NASA Technical Memorandum 83152 EPA REPORT NO, 600/4-81-061 DESIGN, DEVELOPMENT, AND FIELD DEMONSTRATION OF A REMOTE DEPLOYABLE WATER QUALITY MONITORING SYSTEM John W. Wallace, Ray W. Lovelady and Robert L Ferguson JULY 1981 NASA National Aeronautics and Space Administration Langley Research Center Hampton. Virginia 23665 ------- SUMMARY This research and application project was initiated under an interagency agreement between the National Aeronautics and Space Administration (NASA), Langley Research Center (Langley) and the Environmental Protection Agency (EPA), Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. Under this agreement, NASA developed and tested an automated, multi- parameter Water Quality Monitoring System that offers almost continuous in situ water monitoring capability. The two-man portable system features include the following: o a microprocessor controlled central processing unit which allows preprogrammed sampling schedules and reprogramming in situ; o a subsurface unit for multiple depth capability and security from vandalism; o an acoustic data link for communications between the subsurface unit and the surface control unit; o eight water quality parameter sensors; o a nonvolatile magnetic bubble memory which prevents data loss in the event of power interruption; o a rechargeable power supply sufficient for 2 weeks of unattended operation; o a water sampler which can collect 16 samples for laboratory analysis; o data output in direct engineering units on printed tape or through a computer compatible RS232C link; o internal electronic calibration eliminating external sensor adjustment; and o acoustic location and recovery systems. Langley personnel conducted a 1-week field test of the WQMS during August 1980 in Saginaw Bay, Lake Huron. All functional aspects of the system performed satisfactorily. The system was calibrated, preprogrammed, and ------- deployed. After 3 days of operation, the system was reprogrammed through a hardwire link and operated 2 more days before being reprogranuned through the acoustic link for the final 2 days of operation. During the test, the sub- surface unit was located via the acoustic system and the acoustic link was used to release the unit from the anchor for recovery. Recalibration of the sensors showed little drift. This report was submitted in fulfillment of Interagency Agreement D60053 between NASA Langley Research Center and EPA, Environmental Monitoring Systems Laboratory, Las Vegas. This report covers a period from June 1976 to August 1980; work was completed as of August 15, 1980. This report has been reviewed by the Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. 11 ------- SUMMARY . . . . . . TABLE TITLES . . . . FIGURE TITLES . . . . . ABBREVIATIONS AND SYMBOLS INTRODUCTION . . . . . I V vii. ix 1 CONCLUSIONS . . . . . SYSTEM DESCRIPTiON . . STRUCTURE . . . . . BUOY ELECTRONICS . . . MAGNETIC BUBBLE MEMORY SENSORS . . . . . . . . SENSOR CALIBRATiON WATER SAMPLER . . . . . POWER SUPPLY . . . LOCATION AIDS . . . DEPLOYMENT AND RETRIEVAL DATALINK SIJRFACE CONTROL UNIT OPERATION . . . . . FIELDTEST. ..... ClIRONOLOGY . . . . . . SENSOR CALIBRATION DURING FIELD TEST RESULTS . . S S S S S S S S S S S S S S I S S S S S S S S S S I I S S S S S S S I S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S . S S S S I S S S S S S a S S S S S S S I S S S . . S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S . S S S S S S S S S S S S S S S S S S S S S S S I S S S S I S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S I S S S S S I 2 3 3 3 4 4 6 6 6 7 7 B 8 9 10 10 11 13 RECOMMENDATIONS APPENDIX . . . . . FIGURES . . . TABULARDATA .. 14 16 17 64 CONTENTS S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S I S S S S S S S S S S S S S I S S S S S S S S S S S S S S S S TEST S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S I S S S S S S S S 111 ------- TABL ES Number Page 1 List of Sensors . . . . . . . . . . . . . . . . . . . . 17 2 SSII Data Schedules. . . . . . . . . . . . . . . . . . . 18 3 Temperature, °C . . . . . . . . . . . . . . . . . . . . 1928 4 Pressure. . . . . . . . . . . . . . . . . . . . . . . . 2931 5 Conductivity. . . . . . . . . . . . . . . . . . . . . . 3235 6 pH. . . . . . . . . . . . . . . . . . . . . . . . . . . 3643 7 Oxidation-Reduction Potential . . . . . . . . . . . . . 44-48 8 Dissolved Oxygen . . . . . . . . . . . . . . . . . . . 4953 9 Fluoride. . . . . . . . . . . . . . . . . . . . . . . . 5458 10 Turbidity . . . . . . . . . . . . . . . . . . . . . . . 5961 11 Field Verification Data . . . . . . . . . . . . . . . . 62 12 Measurements of Water Samples. . . . . . . . . . . . . . 63 V ------- F IGIJRES Number Page 1 Water quality monitoring system subsurface unit. . . . . . 64 2 WQMS subsystem electronics . . . . . . . . . . . . . . . . . 6568 3 SSusensormounting .................... 6970 4 Communication and location aids on SSIJ . . . . . . . . . . . 71 5 WQMS surface control unit. . . . . . . . . . . . . . . . . . 72 6 SSU deployment site. . . . . . . . . . . . . . . . . . . . . 73 7 SSU deployment arrangement . . . . . . . . . . . . . . . . . 74 8 SSU being lowered into waters of Saginaw Bay . . . . . . . . 75 9 Operation with SCU during daily operational check of SSU . . 76 10 Hourly averages of temperature . . . . . . . . . . . . . . . 77 11 Hourly averages of pressure. . . . . . . . . . . . . . . . . 78 12 Hourly averages of conductivity. . . . . . . . . . . . . . . 79 13 Hourlyaveragesof pH...... . . . . . . . . . ..... 80 14 Hourly averages of redox (ORP). . . . . . . . . . . . . . . . 81 15 Hourly averages of dissolved oxygen . . . . . . . . . . . . . 82 16 Hourly averages of fluoride . . . . . . . . . . . . . . . . . 83 17 Hourly averages of turbidity. . . . . . . . . . . . . . . . . 84 vii ------- LIST OF ABBREVIATIONS AND SYMBOLS ABBREVIATDNS Cpu central processing unit d.c. - direct current 0.0. - dissolved oxygen EPROM - erasable programable read only memory FSK - frequency shift keyed I/O input/output LCD liquid crystal digital MBM - magnetic bubble memory N11J - nephelometric turbidity units ORP oxidation reduction potential PC - printed circuit SCU surface control unit SIC sensor interface Circuit SSU subsurface unit WQMS Water Quality Monitoring System SYMBOLS cm - centimeter - degree Celsius - liter ix ------- mg milligram m2. - milliliter mV - millivolt V - Volt iimho - micromho x ------- INTRODUCTION The NASA/EPA Water Quality Monitoring System (WQMS) described in this report is an automated, multiparameter system. It is designed to operate in situ, unattended for periods up to 2 weeks, collecting sensor data and water samples. The system was designed and fabricated by the National Aeronautics and Space Administration (NASA), Langley Research Center (Langley) under an interagency agreement with the Environmental Protection Agency (EPA), Environ- mental Monitoring Systems Laboratory, Las Vegas, Nevada. The purpose was to develop a small, lightweight, automated water monitoring system that could be deployed by one or two people from a small boat, or possibly a helicopter, for extended selfpowered operation. Multiple sensors and sample collecting capability were desired, for collecting data at selectable frequencies. A subsurface system was desired for multiple depth capability as well as security from vandalism. The system was needed for unattended monitoring of remote waters, such as lakes, bays, or marshes, as well as for trend or pollu- tion episode monitoring in streams. Internal data storage and retrieval capabil- ity were also desired. The WQMS is a two-man portable system that offers almost continuous in situ water quality monitoring capability. When deployed, the system collects data from eight sensors and stores the data in a nonvolatile magnetic bubble memory (MBM). A microprocessor controls the system and is normally preprogrammed with the data and sample collection schedules. Reprogramming of the system can be performed through an acoustic link or through a data cable without disturbing the system. The system will operate in water depths to 30 meters and ambient temperatures from 00 to 350C. Langley personnel field tested the WQMS during August 1980 in Saginaw Bay, Lake Huron. All functional aspects of the system were tested and operated satisfactorily. Operational support and field verification data were provided by the EPA Large Lakes Research Station (LLRS), Grosse Ille, Michigan. Upon completion of the field tests, the system was turned over the LLRS for operational use. We gratefully acknowledge the contribution to system definition and development of Mr. Clifford Risley, of the U.S. Environmental Protection Agency, Region V, Chicago. His continued interest and support throughout the project provided valuable EPA input. 1 ------- CONCUJS IONS The Water Quality Monitoring System described here is a prototype and hence not a production model. It has the potential to become one of the most useful water quality monitoring tools developed. Future operational use of this prototype will further define the strong and weak points of the system. The scientist in the field can determine the most useful and the least useful features. The system Is somewhat larger and heavier than originally planned, but can be transported and deployed with little difficulty by two persons. The size watercraft used to deploy the system is determined more by the deployment site than by the size of the system. During preliminary in-water tests, a 14-foot rowboat was used for deployment in a local reservoir. A tremendous capability Is offered by the system electronics with the nonvolatile memory, the acoustic communication link, and the programmable microprocessor. Versatility Is exemplified by the capability of the system to collect data and samples on command, by schedule, and on alert from a sensor, and by the ability to reprogram the system through the acoustic link without disturbing it physically. Although the electronics are quite sophisticated, operation of the system is straightforward with some prompting of the operator by the surface control unit. Field personnel should not have any difficulty operating the system. The power supply is sufficient far the design goal of 2 weeks operation, with a margin of 50 percent. Siofouling could cause degradation in some of the sensors over extended periods. Approximately 3 to 4 hours would be required to refurbish the system In the field for extended use. 2 ------- SYSTEM DESCRIPTION The WQMS consists basically of two units, a submersible data and sample collection unit and a surface control unit (SCU). The subsurface unit (SStJ) houses the system electronics, the sensors, and the water sampler. The SCU contains a set of electronics similar to the SSU electronics and is used to program and retrieve data from the SSU. STRUC11JRE The WQMS is shown in figure 1. With the anchor attached, the buoy is 1.5 meters tall, 0.57 meter in diameter, and has a mass of 59 kilograms. All of the structural material in the SSU is aluminum. The electronics housing is fabri- cated with 0.63 centimeter-thick aluminum plate with welded seams. A flat rubber gasket is used to seal the housing which has been pressure tested to 4.48 x Newtons/meter 2 or an equivalent water depth of 45 meters. The lift- ing structure and the anchor support structure are 0.93 cm diameter tubing. The battery box was machined from a block and underwent the same pressure tests as the electronics housing. It is also sealed with a flat rubber gasket. Pressure relief valves are integral parts of the electronics housing and battery box. In addition to preventing large pressure buildups, the valves are used to purge and fill the interiors with dry nitrogen. The anchor is a polypropylene form which is filled with lead shot and cement to the desired weight. It is attached to the anchor support structure with 1330-Newton capacity line and two swivels. BUOY ELECTRONICS The SSU electronics unit is shown in figure 2(a). The heart of the SSU electronics is the central processing unit (CPU), which is a microprocessor- based subsystem. The microprocessor is an RCA 1802 CMOS unit, which uses a 10,000-step software package to control all SSU operations. The microprocessor is shown on the printedcircuit (PC) board in figure 2(b). CPU communications with all other portions of the SSU is through input/output (1/0) ports. Operation of the system begins when the CPU receives the measurement and sampling schedule from the SCU. The CPU stores the schedule in the MBM and then examines it for the time of the first operation. The time is set in a clock register. The CPU then shuts the SSU power off except for maintenance operations. When the clock reaches the time set in the register, the CPU resumes operation and signals the appropriate sensor to take a measurement. Additional sensors required to correct the measurement (i.e., temperature corrections) are also signaled. True values of sensor measurements are computed by the software and stored in the MBM along with the time and number of days since launch. 3 ------- This procedure is repeated for each measurement, including water sample collection, during the deployment. Daily self-tests are performed for each sensor channel with the results stored in the MBM. MAGNETIC BUBBLE MEMORY The magnetic bubble memory subsystem performs the nonvolatile storage function for the SSU in four 92kilobit chips. This subsystem contains its own central processing unit and other peripherals which control data entry and retrieval from the MBM chips. The MBM chips are shown on the PC board in figure 2(c). The MBM CPU receives the data and operational instructions from the main CPU and responds accordingly, keeping track of the page numbers corres- ponding to data entries. A 1,000step software program is used by MBM CPU to control the generation of the magnetic bubbles which make this data storage system such a valuable tool. These magnetic bubbles are not affected by the state of the power supply, so no data are lost if the system should lose power. SENSORS The WQMS is designed to handle ten data channels with eight sensors provided on the SSU. A ninth channel is occupied by the water sampler while the tenth channel currently is unused. All of the sensors are commercially available products. Their selection was based on a survey of the literature and discussions with users in government and industry. Criteria considered most significant included successful in situ operation, modest size, and lack of a requirement for complex manipulation or maintenance of the sensor. Table 1 lists the sensors, their manufacturers, and specifications, however, this is not an endorsement of these sensors. Associated with each sensor is an interface PC board with an erasable programmable read only memory (EPROM). The EPROM contains the sensor charac- teristics, including equations needed by the CPU to provide corrected, linearized data in direct engineering units. An EPROM is shown in figure 2(d) on the PC board for the sensor. Three of the sensors, temperature, pressure, and conductivity, which are used for all measurements, are mounted on the top of the SSU. The remaining sensors are mounted around the sides of the electronics canister. Figure 3(a) and 3(b) shows the sensors mounted on the SSU. Parameter values stored in the MBM are final true values. All necessary secondary corrections have been made using a mathematics software package and the temperature, pressure, and conductivity readings which have been taken simultaneously with each measurement. Brief descriptions of the sensors are as follows: 4 ------- Temperature The temperature sensor uses a thermistor to make measurements. There are no corrections required and the sensor interfaces directly with the sensor interface circuit (SIC), which presents linear temperature data to the CPU. Pressure The pressure sensor uses a resistive bridge technique which produces a voltage differential with pressure. No corrections are required and input to the sensor interface circuit is direct. Linear pressure data are presented to the CPU. Conductivity The conductivity sensor uses a fourelectrode system which forms a bridge with one path measuring the resistance of the return through water. Conductivity is corrected for temperature and inputs direct to the SIC. The SIC presents logarithmic data to the CPU. pH is a Nernstian measurement. The sensor measures the electrochemical potential of the hydrogen ions in the water, giving a voltage output. Buffer electronics make a correction and condition the signal before it is input to the SIC. The SIC presents linear data to the CPU. Oxidation-Reduction Potential (ORP ) The ORP sensor measures redox or electrochemical potential of the water. The measurement is buffered and a proportional voltage is input to the SIC. There are no corrections. Linear data are presented to the CPU. Dissolved Oxygen (DO ) The DO sensor measures oxygen migration through a polarographic membrane to an electrode. A custom buffer converts the low current output into a voltage proportional to the DO. Corrections are necessary for temperature, pressure, and conductivity. The SIC presents linear data to the CPU. Fluoride Fluoride is a Nernstian measurement which uses a specific ion probe to measure the electrochemical potential of fluoride ions. The measurement is corrected for temperature and buffered for input to the SIC unit which presents logarithmic data to the CPU. Turbidity The turbidity sensor is a sidescatter measuring instrument. A light detector measures the amount of light scattered at a 900 angle from a beam produced by the instrument. A voltage proportional to the amount of scattering material in the water is input to the SIC which presents linear data to the CPU. No corrections are made. 5 ------- Schematics for all of the electronics are included in the system operating manual which Is provided with the WQMS. SENSOR CALIBRATION The electronics in the sensor buffers and the sensor interface are designed for a minimum of drift. When the SSU is operating in situ, a selftest feature periodically checks drift of the sensor electronics. This drift is small compared to that which normally nay be expected from the sensors. Calibration of the sensors is performed from the SCU using with no internal adjustments needed. The procedure is outlined using pH as an example. software, below (4.0). Prepare two buffer solutions, one a high pH (10.0) and one a low pH Immerse the pH sensor in the pH 10.0 solution and instruct the buoy to read pH. value. The SCU will show a measured value and then ask if this is a true Enter the true value if different from the measured value. Follow this procedure with the pH 4.0 values have been entered, instruct the SSU solutions have been used, the system will and the offset of the calibration curve. in adjustment of the offset only. WATER SAMPLER solution and after the true to calibrate. If two buffer internally adjust both the slope Calibration with one sample results The water sampler is located below the electronics housing (figure 1). It is controlled by the CPU and can collect up to sixteen 500 m samples. Samples are collected under three modes; on a preprogrammed basis, on command from the surface control unit, or on an alert basis where a specified parameter exceeds predefined boundaries. The sampler is loaded with a the center post cam to activate baq is unrolled water sample. POllER SUPPLY is a rosette which holds 16 sampling frames. Each frame plastic bag which has the top rolled to form a seal. Inside of the rosette is a stepping motor which drives a rotating the sampling frames. When a frame is activated, the top of the and the frame mechanically expands the bag, drawing in the The bag is then resealed by rolling the top. The battery box is water sampler (figure 1). located between the electronics housing and the It contains a rechargeable NickelCadmium (NiCd) 6 ------- battery pack which provides the primary power supply of 20 volts to the SSU. A number of secondary voltage5 (+24 V, +15 V, #12 V, +5 V, 5 V, -12 V) are generated by the power supply circuit in the SSU to operate the different subsystems. Two switching regulators are used for the d.c. to d.c . con- version. The +5 V, which supplies the logic circuits, is always needed and has one of the regulators dedicated to it. The second regulator is turned on and off as needed for power conservation, and provides the voltages needed to operate the MBM, sensor circuitry, and other peripherals. LOCATION AIDS There are two acoustic transmitters (pingers) located on top of the electronics canister as shown in figure 4. One serves as the primary location aid while the other serves as an emergency signal and location aid. The locator pinger produces an omnidirectional signal burst or ping every 2 seconds. This pinger is turned on during normal operation of the SSIJ and operates continuously. A directional surface hydrophone can detect the signal at distances of up to 1 mile, permitting exact SSU location. The emergency pinger is a duplicate of the location pinger except the repetition rate is one ping every second. This pinger is turned on when the primary battery voltage drops below 17.5 V, or if a water leak into the electronics canister is detected. When the emergency pinger is on, the SSU will not respond to any commands or take measurements. Each pinger has an independent battery power supply which allows continuous operation for approximately 30 days. DEPLOYMENT AND RETRIEVAL The SSU is equipped with two class C pyrotechnic cable cutters (figure 1) to facilitate deployment and retrieval. Each pyrotechnic requires two coded commands before it can be activated. The Cpu must receive and recognize the two comamds within 30 seconds of each other or the pyrotechnic will not be activated. Both cable cutters are used with two cables if the SSU and anchor are to be close-coupled during deployment. Once anchored, the short cable would be cut allowing the SSU to float to a predetermined height above the bottom for operation. The same procedure would be used if data were desired from two heights in the same water column. The SSU would be deployed at the lower height, and after a given period, the cable would be cut allowing the SSU to float to the second height for the remainder of the operation. To recover the SSV, the second cable is cut and the SSU floats to the surface. If only one cable is used for deployment, then one cable cutter is used unless the operator desires redundancy in the recovery system. 7 ------- DATA LINK Communications between the SSU and the surface control unit is through the data link. When the SSU is in operation in open waters, an acoustic link is used. If the SSU is to be deployed in an acoustically unfavorable site, a direct cable link is used. Reflected signals cause interference with transmission and even in open waters limit use of the acoustic link to a 45° half angle cone above the SSU. A data link canister with two hemispherical hydrophones is attached to the top of the SSU. These hydrophones are shown in figure 4. Each hydrophone transmits and receives on one of two frequencies used in the frequency shift keyed (FSK) system of digital data transmission. The FSK system uses one frequency (230 kHz) to represent logical ls state and the other frequency (153 kHz) to represent logical 0s state, shifting frequencies as necessary to transmit the digital data stream. An identical hydrophone system is used at the surface to handle data trans- mission and reception for the SCU. The acoustic link transmits data at 2.88 kilobits/second, which is a significant increase in the state of the art in this discipline. Prior technology limited data rates to less than 100 bits/second. SURFACE CONTROL UNIT The surface control unit shown in figure 5 is the operator interactive part of the Water Quality Monitoring System. It is used by the operator to program the SSU data collection schedule, to issue commands, to initiate data retrieval, to store data, and to present the data either through a thermal printer or through a computer compatible link. Circuitry in the SCU is, to a large extent, identical to circuitry in the SSU. The MBM system, the CPU hardware, the data link, and the power supply circuits are identical. The principal difference is control of keyboard, display, and printer functions in the SCU in lieu of sensor control in the SSU. The SCU is packaged in a waterproof attach case made of corrosion- resistant materials. The case is suitable for use as a shipping container. All openings, operating controls, displays, and connectors are of splash- proof design. In put/Output El ements Located on the face of the SCU are the input/output elements: the keyboard, display, thermal printer, and connectors. Input to the system is through a 64character ASCII keyboard plus six special-purpose keys. Commands, data collection schedules, and coments are typed on the keyboard and entered through one of the special purpose keys. 8 ------- A 16character liquid crystal display (LCD) shows the information being entered into the system. It also displays data as commanded and displays Cpu prompting for the operator. Hard copy records of measurements, schedules, data identification, commands, and/or any operator entry may be obtained with the 16-character per-line thermal printer. The printer is activated by one of the special purpose keys. The connectors on the SCU are for the SSU data link, the computer compatible RS232C output link, and external power and battery recharging for the SCU. Grouped with the connectors is a system on/off switch. OPERATION In operation, the CPU initially scans the keyboard for entries. As entries are made, the CPU stores them in its buffer memory until an opera- tional instruction is defined. The CPU then executes the instruction. If, for example, the instruction is to obtain an immediate measurement from a specific sensor the command is transmitted to the SSU. The SSU CPU receives the command, activates the required sensor, obtains the measurement, performs any secondary corrections, and transmits the value to the SCU. The surface CPU receives the value and displays it for the operator. When entering an operating schedule, the entries are held in the buffer memory until the entire schedule has been entered. On command, the schedule is then stored in the permanent bubble memory. The schedule may be recalled at any time and transmitted to the SSU. This capability allows the operator to enter, edit, and/or change the program at any convenient time or place and then transmit the program to the SSU on site. 9 ------- FIELD TEST The Water Quality Monitoring System was field tested with EPA support in Saginaw Bay, Lake Huron during August 1980. Saginaw Bay is freshwater, and is a large, relatively shallow finger of Lake Huron which protrudes into the State of Michigan. The operations base for the test was Bay City, Michigan. The test site was 24 kilometers from the mouth of the Saginaw River and 1.6 kilometers southeast of the entrance channel buoy number 3. Water depth at the site was approximately 9 meters. Location of the test site is shown in figure 6. The SSU was deployed as shown in figure 7. Physical location and recovery aids were added to the system as a precaution since this was a prototype system. Once the SStJ was deployed, a 15.3-meter recovery line attached to the base of the SSU was extended along the bottom, and the free end anchored. In the event a normal recovery could not be made, a grappling hook would be used to snare the recovery line and pull the SSU to the surface. Small international orange buoys were anchored beyond each extremity of the recovery line as an aid to grappling for the line and also as a location aid for the system should hydrophone location fail. Anchors separate from the SSU were used to prevent unwanted retrieval of the SSU. CHRONOLOGY The WQMS was transported to Bay City, Michigan, by NASA Langley personnel. The system was assembled, checked out, and calibrated on August 4th and 5th. On August 6th, the system was loaded on the EPA vessel BLUE WATER and transported to the deployment site. The system was deployed with the sensor height set at 1.5 meters above the bottom, and began operation at 1500 hours on August 6th. Figure 8 shows the SSU being deployed. After obtaining field verification data and ascertaining that the system was opera tiny properly, the BLUE WATER returned to port. The system was checked daily as a precaution to make certain all systems were operating properly. Daily checks will not be necessary when the system is put into operational use. The system will be unattended until a data dump is wanted or until the system is to be recovered. Field verification data were also collected daily during the depoyment. On August 9th, during an attempt to interrogate the SSU, there was a momentary power loss, resulting in automatic shutdown of the SSIJ electronics and activation of the emergency pinger. The power loss was thought to be a result of the near orange buoy line becoming entangled with the SSU and 10 ------- flexing the external power cable from the battery box to the electronics housing. Using the grappling hook and recovery line, the SSU was retrieved and placed on the BLUE WATER. The SSU was checked to make sure that water-tight integrity had been maintained and then the data in the SSU memory were dumped and the data schedule was changed through the direct link. Ten water samples which had been collected were removed and analyzed and the frames were reloaded. The SSU was then redeployed about 100 meters from the original site. On August 11th, using the acoustic link, a data dump was made, and a new schedule was transmitted to the SSU. Figure 9 shows a system operator with the SCU. The system continued to operate satisfactorily and the field test was ended on August 13th. The pyrotechnic release was used to recover the SSU. The release commands were transmitted over the acoustic link and the cable cutter activated as scheduled. The buoy floated to the surface and was placed aboard the BLUE WATER. Before returning to port the sensors were recalibrated. SENSOR CALIBRATION DURING TEST Temperature The temperature sensor was calibrated prior to launch and after retrieval by comparing air temperature measurements with an independent temperature probe. Field verification data were collected with A YSI telethermometer using water samples collected in the vicinity of the SSU. Calibration of the sensor was maintained throughout the test. Pressure A one-point calibration was performed prior to launch using atmospheric pressure as the standard. After deployment, a discrepancy of 1.6 meters was noted between the sensor and depth measured by depth sounder and plumb line. After retrieval a two-point calibration of the sensor provided the proper slope and offset for the sensor. Subsequent data analysis showed no system problem and determined that the sensor read low by a factor of 1.224. This correction has not been applied to the data presented here. Conductivity Two standard solutions were used to calibrate the sensor prior to deployment and after retrieval. Calibration was maintained throughout the deployment. Sensor data compared favorably with field verification data measured with a Beckman model RC-19 conductivity meter. The pH sensor was calibrated using two standard buffer solutions before deployment and three solutions after retrieval. The SSU measured the buffer solutions correctly as did the field verification instrument, a Fisher model 520 pH meter. However, in situ SSU measurements were consistently lower than the field verification data by a pH of 2. The manufacturer has attributed this anomaly to a defect in the probe. 11 ------- ORP A one-point calibration was performed before and after the deployment period and showed no drift. The SSU measurements showed little variation and their accuracy is not known since no field verification data were collected. Dissolved Oxygen Calibration of the dissolved oxygen sensor before and after the deployment period was performed by saturating water with air for the upper end point and purging the water with nitrogen gas for the lower end point. The lower end point read the same before and after but the upper end point read 8.4 mg/Q. before versus 7.1 mg/i after. This difference might be partially attributed to uncertainty in the total saturation of the sample. Field verification data obtained by Winkler Analysis compared reasonably well with the SSU measurements. The D.O. data presented in figure 15 must be divided by a factor of 1.477 to eliminate an inadvertent double correction for pressure. The buoy program corrects the data for pressure, but the manufacturer has indicated that the 0.0. sensor self-corrects for pressure. Fluoride Two-point calibrations of the fluoride sensor before and after deployment showed no drift. The apparently large variations in the data are small when compared to the six-decade range of the sensor. Field verification data were not collected. Turbidity The turbidity sensor was not calibrated. Prior to launch, the system measured 4.3 nephelometric turbidity units (N1U) with the sensor covered and 100 NTh when exposed to ambient light. A light shield was not used around the sensor and consequently during daylight hours the sensor measure- ments were saturated. Turbidity of samples collected during daytime and measured with a Hach 2100A turbidimeter was in the same range as the nighttime readings of the SSU. Water Sampler During schedule I the water sampler collected 10 samples, one immediately on command, six on alert from the 0.0. sensor, and three at scheduled times. Five samples were collected on schedule during the remainder of the deployment. 12 ------- FIELD TEST RESULTS During the test period, a total of 3720 data points were measured and recorded by the system. Table 2 lists the three data collection schedules used during the tests. Using schedule I, 1426 data points were collected. One thousand one hundred and two (1102) data points were collected with schedule II and 1192 were collected with schedule III. Tables 3 through 10 present all of the data collected, by parameter, while figures 10 through 17 are graphical representations of the hourly averages for each parameter. Because this was a system demonstration test only, no attempt is made here to interpret the data. Table II presents the field verification data provided by EPA during the test. These data points are represented by the circles on the SSU data graphs. Conductivity, pH, and turbidity of the first 10 water samples were measured using the field verification instruments. These data are presented in table 12 and represented by the triangles in figures 12, 13, and 17. After the proper corrections were made, the SSU sensor measurements all fell within ranges that showed reasonable agreement with the field verifica- tion data. Overall, the Water Quality Monitoring System performed as expected and the field test was a success. Although there were several sensor problems, all functions of the WQMS were tested and operated as designed. The SSU was preprogrammed and deployed and then reprogrammed several days later through the acoustic link, while submerged. The SSU collected and stored data from all eight sensors and transmitted the stored data over the acoustic link on command from the surface control unit. When a buoy power interruption occurred, the memory retained all the stored information and the emergency pinger was automatically activated. The system exercised the water sampler, collecting samples by schedule, by alert, and on command from the SCU. The recovery system released the SSU on command for an easy recovery. During the 1week exercise only one-third of the battery capacity was used and less than onethird of the SSU storage capability was used. There was some biofouling present on the sensors but it did not appear to affect the measurements. For the daily checks of the system, the SSU was normally located visually by the marker buoys. On one check the SSU was located successfully using the acoustic locator system. The weather encountered had little effect on the ability to acquire the pingers acoustic signal, but rougher sea states shortened the periods of communication with the SSU via the acoustic data links. 13 ------- After recovery, the system was transported to Grosse tile, Michigan, where it was turned over to EPASs Large Lakes Research Station personnel. All of the data collected, a preliminary assessment of the field test, and the operators manual were included with the WQMSI 14 ------- RE COMfIE NEATIONS A redesign study should be conducted, aimed at streamlining the system both physicalily and operationally. Redesign of the system could result in a reduction in the size, weight, and cost, as well as reinforcement of the strong points and elimination of the weak points. Though not under the scope of this project, the improvement of existing sensors or the development of new, more accurate sensors would improve the accuracy of the system. Improved calibration procedures would also help in this respect as the electronics have been shown to be stable and reliable. Specific recommendations include the following: SENSOR INTERCHANGEABILITY At present, the SSU electronics and sensor interfaces confine a specific sensor to a specific channel. Changing the type of sensor on a channel requires a printed circuit board change inside the SSU. The system would be more versatile if sensors or sensor modules could be interchanged at the plugin point. COMPUTER COMPATIBLE LINK The RS-232C link in the current surface control unit is not a fast-dump comparable to the SSUto-SCU acoustic link. Data output to a computer is at the same rate as the line printer, requiring several hours to dump a full memory. The SCIJ software should be changed to make this a fast-dump, on the order of 1 to 3 minutes. TURBIDITY SENSOR A light shield should be fabricated and placed around the turbidity sensor to eliminate ambient light interference. DISSOLVED OXYGEN SENSOR Considerations should be given to installing a circulator for the D.O. sensor. If water is not circulated around the sensor the oxygen at the sensor membrane is depleted and results in an artificially low D.O. reading. 15 ------- APPENDIX TABLES AND FIGURES The data presented here are the raw data as they are output from the system. No corrections or other attempts at refinement have been made. The hourly averages presented in the graphs are intended only to give interested parties a quick look at the data. The only use of the data has been to judge the satisfactory operation of the system. 16 ------- PARAMETER Temperature Pressure Conductivity pH ORP (redox) I.-J Dissolved Oxygen Specific ion-fluoride Turbidity TABLE 1. LIST OF SENSORS MANUFACTURER UNITS YSI thermistor probe 710 Bell &Howell kg/cm 2 CEC 1 000 Neil Brown - pmho/cm four electrode Great Lakes Instr. - pH pH 60 Great Lakes Instr. - my ORP 60 Beckman Fieldiab mg/i 39 552 Beckman 39600 with mg/L permaprobe reference Ecologic 204A NTU* RANGE MEASURED 2 to 35 0 to 5 absolute 0 to 100,000 2 to 12 1000 to +1000 0 to 20 activity to i0 3 0 100 RESOLUTION 0.2° C 2% 3% 0.1 SmV 2% 10% 0.2 NTU *Nephelometric Turbidity Units ------- TABLE 2. SSU DATA SCHEDULES Do Sampler Start 08:25 24:00 Intervals Alert D.O. <2.0 Do Sampler Start 09:50 1 18:00 Intervals Do Temperature Start 08:00 00:10 Intervals 144 Do Pressure Start 08:15 01:00 Intervals 24 Do 2 Conductivity 02 Mm. Apart Start 08:30 01:00 Intervals 48 Do pH Start )0:30 Do ORP Start 07:45 00:20 Intervals 72 Do Fluoride Start 07:55 00:30 Intervals 24 Do D.O. Start 08:00 00:20 Intervals 72 Do Turbidity Start 09:35 01:00 Intervals 24 TOTALS: 457 Do Temperature Start 09:00 00:12 Intervals 120 Do Pressure Start 09:45 00:40 Intervals 36 Do Conductivity Start 09:30 00:30 Intervals 48 Do 2 pH 2 Mm. Apart Start 09:15 00:20 Intervals 144 Do ORP Start 10:25 00:30 Intervals 48 Do Fluoride Start 08:55 00:15 Intervals 96 Do D.O. Start 09:10 00:30 Intervals Do Turbidity Start 09:35 00:45 Intervals Do Temperature Start 09:00 00:12 Intervals 120 Do Pressure Start 09:30 00:30 Intervals 48 Do Conductivity Start 09:45 00:40 Intervals 36 Do 2 pH 2 Mm Apart Start 09:15 00:20 Intervals 144 Do ORP Start 09:25 00:45 Intervals 32 Do Fluoride Start 08:55 00:15 Intervals 96 Do D.O. Start 09:10 48 00:30 Intervals Do Turbidity Start 10:25 32 00:30 Intervals 573.5 - Schedule I 8/6 8/9 Points/Day Schedule II 8/9 8/1]. Points/Day Schedule III 8/11 8/13 Points/Day Do Sampler Start 09:50 1.5 18:00 Intervals 1.5 07:45 Intervals 48 48 48 573.5 18 ------- oc TABLE 3. TEMPERATURE, Temp Date Time OC Date Time Temp OC 08/06 1520 22.0 08/06 2300 21.4 1530 22.0 2310 21.4 1540 22.0 2320 21.4 1550 22.0 2330 21.4 1610 22.0 2340 21.4 1616 22.0 2350 21.4 1630 22.0 08/07 0001 21.1 1640 22.0 0010 21.2 1650 22.0 0020 21.4 1700 22.0 0040 20.8 17 0 22.0 0050 21.4 1720 22.0 0100 21.4 1730 22.0 0110 21.7 1740 22.0 0120 21.7 1750 22.0 0130 21.7 1800 22.0 0140 21.7 1810 22.0 0150 21.7 1820 22.0 0200 21.8 1830 21.9 0210 21.7 1840 22.0 0230 21.7 1850 22.0 0240 21.7 1900 22.0 0250 21.8 1910 22.0 0300 22.0 1920 22.0 0310 22.0 1930 20.8 0320 22.0 1940 22.0 0330 22.0 1950 22.0 0340 22.0 2000 22.0 0350 22.0 2010 22.0 0400 20.8 2020 22.0 0410 21.8 2030 22.0 0420 21.7 2040 20.8 0430 21.7 2050 22.0 0440 21.7 2110 22.0 0450 21.7 2120 22.0 0500 21.9 2130 22.0 0510 21.7 2140 21.9 0520 21.6 2150 21.7 0530 21.7 2200 21.7 0540 21.4 2210 21.7 0550 21.4 2220 21.6 0600 20.9 2230 21.2 0610 21.7 2240 21.5 0620 21.7 2250 21.2 19 ------- TABLE 3. CONTINUED 08/07 Temp Date Date Time OC Temp Time OC 0630 21.2 08/07 1350 20.1 0640 21.1 1400 19.6 0650 21.1 1410 20.8 0700 21.1 1420 20.8 0710 21.1 1430 19.0 0720 20.8 1440 19.3 0730 20.5 1450 19.6 0740 21.4 1500 19.0 0750 21.4 1510 19.3 0800 20.8 1520 19.3 0810 20.9 1530 19.5 0820 20.8 1540 19.3 0830 20.9 1550 19.9 0840 20.8 1600 19.9 0850 20.9 1610 20.3 0900 20.8 1620 20.5 0920 20.3 1630 20.8 0930 20.5 1640 20.8 0940 20.8 1650 20.3 0946 18.0 1700 20.1 1000 22.1 1720 21.4 1010 22.1 1730 16.0 1020 21.6 1740 20.8 1030 21.9 1750 20.8 1040 21.7 1800 20.8 1050 21.6 1810 20.9 1100 21.5 1820 20.8 1110 22.0 1840 21.2 1120 21.6 1850 21.7 1130 21.6 1900 21.4 1140 21.2 1910 21.6 1150 20.8 1920 21.4 1200 20.9 1930 21.6 1210 19.0 1940 22.0 1220 18.3 1950 22.0 1230 18.7 2000 22.0 1240 19.1 2010 22.0 1250 19.6 2020 22.1 1300 19.6 2030 22.0 1310 19.6 2040 21.4 1320 18.3 2050 21.4 1330 18.3 2100 20.8 1340 19.0 2110 20.9 20 ------- TABLE 3. CONTINUED Date Time Temp Date OC Time Temp oc 08/07 2120 20.8 08/08 0502 20.9 2130 21.2 0440 20.3 2140 21.5 0450 19.6 2150 21.4 0500 19.4 2200 21.5 0510 19.3 2210 21.7 0520 19.3 2220 20.8 0530 19.0 2230 22.0 0540 19.1 2240 22.0 0550 19.0 2250 22.0 0600 19.0 2300 22.3 0610 21.1 2310 22.0 0630 21.2 2320 22.0 0640 21.1 2330 21.4 0650 21.6 2340 21.1 0700 22.0 2350 20.3 0710 21.9 08/08 0001 20.8 0720 22.0 0010 20.2 0730 21.6 0020 20.5 0740 21.1. 0030 20.5 0750 21.4 0040 20.1 0810 21.4 0050 20.2 0820 20.8 0100 20.3 0830 21.2 0110 20.2 0840 19.8 0120 19.9 0850 21.4 0130 19.3 0900 20.8 0140 20.1 0910 20.1 0150 19.9 0920 20.1 0200 19.6 0940 20.5 0210 196 0950 18.8 0220 19.8 1000 19.1 0230 20.8 1010 18.7 0240 19.9 1020 18.7 0250 20.2 1030 18.7 0300 19.6 1040 18.7 0310 23.3 1050 18.7 0320 20.5 1100 18.5 0330 21.4 1110 18.5 0340. 21.1 1120 18.3 0350 21.1 1130 18.3 0400 21.4 1140 18.3 0410 21.1 1150 18.7 0420 21.4 1200 19.0 21 ------- TABLE 3. CONTINUED 08/80 Date Time Tamp Date C Time Tamp C 1210 19.3 08/08 1950 22.6 1220 20.1 2000 22.6 1230 20.1 2010 22.3 1240 19.9 2020 22.6 1250 19.3 2030 22.6 1300 19.0 2040 22.0 1320 19.0 2050 20.8 1330 19.0 2100 20.0 1340 18.7 2110 20.1 1350 18.7 2120 20.1 1400 18.7 2130 20.1 1410 18.5 2140 20.3 1420 18.5 2150 20.7 1430 18.7 2200 20.8 1440 18.7 2210 20.8 1500 19.8 2220 21.7 1510 18.8 2230 20.8 1520 19.0 2240 31.0 1530 19.0 2250 21.1 1540 19.0 2300 20.5 1550 19.1 2310 20.8 1600 19.9 2320 20.8 1610 20.8 2330 20.1 1620 19.6 2340 20.5 1630 20.8 2350 20.1 1640 19.9 08/09 0833 19.R 1650 20.5 0010 19.0 1700 19.1 0020 19.0 1710 19.6 0030 19.0 1720 20.1 0040 19.0 1730 22.0 0050 19.1 1740 21.7 0100 19.0 1750 22.0 0120 20.8 1800 22.1 0130 19.1 1810 22.3 0140 19.8 1820 22.0 0150 18.8 1830 21.7 0200 18.8 1840 21.7 0210 18.7 1850 22.3 0220 18.7 1900 23.2 0230 19.0 1910 22.0 0240 19.0 1921 22.6 0250 19.9 1930 22.3 0300 20.5 1940 22.3 0310 19.8 22 ------- TABLE 3. CONTINUED Date Time Temp Date Time Temp C 08/09 0330 19.8 08/09 1027 22.7 0340 20.8 1040 22.9 0350 20.3 1050 22.6 0400 22.0 1100 22.9 0410 20.8 1110 23.4 0420 22.9 SCHEDULE CHANGE 0430 22.3 1336 22.9 0440 22.6 1348 22.9 0450 22.9 1400 22.9 0500 22.3 1412 22.9 0510 22.6 1424 22.9 0520 20.8 1436 22.9 0530 22.6 1448 22.9 0540 21.1 1500 22.9 0550 22.1 1512 22.9 0600 22.3 1524 22.9 0610 22.0 1536 22.9 0620 21.2 1548 22.9 0630 22.3 1600 22.9 0640 22.4 1612 22.9 0650 21.1 1624 22.9 0700 21.4 1636 23.0 0710 16.0 1648 22.9 0720 22.7 1700 22.9 0746 21.7 1712 22.9 0740 22.3 1724 22.9 0750 22.7 1736 22.9 0800 22.9 1748 22.9 0810 22.7 1800 22.9 0820 22.0 1812 22.2 0830 21.2 1824 22.9 0840 20.1 1836 22.9 0850 21.2 1848 22.9 0900 22.7 1900 22.9 0910 22.7 1912 22.9 0920 22.9 1924 22.9 0930 22.7 1936 22.9 0937 22.6 1948 22.9 0946 22.6 2000 22.9 0953 22.7 2012 23.2 1010 22.7 2024 23.2 1020 22.7 23 ------- TABLE 3. CONTINUED Date Time Temp oc Date Temp Time oc 08/09 2036 23.2 08/10 0524 23.3 2048 23.2 0536 23.1 2100 23.2 0548 22.9 2112 23.2 0600 22.9 2124 23.2 0612 23.0 2136 23.2 0624 22.9 2148 23.2 0636 22.9 2200 23.2 0648 22.9 2224 23.2 0700 22.9 2236 23.2 0712 22.9 2248 23.2 0724 22.9 2300 23.2 0736 22.9 2312 23.2 0748 22.9 2324 23.2 0800 22.9 2336 23.2 0812 22.9 2348 23.2 0824 22.9 08/10 0001 0012 0024 0036 0048 0100 0112 0124 0136 0148 0200 0212 0224 0236 0248 0300 0312 0324 0336 0348 0400 0412 0424 0436 0448 0500 _)__ 23.2 23.2 23.2 20.8 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 20.8 23.1 23.0 23.2 , 0836 0850 0901 0912 0924 0936 0948 1000 1012 1024 1036 1048 1100 1112 1124 1136 1148 1200 1420 1224 1236 1248 1300 1312 1324 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 24 ------- TABLE 3. CONTINUED Date Time Temp Date CC Time Temp OC 08/10 1336 22.9 08/10 2212 22.6 1348 22.9 2224 22.6 1400 22.9 2236 22.7 1412 22.9 2248 22.7 1424 22.9 2300 22.7 1436 22.9 2312 22.6 1448 22.9 2356 22.6 1500 22.9 2336 22.6 1512 22.9 2348 22.6 1524 22.9 08/11 0002 22.6 1536 22.9 0012 22.7 1548 22.9 0024 22.7 1600 22.9 0036 22.7 1612 22.9 0048 22.7 1624 22.9 0100 22.7 1636 22.7 0112 22.7 1648 22.9 0124 22.7 1700 22.9 0136 22.7 1712 22.9 0148 22.7 1724 22.6 0200 22.6 1736 22.7 0212 22.7 1748 22.7 0224 22.7 1800 22.7 0236 22.7 1812 22.7 0248 22.6 1824 22.7 0300 22.6 1836 23.4 0312 22.7 1848 22.7 0324 22.7 1900 22.7 0336 22.7 1912 22.7 0348 22.6 1924 22.7 0400 22.6 1936 22.7 0516 22.6 1948 22.7 0424 22.7 2000 22.7 0436 22.7 2012 22.7 0448 22.6 2024 22.7 0500 22.6 2036 22.6 0512 22.7 2048 22.7 0524 22.6 2100 22.7 0536 22.7 2112 22.7 0548 22.6 2124 22.7 0600 22.6 2136 22.6 0612 22.6 2148 22.6 0624 22.6 2200 22.6 25 ------- TABLE 3. CONTINUED Date Time Temp Date OC Time Temp oc 08/11 0636 0648 22.6 08/11 1512 22.6 1524 22.6 22.6 0700 22.6 1536 22.6 0712 22.6 1548 22.6 0724 22.6 1600 22.6 0736 22.6 1612 22.6 0748 22.6 1624 22.6 0800 22.6 1636 22.6 0812 22.6 1648 22.6 0824 22.6 1700 22.6 0836 22.6 1712 22.6 0848 22.6 1724 22.6 0900 22.6 1736 22.6 0912 22.6 1748 22.6 0924 22.6 1800 22.6 0932 22.6 1812 22.6 SCHEDULE CRANGE 0936 1020 1036 1048 1100 1112 1124 1136 1148 1200 1212 1224 1236 1248 1300 1312 1324 1336 1348 1400 1412 1424 1436 1448 1500 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.0 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 1848 1900 1912 1924 1936 1948 2000 2012 2024 2036 2048 2100 2112 2124 2136 2148 2200 2212 2224 2236 2248 2300 2300 2312 2324 22.6 22.6 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.0 22.0 21.7 21.6 21.8 21.9 22.3 22.3 22.1 22.3 22.3 22.3 22.3 22.3 22.3 22.3 26 ------- TABLE 3. CONTINUED Date Time T 8 mp C Date Time T 8 mp C 08/11 2336 22.3 08/12 0900 22.0 2348 22.3 0912 22.0 08/12 0002 22.3 0924 22.1 0012 22.4 0936 22.0 0024 22.3 0948 22.1 0036 22.3 1000 22.0 0048 22.4 1012 22.0 0100 22.4 1024 22.0 0124 22.4 1036 22.0 0136 22.3 1048 22.0 0148 22.3 1100 22.0 0200 22.3 1112 22.0 0212 22.3 1124 22.0 0224 22.3 1136 22.0 0236 22.3 1148 22.0 0248 22.1 1200 22.0 0300 22.3 1224 22.0 0312 22.1 1236 22.0 0324 22.1 1248 22.0 0336 22.3 1300 22.0 0348 22.0 1312 22.0 0400 22.3 1325 22.0 0412 22.0 1336 22.1 0424 22.1 1348 22.0 0436 22.1 1412 22.0 0448 22.0 1436 22.1 0500 22.1 1448 22.1 0536 22.1 1500 22.0 0548 22.1 1512 22.0 0600 22.2 15 4 22.1 0612 22.1 1536 22.1 0624 22.1 1548 22.1 0648 22.1 1600 22.1 0700 22.0 1612 22.1 0712 22.0 1624 22.1 0028 22.0 1636 22.0 0736 22.0 1648 22.1 0748 22.0 1700 22.1 0800 22.0 1712 22.1 0812 22.1 1724 22.1 0824 22.0 1736 22.1 0836 22.0 1748 22.1 0848 22.0 1800 22.1 27 ------- TABLE 3. CONCLUDED Date Time Temp OC Date Temp Time OC 08/12 1812 1824 22.1 08/13 0248 22.1 0300 22.3 22.3 1836 22.1 0312 22.3 1900 22.1 0324 22.3 1912 22.]. 0336 22.3 1924 22.1 0348 22.2 1936 22.1 0400 22.0 1948 22.1 0412 22.0 2000 22.1 0424 22.0 2012 22.1 0436 22.1 2024 22.1 0448 22.1 2036 22.1 0500 22.1 2048 22.1 0512 22.1 2100 22.1 0524 22.0 2112 22.1 0536 22.1 2124 22.1 0548 22.1 2136 22.1 0600 22.1 2148 22.1 0612 22.1 2200 22.1 0624 22.1 221.2 22.1 0636 22.1 2224 22.0 0648 22.1 2236 22.1 0700 22.]. 2248 22.1 0712 22.1 2300 22.1 0724 22.1 2312 22.1 0736 22.0 2324 22.]. 0748 22.1 2336 22.1 0800 22.1 2348 22.0 0812 22.0 08/13 0001 0012 0024 0036 0048 0100 0112 0124 0136 0148 0200 0212 0224 0236 22.2 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 0824 0836 0848 0900 0912 0924 0936 0948 22.1 22.1 22.0 22.0 22.0 22.0 22.0 22.0 28 ------- TABLE 4. PRESSURE p Date Time kg/cm 2 p Date Time kg/ c m 2 08/06 1615 1.509 08/08 1315 1.493 1715 1.509 1415 1.493 1815 1.509 1515 1.493 1915 1.509 1615 1.493 2015 1.509 1715 1.493 2115 1.509 1815 1.509 2215 1.509 1915 1.493 2315 1.509 2015 1.493 08/07 0015 0115 0215 0315 0415 0515 0615 0715 0815 0915 1015 1115 1315 1415 1515 1615 1715 1815 1915 2015 2115 2215 2315 1.509 1.509 1.509 1.509 1.509 1.509 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.509 1.493 1.493 1.493 1.493 1.493 1.493 08/09 SCHEDULE 08/09 0547 2215 2315 0015 0115 0215 0315 0415 0515 0615 0715 0815 0915 1015 CHANGE 1345 1425 1505 1545 1625 1705 0353 1825 1.493 1.493 1.493 1.493 1.509 1.493 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 08/08 0015 0115 0215 0415 0515 0615 0715 0815 0915 1015 1115 1215 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 08/10 1905 1945 2025 2105 2145 2225 2305 2345 0025 0105 0145 0225 1.509 1.493 1.493 1.509 1.509 1.509 1.493 1.493 1.493 1.493 1.493 1.493 29 ------- TABLE 4. CONTI UEb p Date Time kg/cm 2 Date p Time kg/cm 2 SCHEDULE CHANGE 08/10 0305 1.493 08/11 0935 1.493 0345 1.493 1027 1.493 0425 1.493 1100 1.493 0505 1.509 1130 1.493 0545 1.509 1200 1.493 0625 1.509 1230 1.493 0705 1.493 1300 1.493 0745 1.493 1330 1.493 0825 1.509 1400 1.493 0905 1.493 1430 1.493 0945 1.493 1500 1.493 1025 1.493 1530 1.493 1105 1.493 1600 1.493 1145 1.493 1630 1.493 1305 1.493 1700 1.493 1345 1.493 1730 1.493 1425 1.493 1800 1.493 1505 1.556 1830 1.493 1545 1.493 1900 1.493 1625 1.493 2000 1.493 1705 1.493 2030 1.493 1745 1.493 2100 1.493 1825 1.493 2130 1.493 1905 1.509 2200 1.493 1945 1.509 2230 1.493 2025 1.509 2300 1.493 2105 1.509 2330 1.493 2145 1.493 08/12 0002 1.493 2225 1.493 0030 1.493 2305 1.493 0100 1.493 2345 1.493 0130 1.493 08/11 0025 1.493 0200 1.493 0105 1.493 0230 1.493 0145 1.493 0300 1.493 0225 1.493 0330 1.493 0305 1.493 0400 1.493 0345 1.493 0430 1.493 0425 1.493 0530 1.493 0505 1.493 0600 1.493 0545 1.493 0630 1.493 0625 1.493 0700 1.509 0705 1.493 0834 1.509 0745 1.493 0800 1.493 0825 1.493 0830 1.493 0905 1.493 0900 1.493 30 ------- TABLE 4. CONCLUDED Date Time 2 kg/cm Date Time P 2 kg/cm 08/12 0930 1000 1030 1100 1130 1200 1230 1330 1400 1430 1500 1530 1600 1630 1700 1730 1800 1830 1900 1930 2000 2030 2100 2130 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1 .509 1.509 1.509 1.572 08/12 08/13 2200 2230 2300 2330 0001 0030 0100 0130 0200 0230 0300 0330 0400 0430 0500 0530 0600 0630 0700 0730 0800 0830 0900 0930 1.509 1.509 1.509 1.509 1.509 1.493 1.493 1.493 1.509 1.493 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.509 1.493 1.493 1.493 31 ------- TABLE 5. CONDUCTIVITY Cond Date Time Date Cond Time p mho/cm 08/06 1530 217 08/07 1330 205 1532 217 1332 209 1630 205 1430 205 1632 162 1432 209 1730 217 1530 217 1732 217 1532 209 1830 209 1630 221 1832 209 1632 217 1930 205 1710 3780 2030 195 1730 217 2032 195 1732 221 2130 188 1830 221 2132 184 1832 221 2230 184 1930 229 2232 188 1932 221 2330 188 2030 229 2332 188 2032 229 08/07 0030 198 2130 221 0032 195 2132 221 0130 205 2230 229 0132 205 2232 229 0334 217 2330 221 0232 217 2332 229 0330 217 08/08 0030 217 0332 221 0032 217 0430 221 0130 217 0432 221 0132 217 0530 221 0230 217 0532 221 0232 217 0630 217 0330 221 0632 217 0332 217 0730 217 0430 221 0732 217 0434 217 0830 217 0530 209 0832 217 0532 209 0930 290 0630 221 0932 217 0632 221. 1030 221 0730 229 1032 221 0732 229 1130 221 0830 221 1132 217 0832 221 1230 205 0930 217 1232 205 0932 217 32 ------- TABLE 5. CONTINUED Cond Date Time miio/m Date Cond Time ulnho/cM 08/08 1030 209 08/09 0830 229 1032 209 0832 233 1130 205 0930 233 1132 205 0932 290 1230 209 1030 233 1232 217 1032 233 1330 209 SCHEDULE CHANGE 1332 209 08/09 1400 290 1430 205 1430 290 1432 274 1500 290 1530 209 1530 290 1532 209 1600 290 1630 217 1630 290 1632 217 1700 290 1732 221 1730 290 1830 221 1800 290 1832 229 1830 290 1930 233 1900 290 1932 233 1930 290 2030 233 2000 290 2032 233 2030 290 2146 217 2100 290 2132 217 2130 290 2230 221 2200 233 2232 221 2230 233 2330 221 2300 290 2332 217 2330 233 08/09 0030 205 08/10 0001 233 0032 209 0030 233 0130 209 0100 233 0132 209 0130 233 0230 209 0200 233 0232 217 0230 233 0330 217 0300 233 0332 209 0330 233 0430 229 0400 233 0432 233 0430 233 0530 233 0530 233 0532 221 0600 233 0630 233 0630 233 0632 233 0700 233 0730 229 0730 233 0732 233 0800 233 33 ------- TZkBLE 5. CONTINUED Cond Date Time Date Cond Time o/cm 08/10 0830 233 08/11 0630 233 0900 233 0700 233 0930 233 0730 233 1000 233 0800 233 1030 233 0830 233 1100 233 0900 233 1130 233 0930 233 1200 233 SCIIflDULE CHANGE 1230 233 08/11 1025 233 1300 233 1105 233 1330 233 1145 233 1400 233 1225 233 1430 233 1305 233 1500 233 1345 233 1530 233 1425 233 1600 233 1505 233 1630 233 1545 233 1700 233 1625 233 1730 233 1705 233 1800 233 1745 233 1830 233 1825 233 1900 233 1905 233 1930 233 1945 233 2000 233 2025 233 2030 233 2105 229 2100 233 2145 229 2130 233 2225 233 2200 233 2305 233 2230 233 2345 233 2300 233 08/12 0025 233 2330 233 0105 233 08/11 0002 233 0145 233 0030 233 0225 233 0100 233 0305 233 0130 233 0345 233 0200 233 0425 233 0230 233 0505 233 0300 233 0545 233 0330 233 0625 233 0430 233 0705 233 0500 233 0745 233 0530 233 0825 233 0600 233 0905 233 34 ------- TABLE 5. CONCLUDED Date . Time Cond o/cm Date . Time Cond i. mho/cm 08/12 0945 1025 1105 1145 1225 1305 1345 1425 1545 1625 1705 1745 1825 1905 1945 2025 2137 2145 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 08/12 2225 2305 2345 0025 0105 0145 0225 0305 0345 0425 0505 0545 0625 0705 0745 0825 0945 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 229 229 35 ------- TABLE 6. pH Date Time pH Date Time pH 08/06 1515 6.8 08/07 1315 5.6 1545 6.7 1345 5.5 1615 6.5 1415 5.6 1645 6.6 1445 5.5 1715 6.6 1515 5.6 1745 6.6 1545 4.6 0423 6.6 1615 5.9 1845 6.6 1645 5.6 1915 6.5 1715 5.8 1945 6.4 1745 5.8 2015 6.3 1815 5.8 2045 5.7 1845 5.9 2115 6.3 1915 5.9 2145 6.2 1945 6.1 2245 6.0 2015 6.0 2315 5.9 2045 5.9 2345 5.8 2115 5.9 08/07 0015 0045 0115 0145 0215 0245 0315 0345 0415 0445 0515 0545 0615 0645 0715 0745 0815 0845 0915 0944 1015 1045 1115 1145 1215 1245 5.8 5.7 5.9 5.9 5.9 6.1 6.3 6.3 6.2 6.0 6.2 5.9 5.9 5.6 5.6 5.4 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.5 5.5 08/08 2145 2215 2245 2315 2345 0045 0115 0145 0215 0245 0315 0345 0415 0445 0515 0545 0615 0645 0715 0745 0815 0845 0915 0945 1015 1045 5.9 5.7 5.9 6.0 5.9 5.7 5.7 5.7 5.6 5.6 5.6 5.6 5.7 5.6 5.6 5.6 5.7 5.9 6.0 5.8 5.9 5.6 5.6 5.6 5.6 5.5 36 ------- TABLE 6. CONTINUED Date Time pH Date Time pH 08/08 1115 5.5 08/09 0915 5.6 1145 5.4 0944 5.7 1215 5.6 1015 5.7 1245 5.6 1045 5.7 1315 5.6 SCHEDULE CHANGE 1345 5.6 08/09 1335 6.5 1415 5.6 1337 6.5 1445 5.6 1355 6.5 1515 5.5 1357 6.5 1545 5.5 1415 6.4 1615 5.6 1417 6.4 1715 5.6 1435 6.3 1745 5.6 1437 6.4 1815 5.7 1455 6.4 1845 5.7 1457 6.3 1915 5.7 1515 6.5 1945 6.2 1517 6.5 2015 6.0 1535 6.3 2045 5.7 1537 6.3 2115 5.6 1555 6.4 2145 5.6 1557 6.4 2215 5.7 1615 6.4 2245 5.6 1617 6.4 2315 5.6 1635 6.3 2345 5.5 1637 6.3 08/09 0015 5.5 1655 6.4 0045 5.5 1657 6.4 0115 5.5 1715 6.4 0145 5.5 1717 6.4 0215 5.5 1735 6.4 0245 5.5 1737 6.4 0315 5.5 1755 6.4 0345 5.5 1757 6.3 0415 5.6 1815 6.4 0445 5.7 1817 6.4 0515 5.5 1835 6.5 0545 5.5 1837 6.3 0615 5.5 1855 6.3 0645 5.5 1857 6.5 0715 5.5 1915 13.3 0745 5.6 1917 6.5 0815 5.6 1937 6.4 0845 12.6 1955 6.4 37 ------- TABLE 6. CONTINUED Date Time pH Date Time pH 08/09 1957 6.3 08/10 0315 6.5 2015 13.5 0317 6.5 2017 6.5 0335 6.5 2035 6.4 0337 6.5 2037 6.5 0355 6.5 2055 6.5 0357 6.5 2057 6.5 0415 6.5 2115 6.4 0417 6.5 2117 6.3 0435 6.5 2135 6.5 0437 6.5 2137 6.5 0455 6.5 2155 6.5 0457 6.5 2157 6.5 0515 6.5 2215 6.5 0517 6.5 2217 6.5 0535 6.5 2235 6.5 0537 6.5 2237 6.5 0559 6.5 2255 6.5 0557 6.5 2257 6.5 0615 6.5 2315 6.5 0617 6.4 2317 6.5 0635 6.4 2335 6.5 0637 6.4 2337 6.5 0655 6.4 2355 6.5 0657 6.4 2357 6.5 0715 6.4 08/10 0015 6.5 0717 6.4 0017 6.5 0735 6.4 0035 6.3 0737 6.4 0037 6.5 0755 6.4 0055 6.5 0757 6.4 0057 6.5 0815 6.4 0115 6.5 0817 6.4 0117 6.5 0835 6.4 0135 6.5 0837 6.4 0137 6.5 0855 6.4 0155 6.5 0857 6.4 0157 6.5 0915 6.4 0215 6.5 0917 6.4 0217 6.5 0935 6.4 0235 6.5 0937 6.4 0237 6.5 0955 6.4 0255 6.5 0957 6.4 0257 6.5 1015 6.4 38 ------- TABLE 6. CONTINUED Date Time pH Date Time pH 08/10 1017 6.4 08/10 1735 6.4 1035 6.4 1737 6.4 1037 6.4 1755 6.4 1055 6.4 1757 6.4 1057 6.4 1815 6.4 1115 6.4 1817 6.4 1117 6.4 1835 6.4 1135 6.4 1837 6.4 1137 6.4 1855 6.4 1155 6.4 1857 6.4 1157 6.4 1915 6.4 1215 6.4 1935 6.4 1217 6.4 1937 6.4 1235 6.4 1955 6.4 1237 6.4 1957 6.4 1255 6.4 2015 6.4 1257 6.4 2017 6.4 1315 6.3 2035 6.4 1317 6.4 2037 6.4 1335 6.4 2055 6.4 1337 6.4 0113 6.4 1355 6.4 2115 6.4 1357 6.4 2117 6.4 1415 6.5 2135 6.4 1417 6.4 2137 6.3 1435 6.4 2155 6.4 1437 6.4 2157 6.4 1455 6.4 2215 6.4 1457 6.4 2217 6.4 1515 6.4 2235 6.4 1517 6.4 2237 6.4 1535 6.4 2255 6.4 1537 6.4 2257 6.4 1555 6.3 2315 6.4 1557 6.3 2317 6.4 1615 6.5 2335 6.4 1617 6.4 2337 6.4 1635 6.4 2355 6.4 1637 6.3 2357 6.4 1655 6.4 08/11 0015 6.4 1657 6.4 0017 6.4 1715 6.4 0035 6.4 1717 6.4 39 ------- TA3LE 6. CONTIUUED Date Time pH Date Time pH 08/11 0037 6.4 08/11 0755 6.3 0055 6.4 0757 6.4 0057 6.4 0815 6.4 0115 6.4 0817 6.4 0117 6.4 0835 6.4 0135 6.4 0837 6.4 0137 6.4 0855 9.1 0155 6,4 0855 6.4 0157 6.4 0857 6.3 0215 6.4 0915 6.3 0217 6.4 0917 6.4 0235 6.4 093]. 6.3 0237 6.4 0933 6.4 0255 6.4 SCHEDULE CHANGE 0257 64 08/11 1030 6.4 0315 6.4 1037 6.3 0317 6.4 1055 6.4 0335 6.4 1057 6.3 0337 6.4 1115 6.3 0355 6.4 1117 6.3 0357 6.4 1135 6.3 0415 6.4 1137 6.3 0417 6.4 1155 6.3 0435 6.4 1157 6.3 0437 6.4 1215 6.2 0455 6.4 1217 6.2 0457 6.4 1235 5.7 0515 6.4 1237 6.3 0517 6.4 1255 6.2 0535 6.4 1257 6.2 0537 6.4 1315 6.3 0559 6.4 1317 6.3 0557 6.4 1335 6.3 0615 6.4 1337 6.3 0617 6.4 1355 5.7 0635 6.4 1357 6.3 0637 6.4 1415 6.3 0655 6.4 1417 6.3 0657 6.4 1435 6.3 0715 6.3 1437 6.3 0717 6.4 1455 6.3 0735 6.4 1457 6.3 3737 6.4 40 ------- TABLE 6. COLITINUED Date Time pH Date Time pH 08/11 1515 6.3 08/11 2217 5.9 1517 6.3 2235 6.2 1535 6.3 2237 6.3 1537 6.3 2255 6.2 1555 6.3 2257 6.3 1557 5.7 2315 6.3 1615 6.4 2317 6.4 1617 6.4 2335 6.3 1635 6.4 2337 6.4 1637 6.4 2355 6.4 1655 6.3 2357 6.4 1657 6.3 08/12 0015 6.3 1715 6.4 0017 6.3 1717 6.4 0035 6.3 1735 6.4 0037 6.3 1737 6.4 0055 6.3 1755 6.3 0057 6.3 1757 6.4 0115 6.3 1815 6.4 0117 6.4 1817 6.4 0135 6.3 1835 6.4 0137 6.4 1837 6.4 0155 6.2 1855 6.3 0157 6.1 1857 6.3 0215 6.2 1915 6.1 0217 6.2 1917 6.1 0235 6.1 1935 5.8 0237 6.1 1937 5.9 0255 6.0 1955 5.8 0257 6.2 1957 5.7 0315 5.9 2015 5.9 0317 6.0 2017 5.7 0335 6.2 2035 5.9 0337 6.2 0645 5.8 0355 6.2 2055 5.4 0357 6.3 2057 5.5 0415 6.1 2115 5.6 0417 6.2 2117 5.7 0435 6.2 2135 5.7 0437 6.2 2137 5.6 0455 6.2 2155 5.7 0457 6.3 2157 5.9 0515 6.2 2215 6.0 0517 6.2 41 ------- TABLE 6. CONTINUED Date Time pH Date Time pH 08/12 0535 6.2 08/12 1257 6.3 0537 6.3 1315 6.3 0555 6.3 1317 6.3 0557 6.3 1335 6.3 0615 6.2 1337 6.3 0617 6.2 1355 6.3 0635 6.2 1357 6.3 0637 6.2 1415 6.3 0655 6.2 1417 6.3 0657 6.2 1437 6.3 0715 6.2 1455 6.3 0717 6.3 1457 6.3 0735 6.2 1515 6.3 0737 6.2 1517 6.3 0755 6.3 1535 6.3 0757 6.3 1537 6.3 0815 6.3 1555 6.3 0817 6.3 1557 6.3 0835 6.3 1615 6.3 0837 6.3 1617 6.3 0855 6.3 1635 5.7 0857 6.3 1637 6.3 0917 6.3 1655 5.7 0935 6.3 1657 5.7 0937 13.3 1715 5.7 0955 6.3 1717 5.7 0957 6.3 1735 5.7 1015 6.3 1737 5.7 1017 6.3 1755 5.7 1035 6.3 1757 6.3 1037 6.3 1815 5.7 1055 5.7 1817 5.7 1057 6.3 1835 6.3 1115 6.3 1837 6.3 1117 6.3 1855 6.3 1135 5.7 1857 6.3 1137 6.3 1915 6.3 1155 6.3 1917 6.3 1157 6.3 1935 6.3 1215 6.3 1937 6.3 1217 6.3 1955 6.3 1235 6.3 1957 6.3 1237 6.3 2015 6.3 1255 6.3 2017 6.3 42 ------- TABLE 6. CONCLUDED Date Time pH Date Time pH 08/12 2035 5.7 08/13 0317 6.3 2037 5.7 0335 6.3 2055 5.7 0337 6.3 2057 5.7 0355 5.7 2115 6.3 0357 6.3 2135 6.3 0417 6.5 2137 6.3 0435 6.3 2155 6.3 0437 6.3 2157 6.3 0455 6.3 2215 5.7 0457 6.3 2217 6.3 0515 6.3 2235 6.3 0517 6.3 2237 6.3 0535 6.3 2255 6.3 0537 6.3 2257 6.3 0555 6.3 2315 6.3 0557 6.3 2317 6.3 0615 6.3 2335 6.3 0617 6.3 2337 6.3 0635 6.3 2355 6.3 0637 6.3 2357 6.3 0655 6.3 08/13 0015 6.3 0657 6.3 0017 6.3 0715 6.3 0035 6.3 0717 6.3 0037 6.3 0735 6.3 0055 6.3 0737 6.3 0057 6.3 0755 6.3 0115 6.3 0757 6.3 0117 6.3 0815 6.3 0135 6.3 0817 6.3 0137 6.3 0835 6.3 0155 6.3 0837 6.3 0157 6.3 0855 6.3 0215 6.3 0857 6.3 0217 6.3 0915 6.3 0235 6.3 0917 6.3 0237 6.3 0935 6.3 0255 6.3 0937 6.3 0257 6.3 0955 6.2 0315 6.3 43 ------- TABLE 7. OXIDATION-REDUCTION POTENTIAL ORp Date Time Date my Time ORP my 08/06 1545 324 08/07 0625 328 1605 328 0645 328 1645 320 0705 328 1705 324 0725 324 1725 316 0745 324 1745 312 0805 324 1805 308 0825 320 1825 556 0845 442 1845 305 0905 316 1905 308 0925 312 1925 312 0945 312 1945 316 1005 312 2005 316 1025 312 2025 316 1045 312 2045 316 1125 312 2105 316 1145 312 2125 316 1205 308 2145 320 1225 308 2205 320 1305 308 2225 320 1325 308 2245 324 1345 312 2305 328 1405 312 2325 332 1425 686 2345 332 1445 312 08/07 0005 0025 0045 0105 0125 0145 0205 0225 0245 0305 0325 0401 0405 0425 0445 0505 0525 0545 0605 332 336 332 332 332 340 332 336 332 328 316 316 316 320 324 316 320 324 328 1505 1525 1545 1605 1625 1645 1705 1725 1745 1805 1825 1845 1905 1925 2005 2025 2045 2105 2125 308 308 308 308 308 312 312 312 312 312 312 31.2 312 312 312 312 312 312 312 44 ------- TABLE 7. CONTINUED ORP Date Time Date my ORP Time my 08/07 2145 312 08/08 1205 308 2205 312 1225 308 2225 312 1245 305 2245 312 1305 305 2305 308 1325 308 2325 312 1345 308 2345 312 1405 308 08/08 0005 324 1425 686 0025 316 1445 312 0045 312 1505 312 0105 312 1525 312 0125 312 1545 312 0145 316 1605 312 0205 316 1625 312 0225 316 1645 308 0245 316 1705 312 0305 316 1725 308 0325 316 1745 308 0345 316 1805 308 0405 316 1825 308 0425 316 1845 312 0445 316 1905 312 0505 316 1925 308 0525 316 1945 308 0545 316 2005 301 0605 316 2025 301 0625 316 2045 308 0645 312 2105 312 0705 686 2125 312 0725 316 2145 312 0745 312 2205 312 0805 312 2225 312 0825 316 2245 316 0845 312 2305 316 0905 312 2325 312 0925 312 2345 324 0945 312 08/09 0005 312 1005 312 0025 312 1025 312 0045 312 1045 312 0113 312 1105 312 0125 312 1125 312 0145 312 1145 312 0205 312 45 ------- TABLE 7. CONTINUED ORP Date Time Date my ORP Time r r 08/09 0225 312 08/09 2125 285 0245 312 2155 285 0305 312 2225 285 0325 312 2255 411 0345 316 2325 285 0405 316 2355 285 0425 690 08/10 0025 285 0445 316 0055 285 0505 316 0125 289 0525 316 0155 289 0545 312 0225 293 0605 312 0255 289 0625 312 0325 289 0645 324 0355 289 0705 316 0425 289 0725 316 0455 289 0745 316 0525 289 0805 312 0555 674 0825 312 0625 289 0845 686 0655 289 0905 312 0725 293 0925 312 0755 308 0945 312 0825 293 1005 308 0855 293 1025 308 0925 293 1045 305 0955 293 1104 301 1025 293 SCHEDULE CHANGE 1055 293 08/09 1348 261 1125 293 1425 269 1155 293 1455 273 1225 293 1525 308 1255 293 1555 277 1325 293 1625 281 1355 293 1655 285 1425 293 1725 285 1455 293 1755 411 1525 293 2241 285 1555 293 1855 285 1625 293 1925 285 1655 297 1955 285 1725 297 2025 289 1755 293 2055 285 1825 293 46 ------- TABLE 7. CONTINUED OR? Date Time Date fl , OR? Time im, 08/10 1855 293 08/11 ]g35 301 1925 297 192]. 301 1955 293 2005 308 2233 293 2050 308 2055 297 2135 312 2229 297 0237 308 2155 297 2305 301 2225 297 2350 301 2255 297 08/12 0035 301 2325 301 0121 305 2355 30]. 0205 305 08/11 0025 301 0250 305 0055 297 0335 305 0125 297 0421 308 0155 297 0505 308 0225 297 0550 305 0255 297 0635 305 0325 297 0721 308 0355 297 0805 305 0425 297 0850 308 0455 301 0935 305 0525 297 1021 308 0555 297 1105 308 0625 297 1150 308 0655 297 1235 305 0725 301 1321 305 0755 301 1405 305 0825 297 1450 308 0855 297 1535 308 0925 301 1621 556 SCHEDULE CGABGE 1705 556 08/11 0938 308 1750 308 1020 301 1835 312 1105 301 1921 312 1150 297 2005 308 1235 301 2050 312 1321 297 2135 312 1405 301 2221 316 1450 301 2305 312 1535 301 2350 312 1621 301 08/13 0035 808 1705 301 0121 308 1750 297 0205 308 47 ------- TABLE 7. CONCLUDED Date Time or P IW Date Time ORP my 08/13 0250 0335 0425 0505 0550 308 312 312 312 312 08/13 0635 0721 0805 0850 0935 312 312 312 312 316 48 ------- Date Time D.O. Date mg/2. Time D.O. mg/i 08/06 0600 12.3 1540 13.6 0620 13.1 1600 13.6 0640 12.5 1640 13.6 0700 12.1 1700 13.7 0720 9.5 1720 11.1 0740 11.0 1740 13.7 0800 10.8 1800 13.7 0820 9.9 1820 0.0 0840 10.0 1840 14.0 0900 9.5 1900 0.0 0920 10.2 1920 0.0 0941 8.2 1940 13.8 1000 12.7 2000 13.9 1020 8.6 2020 0.0 1040 11.8 2040 0.0 1100 8.0 2100 0.0 1120 9.7 2120 13.9 1140 7.5 2140 13.8 1616 7.2 2201 13.9 1220 7.6 2220 13.6 1240 8.1 2240 13.6 1300 8.8 2300 13.4 1340 12.1 2320 13.2 1420 8.8 2340 13.0 1440 9.1 08/07 0002 0020 0040 0100 0120 0140 0200 0220 0240 0300 0320 0340 0400 0420 0440 0500 0520 0540 12.8 13.1 13.0 13.4 14.0 14.0 14.3 14.3 15.1 14.5 14.5 14.6 14.5 0.0 14.7 15.2 13.3 13.8 1500 1520 1540 1600 1620 1640 1700 1723 1740 1800 1820 1840 1900 1920 1940 1955 2000 2020 8.6 9.1 10.0 10.5 12.2 12.5 11.7 11.8 11.2 11.7 10.6 12.6 13.0 12.9 14.0 8.4 13.5 14.6 49 ------- TABLE 8. COWTINUED Date Time Date ag/R. Time D.C. mg/a 08/07 2040 13.1 08/08 1120 8.5 2100 12.4 1140 8.6 2120 13.1 1208 8.4 2140 13.3 1220 8.2 2200 13.4 1240 8.5 2220 14.0 1300 8.9 2240 14.5 1320 9.1 2300 15.1 1340 8.8 2340 0.0 1400 8.8 08/08 0002 10.4 1420 8.8 0020 10.8 1440 8.8 0040 9.6 1500 9.0 0100 10.2 1520 8.9 0120 9.5 1540 8.7 0140 9.7 1600 8.8 0200 10.1 1620 9.4 0220 9.9 1640 9.4 0240 9.6 1700 9.0 0300 9.3 1720 9.1 0320 10.2 1740 11.0 0340 10.6 1800 12.1 0400 11.3 1820 10.7 0420 9.9 1840 12.3 0440 9.0 1900 12.7 0500 9.2 1920 15.5 0520 9.4 1940 14.1 0540 8.9 2000 15.5 0600 9.0 2020 15.0 0620 11.4 2040 0.0 0640 12.5 2100 0.0 0700 13.4 2120 9.7 0720 12.9 2140 10.4 0740 12.5 2200 11.7 0800 12.1 2220 12.1 0820 10.5 2240 10.5 0840 9.8 2300 9.9 0900 8.9 2320 10.4 0920 8.6 2340 9.0 0940 8.2 08/09 0002 8.4 1000 8.6 0020 8.7 1020 8.8 0040 8.9 1040 12.3 0100 8.7 1100 12.5 0120 8.6 so ------- TABLE 8. CONTINUED Date Time D.O. Date mgJ Time D.O. mg/& 08/09 0140 8.4 08/09 2041 16.7 0200 12.3 2110 17.1 0220 12.3 2141 17.0 0240 12.2 2210 17.1 0320 8.5 2240 16.7 0340 8.2 2310 16.9 0400 9.1 2340 0.0 0420 9.5 08/10 0010 16.8 0440 11.7 0041 16.9 0500 11.6 0110 16.9 0520 9.2 0140 19.1 0540 8.6 0314 16.5 0600 8.9 0240 16.5 0620 8.1 0310 16.5 0640 11.6 0341 16.3 0700 9.7 0410 16.4 0724 8.8 0440 16.5 0740 10.1 0510 18.2 0800 13.0 0540 16.5 0820 13.6 0610 16.6 0840 10.5 0641 16.4 0900 12.0 0710 16.4 0920 15.3 0740 16.5 0941 13.4 0810 16.4 1000 14.0 0840 16.5 1020 0.0 0910 16.4 1040 14.7 0941 16.7 1100 0.0 1010 16.7 SCHEDULE CHANGE 1040 16.5 08/09 1341 16.0 1110 16.2 1410 16.0 1140 16.3 1440 16.0 1210 16.3 1510 16.0 1241 16.4 1541 16.5 1310 16.5 1610 16.5 1340 16.3 1625 8.1 1410 16.3 1710 16.7 1440 16.2 1740 16.7 1510 0.0 1810 16.7 1541 16.5 1841 16.5 1610 0.0 1910 16.6 1640 16.6 1941 16.6 1710 16.4 2010 16.6 1740 16.8 51 ------- TABLE 8. CONTINUED Date Time D.C. Date nig/2. Time D.C. mg/i 08/10 1810 16.3 08/11 1541 15.4 1841 16.2 1610 15.9 1910 16.2 1640 16.3 1940 15.9 1740 15.8 2010 16.9 1810 16.2 2040 16.8 1841 15.1 2110 16.9 1910 14.0 2141. 16.8 1940 14.3 2210 16.5 2010 13.0 2240 16.6 2040 0.0 2310 16.6 2110 7.8 2340 16.7 2141 8.0 08/11 0010 16.7 2210 9.6 0041 1 .6.7 2240 0.0 0110 16.5 2310 15.5 0140 16.3 08/12 0010 15.8 0210 16.4 0041 16.0 0240 16.3 0110 16.2 0310 16.5 0140 15.8 0341 16.4 0210 15.8 0410 16.1 0240 12.1 0440 16.2 0310 11.4 0510 15.8 0341 13.7 0540 16.1 0410 13.2 0610 16.0 0440 0.0 0641 15.9 0510 0.0 0710 16.0 0540 0.0 0740 15.7 0610 0.0 0810 15.7 064]. 0.0 0840 15.9 0710 0.0 0910 15.9 0740 0.0 SCHEDULE CHANGE 0810 0.0 08/11 0934 15.9 0840 0.0 1040 15.4 0910 0.0 1110 15.2 0941 0.0 1140 15.0 1010 0.0 1210 14.7 1040 0.0 1241 14.5 1110 16.1 1310 16.0 1140 0.0 1340 16.2 1210 0.0 1410 16.0 1241 15.8 1440 15.3 1310 0.0 1510 15.1 1340 0.0 52 ------- TABLE 8. CONCLUDED Date Time D.C. rng/L Date Time D.O. mg/L 08/12 1410 1440 1510 1541 1610 1640 1710 1740 1810 1841 1910 1941 2010 2040 2110 2141 2210 2240 2310 2340 0.0 0.0 16.4 16.3 0.0 16.2 0.0 16.4 16.3 0.0 0.0 0.0 16.5 0.0 0.0 16.5 16.4 1.2 0.0 0.0 08/13 0010 0041 0110 0140 0210 0240 0310 0341 0410 0510 0540 0610 0641 0710 0740 0810 0840 0910 0941 0.0 16.3 16.5 16.5 16.6 16.3 16.5 16.5 0.0 16.3 0.0 0.0 0.0 0.0 0.0 0.0 16.6 0.0 0.0 53 ------- TABLE 9. FLUORIDE F . Date Time Date mg/P. F Time mg/P. 08/06 1525 0.247 08/07 1325 0.515 1555 .324 1355 .425 1600 11.3 1425 .462 1655 .291 1455 .450 1725 .247 1525 .437 1755 .261 1555 .462 1825 .247 1625 .543 1855 .247 1655 .450 1925 .210 1725 .425 1955 .199 1755 .393 2025 .183 1825 .371 2055 .183 1855 .343 2125 .156 1925 .371 2155 .178 2025 .324 2225 .210 2055 .371 2255 .228 2125 .361 0933 .228 2155 .343 2355 .228 2225 .343 08/07 0025 .247 2255 .393 0055 .222 2325 .324 0125 .222 2355 .393 0155 .228 08/08 0025 .361 0225 .291 0055 .393 0255 .216 0125 .450 0325 .199 0155 .543 0355 .199 0225 .414 0425 .199 0255 .450 0455 .216 0325 .450 0525 .216 0355 .393 0555 .228 0425 .393 0655 .261 0455 .462 0725 .247 0525 .462 0755 .291 0555 .474 0825 .343 0625 .393 0855 .361 0655 .543 0925 .315 0725 .462 0950 .393 0755 .393 1025 .210 0825 .474 1055 .291 0855 .529 1125 .291 0925 .501 1155 .343 0955 .543 1225 .361 1025 .622 1255 .425 1055 .622 54 ------- TABLE 9. CONTINUED Date Time Date ing/2. Time FL nig/& 08/09 2325 0.393 08/10 1025 0.501 2340 .543 1040 .543 2355 .403 1055 .414 08/10 0010 .414 1110 .403 0025 .462 1125 .403 0040 .425 1140 .403 0055 .462 1155 .425 0110 .403 1210 .450 0125 .352 1225 .462 0140 .343 1240 .425 0155 .343 1255 .425 0210 .343 1310 .543 0225 .343 1325 .403 0240 .343 1340 .371 0255 .35 1355 .403 0310 .403 1410 .403 0325 .403 1425 .403 0340 .382 1440 .371 0355 .393 1455 .371 0410 .343 1510 .382 0425 .343 1525 .403 0440 .343 1540 .393 0511 .343 1555 .414 0510 .352 1610 .393 0525 .352 1625 .382 0540 .371 1640 .371 0555 .403 1655 .403 0610 .403 1710 .403 0625 .393 1725 .371 0640 .425 1740 .393 0655 .565 1755 .403 0710 .425 1810 .462 0725 .425 1825 .450 0740 .403 1840 .437 0810 .371 1855 .462 0825 .328 1910 .425 0840 .403 1925 .462 0855 .382 1940 .462 0910 .450 1955 .462 0925 .486 2010 .543 0940 .543 2025 .529 0955 .501 2040 .543 1010 .515 2055 .543 55 ------- TABLE 9. CONTINUED Date Time FL Date mg/L Time mg/L 08/10 2110 0.543 08/11 0810 0.590 2125 .543 0825 .606 2140 1.0 0840 .732 2155 .557 0855 .732 2210 .501 0910 .590 2225 .543 0925 .543 2240 1.0 SCHEDULE CHANGE 2255 1.0 08/11 0933 .515 2310 1.0 1025 .543 2325 .543 1040 .515 2340 .543 1055 .529 2355 .501 1110 1.0 08/11 0010 .543 1125 .639 0025 .501 1140 .590 0040 .501 1155 .590 0055 .557 1210 .557 0110 .543 1225 .543 0125 .590 1255 .529 0140 .529 1310 .529 0155 .486 1325 .543 0210 .501 1340 .543 0225 .543 1355 .543 0240 .529 1410 .529 0255 .590 1425 .529 0310 .590 1440 .543 0325 .639 1455 .543 0340 .606 1510 .486 0355 .639 1525 .462 0425 .543 1540 .515 0440 .501 1555 .501 0455 .543 1610 .501 0510 .486 1625 1.0 0525 .501 1640 .501 0540 .501 1655 .501 0555 .543 1710 .501 0610 .529 1725 .501 0625 .501 1740 .462 0640 .543 1755 .543 0655 .529 1810 .590 0710 .543 1825 .590 0725 .543 1840 .557 0740 .543 1855 .656 0755 .543 1910 .639 56 ------- TABLE 9. CONTINUED F& Date Time Date mg/L Time FL mg/z 08/1 .1 1925 0.590 08/12 0610 0.639 1941 .501 0625 .590 1955 .606 0640 .639 2010 .639 0655 .639 2025 .639 0710 .590 2040 .639 0725 .639 2055 .557 0740 .639 2110 .590 0755 .639 2125 .590 0810 .732 2140 .694 0825 .694 2155 .656 0840 .732 2210 .639 0855 .694 2225 .622 0910 .694 2240 .606 0925 .656 2255 .639 0940 .694 2310 .590 0955 .694 2325 .573 1010 .656 2340 .590 1025 .694 2355 .732 1040 .694 08/12 0010 .732 1055 .732 0025 .557 1110 .694 0040 .543 1125 .694 0055 .501 1140 .713 0110 .501 1155 .732 0125 .543 1210 .732 0140 .543 1225 .732 0155 .557 1240 .694 0210 .639 1255 .694 0225 .639 1310 .694 0240 .694 1325 .732 0255 .639 1340 .656 0310 .639 1355 .694 0325 .639 1410 .732 0340 .543 1425 .713 0355 .590 1440 .732 0410 1.0 1455 .732 0425 1.0 1510 .773 0440 .543 1525 .773 0455 1.0 1540 .732 0510 .590 1555 .732 0525 .694 1610 .732 0540 .639 1625 1.0 0555 .639 1640 .732 57 ------- TABLE 9. CONCLUDED FL Date Time mg/L Date FL Time mg/& 08/12 1655 0.694 08/13 0125 0.639 1710 .694 0140 .639 1725 .656 0155 .639 1740 .639 0210 .639 1755 .639 0225 .732 1810 .606 0240 .732 1825 .639 0255 .732 1840 .639 0310 .732 1855 .639 0325 .732 1910 .606 0340 .732 1925 .622 0355 .732 1940 .732 0410 .639 1955 .639 0425 .639 2010 .639 0440 .732 2025 .732 0455 .694 2040 .639 0510 .732 2055 .639 0525 .732 2110 .639 0540 .732 2125 .606 0610 .795 2140 .639 0625 1.0 2155 .606 0640 .795 2210 .639 0655 .795 2225 .639 0710 1.0 2240 .606 0725 .732 2255 .639 0740 .795 2310 .606 0755 .839 2325 .639 0810 .795 2340 .732 0825 .732 2355 .639 0840 762.0 08/13 0010 .694 0855 .713 0025 .656 0910 .739 0040 .656 0925 .79 0055 .694 0940 .839 0110 .639 0955 .910 58 ------- TABLE 10. TURBIDITY Turb Date Time Date NTU Time TUXb 08/06 1535 100.0 08/08 1035 76.0 1635 100.0 1135 100.0 1735 100.0 1235 100.0 1835 100.0 1335 100.0 1935 100.0 1435 100.0 2035 46.2 1535 100.0 2135 7.9 1635 100.0 2235 9.0 1735 100.0 2335 7.9 1835 100.0 08/07 0035 8.3 1935 100.0 0135 8.1 2243 28.5 0235 7.7 2135 20.8 0335 7.1 2235 19.5 0435 7.5 2335 18.3 0535 9.0 08/09 0035 25.0 0635 22.2 0135 24.2 0735 100.0 0235 18.9 0835 100.0 0335 18.7 0935 100.0 0435 18.1 1035 100.0 0635 23.4 1135 100.0 0735 100.0 1235 100.0 0835 100.0 1335 100.0 0935 100.0 1435 100.0 1035 100.0 1535 100.0 SCHEDULE CHANGE 1635 100.0 08/09 1405 100.0 1735 100.0 1450 100.0 1835 100.0 1621 100.0 1935 100.0 1705 100.0 2035 32.0 1750 100.0 2135 12.4 1835 100.0 2235 14.0 1921 88.2 2335 16.5 2005 46.2 08/08 0035 24.8 2050 16.7 0135 24.4 2135 9.2 0235 20.2 2221 8.7 0335 19.3 2305 8.6 0435 18.7 2350 9.4 0535 23.4 08/10 0035 8.8 0635 18.7 0121 8.4 0735 32.0 0205 8.4 0835 42.8 0250 8.8 0935 100.0 0335 9.8 59 ------- TABLE 10. CONTINUED Turb Date Time NTU Date Purb Time NTU 08/10 0421 8.3 08/11 1125 100.0 0505 8.4 1155 100.0 0550 8.3 1225 100.0 0635 11.6 1255 100.0 0721 61.7 1325 100.0 0805 56.2 1355 100.0 0850 46.0 1425 100.0 0935 83.3 1455 25.9 1021 100.0 1525 100.0 1105 100.0 1555 100.0 1150 100.0 1625 100.0 1235 100.0 1655 100.0 1321 100.0 1725 100.0 1405 100.0 1755 100.0 1450 100.0 1825 84.9 1535 100.0 1855 72.3 1621 100.0 1925 96.7 1705 77.2 1955 46.6 1750 43.4 2025 25.3 1835 55.4 2055 17.5 1921 69.6 2125 12.8 2005 28.9 2155 12.6 2050 9.2 2225 11.4 2135 9.8 2255 10.2 2221 9.0 2325 9.2 2305 9.0 2355 9.0 2350 9.8 08/12 0025 8.8 08/11 0035 0121 0205 0250 0335 0421 0505 0550 0635 0721 0805 0850 0932 9.0 9.4 9.0 9.4 8.6 8.4 9.6 9.8 12.2 40.3 96.3 100.0 100.0 0055 0125 0155 0225 0255 0325 0355 0425 0455 0525 0555 0625 0655 9.2 9.0 9.8 12.0 12.0 11.6 11.0 11.6 13.8 14.1 9.2 12.4 18.3 SCHEDULE 08/11 CHANGE 1025 1055 100.0 100.0 0725 0755 0825 38.1 64.6 58.6 6 1 ------- TABLE 10. CONCLUDED Date Time Turb Date NTU Turb Time NTU 08/12 0855 100.0 08/12 2155 8.8 0925 100.0 2225 9.2 0955 100.0 2255 9.0 1025 100.0 2325 8.8 1055 100.0 2355 9.0 1125 100.0 08/13 0025 10.0 1155 100.0 0055 9.2 1225 100.0 0125 9.4 1255 100.0 0155 9.4 1325 100.0 0225 9.4 1355 100.0 0255 8.6 1425 100.0 0325 8.6 1455 100.0 0355 9.0 1525 100.0 0425 9.0 1555 100.0 0455 9.0 1625 100.0 0525 8.3 1655 100.0 0555 8.6 1755 59.7 0625 9.8 1825 100.0 0655 23.4 1855 100.0 0725 56.2 1925 76.4 0755 100.0 1955 37.7 0825 100.0 2025 17.9 0855 100.0 2055 9.2 0925 100.0 2125 8.6 0955 100.0 61 ------- TABLE 11. FIELD VERIFICATION DATA Date Temp °c Conductivity, o/ it pH Turbidity, NTU Dissolved Oxygen, mg/L Depth, meters 08/06 17.6 244.0 7.33 6.6 2.1 8.1 08/07 22.0 254.5 8.54 1.3 8.0 4.9 08/08 22.9 246.6 8.64 1.5 7.8 4.9 08/09 23.2 262.0 8.62 1.6 8.0 7.0 08/10 22.5 236.2 8.54 1.6 7.4 7.0 08/11 22.5 251.2 8.44 1.8 7.86 7.0 08/12 22.0 250.2 8.44 2.1 7.5 7.0 08/13 22.0 243.8 8.59 2.0 7.52 7.0 62 ------- TABLE 12. MEASUREMENTS OF WATER SAMPLES Date Time Conductivit mho/cr y, Turbidity, NTU H p 08/06 1500 239.5 1.3 7.88 1700 238.3 1.8 7.55 1900 227.4 1.2 7.7]. 08/07 0400 233.4 2.2 7.60 0800 231.4 4.5 7.47 2400 250.4 8.5 7.62 08/08 0800 246.4 4.6 7.61 2000 240.0 4.8 7.70 08/09 0800 247.2 3.6 7.93 1100 246.0 3.6 8.33 63 ------- Lifting structure Battery box Anchor support structure Swivel ectronics housing Water sampler nic cable cutter Figure 1. Water Quality Monitoring System subsurface unit. Flotation collar Anchor 64 ------- Figure 2.- WQMS SSU electronics. (a) Assembled electronics 65 Printed circuit bo 1. 1 I ------- Acoustic Master Ma fl t;PU Figure 2. Continued. decoders .ratchpad Random Access Memorys (RAMS) ?- Function I (b) Main Central Processor Unit (CPU) card (one of three). 66 logic interface ROM address buss ------- Figure 2.- Continued. (c) Sensor interface card (one for each sensor). supply Sensor input operational 67 ------- ) le detector Figure 2. Continued. Cd) Magnetic domain bubbTh memory card (one of six). 68 PROM - bad lOOP: aiaau 1 ! II ! in edge connector 92 kilobit MBM ------- Figure 3.- SSU sensor mounting. (a) First side view. 69 ct lvlty bidlty Fluoride Fluoride Dissolve ------- Figure 3. Continued. (b) Second side view. 70 I , 1 Pressure fr* ------- Figure 4. CommunIcation and location aids on SSU. 71 ------- I -4 t J Display p S Co nector S 1f 40 j Figure 5.- WQMS Surface Control Unit. ------- LAKE HURON SAGINAW BAY DEPLOYMENT S lIE FIGURE 6. - SSU deployment site. 73 ------- I- !I -u :- Marker buoy Marker meters Subsurface unit 15,3 meter line Anchors Figure 7. SSU deployment arrangement. ------- Figure 8. SSU being lowered into waters of Saginaw Bay. 75 1 ------- I I - 1 a I I L. . Figure 9.- Operator with SCU during daily operational check of SSU. ------- 23 0 o..o. 22. 0 .. e 21 -4 -4 20 19 . . 18 i i i i i a i i i i i a i i a a a a 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 6 Aug 7 Aug 8 Aug 9Aug 10 Aug 11 Aug 12 Aug 13 Aug Date and Time Figure 10. Hourly averages of temperature. ------- 1 .52 1 .51 . . p. kg/cm 2 1.50 ._ .... 1.49 -J 1.48 a a a a a a a .a a a . a a a a a a a a a a p a a S £ £ A pappas 12 00 12 00 12 00 12 00 12 00 12 00 12 .00 12 6 Au g 7 Aug 8 Aug 9 Aug 10 Aug 11 Aug 12 Aug 13 Aug Date and Time Figure ii. Hourly averages of pressure. ------- 300 280 260 Cond., 0 0 0 pmho/cin 240 A ... . . 220 200 0 180 A I I I 1 1 1 1 1 1 I I I I I I I I I I I I I I I & I I I I I I & I 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 6 Aug 7 Aug 8 Aug 9 Aug 10 Aug 11 Aug 12 Aug 13 Au9 Date and Time Figure 12. Hourly averages of conductivity. ------- 9.0 8.5 0 0 0 0 o o 8.0 75 AA A pH 7.0 6.5 6.0 0 . - 5.5 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 6 Aug 7 Aug 8 Aug 9 Aug 10 Aug 11 Aug 12 Aug 13 Aug Date and Time Figure 13. Hourly averages of pH. ------- 340 320 . . . .... ORP, 300 ... my . 280 260 I I I I I I & I I I I I I I I I I. I I I I I I I I I I 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 6 Aug 7 Aug 8 Aug 9 Aug 10 Aug 11 Aug 12 Aug 13 Aug Date and Time Figure 14. Hourly averages of redox (ORP). ------- 18 16 14 D.O., 2 mg/i 10 8 0 0 o 0 0 6 a a a i i a a i a a a a a a a a a a A I I I I I I I I I I I I 1 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 6 Aug 7 Aug 8 Aug 9 Aug 10 Aug 11 Aug 12 Aug 13 Aug Date and Time Figure 15. Hourly averages of dissolved oxygen. ------- .8 .7 .6 .5 F, mg/i .3 .2 .1 . . I I I I I I I I 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 6 Aug 7 Aug 8 Aug 9 Aug 10 Aug 11 Aug 12 Aug 13 Aug Date and Time Figure 16.- Hourly averages of fluoride. ------- 100 80 Turb., 60 NTU 40 2: 00 12 00 12 00 12 00 12 00 12 00 12 6 Aug 7 Aug 8 Aug 9 Aug 10 Aug 11 Aug 12 Aug 13 Aug C3 Date and Time Figure 17.- Hourly averages of turbidity. ------- 2. Government Accession No 3 Recipients Catalog No 5 Report Date FIELD DEMONSTRATION OF A July 19R1 QUALITY MONITORING SYSTEM 6 Performing Organization Code 146-40-15-03 8 Performing 0rganizat on Report No Lovelady, and Robert L. Ferguson 10 Work Unit No 11 Contract or Grant No 13 Type of Report and Period Covered . . . Technical Memorandum Space Administration 14 ArmyProjectNo Protection Agency Systems Laboratory and application project was initiated under Interagency NASA Langley Research Center and the Environmental Monitoring Systems Laboratory. Donald T. Wruble. automated, multiparameter Water Quality Monitoring continuous in situ water monitoring capability. and tested under an interagency agreement between Space Administration, Langley Research Center, and Protection Agency, Environmental Monitoring Systems and mechanical subsystems design and operation are description of the field demonstration of the system. field demonstration are presented without any attempt 18 Distribution Statement Unclassifhd - Unlimited Subject Category 35 Security Classif (of this page) 21 No of Pages 22 Price Unclassified 95 A05 For sale by the National Technical Information Service, Springfield, Virginia 22161 ------- |