U.S. ENVIRONMENTAL PROTECTION AGENCY
              NATIONAL EUTROPHICATION SURVEY
                       WORKING PAPER SERIES
                                              REPORT
                                               ON
                                         EAST VERMILLION LAKE
                                           McCOOK COJflTY
                                            SfVffl mkDTA
                                          EPA REGION VIII
                                        WDRKING PAPER No, 626
    CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
                                 and
    ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
•A-<;.!'.<>. 699-440

-------
                                         REPORT
                                           ON
                                   EAST VERMILLION LAKE
                                      McCOOK CnUflTY
                                       SOUTH I¥\KDTA
                                     EPA REGION VIII
                                  WORKING PAPER No, 626
           WITH THE COOPERATION OF THE
SOUTH DAKOTA DEPARTMENT OF ENVIRONMENTAL PROTECTION
                     AND THE
           SOUTH DAKOTA NATIONAL GUARD
                 DECEMBER,, 1976

-------
1
CONTENTS
Page
Foreward ii
List of South Dakota Study Lakes iv
Lake and Drainage Area Map v, vi
Sections
I. Conclusions 1
II. Lake and Drainage Basin Characteristics 3
III. Lake Water Quality Sumary 4
IV. Nutrient Loadings 8
V. Literature Reviewed 12
VI. Appendices 13

-------
•I1
FOREWORD
The National Eutrophication Survey was initiated in 1972 in
response to an Administration coimiitment to investigate the nation-
wide threat of accelerated eutrophication to freshwater lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point-source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey’s eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [ 5303(e)], water
quality criteria/standards review [ 3O3(c)], clean lakes [ 5314(a,b)],
and water quality monitoring [ 5106 and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.

-------
11 1
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation’s
freshwater lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, Li. S. Environmental Protection Agency)
expresses sincere appreciation to the South Dakota Departments of
Environmental Protection and Game, Fish and Parks for professiona1
involvement, to the South Dakota National Guard for conducting the
tributary sampling phase of the Survey, and to those wastewater
treatment plant operators who voluntarily provided effluent samples.
Allyn Lockner, Secretary, and Blame Barker and Duane Murphy,
Department of Environmental Quality; Douglas Hansen, Department
of Game, Fish and Parks; and James Hayden, Director, State Lakes
Preservation Comittee provided invaluable lake documentation and
counsel during the Survey, reviewed the preliminary reports, and
provided critiques most useful in the preparation of this Working
Paper series.
Major General Duane L. Corning, the Adjutant General of South
Dakota, and Project Officer Colonel Robert 0. Chalberg, who directed
the volunteer efforts of the South Dakota National Guardsmen, are also
gratefully acknowledged for their assistance to the Survey.

-------
iv
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF SOUTH DAKOTA
LAKE NAME COUNTY
Albert Kingsbury
Alvin Lincoln
Angostura Fall River
Brant Lake
Byron Beadle
Clear Marshall
Clear Minnehaha
Cochrane Deuel
Cottonwood Spink
Deerfield Pennington
Enemy Swim Day
Herman Lake
John Hamlin
Kampeska Codington
Madison Lake
Mitchell Davidson
Norden Hamlin
East Oakwood Brookings
West Oakwood Brookings
Pactola Pennington
Pickerel Day
Poinsett Brookings, Lake
Red Iron South Marshall
Richmond Brown
Roy Marshall
Sand Brown
Sheridan Pennington
Stockdale Custer
East Vermilion McCook
Wall Minnehaha
Waubay Day

-------
V
Map Location
EAST
VERMIL LION
LAKE
5i
EAST VERMILLION LAKE
0 Tributary Sampling Site
Lake Sampling Site
o ?Km.
I I 1.
0 1 2M1.
Scale
I
I
If

-------
EAST VERMILLION LAKE
® Tributary Sam l1ng Site
X Lake Sampling Site
0 5 10 20Km.
I I
0 i Mi.
Scale
Map [ ocdtion
K?
‘ii •.,
1’—
‘
Montrou

‘V -ç
1 (AST
N O2 VERMILL ION
LA/(E
81’?’ d•m
Al
)4—East Fork
• Vermillion
River
44 l5 —
44 ’OO —
43’45—
]
9I .,3U
elbn

-------
EAST VERMILLION LAKE
STORET NO. 4629
I. CONCLUSIONS
A. Trophic Condition:
Survey data indicate that East Vermillion Lake is eutrophic.
It ranked sixteenth in overall trophic quality when the 31 South
Dakota lakes sampled in 1974 were compared using a combination
of six lake parameters*. Nineteen of the lakes had less median
total phosphorus, 20 had less median dissolved phosphorus, nine
had less median inorganic nitrogen, 22 had less mean chlorophyll
a, and 21 had greater mean Secchi disc transparency.
Survey limr ologists observed heavy blooms of filamentous
algae in July and September.
B. Rate-Limiting Nutrient:
The results of the algal assays indicate that East Vermillion
Lake was nitrogen limited when the assay samples were taken (04/22/
74 and 09/20/74).
The lake data indicate nitrogen limitation all three sampling
times.
C. Nutrient Controllability:
1. Point sources-—No known municipal or industrial point
sources impacted East Vermillion Lake during the sampling year.
Septic tanks serving lakeshore dwellings and a picnic area were
See Appendix A.

-------
2
estimated to have contributed 0.8% of the total phosphorus
load, but a shoreline survey would be necessary to determine
the actual significance of those sources.
The present phosphorus loading of 0.30 g/m 2 /yr is about 1.4
times that proposed by Vollenweider (Vollenweider and Dillon,
1974) as a eutrophic loading (see page 11). However, a sig-
nificant reduction in the phosphorus loading would be difficult
to accomplish because of the large non-point-source contribution.
2. Non—point sources--Non-point sources accounted for 99.2%
of the total phosphorus load reaching the lake during the sampling
year. The Vermillion River contributed 79.5% of the total load,
and the ungaged tributaries contributed an estimated 13.6%.
The phosphorus export rate of the Vermillion River was less
than 1 kg/kn 2 /yr (see page 10). This rate is low compared to the
rates of the tributaries of other South Dakota lakes.

-------
3
II. LAKE AND DRAINAGE BASIN CHARACTERISTICSt
A. Lake Morphometr,ytt:
1. Surface area: 2.23 kilometers 2 .
2. Mean depth: 3.7 meters.
3. Maximum depth: 7.0 meters.
4. Volume: 8.251 x 106 in ].
5. Mean hydraulic retention time: 2.8 years.
B. Tributary and Outlet:
(See Appendix C for flow data)
1. Tributaries —
Drainage Mean flow
Name area (km 2 )* ( ni 3 /sec)*
Vermillion River 932.4 0.081
Minor tributaries &
immediate drainage - 101.4 0.014
Totals 1,033.8 0.095
2. Outlet —
Vermillion River l,036.O** 0.092
C. Precipitation***:
1. Year of sampling: 4249 centimeters.
2. Mean annual: 60.1 centimeters.
f Table of metric convififbns--Appendix B.
tt Murphey, 1974.
* For limits of accuracy, see Working Paper No. 175, “...Survey Methods,
1973—1976”.
** Includes area of lake.
*** See Working Paper No. 175.

-------
4
III. LAKE WATER QUALITY SUMMARY
East Vermillion Lake was sampled three times during the open—
water season of 1974 by means of a pontoon-equipped Huey helicopter.
Each time, samples for physical and chemical parameters were col-
lected from one or more depths at two stations on the lake (see map,
page v). During each visit, a single depth-integrated (near bottom
to surface) sample was composited from the stations for phytoplankton
identification and enumeration; and during the first and last visits,
a single 18.9-liter depth-integrated sample was composited for algal
assays. Also each time, a depth integrated sample was collected from
each of the stations for chlorophyll a analysis. The maximum depths
sampled were 4.6 meters at station 1 and 3.4 meters at station 2.
The sampling results are presented in full in Appendix D and are
summarized in the following table.

-------
1ST SAMPLING ( /22/74)
A. SUMMAPV OF - ‘fl1CML. AM) CHEMICAL CrIARACTErUSTICS FOw LAKE VE MILLION
5TOg T CODE 4629
2 iO SAMPLING I 7/11/741
S T s 2 SITES 2 SITES
3rEt) SAMPLING C ‘sf20114)
PAQAMETER
RANGE MEA.j MEUIA.
‘ANbE
MEAN
MEDIAN
RANGE
MEAN
MEDIAN
TEMP (C
10.8
— 10.9 l0.e 1O.a
24.3
— 25.6
25.0
25.0
16.6
— 11.1
16.9
17.1
LUSS Ofl (MG/LI
9.0
— 9.4 9.? ‘ 1.3
5.8
— 10.2
8.7
‘1.2
9.2
— 10.6
9.7
. .
CNDCTVY (MCQOMOI
385.
— 545. 4e7. 454.
622.
— 826.
824.
824.
687.
— 699.
694.
695.
P M (STAND UNITS)
*Q****
—* QD*Q*****Øt***Ot*****
9
— 9.3
9.1
9. )
9.2
— 5.3
9.3
9.3
TOT ALK (MG/L)
151.
— 155. iS ). 153.
133.
— 148.
140.
139.
141.
— 149.
148.
149.
TOT P (MG/LI
0.079
— 0.101 0.088 0.081
0.174
— 0.301
0.238
0.231
0.254
— 0.303
0.277
0.275
ORTHO P (MG/LI
0.011
— 0.020 0.013 0.011
0.092
— 0.12’.
0.104
0.101
0.087
— 0.112
0.096
0.094
N02 .N03 (MG/LI
0.030
— 0.130 3.0 50 0.035
0.040
— 0.110
0.061
0.060
0.020
— 0.020
0.020
0.020
AMMONIA (MG/L)
0.030
0.060 0.040 0.040
0.070
— 0.250
0.118
0.085
0.050
— 0.060
0.057
0.060
KJEL i (MQ/L)
1.200
— 2. 800 1.’.11 1.300
1.600
— 3.900
2.150
2.900
2.100
— 4.100
3.333
3.200
INO$4(, N 4MG/LI
0.0 50
— 0.110 0.010 0.070
0.110
— 0.300
0.185
0.155
0.070
— 0.080
0.077
0.080
TOTAL N (MG/LI
1.230
— 1.840 1.457 1.335
1.650
- 3.980
2.817
2.950
2.720
— 4.120
3.353
3.220
CMLI4PYL A IIJG/L)
8.4
— IC.1 9. 5 9.5
28.9
— 325.1
177.0
177.0
107.7
— 124.0
115.8
115.8
SECCrII (METERS)
0.8
— 0.8 0. ? 3.8
0.5
— 1.1
0.8
0.8
0.5
— 0.6
0.5
0.5

-------
6
B. Biological characteristics:
1. Phytoplankton -
Sampling Dominant Algal Units
Date Genera _ per ml
04/22/74 1. Chrysophytan flagellates 3,134
2. Stephanodiscus . p. 1,458
3. Chroomonas p. 310
4. Dactylococcopsis . 310
5. Oscfllatoria p. 248
Other genera 156
Total 5,616
07/11/74 1. Aphanizomenon 14,059
2. Oscillatoria p. 378
Total 14,437
09/20/74 1. Aphanizomenon . 45,153
2. Oscillatoria . 485
3. Nitzschia !2. 242
Total 45,880
2. Chlorophyll a -
Sampling Station Chlorophyll a
Date Number ( pg/i) — —
04/22/74 1 10.7
2 8.4
07/11/74 1 28.9
2 325.1
09/20/74 1 107.7
2 124.0

-------
7
Spike (mg/I )
Control
0.050 p
0.050 P + 1.0 N
1.0 N
Ortho P
Conc. (mg/i )
0.015
0.065
0.065
0.015
Inorganic N
Conc. (mg/i )
0.093
0.093
1.093
1.093
Maximum y eld
( mg/1-dry wt. )
4.5
4.9
24.9
10.0
b. September sample -
Spike (mg/i )
Control
0.050 P
0.050 P + 1.0 N
1.0 N
Ortho P
Conc. (mg/i )
0.155
0.205
0.205
0.1 55
Inorganic N
Conc. (mg/1 )
1.158
1.158
2.158
2.1 58
Maximum yield
( mg/i-dry wt. )
27.9
27.3
44.3
40.5
C. Limiting Nutrient Study:
1. Autoclaved, filtered, and nutrient spiked -
a. April sample -
2. Discussion —
The control yields of the assay alga, Selenastrurvi capri-
cornutum , indicate that the potential primary productivity
of East Vermillion Lake was moderately high to very high when
the assay samples were taken. In both assays, there was a
significant increase in yield when only nitrogen was added,
but no such response occurred when only phosphorus was added.
These results inoicate nitrogen limitation.
The lake data support the assay findings. The mean inor-
ganic nitrogen to orthophosphorus ratios were 7 to 1 in April,
2 to 1 in July, and 1 to 1 in September; and nitrogen limi-
tation would be expected.

-------
8
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the South Dakota
National Guard collected monthly near-surface grab samples from
each of the tributary sites indicated on the map (page v), except
for the high runoff months of April and June when two samples were
collected. Sampling was begun in October, 1974, and was completed
in July, 1975.
Through an interagency agreement, stream flow estimates for the
year of sampling and a “normalized 1 ’ or average year were provided by
the South Dakota District Office of the U.S. Geological Survey for the
tributary sites nearest the lake.
In this report, nutrient loads for sampled tributaries were
calculated using mean annual concentrations and mean annual flows.
Nutrient loads for unsampled “minor tributaries and immediate
drainage” (“ZZ” of U.S.G.S.) were estimated using the mean concentra-
tions in East Fork Vermillion River at station A—2 and the mean annual
ZZ flow.
No known wastewater treatment facilities impacted East Verrriillion
Lake during the sampling year.
A. Waste Sources:
1. Known municipal - None
2. Known industrial - None

-------
9
B. Annual Total Phosphorus Loading - Average Year:
1. Inputs —
kgP/ %of
Source yr total
a. Tributaries (non—point load) —
Vermillion River 525 79 ,5
b. Minor tributaries & immediate
drainage (non-point load) - 90 13.6
c. Known municipal STP’s - None -
d. Septic tanks* - 5 0.8
e. Known inCustrial — None - -
1. Direct precipitation** — 40 6.1
Total 660 100.0
2. Outputs -
Lake outlet — Vermillion River 120
3. Net annual P accumulation - 540 kg.
Estimate based on five lakeshore dwellings and one picnic area; see
Working Paper No. 175.
** See Working Paper No. 175.

-------
10
C. Annual ic;tal Nitrogen Loading - Average Year:
1. Inputs -
kgN/ %of
Source yr total
a. Tributaries (non—point load) —
Vermillion River 5,140 60.2
b Minor tributaries & immediate
drainage (non-point load) — 890 10.4
c. Known municipal STP’s — None -
d. Septic tanks* — 90 1.1
e. Known industrial - None - -
f. Direct precipitation** — 2,410 28.3
Total 8,530 O0.0
2. Outputs —
Lake outlet - Verinillion River 3,655
3. Net annual N accumulation — 4,875 kg.
D. Non—point Nutrient Export by Subdrainage Area?
Tributary kg P/km 2 /yr kg /km 2 fyr
Vermillion River <1 6
Estimate EiséiFon five lakeshore dwellings and one picnic area; see
Working Paper No. 176.
** See Working Paper No. 175.

-------
11
E. Yearly Loads:
In the following table, the existing phosphorus loadings
are compared to those proposed by Vollenweider (Vollenweider
and Dillon, 1974). Essentially, his “dangerous” loading is
one at which the receiving water would become eutrophic or
remain eutrophic; his “permissible” loading is that which
would result in the receiving water remaining oligotrophic
or becoming oligotrophic if morphometry permitted. A meso—
trophic loading would be considered one between “dangerous”
and “permissible”.
Note that Vollenweider’s model may not be applicable to
water bodies with short hydraulic retention times.
— Total Phosphorus Total Nitrogen
— — Total Accuniulated Total Accumulated
grams/m 2 /yr 0.30 0.24 3.8 2.2
Vollenweider phosphorus loadings
(g/m 2 /yr) based on mear: depth and mean
hydraulic retention time of East Vernillion Lake:
“Dangerous” (eutrophic loading) 0.22
Irpermissiblell (oligotrophic loading) 0.11

-------
12
V. LITERATURE REVIEWED
Murphey, Duane G., 1974. Personal comunication (lake morphometry).
SD Dept. of Environ. Protection, Pierre.
Vollenweider, R. A., and P. J. Dillon, 1974. The application of
the phosphorus loading concept to eutrophication research.
Nati. Res. Council of Canada Pubi. No. 13690, Canada Centre
for Inland Waters, Burlington, Ontario.
Schmidt, Artwin E., 1967. Limnology of selected South Dakota lakes.
MS thesis, SD St. U., Brookings.

-------
13
Vi. APPENDICES
APPENDIX A
LAKE RANKINGS

-------
- - LAKE DATA TO BE USED IN RANKINGS
LAKE MEDIAN MEDIAN 500- MEAN MEDIAN
CODE LAKE NAME TOTAL P INOKG N MEAN SEC Ce 4LORA M114 DO DISS URTr4O P
4601 LAKE ALBE RT 0.32 1 0.110 489.111 106.289 9.200 0.01
460 ALVIN LAKE 0.067 0.970 442.833 sn lOO 9.400 0.017
4603 ANGOSTIJRA RESERVOIR 0.O1J 0.160 423.333 3.711 13.000 0.005
4604 BRANT LAKE 0.194 0.130 432.833 34.150 11.800 0.113
4605 ‘LAKE BYRON 0.443 0. 170 488.333 149.350 9.000 0.146
4606 CLEAR LAKE 0.027 v.075 430. 167 11.983 8.800 0.009
4607 CLEAR LAKE 1.400 0.270 495.333 691.000 7.000 0.468
4608 COCHRANE LAKE 0 .031 0.150 446.000 15.683 15.000 0.006
4609 COTtONWOOD LAKE 0.685 0.265 490.333 112.017 8.600 0 .417
4610 DEERFIELD RESERVOIR 0.033 0.080 303.333 3.650 15.000 0 ,022
4611 ENEMY SWIM LAKE 0.031 0.085 442.600 14 .200 8.200 0.013
4612 LAKE HERMAN 0 .340 0.155 485.000 50.733 8.600 0 .174
4613 ST JOHN LAKE O,34S 0.080 489.400 U0.880 9.800 0.025
4614 LAKE KAHPESPCA 0.220 0.105 468.889 20.567 8.200 0.128
4615 MADISON LAKE 0.25 0.090 445.555 22.578 14.000 0.101
4616 LAKE M ITCHELL 0.099 0.085 465.833 14.883 13.oOO 0.0 15
i.( j7 LAKE N ORUEN 0.256 0.165 488.667 46.800 10.000 0.050
4618 OAKWOOI ) LAKE EAST 0.146 0.175 487.000 113.600 10 .000 0.009
4619 OAKW000 LAKE WEST 0.181 0.135 485.833 159.667 9.b00 0.021
4620 PACTOLA RESERVOIR 0.011 0.070 248.444 1.478 11.000 0.006
4621 PICKEREL LAKE 0.049 0.095 439.833 15.833 9.600 0.009
4622 LAKE POINSETT 0.115 0.315 468. ’s44 40.211 10.000 0.023
4623 LAKE RED 1HQN SOUTN 0.042 0.110 430.333 6.883 7.600 0.010
4624 RICHMOND LAKE 0.187 0.150 410.000 18.467 10.000 0.144
4625 ROY LArcE 0.034 0.070 431.000 13.333 11.000 0.010
4626 SAND LAKE 0.489 0.110 471.800 65.790 12.800 0.288
4627 SHERIDAN LAKE 0.053 0.105 394.000 15.433 15.000 0.016
4628 STOCICAD’ AW A.2?S A .rQ 32C” - — 40 1 1 - 0.1

-------
LAKE DATA TO BE USED IN RANKINGS
LAKE MEDIAN MED iAN 500- MEAN 15- MEDLAN
CODE LAKE NAME TOTAL P INORC I N MEAN SEC CP ILOWA NIH DO 0155 Ot TNO P
4629 LAKE VERMILLION 0.21L 0 .100 472.833 100.800 9.200 0.092
4630 WALL LAKE o. 19’ 0.160 441.667 55.267 7.400 0.076
4631 WAUBAY LA&E NORTH 0.098 0.145 469.555 127.033 1 1.400 0.023

-------
- - PERCENT OF LAKES WITH.HIGHERVALUES (NUMBER or LAKES WITH HIGHER VALUES)
LA (E MEDIAN MEDIAN 500— MEAN 15 MEDIAN INDEX
CODE LAKE NAME TOTAL P INORG N MEAN SEC C HLORA sIN 00 DISS ORTriO P NO
4601 LAKE ALBERT 20 C 6) 20 ( 6) 10 C 3) 23 4 1) 68 ( 20) 60 C 18) 201
4602 ALVIN LAKE 67 C 20) 0 C 0) 57 C 17) 90 27) 63 19 ) 63 C 19) 340
4603 ANGOSTLJRA RESERVOIR 97 C 29) 30 C 9) 87 C 26) 93 28) 20 C 6) 100 c 30) 427
4604 BRAN! LAKE 40 ( 12) 53 ( 1.6) 70 C 21) 41 C 14) 27 C 8) 23 C 7) 260
4605 LAKE BYRON 10 C 3) 3 C 1) 17 5 7 V 73 C 22) 13 C 4) 123
4606 CLEAR LAKE 93 C 28) 93 C 28) 83 C 25) 83 C 25) 71 C 23) 90 C 27) 519
4607 CLEAR LAKE 0 C 0) 10 C 3) 0 C 0) 0 C 0) 100 C 30) 0 C 0) 110
4608 COCHRANE LAKE 83 C 25) 40 C 11) 50 C 15) 67 C 20) 5 C 0) 93 C 28) 338
4609 COTTONwOOD LAKE 3 C 1) 13 C 4) 3 C 1) 20 C 6) 82 C 24) 3 C 1) 124
4610 DEERFIELD RESZRVO1II 90 C 27) 88 ( 26) 97 C 29) 91 C 29) 5 C 0) 53 C 16) 430
4611 ENEMY SWIM LAKE 80 C 24) 82 C 24) 60 C 18) 77 C 23) 88 ( 26) 73 C 22) 460
4612 LAKE HERMAN 17 C 5) 33 C 10) 27 C 8) 33 C 10) 82 C 24) 10 C 3) 202
4613 ST JOHN LAKE 13 C 41 88 C 26) 7 C 2) 13 C 4) 53 C 16) 43 C 13) 217
4614 LAKE KAMPESKA 33 C 10) tS 19) 40 C 12) 57 C 17) 88 C 26) 20 C 6) 303
4615 MADISON LAKE 27 C 8) 77 C 23) 53 C 161 53 4 16) 13 C 4) 30 C 9) 253
4616 LAKE MITCHELL 60 18) 82 C 24) 47 C 14) 73 4 22) 17 C 5) 70 C 21) 349
4617 LAKE NOROEN fl C 7) 23 C 7) 13 C 4) 40 C 12) 45 C 12) 40 C 12) 184
4618 OAKWODC) LAKE EAST 53 C 16) 11 C 5) 20 C 6) 17 4 5) 45 C 12) 85 C 25) 237
4619 OAKW000 LAKE WEST 50 C 15) 50 C 15) 23 C 1) 3 C 1) 58 C 17) 57 C 17) 241
4620 PACTOLA RESERVOIR 100 C 30) 98 C 29) 100 C 30) 100 C 30) 35 C 10) 97 1 29) 530
4621 PICKEREL LAKE 73 C 22) 73 C 22) 67 C 20) 63 C 19) 58 C 17) 85 C 25) 419
4622 LAKE POINSETT 57 C 17) 7 C 2) 43 C 13) 43 C 13) 45 C 12) 47 C 14) 242
4623 LAKE RED IRON SOUTH 77 C 23) 58 C 17) 80 C 24) 87 C 2o) 93 C 28) 78 C 23) 473
4624 RICHMOND LAKE 47 C 14) 40 C 11) 90 1 27) 60 C 18) 45 C 12) 17 C 5) 299
4625 ROY LAKE 87 C 26) 98 C 29) 77 C 23) BC C 24) 35 C 10) 78 C 23) 455
4626 SANDLAKE 7C 2) 58(17) 33C1O) 3CC 9) 23C 7) 7C 2) 158
4627 SHERIDAN LAKE 70 (21) 65 C 19) 93 C 26) 70 C 21) S C 0) 67 C 20) 370
“3 ”;AOE E DC 1] 73 ) C 0) U 25

-------
MEAN IS- MEDIAN INDEX
CP$LORA fUN DO DISS ORTnO P P40
21( 8) 68(201 331 10) 265
37 ( 11) 91 ( 291 37 ( 11) 304
10 C 31 30 4 9) 50 1 15) 237
PERCENT OF LAKES WITH HIGHER VALUES (NUM3ER OF LAKES wITH HIGHER VALUES)
LAKE MEDIAN MEDIAN 500 —
CODE LAKE NAME TOTAL P INORG N MEAN SEC
4629 LAME VERMILLION 37 ( 11) 70 C 21) 30 C 9)
4630 WALL LAME 43 C 13) 27 4 8) 63 C 19
4631 WAUBAY LAKE NORTH 63 C 19) 47 C 14) 31 4 11)

-------
LAKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
1 4620 PACTOLA RESERVOIR 530
2 4606 CLEAR LAKE 519
3 4623 LAKE RED IRON SOUTH 473
4 4611 ENEMY SWIM LAKE 460
5 4625 ROY LAKE 455
6 4610 DEERFIELD RESERVOIR 430
7 4603 ANGOSTURA RESERVOIR 427
8 4621 PICKEREL LAKE 419
9 4627 SHERIDAN LAKE 370
10 4616 LAKE MITCHELL 349
11 4602 ALVIN LAKE 340
12 4608 COCHRANE LAKE 338
13 4630 WALL LAKE 304
14 4614 LAKE KAMPESKA - 303
15 4624 RICHMOND LAKE 299
16 4629 LAKE VERMILLION 265
17 4604 8RANT LAKE 260
18 4615 MADISON LAKE 253
19 4622 LAKE POINSETT 242
20 4619 OAKW000 LAKE WEST 241
21 4631 WAUBAY LAKE NORTH 237
22 4618 OAKW000 LAKE LAST 237
23 4628 STOCKADE LAKE 225
24 4613 ST JOHN LAKE 217
25 4612 LAKE HERMAN 202
26 4601 LAKE ALBERT 201
27 4617 LAKE NORDEN 184
AN(

-------
LMES RANKED BY INDEX NOS.
RANK LAKE CODE LAPE NAME INDEX NO
29 4609 COTTUNW000 LAKE 124
30 4605 LAKE BYRON 123
31 4607 CLEAR LAKE 110

-------
APPENDiX B
CONVERSION FACTORS

-------
CONVERSION FACTORS
Hectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 = feet
Cubic meters x 8.107 x 1U 4 = acre/feet
Square kilometers x 0.3861 = square miles
Cubic meters/sec x 35.315 = cubic feet/sec
Centimeters x 0.3937 = inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = lbs/square mile

-------
APPENDIX C
TRIBUTARY FLOW DATA

-------
TRIFJUTARY FLOiI INFORMATION FOR SOUTH DAi OTA 05/03/76
LAKE CODE 4629 EAST VERPILLION
TOTAL DRAINAGE AREA OF LAKE(SQ KM) 1036,0
SUq—DRA I NAGE NOi MALIZE FLOWS(CM )
TPIBUTAPY APEA(SQ KM) JAN FE ‘JAR APR MAY JUN JUL. AuG SEP OCT NOV DEC MEAN
4629*1 1036.0 0.0 0.0 0.057 0.311 0.283 0.1’.2 0.142 0.085 0.057 0.028 0.0 0.0 0.092
462942 932.4 0.0 0.0 0.283 0.283 0.113 0.113 0.057 0.028 0.0 0.0 0.0 0.081
4o29ZZ 103.6 0.0 0.0 0.028 0.0 7 0.028 0.028 0.028 0.0 0.0 0.0 0.0 0.0 0.014
SUMMARY
TOTAL DRAINAGE AREA OF LAKE = 1036.0 IOTAL FLOW IN = 1.13
SUM OF SUB—DRAINAGE AREAS = 1036.0 TOTAL FLOW Out 1.10
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TPIBUTA Y MONTH YEAR MEAN FLOW DAY FLOW DAY FLOW DAY FLOW
4629*1 10 74 0.023 13 0.020
11 74 0.020 16 0.020
12 74 0.020 15 0.020
1 75 0.023 19 0.023
2 75 0.023 9 0.020
3 75 0.020 9 0.020
4 75 0.023 12 0.020
S 75 0.020 13 0.020
6 75 0.014 16 0.014 30 0.017
7 75 0.014 25 0.017
8 75 0.023 25 0.011
9 75 0.025
4629*2 10 74 0.006 13 0.006
11 74 0.006 16 0.006
74 0.006 15 0.003
1 75 0.003 19 0.001
2 75 0.001 9 0.0
3 75 0.006 9 0.008
4 75 0.008 12 0.057 29 0.023
5 75 0.017 13 0.014
6 75 0.020 16 0.0 0
7 75 0.017 25 0.014
8 75 0.425 25 0.008
9 75 0.014
4629ZZ 10 74 0.0
11 74 0.0
12 74 0.0
1 75 0.0
2 75 0.0
3 75 0.0
4 75 0.028
5 75 0.014
6 75 0.0
7 75 0.0
8 75 0.028
9 75 0.0

-------
APPENDIX D
PHYSICAL and CHEMICAL DATA

-------
ST U RETRIEVAL CATE 76/05/03
46 90 I
43 35 25 097 10 21.0 3
LAKE VE’ MILL1ON
“60- 7 SOUTi-’ DAKUFA
091291
I 1E ALES
001’. FEET
2111202
DEPTrI CLASS 00
74/04/2? 14 45 0000
14 45 0005
14 45 0010
74/07/Il 14 45 0000
14 45 0005
1’. 45 0014
74/09/20 14 10 0000
14 10 0003
14 10 0005
1’ 10 0006
J4 10 0015
00665 32217
PiIOS—TOT CHLRPHYL
A
MG/L P UG/L
0.083
0 .093
0.09?
0.221
0.174
0.25’
0.303
00031
INCOT LT
REMN ING
PERCENT
50.0
5.0
1.u
DATE
TIME
DEPT I
FPOM
OF
TO
DAY
FEET
74/C•4/2?
14 45
14 45
14 45
0000
0005
0010
7’./07/11
14 45
14 45
14 45
0000
0005
0014
74/09/20
14 10
14 10
0000
0015
DATE
TIME
DEPTM
FROM
OF
TO
DAY
FEET
00010
00300
00077
00094
00400
00410
00610
00b25
00630
00671
WATER
DO
TRANSP
cr .oucrvY
Ph
T ALK
NH3—N
TOT KJEL
N02&N03
PriOS—DIS
TEMP
SECC-’I
FIELD
CACO3
TOTAL
N
, l—TorAL
O ThO
CE’áT
MG/L
INCHtS
M1C OMrIO
SU
M&/L
MG/L
MG/L
MG/L
MG/L P
10.
30
447
152
0.040
1.600
0.130
0.O 0
10.s
9.4
460
152
0.030
1.800
0.040
0.011
10.8
9.0
545
151
0.030
1.300
0.030
0.011
24.6
8.4
42
823
9.10
146
0.070
2.200
0.060
0.100
24.5
7.8
82?
9.00
142
0.150
1.600
0.110
0.106
24.3
5.8
822
8.90
148
0.250
1.600
0.050
0.124
17.1
9.4
23
695
9.23
147
0.060
3.200
0.0 20K
0.094
17.1
9.2
699
9.25
149
0.060
2.700
0.020K
0.112
28 • 9
107,7
K VMLUE KNOWN TO dE
LESS THAN I 4IICATED

-------
ST ?t.T i’ETR1EV L UATE 76/05/03
462 1,02
43 36 57-0 097 10 08.0 3
LAKE vE MILLION
46Db? SOUTH DAKOTA
0’,.129 1
lIE P AL ES
0013 FEET
2111202
0EPT CLASS 00
9.2
9.4
10.2
13.0
10.0
10.6
00010
00300
00077
0009’.
00400
00410
00610
00625
00630
00b71
DATE
TIME
DEDTF4
wATER
DO
TRANSP
CNDUCTVY
PH
1 ALK
NH3—N
TOT KJEL
NO2 O3
PrIOS—Ols
Fc OP
OF
TEMP
SECC I
FIELD
CACO3
TOTAL
N
N—TOTAL
URTrIO
TO
DAY
FEET
CENT
MG/L
INCHES
MjC eOMHO
SU
MG/I
MG/L
MG/I
MG/L
MG/I P
74/04/22
15 00 0000
10.9
31
385
153
0.040
1.200
0.030
0.011
15 00 0005
10.9
447
155
0.040
1.300
0.030
0.012
15 00 0010
10.9
515
155
0.060
1.300
0.040
0.012
74/07/11
14 20 0000
25.6
18
825
9.30
133
0.070
3.600
0.060
0.097
14 O 0005
25.5
826
9.20
135
0.100
3.900
0.080
0.103
14 20 0011
25.5
826
9.10
133
0.070
3.600
0.040
0.092
74/09/20
13 50 0000
16.6
19
687
9.35
149
0.050
4.100
0.020I
0.087
DATE
FROM
TO
TIME
OF
DAY
00665 32217
DEPTH PHOS-TOT Cl-’LRPHYL
A
FEET MG/L P (JC./L
74/04/22 15 00 0000
15 00 0005
15 00 0010
74/07/11 14 20 0000
14 20 0005
14 20 0011
7 ’ ./09/20 13 50 0000
13 50 0001
13 50 0003
0.082
Oslo’
0.079
0.24 1
0.281
0.301
0.275
00031
INCDT LI
REMNING
PERCENT
50.0
5.0
8.4
325.1
124.0
K VALUE KAIOWN 10 BE
LESS Tru ri INDICATEO

-------
APPENDIX £
TRIBUTARY DATA

-------
STOI ET ET’ 1FV L OATE 7 6/OS/ti ’.
4629A1
43 35 15.0 097 10 20.0 4
VE MILLIO’ RIVER
46 7.5 £ VRMLION LK
0/EAST VEI MILL1ON LANE 091291
SEC R i) 8I PG .1 MI S OF VERM1LLION DAM
I1EPALES 2111204
0000 FEET DEPIrI CLASS 00
00630 0O62 00610 00671 00665
DATE TIME DEPTH NO2 .NO3 TOT P JEL MH3—N PHOS—DIS ‘ HO5TOT
FROM OF N—TQTAL N TOTAL ORTMO
TO DAY FEET MG/L MG/L MG/L MG/L P MG/I P
74/10/13 10 10 0.032 0.700 0.045 0.010 0.030
74/11/16 15 00 0.040 1.200 0.050 0.020 0.020
75/04/12 09 55 0.045 1.630 0.230 0.030 0.065
75/04/29 15 30 0.005 1.450 0.020 0.006 0.010 c
75/05/11 10 00 0.005 0.900 0.020 0.020 0.0 O
75/06/16 12 00 • oc 1.250 0.050 0.020 0.040
75/06/30 11 30 0.005 0.700 0.040 0.030 0.040
75/07/25 0.015 2.100 0.060 0.015 0.050
K VALUE KNOWN TO BE
LESS THAN INDICATED

-------
STOFET ETRIEVAL DUE 76/&5,r.4
4b29A2
43 40 00.0 097 10 15.0 4
V P4ILLI(J”4 RIVER
46 ?.S MONTROSE
T/EA. r VERMILL ION LAic 0912 2
dROG ON US RI 90 3.2 M I SE OF MONTROSE
I IEPALES 211120’.
0000 FEE:1 i) PTii CLASS 00
00630 00625 0fl610 00671 00665
DATE TIME DEPTH NO2 N03 TOT KJEL Nh3—N PHOS—DIS PHOS—TOT
FPOM OF .1-TOTAL N TOTAL ORTF1O
TO DAY FEET MG/L MG/L MG/L MG/L P MG/L P
74/10/13 09 25 0,032 0.700 0.025 0.030 0.070
74/11/16 14 40 0.008 0.800 0.025 0.045 0.050
74/12/lb 13 10 0.224 0.800 0.144 0.030 0.040
75/04/12 09 5 0.345 3.200 9.230 0.067 0.200
75/04/29 15 00 0.005 5.450 0,040 0.025 0.100K
75/05/13 09 30 0.005 1.650 0.105 0.065 0.150
75/06/lb 11 30 0.005 1.250 0.035 0.140 0.210
75/06/30 11 00 0.005 0.900 0.040 0.435 0.584
75/07/25 09 25 0.040 2.700 0.085 0.340 0.440
K VALUE KNOWN TO BE
LESS THAN INDICATED

-------