U.S. ENVIRONMENTAL PROTECTION AGENCY NATIONAL EUTROPHICATION SURVEY WORKING PAPER SERIES REPORT ON U\KE SEMINOLE PINELLAS COUN1Y FLORIDA EPA REGION IV WORKING PAPER No, 273 CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORV ALLIS, OREGON and ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA 6 GPO 697.032 ------- REPORT ON LAKE SEMINOLE PINELLAS COUNTY FLORIDA EPA REGION IV WORKING PAPER No, 273 WITH THE COOPERATION OF THE FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION AND THE FLORIDA NATIONAL GUARD DECEMBER, 1977 ------- 1 CONTENTS Pane For .’ord ii List of Florida Lakes iv Lake and Drainage /\rea Map v Sections I. Conclusions 1 11. Lake and Drainage basin Characteristics 3 III. Lake Water Quality Summary 4 IV. Nutrient Loadings 8 V. Literature Reviewed 12 VI. Appendices 13 ------- 11 FOREWORD The National Eutrophication Survey was initiated in 1972 in response to an Administration commitment to investigate the nation- wide threat of accelerated eutrophication to freshwater lakes and reservoirs. OBJECTIVES The Survey was designed to develop, in conjunction with state environmental agencies, information on nutrient sources, concentrations, and impact on selected freshw rer lakes as a basis for formulating comprehensive and coordinated nat ona1, regional, arid state management practices relating to point-•source discharge reduction and non-point source pollution abatement in lake watersheds. ANALYTIC APPROACH The mathematical and statistical procedures selected for the Survey’s eutrophication analysis are based on related concepts that: a. A generdlized representation or model relating sources, concentrations, and impacts can be constructed. b. By applying measurements of relevant parameters associated with lake degradation, the generalized model can be transformed into an operational representation of a lake, its drainage basin, and related nutrients. c. With such a transformation, an assessment of the potential for eutrophication control can be made. LAKE ANALYSIS In this report, the first stage of evaluation of lake and water- shed data collected from the stuuy lake and its drainage basin is documented. The report is formatted to provide state environmental agencies with specific information for basin planning [ 3O3(e)], water quality criteria/standards review [ 3O3(c)], clean lakes [ 3l4(a,b)], and water quality monitoring { lOG and §305(b)] activities mandated by the Federal Water Pollution Control Act Amendments of 1972. ------- 111 Beyond the single lake analysis, broader based correlations between nutrient concentrations (and loading) and trophic condi- tion are being made to advance the rationale and data base for refinement of nutrient water quality criteria for the Nation’s fresh water lakes. Likewise, multivariate evaluations for the relationships between land use, nutrient export, and trophic condition, by lake class or use, are being developed to assist in the formulatien of planning guidelines and policies by EPA and to augment plans implementation by the states. ACKNOWLEDGMENT The staff of the National Eutrophication Survey (Office of Research & Development, U. S. Environmental Protection Agency) expresses sincere appreciation to the Florida Department of Environ- mental Regulation for professional involvement and to the Florida National Guard for conducting the tributary sampling phase of the Survey. Joseph W. Landers, Jr., Secretary of the Department of Environ- mental Regulation; John A Redmond, former Director of the Division of Planning, Technical Assistance, and Grants; and Dr. TimS. Stuart, Chief of the Bureau of Water Quality, provided invaluable lake docu- mentation and counsel during the survey, reviewed the preliminary reports, and provided critiques most useful in the preparation of this Working Paper series. Major General Henry W. McMillan (Retired), then the Adjutant General of Florida, and Project Officer Colonel Hugo F. Windham, who directed the volunteer efforts of the Florida National Guard, are also gratefully acknowledged for their assistance to the Survey. ------- iv NATIONAL EUTROPHICATION SURVEY STUDY LAKES STATE OF FLORIDA LAKE NAME COUNTY Alligator Columbia Apopka Lake, Orange Banana Polk Crescent Flagler, Putnam Doctors Clay Dora Lake East Tohopekaliga Osceola Effie Polk Eloise Polk George Putnam, Volusia Gtbson Polk Glenada Highlands Griffin Lake Haines Polk Hancock Pt lk Horseshoe Semi nol e Howell Orange, Seminole Istokpoga Highlands Jessie Polk Jessup Seminole Kissimmee Osceola Lawne Orange Lulu Polk Marion Polk Ilinnehaha Orange Minneola Lake Monroe Seminole, Volusia Munson Leon Okeechobee G’ades, Hendry, Martin, Okeechobee, Palm Beach Poinsett ff revard, Orange, Osceola Reedy Polk Seminole Jackson, FL; Decatur, Seminole, GA Seminole Pinellas South 3revard Taiquin Gadsden, Leon Tarpon Pinellas Thonotosassa Q jllshorough Tohopeka I iga ©sceol a Trout Lake Weohyakapka Polk Yale Lake ------- Map Location LAKE SEMINOLE ® Tributary San 1ing Site X Lake Sampling Site Sewage Treatment Facility i 1m. Scale ------- LAKE SEMINOLE STORET NO. 1248 I. CONCLUSIONS A. Trophic Condition: Survey data and a report by others (Ketelle and Uttormark, 1971) indicate Lake Seminole is eutrophic. It ranked twenty-sixth in overall trophic quality when the 41 Florida lakes sampled in 1973 were compared using a combination of six parameters*. Twenty- six of the lakes had less median total phosphorus, 15 had less median dissolved phosphorus, 21 had less median inorganic nitrogen, 36 had less mean chlorophyll a, and 26 had greater mean Secchi disc transparency. Survey limnologists noted extensive beds of macrophytes near the shoreline and observed algal blooms in progress at both sampling stations in September and November. B. Rate-Limiting Nutrient: The algal assay results indicate Lake Seminole was nitrogen limited at the time the sample was collected (03/08/73). The lake data indicate nitrogen limitation at all sampling stations and times. C. Nutrient Controllability: 1. Point sources--No known point sources impacted Lake Seminole during the sampling year. Nonetheless, the sampling year phosphorus loading of 1.79 g/ni 2 /year is over three times that proposed by Vollenweider (Vollenweider and Dillon, 1974) *See Appendix A. ------- 2 as a eutrophic loading; and even though Florida lakes may assimilate phosphorus at a higher level than that suggested by Vollenweider (see page 11), the condition of the lake Indicates nutrient loadings are excessive. 2. Non-point sources--The minor tributaries and immediate drainage area contributed an estimated 67.1% of the total phosphorus and 33.9% of the total nitrogen inputs during the sampling year. Long Bayou Creek accounted for 27.0% of the total phosphorus and 55.5% of the total nitrogen loads, and Unnamed Stream B-i accounted for 3.5% and 5.7%, respectively. Any significant change in the nutrient inputs to Lake Seminole would involve reduction of the loads in these flows. ------- 3 II. LAKE AND DRAINAGE BASIN CHAR.ACTERISTICSt A. Morphometry : 1. Surface area: 1.85 kilometers 2 . 2. Mean depth: 2.7 meters. 3. Maximum depth: Unknown. 4. Volume: 4.995 x 106 m 3 . 5. Mean hydraulic retention time: 128 days. B. Tributary and Outlet: (See Appendix C for flow data) 1. Tributaries - Drainage Mean flow Name area (km 2 )* ( m 3 /sec)* Unnamed Stream B-i 1.1 0.01 Long Bayou Creek 18.6 0.24 Minor tributaries & immediate drainage - 14.8 0.20 Totals 34.5 0.45** 2. Outlet - Unnamed Stream A-i 36.3** 0.45 C. Precipitatiorl***: 1. Year of sampling: 105.5 centimeters. 2. Mean annual: 140.7 centimeters. t Table of metric conversions--Appendix B. tt Jackman, 1976. * For limits of accuracy, see Working Paper No. 175, “...Survey Methods, 1973-1976”. ** Includes area of lake; inlet flows adjusted to equal outlet flow. *** See Working Paper No. 175. ------- 4 III. WATER QUALITY SUMMARY Lake Seminole was sampled three times during 1973 by means of a pontoon-equipped Huey helicopter. Each time, samples for physical and chemical parameters were collected from two stations on the lake and from one or more depths at each station (see map, page v). During each visit, a single depth-integrated (near bottom to surface) sample was coniposited from the stations for phytoplankton identification and enumeration; and during the first visit, a single 18.9-liter depth-integrated sample was composited for algal assays. Also each time, a depth-integrated sample was collected from each of the stations for chlorophyll a analysis. The maximum depths sampled were 0.9 meters at station 1 and 1.5 meters at station 2. The sampling results are presented in full in Appendix D and are sunniiarized in the following table. ------- 2 SITES A. UMMANY OF -‘r1YSJCAL AND Cr1EMICAL CHARACTERISTICS FOR LAI E SEMINOLE SIURET COOE 1248 1ST SAMPLING ( 3/ 9/73) 2ND SAr -IPLING ( 9/ 4/73) 2 SITES 3RD SAMPLING (11/ 6/73) 2 SITES PARAMETER RANGE MEAN MEDI. N RANGE MEAN MEDIAN RANGE MEAN MEDIAN TEMP (C) 24.6 — 24.7 24.6 24.t 27.9 — 28.2 28.1 28.1 24.3 — 24.4 24.3 24.3 DISS OXY (MG/L) 8.3 — 10.0 .1 .1 6.4 — 8.0 7.2 7.2 8.0 — 8.4 8.2 8.2 CNDCTVY (MCROMOJ 500. — S 5. 543. 5.3. 471. — 490. 484. 490. 469. — 480. 475. 475. PH (STAND UNITS) 8.2 — 9.1 .o 8 . 8.8 — 9.0 8.9 9.0 8.6 — 9.1 8.9 8.9 TOT AL}c (MG/L) 129. — 129. 12 . 12 . lOF. — 115. 110. 108. 110. — 118. 113. 112. TOT P (MG/L) 0.194 — 0.236 0.215 0.215 0.221 — 0.253 0.236 0.233 0.199 — 0.296 0.246 0.243 ORTHO P (MG/U 0.013 — J.042 0.027 J.02t’ 0.0i9 — 0.025 0.022 0.021 0.028 — 0.038 0.032 0.031 N02.N03 (Mu/L) 0.090 — u.103 0.09- 0. J95 0.140 — u.150 0.133 0.130 0.060 — 0.070 0.067 0.070 AMMONIA (MG/L) 0.080 — 0.083 0.080 .0d0 0.100 — 0.120 0.110 0.110 0.070 — 0.070 0.070 0.070 KJEL N (P -lO/L) 1.800 — 1.800 1.800 i.dGG 2.100 — 2.800 2.500 2.600 2.300 — 3.200 2.900 3.200 INORG N (MG/L) & . 17J — 0.)r 0 0.115 0.175 0.220 — 0.270 0.243 0.240 0.130 — 0.140 0.137 0.140 TOTAL N (MG/L) 1. 90 — 1.900 1.B9 1.89s 2.230 — 2.920 2.633 2.750 2.360 — 3.270 2.967 3.270 CHLRPYL A (U( /L) 75.8 — 124.3 100.u 100.0 138.7 — 141.6 140.1 140.1 12.3 — 119.3 65.8 65.8 SECCrII (METErQS) 0.3 1.8 1.1 1.1 0.5 — 0.6 0.5 0.5 0.4 0.4 0.4 0.4 ------- 6 B. Biological characteristics: 1. Phytoplankton - Algal Units ________ _________ per ml 1. Lyngbya • .p. 30,000 2. Raphidiopsis p. 9,818 3. Kirchneriella ia• 8,727 4. Microcystis . 6,000 5. Cyclotella . 5,273 Other genera 15,091 74,909 1. Dactylococcopsis p. 2. Oscillatoria R• 3. Lyngbya p•. 4. Raphidiopsis ! p_. 5. Nitzschia !P Other genera ________ To ta 1 1. Pennate diatoms 2. Centric diatoms 3. Flagellates 4. Oscillatoria p. 5. Scenedesmus p. Other genera ________ Total 2. Chlorophyll a - Sampling Station Chlorophyll a Date Number ( pg/i ) 03/09/73 75.8 124.3 1 138.7 2 141.6 1 119.3 2 12.3 Domi nant Genera Sampi ing Date 03/09/73 09/04/73 11/06/73 Total 29,260 26,565 20,020 9,240 8,855 42,735 136,675 28,394 24,784 24,300 23,822 9,145 43,314 153,759 1 2 09/04/73 11/06/73 ------- 7 Maximum yield ( mg/i-dry wt. ) 9.2 9.3 20.8 14.3 C. Limiting Nutrient Study: 1. Autociaved, filtered, and nutrient spiked — Ortho P Inorganic N Spike (mg/i) Conc. (mg/i) Conc. (mg/i ) ____ ______ Control 0.044 0.256 0.050 P 0.094 0.256 0.050 P + 1.0 N 0.094 1.256 1.0 N 0.044 1.256 2. Discussion — The control yield of the assay alga, Selenastrum capri- cornutum , indicates that the potential primary productivity of Lake Seminole was high at the time the assay sample was collected (03/09/73). Also, the addition of nitrogen alone or in combination with orthophosphorus significantly increased yields while the addition of orthophosphorus alone did not. This indicates nitrogen limitation. The mean lake inorganic nitrogen to orthophosphorus ratios were 11 to 1 or less at all sampling stations and times, and nitrogen limitation would be expected. ------- 8 IV. NUTRIENT LOADINGS (See Appendix E for data) For the determination of nutrient loadings, the Florida National Guard collected monthly near-surface grab samples from each of the tributary sites indicated on the map (page v). Sampling was begun in March, 1973, and was completed in February, 1974. Through an interagency agreement, stream flow estimates for the year of sampling and a “normalized” or average year were provided by the Florida District Office of the U.S. Geological Survey for the tributary sites nearest the lake. In this report, nutrient loads for sampled tributaries were determined by using a modification of a U.S. Geological Survey computer program for calculating stream loadings*. Nutrient loads for unsanipled “minor tributaries and immediate drainage” (“ZZ” of U.S.G.S.) were estimated using export rates of 150 kg P/km 2 /year and 500 kg N/km 2 /year**. These values were used because land use in the areas drained by the major tributaries is predominately agricultural, but land use in the immediate watershed is predominately urban (i.e., “ZZ” estimates usually are based on measured tributary exports; but because of the differing land use, the exports would not be representative of the “ZZ” area). The operator of the Largo wastewater treatment plant provided monthly effluent samples and corresponding flow data, but the plant does not affect Lake Seminole. However, the results of analyses of the samples are included in Appendix E for the record. As far as is known, no point sources impact the lake. See Working Paper No. 175. ** Uttormark, Chapin, and Green, 1974. ------- 9 A. Waste Sources: 1. Known municipal - None* 2. Known industrial - None B. Annual Total Phosphorus Loading - Average Year: 1. Inputs — kgP/ %of Source yr total a. Tributaries (non-point load) - Unnamed Stream B-i 115 3.5 Long Bayou Creek 895 27.0 b. Minor tributaries & imediate drainage (non-point load)_** 2,220 67.1 c. Known municipal STP’s - None - d. Septic tanks - None - e. Known industrial - None - - f. Direct precipitation*** - 80 2.4 Total 3,310 100.0 2. Outputs — Lake outlet - Unnamed Stream A-l 2,830 3. Net annual P accumulation - 480 kg. * Mead, 1976. ** Uttormark, Chapin, andGreen, 1974. Brezonik and Shannon, 1971. ------- 10 C. Annual Total Nitrogen Loading - Average Year: 1. Inputs — kgN/ %of Source yr total a. Tributaries (non-point load) - Unnamed Stream B-i 1,245 5.7 Long Bayou Creek 12,090 55.5 b. Minor tributaries & immediate drainage (non-point load) - * 7,400 33.9 c. Known municipal STP’s - None - d. Septic tanks - None - e. Known industrial — None - - f. Direct precipitation** - 1,075 4.9 Total 21,810 100.0 2. Outputs - Lake outlet - Unnamed Stream A-i 41,635 3. Net annual N loss - 19,825 kg. D. Non-point Nutrient Export by Subdrainage Area: Tributary kg P/km 2 /yr kg N/km 2 /yr Unnamed Stream B-l 105 1,132 Long Bayou Creek 48 650 * Uttormark, Chapin, and Green, 1974. AA Brezonik and Shannon, 1971. ------- 11 E. Yearly Loads: In the following table, the existing phosphorus loadings are compared to those proposed by Vollenweider (Vollenweider and Dillon, 1974). Note, however, that Florida lakes may be able to assimilate phosphorus at a somewhat higher level than that suggested by Vollenweider (Shannon and Brezonik, 1972). Essentially, Vollenweider’s “dangerous” loading is one at which the receiving water would become eutrophic or remain eutrophic; his “permissible” loading is that which would result in the receiving water remaining oligotrophic or becoming oligotrophic if morphometry permitted. A mesotrophic loading would be considered one between “dangerous” and “permissible”. Vollenweider’s model may not be applicable to water bodies with short hydraulic retention times. Total Phosphorus Total Nitrogen Total Accumulated Total Accumulated grams/m 2 /yr 1.79 0.26 11.8 loss* Vollenweider phosphorus loadings (g/m 2 /yr) based on mean depth and mean hydraulic retention time of Lake Seminole: “Dangerous” (eutrophic loading) 0.54 “Permissible” (oligotrophic loading) 0.27 * There was an apparent loss of nitrogen during the sampling year. This may have been due to nitrogen fixation in the lake, solubilization of previously sedimented nitrogen, recharge with nitrogen-rich ground water, unknown and unsampled point sources discharging directly to the lake, or underestimation of the minor tributary and immediate drainage load. Whatever the cause, a similar nitrogen loss has occurred at Shagawa Lake, Minnesota, which has been intensively studied by EPA’s former National Eutrophication and Lake Restoration Branch (Malueg et al., 1975). ------- 12 V. LITERATURE REVIEWED Brezonik, Patrick L., and Earl E. Shannon, 1971. Trophic state of lakes in north central Florida, Pubi. No. 13, FL Water Resources Res Ctr., U. of FL, Gainesville. Jackman, Dean, 1976. Personal communication (morphometry of Lake Seminole). FL Dept. of Env. Reg. Tallahassee. Ketelle, Martha J., and Paul D. Uttormark, 1971. Problem lakes in the United States. EPA Water Poll. Contr. Res. Ser., Proj. # 16010 EHR, Wash., DC. Malueg, Kenneth W., D. Phillips Larsen, Donald W. Schults, and Howard T. Mercier; 1975. A six-year water, phosphorus, and nitrogen budget for Shagawa Lake, Minnesota. Jour. Environ. Qual., vol. 4, no. 2, pp. 236-242. Mead, William (City Engineer), 1976. Personal communication (point sources impacting Lake Seminole). Largo. Shannon, Earl E., and Patrick L. Brezonik, 1972. Relationships between lake trophic state and nitrogen and phosphorus loading rates. [ nv. Sci. & Techn. 6 (8): 719—725. Uttormark, Paul D., John D. Chapin, and Kenneth M. Green, 1974. Esti- mating nutrient loadings of lakes from non-point sources. EPA Rept. 660/3-74-020, Wash., DC. Vollenweider, R. A., and P. J. Dillon, 1974. The application of the phosphorus loading concept to eutrophication research. Natl. Res. Council of Canada Publ. No. 13690, Canada Centre for Inland Waters, Burlington, Ontario. ------- 13 VI . APPENDICES APPENDIX A LAKE RANKINGS CorV I E v ° :nc 200 SW 3 thgt-eet Co v l g7330 ------- LAKE DATA TO BE USED IN RANKINGS LAKE MEDIAN MEDIAN 500— MEAN 15— MEDIAN CODE LAKE NAME TOTAL P 1PIOi G N MEAN SEC CNL ORA MIN 00 0155 ORTHO P 1201 ALLIGATOR LAKE 0.620 0.260 474.000 87.733 13.100 0.386 1202 LAKE APOPKA 0.102 0.230 484.176 46.611 8.200 0.0)9 1203 LAKE BANANA 0.660 0.260 482.667 208.600 3.600 0.293 1206 LAKE CRESCENT 0.065 0.130 473.889 10.211 10.200 0.033 1207 DOCTORS LAKE 0.084 0.120 465.555 27.100 10.600 0.028 1208 LAKE DORA 0.102 0.240 482.889 5 .978 7.400 0.022 1209 LAKE EFFIE 1.480 0.410 489.000 261.433 15.000 0.950 1210 LAKE GEORGE 0.129 0.165 469.308 35.000 11.000 0.063 1211 LAKE GIBSON 0.167 0.115 470.000 19.675 10.200 0.069 1212 GLENADA LAKE 0.134 0.165 454.167 27.667 14.700 0.072 12)4 LAKE GRIFFIN 0.119 0.260 481.333 66.855 6.600 0.038 1215 LAKE HAINES 0.063 0.115 462.667 26.567 10.600 0.014 1217 LAKE HANCOCK 0.772 0,195 483.500 97.900 5.600 0.158 1219 LAKE HORSESHOE 0.034 0.130 459.000 12.067 11.500 0.023 1220 LAKE HOWELL 1 .260 0.285 464.000 54.117 9.000 1.175 122) LAKE ISTOPcPOGA 0.039 0.120 464.222 6.594 8.600 0.010 12 3 LAKE JESSUP 0.492 0.290 487.000 76.550 7.600 0.288 3224 LAKE KISSIMMEE 0.034 0.145 463.667 24.142 8.800 0.007 1227 LAKE LIJLU 1.490 1.065 483.000 276.566 14.300 1.030 1228 LAKE MARION 0.044 0.260 468.833 29.967 7.600 0.016 1229 LAKE MINNEHAHA 0.038 0.080 435.000 8.733 7.700 0.012 1230 LAKE MINNEOLA 0.018 0.070 406.333 3.333 7.400 0.009 1231 LAKC MONROE 0.188 0,300 474.555 14.225 10.800 0.128 1232 LAKE OKEECHOSEE 0.063 0.185 472.366 14.524 9.800 0.010 1234 LAKE POINSETT 0.085 0.150 469.000 6.500 10.600 0.05) 1236 LAKE REEDY 0.033 0.330 468.500 34.837 10.600 0.008 1238 LAKE SOUTH 0,074 0.130 464.000 23.167 9.000 0.028 1239 LAKE TALQUIN 0.085 0.290 462.167 9.483 14.400 0.031 ------- LAKE DATA TO BE USED IN RANKINGS LAKE MEDIAN HIDIAN 500— MEAN 15— MEDIAN CODE LAKE NAME TOTAL P INORG N MEAN SEC CP4LORA MIN DO DISS ORTHO P 1240 LAKE THONOTOSASSA 0.695 0.095 466.167 37.700 10.200 0.565 1241 LAKE TOHOPEKALIGA 0.2% 0.200 472.917 30.633 10.500 0.152 1242 TROUT LAKE 1.110 0.650 472.000 76.967 12.900 0.970 1243 LAKE W(OHYAKAPKA 0.047 0.080 458.667 7.767 8.200 0.011 1246 LAKE YALE 0.027 0.160 441.000 25.367 7.600 0.014 1247 LAKE MUNSON 1.475 0.925 486.667 140.317 12.200 0.852 1248 LAKE SEMINOLE 0.234 0.175 473.833 102.000 8.600 0.026 1249 LAKE LAWNE 2.560 1.350 494.667 84.900 10.400 0.117 1250 LAKE TARPON 0.041 0.070 400.889 6.867 9.000 0.027 1252 LAKE ELOISE 0.486 0.170 465.333 70.233 12.200 0.339 1258 LAKE JESSIE 0.051 0.090 452.667 26.300 10.800 0.011 1261 EAST LAKE TOHOPEKALIGA 0.042 0.070 440.833 5.167 9.400 0.007 1264 PAYNE’S PRAIRIE LAKE NO 1.260 0.140 476.000 88.200 7.400 1.210 ------- P€i CENT OF LAKES WITH HiGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES) MEAN 15— MEDIAN INOEX LAKE CODE LAKE NAME MEDIAN TOTAL P MEDIAN INOPG N 500— )4EAN SEC CHLORA HIM DO DISS ORTHO P NO 120$ ALLIGATOR LAKE 25 I 10) 29 ( 10) 30 I 12) 18 C 7) 10 C 4) 18 ( 7) 130 1202 LAKE APOPKA SO C 20) 38 ( IS) 10 ( 4) 38 ( 15) 74 I 29) 70 I 28) 280 1203 LAKE BANANA 23 C 9) 29 ( 10) 20 1 8) 5 1 2) 100 1 40) 23 1 9) 200 1206 LAKE CRESCENT 65 I 26) 70 1 27) 33 C 13) 80 I 32) 48 C 18) 50 1 20) 346 120? DOCTORS LAKE 60 I 24) 76 I 30) 60 1 24) 55 I 22) 34 C 12) 56 1 22) 341 1208 LAKE DORA 53 I 21) 35 I 14) 18 I 7) 33 ( 13) 90 C 35) 68 I 27) 297 1209 LAKE EFFIE S ( 2) 10 ( 4) 3 1 $) 3 I 1) 0 C 0) 10 ( 4) 31 $210 LAKE GEORGE 45 I 18) 54 I 21) 48 I 19) 43 I 17) 23 C 9) 43 C 17) 256 1211 LAKE GIBSON 40 I 16) 81 C 32) 45 I 18) 70 1 28) 48 1 18) 40 C 16) 324 $212 GLENADA LAKE 43 I Ii) 54 C 21) 85 I 34) 53 I 21) 3 1 II 38 I IS) 276 1214 LAKE GRIFFIN 48 1 19) 29 I 10) 23 I 9) 30 I 12) 95 I 38) 48 I 19) 273 $215 LAKE HAINES 70 C 28) 81 C 32) 75 I 30) 58 I 23) 34 ( 12) 78 ( 31) 396 1217 LAKE HANCOCK 18 7) 43 I 17) 13 1 5) 13 I 5) 98 I 39) 28 I 11) 213 1219 LAKE HORSESHOE 93 1 37) 70 I 27) 80 I 32) 78 I 31) 20 I 8) 65 I 26) 406 1220 LAKE HOWELL 11 4) 23 ( 9) 69 1 27) 35 1 14) 60 I 23) 3 ( 1) 201 1221 LAKE ISTOKPOGA 85 I 34) 76 I 30) 65 C 26) 93 C 37) 69 C 27) 89 C 35) 477 1223 LAKE JESSUP 28 I 11) 18 I 7) 5 I 2) 25 1 10) 83 I 32) 25 1 $0) $84 1224 LAKE KISSIMMEE 90 I 36) 63 1 25) 73 29) 65 ( 26) 65 C 26) 99 I 39) 4 5 1227 LAKE LULU 3 I 1) 3 I 1) 15 C 6) 0 I 0) 8 I 3) 5 2) 34 1228 LAKE MARION 78 I 31) 29 I 10) 53 C 21) 50 I 20) 83 I 32) 73 1 29) 366 1229 LAKL M!NNEP4AHA 88 I 35) 91 I 36) 95 1 38) 85 I 34) 78 1 31) 80 ( 32) 517 1230 LAKE MINNEOLA 100 I 40) 98 ( 38) 98 ( 39) 100 1 40) 90 ( 35) 93 I 37) 579 $231 LAKE MONROE 38 I 15) 15 1 6) 28 I II) 75 I 30) 26 I 10) 33 I 13) 215 $232 LAKE OKEECKOBEE 68 1 27) 45 1 18) 40 C 16) 73 I 29) 53 1 21) 89 ( 35) 368 1234 LAKE POINSETT 58 I 23) 60 C 24) 50 1 20) 95 I 38) 34 I 12) 45 I 18) 342 $236 LAKE REEDY 95 I 38) 13 C 5) 55 C 22) 45 I 18) 34 I $2) 95 C 38) 337 1238 LAKE SOUTH 63 I 25) 70 I 27) 69 1 27) 68 I 27) 60 1 23) 56 1 22) 386 1239 LAKE TALOUIN 55 1 22) 20 I 8) 78 I 31) 83 I 33) 5 I 2) 53 ( 21) ------- PERCENT OF LAKES WITH HiGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES) LAKE CODE 1240 1241 1242 1243 1246 1267 1248 1249 1250 1252 1258 126 I 1264 LAKE NAME LAKE THONOTOSASSA LAKE TOHOPEKALIGA TROUT LAKE LAKE WEOHYAKAPKA LAKE YALE LAKE MUNSON LAKE SEMINOLE LAKE LAWNE LAKE TARPON LAKE ELOISE LAKE JESSIE EAST LAKE TOHOPEKALIGA PAYNE’S PRAIRIE LAKE (NO MEDIAN MEDIAN 500- TOTAL P (NORCe N MEAN 20 1 8) 85 1 34) 58 33 I 13) 40 1 16) 38 154 6) 81 3) 43 75 ( 30) 91 1 36) 83 98(39) 58(23) 90 8(3) 51 2) 8 35 1 14) 40 C 19) 35 0 4 0) 0 ( 0) 0 83 1 33) 98 ( 38) 100 30 1 12) 50 C 20) 63 73(29) 88(35) 88 80(32) 98(38) 93 114 4) 65(26) 25 ME AN 15— MEDIAN INL)EA HIM DO OISS ONTHO P NO 4 23) ‘.0 C 16) 48 I 18) 15 1 6) 266 I 15) 48 4 19) 40 ( 16) 30 4 12) 229 I 17) 23 1 9) 13 I 5) 8 1 3) 110 1 33) 88 4 35) 74 4 29) 84 I 33) 495 I 36) 63 1 25) 83 4 32) 75 I 30) 467 C 3) 8 1 3) 16 1 6) 13 1 5) 58 C 14) 10 I 4) 69 ( 27) 63 C 25) 260 1 0) 20 1 8) 43 1 17) 35 ( 14) 98 1 40) 90 1 36) 60 I 23) 60 4 24) 491 I 25) 20 I ii) 16 1 6) 20 4 8) 207 ( 35) 60 1 24) 26 4 10) 84 ( 33) 419 1 37) 98 ( 39) 55 I 22) 99 4 39) 523 ------- LAKES RANKED BY INOE* NOS. RANK LAKE CODE LAKE NAME INDEX NO I 1230 LAKE HINNEOLA 579 2 1261 EAST LAKE TOHOPEKALIGA 523 3 1229 LAKE MINNEHAHA 517 4 1243 LAKE WEOHYAKAPKA 495 5 1250 LAKE TARPON 491 6 1221 LAKE ISTOKPOGA 7 1246 LAKE YALE 467 8 1224 LAKE KZSSIMMEE 455 9 1258 LAKE JESSIE 419 10 1219 LAKE HORSESHOE 406 11 1215 LAKE HAINES 396 12 1238 LAKE SOUTH 386 13 1232 LAKE OKEECHOBEE 366 j4 1228 LAKE MARION 366 15 1206 LAKE CRESCENT 346 16 1234 LAKE POINSETT 342 17 1207 DOCTORS LAKE 341 18 1236 LAKE REEO 337 19 1211 LAKE GIBSON 324 20 1208 LAKE DORA 297 21 1239 LAKE TALQUIN 294 22 1202 LAKE APOPKA 280 23 1212 GLENADA LAKE 276 2’ 1214 LAKE GRIFFIN 273 25 1240 LAKE THONOTOSASSA 266 26 1268 LAKE SEMINOLE 260 27 1210 LAKE GEORGE 256 28 1241 LAKE TOHOPEKALIGA 229 ------- LAKES RA’acED BY INDEA NOS. RA’ 4,c LAKE CODE LAKE NAME INDEX P40 29 1231 LAKE MONROE 215 30 1217 LAKE HANCOCK 213 31 1252 LAKE ELOISE 207 32 1264 PAYNE’S PRAIRIE LAKE (NO 206 33 1220 LAKE HOWELL 201 34 1203 LAKE BANANA 200 35 1223 LAKE JESSUP 184 36 1201 ALLIGATOR LAKE 130 37 1242 TROUT LAKE 110 38 1249 LAKE LAWNE 98 39 1247 LAKE MUNSON 58 40 1227 LAKE LULU 34 41 1209 LAKE EFFIE 31 ------- APPENDIX B CONVERSION FACTORS ------- CONVERSION FACTORS Ilectares x 2.471 = acres Kilometers x 0.6214 = miles Meters x 3.281 = feet Cubic meters x 8.107 x 10 = acre,’feet Square kilometers x 0.3861 square miles Cubic meters/sec x 35.315 — cubic feet/sec Centimeters x 0.3937 = inches Kilograms x 2.205 = pounds Kilograms/square kilometer x 5.711 = lbs/square mile ------- APPENDIX C TRIBUTARY FLOW DATA ------- TRIBUTARY FLO. INFORMATION FuR FLOQIDA 8/25/75 TOTAL DRAINAGE AREA OF LAKE = SUM OF SUB-DRAINAGL AREAS = LAKE CODE 1248 LAr E SEMINOLE TOTAL DRAINAGE AP EA OF LAKE(SU KM) SUB-DR A IMAGE TRI8UTARY AREA(S0 KM) 1248A1 12’.E3B1 1248C 1 1248ZZ JAN FEM 36.3 1.1 18.6 14.8 0.31 0.01 0.17 0.14 36.3 MAR O • 65 0.02 0.34 0 • 28 MAY 0.42 0.01 0.23 0.17 0.00 0.01 0.11 0.06 0.11 ocr NO V MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS) TRI8UTARY MONTH YEAR MEAN FLOW DAY DEC MEAN 36.3 34.5 0.01 0.01 0.01 0.01 0.14 0.08 0.14 0.24 0.11 0.08 0.11 0.19 FLOW DAY 5.29 5.38 NORMALIZED FLOWS(CMS) JUN JUL AUD SEP 0.42 1.19 1.13 0.01 0.04 0.03 0.25 0.62 0.57 0.20 0.51 0.45 SUMMARY TOTAL FLOW IN = TOTAL FLOW OUT = LOW DAY FLOW 0.14 0.01 1248A1 3 73 0.48 4 73 0.48 u.0 5 73 0.01 18 0.0 6 73 0.00 14 0.u5 7 73 0.34 13 0.71 8 73 1.50 16 1.73 9 73 2.18 14 0.22 10 73 0.23 12 0.45 11 73 0.40 4 0.22 12 73 1.13 13 0.37 1 74 0.45 18 0.07 2 14 0.10 14 0.01 124881 3 4 5 6 7 8 9 10 11 12 1 73 73 73 73 73 73 73 73 73 73 74 0.02 0.01 0.00 0.00 0.01 0.03 0.34 0.01 0.01 0.03 0.01 18 12 18 14 13 16 14 12 4 13 18 0.01 0.00 0.01 0.01 0.02 0.03 0.01 0.01 0.01 0.01 16 ------- TIUBUTARY FLOW INFORMATION FOR FLORIDA 8/25/75 LAKE CODE 1248 LAKE SEMINOLE MEAN MONTHLY FLOWS AND UAILY FLOWS(CMS) TRIBUTARY MONTH YEAF MEAN FLOW DAY FLOW DAY FLOW DAY FLOW 1248C1 3 73 0.45 18 0.22 4 73 0.27 12 0.2 5 73 0.01 18 0.0 6 73 0.04 14 0.14 7 73 0.28 13 0.22 8 73 0.96 18 0.57 9 73 1.47 14 1.13 10 73 0.15 12 0.14 11 73 0.25 4 0.2d 16 0.10 12 73 0.71 13 0.14 1 7’. 0.28 18 0.23 2 74 0.08 14 0.06 1248ZZ 3 73 0.21 18 0.13 4 73 0.17 12 0.14 5 73 0.03 18 0.01 6 73 0.04 14 0.10 7 73 0.14 13 0.13 8 73 0.42 16 0.27 9 73 0.57 14 0.45 10 73 0.10 12 0.10 11 73 0.14 4 0.16 16 0.07 12 73 0.34 13 0.10 1 74 0.16 18 0.13 2 74 0.06 14 0.03 ------- API ENDiX D PHYSICAL and cHL; ICAL D 1 TA ------- STORET ETr 1EVAL DAlE 75/08/25 12 +o0 1 27 52 00.0 0d2 46 45.0 LAi E SEMINOLE 12103 FLORIDA I1EPALES 2111202 0005 FEET DEPTr1 0001 ) 00300 00077 00094 00400 00410 00610 00625 00630 00671 DATE TiME DEPTrI WATER DO TRMNSP CND(JCTVY Ph 1 ALK NpI3N TOT KJEL NO2 NO3 PHOS—DIS FROM OF TEMP SECCHI FIELD CACO3 TOTAL N N-TOTAL ORTr1O TO DAY FEET CENT MG/L INCHES MICROMr4O SO MG/L M0/L MG/L MG/L MG/L P 73/03/09 16 25 0000 24.7 8.3 72 500 8.20 129 0.080 1.800 0.100 0.042 73/09/04 11 30 0000 28.1 7.2 24 471 9.00 115 0.100 2.800 0.120 0.025 73/11/06 10 54 0000 24..) 16 469 8.60 118 0.070 2.300 0.060 0.038 10 54 0003 24.3 8.0 469 00665 32217 DArE TIME DEPTH PHOS-TOT CHLRPI-iYL FROM OF A TO DAY FEET MG/L P U6/L 73/03/0 16 25 0000 0.236 75.8 73/09/0’. 11 30 0000 0.233 138.7 73/11/06 10 54 0000 O.2 ’ .3 119.3 ------- STORET RETRIEVAL DATE 75/08/25 124 dO 2 27 50 ‘+0.0 082 46 55.0 LAKE SEMINOLE 12103 FLOi IOA I 1EPALES 3 211 1202 0006 FEET DEPTH 73/03/09 16 40 0000 73/09/04 11 50 0000 11 50 0005 73/11/06 10 42 0000 10 42 0002 00665 32217 PHOS—TOT Ct-ILRPt-iYL A MG/L P UG/L 0.194 0.221 0.253 0.296 0 • 199 DATE TIME OEPTi-j FROM OF TO UAY FEET 73/03/09 16 40 0000 73/09/04 11 50 11 50 0000 0005 73/11/06 10 42 10 42 0000 0002 DATE TIME DEPTH FROM OF TO DAY FEET 00010 u0300 00077 00094 TOT KJEL NO2 .NO3 PHOS—OIS WATER DO TRANSP CNOUCTVY PH 1 ALK TOTAL N N—TOTAL ORTHO TEMP SECCHI FIELD CACO3 MG/L MG/L MG/L P CENT MG/L INCHES MICROMHO SO MG/L 24.6 10.0 12 585 9.10 129 0.080 1.800 2.100 0.090 0.130 0.013 0.019 28.2 8.0 18 490 9.00 108 0.120 2.600 0.150 0.021 27.9 6.4 490 8.80 107 3.200 0.070 0.031 24.4 15 480 9.10 110 3.200 0.070 0.028 24.4 8.’. 480 8.90 112 124.3 141.6 12.3 ------- APPENDIX E TRIBUTARY AND WASTEWATER TREATMENT PLANT DATA ------- STORET RETRIEVAL DATE 7 5/Cd/25 00630 00625 DATE TIME DEPTH r IO2&N03 TOT KJEL NH3N PHOSDIS FROM OF N-TOTAL N TOTAL ORTHO TO (JAY FEET MG/L MG/L M(j/L MG/L 1248A1 27 0 30.0 082 47 00.0 UNNAMEU Ti IBUtARY 12073 PINELLAS CO H Y 0/LAKE SEJIINOLE ST H Y 69’. tiROG jUST E OF SEMINOLE I1E?ALES 2111204 4 0000 FEET 0E?T l 00665 PHOS— TOT MG/L P 73/03/18 09 20 0.011 2.310 0.042 0.140 73/04/12 18 00 0.010K 2.000 0.036 0.021 0.190 73/05/18 18 00 0.01’. 3.000 0.048 0.044 0.270 73/06/14 18 00 0.034 3.780 0.063 0.060 0.260 73/07/13 18 00 0.013 2.500 0.028 0.042 0.180 73/08/16 18 00 0.010K 2.100 0.048 0.155 73/09/14 12 00 0.011 2.300 0.048 0.046 0.230 73/10/12 18 00 0.010K 3.600 0.073 0.058 0.800 73/11/04 09 00 0.950 1.450 0.060 0.760 0.190 73/12/13 18 00 0.020 1.900 0.040 0.044 0.165 74/01/18 74/02/14 18 18 00 00 3.00 0.032 2.100 6.500 0.025 0.065 0.035 0.035 0.180 K VALUE KNOWN TO BE LESS THAN INDICATED ------- STORET RETRIEVAL DATE 75/08/25 124881 27 28 30.0 082 28 30.0 UNNAMED TRIBUTARY 12 PINELLAS Co HWY T/LAKE SEMINOLE ST riwY 595 BRO ABOUT 1 MI N OF SEMINOLE 11EPALES 2111204 4 0000 FEET DEPTH 00630 00625 00610 00671 00665 DATE TIME DEPTH NO2 NO3 TOT KJEL NH3—N PHOS—DIS Pt-lOS—TOT FROM OF N—TOTAL N TOTAL ORT t -IO TO DAY FEET MG/L MG/L MG/L MG/L P MG/L P 73/03/18 09 35 0.031 2.730 0.048 0.029 0.270 73/06/12 18 20 0.010K 2.520 0.031 0.030 0.230 73/05/18 18 30 0.010K 3.800 0.021 0.078 0.350 73/06/14 18 05 0.012 6.100 0.026 0.087 0.525 73/07/13 18 20 0.066 3.000 0.300 0.294 0.430 73/08/16 18 10 0.010” 2.300 0.032 0.060 0.190 73/09/14 18 00 0.012 1.500 0.037 0.030 0.185 73/10/12 18 15 0.010K 2.800 0.039 0.050 0.170 73/11/16 18 10 0.024 2.900 0.044 0.066 0.300 73/12/13 18 15 0.092 1.500 0.020 0.036 0.135 74/01/18 18 10 0.010K 1.900 0.020 0.028 0.195 74/02/14 18 10 0.036 2.300 0.200 0.100 0.190 K VALUE KNOWN TO BE LESS THAN INDICATED ------- STORET RETRIEVAL DATE 7S/Oi/25 DATE FROM To TIME DEPT-’ OF DAY FFCT 12’. C1 27 53 00.0 082 46 30.0 LONG BAYOU CREEK 12 P1NELLA CO i-iWY T/LAr E SEMINOLE 8 UG ON RL) 688 1LE -’ALES 2111204 4 0000 FElT DEPTH 0063 ) 006?5 ‘.r 3N PHOS—DIS PHOSTOT NO2 NO3 TOT JEL ORTHO ‘4-TOTAL N TOTAL 73/03/IS 10 00 C.250 1.000 0.045 0.120 73/04/12 18 30 ‘).450 1.400 0.115 0.021 0.029 0.070 73/05/18 18 50 ).OLOrs 1.000 0.084 0.135 73/06/14 18 IS 0.066 1.050 0.100 0.042 3.240 73/07/13 16 45 0.010k 3.550 0.018 0.120 73/08/16 18 25 0.115 1.050 0.100 0.135 73/09/14 IS 10 0.280 0.920 .120 0.360 0.490 73110/12 18 30 0.058 2.000 0.740 0.072 0.115 73/11/16 18 20 3.206 1.350 0.088 0.044 0.085 73/12/13 18 3C C.4’.0 1.300 0.148 0.048 0.100 74/01/18 18 20 0.’ 90 0.900 0.104 0.050 0.085 74/02/14 18 20 0.’ u 1.000 0.080 K VALUE KNOWN TO 8E LESS THAN INDICATED ------- STORET RETRIEVAL DATE 75/08/25 12480A AS124 ODA P035000 27 55 00.0 080 46 35.0 L AR GO 12073 PINELLAS Co MAP D/LAKE SEMINOLE LAKE SEMINOLE L1EPALES 2141204 4 0000 FEET DEPTH 00630 00625 00610 00671 00665 50051 50053 DATE TIME DEPTH N02&N03 TOT KJEL NH3-N PHOS—DIS PNOS—TOT FLOW CONDUIT FROM OF N—TOTAL N TOTAL ORTt1O RATE FLO MGD TO DAY FEET MG/L MG/L M&/L MG/L P MG/L P INST MGO MONTHLY 73/05/09 08 00 CP(T)— 1.200 15.400 3.100 6.200 7.250 4.470 4.500 73/05/09 23 00 73/06/05 14 45 4.800 5.900 1.800 7.200 7.400 5.000 4.500 73/07/24 11 00 0.8b0 11.500 2.300 7.400 8.300 4.660 4.360 73/09/06 08 00 CPU)- 0.770 18.000 5.300 6.500 4.880 5.030 73/09/06 22 00 73/10/16 13 45 0.270 24.000 4.800 3.100 7.200 4.800 4.700 73/12/04 14 00 1.400 16.500 3.100 5.500 7.400 5.800 4.600 74/02/18 12 40 0.200 13.000 5.100 6.160 6.800 6.960 5.000 74/03/12 13 30 0.080 14.000 5.000 7.000 8.200 5.100 4.700 74/04/09 13 10 4.000 3.750 3.750 6.300 7.400 6.000 4.730 74/05/09 14 10 2.320 13.000 3.700 7.000 7.900 5.400 4.500 74/06/11 07 00 CP(T)— 0.280 16.680 5.000 7.700 7.700 4.490 74/06/12 06 00 74/07/02 00 00 CP(T)— 1.440 11.000 1.800 4.200 4.800 7.220 6.990 74/07/03 24 00 74/08/06 07 00 CP(T)— 3.000 14.000 1.300 5.000 5.900 5.820 5.610 74/08/07 06 00 ------- |