BURLARPY 1. 11. 95. .8842
5 1.0000 0.3591
6 0.9000 0.3031 WILL8 OR O 105. 490. 10450. .9531
6 0.9C00 0.303 1 RIVERSPE 56. 310. 5633. .9450
6 0.9000 0.3031 OELRAP. 16. 190. 1587. .8803
6 0.9000 0.3031
7 0.7C00 0.2900
B 0.9000 0.4356 RIVERT0P4 9. 98. 850. .8847
8 0.9000 0.4356 PALNYRA 30. 300. 3027. .9009
8 0.9000 0.4356
‘9 1.7000 0.8391 C I I INAMIM 41. 540. 4100. .8683

-------
9 1.7C00 0.8391
10 2.6C00 1.3612 GE OR—P.iC 116. 1620. 11600. .8603
10 2.6000 1.3612 P1111* P E 4350. 69300. 435000. .8407
10 2.6000 1.3612 PEF NSAUK 75. 1530. 7450. .7946
10 2.6C00 1.3612
11 3.2000 1.5832 NATSU AR 168. 1800. 16778. .8927
11 3.2000 1.5832
12 3.6000 1.6949
13 3.7000 1.7156 * STAR 109. 1500. 10860. .8619
13 3.7000 1.7156 CAPOEN 1109. 21000. 110937. .810?
13 3.7000 1.7156 HOLLINGS 18. 248. 1836. .8649
13 3.7000 1.7156 MCAN OREW 1. 100. 100. .0
13 3.7000 1.7156 PUOLICKR 13. 180. 1300. .8615
13 3.7000 1.7156
14 3.5000 1.5952 P11114 SE 1675. 33267. 167500. .8014
L I , 3.5COO 1.5952 OAF CORP 100. 100. 14350. .9930
14 - 3.5C00 1.5952 HARSHAw 18. 260. 1792. .8549
14 3.5000 1.5952 N J ZINC 36. 500. 3560. .8596
14 3.5000 1.5952
15 3.0000 1.3085 ARCO OIL 610. 2590. 61025. .9576
15 3.0000 1.3085 GULF INO 645. 2910. 64462. .9549
15 3.C OCO 1.3085 GULF SAN 2. 18. 150. .8800
15 3.0000 1.3085 TEXACO 71. 692. 7077. .9022
15 3.0000 1.3085 FORTMIFF 0. 5. 42. .8810
15 3.0000 1.3085 ARMYDRE O 0. 1. 8. .8750
15 3.C000 1.3085 SHELL Cu 48. 520. 4810. .8919
15 3.0000 1.3085
16 2.2000 1.0554 PHILA SW 2230. 37000. 222951. .8340
16 2.2000 1.0554 NOBILOIL 395. 4250. 39500. .8924
16 2.2000 1.0554 HOUDRYCH 5. 65. 542. .8801
16 2.2000 1.0554 ESSEX CH 3. 38. 316. .8797
lb 2.2000 1.0554 OLINCOMP 6. 75. 627. .8804
16 2.2000 1.0554
17 1.90C0 0.8643 HERCULES 231. 2480. 23100. .8926
17 I.90C0 0.8643 GI8CSTwN 17. 140. 1670. .9162
1? 1.9000 0.8643 DUPCP .TRP 1172. 1700. 117231. .9855
17 1.9C00 0.8643 TINICUP 8. 310. 750. .5867
17 1.9000 0.8643 UNIONCAR 7. 85. 705. .8794
17 1.9000 0.8643 a— 1
18 1.8000 0.7372 SCOTTCIIS 360. 3750. 35972. .8958
18 1.8000 0.7372 B P OIL 335. 2650. 33538. .9210
18 1.8000 0.7372 CHESTER 2030. 18000. 202955. .9113
18 1.8000 0.7372

-------
19 1.5C00 0.5931 P’ONSANTO 408. 4)90. 40800. .8924
19 1.5000 0.5931 GLOUCNEY 95. 2830. 9500. .7021
19 1.5000 0.5931 ALI IEOCH 31. e45. 3660. •7691
19 1.5000 0.5931 PHOENIX 5. 11. 512. .9785
19 1.5000 0.5931 ROL—PURL U. 200. 1667. .8800
19 1.5000 0.5931
20 1.4000 0.4919 DUPONTEO 389. 500. 38900. .9871
20 1.4000 0.4919 B F GOOD 48. 590. 4758. .8760
20 1.4000 0.4919
21 1.1000 0.4208 WILPNGTN 1045. 13400. 104500. .8718
21 1.1000 0.4208 PEIINSGRV 19. 240. 1900. .8737
21 1.1000 0.4208
22 0.9000 0.3733 OUPONTCH 1703. 14000. 170292. .9118
22 0.9000 0.3733 ICI AMER 170. 4640. 17000. •7271
22 0.9C00 0.3733
23 0.7000 0.3198 PEI NSVIL 22. 350. 2233. •8433
23 0.7000 0.3198 UPENNSNK 19. 230. 1917. .8800
23 0.7000 0.3198
24 0.5000 0.2692 SCHRISTT 10. 130. 1048. . 1760
24 0.5000 0.2692
25 0.3000 0.2224 AMOCO CM 24. 300. 2419. .8760
25 0.3000 0.2224
26 0.0 0.1805 GETTYOII. 300. 3750. 30000. .8750
26 0.0 0.1805 STHCHL OR 5. 100. 500. .8C00
26 0.0 0. 1905
27 0.0 0.1430 DELACITV 5. 36. 456. .9211
21 0.0 0. 1430 DIAMSHAI - 3. 35. 282. .8759
27 0.0 0.1430 STAUFFER 6. 100. 635. .8425
27 0.0 0.1430
28 0.0 0.1117 SALEMC 32. 395. 3130. .8746
28 0.0 0.1117
29 0.0 0.0724 P0&TPENN 1. 12. 97. .8763
29 0.0 0.0724
30 0.0 0.0348

-------
PRESENT 50 NOD IMPROVEMENT GOAL
LEV O.9O0
SEC. D.O.GOAL IMPROVEMENT D.O.SOURCE COMP.OISCH. UPPER BOUND RAW LOADS PPR
1 0.0 0.0205 MORRISVL 470. 780. 4700. .8340
1 0.0 C.0205 TRE1 .TON 3400. 5000. 34000. .8529
1 0.0 0.0205
2 0.0 0.0414 HAWILTCN 1790. 2000. 11900. .8883
2 0.0 0.0414 BORDENIN 71. 89. 767. .8840
2 0.0 0.0414 USSTEELI 2199. 2500. 21987. .8863
2 0.0 0.0414 USSTEELS 75. 87. 750. .8840
2 0.0 0.0414 GRIFFIMP 82. 95. 819. .8840
2 0.0 0.0414 STEPANCH 13. 15. 129. .8837
2 - 0.0 0.0414
3 0.0 0.0680 FLCRENCE 270. 270. 2993. .9098
3 0.0 0.0688 PATERSCN 315. 440. 311.7. .8602
3 0.0 0.0688 LhRBUCKS 1560. 2410. 15600. .8455
3 0.0 0.0688 PE NDEL 20. 20. 1150. .9826
3 0.0 0.0688
4 0.0 0.0841 BRISBORO 500. 640. 5C00. .8720
4 0.0 0.0841 BRIS IWP 368. 590. 3680. .8391
4 0.0 0.0841 R0HI HAAS 2750. 2750. 93333. .9705
4 0.0 0.0841 HERCULES 210. 210. 2400. .9125
4 0.0 0.0841 BURLLGRC 48. 55. 480. .8054
4 0.0 0.0841 OUMLCITY 184. 510. 1840. .7228
4 0.0 0.0841• BURL TNP 99. 115. 991. .8840
4 0.0 0.0841
5 0.0 0.0910 TEM EC0 266. S90. 2660. .7782
5 0.0 0.0910 FALLS IhP 207. 220. 2070. .8937
5 0.0 0.0910 BEVERLY 178. 205. 1780. .8848
5 0.0 0.0910 BURLARMV 10. 11. 95. .8842
5 0.0 0.0910
6 0.0 0.0742 WXLLB ORO 490. 490. 10450. .9531
6 0.0 0.0742 RIVERSDE 310. 310. 5633. .9450
6 0.0 0.0742 DELRAN 159. 190. 1587. .8803
6 0.0 0.0742
7 0.0 0.0770
B 0.0 0.1422 RIVERTON 85. 98. 850. .8847
8 0.0 0. 1422 PALMYRA 300. 300. 3027. .9009
8 0.0 0.1422
9 0.0 0.3095 CINNAMIN 410. 540. 4100. .8683

-------
9 0.0 0.3095
10 0.0 0.5267 GECR—PAC 1160. 1620. 11600. .8603
10 0.0 0.5267 PHILA NE 43500. 69300. 435000. .8407
10 0.0 0.5267 PEI NSAUX 745. 1530. 7450. .7946
10 0.0 0.526?
*1 0.3000 0.6263 NAISUGAR 1678. 1800. 16778. .8927
11 O.30C0 0.6263
12 0.6C00 0.6859
13 0.7C00 0.7089 A STAR 1086. 1500. 10860. .8619
13 0.7000 0.7009 CA OEN 11094. 21000. 110937. .8107
13 0.7000 0.7089 HOLLINGS 104. 248. 1836. •8649
13 0.TCOO 0.7089 MCANQREw 10. 100. 100. .0
13 0.7000 0.7089 PUBLICKR 130. 180. 1300. .8615
13 0.7000 0.7089
14 0.5000 0.6662 PHILA SE 16750. 33267. 167500. .8014
14 0.5000 0.6662 GAF CORP 100. 100. 14350. .9930
14 0.50C0 0.6662 HARSHAW 179. 260. 1792. .8549
14 0.5000 0.6662 N J ZINC 356. 500. 3560. .8596
14 0. SC O O 0.6662
15 0.0 0.5383 ARCO OIL 2590. 2590. 61025. .9576
15 0.0 0.5383 GULF IND 2910. 2910. 64462. .9549
15 0.0 0.5383 GULF SAN 15. 18. 150. .8800
15 0.0 0.5303 TEXACO 692. 692. 7077. .9022
15 0.0 0.5383 F ORTN IFF 4. 5. 42. .8810
15 0.0 0.5383 ARMYORED 1. 1. 8. .8750
15 0.0 0.5383 SHELL CH 481. 520. 4810. .8919
15 0.0 0.5383
16 0.0 0.4150 PHILA SW 22295. 37000. 222951. .8340
0.0 0.4150 M OBIL OIL 3950. 4250. 395C0. .8924
16 0.0 0.4150 HOUDRYCH 54. 65. 542. .8801
16 0.0 0.4150 ESSEX C I ’ 32. 38. 316. .8797
16 0.0 0.4150 OLINCORP 63. 75. 627. .8804
16 0.0 0.4150
17 0.0 0.3077 HERCULES 2310. 2480. 23100. .8926
17 0.0 0.3077 GI8BST 4 140. 140. 1670. .9162
17 0.0 0.3077 OUP ONT.’P 1100. 1700. 117231. .9855
11 0.0 0.30?? TIN ICU 15. 310. 750. •5867
17 0.0 0.3077 UNIONCAR 71. 85. 705. .8794
1? 0.0 0.3077
18 - 0.0 0.2218 SCOTTCHS 3S97. 3750. 35972. .8958
18 0.0 0.2218 8 P OIL 2650. 2650. 33538. .9210
18 0.0 0.2218 CHESTER 18000. 18000. 202955. .9113
18 0.0 0.2218

-------
19 0.0 0.1643 PCI SANT0 4080. 4390. 40800. .8924
19 0.0 0.1643 GLOUC ’Y 950. 2830. 9500. .7021
19 0.0 0.1643 ALLI II.CH 366. 845. 3660. .7691
19 0.0 0.164) PHOENIx 11. 11. 512. .9785
19 0.0 0.1643 ROL—PURL 167. 200. 1667. .8800
19 0.0 0.1643
20 0.0 0.1277 DUPONTED 500. 500. 38900. .9871
20 0.0 0.1277 B F GOOD 476. 590. 4758. .8760
20 0.0 0.1277
21 0.0 0.1047 WILMNGTN 10450. 13400. 104500. .8718
21 0.0 0.1047 Pfl NSG Rv 190. 240. 1900. .8737
21 0.0 0.1047
22 0.0 0.0903 DUPONTCH 14000. 14000. 170292. .9178
22 0.0 0.0903 ICI AMER 1700. 4640. 17000. .7271
22 0.0 0.0903
23 0.0 0.0759 PE NSVIL 223. 350. 2233. .8433
23 0.0 0.0759 (JPENNSNK 192. 230. 1917. .8800
23 0.0 0.0759
24 0.0 0.0630 SCHRISTT 105. 130. 1048. .8760
24 0.0 0.0630
25 0.0 0.0516 AMOCO CH 242. 300. 2419. .8760
25 0.0 0.0516
26 0.0 0.0416 GETTYOIL 3000. 3750. 30000. .8750
26 0.0 0.0416 STP CHLOR 50. 100. 500. • BCOO
26 0.0 0.0416
27 0.0 0.0328 DELACITY 36. 36. 456. .9211
2? 0.0 0.0328 DIA ShAM 28. 35. 282. .8759
27 0.0 0.0328 STAUFFER 64. 100. 635. .8425
27 0.0 0.0328
28 0.0 0.0255 SALENCTY 315. 395. 3150. .8746
28 0.0 0.0255
29 0.0 0.0164 PORTPENN 10. 12. 97. .8763
29 0.0 0.0164
30 0.0 0.0079

-------
INTERNED. 50 NOD IMPROVEMENT COAL
LEV SO. 950
SEC. 0.0.GOAL IMPROVEMENT 0.0.S0URCE COMP.OISCH. UPPER BOUND RAW LOADS PPR
1 0.0 0.0415 MORRISVL 235. 780. 4100. .040
1 0.0 0.0415 TRENTON 1700. 5000. 34000. .0529
1 0.0 0.0415
2 0.0 0.1059 NAPILTON 895. 2000. 11900. .8883
2 0.0 0.1059 BORDENTN 38. 89. 767. .8840
2 0.0 0.1059 USSTEELI 1099. 2500. 21987. .8863
2 0.0 0.1059 USSTEELS 38. 87. 750. .8840
2 0.0 0 .1059 CR IFFINP 41. 95. 819. .8840
2 0.0 0. 1059 STEPANCH 6. 15. 129. .8837
0.0 0.1059
3 0.0 0.1736 FLORENCE flU. 270. 2993. .9098
3 0.0 0.1736 PATERSON 157. 440. 3141. .8602
3 0.0 0.t736 LWR8UCKS 780. 2410. 15600. .8455
3 0.0 0.1736 PEkNDEL 20. 20. 1150. .9826
3 0.0 0.1736
4 0.0 0.2044 BR LSBORO 250. 640. 5000. .8720
4 0.0 0.2044 DM5 fkP 184. 590. 3680. .8397
4 0.0 0.2044 RDHP ’t4AAS 2750. 2750. 93333. .9705
4 0.0 0.2044 HERCULES 120. 210. 2400. .9125
4 0.0 0.2044 BURLLGRC 24. 55. 480. .8854
4 0.0 0.2044 BURICITY 92. 510. 1840. .7228
4 0.0 0.2044 BURL ThP 50. 115. 991. .8840
4 0.0 0.2044
5 0.0 0.2146 TEtINECO 133. 590. 2660. .7182
5 0.0 0.2146 FALLST P 104. 220. 2070. .8937
5 0.0 0.2146 BEVERLY 89. 205. 1780. .8848
5 0.0 0.2146 8URLARNY 5. 11. 95. .8842
5 0.0 0.2146
6 0.0 0 .1735 WILL BOR O 490. 490. 10450. .9331
6 0.0 0.1735 RIVERSOE 282. 310. 5633. .9450
6 0.0 0 .1735 DELRAN 79. 190. 1587. .8803
6 0.0 0.1735
7 0.0 0 .1710
a-3C
8 0.0 0.2854 RIVERTCN 43. 98. 850. .8847
8 0.0 0 .2854 PALMYRA 151. 300. 302 ?. .9009
8 0.0 0.2854
9 0.0 0.5868 CIMNAMIN 205. 540. 4100. .8683

-------
9 0.0 0.5868
10 0.2000 0.9756 GECR—PAC 580. 1620. 11600. .8603
10 0.2000 0.9756 PHILA NE 21750. 69300. 435000. .8407
10 0.2000 0.9756 PEkNSAUK 373. 1530. 7450. .7946
10 0.2000 0.9756
11 0.8000 1.1435 NATSUGAR 839. 1800. 16778. .8927
11 0.8000 1.1435
12, 1.1C OO. 1.2309
13 1.2000 1.2503 A STAR 543. 1500. 10860. .8619
13 1.2000 1.2503 CAPOEN 5547. 21000. 110937. .8107
13 1.2000 1.2503 HCLLINGS 92. 246. 1836. .8649
13 1.2000 1.2503 NCAN OREw 5. 100. 100. .0
13 1.2000 1.250) PUBLIC.(R 65. 180. 1300. .8615
13 1.2000 1.2503
14 1.0000 1.1613 PHILA SE 8375. 33267. 167500. .8014
14 1.0000 1.1613 OAF CCFP 100. 100. 14350. .9930
14 1.0000 1.1613 HARSH’ W 90. 260. 1792. .8549
14 1.0000 1.1613 N J ZINC 178. 500. 3560. .8596
14 1.C000 1.1613
15 0.5000 0.9395 ARCO OIL 2590. 2590. 61025. .9576
15 0.5000 0.9395 GULF IND 2910. 2910. 64462. .9549
15 0.5000 0.9395 GULF SAN 7. 18. 150. .8800
15 0.5C00 0.9395 TEXACO 354. 692. 7077. .9022
15 0. SCOO 0.9395 FORTHIFF 2. 5. 42. .8810
15 0.5000 0.9395 ARPYDRED 0. 1. 8. .8750
1 5 0.5000 0.9395 SHELL CH 241. 520. 4810. .8919
15 0.5000 0.9395
16 0.0 0.7481 PHILA SW 11148. 37000. 222951. .8340
16 0.0 0.7481 NOBILOIL 1975. 4230. 39500. .8924
16 0.0 0.7481 HOUDRYCH 27. 65. 562. .8801
16 0.0 0.7481 ESSEX CH 16. 38. 316. .8797
16 0.0 0.7481 OLINCORP 31. 75. 627. .6804
16 0.0 0.7481
17 0.0 0.5949 HERCULES 1155. 2480. 23100. .8926
L i 0.0 0.5949 GI8RSThN 84. 140. 1670. .9162
17 0.0 0.5949 OUPCNTRP 1700. 1700. 117231. .9855
17 0.0 0.5949 TINICUM 38. 310. 750. .5867
17 0.0 0.5949 UNIONCAR 35. 85. 705. .8794
11 0.0 0.5949
18 0.0 0.4056 SC OTTCHS 1799. 3750. 35972. .8958
18 0.0 0.4856 B P OIL 1677. 2650. 33538. .9210
18 0.0 0.4856 CHESTER 10148. 18000. 202955. - .9113
18 0.0 0.4856

-------
19 0.0 0.383? MONSAN IO 2040. 4390. 408C0. .9924
19 0.0 0.3837 GLCIJCNY 475. 2830. 9500. .7021
19 0.0 0.3831 ALLIE’CH 183. 845. 3660. .7691
19 0.0 0.3837 PNOE 1X 11. 11. 512. .9785
19 0.0 0.3837 ROL—PURL 83. 200. 1667. .8800
19 0.0 0.383?
20 0.0 0.3137 DUPOI4TEO 500. 500. 38900. .9871
20 0.0 0.3137 0 F GOOD 238. 590. 4758. .8760
20 0.0 0.313?
21 0.0 0.2657 WILMNGTN 5225. 13400. 104500. .8718
21 0.0 0.2657 PEI NSGRV 95. 240. 1900. .8737
21 0.0 0.265?
22 0.0 0.2339 DUPONTCH 8515. 14000. 170292. .9178
22 0.0 0.2339 Id AMER 850. 4640. 17000. .7211
22 0.0 0.2339
23 0.0 0.1994 PEP N5VIL 112. 350. 2233. .8433
23 0.0 0.1994 UPENNSNK 96. 230. 1917. .8800
23 0.0 0.1994
24 0.0 0.1874 SCNRIS IT 52. 130. 1048. .8760
24 0.0 0.1674
25 0.0 0.1381 LUOCO CH 121. 300. 2419. .8760
25 0.0 0. 1381
26 0.0 0.1 121 GETTYO IL 1500. 3750. 30000. .8750
26 0.0 0.1121 ST? CHL0R 25. 100. 500. .8000
26 0.0 0.1121
27 0.0 0.0888 DELACITY 23. 36. 456. .9211
27 0.0 0.0888 DIA SHAM 14. 35. 292. .8759
27 0.0 0.0888 STAUFFER 32. 100. 635. .8425
2? 0.0 0.0888
28 0.0 0.0693 SALENCTY 1 51. 395. 3150. .8746
28 0.0 0.0693
29 0.0 0.0449 PQRTPENN 5. 12. 97. .8763
29 0.0 0.0449
30 - 0.0 0.0216

-------
FEDERAL SO NOD IMPROVEKENT GOAL
LEVO. 990
SEC. 0.O.GOAL IMPROVEMENT D.O.SOURCr COMP.DISCH. UPPER BOUND RAW LOADS PPR
1 0.0 0.0583 M000ISVL 47. 780. 4700. .8340
1 0.0 0.0583 TR(NTOt 340. 5000. 34000. .B529
1 0.0 0.0583
2 0.0 0.1575 HA ILTO’l 179. 2000. 179C0. .8883
2 0.0 0.1575 8000EHTN 8. 89. 767. .8840
2 0.0 0.1575 USSTEkL I 220. 2500. 21987. .8863
2 0.0 0.1575 USSTEELS a. 87. 750. .8840
2 0.0 0.1575 GRIFFINP 8. 95. 819. .8840
2 0.0 0.1575 STEPANCH 1. 15. 129. .8837
2 0.0 0.1575
3 0.4000 0.2581 FLCRENCE 30. 270. 2993. .9098
3 0.40C0 0.2581 PATERSON 31. 440. 3147. .8602
3 0.4000 0.2581 LWR OUCKS 156. 2410. 15600. .e455
3 0.4000 0.2581 PE1i OE1 12. 20. 1150. .9826
3 0.4000 0.2581
4 O.6b00 0.3346 BRISBORO 50. 640. 5C00. .8720
4 0.6000 0.3346 8015 ThP 37. 590. 3600. .8397
4 0.6000 0.3346 ROHIIIAAS 933. 2750. 93333. .9705
4 0.6000 0.3346 HERCULES 24. 210. 2400. .9125
4 0.6000 0.3346 8URLLGRC 5. 55. 480. .8854
4 0.6000 0.3346 BURLCIIY 18. 510. 1840. .7228
4 0.6000 0.3346 BURL TWP 10. 115. 991. .8840
4 0.6000 0.3346
5 0.9000 0.3591 TEM EC0 27. 590. 2660. .7782
S 0.9C00 0.3591 FALLSTWP 21. 220. 2070. .8937
S 0.9000 0.3591 BEVERLY 18. 205. 1780. .8848
S 0.9000 0.3591 8URLAR.P’Y 1. 11. 95. .8842
S 0.9C00 0.3591
6 0.7000 0.3031 WILLB000 105. 490. 10450. .9531
6 0.7000 0.3031 RIVERSDE 56. 310. 5633. .9450
6 0.7000 0.3031 DELOAN 1 6. 190. 1587. .8803
6 - O.7CCO 0.3031
7 0.5000 0.2900
S - O.7COO 0.4356 RIVERTCN 9. 98. 850. .8847
8 0.7000 0.4356 PALMYRA 30. 300. 3027. •9009
8 0.1000 0.4356
9 1.4000 0.8391 CINNAMIN 41. 540. 4100. .8683

-------
9 1.’.000 0.8391
10 2.2000 1.3612 GEOR—F 116. 1620. 11600. .8603
10 2.2000 1.361? PHILA iE 4350. 69300. 435C00. .8407
10 2.2000 1.3612 PEP NSAUK 75. 1530. 7450. .7946
10 2.2C00 1.3612
IL 2.8000 1.5032 NATSUGAR 168. 1800. 16778. .8927
11 2.8000 1.5832
12 3.1000 1.6949
13 3.2000 1.7156 ANSTAR 109. 1500. 10860. .8619
13 3.2000 1.7156 CAPD N 1109. 21000. 110937. .8107
13 3.2000 1.7156 HOLLINGS 18. 248. 1836. .8649
13 3.2000 1.7156 MCANOREW 1. 100. 100. .0
13 3.2000 1.7156 PUBLICKR 13. 180. 1300. .8615
13 3.2000 1.7156
14 3.C000 1.5952 PHILA SE 1675. 33267. 167500. .8014
14 3.C000 1.5952 GAF CORP 100. 100. 14350. .9930
14 3.0000 1.5952 HARSHAW 18. 260. 1792. .8549
14 3.0000 1.5952 N J ZINC 36. 500. 3560. .8596
14 3.0000 1.5952
15 2.5000 1.3085 ARCO OIL 610. 2590. 61025. .9576
15 2.5C00 L.308S GULF INO 645. 2910. 64462. .9549
15 2.5C00 1.3085 GULF SAN 2. 18. 150. .BRC O
15 2.5000 1.3085 TEXACO 71. 692. 7077. .9022
15 2.5C00 1.3005 FORTNIFF 0. 5. 42. .8810
15 2.5000 1.3085 AR Y0REO 0. 1. 8. .8750
15 2.5C00 1.3085 SHELL CH 48. 520. 4810. .8919
15 2.5000 1.3085
16 1.7CCO 1.0554 PHILA SW 2230. 37000. 222951. .8340
16 1.7000 1.0554 MOBI1OIL 395. 4250. 39500. .8924
16 1.TCOO 1.0554 HOUDRYCH 5. 65. 542. .8801
16 1.7000 1.0554 ESSEX CM 3. 38. 316. .8797
16 1.7000 1.0554 OLINCORP 6. 75. 627. .8804
16 1.7000 1.0554
17 1.4000 0.8643 HERCULES 231. 2480. 23100. .8926
17 1.4000 0.8643 GI8BSTb.N I?. 140. 1670. .9162
17 1.4000 0.8643 OUPCNTRP 1112. 1700. 117231. .9855
17 1.4000 0.8643 TINICUN 8. 310. 750. .5867
17 1.4000 0.8643 UNIONCAR 7. 85. 705. .8794
17 1.4000 0.8643
18 1.2000 0.7372 SCOTTCHS 360. 3750. 35972. •8958
18 1.2000 0.7372 0 P OIL 335. 2650. 33538. .9210
18 1.2000 0.7372 CHESTER 2030. 18000. 202955. .9113
18 1.2000 0.7372

-------
19 1.0000 0.5931 MONSANTO 408. 4390. 40800. .8924
19 1.0000 0.5931 GLCUChIY 95. 2830. 9500. .7021
19 1.0000 0.5931 ALLI(UCH 37. 845. 3660. .7691
19 1.0000 0.5931 PHOENIX 5. 11. 512. .9785
19 L.C000 0.5931 ROL-PURL iT. 200. 1667. .8800
19 1.0000 0.5931
20 0.8000 0.4919 OUPONTED 389. 500. 38900. .9871
20 0.8000 0.4919 B F GCCO 48. 590. 4758. .8760
20 0.8000 0.4919
21 v.6000 0.4208 WILMNGTN 1045. 13400. 104500. .8718
21 0.6000 0.4208 PENNSGRV 19. 240. 1900. .8737
21 0.6000 0.4208
22 0.5000 0.3733 DUPONTCH 1703. 14000. 170292. .9178
22 0.5000 0.3733 ICI AMER 170. 4640. 17000. .7271
22 0.5000 0.3733
23 0.3000 0.3198 PEP.NSVIL 22. 350. 2233. .8433
23 O.30C0 0.3198 UPENNSNK 19. 230. 1917. .8800
23 0.3000 0.3198
24 0.2000 0.2692 SCHRISTT 10. 130. 1048. .8760
24 0.2000 0.2692
25 0.0 0.2224 A 0C0 CH 24. 300. 2419. .8760
25 0.0 0.2224
26 0.0 0.1805 GETTYCIL 300. 3750. 30000. .8750
26 0.0 0.1805 STNCHLOR 5. 100. 500. .8000
26 0.0 0.1805
21 0.0 0.1430 OELA ITY 5. 36. 456. .9211
21 0.0 0.1430 0 A HAM 3. 35. 282. .8759
27 0.0 0.1430 STAUFFER 6. 100. 635. .8425
27 0.0 0.1430
28 0.0 0.1117 SALENCTY 32. 395. 3150. .8746
28 0.0 0.1117
29 0.0 0.0724 P ORTPENN 1. 12. 97. .8763
29 0.0 0.0724 a— 1
30 - 0.0 0.0348

-------
PRESENT 15 NOD IMPROVEMENT GOAL
LEV .0.840
SEC. O.0.CCAL IMPROVEMENT D.O.SOuRCE CONP.OISCH. UPPER BOUND RAW LOADS PPR
1 0.0 0.0003 MORRISVL 752. 780. 4700. .8340
1 0.0 0.0003 TREI TCN 5000. 5000. 34000. .8529
1 0.0 0.0003
2 0.0 0.0005 HAMILTON 2000. 2000. 17900. .8883
2 0.0 0.0005 BOROENTN 89. 89. 767. .8840
2 0.0 0.0005 USSTEELI 2500. 2500. 21987. .8863
2 0.0 0.0005 USSTEELS 87. 87. 750. .8840
2 0.0 0.0005 GR IFFINP 95. 95. 819. .88(10
2 0.0 0.0005 STEPAPICH 15. 15. 129. .8837
2 0.0• 0.0005
3 0.0 0.0006 FLCR(NCE 270. 270. 2993. .9098
3 0.0 0.0006 PATERSCN (140. 4 ( 10. 31’.7. .8602
3 0.0 0.CC O6 LVR BUCkS 2410. 2410. 15600. .8455
3 0.0 0.0006 PE NDEL 20. 20. 1150. .9826
3 0.0 0.0006
4 0.0 0.0045 BRISBORO 6(10. 640. 5C00. .8720
4 0.0 0.0045 BRIS TwP 589. 590. 3680. .8397
4 0.0 0.0045 ROHMHAAS 2750. 2750. 93333. .9705
4 0.0 0.00 ( 15 HERCULES 210. 210. 2400. .9125
4 0.0 0.0045 8uRLLCRC 55. 55. 480. .8854
4 0.0 0.0045 8URLCITY 294. 510. 1840. .7228
4 0.0 0.0045 BURL ThP 115. 115. 991. .8840
4 0.0 0.0045
5 0.0 O.CO91 TEM EC0 426. 590. 2660. .7782
5 0.0 0.C091 FALLSThP 220. 220. 2070. .8937
5 0.0 0.C091 BEVERLY 205. 205. 1780. .a8 ( 1e
5 0.0 0.0091 BURLARMY 11. 11. 95. .8842
5 0.0 0.0091
6 0.0 0.0086 WILLBORO 490. 490. 10450. .9531
6 0.0 0.C086 RIVERSDE 310. 310. 5633. .9450
6 0.0 0.0086 OELRAN 190. 190. 1587. .8803
6 0.0 0.0086
7 0.0 0.0080
8 0.0 0.0101 RIVERTCN 98. 98. 850. .8847
8 0.0 0.0101 PALMYRA 300. 300. 3027. •9C 09
B 0.0 0.0101
9 0.0 0.0184 CINNANIN 540. 540. 4100. .8683

-------
9 0.0 0.0184
10 0.0 0.0335 GECR—PAC 1620. 1620. 11600. .8603
10 0.0 0.0335 PHIL ..F 69300. 69300. 435C00. .8407
10 0.0 0.0335 PEPtNS I.k 1192. 1530. 7450. .7946
10 0.0 0.0335
11 0.0 0.0548 NATSUGAR 1800. 1800. 16778. .8927
11 0.0 0.0548
12 0.0 0.0822
13 0. ICO O C.1 089 APSTAR 1500. 1500. 10860. .8619
13 0.1000 0.1089 CA 0EN 17750. 21000. 110937. .8107
13 0.1000 0.1089 HOLLINGS 248. 248. 1836. .8649
13 0.1000 0.1089 MCANUREW 16. 100. 100. .0
13 0. ICO O 0.1089 PUBLICKR 180. 180. 1300. .8615
13 0. 1000 0. 1089
14 0.0 0.1198 PHILA S 26800. 33267. 167500. .8014
14 0.0 0.1198 GAF CORP 100. 100. 14350. .9930
14 0.0 0.1198 HARSIIAW 260. 260. 1792. .8549
14 0.0 0.1198 N J ZIP C 500. 500. 3560. .8596
14 0.0 0.1198
15 0.0 0.1051 ARCC OIL 2590. 2590. 61025. .9576
is o.o 0.1051 GULF 1110 2910. 2910. 64462. .9549
15 0.0 0.1051 GULF SAN 18. 18. 150. .8800
15 0.0 0.1051 TEXACO 692. 692. 7071. .9022
15 0.0 0.1051 FORTMIFF 5. 5. 42. .8810
15 0.0 0.1051 ARMY0R D 1. 1. 8. .8750
15 0.0 0.1051 SHELL CH 520. 520. 4810. .8919
0.0 0.1051
16 0.0 0.0777 PHILA Sw 35612. 37000. 222951. .8340
16 0.0 0.0717 MOBILOI I. 4250. 4250. 39500. .8924
16 0.0 0.0777 HOUDRYCH 6 . 65. 542. .8801
16 0.0 0.0777 ESSEX CH 38. 3d. 316. .8797
16 0.0 0.0777 0LINCCRP 75. 75. 627. .8804
16 0.0 0.0777
Li 0.0 0.0583 HERCULES 2480. 2480. 23100. .8926
17 0.0 0.0583 GI8BST N 140. 140. 1670. .9162
17 0.0 0.0583 DUPOP .TRP 17C0. 1700. 117231. .98 S 5
11 0.0 0.0583 T IP .ICUM 120. 310. 750. .5867
17 0.C 0.0583 UNIONCAR 85. 85. 705. .8794
17 0.0 0.0583
18 0.0 0.0449 SC OTTCHS 3750. 3750. 35972. .8958
18 0.0 0.0449 B P OIL 2650. 2650. 33538. .9210
18 0.0 0.0449 CHESTER 18000. 18000. 202955. .9113
18 0.0 0.0449

-------
19 0.0 0.0379 - P0I%SANIO 439Q. 4390. 40800. .8924
19 0.0 0.0379 GLCUCNTY 1520. 2830. 9500. .7021
19 0.0 0.0379 ALLIEOCH 586. 845. 3660. .7691
19 0.0 0.0379 PHOENIX 11. 11. 512. .9785
19 0.0 0.0379 ROL—PURL 200. 200. 1667. .8800
19 0.0 0.0379
20 0.0 0.0314 DUPONTED 500. 500. 38900. .9871
20 0.0 0.0314 8 F GOOD 590. 590. 4758. .8760
20 0.0 0.0314
21 0.0 0.0268 W IL NGTN 13400. 13400. 104500. .8718
21 0.0 0.0268 PENNSGRV 240. 240. 1900. .8737
21 0.0 0.0268
22 0.0 0.0241 DUPCNTCI4 14000. 14000. 170292. .9178
22 0.0 0.0241 IC! AMER 2720. 4640. 17000. .7271
22 0.0 0.0241
23 0.0 0.0207 PEf NSv1L 350. 350. 2233. .8433
23 0.0 0.0207 UPENNSNX 230. 230. 1917. .8800
23 0.0 0.0207
24 0.0 0.0173 SCHRISTT 130. 130. 1048. •8760
24 0.0_ 0.0173
25 0.0 0.0141 AMOCO C I I 300. 300. 2419. .8760
25 0.0 0.0141
26 0.0 0.0112 GETTYO II. 3750. 3750. 30000. .8750
26 0.0 0.0112 STNCNLOR 80. 100. 500. .8000
26 0.0 0.0112
27 0.0 0.008? OELACITY 36. 36. 456. .9211
2? - 0.0 0.0087 OI A MSH*H 35. 35. 282. .8759
27 0.0 0.0087 STAUFFER 100. 100. 635. .8425
27 0.0 0.008?
28 0.0 0.0067 SALENCTY 395. 395. 3150. .8746
28 0.0 0.C067
29 0.0 0.0043 P ORTPEhN 12. 12. 97. .8763
29 0.0 0.0043
30 0.0 0.0020

-------
INTERNED. 15 NOD IMPROVEMENT GOAL
LEv—o. o o
SEC. D.O.GOAL IMPROVEMENT rQ.SOURCE COMP.OISCH. UPPER BOUND RAW LOADS PPR
I - 0.0 0.0163 MORRISVL 51?. 780. 4700. .8340
1 0.0 0.0163 TREhT ON 3740. 5000. 34000. .8529
1 0.0 0.0163
2 0.0 0.0285 HA ILT0N 1969. 2000. 17900. .8883
2 0.0 0.0285 8 OROEPITN 84. 89. 767. .8840
2 0.0 0.0285 USSTEELI 2419. 2500. 21907. .8863
2 0.0 0.0285 USSIEELS 82. 87. 750. .8840
2 0.0 0.0285 GRIFFINP 90. 95. 819. .8840
2 0.0 0.0285 SIEPANCH 14. 15. *29. .8837
2 0.0 0.0285
3 0.0 0.0483 FLCREI CE 270. 270. 2993. .9098
3 0.0 0.0483 PATERSON 346. 440. 3147. .8602
3 0.0 0.0483 LWRBUCKS 1716. 2410. 15600. .845
3 0.0 0.0403 PEM’IDEI 20. 20. 1150. .9826
3 0.0 0.0483
4 0.0 0.0609 ORISBORO 550. 640. 5000. .8720
4 0.0 0.0609 BRIS IhP 405. 590. 3680. .8397
4 0.0 0.0609 R0HI HAAS 2750. 2750. 93333. .9705
4 0.0 0.0609 HERCULES 210. 210. 2400. .91 25
4 0.0 0.0609 BURLLCI C 53. 55. 480. .8B 4
4 0.0 0.0609 BURLCI IY 202. 510. 1840. .7220
4 0.0 0.0609 BUi L TWP 109. 115. 991. .8840
4 0.0 0.0609
5 0.0 0.0674 TEM .EC O 293. 590. 2660. .7782
S 0.0 0.0674 FALLSTwP 220. 220. 2070. .8937
5 0.0 0.0674 BEVERLY 196. 205. 1780. .8848
5 0.0 0.0674 8URLARNY 10. 1 1. 95. .8842
- 5 0.0 0.0674
6 0.0 0.0554 W!LLB ORO 490. 490. 10450. .9531
6 0.0 0.0554 R IVERSDE 310. 310. 5633. •945 0
6 0.0 0.0554 DELRAN 175. 190. 1587. .8803
6 0.0 0.0554
7 0.0 0.0592
8 0.0 0.1149 RIVERTON 93. 98. 850. .8847
• 0.0 0.1149 PALNYRA 300. 300. 3021. •9C09
• 0.0 0.1149
9 0.0 0.2555 CINNAMIN 451. 540. 4100. .8683

-------
9 0.0 0.2555
10 0.0 0.4386 GEOR—PAC 1276. 1620. 11600. .8603
10 0.0 0.4386 PHILA HE 47850. 69300. 435000. •8407
10 0.0 - 0.4386 PEhNSAIJ K 820. 1530. 7450. .7946
10 0.0 0.4386
11 0.3000 0.5247 NATSUGAR 1800. 1800. 16778. .8927
11 0.3000 0.5247
12 0.5000 0.5790
13 0.60 00 0.6029 AVSTAR 1195. 1500. 10860. .8619
13 0.6000 0.6029 CAPDEN 12203. 21000. 110937. .8107
13 0.6000 0.6029 HOLLINGS 202. 248. 1836. .8649
13 0.bCC O 0.6029 MCA 14DREW 1 1. 100. 100. .0
13 0.6000 0.6029 PU BLICKR 143. 180. 1300. .8615
13 0.6000 0.6029
14 0.3000 0.5697 PHILA SE 18425. 33267. 167500. .8014
14 0.3000 0.5697 GAF CORP 100. 100. 14350. .9930
14 0.3CCO 0.5697 HARSHAi. 197. 260. 1792. .8549
14 0.3000 0.569? N .5 Z1tC 192. 500. 3560. .8596
14 0.3000 0.569?
15 0.0 0.4613 ARCO OIL 2590. 2590. 61025. .9516
15 0.0 0.4613 GULF IPID - 2910. 2910. 64462. .9549
15 0.0 0.4613 GULF SAM 16. 18. 150. .8800
15 0.0 0.4613 TEXACO 692. 692. 707?. .9022
is o.o 0.4613 FCRTM1FF 5. 5. 42. .8810
15 0.0 0.4613 . ARMYDRED 1. 1. 8. .8750
15 0.0 0.4613 SHELL C It 520. 520. 4810. .8919
IS 0.0 0.4613
16 0.0 0.3538 PHILA SW 24525. 37000. 222951. .8340
16 0.0 0.3538 MOBILOIL 4250. 4250. 34500. .8924
16 0.0 0.3518 HOUDRYCH 60. 65. 542. .8801
16 0.0 0.3538 ESSEX C i i 35. 38. 316. .8791
16 0.0 0.3538 ULINCOMP 69. 75. 621. .8804
16 0.0 0.3538
17 0.0 0.2606 HERCULCV 2480. 2480. 23100. .8926
1? 0.0 0.2606 CIBAST iN 140. 140. 1670. .9162
17 0.0 0.2606 OUPON1RP 1100. 1700. 117231. .9855
17 0.0 0.2606 TEkICUM 82. 310. 750. .5867
17 0.0 0.2606 UNIONCAR 78. 85. 705. .8794
17 0.0 0.2606 a-tic
18 0.0 0.1863 SCOTTCHS 3750. 3750. 35972. .8958
18 0.0 0.1863 8 P OIL 2650. 2650. 33538. .9210
18 0.0 0.1863 CHESTER 18000. 15000. 202955. .9113
18 0.0 0. 1863

-------
19 0.0 0.1368 MONSANTO 4390. 4390. 40800. .8924
19 - 0.0 0.1360 GLOUCNTY 1045. 2830. 9500. .7021
19 0.0 0.1368 ALLIEDCH 403. 845. 3660. .7691
- 19 0.0 . 0.1368 PHOENIX 11. 11. 512. .9785
19 0.0 0.1368 ROL—PURL 183. 200. 1667. •8800
19 0.0 0.1368
20 0.0 0.1050 DUP ONTEO 500. 500. 38900. .9871
20 0.0 0.1050 8 F GOOD 523. 590. 4758. .8760
20 0.0 0.1050
21 0.0 0.0854 WILMNGTN 11495. 13400. 104500. .8718
21 0.0 0.0854 PEI NSGRV 209. 240. 1900. .8737
21 0.0 0.0854
22 0.0 0.0735 DUPONTCH 14000. 14000. 170292. .9178
22 0.0 0.0735 IC! AMER 1870. 4640. 17000. .7271
22 0.0 0.0735
23 0.0 0.0616 PEI NSVIL 246. 350. 2233. .8433
23 0.0 0.0616 UPENNSNK 211. 230. 1917. .8800
23 0.0 0.0616
24 0.0 0.0510 SCHRISTT 115. 130. 1048. .8760
.24 0.0 0.0510
25 0.0 0.0415 AMOCO CH 266. 300. 2419. .8760
25 0.0 0.0415
26 3.0 0.0332 GETTYO IL 3300. 3750. 30000. .8750
26 0.0 0.0332 STNCHL0R 55. 100. 500. .8000
26 0.0 0.0332
27 0.0 0.0261 0ELACtT 36. 36. 456. .9211
27 0.0 0.0261 DIANSHAN 31. 35. 282. .8759
27 0.0 0.0261 STAUFFIR 70. 100. 635. .8425
27 0.0 0.0261
28 0.0 0.0202 SALENC1 346. 395. 3150. .8746
28 0.0 0.0202
29 - 0.0 0.0130 P ORTPENN 11. 12. 97. .8763
29 0.0 0.0130
30 - 0.0 0.0062

-------
FEDERAL t5 NOD IMPROVEMENT GOAL
LEV.O. 990
SEC. D.O.GOAL IMPROVEMENT D.O.SOURCE COMP.D 1SCH. UPPER BOUND RAW LOADS PPR
1 0.0 0.058) MORRUSVL 47. 780. 4700. .8340
1 0.0 0.0583 TRENTON 340. 3000. 34000. .8529
1 0.0 0.0583
2 0.0 0.1515 HAMILTON 179. 2000. 17900. .8883
2 0.0 0.1575 BOROENTN 8. 89. 167. .8840
2 0.0 0.1575 USSTEELI 220. 2500. 21987. .8863
2 0.0 0. 1515 USSTEELS 8. 81. 150. .6840
2 0.0 0.1575 GR IFFINP 8. 95. 819. .8840
2 0.0 0.1575 STEPANCH 1. 15. 129. .8837
2 0.0 0.1575
3 0.3000 0.2581 FLORENCE 30. 270. 2993.
3 0.3000 0.2581 PATERSON 31. 440. 3141. .8602
3 0.3000 0 .2581 LWR BUCKS 156. 2410. 15600. .8455
3 0.3000 0.2581 PEhNOEL 12. 2D. 1150. .9826
3 0.3000 0.2581
4 0.5C00 0.3346 BRISBORO 50. 640. 5000. .8720
4 0.5000 0 .3346 BRIS ThP 31. 590. 3680. .8397
4 0.5C00 0.3346 ROHPH*AS 933. 2750. 93333. .9705
4 0. SCO O 0.3346 HERCULES 24. 210. 2400. .9125
4 0.5000 0.3346 8URLLGRC 5. 55. 480. .8854
4 0.5000 0.3346 BURLCITY 18. 510. 1840. .1228
4 0.5000 0.3346 BURL TWP 10. 115. 991. .8840
4 0.5000 0.3346
5 0. 1000 0.3591 TENNECO 27. 590. 2660. .7782
5 0.1000 0.3591 FALLSTWP 21. 220. 2010. .8937
5 0.7000 0.3591 BEVERLY 18. 205. 1780. .8848
5 0. I OCO 0.3591 8URLARNV 1. 11. 95. .8842
5 0.1000 0.3591
6 0.5000 0.3031 WILLBORO 105. 490. 10450. .9531
6 0.5000 0.3031 R IVERSOE 56. 310. 5633. .9450
6 0.5000 0.3031 DELPAN 16. 190. 1587. .8803
6 0.5000 0 .3031
7 0.3000 0.2900
a-
8 0.4000 0.4356 RIVERTON 9. 98. 850. .8847
8 0.4000 0 .4356 PALMYRA 30. 300. 3027. .9009
B 0.4000 0.4356
9 1. 1000 0.8391 CINNAMIN 41. 540. 4100. .8683

-------
9 1.1000 0.8391
10 1.0000 1.3612 GEOR—P .. . 116. 1620. 11600. .8603
10 1.8000 1.3612 PHILA NE 4350. 69300. 435000. .8407
10 1.8000 1.3612 PEI INSAUk 75. 1530. 7450. .7946
10 1.8000 1.3612
11 2.3000 1.5832 NAISUGAR 168. 1800. 16778. .8927
11 2.3000 1.5832
12 2.5000 1.6949
13 2.6C00 1.7156 A STAR 109. 1500. 10860. .8619
13 2.6000 1.7156 CAPOEN 1109. 21000. 110931. .810?
13 2.6000 1.7156 HOLLINGS 18. 248. 1836. .8649
13 2.6000 1.1156 MCANDREW 1. 100. 100. .0
13 2.6000 1.7156 PU0LICKR 13. L80. 1300. .8615
13 2.6000 1.7156
14 2.3C00 1.5952 911116 SE 1675. 33267. 167500. .80L4
14 Z.30C0 L.5952 GAF CORP 100. 100. 14350. .9930
14 2.3COO 1.5952 HARSHAW 18. 260. 1792. .8549
14 2.3000 1.5952 N J ZINC 36. 500. 3560. .8596
14 2.3000 1.5952
15 1.9C00 1.3085 ARCO OIL 610. 2590. 61025. .9576
15 1.9C00 1.3085 GULF IND 645. 2910. 64462. .9549
15 1.9000 1.3005 GULF SAN 2. 1$. 150. .8800
15 l.9C00 1.3085 tEXACO 71. 692. 7017. .9022
15 1.9000 1.3085 F0RT ’IFF 0. 5. 42. .8810
15 1.9C00 1.3005 ARNYDRED 0. 1. 8. .8750
15 1.9C00 1.3005 SHELL CH - 48. 520. 4810. .8919
15 L.9C00 1.3085
16 1.1000 1.0554 P11116 SW 2230. 37000. 222951. .8340
16 1.1000 1.0554 MOBILOI1. 395. 4250. 39500. .8924
16 1.10CC 1.0554 HOUCRYCH 5. 65. 542. .aoot
16 1.1000 1.0554 ESSEX CH 3. 38. 316. .8797
16 1.1000 1.0554 OL INCORP 6. 75. 627. .8804
16 1.1000 1.0554
17 0.8C00 p8.0643 HERCULES 231. 2480. 23100. .8926
11 0.8000 0.8643 GI0BST N 1?. 140. 1670. .9162
17 0.8000 0.8643 DUPCNTRP 1172. 1700. 117231. .9055
17 0.8000 0.0643 TINICUM 8. 310. 750. .5867
17 0.0000 0.8643 UNIONCAR 7. 85. 705. .8794
1? 0.8000 0.8643
18 0.5000 0.7372 SC OTTCHS 360. 3750. 35972. .8958
18 0.5000 0.7372 8 P CIL aIs’I 335. 2650. 33538. .9210
18 0.5000 0.7372 CHESTER 2030. 18000. 202955. .9113
10 0.5000 0.7372

-------
19 0.3000 0.5931 MONSANTO 408. 4390. 40800. .8924
19 0.3000 0.5931 GL OuCN TY 95. 2830. 9500. .7021
19 0.3000 0.5931 ALL IE OCH 37. 845. 3660. .7691
19 0.3000 0.5931 PHOENIX 5. 11. 512. .9785
19 0.30CC 0.5931 ROL —PuRL 17. 200. 1667. .8800
19 0.3000 0.5931
20 0.2000 0.4919 OUPONTED 389. 500. 38900. .9871
20 0.2000 0.4919 B F GOOD 40. 590. 4758. .8760
20 0.2000 0.4919
21 0.1000 0.4208 WIL NG1N 1045. 13400. 104500. .8718
21 0. 1000 0.4208 PEP NSGRV 19. 240. 1900. .8737
21 0.1000 0.4208
22 0.0 0.3133 OUPCNTCH 1703. 14000. 170292. .9178
22 0.0 0.3733 ICI AMER 170. 4640. 17000. .7271
22 0.0 0.3733
23 0.0 0.3198 PEPJ4SVJI. 22. 350. 2233. .8433
23 0.0 0.3198 UPENN5M. 19. 230. 1917. .8800
23 0.0 0.3198
24 0.0 0.2692 SCHRISTT 10. 130. 1048. .8760
24 - 0.0 - 0. 2692
25 0.0 0.2224 AMOCO CM 24. 300. 2419. .8760
25 0.0 0.2224
26 0.0 0.1805 GETTYO IL 300. 3750. 30000. .8750
26 0.0 0.1805 STNCHLOR 5. 100. 500. .8C00
26 0.0 0. 1805
27 0.0 0.1430 OELACITY 5. 36. 456. .9211
27 0.0 0.1430 OI*MSHAM 3. 35. 282. .8759
27 0.0 0.1430 STAUFFER 6. 100. 635. .8425
27 0.0 0.1430
28 0.0 0.11t7 SALENCTY 32. 395. 3150. .8746
28 0.0 0.1111
29 0.0 0.0724 PORTPENN 1. 12. 91. .8163
29 0.0 0.0724
30 0.0 0.0348

-------
NUMBER OF SOURCES READ IN • 84
N NAME FILE CODE - POP.SERVEO
SIC DATE R S UOD U BOUND ORBC
tj./DAY LB./DAY ALLOC.
FLOW SEC ZONE H/I ST. COMPILATION
MCD DATE
IMORRISVL
6913
0.
0
51573
4700.
780.
780.
0.0
1
2
1
1
51573
2TRENTON
0
0.
0
51573
34000.
5000.
5000.
0.0
1
2
1
2
51573
3HANILTON
7012
0.
0
51573
17900.
2000.
2000.
0.0
2
2
1
2
51573
4 8 0RDENTN_
0
0.
0
51573
767.
89.
89.
0.0
2
2
1
2
51573
SUSSTEELI
0
0.
3312
51573
21987.
2500.
2500.
0.0
2
2
2
1
51573
6USSTEELS
0
0.
0
51573
750.
87.
87.
0.0
2
2
2
1
51573
7GRIFFIP4P
7119
0.
0
51573
819.
95.
95.
0.0
2
2
2
2
51573
8STEPANCH
7127
0.
0
51573
129.
15.
15.
0.0
2
2
2
2
51573
9FLCRENCE
0
0.
0
51573
2993.
270.
270.
0.0
3
2
1
2
51573
1OPATERSON
6920 -
0.
2649
51573
3147.
440.
440.
0.0
3
2
2
1
51573
I1LWRBUCKS
6905
0.
0
51573
15600.
2410.
2410.
0.0
3
2
1
1
51573
12PENN OEL
0
0.
0
51573
1150.
20.
20.
0.0
3
2
1
1
51573
I3BRISBORO
6914
0.
0
51573
5000.
640.
640.
0.0
4
2
1
1
51573
I4BRIS TWP
6906
0.
0
51573
3680.
590.
590.
0.0
4
2
1
1
51573
15ROHMHAAS
7133
0.
2821
51573
93333.
2750.
2750.
0.0
4
2
2
1
51573
16HFRCULES
7014
0.
2800
51573
2400.
210.
210.
0.0
4
2
2
2
51573
I7BURLLGRC
7010
0.
0
51573
480.
55.
55.
0.0
4
2
1
2
51573
I8BURLCITY
6912
0.
0
51573
1840.
510.
510.
0.0
4
2
1
2
51573
I98URL TWP
7009
0.
0
51573
991.
115.
115.
0.0
4
2
1
2
51573
20TEF NECO
7112
0.
2800
51573
2660.
590.
590. .
0.0
5
2
2
2
51573
2 IFALLSTWP
0
0.
0
51573
2010.
220.
220.
0.0
5
2
1
1
51573
22BEVERLY
7011
0.
0
51573
1780.
205.
205.
0.0
5
2
1
2
51573
23BIJRLARMY
7124
0.
0
51573
95.
11.
11.
0.0
5
2
1
2
51573
24bSILLBORO
7013
0.
0
51573
10450.
490.
490.
0.0
6
2
1
2
51573
2SR IVERSDE
0
0.
0
51573
5633.
310.
310.
0.0
6
2
1
2
51573
2BCELRAN
0
0.
0
51573
1587.
190.
190.
0.0
6
2
1
2
51573
27RIVERT ON 0 0.
0 51573 450. 98. 98.
a— 51
0.0 8 3 1 2 73

-------
28PALMYRA 0
29CINNAP 1 IN 0
306ECR—PAC 7018
3 IPHILA NE 7001
32PENNSAUK 7118
33NATSUGAR 6935
3 4ANSTAR 0
3SCAIDEN 0
36HOLLINGS 0
37 C ANCREW 0
38PIJBLICI(R 7005
39PNILA SE 7003
4CGAF CORP 0
4IIARSHAW 7111
42N J ZINC 7120
43ARCO OIL 6922
446ULF IND 6916
4SGULF SAN 6915
4bTEXACO 7107
4TFORTMIFF 7004
48ARPYCREO 7104
‘.9SHELL CR 7206
SOPH 116 SW 7002
51 0BILO1L 6932
S2HCUDRYCH - 0
53ESSEX CR 0
5401 INC ORP 0
SSHERCULES 7015
S6G I8BSTWN 0
SJOUPCNTRP 6929
0. 0 51573 3
0. 0 51573 4100.
0. 2631 51573 11600.
0. 0 51573 43 5C00.
0. 0 51573 7450.
0. 2062 51573 16778.
0. 0 51573 10860.
0. 0 51573 110931.
0. 0 51573 1836.
0. 2631 51573 100.
0. 2085 51573 1300.
0. 0 51573 167500.
0. 0 51573 14350.
0. 2819 51573 1792.
0. 2816 51573 3560.
0. 2911 51573 61025.
0. 2911 51573 64462.
0. 0 51573 150.
0. 2911 51573 7077.
0. 0 51573 42.
0. 0 51573 8.
0. 2822 51573 48:0.
0. 0 51573 222951.
0. 2911 51573 39500.
0. 0 51573 . 2.
0. 0 51573 316.
0. 0 51573 627.
0. 2800 51573 23100.
0. 0 51573 1670.
0. 2819 51573 117231.
300.
300.
0.0
8
3
1
2
515
540.
540.
0.0
9
3
1
2
51573
1620.
1620.
0.0
10
3
2
2
51573
69300.
69300.
0.0
10
3
1
1
51573
1530.
1530.
0.0
10
3
1
2
51573
1800.
1800.
0.0
11
3
2
1
51573
1500.
1500.
0.0
13
3
2
2
51573
21000.
21000.
0.0
13
3
1
2
51573
248.
248.
0.0
13
3
2
2
51573
100.
100.
0.0
13
3
2
2
51573
180.
180.
0.0
13
3
2
1
51573
33267.
33267.
0.0
14
3
1
1
51573
100.
100.
0.0
14
3
2
2
51573
260.
260.
0.0
14
3
2
2
51573
500.
500.
0.0
14
3
2
2
51573
2590.
2590.
0.0
15
4
2
1
51573
2910.
2910.
0.0
15
4
2
1
51573
18.
18.
0.0
15
4
2
1
51573
692.
692.
0.0
13
4
2
2
51573
5.
5.
0.0
15
4
1
1
51573
1.
1.
0.0
15
4
2
1
51573
520.
520.
0.0
15
4
2
2
51573
37000.
37000.
0.0
16
4
1
1
51573
4250.
4250.
0.0
16
4
2
2
51573
65.
65.
0.0
16
4
2
2
51573
38.
38.
0.0
16
4
2
2
51573
75.
75.
0.0
16
4
2
1
51573
2480.
2480.
0.0
17
4
2
2
51573
140.
140.
0.0
17
4
1
2
51573
1700.
1700.
0.0
17
4
2
2
51573
58TINICUN 0 0.
0 51573 750. 310. 310.
0.0 17 4 1 1

-------
59UNI ONCAR 0 0.
0 51513 705. 85. 85.
0.0 17 4 2 1 51573
6OSCOTTCHS 7006
0.
2621
51573
35972.
3750.
3750.
0.0
18
4
2
1
51573
618 P OIL 6911
0.
2911
51573
33538.
2650.
2650.
0.0
18
4
2
1
51573
62CHESTER 6923
0.
0
51573
202955.
18C00.
18C00.
0.0
18
4
1
1
51573
63MONSAPITO 7016
0.
2818
51373
40800.
4390.
4390.
0.0
19
4
2
2
51573
6 GL0UCNTY 7132
0.
0
51573
9500.
2830.
2830.
0.0
19
4
1
2
51573
b5ALLIECCH 6901
0.
2819
51573
3660.
845.
845.
0.0
19
5
2
3
51573
66PHOENIX 6908
0.
3300
51573
512.
11.
11.
0.0
19
5
2
3
51573
67R0L—PURL 7205
0.
0
51573
1667.
200.
200.
0.0
19
5
2
2
51573
68DUPONTED 7115
0.
0
51573
389CC.
500.
500.
0.0
20
5
2
3
51573
698 F GOOD 6880
0.
0
51573
4758.
590.
590.
0.0
20
5
2
2
51573
TOWILMNGTN 6902
0.
0
51573
104500.
13400.
13400.
0.0
21
5
1
3
51573
71PE1 NSGRV 6928
0.
0
51573
1900.
240.
240.
0.0
21
5
1
2
51573
72OUPONTCH 6931
0.
2818
51573
170292.
14000.
14000.
0.0
22
5
2
2
51573
731C1 AMER 7008
0.
2818
51573
17000.
4640.
4640.
0.0
22
5
2
3
51573
74PENNSVIL 6927
0.
0
51573
2233.
350.
350.
0.0
23
5
1
2
51573
7SUPEINSNK 7121
0.
0
51573
1917.
230.
230.
0.0
23
5
1
2
51573
76SCHRISIT 7201
0.
0
51573
1048.
130.
130.
0.0
24
3
1
3
51573
77AMOCO CH 0
0.
o
51573
2419.
300.
300.
0.0
25
5
2
3
51573
7BGETTYOIL 7101
0.
2911
51573
30C00.
3750.
3750.
0.0
26
3
2
3
51573
79STNC14LOR 0
0.
0
51573
500.
100.
100.
0.0
26
5
2
3
51573
BODELACITY 7208
0.
0
51573
46.
36.
36.
0.0
27
5
1
3
51573
8 IC IAMSHAM - 7209
0.
0
51573
282.
35.
35.
0.0
27
5
2
3
51573
62STAUFFER 0
0.
0
51513
635.
100.
100.
0.0
27
5
2
3
51573
83SALEPCTY 7122
0.
0
51573
3i 0.
395.
395.
0.0
28
5
1
2
51573
B4PORTPERN 7176
0.
0
51573
97.
12.
12.
0.0
29
5
1
3
51573
a- 5

-------
THIS DATA WAS COLLECTED ON 51573
ZONE 2
ZONE TOTAL 8830. ZONE RESERVE 981. TOTAL ALLOWED 9811.
SECTION NAME FILE NO RAW hOD U BOUND ORBC NEW hOD REMOVAL
ALLOC. ALLOC.
I MORRISVL 6913 ‘.700. 780. 780. 201. 83.4
1 TRENTON 0 34000. 5000. 5C00. 1’.57. 85.3
2 I AMILTON 7012 17900. 2000. 2C00. 767. 88.8
2 BORDENTN 0 767. 89. 89. 33. 88.4
2 USSTEELI 0 21987. 2500. 2500. 942. 88.6
2 USSTEELS 0 750. 87. 8?. 32. 88.4
2 CRIFFLNP 7119 P 1 9. 95. 95. 35. 88.4
2 STEPANCH 7127 129. 15. 15. 6. 88.4
3 FLORENCE 0 2993. 270. 270. 128. 91.0
3 PATERSON 6920 3147. 440. ‘.40. 135. 86.0
3 LWRBUCKS 69C5 15600. 2410. 2410. 668. 84.6
3 PENNCEL 0 1150. 20. 20. 20. 98.3
4 8RISBORO 6914 5000. 640. 640. 214. 87.2
4 BRIS TWP 6906 3680. 590. 590. 158. 84.0
4 ROHMI-AAS 7133 93333. 2750. 2750. 2750. 97.1
4 HERCULES 7014 2400. 210. 210. 103. 91.3
4 BURLLGRC 7010 480. 55. 55. 21. 88.5
4 BURLCITY 6912 1840. 510. 510. 79. 72.3
4 BURL TWP 7009 991. 115. 115. 42. 88.4
5 TENNECO 7112 2660. 590. 590. 114. 77.8
5 FALLSTWP 0 2070. 220. 220. 89. 89.4
S BEVERLY 7011 1780. O5. 205. 76. 88.5
S BURLARMY 7124 95. 11. 11. 4. 88.4
6 WILLBORO 7013 10450. 490. 490. 448. 95.3
6 RIVERSDE 0 5633. 310. 310. 241. 94.5
6 OELRAN 0 1387. 190. 190. 68. 88.0
ZONE 2 TUTALS 235941. 20392. 20592. 8830. 91.3
PERCENT REMOVAL RECUIRED TO MEET NEW ALLOC. • 95.7
PERCENT REMOVAL ACHIEVED • 96.)
a-5

-------
THIS DATA A5 COLLECTED ON 51573
ZONE 3
ZONE TOTAL 35042. LONE RESERVE 3894. TOTAL ALLOWED 36936.
SECTION NANE FILE ND RAW UOD U BOUND DRBC NEW UOO REMOVAL
ALLOC. ALLOC.
B RIVERTON 0 850. 98. 98. 38. 88.5
8 PALNYRA 0 3027. 300. 300. 136. 90.1
9 CINNA IN 0 4100. 540. 540. 184. 86.8
10 GEOR—PAC 7016 11600. 1620. 1620. 522. 86.0
10 PHILA NE 7001 435000. 69300. 69300. 19570. 84.1
10 PENNSAUX 7118 7450. 1530. 1530. 335. 79.5
ii NATSUGAR 6935 16778. 1800. 1800. 755. 89.3
13 ANSTAR 0 10860. 1500. 1500. 489. 86.2
13 CAMOEN 0 110937. 21000. 21000. 4991. 81.1
13 HOLLINGS 0 1836. 248. 248. 83. 86.5
13 MCANCREW 0 100. 100. 100. 4. 0.0
13 PU8L1C R 7005 1300. 180. 180. 58. 86.2
14 PHILA SE 7003 1675C0. 33267. 33267. 7536. 80.1
14 OAF CORP 0 14350. 100. 100. 100. 99.3
14 HARSHAW 7111 1792. 260. 260. 81. 85.5
14 N J ZINC 7120 3560. 500. 500. 160. 86.0
ZONE S TOTALS 791040. 132343. 132343. 35042. 63.3
PERCENT REMOVAL RECUIRED TO MEET NEW ALLOC. • 95.5
PERCENT REPOVAL ACHIEVED — 95.6
a-S S

-------
THIS DATA WAS COLLECTED ON 51573
ZONE 4
ZONE TOTAL 34607. ZONE RESERVE 3845. TOTAL ALLOWED 38452.
SECTION NAME FILE NO RAW UOD U BOUND DRBC NEW UOD REMOVAL
ALLOC. ALLOC.
15 ARCO OIL 6922 61025. 2590. 2590. 2590. 95.8
15 GULF IND 6916 64462. 2910. 2910. 2834. 95.5
15 GULF SAN 6915 150. 18. 18. 88.0
15 TEXACO 7107 7077. 692. 692. 311. 90.2
15 FORTHIFF 7004 42. 5. 5. 2. 88.1
15 ARMYCRED 7104 8. 1. 1. 0. 87.5
15 SIIEL CH 7206 4810. 520. 520. 212. 89.2
16 PHIIA SW 7002 222951. 37000. 37000. 9803. 83.4
16 MOBILOIL 6932 39500. 4250. 4250. 1737. 89.2
16 HOUDRYCH 0 542. 65. 65. 24. 88.0
16 ESSEX CH 0 316. 38. 38. 14. 88.0
16 OL INCORP 0 627. 75. 75. 28. 88.0
17 HERCULES 7015 23100. 2480. 2480. 1016. 89.3
17 GIBBSTWN 0 1670. 140. 140. 73. 91.6
17 DUPGNTRP 6929 117231. 1700. 1700. 1700. 98.5
17 TINICUM 0 750. 310. 310. 33. 58.7
17 UNIONCAR 0 705. 85. 85. 31. 87.9
18 SCOTTCHS 7C06 35972. 3750. 3750. 1582. 89.6
18 B P OIL 6911 33538. 2650. 2650. 1475. 92.1
18 CHESTER 6923 202955. 18000. 18000. 8924. 91.1
19 PONSANTO 7016 40800. 4390. 4390. 1794. 89.2
19 GLOUCNTY 7132 9500. 2830. 2830. 418. 70.2
ZONE 4 TOTALS 867731. 84499. 84499. 34607. 90.3
PERCENT REMOVAL REQUIRED TO MEET NEW ALLOC. s 95.6
PERCENT REMOVAL ACI 11VED • 96.0

-------
ThIS DATA WAS COLLECTED ON 51573
LONE S
ZONE TOTAL 16053. lONE RESERVE 1784. TOTAL AtLOWED 17837.
SECTION HARE FILE NO RAW UQO U BOUND DRBC NEW UOD REMOVAL
ALLOC. ALLOC.
19 ALLIEDCH 6901 3660. 845. 845. 164. 76.9
19 PNOENIX 6908 512. 11. I i. 1 1. 91.9
19 P01—PuRL 7205 1667. 200. 2C0. 75. 88.0
20 CUPONIED 7115 389C0. 500. 5CC. 500. 96.7
20 B F GOOD 6880 4758. 590. 590. 213. 87.6
21 WILMNGIN 6902 104500. 13400. 13400. 4687. 87.2
21 P€NNSGRV 6928 19C0. 240. 240. 85. 81.4
22 DUPCNTCH 6931 170292. 14000. 14C00. 7638. 91.8
22 1CI AMER 7C08 17000. 4640. 4640. 762. 17.7
23 PCNNSVIL 6927 2233. 350. 350. 100. 84.3
23 UPENNSNK 1121 1917. 230. 230. 86. 86.0
24 SCHRISTT 1201 1046. 130. 130. 47. 87.6
25 AMOCO CH 0 2419. 300. 300. 108. 87.6
26 GETIYDIL 7101 30000. 3750. 3750. 1346. 87.5
26 STNCI LOR 0 5C0. 100. 100. 22. 80.0
27 OELACITY 7208 456. 36. 36. 20. 92.1
27 CIANSHAM 7209 282. 35. 35. 13. 87.6
27 STAUFFER 0 635. 100. 100. 28. 84.3
28 SALENCTY 7122 3150. 395. 395. 141. 87.5
29 PORTPENN 7176 97. 12. 12. 4. 87.6
ZONE S TOTALS 385926. 39664. 39664. 16053. 89.7
PERCENT REMOVAL REQUIRED TO MEET HEW ALLOC. — 95.5
PERCENT REMOVAL ACHIEVED s 95.6
?—c7

-------
SECTION FLOW REA.RATE DECAY RATE VOLUME DIFF.RATE AREA L—LOAOS F—LOADS 0.0.—SAT.
C.F.S. 1.OIDAYS 1.0/DAYS CFS I.0E6 M I 2/DAY I000SFTS’2 18./DAY 18./DAY MCFL
1 30CC. 0.62 0.44 242. 0.40 6.50 68952. —12220. 8.400
2 3126. 0.34 0.44 364. 0.40 15.80 8882. 8622. 8.400
3 3234. 0.22 0.44 460. 0.40 21.40 3379. 4140. 8.400
4 3244. 0.22 0.44 532. 0.40 24.60 6024. 2700. 8.400
5 3277. 0.15 0.44 636. 0.40 28.50 3035. 4800. 8.400
6 3367. 0.22 0.42 756. 0.40 34.10 7623. 5040. 8.400
7 3230. 0.22 0.42 455. 0.90 41.40 877. 890. 8.4C0
8 3262. 0.22 0.42 504. 1.60 49.60 2780. 2125. 8.400
9 3294. 0.15 0.42 533. 2.20 51.20 9160. 2250. 8.400
10 3314. 0.15 0.42 582. 2.70 55.40 76895. 2250. 8.400
11 3544. 0.15 0.42 630. 3.30 60.90 19586. 5760. 8.400
12 3590. 0.12 0.42 655. 3.80 65.00 4480. 1350. 8.400
13 3595. 0.12 0.42 694. 4.40 66.00 30534. 3240. 0.400
14 3605. 0.19 0.42 805. 4.50 12.70 38853. 3960. 8.4C0
15 3670. 0.19 0.42 1860. 4.60 88.30 48539. 14700. 8.400
16 4379. 0.25 0.42 2030. 4. 0 98.00 44779. 6750. 8.400
17 4748. 0.19 0.42 2184. 5.00 104.90 9708. 11475. 8.400
18 4861. 0.17 0.42 2396. 5.30 113.40 27440. 7200. 8.400
19 4936. 0.17 0.42 2692. 5.50 126.30 9607. 16200. 8.400
20 4968. 0.13 0.42 2932. 5.80 142.80 1527. 15750. 0.400
21 4979. 0.18 0.40 1512. 6.00 150.40 34416. 6930. 8.3C0
22 5298. 0.18 0.40 1574. 6.20 151.90 18705. 6000. 8.300
23 5300. 0.10 0.40 1698. 6.30 162.90 648. 13050. 8.300
24 5302. 0.18 0.40 1792. 6.40 176.80 232. 11C00. 0.200
25 5305. 0.18 0.40 1850. 6.50 181.70 510. 9300. 8.200
26 5311. 0.18 0.40 1924. 6.60 188.40 4195. 12COO. 8.200
27 5321. 0.18 0.40 2054. 6.80 196.40 273. 15000. 8.LCO
28 5324. 0.18 0.40 2248. 6.90 214.50 3247. 15000. 8.100
29 5394. 0.18 0.40 4896. 7.00 23S.00 986. 0. 8.000
30 5419. 0.17 0.40 5620. 7.20 254.00 924. 0. 8.000
31 5456. 0.0 0.0 0. 7.50 307.40 0. 0. 7.900

-------
SECTION 1973 RASE 1973 DRBC PANG 1973
00 PROFILE DO PROFILE DO PROFILE
INCREMENT RESULT INCREMENT RESULT
1 8.C000 0.0 8.0000 0.0445 8.0445
2 6.TCOO 0.0 6.7000 0.1151 6.8151
3 6.0000 0.0 6.0000 0.1887 6.1887
4 5.7C00 0.0 5.7000 0.2218 5.9218
5 5.5000 0.0 5.5000 0.2325 5.7325
6 5.6000 0.0 5.6000 0.1893 5.7893
7 5.8C00 0.0 5.8000 0.1855 5.9855
8 5.6000 0.0 5.6000 0.3038 5.9038
9 4.8CCO 0.0 4.8000 0.6180 5.4180
10 3.9C00 0.0 3.9000 1.02)4 4.9234
11 3.3C00 0.0 3.3000 1.1978 4.4978
2.9C00 0.0 2.9000 1.2879 4.1879
13 2.8000 0.0 2.8000 1.3069 4.1069
14 3.0000 0.0 3.0000 1.2135 4.2135
15 3.5000 0.0 3.5000 0.9828 4.4828
16 ‘..30C0 0.0 4.3000 0.7857 5.0857
17 4.6C00 0.0 4.6000 0.6290 5.2290
18 4.7C00 0.0 4.7000 0.5188 5.2188
19 5.0000 0.0 5.0000 0.4118 5.4118
20 5.1000 0.0 5.1000 0.3)75 5.4375
21 5.3000 0.0 5.3000 0.286’. 5.5864
22 5.6000 0.0 5.6000 0.2524 5.8524
23 5.8000 0.0 5.8000 0.2154 6.0154
24 5.9C00 0.0 5.9000 0.1809 6.0809
25 6.2C00 0.0 6.2000 0.1492 6.3492
26 6.4000 0.0 6.4000 0.1211 6.5211
27 6.6C00 0.0 6.6000 0.0959 6.6959
28 6.8000 0.0 6.8000 0.0749 6.8749
29 7.1000 0.0 7.1000 0.0486 7.1486
30 7.6000 0.0 7.6000 0.0234 7.6234
I—c,)

-------
THIS DATA WAS COLLECTED ON 51573
ZONE 2
ZONE TOTAL 2125. ZONE RESERVE 236. TOTAL ALLOWED 2361.
SECTION NAME FILE NO RAW (300 U BOUND ORBC NEW (300 REMOVAL
ALLOC. ALLOC.
I NORRISVL 6913 47CC. 780. 780. 42. 83.4
1 TRENTON 0 34000. 5000. 5C00. 306. 85.3
2 HAMILTON 7012 17900. 2000. 2C00. 161. 88.8
2 BORDENTN 0 767. 89. 89. 7. 88.4
2 USSTEELI 0 21987. 2500. 2500. 198. 88.6
2 U SSTEELS 0 750. 87. 87. 7. 88.4
2 GRIFFINP 7119 819. 95. 95. 7. 88.4
2 STEPANCH 7127 129. 15. 15. 1. 88.4
3 FLORENCE 0 2993. 270. 270. 27. 91.0
3 PATERSON 6920 3147. 440. 440. 28. 86.0
3 LWKBUCKS 6905 15600. 2410. 2410. 141. 84.6
3 PEP4NDEL 0 1150. 20. 20. 10. 98.3
4 BRIS8ORO 6914 5000. 640. 640. 45. 87.2
4 BRIS TWP 69C6 3680. 590. 590. 33. 84.0
4 ROHMHAAS 7133 93333. 2750. 2750. 841. 97.1
4 HERCULES 7014 2400. 210. 210. 22. 91.3
4 BURLLGRC 7010 480. 55. 55. 4. 88.5
4 8URLCITY 6912 1840. 510. 510. 17. 72.3
4 BURL TWP 7009 991. 115. 115. 9. 88.4
5 TENNECO 7112 2660. 590. 590. 24. 77.8
5 FALLSTWP 0 2070. 220. 220. 19. 89.4
5 BEVERLY 7011 1780. 205. 205. 16. 88.5
5 BURLARMY 7124 95. 11. 11. 1. 88.4
6 W ILL8ORO 7013 10450. 490. 490. 94. 95.3
6 RIVERSDE 0 5633. 310. 310. 51. 94.5
6 OELRAN 0 1587. 190. 190. 14. 88.0
ZONE 2 TOTALS 235941. 20592. 20592. 2125. 91.3
PERCENT REMOVAL REQUIRED TO MEET NEW ALLOC. • 99.1
PERCENT REMOVAL ACHIEVED • 99.1
1 -r.n

-------
THIS DATA WAS COLLECTED ON 51573
ZONE 3
ZONE TOTAL 7081. ZONE RESERVE 787. TOTAL ALLOWED 7868.
SECTION NAME PILE NO RAW UOO U BOUND DR BC NEW UOO REMOVAL
ALLOC. ALLOC.
8 RIVERION 0 850. 90. 98. 8. 88.5
8 PALMYRA 0 3027. 300. 300. 27. 90.1
9 CINNAMIN 0 4100. 540. 540. 37. 86.0
10 GEOR—PAC 7018 11600. 1620. 1620. 104. 86.0
10 PHILA NE 7001 435000. 69300. 69300. 3910. 84.1
10 PENNSAUK 7118 7450. 1530. 1530. 67. 79.5
11 NA1SU IAR 6935 16778. 1800. 1800. 151. 89.3
13 ANSTAR 0 10860. 1500. 1500. 98. 86.2
13 CAMDEN 0 110937. 21000. 21000. 997. 81.1
13 HOLLINGS 0 1836. 248. 248. 17. 86.5
13 PCANCREW 0 100. 100. 100. 1. 0.0
13 PUBLICKR 7005 1300. 180. 180. 12. 86.2
14 PHILA SE 1003 1675CC. 33267. 33267. 1506. 80.1
14 GAF CORP 0 14350. 100. 100. 100. 99.3
14 HARSHAW 7111 1792. 260. 260. 16. 85.5
14 N J ZINC 7120 3560. 500. 500. 32. 86.0
ZONE 3 TOTALS 791040. 132343. 132343. 7081. 83.3
PERCENT REMOVAL REQUIRED TO MEET NEW ALLOC. • 99.1
PERCENT REMOVAL ACHIEVED • 99.1
a— r i

-------
THIS DATA WAS COLLECTED ON 51573
ZONE 4
ZONE TOTAL 7810. ZONE RESERVE 868. TOTAL ALLOWED 8678.
SECTION NAME FILE NO RAW UOD U BOUND ORBC NEW UOD REMOVAL
ALLOC. ALLOC.
15 ARCO OIL 6922 61025. 2590. 2590. 549. 95.8
15 GULF IND 6916 64462. 2910. 2910. 580. 95.5
13 GULF SAN 6915 150. 18. 18. 1. 88.0
15 TEXACO 7107 7077. 692. 692. 64. 90.2
15 FCRT ’IFF 7004 42. 5. 5. 0. 88.1
15 AR YCRED 7104 8. 1. 1. 0. 87.5
15 SHELL CH 7206 4810. 520. 520. 43. 89.2
16 PHILA SW 7002 222951. 37000. 37000. 2007. 83.4
16 MOBILOIL 6932 395C0. 4250. 4250. 356. 89.2
16 HOUDRYCI4 0 542. 65. 65. 5. 88.0
16 ESSEX CH 0 316. 38. 38. 3. 88.0
16 OLINCORP 0 627. 75. 75. 6. 88.0
17 HERCULES 7015 23100. 2480. 2480. 208. 89.3
17 GI BBSTWN 0 1670. 140. 140. 15. 91.6
17 DUPONTRP 6929 117231. 1700. 1700. 1055. 98.5
17 TINICUM 0 750. 310. 310. 7. 58.7
17 UNIONCAR 0 705. 85. 05. 6. 87.9
18 SCOTTCHS 7006 35972. 3750. 3750. 324. 89.6
18 8 P OIL 6911 33530. 2650. 2630. 302. 92.1
18 CHESTER 6923 202955. 18000. ieooo. 1827. 91.1
19 MONSANTO 7016 40800. 4390. 4390. 367. 89.2
19 GLOUCNTY 7132 9500. 2830. 2030. 86. 70.2
ZONE 4 TOTALS 867731. 84499. 84499. 7810. 90.3
PERCENT REMOVAL REQUIRED TO MEET NEW ALLOC. • 99.1
PERCENT REMOVAL ACHIEVED • 99.1

-------
THIS DATA WAS COLLECTED ON 31573
ZONE 5
LONE TOTAL 3474. ZONE RESERVE 386. TOTAL ALLOWED 3860.
SECTION NAME FILE NO RAW UOD U BOUND CRBC NEW U0D REMOVAL
- ALLOC. At.LOC.
19 ALLIEOCH 6901 3660. 845. 845. 33. 76.9
19 PHOENIX 6908 512. 11. 11. 5. 97.9
19 ROL—PURL 7205 1667. 200. 200. 15. 88.0
20 OUPONTED 7115 30900. 500. 500. 350. 98.7
20 B F GOOD 6800 4758. 590. 590. 43. 87.6
21 WILMNGTN 6902 104500. 13400. 13400. 941. 87.2
21 PENNSGRV 6928 1900. 240. 240. 17. 87.4
22 DUPONTCH 6931 170292. 14000. 14000. 1533. 91.8
22 ICI AMER 7008 17000. 4640. 4640. 153. 72.7
23 PENNSVIL 6927 2233. 350. 350. 20. 84.3
23 UPENNSNK 7121 1917. 230. 230. 17. 88.0
24 SCHRISTT 7201 1048. 130. 130. 9. 87.6
25 AMOCO CH 0 2419. 300. 300. 22. 87.6
26 GETTYOIL 7101 30000. 3750. 3750. 270. 87.5
26 5TNC 4LQR 0 SCO. 100. 100. 5. 80.0
27 DELACITY 7208 456. 36. 36. 4. 92.1
27 DIANSHAM 7209 282. 35. 35. 3. 87.6
27 STAUFFER 0 635. 100. 100. 6. 84.3
28 SALENCTY 7122 3150. 395. 395. 28. 87.5
29 PORTPENN 7176 97. 12. 12. 1. 87.6
ZONE S TOTALS 385926. 39864. 39864. 3474. 89.7
PERCENT REMOVAL REQL.LRED TO MEET NEW ALLOC. • 99.1
PERCENT REMOVAL ACHIEVED • 99.1
- G3

-------
SECTION FLOW REA.RATE DECAY RATE VOLUME DIFF.RATE AREA L—LOADS F—LOADS 0.0.—SAT.
C.F.S. 1.OFDAYS 1.0/DAYS CF*L.OEb NI 2 OAY L000SFT*S2 10./DAY 18./DAY MG/I
1 3000. 0.62 0.44 242. 0.40 6.50 68952. —12220. 8.4C0
2 3126. 0.34 0.44 364. 0.40 15.80 8882. 8622. 8.400
3 3234. 0.22 0.44 460. 0.40 21.40 3379. 4140. 8.400
4 3244. 0.22 0.44 532. 0.40 24.60 6024. 2700. 8.400
5 3277. 0.15 0.44 636. 0.40 28.50 3035. 4800. 8.400
6 3367. 0.22 0.42 756. 0.40 34.10 7623. 5040. 8.400
7 3238. 0.22 0.42 455. 0.90 41.40 877. 890. 0.400
8 3262. 0.22 0.42 504. 1.60 49.60 2780. 2125. 8.400
9 3294. 0.15 0.42 533. 2.20 51.20 9160. 2250. 8.400
10 3314. 0.15 0.42 582. 2.70 55.40 76895. 2250. 8.400
11 3544. 0.15 0.42 6%0. 3.30 60.90 19586. 5760. 8.400
12 3590. 0.12 0.42 6 S. 3.80 65.00 4480. 1350. 8.400
13 3595. 0.12 0.42 694. 4.40 66.00 30534. 3240. 8. ACO
14 3605. 0.19 0.42 805. 4.50 72.70 38853. 3960. 8.400
15 3670. 0.19 0.42 1860. 4.60 88.30 48539. 14700. 8.400
16 4379. 0.25 0.42 2030. 4.80 98.00 44779. 6750. 8.400
17 4748. 0.19 0.42 2184. 5.00 104.90 9708. 11475. 8.400
18 4861. 0.17 0.42 2396. 5.30 113.40 27440. 7200. 8.400
19 4936. 0.17 0.42 2b92. 5.50 126.30 9607. 16200. 0.400
20 4968. 0.13 0.42 2932. 5.80 142.80 1527. 15750. 8.400
21 4979. 0.18 0.40 1512. 6.00 150.40 34436. 6930. 8.300
22 5298. 0.10 0.40 1574. 6.20 151.90 18705. 6000. 8.300
23 5300. 0.10 0.40 1698. 6.30 162.90 648. 13050. 8.300
24 5302. 0.18 0.40 1792. 6.40 176.80 232. 11000. 8.200
25 5305. 0.18 0.40 1850. 6.50 181.70 510. 9300. 8.ZCO
26 5311. 0.18 0.40 1924. 6.60 188.40 4195. 12000. 8.200
27 5321. 0.18 0.40 2054. 6.80 196.40 273. 15000. 8.100
28 5324. 0.18 0.40 2248. 6.90 214.50 3247. 15000. 8.100
29 5394. 0.10 - 0.40 4896. 7.00 235.00 986. 0. 8.000
30 5419. 0.17 0.40 5620. 7.20 254.00 924. 0. 8.000
31 5456. 0.0 0.0 0. 7.50 307.40 0. 0. 7.900
a— C I

-------
SECTION 1973 BASE 1973 DRBC NANG 1913
00 PROFILE 00 PROFILE 00 PROFILE
INCRE ENT RESULT INCREMENT RESULT
I e.ccoo 0.0 0.0000 0.0587 8.0587
2 6.1CO O 0.0 6.7000 o.isae 6.8588
3 6.0000 0.0 6.0000 0.2602 6.2602
4 5.7COO 0.0 5.7000 0.3388 6.0380
S 5.5C00 0.0 5.5000 0.3639 5.8639
6 5.6000 0.0 5.6000 0.3073 5.9073
7 5.8000 0.0 5.8000 0.2938 6.0930
a 5.6000 0.0 5.6000 0.4400 6.0400
9 4.BCOO 0.0 4.8000 0.8459 5.6459
10 3.9000 0.0 3.9000 1.3113 5.2713
11 3.3000 0.0 3.3000 1.5946 4.8946
12 2.9C00 0.0 2.9000 1.7070 4.6070
13 2.8000 0.0 2.8000 1.7276 4.5276
14 3.CCOO 0.0 3.0000 1.6065 4.6065
15 3. SCO O 0.0 3.5000 1.3183 4.8183
16 4.3C00 0.0 4.3000 1.063? 5.3637
Li 4.6000 0.0 4.6000 0.8720 5.4720
18 4.TCOO 0.0 4.7000 0.7443 5.4443
19 5.0000 0.0 5.0000 0.5991 5.5991
20 5.LCOO 0.0 5.1000 0.4969 5.5969
21 5.3C00 0.0 5.3000 0.4252 5.1252
22 5.6000 0.0 5.6000 0.3772 5.9772
23 5.8C00 0.0 5.8000 0.3232 6.1232
24 5.9C00 0.0 5.9000 0.2720 6.1720
25 6.2000 0.0 6.2000 0.2247 6.4247
26 6.4000 0.0 6.4000 0.1823 6.5823
27 6.6000 0.0 6.6000 0.1445 6.7445
28 6.8000 0.0 6.8000 0.1128 6.9128
29 7.1000 0.0 7.1000 0.0731 7.1731
30_ 7.6000 0.0 7.6000 0.0352 7.6352

-------
THIS DATA WAS COLLECTED ON 51513
LONE 2
ZONE TOTAL 14445. ZONE RESERVE 1605. TOTAL ALLOWED 16050.
SECTiON NAME FILE NO RAW UOO U BOUND DRBC NEW UOD REMOVAL
ALLOt. ALLOt.
I $ORRISVL 6913 4700. 780. 780. 408. 83.4
1 TRENtON 0 34000. 5000. 5000. 2949. 85.3
2 IaAMILTON 7012 11900. 2000. 2000. 1553. 88.0
2 BORCENTN 0 76?. 89. 89. 6?. 88.4
2 USSTEELI 0 2198?. 2500. 2500. 190?. 88.6
2 USSTEELS 0 750. 8?. 8?. 65. 86.4
2 GRIFFINP 7119 819. 95. 95. 71. 88.4
2 STEPANCH 7127 129. 15. 15. LI. 88.4
3 FLORENCE 0 2993. 270. 270. 260. 91.0
3 PATERSON 6920 3147. 440. 440. 273. 86.0
3 L R8UCKS 6905 15600. 2410. 2410. 1353. 84.6
3 PENNOEL 0 1150. 20. 20. 20. 98.3
4 BRISBORO 6914 5000. 640. 640. 434. 81.2
4 BRIS TUP 6906 3680. 590. 590. 3 19. 04.0
4 ROHM* AAS 7133 93333. 2750. 2750. 2750. 91.1
4 HERCULES 7014 2400. 210. 210. 208. 91.3
4 OURLLGRC 7010 480. 55. 55. 42. 88.5
4 BURLCITY 6912 1840. 510. 510. 160. 72.3
4 BURL TWP 7C09 991. US. 115. 86. 86.4
S TENNECO 7112 2660. 590. 590. 231. 77.8
S FALLSTWP 0 2070. 220. 220. 180. 89.4
5 BEVERLY 7011 1780. 205. 205. 154. 88.5
5 BURLARMY 7k2 95. 11. 11. 8. 88.4
6 WILLBORO 7013 104S0. 490. 490. 490. 95.3
6 R IVERS OE 0 3633. 310. 310. 310. 94.5
6 DEIRAN 0 1587. 190. 190. 138. 68.0
ZONE 2 TOTALS 235941. 20592. 20592. 14445. 91.3
PERCENT REMOVAl. REOU?RED TO MEET NEW ALLOt. • 95.3
PERCENT REMOVAL ACHIEVED • 93.9
a-Ct

-------
THIS DATA WAS COLLECTED ON 51573
ZONE 3
ZONE TOTAL 6q990. ZONE RESERVE 7777. TOTAL ALLOWED 71767.
SECTION NAME FILE NO RAW UCO U 6OUND ORBC NEW UDO REMOVAL
ALLOC. ALLOC.
9 RIVEJITON 0 650. 96. 98. 76. 88.5
0 PALWVRA 0 3027. 300. 300. 272. 90.1
9 CINNA 1N 0 41CC. 540. 540. 369. 86.6
*0 GEOR—PAC 7018 1*600. 1620. *620. 1044. 86.0
10 PHI*.A NE 7001 435000. 69300. 69300. 39143. 84.1
*0 PENNSAUK 7118 7450. 1530. 1530. 670. 79.5
i i NATSLJGAR 6935 16778. 1800. 1800. 1510. 89.3
*3 ANSTAR 0 10860. 1500. *500. 977. 86.2
13 CAMDEN 0 110937. 21000. 21000. 9963. 81.1
13 HQLLINGS 0 1836. 248. 248. 165. 86.5
13 CANCREW 0 ICC. 100. 100. 9. 0.0
13 PUBLICkR 7005 1300. 180. 180. 117. 86.2
14 PHILA SE 7003 167500. 3)267. 33267. 15072. 60.1
14 OAF CORP 0 14350. *00. *00. 100. 99.3
14 HARSHAW 7111 1792. 260. 260. 161. 65.5
14 N J ZINC 7120 3560. 500. 500. 320. 66.0
ZONE 3 1OTALS 791040. 132343. 132343. 69990. 83.3
PERCENT REMOVAL REQUIRED TO MEET NEW ALLOC. • 91.0
PERCENT REMOVAL ACHIEVED — 91.2
— 67

-------
THIS DATA WAS COLLECTED ON 51573
ZONE 4
ZONE TOTAL 59994. ZONE RESERVE 6666. TOTAL ALLOWED 66660.
SECTION NAME FILE NO RAW UOD U fOUND ORBC NEW UOD REMOVAL
ALLOC. ALLOC.
15 ARCO OIL 6922 61025. 2590. 2590. 2590. 95.8
15 GULF IND 6916 64462. 2910. 2910. 2910. 95.5
15 GULF SAN 6915 150. LB. 18. 13. 88.0
15 TEXACO 7107 7077. 692. 692. 600. 90.2
15 FORTHIFF 7004 42. 5. 5. 4. 88.1
15 ARNYCRED 7104 8. 1. 1. 1. 87.5
15 SHELL CH 7206 4810. 520. 520. 408. 89.2
16 PHILA SW 7002 222951. 37000. 37000. 18902. 83.4
16 POBILCIL 6932 395C0. 4250. 4250. 3349. 89.2
16 HOUDRYCH 0 542. 65. 65. 46. 88.0
16 ESSEX CH 0 316. 38. 38. 27. 88.0
16 OLINC ORP 0 627. 75. 73. 53. 88.0
17 HERCULES 7015 231CO. 2480. 2480. 1958. 89.3
17 GIB8STWN 0 1670. 140. 140. 140. 91.6
17 DUPONTRP 6929 117231. 1700. 1700. 1700. 98.5
17 TINICUM 0 750. 310. 310. 64. 58.7
17 UNIONCAR 0 705. 85. 85. 60. 87.9
18 SCOTTCHS 7006 35972. 3750. 3750. 3050. 89.6
18 B P CIL 6911 33538. 2650. 2650. 2650. 92.1
18 CHESTER 6923 202955. 18000. 18000. 17207. 91.1
19 PONSANTO 7016 40800. 4390. 4390. 3459. 89.2
19 GLOUCNTY 7132 9500. 2830. 2830. 805. 70.2
ZONE 4 TOTALS 867731. 84499. 84499. S9994. 90.3
PERCENT REPOVAL REQuiRED TO MEET NEW ALLOC. • 91.3
PERCENT REPOVAL ACHIEVED • 93.1

-------
THIS DATA WAS C3LLECTEO ON 51573
ZONE 5
ZONE TOTAL 28912. ZONE RESERVE 3213. TOTAL ALLOWED 32125.
SECTION NAME FILE NO RAW UOD U 3OuND DR8C NEW UOO REMOVAL
ALLOC. ALLOC.
19 ALLIEOCH 6901 3660. 843. 845. 300. 76.9
19 PHOENIX 6908 512. 11. 11. 1 1. 97.9
19 ROt—PURL 72C5 1667. ZOO. ZO O. I I ? . 88.0
JO OUPONTEO 7115 38900. 500. 500. 500. 98.7
20 8 F 6000 6880 4758. 590. 590. 390. 87.6
21 WILMNGTN 69C2 104500. 13400. 13400. 8565. 87.2
21 PENNSGRV 6928 1900. 240. 240. 156. 87.4
22 OUPONTCH 6931 170292. 14000. 14000. 13958. 91.8
22 IC ! AMER 1008 17000. 4640. 4640. 1393. 72.7
23 PENNSVIL 6927 2233. 350. 350. 183. 84.3
23 UPENNSNK 7121 1917. 230. 230. 157. 88.0
24 SCHRISTT 7201 1048. 130. 130. 86. 87.6
25 AMOCO C M 0 2419. 300. 300. 198. 87.6
26 GEIT’VOIL 1101 3C000. 3750. 3750. 2459. 87.5
26 STNCHLOR 0 500. 100. 100. 41. 80.0
27 0ELACITY 7208 456. 36. 36. 36. 92.1
27 OIAMSHAM 7209 282. 35. 35. 23. 87.6
27 STAUFFER 0 635. 100. 100. 52. 84.3
28 SALEMCTY 7122 3150. 395. 395. 258. 87.5
29 PORTPENN 7176 97. 12. 12. 8. 87.6
ZONE S TOTALS 385926. 39864. 39864. 28912. 89.7
PERCENT REMOVAL RECUIRED TO MEET NEW ALLOC. — 91.8
PERCENT REMOVAL ACH iEVED — 92.5
a— C l

-------
SECTION FLOW REA.RATE DECAY RATE VOLUME DIFF.RATE AREA L—LOADS F—LOADS 0.0.—S4T.
C.F.S. 1.0/DAYS 1.0/DAYS CF*1.0E6 Nj 2/DAY 1000SFTS*2 LB./DAY LB./DAY G/L
1 3000. 0.62 0.44 242. 0.40 6.50 68952. —12220. 8.400
2 3126. 0.34 0.44 364. 0.40 15.80 8882. 8622. 8.400
3 3234. 0.22 0.44 460. 0.40 21.40 3379. 4140. 8.400
4 3244. 0.22 0.44 532. 0.40 24.60 6024. 2700. 8.400
5 3277. 0.15 0.44 636. 0.40 28.50 3035. 4800. 8.400
6 3367. 0.22 0.42 756. 0.40 34.10 7623. 5040. 8.400
7 3238. 0.22 0.42 455. 0.90 41.40 877. 890. 8.400
8 3262. 0.22 0.42 504. 1.60 49.60 2780. 2125. 8.400
9 3294. 0.15 0.42 533. 2.20 51.20 9160. 2250. 8.400
10 3314. 0.15 0.42 582. 2.70 55.40 76895. 2250. 8.400
11 3544. 0.15 0.42 630. 3.30 60.90 19586. 5760. 8.400
12 3590. 0.12 0.42 655. 3.80 65.00 4480. 1350. 8.400
13 3595. 0.12 0.42 694. 4.40 66.00 30534. 3240. 8.400
14 36C5. 0.19 0.42 805. 4.50 72.70 38853. 3960. 8.400
15 3670. 0.19 0.42 1860. 4.60 88.30 48539. 14700. 8.400
16 4379. 0.25 0.42 2030. 4.80 98.CO 44779. 6750. 8.400
17 4748. 0.19 0.42 2184. 5.00 104.90 9708. 11475. 8.400
18 4861. 0.17 0.42 2396. 5.30 113.40 27440. 7200. 8.400
19 4936. 0.17 0.42 2692. 5.50 126.30 9607. 16200. 8.400
20 4968. 0.13 0.42 2932. 5.80 142.80 1527. 15750. 8.400
21 4979. 0.18 0.40 1512. 6.00 150.40 34436. 6930. 8.300
22 5298. 0.18 0.40 1574. 6.20 151.90 18705. 6000. 8.300
23 5300. 0.18 0.40 1698. 6.30 162.90 648. 13050. 8.300
24 5302. 0.18 0.40 1792. 6.40 176.80 232. 11000. 8.2C0
25 5305. 0.18 0.*0 1850. 6.50 181.70 510. 9300. 8.2C0
26 5311. 0.18 0.40 1924. 6.60 188.40 4195. 12000. 8.200
27 5321. 0.18 0.40 2054. 6.80 196.40 273. 15000. 8.100
28 5324. 0.18 0.40 2248. 6.90 214.50 3247. 15000. 8.100
29 5394. 0.18 0.40 4896. 7.00 235.00 986. 0. 8.000
30 5419. 0.17 0.40 5620. 7.20 254.00 924. 0. 8.000
31 5456. 0.0 0.0 0. 7.50 307.40 0. 0. 7.900
a—70

-------
SECTION 1973 BASE 1973 DROC MANG 1973
00 PROFILE 00 PROFILE 00 PROFILE
INCREMENT RESULT INCREMENT RESULT
1 0.C 000 0.0 0.0000 0.026 1 8.0261
2 6.8000 0.0 6.8000 0.0585 6.8585
3 6.1000 0.0 6.1000 0.0962 6.1962
4 5.9000 0.0 5.9000 0.1151 6.0151
5 5.6000 0.0 5.6000 0.1227 5.7227
6 5.8C00 0.0 5.8000 0.0995 5.8995
7 6.OCOO 0.0 6.0000 0.1000 6.1000
8 5.8000 0.0 5.8000 0.1740 5.9740
9 5. IC O O 0.0 5.1000 0.3676 5.4676
10 4.3C00 0.0 4.3000 0.6189 4.9189
11 3.7C00 0.0 3.7000 0.7322 4.4322
12 3.4000 0.0 3.4000 0.7978 4.1978
13 3.3C00 0.0 3.3000 0.8207 4.1207
14 3.5000 0.0 3.5000 0.7698 4.2698
15 4.OCO O 0.0 4.0000 0.6252 4.6252
16 4.BCOO 0.0 4.8000 0.4924 5.2924
17 5. ICCO 0.0 5.1000 0.3736 5.4736
18 5.3C 00 0.0 5.3000 0.2787 5.5787
19 5. SC O O 0.0 5.5000 0.2117 5.1117
20 5.7C00 0.0 3.7000 0.1682 5.8682
21 5.8000 0.0 5.8000 0.1395 5.9395
22 6.C000 0.0 6.0000 0.1207 6.1207
23 6.2CCO 0.0 6.2000 0. 1019 6. 3Q19
24 6.3000 0.0 6.3000 0.0851 6.3851
25 6.5000 0.0 6.5000 0.0700 6.5700
26 6.7COO 0.0 6.7000 0.0568 6.7568
27 6.8C00 0.0 6.8000 0.0450 6.8450
28 7.0000 0.0 7.0000 0.0352 7.0352
29 7.3000 0.0 7.3000 0.0228 7.3228
30 7.6000 0.0 7.6000 0.0110 7.6110
l- 71

-------
THIS DATA WAS COLLECTED ON 31573
ZONE 2
ZONE TOTAL 8830. ZONE RESERVE 981. TOTAL ALLOWED 9811.
SECTION NAME FILE NO RAW UOO U BOUND ORBC NEW UOD REMOVAL
ALLOC. ALLOC.
1 PORRISVL 6913 4700. 780. 780. 201. 83.4
1 TRENTON 0 34000. 5000. 5000. 145?. 85.3
2 HAMILTON 7012 17900. 2000. 2000. 767. 88.8
2 O OROENTN 0 767. 89. 89. 33. 88.4
2 USSTEELI 0 21987. 2500. 25C0. 942. 88.6
2 USSTEELS 0 750. 87. 87. 32. 88.4
2 GRIFFINP 7119 819. 95. 95. 35. 88.4
2 STEPANCH 1127 1 29. 15. 15. 6. 88.4
3 FLORENCE 0 2993. 270. 270. 128. 91.0
3 PATERSON 6920 3147. 440. 440. 135. 86.0
3 LWR BUCKS 6905 15600. 2410. 2410. 668. 84.6
3 - PENN OEL 0 1150. 20 . 20. 20. 98.3
4 BRISBORO 6914 50C0. 640. 640. 214. 87.2
4 DRIS fliP 6906 3680. 590. 590. 158. 84.0
4 ROHMHAAS 7133 93333. 2750. 2750. 2750. 97.1
4 HERCULES 7014 2400. 210. 210. 103. 91.3
4 8URLLGRC 7010 480. 55. 55. 21. 88.5
4 8URLCITY 6912 1840. 510. 510. 79. 72.3
4 BURL TWP 7009 991. 115. 115. 42. 88.4
S TENNECO 7112 2660. 590. 590. 114. 77.8
5 FA IL STWP 0 2070. 220. 220. 89. 89.4
5 BEVERLY 7011 1780. 205. 205. 76. 88.5
5 BURLARNY 7124 95. 1 %. 11. 4. 88.4
6 WILLBORO 7013 10450. 490. 490. 448. 95.3
6 RIVERSDE 0 5633. 310. 310. 241. 94.3
6 DELRAN 0 1587. 190. 190. 68. 88.0
ZONE 2 TOTALS 235941. 20592. 20592. 8830. 91.3
PERCENT REMOVAL REQUIRED TO MEET NEW ALLOC. • 95.7
PERCENT REMOVAL ACHIEVED • 96.3
a- 72

-------
IHIS DATA WAS COLLECTED ON 51573
ZONE 3
ZONE TOTAL 35042. ZONE RESERVE 3894. TOTAL ALLOWED 38936.
SECTION NAME FILE NO RAW 000 U BOUND DR BC NEW 000 RE 0VAL
ALLOt. ALLOC.
8 RIVERTON 0 850. 98. 98. 38. 88.5
8 PALKYRA 0 3027. 300. 300. 136. 90.1
9 CINNAMIN 0 4100. 540. 540. 184. 86.8
10 GEOR—PAC 7018 11600. 1620. *620. 522. 86.0
10 PNILA NE 7001 435000. 69300. 69300. 19510. 84.1
10 ENNSAUK 7118 7450. 1530. 1530. 335. 79.5
11 NATSUGAR 6935 16778. 1800. 1000. 755. 89.3
13 ANSTAR 0 10060. 1500. 1500. 489. 86.2
13 CAMDEN 0 110937. 21000. 1 IC OO. 4991. 81.7
13 HOLLINGS 0 1836. 248. 248. 83. 86.5
13 MCANOREW 0 100. 100. 100. 4. 0.0
13 PUBLICKR 7005 1300. 180. 180. SB. 86.2
14 PHILA SE 7003 167500. 33267. 33267. 7536. 80.1
14 GAF CORP 0 14350. 100. 100. 100. 99.3
14 HARSHAW 7111 1792. 260. 260. 81. 85.5
14 N J ZINC 7120 3560. 500. 500. 160. 86.0
ZONE 3 TOTALS 791040. 132343. 132343. 35042. 83.3
PERCENT REMOVAL REQUIRED TO MEET NEW ALLOC. • 95.5
PERCENT REMOVAL. ACHIEVED • 95.6

-------
ThIS DATA WAS COLLECTED ON 31313
ZONE 4
LONE TOTAL 34601. ZONE RESERVE 3845. TOTAL ALLOWED 38452.
SECTION NAME FILE NO RAW UOD U 8OUND ORBC NEW UOO REMOVAL
ALLOC. ALLOC.
IS ARCO OIL 6922 61025. 2390. 2590. 2590. 95.8
IS GULF IWO 6916 64462. 2910. 2910. 2834. 95.5
15 GULF SAN 6915 150. 18. 18. 7. 80.0
15 TEXACO 7101 TO??. 692. 692. 311. 90.2
IS FOR1MIFF 7004 42. 3. 5. 2. 88.1
15 ARMYGRED 7104 8. 1. 1. 0. 87.5
15 SHELL CH 7206 4810. 520. 520. 212. 89.2
16 PHILA SW 7002 222951. 37000. 37000. 9003. 83.4
16 OBILOIL 6932 39500. 4250. 4250. 1737. 89.2
16 I4OUDRYCH 0 542. 65. 65. 24. 88.0
16 ESSEX CH 0 316. 38. 38. 14. 88.0
16 OLINCORP 0 627. 75. 75. 28. 88.0
17 HERCULES 7015 231C0. 2480. 2480. 1016. 89.3
17 G1 0 0S TWN 0 1670. 140. 140. 73. 91.6
17 OUPONfRP 6929 117231. 1700. 1700. 1700. 98.5
17 TINICUN 0 750. 310. 310. 33. 58.7
17 UNICNCAR 0 705. 8 5. 85. 31. 87.9
18 SCOITCHS 7006 35912. 3750. 3750. 1582. 89.6
18 B P OIL 6911 33530. 2650. 2650. 1475. 92.1
10 CHESTER 6923 202955. 18000. 10000. 8924. 91.1
19 MONSANTO 7016 40800. 4390. 4390. 1794. 89.2
19 GLOUCNTY 7132 9500. 2830. 2830. 418. 70.2
ZONE 4 TOTALS 867731. 84499. 84499. 3460?. 90.3
PERCENT REMOVAL REQUIRED TO MEET NEW ALLOC. — 95.6
PERCENT REMOVAL ACHIEVED — 96.0
‘- 7 4

-------
THIS DATA WAS COLLECTED CM 31513
LONE 5
ZONE TOTAL 16053. ZONE RESERVE 1784. TOTAL ALLOWED 17837.
SECTION NAME FILE NO RAW UOD U 8OUNO ORBC NEW UOD REMOVAL
ALLOC. ALLOC.
19 £LLIEDCH 6901 3660. 845. 845. 164. 76.9
19 PHOEP4I* 6908 512. 11. ii. 11. 97.9
19 AOL—PURL 7205 1667. 200. 200. 75. 88.0
20 CUPCP4TEO 7115 389CC. 500. 500. 500. 98.7
20 & F GOOD 6880 4758. 590. 590. 213. 87.6
LI WIL NG1N 6902 104500. 13’ .OO. 13400. 4687. 87.2
21 PENNSGRV 6928 19CC. 240. 240. 85. 87.4
22 CUPONTCH 6931 170292. 14000. 14000. 7638. 91.8
22 ICI AMER 7008 11000. 4640. 4640. 762. 72.7
23 PENNSVIL 6927 2233. 350. 350. 100. 84.3
23 UPENNSNX 7121 1917. 230. 230. 86. 88.0
24 SCHRISTT 7201 1048. 130. 130. 47. 87.6
25 AMOCO CM 0 2419. 300. 300. 108. 87.6
26 GETTYOIL 7101 30000. 3750. 3750. 1346. 87.5
26 STNCIILOR 0 500. 100. 100. 22. 80.0
27 DELACITY 7208 456. 36. 36. 20. 92.L
27 D1ANS iAM 7209 282. 35. 35. 13. 87.6
27 5TAUFFER 0 635. 100. 100. 28. 84.3
28 SALEMCTY 7122 3150. 395. 395. 141. 87.5
29 PORIPENN 7176 97. 12. 12. 4. 87.6
ZONE 5 TOTALS - 305926. 39864. 39864. 16053. 89.7
PERCENT REMOVAL REQUIRED TO MEET NEW ALLOC. — 95.5
PERCENT RE OVAL ACHIEVED • 95.8
— 75

-------
SECTION FLOW REA.RAFE DECAY RATE VOLUME DIFF.RATE AREA L—LOADS F—LOADS 0.0.—SAT.
C.F.S. 1.0/DAYS 1.0/Days CFS I.OEo MI 2/DAY I000SFTS*2 LB./DAY 18./DAY MG/I
1 3000. 0.62 0.44 242. 0.40 6.50 68952. —12220. 8.400
2 3126. 0.34 0.44 364. 0.40 15.80 8882. 8622. 8.400
3 3234. 0.22 0.44 460. 0.40 21.40 3379. 4140. 8.400
4 3244. 0.22 0.44 532. 0.40 24.60 6024. 2700. 8.4C0
5 3277. 0.15 0.44 636. 0.40 28.50 3035. 4800. 8.4C0
6 3367. 0.22 0.42 756. 0.40 34.10 7623. 5040. 8.4C0
7 3238. 0.22 0.42 455. 0.90 41.40 877. 890. 8.400
8 3262. 0.22 0.42 504. 1.60 49.60 2780. 2125. 8.400
9 3294. 0.15 0.42 533. 2.20 51.20 9160. 2250. 8.400
10 3314. 0.15 0.42 582. 2.70 55.40 76895. 2250. 8.400
11 3544. 0.15 0.42 630. 3.30 60.90 19586. 5760. 8.4C0
12 3590. 0.12 0.42 655. 3.80 65.00 4480. 1350. 8.4C0
13 3595. 0.12 0.42 694. 4.40 66.00 30534. 3240. 8.400
14 3605. 0.19 0.42 805. 4.50 72.70 38853. 3960. 8.400
15 3670. 0.19 0.42 1860. 4.60 88.30 48539. 14700. 8.400
16 4379. 0.25 0.42 2030. 4.80 98.00 44779. 6750. 8.400
11 4748. 0.19 0.42 2184. 5.00 104.90 9708. 11475. 8.400
18 4861. 0.17 0.42 2396. 5.30 113.40 27440. 7200. 8.4C0
19 4936. 0.17 0.42 2692. 5.50 126.30 9607. 16200. 8.400
20 4968. 0.13 0.42 2932. 5.80 142.80 1527. 15750. 8.400
21 4979. 0.18 0.40 1512. 6.00 150.40 34436. 6930. 8.300
22 5298. 0.18 0.40 1574. 6.20 151.90 18705. 6C00. 8.300
23 53C0. 0.18 0.40 1698. 6.30 162.90 648. 13050. 8.3C0
24 5302. 0.18 0.40 1792. 6.40 176.80 232. 11000. 8.2C0
25 5305. 0.18 0.40 1850. 6.S0 181.70 510. 9300. 8.200
26 5311. 0.10 0.40 1924. 6.60 188.40 4195. 12000. 8.200
27 5321. 0.18 0.40 2054. 6.80 196.40 273. 15000. 8.100
28 5324. 0.18 0.40 2248. 6.90 214.50 3247. 15000. 8.100
29 5394. 0.18 0.40 4896. 7.00 235.00 986. 0. 8.000
30 5419. 0.17 0.40 5620. 7.20 254.00 924. 0. 8.000
31 5456. 0.0 0.0 0. 7.50 307.40 0. 0. 7.900

-------
SECTION 1973 BASE 1913 ORBC MANG 1973
00 PROFILE 00 PROFILE 00 PROFILE
INCREPENT RESULT INCRE PENT RESULT
1 8.C000 0.0 8.0000 0.0445 8.0445
2 6.80C0 0.0 6.8000 0.1151 6.9151
3 6. 1CCO 0.0 6.1000 0.1887 6.2887
4 5.9c 00 0.0 5.9000 0.2218 6.1218
5 5.6000 0.0 5.6000 0.2325 5.8325
6 5.8000 0.0 5.0000 0.1893 5.9893
7 6.CCCO 0.0 6.0000 0.1855 6.1855
8 5.8000 0.0 5.8000 0.3038 6.1038
9 5. 1C OO 0.0 5.1000 0.6180 5.7180
10 4.3C00 0.0 4.3000 1.0234 5.3234
11 3.7COO 0.0 3.7000 1.1978 4.8978
12 3.4C00 0.0 3.4000 1.2879 4.6879
13 3.3000 0.0 3.3000 1.3069 4.6069
14 3. SCCO 0.0 3.5000 1.2135 4.7135
15 ‘..CC OO 0.0 4.0000 0.9828 4.9828
16 4.OC OO 0.0 4.8000 0.7851 5.5857
17 5.1000 0.0 5.1000 0.6290 5.7290
18 5.3C00 0.0 5.3000 0.5188 5.8188
19 5.5000 0.0 5.5000 0.4118 5.9118
20 5.7C00 0.0 5.7000 0.3375 6.0315
21 5.ECCO 0.0 5.8000 0.2864 6.0864
22 6.0000 0.0 6.0000 0.2524 6.2524
23 6.2C 00 0.0 6.2000 0.2154 6.4154
24 6.3C00 0.0 6.3000 0.1809 6.4809
25 6.5CCO 0.0 6.5000 0.1492 6.6492
26 6.7000 0.0 6.7000 0.1211 6.8211
27 6.8000 0.0 6.8000 0.0959 6.8959
28 7.OCOO 0.0 7.0000 0.0749 7.0749
29 7.3C00 0.0 7.3000 0.0486 7.3485
30 7.6000 0.0 7.6000 0.0234 7.6234
a—77

-------
TH1 DATA WAS COLLECTED ON 31573
ZONE 2
ZONE TOTAL 18165. lONE RESERVE 2018. TOTAL ALLOWED 20183.
SECTION NAME FILE NO RAW UOD U BOUND CRBC NEW ( CD REMOVAL
ALLOC. ALLOC.
1 P’ORRISVL 6913 41CC. 780. 780. 568. 83.4
1 TREF T0N 0 34000. 3000. 5C00. 4108. 85.3
2 I AMIL10N 7012 17900. 2000. ZCOO. 2000. 88.8
2 BCRCENTN 0 767. 89. 89. 89. 88.4
2 USSTEELI 0 2198 1. 2500. 2500. 2500. 88.6
2 USSTEELS 0 750. 81. 87. 87. 88.4
2 GRIFF.INP 7119 819. 95. 95. 95. 88.4
2 STEPANCH 7127 129. 15. 15. 15. 88.4
3 FLORENCE 0 2993. 270. 270. 270. 91.0
3 PATERSON 6920 31’.?. 440. 440. 380. 86.0
3 LWR8UCKS 6905 15600. 2410. 2410. 1885. 84.6
3 PENP1CEL 0 1150. 20. 20. 20. 98.3
4 BRISEORO 6914 5000. 640. 640. 604. 87.2
4 BRIS TWP 6906 3680. 590. 590. 445. 84.0
4 ROHMI AAS 7133 93333. 2750. 2750. 2750. 97.1
4 I ERCULES 7014 2400. 210. 210. 210. 91.3
4.. BURLLGRC 7010 480. ss. 55. 88.5
4 BURLCITY 6912 1840. 510. 510. 222. 72.3
4 EURL TWP 7009 991. US. 115. 115. 88.4
5 TENNECO 7112 2660. 590. 590. 321. 77.8
5 FALLSTWP 0 2070. 220. 220. 220. 89.4
5 BEVERLY 7011 1780. 205. 205. 205. 88.5
5 BURLARPY 7124 95. 11. U. 11. 88.4
6 WILL8ORO 7013 10450. 490. 490. 490. 9S.3
6 RIVERSOE 0 5633. 310. 310. 310. 94.5
6 DELRAN 0 1587. 190. 190. 190. 88.0
‘lOt4 2 TOTALS 235941. 20592. 20592. 18165. 91.3
PERCENT REMOVAL RECUIRED TO MEET NEW ALLOC. • 87.9
PERCENT REMOVAL ACHIEVED • 92.3
8 7?

-------
THIS DATA WAS COLLECTED ON 51573
ZONE 3
ZONE TOTAL 109984. ZONE RESERVE 12220. TOTAL ALLOWED 122204.
SECTION NAME FILE NO RAW UOD U BOUND DROC NEW UOO REMOVAL
ALLOC. ALLOC.
8 RIVERTON 0 850. 98. 98. 98. 88.5
8 PALMYRA 0 3027. 300. 300. 300. 90.1
9 CINNAPIN 0 RICO. 540. 540. 540. 86.8
10 GEOR-PAC 7018 11600. 1620. 1620. 1620. 86.0
10 PHILA NE 7001 435000. 69300. 69300. 62049. 84.1
10 PENNSAUK 7118 7450. 1530. 1530. 1063. 79.5
LI NATSUGAR 6935 16778. 1800. 1800. 1800. 89.3
13 AMSTAR 0 10860. 1500. 1500. 1500. 86.2
13 C&P’0 N 0 110937. 21000. 2 IC OO. 1582’. 81.1
13 HOLLINGS 0 1836. 248. 248. 248. 86.5
13 PCANCREW 0 100. 100. 100. 14. 0.0
13 PUBLICKR 7005 1300. 180. 180. 180. 86.2
14 PHILA SE 7003 167500. 33267. 33267. 23892. 80.1
14 OAF CORP 0 14350. 100. 100. 100. 99.3
14 HARSHAW 7111 1792. 260. 260. 256. 85.5
14 N J ZINC 7120 3560. 500. 500. 500. 86.0
ZONE 3 TOTALS 791040. 132343. 132343. 109984. 83.3
PERCENT RENOVAL REQUIRED TO MEET NEW ALLOC. • 85.1
PERCENT REMOVAL ACHIEVED • 86.1
a-i l

-------
THIS OATh WAS COLLECTEO ON 51573
ZONE 4
LOSE TOTAL 73504. ZONE RESERVE 8167. TOTAL ALLOWED 81671.
SECTION NAME FILE NO RAW UGO U DOUND CR8C NEW 1200 REMOVAL
ALLOC. ALLOC.
15 ARCC OIL 6922 61025. 2590. 2590. 2590. 95.8
15 GULF INO 6916 64462. 29 )0. 29 )0. 2910. 95.5
iS GULF SAN 6915 150. 18. 18. 18. 88.0
15 TEXACC 7101 7017. 692. 692. 692. 90.2
15 FORIPIFF 7004 42. 5. 5. 5. 88.1
15 ARPYCREO 7104 8. L. I. 1. 87.5
15 SHELL CH 7206 4810. 520. 520. 520. 89.2
16 PHILA SW 7002 222951. 37000. 37000. 27864. 83.4
16 MOBILOI I. 6932 395C0. 4250. 4250. 4250. 89.2
16 HQUCRYCH 0 542. 65. 65. 65. 88.0
16 ESSEX CH 0 316. 38. 38. 38. 88.0
16 0LIKCCRP 0 627. 75. 75. 75. 88.0
L i HERCULES 7015 23100. 2480. 2480. 2480. 89.3
17 G18BST NN 0 1670. 140. 140. 140. 91.6
it CUPONTRP 6929 117231. 1700. 1700. 1700. 98.5
17 TINICU P 0 750. 310. 310. 94. 58.7
1 ? UNIONCAR 0 705. 85. 85. 85. 87.9
18 SCOTTCHS 7006 35972. 3750. 3750. 3750. 89.6
18 8 p OIL 6911 33538. 2650. 2650. 2650. 92.1
18 CHESTER 6923 202955. 18000. 18000. 18000. 91.1
19 PONSANTO 7016 40800. 4390. 4390. 4390. 89.2
I S GLOUCNTY 7132 9500. 2830. 2830. 1187. 10.2
ZONE 4 TOTALS 867131. 84499. 73504. 90.3
PERCENT REMOVAL REQUIRED TO MEEt NEW ALLOC. • 87.5
PERCENT REMOVAL AChIEVED • 91.5

-------
THIS DATA WAS COLLECTED ON 51573
ZONE 5
ZONE TOTAL 33858. ZONE RESERVE 3767. TOTAL ALLOWED 37665.
SECTION NAME FILE NO RAW UOO U BOUND OR8C NEW UDO REMOVAL
ALLOC. ALLOC.
19 ALLIEOCH 6901 3660. 645. 045. 403. 76.9
19 PHOENIX 6908 512. 11. 1 1. 1 1. 97.9
19 BCL—PLRL 7205 1667. 200. 200. 184. 80.0
20 CLIPONIED ills 38 9CD. 500. 500. 500. 98.7
20 8 F 0000 6000 4758. 590. 510. 524. 87.6
21 WILMNG IN 6902 1045C0. 13400. 13400. 11505. 87.2
21 PENNSGRV 6928 t sco. 240. 240. 209. 87.4
22 DUPONTCH 6931 170292. 14000. 14000. 14000. 91.8
22 IC ! AMER 7008 17000. 4640. 4640. 1872. 72.7
23 PENNSVIL 6927 2233. 350. 350. 246. 84.3
23 UPENNSNK 7121 1917. 230. 230. 21 1. 88.0
24 SCI IRISTT 7201 1040. 130. 130. 115. 87.6
25 AMOCO CM 0 2419. 300. 300. 266. 87.6
26 GETTY0IL 7101 30000. 3150. 3750. 3303. 87.5
26 STNCPLOR 0 500. 100. 100. 55. 80.0
27 DELAC ITT 7208 456. 36. 36. 36. 92.1
27 OIAMSHAM 7209 282. 35. 35. 31. 67.6
27 STAUFFER 0 635. 200. 100. 70. 84.3
28 SALEMCTY 7122 3150. 395. 395. 347. 87.5
29 PORTPENN 7176 97. 12. 22. 11. 87.6
ZONE S TOTALS 385926. 39864. 39864. 33898. 89.1
PERCENT REMOVAL REQUIRED TO MEET NEW ALLOt. • 89.0
PERCENT REMOVAL ACHIEVED • 91.2
a —fl

-------
SECTION FLOW REA.RATE OECAY RATE VCLUME OIFF.RAIE AREA L—L OAOS F—LOAOS 0.0.—SAT.
C.F.S. 1.0/DAYS 1.O IOAYS CF S I.0E6 NI 2/DAY 1000’FT”2 18./DAY L8./OAY GIL
I 3C0 0. 0.62 0.44 242. 0.40 6.50 68952. —12220. 8.400
2 3t26. 0.34 0.44 364. 0.40 15.80 8882. 8622. 8.4C0
3 3234. 0.22 0.44 460. 0.40 2 1.40 3379. 4140. 8.400
4 3244. 0.22 0.44 532. 0.40 24.60 6024. 2700. 8 .400
5 3277. 0.15 0.44 636. 0.40 28.50 3035. 4800. 8.4c0
6 3367. 0.22 0.42 756. 0.40 34.10 7623. 5040. 8.4co
7 3238. 0.22 0.42 455. 0.90 4 1.40 877. 890. 8.400
8 3262. 0.22 0.42 504. 1.60 49.60 2180. 2125. 8.400
9 32c4. 0.15 0.42 533. 2.20 51.20 9160. 2250. 8.400
10 3314. 0.15 0.42 582. 2.70 55.40 76895. 2250. 8.400
11 3544. 0. 15 0.42 630. 3.30 60.90 19586. 5760. 8.400
12 3590. 0.12 0.42 655. 3.80 65.00 4480. 1350. 8.400
13 3595. 0.12 0.42 694. 4.40 66.00 30534. 3240. 8.4C0
14 3605. 0.19 0.42 805. 4.50 72.70 38853. 3960. 8.400
15 3670. 0.19 0.42 1860. 4.60 88.30 48539. 14700. 8.400
16 4379. 0.25 0.42 2030. 4.80 98.C0 44779. 6750. 8.400
I ? 4148. 0. 19 0.42 2184. 5.00 104.90 9108. 11475. 8.400
18 4861. 0.11 0.42 2396. 5.30 1*3.40 27440. 7200. 8.4C0
19 4936. 0.11 0.42 2692. 5.50 126.30 9607. *6200. 8.400
20 4968. 0.13 0.42 2912. 5.80 *42.80 1527. 15750. 8.400
21 4979. 0.18 0.40 1512. 6.00 150.40 34436. 6930. 8.3CC
22 5298. 0.10 0.40 *574. 6.20 151.90 18705. 6000. 8.300
23 5300. 0.18 0.40 *698. 6.30 162.90 648. 13050. 8.300
24 5302. 0.18 0.40 iqz. 6.40 116.80 232. 11000. 8.2C0
25 5305. 0. 18 0.40 1850. 6.50 181.70 510. 9300. 8.200
26 5311. 0.10 0.40 *924. 6.60 188.40 4195. 12000. 8.200
27 5321. 0.10 0.40 2054. 6.80 *96.40 •273. 15000. 8.100
28 5324. 0.10 0.40 2248. 6.90 214.50 3247. 15000. 6.100
29 5394. 0.10 0.40 4896. 7.00 235.00 986. 0. 8.OCO
30 5419. 0.11 0.40 5620. 7.20 254.00 924. 0. 8.000
31 5456. 0.0 0.0 0. 7.50 307.40 0. 0. 7.900
a- 82

-------
SECTION 1973 BASE 1973 0RBC MANG 1973
GO PROFILE C PROF iLE 00 PAOFILE
INCREPEMI RESULT INCREMEN t RESULT
I 8.CC0O 0.0 0.0000 0.0118 8.0 118
2 6.8000 0.0 6.8000 0.0193 6.8193
3 6.2000 0.0 6.2000 0.0332 6.2332
4 6.6000 0.0 6.0000 0.0432 6.0432
5 5.8 000 0.0 5.8000 0.0493 5.8493
S 6.0000 0.0 6.0000 0.0404 6.0404
7 6.2000 0.0 6.2000 0.0376 6.2375
B 6.1000 0.0 6.1000 0.0543 6.1543
9 5.4CCO 0.0 5.4000 0. 104 ? 5.5047
10 4.7000 0.0 4.7000 0. 1 146 4.8746
I I 4.2600 0.0 4.2000 0.2175 4.4175
12 4.0000 0.0 4.0000 0.2550 4.2550
13 3.9C00 0.0 3.9000 0.2827 4.1827
14 4.2000 0.0 4.2000 0.2820 4.4820
IS 4.6000 0.0 4.6000 0.2 4 76 4.8426
16 5.4000 0.0 5.’ 000 0.2025 5.6025
I ? 5.7C00 0.0 5.7000 0.1562 5.8562
18 6.C 000 0.0 6.0000 0.1171 6.1111
19 6.2000 0.0 6.2000 0.0922 6.2922
20 6.3000 0.0 6.3000 0.0760 6.3760
21 6.4C00 0.0 6.4000 0 .0652 6.4652
22 6.6C00 0.0 6.6000 0.0580 6.6580
23 6.7000 0.0 6.7000 0.0498 6.7498
24 6.8000 0.0 6.8000 0.0419 6.8419
25 6.9000 0.0 6.9000 0.0346 6.9346
26 7.1000 0.0 7.1000 0.0280 7.1280
2T 7.1000 0.0 7.1000 0.0222 7.1222
28 7.3000 0.0 7.3000 0.0173 7.3173
29 7.5000 0.0 7.5000 0.0112 7.5112
30 7.7000 0.0 7.7000 0.0054 7.7054
I

-------
THIS DATA WAS COLLECTED ON 5 1573
ZONE 2
ZONE TOTAL 15516. ZONE RESERVE 1724. TOTAL ALLOWED 17240.
SECTION MANE FILE NO RAW UO0 U BOUND ORBC NEW UCO REMOVAL
ALLOC. ALLOC.
1 NORRISYL 6913 ‘ .100. 780. 180. 449. 83.’.
1 TRENTON 0 34000. 5000. 5000. 3249. 85.3
2 NAMILTON 7012 17900. 2000. 2000. 1711. 88.8
2 BORCENTN 0 767. 89. 89. 13. 88.4
2 USSTEEL I 0 21987. 2500. 2500. 2101. 88.6
2 USSTEELS 0 750. 87. 87. 72. 88.4
2 CRIFFINP 7119 819. 70. 88.4
2 STEPANCH 7121 129. 15. 15. 12. 88.4
3 FLORENCE 0 2993. 270. 210. 270. 91.0
3 PATERSCP4 6920 3147. 440. 440. 301. 86.0
3 LWRBUCKS 6905 15600. 2410. 2410. 1491. 84.6
3 PENNCEL 0 1150. 20. 20. 20. 98.3
4 8RISBORO 6914 50CC. 640. 640. 410. 07.2
4 ERIS TWP 6906 3680. 590. 590. 352. 84.0
4 RO1dMHAAS 7133 93333. 2750. 2750. 2750. 97.1
4 HERCULES 7014 24CC. 210. 210. 210. 91.3
4 OURILGRC 7010 400. 55. 55. 46. 88.5
4 BURLCITY 6912 1840. 510. 510. 176. 72.3
4 BURL IMP 7009 991. 115. 115. 95. 80.4
S TENNECO 7112 2660. 590. 590. 254. 77.8
5 FALLSTWP 0 2070. 220. 220. 198. 09.4
S BEVERLY 7011 1780. 205. 205. 170. 88.5
S BURLARMY 7124 95. 11. U. 9. 88.4
6 WLLL8ORQ 7013 10450. 490. 490. 490. 95.3
6 RIVERSDE 0 5633. 310. 310. 310. 94.5
6 OELRAN 0 1587. 190. 190. 152. 80.0
ZON( 2 TOTALS 235941. 20592. 20592. 15516. 91.3
PERCENT REMOVAL REQUIRED TO MEET NEW ALLOt. • 90.4
PERCENT RENOVAL ACHIEVED • 93.4
— R I.

-------
THIS DATA WAS COLLECTED ON 51573
ZONE 3
ZONE TOTAL 35281. ZONE RESERVE 3920. TOTAL ALLOWED 39201.
SECTION NAME FILE NO RAW hOD I) BOUND OR BC NEW UQO REMOVAL
ALLOC. ALLOC.
0 RIVERTON 0 850. 98. 98. 39. 88.5
8 PALM•YRA 0 3027. 300. 300. 137. 90.1
9 CINNAMIN 0 4100. 540. 540. 186. 86.8
10 GEOR—PAC 7018 11600. 1620. 1620. 525. 86.0
10 PHILA NE 7001 435000. 69300. 69300. 19704. 84.1
10 PENNSAU 7118 7450. 1530. 1530. 337. 79.5
11 NATSUGAR 6935 16778. 1800. 1000. 760. 89.3
13 ANSTAR 0 10860. 1500. 1500. 492. 86.2
13 CAMDEN 0 110937. 21000. 21000. 5025. 81.1
13 HOLLINGS 0 1836. 268. 248. 83. 86.5
13 MCANDREW 0 ICC. 100. 100. 5. 0.0
13 PUOLICKR 7005 1300. 180. 180. 59. 86.2
14 PHILA SE 7003 167500. 33267. 33267. 7587. 80.1
14 CAP CORP 0 14350. 100. 100. 100. 99.3
14 HARSHAW 7111 1792. 260. 260. 81. BS.S
14 N J ZINC 7120 3560. 500. 500. 161. 86.0
ZONE 3 TOTALS 791040. 132343. 132343. 35281. 83.3
PERCENT REMOVAL REOIJIRED TO MEET NEW ALLOC. • 95.5
PERCENT REMOVAL ACHIEVED • 95.5
85

-------
THIS DATA WAS COLLECTED ON 51373
ZONE 4
ZONE TOTAL 62989. LONE RESERVE 6999. TOTAL ALLOWED 69988.
SECTION NAME FILE NO RAW UOO U 8OUND ORBC NEW UOD REMOVAL
ALLOC. ALLOC.
15 ARCO OIL 6922 61025. 2590. 2590. 2590. 93.8
15 GULF INO 6916 64482. 2910. 2910. 2910. 95.5
13 GULF SAN 6913 150. 18. 18. 14. 88.0
15 TEXACO 7107 7077. 692. 692. 640. 90.2
15 FCRTMIFF 7004 42. 5. 5. 4. 88.1
15 ARMYCRED 7104 8. 1. 1. 1. 81.5
L5 SHELL CH 7206 4810. 520. 520. 435. 89.2
Lb PHILA SW 7002 222951. 37000. 37000. 20111. 83.4
16 081LOIL 6932 395C0. 4250. 4250. 3514. 89.2
lb IIOUDRYCH 0 542. 63. 65. 49. 88.0
16 ESSEX CH 0 316. 38. 38. 29. 88.0
16 OLINCORP 0 627. 75. 75. 57. 88.0
IT HERCuLES 7015 231CC. 2480. 2480. 2090. 89.3
IT GI8BSTWN 0 1610. 140. 140. 140. 91.6
17 CUPONTRP 6929 11723%. IT O O. 1700. 1700. 98.5
17 TUNICUM 0 750. 310. 310. 68. 58.7
17 UNIONCAR 0 705. 85. 85. 64. 87.9
18 SCOTTCHS 7C06 35972. 3750. 3750. 3254. 89.6
18 8 P OIL 69.11 335 8. 2650. 2650. 2630. 92.1
18 CHESTER 6923 202955. 18000. IBC OO. 18000. 91.1
19 MONSANTO 7016 40800. 4390. 4390. 3691. 89.2
19 GL0UCISTY 7132 9300. Z.’30. 2830. 859. 70.2
ZONE 4 TOUtS 867731. 04499. 84499. 62989. 90.3
PERCENT REMOVAL REQUIRED TO MEET NEW ALLOC. — 91.0
PERCENT REMOVAL ACHIEVED — 92.7

-------
THIS DATA WAS COLLECTED ON 51573
ZONE S
ZONE TOTAL 30493. ZONE RESERVE 3388. TOTAL ALLOWED 33881.
SECTION NAME FILE NO RAW UOD U BOUND DR BC NEW IJOD REMOVAL
ALLOC. ALLOC.
19 ALLIEDCH 6901 3660. 845. 845. 332. 76.9
19 PHOENIX 6908 512. U. 11. 11. 97.9
19 1101—PURL 7205 1667. 200. 200. 151. 88.0
20 OUPOP4TED 7115 389C0. 500. 500. 500. 98.7
20 B F GOOD 6880 4758. 590. 590. 432. 87.6
21 W ILMNGTN 6902 1045CC. 13400. 13400. 9481. 87.2
21 PENNSGMV 6928 1900. 240. 240. 172. 87.4
22 OUPONTCH 6931 170292. 14000. 14000. 14000. 91.8
22 ICI AMER 700B 17000. 4640. 4640. 1542. 72.7
23 PENNSVIL 6927 2233. 350. 350. 203. 84.3
23 UPENNSNK 7121 1917. 230. 230. 174. 88.0
24 SCP’RISIT 7201 1048. 130. 130. 95. 87.6
25 AMOCO CH 0 2419. 300. 300. 219. 87.6
26 GETTYOIL 7101 30000. 3750. 3750. 2722. 87.5
26 SYNCHIOR 0 SCO. 100. 100. 45. 80.0
27 OELACITY 7208 456. 36. 36. 36. 92.1
27 CIANSHAM 7209 282. 35. 35. 26. 87.6
27 STAUFFER 0 635. 100. 100. 58. 84.3
28 SALENCTY 7122 3150. 395. 395. 286. 87.5
29 PORTPENN 7176 97. 12. 12. 9. 87.6
ZONE S TOTALS 385926. 39864. 39864. 30493. 89.7
PERCENT REMOVAL REQ liftED TO MEET NEW ALLOC. • 90.9
PERCENT REMOVAL ACHIEVED — 92.1
— 87

-------
SECTION FLOW REA.RATE DECAY RATE VCLUME DIFF.RATE AREA L—LOADS F—LOADS 0.0.—SAT.
C.F.S. 1.0/DAYS 1.0/DAYS CFSI.0E6 NI 2/DAY L000SFTSS2 L8./DAY LB.IDAY GFL
I 3C00. 0.62 0.44 242. 0.40 6.50 68952. —12220. 8.400
2 3126. 0.34 0.44 364. 0.40 15.80 8882. 8622. 8.400
3 3234. 0.22 0.44 460. 0.40 21.40 3379. 4140. 8.’.O0
4 3244. 0.22 0.44 532. 0.40 24.60 6024. 2700. 8.400
5 3277. 0.15 0.44 636. 0.40 28.50 3035. 4800. 8.400
6 3367. 0.22 0.42 756. 0.40 34.10 7623. 5040. 8.400
7 3238. 0.22 0.42 455. 0.90 41.40 877. 890. 8.400
8 3262. 0.22 0.42 504. 1.60 49.60 2780. 2125. 8. 4C0
9 3294. 0.15 0.42 533. 2.20 51.20 9 1A0. 2250. 8.400
10 3314. 0.15 0.42 582. 2.70 55.40 76895. 2250. 8.400
11 3544. 0.15 0.42 630. 3.30 60.90 19586. 5760. 8.400
12 3590. 0.12 0.42 655. 3.80 65.C0 4480. 1350. 8.400
13 3595. 0.12 0.42 694. 4.40 66.00 30534. 3240. 8.ACO
14 3605. 0.19 0.42 805. 4.50 72.70 38853. 3960. 8.400
15 3670. 0.19 0.42 1860. 4.60 88.30 48539. 14700. 8.4C0
16 4319. 0.25 0.42 2030. 4.80 98.00 44779. 6750. 8.400
17 4748. 0.19 0.42 2184. 5.00 104.90 9708. 11475. 8.400
18 4861. 0.17 0.42 2396. 5.30 113.40 27440. 7200. 8.400
19 4936. 0.17 0.42 2692. 5.50 126.30 9607. 16200. 8.4C0
20 4968. 0.13 0.42 2932. 5.80 142.80 1527. 15750. 8.400
21 4979. 0.18 0.40 1512. 6.00 150.40 34436. 6930. 8.300
22 5298. 0.18 0.40 1574. 6.20 151.90 18705. 6C00. 8.3C0
23 53C0. 0.18 0.40 1698. 6.30 162.90 64 $. 13050. 8.300
24 5302. 0.18 0.40 1792. 6.40 176.80 232. 11000. 8.200
25 5305. 0.18 0.40 1850. 6.50 181.70 510. 9300. 8.200
26 5311. 0.18 0.40 1924. 6.60 188.40 4195. 12C00. 8.2C0
27 5321. 0.18 0.40 2054. 6.80 196.40 273. 1 SCOO. 8.100
28 5324. 0.18 0.40 2248. 6.90 214.50 3247. 15000. 8.100
29 5394. 0.18 0.40 4896. 7.00 235.00 986. 0. 8.000
30 - 5419. 0.17 0.40 5620. 7.20 254.00 924. 0. 8.000
3% 5456. 0.0 0.0 0. 7.50 307.40 0. 0. 7.900
a-Pt

-------
SECTION 1973 BASE 1973 OROC I ANG 1973
00 PROFILE 00 ‘ OFILE 00 PROFILE
INCRE EN1 RESULT LNCRE ENT RESULT
e.oooo 0.0 8.0000 0.0224 8.0224
2 6.80 00 0.0 6.8000 0.0471 6.8471
3 6.2C00 0.0 6.2000 0.0779 6.2719
4 6.CCOO 0.0 6.0000 0.0943 6.0943
5 5.8000 0.0 5.8000 0.1015 5.9015
6 6.OCOO 0.0 6.0000 0.083? 6.0837
7 6.2CCO 0.0 6.2000 0.1021 6.3021
8 6.1COO 0.0 6.1000 0.2399 6.3399
9 5.4000 0.0 5.4000 0.5649 5.9649
10 4.7C00 0.0 4.7000 0.9780 5.6180
11 4.2C00 0.0 4.2000 1.1551 5.3551
12 4.CC OO 0.0 4.0000 1.2434 5.2434
13 3.9C00 0.0 3.9000 1.2572 5.1512
14 4.2000 0.0 4.2000 1.1552 5.3552
15 4.6C 00 0.0 4.6000 0.902? 5.5027
16 5.4C00 0.0 5.40 00 0.6528 b.0S28
17 5.1000 0.0 5.7000 0.4691 6.1691
18 6.0000 0.0 6.0000 0.3309 6.3309
19 6.2CCO 0.0 6.2000 0.2379 6.4319
20 6.3000 0.0 6.3000 0.1798 6.4798
21 6. RC OO 0.0 6.4000 0.1441 6.5441
22 6.6000 0.0 6.6000 0.1222 6.7222
23 6.7000 0.0 6.1000 0.1016 6.8016
24 6.BCCO 0.0 6.8000 0.0838 6.8838
25 6.9C00 0.0 6.9000 0.0682 6.9682
26 7.1000 0.0 7.1000 0.0547 7.1547
27 7.LCO O 0.0 7.1000 0.0430 7.1430
28 7.3000 0.0 7.3000 0.0334 7.3334
29 7.5000 0.0 7.5000 0.0215 7.5215
30 7.1000 0.0 7.1000 0.0103 7.1103

-------
Glossary
The following symbols have been adopted for use in this report:
(A) = the steady—state transfer matrix from
PRINE that shows the D.O. response in all
sections due to waste load inputs into
any or all sections (N/L 3 )/ 4/T)*;
BOD = Biochemical Oxygen Demand — the amount of
oxygen required by bacteria while stabilizing
decomposable or anic matter under aerobic
conditions (M/L );
BOD 5 = amount of BOD stabilized in five days
(C) = a vector of raw CBOD loads by section
(M/T);
C = the raw CBOD load for source I (M/T);
CBOD — Carbonaceous BOD — the BOD due to the
stabilization of the carbonaceous fraction
of the waste by saprophytic organisms
(M/L 3 );
(D) = a vector of upper bounds to the source
loads (M/T);
DECS = Delaware Estuary Comprehensive Study;
D.O. = dissolved oxygen (M/L 3 );
(DO) = the D.O. improvement goal throughout the
estuary that must be attained expressed as
a vector (M/L 3 );
I = a number to designate a source;
*NOTE: the letters in brackets designate the units of the symbol,
M = mass; L = length; T = time
B—i

-------
j = a number to designate a zone;
MANG = a computer program developed by DECS
to compute carbonaceous load allocations
for a set of discharge sources on an
estuary;
NOD = Nitrogenous Oxygen Demand — used to
designate the amount of oxygen required
by autotrophic organisms when converting
ammonia to nitrate (NIL 3 );
PRINE = computer program developed by DECS to
model a one—dimensional, steady—state
estuary for BOD and D.O.;
P = a percent removal of raw waste
p = the zone percent removal computed by RUNM;
RAPP = Refuse Act Permit Program
RUNM = a computer program developed by DECS to
compute the allowable zone discharges
used by MANG
SWO = stormwater outfall loads (N/T);
TKN total Kjeldahl nitrogen;
UOD = Ultimate Oxygen Demand — the total BOD
of a waste (NIL 3 );
ZAD = the zone allowable discharge for zone as
computed by RUNM.
B— 2

-------