United States Environmental Protection Agency Environmental Monitoring and Support Laboratory PO Box 15027 Las Vegas NV89114 x-/EPA Distribution of Phytoplankton in Nebraska Lakes Working Paper 699 ------- DISTRIBUTION OF PHYTOPLANKTON IN NEBRASKA LAKES by F. A. Morris*, M. K. Morris*, W. D. Taylor, L. R. Williams, S. C. Hern, and V. W. Lambou Water and Land Quality Branch Monitoring Operations Division Environmental Monitoring and Support Laboratory Las Vegas, Nevada 89114 *Department of Biological Sciences University of Nevada, Las Vegas Las Vegas, Nevada 89154 WORKING PAPER NO. 699 NATIONAL EUTROPHICATION SURVEY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY November 1978 ------- DISCLAIMER This report has been reviewed by the Environmental Monitoring and Support Laboratory-Las Vegas, U.S. Environmental Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. 11 ------- FOREWORD The National Eutrophication Survey was initiated in 1972 in response to an Administration commitment to investigate the nationwide threat of accelerated eutrophication to freshwater lakes and reservoirs. The Survey was designed to develop, in conjunction with State environmental agencies, information on nutrient sources, concentrations, and impact on selected freshwater lakes as a basis for formulating comprehensive and coordinated national , regional , and State management practices relating to point source discharge reduction and nonpoint source pollution abatement in lake watershed. The Survey collected physical, chemical, and biological data from 815 lakes and reservoirs throughout the contiguous United States. To date, the Survey has yielded more than two million data points. In-depth analyses are being made to advance the rationale and data base for refinement of nutrient water quality criteria for the Nation’s freshwater lakes. 111 ------- Foreword Introduction Materials and Methods Lake and Site Selection Sample Preparation Examination Quality Control Results Nygaard’s Trophic State Indices . Palmer’s Organic Pollution Indices Species Diversity and Abundance Indices Species Occurrence and Abundance . Literature Cited Appendix A. Phytoplankton Species list for the State of Nebraska Appendix B. Summary of Phytoplankton Data CONTENTS Page 111 1 2 2 2 3 4 5 5 5 7 9 hO 11 14 V ------- INTRODUCTION The collection and analysis of phytoplankton data were included in the National Eutrophication Survey in an effort to determine relationships between algal characteristics and trophic status of individual lakes. During spring, summer, and fall of 1974, the Survey sampled 179 lakes in 10 States. Over 700 algal species and varieties were identified and enumerated from the 573 water samples examined. This report presents the species and abundance of phytoplankton in the 9 lakes sampled in the State of Nebraska (Table 1). The Nygaard’s Trophic State (Nygaard 1949), Palmer’s Organic Pollution (Palmer 1969), and species diversity and abundance indices are also included. TABLE 1 . LAKES SAMPLED IN THE STATE OF NEBRASKA STORET No. Lake Name County 3101 Branched Oak Lancaster 3102 Harlan County Reservoir Harlan 3103 Harry 0. Strunk Frontier (Medicine Creek) 3104 Hugh Butler (Red Willow) Frontier, Red Willow 3105 Johnson Reservoir Dawson, Gosper 3106 Lake McConaughy Keith 3107 Pawnee Lake Lancaster 3108 Sherman County Reservoir Sherman 3110 Swanson Reservoir Hitchcock 1 ------- MATERIALS AND METHODS LAKE AND SITE SELECTION Lakes and reservoirs included in the Survey were selected through discussions with State water pollution agency personnel and U.S. Environmental Protection Agency Regional Offices (U.S. Environmental Protection Agency 1975). Screening and selection strongly emphasized lakes with actual or potential accelerated eutrophication problems. As a result, the selection was limited to lakes: (1) impacted by one or more municipal sewage treatment plant outfalis either directly into the lake or by discharge to an inlet tributary within approximately 40 kilometers of the lake; (2) 40 hectares or larger in size; and (3) with a mean hydraulic retention time of at least 30 days. Specific selection criteria were waived for some lakes of particular State interest. Sampling sites for a lake were selected based on available information on lake morphometry, potential major sources of nutrient input, and on-site judgment of the field limnologist (U.S. Environmental Protection Agency 1975). Primary sampling sites were chosen to reflect the deepest portion of each major basin in a test lake. Where many basins were present, selection was guided by nutrient source information on hand. At each sampling site, a depth—integrated phytoplankton sample was taken. Depth—integrated samples were uniform mixtures of water from the surface to a depth of 15 feet (4.6 meters) or from the surface to the lower limit of the photic zone representing 1 percent of the incident light, whichever was greater. If the depth at the sampling site was less than 15 feet (4.6 meters), the sample was taken from just off the bottom to the surface. Normally, a lake was sampled three times in 1 year, providing information on spring, summer, and fall conditions. SAIIPLE PREPARATION To preserve the sample 4 milliliters (ml) of Acid-Lugol’s solution (Prescott 1970) were added to each 130-mi sample from each site at the time of collection. The samples were shipped to the Environmental Monitoring and Support Laboratory, Las Vegas, Nevada, where equal volumes from each site 2 ------- were mixed to form two 130—mi composite samples for a given lake. One composite sample was put into storage and the other was used for the exami nation. Prior to examination, the composite samples were concentrated by the settling method. Solids were allowed to settle for at least 24 hours prior to siphoning off the supernate. The volume of the removed supernate and the volume of-the remaining concentrate were measured and concentrations determined. A small (8—mi) library subsample of the concentrate was then taken. The remaining concentrate was gently agitated to resuspend the plankton and poured into a capped, graduated test tube. If a preliminary examination of a sample indicated the need for a more concentrated sample, the contents of the test tube were further concentrated by repeating the settling method. Final concentrations varied from 15 to 40 times the original. Permanent slides were prepared from concentrated samples after analysis was complete. A ring of clear Karo® corn syrup with phenol (a few crystals of phenol were added to each 100 ml of syrup) was placed on a glass slide. A drop of superconcentrate from the bottom of the test tube was placed in the ring. This solution was thoroughly mixed and topped with a covergiass. After the syrup at the edges of the covergiass had hardened, the excess was scraped away and the mount was sealed with clear fingernail polish. Permanent diatom slides were prepared by drying sample material on a covergiass, heating in a muffle furnace at 4QQ0 C for 45 minutes, and mounting in Hyrax®. Finally, the mounts were sealed with clear fingernail polish. Backup samples, library samples, permanent sample slides, and Hyrax mounted diatom slides are being stored and maintained at the Environmental Monitoring and Support Laboratory-Las Vegas. EXAMINATION The phytoplankton samples were examined with the aid of binocular compound microscopes. A preliminary examination was performed to precisely identify and list all forms encountered. The length of this examination varied depending on the complexity of the sample. An attempt was made to find and identify all of the forms present in each sample. Often forms were observed which could not be identified to species or to genus. Abbreviated descriptions were used to keep a record of these forms (e.g., lunate cell, blue—green filament, Navicula #1). Diatom slides were examined using a standard light microscope. If greater resolution was essentia1 to accurately identify the diatoms, a phase-contrast microscope was used. After the species list was compiled, phytoplankton were enumer ated using a Neubauer Counting Chamber with a 40X objective lens and a lox ocular lens. All forms within each field were counted. The count was continued until a minimum of 100 fields had been viewed, or until the dominant form had been observed a minimum of 100 times. Regi stered trademark 3 ------- QUALITY CONTROL Project phycologists performed internal quality control intercomparisons regularly on 7 percent of the species identification and counts. Although an individual had primary responsibility for analyzing a sample, taxonomic problems were discussed among the phycologists. Additional quality control checks were performed on the Survey samples by Dr. G. W. Prescott of the University of Montana at the rate of 5 percent. Quality control checks were made on 75 percent of these samples to verify species identifications while checks were made on the remaining 25 percent of the samples to verify genus counts. Presently, the agreement between quality control checks for species identification. and genus enumerations is sati sfactory. 4. ------- RESULTS A phytoplankton species list for the State is presented in Appendix A. Appendix B sunimarizes all of the phytoplankton data collected from the State by the Survey. The latter is organized by lake, and includes an alphabetical phytoplankton species list with concentrations for individual species given by sampling date. Results from the application of several indices are presented (Nygaard’s Trophic State, Palmer’s Organic Pollution, and species diversity and abundance). Each lake has been assigned a four—digit STORET number. (STORET (STOrage and RETrieval) is the U.S. Environmental Protection Agency’s computer system which processes and maintains water quality data.) The first two digits of the STORET number identify the State; the last two digits identify the lake. NYGAARD’S TROPHIC STATE INDICES Five indices devised by Nygaard (1949) were proposed under the assumption that certain algal groups are indicative of levels of nutrient enrichment. These indices were calculated in order to aid in determining the surveyed lakes’ trophic status. As a general rule, Cyanophyta, Euglenophyta, centric diatoms, and members of the Chlorococcales are found in waters that are eutrophic (rich in nutrients), while desmids and many pennate diatoms generally cannot tolerate high nutrient levels and so are found in oligotrophic waters (poor in nutrients). In applying the indices to the Survey data, the number of taxa in each major group was determined from the species list for each sample. The ratios of these groups give numerical values which can be used as a biological index of water richness. The five indices and the ranges of values established for Danish lakes by Nygaard for each trophic state are presented in Table 2. The appropriate symbol, (E) eutrophic and (0) oligotrophic, follows each calculated value in the tables in Appendix B. A question mark (?) following a calculated value in these tables was entered when that value was within the range of both classifications. PALMER’S ORGANIC POLLUTION INDICES Palmer (1969) analyzed reports from 165 authors and developed algal pollution indices for use in rating water samples with high organic pollution. Two lists of organic—pollution—tolerant forms were prepared, one containing 20 genera, the other, 20 species (Tables 3 and 4). Each form was assigned a pollution index number ranging from 1 for moderately tolerant forms to 6 for 5 ------- TABLE 2. NYGAARD’S TROPHIC STATE INDICES ADAPTED FROM HUTCHINSON (1967) Index Calculation Oligotrophic Eutrophic Myxophycean Myxophyceae 0.0-0.4 0.1-3.0 Desmi deae Chiorophycean Chiorococcales 0.0—0.7 0.2—9.0 Desmideae Diatom Centric Diatoms 0.0-0.3 0.0—1.75 Pennate Diatoms Euglenophyte Euglenophyta 0.0-0.2 0.0—1.0 Myxophyceae + Chiorococcales Compound Myxophyceae ÷ Chiorococcales + Centric Diatoms + Euglenophyta 0.0—1.0 1.2—25 Desrnideae TABLE 3. ALGAL GENUS POLLUTION INDEX TABLE 4. ALGAL SPECIES POLLUTION (Palmer 1969) INDEX (Palmer 1969) Genus Pollution Index Anacystis 1 Ankistrodesmus 2 4 3 Chiarnydornonas ChioreIla Closterium 1 Cyclotella 1 Euglena 5 Gomphonema 1 Lepocinclis 1 1 Melosira Micractinium 1 3 Navicula Nitzschia 3 Oscillatoria 5 1 Pandorina Phacus 2 Phormidium 1 Scenedesmus 4 2 2 Stigeoclonium Synedra Species Pollution Index Ankistrodesmus falcatus 3 2 2 Arthrospira jenneri Chiorella vulgaris Cyclotella meneghiniana 2 1 Euglena gracilis Euglena viridis 6 Gomphonema parvulum 1 Melosira varians 2 Navicula cryptocephala 1 1 Nitzschia acicularis Nitzschia palea 5 Oscillatoria chiorina 2 4 1 1 4 3 4 3 3 Oscillatoria limosa Oscillatoria princeps Osciulatoria putrida Oscillatoria tenuis Pandorina morum Scenedesmus guadricauda Stigeoclonium tenue Synedra ulna 6 ------- extremely tolerant forms. Palmer based the index numbers on occurrence records and/or where emphasized by the authors as being especially tolerant of organic pollution. In analyzing a water sample, any of the 20 genera or species of algae present in concentrations of 50 per milliliter or more are recorded. The pollution index numbers of the algae present are totaled, providing a genus score and a species score. Palmer determined that a score of 20 or more for either index can be taken as evidence of high organic pollution, while a score of 15 to 19 is taken as probable evidence of high organic pollution. Lower figures suggest that the organic pollution of the sample is not high, that the sample is not representative, or that some substance or factor interfering with algal persistence is present and active. SPECIES DIVERSITY AND ABUNDANCE INDICES “Information content” of biological samples is being used commonly by biologists as a measure of diversity. Diversity in this connection means the degree of uncertainty attached to the specific identity of any randomly selected individual. The greater the number of taxa and the more equal their proportions, the greater the uncertainty, and hence, the diversity (Pielou 1966). There are several methods of measuring diversity, e.g., the fomulas given by Brillouin (1962) and Shannon and Weaver (1963). The method which is appropriate depends on the type of biological sample on hand. Pielou (1966) classifies the types of biological samples and gives the measure of diversity appropriate for each type. The Survey phytoplankton samples are what she classifies as larger samples (collections in Pielou’s terminology) from which random subsamples can be drawn. According to Pielou, the average diversity per individual (H) for these types of samples can be estimated from the Shannon-Wiener formula (Shannon and Weaver 1963): S H = - P logy P 1 1=1 where P is the proportion of the ith taxon in the sample, which is calculated from nj/N; flj is the number of individuals per milliliter of the ith taxon; N is the total number of individuals per ml; and S is the total number of taxa. However, Basharin (1959) and Pielou (1966) have pointed out that H calculated from the subsample is a biased estimator of the sample H, and if this bias is to be accounted for, we must know the total number of taxa present in the sample since the magnitude of this bias depends on it. Pielou (1966) suggests that if the number of taxa in the subsample falls only slightly short of the number in the larger sample, no appreciable error will result in considering S , estimated from the subsample, as being equal to the sample value. Even though considerable effort was made to find and identify all taxa, the Survey samples undoubtedly contain a fair number of rare phytoplankton taxa which were not encountered. 7 ------- In the Shannon-Wiener formula, an increase in the number of taxa and/or an increase in the evenness of the distribution of individuals among taxa will increase the average diversity per individual from its minimal value of zero. Sager and Hasler (1969) found that the richness of taxa was of minor importance in determination of average diversity per individual for phytoplankton and they concluded that phytoplankton taxa in excess of the 10 to 15 most abundant ones have little effect on H. This was verified by our own calculations. Our counts are in number per milliliter and since logarithms to the base 2 were used in our calculations, H is expressed in units of bits per individual. When individuals of a taxon were so rare that they re not counted, a value of 1/130 per milliliter or 0.008 per milliliter was used in the calculations since at least one individual of the taxon must have been present in the collection. A Survey sample for a given lake represents a composite of all phytoplankton collected at different sampling sites on the lake during a given sampling period. Since the number of samples (M) making up a composite is a function of both the complexity of the lake sampled and its size, it should affect the richness—of—taxa component of the diversity of our phytoplankton collections. The maximum diversity (MaxH) (i.e., when the individuals are distributed among the taxa as evenly as possible) was estimated from loge S (Pielou 1966), while the minimum diversity (MinU), was estimated from the formula: MinH = - ji iog 2 - [ N N ] log 2 [ N N ] given by Zand (1976). The total diversity (D) was calculated from HN (Pielou 1966). Also given in Appendix B are L (the mean number of individuals per taxa per milliliter) and K (the number of individuals per milliliter of the most abundant taxon in the sample). The evenness component of diversity (J) was estimated from H/MaxH (Pielou 1966). Relative evenness (RJ) was calculated from the formula: RJ = H—MinH MaxH-Mi nH given by Zand (1976). Zand suggests that RJ be used as a substitute for both J and the redundancy expression given by Wilhm and Dorris (1968). As pointed out by Zand, the redundancy expression given by Wilhni and Dorris does not properly express what it is intended to show, i.e., the position of H in the range between MaxH and MinH. RJ may range from 0 to 1; being 1 for the most even samples and 0 for the least even samples. Zand (1976) suggests that diversity indices be expressed in units of “sits”, i.e., in logarithms to base S (where S is the total number of taxa in the sample) instead of in “bits”, i.e., in logarithms to base 2. Zand points out that the diversity index in sits per individual is a normalized number ranging from 1 for the most evenly distributed samples to 0 for the least evenly distributed samples. Also, it can be used to compare different samples, independent of the number of taxa in each. The diversity in bits per 8 ------- individual should not be used in direct c iiparisons involving various samples which have different numbers of taxa. Since MaxH equals log S, the expression in sits is equal to logs S , or 1. Therefore diversity in sits per individual is numerically equivalent to J, the evenness component for the Shannon-Wiener formula. SPECIES OCCURRENCE AND ABUNDANCE The alphabetic phytoplankton species list for each lake, presented in Appendix B, gives the concentrations of individual species by sampling date. Concentrations are in cells, colonies, or filaments (CEL, COL, FIL) per milliliter. An “X” after a species name indicates that the species identified in the preliminary examination was in such a low concentration that it did not appear in the count. A blank space indicates that the organism was not found in the sample collected on that date. Column S is used to designate the examiner’s subjective opinion of the five dcminant taxa in a sample, based upon relative size and concentration of the organism. The percent column (%C) presents, by abundance, the percentage ccniposition of each taxon. 9 ------- LITERATURE CITED Basharin, G. P. 1959. On a statistical estimate for the entropy of a sequence of independent random variables, pp. 333—336. In: Theory of Probability and Its Applications (translation of “Teoriya Veroyatnosei i ee Premeneniya”). N. Artin (ed). 4. Society for Industrial and Applied Mathematics, Philadelphia. Brillouin, 1. 1962. Science and Information Theory (2nd ed.). Academic Press, New York. 351 pp. Hutchinson, G. E. 1967. A Treatise on Lininology. II. Introduction to Lake Biology and the Limnoplankton. John Wiley and Sons, Inc., New York. 1,115 pp. Nygaard, G. 1949. Flydrobiological studies of some Danish ponds and lakes. II. (K danske Vidensk. Selsk.) Biol. Sci. 7:293. Palmer, C. M. 1969. A composite rating of algae tolerating organic pollution. J. Phycol. 5:78-82. Pielou, E. C. 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13:131-144. Prescott, G. W. 1970. How to Know the Freshwater Algae. William C. Brown Company, Dubuque. 348 pp. Sager, P. E., and A. 0. Hasler. 1969. Species diversity in lacustrine phytoplankton. I. The components of the index of diversity from Shannon’s formula. Amer. Natur. 103(929):51-59. Shannon, C. E., and W. Weaver. 1963. The Mathematical Theory of Commu- nication. University of Illinois Press, Urbana. 117 pp. U.S. Environmental Protection Agency. 1975. National Eutrophication Survey Methods 1973—1976. Working Paper No. 175. Environmental Monitoring and Support Laboratory, Las Vegas, Nevada, and Corvallis Environmental Research Laboratory, Corva1lis, Oregon. 91 pp. Wilhm, V. L., and T. C. Dorris. 1968. Biological parameters for water quality criteria. Bio—Science. 18:477. Zand, S. M. 1976. Indexes associated with information theory in water quality. J. Water Pollut. Contr. Fed. 48(8):2026—2031. 10 ------- APPENDIX A PHYTOPLANKTON SPECIES FOR THE STATE OF NEBRASKA 11 ------- Achncmthes sp. D nobr’,’on divergens Actinastrum hantzschii Dinohyron sociaZ.e v. fiuviatile v. cvnericanum Anahaena sp. Elakotothrix sp. Ankistrodesmus fa catus Epithemia sp. Ankis trodesmus fa 7 catus Errere 174 bornherniensis v. a ularie Eudorina elegons Ankistrodesraus fal catus Euglena sp. v. mirabi lvs Fra.gi 1 ar - ia capucina Aphanizoinenon floe-aquas FragiZari.a conatruene ? As t sri one 174 formosa Fragi lana crotonensis Caloneje lewie Fragilari.a inter,nedia ? Carteria klebeii F’z’agiiaria lepto8taUron Ceratium hirundinelia Fan ia sp. Ceratiwn hirundinelia Gienodiniuzn gymnodiniwn f. furcoides Glenodiniwn gymnodiniwn Ceratiwn h -irundinella v. biscutelliforms f. ecotticwn Glenodiniwn oculatum Chl nydomonas sp. Gioeocyetis conpia ? C l i lore goniwn sp. Gomphonema o livaceum Closter’ium SP. Gyranodinium a ibuiwn Cocconeis pla Gymnodiniuin ordinatwn Coelastrwn CcJflb2 l .CWfl Gyrosigrna sp. Coslastrwn cambricwn Hantzschia wnphiocys v. intermediwn f. capitata Coelastrwn reticulaturn Kirchnerielia sp. Coelosphaeriwn naegelianwn Lagerheimia quadniseta Cosrnariwn sp. LepocincliB sp. Crucigenia apicul.ata Lyngbya sp. Crucigenia rectangularis ? llzllomonae caudata Crucigenia tetrapedia Melosira distans Cryptomonas erosa Melosira granulata Cryptornonas erosa Melosirci granulata v. reflexa v. angustissima CDyptoTnonas marssonii Melosira ital -ica Cryptomonas ovata Melosira vari s Cryptomonas refleza Merismopedia minima Cyc lots 1 la meneghiniana Merismopedia tenuissima Cyclotella stelligera Mesostigma viridie Cymatop leura e 1 lip tica Micractiniwn pusi liwn f. spiralis rncrocysti. -e aenuginosa Cymatopleura so lea 1 crocystis incerta C’ymbelia affinis Mougeotia sp. C ymbelZa twnida Navicula latens ? Cymbella turgida Navicula radiosa Dactylococcopsis irregulani..s Neidiwn ? sp. Denticula P. Nitzechia filiforinis Diatoma elongatum Nitzschia pa lea Diatoma vu igare Ni tzschia sigmoidea Dictyosphasnium puichellum Qocystis sp. 12 ------- Ophiocytium capitatwn Oscillatoria limnetica Oscil.latoria tenuis Pandorina inorurn Pandorina pro tuberans Pediastrwn boryanurn Pediastrum duplex Pediastrwn duplex v. ciathratun Pediastrwn duplex v. reticulatum Pediastrwn duplex v. rotundatum Pediastrwn simplex v. duodenc2’iu n Pediastruin tetras Pediastrwn tetras v. tetraodon Peridiniuin inconspicuwn Thacus acuininatus Phacus longicauda Phacus megalopsis Pinnulczria sp. Raphidiopsis curvata Rhoicosphenia sp. Rhopalodia gibba Scenedesrnus abundans Scenedesmus acuininatus Scenedesmus arcuatus Scenedesmus balatonicus ? Scenedesmus bicaudatus Scenedesmus bijuga Scenedesmus bijuga v. flexuosus Scenedesmus dimorphus Scenedesmus interinedius Scenedesmus oh liquus Scenedesmus opo liensis Scenedesmus pro tuberans Scenedesmus quadricauda Scenedesmus raciborskii f. granulatas Schroederia setigera Sphaerocy8tis schroeteri Staurastrun chaetocerus Stephanodiscus astraea Stephanodiecus niagarae Surirella angustata Surirella ovata Synedra acus Synedra rump ens Synedra ulna Te traedron cauda turn Tetraedron caudaturn v. longecornuturn Tetraedron hastaturn Tetraethion mjnj nwn Te traedron muticurn 2 ’s traedron trigonum v. gracile Tetrczstrwn ? glabrwn Tetrastrwn S legans Tetraetru n heteracanthurn 2’s trastrwn s taurogeniasforine Trachelomonas abrupta ? Trache lornonas ensifercz Trache lomonas fluviati us Trache lomonas intermedia Trache lomonas p Zanctonica Trachelornonas schauins Zandii Trache lomonas verrucosa Trache lomonas vo ivocina Wislouchiella sp. 13 ------- APPENDIX B. SUMMARY OF PHYTOPLANKTON DATA This appendix was generated by computer. Because it was only possible to use upper case letters in the printout, all scientific names are printed in upper case and are not italicized. The alphabetic phytoplankton lists include taxa without species names (e.g., EUNOTIA, EUNOTIA #1, FLAGELLATE, FLAGELLATES, MICROCYSTIS INCERTA ?, CHLOROPFIYTAN COCCOID CELLED COLONY). When species determinations were not possible, symbols or descriptive phrases were used to separate taxa for enumeration purposes. Each name on a list, however, represents a unique species different from any other name on the same list, unless otherwise noted, for counting purposes. Numbers were used to separate unidentified species of the same genus. A generic name listed alone is also a unique species. A question mark ( ) is placed immediately after the portion of a name which was assigned with uncertainty. Numbered, questioned, or otherwise designated taxa were established on a lake-by-lake basis; therefore NAVICULA #2 from lake A cannot be compared to NAVICULA #2 from lake B. Pluralized categories (e.g., FLAGELLATES, CENTRIC DIATOMS, SPP.) were used for counting purposes when taxa could not be properly differentiated on the counting chamber. 14 ------- LAKE AflE: BRANCHED OAK STORII NUMBER: ‘ 1 1 NY(,AARD TROPHIC SlATE IHOICES 0411 0’, 17 7 ’ 07 02 7’, i9 26 74 MUOPHYCEAN 0310 £ u 1 ,l0 E ‘.. jC E CIIICROPHYCIAM 0710 E 12/0 € u.O0 E EUGLENOPIIYTE 0.10 7 0.12 1 0/12 ? DIATOM 0.17 ? u.bl E I. 0 E COMPOUND 12/0 E 20/0 E 5.0 E PALMER’S OKOANIC POLLUTION INDICES DATE 04 ii 74 07 02 7’, v 9 26 74 GENUS 02 03 10 SPECiES 03 3 SPECIES DlVE SITY AND AaUNOA .CE INDICES DATE 04 17 74 07 02 7’. 09 26 74 AVERAGE OtVERS1TY H 1.3’, 2.93 2.85 Of TAXA S 23.Cu 3C.C0 11.00 NUMBER Of SAMPLES COhPO IrED N 3.00 3.00 3.00 NAXIMuM DIVERSITY S AXH ‘ ,.52 ‘,.S1 PIINUPIU,l DiVERSITY NINH 0.02 0.1 0.04 TOTAL DIVERSITY D Z7333.32 11bC .13 22942.50 TOTAL NUM6ER OF INUIV IDUALS#ML N 2O398.3 39o1.00 8050.00 £VCP ESS COMPONENT J 0.30 . 0 0.oS RELATIVE EVENISS RJ MEAN NUMBER UF IMO IVIOLJALSIIAXA I 88o.87 132.u3 3b3.33 NUMeER/ME Of QST A UNCANT TAXON K 15728.00 15 1. 0 2b41.00 15 ------- LASt NAIjI’ PIAKC),ID OAR CCJNIINULO SIC4U cHJflBIRl 3101 (:4 11 74 7 2 74 09 26 14 ALGAL I ALGAL I ALGAL UN21 I ULTS I UNIT3 TAZA IC ) ,, IS IC SIR $L IS IC PL O SI. IS IC P(R SI. ACTINASTOUS CII. I I I $ 176 I I I ANASAINA IR I I I I I I I I I a , , 1STRCDESM1S FALCAIIJS I I I I I I I I I V. ACIC JLAIIS CLI I I 0.91 191 I I I I I I AISTROOLSPIUS S ALCArUS $ I I $ I I I I I v. 51586)115 CR I I I I I 2.2) 58 I I I £PhAMIZOMCN FtOS—AOIJA1 III. I I I III .oI 220 I II 6.4) 11) aSh) l3M1LLA 008I,bSA (IL 11177.11 15728 I I I I I I CALWIIIS 7 CLI. I I I I I I I I I I CAITL I IA CCL I I I 11138.91 1541 I I I CNLA TDDMON8S P (I I * I I I I I I I 1.01 129 COCCO NI IS CU I I I I I I I I I I COCL*.5 1 3 U1 ’ CAMBRICUP. CDL I I S I I I I I I I I COILASIS.J5 RR1 )CULATUM CDL I I I I I I I I I I COILCiSPMRE*lUM NAIGELIAI4L.I’ CDL I I I I I I I I I 3.21 (fl5P.8 lU$ CII. $ I I I I I I I 3.81 04 CRUCIGINIR ICTRAPICIA CDL I $ I I I I I I 0.8* 04 C RTPTC1O IAS (IL I I I I2IIO.,* 390 I I I Ck!PT0 5JNA . 55058 CCI Ill 2.81 112 I I I 141 7.21 580 $ CT. bII .IA CII. I I I 1 I I I I I I C S1 CLI I I I 131 7.11 3C8 I I I O ACIYLOCOCCGPSIS (IL I I I X I I I I I I CDL I I I I I 2.21 88 I I I DICTYOSPHAFRIUM PUICIIILL. .$ CDL I I $ I I I I I 2.41 1 3 U GIM005TUK SC.C IALI I I I I I I I I I V. ASEIIICANUII CII. 141 b.SI 1334 I I I I $ I LLAI*1QIH SIX CII. I I I I I I J I I U FLAIELLAIE .1 CIt $31 0.51 )334 I I U X $ I 4.01 322 FLAGILLAII 52 C LI. Ill 4.21 65* I U I I I IL*GIILAI(S CII I I I I 114.41 572 I I I Ppa ItakIA CII. I I I I I I I I I I .R&0I&ARIA SI CII. I I I I I I I I I I IIARIIAIIA •2 CR I I I I I I I I I I CIINODIM IUM DCULAIIJM CII. I I I 141 3.3) 132 I I I $ CTIIP.OGIM IUS 0RO1M*IUN ( IL I I I I I I I I I I LACIRHIIMIA ;UADRISL1I CII. I I 0.51 95 I I I I I I LIPOCINCLIS CII. I I I 1 I I I I I I I P ELO S 1RA (IL I I I I I I A I I I .110520* 0 )51605 CII. I I I $ I I I 132.81 2b41 PIIL S1I& CR&IIULATA C LI. I I I Z I I I I 114.41 1119 511052)8 vAMIANS 7 - CLI I I I I I I 11122.41 1003 4 ICRA(T1NIIJ CDL I I I I I S I I I I SICOO(’IS!IS ALRU 2NUS8 CDL I I I i I I 4.41 176 131 2. I 193 .,IllS (NIA PALEA C (I I 1 I Z I I I I I I NIIZSCHIA IIGJiOIOCa CLI. I I I A I I I I I I U OO(.!SlIS C II. I I I I I I A I I I 3SC ILLAIURLA (IL I I I * I I 1.21 44 I I I P&NDDRIKA 50805 C L I I I I I I 1 I I I PIOLASTNUS DUPLIX I I I I I I I I I V. CLaIHRATU CCL I I I * I I I * I I I 510. 1 .6 15 UIAJOM CII. I I I I I 4.4U 170 I I I PI’*CUS CII. I I I I I I I I I puQICC PHINII CIL I I I I I I I U I $ SCCNLC.(S$U5 LIJUI.A CDL I I I I I I I I 1.01 129 CI Nl( 1 $505 O1JUG I I I I I I I I I V. ILLIUDSUS CGL I I I I I I I I I I SCINIOU ISUS UA0R ICAL.LIL C CL I I I 1 I I I I I U ¶CIN(D% 35105 5 5(180 ) 5* 1 1 I I I I I I I I I I. GIAPIULATAS CU ). I I I I U I I I I I SCHI.O(UtSI* StIlGERA CEL I I 3.41 191 I I 1.1) 44 I I I STLPH * II0CISL0S CLI. I I I I I I 1 I I $ TITRAIE.RQN HAS TATUS (IL I I S I I I I I I I rilpaSTlupI !TAUKUI.LMIA* 13 8 5 1 ( CL I I 7.21 45 I I I I I I 3961 16 ------- LAKE NA (: HARLAN SIDRET MUM ER: 31(i2 NYC ,AARO TROPHIC STATE IMOICIS DATE U’. 16 74 06 2b 7 u9 3C 74 MYXUPHYCEAN 0110 E 0413 £ 03/0 L CHLUROPHTC(AN O1I( E 1210 E 13/0 £ EUGLENOPHYTE 0.50 E 0.31 £ .i .12 ? (IIA1(Th 0.21 ? 0.67 E 0.57 E CONPOUND 0610 L. 2510 E 22/0 PaLMIR’ ORGANIC POLLUTTOM INDICES DAlE 04 16 74 06 28 74 09 30 74 GENUS 03 C9 11 SPECIES CO 00 07 SPECIES DIVERSIIY AMO A6UN0A CE INDICES DATE U4 16 7’, 06 2b 74 9 30 74 AVERAGE DiVERSiTY H 1.64 3.37 2.23 NLJN8LR OF TAXA S 25.00 37.00 33.00 NUMBER ( F SAMPLES C0 iP0SITLD H 3.00 3.J3 3.03 ? AXIP1UM DIVERSITY MAXH 4.64 5.21 5.04 IHUMUM UIVERSITY M1NH 0.01 0.09 0.06 IQIAL UAVERSITY 0 43199.2 ’ 1918d.7a 159uC.18 TOTAL NUMBER LW 1NUIV IDUALS/M1 N 26341.0V 5b94. ’0 71bb. )0 LVEFIE5S CUmPOP ,(IIT J 3.35 0.65 RELATiVE EVIP .ESS RJ 0.36 0.65 0.4’, jEAN NUMBER OF INDIV1OUALS/TAXA I. 13 ’3.b4 153.J9 217.15 NUMBERIML UF MOST A6UNDANI TAXON K 17479.00 I4bb.i)0 3555.00 17 ------- 122$ 4A I: .*2$A$i CC I MI IMU $(a ?(k(l MUMBIhI 3IO . lb 14 39 30 74 I AL(.AL I ALGAL I ALGAL I UMI2S I u .IT I UMI1S I 102$ IS 2G PLI ML IS C ELI III IS CC PER ML I £CEIMISIWUP .i*IiILSCHII I I I I I I I I I $ V. ELUg IACILI CIL I I I I I I 1 I I $ I ANABSIMA IlL I I I $ $ I I I $ $ $ *M2ISIL.JDISMUS F&LCA$US ( II I I I I I C I I 0.31 54 I 6PII*NIZJD1LHCJ ELUS—.GUAI P IL I I I 121 14.71 131 I I I ASII2LCN(LLA EORMUSA CCL 12110.01 42 11 I I I I $ $ $ I $ CA E ILPIA C I I. I I I I I I I I I * I CAR TEE CA *LEBS1C CCL $ I $ 13115.41 £79 I $ I $ CCR*IIU$ HIRUNDIMILLI CCL I I $ I $ I I $ I I $ C0&LASTR$JM CAM%6ICUII CCL I I I I I I I I I I I COILASI2 $.M CAMIRICUM P C C I I I I $ I I $ I I I CPTP!TJMUIIAS LEOSA C(I 151 3.51 392 $ I 4.41 251 I I I Ck,PELMCI IAS PIELLIA CL I I I I I $ I I I I I I 1yPTua.2NAS Pp. CCL I I I I I I 151 1.51 IC3 $ CTCL PEL1A CCL I1IIo. $ 17S79 $ $ 2.91 1a7 $2122.01 $016 I CY IECPL(UIA 501(2 CII. $ I I I I I I I I I I CYPLELLA EEL S I I $ $ I I I I I I DACITLUCCCCLPSCS ICI L RI3 CCL $ C 3.71 979 I I I 1 I $ 2.3$ 102 I C IA IOPI VUL(.AIL CII $ I I I I I I I I * I UICTICSPSAEPIUI$ P,JLCNILLU M CCL $ I I I $ $ I I I I I LIkIRILLA CG$’NI,LnLL .SLS CCL I $ $ I $ I I $ I I I IuGUI.L ((I I I $ I I I 3.71 42 I I $ 1 I UAr CLLaIi .1 CI I $31 8. ,I 21G5 I I 2.91 107 i i I rL..6LtLAIC $3 (IL I I I I I I $3114.71 $050 I $AG$LARIA (CL 1$ I I 1$ I II I I II*C$La A CRLTUPsII .SIS CLI $ I $ I I $ 1.41 419 I I I GYrNGLINLUM ALB I,IUA CII. $ I .ZI 9 I I 0.7$ 42 I I I I CCL I I I I I I 2 $ I I LI,4A1 1 CCII CFL $ I 3.2$ I I I I I I $ CII I $ I 1 I I $ $ I S I ?IILEJS$RA £MANUL2TA CI I I I I I$I2 .1I 14.0 $ I 1.41 27 $ ,IILCS.22 hRAI4UIA3I I I I I I I I I I V. 6,4bU)IISSIMA CII $ I $ PSI 5.11 293 $ I I 2 I $$2 ISMUMLO IA MI$$MA CCI , I I I $ $ I I $ 1.51 103 I IMI5O3II MA VIPIDI . CI I $ $ $ $ I $ I I 0.31 54 I M ICRACI IrII IJM PiJSILLUM C DI. $ $ I $ $ I * $ I I I M$CkCCT .II5 .I$#UC ’II.JSA CCL $ I I I I 1.5$ e I I I I MICROCTSIIS INCLI IA C DL I I $ I I I $ I 1.1$ R I I MDV$Ct.LA CLI. I $ $ $ I I I I I I I NAVLCIJLA .1 CCL $ I 3.25 4Q I $ $ $ I I $ NaV$CLLA 12 CII I $ $ Z $ $ I $ I I MEIO$$JM I CCL $ I $ I I I I $ I I $ NIIZSCMIA 2$ CIL I S I I I I S $ S I ITZSC$iLA .2 CII I I $ 2 I $ $ I $ I $ M$1ZSC,HI* 23 (CI I I I I I S I $ I I 2 $ N$TzS(HL2 24 CCL S I I I I I I I $ I I MIIZS(N.A IS CCL I $ $ I $ I $ I 1.1$ 31 I N ITZSC$.$a 26 ( IL I I I I I 3.71 42 $ $ $ I OOCT3IIS CII I I I $ $ I 1 I I I I I PtDIA5I.$UM SC ATIMU?$ CC I I $ I $ $ I I $ I I P(CI IASIA$JM DUPIE! I I I I I I I $ I V. II TICULAJUP CDL I $ I I S $ I I $ $ I $ P$QlA IkUM 1IIa* . ( (I. I I I I $ I I I I 1 I EKACUS ICUIILMATUS (IL I I I P I I 1 I $ I I PH2CUS LQMG$CAIJO& CCL I I I I I I I $ I I I PHACUS ILGALCiPSIS CII. $ I I I $ I I I $ I I P SCI,iCICSMUS ALUMOI1IS CCL I I $ I I $ I I 3.11 54 $ SCLII(.I IUS j ,CI, IIAI.JS (CI I $ I I P 1.51 2 $ $ $ I SCIMIUS PtJS OS,IGkPHUS ((.1 I I I I I S $ I $ I I SCCNL.$S US IMT(RMCOLUS CCL I I I $ I I $ $ $ I I SCINCUISMUS 0.. a0k$CaU0A CDL I I 0.21 49 I I v.?I 42 1.$ 1.51 105 I 5CPINuIOENla 51212112 (IL I $ $ I I 2.71 ZOV $ I .4$ 27 $ SPUALPUC TS 115 SCHICiI Ill I (CL I I I I $ I £ I $ I SI(PKAI’ O OISCUS CCL III 3.21 332 14$ 1.3$ 502 $1I49.I I 35 $ SU$ ’ 111112 ((1 I I $ 2 $ I I I $ I I SUIIR*LLA ANGU TAIA CII $ $ I a I I I $ $ I SU&LR(ILA OVA IA CII I I I I I $ I $ I I $ 11 Cf I $ 3.05 147 I I 1.5$ $4 S $ $ STM UI ULkA CEL I I I 2 $ $ I $ $ I TI $RALC.UI MUIICUN CLI I I $ I $ $ $ I I I IC ICi I It. R 14 ILRACAI.t. (_$ (01 I $ I I I 1. I $4 I I I ILIKASIMUR sTAuRoGLI lIAI Ica?l( 0( I $ I I I I I I 1.11 61 $ TRACHILOMOPI&S SCH*ULNSLAMGI I CLL I I $ $ I $ I I I I v I SLOIiC$$ILLA (EL $ I I I $ I I $ S I Total 2639 1 5094 7 566 18 ------- LAI E NA . E: HM ’RY 0. STRWu StORFI NUMBER: 31C3 NYGAA U IkGPHIC SiAn r ICE! DAlE 34 lb 74 . 7 l 74 .9 27 7 ’ . SI7AUPHYCEAN 0.50 E 03/0 E I3 0 CMLLJ 0PHYCF .AN 0.50 2 O iO ( 1C E LUGLENOPNTTE 0/02 2 3! ..5 2 0.22 L OIAION 0.57 E 0.75 E 3.71 CCrPUUNU 3.C0 E 0810 E 16 /0 E PALMER’S UkGANIC POLL a1I3N 1NOICES t) TE C’. lb 74 07 31 74 .)9 27 7’. G IUS CO 2 07 SPECILS 33 SPECIES OIV RSIT AND ABUNDANCE INO1CES OATE 04 lb 7’. 31 7 J 27 74 AvERAGE UIvEflTY N .88 2.38 NUP% ER JF IAXA S 19.30 lb.’..t) NUMB(k OF SAMPLES COMPUS]1EO N 2.3) 2.3 2.U3 MAXIMUM DIVE $I1T MAXH 4. 4.C3 4.58 MIP .UNuM DivE ISITY ? ‘IP1H (.00 0. .5 (‘.05 TOTAL. DIVERSITY 0 b’311.28 8b32.Zb 15 ’ 72.2 . TOTAL MU EetR CF iN01VlDUAL iML N 73081.00 3 27.C s b42C.3’ ) VENtSS CUIPCP EN1 J 3.21 3.6’) RELAIIVE EVLP .ESS RJ i..z l 0.59 0.53 MEAN Nu thU OF INOIVIL,UALS IT / lA I 3846.37 226.69 Zb7.53 NUM6ERIML OF MUST AÔIJNC .ANT TAXON V. 62062.30 1596.00 3 ’ b8.00 19 ------- CaNt LliusO LAAL *8Th: ,4 RPY ( . SI*UNN .TORL7 *U*btR : 31U3 37 ut 74 C9 27 74 *LC.*L I LiTillS I 0* IS ZC Pta IlL IS ALGAL I ALGAL UNITS I UNITS ii P1*. IlL IS it PIP ThL ‘Ala £C *$NA4INIS -- CI I . I I I I I I I 1 I I I I I I A I I ANuBA INA I II I I I I I I I I I I LNILSTIUOLSPUS PALCITUS I I I I I I I I I V. NIRALILIS Cit I I I N I I I I £PI.AN 12UIl1*cJ,I II .01—Auu*I III I I I 11144.. I 1 I I I I ASTIRTUNIILA TURMUSA CLI . 11184.01 *2.82 I I I I I I I CLIsTRIC OlAIrIN CII 121 I I I I I CIRAIIUM ptTI .UNOITILLLA I I I I I I I I I I I • TURCOLOIS Cit I I I I I I I I I I CL OSTLR IU$ ( IL I I I I I I I I CLOSTIRLUN *2 Ci i I I I A I i i i i z I.JEI.ASIQUN CAIIRICU! COt I I I I I I I IIC.3 1 664 I CITIC IOLNIA IITRAPEL,IA CCII I I I 14.4$ 522 III 4.31 277 I C *YPfC I l j *AS (IL I I I I I I I I CTYPTCMONAS 1*05* CLI I I I I I I I I CI TPTPl 3,l1S RLILLZ& CII I I 0.41 Z?C . I I I 1.*I 50 I I I $ CYCLOTILLA (IL I I I I I I I I CTIIATI PLEURA SULCA CII. I I I * I I J.8I 29 I I I I C 7r 8E ILA CCL I I I I I I I I I I CY 8ELLA II CII I I I * 1 I I I I I I CTPsSELLA I CII I I I I I I I I CTIILILLA Al l tIllS (IL I I I I I I I I I I OaLTTLUCOCCIj 9 SIS Ik*IGLLAIIS (IL 131 5.41 I I I I I I I EJT.LTWA C(L I I I 2.41 8? I I I I ILAGELLACI ii (EL 141 3.31 434 1 $41 i.jI 319 I I I I PRAGILAPIA CROTOTILPSS IS CLI. I I I I I I 15112.11 775 I kI*CNNLMIELL* CII I I I I I I I I I cLusLAa DISIAMS CLI. I I I I I I I I I I A I NILUS IIA G*AP .ULAIA CII. I I I I I I I I NILOSINA GRAMULATA I I 720 $31 3.41 221 I V. ANGuSTISSIlIA CII I I I I I .6I 29 I I I I rICPOCVSTIS £IIUGI*CSA C CL I I I I I I I 1 I S AYICU I N CII. I I I A I I I I I I 2 8 MITZSCNIA CI I I I .0I 29 I I I I PANOQILNA Pu(.TUIIIANS CO( I I I I I I I I I PIOI 5T4UIl uPlil $ I I I I N I I I I V. CtAIP mJuIl CD t. I I I I I I I S 7.91 55 $ PiNisAti DilitlIl Cit I I I I I I I I I £ $ PMACUS (EL I I I I I I 0.91 55 I SCIhiLCtSI’US t,I$ILIRPNUS C CL I I I I I I 1.71 111 I sceNEC(sIlus INTERI IIU IuS CDL S i , I I 1 I I 0.91 55 $ SCENLOISMUS QUADPIC*U3A COt I I 151 5.61 203 I I I I SCHROIU(R1A S 1TI6LRS T& *H *NOUISCUS CI I CCL I I I I I I I I I .bI I I I 29 12154.3$ I I I 3488 I I ST*.PNAI .ODlSCtsS It CCL I I I I 141 2.01 1*0 I 5lLPHa*4D 15CU5 ASTIACI (IL I I I 270 I I I I I I $ ST 1PNAMUOIS(US SPP. CCI 151 I I I I I 4.31 277 I SY * ,é0*A CII I I I N I I I I SYNIC*I IILNA Cit $ I I I I I I I I S I 1IILACLIIUI CA I’&TLIl I S I I I I I I 3.01 55 I 1. LONGLCLT’I4UTVP (EL I I I I I I .°I 55 I ItT6aLD.diN auliCuF CLI I I I I I I I 2.01 lOb I l(tIaSTkU$ LtI ap.5 CDL I I I I OTAL 20 ------- tAKE MAul: HUGH BUTLER SIGRET NUM2ER: 3104 r’uTGAAkU T C PH1C SlATE I CICES LAIE 34 It 74 07 Cl 7 ° 27 7 ’u MTXOPHrC(AN 0110 E 03/0 1 I. .C E CHLOHOPHYLEAN OadO £ 09/0 E 3.00 £ LUGLENOPHYIF 0.’ ,3 E 0.33 E 3.25 E DIATOM 0.43 1 0.b7 F 0.42 £ CDNPCUND 1310 1 18/0 1 7.50 F PALMER’S ORGAnIC POLLUTIOn INDICES DATE 04 lb 74 07 01 74 .9 27 7’, GENUS 05 15 35 SPECIES 33 C7 00 SPECIES DIVERSITY AND AJ .0aN(E II D iCES DaTE 04 10 74 U? 01 7’, 9 27 74 AVLFAt,E U1VEM ITY H 2. Ob 3.5 2.75 P’UMbLR OF IAXA S 25.00 28.00 24.33 MUIIGER OF SAMPLES CO ’1PO5ITED M 2.00 3.00 3.3 0 P AX1MUM DIVERSITY IIAXH 4.0’, 4.81 5.09 M1NUM jM UIVE. SITY HINH 0.01 ).C b .15 TIJIAL DIVERSITY 0 03004.30 lb 42 .42 7004.75 TOTAL NUMBER OF IND IV1DuALS/rL N 30905.00 4b73.. C 275c.00 EVENESS COMPOPIENT J 0.44 3.74 C.5. RELATIVE EVEI .ESS RJ $ (.45 . 4.7 ’, 0.53 nEAN NUMbER UP IMOIV1OUALS/lAXA L 1230.20 ioo.b’1 NUMBER/MI OF MUST A6UP OAU( TAXON K 1c84 .CO 8j5., 3 LIBC.36 21 ------- rUNt listilO 11*1 4* q9 IIIJC.pI 1 1 . 1 1CR SiLilill tIljPItII 3104 34 0 74 1 6 9* AMKlSlRC( t tUi rAtc*I.J3 £N*11I91.CESRUS F*I .C*IUS V. ACICULARIS 11i?WS I*icaIu3 V. IIIIIA3ILIS * CPlDNI.tLA CiitPOSa CASt 119 1* CIMIIIC Li1AI M CIILCIROCCI1 yR CLGSTCR lull I I CLUSIIWIJI’ I? COCICIIIE IS CG€L*3IRU’l L*. ,I6ICUP’ CRUC IC.CNI* 1ttRAPt I1* CR,PTCJIJ’.AS £90 56 CRT9t ,W”S NA9S LiNII CRIPTC.MUNAS 911111* CY 6LIL* Ii CTM8 [ LL* fU9(.1Da 36C 1VLuC3CCCP tS 0ACTYS ..(L .CCLPS1S jk L .LLA9IS C P I 1 P 1 1 11 £ CuGLIMA Al cLI6CILAfl .1 ILAGILLA9L 92 996Gl169 I A I kAG1L*9I& (PGIONCI.SIS IRA ISCLI * C I (0(TSIIS AISPLA I GUMPI4IIMI Rh ML cs1gA .4 pc 1 yS IIa j,9Sf*RS P 1 1 6 5 1 98 696N6L0a nILOSIa& R*NtsLAIA p. MIPIS?LiPLI.IA MINIMA PIIW ISWOPIOIL IfitUI Slll& iiICl itJ(’IllLS INCIRIA 9CIU CCIl* 46W 9 (01 * . ITZSC NIA ilTZSCNIi 93 NIIZSCHIA 12 NI1ZSC 4IA 13 CUC TS II S PALMLI.UI0 CELLS p l y IASIUM OUPLLI V. CLAIK9ATOR Pl,I)Ir91U?9 ZNC0NSPICUJP Pp.*(US aCUPIM*IUI PMACU& I.,ALCPSIS $Cc11EDcS 1 JS bLCAUO*IUS S(IN€6E iUS BIJUGA S(LNCC,fS !US QI.AOAIC6LPJA (ptk I13L 4 I6 SIII4IRA EQS PUK I S ICP laMJUl SCUS 51(PHAIIJUISCUS * 519*1* T9PI1*N.J ISCUS MI8C*R&I SUP 9(19 .6 £M1.USTala 5711(06* RuIIP(MS 1 119 1 109W’ TI .ICOKUR V. 31.1(111 IlIRIS IMuR p9 TjR*C*l’IUR TFACMI iu&iNaS r, ACHILCN3.uAS ARBUPIA 7 IP*CHLLuRONhS 19 .SIILIA 19 6 CH1 1.JACIN6S 11111.611*01* ACHIL1JI90I AS PLAPCIQ4LCA TRACIIILUIWM*S SPP. I ALUAL I ALC•AL I 6AL I 09115 I ..I IIS I 051115 I 9dM IS ZC Pl ML I C P19 ML IS L( P 12 M L I CII. II I I I I C II I I I II I II I II I I CI I I I I I 117.21 I I I I II I II I I I I I CII. 141 9.39 4971 I I I I I I I CCL 11148.01 14842 I I I Z I I I I I C II . I I I Ill CS.)I 725 I I I I C C ’. I2I24. I 1 74 I I I I1I4 ’. I 1260 I CCL II I II I £ II I I CLI II I II I II I I I CCI. II I II I II I I I CCL II I I II I II I I I ( DL I I I C I I I I I 3.61 46 I CDL I I 3.61 183 I I I 9 I I I I CCL I I I 12117.21 005 13$ 6.2$ 428 I CLI. I I 1.21 300 I I I $ I I C l i. II I £ II I II I I I (EL II I II I II I Z I CCL II I IC I II I I CCL II I 1 II I II I $ FR I I I I I 8.91 322 I I I I CCL I 1 1.41 428 I I I I I ..qI 137 I CII. II I II I I II I I CCL II $ 1 111.71 CC II I (IL 13I33.CI .031 I I 6.05 322 15114.7$ 41$ I CCL II I II I I II I I CII . II I I II I II I I I CII. II I IS $ I I I 1 $ C CL II I IS 5 2 II I I CCI. II I * II I II I I CII. II I II I II I I I (IL I I I I I I 5 1.3$ .1 I ( IL II I II I I II I I CLL 5$ $ S II I II I I II I IS I II I I CII. II I II I I I I S I CDL S I I $ I $ I I 1.bI 40 I CCL I I I I I o.4I 322 I I I I (C l. I I $ I I S ..ZI 242 I I I I III. II $ II I II I C I CLI. II * II I IS $ I I (EL I $ 0.01 113 S I $ I I I I (EL I I I $ I $ I I 9.01 46 I CCL II I 1 II I II S I 9.t i I I I I I 3.41 lol $ I I CCL I I d. I ol I I I 141 4. I 137 I CCL I I I I I I I I 1.61 46 I II $ II I II I S C CI. II S II I II I I I CLI I S I 141 1.71 I I $ $ CCL II I II I IS I I I CII IS I I II I SI I I CL’L S S S $ I 1.75 81 I I I I C DL I S I I I 1.7$ 61 I I 1.6$ 40 I (01 $ $ I $81 3.41 I cC 5 I I.DI 40 5 (CL I $ I I I 1.75 C I I I I S I I 5 1 IS I II I S C CI I S I I I 3.41 1 I I I I ‘ .51 I $ $ I S I I 0.05 163 I I.JI illS I I I I I I CCL IS I SI I II I I S CII I I I I I I I 5 1.01 40 (91 55 5 0 II S II I I S IS I II I II I (EL S I 0.2$ 09 $ I I S I I COt. IS I II I I II I CCL IS I 1 II S II I (SI IS I II I II I I CCL II I 55 5 S 55 5 CC I. II $ II I I SI I C li. II $ 1$ 1 1 II S $ ((I. I I 5 135 5.21 242 I $ I . o73 z7ee 22 7 l 74 39 17 74 ------- LMcE NAME: 4CHNSJN STLJRET NUNbEP: 3 ’J5 NTGAARU TRGPIIIC STATE IP .OICES 1)AIt: 4 lb 7’, 37 C l . 7.’ 30 7’, PYXLJPHTCEAN 1.50 L 03/0 E 3.00 E CHLOIIUPHYCEAN b.OC L 1010 E b.3) E EUCLEP4UPHYTE 0.07 ? 0.08 1 3.11 ? DIATOn C.3u 7 0.25 7 1.C0 E CCP,POUND 9.50 E lblO E 12.3 E PALNER’S ORGANIC POLLuTiON INC1CES DATE 3’ lb 74 07 01 74 09 30 7’. GENUS 17 11 SPECIES 09 04 SPEC LES CIVERSIIY AND ABUNCANCE iNDiCES CArE 34 16 7.’ 37 31 7’. 9 30 7’. AVEPA(,E DIVERSiTY ii 1.2B 2. 8 3.06 NUMbER OF TAIL S 40.00 33.00 34..)Ci NUNB(R OF SANPIES COMPOSITED N 1.30 1.00 MAXINUM DIVERSITY MAIM .32 ‘ .. 1 II1NL’NUN DIVIRSITY M1 H 0.02 O.C9 0.39 IDTAL QIVERSI1Y 3 36403.20 13457.bb 15483.60 TOTAL NLMbLI. C I INI)IVIDUALS/ML . 2b ’ ’....0u 4 .lb.u0 5060.30 EVEME S CUMP ‘(NT J ...24 0. bI C. bi) EL AlIVE EVE ESS RJ L. 24 0.00 MEAN P,U1IEER CI JN(,IVI( UALS11AXA L 71l. ) 150.53 i ’ .E..32 tlVNEER/ML OF MOST AbUNDANT T. X0M 23766.00 3607.00 2232.00 23 ------- iPnI INULO I LI I .AO1 $ JUIIN Sl.Pi 1111011 PIUPibIRI 310) ‘Al l Ad INASILUR £1 14461 NA IoISIRuUU$lu3 IALCAIUS APIIAN I ZUMI 11114 II IiS—*QUAI ASIIM$LP, LLLA IUR1II$S8 CA$ 1101’. CILAI lull IOINIINUII ILLL* I • S(UIIICU I $ (lit AI1I0i)I IUNAS (LIISILR lull CIIILASI4UN C6 1180$LUII CIIUCIGINIA lIlOAPtOlA CKYIld lUllAS loflIA CRVPTIJI%IJNAS NAR3 )UN$I (ilTPlt) 1 1 1 1 14&S R [ FLL2A dC LOll UI (IPIIIOLLA TUIlIDA DA(TTLUC$IC($IPSIS IROLOULARIS UIAIUIIA (LUIICAIUfl IIIC3TUSV I IAIKIU II PULCII*ttUIl lUG I IHA IUCILIPIA I I Iia6(ILAII II I WAG lIAR I A PIIAG$IAKIA (OlIlliNLIPISIS GUI$PHI II iLI lA CIMNUCIHIUM ALLIUIUII LTflNUUINIUN 000INAlUlI 1 IIILUSII IA GOANULAIL MILOSIIIA GRANUILIA V. AIICUSIISSIIIA AILOSIRA VAlIANS l it S iiI(I&($L,1Ilifl PUSh LUll IiI(IIUCIS$IS AIRUGIWLISA llI(NIICTSIIS INCLA IA NIL ICIILA NAVICULA 02 IIAVICULA $3 NI$ZSCNJI I I NIJ2SCII$A 02 0CC 133 I S CISC ILIA IUR IA USC 111*1 111 I I Il ILNhlItA PANU I ICINA MURUR PIOIASIIIUN bukIaliull PIDIASIOUM DUPLEX P IDIASI IUIPI UUi ILZ V. CIAIHRAIUM PODIASIPUM DUPLII. V. $IIICULA1UI PIDIA SI IIUM ILIRAS V. IIIAAOUUM P LO 101111 Ull PIPIDINIUN II R*PIIO IUPSIS CuiiV lA SCINIULAIIUS ALUNOANS S(t4 10 15 11U1 £(UflIPiAIUS SC$IIIDISIIUS ARCUAIUS SC(H(DCS1’US 6IJUGA SCINIUCSIIUS (ih IilIkPltUS SCINIIILIIUS INICILLO IUS SCINIOL ANUS UUAURICAUDA SCIIVOIUI$IA SITICIRA 31 1ia1$UC’ 1 13 3(IIROIILII S1AURAS1RUIPI CI4AIIULIRUS 3IIPHAI4I3 OISCUS SURIRILLA UVAIA 3 14 109* 111401 01(04 llhI’$Jll I IIRASIVUI I S IAUR OC INIItpURllt IRACIII IUIIUNAS lull’ (4 lb 74 07 Dl 74 0L 30 7’. I AI6AL I ALGAL I ALGAL I I UNItS I UNITS I UNI1S I pORN IS IC 9 ( 1 PIt IS U PLO MI IS Ed PLO ML I CUL I I 0.11 30 I I I I I 0.41 30 i lit I I I I I I 141 4.11 208 I c(L I I 0.41 313 I I I I I I I I IL I I S 131 3.01 281 121 9.41 476 I (IL Ill 3.21 921 I I 1.01 43 I I I I S ( CL I I 0.11 30 I I I I I I II I II I II S I C I I II I II I V II I I CLI . I I 1.91 337 I S S I S I I (IL I I I I I I I S I 0.01 30 I CuL I $ 0.11 38 I I I $ I I I Cot $ I I I I I I I 0.4$ 30 I CLI I I 0.81 230 I $ I I I 1.01 89 I CII II I II $ 1 II I I (it 131 0.71 192 I I 1.9$ 07 I I I I Cit I I I I I I S I 4.11 200 I Cit II I II I II I I I (IL I I 0.41 103 I I 1.01 43 I I 1.01 09 5 (IL 141 2.21 414 I I I I I I CDL I I I I I I I I 0.41 30 I CII II I 0 II I II I I CCL II I II $ II I I I (IL I I 1.11 301 I I I I I 4.11 200 I (It. I I I 13110.4$ 739 I $ $ Cit I I I I 11 133.eI 1607 I $ $ I I (51 II I I II $ II I I C1L I I $ $ I 1.01 43 I I $ CIL I $ 0.31 154 I $ I I I I $ (IL I I 0.41 113 $ $ 4.71 304 11144.11 2232 5 II I II I II I I CLI II I II I IS $ I (IL I I 0.31 71 $ I I $ $ I (IL I $ I I I I $ I 0.01 30 I C CL II I I II I II S I (01 I I $ I $ 1.91 81 I $ I Cut II $ I II I II $ S Ci i SI I II I Z II $ $ (IL I I I 1 $ I 1.01 43 I $ I ((1 I $ 0.31 71 $ $ I I 5 $ I Cit $ $ 0.11 30 I I I.UI 43 I I I S CLL $ I 0.11 38 I $ $ $ I 0.01 30 $ (IL I I $ I I 1.91 87 151 4.71 230 $ lit I I $ * I S I I $ 1.85 I I III. I $ I $ S I I I 3.31 260 I Cl i i II $ 1 II I I IS S S (Qi I $ 0.11 38 I I 3.05 43 I I I 1 $ CDL II I II I I II $ $ II I II $ II $ $ C DI SI I II $ I II I II I II $ II $ (DL II I II $ II $ I II $ II I II $ CCII. II I II I I II S CII $ I 0.3$ 71 I $ I I I $ $ I ClL II I I SI I II I III I I I $ $ I I $ 0.61 30 CDL $ I 0.3$ 77 I $ I I I $ (CL S $ 0.1$ 38 I I $ I I S Cot II I II I II I I (Ut I I I I I 1.0$ 43 I $ $ ( CL $ I I I I $ I I I I 0.61 30 $ (0*. $ I I V I I $ I I 0.6$ 30 CUI. $ I 0.91 269 I $ 1.9$ 07 I I 2.41 119 (IL II I II I I II I 1 (DI. II $ $ 1 $ I SI S C C LI I I I I I I 5 1 I 0. $ 30 $ CIt $1183.51 73760 $2136.41 139 13110.41 3b (IL 13$ 1.05 49Q I S I I I I $ $ (IL $ $ I 0 141 4.81 217 I $ I (IL IS $ II I II I $ CDL I I 0.1$ 30 I I I $ I I $ CCL II I It $ II I 28440 I 5000 24 ------- LAKE MANE: MCCONAUGHY ?,TOWET t4UMBEk: 3106 MYGAARD IROPMIC SlATE It 0ICES CATE 0’, 7’, 7 01 7’, ;9 27 74 ‘ YX( PHYCEAN 0110 E 03/0 E 2.Co E CNLOROPKYCEAN 05/C 07/0 1 7.00 1 EUGLENOPHYIE 0l( o ? 0/10 7 o.Co 7 DIArc ’n 0.33 1 0.33 1 0.3b i COMPOUND CQI0 1 12/0 1 L2.C L PALMER’S CRGMIIC PLiLLUILON INDiCES DATE C 4 15 74 07 01 7’, 09 27 74 GENUS C l ii ) SPECIES 00 SPECIES DIVERSiTY AND AIUNOANCE INDICES DATE 04 15 74 07 03 74 39 27 7’. AVCRAGE DIVERSITY H 2.23 3.17 3.37 NIjlib1 Uf 1 /&XA S 23.00 2 1.C0 48.00 NUMBER OF SAMPLE IWIPOSITED N 3.Jt) 3.u O 3.00 PAXIMLI1 L IVERSITT I A2H “.52 4.39 .52 MINUMUM DIVERSITY MINH 0.03 0.08 C.t3 TOTAL DiVERSITY 0 27292.91 iO’.cs.ei 16624.21 TOTAL NUP.81R CF INLi1ViDUALS/ ’L P4 12239.0t 3311.00 4933.0w EVEP.E SS C ).IPUNENT o .. ‘ .c 0.72 C.61 RIlATIVE EVEP.E55 RJ J.’. 9 0.7c 0.o l MEAN NUMBER OF Ir .DIVIDUALS/IAXA L 532.13 )57.(,7 1 ’7.2s NUMBER /N t 01 MU 1 ABUNIJANI TAXCN K 5173.33 602.00 1023.JU 25 ------- CIUNI IHUID 1811 NA I(I ?ICCI)MAU IIT S Ui,(l Nw%6IR’ 3306 1* 98 ad INaSIRU It LNRI5IRUUISIIUS FAIIATUS V. NIIIAOILIS 8PHANIJUNINUI 1103—AUIUAL ASI(Rl0ISILLA IQR1 0S* C AR 1191* COd ClINt I S (UILASIU’Ufl CAIIONICUfl V. IHlIIlIi(OIU$ COS N* I IU I * CNUCIG(NI&. ILIRAPIU IA C U P IUNUMA S CRTPIUNUNAS IRU3A CRYPIIAIUNAS 1803* V. RULIZA (1 (101(11* MIN IGHIIIIANA C T I I 1 IL A DAC1TIUCUCCUPS IS DI(ITU3PIIA(RIUIT PUICHILIUN FIAGIILAI( ii 39AG 118R 18 I I IRAGIIARIA CAPUCINA IRAGIIAI4IA CRIIILJHINSIS IRAGILAMIA ILPIUS1AURON GIIEPIILINLUIA OLIVACLUPI GrIi, I3IpIu,IUN OMOINAIUM RIRC)INLMII (LA 11 PUt mCI IS I TII(,818 I *IOSI9* 14 ITIIUSI IUA GRAHUIAIA I%F (OSIIIA IUIICA III LOSIR A VARIANS nip ISPIUPIDIA IIINI A I1IS0S1I’ .I3* VIkIDIS NICRACI INIUI’ Ili4 .RUCISIIS £(RUC INOS* P 10 3 3 3 .101 IA MAR ICUL A NAVICULA II MAW ICULA I? MAVICULA 83 NIl ?SCHIA UCC IS 133 C iSC 3(1*108 IA P(OIASIRUN OIIRTAIIUII PCIINATI LIAIUNS iii o Id o l VIlE N IA IIIILJPAIUU 1A (. 1996 $CIHLDISI *U5 ACUItIHAIUS S(INIULSMUS ANCUAJUS 5CR HLUISRUS 091 IOUUS SCIN(013 1 1U5 OPOIIINSIS SCLIIIIILSI’US PRUIuILRA IIS 5(IN(3.ISIIUS OUAORICLUOA SCIHULSPIUS SPP. SCIIRUIDRRIA SIIILIRA S 1*0 9 AS P RU II S IL 9 1 1 * 1 1 1 10 1 SCUS SURIRILLA I) SURIRILLA 12 S1MIOI .a ACUS STNIDPA ULNA IEIMAICIIUN CAIJLIAIUII IC tEll ORON NINIMUII IIIRASIRUII 2 3.LAORUN IIIRASIRUPI S IAUROGRPIIAI1URM I o 13 74 7 0* 74 09 27 74 ALGAL I ALGAL I ALGAL I UNITS 00115 3 [ UNITS FORM IS U PER NL IS IC PIE ML IS Rd 939 N t CC I I I 1.31 *34 I I I I I I I II I I I I II I CIL I I 0.31 39 I I I I I I R IlL I I I 121 7.01 238 I I I CL I £1141.31 3173 *3114.31 73 I I 1.01 47 (LI I I 0.3* 39 I I I I I. I (IL II I I II I II I I II I II I II I (UI I I I I I 1.31 43 I I I CII II I II I II I I (01 II I II I II I I (11 131 6.03 734 I I I 11120.71 3023 CII I I I *11*3.01 430 I I I II I II I II I (IL I I I 13113.01 430 I I I (( I II I I I I II I I (IL II I II I I II I I CI I I I 3.21 396 1 I 2.63 8* 14113.21 633 C DL I I I I I I I I 1.91 93 CII 12133.61 43*2 I 110.41 344 13117.91 884 CII II I II I I II I CII II I 1 II I II I I CII I I 0.91 316 14119.21 602 I I I I CII II I I *1 I II I (IL II I II I I II I C II 131 1.91 232 $ I I I $ 1.01 47 CII I I I I I 1.31 43 I I I CII II $ II I II I 1 III II I II I £ II I CII I I I I I I I I 1.9* 93 CII I I I I I 7.81 236 121 8.31 4*9 CII I I 1.91 232 I I I I I I (IL I I 0.61 71 I I I $ I I I Cut I I I I I I I I 6.31 4*9 CLI II I II I II I I C II II I II 3 9 II I (01 II I II I II I 2 III II I II I II I I CCL II I II I 1 II I CII II I II * II I * CII II I I II I II I CII II I II I II I I (IL II * II * II I CLI I I I I I I I I 3.11 386 III I I I I I I I I 3.91 18* CCII II I II I II I I (It I I 0.9* 116 I I I * I 4.7* 233 (CI II I 9 II I II I I (II II * II I II I 1 (01 II I II I II I I (01 II I II I II I I (01 II I II I II I A (UI II I 1 II I II I C C I II I II I I II I 2 CDI II I 1 II I I II I 2 C CI I I 0.61 77 I I I 131 7.31 372 CII I I I I 110.41 344 I I I CLI II I II I II I I CCL 141 3.5* 463 I * I I I I I I CCI II I II I II I i (IL II I II I II I CII I I 0.3* 39 I I I I I I CII II I II I II I I ((I I I I I I I I I I 1.01 47 CLI II I II I II I Cot I I I I S I I * 4.71 233 (01 II I II I I II I 331* *0381 3 22 39 26 ------- LA cE NA 1E: PAWNEE LAKE S1OR 1 NUMBER; 3107 4VGAAI 0 TI CPH]C si r ir cic ,ATE C ’ 17 74 ‘37 32 7’, , Q Ze 74 MYX0PHYL AN 1. O E 1.b7 E ‘ 30 E CHLOROPMTC(AH 0/uI 0 3.U0 8 9.00 E LUCLENOPHYTE l.( 0 8 3.14 ? 0.C8 ? DIATOM 0.80 8 3.00 8 5.00 8 CCHPOUPIO 6.00 8 b.33 8 89.0 8 PALMER’S ORGANIC POLLUTiON INDiCES DATE 04 17 74 07 ( .2 74 9 Zb i ’ , GENUS 01 02 32 SPECIES 0(1 JO SPECIES DIVEPSITY AND ABUNDANCE INOICES GAlE C4 17 74 J7 02 74 9 28 74 AVERAGL DIVERSITY H 2.13 3.52 2.71 N(,Mbf OF T A S 21.C0 33.’i O 27.03 NUMBER OF SAMPLES COMPOSITED H 2. 3 2. Ou 2. 30 IAX1HU OIVERSI1Y $AXH 4q39 5• 4 4.75 MINUIfl.i DIVERSiTY tiINH (1.14 0.15 C.1t flTAL DIVEPSI1Y 0 3blb.7’, 9817.28 5574.47 TOTAL NuMBER OF INDIVIDUALSIML N i698. . . i 2789.30 4057.30 IVENESS COjiP(ltsENT J 3•’,9 3 .7 C.57 RELATIVE VENE S RJ .47 0.89 0.58 MEAN P’UMBLR CF IND1VI1 ’UALSITA 4 L O.8u 84.52 78.89 NUM8ERIML OF HOST ABUNDANT TAXON K 049.03 834.0. ) 785.00 27 ------- ION f INUIO ia, i Na I: P66 1 111 tAlC STLj ’Ll ‘ 1 5JU L1 9: 3l( 7 4 11 74 581* AhABA II,* aIsAIlIZUnINO” I LOS—a s lUAl aSTL8IONttLA 00R11L1SA CLPa 1U11 H$9UN$)INILLI I. ItRCUIOCS ($41 ANYUUUOIIAS (HLCL(.PMVI&N CUCCOIC . 1Lt10 CLLOIY CLOSIL l IUPS CLUSTIRIU11 Ii CLOSUlIUN 82 CLUSILkIUl II CU CU1D COLONY clitasigun CAN8iICUII COILISIRUU 8ITICUIAfU COLL3SPHALIIUN NALG(1I 811UII 1051118 SUM CIUCI((lilA 5(ICTANC.UL*RIS 7 CRTPICUI.,U1 Igosa COYPIUMOMIS Pa. S1Lkl1 CRYPTC.MI.N 8UI .IZa CYCIUILILA NCGbIiN$ANA 11 (1371 11* STLLLI%.LRA GACI?IC(OCCIJPSIS SRkI ULARI NC IT1’SP tatRIIJl4 31c1yC PHLLW1uU PttC$IULU’I DINOBlYtIl OlviaciNS DlhC.$$RTC.. 14 a!U LOISCA 11*18101,4* 11 iUOUII$5A ILIGINS LU’tIMA F$AGilL*TI I I FLaGILLaIL 89 rI- 8O 5 IA IIA GIIk0G$1 1U0 GYIMUCIU IUM GLiNODII LUU RNUiiINI .iM V. LIS(UIILt1 l0*ML 1*tIOPU$AS CAUOAI* UI L 3S Ill I’ILIjSIRA II ,ILIC.SIRI GRAMULATA “ItOSIRA GRANULATA V. ANGUSIISS I ’I* UIt3SlRa SPP. UICI.OCYSYIS £t0U lNLJSA ,.aV ICIJLA aVIC0La RAQIUSA NI IZSCNIA CO( 15 5 IS CPnIOCIJIUM CAPIIAJiM 3SCIILAIURSA 1E,lulS PLOIASTRUPI CUPLU P(OIASIAIJIY OUPLU V. CI*IHIAIUM •IOILSTIUM OUPLIX 9. ROTUIIOIIS.N P(Dl*S1YUII SIUPILA V. ULUUtNhL 1UPS P18 IDIMSUPS 8 M i C US SCHIO1L)IcIA s tto i PN &UCYS 155 SCI4RUL J I ll T £ I jSPUll SI I. FHANIifiI SCUS ii SIIPH*NIIUISCUS ISIV6II SflP$AMUU ISCUS 580. 51 11 088 Ii 1(14 1 LusunaS te&(MCIOs.JNaS V3IVCCSNI IU 111 .7 C . 2 7 09 26 74 I £ LAL I £ G*t I ALGA l I I UNI IS I UN ITS I UNI IS I lOIn IS U ILl M L $5 TI III ML IS SC Pf8 ML OIL I I I I2liI.pI 296 I I 1.05 lb S lit I I I I I 3.J$ 8 5 13118.6$ 362 CLI 14112.31 212 I I I I I I I I II 5 .11 I II I I CIt II I I II I II I I cit a a I $ I I s I o.aI lb I CI I II I a II I II I I C(L II I II I II I 1 I CLI I I I I I 1.31 42 I I I I Cit I I I II I £ II I I CCL II I I II I II I I CL I II I II I I II I I CI.t I I I I I 1.31 41 I I 0.85 10 I Cot II I II I a II I I COt I $ I I I 1.31 42 I I 2.31 46 I Cit II I II $ * II I I cot is I ii i a , i I (LI I I I l1l 2.7I 634 14113.21 271 I CII II I a II I $ 5 I I CI I 12116.31 3I I $ $ 1 I I I I Cit I I I I I I I I 1.65 32 I C I I II $ II I II I I I Cit I I 1.91 33 I I I I I I I CC L $ I i i • I $ I :.ai lb I CII I I I I I 3.01 aS $ I $ I Cit II u a II I II I I cit usso.ci 649 I I I I I I I CII II I IS I II I I $ Cu II S I II I I I I I I Cit II I II I I II $ I CII I I 4.11 02 I I13.oI 310 I I I I Cit I I $ I I I .31 42 I I I $ CII II I 1 II $ II I I Cit $ $ I I I I I $ I 1.61 3.2 $ II I II I II I I CII II I II I I II I I (IL II I It I I II I I CLI $35 3.8$ 63 I I I $ I I I Cit II I II I II I I $ CLI I I I 13110.01 29o $ I i I II $ II I II I I CII I I $ 2 I I 6.15 169 I I I I CLI $ I I I I $ $2137.21 766 5 CCI. $ $ $ I $ 1.01 63 11114.01 207 $ CIL II I I I I. I II $ I CII IS $ II $ I II I I CII II I I II S $5 I I CII I I I $ $ I. I 1.1 $ I 3.11 64 I CCI I I I I I 1.3$ 42 I $ $ I III II I $6 $ I II $ I (UI II I II $ II i I $ II $ II a $1 $ I (01 I I $ 131 3.. $ 42 $ I I I I II I IS I $5 I I CCI II I i i I II I I II I II $ 1$ I $ ((1 II $ SI I I II I 2 $ CLI $ 5 I II $ II i I I ILL $1 I II $ II I I I (IL I I I I $IZ.,$ 33$ I I ,.AI lb I CUL II I II I II I I I II S II $ I II I I CII II I I I I I II $ I CII I I I & $41 3.0$ 66 $$ a.7 1 96 $ (Ii 13$ 8.11 141 I $ I I I $ CII It $ I II $ II $ $ Cit I $ I I I 1.51 42 I I $ I (IL II I 1 $1 I II I 2769 2037 28 ------- LA) E bA1IE: SHERMAN C0uNT RIS. ST0 ET UMeER: 31u8 NYGAA . TROPHIC STAlE INC ICtS DAlE 4 17 74 31 01 7 Z7 74 MYXOPHYCEAN 03/0 £ 02/U L 2.00 C C ILapOPHycEAp. 02/0 1 C2/C E 1.00 E tUGLENUPHYTE 0/CS 7 0/04 7 0/06 7 DIATOM 0.50 E 1.00 E 0.40 ( CONPOUND 07/0 1 Oe/0 E 5.C0 E PALMER’S URGANIC PCLLUIION INDICES DATE C4 17 74 07 01 74 9 27 74 GENUS 04 SPECIES Co SPECILS D IVEP.S1IY AND ABUNDANCE INDICES DATE C” 17 74 07 01 7’s 09 27 74 AVERAIE 0IVE S1TY H 2.83 2.35 1.69 NUMd R OF 1*1* S 14.00 12.00 Z5. 0 NUMBER OF SAMPLES C0 POS1TEO N 2.30 2.C0 2. 0 MAXIMUM DIVERSITY NAXH 3.81 3.58 M1MUMUM DIVERSITY MIHH 0.1C 0.09 TOTAl. DIvERSITY 0 4525.17 3614.30 5213.65 TOTAL NUtIUER OF I DIvI0UALS/P L N ]599.OC 1538.00 30b 5.0C (VEMESS CU,jPC, EMT j 0.74 0.bb 0.36 RELAIIVI EVENESS P . 1 0.7’, 0.6! u.36 MLAN NUIIBEb OF INOIVIDUALSITAXA L 114.21 128.17 113. ’3 NUMBER/MI OF MUST AiIUNOANT TAlON K 503.00 461.00 2198.00 29 ------- (Olil 1S’VLO LaRL 4AM: SP4IR AM (Dubir 211. SUjRET M’J22111 3108 17 74 7 C l 74 1*0* *1 1*8*14* 8Ph*11 1101118C. 1 PLCS—IC.UA( *SttRI( istLLA FORIIUSA CILCNLIS LIulsil C(9aT lUll NIRUMOII IaL&A CLI,Sltk Lull C0CC NI IS C8?P ICJIOH*S C8YPTC2ONA (ROSA CT*MCPNIT*N F*1811147 CYCLOTILLA IIINRGKIIIIAI* CYYATCPLiURA ELLIPIICA . SPl.ia .lS DAC ITLUCUCCOPS IS Eu(,URIPA £LIC.*4S ILAGELL*1( ii ILAG ILIAlI 52 FkLGILAEIA CUNSTRUIIIS IS. LOILA4 l (ICIONI#SIS **GlLAISII INltRllLOl* 7 PlAN 1l (flI* AllPHIOSYS . CiPI I&1A *t8(H1(M IC 11* IFLUSIMA GRAIIULAII r1 LO$1R* (.R*IIULAIA V. AUSTIS 111A 1112 1 51 (0 2 EV IA 111414* llI(ISJ(TSI1$ AIRUGINUSA PICROCTSIIS 14(121* .ICRUI.TSILS IlICIRIA 8 N*V ICULA MAVIEWA SI PIAVICULA 1* 1*45 7 4I 1 15( 1 11* II4S(p4Il IlLl2ORflIS PIDIAIIVUR OUPLSI SC LNLLIS1(US 8 ICALd..*IUS SCLMLUL$11US BIJUGA SCP II’OIDIkIA 5111418* STAURAS IRU11 SIIPH*P .OOISCUS *518*1* I GTAL I a l(.AL I AL(,*L I ALGAl. I U4 IES I . s1 1 I Upil IS I lORN IS ?C FIk 1(1 iS IC fli. rL i 2C PC I 111 I III II I S II I II I I IlL I I I I I I 121 3.01 92 I (EL 11131.11 133 I I I I I I I (EL II I II I 0 II I • I CII II I II I I II I I (EL II I II I II I I I CLI SI I II I II I S I (11 II I II I I II I I I CII 131 2.91 40 I1I ?.1l 2*9 I S I I 2 IL I I I S I I I I 1.01 31 I CIL I I I I I I III 4.01 122 I II I SI I IS I I CEL II I II I II I S I (EL I I .7I 91 I I I I I 1.01 31 I CII II I S II I II I I CII SI I II I $6 I S I CII 14117.11 274 I4I27. S 421 I I 1 JI 113 I (IL 11111.41 183 I I I I I I I (LI II I II S II I I I CLI I I I I I I 1 141 7. I 2’4 I CL I I 111.41 183 I I I I I 5 5 II I II I II I I (IL II I II I II I 1 I (IL II I 1 II I II I I CII II I II I II 5 1 I II I II I II I S ( IL S I I I I I I I UI 4.01 122 I Cal I I I I3I3,. l 411 I I 2.01 01 I CCL II I II S II I I I CVI I I I I I 5. l 71 S I I I cai I I 1.71 91 I I I I I I S CII IS I II I II I I I CII SI I SI’ I II I S I CEI II I II I II I 8 I CII II I II I II I S I C CI I I 5.75 91 6 I I I I I I C0t II I II I II I I I (UI II I 2 II I II I I CIiL II I II S £ I I I I C II I I I I II 13 . I 154 I I 1.05 31 * C II SI I II I II I I I CCL 121 8.aS *37 12110.01 114 11171.21 2198 I 1599 3085 00 77 74 30 ------- LAKE A1E S ANSCN STC.RET NUMBER: 3110 NTGAAIC IROPHIC STATE INDiCES DATE C4 1 74 30 28 7 . 9 27 7’. MTXCJPHYCEAU 0!CZ 0 3.00 E 1.50 E CHLOIJOPHYCEAN 1.00 E ‘ ,.OO E “.50 1 EUGLLNOPIITTE 01C2 0.14 7 0.42 1 DIAIOM 0.12 7 0.50 1 .33 I COMPOUND 1.5 E 9.00 1 9.50 1 PALMER’S ORGANIC POLLuTIOM IMOICES DATE 04 15 74 06 28 74 ,j9 27 74 GEM$ S 01 00 11 SPECIES 02 00 03 SPECIES D1VERSIIY AND ASUNDANCE INDICES DATE 0’ , 15 74 Ob 28 74 C9 27 74 AVERAGE DIVERSITY H c.3? 2.9’ 3.30 NOPibIR OF TAXA S lt.0O 18.03 32.’J3 NUMBER OF SAMPLES CQr P0SITED N 2.uO 2.00 2.00 MAXIMUM DiVERSITY MAXH 4.30 4.17 5.00 PtINUMUN DIVERSITY MLMH 0.01 3.11 C.L’ . TOTAL DiVERSITY 0 5968.47 5779.70 b2Sb.)3 TOTAL NUMBER CF i 4b1VIDUALSIML N 16131.03 19 ’ 3.O0 2752.00 EVIi’ESS COMPONENT J o.)’ 0.70 C_bc R(LA1IVE EVI1IE5S RJ 0.13 0.69 C.59 MOAN NUMBER OF INDIVIDUALS 1IAXA L 1008.19 110.72 86.00 MUMBE IIML UF nOST A8UNDAMT TAXOY4 F. 15214.00 413.30 912.30 31 ------- ia t ,. It &NSU8 CCNT IIWID 510611 NUA8IFI 3110 7i . 09 27 74 At&AI. I tGM. I £LGAL I w I1S I UNITS I UNITS I Ts** FCPN IS IC Pt a nt IS C P16 IL IS C P IN NL i £ I IiG6LN* UI I I I I I 1.91 38 I I I Z I *p. 1STRU0tSrUJS FAI .C*IUS I I I I I I I I I I Y. *CICULA IS Cit I I I I I I I I 3.71 203 I apwa lz0 tN Ii0S—I 3U1.I NIL I I I 1.91 38 I I I $ $STIRIONLLLI NORNOSA CU $I9 .3$ 132I I I $.Pl 3 I I 1 $ CtR1TIU NIaUMUINILLA CI I I I I I I I I I I I CLRAIIUN IIINUNDINILLA I I I I I $ I I F. NuNCOICIS Cit I $ I I I I $ I $ CIILA$TU3NONAS P Ci i I $ I I $ I I $ 4. I 120 $ CLOSIEPIUM Cit I I $ I 131 5.04 I CLUSIINIUN $1 C I I I I I I $ I I $ $ $ CCCCCNEIS P IaCEN1ULI CII I $ I $ I I $ I I I I C0II6STPUA C6IIBIICUN CCI I I $ I * $ I $ CM 1 .R IUN (IL $ I $ I 1 I $ I CIUCIGIMIt £PICUL*1A CLI I I I I I $ I I I CRYPTL$qUN*S IIIOSA CIt I I $ $ $ $2120.01 50* I C8TPTLIIUN S 0*ATA C II I I I iz $ 17.$ 338 I I I I CRTPICI. MA5 R1FLL’ (IL $ I $ I $ I CYCLO1ILLA RONI;sI6u4 6 CIt 121 4.41 7 .9 I I $ $ I I CT I8EL I * CII I I $ $ I I I I Ø(NI ICUIA CII I I I 1 I I $ $ I $ OICITOSP .1&(Q IUP$ PUL(,IELLUN (0$ I I $ $ $ I I $ $ OINOBP7UN OIVIRGC IS CII $ I $ $ $ I $ I I I £L*NAT I.I.1NIA CII $ I I I I I I I (IJI)0RIN EL1GAUS C CL I I I $ I t. $ 3 $ I I I IUGLI NA CII I I $ I I I 1 I EL GEI.LA$E Ii (IL 141 2.81 125 $ $ $ I I I I PLA G ILLAI IS (IL I $ I I5I2 .7I 423 $ $ $ FR&GILAIIA CNOTON1NSIS CIt $ $ I I3IL..I 338 I I • GLINOCINIUM GCUt*IUR CII $31 0.5$ S3 I I I $ I I I I L1P )CINCLLS CII I I I I 1. $ 3$ $ I $ iItOSI$ 1 UIaNU I&Ih $ I $ $ $ I $ $ I V. ANUUSIISSINA CI I $ I $ $ $ I I $ I I IIICkI1(TSIIS *LIUGINOS* CCI $ I I $ I I 1 I $ I $ iICIUCYSTIS INCERIA CCI $ I I $ $ $ I $ a.9 1 189 I IVICUI$ (IL I $ $ $ I I I I I I NAT ICULA il CI I I I I I $ I I $ I I MITZSCMIA .i ce $ I I * $ I I I $ 3.11 b I MIIZSCIIIA $2 LII $ I I $ I I I $ aIIZSCIIIA ‘3 CII $ $ $ $ I $ I 2.5$ 14 $ 00( 1 5 115 CIt I $ $ $ $ 3.6$ 7 14110.01 293 $ OSC I LIA T O NIA NIL I $ $ I $ $ $ I I $ PID1*S1NU OUPIfI $ I I I $ I I $ Y. RITICUL*TU COt $ $ $ $ I $ $ I I I Pt I IDINIU” CII I I I $ $ I $ $ $ PHACUS NIGAIUPSIS CU $ $ I I $ I $ I I p P I I I NU L ARIA CIL $ $ $ * I $ I $ $ $ $ SCEP. 1 .UISNUS ICUNINITUS CCL $ $ $ I I $ I $ I $ $ 5CLN(LLSNUS IAIAII..NICUT I $ $ $ I $ I I $ 3.bI 17 ICEMLI.CSPUS L IP IORPIIUS (CL $ $ I $ $ $ $ I 0.0$ 17 $ !CHkCiIUIRIA 5(1It..IIS. CII I $ $ 14$ 15.9$ 270 I I O.oI 17 STAUNASISUP CHAITCCLIIJS (IL $ I $ £ I $ $ I I 1 $ SIIPHLNUCIS(U 5 NIAGAIlI $L I I $ 11113.2$ o3 $IIJ3.I t •c1Z ¶IjIIISLLLA CVAIA (IL $ $ I 1 $ $ $ $ $ $ $ TtAC It CJ$AS ftuvIiTILIS Cit $ I I I $ I $ I $ I Ica(H€LLPO’IAS IiuiNrt0La 7 CCL I $ I $ $ $ 120 1PACPI(L IR0NAS VIlNICOSA CII $ I $ $ $ $ I I 3.1$ lb $ T OTAL 1o131 1c 93 32 ------- |