U.S. ENVIRONMENTAL PROTECTION AGENCY NATIONAL EUTROPHICATION SURVEY WORKING PAPER SERIES REPORT ON EAST VERMILLION LAKE McCOOK COJflTY SfVffl mkDTA EPA REGION VIII WDRKING PAPER No, 626 CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON and ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA •A-<;.!'.<>. 699-440 ------- REPORT ON EAST VERMILLION LAKE McCOOK CnUflTY SOUTH I¥\KDTA EPA REGION VIII WORKING PAPER No, 626 WITH THE COOPERATION OF THE SOUTH DAKOTA DEPARTMENT OF ENVIRONMENTAL PROTECTION AND THE SOUTH DAKOTA NATIONAL GUARD DECEMBER,, 1976 ------- 1 CONTENTS Page Foreward ii List of South Dakota Study Lakes iv Lake and Drainage Area Map v, vi Sections I. Conclusions 1 II. Lake and Drainage Basin Characteristics 3 III. Lake Water Quality Sumary 4 IV. Nutrient Loadings 8 V. Literature Reviewed 12 VI. Appendices 13 ------- •I1 FOREWORD The National Eutrophication Survey was initiated in 1972 in response to an Administration coimiitment to investigate the nation- wide threat of accelerated eutrophication to freshwater lakes and reservoirs. OBJECTIVES The Survey was designed to develop, in conjunction with state environmental agencies, information on nutrient sources, concentrations, and impact on selected freshwater lakes as a basis for formulating comprehensive and coordinated national, regional, and state management practices relating to point-source discharge reduction and non-point source pollution abatement in lake watersheds. ANALYTIC APPROACH The mathematical and statistical procedures selected for the Survey’s eutrophication analysis are based on related concepts that: a. A generalized representation or model relating sources, concentrations, and impacts can be constructed. b. By applying measurements of relevant parameters associated with lake degradation, the generalized model can be transformed into an operational representation of a lake, its drainage basin, and related nutrients. c. With such a transformation, an assessment of the potential for eutrophication control can be made. LAKE ANALYSIS In this report, the first stage of evaluation of lake and water- shed data collected from the study lake and its drainage basin is documented. The report is formatted to provide state environmental agencies with specific information for basin planning [ 5303(e)], water quality criteria/standards review [ 3O3(c)], clean lakes [ 5314(a,b)], and water quality monitoring [ 5106 and §305(b)] activities mandated by the Federal Water Pollution Control Act Amendments of 1972. ------- 11 1 Beyond the single lake analysis, broader based correlations between nutrient concentrations (and loading) and trophic condi- tion are being made to advance the rationale and data base for refinement of nutrient water quality criteria for the Nation’s freshwater lakes. Likewise, multivariate evaluations for the relationships between land use, nutrient export, and trophic condition, by lake class or use, are being developed to assist in the formulation of planning guidelines and policies by EPA and to augment plans implementation by the states. ACKNOWLEDGMENT The staff of the National Eutrophication Survey (Office of Research & Development, Li. S. Environmental Protection Agency) expresses sincere appreciation to the South Dakota Departments of Environmental Protection and Game, Fish and Parks for professiona1 involvement, to the South Dakota National Guard for conducting the tributary sampling phase of the Survey, and to those wastewater treatment plant operators who voluntarily provided effluent samples. Allyn Lockner, Secretary, and Blame Barker and Duane Murphy, Department of Environmental Quality; Douglas Hansen, Department of Game, Fish and Parks; and James Hayden, Director, State Lakes Preservation Comittee provided invaluable lake documentation and counsel during the Survey, reviewed the preliminary reports, and provided critiques most useful in the preparation of this Working Paper series. Major General Duane L. Corning, the Adjutant General of South Dakota, and Project Officer Colonel Robert 0. Chalberg, who directed the volunteer efforts of the South Dakota National Guardsmen, are also gratefully acknowledged for their assistance to the Survey. ------- iv NATIONAL EUTROPHICATION SURVEY STUDY LAKES STATE OF SOUTH DAKOTA LAKE NAME COUNTY Albert Kingsbury Alvin Lincoln Angostura Fall River Brant Lake Byron Beadle Clear Marshall Clear Minnehaha Cochrane Deuel Cottonwood Spink Deerfield Pennington Enemy Swim Day Herman Lake John Hamlin Kampeska Codington Madison Lake Mitchell Davidson Norden Hamlin East Oakwood Brookings West Oakwood Brookings Pactola Pennington Pickerel Day Poinsett Brookings, Lake Red Iron South Marshall Richmond Brown Roy Marshall Sand Brown Sheridan Pennington Stockdale Custer East Vermilion McCook Wall Minnehaha Waubay Day ------- V Map Location EAST VERMIL LION LAKE 5i EAST VERMILLION LAKE 0 Tributary Sampling Site Lake Sampling Site o ?Km. I I 1. 0 1 2M1. Scale I I If ------- EAST VERMILLION LAKE ® Tributary Sam l1ng Site X Lake Sampling Site 0 5 10 20Km. I I 0 i Mi. Scale Map [ ocdtion K? ‘ii •., 1’— ‘ Montrou ‘V -ç 1 (AST N O2 VERMILL ION LA/(E 81’?’ d•m Al )4—East Fork • Vermillion River 44 l5 — 44 ’OO — 43’45— ] 9I .,3U elbn ------- EAST VERMILLION LAKE STORET NO. 4629 I. CONCLUSIONS A. Trophic Condition: Survey data indicate that East Vermillion Lake is eutrophic. It ranked sixteenth in overall trophic quality when the 31 South Dakota lakes sampled in 1974 were compared using a combination of six lake parameters*. Nineteen of the lakes had less median total phosphorus, 20 had less median dissolved phosphorus, nine had less median inorganic nitrogen, 22 had less mean chlorophyll a, and 21 had greater mean Secchi disc transparency. Survey limr ologists observed heavy blooms of filamentous algae in July and September. B. Rate-Limiting Nutrient: The results of the algal assays indicate that East Vermillion Lake was nitrogen limited when the assay samples were taken (04/22/ 74 and 09/20/74). The lake data indicate nitrogen limitation all three sampling times. C. Nutrient Controllability: 1. Point sources-—No known municipal or industrial point sources impacted East Vermillion Lake during the sampling year. Septic tanks serving lakeshore dwellings and a picnic area were See Appendix A. ------- 2 estimated to have contributed 0.8% of the total phosphorus load, but a shoreline survey would be necessary to determine the actual significance of those sources. The present phosphorus loading of 0.30 g/m 2 /yr is about 1.4 times that proposed by Vollenweider (Vollenweider and Dillon, 1974) as a eutrophic loading (see page 11). However, a sig- nificant reduction in the phosphorus loading would be difficult to accomplish because of the large non-point-source contribution. 2. Non—point sources--Non-point sources accounted for 99.2% of the total phosphorus load reaching the lake during the sampling year. The Vermillion River contributed 79.5% of the total load, and the ungaged tributaries contributed an estimated 13.6%. The phosphorus export rate of the Vermillion River was less than 1 kg/kn 2 /yr (see page 10). This rate is low compared to the rates of the tributaries of other South Dakota lakes. ------- 3 II. LAKE AND DRAINAGE BASIN CHARACTERISTICSt A. Lake Morphometr,ytt: 1. Surface area: 2.23 kilometers 2 . 2. Mean depth: 3.7 meters. 3. Maximum depth: 7.0 meters. 4. Volume: 8.251 x 106 in ]. 5. Mean hydraulic retention time: 2.8 years. B. Tributary and Outlet: (See Appendix C for flow data) 1. Tributaries — Drainage Mean flow Name area (km 2 )* ( ni 3 /sec)* Vermillion River 932.4 0.081 Minor tributaries & immediate drainage - 101.4 0.014 Totals 1,033.8 0.095 2. Outlet — Vermillion River l,036.O** 0.092 C. Precipitation***: 1. Year of sampling: 4249 centimeters. 2. Mean annual: 60.1 centimeters. f Table of metric convififbns--Appendix B. tt Murphey, 1974. * For limits of accuracy, see Working Paper No. 175, “...Survey Methods, 1973—1976”. ** Includes area of lake. *** See Working Paper No. 175. ------- 4 III. LAKE WATER QUALITY SUMMARY East Vermillion Lake was sampled three times during the open— water season of 1974 by means of a pontoon-equipped Huey helicopter. Each time, samples for physical and chemical parameters were col- lected from one or more depths at two stations on the lake (see map, page v). During each visit, a single depth-integrated (near bottom to surface) sample was composited from the stations for phytoplankton identification and enumeration; and during the first and last visits, a single 18.9-liter depth-integrated sample was composited for algal assays. Also each time, a depth integrated sample was collected from each of the stations for chlorophyll a analysis. The maximum depths sampled were 4.6 meters at station 1 and 3.4 meters at station 2. The sampling results are presented in full in Appendix D and are summarized in the following table. ------- 1ST SAMPLING ( /22/74) A. SUMMAPV OF - ‘fl1CML. AM) CHEMICAL CrIARACTErUSTICS FOw LAKE VE MILLION 5TOg T CODE 4629 2 iO SAMPLING I 7/11/741 S T s 2 SITES 2 SITES 3rEt) SAMPLING C ‘sf20114) PAQAMETER RANGE MEA.j MEUIA. ‘ANbE MEAN MEDIAN RANGE MEAN MEDIAN TEMP (C 10.8 — 10.9 l0.e 1O.a 24.3 — 25.6 25.0 25.0 16.6 — 11.1 16.9 17.1 LUSS Ofl (MG/LI 9.0 — 9.4 9.? ‘ 1.3 5.8 — 10.2 8.7 ‘1.2 9.2 — 10.6 9.7 . . CNDCTVY (MCQOMOI 385. — 545. 4e7. 454. 622. — 826. 824. 824. 687. — 699. 694. 695. P M (STAND UNITS) *Q**** —* QD*Q*****Øt***Ot***** 9 — 9.3 9.1 9. ) 9.2 — 5.3 9.3 9.3 TOT ALK (MG/L) 151. — 155. iS ). 153. 133. — 148. 140. 139. 141. — 149. 148. 149. TOT P (MG/LI 0.079 — 0.101 0.088 0.081 0.174 — 0.301 0.238 0.231 0.254 — 0.303 0.277 0.275 ORTHO P (MG/LI 0.011 — 0.020 0.013 0.011 0.092 — 0.12’. 0.104 0.101 0.087 — 0.112 0.096 0.094 N02 .N03 (MG/LI 0.030 — 0.130 3.0 50 0.035 0.040 — 0.110 0.061 0.060 0.020 — 0.020 0.020 0.020 AMMONIA (MG/L) 0.030 0.060 0.040 0.040 0.070 — 0.250 0.118 0.085 0.050 — 0.060 0.057 0.060 KJEL i (MQ/L) 1.200 — 2. 800 1.’.11 1.300 1.600 — 3.900 2.150 2.900 2.100 — 4.100 3.333 3.200 INO$4(, N 4MG/LI 0.0 50 — 0.110 0.010 0.070 0.110 — 0.300 0.185 0.155 0.070 — 0.080 0.077 0.080 TOTAL N (MG/LI 1.230 — 1.840 1.457 1.335 1.650 - 3.980 2.817 2.950 2.720 — 4.120 3.353 3.220 CMLI4PYL A IIJG/L) 8.4 — IC.1 9. 5 9.5 28.9 — 325.1 177.0 177.0 107.7 — 124.0 115.8 115.8 SECCrII (METERS) 0.8 — 0.8 0. ? 3.8 0.5 — 1.1 0.8 0.8 0.5 — 0.6 0.5 0.5 ------- 6 B. Biological characteristics: 1. Phytoplankton - Sampling Dominant Algal Units Date Genera _ per ml 04/22/74 1. Chrysophytan flagellates 3,134 2. Stephanodiscus . p. 1,458 3. Chroomonas p. 310 4. Dactylococcopsis . 310 5. Oscfllatoria p. 248 Other genera 156 Total 5,616 07/11/74 1. Aphanizomenon 14,059 2. Oscillatoria p. 378 Total 14,437 09/20/74 1. Aphanizomenon . 45,153 2. Oscillatoria . 485 3. Nitzschia !2. 242 Total 45,880 2. Chlorophyll a - Sampling Station Chlorophyll a Date Number ( pg/i) — — 04/22/74 1 10.7 2 8.4 07/11/74 1 28.9 2 325.1 09/20/74 1 107.7 2 124.0 ------- 7 Spike (mg/I ) Control 0.050 p 0.050 P + 1.0 N 1.0 N Ortho P Conc. (mg/i ) 0.015 0.065 0.065 0.015 Inorganic N Conc. (mg/i ) 0.093 0.093 1.093 1.093 Maximum y eld ( mg/1-dry wt. ) 4.5 4.9 24.9 10.0 b. September sample - Spike (mg/i ) Control 0.050 P 0.050 P + 1.0 N 1.0 N Ortho P Conc. (mg/i ) 0.155 0.205 0.205 0.1 55 Inorganic N Conc. (mg/1 ) 1.158 1.158 2.158 2.1 58 Maximum yield ( mg/i-dry wt. ) 27.9 27.3 44.3 40.5 C. Limiting Nutrient Study: 1. Autoclaved, filtered, and nutrient spiked - a. April sample - 2. Discussion — The control yields of the assay alga, Selenastrurvi capri- cornutum , indicate that the potential primary productivity of East Vermillion Lake was moderately high to very high when the assay samples were taken. In both assays, there was a significant increase in yield when only nitrogen was added, but no such response occurred when only phosphorus was added. These results inoicate nitrogen limitation. The lake data support the assay findings. The mean inor- ganic nitrogen to orthophosphorus ratios were 7 to 1 in April, 2 to 1 in July, and 1 to 1 in September; and nitrogen limi- tation would be expected. ------- 8 IV. NUTRIENT LOADINGS (See Appendix E for data) For the determination of nutrient loadings, the South Dakota National Guard collected monthly near-surface grab samples from each of the tributary sites indicated on the map (page v), except for the high runoff months of April and June when two samples were collected. Sampling was begun in October, 1974, and was completed in July, 1975. Through an interagency agreement, stream flow estimates for the year of sampling and a “normalized 1 ’ or average year were provided by the South Dakota District Office of the U.S. Geological Survey for the tributary sites nearest the lake. In this report, nutrient loads for sampled tributaries were calculated using mean annual concentrations and mean annual flows. Nutrient loads for unsampled “minor tributaries and immediate drainage” (“ZZ” of U.S.G.S.) were estimated using the mean concentra- tions in East Fork Vermillion River at station A—2 and the mean annual ZZ flow. No known wastewater treatment facilities impacted East Verrriillion Lake during the sampling year. A. Waste Sources: 1. Known municipal - None 2. Known industrial - None ------- 9 B. Annual Total Phosphorus Loading - Average Year: 1. Inputs — kgP/ %of Source yr total a. Tributaries (non—point load) — Vermillion River 525 79 ,5 b. Minor tributaries & immediate drainage (non-point load) - 90 13.6 c. Known municipal STP’s - None - d. Septic tanks* - 5 0.8 e. Known inCustrial — None - - 1. Direct precipitation** — 40 6.1 Total 660 100.0 2. Outputs - Lake outlet — Vermillion River 120 3. Net annual P accumulation - 540 kg. Estimate based on five lakeshore dwellings and one picnic area; see Working Paper No. 175. ** See Working Paper No. 175. ------- 10 C. Annual ic;tal Nitrogen Loading - Average Year: 1. Inputs - kgN/ %of Source yr total a. Tributaries (non—point load) — Vermillion River 5,140 60.2 b Minor tributaries & immediate drainage (non-point load) — 890 10.4 c. Known municipal STP’s — None - d. Septic tanks* — 90 1.1 e. Known industrial - None - - f. Direct precipitation** — 2,410 28.3 Total 8,530 O0.0 2. Outputs — Lake outlet - Verinillion River 3,655 3. Net annual N accumulation — 4,875 kg. D. Non—point Nutrient Export by Subdrainage Area? Tributary kg P/km 2 /yr kg /km 2 fyr Vermillion River <1 6 Estimate EiséiFon five lakeshore dwellings and one picnic area; see Working Paper No. 176. ** See Working Paper No. 175. ------- 11 E. Yearly Loads: In the following table, the existing phosphorus loadings are compared to those proposed by Vollenweider (Vollenweider and Dillon, 1974). Essentially, his “dangerous” loading is one at which the receiving water would become eutrophic or remain eutrophic; his “permissible” loading is that which would result in the receiving water remaining oligotrophic or becoming oligotrophic if morphometry permitted. A meso— trophic loading would be considered one between “dangerous” and “permissible”. Note that Vollenweider’s model may not be applicable to water bodies with short hydraulic retention times. — Total Phosphorus Total Nitrogen — — Total Accuniulated Total Accumulated grams/m 2 /yr 0.30 0.24 3.8 2.2 Vollenweider phosphorus loadings (g/m 2 /yr) based on mear: depth and mean hydraulic retention time of East Vernillion Lake: “Dangerous” (eutrophic loading) 0.22 Irpermissiblell (oligotrophic loading) 0.11 ------- 12 V. LITERATURE REVIEWED Murphey, Duane G., 1974. Personal comunication (lake morphometry). SD Dept. of Environ. Protection, Pierre. Vollenweider, R. A., and P. J. Dillon, 1974. The application of the phosphorus loading concept to eutrophication research. Nati. Res. Council of Canada Pubi. No. 13690, Canada Centre for Inland Waters, Burlington, Ontario. Schmidt, Artwin E., 1967. Limnology of selected South Dakota lakes. MS thesis, SD St. U., Brookings. ------- 13 Vi. APPENDICES APPENDIX A LAKE RANKINGS ------- - - LAKE DATA TO BE USED IN RANKINGS LAKE MEDIAN MEDIAN 500- MEAN MEDIAN CODE LAKE NAME TOTAL P INOKG N MEAN SEC Ce 4LORA M114 DO DISS URTr4O P 4601 LAKE ALBE RT 0.32 1 0.110 489.111 106.289 9.200 0.01 460 ALVIN LAKE 0.067 0.970 442.833 sn lOO 9.400 0.017 4603 ANGOSTIJRA RESERVOIR 0.O1J 0.160 423.333 3.711 13.000 0.005 4604 BRANT LAKE 0.194 0.130 432.833 34.150 11.800 0.113 4605 ‘LAKE BYRON 0.443 0. 170 488.333 149.350 9.000 0.146 4606 CLEAR LAKE 0.027 v.075 430. 167 11.983 8.800 0.009 4607 CLEAR LAKE 1.400 0.270 495.333 691.000 7.000 0.468 4608 COCHRANE LAKE 0 .031 0.150 446.000 15.683 15.000 0.006 4609 COTtONWOOD LAKE 0.685 0.265 490.333 112.017 8.600 0 .417 4610 DEERFIELD RESERVOIR 0.033 0.080 303.333 3.650 15.000 0 ,022 4611 ENEMY SWIM LAKE 0.031 0.085 442.600 14 .200 8.200 0.013 4612 LAKE HERMAN 0 .340 0.155 485.000 50.733 8.600 0 .174 4613 ST JOHN LAKE O,34S 0.080 489.400 U0.880 9.800 0.025 4614 LAKE KAHPESPCA 0.220 0.105 468.889 20.567 8.200 0.128 4615 MADISON LAKE 0.25 0.090 445.555 22.578 14.000 0.101 4616 LAKE M ITCHELL 0.099 0.085 465.833 14.883 13.oOO 0.0 15 i.( j7 LAKE N ORUEN 0.256 0.165 488.667 46.800 10.000 0.050 4618 OAKWOOI ) LAKE EAST 0.146 0.175 487.000 113.600 10 .000 0.009 4619 OAKW000 LAKE WEST 0.181 0.135 485.833 159.667 9.b00 0.021 4620 PACTOLA RESERVOIR 0.011 0.070 248.444 1.478 11.000 0.006 4621 PICKEREL LAKE 0.049 0.095 439.833 15.833 9.600 0.009 4622 LAKE POINSETT 0.115 0.315 468. ’s44 40.211 10.000 0.023 4623 LAKE RED 1HQN SOUTN 0.042 0.110 430.333 6.883 7.600 0.010 4624 RICHMOND LAKE 0.187 0.150 410.000 18.467 10.000 0.144 4625 ROY LArcE 0.034 0.070 431.000 13.333 11.000 0.010 4626 SAND LAKE 0.489 0.110 471.800 65.790 12.800 0.288 4627 SHERIDAN LAKE 0.053 0.105 394.000 15.433 15.000 0.016 4628 STOCICAD’ AW A.2?S A .rQ 32C” - — 40 1 1 - 0.1 ------- LAKE DATA TO BE USED IN RANKINGS LAKE MEDIAN MED iAN 500- MEAN 15- MEDLAN CODE LAKE NAME TOTAL P INORC I N MEAN SEC CP ILOWA NIH DO 0155 Ot TNO P 4629 LAKE VERMILLION 0.21L 0 .100 472.833 100.800 9.200 0.092 4630 WALL LAKE o. 19’ 0.160 441.667 55.267 7.400 0.076 4631 WAUBAY LA&E NORTH 0.098 0.145 469.555 127.033 1 1.400 0.023 ------- - - PERCENT OF LAKES WITH.HIGHERVALUES (NUMBER or LAKES WITH HIGHER VALUES) LA (E MEDIAN MEDIAN 500— MEAN 15 MEDIAN INDEX CODE LAKE NAME TOTAL P INORG N MEAN SEC C HLORA sIN 00 DISS ORTriO P NO 4601 LAKE ALBERT 20 C 6) 20 ( 6) 10 C 3) 23 4 1) 68 ( 20) 60 C 18) 201 4602 ALVIN LAKE 67 C 20) 0 C 0) 57 C 17) 90 27) 63 19 ) 63 C 19) 340 4603 ANGOSTLJRA RESERVOIR 97 C 29) 30 C 9) 87 C 26) 93 28) 20 C 6) 100 c 30) 427 4604 BRAN! LAKE 40 ( 12) 53 ( 1.6) 70 C 21) 41 C 14) 27 C 8) 23 C 7) 260 4605 LAKE BYRON 10 C 3) 3 C 1) 17 5 7 V 73 C 22) 13 C 4) 123 4606 CLEAR LAKE 93 C 28) 93 C 28) 83 C 25) 83 C 25) 71 C 23) 90 C 27) 519 4607 CLEAR LAKE 0 C 0) 10 C 3) 0 C 0) 0 C 0) 100 C 30) 0 C 0) 110 4608 COCHRANE LAKE 83 C 25) 40 C 11) 50 C 15) 67 C 20) 5 C 0) 93 C 28) 338 4609 COTTONwOOD LAKE 3 C 1) 13 C 4) 3 C 1) 20 C 6) 82 C 24) 3 C 1) 124 4610 DEERFIELD RESZRVO1II 90 C 27) 88 ( 26) 97 C 29) 91 C 29) 5 C 0) 53 C 16) 430 4611 ENEMY SWIM LAKE 80 C 24) 82 C 24) 60 C 18) 77 C 23) 88 ( 26) 73 C 22) 460 4612 LAKE HERMAN 17 C 5) 33 C 10) 27 C 8) 33 C 10) 82 C 24) 10 C 3) 202 4613 ST JOHN LAKE 13 C 41 88 C 26) 7 C 2) 13 C 4) 53 C 16) 43 C 13) 217 4614 LAKE KAMPESKA 33 C 10) tS 19) 40 C 12) 57 C 17) 88 C 26) 20 C 6) 303 4615 MADISON LAKE 27 C 8) 77 C 23) 53 C 161 53 4 16) 13 C 4) 30 C 9) 253 4616 LAKE MITCHELL 60 18) 82 C 24) 47 C 14) 73 4 22) 17 C 5) 70 C 21) 349 4617 LAKE NOROEN fl C 7) 23 C 7) 13 C 4) 40 C 12) 45 C 12) 40 C 12) 184 4618 OAKWODC) LAKE EAST 53 C 16) 11 C 5) 20 C 6) 17 4 5) 45 C 12) 85 C 25) 237 4619 OAKW000 LAKE WEST 50 C 15) 50 C 15) 23 C 1) 3 C 1) 58 C 17) 57 C 17) 241 4620 PACTOLA RESERVOIR 100 C 30) 98 C 29) 100 C 30) 100 C 30) 35 C 10) 97 1 29) 530 4621 PICKEREL LAKE 73 C 22) 73 C 22) 67 C 20) 63 C 19) 58 C 17) 85 C 25) 419 4622 LAKE POINSETT 57 C 17) 7 C 2) 43 C 13) 43 C 13) 45 C 12) 47 C 14) 242 4623 LAKE RED IRON SOUTH 77 C 23) 58 C 17) 80 C 24) 87 C 2o) 93 C 28) 78 C 23) 473 4624 RICHMOND LAKE 47 C 14) 40 C 11) 90 1 27) 60 C 18) 45 C 12) 17 C 5) 299 4625 ROY LAKE 87 C 26) 98 C 29) 77 C 23) BC C 24) 35 C 10) 78 C 23) 455 4626 SANDLAKE 7C 2) 58(17) 33C1O) 3CC 9) 23C 7) 7C 2) 158 4627 SHERIDAN LAKE 70 (21) 65 C 19) 93 C 26) 70 C 21) S C 0) 67 C 20) 370 “3 ”;AOE E DC 1] 73 ) C 0) U 25 ------- MEAN IS- MEDIAN INDEX CP$LORA fUN DO DISS ORTnO P P40 21( 8) 68(201 331 10) 265 37 ( 11) 91 ( 291 37 ( 11) 304 10 C 31 30 4 9) 50 1 15) 237 PERCENT OF LAKES WITH HIGHER VALUES (NUM3ER OF LAKES wITH HIGHER VALUES) LAKE MEDIAN MEDIAN 500 — CODE LAKE NAME TOTAL P INORG N MEAN SEC 4629 LAME VERMILLION 37 ( 11) 70 C 21) 30 C 9) 4630 WALL LAME 43 C 13) 27 4 8) 63 C 19 4631 WAUBAY LAKE NORTH 63 C 19) 47 C 14) 31 4 11) ------- LAKES RANKED BY INDEX NOS. RANK LAKE CODE LAKE NAME INDEX NO 1 4620 PACTOLA RESERVOIR 530 2 4606 CLEAR LAKE 519 3 4623 LAKE RED IRON SOUTH 473 4 4611 ENEMY SWIM LAKE 460 5 4625 ROY LAKE 455 6 4610 DEERFIELD RESERVOIR 430 7 4603 ANGOSTURA RESERVOIR 427 8 4621 PICKEREL LAKE 419 9 4627 SHERIDAN LAKE 370 10 4616 LAKE MITCHELL 349 11 4602 ALVIN LAKE 340 12 4608 COCHRANE LAKE 338 13 4630 WALL LAKE 304 14 4614 LAKE KAMPESKA - 303 15 4624 RICHMOND LAKE 299 16 4629 LAKE VERMILLION 265 17 4604 8RANT LAKE 260 18 4615 MADISON LAKE 253 19 4622 LAKE POINSETT 242 20 4619 OAKW000 LAKE WEST 241 21 4631 WAUBAY LAKE NORTH 237 22 4618 OAKW000 LAKE LAST 237 23 4628 STOCKADE LAKE 225 24 4613 ST JOHN LAKE 217 25 4612 LAKE HERMAN 202 26 4601 LAKE ALBERT 201 27 4617 LAKE NORDEN 184 AN( ------- LMES RANKED BY INDEX NOS. RANK LAKE CODE LAPE NAME INDEX NO 29 4609 COTTUNW000 LAKE 124 30 4605 LAKE BYRON 123 31 4607 CLEAR LAKE 110 ------- APPENDiX B CONVERSION FACTORS ------- CONVERSION FACTORS Hectares x 2.471 = acres Kilometers x 0.6214 = miles Meters x 3.281 = feet Cubic meters x 8.107 x 1U 4 = acre/feet Square kilometers x 0.3861 = square miles Cubic meters/sec x 35.315 = cubic feet/sec Centimeters x 0.3937 = inches Kilograms x 2.205 = pounds Kilograms/square kilometer x 5.711 = lbs/square mile ------- APPENDIX C TRIBUTARY FLOW DATA ------- TRIFJUTARY FLOiI INFORMATION FOR SOUTH DAi OTA 05/03/76 LAKE CODE 4629 EAST VERPILLION TOTAL DRAINAGE AREA OF LAKE(SQ KM) 1036,0 SUq—DRA I NAGE NOi MALIZE FLOWS(CM ) TPIBUTAPY APEA(SQ KM) JAN FE ‘JAR APR MAY JUN JUL. AuG SEP OCT NOV DEC MEAN 4629*1 1036.0 0.0 0.0 0.057 0.311 0.283 0.1’.2 0.142 0.085 0.057 0.028 0.0 0.0 0.092 462942 932.4 0.0 0.0 0.283 0.283 0.113 0.113 0.057 0.028 0.0 0.0 0.0 0.081 4o29ZZ 103.6 0.0 0.0 0.028 0.0 7 0.028 0.028 0.028 0.0 0.0 0.0 0.0 0.0 0.014 SUMMARY TOTAL DRAINAGE AREA OF LAKE = 1036.0 IOTAL FLOW IN = 1.13 SUM OF SUB—DRAINAGE AREAS = 1036.0 TOTAL FLOW Out 1.10 MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS) TPIBUTA Y MONTH YEAR MEAN FLOW DAY FLOW DAY FLOW DAY FLOW 4629*1 10 74 0.023 13 0.020 11 74 0.020 16 0.020 12 74 0.020 15 0.020 1 75 0.023 19 0.023 2 75 0.023 9 0.020 3 75 0.020 9 0.020 4 75 0.023 12 0.020 S 75 0.020 13 0.020 6 75 0.014 16 0.014 30 0.017 7 75 0.014 25 0.017 8 75 0.023 25 0.011 9 75 0.025 4629*2 10 74 0.006 13 0.006 11 74 0.006 16 0.006 74 0.006 15 0.003 1 75 0.003 19 0.001 2 75 0.001 9 0.0 3 75 0.006 9 0.008 4 75 0.008 12 0.057 29 0.023 5 75 0.017 13 0.014 6 75 0.020 16 0.0 0 7 75 0.017 25 0.014 8 75 0.425 25 0.008 9 75 0.014 4629ZZ 10 74 0.0 11 74 0.0 12 74 0.0 1 75 0.0 2 75 0.0 3 75 0.0 4 75 0.028 5 75 0.014 6 75 0.0 7 75 0.0 8 75 0.028 9 75 0.0 ------- APPENDIX D PHYSICAL and CHEMICAL DATA ------- ST U RETRIEVAL CATE 76/05/03 46 90 I 43 35 25 097 10 21.0 3 LAKE VE’ MILL1ON “60- 7 SOUTi-’ DAKUFA 091291 I 1E ALES 001’. FEET 2111202 DEPTrI CLASS 00 74/04/2? 14 45 0000 14 45 0005 14 45 0010 74/07/Il 14 45 0000 14 45 0005 1’. 45 0014 74/09/20 14 10 0000 14 10 0003 14 10 0005 1’ 10 0006 J4 10 0015 00665 32217 PiIOS—TOT CHLRPHYL A MG/L P UG/L 0.083 0 .093 0.09? 0.221 0.174 0.25’ 0.303 00031 INCOT LT REMN ING PERCENT 50.0 5.0 1.u DATE TIME DEPT I FPOM OF TO DAY FEET 74/C•4/2? 14 45 14 45 14 45 0000 0005 0010 7’./07/11 14 45 14 45 14 45 0000 0005 0014 74/09/20 14 10 14 10 0000 0015 DATE TIME DEPTM FROM OF TO DAY FEET 00010 00300 00077 00094 00400 00410 00610 00b25 00630 00671 WATER DO TRANSP cr .oucrvY Ph T ALK NH3—N TOT KJEL N02&N03 PriOS—DIS TEMP SECC-’I FIELD CACO3 TOTAL N , l—TorAL O ThO CE’áT MG/L INCHtS M1C OMrIO SU M&/L MG/L MG/L MG/L MG/L P 10. 30 447 152 0.040 1.600 0.130 0.O 0 10.s 9.4 460 152 0.030 1.800 0.040 0.011 10.8 9.0 545 151 0.030 1.300 0.030 0.011 24.6 8.4 42 823 9.10 146 0.070 2.200 0.060 0.100 24.5 7.8 82? 9.00 142 0.150 1.600 0.110 0.106 24.3 5.8 822 8.90 148 0.250 1.600 0.050 0.124 17.1 9.4 23 695 9.23 147 0.060 3.200 0.0 20K 0.094 17.1 9.2 699 9.25 149 0.060 2.700 0.020K 0.112 28 • 9 107,7 K VMLUE KNOWN TO dE LESS THAN I 4IICATED ------- ST ?t.T i’ETR1EV L UATE 76/05/03 462 1,02 43 36 57-0 097 10 08.0 3 LAKE vE MILLION 46Db? SOUTH DAKOTA 0’,.129 1 lIE P AL ES 0013 FEET 2111202 0EPT CLASS 00 9.2 9.4 10.2 13.0 10.0 10.6 00010 00300 00077 0009’. 00400 00410 00610 00625 00630 00b71 DATE TIME DEDTF4 wATER DO TRANSP CNDUCTVY PH 1 ALK NH3—N TOT KJEL NO2 O3 PrIOS—Ols Fc OP OF TEMP SECC I FIELD CACO3 TOTAL N N—TOTAL URTrIO TO DAY FEET CENT MG/L INCHES MjC eOMHO SU MG/I MG/L MG/I MG/L MG/I P 74/04/22 15 00 0000 10.9 31 385 153 0.040 1.200 0.030 0.011 15 00 0005 10.9 447 155 0.040 1.300 0.030 0.012 15 00 0010 10.9 515 155 0.060 1.300 0.040 0.012 74/07/11 14 20 0000 25.6 18 825 9.30 133 0.070 3.600 0.060 0.097 14 O 0005 25.5 826 9.20 135 0.100 3.900 0.080 0.103 14 20 0011 25.5 826 9.10 133 0.070 3.600 0.040 0.092 74/09/20 13 50 0000 16.6 19 687 9.35 149 0.050 4.100 0.020I 0.087 DATE FROM TO TIME OF DAY 00665 32217 DEPTH PHOS-TOT Cl-’LRPHYL A FEET MG/L P (JC./L 74/04/22 15 00 0000 15 00 0005 15 00 0010 74/07/11 14 20 0000 14 20 0005 14 20 0011 7 ’ ./09/20 13 50 0000 13 50 0001 13 50 0003 0.082 Oslo’ 0.079 0.24 1 0.281 0.301 0.275 00031 INCDT LI REMNING PERCENT 50.0 5.0 8.4 325.1 124.0 K VALUE KAIOWN 10 BE LESS Tru ri INDICATEO ------- APPENDIX £ TRIBUTARY DATA ------- STOI ET ET’ 1FV L OATE 7 6/OS/ti ’. 4629A1 43 35 15.0 097 10 20.0 4 VE MILLIO’ RIVER 46 7.5 £ VRMLION LK 0/EAST VEI MILL1ON LANE 091291 SEC R i) 8I PG .1 MI S OF VERM1LLION DAM I1EPALES 2111204 0000 FEET DEPIrI CLASS 00 00630 0O62 00610 00671 00665 DATE TIME DEPTH NO2 .NO3 TOT P JEL MH3—N PHOS—DIS ‘ HO5TOT FROM OF N—TQTAL N TOTAL ORTMO TO DAY FEET MG/L MG/L MG/L MG/L P MG/I P 74/10/13 10 10 0.032 0.700 0.045 0.010 0.030 74/11/16 15 00 0.040 1.200 0.050 0.020 0.020 75/04/12 09 55 0.045 1.630 0.230 0.030 0.065 75/04/29 15 30 0.005 1.450 0.020 0.006 0.010 c 75/05/11 10 00 0.005 0.900 0.020 0.020 0.0 O 75/06/16 12 00 • oc 1.250 0.050 0.020 0.040 75/06/30 11 30 0.005 0.700 0.040 0.030 0.040 75/07/25 0.015 2.100 0.060 0.015 0.050 K VALUE KNOWN TO BE LESS THAN INDICATED ------- STOFET ETRIEVAL DUE 76/&5,r.4 4b29A2 43 40 00.0 097 10 15.0 4 V P4ILLI(J”4 RIVER 46 ?.S MONTROSE T/EA. r VERMILL ION LAic 0912 2 dROG ON US RI 90 3.2 M I SE OF MONTROSE I IEPALES 211120’. 0000 FEE:1 i) PTii CLASS 00 00630 00625 0fl610 00671 00665 DATE TIME DEPTH NO2 N03 TOT KJEL Nh3—N PHOS—DIS PHOS—TOT FPOM OF .1-TOTAL N TOTAL ORTF1O TO DAY FEET MG/L MG/L MG/L MG/L P MG/L P 74/10/13 09 25 0,032 0.700 0.025 0.030 0.070 74/11/16 14 40 0.008 0.800 0.025 0.045 0.050 74/12/lb 13 10 0.224 0.800 0.144 0.030 0.040 75/04/12 09 5 0.345 3.200 9.230 0.067 0.200 75/04/29 15 00 0.005 5.450 0,040 0.025 0.100K 75/05/13 09 30 0.005 1.650 0.105 0.065 0.150 75/06/lb 11 30 0.005 1.250 0.035 0.140 0.210 75/06/30 11 00 0.005 0.900 0.040 0.435 0.584 75/07/25 09 25 0.040 2.700 0.085 0.340 0.440 K VALUE KNOWN TO BE LESS THAN INDICATED ------- |