APTD-1565
   OPTIMUM WORKING  FLUIDS
              FOR  AUTOMOTIVE
              RANKINE  ENGINES
                     VOLUME  III -
          TECHNICAL SECTION-
                      APPENDICES
    U.S. ENVIRONMENTAL PROTECTION AGENCY
        Office of Air and Water Programs
    Office of Mobile Source Air Pollution Control
Advanced Automotive Power Systems Development Division
          Ann Arbor, Michigan 48105

-------
                                       APTD-1565


       OPTIMUM WORKING  FLUIDS

FOR AUTOMOTIVE  RANKINE  ENGINES

  VOLUME III - TECHNICAL  SECTION-

                   APPENDICES


                         Prepared By
              D. R. Miller, H. R. Null, Q. E. Thompson
                  Monsanto Research Corporation
                   800 North Lindbergh Blvd.
                 St. Louis, Missouri  63166


                    Contract No.  68-04-0030
                     EPA Project Officer:

                        K. F. Barber
                        Prepared For

               U.S. ENVIRONMENTAL PROTECTION AGENCY
                 Office of Air and Water Programs
            Office of Mobile Source Air Pollution Control
          Advanced Automotive Power Systems Development Division
                   Ann Arbor, Michigan   48105

                         June 1973

-------
The APTD (Air Pollution Technical Data) series of reports is issued by
the Office of Air Quality Planning and Standards, Office of Air and
Water Programs, Environmental Protection Agency, to report technical
data of interest to a limited number of readers. Copies of APTD reports
are available free of charge to Federal employees, current contractors
and grantees, and non-profit organizations - as supplies permit - from
the Air Pollution Technical rnfo ation Center, Environmental Protection
Agency, Research Triangle Park, North Carolina 27711 or may be obtained,
for a nominal cost, from the National Technical Information Service,
5285 Port Royal Road, Springfield, Virginia 22151.
This report was furnished to the U.S. Environmental Protection Agency
by Monsanto Research Corporation in fulfillment of Contract No. 68-04-0030
and has been reviewed and approved for publication by the Environmental
Protection Agency. Approval does not signify that the contents necessarily
reflect the views and policies of the agency. The material presented in
this report may be based on an extrapolation of the “State-of-the-art.”
Each assumption must be carefully analyzed by the reader to assure that it
is acceptable for his purpose. Results and conclusions should be viewed
correspondingly. Mention of trade names or commercial products does not
constitute endorsement or recommendation for use.
Publication No. APTD—1565
11

-------
TABLE OF CONTENTS
Page
APPENDIX A Scope of Work, Contract 68_OL _OO3O Al— 1 4
APPENDIX B Thermodynamic Properties of Final
Candidate RC—1 Bl—i3
APPENDIX C Thermodynamic Properties of Final
Candidate RC—2 Cl—15
APPENDIX D Dynamic Loop Test Procedure D1—3
APPENDIX E Acute Vapor Inhalation Report - Final
Candidate RC-1 El—lO
APPENDIX F Acute Vapor Inhalation Report — Final
Candidate RC—2 Fi—lO
APPENDIX G Acute Vapor Inhalation Report —
HexafluorobenZene/Pefltafl U0r0benzene
APPENDIX H Toxicity and Biodegradability of
Pyridines - Literature Abstracts H1— 1 1
APPENDIX I Acute Toxicological Investigation of
Advanced Candidate Working Fluids 11—31
APPENDIX J Monsanto Rub—Block Lubrication/Wear
Test Machine Jl— 1 1
APPENDIX K Thermodynamic Properties of Multicomponent
Fluids Kl . . . 1 17
APPENDIX L Computer Program E-1375 Li-33
APPENDIX M Temperature-Entropy Diagram Plotting Mi-’48
APPENDIX N Flash and Fire Points, Micro-Cleveland
Open Cup Methods Ni
APPENDIX 0 The Hot Compartment Spray Ignition Test 01—2
APPENDIX P Monsanto Recording Tensimeter P1—3
APPENDIX Q Fixed Cycle Computations Qi— 1 5

-------
APPENDIX A
SCOPE OF WORK, CONTRACT 68-o 4—OO3O
I. PURPOSE
The contractor shall conduct a comprehensive program to establish
the optimum working fluids and/or working fluid-lubricant combi-
nations for automotive Rankine cycle applications. As it is
highly unlikely that ihe same “optimum” working fluid can be used
with a reciprocating expander as with a rotary expander, a mini-
mum of two working fluids will have to be established under this
project. In addition to the establishment of an optimum recipro-
cating expander working fluid, a lubricant which is compatible
with the working fluid is required. While utilization of the
working fluid as the lubricant in the rotary expander is possible,
the necessity of establishing a rotating expander lubricant is
not ruled out. The contractor’s selection will be based on all
practical considerations with respect to emissions, safety, net
cost of ownership, size, and automotive applicability.
The specific requirements and tasks required in the Scope of
Work shall include but not be limIted to those detailed in the
following sections. All considerations apply equally to the
working fluid and lubricant (if required) or any practical
combinations of both.
II. REQUIREMENTS -
A. Vehicle Design Goals . The “Vehicle Design—Goals—Six
Passenger Automobile,” Appendix A, shall set the configura-
tion and performance requirements for the systems analysis.
The vehicle design goals are based on equality with the
composite performance of the largest selling size classifi-
cation of the U.S. Automobiles (based on 1969—1970 data)
with standard engine (small V—8).
B. Low Temperature . - The freezing point will be at or below
. ..140°F unless It can be shown that freeze damage to the sys-
tem will not occur and that system start—up characteristics
will comply with desired vehicle design goals.
C. Materials Compatibility . The working fluid will be com-
patible with all common materials used in power plant con-
struction whether occurring singly or in groups of materials.
This Include common derivatives of the working fluids arid
materials under all system operating conditions, including
minor system contamination conditions. The addition of a
working fluid inhibiting or stabilizing agent is acceptable.
A 1

-------
D. S tem Constraints . The system efficiency will be the
maximum attainable with each candidate fluid when utilized
in that class of Rankine cycle engine for which it was
established. The system efficiency will be evaluated at a
sufficient number of points through the system power range
to at least establish a “road load” efficiency curve. A
fluid which exhibits a severely decreasing road load effi-
ciency curve at low power levels is highly undesirable.
1. It is desired that working fluid candidates display
Carnot and Rankine ideal cycle efficiencies of at
least I2 and 30 percent, respectfully. This represents
between a 25 and 30 percent increase in state—of-the—
art performance based on desired condensing temperatures
between 220°F and 250°F.
2. A highly desirable characteristic of the working fluid
is an isentropic saturated vapor line. This property
would remove the necessity for having a desuperheater!
regenerator in the system, thereby reducing system com-
ponent cost and volume. Other fluid characteristics
such as viscosity, thermal conductivity, density,
specific heat, etc. which influence system volume and
parasitic losses will be such as to optimize the sys-
tem performance relative to volume.
E. Safety . The working fluid and its derivatives will pre-
sent a negligible health hazard in any physical state when
exposed to any ambient or system conditions. The working
fluid and its derivatives will not be capable of sustaining
combustion under atmospheric conditions or in a high tem-
perature environment once the auxiliary source of combustion
has been removed. Explosion hazards from working fluid
vapors/air mixtures shall be minimized and a test used
to demonstrate this.
In the event that the Rankine cycle receives widespread
acceptance as an automotive power plant it is necessary
that the working fluid/lubricant when released to the
environment from discarded vehicles degrade to harmless
components or be itself harmless to the environment.
F. System Fluids Cost . (Over 5 years) The total working
fluid and lubricant cost (initial fill and changes if
required) will not exceed $100 per vehicle (vehicle owner
cost) based on one million vehicles per year. Present
oil and filter change costs approximate this figure over
five years, the approximate upper limit of vehicle
retention by the first owner.
A—2

-------
G. Stability. , Working fluid/lubricant degradation within
the system which does not significantly impair the power
plant performance, or durability is acceptable. Complex
or costly hardware design to offset working fluid/lubricant
inadequacies is unacceptable. Tradeoff may be established
between system performance, fluid degradation and fluid
replacement cost if sufficient justification is demonstrated.
III. PROGRAM TASKS
A. The technical effort of the contract will include the
following tasks:
1. Establish Working Fluid Selection Criteria — Subject
to approval of the Project Officers the contractor
shall establish the selection criteria required to
screen candidate working fluids and lubricants. The
selection criteria will Include, but not be limited
to, all considerations under section “H. Requirements.”
2. Provide Systems Analysis — A comprehensive steady state
automotive Rankine cycle systems analysis shall be pro-
vided to evaluate system performance and operating
characteristics for each candidate working fluid. The
analytical models will be developed with the cognizance
of the AAPS Program personnel and the system contractors
for the following systems:
(a) Reciprocating Expander
(b) Rotary Expander
(c) Or alternate consultant if either or both of
the above are unable to perform this function.
The system weight, volume, cost, net efficiency, per-
formance, and general operating characteristics will
be determined. The system models must provide
expedient, efficient, and realistic results.
3. Search for Existing Fluids - A survey and an analytical
search as necessary using property prediction techniques
shall be conducted to determine if any existing mate-
rials are suitable for use as working fluids or lubri-
cants In automotive Rankine cycle power systems. The
search will be performed within the selection criteria
established and evaluated in the systems analysis.
14• Recommendations and Conclusions — If it becomes obvious
at the conclusion of task 3 that no existing fluids can
meet the requirements, the contractor shall recommend a
change in contract scope to provide for synthesis of
new fluids based on conclusions arrived at earlier in
the project.
I1—

-------
5. Property Predication Verification — If it is deter-
mined that existing fluids promise to satisfy all
requirements, properties of candidate fluids found
by the survey and search technique will be determined
to validate the analytical precidtioris. The actual
properties determined shall be used In final system
performance predictions.
Property tests shall include, but not necessarily be
limited to, thermodynamic and transport properties,
range level - toxicity data with liquid, vapor and
products of’ combustion, thermal stability, flammabi.-
lity, melting point and materials compatability.
6. Dynamic Loop Tests — As part of the final fluid eval-
uation procedure, the working fluid shall be circu-
lated. in a dynamic loop with temperature and pressures
simulating those of the actual system as nearly as
possible. Materials of construction shall be utilized
typifying those of the system for which the fluid is
intended. The fluids shall be circulated In the loop
for a period of at least 1,000 hours and samples taken
periodically to determine if there Is any thermal
degradation or reaction with the materials.
7. Develop Preliminary Cost Estimates — Preliminary cost
estimates shall be performed for the working fluid(s)
and lubricant(s) that are considered acceptable candi-
dates and where there Is evidence that they will not
satisfy Item II F of the specification requirements.
Where firm cost data are not available, the studies
shall define a range within which the costs can rea—
soriably be expected to fall. The lower limit of the
cost range shall be based on the most optimistic con-
ditions within practical limits. Automobile production
quantities of 5 million per year shall be considered
for the cost estimates.
B. Computer Programs . All computer programs developed
during this project will be made available to the Govern-
ment including the following support material:
(1) A listing of all nomenclature used.
(2) A listing of input data required to run the program.
(3) A description and explanation of the computer output.
( ) Running instructions.
A— 4

-------
APPENDIX B
THERMODYNAMIC PROPERTIES OF FINAL CANDIDATE RC-l
COMPOSITION
1 C6F5H
2 C6F6
MIXTURE
THERMODYNAMIC
TEMP
I
0(6 F
180.00
200.00
220.00-
240.00
260 • 00
260 • 00
300 ,00 -
320, .00
340 • 10
360 • 00
380 .00
400 • 00
420.00
440,00
MOL( t
60, 000
40,000
100. 000
PROPERTIES AT
P
PSI
1 .39
20.00
27.31
36.66
48.48
63.20
81.32
1 fl3. 39
129.96
161.66
199.17
243 .21
29 1 1.72
356.92
MASS %
‘7.536
42 .463
100.000
SATURAT IOfl
- BUBBLE
U
L A ,F 13
82.16
79.14
76,07
7p,96
69.79
66.55
63.21
59.77
• 28
52.41
48.39
44.01
39.01
32.50
MOLE WT
168.07
18b • 06
175.26
POINT LIQUID -
H
BTJ ILB
37 23
42 .83
46.58
54.47
60.51
66 • 71
73• 0
79 .65
66 .44
93 .51
100.9
108.9
117.8
128.8
(1393 P 16
3/5/74
S
ST U/L B-F
0.711 ?E—01
0,798 6E—01
0 .8846E—O1
o .9695E—01
0.1053
0 • 1137
o • 1220
0.1302
o • 1386
0.1470
0.1556
0.1647
0. 1745
0.1862
THERMODYNAMIC PROPERTIES OF SrN IOR CANDIDATE FLUIDS
P(NTAFLUOROBENZENE. HEXAFLUOROBEPIZENE 60/40 MOLE RATIO
TEMP
T
DE C F
180.00
200.00
220.00
240 ,00
260.00
DEW POINT GAS
P 1 ; H
PSI LB/FT3 BTU/LP
14,31 0.37 81 116.’4
19,91 0.5151 119.8
27.19 0.691k 123.2
36.52 0.9158 126.6
48.31 1.199 130.0
S
BTU/LA-F
0.2026
0.2042
0.7059
0.2076
0.2095
280 .00
300 .00
320.00
340.00
360.00
63.01
81.10
103.14
129.69
161.38
1. 5 5
2.001
2.558
3.257
4 .1 41
133.3
13e.7
140.0
143.1
146.2
0.2114
0.2i33
0.2152
0.2171
0.2189
380.00
400.00
420.00
440,00
198.88
742.93
294.46
356,73
5.277
6.781
8.899
12.6’;
14 9•0
lti.5
153.5
153.8
0.2205
0.2219
0.2227
0.2219
B-i

-------
THrRM0DYP AMIC PROPERTIES OF SrNIOR CANDIDATE FLUIDS
p(NTAFLUOROBErjZENE. IIEXAFLUOPOBrNZENE 60/40 MOLE RATIO
(1393 p 7
3,5,7”
SATURATION
— BUBBLE POINT LIQUID -
PROPERTIES AT
p
PST
5.00
10.00
i . 70
25.00
50.00
100 • 00
300.00
I•)
LB ,‘FT 3
91) .65
85.27
81.97
76.96
69.42
60.26
3R.49
THERM O DY N A MI C
TEMP
I
DEG r
122 .80
159.17
161.25
21 1* .22
262.28
317 • 17
421 .88
TEMP
T
DEG F
123.15
159.50
181 .56
214.51
262.53
317.37
421.97
H
B lU/LB
21.95
31.53
37.57
46.91
61.21
76.71
118.7
POINT GAS - -
H
MU/LB
107.2
113.1
116 • 7
122 • 3
130.4
139.5
153.6
S
BTU/LB-F
o .45201.—Cl
0 .6186E—01
O .7167E—01
0.8599 1 .-C l
0,1063
0. 1291
0, 1755
S
BTU/LB—F
0.1990
0. 20 11
0.2027
0. 2054
0. 20 97
0.2150
0. 2227
P
psi
5.00
10.00
14.70
25 • 00
50 • 00
100.00
300 .00
DEW
0
LB/F 13
0 • 1q22
0.2707
C ) • 3876
0.6386
1 .240
2.477
9.161
13-2

-------
THER ODYNAMIC PROPERTIES OF SENTOR CANDIDATE FLUIDS
PENTAFLUOROBENZENE, HEXAFLUOROBENZ(NE 60/140 MOLE RATIO
COMPOSITION
1 C6FSH
2 C6F6
MIXTURE
THERI’ODYNAMIC
TE MP
MOLE %
60.000
40,000
10 0.oUo
MASS %
57 • 536
42.463
100,000
MOLE WT
lr,8. 07
186.06
175.26
E1393 P 18
3/5/714
pROPERTIES IN SINGLE PHASE -PEGION
T
DEG F
180.00
200.00
220.00
240.00
260.00
P
PSI
5.00
5.00
5.00
5.00
5.00
D
LB/FT3
0.1291
0.1251
0.1213
0. 117R
0.1141*
H
BTU/LB
116.9
120.5
1214.1
127.9
131.7
S
8TU/L13-F
0,2150
0.2205
0.226U
0.2314
0.2368
280.00
300,00
320.00
340.00
360.00
5.00
5.00
5.00
5.00
5.00
0.1113
0.1083
0.i O5q
0.1028
0.1002
135.6
139.6
143,7
147.8
152.1
0.21*22
0.2475
0.2528
0.2580
0,2632
380,00
400.00
420.00
440.00
460,00
5.00
5.00
5.00
5.00
5.00
0.9778E—01
0.9547E—01
0.9327(—01
0.9117E—01
fl.8916E—01
156.3
160.7
165.1
169.6
174.2
0.2684
0.2735
0.2786
0.2837
0.2887
‘480.00
500.00
520.00
540,00
560.00
5,00
5.00
5.00
5.00
5.00
0,R72 1a 01
0,85’eflE— O l
0.836 ’eF—01
r.8195(—01
fl.8033E—fl l
178.8
183.5
188.3
193.1
198.0
0.2937
U.2986
0.3035
0.30814
0.3132
580,Oi.,
600.00
620.00
61*0,00
660.00
5.00
5.00
5.00
5.00
5.00
0 .7877 [ —01
0,7727E—01
0.75 83E—01
0.744qE—01
0.731 0E—01
202.9
207,9
213,0
218.1
223,2
0.3180
0.3228
0.3275
0.3322
0.3369
680,00
700.00
720.00
740,00
760.00
5.00
5.00
5.00
5.00
5.00
0.7181E—Q1
0.7056E 01
0.6936E—O1
0.68 19C—01
0.67 07E—01
228.5
233.7
239.1
244.4
249.9
0.3415
0.31*61
0.3506
0.3551
0,S59 6
780.00
800 ,flfl
180.00
200,00
220.10
5,00
5.00
10.00
10.00
[ 0.00
0.659 —01
0.6 *93E—0l
0.26114
0.2530
0.2451
255.3
260.8
116.7
120.2
123.9
0.361*1
0,3685
0.2069
0.2124
0.2179

-------
THERMODYAMIC PROPERTIES OF sFNIOR CANDIDATE FLUIDS
PEIJTAFLUOROBENZENE, HEXAFLUOROBENZENE 60/40 MOLE RATIO
E1393 p 19
3/5/714
TEMP
T
DEG F
240.00
260.00
280.00
300.00
320.00
p
P I
10.00
10.00
10.00
10.00
10.00
0
L(3I’FT3
0.2377
0.2308

0.2181
0 ,2123
H
BTU/LB
127.7
131.5
135.5
139.5
143.5
S
BTU/Lfl-F
0.22314
0.2288
0.23141
0.2395
0.2448
340,00
360.00
380.00
400,00
420,00
10.00
10.00
10.00
10.00
10.00
0.PO R
0,2016
0.1966
0.1919
0,1874
147,7
151,9
156.2
160.6
165,0
0.2500
0.2552
0.2604
0.2656
0,2707
1440,00
1460.00
480,00
500,00
520.00
10,00
10.00
10.00
10.00
1 O,00
0.1832
( ‘.1791
0.1752
0,1714
0.167
169.5
174.1
178.7
163,4
188.2
0.2757
0.2807
0.2857
0,2907
0.2956
540,00
560.00
580,00
600,00
620.00
10.00
10.00
10,fl O
10.00
10.00
0.16414
0.1612
0,1580
0,155n
0.1521
193.0
197.9
202.8
207.8
212.9
0,3005
0,3053
0.3101
0,3149
0.3196
640.00
660.00
680,00
700,00
720.00
10.00
10.00
10.00
10.00
10.00
0,1497
0.1465
0.1439
0.1414
0.1390
218.0
223.2
228.4
233,6
239.0
0,32143
0.3289
0.3336
U,3381
0,3427
740,00
760.00
780,00
600.00
180.00
10.00
10.00
10.00
10.00
14,70
0.1566
0.1344
0,1372
0,1301
82,16
244.4
249,8
255,2
260.8
37.23
0.3472
0,3517
0,3562
0,5606
0.7112 —O1
200.00
220.00
240.00
760.00
280.00
14.70
14.70
14.70
114.70
114.70
O.37 7
0,3637
0.3525
0.31420
0.3321
120.0
123.7
127.5
131.4
135.3
0,2078
0.2133
0.2188
0.2242
0,2296
300.00
320.00
340.00
360.00
380.00
1’4.70
14.70
14.70
14.70
14.70
0.3228
0.3141
(‘.3058
0.2979
0.2905
139.3
143.14
147.5
153.8
1 (.1
0.2350
0,2403
0.2455
0.2508
0.2559
B-

-------
TH (RMODYNA4IC PROPERTIES OF SFNIOR CANDIDATE FLUIDS
(1393 P 20
PENTAFLUOROBENZENE, HEXAFLUOPOB(NZENE
60 /40 MOLE RATIO
3/5,74
TEMP
I
DEG F
400.00
420.00
440.00
460.00
‘e80 ,0 0
P
PSI
14.70
14.70
14.70
j4.70
j4.70
1)
LF3/FT3
0.2834
0.2767
0.2703
0.26142
0.25134
H
8TU/LB
160,4
164.9
169.4
173.9
178.6
S
OTU/LU-F
0.2611
0.2662
0.2713
0.2763
0.2813
500,00
520,00
5140.00
560.00
580.00
14.70
14.70
14.70
14.70
14.70
0.2528
0,2475
0.2424
0.2375
0.2328
183.3
188,0
192.9
197,8
202.7
0,2662
0.2911
0,2960
0,3009
0.3057
600,00
620.00
640.00
660.00
680,00
14.70
14.70
14,70
14.70
14.70
0.2283
0.2240
0,21q 8
0 2158
0,2120
207.7
212.8
217.9
223.1
228.3
0,3104
0.3152
0.3199
0.32145
0.3291
700.00
720,00
740.00
760.00
780.00
114.70
14.70
14.70
14.70
14.70
0,2’)A2
0.2046
0.2012
0.1978
0.1946
233.6
238,9
244.3
249.7
255,2
0.3337
0.3383
O.342b
0.3473
0,3518
800.00
180,00
200.00
220.00
240.00
14.70
25.0
25.00
25.00
25.00
0.1914
82.16
79.iq
0.6327
0.6120
260.7
37.22
42.83
123.3
127,1
0,3562
O,71O8 (.01
0.7984E—01
0.2069
0.2124
260.00
280.00
300.00
320.00
340 ,00
25.00
25.00
25.00
25.00
25.00
0.5927
0,5748
0.5579
0.5421
0.5273
130.9
134.9
138.9
1 3.0
147.2
0.2179
0,2233
0.2286
0.2340
0,2392
360.00
380,00
400,00
420.00
440.00
25.00
25.00
25.00
25.fl
25.00
0.5132
0.5000
0.4874
0,4755
0.4642
151.4
155.7
1 10.1
1614.6
1b9.1
0.24145
0.2497
0.2548
0.2,,0 0
0,2650
460.00
480.00
500,00
520,00
540,00
25.00
25.00
25,00
25.P0
25.00
0.4535
0.14433
0,4335
. 24?
0.4152
1 3,7
1 8 .3
1 3.0
1i 7.8
1)2.6
0.2701
0.2751
0.2800
0.2850
0,2898
B-5

-------
THERM)DYrIAMIC PROPERTIFS OF SFNTOR CANDIDATE FLUIDS
PENTAFLUOROBENZENE, HEXAFLUOROBENZENE 60/140 MOLE RATIO
(1393 P 21
3,5/74
TEMP
T
DEG F
560.00
580.00
600.00
620.00
640.00
P
PSI
75.00
7S. Oti
25.00
25.00
25.00
0
L8/F13
0.4067
0,3985
0.3907
0.3831
0.3759
H
BTU/LB
197.5
202.5
207,5
212.6
217.7
S
BTU/LB-F
0,2947
0.2995
0.30 ( 43
0.3090
0.3137
660,00
680.00
700.00
720.00
7140.00
25.00
25.00
25.00
25.00
25.00
0.3689
fl.3622
0.3558
0,3496
0.3435
222.9
228.1
233.14
238.7
244.1
0.3184
0.3230
0.3276
0.3322
0.3367
760.00
780,00
800,00
180, 0
200. ’0
25.00
25.00
25.fl O
50.00
50.00
0.3378
0.3321
0.3267
82.16
79.14
249.5
255.0
260.5
37.21
‘42.82
0.3412
0.31456
0.3501
0.7097E—01
0.7972E—01
220.00
240, O
260.00
280.00
300.00
50.00
50.00
50.00
50.00
50.00
76.07
72.96
69.79
1.703
1.163
48.56
54.146
60.51
133.9
138,0
0.8835E—O1
O.9688 (—O1
0.1053
0.2145
0.2200
320.00
3140.00
360,00
380.(10
1400.00
50.00
50.00
30. 0
50.00
50,00
1.126
1.092
1.060
1,030
1.002
142.1
146.3
150.6
155.0
359,4
0.2253
0.2307
0.2360
0.21412
0.21464
420,t0
440,00
460.00
480.00
500.00
50.00
50.00
50.00
50.00
50.00
0.9759
0.9510
0.9275
0.9052
0.8841
163,9
168.14
173.0
177.7
182.4
0.2516
0,2567
0.2617
0.2668
0.2717
520.00
sq O, 00
560.00
580.01
600.00
50.00
50.00
50.00
50.00
50.00
0.8640
0,8449
0.8266
0.8097
0.7926
187.2
192.1
197.0
202.0
207.0
0.2767
0.281b
0,2865
0,2913
0.2961
620,Afl
640,00
660.00
680,0t ’
700,00
50.00
50.00
50.00
50.00
50.00
0.7766
0,76114
0.71467
0.7377
0.7192
212.1
217.2
222.4
227.7
233.0
0.3008
0.3056
0.3102
0.3149
0.3195
B-6

-------
THERMODYnAMIC PROPI RTTES OF SFNTOR CANDIDATF rLUIDS
(1393 P 22
PENTAFLUflR0BEt JZ (N(, H(XAFLUOROB (NZ(NE
60/40 MOLE RATIO
3/5,7 ’.
TEMP
T
DEG F
720.00
740.00
760.00
780.00
800.00
P
PSI
50.00
50.00
50.00
50,00
50.00
D
LR/FT3
0.7062
0.6937
0,6816
0,6700
0.658e
H
BTU/LB
238,3
243.7
2 ’ .9.1
254.6
260.2
S
BTU/LF -F
0,3241
0.3286
0.3331
0,3376
0,3420
180.00
200.00
220.00
240.00
260.00
100.00
100.00
100.00
100.00
100.00
82.16
79.14
76.07
72.96
69.79
37.19
42.78
4b.S2
54,39
60.43
0.7077 [ 01
0.7950—01
0.8810(—01
0.9661(—Q1
0,1050
280.00
300.00
120,00
340,00
360,00
100.00
100.00
100,00
100.00
100.00
66,55
63,21
2.464
2.36q
2,283
66.63
73.03
140.1
1 4.4
148.8
0,1134
0. 1218
0,2157
0.2212
0.2266
380.00
400,00
420,00
440.00
460.00
100.00
100.00
100.00
100.00
100.00
2.204
2.132
2.066
2.004
1.947
153.3
157.8
162.3
166.9
171.6
0.2320
0.2373
0.2425
0.2477
0.2528
480.00
500.00
520.00
540,00
560.00
100.00
100.00
100.00
100.00
100.00
1.894
1.844
1.796
1.752
1.710
176,’.
181.1
186.0
190.9
195.9
0.2579
0.2630
0.2 80
0.2729
0.2779
580,00
600,00
620,00
640.00
660.00
100.00
100.00
100.00
100.00
i OC.00
1.671
1.633
1.597
1.565
1.531
200.9
205.9
211.1
216.2
221.5
0.2827
0.2876
0.2923
0.2971
0.3018
680,00
700.00
720.00
740.00
760.00
100.00
100.00
100.00
100.00
100.00
1.500
1.470
j.Le ’i
1,415
1,388
226.7
232.1
237,4
242,9
248.3
0,3065
0.3111
0.3157
0,3203
0.3248
7 0.00
800.00
180.00
200.00
220.00
100.00
100.00
300.00
300.00
300.00
1.361
1.339
82.16
79.14
76,n7
253,9
259.4
37.12
42.66
48.33
0.3293
0 3337
0.699 ’eE—O l
0,7 060 (—01
0,8712(—01
B-7

-------
THERMODYNAMIC PROPERTIES OF SFr IOR CANDIDATE FLUIDS
E1393 P 23
PENTAFLUOROBEN2ENE. HEXArLUOROBENZENE
60/40 MOLE RATIO
3/5/71 4
TEMP
T
OEG F
240,00
260.00
280.00
300.00
320.00
P
PSI
300.00
300.00
300.00
300.00
300.00
0
LUI’FT3
72,96
69,79
66.55
63.21
59.77
H
BTU/LB
54.14
60.08
6b.17
72.42
78.87
S
BTU/LF3-’F
0.9551E—01
0.1038
0.1121
0.1203
0,1285
340.00
360.00
380,00
400.00
420,00
300.00
300.00
300.00
30fl.flO
300,00
56.18
52,41
‘i8 ,39
4’4.01
39.01
85.54
92.52
99.93
108.1
117.7
0.1367
0,1452
0.1540
0.16.34
0,1743
440.00
460,00
‘48C.00
500.00
520.00
300.00
300.00
300.00
300. 0
300 .fl O
8.396
7.7e2
7.304
..974
6.585
158,7
1.64.?
169.5
174.0
180.1
0,2285
0,2345
0.2402
0.2458
0.2512
540.00
560.00
5RO ,
600.00
620.00
300.00
300.00
300,00
300.00
300.00
6.300
6.049
5.826
5.625
5. 2
185.3
190.6
195.9
201.2
206.5
0.2565
0.2617
0.2669
0.2719
0.2769
640,00
660.00
680.00
700.00
720,00
300.00
300,00
300.00
300.00
300.00
5.275
5.1 2
4.979
4.847
4.724
211.9
217.3
222.8
228,3
233.8
0.2819
0.2867
0,2916
0.2963
0,3011
140,00
760.00
780.00
800.00
180.00
300.00
300.00
300.00
300.00
500.00
4.608
4.499
4,397
4.300
82.16
239.3
244.9
250.6
256.3
37.04
0.3057
0.3104
0.3149
0.319b
0.6912E—01
200.00
220,00
240.00
260.00
280.00
500.00
500.00
500.00
500.00
500.00
79,14
76,07
72.96
69.79
66.55
42.53
40,15
53.88
59.73
65.71
0.7770E—01.
0.8613E—Q1
0,9 1 442E—01
0.1026
0.1107
300.00
320.00
340.00
360.00
380.00
500.00
500.00
500.00
500.00
500.00
63.21
59.77
56.18
57.111
48.39
71.82
78.07
84.48
91,08
97.93
0.1187
0,1266
0.1346
0.142b
0.1507
B—8

-------
THFR4ODY’ li MIC PRDP RTIES OF UNTOR CANDIDATE FLUIDS
PENTAFLUOROBENZENE , HEXAFLUOROBENZENE 60/140 MOLE RATIO
E1393 P 2’e
3/5/7 14
TflqP
T
DEG r
400.00
420.00
440.00
1 460,00
480.00
P
PSI
500.00
500.00
500,00
500.00
500.00
D
LB /FT3
44.01
39.01
32.50
24.36
25,63
H
81(1/LB
105.1
112.8
119.9
148.0
151,5
S
8W/LA-F
0.1590
0.1677
0.1755
0.2140
0.2179
500.00
520.00
540.’) O
560.00
580.00
500,00
500.00
500.00
500.00
500.00
19,63
16.01
14.13

11,97
161.6
170.0
176.9
183.2
189,3
0.2284
0.2371
0.2441
0.2503
0,2562
600.00
620.00
6’e O . O O
660,00
680 .flO
500.00
500,00
500.00
500.00
500.00
11.24
10.64
10.14
9.701
9.317
195.2
201.0
206.8
212.5
218.3
0.2618
0.2673
0.2726
0.2778
0.2828
700,00
720.00
740.00
740.00
780.00
500.00
500.00
500,00
500.00
500.00
8.975
8.667
8,388
8.1 3
7,$q9
224,0
229.7
235.5
241,3
247,1
0.2878
0.2927
0,2976
0.3024
0,3071
800,00
180.00
200,00
220.00
240.00
500.00
700.’ 0
700.00
700,00
700.00
7,682
82.16
79.1LI
76,07
72.96
252.9
36,96
42.41
47,96
53.62
0.3117
O,6829E—01
0.7F ,80E—01
0. 8514E—o1
O.9333(—01
260,00
280.00
300.00
320.00
340.00
700,00
700.00
700.00
700.00
700.00
69.79
66.55
63,21
59,77
5E.18
59.39
65,25
71.21
77.27
83.41
0.101”
0.1093
0.1171
0.12’e8
0.1324
360.00
380,00
400.00
420.00
440,00
700.00
700.00
700.00
700.00
700,00
52.41
48.39
44.01
39.01
32.50
89.64
95.92
102.1
107.9
107,5
0.1400
0.1474
0,1546
0.1610
0.1604
‘460 ,00
480.00
500,00
520.00
540,00
700.00
700.flO
700.00
700.00
700.00
36.65
36.05
33.21
30.11
26.90
139.5
144.6
151.5
158,7
166.1
0.2037
0.2092
0.2165
0.2239
0,2314
1 _ Q

-------
TI ERI 10DyNAMIC pROPERTIES OF SFNTOR CANDIDATE FLUIDS
P (r’ITAFLUOROBENZENE, HEXAFLUOROBEN2ENE 60/40 MOLE RATIO
(1393 P 25
3,5/74
T (HP
I
DEG F
S6 0.O0
5A0 00
600.00
F,20.00
640 ,00
P
PSI
700 .00
700.00
700.00
700.00
700.00
0
LF3/FT3
23.88
21. ’e
19.35
17.79
16,55
H
BTUILB
173.6
180 ,3
187.8
194.4
200.8
s
BTU/L0-F
0.2388
0,2459
0.2525
0,2587
0 ,2646
660,00
680,00
700,00
720,00
740,00
700.00
700.00
700.00
700,flO
700.00
15.54
14.70
13.97
13,3
12,80
207.1
213.3
219.3
225.4
231,.
0.2702
0.2757
0.2810
0.2362
0 ,2912
760,00
780,00
800,00
180,00
200.00
700,00
700,00
700.00
900.00
900.00
12.32
11,88
11.48
82,16
79.14
237,4
243.11
249.5
36.89
42.28
0.2962
0,3011
0.3059
0 ,67’47( o1-
0.7590E-O1
220,00
240,00
260,00
2 10,00
300,00
900.00
900.00
900,00
900.00
900.00
76,07
72.96
69,79
66,55
63,21
47,78
53.37
59,04
64,79
70.61
0 ,84 15 —
0.9224E—o3,
0,1002
0.1079
0.1155
3 0 ,0fl
340,00
360,00
380,00
400,00
900,00
900,00
900,00
900.00
900,00
9,77
56.18
52.41
4 8,3q
44,01
76.47
82.35
88,20
93.91
99.18
0.1230
0.1303
0.1373
0,1441
0.1501
420.00
440,00
460,00
480.00
500.00
900.00
900.00
900.00
900,00
900.00
39.01
32,50
41.83
39,87
37,83
102.9
95.11
156.7
142.8
149,0
0,j544
0,1454
0.1997
0,2063
0.2129
521.00
540.00
560.00
8t .00
600,00
900.00
900.00
900.00
900.00
900.00
35.70
33.51
31.P9
P9.10
27.01
155.4
162,0
lbB.6
175.3
182,1
0.2195
0.2261
0.2327
0,2392
0,2456
620.00
640.00
660.00
680.00
700,00
900.00
900.00
900.00
900,00
900.00
25.10
23,39
21.89
70.59
19,46
188.8
i 95 .5
202.0
208.5
214.9
0.2519
0,2580
0.2639
0,2697
0.2752
B-1O

-------
THUPMOflYNAMIC PPO’PERTIES or SENTOR CANflIDATE FLUIDS
PENTAFLUOROBENZ(NE, H(XAr oflrN7(pj ( 60/40 MOLE RATIO
TEMP
(1393 P 26
3/5/74
T
0(6 F’
720.00
740.00
760 ,00
780 , 0
800.00
p
PSI
900.00
900.00
qoo.o0
900.00
900.00
LB/F 13
1S.4 5
17.61
16.85
1(.,17
15.56
H
BTU/LA
221 ,2
227.5
253.7
239.9
246.1
S
BTU/LB-F
0.2806
0.2859
0.2910
0.2961
0.3010
180.00
200.00
220. 00
240 , 00
260.00
i0 00.00
1000.00
1000. 00
1000.00
1000.00
82. 16
79.14
76. 07
72.96
69.79
36.85
42.22
47.69
53.24
58.87
O,67 0 6r—O1
0.7545E—01
0.8366 (01
O.9169E—0l
0.9955( —01
260.00
300.00
320.00
340.0’
360.00
10 00.00
1000.00
1000.00
1000. 00
1000.00
66.55
63.21
59.77
56.18 ,
52.41
64.56
70.30
76.07
61.82
87.48
0.1072
0.1148
0.1221
0.1292
0.1360
380.0 ’)
400.00
420 .
440.0’)
460.O
1000.00
1000.00
1000. 00
1000.00
1000.00
48.39
4 . f l1
39.” l
32 .50
43.0 %
92.90
97.69
100.5
86.92
136.2
0.1424
0. 1479
0.1510
0.1319
0.1988
‘48O.0 ’
500 , 1
520.0’
540 .00
560.0’
1000.00
1000.00
1000.00
1000.00
1000.00
1.27
39.43
37. 4
35,f.fl
33.3
142.2
148.4
154.6
160.9
j67,3
0.2052
0.2117
0.2181
0.2245
0.2308
580 .0(:
600.0(1
620.00
640.0(
660.00
1000.00
1000.00
1000.00
10 00.00
ifl0O. ’
31 .fR
29.77
27.95
26.2f
24.71
173.8
180.4
187.0
1 93,5
200.1
0.2371
0.2434
0.2495
0.2556
0.2 6 15
680.00
700,00
720.00’
740 ,00
760 .00
1000.00
1000,00
1000.00
1000.00
1000.00
23.32
22.07
20.97
j9 ,9fl
19.10
206.6
213.0
219.4
225.7
232.0
0.2672
0.2728
0.2783
0,2636
0.2888
780,00
800 00
180.00
200.00
220 .00
1000.00
1000.00
1100.00
1100.00
1100.00
18.37
17.61
82.16
79.14
76.07
238.3
244.6
36.81
‘ .2.16
47.59
0.2939
0.2989
0.666 4( —o1
O.7500( —01
0.8317E—O1
B-il

-------
THERPMODyNAM [ C PROPERTIES OF SFNTOR CANDIDATE FLUIDS
PENTAFLUOROI3ENZENE, H(XAFLUOROB(NZEN ( 60/140 MOLE RATIO
(1393 P 27
3/5/74
T
0(6 F
240.00
260.00
280.00
300.00
320.00
P
PSI
1100.00
1100.00
1100.00
1100.00
1100.00
D
LB/FT3
72.96
69,79
66,55
63.21
59.77
H
BTU/L6
53.11
58.69
64,33
70.00
75.67
S
BTU/LB-F
0.913eE—01
O.989 1 4E—01
0,1066
0.1140
0.1212
340,00
060.00
380.00
400.00
420.00
1100.00
1100,00
1100.00
1100.00
1100.00
56,18
52.41
48,39
‘44,01
39.01
#1.29
86.76
91.90
96.21
98,03
0.1281
0.1347
0,1408
0.1 57
0.1477
440,00
460.00
480.00
500.00
520.00
1100.00
1100.00
1100.00
1100.00
1100.00
32.50
4 .11
42,47
40,78
39,06
82.72
135,9
141,A
147,8
153.9
0.130’e
0.1980
0,2043
0.2106
0.2169
540,00
560,00
580.00
600,00
620.00
1.100,00
1100.00
1100.00
1100.00
1100.00
37,30
35,52
33.75
32.00
30.30
160,1
166.4
172.7
179.1
185.6
0.2232
0.2294
0.2355
0,2416
0.2477
640,00
660,00
680.00
700.00
720.00
1100.00
1100,00
1100.00
1100.00
1100.00
28,68
27.16
25.76
24,46
23,29
192.0
198.5
205.0
211,4
217.8
0.2536
0.2594
0,2652
0.2707
0.2762
740,00
760.00
780,00
800,00
180,00
1100.00
1100.00
1100.00
1100.00
1200.00
22,23
21.27
20.40
19.61
82,16
224,2
230.5
236.9
243,2
36.77
0,2816
0.2868
0.2920
0.2970
0.6623F—01
200.00
220.00
240.00
260,00
280.00
1200.00
1200,00
1200.00
1200.00
1200,00
79.14
76,07
72,96
69.79
66,55
‘42,09
47.50
52.98
58.57
614.10
O.7455E—O1
0.8267C—01
O.906 0E.— 01
O.9833E—o1
0.1059
300,00
320,00
340,00
60 .00
380,00
1200,00
1200.00
1200.00
1200.00
1200,00
63,21
59,77
56.18
52.41
148.39
69.70
75.27
8 (1,76
86.05
90.89
0.1132
0.1203
0.1271
0.1334
0,1391
B-12

-------
THERMODYNAMIC PROPERTIES OF SENIOR CANDIDATE FLUIDS
(1393 P 28
PENTAFLUOROB (NZENE. HEXAFLUOROBENZENE
60/110 MOLE RATIO
3/5/74
TEMP
I
DEC F
‘400.00
420.00
440,00
460.00
480,00
p
PSi
1200.00
1200.00
1200.00
1200.00
1200.00
0
LE3/FT3
44.01
39,01
32.50
45.06
‘43.53
H
BTU/L8
9 1 .73
95.58
76 53
135.7
141.5
S
BTU/L6-F
0.1435
0.1444
0.1228
0.1972
0.2035
500.00
520.00
540.00
560.00
580,00
1200.00
1200.00
1200.00
1200.00
1200.00
41,96
40,36
38,74
37.11
35.L 18
i 1 17 ,’i.
153.4
159.5
165 ,7
171.9
0.2097
0.2159
0.2221
0.2282
0.2342
600,00
620.00
6 (40 ,00
660.00
680.00
1200.00
1200.00
1200,00
1200.00
1200.00
33,86
32.27
30,74
29,PP
27.90
178,2
18’4.5
190,9
197,3
203.7
0,21402
0,2461
0,2520
0.2578
0,2634
700,00
720.00
740.00
760.00
780,00
1200.00
1200.00
1200.00
1200.00
1200.00
26.61
25.41
2 .31
23,29
22.37
210.1
216.5
222.9
229,2
235.6
0.2690
Q.27 ’ 4
0.2798
0.2651
0.2902
800.00
180.00
200.00
220.00
240,00
1200.00
1500.00
1500.00
1500,00
1500.00
2l. 2
82,16
79.14
76 ,n7
72.96
2 ’ 41.9
36.66
41.91
47.22
52.60
0.2953
0,64 9 9E—O1
0 .7320( —Oj
O.8119E—O1
O.8896E—01
260.00
280 .flO
300 ,00
320.00
340.00
1500.00
1500.00
1500.00
1500,00
1500.00
69 ,7
66 . 5
63,21
59.77
56.1
58.00
63.41
68.79
7 ’1. 07
79.17
0,9651E—01
0 .i 38
0.1108
0.1175
0.1238
360.00
380.00
400.00
420.00
440,00
1500.00
1500,00
1500.00
1500.00
1500.00
52,41
4 .39
4.01
39.01
32.50
83.89
87.88
90.28
88.21
57.94
0.1295
0,1341
0.1368
0 ,1344
0.1005
‘460,00
480,00
500,00
520,00
540,00
1500.00
1500.00
1500.00
1500.00
1500.00
47,42
46.11
44,79
“3,45
‘ 2.1O
135.2
140.9
146.7
152.5
158.4
0.1954
0.20.3.5
0.2076
0.2136
0.2196
B-13

-------
THFRMODYNAMIC PROPERTI(S OF SENIOR CANDIOATE LUIOS
PENTAFLUOROE3FNZENE, HEXAFLUOROBENZ Nt 60/’4O MOLE RATIO
E1393 P 29
3,5,74
T
DEG F
560.00
s o .oo
600.00
620.00
640.00
P
P I
i500.t0
i soo.c0
1500.00
1500.00
1500.00
D
LB/FT3
40,7
39. o
38.06
36.73
35.42
H
BTU/LB
164,3
170.3
176.4
182.5
1 • 7
S
BTU/LB-F
0,2255
0.2313
0,2371
0 ,242e
0.2485
660,00
680.00
700.00
720.00
740.00
1500.00
1500.00
1500.00
1500.00
1500.00
3’e,15
32.91
31.72
30.57
29.48
194.9
201.1
207.4
213.7
220.0
0,2541
0.2596
0.2650
0.2704
0,2757
760.00
780.00
800. 0
1500.00
1500.00
1500.00
28.45
27.47
26.55
226.3
232,6
239.0
0.2809
0.2861
0.2911
B 114

-------
APPENDIX C
THERMODYNAMIC PROPERTIES OF FINAL CANDIDATE RC-2
(1393 P 1
3,5/7 ”
THERMODYNAMIC
TEMP
T
DEG F
180 • 00
200.00
220.00
240.00
260 .00
280.00
300100
320 • 00
340.00
360.00
380100
400100
‘420 • 00
440,00
‘460,00
480100
500100
520100
540,00
560 .00
PROPERTIES AT
p
PSI
10.68
15.85
22.94
32.44
44.93
61 • 05
81,53
107.18
38,89
177.69
2214.82
282,39
352. 3 ’
q36 .74
539,01
664158
823.00
1031.9?
1292.14
1516.56
SATURATION
- BuBBLE POINT
0
LB/FT 3
5A.85
5A.26
55.62
54 ,93
54.18
53.37
52.49
Si.52
50.48
49.33
48.08
170
‘45.18
43.51
41,65
39.58
37.25
34.62
31.62
28.15
LIQUID -
H
BTIJ/LA
109.7
125.9
3 ‘e? • ‘4
159.3
176.6
194.3
212.4
730.9
250.0
269.6
289.8
310.F
332.’4
355.1
379.0
404,5
432.4
‘463.6
500.6
51494
S
BTU/LB-F
0.1803
0.2023
0,2237
0 • 2448
0.2654
0.2856
0.3054
0.3249
0,3441
0, 3631
0. 3818
0,4002
0.4182
0,4349
0.4505
0.4646
0.4752
0,4642
0,4830
0,5180
TEMP
T
0 (0 F
180 .00
200,00
220.00
240,00
260,00
280,00
300,00
320 • 00
340,00
360100
p
PS !
8,33
12,20
17.46
24.46
33.63
45.44
60.46
79.33
102.82
131.84
DEW POINT
0
L 13/FT3
O . “?1E—01
0.7725E-01
0.1077
0, j’473
011980
0,262 1
fl .3423
0.4420
0,5650
0.7165
GAS - —
H
BTU IL B
490.6
‘497.5
504.4
511.3
518.2
525.2
532.1
539.0
5145.7
552.14
S
BTU/LB—F
0,8373
0.8308
0.8253
0, 8205
0.8163
0,8127
0. 8096
0.8069
0.8045
0.8023
THERM0DYN1 MIC PROPERTIES OF SENIOR CANDIDATE
FLUiDS
2-METHYL F’YRIOIWE.
WATER
35 MOLE PC ORGANIC
C OMPOS!TI(IJ
MOLE
MASS %
MOLE WT
1 2ME PYRIDINE
35.000
73.569
93.13
2 WAT(R
65.000
26,431
18.02
MIXTURE
100.000
100.000
44.31

-------
THERMODYNAMIC PROPERTIES OF SENIOR CANDIDATE FLUIDS
2—METHYL PYRIDINE, WATER 35 MOLE PC ORGANIC
E1393 P 2
3,5,74
TEMP
DEW POINT GAS
I
P
r
H
S
DES F
PSI
LB,FT 3
BTU/LB
BTU/L8-F
360.00
167.52
0.9033
558.9
0,8002
400,00
211.39
1.135
565.1
0.7981
420.00
266.01
1.’430
570.8
0 .7956
440.00
339.60
1.846
575.7
0 .7916
460,00
437,54
2.439
579.1
0.7861
480.00
569.18
3.336
580.3
0.7781
500.00
752,64
q,908
576.3
0.7650
520.00
1006.86
10.09
546.7
0,7272
5 0,fl0
129 0. 7
13.38
538.4
0,7 148
560.00
1512.90
16.12
533.9
0.7082
C—2

-------
314.82
405.40
452.83
484 .92
508.08
517.30
525.44
532.98
100.00
300,00
500 .00
700.00
900.00
1000.00
1100.00
1200 .00
SATuRAT iON
- BUBBLE PO IUT
n
LB/F73
57.78
56. 94
56.38
53.46
53.91
51.78
4G.3
39.03
36.23
34.99
33.84
32.72
LIQUID —
H
BTU/LB
82.31
107 • 2
122.7
146.5
182.6
P26.1
316.4
370.2
411.1
‘444.5
459.1
473.0
486.7
£1393 P 3
3/5/74
— — — — S —
S
BTU/Lfl -F
0.1405
0 • 1767
0 • 1980
0.2289
0.2723
0.3199
0.4051
0.4451
0.4676
0.4770
0.4712
o •q 684
0.4751
THERMOI IYNAMIC PROPERTIES OF S FNIOR CANDIDATE FLU iDS
2METHYL PYRIDINE, WATER 35 MOLE P ORGANIC
THERMODYNAMIC PROPERTIES AT
TEMP —
T P
0(6 F PSI
145.09 5.00
176.81 10.00
196.07 14.70
224.85 25.00
266.84 50.00
TEMP
T
0EG F
155.20
189.43
230.23
241.33
286. 59
OEw POINT
p 0
PSI 1B/FT3
5.00 0.3376E—01
10.00 0.6424E —01
14.70 0. 91R0(—01
25.00 0.1503
50.00 0.2866
GAS - - -
H
BTU/LI3
‘ 482.3
‘493.9
501.0
511.7
527.5
- - - -
S
RTU/LB—F
0 .8467
0.8341
0.8279
0.8202
0.8116
337.81
430.08
470.27
494.9 ’
512.25
00 .00
300.00
500.00
700.00
900.00
0 .5503
1.619
p .848
4.402
6.814
545.0
573.4
580.1
578.1
566.9
0.8047
0 .7939
0.7824
0.7691
0.7503
519.52
526.40
533.30
1000.00
ii 0 0.0
1200.00
10.02
11.15
12.30
546.9
543.9
540.9
0.7275
0.7228
0.7183
(I •

-------
E1393 P 4
3,5,74
THERMODYNAMIC PROPERTIES OF SENIOR CANDIDATE FLUIDS
2—METHYL PYRIDINE, WATER 35 MOLE PC ORGANIC
MOLE %
35 • 000
65.000
.00 .000
RIASS %
73,569
26.43].
i.00.0 00
MOLE WT
93.13
18.02
44.31
pROpERTIES IN SINGLE PHASE REGION
COMPOSITION
I 2ME PYRIDINE
2 WATER
MIXTURE
THERMODYNAMIC
TEMP
T
0(6 F
180.00
200.00
220.00
240.00
260.00
280.00
300.00
320.00
340.00
360.00
380.00
1400.00
420.00
14140.00
460.00
480.00
soo, no
520,00
540.00
560 • 00
580.00
600 • 00
620 • 00
640.00
660.00
680 • 00
700 • 00
720.00
740 • 00
760 • On
780 • 00
800 • 00
180.00
200100
220100
p
PSI
5.00
5.00
5.00
5.00
5.00
5 • 00
5,00
5.00
5.00
5,00
5.00
5.00
5 • no
5.00
5.00
5.00
5.00
5.00
5100
5.00
5100
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.no
5.00
5.00
10.00
1 0.no
10,00
0
LB/FT3
0,324 1 4 (—01
0 ,3 ] .44(—O1
0.3050E—0I.
0.2962E —01
D.2879 (—01
0.2800E—01
0.2726E-01
0.26 E—01
0 ,258qE-01
0. 2525E—O1
0. 21464 (—01
0,2407 (—01
0 • 2352E—01
0 • 2299E-01
O .2249E—01
0 .220 ] .E —01
0. 215 ‘5E—01
0.2110E—01
0,2fl RE—01
0.2027E—01
0. 198RE—01
0, 1950E —0i
01 1914E—01
o • 187 E —01
0 • 1846E 01
0. 1813E—01
o • I 78?E—O1
o • 1751E —01
o • 1722E-O1
O • 1694+E —01
0, 1666E—01
0. 16I4OE 01
0.0
0 .6318E—O1
0 61281-01
H
BTU/L8
1+90.9
1+98 • 0
5(15,3
5.2 .6
5. 0 • 1
5. 7.8
5 5.5
5 ‘43 • 14
551.14
5i9.6
567.8
576.2
5814,7
593.3
602.0
610.9
619.8
628.9
638.0
k7•3
656.6
666.1
E75.6
€85.3
E 95 ,o
04.9
14 .8
55.0
• 45.2
‘55.5
‘65.8
0.0
97.6
)oIe.9
S
BTU/LB-F
0.8604
0.8714
0.8822
0.8929
0.9035
0.9139
0 ‘p243
019345
0, 9’e47
019547
0,9647
0.9745
0.9843
019940
1,004
1.013
1,022
1,032
1 .041
1.050
1.059
1 .068
1 • 077
1 .086
1 .095
1.104
1.112
1.121
1.129
1.138
1.146
1.154
0.0
0 • 8399
0.8508
C_LI

-------
THFRMOOYNAMI( PROPERTIES OF SENIOR CANDIDATE FLUIDS
2—METHYL PYRIDINE. WATER 35 MOLE PC ORGANIC
(1393 P 5
3/5/74
TEMP
T
DEG r
2’l O.OO
260,00
280.00
300.00
320.00
P
PSI
10.00
3 r, 00
i0. O
10.00
10.00
0
L8/FT3
O.5949E —O1
0.5780E—D1
0,5621E—01
0.5470E—01
O,5327E—01
H
BTU/LB
512.3
519.8
527.5
535.2
543,1
S
BTU/LR-F
0.8615
0.8721
0.8826
0,8929
0.9032
340,00
360.00
380 ,0 ’
400.00
420,0 ( 1
10.00
10.00
10,00
10.00
10.00
0.519,E —01
0.50 63E—01
O .494 1(—0l
O.482 5E-01
0.4714E—O1
551.2
559.3
567,6
576.0
58’e.5
0.9134
0.9234
0.9334
0.9433
0.9530
qqo .oo
460.00
480.00
500.00
520.00
10.00
10.00
10. 0
1O. 0
10.00
0. 4608E—01
0.4506E —01
0. 4 1409E_0 1
0.’4317 —01
0.4228E —01
593.1
601.8
610.7
619,6
628.7
0.9627
0,9723
0.9 1S
0,9913
1.001
540.00
560.00
580.00
600 .flO
620.00
10.00
10.00
lfl.flO
i O.flfl
10.00
0 ,4142E—01
0.’406flE—01
0.39 ,E—01
0 ,3906E—01
0,3833(—01
637,8
47.1
56.4
665.9
675.5
1.010
1.019
1.028
1.037
1.046
640.00
660.00
680,00
700.00
720.00
10,00
10.00
10.00
10.00
10.0)
(J.3763E—01
(1.3695E—01
O.3630E—01
0.3567E—01
0 .350(,(—01
685.1
694.9
704,7
714.7
7 4.7
1.055
1.064
1.072
1.081
1.090
740,00
760.00
780,00
800.00
180.00
10,00
10.00
10.00
10. n
14.70
0.3447E—01
0.3393E—01
0,3336E—01
O,32p2E—01
56.85
734.8
7’45,0
755.3
765.7
j09 ,7
1.098
1.107
1,115
1.123
0.1803
200.00
220.00
240.00
260.00
280.00
14.70
14.70
14.70
14.70
14.70
0.0
0.9044E—01
0.8776C—01
0.8525E —01
0.8288E—01
0.0
O4.6
!12.0
d19.5
U7.2
0.0
0.8332
0,8439
0.8545
0.8650
300.00
320,00
340,00
360,00
380.00
14.70
14.70
14.70
14.70
14,70
0.8064E—O1
0,78521—01
0,7651E—01
0.7460(—01
0.7278E—01
35.0
542.9
550.9
559.t
567.3
0.8754
0,8857
0.8959
0.9060
0.9160
(1

-------
THFRMOOYNAMIC PROPERTIES OF SENIOR CANDiDATE FLUIDS
2-METHYL PYR IDIPiE, WATER 35 MOLE. PC ORGANIC
(1393 P 6
3,5/74
TEMP
r
DEG F
‘400,00
420,00
440.00
460.00
480.00
P
PSI
14.70
14.70
114.70
14.70
14.70
0
L8/FT3
O.7106E—01
fl,69 41(-.0 1.
0.6784E—01.
0.663 4E—01
O,6491E—01
H
ETU/LB
575.7
584,2
592.9
601 ,6
610.5
OTU/LB—F
0,9258
0.9356
0.9453
0.9549
0,9644
500.00
520.00
540.00
560.00
580.00
14,70
14.70
14.70
14.70
14.70
0.635 1 4(—01
0.62,,c—01
0.609c C—01
0.5975E—fl1
0.5859C—O1
619.4
628.5
637.6
64 .9
656.3
0.9739
0.9832
0.9925
1,002
1.011
600.00
620.00
640.00
660.00
680.00
14.70
14.70
14.70
14.70
14.70
0.5747(.01
0.564fl (—03.
0.553F (—O1.
0,5436 (—01
0.534 0E—01
(,65 ,7
675,3
a .85 ,o
694.7
704.6
1.020
1.029
1.038
1.046
1.055
700.00
720.00
740,00
760.00
780.00
14.70
114.70
14.70
14.70
14.70
0.52’e7E—01
e.5157E—O1
0.507jE—O1
0.4987E—01
0.Ce90 6 ( 01
714.5
24 .6
34.7
744.9
755.2
1.064
1.072
1.Ool
1.089
1.098
800,00
180,00
200.00
220.00
240.00
14.70
25,00
25.00
25.00
25.00
0. ’4827E—O1
56.85
56.26
55,62
0.0
765.6
109,8
125.9
142.4
0.0
1.106
0.1802
0.2022
0.2237
0.0
260.00
280.00
300.00
320.00
340.00
25.00
25.00
25.00
25,00
25.00
0,1462
0,1420
0. 13R1
0,1344
0.1309
518.8
526.5
5 .14.3
542.3
550.3
0.8301
0.8407
0.8511
0.8614
0,8716
360.00
330 ,00
400.00
420.00
440,00
25.00
25.00
5.O0
25.00
25.00
0.1276
0.1245
0.121
0.13.86
0,1159
5’ 8.5
546.8
5 5.2
5 3,8
5 2.4
Q.a&i7
0.3917
0.9016
0.9114
0,923.1
1460.00
480.00
500.00
520.00
540,00
25.00
25.00
25.00
25. 0
25.00
0.1133
0 ,11fl
0.108
0.1062
0.1040
6(1.1
630.0
639,0
68.1
6 7.2
0 .9308
0,9403
0.9497
0.9591
0.9684
C— 6

-------
THERMODYNAMIC PROPERTIES OF SENIOR CANDIDATE FLUIDS
2-METHYL PYRIDINE. WATER 35 MOLE PC ORGANIC
(1393 P 7
3,5,74
TEPjP
r
0 (6 F
560.00
580.00
600.00
620.00
640.00
p
PSI
25.00
25.00
25.00
25.00
25.00
0
L8/FT3
0.1019
0.99951—0 1
0,9803E —0 1
0.9618E—O1
0.94401—01
H
BTU L B
6 46,5
655,9
665.4
675.0
6b4,6
S
BTU/LB-F
0.9776
0 .9867
0.9957
1.005
1.014
660,00
680.00
700,00
720,flfl
740,00
25.00
25. f l O
25.00
25. f lO
25 ,00
0 .92 68 1—01
0.9103E —01
0.89 44E—01
0,8790 (—01
0.8642E—01
694,4
704,3
714.2
714 ,3
734.4
1.022
1.031
1.0 140
1.048
1.057
760.00
780 ,00
800.00
180.00
200 .00
25.00
25.00
25.00
50.00
50.00
0.849 E—01
0.8359E—01
0.8225E —01
56,85
56,26
744,6
754.9
lhS.3
1 119,8
1e 6.0
1.065
1.074
1.082
0.1802
0 .202 2
220 .00
240.00
260.00
280.00
300.00
0.fl0
50.00
50.00
50.00
50.00
55.62
54,93
54.16
0.0
0.2810
1 2,5
159.3
116.6
0.0
532.8
0.2237
0.2447
0 ,2653
0.0
0.8187
320 .00
340.00
360.00
380.00
‘+00 .00
50,00
50.00
50.00
50.00
50.00
0.2732
0.2658
0 ,2588
0.252 1
0.2459
510.8
51 48.9
5’7.1
5h5.5
5 ’4.0
0.8291
0 ,6394
0.6495
0.8596
0,8696
420.00
440,00
460,00
480,00
500,00
50.00
50 ,00
50.00
50.00
50.00
0.2399
0,2343
0.2289
0.2237
0.2188
5 132.5
5 )1.2
6 1 ) 0.0
6118.9
617.9
0,8794
0.8892
0, 89 89
0.9085
0.9179
520,00
540.00
560.00
580.00
600,00
50 ,00
50.00
50.00
50.00
50.00
0.2142
0.2097
0.205 4
0 .2013
0.1973
6 27.0
636.3
6’+5.6
655.0
6r 4,5
0.9273
0 .9366
0 .9459
0.9550
0.9641
620,00
640,00
660,00
680.00
700,00
50.00
50.00
50.00
50.00
50.00
0.1935
0.1899
0,18 6’e
0.1830
0.1798
6 74 . 1
6i3.8
633 .6
733 ,5
7 3.5
0.9733.
0.9820
0.9908
0.9995
1.008

-------
TH RMOOYNAM1C PROPCRTIES OF SFNIOR CAISJDIDATE FLUIDS
2—METHYi PYRIDINE, WATER 35 MO PC ORGANIC
E1393 P 8
3/5/7 1 +
TEMP
T
DEG I
720.01’
7’ 0.0 ’
760.0(
780.01
800. Ot
P
PSI
50.00
50.00
S0.C0
50.00
50.00
0
LB/FT3
0.17c ,
0.1736
0,1707
0.1679
0.1651
H
BTU/LB
723.5
733.7
743.9
754.3
764.7
S
BTU,LB-F
1.017
1.025
i.034
1.042
1.05].
180,OC
200.00
220 , OC
240,00
260.00
100.00
300,00
100.00
100.00
100.00
56,65
56.26
5S.F,2
54.93
54.16
109.9
126.1
142.6
159.4
176.7
0.1801
0.2023.
0.2236
0,24’16
0,2652
280.00
300.00
320,00
340,00
360.00
100,00
100.00
100.00
100.00
100.00
53.37
52,49
0.0
0.5485
0.5328
194.3
212.4
0.0
545.9
554.3
0.2855
0,3053
0.0
0.8059
0.8162
380,00
400.00
420.00
‘+40.00
460.00
100.00
100.00
100.00
t O O.00
100.00
0,5181
0,5fl
0.49j 2
0 , ’ +7 8c1
0.1+672
562.8
571.4
580.0
5ts8.a
597.7
0.8264
0,8365
0,8465
0.8 564
0,8661
480,00
500.00
520.00
540.00
560.00
100.00
100.00
100.00
100.00
i O O.00
0.4561
0.4456
0.4356
0,4260
0.4169
I 06 .7
115 .R
b25.0
634,3
643.6
0,8758
0.8854
0.8949
0.90 142
0.9135
580.00
600,00
620.00
61+0.00
660.00
100.00
100.00
100.00
10O. 70
j O O.0D
0.4082
0,3999
0.3919
0.3843
0.3770
(53.1
662.7
F .72. ’4
E 82.1
€92.0
0.9227
0.9319
0 .9409
0.9498
0.9587
680.00
700.00
720.00
740,00
760,00
100.00
100. 0
100.00
100.00
100.00
0 .369q
0.3632
0.3566
0,3504
0.3443
701.9
711.9
722.0
732.2
742.5
0.9675
0.9762
0.9849
0.9935
1.002
780.00
800.00
180.00
200.00
220,00
j O O.flO
100.00
300.00
300.00
300.00
0.3385
0.332R
56,85
56.26
55.62
752.9
763.3
110.4
126.5
143.0
1.010
1.019
0.1798
0.2017
0,2232
C—8

-------
TWFRMODYNAMIC PROPERTIES OF SrNIOR CANDIDATE FLUIDS
2-MCTHYL PYRIOTNE , WATER 35 MOLE PC ORGANIC
£1393 p 9
3,5,74
TEMP
r
DEG F
240 ,00
260.00
7R0,00
300.00
320.00
p
PSI
300.00
300.00
300.00
300.00
300.00
LB/FT3
54.93
S’ 4.18
53.37
52,49
51.52
H
BTU/LE
159.6
177.0
194.6
212.6
231.1
S
E3TUILE I -F
0.2442
0.2647
0.28 49
0.3047
0.3242
340.00
360.00
380.00
400.00
420.00
300.00
300.00
300.00
300.00
300.00
50.48
49.33
48.08
46.70
0.0
250.0
269.6
289.7
310.6
0.0
0.3435
0.3625
0.3814
0. 4001
0.0
440.00
460.00
480.00
500.00
520.00
300.00
300.00
300.00
300.00
300.00
1.592
1 .540
1.493
1.449
1.409
578.1
587.5
596.9
606.5
616.0
0 .7990
0 .8094
0.8195
0.8296
0.8594
540.00
560.00
580.00
600.00
620.00
300.00
300.00
300.00
300.00
300.00
1.371
1.335
l.30
1.271
1.241
625.7
635.4
64b.2
655.1
665.0
0.8492
0.8588
0 .8683
0 .8777
0.8870
640.00
660.00
680.00
700.00
720.00
300.00
300.00
300.00
300.00
300.00
1.213
1.186
1.161
1.137
1.113
675.0
685.1
695.3
7C5 .5
715.8
0.8962
0 .9055
0.9143
0.9 232 -
0.9321
740,00
760,00
780.00
800.00
180.00
300,00
300.00
300.00
300.00
500.00
1.091
1.070
1.050
1,031
56.85
7 6 .2
736.7
747.2
757.9
110.8
0 .9408
0,9494
0.9580
0.9665
0,1795
200.00
220.00
240.00
260.00
280.00
500. O f l
500.00
500.00
500.00
500.00
56.26
55.62
54.93
SU.18
53.37
126.9
2 45.
t60.2
177.3
194.9
0.2014
0.2228
0.2437
0.2642
0.2843
300.00
320.00
340.00
360.00
380.00
500,00
500.00
500.00
500.00
500.00
52.49
51,52
50.48
49.33
48.08
212.9
231.5
250.1
269.6
289.6
0.3041
0.3235
0.3421
0 .3616
0.3803
C—9

-------
THrRM0D’NAMIC PROPERTIES OF SFNIOR CANDIDATE FLUIDS
2-METHYl PYRIDINE, WATER 35 MOLE PC ORGANIC
(1393 P 10
3/5/714
T
0(0 I
‘400,0u
420.0”
‘40. Oi ’
460,0,’
480,01’
P
PSI
500.00
500.00
500,00
500.00
500.00
0
LB/FT3
46.70
45.18
‘ 43.51
0,0
2.788
H
ETU/LA
310,4
332,0
354.6
0.0
585,1
S
BTU/L8 -F
0,3989
0,4172
0,4344
0,0
0.7877
500 .01’
520.01
540,0 ’
560,0,
580 ,01
500.00
500,00
500.00
500,00
500.00
2.676
2.577
2.487
2.405
2.331
595,4
605.6
615.9
626.1
636.3
0,7985
0.8091
0.8194
0.8295
0,8395
p.00,01’
620,0(1
640 ,01’
660.01’
680,0( 1
500.00
500.00
500.00
500.00
500.00
2.262
2.199
2.139
2.084
2.032
646.6
656.9
667,3
677,7
688.2
0.8493
0,8589
0.8685
0.8778
0,8871
700,0,1
720,01’
740.01
760, Ofl
780,0(1
500.00
500,00
500. i0
500.00
500,00
1.984
1.938
1,8 S
1,853
1.814
698,7
709.3
719.9
730,6
741.3
0.8962
0,9053
0,9142
0.9230
0,9318
800,01
180,01
200.01’
220,01’
240.01
500.00
700.00
700.00
700.00
700.00
1.777
56.85
56.26
55,62
54,93
752,1
111.2
127.3
143,8
160.5
0,9404
0.1791
0.2010
0.2224
0.2433
260.0(1
280.01
300,01!
320,01
340,0(
700.00
700.fl O
700.00
700.00
700.00
54.18
53.37
52.49
51.52
50.48
177,7
195,2
213.1
231.4
250.2
0.2637
0.2838
0,3035
0.3228
0.3419
360,01
380, or
400,01
420,01
440,01
700.00
700.00
700.00
700.00
700.00
49,33
48,08
46,70
45.18
43,5j
269,6
289.5
310.1
331.6
354,1
0.3607
0.379.
0.3977
0,4157
0,4327
460,01
‘480,0(
500,01
520.0(
5’40,0(
700.00
700.00
700.00
700.00
700.00
‘41.65
39.58
‘4.331
4.087
3.884
378.2
‘404,3
581.1
592.7
604.0
0,4488
0,4641
0.7722
0,7842
c—b

-------
TH(I’MOOYNI’MIr PROPERTIES OF SENIOR CANDIDATE FLUIDS
2-METHYL PYRTOENE. WATER 35 MOLC PC ORGANIC
E1393 P 11
3/5,7. ,
TEMP
T
DEG F
560.00
580.00
600.00
620.00
6143.00
P
PSI
700.00
700.00
700.00
700.00
700.00
0
LB#’FT3
3.710
3•559
3.425
3.305
3.197
H
BTU/LB
615.1
626.1
37.0
647,9
658.7
S
BTU/LB-F
0,8066
0.8173
0.8277
0.8379
0,8478
660.00
680.00
700,00
72fl.00
740.00
700,00
700.00
700.00
700.00
700.00
3.097
3.006
2.922
2.844
2.771
669.6
680.4
691.3
702.2
713.1
0,8576
0.8672
0.8767
0.o860
0,8952
760,00
780,00
800.00
180,00
200.00
700.00
700,00
700.00
900.00
900.00
2.703
2.639
2.579
56.05
56.26
72 (4,1
735.1
746,1
111.7
127.8
0.9042
0,q 1 32
0.9220
0.1788
0.2007
220.00
240.00
260.00
280.00
300,00
900.00
900.00
900.00
9 1 )0.00
900,00
.
55.6?
54,93
54.1R
53.37
52.49
14(4,2
160.9
178.0
195.5
213.3
0.2220
0,2428
0.2632
0.2832
0.3029
320.00
340.00
360u O
380.00
(400,00
900,00
900.00
900,00
900,00
900.00
51.52
50,48
49.33
14 8. OP
46,70
231.6
250.3
269.6
289.4
309.8
0,3221
0.3411
0.3598
0.3782
0,3964
420.00
440.00
460.00
480,00
500.00
900.00
900.00
900.00
900.00
900,00
45,18
43.51
141.65
39,58
37.25
331.1
353.4
377.1
402.8
431.5
0.14143
0,4309
0.4467
0, 615
0.4739
520.00
5(40,00
560,00
580.00
600.00
900.00
900.00
900.00
900.00
900,00
6.477
5.870
5, 4 (10
5.122
4,856
573.3
587,9
601.1
613,6
625,6
0.7569
0,7717
0.76’eb
0.7969
0.8084
620.00
640,00
660.flfl
680.00
700.00
900.00
900,00
900.00
900.00
900.00
4.631
4,437
4.266
4.114
3.977
637.4
649.0
660.5
671.9
683,3
0.8194
0,8300
0,8404
0,8505
0.8604
c—li

-------
THFRMOnYNAMIC PROPERTIES OF SFNIOR CANDIDATE FLUIDS
2—METHYL PYRIPINE. WATER 35 MOLE PC ORGANIC
(1393 p 12
3/5/714
TEMP
I
D F
720.00
740.00
760.00
780 ,00
800.00
P
PSI
900.00
900.00
900.00
900.00
900.00
0
LB/FT3
3.852
3.738
3.632
3,535
3.44 1 4
H
BTU/LB
69 1e,6
705.9
717.2
728,5
739.8
S
BTU/LB-F
0.8700
0,8795
0 .8889
0,0931
0.9071
180,00
200.00
220.00
240,00
260.00
1000.00
1000.00
1000.00
1000.00
1000.00
56.85
56,26
55.62
54,’3
54.18
111.9
128.0
1 44 ,4
161.1
178,2
0.1787
0,2005
0.2218
0.2426
0.2630
280,00
300,00
320,00
340,00
360,00
1000.00
1000.00
1000.00
1000.00
1000.00
53,37
52,49
51.52
50.48
49.33
195.6
213,4
231.7
250.4
269.6
0,2830
0,302
0.3218
0,3407
0.3593
380.00
400,00
420,O
440,00
460,00
1000.00
1000.00
1000.00
1000.00
1000.00
48.08
146.70
45,18
43,51
41.6
289.3
309.7
330.9
353,1
376.6
0.3777
0,3958
0 ,’136
0,4301
0,4457
480 .00
500.00
520.00
540.00
560.00
1000.00
1000.00
1000.00
lOOO. 0
1000.00
39.58
37.25
10.02
7. 1 477
6.655
402.0
430.5
547,1
575.6
591.8
0.4602
0.4723
0.7277
0,7565
0.7726
580,00
600,00
620.00
640,00
660.00
1000,00
1000.00
1000.00
1000.00
1000.00
6,1.25
5.731
5.415
5 ,1 3
4.928
605.8
618.9
631.4
643,6
655.5
0,7863
0,7987
0,8104
0.8216
0.8323
680,00
700.00
720.00
740,00
760.00
1000.00
1000.00
1000.00
O00.00
1000.00
‘4.732
4.55
4.402
‘ 4.260
‘1.131
667.3
678.9
690,5
702.1
713.6
0.8427
0.8529
0.8628
0.8725
0.8820
780,00
800,00
180,00
200.00
220.00
1000.00
1000.00
1100.flO
1100.00
1100.00
4.013
3.903
56,85
56.26
55.62
725.1
736.6
112.1
L28,2
L44.5
0.8913
0,9005
0,1735
0.2003
0.2216
C—12

-------
THERMODYNAMIC PROPERTIES OF SENIOR CMJDIDATE FLUIDS
2-METHYL PYRIDINE, WATER 35 MOLE PC ORGANIC
E1393 P 13
3,5,7 ( 4
TEMP
I
DEG F
2 (40.00
260.00
280.00
300.00
320.00
P
PSI
1100.00
1100.00
1100.00
liC O.fl O
11011.00
0
LF3/FT3
5 4 1 q3
5(4.18
53 ,37
5p q
51.52
H
eru/LB
161.3
178.3
195.8
213,6
231.8
S
8TU/L8-F
0.2(424
0.2628
0.2621
0.3023
0.3214
340,00
360.00
380,00
(400,00
(420,00
1100.00
1100.00
1100.00
1100.00
1100,00
50.48
49, 3
48.08
46,70
45,18
250.4
269.6
289.3
309.6
330.7
0,3403
0.3589
U,3772
0,3952
0.4128
440.00
460.00
480,00
500,00
520,00
1100.00
1iO0.fl O
1100.00
1100.00
1100.00
43.51
(41.65
39.58
37.25
34.62
352.7
.i76 ,1
t.O1,3
‘-29.4
462 ,5
0.4292
0.4446
0.456 9
0,4707
0.4627
540,00
560.00
580,00
600.00
620.00
1100.00
1100.00
1100,00
1100,00
1100.00
11.14
8.470
7,414
6.779
6.318
550.0
578.4
596.2
611.1
624.7
0.7289
0.7570
0,7744
0,7885
0.8012
640.00
660,00
680,00
700,00
720.00
1100,00
1100.00
1100.00
1100.”O
1100.00
5.956
5.657
5.403
5.182
4.987
637.6
650.1
662.4
674.4
686.3
0.8231
0,8244
0.8352
0.8457
0.8558
740,00
760.00
780.00
800.00
180.00
1100.00
1100,00
1100,00
ll00. 0
1200,00
4,8J3
4.656
4.513
.382
56,85
698.1
709.8
7 1.5
733.2
112.4
0.8658
0,8755
0.8850
0.8 43
0.1183
200.00
220,00
240,00
260,00
280.00
1200.00
120 0,”O
1200.00
1200,00
1200.ftO
56,2.
55 ,62
5 ( 4.93
54.18
53,37
1 8.4
1 4,7
161.4
178.5
195.9
0.2001
0,2214
0.2422
0.2625
0.2824
300.00
320.00
340.00
360,00
380.00
1200.00
1200.00
1200.00
1200.00
1200.00
5.49
51,5?
50.Le
49,33
( 48,08
213.7
231.9
250.5
269.6
289.2
0.3019
0.3211
0,3399
0,3584
0 ,3767
C—13

-------
THERMODYNAIIC PROPERTIES OF SENIOR CANDIDATE FLUIDS
2-METHYL PYRIDINE, WATER 35 MOLE PC ORGANIC
t1393 p j4
3,5/74
I
DEG F
400,00
420.00
440,00
460,00
480,00
P
PSI
1200.00
1200.00
1200,00
120(1.00
1200.00
0
LB/FT3
46,7 ( 1
45.18
3.5l
41,65
39.58
H
BTU/LB
309.4
330,4
352.4
375,6
400,5
S
BTU/LF3-F
0.39146
0.14121
0,4284
0,4436
0.4576
500,00
520,00
5140 ,00
560,00
580,00
1200.00
1200.00
1200.00
1200.00
1200.00
37.25
34.62
12.30
12.45
9.359
428,3
460,9
543,9
552.0
582,4
0.4690
0.14605
0.7214
0,72914
0.7589
600.00
620,00
640,00
660,00
680,00
1200.00
1200.00
1200.00
1200,00
1200.00
8.117
7.392
6,874
6,469
6.137
601.5
616.9
631.0
6144,3
657.].
0,7771
0.791
0,6044
0,8164
0.8277
700,00
720.00
740,00
760,00
780,00
1200.00
1200.00
1200.00
1200.00
1200.00
5.8 7
5.614
5.1+00
5.210
5,038
669.6
681,8
693.9
705.9
717.9
0,8386
0.8491
0.8593
0.8692
0.8789
800,00
180,00
200.00
220.00
240,00
1200.00
1500.00
1500.00
150 0.flO
1500.00
4,882
56. 5
56.26
55.62
5 4,93
729.7
113,0
129.0
1145.3
162,0
0,8884
0.1778
0.1996
0.2208
0,2415
260,00
280,00
300,00
320,00
340,00
1500.00
1500.00
l5Cfl.00
1500,00
1500.00
54.18
53.37
52,49
51.52
50,48
179.0
196,3
214.0
232.1
250,6
0,2618
0.2816
0.3010
0.3200
0,3387
360.00
380,00
400,00
420,00
440,00
1500,00
1500.00
1500.00
1500.00
1500.00
‘9.33
48,08
46.70
145.18
1e3.51
269.6
283,0
303.1
323.8
351,3
0,3571
0,3751
0.3928
0,14100
0,4258
460,00
480,00
500,00
520,00
540,00
1500.00
15(10.00
1500.00
1500.00
1500,00
41.
39,58
37.25
34.62
31.62
374.0
393,3
42 .O
45,.?
49 ,6
0,4404
0.1+537
0,46141
0,4540
C_i !!

-------
THERMODYnAMIC PROPERTIES OF SENIOR CANDIDATE FLUIDS
2-METHYL PYRIDINC. WATER 35 MOLE PC 0RG NIC
TEMP
(1393 P 15
3/5,74
T
DEG F
560.00
580.00
600,00
620.00
640.00
P
PSI
1500.00
1500.fl O
1500.00
1500.00
1500.00
D
LB/F13
15.96
16.12
16.93
13.34
10.92
H
BTU/LB
534.7
543.0
547.8
‘ 78.3
1303.9
S
BTU/LA -F
0.7091
0.7172
0.7219
0 .750
0,7738
660,00
680,00
700.00
720.00
740,00
1500.00
1500.00
1500.00
1500.00
1500.00
9,f 2
8.881
8.277
7.799
7.404
A22.q
638.4
c,53.1
666.9
680.3
0.7906
0.8047
0.8175
0.8293
0.8406
760.00
780,00
800.00
1500.00
1500.00
1500.00
7.0€.A
6.777
6.520
,93•
‘06.2
1B,6
0.8514
0.8618
0 ,d719
C—15

-------
APPENDIX D
DYNAMIC LOOP TEST PROCEDURE
Before Test
1. Before assembly carefully clean each component and tubing
section with acetone and blow dry with compressed nitrogen.
The steel heater coil and the aluminum condenser coil are
newly fabricated for each test. They should be cleaned
with hexane.
2. Assemble loop, observing these precautions:
(a) Install new aluminum ferrules in the fittings at each
end of the aluminum condensing coil (stainless steel
ferrules elsewhere).
(b) Install new 0—ring seal of specified elastomer in
the let—down valve cap and in the sample valve.
(c) Renew filter element and PTFE filter seal washer.
3. Check condition and level of Dowtherm A In Its boiler.
Add or replace as necessary. Level should be no lower
than one inch from top.
l4 Remove air above Dowtherm A by connecting a vacuum source
and evacuating for at least 10 minutes. Leave space
evacuated.
5. Evacuate loop by connecting a vacuum pump to valve D
(FIgure 6, Volume II) with all valves but A open. Test
for leaks by watching for pressure rise when the loop Is
isolated from the pump. Close valve D under high vacuum.
6. Add test fluid to fill glass and bleed into loop by care-
fully manipulating valve A. Several repetitions are needed,
taking care not to let air be drawn in through valve A at
any time.
7. PressurIze the fluid In the loop to 20 psig by admitting
compressed nitrogen into the top of the part—full fill
glass and bleeding sufficient fluid Into the loop through
valve A. Stopper the fill glass. Close valve C.
Start-up
8. Set the circulating pump for full stroke and turn on.
D-l

-------
9. Adjust let—down valve as needed to establish 1000 spig
pump discharge pressure.
10. Turn on power to Dowtherm boiler. Set temperature
controller.
11. Turn on water to precooler/condenser. Connect 1.5 volt dry
cell between aluminum coil and 1 in. x 1 in. magnesium
sacrificial anode suspended in water surrounding the coil.
12. Monitor pump suction pressure throughout start—up. As the
pressure rises above starting pressure (due to fluid thermal
expansion/evaporation), bleed fluid out through valve A into
fill glass. Target suction pressure is 20 psig.
13. Adjust pump delivery rate downward only if necessary to
achieve final 720°F. heater—out temperature when heat
input to boiler is approximately 80% of maximum available.
14. Caution: Valve C should never be opened when the pump
suction pressure is higher than 40 psig. Rupture of the
vent glass might result. Valve C should never be left
open when unattended.
15. Vent whatever gas or vapor appears in the vent glass with
valve C open for a minute or two. This should be repeated
several times before and after attainment of final tempera-
ture equilibrium.
16. Note date and time of initial attainment of 720°F. heater—
out temperature. This is taken as test zero time. Upon
attainment of satisfactory steady—state operation, close
valves B and F to protect the respective pressure gauges
from fatigue and overpressure.
Daily Monitoring
17. Note heater—out temperature. Adjust temperature controller
set point if necessary to reestablish 720°F. value.
18. Open valve B and check pump discharge pressure. Adjust let-
down valve setting if necessary to reestablish 1000 psig.
19. Cautiously open valve F and note pump suction pressure.
If above 30 psig, first bleed fluid out through valve A
if needed to drop suction pressure to 40 psig, then vent
any gas as by step 21. Fluid may then be readmitted through
valve A (under compressed nitrogen) if needed to reestablish
pump suction pressure.
D-2

-------
20. If suction pressure in step 19 was noticeably lower than the
reading of a day earlier leakage Is a possible reason which
should be carefully investigated arid corrected. Fluid may
then be added to the loop through valve A to restore the
suction pressure.
21. Bleed any gas bubbles from the loop by sequential operation
of valves C and D. Any gas appearing In the vent glass dur-
ing the first LI days of operation may be assumed to be air
and discarded. After the first LI days, all evolved gas is
passed through a syringe at ambient conditions and Its volume
noted.
22. Make entries on run sheet. Collect samples as needed.
Leave all valves but E in shut position.
Shut down
23. Turn off power to Dowtherm A boiler.
2L1. Turn off pump when heater—out temperature falls below 200°F.
25. When entire system Is at or near room temperature, drain
the fluid from the loop through valve A after opening valves
C and D. Complete drainage requires partial disassembly of
the loop and blowing.
26. Measure the pump delivery rate when pumping a higher
boiling fluid to 1000 psig at room temperature.
27. Inspect the heater and condenser coils for corrosion and/or
deposits.
28. Analyze drained fluid for change from initial condition.
D-3

-------
APPENDIX E
ACUTE VAPOR INHALATION REPORT - FINAL CANDIDATE BC—i
5 d iâj4 BlO-TEST Ie ,9
REPORT TO
MONSANTO COMPANY
ACUTE VAPOR INHALATION TOXICITY STUDY WITH
MFSN 28
IN ALBINO RATS
BTL-72-101
JANUARY 17, 1973
IBT NO. 633-02558
I. Introduction
A sample identified as MFSN28 was received October 31, 1972,
from Monsanto Company for the purpose of conducting an acute vapor
inhalation toxicity study using albino rats as experimental animals.
E- 1

-------
5 uL d ia1 BlO-TEST Ja4 ao’ue&9,w
II. Sumrnary
Four groups of ten rats each were used to detcrmi.ne the irthaJatio.
median lethal vapor concentration (LC 50 ) of MFSN 28. Each group of
animals was exposed to the vapor in a 70-liter inhalation chamber.
After exposure, all surviving rats were observed for 14 days.
The acute vapor inhalation median lethal concentration was found
to be 115. 0 mg/Li air (nominal concentration) based on a four-hour
period of exposure. Untoward behavioral reactions exhibited by the
animals included ataxia, excitation, ptosis, lacrirnation, and pros-
tration. Body weight gains of animals surviving the 14-day observa -
tion period were normal. Necropsy revealed minimal diffuse red
E- .2

-------
5nda I ia1 BlO-TEST .&d a/o ies,9#w.
‘ T , x -
Victor M. Bowers, B.A.
Assistant Toxicologist
Inhalation Toxicity
1 . A J €LJJ L
Ken T chadeberg, B.S.
Senior Group Leader
Inhalatio i Toxicity
cj 1)2L
(J#hn W. Goode, Ph.D.
-I ’ 1anager
Decatur Research Laboratories
( L. Keplthg r, Ph. D#
Manager, Toxicology
discoloration of the lungs in less than half of the animals tested, how-
ever, this is not highly uncommon in rats maintained under laboratory
conditions.
Respectfully submitted,
INDUSTRIAL BlO-TEST LABORATORIES, INC.
Report prepared by:
Report approved by:
dm : PS h
2
E- 3

-------
5n4 sj1 iaI L 1 0 1 E S I 1 . 9#u .
III. Procedure
Young adult albino rats (Sprague-Dawley strain ) having an
average body weight of 160 grams were employed as test animals. F ur
groups of ten rats cach (five males and five £cmalcs) were selected
after having been under observation for at least five days to insure their
general hcalth and suitability for testing. The animals were housed
individually in stock cages and permitted a standard laboratory diet* ’
plus water ad libiturn , except during inhalation exposure.
Each exposure was designed to run for a four-hour period, during
which time observations were made with. respect to incidence of mor-
tality and reactions displayed. At the end of the exposure period the
rats were returned to their stock cages and observed for the following
14 days.
A body weight was determined-for each animal prior to inhalation
exposure and for each surviving animal at the end of the 14-day observa-
tion period. The data were recorded as an index to body weight effects.
Gross pathologic examinations were scheduled to be conducted
upon all animals which might succumb during the test period and upon
those sacrificed at the end of the 14-day observation period.
* ARS /Sprague -Dawley, Madison, Wig.
** Purina Rat Chow, Ralston Purina Company, St. Louis, Mo.
Ern -LI

-------
5#gd s/.jaI BlO-TEST JaaIo ws,9w
Test animals were exposed in a specially constructed Plcxigliv
inhalation chamber having a capacity of 70 liters. The chamber was
designed so that the animals could be introduced to the test atmosphere
after 99 percent of the desired vapor concentration was established.
Each animal was caged separately during exposure to minimize filtration
of inspired air by animal fur.
Vapor was generated by metering, through use of an infusion pump*,
the MFSN 28 into a 500 ml flask which was maintained at 120° C. A
stream of clean dry air (-40°C dewpoint) was also introduced into this
flask and then directed into the exposure chamber at the top center,
dispersed by a baffle plate, and exhausted at the bottom. When necessary,
additional clean air was added at the top of the chamber to achieve the
desired final vapor concentration. The flask and vapor carrying tube
were maintained at the desired temperature by a heating jacket and
rheostat. Air flow rates through the system were measured with rota-
meters connected in the air supply lines upstream of vapor contamination.
The rotameters were calibrated with a wet-test meter after each exposure
was completed. Average nominal vapor concentrations were calculated
by dividing the total weight of test material vaporized by the total volume
of air used during each inhalation exposure. Temperature and pressure
of the test atmosphere were also measured.
*Harvard Syringe Infusion-Withdrawal Pump, Harvard Physiological
Apparatus Company, Inc., Dover, Mass.
E-5

-------
5,td.’ u 4 i1 B I 0- T E S T Ja4Mal 4iAi. 5#,c.
At th conclusion of the 14-day investigationaJ period, all data wcri
collccted and the acute ‘iapor inba]ation median lethal concentration
(LC 50 ) of the test material was calculated employing the method of
Litcb.field and Wilcoxon .
An outline of the test conditions is presented in Table I.
‘ Litchfield, J. T., Jr. and Wilcoxon, F., “A Simplified Method of
Evaluating Dose-Effect Experiment ,” 3. Pharrn. & Exp. Thor .
96, 99 (1949).
E—6

-------
TABLE I
TEST MATERIAL: MFSN 28
Acute Vapor Inhalation Toxicity Study - Albino Rats
Outline of Test Conditions
Air Delivery Rates
CL/mm at 29. 92
inches Hg and 25°C)
Vapor
Generator__Additional__Total
1.3 0 1.3
1.6 4.8 6.4
1.6 1.5 3.1
1.5 0 1.5
of
of
Animals
Exposure
Group Tested
(minutes)
0
-I
FTI
U’
I
10
240
II
10
240
II I
10
240
IV
10
240
Test
Atmosphere
Temperature
(°C)
Test
Atmosphere
Pressure
(inches Hg)
Average Nominal
Vapor
Concentration
(mg/L. air at 29. 92
inches
and 2 5°C)
25
30. 18
Hg
27.0
28
29.55
54.9
29
29.44
90.0
28

-------
9i d ó iaI BlO-TEST JQ4 a/ a ,9gc
IV. Results
A. Mortality
Mortality data and the LC 50 are presented in Table II.
B. Body Weight Gains
Body weight gains for all surviving animals were within normal
limits.
C. Behavioral Reactions
Behavioral reactions exhibited by the animals are listed in
Table iii:.
D. Gross Pathologic Findings
Necropsy revealed minimal diffuse red discoloration of the lungs
in less than half the animals tested. This finding is not highly uncommon
in rats maintained under laboratory conditions and thus may not be due to
inhalation of the test material vapors. There were no gross pathologic
alterations in any of the other tissues and organB examined.
E-8

-------
till
Acute Vapor Inhalation LC5O 115.0 mg/L air (four-hour exposure)
Limits of LC 50 at the 95% Level of Confidence = 87.1- 151.8 rng/L air
0
-I
In
In
-4
TABLE II
TEST MATERIAL: MFSN 28
Acute Vapor Inhalation Toxicity Study - Albino Rats
Mortality Data
I
Group
Average Nominal
Vapor Concentration
(mg/L air)
Number
of Animals
Tested
Observed
Percent
Dead
Expected
Percent
Dead
I
27.0
10
0
0
II
54.9
10
0
0.3
III
90.0
10
0
17.0
IV
140.2
10
100
77.5
r

-------
9#td s iaI BlO-TEST Ja/sc a/o es,5,gc.
TABLE III
TEST MATERIAL: MFSN 28
Acute Vapor Inhalation Toxicity Study - Albino Rats
Reactions
Group
Reactions
Number of
Animals
Affected
Time of Onset
/ After Start
of Exposure
Duration
I
Sneezing
Ptosis
Hypoactivity
Lacrimation
Prostration
10
10
10
10
10
-
10 minutes
20 minutes
30 minutes
40 minutes
2 hours
4 hours
4 hc,urs
4 hours
5-6 hours
2 hours
U
Ataxia
Excitation
Ptosis
Lacrimation
Prostration
10
10
10
10
10
5 minutes
10 minutes
15 minutes
15 minutes
15 minutes
4 hours
5 minutes
4 hours
5-6 hours
4 hours
III
Ataxia
Excitation
Ptosis
Lacrimation
Prostration
10
10
10
10
10
5 r.iinutes
10 minutes
10 minutes
15 minutes
15 minutes
4 hours
Sminute&
4 hours
5-6 hours
4 hours
Iv
Ataxia
Excitation
Ptosis
Lacrimation
Prostration
Death
10
10
10
10
10
10
5 minutes
5-10 minutes
10 minutes
10 minutes
15 minutes
3-4 hours
Until death
Until death
Until death
Until death
Until death
E-1O

-------
APPENDIX F
ACUTE VAPOR INHALATION REPORT - FINAL CANDIDATE RC-2
5d iaI BlO-TEST 1o cs,5,w,
REPORT TO
MONSANTO COMPANY
AC UTE VAPOR INHALATION TOXICITY STUDY WITH
MFSN 23
IN ALBINO RATS
BTL-72-100
JANUARY 17, 1973
IBT NO. 663-02558
I. Introduction
A sample identified as MFSN 23 was received October 31, 1972,
from Monsanto Company for the purpose of conducting an acute vapor
inhalation toxicity study using albino rats as experimental animals.
F-i

-------
5#daihi4 BlO-TEST Ja ,9nc
II. Summary
Five groups of ten rats each were used to determine the inhalation
median lethal vapor concentration (LC 50 ) of MFSN 23. Each group of
animals was exposed to the vapor in a 70-liter inhalation chamber.
After exposure, all surviving rats were observed for 14 days.
The acute vapor inhalation median lethal concentration was found to
be 14. 3 mg/L air (nominal concentration), based on a four-hour period
of exposure. Untoward behavioral reactions exhibited by the animals
included ptosis, lacrirnation, hypoactivity, dyspnea, weakness, ataxia
and prostration. Body weight gains of survivors of the 14-day observadon
period were normal. Necropsy revealed slight diffuse red discoloration
F-2

-------
9na uaI BlO-TEST 2a a tiss,9 u
of the lungs in most of the animals which died during the observattoi
period. Approximately half of the animals surviving the 14-day obser-
vation period revealed slight diffuse or slight focal red discolorati ,n
of the lungs.
Re spectfufly submitted,
INDUSTRIAL BlO-TEST LABORATORIES. INC.
Report prepared by 2 i ’i * ‘
Victor M. Bowers, B. A.
Assistant Toxicologist
Inhalation Toxicity
Report approved by. .
Ken 3 Schadeberg, i .)S.
Senio Group Leader LI
Inhalation Toxicity

( hnW. Goode, Ph.D.
—‘Mana ge r
Decatur Research Laboratories
4e;l e,Ph.D
Manager, Toxicology
dm :psh
F-3

-------
0 - I S t #i i, .
III. Procedure
Young adult albiiio rats (Sprague-Dawley strain ) having an
average body weight of 174 grams wcrc omployc as test animals. Five
groups of ten rats each (five males and five £cm lcs) ware selected
after having been under observation for at least five days to insure their
general health a d suitability for testing. The animals were housed
iridiv dually in stock cages and permitted a standard laboratory diet*
plus water ad libiturn , except during inhalation exposure.
Each exposure was designed to run for a four-hour period, during
which time observations were made with respect to incidence of mor—
tality and reactions displayed. t the end of the exposure period, thc
rats were returned to their stock cages and observed for the following
14 days.
A body weight was determined for each animal prior to inhalafion
exposurc and for each surviving animal at the end of the 14-day obse:va-
tion period. The data were recorded as an index to body weight effect-,.
Gross pathologic examinations were scheduled to be conducted
upon all animals which might succumb during the test period and upon
those sacrificed at the end of the 14-day observation period.
ARS/Sprague-Dawley, Madison, Wis.
** Purina Rat Chow, Ralston Purina Company, St. Louis, Mo.
F LI

-------
findetituat B I 0 - I E S I 10432a/s ,ee4, 5 ,tc.
Test animals were exposed in a specially constructed Plexiglas
inhalation chamber having a capacity of 70 liters. The chamber was
designed so that the animals could be introduced to the test atmosphere
after 99 percent of the desired vapor concentration was established.
Each animal was caged separately during exposure to minimize filtration
of inspired air by animal fur.
Vapor was generated by metering, through use of an infusion pump 1
the MFSN 23 into a 500 ml flask which was maintained at 120°C. A
stream of clean dry air (-40° C dewpoint) was also introduced into this
flask and then directed into the exposure chamber at the top center,
dispersed by a baffle plate, and exhausted at the bottom. When necessary,
additional clean air was added at the top of the chamber to achieve the
desired final vapor concentration. The flask and vapor carrying tube
were maintained at the desired temperature by a heating jacket and
rheostat. Air flow rates through the system were measured with rota-
meters connected in the air supply lines upstream of vapor contamination.
The rotameters were calibrated with a wet-test meter after each exposure
was completed. Average nominal vapor concentrations were calculated
by dividing the total weight of test material vaporized by the total volume
of air used during each inhalation exposure. Temperature and pressur i
of the test atmosphere were also measured.
‘ Ha rvard Syringe Infusion— Withdrawal Pump, Harvard Physiological
Apparatus Company, Inc., Dover, Mass.
F-5

-------
Ind i a / i /a l B I 0 - T £ S T Jaknahnec . fine.
At the conclusion of the 14-day investigational period, all data were
co] lected and the acute vapor inhalation median lethal concentration
(LC 50 ) of the test material was calculated employing the method of
Litchficld and Wilcoxon .
An outline of the test conditions is presented in Table I.
4 Litchficld, J. T., Jr. and Wilcuxon, F., “A Simplified Method of
Evaluating Dose-Effect Experiments,” 3. Pharrn. &‘ Exp. Ther .
96, 99 ( [ 949).
F-6

-------
It
TABLE I
I .-
TEST MATERIAL: MFSN 13
Acute Vapor Inhalation Toxicity Study - Albino Rate 9
Outline of Test Conditions
_____________________________________________________ -4
Air Delivery Rates Average Nominal
Number Duration (Limits at 29. 92 Test Test Vapor
of of inches Hg and 25°C) Atmosphere Atmosphere Concentration
Animals Exposure Vapor Temperature Pressure (mg/L air at 29. 92
Group Tc.ited [ minutes) Generator Additional Total (°C) (inches Hg) inches Hg and 25°C)
1 10 240 1.7 7.5 9.2 30 29.55 8.6
II 10 240 5.0 9.1 14 .1 29 29.93 10.5
III 10 240 1.8 3.0 4.8 30 29.45 16.2
IV 10 240 1.7 4.1 5.8 30 29.62 19.4
V 10 240 2.0 2.9 4.9 26 30 .10 25.3

-------
5nd aSa4 810-TEST Jahtfl&0419&,9sw.
IV. Results
A. Mortality
Mortality data and the LC 50 are presented in Table U.
B. Body Weight Effects
The average two-week body weight gain for all surviving
animals in each group was within normal limits.
C. Behavioral Reactions
Behavioral reactions exhibited by the animals are listed in
Table III.
D. Gross Pathologic Findinxs
Necropsy of rats which died during the exposure or the 14-day
observation period revealed slight diffuse red discoloration of the lungs.
Slight diffuse or focal red discoloration of the lungs was found in about
half of the animals which survived the observation period. All other
animals showed no gross pathologic alterations in any of the tissues
and organs examined.
F-8

-------
TABLE 11
TEST MATERIAL: MFSN 23
Acute Vapor Inhalation Toxicity Study - Albino Rats
Mortality Data
Number
of Animals
Tested
I cI
Group
Ave rage Nominal
Vapor Concentration
(mg/L air)
Observed
Percent
Dead
Expected
Percent
Dead
I
8.6
10
0
0.42
II
10.5
10
20
6.00
III
16.2
10
60
74.00
IV
19.4
10
100
95.00
V
25.3
10
100
99.88
0
-I
‘Ii
-I
L
Acute Vapor Inhalation LC5O = 14.3 mg/L air (four-hour exposure)
Limits of LC 50 at the 95% Level of Confidence = 12.0- 17.0 mg/L air

-------
Jid,a4iil 810-TEST Ja4 9, .
TABLE I II
TEST MATERIAL: MFSN 23
Acute Vapor Inhalation Toxicity Study - Albino Rats
Reactions
Ptos is
Lac r imation
Hypoactivity
Ataxia
Prostration
10
10
10
l0
10
50 minutes
50 minutes
50 minutes
2 hours
3 hours
5-8 ho’ rs
5-8 hours
12-18 hours
4-5 hours
4-5 hours
Ptosis
Lac r imation
Hypoactivity
Prostration
Death
Pto sis
Lac rimation
Hypoactivity
Prostration
Death
Pto si s
La c r imation
Hypoactivity
Dys pnea
Prostration
Death
Pto S is
Lac rirnation
Hypoa cti vity
Dyspnea
Prostration
Death
10
10
10
10
2
10
10
10
10
6
10
10
10
10
10
10
10
10
10
10
10
10
30 minutes
30 minutes
30 minutes
150 minutes
4-8 hours
30 minutes
30 minutes
30 minutes
90 minutes
3-8 hours
15 minutes
15 minutes
20 minutes
20 minutes
30 minutes
3 hours
5-8 hours
5-8 hours
12-18 hours
4-5 hours
5-8 hours
5-8 hours
12-18 hours
5-6 hours
Until death
Until death
Until death
Until death
Until d 1 ath
Number of
Time of Onset
Animals
After Start
Group Reactions Affected
of Exposure Duration
II
‘It
Iv
V
10
minutes
Until
dcath
15
minutes
Until
death
20
minutes
Until
dt’ath
20
minutes
Until
death
45
minutes
Until
c 1 c th
3
hours
F—b

-------
APPENDIX G
ACUTE VAPOR INHALATION REPORT - HEXAFLUOROBENZENE/PENTAFLUOJ-wBENZENE
ACUTE INHALATION TOXICITY OF
HEXAPLUOROBENZENE, PENTAFLUO1tOBENZENE
AND A 50:50 MIXTURE
by
R A Riley
January, 1973
(For the Imperial Smelting Corporation Limited)
G—1

-------
SU) IARY
The acute (30 minute) LCSO in the mouse of hexafluorobenzene is 6—7Z,
pentafluorobenzene is 2—32, and a 50:50 mixture of the two is 4—6%.
Synergism does not occur in the mixture.
G-2

-------
The samples of hexa0uorobenzene and pentafluorobeuzene were supplied by
Imperial Smelting Corporation.
METHODS
Groups of 10 female mice of the Alderley Park specific pathogen free,
albino strain (body weights 25—30 g) were used. They were exposed to
dynamic atmospheres of the chemicals, for a period of 30 minutes, in a
small exposure chamber of 40 litres capacity, and observed for a further
seven days.
The atmospheres were generated by a syringe and atomiser technique, and
the atmospheric concentrations checked by gas chromatography.
RESULTS
The mortality data are tabulated below:
Hexafluorobenzene
Dose
(volume
Z) and mortality
2
3
4
5
6
7
8
—
—
—
—
3/10
6/10
10/10
Pentafluorobenzene
2/10
8/10
7/10
9/10
—
50:50 mixture
—
4/10
—
6/10
9/10
From the above figures the acute (30 minute) LC5O of hexafluorobenzene is
estimated to be 6—7%, pentafluorobenzene 2—3% and the 50:50 mixture 4—6%.
The animals in each experiment showed similar toxic signs in that they
became comatose within a few minutes and died following a period of
profound respiratory depression. The survivors from the higher doses
took up to two days to recover fully from the effects of exposure.
Using the mean harmonic formula it can be calculated that a 50:50 mixture
of the two chemicals should have an acute LC5O of approximately 3.5% provided
G— 3

-------
that their toxic ‘effects are additive. The observed value of 4—6Z
therefore shows that synergism has not occurred.
DGC/AHR
4 Jan 72
14

-------
APPENDIX H
TOXICITY AND BIODEGRADABILITY OF PYRIDINES — LITERATURE ABSTRACTS
The following references relating to toxicity and/or biodegrada-
bility of various pyridine fluids appeared to be pertinent to
present considerations regarding acceptability of methylpyridine—
water working fluids. The published data, which are somewhat
fragmentary, cover 2—methyl pyridine more completely than the
others. Extracts and sources follow.
1. 2—Met1 y1pyridine (alpha picoilne )
(a) Acute Oral ToxicIty:
LD 50 = 6711 mg/kg in mice
790 mg/kg in rats
900 mg/kg in guinea pigs
Ref: V.G. Veselov, Mater. Nauch.-Proct. Konf. Molodykh
Gig. Sanit. Urachei, 11th 1967 , 121, Chem. Abstr.
72, ‘Iil3 4 (1970).
(b) Chickens given 20 g 2—methylpyridine subcutaneously
converted the material to a—pyridirieornlthuric acid which is
eliminated in the urine.
Ref. S. Tsunoo, et al., Japan J. Pharmacul, 15,, l 49 (1965).
Chem. Abstr. 63, 12150 (1965).
(c) The single dose oral LD 50 In rates for 2—methyipyridine
is iiii g/kg body weight.
Ref. H. F. Smyth, Jr., et al., Arch. md. Ryg. Occupational
Med. 11, 119 (1951). Chem. Abstr. L 5, 9710 (1951).
(d) Toxicity parameters for rats have been given as:
LD 0 = 550; LD 50 790 and, LD 100 = 950 mg/kg.
Ref. S.A. Polliel, et al., Nauch. Tr.., Omak. Med. Inst.
1969 , No. 88, 319. Chem. Abstr. 75, 107,789 (1971).
(e) a—Picoline and 2,5—lutidine were highly stable in aque—
our solutions and aggravated organoleptlc properties of H 2 O, with
threshold concentrations, equal to 1.32 and 0.147 mg/i, respectively.
At concentrations >1 mg/i, both inhibited self—purification of the
H 2 O. Acute experiments on mice, rate, and guinea pigs showed that
a—picollne was the more toxic (av. LD = 790 mg/kg in rats, compared
H-i

-------
to 800 mg/kg for 2,5—lutidine). Chronic sanitary—toxicological
experiments (180 days administration) showed that doses corres-
ponding to the average tolerable concentration of pyridine in
reservoirs (0.2 mg/i) caused ct—picoline and 2,5—lutidine toxicity
(decreased cholinesterase and increased prothrombin activity,
reduced the concentrating ability of the kidney, and weakened
central nervous system excitation). The maximum nonactive dose
of the two compounds was 2.5 x l0 mg/kg which corresponds to
0.05 mg/i, suggesting that this is the maximum permissible con-
centration for both ct—picoline and 2,5—iutidine in bodies of water.
Ref. V. G. Veselov, (Omsk, Med. Inst. im. Kalinina, Omsk
USSR). Gig. Sanit. 1968, 33(12), 18—22 (Russ.),
Biological Action and the Hygienic Significance of
ci—Picoline and 2,5—Lutidine in Water Reservoir
Contamination. Chem. Abatr. 70, 45795z (1969).
2. 1 4—Methyipyridine (gamma picoline )
The single dose oral LD 50 in rats was given as 1.29 g/kg (same
reference as under lc above).
3. Methyipyridines (picolines )
Microorganisms belonging to various taxonomic groups and utiliz-
ing 2—, 3—, and 4—methylpyridine and 5—ethylpyridine as the sole
source of C were studied. Over 100 cultures of Mycobacterium,
Nocardia, and others caused the opening of the pyridine ring and
oxidation of alkyl substitutes, followed by pyridine ring metabo-
lism. Oxidation of the Me group of 3—methylpyridine to a carboxyl
group was established. A method of microbiological production of
nicotinic acid in 80% yield using 3—methylpyridine was elaborated.
Ref. G. K. Skryabin, L. A. Golovieva, B. I. Krupyanko,
(Inst. Biokhim, Fiziol. Mikroorganizmov, Moscow,
USSR), Microbiological Transformation of Pyridine
Compounds, In. A /cad. Naulc 5551?, Ser. Biol. 1969
(5), 660—9 (Russ). Chem. Ab8tr. 72, lOO8 t lf (1970).
4. Pyridine
(a) Subcutaneous injection in rats gave the following
LD 50 = 1.0 g/kg.
Ref. F. G. Brazda and R. A. Coulson, Proc. Soc. Exptl.
Biol. Med. 62, 19 (1946). Chem. Abetr. tO 4799 (1946).
(b) Pyridine administered to dogs and rabbits is rapidly
eliminated mostly through the skin, lungs, and feces and a small
amount in the urine as free pyridine.
H-2

-------
Ref. N. J. Novello, J. Biol. Chern. 7 4 33 (1927). Chem.
Ab8tr. 27, 27’46 (1933).
(c) Pyridine has a “feeble” effect on fish at a concentra-.
tion of 1 part in 1000.
Ref. V. Demyanenko, lug. i. Epidern. (USSR) 10, No. 6/7,
13 (1931): Dept. Sd. md Res (Brit.), Water Pollution
Research,Suminary of Current Lit. 6, 35. Chem. Abetr.
27, 27116 (1933).
(d) Rats given diets contaIning 0.6% of pyridine or 1% of
quinoline (as acetates) for 28 days showed enlarged livers with
abnormally high water content. Cystine or methionine added to
the ration exerted an important protective action but choline
gave very little protection. Isoquinoline also produced liver
damage.
Ref. Roland A. Coulson and Fred G. Brazda, Influence of
Choline, Cystine, and Methionine on Toxic Effects
of Pyridine on Certain Related Compounds, Proc. Soc.
Exptl. Biol. M cd. 69, 1 180 7 (19118); (af C.A. 112,
3861f.) Chem. Abstr. l3, 2321h (19119).
(e) No toxic symptoms were noted after administration of
0.31—1.511 cc of pyridine per day to men. In larger doses, 1.85-
2.116 cc, the pyridine was toxic, causing one death. Symptoms of
hepatorenal disease were noted.
Ref. Lewis J. Pollock, Isidore Finkelman and Alex J. Arieff,
Toxicity of Pyridine in Man, Arc. Internal Mcd. 71,
95—106 (1943). Chem. Abetr. 37, 41468 (19113). —
The following two references establish the biodegradability of
pyridine.
(f) Species of Proactinomyce8 are obtained in soil enriched
with 0.1% pyridine (I). Pure cultures of the organisms utilize I
as the sole source of C and N. HN and oxalic acid were found as
products of the breakdown.
Ref. F. W. Moore, Utilization of Pyridine by Microorganisms,
J. Gen. Microbiol. 3, 1113—9 (19119). Chem. Ab8tr. 1 13,
1 4329H (19149). —
(g) Batch experiments with activated sludge in which sewage
and solutions with 50-6000 mg C 5 H 5 N (1)/1 were added, have achieved
complete removal of I in concentrations up to 3000 mg/i after 16
hr of detention time and with a load up to 3000 mg Ill of aeration
tank/day. Shock Increase of load causes deterioration of the
H-3

-------
effluent which improves for concentrations below 3000 mg/i within
10 days, but is impaired above 3000 mg/l. Activated sludge, fed
with 2360 and 11760 mg I/i of tank/day, having 1 mg P0 —P/l00 mg
of 5—day B.0.D. added, removes all the I and 3 hr of detention.
The mean value of 5—day B.0.DS from 511 analyses is 1.2 g O/g of I.
Ref. Alexander Grunwald (VSCHT, Prague, Czech.), Effect of
Pyridine on the Activated Sludge Process, Sb. Vys.
Sk. Chem.-Technol. Praze., Technol. Vody. 1968, 13,
15—26 (Czech). Chem. Abetr. 70, 7091 2 4v (1969).

-------
APPENDIX I
ACUTE TOXICOLOGICAL INVESTIGATION OF ADVANCED
CANDIDATE WORKING FLUIDS
Results of acute toxicity tests performed by Younger Laboratories,
St. Louis, are given in a series of tables following. Tests were
made using a group of advanced working fluid candidates as defined
in Table I—i.
Table I-i. GUIDE TO TEST RESULTS
Fluid Composition
Table Number of
Test Report
Rat
Rabbit
Fluid
P 4 01
%A
Component A
Component B
Oral
LD 50
Skin
MLD
Skin
Irr.
Eye
Irr.
RC—l
60
Pentafluoro—
benzene
Hexafluoro—
benzene
1—2
1—3
I_LI
1-5
RC—2
60
Water
2—Methylpyri—
dine
1—6
1—7
1—8
1—9,
10
MFSN—21
60
Water
3—Methylpyri—
dine
I—il
1—12
1—13
1 111,
15
MFSN—2 1 1
60
Water
LI_Methylpyri_
dine
1—16
1—17
1—18
1—19,
20
FSN—l06
100
1 4—Methylpyri—
dine
——
1—21
1—22
1—23
I_2L 1,
25
4FSN—27
60
Pentafluoro—
pyridlne
Hexafluoro—
benzene
1—26
1—27
1—28
1—29,
30
Test experimental procedures are summarized as follows:
(A) Oral LID 50 (Rats, Mixed Sex)
The undiluted compound was fed by stomach tube to Sprague—Dawley
strain albino male and female rats.
After the approximate minimal Lethal Dose was determined, groups
of male and female rats were fed in increasing doses at incre-
ments of 0.1 fractional log intervals at four levels designed to
I—i

-------
blanket the toxicity range thereby supplying data for calculation
of the LD 50 which was done according to the method of E. J.
de Beer.
Observations were made for toxic signs and the viscera of the
test animals were examined macroscopically.
(B) Acute Skin Absorption Minimal Lethal Dose
(Rabbits, Mixed Sex)
The undiluted compound was applied in increasing doses at incre-
ments of various fractional log intervals to the closely clipped,
intact skin of New Zealand white male and female rabbits.
The treatment areas were covered with plastic strips and the
animals held in wooden stocks for periods up to 24 hours, after
which time they were assigned to individual cages.
Observations were made for toxic signs and the viscera of the
test animals were examined macroscopically.
(C) Skin Irritation (Rabbits, Mixed Sex)
0.2 Milliliter of undiluted sample was applied to the clipped,
intact skin of New Zealand white male and female rabbits under
a one inch by one inch square patch, two single layers thick.
The patches were held in place with adhesive tape. The trunk
of each animal was wrapped with plastic strips, to retard evao—
oration and avoid contamination, for the 2L1 hour exposure period.
Observations were made over a period of seven days for irritation.
The data were scored according to the method of Dralze, Woodard
and Calvery (Journal of Pharm. and Exp. Therapeutics, Volume 82,
December, 1944).
(f Eye Irritation (Rabbits, Mixed Sex)
0.1 Milliliter of undiluted sample was placed in the conjunctival
sac of the right eye of each of two groups of three albino male
and female rabbits and observations made over a period of seven
days for inflammation.
The eyes were rinsed with warm isotonic saline solution after:
(a) 24 hours exposure, and (b) 15 minutes exposure.
The left eye served as a control.
The data were scored according to the method of Draize, et al.
1—2

-------
Table 1-2. THE ACUTE ORAL MINIMAL LETHAL DOSE OF RC-1 FOR RATS
Sample Fed Undiluted
Weight Dose
Animal No. & Sex grams Mg./Kg. Fate
1—female 215 10,000 survived
2—male 210 10,000 survived
3-female 235 10,000 survived
1 4 male 215 10,000 survived
5—female 215 10,000 survived
6—male 200 12,600 survived
7—female 225 12,600 survived
8—male 205 12,600 survived
9—female 215 12,600 survived
10—male 2140 12,600 died
11—female 220 15,800 died
12—male 200 15,800 died
13—female 225 15,800 died
iLl_male 210 15,800 died
15—female 210 15,800 survived
DISCUSSION
The Acute Oral Minimal Lethal Dose for male and female rats was
found to be greater than 10,000 milligrams per kilogram and less
than 12,600 milligrams per kilogram.
The compound was classed as practically non-toxic by oral inges-
tion in male and female rats.
Survival time was 1 - 5 days with most deaths occurring within
two days.
Toxic signs included reduced appetite and activity and lethargy
(one to four days in survivors), Increasing weakness, slight
tremors, ocular discharge, collapse, and death.
At autopsy there was hemorrhagic areas of the lungs, slight liver
discoloration, and acute gastrointestinal inflammation.
Surviving animals were sacrificed seven days after dosing. The
viscera appeared normal by macroscopic examination.
I— 3

-------
Table 1—3.
THE ACUTE SKIN ABSORPTION MINIMAL
LETHAL DOSE OF RC-l FOR RABBITS
Sample Applied Undiluted
Animal Weight
5 Days Later
Kg.
DISCUSSION
The Acute Skin Absorption Minimal Lethal Dose for male and
female rabbits was found to be greater than 79L O milligrams
per kilogram.
The compound was classed as practically non—toxic by skin
absorption in male and female rabbits.
There was no weakness or other outward signs of systemic
toxicity.
Surviving animals were sacrificed 11$ days after dosing.
viscera appeared normal by macroscopic examination.
The
Animal No.—Sex
Weight Dose
Kg. Mg.-Kg .
1—male
2.5
2000
+0.1
survived
2—female
2.2
3160
+0.1
survived
3—male
2i
5010
0.0
survived
4—fema1e
2.3
79110
+0.1
survived
5—male
2.5
79110
+0.2
survived
Fate
I— 11

-------
Table I- 4. SKIN IRRITATION IN RABBITS AFTER APPLICATION OF RC-l
Sample (0.5 milliliter) Applied Undiluted
Numerical Evaluation at the End of (hr)
Animal No. & Sex 1 214 _____ 72 120 168
1—male 0 2 2 0 0 0
2—female 0 14 2 0 0 0
3—male 0 3 1 0 0 0
Average 0.0 3.0 1.6 0.0 0.0 0.0
DISCUSSION
The compound was classed as a moderate irritant when applied
undiluted to intact skin of male and female rabbits.
The average maximum score was 3.0 out of a possible 8 in 214 hours.
Observations following application -—
1—hour No skin changes; zero readings
214—hours Very slight to slight erythema and edema
148—hours Very slight erythema, very slight edema
in two instances
72—hours No erythema or edema; zero readingá
120—168 hours No erythema or edema; zero readings
‘—5

-------
Table 1—5. EYE IRRITATION IN RABBITS AFTER APPLICATION OF RC-1
Sample (0.1 milliliter) Applied Undiluted
Numerical Evaluation at the End of (hr)
Animal No. & Sex 1 21! 48 72 120 168
1—male 12 2 0 0 0 0
2—female 8 2 0 0 0 0
3—male 10 2 0 0 0 0
Average 10.0 2.0 0.0 0.0 0.0 0.0
DISCUSSION
The compound was classed as a slight eye Irritant in male and
female rabbits. The average maximum score was 10.0 out of a
possible 110 In one hour.
Observations following application --
Immediate Discomfort was moderate to severe with
blinking, pawing, and the eyes tightly
closed
10—minutes Slight to moderate erythema, slight edema,
copious discharge
1—hour Slight to moderate erythema, very slight
edema, moderate to copious discharge
24—hour Slight erythema; no edema or discharge
48—hour Eyes normal; zero readings
(2—168—Hour Eyes normal; zero readings
i—6

-------
Table 1-6. THE ORAL LD 50 OF RC—2 FOR RATS
Sample Fed Undiluted
Weight Dose
Animal No. & Sex grams Mg./Kg. Fate
1—female 230 631 survived
2—male 210 631 survived
3—female 215 631 survived
L!...ma le 220 631 survived
5—female 205 631 survived
6—male 255 794 survived
7—female 230 794 survived
8—male 260 7914 died
9—female 2140 7914 survived
10—male 230 7914 survived
11—female 2145 1000 survived
12—male 2 t0 1000 died
13—female 215 1000 died
14—male 215 1000 survived
15—female 220 1000 survived
16—male 220 1260 died
17—female 200 1260 died
18—male 250 1260 died
19—female 220 1260 died
20—male 270 1260 died
DISCUSSION
The Oral LD 50 for male and female rats was placed at 810 milli-
grams per kilogram with lower and upper limits of 730 to 910
milligrams per kilogram.
The compound was classed as mildly toxic by oral ingestion in
male and female rats.
Survival time was one to three days.
Toxic signs included reduced appetite and activity (one to three
days in survivors), increasing weakness, ocular discharge contain-
ing blood, collapse, and death.
At autopsy there was hemorrhagic lungs, liver discoloration, and
acute gastrointestinal inflammation.
Surviving animals were sacrificed seven days after dosing. The
viscera appeared normal by macroscopic examination.
I— 7

-------
Table 1-7. THE ACUTE SKIN ABSORPTION MINIMAL
LETHAL DOSE OF RC—2 FOR RABBITS
Sample Applied Undiluted
Weight Dose
________________ Kg. ____________ Fate
00 survived
+0.1 survived
—- died—ida
died— ida
died — 16 hr
died — 16 hr
DISCUSSION
The Acute Skin Abosrption Minimal Lethal Dose for male and female
rabbits was found to be greater than 200 milligrams per kilogram
and less than 316 mIlligrams per kilogram.
The compound was classed as moderately toxic by skin absorption
in male and female rabbits.
Survival time was 16 hours to one day.
Toxic signs included reduced appetite and activity (1—3 days In
survivors), rapidly increasing weakness, collapse, and death.
At autopsy there was hemorrhagic lungs, slight liver discoloration,
and gastrointestinal inflammation.
Surviving animals were sacrificed days after dosing. The
viscera appeared normal by macroscopic examination.
Animal No. & Sex
Weight Change
5 Days Later
Kg.
1—female
2.8
79.Li
2—male
2.6
200.0
3—female
2.5
316.0
L male
2.7
501.0
5—female
2.6
1000.0
6—male
2.6
2000.0
1—8

-------
Table 1-8. SKIN IRRITATION IN RABBITS AFTER APPLICATION OF RC—2
Sample (0.2 milliliter) Applied Undiluted
Numerical Evaluation at the End of (hr)
Animal No. & Sex 1 211 ____ 72 120 168
1—female 0 5 14 3 1 0
2—male 0 6 5 3 1 0
3—female 0 6 14 3 0 0
Average 0.0 5.6 I.3 3.0 0.6 0.0
DISCUSSION
The compound was classed as a severe irritant when applied
undiluted to intact skin of male and female rabbits.
The average maximum score was 5.6 out of a possible 8 in 214 hrs.
Pbservations following application ——
1—hour No skin changes; zero readings
211—hours Moderate erythema, slight to moderate edema
148—hours Slight to moderate erythema, slight edema
72—hours Slight erythema, very slight edema
120—hours Very slight erythema in two Instances; no edema
168—hours No erythema or edema; zero readings
Note: Sample had a defatting effect on the skin causing the skin
to flake off in 10—114 days. There was no Injury in depth.
‘—9

-------
Table 1-9. EYE IRRITATION IN RABBITS AFTER APPLICATION OF RC-2
Sample (0.1 milliliter) Applied Undiluted - 21 ! hours exposure
Numerical Evaluation at the End of (hr)
Animal No. & Sex 1 211 ‘ 48 72 120 168
1—female 58 66 614 50 1411 110
2—male 61 ! 71 67 50 140 27
3—female 56 76 70 118 38 30
Average 59.3 71.0 67.0 1 19.3 140.6 32.3
DISCUSSION
The compound was classed as a severe eye irritant in male and
female rabbits. The average maximum score was 71.0 out of a
possible 110 in 211 hours.
Observations following application -—
Immediate Discomfort was moderate with pawing and the
eyes tightly closed
10—minutes Slight corneal dullness, moderate to severe
erythema, slight edema, copious discharge
1—hour Translucent areas of corneal cloudiness, Iris
showed no reaction to light, moderate to
severe erythema, slight to moderate edema,
copious discharge
214—hours Translucent areas of corneal cloudiness, Iris
showed no reaction to light, moderate to
severe erythema, slight to moderate edema,
copious discharge containing whitish exudate
8—l2 0—hours Gradual improvement
168—hours Diffuse to translucent areas of corneal
cloudiness, slight erythema in one instance;
no edema or discharge
10—days Barely perceptible areas of corneal cloudiness
in two instances
114—days Eyes normal; zero readings
1—10

-------
Table 1—10.
EYE IRRITATION IN RABBITS AFTER APPLICATION OF RC-2
Sample (0.1 milliliter) Applied Undiluted — 15 minutes exposure
Animal No. & Sex
1-male
2—female
3-male
Average
Numerical Evaluation at the
1 2 4 48 72
69 30 2 1 1
1 19 24 22
5 14 35 20
57.3 29.6 22.0
68
66
60
64.6
End of (hr)
120 168
7 0
10 0
5 0
7.3 0.0
DISCUSSION
The compound was classed as a severe eye irritant in male and
female rabbits. The average maximum score was 611.6 out of a
possible 110 in one hour.
Observations following application ——
Immediate
10—minutes
1-hour
2 1 4-hours
48—120—hours
168—hours
Discomfort was moderate with pawing and the
eyes tightly closed
Slight corneal dullness, moderate to severe
erythema, slight edema, copious discharge
Opalescent areas of corneal cloudiness, iris
showed no reaction to light, moderate to
severe erythema, moderate edema, copious
discharge
Opalescent areas of corneal cloudiness, iris
showed no reaction to light, moderate to
severe erythema, moderate edema, copious
discharge containing whitish exudate
Gradual improvement
Eyes normal; zero readings
I—li

-------
Table I-il. THE ORAL LD 0 OF MFSN-21 FOR RATS
Sample Applied Undiluted
Weight Dose
Animal No. & Sex gram Mg./Kg. Fate
1—female 210 501 survived
2—male 205 501 dIed
3—female 260 501 survived
4—male 260 501 survived
5—female 210 501 survived
6—male 260 631 survived
7—female 215 631 survived
8—male 210 631 died
9—female 230 631 survived
10—male 220 631 died
11—female 200 794 died
12—male 235 794 died
13—female 225 794 survived
14—male 250 794 died
15—female 205 794 survived
16—male 200 1000 died
17—female 210 1000 survived
18—male 240 1000 died
19—female 210 1000 died
20—male 240 1000 died
DISCUSSION
The Oral LD 50 for male and female rats was placed at 710 milli-
grams per kilogram with lower and upper limits of 620 to 820
milligrams per kilogram.
The compound was classed as mildly toxic by oral Ingestion in
male and female rats.
Survival time was one to four days with most deaths occurring
within three days.
Toxic signs included reduced appetite and activity (for one to
four days in survivors), ocular discharge containing blood,
increasing weakness, collapse, and death.
At autopsy there was hemorrhagic lungs, liver discoloration, and
acute gastrointestinal Inflammation.
Surviving animals were sacrificed seven days after dosing. The
viscera appeared normal by macroscopic examination.
1—12

-------
Table 1-12. THE ACUTE SKIN ABSORPTION MINIMAL
LETHAL DOSE OF MFSN—21 FOR RABBITS
Sample Applied Undiluted
Weight Dose
______________ Kg. Mg./Kg . ____________ Fate
+0.1 survived
+o.i survived
—0.1 died — 6 da
0.0 survived
died — 3 da
died — 14 da
died — 1 da
DISCUSSION
The Acute Skin Absorption Minimal Lethal Dose for male and female
rabbits was found to be greater than 126 milligrams per kilogram
and less than 200 millIgrams per kilogram.
The compound was classed as highly toxic by skin absorption in
male and female rabbits.
Survival time was one to six days.
Toxic signs Included reduced appetite and activity (1—3 days in
survivors), increasing weakness, collapse, and death.
At autopsy there was hemorrhagic lungs, slight liver discoloration,
and gastrointestinal inflammation.
Surviving animals were sacrificed 114 days after dosing. The
viscera appeared normal by macroscopic examination.
1—13
Animal No. & Sex
Weight Change
5 Days Later
Kg.
1—male
2.8
79.14
2—female
2.5
126.0
3—male
2.8
200.0
14—female
2.7
316.0
5—male
2.5
501.0
6—female
2.14
1000.0
7—male
2.2
2000.0

-------
Table 1-13. SKIN IRRITATION IN RABBITS AFTER
APPLICATION OF MFSN-21
Sample (0.2 milliliter) Applied Undiluted
Numerical Evaluation at the End of (hr)
Animal No. & Sex 1 214 ____ 72 120 168
1—male 0 5 14 1 0 0
2—female 0 5 3 1 0 0
3—male 0 5 14 2 0 0
Average 0.0 5.0 3.6 1.3 0.0 0.0
DISCUSSION
The compound was classed as a severe irritant when applied
undiluted to intact skin of male arid female rabbits.
The average maximum score was 5.0 out of a possible 8 in 214 hrs.
Observations following application ——
1—hour No skin changes; zero readings
214—hours Slight erythema, moderate edema
148—hours Slight erythema, slight to moderate edema
72—hours Very slight erythema, very slight edema in
one instance
120—hours No erythema or edema; zero readings
168—hours No erythema or edema; zero readings
Note: Sample had a defatting effect on the skin causing the skin
to flake of in 10—114 days. There was no injury In depth.
1—114

-------
Table 1-14. EYE IRRITATION IN RABBITS AFTER
APPLICATION OF MFSN—21
Sample (0.1 milliliter) Applied Undiluted —— 24 hr exposure
Numerical Evaluation at the End of (hr)
Animal No. & Sex 1 214 48 72 120 168
1—female 56 71 67 118 142 25
2—male 71 73 65 63 27 15
3—female 58 58 56 52 31 27
Average 61.6 67.3 62.6 514.3 33.3 22.3
DISCUSSION
The compound was classed as a severe eye irritant in male and
female rabbits. The average maximum score was 67.3 out of a
possible 110 in 214 hours.
Observations following application ——
Immediate Discomfort was moderate with pawing and the
eyes closed
10—minutes Slight corneal dullness, moderate erythema,
very slight to slight edema, copious discharge
1—hour Easily discernable to translucent film over
cornea, iris showed little or no reaction to
light, moderate to severe erythema, slight
to moderate edema, copious discharge
24—hours Translucent areas of corneal cloudiness, iris
showed no reaction to light, moderate to
severe erythema, moderate edema, copious
discharge containing whitish exudate
148—120—hours Gradual improvement
168—hours Diffuse to easily discernalbe areas of
Corneal cloudiness, Iris reaction to light
was sluggish, slight erythema in one instance;
no edema or discharge
10—days Eyes normal; zero readings
1—15

-------
Table 1—15. EYE IRRITATION IN RABBITS AFTER
APPLICATION OFMFSN-21
Sample (0.1 milliliter) Applied Undiluted -- 15—mm exposure
Numerical Evaluation at the End of (hr)
Animal No. & Sex 1 2 1 1 115 72 120 168
1—female 59 59 24 21; 12 5
2—male 71 73 41 31 10 0
3—female 59 53 34 22 10 0
Average 63.0 65.0 33.0 25.6 10.6 1.6
DISC U 3 SI ON
The compound was classed as a severe eye irritant in male and
female rabbits. The average maximum score was 65.0 out of a
possible 110 in 24 hours.
Observations following application ——
immediate Discomfort was moderate with pawing and the
eyes closed
10—minutes Slight corneal dullness, moderate erythema,
slight edema, copious discharge
1-hour Opalescent areas of corneal cloudiness, iris
showed no reaction to light, moderate to
severe erythema, moderate edema, copious
discharge
24—hours Opalescent areas of corneal cloudiness, iris
showed rio reaction to light, moderate to
severe erythema, moderate edema, copious
discharge containing whitish exudate
48—hours Gradual improvement
72—120—hours Gradual improvement
168—hours Very slight diffuse areas of corneal cloudi-
ness in one Instance
10—days Eyes normal; zero readings
1—16

-------
Table 1-16. THE ORAL LD 5 p OF MFSN 214 FOR RATS
Sample Fed Undiluted
Weight Dose
Animal No. & Sex gram Mg./Kg. Fate
1—female 235 631 died
2—male 225 631 survived
3—female 260 631 survived
1 1—ma le 210 631 survived
5—female 205 631 survived
6—male 235 7914 died
7—female 205 7914 survived
8—male 250 7914 died
9—female 235 7914 survived
10—male 210 7914 survived
11—female 225 1000 died
12—male 210 1000 survived
13—female 215 1000 died
114—male 265 1000 died
15—female 200 1000 survived
16—male 210 1260 died
17—female 200 1260 died
18—male 215 1260 dIed
19—female 220 1260 died
20—male 200 1260 died
DISCUSSION
The Oral LD 50 for male arid female rats was placed at 700 milli-
grams per kilogram with lower and upper limits of 620 to 800
milligrams per kilogram.
The compound was classed as mildly toxic by oral ingestion In
male and female rats.
Survival time was one to three days with most deaths occur-
ring within two days.
Toxic signs Included reduced appetite and activity (for one to
three days in survivors), ocular discharge containing blood,
Increasing weakness, collapse, and death.
At autopsy there was hemorrhagic lungs, liver discoloration,
and acute gastrointestinal Inflammation.
Surviving animals were sacrificed seven days after dosing. The
viscera appeared normal by macroscopic examination.
1—17

-------
Table 1-17. THE ACUTE SKIN ABSORPTION MINIMAL
LETHAL DOSE OF MFSN-2 1 1 FOR RABBITS
Sample Applied Undiluted
Weight Dose
_______________ Kg. Mg./Kg . ____________ Fate
0.0 survived
+0.1 survived
—0.1 survived
died- ida
died — 16 hr
died - 16 hr
died - 12 hr
DISCUSSION
The Acute Skin Absorption Minimal Lethal Dose male and female
rabbits was found to be greater than 200 milligrams per kilogram
and less than 316 milligrams per kilogram.
The compound was classed as moderately toxic by skin absorption
in male and female rabbits.
Survival time was 12 hours to one day.
Toxic signs Included reduced appetite and activity and slight
lethargy (1—2 days in survivors), rapidly increasing weakness,
collapse, and death.
At autopsy there was hemorrhagic lungs and slight liver
discoloration.
Surviving animals were sacrificed iLl days after dosing. The
viscera appeared normal by macroscopic examination.
Animal No. & Sex
Weight Change
5 Days Later
Kg.
1—male
2—female
2.7
2.1
79.Ll
126.0
3—male
Ll—female
2.5
2.6
200.0
316.0
5—male
6—female
2.7
2.6
501.0
1000.0
7—male
2.0
2000.0
1—18

-------
Table 1-18. SKIN IRRITATION IN RABBITS AFTER
APPLICATION OF MFSN—24
Sample (0.2 milliliter) Applied Undiluted
Numerical Evaluation at the End of (hr)
Animal No. & Sex 1 211 ____ 72 120 168
1—female 0 5 3 1 0
2—male 0 14 14 1 1 0
3—female 0 5 14 2 1 0
Average 0.0 11.6 1 L0 2.0 1.0 0.0
DISCUSSION
The compound was classed as a severe irritant when applied
undiluted to intact skin of male and female rabbits.
The average maximum score was 14.6 out of a possible 8 In 2!! hrs.
Observations following application ——
1—hour No skin changes; zero readings
214—hours Slight erythema, slight to moderate edema
118-hours Slight erythema and edema
72—hours Very slight to slight erythema, very slight
edema In one instance
120—hours Very slight erythema; no edema
168—hours No erythema or edema; zero readings
Note: Sample had a defatting effect on the skin causing the skin
to flake off in 10—114 days. There was no injury in depth.
1—19

-------
Table 1-19. EYE IRRITATION IN RABBITS AFTER
APPLICATION OF MFSN-2 1 1
Sample (0.1 milliliter) Applied Undiluted —— 2 1 hrs exposure
Numerical Evaluation at the End of (hr)
Animal No. & Sex 1 214 1 18 72 120 168
1—male 61 88 82 63 59 42
2—female 71 71 65 59 57 40
3—Male 5 l 71 67 61 42 25
Average 62.0 76.6 71.3 61.0 52.6 35.6
DISCUSSION
The compound was classed as a severe eye irritant in male and
female rabbits. The average maximum score was 76.6 out of a
possible 110 in 24 hours.
Observations following application —-
Immediate Discomfort was moderate with pawing and the
eyes closed tightly
10—minutes Slight corneal dullness, moderate erythema,
slight edema, copious discharge
1—hour Easily discernable translucent film over
cornea, iris reaction to light was sluggish,
moderate erythema, slight to moderate edema,
copious discharge
24-hours Opalescent to opaque areas of corneal cloudi-
ness, iris showed no reaction to light,
moderate to severe erythema, slight to moder-
ate edema, copious discharge containing
whitish exudate
4 8—120—hours Gradual improvement
168—hours Translucent to opalescent areas of corneal
cloudiness, iris reaction to light was slug-
gish, slight erythema in one instance; no
edema or discharge
10—days Barely perceptible areas of corneal cloudiness
in one instance
111—days Eyes normal; zero readings
1—20

-------
Table 1—20. EYE IRRITATION IN RABBITS AFTER
APPLICATION OF MFSN-2 1 4
Sample (0.1 milliliter) Applied Undiluted —— 15 mm exposure
Numerical Evaluation at the End of (hr)
Animal No. & Sex 1 2L1 48 72 120 168
1—male 141 71 33 33 17 0
2—female 66 71 65 50 27 10
3—male 55 61 48 31 17 0
Average 54.0 67.6 148.6 38.0 20.3 3.3
DISCUSSION
The compound was classed as a severe eye irritant in male and
female rabbits. The average maximum score was 67.6 out of a
possible 110 In 24 hours.
Observations following application -—
Immediate Discomfort was moderate with pawing and the
eyes tightly closed
10—minutes Slight corneal dullness, moderate erythema,
slight edema, copious discharge
1—hour Barely perceptible to slight film over cornea,
iris reaction to light was sluggish, moder-
ate erythema and edema, copious discharge
24-hours Opalescent areas of corneal cloudiness, iris
showed no reaction to light, moderate,
erytherna and edema, copious discharge
containing slight whitish exudate
L i 8—120—hours Gradual Improvement
168—hours Barely perceptible areas of corneal cloudi-
ness in one instance
10-days Eyes normal; zero reading
1—21

-------
Table 1—21. THE ORAL LDcn OF FSN-106 FOR RATS
Sample Fed Undiluted
Weight Dose
Animal No. & Sex Gram Mg./Kg. Fate
1—female 215 501 survived
2—male 230 501 survived
3—female 225 501 survived
LIma le 200 501 survived
5—female 205 501 dIed
6—male 230 631 survIved
7—female 230 631 survIved
8—male 280 631 survived
9—female 215 631 died
10—male 225 631 died
11—female 200 7914 survived
12—male 270 7914 survived
13—female 220 7914 died
114—male 200 7914 died
15—female 220 79 1 1 died
16—male 220 1000 died
17—female 200 1000 dIed
18—male 210 1000 dIed
19—female 215 1000 dIed
20—male 225 1000 died
DISCUSSION
The Oral LD 50 for male and female rats was placed at 700 mull—
grains per kilogram with lower and upper limits of 620 to 800
rnil±igrams per kilogram.
The compound was classed as mildly toxic by oral ingestion in
male and female rats.
Survival time was one to three days.
Toxic signs included reduced appetite and activity (for one to
three days in survivors), increasing weakness, ocular discharge
containing blook, collapse, and death.
At autopsy there was hemorrhagic lungs, liver discoloration, and
acute gastrointestinal inflammation.
Surviving animals were sacrificed seven days after dosing. The
viscera appeared normal by macroscopic examination.
1—22

-------
Table 1-22. THE ACUTE SKIN ABSORPTION MINIMAL
LETHAL DOSE OF FSN-106 FOR RABBITS
Sample Applied Undiluted
Weight Change
5 Days Later
______________ _____ ______ Kg. Fate
+0.1 survived
+0]. survived
0.0 survIved
died - 16 hr
died - 16 hr
died- ida
died - 16 hr
DISCUSS ION
The Acute Skin Absorption Minimal Lethal Dose for male and female
rabbits was found to be greater than 126 milligrams per kilogram
and less than 200 milligrams per kilogram.
The compound was classed as highly toxic by skin absorption in
male and female rabbits.
Survival time as 16 hours to one day.
Toxic signs included reduced appetite and activity (1—3 days In
survivors), rapidly increasing weakness, collapse, and death.
At autopsy there was hemorrhagic lungs, slight liver discoloration,
and gastrointestinal inflammation.
Surviving animals were sacrificed 1 4 days after dosing. The
viscera appeared normal by macroscopic examination.
Weight
Animal No. & Sex Kg.
1—male 2.7
Dose
Mg./Kg.
50.1
2—female
2.3
79.4
3—male
2.2
126.0
4—female
2.1!
200.0
5—male
2.6
501.0
6—female
2.5
1000.0
7—male
2.1
2000.0
1—23

-------
Table 1—23. SKIN IRRITATION IN RABBITS AFTER
APPLICATION OF FSN-106
Sample (0.2 milliliter) Applied Undiluted
Numerical Evaluation at the End. of (hr)
Animal No. & Sex 1 211 118 72 120 168
1—female 0 7 7 7 6 6
2—male 0 7 7 7 6 6
3—female 0 7 7 6 6 6
Average 0.0 7.0 7.0 6.6 6.0 6.0
DISCUSSION
The compound was classed as a corrosive irritant when applied
undiluted to intact skin of male and female rabbits.
The average maximum score was 7.0 out of a possible 8 in 211 hrs.
Observations following application —-
1—hour No skin changes; zero readings
211—hours Moderate to severe erythema (slight esehar
formation), moderate to severe edema
118—hours No change
72—hours No change
120—hours Severe erythema (eschar formation), slight edema
168—hours No change
Note: The scab sloughed off in 10—111 days. There was no injury
In depth.
1—211

-------
Table I_21 1. EYE IRRITATION IN RABBITS AFTER
APPLICATION OF FSN—106
Sample (0.1 milliliter) Applied Undiluted —— 21! hrs exposure
Numerical Evaluation at the End of (hr)
Animal No. & Sex 1 21! 148 72 120 168
1—female 67 71 65 118 32 27
2—male 69 73 65 140 30 20
3—female 69 71 67 1 18 35 25
Average 68.3 71.6 66.3 1 15.3 32.3 214.0
DISCUSSION
The compound was classed as a severe eye irritant in male and
female rabbits. The average maximum score was 71.6 out of a
possible 110 in 211 hours.
Observations following application —-
Immediate Discomfort was moderate with pawing and the
eyes closed
10—minutes Slight corneal dullness, moderate to severe
erythema, slight edema, copious discharge
1—hour Opalescent areas of corneal cloudiness, iris
showed no reaction to light, moderate to
severe erythema, moderate to severe edema,
copious discharge
211—hours Opalescent areas of corneal cloudiness, iris
showed no reaction to light, moderate to
severe erythema and edema, copious discharge
containing whitish exudate
118-168—hours Gradual improvement
10 days Barely perceptible corrieal cloudiness
remained in two Instances
114—days Eyes normal; zero readings
1—25

-------
Table 1—25. EYE IRRITATION IN RABBITS AFTER
APPLICATION OF FSN-106
Sample (0.1 milliliter) Applied Undiluted —— 15 mm exposure
Numerical Evaluation at the End of (hr)
Animal No. & Sex 1 2L1 ‘ 18 72 120 168
1—female 5L 1 66 511 5 14 2L 1 10
2—male 73 68 35 31 12 0
3—female 61 69 113 39 15 0
Average 62.6 67.6 ‘ 111.0 111.3 17.0 3.3
DISCUSSION
The compound was classed as a severe eye irritant in male and
female rabbits. The average maximum score was 67.6 out of a
possible 110 in 211 hours.
Observations following application ——
Immediate Discomfort was moderate with pawing and the
eyes tightly closed
10—minutes Slight corneal dullness, moderate to severe
erythema, slight to moderate edema, copious
discharge
1—hour Opalescent areas of corneal dullness, iris
showed no reaction to light, moderate to
severe erytheina, moderate to severe edema,
copious discharge
‘- “ urs Opalescent areas of corneal dullness, iris
showed no reaction to light, moderate to
severe erythema and edema, copious discharge
containing whitish exudate
‘18—120—hours Gradual improvement
168—hours Barely perceptible areas of corneal cloudi-
ness in one instance
10—days Eyes normal; zero readings
1—26

-------
Table 1-26. THE ORAL LCç 0 OF MFSN-27 FOR RATS
Sample Fed Undilited
Weight Dose
Animal No. & Sex Gram Mg./Kg. Fate
1—female 210 200 survived
2—male 210 200 survived
3—female 200 200 survived
1 1—male 220 200 survived
5—female 205 200 survived
6—male 235 251 died
7—female 210 251 survived
8—male 220 251 survived
9—female 210 251 died
10—male 235 251 survived
11—female 210 316 died
12—male 220 316 survived
13—female 200 316 died
ill—male 200 316 survived
15—female 210 316 died
16—male 215 398 survived
17—female 200 398 died
18—male 215 398 survived
19—female 200 398 dIed
20—male 205 398 died
21—female 210 501 died
22—male 2ll0 501 died
23—female 220 501 died
2 l l-ma le 220 501 died
25—female 235 501 dIed
DISCUSSION
The Oral LD 50 for male and female rats was placed at 310 milli-
grams per kilogram with lower and upper limits of 270 to 350
milligrams per kilogram.
The compound was classed as moderately toxic by oral ingestion
in male and female rats.
Survival time was several hours to five days with most deaths
occurring within one day.
Toxic signs included reduced appetite and activity and lethargy
(i—ll days in survivors), increasing weakness, collapse, and death.
At autopsy there was lung and liver hyperemla and acute gastro-
intestinal inflammation.
Surviving animals were sacrificed seven days after dosing. The
viscera appeared normal by macroscopic examination.
1—27

-------
Table 1—27. THE ACUTE SKIN ABSORPTION MINIMAL
LETHAL DOSE OF MFSN-27 FOR RABBITS
Sample Applied Undiluted
Animal Weight
Weight Dose 5 Days Later
Animal No. & Sex Kg. Mg./Kg. Kg. Fate
1—male 1.9 1000 0.0 survived
2—female 2.2 2000 —0.2 survived
3—male 2.6 3160 —0.1 survived
2 4—fema le 2.6 5010 died — 4 da
5—male 2.1 79 140 died — 1 hr
6—female 2.0 7940 died — 10 hr
7—male 1.8 7940 died — 16 hr
DISCUSSION
The Acute Skin Absorption Minimal Lethal Dose for male and female
rabbits was found to be greater than 3160 millIgrams per kilogram
and less than 7940 milligrams per kilogram.
The compound was classed as slightly toxic by skin absorption In
male and female rabbits.
Survival time was one hours to four days.
Toxic signs included reduced appetite and activity and slight
lethargy (1—4 days in survivors), increasing weakness, collapse,
and ‘leath.
At auLopsy there was hemorrhagic lungs, liver discoloration,
enThi d gall bladder, and gastrointestinal inflammation.
ring animals were sacrificed 14 days after dosing. The
viscera appeared normal by macroscopic examination.
1—28

-------
rrable 1-28. SKIN IRRITATION IN RABBITS AFTER
APPLICATION OF MFSN-27
Sample (0.5 millIliter) Applied Undiluted
Numerical Evaluation at the End of (hr)
Animal No. & Sex 1 214 148 72 120 168
1—male 1 5 5 5 14 1
2—female 1 6 6 6 3 0
3—male 1 5 5 14 3 0
Average 1.0 5.3 5.3 5.0 3.3 0.3
DISCUSSION
The compound was classed as a severe Irritant when applied
undiluted to intact skin of male and female rabbits.
The average maximum score was 5.3 out of a possible 8 In 214 hrs.
Observations following application ——
1—hour Very slight erythema; no edema
214—hours Slight to moderate erythema, moderate edema
148—hours Slight to moderate erythema, moderate edema
72—hours Slight to moderate erythema and edema
120—hours Very slight erythema, slight to moderate
edema
168-hours No erythema; very slight edema in one
instance
Note: Sample had a defatting effect on the skin causing the skin
to flake off in 7—10 days. There was no Injury in depth.
1—29

-------
Table 1—29. EYE IRRITATION IN RABBITS AFTER
APPLICATION OF MFSN—27
Sample (0.1 milliliter) Applied Undiluted —— 214 hr exposure
Numerical Evaluation at the End of (hr)
Animal No. & Sex 1 2 l 118 72 120 168
1—male 16 51 51 51 27 17
2—female 18 75 89 89 149 32
3—male 18 75 73 73 147 32
Average 17.3 67.0 71.0 71.0 141.0 27.0
DISCUSSION
The compound was classed as a severe eye irritant In male and
female rabbits. The average maximum score was 71.0 out of a
possible 110 in 118 hours.
Observations following application —— 214 hours exposure
Immediate Discomfort was severe, with pawing, squeal-
ing, and the eyes closed
10—minutes Moderate erythema and edema, copious discharge
1—hour Moderate erythema, moderate to severe edema,
copious discharge
211—hours Opalescent areas of corneal cloudiness, iris
showed little or no reaction to light, mod-
erate to severe erythema and edema, copious
discharge containing whitish exudate
Opalescent to opaque areas of corneal cloudi-
ness, Iris showed little or no reaction to
light, moderate to severe erythema, moderate
edema, copious discharge containing whitish
exudate
72—120—hours Slight Improvement
168—hours Diffuse to easily discernible areas of corneal
cloudiness, moderate erythema, slight edema,
moderate discharge
10—111—days Gradual improvement
17—days Two were scored zero
20-days Eyes normal; zero readings
1—30

-------
Table 1—30. EYE IRRITATION IN RABBITS AFTER
APPLICATION OF MFSN—27
Sample (0.1 millIliter) Applied Undiluted —— 15 mm exposure
Numerical Evaluation at the End of (hr)
Animal No. & Sex 1 214 1 18 72 120 168
1—male i6 61 57 57 57 147
2—female 16 53 61 145 35 35
3—male 16 63 67 147 35 33
Average 16.0 62.3 58.3 149.6 112.3 38.3
DISCUSSION
The compound was classed as a severe eye irritant In male and
female rabbits. The average maximum score was 62.3 out of a
possible 110 in 214 hours.
Observations following application —— 15 minutes exposure
Immediate Discomfort was severe with pawing, squeal-
ing, and the eyes tightly closed
10-minutes Moderate erythema and edema, copious
discharge
1-hour Moderate erythema and edema, copious
discharge
214-hours Translucent to opalescent areas of corneal
cloudiness, iris reaction to light was slug-
gish, moderate to severe erythema, moderate
edema, copious discharge containing whitish
exudate
148—120—hours Slight improvement
168—hours Slight areas of translucent corneal cloudi-
ness, iris reaction to light was sluggish,
moderate erythema, very slight to slight
edema, slight to moderate discharge
10-17—days Gradual improvement
20—days Slight areas of translucent corneal cloudi-
ness in one instance; two scored zero
1—31

-------
APPENDIX J
MONSANTO RUB-BLOCK LUBRICATION/WEAR TEST MACHINE
This machine was designed and built by Monsanto Company to test
various lubricating fluid systems in sliding frictional contacts
under a wide range of temperatures and pressures. It consists
essentially of a vertical spindle fitted with a testing disk
(ring) Immersed in a thermostatted reservoir of the test fluid.
Two test blocks are radially loaded against the ring and are re-
strained from rotating about the ring axis by a torque pickup.
The blocks may be either flat or conforming. Mechanical details
are shown in Figure J—l. An overall view of the machine and its
auxiliaries appears in Figure J—2.
Friction coefficients are determined by torque transfer measure-
ments from the rotating cylindrical ring to stationary wear blocks.
Wear measurements are obtained by analysis of photographs of the
wear tracks on non—conforming test blocks. Wear block tempera-
ture is determined by embedded thermocouples.
The loading systems, torque measurements systems, and wear speci-
mens are contained in a closed chamber where controlled tempera-
ture and pressure are maintained. For liquid lubricant studies
the wear specimens are submerged while bonded lubricant studies
are carried out in a dry system. The rotating shaft passes
through a mechanical shaft seal and Is externally driven by a
variable speed motor and belt arrangement. Reciprocating motion
of the ring with variable angular displacement Is accomplished
by a four bar linkage.
Range of Operating Conditions
The operating range specifications of the Monsanto Friction and
Wear Machine are listed below:
Radial Block Load : 2 to 1600 lbf; continuously variable from
outside the test chamber.
Rotational Motion : 100 to 3390 rpm from 5 HP motor with capa-
bility of 10,000 rpm with suitable pulleys.
Reciprocating Drive : 0 to 1 15° angular displacement with fre-
quencies to 3000 cpm.
Wear Specimen Geometry : Conforming or flat wear block on 1.5
in. diameter ring (std). Other geometries are available.
J—1

-------
100
Deflection read as wear
c_ 3OtolO,000rpmat5ph
continuous rotation
Deflection read as torque
11
Restraining spring
_Surrounded by heaters
and insulation.
temperature up
1 to 800 lb force
continuously variable
I
Self-aligning
-— 2 to 1600 lb load
Drain
I P TIA . &A W Dc,AaTp twT
INST UM(NT DLO ,4cM LAI
FRICTION AND WEAR
[ _ e .n
T LOUIS cs uc
DWG
I so. B
Figure J—l.
Rub Block Lubrication/Wear Test
Machine

-------
U i
J—2. Test Setup

-------
Pressure : Chamber pressure range is from iO to 1O Torr.
Data Available : Friction torque and wear depth are continuously
available during operation. Wear specimens are available
for examination and photography at end of run.
Liquid Lubricant Operating Procedure :
(1) Wear block and ring metallurgy, surface roughness and geo-
metry are specified.
(2) Range of operating condition simulative of the end use
machine is chosen.
(3) Strain gauge instrumentation, pressure transducers and
thermocouples are calibrated.
(4) Lubricant is placed in the closed chamber and the desired
temperature and pressure are equilibrated.
(5) (a) For conforming geometries a break—in procedure which
allows repeatable friction coefficients under given
load and speeds is determined. The speed is then fixed
at the lowest value specified and the load is increased
in Increments until an Incipient scuffing torque mea-
surement is observed. The speed is Increased and the
loading procedure repeated until the maximum specified
speed Is reached.
(b) For flat block or low conforming geometries the load
and speed are fixed with the friction and wear observed
for a fixed time or until excessive wear occurs. New
test specimens are used for each load and speed
combination.
Significance
Wear and friction are determined as a function of speed, load,
and temperature for each fluid formulation, metallurgy, wear
specimen shape. Hydrodynamic, mixed, and boundary lubrication
regimes are investigated under loads, speeds, and environments
seen in real bearings.
J_L

-------
APPENDIX K
THERMODYNAMIC PROPERTIES OF MULTICOMPONENT FLUIDS
Computer Program E1393
1. SCOPE
Computer program E1393 computes the density, enthalpy, and entropy
of multicomponent fluids in the subcooled liquid, saturated liquid,
saturated vapor, and superheated vapor regions. Output tables
cant am:
(a) Bubble point pressures and saturated liquid properties at
specified temperature intervals.
(b) Dew point pressures and saturated vapor properties at
specified temperature intervals.
(c) Bubble point temperatures and saturated liquid properties
at specified pressures.
(d) Dew point temperatures and saturated vapor properties at
specified pressures.
(e) Single phase liquid and vapor properties at specified
pressures and specified temperature intervals.
2. MODEL
Saturation conditions are described by the Antoine equation for
vapor pressure, the van Laar equation for liquid phase non—
idealities, the Redlich-Kwong equation of state for gas volume,
and the Poynting equation for liquid phase fugacity. Liquid den-
sity is described by Benson’s correlation (Ref. 1, p 77) and the
temperature dependence of the latent heat of vaporization is
given by the Watson equation (Ref. 1, p 1L18).
A Fortran source listing of the models is given in Section 7.
The main program reads the input data and calls subroutines
MODEL and OUTPUT. Subroutine MODEL controls the generation of
the physical property tables which are subsequently printed by
subroutine OUTPUT.
The individual property calculations are made in modular subpro—
grams whose entry point names and functions are given below.
K-i

-------
Entry Function
KAI To compute the component vapor-liquid distribution ratios.
SAT To control subprograms which compute the bubble liquid
and dew gas properties at a specified temperature.
SFGC To compute the gas fugacity of a component at T, P.
SGAMVL To compute the liquid phase activity coefficients of all
components.
SHGC To compute the gas enthalpy of a component at T, P.
SHGM To compute the gas enthalpy of a mixture at T, P.
SHLB To compute the bubble liquid enthalpy at T.
SHLL To compute the liquid enthalpy at T and P.
SHVC To compute the latent heat of vaporization of a pure
component at T.
SPSC To compute the vapor pressure of a pure component at T.
SSGC To compute the gas entropy of a pure component at T, P.
This entry point was used In the final program.
SSGM To compute the gas entropy of a mixture at T, P.
SSLB To compute the bubble liquid entropy at T.
SSLL To compute the liquid entropy at T, P.
TB To Invoke subprograms which compute the bubble liquid
temperature, volume, enthalpy, and entropy at P.
To invoke subprograms which compute the dew gas tempera-
ture, volume, enthalpy, and entropy at P.
SVGC To compute the gas volume of pure component at T, P.
SVGM To compute the gas volume of a mixture at T, P.
SVLC To compute the liquid volume of a pure component at T.
SVLM To compute the liquid volume of amixture at T.
The library routines used by Program El393 are described in
Section 8.
K-2

-------
3. INPUT
Problem data Is entered on Input Data Sheets as shown in Section 9.
Blank forms are provided In Section 11. The input comprises 11
lists as follows:
List 1: Problem title (printed on each output page)
List 2: Problem subtitle (printed on each output page)
List 3: Temperature grid limits and spacing
List 14: Pressure grid points
List 5: System composition in mole or mass units
List 6: Component names, molecular weights, and Antoine
vapor pressure equation constants
List 7: Liquid activity coefficient data for van Laar A 1
List 8: LiquId activity coefficient data for van Laar C 1
List 9: Temperature coefficients for the Ideal gas heat
compacity of the components
List 10: Component critical properties, heat of vaporization,
and liquid density
List 99: End of case Indicator
Lists 2,7, and 8 may be omitted. If List 7 and 8 are not used,
the program assumes that the liquid is an ideal solution.
Data is key punched onto cards as indicated on the Input Data
Sheets. Numeric items must be separated by one or more blanks.
A list may be freely continued onto additional cards but a data
item must not straddle card boundaries.
14. OUTPUT
The program results are the tables described in Paragraph 1.
SectIon 10 gives an example corresponding to the input data in
Section 9. The column headings are self—explanatory.
5. EXECUTION
The program was compiled on an IBM 370/165 computer with the Fortran
IV G Level 20 compIler. Compiled subprograms were combined with
library routines by IBM ’s F88 Level Linkage Editor and the resulting
load module was saved for production runs. The program requires
130K bytes of core where 1K = 10214.
6. REFERENCES
(1) Reid, R. C., and T. K. Sherwood, “The Properties of Gases and
Liquids,” McGraw—Hill (1966).
K-3

-------
7. FORTRAN SOURCE LISTING OF PROGRAMS DEVELOPED FOR E1393
C PROGRAM E1393 — THERMODYNAMIC PROPERTIES OF FLUID MIXTUHEc
C IDENTIFICATION SECTION
C TITLE = THERMODYNAMIC PROPERTIES OF FLUID MIXTURES
C AUTHOR = A C PAIJLS
C LOCATION = CED, MONSANTO CO., ST. LOUIS, 10.
C DATE = 9/71. 2/72
C FILES = FORTRAN 5, 6, 12
C SUBPROGRAMS = KAXI . MAIN, MODEL, OUTPUT, SAIl ’ SF61, SGAPiV1,
C SHG1, SHL1 . SHV1. SPS1. SSG1. SSL1. STR1, STD1.
C SVGI. SVLI
C LISPROGRAMS = DAIE4. HEADER, KTBL, LINE. MASS, MOVE. MPBpP,
C MPBPT, NCK. NORM. ROOTFD. UCP, UCT, ZERO, 7RKC
C-
C DEFINITION SECTION
C AA(IuK) ANTOINE VAPOR PRESSURE DATA FOR COMPONENT I
C AM REDLICH—KWONG CONSTANT FOR MIXTURE
C aRIcCI ) REDLICH—KwONG CONSTANT FOR COMPONENT I
C REDLICH—KWONG CONSTANT FOR MiXTURE
C RRX(I) REDLICM—KWONG CONSTANT FOR COMPONENT I
C C(I.K) IDEAL GAS HEAT CAPACITY CONSIANTS FOR COMPONFNT I
C 0 DENSITY. LB/F13
C 08(I) INPUT DATA BASE
C OLG(I) DERIVATIVE OF LN GANCI) WITH RESPECT TO T
C OL1C1) LIQUID DENSITY OF COMPONENT I AT DB(I,420), (MOL,CM3
C FG(j) GAS FUGACITY OF COMPONENT I AT SYSTEM PRESSUPE, ATM
C FL(I) LIQUID FUbACITY OF COMPONENT I AT SYSTEM PRE5SUR .ATM
C FL.G(I) IDEAL SOLUTION K—VALUE FL(I)/FG(j)
C GACI,J,K) LIQUID ACTiVITY COEFFICiENT DATA FOR *14
C GAM(I) LIQUID ACTIVITY COEFFICIENT OF COMPONENT I
C GKCI ,J,K) LiQUID ACTIVITY COEFFICIENT DATA FOR CI J
C HB BUBBLE POINT LIQUID ENTHALPY, CAL/GMOL
C HO DEW POINT GAS NTHALPY. CAL/GMOL
C 116 GAS ENTHALPY, CAL/GMOL
C HL LIQUID ENTP4ALPY, CAL,GMOL
C HZ LIQUID ENTHALPY AT 0 DEG C AND BUBBLE POINT PRESSURE
c ICC INPUT COMPOSI1 ION UNIT: 1 a MASS, 2 = MOLE
C ,cERR ERROR CODE: 1 = NO, 2 = YES
C cGAM LIQUID ACTIVITY COEFFICIENT EQUATION: I = VAN LAAR
C 
-------
GAS ENTROPY, CAL/GMOL—K
LIQUID ENTROPY. CAL/GMOL—K
LIQUID ENTROPY AT 0 DEG C AM) BUBBLE POINT PPESSUPE
TEMPERATUkE. DEG
CRITICAL IEMPERATURE OF COMPONENT I. DEG K
CRITICAL TEMPERATURE OF MIXTURE.. DEG K
GWID TEMPERATURE FOR I—T N ISOTHERM. bEG i
TEMPERATURE GRID LOWER LIMIT
TEMPERATURE GRID UPPER LiMIT
TEMPERATURE GRID STEP SIZE
RUBBLE POINT LIQUID VOLUME, CM3/GMOL
CRITICAL VOLUME OF MIXTURE. CM3/GMUL
DEW POINT VOLUME, CM3/GMOL
GAS VOLUME, Cr43/GMOL
MOLECULAR WEIGHT OF COMPONENT I. G/GMOL
MOLECULAR WEIGHT OF MIXTUREc LB/LBMOL
MASS FRACTION OF COMPONENT I IN SYSTEM
MOLE FRACTIO i OF cOMPONENT I IN SYSTEM
C
C INPUT SECTION
C
REi D LTST NUMBER, CONTROL LISTS
5 READ (5, 900, END = 8) LN
GO TO Cli . 12, 139 14, 1b 16. 17 . 18, 19. 20), 1 -N
IF (LN .EQ 0 99) GO TO 30
3 CONTINUE
CALL EXiT
INITIALIZE PROBLEM—SET
5
C LIST 2, CASE TITLE
LIST 3. TEMPERATURE GRID
1=2 , 6)
LIST 4, PRESSURE GRID
N. (06(1 • 50)0 1 ic N)
LIST 5, SYSTEM COMPOSITION
N. (06(1,100), 11cN)
GO TO 5
LIST 6, MOLECULAR WEIGHTS AND ANTOINE
C SG
C SL
C SZ
C T
C TC(I)
C TCM
C TG(I)
C TLL
C TLU
C TSS
C VB
C VCM
C VO
C VG
C WM(I)
C WMM
C X(I)
C 1( 1)
C PROGRAM E13ci3
C DECLARATIVE SECTION
COMMON 06(1600). GA(20 ,20 9 3)c Gic(20.20 .3)
COMMON/LITD/ NAME(3,20)
COMMON /TITL/ DATE(2)c TTL1C15) , TTL2I1S)
C
C
FILE ECTION
900 FORMATCG1.0)
901 FUNMAT( 3A4. (G1.0)
902 FURMAT(3X , 15A4)
CALL DAT€4(DATE)
CALL HEADER(—1393)
C
C
INITIALIZE CONTROL SUBROUTINE • PoOG NO.
11 CALL
READ
GO TO
ZERO(DB. 19 4000)
(12, 902) TTL1
C
C
C
C
12 READ (12. 902) TTL2
GO TO S
13 READ (5,900) (DB(I).
GO TO 5
14 READ (5,900) 08(12).
08(13) = N
(0 10 5
15 READ (5.900) DB( 19) .
08(20) N
K-5

-------
C CONSTANTS
lb READ (5,900) N
08(21) = N
D 0160 1 =1.N
160 READ (5,901) (NAiIE(J,I), J=1.3). DB(I.1201 , D (I.l4Q),
I 08(1 .160). Oã(1.18O)
GO TO 5
LiST 7, LIQ. ACT. COEF. DATA FOR A(I.J)
17 READ (5,900) N. DB(23). (I, J, (GA(j,J,K), K=i,3),
1 (tIA(J.j,K), Ic=l,3), 11=1.14)
DB(22) = N
GO TO 5
C LIS1 8, LIQ. ACT. COEF. DATA FOR ((1.J)
18 READ (5,900) N, DB(25), (I, J, (GKCMINO(I.J). MAXO(i.J) , K).
1 K=1.3) , I1=1.N)
DB(241 = N
GO TO 5
c LIST 9. IDEAL GAS ‘EAT CAPACITY CONSTANTS
19 READ (5.900) N. ((08(1 . J 20 • 180). J=1 , ) , I1,’ )
DB(26) = N
GO TO 5
C LIST 10. CRITICAL PROPERTIES, HEAT OF
C VAPORIZATION. LIQUID DENSITY
20 READ (5.900) N. ((DB(I • 20 j • 300). J 1,6). I = 1,N)
08(27) = N
GO TO 5
C
C SOLVE MODEL
30 CALL MODEL
C PRINT CASE RESULTS
CALL OUTPUT
GO TO S
END
K-6

-------
BLOCK DATA
COMMON /TITL/ DATE2), TTL(30)
DATA TTL, 3O*4H
END
K-7

-------
SUBROUTINE MODEL
C
C DEFINITION SECTION
C
C DECLARATIVE SECTION
COMMON 08(120), WM(20), AA(20.3). C(20.6).
1 TC(20. PC(20), Z361(140.
2 AM, 811. 1503(78),
3 ARK(20). BKK(20), DLG(20), DL1(20), FG(20. FL(20.
4 FLG(20), GAM(20), 61(20), 62(20). 1(20),
5 Tb(5O), P6(50). RE(50 .8), 21301(300).
6 GA(20,20 ,3), GK(20.20,3), Rr,(50,SO,3)
COMMON /COM I/ cERR(2), KuP. IçUT, NC, NP. NT, PCM, tZ. sz
COMMON,CONTRL., NLC, KDUH(3)
DATA P182.0575/, P 11/1.9872/
C
C CO ’PUTATION SECTION
C ZEWO OUTPUT END OF DATA BASE
CALL ZERO(DB, 501. 1600)
CALL ZERO (RG, 1. 7500)
C
KUT = 08(2) • 1
TLL = 08(3)
ILU = DB4
TSS = DB(5)
KUP = 08(12) ‘ 1
NP = 08(13)
ICC = DB (19)
NC = 08(20)
NLC =NC
1(6*11 = 08(23)
C
C SYSTEM COMPOSITION IN MULE FRACTION
C LIQUID DENSiTy. GMOL/C113
SUM = 0.
00 10 1 = 1. NC
= 08(1 • 100)
DLI(I = DB(I • 400)/WN(j)
IF (ICC .Eo. 1) Z(I) Z(I) IWM(I)
10 SUM = SUM • 2(1)
00121 =1.NC
2(I) = 2(1)/SUM
12 GAM(I) = 1.0
C
c INITIALIZE SUBPROGRAM PARAMETERS
I = KAI1(FG, FL. FLO, 6AM, KGAH, NC. PC. R, TC. WM)
CALL SGAMV I (GA, GAM, 6K. NC)
C
CALL SPSI (AA)
CALL SVG1 (NC, 2. IC. PC. R, ARK. aRK. AM. 811)
PCI4 (Re(O. 0866403/8M)• 0 5*(AM/O.4 2 74 8 0 )e* 2 )aa 033333333
1CM = (0.0866403DAM/(O.42748 0.91,eR) ) O.66666667
VCM = R TCM/{3 PcM
CALL SHV1 (NC, 08(361). 09(381), IC, 1CM)
CALL SMG1 (NC, Z, C. ARK. BR1(, AM. 8M R, H)
CALL SSG1 (NC, Z. C, 273.15, 1.0. ARM, BRK, AM. BM, P. RH)
CALL SFG1 (ARK, BRK, R)
K-8

-------
2’ OL1, Od(421), TC, PC, Re TCM , PCt.j)
Ze R, RH’ TC)
Z. Re RH, IC)
1CM, PCM. VCM, 6AM, KERR, KGAM)
TCM, PCM, VCM, 6AM, KERR, KGAM)
TCM, PCMe VCM 0 6AM, KERR. KGAM)
C
C SCAN TEMPERATURE GRID
PD = 0.
HZ = 0.0
SZ = 0.0
00701 =1eNT
C SATURATION PROPERTIES AT T
C
T = TG(I)
IF (T .61. 1CM) 60 TO 60
CALL SAT(T, PDc VDe HOe SD. PB, yR. HBe SB)
IF (KERR(1) •NE. 1) WRITE (6,941) Ic PB
IF (KERR(2 .ME. 1) wRITE (6,942) Te PD
941 FORMAT(// S BUBBLE POINT ERROR. 1, PB ‘. 2G13.5
942 FORMAT(// ‘ DEW POINT ERROR. 1, PD = e 2613.5)
C
C V 9 H, S AT GRID PRESSURES
600065J =1eNP
P = P6(J)
(1 .GT. TCM) GO TO 61
(P .GT. PD) GO TO 62
SVGM CT, P, VG)
SHGM CT, P. VG, HG)
SSGM (T, P. VG, SG)
R6(I,J,1) = VG
RG(I ,Jp2) = HG — HZ
RG(IeJe3) SG — SZ
TO 65
(P .LT. PB) GO TO 65
SHLL T, P. PB, HBe HL.
SSLL (T. P. P8, SBe SL)
RG(1,J,1) yR
RG(I,Je2) = HL — HZ
RG(I,J ,3) = SI. — SZ
CALL
CALL
CALL
CALL
CALL
CALL
SVL1
SHL1
SSL1
SAT I
STB 1
STD I
(NC,
(NC,
(NC,
(1, NC.
(2. NC,
(2. NC,
C
C
16
NT
00 16 1
16(1)
CALL UCT
TG(1)
CALL UCP
SETUP GRID POINTS IN DEG K, ATM
= AMIN1(2 • (TLU — TLL)/TSS, 50.0)
= lc NT
= ILL • (I — 2)°TSS
(NT. IcUT. 3, 16, TG)
= 273.15
(NP KUP. j, D8(51), PR)
IF (I •EQ.
IF (I .EQ.
RE (I , 1)
RE (I ‘2)
RE (1.3)
RE(I,4)
RE (I .5)
RE(I ,6)
RE(I,7)
RE (1.8)
1) HZ = MB
1) SZ = SB
= PB
= VB
= HR — HZ
SB — SZ
= PD
= vo
= HO — HZ
= SD — SZ
IF
IF
61 CALL
CALL
CALL
GO
6 IF
CALL
C L L
K—9

-------
bS CONTINUE
70 CONTINUE
RE TURN
END
K—b

-------
924 FORMAT(
9 8 FORMAT( I I,
930 FORMAT(//,)
932 FORMAT(
936 FORMAT(
1
3
5
6
938 FORMAT(
1
3
5
6
94n FOPMAT(
944 FOI MAT(
948 FORMAT(
1 /
/
3
952 FORMAT(
OCT (NT.
UCP (NP,
UCP (NT a
UCP (NI,
MASS (NC,
NORM (NC,
I =
RE(I,2) =
RE(I,3) =
RE(I ,4) =
RE(I,6) =
RE(I,7) =
=
IF (RE(I,2)
IF (RE(I.6)
00 15 .J =
RG(I .J ,1)
IF (P G(I,J ,1
RG(I ‘J ’2)
RG(I , ,3)
00101 =
X(I) =
ZP(I) =
13, ix. 3A4, F9.3 . F10.3, F10.2)
4X, ‘MIXTURE’, 7X, ‘100.000’. 1011
CONVERT TO ENGLISH UNITS
3. 1 (01. TO, TO)
19 2. PG, PG)
19 2. RE(1,1)p RE(1 .1))
1, 2 .RE(1 9 5), RE(I,5))
WM, Z9 ZS, Au AS 9 WMM)
X i XS , X)
1, NT
R (1.2) /WMM*0e0160185
(193) /WMM 1 .8
RE (1.4) /WMM
RE (1.6) /WMM*0.0160185
RE(I a7)/WMM*1.8
RE (I 98)/WMM
.NE . 0.0) RE.CI,2) = 1.O/RE(I .2)
.NE. 0.0) WE(I,6) = 1.0/RE(1 ,6)
1, NP
= RG(I .Jcl)/WI4M.O . 0160185
.NEo 0.0) RG(I .J,1) = 1.0/RG(I,J,i)
= RG(I,J 92)/WMM*1.8
= RG(I .J.3)/WMM
1 aNC
100.0*X (1)
100 0 0Z (I)
SUMROUTINE OUTPUT
COMMON Ob(780), Z(20), TG(5O), P6(50). RE(SOç,8),
1 Z1301 (2700), R6(50,SO ,3)
COMMON/LITD, NAME(3,20)
COMMON /COM1/ KEkR2), KUF , 1(01, NC, NP, NT, PCM, HZ, SZ
REAL M(2O), X(d0
INTEGER*2 LI(4)/2H C. 211 F, 214 I’ 211 p/
DIMENSION ZP(2 0)
EQUIVALENCE (08(121). WM(1))
9 0 FORMAI( ‘0’. ‘COMPOSITION’, BX, ‘MOLE S’. 1014 MASS S.
I IUH MOLE WT)
100.000. P10.2)
‘0’. ‘THERMODYNAMIC PROPERTIES AT SATUWATIONa)
‘ ‘. iX, ‘TEMP’ , 9X ‘ BUbBLE POINT LIQUID’
a
/ ‘ I. SX, aT’, iox po 9
/ ‘ ‘. 3X, ‘DEG’, A2 .
BTU/L13’c 6Xp
‘, 3X, ‘TEMP ’ , 9X ,

14X, 0 9 l4Au ‘II’ , 14X, IS’
7X9 ‘PSI’. lOX. ‘ LB/FT3’, 7X,
810/LB—F ‘9 2X)
DEW POINT G*S -,
/ ‘ ‘. SX, ‘T’. 10*, °Pi 9 14X, ‘0’, 14X . ‘H’, )4X,
/ ‘ i 3X . ‘DEG’, A2, 7Xu ‘PSI’, lOX, ‘ LB/FT3., 7*,
8TU/LB 9 6*9 I BTU/LB—F ‘, 2X)
‘, F8,2, F12.2, 4X, 3G15.4 , F11 .2. 4X, 3615.4)
‘0’. ‘THERMODYNAMIC PROPERTIES IN SINGLE PHASE RFGION’I
‘a ‘TEMP’
• ‘, 5Xo ‘T’ l ix. ‘Pa, 8X , ‘0’, 14*, PI’ , 14*, ‘S’
• ‘, 3X, •DEG’ ,A2 .8x , ‘PSI’, 4X, ‘ LB/FT3’ , 7X,
BTU/LA° . 6X, ‘ RTU/L8—F ‘)
• a, F8.2 , P11.2, 3615.4)
C
C
CALL
CALL
CALL
CALL
CALL
CALL
00 15
15
10
K-il

-------
C
C
C SATURATION TEMPERATURE TABLE
CALL HEADEIUI)
WPITE (6,920)
00221 = 1 .NC
22 WRITE (6,924) 1. (NAME(J,I), 1=1,3). ZP(I). A(I), wp4(I)
WRITE (6,9d8) WMM
IDUM = LINE(3.NC)
CALL KTBL(2. 3. 5)
WRITE (6,932)
C BUBBLE POINT LIQUID
WRITE (6,936) LT(KUT)
00241 =2 .NT
IF (RE(l,1) .EQ. 0.0) GO TO 26
IF (KTBL1(KODE) •EQ, 1) iRITE(6,936) LT(KUT
24 WRITE (6.940) TG(I), (RE(1.J). I= .4)
26 WRITE (6.930)
C DEW POINT GA
CALL KTBL(4, 3. 5)
WRITE (6,938) LT(KUT)
DO 28 I = 2. NT
IF (RE(I,1) •EQ. 0.0) GO TO 30
IF (KTBL1(KODE) .EQ. 1) WRITE(6,938) LTCKUT)
28 WRITE (6,940) 10(I), (RE(I.J). J.5.8)
C
C SATURATION PRESSURE TABLE
30 CALL HEADER(1)
CALL KTBL(2, 3, 5)
WRITE (6,932)
C BUBBLE POINT LIQUID
WRITE (6.936) LT(KUT)
1K = 273,15
DO4 SI =1 ,NP
P = PGU)/14.696
IF (P .GT. PCt4) GO 10 50
CALL STB (1K, P. V. H, b)
CALL UCT(l, 3, I(IJT, Tic, T)
0 = 0.0
IF (V •GT. 0.0) D = WMM/(V*O. 016 0185)
H (H — HZ)/WMM l.R
S = (S — SZ)/WMM
IF (KTBL I(KODE) •EQ. 1) WRITE(6,936) LT(KUT)
5 wRITE (6,940) Ts PG(I), D H, S
C
C DEw POINT GAS
50 WRITE (6,930)
CALL IcTBL(4 , 3, 5)
WMITE (6.938) LT(KUT)
00551 =1.NP
P = PG(j)/14,696
IF (P •GT. PCM) GO TO 60
CALL STO (TIC, P V Ii 5)
CALL UCT(I. 3. KUT. 1K, 1)
D = 0.0
IF (V •GT. 0.0) 0 = WMM/(V*o,016 0185)
H = (II — HZ)/WMM*1,8
S = (S — SZ)/WMM
K—12

-------
IF (KTBLL(KODE) .EQ. 1) WRITE(6,938) LT(KUT)
55 WRITE (6,940) 1, PG(I) , 0. H, S
C
C. SLJBCOOLEO—SUPERHEATED TABLE
60 CALL HEADER(1)
WRITE (6,920)
00621 =l.NC
6? WRITE (6,924) 1. (NAI4E(J,I), j=1.3) . ZP(I) . X(L). wM(I)
WRITE (6,928) WNM
IDUM = LINE C3.NC
CALL KTBL(2. 3. 5)
WRITE (6,944)
WRITE (6,94b) LTCP(UT)
0064J = 1 ,NP
00 64 1 = 2.NT
IF (KTBL1(KODE) .EQ. 1) WRITE (6,946) LT(KUT)
64 WRITE (6,952) 1G(I) PG( J) . (RG(T,J .K)e K1 ,3)
RE TURPi
END
K- 13

-------
FUNCTION KAIA(FG, FL , FLG, GAM. /KGAM/, NC/, PC. R, IC, WM)
C
C TITLE VAPOR—LIQUID DISTRIBUTION RATIOS
C SUBPROGRAMS SFGC, SGAMvL, SPSC, SVLC
C L CALL CODE: j = FIRST CALL 2 = T AND P 5MW AS
C LAST CALL; 3 = XC AND YC SAME AS LAST CALl.
C XCC I) MOLE FRACTION OF COMPONENT I IN LIQUID
C XK(I) VAPOR—LIQUID DISTRIBUTION RATIO VOW COMPONENT I
C VC(I) MOLE FRACTION OF COMPONENT I IN VAPUW
C
PEAL FG(l), FLU,, FLGC1), GAMfl), PC(1). TCC1), wP4(j)
1 XCS(20
REAL°8 PSIA, TF, XCC I). XK(1) , YCC 1)
C
KAI1 =1
RETURN
C :
ENTRY KAIIXK. TF, PSIA . XC, YC, L)
P = PSIA/14.696
T = CTF — 32./l.8 + 273.15
C FUNCTIONS DEPENDENT ON I AND P
IF CL •EQ. 2) GO TO4O
00381 =1.NC
C PURE. COMPONENT GAS FUGACITY AT SYSTEM P
CALL SFGC (I, T, P, FGCI))
c PURE COMPONENT LIQUID FUGACITY AT SYSTEM P
C FROM VAPOR PRESSURE AND GAS FUGACITY
CALL SPSC CI . T, PS )
CALL SVLC CI. T. PS. VL)
CALL SFGC cI. T, PS. FGS)
FLU) = FGS*EXPCVL.e(P — PS)/(R T))
C K—VALUE FOR IDEAL SOLUTIONS
38 FLG(I) = FLCI)/FG(I)
C
C K—VALUE FOR NON—IDEAL LIQUID SOLUTiON
4 0DU42I 1.NC
XKCI ) = FLGCI)
42 XC SCI) = XCCI)
IF CKGAM .EQ. 0) GO TO O
CALL SGAMVL CT. XCS)
D044I =1 .NC
44 AK(I) = GAMCI)°FLGCI)
50 IcA l = I
RETURN
END
K-]J4

-------
SUBROUTINE SATI (Z, NC, 1CM, PCM. VCM, 6AM, KEHR, KGAM)
C
C DEFINITION SECTION
C ALPHA MOLES OF vaPOR PER MOLE OF FEED
C BETA MOLES OF LIQUiD 1 PER MOLE OF TOTAL LIQUID
C MPBPP FUNCTION ERROR CODE: 1=0K, 2=NIX
C SYSTEM PRESSURE, PSIA
C TF TEMPERATURE, DEG F
C X l i i) MOLE FRACTIOP. OF I—TH COMPONENT IN 110 PHASE 1
C (2(I) MOLE FRACTION OF I—TM COMPONENT IN LIQ PHASE 2
C YDP(I) MOLE FRACTION OF I—TM COMPONENT IN VAPOR
C ZDP(i) MOLE FRACTION OF I—TM COMPONENT IN FEED
C
REAL 0 P ALPHA, BETA, PSIA, TF, X1(20), X2(20), YDP(20),
I ZDP(20)
i4EAL DLG(20) . GAM(I), G1(20) , G2(20) , 1(1)
)IMENSION KERFU 1)
C
DO Ii I = 1, NC
DLG(I) = 000
11 ZDP(I) = Z(I)
RETURN
C
C BUBBLE PRESSURE AT T
ENTRY SAT(T, PD, VD, HO, SD, P , V , H , SB)
IF CT .GT. 1CM) 60 TO 100
P 51* = 14.696*PD
IF (PSIA •LE. 0.0) P51* = 30.0
TF = 1.8*1 — 459.87
KERR(I) = MPBPP(ZDP, X2, X l, YOP, IF, PSIA. ALPHA, PETA, 2)
PB PSIA/14.696
C DEW PRESSURE AT I
KERR( 4 2) = MPBPP(ZDP, *2, xl, YOP, TF, PSIA, ALPHA, pErA, 3)
PD = PSIA/ 14.696
C
C DEW GAS V. H, S AT T
CALL SVGM CT . PD, VD)
CALL SHGM T, PD, VD, HO)
CALL SSGM (T. PD, VD , SD)
C BUBBLE LIQUID V. H, S AT I
CALL SVLM cT. PB, V8)
IF (KGAM .EQ. 0) GO TO 55
CALL S6AMVL CT • 1 .0 Z)
CALL MOVE (NC, 6AM, 62)
CALL SGANVL (T — 1.0. Z)
CALL MOVE (NC, GAM. 61)
CALL SGAMVL CT, Z)
DO52 ( =1 ,NC
DLG(K) = ,2(K) — G1(K)),2.0*GAM(K))
55 CALL SHLB CT, PB. PD, DLG, HR)
CALL SSLB CT. PB, PD. GAM, DLG , SB)
100 RETURN
END
K—15

-------
SUBROUTINE SFG I(A, 9, R)
C TITLE GAS FUGACITY
C
REAL All). 8 11)
C
RETURN
C GAS FUG*CITY OF I AT Ti P
ENTRY SFGC(IC. 1, . F0
I =IC
CALL SVGC (IC. T. P. V I
E = PV/(R°T) — 1.0 — ALOG(P CV — BII))/(RoT)) —
1 A(I)’ALOG(l.O • B(I)/V)/C8(I)*I 4*T**1.5
FG P°EXP(E)
RETURN
END
K - .16

-------
SUSMOUTINE SGAMV I (GA, GAl l, OK, /NC/)
C
C LIQUID ACTIVITY COEFFICIENTS SOAK 30
C
C INPUT GA. OK . NC , TA. XV
C OUTPUT GA l l
C
REAL 04(20,20,3), Gt((20,20,3), GAM(1) , XVCI)
REAL A(20,20), C120.20)
C
RETUSIN
ENTRY SGAMVL(TA. XV )
NCM1 = NC — 1
DO 31 I = 1.NCM1
IP1 =1 .1 56AM460
DO 31 .1 = IP1.NC
AlI.J ; = GA(I.J.1) + GA(I,u,2)/TA • GA(I.J.3)°TA SOAK 480
A(J.I) = GA(J,j.l) • GA(J,I,2)/TA • GA(J.I.3)°TA 564K 490
C(I.J) = GK(I,J.1) • GK(I,J.2)/TA • OKCI.J.3) *TA 564K 500
31 CLJ 1) = C(l,J) SOAK 510
c SOAK 520
XS = 0.0 SOAK 530
00411 =1.NC
XS = XS • XVII)
c SOAK 560
D065 1 =1.NC
XSKXI = * 5 — XVI I)
IF (XSrIXI) 51.51.60 SOAK 590
51 GAM(I) = 1.0 SOAK 600
GO TO 65 SOAK 610
C sGAn 620
60 A l 0.0 SGAM 630
8 1 0.0 S hAM 640
CI = 0.0 SOAK 650
00 61 J L,NC
IF CI .EQ. J) GO TO 61 SOAM 670
A l = Al • XV(J)*A(I,J)
81 = 81 • XVCJ) *A(J.7)
CI = CI • XV(J)*C(I.j)
61 CONTINUE SOAK 710
IF (Al .EQ. 0.0 ,OR. SI .EQ. 0.0) 60 TO 51 554M 720
A l = AI/XSMXI SOAK 730
SI = BI/XS MXI 6AM 740
CI = CI/XSMXI SOAK 790
AX ABSCAI)*XV(I)
21 = AX/(A.X • A8SC8I)*XSKXI) 5GM ’ 770
61 = Al*(1.0 — ZI)*fl SOAK 180
2 14 0.0 SOAK 790
IF (A1°Sl .LT. 0.0) 214 = ZI 4.0 SOAK 800
61 = GI°(1.0 • CI 0 ZI°czr — 0.6666667) — 714) 5G M ’ 810
GA l l U P = EXP(GI)
65 CONTINUE SGAn 830
C SOAK 840
500 RETURN SOAK 850
E NO
K—i?

-------
GAS ENTHALPY OF I AT 1, P
SHGC(IC. T. P. V. HG)
I =IC
HG = C(1,I) • T (C(2,I) • T (C(3 .I) • T (C4.I)
T*C(5.1))) • (P.V — R*T — 1.5 A(1)a
ALOG(l • B(I)/V)/(SQRT(T)*B(I)))*RH,R
GAS ENTHALPY OF MiXTURE AT T, P
SHGM(T . P. V, HG)
HG = 0(1) • T*(D(2) • 1*60(3) • T (O(4) • 1*0(5)))) •
— — 1.5*At4*ALOGU • BM/V)/(SQRT(T ) RM))
•RH,’R
SU WUUTINE
SI$Gl(NC, V. CC, A, B,
AM, 8M ,
R , RH)
TITLE
= GAS ENTHALPY
REAL
A(l),B(1),C(5,2o),CC(20,1),D(5) ,
Y(1)
D012 1
C(1,I)
C(2.I)
C(3.I)
C(4, 1
=1.NC
= 0.
= CC(I.1)
= CC(I.2)/2
= CC(I,3)/3
12
CC5 .I)
= CC(I,4)/4
0014J
0(J)
=1.5
= 0.0
D014 1
=1 ,NC
14
0(J)
= 0(J) • Y(j)C(J,I)
C
C
C
C
C
C
RETURN
E’ iTRY
1
2
RETURN
ENTRY
1
2
RETURN
END
K—18

-------
SUBROUTINE SKL1(NC. V. R . RH, TC)
C TITLE = LIQUID ENTHALPY
C.
REAL DLGC1). TC(1). YCi)
C
RETURN
C BUBBLE LIQUID ENTHALPY AT I
ENTRY SHLb(T, PB. PD. DLG, HLB)
HLB = 0.0
00221 =1.NC
IF (I .GT. ‘CCI)) GO TO ai
CALL SPSC (L. I, PS
CALL SVGC (I. T, PS, VG)
CALL SHGC CI. I. PS. vG . HG)
CALL SHVC (I. T, HVAP)
CALL SVLC (I. I, PB, VL)
HLI = HG — HVAP • VL*(P8 — PS) RH/R
GO TO 22
21 CALL SVGC CI. I, PB, VG)
CALL SHGC (1. 1. PB, VG. HLI)
22 HLB = HLB • Y(I)*(IILL — RHeT**2*OLGI))
RETURN
C LIQUID ENTHALPY AT T. P
ENTRY SHLL(T, P , PB. HLB, HL)
CALL SVLI’ T, PB, VL)
CALL SVLM CT • 1.0, PB. VL2)
CALL SVL (T — l eO, PB VL1)
HI = HLB • (VL — T VL2 — VL1)/2) (P — PR)°Rr4/R
RETURN
END

-------
SUBROUTINE SHVI(NC. HV1, Ti, IC. TCH)
C TITLE = HEAT OF VAPOHIZATION
C
REAL 1V1C1, ICC1). Ti(1)
C
RETURN
C iiEAT OF VAPORIZATION OF I AT T
ENTRY SHVC(I, T, NV)
NV = 0.0
IF CT •GE. 1CM) RETURN
NV HV1CI)ø((TCM — T)/(TCM — T1(I)))**o,38
RETURN
END
K-20

-------
SUHROUTINE SPSI(C)
C TITLE SATURATION PRESSURE
C
REAL C(20,1)
C
RETURN
C VAPOR PRESSURE OF I AT T
ENTRY SPSC(I, 1, P)
P = EXP(C(I,1) • C(I,2)/(T • C(I 3I))
RETURN
E ND
K-21

-------
DO 14 J
0(J)
DO 14 1
14 D(J)
RETURN
GAS ENTROPY OF I AT T. P
SSGC(IC , T, P. V, 56)
= IC
= CC1.I) • T (C(2,I) • T (C(3.I) • T c(4,I)))
C(5,I)ALOG(T/TR) — RH*ALOG(P/PR)
RH*ALOG(P*(V — BCI))/(R T)) —
O.5*A(I) ALOG(1 • B(I)/V)/(T 1.5’B(I) )RH/R
GAS ENTROPY OF MIXTURE AT 1. p
SSGM(T. P. V. SG)
D(1) • T*(D(2) • T*(D(3) • T°D(4))) •
D(5)*ALOG(T/TR) — RH ALOG(P/PR)
RH ALOG(P (V — BM)/(RT)) —
O.5*AM*ALOG(1 •
SUt ROUT INE
TITLE
SSG1(NC. V. CC. TP. PR. A. B. AM, BM. R, RH)
GAS ENTROPY
REAL A(1).B(1).C( ,.2O).CC(2O.1).D(5). Y(1
00 12 1
C(2.I)
C(3,I)
C (4,1)
C (5.1)
C(1 .1)
12
C
C
C
C
C
C
= 1., NC
= CC(I ,2)
CC(I.3)/2
= CC(I,4)/3
= CC(I.1)
= —TR (C(2,I) • TR*(C(3.I) • TR*C(4,I)))
= 1. 5
= 0.
= 1. NC
= D(J) • Y(I)*C(J.I)
I
SG
56
EN TRY
1
2
3
RETURN
ENTRY
1
3
RETURN
END
K—22

-------
SURROUTINE SSL1(NC. V. R. RH, TC)
C TITLE = LIQUID ENTROPY
C
REAL DLGC1) , G(i), TC(1), VU)
C
RETURN
C BUBBLE LIQUID ENTROPY AT T
ENTRY SSLB(T , PB. PD. G, DLG. SLB)
CALL SVGM CT. PD. V(,)
CALL SSGM (T, PD. VG, SG)
SL B =SG
00221 =1.NC
CALL SHVC (1. T. IIV)
22 SL.B = SLB • Y(I) (—HV/T • RH (ALOGCG(I) Y(Ifl •ToDLGCI)))
CALL SVLM CT • 1.0. PB. VL2)
CALL SVLM CT — 1.0, PB. Vii)
5 18 = SLB — (VL2 — VLI) *(PB — PD) RH/(2 R)
RETURN
C LIQUID ENTROPY AT T, P
ENTRY SSLL(T. P, PB. SLR, SL)
CALL SVLM CT • 1.0, P. VL2)
CALL SVLM CT — 1.0. P. VL1)
SL = SLB — (VL2 — VLIaP — PB)*RH/(2*R)
RETURN
END
K-23

-------
SUBROUTINE sTBHZ. NC, 1CM. PCM. VCK, GAPI. KERR, KGAH)
REAL8 ALPHA, BETA. PSIA, TF. X1(20), X2(20), YDP(2n).
1 Z OP(20)
REAL DLG(20) , GANC1), G1(20). G (20). 2(1)
OIMENSION KERR(1)
C
00111 =1.NC
OLG(I) = 0.0
11 ZDP(I) = Z(I)
RETURN
C BUBBLE TEMPERATURE T AT PB
ENTRY STB(T, PB. YB, HB. SB)
IF (PB.GT. PCM GO TO 100
PSIA 14.696°PB
IF’ = 1.8 T — 459.67
KERRW = MPBPT(ZDP. A2. X l, YOP. TF. PSIA. ALPHA, RETA. 2)
I = (TF • 459.67)/1.8
C DEW PRESSURE AT T
KERR(2) = MPBPP(ZDP. X2. Xl. YDP. IF, PS1A ALPHA, RETA. 3
PD = PSIA/14,696
C BUBBLE LIQUID V, H, S AT PB
CALL SVLM (1. PB. YB)
IF (KGAM .EU. 0) GO TO 55
CALL SGANVL (T • 1.0, Z)
CALL MOVE (NC, GAM, G2)
CALL SGAP4VL CI — 1.0. Z
CALL MOVE (NC. GAM, Gi)
CALL SGAMVL CT, Z)
DO 52K = 1. NC
52 DLG(K) = (G2(K) - GJ(K))/(2,O*GAM(K))
55 CALL SHLB CT. PB. PD, OLG. HB)
CALL SSLB CT. PB. PD, GAll. DLG, SB)
100 RETURN
END
K-2 1 1

-------
SUBROUTINE 5TD1(Z. NC. TCM. PCM, vCM. GAN, kERR. KGAM)
DIMENSION GAM(l). Z(1) , KERR(1)
RE*L8 ALPHA, BETA. PSIA, TF. X1(20), X2(20). YDP(20),
1 ZDPC2O)
C
00 11 1 = 1, NC
11 ZDP(I) = Z(I)
RET URN
C DEW TEMPERATURE AT PD
ENTRY STOCT, PD, VO. HO, SD)
IF (PD.GT. PCM) GO TO 100
PSIA 14.696*PO
TF 1.8 1 — 459.67
KERR(2) = MPBPT(ZDP. A2. Xl. YOP. TF, PSIA ALPHA. ETA. 3)
T = (TF • 459.67)/l.a
C DEW GAS V. P 1. S AT PD
CALL SVGM CT, PD. VD)
CALL SHGM (1. PD. VD, HO)
CALL SSGM cT. PD. VD. SD)
100 RETURN
END
K-25

-------
SUBROUTINE SVG1(NC, V. TC. PC, P , A, 9, AM. BK)
C TITLE = GAS VOLUME
C
REAL A(1). 8(1), PC(1), TC(1I. Y(1)
C
CALL ZRIC (NC, TC. PC, K. A, 8)
CALL ZRKM (NC. y, A, B, AM. BK)
RETURN
c GAS VOLUME OF I AT T, P
ENTRY SVGC(I, T, P. )
CALL ZRKE CT. P, AC!). 8 (I), Z, KERR)
V = ZR T/P
RETURN
C GAS VOLUME OF MIXTURE AT T, P
ENTRY SVGM(T, P. V)
CALL ZRKE T. P. AM, BK, Z. KERR)
V = Z R*T/P
RETURN
END
K-26

-------
SUAROUTINE sVL1(NC, vi OL1, Ti. TC. PC, R, 1CM, PCM)
C TITLE = LIQUID VOLUME
C
REAL C(2.20) ,DC(20).DL1(1), PC(1). TC(1), T1(i). Yll)
C
0CM = 3* PCM/(A*TCM)
00121 =1 .NC
CALL SPSC (I. T .(I), P)
CALL SVGC C I. TiC!), P, VG)
C(2.I) = (2*0CM — DL1CI) — 1/VG/TCM — TiC!))
12 C(i,T) = 2 0CM — C(2.I)TCM
RETURN
C LIUUID VOLUME OF I AT I
E 1TRY SVLC(IC. Ti P. V)
I = IC
IF CT •GE. TCM) GO TO 21
CALL SPSC (1. T, PS)
CALL SVGC (I, T, PS, vG)
V = 1/CCC1,I) • CC2,I)*T — t/VG)
RE TURN
21 V = 1/DCM
RETURt I
C LI(aUID VOLUME OF MIXTURE AT T
ENTRY sVLM(T, P. VM)
IF CT •GE. 1CM) GO TO 34
V14 =0.0
00321 = 1 iNC
CALL SPSC (I. Ti PS)
CALL SVGC 1. Ti PS. VG)
VL = 1/(CCi ,I) • CC2,flal — 1/VG)
32 VM VM • Y(J)aVL
RETURh
34 VM = 1/DCM
RETURN
END
K-27

-------
8. DESCRIPTION OF LIBRARY SUBPROGRAMS
8.1 DATE4
This assembly language subroutine provides the current date. The
calling sequence is
CALL DATE’UDATE)
On return, the eight characters addressed by DATE will contain
mm/dd/yy in character form.
8.2 HEADER
This utility subroutine controls the output page count, initializes
the line count, and prints a two line heading on each output page.
The calling sequence is
CALL HEADER(KS)
If KS is less than zero, the routine set the numeric part of the
program E number from —Ks. If K equals 1, the internal page counter
is incremented, the page heading is written on a new page, and the
line count is set to 2.
8.3 KTEL
This utility subprogram controls the printing to tables. The
calling sequence is
CALL KTBL(LM,LS,NB)
where LM = number of lines in the table title
LS = number of lines in the table subtitle. If the table
is continued onto a new page, the calling routine
reprints the subtitle
NB = number of lines per group. Groups are separated by
a blank line.
The function entry point KTBL1 (Dummy) increments the line counter,
inserts blank lines between groups, and continues the table on a
new page with a page heading printed by subroutine HEADER. The
function value of 1 is a request for calling routine to reprint
the table subtitle.
K-.28

-------
8.!! MASS
This subroutine converts mole amounts to mass amounts and computes
the mixture molecular weight. The calling sequence is
CALL MASS(NC,WMC,Y,YS,X,XS,WMM)
where NC = number of components
WMC = array of component molecular weights
WMM = mixture molecular weight
X = array of component masses
XS = total mass of mixture
Y = array of component moles
YS = total moles of mixture
8.5 MOVE
This utility subroutine transfers N elements of array X to array
Y. The calling sequence is
CALL MOITE(N,X,Y)
8.6 MPBPP
This function either computes the bubble point pressure at a
specified temperature and liquid composition or it computes the
dew point pressure at a specified temperature and gas composition.
The invocation is
MPBPP(Z,S,X,Y,T,P,A,B,K)
where A = superfluous argument
B = superfluous argument
K = calculation code: 2 = bubble point pressure
3 = dew point pressure
P = bubble point pressure or dew point pressure, psi
S = scratch array of NC elements
T = specified temperature, °F
X = computed array of liquid mole fractions
Y = computed array of gas mole fractions
Z = specified array of liquid or gas mole fractions
The function name MPBPP is used as an error Indicator: 1 = success,
2 = failure.
8.7 MPBPT
This function either computes the bubble point temperature at a
specified pressure and liquid composition or it computes the dew
point temperature at a specified pressure and gas composition.
The Invocation is
K-29

-------
MPBPT(Z,S,X,Y,T,P,A,B,K)
where A = superfluous argument
B = superfluous argument
K calculation code: 2 bubble point temperature,
3 = dew point temperature
P = specified pressure, psi
S = scratch array of NC elements
T = computed bubble point temperature or dew point
temperature, °F
X = computed array of liquid mole fractions
Y = computed array of gas mole fractions
Z = specified array of liquid or gas mole fractions
The function name .MPBPT is used as an error indicator: ] = success,
2 = failure.
8.8 NORM
This subroutine normalizes the elements Qf an array X. The
calling sequence Is
CALL NORM(N,X,S,Y)
where N = number of elements
S = computed sum of the elements of X
X = given array
Y = normalized array with elements X /S.
8.9 UCP
This subprogram converts pressure units. The calling sequence Is
CALL UCP(N,KI,KØ,PI,PØ)
where KI = pressure unit for P1: 1 = atm, 2 = psi, 3 = mmHg
KØ = pressure unit for P0: 1 = atm, 2 = psi, 3 = rnm}Ig
N = number of elements in P1 and P0
P1 = array of specified pressures
P0 = array of computed pressures
8.10 UCT
This subprogram converts temperature units. The calling sequence is
CALL UCT(N,KI,KØ,TI,TØ)
where KI = temperature unit for TI: 1 = C, 2 = F, 3 = K, lj = R
K0 = temperature unit for TO: J. = C, 2 = F, 3 = K, = R
N number of elements In TI and T0
TI = array of specified temperatures
TO = array of computed temperatures
K—30

-------
8.11 ZERO
This utility subroutine zeros all of the elements of an array X
with indexes from Ii to 12 inclusive. The calling sequence is
CALL ZERØ(X,I1,12)
8.12 ZRKE
This subroutine computes the compressibility factor at a specified
temperature and pressure using specified values for the Redlich—
Kwong equation of state parameters. The calling sequence Is
CALL ZRKE(T,P,A,B,Z,K)
where A = Redlich—Kwong equation parameter, atm—K 0 5 —cm 6 /gmol 2
B = Redlich-Kwong equation parameter, cm 3 /gmol
K = return code: 0 = Z computed at T and P, 1 = Z computed
T and the saturation pressure at T because of the
absence of a vapor root at very low reduced pressures
P = specified pressure, atm
T = specified temperature, °K
Z = computed compressibility factor.
8.13 ZRKC
This subroutine computes Redllch—Kwong equation parameters for
pure components. Inputs are the critical temperature and. the
critical pressure of the components. The calling sequence is
CALL ZRKC(NC,TC,PC,R,A,B)
where A = array of component Redlich—Kwong parameters,
atm-K 0 5 —cm 6 /grnol 2
B = array of component Redlich—Kwong parameters, cm 3 /gmol
NC = number of components
PC = array of component critical pressures, atm
R = gas constant, 82.0575 atm cmVgmol—K
TC = array of component critical temperatures, °K.
8.1 i ZRKM
This subroutine computes the Redlich-Kwong parameters for a mix-
ture by combining the pure component parameters. The calling
sequence Is
CALL ZRKM(NC,Y,A,B,AM,BM)
K-3l

-------
where A = array of component Redlich—Kwong parameters,
atm—K 0 5 —cm 6 /gmol 2
AM = mixture Redlich—Kwong parameter, atm-K 0 5 -cm 6 /gmol 2
B = array of component Red].ich—Kwong parameters, cm 3 /gmol
BM = mixture Redlich-Kwong parameter, cm 3 /gmol
NC = number of components
Y = array of component mole fractions.
K-32

-------
9. FILLED-IN INPUT DATA LISTS
I0
INPUT DATA SHEET 1 0F3
ThER CDØ4P MIC PROPERTIES
c , ULTICOtAPOI 9 FLUIDS
10
21
Descnp(ion
10
Descnption
15
. I
2.
O
e, n
Monsanto
Progvam EI5 3
H
,2.b.b..
H
B
PU
.11...
LI$T I PROBLEM-SET
IDENTIFICATIOI and
UST 2:
CASE
IDENTIFICATION (Optional)
tlhhoAAuwraar
1 yI’i. rc.r
— ‘ —‘
L ..I. - . . .
- -- ‘ UW 1 •P .. — ... . . -.
I
40
UST3: T p r h,re Griô
45
‘U
55
P..
P.’
40
•1 I
‘
L s4 t .1uwl3er
Tarnpevn 1 +ure UnsfO C,1F,aK,3R.
lernpera.+ure Grid L wer Ltmt+
rew perA 4 Lire ..a Upp.r Limit
Ttmtpii..41Me Grsi& Lhca-cmenj
Spore Co z
Entry
t

3
a
I
LIST 4:
c r ssu e Gi-J
n. e
c
r-
a
List Nunitier
Pre ure
Plumber
Unit:
o
OT t PSI ,2= T w& 4 3
Vre t w (50 wio )
.
1.5
6-10
11-15
16 -20
21-2
jo
Entry
:t

4.
O
? -ts ur.e.4
A
I,,
2 -5o
31-35
3b-4o
41-45
4( 1 50
2O
L -
LIST 5: SYSTEM COMPOSITION
Description Entry
Lusf Numijer 5
Input Composition Code (1 Mass Units, 2 = Mole Units) * 2.
Number of Components (20 Max)
Coinp. No.
Compesutlmi Data In Fractions, Percents, at Flows
1-5
6-10
11-15
16-20
4O
$5 r4 N 1i!WC&r4 1
Ic—33

-------
Monsanto
Program E 1343
INPUT DATA SHEET 2 0F3
TI4ERIL4ODYIJ MIC PR VERflES
OF MU ONEi 3T WIDS
Os ,.
UST 6: MOLECULAR ifIGHTS AND ANTOINE CONSTANTS
Desci lption
Entiy
List Number
6
Number of Coi cnonts ( O Mail)
.
1
Component
Molecular
WeIØit
I
—
[ - b • .
C -
Number
Name
1
2
3
4
5
tLI 4 J jL
t
41.07
tL42c.c -p3ôq. l
—hJ. 2 I
1•.D1
-
-40g&,7
t• .111 I ••
• •
•
t...
. .11111. tint
.
I
I x
b/(T + c) with
vapor pressure (P°) in a
tin m d to
mperature (fl in °K.
LIST 7: LIQUID ACTIVITY COEFFICIENT DATA: A 11 (OptIiafl -:- •
: . esthptIn* -
List Number •4 i.
‘ o -
Equation Type, I =Van Laar I — - -. . .
Pair
Number
•
- j .&_ —
1E7.L.l uwiom
-
.1
2
3
4
5
Maxim
urn numbs, of binary pairs = N(N — 1)/2 where N is the numbs, of convenents. Entries for Ideal pairs may be omitted.
t A a 11 4- fT + i T where T ix in °K nd A 11 Iny ’ .
L T 8:
LIQUID ACTIVITY COEFFICIENT DATA; THIRD ! 1 R C 11 (Optknat) ,
De CdNOs1 -
.
‘Mumber
Number 01 Rinaty Paim with ThIrd Parameter Enides
Equation Type, 1 = Vat Lear
Entry
8
Pair
Number
Component Numbers TempesabneCoeffic lents (or C 1 1
i j - -
- — - .- — -. ij
-‘ • IJ
.
iJ
2
3
4
5
—
K—3 1 4
DATE
° = a 1 + bij/T • e 11 T where T ii in °R. C 11 = C 1 .

-------
Monsanto
P ogrom
INPUT DATA SFIEET3OF3
ThERMODYNAMIC PROPERI1ES
OF ALJL11COMPON IT LU%O5
- DATE -
L1ST9: TJ €oi Ga. 14eoht
Description Ent ly
,
j
List NiiIubo
Number of Components (ZOMax)
c

.
z a
1J IsI G&5 1- &+C p’ y Cor S4 jt&t1
a b C 4 - — -
4t941E-3 -,6tiI -7 0
7 j p.g64.ç 3 .O459 -6
Y
4 s
5
—
T n °K.
LIST io: Cri4 coi piec. 1o..4 of \/6p6 rseg t.nn , LujtM Deas t , -
‘

I”

.

I
£
•

Description ‘ Entiy
List Number - 10
Number of Components (.aiUax) s’: - . : - - 4
c ‘ Pt’
i
2
3
4
-

‘-.
‘
3E1.44 1aIDL. i9A.i
447 EIL3 221If 1 [ &_.
—

[ T99: ENDOFCASE OI TROL I
1 S+air4- Cc v L
K-35

-------
10. OUTPUT FF OM DATA LISTED IN SECTION 9
K-36

-------
AN c1N CYCLE TEST PROBLEM 1.1
MASS
19.321
20,679
100.000
MOLE WT
46.07
18.02
34.85
MOLE
60.000
40 .000
100.000
PROPERTIES AT

P
PS I
24 • 27
39.0?
60.35
90.25
131.02
SATLI AT1O?t
— BUBWLE POINT
0
LBJF’T3
47.34
45.99
44.57
43.07
41.47
LIQUIO —
H
BTU/LB
161 • 0
186.6
212.9
239.9
267.7
I 8’ .28
256.04
346.74
461.53
605.87
39.74
37 • 86
- - .—-
33.42
.30 .68
COMPOS T ION
I F, 1t1ANOL
2 WA.ER
MIAruRE
THEI 1MOCYNAMIC
TEMP
T
DEG F
200. JO
225.
2SQ.UU
275.U0
300.00
325.00
350.00
375.uQ
400. UI)
425.00
45Q .qO
475.00
500 • U I)
TEMP
I
DEG F
20 0.uU
225. dO
250 • 00
275. 00
3O . 00 .
325. JO
350.00
375. dO
400.00
425.uO
450 , UI)
475.00
500. ’ .J0
- 296.6
326.6
-- 358.1
391.5
427.5
789,29
27,25. ..
466.9
1050.74
21.09
611.8
J833 90_
16.80
647.9
E 393 P
11 130/72
S
13TU/LB—F
0.2526
0.2897
0.3265
0.3629
0.3992
O .4354
0.4717
0.5085
O .54F 3
0.5856
0.6278
0.6722
S
3 Tu/LB—F
1.019
1.Onl
0.9961
0.9870
0.9790
0.9718
0.9650
O.95F 4
0.9515
.9435
0.9118
0.8521
P
PSI
22.87
37.05
57.71 -
86 • 83
126.74 --
180.12
250.01
339.95
454.10
597.92
780.45
1033.90
1521.40
—————oEw
-
LB/FT3
0. 1146
0.1804
0.2741
0.4044
0.5818
0.8200
1 .137
1.559
2. 125
2 • 905
4.054
6.319
13.81
POINT GAS - —
H
8TU/LB
63502
645.1
654.9
664.4
673.6
682.2
690.2
697.2
703.0
106.7
107,1
696.9
648.9
K-37

-------
PANKINc. CYCLE TEST PROBLEM 1.1
TiIERMODYNA!’IC PROPEPTIES AT
TEMP
T P
DEG F PSI
175.78 14.70
209. 2 29.39
26i.9 73.48
3Oii.09 146.96
361.18 293.92
SATURAT ION
— BUBBLE POINT LIQUID —
0 H
L8/FT3 BTU/LB
48.60 136.7
46.82 171.0
43.86 225.7
40.92 276.9
36.95 340.5
S
BTU#LB—F
0 • 21 .3
ii.267
0 • 344(1
0.4109
0.48R1
0.61f 0
0.6833
E 393 P 2
11/30/72
443.23
734.80
28.
455.9
483.73
1175.68
620.7
TEMP
— — — — — — — - DE POINT
GAS
T
P
0
H
S
bEG
P I
L8/FT3 —
BTIi/LB
BTLJ#LB—F
178.9u
212.73
14.7n
29.39
0.7566E—ol
0.1451
626.8
640.3
1.031
1.012
264.54
73.4
0.3449
669.5
0.9907
31 .3l
146.96
0.6718
677.2
o.97 0
362.’#7
293.92
1.341
694.0
0.9616
444.3
734.80
3.745
707.4
1.9357
485.23
1175.68
9.b53
676.4
0.886
K-38

-------
RANP jN: CYCLE TEST PROBLEM 1.1
MOLE
0.000
40. 000
100 .000
MASS
79.321
20.679
100 .000
MOLE wT
46.07
LB. 02
34.85
E1393 p 3
11 /3 0/ 1 2
PROPERTIES IN SIN . gE PHASE REGION
COP•lPOE lION
1 C fl1 NOL
? ‘ R
IIIA’URE
THERMODYNA 1IC
TfM
T
DEG r
200.00
225. JO
250. 0
27S.uO
300.00
325.00
350 .00
375 0 - --
400.00
425.uO
45Q..j O
475 ,00
500.ou
525.00
550.00
S75. oO
600.00
625.00
65 0.uU
675.uO
700.00 -
7d5.U0
75Q u0
775,uO
800.00
200.00
225.00
250..J0
275.00
300.uO
325.00
350.uU
375.00
400.00
425.00
P
PSI
14.70
14.70
14 • 70
14 • 70
14,70
14.70
14.70
14.10
14.70
14.70
14.70
14.70
14.10
14.70
14.70
14.70
14.70
14,70
14.70
14.70
14.70
14.70
14.70
14.70
14.70
29.39
29.39
29.39
29.39
29.39
29.39
29.39
29.39
29.39
29.39
0
L8/FT3
0.73 16E— 1
0.7061E—o1
O.6787E—0 1
0.6550E—0l
0.6330E—(J1
0.6124E—01
o.5932E—Ô1
0.5751E .I
0.5581E—01
0.5421E—O1
o • 5270E—QJ
o.51e7E—01
0.4992E— k
0.4864E—C1
04743E—O1
O.4627E—U1
0.4517E—0L
— Q.4412E—Gi
0.4312E—0L
0.4216E—O1
0.4124E—01
O.4037E—O1
0.3953E—OJ —
0.3872E—01
o.3795E—O1
47.34
0.1423
0. 1370
0.1321
0.1276
0 • 1234
0.1194
0.1157
0. 1122
0.1090
H
BTU/LB
635.8
646 • 8
6 57.9
669.3
680.9
692.7
704.8
717.0
729 • 5
742, 1
755.0
768.1
781,4
794.9
808.5
822.4
836.5
850.7
865.2
879.8
894.6
909.5
- 924.7
940.0
955.5
161.u
645.7
656.9
668.3
680 • 0
691.9
703.Q
71 6 2
728.7
741.4
S
BTU LB r
1.045
1.061
1.077
1.093
1.108
1.123
1.139
1.153
I • 168
1.183
1.19?
1.211
1.225
1.23
1.253
1.26’
1.280
1.293
1.306
1.319
1,332
1.345
I • 35R
1.370
1.383
0.2526
1.020
1.036
1.052
1.O6R
1.081
1.09R
1.113
1. 12
1.143
K—39

-------
R4N’ INE CYCLE TEST DR0BL€14 1.1 E’393 P 4
11/30/72
T MP
1’ P D H S
DEG F PSI L8/FT3 BTU/LB
29.39 0.1059 754.3 1.157
47’ ,U0 29.39 0.1030 767.5 1.171
500.JU 29.39 0.1002 780.8 1.185
525.v O 29.39 0.9764E—O1 794.3 1.19g
550.0 29.39 O.9517E—01 808.0 1.213
575. 0 29.39 0.9283E—01 821.9 1.227
600. ’0 29.39 0.9060E—O1 835.9 1.?40
625.uO 29.39 0.8848E—01 850.2 1.253
650. U 29.39 0.8645E—O1 864.7 1.266
675. .’O 29.39 0.8452E—O1 879.3 1.28D
?00.U0 29.39 0.8267E—01 894.1 1.292
7?S.o0 29.39 0.8090E—O1 909.1 1.305
29.39_ o.7921E— j —- 924.3 1.318
77 .u0 29.39 0.7759E01 939.6 1.330
800.00 29.39 O.7603E01 - 955.1 1.343
200. 0 73.48 47.34 1 1.0 0.2524
225.uO 73.48 45.99 186.6 0.2895
25O. )0_ - 73,48_ _44.57 -- 212.9 0.32
275.00 73.48 0.3393 685.3 0.9974
300.00 73.48 0.3268 677.2 1.013
3 5.V0 73.48 0.3153 689.2 1.029
350.u O 73,48 0.3046 701.4 1.044
37S. 0 73.48 - 0.2946 - - 713.8 1.059
4oó.i1O 73.48 0.2853 726.4 1.074
425. O 73 ,48 — 0.2767 739.3 1.089
450.00 73.48 0.2685 752.3 1.103
475.00 73,48 o;2600 765.5 1.118
500.00 73.48 0.2537 778.9 1.132
25.0 13.48 O.24 792.5 1.146
550.uU 73.48 0.2404 806.2
575.uU 73.48 0.2343 820.2 1.173
600.00 73,48 0.2285 834.4 1.187
625.00 73.48 0.2231 848.7 1.200
650.00 73. 8 0.21Th 863.2 1.213
675.00 73.48 0.2128 877.9 1.226
700.u0 73.48 0.2081 892.8 1.239
725. 0 73.48 0.2036 907.8 1.252
75 .o0 73.48 0.1992 923.0 1.26S
775.u0 73.48 d.1951 938.4
809.uO 73 ,48 0.1911 953.9 1.290
K—’ O

-------
ANI 1N . CYCLE TEST OPOBLEM 1.1 E1393 P 5
11/30/12
TEMC
I Li I ., S
‘)E(. F PS I 18/FT3 TU/Lb ,3Tu/Lb—r
2O0. U 146.96 47,34 161.1 0.2521
22 . 0 146.96 45.99 186.7 0.?892
250. ) 146.96 44.57 212.9 0.3260
27c. .,U 146.96 43.07 239.9 0.3626
300.U0 146.96 41.47 267.7 0.3991
146.96 0.6562 684.5 0.9d53
35 0.uO 146.96 0.6315 697.0 1.001
375.0 146.96 _O.60&8 709.6 1.016
40O .% 0 146.96 0.5879 722.5 1.03’
4 ,JU 146.96 0.5685 735.5 1.046
‘.SQ.uO 146.96 0.5505 748.1 1,061
475 ,U0 146.96 0.5337 762.1 1.076
146..96 0.5181 775.6 1.090
25. 0 146.96 3.5033 789.4 1.10 ’.
550.10 146.96 3.4895 803.3
575 ,ijL) 146.96 0.4765 817,4 1,13’
00.U0 146.96 0.4641 831.6 1.146
625.(U 146.96 0.4525 846.1 1.159
650. 0 146.96 0. ’ .415 860.7 1.172
675.u O 146.9 0.e310 875.5 1.185
700. ,u 146.96 0.4210 890,4 1.199
72 5.uO 146.96 0.4115 905.6 1.211
750.tJ) 14 ,96 0.4024 920.9 1.224
146.96 0.3938 936.3 1.’37
0O.u0 146.96 0.3855 951.9 1,249
200. 0 293.92 47.34 161.3 0.2514
225. O 293.92 45.99 186.8 0.2885
250.” 293.92 _ 4.57 212.9 Q.325
27c,.j O 293.92 43.07 239.8 0.3617
3O0. 0 293.92 41.47 267.6 0.3980
3?5.uU 293.92 39.74 296.4 0.4345
350. u 293.92 37.86 326.5 0.4713
37 5.u O 293.92 1.312_ 700.4 0.9b9’
400.uU 293.92 1.257 713.9 0.9852
425. 10 293.92 1.208 727.4 1.001
293.92 1.163 741.1 1.016
475.( 0 293.92 1.122 754.9 1.031
00.u0 293.92 - 1.084 768.8 1.046
5?5.LU 293. 2 1.049 782.9 1.060
550.0 293.92 1.017 797.1 1.07’.
K— t ! 1

-------
RANI(IN CYCLE TEST PRO8LEH 1.1 E’393 P 6
11/30/12
I P I ) H S
DEE’ F PS I LB/FT3 RTU/LB BTU/L 3-F
5? i. O 293.92 0.98 8 811.5 1.08Q
b0O.U0 293.92 O.95 6 826.0 1.102
625. 1 1(1 293.92 0.9323 840.7 1.116
65O.u 293.92 0.9075 855.6 1.130
293.°2 0.8842 870.6 1.143
700.uO 293.92 0.8622 P85.7 1.156
72c. 0 293.92 0.8414 901.0 1.169
750..iO 293,92 0.8216 916.5 1.182
775 . JO 293.92 0.8028 932,1 1.195
800.u O 293.92 0.7850 947,9 1.208
200. 0 734.80 47,34 161.7 0.2495
225.1)0 734.80 45.99 187.1 0.2863
250.’JO 734,p O - 44.57 213.1 0.3228
27 .uu 734.80 43.07 239.7 0.3589
300. Ju 734.80 41.47 267.2 0.3949
32 ’.U0 ?34,AQ 39.74 295,5 0.4307
350. 1.10 734.80 37.86 325.0 0.4664
37c .JO 734.80 35.7? 355.9 0.5036
400.ij0 734,80 33.42 389.1 0.541?
425.00 734.80 30.6a 425.6 0.582’
450. ,0 734.80 3.679 711.3 0.q ’ o
475.10 734.80 3.431 727.9 0,9580
500. 0 734.80 3.231 744.0 0.9751
525.00 734.80 - 3.063 760.0 0.9915
550. )0 734.80 2.918 775.8 1.007
7S.U0 734.80 2.792 791.5 1,023
734.80 2.680 807.2 1.03q
6 5. 0 734 .M 2.579 823.0 1.05’
65 0.U0 734.80 2.488 838.8 1,067
675.uO 734.80 - 2.405 854.6 1.081
700.0 734.80 2.329 870.6 1,095
725.L0 ‘734.80 2.259 886.6 1.10
75 .0_ 734.80 _2.193 902.7 1.122
775 .u O 734.80 t.133 918.9 1.135
0o.u0 734.80 2.076 935.2 1.14M
200.uO 1175.68 47.34 162.2 0.2476
225.110 1175.68 45.99 187.4
250.uO 1175.68 44.57 213.2 0.3204
275 ,1 ,0 i17S.6 43.uY 239.6 0.356?
300.110 1175.68 41.47 266.7 0.391?
K- 112

-------
WANKINC. CYCLE TFST R0BLEP’ 1.1 E’393 P U
11 30/72
tFW -
I P D S
DEG F PSI LB/FT3 PTU/L8 BTU/L8—r
325. 0 1175.68 39.74 294.6 0.4270
350.u0 1175.68 37.86 323.5 0.4623
375,0 1175.68 35.77 353.5 0.4979
400.U0 1175.68 33.42 385.2 0.5343
425.’iO 1175.68 30.68 419.0 u.572i
‘ 0.0 1175.68 27.25 455.’. 0.6121
475 i0 1175.68 21.09 605.9 0.6647
SOQ.ud 1175.68 7.414 700.7 0.9117
SdS.u0 1175.68 6.358 725.7 0.9375
550.uO 1175.68 5.742 746.6 0.9584
575.vO 1175.68 5.303 765.7 0.977
b00.i,0 1175.68 4.962 784.0 0.9946
b 5. 0 1175.68 — .684 01.8 1.011
6’0.iO 1175.68 4.449 819.2 1.027
67’.ti0 1175.68 4.247 836.’. 1.04’
700.uO 117S. 8 4.070 853.6 1.057
725. u 1175.68 3.912 870.6 1.072
75Q.uO 1175.68 3.771 887.7 1 086
775,uO 1175.68 3.643 904.7 1.100
800...iO 1175.68 3.526 921.7 1.11’
200.jO 1469.60 47.34 162.5 0.2463
22S.ij0 1469.60 45.99 187.6 0.2 ?8
25Q.U0 1469.60 44.57 213.3 0.3188
275.U0 1469.60 43.07 239.5 0 .3 44
300. 0 1469.60 41.47 266.4 0.3896
325.JU 1469.60 39.74 294.1 0.4245
350.. 0 1469.60 37.86 322.5 0.4593
375•u0 1469.60 35.77 351.9 0.496’
400.uO 1469.60 33.42 382.6 0.5?94
445. ,1) 1469.60 30.68 414.6 0.565’
‘ 50. U 1469.60 27.25 446.6
75.JU 1469.60 21.09 591.9 0.6470
500.v4J 1469.60 13.30 652.2 0.8 6’
525.vO 1469.60 13.46 664.2 0.8 6
550. ’0 1469.60 9.172 714.7 0.9193
S75. 0 1469.60 7.846 741.8 0.9459
OO.u0 1469.60 7.060 766.2 0.9673
625.u O - 1469.60 — 6.503 784.7 0.9863
650.uO 1469.60 6.072 806.0 1.004
675.uO 1469.60 5.724 822.7 1,021
K- 3

-------
IIAN’cINc. CYCLC T€ST DROBLEM 14 E J93 P P
11/30/12
T E M’
T P 0 H S
DEG F PSI LB/’T3 P.TU/L8 BTU/LB—
700.vU 1489.60 5.431 841.0 1.037
7 5.i0 1469.60 5.1 ( 40 859.0 1.05?
750.( U 146 .60_ 4.961 - 876.9 1.067
775.0 1469.60 4.766 894.6 1,081
800.uO 1469.60 4.592 912.3 1.096
K-. 1 L

-------
11. BLANK INPUT DATA SHEETS FOR PROGRAM E1393
Monsanto
Program EI3
II
II DATE ____________
t5i ri NCó.r4 .
K— 145
INPUT DATA SHEET 1 OF 3
Rl AODYNP MIC PROPERTIES
O MULTIC MPO FLU(D5
LIST 1 PROBLEM-SET IDENTIFICATION mel LIST 2- CASE IDENTIFICATIOtl (OptienaI) ‘ 4
* . .n ,tIiI,.I.u. I I, . . it...... tu.I....u. .u.u..., ii . . . . . . l iii.
2bb, • . . - • . .,. ..,.l • . . . . . . • .
I 5 10 IS 20 25 30 15 40 45 50 55 50 03
UST3: Ternpar-&iur€ .-.4 : -
Descnptuon
i ’ Entjy
L i + I4uvv 6 er
Tempev +ure UreO C,1:F,a l .,3R.
emper +ure Gria Lower Limit
Terrpero tuv-e ( r,d Upp.r Limit
Te ptvwIuv’e (2w -id Lpc. -emen .
‘ 5 rofe. Co - -
- 3
1
LIST4:
Prcscure &ri4
-
Description -
Entiy
List Number
Pressure Ur f 0 orIm 1 1, ps ,Z: nwv 4g
Wun ber oc ?ressuvC5 (50 m. .
— 4
t
‘
- ?rt51 Urt .
1-5
6-10
11-15
16-20
21-25
- 2 ,- o
31-35
3b-4o
41-45
4 -5C)
•
LIST 5 SYSTEM COMPOSITION
Description ENtmy
List Number 5
Input Composition Code (1 = Mass Units, 2 Mole Units) — —_________
Number of Components ( 0 Hex) - ——_______
Comp. No.
Composition Data in Fractuons Percents, or Flows - -
1-5
6-10
11-15
16-20

-------
INPUT DATA SHEET 2 0F3
ThLRIj4ODYP MIC PR WE:gflES
0F MUL11CMpOI .$E T LUID5 BY . _____
LIST 6: MOLECULAR WEIGHTS AND ANTOINE coN ’rANTs-: i .
__________ Q cription. . . ‘:!1
ListNumber - -
Nunber tCompc ient ( 4Max) - ______________
Con tpcn t ;- ifle cmst b’ ‘ -
Nurnbei Namer w f b c ;J
hut hI ll 1 I
I 12
* nP 0 a + b/CT + ci with vapor pressure (P°) in atnr mid temperature CT) in 0J •
LIST 7: LIQUID ACT1VTYCUEFFICENTOATAA V -
I eEflpø
fUstNumber 4* &j 4 i — -i
I
Patr [ COmPonent Numtiess ; r
L ! h 1 ii *ff i 4
: _______ _______ _______ _______ _______
2d ____ ____ _____ _____ _____ _____ _____ _____
-, ‘3 -1 _____ _____ _______ _______ _______ _______ _______ _______
- - ‘ I ______ ______ _________ _________ _________ _________ _________ _________
- ) -I --
Maximum number of binary pairs r N(N — 1)/2 where N is the number of components. Entries for ideal pairs may be omitted.
A.. = a 1 . + b.. IT + c..T where T is in K and A 11 = n y 1 .
Monsanto
Program El q3
oA1h -- __________
2
33
_______ _____
* C, a 11 + b 1 fT c 1 T where T is in °K. C = C .

K— Lj 6

-------
Monsanto INPUT DATA SHEET 3 OF 3
ThERMODYNNA%C. W RT’€S
Program E 3 U MULTICOMO ) 1T Lu o3
LIST 9: I e&t G&s 4eo 1
Descnpt ion - r’ EfltTy 5 L
1zstNun e 9 -r J t ,t .’ 1
Numt rofCoa cnents (Z Max) ‘ T3
camxne r G k +CCot S4W t *
a , - _)_ _j 45
—
3 -—
4: — — —
; .5:


L -. ... - ——------ -•—--— I
a+ 6T + CT 2 .. . Cp in 1 “ ‘K.
LIST o: C +tc t P -e +te’E, . c4e 4- 4 / -. ..t -’ 1 L qu d
Dscnptwn’ Y’ .
List Nu i I 0
&i
C jan Cn4 ica I TQn 1 4 or D AG .4 r Tz ; -
- ‘y - -
—


—___
0
- - . .. . - . . - 99
[ uST : END OFCASECONTROL . . .-- - . ‘;. - - - . -__. 1
t &r4 COLY-à
K— )4 7

-------
APPENDIX L
COMPUTER PROGRAM E-1375
Isoteniscope Data Analysis: The determination
van Laar parameters for binary liquid mixturee
by vapor pressure vs. temperature measurements.
1. SCOPE
This program is designed to estimate parameters of the van Laar
equation for liquid phase activity coefficients from a minimum
of experimental data. Vapor pressure data, in the form of Antoi.ne
equation constants, for the two pure components and two or more
binary mixture compositions are the primary input data. The out-
put consists of the van Laar constants giving the best fit to the
vapor pressures of the mixtures at a number of’ predetermined
temperature levels.
The program is limited to binary systems for which the van Laar
equation gives an adequate representation of the activity
coefficient.
2. MODEL
2.1 Definitions
A,B,C, Constants in the Antoine equation for vapor pressure
A 12 ,A 21 ,E Parameters in the van Laar equation for liquid phase
a activity coefficients
a,b Constants in the Redlich—Kwong equation of state for
gas phase
M Molecular weight -
P Total vapor pressure over a liquid mixture, atm.
p° Vapor pressure of a pure component liquid, atm.
Pc Critical pressure, atm.
11 Gas constant, 82.0557 cm 3 atm/gmol°K
T Temperature, °K
T Critical temperature, °K
v Volume of gas mixture, cm 3 /gmol
VL Volume of pure component liquid, cm 3 /gmol
x Mole fraction in liquid mixture
y Mole fraction in vapor mixture
L-1

-------
z Modified mole fraction In van Laar equation
Constants in liquid density polynomial
y Liquid phase activity coefficient
p Liquid density, g/cm 3
Fugacity coefficient for pure component at its
vapor pressure
Fugacity ratio of given component in the vapor
mixture at pressure, P.
Subscripts
1,2,1 Component number designations
m Mixture property designation
2.2 Computation Method
The program performs a least squares regression analysis, varying
A 12 and A 21 of the van Laar equations, until the best fit is
obtained when experimental and calculated total vapor pressures
of the mixtures are compared. Details of the calculations are
as follows:
2.2.1 Experimental and Pure Component Vapor Pressures
Experimental total vapor pressures are computed by the Antoine Eq.:
in P = Am + B/(T+C) (1)
Pure component vapor pressures are also computed by Antoine Eq.:
ln p 9 = A. + B 1 /(T+C 1 ) (2)
The values of Bm Cm for each mixture composition, and A 1 ,
B 1 , C 1 for eac i component are imput data to the program.
2.2.2 Calculated Mixture Vapor Pressure
The partial pressure of each component Is calculated by
Py 1 = y 1 x 1 p exp (vLl [ P_p ]/RT/ct j. (3)
The total pressure is the sum of the partial pressures
P = y]x 1 $ 1 p 1 exp
00 0
+ Y2X 2 2 P 2 exp (vL2 [ P_p 2 ]/RT)/ 2 (LI)
L- 2

-------
2.2.3 Liquid Volumes
Liquid volumes are calculated from a liquid density polynomial
P 1 ci 1 + T+ 1 T 2 (5)
VLI = Mi/Pi (6)
The values of ctj, , F , and M 1 are input to the program.
2.2i1 Fugacity Ratios
The Redlich-Kwong equation of state Is used for calculating vapor
properties:
RT a (7)
V- [ Tv(v+b)
Equation (7) may be used for either pure component or mixture
calculations. For pure components, the parameters are deter-
mined from the critical constants:
a 1 = R 2 T 2 5 / [ 9(2 1 / 3 —l)P 1 ] (8)
b 1 = (2u/3_l)RT 1 /(3P j) (9)
The values of P and T . are input to the program. Mixture
parameters are etermin from pure component parameters and
mixture composition:
am = a 1 x 1 + 2 a 1 a 2 x 1 x 2 + a 2 x 2 (10)
b = b 1 x 1 + b 2 x 2 (11)
The fugacity ratio is then calculated from
1n 1 = ( _1)bj/bm — ln [ P(v_bm)/RT]
+ b RT” ( 2 çf i — ) in(v+ ) (12)
When a pure component fugacity ratio is calculated, amai and bm=bi•
L-3

-------
2.2.5 Activity Coefficients
The van Laar equations, modified to allow A 12 and A 21 to have
opposite signs, are used to calculate activity coefficients as
follows:
2
my 1 = A 12 Z 2 (1—EZ 1 ) (13)
2
my 2 = A 21 Z 1 (l—EZ 2 ) (1 .i)
where
Z 1 = IAi 2 Ixi/(IAi 2 Ixi + IA 2 iIx 2 ) (15)
Z 2 = l—Z 1 (16)
and
E = 0 when A 12 A 21 O
= L I when A 12 A 21 <0 (17)
The values of A 12 and A 21 are the regression parameters for the
least squares fit.
3. INPUT
Enter the input data on the blank data sheets of Section 3.1.
Numerical data Input is in free format and can be punched anywhere
on the input card so long as blank spaces separate any two entries.
Input data items designated with a double dagger (*) must be the
first item on a new card. The order of punching entries on the
card is horizontal, left to right, when two or more columns on the
data sheet are not separated by vertical lines, as In list LI.
When two columns are separated by double vertical lines (as In
list 5), all Items In the left hand column are entered before
any entries of the right hand column. When successive cases are
run, only those input lists different from the preceding case
need be Included. Each case is terminated by a list 99 card.
L-LI

-------
3.1 put Data Forms
Pt o .ie.’ ’ r -7c, I T N CO( Dfrr fiL’(SI
It.aI’UT I 3
LIST 1 &Or L$, Er I TlFIC4TI I d ‘-is rz: C4 C
___________________
I JO
LO
pc fr, IcI r(oJJ (4,4 o. I)
.-... . I I
I I
I I
bO 6
LIST 3; coM.’osI-rIopJs o M I TIJt S ME 3URCD
DesJ
L. 4 iii. b’tr
2
t iu, ,bep- { Mix+uves 10
i4i-i4
L t
M.*+t r (Mok lfltC 4 .G 1l 411..’
—
LIST 4; TEWPe - ,R.ES O peESSU C UR F ‘ ‘ T
—
______
Ite,’
3
Deccr.?t 1 I
L..iç+ jL4viI.er
N w’k er o 4 e.i per t C w -;es (20
U ij+S
—
‘ ‘- .;.
2t—ia
- —
I ‘ —

e pe- Li.wes
-
5t *rt Me , Cc*vri
L- 5

-------
t %SOTENISCOPG D# 7? A# IALV
IYip 4t +c. t eiL 2.
L c-r ç f acOw PO JE JT p toP R-Tt S
Oes v-, p+ ,...’
* L r1 t’J j C cj
l . i •t• -
t S.
Ite . i
9, 10
2!)
4 1 ’
, . C, ‘.
I 1
, I’
I ) )
I
Co . .ra (%k.. . e.
Mol i-c . 4 tc , -
d4ii 4 oi ie Coii 3 j 4 &it
(L F° - . +
Cr. 4 iCA I per4L I4r ’
Cr . 4 .€.J Pressure
(fO .4
g2.
4
&
C
6
C.
‘ .
44 . . 14,
I-
LiS7 :
E rtN%AT€c O • V J LA# &
f045rA’JTS (Op4jo.i*I’)
\t vv .
cy Cuv
3
i i !;
L if t 4 ii .k,ev-
J ..s ihep- (,4- 4rP3
et.iperi .4str
i 4 {
L.v.Iso .iaz.
4

Ev 4 j W 0 .()
A,. 1 .
A 1 . 1
L— 6

-------
pc o 4M .I37c, isor SCoP( D 14 s ii V t’a
€Ert d+ -
LtC T -i: MIX-r )k AIITOIPJE C i.jy
De5cripti..i
Ebi
tP-
L 1 j- tluv’i .er
-
. .
r JL4lMb .4 M :,4’w -e C.w.i .e’ • +..o&i (go
t______
M i 4 um t
/1 vi 4 os e S ‘ A, 3, C.
l lV C) .
L p° A4 i3/L-r4-c
2.
pd Va ’dr f rPS Lft-e (i
3
1 pfv 4 wrP C6i )
.
-
•.a -j
+4-,
r4rl,

-“..
! ‘3
-p
g
‘1
l0
I Li5T ENP OF A5E COi-)T .OL.
[ *:qq I
L-7

-------
L I. OUTPUT
A typical output printing appears in Section LI.l following.
Input data used to generate the table are listed in Section I.2.
L-8

-------
RANKINE CYCLE - ANALYSIS F ISOTENISCOPE DATA
MFS’I 22 PYRAIItJE. WATER
COWPONC T MOLECULAR - - - ANTOINE CONSTANTS - — - -
WEIGHT 8 0 C
PYRA ZINE 80.090 i5.57”O0 —10615.000 313.520
WATER 18.016 12.03520 —*030.j80 —38.150
TEMPERATURE 300.C00C(G. .. 1000 /T • 3.33333 Afl,2 ,
STA nDARD DCVI TI0N a 0.073 *AT”
COMPARISON OF EXPERIMENTAL AND CALCULATED PRESSURE
MINT. MOLE MAC AIITOI IC COEFFICIENTS
FiG. CO”. 1 A B
0. ,000 1’ .553O0 .6855.6992
2 0.7 1000 10.78500 .379N.0999
TEMPERATURC - 325.0000EG. K. • 1000/T
STANDARD CCVI\TION a 0.1OSOATM
COMPARISON 0 1 EXPERIMEPITaL 8710 CALCULATED PRESSURE
MIX?. MOLE RAC ANTOINE COCFFICIEFJTS
HO. COW’. 1 A 0
I 0.T 000 1”.SSSOO .6855.6992
2 0.7 ,000 10.78500 379 0999
TEMPERATURE 350.0000(1. K. • 1000/T a
STANDARD GEVI TION a 0.52068TM
COMPARIcON or EXPERIMENTAL A ’fl CALCULATED PRESSURE
u 7 MOLE RAC AFITnIt IE COEFFICIENTS
NO. CO ’. 1 A B
1 0. •000 16.55300 —6855.6992
2 0.7,000 10.78500 3791’.0999
C1375 P 1
3/5/7*
CRITICAL CONSTANTS — — LIQUID DENSITY COEFFICIENTS
T IDEG. K) P ATMI A 0 C
625.700 66.820 -0.’492590 0.008082 .C.1072E.0*
6*7.300 218.306 1.0*7959 —0.000173 0.0
2.95006 8(2,1) 0.55262
PRESSURES (ATMI — -
:xP. CALC. 0 1FF.
3.29’e6 0.255* —0.0392
3.20*9 0.3033 0.0985
6(1.2) a 10.00000 8(2.1) 0.53325
I - ’
C ’ )
7
B
H
0
0
C r
¼0
C
109. 5900
.18.290 0
3. 07692
PRESSURES (ATM)
C iP. CALC. 0 1FF .
3.1125 1.093* —0.0191
0.068* 0.1392 0.0709
A(1.2 1 = 10.00000 6(2,11 0.59010
C
109. 5900
—18.2900
2.8571*
E
109.5900
—18.2900
PRESSURES (ATM) — —
x P . CALC. 01FF.
3,6Q’.9 0.64*6 —0.0503
3.5205 0.6301 0.1096

-------
LI.2 Input Data ror Section LI.1
Pt o RAM E 37 )
OTEt4 SCOPE DAT 1 IPJALYSIS
Ir JPuT DJ1T4 4 E.T %
II Obw
2
141 14 ç
I 4 - if 0
Dei - u pt,o.
St irt ‘Jew CdIr’it
Li ST : P o6LC -
CYCLE
3Cv

Cu ;cAr ü
4’
LIST
154’uEi&.1Sc 1 4!E
z:

up rI icP Iops
(o;
Abli 5 I
I
.C ’
30
40
Sb
6c’ -
L,5r 3: Co IP SI-r o,Js oW MI ruR s M€4fqjQ D
Li t P i .’oe-
4 MIYiM PT
y+ ,,
c ,.,. p r ; 4 .oi. $ (Moir
Fu.- ct1
o. ç
E t
$ 3
j 2
LI5T 4: T MPg A uRES oP
PR su .
MEA 1
Ite
Oesci—.pt. o&
L 1 st 1 ’ I’ ,.toer
UuitS
E h-y
3
ti.i. oer of
(30
M .)
_______
3
pu-ic
,- qo
qu - q
q soo
TQ...pev-Lturcs:
3oo 3Z5
3co
L-1O

-------
PRO lRgi M E.1375 1 ISo-r .t4t5COPE PAT RJJRLYSIS
triipiiit Do t* skeet z .f 3
L%S7 5 PUg COMPO,JGNT pKop 9-’rsES
6 . (1. 3
zIs. 3
I. 7 c 1
— , oool _
0
: EcTs ’),lTEs OF VAfrJ LAAR Co 1ST4bJrS
% e..
Oescp. ptgoi!
LJct ‘ 4 er
E rj

3
j.J14 1 i, kep. 1 , E 4pes(Te p tlAre Li ,eic,
t 3
i4 j P c •
.1 L& r s+a t Ect te
A,
I
Z
3
4
o.
o.c
.ç
U.S
.J ._,
00
(0
—
Qr4
——
7
S.
V
q
st t jIev.i C4p .cI
e cc ,- pt .ov.
List i I ,be-
?Jôu..,e
q,, , MeIecul4, /eijk-f.
2’,2 4j,4es” Co.sStc.,t
4’,412. (Lii P° 4 13/CT4c’I)
6 j 1.
ii, ,‘i. C u&.c. I Te,.i
C-; 4 I Pre,s re
DeKsI 4 ’J ,4C c. e.t%
(,o= 4 ,r+cTz)
j, 2 ,0
4
C
‘3.
w ce £
-
- 12.OJSZ
— 401o. 19
- 3g. Ic
C.
L-11

-------
?RO6RP fr’ E i37 , ISOTEt4%SCOPE.. DA r p JALYSlS
IYI% Mt .t1L Skeet
- .4 .
LiST 7: M XTU E APJTOiP.IE COAJSTA JTS
I
te
Des jptaa
Lest
E t.-y
t
z
N ti ber
0 f M,4& e Ce# p.c .oi, I0
z
M;xtt*re
, 4 . 4 .i,w cte...tS A, (3 ,C.
i j
I


I
S.
L, P°:A4 3/(-c#c.•
Vq , .- ?v-essI.re
TpeLt&Y
4.553 -G 7
gO.7
-____
it’ .s9
/g.29
‘
•...
t
N
- -
+1-
pjr.I
t
{-q
e
U
9
,
fL.
i qq: EMD
qq
4 S -t.4 t f 4 euu C -d
L-12

-------
5. MONSANTO PROPRIETARY SUBROUTINES CALLED
(1) CDP (with entry points CDP2, CDP3, CDP 4)
(2) HEADER, LINE
(3) SUMDB
(lj) ERROR
(5) ZRK
(6) ZRKCC
(7) ZRKMC
(8) LAS
5.1 Function of the Proprietary Subroutines
The call statement followed by a description of the function of
each subroutine follows.
CALL CDP
CALL CDP2
CALL CDP3
CALL CDP4
This subroutine performs the following functions:
(1) Reading of all list numbers
(2) Reading and implementation of list 1 and 2
(3) Implementation of special features such as case incrementing
of a specific variable, trial and error solutions, and
special summary outputs.
5.2 Call HEADER(K3 )
Subroutine HEADER Increments a page number counter, prints a two
line page heading, and set the line counter in subprogram line to
2. The page heading consists of the list 1 title, program number,
and page number on the first line with list 2 tItle and date on
the second line.
The Input control code, KS, has the following meanings:
KS
-------
Before HEADER is called, the page number counter has a value of
zero, hence an initialization call with KS = 0 is not needed.
Calling HEADER with KS = 1 assumes that the date and page heading
have been stored in the named C 3MM N section TITL. This function
is performed by CDP and the TITL section does not appear in the
routine which calls HEADER. If HEADER is not called with KS<0,
the program number printed with KS = 1 will be 0000.
5.3 I = LINE(KS )
Function LINE resets, increments, and returns the value of a line
number counter. Meaning of the variables follows:
KS Control code (input)
KS0, increment NE by 1 and add N to the message number
list
NE Message number counter (output)
Subroutine ERRØR initializes an input message list, adds a number
to the list, or prints the list according to one of the following
formats:
N = I CASE SKIPPED DUE Tø ERRØR IN INPUT ITEM Nø. ___
= 2 CASE SKIPPED DUE Tø EXECUTIØN ERRØR NØ. ____
= 3 MØDEL EXTRAPØLATED ACCØRDING Tø MESSAGE NØ.___
= 14 MØDEL EXCEEDED, ASSUMPTIØNS MADE, MESSAGE NØ.
L— 114

-------
5.6 Call ZRK(T,P,A,B,Z,KDUM )
T — Absolute temperature (input)
P — Pressure (input)
A - Redlich—Kwong parameter a (input)
B - Redlich-Kwong parameter b (input)
Z — Compressibility factor (output)
KDUM - Dummy variable
Subroutine ZRK calculates the gas compressibility factor by the
Redlich-Kwong equation.
5.7 Call ZRKCC(N,TC,PC,ARK,BRK )
N — Number of components (input)
TC(I) — Critical temperatures of components (input)
PC(I) — Critical pressures of components (input)
ARK(I) — Redllch—Kwong a of components (output)
BRK(I) — Redlich—Kwong b of components (output)
Subroutine ZRKCC computes the Redlich—Kwong constants from the
critical properties of the components.
5.8 Call ZRKMC(N,Y,ARK,BEK,AM,BM )
N Number of components (input)
Y(I) Mole fractions in mixture (input)
ARK(I) Redlich-Kwong a of components (Input)
BRK(I) Redlich-Kwong b of components (Input)
AM Redllch-Kwong a of mixture (output)
BM Redllch-Kwong b of mixture (output)
Subroutine ZRKMC calculates mixture Redllch—Kwong constants from
mixture composition and pure component Redllch-Kwong constants.
5.9 Call LAS(N,L,A,IvJ B,X KERR,KUL,UL,IP3,S,KDET,DET )
N Number of equations to be solved (input)
L Number of rows allocated to A,B,tJL,X arrays by calling
program (input)
A(I,J) Coefficient matrix of size NxN (input)
M Control index, set = 1 in present application
B(I) Vector of right hand sides of equations (Input)
X(I) Solution vector (output)
KERR Error code (output)
o normal return,
—1 no solution, A is singular
KUL Code set to zero in present application
L- 15

-------
IIL(I,J) Scratch matrix, at least NxN
IFS Scratch vector, at least N
S Scratch vector, at least 3N
KDET Code set to zero in present application
DET Value of determinant of A if KDET = 1 (output)
Subroutine LAS solves the linear system of equations A X = B
for the vector X.
L- 16

-------
6. COMPUTER PROGRAMS (E1375 and RELATED )
C DECLARATIVE SECTION
COMMON 08(1200), COMP(3,2)
C
C FILE SECTION
900 FORMAT (61.0)
901 FORMAT (3A4, 61.0)
C
C INPUT SECTION
LNMX = 7
CALL CDP(DB. UI, LNHX, KTE, KIN)
CALL HEADEM C —1375)
S CALL CDP1
GO TO (11. 5. 13. 14. 15. 16, 17). LN
IF (IN .EQ. 99) GO TO 30
b CALL EXIT
C INITIALIZE PROBLEM SET
11 00 111 I = 1.1200
111 08(1) = U.
DO 112 I = 101. 140
112 L)8(I) = 0.5
GO TO S
13 READ (5.900) N, (DB(140.I).11,tv)
08(2) = N
GO TO S
14 READ (5.900) N, (DB(80.I) . 1 1,N)
DB(3) = N
GO TO 5
15 DO 151 J= 1.2
151 READ (5.901) (COMP(I.J).I1.3),DB(8 J) , DB(20 .J), DB(40•J),
1 DR(60 J). DB(1O•J), DB(12 .J). DB(14•J). DB(16.J) .
2 DB(18 .J)
GO TO S
16 READ (5.900) N ,(D8(100.I) . DB(120.I). I=1.N)
GO TO S
17 READ (5,900) N,(D8(22.I). 08(42.1), 0B(62•I). Il,N)
GO TO S
C
C DATA INTERFACE SECTION
C
30 CALL CHECK (NE)
IF (NE .GT. 0) GO TO 5
C
C COMPUTATION SECTION
C
40 CALL CDP2
50 CALL MODEL
CALL CDPJ
IF (KTE .GT. 0) GO TO 50
C
C OUTPUT SECTION
C
IF (08(5) .NE. 1.) CALL OUTPUT
CALL CDP4
IF (KIN .EQ. 1) GO TO 40
GO TO S
END
L-17

-------
SUBROUTINE GAMMA A X, Gi ’ G2, 21’ 223
DIMENSION ACe)
2 1 = AC I)*A/(AC1)*X .A (2) .C1._X))
22 1. 21
Gi = EXPACHOZ 2 4*2
G2 = EXPCA(2)°Z1 *°2)
RETURN
END
L- 18

-------
SUPRUUTIi E CMECI’ (NE)
C
C DECLARATIVE SECTION
COMMON DM(1200)
IMENSION LE(20)
C COMPUTATION SECTION
CALL ERROR (0. tiE, LE)
IF (DR(2) .LT. 1.)
iF (DB(3) .LT. 1.)
IF (D (9) .LE. 1.)
IF (OR(1U) .LE. 1.)
00 10 I = 1. 12
10 IF (OB(40 I) •GT. 0.)
DO 20 I = 1. 4
20 IF (D8(10•T) .LE. 0.)
IF (08(S) .LT. 2. sAND. NE
CALL HEADER(S)
CALL SUMOB (Db. 1. 1200)
30 IF (NE .GT. 0) CALL ERROR
RETURN
END
CALL
ERROW(
1.
NE.
El
CALL
ERROR(
2.
NE.
• E)
CALL
ERROR(
.
NE.
i E)
CALL
ERROR(
10.
iE.
‘El
cMLi
ERROR
(40.1,
NE.
LE)
CALL
ERROR
(10.1.
NE.
LE)
(—1, NE. LE)
L-19

-------
C
SU ROUTINE MODEL
C
C
C
C
SECT ION
DP (1200)
(AA,D8(21))
(AAM,DB (23)),
(A 12$ .DB (loll
CTC,Dd(j1)
(sTDEv,D8(161 ,
( .DU (201)
(DP2DA,DB(361)),
( ‘ ,DB(S01))
(FLP,DR(4611),
(TCX,OB(4A1)
(AB.DB(41)),
(AB$ .OB (63)),
(a2lS,Da(121)),
(PC.D,U13)),
(DQDA.D8(]53)),
(POYNT.DB(241)),
(TREC,D8(321))’
(D2P1DA .DB(381)),
(PCAL,DB(70lfl,
(PPR,DA(301)),
(X ,D ( (141))
(AC ,OH(61) I .
(ACM.,)B(b ) ) .
(T,DB(81),,
(D200A ,D8(1S5)),
(DplD ,DB(34l)),
(D2P2DA.Dp(4 1)),
(DP,Dc (9ol)),
(VPp E5S,D.. (181))
SUBROUTjNE TO CALCULAIE VAN LAAP CONSTANTS FROM ISOTENISCOWE
VaPOR PRESSURE r4EASUREMENTS.
DECLARAT lYE
COMMON
DI ’iENS ION AA(2),
1 ABM(1O), ACMC IU),
2 A12S(20) . A21S(20) .
3 WM(2), STDEV(20) ,
POYNT(2,1O) .PHII(2,1O),
P2(10),
6 10). DcL.cI’2(2.2,1o),
7 FLP(2,1 ), PPR(2,10),
ARK(2), 8RK(2 1.
DIMENSION AdEST (2),
1 DATA(3),
2 X(10)
AD(2).
T (20) ,
DODA (21,
PHIV (2,10),
DPI (2,10)
P(jO,2u)
VPRESS(2J,
TPS(2),
ASTART(2),
NOATA (8),
8D( fl.
TC(2),
L)200A2,2).
TREC(10)
0P2 12.10)
PCAL (10.20)
Tcx ci .
UL (2, ).
XUB(2),
DEL 4. ( 2) ,
C INTERF4CE SECTION
C
AAMt1O) .
CD( .
4(2,20).
DP1r .(2,ju)
OSErP1 (2,2.
,DP(IO,20) .
FLP (2),
S(bi
0(3),
1
3
4
5
t
7
8
9
EQUT VALENCE
EQUIVALENCE
C
C
C
(
C
NMIX = 08(2)
NTEMP = DB(3)
CALL ZRKCCC2, TC. PC ARK. BRK)
COMPUTATION S€.CTION
00 10 1 = 1’ NT [ -iP
10 TREC(I) 1000./T(I)
1)0 11 I = 1, 2
11 TCX(I) = TC(I)
DO 12 I = 3 ,j2
12 TCX(I) = lu O O.
ESTABLISH TEMPERATUHE LEVELS
rio 100 j 1. NT MP
K = NMIX ‘
J 20 j = 1. 2
21) VPRESSLj) = VP(T(I).J)
riO 22 J = 3, K
P(J—2 .1 =VP(T(I),j)
DO 22 L = 1.
22 fLP(L,J— ) = VPRESS(L)/p(J_2,I )
FLIGACITY AND POYNTING CORRECTIONS
L-20

-------
C
DO 3u J = 1. NMIX
CALL RKWONG(2,T(I),P(J,I),PHIL(1,J),p$IV(1,J).ILP(1,J),ApK, I()
30 CALL POYCOR(2, TU). P(J.I).POYNT(1.J). FLP(1.J))
C
C —————— STAIITING VALUES FOR A
A(l,I) = A12S(I)
40 A(2,I) = A21S(I)
C
C INITiATE SEARCH
NDATA(1 ) 1
NDATA(6) = 100
NDATA(7) = 1000
DATA (2 ) = (1.1
DATA (1 ) = .0001
DO 41 ic 1.2
MiB(K ) = 1ü.
41 XLA(K = .00001
50 CALL SRCII(Q.A(1,I)., ASEST. ALAST, AUB. XLB. DQL)A. 02Q0A , 2.
1 DATA. NOATA. DELA. IPS. S. UI)
IF (P4DATA(1 ) .LE. 0) GO TO 90
0(1) = 0.
no 60 J = 1, NI4IX
CALL GAMMA (4(1.!). X(J), (ii. G2 ,21.22)
P1(J) = G1 .VPRES S(1)*PH 1L(1,J)*POYr4T(1.J).ACJ)/PHIV(1.J)
P2(J ) = G2*VPkESS(2) PMIL(2,J)*POYNT(2..J)O(1,—X(J)),
1 PIIIV(2.J)
PCAL(J,I) P1(J) • P2(J)
0(1) 0(1) • (P(J.I) — PCAL(J.I))’2
IF (NDATA(1 ) .EQ. 2) GO TO 60
L)P1(1.J) = P1(J)*Z2**2*(1. _2.*Z1)
OP1(2,J) = 2.°P1(J) 4 11°Z2*°2*A(1,I)/A(2.I)
02(1 .J) = 2.*P2 (J)*Z2.Z1e.2e4(2,1)/A(1.I)
DP2(2,J) = P2(J)*Z1**2*(1._2.*Z2)
DSECP I(1.1.J) = P1(J)*Z2*02a(22**2*(i. 2.*Z1 *2 _2.0(?.*Z2 _Z1)
1 * Z1/A(1.I))
DSECPI (1.2.J) = 2.ePl (J).21*Z2**2.(A(1.I)0Z2*.2.(1._2.*71).
1 2.°22—Zl)/A(2.I)
OSECP1(2,1,J) = DSECP1(1,2.J)
OSECPl ( ,2.J) = 2.*P1(J)OZ1*Z2**2*AU.I)*(2.*A(1.I).Z1*Z2**?
1 •1.—3.aZ2)/A(2,I)**2
DSECP2(1.1.J) = 2. *P2(J) 012*Z1**2*A(2,1)*(2.OA(2,T)*Z,*Z1**2.
1 1 .3.Z1)/A( 1 •
OSECP2( 1 .2.J) 2.F2(J)*Z1. *2 *Z2°(A(2,I) Z1 *°2°(1. 2.° 2)
•2. Z1—Z2)/A(1 ,I)
DSECP2(2.1.J) = D SECP2(1.2.j)
DSECP2 (2,2,J) = P2(J)*Z1002.(l1**2*(1._2.0Z2)**2_2.e22*
1 (2.*Z1_Z2)/A(2,I))
60 CONTINUE
IF (NDATA(1 ) .EQ. 2) GO TO 50
00 65 J = 1. 2
0004(J) U.
00 65 K = 1, NMIA
b5 0004(J) = 000A(J) • 2.°(PCAL(K,I)—P(K,I))°(OP1(J.K).DP2(J.K)
1
02004(1,1) = 0.
02004(1,2) = 0.
02004(2.2) = 0.
L-21

-------
= D200A(1.2} + 2..CCPCALL,.I)_I?(J,Ifl*(DcECP1
(1,2,J).OSECP2(1,2,J))4(DP1(1,J)0P2(19J))
(DPi (2,J .DP2 (2,J)))
D2QDA (2.1)
TO SO
9fl t)Q 91 .i = 1,NMIX
91 DP(J,I) PCAL(J,I) — P(J.I)
ST0E (1 = SQRT(Q(1 )lFLO T(P1MIX—1))
100 CONTINUE
PETURN
E NI)
nO 70 J = 1. NHIX
0 !0DA (I ,2)
1
2
no
I
2
70
70 K = 1.2
O2QDA (K,K)
= D2QDA(K,K) • 2.*((OP I(K.J)10P2(K,J))7’

OSECP2(K,K,J) I)
= D2ODAU. I
L— 22

-------
SUBROUTINE OUTPUT
C
C DECLARATIVE SECTION
COMMON DB(1200). COMP(3,2)
C
C FILE SECTION
1000 FORMAT (1110’ COMPONENT’ ‘ MOLECULAR — - — ANTOINE
1 CONSTANTS — — — — CRITICAL CONSTANTS — — LIUUIO DENSITY C
20EFFICIENTS’ / 18X,’WEIGHT’ 6X.
3 ‘A’ 11X, ‘B’ lix, ‘C’ TX,’T (DEG. K) P (ATM)’ 6X,
4 ‘A’ 11X, ‘8’ 11X, ‘C’)
1001 FORMAT ( IX, 3A4. F1i.3, F12.5,4F12.3 ’ 2F12.6, G12.4)
1002 FORMAT (1140 ‘TEMPERATURE =‘F9.3,’DEG. K., 1000/1 =‘ Fi2.’ ’ 2*
1 ‘A(l ’2) =1 F9.5 ‘ 2X ‘A(2 ,i) F9 ,5)
1004 FORMAT (1* ‘STANDARD DEVIATION ‘ Flo.4, ‘ATM’)
1005 FORMAT (1110, ‘COMPARISON OF EXPERIMENTAL AND CALCULATED PPESSURE’)
1006 FORMAT (lIl0,’MIXT. MOLE FRAC ANTOINE COEFFICIENTS’ 16X, S
1 PRESSURES (ATM) — — ‘ / I NO, COMP. 1 A
2 B C E XP. CALC. 01FF. ‘)
1007 FORMAT (16, 2F12.5,5F12.4)
C
C DATA INTERFACE SECTION
NM = 08(2)
NT = D8(3)
C
C OUTPUT SECTION
1K 1
10 CALL HEADER (1)
WRITE (6, 1000)
00 11 I = 1’ 2
11 WRITE 6, loO l)(COMP(K,I),K=1,3), DB(8 ’I) DB(20 ’I) . 08(40.1),
1 08(60.1), 08(10,1). DB(12.I). 08(14.!), DB(16+1) ’
2 D8( 18 ’I)
C
20 WRITE (6,1002) D8(80 ’IK),DB(320.IK),(DB(2O02°(I 1)I )’Il’ 2 )
WRITE (6, 1004) Dfl(160 .IK)
WRITE (6, 1005)
WRITE (6, 1006)
DO 25 I = 1, NM
25 WRITE (6,1007) I. DB( 140 ’I),DB(22 ’I) ,DB(42 ’I) ’
1 DB(62 .I) , 0BC500 • I • l0*(IK—i)), DBC700 • I • lO.(IK—l)).
2 08(900 • I • lO*(IK—1))
1K =IK.1
IF (1K .GT, NT) RETURN
IF (1K .EQ. 4 .OR. 1K .EQ. 7 .OR. 1K .EQ. 10) GO TO 10
GO TO 20
END
L-23

-------
SUBROUTINE POYCOR( N, TA, PATM, POYNT, FLP)
DATA P / 82.0575 /
COMMON OR (1200)
DIMENSION ALD(1),
TC(1), POYNT(1).
EQUIVALENCE (DB(9),WM),
(DB(19),CLD) ,
00201 =1 ,N
IF (* 1 .0(I) .EQ. 0.) GO TO 10
c VLIQ VOLUME IN CC/GMOL
V = WM(j)/(ALD(I).TAe(ALD(I).TAcCLD(1)))
PVP = FLP(I)DPATM
IF (TC(I) •GT. 0. .AND. TA .GT. TC(I)) PVP = 1.
E = V (PATM—PVP)/(R*1A)
IF (E .GT. 100.) CALL TERMIN(4,I,TA)
POThT(I) = EXP(E)
GO TO 20
10 POYNT(j) = 1.
20 CONTINUE
RE TURN
END
BLD(1) , CLDU.
FLP (1)
(DR(15),ALDJ, (DB(17),BID),
(OB(1) ,TC)
L-2 1

-------
SUBROUTINE RKWONG( N, TA, PATH, PHIL, PHIV. FLP. ARK, BRK)
C
C FUGACITY COEFFICIENT FROM REOLICH—IIWONG
C
C INTGRL FROM 0 TO yAP PRES GOES IN PHIL(I)
C INTGRL FROM 0 TO PATH GOES IN PHIV(I)
COMMON DR(1200)
DIMENSION TC(1) PHILC1). PHIV(1), FLP (l) .
1 ARK(1). BRK(1)
EQUIVALENCE (DB(11),TC)
C
0020! =1,N
PNIL(I) 1.0
C CORRECTIONS = 1 IF CRITICAL PROPS UNKNOWN
IF (ARK(I) .EQ. 0.) 60 TO 10
CALL ZRIcMC(1. 1. *RK(I), BRK(I), AN, GM)
A2 = AM/TA° 2.5
B = 8$/TA
C LU ’ COR = 1 FOR SUPERCRITICAL COMPONENTS
IF (TA .GT. TC(I)) GO TO 15
C SKIP LIQ CORRECTION FOR HEAVY COMPONENTS
C (WHERE VAPOR PRESSURE WILL BE EXTREMELY LOW
C WHEN ALGORITHM TRIES VERY LOW
C TEMPERATURES IN iTS SEARCH. THIS
C TEST IS NECESSARY TO STOP INTERRUPTS IN ZRK
C SUBROUTINE)
VPRES = PATM*FLP(I)
IF (VPRES.LT. i.E—b) GO TO 15
C
C LIQUID CORRECT IUN. INTEGRATE FROM
C 0 TO VAPOR PRESSURE
C
CALL ZRK( TA, VPRES . AM, GM, ZF . KOUM)
El = ZF — B VPRES
€2 1. • B VPRES/ZF
IF (El .LE. 0. .OR. €2 .LE. 0.) 00 TO 30
E = ZF — 1. - ALOG(E1) — (A2/8)ALOG(E2)
IF (E .GT. 100.) 60 TO 30
PIIIL(I) EXP(E)
C
C VAPOR CORRECTION, INTEGRATE FROM
C OTOPATI4
15 CALL ZRK(TA, PATH, AM, BN ZF, KOUM)
El = iF — B PATM
€2 = 1. • B*PATM/ZF
IF (El .LE. 0. .OR. £2 .LE. 0.) GO TO 30
E iF — 1. — ALOGIE1) — (A2/B)*ALOG( 2)
IF (E •GT. 100.) GO TO 30
PHIV(I) = £XP(E)
GO TO 20
10 PHIV(I) = 1.0
20 CONTINUE
RETURN
30 IF (DB(l) .GT. 0.) PRINT 100, TA,PATM,VPRES.LF,B ,E1,E2
100 FORMAT(I1DEBUG OUTPUT — SUBA RKWONG,. TA,PATM,VPRES,ZF ,B ,E1 ,E2 ‘.
1 / i x. lpeGi4.6)
CALL TERMIN(6,I,TA)
L—2 5

-------
RtTURN
L I .
L—2 6

-------
SUBROUTINE SRCH(Q.X,X1,X2,XUB,XLB,00DX,D2QDX,N*9DATA.NDATA,DELX.
1 IPS .S.ULP
C THIS SUBROUTINE HAS Ab ITS PURPOSE A SEARCH FOR A SF1 OF
C PARAMETERS, X. WHICH MINIMIZES A FUNCTION 0. VAlUES OF THE
C FUNCTION AND ITS DERIVATIVES ARE TO BE. SUPPLIED BY THE CALLING
C PROGRAM WHEN REQUESTED BY SRCH.
C
C • * * 0 * DEFINITION (iF VARIAt3LLS
C
C 0 ARRAY OF 0 VALUES. 0(1) = VALUE IN CURRENT CALCULATION
C 0(2) = 8EST VALUE
c 0(3) = FIRST VALUE AT PRESENT STEP
c SIZE
C X VECTOR OF PARAMETERS WHICH DETERMINE 0.
C X l BEST SET OF A VALUES
C *2 X VALUES AT START OF PRESENT STEP SIZE.
C XUB UPPER BOUNDS ON X VECTOR
C XLB LOWER BOUNDS ON X VECTOR
C DODX VECTOR OF FIRST DERIVATIVES OF 0
C D2QDX MATRIX OF SECOND DERIVATIVES OF U
C NX DIMENSION OF x VECTOR
C DATA REAL DATA ARRAY FOR SUBROUTINE
C NDAIA INTEGER DATA ARRAY FOR SUBROUTINE
C hER NUMBER OF ITERATIONS, INCLUDING DERIVATIVES, IN SEARCH
C ICODE STATUS CODE FOR COMPUTATIONS
C FIRST CALL OF SRCH
C 2 = CALL FOR COMPUTATION OF a
C 3 = CALL FOR COMPUTATION OP 0 AND ITS FIRST
C AND SECOND DERIVATIVES
C 0 = CONVERGED SOLUTION
C —1 = NOT cONVERGED. BUT MINIMUM STEP SIZE REACHED
C —2 = NOT CONVERGED. MAXIMUM ITERATIONS EXCEEDED
C —3 = NOT CONVERGED. MAXIMUM FUNCTIONAL
C EVALUATIONS EXCEEDED
C NFE NUMBER OF FUNCTIONAL EVALUATIONS
C EPS CONVERSION CRITERION ON DERIVATIVES
C STEPSD STEEPEST DESCENT STEP SIZE
C STEPNR NEWTON RAPHSON STEP SILE
C ITERA NUMBER OF ITERATIONS AT CURRENT STEP SIZE
C MODE METHOD OF INCREMENTING X
C 1 = NEW1ON—RAPHSON
C 2 = STEEPEST DESCENT
C MX ITEP MAXIMUM NUMBER OF ITERATIONS ALLOWED
C MAXFE MAXIMUM NUMBER OF FUNCTIONAL EVALUATIONS ALLOWED
C
C DECLARATIVE SECTION
C
DIMENSION OELX(1), IPS(1), SU, UL(NX .1)
DIMENSION 0(3). XCI). *1(1). *2(1). XUB(1) ,
1 XLB(1) ’ 000X(1), D200X(NX,1) , DATA(3), l4OATA(8)
C
C INTERFACE SECTION
C
EPS (,ATA(1)
IF (EPS .LE. 0.) EPS = 0.0001
STEPSD = DATA (2)
STEPNR = DATA(3)
L-27

-------
ICODE = NDATA(1)
hER = NDATA(2)
NFE = NDATA(3)
ITERA = NOATA(4)
MODE = NOATA(5)
MXITER = NDATAC6
MAXFE = NDATA(7)
NVAR = NDATA(8)
C
C COMPUTATION SECTION
C
IF (ICODE .ME. 1) GO 10 200
C
C INITIATE SEARCH
100 hER = 0
ICODE = 3
NfE =0
ITERA = 0
GO TO 700
C
C TEST FOR TOO MANY EVALUATIONS
200 NFE =NFE.1
IF (NFE .LT. MAXFE) GO TO 4o0
C
C ERROR RETURN
300 ICODE = —3
301 00 302 I .1,NX
302 XCI) = X1(I)
0(1) = 0(2)
GO TO 700
C
C TEST ICODE
400 IF (ICODE .ME. 2) GO TO 600
C
c TEST FOR REDUCTION IN 0
500 IF (Q(1) •LT. 0(2)) GO TO 570
510 IF (MODE .EQ. 2) GO TO 530
520 MODE = 2
GO TO 545
C
C STEP SIZE REDUCTION
530 IF (ITERA .GE. 10) GO TO 565
STEPSD = 0.25*STEPSD
IF (STEPSD .LT. EPS) GO TO 560
540 ITERA = 0
C
c STEEPEST DESCENT CALCULATION
545 SUM = 0.
DO 546 I = 1.NX
546 SUM = SUM • DQDxu) 2
00547 I=1,NX
XCI) = X1(I) — STEPSD OQDx(I)/SORT(SUM)
IF (XCI) •L1. XLB(I)) XCI) XLS(I)
IF (XCI) •GT. XUB(I)) XCI) = XUB(I)
547 CONTINUE
GO TO 700
560 ICODE = —1
GO TO 301
L—2 8

-------
C
C — RETURN FROM ACCELERATED VECTOR
565 ICODE = 3
ITERA = 0
GO TO 301
C
C SMALLER OBJECTIVE FUNCTION FOUND
570 00 571 1 = 1,i X
571 X1(I) = X(1)
0(2) = 0 (1)
IF (hERA .GE. 10) GO TO 59o
580 ITERA = £TERA • I
ICODE 3
GO TO 700
C
C COMPUTE ACCELERATED VECTOR
590 DO 591 I = 1,NX
XCj) = 2. X1(I) —X2(I)
IF (X(I •LT. XLB(I)) XCI) XLB(I)
IF (X(I) •GT. XIJ9(I)) XCI) XUB(I)
591 CONTINUE
GO TO 700
C
C INITIATE NEW ITERATION
C CONVERGENCE TEST
600 B = 0.
00 601 I = 1, NA
IF (B .1.1. ABS(000X(I))) B ABS(DQDX(1))
601 CONTINUE
IF (B .GT. 0.O01 EPS) GO TO 620
610 ICODE = 0
GO TO 700
C
C TEST FOR EXCESS ITERATIONS
620 IF (ITER •LT. MXITER) GO TO 640
630 ICODE = —2
GO TO 301
C
C NEWTON RAPHSON SEARCH
640 MODE = 1
DO 641 I = 1. NX
X1(I) = XCI)
IF (hERA ,EQ. 0) X2(I) XCI)
641 CONTINUE
0(2) = 0(1)
IF (hERA .E0. 0) 0(3) QC )
ITER = ITER • 1
DO 642 I = 1,’IX
642 DQDX(I) = —DQDA(I)
CALL. LASOIX,NX,D2 00X,1,DQO.*,OELX,KERR.0,UL, IPS.S.0,DET)
00 643 I 1,NX
643 DQDX(I) = — 0 00X(I)
IF (KERR .ME. 0 GO TO 690
DO 644 I = 1,NX
XCI) = X1(I) • DELX(I)
IF (XCI) .GT. XUB(I)) XCI) XUB(I)
IF (XCI) •LT. XLB(I)) XCI) = XLBCI)
644 CONTINUE
L-29

-------
ICODE = 2
GO TO 700
b90 ICODE = —10 • KERR
C
C RETURN INTERFACE SECTION
700 DATA(2) = STEPSO
l JOATA(1) = ICODE
NDATA(2) = ITER
NDATA(3) = NFE
NDATA(4) = hERA
NDATA(5) = MODE
RETURN
END
L-30

-------
C
SUBROUTINE TERMIN M W , NCOMP. BAD I
COMMON 08(1)
wRITE (6,100)
100 FORMAT( ‘ lFAIAL ERROR HAS OCCURED DURING COMPUTATION... ’
GO TO (1,2,3,4,5,6,7,8,9,10 ), MUM
GO TO 99
1 CONTINUE
WRITE (6,101) NCOMP. BAD
101 FORMAT(//’ LOG(E) OF VAPOR PRESSURE FOR COMPONENT’,13,
I ‘ EXCLEOS 100. AT TEMPERATURE’. 1PGLS.4. ‘ DEG K’
GO TO 99
2 CONTINUE
WRITE (6,102) NCOMP. BAD
102 FORMATC//’ LOGCE) OF PRAUSNITZ—SHAIR (COKPON’,13.’) ExCEEDS 100.’
1 • AT TEMPERATURE’, 1PG1S.4. ‘ DEG K’ )
GO TO 99
3 CONTINUE
WRITE (6.103) NCOMP.BAO
103 FORMAT(// • LOG(E) OF ACTIVITY COEFF (VAN LAAR) EXCEEDS 100.’
1 ‘ FOR C0MPONENT’.I3. AT T =‘ 1PG12.4. ‘ DEG K ..
NCOMP. BAD
LOG(E) OF POYNTING CORRECTION FOR COMPONENT’.
I3.’EXCEEDS 100, AT TEMPERATURE’.IPG1S.4.’DEG K’ ,
‘ CHECK LIQUID DENSITY DATA AND/OK UNITS’)
NCOMP. BAD
. ‘FAILURE IN ATTEMPT TO COMPUTE COMPRESSIBILITY’.
FACTOR FOR COMPONENT’.13.’ AT TEMPERATURE’,
1PGI2.4,’ DEG , c’./#’ NO VALUE FOR Z WAS FOUND’.
BETWEEN 0 AND 4. CHECK CRITICAL PROPERTIES’.
FOR THIS COMPONENT’)
NCOMP BAD
. ‘FAILURE TO COMPUTE FUGACITY COEFFICIENT FOR’.
COMPONENT’,I3.’ AT’.1P612.4,’ DEG K’.
1 /’ CHECK CRITICAL PROPERTY DATA’)
NCOMP. BAD
LOG( A(I,J) ) EXCEEDS 100. FOR THE WILSON FORM’
.‘ (COMP. NO.’, 13. ‘1’
AT TEMPERATURE. 1P615.7t ‘ K. U
BAD
‘FAILURE TO COMPUTE A(I..J) FROM INF. OIL. ACT. COEF’
. ‘F. (WILSON FORM) HAVING A VALUE OF’. jPGls.6.
/ ‘ CHECK HENRYS LAW CONSTANTS’)
GO TO 99
9 CONTINUE
GO TO 99
10 CONTINUE
GO TO 99
4 CONTINUE
WRITE (6,104)
104 FORMAT(//
I
2 / /
GO TO 99
S CONTINUE
WRITE (6,105)
105 FORMAT( ‘0’
1
2
3
4
GO TO 99
6 CONTINUE
WRITE (6,106)
106 FORMAT( ‘0’
1
2
GO TO 99
7 CONTINUE
WRITE (6 ,107)
107 FORMAT( ‘0’,
1
1
GO TO 99
S CONTINUE
WRITE (6.108)
108 FORMAT( ‘0’.
I
2
L- 31

-------
GO TO 99
99 CALL SUMDB (DB. 1.1200)
WRITE (b,200)
200 FORNAT(////’O4 ° ° UNABLE TO PROCEED. ENTIRE JOB ABORTED ***a**s)
CALL EXIT
RETURN
END
L-32

-------
FUNCTION VP C 1. I )
COMMON 08(1200)
DIMENSION AA(1) ,
1 IC(1), PC(1)
EQUIVALENCE (08(21) ,AA) ,
1 ( 08(9).WM),
= 0
C
IF (KPP$I
C
C
C
C
A = AA(I)
B = ABC!)
C = AC(I)
D =T.C
IF (0 •GT. 10.) GO TO 50
A A • B C/10O.
B = 8°(1. C/10.)° 2
D =1
E =A.B/D
IF CE .GT. 100.)
VPTEN EXP(E)
C
C
VP
GO TO 500
1
AB(1). AC(1),
(DB(41) ,AB). CDB(6l),ac),
(OR(481).TC) , (Dp(13),Pc)
CHECK IF COMPONENT ABOVE CRITICAL
.EQ. 1 .AND. TC(I) .GT. 0. .AND. 1 .GT. TC(I))
GO TO 100
USE PRAUSNITZ—SHA IR BELOW CRITICAL
IF ANTOINE CONSTANTS WEi E NOT GIV(N.
IF (AA(I) .EO. 0.) GO TO 100
C
C
C
C
C
BELOW CRITICAL, USE ANTOINE
ANTOINE EQ. CONTAINS SINGULAR POINT AT
VERY LOW TEMPERATURES C T = — C). THE
FOLLOWING CODE PREVENTS SINGULARITY AND
VAPOR PRESSURE REVERSAL AT T LESS THAN —C
So
C
C
C
C
C
C
C
C
C
C
ERROR IF VAPOR PRESSURE EXCEEDS 1.E43
CALL TERMINC 1, I, T
SET LOWER LIMIT ON VAPOR PRESSURE
FOIl HEAVY COMPONENTS AT LOW TEMPERATURES
= AMAX1 (VPTEM ,1.E—3O)
HYPOTHETICAL LIQUID FUGACITY FROM
PRAUSNITZ —SHAIR
100 IF (WMCI) .GT. 5.) GO TO 150
HYDROGEN AND HELIUM
E = 6.495 • .2388/(T—277.783) — 3.8394E—3 CT—2y3.15)
IF CE .GT. 100.) CALL TERMINC2 , I, T)
VP EXP(E)
GO TO 500
ALL OTHER COMPONENTS
1 50 IR = T/TC(I)
E = 6.088 — 5.109/(TR — .0971) — .8282°TR
IF CE .GT. 100.) CALL TEPMINC2t 1, 1)
VP = PC(I)*EXPCE)
500 CONTINUE
RETURN
END
L- 33

-------
APPENDIX M
TEMPERATURE-ENTROPY DIAGRAM PLOTTING
Computer Program TSPLOT
1. DESCRIPTION
1.1 Scqpe
TSPLOT uses data from Program E1393 to produce a thermodynamic
plot. The plot consists of:
(a) a title
(b) labeled axes (Y—axis is temperature; Y—axis is entropy)
(c) a curve which defines the boundary of the two—phase
region
(d) contours at selected values for up to three functions
(Pressure, Density, or Enthalpy). Contours are
identified with labels.
1,2 Model
Values of the functions are generated at each point of a tempera-
ture-pressure grid in Program E1393. TSPLOT locates coordinates
for points along a requested contour. The contour Is plotted
according to rules specific to the particular function. Actual
plotting is done using Calcomp routines (ref. 1), or modifications
of them (section 5).
1.3 LImitations
TSPLOT expects the function data to be located in COMMON exactly
as defined In Program El393.
The maximum lengths of the X arid Y axes are 100 and 25 inches,
respectively. However, a practical limit for X of about 25 to
30 inches should be assumed to avoid exceeding the size of certain
arrays.
The number of requested contour levels should not exceed 100 for
each function.
M-1

-------
2. SUBPROGRAM USAGE
2.1 General
Only two statements were added to Program E1393 to permit It to
use TSPLOT. A “CALL TSPLOT” was required after E1393 has completed
its output but before it returns to statement 5 to read the control
list. The other statement needed was a “CALL GRAPHE” just before
the “CALL EXIT” in E1393.
TSPLOT contains its own READ statements. Instructions for punch-
ing cards for input to TSPLOT are given in section 2.2. Output
from TSPLOT to the printer Is explained in section 2.3.
2.2 Input
2.2.1 Cards Required by TSPLOT (see section 6 for formats)
Each new thermodynamic diagram requires the four cards described
below plus an many cards as needed to request the desired contours.
Card 1: Columns 1 through 72 may contain any character
(TITLE) desired in the title. The title Is drawn starting
at the top left of the plot.
Card 2: Columns 1 through 36 contain any desired characters
(AXISID) for labeling the X-axis. Columns 37 through 72 are
used for the X-axis label.
Card 3: This card must contain six numbers, separated by
(SCALES) at least one blank. The first three number specify:
X—axis length in Inches; minimum X—value for label-
ing X—axls, and maximum X—value for the X-axls.
The fourth through sixth numbers specify the corres-
ponding information for the Y-axls.
Card 4: Only one number is to be punched on this card.
(IDBUG) Normally, a zero punch will be used (in any column).
Any number other than zero will cause a detailed
printout of arrays and other data from TSPLOT.
Two, or more, additional cards are required to define which func-
tion and what contour values are to be plotted. The first of
these cards (KØNTUR) must contain only one number to identify
the function. Valid function numbers are:
1 (pressure)
2 (density)
3 (erithalpy)
M-2

-------
If the number punched is less than 1, TSPLOT will return to pro-
gram E1393. If it is greater than 3, the program will terminate.
The plotting of a thermodyanmic diagram should normally be ter-
minated by using the above card with a number less than one.
When function 1, 2, or 3 is indicated, the above card must be
followed with a card(s) specifying how many contours are requested
and what is the level (value) for each of these contours. As many
cards are needed may be used to specify contour levels. Numbers
on the cards must be separated by at least one blank.
Section 6 contains a form which can be used to prepare input
cards for TSPLOT.
2.2.2 Placement of Cards in Input Deck
Program E1393 requires Its own input cards. For each case run
in E1393 the last card is punched with only the number 99 on it.
The deck of TSPLOT cards for that case should follow the tt99t?
card. This sequence is repeated for each case to be plotted.
2.2.3 Suggestions for Selecting Values for Card 3 (SCALES )
The six numbers on this card provide scaling information to
TSPLOT. For each axis the value of (rnaximum—minimum)/length
determines the units per inch along that axis. If necessary,
adjust any of the three values to obtain a convenient number for
units per inch. Make a final adjustment to the maximum value
and length, if needed, so that maximum at least equals the actual
data maximum plus 2 * (units per inch). In any event, the final
adjusted maximum and minimum values must span the true data
maximum and minimum.
2.2.4 Selecting Values for Pressure Contours
Although the raw data from program El393 is given on a pressure
grid, pressure contours may be requested for any pressure level
within the extremes provided by E1393. To assure that full con-
tours can be plotted for those extreme values, the input to E1393
(List 4) should include one pressure slightly below the lowest
contour desired and one slightly above the highest contour desired.
Suggested values are approximately 1.005 * maximum contour level
and 0.995 * minimum contour.
2.3 Output
In addition to the plot described In 1.1, TSPLOT will output the
following to the printer.
M-3

-------
1. title card data
2. axes labels card data
3. scaling data (from card 3)
4. number of temperature and pressure
values in the base grid
5. identification of the contour levels
plotted for each function.
If card 4 was punched with something other than a zero, a detailed
debugging printout will be obtained.
Three error codes and one error message can be printed:
ERROR CODE MEANING
1 Less than 3 points remain on boundary.
3 and 4 An invalid function number was used.
The error message indicates that too many points were generated
when densifying the data. The message is:
“FLINE — 1K TOO BIG”
3. EXAMPLE
Section 6 shows input cards for TSPLOT, printed output from
TSPLOT, and a reduced copy of the diagram.
4. REFERENCES
1. Bulletin titled “Programinin CalComp Pen Plotters” and a
manual titled “CalComp Graphics Functional Software,
USAS Fortran Scientific” both from California Computer
Products, Inc., Anaheim, California.
2. Monsanto Technical Subprogram Manual, program GRAPHE.
3. Documentation for program El393.
5. PROCEDURE USED IN TSPLOT
5.1 Introduction
Program El393 produces four arrays of data used in TSPLOT. These
arrays are in blank COMMON and are named:
PG a one—dimensional array of grid pressures
TG a one—dimensional array of grid temperatures
RE a two—dimensional array of data on the two phase boundary
RG a three—dimensional array of data for the single phase
regions
M-4

-------
After all thermodynamic data has been stored In these arrays,
E1393 calls TSPLOT. TSPLOT reads four cards of Input (section
2.2.1) and then draws the axes, a border, and the title. Addi-
tional cards are read defining the contours and valid contour
levels are then plotted.
5.2 Subroutine FLINE
FLINE is a Calcomp subroutine (ref. 1) whIch uses a modified spline
technique to place a smooth curve through a given set of points and
plot the curve. It has been altered to save and return arrays con-
taining the coordinates for the smooth curve. Since those coordi-
nates are spaced sufficiently close for plotting, FLINE, In effect,
“densifles” the given data. With closely spaced points, linear
Interpolation Is adequate to determine coordinate values between
the points generated by FLINE. An option is provided In the modl—
fled FLINE so that It can be used to plot the smooth curve or not.
In either case the dense set of coordinates are returned to the
calling program. FLINE is used both ways In TSPL0T.
5.3 The Two-Phase Boundary
Temperature—Entropy coordinates along the two—phase boundary are
extracted from array RE. Those points are available In pairs at
the same temperature: one on the liquid side and one on the gas
side of the boundary. The liquid side data Is scanned in the
direction of Increasing temperature. A liquid side boundary point
is deleted If Its entropy Is less than the entropy at the preced-
ing lower temperature. This step is required to minimize certain
problems which sometimes occur with data near the critical
temperature.
The boundary Is plotted in two parts: the liquid side and the gas
side. A straight line is drawn connecting the two sides at the
highest temperature for which boundary data Is given unless that
data was deleted. FLINE is used to plot the boundary. The dense
set of boundary coordinates is saved by TSPLOT.
5.4 Contours
TSPLOT next reads a card to identify which function (Pressure,
Density, or Enthalpy) Is to be plotted. It then reads a card(s)
which specifies the number of contours requested and their values.
Data for the function along the two phase boundary is extracted
from array RE. FLINE Is again used to get a dense set of temper-
ature—function values along the boundary. This boundary data is
used to locate any Intersections of a contour with the boundary.
M-5

-------
Each requested contour value is processed as follows. A test is
made to determine if the requested contour level is acceptable.
All values for pressure contours are accepted. A Density contour
is rejected it if is greater than the density of the highest tem-
perature on the gas side of the boundary. An Enthaip contour is
rejected if it is less than the enthalpy at the lowest temperature
on the gas side of the boundary. However, if an enthalpy contour
intersects the liquid side of the boundary, a tic mark is drawn
at the boundary intersection. Except for Pressure, no contours
are drawn through the two phase region.
5.4.1 Coordinates for Pressure Contours
Points along a pressure contour are found from the data grid as
follows. For each grid temperature all the entropy data for all
grid pressures are extracted from array RG. If there are inter-
sections with the boundary, each side of the boundary is handled
separately. This array of entropies and an array of correspond-
ing pressures are saved by TSPLOT. If the array of pressures
spans the requested contour value, the pair of arrays is densified
using FLINE. The required entropy value is found by linear inter-
polation from the dense data. This entropy and its corresponding
temperature define one point on the contour.
After locating all such points, FLINE is used to plot the contour.
If the pressure contour passes through the boundary region, a
straight line is drawn connecting the points of intersection with
the boundary. In this case the contour value is labeled along
the straight line segment. Otherwise, the value is labeled along
the high temperature end of the contour.
5.4.2 Coordinates for Density Contours
A similar procedure is used to locate points for a Density contour.
No lines are drawn through the boundary region, however, and dashed
lines are plotted for these contours. Labels are placed above the
high temperature ends of the contours.
5.4.3 Coordinates for Enthalpy Contours
In addition to locating coordinates in the same way as for Density,
the data grid is scanned for all temperatures at each given pres-
sure. This step is necessary for Enthalpies because, at high
entropies, the contours may nearly parallel the entropy axis.
Labels for enthaipy contours are placed at the high entropy end
of the curve. On. the liquid side of the two phase region, tic
marks are drawn and labeled at intersections with the boundary.

-------
5.5 Termination
When TSPLOT reads a card identifying a function with a number
less than 1, it returns to Program E1393. E1393 may generate
another case and call TSPLOT again. If no more cases are run,
E1393 executes a CALL GRAPHE before ending execution.
If any of the errors detected by TSPLOT occur, TSPLOT will CALL
GRAPHE, then stop execution. Some run—time errors, such as over-
flow, zero divide, etc., can cause abnormal termination. In that
case GRAPHE is not called, and the plot tape will not have the
proper “end—of-tape” record.
M-7

-------
6. SAMPLE INPUT/0UTPUT
6.1 Input Data Form
Title for Diagram :
1
PLOT IDENTIFICATION
LJ
72
Labels for Axes (cc 1—36 for x—axis; cc 37—72 for y—axis):
* liii IqilI
36 37
Item:
SCALING DATA
Entry:
Length of X—axis,
Minimum value for
inches
X—axis
_______
Maximum value for
X—axis
Length of Y—axis,
inches
Minimum value for
Y—axis
Maximum value for
Y—ax s
DEBUG 0P PT
Enter 0 for no deb 2g printout:
4:
Function
code: 1. = Pressure; 2 = Density; 3 Enthalpy
—1 = “return to Main Program”
Number
of
contours
for this
requeste
function
d:
(100
max.)
Values
of
contours
4: Start a new card
M—8
CONTOURS REQUESTED
1
, I
72

-------
6.2 Sample Problem Input Data
THER ODYNAM1C PROPERTIESOF FLUORINOL
2 FLUO INOL 100 _____ ________ ____________
3
1 180 700 20 0 ______________
4
__1• _ _ .29_..J_i..JA.J’ 96 5p_1O0_3 Q0_1O0iOO.l
S
2 2 1. 1.E—l0 _____ ______
-
2
CF3CH OH 100.0 11.8 —3742.6 —26.97
WATER 18.016 12.144 — 2O3.9 —26.75 ________________________________
9
2 __________ _______________________
5.393 .074913 —.00005309 1.3501 —8
7.136 .00264 4.59E—8 0. _____
___10_____ ---— ——-——-— —
499.83 48.652 8755.63 344 1.3736 295.15
647.3 238.2 9737. 373.35 1. 277.15 _________________________________
99
T—S (3AGRAM F1tiO INOL 100 ____ 7207310800
ENTROPY flU/L9..F) - TEMPERATURE(F)
16 .08 .72 12 150 750 __________________
0
I ____________
7 f51’ 696 5o1O0 300 700 —_________ —— —
2 __ ____ ___
__3___ _ -— ———— -. — — — ____— — ——— -—
3
16 P0” 100 120 140160180200 2202 0 260 280 300 320 340
360 380
—1
M-9

-------
1—S DIA( ’M i LUU i’1OL l ou 720731080u
ENT’ jPY (‘ Th/Lc —F) TE”I EI(P1’ I (F)
O.1 ooE 02 O. 30On —01 U.7 00L 00 0.1200E 0 O.l IJ0F o 0,7SUoE 03
219 --
H
(0
‘i:i
CONTOU “lullED Fuw Fur.1CT1Oi I
0.1000F ul O.5OOn il 0.1470 1. 0 0.SUOoE ut! 0.1000E 0 0.300o 03 0.70u0E 03 g
H
CONTOUP’ P1 UTT 1) FO’ Fu .:T JON ‘ CD
0.S000E (0 0.2000t Lu 0.tUOOt 01
CONTOUR’, PLOTTEÜ F(Ib FIJiNCT iON
0.2200E 03 O. ’eOa u3 O. bu0t. 03 0. c400E 03 0.3u00E 03 0 320nE 03 0.3400E 03 0,3600F 03
ct
0
Cr

-------
:T : r T l r! ...... r :
0
H
CD
P.
p
p
i: ! 4
L
: I
:‘ :;;,
C l )
H
CD
H
r i f 4i I; : . . ]q ;:. : ‘ ; •
I I I f L
[ 1 1 1 I 1 — — - — T i
tv ii ! 1p tTi 1 I “--1- 1 —H — - + ) t I
frt++ IF I ‘ I 1 J i I —‘-1 — — L f4 ft. j _ I
I t Ffl :!1 . I ,1 Ii l i
I 1 t — - -fr •! ,, 4
.n- — II I I I . I I I h
J i I I r J. jJ t f 1 f V ,( r1 1 i
r I ‘ 1 N I 1 — I 1 -— - — I I t !
I J Ji tT ; 3j j h - f;j H 1 4 I — — ‘I I
! — F -H -* — T ‘ ‘ t h t
L F !. fi if ,
ti 4 ,r ,
I * I ‘ 4 I l 1 ! r I
I!:; ; ; 1:. . : •; • : 1 :. . : • : : ., . • ,, : .., : ii ; i,:
- ; r I 0 T ; l
f I L : /r r ‘ : , :
i 1 j rj l t i h
1 1 fl : ‘ ; S I 1 J I t :
L ; tI + ; r’ !•; uh f F; . ..: r •
i : i ‘ t ti t t : t I
. . r I ; .. ... . j . .
P’•• •.: f. .1..:: •: j : • I
I

-------
7. COMPUTER PROGRAMS
PAGE 1
C °ROGRAM FL 3° 10
C 20
C 30
C SEE SUBROUTINE “TSPLOT” FOR DEFINITION OF NAMES USED IN PLOT ROUTI 40
C 50
C **ø*ø* *****e**** UG O**ooe *e*t200*o*tQ****eo****eeeoeeee*e *e* .* .a, . 60
C 70
C 80
C DECLARATIVE SECTION 90
COMMON 08(1600). GA(20.20.3). 611(20,20,3 ) 100
COMMON/LITDI NAME(3.20) 110
C 120
C FILE SECTION 130
900 FORMAT(GI.Q) 140
901 FORMAT( 34o, iG l.O) 1 150
C 160
C INPUT SECTIO n 170
C INITIALIZE CONTROL SUBROUTINE.. PROG NO. 180
LNMX 13 190
CALL CDP(D9, LN. LNMX. KTE. KIN) 200
CALL HEADER(—3393) 210
C READ LIST NUMBER. CONTROL LISTS 220
S CALL COP 1 230
GO TO 111. 5. 13. 14, 15. 16. 1 . 18, 19, 20. 5. 5. 231. IN 240
ir (LN .FO. 99) GO TO 30 250
CALL GRAPME 260
CALL EXIT 270
C INITIALIZE PROBLEM—SET 280
11 CALL ZEROL OR, 1. 4000) 290
C - SET DEFAULT OPTIONS 300
0th 7) = .1 310
DB( 8) = 2000. 320
0th 9) —300. 330
08( 10) = 1000. 340
08(32) = 1.0 350
D$(36) = 150. 360
06(37 ) 1E—5 370
GOTO5 380
C REAL) PROBLEM—DATA LISTS 390
C LIST 3. TEMPERATURE GR iD 400
13 READ ( 5.900) (08(I) , 1=2.6) 410
GOTOS 420
C LIST 4. PRESSURE GRID 430
14 READ 5.9oo) 08(12), N. (06 (1 • 50). I 1. N) 440
08413) = N 450
GOTOS 460
C LIST 5. SYSTEM COMPOSITION 470
15 REAO (5,900) 08(19). N. (08(1 .100). Il.N) 480
08(20) = N 490
GOTOS 500
C LIST 6. MOLECULAR WEIGrITS AND ANTOINE 510
C CONSTANTS 520
16 READ (5.9oo) N 530
08(2 1) = N 540
DO 160 1 = 1.N 550
M—12

-------
160 REaD (5,901) (NAME(J.I). J1.3) , 08(1 .120), 08(1.140),
1 DB(I•160) , DB(I.180)
GO TO 5
C LIST 7. LID. ACT. COEF. DATA FOR A(t.J)
17 READ (5,900) N. DB(23). (I, J. IGA(I.J,K), K1.3),
1 (GA(J,I,Ic), (1.3). II=1 ,N)
08(22) = N
GO TO 5
C LIST 8. LID. ACT. COEF. DATA FOR C(I J)
18 READ (5.900) N, DB(25). (I. J, (GK(MINO(I,J), MAXO(I.J). K),
I K1.3). I1s1.N)
D8(24) = N
GO TO 5
C LIST 9, IDEAL GAS HEAT CAPACITY CONSTANTS
19 READ (5,900) N, ((D (I. J 20 • 180). J1.4) , 1l.N)
08(26) = N
GO TO S
C LIST 10. CRITICAL PI OPERTIES , HEAT OF
C VAPORIZATION, LIQUID DENSITY
20 READ (5.900) N. ((D8(I • 2O J • 300). J1,6), I = 1.N)
DB(27) = N
GO TO S
C LIST 13’ CONTROL DATA
23 READ ( .9O0) (DB(I), I 31,37)
GO TO S
C
C CHECK AND PRINT INPUT DATA
30 CALL CHECK(NF)
IF (NE .61. 0) Go TO 5
C
C COMPUTATION SErTION
C IIIITIALIZE TRIAL—ERROR CONTROLS
40 CALL CDP2
C SOLVE MODEL
50 KEE =0
CALL MODEL( EE)
IF (I(EE . T. 0) GO TO bO
C CHECK TRIAL—ERROR CALCULATIONS
CALL CDP1
IF (KTE .GT. 0) GO TO 50
C
C OUTPUT SECTION -
C PRINT CASE RESULTS
60 CALL OUTPUT(I(EE)
C PRINT T—E SUMMARY. STORE CASE SUMMARY
C AND INCREMENT CASE
CALL CDP4
IF (KIN .FO. 1) GO TO 40
CALL TSPLOT
GO TO 5
END
PAGE 2
560
570
580
590
600
610
b 20
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
880
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
M-13

-------
PAGE 1
SUBROUTINE AfljBNOCX.Y.N.LL) 10
c 20
c 30
C PURPOSE 40
c 50
C SOURCE E’.JTRO IES FOR THE LIQUID SIDE OF THE SATURATION CURVE. 60
C ARRAY E. ARE MADE TO AGREE WITH VALUES USED TO PLOT THAT 70
C CURVE. ARRAY BXY. CHANGES ARE MADE ONLY IF MONOTL DELETED ANY 80
C oINTc. 90
C 100
C ARE ARRAYS OF N DENSE POINTS USED TO PLOT THE 110
C SATURATION CURVE (BPLJNDARY). 120
C LL IS THE INDEX TO THE LARGEST TEMPERATURE VALUE IN 130
C THE SOURCE DATA FOR THE BOUNDARY. 140
C 150
C 160
C SUBROUTINES CALLED 170
C PINDXC 180
C 190
COMMON DB(800).TG(S0).PG(50),RE(50,8) 200
C 210
DIMENSION xfl).YC1) 220
C 230
DO 40 I = 1 ,LL 240
VT = TG(I) 250
AT = RE(I,4) 260
CALL rINDXC(x.y.N.YT,xr) 270
0 REC I.4 = XT 280
RETURN 290
END 300
M- i I

-------
PAGE 1
L2
DO !O I
IF (RE4I,l)
L2
CONTINUE
I -
DO 0 I.
J
X(j)
X(J)
IF (K •NE,
‘ UI)
V (J)
GO TO 40
30 VT)
Y(J)
40 CONTINUE
X (L2.1)
X(L2 .p)
Y(L2.l)
t1L2. 2)
L2
RETL IRpJ
END
=0
= 1 .N
JO. 0.) GO TO 20
=1
= 2’12
= liL2
= L’3—I
= RE II .4)
= RE(I’.8)
0) GO TO 30
= TG(I)
= TG(I)
= RE(I.K)
= PE(I,K 4)
= X(L2)
= X(L2 .3)
= V ILE)
= V 112 .3)
= L2’ l
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
160
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
C
C
C
C
C
C
C
C
C
C
C
C
10
20
SUBROUTINE PNDRY(N,L2 ,K,X,Y)
PURaOSE
COORDINATFS FOR THE SATURATION CURVE APE COPIED FROM SOURCE DAT
AND PLACED IN CLOCKWISE ORDER IN X,Y. ON RETUffi. L2 IS THE
INDEX TO MAXIMUM V—VALUE iN THE SOURCE DATA. N IS THE SIZE OF
THE SOURCE ARRAYS.
COMMON OB(a00).TG(50).PG I5O).RE(SO.8),Z130112700).RG(50,50,3)
DIMENSION XC%).V(1)
M-15

-------
PAGE 1
SUBROUTINE PnUNDZ(N.L2,K.Y ,Z) 10
c 20
c 30
C “ IJR”OSE 40
C 50
C V—COORDINATES AND FUNCTION VALUES ALONG THE SATURATION CURVE 60
C ARE COPIED FROM THE SOURCE DATA AND PUT IN CLOCKWISE ORDER IN 70
C ARRAYS 1.2. ON RETURN. L2 15 THE INDEX TO MAXIMUM V—VALUE IN 80
C THE SOURCE DATA. N IS THE SIZE OF THE SOURCE ARRAYS. 90
C 100
C no
COMMON OB(90fl),TGtSO) .PG(501.REISO.8) 120
C 130
DIMENSION y(ii.Zfl) 140
C 150
L2 O 160
DO 10 1 1.N 170
IF (RE(I.1) .EQ. 0.) 60 TO 20 180
LE =1 190
10 CONTINUE 200
20 1 2*12 .2 210
DO 30 1 = 1.L2 220
L. 1—I 230
1 ( J) = TG(I) 240
Y(J) TO Il) 250
ZII) = RE I Ii K ) 260
30 Z(J) = RE(J.K .4) 270
YIL2 .l ) = YIL Z) 280
Y(L2.2) = Y(L2 •3) 290
ZIL2.11 Z(L2) 300
Z(L2 .2 = 2(L2 .3) 310
RETURN 320
END 330
M-16

-------
PAGE 1
SUBROUTINE COnRD(X,Y.N,C.XC,XX,YY) 10
c 20
c 30
C PIJRD 40
C 50
C THE N VALUES OF ARRAY Y ARE SEaRCHED To FIND IF THE VALUE. C. 60
C IS INCLUDED. IF IT IS. A CORRSPONDIr4G VALUL. XC. IS FOUND NON 70
C ARRAY X BY IP4TERPOLATION. IF C WAS NOT FOUND IN Y. THEN XC IS 80
C SET TO A cLAG VALUE (—1.E70 OR —2.E60). 90
C 100
C XX.YY ARE INCLUDED TO PASS THE LOC*TION OF THESE ARRAYS TO 110
C SUORPUTINE FINDXC.
C 130
C 140
C SURROUTINES CALLED 150
C DENSFY, F!NOXC 160
C 170
DIMENSION X11),Y(1).*X(1).YY(1) i s o
C 190
XC — —i.E70 200
I (N •LT. 2) GO TO 30 210
EPS • ABS(C’C)1.E4 220
IF ((C—Y(l) C—Y(N)) •GT. C I ’S) GO TO 30 230
CALL OEN$FY(X.Y.N.NPT,4X,YY) 240
CALL FINDXC( x,YY,P4PT.C.XC) 250
IF (XC •LT. —1.E60) XC.—2.Eb0 260
30 RETURN 270
END 280
M-17

-------
PAGE 1
SUBROUTINE OENSFY(X.Y.N,NP,XX,YY) 10
C 20
r 30
C PURPOSE 40
C 50
C DENSFY SETS UP A CALL TO FLINE To OBTAIN A DENSE SET OF NP POIN 60
C IN XXtYY flING THE N PAIRS IN X Y. IF N IS NOT GREATER THAN 70
C 2. THE CALL TO FUME IS NOT MADE, so
C 90
c too
C SUBROUTINES CALLED 110
C FLINE 120
C 130
COMMON /FLIP/ ISKIP,IK.NEAR 140
C 150
DIMENSION X(1) .Y(1) ,XX(1) .YY(1) 160
C 170
IF (N GT. 2) 60 TO 10 180
(l) = X(j) 190
YY(1) = ‘NI) 200
XX(2) = X(2) 210
YY(2) = ‘ ((2 ) 220
NP =2 230
GO TO 20 240
10 ISKSV = ISKIP 250
NRSV = NEAR 260
ISKIP = 0 2 10
NEAR = 0 280
I X =0 290
CALL F 1NE(g,y,—N ),O,0,XX,YY) 300
NP = 1K 310
JSK [ P = ISKSV 320
NEAR = NRSV 330
‘0 RETURN 340
END 350
24— 18

-------
PAGE I
SUBROUTINE ENTHAL(X.Y,ICT.X ,Y8.NKI*X.YY) 10
C 20
C 30
C PUR OSE 40
C 50
C X,YAPE APPAYS WITH 1CT PAIRS OF C000INATES FOR IHE CUURENT 60
C ISENTHALP. XB,YB ARE THE NX PAIRS OF COORDINATES F0 ANY 70
C INTERSECTIONS OF THE IS(NTHALP dITH THE SATURATION CURVE. 80
C xx.YY ARE uSED TO PASS THE LOCaTION OF THESE AR AY5 TO FLUIE. 90
C 100
C ENTHAL PLOTS THE ISENTHALP WHEP1EVEP NA IS NOT 0. 110
C 120
C 130
C SUBROUTINES CALLED 140
C SCALXY. nINE 150
C 160
COMMON FCUT/ XL,YL,XR,YR.YLIT 170
COMMON /FL P, ISKIP,iK.NEAR 180
C 190
DIMENSION x(1).Y(I),XB(1).Y (I),ZX(I).YY(1) 200
C 210
NB =0 220
00 10 1 = 1sICT 230
IF (Y(I) .LE. YB(NX)) N81 240
10 CONTINUE 250
IF (NB .‘ T. 3) GO TO 15 260
1 K =0 270
ISKIP = 1 2B0
A 1S = X(NB.1) 290
YlS = Y(NB.1) 300
X2S = X(N8.2) 310
Y2S = Y(NB 2) 320
CALL SCALAY(X,Y.NB) 330
CALL FLINE(X,Y.NB.1,N81,2.*X.YY) 340
X(NBi l) = XiS 350
Y(NP.i) = Y IS 360
A(NB.2) = X2S 370
Y(N 13 ,2) = Y2 5 380
15 IF (NX .F:c. fl GO TO 100 390
NT =0 400
00 0 I = i,ICT 410
IF (Y(I) .G . YB(1)) NT=NT•1 420
20 CONTINUE 430
IF (NT •LT. 1) GO TO 200 440
Ni = ICT’ i—NT 450
1K =0 460
CALL SCALXY(X(N1),Y(N1)’NT) 470
CALL FLINF(X(N1),Y(N1),NT,1,NTL,2,XX.YY) 480
GO TO 200 490
100 IF ((ICT—N ) .LT. 2) GO TO 200 500
1K =0 510
ISKIP 0 520
CALL FLINE(X,Y,—ICT,1,0.0.XX.YY) 530
ISKI = 1 540
NPTS = 1K sso
M-19

-------
PAGE 2
lic =0 560
I C 8SIXR—XL) •LT. 1.E—5) (,O TO 200 570
SL = (YR—YL)/(XRXL) 580
DO 110 1 = 1.NPTS 590
ii = 600
YC = (XXCI) XL)*SL.YL 610
IF (YY(I) •GF. YC) GO TO 120 620
110 CONTI’flJE 630
120 IF (II •GE. PlOTS) GO TO 200 640
00 130 1 = 1.ICT 650
Ni =1 660
IF (Y(I) •GE. YY(II)) GO TO 140 670
130 CONTINUE 680
140 Ni = Pfl 690
Y(t11) = YY(II) 700
X(Il1) = XX(II) 710
Nil = ICT 1—Ni 720
CALL SCALXYCX(N1),Y(N1).NFIJ 730
CALL FLINr(X(N1),Y(Ni).—P4H.1.NH—i,2.XX.YY) 740
200 RETURM 750
END 760
M-20

-------
PAGE: 1
SUBROUTINE FINDXC(X,Y,N.C. C) 10
C 20
C 30
C Pu P 5
C 50
C X.YARE N PAIRS OF DENSE DATA. C IS THE CURRENT CONTOUR LEvEL. 60
C ARRAY Y IS SEARCHED TO FIND IF IT CONTAINS C. If NOT. a RETURN 70
C MADE WIT’4011T CHANGING XC. IF C WAS FOUND IN Y. THEN ON RETURN. 80
C XC WILL pF THE CORRESPONDING VALUE OBTAINED FROM A BY INTERPOL— 90
C ATION. 100
C 110
c - 120
DIMENSION X(I).Y(1) 130
C 140
L =1 150
10 L =L l 160
IF (L .GT. N) GO TO 30 170
D l = C—Y(L—1) 180
D2 = C—Y(L) 190
= AMAX1(ABSCD1 ).A 8S1 02)) 200
EPS = EC°EC 1.E—5 210
IF (D1*D2 .GT. E: S) GO TO 10 220
IF (Y(L) •NE. Y(L—1)) GO TO 20 230
XC (X(L).X(L—1))/2. 240
GO TO 30 250
20 00 = ABS(D1/(Y(L)—Y(L1))) 260
XC = DD*(X(L)—X(L—1)) .X(L1) 270
30 RETURN 280
END 290
M-21

-------
PAGE 1
SUBROUTINE UNl(IP.IT,NP,N.U,V) 10
C 20
C 30
C PUR c 5 40
C 50
C FUI’ll SCANS THE SINGLE PHASE DATAAT ALL NP PRESSURES AT THE 60
C y—VALIJE INDICATED BY IY. IP IS USED To CONTROL WHETHER THE SCA 70
C IS MADE F’ R THE LIQUID SIDE (IP 1) OR THE GAS SIDE (IP=2). 80
C 90
C ON RETURN ARRAYS U.V CONTAIN THE N PAIRS OF ENTROPY, PRESSURE 100
C DATA. 110
C 120
C 130
COMMON O8(PO0),TG(5 0),P6(50).RE(50,8).Z1301(2700),RG(50,50.3) 140
C 150
DIMENSION ij(j),V(1) 160
C 170
IF UP .EQ. ?) GO TO 20 180
N =0 190
BPL = 1.E70 200
IF (RE(IY. 1 .NE. 0.) BPLRE(TY.4) 210
00 10 Ji = 1.NP 220
J = NP.1—J1 230
IF (RGCIY,J.1) .NE. Os) GO TO 5 240
IF (RG(IY.j,’) •EO. 0. .4”iD. RG(IY,J .3) .EQ. 0.) GO TO 10 250
S CONTINUE 260
X = RG(IY .J .3) 270
IF 4X ,GE. BDL.) GO TO 10 280
N =N•1 290
iJ(N) = A 300
V(N) = P6(J) 310
10 CONTINUE 320
IF (f3PL .GT. l.E60) GO TO 50 330
N =N•1 340
U(N) = 350
V(N) = RE(IY.L) 360
GO TO 50 370
20 N =0 380
BPR = —1.E70 390
IF (RE(IY,5) .EQ. 0.) 60 TO 30 400
BPP = RE(IY,8) 410
=1 420
U(1) = BPR 430
V(1) = RE(IY.5) 440
30 DO ‘ .0 JI = 1.NP 45()
J = NP. 1—J1 460
IF (RG(IY.J.n .NE. 0.) GO TO 35 470
IF (R6(IY,J,2) .EO. 0. •AND. RG(Iy,J,3) •EQ. 0.) GO TO ‘.0 480
35 CONTINUE 490
X = RG(IY,J,3) 500
IF (X •LE. HPR) GO TO 40 510
N =N•1 520
U(N) = X 530
V(N) = PG(J) 540
40 CONTINUE 550
M-22

-------
50 RETURN 560
END 570
M-23

-------
PAGE 1
SUBROUTINE flhIJ23(jy, IMK,PIP,N,U,V, IER) 10
C 20
C 30
C PURPOSE 40
c 50
C 1)4K iS A FLAG IDEP1T 1F’f 1MG THE CONTOUR FUNCTiON CURRENTLY SOUGHT 60
C 1Mk1 Fop DENSLTYI 1MK2 FOR ENTHALPY. 70
C
C SINGLE PHASE DATA IS SCANNED AT ALL NP PRESSURES AT THE Y—VALJE 90
C INQEAEQ 3Y IY. ON RETURN, ARRAYS UtV CONTAIN THE N PAIRS or too
C ENTROPV.FUNCT ION DATA. 1 10
C 120
C IE P IS THE ERROR CODE WHICH IS SET TO 3 IF INK IS NOT EITHfl 1 130
C 140
C i so
COMMON D8800).TG(So).PG(s0p,RESO,8), 21301(2700J,pG(5o,5o,3) 160
C 170
DIMENSION U(i).VI1) 180
C 190
IEP =0 200
IF C1 14K .EQ. 1 .OR. INK .EO. 2) GO TO 10 210
1E.R =3 220
GO TO 40 230
10 N =0 240
BPR = — .E7O 250
I F (RE( l’f,5) .EQ. 0. GO TO 20 260
BPR = RE(IY .8) 270
N =1 280
UCI ) = BPR 290
V ii ) = RE41y,I’4K 5) 300
20 DO 30 Ji = 1,NP 310
J = NP . 1—J1 320
IF IRG(1Y,j.I) .ME. 0.) GO TO 25 330
IF (RG(IY,j,7) .EO. 0. .AND. RG(IY,J,3) .EQ. 0.) GO TO 30 340
25 CONTINUE 350
= RG(IY,J,3) 360
IF U .LE. qOP) GO TO 30 370
N =M•i 380
U(N) = 390
V(N) = RG(IY,J,I’4K) 400
30 CONTiNUE 410
40 RETURN 420
END 430

-------
PAGE 1
SUBROUTiME IVRIG(YsN,IBI to
C 20
c 30
C UR POSE 40
C So
C ON RETURN, lB IS THE INDEX TO THE MAXIMUM VALUE IN ARRAY Y. 60
C N IS THE NUMBER OF DATA VALUES iN ARRAY V. 70
C 80
C 90
DIMENSION VU) 100
C 110
H = Y(1) 120
lb =1 130
00 fl I = 2.N 140
IF ITCH •LE. 8) 00 To 10 150
B • YCI) 160
I c =1 270
10 CONT INUE 180
RETURN 190
END 200
M-25

-------
PAGE 1
SUPROUTINE KAX(IMK.L2,C,IC) 10
C 20
C 30
C PURPOSE 40
C 50
C IMK IS A CODE TO IDENTIFY THE FUNCTION. OPRESSURE 60
C 1= DENSITY; 2= ENTHALPY. 12 IS THE INDEX TO THE MAXIMUM 70
C TEMPERATURE AT WHICH DATA 1S GIVEN FOR THE SATURATION CURVE. 80
C C IS THF CURRENT VALUE FOR A CONTOUR. 90
C 100
C ON RETLJPI%I, 1C0 IF THE VALUE FOR C IS REJECTED ; IF C IS ACCEPT 110
C IC=t. ALL PRESSURE COMTOURS (IMKaO) ARE ACCEPTED. DENSITY 120
C CONTOURS ARE REJECTED 3R C GREATER THAN THE DENSITY AT L2 ON 130
C THE GAS SIDE OF THE SATURATION DATA. ENTHALPY CONTOURS ARE 140
C REJECTED IF C IS LESS THAN THE ENTHALPY AT THE LOWEST TEMPERATU 150
C ON THE GAS SlOE or THE SATURATION DATA. 160
C 170
C 180
COMMON D8(800,,TG(S0).PG(50).RECSO ,8). 11301(2700).RG(S0.SO.3) 190
C 200
J = IMK$1 210
IC =1 220
GO TO (30. 1O.2OflJ 230
10 ir (C .61. RE(L2,6) ) ICO 240
GO TO 30 250
20 IF (C ,LT. RE(1.?)) ICtO 260
30 RETURN 270
END 280
M-26

-------
PAGE 1
SUBROUTINF MARK(X,Y,N,XB IYB,NX,IMI(.C) 10
C 20
c 30
C 40
50
C hARK PLACES LABELS ON THE PLOTTED CONTOURS. 60
C 70
C X,v AP N AIRS OF DENSE COORDINATES FOR THL PLOT. XB,YB ARE 80
C NX PAI S OF COORDINATES FOP AMY INTERSECTIONS OF THE CONTOUR 90
C C wIT’ THE SATURATION CUi WE, P4K IDENTIFIES T iE CONTOUR FUNCTI 100
C GEINC 1OTTED. 110
C 120
C 130
C SUBROUTINES CALLED 140
C NUMbER. 6YMBOL 150
C 160
COMMON /SKAL/ *LEN.XMIN.*DEL,YLEN.YMIN.YDEL 170
C 180
DIMENSION X(fl,Y(1).XH(1).YB(1).UMITS(6) 190
C 200
DATA UNITS/I PSI’,’A •,‘ L8/’.’FT3 I.’ BTU’.’/LB ‘I 210
C 220
ALF = 0. 230
RTOO = 180. 13.1415927 240
K = IMK.1 250
NDTG = —1 260
GO TO (1O.20,30),I( 270
10 NDIG = 2 280
IF (M .EO. 2) GO TO 15 290
IF (NZ sEQ. 0) GO TO 12 300
AR (X(1)—XHIN)/*DEL.25 310
VP = (Y(1)—YI4IN)/YDEL.04 320
GO TO 40 330
12 = (X(N)— (N—5))/XOEL 340
VO = (Y(N)Y(Nb))/YDEL 350
ALF = ATAN2(YO.X0) 360
AD = COS(ALF).. 04 370
V I ) = SIN(ALF)•.O’ 380
ALF = ALF*RTOD 390
= (X(N)—AMIN)/ADELXO 400
YP = (Y(N)—YMIN)/YDELYD 410
GO TO ‘.0 420
J5 AR = (X8(2)—X8( IU/*DEL 430
VP = (YB(2)—YB(1))/YDEL 440
ALF = ATAN2(YP,XP)*RTOD 450
AR = ((XB(2).X8(1))/2.—*MIN)/XDEL.2 460
YR ((YB(2).YB(1P)/2.—YM1N)/YOEL ..04 470
GO TO 40 480
ALF 90. 490
AR = (XCN)—XMIN)/*DEL .O4 500
VP = (Y(N)—YMIN)/YDEL..08 510
CF = ABS(C) 520
IEX =0 530
3 IF (CF .GE. 1.) GO TO 34 540
CF = l0.’CF 550
M-27

-------
PAGE 2
I C r = IEX .1 560
60 TO 32 570
34 NOIG = IEX 2 580
NOIG MINO(NDIGe6) 590
Gfl TO 40 600
30 AP = (X(1)—AMIN I/X OEL..o8 610
YP = IYI I)—YMIN)/TDEL— , 04 620
40 CALL ¼LJMPEP(XP,VP,,08,C,ALF,NDIG) 630
KU = 2*IMK.1 640
CALL SYNBOLc999 ..999 .p .08.UtiITs(pçu),A F,8) 650
RETURN 660
END 670
M-28

-------
PAGE 1
SUBROIJTINF MOt4OTL(X,V.N,L,IER) 10
C 20
C 30
C PURP 5( 40
C 50
C MONOTL CHECKS THE LIQUID SIDE OF THE BOUNDARY DATA FOR THE 60
C SATURATION CURVE. A PAIR OF COORDINATES IS DELETED FOR ANY To
C X(I) F WHICH X(I) IS LESS THAN X(I—1). 80
C 90
C ON RETURN. L CONTAINS THE NUMBER OF PAIRS X,Y REMAINING. IER 100
C IS THE ERROR CODE WHICH IS SET TO IF LESS THAN THREE POINTS 110
C REMAIN IN XiY. 120
C 130
C 140
DIMENSION x(1),Y(I) 150
C 160
IEP = 0 170
P4M 1 = N—i 180
1 =i 190
10 1 1.1 200
IF fl .GT. L GO TO 30 210
IF (X(I) .GE. X(I—1)) GO TO 10 220
DO 20 K = I.NM I 230
A(K ) X(K. ) 240
20 Y(K) = Y (K.1) 250
N =N—i 260
NM1 = N—i 270
L =L—i 280
I = 1—1 290
IF (N •GT. 2) GO TO 10 300
IER = 1 310
30 RETURN 320
END 330
M-29

-------
PAGE 1
SUBROUTINE SCALD(x,Y.N) 10
C 20
C 30
C PURPOSE
C 50
C X,Y ARE N PAIRS OF DATA. ON RETURN, Y(N.1) CONTAINS THE P4INIMU 60
C Y—VALUEI Y(N.2) CONTAINS (YMAX—YMIN)/YLEN. 70
C 80
C- 90
COMMON /SKAL/ XLEN,XMIN,XDEL,YLEN,YMIN,YDEL 100
C 110
DIMENSION X(I),Y(1) 120
C 130
S = Y(1) 140
B =S 150
DO 10 1 2 ,N 160
IF (Y(I) .GT. H) B5Y(I) 110
I.E (Y(I) .LT. S) S Y(1) 180
10 CONTINUE 190
Y(N I) = S 200
Y(N.2) = (B—S)/YLEN 210
RETURN 220
END 230
M-30

-------
PAGE 1
SUBROUTINE: SCiLUV(U,V,NI 10
C ao
C 30
C PURPOSE
C 50
C U,V ARE N PAIRS OF DATA. A CALL IS FIRST MADE To SCALD. - ON 60
C RETURN FROM SCALUV V(N.1) AND V(N.2) WILL B AS DETERMINED 70
C IN SCALD. U(N•1) WILL CONTAIN THE MINIMUM U—VALUE. U(N.2 80
C WILL CONTAIN (UMAX—UMlN) XLEN. 90
C 100
C 110
C SUBROUTINES CALLED 120
C SCALD 130
C 140
COMMON /SIcAL/ XLEN,XMIPI,XDEL.YLEN.YMIN,YDEL i so
C 160
DIMENSION U(1),VC1) ITO
C - 180
CALL SCALD (U.V N) i o
S = U(1) 200
B =S 210
00101 =1 N 220
IF (UCI) .GT. B) 8= 1 1(I) 230
IF (U(I) .LT. S) 5 — 1 1(I) 240
10 CONTINUE 250
U(N.1) = S 260
U(N.2) = (B—S)/XLEN 270
RETURN 280
END 2 0
M-31

-------
PAGE 1
SUBROUTINE SCALXY(X.YøI) 10
c 20
c 30
C PURPOSE ‘.0
c 50
C X,Y ARE . PAIRS OF DATA. ON RETURN, xcN.L) MIN; X(N.2)= DEL 60
C y(N.1)=vMT.1; Y(N.2)aYOEL. 70
C 80
C
COMMON /SKAL/ XLEN,XMIN,XDEL,YLEN,YMIPI,YDEL 100
C 110
DIMENSION X(!).Y(1) 120
c 130
XIN•1) = xMJN 140
= *OEL 150
Y(N.1) = YP4IN 160
Y(N.2 YDEL 170
RETURN 180
END 190
M-32

-------
PAGE 1
SUBROUTINE SFRT(IMK,X.Y.N.XB.YB.NX,IER) 10
C 20
C 30
C PURPOSE 40
C 50
C SEPT INSERTS POINTS OF INTERSECTION INTO TilE X,Y COORDINATES 60
C FOR A CflN T OUR. AB.YB ARE THE M X PAIRS OF COORDINATES FOR 70
C INT(RSECTTONS. 80
C 90
C JER IS T’iE ERROR CODE WHICH IS SET TO 4 IF THE FUNCTION CODE 100
C (INK) IS NOT EITHER I OR 2. 110
C 120
C 130
DIMENSION XII) ,Y(1) ,XB(1) .YB(1) 140
C 150
IER =0 160
IF (NX .EO. 0) GO TO 70 170
IF (INK •EO. 1) GO TO 10 180
IF (INK •EQ. 2) GO TO 40 190
IER = 4 200
GO TO 70 210
10 AR = *8(1) 220
YR = Y8(1) 230
IF (NX .EO. 1) GO TO 20 240
AR = XB(2) 250
YR = YB(2) 260
20 DO 30 I i = i.N 270
I = ‘ .2—11 280
XII) = All—i) 290
30 VII) = Y(I—1) 300
N =N 1 310
Xl i) = ZR 320
VII) = YR 330
GO TO 70 340
40 DO 60 I = 1.NX 350
U = XB(I) 360
V = YB(I) 370
J =0 380
45 J =J.1 390
IF (J .GT. N) GO TO 55 400
I (V .GT. YJ)) GO TO 45 410
DO 50 Xi = J.N 420
= N .i—K1•J 430
* 1K) = AIX—i) 440
50 YCK) Y(I I—1) 450
55 X(J) = U 460
Y(J) = V 470
N =N+i 480
60 CONTINUE - 490
70 RETURN 500
END 510
M-33

-------
PAGE 1
URROUTINE TICS(BXV.BY,BYZ,BZ,C,IIBZ,NBy) 10
C 20
C 30
C PURPOSE 40
C So
C TICS PLOTS A 1/2” HORIZONTAL LINE INSIDE T I SATURATION CURVE 60
C BOUNDAPy WHERE AN ISENV4ALP INTERSECTS THE LIQUID SIDE OF THE TO
C BOUNDARY. THE LINE IS LABELED dITH THE VALUE OF C. 80
C 90
C ARRAYS 8xY,BY ARE NBY PAjWS OF DENSE COORDINATES OF THE BOUNDAR 100
C BYZ.BZ AR! NBZ PAIRS OF DENSE DATA FOR TEMPERATURE AND FUNCTION 110
C VALUE ALONG THE BOUNDARY. - 120
C 130
C 140
C SUBROUTINES CALLED 150
C FINOXC, GRAPH, NUMBER 160
c 170
COMMON LSXAL/ XLEN ,xMIN,XDEL,yL N,yM.IN,yDEL 180
C 190
DIMENSION PxYc1) ,BY(1) ,BYZ(1),BZ(1) ,*(4),Y(4) 200
C 210
YC = —1.E70 220
CALL FINDXC(pyZ,BZ,NBZ,C,yC) 230
IF iYC .LT. —I.E60) RETURN 240
CALL FINDXC(B y,BY,NBY,YC,XC) 250
X(1) = XC 260
Y(I) = 270
Y(2) YC 280
X(2) = XC•XDEL/2. 290
CALL GRAPH(2,X.Y,0) 300
XP = (XC—XMIN)/XDEL..54 310
YP = (YC—YMIN)/YDEL— . 04 320
CALL NUM8E (XP.YP.,08.C,O..—1) 330
RETURN 340
END 350
M-3’4

-------
PAGE 1
C SUBROIJTINE T °LOT 10
C 20
c 30
C SUBROUTINES rALLED 40
C AOJBNO, PNDRY. BOUND?. COORD. DENSFY. ENTHAL. FLIME. FUNI. 50
C FUN23. GRAPW, (,RAPHE. GRAPHI, IYBIG. (O K. MARK. MONOIL. 60
C SCALD. SCALUV. SCALXY, SEPT. TICS. KiENT, YSECT 70
C 80
C DEFINITIO’Jc 90
c 100
C AXISID ARRAY OF 72 CHARACTERS FOR AXES LABELS CI 110
C BXY ARPAY(1500) OF X—COORD. FOR BOUNDARY 120
C BY ARRAy(1500) OF Y—COORD. FOR BOUNDARY (USED WITH BXY) 130
C BYZ ARRAY(1500) OF Y—COORD. FOR FUNCTION ON BOUNDARY 140
C B2 ARRAY (1500) OF FUNCTION VALUES (USED WITH BYZ) 150
C C CURRENT CONTOUR VALUE 160
C IC FLAG FOR ACCEPTING ‘CII (O REJECT, 1 ACCEPT) 170
C IOBUG FLAG FOR DEBUG PRINTOUT ( O FOR NO PRINTOU1) CI 180
C 1K COUNT OF POINTS RETURNED FROM FLINE 190
C TMK SYMBOL KODE (— KONTUR—1) 200
C JSK IP FLAG FOR PLOTTING 1w FLTNE (0 NO PLOfl 1. PLOT) 210
C KONTUP I.D. FOR CONTOUR FUNCTION (1 Pa D3N) 220
C L2 NUMBER OF PAIRS OF POINTS IN SAT.DATA 230
C - LI INDEX TO HIGHEST DATA POINT ON SAT. CURVE DATA 240
C NBY NUMBER OF DENSE POINTS IN ARRAYS BXY ,BY - 250
C NBZ NUMBE. OF DENSE POINTS IN ARRAYS BYZ.dZ 260
C NEAR FLAG TO START PLOT *T NEAREST POINT (1. USE NEAR END 270
C NL NUMBER OF CONTOURS REQUESTED (1 280
C NP NUMBER OF GRID PRESSURES 290
NT NUMBER OF GRID TEMPERATURES 300
C NX NUMBER OF POiNTS WHERE “C” INTERSECTS SAT. CURVE 310
C SCALES ARRAY(6) OF PLOT SCALING INFORMATION (SEE BELOW) (I 320
C TITLE ARRAY OF 72 CHARACTERS FOR PLOT TITLE CI 330
C XIEN LENGTH OF X—AXIS. INCHES C SCALES(1)) 340
C XMIN MINIMUM X—VALUE FOR PLOT (SCALES(2)) 350
C XMAX MAXIMUM X—VALUE FOR SLOT (=SCALES(3)) 360
C YLEN LENGTH OF V—AXIS. INCHES (SCALES(4)) 370
C YMIN MINIMUM YVALUE FOR PLOT (SCALES(5)) 380
C YMAX MAXIMUM Y—VALUE FOR PLOT (=SCALES(6) ) 390
C XDEL UNITS PER INCH ON X—AXIS 400
C YDEL UNITS PER INCH ON V—AXIS 410
C XL X—VALUE AT HIGHEST SAT. DATA PAIR, LIQUID SIDE 420
C XR X—VALUE AT HIGHEST SAT. DATA PAIR, GAS SIDE 430
C YL V—VALUE AT HIGHEST SAT. DATA PAIR. LIQUID SIDE 440
C YR V—VALUE AT HIGHEST SAT. DATA PAIR. GAS SIDE 450
C YLIT SMALLER OF YL, YR 460
C XX ARRAY(1500) OF DENSE DATA RETURNED FROM FLINE 47fl
C YY ARRAY(1500) OF DENSE DATA RETUWNED FROM FLINE 480
C 11 ARRAY(NL) OF REQUESTED CONTOUR VALUES (I 490
C 500
C 510
C ERROR CODFc 520
C 530
C I FROM MONOTL LESS THAN POINTS REMAIN ON BOUNDARY 540
C NOT ‘ SED 550
M-35

-------
PAGE 2
C FPO UN23 INVALID “IM’(” 560
C 4 SERT INVALID “IMc” 570
580
C ERROR MESSAGE 590
C “FLINE — 1K TOO BIG” MEANS THAT MORE THAN 1498 PTS WERE GENERA 600
C 610
C 620
SJBROUTIP4F TSPLOT 630
C 840
COMMON 08 (MOO) ,TG(50) ,PG(50) ,RE(50.8) .Z1301 (2700) eRG(50.50.3) 650
COMMON /FLTP, I5KIP ,IK ,NEAR 660
COMMON /SKAL/ XLEN,XHIN,XOEL,YLEN.YMIN,YDEL 670
COMMON /cur XL.YL,AR.YR.YLIT 680
1; 690
DIMENSION TITLE(18),AXISID(18).SCALES(b),IL(l00),CPLT(lO0). 700
I J(100),V(100).X(1 00).Y(l00).AB(4),Y8(4),IBIG(2), 710
2 BxyU5 0 0),BYI1500),8yZ(1500),BZ(1SOO).XX(1500),yy(150 0) 720
C 730
C 740
oo FORMAT(G1.o) 750
‘ 1O FORMAT(1RA4 760
920 FORMAT(1Ho,’ PROR ‘,IS/) 770
940 FOPMAT(IX.i0 i2.4) 780
950 FORMAT(1HO ,’pOUNDARY x,y•/) 790
960 FO RMAT(1H O,’POUPJDARY Z,Y’F) 800
970 FOPMAT HO, ’y5 C ‘,4E12.4/) 810
980 FORMAT(1H O, ’rONTOURS PLOTTED FOR FUNCTION ‘. 13/(1X.10E12.4)) 820
990 FORMAT(lHI.iPa4/1X,i8A4/lX,6E12.4/I ,2I5//) 830
C 840
NP = DB( 13) 850
NT AMIN1(2.•(DB(4)—DB(3))/DB(5),50.) 860
DO 30 I = 2 ,NT 870
= TG(I) 880
DO O J = 1,8 890
RE(I—1,J) RE(I.J) 900
00 20 J = 1,50 910
DO 20 K = 1,3 920
20 G(I—1,J.K) = RG(I.J.K) 930
30 CONTINUE 940
NT NT—i 950
C 960
C INPUT DESCRI TIVE DATA FOR PLOT 970
C 980
REAOC5.910) (TITLE(I).1i.18) 990
RE AD(5,910) (AXISID(I) .1 l.18) 1000
REAO(S ,900i (SCALES(I).151.6) 1010
READ(5,900, IDB(JG 1020
WRITE(6.Q°O) TITLE,AXISID.SCALES,NT,ND 1030
C 1040
C INITIALIZE PLOT 1050
C 1060
CALL GRAP.I1(O, —i,SCALES,i,TITLE,I,AXIS ID,0.0,0.0) 1070
C 1080
C SAVE SCALING DATA A’JD PLOT BORDER 1090
C 1100
M—36

-------
PAGE 3
ALEN SCALES(1) 1110
XMIN = SCALES(2) 1120
AMAX = SCALES(3) 1130
XDFL = (XMAX—XMIN)/XLEN 1140
YLEN = SCALES(4) 1150
YMIN = SCALES(S) 1160
YHAX SCALES(6) 1170
YDFL = (YMA —YM1W) YLEN 1180
X(1) *M IN 1190
X(2) = )IMAX 1200
X(3) = XMAX 1210
Y(1) YMAX 1220
Y(2) = YPIAX 1230
Y(3) = YMIN 1240
c 1250
C FINISH BORDER PLOT 1260
C 1270
CALL ( RAPH(3.X,Y.0) 1280
NEAR 0 1290
1EP = 0 1300
C 1310
C COLLECT AND ORDER BOUNDARY DATA 1320
C 1330
CALL BNDRY(NT.L2.0.x,Y) 1340
LL L2—1 1350
Y IG = TG(LL) 1360
AL = X(LL) 1370
YL = Y(LL) 1380
AR = *(LL.3) 1390
YR = Y(LL .3) P.00
YLIT AI4IN1(YL,YR) 1410
C 1420
C PLOT THE BOIJNnARY AND SAVE COORD. (B*Y,BY) 1430
C 1440
NN = 2L2 1450
CALL MONOTL,(X.Y,NN.L2.IEP) 1460
IF (IER . 4E. 0) GO TO 500 1470
IF (IDBUG •FQ. 0) GO TO 50 1480
WRITE(6.950) 1490
WRITE(6,940) (X(I).Y(I),P.1.NN) 1500
SO CONTINUE 1510
CALL SCALXY(X.Y.NN) 1520
ISKID = 1 1530
Tic =0 1540
CALL FLINE(X.Y..NN,1,0,0,BXY,BY) 1550
IF (TOBUG •NF. 0) WR1TE(6.9 O)(BXY(I).BY(I),I1.IK) 1560
N8Y = z ic 1570
CALL ADJ8ND(RXY.BY.NBY,LL) 1580
IF (IOBUG •Ft , 0) GO TO 70 1590
DO 60 I = 1,NT Iboo
60 WPITE(6,940) TG(I),(RE(IoJ).J198 ) 1610
70 CONTINUE 1620
CALL IYBIG(HY.N8Y.IBIG(1)) 1630
C 1640
C INPUT FUNCTION ID biD REQUESTED CONTOUR LEVELS 1650
M-37

-------
PAGE 4
C 1660
100 READ (5,900,F JO510) KONTUR 1670
IF (KONT I JP .LT. I RETURN 1680
IF (KONTUR .GT. 3) GO TO 510 1690
JMK = KONTUR—I 1700
IFLG = 0 mo
READ (5,900.END=510 NL.(ZL(I)’,Icl.NL 1120
C 1730
C COLLECT AND ORDER FUNCTION DATA FOR BOUNDARY 17 40
C 1750
CALL BOUND I(NT,L2.IMK.1,Y,X) 1760
C 1770
C DENSIFY AND SAVE BOUNDARY DATA. (BYZ.BZ) 1780
C 1790
NN = 2’L2 .2 1800
IF (IDBLtG .EO. 0) GO TO 105 1810
WRITE (6 ,96 0) 1820
WRITE(6,940) CA(I),YII),Icl.NN) 1830
105 CONTINUE 1840
CALL SCALIIVX ,Y.NN) 1850
Y(NN.l) = YMIN 1860
Y(WNs2) = YDEL 1870
CALL OENSFYCY.X.NN,NBL,BYZ,SZ) 1880
IF (IDBUG .NE. 0) WPIIE(6,940) (BYZ(I),8Zt1),I=1.NBZ) 1890
CALL IY IGBYz .NBZ.lBIGI2)) 1900
C 1910
C FIND POINTS FOR A CONTOUR AND PLOT 1920
C 1930
NCPLT = 0 1940
DO 210 i d = 1 .NL 1950
C = ZL(KT) 1960
CALL KOIdCIMK,L2.C,1C) 1970
IFUNK .Eo. .AND. IC .EQ. 0)CALL TICSIBAY,By,ayz.az,c, 1980
1 IBIG(2),IBIG (1)) 1990
IF (IC .EO. 0 ) GO TO 210 2000
C 2010
C LOCATE ANY BOUNDARY INTERSECTIONS 2020
C 2030
)10 CALL YS€CT(IR IG ,BXY,SY.NBY,SYZ,BZ,NBZ,C ,NX,XB,YB,IMK) 2040
IF (IDBUG F. 0) WRITE(6,9Io)CXB(I),yS(I),I=1,NX) 2050
IF (IM K .E0. a) GO TO 130 2060
C 2070
C CO WTOURS Fo IcONTUR 2 OR 3 2080
C 2090
ISKI P = 1 2100
NEAR = 0 2110
1CT = 0 2120
DO 120 IY = 1 ,NT 2130
CALL FUN23(IY,IMK,NP.NU,U,V,IER) 2140
IF ( IER .W 0) GO TO 500 2150
CALL SCALUv4 II,V,No) 2160
CALL COORD(tJ,V,ND,C.XC .AX ,YY) 2170
IF CIOSUG .NE. 0) WR ITE(6,940)C.XC,(U(I),V(1), 11.ND) 2180
IF (XC .LT. —1.E60) GO TO 120 2190
IC r = ICT .1 2200
M —38

-------
PAGE 5
X(ICT) = XC 2210
YCICT) = TG(IY) 2220
120 CONTINUE 2230
IF (INK .EO. 2) CALL XTENT(IFLG,NT.ICT,*,Y.C,XA,YY) 2240
CALL SERT( IMK.X,Y,ICT,X8.YthNX,IER) 2250
IF (ZER •NE, 0) GO TO 500 2260
IF (ICY •LT. 3) GO TO 210 2270
CALL SCALXYx.Y.ICT) 2280
lic =0 2290
iF CIOBUG .NE, 0) WRITE(6,940) (X(I),Y(I),1.1,ICT) 2300
NCPLT = NCPLT.1 2310
CPLT(’,ICPLT) = C 2320
IF (INK .EO. 2) GO TO 125 2330
ISKIp = 0 2340
NEAR = 0 2350
CALL FLINE(X.Y,—ICT,1,0,O,XX,Yy) 2360
CALL GRAPHUK.XX,YY.—6) 2370
CALL MARK(xx.YY,IK.XB.YB,NX,IMK,C) 2380
GO io 1o 2390
125 CALL MARK(X,y,ICT,XB,YB,Nx,IMI(,C) 2400
IF (NX •NE, “) GO TO 126 2410
CALL FLINE(A,Y.—ICT,1. ICT—1.IMK. X.YY) 2420
GO TO 210 2430
1 CALL ENJILAL(X,Y.ICT.XB,YB.NX,XX.YY) 2440
GO TO 210 2450
130 ICT =0 2460
ISKIP 1 2470
NEAR = 0 2480
IF (WX •NE. 2) GO TO 170 2490
C —- 2500
C LEFT SIDE CONTOUR, FUNCTION 1 2510
C 2520
DO 140 I V = 1 ,NT 2530
IF (TG(IY) •GT. YB(1)) GO TO 140 2540
CALL FUN1(L,iy,NP,IID,U,V) 2550
CALL SCALUV(U,V ,ND) 2560
CALL COORD(u,v,NQ,C,XC,XX,yy) 2570
IF (IDBUG •N . 0) WRITE(6.9 0)C.XC,(U(1),vII ),I=i,ND) 2580
IF (XC •LT, —1.E60) GO TO 140 2590
ICT = 2600
X(!CT) = XC 2610
!(ICT = TG(IY) 2620
140 CONTINUE 2630
ICT = cr.i 2640
X(ICT) = *8(1) 2650
Y(ICT) YB(1) 2660
IF (ICY •LT. 1) GO TO 145 2670
CALL SCALXY(x.Y.ICT) 2680
1K =0 2690
IF (IOBUG •NE. 0) WRITE(6.940) (X(I).Y(I).I=1,ICT) 2700
CALL FLINE(x,v.—ICT,1,ICT—1,IP4K,xx,yy) 2710
C 2720
e RIGHT SIDE. FUNCTION 1 2730
C 2740
)45 X l = *Bt2) 2750
M-39

-------
PAGE 6
Yl = YB(2) 2760
150 ICT = 1 2770
X(1) = X l 2780
Y(1) = Yl 2790
00 160 IY = 1.NT 2800
IF (TG(IY) •LT. Yl) GO TO 180 2810
CALL FUN I(2,jy .NP,NO,u,v) 2820
CALL SCALUV(u.V .ND) 2830
CALL COORD(U,V,ND.C.XC.XX,YY) 2840
IF (IDBUG NE. 0) WRITE(6.940)C.XC.(U(I),v(I),I=1,ND) 2850
IF (XC .LT. —1.E60) GO TO 160 2860
ICT = ICT•1 2870
X(ICT) = XC 2880
Y(ICT) = TGUY) 2890
160 CONTINUE 2900
IF (ICT .11. 3) GO TO 165 2910
CALL SCALXY(X,Y,ICT) 2920
1K =0 2930
IF (IOBUG .r4E. 0) WRITE(6 .940) (X(I) .Y(I),I=l,ICT) 2940
NCPLi = NCPLT.1 2950
CPLT CPLT) = C 2960
CALL FLINE(X,Y.—ICT,1,ICT—1,IM,(,X(.yy) 2970
165 IF (NA .EO. 2) CALL GRAPH(2.XB.Y8.0) 2980
CALL MARK(xX,YY.IK,AB,yB,NX,IMK,C) 2990
GO TO 210 3000
170 IF (NA .EQ. 1) GO TO 200 3010
C 3020
C FUNCTION 1 WITH NO INTERSECTIONS 3030
C 3040
ICT o 3050
DO 180 IP 1.2 3060
00 180 I V 1,NT 3070
IF (IP .FQ. 1 .AND. TG(IY) •GT. YRIG) GO TO 180 3080
CALL UN1(TP,IY,NP,ND.U,V) 3090
CALL SCALXY(U,V,NO) 3100
CALL SCALO(U,V,ND) 3110
CALL COOROU.V,ND,C,XC.XX,YY) 3120
IF (IDBUG .‘JE. 0) WRITf(6,91.0)C,XC.(U(I),v(I),I=1,ND) 3130
IF (XC .LT. —l.E60) GO TO 1BO 3140
ICT = ICT.1 3150
)C(1C1 XC 3160
Y(IC1) = TG(IY) 3170
180 COiTINUE 3180
IF (IcT •LT. ) GO TO 210 3190
CALL SCALXY(K.Y.ICT) 3200
1K =0 3210
IF (IDRUG . . 0) WRITE(6,9’.Q) (X(1),y(I), 11.ICT) 3220
NCPL = NCPLT.1 3230
CPLT 1CPLT) C 3240
CALL FLINEVX.Y.—ICT,1,ICT—1.IMiç.xg,YY) 3250
CALL MARK() (.YY.IK .Xb.YB.NX .IMK.C) 3260
GO TO 210 3270
C 3280
C FUNCTION 1 WITH ONE INTERSECTION (RIGHT SIDE) 3290
C 3300
M- O

-------
PAGE 7
200 ICY = 0 3310
X I = X8(1) 3320
Ti = YB(i) 3330
GO TO 150 3340
210 CONTINUE 3350
IF (NCPLT .(T. 0) WRITE(6,980) KO11TUR,CCPLT(I),Is1,NCPLT) 3360
GO TO zoo 3370
500 IF (IER •E0. 0) RETURN 3380
WRTTE(6,920) IER 3390
510 CALL GRAPHc 3400
CALL EXIT 3410
END - 3420
M-41

-------
PAGE 1
SUHROUTtNE XTENT(IFLG.NT, ICT.X.Y.C.XX.YY) 10
c 20
c 30
C PURPOSE 40
C 50
C .Y APE ICT PAIRS OF COORDINATES FOR ISENTHALP, C. 60
C XX.YY ARE INCLUDED TO TO PASS THE LOCATION OF THESE ARRAYS TO 70
C OTHER SUBROUTINES. 80
c 90
C NT Is TNE NUMBER OF TEMPERATURES 1w THE SOURCE DATA GRID. 100
C IFLG IS NOT USED. ON RETURN. X Y WILL INCLUDE COORDINATES FOR C 110
C OBTAINED FROM THE PRESSURE GRID DATA. 120
C 130
C 140
C SUBROUTINES CALLED 150
C SCALUV. COORD 160
170
C REVIsED 720307 TO INCLUDE ALL GIVEN PRESSURE DATA. 180
C 190
COMMON Dp(8OO),TG(5O),PG(5Q),RE(5O,8),Zl3O1( 7OO),RG(5O,5Q,3) 200
c 210
DIMENSION X(1),Y(1) ,XX(1),YY(1),XP(52),YP(52),GT(52) 220
C 230
NP = 06(13) 240
DO 60 J 1.NP 250
=0 260
DO 10 1 = 1.NT 270
IF (RG(I.J.3) .EO. 0.) GO TO 10 280
BPR = —1.E70 290
IF (RE(I,8).wE. 0.) 8PR.RE(1,8) 300
IF (RG(1.J .]) .LT. BPR) GO TO 10 310
JP = JP.1 320
GT(JD) = TG(I) 330
XP(Jo) = RG(I.Js3) 340
YP(J ) = RG(I,J 2) 350
10 CONTINUE 360
CALL SCALUV(GT.YP,J ) 370
CALL COORD(GT.YP,JP,C.YC,XX.YY) 380
IF ( ‘ (C .LT. -i.E60) GO TO 60 390
CALL SCALUV(X ,GT.J ) 400
CALL COORD(XP.GT.JP,YC,XC.XX.YY) 410
IF (XC .LT. —1.E60) GO 10 60 420
I =0 430
20 I = 1 1 440
IF (j .01. ICT) GO TO 50 450
IF (XC .L . XU)) GO TO 22 460
L =1 470
(,O TO 25 480
22 L = 1.1 490
IF ( L .GT. ICT) GO TO 50 500
IF (XC .GE. X(L—1) .014. XC .LE. X(L)) GO TO 20 510
IF (‘(C .LE. Y(L1) .OR. ‘(C .GE. Y(L)) GO TO 60 520
25 DO 30 K = L,ICT 530
= ICT.L—K 540
X(K1’l) X(K1) 550
M— 1 42

-------
PAGE 2
30 Y lkisi) = YCKI) 560
A lL.) = XC 570
VII . .) = YC 580
ICT = ICT.1 590
GO TO 60 600
SO ICT = ICT e 1 610
Aticy) = XC 620
YC 630
60 CONY LNUE 640
RETURN 650
END 660
M-fl3

-------
PAGE 1
SUBROUTINE YSECT(IBIG.BXY,BY.NBY,9YZ.BZ,NBZ,C,Nx,xB,YB, iç) 10
C 20
30
C PURPOSE
C 50
C YSECT LOCATES ANY INTERSECTIONS OF CONTOUR C WITH THE SATURATIO 60
C CURVE. Tuf NA SUCH INTERSECTIONS HAVE COORDINATES STORED INTO 70
C XB.Y8. 80
C 90
C 100
DIMENSION RXY(1),BY(1),BYZ(1),BZ(1),XR(I),YB(1),IBIG(1) 110
C 120
NA =0 130
J =1 140
IMAX IBIG(1) 150
ILIM = IBIG(2) 160
ix = 1 170
1 =1 180
IF (IM ( •GT. 0) GO TO 70 190
10 I = 1.1 200
IF (I •GT. ILIM) GO TO 70 210
Dl = C—BZ(I—1) 220
02 = C—BZ(I) 230
IF (D1!02 .61. 0.) GO TO 10 240
NX = NX.1 250
IF CM X •LE. 2) GO TO 20 260
XBC1) = XB(2) 270
YB(1) = YB(2) 280
M X =2 290
20 - D1PD2 = ABS(D1).ABS(02) 300
IF (DIPO? .ME. 0.) GO TO 25 310
V = BYZ(I—1) 320
GO TO 30 330
25 00 = ABS(D1)/D1PD2 340
V = DD (BYZ(I)—8YZ(I—1)).BYZ(I—1) 350
30 YJ(NX) V 360
40 I X = IX+1 370
IF (IX .GT. IMAX) GO TO 85 380
Dl = V-BY(IX—1) 390
02 = V—BY(IA) 400
IF (01*02 .GT. o. GO TO 40 410
50 D1PD2 = ABS(D1)’ABS(U2) 420
IF (DIPD2 .ME. 0.) GO TO 55 430
U = BXY(IX—1) 440
GO TO 60 450
DO = ABS(O1)/D1 D2 460
U = DD *(BXY(IX)— XYUX 1)).BXY(IX 1) 470
eio X8(Nx) = I i 480
I = 1.1 490
GOTOIO ‘ 500
70 IF (J .E0. ‘) GO TO 80 510
J 520
I ILIM.l 530
IX IMAX.1 540
IMAX NBY 550

-------
PAG( 2
ILIM = NBZ 560
GOTO 1O 570
RO RETURN 580
85 WRJTE(6.910 ) c.(X8(K).Y8(K),M1.N’() 590
Qi0 FORMAT(1H0 , ’Nfl MATCHING *9. C AND XB.YB ARCS’/lk .SEtS .b/F) 600
CALL GRAPI I E 610
CALL EXIT 620
END 630
M-45

-------
8. PROPRIETARY SUBROUTINES CALLED
Monsanto subroutines
1. GRAPH
2. GRAPHE
3. GRAPHI
(These are entry points in the same subroutine, GRAPHE.)
CalComp subroutines
1. F1T 1 4
2. FLINE
3. NUMBER
PLOT
5. REFLX
6. SYMBOL
7. WHERE
Note: The complete set of routines in the “CalComp Basic
Software Package” is used either directly or indir-
ectly. Items 1, 2, and 5, above, are modified from
those in the “Scientific Applications” category of
CalComp’s “Functional Software Library”; they are
not included with the Basic Software.
8.1 Monsanto Subroutines
Uses and arguments of each are described below along with the
format of the call statements. Any numerical values given in
the argument list pertain only to specific options provided
by the Monsanto routines. Arguments shown by name are the only
ones passing Information essential for TSPLOT. Section 2.2.1
of the program description and the listing of TSPLOT also define
these arguments.
The subroutines use the CalComp Basic Software package.
(a) CALL GRAPHI (O,—l,SCALES,1,TITLE,l,AXISID,O ,O,O,O)
SCALES is an array of size 6 containing the
axis scaling data.
TITLE is an array of size 18 containing 72
characters for the plot title.
AXISID Is an array of size 18 containIng 72
characters, 36 each for X and &
axes labels
M-46

-------
A call to GRAPHI places data on the plot tape for plotting
the title.
(b), CALL GRAPH (N,X,Y, IT)
N is the number of data points in array X
(and Y).
X is an array of size greater than or equal
to N + 2. X contains the X—axis values
in the first N locations. On return from
GRAPH, X (N + 1) will contain the X—value
at the origin of the plot and X (N + 2)
will contain the units per inch for the
X—axis.
Y is an array of size greater than or equal
to N + 2. Y contains the Y—axis values
in the first N locations. On return from
GRAPH, Y(N + 1) will contain the Y .-value
at the origin of the plot arid Y(N + 2)
will contain the units per inch for the
Y—axis.
IT is an integer code to specify how the line
is to be plotted.
IT = 0 for continuous line through the
data points.
ITc—l is used to produce a dashed line.
Points I to I+IT—l are connected
by straight line segments If, and
only if’, (I+IT—2)/(IT—l) Is an odd
integer.
Calls to GRAPH are used to complete the plot border, to plot
dashed lines for density contours, and to place tic marks
where enthalpy contours intersect the liquid side of the two
phase boundary.
(c) CALL GRAPHE
No arguments are used with GRAPHE. It is used to write a
record on the plot tape which indicates the end of the plot
data. When no more plots are to be made, program El393
makes a call to GRAPHE.
N- 1 17

-------
8.2 CalComp Subroutines
(a) FIT 4
FLINE calls FIT4 which calculates points for a smooth curve.
(b) FLINE
This routine plots a smooth curve through a given set of
data points using a modified spline technique. Changes
have been made to the original CalComp version so that
arrays of the coordinates used for plotting are returned
to the calling program.
(c) NUMBER
NUMBER converts a floating—point number to the appropriate
decimal equivalent so that the number may be plotted in
Fortran F—type format.
Cd) PLOT
PLOT generates the actual plotter commands.
(e) REFLX
REFLX is called by FLINE to handle end conditions for the
spline—fitted curve.
(f) SYMBOL
SYMBOL is used to draw annotation (titles, labels, etc.).
(g) WHERE
WHERE Is an entry point in PLOT which returns current pen
coordinates.
M- 1 18

-------
APPENDIX N
FLASH AND FIRE POINTS, MICRO-CLEVELAND OPEN CUP METHODS
To obtain these measurements a modified Cleveland open cup appara-
tus was employed in a procedure approximate to that described In
ASTM D—92. Exceptions to the ASTM method, adopted to permit mea-
surements when sample sizes are greatly limited by cost or avail-
ability, were as follows:
1. Cup external measurements are standard, but the sample
well was reduced to a hole 1.25 in. diam. x 1.25 In.
deep and the sample size was 18—20 cc.
2. The well was fitted with a glass dome (as a cover) sup-
ported by the ASTM flash point thermometer, which in
turn was supported on—axis with the sample well.
3. To test for flash/fire point, the thermometer-dome
assembly were lifted off the cup to permit the normal
traverse of the pilot flame over the liquid surface at
each 5°F. interval.
The flash and fire points were recorded as specified in ASTM
D—92.
N-i

-------
APPENDIX 0
THE HOT COMPARTMENT SPRAY IGNITION TEST
The apparatus is constructed to represent a spray from a system
containing a liquid at elevated temperature and pressure into a
controlled temperature air environment having a high temperature
ignition source. The apparatus, Illustrated in Figure 0—1, con-
tains a closed reservoir which is filled with 30 cc of working
fluid and heated to the desired equilibrium temperature and pres-
sure. A solenoid valve Is triggered for a fixed time Interval
allowing fluid to spray through a 600 cone angle hollow spray
nozzle having the following flow characteristics with water at
room temperature:
Reservoir Volume
Pressure Flow Rate
( p i) ( cc/mm )
200 103
L 00 130
600 166
800 166
1000 187
The spray is aimed at a 10,000 volt, 1/8 gap spark at a distance
of 2 inches in a controlled temperature chamber (5 In. dla. x
5 in. long).
The test procedure is to start the bomb filled with 30 cc of
working fluid at a pressure of 1000 psig and spray Into the 100°C
chamber for i/ second. The spark source Is started two seconds
before the spray and remains on for the duration of the test. A
relative maximum average explosive peak force Is measured using a
meter reading of the dc amplitude from the accelerometer attached
to the bomb cover. The compartment temperature rise Is measured
with a fine wire—thin wall jacketed thermocouple. The existence
and duration of flash and fire are determined visually.
0—1

-------
ete r
Free lid
Spark
Electrodes
Hot
Compartment
Thermocouple
M NSANTO HOT COMPARTMENT IGNITION TEST
Spray Time - 1/4 sec.
Compartment Temp. - 100°C
Initial Fluid Charge-3Occ
Compartment Environment - Air
Figure 0—1. Monsanto Hot Compartment Ignition Test
Heated
Reservoir
300 Conical
Spray
Furnace
0—2

-------
APPENDIX P
MONSANTO RECORDING TENSIMETER
For vapor pressure measurements the fluid samples are charged to
a sample cell which is placed in a heated environment. The sam-
ple oven with its associated temperature controller comprised a
bench—top unit; the recorder and electronic components were
mounted in a floor cabinet. Figure P—i shows a diagram of the
tens Imeter.
The oven and programmer assembly were the corresponding compo-
nents of a Perkin-Elmer Model F-li gas chromatograph. An insu-
lated top was made for the oven, occupying the space where the
chromatograph detector normally would have been placed. The top
was secured only by gravity so that In case of an explosion of
the sample cell internal pressure In the oven would be relieved
by lifting of the top. The base of the oven unit contained the
temperature control electronics. The base front panel originally
had oven temperature and injection temperature controls and a
heater switch; a new panel was made, eliminating those controls
which were not required for the tensimeter application. A hole
was cut in the front wall of the oven to admit the sample cell.
The recorder used with the apparatus was a Hewlett—Packard Model
7035A, an inexpensive x—y recorder without time base. It was
modified to have a single, fixed range on the 2514 mm axis (which
would be the pressure axis of the chart), and three ranges on the
178 mm axis (the temperature axis). The recorder panel provided
a mounting also for the log p - log p/ t function switch, which
actually had no connection with the recorder circuits. The re-
corder was mounted in the inclined upper—panel space of a cabinet
1.3 m high, with the auxiliary components in three drawers below;
electronic circuits for temperature and pressure measurement in
the top, timers for the decomposition—rate system in the middle,
and power supplied in the bottom.
The specifications of the instrument were as follows:
Oven assembly —
Temperature range: room — 500°C
Cut—off temperature of programmer: selectable to 500°C
Safety cut—off temperature: approximately 1480°c not
adjustable
Programming rate: 1, 1.5, 2, 3, 14, 5, 6, 8, 10, 12, 15,
18, 20, 25, 30 and 140°C per minute
P—i

-------
Figure P-i. Monsanto Recording Tensimeter
N )

-------
Log p recording system -
Pressure range: 10 — 1000 torr
Log Ap/ht recording system —
Pressure range: 1 — 100 torr increase of pressure within
the recording interval
Programmer temperature advance interval: 60 sec (selectable
2—60 see)
Hold interval: 300 sec (selectable 60—1800 sec)
Recording interval: I4 l see (selectable 10—300 see)
Temperature recording system —
Ranges: 0—500°C, 0—150°C and 150—500°C, presented on
scales linear in l/°K
The initial modification to the instrument was the adapting a
stainless steel tubular sample cell and high pressure transducer
to measure vapor pressures of the working fluids. The total cell
volume is 5.75 cc. When a 4 cc sample is charged to the cell,
the volume heated by the oven is 2.25 cc.
P— 3

-------
APPENDIX Q
FIXED CYCLE COMPUTATIONS
In order to evaluate the Rankine cycle applicability of the
fluids which passed thermal stability and I—factor screening,
cycle efficiencies and other pertinent performance parameters were
calculated. Two standard cycles were calculated, identified as
the “Ideal Reference Cycle” CR2) and the “Equivalent Real Cycle”
(R 1 4). The cycle descriptions and computation procedures are
described in the following paragraphs.
1. CALCULATION PROCEDURE — REFERENCE IDEAL CYCLE (R2 )
1.1 Description of Cycle
(See Figure Q—l. Letters in parentheses refer to points on the
diagram.)
(1) Pump inlet conditions are set as staurated liquid at
220°F CE).
(2) Expander inlet conditions are set at 712°F (A). The
pressure is chosen as the maximum pressure, not greater
than 1000 psia, from which an isentropic expansion to
the pump inlet pressure can be made without producing
condensation anywhere In the expander.
(3) Expansion is isentropic from expander inlet to pump
inlet pressure (B).
(11) Expander exit gases are cooled in a regenerator at con-
stant pressure to a saturated vapor condition (C).
(5) Condensation at constant pressure is allowed in the re-
generator until heat is transferred sufficient to raise
the temperature of the liquid side of the regenerator
from the pump exit temperature to the saturated vapor
temperature (D).
(6) The vapor—liquid mixture then enters the condender where
it is totally condensed at constant pressure to pump
inlet conditions (E).
(7) The liquid is pumped isentropically to the expander inlet
pressure (F).
Q- 1

-------
A
Entropy, Btu/Ib
Figure Q—1. Reference Ideal Cycle
712
20 —
B
G
F
Q-2

-------
(8) The liquid passes through the regenerator at constant
pressure, recovering first the partical condensation
heat from the vapors (G) and then the sensible heat (H).
(9) The fluid then passes through the vapor generator where
it is heated at constant pressure to the expander inlet
conditions (A).
1.2 ComputatIon Details
The preliminary calculations consist of determining the properties
(pressure, temperature, enthalpy, entropy, density) at each refer-
ence point (A through H) on the cycle diagram. The steps In this
procedure are as follows:
(1) Obtain a standard set of tables from program E—1393 giving
saturated liquid and saturated vapor tables, and single
phase tabulations. Temperatures In the tables are at 20°F
Increments from 180°F to 800°F. Pressures calculated are
10, 1 1 L696, 25, 50, 100, 200, 300, 500, 700, 900 and 1000
psia.
(2) The properties at point E are read directly from the tables
for saturated liquid at 220°F.
(3) E—1393 Is used again to produce an Isobar at the pressure
Pu.. The properties of point C are read directly from the
s turated vapor table of this set.
(LI) The saturated vapor tables are then scanned to determine the
maximum entropy, Smax between point C and the critical point.
(5) The entropy at 1000 psia and 712°F, SI 000 , Is determined
by interpolation from the 1000 psia isobar tables. If
this value is greater than 3 max’ the coordinates of point
A are established as 712°F, 1000 psia. If S 1000 <
entropies at 712°F are obtained from the various Isobars,
plotted vs. pressure, and the pressure having S = Smax is
established as A• E—1393 Is again used to obtain an
isobar at Other properties are read from the tables
along the isobar. In almost every case 1000 psla was
chosen as
(6) B is taken as T and other properties are found by
interpolating in the t’ables for the Isobar such that
=
Q- 3

-------
(7) Point F is established by setting P = and interpo-
lating in the isobar tables to sgt SF =
(8) Point 0 is established by setting G = A’ and T 0 = T 0 .
(9) Point D is established by setting D = A’ and HD=
Hc + HF — HG.
(10) Point H is established by setting P = P , and H =
0 B C
After the reference point properties have been determined, the
performance calculations are made as follows:
Efficiencies:
Carnot — Set by the chosen maximum and minimum
temperatures to be $2%.
HA - FIB - (HF _ HE )
Cycle, 0% Regen: E = 100 H — H
A. H
HA - HB - (H HE )
Cycle, 100% Regen: E = 100 H H
A H
Cycle: E (Cycle, 100% Regen) or
E = 30%, whichever is less
% of Carnot: 100 x cycle efficiency/ 1 42
Temperatures:
MaxF = 712°F
MinF = 220°F
Pressures:
Max psia =
Mm psia =
Per 100 Net Cycle Horse Power:
Fluid rate, lb/hr: 100 x 25 45.08
— B E
Engine exhaust, cfm: Fluid Rate
x 60
Q- 4

-------
Pump In, gpm: Fluid Rat x7. 1 8
Engine HP, gross: 100 H — H — (H - H )
A B F E
Pump HP: Engine HP, gross — 100
Heat Flows:
If cycle efficiency is set at 30%, poInts H and D
are adjusted as follows:
H -H -(H -H)
H’ A 0.3
HD, = HD + HH - HH,
Other properties are Interpolated at H and D respectively.
Fluid Rate x (HA - HH, )
Heater, KBtu/hr 1000
Fluid Rate x (HB - HD, )
Regen, KBtu/hr 1000
Fluid Rate x (HD, - HE )
Cond, KBtu/hr 1000
Without Regen:
Add Regen, KBtu/hr to Heater, KBtu/hr, and to Cond,
KBtu/hr
Engine:
Z Eff.: Set at 100%
Pressure Ratio:
Density Ratio:
Q-5

-------
H -H
Exhaust Quality, %: 100 HB - H
C E
Delta H, Btu/lb: 11 A — HB
Nozzles:
Coeff: Set at 1.00
FPS: 223 . 72 S41HA — HB
Mach. No. Spout:
C
I
where C = 68.062 1 -
ap
B
is obtained graphically from the thermodynamic
\ P/SB tables
A 0.OLI x Fluid Rate
throat PthroatC
where Stht =
Htht HA ( 223.72 )
iegenerator: (for 30% cycle efficiency)
% Effective: HH, -. HF x 100
HH_HF
Q, KBtu/hr: Calculated under “Heat Flowstt
Q
LM
Q-6

-------
Non—condensing regenerator
A single TLM cannot be calculated for a
condensing regenerator
P -T
C
(OG)
I at 220°F I — ___ —
factor — C P dT
where is the slope of the P vs T plot along the
saturated vapor curve (obtained graphically)
at 220°F, and
Cp
evaluated graphically at P
2. CALCULATION PROCEDURE — EQUIVALENT REAL CYCLE (R’ )
2.1 Description of Cycle
(See Figure Q-2. Letters in parentheses refer to points on the
diagram.)
(1) Pump Inlet conditions are set as saturated liquid
at 220°F (E).
(2) Expander inlet conditions are set at 712°F (A). The pres-
sure Is chosen as the maximum pressure, not greater than
1000 psia, from which an isentropic expansion to the pump
Inlet pressure can be made without producing any condensa-
tion in the expander.
Q-7

-------
Figure Q-2.
Entropy, Btu/Ib 0 F
Equivalent Real Cycle
712 —
A
/
L P
/
/
Spout
0
I - .
a)
E
a,
I -
H
0.09 E
F
220
C
-r
Q-8

-------
(3) Expansion follows the curved path (A) to (throat) to
(spout) to (B). Properties are approximated by an Isen—
tropic expansion to (Be) giving 75% expander efficiency,
followed by an isentha pic expansion to (B).
(p4) Expander exit gases are cooled in a regenerator to a satu-
rated vapor (C) with a pressure drop 9% of pump inlet
pressure.
(5) Condensation at constant pressure is allowed until the
capacity of a heat exchanger of UAk = 125 Btu/HP-hr—°F
is used (D).
(6) The vapor—liquid mixture is totally condensed with a pres-
sure drop lL % of pump inlet pressure, to the pump Inlet CE).
(7) The liquid is pumped isentropically (but with a 75% effi-
cient pump) to the liquid side regenerator pressure (F).
(8) The liquid passes through the regenerator with a pressure
drop 5% of expander inlet pressure recovering first the
partial condensation heat from the vapors (G) arid then
the sensible heat (H).
(9) The fluid then passes through the vapor generator with
pressure drop 10% of expander Inlet pressure to the ex-
pander inlet conditions (A).
2.2 Computation Details
Preliminary calculations consist of determining the properties
(pressure, temperature, enthalpy, entropy, density) at each refer-
ence point (A through H, BQ, BQ , throat and spout) on the cycle
diagram. The steps In thi pr cedure are as follows:
(1) ObtaIn a standard set of tables from program E—1393 giving
saturated liquid and saturated vapor tables, and single
phase tabulations. Temperatures in the tables are at 20°F
Increments from 180°F to 800°F. Pressures calculated are
10, 114.696, 25, 50, 100, 200, 300, 500, 700, 900, 1000,
1100 and 1150 psia.
(2) PoInt E properties are read directly from saturated liquid
tables at 220°F.
(3) E—1393 Is used again to produce isobars at P 1.114 P .
Point C properties are read directly from th ’saturat d
vapor properties at ] .114
Q-9

-------
(Ii) The saturated vapor tables are then scanned to determine the
maximum entropy, 3 max’ between point C and the critical point.
(5) The entropy at 1000 psia and 712°F, S 1009 , is determined
by interpolation from the 1000 psia isobar tables, If this
value is greater than S , the coordinates of point are
established as 712°F, psia.
If S 1000 < extropies at 712°F are obtained from the
various isobars, plotted vs pressure, and the pressure
having S = is established as A• E-1393 is again used
to produce tables at A’ 1.1 A’ and 1.15 A• Other prop-
erties for point A are read from the tables along the
isobar.
(6) P 3 , is taken as 1.23 E• SB , 8 = SA, and other properties
interpolated on the 1.23 Isobar.
(7) SB = SA. H 35 = HA - O. 75 (HA — H 35 ). Other properties
interpolated from tables.
(8) H 3 = HBS. P 3 = 123 Other properties interpolated
from tables.
c = P . T 5 0 is obtained by trial and error to
obtain
P v =0.95P v,
spout spout B’s 3 s
where VB,s= 223.72 HA — HB,
v = 223.72 IH — H
spout A spout
(10) Stht = SA + 0.25 SA)
Obtain C, speed of sound graphically, as
C = 68.062 ff p_
ap
3 throat
by plotting P VS D at S 8 throat
Q—1O

-------
Then: 2
Htht = HA — ( 223.72 )
(11) SF = SE. F = 1.15 A• Other properties interpolated
from tables.
(12) Points D, G and H are determined from a trial and error
heat exchanger calculation. The pressures are established:
= 1.1LIPE: G = “‘ 5 A’ t’H =
The heat exchanger is conceptually broken into two sections
as shown below, schematically:
F G
I _____
I I ________
— 1 Condensing Section -m Sensible Section
I H
TB, T , and TF are known. TG is assumed to have some value
less han Tc.
Then the corresponding HG is read from the tables.
Then:
= HF + - Hc
HD = Hc - (HG - HF)
The corresponding temperatures are then obtained from
the tables.
The fluid rate is obtained from:
F — 100 x 25115.08
- HA - HB _(HF_ HE)/O.75
Q-l1

-------
The heat exchanger size is set at
UA = 12,500 Btu/°F (100 HP)
The specific size (per pound of fluid) is given by:
(UA)s 12 500 Btu/°F1b
For each section of heat exchanger,
UA=
TLM
Thus,
IT -T
( Hc — HD)1n( TD — T
condensing - TD — TF - (Tc — TG)
(UA)jbl = B _ H PT )
TG is varied until:
(UA) ÷ (UA) = (UA)
condensing sensible sp.
In the course of the calculations, Tr is set equal to
Tc for one trial to determine the 100% regeneration points
D’, Gt and H’. For this case UA = and is not calculated.
After the reference point properties have been determined,
the performance calculations are made as follows:
Efficiencies:
Carnot: 42%
Cycle, 0% Regen: 100 HA — HB — (HF — HE)/o.75
HA Hp
Q— 12

-------
Cycle, 100% Regen: 100 HA — H 9 — (HF — HE)/O. 7 5
HA_HHI
H - 11 B - (HF — HE)/O.75
Cycle: 100 A
HA_ HH
% of Carnot: 100 x cycle efficiency/ 1 12
Temperatures:
Max F = 712°F
M m F = 220°F
Pressures:
Max psia =
Mm psia =
Per 100 cycle HP
Fluid rate: calculated in Preliminary Step 11.
Engine exhaust, cfm: Fluid Rate
x 60
Fluid rate x 7ii8
Pump in. gpm: ‘E x 60
Engine HP, gross: 100 HA — H 9 — (HF — H E) !O. ? 5
Pump HP: Engine HP, gross — 100
Heat Flows:
Heater, KBtu/hr: Fluid rate x (HA — HH)/l000
Q-13

-------
Regen, KBtu/hr: Fluid rate x (HB - HD)/l000
Cond, KBtu/hr: Fluid rate x (HD - HE)/l000
Without Regen:
Add Regen, KBtu/hr to Heater, KBtu/hr, and to
Cond, KBtu/hr.
Engine:
% Eff: 75%
Pressure ratio:
Density ratio:
H -H
Exhaust Quality, %: 100 HB — HE
C E
Delta H, Etu/ib: HA — HB
Isentropic: HA - HB
S T
Nozzles:
Coeff: 0.95
fps: Calculated in preliminary step 9
Mach. No., Spout:
where: = 68.0624(e)
spout
Q— 14

-------
A 0.011 x Fluid rate
throat throat Ctht
Regenerator:
— H )
% Effective: LI
HH, ‘F
Q, KBtu/hr: calculated under “Heat Flows:
UA: 12.5 KBtu/hr °F
Calculated for each section In
preliminary step 11.
TB _ TC TC _ TD
LM sensible LM condensing
1 factor Same as Ideal Reference Cycle
Q— 15

-------
1 RLPO 11 NO
APTD - 1565
4 TITLE AND SUaTITLE
16. ABSTRACT
The objective was to conduct a comprehensive program to establish the optimum working
fluids and/ or working fluid-lubricant combir ations for automotive Rankine cycle appli-
catic s. The Epecif c requirements are described and are listed as follows:
(Al Vehic]e Design Goals, (B) Low Tcmpcrature, (C) Materials Compatibility, (D) Syscem
Constraints, (E)Safety, (F) System FluidS Cost, (G) Stability. The tasks required for
the technical effort of the contract were as follows: (l) Establish Working Fluid
Selection Criteria, (2) Provide Systems Analysis (3) Search for Existing Fluids, (4)
Recommendations and Conclusions, (5) Property prediction Verification, (6) Dynamic
Loop Tests, (7) Develop Preliminary Cost Estimates. This Volume III contains the
technical details of the study and computer programs in appendix A through appendix Q.
17. KEY WORDS AND DOCUMCNT ANALYSIS
3 DESCRIPTORS
b IDCNTIFIERS/OPEN ENDED TERMS
COSATI I icIJ/Group
Air Pollution
Rankine cycle
Engines
Design
Turbines
Computer programs
rn.’ I flI 1
Working Fluid
Mixed Fluorobcnzenes
Aqueous Pyridines
13 B
21 C
21 E
14 B
7 C
19 (JIST lULJ lION brXrLM N 1
Release Unlimited
.
19 5ECUhITY CLASS (jlii5 fiLpOrl)
Unclassified
— ___________________
21 NO (U I’AGL ,
251
20 SICURITY CLASS (Ihizp.,jr/
Unclassified
22PI 1
TLCIINICAL flEro;IT [ )ATA
(P! 1 rea,! Ii..a,ai Ig(p:c (hi 1Fk rt I ll •1 1 l’l( I tJl f ll1I?I ()
12 -
3 I4ECIPIENT S
S. REPORT DATE
Optimum Working Fluids for Automotive Rankthe Engines
Volume III - Technical Section - Appendices
6. PERFORMING ORGANIZATION CODE
7 AUThOR(S)
8 PERFORMING ORGANIZATION REPORT NO
D.R. Miller, H. R. Null, Q E. Thompson, A.C. Pauls,
J. A. Conover
9 PERFORMING ORANIZATION NAME AND ADDRESS
10 PRC’GFIAM ELEMENT NO.
Monsanto Research Corporation
800 North Lindbergh Blvd.
St. Louis, Missouri 63166
11.CONTRACT/GRANTNO
.
68 - 04 - 0030
12. SPONSORING AGENCY NAME AND ADDRESS
13. TYPE OF REPORT AND PERIOD COVERED
U. S ENVIRONMENTAL PROTECTION AGENCY
Office of Mobile Source Air Pollution Control 14 SPONSORING AGENCY CODE
Advanced Automotive Power Systems Development Division
Ann Arbor, Nichi an 48105
15. SUPPLEMENTARY NOTES
EPA rorm 2. 2O I ( 3 73)
Q- 16

-------