PB-209 190

INSTRUMENTATION FOR  THE  DETERMINATION  OF
NITROGEN OXIDES CONTENT OF STATIONARY
SOURCE EMISSIONS.  VOLUME II

Arthur  D.  Snyder,  et al

Monsanto  Research  Corporation
Dayton,  Ohio

January  1972
                            DISTRIBUTED BY:
                            National Technical Information Service
                            U. S. DEPARTMENT OF  COMMERCE
                            5285 Port Royal Road, Springfield Va. 22151
          TVs document has been approved for pubic release and sail.

-------
 atSTRUMfNTJHUHI 191 THE
     Of *TATWNArSf SOUflCE EMISSIONS
                    ȴ
                          ^ Afilmoy
                   North Carolirwi
MONJ9ANTO RESEARCH CORPORATION
    '••        ""'
        _

     A 8UBSIDIAKY OS? MONSANTO COMPANY;.
       Monsanto
o «*sS5"

-------
When U. S. Government •draw1 a, pecifications, or other data
are used or any purpose oth r’ than jdefinitely related
Government procurement oper iqn, thecoverament thereby
incurs no responsibility nd r any óblt ati:on whatsoever, and
the fact ihat the Governmen t rmay he4e4or u1ited, furnished,
or in any way su ppLied t&eEuid d.ra ngs specific tione, or
other dat ia,not tp be r prded b fap]j .,cation or otherwise,
or in any aa*ner’ lice h ing hol4ar 4ny. other person or
corporati n, or conveying a#, 4 rights Dr ‘rmission to manu-
facture, ise , or sell any .pat t d SJ ven, on that nay in any
way, be re Lated thereto. ‘ .
References to named conmerdjál.productIin thia.report are
not to be, considered In 9fl :’SSfl 5S a. an endorsement of the
product b the Goveruaent.

-------
BIBLiOGRAPHIC DATA 1. I vpori No.
SHEET APTD-0942 I
3. RecTpient ’s Accession No.
4. Tit1i _and Subtitle
I nstrumentation for the Determination of Nitrogen Oxides
Content of Stationary Source Emissions - Volume I I
Report Dare
January 1972
6.
7. Author(s) .
Arthur D. Snyder, Edward C. Elmutis, et al
S. Performing Organization Rept.
No. MRC—DA-317
9. Performing Organization Name and Address
- Monsanto Research CorpOration
Dayton Laboratory
Dayton, Ohio L,5 i07 .
10. Project/Task/Work Unit No.
11. Contract M No.
EHSD 71-30
12. Sponsoring Organization Name and Address
Environmental Protection Agency
National Environmental Research Center
Durham, North Carolina
13. Type of Report & Period
Covered
14.
15. Supplementary Notes
16. Abstracts
The performance of seven comercial monitors for applicability to the continuous deter-
mination of nitrogen oxides from stationary sources was evaluated. Based on the present
and projected requirements in stationary source emissions monitoring, the ranking, uti-
lity factors and ranges of performance were first established for each of fifteen per-
formance parameters. These desired instrument parameters formed a matrix against which
the quantified performance values as measured in the laboratory and on an operating p e
pJant flue gas composition could be compared. The comparison of the evaluation data on
each performance parameter with the desired performance matrix resulted in an estimate
of overall performance of the tested nitrogen oxide monitors. This overall performance
is calculated in the form of an “index of performance” for each instrument. The evalua-
tion results indicate that the comercial monitors exhibited performance indices ranging
from 0.57 to 0.78 versus a potential value of 0.99 for an instrument meeting all of the
desired performance values.
17. Key Words and Document Analysis. 17o. Descriptors
Air oollution
Ins truments
Mon i tors
Performance evaluation
Nitrogen oxides
Emission
17b ‘d nt’ficrs/Open-Endcd Terms
,Mr pollution detection
S ationary sources
Measurement
Electric power plants
Laboratories
Field tests
17c. COSATI Field/Group 1 38
18. Availability Statement 19. Security Class (This 21. No. of Pages
Report)
U? CLASSIFI1 D 2 1 +1
Jn i ml ted 20. Security Class (Tk s 22. Prire
fJNCLASSIF II .l)
FORM NTIS.35 (IO 7OI
IJSCOMM-DC 40325.0,’

-------
INSTRUCTIONS FOR COMPLETING FORM NT1S-35 (10-70) (Bibliographic Data Sheet based a COSATI
Guidelines to Format Standar4s for Scientific and Technical Reports Prepared by or for the Fede#-al Government,
PB- i 80 600).
1. Report Number. Each report . hall carry a unique alphanumeric designation. Select one of the following types: (a) alpha-
‘&wter’c designation provided by the sponsoring agency, e.g., F4iA-RDt68-09; or, if none has been as igned, (b) alphanu-
meric designation established by the performing organization e.g., FASEB-NS-87; or, if none has been established, (c)
alphanumeric designation derjved from contract or grant number, e.g., P 1 1-43-64-9324.
2. ‘ eave blank. -
3. Recipient’s Accession Number. Resened for use by each report recipient.
4 TItI . and Subtitle. Title shc uld indicate clearly and briefly the subject coverage of the report, and be displayed promi-
nently. Set subtitle, if used, in smaller type or otherwise subordinate it to main title. When a report is prepared in more
than one volume, repeat the primary title, add volume number and include subtitle for the specific volume.
5. Report Date. l.ath report shall carry a date indicating at least month and year. Indicate the basis on which it was selected
(e.g., date of issue, date of approval, nate or preparation.
6. Performing Organization cod,. Leave.blank.
7. Author(s). Give name(s) in,conventional order (e.g., John R. Doe, or J.Robert Doe). List author’s affiliation if it differs
from the performing organizanion.
9. Perfonn lng Organization Report Number. Insert if performing organization wishes to assign this number.
9. Performing Organization Name and Address. Give name, street, city, state, and zip code. List no more than two levels of
an organizational hierarchy. ‘Display the name of the organization exactly sa it should appear in Government indexes such
as USG.RDR-l.
10. Project/Teak/Work Unit Number. Use the project, task and work unit numbers under which the report.was prepared.
11. Contract/Grant Number. Insert contract or grant number under which report was prepared.
12. SponsorI ng Agency Name and Address. Include zip code.
13. Type of Report and Period Covered. Indicate interim, final, etc., and, if applicable, dates covered.
4. Sponsoring Agency Code. Leave blank.
15. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with
Franslation of . . . Presented at conference of . . . To be published in . . . Supersedes . . . Supplements
16. Abstract. Include a brief (200 words or less) factual summary of.the moat significant information contained in the report.
lithe report contains a significant bibliography or literature survey, mention it here.
17. Ksy Words end Document Analysis. (a). Descriptors. Select from the Thesaurus of Engineering and’Scientifk Terms the
proper authorized terms that identify the major concept of the research and are sufficiently specific and precise to hc used
as index entries for cataloging.
(b). Identifiers and Open.gnded Terms. Use identifiers for project names, code names, equipment designators, tic. L i st
.pen-ended terms written in descriptor form for those subjects for which no descriptor exists.
(ct COSATI Field/Group. Field and Group assignments are to he taken from the 1965 COSATI Subject Category List.
Since the majority of documents are multidisciplinary in nature, the primary Field/Group assignment(s) will he the specilic
‘i4.ipline, area of human endeavor, or type of physical object. The application(s) will be cross-relerented with sic ,‘ndirv
Fit Id/Group assignments that will follow the primary posting(s).
ig r):stribution Statement. Denote releasability to the public or limit.u ion for reusonc other than security for exaiiiple “Rt-
It.tsc unlimit i d”. Cite any availability to the puhlic, wtth address and price.
19 & . Security Classification. iDi, not submit classified report’. to tl i Nniinn.il i cc hiiic .il Information Servic, ’.
21 Number of Pages. Insert the tot a I number of pages, including this one an,l unnumbered pagiS s , h cii c xc I titi ii,p iii ..i r , Inn , ,,,t
list, if any.
22. Price. Insert the price set by the National Technical Information Service or the Government Printing Oltice, if known.
FORM NTiS-35 110.701 -- ‘ uacoMM-uc 40329-P?

-------
MRC-DA-317
INSTRUMENTATION FOR THE DETER1’IINATI ON
OF NITROGEN OXIDES CONTENT
OF STATIONARY SOURCE EMISSIONS
VOLUME II
January 1972
By
Arthur D. Snyder
Edward C. Elmutis
Michael G. Konicek
Leo P. Parts
Paul L. Sherman
For
ENVIRONMENTAL PROTECTION AGENCY
NATIONAL ENVIRONMENTAL RESEARCH CENTER
DURHAM, NORTH CAROLINA
CONTRACT NO. EHSD 71-30
MONSANTO RESEARCH CORPORATION
DAYTON LABORATORY
Dayton, Ohio 45407

-------
FOREWORD
In December of 1970, the Environmental Protectton A ’;ency
contracted with Monsanto Research Corporation to conduct a
laboratory and field evaluation of commercially available con-
tiniious monitors for nitrogen oxides emitted from stationary
sources.
Volume I of this report (issued in October 1971) presented
the results of a detailed survey ‘f Instrumentation on techni—
que capable of measuring NOx emissions. The Volume F report
constituted a state—of—the—art review of NO monitoring instru-
rnentation including (1) commercially available units,
(2) prototype and laboratory—stage Instrumental method;.;, and
(3) novel monitoring techniques based on evolving laser tech-
nology. Evaluation of these monitoring systems bi e based on
present and projected requirement . in stationary source mi . ;siori ;
.nonitoring.
This survey preceded the start of laboratory and field
testing of the commercially available units. This report,
Volume II, details the laboratory and field evaluation studie .
of commercial nitrogen oxide monitors tested on this program.
Li

-------
ACKNOWLEDGEMENTS
Technician support on this program was furnished by
Messrs. Thomas Stewart and Guthrie Wheeler and Mrs. Connie
Hess. The 5upport of Mr. Andrew KazarinofT and Mr. George
Chute of Stevenson, Jordan and Harrison, Management Consul-
tants, Inc. is gratefully acknowledged. The cooperation of
Messrs. Howard Palmer, Earl Cutter and John Nehez of the
Dayton Power and Light Company In making their Pait Power
Station available for the field evaluation of the nitrogen
oxide monitors Is particularly appreciated. Of particular
no e was the active participation and cooperation of the
technical monitor, Dr. Fredric Jaye of the National EnvI-
ronmental Research Center, Research Triangle Park, North
Carolina, on this program.
iii

-------
A R:V [ ’HAC’.I ’
The performance of seven commercial monitors for pp1ica—
bility to the continuous determination of nitrogen oxides from
stationary sources was evaluated. Based on the present and pro-
ected requirements In stationary source emissions monitoring,
th ranking, utility factors and ranges of performance were first
established for each of fifteen performance parameters. These
desired instrument parameters formed a matrix against which the
quantified performance values as measured in the laboratory and
or an operating power plant flue gas composition could be com-
pared.
The comparison of the evaluation data on each pertormance
parameter with the desired performance matrix resulted in an
estimate of overall performance of the tested nitrogen oxide
monitors. This overall performance is calculated in the form
of an “index of performance” for each instrument. The evalua-
tion results indicate that the commercial monitors exhibited
performance indices ranging from 0.57 to 0.78 versus a potential
value of 0.99 for an instrument meeting all of the desired per-
formance values.
It is concluded that there is a definite need for further
research and development on improved continuous nitrogen oxide
monitors to satisfy both the present needs, and the projected
requirements when nitrogen oxide abatement processes are in-
stalled in new and existing stationary sources.
iv

-------
TABLE OF CONTENTS
SECTION Page
FOREWORD Ii
AC KNOWLEDGEMENTS lii
ABSTRACT iv
INTRODUCTION 1
2 PROGRAM PLAN AND SCHEDULE 2
3 EVALUATION OF NO MONITORS — PHASE I 8
3.1 Survey of Nitrogen Oxide Monitor 8
Manufacturers and Users
3.2 Formulation of Instrument SpecIfications 11
and Performance Criteria
PHASE II - LABORATORY AND FIELD 16
EVALUATION STUDIES
18.1 Selection of Nitrogen Oxide Monitors 16
for Test
18.2 NO Monitor Evaluation Test Facilities 17
18.2.1 Laboratory Test Facilities 18
18.2.2 Field Test Facilities 22
11.3 Laboratory Evaluation Test Program 33
4.3.1 Statistical Analyses of 67
Laboratory Test Data
4.11 FIeld Evaluation Test Program 77
11.4.1 Analyses of Power Plant Stack Gas 85
Gas by the Phenoldisulfonic
Acid (PDS) Method
4.4.2 Statistical Analysis of Field 87
Test Data
V

-------
Table of Contents — (Cont’d)
SECTION Page
5 DATA EVALUATION, CONCLUSIONS, AND 96
RECOMMENDATIONS
5.1 Discussion of’ Index of Performance 99
5.2 Conclusions 105
5j Recomn7endations 107
APPENDIX I 109
Report of Stevenson, Jordan and Harrison,
Subcontract on “Evaluation of Nitrogen
Oxide Monitors for Combustion Sources”
APPENDIX II 171
Field Data Analyses
APPENDIX Ill 221
Computer Programs Used In Lab
Data Analyses
vi

-------
LIST OF TABLES
ra Ie Page
1 Organizations Contacted 9
2 Questionnaire for Ranking Performance Parameters 13
of a Continuous NO Monitor of Stack Gases
3 Ranking of Performance Parameters by the Attendees l 4
Ranking, Utility Factors, and Ranges of the 15
Performance Parameters
5 Results of Wet Chemical vs. DuPont 1461 Analyses 314
6 a. Results of Correction Factor Calculations 36
for Individual Spans
b. Results of Overall Correction Factor Calculation
7 Summary of Laboratory Tests of Nitrogen Oxide 38
Instruments
8 Zero Drift Analysis
9 Repeatability of Nitrogen Oxide Monitors 57
2.0 NO Monitor Sensitivity Data 59
11 Sensitivity of NO Continuous Monitors 58
12 Response Time and Lag of Nitrogen Oxide Monitors 62
13 Response of NO Instruments at 1—sec Time Intervals 63
1 14 Test Sequence for Interference Testing of 65
Nitrogen Oxide Monitors
15 Extent of Interference of Flue Gas Constituents 66
on Nitrogen Oxide Monitors
15 Relative Accuracy of Instruments In Labth’atory
Tests — Individual Instrument and Separate
Span Level
2.7 Absolute Accuracy of tnstruments in Laboratory 70
Tests - Individual Instrument and Separate Span
Level Analysis Based on Percent of Full Scale
Reading
vii

-------
Pagc
18 In trument E Relative Error Analysis 71
19 Instrument E Absolute Error Analysis 71
20 Short—Term Field Test Data (ppm NOR) 78
21 Short—Term Field Test Data (ppm NOR)
22 Analyses of Power Plant Stack Gas by the 86
Phenoldisulfonic Acid Method
23 Frequency of Correlations (Days) Between 88
Instrument Readings and Time
2Lt Accuracy of NO Monitors — Short—Term Field Tests 89
25 Accuracy of N0 Monitors — Short-Term Field Tests 91
26 Field Accuracy Summary 95
27 Performance Values for NO Monitors 9?
28 IP Using Lab Data for Accuracy 100
(CO 2 and 02 interferences included)
29 IP Using Field Data for Accuracy 100
(CO 2 and 02 interferences included)
30 IP Using Lab Data for Accuracy 101
(CO 2 and O interferences excluded)
31 IF Using Field Data for Accuracy 101
(CO 2 and 02 interferences excluded)
32 Performance Parameters Used and Corresponding 103
Weights
33 IP Based on Select Parameters 10
3 4 IP Based on Select Parameters 1O t
(With CO 2 and 02 interference i deleted)
viii

-------
LIST OF FIGURES
Figure Page
1 Program Plan and Objectives 3
2 Program Milestone Chart - Phase I
3 Program Milestone Chart — Phase II 5
Program Milestone Chart — Phase III 6
5 Program Milestones 7
6 Schematic Layout of Laboratory Facilities for 20
NO In3trument Studies
7 Sample Duct 23
8 Distribution Manifold 21
9 NO, Laboratory Test Facility 25
10 PDP—12A Digital Computer System 25
DuPont 46l NO2/NO Analyzer 25
12 Schematic Layout of Field Test Facilities for 27
NO Studies
:3 Main Delivery Line and Blower Locations for 29
NO Instrument Study
Power Plant NO Test Facility 30
15 Field Test Facility Intertor Showing Digital 30
Computer and Instruments
16 Field Test Facility Interior Showing NO 30
Instruments x
17 Dust Filter — Exploded View 31
:8 Time Sequence for One Test Replicate 35
19 Instrument A: Zero Standard Deviation vs. 52
Temperature
20 Instrument B: Zero Standard Deviation vs. 53
Temperature
ix

-------
Figure Page
21 Instrument C: Zero Standard Deviation vs. 54
Temperature
22 Instrument D: Zero Standard Deviation vs. 55
Temperature
23 Instrument F: Zero Standard Deviation vs. 56
Temperature
24 Time Sequence for Sensitivity Tests 58
25 Qualitative Trends of NO Instrument 68
Accuracy vs. Span Level
26 Instrument A — Error 1 Distribution for 73
All Span Levels and All Experiments
27 Instrument B — Error I Distribution for 74
All Span Levels and All Experiments
28 Instrument C — Error 1 Distribution for 75
All Span Levels and All Experiments
29 Instrument D — Error 3. DIstribution for
All Span Levels and All Experiments
30 Instrument F - Error 1 DistrIbution for 77
All Span Levels and All Experiments
x

-------
1. INTRODUCTION
Based on an analysis of the stationary combustion source
emission characteristics, instrument performance parameters
were selected which continuous nitrogen oxide monitors should
exhibit In order to qualify as viable monitoring devices.
The instrument performance parameters were ranked according
to Importance and each parameter was weighted in accordance
with the estimate of relative importance. Acceptable ranges
oV performance were then assigned to each Instrument parameter;
the lower limit corresponding to a highly desirable value and
the upper limit corresponding to the estimated limit of accept-
able operation. The performance parameter weighting and the
range of acceptable performance values formed a matrix or frame
reference against which the overall performance of the monitors
could then be evaluated.
The instrument performance parameters quantified In labora-
tory and field test programs Included accuracy, calibration and
zero drift, Interferences (sulfur dioxide, particulate, pressure
and water), precision, repair requirements, repeatability, reso—
lution, response time and lag, routine maintenance requirements,
ruggedness and sensitivity.
The continuous nitrogen oxide monitors evaluated on this
program included: four non-dispersive Infrared Instruments
(Beckman 315A, Bendix UNOR—2, Intertech URAS—2, Mine Safety
LIRA—200); one ultraviolet absorption Instrument (duPont 1161);
and two electrochemical monitors (Dynasciences and EnviroMetrics).
A fery preliminary evaluation of Panametrics Krypton Clathrate
instrument which operates on an inverse radioactive tracing con—
ceot was also included in the field evaluation phase.
Once the performance parameters were quantified, they were
related to the performance parameter matrix through calculation
of an overall “index of performance” for each monitor evaluated.
The Index of performance was designed such that perfect perfor-
rnance would rate an overall index of 0.99, while complete failure
OL1d be assigned a value of 0.01.
The performance parameter evaluation test results and the
final performance index values are presented In this report.
Conclusions concerning the present commercial “state—of—the—art”
ir continuous nitrogen oxide monitors for stationary sources Is
summarized and recomthendations for further research and develop—
;nent are presented here and In Volume I of this report.
1

-------
2. PROGRAM PLAN AND SCHEDULE
Contract No. EHSD 71—30, “Evaluation and Development of’
Iitrogen Oxide Monitors for Combustion Sources,” was conducted
in three phases:
Phase I Evaluation of NO Monitors
Phase II — Testing of Existing Monitors
Phase III — Data Evaluation, Formulation of Recommended
Programs and Final Reporting
A capsule sumfl ary of the program objectives, plans and schedule
are presented in Figures 1-5. This summary was Included as a
portion of the monthly reports on the contract.
The original program included a phase effort to be initiated
after the monitor test program, directed to correction of defi-
ciencies observed in tested monitors and development of advanced
iionitor prototypes. This effort was deleted from the program by
modification early In the contract.
2

-------
OBJECTIVES AND/OR BACKGROUND
The goals of contract EHSD 71—30—are:
(1) To accurately define the current state—of—the—art in nitrogen oxides continuous monitors
for stationary fossil fuel combustion sources.
(2) To evaluate the performance of commercial nitrogen oxides Continuou3 monitors with resp ’c
to formulated instrument performance specifications.
(3) To recommend specific short— and long-range instrument development programs designed to
satisfy immediate and future needs for nitrogen oxide monitors.
PROJECT DESCRIPTION AND TASKS
The project will be conducted in three phases:
Phase I - Evaluation of NOx Monitors
Phase II — Testing of Existing Monitors
Phase III - Data Evaluation, Formulation of Recommended Programs and Final Reporting
In Phase I, Monsanto Research Corporation (MRC) with the cooperation of Stevenson, Jordan
Harrison (S,J&H), a subcontractor, will complete the following tasks:
(1) Survey nitrogen oxide monitor manufacturers and users by phone and personal Interviews.
(2) Formulate instrument specifications and performance criteria.
In 5 hasc II, MRC will evaluate the performance of commercially available nitrogen oxide
monitors. The following tasks are involved:
(1) Deaign, procurement and installation of equipment for laboratory testing and te:;ting In
the field at the Dayton Power & Light Company Tait Station.
(2) Acquisition by purchase, rent or loan of a minimum of’ six commercially availal’ic ’ nitrotlen
oxide monitors, and a data acquisition and handling system (digitizer/computorL
(3) Complete a laboratory test program accentuating instrument performance parameters . uch . .
accuracy, sensitivity, precision, response, resolution, drift, interferences and tho , 1’t eci .
of’ external humidity and temperature.
(•.) Complete a hnrt—term field test program accentuating Instrument performance param tci .
such a accuracy, precision, response, resolution, drift, etc.
(5) Complete a long—term field test program accentuating in3trumerlt performance p. Ltmet. rJ
such as the effect of environmental operating conditions, repair requirements, instrument
down time, operating cost, etc.
Phase III activities include:
(1) LIterature search and state—of—the—art review on advanced novel NOx monitoring conccpts.
(2) Evaluation of the Instrument performance data with reference to the established perCormanLL’
criteria and specifications.
3) Definition of the inadequacies in performance of’ the N0 monitors.
(L) Formulate recommendations for future short—term and long—term Instrument d’ve’lopm’iit pro
(5) Complete and issue final report covering all effort on the contract.
OTHER MAJOR CONTRIBUTORS
Stevenson, Jordan and Harrison subcontractors on Phase I.
Figure 1. Program Plan and Objectives.
3

-------
Summarize
Data & Report Formulate
Analysis of I Performance
Information ( Irniez
2221 ® < __
Prepare Prepare
Establish Performance Ranking Interim
Speciflcations Matrix & Oral Report
Select Performance
Parameters /
February March
2 9 23 30 6
1 24 3 10
2
Times Weeks -
PHASE 1
Design Develop
tntérv:ew Manufacturers Conduct
Guides List Calibacks
Ø&O 1 
-------
National
Develep Statistical Dewl Lab i 0e stlng Emission 5tan r
Testing Plan Testing Procedure Procedure I GPO.
Deadhne
Evaluate Non measu rable
Performance Parameters
/ I
I I I
I I
Deliver I I
Design Lab , Contract Data Pretest and Transfer \ Field Test Prepare
& Field Test ‘ Modification Handling Correct I Equipments for for Oral i Contingent
Facility ( )._.dPProval ( te ) Malfunct 5 eld Accuracy Revl ) Collect Long Term 4 Tes ng
NO and Order NO Deliver NO Conduc Interface Statistical
Computer Instruments Instruments Lab With Sample Treatment
‘Specifications and Data Measurements ‘Delivery and Data
IStudy Handling I System Evaluation
System I
I Maintain Test Equipment
I Fabricate I Install Field I
Special I & Support
Equipment Equipment
I ____ 32 40
Order Install Lab
Hardware & Support
& Materials Equipment
December January February March April May June July AUgUSt September
Tlme Weelis
PHASE II
Figure 3. Program Milestone Chart — Phase II.

-------
Conduct Search
of Periodicals
Prepare
Graphic Data
Presentations
December January February March October November December January
3 10 17 24 31
,30ti3 27, 1rT iii TT? T1?tT1+ fl
13 17 42 45 50 55 60
Time. Weeks
PHASE lit
Order
Reports
Prepare
Report on
Literature
Survey
Receive Reports
Recommend
Evaluate &
Interpret
All Data
‘Analyze State-of-Art
Present & Advanced
NOx Monitors
Conduct
Search of
Reports
Report
Instruments
Formulate
Conclusions
Submission
Prepare Receive Duplicate arid
for Oral Reviewed Distribute
Review Copy Final Report
Final Report
Fi ure 14
Program Milestone Chart — Phase III.

-------
LEGEND
1. Initiate Phase I
2. Initiate Phase Ii
3. Initiate Phase Ill
4. Interview guides designed
5. NO Instrument specifications selected
6. NOx monitoring instrument manufacturers identified
7. Phone survey of Instrument manufacturers completed
8. Analysis of information obtained in phone survey completed. Selection of firms to be Interviewed completed
9. Laboratory and field test designs completed
iO. Abstract literature search on novel NOx monitoring concepts completed
11. Reports on NOx monitoring concepts ordered
12. Personal interviews with NOx instrument manufacturers completed
13. Analysis of instrument manufacturers data completed
14. NOx monitoring instrument users list completed
15. NOx monitoring instruments and data handling system defined for procurement
16. Hardware for laboratory and field test studies ordered
17. Phone interviews with NOx instrument users completed
18. NOx instruments and data handling system ordered
19. Personal interviews with NO instrument users completed
20. Information survey on NOx-emitting installations completed
21. Receive data handling system
22, Analysis of NOx instrument users data completed
23. Selection of performance parameters for the evaluation of NOx monitors completed
24. NO monitor manufacturer and user information summarized and informal report completed
25. Statistical test plan completed
26. Special equipment for laboratory and field test fabricated
27. Ranking matrix and weighting factors on instrument performance parameters completed
28. State-of-the-art of advanced NOx detection concepts defined
29. NO monitor performance index routine formulated
30. Report on literature survey for advanced NO detection concepts completed
31. Oral report I
3 . Laboratory for NOx monitor testing completed
33. NOx monitors received
34. Laboratory testing procedures identified
35. NO monitors pretested and malfunctions corrected
36. Humidity and temperature parameter tests completed
37. Field testing procedures identified
38. Sensitivity, interference, and response tests completed
39. Equipment transferred to field test facility
40. Field test site and support equipment completed
41. Field test equipment interfaced with DP&L sample delivery system
42. Field test of NO instruments for accuracy completed
43. Statistical treatment and data evaluation completed. Oral review II
£4. long term field testing completed
45. Contingent laboratory tests completed
46. Evaluation and interpretation of all data completed
47. Instrument performance evaluated with reference to performance criteria and specifications
Performance index calculations completed
48. Recommendations formulated for future short-term and long-term Instrument devekçment programs
49. Graphic data presentations for report, publications and oral review meeting prepared
50. Oral review Ill
51. Final report submitted for approval
52. Oral review IV (if necessary)
53. Final report received with recommendations for corrections
4. Final report distributed
Figure 5. Program Milestones.
7

-------
3. EVALUATION OF NO MONITORS - PHASE I
In Phase I, Monsanto Research Corporation with the coopera-
tion of Stevenson, Jordan and Harrison, Management Consultants,
Inc., a subcontractor, completed the following tasks:
(1) Survey of nitrogen oxide monitor manufacturers and
users by phone and personal interview.
(2) Formulation of instrument specifications and per-
formance criteria.
?erformanceof tnis survey was pursuant to Bureau of the Budget
clearance #158—S710l0, 21 June 1971.
3.1 SURVEY OF NITROGEN OXIDE MONITOR MANUFACTURERS AND USERS
The subcontract report from Stevenson, Jordan and Harrison
(S,J&H) is presented as Appendix I of this report. The portion
of the survey program regarding nitrogen oxide monitor manufac-
turers was largely in the format of’ completed Interview guides
and was abstracted for use In Volume I of this report. A com-
plete alphabetized list of companies contacted in this survey
Is presented In Table I and repeated in Appendix I.
The S,J&H approach to the survey was conducted in the
following stages:
For NO Monitor Manufacturers
(1) All firms concerned with NO monitor manufacture were
identified on the basis of trade literature, directories
of firms, and the scientific literature.
(2) Printed material or brochures were requested describing
NO instrumentation available from each manufacturer.
Information requested Included:
Specifications
Installation Instructions
Sampling and pretreatment requirements
Operation and maintenance manuals Including
Information on the electronic circuits
Other Information such as customer listirii’s,
typical Iri ta1lations, test, studies, etc.
(3) After ana1y ;i.3 of the co] Lectc d Information in Llght the
needs of the pro ram, manufacturers were contacted by phone
to supplement the Information.
8

-------
Table 1
ORGANiZATIONS CONTACTED
Location
Aero Chem Company
Aero Vac Corp
American Electric Power
American Optical Corp.
Atlas Electric Devices
Antek Instruments, Inc.
Automated Environmental
3abcock & Wilcox
Bacharach Instrument Co.
Baiy’d Atomic, Inc.
Baltimore Gas & Electric
Bai’nes Engineering
Larringer Research
Batelle Memorial Institute
Beckman Instruments
Bendix Corp.
Bendix Corp.
Bendix Corp.
Bristol Div. of ACCO
Bureau of Mines
California State Air Resources
Calibrated Instruments
Combustion Engineering, Inc.
Curtin Scientific Co.
Davis Instruments
Dept. of Water & Power
Devco Engineering, Inc.
Dohrmann Instruments Co.
E. I. duPont de Nemours & Co.
Dynasciences Corp.
Dynasciences Corp.
EnviroMetrics, Inc.
Environment/One Corp.
Environmental Data Corp.
Esso Research & Engineering
Fisher—Porter Co.
poster—Wheeler Corp.
Fcxboro Co.
GCA Corp.
General Electric
Gelman Instrument Co.
3elrnan Instrument Co.
Hewlett -Packard
Honeywell Industrial Div.
Princeton, N.J.
Troy, N.Y.
New York, N.Y.
Southbridge, Mass.
Chicago, ill.
Houston, Texas
Woodbury, N.Y.
Barberton, Ohio
Mountain View, Calif.
Bedford, Mass.
Baltimore, Md.
Stamford, Conn.
Rexdale, Ontario, Canada
Columbus, Ohio
Fullerton, Calif.
Ronceverte, W. Va.
Baltimore, Md.
Rochester, N.Y.
Waterbury, Conri.
Pittsburgh, Pa.
Los Angeles, Calif.
New York, N.Y.
Windsor, Conn.
Houston, Texas
Newark, N.J.
Los Angeles, Calif.
Fairfield, N .J.
Mountain View, Calif.
Wilmington, Del.
Chatsworth, Calif.
Los Angeles, Calif.
Marina Del Hey, Calif.
Schenectady, N.Y.
Monrovia, Calif.
Linden, N.J.
Warminster, Pa.
Livingston, N.J.
Foxboro, Mass.
Bedford, Mass.
Schenectady, N.Y.
Ann Arbor, Mich.
Van Nuys, Calif.
Palo Alto, CalIf.
Fort Washington, Pa.
Systems
9

-------
ComD anv
Location
1 -iter --Tech
lonics, Inc.
Jarrell—Ash
arre fl-Ash
Caman Science Corp..
Kern—Tech Laboratories, Inc.
Leeds & Northrup Co.
Litton Environmental Systems
Litton Industries, Inc.
Mast Development
Mélpar
Mine Safety Appliances Co.
Monsanto Research Corp.
National Environmental Instruments
Nuclear—Chicago
Pacific Electric & Gas
Panametrics
Perkln-Elmer
Philips Electronic Instruments
Pollution Control Industries, Inc.
Pollution Monitors, Inc.
Precision Scientific Co.
esearch Appliance Co.
Re search—Cottre 11
Resource Control, Inc.
Riley Stoker
San Diego Gas & Electric
Scientific G ’as Products, Inc.
Scientific Industries, Inc.
Scott Aviation
Southern California Edison
Technicon
Tracor, Inc.
Tyco Labs
Union Carbide Corp.
Universal Oil Products
Walden Research Corp.
Weather Measure Corp.
Roy F. Weston, Inc.
Wilkens Anderson
Iilks Scientific Corp.
Zurn Indust’rtes
Princeton, N.J?
Watertown, Mass.
Waltham, Mass.
Pittsburgh, Pa.
Colorado Springs, Cob.
Baton Rouge, Là.
North Wales, Pa.
Camarillo, Calif.
, Minn.
Davenport, Iowa
Falls Church, Va.
Pittsburgh, Pa.
Dayton, Ohio
Fall River, Mass.
Des Flames, i 1l.
San Francisco, Calif.
Waltham, Mass.
Norwalk, Conn.
Mt. Vernon, N.Y.’
Stamford, Conn.
Chicago, Ill.
Chicago, Ill.
Allison Park, Pa.
Bound Brook, N.J.
West Haven, Conn.
Worcester, Mass.
San Diego, Ca1if .
Edison, N.J.
Mineola, N.Y.
Lancaster, N.Y.
Los Angeles, Calif.
Tarrytown, N.Y.
Austin, Texas
Waltham, Mass.
White Plains, N.Y.
Greenwich, Conn.
Cambridge, Mass.
Sacramento, Calif.
West Che ter, Pa.
Chicago, Ill.
South Norwalk, Conn.
Erie, Pa.
10

-------
(L I) Personal interviews with selected manufacturers of NOx
instruments were conducted in the field using the Interview
Guide for Manufacturers of Nitrogen Oxide Monitors form
presented in Appendix I.
These manufacturers were selected on the basis of instrument
technology, technological competence, commercial prominence, and
other factors. These personal interviews provided information
not readily obtainable by other techniques, such as information
on research and development conducted by the manufacturer on
improvement of existing instruments and on new Instrument con-
ceots, the identification of customers, significant installations
of the manufacturer’s Instrumentation, technical information on
operational characteristics, and the like.
For NO Monitor Users
(1) Locations employing NOx Instrumentation were identified
from manufacturer’s customer lists, and a phone survey of
organizations such as power generating plants, engineering
construction firms, pollution control manufacturers and
consultants, etc.
(2) Information regarding existing NOx monitoring Installa-
tions was obtained by phone and mail in order to select
NO monitor users to be included in a more detailed
personal interview.
(3) Direct interviews were conducted in the field using the
“Interview Guide for Users of Nitrogen Oxide Monitors”
form presented In Appendix I.
The users experience with continuous nitrogen oxide monitor
systems was found to be extremely limited compared to the Instal—
lations for SO 2 monitoring. A number of utilities merely made
facilities available to research organizations for experimental
studies but did not actively participate in the testing or evalu-
ation of the nitrogen oxide monitors. A summary of the user
experience in NO monitors Is Included In Appendix I.
3.2 FORMULATION OF INSTRUMENT SPECIFICATIONS AND PERFORMANCE
CRITERIA
Employing the resu1t of the nitrogen oxide monitor mazm—
facturer and user ;urvey as Input, instrument specifications and
performance criteria were formulated. A panel of nine scientists
and engineers was formed In order to:
‘Establish NO monitor performance parameters
•Rank the selected parameters in order of importance
•Quantify acceptable parameter ranges
11

-------
Five personnel from the Monsanto Research Corporation staff,
wo from Stevenson, Jordan and Harrison, and a representative of
Dayton Power and Light Company attended the meeting in addition
to Dr. Fredric Jaye the contract monitor.
The S,J&H attendees presented an NO monitor users consensus
of the perforn ance of three types of instruments in us at the
nine locations interviewed to the date of the meeting.
It must be cautioned that (1) thIs information was derived
from a small sample of NOx monitor users, and (2) that the
estirñates include the user’s bias due to sample pretreatment
problems.
The meeting attendees selected 18 performance parameters
for ranking. A list of the parameters wa prepared as shown in
Table 2 and eabh person ranked the order of importance of each
parameter. In Table 3 the individual rankings of each attendee
are listed. The first colunrn entered In Table 3 is a x ankIng
selection Indicative of a typical control agency viewpoint, while
the following nine columns are the Individual selections of the
nine attend es.
Finally, a consensus of the group was obtained as a result
of further discussion. The final rankings are shown in Table 14
along with weighting factors (Q) derived by linear transformation
of all parameters in a range from 1.0 to 0.5. (Q) is defthed a
Q = (—0.O3571)(Performance Parameter Rank) + 1.03571
Included in the last column of Table 14 are the quantified ranges
of the performance parameters deemed acceptable by the group.
In the process of the discussion It was decided that the
?arameters auto calibration, self—zero and size and weight be
omitted from the performance parameters due to eiter redundance
or a lack of Importance by consensus view.
The panel members represented a variety of technical di-
ciplines including analytical and physical chemistry, hy. ics,
chemical and mechanical engineering, computer science an system
analysis. All panel members had been involved in the contract
udy for three months, and therefore had formulated a c:lear
‘3lcture of the end—use application of the nitrogen oxide monitor.
The information In Table 14 represents the frame or r fcrcnc
a ainst which the evaluation of alternate monitor1n techti1quer
could be.conducted for applicability to contInuow montt( r nr (
stationary combustion iources.
12

-------
Table 2
QUESTIONNAIRE FOR RANKING PERFORMANCE PARAMETERS
OF A CONTINUOUS NO MONITOR OF STACK GASES
How Important are the Following Performance Parameters?
Rank in Decreasing Order:
1 - For the most Important/desirable feature
2 — The next most Important/desirable feature, etc.
_____ Ruggedness
_____ Response time and lag
_____ Size and weight
_____ Auto calibration
_____ Precision
_____ Accuracy (NO, NOR)
_____ Self—Zero
_____ Repeatability
_____ Zero drift
_____ Routine operating maintenance
_____ Sensitivity
_____ H 2 O interference
_____ 802 interference
_____ Particulate interference
_____ Temperature interference
_____ Calibration drift
-____ Repair (mean time to failure, time to repair, repair skilic)
Resolution
13

-------
Table 3
RANKING OF PERFORMANCE PARAMETERS BY THE ATTENDEES
1 15 10 6
114 5 17 18
18 16 18 17
15 14 16 9
16 18 7 10
14 1 1 1
17 13 15 11
5 2 6 13
8 8 1]. 15
6 7 9 8
3 17 14 12
11 14 3 3
13 3 2 14
7 11 14 2
10 10 5 6
2 9 12 ILl
9 6 87
12 12 13 16
A 0 — Ranking indicative of a typical control agency viewpoint.
Performance Parameter
A 0 1 2 3 14 5 6 7 8
Ruggedness 15 114 7 16
Response Time & Lag 114 8 8 3
Size & WeIght 16 18 15 18
Auto Calibration 11 3 12 8
Precision 2 16 16 4
Accuracy (NO, NOx) 1 1 13 1
Self—Zero 12 I 11 114
Repeatabi1ity 14 2 5 5
Zero Drift 13 15 10 6
Routine Operating Malnt. .17 6 9 17
Sensitivity 7 5 17 13
H 2 0 Interference 5 10 1 9
SO2 Interference 6 11 14 10
Particulate Interference 8 9 3 11
Temperature ] nterference 9 17 2 12
Calibration Drift 10 12 114 7
Repair (mean time to 18 7 6 15
failure, time to repair,
repair skills)
Re’so luticn 3 13 18 2
9
15
12
18
14
14
1
13
3
11
16
2
7
8
6
9
10
17
9
17
18
12
14
LI
11
13
8
1
15
2
3
6
5
7
10
16 5
14

-------
Table 1
RANKING, UTILITY FACTORS, AND RANGES
OF THE PERFORMANCE PARAMETERS
Rank Performance Parameter Q Range
1 Accuracy 1.00 ±2% >10%
2 Repeatability .96 4 ±2% >5%
3 H O (gas)(5%
302 (<3000 ppm) .893 0 >5%
5 Particulate .857 0 >5%
(<20 gralns/ft 3 )
6 Zero—Drift .821 0 >5%/211 hours
7 Calibration Drift .786 0 >5%/211 hours
8 Routine Maintenance .75 1 > man—hours/week
9 Ruggedness (electro— .7l I .95 .01
mechanical)
10 Temperature & Pressure .679 0 >5%
(±10% & ±2%)
11 RepaIr .6 43 0 >5 IncIdents/year
12 ResolutIon (10% full .607 1% >5%
scale change)
13 PrecIsion .571 1% >5%
SensitIvity .536 minimum input above noi c
15 Responz e Time & Lag .50 5 sec >3 mm.
15

-------
L . PHASE II — LABORATORY AND FIELD EVALUATION STUDIES
L.l SELECTIQN OF NITROGEN OXIDE MONITORS FOR TEST
The survey of nitrogen oxide monitor manufacturers and users
uncovered a number of advanced techniques that were either in the
early commerc-lal stage or the advanced development prototype
stage. These techniques, which are described in the Volume I
report, are listed as follows:
Chemiluminescent Emission — Monsanto Research Corporation
Aerochem Research Laboratm’ie ,
Inc.
Correlation Spectroscopy — Barringer Research, Ltd.
Combustion Engineering
As Soc late s
Inverse Radioa tlve Tracing - Panametrics, Inc.
Selective Photolonizatlon — Walden Research Corporation
On-Stack Absorption - Environmental Data Corporation
Efforts to obtain prototypes of these monitors for the
evaluation test program were unsuccessful, since the monitors
could not be made available for delivery In time for the
17 March 1971 test program initiation date.
The evaluation program was therefore re.;trlctcd to tudi
on commercIa ly avaHable monitors or prototypes that could bc
assembled and pretested on the limited time a] e. 1 n t ‘u—
‘nents were procured by purchase or loan from instrument iii wuu ’a ’—
turers or by loan from the contracting officer or Monsanto Keseai h
Corporation. The instruments selected for test are listed as
follows by detection concept:
Nondispersive Infrared —
I. Inte’rtech Corporation, Uras—2 with interchangeable
components to adapt for NO analysis
2. Mine Safety Appliances Company, LIRA 200
3. Beckman Instruments, Inc., Model 315 tnfrared Analyzer
L, The Bendix Corporation, UNOR 2
Nondispersive Visible and Ultraviolet —
5. duPont Company, Model 1161 Photometric ! ri: lyzer
16

-------
lectrochemical —
6. Dynasciences Corporation, Instrument Systems
Division, Model NX-130 Air Pollution Monitor
7. EnviroMetrics, Inc., Series NS—200A with types
6 1 1H2 and 76H2 sensors.
Of these, the duPont instrument is not a truly continuous
monitor, but functions on a 5 to 10 minute cycle to give NO 2 and
NOx readings. The nondispersive infrared monitors measure NO
only, while the electrochemical monitors are designed to measure
NOx (NO + NO 2 ). The operational principles and reported perfor—
tnance characteristics of these monitors are presented in detail
in Volume I of this report.
In addition to these nitrogen oxide monitors, a Digital
Equipment Corp. PDP—d2A computer with memory extension control
and real time clock was obtained to facilitate acquisition of
data from the Instruments during the evaluation program.
1 L2 MONITOR EVALUATION TEST FACILITIES
Very early In this study it became apparent to both Monsanto
Research Corporation (NRC) and the National Air Pollution Control
Association (NAPCA), now the Environmental Protection Agency
(EPA), that two instrument test facilities would be required
to obtain the necessary instrument performance data as listed
in Table . Some parameters such as calibration drift, inter-
ferences, response time, and response lag, could be measured
most easily under the closely controlled conditions that could
be obtained in a laboratory facility. By contrast, parameters
jucn as maintenance requirements, susceptibility to operational
Jana e, and attention factors would be best deftued under actual
rlcld operation. Thu3, NRC prepared two Lest faci11tie for the
NO Monitoring Instrument Evaluation Study.
The laboratory facilities were located in a controlled envi-
ronment laboratory located at the MRC Dayton Laboratory. This
laboratory had the necessary temperature and humidity controls
to maintain any given environmental condition between 50°F to
0 F at relative humidities between 140% and 60%. The limitation
or 4 . relative humidity (60%) was based on the size of’ the steam
line feeding water vapor into the room. At lower temperatures
(about 70°F) humidities up to 90% could be obtained.
The field test facilities were located on the roof of the
Dayton Power and Light Tait Station. The proximity of the Tait
Station to the MRC laboratory (“el mile) facilitated movement of
equipment and Instruments from one location to the other.
17

-------
4.2.1 Laboratory Test Facilities
The primary objective of the laboratory test facility design
was to provide a system which would permit the evaluation of the
following instrument parameters:
1. Accuracy
2. Calibration Drift
3. Precision
lj• Sensitivity
5. Response Lag
6. Response Time
7. Reliability
8. SusceptIbility to Environmental Changes
A secondary objective of this study was to Interface the
instrument output with the PDP—12 computer to obtain real—time
data acquisition. A final objective was to provide some degree
of automation by utilizing the PDP—12 computer to alter feed
concentrations on a predetermined time cycle.
To meet these objectives the following criteria had to
be met:
1. The facility must be capable of preparing a synthetic
flue gas having a known, and variable composition.
2. The system ;hall be able to deliver a sample or th7.
synthetIc ga mixture to all 1nstrument ; sirnuLLaneou I, .
3. The system should be able to operate continuously for
extended periods without attention.
4. The system should provide for automatic “step” changes
in NO concentrations in the synthetic gas mixtures.
5. The system should be designed to minimize specie
reactions enroute to the Instruments.
6. All effluent streams should be vented for personnel
safety.
18

-------
Approach 1o Te: t Design
A synthetic gas mixture would be prepared by separately
metering the following compounds:
Approximate
Compound Chemical Symbol Typical Vol %
. Nitrogen N 2 75.10
2. Carbon dioxide CO 2 14.00
3. Oxygen 02 3.00
Li. Nitric oxide NO 0.05
5. Nitrogen dioxide NO 2 0.05 (max.)
6. Sulfur dioxide SO 2 0.30
7. Water H 2 0 7.50
Since a minimum of six continuous monitors were to be
tested, and since each instrument typically uses about 2 scfh
of sample, the quantity of synthetic gas to be used was at least,
12 scfh. To allow for additional instruments and grab samples,
plus a 50% safety margin, the flow rates of the gases would be
set to deliver about 30—40 scfh of synthetic gas mixture. This
large flow requirement precluded the possibility of using bottled
gas mixtures for “routine operation.”
Once the compounds were properly metered, precautions would
be taken to prevent their degradation either by condensation or
by reaction with other species. This would be accomplished by
keeping potentially reactive species separate until they reached
a mixing chamber Just prior to a distribution manifold. Further-
more, all lines would be heated to about 300°F to prevent
condensation.
The distribution system would consist of a primary distri-.
bution manifold, separate flow indicators for each Instrument,
manometers for each instrument and a back pressure control valve
and manometer. The back pressure control valve and manometer as
well as the flow indicators were necessary because some instru-
ments were thought to be sensitive to either or both sample flow
rate and sample pressure.
Schematic Layout of Laboratory Apparatus
V urc , Draw t np No. I —007—O10— [ LO—0 , I . :, In’maL 1 I :ryutil
or t;tw I aborat.ory Cac I lit I es used Ior the Nox 1rn t tumont 1.LId It’ ;
A di cusscü previou iy, the synthetic flue gas mixture wa ob—
taLned by metering known quantities of high purity N 2 , 1120, C0 2 ,
07, SO 2 , NO and NO 2 into a mixing chamber. All flow rates were
controlled by means of fine metering needle control valves and
suitably sized rotameters provided visual indication of the indi-
vidual flow rates. Flow regulators in the nitrogen and nitric
oxide flow systems prbvided an extra margin of control for these
19

-------
vEt iT 4
MANOMETERS
.1, (
5CHCM TIC L T O
ILABOftATO rACftTE RO
NO INSTRUMINT 5’JP’ES
‘i ! MPC. /?f
EH5D / O’
NT5
S -OO7--O’Q-lL.
Figure 6. Scher .- atir Layout of Laboratory Facilities for i’TO Instrument Studies.
[ .. .-- .
FLOW MF rcqs
CON”

-------
gases. This was necessary for the following reasons: (1) the
nitrogen flow rate was the highest of all flows and any slight
change in the nitrogen flow rate would affect the composition
Df all gases significantly, (2) the flow of nitric oxide was
the most critical of all flows since it was the compound of
interest in this study.
Three solenoid valves, coupled with three preset “low flow”
metering valves, were arranged in parallel in the NO feed uystem.
The flow of NO would begin whenever one of the solenoid valves
(normally closed) was actuated by a signal from the PDP-12 com-
puter. Thus, three different concentrations of NO (in addition
to zero) could be obtained at any time by means of a predeter—
‘nined time cycle programmed into the computer.
With the exception of NO 2 and water, all the gases mixed in
the feed systems were obtained from high pressure gas cylinders.
For this study, the water was metered as a liquid and vaporized
downstream of the rotameter. NO 2 was obtained in liquid NO 2
cylinders which exhibit very low vapor pressure at room tempera-
tures. Thus a hot box was provided for NO 2 . The hot box was
electrically heated to 125°F. At that temperature, the vapor
pressure of NO 2 is sufficiently high to facilitate flow control
and metering as a gas.
All lines downstream of the rotameters were heat traced and
Thsulated. The lines were maintained at about 300°F. To mini-
mize the chance of chemical reaction between species enroute to
the mixing tube, separate lines were used for gases which were
known to be reactive. The mixing tube was a 2-inch diameter
pipe, 2—feet long, packed with l,’ 1 —inch Interlok Saddles. All
indications were that the mixing tube performed satisfactorily.
Following the mixing tube, the gases were led through a
refrigerator to remove water vapor. All of the NDIR instruments
were very sensitive to water vapor and its removal from the gas
stream was mandatory. Except during the H 2 O interference test-
ing, water was not fed to the system.
The refrigerator, which was supplied by Intertech, was
maintained at about 1.0°C, which corresponds to an equilibrium
water vapor pressure of about 5.0 mm Hg (“0.8 Vol %).
The gases, after leaving the refrigerator, entered the dl: ;-
tx ibuLion manifold wtiLch conuisted ol’ a 2—inch . quare priinar.v
dltftrlbution duct and an 8—inch square exit duet. The 2—melt
square duct received the eampie from the refrigerator and dli ;—
cributed samples of this gas to each instrument simultaneously
through the appropriate valves and rotameters.
21

-------
Extra ports were provided in the manifold for grab samples
and any additional instruments which might be obtained at a later
date. The excess gas leaving the 2-inch square duct traveled to
the end of the manifold where It entered the 8—Inch square duct.
This duct was originally designed for the purpose of testing an
t?across the stack” monitor. The 8-inch duct was 10—feet long
and had a rembvable plate on both ends. It was anticipated that
the monitor and its receiver would be mounted on these plates.
However, no such monitor was obtained during this contract so
Its ability to simulate a 10—foot diameter stack was never
tested. The gas leaving the 8—inch duct passed through a suit-
able pressure control valve before venting to the outside. A
water filled manometer was used to measure the back pressure on
the distribution manifold.
Figure 7, Drawing No. B—007-012 —SkLO—O, is an exploded view
of the 8-Inch duct; and Figure 8, drawing No. B-007-0l1-MLL-O,
is a detailed design drawing of the 2—Inch and 8—inch ducts. The
entire assembled manifold system was electrically heated by two
800—watt beaded heating coils and insulated with 1 inch (or more)
of a low thermal conductivity (<0.8) insulatIng block. ,There
were fifteen holes drilled and tapped for 1/ 1 4—Inch pipe ‘threads
In the 2—inch duct. Twelve holes were provided In the front face
and constitute the required sample tap openings. Three holes
were provided on top of the 2—inch duct and these were used for
thermocouples. Figure 9 shows the distribution manifold and
several Instruments as they were Installed in the laboratory test
facility. Other photographs of the laboratory test facility are
shown In Figures 10 and 11.
4.2.2 Field Test Facilities
When this program was Initiated, the primary objective of
the field test facility was to provide a system which would per-
mit the evaluation of the following instrument parameter3 usIn
untreated flue gas :
1. Accuracy
2. Susceptibility to environmental changes
3. Sample loss and metering instability
11. Vibrational susceptibility
5. ReLiability
6. Maintenance require nents
7. Susceptibility to operational damage
8. Attention factors
The above parameters were to be measured over ext nded
oer ’i ods to define the long term effects of actual fiel opera—
blon on the Instruments. To meet this ohject vc the fqHow. nr:
criteria had to be met:
22

-------
j
‘2a ) ,çt #4’
D 5g , ca

C ,_#*6r/ . J-
_ _fr• ._. _4 J i Y .*’7
#_f , / .f- , ..eri -“ ‘ ‘
- ____-
MOt4AYTO R EAIICH CORPOR#.710P4
D*Tflt LSSSYOfl
a -
- H S
Figure 7.
I • -
. MRC ( 7q,
I -
I 1 1 7I•30
SCALE ,VIN& 1 OWG.
- I NOj-oOt-bl*-3 o o
Sample Duct.

-------
.4
e
-L
OTE:
C —
ALL * CLC3 .. (D
AN TA Pj. rC . .

rp 2 ’ L. fO
5 1 7 wr . L:-
TO ‘0 2 51Cr
3
‘7
-2
_f —
/7
3
5 .
-.9..
‘7
9t
PLAIt
) II
‘7
- 55 )4
7 55 /77 1115M2 To 8’ 30.
I DLCT 7SA .CV( 2’ A J7
.. A
9 0
H°
C
.3 •
, L . 5
30 .LI C I - 7 - PS. A T I
3—.
09
A IEP I .
—I
ENLARII c R03 3 -
C T OW OF A’ DUCT
p- so. 0tt•• —
CO5f R PLAIt DEF*L
L, ,
-- - — ---/20
(;2) (RD (C
f Q 0z•5rp• 470fT,
‘t ULCI (ND P )4SG75
lthIL
CORP .ErC EMClO U5C
Fit/IT At 043 7/047
ST ION.. /FSTEEA* Ptt3I 5t
.3—
(RDFLAMC( AOtA EMD
GftS%C I- 80715
C5vERPiA7 80 TA ENDS
NOTE
-ALt.. MArL. CAAAOA
3 lEE&. tT.C(P?
438(3705 CA5:rrS
04391.1 )ITAts.
MONSANI,, RflWsiult (€,n,.,HInOM
D1ST . UTION (IAM!FOLD
caR. 4’ tN5rkLir -WNT .s
IjflY -
-
_____ 1EH5D- 7i-JO ,
- - -- { DWG O t t ‘14L00
Figure 8. Distribution f’ anifo1d

-------
Figure 9. NO Laboratory Test Facility
Figure 10. PDP-12A Digital Computer System
Figure ii. .)uPont 61 NO2/NOx Analyzer
25

-------
1. The system must be able to take a representative sample
from the power plant duct work.
2. It must deliver the sample to the distribution manifold
in an essentially unaltered form.
3. The instruments should be protected from the weather In
a suitable enclosure.
i. The enclosure should be sufficiently large to permit easy
access and mobility for personnel.
5. The shed should be Insulated, lighted, and air conditioned.
Approach to Test Design
As the initial objective was stated, the field test facil-
ity was to deliver a “representative sample,” “essentially
unaltered,” to every Instrument. The sample delivered tp each
Instrument would therefore contain appreciable quantities of
fly ash and water vapor. Originally, the expectation wa s that
each Instrument manufacturer would provide his own sample pre-
treatment system. Only after much of the field test facility
was installed, was it realized that the Instrument manufacturers
were not prepared to deliver sample pretreatment systems. Thus,
It was necessary to “patch—on” a sample pretreatment system to
the delivery system. The sample pretreatment systems that were
tried are discussed later.
To meet the original objective, an excess of sample would be
withdrawn from a convenient location in the flue gas duct work.
This large sample would be transported from Its poInt of origin
to a conveniently located shed through an electrically heated and
Insulated 2—Inch diameter Sch 40 pipe. A portion of this sample
would be fed to the distribution manifold used In the laboratory
tests; the remainder would be vented. Furthermore, by taking a
large sample, the problem of maintaining sample gas temperature
above 300°C was simplified.
The distribution system used in the laboratory studies was
brought Intact to the field test facility with the exception
that the manometers measuring the pressure drop through the In-
dividual instruments were removed.
Schematic Layout of Field Test Facilities
Figure 12, Drawing No. A—007—008—IPO—0, is a schematic lay-
out of the field test facilities as It existed at the end of the
contract. In its original configuration there was no cyclone,
H230k scrubber, fiberglass filter or gas pump. A l— nch diameter
316 stainless steel probe about 5 feet long was used to obtain
26

-------
NOTE ALL LINCS ANb
UP TRE M C I .
INSULATED AND
EOUIPP4L P I
&CRQP rØ AR
N .ArE D
qTiI M C-G7Vi
4 r £ H SD
NT5 IA.007.OOg.2P0-O
FLOW METERS
AP4b VA%.VES
IN3TRUMEI T [ ] [ J
VENT
MONSANTO R s Rc COR RRTION
DAYTON LABOLATO DAYTON, OHIO
SCHEMATIC LAYOUT O FIELD TEST
FACILITIES FOR P 4 OA STuDIES
Figure 12. Schematic Layout of Field Test Facilities for NOx Studies.

-------
a sample from the duct work. The probe contained seven 1/s-inch
diameter holes through which the sample entered. A high pre ssure
blower delivered the sample (about 100 cfm) to a “TEE” located
outside the instrument shed. A small sub-sample was withdrawn
at this point and led to the distribution manifold; the remainder
of the sample being vented.
Figure 13, Drawing No. A-Oll—007—APO—0, shows the top,
front, and side views of the delivery line and blower installa-
tion. Samples could be drawn from either of two places atop
the elevator shaft. These two places corresponded to the duct
work leading to the I.D. fans from boilers No. i and 5 at the
Tait Station. Thus, if’ either boiler was down, a sample could
be obtained from the other. The two sample lines joined before
entering the high pressure blower, also located atop the elevator
shaft. The blower was capable of delivering 100 cfm of 300°F
gas at an increase of 22—inches W.G. Since the sample points
were at a negative 15-inch W.G., the effective pressure of the
gas downstream of the blower was 7—inches W.G. The 2—inch di —
ameter Sch 40 carbon steel delivery line carried the sample from
the blower down to the Tait Station roof, about 32 feet below.
All sections of the delivery line and blower were heated and
insulated. The entire system was weatherproofed.
To suitably house the instruments, a 10—ft x iLl rt prc ’f’ab—
ricated steel shed was purchased and installed on the roof’.
Figure 14 is a picture of the power plant N0 test facility
showing the blower, delivery line and the exterior of the shod
with a 23,000 Btu air conditioner installed in one of the doors.
Facilities included within the shed were: (3) six 1 40W
fluorescent lights, (2) 1-inch styrofoam insulation on all uaJl ,
(3) 3/LI_inch plywood flooring, (4) two 30—amp 230—volt circuits
for the air conditioner and computer, (5) six 30—amp 110—volt
circuits for the instruments and other accessories, (6) a tele-
phone, and (7) three steel work benches. Figures 15 and 16 show
the field test facility interior.
Sample Pretreatment Desi a
As mentioned earlier, the need to include a sample prctroa —
ment system was revealed after much of the field test facilitics
had been installed. Therefore, the sample pretreatment sysLem
was not an integrally engineered section of the tt st facility,
and was, in fact, an add-on system.
The first sample prctreatrnerLt system :on i:;tcd of’ e ii1 ip —
Lion of’ dust fi lter and refri gerator . A “flom(’ IUad (1ti t i I U V
was ma ic by niodi. fying a high cffi ci.ency air pu rr lust. ( ‘I I t ‘
typo 7C—33—( , as shown i ru F tjruro 1 7 , 1)rawi n No . A —007—01 o—: t —
This wa:; i rtsta] led downsl.rcam of’ Lhe sub— wrip Ic v:tlvo and was
28

-------
UN
5M0
if.
— . .. - i: :
F E I 1.E PIPE
- 13-c r— GATE VALVE
£n8T_ T t: .
?
_____________ . .Li
0I
EE DETAtL A
tXI5t STI( LINC—
NQTC: ACN PIPE SECT -
CONTAJU OO WATT +
hE TING WIRE
5 IN ALL L - c.& .%N.40 PIPE
9-6
- - — - ?o 1*0 .. SI I
J=L....
ZLDW ER - vPP a1L
FROM A VEWIfl4’U II5TRUT
- 3EADCD MEATING WIPE
2 PIPE
FIRST LAVLR IS.
SECOND LA’ ER N t
W ATI4ER STRIPPJIO
iG. WIRE
Mo sA1rr RE K(H C’1IIPURATU)N
DAtIVe. Laa,anSt
D*VVVe1 1*110
MAtN DELIVERY LINE A D
BLOWER LOCATIONS FO
NO INSTRUM(NT 5TUDY
I ’ e k r k SD 7!- 30
I1 L HES
: -
I I
I ‘ I-’
—1-
I I I
cotCiEr) I I IT 1-;
-f - - ---f 41RC 7q/
SCALE NTS
-I, :.;.‘ %..r C°s*
DWG
NO. A-Oll-OO1-APO-O
r )
‘ .0
DUCT WITU
OPE1I N
DETAIL A
Figure 13.
Main Delivery Line and Blower Locations for NO Instrument Study.

-------
Figure l 4. Power Plant NO Test Facility.
Figure 15.
Field Test Facility Interior Showing
Digital Computer and Instruments
Figure 16. Field Test Facility Interior
Showing NO Instruments
S
30

-------
FIgure 17.
w
N C ,
N3D 71-30
SCALE N 5 IDWG..
I NO. *-OOT.OIO-SkPO-*
Dust Filter - ExplodedView.

-------
followed by the intertech refrigerator used in the laboratory.
With the Increased pressure drop caused by these two pieces of
equipment, the gas would not flow with sufficient volume to sup-
ply all the instruments. Thus, a booster gas pump was added to
increase the flow.
This system quickly failed for the following two reasons:
(1) the filter became clogged with a pasty material which we
believed to be a combination of fly ash and sulfuric acid, and
(2) enough motsture passed through the refrigerator even at 1°C
to cause severle deviations in the NDIR instrument readings.
Reversing the dust filter and the refrigerator was not considered
on the basis that the condensing water would have trapped the fly
ash, causing pluggage of the gas cooling coil.
Our next pretreatment system consisted of a 10-gallon sul-
furic acid scrubber. We believed that the fly ash and water
vapor would be removed in the sulfuric acid simultaneously.
This system worked for a few days until the lines downstream of
the acid scrubber plugged with fly ash.
Our third attempt to properly condition the sample rei ulted
in the installation of a cyclone prior to the blower. The
cyclone was made from a 55-gallon drum modified as rol1ow :
1. A 7—inch diameter hole was cut into the top.
2. An adaptor from the 7-inch opening to a 2-inch diameter
pipe was welded to the top.
3. A 7—inch square tangential entry port (with suitable
adaptor) was welded into the side about 8 inches below
the top.
U. The bottom was cut off and a removable bottom section
was flanged to the bottom. This provided a method for
removing fly ash without dismounting the cyclone.
To provide additional dust filtering capacity to the system,
a “home—made” fiberglass filter was placed immediately after
the acid scrubber. This system performed satL;fact;orilv ;•ni’
theveral months. Un tortunately, handling mU furl c ac Id i i i :iny
sizable quantity hecomer; danrerous and cumbernome and we I’t’etlr—
‘-Use the need to rind an improved pretreatment. ;ystem.
32

-------
4.3 LABORATORY EVALUATION TEST PROGRAM
In the laboratory testing phase, six continuous nitrogen
oxide monitors were interfaced with a Digital Corp. PDP—12A
computer for real-time data acquisition. The signals from each
instrument were amplified so that a value of one millivolt at
the computer corresponded to one part per million of nitric oxide
in nitrogen gas diluent. The seventh monitor (DuPont 1161 NO2/NO
ultraviolet analyzer) involved a time sequenced analysis which
was not interfaced directly with the other instruments. This
instrument was set to give a value of NOx concentration on a
ten—minute cycle and was employed as a reference instrument dur-
ing the evaluation program.
In order to facilitate final data evaluation, a true value
of NOx concentration was required against which the continuous
monitor readings could be compared. The primary standard
selected to furnish this value was the phenol/disulfonic acid
(PDS) analysis method. Sufficient PDS data were obtained In the
laooratory and field tests to correlate the PDS analysis results
with the DuPont 1161 strip chart record. This record was then
corrected by a factor (PDS/DuPont 1161) and used as the true value
for NO concentration. The choice of the DuPont 1161 instrument
as a reference was somewhat arbitrary and based on the following
considerations:
c. The choice of some instrument which gave quasi—continuous
readings was preferred to give real time comparisons which
would not have been possible with the lengthy PDS analysis
procedure.
h. The analysis of the number of PDS samples required would
have resulted in an inordinate Investment In equipment
and time.
c. The correlations between the PDS analysis results and all
the instruments was examined and the DuPont 1161 analyzer
was found to exhibit the most consistent relationship in
the lab phases.
c . The DuPont 1161 analyzer was the only unit equipped with
automatic zero correction circuitry and exhibited a narrower
reading to reading deviation than the other Instruments.
The data comparing the PDS method with the DuPont 1161 read—
tngs are presented In Table 5 where W refers to the PDS value
arid I refers to the 1161 reading. Duplicates are shown where
available followed by the average. Those readings marked with
an asterisk were of questionable validity and were deleted from
33

-------
Table 5
RESULTS OF WET CHEMICAL vs. DUPONT 1 6l ANALYSES
Span Level
30% 90% ______ 60%
Run No. W I -- I W I
3 122.5 95 353.7 340 250.2 225
95.1 99 407.5 345 150.8* 228
Avg 108.8 97 380.6 342,5 250.2 226.5
84.9 95 366.7 315 267 230
141.6 95 358.8 325 248.2 240
Avg 113.3 95 362.7 320 257.6 235
5 100.9 90 390 305 287.1 220
357* — 263.3 310 235.4 223 —
Avg 100.9 90 326.7 307.5 261.3 221.5
6 135.8 90 435.8 410 265.9 245
67.7 — 426.7 — 275.9 —
Avg 101.8 90 431.3 410 270.9 245
7 127 105 478.7 425 283.14 250
96 — 163 .9* — 200.8* —
Avg 111.5 105 478.7 425 283.4 250
8 114.7 97 460.55 395 285.1 225
114.3 — — — 281.4 —
Avg 114.5 97 460.55 395 283.3 225
9 100.4 95 480.4 408 274.2 225
65.9 96 462.7 410 276.3 228
Avg 83.2 95.5 471.6 409 275.3 226.5
3 14

-------
the averaging calculation. The data in Table 6a were generated
by fixing the span level and calculating the correction factors
Ft for each run
Avg W 1
AvgI 1 i runsi=3,lI,....,9
then inputting them Into a short statistical analysis program.
The mean correction factors Fi (where j = 30, 90, 60% span) were
then In ut into the same program to yield the overall correction
factor F, which along with other statistics Is presented in
Table 6b.
The selection of the DuPont 1 6l for this role was purely to
facilitate the handling and analysis of the data and does not un—
ply that It Is a “secondary standard.” In tact the consistent
relationship derived from the comparison with the PDS analyses
indicated that the unit reads some 12% low.
The major portion of the laboratory evaluation was directed
toward testing of calibration drift, zero drift, accuracy and
repeatability during nIne, 17.5—hour tests at preset conditions
of temperature and humidity. The PDP—12A computer was programmed
to operate three solenoid valves in an automatic manner, thereby
sequencing the nitric oxide concentration In nitrogen between
zero, 150, 300 and 50 ppm (zero, 30, 60 and 90% of span).
The laboratory phase of instruments testing followed the
basic sequence shown In Figure 18.
[ 0% 30 0% 9 0% 6
+ 20’
Figure 18. Time Sequence for One Test Replicate
One replicate consists of 30 minutes zero gas, 20 minutes
30% span gas, 30 minutes zero gas, 20 mInutes 90% span gas,
30 minutes zero gas, 20 mInutes 60% span gas. (Cross—hatched
areas show when the computer was taking readings.) All 10—minute
sampling periods were conducted as follows: the computer mea-
sured each instrument’s output every 20 seconds for 200 seconds
(3 mm 20 sec). It then computed averages and variances for all
instruments and stored these data on magnetic tape. Seven repli—
Qates comprised a complete experiment at one level or temperature
and humidity.
35

-------
Table 6a
RESULTS OF CORRECTION FACTOR CALCULATIONS FOR INDIVIDUAL SPANS
Sample Size
Maximum
Minimum
Range
Mean ( j)
Variance
Standard Deviation
Mean Deviation
Median
7
1. 19263
0. 87 12 o’i
0.321 1 427
1.09715
0.0117785
0.108529
0.07146239
1. 12165
Span Level
90%
7
1.16595
1.05195
0. 113998
1.111,83
0.00188891
0.04314616
0.0314114114
1. 126 35
7
1.25911
1.09617
0.1629141
1.156314
0.00399583
0.0632126
0.0529237
1. 1336
Table 6b
RESULTS OF OVERALL CORRECTION FACTOR CALCULATION
Sample Size
Maximum
Minimum
Range
Mean (P)
Variance
Standard Deviation
Mean Deviation
Med± n
3
1 . 16
1.1
0.0599999
1. 12667
9. 33331E 1 4
0.0305505
0.0222222
1 . 12
3o
bU%
36

-------
A summary of the data sheets is presented in Table 7. This
summary contains the following information:
(a) Heading; gives the run number and describes the environ-
metal conditions for that run.
(b) In the left margin, reading from top to bottom, we have
the instrument code*, replicate number and span level (%),
respectively.
(c) Column 1, labeled AVG, is the grand mean of the three,
ten—point, span-level averages (ppm NOR) reported in the
basic data output from the PDP—12.
(d) Column 2, labeled SD, is the standard deviation of the
span—level, grand mean.
(e) Column 3, labeled ZERO, is the grand mean of the three,
ten—point, zero—level averages, reported In the basic
data output.
( ) Column , labeled SD, is the standard deviation of’ the
zero-level, grand mean.
(g) Column 5, labeled 1—3, is the result of subtracting column
three from column one, thu ; giving a value corrected ror
zero —dri ft.
(h) Column 6, labeled TV, gives the true value (DuPont p461 x
1.12), or actual concentration of nitric oxide, that the
instruments were seeing.
*The letter coded Instruments are defined as:
A — Beckman Model 315A Infrared Analyzer
B — Mine Safety Appliance — LIRA Model 200 Infrared Analyzer
C — Dynasciences Corp. — MX 130 Electrochemlea]. Transducer
D — EnviroMetrics, Tnt. — Electrochemica] flar1 torTM
3orie NS—200A
E - Intertech Corporation — Uras—2 Infrared Analyzer
F - Bendix Corp. - UNOR-2 Infrared Analyzer
37

-------
Table 7
30 155.6 0.36
90 635.7 1.00
60 334.3 1.25
30 365.4 o.t9
2 9o 440. 3 3.25
63 322. o. 3
31 569.? 0.11
3 90 .31.9 1.36
60 320.0 0.79
3. 169.5 0.69
6 6 90 463.4 5.64
60 339.8 5.33
3.) 055.1 0.66
5 30 460.6 3.66
60 518.5 0.96
23 350.7 3.66
43 4.2.’ 1.56
31 131.0 3d5
33 053. 5 0.66
7 93 467.9 5.69
60 116.7 ias
30 157.1 3.53
3 93 446.9 0.99
60 327.3 0.56
10 056.6 0.35
2 90 466.2 1.20
60 326.6 1.22
30 156.1 3.30
3 90 443.3 0.97
60 322.0 1.52
30 356.5 0.32
6 6 93 462.6 0.13
60 315.0 5.1 ’
30 153.4 0.56
1 90 639.7 0.53
60 314.9 2.51
33 157.3 0.39
6 90 662.1 0.66
60 351.’ 5.93
33 569.9 1.67
7 93 637.3 1.92
60 303.5 1.05
3) 356.? C -3D
I 30 452.’ 0.3.
SO 332.5 0.4 s
- . 3.’.3 oa;
40 ‘63.2 2.17
t.3 33o.Q 0.66
‘0 162.3 0.61
95 415.7 1.66
.3 343.9
• . ItS.! . 3
•. .73.3 7.50
i-0 343.3 .67
P11 172.5 3.64
.0 .79.7 2.t9
67 349.3 7.93
3I.2 0.66
35 ,96.S 1.64
— d 15 .7 .6
1’, 111.5 ‘.6 1
. 34.3 . 7
.3 “.5.4 3.95
(Temperature and Humidity Variation)
90 PCNI 161M10131
0.35 156,3 160.5 —4.66 —6.21 90 337.2
0.60 661.6 500.’ —12.03 —03.56 43 666 5
0.56 327.5 364.6 —4.37 —5.52 4 353.5
0.7) 155.8 0.0 “ ‘ •‘ tfl ,d 128.6
0.60 663.0 0.0 tCOfl 2 90 666.3
0.36 325.6 0.0 “fl’ ‘ ‘•° 60 355.6
0.03 153.3 0.0 tS•tS SI•ttI 90 128.8
0.69 665.0 0.0 .e e . . COOS 90 643.5
0.56 323.6 0.0 •e°’’ I ttt 60 305.0
0.50 153.5 0.0 fl l ee fl . .. 30 3j9•5
0.05 644.3 0.3 Ott O S • 90 666.7
0.86 323.3 0.0 ‘•‘ 6 •S t et 60 304.3
0.32 156.3 0.0 .“ O •t t 10 128.5
0.60 662.9 0.0 .‘.‘• . . 0... 5 90 643.5
0.03 320.5 0.0 ••‘II t et tt 60 306.2
0.37 053.5 0.0 •. “. °“° 30 129.0
0.61 645.2 0.0 • ‘° •°O. 6 90 645.2
0.66 520.7 1 1.0 O .ttt’b 60 300.2
0.11 33..2 0.0 30 510.3
0.60 666.3 0.0 0 O O et 7 90 635.7
0.65 335.0 0.11 •“ ‘ 60 297.3
0.26 165.2 161.5 —02115 30 0.0
0.67 606.9 500.7 —16.89 —50.3 1 90 0.7
0.79 310.8 366.6 —9.83 — a 60 0.0
0.36 039.9 0.0 ..... 30 0.0
0.11 629.5 0.0 t t O tt e e 2 90 0.8
0.51 308e5 2.0 .e .’O •t S 60 0.0
0.45 360.5 0.0 e te . eec.. 33 0.0
0.06 427.6 0. 1 1 Sttt•• 3 90 0.8
0.30 306.2 0.0 .eO . . ene . 60 0.1
0.69 560.6 0.0 ..O.I .t c , 3.) 0.0
0.65 626.6 0,0 •e . . e ..... 1 4 90 0.8
0.33 303.9 0.0 •O” • c 60 0.0
0.76 160.6 050 •... 30 0.0
0.96 626.3 0.0 •t t I • •e t . 5 90 0.7
0.56 301.2 0.0 60 0.0
0.65 039.3 0.0 •t t 30 0.0
0.98 679.5 0.0 •t”. . t e e I - 93 0.6
0.65 300.0 0.0 ttOO flt 6 1 1 0.0
0.23 160.3 0.0 •e t Sfl •ee.i ‘3 0.0
0.83 628.5 0.0 e. . . . teet• 7 93 0.6
0.61 296.3 0.0 . ... .. •..... 6.0 0.0
1.25 143.6 060.5 —11.09 —3_29 33 307.2
0.63 419.9 300.7 —02.30 —9.76 1 90 432.0
0.15 339.3 364.6 —7.33 —1.69 61 303.6
0.55 066.0 0.0 etc... ...... 31 lI .l
0.23 446.9 0.0 eeOt 2 3 6)1.6
0.30 321.6 0.1’ .. .... 63 301.1
0.25 £46.3 0.0 — ec . 8 . •• •• 30 514.3
0.71 666.9 0.0 ...... 90 431.9
0.65 571.6 0.0 O Ot OtO 60 302.7
0.64 166.1 0.0 i. e . . . ..., . 30 203.3
0.21 450.4 0.0 . 95 431.3
0.75 319.3 (1.10 .e. . e 67 iOO.8
3.53 166.0 0.0 .e.... 30 319.0
0.81 452.0 0. 1 5’) 39.7
0.93 355.0 0.0 ...... 60 300.2
0.00 049.0 0.0 ...... • .. . , 30 359.9
0.91 456.4 0.0 ...... 6 90 445.9
0.64 315.6 0.0 ..‘... 6u 253.2
0.25 3 .7.1 u.u ...... ...... 33 139.7
0.66 452.0 0.0 .. . . . .t.... 7 90 442.7
3.68 333.6 0.u .. .. . ...... 55 e45.e
RUNt 70 OCOF
SJMMARY OF LABORATORY TESTS OF NITROGEN OXIDE INSTRUMENTS
I 5 3 3.
NAB SAL
S I V 4v0 so ZERO 60 5—3 Iv £ 0 IRR2 s v tvG 2( 50 so i— i v CR51 £952
7 R E F RE
S I. A L
RUN 0 70 0 (0 F 50 PCNI HUMIDITy
—2.9
— i a
—5.0
. 3 . 5
3.9
44.0
‘2.7
—3.5
63 4
‘3.7
—3.2
‘3.3
—2.5
—3.0
—2.8
—3 .2
—3.4
—3.6
16.2
17.9
06.5
16.5
16.6
15.9
35.6
05.6
15.7
16.0
03. 9
56.0
12.7
I I . ’
13.6
12.5
12.6
11.3
9.7
9.2
9.5
32.6
02.3
12. 1
21.2
13.2
31.5
‘5.9
38.5
2 .4
23.7
25. ’
27. ’
32.
36.5
3 .. ’
36.3
3 ?.)
0.68 —9.6 0.33 261.9 161.5 —02.06 15.12
1.60 —00.5 0 55 655.6 500.7 —1.22 —55.32
2.83 —52.2 0.36 326.0 366.6 —5.15 —8.94
0.68 —53.3 0.50 061.6 0.0 tenet .•e.te
2.07 —13.2 0.37 657.5 0.0 tee’s. ......
0.02 —13.1 0.11 326.7 0.0 t Oe ’ . • .C6 .4
0.29 —03.5 0.20 162.6 0.0 •tttei 0 0 C C
5.32 —52.9 0.65 656.0 0.0 • O Ottte
0.99 —13.3 0.60 321.4 0.0 teen. p.....
0.26 —13.5 0.20 162.7 0.0 ettts• ten..
2.12 —13.6 0.50 458.3 0.0 COOt Aet•tA
0.98 —33.8 0.78 158.0 0.0 flee Ce ete . .
0.29 —13.7 0.37 062.2 0.0 leeCti It . ...
5.59 16.2 0.28 653.7 0.0 t te cc....
5.08 1 .0 0.30 31Ss2 1140 tOOt ttfltc
0.48 33.7 0.36 162.7 0.0 CCt 6t eet.ee
2.09 13.0 0.32 457.0 0.9) t et It at e .e
1.39 —03.6 0.10 313.7 0.0 teleet tet .ee
0.78 12.S 0.16 543.2 0.0 f lee... tetne
2.01 —05.7 0.17 66746 0.0 eetttt tttCte
0.93 9.9 0.12 307.2 0.0 tee . .. elect.
0.00 0.0 0.00 0.0 160.5 teene coete
0.57 0.0 0.05 0.8 501.7 —99.83 —99.64
0.09 —0.0 0.05 0.3 264.6 —99.96 —99.97
0.00 —0.0 0.03 0.0 11.0 tee’.. e lee.
0.11 —0.0 0.05 0.8 0.0 eettt. .t....
0.09 —0.0 0.03 0.1 0.0 e .e .c. a —c...
0.00 0.0 0.00 0.0 0.0 t..... ee c e e
0.01 —0.0 0.05 0.5 0.0 e...n etc...
0.13 —0.0 0.05 0.1 0.0 tee... eeeoe
0.00 —0.0 0.05 11.0 0.
0.05 —0.0 0.51 0.9 0.0 n ot .
0.05 —0.0 0.05 0.0 0.0 ...—.. tee...
0.00 —0.0 0.05 0.0 0.0 .ete.. ....t.
0.15 0.0 0.00 0.7 0.0 nec . . .e..s.
0.05 —0 .0 0.05 0.0 0.0 ..e... tee.e
0.00 —0.0 0.05 0.0 (1.0 teen. t et Se
0.21 —0.0 0.05 0.6 0.0 Ott o noe.
0.05 —0.0 0.05 0.0 11.0 et O ..e.e.
0.00 —0.0 0.03 0.0 0.0 tO. .. One .
0.30 —0.0 0.05 0.6 0.0 O e ......
0.04 —0.0 0.05 0.10 0.0 net .. eon.
0.40 —5.6 0.05 122.5 160.5 —23.96 — 1.41
5.38 5.4 0.10 6)7.5 5u1.P —02.78 —01.87
1.06 —5.6 0.67 309.2 344.6 —10.26 —01.9i)
0.”) —5.4 0.26 121.5 0.0 n Ot. f l O
3.49 —5.3 0.1(1 639.9 0.0 ...c.. CCCCO
1.41 —5.3 0.17 306.5 0.0 OtO
0.56 —5.3 0.15 20.6 u.0 .t.’t. cots.
0.33 —5.6 0.32 437.5 0.0 ‘ te’. . Otto
1.03 —5.3 0.05 30800 0.0 I . . 8 . . . Otc .
0.43 —4.9 0.37 123.3 0.0 ‘..‘.t Ott O
3.99---. —5.0- -- 0.76 645.0 ç3 Q t Oe c
1.61 —5.0 0.32 305.9 0.0 ttt.t. Ote t
0.58 — .8 0.35 023.9 ( 1 ( • t
0.93 —4.6 0.32 446.3 0.0 ‘°° 000
0.69 —6.5 0.05 305.1 57.3 eOt
0J7 —4.6 0.26 323.6 0.12 eeC. .. cc....
1. 9 —..5 0.55 665.7 0. 1 1 tOO
0. 3 .A 0.13 302.0 nd te .• S .....
0.87 —5.3 0.4? 125.0 ..o to.ae . .Oe
5.24 —4.6 0.25 447.0 u.u 0 00
0.53 —5.3 0.30 100.4 0.0 000

-------
Table 7 — (Corit’d)
I
S C V 690
TP(
I L
9Irl2 700601
SO 2 160 30
60 PCNT HUMIDITY
3 4.
6
I— ) 19 (494 1 Q92 3 i Ave.
I t
1Q92 700 10F
30 1(60 5 0
60 PO l l 69 . 1 91 )3477
13 lv 0691 fl62
33 169.6
1 90 33.2
60 331.6
30 469.9
90 ‘29.6
60 309..
70 166.1
I 90 827.9
60 336.3
30 166.3
A 6 93 431.4
60 373.3
30 166.2
3 90 623.1
60 902. 1
30 146.1
6 30 626.0
6 ( 1 300.0
30 461.6
7 93 623.6
60 302.3
30 139.6
1 93 636.0
60 311.1
9.3 451.3
2 90 ‘33.2
60 309.9
30 133.7
3 90 434 9
60 306.7
30 336.6
6 90 666.1
60 307.0
30 136.8
3 90 429.2
60 333.7
3 13 132.6
6 91. 631.3
6.3 301.3
10 132.6
7 90 423.6
60 301.3
3j 170.6
1 90 663.6
60 339.0
30 172.1
2 90 666.0
60 337.1
30 111.5
3 90 613.1
63’ flt.3
3 ,. 191.’
8 93 69 .3
60 36’.3
30 203.3
3 90 691.7
60 369.9
30 3 1 2.
6 93 l99 3
60 3’6. I
30 346.9
9 I. 699.3
6’ 379.:
0.63 6.0
1.12 6.0
3.06 —3.3
0.33 ‘3.6
0.91 ‘3.6
4.30 5.3
0.33 —6.1
4.06 ‘3.1
0.60 —3.7
0.92 ‘9.0
0.93 ‘7.3
0.72 6.1
1.15 —7.6
(.9 4 —6.5
0.67 —7.2
0.82 —1.6
1.06 .6.7
1.19 —1.1
0.52 —6.9
1.03 —7.7
0.60 7.7
1.36 16.0
1.15 16.5
(.65 47.6
0.62 16.3
3.07 49.7
1.66 15.6
0.66 15.6
0.67 35.6
0.90 16.9
0.69 16.6
0.97 46.3
1.62 43.7
0.62 13.1
1.16 41.5
1.20 13.3
0.60 13.2
1.26 12.6
1.13 10.9
0.69 42.2
0.66 I I. )
0.72 40.7
1.6? 17.9
1.63 22.7
1.41 25.7
0.55 £6.9
1.00 26.9
1.50 26.7
0.76 34.7
1.32 63.7
1.02 69.2
7.69 69.9
0.99 50.6
3.16 36.9
0.62 35.9
C.96 37.6
0.73 61.3
0.36 62.6
0.99 63.6
1.76 66.7
0.33 6 .6
C..9 61.6
6’. l
0.30 12.6
1.33 —14.2
0.37 —10.6
0.26 —00.5
0.66 —42.5
0.62 —9.6
0.36 —9s3
0.96 —7.6
0.37 —6.0
0.61 —3.0
1.16 —6.6
0.76 —5.6
0.23 —7.0
0.63 —7.1
0.39 —7.6
0.63 .7.7
1.69 —6.1
0.36 — 6 .3
0.38 —7.6
0.96 —7.6
0.95 —7.7
0.00 0.0
0.10 —0.0
0.66 —0.0
0.36 —7.6
5.60 —6.7
1.63 6.5
0.84 —6.6
1.23 —6.9
0.57 —6.6
0.33 ‘9.9
3.76 —6.1
0.99 —6.0
0.26 —6.6
3.37 6.7
1.12 —64
0.30 —3.9
6.93 —6.6
0.79 3.7
0.16 —3.9
3.66 —6.6
1.00 —5.6
0.27 —6.1
0.79 —6.0
0.66 —5.2
0.35 —5.4
0.60 —6.3
1.17 —5.3
0.36 —6.9
0.61 —3.3
0.92 —3.
0.29 ‘9. !
1.03 —3.1
0.76 —6.9
0.30 ‘9.3
1.12 —5.0
4.30 —5.0
0.22 —9.6
1.16 —9.3
1.02 ‘9.6
0.53 —6.3
4.10 —3.0
1.11 3.I
0.21 46J.7 170.6 —43.76 —ti.36
0.13 663.2 916.4 —13.60 —13.36
0161 309.7 339.0 —6.63 —11.76
0.36 161.7 0.0 6 . 6ts . 696699
0.45 664.6 0.0 66 6 . 9 9 •••tso
0.66 303.6 0.0 99669 . 666066
0.17 160.2 0.0 6 6 6S96 666969
0.40 661.6 33.0 6 6666 916669
0.50 306.2 0.0 60609 699969
0.66 160.6 0.0 999666 9.9469
0.65 661.6 U 1 0 699999 969999
0.63 303.6 4.0 969669 969999
0.65 161.7 0.0 999969 969996
0.60 636.7 0.0 9 . 9 . 6 9 696999
0.36 302.4 0 Q to.... 911199
0.05 462.2 0.0 999999 9969 99
0.20 663.5 0.0 9 .6669 909669
0.60 102.1 0.0 to . ... •.at ..
0.26 162.1 0.0 6 . 99tt 99099
0.15 636.3 0 U 996669 966909
4.05 302.6 0.0 666666 966966
0.00 0.0 170.6 . 6 6 9 9 6 969669
0.03 0.6 346.1 —99.63 —99.66
0.05 305.7 639.0 —9.62 —9.61
0.00 160.0 0.0 996 699 969666
.26 309.6 0 o0 699696 969969
0.35 304.0 0.0 6699 9 6 960669
0.60 136.7 0.o . 9 . .t 999060
0.60 333.6 0.0 99999 9 .9....
0.20 295.7 0.0 099999 9.9969
0.30 36.6 0.0 6 . 99 99 996669
0.26 336.0 0.0 900999 999969
0.26 297.6 0.0 tnt . . 999499
0.25 136.0 0.0 009069 999669
0.33 367.6 0.0 666666 96266t
0.36 293.9 0.0 9 .99 .9 906999
0.00 135.2 0.0 999999 999969
0.47 337.a 0.0 ott... t.n.t
0.40 291.6 0.0 699969 969969
0.44 136.9 0.0 06666 996699
0.36 177.6 0 0 90999 999999
0.30 293.9 0.0 066099 999999
0.60 126.6 470.6 —j5.76 —29.37
0.50 633.0 306.1 —13.37 .46. 46
0.30 297.6 319.0 —12.19 —01.73
0.43 126.9 0.0 009960 696696
0.03 632.6 3.0 669669 699969
0.06 297.5 0.0 9099 99 060969
0.20 122.2 0.0 606099 990969
0.13 629.3 0.0 999969 090066
0.25 290.1 0.0 6696 9 0 969096
0.33 121.1 0.0 600099 619919
0.20 667.6 0.0 069099 099009
0.20 293.2 0.0 6 990 6t 960969
0.30 423.2 0.0 696996 96099
0.60 632.6 0. 0 996969 069669
0.26 292.9 0.0 9 . 60o9 660099
0.20 23.6 0.0 9 00 .9 9 969969
0.00 637.6 0.0 669699 66096t
9.26 292.6 0.0 009609 909909
0.30 025.6 0.0 690t60 69009
0.26 633.1 0.0 996666 099946
0.41 293.3 0.0 .9.6.. 99.069
L U
0.37 13 7.6 11(1.6 —7.69 —14.40 30 331.0
0.60 439.3 614.1 —14.36 1s.3t I 93 633.9
1.00 347.4 319.0 —4.66 —6.00 63 299.3
0.75 455.3 0.0 ...o.. •.o o. 30 330.2
0.32 633.3 0.0 19606 069690 2 90 629.3
0.67 316.7 0.0 606996 696999 643 296.2
0.52 432.6 0.0 .9.6 . . 990900 30 130.7
0.32 633.0 on, ...... ...... 3 91 636.1
0.53 332.1 0.0 .669.. 9 9o 9o 63 300.1
0.60 133.2 0.0 101 99 6 o .oo 30 137.6
0.26 666.3 3.0 966996 ...... 0 6 93 636.9
0.63 311.7 (3.0 666996 99 . . .o 63 297.6
0.66 156.0 0.0 ...o.. ...... 3.1 136.7
0.36 634.6 0.0 666699 091.96 3 93 ‘31.6
0.60 109.6 0.0 99.9.. 96969 60 296.9
0.23 136.8 0.0 496609 69600. 30 336.3
0.60 616.6 0.0 999.60 9.999. 6 90 635.3
0.50 306.0 0.0 tttltt 000t99 60 293.7
0.53 136.6 31.0 096969 669969 30 136.2
3.30 634.6 0.0 o t . . . . ...... 7 90 ‘30.7
0.67 330.0 0.0 6t0 09. •0 0t0t 60 296.9
0.30 163.6 170.6 —13.16 —6.631 30 0.0
0.63 649.6 3 18•3 —16.61 —36.30 3 910 0.7
0o36 796.2 339.0 —12.90 —7.62 60 305.6
0.33 360.7 0.0 090696 996969 3.1 432.2
0.96 611.5 0.0 999066 09069 9’) 302.6
0.76 296.2 0.0 669996 966660 6.3 296.5
0.32 160.0 0.0 •9°6° 9 6 70 126.2
0.23 619.2 0.0 609t9° 9 99 ’9 3 90 366.5
4.03 293.7 0.0 066696 99•°’ 60 269.3
0.36 160.4 0.0 909699 969 9 6 9 30 426.6
0i64 630.4 0.0 999969 060661 7 6 90 327.9
0.63 293.2 0.0 600609 909066 60 291..
0.60 461.2 0.0 °6’ .6 096669 33 131.1
0.63 633.7 0.0 919696 09096 3 90 362.6
0.43 290.6 0.0 960009 690666 63 269.7
0.66 139.6 0.0 961069 996966 33 431.3
0.20 639.1 0.0 t tt9 t 9t666 6 90 334.2
0.66 290.3 0.0 966609 6 .9 .6 6 63 267.6
1.00 160.6 0.0 969 060 69069 10 131.0
0.72 646.6 OpO 999060 694999 790 373.0
0.33 290.9 0.0 996696 990969 60 216.3
30 120.6
0.90 032.3 170.6 10.fl M3.09 90 ‘30.0
0.62 661.0 346.1 —13.63 643 292.6
6.79 342.2 339.0 —1.69 —0.26 33 149.7
0.03 167.9 0.0 0696tt 669666 7 90 627.3
0.6) 659.3 j.0 966666 699666
60 292.2
4.00 306.3 0.0 096069 606699
30 147.3
0.26 169.6 0.0 666669 066966 6’3 426.6
4.03 685.0 On. 606996 096669
60 266.6
1.66 310.0 0.0 166619 696960 10 n s a
0.21 166.6 0.0 696666 096166 7 6 90 662.4
0.35 666.3 0.0 606669 ‘ °‘ 60 790.3
0.60 309.9 0.0 666696 009666 30 339.6
0.56 369.3 0.0 0 669 5 90 627.6
0.21 641.0 0.0 109699 ‘•‘ 60 267.6
0.70 306.7 0.0 666.96 669969 33
0.34 069.6 0.0 696669 6 9’) ‘32.1
0.11 635.3 0.0 096690 169096 65 267.0
1.07 11.1.3 0. 0 966699 666966 33 123.3
0.73 169.4 0,3 966690 1999t9 97 639.4
3.37 631.3 0.0 691669 • •••• 63 296.2
0.20 301.6 0.,i t t6t 996090

-------
Table 7 — (Cont’d)
I t
488
13 06 £681 88 *2 5 € V AVG
7 9€
p
33 165.8
1 90 691.6
60 517.6;
30 162.2
2 90 t49s9
80 319.7
30 W6.7
3 90 470i7
60 324,0
30 159.0
a 6 410i0
63 285.4
30 1 87.8
5 90 412.7
60 28fti?
33 167.6
6 90 405.1
60 282.0
30 142.3
7 90 413.4
60 282fl
is 165.1
1 90 687.5
60 309.8
30 160.3
2 93 442.3
60 309.4
30 158.5
3 90 462.7
60 311.2
30 151.8
8 *90 399*4
60 274.4
30 141.9
1 93 606.2
60 276.1
30 163.2
6 90 306.9
80 277.1
30 163.5
7 90 609.7
60 274.9
30 169.3
1 90 419.0
63 324.9
33 367.2
2 90 469.7
60 331.3
33 162.2
3 43 95.i
60 329.5
3 158.6
• I I ‘23.0
43 290.9
33 151.1
S 73 432.5
6. 299.3
30 158.6
9. ‘31.7
6 . 303.6
33 16 .6
7 73 4 48.3
43 309.1
1.68 —2.0
7.20 3.2
t.33 3..0
0 65 466
2.6 4.5
0.62 7.8
i *.3 5 6.9
3.33 4.6
0.92 10.2
0.72 10.?
1.33 9.3
0.55 10.7
1.57 10.0
1.32 9.6
1.40 £0.7
0.69 10.1
1.11 £0.3
1.03 2.4
0 *66 6.7
1.86 3.0
0.65 3.3
0.69 16.3
2.65 18.0
2.32 16.7
0.29 16.9
2.00 17.7
1.20 17.6
6.35 17.5
1.60 17.5
0.85 17.6
1.66 1*.?
3*59 17*3
1.23 11.2
8.09 £1.8
0.82 u.s
1.35 11.7
1.38 1189
1.08 *7.2
1.00 17.2
0.18 16.5
1.Si 17.2
0.53 IS.!
0.38 12.7
0.99 £6.1
1.47 17.2
3.3* 15.2
2.31 86.7
0.62 18.2
7.98 18.7
1.66 17.*
1.66 16.4
0.99 14.1
1.60 17.1
0.8* 18.8
1.10 - 17.5
2.76 21.3
1.46 25.4
0.75 27.4
2.33 29.4
0.35 32.6
0.86 31.4
2.09 33.0
2.0* 36.5
1.20 3*8.9 0 0 0*1*9 *9 1* 1*
0.75 897.2 0.0 ***** ****9*
0.55 303.7 0.0 *9*41* 14*8* 1
0.26 145.3 0.0 tttflt
0.63 451.9 0.0 •**t** **I**t
0.25 303.3 0.0 ****** • .** I *
0.10 128.0 0.0 • *t *4 .88*
0.56 651.3 0.0 *8*0* *8884*
0.62 300.6 3.0 *I**t* * 1*4*.
0.60 131.8 *18.6 16.06 1.22
0.30 603.4 386.7 5.05 1.11
0.32 266.7 254.2 5.72 0.20
1.10 127.1 109.6 16u56 0 ,53
0.60 612.7 390.9 5.66 0.69
0.75 271.9 256.2 6.95 1.56
0.69 726.6 111.6 13.22 6s66
0.15 603.2 389.6 3.44 —2 6q
0.1? 272.2 285.8 6.76 .42*95
0*30 128.1 103.9 23*69 0 67
0.66 418.6 594.1 6.72 0*38
0.36 372.8 0.0 •**... * 1****
0.05 163.9 0.0 *88*9* 9 1999 *
0.15 £38.1 0.0 *99*9* ***99*
0.05 291.3 0.0 9 *9 4 . . •*****
0.65 136.9 0*0 4*9*9 * *9*8*9
0.26 330.6 0.0 *98*** 89*9*9
0.05 296.5 0.0 9 *4 *9* 0* 4*8
0.11 *3665 0.0 0*89* *9*18*
0.17 720.5 0.0 1*9 *9 * *98*8*
0.10 297.1 0.0 *9*989 *99* 1*
0.55 129.1 118.6 9.36 13.07
0.79 111.6 386.2 —70.98 —65.91
0.27 268.5 256 2 5.60 31.77
0.85 128.1 109.6 *6.89 78.62
0.12 21.3 390.9 —96.53 —76.3*
0.67 270.0 256.2 6.22 3 6*70
0.87 127.6 111.8 13.96 79.82
0.39 56.8 389.8 —65.43 —66.6*
0*96 270.4 285.8 —5.60 20.23
0.13 126.0 303.9 21.29 92.63
0.85 36.2 391.1 —96.36 —71.83
0.13 270.1 u.0 I .. . . . *9*9 1*
0.23 136.3 0.0 •9*o* 89*84*
0.20 689.8 0.0 ****.. •*.•**
0.30 296.4 0.0 *98 * .. *8****
0.10 £27.2 0.0 .n... *8****
0.20 sso.7 0.0 **8*.* •e8 **
0.15 293.6 0.0 *99*9* 9*9*9*
0.40 *17.0 0.0 *99* . . *988*8
0.25 660.2 0.0 9 9 * . . . 99*...
0.11 294.8 0.0 *998*9 899*9*
0.70 1*8.8 118.6 0.12 3.89
0.20 391.1 364.2 1.82 0.83
0.17 252.9 236.2 —0.51 —2.05
0*20 107.2 109.6 fl.23 —5.72
0.20 396.3 390.9 1.37 0.39
0.11 253.6 756.2 - —0.29 —1.72
0.43 106.6 *2 1.8 6.62 —7.75
0.11 387,7 389.8 —0.54 *1.68
0.00 254.6 285.8 —10.91 —12.26
0.26 jOt.5 *03.9 1.46 —11.18
0.76 399.0 392.1 1.76 U.61
0.20 253.6 0 ,0 ***i4* 8*9*9*
99£
S 4 *90
- I
* L
RUN 3 50 000 F 50 PC43 sJ 231 1’
3D 2080 80
RUN 3 50 DIG r 50 PCFIT HUMIDITY
50 1080 50 1- 3 IV 1881 1882
0
0.32 £67.9 3.0 ..‘... * 9 . 8 —8 30 262.0 0.69 —6.9
0.11 668.3 0.0 . 1. . . . *88* .. 1 90 490.1 2.69 —7.1
0.75 316.7 0.0 98*9* . 60 297.1 0.89 6.3
o.n 151.7 .1.3 ***.*. ..**.* 50 131.9 o tr —7a
0.45 665.3 D.C I .’ . . . ...... 2 90 663.3 2.06 —8.6
0.05 312.1 0.0 8 . . . .* ****** 60 303.6 1.96 0.0
0.40 161.7 3..) *0*0 *69 1*8 30 *21.3 13.07 —7.5
0.55 665.5 0.0 9.... . . 9*... 3 90 638.3 .79 .42.9
1.70 333.6 1 1,3 * *0’ 9*48* 60 286.0 0.60 .44.6
1.38 268.2 116.6 24.96 36.03 30 120.1 0.87 —17.7
2. 1 600.7 384.2 4.30 6.76 0 6 90 388.6 1.62 —15.1
2.00 276.6 456. 1 6.03 1 1.47 60 253.? 0.79 —15.0
3.35 *09.6 25.71 34.90 50 110.1 0.63 —17.5
0.86 403.0 I9 .9 1.09 3.57 5 90 393.7 3.21 —19.0
0.92 275.6 23’.? 8.34 12*56 60 250.2 0.82 —21.6
0.68 137.6 111.8 22.88 31*96 30 104.6 0.96 —22.2
0.37 394.8 389.8 1.27 3.92 6 90 380.2 1.66 —22.9
0.30 279.6 285.8 —2.36 I*32 80 248.6 0.79 23.6
0.35 137.5 103.9 32.32 36.91 30 104.6 0.20 23.9
0.17 610.3 39 1.1 4.64 5.43 7 90 393.6 1.83 . 46.8
0.28 279.1 i 0 *0*4* 8*1*0 60 748.5 0.56 —26.3
0s26 150.7 3.0 *..... 8 . 8 . . 30 160.1 0.52 —3.8
0.6? 469.4 0.0 *..... 8 . . . .. 1 90 160.1 12.98 3.9
0.55 793.0 0.0 . * . . . 4 * 4* .. 60 297.6 1.59 2.0
0 .60 163.3 0.0 *9889* *999 .9 50 136.6 0.38 1.9
0.76 676.6 11.0 III . . . * 4* ..* 2 90 333.6 14.90 2.8
1.76 291.5 0.0 •*..*. . 1*9.. 60 296.6 0.60 2.0
1.10 141.0 0.0 . ..... ...... 30 162.6 1.21 5.6
0.50 645.1 0.0 *o.*. *8**** 3 90 226.5 19.16 5.9
0.61 293.6 0.0 *90*9 .4*9*9 60 304.0 0.70 6.8
1*17 137.1 118.6 15.60 2? 99 30 136.3 0.31 6.4
1.19 982*1 384.2 —0.32 3.98 € 6 90 130.9 6.36 19.5
0.8? 257.1 254.2 1.16 7.95 60 335.0 0.79 66.5
0.06 126.0 109.6 £3.21 29.51 30 195.5 0.60 67.6
0.90 386.3 190.9 —2,17 j 9 5 90 92.6 15.63 71.1
0.86 256.6 256i2 1.63 8.60 60 342.4 0.71 72.4
1.12 125.2 113.8 12.00 28.03 30 201.1 1.41 73.6
0*50 379.6 389.8 —2.60 1.83 6 90 130.0 26.89 73.2
0.26 259 .9 285.8 —9.09 —1.0? 60 363.? 1.85 73.3
0.37 126.9 103.7 20.23 38.03 30 200.2 0.66 74.1
0 * 10 392.6 392.1 0.09 4.51 7 90 86.8 10.73 72.6
0.65 260.0 0.0 1*84*8 **** . 60 344.3 1.00 76.8
0.36 *56.6 0.0 ••*8•* 9*89.8 s0 128.6 0.67 —5.6
0.97 666.8 0.0 * ‘8 — 9 * 1*.. 1 90 486.1 2.25 —3.?
0.67 307.7 0.0 *0 .8* 9*481* 60 290.3 1.60 —6.0
0.18 353.9 0.0 l88* 9 *8*0 30 127.6 0.63 3.7
0*40 652.9 3.0 °° 88*9 18 2 90 637.1 2.61 —3.6
2.68 313.3 3.1, *•fl * 60 286.8 0.57 —3.8
0.20 143.3 0.9 “‘ 00 30 113.0 10.10 3 9
0.65 677.7 0.0 *.*l’ *98*99 3 90 656.3 3.93 —3.8
0.97 313.1 I 0 80*9* 60 291.1 0.59 —3.7
1.65 143.9 118.4 .1.10 33.75 30 136*0 3.18 —6.7
0. 5 405.9 184.2 5.66 10.12 F 4 90 387.3 2.20 —3.7
0.12 272.0 75 -.e 7.20 36 47 60 269.0 0.66 —3.9
1.1$ 133.1 109.6 1.53 s7.yz 30 103.3 0.41 3.9
0.60 611.1 39U.9 5.17 1U.6 - 5 90 392.5 1.20 —3.8
0.36 273.8 256.2 7.72 17.74 60 269.8 0.75 —3.6
1.05 131.2 111.4 .1.36 61.86 30 803.1 1.28 3 6
0.58 *02.2 389.8 3.19 10.75 6 90 386.0 1.58 —3.6
0.41 37(1.9 365.6 —5.41 6.11 60 250.6 0.89 —3.7
0.61 132.1 0$.1 27.16 57.40 30 101.7 0.28 —3.8
1.08 683.2 193.1 5.60 14.35 7 90 395.2 2.63 —3.7
3*35 232.5 3.: 0* 10 9* 1 .9* 60 250.3 0.76 . 4.6

-------
Table 7 — (Cont’d)
I 5.
NRC
S C V AVG
IPC
5.
RUNS 700(0’
I 5.
NRC
3—3 Tv tORI CR92 S I V AvG
‘PC
N L
30 134.3
I 90 ISO.)
60 291.5
30 *38.0
2 90 383.5
60 289.6
30 124.0
3 90 371.9
60 270.6
10 23.3
* . 90 369.0
60 278.1
30 123.6
5 90 363.9
60 277.6
39 123.0
I. 90 372.7
60 275.8
30 126.2
7 90 372.0
60 2S0.0
30 160.2
I 90 383.9
60 257.0
30 339.2
2 90 377.7
60 207.6
30 139.1
3 90 377.0
60 206.0
30 137.5
8 6 90 373.7
69 253.3
30 336.3
S 90 373.3
60 283.0
10 133.3
6 90 375,5
60 200.3
30 133.3
7 90 372.3
60 270.5
30 139.3
I 90 394.2
60 257.9
30 127.6
2 90 389.3
60 2 16.2
30 324.0
90 304.7
60 25 1.9
30 315.7
1. 90 370.9
60 273,3
30 2.5
5 90 376.?
60 279•s
30 327.3
4 90 399.7
60 293.9
30 333.2
90 397.1
80 295.3
0.93 —1.4
1.63 2.3
0.99 5.3
0.63 5.3
2.23 7.4
6.33 7.6
1.41 —0.6
1.09 —9.0
oai -9.6
0.68 —9.4
1.59 —10.9
1.73 —30.3
2.06 —7.9
1.42 —7.0
0 2 —5.7
5.30 —7.3
1.2) —9.3
1.17 5.4
Z. 16 —7.8
1.16 —0.3
3.27 —3.’
3.32 16.1
1.59 39.5
0.64 17.7
0.30 18.7
1.34 10.8
0.74 10.2
1.47 10.1
1.51 18.7
0.90 18.0
0.53 17.7
Z.2 1 17.0
3.95 36.9
0.69 36.6
1.77 *5.5
1.36 15.9
0.99 15.2
0.57 15.1
3.62 31.9
1.69 33.3
0.77 13.3
1.99 33.4
0.65 11.0
1.39 6.4
0.89 1.9
0.70 —2.9
3.72 —4.9
3.65 —3.9
3.53 —5.4
2.12 —9.6
1.39 —13.2
0.75 —13.0
1.01 —14.0
2.03 —17.6
3.47 39.2
1.29 —39.8
3.32 —37.8
0.91 —9.6
3.19 —1.4
1.46 3.5
0.57 ‘ .7
3 5 t.l
3.73 2.3
0.45 136.0 0.3 ••8’84 30 327.6
3.36 378.0 0.31 “fl’s 1 90 396.5
0.43 256.2 0.0 114 11 111111 60 102.6
3.77 333.5 43.0 l l44 l l 0 4 30 351.2
3.53 376.3 0.0 . .48 . . 411441 90 405,5
3.50 203.7 3.. 4”. 60 308.2
1.37 112.7 0 I ” .’ . 30 555.8
0.69 )S’a.8 u.u .“l’. “4 5 90 406.7
0.70 207.3 1,0 4440 441.11 60 334.7
0.60 l’1.9 0.0 .4.... 30 165.5
1.92 35L.8 380.8 J.U0 —1.57 0 4 90 ‘15, 2
0.35 280.2 153. , 8.55 ‘.72 60 321.7
0.37 3)1.8 303.6 11.62 11.76 30 374,3
3.30 373.0 166.9 2.20 0.27 5 90 420.3
0.32 284.) 263.5 6.70 4.55 60 326.2
0.75 133.0 101.6 10.91 21.76 70 378.9
3.06 151. 1 169. , 3 , 64 9.89 5 90 426.2
1.13 255.3 14’.’ 7,93 5.46 60 325.3
1.90 124.0 103.0 17.56 10.11 30 173.7
0.72 300.3 164.2 3.50 1.30 7 90 618,0
2.59 285.4 25c.I 0.90 6.0) 60 3*7.8
1.67 3 l4.J .i .‘‘... ..,,., 3° 354.6
0.26 162.3 0.3 ...... i .,,,, I 90 346.7
0.34 269.2 o. ..,... , , . , , 60 300,3
0.26 120.5 (i.1a 0404 4flfl 30 151.6
0.35 350.0 4 3.0 . . . . . •,,,,, 2 90 359.0
0.25 2 59.s 0.0 ...... 60 306.5
3.55 320.9 3.0 30 130.3
0.50 350.) 3.0 “ ,.. “to 3 90 •67,j
3.26 265.0 3.0 60 200.2
3.32 1 19.0 ,, ,,, 30 307.3
0.50 356.7 380.5 —5.75 —2.11 ‘ 90 350.7
0.65 266.5 265.5 0.39 80 254.7
0.63 119.8 101.6 17.89 34.315 30 305.4
0.72 353.8 364.9 —3.Us 2.02 5 355•3
1.00 255.5 265.5 —0.36 3.84 60 252.0
0.62 320.0 301.6 18.02 32.07 30 106.7
1.05 350,4 059.5 4.44 1.61 6 90 361.5
0.83 264.3 j54,6 0.74 6.Os 60 255.!
0.76 320.1 103.3 14.,. 27.0a 30 108.6
0.20 359.0 167.1 — I s is 1.39 7 90 362.0
0.60 255.) 262.1 3.21 4.15 60 255.7
30 97.9
2.02 321.1 —.0 4’.... ..o.. 1 90 363.2
7.97 387.0 0.3 ‘ I . ’.. ...... 60 258.7
3.60 255.9 0.0 ‘ Ø .I . 114 1 11 30 95.9
3.29 130.5 On. ton. ...... 2 90 359.5
3.65 393.9 ..3 ...... ...... 60 256.9
1.37 290.1 0.0 ‘‘‘... 0 , ,. 30 96.3
1.47 129.5 43.0 0404 ‘ . 4 ’ , , 3 94) 356.9
0.32 394.3 0.43 ..eo, a.... 60 255.1
3.00 292.6 0.0 ...... ...... 30 93,5
3.043 1)3.3 0.0 •‘.... ....., P 4 90 356.0
0.55 395.0 .d .8 5.74 U, 47 60 253.3
0.63 293.0 i.,a 30.16 a.7 30 91.6
0.s3 1)1.7 17..6 19.53 10.65 5 90 25349
0.55 395,5 s44.9 5.5) 1.00 60 250,9
3.44 29’.3 165.) 31.46 S.:3 70 90.9
(.55 336.2 100.6 34.02 15.27 6 9 4 3 356,6
3.40 433.3 389.5 6.5(. 8.39 60 253.5
1.12 292.1 284.4 10.55 11.93 30 93,4
0.97 132.. 105. 4 16.’lS 26.14 7 90 393.2
a?? 39T.0 281.2 4. 1J .13 60 253.5
0.90 ‘91.1 4..g 15.76 le.66
1.12 0.6
2.23 38.6
0.62 27.3
0.30 30.3
3.03 34.0
1.64 36.9
0.4) 37.2
1.68 40.3
0.64 46•7
0.45 47.2
2.27 93.3
3.07 54.5
0.92 59.0
3.35 60,7
1.24 63.4
0.58 62.9
1.87 61.6
1. 9 83.5
0.05 55.5
1.70 58.4
3.66 54.0
0.91 35.5
10.79 33.8
0.69 33.2
1.06 30.2
9.16 29.5
1.32 30.0
1.32 —69.8
9.02 —1.8
27.05 4.5
0.23 —6.6
3.63 —8.0
1.65 5.4
0.73 —6.3
3.50 —8.9
0.89 6.4
0.80 —5.8
3.58 —5.6
3.63 —6.6
0.68 6.t
2.09 —3.9
0.75 —3.3
0.64 —6.8
3.41 —5.1
3.13 —9.9
0.29 —5.8
3.36 —3 4
0.45 —3.6
0.46 —5.9
3.54 —6.0
0.39 —6.2
0.43 —6.2
1.99 —6.9
1.60 —6.9
3.16 —7.0
1.06 —7.0
0.83 —7•5
0.67 —7.6
1.62 e7,6
1.03 —7.3
1.53 —7.2
1.54 —7.0
0.50 —78 4
0.05 126.5 0.0 “ ‘
5.15 376.2 0.0 I . . . . . 4 l4l
0.23 275.2 0.0 I . . . . . •op..
0.55 320.8 0.0 ‘4 1’ . . ••• I•
0.12 370.7 0.0 I I I . . .
0,j0 271.2 0.0 44101 •4S4 1 1
0.53 3*0.6 0.0 l ’ ’ °° “
0.40 365.3 0.0 O’O 4 ..fl.
0.09 269.9 0.0 • t lt lS 114411
0.21 *10.5 0.0 • IISI I 114411
0.31 564.3 350.8 —4.37 9.05
0.12 267.3 265.5 0.60 21.16
0.30 338.0 101.6 14.11 p 1,35
0.11 359.9 364.9 —1.47 35.31
0.19 264.8 265.5 —0.26 21.85
0.36 219.9 303.6 34.0j 75.97
0.4% 362.7 369.5 —1.82 33.35
0.25 263.7 26’.4 —0.23 22.03
0.36 115.2 105.0 9.65 65.35
0.57 363.5 367.2 —1.5) 31,83
0.53 263.7 261.1 .0.63 23.26
0.07 123.0 0.0 •4444 844844
0.21 332.8 0.0 4 11414 141484
0.18 277.0 0 0 111*18 448488
0.34 321.3 0.0 l• I*4S 141814
0.56 329.1 0.0 •14441 44044
0.96 218.7 0.0 111488 lII8 .
32.17 200. 0.0 l l l l 111444
0.76 669.3 0.0 811414 1 1140
0.92 254.7 0.0 .4 . .. . lSll8l
0.75 113.9 0.0 *11* 18 1 11 1.4
0.43 368.7 380.8 —4.46 —5.70
0.64 260.1 265.5 —2.02 —6.07
0.92 111.7 501.6 9.93 3.73
0.65 363.7 564.9 —0.90 2.7o
0.s6 259.2 265.5 —2.38 —s,19
0.20 112.8 101.6 10.68 4.94
0.57 367.2 569.5 —0.60 —2.16
0.17 259.1 264.6 —1.76 —1.52
0.05 112.1 305.0 7.33 3.37
0.00 365.9 36’.2 —0.35 —1.42
0 .26 259.0 264.1 —1.19 —2.45
0.*5 102.7 0.0 I . . .. . Ill ’ . ,
0.23 360.4 0.0 0 4 l4 441111
0.20 264.3 0.0 •I 4I4 0141 1
0.20 191.8 0.0 84011 0141 1
0.35 363.9 0.0 .1.4 1 ’ 44141 1
0.20 262.8 0.0 * 44ll 111844
0.28 100.2 0.0 1411 11 01414
0.37 362.9 0.0 * , 14 1• 411114
0.40 261.8 0.0 I . . ’. . • ‘I .
0.23 99.8 0.0 lt . . I 111811
0.13 362.9 500.8 —4.70 —6.49
0.17 260.3 265.5 —3.95 —6.58
0.61 98.6 101.6 —2.98 —9.59
0.37 359.0 164.9 —1.6’ —i.56
0.30 250.5 265.5 —2.65 —5.50
0.10 90.3 101.6 —3.34 —10.52
0.15 163.0 369.5 —1.53 —1.54
0.20 250.9 284.4 —2.07 6.S7
0.55 98.6 505.0 —6.1* —12.99
0.25 362.2 167.2 —1.55 —3.28
0,19 259.9 262.1 —1.20 —4.05
50 2(90 30
‘0 Cml HUMIDITY RUN 4 70 0 (4 F 40 P(NT HUMIDITY
SD 2CRO SD
TV ( SR I CR92

-------
Table 7 — (Cont’d)
0.64 0.2
2.27 16 . 3
0.31 .2 1.7
0.31 33.0
2.03 37.1
0.66 39.2
0.29 42.1
2.20 46.3
0.62 43.9
0.43 43.8
1.13 43.9
1.11 46.6
0.99 47.3
1.20 •7.*
o.9s e9. 2
0.71 69.2
1.63 31.3
0.63 30.3
0.34 32.6
2.76 34.1
0.71 33.1
0.90 1.2
2.19 0.0
0.38 0.1
0.29 0.0
1.99 —0.0
0.32 0.1
0.32 —0.1
1.85 0.1
0.05 0.1
0.63 0.1
1.33 0.0
1.29 0.0
1.09 0.1
1.91 0.0
0.79 2.0
0.29 1.9
1.98 2.1
0.57 1.9
0.27 2.5
2.44 2.3
0.72 3.5
0.90 —7.7
1.73 —7.6
1.38 —7.8
0.51 7.9
1.34 —8.1
0.77 —8.6
0.19 8.6
1.63 —3.7
1.02 —4.7
0.60 .3.8
1.02 —3.7
1.02 —9.8
0.77 —8.6
1.37 - — 8.8
0.91 —9.0
1.06 —9.0
1.62 —6.7
0.39 —3.6
0.49 —9.3
2.12 —9.3
0.’5 —9.4
1.20 121.3 102.8 13.22 14.44
1.00 333.9 138.3 —0.61 4.01
0.07 237.4 .238.2 1.23 1 1.17
0.11 113.4 101.6 11.36 -44.01
0.12 131.9 131.6 —0.49 *9.01
0.16 233.6 0.0 teen, sense
0.23 112.8 101.6 30.36 32.08
0.71 389.7 0.0 ..een ..e...
0.31 232.8 0.0 teen. Sen . .
0.33 112.9 101.6 10.94 38,08
0.47 332.0 0.0 n..e. ten..
0.22 234.9 244.3 2.34 21.31
0.32 *13.7 101.6 *1.86 53.60
0.12 330.4 130.2 0.09 11.76
0.31 232.6 231.9 0.23 49.79
0.03 114.6 301.6 12.7a 61.22
0.19 137.6 337.0 0.16 *6.38
0.36 254.6 246.5 2.43 24.66
0.17 114.1 97.1 17.47 71.64
0.30 339.2 353.9 0.71 16.13
0.22 296.2 266.3 3.23 29.42
0.17 113.0 102.3 9.92 8e75
0.33 339.6 134.2 0.41 Gal
0.32 238.7 254.2 0.21 Os lo
0.19 111.3 101.6 9.30 9.40
0.11 361.3 333.6 2.17 2.13
0.11 233.7 0.0 •6 1t5t Cent .
0.17 111.1 *01.6 9.93 9.73
0.13 339.7 0.0 tU l e e t •eeee l
0.12 233.0 0.0 tflCtC tenet
0.43 111.6 101.6 9.83 9.63
0.17 360.7 0.0 •St5CC litlIt
0.13 233.0 263.5 1.73 1.3*
0.93 112.3 101.6 10.83 10.61
0.09 360.1 3)0.2 2.40 2.33
0.40 233.7 251.9 0.70 1.33
0.40 112 .3 101.6 10.63 12.61
0.43 367.0 357.0 2.73 3.39
0.25 233.9 243.5 2.15 4.93
0.20 *13.1 97.1 16.43 £8.88
0.13 569.5 335,9 3.31 4.84
0.37 254.0 366.3 3.12 4.15
0.05 97.8 102.3 .4.79 —14.18
0.26 333.9 334.2 —0.61 —2.73
0.26 232.3 354.2 —0.78 1.69
0.23 96.2 101.6 5.37 —13.17
0.23 356.0 393.6 0.67 —1.62
0.30 251.9 0.0 •et6e 6 .5 6 CC
0.43 96.3 101.6 —3.27 —11.43
0.30 138.2 0.0 11 16CC 6 5•Clt
0.10 349.9 0.0 C 1C6t5 1C 165t
0.8* 93.6 *01.6 3.8 18.22
0.23 355 2 0.0 6t 165t t85t t
0.15 2’9.8 283.3 0.16 —3.19
0.17 99.7 101.6 —3.63 —18.29
0.11 353.0 330.3 0.73 —1.78
0811 249.1 431.9 —7.13 —4.75
0s32 95.3 101.6 —3.73 —14.65
0.11 361.2 357.0 1.17 —1.23
0.3* 243.1 283.3 ‘0.17 —1.66
0.32 96.3 97.1 —0.37 —10.71
0.40 364.3 355.9 3.36 ‘0.23
0.33 346.3 246.3 3.80 1.02
RUN 3 90 0 (0 P 40 PCNT *1*81017 1
I I.
NRC
$ C V AVG 30 2(30 10
7 Pt
I 1.
mm 3 90 010 c so Pc I . ? *1310 17 1
I I
IRE
13 I v 1331 13R2 S F V 690 30 3 ( 30 60 13 TV (831 1332
‘Pt
8 1
Ni
50
I 90
so
139.1
374.7
zeSn
0.46
2.16
1.03
4. !
3.8
5.1
0.30
1.23
1.10
2)4.9
369.2
240.3
*02.9
3.50.3
234.2
31.21
3.04
*0.2.
33.27
.9.60
14.27
30
1 .50
60
121.3
372.3
233.3
30
290
60
30
190
60
30
*36.6
373.3
382.7
131.9
371.3
265.3
*36.6
0.64
1.91
0.44
0.61
1.44
0.78
0.34
3,7
8.3
3s0
5.6
5.0
9.3
0.6
8.15
1.76
0.86
9.17
0.13
0.37
3.65
132.9
173.3
377.
131.3
372.1
27 .9
135.9
101.6
351.6
0.0
101.6
0.9
0.0
101.6
19.7*
3.61
015 11
29.17
I 6’ 8 .
6l lli
13.69
18.4*
6.36
CItIeS
18,67
11110

34.38
50
290
60
30
380
60
30
186.4
369.0
294.9
134.6
394.2
298.3
136.6
A
490
377.3
1.33
3.6
0.11
371.6
0.0
05181
0 890
397.6
60
277.3
1. 6
—2.0
7.20
279.6
289.5
12.68
*1.65
60
101.6
30
130.4
1.42
—2.1
1.89
132.3
*01.6
30.53
28.2)
30
161.3
5 90
377.3
0.99
—2.2
1.28
173.3
530.2
6.65
6.0*
3 90
398.3
60
379.6
1.69
—1.3
3.23
276 ,8
231.9
9.97
9.32
60
301.3
30
136.8
1.14
—1.0
1.19
129.5
101.6
47.31
26.3*
30
163.9
6 90
377.3
1.63
—3.0
3.9*
382.3
337.0
7.11
5.71
6 80
408.9
60
276.9
0.64
—2.0
1.67
279.0
243.5
14.24
11.36
60
108.9
30
130.9
0.87
—1.0
0.80
*32.0
97 5
33.83
18.76
30
360.7
790
379.)
2.38
—4.0
2.90
383.3
355.9
7.7*
6.57
790
413.6
60
274.9
1.29
—3.7
0.89
379.7
286.3
13.54
*4.41
60
509.4
30
*33.5
0.4*
14.8
1.79
118.7
102.8
15.46
49.69
30
111.3
190
166.6
1.2*
18,6
0.94
331.9
558.2
*.73
4.34
190
35987
60
378,3
0.61
13.1
0.78
339.1
33 .2
1.91
7.87
60
234.9
30
131.0
0.73
13.7
0.35
111.3
101.6
15.37
46.31
30
111.2
390
363.7
1.67
12.1
0.60
333.3
351.6
‘0.02
1.39
390
361.2
60
369.9
0.95
10.9
0.34
250.5
0.0
1111CC
010 1
60
253.6
30
128.2
0.81
*0.1
0.66
110.1
101.6
16.13
26.12
30
1*1.6
3 90
360.3
1.9*
9.1
0.90
331.3
0.0
‘ •
•°“‘
3 90
339.6
60
266.3
0.93
8.2
0.38
238.2
0.0
C l . . . .
5 . . . ..
60
232.9
30
126.6
1.30
8.3
0.56
118.3
101.6
16.33
24.48
30
111.4
8
4 90
339.2
1.13
7.1
0.4*
332.0
0.0
•CSlll
COCCI 1 4 90
360.8
60
263.7
1.38
6.1
0.32
337.3
348.5
3.63
6.11
60
253.1
30
126.0
0.46
7.1
0.53
118.3
101.6
16.88
23.92
30
112.4
5 90
356.6
1.46
5.6
0.76
350.9
3)0.2
0.19
1.80
5 90
360.2
60
363.9
1.46
8.7
0.73
299.1
231.9
2.84
4.13
60
255.3
30
134.9
0.3)
3.3
0.05
119.6
101.6
*1.69
22.37
50
114.9
6 90
362.8
1.20
4.9
1.01
337.9
j 57,o
0.24
1.62
6 90
369.1
60
262.5
0.98
3.0
0.33
397.8
348.3
3.56
5.61
60
259.6
30
123.6
0.37
8.2
1.42
119.3
9 ?.I
43.83
41.13
30
113.5
790
566.3
3.29
3.8
0.89
361.0
355.9
1. 8
4.41
790
371.9
60
260.9
1.13
2.2
0.65
333.7
346.1
5.01
5.93
60
256.3
30
159.0
0.96
23.3
1.70
159.4
*02.8
35.62
30.76
30
90.1
1 90
823,7
2.51
27.4
0.33
398.6
334.2
10.17
1 1.35
1 90
340.3
60
324.5
2.06
32.0
0.30
293.4
334.2
£3.01
37.6 *
45
344.3
30
*68.6
0.33
3’.5
0.72
134.1
101.6
11.94
65.38
30
60.3
390
832.6
1.39
33.8
1.43
397.3
353.6
12.35
24.18
393
347.9
60
331.3
9.37
36.13
1.08
295.2
0.0
S I”
0110
60
283.8
50
3 90
60
30
113.3
443.3
3)8.9
156.6
0.85
2.53
0.92
1.32
82.9
46.8
.33.2
30.9
0.6*
1.36
0.91
8.11
139.9
390.7
290.6
125.9
101.6
0.0
0.0
102.6
33.13
1 1 1 1 11
liOn
43.81
15.90
600 1
CCCIII
54.27
30
3 90
69
70
67.6
383.3
281.1
87.3
1.
8 90
- 60
50
5 90
60
30
6 90
60
823.9
315.5
114.3
820.7
109.7
152.3
833.7
3*0.6
2.11
1.61
1.03
3.13
1.21
1.51
1.7.
1.33
20.3
21.1
17.6
13.5
16.)
15.8
16.4
18.3
0.80
1.08
0.85
1.80
0.45
0.93
0.90
1.41
803.6
293.5
136.3
802.2
293.3
1)4. ’
612.3
295.7
0.0
346.5
*01.6
350.2
251.9
105.6
337.0
218.5
““°
13.10
38.11
1’.*3
16.83
18.55
15.88
18.98
°“°
£6.91
51.96
10.11
£1.98
89.75
10.06
14.56
1 4 90
60
30
5 90
60
10
6 90
60
346.8
280.6
37.1
388.2
260.0
36.8
332.8
239.8
30
*54.5
0.80
17.2
2.02
13 .3
97.1
61.53
59.36
30
86.7
2 90
4)4.4
4.06
16.8
0.60
817.5
355.9
17.70
22.03
7 90
355.0
60
319.0
1.06
l’3.’
1.01
398.7
388.3
31.38
39.52
60
230.8

-------
Tabie 7 - (Cont’d)
I.
49 1
S F V 6VC
T I !
• I.
10 126.3
3 90 883.0
60 2 3.7
30 130.9
2 90 830.9
60 276.4
10 120.9
3 90 882,9
00 277.7
30 329.6
8 890 839 9
60 277.1
30 138.1
3 90 631.3
60 200.?
30 133.7
6 90 846.9
60 270.0
30 113.?
7 90 468.0
60 278.9
30 137.4
I 90 634.4
00 282.7
30 180.3
2 90 811.1
60 205.1
20 142.3
3 90 833.3
80 208.8
30 142.6
9 8 90 832.3
80 200.?
30 143.8
3 90 460.3
80 283.1
30 343 4
8 90 433.3
60 208.0
30 142.3
7 90 433.1
60 204.9
30 146.9
1 90 401.0
00 301.0
30 130.7
2 90 482.9
00 303.3
10 136.6
3 90 809.7
60 312.3
30 168.3
C 890 892.2
60 323.1
10 339.0
• 10 803.6
00 268.1
10 1)2.7
6 90 863.3
00 202.8
10 312.3
1 90 607.2
i i 208.6
•U4 4 30 036 F 80 PCNI naIOlIf
SO £300 SO
0.03 •0.)
2.37 .4.7
0.00 —3.0
0.33 —2.2
3.37 —4,8
0.71 4.1
0.39 —3.3
3.06 —3.7
0.90 —3.9
0.29 4.0
3.03 4.8
3.42 . 4.9
0. 3 —3.9
4.34 —3.8
1.17 —3.?
0.33 2.2
2.10 —1.6
0.8? —2.0
0.30 —3.8
2.33 —4.0
.32 —3.0
1.32 32.7
2.17 16.3
0.59 isa
1.77 10.0
2.31 17.3
1.18 30.8
2.6) 19.2
2.73 10.2
0.81 10.0
0.71 10.6
2.63 h a
0.77 20.8
1.23 19.8
3.09 10.4
1.43 10.2
1.39 31 ,3
2.69 17.7
0.63 17.2
1.93 28.?
2.88 37.3
0.81 37.3
0.06 11.7
2.99 33.3
1.13 10.6
0.98 19.7
3.01 22.9
0.07 22.0
0.83 23.0
1.60 27.9
0.67 29.0
0.62 - 12.8
8.98 34.1
2.83 33.0
1.08 33.3
8.07 21.7
2.36 7.0
0.08 3.6
1.23 3.9
0.90 31.0
1.87 2.3
3.24 0.0
o.T3 II. ?
1.01 —28.9
2.77 82.0
0.00 —36,8
0.20 62.1
3.29 60.S
0.37 —13,3
0.27 74.7
3,38 —77.0
0.82 —20.3
0.29 —00.2
3.33 —01.0
0.80 02.3
0.81 .08.3
8.10 —06.6
1.60 —06.0
0.76 .08.3
3.33 —19.7
0.59 —77.2
0.63 —73.2
2.77 —7 ..)
0.91 —76.3
0.30 1.7
31.03 3,9
0.33 7.3
0.39 9.0
30.31 13.3
0.37 12.3
0.20 13.3
17.26 18.3
0.80 13.0
0.61 13.0
21.73 38.3
0.30 38.3
0.28 17.3
13.06 17.0
1.23 17.2
0.72 16.2
14.07 13.6
0.68 13.0
0.73 23.7
38.09 37.9
0.02 10.3
0.06 . 4.6
3.08 —2.9
0.38 2,2
0.38 —1.3
3.30 —1.0
0.62 —3.7
0.96 —1.3
8.00 —2.3
0.39 —1.2
0,33 —0.9
1.13 —1.2
0.73 —0.9
0.01 —0.9
8.89 —0.6
3.80 0.0
0.63 —0.0
2.90 0.0
0.52 1.2
0.91 —3.2
2.83 —3.2
3.02 0.9
2.73 133.2 0.0 888888 880888
8.20 835.6 0.0 8*8888 888*88
0.67 276.2 0.0 nn.8 880888
0.73 12.9 0.0 888888 89*888
0.38 862.7 0.0 888888 088888
0.32 201.4 0.0 088888 888888
0.62 127.0 0.0 888*88 888888
0.38 872.0 0.0 880888 •n8,8
0.20 204.0 0.0 88880 888888
0.20 329.1 0,0 880888 80 .888
0.32 870.3 0.0 808888 808888
0.32 205.0 0.0 888888 888888
0.30 329.6 0.0 888888 888*88
0.29 800.3 0.0 888889 880880
0.13 208.6 238.2 13.97 —22.20
0.29 330.3 309.0 18.90 —37.9 3
0.20 870.9 877.9 —1.88 —10.18
0.39 203.3 270.0 2.33 —23.38
0,33 129.3 326.3 31.00 —31.86
0.87 872.3 81 1,9 —1.32 .18.91
0.2 W 213.0 270.0 2.33 —23.02
0.23 113.1 0 0 880888 888088
0.03 219.0 U 0 888888 88808•
0.30 200.0 0.0 880888 8I8OSl
0.20 213.6 0.0 888888 808808
0820 232.3 0.0 0818* 888808
0.38 201.2 0.0 888808 880088
0.23 113.3 0.0 808088 888881
0.20 218.0 0.0 888888 888888
0.’1 282.1 0.0 888888 88088
0.30 130.2 0.0 808880 888888
0.23 228.3 0,0 888888 888888
0.13 263.3 0.0 888888 888888
0.08 310.9 0.0 888888 888888
0.33 120.0 0.0 888888 888888
0.30 282.3 438 J 3.17 9.98
0.32 133.9 1098 3.79 10.80
0.20 111.0 877j9 —02.12 .40.06
0.80 202.9 270,0 —3.03 (3.72
0.06 217.2 220.3 0.73 4.47
0.12 138.8 877.9 —07.68 —83.09
0.17 208.7 270.0 —8.37 5.10
0.20 102.0 0 4 888888 888888
0.80 833.0 0.0 •880 8 888808
0.10 203.! 0.0 888888 888888
0.00 108i3 (7.0 888888 888808
0.28 480.3 0,0 888888 888888
0.83 261.2 0.0 888888 888888
0.28 106.0 0 ,0 888888 888888
0.13 830,7 0,1 1 .88888 888088
0.23 203.6 0,0 801888 888088
0.11 106.0 0.0 880888 00888
0.80 801.2 0.o 808888 888888
0.89 204.3 0.0 88088 888888
0.73 107.3 0.0 *88888 888888
0.12 865.1 0.0 S88808 888888
0.82 268.0 238,2 ‘.36 3.04
0.89 107.1 109.0 —2.03 .2.00
0.I 831.7 .17.9 —1.47 •3.80
0.50 208.0 270.0 —8.40 —8,79
0.23 207,9 116.3 —7.20 —0.29
0.21 832.9 817.9 —3.28 3.87
0.83 265.7 276.3 .8.02 .6.1 )
81148 30 0 (6!
8 0 0 C 8 1 ..u93011.
332 2300 30 13 Tv 3981 808 4
-t
L I .,
I I.
‘9,
1—3 Iv 300 1 8082 S F V 6 W ’.
TIE
8 L
0.80 112.6 0.0 888888 888*88 30 00.2
0.83 880.3 0.0 88088* 880880 I 90 812.0
0.30 270.0 0.0 8 80 8 8 8 i.e. .. to zit.s
0.30 133.2 0.0 880808 888808 io n.m
1.11 483.4 0.0 8088 80 ‘ •0 2 90 193.0
0.72 201.7 0.0 8 8 8 0 8 8 888888 60 10 .0
0.32 134.0 0.0 888088 088*88 30 33.0
0.30 887.8 0.0 8*8888 088888 3 90 393.9
0.01 203.0 0.0 08088 00884 60 203.6
0.03 334.8 0.0 808801 888001 30 89,9
0.12 484.8 0 ,0 88 1S80 888881 0 8 90 300.7
0.00 702.0 0.0 808080 88808 60 202.4
0.93 130.0 0.0 888888 88888 30 83.2
2.22 460.0 0.0 888080 88888 5 90 801.6
0.86 201.9 254.2 31.87 10.4 00 197.0
0.26 336.0 109.0 28.07 21.9 30 86.1
0.32 880.3 871.9 —6.29 0.9 6 90 191.2
0.93 200.9 278.0 1.’7 0.1 80 208.1
0.80 113.3 318.3 16.33 13.2 10 33.9
0.83 889.6 677.9 —3.92 .9 7 90 396.0
0.32 208.0 270.0 2.06 0.7. 00 207.3
1.70 12 88 0.0 888888 888888 30 117.1
2.03 830.3 0.0 808008 1 90 228.9
0.73 207.3 0.0 800888 88*808 60 267.0
0.02 122.1 0.0 888888 888888 30 128.4
0.32 833.3 0.0 008088 888888 2 90 283.9
1.03 268.7 0.0 881818 888*88 60 273.4
2.83 123.2 0.0 888088 088888 30 120.0
3.73 837.3 0.0 8fl 080 888888 3 90 229.0
0.90 207.8 010 888080 .80.0 8 60 277.4
0.00 224.2 0.0 088080 880088 30 132.0
0,93 8)3.0 0.0 880088 • 8 0 0o 8 C 8 90 230.0
0.60 200.3 0.0 0 08 *88 •en’8 60 279.0
0.93 124.0 0.0 88080 •‘fl’8 30 138.3
u.66 830.1 0.0 008888 888*88 9 90 386.7
1.80 206.9 238.2 8.90 12.13 80 279.3
0.90 (21.9 IOV.6 21.09 49.06 30 232.1
0.10 43 ).? .77,3 .0.4. —8.89 6 90 196.8
0.25 200.0 278.0 —4.09 5.32 00 270.0
0.70 223.0 210.3 7.98 42.29 10 213.0
0.70 830.2 811.9 —0.12 —8.66 7 90 172.0
0.03 207.3 270.0 . 1.34 2,93 60 203.2
1.20 334.2 0.0 0*8888 818881 30 90.1
3.03 870.2 0.0 008088 “ • • 3 90 850.9
0.41 203.? 4.0 0800 08 ‘‘ 80 239.1
1.27 131.0 0.0 0 0 8 .8 . 30 102.9
0.33 .60. 0 0.0 008088 08*888 2 90 888,4
1.20 202.8 0.0 808808 00000 60 283.3
1.23 333.0 0 . 0 00880 008800 30 308.3
0.96 483.1 0.0 888808 088888 3 90 449,3
0.01 202.7 0.0 80800 088808 60 202.8
0.00 113.3 0.0 808888 • ‘0 30 105.9
8.80 030.0 0.0 888808 88088 F 8 90 880.9
0.67 279.9 0.0 08 8 8 88 ••°•0 60 203.3
2.89 123.0 0.0 888008 80080 30 106.1
0.32 ‘?0.i 0.0 .8.8 0 . 88808 3 90 888.9
3.27 270.2 238.2 0.65 22.74 60 283.9
1.30 329.0 109.0 l .7S 21.09 30 100.3
0.32 881.3 7P,9 .3.44 —1.02 0 90 450.0
0.11 271.8 278,8 —1.03 2.04 60 263.3
0.79 130.2 118.s 11.19 11.07 30 106.7
0.20 806.3 71,9 —2-so —2.21 7 90 831.7
0.73 272.0 218.0 —2.83 4,19 60 260.1

-------
Table 7 — (Cont’d)
I I.
S £ V AVG
D
I L
‘I P C
£68! 4882 1 V AVG
P L
0.94 —8.3
2.91. —3.5
0.59 —6.4
0.47 — .4
3.85 1.8
0.64 —1.6
0.73 —1.3
2.86 —2.1
0.94 1.8
0.80 —i.s
3.32 —1.3
0.64 0.8
0.33 —2.1
3.17 —2.0
0.79 —2.1
0.44 —2.5
3.14 —2.2
1.06 —2.2
0.57 —2.9
2.9? —2.0
0.75 0.0
0.38 13.4
23.16 16.0
0.69 15.3
0.43 13.2
29.23 13.4
0.68 14.7
0.73 14.9
9.57 13.6
0.6! 29.2
0.2! 13.3
18.39 13.1
0.62 16.3
0.31 16.3
17.53 17.4
1.06 17.4
0.63 17.3
9.60 17.
1.27 16.4
0.46 16.2
7.53 14.1
1.25 13.6
0.27 —4.9
3.12 —3.3
0.59 —3.6
0.82 —3.8
4.23 —3.6
1.’o —5.8
1.80 —3.6
3.80 —3.7
0.58 —3.7
1.11 —3.8
3.26 —3.8
0.79 —3.5
0.47 ’ ‘—3.6
2.72 —3.2
0.71 —3.6
0.63 3.4
3.26 —2.9
1.46 —2.9
0.98 —3.1
2.97 3.5
1.36 —3.5
o. 45
0.11
0.55
0.30
0.35
0.25
0.15
0.85
0.25
0.20
0.05
0.15
0.20
0.11
0.20
0.17
0.23
0.43
0.40
0.05
0.00
0.06
0a66
0.11
0.35
0.17
0.35
0.26
0.11
0.20
0.26
0.20
0.41
0.30
0.23
0.26
0.20
0.33
0.06
0.36
0.51
0.05
0.30
0.05
0.23
0.49
0.15
0.23
0.15
0.25
0.11
0.11
0.15
0.55
0.03
Out ?
0.10
0.41
0.17
0.15
0.17
0.20
0.55
RUN? 500 (0 1
60 P0.1 HUM iDITY
SO 2180 50 13 TV
RUN 7 50 0(0 F 60 PC’I7 HUNIQITY
50 zt o so 1—3 IV 1881 cNN2
30
1 93
63
50
2 90
60
30
3 90
40
30
A 49,3
60
‘0
5 93
60
30
4 90
60
135.1
448.4
282.2
134.6
668.0
281.8
114.3
448.7
281.0
134.6
449.5
281.8
132.4
450.3
281.9
134.1
450.2
282.9
0.74
1.70
0.58
1.16
2.92
l.3
0.34
3.5t.
0.58
1.23
3.00
0.83
0.46
2.63
0. 2
17.68
1.98
0.93
—3.7
—0.4
—1.9
2.0
—2.0
—2.2
—2.13
—1.5
—2.2
—3.2
—3 ,8
—1.4
—3.2
—3.6
—3.5
—1.5
—3.3
—3.9
0.10
0.80
0.65
0.11
0.20
0.80
0.62
0.63
0.83
0.30
3.20
0.10
0.55
0.32
0.33
0.72
0.40
0.77
38.9
468.9
284.2
116.6
450.1
286.0
334.6
45(7.3
283.3
131.8
632.2
283.2
136.7
454.0
285.4
137.7
451.3
286.8
11 5. 3
479.1

11’.I
*80.2
275.7
11s.0
480.1
276.8
116.3
482.5
280.2
116.3
683.3
276.8
118.6
480.2
276.8
10.56
—6.30
3.52
19.71
—6.77
3.01
30.79
6.41
2.36
18.45
—6.28
1.79
17.47
—5.90
3.12
16.13
—5.55
1.60
17•47 13
—6.39 I 90
2.19 60
17.99 70
—.6.69 7 90
2•41 60
18.9s 34)
-.6.55 92
1.51 60
15.67 30
—6.91 0 ‘90
0.58
14.67 341
-.6.61 5 20
1.83 60
£5.10 3’)
—6.25 4 9t1
348 40
822.5
467.3
3 19.8
114.2
671.6
282.1
127.0
4 1 . 1.2
275.7
125.1
469.9
280.8
126.5
673.0
282.5
123.5
411.2
2 115.7
30
135.3
3.68
—3.4
3.32
138.8
118.8
17.01
34.08 33
124.1
7 90
‘54.5
2.14
—3.3
1.01
457.6
485.8
—5.82
—6.46 7 90
‘75.0
60
23 1.2
1. 1
3.4
7.20
286.6
281.5
3.46
0.2* 43
284.5
13
142.0
0.68
13.3
1.51
126.7
115.2
9.95
gs.25 30
133.7
1 40
495.9
3.22
87.1
0.55
438.8
479.1
—8.40
6.81 1 90
159.8
60
30
2 54
60
10
3 90
243.5
142.8
455.2
283.5
139.8
459.0
Q.79
0.71
4.63
0. 2
0.65
2.65
16.8
16.6
16.8
15.9
14.2
14.4
0.53
0.11
0.92
0.63
0.81
0.10
268.5
125.1
438.3
267.3
125.6
439.5
116.5
114.1
480.2
275.7
113.0
685.?
—1.18
9.69
—8.7!
—2.95
1 1.!?
—6.47
1.97 60
36.30 30
—5.20 2 90
1.86 60
43.80 30
5.45 3 90
278.4
132.1
174.9
277.6
131.3
880.1
40
30
9 90
60
30
5 90
60
33
6 90
60
33
790
281.3
139.6
‘52.3
281.3
338.3
452.6
283.2
138.8
451.9
281.6
834.6
453.6
0.59
1.30
3. 6
0.64
0.14
2.92
0.80
0.36
2.19
1.03
8.04
1.94
15.0
16.1
14.1
13.3
83.3
17.7
82.2
12.7
11.0
32.6
11.2
30.8
0.41
0.62
0.20
0.10
0.88
0.35
0.50
0.28
0.20
0.93
0.69
0.92
766.2
125.4
431.9
267.9
124.6
439.9
269.0
126.0
438.8
268.8
125.5
460.8
278.8
116.3
484.5
280.4
114.3
484.5
276.8
116.6
480.2
276.8
118.4
485.8
3.79
7. 6
—9.23
—4.37
7.81
—8.83
—2.83
6.15
—8.68
—2.88
5.66
—9.21
1.63 60
19.97 30
—6.29 1 4 90
0.60 60
18.62 30
—8.19 s 90
1.58 60
17.01 30
—5.89 6 90
8.66 60
85.14 30
—7.04 7 90
277.9
833.0
197.1
281.0
133.5
186.6
283.2
134.5
188.5
287.3
133.2
184.4
60
278.9
1.3!
8.9
0.97
269.9
281.5
6.44
—1.27 60
276.0
43
1 90
152.3
486.9
3.19
3.14
17.7
28.9
3.14
0.61
834.6
464.9
115.1
4411.4
16.11
—2.94
11.46 30
1.63 8 90
103.4
649.7
60
10
1 93
105.8
851.7
691.7
0.61
0.5?
3.27
18.9
22.6
28.5
0.86
0.73
0.65
283.8
131.0
470.5
214.3
114.!
‘80.2
3.19
£4.86
—2.08
11.19 60
14.70 70
1.39 2 90
263.6
101.9
450.5
60
10
3 90
40
33
ç i. 70
63
33
5 7)
63
3)
73
53
30
It)
s
505.2
156.7
497.6
131.4
167.6
499.3
326.3
£17.7
419.0
734.4
145.7
‘ - 9 3. 0
7’0.6
184.4
.99.0
1’ 4.0
3.93
0.64
1171
0.16
1.19
0.99
0.11
0.41
0.19
2.’)’)
1.43
0. 9
1.13
1.03
(1.99
1.56
24.5
28.5
29.0
33.2
33.’
38.6
3.1
46.1
47.3
72.5
5’.7
55.,
3 1,9
59.0
“.2
73.0
C.’.5
0.55
1.00
0.57
1.14
0.4 1
0.24
2.86
7.32
3.75
1.!’)
ti ll
1.1”
1.63
1.0?
t. 5’
274.6
810.1
468.3
266.8
I I ’.’
460.5
283.1
£31..
451.4
181.9
171.3
4 63.1
1L1.6
816.3
454.7
j7 5.o
175.7
115.0
480.2
2’6.l
1 16.3
481.5
281..? -
846.3
481.4
134.3
118.4
460.?
116.8
118.6
483.8
l1S.6
3.14
15.86
—2.48
4.66
13.81
‘ ‘
1
12.9?
6.’1
1.08
1 1.56
—7.11
1.1 1 1
6.50
6.’l
—2.64
£1.16 60
60.41 30
1.51 3 90
l .64 60
44.15 33
“ 1 F 4 90
£6.44 60
Sg.73 20
8.41 5 90
JU.713 60
56.53 30
1.90 6 90
15.811 60
55.4? 50
/.69 1 co
9.01 60
263.0
103.8
638.6
261.6
104.9
651.9
262.6
106.6 -
453.8
263.6
805.8
453.8
264.7
805.5
433.7
243.3
110.8 115.1 13.54 6.16
4 14*4 479.1 1.34 4fl0
284.5 474.5 3.4) 1.92
829.7 814.8 11.67 10.61
673.6 400.2 —3.41 —1.79
281.8 37b 7 2.94 4.31
128.4 813.0 83.68 11.47
669.3 480.1 —2.26 — 1. 14
277.5 276.8 0.27 0.40
827.4 316.3 9.48 8.08
471.2 462.5 2.32 1.60
284.7 280.4 0.90 0.41
128.7 816.1 10.40 8.74
473.1 482.5 —1.52 1.95
284.8 276.8 3.90 2.06
828.0 118.6 7.93 6.82
673.4 480.1 8.41 —1.58
285.0 276.8 2.96 4 43
129.0 1L8.6 8.15 big?
471.1 455.8 3.79 —4. 34
284.5 284.5 0.30 0.117
8 18.2 115.2 2.60 16,02
163.7 479.1 —69.98 —66.64
862.8 274.5 4.25 1.39
186.8 826.8 2.62 15.77
859.4 480.2 —48.79 63.56
262.9 275.7 4.64 0,69
116.3 143.0 2.96 14,21
864.6 480.2 45.75 62,49
262.7 224.8 —5.1! 0,37
837.6 116.3 1.03 14.27
182.0 482.5 62.27 —59,14
244.6 210.2 —5.56 0.27
386.8 116.3 0.63 14,70
167.1 482.5 flS.34 —6S.72
265.7 276.8 —3.99 2.29
117.1 118.6 1.22 11.41
1717.9 480.2 —46.60 —60.73
265.8 276.8 —3.96 3.98
117.0 118.6 1.83 13.11
170.2 485.8 —66.95 —62.04
262.3 282.5 —7.12 —2,30
106.3 115.4 —5.95 —40.21
433.2 479.8 5.39 —4.13
265.2 274.5 —3.38 —4q74
107.7 116.1 —5.97 5.t3
454.1 410.2 —5.42 —6.18
264.8 225.7 —3.93 —5.72
107.5 113.0 —6.80 —8.05
495.4 480.2 —5.16 5.95
263.1 276.8 4.34 .5.49
808.8 116.3 —6.49 —9.78
455.8 682.5 —5.52 —6.12
248.2 280.1 —4.99 —6.28
108.1 416.3 —7.09 —10.07
456.4 482.5 —5.39 —6.08
267.2 226.8 —3.44 —4.78
109.2 1*8.6 —7.93 —80.83
456.8 490.4 —4.87 —5.50
267.7 276.8 —3.29 —6.36
108.7 118.6 —8.32 —18.02
659.3 485.8 —5.45 —6.39
266.8 284.5 —5.52 6.75

-------
Table 7 — (Gont’d)
80 PC I .) minIo n ,
1—3 Tv £1191 £092
0.90 *24.6 110.7 12.54 11.19
0.90 810.3 440.7 —3.03 — 1.35
0.7) 233.4 257.4 —0.6) 9fl4
0.16 114.9 109.6 5.78 16.14
0.5* 436 ,1 447.0 —8.77 I.. 8
0.33 231.9 240.4 4.17 £9.44
0.41 414.7 111.0 1.40 44.09
0.35 411.7 433.1 —0.18 5.57
0.44 234.) 234.3 1.41 11.26
0.12 116.0 107.3 4.11 34.14
0.31 430.7 0.0 44.44 1 •St S•
0.36 234.9 23 1,2 0.20 21.10
0.17 *15.7 107.3 7.00 50.26
0.10 441.1 443.2 .4.77 7.02
0.11 asa.o 236.2 —0.41 20.9 1
0.30 116.1 107.3 0.15 54.42
0.22 6)4.0 0.0 0101 0440
0.09 252.1 0.0 444111 0 .40
0.43 115.1 0.0 . .• 4 9 4l•9S4
0.24 434.1 0.0 l.. 44
0.11 231.6 0.0
0.13 114.6 1 10.7 3.57 4.04
0.40 332.1 ‘40.7 —24.49 —24.04
0.44 346.4 237.4 .4.21 .4.44
0.37 111.s 109.6 1.66 0.24
0.53 216.3 467.6 40.3 1 —42.16
0.30 244.0 246.3 —1.04 —4.41
0.41 111.2 111.0 —1.30 —6.0’
0.10 296.0 645.) 34.55 —15.79
0.17 244.3 244.3 —3.67 8.09
0.20 111.4 107.1 4.17 0.79
0.43 294.4 0.0 n.n. ...n•
0.32 243.2 234.2 —3.3e —5.41
0.65 112.6 *07.3 4.92 3.1)
0.39 302.4 463.2 —s4.S3 —34.04
0.30 243.9 244.2 —1.24 5.28
0.14 112.1 10 1.3 4.31 0.24
0.23 313.4 0.11 •I44S• 4 4 9e4
0.11 245.1 0.0 44.4..
0.43 111.9 0.0 4 4 40 4tfl14
0.46 113.0 0.0 4..... • 4444
0.31 244.? 0.0 ...... 4.44..
0.20 103.3 110.7 —4.47 —14.19
0.03 421.3 440.1 —4.34 —3.47
0.20 231.0 237.6 —2.53 —4.11
0.13 100.9 109.6 —1.94 —11.44
0.05 461.3 447.4 —5.26 —6.56
0.36 243.6 286.5 0.30 —1.94
0.40 99.3 141.0 —12.06 —11.66
0.66 436.6 453.1 —3.67 —5.25
0.10 364.4 234.3 —3.92 6.98
0.05 96.6 107.5 —4.31 —18.00
0.4* 436.3 0.0 •9S444 0440
0.05 245. I 234.4 —1.36 —6.19
0.20 94.3 107.3 —0.34 18.44
0.03 440.1 461.2 .4.99 —6.46
0.17 245.5 25 4.2 —1.40 —4.61
0.43 97.1 Ic?.) .9.34 .11.44
0.40 418.1 0.0 4444S4 4ll4e
0.23 244.4 0.0 •4S 44 4400
0.20 97.0 0.0 444S49 44044
0.46 440.3 11.0 ••usø. •04 4l
0.10 243.7 0.0 44t 14S 4400
9(38 6 90 0 (0 9 30 PcNI HUMIDITY RW 3 90 016 F
a -
‘ ii
1
I L
4l (
93£
Iv
74F
494
30
2( 90
30
1—3
79
111111
(992
S(V
797
AVG
615
2490 60
— I.
L
33
* 90
40
10
I 33
83
10
* 33
60
90
4 4 90
83
11
9..
*31.6
423.0
274.2
133.5
441.9
272.3
*11.3
.30.0
249.0
130.2
57.0
J49,7
33.5
4 . 1.7
4.12
5.63
3.39
1.44
2.46
2.24
3.27
2.03
2.29
2.4*
1.39
0.61
0.91
1.82
3.1
5.4
0.3
1.8
2.4
2.2
0.7
—1.3
1.)
—1.3
1.6
—1.1
—1.2
—0.5
0.90
0.91
1.33
1.11
2.26
2.60
1.o l
5.11
1.94
0.77
1.47
1.71
3.02
3.33
114.9
421.4
213.4
132.0
419.3
210.3
110.7
419.5
272.4
*32.0
439.8
27(3.4
1)1.0
442.3
110.7
440.1
257.4
109.6
è47 3
244.4
113.0
456.3
254.3
101.3
0.0
23 .2
10 .3
461.2
41.61
—4.11
6.3*
20.45
—6.04
0.7?
15.49
1.44
4.20
23.02
0404
6.54
£4.OC
. 4.34
*9.04
—1.3)
4.44
21.44
—5.51
9.42
16.8 0
1.RI
4.64
21.26
0o 4
6.10
21.6#
.4.84
10
190
60
10
..93
43
13
390
63
30
6 4 93
60
30
5 90
111.1
411.0
232.3
149.4
‘74.0
294.6
140.!
440.7
300.7
163.6
439.4
303.1
161.3
‘95.3
1.27
3.39
1.49
0.1%
1.49
1.14
0.43
2.21
0.97
0.70
3.04
0.83
0.39
2.62
—1.4
15.2
26.4
11.5
11.9
42.4
43.4
46.9
43.4
49.)
31.3
31.1
54.1
54.8
60
33
. 9 .
40
10
267.4
121.9
437.8
267.4
124.8
3.87
1.37
1.14
1.37
1.68
—1.9
—3.1
—8.9
—8.3
—1.6
1.64
1.71
1.04
2.95
2.04
269.3
131.1
482.3
272.1
*30.1
25’.2
101.1
0.0
0.0
11.0
8.02
2.13
. .....
.4440
4040
5.28
19.4,
.4.. ..
44m4l
14404
60
10
8 90
80
7.?
307.4
*70.0
492.7
304.9
173.3
%.77
0.6?
2. 3
1.23
0.5)
34.8
33.9
34.4
54.7
53.2
9 0
8)4.1
3.14
— 1.2
1.00
413.3
0.0
“ .4
44’. ’.
7 90
893.9
2.51
34.0
40
246.6
0.33
—3.6
2.77
270.3
0.0
.4 ....
......
63
103.0
1.36
56.3
30
137.2
0.91
*3.4
0.89
121.7
*10.1
9.90
/1.95
30
113.2
0.64
0.3
I 90
4*3.1
3.25
26.6
0.11
•03. 8
440.1
.4.0’
3.07
3 93
334.4
7.39
1.0
83
267.1
1.4*
*6.3
0.89
230.9
23 .8
—2.37
1.76
60
248.9
1.20
0.3
33
1)3.3
1.31
15.8
0.30
*17.4
109.8
7.20
21.61
30
139.9
0.97
—1.5
2 90
417.3
2.22
43.8
0.44
841.9
847.3
—9.40
-4.30
2 93
273.1
18.14
—1.0
83
244.1
0.91
13.1
0.83
2)1.0
283.5
0.91
1.05
43
282.1
0.91
—3.9
30
131.3
0.85
18.2
0.41
117.0
111.0
1.64
16.44
30
106.2
0.4?
—3.1
3 93
858,3
2.80
18.2
0.67
420.2
835.3
—7.70
—8.38
3 90
292.3
18.70
—3.6
41
264.7
0.39
2.6
4.33
231.1
236.5
—2.31
1.20
40
240.0
0.42
—5.6
30
1)1.1
0.36
13.4
0.79
117.6
to ?.)
9.41
2s.*0
33
*06.4
0.31
5.3
3 ‘ 90
435.2
2.37
13.6
4.30
421.5
1.0
400
4t4 . .
F . 13
291.3
5.03
—5.0
60
241.0
0.46
12.8
0.81
230.6
234.2
—4.80
1.80
60
240.8
1.09
—4.6
30
113.3
0.71
12.0
0.63
*16.3
101.3
10.81
41.62
13
*07.8
0.74
3.1
90
836.7
2.30
12.1
0.13
428.3
861.2
—6.35
—s.7j
4 ‘73
396.1
12.11
—5.5
60
262.9
0.94
11.5
1.02
254.3
234.2
—1.18
1.40
63
241.3
3.02
4.6
30
*29.0
0.90
14.1
0.61
111.3
10 .J
9.28
20.29
30
*37.6
0.43
8.5
4 90
434.0
2.90
11.1
0.38
822.9
0.0
04411
4 100
4 33
349.1
*0.38
—8.4
40
261.1
3.19
10.6
0.69
250.4
11.0
. . 4 .•
•ln,
40
280.7
0.66
4.8
30
120.6
1.30
*0.9
1.17
147.0
11.0
.0 4 4.
.S .. .
30
.07.7
0.36
—4.1
1 90
433.7
3.9)
20.1
0.95
843.3
0.0
“ I l l
S0 .
7 90
3*0.7
3.33
—4.1
60
299.5
0.60
10.4
0.43
289.1
0.0
•...4 .
. ....
63
280.2
0.30
.8,3
50
189.0
0.84
13.1
0.10
136.4
1*0.7
21.43
35.36
30
91.2
0.17
—6.3
1 90
.00.2
3.77
19.0
0.01
460.3
480.7
8.4?
0.91
1 90
16.1
1.46
—3.8
63
509.1
1.59
19.0
0.10
290.1
257.6
12.81
49.94
40
243.2
1.58
3.3
30
l ’ .6
.22
11.2
0.37
*18.8
(09.6
22.44
14s?2
30
98.4
1.05
6.0
297
94.?
0.99
12.1
1.17
836.6
447.0
8.02
4.80
790
431.0
2.36
—6.1
44
30 1.?
1.14
9.6
0.97
292.0
243.3
11.83
21.33
60
283.7
0.57
—6.1
30
186.1
1.89
9.9
1.00
1)6.9
111.0
42.20
49.91
30
93.0
0.34
6.3
1 93
499.0
0.99
14.9
1.10
838.0
855.3
8.20
9.57
1 90
831.4
2.38
—7.1
43
916.6
0.73
23.0
1.25
291.7
454.5
L8.3
.I,5g
8.s
2’4.8
0.64
—7.0
33
*64.9
0.37
29.3
0.17
139.)
1111.3
29.79
31.38
30
90.1
0.26
—6.4
or.
899.0
0.99
38.3
0.64
464.6
iI.0
. 4. ”.
•14 . 4 4
• 4 93
429.9
3.12
fl 3
40
333.1
2.01
39.6
0.21
293.8
234.4
*5.8 !
31.01
60
236.9
0.44
—0.1
13
105.6
.21
43 9
1.10
139.6
101.1
10.1)
14.95
30
39.6
0.87
—4.6
3 90
899.0
0.99
31.6
0.28
487,3
661.2
—3.. )
1 . 10
3 90
411.4
2.94
—0.6
60
3 7.3
2.21
51. 2
2. 0
239.6
254.2
18.00
34.89
60
236.9
1.42
—6.4
33
196.6
1.32
60.1
0.97
*36.3
10 1,1
43.9g
36.00
13
39.3
0.63
6.3
4 93
499.0
0.99
42.1
U n !
436.6
11.0
0.0.
••44us
4 90
.27.9
3.13
0.4
40
153.2
1.62
86.1
1.51
339.0
0.0
9 04
•I•04
60
236.0
0.46
fl 4
33
208.6
1.32
66.4
1.4*
137.9
0.0
“4...
30
64.3
0.28
0.8
7 90
43
499.0
383.1
3.99
3.99
70,4
71.2
0.82
0.0*
‘26.3
369.0
0.0
0.0
.4 . ,..
44 ”.
“4 .
I 93
40
8)1.9
233.2
3.06
0.61
—3.6
4.3

-------
Tabie 7 — (Cont’d)
I 1.
•1R
S £ V £97 ,
TPE
9 I .
#u’i9 900EGF
34 111.3 1.13
I 90 436.5. 149
60 11013 2.13’
30 130.1 OflS
2 93 .39.2 1.60
60 26 .7 3.61
3) 127.9 0.32
3 92 ‘32.9 2.13
6: 241.4 1.74
33 £25.0 0.93
90 430.3 1.97
63 239.2 1.10
33 121.1 2. 43
3 90 ‘32.7 1.13
6) 239.9 2.10
3) 124.9 1.27
6 90 432.0 2.07
60 259.7 1.1*
70 121.6 1.72
7 9 431.4 4.75
63 256.5 0.69
30 £39.2 0.53
1 90 439.9 2.22
6’) 240.0 1.59
IC 133.4 0.91
2 9) ‘30.0 3.02
60 263.3 1.52
33 £34.1 1è36
3 93 ‘29.4 3.00
60 237.7 0.07
33 131.4 1.51
4 90 626.0 2.03
60 237.4 0.49
)t 132.0 0.59
5 93 ‘30.3 2.45
60 234.2 2.13
37 120.6 0.73
I C 149s3 3.00
63 231.2 3.02
10 22 1.9 0.44
It 2 1.2 3.32
s: 232.3 0.67
fl £50.2 1.28
93 .67.2 2.19
It 282.2 0.67
13 13C.1 1.92
7 It 476.7 2.31
It 279.3 0.16
3. 133.5 0.91
1.’ ‘OS.! 2.20
s: 24 7.0 1.20
32 121.2 3.69
• ‘t ‘41.7 2.33
6. - 368.1— .. 1.59
1: 121.6 0.9 .
• 74. ) 5.’3
It 293.’ 0. 2
3’ t’1.. 0.9
7h.4 3. 7
Ot 276.3 3.14
3 . 1)9.9 0.39
3) ‘11.1 3.24
t. 2P3.7 1. 75
—5.2
—0.0
—6.6
—2.6
—1.2
.3.3
.7.7
.4 • 9
‘4.0
—3.5
—4.0
—4.3
—2.4
—2.2
—2.2
—3.6
—6.0
—4.4
1 .4
‘4.6
19.5
21.0
21.5
21.1
16.0
19.5
17.7
13.0
£3.4
*6.0
15.6
15.0
17.1
17.2
13.9
15.1
14.1
13.6
13.1
13.6
13.0
£3.9
6.6
—0.9
—5.6
—7.7
—5 • 7
0.6
—9.7
—9.4
—10.6
• 7
—5.0
‘.6
12.6
13.9
11.7
10.9
10.2
10.1
9.6
ORE
Tv 1991 6*92 $ £ V AVG
701
a i.
0.26 115.6 107.1 7.56 .U.i,1
0.15 433.6 465.2 —5.92 —1.31
0.20 251.6 234.2 —1.00 —2.66
0.20. £16.0 103.3 0.1% 2.81
01W 419.6 461.1- .6.09 —5 9 1
0.33 252.6 256.3 —1.31 —2.66
0.11 114.6 307.3 6.97 4.76
0.45 434.8 461.2 .6.12 —7.40
0.65 246.9 254.2 —2.67 —4.13
0.17 116.0 103.0 6.51 1.55
0.15 435.7 437.6 .4.70 ‘4.94
0.35 246.0 249.5 —1.01 —U.56
0.11 114.6 108.2 1.10 9.36
0.66 436.2 467.6 —4.67 4.i&
0.35 244.0 266.5 —1.02 —0.26
0.17 114*3 103.6 12.46 14.33
0.40 433.9 439.9 .6.64 4•9$
0.00 045.0 246.5 —1.42 0.53
0.26 113.7 106.2 7.10 9.09
0.05 435.0 457.6 —4.94 6.49
0.0 245.0 254.2 —3.61 —3.10
0.35 114.1 107.3 6.36 5.55
0.37 297.2 463.2 —33.63 —16.3.
0.47 245.3 234.2 —3.50 .6.10
0.90 114.9 £07.3 5.20 —0.07
0.32 29’.2 463.4 —36.m9 —51.90
0.43 243.6 256.5 ‘4*99 —7.95
0.50 £12.1 103.3 4.51 —3.60
0.29 345.5 663.2 —45.91 —d liii
0.09 239.2 236.4 —5.90 —10.24
0.37 110.6 105.0 5i33 ‘6.11
0.43 350.5 457.6 ‘21.39 —26.02
0.10 236.6 260.5 —3.90 9.69
0.05 110.6 106.2 4.15 —6.79
0.43 141.9 437.6 —25.20 —47.00
0.48 237.2 246.5 —4455 —9.17
9i40 110.0 101.6 6.19 —3.66
0.30 351.7 659.9 —23.50 26.24
0.10 237.2 249.3 —6657 —9.64
0.06 110.8 306.2 4*02 —7.61
0.32 346.1 .57.6 ‘24.24 —26.67
0.37 236*7 25 .2 —6.90 —11.71
0.50 99.1 1 07.j —7.63 .1 1.4 1
0.50 440.4 463.2 46.92 —3.36
0.40 243.7 254.2 —3434 —4.49
0.25 99.1 107.3 —7.62 —Io.Ss
0.20 463.6 663.2 -4.10 ‘4600
0.43 245.0 236.3 —4*48 ‘3.30
0.40 96.9 107.3 •7e1i —10.69
0.05 635.9 663.2 —6.69 .6.87
9.20 219.6 234.2 —5.67 —6.96
0.17 96.3 103.0 —6.10 —*1.02
9.46 433.4 *37 ,6 —6.29 ‘3.93
0.41 236.2 299.5 —4.14 .6.43
0.30 96.1 106.2 —9.49 —12.66
0.15 636.2 437.6 ‘4.67 —6.37
0.15 237.0 249.5 —4.62 —5.61
0.20 95.2 101.6 —6.29 9.17
0.05 436.7 439s9 ‘3.02 fl*17
0.37 236.0 266.5 ‘5.02 .4.24
9.55 95.9 106.2 —9.62 .12.30
0.16 .37. 4 esl,6 —4.41 ‘3.13
0.11 236.1 254.2 —6.96 —6418
60 OCOT HUMIDITY
Dim 9 90 DES F 80 ‘ c m ? ‘%mloITT
30 2160 50 1—5 Iv 9961 9*62
0\
SO ZERO 50 13
2.21 136.7 107.3 17.40 22.’ 30 107.2
1.71 436.6 461.2 —5.78 —5. I 93 420.8
&.io: flj.O 758.2 6.81 6. 40 246.6
2.65 132.7 161.3 23.70 21. 30 110.3
2.67 460.5 863.2 —8.91 —3. 2 93 433•5
1.76 263.0’ 254.5 1.32 2. 60 249.6
3.95 131.2 107.3 22.31 19. 3) 112.4
1.66 680.6 863.2 ‘4.19 —4. 3 9) 430.3
3.92 266.4 238.2 8.19 2. 60 283.7
9.30 129.1 105.0 12.94 19. 30 113.0
0.52 433.9 657.6 —5.10 5. 0 4 90 434.9
3.07 263.1 240.3 5.92 4. 63 287.1
1.67 126.1 106.2 19.01 *8. 30 £16.1
1.63 633.0 837.6 ‘4.92 —5. 5 9 ) 37.7
2.65 262.0 260.5 5.41 4. 60 281.9
0.92 147.2 301.6 25.10 22. 30 116.3
2.30 433.7 859.9 .3.25 —6. 6 90 436.9
1.60 267.3 260.3 7.62 4. 60 2.7.2
2.06 126.2 106.5 40.76 16. 30 115.0
0.81 834.9 457.6 —‘.97 —3. 7 93 437.0
2.36 261.3 24’.) 2.70 0. 60 246.3
0.90 119.6 107.3 I I. . ? 49,10 30 111.1
0.96 410.1 842.2 —9.7 4 —5.02 1 90 296.9
0.10 266.6 256.2 —1.07 5.82 60 2’1.2
0.75 114.3 107.1 6.30 46.19 10 103.2
0.25 619.9 663.2 —9.38 5.45 2 90 207.6
0.25 243.7 256.3 —8.27 1.65 60 236.1
2.06 116.4 107.3 lao 25.01 30 103.2
1.26 415.5 663.2 12.29 —7.46 3 90 332.6
0.36 242.1 j34.j —8.73 s o zzo.z
0.40 115.1 103.0 9.91 23.06 30 96.6
0.26 612.8 457.6 —9.67 —6.66 0 4 10 336.5
0.29 262.4 241.5 —2.4* 1.38 60 226.9
0.17 114.9 106.2 9.20 24.30 30 96.9
1.36 413.0 57. 6 —5.96 5 90 330.0
0.55 216.2 249.5 —‘.13 4.21 60 225.2
0.50 113.5 101.6 11.63 26.51 30 97.7
0.50 413.6 459.9 1U.01 6.93 6 90 359.2
0.43 219.1 246.5 —1.72 1.05 60 226.6
1.61 II .. ? 106.2 6.04 20.37 30 90.1
1.47 413.6 45 1.6 —9.60 —6.63 7 90 134.6
0.25 239.5 254.2 —5.00 —0.67 60 224.4
1.22 136.2 307.1 49.90 19.94 30 93.2
0.20 676.. 463.2 3.27 5.19 1 90 437.5
1.07 203.2 254.2 11.39 11.03 60 242.0
0.52 135.8 107.3 26.36 24.25 30 96.0
0.95 694.5 863.2 4.50 2.90
2 90 641.0
0.32 205.0 236.3 11.14 9.69
60 2 41.0
0.61 136.2 101.3 24,90 26.25 30 95.9
1.52 675.6 863.2 2.66 0.56
3 90 932.3
0.05 271.2 254.2 9.06 5.33
0.77 134.0 105.3 47.57 17.46 60 236.7
30 91.4
0.45 660.6 437.6 2.36 0.96 F 4 90 430.6
0.68 2 16.0 246.3 10.21 7.97
0.23 131.5 106.2 23.03 24.06.. • 60 235.1
4.21 871.4 457,4 i.0I 4.01 30 92.7
1.01 270.6 240.5 9.91 14.15 ‘33.2
0.63 127.7 111.6 45.59 iv.26 60 214.3
0.15 664.6 459,9 0.60 3.16 30 92.3
6 90 633.3
0.20 263.3 288.5 6.15 11.16
60 231.1
1.66 120.6 106.2 €1.18 31.62
30 92.9
0i43 860.0 - 857.6 Q.1Ci 2.3’ S
7 90 938.1
0.20 263.9 l5’.e 3.e’J 1.63
60 233.5
0.06
3.16
0.79
0.69
2.97
0.00
0.50
5.05
3.27
0.45
2.33
0.32
0.50
3.27
1.15
0.78
3.32
1.37
0.71
2.30
0.60
0.22
16.80
1.71
0.46
6.61
2.73
0.54
23. 45
0.59
0.20
5.21
0.96
1.02
6.18
1.11
0.67
7.99
0.43
0.46
0.00
0.5l
1.05
3.37
1 .05
3.21
2.69
0.76
0*52
2.76
0.75
0.19
1.99
1.32
0.62
3.63
1.13
0.06
2.91
0.07
0.10
3.69
0.65
—9.2
—7. 3
—7.2
3.6
-8.1
—2.9
.2.3
—4.5
—3.1
-0.9
—0.7
1.0
1.3
‘ .5
3.0
1.9
2.9
2.2
2.0
2.0
1.2
‘3. 0
—2.2
‘ 4.0
5.6
—6.5
—7.,
—6.9
—13.0
—21.0
— 12.0
— *2.0
—11.6
—12.6
—11.9
—11.9
—12.2
12.6
12.8
12.3
—12.0
—12.2
‘4.1
—2.9
—2.9
3.l
—2.0
—3 • I
‘3.0
—3.6
—1.0
‘2 *0
—3d
—1.3 -
‘2.0
—2.9
flit
‘3.4
‘2.9
—3.0
3.2
—3.2

-------
(I) Column 7, labeled EFtRl, is the zero—drift corrected,
relative error (In percent), defined as follows:
ERR1 = 100 x [ (1—3)— TV ]
(j) Column 8, labeled ERR2, is then the total relative error
(in percent):
ERR2 = 100 x ( AV0 o )
Lack of complete data on true value of nitric oxide concen-
tration in column 6 Is due to two factors. First, the Model i6i
instrument was not installed during runs 1 and 2. In this case
th& true value was obtained by correlation of the phenol/disu]-
fonic acid analysis with manual operation of a modified DuPont
1 ,60 analyzer. Second, during runs 3-9, failure of the Z161 pen
recorder to function properly during unattended test time periods
resulted in some instances of data omission.
The gross discrepancies (ERR 1 and ERR2) for instrument E
at the 90% span level cannot be attributed to inaccuracy of the
instrument at the i 5Q ppm nitric oxide level. The large apparent
errors reflect our inability to property match impedance of the
instrument in interfacing the instrument output with the computer
system. A digital voltmeter placed directly on the instrument
output indicated that the instrument was performing accurately
at the 90% span level.
The summarized data In Table 7 were employed to conduct an
ana2y3is of zero drift and repeatability.
Zero Drift Ana lysir
During the temperature, humidity effects test program, each
instrument was cycled through seven replicates. Each replicate
consisted of three span levels preceded by a zero level. At
each span and zero level, three 10—sample averages were reported.
Thus, one 17.5—hour run provided 63 zero points for each instru—
irient.
In the zero drift analysis, the first 10-point zero average
as considered the true value, X . The zero drift parameters
are then defined as follows: 0
1 17

-------
162
x’ 2
STANDARD DEVIATION - o - 1’ (1)
(ppmNO) - V — 61
62
MEAN DEVIATION = i l1xo - X J
(ppm NO) — 62 (2)
62
MEAN DEVIATION INTEGRAL = 1 1 0 — X 1 )’L T] (3)
(ppm NO•Hours) —
where T = Hours
62
MAXIMUM DEVIATION = Max [ X - X 1 ] (4)
(ppm NO) 1=1
INDEX = The point where maximum deviation
occurred (2—63).
Table 8 presents the zero drift parameters for the nine
conditions of external temperature and humidity.
The data in Table 8 are plotted in Figures 19 through 23
where the standard deviation in ppm NOx is plotted versus tem-
perature for three conditions of external relative humidity.
A number of conclusions can be drawn from the data of
Table 8 and from the figures. The index corresponding to the
maximum deviation from the Initial zero appears to be random -
this observation results In a conclusion that the drift of zero
does not occur monatomical].y with time thereby defying any at-
tempt to employ a straightforward linear dirft/unlt time rela-
tionship. From the :figures, no simple relationship connecting
zero drift with either external humidity or temperature is
evident. It is presumed that other uncontrolled parameters in
the laboratory test sequence could have affected the observed
zero drift trends. Finally, except for a few instances, the
standard deviation In zero drift (ppm NOx) is less than 25 ppm
or 5% of the full scale reading. This limit was considered a
permissible maximum range of deviation in the zero drift per-
formance parameter (Table $). Exceptions to this observation
are noted for Instruments C, D and E at Isolated points In the
test program.
1 18

-------
Table 8
ZERO DRIFT
ANALYSIS
RUN6 5ODEGF
RUN4 7ODEGF
RUN5 90DE F
40 PCNT HUMIDITY
40 PCNT HUMIDITY
40 PCNT HUMIDITY
1
N
S
STANDARD
MEAN
MEAN
DEVIATION
MAXIMUM
T
DEVIATION
DEVIATION
INTEGRAL
DEVIATION
II
A
8
C
0
E
F
O.22951E 01
0.47987E 01
O.14185E 02
0.52430E 02
0.13355E 02
0.31128E 01
0.18917E 01
O.45917E 01
O.12 106E 02
0.50988E 02
0.12611E 02
0.30409E 01
O.64110E 01
0.1 61E 02
0.41027E 02
0, 17279E 03
O.43416E 02
0.10305E 02
INDEX
50
34
34
40
61
47
17
4
41
49
20
44
51
61
62
61
57
A
0.60120E
01.
0.64770E
01
O.21949E
02
B
0.23377E
01
0.21278C
01
O.72110E
01
C
O.20651E
02
O.188C1E
02
0.63988E
02
0
0 4957j
02
0,47480E
02
O.16090E
03
(
O,381’2
02
0.302651
02
0.10256E
03
F
0.2300i
01.
0.21540C
01
0.72999E
01
A
4 • 80
7 • 69
26.20
63.80
17.10
4.30
11.50
4.20
32 • 70
63.90
123100
3.50
11.60
14.59
34.59
56.29
3 • 90
2 • 09
B
C
E
F
0.49!971 01
0.90106E 01
0. 16fl171 02
0.45’.68C 0?
0.213?OC 01
0.11241E 01
0.’.0409E 01
0.819831 01
0.1?1!’Or 02
0.442?6E 02
0.18245E 01
0.99835E 00
0.13694E 02
0.27783L 02
0.431771 02
0.14987E 03
0.61833E 01
0.33833E 01

-------
Table 8 — (Cont’d)
I
N
S STANDARD MEAN MEAN DEVIATION MAXIMUM INDEX
T DEVIMJON DEVIATION INTEGRAL DEVIATION
R
RUN 3 50 DEG F 50 PCNT HUMIDITY
A O.92396E 01 0 .85999E 01 0.29144E 02 14.60 35
B 0.28563E 01 0.27147E 01 0.91999E 01 4.19 16
C 0.11508E 02 0.B9639E 01 O.30377E 02 25.00 61
D 0.10506E 02 0.87245E 01 0.29566E 02 18.50 63
E O.53604E 02 0.41714E 02 0.14136E 03 78.00 46
F 0.16923E 01 0.16508E 01 0.55944E 01 2.50
RUN 1 70 DEG F 50 PCNT HUMIDITY
A 0.05698E 00 0.73114E 00 0.24777E 01 1.69 24
B 0.33810E 01 0.24704E 01 O.83722E 01 8.00 60
C 0.120211 02 0.10470E 02 0.35483E 02 21.39 b2
D 0.37070E 01 0.35049E 01 O.11877E 02 4.90 3 ’
E 0. 8673 —01 O.31147E—01 0.10555E 00 0.20 31
F 0.59986E 00 0.49344E 00 O.16722E 01 1.39 50
RUN 8 90 DEG F 50 PCNT HUMIDITY
A 0.29734E 01 0.23278E 01 0.7888eL 01 6.89 11
B 0.27655E 01 0.23213E 01 0.78666E 01 5.60 59
C 0.32339E 02 0.24975E 02 0,84638E 02 58.59 61
D O.50474E 02 0.48973E 02 O.16596E 03 58.79 63
E 0.50615E 01 0.47540E 01 0.16111E 02 6.60 23
F O.1638 E 01 0,14557E 01 0.49333€ 01 2.59 43
50

-------
Table 8 — (Cont’d)
RUN? 5ODEGF
RUN2 7ODEGF
RUN 9 90 DEG F
60 PCNT HUMIDITY
60 PCNT HUMIDIIY
60 PCNT HUMIDITY
STANDARD
MEAN
MEAN
DEVIATION
MAXIMUM
DEVIATION
DEVIATION
INTEGRAL
DEVIATION
1
N
S
T
R
A
0.13216E
01
0.99671t
00
0.33777E
01
B
0.27919E
01
0.23180E
01
0.78555E
01
C
0.25535E
02
0.22140E
02
0.15033E
02
0
0.61622E
01
0.60147E
01
O.20383E
02
E
O. 11846C
01
O.91639E
00
0.31055E
01
F
O.10866E
01
0.10393E
01
0.35222E
01
A
0.21707E
01
0.16836E
01
0.57055E
01
B
0.3126 C
01
0.26262E
01
0.88999E
01
C
0.35215E
0.
0.31165E
02
0.10561E
03
0
0.49 1E
01
0 44114E
01
0.14949E
02
E
0. 1608L
01
0.47376E
01
0.16055E
02
0.141201.
01
O.13934E
01
0.47222E
01
INDEX
5
63
55
61
49
50
‘1
53
55
28
10
4
22
St
30
43
22
6
4.10
7 • 30
43.50
8.40
2 • 60
1 • 79
4 • 89
6.10
51.29
10.40
7 • 80
2.20
6169
7.70
26 • 60
12.20
10 • 30
1.40
A
8
C
D
E
F
0.3012C1 01
0.41680t 01
0.35977E 02
0.77820( 01
0.77320E 01
D.77681E 00
0.25393E 01
0.3(88!iC 01
0.I3375E 02
0.69524E 01
0.71065E 01
0.70327E 00
0.86055E 01
0.12499E 02
0.65327E 02
0.23561( 02
0.24083E 02
0.23833E 01
51

-------
o 40% H .u midity
!!
I .’.
Tinperature, 0 F.
.Flgur.e:19.
instruznt A.:
10
0
E
Zero. Standard Deviation
vs. Temperature.
52.

-------
o40% Humidity
.50%
•60%
I I I I I
50
60 70
Temperature, °F
80 90
Figure 20.
Im;trurnont B:
0
0
z
E
V)
/
10
5
0
zero Standard Deviation
vs. Temperature.
53

-------
/
o40% Humidity
•50%
‘60%
60 10
I.
80 90
lemperatu re, OF
Figure 2].. Instrument C:
Zero Standard Deviation
vs. Temperature.
0
E
€/)
30
20
10 -
5—
S
50
51j

-------
I
S
4O
—
E
Figure 22.
30
20•
10
n
50 60 70 80
Temperature, 0 F
Instrument D:
90
50
o4 0%
• 50%
• 60%
Humidity
I,
‘I
U.
Zero Standard Deviation
vs. Temperature.
55

-------
o 40% Humidity
• 50% Humidity
• 60% Humidity
0
z
E
0
0
Temperatu re,
FIgure 23. Instrument F: Zero Standard Deviation
vs. Temperature.
56

-------
1 ity
Data employed for test of repeatability were taken from
Run I of’ the summary data sheet (Table 7), and are expressed as
differences in the nitrogen oxide readings (ppm) between repli-
cate one and replicate two. These data are presented in Table 9.
Table 9
REPEATABILITY OF NITROGEN OXIDE MONITORS
(Corrected for Zero Drift)
Span % of
Instrument 30 % 90% 6O% AVG Full Scale
A 2.5 1.7 2.2 2.1 <2%
B 1.3 2.6 2.3 2.1 <2%
C 2. 1 7.0 2.1 3.8 <2%
D 0.3 2.1 1.3 1.2 <2%
5.3 5.3 5.3 <2%
F 1.3 2. 4 2.7 2.1 <2%
*Data taken from Run #2, replicates 2 & 3.
**All 90% Span data for instrument E are invalid due
to impedance matching problems between instrument
and computer.
While further analysis of repeatability can be reported for
subsequent runs, replicates 1 and 2 of run 1 were selected since
other factors which could influence repeatability such as span
drift and temperature and humidity variations were not operative
during the initial run. A similar analysis for replicates 1 and
2 of run 6 indicate average differences of 3.2, 2.6, 6.6, 8.0,
0. ! and 3.6 ppm NO x for instruments A through F, respect i Vt’ 1 y.
This degree of repeatability i: ; within the target; limit. or
of f’ul 1 :;c;tlo rending ( ti 0 ppm M) )
The pe rforiu:tnce prtrarneters ;on I t I vi ty , reso I uti on , respOr I:;c
time ;xnd Jag, and lntet’I’erences wore determined in separate tentt’
after the ext,crnnl temperature and humidity variation test series.
A description or the test procedures and results for these param-
eters is presented as follows:
57

-------
3 i. t lvi t y
The sensitivities of the six continuous monitors were tested
by the following procedure. First, dry nitrogen gas was passed
through the sample distribution manifold and all instruments were
adjusted to zero reading. The zero readings were taken by the
PDP—12A computer every 20 seconds for ten minutes. A calibrated
gas mixture (370 ppm NO in N 2 ) was then metered into the gas
stream to yield successive nitric oxide concentrations of 16.8,
8.8, 3.9 and 2.0 ppm of NO. The sequence of data acquisition is
presented in Figure 2 l.
V / A Computer Sampie
____ (every 20 seconds)
Figure 2 .
Time Sequence for Sensitivity Tests.
The computer printout of the data is presented in Tab]e 0.
The sensitivity results are presented in Table 1]. The
results were corup 1 . ted by subtracting the th Ni zero 1 ue i mm cd i —
ately preceding tht first level value. rfh( o Va1W rcp Oscifl ‘
an average of tori reach ngn in each case. f ; a result, i,lic ri’ i1—
ngs or all instruinent: in ppm NO are c .,mpared to t.hc I rit wti
concentrations.
ii
i:N IT V I TY 11? NO CUNT I NUOU M N I
‘C
Jnstrurrient
A
B
C
D
E
1?
16J3
19.2
l9.L
16.1
10.0
18.5
7.8
8.5
9.1
0
7.2
6.8
2.L
ppm NO
3.9
1.7
1.5
0
1.3
U
2.0
0.7
0
0
• C-
0
0
0
L ] Computer pause
58

-------
f:thle 10
NO MONITOR SENSITiViTY DATA
(Computer Printout)
NO Cone. Reading Reading
( ppm) Replicate ( ppm) Variance ( ppm) Variance
A B
1.0000 - ?. 219 — 1.9497 2. 343 ) 1 — 2.bH bi
2.0000 - 1.91 (32 3.4862 0.68 36 0.2225
3. 0 0 0 0 - 8.6914 1.1 5 50 2.929 7 4.6624
C D
4.0000 16.b602 — 4.077 8 7.9102 0.0954
0 5.0000 75.39 86 2.920 8 8. 4 041 0.2543
6.0000 #8.2227 4. 3306 8.4961 1.7060
E P
1. 1 1 00 0 - 22.uöE03 — 0.2542 3.7951 — 1. 3213
8.0000 - 22.1b80 0.2223 3.4726 0.0000
9.0 30 0 - 22.4609 0.0002 4.1237 1. 1 4989
A
1.0 8 0 0 ta.4492 — 2.34 28 16.5039 1.3668
t.000 0 1C 1.7422 1.27 15 17.2 852 2.129 <
3.00 140 1 1.1328 2.7974 16.3086 0. 8583
4.i)IJ00 94.3359 12.7542 18.4570 1 2.5192
1U.8 .y O0O 90.4297 17.2056 18.1641 0.2543
6.0000 91.11 33 4.2444 17.4805 (2.5192
— a l.o I so 0.0000 3.bt4 Stj 8.1632
4 1.0 14 (40 - 41.0156 0.O Oi O 3.685 0 ( 2. 8372
9.OuJJ - ‘i ;.9180 0.0951 3.90 5 ) 2.040 )3
A B
1.0000 - 6.5430 — 2.1299 2.7344 2.5807
2.0000 - 0.2055 2.7656 2.3 1 13 8 2.1617
3.0000 - 7.2266 4.2809 2.3438 1.5259
C
4.0000 65.3320 — 5.8153 2.2461 0.2225
o 5.0000 64.6438 8.7299 2.8320 0.5192
6.0000 62.9883 5.5626 3.5156 0.2543
E F
7.0000 - 22.0703 — 0.2542 3.6896 — 1.2559
8. 000 - 21.7773 0.2224 3.0386 1.3605
9. 0000 - 21.4844 0.0002 3. 4726 1.305 2
59

-------
Table 10 — (Cont’d)
NO Coric. Reading Reading
( ppm) Replicate ( ppm) Variance _ (ppm) Variance
A B
1.0000 1.2695 — 2.3418 6.8359 — 2.1193
2.0000 0.7813 2.0769 4.3945 0.6888
3.0000 1.4648 6.1989 4.8828 2.1193
Q D
4.0000 63.3789 3.6965 10.7422 — 0.8477
8.8 5.0000 66.0156 2.3722 10.3516 0.2543
6.0000 65. 1367 4.8840 10.2539 0.2649
F
7.0000 - 28.3203 0.0000 1.0855 — 2.0408
8.0000 - 28.4180 0.0951 1.4110 0.6410
9.0000 - 28.4180 0.0951 1.5195 0.4710
A B
1.0000 - 7.3242 — 1.7484 2.7344 — 1.2292
2.0000 - 7.2266 0.6782 2.6320 2.4266
3.0000 - 6.4453 2.5855 1.1719 2.7127
C D
4.0000 54.1992 — 4.0785 2.5391 — 0.2543
0 5.0000 54.8828 2.2882 3.0273 0.0954
6.0000 51.9531 5.8903 2.9297 0 . 0000
E F
7.0000 — 22.0703 — 0.2542 3.5811 — 8.4902
8.0000 — 21.6797 0.1693 2.7131 3.9377
9.0000 - 21.7773 0.2224 3.0386 4.5002
A B
1.0000 - 4.6875 3.3485 0.2930 2.1299
2.0000 - 4.1016 2.0769 0.0977 2.0027
3.0000 - 4.9805 4.9697 - 0.6836 2.1299
C D
4.0000 51.3672 — 5.9750 4.8828 — 1.0596
3,9 5.0000 50.5859 5.0427 5.2734 0.6782
6.0000 51.3672 7.6708 5.9570 0.0954
7.0000 - 23.1445 0.2225 2.2790 2.4725
8.0000 - 23.0469 0.2543 2.9301 2. 1585
9.0000 - 22.7539 0.2223 3.0386 1.8838
60

-------
Table 10 — (Cont’d)
NO Cone. Reading Reading
( ppm) Replicate ( ppm) Variance ( ppm) Variance
B
1.0000 — 8.3008 2.1722 2.1484 — 4.6200
2.0000 - 7.6172 2.9246 3.7199 3.1365
3.0009 - 6.8359 3.1789 2. 1484 1.2992
2 D
4.0000 40.7305 10.6913 3.7109 — 0.3815
o 5.9000 49.0234 6.3146 2.7344 0.5934
6.0000 41.6563 6.1024 1.8555 1.36w
E F
7.0000 - 22.6563 — 0.1694 3.7981 — 3.6760
8.0000 - 23.0469 0.2542 3.6896 1.7791
9.0000 - 23.2422 0.1695 4.1237 3.1920
A B
1.0000 - 8.1055 1 .2822 1.4646 — 2.3842
2.0000 - 7.4219 0.6782 1.3672 t.5259
3.0000 — 7.6172 0.5934 1.5625 1.5259
D
4.0000 50.9766 5.8906 3.4180 — 0.4768
2.0 5.0000 51.2695 5.3507 4.9805 1.3669
6.0000 51.1719 8.9431 6.3477 0.2649
F
7.0000 — 25.3906 - 0.0002 3.4726 — 3.0466
8.0000 - 25.3906 - 0.0002 3.3641 0.9026
9.0000 - 25.6836 0.2224 3.5811 2.4725
A B
1.0000 - 9.2773 — 3.3245 4.0039 2.B50 4
2.0000 - 9.5935 2.2888 3.6133 1.4941
3.0000 - 7.9102 1.7908 1.1719 1.b650
C D
4.0009 53.5625 — 2.2882 - 11.6211 — 0.0954
o 5.0000 51.6602 2.2146 - 12.3047 0.2543
6.0000 48.9258 2.8493 - 12.2070 0.2M9
E F
7.0000 - 24.9023 — 0.2646 ZJ.6896 — 1.7791
9.0000 - 24.7070 0.2222 3.2556 1.2559
9.0000 - 25.3906 0.0002 2.7131 2.3678
6 ] .

-------
If sensitivity is defined as the concentration above rwhich
the instrument reading exceeds the noise level, instruments A,
B, D and E can be considered sensitive at the 3.9 ppm level,
instrument F at the 8.8 ppm level and instrument C at a level
between 8.8 and 16.8 :ppm of NO.
Response Time and Lag
All six of the instruments were purged with dry nitrogen and
the valves to the instruments closed. A 450 ppm NO concentration
was then fed through the manifold system. A computer—activated
solenoid valve was sequentially installed in the lines between
the manifold and the instruments. The manifold valve was opened
and the computer initiated each test by opening the solenoid
valve. Instrument readings were taken every 0.2 seconds for
50 seconds and stored on magnetic tape. The results were also
displayed on the PDP—l2A scope and photographed with a Polaroid
camera. The response time data In Table 12 were interpolated
from the computer printout while the response lag was measured
from the photographs.
Table 12
RESPONSE TIME AND LAG OF NITROGEN OXIDE MONITORS
Response Lag Response Time (sec)
Instrument ( eec) 66.7% 90%
0 3.7 5.9
8 1.9 4.2 7.6
*0 7.8 25.8 1 15.0
D 3.9 9.7 26.8
E 7.8 13.2 14.9
F 6.2 11.7 15.7
*Times include residence time in 50 z scrubber volume.
Table 13 presents the computer printout of the instrument
responses. While the sampling interval was 0.2 second, in every
case the print interval was 5, resulting In one—second periods
between successive data points.
Interferences
A series of tests were conducted to define the level of
interference of known flue gas constituents with the accurate
analysis of nitrogen oxides by the continuous monitors. Computer
62

-------
Table 13
RESPONSE OF NO INSTRUMENTS AT 1-sec TIME INTERVALS
(Computer Printout — Arbitrary Units)
Instrument
A - B ____ ____ ____
19.0000 37.0000 78.0000 15.0000 50.0000 93.0000
248.0000 39.0000 74.0000 15.0000 50.0000 95.0000
363.0000 125.0000 74.0000 15.0000 56.0000 97.0000
464.0000 310.0000 74.0000 15.0000 62.0000 97.0000
558.0000 488.0000 74.0000 46.0000 70.0000 99.0000
644.0000 585.0000 74.0000 117.0000 78.0000. 105.0000
726.0000 630.0000 78.0000 207.0000 82.0000 132.0000
792.0000 662.0000 83.0000 304.0000 89.0000 191.0000
826.0000 681.0000 103.0000 390.0000 105.0000 273.0000
839.0000 693.0000 121.0000 457.0000 130.0000 367.0000
835.0000 699.0000 144.0000 505.0000 199.0000 457.0000
824.0000 703.0000 173.0000 537.0000 283.0000 537.0000
816.0000 707.0000 205.0000 558.0000 378.0000 603.0000
812.0000 707.0000 232.0000 574.0000 478.0000 656.0000
830.0000 720.0000 261.0000 585.0000 574.0000 701.0000
806.000 714.0000 289.0000 593.0000 660.0000 734.0000
804.0000 718.0000 318.0000 599.0000 734.0000 761.0000
804.0000 720.0000 349.0000 607.0000 738.0000 781.0000
804.0000 722.0000 375.0000 613.0000 722.0000 796.0000
804.0000 722.0000 396.0000 617.0000 705.0000 808.0000
804.0000 724.0000 417.0000 623.0000 691.0000 814.0000
800.0000 726.0000 439.0000 628.0300 683.3900 820.0000
796.00fr 0 726.0000 460.0000 632.0000 681.0000 826.0000
796.000w 728.0000 478.0000 636.0000 679.0000 828.0000
802.0000 732.0000 496.0000 642.0000 679.0000 828.0000
798.0000 734.0000 511.0000 648.0000 679.0000 828.0000
796.0000 736.0000 527.0000 652.0000 679.0000 830.0000
796.0000 736.0000 541.0000 656.0000 679.0000 832.0000
796.0000 735.0000 564.0000 662.0000 681.0000 832.0000
800.0000 742.0000 568.0000 666.0000 681.0900 832.0000
802.0000 746.0000 576.0008 671.0000 683.0000 832.0000
796.0000 750.0000 585.0000 675.0000 687.0000 832.0000
796.0000 750.0000 589.0000 679.0000 689.0000 832.0000
796.0000 753.0000 603.0000 683.0300 693.0000 832.0000
800.0000 755.0000 613.0000 687.0000 697.0000 832.0000
8OO.0OO 761.0000 623.0000 691.0000 701.0000 832.0000
796.0000 761.0000 632.0000 693.0000 705.0000 830.0000
800.0000 753.0000 638.0000 697.0000 707.0000 832.0000
800.0000 753.0000 642.0000 701.0000 710.0900 828.0000
796.0000 757.0000 652.0000 703.0000 714.0000 826.0000
800.0000 755.0000 656.0000 707.0000 716.0000 828.0000
800.0000 759.0000 660.000. 708.0000 718.0000 828.0000
798.0000 746.0000 664.0009 710.0000 720.0000 826.0000
796.0000 742.0000 671.0000 734.0000 722.0000 824.0000
796.0000 742.0000 679.0000 716.0000 722.0000 826.0000
800.0000 743.0000 679.0000 718.0000 724.0000 826.0000
800.0000 738.0000 683.0000 720.0000 726.0000 824.0000
796.0000 734.0000 687.0000 722.0000 726.0000 022.0000
796.0000 734.0000 689.0000 724.0000 726.0000 820.0000
796.0090 730.0000 697.0000 726.0000 728.0000 820.0000
63

-------
readings were taken at 20—second intervals over ten-mini te time
periods. Every ten readings were averaged to give three data
values during each test cycle. In every case, the test sequence
involved f’our steps: (1) nitrogen gas, (2) nItrogen + inter-
fex’ing gas, (3) nitrogen + interfering gas + nitric oxide, and
(11) nitrogen + nitric oxide. The interferences tested were:
(1) carbon dioxide, (2) water vapor, (3) oxygen, (it) nitrogen
dioxide, (5) carbon monoxide, (6) pressure variation, and
(7) sulfur dioxide. The concentrations of the interfering
materials were set at, or In excess of, the values expected
In a power plant stack situation.
The test sequence is shown In Table In every case a
ten-minute time period was allowed for computer access of instru-
ment data at each stage.
Two measures of Interference can be Identified. If X Is
the interfering component, Its influence on the zero reading (N 2 )
would be given by the difference In zero caused by the presence
of the component, I.e., N 2 —(N 2 + X]. The influence on the nitro—
gen oxide reading by component X could also be expressed as a
difference; I.e., CX + N0]-NO, where NO is the reading for the
nitric oxide/nitrogen mixture without component X. The values
of these differences for the six instruments are presented in
Table 15.! The last column of this table gives the % deviatlon
in the nitrogen oxide reading (ppm) caused by the interfering
component.:
Cases where the percent deviation from the nitrogen oxide
reading exceeded 5 percent Include: instrument F with COz;
Instruments A, B and C with H 2 0; instrument D with NO 2 ; instru-
ments C and D with pressure; and Instruments D and E with SO 2 .
While nondispersive Infrared instruments (A, B, E and F) are
known to I?e sensitive to water vapor, the response of Instrument
B Is greatest while that of instrument F appears to be minimal.
While instruments C arid D (electrochemical) should respond to
NO 2 , this response is evident only in the difference based on
the zero reading. In the presence of nitric oxide, the response
was negative in both cases. In the case of Instrument D, this
negatlve response exceeded five percent of the nitric oxide read-
ing. Both of the electrochemica]. instruments appear to :be sensi—
1;Ive to changes In pressure. The behavior of Instrument D must
be reexamined since the response recorded exceeds the value which
the computer should have been capable of printing In our program.
The expected result on dI1 tIon of the 350 ppm mixture at the
higher pressure ( = 29 mm Hg) would be a difference (CX + N0)-N0)
of —12 ppm. As mentioned in the footnote of Table 15, the 11,250
ppm concentration employed with SO 2 Is unrealistically high com-
pared to iorma1 stack gas effluent concentrations. At the 2,000
to 3,000 pm SO 2 range the percent.devlation of instrument E
would be expected to be less than 5 percent.
6Lt

-------
Table 11!
TEST SEQUENCE FOR INTERFERENCE
TESTING OF NITROGEN OXIDE MONITORS
Carbon Dioxide Carbon Monoxide
N 2 N 2
N 2 + 15% COa N 2 + 230 ppm CO
N 2 + 15% CO 2 + LêlO ppm NO N 2 + 1800 ppm CO
Na + lO ppm NO N 2 + 1800 ppm CO + 350 ppm NO
N 2 + 350 ppm NO
Water
Pressure
N 2
N 2 + 7% HaO 3.1 cm Hg
N 2 + 7% H O + 370 ppm NO 6.0 cm Hg
N 2 + 370 ppm NO 6.0 cm Mg + 350 ppm NO
3.1 cm Hg + 350 ppm NO
Ox gen 3.1 cm Hg
N 2
N 2 + 3% 02 Sulfur Dioxide
Na + 3% 0 + 370 ppm NO N 2
N 2 + 370 ppm NO N 2 + 1.125% SO 2
N 2 + 1.125% 802 + 360 ppm NO
N rogen Dioxide Na + 360 ppm NO
N 2
N 2 + 110 ppm NO 2
N 2 + LIO ppm NOa + 283 ppm NO
N 2 + 283 ppm NO
65

-------
Table 15
EXTRNT OF INTERFERENCE OF
FLUE GAS CONSTITUENTS ON NITROGEN OXIDE MONITORS
Nitric % Deviation
Interference & Oxide N 2 — [ Na + X] (I + NO)—NO From
Concentration ( ppmL Inetrument ( ppm WOE) ( ppm NOz) NO Reading
15% CO2 1410 A 1.0 19.6 14.5
B 8.5 3.6 0.8
C _14.2 8.1 2.2
D —2.7 16.6 3.5
E —11.14 6.1 1.5
F —5.7 7.6
7% H 0 370 A 1.14 22.2 7.0
B —3.7 76.7 20.14
C 8.5 _l4.3 —1.2
D 5.8 —0.6 —0.2
E 1.1 14I4 1 4 12.11
F 11.3 —2.2 —0.5
3% 02 370 A —0.8 —10.8 —2.8
B —0.2 —11.1 —2.9
C —1.2 —9.8 —2.8
D 0 —9.3 —2.14
E —1.1 2.8 0.8
F —0.7 114.5 3.7
I0 ppm NO 3 283 A 6.0 3.0 1.0
B 6.0 1.9 0.8
C 111.1 —3.7 —1.1
D 20.0 —30.5 —9.3
E —3.0 —0.1 0
F 1.2 —14.8 —1.6
1800 ppm CO 350 A —14.8 0.7 0.2
B —14.14 0.14 0.1
C 2.6 —1.3 —0.14
D —4.9 —7.0 —3.5
E 2.0 2.9 0.8
F —2.5 1.11 0.14
2.9 cm Hg CaP) 350 A 0.2 —0.14 —0.1
B 0.5 —6.9 —1.9
C 0.2 —143.5 —13.14
D —5.8 —1157.3 —
E 0.2 -.14.0 —1.1
F 0.14 —2.9 —0.8
1.125% SO 2 360 A 1.7 —1.5 —0.4
B 3.5 —5.9 —1.7
C 3.8 —6.4 —2.0
D b b b
E —27:3 —27:3
F —0.2 .0.4 —0.1
Thia value must be an error in the computer A/D converter since values in excess of
1199.9-—— should not be printable by the program.
large variation was observed in instrument D response on exposure to 11)250 ppm S02
(AC from +1140 to -.1110 ppm). This behavior can be related to the inability of the
instrument to internally compensate for SO 2 at this high concentration. A further
experiment is planned for 502 concentrations in the 2 to 3)000 ppm range more charac-
teristic of power plant stack emiSsions.
66

-------
Statistical Analyses of Laboratory Test Data
The following error analyses were performed using data in
Table 7. These data were stored on magnetic disk in the MRC
IBM/1130. Several versions of existing data reduction programs
were used to generate the tables described in this section.
We will first define the two types of errors that we have
tr ated. Type 1 error, El, corrected for zero drift:
- [ (AVG-ZERO)-TV] 1
El- 00
arid, type 2 error, E2, uncorrected for zero drift:
E2 = ( AVG _ TV ) 100
If we express E as an error of either type 1 or type 2,
then we can define the average error, E, as follows:
—
E N
where N is the number of terms entering
the calculation.
The corresponding standard deviation, SD, about ! can be
expressed as:
SD - [ WEE’ — (EE)
-‘V N(N-l)
A more meaningful measure of accuracy in this particular
analysis is the mean deviation, MD:
MD = EEl
and the corresponding “true” standard deviation, TSD:
TSD = 1/i
The error analysis relative to percent of true nitrogen
oxide values during the laboratory evaluation program (Table 7)
is presented In Table 16. Table 16 presents the detailed analy-
sis of relative error (percent of actual NO reading) for all
experiments by instrument and span level.
67

-------
The corresponding analysis of absolute error - abeuracy
expressed as percent of full scale reading — is presented. in
Table 17. In this case the analysis was modified as follows:
El - { [ (AVGZERO)TV]} 1 0
500 0
and
E2 = 1 (A; TV) ] 100
where 500 ppm NOx corresponds to the full scale reading of all
instruments.
Since the 90% span level of instrument E presented imped—
ance matching problems, this instrument was treated separately.
Tables 18 and 19 present the relative and absolute error analyses,
respectively, for this instrument at the 30% and 60% span levels.
The previous analyses all assumed Gaussian error d .stribu-
tions; in order to check this assumption, we plotted the frequency
of occurrence of El. The resulting graphs in Figures 26—30 show
that the Gaussian assumption is probably invalid. Instrument A
points this out most dramatically, showing what is obviously a
tn-modal distribution. The data in Table 16 again show the
strong dependence of the relative error upon the span level.
While it may be tempting to ascribe these seemingly inexplicable
results to exo—instrumental artifacts, the fact that Instrument A
was connected directly to the PDP-12 caused us to look at the
problem from a broader point of view. Some of the other instru-
ments, however, still tend to exhibit a similar behavior even
When going through the signal conditioning, amplication circuitry.
The trend, expressed qualitatively, is shown below.
Q

o 90
. 60
I. ”
30 Figure 25. Qualitative Trends of NO
Instrument Accuracy vs. X
Span Level.
True Conc.
(% of Span)
68

-------
Table 16
RELATIVE ACCURACY OF INSTRUMENTS IN LABORATORY
TESTS - INDIVIDUAL INSTRUMENT AND SEPARATE SPAN LEVEL
30%
1.1
22.5
21.14
8.5
10.1$
23.2
22.14
214.1$
211.0
A
90
2.1
—2.14
—2.7
5.5
5.9
5.14
5.8
6.0
6.5
(Based on Percent of NO True Value)
0.73
—6.9
—11.9
5.2
5.11
7.1.
11.9
8.7
13.2
Span Level —
Avg SD (ppm N o , 1 )
Avg ERR1
Avg ERR2
SD1
SD2
NeanDevi
NeanDev2
TSD1
T302
0\
__ B C D F
60% 30% 90% 60% 30% 90% 60% 30% 90% 60% 30% 0% 60%
i.1$ 0.86 2.2 1.1 1.0 2.2 1.2 0.65 2.14 1.0 2. $ 0.97
5.5 10.11 -6.6 —1.9 22.2 2.14 7.8 10.1 —2.14 0.61 3.7 —3.1$
$4.7 23.14 —3.2 3.14 39.5 6.2 114.5 20.6 0.2 14.6 —14.9 —5.3
14.5 7.11 ‘4.7 3.9 11.1 7.3 7.6 7.1 4.0 3.6 3.8 3.3
4.9 8.2 $1.7 3.8 20.0 7.8 9.5 33.0 9.2 114.11 3.5 3.0
6.3 11.9 6.8 3.5 23.1$ 6.2 9.3 11.6 3.7 2.6 $1.3 3.7
5.5 23.9 5.0 14.14 39.7 7.6 14.7 29.0 7.3. 11.14 5.0 5.6
7.2 12.9 8.2 Ii.1$ 25.1 7.7 11.0 12.5 1l.T 3.7 5.3 14.8
6.9 25.1 5.8 5.2 101.8 10.0 17.5 39.1 9.2 15.1 6.1 6.2
36 38 35 36 38 35 36 38 35 36 38 35 36
N 38 35

-------
Table 17
ABSOLUTE ACCURACY OF INSTRUMENTS IN LABORATORY TESTS
INDIVIDUA l INSTRUMENT AND SEPARATE SPAN LEVEL
ANALYSIS BASED ON PERCENT OF FULL SCALE READING
A B C D F
Span Level - Jj 90% 60% j 90% E51 JQ! 90% 60% 30% 90% 60% .J2! 9” PP !
Avg ERR1 4.8 —2.6 2.8 2.1 —6.2 —1.1 4.7 1.4 3.9 2.1 —2.3 0.25 —1.7 —3.5 —1.9
Avg ERR2 4.5 —2.9 2.3 5.0 —3.3 1.7 8.5 4.8 7.5 4.1 —5.6 2.2 —2.7 —4.5 —2.9
SD1 t 1.9 4.9 2.4 1.9 4.6 2.4 2.5 6.2 4.0 1.9 3.7 2.0 1.7 3.7 2.0
SD2 ± 2.3 5.2 2.7 1.8 4.4 2.1 4.3 6.0 4.9 1.1 7.8 7.6 1.8 3.5 2.0
Mean Dev 1 5.0 4.8 3.3 2.6 6.3 1.9 5.1 5.2 4.8 2.6 3.3 1.4 1.7 4.0 2.1
Mean Dev 2 4.9 5.2 2.9 5.2 4.6 2.3 8.6 6.2 7.6 6.3 6.0 6.0 2.7 4.6 3.0
TSD1 ± 5.2 5.6 3.7 2.9 7.6 2.6 5.3 6.4 5.6 2.6 4.4 2.0 2.4 5.1 2.8
TSD2 ± 5.2 6.0 3.6 5.4 5.5 2.8 9.6 7.7 9.0 8.3 7.8 7.9 3.3 5.8 3.6
N 38 35 36 38 35 36 38 35 36 38 35 36 38 35 36

-------
Table 18
INSTRUMENT E RELATIVE ERROR ANALYSIS
(Based on Percent of NO True Value)
Span Level 30% 60%
Avg SD (ppm NOR) 0.59 0.96
Avg ERR1 % 6.5 —2.5
Avg ERR2 % 13.0 0.142
SD1 ±% 5.3 3.11
SD2 ±% 23.1 10.11
Mean Dev 1 6.8 3.8
Mean Dev 2 % 111.9 6.5
TSD1 8.5 11.3
TSD2 ±% 26.6 10.11
N 36 34
Table 19
IN3TRUMENT E ABSOLUTE ERROR ANALYSIS
(Based on Percent or Full Scale Reading)
Level
30% 60% 90% All Spans
Avg ERR1 1.37 —1.33 0.142 0.10
Avg ERR2 2.83 0.26 0.05 1.1 11
Mean Dcv 1 1.113 2.02 1.148 1.69
Mean Dev 2 3.25 3.35 2.05 3.16
TSD1 1.78 2.26 1.94 1.99
TSD2 5.76 5.35 2.149 5.25
N 36 314 9 79
71

-------
Error 1, S
Figure 26. Instrument A - rror 1 DistrIbution
All Span Levels and All Experiments.
1 t R PrI F I I F J
.1_i
. _7
:
T 1
I •
: j t
-
•: • . :
1
:; ::Ii. ” :I:.1J i. t J •t•Ii.: Ih .1:. •j 1 :: •
T4tL1D [ WF r j 4
: .
. ‘4
‘ ‘I • —
——. —
: .
! H: ’;
. I..
- .7 -- -
• _ : : i ji
L *:
-v - -fl
. - !‘; : j , t1 trl ‘1 . i; •; :. i::t .. 1; . . i: •fi .. . .I. . .:
C
.•:j;

•1 - -

- - - t
7 9.:
t 1 5’ :
:
‘-7


t :i
Ii___
1
:

j: T


;

. ‘ : [ :- , ‘ : ‘ -fl J i : ‘,
rt1J Ji Thif
I - I • ‘ i .. II I
4! . : . rit .:
;i jt ‘ r1 I .
Jil
I
r:
: :
.LL
:L i:
_L4 ••

i
- _ ..
m
±Hi:
I

•1
I-
I ’-
.i JL
I t :
IiI u
: 7
,. i : ‘
;r L I
;•t 1 .i:t:tIir .
iE. I
• :: ‘: • , :; - . ‘ : ‘
W t n
, I 1 1

: Lf4i
•i ‘
..
; ‘ -r - .
;r! i 44 ‘ T :1 r
7 ”t “ :

j L r
ht 1:.: ,J jt * T I • j .
I I -
-60 —50 -40 -30 -20 -10 0 10 20 30 40 5.0..
for

-------
‘T :f1.
t r
• r•
• - .1
--
.4 •1
r 1
- Tf .-r -
-f
.1
Ill
--
4.:
4-
:;_f _ t : 1
; Lj4 4 L-’
.f. . 4 f-
1_
I
-r
1
:1 ...
4. fi .i ;
r:.
i [
!. {i
I :. . i
Ti
r+—rr -:
;‘ h .

1::
L
Etk i j j:
1 f L L
: ;:
1
F.
1 -
n 4
.
- -
: .1.
ii
• .;

-•
. .
t
::j
:. : 1 Thh
Error , S
Figure 27. Instrument B - Error 1 Distribution for
All Span Levels and All Experiments.
; :L.. r’ 4 5 !: s .-i :1.. :
-ï
V
4:..
V
U-
T’. . 1;j L I1 —
1 •
4..
i:
•1
4...
JIUI 1 T
3-
:
• .1.
4
4
1 -:
:
±
4 .,
—60 -50 —40 -30 -20 -10 0 10 20 30 40 50

-------
‘ 4: jI . j : :i: . 1• • i: :
1 ,:TT :i.- 1 1.:I;—;L..l-I-—f i . 4::;; •
:: 4 + i -i -- 1-1 -T1-- - [ - t 1
L r
tt t thZUtthut I ! t ti ; j
Error 1 ,
Figure 28.
Instrument C — Error 1 Distribution for
All Span Levels and All Experiments.
i 4 [ ; j
LI I •
:$
I ..
. . c
4:
i : L Hk i 44
‘j44


j I1 t1!1
hi ltt4 qj j
$ ll Jffi ’
imr trntr fl itt itL
1th fflIf llI tll1 W 1 H
t :
: -
! i

4:


i ’ E
:

t
4
j

¶
1 - .
tIIt!ti.lI!I!!lJ I1 i
Li LiEhiJ ’II
,:1
P
14
I
L
4;
f.4. ;:j ;4 r1
illlhii m t 4
2tj9 • —
• • .
LJT. — . I
i:.
-50 —40 —30 —20 —10 0 10 20 30 40 50
± i:
ffl 4I 1
: i1f i .t : 4 j ?1

-------
Error , %
. . T;;:;
r
Figure 29. Instrument I) — Error 1 istr1but1on for
All Span Levels and Experiments.
- --; - ..;-:. ,•
1 Jif!. 1 :
::
-
t__I;::zi _ .
T 1j : t
-J _ •
! FrL::
—
- -
-.-- -r-
.4 . 1.
.T. j:
‘. .t. -
I -
“T
.
‘r’ ‘TIT1 f - P
:1___... .•-- Et-. t 1 • —r- -
t .-1P 1Tt
—
: f• : j.:: i•:!: i: :i •-b :—r

.:z :
r.:.L.

:. •:d:
.;


!W ;
._
E:
J :
.i j :t
. .
i ±- fij T
!TiT T:1Y
V


T. :
:J.
t

:t



r::
: -—- I
. - -
-± t—--*—-- p—-.
: ri: T i..:r .-
i ii- i; I I; l :
?:T
I i : :LTh
___
. ..,.ptL.t:
:p fJ:
.,;_:-• : ;3•14.!iti t::t
-.4
>
U
C
a,
a
a,
I-
EJ: .j, - 4
2! f.::
t
- : :i
.-
. . t;- ?-
. .:3:: 4 .
_ 1. .4::..
.•. •t
—r- ____
1 :LM ff . — 15
‘: t : . ;. ! •= ;j J : 4-;
. ;
::;
: T i
* j! I ! :.
w
-
414J j:.j
inr tt :;z
: T 4

:f — - j_J



:

iJ L



j :
t 4 : - :
.. tt 41 ? E i
4 f j Tj W1 L I fl 4 1 I


1 z I
I J fj T 4ET I
—50 —40 —30 -20 —10 0 10 20 30 40 50

-------
>4
U
C
w
3
a .
S
S ..
I A .
m —
Error 1, %
F - Error 1 Distribution for All
Levels and All Experiments. (Note change in
scale from previous figures.)
444114444.; -4.-.-I-.- - -4+f#++4444
4t i f i u 1Tffiffl
1 U . #:i iL l . - TLt. I
c frij- j [ :T
t * tttI. ’tUm ’t t-14-f Ptt+m iriw:
___
TJ I c!
I
-1 .:j:.J..
4414-, 444.13-44.1.
r 4 4 1.1
: : !:: EELii 1 E2tE.2k: ::i±1
- 1L -20 -18 -1 -14 -lU-lU -8 -b
Figure 30. Instrument
-4 -2 U 24 b S
Span

-------
The straight line represents the case of zero error, and the
curved line represents what we actually find. While it is dlf-
fleult to draw conclusions from the results of one unampllf’ied
instrument, the fact that the amplified instruments behave In
a similar fashion makes the Interface seem less suspect.
There are a few other sources of potential error In dealing
wit i the AID conversion system of the PDP—12. There may be
common ground, impedance matching, and AID calibration stability
problems In the PDP—12. While Digital Equipment Corp. (DEC)
proved to be fairly responsive to our maintenance problems, the
DEC- service personnel were reluctant to discuss potential prob-
lems resulting from customer fabricated interface components.
A third and final source of this anomalous error at the 30%
span level was pointed out to us by Fred Jaye. A brief look at
Table 5 shows that the precision of the wet chemical method Is
poor, especially at the lower concentration. If then, the wet
chemical procedure yields a low value, then the corresponding
correction factor will be low. This problem Is again clouded
due to the poor precision which In turn makes statistical con-
fIc ence limits about the correction factor quite large. For
example, in Table 6a the 95% confidence band about the 30% span
correction factor is 1.10 ± 0.22 (Mean ±2 x Standard Deviation).
L .J 4 FIELD EVALUATION TEST PROGRAM
The short-term field tests of NO monitors for accuracy
were conducted between 7 June and 30 July. Table 20 presents
the monitor data from Instruments A through E. Column 0 is the
DuPont 461 NOx response and Column H represents the DuPont IWO
sulfur dioxide analysis of the same stack sample. The data In
Table 20 were read from the computer in octal formal. Table 21
data are presented as printed from the computer. In this case
the readings are averages of ten values (first column under A)
and the variance of’ the ten values is presented in each case
(second column under A).
The gas sample analyzed June 7—10, 1971, came from unit #5
on the Dayton Power & Light Talt Power Station. The sample passed
through a cyclone separator, H 2 SOi. scrubber and a glass wool
ri:tter. The gas samples analyzed during the balance of’ the test
series were from unit #1! on the DP&L Tait Power Station. The
sample passed through an H 2 S0 4 scrubber and a glass wool filter.
The Monitor C scrubber solution for removal of SO 2 from the
flue gas sample was observed to plug very rapidly (e.g., 2 hrs).
By diluting the solution 50% wIth 1120 It Is possible to run
3 hours without crystal formation becoming great enough to plug
the Inlet tube. A discussion of this problem with the instru-
ment supplier yielded no information explaining this phenomenon.
77

-------
Table 20
SHORT-TERM FIELD TEST DATA (ppm NOT )
Instrument
Date Hr A P C D E G H - Comment
6— 7—71 F 0l4 168 160 1514, 1614 163 160 1850
15014 166 150 167 193 166 158 1890
1605 155 150 135 130 155 167 1750
1705 180 160 152 170 190 175 2570
1805 170 165 165 155 156 180 2670
1905 175 170 165 155 1148 185 2675
2005 180 165 170 175 1148 190 2710
2105 186 165 150 223 1614 195 2830
2205 182 160 1142 236 165 190 3000
2330 162 11 10 127 188 1714 a6o 3000
6— 8—71 005 166 1140 123 199 151 158 3000
105 159 1140 1214 226 159 165 3000
205 150 1 4O 1314 199 1143 155 3000
305 11411 130 136 166 1148 1143 2856
1405 1142 140 103 162 11411 150 2990
505 152 130 118 152 160 155 3000
605 170 1140 11414 231 182 175 2818
705 1141 130 98 206 156 135 29110
825 —3 —5 —80 +1311 +111 5 +96 Zero gas
A-E - Letter code of instruments same as previously stated
0 - DuPont 1461 NO monitor
H - DuPont 1400 S0 monitor
78

-------
Table 20 — (Cont’d)
In8trument
Date Hr A B C D E ___ H Comment
6— 8—71 830 0 0 0 7 6 0 0 Zeroed
935 208 198 204 206 216 185 1602 Spanned
1035 208 203 204 206 210 180 1614
1135 206 200 211 185 229 196 1632
1235 207 199 200 — 224 190 1548
1325 212 210 206 158 240 188 1380
i i45 181 180 194 186 176 175 1152 AcId changed
1535 168 153 190 176 159 173 1110
1635 188 168 234 164 179 190 1578
1735 190 153 232 145 176 188 1740
1835 176 138 236 125 167 173 1596
1935 190 145 256 116 168 183 1308
2035 178 140 243 82 167 175 1306
2135 178 143 254 58 166 170 1156
2235 180 145 260 25 167 165 984
2335 162 123 22 $ 6 167 150 1008
6— 9—71 035 172 133 268 23 152 180 1134
135 136 100 238 —31 132 150 1404
235 142 100 2112 —40 1113 150 1356
335 135 90 2311 —57 130 1110 1416
1135 158 103 275 —36 1111 155 1836
535 1811 130 2811 —9 1113 210 1596
635 176 120 265 +1 172 195 1728
735 185 1211 268 +19 1113 198 11170
835 —16 —20 +112 —159 —16 0 —78 Zero gas
79

-------
Table 20 — (Cont’d)
___ Comment
—5 Zeroes
1769
1 465
1383
1412
1383
1236
1213
1277
.)aLe
M n
Instrument
&
B
C
D_
E
G
5—9—71
1155
1528
1728
1828
1928
2028
2128
2228
2328
—2
205
205
209
20 14
217
210
207
206
0
220
210
213
215
220
220
220
225
0
210
215
210
207
218
221
230
16’i
-3
270
238
226
210
214
192
17 I
221
21
187
207
208
209
217
215
219
223
0
195
196
193
188
188
193
193
190
5—10—71
028
128
228
328
428
528
628
758
828
176
163
141
141
143
155
i68
133
166
200
210
190
160
196.
190
190
160
203
1 4
168
123
127
117
135
158
113
143
149
171
nO.
118
108
115
123
84
120
168
152
185
127
1149
145
149
138
1814
160
160
125
120
130
135
130
95
141
1523
11s88
i6ii
1593
1488
1578
1599
1441
1512
80

-------
Lathe 2]
f-! W ?: sT VPTA(pç’
I flb I . rurrc nt
r A _______ _____ 0 H
-. - 251.5630 3.0778 227.4334 1.5333 23d.184g3 3.1222 261.3280 0.64411 229.8030 730.23.zo 25) 3492.3800 7.4667
d4 .S9dI3 ‘1.8113 223.354) 3. 111 27s.3633 0.913) 336.03s0 0.0889 251.0743 583.4893 63 1825.9803 10.1333
i: .. 217.6760 2.4)11 179.3623 3.8778 271.6303 0.9778 324.1212 0.04 11 1 223.2420 27.144111 253 814.4530 22.4889
197.3633 1.9 889 160.64s3 0.5 ,24 280.3912 0.5667 297.0700 0.15s6 233.3790 5s9.3110 23 46 .8200 24.7311
194.6290 8.6833 166.3410 3.5833 279.6882 0.2060 273.43841 0.0111 21 6.113o 74.1667 223 351.5630 0.0607
193.9450 1.7222 156. 3410 0.3722 287.3050 0.3444 244.0433 3.0667 215.5270 296.2670 25L 257.2270 a.aoo
2225 153.8090 1.9444 102.9730 0.1139 280.1763 0.2778 169.2380 0.4222 171.5828 29.3389 195 181.0550 3.4275
2 25 191.6993 4.0167 148.8713 0.6033 270.3132 0.5444 273.6330 0.1333 224.4130 fl.s111 27) 93.7500 0.0000
25 195.6050 4.2333 152.7770 0.0111 223.1173 1.5000 246.1910 0.0776 223.s3bL 1 )0.2783 25 94.9219 6.1014
fl25 178.7110 4.8667 125.5423 3.3861 231.1522 0.8333 215.5270 0.2111 202.4410 94.7277 214 80.8594 6.1014
:225 151.2700 3.2556 90.1689 0.2776 219.1413 0.6667 377.7343 0.0056 1711.7073 143.3333 LiE 59.7656 6.1028
: 2 172.0700 0.79114 110.2433 3.7278 243.8233 0.8444 203.33550 a.isa i 7 . 3ii 84.5056 233 20.5079 9.5367
- ; 144.1410 1.9444 14.9779 3.29 36 214.5510 1.2000 165.5270 O.472t 162.3050 is. aa 233 15.2344 16.7846
)5L 134.7660 1.0500 56.3147 0.e42’1 217.3903 0.4222 155.6640 0.4530 143.555 3 99.5944 212 35.1563 0.0005
2C2 128.9060 3.9000 53.819 3 8.9966 204.6882 0.6611 147.8520 1 3.2500 151.7 83 268.4333 195 34.5703 3.4330
:72 333.4453 1.5139 52.1915 0.2778 196.6833 0.4580 137.5303 13.5770 153.1253 10.me0 * 41.6016 3.4330
Ee5 330.6640 3.9775 511.79w 0.2771 195.5080 0.3667 135.2540 0.2528 143.6523 38.8667 • 5.2734 18.6920
C 5 187.9880 1.1000 122.8303 2.1389 20 .3703 0.6667 188.5743 0.0778 216.4093 160.8118 * 70.8984 3.4312
1J2S 193.9450 1.3000 131.4023 0.2917 213.9388 0.04100 192.9690 0.2444 214.16U3 29.6667 * 80.2734 8.0083
fl2 213.5230 4.0556 156.3biiO l.327i 1 439.7663 0.8000 212.6950 9.3556 247.0 I0 101.9670 ‘ 80.2734 8.0091
1er3er 1L ).. f2.5co.’ 5L5)3 :;.53 1j —29.296 ) 63.4766
‘:al e .r’IIer....

-------
Tab le fl — (Cont’d’
Lr.at runent
A.)
Date
7—lj—71
Hr
1119
1219
.
268.6523
264.4530
10.6556
2.6778
S
239.4740
244.9000
0.6333
1.7 111
C
257.8130
253.8090
4.4222
0.9300
D E
288
2B 4
OH
1128.5200
1045.3100
16.1778
8.3556
253.5163 0.2222 266.7970 550.0670
321.5323 349.0000 262.1090 11.2222
119
257.3310
7.1222
229.1660
5.8556
245.5080
1.9222
301.2730 18.0000 256.4450 10.1889
274
1099.2200
31.1111
219
31’
263.7730
260.3520
2.8090
2.9773
240.4510
234.1580
2.0556
1.3333
239.4530
246.4842
2.4778
0.2333
390.9180 0.1778 2S.5700 266.9560
34 .0630 0.2222 256.5430 .877ti
270
274
1089.8400
1054.6900
0.7112
0.7111
7—14— li
1116
292.2190
5.4889
285.4810
1.3444
309.8630
1.6444
3 7. 7j3 7.2222 303.3260 63.4889
278
795.1170
167.9130
1216
304.1990
4.8667
295.4640
0.6444
311.3280
0.5333
313.4770 0.0444 304.2970 64.0000
261
763.5470
5.6889
116
279.8093
4.4667
275.3900
1.3333
287.5000
1.9131
288.4770 5.1111 278.8090 59.3555
2113
714.8440
o.rns
216
293.75 !3
1.8222
289.3880
0.1333
299.9020
0.2444
299.1210 3.3000 292.9690 178.3780
2GB
778.1250
104.9750
316
222.5593
4.9444
239.5830
0.2667
194.1410
1.0002
312.8910 0.2222 208.3010 107.3110
170
822.3733
7.6444
1116
291.3160
5.0667
284.3960
1.0889
293.4570
0.6444
372.1680 l.8222 284.9610 133.2110
233
914.0630
0.3556
516
291.7970
8.4222
330.1300
0.2444
296.3870
0.4667
310.3520 0.1111 283.6910 171.4560
237
864.2580
9.4222
7—15—71
1140
12110
262.2073
250.6340
4.0444
2.5444
239.6910
232.6390
0.6556
0.8667
268.4573
243.9450
2.3775
1.2111
251.8550 0.2889 254.3950 22.5000
155.4690 0.3611 250.0980 438.5560
291
283
762.8910
855.4690
5.7770
0.5333
1340
239.2563
3.7889
229.3830
1.4222
21’h5J10
1.4333
195.3233 0.0167 199.9020 51.0667
256
925.7810
0.8889
1440
230.6843
6.3944
200.1950
0.2944
188.2810
0.5833
175.3910 0.2333 192.9690 255.1940
272
878.9060
0.1778
1540
1640
244.3363
222.8752
3.3111
3.74 44
237.6303
213.9750
1.0333
11.5778
258.4960
231.8.160
1.8778
1.0556
138.9650 0.2083 206.2520 82.3111
81.2s00 0.1667 188.3790 62.1722
255
186
890.6250
963.8670
0.5333
16.5333
17140
279.8 33
4.377
271.9180
0.5778
299.70/a
2.4389
132.1293 0.4122 260.6450 204.1440
276
1037.1100
44.8000
7—16—73
105
205
305
1405
248.5353
242.1133
247.6563
243.r’663
1.7222
3.2333
4.4556
2.6111
224.7183
222.3353
220.8110
213.8671)
0.3000
0.2333
0.5667
0.2869
254.1990
246.2890
248.l’iSO
258.4883
1.6889
0.7778
0.0689
0.4775
245.5350 0.2111 252.4410 302.0220
237.3050 0.0111 246.4840 150.6890
240.8200 1.0667 253.6133 75.4222
245.4100 0.6222 228.4180 19.5667
280
268
2811
2110
925.7810
969.7270
1033.0100
1063.4800
0.8889
9.2444
7.2889
16.7111
505
244.72)3
3.eedd
213.7580
0.2111
245.2420
0.377
238.0860 0.3556 238.2860 445.5789
270
1066.4100
0.3556

-------
Li. 1e 21 — Cort ’1 ’
. stt ‘ir A
V.
1. —
3
H
- —
1’
239.96 :3
2.3111
2la.2 2e
1.90.1 . i
240.4340
à.76t.7
2J9.’ifQö
2J’ .4134
31.6444
.‘t
1746.68 30
8.7111
-
24-’.094.4
0.7 3 -1
224.0t(J
0.’’ -l
ql.4 ,’
1.6 178
251.3j1’
1...lIl
ddi.7614
70. 2869
- ‘3
15 59.1600
2. 143J
s -4
24I. 9 .J
l.d’Sni
223.6i.1
iI. 4 Pd2
141. 495 1
14.4 1’O
219.5931
3,15!”
22 .’J34 ’
13.37 18
et’.
l668.673’1
5.658?
h.L14
23M.04t0
I.aIi
2fl.!’-.ii
i. i j
0.’1IaI
304.5934
1.533’
221.4543
1l3. 333
2o1
1804.lgaa
9.2444
A.l(
241.Il.’0
4.377 4
224.6))
8.’s 6
444.444 5
2.311i
3ll.23 3
3.35sf
22 ..3944
164.6191
-67
18s3.9800
1.4222
:‘ -•
24 i.62s
4.4 667
227.6.73
3.556
241.7913
0.6556
31s.33t1
0. 91 11
225.2933
31.5667
6 1
1874.4100
1.4222
;f’,!i
251.4650
3.833 3
232.4213
3.611 1
2s3.29.s.)
1.85 .6
329.199:’
0.2444
242.lstl
65.7111
255
2041.41.10
0.4 )3 1
—.,,..
4
242.383. )
2.47Th
213.216.)
4.1111
2 1i3.446 0
2.32&’2
237. 593.’
l.4 t.
244.5.3).)
77.1556
275
1934.1800
2.1333
04’
239.9410
1.889 1
217.1224
3.&444
2’ ,J.1&40
1.666?
246.2 ’S ’ ,’ )
1.sill
24 . 1. J4hl)
147.7003
268
2040.2300
2.1333
.1 - . ?
246.4840
2.988)
217.C142
Ø.ljaJ
240.4640
0.6556
252.s205
3.2356
2 )4.4923
24.6000
266
21 11.7200
8.5333
!2 L)
246.0940
3.3667
213.7113
o.e774
9.4’l3d
1.2333
287.1090
0.0333
263.4773
356.5343
268
2199.6130
13.5111
!M2
24’1.62 5t1
3. 5 22 4
217.6523
8.277 8
239.35 ))
0.2667
289.063 ( 3
O.003fl
252.6470
36.0111
250
2296.8520
2.1333
: 4’;
234.4633
1.2sS
236.6583
3.6444
22 9.9844
0.2333
253.3313
3.3775
242.3900
130.5220
22e8
2324.960 3
14.2222
2’ft4.6723
I..J4J
219.6I ;
d.3..
239.1644
3.966’S
300.9770
3.1333
431. 4330
220.6784
256
2194.9200
8.5333
16-id
245.9968
3.6667
218.0794
3.2111
248.6250
0.4224
311.5230
0.2667
273.5353
907.3223
2 46
2052.4200
74.6667
—:_-‘
1
222.4620
2.4889
192.9253
3.1556
221.0940
1.7111
186.7190
0.3556
220.4100
109.7670
262
2104.1000
0.7111
t2-
243.0660
1.5556
224.9352
4.0000
238.2510
1.4556
212.14910
0.0222
251.6600
28.8111
288
1895.5100
30.5778
132’
254.1990
2.5333
241.2110
9.0111
248.6330
0.2333
226.3670
0.1667
266.7970
226.4780
277
1976.3700
22.0444
1425
249.6090
1.0776
240.3430
1.3556
242.2850
5.1556
222.5590
0.7000
262.7938
113 .2330
280
1910.7400
2 .1333
152,
244.7270
1.4889
230.7948
1.7333
237.2070
0.P778
226.3670
0.3167
253.4188
93.3 330
270
1793.5500
2.1333
L e5
246.6800
3.9333
233.18L0
6 .1667
240.5270
3.266 ?
233.7890
1.7111
256.4450
51.3889
254
1502.3400
9.2444
—‘:
:133
257.1 93
1.0444
226.51.J
3.3’H9
2 37.s030
.SG67
235.84W )
3.2222
268..SS
225.0330
276
1837.5030
31.2889
i:.’ -
255.4694
2.5555
23q.L’53’
.3.rs.t
227.734’)
2.0667
23s.5470
0.3333
268.0663
521.1443
289
1748.4480
6.4050
13;t
:u)’.
258.9843
275.0220
q.s8 9
3.qt340
244.14t3
254.ii4si
2.5f67
1.1111
2 15.nJO

0. 222
0.3ss6
435.3523
252.6370
0.3333
0.1899
265.7230
271.9735
168.5332
60.5444
285
28 3
l 0.0’i00
1613.0930
2.1333
6.75.6
1 5
257.3241
1.7122
241.2113
1.37)’
2P3.’24€iJ
0.644 14
253.7130
1.2111
261.9163
408.3220
262
3 897.27 ( 30
4.2667
€
24).0i’.33
6.9556
231.fl74
1.J 7
213.3 74(1
1.2667
242.1883
3.3..2d
253.2932
146.2113
255
2262.3300
0.0500
-_;-_-
:‘r,
273.3133
1.4111
172.5262
1..444
253.5661 1
2.3111
306.e500
0.2222
292.7738
136.1780
260
2255.2700
J9.ltII
- .
2)4.9330
2.5j3 3
16’S.)Ll l
0.6335
2 3J.5133
0.8444
237.8910
0.2444
267.3983
40.9222
23].
2151.5600
26.3111
: o
256.3481)
4.2556
16’ .94.1
0.9,133
s2.34 3
0.6778
226.9533
3.2433
269.1418
134.73.12
233
1981.0500
32.0002
: 7k:
262.4343
2.9333
171.1134
5.23J.3
233.2 )4 3
0.8444
265.9143
3.2111
271.3)43
.3.5222
272
1833.9838
14.2422
13 )
- 1
261.5470
251.3533
2.45,8
2.9444
161.783.:
153.2’73
I . .’S3J
I.3 2e’
95.5994
66.7461
2.7083
0.432
254.1990
264.5530
1.4667
0.355t
269.4243
255.1253
155.3000
22.6556
273
268
1953.5203
2320.9300
83.9111
39.8222
1;’-
252.5396
3.434j
156.7-se3
2.3744
48.2422
1.1010
264.2530
0.6444
263.2543
2i2.7110
256
1851.5800
3.s 556
2s1.8n0
3.3444
165.s81’I
0.7367
2)1.M),d
1.3444
241.1130
0.6889
2 6.4430
258.1440
256
1734.3000
15.6444

-------
TaLe 21 — CCont’d)
r “0” .arpl” line changed.
— 7—25—71 — 1115 — 1615
7—27—71 — 33
Instrument
Date
Hr
A
B
208.1264
220.1600
1.6222
0.62 189
C
241.9920
279.8830
0.5667
0.6111
D
E
6
229
256
H
2223.0500 51.9111
2292.6000 24.8889
223.438(1
500.0000
2.9 111
0.’flOfb
257.4220
263.96
378.5110
56.5555
7_2:_71
1226
1326
241.9920
243.1640
2.4111
4.411)
14?’
230.2733
3.3111
214.1923
3.588 )
251.5650
(.9222
206.5n33
0.4667
261.7190
733.6440
257
2321.3400 25.6000
1526
223.2930
3.9889
221.3543
0.7444
2s1.8553
0.5000
215.9180
0.9333
258.3933
41.9555
232
2414.6500 1.422 2
IA?€
240.0393
1.6222
233.6150
3 .2111
260.5473
3.5444
t99.90
0.6222
265.7233
48L.7783
2d3
2320.3100 1.4222
-2 -s
j23
-333
25J.5390
261.62(0
2.5667
1.3224
171.4410
197.5910
1.5222
1.3222
23 J.78(O
237.9100
2.4389
2.9770
211.6210
208.6910
0.6444
0.2111
276.6630
262.7930
111.6440
72.1222
228
272
1635.3500 1.7778
1739.6500 24.1778
1 33
1533
250.9770
2 35.5663
1.6667
3.3667
212.9990
195.9630
2.9667
2.3003
266.8950
247.2660
1.0222
1.4333
290 8200 b
(47.7543—
0.1333
1.90a6
302.9300
271.87s0
95.9333
680.9330
264
274
1761.9100 29.6667
2040.2300 71.8222
icli
254.1820
3.3111
204.2133
1.5778
2 ,6.931i0
0.4989
227.0930
0.2000
264.1620
2.1444
247
1032.8100 19.9111
7—25—fl
900
12.1000
1 1 .0000
—35.0000
—39.0000
—13.0000
17.0000
-2E-71
1027
1127
247.2642
247.8320
2.7030
1.2111
220.8110
218.7500
2.6333
2.8556
252.5390
250.78(0
0.4444
1.2111
240.4300
2 18.8480t
0.1333
0.1303
261.1330
264.6456
888.6220
133 2.4 8 03
278
273
1c32.6a0 o 23.8222
1251.5600 0.1775
1227
254.5833
1.8778
222.9810
2.6.133
257.0310
0.5556
219.3360
0.2444
272.8520
556.1110
284
1037.5300 8.21839
132?
255.8593
2.3000
22s.2600
1. 333
255.3593
0.642 2
463.1340
33.5556
270.3083
379.3330
238
1037.7030 2.4889
½7
265.6256
5.2444
227.6470
0.8111
261.5233
0.3444
499.0230
0.1333
293.7303
725.5563
280
1014.2603 18.1333
1527
1627
282.1290
279.8834
3.9222
3.8222
236.4360
238.8230
2.2222
2.1111
273.4203
272.6880
1.9556
0.3556
287.3050
268.4570
0.1333
0.0333
308.7890
299.4143
469.5736
460.4890
270
281
1060.5503 22.4000
1019.5303 0.7111
—23—71
932
47.0000
16.0000
0
70.0000
22.0000
0
—46.0000
7-53—71
1C54
115 ’
271.9732
261.426
4.2556
3.1556
276.9090
275.2820
3.7222
0.6889
285.6430
263.3fl0
2.9222
0.3778
242.2650
205.0783
0.0778
0.0222
287.2070
289.4530
91.8222
287.1670
220
2 l6
1701.5600 15.6444
1687.5000 0.0000
i5
267.3830
3.1000
280.165’I
1.4 424
26).254’3
0.4222
191.2660
3.0222
270.2250
66.7222
253
1873.9000 96.8444
I 3 S
258.2033
7.2222
270.3990
0.6111
253.125 ,3
2.0n6
189.5510
0.0722
258.3320
526.4670
251
1966.9900 6.4000
145-
252.1480
3.7556
268.9120
0.9778
246.777. )
4.2222
205.7620
4.0333
268.0660
100.0330
233
2067.2900 4.2667
155k
275.3910
2.2889
280.o990
1.5333
262.6950
0.8111
178.5163
0.7944
260.3520
229.1440
255
2197.8500 2.8444
165 a
259.57’30
2.9000
269.6390
1.5883
230.3924
1.0778
172.5590
1.2667
240.2340
611.3890
225
2296.8800 2.1333
7—3:— :
EC
42.00Th
134.0000
130.0000
393.0000
17.0000
0
0
7-i:-’:
flOS
260.0593
2.7224
237.8470
5.3556
471.’8421
0.7776
274.1214
0.3889
2s4.78s0
91.400. )
262
2395.7008 12.4444
1205
257.91g3
3.0333
243.5150
0.3889
259.9623
0.5444
236.2330
0.1333
254.3950
377.8890
272
1659.9600 6.4000
1335
1bC3
241.5043
253.0273
4.8667
3.6889
226.8880
234.0490
1.6112
3.9040
246.3573
2s . 733
0.4111
0.6556
200.9770
295.2150
0.1389
0.31 7 6
237.9880
253.3200
456.6780
67.2889
245
267
1868.5500 32.0003
1675.2000 1.4222
152
:CoB
257.6173
259.0820
3.2111
3.1556
235.2433
238.4980
1.3556
0.8121
251.9136
457.4223
9.71t1e1
0.65 6
293.3s90
191.9920
0.0111
0.2389
253.3910
259.2770
47.6689
576.8780
277
269
1567.9703 23.1111
2740.8202 8.5333

-------
En the case of Monitor L, the method used for compensating
for O2 pre8er t in a sample when measuring NO did not work
when the SO 2 concentration is continuously varying. It there-
fore was necessary to use a scrubber solution (similar to that
supplied with instrument C) to remove the 302. This behavior
was also reported by other users (see Appendix I).
In using the DuPont l 6l, one of’ the pneumatic valves in
the instrument failed July 1. A call to the supplier resulted
in a new valve arriving July 6. This problem was corrected by
removing the high temperature grease originally employed In the
valves and replacing It with a silicone oil.
Instrument F was returned to MRC after O days at the
factory for repairs. It was used two hours and turned off
overnight. The next morning the instrument registered on a
fu il scale reading. All attempts to zero the instrument were
in vain. Inspection of the measuring cell revealed a deposit
op the gold lined walls of the cell. To date, no reasonable
explanation of’ the cause for these deposits Is apparent and
no method for removing them has been found.
£4.14.1 Analyses of Power Plant StacK Gas by the Pherioldisulfonic
Acid (PDS) Method
Integrated samples were taken of the flue gas at two differ-
ent positions on the sampling tratn. The results of three days
of testIng are shown in Table 22. The 10—29—71 PDS samples were
ta cn rrom tne iianIfo1d which also supplied flue gas to a11 other
instruments. The 10—30—71 PDS and DuPont samples were taken I ’rom
the untrea ed sample line, while tne other four Instruments were
reccivint’ dry, filtered gas from the manifold. The 11—1—71 PD
am les were coilected from the manifold gas stream being de—
livered to five other instruments. The DuPont L161 was again
drawing samples from the untreated sample line.
An analysis of the comparison between the DuPont 6l read-
ings and the PDS samples on 10—29—71 and 10—30—71 indicate a
consistent realtionship of’ DuP ñt = 1.12.
Since this is the same as the relationship derived in the
Jaboratory tests, we conclude thai; the i6i does note suffer [ ‘rorn
appreciable 1120, C0 2 , O2 interferences.
in the V I eJ d e v: 1 wit ion te. t:; the E)uPont I61 st r’ 1 p—e h i r’t
r’ o r l w:ts , howe ver • employr’ I as the re t’e’rt’nce vrt 1 uv for tWO
85

-------
Table 22
ANALYSES OF POWER PLANT STACK GAS BY THE PHENOLDISULFONIC ACID METHOD
*Inoperative
Silicà u eris1on in sample, resulting in low value.
Pan - Panametrics, Inc .—Krypton Glathrate..Proto.type Monitor.
PDS Date
10—29—71
Hour Beckman
300
353
329
297
1618
1628
1638
16148
296
296
300
305
DuPont
NSA Dyna Enviro Inter, Bendix 1461
* 280 290 296 * 265
300 290 290 85
310 300 300 295
305 300 310 90
C’
Pàn
*
285
289
287
289
301
lCi—3()—71
1837
305
305
305
300
* 28O
*
3146
18147
285
29d
295
280
321
1857
OO
20
320
310
300
213
1907
305
310
310
310
O8
11—
1—71
1600
1610
1620
1630
*
280
285
290
295
280
280
275
290
280
295
315
330
*
275
270
275
275
330
328
333
310
300
280
275
290

-------
The instruments were zeroed and spanned daily versus
the DuPont 1461 readIngs and therefore the responses
of the evaluated Instruments can only be compared with
the 1461 record.
Statistical analysis of the field test data exhibited
a closer agreement for all Instruments tested to the
uncorrected 1461 response rather than to the adjusted
response (1461 readings x 1.12).
14.14.2 Statistical Analysis of Field Test Data
Preliminary statistical evaluation of the data In Tables 20
and 21 were conducted. Correlation coefficients were derived to
examine correlati.on between the NOx monitors, and correlations
with sulfur dioxide reading and time. Assuming a correlation
coefficient >0.9 to be of statistical significance, the frequency
of established correlations was very small. In 20 days of test,
Instruments A and C correlated with the DuPont 1461 on three days,
instrument E on two days, and instruments B and D on one day.
One source of low inciderices of correlation between the five
continuous monitors arid the DuPont 1i61 readings was the location
of the DuPont Instrument with respect to the sulfuric acid
scrubber and the manifold gas distribution system supplying the
continuous NOx analyzers. The data recorded before June 25 were
taken with the DuPont 1461 monitor located after the scrubber and
before the manifold. On 25 June, the DuPont instrument was moved
upstream of the scrubber so that it was seeing unscrubbed stack
gas containing a higher water vapor and particulate loading.
The Incldences of correlation between the continuous monitors
and the DuPont occurred 1/3 of the time with the 1461 downstream
of the scrubber and only 1/12 of the time when It was positioned
upstream.
In instances where correlation was found, a least squares
treatment was conducted and Intercepts and slopes of the instru-
ment readings versus the DuPont 1161 were calculated. In general,
the nondispersive Infrared instrument data exhibited a large
positive Intercept (140—120 ppm) and a small slope (0.5—0.9),
while the intercept on electrochemical monitor C was near zero
and exhibited a slope near unity. Electrochemlcai monitor D
exhibited a large negative Intercept (—80 ppm) and a large slope
(1.55) in the one case where correlation was found.
The frequency of correlation between all Instrument i and
t.ime arc thown in the following Table 23 where 18 sets of data
were examined.
87

-------
Table 23
FREQUENCY OF CORRELATIONS (DAYS)
BETWEEN INSTRUMENT READINGS AND TIME
A BIC 1 E G H I
f
W
7

T!
rrr
T
T

T
-T
T
T
7
T
T
T
T
77 )
r
r
T
r
T
T
T
T
-I-i
Th
b
ö
W
T
T
0 2
ö
77
I
I
I
I
‘412
i
ZZ
DuPont ‘461 NO monitor
DuPont ‘400 802 monitor
Time
In general, it is observed that the frequencies of correla-
tion between the five continuous monitors (A—E) are higher than
tnat for correlation with the DuPont ‘461. The notable exception
is instrument D where few instances of correlation are observed.
This could be explained by the higher correlation frequency of
instrument D readings with time (I) indicating a zero—drift prob-
lem. The Incidences of correlation of NOx instrument readings
with the 302 value from the DuPont 1400 monItor were very low,
dIcating a minor Influence of SO 2 concentration on the nondis—
oersive infrared N0 monItors. The electrochemical monitors as
mentioned above were equipped with In—line SO 2 absorbers.
Aosolute and relative average and mean errors and mean
deviations were calculated for a .l data with reference to the
DuPont 146]. analyzer. The relative error data are presented, by
days, in Table 24 and summarized at the bottom of the table in
terms of weighted average error, straight average error and
straight standard deviation for all data. The corresponding
absolute error analysis Is presented in Table 25.
The sources of inaccuracy include (1) difficulties In accu-
rate zeroing of instrument, (2) difficulties in accurate spanning
of instruments-, and (3) zero drift during an extended analysis
period. In some cases, hip h variances In the reading (Table 5 20
arid 21) were caused by random noise In Instruments that had riot
seen observed earlier In the controlled laboratory tests. rr j
was especially true of instrument E. The standard deviation i ;
considered to be the best indicator of accuracy during these
short—term ruri$.
88

-------
Table 2 I
ACCURACY OF NO MONITORS - SHORT-TERM FIELD TESTS
(All dataXexpressed as % of true value)
instrument No. of
: ur )ate A B C D E Points
6/7/71— Avg Error —1.14 —10.5 —16.4 12.0 3.11
6/8/71 Mean Dev. 14.1 10.5 17.0 19.2 9.0 18
Std Dev. 14.5 11.9 19.11 23.7 11.1
h/8/71—6/9/7 1 1.2 —17.6 6.3 —58.2 —3.1
6.2 20.9 36.3 61.3 11.11 22
7.7 214.4 142.7 78.11 1.q.6
!/9/71—6/iO/71 13.7 29. 14 6.1 2.5 111.14
13.7 29.4 10.2 12.9 15.’e 17
16.8 35.3 12.3 16.1 20.8
6/25/71—6/26/71 —21.5 —142.9 14.8 —3.3 —i14.5
21.6 142.9 9.0 17.3 15.3 15
25.5 148.9 15.0 22.0 18.1
7/13/71 —5.14 —14.11 —10.14 114.2 —6.2
5. 1 1 114.11 10.4 18.9 6.2 5
6.3 16.3 11.7 25.7 7.1
18.3 18..:. 18.0 34.3 16.4
18.3 18.1 18.0 3 .3 16.44 7
21.5 23.5 20.3 46.0 i8.5
7/15/71 —5.14 —9.3 4.5 —38.8 —114.1
11.3 13.6 14.5 . 8.8 1 .14
15.0 16.9 18.7 1t14.7 18.3
7/16/71 —8.14 —18.1 —6.7 —9.7 —9.i
8.9 18.1 8.6 10.6 9.1
10.9 20.7 10.0 ]2.8 10.5
7/ .9/71 —8.2 —15.2 —7.9 9.8 -i3.l
8.2 i5.2 7.9 114.3 13.1
9.0 16.6 8.6 17.1 14. 14
7/20/71 —6.7 —16.3 —6.14 8.2 —2.1
6.7 16.3 6.11 13.7 5.3 8
8.1. 17.9 7.5 16.1 7.1
89

-------
Table 211 — (Cont’d)
Instrument No. of’
Run Dat,e - - A B C D E Points
7/21/71 Avg Error’ —10.3 —i6. t —12.3 —19.6 r-7.3
Mean Dev. 10.3 16.1 12.3 19.6 7,5 6
12.2 19.1 111.2 22.7 10.0
7/22/71 —6.1 —12.9 —17.5 —11.6 —3.8
6.1 12.9 17.5 11.6 3.8 6
7.7 111.9 19.11 111.2 5.0
7/23/71 1.0 —35.3 _27..14 0.7 5.i
5.0 35.3 314.0 5.2 6.3 8
6.14 38.2 149..7 7.8 9.7
7/26/71 —2.8 —9.7 5.8 —11.9 7.6
5.1 .7 6.6 11.9 7.6
6.7 12.2 8.0 15.1 9.7
7/27/71 —3.1 —23.1 —2.5 —17.5 11.3
14.5 23.1 5.1 22.5 6.5 14
5.145 27.3 6.9 30.5 9.7
7/28/71 _6..L1 —18.8 —7.1 11.5 0.7
7.6 18.8 7.1 28.9 6.7 7
9.11 20.7 8.8 141.9 8.2
7/29/fJ. 10.1 1Js.6 8.9 —L6.7 .i.i.8
10.1 14.6 8.) 19.5 11.8
13.0 1’.O 13.7 22.3 16.3
7/30/71 —14.0 —11.1 —2.9 —18.9 —5.3
11.0 Ii.1 11.1 20. 4 5.3
11.9 12. 4 14.9 211.6 6.14
Weighted Avg Error (%) —2.1. —10.7 —2.5 —1.5 —2.3
Straight Avg Error (%) —2.5 —11.6 —2.3 —6.3 —1.2
Straight ;3td Dev (%) 9.6 21.1 114.6 22.3 9.5
90

-------
Table 25
ACCURACY OF N0 MONITORS -SHORT—TERI i FIELD TESTS
(All Data Expressed as Percent of Full Scale)
No. of
Run Date A B C D E Points
6/ 7/71 Avg Error —0.5 —3.6 5.4 3.7 —1.3 18
Mean Dev 1.14 3.6 5.6 6.3 3.1
Std Dev 1.5 14.] 6.14 7.6 14.0
6/ 8/71 0.6 —6.0 12.14 —19.7 —0.8 22
2.1! 7.1! 12.4 20.8 1 4,5
2.9 8.6 114.1 26.2 5.8
6/ 9 71 1 1.0 8.14 2.0 1.5 14.1 17
‘..O 4.0 8.14 3.4 14.4 4,5
4.4 9.3 4.1 5.8 5.5
6/25/71 —9.9 —19.7 2.0 —1.5 —6.7 15
10,0 19.7 4.0 7.7 7.1
11.8 22.1 6.14 9.6 8.3
7/13/71 —3.0 —8.0 —5.8 7.7 —3.5 5
3.0 8.0 5.8 10.4 3.5
3.5 9.1 6.5 114.0 11.0
7/14/7]. 8.3 8.0 8.6 15.0 7.6 7
8.3 8.0 8.6 15.0 7.6
9.5 9.7 9.7 187 8.5
7/15/71 —3.14 —5.5 —3.1 —19.7 7.6 7
5.7 7.1 7.3 19.7 7.7
7.6 9.0 9.3 22.5 9.8

-------
Tai. le 25 — (Cont’d)
No. of
Run Date A B C D D Points
7/16/Th Avg Error —11.6. —9 .8 —3.8 5 . 14 —11.9 5
MeanDev 11.9 9.8 L 1 .( 14.8 4.9
Std Dev 6.0 11.11 5.5 7.1 5.7
7/I9/7] —11.3 —8.0 —11.2 5.2 —6.9 7
11.3 8.0 11.2 7.5 6.,9
11.8 8.7 11.6 9.0 7.6
7/20/71 —3.5 —8.5 —3.14 11.1 —1. 2 8
3.5 8.5 3. 14 7.0 2.8
14.3 9•4 14.0 8.2 3.7
7/21/71 —5.6 —8.9 —6.8 —1C.7 —11.0 6
5.6 8.9 6.8 10.7 11.1
6.7 10.11 7.8 12.5 5.5
7/22/71 —3.11 —7.2 —9.7 —6.5 —2.1 6
3.14 7.2 9.7 6.5 2.1
11.14 8.3 10.8 8.1 2.9
7/23/71 0. 4 —18.2 —14.7 0.11 2.14 8
2.5 18.2 17.9 2.7 3.1
3.1 19.9 26.3 11.1 11.7
7/26/71 —1.5 —11.8 2.8 —5.9 3.6 5
2.5 11.8 3.2 5.9 3.6
3.11 6.2 3.9 7.6 11.6
7/27/71 —0.14 —12.1 —0.2 —8.3 3.7 14
2.9 12.1 3.1 10.5 4.7
3.6 13.9 11.0 1 -.7 6.6

-------
p ., • —
iau. . 2 Cont’d)
No. of
Run Date _A B _Q D E Points
7/28/71 Avg Error —3.6 —10.6 —11.0 6.7 0.3 7
4ean Dev 1 1.3 10.6 11.0 16.11 3.7
Std Dev 5.3 11.7 5.0 23.8 4 ,5
7/29/71 11.7 6.9 4.1 —8.2 5.5 7
11.7 6.9 4.1 9.5 5.5
5,9 7.9 6.1 10.9 7.5
7/30/71 —2.2 —5.9 —1.6 —10.1 —.2.9 6
2.2 5.9 2.2 10.9 2.9
2.7 6.7 2.7 13.2 3.5
‘.0
Li .)
Grand Avg Error —1.6 —6.3 —1.7 -2.9 —0.8
Mean Dev 11.2 9.1 6.1 9.9 11.6
Means
Std Dev 5.1 10.4 7.6 12.11 5.7

-------
A more detailed naly is of the data may be just’lfied in
hr CLt .C of imtrument B where the correlation coefficients with
ie Dulont 16l were con istent1y higher than that for instruments
, U and E, but lower than that for instrument A. There may be
a con i tent error with instrument B data which could be cor-
rected by a relatively simple adjustment which could increase
its accuracy rating in the field toward the level demonstrated
by instruments A and li.
The complete analysis of the field evaluation data is pro-
dented in Appendix II of this report.
The data and analyses presented in Tables 2 . and 25 for
Inr trument readings on and after 6/25/71 were adjusted for water
vapor content of the flue gas stream. During thIs porti on of the
f..eld test, the instruments were spanned and zeroed with respect
to the DuPont 6i which was located upstream of the sulfuric acid
trap and was therefore sampling the water vapor component of the
stack gas. Water vapor was determined by a procedure similar to
friethod i - Determination of Moisture in Stack Gas of Standards
of Performance for New Stationary Sources 1 . The only changes
from this procedure were substitution of concentrated H 2 SO . for
1120 as the ati3orbing solution and substitution of a critical
Now orifice for the rotameter. The volume of rhO collected wa
detcrrnined oy weigning the impingers on an analytical ba)arice e—
fore aria after each test. Substitution of H 2 SO as the impin er
i quid clo ;ely resemcled the actual operating conditions employed
in tne u1e d evaluation test sequence on the NO monitors.
The average % moisture of the stack gas for two determina-
tion was 3.28 ± 0.04% (V/V). Field data taken on and after
25 June 1971 were adjusted to reflect the absence of water vapor
and new statistical data for NO monitor accuracy in the field
were generated. The absolute error (% of full scale response) of
the inE;trurnents are shown in Table 26 with and without adjuatmerit
for water vapor. It can be seen that the water vapor adjustment
increases the error and standard deviation values for all instru—
ment . The unadjusted values were employed for field accuracy
In the overall performance evaluation of the NO monitors.
I “: t.anciarc1s of Performance for New stationary ourc’ ,” I’ t’d& r: ’
flopi ;ter, Vol. 36, No. l5 , p. 15712, Tuesday, 17 Au u: t 1 O( 1.
91 1

-------
Table 26
FIELD ACCURACY SUMMARY
(With and Without Adjustments for Water Vapor Content)
Absolute Error (% of Full Scale)
Instrument
A B C D E
WIth 1120 Vapor
Adj ustment
Avg Error —2.92 —7.53 -3.014 _ 14.23 —2.21
Mean Dev l .9l 9.86 6.61 10.1 5.0 1 4
Std Dev 5.83 11.2 8.13 12.6 6.07
Without H 2 0
Vapor Adjustment
Avg Error —1.57 —6.32 —1.70 —2.89 —0.82
Mean Dev 14.21 9.07 6.12 9.87 14.57
Std Dev 5.07 10.14 7.62 12.14 5.70
95

-------
5. DATA EVALUATIONS CONCLUSIONS, AND RECOMMENDATIONS
The ranking, utility factors and ranges of performance
parameters listed in Table 4 serve as a frame—of—reference
against whidh the laboratdry and field evaluation test data
can be comp red to derive a ranking of instrument overall per—
rormance. The mechanism employed here for overall performance
ranking is the “index of performance” (IP).
Combining all test data with the performance requirements
in Table i, the individual performance values for each parameter
and instrument were derived as presented in Table 27. The data
ifl this table were obtained as follows:
1. Accuracy refers to the average of the 60% and 90% span
readings of TSD1 in the Individual Instrument and Separate
Span Level Table (Table 17) for the laboratory and corres-
ponding data In Table 25 for the field test evaluations.
2. Values of repeatability and the interferences were taken
from Tables 9 and 15, respectively.
3. Zero instability data were taken from the column labeled
Standard Deviation n Table 7, Run #1, and divided by
500 ppm NO.
q• Calioratior. instability values were taken as TSIJ1 reading ;
at the 90% t;pan level in Table 17.
5. r stimatcs of roLttne maintenance, ruggedness, and repair
were a consensus of opinion based on the experience of
the lao and field workers.
6. Response tine was taken from Table 12.
7. Precision was calculated from the average of the zero
standard deviations in Table 5 summarizing the laboratory
tests.
8. Senwitivity was defined as the level at which an in,:tru—
mont would rer:istcr 1 ppm NOR. lnterpolation or thc’ tIat:i
in Tabie 11 gave the required values.
Entries in Coluthn C corresponding to the I)uPont 1(’I rn @ri it.ur
were transcribed or obtained from ;trIp chart rernrd;; wh’re
ava 1 lab I c . In some cn::es , median value: of Llic pa rni ,itLe r’ WeT’t
employed when the tnztrument was not in use.
96

-------
acle 27
PERFORMANCE VALUES FOR
N0_ MONITORS
0
-.1
Pe? ormance Parameter
1.
1.00
ange
3. 9 — 0.01
:2 — :1Z
±2 — ±20%
A -
4.7
0.6
5.1
0.82
B
5.2
0.60
10.4
0.54
C
6.0
0.5
7.6
0.68
D
3.2
0.814
12.4
0.142
E
2.0k
0.99
5.7
0.79
14.0
0.75
o
:
‘10
0.01
13.0
0.39
.
. c :uracy (Lab)
(Field)
2.
Repeatability
Interferences
O.96
±2 — ±5%
<2%
0.99
<2%
0.99
<2%
0.99
<2%
0.99
<2%
0.99
<2%
0.99
<2%
0.99
3.
H 2 0 (<14%)
3.929
C — ±5%
7%
0.01
20.4
0.01
1.2
0.76
0.2
0.95
12.14
0.01
0.5
0.89
2.8
0.414
4.
SO (<3000 ppm)
0.893
0 — ±5%
0.1
0.97
0.43
0.91
0.5
0.89
0.5!
0.89
2.0
0.6
0.04
(4.98
0.90
5.
CO 2
0.857
0—25%
4.5
0.11
0.8
0.83
2.2
0.56
3.5
0.3
1.5
0.7
7.6
0.01
1.0
0.79
6.
02
0.857
0 — ±5%
2.8
0.414
2.9
0.142
2.8
0.414
2.4
0.52
0.8
0.83
3.7
0.26
0.8
0.83
7.
Pressure Change
0.679
3 — ±5%
0.1
0.97
1.9
0.62
>5
0.01
>5
0.01
1.1
0.77
0.8
0.83
0.99
8.
Zero Instability
0.821
3— ±5%
0.17
0.96
0.68
0.86
2.57
0.48
0.74
0.85
0.43k
0.91
0.12
0.97
0
0.99
9.
Calibration
Instability
0.786
0 — ±lO%IL
6.0
0.40
8.2
0.19
7.7
0.24
4.7
0.53
4 4 .3k
0.57
5.3
0.147
0.9
0.90
1C.
outine Maintenance
0.75
0 — 4 man—hours
per week
0.75
0.81
2.0
0.5
1.5
0.62
1.5
0.62
0.75
0.81
1.0
0.75
0.75
0.81
11.
Ruggednesa
0.714
0.99 — 0.01
—
0.57
—
0.57
—
0.50
—
0.50
—
0.72
—
0.72
—
0.99
12.
peI.air!
. ?
— iic1dei t:
per year
—
U.9U
—
0.30
—
0.60
—
0.60
—
0.85
—
0.01
—
0.85
13.
reci ion
0.571
1 — 5 1
‘ 1
0.99
<1%
0.99
<1%
0.99
180
0.98 0.98 0.78 0.87 0.94 0.93 0.01

-------
Instrument G performance dat.a transcribed from strip chart records.
Based on the average of’ the 30% and 60% span levels.
£ Instrument did not operate in the field.
The SO 2 deviations in the Interferences Table (Table 15) w re r duced by 1/14 to
make the concentration range comparable to 3000 ppm.
Missing datum: value of 0.5 arbitrarily chosen.
Median performance values assigned.
Automatic pressure control feature.
Over 17.5—hour measuring period. Expressed as % of full scale (500 ppm) reading.
Based on results from Laboratory Run #5.
Over 17.5—hour measuring period. Expressed as TSD1 relative error.
Based upon the 60% span level.
Based upon the subjective experience of the field workers.
Based on incidents that occurred during the test period.
Eased on time to reach 90% of actual level.

-------
For each performance parameter the first row corresponds
to the actual value found in the evaluation tests, while in the
second row this value is linearly transformed into the 0.01 to
0.99 scale.
No programming was required in the calculation of the over-
all index of performance (IP) values since the IBM APL/1130
system has a complete set of matrix algebra operations which can
be accessed in an interactive fashion directly from the computer
keyboard. The values of Qi (importance or weight of a perfor-
mance parameter) were normalized:
N
Qi
i=l
and the following matrix multiplication gave the IF values:
IF = [ NQ] x [ F]
where [ F] is the matrix of performance parameters for all instru-
ments. An IF value of 0.99 would thus indicate perfect perform-
ance and a value of 0.01 completely unacceptable performance.
The IF values calculated from data in Table 27 are presented
n Tables 28 through 31. In Tables 28 and 29 the IF values are
listed using both laboratory and field accuracy data and includ-
in the interference parameters based on 02 and CO 2 content of
the flue gas stream. Since these interferences had not been
selected initially (Table 14) as performance parameters, the IF
values based on laboratory and field accuracy data are presented
without the 02 and CO 2 interference parameter in Tables 30 and 31.
5.1 DISCUSSION OF INDEX OF PERFORMANCE
Over the period of this contract, considerable operational
experience has led to the following observations concerning the
oerformance evaluation parameters employed in this study:
1. Accuracy is still the most important parameter; however, its
definition should be changed as follows. From the lab test
we have seen that zero and calibration drift does not exist,
at least in the normal sense, where it is monotonic with
time and can therefore often be taken into account. There
is, however, considerable zero and span “instability” which
at any point in time after calibration creates an uncer-
tainty in determining the “true value.” The degree of this
uncertainty is a measure of the inaccuracy of an instrument.
99

-------
Table 28
Ip USING LAB DATA FOR ACCURACY
(CO 2 arid O interferences included)
Instrument Ip
E 0.755
G o.7’48
D 0.689
A 0.677
F 0.667
0.627
C 0.571
Table 29
IP USING FIELD DATA FOR ACCURACY
(CO 2 and Oz Interferences included)
Instrument IP
G 0.781
E 0.738
A 0.691
D 0.652
B 0.622
C 0.587
F -E
Instrument Fnonfunctjonai In field.
100

-------
Table 30
IP USING LAB DATA FOR ACCURACY
(CO 2 and 02 interferences excluded)
Instrument IP
F 0.760
E 0.7514
A 0.7148
D 0.738
G 0.737
B 0.627
C 0.583
Table 31
IP USING FIELD DATA FOR ACCURACY
(CO 2 and 02 Interferences excluded)
Instrument IP
G 0.776
A 0.7614
E 0.733
D 0.695
B 0.621
C 0.602
F -
E Instrument F nonfunctional in f’Ield.
101

-------
We have expressed this uncertainty as the standard devia-
tion about the “true value.” Again, since we do not have
a way of correcting for zero and span instability, the
type 2 error is the one in question. The statement that
we can now make is that at any point in time, 95% of the
time, we will be able to determine the “true value” within
±2•TSD2%. Even after excluding the 30% span level, we
find the 2’TSD2 statistic ranges from ±lOil% to ±35.0%.
Therefore, zero and span instabilities should be dropped
from the IF calculation. The accuracy term employed is
the absolute error term (standard deviation) derived from
the field tests.
2. In our consensus rank of the performance parameters, pre-
cision was rated l 1 ith and repeatability second. After
the initial analysis of the data, we began to realize
that precision and repeatability are related. Indeed,
as J. Mandel (1971) has shown
Repeatability = 2.77 °
v’m
where a = precision within a run
m = number of replicates
It was therefore not too surprising that since the varianc’eh
of all instruments were much less than ±2% that repeatabil-
ity data were all less than ±2%. The variance of a method
i often a function of the level being measured. A cursory
glance at the lab data shows this effect to be negligible
(except for the 90% level of instrument E where this was an
interface phenomenon). Therefore, the theoretical resolu-
tion, which can be defined as repeatability at some leve],
ahould be comparable to the repeatability at the zero level.
While the experiments for resolution were anomalous, we used
values less than ±2% for all instruments. Repeatability a:id
resolution should be deleted from the IF calculation.
3. Ruggedness should be deleted from the performance parameter
list since it will be reflected in the repair term. The
repair term should have a higher ranking, certainly higher
than routine maintenance, since an instrument that doesn’t
work is of questionable value.
1. The interference terms are important since they directly
affect the ultimate accuracy of an instrument.
With these points in mind 4 we redetermined the IF using tlic
performance parameters and values of Q shown in Table 32. The
perfoSance indices resulting from the selected parameters are
listed in Tables 33 and 34, instrument F being omitted due to
field operational difficulties.
102

-------
Table 32
PERFORMANCE PARAMETERS USED AND CORRESPONDING WEIGHTS
Performance Parameter Q
Accuracy 1.0
Repair 0.75
H 2 0 0.75
502 0.75
Routine Maintenance 0.5
Pres3 0.5
CO 2 0.5
02 0.5
Precision 0.25
Response Time 0.25
103

-------
Table 33
IF BA$ED ON SELECT PARAMETERS
Instrument IP
G 0.695
E 0.681
A 0.676
C 0.631
D 0.600
B 0.5113
Table 34
IF BASED ON SELECT PARAMETERS
(with CO 2 and 02 interferences deleted)
Instrument IF
A 0.761
G 0.670
E 0.664
C 0.658
D 0.639
B 0.525
1014

-------
5.2 U0NCLU I0N3
Based on a perfect performance rating of 0.99, performance
of the six nitrogen oxide monitors leaves much to be desired.
An analysis of the IP data in Tables 28 through 31 indicates that
t e specific order of ranking is rather unimportant since the
average I? of all options (e.g., laboratory and field accruacy,
with and without consideration of CO 2 and 02 interference) are
extremely close for the nondispersive infrared instruments and
t;he ;e averages are nearly identical. For example:
ii x 102
Instrument ( Avg 3 Tables 28—31 )
A 72±14
B 62±1
E 75±1
71±5
Two of these instruments, however, exhibited failure in the
fIeld tests on the power plant effluent stream. Instrument F
was Inoperative over the complete series of field tests due to
deposit formation on the gold—lined walls of the measuring cell.
This could be due to amalgamation by elemental mercury in the
flue gas stream. This behavior was observed Initially and after
repair by the manufacturer. Instrument B failed with similar
symptorn at the completion of’ the program.
With this information in hand, either instruments A or E
wo i1d be a preferred choice In selection of a nondispersive
infrared analyzer for NO continuous monitoring of a combustion
source. The deficiency In performance of instruments B and F
could possibly be corrected by redesign of the measurement cell
wall materials.
The two electrochemical Instruments exhibited the following
JP averages:
IP x 102
Instrument ( Avg 3 Tables 28—31 )
C 59 ± 1
I) 69 ± 2
The ranking of instrument D was greatly enhanced by a modifica-
tion made in the field test series. The instruments Internal
co iipensation for SO 2 did not perform under the highly variable
SO 2 concentrations prevalent In the power plant flue gas stream.
An 302 scrubber specified by manufacturer C was placed at the
105

-------
inlet thereby permitting n ieanIngful measurements to b e made.
WnIle the electrochemical instruments, in general, did not per—
form as well as the infrared monitors, one or two comments should
be made. First, these Instruments have been commercialized quite
recently and do not have the years of application—experience
exhibited by the nondispersive Infrared monitors. Successive
models of the electrochemical instruments are improving with
time due to continual development. Second, the electr’ochemlcal
monitors are more compact and ligher in weight than the infrared
analyzers.
The average value of IP for instrument G (the ultraviolet
absorption monitor) was 0.76 ± 0.02, a value slightly higher
than the better infrared monitors. The rating of this instru-
ment suffered from a consistent error of 12 to 13% iti accuracy,
which could be readily corrected by the instrument manufacturer
by altering the absorbance of the standard filters employed for
calibration. While the Instrument operates on a timed cycle
(and therefore is not truly continuous), Its major d±’awbacks are
cost, size and weight.
The altered I? ratings presented in the previous section do
not seriously change these conclusions, the major effect being
a lowering of ratings for the infrared monitors from an average
of 0.70 to an average of O.6 . The corresponding decrease for
the electrocheml.cal instruments is from O.6i to 0.63, and that
for Instrument 0 is from 0.76 to 0.68. While the electrochemical
average IP based on select parameters was unaffected, the com-
parative ratings of instruments C and D were inverted with
instrument C increasing in overall performance from 59 to 6L1
and Instrument D decreasing from 69 to 62.
Another compact, light—weight Instrument was studied briefly
near the end of’ the program. This Instrument was a development
prototype of Panametries, Inc. Krypton Clathrate Monitor which
operates by inverse radIoactive tracing. During our brief ex-
perience with tMs instrument it can be concluded that the
technIque shows promise since quite reasonable response to NO
rlue gas content was obtainable. Further development Is required
since this Instrument failed on two different occasions during a
three-month time period.
106

-------
5 .3 RECOMMENDATIONS
5.3.L Advanced Nitrogen Oxide Monitor Development
As was stated in the conclusions, the nitrogen oxide moni—
tars evaluated on this progran demonstrated performances between
0.57 to 0.78, based on a perfect performance rating of 0.99.
Volume I of this report discussed in some detail advanced methods
for NOx monitoring which are at the prototype development or
research stage employing novel detection concepts. This work
should be encouraged since there is much room for improvement.
Preferred analysis concepts suggested for further develop-
riient in Volume I of this report included chemiliminescence,
correlation spectrometry, mass spectrometry and selective photo—
ionization. To this list should be added a redesign of the
nondispersive visIble absorption method to yield a more inexpen-
sive and lighter weight monitor. Continuing improvement in the
electrochemical detection concept cannot be ruled out as a valid
detection concept. Long—range, the use of the evolving laser
technology in oçtlcal Instrumentation based on absorption and
‘Ramar scattering spectroscopy will find application to nitrogen
oxide continuous monitoring.
5.3.2 Sample Pretreatment Systems
A major concern of nitrogen oxide monitor users was borne
out by experience on this program. This concern is that the
monItors commonly available on the market require sample pre-
treatment systems in order to perform on the extremely hostile
atmosphere of a power plant flue gas stream. It is recommended
that the J&xavironntontal Protection Agency support a contract with
a concern exhibiting a firm background experience in process
engIneering to conduct a systematic study of alternate methods
for sampling t ue effluent streams from stationary combustion
tources and removal of water vapor, particulate and sulfur di—
oxIde with minimum alteration in the nitrogen oxides content
of the flue gas. The objective of this study should be to
develop and demonstrate a sample pretreatment system optimized
on the basis of performance, cost and weight which cou]d then
“e uic ’pted by EPA an a prererred standard technique.
.3.3. Interface Recommendations
Considerable difficulty was encountered during the course of
: f u contract which stemmed directly from the signal conditioning
(i terface) unit. First, a signal conditioning unit was required
:;Ince the AID converters on the computer accept only a 0-1 volt
input. (Autoran ing AID ’s do exist but they are normally one to
two orders of m4jnitude higher in cost.) Second, the 1nutrument :
107

-------
had widely different outputs both in magnitude and in type
(millivolts vs. milliamps). This complicated the design of the
interface unit and created additional sources of potential in-
stability due to Impedance mismatch, common ground problems,
AC 60 cycle noise, etc.
While commercial, off-the-shelf laboratory Interfaces do
exist, they are again expensive and would not eliminate the need
for additional signal filtering. Since continuous monitoring
instruments are ideally suited for on—line data acquisition tech-
niques and since these techniques are becoming widely accepted,
we recommend that the instrument manufacturers provide multiple
types of output. One manufacturer, instrument A, has already
done this and no signal conditioning was needed for this instru-
ment.
108

-------
APPENDIX I
REPORT OF SJ&H WORK ON
“EVALUATiON AND DEVELOPMENT
OF NITROGEN OXIDE MONITORS FOR
COMBUSTION SOURCES”
109

-------
TABLE OF CONTE. NTS
Page
I. CONCLUSIONS 1
II. DESCRIPTION OF INSTR JMENT APPLICATIONS 4
A. USERS OF NO MONITOJtING INSTRUMENTS 4
S. NAITt RE OF NO MONITORING INSTRUMENT
APPLICATIONS 5
III. ANALYSIS OF USER EXPERIENCE 7
IV. OTHER PARAMETERS 21 If
V. FACTORS INVOLVED IN NON—flRMANENT
INSTALLATIONS 23
A. OTHER CONSIDERATIONS OF USER EXPERIENCE 24
1. DATA HANDLING 24
2 USE OF MONITORS FOR LOW NO EMISSIONS 25
3. MMOR PROBLEMS EXPECTED 26
B. OTHER USER COMMENTS 26
VI • NEW TECHrUQUES APPROACHING THE MAR1 T 28
VII. APPE ’ DIX
A. ESTABLISHMENTS INTERVIEWED
1. INSTRUMENT MANUFACTURERS
2. INSTRUI’jENT USERS
B. INTERVIEW PROCEDURE 32
1. NATURE OF INTERVIEWS 32
2. INTERVIEW QUESTIONS 33
C. INTERVIEW GUIDES
110
I ’
- - STEVENSON, JQRDAN & HARR!SON

-------
I . CONCLUSIONS
The following summarizes our conclusions drawn from the
in—depth field work performed in the study.
1. Experience of users is mainly limited to periodic
operation of their monitors, generally in
connection with R&D on NO abatement techniques.
2. Users and manufacturers are not certain that
regulatory compliance will require full—time
operation of dedicated monitoring systems.
Rather, two principal alternatives are envisioned:
a. Dedicated monitoring systems operating
only during episodal conditions.
b. Periodic (e.g., semi—annual) compliance
inspection with non—dedicated movable
instruments.
Nevertheless, the need for dedicated monitoring
instruments is now beginning to appear in
California. One installation is already in place
and the following are scheduled:
20—30 installations starting mid—1971
30—45 installations complete 1974
Total: 50—75 installations (all for backf it)
111
STEVENSON, JORDAN & HARRiSON _________

-------
2.
3. Users’ preference is unequivocally strong for a
monitoring system that obviates a sampling train.
This preference is so pronounced that California
utilities are committing themselves to a
relatively unproven instrument concept which
has no sampling train in the conventional sense.
4. Every instrument type now in use needs improvements
in performance. Also, the need for better
standards of measurement is widely felt.
5. In addition to the instruments now commercially
available, a number of companies are developing
NO monitors using techniques that may be
promising —- i.e., provide capability comparable
to instruments in use.
ii II
(1 6. Manufacturers appear to be unable to supply
I; sampling trains that consistently satisfy the
needs of the application —— in terms of
suitability for unattended operation, in some
cases the ability to function properly, and
sometimes the certainty that constituents of
the sample are not being lost or modified.
112
IL STEVENSON. JORDAN & HARRISON

-------
Users therefore mainly tailor-make their own
systems.
7. Users with meaningful experience are very few.
Significantly, very few users of NO instruments
were found among electric utilities. We observe
that among utilities burning coal and/or oil,
the current emphasis is almost solely on SO 2
abatement and monitoring. Concern with NO
is more likely to be found among utilities that
burn predominantly natural gas (i.e., along the
Gulf and Pacific Coast). At the time of the
interviews, conducted in this study, it was
found that NO abatement and monitoring activity
has progressed only in California utilities to
the point that meaningful NO 4 instrument experience
has been accumulated.
Also, there were more installations than uusersu
a number of utilities merely made facilities
available to organizations like Esso, and did not
II
ii themselves participate in the testing or evaluation
of instruments.
113
STEVENSON, JORDAN & HARRISON

-------
4.
II. DESCRI ION OF INSTRUMENT APPLICATIONS
A. USERS OF NO MONITORING INSTRUMENTS
The users of NO monitoring instruments who were
i ,çlentified in this study included electric utilities,
manufacturers of boilers and ancillary equipment, and
others engaged in short—term field tests of combustion
and abatement techniques, as well as laboratoriqs engaged
in bench tests of combustion and abatement techfliques.
The establishments that were interviewed are li ted in
an appendix to this report.
The electric utilities currently interested in using NO
monitoring instruments are concentrated in California
where the utilities are un4er pressure to reduce the
emissions of nitrogen oxides. Southern California
Edison, for example, is being required to install
permanent monitoring instrumentation in its major plants.
Pacific Gas & Electric also has a permanently installed
monitor for NO at its Moss Landing plant near
Salinas, California.
Boiler manufacturers and others conduct field tests on
their customers’ boilers to study abatement techniques and
to provide emissions compliance tests. These tests are
being conducted for product improvement studies, or to
11
1]jd H
STEVENSON, JORDAN & HARRISON ______

-------
accomodate their customers, or as a service for a fee.
Several instrument users are monitoring NO emissions from
sulfur dioxide abatement tests.
B. NATURE OF NO MONITORING INSTRUMENT APPLICATIONS
Applications of NO monitoring instruments can be
x
classed according to whether the instruments are in
permanent installations or in non—permanent installations.
A permanent installation is one in which the monitoring
instrument is dedicated to measuring emissions from a
specific boiler or smoke stack. A non—permanent
installation is one in which the instrument can be moved by
itself or in a portable laboratory from one installation
to another installation.
At the time of the interviews, Southern California Edison
was in the process of procuring monitoring instruments
for permanent installation at all of their major plants
in the Los Angeles metropolitan area as required by the
authorities. Pacific Gas & Electric also has a
permanent installation at its Moss Landing plant where NO
emissions have presented a problem that brought the plant
under the scrutiny of the air pollution control authorities.
San Diego Gas & Electric has a permanent installation at
a plant where a long range NO abatement development
program is under way.
115
•11
STEVENSON, JORDAN & HARRISON

-------
6
These utilities and other utilities also have portable
NO monitoring instruments for short term emissions
control projects or to make spot checks at a number of
plants. Several utilities mentioned that they believe
that NO monitoring on a spot basis with portable
instruments will satisfy anticipated air pollution control
regulations in their areas.
116
STSVENSONi, JORDAN & HARRISON

-------
III. ANMXSIS OF USER EXPERIENCE
Interviews with 12 users of NO stack monitors produced
comments on the operation of 22 instrument installations (seven
users each have more than one instrument installation). More
than 12 users were interviewed but their experience was not
appropriate to this evaluation. Instrument installations
according to instrument model are as follows:
INSTALLATIONS OF NO MONITO jNG INSTRUMENTS
I’ Model Number of Installations
Beckman 315A 6
Dynasciences NX13O 7
EnviroMetrics NS200A 4
DuPont 461 2
Others* 3
22
On the following pages are user comments on performance
parameters for the instruments in use, with manufacturers’ data
shown for comparison. Comments on these seven parameters of
greatest concern to users are summarized in the follozing
discussion.
It was determined in the course of the study that there were
seven performance parameters of greatest concern to users,
while others were of marginal importance. The seven were:
*Mast, w , t eckman 2 ,
117
STEVENSON, JORDAN & HARRISON

-------
-=----
A. Accuracy
B. Repeatability
C. Moisture Tolerance
D. 502 Tolerance
E. Particulate Tolerance
F. Zero Drift
G. Calibration Drift
Instrument Accuracy
Reported accuracies range from less than + 1% of full
scale and ± 1½% of true value to levels such as ÷ 10% of
true value and ± 17% of true value. Several users point
out that it is not of great value to have accuracies of
better than 5% of true value until radical improvements
are made in laboratory techniques that are used as
standards for comparison. The instrument users report
that standard wet techniques for checking ins trl?ments can
show + 5—10 p m repeatability, + 5% accuracy, or 10—15%
variations among different laboratories.
The ranges of accuracy reported by the users of N0
mànitoring instruments preclude a determination of one
instrument’s superiority over another. Accordi ig to
statements from the manufacturers with respect to their
own instruments, the accuracies of the instruments
presently in use are about the same (± 1% of true reading),
expect for the duPont 461 for which the manufacturer
states + 2% of full scale.
118
STEVEN SON, JORDAN & HARRISON

-------
Repeatability
Repeatability of the four models of instrument now in
general use are in the range of + 3 % of full scale to
± 2% of full scale for 100% of the readings. Except for
one user who had considerable trouble with an EnvironMetrics
unit, the poorest repeatability mentioned was + 2% of full
scale for 80% of the readings. The best repeatability
quoted by a manufacturer is from Beckman who says 100%
of the readings by its instrument are within a range of
½% full scale.
Moisture Tolerance
Instrument problems caused by moisture have been most
frequently found in the electro—chemical type of
instruments made by EnviroMetrics and Dynasciences. In
neither of these instruments does moisture represent an
interference but presents mechanical problems of flooding
the detector cell which makes the cell inoperative or
slow in response.
Beckman supplies a sample preparation system that includes
a cold trap that maintains a constant moisture level which
is calibrated out. Beckman says that 3.5% moisture is
equivalent to 5 ppm NO (additive). One user says that he
has experienced interference equivalent to 200 ppm NO gith
the same amount of moisture. Another user of the Beckman
119
STEVENSON, JORDAN & HARRISON

-------
___ ________________ _______________- 10.
________ _________ - - —-
Ii instrument is concerned that the moisture levels in the
stack will not be hel4 sufficiently constant and thus will
upset the instrument reading. The user of the duPont 461
reports that the level of condensate in the instrument
affects the zero drift of the instrument although the
manufacturer says that there is no interference presented
by water vapor.
Tolerance
The electro —chemical instruments are inherently sensitive
to So 2 approximately on a 1:1 basis (additive). In one
instance 100 ppm SO 2 was found equivalent to 142 ppm N0 .
In this particular installation a scrubber was introduced
but the readings still average 7 ppm higher when SO 2 is
present in the stack. Another user suspects that although
the scrubber is effective, it also removes 20% of NO in
concentrations of around the 300 ppm level.
According to most of the users, 502 does not present an
interference problem with Beckman instruments. However,
one laboratory suspects that when 502 and co 2 are combined,
the results are analogous to 2+25.
Particulate Tolerance
Users of the electro-chemical instruments report that
120
STEVENSON, JORDAN & RARRISPN

-------
—
particulates represent no interference, but do present
mechanical problems such as clogging and adding to response
time. Beckman says that particulates cannot be tolerated
by its instrument and there seem to be no problems
reported by users of Beckman instruments, presumably
because of the effectiveness of the sample preparation
system.
Zero Drift
Comments by users of the Dynasciences electro—chemical
instrument suggest that there is a fairly wide variation
in zero drifts experienced, ranging from no drift or less
than ÷ ½% in an 8 hour period up to as much as a 5% drift
in 2 hours or a 10% drift over no specified time lapse.
Users of the Beckman instrument say that they have
experienced from zero to ÷ 1% drift in 8 hours; the
greatest drift that one Beckman user says he has
experienced is 5% in two days. The user of the
EnviroMetrics instrument says that he has experienced no
zero drift once he has allowed a new instrument 5 or 6
hours of operation in which to stabilize (not the hour
that the manufacturer had recommended to him). The user
of the duPont 461 experienced 10% drift due to condensate
accumulations in a 4 to 8 hour period.
Calibration Drift
Users of Dynasciences instruments report calibration drifts
121
(I
IL STEVENSON, JORDAN & HARRISON

-------
12.
of 9½% in 4 days and 2 to 5% (full scale) downward &ift
in 8 hours, and 10% over no specified time lapse. Another
user reports no calibration drift during the measurement
of the test point. Beckman instrument users report
calibration drifts of ± 1% per day and less than 10 ppm.
One user reports a calibration drift of 4% per day which
he attributes to vibrations in the instrument operating
area. One user of both Dynasciences and Beckman instruments
says that he has experienced drifts on both instruments of II
5 p n per day in 25% of the operating days. This user adds
that he has had to increase the gain of the Beckman
instrument over a 6—month period.
The following tables summarize the experience accumulated by
users with the four instruments found in the study to be in
general use. It should be noted that the use of particular
instruments was distributed among the organizations interviewed
as shown in Table 1. Tables 2 through 5 contain the evaluations.
Where no information is indicated, user experience was
inadequate for measuring full evaluation.
122
STEVENSON, JORDAN & HARRISON

-------
TABLE 1
USERS OF’ NO SOURCE MONITORS
Instruments Used
users Beckman Dynasciences EnviroMetric DuPont
Interviewed 315.A NX I3O NS200A 461
A. Electric Utilities
User *1. So.Ca lif Edison X X
#2. L.A. Water &
Power X
*3. San Diego G&E X X
*4. Pacific Gas &
W Electric X X
B. Eguipnent Manufacturers
User *5. Research Cottrel l
*6. Babcock & Wilcox x x
*7. Foster—Wheeler X
*8. Combustion
Engineering x
C. Laboratories & Others
User *9. Battelle Memorial X
*10. Tyco Labs X
#11. Bureau of Nines X x
#12.EssoR&E X - _ _ _ X X
6 7 4 7
:4 - 1

-------
iTj
z
:0
ACCURACY
TABLE 2
USER COMME ITS ON SELECTED_PERFORMANCE PARAMETERS OF THE ENVIRC METRICS NS-200A
USER#5 TJSER#9
(no information)
+ 1% (or less) of
full scale
(no information)
USER#6
REPEATABILITY
Very poor for unknown
r.eaons
+ 1%
.
(no information)

;
NOI’ T.URE
TOLERANCE
(no information.)
V
Adds to response time,
does not affect true
.readi:ng
No prob1ern: S erns tç
work better with
sorne moisture in ceLl
SO 2 TOLERANCE
(no information) —
V
1:1 additive interference
i n 1 2OO—i3QO ppm SO 2 range
Compensation works
.wefl
,PART1CUL TE
TOLERANCE
.
. V.. -
‘(no information)

-_____ —
.. ...
Adds to response time
does not affec.t true
dg V
.. ...
Adequately absorbed
in sample treatment

ZERO DRIFT
V

, (no information)


None: New instrument
: eqUireS 5—6 hr s • o
stabi1ize, .not .½ hr as
mf.r recommends V
(no information)
.
.
V
cIRATIo 1
DRIFF
ii
(no information)
None: New instrument
required 5—6 hrs. -to
-stäbi 1 ize, not ½ hr
as mfr recommends
Sensitive to ambient
tempe ratures. At
çon . nt .t mp rat
drift=1O% in & hrs.
I-a

-------
—— — —- =
(continued)
USER COMMENTS ON SELECTED PERFORMANCE PARAMETERS OF THE ENVIRC METRICS NS-200A
USER#12 MANUFACTURER’S DATA
ACCURACY Affected by “noise” (no information)
IEPEATABILITY
(no information)
100% of readings to
+2%
MOISTURE
TOLERANCE
(no information)
no interference but
clogs
SO 2 TOLERANCE
Compensator causes
NO reading to double
compensated
PART ICULATE
TOLERANCE
(no information)
no interference but
clogs
ZERO DRIFT
Sensitive to 1—10%
concentrations of CO
(no information)
CAL IBRIAT ION
DRIFT
(no information)
(no information)
I
I

-------
TA 3LE -3
US.ER CO E .1$ Q L SELECTED -PEREORr4AN CE ;PATERS OF .THE Dj j
IT,
0
• PARAMETER _
ACCURACY
USER#10
(no information)
TSER#12
Uncertain about when
r ading maximizes at
‘3 OO ‘ppm.
MANUFACTURERS DATA
+2% Full Scale
U I
REPEATAB.ILLTY,
Better than Beckman
(nb infbrmation)
1% Full Scale
MoI: STtJR
TbLERANcE
;
..
Condensate affects
zero drift
no problem if cell
is k t hOt
—-
.
no interference
‘I
—
S0 2 TOLERANCE

No interference (in
‘presenCe of 4000 1 ppm
NO2)

(rio information)
:
no interference

PARTICULATE
TOLERANCE

None ‘present
.
duPont sample system
offers blowback to
remove particulàtes
no interference but
clogs
.
• ERO
10% drift in 4 - 8 hrs.
due to -condensate
(no information)
less than ±½%
Full Scale
CALIBRATION
DRIFT
(no information)
(no information)
lass than-f ½%
Ful ’1 Scale

-------
TABLE 4
CALIBRATION
DRIFT
Ugh side of 10% NO ÷ 10 ppm NO
ab std ( uesda1e)
Max observed: 4%
in 1 day (caused
by vibration?)
‘SER#10
0—15 error due to
000cc/mm. sample
low (200—400 cc/
Ljfl recommended)
ACCURACY
USER COMMENTS ON SELECTED PAIW4ETE S OF THE BECKMAN 315-A
USE R# ii
USE R*3
USE *4
+ 1% NO
REPEATABILITY
(no information)
100% within + 1%
of full scale
± 2% full
scale
K if on 0—5000 ppm
cale. Not as good
L5 duPont
MOISTURE
TOLERANCE
Sample prep keeps
11,0 constant and is
calibrated out. But
1120 level must be hel
constant
(no information)
-
Good when
1120 doesn’t
condense: 3.5%
(MOL)= 200 ppm
NO
Lii lines hot after
.eaving cold trap
ihere 1120 is remove
-
802 TOLERANCE
(no information)
(no information)
(no information)
no interference
PART ICULATE
TOLERANCE
(no information)
(no information)
Low
.ab test: no
articulate
ZERO DRIFT —
x observed: 5% -
1i 2 days
none detectable in
8 hour day
+ 1% in 8 hrs
(no information)
5pprn drift 25% of
days in use. Have
had to increase
gain over 6 months
of use.
+ 1% in 24 hrs.
(no information)
.1

-------
TABLE 4 (continued)
tJS R_COMM 1S’JN_SELECTED_PARAMETERS OF THE_BECKMAN 315-A
USER*l1 USE 12 MA&UFACTURER’S_DATA I
ACCURACY Lab std (PDA)has (no information)
+5—10 ppm repeatability
REPEATABILITY (no informati r f (acceptable) ½% of full scale
MOISTURE
TOLERANCE (no information) cal gas with moisture 3.5% max = 5 ppm NO
is needed to cancel (additive)
moisture interference.
Such gas not obtainable
SO2 TOLERANCE
Suspect so 2 + Co 2
combination (up to
(no information)
no interference. SO 2
corrodes.
1600 ppm SO 2 , 10—15%
COD) causes greater
interference than what
is attributed to gases
individually (i.e.,
2+2=5)
PART ICULAT E
TOT RANCE Lab test: no particulate (no information) Cannot be tolerated
Z R0 DRIFT None 2% due to cabinet 1% of full scale in
thermostat —- B hours
insignificant
CALIBRATION
DRIFT less .than 10 -ppm too low to be 1% of full scale in
si nihcait 24 hours

-------
TABLE 5 _
USER CO 1EN’rS ON SELECTED PA TE OFT _ DYNA CIENCES NX 130
MOISTURE
TOLERANCE
USER#l —
Low side of 1 ,0%
NO J..ab std (Truesdal.e)
us d for checks is
+ 5% accurate.
(no information)
Cell floods wiEFt
high moisture level
Max observed
1% in 3 days
USER#2 ______
Selection of test
points shows readings
1½% higher than lab
analysis
(no information) —
(no infoi mation)
100 ppm S0 2
142 ppm NO
(additive) Removed
D scrubber
but r iings
still average
7 ppm higher NO
2—5% (full scale)
downward drift in
8 hrs.(i.e , would
read 193 with
200 ppm span gas)
USER#3 — USER#4
+ 10 ppm ( ) lOOppm,
+50 ppm @ 300 ppm
(consistently
read high)
- 80% within
±2% of full scale
Have not seen
signi ficant
difference with!
without moisture
removal
high readings
could be caused
by 502 -- has
not been
investigated
5% or 25 ppm
typical in
1—2 hrs
5 ppm drift
25% of days
in use
ACCURACY
RE PEATAB ILITY
(no information):
SO 2 TOLERANCE
(no information)
(no information) 1
ZERO DRIFT
(no information)
no information)1
PARTICUL ITE
TOLE NC _
(no information)
(no information)
(no information)
(no information)’
--
-
-a-- -
-
CALISRATI ON
0 to + 5 % in B hrs
M x observed
9½% in 4 days
—--J
no perceptible
drift during
measurement of
test point
no perceptible
drift during
measurement of
test point

-------
II
Ii
CALIBRATION
DRI FT
Sensitive to
ambient tempera-
ture. At
constant tempera-
ture drift =10%
in S hours
10—15% variations
among if ferent
labs using standard
wet techniques for
checking instrument
(no information) — (no information)
TABLE 5 (contin ied)
USER CO.’1 ’ ’1E JTS OF SMJECTED PARPLM TERS OF THE DYNASCIENcES NX 130
tJSER#7
USER#6
+ 10% based on
PDA lab std.
CC URACY
REPEATAB ILITY
T JS ER#8
10%
(no information)
MA JFACrURE • t ‘S
DATA
+1%
or re aings
within + 1%
MOISTURE -
TOLEAN
(no information)
(no information)
(no information)
Vapor: no inte
ference
Condensate: slow
response but no
interference
-
(no information)
nasciences
scrubber is
effective (checked
with SO 2 cal.gas
at 1900 ppm)
Scrubber is - 1:1 (additive).
affective but Scrubber
also removes inadequate at
20% of 300 ppm 502 over 2SOOppm
N0
clogging only
.
(no information)
PARTICULATE
TOLERANCE
.
(no information)
•
(no information)
.
(no information)
Drift occurs
only if calibrated
on ambient air
10% + 2% per week
+ ½% per day
ZERO DRIFT
(no info mat ion)
10%
+ 3% per week
3% per day

-------
21.
IV. OTL R PARAMETERS
The discussion below deals with performance parameters which
are not among the seven most critical but,which in certain
cases were found to have special importance.
The principal complaint regarding the ruggedness and maintenance
of NO monitoring instruments was addressed to frequent
contamination of the Dynasciences detector cell from accumulated
condensate. One user with only a few months experience
anticipates having to replace, a flooded cell once per month
and a depleted cell 3 or 4 times per year. This user mentioned,
however, that the one hour of manpower required per replacement
can be fitted into existing manpower loads with no need for
additional staff.
The major complaint with the Beckman instrument is having to
clean the window of the detector once every 6 months to 2 years.
One Beckman user complains that he finds it awkward to gain
access to the dirty window.
All of the users operate their instruments at nearly ambient
II conditions. They say that by the time that the sample has
passed through the sample train, it enters the monitoring
instrument at about ambient temperature.
131
STEVENSON. JORDAN & HARRISON

-------
.
T ? cesporisc lag (i.e.,, the time required for the. dial needle
tc. begin to m&ve) is subject mainly to the length of the sample
lines such that lags of as much as 2 minutes are experienced.
O e user who was able th operate a- Dynasciences instrument and
a Beckman instrument side by side off of the sample train
reports that the Dynascienc s instrument is 15 to 20 seconds
slower than the Beckman instrument in response lags but that
the response time, once the needle begins to move, is about
t ie sa -ne for both instruments. One user believes response
time is important because NO concentrations chaflge with the
:1 power load.
The monitoring precision allowed by the users is in the 50 to
80 ppm raige, the latter being the lowest xnea5ured sensitivity
with laboratory véri-fication.
I’
ii 132
STE VENSON JORDkN & HARRiSON ’

-------
I
V. INVOLVED IN NON-PERMANENT INSTM.LATIO&S
Since the majority of users are employing instrumentation in
temporary installations their views are slanted toward concern
for portability and other characteristics associated with
short—term use.
Many of the users that were interviewed employ NO monitoring
instruments in connection with NO and other abatement tests in
the field and in the laboratory. Some of the users in the field
anticipate that non—permanent monitors also will be suita2le
for compliance monitoring. Because of the nature of the field
tests being monitored, a high level of instrument capability
(accuracy, repeatability, etc.) is not as important as other
operating factors.
Six of the ten users of electro—chemical instruments said that
portability wets a major consideration. Other factors that apply
include capability of operating under conditions of high
vibration since many of the temporary locations selected for
instrumentation are chosen on the basis of expediency. For the
same reason, long sample trains also are encountered, especially
in the case of mobile laboratories. Accordingly, instrument
response times are relatively insignificant.
4
133
STEVENSON, JORDAN & HARRISON

-------
___ ______ ____ - 24.
Instr ent users applying instruments on a non—permanent basis
prefer instrumént lthát require only a short time to set up
and place in operation beàau e of the relative frequency and
short duratio s o f the teéts.
Instruments used in this manner are typically operated for
periods of 2 to hours at a time. Calibration is performed at
least daily and ‘sometiiaes twice daily (before and after a test);
instruments in this kind of -application are constantly manned on
a one—for—one basis. The u-sers repozt that frequency of routine
servicing is not a problem of the availability of manpower and
cause the instruments are not needed for continuous operation.
A. OTHER CONS:ID ATIONS OF ‘USER EXPERIENCE
Inforin tion’ as developed on installation characteristics
that would relate mainly to application but would
indirectly relate to instrument parameters. This
informatron -is summarized below.
1. Data ’Handling
The majority of the instrument users are employing
strip -chart recorders to retain test dat’a or to
satisfy regulatory requirements. The recorders
ioüldbeinthe’proximity of the monitors but it
atso’i’s possible to have the recorders in the
control room -several hundred feet from the
monitoring instruments, as is customarily done with
l31
I__________________ STE fEN bN, JORDAN & HARRISON

-------
other instruments. Instrument users recognize the
possibility of using NO monitors as an input for
automatic boiler control, but are not undertaking
serious development at this time.
2. Use of Monitors for low NO Emissions
Instrument users were asked what would be the major
problem areas if NO regulations become more
stringent, such as being lowered to the 10 to 100 ppm
range. Several users doubt that the present w t lab
standards are suitable for this lower range. One
user also mentions that the zero gas is inadeq-uate
at the 10 ppm level and that the ambient background
around his power plants is 2 ppm NO . Several users
mention that the suspected NO loss in the sample
train would become significant. One of the boiler
manufacturers interviewed says that at present
levels of NO concentration, stack traverse
measurements now show variations of 2O ’ , which would
become greater at lower concentrations. One
instrument user who is obtaining instruments for
permanent installations says that he would have to
replace or alter these instruments. But another
user, in discussing this problem, says that such
replacement would be “cheap when compared to a
$500,000 NO control project on a boiler installation’
135
STEVENSON, JORDAN & HARRISON

-------
—- _______________________________________________ 26.
3. Major problems p c ed
Instrument users were asked what were the n ajor
problems or needs that must be resolved to have a
satisfactory permanently installed full—time NO
monitoring system. The majority, of the users
believe that reliability and low maintenance and
attendance requirements are paramount. Several
users see that the best way to attain these
reliability goals is to eliminate the sample
train and incorporate automatic zero and
calibration capabilities in the instruments. One
user’ s attitude is that it is “better to spend
for the first cost than for the labor”.
Accuracy and precision are desirable but are
not important until wet lab standards improve.
Several instr .unent users cite stratification
problems wibh their calibrating gases as affecting
accuracy of the instrument.
B. OTHER . USER COMMENTS
Several instrument users had suggestions that wo ild
improve monitoring system performance. One user
suggests that “a gas should always be passing through
the instrument” by alternating calibrating gases with
sample . Another user suggests that instruments should
136
iL STEV NSON, JORDAN & HARRISON

-------
S
_____—
be capable of relatively high rates of gas flow so as to
improve flushing and response time characteristics.
One user compares likely evolvement of an N0 monitor
to the use of 02 instrumentation by itilities, stated
that five years ago such instruments were undependable
and that even now, utilities do not calibrate regularly
even though plant operating costs and dangers would be
minimized.
II
137
I:
STEVENSON, JORDAN & HARRISON

-------
V I . NEW TECt INIQUES APPROACH ING T! M RJ P
A numb’er of instruments —— not among those now commercially
available are under development. Some of these appear to be
capable of equal or better performance as compared to the
former.
Chemiluminescence
Prototype would be available by mid—1971. One potential
user believes that this concept is not practical for
operational monitors. N.R.C. and Aerochem are both
working on this principle.
Concept Developed ‘y Environmental Data Corp Monrovia 1 Calif
EDC is highly secretive about the concept, which is an
in—stack monitor not requiring a sample train. Southern
California Edison reportedly has ordered EDC units for
26 stacks and other California utilities are interested
in purchasing tri 1 units.
Comi ents regarding the EDC unit by instrument users
indicate that the instrument is heavy (over 100 lbs.) due
to its ruggedness necessary to minimize optical zarp. A
significant advantage of an in—stack monitor is that
only one unit is required per stack on a two boiler
stack. According to one organization that has used
the EDC unit for several months, it has demonstrated
138
STEVENSON, ORDAN & HARRISON

-------
the best accuracy1 reliability and freedom from
maintenance. The EDC unit does not require calibration
gases. One other instrument user says that there are
too many variables associated with in-stack monitoring,
such as draft due to steam loads and wind, and the
diluting effect of air admitted to the stack.
Rainan (laser) Spectroscopy
NO nonitor for bench test is more than one year a ’ay.
Raman units for process applications are just now being
developed for high gaseous concentrations. Sensitivities
less than 200 ppm may be unattainable. G.E. and
Jarrell—Ash are both working on this principle.
UV Ionization
Prototype would be available in early 1971. Walden
Research is working on this principle.
ii Mass Spectromet y
Potential concept has not been adapted to stack gas
monitoring. Aero—Vac is working on this principle.
Radioactive Isotope Release
This technique is being developed for monitoring
automobile emissions. Applicability to stack NO and
•1 on temperature limits and H 2 0 and SO 3 levels. Panametrics
is working on this principle.
139
STEVENSON, JORDAN & HARRISON

-------
Condensation Nuclei Monitor
This variation of the Wilson cloud chamber is appropriate
for low concentrations (50 ppm NO 2 ). The first bench
test model would not be availabte before 1972.
Environment/one is working on this principle.
Dispersive 1R
Moisture interference is considerable. Otherwise this
concept is capable of in—stack operation. Wilks
Scientific is working on this principle.
UV SpecXrometer
The instrument as seen by one electric utility is
relatively slow in response and cannot discciminate
less than 100 ppm NOR. Honeywell is working on this
ii principle.
Gas Chromatography
Leeds & Northrup has a prototype instrument utilizing
this principle. Potentially 1 simultaneous or
consecutive measurement of N0 and SO 2 is possible.
The instrument has proved to be excellent with simulated
stock gases.
Flame_Photomet
Meloy Laboratories has introduced the concept for N0
1 1 W
STEVENSON, JORbAN & HARRISON

-------
31,
measurement on the basis of a modification of an SO
2
instrument.
•1
I )
i i
I.
1 l1
STEVENSON, JORDAN & HARRISON

-------
A-i
APSNDIX A
AERO CHEM COMPANY
AERO VAC’ CORP
AMERICAN ELECTRIC POWER
AMERICAN OPTICAL CORP
AT lAS ELECTRIC DEVICES
ANTEK INSTRUMENTS, INC.
AUTOMATED E’IVIRONME’STTAL SYSTEMS
BABCOCK & WILCOX
BACHARACE I INSTRUMENT CO
BAIRD ATOMIC, INC
BhLTIMO JtE GAS & ELECTRIC
BARNES E 4GINEERING
BARRINGER RESEARCH
BATELLE MEMOa IAL INSTITUTE
BECKMAN INSTIkUNEL4TS
BENDIX CORP
BENDIX CORP
BENDIX CORP
BRISTOL DIV of ACCO
BUREAU OF MINES
CALIFORNIA STATE AIR RESOURCES
CALIBRATED INSTRUMEStS
COMBUSTION ENGII IEERING, f&C.
CURTIN SCIENTIFIC CO
DAVIS INSTRUMENTS
DEPT. OF WATER & PO iER
1,
DEVCO ENGI&EERI&G, INC.
DO}iRMANN INS’TRUMENTS ‘dO.
E.I.duPONT de NEMOUÜS & CO
COMPANY
LOCATION
PRtNCENTON, N.J.
TROY, N.Y.
NEW YORK, N.Y.
SOTYFHBRIDGE, MASS
CHICAGO, ILL
HOUSTON, TEXAS
WOODSURY, N.Y.
BARBE TON, OHIO
MOUNTAIN VIEW, CALIF
BEDFORD, MASS
SALT IMORE, MD
STAMFORD, CO?51N
REXDALE, ONTARIO, CANADJt
COLUMBUS, OHIO
FULLERTON, CALIF
RONCEVERTE, W. VA
BALTIMORE, hi])
ROCHESTER, N.Y.
WATERBURY, CONI
PITTSBU H, PA
LOS ANGELES, CALIF
NEW YORK, N.Y.
WI DSOR, CONN
HOUSTON, TEXAS
NEWARK, N.J.
LOS ANGELES, CALIF
FAIRFIELD, N.J.
MOUNTAIN VIEW, CALIF
WILMINGTON, DE l IA.
ORGANIZATIONS CONTACTED
STE$E1 eON,TR1RD A54 &. &A 1mSON

-------
COMPANY
DYNASCIENCES CORP
DYNASCIENCES CORP
ENVIRONMETRICS, INC
ENVIRONMENT/one CORP.
ENVIRONMENTAL DATA CORP
ESSO RESEARCH & ENGINEERING
FISHER—PORTER Co
FOSTER-WHEELER CORP
FOXBORO CO.
GCA CORP
GENERAL ELECTRIC
GELMAN INSTRUMENT CO
GEII4AN INSTRUMENT CO.
HEWLETT- PACKARD
HONEYWELL INDUSTRIAL DIV
INTER-TECH
IONICS, INC
JARRELL-ASH
JARRELL-ASH
KAMAN SCIENCE CORP
KEN-TECH lABORATORIES, INC
LEEDS & NORTHRUP CO
LITTON ENVIRONMENTAL SYSTEMS
LITTON INDUSTRIES, INC
MAST DEVELOPME IT
MINE SAFETY APPLIANCES CO
MONSANTO RESEARCH CORP
NATIONAL ENVIRONMENTAL INSTRUMENTS
NUCLEAR-CHICAGO
LOCATION
CHATS WORTH, CALIF
LOS ANGELES, CALIF
MARINA DEL REY, CALIF
SCHENECTADY, N.Y.
NRIA, CALl F
LINDEN, N.J.
WARMINSTER, PA
LIVINGSTON, N.J.
FOXBORO, MASS
BEDFORD, MASS
SCHENECTADY, N.Y.
ANN ARBOR, MICH
VAN NUYS, CALIF
PALO ALTO, CALtF
FORT WASHINGTON, PA
PRINCETON, N.J.
WATERTOWN, MASS
WALTHAM, MASS
PITTSBURGH, PA
COLOi ADO SPRINGS, COW
BATON ROUGE, IA
NORTH WALES, PA
CAMARILLO, CALIF
MINNEAPOLIS, MINN
DAVENPORT, IOWA
FALLS CHURCH, VA
PITTSBURGH, PA
DAYTON, OHIO
FALL RIVER, MASS
DES PLAINES, ILl.
I I
ii
I.
ii
I i
Ii
II
ii
II
it 143
STEVENSONI JORDAN & HARRISON

-------
. 1
_ _ _ _ _ _ _ _ _ - A —3
COMPANY
PACIFIC EL,ECTRIç & GAS
PANAMETRICS
PERKIN-ELMER
PHILIPS ELECTRONIC INSTRUMENTS
POLLIffIOL4 CONTROL INDUSTRIES, INC.
POLL T ff ION MONITORS, INC
PRECISION SCIENTIFIC CO
I I RESEARCH APPLIANCE 0
R.ES j ARCH-COTTRELL
RESOURCE CONTROL, INC
RILEY STOKER
SAN DIEGO GAS & ELECTRIC
SCIENTIFIC GAS PRODUCTS, INC
SCIENTIFIC INDUSTRIES, INC
SCOTT AVIATION
SOUTHERN CALIFORNIA EDISON
TECHNICON
TRACOR, INC
• TYCO LABS
UNION CARBIDE CORP
UNIVERSAL OIL PRODUCTS
WALDEN RESEARCH CORP
WEATHER MEASURE CORP
ROY F. WESTON, INC
WILKENS ANDERSON
WILKS SCIENTIFIC CORP
ZURN INDUSTRIES
LOCATION
SAN FRANCISCO, CALIF
WALTHAM, MASS
NORWALK, ONN
MT. VERNON, N.Y.
STAMFORD, CONN
CHICAGO, ILL
CtIICAGO, ILL
ALLISON PARK, PA
BOUND BROOK, N.J.
WEST HAVEN, CONN
WORCESTER, MASS
SAN DIEGO, CALIF
EDISON, N.J.
t4INEOLA, N.Y.
LANCASTER, N.Y.
LOS ANGELES, CALIF
TARRYTOWN, N.Y.
AUSTIN, TEXAS
WALTHAM, MASS
WHITE PLAINS. N.Y.
GREENWICH, CONN
CPMBRIDGE, MASS
SACRAMENTO, CALIF
WEST CHESTER, PA
CHICAGO, ILL
SOUTH NORWALK, CONN
ERIE, PA
— - — . i i
II
14’
IL
SrE YENSON, JORDAN & HARR ’ISO J

-------
APPENDIX B: INTERVIEW PROCEDURE
1. Nature of Interviews
Considerable telephone screening was conducted
among more than 100 instrument manufacturers, boiler
equipment manufacturers, electric utilities aid
research laboratories to identify the establishments
that should be interviewed. In addition, requests
for literature were mailed to a broad selection of
instrument manufacturers (including those also
contacted by telephone).
Personal interviews by technically qualified
consultants skilled in interview techniques were
then arranged with the establishments listed in
Appendix A. Each interview was in two parts:
It 1. General questions regarding instrument
applications and instrument development
efforts.
2. A discussion of specific instrument
performance parameters and
characteristics
For the first part of the interview, separate sets
of questions were developed for iz trument
manufacturers and for instrument users. The
interview guides containing these questions ire
attached as Appendix C.
1115
STEVENSON, JORDAN & HARRISON

-------
a a.
Eoc the seco id part of the interview, instrnent
sp cifiça on sheets ;(also includes in this appeidix)
were pçepared under the guidance. of ‘MRC and were
used for both in trpment user and manufacturer for
gaining detailed information on specified
capabilities and on actual experience. It can be
seen that some questions regarding usage specification
ar,e answerable only by the users. Generally, it was
he’pful to leave a blank set of specifications to be
completed and returned by those interviewed inasmuch
A as some detailed information was not always
available during the interview.
2. Interview questions
Following are intervjews forms containing the
questions that were asked of NO, instrument
manufacturers and users:
a) Manufacturer
b) User
c) Iqflrument specifications (used in
interviews with manufacturers and users ’
l 46
L STEVENSON, JORDAN & HARRISON

-------
MANUFACTURER
STEVENSON, JORDAN & HARRISON
MANAGEMENT CONSULTANTS, INC.
200 Park Avenue
New York, N.Y.
INTERVIEW GUIDE FOR
MANUFACTURERS OF
NITROGEN CX IDES W)NITORS
CCMPANY:
ADDRESS:
RESPONDENT AND TITLE TELEPHONE NUMBER
SUMMARY:
INTERVIEWER____________________________ DATE
C LLRACK BY____________________________ DATE
1 l7

-------
L L— L
iNTRODUCTORY ;
1. Do you make 1O i to’nitors?
2. Do you make the NO detector component?
(if purchased. i 1ica e below from whom)
I. TYPES OF Th STRUEN’i S.MA 5E
A. Specifically for NO in combustion gases:
1. Type/Method
2. Model Nos .
3. NO and/br NO 2 ?
B. Ambient NO adaptable to combustion gas streams:
1. Type/Method
2. Model_Nos.
3. NO Sand/or N ?
4. Modificat ion reguiré
1 148

-------
I-C Other NOx instruments (e.g. for lab use):
1. Type/Method
2. Model Nob .
3. NO and/or NO 2 ?
4. Present Use
5. Potential Use
6. Modification
Re ui red
Fl 9

-------
I-D Non—NO monitors capable of being modified to measure NO
in combustion gases:
1. Type/Method
2. Model Nob .
3. NO and/or NO 2 ?
4. Present Us e
5. Potenti al Use
6. Modification
Required
150

-------
II. INSTALLATION INFORMATION
Where are your NOx instruments installed?
User and location*
2. Instrument(s) used
3. Application (lab,
ambient, combustion gas stream)
4. Installation date
5. Qperational results (problems?)
* Include name of person to contact if installation
appears to merit a user interview.
151

-------
M-6
III. R&D EFFO T$ ‘ O$ARD $Q MONfl ORS. :
A. Applied R&D Programs (toward product improvement):
1. Nature, purpos.e of program
2. Anticipated tjming*
3. DesiredJExpected. results
4. Extent to whi-ch
needs of application
will be s tisfied
* Completion of scheduled program or introduction of product
to market place. Also dates of prototype test.
152

-------
111—B Basic R&D programs (toward user concepts e.g.
lasers, acoustics, UHF. etc.):
I. Nature. purpose of program
2. Anticipated timing
3. Advantages over existing
approaches
153

-------
111.—C Are there concepts presently inactive but
could be developed if funds were available
(such as from, NAPCA) ?
15k

-------
IV. INSTRUMENT MANUFACTURERS’ OPINIONS
A. Need for 2nd Generation NO Instrumentation
B. Need for 3rd, 4th, etc. Generation NO Instrumentation
C. Estimated Dates When New Generation Instrumentation
Will Realize Substantial Sales
D. Willingness of Customers to Pay for Higher
Performance Characteristics
155

-------
1’l— J.U
V. Re q est L e a ure fr tt iis rumèz Manufa tu rers .on
Cost of instruments
‘rotal instailation
Operating
Product specifications
Installation inStructions
Operation/maintenance manuals
Sampling and pretreatment requirements
Electronic citcuitry
Papersjarticles descibing test studies
and installations
VI. If you were asked in the next several weeks to de-liver
an instrument 1 how soon could you do it?
156

-------
VII. What are the specifications of instruments currently
available?
of instruments about to be available?
considered necessary/desirable in the future (1975-80)?
GO TO”NO INSTRUMENT SPECIFICATiONS ”
157

-------
User
S EVENSONI JORDAN & HARRISON
MANAGENENT CONSTJLThNTS, ‘INC.
200 park Avenue
New York, N.Y.
INTERWEW GUIDE FOR
USERS )F
NITROGEN OXIDES MONITORS
COMPANY:
ADDRESS:
RES PONDENT AND TITLE TELEPHONE
SUMMARY:
- DATE
CALLBACK BY_________________________ DATE
158

-------
I. NATURE OF PROJECT
A. Are you presently engaged in a program for measuring
nitrogen oxides in combustion gases? Nature, purpose
and scope of program:
B. What are your future plans and objectives for an NO
program? What are your ultimate objectives?
C. To what extent will new instrument types or concepts
be involved?
159

-------
U-3
I-.D. How would your program have to be enlarged or modified
to meet the ultimate objectives?
1. Scope
2. Timing
3. Monitoring Equipment Needs
E. How freauent is the operation of the NO monitoring
system(s) used in this program?
Hours of Operation per unit time
1. Experienced
2. Anticipated
3. Desired
160

-------
II. INSTRUMENTATION
A. What NO monitoring instruments (do you) / (will you) use:
Egui ent Used
1. Sampling and/or
pretreatment
2. NO monitors
3. Recorders
4. Data handling!
transmiss ion
5. Other related
monitoring
functions or
capabilities
B. At what state of design is the instrumentation?
1. Experimental
2. Prototype
3. Production
161

-------
—
III. INSTRUMENT OPERATION
A. Pretreatment procedures:
Recommended by
Manufacturer Modifications
B. Why were modifications introduced? How was their need
determined?
162

-------
Iii. C. Instrument Calibration:
Reconunended Actual Desired
1. Frequency
2. procedure
3. Instrument reliability/accuracy:
Actual Desired
D. Instrument suitability in this application.
In other applications at this facility
In applications elsewhere
163

-------
U-7.
III. E. What problems (were resolved):! (are continui ng)?
Installation/startup
Performance
Applicability
Interference from other gases
From particulates
Pretreatment (including loss of
Human factors
16 i

-------
III. F. What problems of ruggedness (do you have?) / (do you anticipate?)
1. Optical components
2. Electrical components
3. Mechanical components
165

-------
III.G . If NO aUssion abatement lowers concentrations
to iO*WO ppffi which then must be measured, what
additional operational problems would you anticipate?
B. What thonitot performance do you think is necessary
for operational application?
(refer to specification list).
166

-------
IV. FUTURE NEEDS
A. What other monitoring concepts do you think should
be considered?
B. What do you think will be the major problems of
making operational use of currently available equipment?
C. Of equipnent now under development?
167

-------
U—li
V. OTIIR INDUST Y AcTIVITY
A. Who else in the industry i-s. using. NO, Monit-ors that you know of?
B. Who in the industry is studying advanced concepts and what
are these concepts?
168

-------
V I. SPECIFICATIONS (refer to specication list)
A. What are the specifications:
1. Compare actual performance to published specifications
2. What are desired specifications or specifications
necessary for instruments that would be incorporated
in an operational plant monitor and/or control system?
B. Bow would you rank the specifications (i.e. characteristics)
jn terms of being important to the operational use of the
instruments? (Rank the most important as number one.)
169

-------
bLbV tN ViN, U /L’%1.#g 1 l —
NOx INSTRU1 ENT SPECIFICATIONS Manufacturer
User *
Company____________________________ Resoondent__________
A. Instrument
Make, Model
B. Installation
(month, year)
C. Hours operated -
per unit of time
D. What is the accura y?
1.NO
2.N0 2 .- —-- — ______
E. All other th1r gS beiñ é ii I, what is the accuracy as it
is influenced by:
1. Base line drift
(deviation from zerp)
2. Calibration drift
3. Range drift
4. Internal .. *-.
calibration
capability?
5. Automa ç• —
Zero Capab4lity?
F. Precision -.--.——
(allowable
fluctuation
around true
value)
G. Repeatability - .
H. Sensitivity — .. - - .
(lowest
concentration
detectable)
170

-------
I. Responses:
1. Response time’.
2. Response lag
J. Resolution --________________
(ability to
discriminate
between levels
of concentration)
K. Detector/Monitor performance without sample pretreatment:
1. Identity of
interfering
gases
2. Comparative —___
values of
interference
3. Particulates
4.Moisture -- __
and water
vapor
L. System performance with sample pretreatment:
1. Flow rate J
2. Concentration ranges of
a.)NO _____ _______ ______ ____
b.)N0 2 — _______ ____
C.)NO
3. Concentration — —--t.-
ranges of
interferences
4. Temperature ——
tolerance
5.Moisture
tolerance
6. Particulate - - - - - - - _____
tolerance
7. Pressure!
vacuum
tolerance
171

-------
S-c 3
Sample loss
as it affects -
accuracy
N. Sample metering
systemr.
instability as;
it affects
accuracy
0. Environmetital operating -conditions ( around..the instrument )
as they affect accura y::
1. Ambient
temperature
range
2. Humidity
3. RF, electrical •. -
radiation
_________ ______________ ________ ___________________ ____..I_ ——
4. Vibrational
susceptibility..
P. Range(s)
Q. Operation Mode
1. Sampling
(continuous!
cyclical)
2. Output -—. .-1.——————
(contini.lbus/
sequential)
Dependability -...— .-——- -—-— —
(reliability)
S. Repair requirements :for monitor/detector:
1. Frequency Of incidents/year.’
a.) optical ( . -
b.) electric
c.) mechanical — —. —
.d.,) total (a+b+c)
172

-------
2. Downtime (hours) as % of scheduled operation (hours)
a.) optical
b.) electric
c.) mechanical
d.) total (a+b+c)
3. Labor (including burden), rilateriala cost:
a.) cost/unit
of time or
b.) cost/incident
T. Attendance Reauirements (scheduled) for monitor/detector:
1. Man—hours/
hours of operation
2. Cost/hours
of operation
3. Labor rate -____ _____________
(with burden)
U. Do you need
readable
output on
instrument?
V. Utilities
1. What,
how much?
2. What cannot - ______________
be used?
W. Required - ___ -_____
accessories
173

-------
s—s
X. Costs
1. Initial cost
a.) system ______________ ______________ _____-________
b.) monitor
2. Operating
Cost
Y. Physical Limits
1. Dimensional
limits
2. Weight
limits -
Z. Materials of Construction
1. Incidents
of material
failure
2. Preferred — ______________
materials
3. Materials
not
allowable
17k

-------
DEFINITIONS
Accuracy: Extent to which true value is measured
Interference: Effect on receiving, processing, measuring sample
Comparative Values of Interference: “x” ppm of $02 (for example)
introduces error eauivalent to “1 ppm of NO
Test Stack Gas Composition: SO 2 700-1450 ppm
so 3 50-200 ppm
NOx 3 QO—5O0 ppm
Co 2 12.5—13.5 %
02 35%
Precision: Allowable fluctuation around true value
Sensitivity: Lowest concentration detectable
ReBolution: Ability to discriminate between levels of concentration
Response lag: Time for instrument to begin to cahnge reading
with a change in concentration
Repeatability: Percent of instances in which readings fall
within a given degree of precision
Dependability.(reliability): Mean time to failure (i.e. event
beyond ability of instrument to self correct
to within prescribed accuracy and precision).
Repair Requirements: Unscheduled maintenance to correct
instrument to within prescribed accuracy and
precision.
175

-------
APPENDIX II
FIELD DATA ANALYSES
Preceding page blank
177

-------
The data are tabulated for each run as follows:
1. RUN DATE
2. ORIGINAL DATA MATRIX, Rows Correspond to O1 servation,
Columns to Instruments.
Column 1—A - Beckman
Column 2—B — Dynasciences
Column 3—C — EnviroMetrics
Column 4—D — Intertech
Column 5-E - MSA
Column 6—F — DuPont 6l
Column 7—G — 802
Column 8—H — Time (ca. hours since start)
3. CM1 (Correlation Matrix #1) — Simple correlation coeffi-
cients, r., e.g., coefficient In row column 3 is the simple
correlation coefficient between column B and column C in
the DATA MATRIX. Coefficient In row 8 column 1 is the
simple correlation coefficient between time and the Beckman
Instrument.
14• If any element in column 6 of CM1 (rows 1 through 5) was
greater than 0.9, then a regressl’on analysis was performed
between the DuPont !6l and the corresponding instrument.
5. The’ REGRESSION RESULTS MATRIX is composed of 5 columns:
Row 1: Column 2 Is the intercept (ppm).
Row 2: Column 2 — slope, Column 3 — standard error of the
slope, Column 1 — T—value.
Row 3: Column 2 — degrees of freedom for regression,
Column 3 — sum of squares, Column L I - mean square,
Column 5 — F—value.
Row LI: Column 2 - degrees of freedom for error, Column 3 —
sum of’ squares, Column 11 — mean square.
Row 5: Column 2 — degrees of freedom for total, Column 3 -
sum of squares, Column 4 — standard error of
estimate, Column 5 - square of the simple corre-
lation coefficient.
6. ABSOLUTE ERROR MATRIX (AEM) - Generated by subtracting
column from columns 1—5 of the DATA MATRIX. Columns 6,
7, 8 are shown unähanged.
7. CM2 — Correlation analysis Identical in definition to CM1,
performed on the ABSOLUTE ERROR MATRIX.
178

-------
8. AVG ERROR - e.g., using column A of ABSOLUTE ERROR MATRIX.
A
N
MEAN ERR:
N
IA I
i=l
N
MEAN DEV:
9. RELATIVE ERROR MATRIX (REM) - Columns 1-5 of’ ABSOLUTE ERROR
MATRIX were divided by column 6 (Xl0O) to yield the REM.
Columns 6—8 remain unchanged.
10. CM3 — Correlation analysis performed on the REM. Defini-
tion identical to CM1 and CM2.
11. ERROR ANALYSIS performed on the REM. Definition Identical
to Step #8.
12. Calculations performed on APL/360 TIME—SHARING SYSTEM
IBM Prog #360D—03.3.0O7 using K. W. Smille’s STATPACK 2:
An APL Statistical Package , 2nd edition, Publication
number 17, Feb. 1969, Univ. of Alberta, Alberta, Canada.
13. Programs run on the IBM 1130 used Fortran IV as described
in IBM publication GC 26—3715.
14. The 1130 uses the Version 2 Disk Monitor system,
Publication GC—26—3709.
179

-------
RUN DATE 6/7/71
DATA
0
A
168
166
155
B
154
167
135
C
.46”
193
130
P
163
166
155
F
160
150
150
t i
160
158
167
302
1850
1890
1750
T I ? ?
1
2
3
180
152
170
190
160
175
2570
1
170
175
165
165
155
155
156
148
165
170
180
185
2670
2675
5
6
180
170
175
148
165
190
2710
7
186
182
162
150
142
127
223
236
188
164
165
174
165
160
140
195
190
160
2830
3000
3000
a
9
10
166
159
150
1 1 (4
142
152
123
124
134
136
103
118
199
226
199
166
162
152
151
159
143
148
144
160
140
140
140
130
140
130
158
155
155
143
150
155
3000
3000
3000
2856
2990
3000
11
12
13
14
15
16
170
141
144
98
231
206
182
156
140
130
175
135
2888
2940
17
18
C
D
F
461
cMi
A
B
3Q2
T iME
1
0.74271 ,1
0.264112
0.452378
0.827774
0.909152
0.135092
0.564947
0.742741
0.264112
0.999999
Th.121299
Th.121299
0.999999
0.185095
0.29376
0.800708
Th.113153
0.690619
0.176053
Th.47213
0.461608
0.738818
0.359915
0.452378
0.185095
0.29375
1
0.114729
0.243023
0.124411
Th.17324
0.827774
0.800708
0.113153
0.11*6729
1
0.840405
0.370676
0.764101
0.909152
0.690619
0.176053
0.243023
0.840405
1
0.0433819
Th.457628
o.135092
Th.47213
0,461608
0.12’411
Th.370676
Th.0433819
1
0.78303
0.564947
Th.738818
0.359915
0.17324
Th.76 1e101
Th.457628
0.78303
1
1
6
37. 7231
0.757338
0
0.0867309
0
8.73204
0
0
0
0
0
1
16
17
2809.55
589.557
3399.11
2809.55
36.8473
6.0702
76.2486
0
0.826556

-------
Absolute Errors (ppni NOX)
A B C C E ‘161 802 Ti.rno
8 4 3 0 160 1850 1
8 9 35 8 8 158 1890 2
12 32 37 12 17 167 1750 3
5 23 15 15 175 2570 4
10 15 24 15 180 2670 5
i0 20 30 37 15 185 2675 6
10 20 15 25 190 2710 7
28 31 30 195 2830 8
1e8 46 25 30 190 3000 9
2 33 28 14 20 160 3000 10
8 35 41 18 158 3000 11
61 6 25 165 3000 12
21 44 12 15 155 3000 13
1 7 23 S 13 143 2856 14
12 6 10 150 2990 15
37 3 S 25 155 3000 16
31 56 7 35 175 2888 17
6 37 71 21 135 2940 18
I-J
CM2
1 0.391638 0.397107 0.740179 0.529746 0. 57317 0.163337 0.03066’iS
0.391638 1 Th.265053 0.123369 0.530691 0.143729 Th.598808 0.512724
0.397107 0.26 5053 0.999998 0.427312 0.152898 0.35337 0.461267 0.580314
0.740179 0.123369 0.427312 1 0.358089 0.745’e33 0.04 59101 0.298508
0.529746 0.530691 Th.152898 0.358089 1 0.601956 0.466327 0.283699
0.57317 0.11,3729 Th.35337 Th.7451e33 Th.601956 1 0.O’e33819 0.457628
0.163337 0.598808 0.461267 0.0’ 59101 0.’e66327 Th.01e33819 1 0.78303
0.0306645 0.512724 0.580314 0.290508 0.283699 0.’e57628 0.78303
AVG ERR, MEAN ERR. MEAN 0EV
A B C Li E
2.65667 27.1667 1B.5S56 6.88 889 17. 8333
6.88389 28.1667 31.3333 15. 5556 17.8333
7.69263 32.0083 37.7811 19.9086 20.5383

-------
RELATIVE h’RRORS
A B C C E 461 SO 2 Time
5 3.75 2.5 1.875 0 160 1850 1
5.06329 5.6962 22.1519 5.06329 5.06329 158 1890 2
7.18563 19.1617 Th2.1557 7.18563 Th0.1796 167 1750 3
_2.85-714 :13.1429 :2.85714 _8.57143 Th.57143 175 2570 I I
5,55556 8.33333 13.8889 13.3333 Th.33333 180 2670 5
5 .4 05 1e 1 10,81 08 16.2162 Tho 8.10811 185 2675 6
‘S.26316 Th0.5263 7.89474 22.1053 13.1579 190 2710 7
4,61538 Th3.0769 14.359 15.8974 Th5.3 846 195 2830 8
4.21053 :25.2632 24.2105 13 1579 :15.7895 190 3000 9
1.25 2U.b25 11.5 8.75 12.5 160 3000 10
5.06329 Th2.1519 25.9494 ‘e.43038 ‘11.3924 158 3000 11
e363636 24.8485 36.9697 3 ,6363$ 15.1S15 165 3000 12
Th.22581 ‘13.5484 28.3872 7.74194 Th.67742 155 3000 13
0.699301 Th.09511 16.0839 3. 1 1965 9.09091 143 2856 14
Th.33333 31.3333 8 4 “6.66667 150 2990 Is
1.93548 Th3.87 1 1.93548 3.22581 Th6.129 155 3000 16
2.85714 17.7143 32 4 Th u 175 2888 17
I-. ’ 4,44445 Th7.4 074 52.5926 15.5556 Th.7037 135 2940 18
l . a
CM3
A B C D E 461 T jme
0.999999 0.299169 0.440925 0.718572 0.474024 0.535453 0.165697 “0.0460097
0.299169 0.999999 Th.296631 0.0259118 0.422867 0.058064 0.612473 “0.608844
0.440925 Th.296631 0.999999 0.48423 Th.117421 0.429216 0.455058 0.602109
0.718572 Th.0259118 0.48423 1 0.25249 “0.738014 “0.0331752 0.311975
0.474024 0.422867 Th.117421 0.25249 1 “0.456625 Th.521185 “0.392227
“o,535453 0.058064 0.429216 “0.738014 Th.456625 1 0.0433819 “0.457628
“'o.165697 Th.612473 0.455058 Th.0331752 Th.521185 0.0433819 1 0.78303
“o.046O097 Th.608844 0.602109 0.311975 “0.392227 “0.457628 0.78303 1
AVG ERR, MEAN ERR, (JEAN 0EV
“ 1.38035 1G.3758 11.9864 3.38615 Th0.49 ’+4
4.08896 17.0087 19.2029 9.00144 10.4944
4.52881 19.4209 23.7328 11.1474 11.8997

-------
RUN £tATE 6$ / li
DATA
A B C D E 461 SO Time
208 204 206 216 198 185 2602 1
208 204 206 210 203 180 16Th 2
206 211 185 229 200 196 1632 3
207 200 182 22’. - -199 190 1548 4
212 206 158 240 210 188 1383 5
181 194 186 176 180 175 1152 6
168 29 0 276 1.59 153 173 1.1.10 7
180 234 16 4 179 168 190 1578 8
290 232 145 175 153 188 1140 9
176 236 125 167 138 173 1596 10
190 256 116 168 145 183 1308 11
178 243 82 167 140 175 1306 12
j73 25’s 58 166 143 170 1156 13
180 260 25 167 145 165 984 14
162 224 6 167 123 150 1008 15
172 268 23 152 133 280 1134 16
136 238 31 132 100 150 1404 17
1 2 242 #0 143 100 150 1356 18
S. 135 23 4 57 130 90 140 1416 19
ta 158 275 36 141 103 155 1536 20
1 14 28% 9 1 3 130 210 1596 21
176 265 1 172 120 195 1128 22
105 268 19 1 43 125 198 1470 23
CMI
A B C £ £ 46 ]. 802 Time
1 Th.344818 0.792681 0.856412 0.903057 0.770529 0.242995 0.681665
0.344818 0.999999 0.745028 Th.635254 0.671873 0.0416025 0.103598 0.832045
0.792601 0.745028 1 0.795962 0.914516 0.481748 0.111872 0.934872
0.856412 e0635254 0.795962 0.999999 0.931585 0.471646 0.189862 0.925782
0,903057 0.671873 0 ,914616 0.931585 1 0.556133 0.0998919 Th.enats
0.778529 0.0416025 0.487748 0.471646 0.556833 0.999999 0.376712 0.239285
0.2 42995 0.103598 0.121872 0.189862 0.0968919 0.376712 1 0.0207965
0.681665 0.832045 0.934871 Th.825782 Th.89401à Th.239285 Th.0207965 I

-------
AB3flLLITE RI ORS
A C D F 1 16] 302 T jne
23 19 21 31 1-3 185 1602 1
28 2’e 26 30 23 180 16111 2
10 15 11 33 4 196 1632- 3
17 10 8 311 9 190 1548 I i
24 18 30 52 22 188 1383 5
6 19 11 1 5 175 1152 6
17 3 ii 1 20 1-73 1110 7
44 26 11 22 190 1578 8
2 44’ 43 12 35 188 1740 9
3 63 48 6 3S 173 1596 10
73 :67 i5 38 183 1308 11
3 68 93 8 35 175 1306 12
-8 84 112 4 27 170 1156 13
15 95 1 140 2 20 1-65 ‘984 14
12 74 144 17 27 150 1008 15
88 157 28 47 180 1134 16
14 88 181 18 50 150 1404 17
92 190 7 Tho 150 1356 18
94 j97 10 ThO 140 1416 19
3 120 191 14 52 155 1836 20
5, 26 7 1e 219 :67 80 210 1596 21
1S 70 19 1 1 23 75 195 1728 22
13 70 179 55 73 198 1470 23
CM?
A B C P E 302 Time
0.’e80807 0.6945 0.883433 0.892523 0.0617685 0.103239 0.773016
0.480807 1 0.875179 Th.569178 0.7 119858 Th.519792 Th.120633 0.8144315
0.6945 0.875179 1 0.655623 0.861472 0.315081 0.0405635 0.964859
0.8831133 0.569178 0.655623 0.999999 0.896542 0.118095 Th.0307632 0.774582
0.892523 0.749858 0.861472 0.896542 0.999999 0.0694979 0.109382 0.931285
Th.0617685 Th5j9792 0.315081 0.118095 0.0694979 0.999999 0.376712 0.239285
0.103239 0.120633 0.0405635 0.0307632 0.109382 0.376712 1 0.0207965
Th.773016 0.844315 0.964859 0.77 1e582 0.931285 0.239285 0.0207965
AVG ERR, MEAN ERR. MEAN DEV
A B C D E
2 61.5 98.2273 5.72727 30. 1e091
11.0909 61.5 103.773 20.8182 36.5
14.0102 70.3566 130.85 27.81 1 1 43.0122

-------
KELP’ IVE ERRORS
A B C 0 E 461 SO 2 Time
12.4324 10.2703 11.3514 16.7568 7.02703 185 1602 1
15.5556 13.3333 14.4444 16.6667 127778 180 1614 2
5,10204 7.65306 Th.61225 16.8367 2.04082 196 1632 3
8.94737 5.26316 Th.21053 17.8947 4.73684 190 1548 4
12.766 9.57447 15.9574 27.6596 11.7021 188 1383 5
3.42857 10.8571 6.28571 0.571429 2.85714 175 1152 6
Th.89017 9.82659 1.7341 8.09249 Th1.5607 173 1110 7
1.05263 23.1579 13.6842 Th.78947 11.5789 190 1578 8
1.06383 23.40 43 22.8723 Th.38298 ‘18.617 188 1740 9
1.7341 36.4162 27.7457 3.46821 20.2312 173 1596 10
3.82514 39.8907 36.612 8.19672 20.765 183 1308 11
1.71429 38.8572 “53. 1429 4.57143 Th O 175 1306 12
4.70588 49.4118 65.8824 Th.35294 “15.882 4 170 1156 13
9.09091 57.5758 84.8485 1.21212 Th2.1212 165 984 14
8 49.3333 96 11.3333 18 150 1008 15
4.44444 ‘48.8889 Th7.2222 ThS.5556 26.1111 180 1134 16
9.33333 58.6667 Th20.667 Th2 33.3333 150 140 4 17
“ 5,33333 61.3333 “126.667 Th.66667 33.3333 150 1356 18
3.57143 67.1429 140.71 ’ 4 7.14286 35.7143 140 1416 19
1 .93548 77.4194 “123.226 9.03226 33.5484 155 1036 20
12 381 35.2381 :104.286 :31.9048 :38.0952 210 1596 21
9 jij 35 9 35.8974 99.4872 11.7949 38. 1 1615 195 1728 22
6.56566 35.3535 90.4041 Th7.7778 Th6.8687 190 1470 23
‘ i i
CM2
A B C 0 E 1461 302 TIme
U.’IU I.L55 _U.U,L 1 U3 U.btL3’ V u.aa d’e’.a U.U4l4b441 U.114111 U.!bt lU Y
“0.402188 1 0.899664 Th.482356 0.759675 0.672312 Th.149562 0.785204
0.614059 _0.8996611 0.999999 0.573376 0.861496 0.490161 0.0798888 °0.923631
0.871540 _0.’102356 0.573376 1 0.854917 0.0711619 Th.0341655 Th.779662
_O.852445 _0.759675 0.861496 0.854917 1 0.241075 Th.0756985 0.942277
0.0246227 ,,0.672312 0.490161 0.0711619 0.241075 0.999999 0.376712 Th.239285
_0.112171 0.149562 _0.0798888 e00341655 Th.0756985 0.376712 1 Th.0207965
0.752109 0.785204 0.923631 0.779662 Th.942277 “0.239285 0.0207965 1
AVG ERR, HEAP ERR, MEAN DEV
A B C D B
1.10358 36.341 Th8.2371 3.07693 Th7.6201
6.21226 36 .341 61.3112 11.353 20.93 6
7.68548 42.6645 78.4404 14.5598 24.4314

-------
Rut PATE 6/9/71
PA TA
205 210 270 187 220 195 1769 1
205 215 238 207 210 196 l’s65 2
209 210 236 208 213 193 1383 3
204 207 210 209 215 188 1412 4
217 218 214 217 220 188 1383 5
210 221 192 215 220 193 1236 6
207 230 17 ’s 219 220 193 1213 7
206 164 221 223 225 190 127? 8
176 14!s 149 1 8 200 160 1523 9
83 168 171 152 210 160 1488 10
141 12 ! 118 185 190 125 1611 11
141 1 ?? 118 127 160 120 1593 12
143 117 108 149 196 130 1488 13
155 135 115 1!s5 190 135 1578 14
168 123 149 190 130 1599 15
133 113 84 138 160 95 1441 16
166 120 184 203 141 1512 17
CM1
H
A B C D E ‘ t E l 502 P1
1 0.939976 0.902658 0.849078 0.893009 0.971974 Th.487582 0.823766
0.939976 1 0.841536 0.789844 0.784539 0.915245 0.447133 0.833’61
0.902658 0.841536 0.999999 0.743011 0.792463 0.926607 Th.199468 0.934878
0.849078 0.789844 0.743011 0.999999 0.845519 0.857067 0.605727 O.701e161
0.893009 0.784539 0.792463 0.845519 1 0.910521 0.430979 0.689386
0.971974 0.915245 0.926507 0.857067 0.910521 0.999999 Th.443079 Th.883199
0.487582 0.447133 Th.199468 Th.605727 Th.430979 Th.443079 0.999999 0.205182
0.823765 0.833461 Th.934878 0.704161 Th.689386 Th3.883199 0.205182 1
REGRESSION ON INSTRUMENT A
1 43.3549 0 0 0
6 0.853575 0.0533051 15.013 0
o 1 13175.5 13175.5 256.416
0 15 770.748 51.3832 0
0 16 13946.2 7.15821 0.944734

-------
REGRESSION ON INSTRUMENT B
2 12.3209 0 0 0
6 1.13926 0.12949 8.79808 0
0 1 23470.8 23470.8 77.4062
0 15 4548.24 303.216 0
0 16 28019.1 17.4131 0.837673
INSTRUMENT C
3 80.2846 0 0 0
6 1.54679 0.162076 9.54362 0
0 1 43266.1 43266.1 91.0807
I_I 0 15 7125.45 475.03 0
0 16 50391.5 21.7952 0.858598
INSTRUMENT E
S 116.51” 0 0 0
6 0.5314871 0.0627118 8.52904 0
0 1 5173.146 5173.46 72.71445
0 15 i 066.77 71.1182 0
0 16 62110.24 8.143316 0.829049

-------
ABSOLUTE ERRORS
25 195
11 14 196
15 20 193
21 27 188
29 32 188
22 27 193
26 27 193
33 35 190
8 40 160
50 I 60
80 65 125
7 40 120
19 66 130
10 55 135
19 60 130
43 65 95
43 62 141
I - I
1769
1465
1383
1412
1-383
1236
1213
1277
1523
1488
1611
1593
1488
1578
1599
1441
1512
10
9
16
16
29
17
14
16
16
23
16
21
13
20
38
38
25
0. 2 63 267
1
0.1443 97
0615475
Th.367853
0. 267556
Th.2 1805
Th.296369
1
2
3
4
.5
6
7
8
9
10
11
12
13
14
15
16
17
15 75
19 42
17 43
29 22
30 26
28
37 19
31
16 11
8 11
7
13
0
28
18 11
2
Th.365916
0. 1443 97
1
0.398 286
0.697237
0.656828
0. 132 263
‘0.81372
0EV
C
7.58824
21.8235
29. 05 92
A B
C?42
1
0.263 267
Th .3 65 916
0. 2 86924
0.543907
Th.578515
0.05 88359
0.631 273
C
B
E
1461
AVG ERR, MEAN ERR, MEAN
A B
19.8235 -1 .0.0588
19.8235 16.7647
22.1345 20.3393
Time
0.286 924
0.0615475
.3 982 86
1
0.417011
0. 3191 07
Th.274298
0.3 78961
D
20.5 882
2 2.4706
27.6564
0. 543 907
0.367853
Th.697237
0.417011
I
Th .886424
0. 361 918
0.911393
E
41.7647
41 • 7647
46.5242
0.267556
0.21805
Th.296369
0.319107
0.132263
0.274298
Th.-81372
0.886424
0.361918
0.999999
Th.443079
0.911393
Th.883199
0.443079
0.999999
Th.88319 9

-------
RELATIVE ERRORS
A B C - D E ,6i SO Time
5.12821 7.69231 38.1 .615 14.10256 12.8205 195 176 1
I,.591$Ie 9.69388 21.4286 5.61225 7.1 1 4286 196 1465 2
8.29016 8.80829 22.2798 7.77202 10.3627 193 1383 3
8.51064 10.1064 11.7021 11.1702 14.3617 188 1412 ‘4
15.14255 15.9574 13.8298 15.4255 17.0213 188 1383 5
8.60829 14.5078 0.518135 11.399 13.9896 193 1236 6
7.25389 19.171 9.64 1 456 13.4715 13.9896 193 1213 7
8.42105 13.6Ø42 16.3158 17.3684 18.4211 190 1277 8
10 10 6.875 5 25 160 1523 9
14.375 5 6.875 5 31.25 160 1488 10
12.8 1.6 5.6 148 52 125 1611 11
17.5 5.83333 1.66667 5.83333 33.3333 120 1593 12
10 10 16.9231 14.615” 50.7692 130 1488 13
14.8148 0 14.8 148 7.40741 40.7407 135 1578 14
29.2308 21.5385 5.3B’461 14.6154 46.1538 130 1599 15
40 16.9474 1i.5789 45.2632 68.4211 95 11441 16
17.7305 1.41644 14.8936 30.14965 ‘e3.9716 l ’et 1512 17
CM3
A B C D E 61 802 Time
1 0.384571 0.469028 0.534477 0.775032 0.767614 0.16961 0.723299
0.384571 0.999999 0.101377 0.0409757 Th.0913191e 0.0846832 Th.158035 0.130630
0.469028 0.101377 1 0. 471325 0.7127’i6 0.70 ’e809 0.0814859 Th.644’417
0.534477 0.0409757 Th.1e71325 1 0.658137 0.5’12616 0.0753473 0.510668
0.775032 0.091319’e 0.7127 ’e6 0.658137 1 Th.95508’4 0.361203 0.892168
0.76761 1 4 0.08146832 0.704809 0.S’e2616 0.955084 0.999999 0. 14’&3Q79 Th.883199
0.16961 0.158035 0.0814859 Th.0753473 0.361203 0.443079 0.999999 0.205182
0.723299 0.130638 0.84’e417 0.510668 0.892168 0.883199 0.205182 1
AVG ERR. MEAN ERR. MEAN DEV
A B C D E
13.6989 6.08179 2.5 172’e 14.3734 29.397
13,6969 10.2329 12.8819 15.4443 29.397
16.7568 12.31473 16.0971 20.8168 35.3099

-------
Rug DATE 6/25/71
DATA
252 238 261 230 227 250 1492 1
246 272 236 251 221 260 1026 2
218 272 32 223 179 253 615 3
197 200 297 213 161 200 466 4
195 280 273 216 166 223 352 5
l9 287. 244 216 156 254 257 6
154 280 169 172 103 195 181 7
192 270 274 220 149 270 94 8
196 220 246 224 153 258 95 9
179 231 216 202 126 241 81 10
151 219 178 175 90 218 60 21
172 241 202 195 110 238 21 12
r’e4 215 166 162 75 233 15 13
135 2t7 156 144 56 212 35 14
129 205 148 152 S ’ s 195 35 15
CM1
A B C D E 461 so 2 Time
o.99 9 9 9 9 0.433955 0.781953 0.9434 9 0.991688 0.649677 0.855294 Th.908239
0.433955 1 0.38107 0.48809 0.481003 0.422826 0.272076 0.541132
o 0.781953 0.38107 0.999998 0.826723 0.804937 0.512311 0.538558 0.788607
0.9 43459 0.48809 0.826723 0.999999 0.954994 0.713205 0.648084 0.840226
0.991688 0.481003 0.804937 0.954994 0.999999 0.609527 0.830121 Th.938685
0,649677 0.422826 0.512311 0.713205 0.609527 1 0.3309 Th.384153
0.855294 0.272076 0.538558 0.648084 0.830121 0.3309 1 0.840446
0.908239 Th.541132 0.788607 0.840226 Th.938685 Th.384 153 Th.840446
ABSOLUTE ERRORS
2 12 11 20 23 250 1492 1
14 12 The 260 1026 2
35 19 71 30 7 4 253 815 3
Th 0 97 13 The 200 466 4
Ths 57 50 7 57 223 352 5
60 33 10 38 98 25 4 257 6
41 85 Th6 Th3 92 195 181 7
78 0 4 Th o Th21 270 94 8
Th2 The Th2 3 4 105 258
10 25 The Thi s 241 61 ’ 10
Th7 1 40 Th3 Th28 218 60 11
Th6 3 ‘36 Th3 Th28 238 21 12
Th9 18 Th7 71 Thsa 233 15 13
77 S Th6 Th8 Thso 212 35 14
Th6 10 47 43 Th41 195 as 15

-------
CM2
1 0.2222’43 0.68 1 1441 0.898358 I 0.966975 0.0253607 0.833626 0.8561403
0.222243 1 0. 167034 0.309797 0.208513 0.396029 0.00206987 0.231593
0.6B 4’e’e l 0.16703’e 1 0.75335 0.722151 _0.067066 0.450932 0.71331’e
0.898358 0.309797 0.75335 1 0.896361 0.105184 0.549822 0.762933
0.966975 0.208513 0.722151 0.896361 0.999999 0.182058 0.839699 0.9’e379
Th.0253607 0.396029 0.067066 0.105184 0.182058 1 0.3309 Th.384153
_0.833626 0.00286987 0.450932 0.549822 0.839699 0.3309 1 0.8 1e0 1 1 1e6
0.856403 0.231593 0.71331 14 0.762933 0.9k379 0.38’e153 0.840 1e 1 16 1
AVG ERR, MEAN ERR. NEAR DEV
49.7333 9.8 7.33333 33.8667 98.2667
50 20.2 38.4 35.4 98.2667
58.7501 31.8647 47.7628 41.3703 110.584
RELATIVE ERRORS
0.8 1 1.8 4.11 8 9.2 250 1492 1
5.38 1e6 1 4,61538 9.23077 3.46154e 15 260 1026 2
13.83 1e 7.50988 28.0632 11.8577 29.249 253 815 3
1.S 0 48.5 6.5 19.5 200 466 11
12.5561 25.5605 22.4215 3.1390 1 25.5605 223 352 5
I—’ 23.622 12.9921 3.9370 1 14.9606 38.5827 254 257 6
21.0256 43.5897 13.3333 11.7949 47.1795 195 181 7
28.8889 0 1.48148 18.5185 44.81 148 270 91i 8
2’e.031 14.7287 4.65116 13.1783 ‘e O.6977 258 95 9
25.7261 1 1.1493B 10.3734 16.1825 ‘i7.7 178 241 81 10
30.7339 0.458716 18.31486 19.7248 Th8.7156 218 60 11
27.7311 1.2605 15.126 18.0572 53.7815 238 21 12
38.1974 7.72532 28.7554 30.4721 67.8112 233 15 13
36.3208 2.35849 26.4151 32.0755 73.58’49 212 35 14,
33.8 462 5.12821 2’e.1026 22.0513 72.3077 195 5_ 15
CM3 -
1 0.130417 0.747477 0.906119 0.959165 0.155559 0.84659 0.922698
0.130417 1 0.103708 0.231312 0.0790391 0.428894 0.0200942 0.20662
0.747477 0.103708 1 0.815608 0.738008 0.0698962 0.438846 0.712945
0.90649 0.231312 0.815608 1 0.8799311 0.0367728 0.564253 0.813704
0.959165 0.0790391 0.738008 0.87993’e 1 0.39374 0.820938 0.967614
0.155559 0.4288911 0.0698962 0.0367728 0.39374 1 0.3309 0.384153
0.84659 0.0200942 0.438846 0.564253 0.820938 0.3309 1 0.8404’e6
0.922698 Th.20662 0.7129’45 0.8137011 0.967611 Th.38’4153 0.840 1 146 I
AVG ERR. NEAR ERR, MEAN DEV
21.5065 4.80468 3.29381 1 1e. 1 1656 .‘e2.9135
21.6132 8.9918 17.276 15.3323 42.9135
25.4843 15.001 21.91161 18.0658 48.87014

-------
RUN DATE 7/13/71
DATA
REGRESSION ON INSTRUMENT B
ABSOLUTE ERRORS
269
258
25’&
267
2140
288
1129
1
265
251,
322
262
245
284
10145
2
257
246
301
257
229
27’e
1099
3
2614
240
391
260
2141
270
1090
14
260
2147
3114
257
2314
2714
1055
5
CM1
1
0.602369
0.206578
0.9’e 6282
0.81 2922
0 • 7Q7957
0 • 30814514
0.64 7895
0.60236 9
1
0.82711
0.7118022
0.3142286
0.984186
0.175298
Th.804985
Th.206578
2711
I
0.453519
0.23 0367
0.7 1e2664
0. 1e07 1 436
0.605 806
H
0
I’ ,
0. 9146282
0. 7148 022
0 .453519
1
0.61448614
0. 8365 82
0. Ieg Ie l 05
0.83631 5
0
9.62313
193.7211
2. 09195
1.1414636
0. 812922
0.3142286
0.230367
0.6414864
1
0. 468892
Th.21 1i655
0.401508
0
0
92.6046
0
0. 96 86 21
2
5.03’i 52
0
6
0.913793
0.09149581
0
1
193.7214
0
3
6.27585
0
14
200
CM2
19
19
:30
30
34
38
21
22
48
39
288
284
1129
1045
1
2
17
28
27
17
‘S
2714
1099
3
6
30
121
10
29
270
1090
14
1’e
27
l eO
17
1e0
2714
1055
5
0. 7 07957
o .9814188
0 .7426614
0 .8 36 582
0. 1468 892
1
0.215729
0.871977
7977 91
0. 46 l 238
Th.801338
0.875878
109
1
0. 215729
Th.871977
0 .3 0814514
0.175 298
0.407 436
0 .4 914105
.214 655
0. 215729
1
0. 14777 95
Th.03 91617
0.285 2148
Th.393715
0.0872888
0.412624
0. 215729
0. 1377795
0.6 1e7895
0.80’e 985
0 .605 806
0.836315
0.40 1 508
0.87i977
0.1477795
0.999999
0. 669556
0. 570821
0.6611427
0.669649
0.5 66289
Th.871977
• 47 7 79 S
0.999999
1
0.0325472
0.882724
0.9614965
0.0325472
1
Th.0576232
0.0748691
0.882724
0.0576232
1
0.833886
0.964965
0.0748691
0.833886
1
0.868649
Th.797791
0.21916
Th.454238
0.963151
Th.801338
q.75s513
Th.875878
Th.0391617
0.285248
0.393715
0.0872888
0.669556
0.670821
0.661427
0.6b9649
AVG ERR. MEAN
ERR, MEAN
DEV
0. 8686 l 9
0.21 916
0. 963151
0.755513
1
• 6 4 2 1 09
0. 1126214
0 .5 66289
15
29
38.’e
17.’4
40.2
15
29
52
17.4
40.2
17.6281
32.4538
69.9464
20.0188
45.5275

-------
RELATIVE ERRORS
w
6.59722
10.416?
11.8056
7.29167
16.6667
6.6901’e
10.5634
13.3803
7.7146 48
13.732 14
6.201e38
10.219
9.85’eO l
6.20438
16.4234
2.22222
1i.1111
1414.81146
3.7037
10.7 1 407
5.10949
9.a5leOi
114.5985
6.20’438
11 4.5985
CM3
1
Th.581602
0.581602
I
0.882668
Th.581703
0.962005
0.521257
0.839567
Th.708241
0.882668
0.952005
0.581703
0.521257
1
0.8381141
0.8381141
1
0.922209
0.70288
0.839567
Th.708241
0.922209
0.70288
1
0.758037
0.115798
Th.802684
0.841187
Th.533367
0.0193146
0.187314
Th.37 1e372
0.1225149
0.39901
0.630857
0.197167
0.659178
0.627716
0.468963
AVG ERR. MEAN
ERR. MEAN
DRY
5. 86 1 469
10. 1 4328
14.16814
6.23012
14.14323
5.36469
10.4328
18.8906
6.23012
114.14323
6.281314
11.6735
25.6758
7.13937
16.3138
2814
10145
2
274
1099
3
270
1090
14
2714
1055
5
0.758037
0.0193146
0.630857
0.115798
0.802684
0.18731 1e
0.37’1372
0.197167
0.659178
0.8 1 41187
0.122549
0.627716
Th. 533367
0.39901
0.1468963
1
0.215729
0.871977
0.215729
1
Th.477795
0.8?1977
0.47?795
0.999999

-------
RUN DATE 71 1 1 . 171
DATA
299 310 318 304 - 286 278 795 1
30 1* 311 314 304 298 261 781 2
279 288 289 279 275 2 1 .3 715 3
294 300 299 293 289 260 778 4
223 194 313 208 240 170 822 5
291 293 372 285 284 233 914 6
292 296 310 284 300 237 864 7
CM1
1 0.993489 0.110423 0.992104 0.953773 0.924345 0.05fl135 0.28766
0,993469 1 0.04908 0.995088 0.935424 0.940454 Th.128357 Th.325054
0.110423 0,04908 1 0.0532293 0.0571991 0.122099 0.819543 0.338033
0.992104 0.995088 0.0532293 1 0.916981 0.959088 Th.151434 Th.394756
0.953773 0.935424 0.0571991 0.916981 0.999999 0.818092 0.01*50288 Th.0655829
0.924345 0.940451* Th.122099 0.959088 0.818092 1 Th.315302 o.s.’.ss
0.0581135 o.128357 0.819543 Th.151’4341 0.0450288 Th.315302 0.999999 0.719927
0.38766 0.325054 0.338033 0.394756 Th.0655829 o.5’ ,n 0.719927
REGRESSION ON INSTRUMENT A
1 110.172 0 0 0
6 0.7161*49 0.132261 5.41693 0
0 1 3912.22 3912.22 29.3431
0 5 666.633 133.327 0
0 6 4578.86 11.5467 0.854411
INSTRUMENT 8
2 24. 4991 0 0 0
6 1.07722 0.174123 6.18655 0
0 1 8844.31 8844.31 38.273k
0 5 1455.41 231.082 0
0 6 9999.72 15.2014 0.884456
INSTRUMENT D
4 64.9863 0 0 0
6 0.888814 0.117332 7.57521 0
0 1 6021.08 8021.08 57 3838
0 S 524.633 1D4.927 0
0 6 6545.71 10.2434 0.919851

-------
A BSfl&L11’E. ERROR3
21 32 40
1e3 50 53
36 45 46
26 32 31
53 24 1 113
58 60 139
55 59 73
26 8 278
43 35 261
36 32 243
25 21 268
38 70 170
52 51 233
47 63 237
1
2
3
14
5
6
7
CM2
1
0.543182
0.811702
0.91 9606
0.927312
0.69207
0.659627
0.787226
AVG ERR. MEAN
0.543182
1
0. 105 702
0.797916
0. 25 9758
0.194548
0.423945
0.43628
ERR, MEAN
I -a
0
U i
41.7143
41.7143
47.363 8
RELATIVE
0.69207
0.194548
0. 828476
Th.39 0195
0. 85 88 09
1
0.315 302
0.S’eS S
43.1429
43 .1429
48. 6998
ERRORS
0. 811702
0 .105 702
I
0. 635 84
0.790461
0.828476
0.701921
0. 605086
0EV
75
75
93.6172
14.3885
20.3065
18.93
11.5672
84. 1177
59. 6567
30. 801.7
0. 65 9627
0.423945
0 .7 01 921
0. 614019
0. 540679
0.3 15302
0.9999 99
0.719927
795
761
715
778
822
9114
864
0. 927312
0. 25 9758
0. 79 0461
0.718567
1
.858 809
0.540679
0. 807603
40
40
48.689 5
2. 8777
13.41
13.1687
7.83582
41.1765
21.8884
26 .5 823
0. 96 7738
0.3352314
0.893558
0. 875171
1
95 7669
0.4628149
0. 692 939
11.5108
19. 1571
18.5185
11. 9403
14 .1176
25.7511
24.8945
0.919606
0.797916
0. 63 5 84
1
0.718567
0.390195
0.614019
0. 6305 27
38.1429
3 8.1429
42.4323
9. 35 25 2
16.4751
14.8148
9.32836
22. 35 29
22. 3176
19.8312
0.9653 22
0.693699
0.83483
I
0. 87 51 71
.7 90311
0. 61 0869
0.705 003
7.55396
16.4751
14.8148
9 .70149
31.1765
24. 8927
23.2068
CM3
0.999999
0.51233 2
0 • 913306
0.9653 22
0. 96773 8
0.90815 4
0 .575624
0. 723613
AVG ERR. MEAN
278
795
261
761
2 113
715
268
778
170
822
233
9111
237
86’e
0. 787226
0. 4362 8
0. 605086
0.630527
0.807603
0.5455
0.719927
I
0. 723613
0.6 1 1892
0.545149
0. 7 05003
0. 69293 9
0.S’e S S
0. 719927
I
0.512332 0.913306
1 0.232e63
0.232463 0.999999
0.693699 0.831183
0.33523’l 0.893558
0.155457 Th.9216’e4
0.567692 0.570563
0.64892 0.545149
ERR. MEAN DEV
1
2
3
11
5
6
7
Th.908151e
0.15$457
0.9216 4’e
0.790311
0.95 7669
1
3153 02
0.5’ 155
18.2602
17.9843
311.2526
16.3532
18.1342
18.2602
11.9843
314.2526
15.3532
18.13 112
21.4952
20.2779
45.9982
18.5131
23.14668
0.5 75624
0.56 7692
0. 57 05 63
o • 610869
0. 462849
0.315302
0.999999
0.719927

-------
RUN DAfl 7115/71
DATA
262
251
239
201
2 ’k
222
280
252
158
195
175
139
81
132
240
233
229
200
238
214
272
291
283
256.
272
25$
186
276
269
2¾1 .
220
188
259
232
300
0. 938p58
0.9 9999
k.027474
0.769336
0. %4 1 ,38
0. 2 5 0461
0.20755 9
-0.2305 12
254
250
20 ,0
1
206
188
261
0.185635
0 .027474
1.’
0 • 345702
0. 043 9156
0.731891
Th .737305
0.811318
CM L
1 45.,34r’.
0.19338058
0.1.85635
0.8669,37
0.9M82
0. 1*4 ,4792
0.1151.74 -
.0.00298233
ABSOLUTE ERRORS
H
0
0 \
0.866937
0 • 769336
o • 31167 02
I
o • 778983
0.6d5655
CO. 137 414
“o.235 376
I
2
3
4
5
6
7
1
2
3
4
5
6
7
— a
en
84
4
46
24
es I
127
33
50
6s
Th e
Th7
116
79
Th9
72
17
105
2
28
144
15
4
763
856
926
879
891
964
1037
0.96482
0. 941 38
0.0439156
0.7789 83
1
0. 386 925
0 3i8389
0. 2 2 89 91
763
856
926
879
891
964
1037
8:111131
0 .324747
0. 8 025 91
1
o. 785277
0. 679512
0.7045 14
27.5714
35.5714
44.9129
agi
283
256
272
255
186
276
Th 9
Th 2
17
71
11
36
4
çM2
b.961877
Th. 2417 62
0. 87 93 65
0. 9767 77
Th.714004
0.56318
0.56185 9
AVG ERR. MEAN
17.1429
28.5714
37.921
0.444792
0.250461
0 • 731891
0. 685655
0. 386 925
1
• 41j5fl5
“0 .5 27005
0.115314
0. 49 92 31
“o.785 277
1
Th.445645
0.527005
0.115174
0 • 207559-
0.737305
0.13 7414
0.318389
0.445645
0. 999999
0. 8962 22
65 072
0. 422626
0. 679512
0.4456 45
0.999999
0. B 96222
0.0029,8233
0 .2 30512
o. 8,1:1’ 3 18
“ ‘ 0.235376
0 • 228991
.5 27005
0.896222
1
8: tI
“ ‘0.681192
0.41304
0. 704514
“ '0.5 27005
0.895222
I
9. 961877
0.32339
0. 88747
0.938871
Th.597583
0. 30653
0. 615159
ERR. MEAN DIV
“15.2857
36.4286
146.6637
1
Th.326734
Th .324747
0. 115314
0.65072
Th.68 1192
98.4286
98.4286
112.544
B:fl9 5
0 .326734
1
0.802591
0 .499231
0.42 2626
0. 41 304
Th u .1429
38.7143
49.1003

-------
RELA tIV2 hRRORS
9.96 56’e 7.5601’e 13.”021 12.7148 17.5258 291 763 1
11.307 1e 13.7809 ‘e 1 4.8763 11.6608 17.6678 283 856 2
6.6 1e063 I 1 4.0625 23. 8281 21.875 10.51e69 256 926 3
26.1029 3 0. 882’4 35.66i8 29.OIete l 26.4706 272 879 14
1e.31373 1.56863 45.4902 19.2157 6.66667 255 891 5
19.35148 214.7312 56.’e516 1.07527 15.0538 186 9614 6
1.414928 8.69565 52.1739 5. 1 43’e78 1. l 4 1492 8 276 1037 7
CM 3
1 0.968326 0.51i2181 0.8608714 Q•9$14Ijl 5 0.771515 0.530589 0.514632
( 1.968326 0.999999 Th.58301 1e 0.87901414 0.957631 0.6762l 3 0.509501 0.605485
Th .5142182 0.5830114 1 0.517871 0,62101e1 0.534085 Th.718625 Q•799341&
0.860874 0.879044 0.527871 1 0.797021 0. 1e69155 0.382147 0.378297
0.981414145 0.957631 0.6210141 0.797021 1 Th.820779 0.633362 0.671122
- .3 0.771515 Th.6762143 0.531*085 0. 1469155 0.820779 1 0.4’5645 0.527005
0.530589 0.509501 0.718625 0.38247 0.633352 0.’4456’e5 0.999999 0.896222
0.514632 0.6051485 0.7993 1*1e 0.378297 0.671122 0.527005 0.896222 1
AVG ERR. MEAN ERR. MEAN DEV
Th.36089 1.47006 38.8 I *06 1 1e.12 1e3 9.32’75
11.30149 i’e.’46 08 38.81406 114.4315 13.6258
114.9866 10.6559 - 1414.714214 18.31469 16.85143

-------
BUD DATE 7/16171
DATA
CM1
249
254
246
252
225
280
926
1
241
2 1 46
237
247
222
268
970
2
248
248
241
254
221
284
1033
3
243
251
245
228
214
2140
1063
4
245
248
238
238
211.
270
1066
5
4
6
0
0
0
F- ’
87. 2634
0.583221
1
3
4
0
0.130847
‘iG 3.822
60. 9778
464.8
0
4. 45 728
403 .822
20.325 9
4. 50843
0
0
19. 8673
0
0.868809
31
Th7
36
3
Ths
26
22
36
11
22
1 0.58702
0.510677
0.569638
b.4178 57
0.657352
Th.260768
Th.283473
0.58702 1
0.93363
Th.0340786
0.218533
Th.0686053
0.35879’e
Th.353553
0 5i0677 0.93363
1
0.101101
0.156989
0.2113’sS
Th.220791
Th.313304
0.569638 Th.03J.0786
Th.ioiioi
0.999999
0.873563
0.932099
Th.658076
Th.68939
0,41 ’7857 0.-2Y8533
d Os&S 7 ’ 3 S. 2 0.0686053
0.358794
r0.2834,73 Th.353553
0.156989
0.211345
0.220791
0.313304
0.873563
0.656078
0.68939
1
0.920204
0.9S4427
0.682075
0.’ 475686
o.4 4o53
Th.fl0204
0.475686
I
0.959341
o.95’027
0.440S34
0.9 59341
O.999’999
REGRESSION ON INSTRUMENT
I )
ABSOLUTE ERRORS
CM2
1 0.995296
0.995296 1
0.994653 0.997132
0.853921 0.871722
0.951532 0.96834
o.985209 0.984346
- 0. 1 18053 0.399088
0.435801 0.365838
AVG ERR. HEAD ERR, MEAN DEV
Th.986209
0.984346
0.977002
Th.878515
Th.967198
1
0.475595
0.440534
0.48053
0.399088
0.394649
0.134739
0.253139
0.475686
1
0.959341
0.435801
0.36S838
0.341743
0.0193456
0.198922
Th.440534
0.959341
0.999999
—3”
31
43
5
32
28
21
30
12
Th2
55
1 46
26
56
280
268
284
240
270
926
970
1033
1063
1066
1
2
3
4
S
o • 994653
0. 997132
I
0.085903
0.967775
0 .977002
0.394649
0 • 3 (in 43
0.853921
0. 871722
0.885903
1
0.95 8646
0.87851 S
0 .1 347 39
0.0193456
23.2
24.4
30. 08 32
0.951532
0.96834
0.967775
0.958646
1
Th.967198
0.253 139
0 . 1 9892 .2
19
23.4
27.6632
Th7
24.6
29
24.6
35.4063
28.6923
49 .2
49 • 2
55.8375

-------
flI.ATIVE ERRORS
11.0714 9.28571 12.1’ 429 10 Th9.6 429 280 926 1
_10.0746 8.20895 11.5672 7.63582 17. 1642 268 970 2
i2.6761 12.676 1 15.tIe O S 10.5634 22.1831 264 1033 3
1.2$ 4.58333 2.08333 10.8333 240 1063 4
925926 8. 148 15 11.8519 Thi. 8 5i 9 20.7407 270 1066 5
CM3 -
1 0.995518 0.99466k 0.615669 0.936796 0.97835 0.482957 0. 427846
0.995518 2. 0.996978 0.837508 0.957556 Th.979118 0.405255 0.361135
0.994664 0.996978 1 0.853886 0.957932 0.96787 e 0.396688 0.333129
I — I 0.815669 0.837508 0.853886 1 0.9 149993 0.8341445 0.0819311 0.0510344
0 0.936798 0.957556 0.957932 0.949993 1 Th. sioas 0.214643 0.146467
0 Th.97835 Th.979716 0.967874 0.834445 0.951085 1 Th.475686 0.440534
0.482957 0.405255 0.396688 0.0819311 0.214643 Th.475686 1 0.959341
0.427845 0.361135 0.333129 0.0510344 0.146467 0.440534 0.959341 0.999999
AVG ERR. NEAR ERR. NEAR DEV
8.36628 6.7471 1 9.72388 Th.05021 18.1128
8.86627 8.58044 10.5572 9.05021 18.1128
10.8634 10.0211 12.7994 10.4696 20.7369

-------
RUN DA2’E 7/19/71
DATA
239
2140
231
235
212
261
17’e7
1
2142
242
257
226
224
268
1559
2
242
242
280
229
224
264
1689
3
238
21
305
222
221
261
1804
II
241
244
311.
225
225
267
1851
5
241
242
315
225
228
261
1874
6
252
250
329
243
232
265
2041
7
CM].
1
o • 950801
0.14735
0.78103 7
0.716 1 438
0. 3 8032
0.518961
0.60404
ABSOLUTE ERRORS
0.950801
1
0.653204
0. 665 9714
0. 765 375
0.406338
0 • 1 11;g1 2
0.7 1 44387
0
0
0. I ’ 735
0.653 204
1
0.00165824
0. 828923
0.042 1 .815
0. 761029
0.963534
0.781037
0.665971.
0.00165824
0. 999999
0 .1517 66
0.0 ’405 517
0.4874 99
0.189737
0.716438
0. 765 3 75
0. 828 923
0.151 766
1
0.393545
0.506 798
0.853479
22
21
30
26
49
261
1747
1
26
22
23
26
22
20
11
16
1414
1 42
35
39
44
l0
40
268
2614
261
1559
1689
1804
2
3
14
26
20
13
23
19
15
414
514
614
42
Th6
Th2
42
33
33
267
261
265
1851
18714
20141
5
6
7
0. 38032
0. 406338
0.01.24815
0. 0405517
0.393545
1
0.239622
0. 025 9938
0.275618
Th.47153 1
0.0415744
‘43095
0. 009178 ’ .
1
Th.239622
0.0259938
0.5 789 61
0.714912
0. 761. 029
0.487499
0 .5 067 98
.2 39622
1
0. 81478 93
0. 76252
0.8969314
0.781201
0. 51.9632
0. 672628
Th.239622
1
0. 847893
CM2
1 0.928705
0.928705 1
0.486826 0.633386
0.81.2533 0.751056
0.662813 0.675153
Th.275618 Th.471531
0.75252 0.896934
0.610382 0.69597
AVG ERR. MEAN ERR, MEAN DEV
21.71 1 43 20.8571
21.71143 20.8571
23.8677 22.7889
0. ‘I 86 826
0. 63 3386
1
0.011.2033
0.88372
0.04 15744
0. 7 812 0 1
0.961386
0. 60404
0. 714143 87
0.96353’s
0.2 89 737
0.853479
0. 025 9 38
0.847893
1
0.610382
0.69597
0.961386
0.1681 .57
0. 911295
0. 025 9938
0.847893
1
0.814263 3
0.751056
0.01142033
1
0 .168919
Th .31.3095
0.549632
0 .1681.57
3 ’4.5714
34.5714
30.1445
0.662813
0 • 675153
0. 883 72
0.168919
1
Th.089178 ’e
0.572628
0.911295
40 .1 ’s 29
40.1429
• 7398
25.8571
37.5714
45.020’s

-------
RELATIVE ERRORS
Th.42912 Th.04598 11.’ 1943 9.96169 Th8.7739 261 1747 1
9.70149 9.70149 4.10fl8 15.6716 16.4179 268 1559 2
Th.33333 8.33333 6.06061 Th3.2576 Th5.1515 264 1689 3
Th.81226 7.6628t4 16.8582 1 4.9425 15.3257 261 1804
Th.73783 Th.61423 16. 479k Th5.7303 Th5.7303 267 1851 5
7.66284 7.27969 20.6897 13.7931 Th2.6437 261 1074 6
4.90566 5.66038 24.1509 8.30289 Th2. 4528 265 2041 7
CM3
1 0.927637 0.489862 0.832711 0.64786 0.220022 0.759565 0.621789
0.927637 1 0.650176 0 ,734989 0.656425 0.414201 0.908267 0.721555
o 0.489862 0.650176 1 0.00108948 0.885416 0.0468151 0.777169 0.960132
0.832711 0.734989 0.00108948 1 0.130283 o.29a22 0.542152 0.1669
0.64786 0.656425 0.885416 0.130283 1 Th.00769315 0.651485 0.915932
Th.220022 Th.414201 0.0468151 0,294422 Th.00769315 1 Th.239622 0.0259938
0.759565 0.908267 0.777169 0.542152 0.651485 Th.239622 1 0.847093
0.621789 0 .721555 0.960132 0.1669 0.915832 0.0259938 0.847893 1
AVG ERR, NEAR ERR, NEAR DEV
8.22608 7.89971 9.80573 13.0941 15.2137
8.22608 7.89971 14.2625 13.0941 15.2137
9.03585 8.62418 17.0919 14.4366 16.5773

-------
238
245
213
275
21.6
244
217
268
283
255
217
266
287
264
216
268
289
253
218
250
283
242
217
248
aÔi
252
220
256
a12
274
218
21.6
RUN DATE 7/20/71
DATA
242 2 4 ’ s
240 243
247 247
246 280
i1 239
as 2 0
246 241
cpir
1 ‘ 0.755255
0.755255 1
0U97959 o.088138’e
d;7ht05 0.449415’
Th.f72 16 Th.S26083
0.301678 0.63148
Th.42008 1 Th.322264
0.126773 0.3BS7l5
ABSOLVYS ERRORS
0.197959
Th.08813 84
1 ’
0.692 763
0.743841
0.75 998
0.574522
0.911015
r’)
0
rs)
1
2
3
4
5
6
7
8
1
2
a
4
S
6
7
8
-8
11
18
17
—5
Th2
Th4
Thi
17
11
49
19
4
39
3
32
35
6
Thi
45
Th
Th&
6
28
28
1934
2040
2111
2199
7297
2335
2195
2082
0.1 72516
Th .326083
o.i’eaa4i
0.25 S846
I
Th.676574
0. 49683
0. 75 8176
1934
20 40
2111
2199
2297
2335
2195
2082
0. 92212
0.656105
0.898931
0.806771
I
Th.9929’eS
0.680542
0.90B594
;42 .625
‘42 .625
47.230”
_3 3
_1 9
9
i 3
_1 7
0
C 142
I
0. 816869
0.937603
0.951934
0. 92212
Th.9266 52
0 .5 31.619
0.880301
AI’G ERR, MEAN
Th7 .625
17. 625
21.5705
0. 7 47 85
0. 449 15
0.O2763
1 ’
0.255846
Th.2 965
Th. 03185 31
0.516888
275
268
266
268
250
248
256
246
0. 951934
0. 908355
0. 921398
1
0. 8067 71
Th.806963
0.39794
0. 8744 79
6
13.75
18.7388
0.301676
0.420088
Th.126773
0.631’+8
Th.322264
0.3 57iS
0.7S 98
0.574522
0.911015
0.2965
Th.676 57 4
Th.0318531
0.549683
0.516888
0.758176
1
o.669717
Th.889716
o.669717
Q •Jggggg9
0. 562872
0. 89716
0.562872

Th.926652
0.534619
0.880301
Th.644592
0.530931
0.747157
Th.877876
0.636227
0.954099
Th.806963
0.39794
0.874479
Th.992945
0.680542
0.90859 ’ s
1
o.669717
0.889716
0.6697 17
0.999999
0.562872
0.889716
0.562872
1
0.816869 0.937603
0.999999 0.85049
0.85049 1
0.908355 0.921398
0.656105 0 .898931
Th.644592 Th.877876
0.530931 0.636227
0.747157 0.954099
ERR, MEAN 0EV
20.25
16.75 35
19.8926 40.7606

-------
RELATIVE ERRORS
r’J
0
12 11.2727
10. 1 11e78 9.32836
:7.14286 :7.14286
_8.20896 _2.98507
3.6
5.21119 1i 7.25807
6. S ’e063 6.64063
O 2. 03252
CM3
1 0.795196
0.795196 1
0.9371’e 0.81’4959
0.955212 0.890582
0.90643’. Q,6 05943
Th.912259 Th.5972’.6
0.498176 0.’e779 83
0.869184 0.712335
AVG ERR, REAM ERR. 14EAN DEV
6.56027 6.38253
6.65027 6.38253
8.07199 7.50515
13.’ 15’eS
8.20896
6.39098
7.08955
15.6
1’. .1129
17.5781
26.8 293
0.93714
0. 81 ’ l 959
1
0.915509
0.905535
0.8886 11
0.622158
0. 95 9181
275
268
266
68
250
2’lB
256
2’e S
193’
2040
2111
2199
2297
2335
2195
2082
10 .9 091
8.95522
‘e.1353’e
1 .4925’ s
1.2
2. e1936
1 .5625
11.3821
0.955212
0.890682
0.915509
1
0.795109
• 79 ’ .O ’47
0.36211’s
0 .863316
2.111’e9
5.25702
7 .14963
1
2
3
I .
5
6
7
a
22.5455
19.0299
18.4211
:19.403
12.8
12.5
1le. 0625
11 .3821
0.906 ’43 ’e
0.605943
0.9065 35
0.795109
0.999999
0.993249
0.671588
0.9101127
16.268
16. 268
17. 8531
Th.912259
0.498176
0.86918’.
0.5972 ’e6
0.477983
0.712335
0.888611
0.622158
0.959181
0.79 ’e8’e7
0.35211 ’ .
0.863316
Th.9932 ’e9
0.671588
0.910427
1
0.669717
Th.889716
0.669717
0.999999
0.552872
8.2 1 1217
13.55 8
16.0839

-------
RUN DATE 7121171
DATA
223 221 187 220 193 262 2104 1
243 238 213 252 225 288 1896 2
254 2119 226 267 241 277 1976 3
2 p0 242 223 263 240 280 1911 4
245 231 226 253 231 270 1794 5
247 241 234 256 233 254 1502 6
C M ] .
0.999999 0.986086 0.908541 0.997952 0.993743 0.349795 Th.43528 0.60168) 1
0.986086 1 0.865564 0.982512 0.962425 0.353157 Th.384792 0.515169
0.308541 0.865564 1 0.890956 0.922989 0.00593947 Th.750323 0.86720
0.997952 0.982512 0.890956 1 0.993 1e96 0.394904 0.41091 5 0.674502
0.993743 0.962425 0.922989 0.993496 0.999999 0.331698 0.467689 0.653158
0.349795 0.353157 0.00593947 0.394904 0.331698 1 0.448454 0.391245
Th.43528 0.384792 0.750323 0.410915 Th.467689 0.448454 1 0.883262
0401684 0.515169 0.86728 0.574502 0,653158 0.391245 Th.883262 I
ABSOLUTE ERRORS
E U 39 41 75 Th2 69 262 2104 1
0 ‘45 5Q r 35 288 1896 2
28 51 10 Th6 277 1976 3
30 3 0 Th7 17 40 280 1911 4
Ths Th3 39 270 1794 5
20 2 254 1502 6
CM2
1 0.986394 0.977771 0.94217 0.940248 Th.648121 Th.772004 0.853926
0.986394 1 0.942469 0.891451 0.079483 Th.722686 Th.725372 0.765422
0.977771 0.942469 0.999999 0.939013 0.94766 Th.594027 Th.072142 0.931971
0.942 17 0.891451 0.939013 1 0.995759 0.357423 Th.75804 0.0809211
0.940248 0.879483 0.94766 0.995759 0.999999 Th.363744 Th.771796 _0.915381
0.648121 0.722686 Th.594027 :0.357423 :a.3 37 1 0.4W8454 _0.391245
0.772004 0.725372 Th.872142 0.75804 0.771796 0.448454 1 0.883262
0.853926 0.765422 0.931971 0.880924 0.915381 Th.391245 Th.883262
AVG ERR, MEAN ERR, MEAN D RY
20.1667 33.8333 53.6667 Th4.6667
20. 1667 33.8333 536667 20.6667 44.6667
33.6125 39.1587 62.3474 27 .35 69 52.1306

-------
RELATIVE ERRORS
I ’ )
0
1’e.8855
1 5.6 489
28.626
16.0305
26.3359
262
15.625
17.3611
25. O’e17
12.5
21.875
288
8.30325
10.1083
18.4 1 16
3.61011
Th2.996 1
277
10.71’43
13. 57114
2 0.3b71
Th.071’43
14.2857
280
9.25926
12.2222
16.2963
6.2963
1’e. 4 4’e’e
270
2.75591
5.l1811
7.874 02
0.787402
8.26772
25’e
CM3
1
0.986806
0.975213
0.951755
0.930664
0.986806
1
0.937048
0.90834
0.871274
0.975213
0.937048
1
0.95169
0.946128
0.951755
0.90834
0.95169
1
0.994529
0.930664
0.871271o
0.946128
0.994529
1
0.580781
0.650766
0.5017
0.30’i789
Th.256708
0.801078
Th.759846
Th.8921457
0.769932
0.769702
0.875252
0.792989
0.94737
0.881332
0.908227
AVG ERR. MEAN
ERR, MEAN
DEV
10.2572
12.3383
19.6011
7.28683
16.3675
10.2572
12.3383
19.6011
7.54929
16.3675
12.1884
14.2002
22.7094
10.0338
19.0897
2104
1896
1976
1 911
1794
1502
1
2
3
‘4
5
6
0.580781
0.801078
0.875252
0.650766
Th.759846
0.792989
0.5017
0.892 ’e 57
0.94737
Th.304789
0.769932
0.881332
0.256708
0.769702
0.908227
1
0.4 ’48’eS4
0.391245
0.448454
1
0.883262
0.391245
0.883262
1

-------
RUN DATE 7/22/71
DATA
2 7 238 236 269 229 276 1838 1
256 228 236 268 235 289 1748 2
225 235 266 244 285 1640 3
2 0 233 263 272 254 284 1613 4
223 254 2fl 241 262 1897 5
249 214 242 250 232 255 2262 6
C l i i
1 0.627503 0.439277 0.797467 0.846914 0.601683 0.815503 0.204023
0.6275 93 1 0.107873 0.898721 0.129 0.647696 0.688456 Th.815069
0.439277 0.107873 1 - 0.017’e759 0.592311 0.361299 0.0172458 0.622677
0.797467 0.8 8 21 Th.0174759 1 0.438871 0.849728 Th.924574 Th.t2931
o.fl6914 0.129 0.592311 0.438871 0.è99999 0.369733 0.631378 0.25113
0.601683 0.647696 0.361299 0.849728 0.369733 1 0.889322 Th.726366
l U 0.816503 Th.688456 0.0172458 Th.924574 0.631378 Th.889322 0.999998 0.572669
a Th.20’s023 Th.815069 0.622677 Th.72931 0.25113 0.726366 0.572669 1
ABSOLUTE ERRORS
19 Th8 7 47 276 1838 1
33 61 5 4 289 1748 2
5 o Th9 41 285 1640 3
14 51 30 2U4 1613 4
39 0 262 1897 5
41 13 Th3 255 2262 6

-------
CM2
1 0.81012 0.972772 0.920769 0.9356111 0.81136 0.602055 0.776065
0.81012 1 0.76’#241 0.952254 0.55649 0.796759 0.619393 0 .305’i lS
0.972772 0.7642’e l 1 0.907057 0.927383 0.900676 0.659309 0.122082
0,920769 0.95225* 0.907057 1 0.71195’i8 0.864071 0.6071*9 0.520608
0.9356 1 11 0.556 1 19 0.927383 0.7495 41 1 0.773464 0.481455 0 ,916342
Th. 3713& 0.796759 Th.900576 Th.a 6 o7t 0.773’e64 1 Th.889322 0.726366
0.602055 0.619393 0.659309 0.607189 0.481455 Th.889322 0.999998 0.572669
0.776065 0.305410 0.822082 0 .520608 0.916342 0.726366 0.572669 1
L V
C
ERR. MEAN ERR. MEAN DEV
17.1667 48,3333 32.5 10.6667 36
17.1667 48.3333 32.5 10.6 6 47 36
21.8312 53.9778 40.2567 14.2829 41.6557
RELATIVE ERRORS
Th3.7681 Th4.4928 2.S3623 17.029 276 1838 1
11.4 187 21.1073 Tha. aaas 7.26644 Th8.6851 289 1748 2
9.1228 1 Thi. 0 5 2& 17.5439 6.66667 14.386 285 16 *0 3
4.97958 17.9577 10.9155 4.22535 10.5634 28 ’ s 1613 11
Th.9084 14.6855 3.05343 0 8.01527 262 1897 5
2.35294 16.OTfl Th.o 9so 1.96078 9.01961 255 2262 6
CM3
1 0.727472 0.970456 0.913635 0.918231 0.865237 0.5931211 0.785435
0.727472 1 0.660248 0.912233 0.407003 e0693784 0.510964 0.174984
0.970456 0.6602 48 1 0.895336 0.009998 0.889276 0.64 4573 0.8301177
0.910635 0.912233 0.895336 1 0.70446 Th.854634 0.591807 0.51356*
0.918231 0.407003 0.909998 0.70446 1 0.725647 0.42522 0 .920432
0.865237 0.693784 Th.889276 0.854634 Th.7256L4? 1 0.889322 o,726366
0.59312 4 0.110964 0.644573 0.591807 0.42522 0.889322 0.999998 0.572669
0.7851135 0.174984 0.830477 0.513564 0.920432 0.726366 0.572669 1
AVG ERR, NEAR ERR, NEAR PEP
Th.10275 Th 7.i 7 5 Th1.5738 3.77591 Th2.9 1 197
6.10274 17.475 11.5738 3.77591 12.9497
7.6 7439 11.3952 14.2021 S.007 52 14.8544

-------
RUN DATE 7/23/71
DATA
281
254
252
210
96
65
48
252
306
238
227
266
25 k
265
264
241
270
255
256
262
261
252
253
252
C M ] .
1
0.38 6758
0 .6 98 211
0.956648
0.623473
0. 2 88009
0.5 22285
0.689615
293
267
269
271
270
258
260
256
0. 698 211
0.0675764
0.999999
0. 653409
0.05 93008
0.563118
0.422635
0.26811
173 260
169 231
169 233
171 270
162 273
151 268
157 256
166 256
0.956648
0.483885
0.65 3409
1
0.654839
0.04441 1*3
0.699562
0. 821893
0. 386758
1
‘O .0675764
0. 483885
0. 8965 88
50 9033
0.3053 01
0.579129
0
ABSOLUTE ERRORS
1
2
3
N
5
6
7
8
1
2
3
N
5
6
7
8
10
21
46
33
87
260
24
23
7
36
62
231
23
19
e6
36
64
233
Th
60
4
1
99
270
12
177
19
Th
111
273
Th6
203
10
Th17
268
3
208
8
4
99
256
4
4
Ths
0
90
256
CM2
2255
2152
1981
1834
1954
2021
1852
1754
0.623473
0. 89 65 88
0.0593008
0.65483 9
I
Th.347414
0. 26 0145
Th.662264
2255
2152
1981
1834
1954
2021
1852
1754
0.972293
0. 826651
0.22607
0. 900517
I
0. 93 4613
0. 321831
Th.550575
Thi .125
91.125
99. 4421
1 0.767336
0.767336 0.999 999
0.371011 0.313151
0.967783 0.772029
0.972293 0.826651
Th.920523 Th.617591
0.50161 0.321346
0.668429 Th.58603
AVG ERR, MEAN ERR, MEAN 0EV
0.509033
0.305301
0.579129
0.563118
0.422635
Th.268 11
0.0444143
0.699562
0.821893
0.34741 ’s
0.2601’eS
Th.662264
1
Th.277963
0.372906
0.277963
I
0.830371
0.372906
Th.830371
1
Th.920523
0.50161
Th.668429
0.617591
0.321346
Th.58603
0.117558
0.728659
0.618376
Th.800234
0.649779
Th.80172
0.934613
0.321831
Th.550575
0.277963
Th.277963
1
0.372906
Th.830371
0.372906
0. 371011
0 .313151
I
0.S’e7378
0. 2 26 07
0.117558
0 • 728659
Th .618376
1.75
13.5
20. 26 96
1.75
12.5
15.5563
0. 9 67783
0.772029
0.547378
1
0.900517
0.800234
0. 6497 79
Th.80172
12 .125
15 .375
23 .32 07
73.625
89. 375
131.339

-------
RELATIVE ERRORS
3.816615
10.3896
9.871216
2.96296
5.97 015
i .17188
1.5625
CM3
1
0. 7 533 77
0.336467
0. 97 le 2316
0.963103
0. 92 806
0.’e991 1 6 1 6
Th.6672’i
8.07692
9 • 95671
8.15 1651
22.2222
6’e .835 2
75 .71 .63
81 .25
1.5625
0.753377
1
0. 292751
0. 753709
0.863419
0.6 12127
0.33002 3
0.59l 48 48
0
0
33. 1 4615
26.8398
27.4678
36.6667
‘40.6593
Th3 .6567
38.6719
35.1563
260
231
233
270
273
268
256
256
17.6923
3.0303
.5 7511
1 .16811.8
6.95971
1 .11914
3.125
5.85938
0.336467
0.292751
1
0 .5 0 06 62
0. 2335 06
0 .11212
0.736191
0.62 2646
0.7315 67
5.230316
7.79024
2255
2152
1981
1834
195’e
2021
1852
175’e
12.6923
15.581616
15.4506
0. 37037
1 .0989
Th.7313”
1.5625
0
0. 971.2 316
0.763 709
0.500662
0.999999
0.920936
82 88 23
0.636822
0 .790985
5.10375
6.31131
9.71303
I
2
3
‘4
5
6
7
8
AVG ERR, MEAN ERR. MEAN DEV
1.005169
5.02126
6. 161133
27 • 142 85
33.9755
49 67 01
0.963103
0.92806
0.1.991141.
0.8631419
0.612127
0.330023
0.233506
0.11212
0.736191
0.622646
0.920936
0.828823
0.636822
0.790985
1
0.890381
0.33872
0.605315
0.890381
1
0.277963
0.372906
0.33872
Th.277963
1
35.3225
35.3225
38. 2278

-------
RUM DATM 7/26/71
DATA
2 e2 2’42 223 257 208 229 2223 1
243 280 223 261, 220 256 2292 2
30 252 207 262 21 1e 257 2327 3
i25 252 216 258 221 232 21115 14
2110 261 200 266 234 243 .2320 5
C l ii
1 0.374131 0.2148806 0.356026 0.0289269 0.104956 Th.838798 0.4331214
O.37’ e 31 1 0.0713657 0.718374 0. 1 47294 0.66022’e 0.0782952 0.11o 1 4a5
0.248806 0.0713657 1 Th.58738 Th.663785 0.2143102 0.352366 0.826915
0.356O26 0.718374 0.58738 1 0.739 1 117 0.703132 0.0330499 0.493197
0.0289269 0.47294 0.6637$5 0.739’e17 1 0.146769 O.4’e87’et 0.865256
0.104956 0.660224 Th.2’e3102 0.703132 0.146769 1 0.0155556 0.014846144
d.8387gs 0.0762952 0.352366 0.0330499 0.4118741 0.0155556 0.999999 0.724182
O. 133124 0.110485 0.826915 0.493197 0.865256 0.014846414 0.724182 0.999999
ABSQLUTE ERRORS
13 13 28 2 1 229 2223 1
13 2’ , 33 a 36 256 2292 2
o Th7 5 50 S 1 13 257 2327 3
20 16 26 11 232 2415 4
18 ‘3 23 9 2143 2320 5
CM2
I o. 1 17773a 0.790181 0.864859 0.650635 Th.836802 Th.47571 1 0.281811
0.477738 1 0.429896 0.422512 0.550381 0.317716 0.0809359 0.0836893
0.790181 0.1429896 0.999999 0.734015 0.14291511 0.BLi ’e7 0.205’487 0.490723
0,864859 0.422512 0.734015 0.999999 0.893197 0.966771 0.00708885 0.118211
0.650635 0.550381 0.429154 0.893197 1 0.771807 0.274985 0.514225
0.836802 0.317716 0.B ’e47 0.966771 0.771807 1 0.0155556 0.048461414
0.47571’e 0.0809359 0.205 1 187 Th.00708885 0.274985 0.0155556 0.999999 0.724182
0.281811 0.0836893 Th.’ ,90723 0.118211 0.5111225 0.04846414 0.724182 0.999999
AVG ERR, MEAN ERR. NEAR DEV
lie Th9.6 18
12.6 16 29.6 18 24
16.7705 19.3261 37.81,84 22.7926 30.7734

-------
RELATIVE ERRORS
5.67686 5.67686 2.G200g 12.2271 9.17031 229 2223 1
5.07813 9.375 12.8906 3.125 1 4.0625 256 2292 2
10. 5058 j,9l 553 19. 4 553 1.94553 16.7315 257 2327 3
3.01724 8.62069 6.89655 11.2069 Ie.74138 232 2 e1S I,
1.23’e57 7.40741 17.6955 9.46502 3.7037 243 2320 5
CM3
1 0.487086 0.76843 0.851221 0.573972 Th.824775 0.511042 0.315572
0.1.87086 1 0.451052 0.466808 0.601413 0.3833 0.0998837 0.0937706
I— ’ 0.76843 0.451052 1 0.720848 0.323731 0.816785 0.2281e01 0.5361.17
0.851221 0.466808 0.720848 1 0.842228 0.9770’el Th.0156903 0.0853087
0.573972 0.601413 0.323731 0.842228 0.999999 Th.731696 0.313237 0.563281
0.82’e775 0.3833 0.816785 0.977041 0.731696 1 0.0155556 0.01.81.61.1.
0.5110 1 .2 0.0998837 0.228 1101 0.0156903 0.313237 0.0155556 0.999999 0.721.182
0.315572 0.0937706 0.5364i7 0.0853087 0.563281 0.0484644 0.724182 0.999999
AVG ERR, ?4EAN ERR. EAN 0EV
2.83178 5.82689 11.9116 7.5939 9.68188
5.10253 6.60509 11.9116 7.5939 9.68188
6.68982 7.95438 15.1016 9.72411 12.2269

-------
RUN DATE 7/27/71
DATA
253 251 212 277 171 228 1635 1
262- 250 209 262 198 272 1740 2
251 267 291 303 213 264 1762 3
256 247 148 272 196 274 20440 4
2$” 257 217 26 4 4 204 2447 1833 5
c x l -
1 o.23’so78 0.479109 0.720094 Q Ø47Q 4$4 0.496449 0.105226 0.150329
Th.234078 1 0.933526 0.573975 0.679082 0.150668 0.400591 0.020761’s
Th.’e79109 0.933526 0.999999 0.710762 0.430734 ‘0.159963 0.58943 o.isssoa
Th.720094 0.573975 0.7107 52 1 0.301195 0.00155549 Th.17143 Th.153591
Th.0470464 0.579082 0.430734 0.301195 1 0.653609 0.383122 0.648102
0.496449 0.150668 Th.159963 0.00156549 0.553609 1 0.630103 0.326184
0.105225 0.400191 ‘0.58943 O.17143 0.383122 0. 830103 1 0.729855
‘0.150329 0.0207614 Th.158808 0.153591 0.646102 0.326164 0.729855 0.999999
ABSOLUTE ERRORS
25 23 16 ‘ 59 Th7 228 1635 1
f ’J ‘ 1 4 4 63 ‘10 7 4 272 1740 2
3 27 39 264 1762 3
‘ 18 2? 126 ‘75 274 2040 4
7 10 30 17 247 1833 5
CM2
1 0.87609 0.386364 0.634185 0.505594 0.978441 0.665907 Th.393422
0.87609 1 — 0.772965 0.847566 0.799289 Th.924376 Th.77357 0.31245
0.386364 0.772965 1 0.775628 0.791225 ‘0.4811 86 0.737133 Th.2516’s3
0.634185 0.847555 0.775528 1 0.568955 Th.761726 0.591674 Th.34029
0.505594 0.799289 0.791225 0.568955 1 0.611209 0.415158 0.253377
0.978441 0.924376 Th.481186 Th.761726 0.511209 1 0.630r03 0.325164
Th.665907 0.77367 Th.737133 0.591674 Th.’+isisa 0.630103 1 0.729855
Th.393422 Th.31245 Th.2S1643 0.34829 0.253377 0.326164 0.729855 0.999999
AVG ERR, MEAN ERR, MEAN 0EV
‘ 1.8, 1 41.6 18.6 60.6
14.6 15.44 52.4 23.4 60.6
17.7975 19. 7674 73.7056 3 7.8443 69.3884

-------
RELATIVE ERRORS
10.9649 10.0877 7.0175’4 21.4912 25 228 1635 1
Th.676’e7 5.1 1 1706 23.1618 3.676 1 17 27.2059 272 1740 2
1e.92 424 1.13636 10.2273 14.7727 19.3182 2611 1762 3
5.55934 9.85 4 01 1 15.9854 Th.729927 28.4672 2711 20110 4
2.83401 11.04858 12.1457 6.88259 17.4089 247 1833 5
1 CM3 0.88882 0.339291 0.696181 0.187952 0.977198 Th.66135 0.’ 119183
0.88882 1 0.721519 0.871512 0.540927 0.9112483 0.772321 0.3 110 1 189
0.339291 0.721519 0.999999 0.732203 0.7261105 0.45378 0.726633 0.251279
0.696181 0.871612 0.732203 0.999999 0.428909 0.805425 0.617544 0.395 1133
I— ’ 0.187952 0.5110927 0.726405 0.428909 1 0.3386U. 0.231182 0.451077
U) 0.977198 0.9421183 0.115378 0.805 1425 0.33854 1 0.630103 0.3261611
0.66135 0.772321 0.726633 0.6175 1 1 14 0.231182 0.630103 1 0.729855
Th.’e19183 0.3’eO’e89 0.251279 0.395’e33 0.451077 0.326164 0.729855 0.999999
AVG ERR. MEAN ERR, MEAN DIV
Th.274227 0.05113186 15.6166 7.74803 23.48
5 ,79379 6.051175 19.7075 9.51059 23.48
7.23156 7.79484 27.16811 13.6155 26.7011

-------
RUN DATE 7/28/71
DATA
247 253 240 261 221 278 1433 1
248 251 219 265 219 273 1252 2
255 257 219 273 223 284 1088 3
25.6 256 463 271 225 295 1038 4
256 262 499 294 228 280 1014 5
282 270 287 309 236 270 1061 6
280 272 268 299 239 281 1020 7
1 C M ]. 0.988025 0.155854 0.975817 0.978582 0.2’5215 Th.681527 0.952975
0.988025 0.999999 0. ’105695 0.946581 0.991086 0.208463 Th.644855 0.141554
0455854 0.195695 1 0.234946 0.126565 0.50587 0.527746 0.328388
0.97S 17 0.9 6561 0.234946 1 0.916743 0.321955 0.693373 0.921079
0.91ft582 0.991086 0.126565 0.916743 0.999999 ‘0.152405 ‘0.630696 0.945638
“0.245216 ‘0.208463 0.50587 ‘0.321955 0.152405 I 0.318361 0.00951044
o.58 1527 ).644855 0.527746 ‘0.693373 0.630696 Th3.318361 I “0.834803
0.952976 0.941554 0,328388 0.921079 0.945538 Th.ooqsioa Th.854803
AESO UTE ERRORS
38 17 Th7 278 1433 1
25 Th2 5 4 8 5 4 273 1252 2
- Th9 ?7 S 55 Thi 284 1088 3
3 9 118 24 70 295 1038 4
14 The 219 14 ‘52 280 1014 5
12 0 17 39 34 270 1061 6
S q 13 18 42 281 1020 7
CM2 — -
I 0.975957 0,0599084 0.986053 0.972381 0.540308 0.397984 0.759293
0.975957 1 0.208839 0.952738 0.996992 Th.774764 0.213117 0.614759
“o.os99oa 0.208839 0.999999 0.0575883 0.21716 0. 151764 Th.523073 0.340308
0.986063 0.952738 0.0575883 1 0.9409 19 0.624117 3.458116 0.76355
0.972381 0.996992 Th.21716 0.940919 1 Th.77742 0.184763 0.608291
Th.540308 Th.774764 0.451764 0.62’slll Th.77742 1 Th.318361 0.009S1044
SQ,397934 0.2131l7 Th.523073 Th.458116 Th.18a763 Th.318351 I o ,834803
0.759293 0.614758 0,3 k0308 0.75355 0.608291 Th.00951044 0.834803 1
AVG 8811, MEAN 1 191? , MEAN DEV
20 33 4286 1.57143 “52.8571
21 .5714 20 82 18.71 43 52.8571
26.7354 25.0466 119.183 22.5973 58.3238

-------
RELATIVE ERRORS
11.1511 8 .992 81 13.6691 6.11511 Th0.5036 278 l’e33 1
Th.15751 8.05861 19.7802 2.9304 Th9.7802 273 1252 2
10.2113 9.50704 22.8873 3.8732 4 21.4789 284 1088 3
13.2203 13.2203 56.9492 Th.13559 23.7288 295 1038 4
Th.’2857 78.2143 5 18.5714 280 10111 5
4.44445 0 6.2963 14.4444 12.5926 270 1061 6
Th.355872 3.20285 4.62633 6.40569 14.9466 281 1020 7
CM 3
1 0.977 842 0.0217986 0.986256 0.982352 Th.611747 0.424885 0.778719
0.977842 0.999999 0.165316 0.958755 0.99522 “0.745775 Th.249833 0.647799
Th.0217986 “0.165316 0.999999 0.0839112 0.149016 0.436316 Th.526318 0.347957
1—’ 0.986256 0.958755 0.0839112 0.999999 0.953022 Th.613826 0.467047 0.768513
0.982352 0.99522 ‘ ‘0.149016 0.953022 1 ‘‘0.708272 Th.26237 0.68106
‘‘0.611747 0.745775 0.436316 0.613826 0.708272 1 0.318361 0.0o9s1o’.4
0.424885 “0.2 1 19833 0.526318 “0.467047 0.26237 0.318361 1 0.834803
0.778719 0.647799 0.347957 0.768513 0.68106 ‘‘0.00951044 Th.834803 1
AVG ERR. MEAN ERR. MEAN 0EV
6.3788 7.0586 11.4995 0.685113 Th8.8003
7.64864 7,0586 28.9175 6.70064 18.8003
9.41748 8.78026 41.8801 8.18379 20.6677

-------
RUN DATE 7/29/71
DATA
272
261
267
;s $
252
275
260
C M ] .
286
263
260
253
347
263
250
242
205
197
190
206
179
173
287
290
270
258
268
260
240
277
275
280
270
268
281
270
220
246
250
251
233
255
225
1
0.742397
0.156449
0.20674
0.742397
1
0.73946
0.658063
0.156 i49
0.73946
1
0.815536
0.206-74
0.658063
0.815536
0.999999
0.9fl101
0.611091
0.115102
0.349401
0.149107
Th.234618
Th.27097
0.637632
Th.476878
0.79461
Th.026371e6
Th.922714
0.217953
0.719016
0.89926
0.905312
AB QLUTE
HRRORS
H
a’
I
2
3
4
S
6
7
1.
2
3
4
5
6
7
67 57 220
94 29 246
20 30 250
7 29 251
35 35 233
5 26 255
15 45 225
1702
1688
1871
1967
2067
2198
2297
0.904101
0.611091
0.115102
0.34 9401
1
0.390871
268788
0.31208
1702
1688
1871
2967
2067
2198
2297
0.970074
0.929807
0.8 0902
0.704459
1
Th .927446
0.135975
2233 95
34. 4286
34.428
39. 3213
66 22
17 41
17 10
7 2 r61
19 1
20 8
35 25 52
CM2
0.999999 0.941738
0.941738 1
0.743539 0.895205
0.626834 0.822168
0.970074 0.929807
0.845035 0.812181
Th.0953904 Th.402427
Th 1 199583 Th.493407
AVG ERR, MEAN ERR, tItAN 0EV
0.140107
Th .27097
0.476878
0.0263746
0.3 90871
1
0. 02 46463
0. 0889 328
0.845035
0.812181
Th.777883
Th,638216
0.927446
1
0.0246463
0.0889328
Th.134618
0. 63 76 32
0.79461
0.92 2714
0. 268 788
0.0246463
1
0. 98 8037
0. 0953904
0.402427
0.5 78866
0.725835
0.135 975
0. 02 46 463
1
0. 98 8 037
0.743539
0.896205
I
0, 9385 61
0. 80902
Th.777883
Th.578866
Th.646027
0.fl79 53
719016
Th.8 a 1 926
Th.90531 2
Th.31 ?98
0.0889328
O.9 ê8037
1
0.1 99583
Th3.493407
Th.61e6 027
0 .752156
0.223395
0. 08893 28
0.9g8037
2
23 5714
23.5714
29 .5 889
0.626834
0.82 2168
0.9 38561
1
0.704459
Th .638216
Th.725835
Th.75 2156
27. 5714
27. 5714
37. 3028
20. 285 7
20. 2857
30. 6 o31
41 .1429
47.4286
54.626

-------
RELATIVE ERRORS
23.63614
6.097 56
6.8
2.7888’.
8.15 ‘4 51
7.81.311.
15.5556
CM3
30
6.91057
14
0.796813
6.00858
3.13725
11.1111
1 )
-.3
25.9091
11.7886
12
7.56972
15. 0215
10.1961
10
16.6667
21.2
214.3028
11 .588
:29.8039
• 111 1
0 • 7463
0 • 893282
1
0.958327
0 .7 87 8014
0.73 191 1e
Th.512619
Th.683077
220
2146
250
251
233
255
2 /
1702
1688
1871
1967
2067
2198
1 0.950334
0.9503314 0.999999
0.7463 0.893282
0.6835141 0.8149251
0.971 .669 0.9325814
Th.863213 Th.816292
0.107199 Th.392875
0.210853 0.485917
AVG ERR, MEAN ERR, MEAN DEV
30 • ‘45 ‘46
17.8862
8
2. 788 8’.
15.0215
1 • 96078
b • bb bI
0. 6835141
0. 81.9251
0. 958327
1738739
0. 67 26 97
Th.697467
0.73351
11.8255
11.8255
16 .2 9’e7
1
2
3
I .
5
6
10.1251
10.1251
13.0375
8. 85 205
8.85 205
13.71465
0.974669
0.863213
0.107199
0.210853
0.93258 ’.
0.816292
Th.392875
0. ’e85917
0.787804
0.73191 ’e
0.612619
0.683077
0.738739
1
0.672697
0.914103
0.6971.67
0.12991’.
:0.73351
0.217927
0.94103
1
0.0246463
0.0889328
0.12991 ’e
0.021461463
1
0.988037
0.217927
0.0889328
0.988037
1
16.6675
19. 5 246
22. 2655
14. 61.07
114. 6407
17. 035

-------
RU! ’! DATE 7/30M71
DATA
F ’.,
2
-
•6
14
19
-1 0
1 0
12
1 9
12
12
-Th
—‘47
72
-8 , ’
—“
260 272 274 255
238 2.62
1396
1
258 260 236 25 e
2’e’I 272
1660
2
2$2 246 201 239
213 255 195 253
227 2!e8
23 14 267
18J 9
1,575
3
‘ 4
258 258 193 250
235 277
1 568
5
259 257 192 259
239 269
17!e1
6
CM].
1 0.816527 0.3Y25te
0.905368
0.843779
O,.81 6527 1 O.79971 -l ’
0.67049
0.645592
u.37254 0..799711 1
0.23157.6
0.’426589
0.905358 0. .670 1e9 0.2,3157.5
1
0.82llelS
0.843179 0..6 1e5592 0.426589
0.82 ’.1S
1
0.801.967 0.391899 0.112785
731916 0 -. 93 96’S 7 Th .69975
0. .Oli70 623 .0.457385 ‘0 -. 75895
0.690927 ’
0..Sj 4261
0 . 69 ,998
0.689805
0 • k586 52
0..,1.fe Ie98
4ISOLUTZ ERRORS
1.396
1 6 0
1$ 9
1.6 .75
1568
17,41
1
2
3
‘ 4
5
6.
CM2
1 0.9488 1’5 0.765.609
0.9Q8392
0.870057
0.9 1 488V5 1 0.895083
0.78308
0.782933
0.76560-9 0.895083 1
0.553901
0.6811e1 Ie
0.9083-92 0.78308 .0.553 -90-1
1
0.8416?’?
0.870057 0.782933 0.621414
0.81 .1677
1
Th.74-9383 Th.6583*e 0.38 5797
0.596272
0.829298
Th.111888 Th.3’e7537 Th.5.28776
O.084188S
0.2319’ee
0.547964 0.7328i2 0.9162 141
Th.33753
0.607273
AVG ERR, N kN ERR, NEAN DRY
10.B333 7.83333 - 50.6667
10.8333 ‘ 11.1667 - 5’e.6567
1 e.3333
11 .3333
29.6b67
.. 29.6667
13 36 1 13.39’. 6b.0575
17.309
3.3287
—7
1 B
1L0
23
1.0
— 2$
28
21
-33
30
262
2!??
2148
2 7
277
269
0.80 ,19 7
0.391899
O.73 69S-6
0. ,93.9 637
O. .04 7p823
0.-4573-65
0.1 2785
0.6 0827
0.689805
0.99999,9
0.. k3.0-305
0. ,69975
0 .5 .1Ie2,6-i
‘ 0 ..458652
0 ,.430305
0..99 9999
0J75895,
•0 ..k69998
0.140498
•0. ,?663 6
O . ’ 4a 8.gS
0.366326
O .41 89.5
0.7 . 1 .9-393
:0.65834
0.38-5797
0.11i88j
Q. ,347537
0.5 8-77 6
0.54j964
0.732 8!e.2
0.9162 ’ll
0..696272
0.829298
0..9999 99
0 .98418-85
0.2319,14,8
‘0.Je-3030 S
0.33753
0.607273
p.-3663’26
0.143030-5
0.9999 .99
0 4 ,1.895
0.366326
0.’41895
1

-------
RELATIVE ERRORS
H
C
Th.7633S9
3.81679
1.58015
2.67176
9.16031
Th.1a7 06
4.’ 41176
Th3.2353
6.61765
10.2941
2.41936
Th.806452
18.9516
4.03226
8. 1 1677 ’ I
Th.24345
4. 1e9438
26.9663
5.24345
Th2.3596
Th. 8 5g21
3.7 17” 7
Th.85921
1 1.46097
:30.3249
28.6245
9.7 4729
3.71747
:15.3625
11.1524
CM3
0.949242
0.753926
0 .897016
0.851828
0.949242
1
0.883812
0.769554
0.768744
0.753926
0.883812
1
0.528814
0.667644
0.897016
0.769554
0.528814
1
0 .8 17203
0.851828
0.768744
0.657644
0.817203
1
Th.725422
Th.644149
Th.333542
Th.665055
Th.789328
0.1 1 ,6887
Th.367627
0.5?3’126
0.0525611
0.200106
Th.553576
Th.736165
o.911124
Th.331716
0.626939
AVG ERR. MEAN
ERR, MEAN
DEV
4.02498
Th.86933
Th8.9204
5.33831
11.0994
‘e.02498
1.14159
30.4471
5.33831
11.099’e
‘i.92525
4.9362
24 .5824
6.37987
12.3985
262
1396
1
272
1660
2
2118
1869
3
267
1675
lj
277
1568
5
269
1741
6
Th.725’22
Th.146887
0.553576
0.644149
Th.367627
0.736165
0.333542
Th.573426
0.911124
Th.665055
0.0525611
0.331716
0.789328
0.200106
0.626939
0.999999
0.430305
0.366326
Th.e3 03 0 5
0.99999 9
0.41895
0.366326
0.41895
1

-------
APPENDIX III
COMPUTER PROGRAMS
USED IN
LAB DATA ANALYSES
Preceding page blank
221 -

-------
•*ttø ZERaDSIfl I MMI&$3$ziP OMMm
D:IMENSIO#IXI33$I ,IflTLS S.I NIUV
100 FORM -TI 321
101. FORMAT’I6A1J-
llOcFORIØAT140Afl•
120 FORMATt 12F6b0)
200t.Fo*NAT 1 /*0*21 /.4 1’
RE&0i2i101 I1Nt
CALL NiL
£PO.
2 RE*DI2,10O)NP
£FIt4re9)3 .3 .99r
3 R€6042 ,1IOIITI IL
i p —zp+ 1 ;
£F -IIPe317 , Pb4
4 CALL HI.
7’14 O..
£rtST. O
WR iTE-I 3,2P03iTITL
READI 2,120) (XI iX3 .it*baJSJi
5. INST”INST+l
LFI £P4T.6-19 9à22
9.L O
AVGtXSI 14 +1) 1
PMAX aO.
SJJNA.0
SUNS bOa
SUMC 0i4
10 L L+L
£ F.( 1—63.) 35.35 . 1 t -
15’ CALL HL1 SUMAt, SUMSflI$t ,MSkI G,P**t, tpUtoi Nil
GOTO 5
35- Mfl4+1
o IFFcAB&I&VG&ItIN4 )
£ RD IFP’PN*XI 3fl37ê3*t
36. PMAX DI€F
MflG .L
37. SUNA 5UM&+DIFF tD1fP
SUMC c5UMC_4ft1 F-F-
S qM SUMt+W FFaVA,3&o.
GO 10 10
99 CONTINUE
CALL ErXIL
END
222

-------
U PROGRAM GET IT STORES SPAN DATA
DEFINE FILE H126.2.U,K1I.2(126,2.U,K1).31126.2.U.k1) .
j 4( 126.2,U,K1),5C126.2 ,U.K1).61126.2.U.K1).
2 7(126,2,U,K1),e 1126.2 .U.K1).9(126 .2.U.K1)
DEFINE FILE 11(126,2,U.K2) .12(I26 ,2,U.K2).131126.2.U.K2).
1 14(126,2.U ,Kfl ,15U26,2,U,k21,161126.2.U,K.2).
2 j7u26,Z.U,K2) .18(126,2,U ,k2 ,19(126.2 .UIK2)
DIMENSION X1378)
120 FORMAT(12F6.0I
C N COUNTS THE RUNS
N .O
2 N N+1
NNN+1O
C FINISHED WITH THE RUNS&
IF (N—9)3.3.99
3 KFO
4 O
C INST IS THE INSTRUMENT COUNTER
INST 0
READ(2.120) (XCIX) .IX.1.378 1
5 INSt•INST+1
C FINISHED WITH THE INSTRUMENTS
IF 11N5T6)7.7.2
C L IS THE REPLICATE COUNTER
7 L-0
10 L•L+1
C FINISHED WITH THE REPLICATESS
IF (L—7 ) 15. 15 .5
C I IS THE SPAN COUNTER
15 I 0
20 (:1+1
C FINISHED WITH THE SPANS&
IF(I—3)25.25.1O
25 SUMA O.
5UMB O.
C J IS THE SPAN REPLICATE COUNTER
J=O
30 JJ+1
C FINISHED WITH THE SPAN REPLICATES&
IF C J—3 I 35. 35 .40
35 M M+1
5UMA SUMA+* (H)
SUMB SUMR+XCM) *XCM)
GO To 30
40 KF.KF+1
C CALCULATE AVERAGE AND STANDARD DEVIATION
AVG SUMA/3.
SD.SORT(ABS( (3.*SUMB—SUMA**2. )/6.))
C SAVE DATA ON DISK
WRITE(N’KF IAVG
WR ITE C NM 1 KF I SD
GO TO 20
99 CONTINUE
CALL EXIT
END
223

-------
SUBROU 1) LNE HtA0141V);
D4MEN £ Ot t IT Cj4QI
WRItE L3.20b ) jlT;
tOP EORM*T € LIiLiJ*fPW4OAfl
WR iTE 13 w2tG)
210) FORMAT I ‘ I c ILl ? ).
WR EtEt 34220+
Zt0 FORMAT I ‘- It R’ E
WRtTEI 3s230)
230 FORMM I” $ E
1&T52
Wit ITEt3fl40i
240 PORNAITI ‘ 13 P E’J
WRtT EI3rnZ5D)
250? FORI4ATI’ P r tu t u
RETURN)
END
SUBROUTINE HI
200 FORMAT IlMi p//,/’ T35. ‘ZERO DRkF1? MALYSJVcLT*& ’41tTrflt
ena aaaanse S444 ‘kI4 ’.k
210 FORNA1 ( IH. ..t6,,’S¾tlb • t1 ANDARp %%.i%MaANfrgi144t’ME AN PEVIAT iON
1’ ’ T63s ‘MAX LMYM ’L1Z&,.t LNOEX ‘ I
220 FORMAT 1 1Pt tTo tItttT1k, ‘.,
IT 62 .‘DEV I AT,I,OI4’/44,’R’ fl),
WRLTE( 3,100)
WRITEC 3 ,%210J ’
WRLTE( 3.220)
RETURN
END
SUBROUTINE H Z
- DIMENSION IN(S)
200 FORMAT 1 IH .Ta.Ai .F4LflEtSpfl,F7z4,%t4fl
XMSD SORT I*I6) .e)
XMD .C 163 es ,
XMD18
WRITE 1 3. 200iiNi ii. zM$D XMDjXMQji Pfl W
RE TURN)
END
? 2k

-------
** PROGRAM GETZE STORES ZERO DATA
DEFINE FILE 21(126.2.U.Kfl.22(1Z6.Z.U . 1 ).23U26.2.U.K1).
1 2 4(126.2,U.K1) ,25I126.2.U ,K1).26(126.2.U , 1).
2 27(126,2,U,k l ).28(126.2,U,K 1).29U26,2.U.K1I
DEFINE FILE 31U26.2 .U.K1 ).32(126.2.U.k1).33(1 26.Z.U,K1).
1 34(126,2,U,K1 ),35U26.2,U,K1I,36U26.2.U.k1).
2 37(126.2 .U.K1) .38U26 .2 ,U.K1 ).39(126,2,U.K1)
DIMENSION Xt378)
120 FORMATU2F6.O)
C N COUNTS THE RUNS
N0
2 N .N+1
K20+N
KKK+1O
C FINISHED WITH THE RUNS&
IF(N—9)3,3 .99
3 KF0
M .O
C INST 15 THE INSTRUMENT COUNTER
INSTO
READ (2 .120 I (X( IX) , IXs I.378
5 1NST INST+1
C FINISHED WITH THE INSTRUMENTS&
1Ff INST—6)7.7.2
C L iS THE REPLICATE COUNTER
7 L 0
10 L•L.1
C FINISHED WITH THE REPLICATES&
IF IL—? I 15. 15 .5
C I IS THE SPAN COUNTER
15 10
20 1 1+1
C FINISHED WiTH THE SPANSS
1Ff 1—3)25.25.10
25 SUMA O.
SUMB 0.
C J IS THE SPAN REPLICATE COUNTER
.1 0
30 J J+1
C FINISHED WITH THE SPAN REPLICATESS
IF I J—3 I 35. 35,40
35 M M+1
SUMA SUMA+X(M)
SUMB=SUMB+XIM)*XCM)
GO TO 30
40 KF kF+1
C CALCULATE AVERAGE AND STANDARD DEVIATION
AVGSUMA/3.
SD-SQRT(ABS( (3.*SUMB—5UMA**2. 1/6.11
C SAVE DATA Oil DISK
WRITEIK’KF IAVG
WRITEIKK’KF)SD
GO TO 20
99 CONTINUE
CALL EXIT
END
225

-------
r)EFIME FILE
I. i6( 126 i2 U.K 1) ‘
2 i C 126 e2 iU %i I ‘iNt126’ 2UIX’1 ),91 12632 .U Mi
DEF1 1E FILE11U26ö2’,UbK2I 21126 IU,K 2i,13(126.2.U,K2I,
1., 141126 IU,K2),15C126 2,Ui1t61-126S’UU1K2) .1
2
DEFINE FILiE
I
2
DEFINE FILE
1 34I-12632.U K1)
2
DIMENSiON TV(2119)
100 .FORMAT 18F1O.O)
110 FORMAII12)
140 FORMAT(6A1 I
150 FORI4ATC6OA2)
300 FORMA’T(lH .A1 ’
l1 406e2iT5O,F5i1iT59,F1iT67!F 2T76F6 2 )
320 FORMATC’ ‘ I1 ’
1T40.F6 2.T.50,F5.1,T59.F1iT67 F6Ui76 è 2)
330 FORMATI ’ ‘I•
1T4O,F6i2jT50,F 9CF 3 1 ,6ifF6 T78 b 2)
340 FORMATI//)
350 FORMAT(1H .I4,4E20.6L
355 FORMATCIH .?(4X,14))
360 FORMAT(1N -sE20i6)
365 FORMATUHI)
370 FORMAT(// IH -.‘INSTR ‘.12,’ LEVEL ‘U2)
R EAD(2 100)(1TV(1,J)ó1J21 JS 9
DO 6 J.1,9
DO 6I 1.l1
TV(I,J)TVCi,J)*1 .13
6 CONTINUE
WRITEC 3 36SI
I IKeO
540 IIK IIK+1
IF (I 1K—6’ 5O,550 , 999
550 IRKt)
555 IRK IRK4F
1Ff 1R —3)56O.56O,54O
560 CONTIs4UF
NERR O
SSDsO.
ATR1- O.
TSO1 O.
TSD2 0.
TR1 0.
TR20.
C N IS Tii FtL NEiMRER
N
3 N.N+1
I F (N 9 )‘5 , 5-,r99r
C KF IS
S
IH O.
C INK ’ IS THE INS RUMNTCOUNl€R
iP1K ()
C N5D 15 T’1E LOGICAL U)ES ItGN#PI’O FOR F1 IW -SU
2 6

-------
N5I ) + 10
‘U IS fls’ LflflICAL I’FSIGNATLON FOR FILCS 7FR
P4? .N+V1
‘4151) 15 If-IF lflr ,(C61 DE:SIGNATI0N FO F!LES s i
NlSD M43O
25 INKIMK+l
I FLA( ,0
(TV 0
IF I INK—h I 14.14 ,3
14 IFI INK—I 1K)15,16,15
16 IFLAG:1
lb 1H11441
IFI If-i—?) 30,30,21)
20 CONTINUE
I H1
30 L:O
35 LL+1
IF IL— ? P40,40,38
38 CONTIMLJF
(10 TO 25
40 1=0
45 1=1+1
I FL1Q
IFII—3 149 .49. 35
49 I1(I—lI KIbO.51,50
51 1FL11
50 KF=KF+l
I TV: I TV+l
jF( IFLAGIb2.62.6l
61 [ Fl IFL1)62.62,54
54 LFIN—51454.62.4b4
454 IF(N—83455.62,455
455 IFUFvUT V.N1—1. )b2.55.5 )
55 XTVIITV.NI
RFADIN ‘KF IAVr,
RFAD(NSP’KF 151)
READ (‘42 ‘KF ILFP
READ I ‘4 1SD’Ki 1751)
1)1 AVG—ZFR
ERRII Il)l—XI/ *)*jiJU.
FRR?1(AVGXP/ 4 ( 1 ’ L f l O ,
NE RU = N E RR+ I
55fl55fl+5 ()
TRI=(R 1.ERP I
TR21W2+FRR)
ATRlATRl+A S(FRRlP
ATRZATR2+ARSIFRR 1 P
rsD1=Tsnl-eERRl ERRl
T 502T 50?+CRR? ‘ERR?
227

-------
62 IF(L—4)9O,1t ,90
70 IF(1—2)95 ,8b ,95
R5 CONTINUE
GO TO 45
90 IF(I—2)95 ,92,95
92 CONTI.NUF
GO TO 45
5 CONTINUE
GO TO 45
99 CONTINUE
ENRR NER
SER1=((EI1RR*TSO1) TR1*T.R1)/(E NRR*(ENRR.L.))
SER1=( (FNRR*TSD2)—TR2*TN2)/(CNRR*(ENRI1—.i.I)
ASER1=TSDh/(FNRP—1 •)
ASER2TSO2/(ENRR—1.)
AVG1 TR1 /E NRq
AVG2TR2/ENRR
AAV’ilAT.Rl /ENRR
AAV ?ATfl2/E’qPR
SER1 5QRT(SER1)
S R2 SORT ( SER? )
ASEELSQRT (ASER1 I
ASER2=S0RT(AS R2)
A SSDSSD/ENRR
WRITE( 3,370)1 IK ,IRK
WRITE( 3,360)ASSI)
WRITE ( 3 .350 ) NERR .‘AVGl ,AV.G2 .Sf R1 SER
WRITEC 3,,350) 4IRR.AAVGL.AAVG2..ASER1.ASER2
GO TO 555
9 9 CONTINUF
CALL FXIT
C-NI)
228

-------
°*°* TH iS PROGRAM PERFORMS A PARTIAL .LJMMAWY
DEFINE FILE 11126.2.U.K1),2C1 16.2.U.K1).3UTh.2,U.K1).
I 4 1126.2 .U .Kl) ,5 1126.4 ,U .K1),61ld6,2,U,k1),
2 11126 .2 ,U .Kl), 81 126.2 .U.K1),9( 126.2.U.Kj )
DEFINE FILF 11(126,2 .U.K21 ,ld(1?6.2.U.gfl. 13( 126,2,U,K2),
I 161126.2.U .K2) ,1 5 1126s 2.tJ .K2).16(126,2,u,K 2),
2 i7(126,2 .U.K2 1 .1 8 11 16 ,4 .U,Kd).19( 126,4,tJ,K2)
DEFINE FILE. 214126.2.U.K1).2 11126.2.u.K1).23 112 6.2.u,K1).
I 24(126.2.U.K11.25(L 16.2.U.K1). 16 ( 126,2,u,K1),
2 111126.2.U.KI ) .28U26.1.tJ.K1) .29( 126,2,u,K1 )
‘)EFINE FILE 311116.2 .U.K1I.32(126.2,U,K1).331126,2,U,Kl),
I 341126.2.U.K1).351126.4 .U.K1).361126,2,u,Kt).
2 37( 126,2.U,K1I.38(1 46. EsUsK L I.39( 126,2,U, )çj)
I)IWENSIOI1 1V 121.9)
lOt) FORMAT IRF1O.O)
lit) FORMATIII2)
l’eu FORMAI (6A1 1
I SO FORMAT 140A2)
3W ) FORMATCIH .41.’ ‘sit.’ ‘.12.T12.F5.1,T21.F6.2,TsO,F6.1,
1T4 0.F6.2 .1bu .F5 ,l,T59 ,Fb.J,T6i,F6.2.TT6,F6 ,2)
320 FORMAIF’ ‘, I i,’ ‘.12,TL I.Fb.L,Tfl,F6.4,T3O.F6.1,
IT4O.F6.2.T50.Fb.J .T59.F .1.T67,F6.2.T76,Fe,4)
330 FORMATV ‘. 12 .T12.F 5.L.Td3.F6.2,T30,F6. 1 ,
1 1 1 i’) .F6.2,T5U,Fb.1,T59 .Fb.1,T6i,F6.2.T16,F6.2)
44’) FORMAT(/SF)
350 FORMAI IIN .J4.4r20.6)
35’1 FOR”ATIlH .1C4X,I4))
360 FORMAT I1H sF20.6)
365 FORMAT I 1)41 I
310 FOR74AT(//IH .‘INSTR ‘.12.’ LEVEL ‘.12)
READ(2 .100)1 I TVI I 1 J) • I 1 ‘21) ,Jtl .9)
00 6 J=l.9
flO 6 1=1.21
l v i I ,J)=TVIi.j)’I.13
C.)NTINUf
WHITI V3 ,365)
1120=0
I 110=0
1105=0
12 20=0
1? 10=0
I 2fl5=O
NEW R = 0
S SD • 0.
FRi 0.
A FR? 0.
15 1)1=0.
I SD? =0.
FR I = I).
IR e U.
C N IS THF FILE NUMBER
N()
3 MN+i
IFS N—V 15.5.99
C KE IE THL FILE RECORD COUNT) H
S KF=0
I H = 0
C INK IS T UE 1NSTRU$IrNT COUNTER
INKSO
C NSD IS THE LOGICAL DESIGNAIION FOR FILE SI)
NSD=N+ 10
C Ni IS THE LOGICAL DESIGNATION FOR FILES LE N
Ni =N+20
C M iS) ) IS 1HE LOGICAL DESIGNAJION FO FILES S I
229

-------
NZSD 4+30
25 INKIIN’K+1
IFLAG=O
I TV 0
IF(INK—E J.14 14 3
14 IF(INK 115,16,15
16 IFLAG1
1.5 II1=IH+1
IF I IH—2)30 ,30,20
20 CONTINUE
1H1
30 L0
35 LL+1
IF(L—1 140,40 .38
38 CONTINUE
( O TO 25
40 1=0
4 1=1+1
I FL 1=0
IF lI—3)49.49,3
49 IF(I—1 )50.51,5O
51 IFL11
50 KFKF+1
ITVITV+1
IF I IFLAG)61 .61 .62
6L IF(IFL1)455,455,62
455 IF(TV(ITV,N)1.)6 .55 .5
55 x=TV(ITV,N)
RE AD IN ‘ KF) AVG
R E AD I N SD’ KF I S I)
READ(NZ’KF )ZER
READ(NZSD’KF ) ZSI)
D1AVG—ZER
ERRD( (D1—X)/ X)*100.
ERR2=( (AVG—X)/ X)*100.
NERRNERR+ 1
A1ABS(ERR1)
A2ABS I ERR2)
IF (A1—20. 1605 .605,650
605 1120=1120+1
IF (A1—1O.)610.610.650
610 1110=1110+1
IF(A1—5. 1620,620.650
620 1105=1105+1
650 IF(A2—20.)655,65 5 ,6 2
655 1220=1220+1
IF (A2—10. )660.660.62
660 1210=1210+1
IF (A2—5. 1670,670.62
670 1205=1205+1
62 GO 10 45
99 CONTINUE
WRITE(3,355)NERR,I 120,I110,1105,1220,1210 .1205
CALL EXIT
E ND
230

-------