U.S. ENVIRONMENTAL PROTECTION AGENCY
             NATIONAL EUTROPHICATION SURVEY
                      WORKING PAPER SERIES
                                            REPORT
                                             ON
                                         U\KE SEMINOLE
                                        PINELLAS COUN1Y
                                           FLORIDA
                                         EPA REGION IV
                                      WORKING PAPER No, 273
   CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORV ALLIS, OREGON
                              and
  ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
6 GPO	697.032

-------
                                      REPORT
                                        ON
                                  LAKE SEMINOLE
                                 PINELLAS COUNTY
                                     FLORIDA
                                  EPA REGION IV
                              WORKING PAPER No, 273
          WITH THE COOPERATION OF THE
FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION
                   AND THE
            FLORIDA NATIONAL GUARD
                DECEMBER, 1977

-------
1
CONTENTS
Pane
For .’ord ii
List of Florida Lakes iv
Lake and Drainage /\rea Map v
Sections
I. Conclusions 1
11. Lake and Drainage basin Characteristics 3
III. Lake Water Quality Summary 4
IV. Nutrient Loadings 8
V. Literature Reviewed 12
VI. Appendices 13

-------
11
FOREWORD
The National Eutrophication Survey was initiated in 1972 in
response to an Administration commitment to investigate the nation-
wide threat of accelerated eutrophication to freshwater lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshw rer lakes as a basis for formulating
comprehensive and coordinated nat ona1, regional, arid state management
practices relating to point-•source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey’s eutrophication analysis are based on related concepts that:
a. A generdlized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the stuuy lake and its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [ 3O3(e)], water
quality criteria/standards review [ 3O3(c)], clean lakes [ 3l4(a,b)],
and water quality monitoring { lOG and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.

-------
111
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation’s
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulatien of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environmental Protection Agency)
expresses sincere appreciation to the Florida Department of Environ-
mental Regulation for professional involvement and to the Florida
National Guard for conducting the tributary sampling phase of the
Survey.
Joseph W. Landers, Jr., Secretary of the Department of Environ-
mental Regulation; John A Redmond, former Director of the Division
of Planning, Technical Assistance, and Grants; and Dr. TimS. Stuart,
Chief of the Bureau of Water Quality, provided invaluable lake docu-
mentation and counsel during the survey, reviewed the preliminary
reports, and provided critiques most useful in the preparation of this
Working Paper series.
Major General Henry W. McMillan (Retired), then the Adjutant
General of Florida, and Project Officer Colonel Hugo F. Windham,
who directed the volunteer efforts of the Florida National Guard,
are also gratefully acknowledged for their assistance to the Survey.

-------
iv
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF FLORIDA
LAKE NAME COUNTY
Alligator Columbia
Apopka Lake, Orange
Banana Polk
Crescent Flagler, Putnam
Doctors Clay
Dora Lake
East Tohopekaliga Osceola
Effie Polk
Eloise Polk
George Putnam, Volusia
Gtbson Polk
Glenada Highlands
Griffin Lake
Haines Polk
Hancock Pt lk
Horseshoe Semi nol e
Howell Orange, Seminole
Istokpoga Highlands
Jessie Polk
Jessup Seminole
Kissimmee Osceola
Lawne Orange
Lulu Polk
Marion Polk
Ilinnehaha Orange
Minneola Lake
Monroe Seminole, Volusia
Munson Leon
Okeechobee G’ades, Hendry, Martin,
Okeechobee, Palm Beach
Poinsett ff revard, Orange, Osceola
Reedy Polk
Seminole Jackson, FL; Decatur,
Seminole, GA
Seminole Pinellas
South 3revard
Taiquin Gadsden, Leon
Tarpon Pinellas
Thonotosassa Q jllshorough
Tohopeka I iga ©sceol a
Trout Lake
Weohyakapka Polk
Yale Lake

-------
Map Location
LAKE SEMINOLE
® Tributary San 1ing Site
X Lake Sampling Site
Sewage Treatment Facility
i 1m.
Scale

-------
LAKE SEMINOLE
STORET NO. 1248
I. CONCLUSIONS
A. Trophic Condition:
Survey data and a report by others (Ketelle and Uttormark,
1971) indicate Lake Seminole is eutrophic. It ranked twenty-sixth
in overall trophic quality when the 41 Florida lakes sampled in
1973 were compared using a combination of six parameters*. Twenty-
six of the lakes had less median total phosphorus, 15 had less
median dissolved phosphorus, 21 had less median inorganic nitrogen,
36 had less mean chlorophyll a, and 26 had greater mean Secchi
disc transparency.
Survey limnologists noted extensive beds of macrophytes
near the shoreline and observed algal blooms in progress at
both sampling stations in September and November.
B. Rate-Limiting Nutrient:
The algal assay results indicate Lake Seminole was nitrogen
limited at the time the sample was collected (03/08/73). The
lake data indicate nitrogen limitation at all sampling stations
and times.
C. Nutrient Controllability:
1. Point sources--No known point sources impacted Lake
Seminole during the sampling year. Nonetheless, the sampling
year phosphorus loading of 1.79 g/ni 2 /year is over three times
that proposed by Vollenweider (Vollenweider and Dillon, 1974)
*See Appendix A.

-------
2
as a eutrophic loading; and even though Florida lakes may
assimilate phosphorus at a higher level than that suggested
by Vollenweider (see page 11), the condition of the lake
Indicates nutrient loadings are excessive.
2. Non-point sources--The minor tributaries and immediate
drainage area contributed an estimated 67.1% of the total
phosphorus and 33.9% of the total nitrogen inputs during the
sampling year. Long Bayou Creek accounted for 27.0% of the
total phosphorus and 55.5% of the total nitrogen loads, and
Unnamed Stream B-i accounted for 3.5% and 5.7%, respectively.
Any significant change in the nutrient inputs to Lake Seminole
would involve reduction of the loads in these flows.

-------
3
II. LAKE AND DRAINAGE BASIN CHAR.ACTERISTICSt
A. Morphometry :
1. Surface area: 1.85 kilometers 2 .
2. Mean depth: 2.7 meters.
3. Maximum depth: Unknown.
4. Volume: 4.995 x 106 m 3 .
5. Mean hydraulic retention time: 128 days.
B. Tributary and Outlet:
(See Appendix C for flow data)
1. Tributaries -
Drainage Mean flow
Name area (km 2 )* ( m 3 /sec)*
Unnamed Stream B-i 1.1 0.01
Long Bayou Creek 18.6 0.24
Minor tributaries &
immediate drainage - 14.8 0.20
Totals 34.5 0.45**
2. Outlet -
Unnamed Stream A-i 36.3** 0.45
C. Precipitatiorl***:
1. Year of sampling: 105.5 centimeters.
2. Mean annual: 140.7 centimeters.
t Table of metric conversions--Appendix B.
tt Jackman, 1976.
* For limits of accuracy, see Working Paper No. 175, “...Survey Methods,
1973-1976”.
** Includes area of lake; inlet flows adjusted to equal outlet flow.
*** See Working Paper No. 175.

-------
4
III. WATER QUALITY SUMMARY
Lake Seminole was sampled three times during 1973 by means of
a pontoon-equipped Huey helicopter. Each time, samples for physical
and chemical parameters were collected from two stations on the
lake and from one or more depths at each station (see map, page
v). During each visit, a single depth-integrated (near bottom to
surface) sample was coniposited from the stations for phytoplankton
identification and enumeration; and during the first visit, a single
18.9-liter depth-integrated sample was composited for algal assays.
Also each time, a depth-integrated sample was collected from each
of the stations for chlorophyll a analysis. The maximum depths
sampled were 0.9 meters at station 1 and 1.5 meters at station 2.
The sampling results are presented in full in Appendix D and
are sunniiarized in the following table.

-------
2 SITES
A. UMMANY OF -‘r1YSJCAL AND Cr1EMICAL CHARACTERISTICS FOR LAI E SEMINOLE
SIURET COOE 1248
1ST SAMPLING ( 3/ 9/73) 2ND SAr -IPLING ( 9/ 4/73)
2 SITES
3RD SAMPLING (11/ 6/73)
2 SITES
PARAMETER
RANGE
MEAN
MEDI. N
RANGE
MEAN
MEDIAN
RANGE
MEAN
MEDIAN
TEMP (C)
24.6
— 24.7
24.6
24.t
27.9
— 28.2
28.1
28.1
24.3
— 24.4
24.3
24.3
DISS OXY (MG/L)
8.3
— 10.0
.1
.1
6.4
— 8.0
7.2
7.2
8.0
— 8.4
8.2
8.2
CNDCTVY (MCROMOJ
500.
— S 5.
543.
5.3.
471.
— 490.
484.
490.
469.
— 480.
475.
475.
PH (STAND UNITS)
8.2
— 9.1
.o
8 .
8.8
— 9.0
8.9
9.0
8.6
— 9.1
8.9
8.9
TOT AL}c (MG/L)
129.
— 129.
12 .
12 .
lOF.
— 115.
110.
108.
110.
— 118.
113.
112.
TOT P (MG/L)
0.194
— 0.236
0.215
0.215
0.221
— 0.253
0.236
0.233
0.199
— 0.296
0.246
0.243
ORTHO P (MG/U
0.013
— J.042
0.027
J.02t’
0.0i9
— 0.025
0.022
0.021
0.028
— 0.038
0.032
0.031
N02.N03 (Mu/L)
0.090
— u.103
0.09-
0. J95
0.140
— u.150
0.133
0.130
0.060
— 0.070
0.067
0.070
AMMONIA (MG/L)
0.080
— 0.083
0.080
.0d0
0.100
— 0.120
0.110
0.110
0.070
— 0.070
0.070
0.070
KJEL N (P -lO/L)
1.800
— 1.800
1.800
i.dGG
2.100
— 2.800
2.500
2.600
2.300
— 3.200
2.900
3.200
INORG N (MG/L)
& . 17J
— 0.)r 0
0.115
0.175
0.220
— 0.270
0.243
0.240
0.130
— 0.140
0.137
0.140
TOTAL N (MG/L)
1. 90
— 1.900
1.B9
1.89s
2.230
— 2.920
2.633
2.750
2.360
— 3.270
2.967
3.270
CHLRPYL A (U( /L)
75.8
— 124.3
100.u
100.0
138.7
— 141.6
140.1
140.1
12.3
— 119.3
65.8
65.8
SECCrII (METErQS) 0.3 1.8
1.1 1.1 0.5 — 0.6 0.5 0.5
0.4 0.4 0.4 0.4

-------
6
B. Biological characteristics:
1. Phytoplankton -
Algal Units
________ _________ per ml
1. Lyngbya • .p. 30,000
2. Raphidiopsis p. 9,818
3. Kirchneriella ia• 8,727
4. Microcystis . 6,000
5. Cyclotella . 5,273
Other genera 15,091
74,909
1. Dactylococcopsis p.
2. Oscillatoria R•
3. Lyngbya p•.
4. Raphidiopsis ! p_.
5. Nitzschia !P
Other genera ________
To ta 1
1. Pennate diatoms
2. Centric diatoms
3. Flagellates
4. Oscillatoria p.
5. Scenedesmus p.
Other genera ________
Total
2. Chlorophyll a -
Sampling Station Chlorophyll a
Date Number ( pg/i )
03/09/73 75.8
124.3
1 138.7
2 141.6
1 119.3
2 12.3
Domi nant
Genera
Sampi ing
Date
03/09/73
09/04/73
11/06/73
Total
29,260
26,565
20,020
9,240
8,855
42,735
136,675
28,394
24,784
24,300
23,822
9,145
43,314
153,759
1
2
09/04/73
11/06/73

-------
7
Maximum yield
( mg/i-dry wt. )
9.2
9.3
20.8
14.3
C. Limiting Nutrient Study:
1. Autociaved, filtered, and nutrient spiked —
Ortho P Inorganic N
Spike (mg/i) Conc. (mg/i) Conc. (mg/i ) ____ ______
Control 0.044 0.256
0.050 P 0.094 0.256
0.050 P + 1.0 N 0.094 1.256
1.0 N 0.044 1.256
2. Discussion —
The control yield of the assay alga, Selenastrum capri-
cornutum , indicates that the potential primary productivity
of Lake Seminole was high at the time the assay sample was
collected (03/09/73). Also, the addition of nitrogen alone
or in combination with orthophosphorus significantly increased
yields while the addition of orthophosphorus alone did not.
This indicates nitrogen limitation.
The mean lake inorganic nitrogen to orthophosphorus
ratios were 11 to 1 or less at all sampling stations and
times, and nitrogen limitation would be expected.

-------
8
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the Florida National
Guard collected monthly near-surface grab samples from each of the
tributary sites indicated on the map (page v). Sampling was begun in
March, 1973, and was completed in February, 1974.
Through an interagency agreement, stream flow estimates for the
year of sampling and a “normalized” or average year were provided by
the Florida District Office of the U.S. Geological Survey for the
tributary sites nearest the lake.
In this report, nutrient loads for sampled tributaries were
determined by using a modification of a U.S. Geological Survey computer
program for calculating stream loadings*.
Nutrient loads for unsanipled “minor tributaries and immediate
drainage” (“ZZ” of U.S.G.S.) were estimated using export rates of
150 kg P/km 2 /year and 500 kg N/km 2 /year**. These values were used
because land use in the areas drained by the major tributaries is
predominately agricultural, but land use in the immediate watershed
is predominately urban (i.e., “ZZ” estimates usually are based on
measured tributary exports; but because of the differing land use, the
exports would not be representative of the “ZZ” area).
The operator of the Largo wastewater treatment plant provided
monthly effluent samples and corresponding flow data, but the plant
does not affect Lake Seminole. However, the results of analyses of the
samples are included in Appendix E for the record.
As far as is known, no point sources impact the lake.
See Working Paper No. 175.
** Uttormark, Chapin, and Green, 1974.

-------
9
A. Waste Sources:
1. Known municipal - None*
2. Known industrial - None
B. Annual Total Phosphorus Loading - Average Year:
1. Inputs —
kgP/ %of
Source yr total
a. Tributaries (non-point load) -
Unnamed Stream B-i 115 3.5
Long Bayou Creek 895 27.0
b. Minor tributaries & imediate
drainage (non-point load)_** 2,220 67.1
c. Known municipal STP’s - None -
d. Septic tanks - None -
e. Known industrial - None - -
f. Direct precipitation*** - 80 2.4
Total 3,310 100.0
2. Outputs —
Lake outlet - Unnamed Stream A-l 2,830
3. Net annual P accumulation - 480 kg.
* Mead, 1976.
** Uttormark, Chapin, andGreen, 1974.
Brezonik and Shannon, 1971.

-------
10
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs —
kgN/ %of
Source yr total
a. Tributaries (non-point load) -
Unnamed Stream B-i 1,245 5.7
Long Bayou Creek 12,090 55.5
b. Minor tributaries & immediate
drainage (non-point load) - * 7,400 33.9
c. Known municipal STP’s - None -
d. Septic tanks - None -
e. Known industrial — None - -
f. Direct precipitation** - 1,075 4.9
Total 21,810 100.0
2. Outputs -
Lake outlet - Unnamed Stream A-i 41,635
3. Net annual N loss - 19,825 kg.
D. Non-point Nutrient Export by Subdrainage Area:
Tributary kg P/km 2 /yr kg N/km 2 /yr
Unnamed Stream B-l 105 1,132
Long Bayou Creek 48 650
* Uttormark, Chapin, and Green, 1974.
AA Brezonik and Shannon, 1971.

-------
11
E. Yearly Loads:
In the following table, the existing phosphorus loadings
are compared to those proposed by Vollenweider (Vollenweider
and Dillon, 1974). Note, however, that Florida lakes may be
able to assimilate phosphorus at a somewhat higher level than
that suggested by Vollenweider (Shannon and Brezonik, 1972).
Essentially, Vollenweider’s “dangerous” loading is one at
which the receiving water would become eutrophic or remain
eutrophic; his “permissible” loading is that which would
result in the receiving water remaining oligotrophic or becoming
oligotrophic if morphometry permitted. A mesotrophic loading
would be considered one between “dangerous” and “permissible”.
Vollenweider’s model may not be applicable to water bodies
with short hydraulic retention times.
Total Phosphorus Total Nitrogen
Total Accumulated Total Accumulated
grams/m 2 /yr 1.79 0.26 11.8 loss*
Vollenweider phosphorus loadings
(g/m 2 /yr) based on mean depth and mean
hydraulic retention time of Lake Seminole:
“Dangerous” (eutrophic loading) 0.54
“Permissible” (oligotrophic loading) 0.27
* There was an apparent loss of nitrogen during the sampling year. This
may have been due to nitrogen fixation in the lake, solubilization of
previously sedimented nitrogen, recharge with nitrogen-rich ground water,
unknown and unsampled point sources discharging directly to the lake, or
underestimation of the minor tributary and immediate drainage load.
Whatever the cause, a similar nitrogen loss has occurred at Shagawa Lake,
Minnesota, which has been intensively studied by EPA’s former National
Eutrophication and Lake Restoration Branch (Malueg et al., 1975).

-------
12
V. LITERATURE REVIEWED
Brezonik, Patrick L., and Earl E. Shannon, 1971. Trophic state of
lakes in north central Florida, Pubi. No. 13, FL Water Resources
Res Ctr., U. of FL, Gainesville.
Jackman, Dean, 1976. Personal communication (morphometry of Lake
Seminole). FL Dept. of Env. Reg. Tallahassee.
Ketelle, Martha J., and Paul D. Uttormark, 1971. Problem lakes in
the United States. EPA Water Poll. Contr. Res. Ser., Proj.
# 16010 EHR, Wash., DC.
Malueg, Kenneth W., D. Phillips Larsen, Donald W. Schults, and
Howard T. Mercier; 1975. A six-year water, phosphorus, and
nitrogen budget for Shagawa Lake, Minnesota. Jour. Environ.
Qual., vol. 4, no. 2, pp. 236-242.
Mead, William (City Engineer), 1976. Personal communication (point
sources impacting Lake Seminole). Largo.
Shannon, Earl E., and Patrick L. Brezonik, 1972. Relationships
between lake trophic state and nitrogen and phosphorus loading
rates. [ nv. Sci. & Techn. 6 (8): 719—725.
Uttormark, Paul D., John D. Chapin, and Kenneth M. Green, 1974. Esti-
mating nutrient loadings of lakes from non-point sources. EPA
Rept. 660/3-74-020, Wash., DC.
Vollenweider, R. A., and P. J. Dillon, 1974. The application of
the phosphorus loading concept to eutrophication research.
Natl. Res. Council of Canada Publ. No. 13690, Canada Centre
for Inland Waters, Burlington, Ontario.

-------
13
VI . APPENDICES
APPENDIX A
LAKE RANKINGS
CorV I E v ° :nc
200 SW 3 thgt-eet
Co v l g7330

-------
LAKE DATA TO BE USED IN RANKINGS
LAKE MEDIAN MEDIAN 500— MEAN 15— MEDIAN
CODE LAKE NAME TOTAL P 1PIOi G N MEAN SEC CNL ORA MIN 00 0155 ORTHO P
1201 ALLIGATOR LAKE 0.620 0.260 474.000 87.733 13.100 0.386
1202 LAKE APOPKA 0.102 0.230 484.176 46.611 8.200 0.0)9
1203 LAKE BANANA 0.660 0.260 482.667 208.600 3.600 0.293
1206 LAKE CRESCENT 0.065 0.130 473.889 10.211 10.200 0.033
1207 DOCTORS LAKE 0.084 0.120 465.555 27.100 10.600 0.028
1208 LAKE DORA 0.102 0.240 482.889 5 .978 7.400 0.022
1209 LAKE EFFIE 1.480 0.410 489.000 261.433 15.000 0.950
1210 LAKE GEORGE 0.129 0.165 469.308 35.000 11.000 0.063
1211 LAKE GIBSON 0.167 0.115 470.000 19.675 10.200 0.069
1212 GLENADA LAKE 0.134 0.165 454.167 27.667 14.700 0.072
12)4 LAKE GRIFFIN 0.119 0.260 481.333 66.855 6.600 0.038
1215 LAKE HAINES 0.063 0.115 462.667 26.567 10.600 0.014
1217 LAKE HANCOCK 0.772 0,195 483.500 97.900 5.600 0.158
1219 LAKE HORSESHOE 0.034 0.130 459.000 12.067 11.500 0.023
1220 LAKE HOWELL 1 .260 0.285 464.000 54.117 9.000 1.175
122) LAKE ISTOPcPOGA 0.039 0.120 464.222 6.594 8.600 0.010
12 3 LAKE JESSUP 0.492 0.290 487.000 76.550 7.600 0.288
3224 LAKE KISSIMMEE 0.034 0.145 463.667 24.142 8.800 0.007
1227 LAKE LIJLU 1.490 1.065 483.000 276.566 14.300 1.030
1228 LAKE MARION 0.044 0.260 468.833 29.967 7.600 0.016
1229 LAKE MINNEHAHA 0.038 0.080 435.000 8.733 7.700 0.012
1230 LAKE MINNEOLA 0.018 0.070 406.333 3.333 7.400 0.009
1231 LAKC MONROE 0.188 0,300 474.555 14.225 10.800 0.128
1232 LAKE OKEECHOSEE 0.063 0.185 472.366 14.524 9.800 0.010
1234 LAKE POINSETT 0.085 0.150 469.000 6.500 10.600 0.05)
1236 LAKE REEDY 0.033 0.330 468.500 34.837 10.600 0.008
1238 LAKE SOUTH 0,074 0.130 464.000 23.167 9.000 0.028
1239 LAKE TALQUIN 0.085 0.290 462.167 9.483 14.400 0.031

-------
LAKE DATA TO BE USED IN RANKINGS
LAKE MEDIAN HIDIAN 500— MEAN 15— MEDIAN
CODE LAKE NAME TOTAL P INORG N MEAN SEC CP4LORA MIN DO DISS ORTHO P
1240 LAKE THONOTOSASSA 0.695 0.095 466.167 37.700 10.200 0.565
1241 LAKE TOHOPEKALIGA 0.2% 0.200 472.917 30.633 10.500 0.152
1242 TROUT LAKE 1.110 0.650 472.000 76.967 12.900 0.970
1243 LAKE W(OHYAKAPKA 0.047 0.080 458.667 7.767 8.200 0.011
1246 LAKE YALE 0.027 0.160 441.000 25.367 7.600 0.014
1247 LAKE MUNSON 1.475 0.925 486.667 140.317 12.200 0.852
1248 LAKE SEMINOLE 0.234 0.175 473.833 102.000 8.600 0.026
1249 LAKE LAWNE 2.560 1.350 494.667 84.900 10.400 0.117
1250 LAKE TARPON 0.041 0.070 400.889 6.867 9.000 0.027
1252 LAKE ELOISE 0.486 0.170 465.333 70.233 12.200 0.339
1258 LAKE JESSIE 0.051 0.090 452.667 26.300 10.800 0.011
1261 EAST LAKE TOHOPEKALIGA 0.042 0.070 440.833 5.167 9.400 0.007
1264 PAYNE’S PRAIRIE LAKE NO 1.260 0.140 476.000 88.200 7.400 1.210

-------
P€i CENT OF LAKES WITH HiGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)
MEAN 15— MEDIAN INOEX
LAKE
CODE
LAKE NAME
MEDIAN
TOTAL P
MEDIAN
INOPG
N
500—
)4EAN SEC
CHLORA
HIM
DO
DISS ORTHO P
NO
120$
ALLIGATOR LAKE
25 I
10)
29 (
10)
30 I
12)
18 C
7)
10 C
4)
18 (
7)
130
1202
LAKE APOPKA
SO C
20)
38 (
IS)
10 (
4)
38 (
15)
74 I
29)
70 I
28)
280
1203
LAKE BANANA
23 C
9)
29 (
10)
20 1
8)
5 1
2)
100 1
40)
23 1
9)
200
1206
LAKE CRESCENT
65 I
26)
70 1
27)
33 C
13)
80 I
32)
48 C
18)
50 1 20)
346
120?
DOCTORS LAKE
60 I
24)
76 I
30)
60 1
24)
55 I
22)
34 C
12)
56 1
22)
341
1208
LAKE DORA
53 I
21)
35 I
14)
18 I
7)
33 ( 13)
90 C
35)
68 I 27)
297
1209
LAKE EFFIE
S (
2)
10 (
4)
3 1
$)
3 I 1)
0 C
0)
10 ( 4)
31
$210
LAKE GEORGE
45 I
18)
54 I
21)
48 I
19)
43 I 17)
23 C
9)
43 C 17)
256
1211
LAKE GIBSON
40 I
16)
81 C
32)
45 I
18)
70 1 28)
48 1
18)
40 C 16)
324
$212
GLENADA LAKE
43 I
Ii)
54 C
21)
85 I
34)
53 I 21)
3 1
II
38 I IS)
276
1214
LAKE GRIFFIN
48 1
19)
29 I
10)
23 I
9)
30 I 12)
95 I
38)
48 I 19)
273
$215
LAKE HAINES
70 C
28)
81 C
32)
75 I
30)
58 I 23)
34 ( 12)
78 ( 31)
396
1217
LAKE HANCOCK
18
7)
43 I
17)
13 1 5)
13 I 5)
98 I 39)
28 I 11)
213
1219
LAKE HORSESHOE
93 1
37)
70 I
27)
80 I 32)
78 I 31)
20 I 8)
65 I 26)
406
1220
LAKE HOWELL
11
4)
23 (
9)
69 1 27)
35 1 14)
60 I 23)
3 ( 1)
201
1221
LAKE ISTOKPOGA
85 I
34)
76 I
30)
65 C 26)
93 C 37)
69 C 27)
89 C 35)
477
1223
LAKE JESSUP
28 I
11)
18 I
7)
5 I 2)
25 1 10)
83 I 32)
25 1 $0)
$84
1224
LAKE KISSIMMEE
90 I
36)
63 1
25)
73 29)
65 ( 26)
65 C 26)
99 I 39)
4 5
1227
LAKE LULU
3 I
1)
3 I
1)
15 C 6)
0 I 0)
8 I 3)
5 2)
34
1228
LAKE MARION
78 I
31)
29 I
10)
53 C 21)
50
I 20)
83 I 32)
73 1 29)
366
1229
LAKL M!NNEP4AHA
88 I
35)
91 I
36)
95 1 38)
85
I 34)
78 1 31)
80
( 32)
517
1230
LAKE MINNEOLA
100 I
40)
98 (
38)
98 ( 39)
100
1 40)
90 ( 35)
93
I 37)
579
$231
LAKE MONROE
38 I
15)
15 1
6)
28
I II)
75
I 30)
26 I 10)
33
I 13)
215
$232
LAKE OKEECKOBEE
68 1
27)
45 1
18)
40
C 16)
73
I 29)
53 1 21)
89
( 35)
368
1234
LAKE POINSETT
58 I
23)
60 C
24)
50
1 20)
95
I 38)
34
I 12)
45
I 18)
342
$236
LAKE REEDY
95 I
38)
13 C
5)
55
C 22)
45
I 18)
34
I $2)
95
C 38)
337
1238
LAKE SOUTH
63 I
25)
70 I
27)
69
1 27)
68
I 27)
60
1 23)
56
1 22)
386
1239 LAKE TALOUIN
55 1 22) 20 I 8) 78 I 31) 83 I 33) 5 I 2) 53 ( 21)

-------
PERCENT OF LAKES WITH HiGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)
LAKE
CODE
1240
1241
1242
1243
1246
1267
1248
1249
1250
1252
1258
126 I
1264
LAKE NAME
LAKE THONOTOSASSA
LAKE TOHOPEKALIGA
TROUT LAKE
LAKE WEOHYAKAPKA
LAKE YALE
LAKE MUNSON
LAKE SEMINOLE
LAKE LAWNE
LAKE TARPON
LAKE ELOISE
LAKE JESSIE
EAST LAKE TOHOPEKALIGA
PAYNE’S PRAIRIE LAKE (NO
MEDIAN MEDIAN 500-
TOTAL P (NORCe N MEAN
20 1 8) 85 1 34) 58
33 I 13) 40 1 16) 38
154 6) 81 3) 43
75 ( 30) 91 1 36) 83
98(39) 58(23) 90
8(3) 51 2) 8
35 1 14) 40 C 19) 35
0 4 0) 0 ( 0) 0
83 1 33) 98 ( 38) 100
30 1 12) 50 C 20) 63
73(29) 88(35) 88
80(32) 98(38) 93
114 4) 65(26) 25
ME AN
15— MEDIAN INL)EA
HIM DO OISS ONTHO P NO
4
23)
‘.0 C
16)
48 I
18)
15 1
6)
266
I
15)
48 4
19)
40 (
16)
30 4
12)
229
I
17)
23 1 9)
13 I
5)
8 1 3)
110
1
33)
88 4 35)
74 4
29)
84 I 33)
495
I
36)
63 1 25)
83 4 32)
75 I 30)
467
C
3)
8 1 3)
16 1 6)
13 1 5)
58
C
14)
10 I 4)
69 ( 27)
63 C 25)
260
1
0)
20 1 8)
43 1 17)
35 ( 14)
98
1
40)
90 1 36)
60 I 23)
60 4 24)
491
I
25)
20 I ii)
16 1 6)
20 4 8)
207
(
35)
60
1 24)
26 4 10)
84 ( 33)
419
1
37)
98
( 39)
55
I 22)
99
4 39)
523

-------
LAKES RANKED BY INOE* NOS.
RANK LAKE CODE LAKE NAME INDEX NO
I 1230 LAKE HINNEOLA 579
2 1261 EAST LAKE TOHOPEKALIGA 523
3 1229 LAKE MINNEHAHA 517
4 1243 LAKE WEOHYAKAPKA 495
5 1250 LAKE TARPON 491
6 1221 LAKE ISTOKPOGA
7 1246 LAKE YALE 467
8 1224 LAKE KZSSIMMEE 455
9 1258 LAKE JESSIE 419
10 1219 LAKE HORSESHOE 406
11 1215 LAKE HAINES 396
12 1238 LAKE SOUTH 386
13 1232 LAKE OKEECHOBEE 366
j4 1228 LAKE MARION 366
15 1206 LAKE CRESCENT 346
16 1234 LAKE POINSETT 342
17 1207 DOCTORS LAKE 341
18 1236 LAKE REEO 337
19 1211 LAKE GIBSON 324
20 1208 LAKE DORA 297
21 1239 LAKE TALQUIN 294
22 1202 LAKE APOPKA 280
23 1212 GLENADA LAKE 276
2’ 1214 LAKE GRIFFIN 273
25 1240 LAKE THONOTOSASSA 266
26 1268 LAKE SEMINOLE 260
27 1210 LAKE GEORGE 256
28 1241 LAKE TOHOPEKALIGA 229

-------
LAKES RA’acED BY INDEA NOS.
RA’ 4,c LAKE CODE LAKE NAME INDEX P40
29 1231 LAKE MONROE 215
30 1217 LAKE HANCOCK 213
31 1252 LAKE ELOISE 207
32 1264 PAYNE’S PRAIRIE LAKE (NO 206
33 1220 LAKE HOWELL 201
34 1203 LAKE BANANA 200
35 1223 LAKE JESSUP 184
36 1201 ALLIGATOR LAKE 130
37 1242 TROUT LAKE 110
38 1249 LAKE LAWNE 98
39 1247 LAKE MUNSON 58
40 1227 LAKE LULU 34
41 1209 LAKE EFFIE 31

-------
APPENDIX B
CONVERSION FACTORS

-------
CONVERSION FACTORS
Ilectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 = feet
Cubic meters x 8.107 x 10 = acre,’feet
Square kilometers x 0.3861 square miles
Cubic meters/sec x 35.315 — cubic feet/sec
Centimeters x 0.3937 = inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = lbs/square mile

-------
APPENDIX C
TRIBUTARY FLOW DATA

-------
TRIBUTARY FLO. INFORMATION FuR FLOQIDA
8/25/75
TOTAL DRAINAGE AREA OF LAKE =
SUM OF SUB-DRAINAGL AREAS =
LAKE CODE 1248
LAr E SEMINOLE
TOTAL DRAINAGE AP EA OF LAKE(SU KM)
SUB-DR A IMAGE
TRI8UTARY AREA(S0 KM)
1248A1
12’.E3B1
1248C 1
1248ZZ
JAN FEM
36.3
1.1
18.6
14.8
0.31
0.01
0.17
0.14
36.3
MAR
O • 65
0.02
0.34
0 • 28
MAY
0.42
0.01
0.23
0.17
0.00
0.01
0.11
0.06
0.11
ocr
NO V
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TRI8UTARY MONTH YEAR MEAN FLOW DAY
DEC MEAN
36.3
34.5
0.01
0.01
0.01
0.01
0.14
0.08
0.14
0.24
0.11
0.08
0.11
0.19
FLOW DAY
5.29
5.38
NORMALIZED FLOWS(CMS)
JUN JUL AUD SEP
0.42 1.19 1.13
0.01 0.04 0.03
0.25 0.62 0.57
0.20 0.51 0.45
SUMMARY
TOTAL FLOW IN =
TOTAL FLOW OUT =
LOW DAY FLOW
0.14
0.01
1248A1
3
73
0.48
4
73
0.48
u.0
5
73
0.01
18
0.0
6
73
0.00
14
0.u5
7
73
0.34
13
0.71
8
73
1.50
16
1.73
9
73
2.18
14
0.22
10
73
0.23
12
0.45
11
73
0.40
4
0.22
12
73
1.13
13
0.37
1
74
0.45
18
0.07
2
14
0.10
14
0.01
124881
3
4
5
6
7
8
9
10
11
12
1
73
73
73
73
73
73
73
73
73
73
74
0.02
0.01
0.00
0.00
0.01
0.03
0.34
0.01
0.01
0.03
0.01
18
12
18
14
13
16
14
12
4
13
18
0.01
0.00
0.01
0.01
0.02
0.03
0.01
0.01
0.01
0.01
16

-------
TIUBUTARY FLOW INFORMATION FOR FLORIDA 8/25/75
LAKE CODE 1248 LAKE SEMINOLE
MEAN MONTHLY FLOWS AND UAILY FLOWS(CMS)
TRIBUTARY MONTH YEAF MEAN FLOW DAY FLOW DAY FLOW DAY FLOW
1248C1 3 73 0.45 18 0.22
4 73 0.27 12 0.2
5 73 0.01 18 0.0
6 73 0.04 14 0.14
7 73 0.28 13 0.22
8 73 0.96 18 0.57
9 73 1.47 14 1.13
10 73 0.15 12 0.14
11 73 0.25 4 0.2d 16 0.10
12 73 0.71 13 0.14
1 7’. 0.28 18 0.23
2 74 0.08 14 0.06
1248ZZ 3 73 0.21 18 0.13
4 73 0.17 12 0.14
5 73 0.03 18 0.01
6 73 0.04 14 0.10
7 73 0.14 13 0.13
8 73 0.42 16 0.27
9 73 0.57 14 0.45
10 73 0.10 12 0.10
11 73 0.14 4 0.16 16 0.07
12 73 0.34 13 0.10
1 74 0.16 18 0.13
2 74 0.06 14 0.03

-------
API ENDiX D
PHYSICAL and cHL; ICAL D 1 TA

-------
STORET ETr 1EVAL DAlE 75/08/25
12 +o0 1
27 52 00.0 0d2 46 45.0
LAi E SEMINOLE
12103 FLORIDA
I1EPALES 2111202
0005 FEET DEPTr1
0001 ) 00300 00077 00094 00400 00410 00610 00625 00630 00671
DATE TiME DEPTrI WATER DO TRMNSP CND(JCTVY Ph 1 ALK NpI3N TOT KJEL NO2 NO3 PHOS—DIS
FROM OF TEMP SECCHI FIELD CACO3 TOTAL N N-TOTAL ORTr1O
TO DAY FEET CENT MG/L INCHES MICROMr4O SO MG/L M0/L MG/L MG/L MG/L P
73/03/09 16 25 0000 24.7 8.3 72 500 8.20 129 0.080 1.800 0.100 0.042
73/09/04 11 30 0000 28.1 7.2 24 471 9.00 115 0.100 2.800 0.120 0.025
73/11/06 10 54 0000 24..) 16 469 8.60 118 0.070 2.300 0.060 0.038
10 54 0003 24.3 8.0 469
00665 32217
DArE TIME DEPTH PHOS-TOT CHLRPI-iYL
FROM OF A
TO DAY FEET MG/L P U6/L
73/03/0 16 25 0000 0.236 75.8
73/09/0’. 11 30 0000 0.233 138.7
73/11/06 10 54 0000 O.2 ’ .3 119.3

-------
STORET RETRIEVAL DATE 75/08/25
124 dO 2
27 50 ‘+0.0 082 46 55.0
LAKE SEMINOLE
12103 FLOi IOA
I 1EPALES
3
211 1202
0006 FEET DEPTH
73/03/09 16 40 0000
73/09/04 11 50 0000
11 50 0005
73/11/06 10 42 0000
10 42 0002
00665 32217
PHOS—TOT Ct-ILRPt-iYL
A
MG/L P UG/L
0.194
0.221
0.253
0.296
0 • 199
DATE
TIME
OEPTi-j
FROM
OF
TO
UAY
FEET
73/03/09
16 40
0000
73/09/04
11 50
11 50
0000
0005
73/11/06
10 42
10 42
0000
0002
DATE
TIME
DEPTH
FROM
OF
TO
DAY
FEET
00010
u0300
00077
00094
TOT KJEL
NO2 .NO3
PHOS—OIS
WATER
DO
TRANSP
CNOUCTVY
PH
1 ALK
TOTAL
N
N—TOTAL
ORTHO
TEMP
SECCHI
FIELD
CACO3
MG/L
MG/L
MG/L P
CENT
MG/L
INCHES
MICROMHO
SO
MG/L
24.6
10.0
12
585
9.10
129
0.080
1.800
2.100
0.090
0.130
0.013
0.019
28.2
8.0
18
490
9.00
108
0.120
2.600
0.150
0.021
27.9
6.4
490
8.80
107
3.200
0.070
0.031
24.4
15
480
9.10
110
3.200
0.070
0.028
24.4
8.’.
480
8.90
112
124.3
141.6
12.3

-------
APPENDIX E
TRIBUTARY AND WASTEWATER
TREATMENT PLANT DATA

-------
STORET RETRIEVAL DATE 7 5/Cd/25
00630
00625
DATE
TIME DEPTH r IO2&N03
TOT
KJEL
NH3N
PHOSDIS
FROM
OF
N-TOTAL
N
TOTAL
ORTHO
TO
(JAY FEET
MG/L
MG/L
M(j/L
MG/L
1248A1
27 0 30.0 082 47 00.0
UNNAMEU Ti IBUtARY
12073 PINELLAS CO H Y
0/LAKE SEJIINOLE
ST H Y 69’. tiROG jUST E OF SEMINOLE
I1E?ALES 2111204
4 0000 FEET 0E?T l
00665
PHOS— TOT
MG/L P
73/03/18
09
20
0.011
2.310
0.042
0.140
73/04/12
18
00
0.010K
2.000
0.036
0.021
0.190
73/05/18
18
00
0.01’.
3.000
0.048
0.044
0.270
73/06/14
18
00
0.034
3.780
0.063
0.060
0.260
73/07/13
18
00
0.013
2.500
0.028
0.042
0.180
73/08/16
18
00
0.010K
2.100
0.048
0.155
73/09/14
12
00
0.011
2.300
0.048
0.046
0.230
73/10/12
18
00
0.010K
3.600
0.073
0.058
0.800
73/11/04
09
00
0.950
1.450
0.060
0.760
0.190
73/12/13
18
00
0.020
1.900
0.040
0.044
0.165
74/01/18
74/02/14
18
18
00
00
3.00
0.032
2.100
6.500
0.025
0.065
0.035
0.035
0.180
K VALUE KNOWN TO BE
LESS THAN INDICATED

-------
STORET RETRIEVAL DATE 75/08/25
124881
27 28 30.0 082 28 30.0
UNNAMED TRIBUTARY
12 PINELLAS Co HWY
T/LAKE SEMINOLE
ST riwY 595 BRO ABOUT 1 MI N OF SEMINOLE
11EPALES 2111204
4 0000 FEET DEPTH
00630 00625 00610 00671 00665
DATE TIME DEPTH NO2 NO3 TOT KJEL NH3—N PHOS—DIS Pt-lOS—TOT
FROM OF N—TOTAL N TOTAL ORT t -IO
TO DAY FEET MG/L MG/L MG/L MG/L P MG/L P
73/03/18 09 35 0.031 2.730 0.048 0.029 0.270
73/06/12 18 20 0.010K 2.520 0.031 0.030 0.230
73/05/18 18 30 0.010K 3.800 0.021 0.078 0.350
73/06/14 18 05 0.012 6.100 0.026 0.087 0.525
73/07/13 18 20 0.066 3.000 0.300 0.294 0.430
73/08/16 18 10 0.010” 2.300 0.032 0.060 0.190
73/09/14 18 00 0.012 1.500 0.037 0.030 0.185
73/10/12 18 15 0.010K 2.800 0.039 0.050 0.170
73/11/16 18 10 0.024 2.900 0.044 0.066 0.300
73/12/13 18 15 0.092 1.500 0.020 0.036 0.135
74/01/18 18 10 0.010K 1.900 0.020 0.028 0.195
74/02/14 18 10 0.036 2.300 0.200 0.100 0.190
K VALUE KNOWN TO BE
LESS THAN INDICATED

-------
STORET RETRIEVAL DATE 7S/Oi/25
DATE
FROM
To
TIME DEPT-’
OF
DAY FFCT
12’. C1
27 53 00.0 082 46 30.0
LONG BAYOU CREEK
12 P1NELLA CO i-iWY
T/LAr E SEMINOLE
8 UG ON RL) 688
1LE -’ALES 2111204
4 0000 FElT DEPTH
0063 )
006?5
‘.r 3N
PHOS—DIS
PHOSTOT
NO2 NO3
TOT JEL
ORTHO
‘4-TOTAL
N
TOTAL
73/03/IS
10
00
C.250
1.000
0.045
0.120
73/04/12
18
30
‘).450
1.400
0.115
0.021
0.029
0.070
73/05/18
18
50
).OLOrs
1.000
0.084
0.135
73/06/14
18
IS
0.066
1.050
0.100
0.042
3.240
73/07/13
16
45
0.010k
3.550
0.018
0.120
73/08/16
18
25
0.115
1.050
0.100
0.135
73/09/14
IS
10
0.280
0.920
.120
0.360
0.490
73110/12
18
30
0.058
2.000
0.740
0.072
0.115
73/11/16
18
20
3.206
1.350
0.088
0.044
0.085
73/12/13
18
3C
C.4’.0
1.300
0.148
0.048
0.100
74/01/18
18
20
0.’ 90
0.900
0.104
0.050
0.085
74/02/14
18
20
0.’ u
1.000
0.080
K VALUE KNOWN TO 8E
LESS THAN INDICATED

-------
STORET RETRIEVAL DATE 75/08/25
12480A AS124 ODA P035000
27 55 00.0 080 46 35.0
L AR GO
12073 PINELLAS Co MAP
D/LAKE SEMINOLE
LAKE SEMINOLE
L1EPALES 2141204
4 0000 FEET DEPTH
00630 00625 00610 00671 00665 50051 50053
DATE TIME DEPTH N02&N03 TOT KJEL NH3-N PHOS—DIS PNOS—TOT FLOW CONDUIT
FROM OF N—TOTAL N TOTAL ORTt1O RATE FLO MGD
TO DAY FEET MG/L MG/L M&/L MG/L P MG/L P INST MGO MONTHLY
73/05/09 08 00
CP(T)— 1.200 15.400 3.100 6.200 7.250 4.470 4.500
73/05/09 23 00
73/06/05 14 45 4.800 5.900 1.800 7.200 7.400 5.000 4.500
73/07/24 11 00 0.8b0 11.500 2.300 7.400 8.300 4.660 4.360
73/09/06 08 00
CPU)- 0.770 18.000 5.300 6.500 4.880 5.030
73/09/06 22 00
73/10/16 13 45 0.270 24.000 4.800 3.100 7.200 4.800 4.700
73/12/04 14 00 1.400 16.500 3.100 5.500 7.400 5.800 4.600
74/02/18 12 40 0.200 13.000 5.100 6.160 6.800 6.960 5.000
74/03/12 13 30 0.080 14.000 5.000 7.000 8.200 5.100 4.700
74/04/09 13 10 4.000 3.750 3.750 6.300 7.400 6.000 4.730
74/05/09 14 10 2.320 13.000 3.700 7.000 7.900 5.400 4.500
74/06/11 07 00
CP(T)— 0.280 16.680 5.000 7.700 7.700 4.490
74/06/12 06 00
74/07/02 00 00
CP(T)— 1.440 11.000 1.800 4.200 4.800 7.220 6.990
74/07/03 24 00
74/08/06 07 00
CP(T)— 3.000 14.000 1.300 5.000 5.900 5.820 5.610
74/08/07 06 00

-------