NASA Technical Memorandum   83152

EPA REPORT NO, 600/4-81-061
  DESIGN, DEVELOPMENT, AND FIELD

  DEMONSTRATION OF A REMOTE DEPLOYABLE

  WATER QUALITY MONITORING SYSTEM
  John W. Wallace,  Ray W.  Lovelady
  and Robert L  Ferguson
  JULY 1981
NASA
National Aeronautics and
Space Administration
Langley Research Center
Hampton. Virginia 23665

-------
                                     SUMMARY


     This research and application project was initiated under an interagency
agreement between the National  Aeronautics and Space Administration (NASA),
Langley Research Center (Langley) and the Environmental  Protection Agency
(EPA), Environmental Monitoring Systems Laboratory, Las Vegas, Nevada.

     Under this agreement, NASA developed and tested an automated, multi-
parameter Water Quality Monitoring System that offers almost continuous in
situ water monitoring capability.  The two-man portable system features
include the following:

     o  a microprocessor controlled central processing unit which allows
        preprogrammed sampling  schedules and reprogramming in situ;

     o  a subsurface unit for multiple depth capability and security from
        vandalism;

     o  an acoustic data link for communications between the subsurface
        unit and the surface control  unit;

     o  eight water quality parameter sensors;

     o  a nonvolatile magnetic  bubble memory which prevents data loss in the
        event of power interruption;

     o  a rechargeable power supply sufficient for 2 weeks of unattended
        operation;

     o  a water sampler which can collect 16 samples for laboratory
        analysis;

     o  data output in direct engineering units on printed tape or
        through a computer compatible RS232C link;

     o  internal electronic calibration eliminating external sensor
        adjustment; and

     o  acoustic location and recovery systems.

     Langley personnel conducted a 1-week field test of the WQMS during
August 1980 in Saginaw Bay, Lake Huron.  All functional  aspects of the system
performed satisfactorily.  The  system was calibrated, preprogrammed, and

-------
deployed. After 3 days of operation, the system was reprogrammed through a
hardwire link and operated 2 more days before being reprogranuned through the
acoustic link for the final 2 days of operation. During the test, the sub-
surface unit was located via the acoustic system and the acoustic link was
used to release the unit from the anchor for recovery. Recalibration of the
sensors showed little drift.
This report was submitted in fulfillment of Interagency Agreement D6—0053
between NASA Langley Research Center and EPA, Environmental Monitoring Systems
Laboratory, Las Vegas. This report covers a period from June 1976 to August
1980; work was completed as of August 15, 1980.
This report has been reviewed by the Environmental Monitoring Systems
Laboratory, U.S. Environmental Protection Agency, and approved for
publication. Approval does not signify that the contents necessarily reflect
the views and policies of the U.S. Environmental Protection Agency, nor
does mention of trade names or commercial products constitute endorsement or
recommendation for use.
11

-------
SUMMARY . . . . . .
TABLE TITLES . . . .
FIGURE TITLES . . . . .
ABBREVIATIONS AND SYMBOLS
INTRODUCTION . . . . .
I
V
vii.
ix
1
CONCLUSIONS . . . . .
SYSTEM DESCRIPTiON . .
STRUCTURE . . . . .
BUOY ELECTRONICS . . .
MAGNETIC BUBBLE MEMORY
SENSORS . . . . . . . .
SENSOR CALIBRATiON
WATER SAMPLER . . . . .
POWER SUPPLY . . .
LOCATION AIDS . . .
DEPLOYMENT AND RETRIEVAL
DATALINK
SIJRFACE CONTROL UNIT
OPERATION . . . . .
FIELDTEST. .....
ClIRONOLOGY . . . . . .
SENSOR CALIBRATION DURING
FIELD TEST RESULTS . .
• S S S S S S S S S S S S • S S •
• I S S S S S S S S S • • S • I
• I • • • • S S • S • S S S S I
• S S • S S S S S S S S S S • S
• S S S S S S S S • S S S S S S
• S S • S S S S S S S S S • • S
• . S S • S S I S S S S S • S a
• S S S S S S S • I S • • S • S
• . . S • S S S S S S • • S S S
• S • S S S S S S S S S S S S S
• S S S S S • S S S S S S • S •
• S • • S S • S S S S S S S S S
• . S S S S S S • S • S • S S •
• S S S S S S S S S S S S S I S
• S S • S I S S S S S S S •
• S S S S S S S S • S • S •
S S S S S S S S S S S S •
• S S S S • I • • • S S S S S I
2
3
3
3
4
4
6
6
6
7
7
B
8
9
10
10
11
13
RECOMMENDATIONS
APPENDIX • . . • . . .
FIGURES . • . • . • • •
TABULARDATA • .. •
14
16
17
64
CONTENTS
• S S S S S S S S S S S S S S S •
• S S S S S S S S S S S S S S S S
• S S S S S S S S S S S • S S S •
• I S S S S S S S S S S S S • S I
• S S S S • S • S S S S S S S S S
• S
• S
TEST
S S S S S S
• S S S S S
S S S S S S
• S S S S S S S S S
• S S S S S S S S I
• S S S S S S S S •
111

-------
TABL ES
Number Page
1 List of Sensors . . . . . . . . . . . . . . . . . . . . 17
2 SSII Data Schedules. . . . . . . . . . . . . . . . . . . 18
3 Temperature, °C . . . . . . . . . . . . . . . . . . . . 19—28
4 Pressure. . . . . . . . . . . . . . . . . . . . . . . . 29—31
5 Conductivity. . . . . . . . . . . . . . . . . . . . . . 32—35
6 pH. . . . . . . . . . . . . . . . . . . . . . . . . . . 36—43
7 Oxidation-Reduction Potential . . . . . . . . . . . . . 44-48
8 Dissolved Oxygen . . . . . . . . . . . . . . . . . . . 49—53
9 Fluoride. . . . . . . . . . . . . . . . . . . . . . . . 54—58
10 Turbidity . . . . . . . . . . . . . . . . . . . . . . . 59—61
11 Field Verification Data . . . . . . . . . . . . . . . . 62
12 Measurements of Water Samples. . . . . . . . . . . . . . 63
V

-------
F IGIJRES
Number Page
1 Water quality monitoring system subsurface unit. . . . . . 64
2 WQMS subsystem electronics . . . . . . . . . . . . . . . . . 65—68
3 SSusensormounting .................... 69—70
4 Communication and location aids on SSIJ . . . . . . . . . . . 71
5 WQMS surface control unit. . . . . . . . . . . . . . . . . . 72
6 SSU deployment site. . . . . . . . . . . . . . . . . . . . . 73
7 SSU deployment arrangement . . . . . . . . . . . . . . . . . 74
8 SSU being lowered into waters of Saginaw Bay . . . . . . . . 75
9 Operation with SCU during daily operational check of SSU . . 76
10 Hourly averages of temperature . . . . . . . . . . . . . . . 77
11 Hourly averages of pressure. . . . . . . . . . . . . . . . . 78
12 Hourly averages of conductivity. . . . . . . . . . . . . . . 79
13 Hourlyaveragesof pH...... . . . . . . . . . ..... 80
14 Hourly averages of redox (ORP). . . . . . . . . . . . . . . . 81
15 Hourly averages of dissolved oxygen . . . . . . . . . . . . . 82
16 Hourly averages of fluoride . . . . . . . . . . . . . . . . . 83
17 Hourly averages of turbidity. . . . . . . . . . . . . . . . . 84
vii

-------
LIST OF ABBREVIATIONS AND SYMBOLS
ABBREVIATDNS
Cpu — central processing unit
d.c. - direct current
0.0. - dissolved oxygen
EPROM - erasable programable read only memory
FSK - frequency shift keyed
I/O — input/output
LCD — liquid crystal digital
MBM - magnetic bubble memory
N11J - nephelometric turbidity units
ORP — oxidation reduction potential
PC - printed circuit
SCU — surface control unit
SIC — sensor interface Circuit
SSU — subsurface unit
WQMS — Water Quality Monitoring System
SYMBOLS
cm - centimeter
- degree Celsius
- liter
ix

-------
mg — milligram
m2. - milliliter
mV - millivolt
V - Volt
iimho - micromho
x

-------
INTRODUCTION
The NASA/EPA Water Quality Monitoring System (WQMS) described in this
report is an automated, multiparameter system. It is designed to operate
in situ, unattended for periods up to 2 weeks, collecting sensor data and water
samples.
The system was designed and fabricated by the National Aeronautics and
Space Administration (NASA), Langley Research Center (Langley) under an
interagency agreement with the Environmental Protection Agency (EPA), Environ-
mental Monitoring Systems Laboratory, Las Vegas, Nevada.
The purpose was to develop a small, lightweight, automated water monitoring
system that could be deployed by one or two people from a small boat, or
possibly a helicopter, for extended self—powered operation. Multiple sensors
and sample collecting capability were desired, for collecting data at selectable
frequencies. A subsurface system was desired for multiple depth capability as
well as security from vandalism. The system was needed for unattended monitoring
of remote waters, such as lakes, bays, or marshes, as well as for trend or pollu-
tion episode monitoring in streams. Internal data storage and retrieval capabil-
ity were also desired.
The WQMS is a two-man portable system that offers almost continuous in situ
water quality monitoring capability. When deployed, the system collects data
from eight sensors and stores the data in a nonvolatile magnetic bubble memory
(MBM). A microprocessor controls the system and is normally preprogrammed with
the data and sample collection schedules. Reprogramming of the system can be
performed through an acoustic link or through a data cable without disturbing
the system. The system will operate in water depths to 30 meters and ambient
temperatures from 00 to 350C.
Langley personnel field tested the WQMS during August 1980 in Saginaw Bay,
Lake Huron. All functional aspects of the system were tested and operated
satisfactorily. Operational support and field verification data were provided
by the EPA Large Lakes Research Station (LLRS), Grosse Ille, Michigan. Upon
completion of the field tests, the system was turned over the LLRS for operational
use.
We gratefully acknowledge the contribution to system definition and
development of Mr. Clifford Risley, of the U.S. Environmental Protection
Agency, Region V, Chicago. His continued interest and support throughout
the project provided valuable EPA input.
1

-------
CONCUJS IONS
The Water Quality Monitoring System described here is a prototype and
hence not a production model. It has the potential to become one of the
most useful water quality monitoring tools developed. Future operational
use of this prototype will further define the strong and weak points of the
system. The scientist in the field can determine the most useful and the
least useful features.
The system Is somewhat larger and heavier than originally planned, but
can be transported and deployed with little difficulty by two persons. The
size watercraft used to deploy the system is determined more by the deployment
site than by the size of the system. During preliminary in-water tests, a
14-foot rowboat was used for deployment in a local reservoir.
A tremendous capability Is offered by the system electronics with the
nonvolatile memory, the acoustic communication link, and the programmable
microprocessor. Versatility Is exemplified by the capability of the system
to collect data and samples on command, by schedule, and on alert from a sensor,
and by the ability to reprogram the system through the acoustic link without
disturbing it physically.
Although the electronics are quite sophisticated, operation of the system
is straightforward with some prompting of the operator by the surface control
unit. Field personnel should not have any difficulty operating the system.
The power supply is sufficient far the design goal of 2 weeks operation,
with a margin of 50 percent. Siofouling could cause degradation in some of
the sensors over extended periods. Approximately 3 to 4 hours would be required
to refurbish the system In the field for extended use.
2

-------
SYSTEM DESCRIPTION
The WQMS consists basically of two units, a submersible data and sample
collection unit and a surface control unit (SCU). The subsurface unit (SStJ)
houses the system electronics, the sensors, and the water sampler. The SCU
contains a set of electronics similar to the SSU electronics and is used to
program and retrieve data from the SSU.
STRUC11JRE
The WQMS is shown in figure 1. With the anchor attached, the buoy is 1.5
meters tall, 0.57 meter in diameter, and has a mass of 59 kilograms. All of the
structural material in the SSU is aluminum. The electronics housing is fabri-
cated with 0.63 centimeter-thick aluminum plate with welded seams. A flat
rubber gasket is used to seal the housing which has been pressure tested to
4.48 x Newtons/meter 2 or an equivalent water depth of 45 meters. The lift-
ing structure and the anchor support structure are 0.93 cm diameter tubing.
The battery box was machined from a block and underwent the same pressure
tests as the electronics housing. It is also sealed with a flat rubber gasket.
Pressure relief valves are integral parts of the electronics housing and
battery box. In addition to preventing large pressure buildups, the valves
are used to purge and fill the interiors with dry nitrogen.
The anchor is a polypropylene form which is filled with lead shot and
cement to the desired weight. It is attached to the anchor support structure
with 1330-Newton capacity line and two swivels.
BUOY ELECTRONICS
The SSU electronics unit is shown in figure 2(a). The heart of the SSU
electronics is the central processing unit (CPU), which is a microprocessor-
based subsystem. The microprocessor is an RCA 1802 CMOS unit, which uses a
10,000-step software package to control all SSU operations. The microprocessor
is shown on the printed—circuit (PC) board in figure 2(b). CPU communications
with all other portions of the SSU is through input/output (1/0) ports.
Operation of the system begins when the CPU receives the measurement and
sampling schedule from the SCU. The CPU stores the schedule in the MBM and
then examines it for the time of the first operation. The time is set in a
clock register. The CPU then shuts the SSU power off except for maintenance
operations. When the clock reaches the time set in the register, the CPU resumes
operation and signals the appropriate sensor to take a measurement. Additional
sensors required to correct the measurement (i.e., temperature corrections) are
also signaled. True values of sensor measurements are computed by the software
and stored in the MBM along with the time and number of days since launch.
3

-------
This procedure is repeated for each measurement, including water sample collection,
during the deployment. Daily self-tests are performed for each sensor channel
with the results stored in the MBM.
MAGNETIC BUBBLE MEMORY
The magnetic bubble memory subsystem performs the nonvolatile storage
function for the SSU in four 92—kilobit chips. This subsystem contains its
own central processing unit and other peripherals which control data entry and
retrieval from the MBM chips. The MBM chips are shown on the PC board in figure
2(c). The MBM CPU receives the data and operational instructions from the
main CPU and responds accordingly, keeping track of the page numbers corres-
ponding to data entries.
A 1,000—step software program is used by MBM CPU to control the generation
of the magnetic bubbles which make this data storage system such a valuable
tool. These magnetic bubbles are not affected by the state of the power supply,
so no data are lost if the system should lose power.
SENSORS
The WQMS is designed to handle ten data channels with eight sensors provided
on the SSU. A ninth channel is occupied by the water sampler while the tenth
channel currently is unused.
All of the sensors are commercially available products. Their selection was
based on a survey of the literature and discussions with users in government
and industry. Criteria considered most significant included successful in situ
operation, modest size, and lack of a requirement for complex manipulation
or maintenance of the sensor. Table 1 lists the sensors, their manufacturers,
and specifications, however, this is not an endorsement of these sensors.
Associated with each sensor is an interface PC board with an erasable
programmable read only memory (EPROM). The EPROM contains the sensor charac-
teristics, including equations needed by the CPU to provide corrected, linearized
data in direct engineering units. An EPROM is shown in figure 2(d) on the PC
board for the sensor.
Three of the sensors, temperature, pressure, and conductivity, which
are used for all measurements, are mounted on the top of the SSU. The remaining
sensors are mounted around the sides of the electronics canister. Figure 3(a)
and 3(b) shows the sensors mounted on the SSU.
Parameter values stored in the MBM are final true values. All necessary
secondary corrections have been made using a mathematics software package and
the temperature, pressure, and conductivity readings which have been taken
simultaneously with each measurement. Brief descriptions of the sensors are
as follows:
4

-------
Temperature
The temperature sensor uses a thermistor to make measurements. There
are no corrections required and the sensor interfaces directly with the
sensor interface circuit (SIC), which presents linear temperature data
to the CPU.
Pressure
The pressure sensor uses a resistive bridge technique which produces a
voltage differential with pressure. No corrections are required and input
to the sensor interface circuit is direct. Linear pressure data are
presented to the CPU.
Conductivity
The conductivity sensor uses a four—electrode system which forms a
bridge with one path measuring the resistance of the return through water.
Conductivity is corrected for temperature and inputs direct to the SIC.
The SIC presents logarithmic data to the CPU.
pH is a Nernstian measurement. The sensor measures the electrochemical
potential of the hydrogen ions in the water, giving a voltage output.
Buffer electronics make a correction and condition the signal before it is
input to the SIC. The SIC presents linear data to the CPU.
Oxidation-Reduction Potential (ORP )
The ORP sensor measures redox or electrochemical potential of the
water. The measurement is buffered and a proportional voltage is input to
the SIC. There are no corrections. Linear data are presented to the CPU.
Dissolved Oxygen (DO )
The DO sensor measures oxygen migration through a polarographic
membrane to an electrode. A custom buffer converts the low current output
into a voltage proportional to the DO. Corrections are necessary for
temperature, pressure, and conductivity. The SIC presents linear data
to the CPU.
Fluoride
Fluoride is a Nernstian measurement which uses a specific ion probe to
measure the electrochemical potential of fluoride ions. The measurement
is corrected for temperature and buffered for input to the SIC unit which
presents logarithmic data to the CPU.
Turbidity
The turbidity sensor is a sidescatter measuring instrument. A light
detector measures the amount of light scattered at a 900 angle from a beam
produced by the instrument. A voltage proportional to the amount of
scattering material in the water is input to the SIC which presents linear
data to the CPU. No corrections are made.
5

-------
Schematics for all of the electronics are included in the system
operating manual which Is provided with the WQMS.
SENSOR CALIBRATION
The electronics in the sensor buffers and the sensor interface are
designed for a minimum of drift. When the SSU is operating in situ, a
self—test feature periodically checks drift of the sensor electronics.
This drift is small compared to that which normally nay be expected from
the sensors.
Calibration of the sensors is performed from the SCU using
with no internal adjustments needed. The procedure is outlined
using pH as an example.
software,
below
(4.0).
Prepare two buffer solutions, one a high pH (10.0) and one a low pH
Immerse the pH sensor in the pH 10.0 solution and instruct the buoy
to read pH.
value.
The SCU will show a measured value and then ask if this is a true
Enter the true value if different from the measured value.
Follow this procedure with the pH 4.0
values have been entered, instruct the SSU
solutions have been used, the system will
and the offset of the calibration curve.
in adjustment of the offset only.
WATER SAMPLER
solution and after the true
to calibrate. If two buffer
internally adjust both the slope
Calibration with one sample results
The water sampler is located below the electronics housing (figure 1).
It is controlled by the CPU and can collect up to sixteen 500 m samples.
Samples are collected under three modes; on a preprogrammed basis, on command
from the surface control unit, or on an alert basis where a specified parameter
exceeds predefined boundaries.
The sampler
is loaded with a
the center post
cam to activate
baq is unrolled
water sample.
POllER SUPPLY
is a rosette which holds 16 sampling frames. Each frame
plastic bag which has the top rolled to form a seal. Inside
of the rosette is a stepping motor which drives a rotating
the sampling frames. When a frame is activated, the top of the
and the frame mechanically expands the bag, drawing in the
The bag is then resealed by rolling the top.
The battery box is
water sampler (figure 1).
located between the electronics housing and the
It contains a rechargeable Nickel—Cadmium (NiCd)
6

-------
battery pack which provides the primary power supply of 20 volts to the SSU.
A number of secondary voltage5 (+24 V, +15 V, #12 V, +5 V, —5 V, -12 V) are
generated by the power supply circuit in the SSU to operate the different
subsystems. Two switching regulators are used for the d.c. to d.c . con-
version. The +5 V, which supplies the logic circuits, is always needed
and has one of the regulators dedicated to it. The second regulator is
turned on and off as needed for power conservation, and provides the voltages
needed to operate the MBM, sensor circuitry, and other peripherals.
LOCATION AIDS
There are two acoustic transmitters (pingers) located on top of the
electronics canister as shown in figure 4. One serves as the primary
location aid while the other serves as an emergency signal and location aid.
The locator pinger produces an omnidirectional signal burst or “ping”
every 2 seconds. This pinger is turned on during normal operation of the
SSIJ and operates continuously. A directional surface hydrophone can detect
the signal at distances of up to 1 mile, permitting exact SSU location.
The emergency pinger is a duplicate of the location pinger except the
repetition rate is one ping every second. This pinger is turned on when
the primary battery voltage drops below 17.5 V, or if a water leak into the
electronics canister is detected. When the emergency pinger is on, the SSU
will not respond to any commands or take measurements.
Each pinger has an independent battery power supply which allows
continuous operation for approximately 30 days.
DEPLOYMENT AND RETRIEVAL
The SSU is equipped with two class “C” pyrotechnic cable cutters (figure 1)
to facilitate deployment and retrieval. Each pyrotechnic requires two coded
commands before it can be activated. The Cpu must receive and recognize
the two comamds within 30 seconds of each other or the pyrotechnic will
not be activated.
Both cable cutters are used with two cables if the SSU and anchor are
to be close-coupled during deployment. Once anchored, the short cable would
be cut allowing the SSU to float to a predetermined height above the bottom
for operation. The same procedure would be used if data were desired from
two heights in the same water column. The SSU would be deployed at the
lower height, and after a given period, the cable would be cut allowing the
SSU to float to the second height for the remainder of the operation.
To recover the SSV, the second cable is cut and the SSU floats to
the surface. If only one cable is used for deployment, then one cable
cutter is used unless the operator desires redundancy in the recovery
system.
7

-------
DATA LINK
Communications between the SSU and the surface control unit is through
the data link. When the SSU is in operation in open waters, an acoustic
link is used. If the SSU is to be deployed in an acoustically unfavorable
site, a direct cable link is used. Reflected signals cause interference
with transmission and even in open waters limit use of the acoustic link
to a 45° half angle cone above the SSU.
A data link canister with two hemispherical hydrophones is attached
to the top of the SSU. These hydrophones are shown in figure 4. Each
hydrophone transmits and receives on one of two frequencies used in the
frequency shift keyed (FSK) system of digital data transmission. The
FSK system uses one frequency (230 kHz) to represent logical l’s state and
the other frequency (153 kHz) to represent logical 0’s state, shifting
frequencies as necessary to transmit the digital data stream. An
identical hydrophone system is used at the surface to handle data trans-
mission and reception for the SCU.
The acoustic link transmits data at 2.88 kilobits/second, which is a
significant increase in the state of the art in this discipline. Prior
technology limited data rates to less than 100 bits/second.
SURFACE CONTROL UNIT
The surface control unit shown in figure 5 is the operator interactive
part of the Water Quality Monitoring System. It is used by the operator to
program the SSU data collection schedule, to issue commands, to initiate
data retrieval, to store data, and to present the data either through a
thermal printer or through a computer compatible link.
Circuitry in the SCU is, to a large extent, identical to circuitry in
the SSU. The MBM system, the CPU hardware, the data link, and the power
supply circuits are identical. The principal difference is control of
keyboard, display, and printer functions in the SCU in lieu of sensor
control in the SSU.
The SCU is packaged in a waterproof attach case made of corrosion-
resistant materials. The case is suitable for use as a shipping container.
All openings, operating controls, displays, and connectors are of splash-
proof design.
In put/Output El ements
Located on the face of the SCU are the input/output elements: the
keyboard, display, thermal printer, and connectors. Input to the system is
through a 64—character ASCII keyboard plus six special-purpose keys.
Commands, data collection schedules, and coments are typed on the keyboard
and entered through one of the special purpose keys.
8

-------
A 16—character liquid crystal display (LCD) shows the information being
entered into the system. It also displays data as commanded and displays
Cpu prompting for the operator.
Hard copy records of measurements, schedules, data identification,
commands, and/or any operator entry may be obtained with the 16-character—
per-line thermal printer. The printer is activated by one of the special—
purpose keys.
The connectors on the SCU are for the SSU data link, the computer
compatible RS—232C output link, and external power and battery recharging
for the SCU. Grouped with the connectors is a system on/off switch.
OPERATION
In operation, the CPU initially scans the keyboard for entries. As
entries are made, the CPU stores them in its buffer memory until an opera-
tional instruction is defined. The CPU then executes the instruction. If,
for example, the instruction is to obtain an immediate measurement from a
specific sensor the command is transmitted to the SSU. The SSU CPU receives
the command, activates the required sensor, obtains the measurement, performs
any secondary corrections, and transmits the value to the SCU. The surface
CPU receives the value and displays it for the operator.
When entering an operating schedule, the entries are held in the
buffer memory until the entire schedule has been entered. On command, the
schedule is then stored in the permanent bubble memory. The schedule may
be recalled at any time and transmitted to the SSU. This capability allows
the operator to enter, edit, and/or change the program at any convenient
time or place and then transmit the program to the SSU on site.
9

-------
FIELD TEST
The Water Quality Monitoring System was field tested with EPA support in
Saginaw Bay, Lake Huron during August 1980. Saginaw Bay is freshwater, and
is a large, relatively shallow finger of Lake Huron which protrudes into the
State of Michigan. The operations base for the test was Bay City, Michigan.
The test site was 24 kilometers from the mouth of the Saginaw River and
1.6 kilometers southeast of the entrance channel buoy number 3. Water depth
at the site was approximately 9 meters. Location of the test site is shown
in figure 6.
The SSU was deployed as shown in figure 7. Physical location and recovery
aids were added to the system as a precaution since this was a prototype
system. Once the SStJ was deployed, a 15.3-meter recovery line attached to
the base of the SSU was extended along the bottom, and the free end anchored.
In the event a normal recovery could not be made, a grappling hook would be
used to snare the recovery line and pull the SSU to the surface. Small
international orange buoys were anchored beyond each extremity of the recovery
line as an aid to grappling for the line and also as a location aid for the
system should hydrophone location fail. Anchors separate from the SSU were
used to prevent unwanted retrieval of the SSU.
CHRONOLOGY
The WQMS was transported to Bay City, Michigan, by NASA Langley
personnel. The system was assembled, checked out, and calibrated on
August 4th and 5th. On August 6th, the system was loaded on the EPA vessel
BLUE WATER and transported to the deployment site. The system was deployed
with the sensor height set at 1.5 meters above the bottom, and began operation
at 1500 hours on August 6th. Figure 8 shows the SSU being deployed. After
obtaining field verification data and ascertaining that the system was opera—
tiny properly, the BLUE WATER returned to port.
The system was checked daily as a precaution to make certain all systems
were operating properly. Daily checks will not be necessary when the system
is put into operational use. The system will be unattended until a data
dump is wanted or until the system is to be recovered. Field verification
data were also collected daily during the depoyment.
On August 9th, during an attempt to interrogate the SSU, there was a
momentary power loss, resulting in automatic shutdown of the SSIJ electronics
and activation of the emergency pinger. The power loss was thought to be
a result of the near orange buoy line becoming entangled with the SSU and
10

-------
flexing the external power cable from the battery box to the electronics
housing. Using the grappling hook and recovery line, the SSU was retrieved
and placed on the BLUE WATER. The SSU was checked to make sure that
water-tight integrity had been maintained and then the data in the SSU
memory were dumped and the data schedule was changed through the direct
link. Ten water samples which had been collected were removed and analyzed
and the frames were reloaded. The SSU was then redeployed about 100 meters
from the original site.
On August 11th, using the acoustic link, a data dump was made, and a new
schedule was transmitted to the SSU. Figure 9 shows a system operator
with the SCU. The system continued to operate satisfactorily and the field
test was ended on August 13th. The pyrotechnic release was used to recover
the SSU. The release commands were transmitted over the acoustic link and
the cable cutter activated as scheduled. The buoy floated to the surface
and was placed aboard the BLUE WATER. Before returning to port the sensors
were recalibrated.
SENSOR CALIBRATION DURING TEST
Temperature
The temperature sensor was calibrated prior to launch and after retrieval
by comparing air temperature measurements with an independent temperature
probe. Field verification data were collected with A YSI telethermometer
using water samples collected in the vicinity of the SSU. Calibration of
the sensor was maintained throughout the test.
Pressure
A one-point calibration was performed prior to launch using atmospheric
pressure as the standard. After deployment, a discrepancy of 1.6 meters
was noted between the sensor and depth measured by depth sounder and plumb
line. After retrieval a two-point calibration of the sensor provided the
proper slope and offset for the sensor. Subsequent data analysis showed
no system problem and determined that the sensor read low by a factor of
1.224. This correction has not been applied to the data presented here.
Conductivity
Two standard solutions were used to calibrate the sensor prior to
deployment and after retrieval. Calibration was maintained throughout
the deployment. Sensor data compared favorably with field verification
data measured with a Beckman model RC-19 conductivity meter.
The pH sensor was calibrated using two standard buffer solutions
before deployment and three solutions after retrieval. The SSU
measured the buffer solutions correctly as did the field verification
instrument, a Fisher model 520 pH meter. However, in situ SSU measurements
were consistently lower than the field verification data by a pH of 2.
The manufacturer has attributed this anomaly to a defect in the probe.
11

-------
ORP
A one-point calibration was performed before and after the deployment
period and showed no drift. The SSU measurements showed little variation
and their accuracy is not known since no field verification data were
collected.
Dissolved Oxygen
Calibration of the dissolved oxygen sensor before and after the
deployment period was performed by saturating water with air for the
upper end point and purging the water with nitrogen gas for the lower
end point. The lower end point read the same before and after but the
upper end point read 8.4 mg/Q. before versus 7.1 mg/i after. This
difference might be partially attributed to uncertainty in the total
saturation of the sample. Field verification data obtained by Winkler
Analysis compared reasonably well with the SSU measurements.
The D.O. data presented in figure 15 must be divided by a factor
of 1.477 to eliminate an inadvertent double correction for pressure.
The buoy program corrects the data for pressure, but the manufacturer
has indicated that the 0.0. sensor self-corrects for pressure.
Fluoride
Two-point calibrations of the fluoride sensor before and after
deployment showed no drift. The apparently large variations in the
data are small when compared to the six-decade range of the sensor.
Field verification data were not collected.
Turbidity
The turbidity sensor was not calibrated. Prior to launch, the system
measured 4.3 nephelometric turbidity units (N1U) with the sensor covered
and 100 NTh when exposed to ambient light. A light shield was not used
around the sensor and consequently during daylight hours the sensor measure-
ments were saturated. Turbidity of samples collected during daytime and
measured with a Hach 2100A turbidimeter was in the same range as the
nighttime readings of the SSU.
Water Sampler
During schedule I the water sampler collected 10 samples, one immediately
on command, six on alert from the 0.0. sensor, and three at scheduled times.
Five samples were collected on schedule during the remainder of the deployment.
12

-------
FIELD TEST RESULTS
During the test period, a total of 3720 data points were measured and
recorded by the system. Table 2 lists the three data collection schedules
used during the tests. Using schedule I, 1426 data points were collected.
One thousand one hundred and two (1102) data points were collected with
schedule II and 1192 were collected with schedule III. Tables 3 through
10 present all of the data collected, by parameter, while figures 10
through 17 are graphical representations of the hourly averages for each
parameter. Because this was a system demonstration test only, no attempt
is made here to interpret the data. Table II presents the field verification
data provided by EPA during the test. These data points are represented
by the circles on the SSU data graphs.
Conductivity, pH, and turbidity of the first 10 water samples were
measured using the field verification instruments. These data are presented
in table 12 and represented by the triangles in figures 12, 13, and 17.
After the proper corrections were made, the SSU sensor measurements all
fell within ranges that showed reasonable agreement with the field verifica-
tion data.
Overall, the Water Quality Monitoring System performed as expected
and the field test was a success. Although there were several sensor problems,
all functions of the WQMS were tested and operated as designed. The SSU was
preprogrammed and deployed and then reprogrammed several days later through
the acoustic link, while submerged. The SSU collected and stored data from
all eight sensors and transmitted the stored data over the acoustic link on
command from the surface control unit. When a buoy power interruption occurred,
the memory retained all the stored information and the emergency pinger was
automatically activated. The system exercised the water sampler, collecting
samples by schedule, by alert, and on command from the SCU. The recovery
system released the SSU on command for an easy recovery.
During the 1—week exercise only one-third of the battery capacity was
used and less than one—third of the SSU storage capability was used. There
was some biofouling present on the sensors but it did not appear to affect
the measurements.
For the daily checks of the system, the SSU was normally located visually
by the marker buoys. On one check the SSU was located successfully using
the acoustic locator system. The weather encountered had little effect on
the ability to acquire the pinger’s acoustic signal, but rougher sea states
shortened the periods of communication with the SSU via the acoustic data
links.
13

-------
After recovery, the system was transported to Grosse tile, Michigan,
where it was turned over to EPASs Large Lakes Research Station personnel.
All of the data collected, a preliminary assessment of the field test,
and the operators manual were included with the WQMSI
14

-------
RE COMfIE NEATIONS
A redesign study should be conducted, aimed at streamlining the system
both physicalily and operationally. Redesign of the system could result in a
reduction in the size, weight, and cost, as well as reinforcement of the strong
points and elimination of the weak points.
Though not under the scope of this project, the improvement of existing
sensors or the development of new, more accurate sensors would improve the
accuracy of the system. Improved calibration procedures would also help in
this respect as the electronics have been shown to be stable and reliable.
Specific recommendations include the following:
SENSOR INTERCHANGEABILITY
At present, the SSU electronics and sensor interfaces confine a specific
sensor to a specific channel. Changing the type of sensor on a channel
requires a printed circuit board change inside the SSU. The system would
be more versatile if sensors or sensor modules could be interchanged at the
plug—in point.
COMPUTER COMPATIBLE LINK
The RS-232C link in the current surface control unit is not a fast-dump
comparable to the SSU—to-SCU acoustic link. Data output to a computer is at
the same rate as the line printer, requiring several hours to dump a full
memory. The SCIJ software should be changed to make this a fast-dump, on
the order of 1 to 3 minutes.
TURBIDITY SENSOR
A light shield should be fabricated and placed around the turbidity
sensor to eliminate ambient light interference.
DISSOLVED OXYGEN SENSOR
Considerations should be given to installing a circulator for the D.O.
sensor. If water is not circulated around the sensor the oxygen at the
sensor membrane is depleted and results in an artificially low D.O. reading.
15

-------
APPENDIX
TABLES AND FIGURES
The data presented here are the raw data as they are output from the
system. No corrections or other attempts at refinement have been made.
The hourly averages presented in the graphs are intended only to give interested
parties a quick look at the data. The only use of the data has been to
judge the satisfactory operation of the system.
16

-------
PARAMETER
Temperature
Pressure
Conductivity
pH
ORP (redox)
I.-J
Dissolved Oxygen
Specific ion-fluoride
Turbidity
TABLE 1. LIST OF SENSORS
MANUFACTURER UNITS
YSI thermistor
probe 710
Bell &Howell kg/cm 2
CEC 1 000
Neil Brown - pmho/cm
four electrode
Great Lakes Instr. - pH
pH 60
Great Lakes Instr. - my
ORP 60
Beckman Fieldiab mg/i
39 552
Beckman 39600 with mg/L
permaprobe
reference
Ecologic 204A NTU*
RANGE MEASURED
—2 to 35
0 to 5 absolute
0 to 100,000
2 to 12
—1000 to +1000
0 to 20
activity to i0 3
0 — 100
RESOLUTION
0.2° C
2%
3%
0.1
SmV
2%
10%
0.2 NTU
*Nephelometric Turbidity Units

-------
TABLE 2. SSU DATA SCHEDULES
Do Sampler
Start 08:25
24:00 Intervals
Alert D.O.
<2.0
Do Sampler
Start 09:50
1 18:00 Intervals
Do Temperature
Start 08:00
00:10 Intervals 144
Do Pressure
Start 08:15
01:00 Intervals 24
Do 2 Conductivity
02 Mm. Apart
Start 08:30
01:00 Intervals 48
Do pH
Start
‘)0:30
Do ORP
Start 07:45
00:20 Intervals 72
Do Fluoride
Start 07:55
00:30 Intervals 24
Do D.O.
Start 08:00
00:20 Intervals 72
Do Turbidity
Start 09:35
01:00 Intervals 24
TOTALS: 457
Do Temperature
Start 09:00
00:12 Intervals 120
Do Pressure
Start 09:45
00:40 Intervals 36
Do Conductivity
Start 09:30
00:30 Intervals 48
Do 2 pH
2 Mm. Apart
Start 09:15
00:20 Intervals 144
Do ORP
Start 10:25
00:30 Intervals 48
Do Fluoride
Start 08:55
00:15 Intervals 96
Do D.O.
Start 09:10
00:30 Intervals
Do Turbidity
Start 09:35
00:45 Intervals
Do Temperature
Start 09:00
00:12 Intervals 120
Do Pressure
Start 09:30
00:30 Intervals 48
Do Conductivity
Start 09:45
00:40 Intervals 36
Do 2 pH
2 Mm Apart
Start 09:15
00:20 Intervals 144
Do ORP
Start 09:25
00:45 Intervals 32
Do Fluoride
Start 08:55
00:15 Intervals 96
Do D.O.
Start 09:10
48 00:30 Intervals
Do Turbidity
Start 10:25
32 00:30 Intervals
573.5 -
Schedule I
8/6 — 8/9
Points/Day
Schedule II
8/9 — 8/1].
Points/Day
Schedule III
8/11 — 8/13
Points/Day
Do Sampler
Start 09:50
1.5 18:00 Intervals
1.5
07:45
Intervals 48
48
48
573.5
18

-------
oc
TABLE 3.
TEMPERATURE,
Temp
Date Time
OC
Date Time
Temp
OC
08/06 1520
22.0
08/06
2300
21.4
1530
22.0
2310
21.4
1540
22.0
2320
21.4
1550
22.0
2330
21.4
1610
22.0
2340
21.4
1616
22.0
2350
21.4
1630
22.0
08/07
0001
21.1
1640
22.0
0010
21.2
1650
22.0
0020
21.4
1700
22.0
0040
20.8
17 0
22.0
0050
21.4
1720
22.0
0100
21.4
1730
22.0
0110
21.7
1740
22.0
0120
21.7
1750
22.0
0130
21.7
1800
22.0
0140
21.7
1810
22.0
0150
21.7
1820
22.0
0200
21.8
1830
21.9
0210
21.7
1840
22.0
0230
21.7
1850
22.0
0240
21.7
1900
22.0
0250
21.8
1910
22.0
0300
22.0
1920
22.0
0310
22.0
1930
20.8
0320
22.0
1940
22.0
0330
22.0
1950
22.0
0340
22.0
2000
22.0
0350
22.0
2010
22.0
0400
20.8
2020
22.0
0410
21.8
2030
22.0
0420
21.7
2040
20.8
0430
21.7
2050
22.0
0440
21.7
2110
22.0
0450
21.7
2120
22.0
0500
21.9
2130
22.0
0510
21.7
2140
21.9
0520
21.6
2150
21.7
0530
21.7
2200
21.7
0540
21.4
2210
21.7
0550
21.4
2220
21.6
0600
20.9
2230
21.2
0610
21.7
2240
21.5
0620
21.7
2250
21.2
19

-------
TABLE 3. CONTINUED
08/07
Temp Date
Date Time OC
Temp
Time OC
0630
21.2 08/07 1350
20.1
0640
21.1
1400
19.6
0650
21.1
1410
20.8
0700
21.1
1420
20.8
0710
21.1
1430
19.0
0720
20.8
1440
19.3
0730
20.5
1450
19.6
0740
21.4
1500
19.0
0750
21.4
1510
19.3
0800
20.8
1520
19.3
0810
20.9
1530
19.5
0820
20.8
1540
19.3
0830
20.9
1550
19.9
0840
20.8
1600
19.9
0850
20.9
1610
20.3
0900
20.8
1620
20.5
0920
20.3
1630
20.8
0930
20.5
1640
20.8
0940
20.8
1650
20.3
0946
18.0
1700
20.1
1000
22.1
1720
21.4
1010
22.1
1730
16.0
1020
21.6
1740
20.8
1030
21.9
1750
20.8
1040
21.7
1800
20.8
1050
21.6
1810
20.9
1100
21.5
1820
20.8
1110
22.0
1840
21.2
1120
21.6
1850
21.7
1130
21.6
1900
21.4
1140
21.2
1910
21.6
1150
20.8
1920
21.4
1200
20.9
1930
21.6
1210
19.0
1940
22.0
1220
18.3
1950
22.0
1230
18.7
2000
22.0
1240
19.1
2010
22.0
1250
19.6
2020
22.1
1300
19.6
2030
22.0
1310
19.6
2040
21.4
1320
18.3
2050
21.4
1330
18.3
2100
20.8
1340
19.0
2110
20.9
20

-------
TABLE 3. CONTINUED
Date Time Temp Date
OC
Time Temp
oc
08/07 2120 20.8 08/08 0502 20.9
2130 21.2 0440 20.3
2140 21.5 0450 19.6
2150 21.4 0500 19.4
2200 21.5 0510 19.3
2210 21.7 0520 19.3
2220 20.8 0530 19.0
2230 22.0 0540 19.1
2240 22.0 0550 19.0
2250 22.0 0600 19.0
2300 22.3 0610 21.1
2310 22.0 0630 21.2
2320 22.0 0640 21.1
2330 21.4 0650 21.6
2340 21.1 0700 22.0
2350 20.3 0710 21.9
08/08 0001 20.8 0720 22.0
0010 20.2 0730 21.6
0020 20.5 0740 21.1.
0030 20.5 0750 21.4
0040 20.1 0810 21.4
0050 20.2 0820 20.8
0100 20.3 0830 21.2
0110 20.2 0840 19.8
0120 19.9 0850 21.4
0130 19.3 0900 20.8
0140 20.1 0910 20.1
0150 19.9 0920 20.1
0200 19.6 0940 20.5
0210 196 0950 18.8
0220 19.8 1000 19.1
0230 20.8 1010 18.7
0240 19.9 1020 18.7
0250 20.2 1030 18.7
0300 19.6 1040 18.7
0310 23.3 1050 18.7
0320 20.5 1100 18.5
0330 21.4 1110 18.5
0340. 21.1 1120 18.3
0350 21.1 1130 18.3
0400 21.4 1140 18.3
0410 21.1 1150 18.7
0420 21.4 1200 19.0
21

-------
TABLE 3. CONTINUED
08/80
Date Time Tamp Date
C
Time Tamp
C
1210
19.3
08/08
1950
22.6
1220
20.1
2000
22.6
1230
20.1
2010
22.3
1240
19.9
2020
22.6
1250
19.3
2030
22.6
1300
19.0
2040
22.0
1320
19.0
2050
20.8
1330
19.0
2100
20.0
1340
18.7
2110
20.1
1350
18.7
2120
20.1
1400
18.7
2130
20.1
1410
18.5
2140
20.3
1420
18.5
2150
20.7
1430
18.7
2200
20.8
1440
18.7
2210
20.8
1500
19.8
2220
21.7
1510
18.8
2230
20.8
1520
19.0
2240
31.0
1530
19.0
2250
21.1
1540
19.0
2300
20.5
1550
19.1
2310
20.8
1600
19.9
2320
20.8
1610
20.8
2330
20.1
1620
19.6
2340
20.5
1630
20.8
2350
20.1
1640
19.9
08/09
0833
19.R
1650
20.5
0010
19.0
1700
19.1
0020
19.0
1710
19.6
0030
19.0
1720
20.1
0040
19.0
1730
22.0
0050
19.1
1740
21.7
0100
19.0
1750
22.0
0120
20.8
1800
22.1
0130
19.1
1810
22.3
0140
19.8
1820
22.0
0150
18.8
1830
21.7
0200
18.8
1840
21.7
0210
18.7
1850
22.3
0220
18.7
1900
23.2
0230
19.0
1910
22.0
0240
19.0
1921
22.6
0250
19.9
1930
22.3
0300
20.5
1940
22.3
0310
19.8
22

-------
TABLE 3. CONTINUED
Date Time Temp
Date
Time Temp
C
08/09 0330 19.8 08/09 1027 22.7
0340 20.8 1040 22.9
0350 20.3 1050 22.6
0400 22.0 1100 22.9
0410 20.8 1110 23.4
0420 22.9 SCHEDULE CHANGE
0430 22.3 1336 22.9
0440 22.6 1348 22.9
0450 22.9 1400 22.9
0500 22.3 1412 22.9
0510 22.6 1424 22.9
0520 20.8 1436 22.9
0530 22.6 1448 22.9
0540 21.1 1500 22.9
0550 22.1 1512 22.9
0600 22.3 1524 22.9
0610 22.0 1536 22.9
0620 21.2 1548 22.9
0630 22.3 1600 22.9
0640 22.4 1612 22.9
0650 21.1 1624 22.9
0700 21.4 1636 23.0
0710 16.0 1648 22.9
0720 22.7 1700 22.9
0746 21.7 1712 22.9
0740 22.3 1724 22.9
0750 22.7 1736 22.9
0800 22.9 1748 22.9
0810 22.7 1800 22.9
0820 22.0 1812 22.2
0830 21.2 1824 22.9
0840 20.1 1836 22.9
0850 21.2 1848 22.9
0900 22.7 1900 22.9
0910 22.7 1912 22.9
0920 22.9 1924 22.9
0930 22.7 1936 22.9
0937 22.6 1948 22.9
0946 22.6 2000 22.9
0953 22.7 2012 23.2
1010 22.7 2024 23.2
1020 22.7
23

-------
TABLE 3. CONTINUED
Date Time Temp
oc Date
Temp
Time oc
08/09
2036
23.2 08/10 0524
23.3
2048
23.2
0536
23.1
2100
23.2
0548
22.9
2112
23.2
0600
22.9
2124
23.2
0612
23.0
2136
23.2
0624
22.9
2148
23.2
0636
22.9
2200
23.2
0648
22.9
2224
23.2
0700
22.9
2236
23.2
0712
22.9
2248
23.2
0724
22.9
2300
23.2
0736
22.9
2312
23.2
0748
22.9
2324
23.2
0800
22.9
2336
23.2
0812
22.9
2348
23.2
0824
22.9
08/10
0001
0012
0024
0036
0048
0100
0112
0124
0136
0148
0200
0212
0224
0236
0248
0300
0312
0324
0336
0348
0400
0412
0424
0436
0448
0500

_)__
23.2
23.2
23.2
20.8
23.2
23.2
23.2
23.2
23.2
23.2
23.2
23.2
23.2
23.2
23.2
23.2
23.2
23.2
23.2
23.2
23.2
23.2
20.8
23.1
23.0
23.2
,
0836
0850
0901
0912
0924
0936
0948
1000
1012
1024
1036
1048
1100
1112
1124
1136
1148
1200
1420
1224
1236
1248
1300
1312
1324
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
24

-------
TABLE 3. CONTINUED
Date Time Temp Date
CC
Time Temp
OC
08/10 1336 22.9 08/10 2212 22.6
1348 22.9 2224 22.6
1400 22.9 2236 22.7
1412 22.9 2248 22.7
1424 22.9 2300 22.7
1436 22.9 2312 22.6
1448 22.9 2356 22.6
1500 22.9 2336 22.6
1512 22.9 2348 22.6
1524 22.9 08/11 0002 22.6
1536 22.9 0012 22.7
1548 22.9 0024 22.7
1600 22.9 0036 22.7
1612 22.9 0048 22.7
1624 22.9 0100 22.7
1636 22.7 0112 22.7
1648 22.9 0124 22.7
1700 22.9 0136 22.7
1712 22.9 0148 22.7
1724 22.6 0200 22.6
1736 22.7 0212 22.7
1748 22.7 0224 22.7
1800 22.7 0236 22.7
1812 22.7 0248 22.6
1824 22.7 0300 22.6
1836 23.4 0312 22.7
1848 22.7 0324 22.7
1900 22.7 0336 22.7
1912 22.7 0348 22.6
1924 22.7 0400 22.6
1936 22.7 0516 22.6
1948 22.7 0424 22.7
2000 22.7 0436 22.7
2012 22.7 0448 22.6
2024 22.7 0500 22.6
2036 22.6 0512 22.7
2048 22.7 0524 22.6
2100 22.7 0536 22.7
2112 22.7 0548 22.6
2124 22.7 0600 22.6
2136 22.6 0612 22.6
2148 22.6 0624 22.6
2200 22.6
25

-------
TABLE 3. CONTINUED
Date Time Temp Date
OC
Time Temp
oc
08/11
0636
0648
22.6 08/11 1512
22.6 1524
22.6
22.6
0700
22.6
1536
22.6
0712
22.6
1548
22.6
0724
22.6
1600
22.6
0736
22.6
1612
22.6
0748
22.6
1624
22.6
0800
22.6
1636
22.6
0812
22.6
1648
22.6
0824
22.6
1700
22.6
0836
22.6
1712
22.6
0848
22.6
1724
22.6
0900
22.6
1736
22.6
0912
22.6
1748
22.6
0924
22.6
1800
22.6
0932
22.6
1812
22.6
SCHEDULE
CRANGE
0936
1020
1036
1048
1100
1112
1124
1136
1148
1200
1212
1224
1236
1248
1300
1312
1324
1336
1348
1400
1412
1424
1436
1448
1500
22.6
22.6
22.6
22.6
22.6
22.6
22.6
22.6
22.6
22.6
22.6
22.0
22.6
22.6
22.6
22.6
22.6
22.6
22.6
22.6
22.6
22.6
22.6
22.6
22.6
1848
1900
1912
1924
1936
1948
2000
2012
2024
2036
2048
2100
2112
2124
2136
2148
2200
2212
2224
2236
2248
2300
2300
2312
2324
22.6
22.6
22.3
22.3
22.3
22.3
22.3
22.3
22.3
22.0
22.0
21.7
21.6
21.8
21.9
22.3
22.3
22.1
22.3
22.3
22.3
22.3
22.3
22.3
22.3
26

-------
TABLE 3. CONTINUED
Date Time T 8 mp
C Date
Time T 8 mp
C
08/11
2336
22.3 08/12 0900
22.0
2348
22.3
0912
22.0
08/12
0002
22.3
0924
22.1
0012
22.4
0936
22.0
0024
22.3
0948
22.1
0036
22.3
1000
22.0
0048
22.4
1012
22.0
0100
22.4
1024
22.0
0124
22.4
1036
22.0
0136
22.3
1048
22.0
0148
22.3
1100
22.0
0200
22.3
1112
22.0
0212
22.3
1124
22.0
0224
22.3
1136
22.0
0236
22.3
1148
22.0
0248
22.1
1200
22.0
0300
22.3
1224
22.0
0312
22.1
1236
22.0
0324
22.1
1248
22.0
0336
22.3
1300
22.0
0348
22.0
1312
22.0
0400
22.3
1325
22.0
0412
22.0
1336
22.1
0424
22.1
1348
22.0
0436
22.1
1412
22.0
0448
22.0
1436
22.1
0500
22.1
1448
22.1
0536
22.1
1500
22.0
0548
22.1
1512
22.0
0600
22.2
15 4
22.1
0612
22.1
1536
22.1
0624
22.1
1548
22.1
0648
22.1
1600
22.1
0700
22.0
1612
22.1
0712
22.0
1624
22.1
0028
22.0
1636
22.0
0736
22.0
1648
22.1
0748
22.0
1700
22.1
0800
22.0
1712
22.1
0812
22.1
1724
22.1
0824
22.0
1736
22.1
0836
22.0
1748
22.1
0848
22.0
1800
22.1
27

-------
TABLE 3. CONCLUDED
Date Time Temp
OC Date
Temp
Time OC
08/12
1812
1824
22.1 08/13 0248
22.1 0300
22.3
22.3
1836
22.1
0312
22.3
1900
22.1
0324
22.3
1912
22.].
0336
22.3
1924
22.1
0348
22.2
1936
22.1
0400
22.0
1948
22.1
0412
22.0
2000
22.1
0424
22.0
2012
22.1
0436
22.1
2024
22.1
0448
22.1
2036
22.1
0500
22.1
2048
22.1
0512
22.1
2100
22.1
0524
22.0
2112
22.1
0536
22.1
2124
22.1
0548
22.1
2136
22.1
0600
22.1
2148
22.1
0612
22.1
2200
22.1
0624
22.1
221.2
22.1
0636
22.1
2224
22.0
0648
22.1
2236
22.1
0700
22.].
2248
22.1
0712
22.1
2300
22.1
0724
22.1
2312
22.1
0736
22.0
2324
22.].
0748
22.1
2336
22.1
0800
22.1
2348
22.0
0812
22.0
08/13
•
0001
0012
0024
0036
0048
0100
0112
0124
0136
0148
0200
0212
0224
0236
22.2
22.3
22.3
22.3
22.3
22.3
22.3
22.3
22.3
22.3
22.3
22.3
22.3
22.3
0824
0836
0848
0900
0912
0924
0936
0948
22.1
22.1
22.0
22.0
22.0
22.0
22.0
22.0
28

-------
TABLE 4. PRESSURE
p
Date Time kg/cm 2
p
Date Time kg/ c m 2
08/06
1615
1.509
08/08
1315
1.493
1715
1.509
1415
1.493
1815
1.509
1515
1.493
1915
1.509
1615
1.493
2015
1.509
1715
1.493
2115
1.509
1815
1.509
2215
1.509
1915
1.493
2315
1.509
2015
1.493
08/07
0015
0115
0215
0315
0415
0515
0615
0715
0815
0915
1015
1115
1315
1415
1515
1615
1715
1815
1915
2015
2115
2215
2315
1.509
1.509
1.509
1.509
1.509
1.509
1.493
1.493
1.493
1.493
1.493
1.493
1.493
1.493
1.493
1.493
1.509
1.493
1.493
1.493
1.493
1.493
1.493
08/09
SCHEDULE
08/09
0547
2215
2315
0015
0115
0215
0315
0415
0515
0615
0715
0815
0915
1015
CHANGE
1345
1425
1505
1545
1625
1705
0353
1825
1.493
1.493
1.493
1.493
1.509
1.493
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
08/08
0015
0115
0215
0415
0515
0615
0715
0815
0915
1015
1115
1215
1.493
1.493
1.493
1.493
1.493
1.493
1.493
1.493
1.493
1.493
1.493
1.493
08/10
1905
1945
2025
2105
2145
2225
2305
2345
0025
0105
0145
0225
1.509
1.493
1.493
1.509
1.509
1.509
1.493
1.493
1.493
1.493
1.493
1.493
29

-------
TABLE 4. CONTI UEb
p
Date Time kg/cm 2 Date
p
Time kg/cm 2
SCHEDULE CHANGE
08/10 0305 1.493 08/11 0935 1.493
0345 1.493 1027 1.493
0425 1.493 1100 1.493
0505 1.509 1130 1.493
0545 1.509 1200 1.493
0625 1.509 1230 1.493
0705 1.493 1300 1.493
0745 1.493 1330 1.493
0825 1.509 1400 1.493
0905 1.493 1430 1.493
0945 1.493 1500 1.493
1025 1.493 1530 1.493
1105 1.493 1600 1.493
1145 1.493 1630 1.493
1305 1.493 1700 1.493
1345 1.493 1730 1.493
1425 1.493 1800 1.493
1505 1.556 1830 1.493
1545 1.493 1900 1.493
1625 1.493 2000 1.493
1705 1.493 2030 1.493
1745 1.493 2100 1.493
1825 1.493 2130 1.493
1905 1.509 2200 1.493
1945 1.509 2230 1.493
2025 1.509 2300 1.493
2105 1.509 2330 1.493
2145 1.493 08/12 0002 1.493
2225 1.493 0030 1.493
2305 1.493 0100 1.493
2345 1.493 0130 1.493
08/11 0025 1.493 0200 1.493
0105 1.493 0230 1.493
0145 1.493 0300 1.493
0225 1.493 0330 1.493
0305 1.493 0400 1.493
0345 1.493 0430 1.493
0425 1.493 0530 1.493
0505 1.493 0600 1.493
0545 1.493 0630 1.493
0625 1.493 0700 1.509
0705 1.493 0834 1.509
0745 1.493 0800 1.493
0825 1.493 0830 1.493
0905 1.493 0900 1.493
30

-------
TABLE 4. CONCLUDED
Date
Time
2
kg/cm
Date
Time
P 2
kg/cm
08/12
0930
1000
1030
1100
1130
1200
1230
1330
1400
1430
1500
1530
1600
1630
1700
1730
1800
1830
1900
1930
2000
2030
2100
2130
1.493
1.493
1.493
1.493
1.493
1.493
1.493
1.493
1.493
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1 .509
1.509
1.509
1.572
08/12
08/13
2200
2230
2300
2330
0001
0030
0100
0130
0200
0230
0300
0330
0400
0430
0500
0530
0600
0630
0700
0730
0800
0830
0900
0930
1.509
1.509
1.509
1.509
1.509
1.493
1.493
1.493
1.509
1.493
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.509
1.493
1.493
1.493
31

-------
TABLE 5. CONDUCTIVITY
Cond
Date Time Date
Cond
Time
p mho/cm
08/06 1530 217 08/07 1330 205
1532 217 1332 209
1630 205 1430 205
1632 162 1432 209
1730 217 1530 217
1732 217 1532 209
1830 209 1630 221
1832 209 1632 217
1930 205 1710 3780
2030 195 1730 217
2032 195 1732 221
2130 188 1830 221
2132 184 1832 221
2230 184 1930 229
2232 188 1932 221
2330 188 2030 229
2332 188 2032 229
08/07 0030 198 2130 221
0032 195 2132 221
0130 205 2230 229
0132 205 2232 229
0334 217 2330 221
0232 217 2332 229
0330 217 08/08 0030 217
0332 221 0032 217
0430 221 0130 217
0432 221 0132 217
0530 221 0230 217
0532 221 0232 217
0630 217 0330 221
0632 217 0332 217
0730 217 0430 221
0732 217 0434 217
0830 217 0530 209
0832 217 0532 209
0930 290 0630 221
0932 217 0632 221.
1030 221 0730 229
1032 221 0732 229
1130 221 0830 221
1132 217 0832 221
1230 205 0930 217
1232 205 0932 217
32

-------
TABLE 5. CONTINUED
Cond
Date Time miio/m Date
Cond
Time
ulnho/cM
08/08 1030 209 08/09 0830 229
1032 209 0832 233
1130 205 0930 233
1132 205 0932 290
1230 209 1030 233
1232 217 1032 233
1330 209 SCHEDULE CHANGE
1332 209 08/09 1400 290
1430 205 1430 290
1432 274 1500 290
1530 209 1530 290
1532 209 1600 290
1630 217 1630 290
1632 217 1700 290
1732 221 1730 290
1830 221 1800 290
1832 229 1830 290
1930 233 1900 290
1932 233 1930 290
2030 233 2000 290
2032 233 2030 290
2146 217 2100 290
2132 217 2130 290
2230 221 2200 233
2232 221 2230 233
2330 221 2300 290
2332 217 2330 233
08/09 0030 205 08/10 0001 233
0032 209 0030 233
0130 209 0100 233
0132 209 0130 233
0230 209 0200 233
0232 217 0230 233
0330 217 0300 233
0332 209 0330 233
0430 229 0400 233
0432 233 0430 233
0530 233 0530 233
0532 221 0600 233
0630 233 0630 233
0632 233 0700 233
0730 229 0730 233
0732 233 0800 233
33

-------
TZkBLE 5. CONTINUED
Cond
Date Time
Date
Cond
Time o/cm
08/10 0830 233 08/11 0630 233
0900 233 0700 233
0930 233 0730 233
1000 233 0800 233
1030 233 0830 233
1100 233 0900 233
1130 233 0930 233
1200 233 SCIIflDULE CHANGE
1230 233 08/11 1025 233
1300 233 1105 233
1330 233 1145 233
1400 233 1225 233
1430 233 1305 233
1500 233 1345 233
1530 233 1425 233
1600 233 1505 233
1630 233 1545 233
1700 233 1625 233
1730 233 1705 233
1800 233 1745 233
1830 233 1825 233
1900 233 1905 233
1930 233 1945 233
2000 233 2025 233
2030 233 2105 229
2100 233 2145 229
2130 233 2225 233
2200 233 2305 233
2230 233 2345 233
2300 233 08/12 0025 233
2330 233 0105 233
08/11 0002 233 0145 233
0030 233 0225 233
0100 233 0305 233
0130 233 0345 233
0200 233 0425 233
0230 233 0505 233
0300 233 0545 233
0330 233 0625 233
0430 233 0705 233
0500 233 0745 233
0530 233 0825 233
0600 233 0905 233
34

-------
TABLE 5. CONCLUDED
Date
.
Time
Cond
o/cm
Date
.
Time
Cond
i. mho/cm
08/12
0945
1025
1105
1145
1225
1305
1345
1425
1545
1625
1705
1745
1825
1905
1945
2025
2137
2145
233
233
233
233
233
233
233
233
233
233
233
233
233
233
233
233
233
233
08/12
2225
2305
2345
0025
0105
0145
0225
0305
0345
0425
0505
0545
0625
0705
0745
0825
0945
233
233
233
233
233
233
233
233
233
233
233
233
233
233
233
229
229
35

-------
TABLE 6. pH
Date Time pH Date Time pH
08/06
1515
6.8
08/07
1315
5.6
1545
6.7
1345
5.5
1615
6.5
1415
5.6
1645
6.6
1445
5.5
1715
6.6
1515
5.6
1745
6.6
1545
4.6
0423
6.6
1615
5.9
1845
6.6
1645
5.6
1915
6.5
1715
5.8
1945
6.4
1745
5.8
2015
6.3
1815
5.8
2045
5.7
1845
5.9
2115
6.3
1915
5.9
2145
6.2
1945
6.1
2245
6.0
2015
6.0
2315
5.9
2045
5.9
2345
5.8
2115
5.9
08/07
0015
0045
0115
0145
0215
0245
0315
0345
0415
0445
0515
0545
0615
0645
0715
0745
0815
0845
0915
0944
1015
1045
1115
1145
1215
1245
5.8
5.7
5.9
5.9
5.9
6.1
6.3
6.3
6.2
6.0
6.2
5.9
5.9
5.6
5.6
5.4
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.5
5.5
08/08
2145
2215
2245
2315
2345
0045
0115
0145
0215
0245
0315
0345
0415
0445
0515
0545
0615
0645
0715
0745
0815
0845
0915
0945
1015
1045
5.9
5.7
5.9
6.0
5.9
5.7
5.7
5.7
5.6
5.6
5.6
5.6
5.7
5.6
5.6
5.6
5.7
5.9
6.0
5.8
5.9
5.6
5.6
5.6
5.6
5.5
36

-------
TABLE 6. CONTINUED
Date Time pH Date Time pH
08/08 1115 5.5 08/09 0915 5.6
1145 5.4 0944 5.7
1215 5.6 1015 5.7
1245 5.6 1045 5.7
1315 5.6 SCHEDULE CHANGE
1345 5.6 08/09 1335 6.5
1415 5.6 1337 6.5
1445 5.6 1355 6.5
1515 5.5 1357 6.5
1545 5.5 1415 6.4
1615 5.6 1417 6.4
1715 5.6 1435 6.3
1745 5.6 1437 6.4
1815 5.7 1455 6.4
1845 5.7 1457 6.3
1915 5.7 1515 6.5
1945 6.2 1517 6.5
2015 6.0 1535 6.3
2045 5.7 1537 6.3
2115 5.6 1555 6.4
2145 5.6 1557 6.4
2215 5.7 1615 6.4
2245 5.6 1617 6.4
2315 5.6 1635 6.3
2345 5.5 1637 6.3
08/09 0015 5.5 1655 6.4
0045 5.5 1657 6.4
0115 5.5 1715 6.4
0145 5.5 1717 6.4
0215 5.5 1735 6.4
0245 5.5 1737 6.4
0315 5.5 1755 6.4
0345 5.5 1757 6.3
0415 5.6 1815 6.4
0445 5.7 1817 6.4
0515 5.5 1835 6.5
0545 5.5 1837 6.3
0615 5.5 1855 6.3
0645 5.5 1857 6.5
0715 5.5 1915 13.3
0745 5.6 1917 6.5
0815 5.6 1937 6.4
0845 12.6 1955 6.4
37

-------
TABLE 6. CONTINUED
Date Time pH Date Time pH
08/09 1957 6.3 08/10 0315 6.5
2015 13.5 0317 6.5
2017 6.5 0335 6.5
2035 6.4 0337 6.5
2037 6.5 0355 6.5
2055 6.5 0357 6.5
2057 6.5 0415 6.5
2115 6.4 0417 6.5
2117 6.3 0435 6.5
2135 6.5 0437 6.5
2137 6.5 0455 6.5
2155 6.5 0457 6.5
2157 6.5 0515 6.5
2215 6.5 0517 6.5
2217 6.5 0535 6.5
2235 6.5 0537 6.5
2237 6.5 0559 6.5
2255 6.5 0557 6.5
2257 6.5 0615 6.5
2315 6.5 0617 6.4
2317 6.5 0635 6.4
2335 6.5 0637 6.4
2337 6.5 0655 6.4
2355 6.5 0657 6.4
2357 6.5 0715 6.4
08/10 0015 6.5 0717 6.4
0017 6.5 0735 6.4
0035 6.3 0737 6.4
0037 6.5 0755 6.4
0055 6.5 0757 6.4
0057 6.5 0815 6.4
0115 6.5 0817 6.4
0117 6.5 0835 6.4
0135 6.5 0837 6.4
0137 6.5 0855 6.4
0155 6.5 0857 6.4
0157 6.5 0915 6.4
0215 6.5 0917 6.4
0217 6.5 0935 6.4
0235 6.5 0937 6.4
0237 6.5 0955 6.4
0255 6.5 0957 6.4
0257 6.5 1015 6.4
38

-------
TABLE 6. CONTINUED
Date Time pH Date Time pH
08/10 1017 6.4 08/10 1735 6.4
1035 6.4 1737 6.4
1037 6.4 1755 6.4
1055 6.4 1757 6.4
1057 6.4 1815 6.4
1115 6.4 1817 6.4
1117 6.4 1835 6.4
1135 6.4 1837 6.4
1137 6.4 1855 6.4
1155 6.4 1857 6.4
1157 6.4 1915 6.4
1215 6.4 1935 6.4
1217 6.4 1937 6.4
1235 6.4 1955 6.4
1237 6.4 1957 6.4
1255 6.4 2015 6.4
1257 6.4 2017 6.4
1315 6.3 2035 6.4
1317 6.4 2037 6.4
1335 6.4 2055 6.4
1337 6.4 0113 6.4
1355 6.4 2115 6.4
1357 6.4 2117 6.4
1415 6.5 2135 6.4
1417 6.4 2137 6.3
1435 6.4 2155 6.4
1437 6.4 2157 6.4
1455 6.4 2215 6.4
1457 6.4 2217 6.4
1515 6.4 2235 6.4
1517 6.4 2237 6.4
1535 6.4 2255 6.4
1537 6.4 2257 6.4
1555 6.3 2315 6.4
1557 6.3 2317 6.4
1615 6.5 2335 6.4
1617 6.4 2337 6.4
1635 6.4 2355 6.4
1637 6.3 2357 6.4
1655 6.4 08/11 0015 6.4
1657 6.4 0017 6.4
1715 6.4 0035 6.4
1717 6.4
39

-------
TA3LE 6. CONTIUUED
Date Time pH Date Time pH
08/11 0037 6.4 08/11 0755 6.3
0055 6.4 0757 6.4
0057 6.4 0815 6.4
0115 6.4 0817 6.4
0117 6.4 0835 6.4
0135 6.4 0837 6.4
0137 6.4 0855 9.1
0155 6,4 0855 6.4
0157 6.4 0857 6.3
0215 6.4 0915 6.3
0217 6.4 0917 6.4
0235 6.4 093]. 6.3
0237 6.4 0933 6.4
0255 6.4 SCHEDULE CHANGE
0257 64 08/11 1030 6.4
0315 6.4 1037 6.3
0317 6.4 1055 6.4
0335 6.4 1057 6.3
0337 6.4 1115 6.3
0355 6.4 1117 6.3
0357 6.4 1135 6.3
0415 6.4 1137 6.3
0417 6.4 1155 6.3
0435 6.4 1157 6.3
0437 6.4 1215 6.2
0455 6.4 1217 6.2
0457 6.4 1235 5.7
0515 6.4 1237 6.3
0517 6.4 1255 6.2
0535 6.4 1257 6.2
0537 6.4 1315 6.3
0559 6.4 1317 6.3
0557 6.4 1335 6.3
0615 6.4 1337 6.3
0617 6.4 1355 5.7
0635 6.4 1357 6.3
0637 6.4 1415 6.3
0655 6.4 1417 6.3
0657 6.4 1435 6.3
0715 6.3 1437 6.3
0717 6.4 1455 6.3
0735 6.4 1457 6.3
3737 6.4
40

-------
TABLE 6. COLITINUED
Date Time pH Date Time pH
08/11 1515 6.3 08/11 2217 5.9
1517 6.3 2235 6.2
1535 6.3 2237 6.3
1537 6.3 2255 6.2
1555 6.3 2257 6.3
1557 5.7 2315 6.3
1615 6.4 2317 6.4
1617 6.4 2335 6.3
1635 6.4 2337 6.4
1637 6.4 2355 6.4
1655 6.3 2357 6.4
1657 6.3 08/12 0015 6.3
1715 6.4 0017 6.3
1717 6.4 0035 6.3
1735 6.4 0037 6.3
1737 6.4 0055 6.3
1755 6.3 0057 6.3
1757 6.4 0115 6.3
1815 6.4 0117 6.4
1817 6.4 0135 6.3
1835 6.4 0137 6.4
1837 6.4 0155 6.2
1855 6.3 0157 6.1
1857 6.3 0215 6.2
1915 6.1 0217 6.2
1917 6.1 0235 6.1
1935 5.8 0237 6.1
1937 5.9 0255 6.0
1955 5.8 0257 6.2
1957 5.7 0315 5.9
2015 5.9 0317 6.0
2017 5.7 0335 6.2
2035 5.9 0337 6.2
0645 5.8 0355 6.2
2055 5.4 0357 6.3
2057 5.5 0415 6.1
2115 5.6 0417 6.2
2117 5.7 0435 6.2
2135 5.7 0437 6.2
2137 5.6 0455 6.2
2155 5.7 0457 6.3
2157 5.9 0515 6.2
2215 6.0 0517 6.2
41

-------
TABLE 6. CONTINUED
Date Time pH Date Time pH
08/12 0535 6.2 08/12 1257 6.3
0537 6.3 1315 6.3
0555 6.3 1317 6.3
0557 6.3 1335 6.3
0615 6.2 1337 6.3
0617 6.2 1355 6.3
0635 6.2 1357 6.3
0637 6.2 1415 6.3
0655 6.2 1417 6.3
0657 6.2 1437 6.3
0715 6.2 1455 6.3
0717 6.3 1457 6.3
0735 6.2 1515 6.3
0737 6.2 1517 6.3
0755 6.3 1535 6.3
0757 6.3 1537 6.3
0815 6.3 1555 6.3
0817 6.3 1557 6.3
0835 6.3 1615 6.3
0837 6.3 1617 6.3
0855 6.3 1635 5.7
0857 6.3 1637 6.3
0917 6.3 1655 5.7
0935 6.3 1657 5.7
0937 13.3 1715 5.7
0955 6.3 1717 5.7
0957 6.3 1735 5.7
1015 6.3 1737 5.7
1017 6.3 1755 5.7
1035 6.3 1757 6.3
1037 6.3 1815 5.7
1055 5.7 1817 5.7
1057 6.3 1835 6.3
1115 6.3 1837 6.3
1117 6.3 1855 6.3
1135 5.7 1857 6.3
1137 6.3 1915 6.3
1155 6.3 1917 6.3
1157 6.3 1935 6.3
1215 6.3 1937 6.3
1217 6.3 1955 6.3
1235 6.3 1957 6.3
1237 6.3 2015 6.3
1255 6.3 2017 6.3
42

-------
TABLE 6. CONCLUDED
Date Time pH Date Time pH
08/12 2035 5.7 08/13 0317 6.3
2037 5.7 0335 6.3
2055 5.7 0337 6.3
2057 5.7 0355 5.7
2115 6.3 0357 6.3
2135 6.3 0417 6.5
2137 6.3 0435 6.3
2155 6.3 0437 6.3
2157 6.3 0455 6.3
2215 5.7 0457 6.3
2217 6.3 0515 6.3
2235 6.3 0517 6.3
2237 6.3 0535 6.3
2255 6.3 0537 6.3
2257 6.3 0555 6.3
2315 6.3 0557 6.3
2317 6.3 0615 6.3
2335 6.3 0617 6.3
2337 6.3 0635 6.3
2355 6.3 0637 6.3
2357 6.3 0655 6.3
08/13 0015 6.3 0657 6.3
0017 6.3 0715 6.3
0035 6.3 0717 6.3
0037 6.3 0735 6.3
0055 6.3 0737 6.3
0057 6.3 0755 6.3
0115 6.3 0757 6.3
0117 6.3 0815 6.3
0135 6.3 0817 6.3
0137 6.3 0835 6.3
0155 6.3 0837 6.3
0157 6.3 0855 6.3
0215 6.3 0857 6.3
0217 6.3 0915 6.3
0235 6.3 0917 6.3
0237 6.3 0935 6.3
0255 6.3 0937 6.3
0257 6.3 0955 6.2
0315 6.3
43

-------
TABLE 7.
OXIDATION-REDUCTION POTENTIAL
ORp
Date Time Date
my
Time ORP
my
08/06
1545
324 08/07 0625
328
1605
328
0645
328
1645
320
0705
328
1705
324
0725
324
1725
316
0745
324
1745
312
0805
324
1805
308
0825
320
1825
556
0845
442
1845
305
0905
316
1905
308
0925
312
1925
312
0945
312
1945
316
1005
312
2005
316
1025
312
2025
316
1045
312
2045
316
1125
312
2105
316
1145
312
2125
316
1205
308
2145
320
1225
308
2205
320
1305
308
2225
320
1325
308
2245
324
1345
312
2305
328
1405
312
2325
332
1425
686
2345
332
1445
312
08/07
0005
0025
0045
0105
0125
0145
0205
0225
0245
0305
0325
0401
0405
0425
0445
0505
0525
0545
0605
332
336
332
332
332
340
332
336
332
328
316
316
316
320
324
316
320
324
328
1505
1525
1545
1605
1625
1645
1705
1725
1745
1805
1825
1845
1905
1925
2005
2025
2045
2105
2125
308
308
308
308
308
312
312
312
312
312
312
31.2
312
312
312
312
312
312
312
44

-------
TABLE 7. CONTINUED
ORP
Date Time Date
my
ORP
Time
my
08/07 2145 312 08/08 1205 308
2205 312 1225 308
2225 312 1245 305
2245 312 1305 305
2305 308 1325 308
2325 312 1345 308
2345 312 1405 308
08/08 0005 324 1425 686
0025 316 1445 312
0045 312 1505 312
0105 312 1525 312
0125 312 1545 312
0145 316 1605 312
0205 316 1625 312
0225 316 1645 308
0245 316 1705 312
0305 316 1725 308
0325 316 1745 308
0345 316 1805 308
0405 316 1825 308
0425 316 1845 312
0445 316 1905 312
0505 316 1925 308
0525 316 1945 308
0545 316 2005 301
0605 316 2025 301
0625 316 2045 308
0645 312 2105 312
0705 686 2125 312
0725 316 2145 312
0745 312 2205 312
0805 312 2225 312
0825 316 2245 316
0845 312 2305 316
0905 312 2325 312
0925 312 2345 324
0945 312 08/09 0005 312
1005 312 0025 312
1025 312 0045 312
1045 312 0113 312
1105 312 0125 312
1125 312 0145 312
1145 312 0205 312
45

-------
TABLE 7. CONTINUED
ORP
Date Time Date
my
ORP
Time
r r
08/09 0225 312 08/09 2125 285
0245 312 2155 285
0305 312 2225 285
0325 312 2255 411
0345 316 2325 285
0405 316 2355 285
0425 690 08/10 0025 285
0445 316 0055 285
0505 316 0125 289
0525 316 0155 289
0545 312 0225 293
0605 312 0255 289
0625 312 0325 289
0645 324 0355 289
0705 316 0425 289
0725 316 0455 289
0745 316 0525 289
0805 312 0555 674
0825 312 0625 289
0845 686 0655 289
0905 312 0725 293
0925 312 0755 308
0945 312 0825 293
1005 308 0855 293
1025 308 0925 293
1045 305 0955 293
1104 301 1025 293
SCHEDULE CHANGE 1055 293
08/09 1348 261 1125 293
1425 269 1155 293
1455 273 1225 293
1525 308 1255 293
1555 277 1325 293
1625 281 1355 293
1655 285 1425 293
1725 285 1455 293
1755 411 1525 293
2241 285 1555 293
1855 285 1625 293
1925 285 1655 297
1955 285 1725 297
2025 289 1755 293
2055 285 1825 293
46

-------
TABLE 7. CONTINUED
OR?
Date Time Date
fl ,
OR?
Time
im,
08/10 1855 293 08/11 ]g35 301
1925 297 192]. 301
1955 293 2005 308
2233 293 2050 308
2055 297 2135 312
2229 297 0237 308
2155 297 2305 301
2225 297 2350 301
2255 297 08/12 0035 301
2325 301 0121 305
2355 30]. 0205 305
08/11 0025 301 0250 305
0055 297 0335 305
0125 297 0421 308
0155 297 0505 308
0225 297 0550 305
0255 297 0635 305
0325 297 0721 308
0355 297 0805 305
0425 297 0850 308
0455 301 0935 305
0525 297 1021 308
0555 297 1105 308
0625 297 1150 308
0655 297 1235 305
0725 301 1321 305
0755 301 1405 305
0825 297 1450 308
0855 297 1535 308
0925 301 1621 556
SCHEDULE CGABGE 1705 556
08/11 0938 308 1750 308
1020 301 1835 312
1105 301 1921 312
1150 297 2005 308
1235 301 2050 312
1321 297 2135 312
1405 301 2221 316
1450 301 2305 312
1535 301 2350 312
1621 301 08/13 0035 808
1705 301 0121 308
1750 297 0205 308
47

-------
TABLE 7. CONCLUDED
Date
Time
or P
IW
Date
Time
ORP
my
08/13
0250
0335
0425
0505
0550
308
312
312
312
312
08/13
0635
0721
0805
0850
0935
312
312
312
312
316
48

-------
Date Time D.O. Date
mg/2.
Time D.O.
mg/i
08/06
0600
12.3
1540
13.6
0620
13.1
1600
13.6
0640
12.5
1640
13.6
0700
12.1
1700
13.7
0720
9.5
1720
11.1
0740
11.0
1740
13.7
0800
10.8
1800
13.7
0820
9.9
1820
0.0
0840
10.0
1840
14.0
0900
9.5
1900
0.0
0920
10.2
1920
0.0
0941
8.2
1940
13.8
1000
12.7
2000
13.9
1020
8.6
2020
0.0
1040
11.8
2040
0.0
1100
8.0
2100
0.0
1120
9.7
2120
13.9
1140
7.5
2140
13.8
1616
7.2
2201
13.9
1220
7.6
2220
13.6
1240
8.1
2240
13.6
1300
8.8
2300
13.4
1340
12.1
2320
13.2
1420
8.8
2340
13.0
1440
9.1
08/07
0002
0020
0040
0100
0120
0140
0200
0220
0240
0300
0320
0340
0400
0420
0440
0500
0520
0540
12.8
13.1
13.0
13.4
14.0
14.0
14.3
14.3
15.1
14.5
14.5
14.6
14.5
0.0
14.7
15.2
13.3
13.8
1500
1520
1540
1600
1620
1640
1700
1723
1740
1800
1820
1840
1900
1920
1940
1955
2000
2020
8.6
9.1
10.0
10.5
12.2
12.5
11.7
11.8
11.2
11.7
10.6
12.6
13.0
12.9
14.0
8.4
13.5
14.6
49

-------
TABLE 8. COWTINUED
Date Time
Date
ag/R.
Time D.C.
mg/a
08/07 2040 13.1 08/08 1120 8.5
2100 12.4 1140 8.6
2120 13.1 1208 8.4
2140 13.3 1220 8.2
2200 13.4 1240 8.5
2220 14.0 1300 8.9
2240 14.5 1320 9.1
2300 15.1 1340 8.8
2340 0.0 1400 8.8
08/08 0002 10.4 1420 8.8
0020 10.8 1440 8.8
0040 9.6 1500 9.0
0100 10.2 1520 8.9
0120 9.5 1540 8.7
0140 9.7 1600 8.8
0200 10.1 1620 9.4
0220 9.9 1640 9.4
0240 9.6 1700 9.0
0300 9.3 1720 9.1
0320 10.2 1740 11.0
0340 10.6 1800 12.1
0400 11.3 1820 10.7
0420 9.9 1840 12.3
0440 9.0 1900 12.7
0500 9.2 1920 15.5
0520 9.4 1940 14.1
0540 8.9 2000 15.5
0600 9.0 2020 15.0
0620 11.4 2040 0.0
0640 12.5 2100 0.0
0700 13.4 2120 9.7
0720 12.9 2140 10.4
0740 12.5 2200 11.7
0800 12.1 2220 12.1
0820 10.5 2240 10.5
0840 9.8 2300 9.9
0900 8.9 2320 10.4
0920 8.6 2340 9.0
0940 8.2 08/09 0002 8.4
1000 8.6 0020 8.7
1020 8.8 0040 8.9
1040 12.3 0100 8.7
1100 12.5 0120 8.6
so

-------
TABLE 8. CONTINUED
Date Time D.O.
Date
mgJ
Time D.O.
mg/&
08/09 0140 8.4 08/09 2041 16.7
0200 12.3 2110 17.1
0220 12.3 2141 17.0
0240 12.2 2210 17.1
0320 8.5 2240 16.7
0340 8.2 2310 16.9
0400 9.1 2340 0.0
0420 9.5 08/10 0010 16.8
0440 11.7 0041 16.9
0500 11.6 0110 16.9
0520 9.2 0140 19.1
0540 8.6 0314 16.5
0600 8.9 0240 16.5
0620 8.1 0310 16.5
0640 11.6 0341 16.3
0700 9.7 0410 16.4
0724 8.8 0440 16.5
0740 10.1 0510 18.2
0800 13.0 0540 16.5
0820 13.6 0610 16.6
0840 10.5 0641 16.4
0900 12.0 0710 16.4
0920 15.3 0740 16.5
0941 13.4 0810 16.4
1000 14.0 0840 16.5
1020 0.0 0910 16.4
1040 14.7 0941 16.7
1100 0.0 1010 16.7
SCHEDULE CHANGE 1040 16.5
08/09 1341 16.0 1110 16.2
1410 16.0 1140 16.3
1440 16.0 1210 16.3
1510 16.0 1241 16.4
1541 16.5 1310 16.5
1610 16.5 1340 16.3
1625 8.1 1410 16.3
1710 16.7 1440 16.2
1740 16.7 1510 0.0
1810 16.7 1541 16.5
1841 16.5 1610 0.0
1910 16.6 1640 16.6
1941 16.6 1710 16.4
2010 16.6 1740 16.8
51•

-------
TABLE 8. CONTINUED
Date Time D.C. Date
nig/2.
Time D.C.
mg/i
08/10 1810 16.3 08/11 1541 15.4
1841 16.2 1610 15.9
1910 16.2 1640 16.3
1940 15.9 1740 15.8
2010 16.9 1810 16.2
2040 16.8 1841 15.1
2110 16.9 1910 14.0
2141. 16.8 1940 14.3
2210 16.5 2010 13.0
2240 16.6 2040 0.0
2310 16.6 2110 7.8
2340 16.7 2141 8.0
08/11 0010 16.7 2210 9.6
0041 1 .6.7 2240 0.0
0110 16.5 2310 15.5
0140 16.3 08/12 0010 15.8
0210 16.4 0041 16.0
0240 16.3 0110 16.2
0310 16.5 0140 15.8
0341 16.4 0210 15.8
0410 16.1 0240 12.1
0440 16.2 0310 11.4
0510 15.8 0341 13.7
0540 16.1 0410 13.2
0610 16.0 0440 0.0
0641 15.9 0510 0.0
0710 16.0 0540 0.0
0740 15.7 0610 0.0
0810 15.7 064]. 0.0
0840 15.9 0710 0.0
0910 15.9 0740 0.0
SCHEDULE CHANGE 0810 0.0
08/11 0934 15.9 0840 0.0
1040 15.4 0910 0.0
1110 15.2 0941 0.0
1140 15.0 1010 0.0
1210 14.7 1040 0.0
1241 14.5 1110 16.1
1310 16.0 1140 0.0
1340 16.2 1210 0.0
1410 16.0 1241 15.8
1440 15.3 1310 0.0
1510 15.1 1340 0.0
52

-------
TABLE 8. CONCLUDED
Date
Time
D.C.
rng/L
Date
Time
D.O.
mg/L
08/12
1410
1440
1510
1541
1610
1640
1710
1740
1810
1841
1910
1941
2010
2040
2110
2141
2210
2240
2310
2340
0.0
0.0
16.4
16.3
0.0
16.2
0.0
16.4
16.3
0.0
0.0
0.0
16.5
0.0
0.0
16.5
16.4
1.2
0.0
0.0
08/13
0010
0041
0110
0140
0210
0240
0310
0341
0410
0510
0540
0610
0641
0710
0740
0810
0840
0910
0941
0.0
16.3
16.5
16.5
16.6
16.3
16.5
16.5
0.0
16.3
0.0
0.0
0.0
0.0
0.0
0.0
16.6
0.0
0.0
53

-------
TABLE 9. FLUORIDE
F .
Date Time Date
mg/P.
F
Time
mg/P.
08/06 1525 0.247 08/07 1325 0.515
1555 .324 1355 .425
1600 11.3 1425 .462
1655 .291 1455 .450
1725 .247 1525 .437
1755 .261 1555 .462
1825 .247 1625 .543
1855 .247 1655 .450
1925 .210 1725 .425
1955 .199 1755 .393
2025 .183 1825 .371
2055 .183 1855 .343
2125 .156 1925 .371
2155 .178 2025 .324
2225 .210 2055 .371
2255 .228 2125 .361
0933 .228 2155 .343
2355 .228 2225 .343
08/07 0025 .247 2255 .393
0055 .222 2325 .324
0125 .222 2355 .393
0155 .228 08/08 0025 .361
0225 .291 0055 .393
0255 .216 0125 .450
0325 .199 0155 .543
0355 .199 0225 .414
0425 .199 0255 .450
0455 .216 0325 .450
0525 .216 0355 .393
0555 .228 0425 .393
0655 .261 0455 .462
0725 .247 0525 .462
0755 .291 0555 .474
0825 .343 0625 .393
0855 .361 0655 .543
0925 .315 0725 .462
0950 .393 0755 .393
1025 .210 0825 .474
1055 .291 0855 .529
1125 .291 0925 .501
1155 .343 0955 .543
1225 .361 1025 .622
1255 .425 1055 .622
54

-------
TABLE 9. CONTINUED
Date Time
Date
ing/2.
Time FL
nig/&
08/09 2325 0.393 08/10 1025 0.501
2340 .543 1040 .543
2355 .403 1055 .414
08/10 0010 .414 1110 .403
0025 .462 1125 .403
0040 .425 1140 .403
0055 .462 1155 .425
0110 .403 1210 .450
0125 .352 1225 .462
0140 .343 1240 .425
0155 .343 1255 .425
0210 .343 1310 .543
0225 .343 1325 .403
0240 .343 1340 .371
0255 .35 1355 .403
0310 .403 1410 .403
0325 .403 1425 .403
0340 .382 1440 .371
0355 .393 1455 .371
0410 .343 1510 .382
0425 .343 1525 .403
0440 .343 1540 .393
0511 .343 1555 .414
0510 .352 1610 .393
0525 .352 1625 .382
0540 .371 1640 .371
0555 .403 1655 .403
0610 .403 1710 .403
0625 .393 1725 .371
0640 .425 1740 .393
0655 .565 1755 .403
0710 .425 1810 .462
0725 .425 1825 .450
0740 .403 1840 .437
0810 .371 1855 .462
0825 .328 1910 .425
0840 .403 1925 .462
0855 .382 1940 .462
0910 .450 1955 .462
0925 .486 2010 .543
0940 .543 2025 .529
0955 .501 2040 .543
1010 .515 2055 .543
55

-------
TABLE 9. CONTINUED
Date Time FL
Date
mg/L
Time
mg/L
08/10 2110 0.543 08/11 0810 0.590
2125 .543 0825 .606
2140 1.0 0840 .732
2155 .557 0855 .732
2210 .501 0910 .590
2225 .543 0925 .543
2240 1.0 SCHEDULE CHANGE
2255 1.0 08/11 0933 .515
2310 1.0 1025 .543
2325 .543 1040 .515
2340 .543 1055 .529
2355 .501 1110 1.0
08/11 0010 .543 1125 .639
0025 .501 1140 .590
0040 .501 1155 .590
0055 .557 1210 .557
0110 .543 1225 .543
0125 .590 1255 .529
0140 .529 1310 .529
0155 .486 1325 .543
0210 .501 1340 .543
0225 .543 1355 .543
0240 .529 1410 .529
0255 .590 1425 .529
0310 .590 1440 .543
0325 .639 1455 .543
0340 .606 1510 .486
0355 .639 1525 .462
0425 .543 1540 .515
0440 .501 1555 .501
0455 .543 1610 .501
0510 .486 1625 1.0
0525 .501 1640 .501
0540 .501 1655 .501
0555 .543 1710 .501
0610 .529 1725 .501
0625 .501 1740 .462
0640 .543 1755 .543
0655 .529 1810 .590
0710 .543 1825 .590
0725 .543 1840 .557
0740 .543 1855 .656
0755 .543 1910 .639
56

-------
TABLE 9. CONTINUED
F&
Date Time Date
mg/L
Time FL
mg/z
08/1 .1 1925 0.590 08/12 0610 0.639
1941 .501 0625 .590
1955 .606 0640 .639
2010 .639 0655 .639
2025 .639 0710 .590
2040 .639 0725 .639
2055 .557 0740 .639
2110 .590 0755 .639
2125 .590 0810 .732
2140 .694 0825 .694
2155 .656 0840 .732
2210 .639 0855 .694
2225 .622 0910 .694
2240 .606 0925 .656
2255 .639 0940 .694
2310 .590 0955 .694
2325 .573 1010 .656
2340 .590 1025 .694
2355 .732 1040 .694
08/12 0010 .732 1055 .732
0025 .557 1110 .694
0040 .543 1125 .694
0055 .501 1140 .713
0110 .501 1155 .732
0125 .543 1210 .732
0140 .543 1225 .732
0155 .557 1240 .694
0210 .639 1255 .694
0225 .639 1310 .694
0240 .694 1325 .732
0255 .639 1340 .656
0310 .639 1355 .694
0325 .639 1410 .732
0340 .543 1425 .713
0355 .590 1440 .732
0410 1.0 1455 .732
0425 1.0 1510 .773
0440 .543 1525 .773
0455 1.0 1540 .732
0510 .590 1555 .732
0525 .694 1610 .732
0540 .639 1625 1.0
0555 .639 1640 .732
57

-------
TABLE 9. CONCLUDED
FL
Date Time mg/L Date
FL
Time mg/&
08/12 1655 0.694 08/13 0125 0.639
1710 .694 0140 .639
1725 .656 0155 .639
1740 .639 0210 .639
1755 .639 0225 .732
1810 .606 0240 .732
1825 .639 0255 .732
1840 .639 0310 .732
1855 .639 0325 .732
1910 .606 0340 .732
1925 .622 0355 .732
1940 .732 0410 .639
1955 .639 0425 .639
2010 .639 0440 .732
2025 .732 0455 .694
2040 .639 0510 .732
2055 .639 0525 .732
2110 .639 0540 .732
2125 .606 0610 .795
2140 .639 0625 1.0
2155 .606 0640 .795
2210 .639 0655 .795
2225 .639 0710 1.0
2240 .606 0725 .732
2255 .639 0740 .795
2310 .606 0755 .839
2325 .639 0810 .795
2340 .732 0825 .732
2355 .639 0840 762.0
08/13 0010 .694 0855 .713
0025 .656 0910 .739
0040 .656 0925 .79
0055 .694 0940 .839
0110 .639 0955 .910
58

-------
TABLE 10. TURBIDITY
Turb
Date Time Date
NTU
Time TUXb
08/06 1535 100.0 08/08 1035 76.0
1635 100.0 1135 100.0
1735 100.0 1235 100.0
1835 100.0 1335 100.0
1935 100.0 1435 100.0
2035 46.2 1535 100.0
2135 7.9 1635 100.0
2235 9.0 1735 100.0
2335 7.9 1835 100.0
08/07 0035 8.3 1935 100.0
0135 8.1 2243 28.5
0235 7.7 2135 20.8
0335 7.1 2235 19.5
0435 7.5 2335 18.3
0535 9.0 08/09 0035 25.0
0635 22.2 0135 24.2
0735 100.0 0235 18.9
0835 100.0 0335 18.7
0935 100.0 0435 18.1
1035 100.0 0635 23.4
1135 100.0 0735 100.0
1235 100.0 0835 100.0
1335 100.0 0935 100.0
1435 100.0 1035 100.0
1535 100.0 SCHEDULE CHANGE
1635 100.0 08/09 1405 100.0
1735 100.0 1450 100.0
1835 100.0 1621 100.0
1935 100.0 1705 100.0
2035 32.0 1750 100.0
2135 12.4 1835 100.0
2235 14.0 1921 88.2
2335 16.5 2005 46.2
08/08 0035 24.8 2050 16.7
0135 24.4 2135 9.2
0235 20.2 2221 8.7
0335 19.3 2305 8.6
0435 18.7 2350 9.4
0535 23.4 08/10 0035 8.8
0635 18.7 0121 8.4
0735 32.0 0205 8.4
0835 42.8 0250 8.8
0935 100.0 0335 9.8
59

-------
TABLE 10. CONTINUED
Turb
Date Time NTU Date
Purb
Time NTU
08/10
0421
8.3
08/11
1125
100.0
0505
8.4
1155
100.0
0550
8.3
1225
100.0
0635
11.6
1255
100.0
0721
61.7
1325
100.0
0805
56.2
1355
100.0
0850
46.0
1425
100.0
0935
83.3
1455
25.9
1021
100.0
1525
100.0
1105
100.0
1555
100.0
1150
100.0
1625
100.0
1235
100.0
1655
100.0
1321
100.0
1725
100.0
1405
100.0
1755
100.0
1450
100.0
1825
84.9
1535
100.0
1855
72.3
1621
100.0
1925
96.7
1705
77.2
1955
46.6
1750
43.4
2025
25.3
1835
55.4
2055
17.5
1921
69.6
2125
12.8
2005
28.9
2155
12.6
2050
9.2
2225
11.4
2135
9.8
2255
10.2
2221
9.0
2325
9.2
2305
9.0
2355
9.0
2350
9.8
08/12
0025
8.8
08/11
0035
0121
0205
0250
0335
0421
0505
0550
0635
0721
0805
0850
0932
9.0
9.4
9.0
9.4
8.6
8.4
9.6
9.8
12.2
40.3
96.3
100.0
100.0
0055
0125
0155
0225
0255
0325
0355
0425
0455
0525
0555
0625
0655
9.2
9.0
9.8
12.0
12.0
11.6
11.0
11.6
13.8
14.1
9.2
12.4
18.3
SCHEDULE
08/11
CHANGE
1025
1055
100.0
100.0
0725
0755
0825
38.1
64.6
58.6
6 1

-------
TABLE 10. CONCLUDED
Date Time Turb
Date
NTU
Turb
Time
NTU
08/12 0855 100.0 08/12 2155 8.8
0925 100.0 2225 9.2
0955 100.0 2255 9.0
1025 100.0 2325 8.8
1055 100.0 2355 9.0
1125 100.0 08/13 0025 10.0
1155 100.0 0055 9.2
1225 100.0 0125 9.4
1255 100.0 0155 9.4
1325 100.0 0225 9.4
1355 100.0 0255 8.6
1425 100.0 0325 8.6
1455 100.0 0355 9.0
1525 100.0 0425 9.0
1555 100.0 0455 9.0
1625 100.0 0525 8.3
1655 100.0 0555 8.6
1755 59.7 0625 9.8
1825 100.0 0655 23.4
1855 100.0 0725 56.2
1925 76.4 0755 100.0
1955 37.7 0825 100.0
2025 17.9 0855 100.0
2055 9.2 0925 100.0
2125 8.6 0955 100.0
61

-------
TABLE 11. FIELD VERIFICATION DATA
Date
Temp
°c
Conductivity,
o/ it
pH
Turbidity,
NTU
Dissolved
Oxygen,
mg/L
Depth,
meters
08/06
17.6
244.0
7.33
6.6
2.1
8.1
08/07
22.0
254.5
8.54
1.3
8.0
4.9
08/08
22.9
246.6
8.64
1.5
7.8
4.9
08/09
23.2
262.0
8.62
1.6
8.0
7.0
08/10
22.5
236.2
8.54
1.6
7.4
7.0
08/11
22.5
251.2
8.44
1.8
7.86
7.0
08/12
22.0
250.2
8.44
2.1
7.5
7.0
08/13
22.0
243.8
8.59
2.0
7.52
7.0
62

-------
TABLE 12. MEASUREMENTS OF WATER SAMPLES
Date
Time
Conductivit
mho/cr
y,
Turbidity,
NTU
H
p
08/06
1500
239.5
1.3
7.88
1700
238.3
1.8
7.55
1900
227.4
1.2
7.7].
08/07
0400
233.4
2.2
7.60
0800
231.4
4.5
7.47
2400
250.4
8.5
7.62
08/08
0800
246.4
4.6
7.61
2000
240.0
4.8
7.70
08/09
0800
247.2
3.6
7.93
1100
246.0
3.6
8.33
63

-------
‘Lifting structure
Battery box
Anchor support
structure
Swivel
ectronics housing
Water sampler
nic cable cutter
Figure 1.— Water Quality Monitoring System subsurface unit.
Flotation collar
Anchor
64

-------
Figure 2.- WQMS SSU electronics.
(a) Assembled electronics
65
Printed circuit bo
1. 1
I

-------
Acoustic
Master
Ma fl t;PU
Figure 2.— Continued.
decoders
.ratchpad Random Access
Memorys (RAMS)

?-‘ Function
I
(b) Main Central Processor Unit (CPU) card (one of three).
66
logic interface
‘ROM address buss

-------
Figure 2.- Continued.
(c) Sensor interface card (one for each sensor).
supply
Sensor input operational
67

-------
) le detector
Figure 2.— Continued.
Cd) Magnetic domain bubbTh memory card (one of six).
68
PROM - bad lOOP: aiaau
1 !
II !
in edge connector
92 kilobit MBM

-------
Figure 3.- SSU sensor mounting.
(a) First side view.
69
ct lvlty
bidlty
Fluoride
Fluoride
Dissolve

-------
Figure 3.— Continued.
(b) Second side view.
70
I ,
1 Pressure
fr*

-------
Figure 4.— CommunIcation and location aids on SSU.
71

-------
I
-4
t ’J
Display
p
S
Co nector S
1f
40 ’j
Figure 5.- WQMS Surface Control Unit.

-------
LAKE HURON
SAGINAW BAY
DEPLOYMENT S lIE
FIGURE 6. - SSU deployment site.
73

-------
I-
!I -u :•-
Marker buoy
Marker
meters
Subsurface unit
—15,3 meter line
Anchors
Figure 7.— SSU deployment arrangement.

-------
Figure 8.— SSU being lowered into waters of Saginaw Bay.
75
1

-------
I

I
- 1
a’
I
I
L. .
Figure 9.- Operator with SCU during daily operational
check of SSU.

-------
23 0
o••..o.
22.• 0 .. “ e
21
-4
-4
20
19 . .
18 i i i i i a i i i i i a i i a a a a
12 00 12 00 12 00 12 00 12 00 12 00 12 00 12
6 Aug 7 Aug 8 Aug 9Aug 10 Aug 11 Aug 12 Aug 13 Aug
Date and Time
Figure 10.— Hourly averages of temperature.

-------
1 .52
1 .51 . .
p.
kg/cm 2 1.50
._ ....
1.49
-J
1.48 • • • a a a a a a a • .a a • a . a a a a a a a a a a p a a S £ £ A pappas
12 00 12 00 12 00 12 00 12 00 12 00 12 .00 12
6 Au g 7 Aug 8 Aug 9 Aug 10 Aug 11 Aug 12 Aug 13 Aug
Date and Time
Figure ii.— Hourly averages of pressure.

-------
300
280
260
Cond., 0 0 0
pmho/cin 240 A .••.. . .
220
200
0
180 A I I I 1 1 1 1 1 1 I I I I I I I I I I I I I I I & I I I I I I & I
12 00 12 00 12 00 12 00 12 00 12 00 12 00 12
6 Aug 7 Aug 8 Aug 9 Aug 10 Aug 11 Aug 12 Aug 13 Au9
Date and Time
Figure 12.— Hourly averages of conductivity.

-------
9.0
8.5’ 0 0 0 0 o o
8.0
75 AA A
pH
7.0
6.5
6.0
0 . -
5.5 — —
12 00 12 00 12 00 12 00 12 00 12 00 12 00 12
6 Aug 7 Aug 8 Aug 9 Aug 10 Aug 11 Aug 12 Aug 13 Aug
Date and Time
Figure 13.— Hourly averages of pH.

-------
340
320 . . . ....
ORP, 300 ...
my .
280
260 I I I I I I & I I I I I I I I I I. I I I I I I I I I I
12 00 12 00 12 00 12 00 12 00 12 00 12 00 12
6 Aug 7 Aug 8 Aug 9 Aug 10 Aug 11 Aug 12 Aug 13 Aug
Date and Time
Figure 14.— Hourly averages of redox (ORP).

-------
18
16
14
D.O., 2
mg/i
10
8 0 0 o 0 0
6 ‘ ‘ a a a i i a a i a a a a a a a a a a A I I I I I I I I I I I I 1
12 00 12 00 12 00 12 00 12 00 12 00 12 00 12
6 Aug 7 Aug 8 Aug 9 Aug 10 Aug 11 Aug 12 Aug 13 Aug
Date and Time
Figure 15.— Hourly averages of dissolved oxygen.

-------
.8
.7
.6
.5
F,
mg/i
.3
.2
.1 • • . . I I • • I I I I I I
12 00 12 00 12 00 12 00 12 00 12 00 12 00 12
6 Aug 7 Aug 8 Aug 9 Aug 10 Aug 11 Aug 12 Aug 13 Aug
Date and Time
Figure 16.- Hourly averages of fluoride.

-------
100
80
Turb., 60
NTU
40
2: 00 12 00 12 00 12 00 12 00 12 00 12
6 Aug 7 Aug 8 Aug 9 Aug 10 Aug 11 Aug 12 Aug 13 Aug
C3
Date and Time
Figure 17.- Hourly averages of turbidity.

-------
2. Government Accession No 3 Recipient’s Catalog No
5 Report Date
FIELD DEMONSTRATION OF A July 19R1
QUALITY MONITORING SYSTEM 6 Performing Organization Code
146-40-15-03
8 Performing 0rganizat on Report No
Lovelady, and Robert L. Ferguson
10 Work Unit No
11 Contract or Grant No
13 Type of Report and Period Covered
. . . Technical Memorandum
Space Administration
14 ArmyProjectNo
Protection Agency
Systems Laboratory
and application project was initiated under Interagency
NASA Langley Research Center and the Environmental
Monitoring Systems Laboratory.
Donald T. Wruble.
automated, multiparameter Water Quality Monitoring
continuous in situ water monitoring capability.
and tested under an interagency agreement between
Space Administration, Langley Research Center, and
Protection Agency, Environmental Monitoring Systems
and mechanical subsystems’ design and operation are
description of the field demonstration of the system.
field demonstration are presented without any attempt
18 Distribution Statement
Unclassifhd - Unlimited
Subject Category 35
Security Classif (of this page) 21 No of Pages 22 Price
Unclassified 95 A05
For sale by the National Technical Information Service, Springfield, Virginia 22161

-------