U.S. ENVIRONMENTAL PROTECTION AGENCY
             NATIONAL EUTROPHICATION SURVEY
                      WORKING PAPER SERIES
                                          REPORT
                                            ON
                                        LAKE MARION
                                        POLKOWIY
                                         FLORIDA
                                       EPA REGION IV
                                    WORKING PAPER No, 264
   CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
                              and
   ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
if GPO	697.032

-------
                                     REPORT
                                       ON
                                  LAKE MARION
                                  POLKCOUMY
                                    FLORIDA
                                 EPA REGION IV
                             WORKING PAPER No, 264
          WITH THE COOPERATION OF THE
FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION
                   AND THE
            FLORIDA NATIONAL GUARD
                DECEMBER, 1977

-------
1
CONTENTS
Foreword
List of Florida Lakes iv
Lake and Drainage Area Map v
Sections
I. Conclusions 1
II. (.ake and Drainage Basin Characteristics 4
III. Lake Water Quality Summary 5
IV. Nutrient Loadings 9
V. Literature Reviewed 13
VI. Appendices 14

-------
11
FOREWORD
The National Eutrophication Survey was initiated in 1972 in
response to an Administration commitment to investigate the nation-
wide threat of accelerated eutrophication to freshwater lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point-source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey’s eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [ 3O3(e)], water
quality criteria/standards review [ 3O3(c)], clean lakes [ 3l4(a,b)],
and water quality monitoring [ lO6 and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.

-------
111
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) arid trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation’s
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, a e being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environriental Protection Agency)
expresses sincere appreciation to the Florida Department of Environ-
mental Regulation for professional involvement and to the Florida
National Guard for conducting the tributary sampling phase of the
Survey.
Joseph W. Landers, Jr., Secretary of the Department of Environ-
mental Regulation; John A Redmond, former Director of the Division
of Planning, Technical Assistance, and Grants; and Dr. Tim S. Stuart,
Chief of the Bureau of Water Quality, provided invaluable lake docu-
mentation and counsel during the survey, reviewed the preliminary
reports, and provided critiques most useful in the preparation of this
Working Paper series.
Major General Henry W. McMillan (Retired), then the Adjutant
General of Florida, and Project Officer Colonel Hugo F. Windham,
who directed the volunteer efforts of the Florida National Guard,
are also grdtefully acknowledged for their assistance to the Survey.

-------
iv
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF FLORIDA
LAKE NAME COUNTY
Alligator Columbia
Apopka Lake, Orange
Banana Polk
Crescent Flagler, Putnam
Doctors Clay
Dora Lake
East Tohopekaliga Osceola
Effie Polk
Eloise Polk
George Putnam, Volusia
Gibson Polk
Glenada Highlands
Griffin lake
Haines Polk
Hancock Polk
Horseshoe Seminole
Howell Orange, Seminole
Istokpoga Highlands
Jessie Polk
Jessup Seminole
Kissiinrnee Osceola
Lawne Orange
Lulu Polk
Marion Polk
Minnehaha Orange
Minneola Lake
Monroe Seminole, Volusia
Munson Leon
Okeechobee Glades, Hendry, Martin,
Okeechobee, Palm Beach
Poinsett Brevard, Orange, Osceola
Reedy Polk
Seminole Jackson, FL; Decatur,
Senìinole, GA
Seminole Pinellas
South Brevard
Taiquin Gadsden, Leon
Tarpon Pinellas
Thonotosassa Hjl lsborough
Tohopekalicja Osceola
Trout Lake
Weohyakapka Polk
Yale Lake

-------
I
r .
4
Map Location
MARION
LAKE
® Tributary Sampling Site
X Lake Sampling
Site
0
0
Km.
S a1e
M1.
8134’

-------
LAKE MARION
STORET NO. 1228
I. CONCLUSIONS
A. Trophic Condition:
Survey data indicate that Lake Marion is eutrophic. It
ranked fourteenth in overall trophic quality when the 41 Florida
lakes sampled in 1973 were compared using a combination of six
parameters*. Nine of the lakes had less median total phosphorus,
11 had less median dissolved phosphorus, 27 had less and three
had the same median inorganic nitrogen, 20 had less mean chlorophyll
a, and 18 had greater mean Secchi disc transparency.
Survey limnologists noted emergent aquatic vegetation along much
of the shoreline. The numbers of blue-green algae in the phyto-
plankton samples (see page 7) further indicate the eutrophic con-
dition of the lake.
B. Rate—Limiting Nutrient:
The results of the algal assay indicate Lake Marion was phos-
phorus limited at the time the sample was collected (03/13/73). High
inorganic nitrogen to orthophosphorus ratios in the lake at that
time substantiate this finding. However, the mean inorganic nitro-
gen/orthophosphorus ratios in September indicate phosphorus limi-
tation at station 4 but nitrogen limitation at station 3, and the
November data indicate nitrogen limitation at both sampling stations.
* See Appendix A.

-------
2
C. Nutrient Controllability:
1. Point sources--No known municipal or industrial point
sources impacted Lake Marion during the sampling year. Septic
tanks serving shoreline dwellings were estimated to have con-
tributed 1.1% of the total phosphorus load, but a shoreline sur-
vey would be necessary to detennine the significance of these
sources.
Prior to 1971, the lake received the effluent of an activated
sludge wastewater treatment plant serving Haines City (the 1970
population was 8,956). However, in 1971 this plant was replaced
with a contact stabilization plant equipped with an effluent
storage pond; and since then, percolation and evaporation from
the pond have eliminated discharges to Lake Marion (Drunnond,
1971).
The present phosphorus loading of 0.15 g/m 2 /yr is slightly in
excess of that proposed by Vollenweider (Vollenweider and Dillon,
1974) as an oligotrophic loading (see page 12). The existing
trophic condition of the lake probably is due to the much higher
phosphorus loading prior to 1971 and subsequent recycling of phos-
phorus from bottom deposits (Stuart, 1976).
Significant improvement in the trophic condition of the lake
should occur if the existing loading is maintained.
2. Non—point sources--It is estimated that non-point sources,

-------
3
including precipitation, contributed 98.9% of the total phosphorus
inputs to Lake Marion. The largest contribution was from the
minor tributaries and immediate drainage, which accounted for an
estimated 61.5% of the phosphorus load. The 1970 U.S.G.S. Dundee
quadrangle map indicates that land use around the lake is pre-
dominantly agricultural.

-------
4
II. LAKE AND DRAINAGE BASIN CHARACTERISTICSTh
A. Morphometrytt:
1. Surface area: 12.82 kilometers 2 .
2. Mean depth: 1.3 meters.
3. Maximum depth: 3.0 meters.
4. Volume: 16.666 x 106 m 3 .
5. Mean hydraulic retention time: 235 days.
B. Tributary and Outlet:
(See Appendix C for flow data)
1. Tributaries —
Drainage Mean flow
Name area (km 2 )* ( m 3 /sec)*
Unnamed Creek D-l 8.1 0.08
Minor tributaries &
immediate drainage — 71.6 0.74
Totals 79.7 0.82
2. Outlet -
Lake Marion Creek 92.5** 0.82
C. Precipitatiorl***:
1. Year of sampling: 112.8 centimeters.
2. Mean annual: 134.1 centimeters.
1- Table of metric conversions-—Appendix B.
ft No bathymetric map available. Surface area from FL Dept. of Env. Reg.;
depths estimated from soundings reported in Appendix D.
* For limits of accuracy, see Working Paper No. 175, “. . .Survey Methods,
1973—1976”.
** Includes area of lake.
*** See Working Paper No. 175.

-------
5
III. WATER QUALITY SUMMARY
Lake Marion was sampled three times in 1973 by means of a pontoon-
equipped Huey helicopter. The first time, surface samples for physical
and chemical parameters were collected from stations 1 and 2 and the
second and third times from stations 3 and 4 (see map, page v). During
each visit, a single depth-integrated (near bottom to surface) sample
was composited from the stations for phytoplankton identification and
enumeration; and during the first visit, a single 18.9-liter depth-
integrated sample was composited from stations 1 and 2 for algal assays.
Also each time, a depth-integrated sample was collected from each of
the stations for chlorophyll a analysis. The maximum depths sampled
were 1.8 meters at station 1, near-surface only at station 2, and 0.3
meters at stations 3 and 4.
The sampling results are presented in full in Appendix D and are
summarized in the following table.

-------
LANE MARION
A. SUM IAF Y OF Pi- )YSICAL AND CHEMICAL CriARAcrERISTIcS FOR
STORET CODE 1228
1ST SAMPLING ( 3/13/73) 2ND SAMPLING ( 9/ 6/73)
2 SITES 2 SITES
3RD SAMPLING (11/ 7/73)
2 SITES
PARAMETER
ANGE
— 24.3
24.0
24.0
TEMP (C)
25.5
— 27.2
26.’.
26.b
28.5
— 28.7
28.6
28.6
— 9.0
8.9
8.9
DISS OXY (MG/L)
9.6
— 10.’.
10.ü
10.9
7.4
— 7.4
7.4
7.4
8.8
— 116.
115.
115.
CNDCTVY (MCROMO)
135.
— 140.
137.
135.
131.
— 131.
131.
131.
114.
— 8.9
8.8
8.8
PH (STAND UNITS)
8.9
— 9.2
9.1
9.1
8.5
— 8.6
8.5
8.5
8.8
— 34.
34.
34.
TOT ALK (MG/L)
36.
— 38.
37.
3)3.
33.
— 33.
33.
33.
34.
— 0.067
0.060
0.060
TOT P (MG/L)
0.042
— 0.057
0.043
0.044
0.035
— 0.037
0.036
0.036
0.054
— 0.039
0.034
0.03’.
URTHO P (MG/L)
0.008
— 0.011
0.009
0.008
v.0 16
— 0.023
0.019
0.019
0.029
— 0.120
0.120
0.120
N02+N03 (MG/L)
9.160
— 0.17. )
0.167
0.110
0.130
— 0.150
0.140
0.140
0.120
— 0.100
0.100
0.100
AMMONIA (MG/L)
0.16.)
— 0.173
0.lb7
0.170
0.110
— 0.110
0.110
0.110
— 2.200
2.150
2.150
KJEL N (MG/L)
1.400
— (.800
1. 5c7
1.S00
2.500
— 2.600
2.550
2.550
2.100
— 0.220
0.220
0.220
INORC’ N (MG/L)
0.120
— 0.340
0 .33J
0.340
0.240
— 0.260
0.250
0.250
0.220
— 2.320
2.270
2.270
TOTAL N (MG/L)
1.570
— 1.970
1.733
1.6 0
2.630
— 2.750
2.690
2.690
2.220
— 27.7
27.4
27.4
C )-4LRPYL A (UG/L)
25.8
— 31.2
2s3.5
28.S
27.0
— 40.9
33.9
33.9
27.2
SECCPII (M TEPS) 0.6 0.8
0.7 0.7 0.9 0.9 0.9
0.7 — 0.8

-------
7
B. Biological characteristics:
1. Phytoplankton -
Algal units
_________ _________ per nil
1. Lyngbya p. 44,209
2. Anabaenopsis 30,544
3. Dactylococcopsis . 16,679
4. Aphanothece p. 8,239
5. Nitzschfa . 3,617
Other genera 8,238
Total
09/06/73 ________
Total 138,408
1. Lyngbya .
2. Blue-green filaments
3. Anabaena p.
4. Achnanthes !P..
5. Cosmarium p.
Other genera ________
Total
Sampling Station
Date Number -
03/13/73 1 31.2
2 25.8
3 -
4
09/06/73 1
2 —
3 27.0
4 40.9
11/07/73 1
2 -
3 27.7
4 27.2
Sanipl ing
Date
03/1 3/73
Dominant
Genera
1. Lyngbya 2 .
2. Blue—green filaments
3. Anabaena p.
4. Achnanthes .
5. Aphanothece .
Other genera
111,526
93,556
25,795
5, 198
2,695
1,733
9,431
11/07/73
2. Chlorophyll a -
111,650
39,078
5,518
5,1 98
4,813
9,245
175,502
Chlorophyll a
(u /1) —

-------
8
Maximum yield
( mg/i-dry wt. )
3.3
7.7
17.4
3.4
C. Limiting Nutrient Study:
1. Autoclaved, filtered, and nutrient spiked -
Ortho P Inorganic N
Spike (mg/i) Conc. (mg/i) Conc. (mg/i ) _____________
Control 0.028 0.156
0.050 p 0.078 0.156
0.050 P + 1.0 N 0.078 1.156
1.0 N 0.028 1.156
2. Discussion -
The control yield of the assay alga, Selenastrum capri-
cornutum , indicates that the potential primary productivity
of Lake Marion was moderately high at the time the sample
was collected (03/13/73). Also, increased yields with
increased concentrations of orthophosphorus indicate that
the lake was limited by phosphorus at that time (note that
the addition of nitrogen alone resulted in a yield not sig-
nificantly greater than the control yield).
The lake data show a temporal and spatial combination
of limiting nutrients. Following is a tabulation of the
mean inorganic nitrogen/orthophosphorus ratios for each of
the stations and sampling times with the indicated limiting
nutrient in parentheses.
Station 03/13/73 ________ ________
1 36/1 (P)
2 20/1 (P)
3
4
09/06/73
10/1 (N)
16/1 (P)
11/07/ 73
8/1 (N)
6/1 (N)

-------
9
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the Florida National Guard
collected monthly near-surface grab samples from each of the tributary
sites indicated on the map (page v). Sampling was begun in March, 1973,
and was completed in February, 1974.
Through an interagency agreement, stream flow estimates for the year
of sampling and a “normalized” or average year were provided by the
Florida District Office of the U.S. Geological Survey for the tributary
sites nearest the lake.
In this report, nutrient loads for sampled tributaries were deter-
mined by using a modification of a U.S. Geological Survey computer pro-
gram for calculating stream loadings*. Nutrient loads for unsampled
“minor tributaries and iniriediate drainage” (“ZZ” of U.S.G.S.) were esti-
mated using the nutrient loads, in kg/km 2 /yr, at station D-l and multi-
plying by the ZZ area in km 2 .
No known wastewater treatment plants impacted Lake Marion during
the sampling year.
* See Working Paper No. 175.

-------
10
A. Waste Sources:
1. Known municipal - None
2. Known industrial - None
B. Annual Total Phosphorus Loading - Average Year:
1. Inputs -
kgP/ %of
Source yr total
a. Tributaries (non-point load) -
Unnamed Creek D-1 130 7.0
b. Minor tributaries & immediate
drainage (non-point load) - 1,145 61.5
c. Known municipal STP’s - None
d. Septic tanks* - 20 1.1
e. Known industrial - None -
f. Direct precipitation** - 565 30.4
Total 1,860 100.0
2. Outputs -
Lake outlet - Lake Marion Creek 1,065
3. Net annual P accumulation - 795 kg.
* Estimate based on 74 lakeshore dwellings; see Working Paper No. 175.
** Brezonik and Shannon, 1971.

-------
11
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs -
kgN/ %of
Source yr total
a. Tributaries (non-point load) -
Unnamed Creek D-l 5,625 8.9
b. Minor tributaries & imniediate
drainage (non—point load) - 49,690 78.2
c. Known municipal STP’s - None - -
d. Septic tanks* - 790 1.2
e. Known industrial - None
f. Direct precipitation** - 7,435 11.7
Total 63,540 100.0
2. Outputs -
Lake outlet - Lake Marion Creek 54,375
3. Net annual N accumulation - 9,165 kg.
D. Non-point Nutrient Export by Subdrainage Area:
Tributary kg P/km 2 /yr kg N/km 2 /yr
Unnamed Creek D-1 16 694
* Estimate based on 74 lakeshore dwellings; see Working Paper No. 175.
** Brezonik and Shannon, 1971.

-------
12
E. Yearly Loads:
In the following table, the existing phosphorus loadings
are compared to those proposed by Vollenweider (Vollenweider
and Dillon, 1974). Note, however, that Florida lakes may be
able to assimilate phosphorus at a somewhat higher level than
that suggested by Vollenweider (Shannon and Brezonik, 1972).
Essentially, Vollenweider’s “dangerous” loading is one at
which the receiving water would become eutrophic or remain
eutrophic; his “permissible” loading is that which would
result in the receiving water remaining oligotrophic or becoming
oligotrophic if morphometry permitted. A mesotrophic loading
would be considered one between “dangerous” and “permissible”.
Vollenweider’s model may not be applicable to water bodies
with short hydraulic retention times.
Total Phosphorus Total Nitrogen
Total Accumulated Total Accumulated
grams/m 2 /yr 0.15 0.06 5.0 0.7
Vollenweider phosphorus loadings
(g/ma/yr) based on estimated mean depth and
hydraulic retention time of Lake Marion:
“Dangerous” (eutrophic loading) 0.28
“Permissible” (oligotrophic loading) 0.14

-------
                                         13

V.  LITERATURE REVIEWED

    Brezonik, Patrick L.,  and Earl E.  Shannon, 1971.  The trophic state
        of lakes in north central Florida.  Publ. No. 13, Water Resources
        Res. Ctr., U. of FL, Gainesville.

    Drummond, William (Director), 1975.  Personal communication (past
        and present Haines City wastewater treatment systems).  Community
        Development Dept., Haines City.

    Shannon, Earl  E., and Patrick L.  Brezonik, 1972.  Relationships between
        lake trophic state and nitrogen and phosphorus loading rates.  Env.
        Sci. & Techn. £ (8): 719-725.

    Stuart, Tim A., 1976.   Personal  communication (review of preliminary
        report).  FL Dept. of Env. Reg., Tallahassee.

    Vollenweider,  R. A.,  and P.  J. Dillon, 1974.   The application of the
        phosphorus loading concept to eutrophication research.  Natl.
        Res. Council of Canada Publ.  No. 13690, Canada Centre for Inland
        Waters, Burlington, Ontario.

-------
14
VI. APPENDICES
APPENDIX A
LAKE RANKINGS

-------
LAKE DATA TO BE uSED IN .iArJr 3 ING5
LA cE MEDUIJ MEDIAN 500— MEAN IS- MEDIAN
COJE LAKE NAME TOTAL P INO’ G N MEAN StC CiL0 A MIF4 DO Oh,5 O 1r1O 3 ’
1201 ALLIGATOR LAKE 0.o2 1 0.260 414.000 07.733 13.100 0.33o
1202 LAKE APOPrcA 0.10? 0.230 484.116 4t.61l 8.200 0.0 19
1203 LAKE SANANA 0.660 0.260 482.667 202.600 3.600 0.293
1206 LAKE COESCENT 0.065 0.130 413.6A9 10.2 11 10.200 0.033
1207 DOCTORS LAKE 0.08’ 0.120 465.555 27.100 10.600 0.028
1203 LAKE DORA 0.10 ? 0.240 482.889 59.978 7.400 0.022
1209 LAKE EFFIE 1.483 0.410 489.000 261.433 15.000 0.950
1210 LAKE GEORGE 0.129 0.165 469.3DM 35 .000 11.000 0.063
1211 LAKE 01S50N 0.167 0.115 470.000 19.675 10.200 0.069
1212 GLENADA LAKE 0.134 0.165 45’..l67 27.661 14.700 0.072
121’. LAKE GOIFFIN 0.119 0.260 ‘81.333 66.855 6.600 0.038
1215 LAKE HAINES 0.063 0.115 ‘62.661 26.561 10.600 0.01’
1217 LAKE HANCOCK 0.195 483.500 97.900 5.600 0. ISa
1219 LAKE HORSESHOE 0.034 0,130 459.000 12.067 11.500 0.023
1220 LAKE HOWELL 1.260 0.285 464.000 54.11 7 9.000 1 . 175
1221 LAKE ISTOrcPOGA 0.034 0.120 464.222 6.5 9 8.600 0.010
1223 LAKE uEssu 0 , ’ .? 0.290 481.000 lo.550 7.600 0.288
122’ LAKE KISSIMMEC 0.034 0.145 463.661 d’.1’2 8.800 0.007
1227 LAKE LI ILU I. ’ 90 1.065 483.000 216.566 14.300 1.030
1228 LAKE MARION 0.0 ’ .6 0.260 468.833 29. 961 7.600 0.O lt
1229 LAKE MINNE- IAHA 0 ,03 ’ . 0.080 4J .000 8.733 7.700 o.o le
123’. LAKE MINNEOLA 0.019 0.010 406.333 3.333 . 40O 0.009
1231 LAKE MONROE 0. 1 39 0.300 414.555 1’.225 10.800 0. 12 3 ’
1232 LAKE OPcEECriU8EE 0.063 0.185 1d.J66 l 4.52 9.800 0.010
123— LAKL 0 OINSETT 0.06, 0, 5o ‘.6 .000 6.500 10.600 0.0 1
1236 LAKE EEDT 0.033 0.330 468.500 34.831 10.oOO 0 .000
1238 LAKE SOUTH 0.07’ 0. 130 4n4.000 73.161 9.000 0.028
1239 LAKE TALOUIN 0.085 0.290 462.161 9.483 1 ’. ’0o 0.031

-------
LA!TE UATA TO BE USED IN RANKINGS
LAcE MEOIAN M DIAM 500- MEAN 15— MEU IAN
CU3E LAKE NAME TOTAL P IMOPG N MEAN SEC CMLOQA MIN Do DISS O. Tr4O P
1240 LAKE EMONUTOSASSA 0.69 0.095 4b6. 167 31.700 10.200 0.565
1241 LAKE TOiOP(KALIC,A 0.246 0.200 472.911 30.633 10.500 0.152
1242 TROUT LAKE 1.110 0.650 472.000 76.961 12.900 0.970
1243 LAKE WEOHTAKAPKA 0.0.7 0.080 ‘.58.667 7.167 8.200 0.011
1246 LAKE ‘VALE 0.027 0.160 641.000 25.367 7.600 0.014
1247 LAKE MUNSON 1.475 0. 25 486.667 140.317 12.200 0.852
1248 LAKE SEMINOLE 0.234 0.175 473.833 102.000 8.600 0.02o
1249 LAKE LA NE ?.560 1.350 494.667 84.900 10.400 0.117
1250 LAKE TARPON 0.041 0.010 400.889 6.867 9.000 0.v27
12S2 LAKE ELOISE 0.486 0.170 465.333 70.233 12.200 0.339
1254 LAKE JESSIE 0.051 0.090 452.667 26.300 10.800 0.011
1261 EAST LAKE TOMOPEKALIGA 0.042 0.070 440.833 5.167 9.400 0.007
1264 PAYNE’S PNAIRIE LAKE INO 1.240 0.140 474.000 98.200 1.400 1.210

-------
EACE4T 3F LAKES 11TH HIGHER VALUES )NUMBER 3F LAKES iIT )1 MIG )IEH VALUES)
LAcE
cOUE
LAKE NAME
MEDIAN
TOTAL P
MIDIAN
INOKC,
N
500-
MEAN SEC
MEAN
L-(LOKA
IS—
MIN
DO
MEOIAN
DISS OKTHO P
INL)LA
743
1201
ALLIGATOR LAKE
25 I
10)
29
10)
30 I
12)
13 I
7)
10 1
4)
I d
I
lid
1202
LAKE APO°. A
50 I
23)
38 I
IS)
10 I
4)
38 I
IS)
74 I
29)
70
I 26)
2th)
1203
LAKE BANANA
23 1
‘fl
29 I
10)
20 I
d l
5 I
2)
100 I
40)
23
C 91
200
1206
LAKE CRESCENT
65 I
24)
70 C
27)
33 I
131
80 I
32)
48 1
IV)
50
I 20)
346
1207
DOcTOIc LAKE
o
74)
lb I
30)
40 I
2g .)
$5 I
22)
34 1
12)
56
C 22)
341
1200
LAKE OOWA
53 I
21)
35 I
14)
18 (
7)
33 C
I))
90 I
iS)
68
I 27)
297
1209
LA L EFFIC
5 (
2)
1) l
4)
3 I
I)
3 I
I)
0 I
0)
10
I 4)
31
1213
LAKE fEOR(,E
45 I
181
Si. I
211
46 C
19)
43 I
IT)
23 I
9)
43
C 17)
256
121)
LAKE GIBSON
40 I
16)
61 1
32)
45 C
19)
70 I
28)
48 I
18)
40
I 16)
324
1212
C,LENADA LAKE
6 I
Ill
54 I
21)
85 I
34)
53 I
21)
3 I
I)
38
I IS)
276
1214
LAKE 081FF IN
1
191
29 I
10)
23 I
9)
iv I
12)
95 C
38)
48
I 191
273
1215
LAKE HAINES
70 I
28)
81 C
32)
15 I
30)
58 I
23’
34 C
12)
78
C 31)
396
1217
LAKE HANCOCK
18
7
43 C
17)
13 C 5)
13 C
5)
98 I
39)
28
C 11)
213
1213
LAKE HORSESHOE
43 I
37)
/0 I
21)
40 I 32)
78 I
31)
20 C
8)
65
I 26)
404
1220
LAcE HOWELL
I I I
4)
23 C
9)_
bA C 27)
35 I
1 ’.)
60 C
23)
3
I II
201
1221
LAKE ISTO,cPOGA
85 C
34)
76 1
331
65 C 26)
93 I
37)
b9 I
27)
89
C 35)
4/7
122i
LIKE JESSUP
?8 I
11)
I C
7)
5 1 2)
2 I
10)
83 C 32)
25
I 10)
184
122’
LAcE KCSSIMMEC
90 I
34)
63 C
75)
73 C 29)
45 C
24)
65 I 26)
99
C iS)
4,5
1227
LAKE LULL)
3 I
II
3 C
11
15 C 6)
0 I
0)
8 I 3)
5
C 2)
34
1228
LAKE MARION
78 I
31)
29 I
10)
53 I 2))
50 I
20)
83 I 32)
71
1 29)
366
1229
LAr L MINNEKA.IA
8 8 I
35)
‘31 C
34)
95 I 38)
85 I
34)
78 C ii)
80
I 32)
5)7
1230
LAKE MINNEOLA
100 I
40)
98 1
30)
98 I 39)
100 I
40)
90 I 35)
93
C 37)
D 79
1231
LAKE MONROE
38 I
15)
15 I
SI
70 I 11)
I’ , I
30)
26 C 10)
33
I 13)
215
1232
LAcE OKEECKOKEE
KA I
27)
45 1
18)
40 C 16)
73 I
29)
53 C 211
09
I . 35)
368
123—
LAcE D 3 It, rTT
58
73)
60 I
74)
50
C 20)
95 I
38)
34 C 121
45
I 18)
3.2
1236
LAKE ‘ EEOY
9$ I
351
13 I
5)
55
I 22)
.., I
ID)
34
I 12’
95
I iS)
33/
1236
LAKE SOUTH
63 I
25)
70 I
27)
69 I 27)
68 I
27’
DO
C 23)
56
1 22)
386
1239
LAKE IALOUIN
55 C
22)
20 I
8)
I
C 3))
3 1
3))
S
I 2)
53
I 21)
234

-------
PE CENT OF LAKES a)TM ‘IGHEP VALUES (NUMBE-) O LAKES w IT- I IIIOI-iE.l VALUES)
LAKE
CODE
LAKE
NAME
TOTAL ‘
INO ?G
4
MEAN sEC
C-ILU8A
M)N DO
DISS
O8TPIU P
NO
1240
LAKE
THONOTOSASSA
20 )
8)
85 I
34)
58 I
23)
40 I
16)
48 1 18)
15
I 6)
265
124)
LAKE
IONOPEKALIGA
33 I
13)
40 1
16)
38 I
IS)
48 I
)9)
40 I 16)
30
I 12)
229
1242
TROUT
LAKE
IS 1
6)
8 I
3)
‘.3 1
11)
23 I
9)
I ) I 5)
8
I 3)
1 )0
1243
LAKE
WEOHYAKAPKA
75 I
33)
91 I
36)
83 I
3.1)
88 I
35)
14 I 29)
84
1 33)
495
1246
LAKE
YALE
98 I
39)
58 I
23)
90 I
36)
63 I
25)
83 1 32)
75
1 30)
461
1247
LAKE
MUNSON
8 I
3)
S 1
2)
8 I 3)
8 I
. 1)
16
1 6)
13
I 5)
58
1248
LAKE
SEMINOLE
35 I
I ’)
48 1
19)
35 1 14)
10 I
4)
69
I 27)
63
1 25)
2s0
)2’.9
LAKE
LAWNE
0 I
0)
0 1
0)
0 C 0)
20 1
8)
43
I 17)
35
I 14)
98
1250
LAKE
TARPON
83 I
33)
98 I
38)
100 1 40)
90 1
36)
60
I 23)
60
I 24)
49)
1252
LAKE
ELOISE
30 I
12 1
50 1
20)
43 1 25)
28 I
I l)
l b
1 6)
20
1 8)
207
1258
LAKE
JESSIE
13 1
29)
88 I
35)
66 I 35)
6 0 1
24)
26
I 10)
8
1 33)
419
1261
EAST
LAKE TOIIOPEKAL)GA
80 I
32)
98 1
38)
93
I 31)
98 1
39)
55
I 22)
99
1 39)
523

-------
LA(ES RANKED BY INDEA NOS.
NANK LAKE CODE LAKE NAME INDE, NO
I 1230 LAKE M IPMNE(JLA 579
2 1261 LAST LAKE TOHOPEKALIGA 523
3 1229 LAKE MINNEHAHA 517
4 1243 LAKE WEOHYAKAP,cA 495
5 1250 LAKE TARPON 691
6 1221 LAKE ISTOKPOGA 477
7 1246 LAKE VALE 467
8 1224 LAKE KISSIMMEE .ss
9 1258 LAKE JESSIE 4 )9
10 1219 LAKE HOR5ESrIOE 406
II 1215 LAKE HAINE5 396
12 1238 LAKE SOUTH 386
13 1232 LAKE OKEECrIUSEL 3&8
44 122 4 LAKE HAPIDI 366
IS 1206 LAKE CRESCENT 346
16 123 4 LAKE POINSETI 342
hi 1207 DOCTO4S LAKE 3 41
l B 1236 LAKE REEOT 337
19 1211 LAKE GIBSON 324
20 120a LAKE DORA 29 1
21 1239 LAKE TALOOIN 294
22 1202 LAKE APOPKA 280
23 1212 GLENAUA LAKE 276
24 121’. LAKE GRIFFIN 273
25 12’0 LAKE THONOTOSASSA 266
26 12 ’a LA ’E SEMUOLE 260
27 1210 LAKE GEOPUE 256
28 12’.1 LAKE TOHOPEcALIGA 229

-------
LAXE RANKED BY IROEK ‘105.
RA ’ 1K LAKE CODE LAKE NAME INOEX NO
29 1231 LAKE MONROE 215
30 1217 LAKE HANC0Cr 213
31 1252 LAKE ELOISE 207
32 126’ PAYNES PRAIRIE LAKE (‘10 206
33 1220 LAKE MO ELL 201
3’. 1203 LAKE tIANANA 200
35 1223 LAKE JESSUP 184
36 1201 ALLIGATOR LAKE 130
37 1242 TROUT LAKE 110
38 1249 LAKE LAWNE
39 1247 LAKE MUNSON 58
40 1227 LAKE LULU 34
41 1209 LAKE E FIE 31

-------
APPENDIX B
CONVERSION FACTORS

-------
CONVERSION FRCTORS
Ilectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 = feet
Cubic meters x 8.107 x 10 = acre/feet
Square kilometers x 0.3861 squ rc miles
Cubic meters/sec x 35.315 . cubic feet/sec
Centimeters x 0.3937 = inches
Kilograms x 2.205 pounds
Kilograms/square kilometer x 5./11 - lhs/squ re mile

-------
APPENDIX C
TRIBUTARY FLOW DATA

-------
TRIBUTARY FLOW INFORMATION FO FLORIDA 8/25/75
LAI(E CODE 1228 LAKE MARION
TOTAL DRAINAGE AI EA OF LAKE(SO KM) 92.5
SUB-DRAI’ 1AGE NORMALIZED FLOWS (CMS)
TRIBUTARY AREA(SQ KH) JAN F B MAR APR MAY JUN JUL AUG SEP OCT NOV DEC MEAN
1228A1 92.5 0.76 0.74 0.77 0.70 0.47 0.50 0.76 0.86 1.15 1.31 1.00 0.82 0.82
1228D1 8.1 0.08 0.08 0.08 0.07 0.06 0.08 0.08 0.11 0.10 0.10 0.08 0.07 0.08
1228ZZ 72.3 0.69 0.74 0.74 0.61 0.56 0.72 0.68 0.95 0.88 0.90 0.73 0.65 0.74
SUMMARY
TOTAL DRAINAGE AREA OF LAKE = 92.5 TOTAL FLOW IN = 9.85
SUM OF SUB—DRAINAGE AREAS = 80.3 TOTAL FLOw OUT = 9.83
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TRIBUTARY MONTH YEAR MEAN FLOW DAY FLOW DAY FLOW DAY FLOW
1228A 1 3 73 0.57 17 0.60
4 73 0.61 16 0.62
5 73 0.44 18 0.47
6 73 0.34 16 0.30
7 73 0.52 15 0.61
8 73 0.65 17 0.63
9 73 0.95 16 1.00
10 73 0.94 12 1.14
11 73 0.71 16 0.70
12 73 0.68 13 0.65
1 7’. 0.52 18 0.61
2 74 0.41 17 0.40
1228D1 3 73 0.03 17 0.04
4 73 0.05 16 0.00
5 73 0.06 18 0.02
6 73 0.06 16 0.12
7 73 0.02 15 0.31
8 73 0.10 17 0.01
9 73 0.07 16 0.04
10 73 0.06 12 0.08
11 73 0.05 16 0.09
12 73 0.07 13 0.08
1 7 ’ . 0.06 18 0.08
2 74 0.03 17 0.07
1228ZZ 3 73 0.28 17 ( 1.39
4 73 0.45 16 0.03
5 73 0.53 18 0.16
6 73 0.55 16 1.03
7 73 0.14 15 2.89
8 73 0.61 17 0.10
9 73 0.62 16 U.37
10 73 0.52 12 0.69
11 73 0.42 16 0.82
12 73 0.61 13 0.72
1 7 ’. 0.55 18 0.69
2 74 0.27 17 0.67

-------
APPENDIX D
PHYSICAL and CHEMICAL DATA

-------
STORET RETRIEVAL DATE 75/08/25
12280 1
28 05 19.0 081 32 05.0
LAKE MARION
12105 FLORIDA
I 1EPALES 2111202
3 0010 FEET DEPTH
00010 00300 00077 00094 00400 00410 00610 00625 00630 00671
DATE TIME DEPTH wATER DO TRANSP CNDUCTVY PH T ALK NH3-N TOT KJEL N02&N03 PHOS—DIS
FROM OF TEMP SECCHI FIELD CACO3 TOTAL N N—TOTAL ORTHO
TO DAY FEET CENT MG/L INCHES MICROMHO SU MG/L MG/L P4G/L MG/L MG/L P
73/03/13 17 00 0000 27.2 24 140 9.20 38 0.170 1.800 0.170 0.008
17 00 0006 25.5 9.6 135 8.90 38 0.170 1.400 0.170 0.011
00665 32217
DATE TIME DEPTH PHOS-TOT CHLRPHYL
FROM OF A
TO DAY FEET MG/L P UG/L
73/03/13 17 00 0000 0.044 31.2
17 00 0006 0.057

-------
STO ET RETRIEVAL DATE 75/08/25
122802
28 03 47.0 081 31 58.0
LAKE MARION
12105 FLORIDA
1 1EPALES 2111202
3 0005 FEET DEPTH
00010 00300 00077 00094 00400 00’.10 00610 00625 00630 00671
DATE TIME DEPTH WATER DO TRANSP CNOUCTVY PH 1 AL$( NH3—N TOT KJEL N026.N03 PHOS—DIS
FROM OF TEMP SECCMI FIELD CACO3 TOTAL N N—TOTAL ORTHO
TO DAY FEET CENT MG/L INCHES MICROMF$O SU MG/L MG/I MG/I MG/L MG/I P
73/03/13 17 30 0000 26.6 10.4 30 135 9.10 36 0.160 1.500 0.160 0.008
00665 32217
DATE TIME DEPTH PHOS—TOT CHIRPHYL
FROM OF A
TO DAY FEET MG/L P LJG/L
73/03/13 17 30 0000 0.042 25.8

-------
STORET RETRIEVAL DATE 75/08/25
122803
28 05 38.0 081 32 23.0
LAKE MARION
12105 FLORIDA
1 IEPALES 2111202
3 0005 FEET OEPT 1
00010 00300 00077 00094 00400 00410 00610 00625 00630 00671
DATE TIME DEPTrI WATER DO TRANSP CNDUCTVY P 1 I ALK Nh3—N TOT KJEL N02&N03 PHOS—DIS
FROM OF TEMP SECCHI FIELD CACO3 TOTAL N N—TOTAL ORTHO
TO DAY FEET CENT MG/L INCHES MICROMNO SU MG/L MG/L MG/L MG/L MG/L P
73/09/06 09 20 0000 28.5 7.4 35 131 8.50 33 0.110 2.500 0.130 0.023
73/11/07 13 11 0000 23.7 29 116 8.80 34 0.100 2.100 0.120 0.029
13 11 0001 23.7 9.0 116
00665 32217
DATE TIME DEPTH Pt-lOS—TOT CHLRPI-IYL
FROM OF A
TO DAY FEET MG/L P UG/L
73/09/06 09 20 0000 0.035 27.0
73/11/07 13 11 0000 0.054 27.7

-------
STORET RETRIEVAL DATE 75/08/ 5
122804
28 03 52.0 081 31 41.0
LAKE MARION
12105 FLORIDA
1 IEPALES 2111202
3 0007 FEET DEPTH
00010 00300 00077 00094 00400 00410 00610 00625 00630 00671
DATE TIME DEPTH WATER DO TRANSP CNDUCTVY PH T ALK NM3—N TOT KJEL N02&N03 PHOS—DIS
FROM OF TEMP SECCHI FIELD CACO3 TOTAL N N—TOTAL ORTHO
TO DAY FEET CENT MG/L INCHES MICROMHO Su MG/L MG/L MG/L MG/L MG/L P
73/09/06 09 55 0000 28.7 7.4 36 131 8.60 33 0.110 2.600 0.150 0.016
73/11/07 13 00 0000 24.3 33 114 8.90 34 0.100 2.200 0.120 0.039
13 00 0001 24.3 8.8 114
00665 32217
DATE TIME DEPTH PHOS—TOT CHLRPHYL
FROM OF A
TO DAY FEET MG/L P UG/L
73/09/06 09 55 0000 0.037 40.9
73/11/07 13 00 0000 0.067 27.2

-------
APPENDIX E
TRIBUTARY AND WASTEWATER
TREATMENT PLANT DATA

-------
ST0RET RETRIEVAL DATE 75/08/25
1228A 1
28 07 00.0 081 32 00.0
LAKI MARION CREEK
12105 7.5 DUNDEE
0/LAIcE MARION
OG .5 MI N OF LAlSE
1 1EPALES
4
2111204
0000 FEET DEPTt-4
DATE
FROM
TO
TIME DEPTri
OF
OA’( FEET
00630
Nh3-N
PIIOSDIS
NO2&N03
TOT
TOTAL
ORTHO
N—TOTAL
N
MG/L P
00665
PHOSTUT
MG/L P
73/03/17
10
45
O.010 S
3.800
0.064
0.014
0.065
73/04/16
15
15
0.018
0.013
0.016
0.050
73/05/18
14
45
0.010t
1.600
0.042
0.013
0.040
73/06/16
0.019
0.105
0.005K
0.045
73/07/15
10
30
0.018
2.300
3.000
0.102
0.013
0.030
73/08/17
15
30
0.0 17
1.050
0.009
0.011
0.045
73/09/16
08
00
0.013
1.050
0.590
0.019
0.019
73/10/12
16
00
0.015
0.092
0.016
0.020
73/11/16
11
00
0.036
1.400
0.100
0.012
0.025
73/12/13
10
25
O.010
2.300
0.032
0.012
0.045
74/01/18
74/02/17
08
08
45
30
0.048
0.040
1.800
0.035
0.010
0.045
K VALUE tcNOUN TO BE
LESS THAN INDICATED

-------
STORET RETRIEVAL DATE 75/08/25
122801
28 03 00.0 081 31 30.0
UNNAPIED CNEEK DRNG INDIAN p 1 1) SWM
12 7.5 DUNDEE
1/LAKE MARION
8X E3OAT AT MOUTh OF CREEK
11E ’ALES 2111204
4 0000 FEET DEPTH
00630 00625 00610 00671 00665
DATE TIME DEPTH N02&N03 TOT KJEL NH3N PHOSDIS P1105—TOT
FROM OF N—TOTAL N TOTAL ORTr IO
TO DAY FEET MG/L MG/L MG/L MG/L P MG/L P
73/03/17 09 45 0.010K 1.800 0.016 0.012 0.065
73/04/16 15 30 0.048 4.700 0.280 0.008 0.047
73/05/18 15 00 0.010K 3.335 0.052 0.009 0.050
73/06/16 0.010K 3.000 0.061 0.011 0.045
73/07/15 14 35 0.010K 0.795 0.019 0.005K 0.040
73/08/17 15 50 0.022 3.900 0.160 0.024 0.030
73/09/16 08 30 0.010K 1.380 0.011 0.014 0.045
73/10/12 16 18 0.010K 1.200 0.033 0.017 0.050
73/11/16 10 30 0.116 0.800 0.020 0.012 0.030
73/12/13 10 05 0.024 1.100 0.108 0.012 0.020
74/01/18 09 40 0.056 1.200 0.064 0.0 16 0.050
74/02/17 08 00 0.024 2.100 0.015 0.010 0.115
K VALUE KNOWN TO BE
LESS THAN INDICATED

-------
STORET RETRIEVAL DATE 75/08/25
1228CA
28 06 30.0 081 36 30.0
HAINES CITY
12105 7.5 DUNDEE
7/LAKE MARION
UNNAMED TRIB
11EPALES 2141204
4 0000 FEET DEPTH
00630 00625 00610 00671 00665 50051 50053
DATE TIME DEPTH N02&N03 TOT KJEL NH3-N PHOSDIS PHOS—TOT FLOW CONDUIT
FROM OF N—TOTAL N TOTAL ORTHO RATE FLOW—MGD
TO DAY FEET 14G/L MG/L MG/L MG/L P MG/L P INST M(jD MONTHLY
73/02/06 10 00 0.820 17.000 8.300 9.500 10.500 1.000 1.000

-------