440/9-75-005-c
FINAL REPORT
VOLUME HI - APPENDICES
DETERMINATION OF HARMFUL QUANTITIES AND
RATES OF PENALTY FOR HAZARDOUS SUDSTANCES
JANUARY 1975
ENVIRONMENTAL PROTECTION AGENCY • OFFICE OF WATER PLANNING AND STANDARDS
-------
EPA-44 0/9-75-005-c
FINAL REPORT
VOLUME III - APPENDICES
DETERMINATION OF HARMFUL QUANTITIES AND
RATES OF PENALTY FOR HAZARDOUS SUBSTANCES
by
Gaynor W. Dawson
Michael W. Stradley
Alan J. Shuckrow
CONTRACT 68-01—2268
Project Officer
C. Hugh Thompson
OCTOBER 1974
Prepared for
HAZA WS SU ’XNC BRNCH
OFFICE OF WATER PLANNING AND STANDARDS
U. S. ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, D. C. 20460
For sale by the Superintendent of Documents U.S. Government Printing Office
Washington, D.C. 20402- PrIce $10.10 per sat of 4 Vols Sold In sets only.
Stock Number 068-001-01028.-i
-------
TABLE OF CONTENTS
Appendix Page
A INPUT DATA FOR DESIGNATED
HAZARDOUS SUBSTANCES
B SPECIFIC EVALUATION PROCEDURES
EMPLOYED TO DERIVE VALIJES FOR
VOLUMES OF FRESHWATER LAKES AND
SURFACE AREAS OF ESTUARINE SYSTEMS . . . 111-99
NOTES TO FIGURE IV-4 111-100
NOTED TO FIGURE IV—7. . 111—109
C TABLE OF INTRINSIC ADJUSTMENT
FACTORS FOR THE RESOURCE VALUE
METHODOLOGY 111-112
D MATHEMATICAL MODEL DETERMINATION
OF THE TOTAL WATER VOLUME SUBJECTED
TO A CRITICAL CONCENTRATION FROM
A POINT SOURCE SPILL OF A HAZARD-
OUS MATERIAL 111—135
QUANTITATIVE DESCRIPTION
OF MODEL . . . 111—137
COASTAL MODEL . 111-143
RIVER MODEL 111-143
ESTUARINE MODEL . . . . . . 111-14 4
Model Sununary. . . . . . . . 111—144
E IMCO/GESAMP GUIDELINES FOR PRO-
FILING HAZARDOUS MATERIALS . . . 111-149
F IMCO/GESAMP GUIDELINES FOR CATE-
GORIZING HAZARDOUS MATERIALS . . 111-153
G TABLE OF IMCO METHODOLOGY CLASSI-
FICATION OF HAZARDOUS MATERIALS. . 111-157
H HAZARDOUS MATERIALS BY IMCO
HAZARD CATEGORY 111—181
-------
TABLE OF CONTENTS (Cont’d.)
DETERMINATION OF INCO METHODOLOGY
ADJUSTMENT FACTORS FOR DEGRADABIL 1TY
AND DISPERSIBILITY THROUGH THE USE
OF A DELPHI TECHNIQUE. ......*.. 111-187
GENERAL *4 111—187
PROCEDURE.. ...... 4 111—187
ENCLOSURE I-i, PHYSICAL!
CHEMICAL PROPERTIES 111-195
ENCLOSURE 1-2, HAZARD
POTENTIALS 111—197
DERIVATION OF REPRESENTATIVE
STREAMFLOW... 4 •4* • 111—199
K ESTUARINE TYPES AND MODEL
DERIVATION . . . . . . . . . 111—217
SALT WEDGE ESTUARY. . . . . . . . 111-217
Pl RTIALLY-MIXED ESTUARY . . . . . . 111-218
WELL-MIXED ESTUARY 111-220
MODEL EQUATION DERIVATION . . . . 111-221
L DERIVATION OF THE TINE AT WHICH
THE MINIMUM HARMFUL QUANTITY IS
OBTAINED IN THE PLUG FLOW MODEL. . . * . 111-225
M TOTAL COST OF PREVENTION ADJUST-
MENTFACTORS............ 111—231
N FINAL HARMFUL QUANTITIES AND
RATES OFPENALTY . . .. . . •. .. . 111—253
0 GLOSSARY.. 4 ............. 111359
1 1
-------
LIST OF FIGURES
Number Page
D—1 DIAGRAM OF COORDINATE SYSTEM 111-136
D-2 LOCATION OF IMAGES FOR A
SLOPINGBOTTOM. 111—141
D-3 EFFECT OF USING IMAGES TO
ACCOUNT FOR REFLECTION OF
THESOURCETERM 111—141
I—i EXAMPLE QUESTIONNAIRE SHEET 111—189
3- 1 PRINCIPAL DRAINAGE BASINS 11 1—200
3-2 SAMPLE CURVE-OF-RELATION FOR
CORRELATING FLOWS BETWEEN THE
INDEX STATION AND SECONDARY
STATION .. . 111—206
3-3 TYPICAL HYDRAULIC RATING CURVES 111-207
3-4 TYPICAL FLOW DURATION CURVES
FOR THE BASINS ANALYZED BY
STALL AND YANG. . . . . . . . . . . . . . 111—209
3-5 DISCHARGE AS RELATED TO DRAINAGE
AREA FOR TWO FREQUENCIES SHOWING
THE 67 PERCENT CONFIDENCE INTERVALS . . . . 111-210
3—6 IDEALIZED DRAINAGE BASIN. 111—211
3-7 IDEALIZED STREAM FROM GAGE STATION
TO HEADQUARTERS . . . . . . 111—212
3-8 RELATIONSHIP BETWEEN STREAM ORDERS
AND NUMBER OF STREAMS . . 111-213
K—i SALTWEDGEESTUARY. . . . . . 111-218
K-2 PARTIALLY MIXED ESTUARY
WITHENTRAINMENT . . . . . . . . 111—219
iii
-------
LIST OF TABLES
Number Page
D-i LOCATIONAL VARIABLES FOR
SPILLS INTO LAKES 111—146
D-2 LOCATIONAL VARIABLES FOR SPILLS
INTO COASTAL WATERS. 111-147
D-3 LOCATIONAL VARIABLES FOR
SPILLS INTO RIVERS 111—147
F-i SUB-SYSTEM FOR CATEGORIZING
HAZARDOUS MATERIAL 111—155
I-i IMCO METHODOLOGY PHYSICAL/
CHEMICAL ADJUSTMENT FACTOR
j-i MAJOR RIVER BASIN CATEGORIES . 111-201
J-2 APPROXIMATE MEAN RUNOFF BY
SUB—BASINS 111—202
WEIGHTING FACTORS . . 111—203
J —4 SELECTED REPRESENTATIVE
RIVERBASINS... 111—203
iv
-------
APPENDIX A
INPUT DATA FOR DESIGNATED HAZARDOUS SUBSTANCES
The following appendix includes a brief profile of the physical!
chemical and toxicological data employed to calculate harmful
quantities and rates of penalty for each designated hazardous
substance. A more detailed discussion on each designated sub-
stance and a complete accounting of available toxicological data
can be found in the technical document accompanying the designation
regulation. The profiles included here are drawn from that data
base.
The data points employed are self-explanatory for the most part.
The segment on shipping forms was included to indicate when sub-
stances are typically shipped or handled in other than pure forms.
For these materials, harmful quantities and rates of penalty are
subject to adjustment to compensate for the actual strength of the
solution. The mammalian toxicity segment refers to median lethal
dose (LD 50 ) data unless otherwise specified.
Critical concentrations in fresh and salt water have been cal-
culated for all substances. In most cases, the data were derived
directly from bioassay work on the material of interest. Lacking
this information, extrapolations from related compounds were
employed. In either case, the source of the critical concen-
tration and original data reference are given as guidelines to
understanding the ultimate levels selected.
Data collection on the toxicological properties of designated
substances proved a difficult task. Information is scattered
and lacks standardization. This is particularly true with respect
to toxicity to marine organisms. Consequently, many of the salt-
water toxicity levels were derived on the basis of freshwater
data. Many freshwater critical concentrations for salts were
extrapolated from data on single ions. When this was done, the
more toxic ion was used as the basis of extrapolation. All mole-
cular weights were taken as those for the salt form whose formula
is given at the top of the profile. Whenever direct data was
available, it was used in preference to extrapolated data unless
the test conditions were significantly different than those
specified in Chapter III of Volume II. When materials are
characterized by decomposition in water, critical concentrations
were based on the mare toxic hydrolysis product. For metals
with several oxidation states, toxicity was based on the stable
toxic form common in natural surface waters, e.g., Cu+, Fe +,
and Hg++.
A sample extrapotation calculation is given below:
-------
Critical Concentration for Aininonium Sulfate
Based on that for NH 4 C1.
Molecular Weight - (NH 4 ) 2 S0 4 - 142
Molecular Weight - NH 4 C1 — 53
Sulfate has 2 NH 4 + Ions and Hence is Equivalent
in Toxicity to 2 NH 4 C1 Molecules with a Weight
of 2 x 53 106
111—2
-------
ACETALDEHYDE - C 2 H 4 0
Shipping Forms: 99% - Pure Specific Gravity: 0.783
Solubility (mg/t) : >1,000,000 Vapor Pressure (mm Hg ta2O.08 c) : 760
Environmental Half Life; SOD 5 - 93% theoretical with activated sludge
or 1.22 lb/lb 2
Mammalian Toxicity (mg/Kg body wt): 1900 rat (oral)’ 9
Freshwater Critical Concentration: 53 ppm - 96 hr TLm sunfish’
Saltwater Critical Concentration: 70 ppm - 24 hr TLm pin perch 2
- ACETIC ACID - CH 3 COOH
Shipping Forms: 56%, 70%, 80%, Specific Gravity; 1.049
and glacial
So].ubility (mg/i): >1,000,000 Vapor Pressure (mm Hg €17.5 °C) : 10
Environmental Half Life: BODç - 53% theoretical in a respirometer’
In natural environment 76% theoretical in freshwater and 66% in saltwater 9
Mammalian Toxicity (mg/Kg body wt): 3310 rat (oral) 1
Freshwater Critical Concentration: 75 ppm - 96 hr Th bluegill 3
Saltwater Critical Concentration: 32 ppm — 48 hr ‘rLm brine shrimp 9
ACETIC ANHYDRIDE - (CN 3 CO) 2 0
Shipping Forms: 100% Specific Gravity: 1.083
Solubility (mg/i) : 120,000 Vapor Pressure (mm Hg 9 18 °C) ; 30
Environmental Half Life: Hydrolyzes to acetic acid. Acetic acid BOD 5 - 53%
Theoretical in reapirometer, 76% in freshwater, and 66% in aa1twater ’
Mammalian Toxicity (mg/Kg body wt): 1780 rat (oral) ‘°°
Freshwater Critical Concentration: 65 ppm - based Ofl 75 ppm 3 - 96 hr TLm to
bluegill for acetic acid
Saltwater Critical Concentration: 28 ppm - based on 32 ppm — 48 hr TLm to brinC
shrimp for acetic acid
ACETONE CYANOHYDRIN - C 4 5 7 N0
Shipping Forms: Pure Specific Gravity: 0.932
Soltzbility (mg/L): V. So).. (100,000) Vapor Pressure (mm Hg 8 °C)
Environmental Half Life; Hydrolyzes tO carboxylic acid, release. cyanide upon
standing.
Mammalian Toxicity (mg/Kg body wt) : 13.3 rat (oral)’
Freshwater Critical Conqentration: 50 ppm - based on NAS rating for aquatic
life of 1-100 ppm.’ Also equivalent to 0.]. of the LD concentration for
a 90 Kg man consuming 2.5 liters of water. 7
Saltwater Critical Concentra iort : 50 ppm - based on freshwater level a.
estimated in NAS rating
111—3
-------
ACETYL BROMIDE - CH 3 CO Br
Shipping Forms: Pure Specific Gravity: 1.520
Solubility (mg/i) : Decomposes Vapor Pressure (mm Hg @ °C)
Environmental Half Life: Hydrolyzes to HBr upon contact with water.
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 143 ppm - 96 hr TL bluegill estimated
on basis of MCi and threshold pH of 3.6’ m
Saltwater Critical Concentration: 669 ppm — based on 215 ppm estimated
48 hr LC 50 to shrimp for HBr employing Ed data
ACETYL CHLORIDE - CH 3 CO C 1
Shipping Forms: Pure Specific Gravity: 1.1051
Solubility (mg/i): Decomposes Vapor Pressure (uun Hg @______
Environmental Half Life: Hydrolyzes to HC1 upon contact with water.
Mammalian Toxicity (mg/Kg body wt): 2460 rat (oral) ’
Freshwater Critical Concentration: _3100 ppm — based on 46 ppm — 96 hr TL to
bluegill for product MCi in 10 alkalinity water’ m
Saltwater Critical Concentration: 466 ppm — based on 215 ppm - estimated
48 hr LC for shrimp’
ACROLEIN - C 3 H 4 0
Shipping Forms: 100% Specific Gravity: 0.839
Solubility (mg/i) 400,000 Vapor Pressure (mm Hg 9 7.5 °C) : 125
Environmental Half Life: B0D 10 — 33% theoretical under quiescent conditions 2
Mammalian Toxicity (mg/Kg body wt): 46 rat (oral 1
Freshwater Critical Concentration: 0.88 ppm — estimated 72 hr LC 50 fathead minnow’
Salt iater Critical Concentration: 0.055 ppm — 96 hr Ed 50 oyster’’
ACRYLONITRILE - CH 2 CH CN
Shipping Forms: 100% Specific Gravity: 0.807
Solizbility (mg/i): 70,000 Vapor Pressure (mm Hg 9 7.5 °C): 40
Environmental Half Life: BOO 10 — 67% theoretical in river water with sewage seed’
Mammalian Toxicity (mg/Kg body wt): 81 rat (oral)’
Freshwater Critical Concentration: 11.8 ppm — 96 hr TLm bluegill 7
Saltwater Critical Concentration: 22 ppm - estimated 48 hr LC 50 shrimp’
111—4
-------
ADIPONITRILE CN(CH 2 ) 4 CN
Shipping Forms: Pure Specific Gravity: 0.950
Solubility (mg/f) : Si. Sol. (5000) Vapor Pressure (mm Hg @ °C)
Environmental Half Life: ROD 5 — 40% theoretical in river water under quiescent
conditiOns 2
Mammalian Toxicity (mg/Kg body wt) : 105 rat (oral)
Freshwater Critical Concentration: 820 ppm — 96 hr TLm fathead minnow 1
Saltwater Critical Concentration: 820 ppm — estimated as same level as that
found in fresh water
ALDRIN — C 12 M 8 C1 6
Shipping Forms: Pure, wettable Specific Gravity: 1.65
Solubility (mg/f): 0.27 Vapor Pressure (mm Hg @ 25 °C): 6 X 16 6
dnvironmental Half Life: up to 80% ma degrade in 80 weeks forming dieldrin
bioconcentratiVe (8000—shellfish) 2
Mammalian Toxicity (mg/Kg body Vt): 55 rat (oral) l
Freshwater Critical Concentration: 0.013 ppm — 96 hr TLm bluegill 1
Saltwater Critical Concentration: 0.025 ppm — 96 hr LD 50 oyster ’’
ALLYL ALCOHOL - CH 2 CH CU 2 OH
Shipping Forms: Pure Specific Gravity: 0.845
Solubility (mg/9 ): ‘1,000,000 Vepor Pressure (mm Hg _7 °C): 8.5
Environmental Half Life: BOD 5 - 9.1% theoretical with sewage seed’
Mammalian Toxicity (mg/Kg body wt) : 64 rat (oral)’
Freshwater Critical Concentration: 0.88 ppm — estimated 72 hr LC 50 fathead minnow’
Saltwater Critical Concentration: 5 ppm — estimated 48 hr LC 50 shrimp’
ALLYL CNWRIDE - CH 2 CH CH 2 C1
Shipping Forms: Pure
Solubility (mg/f) : 3000
Environmental Half Life: Low ROD anticipated.
Mammalian Toxicity (mg/Kg body wt) : 700 rat (oral)’’
Freshwater Critical Concentration: 42 ppm - 96 hr TLm bluegill’
Saltwater Critical Concentration 2.4 ppm - 96 hr TLm sheepshead minnow’
Specific Gravity: 0.90
Vapor Pressure (mm Hg @ 7.5 ‘C) : 180
1 1 1—5
-------
ALUMINUM FLUORIDE - Al F 3
Shipping Forms: Anhydrous Specific Gravity: 3.07
Solubility (mg/f) : 559,000 Vapor Pressure (mm Hg 8 eC) : Negligible
Environmental Half Life: Aluminum is precipitated as hydroxide
Mammalian Toxicity (mg/Kg body Vt): 600 low lethal dose guinea pig (oral) 9 ’
Freshwater Critical Concentration: 4.5 ppm - estimated from the 6.7 ppm — hr LC 50
92
for NaF 3 to rainbow trout
Saltwater Critical Concentration: 200 ppm - based on >300 ppm 48 hr LC 50
25
to prawn for NaF
ALUMINUM SULFATE - Al 2 (S0 4 ) 3 .18 1120
Shipping Forms: 80%, and pure, 30—50% Specific Gravity: 1.69
Solubility (mg/f) : 310,000 Vapor Pressure (mm Hg 8 ‘C)
Environmental Half Life: Aluminum is precipated as hydroxide
Maxrmtalian Toxicity (mg/Kg body Ut): 770 rat (oral)’° 2
Freshwater Critical Concentration: 250 ppm — 96 hr W 50 largemouth bass 1 ’
Saltwater Critical concentration: 250 ppm — approximated from freshwater data
AMMONIA -
Shipping Forms: Anhydrous, 30% solution Specific Gravity: 0.6 as liquid
Solubility (mg/f) : 100,000 Vapor Pressure (mm Hg 9 7.5 ‘C) : >760
Environmental Half Life: Biochemical oxidation begins after 4-5 day delay.
Degrades to No 3 .
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 3.4
is extremely pH dependent)’ ’
Saltwater Critical Concentration: 3.4
ppm - 96 hr TLm bluegill (toxicity
ppm - approximated from freshwater data
AZ4MONIUM ACETATE - NH 4 C 2 H 3 0 2
Shipping Forms: Pure
Solubility (mg/f): >1,000,000
Environmental Half Life: BOD 5 - 79%
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration:
Saltwater Critical Concentration:
Specific Gravity: 1.073
Vapor Pressure (mm Hg 9 7.5 ‘C): >760
theoretical with activated sludge 5
98 mice (I.V.)’’
238 ppm - 96 hr TL mosquito fish (turbid water)’
238 ppm - approximated froa freshwater data
1 1 1—6
-------
AMMONIUM SENZOATE - NH 4 C 7 H 5 0 2
Shipping Forms: Pure Specific Gravity: 1.26
Solubility (mg/P.): 196,000 Vapor Pressure (mm Hg °C)
Environmental Half Life: Requires some acclimation
Mammalian Toxicity (mg/Kg body wt)
Freshwater Critical Concentration: 430 ppm — based on 238 ppm 96 hr TL to
mosquito fish for aminonium acetate’ m
Saltwater Critical Concentration: 430 ppm - approximated from freshwater data
AMMONIUM BICARBONATE - NH 4 HCOZ
Shipping Forms: Pure Specific Gravity: 1.58
Solubility (mg/P.) : 119,000 Vapor Pressure (mm Hg 9 C)
Eriv.tronmental Half Life: Biodegradation begins after 4—5 day delay
Mammalian Toxicity (mg/Kg body wt): 0.234 mice (I.V.)’’
Freshwater Critical Concentration: 24 ppm - based on 35 ppm threshold to fish
for ammonium carbonate’
Saltwater Critical Concentration: 24 ppm - approximated from freshwater data
AZIMONIUM BICEROMATE - (N M 4 ) 2 Cr 2 O 7
Shipping Forms: Pure Specific Gravity: 2.15
Solubility (mg/P.) : 357,000 Vipor Pressure (mm Hg P ______ C)
Environmental Half Life: Chromium can exist in solution indefinately unless
2)
trivalent form, and can be concentrated 2000 times.
Mammalian Toxicity (mg/Kg body wt): 67.5 rat (oral)’’’
Freshwater Critical Concentration: 136 ppm - 96 hr TLm mosquito fish’
Saltwater Critical Concentration: 126 ppm — based on 100 ppm 48 hr to
brown shrimp for CO 3 25
A?IZ4ONIUM BIFLUORIDE - NH 4 HF 2
Shipping Forms: Pure Specific Gravity: 1.503
Solubility (mg/P.): Sol. (100,000) Vapor Pressure (nun Hg 8 _____
Environmental Half Life: Fluorid, is precipitated by calcium
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 100 ppm - 48 hr lethal to tinca vulgaris’
Saltwater Critical Concentration: 100 ppm - approximated from freshwater data
111—7
-------
AMMONIUM BISULFITE - NH 4 H SO 3
Shipping Forms: Pu.re Specific Gravity: 2.03
Solubility (mg/f): 501. (50.000) Vapor Pressure (mm Hg 8 °C)
Environmental Half Life: Oxidizea in time to nitrate and sulfate
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 355 ppm — based on 240 ppm 96 hr TLm to
n aquito fish (turbid water) for ammonium sulfite 1
Saltwater Critical Concentration: 355 ppm — approximated from freshwater data
AZ4MONIUM BROMIDE - NH 4 Br
Shipping Forms: Pure Specific Gravity: 2.327
Solubility (mg/f) : 680,000 Vapor Pressure (mm Hg 8 ‘C)
Environmental Half Life: Oxidizes after 4-5 days
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 11 ppm — based on 6 ppm 96 hr TL to bluegill
for ammonium chloride 1 B
Saltwater Critical Concentration: 11 ppm — approximated from fr..hwat.r data
AM*3NIUM CAR9J ATE - NB 4 NB CO 2
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/f): 250,000 Vapor Pressure (mm Hg 8 C): Negligible
Environmental Half Life: Biodegradation begins after 4—5 days
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 9 ppm — based on 6 ppm 96 hr TL to bluegill
for NII 4 C1’
Saltwater Critical Concentration: 9 ppm — approximated from freshwater data
AMMONIUM CARBONATE - (NE 4 )CO 3
Shipping Forms: Pure Specific Gravity: 1.917
Solubility (mg/I): 405,000 Vapor Pressure (mm Hg 8
Environmental Half Life: Mimonium oxides after 4—5 days
1*S
Mammalian Toxicity (mg/Kg body wt): 96 rat( I.V.)
Freshwater Critical Concentration: 35 ppm - based on 35 ppm threshold to fish.
Saltwater Critical Concentration: 35 ppm - approximated from freshwater data
111—8
-------
- AMMONIUM CHLORIDE - NH 4 C1
Shipping Forms: Pure Specific Gravity: 1.53
Solubility (mg/i.) ; 297,000 Vapor Pressure (mm Hg 8 °C) : Negligible
Environmental Half Life: Biodegradation begins after 4—5 days
Mammalian Toxicity (mg/Kg body wt): 30 rat (I.M.) ’°°
Freshwater Critical Concentration: 6 ppm — 96 hr TLm sunfish’
saltwater Critical Concentration: 6 ppm - approximated from freshwater data
A?INONIUM CHROMATE - (NH 4 ) 2 CrO 4
Shipping Forms: Pure Specific Gravity: 1.911
Solubility (mg/i): 405.000 Vapor Pressure (mm Hg 8 •C):
Environmental Half Life: Aininonium oxidizes after 4—5 days
Mammalian Toxicity (mg/Kg body Vt):
Freshwater Critical Concentration: 240 ppm — 96 hr !1’I , mosquito fish (turbid water)’
Saltwater Critical Concentratiun: 240 ppm — approximated from freshwater data
AMMONIUM CITRATE - ( 4 ) 2 C 6 M 6 0 7
Shipping Forms: Pure Specific Gravity: 1.48
Solubility (mg/i) : V. Sol. (100,000) Vapor Pressure (mm Mg 8 C)
Environmental Half Life: Biodegradable
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 357 ppm — based on 238 ppm 96 hr m to
mosquito fish for amnionium acetate’
Saltwater Critical Concentration; 357 ppm — approximated from freshwater data
AMMONIUM FLUOBORATE - NH 4 BF 4
Shipping Forms: Pure Specific Gravity: 1.851
SolUbility (mg/i.): SOl. (100,000) Vapor Pressure (nun Hg 8
Environmental Half Life; A noniu oxidizes after 4—5 days
Mammalian Toxicity (mg/Kg body wt):
Freshwater Cri jcal Concentration, 12 ppm - based on 6 ppm 96 hr TL to bluegill
for NB 4 C I
Saltwater Critical Concentration; 12 ppm - approximated from freshwater data
111—9
-------
AMMONIUM FLUORIDE - NH 4 F
Shipping Forms: Pure Specific Gravity: ] 3l5
Solubility (mg/i): 418,000 Vapor Pressure (mm Hg 8
Environmental Half Life: Fluoride is precipitated by calcium
Mammalian Toxicity (mg/Kg body wt): 150 rat (low lethal dose oral)’ 8
Freshwater Critical Concentration: 200 ppm — 48 hr lethal to tinca vulgaris’
Saltwater Critical Concentration: 200 ppm — approximated from freshwater data
AIIMONIUM FORNATE - NH 4 CHO 2
Shipping Forms: Pure Specific Gravity: 1.266
Solubility (mg/i) : 1,020,000 Vapor Pressure (mm Hg ______ ‘C)
Environmental Half Life: Biodegradable
Mamma1ia. Toxicity (mg/Kg body wt): 2250 mice (oral)”
Freshwater Critical Concentration: l9 ppm — based on 238 ppm 96 hr TL to
s squito fish for ammonium acetate I 5
Saltwater Critical Concentration: 195 ppm — approximated from freshwater data
)
AMMONIUM HYDROXIDE - N0 4 0H
Shipping Forms: Pure Specific Gravity: 0.90
Solubility (mg/i): 100,000 Vapor Pressure (mm Hg 8 ‘C)
Environmental Half Life: N.utralizel with dilution and oxidizes after 4—5 day delay
Mammalian Toxicity (mg/Kg body wt): 250 cat (oral)
Freshwater Critical Concentration: 15 ppm — 48 hr TLm sunfish’
Saltwater Critical Concentration: 15 ppm — approximated from freshwater data
AZIMONIUM HYPOPHOSPHITE - NH 4 H 2 P0 2
Shipping Forms: Pure Specific Gravity: 1.803
Solubility (mg/i): 227,000 Vapor Pressure (mm Hg 8 ‘C)
Environmental Half Life: Oxidizes after 4-5 day delay
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 9.4 ppm - based on 6 ppm 96 hr TLm to bluegill’
for NH 4 C1 1
Saltwater Critical Concentration: 9.4 ppm - approximated from freshwater data
111—10
-------
AMMONIUM IODIDE - NH 4 I
shipping Forms: Pure Specific Gravity: 2.51
Solubility (mg/i) : >1,000,000 Vapor Pressure (mm Hg 9 ______‘C) : Negligible
Environmental Half Life: Biodegrades after 4—5 day period
Mammalian Tox±city (mg/Kg body wt) :
Freshwater Critical Concentration: 16 ppm — based on 6 ppm 96 hr TLm to sunfish
for NH 4 C1’
Saltwater Critical ConcentratiOn: 16 ppm — approximated from freshwater data
? ‘ M! 1ONIUM MOLYBDATE - ( NH 4 ) 2 MoO 4
Shipping Forms: Pure Specific Gravity: 2.38 — 2.95
Solubility (mg/f): 400,000 Vapor Pressure (mm Hg 9 _____
Environmental Half Life: Degradable after 4—5 days
Mammalian Toxicity (mg/Kg body wt): 330 rat (oral)”
Freshwater Critical Concentration: 11 ppm - based on 6 ppm 96 hr TLm to sunfish
for NH 4 C1
Saltwater Critical Concentration:
ii ppm - approximated from freshwater data
AM1 NZUM NITRATE - NH 4 NO 3
Shipping Forms: Pure Specific Gravity: 1.66
Solubility (mg/i): 550,000 VapOr Pressure (mm Hg 9 ‘C): Negligible
Environmental Half Life: Biodegradable after 4—5 days
Mammalian Toxicity (mg/Kg body Vt):
Freshwater Cri ical Concentration: 8.9 ppm — based on 6 ppm 96 hr TLm to sunfish
for NM 4 C1
Sa’twater Critical Concentration: 8.9 ppm — approximated from freshwater data
AMMONIUM OXI’LATE - (NB 4 ) 2 C 2 0 2 .H 2 0
Shipping Forms: Pure Specific Gravity: 1.50
Solubility (mg/i): 25,400 Vapor Pressure (mm Hg 9
Environmental Half Life: Biodegradable
Mammalian Toxicity (mg/Kg body wt)t
Freshwater Critical concentrati on: 219 ppm — based on 238 ppm 96 hr TLm to mosquito
fish for ammonium acetate
Saltwater Critical Concentration: 219 ppm — approximated from freshwater data
hI— h
-------
ANMONIUM PENTABORATE - NH 4 5 5 0 8 .4H 2 0
Shipping Forms; Pure Specific Gravity: >1.0
Solubility (mg/i) 70,300 Vapor Pressure (mm Hg @______
Environmental Half Life: Persistent for more than 4 days
Mammalian Toxicity (mg/Kg body .it):
Freshwater Critical Concentration: 30 ppm - based on 6 ppm 96 hr TL to
sunfish for NH 4 C1 In
Saltwater Critical Concentration: 30 ppm - approximated from freshwater data
AMMONIUM PERSULFATE - (NH 4 ) 2 S 2 0 8
Shipping Forms: Pure Specific Gravity: 1.98
Solubility (mg/i): 582,000 Vapor Pressure (mm Hg 8
Environmental Half Life; Degrades after 4—5 days
Mammalian Toxicity (mg/Kg body wt): 820 rat (oral)
Freshwater Critical Coqcentration: 13 ppm - based on 6 ppm 96 hr TL to
sunfish for NH 4 C1
Saltwater Critical Concentration: 13 ppm - approximated from fre.hwater data
AMMONITJM SILICOPLUOP.IDE — S F 6
Shipping Forms; Pure Specific Gravity; 2.01
Solubility (mg/i) : 185,000 Vapor Pressure (mm Hg 8 °C)
Environmental Half Life: Ammonia degrades after 4-5 days
Mammalian Toxicity (mg/Kg body wt)
Freshwater Critical Concentration; 50 ppm — 48 hr lethal to tinca v’ulqarii’
Saltwater Critical Concentration: 50 ppm — approximated from freshwater data
AMMONIJJM SULFAMATE - NH 4 NH 2 SO 3
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/i) : >1,000,000 Vapor Pressure (mm Hg 8 °C)
Environmental Half Life: Persists in soil for 1—3 months
Mammalian Toxicity (mg/Kg body wt): 3900 Rat (oral) ‘“
Freshwater Critical Concentration: 203 ppm - 96 hr TL catfish
Saltwater Critical Concentration; 203 ppm - approximated from freshwater data
111—12
-------
AMM0NIUM SULFATE - (NH 4 ) 2 SO 4
Shipping Forms: Pure Specific Gravity: 1.769
Solubility (mg/f) : 706,000 v por Pressure Cain Hg ______ C)
Environmental Half Life; Degrades after 4—5 days
Mammalian Toxicity (mg/Kg body wt) : 3000 rat (oral)
Freshwater Critical ConcentratiOn; 8 ppm - based on 6 ppm 96 hr TLm to
sunfish for NH 4 C1’
Saltwater Critical Concentration: Bppm - approximated from freshwater data
AMMONIUM SULFIDE - (NH 4 ) 2 S
Shippin Forms: 40—44% liquid, 50—55% Specific Gravity: 1.2
by—product liquid
Solubility ( rig/i) : 582,000 VapOr Pressure (rim Hg @ ______°C)
Environmental Half Life: Sulfide precipitates while ammonium will degrade after
4—5 days
Mammalian Toxicity (mg/Kg body wt):
Freshwater critical concentration: 248 ppm — 96 hr TLm mosquito fish (turbid water)
saltwater Critical Concentration: 248 ppm — approximated from freshwater data
AMMONIUM SULFITE - (NH 4 ) 2 s0 3 .H 2 0
Shipping Forms: Pure Specific Gravity: 1.41
Solubility (mg/I.): 324,000 Vapor Pressure (mm Hg 8
Environmental Half Life: Sulfite oxidizes while ammonium is oxidized
after 4—5 days
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critica\ Concentration: 240 ppm — based on 96 hr TLm to
mosquito fish
Saltwater critical Concentration: 240 — approximated from freshwater data
AMMONIUM TARTRATE - (NH 4 ) 2 C 4 H 4 0 6
Shipping Forms: Pure Specific Gravity: 1.601
Solubility (mg/i): 63,000 Vapor Pressure (mm Hg 8 C)
Environmental Half Life: Biodegradable
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 285 ppm - based on 238 ppm 96 hr TLm to
mosquito fish for ainnionium acetate
Saltwater Critical Concentration: 285 ppm - approximated from freshwater data
111—13
-------
Specific Gravity: 1.310
Vapor Pressure (mm Hg @ ______
AZ4MONIUM THIOSULFATE - 4 2 2 3
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/f) : > 1,000,000 Vapor Pressure (mm Hg ______°C)
Environmental Half Life: Oxidizes to nitrate and sulfate
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical ConCentration: 265 ppm — based on 240 ppm 96 hr TL to
mosquito fish for ammoniujn sulfite m
Saltwater Critical Concentration: 265 ppm — approximated from freshwater data
AMYL ACETATE - CH 3 COO(CH 2 ) 4 CH 3
Shipping Forms: Pure
Solubility (mg/f) : 820
Environmental Half Life: SOD 5 — 38%
in saltwater
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration:
Saltwater Critical Concentration:
Specific Gravity: 0.90
Vapor Pressure (mm Hg @ 7.5 C) : 1.7
theoretical, 64% in freshwater, and 35%
65 ppm - 96 hr Thm mosquito fish’
53 ppm - 24 hr TLm brine shrimp
1 ’. NILINE - C 6 H 7 N
Shipping Forms: Pure
Solubility (mg/t}: 35,000
Environmental Half Life: BOD - 1.5
(60% of theoretical)
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration:
Saltwater Critical Concentration:
freshwater
Specific Gravity: 1.002
Vapor Pressure (mm Hg @______ C): Negligible
- 2.26 lb/lb using sewage seed 2 ’
750 rat (oral)
11 ppm - 96 hr ‘ ‘ 1 ’m bluegill’ 5
1]. ppm - approximated as same as that for
AMMONIUM THIOCYANATE - NH 4 SCN
Shipping Forms: Pure, 50% solution
Solubility (mg/i): >1,000,000 ______
Environmental Half Life: Oxidizes with time
Mammalian Toxicity (mg/Kg body wt): 500 rat (I.P.)’’
Freshwater Critical Concentration: 114 ppm — 96 hr LC mosquito fish’
Saltwater Critical Concentration: 114 ppm — approximated from freshwater data
°C)
111—14
-------
ANTIMONY PENTACHLORIDE - SbC1 5
Shipping Forms: Pure
Solubility (mg/I): Decomposes
Environmental Half Life: Decomposes
Mammalian Toxicity (mg/Kg body wt)
Freshwater Critical Concentration:
fathead minnow for SbC1 3 ’
Saltwater Critical Concentration:
Specific Gravity: 2.336
Vapor Pressure (mm Hg ‘ ______°C)
to Sb 2 0 5 and HC1. Can accumulate in marine life.
675 rat (oral)
22 ppm - based on 17 ppm 96 hr TLm to
22 ppm — approximated from freshwater data
ANTIMONY PENTAFLUORIDE - SbF 5
Shipping Forms: Pure Specific Gravity: 2.99
Solubility (mg/f) : Sol. (50,000) Vapor Pressure (mm Hg @ ______°C)
Environmental Half Life: (Hydrolyze) to Sb 2 0 5 and HF. Can accumulate in
marine j ife
Mammalian Toxicity (mg/Kg body wt)
Freshwater Critical Concentration:
rainbow trout for
Saltwater Critical. Concentration:
fathead minnows for SbC1 3 ’
ANTIMONY POTASSIUM T?.RTRATE - KSbC 4 H 4 O 7 .½H 2 0
Shipping Forms: Pure Specific Gravity: 2.6
Solubility (mg/f) : 8300 Vapor Pressure (mm Hg 8 C)
Environmental Half Life: Can accumulate in marine life up to 15,000 times 23
Mammalian Toxicity (mg/Kg body wt): 300 rat (oral)
Freshwater Critical Concentration: 32 ppm - based on 96 hr TLm to fatnead
minnow
Saltwater Critical Concentration: 32 ppm - approximated from freshwater data
- ANTIMONY TRIBROMIDE - Sb1 r 3
Shipping Forms: Pure
Solubility (mg/f) : Decomposes
Environmental Half Life: Decomposes
Mammalian Toxicity (mg/Kg body wt)
Freshwater Critical Concentration:
minnow for SbC1 3 ’
Saltwater Critical Concentration:
Specific Gravity: 4.148
Vapor Pressure (mm Hg 9
to Sb 2 0 3 and HBr
27 ppm - based on 17 ppm 96 hr TLm to fathead
27 ppm - approximated frost freshwater data
6.9 ppm — based on 6.7 ppm 48 hr LC 50 to
16 ppm - baBed on 17 ppm 96 hr TL to
111—15
-------
ANTIMONY TPICHLORIDE - SbC 1 1
Shipping Forms: pure Specific Gravity: 3.14
Solubility (mg/I) : >l,ooo,00o Vapor pressure (mm Hg @ ______ C) : Negligible
Environmental Half Life: Antimony concentrates up to 15,000 times 23
Mammalian Toxicity (mg/Kg body wt): 675 rat (oral)’° ’
Freshwater Critical Concentration: 17 ppm - 96 hr TLm fathead minnow’
Saltwater Critical Concentration: 17 ppm — approximated from freshwater data
SbF
ANTIMONY TRIFLUORIDE - 3
Shipping Forms: Pure Specific Gravity: 4.379
Solubility (mg/I): >1,000,000 Vapor Pressure (mm Hg @ °C): Negligible
Environmental Half Life: Will precipitate in time. Can concentrate in marine life.
Mammalian Toxicity (mg/Kg body wt): 100 guinea pig (LD low oral)”
Freshwater Critical Concentration: 13 ppm - based on 17 ppm 96 hr TL to
fathead minnow for SbC1 3 ’ m
Saltwater Critical Concentration: 13 pp — approximated from freshwater data
ANTIMONY PRIODIDE - Sb 1 3
Shipping Forms: Pure Specific Gravity: 4.768
Solubility (mg/f): Decomposes Vapor Pressure (mm Hg 8
Environmental Half Life: Decomposes to Sb 2 0 3 and HI. Can accumulate in marine life.
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical C 9 ncefltration: 37 ppm — based on 17 ppm 96 hr PL to fathead
minnow for SbCl 3 53
Saltwater Critical Concentration: 37 pp ’s - approximated from freshwater data
ANTIMONY TRIOXIDE - Sb 2 0 3
Shipping Forms: Pure Specific Gravity: 5.2
Solubility (mg/f) : 50,000 Vapor Pressure (mm Hg 8 °C) : Negligible
23
Environmental Half Life: Can concentrate up to 15,000 times.
Mammalian Toxicity (mg/Kg body wt): >20,000 rat (ora l) ’°°
Freshwater Critical Concentration: 100 ppm - estimated 96 hr TL fathead minnow
(listed as >80 ppm) 1 m
Saltwater Critical Concentration: 100 ppm - approximated from freshwater data
111—16
-------
ARSENIC ACID - H 3 A80 4 .½H 2 0
Shipping Forms: Pure Specific Gravity: 2—2.5
Solubility (mg/f): 167,000 Vapor Pressure (nun Hq @°C) Negligible
Environmental Half Life: Arsenic can be concentrated 300 times. 2 ’
Mammalian Toxicity (mg/Kg body wt): 8 rabbit (I.V.)’’
Freshwater Critical Concentration: 11 ppm - 2 pproximated from the 30 ppm 168 hr TI ,
to goldfish reported for the sodium salt m
saltwatej Critical cqncentration: 4.3 ppm — this concentration of arsenic was
toxic to crabs in 264 hours.
ARSENIC DISULFIDE — As 2 S 2
Shipping Forms: Pure Specific Gravity: 3.506
Solubility (mg/I): Insol. (100) Vapor Pressure (mm Hg 8 °C)
Environmental Half Life: Will oxidize in time. Arsenic can be concentrated 300 times. 23
Mammalian Toxicity (mg/Kg body w ,
Freshwater Critical Concentration: 11 ppm — based on 10 ppm lethal level to blueqill
for As 2 0 3 ’
Saltwater Critical Concentration: 4 ppm — baled on ratio of fresh to saltwater
toxicity for arsenic acid
ARSENIC PENThOXIDE - As 2 0 5
Shipping Porms: Pure Specific Gravity: 4.08
Solubility (mg/i): >1,000,000 Vapor Pressure (nun Hg °C) ; Negligible
Environmental Half Life: Arsenic can be concentrated 300 times. 2 ’
Mammalian Toxicity (mg/Kg body wt): 8 rat (oral)”
Freshwater Critical Concentration: 16 ppm — based on the 30 ppm 168 hr TLm to
goldfish reported for sodium arsenate 2 ’
Saltwater Critical Concentration: 6 ppm - based on the toxicity of arsenic to
crabs over a 264 hour period’
ARSE1’ IC TRIBROMIDE - AsBr 3
Shipping Forms: Pure Specific Gravity: 3.54
Solubility (mg/L): Decomposes Vapor Pressure (mm Hg 8
Environmental }J 1f Life: Decomposes in water to As 2 0 3 . ’ Arsenic can be concentrated
300 times.
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 32 ppm - based on 10 ppm lethal level to
bluegill for hydrolysis product As 2 0 3 ’
Saltwater Critical Concentration; 12 ppm — based on ratio of fresh to saltwater
toxicity for arsenic acid
III— 17
-------
ARSENIC TRICHLORIDE AaC1 3
Shipping Forms: Pure Specific Gravity: 2.163
Solubility (mg/2): Decomposes Vapor Pressure (nuti Hg @_____
Environmental Half Life: Decomposes to As 2 0 3 and HC1 in water. Arsenic can be
concentrated 300 times. 2 ’
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 19 ppm — based on 10 ppm lethal level to
bluegill for hydrolysis product As 2 0 3 ’
Saltwater Critical Concentration: 7.4 ppm - based on ratio of fresh to saltwater
toxicity for arsenic acid
ARSENIC TRIFL(JORIDE - AsF 3
Shipping Forms: Pure Specific Gravity: 2.666
Solubility (mg/t): Decomposes Vapor Pressure (mm Hg @_____
Environmental lf Life: Decomposes to As 2 0 3 and HF in water. Arsenic can be concentrated
300 times.
Mammalian Toxicity (mg/Kg body wt) 20 guinea pig (subcutaneous) ’ 1
Freshwatez Critical Concentration: 14 Ppm - based on 10 ppm lethal level to
bluegill for As 2 0 3 hydrolysis product’
Saltwater Critical Concentration: 6 ppm — based on ratio of salt to freshwater
toxicity for arsenic acid
ARSENIC TRIIODIDE - AsIs
Shipping Forms: Pure Specific Gravity: 4.688
Solubility (isg/t): 83,000 vapor Pressure (mm Hg °C): Negligible
Environmental Ualf Life: Hydrolyzes to As 2 0 3 and HI. Arsenic can be concentrated
300 times.
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 46 ppm - based on 10 ppm lethal level to
bluegill for hydrolysis product As 2 0 3 ’
Saltwater Critical concentration: 18 ppm — based on ratio of salt to freshwater
toxicity for arsenic acid
ARSENIC TRIOXIDE - As 2 0 3
Shipping Forms: Pure specific Gravity: 3.865
Solubility (mg/t): 1200 Vapor Pressure (mm Hg @______
Environmental Half Life: Persistent. Arsenic can be concentrated 300 times. 21
Mammalian Toxicity (mg/Kg body wt): 45 rat (oral)
Freshwater Critical Concentration; o ppm - lethal to bluegill’
Saltwater Critical Concentration: 3.9 ppm — based on ratio of salt to freshwater
toxicity for arsenic acid
111—18
-------
ARSENIC TRISULFIDE — A S 2 S 3
Shipping Forms: Pure Specific Gravity: 3.43
Solubility (mg/i): 0.5 Vapor Pressure (mm ______ C)
Environmental lf Life: Will oxidize in time. Arsenic can be concentrated
300 times.
Mammalian Toxicity (mg/Kg body wt)
Freshwater Critical Concentration:
bluegill for As 2 0 3 ’
Saltwater Critical Concentration:
toxicity for arsenic acid
BENZENE -
Shipping Forms: Pure Specific Gravity: 0.879
Solubility (mg/f) : 820 Vapor Pressure (mm Hg 8 22 °C) : 820
Environmental Half Life: BOO - 1.9% theoretical with sewage seed in quiescent
environment 2 — 24% in a reshwater sy8tem
Mammalian Toxicity (mg/Kg body wt): 5600 rat (oral)’
Freshwater Critical Concentration: 31 ppm — 96 hr TLm bluegill’
Saltwater Critical Concentration: 21 ppm - 48 hr TLm brine shrimp¼
SENZOIC ACID — C 7 H 6 0 2 _______________
Shipping Forms: Pure
Solubility (mg/f); 2100
Environmental Half Life: BOD 5 1.4
Mammalian Toxicity (nq/)(g body wt):
Freshwater Critical Concentration:
Saltwater Criticol Concentration:
Specific Gravity: 1.266
Vapor Pressure (mm Hg C) Negligible
lb/lb (71%) with sewage seeds ’
1700 rat (oral) ’
180 ppm - 96 hr TLm mosquito fish in turbid water
180 ppm - approximated from freshwater data
BENZONITRILE - C 6 H 5 CN
Shipping Forms: Pure
Solubility (mg/i): 10,000
Environmental Half Life: SOD 4 — 60%
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration:
Saltwater Critical Concentration:
Specific Gravity: 1.01
taper Pressure (mm Hg _____ Negligible
theoretical with river water 5
180 rat (subcutaneous) ‘°°
78 ppm — 96 hr TLm bluegill’
78 ppm - approximated from freshwater data
111—19
12 ppm — based on 10 ppm lethal level to
5 ppm — based on ratio of fresh to saltwater
-------
BENZOYL CHLORIDE C 7 H 5 C1O
Shipping Forms: Pure Specific Gravity: 1.20
Solubility (mg/t): Decomposes Vapor Pressure (mm Fly @ °C) : Negligible
Envi onmental Half Life: BOD 5 — 71% for benzoic acid by—product 21 - Nd will
neutralized naturally
Mammalian Toxicity (mg/Kg body wt); 31.3 rat (I.P. low LD)”
Freshwater Critical Concentration: 180 ppm — based on 46 ppm 96 hr TLm to
bluegill for the MC I hydrOlylis product’
Saltwater Critical Concentration: 940 ppm — based on 240 ppm 48 hr LC 50 to crabs
for the HC1 hydrolysis product.”
BENZYL CHLORIDE - C 6 H 5 CH 2 C1
Shipping Forms: Pure Specific Gravity: 1.10
Solubility (mg/L): 33 Vapor Pressure (mm Hg °C) ; Negligible
Environmental Half Life: Slowly hydrolyzes to MCi and benzyl alcohol
Mammalian Toxicity (mg/Kg body wt): 50 rat ( ubeutaneous) low TD’
Freshwater Critical Concentration; 160 ppm — based on 46 ppm 96 hr TL to
bluegill for MCi hydrolysis product m
Saltwater critical concentration: 845 ppm - based on 240 ppm 48 hr LC 0 to
crabs for HC1 hydrolysis product 2 ’
BERYLLIUM CHLORIDE - Bed 2
Shipping Forms; Pure Specific Gravity: 1.90
Solubility (mg/ f l: V. $01. (>100,000) Vapor Pressure (mm Hg 8 ‘C): Negligible
Environmental Half Life: Hydroxide and carbonate salts are insoluble. Beryllium
can be concentrated 100 times.’ 3
Mammalian Toxicity (mg/Kg body wt): 86 rat (oral)”’
Freshwater critical Concentration: 133 ppm — based on 15 ppm 96 hr TL to
fithead minnow, for beryllium ion added as chloride salt 1 m
Saltwater Critical Concentration: 133 ppm — approximated from freshwater data
BERYLLIUM FLUORIDE - BeF 2
Shipping Forms: Pure Specific Gravity: 1.986
Solubility (mg/L): V. Sol. (100,000) Vapor pressure (inn Hg @ ‘C): Negligible
Environmental Half Life: Hydroxide and carbonate salts are insoluble. Beryllium can
be concentrated 100 j $•Z
Mammalian Toxicity (mg/Kg body wt): 98 rat (oral)”
Freshwater Critical Concentration: 3.7 ppm - based Ofl 6.7 ppm 48 hr LC to
rainbow trout for Na? 50
Saltwater Critical Concentration: 78 flt - approximated from freshwater data for
beryllium ion lSppm 96 hr to blu.gill’
111—20
-------
I3ERYLLIUM HYDROXIDE— Be(OH) 2
Shipping Forms: Pure Specific Gravity: 1.909
Solubility (mg/i> : 2 Vapor Pressure (mis Hg @ °C) : Negligible
Environmental Half Life: Carbonate salt is insoluble. Beryllium can be concentrated
100 times. 23
Mammalian Toxicity (mg/Kg body wt) 0.8 rat (I.V. as Be) 98
Freshwater Critical Concentration: 57 ppm - based on 12 ppm 96 hr TL to
bluegill for beryllium ion added as sulfate salt: m
Saltwater Critical ConcentratiOn: 57 ppm - approximated from freshwater data
BERYLLIUM NITRATE— Be(N0 3 ) 2 .3H 2 0
Shipping Forms: Pure
Specific Gravity: 1.56
Solubility (mg/i): V. Sol. (>100,000) Vapor Pressure (mm Hg @ ‘C) : Negligible
Environmental Half Life: 11yd roxide and carbonate are insoluble. Beryllium can be
concentrated 100 times.
Mammalian Toxicity (mg/Kg body wt): 50 rat (I.P.) 106
Freshwater Critical Concentration: 415 ppm - 96 hr TLm fatheat minnow’
Saltwater Critical Concentration: 415 ppm - approximated from freshwater data
LIRYLLIUM SULFATE BeSO 4 .4H 2 0 -.
Shipping Forms: Pure Specific Gravity: 2.4
Solubility (mg/i): 425,000 Vapor pressure (mm i i i _____ ‘C): Negligible
Cnvaronmental Half Life: Hydroxide and carbonate salts are insoluble. Beryllium can
be concentrated 100 times. 20
Mairumaliafl Toxicity (mg/Kg body wt) : 82 rat (oral)
Fr :shWater Critical Concentration: 236 ppm — based on a 12 ppm 96 hr TL to
bluegill for the borylliwn ion added as sulfate salt’ m
Saltwater Critical ConcentratiOn: 236 ppm — approximated from freshwater data
HFJCINE-- C 23 11 26 N 2 O 4 —
Shipping Forms: Specific Gravity: >1.0
Solubility (mg/i) : 1200 Vapor Pressure (m r s Hg ‘C) : Negligible
Environmental Half Life: Moderately persistent
Mammalian Toxicity (mg/Kg body wt): 8 dog (L.V.)’° 8
Freshwater Critical Concentration: 28 ppm — based on data for strychnine
Saltwater Critical Concentration: 1.7 ppm — based on data for strychnine
111—21
-------
BUTYL ACETATE - CH 3 COO(CH 2 ) 3 CH 3
Shipping Forms: pure Specific Gravity: 0.883
Solubility (mg/f) : 8300 vapor Pressure (mm Hg 8 C) : Neg1iq Li.?
Environmental Half Life: BOD 5 — 23% theoretical with sewage seed, 58% in freshwater,
and 40% in saltwater ‘‘
Mammalian Toxicity (mg/Kg body wt) : 4130 rat (oral)
Freshwater critical Corocer tration: 58 ppm - based on 65 ppm 96 hr TL to mosquito
fish for amyl acetate m
Saltwater Critical Concentration: 32 ppm - 48 hr TL brine shrimp’
BUTYL AMINE CH 3 (CH 2 ) 3 NH 2 ______________
Shipping Forms: Pure specific Gravity: 0.8
Solubility (mg/Z) : >1,000,000 Vapor Pressure (m is Hq 8 7.5 °C) : 54
Environmental Half Life: B OD 5 — 26.5% theoretical with sewage seed 13
Mammalian Toxicity (mg/Kg body wt) : 500 rat ,oral) 100
Freshwater Critical Concentration: 20 ppm — lower threshold of 24 hour critical
range or fjsh 2
Saltwater Critical Concentration: 20 ppm — approximated from freshwater data
BUTYRIC ACID- CR 3 (C0 2 ) 2 C00H
Shipping Forms: Pure Specific Gravity: 1.00
Solubility (mg/f) : 56,000 vapor Pressure (mm Hg @ ______°C) : Negligible
Environmental Half Life: BOD 5 — 1.15 lb/lb (63%) with and without acclimated seed 21
Mammalian Toxicity (mg/Kg body wt): 2940 rat (oral) 109
Freshwater Critical Concentration: 200 ppm — 24 hr TLm bluegill 27
Saltwater Critical ConcentratiOn: 200 ppm - approximated from freshwater data
Cd(C H 0 ) .3H 0
CADMIUM ACETATE - 2 3 2 2 2
Shipping Forms: Pure Specific Gravity: 2.34
Solubility (mg/U: >100,000 Vapor Pressure (mon Hg 8 °C): Negligible
Environmental Half Life: Cadmium is bioconcentratiVe by a factor of 3000.23
The carbonate and hydroxide salts are insoluble.
Mammalian Toxicity (mg/Kg body wt)
Freshwater Critical Concentration:
minnows for CdCl 2 .2½H 2 0’
Saltwater Critical Concentration:
oysters for cadmium ion 21
6.3 ppm - based on 5 ppm 96 hr TLm to fathead
17 ppm — based on 6.6 ppm 96 hr LC 50 to
111—22
-------
CADMIUM BROMIDE - CdBr 2 .4H 2 0
Shipping Forms: Pure Spe n F ic Oravit, : 5.19
Solubility (mg/f): 1,210,000 v - tor U1C C) : Negligible
Environmental Half Life: Cadmium is bioconcentrative by a factor of 3000.23
The carbonate and hydroxide salts are insoluble.
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentr 1 ation: 7.5 ppm — based on 5 ppm 96 hr TL to fathead
minnows for CdC1 2 , .2½H 2 0 h1 3
Saltwater Critical C centration: 20 ppm — based on 6.6 ppm 96 hr LC 50 to oysters
for cadmium ion
CADMIUM CHLORIDE - CdCl 2 .2? H 2 O
Shipping Forms: Pure Specific Cravity: 3.327
Solubility (mg/f) >1,000,000 Vapox Pressure (mm Hg 9 Negligible
Environmental Half Life: Cadmium is bioconcerttrative by a factor of 3000.23
The carbonate and hydroxide salts are insoluble
Mammalian Toxicity (mg/Kg body wt): 88 rat (oral) ‘
Freshwater Critical Concentration: 5 ppm — 96 hr TL fathead minnow’
Saltwater Critical Concentr ion: 13 ppm — based on 6.6 ppm 96 hr LC 50 to
oyster for cadmium ion
CADMIUM NITRATE - Cd(N0 3 ) 2 .4H 2 0
Shipping Forms: Pure Specific Gravity: 2.45
Solubility (mg/f): >i,ooo,ooo Vapor Pressure (mm Hg 8 SC): Negligible
Environmental Half Life: Cadmium is bioconcentrative by a factor of 3000.23
The carbonate and hydroxide salts are insoluble.
Mammalian Toxicity (mg/Kg body wt): 100—600 dog (oral as Cd)’
Freshwater Critical Concentration: 6.8 ppm — nased on 5 ppm 96 hr TL to
fathead minnow for CdCl 2 .2 ’ H 2 O ’
Saltwater Critical Concentration: 18 ppm - based on 6.6 ppm 96 hr LC 50 to
oysters for cadmium ion 1 ’
CADMIUM SULFATE — 3CdSO 4 .8H 2 0
Shipping Forms: Pure Speciic Gr2vity: 3.09
Solubility (mg/f): 1,140,000 Vapor Pressure (mm Hg 9 ______°C) : Negligible
Environmental Half Life: Cadmium is bioconcentrative by a factor of 3000.23
The carbonate and hydroxide salts are insoluble.
Mammalian Toxicity (mg/Kg body wt): 150—600 (oral ai Cd)’
Freshwater Critical Conr ntratiofl: 5.6 ppm- based on 5 ppm 96 hr TL to fathead
minnow for CdC1 2 .2½H 2 0 in
Saltwater Critical Concentration: 15.1 ppm- based on 6.6 ppm 96 hr TL to
oysters for cadmium ion” in
111—23
-------
CALCIUM ARSENATE - Ca 3 (As0 4 ) 2 .3H 2 0
Shipping Forms: Pure Specific Gravity:
Solubi -lity (mg/f) : 130 Vapor Pressure (mm Il °C) : Negligible
Environmental Half Life: Arsenic can be concentrated 300 times. 23
Mammalian Toxicity (mg/Kg body wt) : 298 rat (oral)”
Freshwater Critical Concentration: 16 ppm - based on 30 ppm 168 hr TL to goldfish
for the sodium salt 2 I n
Saltwater Critical Conceptration: 11 ppm — based on 4.3 ppm as a toxic to crabs
over a 264 hr period
Ca(ASO
— ALCIUM ARSE ITE - 2 2
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg,’t) 51. sol. (5000) Vapor Pressure (mm Hq @ ______°C) : Neqliciible
Environmental Half Life: Oxidizes to arsenate
Mammalian Toxicitj (mg/Kg body wt)
Freshwater Critical concentration: 34 ppm — baseci on 35 ppm 9i hr LC 50 to
bluegill for sodium arsenite 132
Saltwater Critical Concentration: 34 ppm — approximated from freshwater data
CALCIUM CARBIDE CaC 2
Shipping Forms: Pure Specific Gravity: 2.2
Solubility (mg/f) : Decomposes Vapor Pressure (mrs Ffg @ °C) : Negligible
Environmental Half Life: Neutralized slowly
Mammalian Toxicity (mg/Kg body wt);
Freshwater Critical Concentration: 138 ppm — based on 160 ppm 96 hr TLm to mosquito
fish for the hydrolysis product Ca (OH) 2
Saltwater Critical concentration: 138 ppm — approximated from freshwater data
CALCIUM_CHROMATE CaCrO 4 .2M 2 0
Shipping Forms: Pure Specitiv Gravity: 2.89
Solubility (mg/f): 224,000 vapor Pressure (mm Hg _____°C): Negligible
Environmental Half Life: Can exist in solution indefinately unless reduced to trivalent
form.’’ 9 Can be concentrated 2000 times.”
Mammalian Toxicity (mg/Kg body wt): 40 rat (I.M. low lethal dose)”
Freshwater Critical concentration: 235 ppm — based on 420 ppm 96 hr TL to mosquito
fish for the sodium salt
Saltwater Critical concentration: 479 ppm — based on 100 ppm 48 hr LC 50 to
brown shrimp for Cr0 3 ”
111—24
-------
CALCIUM CYANIDE - Ca(CN) 2 —
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/I): Decomposes Vapor Pros ‘ r _____ °C)
Environmental Half Life: Decomposes to Ca(OH) and HCN until the alkalinity is high
enough to stabilize Ca(CN) 2 . Cyanide oxidizes to less toxic cyanate.
Mammalian Toxicity (mg/Kg body wt): 39 rat (oral)’’
Freshwater Critical concentration: .22 ppm - based on .12 ppm 96 hr TL to sunfish
for cyanide ion m
Saltwater Cr 1 tical ConcentratiOn: .18 ppm - based on .25 ppm 48 hr LC 50 to prawns
for XCN
CALCIUM DODECYLBENZENESULFQNATE- (0 3 SC 18 H 30 ) Ca
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/t) : Sol. (10,000) Vapor Pressure (mm hg 0 (2 ) : Negligible
Environmental Half Life: BOO 5 - 43% theoretical with activated sludge based on
sodium salt 2 ’
Mammalian Toxicity (mg/Kg body wt)
Freshwater Critical Concentration: 20 ppm - based on 19 ppm 96 hr TLm to bluegill
for sodium
Saltwater Critical Concentration: 11 ppm — based on 10.1 ppm 96 hr TL , 5 to mullet
for sodium salt”
CALCIUM HYDROXIDE - CatOR) 2
Shipping Forms: Pure Specific Gravity: 2.504
Solubility (mg/L): 1850 Vapor Pressure (mm Hg 9 ‘C): Negligible
Environmental Half Life; Neutralizes slowly
Mammalian Toxicity (mg/Kg body wt): 7340 rat (oral)’°°
Freshwater Critical Concentration: 160 ppm — 96 hr TLm mosquito fish’
Saltwater Critical concentration: 160 ppm - approximated from freshwater data
CALCIUM HYPOCELORITE Ca(C 10 ) 2 .2H 2 0
Shipping Forms: Pure Specific Gravity: 2.35
Solubility (mg/fl : >100,000 Vapor Pressure (mm Hg 9 ‘C) : Negligible
Environmental 1alf Life: Subject to equilibrium partition between Ca (OH) 2 ’
Nod, OC I , and Cl 2 .
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: .25 ppm - based on .1 ppm 96 hr TL 50 to
fathead minnow for equilibrium product Cl 2 3 ’
Saltwater critical Concentfation: 2.5 ppm — based on 1 ppm toxicity of Cl.
by-product to oysters
111—25
-------
CALCIUM OXIDE - CaO
Shipping Forms: Pure Specific Gr ivity: 3.25
SOlubility (mg/f) : >1,000,000 Vapor Pressure (ruin Hg @ ______‘C) : Negligible
Environmental Half. Life: Neutralizes slowly. Hydrated Loris is Ca(OH) 2 .
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 121 ppm — based on 160 ppm 96 hr TL to
mosquito fish for hydrated form’ m
Saltwater Critical Concentration: 121 ppm — based on freshwater data
CAPTPIZ4 - C H 8 C1 3 NO 2 S
Shipping Forms: Pure, wettable Specific Gravity: 1.74
Solubility (mg/f): Insol. Vapor Pressure (m is Hg @ ‘C): Negligible
Environmental Half Life: Readily hydrolyzes - 2 week residual life’
Mammalian Toxicity (mg/Kg body wt); 38 rabbit (low lethal dose oral)’
Freshwater Critical Conc.ntration: 0.32 ppm — 72 hr TLm large trout’
Saltwater Critical Concentration: 0.32 ppm — approximated from freshwater data
CAREON DISULFIDE -
Shipping Forms: Pure Specific Gravity: 1.263
Solubility (mg/f) : 2200 Vapor Pressure (mrs Hg @ 7.5 ‘C) : 1850
Environmental Half Life: Relatively persistent
Mammalian Toxicity (mg/Kg body wt): 100—199 mammal (oral)’
Freshwater Critical Concentration: 135 ppm — 48 hr TLm mosquito fish in turbid water’’
Saltwater Critical Concentration: 135 ppm — approximated from freshwater data
CATECHOL - C 6 H 6 0 2 —
Shipping Forms: Pure Specific Gravity: 1.34
Solubility 1mg/i): 400,000 Vapor Pressure (mm Hg ‘! ______‘C) : Negligible
Environmental Half Life: OD 5 — .69 lb/lb (37% theoretical) with sewage seed 2 ’
Mammalian Toxicity (mg/Kg body wt): 3890 rat (oral)’’’
Freshwater Critical Concentration: 14 ppm — 48 hr TL goldfish
Saltwater Critical Concentration: 14 ppm — approximated from freshwater data
111—26
-------
CHLOPDANE - C 10 H 6 C1 8
- :ipping Forms: Pure, wettable Specific Gravity: 1.67
;atubjlity (mg/f) : Insol. (1) Vapor Pressure mm H j @ ______°C) : Ne9ligible
£ nvjronmental Half Life: An 85% reduction over 2 weeks in river water has been noted
with subsequent persitence at that level for 8 weeks. 33 Eastern oyster accumulated
to 7300 times ambient levels in 10 days at .01 rpm in water’ ’
Mammalian Toxicity (mg/Kg body wt) : 395 rat (oral)
F:eshwater Critical Concentration: 0.022 ppm — 96 hr TLm bluegill’
7altwater Critical Concentration: 0.015 ppm — 96 hr TL 50 Korean shrimp 32
G} cfI 4ECl2 __________________
. hi pinq Forms: Pure Specific Grsvity: Gas — .0032
Solubility (mqj’f) : 14,600 Vapor Pressure (mm Hg @ 7.5 °C) : >760
hvironmental H tIf Lif : Hydrolyzes to 0C1 and C1. Most waters have chlorine
demands which rapidly diminish the toxic levelr.
4ammalian Toxicity (mg/Kg body wt)
Ireshwater Critical Concentration: 0.1 ppm — 96 hr TL 50 fathead minnows’
S ltwatrr Critical Concentration: 1.0 2IMfl — thrminatioT3 of pumping in oystere’
CHLOR( BENZENE C 6 H 5 C1
S tippinq Forms: Pure Specific Gravity: 1.107
iubility (my/i): 488 vapor Pressure (mm Hg @_____ C):Neg ligible
• Iv3ronnenta1 Half LLfe: BOD 5 — .03 lb/lb (1% theoretical) with aewage seed 2 ’
‘ismmalian Toxir it ’ (rv /V q body wt) : 2910 rat (oral)’’’
Freshwater Crjtj sl Concentration: 20 ppm — 96 hr TLm bluegill ’
Jaitwater Crxtic ,,l Concentration: 20 ppm — approximated from freshwater data
- CHL ROFORM - CHC1 3 ________________
Shipping Forms: Pure Specific Gravity: 1.49
Solubility (mg/Z) : 1000 Vspor Pressure (mm Hg 9 7.5 °C) : 84
Environmental Half Life: BOD 5 — .008 lb/lb (2.4%) with sewage seed’’
Mammalian Toxicity (mg/Kg body wt) : 1875 rat (oral)
Freshwater Critical Concentration: 125 ppm — estimated 72 hr LC to fathead
minnow’
altwater Critical Concentration: 125 ppm — approximated from freshwater data
111—27
-------
CHLOROSULFONIC ACID - C1SO 3 H.
Shipping Forms: Pure Specific Gravity: 1.766
Solubility (mg/&): Decomposes Vapor Pressure (sin Hg @ °C) : Negligible
Environmental Half Life: Hydrolyzes to HC1 and H 2 S0 4 which slowly neutralize
Mammalian Toxicity (mg/Kg body wt) :
Freshwater Critical Concentration: 74 ppnj — based on 96 hr pH threshold to bluegill
for HC1 and H 2 S0 4 hydrolysis products
Saltwater Critical Concentration: 346 ppm - based on 215 ppm 48 hr LC to
shrimp for pH level resulting from product Nd and H 2 S0 4 50
CHRONIC ACETATE - Cr(C 2 H 3 0 2 ) 3 .H 2 0
Shipping Forms: Pure Specific Gravity: ‘1.0
Splubility (mg/L): Sol. (50,000) Vapor Pressure (nun lfrj @ ‘C): Negligible
Environmental Half Life: Trivalent chromium will precipitate. Chromium can
be concentrated by a factor of 2000.23
Mammalian Toxicity (mg/Kg body wt): 2.29 mouse low i thai close l v. ) ’ ’
Freshwater Critical Concentration; 6. 2 ‘ppm - based on 1.3 ppm lethal level in
1 week to stickleback for trivalent chromium’
Saltwater Critical Concentration: 18 ppon - based on freshwater to saltwater
toxicity ratio for chromic acid
CHRONIC ACID - Cr0 3
Shipping Forms: Pure Specific Gravity: 2,7
Soluhility (mg/U’: >1,000,000 Vapor Pressure (m is Hg @ ‘C); Negligible
Environmental Half Life: Dissolved chrome will persist indefinitely in water
until reduced to trivalent form. Chromium can be concentrated by a factor of 2000.
Mammalian Toxicity (mg/Kg body wt); 330 dog (oral) 300
Freshwater Critical Concentration: 33 ppm - 96 hr TL fathead minnow 35
Saltwater Critical Concentration: 100 ppm — 48 hr LC 50 brown shrimp 2 ’
CHROMIC SULFATE - Cr 2 (504)3.15 1 120
Shipping Forms: Pure Specific Gravit’ 1 : 1.867
Solubility (mg/ ) Sot. (50,000) V spor Pressure (mm Hg 9 ______ ) : Negligible
Environmental Half Life: Oxide soon precipitates. Chromium can be concentrated
by a factor of 2000.23
Mammalian Toxicity (mg/Kg body wt): 247 mouse (low lethal dose I.V.)’ ’
Freshwater Critical Concentration: 9 ppm - based on 1.3 ppm lethal level in
1 week to stickleback for trivalent chromium’
Saltwater Critical Concentration: 27 ppm — based on saltwater to freshwater
toxicity ratio for chromic acid
111—28
-------
CHROMOUS CARBONATE - CrCO 3
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/i): V. Si. 501. (500) Vapor Pressure (mm Hg @ _____°C): Negligible
Environmental Half Life: Soon oxidized to trivalent which precipitates.
Chromium can be concentrated by a factor of 2000.
Mammalian Toxicity (mg/Kg body Vt):
Freshwater Critical Con entration: 2.8 ppm — based on critical concentration for
trivalent chromium
Saltwater Critical concentration: 9 ppm — based on freshwater - saltwater toxicity
ratio for chronic acid
CHROMOUS CHLORIDE - CrC I 2
Shipping Forms: Pure Specific Gravity: 2.75
Solubility (mg/i): V. 501. (100,000) Vapor Pressure (mm Hg 9 ‘C): Negligible
environmental Half Life: Soon oxidized to trivalent form which precipitates.
Chromium an be concentrated by a factor of 2000.21
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 3 ppm — based on critical concentration
for trivalent chromium’
Saltwater Critical Concentration: 9 ppm - based on freshwater — saltwater toxicity
ratio for chromic acid
. .CHROMOUS OXALATE - CrC 2 O 4 .H 2 0
Shipping Forms: Pure Specific Gravity: 2.46
Solubility (mg/i): $01. (50,000) Vapor Pressure (mm Hg 9 ‘C) Negligible
Environmental Half Life: Soon oxidizes to trivalent form which precipitates.
Chromium can be concentrated by a factor of 2000.21
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 4.0 ppm — based on critical concentration for
trivalent chromium.’
Saltwater Critical Concentration: 12 ppm - based on freshwater — saltwater toxicity
ratio for chronic acid
. . c !9 1YL CHLORIDE - CrO 2 C1 2
Shipping Forms: P e Specific Gravity: 1.91
Solubility (mg/i): Decomposes Vapor Pressure (mm Hg 9 ‘C) : Negligible
Environmental Half Life: Decomposes to CrO and MCi.
Chromium can be concentrated by a factof of 2000.2$
Mammalian Toxicity (mg/Kg body wt): 5.45 mouse (S.C.) ”
Freshwater Critical concentration: SI. ppm - based on 33 ppm 96 hr TLm to
fathsad minnow for hydrolysis product Cr0 3 1 ’
5 ltwater Critical Concentration: 155 ppm — based on 100 ppm 48 hr LC 50 to
brown shrimp for hydrolysis product Cr0 3 2 ’
111—29
-------
CORAL’I’ODS ACETATE - Co(C 2 H 3 0 2 ) .41120
Shipping Forms: Pure Specific Gravity: 1.7
Solubility (mg/i): Sol. (10,000—100,000) Vapor Pressure (inr Hg °C): Negligible
Environmental Half Life: Cobalt can be concentrated 200-1000 times. 23
Carbonate and hydroxide salts are insoluble.
Masunalian Toxicity (mg/Kg body Vt):
Freshwater Critical Concentration: 42 ppm - based on <10 ppm 168 hr lethal level
to goldfish for cobalt ionl
Saltwater Critical Concentration: 840 ppm — based on >200 ppm minimum toxic level
to muemichogs for cobalt ion”
çQBALTOUS BROMIDE - CoHr 2
Shipping Forms: Pure Specific Gravity: 4.909
Solubility (mg/i): 667,000 Vapor PreSsure (mm Hg 8 ‘C): Negligible
Environmental Half Life: Carbonate and h droxide 8a1t3 will precipitate. Cobalt
can be concentrated 200—1000 times. 2
Mammalian Toxicity (mg/Kg body wt)
Freshwater Critical Concentration: 37 ppm - based on <10 ppm 168 hr lethal level to
goldfish for cobalt ion 1
Saltwater Critical Concentration: 742 ppm - based on >200 ppm minimum toxic level
to muamichogs for cobalt ion”
AALT0UE cHLORIDE - CoCl 2 . 61120
Shipping Forms: pure Specific Gravity: 1.942
Solubility (mg/i): 767,000 Vapor Pressure (mm Hg S ‘C): Negligible
Environmental Half Life: Cobalt can be concentrated 200—1000 times. 23
Carbonate and hydroxide salts are insoluble.
Mammalian Toxicity (mg/Kg body wt): 180 rat (oral)”
Freshwater Critical Concentration: 40 ppm — based on <10 ppm .168 hr lethal level to
goldfish for cobalt ion. 3
Saltwater Critical concentration: 800 ppm — based on >200 ppm minimum toxic level
to iuusmiichogs for cobalt ion.”
COBALTOUS CITRATE - Co 3 (C 6 11 5 0 7 ) .21120
Shipping Forms: Pure Specific Gravity: >1.0
Solubi].ity (mg/i): 8000 Vapor Pressure (mm Hg S ‘C): Negligible
Environmental Half Life: Carbonate and h 1 droxide salts will precipitate. Cobalt
can be concentrated 200-1000 times.
Mammalian Toxicity (mg/Kg body Vt):
Frsshwatr Critical Concentration; 33 ppm —. based on <10 ppm 168 hr lethal level to
goldfish for cobalt ion.’
Saltwater Critical Concentration; 668 ppm — based on ‘200 ppm minimum toxic level to
aw”chogs for cobalt ion.’
1 11—30
-------
C0F .2H 0
COBALTOUS FLUORIDE - 2 2
Shipping Forms: Pure Specific Gravity; 4.43
Solubility (mg/i); soi. (50,000) Vapor Pressure (mm Hg @ °C): Negligible
Environmental Half Life:Carbonate and hydroxide salts will precipitate. Cobaitcan
be concentrated 200—1000 times. 2
Mammalian Toxicity (mg/Kg body wt);
Freshwater Critical Concentration: 11 ppm — based On <6.7 ppm 4P hr LCç 0 to
rainbow trout for NaP ’ 2 -
Saltwater Critical Concentration: 450 ppm — based on >200 ppm minimum toxic level to
mummichogs for cobalt ion. 3 ’
Co(CHO ) .211 0
COBALTOUS FORMATE 2 2 2
Shipping Forms: Pure Specific Gravity; 2.129
Solubility (mg/t): 50,300 Vapor Pressure (mm H; € ‘C): Negligible
Environmental Half Life: Cobalt can be concentrated but is not bioconcentrative.
Carbonate and hydroxide salts are insoluble.
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentrrtion: 31 ppm — based on <10 ppm 168 hr lethal level to
goldfish for cobalt ion
Saltwater Critical Concentration: 620 ppm - based on >200 ppm minimum toxic level
to mummichogs for cobalt ion”
. COBALTOUS IODIDE - Cot 2
Shipping Forms: Pure Specific Gravity; 5.68
Solubility (mg/i): 1,590,000 Vapor Pressure (mm 11ç 8 ‘C): Negligible
Environmental Half Life: Carbonate and hydroxide salts will•precipitate
Mammalian Toxicity (mg/Kg body wt):
Freshwater critical Concentration: 53 ppm — based on <10 ppm 168 hr lethal level to
9oldfish for cobalt ion’
Saltwater Critical Concentration: 1054 ppm — based on >200 ppm minimum toxic level
to muinmichog. for cobalt ion”
BALTOUS NITRATE - Co(N0 3 ) 2 .6H 2 0
Shipping Forms Pure Specific Gravity: 1.87
Solubility (mg/L) >1,000,000 Vapor Pressure (mm Hg 9 ‘C): Negligible
Environmental Half Life: Cobalt can be concentrated 200-1000 times. 2 ’
Carbonate and hydroxide salt. are insoluble.
Mammalian Toxicity (mg/Kg body wt): 400 rabbit (low lethal dose oral)”
Freshwater Critical Conc.ntratiqn: 49 ppm - based on, <10 ppm 168 hr lethal level
to goldfish for cobalt ion
Saltwater Critical Concàntration: , 980 ppm based on >200 ppm minimum toxic level
to mulmnichcgs for cobalt ion
111—31
-------
COBALTOUS PERCSLORATE - Co (do 4 ) 2 6H 2 0
Shipping Forms: Pure Specific Gravity: 3.327
Solubility (mg/f): 1,000,000 Vapor Pressure (mm Hg @_____
Environmental Half Life: Cobalt can be concentrated 200-1000 times. 2 ’
Carbonate and hydroxide salts are insoluble.
Mammalian Toxicity (mg/Kg body wt) : 160 mouse (I.?.)’’
Freshwater critical Conc.ntratiqn: 62 ppm - based on 200 ppm minimum toxic
level to mummichogs for cobalt ion 3 ’
COBALTOUS SUCCINATE - C0CuH 4 O 4
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/f) : Sol. (1000) Vapor Pressure (mm Hg S C)
Environmental Half Life: Cobalt can be concentrated 200—1000 times. 2 ’
Carbonate and hydroxide salts are insoluble
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentratipn: 20 ppm - based on <10 ppm 168 hr lethal level
to goldfish for cobalt ion
Saltwater Critical concentration: 400 ppm - based on >200 ppm minimum toxic
level to mummichogs for cobalt ion’
COBALTOUS SULFAMATE - Co(NH 2 50 3 ) 2
Shipping Forms: Pure specific Gravity: >1.0
Solubility (mg/f): Sol. (5000) Vapor Pressure (nut Hg S DC):
Environmental Half Life: Carbonate and hydroxide salts will precipitate.
Cobalt can be concentrated 200-1000 times. 2 ’
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical concentratiqn: 40 ppm - based on <10 ppm 168 hr lethal level
to goldfish for cobalt ion
Saltwater Critical Concentration: 809 ppm — based on >200 ppm minimum toxic
level to mummichogs for cobalt ion
cOBALTOUS SULFATE - Co80 4 .7H 2 0
Shipping Forms: PU Specific Gravity: 1.988
Solubility (mg/f): 604,000 VnpOr Pressure (mm Hg 5 •C): Negligible
Environmental Half Life: Cobalt can be concentrated 200-1000 times. 28
Carbonate and hydroxide salts are insoluble
Mammalian Toxicity (mg/Kg body Vt): 21 mouse
Freshwater Critical conc.ntratiqn: 48 ppm - based on <10 ppm 168 hr lethal level
to goldfish for cobalt ion
Saltwater Critical Concentration: 9698 ppm — based on >200 ppm minimum toxic
level to mummichogs for cobalt ion
111—32
-------
COUMAPHOS — C 14 H 16 C10 5 PS
Shipping Forms Pure, wettable
Solubility (mg/f) : 1.5
Environmental Half Life: Moderately
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration:
Saltwater Critical Concentration:
Specific Gravity: 1.474
Vapor Preesure (mm Hg _____ °C) : Negligible
persistent
41 rat (oral)’’
.180 — 96 hr LC 50 bluegill”
.11 - 48 hr TLm oyster larvae”
CRESOL - C 6 H 4 OHCE 3
Shipping Forms: Pure
So] .ubility (mg/t): 23,500
Environmental Half Life: BOb 5 38%
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration:
Saltwater Critical Concentration:
Specific Gravity: 1.048
Vapor Pressure (mm Hg 8 °C): Negligible
theoretical with acclimated activated sludge 3 ’
1800 (para z at. (eLui)
10 ppm - 96 hr TL bluegill’’
55 ppm - estimated 48 hr LC 50 shrimp’
CUPRIC ACETATE - CU(C 3 H 3 0 2 ) 2 .H 3 0
Shipping Forms: Pure
Solubility (mg/i): 72,000
Environmental Half Life: Copper can
insoluble
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critj Concentration:
Saltwater Critical C?ncentration:
for copper ion
Specific Gravity: 1.93
Vapor Pressure (mm Hg °C): Negligible
be concentrated 1600 times. The hydroxide is
710 rat (oral)’’
26 ppm - based on the 96 hr Thm to bluegill’
5.9 ppm - based on 1.9 ppm 96 hr TLm to Oysters
CUPRIC PiCETOARSENXTE - Cu(C 2 H 3 0 2 ) 2 .3Cu(A80 2 ) 2
Shipping Forms: Pure Specific Gravity: l.0
Solubility (mg,’i): Insol. U000) Vapor Pressure (mm H 8 ‘C):
Environmental Ha .f Life: Does not persist in this form but results in precipitated
coppr and arsenate salts. Copper car. be concentrated 1600 times. 2 ’
Mammalian Toxicity (mg/Kg, body wt) : 22 rat (low lethal dose oral)’
Freshwater Critical Concentration: 1.7 ppm - based en .43 ppm 96 hr TLm to fathead
minnor for copper
Saltwater Critical Conc.fttration, 7.7 ppm - based on 1.9 ppm 96 hr TLm to oysters for
copp.r ion •‘
111—33
-------
cOPSIC AcETyLACETONATE - CM CO C R 3 ) 2
Shipping Forms: Pure Specific Gravity: >i.o
Soli.thility (mg/&);Sol. (1000) Vapor Pressure (mm Hg @_____
Environmental Halt Life; Copper is precipitated in an oxide form. Copper
can be concentrated 1600 times. 2 ’
Mammalian Toxicity (mg/Mg body wt):
Freshwater Critical Concentration: 1.8 ppm - based on .43 ppm 96 hr TLn to
fathead minnow for copper ion.”
Saltwater Critical Concentration:7.8 ppm - based on 1.9 ppm 96 hr TL to oysters
for copper ion. In
CUPRIC EROMIDE - CuBr 2
Shipping Forms:Pure Specific Gravity: 4.71
Solubility (mg/i): V. sd. .1oo,o Ø vapor Pressure (mm Hg @ °C) : Negligible
Environmental Half Life: Copper can be concentrated 1600 times. The hydroxide
is insoluble. 2 ’
Maalian Toxicity (eq/Mg body wt):
Freshwater Critical Concsntrai ion: 1.5 ppm — based on .43 p m 96 hr TLm to fathead
minnow, for copper ion.
Saltwater Critical Concentration: 6.6 ppm — based on 1.9 ppm 96 hr TLm to oyst•r.
for copper ion
CUPRXC CHLORIDE - CUC1 2 .2H 2 0
Shipping Forms; Puss Specific Gravity; 2.38
Solubility (mg/i): l ,3 OO,0OO Vapor Pressure (J’i’ Hg I •C) ; Negligible
Environmental Half Life; Copper can be concentrated 1600 times.’’ Th. hydroxide
ii insoluble.
Ns 1ian Toxicity (mg/Mg body wt): 140 rat (oral) ‘
Frsshwatsr Critical concentr tion: 1.1 ppm - based on .43 ppm 96 hr TLm fathead
minnows for copper ion’
Saltwatwr Critical Copcentratien ; 5 ppm - based on 1.9 ppm 96 hr TLm to oysters
for copper ion
CUPRIC FO IATE - Cu (CEO ,) ,
Shipping Forms: Pure Specific Gravity: 1.831
Solubility (mg/i); 125,000 vapor Pressure (nun Hg 9 •C)
Environmeptal Half Life: Copper is r.cipitatsd in an oxide form. Copper
can be ccnosntratsd 1600 times.
)*aanaiian Toxicity (mg/Mg body wt):
Fr.shwftt,r ri ica1 conc.ntratiqm: •,1 ppm - based on .43 ppm 96 hr TI to
ratneac m.tnnow for copper ion. w
Saltwater Critical Cona.ntr tion: S ppm - based on 1.9 ppm 96 hr TL to
cyst.rs tor copper ice m
111—34
-------
CUPRIC GLUCONATE — Cu CU 2 OM(HOH) 4 COO] 2
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/fl: 300,0.00 Vapor Pressure (mm Hg @ °C)
Environmental Half Life: Copper is ç recipitated in an oxide form. Copper
can be concentrated 1600 times.
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical ConcentratiOn: 3 ppm — based on .43 ppm 96 hr TL to
fathead minnow for copper ion m
Saltwater Critical Concentration: 14 ppm - based on 1.9 ppm 96 hr TLm to
oysters for copper ion
CUPRIC GLYCINATE - Cu(C 2 H 4 N0 2 ) 2 .H 2 0
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/f) : 5700 Vapor Pressure (mm Hg @ °C) : Negligible
Environmental I1a f Life: Copper is precipitated in an oxide form. BioconcentratiVe
copper can me concentrated 1600 times.
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: . 2 ppm - based on .43 ppm 96 hr TLm to
fathead minnow for copper jon”
Saltwater Critical Concentration: 7 ppm - based on 1.9 ppm 96 hr TLm to
oysters for copper ion 1
CUPRIC LKCDATE- Cu(C 3 H 5 0 3 ) 2 .2H 2 0
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/f) : 167,000 Vapor Pressure (mm Hg °C) : Negligible
Environmental Half Life: Copper is jecipitated in an oxide form. Copper
can be concentrated 1600 times.
Mammalian ToxiciLy (mg/Kg body wt):
Freshwater Critical Concentration: 2 ppm - based on .43 ppm 96 hr TLm to
fathead minnow for copper ion’ 7
Saltwater Critical Concent 9 tion: 7 ppm based on 1.9 ppm hr TLm to
oysters for copper ion
CUPRIC NITRATE - Cu ( NO 3 ) .3H 2 0
Shipping Forms: Pure Specific Gravity: 2.32
Solub lity (mg/f): >1,000,000 V ipor Pressure (mm Hg 9 °C): Negligible
Environmental Half I 1 ife: Copper can be concentrated 1600 times. The hydroxide
is insoluble.
Mammalian Toxicity (mg/Kg body wt): 940 rat (oral)’’ 2
Freshwater Critical Concentration: ,2 ppm — based on .43 ppm 96 hr TLm to
fathead minnows for copper ion’
Saltwater Critical Concentration: 7 ppm - based on 1.9 ppm 96 hr TLm to
oysters for copper ion 1
111—35
Ui Ak Y
j S. £ay ’Oflrn t-
Cc ;aIi ,n )
-------
CUPRIC OXALATE - CuC 2 0 4 .¼H 2 0
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/f): 25 Vapor Pressure (mm Hg 5 °C): Negligible
Environmental Half I 1 ife: Copper can b’ concentrated 1600 times. The hydroxide
is insoluble. 2
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 1.1 ppm - based on .43 ppm 96 hr TL to
fathead minnows for copper ion 3
Saltwater Critical Concentrjtion: 4.8 ppm - based on 1.9 ppm 96 hr TI m to
oysters for copper ion
CUPRIC SUBACETATE - CU(C 2 H 3 0 2 ) 2 .CUO.6H 2 0
Shipping Forms: Pure Specific Gravity: >10
Soltthility (mg/f): Si. s Ql. (5000) Vapor Pressure (m is Hg S °C): Negligible
Environmental Half Life: copper is precipitated in an oxide form. Copper
can be concentrated 1600 times. 2 ’
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentj tion: 1.24 ppm — based on .43 ppm 96 hr TLm to fathead
minnow for copper ion.
Saltwater Critical C?ncentration: 5.5 ppm — based on 1.9 ppm 96 hr TLm to oysters
for copper ion.
CUPRIC SULFATE - CuSO 4 . 5 520
Shipping Forms: Pure specific Gravity: 2.205
Solubility (mg/f): 316,00 Vapor Pressure (mm Hg S______ C): Negligible
Environmental Ha3 f Life: Copper can be concentrated 1600 times. The hydroxide is
insoluble.
Mammalian Toxicity (mg/Kg body Ut): 300 rat (oral)°°
Freshwater Critical Concentration: 8 ppm — based on 48 hr TLm to bluegill.’’
Saltwater Critical C 1 ncentration: 7.4 ppm - based on 1.9 ppm 96 hr TLm to oysters
for copper ion.
CUPRXC SULFATE AMMONXATED - fCU(NH 3 ) 4 ]S0 4 H 2 0
Shipping Forms: Pure Specific Gravity: 1.81
Solubility (mg/f); 185,000 Vapor Pressure (sin Hg S °C)t Negligible
Environmental Half Life; Copper is precipitated in an oxide form. Copper
can b concentrated 1600 times.
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 1.7 ppm — based on .43 ppm 96 hr TLm to fathead
minnow for copper ion.”
Saltwater Critical Concentration: 7.3 ppm — based on 1.9 ppm 96 hr TLm to oysters
for copper ion.’
III— 36
-------
CUPRIC TARTRATE - CuC 4 H 4 O 6 .3H 2 0
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/f) : 200 Vapor Pressure (mm Hg @ ______
Environmental Half Life:Copper is precipitated in an oxide form. Copper
can be concentrated 1600 times. ’
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 1.8 ppm — based on .43 ppm 96 hr TLm to fathead
minnow for copper ion. ”
Saltwater Critical Concentration: 7.9 ppm - based on 1.9 ppm 96 hr TLm to oysters
for copper ion.
- CUPROUS BROMIDE - CuBr
Shipping Forms: Pure Specific Gravity: 4.7
Solubility (mg/f) : V. sl. aol. (500) Vapor Pressure (mm Hg 9 °C) : Negligible
Environmental Half Life: Copper is oxidized to cupric form and precipitates. Copper
can be concentrated 1600 times. 2 ’
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: .98 ppm - based on .43 ppm 96 hr TL to fathead
minnow for copper jon.”
Saltwater Critical Concentration: 4.3 ppm — based on 1.9 ppm 96 hr TLm to oyster
for copper ion.
CUPROUS IODIDE - Cul
Shipping Forms: Pure Specific Gravity: 5.63
Solubility (mg/f): 8 Vapor Pressure (mm Hg °C): Negligible
Environmental Half Life:Copper can be concentrated 1600 times. The hydroxide
is insoluble.’’
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 1.27 ppm — based on .43 ppm 96 hr TLm to fathead
minnows for copper ion.”
Saltwater Critical Concentration: 5.6 pp n — based on 1.9 ppm 96 hr TLm to oysters
for copper ion.’
CYANOG CHLORIDE - CnC1
Shipping Forms: Pure Specific Gravity: 1.2
SOlubility (mg/f) : >2500 Vapor Pressure (mm Hg 9 ______°C) : Negligible
Environmental Half Life: Oxidizes with time
Mammalian Toxicity (mg/Kg body wt): 39 mouse (low lethal dose eubcutaneous)Ie
Freshwater Critical Concentration: .08 ppm — lethal to fish.’
Saltwater Critical Concentration: .08 ppm — approximated from freshwater data
111—37
-------
CYCLONEXANE - C 6 H 12
Shipping Forms: Pure Specific Gravity: 0.779
Solubility (mg/i): 45 Vapor Pressure (mm Hg @ 7 5 °C):44
Environmental Half Life: Volatile
Mammalian Toxicity (mg/Kg body wt): 29,820 rat (oral)
Freshwater Critical Concentration: 31 ppm - 96 hr TL bluegill.’”
m
Saltwater Critical Concentration: 31 ppm — approximated from freshwater data
C H C1 O
2,4-D ACXD- 8
Shipping Forms: Pure, wettable Specific Gravity: >1.0
Solubility (mg/i): 620 vapor Pressure (mm Hg 8 °C): Negligible
Environmenta 1 Half Life: Degrades rapidly. Reversably concentrated by a factor
of 180.
Mammalian Toxicity (mg/Kg body Vt): 100 rat (oral)’’
Freshwater Critical Concentration: 350 ppm — 24 hr T1. to bluegill for pure acid’
8 - 48 hr TLm to bluegill for wettable for&
Saltwater c itiçg1 Concentration: 6 ppm based on 8 ppm 48 hr Ti to oysters for
ester orm
2,4-1 ) ESTERS — C 8 H 6 Cl 2 O 3 tester
Shipping Forms: Pure, wettable Specific Gravity: >1.0
Solubility (mg/i): 100—1000 Vapor Pressure (mm Hg 8 °C): Negligible
Environmental Half Life: 2,4D esters degrade rapidly but may concentrate in
organism by a factor of 180 “
Mammalian Toxicity (mg/Kg body wt): 320 rat (oral)’’
Freshwater Critical Concentration: 2.0 ppm — based on 96 hr TL to fingerling
striped bass for the butyl ester
Saltwater Critical Concentration: 8 ppm — 48 hr TI to oystez ’ 0
cl
C1I 3 — CH 3 CC1 2 COOH
DALAPON - Cl
Shipping Forms: Pure, wettable Specific Gravity: 1.389
Solubility (mg/i): 45O,O 0 Vapor Pressure (mm Hg 8 •C): Negligible
Environmental Half Life: Greater than 10 days ‘
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: ios ppm — 96 hr LC bluegill
Saltwater Critical Concentration: i ppm — 48 hr LC 40 brown shrimp ‘
111—38
-------
DOT - C 14 H 9 C1 5
Shipping Forms: Pure, wettable Specific Gravity: >i.o
Solubility (mg/i): .01 Vapor Pressure (mn Hg 9 ______ ‘C) : Negligible
Environmental Half Life: Very stable, bioconcentrates in oysters up to 70,000 times’ 3
Mammalian Toxicity (mg/Kg body wt): 250 rat (oral)’
Freshwater Critical Concentration: .0095 ppm — 96 hr TL to bluegill ”
Saltwater Critical Concentration: .03 ppm — 96 hr EC 50 to oyster’’
_ DIAZIN0N — C 12 H 21 N 2 0 3 P 5
Shipping Forms: Pt re, wettable Specific Gravity: 1.116
SOlubility (mg/i) : 40 Vapor Pressure (nun Hg 9 ‘C) : Negligible
Environmental Half Life: Degrades relatively fast. May concentrate up to 10 times. 3 ’
Mammalian Toxicity (mg/Kg body wt): 357 man(oral)’
Freshwater Critical Concemtratjon: .022 PPm - 96 hr TL bluegill”
Saltwater Critical Concentration: .022 ppm - based on freshwater levels
- 0 3 C 12 C 8 H 6
Shipping Forms: Pure, wettable Specific Gravity: >‘•°
SOlubility (mg/i): 4500 Vapor Pressure (run Hg 5 ‘C): Negligible
Environmental Half Life: Persistent
Mammalian Toxicity (mg/Kg body wt): 1040 rat (oral) ’
Freshwater Critical Concentration: 40 ppm — 48 hr TLm bluegill’
Saltwater Critical Concentration: 40 ppm - based on freshwater toxicity
DICELOBENIL N C1(Cl)C 6 H 3 CN
Shipping Forms: Pure, wettable Specific Gravity: >1,0
Solubility (mg/i): 18 Vnpor Pressure (mm Hg S ‘C): Negligible
Environmental Half Life: Persistent
Mammalian Toxicity (mg/Kg body wt); 3160 rat (oral)’ 1 ’
Freshwater Critical Concentration: 14.7 ppm - 96 hr TLm bluegill’’’
Saltwater Critical Concentration: 14.7 ppm - based on freshwater data
111—39
-------
DICHLONE - clO 4 2 2
Shipping Forms: Pure, wettable Specific Gravity: ‘1.0
Solubility (mg/i): 0.1 Vapor Pressure (mm Hg S_____ C): Negligible
Environmental Half Life: Persistent
Mammalian Toxicity (mg/Kg body wt): 1300 rat (oral)’’
Freshwater Critical Concentration: .04 ppnt - 96 hr LC 50 bluegill”
Saltwater Critical Concentration: .04 ppm - based on freshwater toxicity
DICHLORVO$ - (CH 3 O) 2 P(O) OCR: CC1 2
Shipping Forms: Pure, wettable Specific Gravity: 1.44
Solubility (mg/i): 10,000 vapor Pressure (mm Hg S °C): Negligible
Environmental Half Life: Persistent to 62 days
Mammalian Toxicity (mg/Kg body wt); 56 rat (oral)”
Freshwater Critical Concentration: 0.7 ppm - 48 hr bluegill”
Saltwater Critical Concentration: 0.39 ppm — 24 hr LC 50 tO grail shrimp
DIILO1IN - C 12 5 8 C1 6 0
Shipping Form.: Pure, wettable specific Gravity: 1.75
So] .ubility (mg/i) Insol. (.186) Vapor Pressure (mm Hg I •C): sgliqibis
Environmental Half Life: Bioconcentrated in oysters to 8000 times ambient level. “
Mammalian Toxicity (mg/Kg body wt): 46 rat (oral)”
Freshwater Critical Concentration: .0079 ppm — 96 hr TLm bluegill’ 5
Saltwater Critical Concentration: .05 ppm — 96 hr LC 50 grass shrimp”
DXETHYLM4XNE - (C 2 H 5 ) 2
Shipping Forms: Pure specific Gravity: 0.71
Solubility (mg/i): 815,000 Vapor Pressure (mm Hg 8 7.5 ‘C): 760
Environmental Half Life: Degrades ata mmdsrats rats — assume NOD 5 of 10% thorstical
Mammalian Toxicity (mg/Kg body wt): 540 rat (oral)’
Freshwater Critical Concentration: 85 ppm - 48 hr TLm creek chub’
Saltwater Critical Concentration: 85 ppm - approximated from freshwater data
111—40
-------
DIMETHYLAMINE — (CR 3 ) 2 NH
Shipping Forms: 25%, 40%, and Anhydrous
Solubility (mg/i): v. sd. (>100,000 ______
Environmental Half Life: Degrades slowly
Mammalian Toxicity (mg/Kg body wt): 540 rat (oral) 7
Freshwater Critical Concentration: 85 — 48 hr TL creek chub 7
Saltwater Critical Concentration: ioo ppm — based on >100 ppm 48 hr LC 50 for shrimp 0
DINITROPHENOL - C 6 H 4 N 2 0 5
Shipping Forms: Pure Specific Gravity: 1.68
Solubility (mg/i): 13,200 Vapor Pressure (mm Hg 9 C) : Negligible
Environmental Half Life: SOD .94-7.7% theoretical 2
Mammalian Toxicity (mg/Kg body wt): 30 rat (oral )’ ’°
Freshwater Critical Conce , tration: 3 ppm — minnows overturn in 6 hours when
exposed to 35-38 ppm
Saltwater Critical Concentration: 35 r ’ — approximated from freshwater data
DIQUAT - C 12 K 12 Br 2 N 2
Shipping Forms: Pure, wettable Specific Gravity: >1.0
Solubility (mg/t): 700,000 Vapor Pressure (mm Hg S °C) : Negligible
Environmental Half Life: 1 ersisted 7-27 days at 2.5 ppm ’s
Mammalian Toxicity (mg/Kg body wt): 321 rat (oral) 9 ’
Freshwater Critical Concentration: 35 ppm - 96 hr TL — bluegill 0 ’
Saltwater Critical Concentration: 10 ppm - based on >10 ppm 4e hr LC 50 to shrimp’
DISULFOTON (C 2 H 5 O) P(S)SCH 2 CH 2 SCH 2 CH 3
Shipping Forms: Pure, wettable Specific Gravity: 1.144
Solubility (mg/i): 25 Vapor Pressure (nun Hg S ‘C) : Negligible
Environmental Half Life: persists 4 weeks in soil
Mammalian Toxicity (mg/Kg body wt): 10 rat (oral)’
Freshwater Critical Concentration: .064 ppm - 96 hr LC 50 - bluegilll 3 a
Saltwater Critical concentration: .064 ppm - approximated from freshwater data
Specific Gravity: 0.68
Vapor Pressure (mm Hg 9 7.5 ‘C) : 760
111—41
-------
DIURON C 9 H 10 CL 2 N 2 0
Shipping Forms: Pure, wettable
Solubility (mg/i) : 42
Environmental Half Life: Relatively
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration:
Saltwater Critical Concentration:
Specific Gravity: >1.0
Vapor Pressure (mm Hg 9
persistent
437 rat (oral)’’
4.0 ppm - 96 hr LC 50 - bluegill ’
1.8 ppm - 96 hr EC 50 - oyster’’
‘C): Negligible
DODECYLBENZENESULFONIC ACID - 0 3 SC 18 H 30
Shipping Forms: Pure
Solubility (mg/i): Sol. (50,000)
Environmental Half Life: BOD - 43%
sodiue salt 2 ’
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration:
bluegill for sodium salt”
Saltwater Critical Concentration:
mullet for sodium salt 7 ’
Specific Gravity: >10
Vapor Pressure (mm Hg 8 •C): Negligible
theoretical with activated sludge based on
95 mouse (oral)’’
18 ppm - based on 19 ppm — 96 hr Thm to
9 ppm - based on 10.]. ppm 96 hr TI. to
C 9 M 11 C1 3 NO 3 PS
Shipping Forms: Pure, wettable
Solubility (mg/i): 2 ______
Environmental Half Life: Moderate persistence
Mammalian Toxicity (mg/Kg body wt): 145 rat (oral)’’
Freshwater Critical Concentration: .037 ppm - 36 hr LC 50 - green sunfish’’
Saltwater Critical Concentration: .04 ppm - approximated fran freshwater data
ENDOSUZZ M C 9 H 6 C1 60 0 3 S
Shipping Forms: Pure, wettable
Solubility (mg/i): Inaol. (1)
Environmental Half Life: Moderately
Mammalian Toxicity (mg/Kg body wt):
Freshwat.r Critical Concentration:
Saltwater Critical Concentration:
Specific Gravity: 1.745
Vapor Pressure (mm Hg 8
persistent
100 rat (oral)’’
.00 33 ppm - 96 hr LC 50 - fathead minnow t 2
.0]. ppm - 48 hr LC 50 - prawn 2 ’
Specific Gravity: >1.0
Vapor Pressure (mm Hg @_ C):
111—42
-------
ENDRIN - C 12 H 8 C 1 6 0
Shipping Forms: Pure, wettable Specific Gravity: >1.0
Solubility (mg/f): 0.23 Vapor Pressure (mm Hg 9 °C): Negligible
Environmental Half Life: Hydrolyzes slowly- bioconcentrated by a factor of
1,000—10,000 in oysters and fish” 7
Mammalian Toxicity (mg/1(g body wt): 7.3 rat (oral) 1
Freshwater Critical Concentration: .0006 96 hr — bluegill’
Saltwater Critical concentration: .0031 — 96 hr TLm — puffer fish’
ETHION — C 9 H 22 0 4 P 2 S 4
Shipping Forms: Pure, wettable
Solubility (mg/i): 1 _____
Environmental Half Life: Moderate persistence
Mammalian Toxicity {mg/](g body wt) : 13 rat (oral)’’
Fr•shwater Critical Concentration 0.13 ppm - 96 hr TLm - blueg il l ”
Saltwater Critical Concentration: 0.13 ppm - approximated from freshwater data
ETHYLBENSENE - C 6 H 4 C 2 H 5
Shipping Forms: Pure
Solubility (mg/f): 14
Environmental Half Life: SOD 5 - 28%
Mammalian Toxicity (mg/Jcg body wt):
Freshwater Critical Concentration:
Saltwater Critical Concentration:
Specific Gravity: 0.958
Vapor Pressure (mm Hg 8 7.5 C): 3.50
theoretical with activated sewage $•• l
3500 rat (oral)’’
29 ppm - 96 hr TLm bluegill’”
29 ppm - approximated from freshwater data
ETHYLENEDIp.1.f 5 C 2 X 8 N 2
Shipping Forms: 91 — 93%
Solubility (mg/f): >1,000,000
Environmental Ha) f Life: SOD 5 — 75%
2% in salt
Mammalian Toxicity (mg/Kg body wt) :
Freshwater Critical Concentration:
Saltwater Critical Concentration:
Specific Gravity: 0.898
Vapor Pressure (mm Hg 8 7.5 C) : 4.5
theoretical”’ - 24% in freshwater and
1160 rat (oral)’’’
30 ppm - lower 24 hr critical range creek Chub 1
14 ppm - 24 hr TLm brine shrimp”
Specific Gravity: 1.215
Vapor Pressure (mm Hg 9 ‘C):
111—43
-------
EDTA— C 10 H 16 N 2 0 8
Shipping Forms: Pure
Solubility (mg/i) : 500
Environmental Half Life: SOD 5 - .01
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration:
Saltwater Critical Concentration:
Specific Gravity: >1.0
Vapor Pressure (mm Hg 8 °C): Negligible
lb/lb (.5% theoretical) 5 ’
104 rat (oral)’’’
500 ppm - estimated 72 hr TLm to fathead minnow’
500 ppm - approximated from freshwater data
FERRIC AMMONIUM CITRATE (FeNH 4 ) 3 (C 6 H 5 0 7 ) 4
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/i): >1,000,000 Vapor Pressure (mm Hg 8 ‘C): Negligible
Environmental Half Life: Iron precipitates while the ammoniunt citrate is biodegradable
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentratic q:
striped bass for iron ion
Saltwater Critical Concentrati , n:
prawn for ferric chloride
FERRXC CHLORIDE - FeC1 3 .6H 2 0
Shipping Forms: Pure 30-50%
Solubility (mg/i): 919,000
Environmental Half Life: Hydroxide
Mammalian Toxicity (mg/Kg body Vt):
Freshwater Criticjl Concentrati :
striped bass for iron ion
Saltwater Critical Comcentratiom:
Specific Gravity: 2.9
Vapor Pressure (mm Hg 8 •C): Negligible
salt precipitates
900 rat (oral) 00
20 ppm - based on 4.0 ppm - 96 hr LC 50 to
39 ppm - 48 hr LC 0 prawn’
FERRIC FLUORIDE - F 3 4 2 0
Shipping Forms: Pure Specific Gravity: 3.87
Solubility (mg/i): Si. aol. (5,000) Vapor Pressure (m o n Hg 8 ‘C); Nsgligibl.
Environmental Half Life: Iron is precipitated as an hydroxide salt
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critic4. Concentration:
for iron Na?”
Saltwater Critical Concenlration:
for ferric chloride
24 ppm - based on 4.0 ppm - 96 hr LC 50 to
48 ppm - based on 39 ppm - 48 hr to
11 ppm based on 6.7 ppm 48 hr LC 50 to rainbow trout
28 ppm - based on 39 ppm - 48 hr LC 50 to prawn
111—44
-------
FERRIC NITRATE - FeCNO 3 ) 3 .9H 2 0
Shipping Forms: Pure
Solubility (mg/i): So].. (50,000)
Environmental Half Life: Hydroxide
is not bioconcentrative
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration:
bass for iron ion’ 1
Saltwater Critical Concentration:
for ferric chloride ‘
Specific Gravity: 1.684
Vopor Pressure (nun Hg @ ‘C) : Negligible
salt precipitates. Iron is accumulated but
3250 rat (oral) 98
30 ppm - based on 4.0 ppm - 96 hr LC 50 to striped
60 ppm - based on 39 ppm - 48 hr LC 50 to prawn
FERRIC PHOSPHATE - FePO 4 .2H 2 0
Shipping Forms: Pure
Solubility (mg/i) : Insol. (500)
Environmental Half Life: Iron will
Mammalian Toxicity (mg/Kg body wt):
?r.iI st.r Critical Concent jtion:
striped bass for iron
Saltwater Critical Concentration:
prawn for ferric chloride
Specific Gravity: 2.87
Vapor Pressure (ijun Hg @ ‘C) : Negligible
precipitate as hydroxide
Fe 2 ( S0 4 ) 3 .9H 2 0
Shipping Forms: Pure Specific Gravity: 2.].
Solubility (mg/i ): 4,400,000 Vapor Pressure (mm Hg 8 DC). Negligible
Environmental Half Life: Iron may be precipitated
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration:
striped bass for iron i on 5
Saltwater Critical Concentrati 9 n:
prawn for ferric chloride
A O1ONIUM SULFATE FeSO 4 . (NH 4 )
Shipping Forms: Pure
Solubility (mg/i): 180,000
Environmental Half Life: Hydroxide
bioconcentrative.
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration:
bass for iron io n ’
Saltwater Critical Conce, tration:
for ferric chloride
Specific Gravity: 1.864
Vapor Pressure (mm Hg DC): Negligible
salt precipitates. Iron is accumulated but is not
3250 rat (oral)”
20 ppm — based on 4.0 ppm 96 hr LC 50 to striped
40 ppm - based on 39 ppm 48 hr LC 50 to prawn
14 ppm - based on 4 ppm - 96 hr LC 50 to
28 ppm - based on 39 ppm - 48 hr LC 50 to
20 ppm - based on 4 ppm - 96 hr LC 50 to
40 ppm - based on 39 ppm - 48 hr LC 50 to
111—45
-------
FERROUS CELORIDE - FeC1 2 .4H 2 0
Shipping Forms: Pure Specific Gravity: 1.93
Solubility (mg/i): 1,600,000 V ipor Pressure (mm Hg 8 °C) : Negligible
Environmental Half Life: Iron may be precipitated. It accumulates but is not
bioconcentrative.
Mammalian Toxicity (mg/Kg body wt): 984 rat (oral) 9 ’
Freshwater Critical Concentration: 14 ppm — based on 4 ppm 96 hr LC 50 to striped bass
for iron ion
Saltwater Critical ConCentration: 28 ppm — based on 39 ppm 48 hr LC 50 to prawn
for ferric chloride 1
FERROUS OXALATE- F C 2 j 4 .2H 2 O
Shipping Forms: Pure Specific Gravity: 2.28
Solubility (mg/i): 220 Vapor Pressure (mm Hg 8 °C) : Negligible
Envirommental Half Life: Hydroxide salt precipitates.
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 13 ppm — based on 4.0 ppm - 96 hr LC 50 to
striped bass for iron ion 51
Saltwater Critical Concentration: 26 ppm — based on 39 ppm — 48 hr LC to
prawn for ferric chloride’ so
FERROUS SULFATE - FeSO 4 .70 2 0
Shipping Forms; Pure Specific Gravity: 1.899
Solubility (mg/U: 156,500 Vapor pressure (mm Hg @ °C): Negligible
Environmental Half Life: Iron is precipitated to low levels.
Mammalian Toxicity (mg/Kg body wt): 5,000 rat (oral) °
Freshwater Critical Concentration: 20 ppm - based on 4 ppm - 96 hr LC 50 to
striped base for iron ion ‘
Saltwater Critical Concentration: 40 ppm - based on 39 ppm - 48 hr LC to
prawn for ferric chloride 9
CH 0
FORMALDEH!DE - 2
Shipping Forms: 37% with 12—15% methanol, Specific Gravity: 0.815
37% with 7% methanol, 44% with 1% methanol, and 37% methanol free
Solubility (mg/i): >1,000,000 Vapor Pressure (mm Hg @ 7.5 °C): >760
Environmental Half Life; BODE — 99% theoretical with activated sludge 2
Mammalian Toxicity (mg/Kg body wt): 800 rat (oral)
Freshwater Critical Concentration: 25 ppm - 96 hr TLm channel catfish’
Saltwater Critical Concentration: 215 ppm - estimated 48 hr LC 50 to flounder’
111—46
-------
FOR14IC ACID - HCOOH
Shipping Forms: 85%, 90%
Solubility (mg/U : >1,000,000
Environmental Half Life: BOD 5 — 40%
and 62% in salt Water 2 , ’
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration:
Saltwater Critical Concentration:
Specific Gravity: 1.22
Vapor Pressure (mm Hg @7.5CC) : 14
theoretical in quiescent state, 48% in freshwater
4,000
175 ppm — 24 hr TLm bluegill’
85 ppm - estimated 48 hr LC 50 to shore crabs 25
FUMARIC ACID - C 4 H 4 0 4
Shipping Forms: Pure
Solubility (mg/i): 7,000 _____
Environmental Half Life: DOD 5 - .65
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration:
Saltwat.r Critical Concentration:
C 5 H 4 0 2
Shipping Forms: PUXS Specific Gravity: 1.15
SOlubili,ty (mg/i); 83,000 Vapor Pressure (mm Hg @ °C): Negligible
Envjronm ntal Half Life; SOD 5 - 0.53 lb/lb (32% theoretical) with sewage seed 2 ’
Mammalian Toxicity (mg/Kg body wt): 100 — 199 manual (oral)’
Freshwater Critical Concentration: 24 ppm - 96 hr TLm bluegill’
Saltwater critical Concentration: 24 ppm - approximated from freshwater data
GUTHION - C 10 H 12 N 3 0 3 P8 2
Shipping Forms: Pure, wettable Specific Gravity: 1.44
Solubility (mg/i): 33 Vapor Pressure (mm Hg °C): Negligible
Environmental Half Life: organophosphorous insecticide. are generally degradable.
Mammalian Toxicity (mg/Kg body wt): 20 rat (oral)
Freshwater Critical Concentration: .03 ppm — 96 hr TI bluegill 1
Saltwater Critical Concentration: .01 •o ppm — 24 hr sublethal effects on
sh.sphead minnow 1
Specific Gravity: 1.635
Vapor Pressure (mm Hg 8 °C): Negligible
lb/lb (78% theoretical) 2
200 mice (I.?.)’’
138 ppm - 48 hr TI bluegill
138 ppm - approximated from freshwater data
111—47
-------
MEPTACHLOR C 10 H 5 C1 7
Shipping Forms: Pure, wettable Specific Gravity: 1.58
Solubility (mg/t) : Insol. (.056) V lpor Pressure (mm Hg @ °C) : Neqliqthle
Environmental Half Life: Ri000ncentrative to 17,600 times in oyster and
300 times in bluegill
Mammalian Toxicity (mg/Kg body wt): 90 rat (oral) 9 ’
Freshwater Critical Concentration: .019 ppm - 96 hr TLm bluegill’
Saltwater Critical Concentration: .7 ppm - 96 hr TLm brown shrimp”
HYDROCHLORIC ACID - HCl
Shipping Forms: Anhydrous, 18, 20, and Specific Gravity: 1.63
22 Be
Solubility (mg/L): 1,000,000 VapOr Pressure (mm Hg 9
Environmental Half Life: Neutralizes with dilution
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 46 ppm — 96 hr TLm bluegill at l0 alkalinity’
Saltwater Critical Concentration: 215 ppm - 48 hr LC 50 shrimp’
HYD PLDORIC ACID - HF
Shipping Forms: k hydrous, 70% Specific Gravity: .0092 as gas
Solubility (mg/f): < 1,000,000 Vapor Pressure (mm Hg 9 ‘C)
Environmental Half Life: Neutralizes with dilution. Fliaoride may be precipitated
by calciias ions.
Mammalian Toxicity (mg/Kg body wt): 80 guinea pig (oral)’•
Freshwater Critical Concentration: 3.1 ppm — based on 48 hr LC 50 to rainbow
trout for
Saltwater Critical Concentration: 120 ppm - based on 48 hr LC 50 to shrimp
for acidity’
HYDROGEN CY 1IIDE - HCN
Shipping Forms: 98% Specific Gravity: 0.6884 as liquid
Solubility (mg/i): High (50,000) Vapor Pressure (mm Hg 9 ‘C):
Environmental Half Life: Cyanide is oxidized to lees toxic cyanate.
Mammalian Toxicity (mg/Kg body wt): 4 mouse (oral)’’
Frsshwatsr Critical concentration: 0.18 ppm - 96 hr TLm bluegill’
Saltwater Critical Concentration: 0.10 ppm — based on .25 ppm 48 hr LC 50
to prawn for KCN’
111—48
-------
HYDROQUINON - c 6 11 6 0 2
Shipping Forms: Pure
Solubility (mg/i) : 67,000
Environmental Half Life: SOD 5 — 53%
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration:
Saltwater Critical Concentration:
Specific Gravity: 1.328
Vipor Pressure (mm Hg 9 °C) : Negligible
theoretical 5
320 rat (oral)
5 ppm - 96 hr TI. fathead minnow 9
5 ppm - approximated from freshwater data
EYDROXyL1 j4INE - NH 2 OM
Shipping Forms: Pure Specific Gravity: 1.2
Solubility (mg/i): V. sol. (100,000) Vapor Pressure (mm Hg 9 47.2 °C): 10
Environmental Half Life: Rapidly decomposes under alkaline conditions.
Mammalian Toxicity (mg/Kg body wt): 200 — 800 rat (ora1) t ’
Freshwater Critical Concentration: 150 ppm - 10 minutes till death for
rainbow trout 1
Saltwater Critical Concentration: 150 ppm - approximated from freshwater data
— C 5 H 8
Shipping Forms: Pure
SOlubility (mg/i) : Si. Sd. (100)
Environmental Half Life: Degrades in time
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration:
Saltwater Critical Concentration:
75 ppm - 96 hr TLm fathead minnow
75 ppm - approximated from freshwater data
‘ SOPROPANO J6INE DODECYLBENZENESULFONATE - (0 3 SC 19 H 30 ) (CH 3 CIi(OH)CH 2 NH 3
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/i): $01. ( 1 1.00,Q00) Vapor Pressure (mm Hg 9 °C)
Environmental Half Life: ROD ‘s. 43% theoritical based on data for sodium salt ‘
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 21 ppm — based on 19 ppm 96 hr TLmto bluegill for
sodium salt”
Saltwater Critic’.l Concentration: 12 ppm - based on 10.1 ppm 96 hr TLmtO mullet for
sodium sa1t
Specific Gravity: 0.681
Vapor Pressure (mm Hg 9 7.5 °C) : 300
111—49
-------
KELTH 1 E — 1. 1—bi.(P—chlorophenyl)—2,2,2,—t: c 1r ethano1
Shipping Forms: Pure, wettable Specific Gravity: >1.0
Solubility (mg/i): Iiisol. (500) Vapor Pressure (mm Hg S °C): Negligible
Environmental Half Life: Persistent
Mammalian Toxicity (mg/Kg body wt): 1100 rat (oral )’ ’
Freshwater Critical Concentration: 100 ppm — 48 hr LC 50 rainbow trout 31 ’
Saltwater Critical Concentration: 100 ppm - approximated from freshwater data
LEAD ACETATE - Pb(C 2 H 3 0 2 ) 2 .30 2 0
Shipping Forms: Pure Specific Gravity: 2.25
Solubility (mg/i): 433,000 Vapor Pressure (mm Hg 9 °C) : Negligible
Environmental Half Life: Lead is a bioconcentrative metal. The carbonate
and hydroxide salts will precipitate
Mammalian Toxicity (mg/Kg body wt): 1000 - 10,000 rat (oral) 7
Freshwater Critical Concentration; 127 ppm — based on 69 ppm 96 hr TLm to bluegill
for lead cation’ 1’
Saltwater Critical Concentration: 429 ppm — based on 375 ppm 48 hr LC 50 to
prawn for Pb(N0 3 ) 2 ’
LEAD BROMIDE - Pb Er 2
Shipping Forms: Pure Specific Gravity: 6.66
Solubility (mg/i): 4554 vapor Pressure (mm Hg S ‘C): Negligible
Environmental Half Life: Lead is a bioconcentrative metal. The carbonate and
hydroxide salts will precipitate.
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 127 ppm — based on 69 ppm 96 hr TLm to
bluegill for lead cation”
Saltwater Critical Concpntration: 417 ppm - baled on 375 ppm 48 hr LC 50 to
prawn for Pb (NO 3 ) 2
LEAD CHLORIDE - PbCl 2
Shipping Forms: Pure Specific Gravity: 5.85
Solubility (mg/i): 9900 Vapor Pressure (mm Mg 9 ‘C): Negligible
Znvironmental Half Life; Lead is a bioconcentrative metal. The carbonate and
hydroxide salts will, precipitate.
Mammalian Toxicity (mg/Kg body wt): 2000 guflea pig (low lethal doce oral)”
Freshwater Critical Concentration; 442 ppm - 96 hr TLm bluegill’ 1’
Saltwater Critical Concpntration: 315 ppm - based on 375 ppm 48 hr LC to
prawn for Pb(N0 3 ) 2 50
111—50
-------
Pb(BF
FLUOBORATE - 4 2
Shipping Forms: Pure Specific Gravity: >10
Solubility (mg/9 .) : sOi. Vapor Pressure (mm Hg 9 °C): Negligible
Environmental Half Life: Lead is a bioconcentrative metal. The carbonate and
hydroxide salts will precipitate.
Mammalian Toxicity (mg/Kg body wt): 50 rat (low lethal dose oral) 98
Freshwater Critical Concentration: 127 ppm — based on 69 ppm 96 hr TL to
bluegill for lead cation k a
Saltwater Critical Concentration: 432 ppm - based on 375 ppm 48 hr LC to
prawn for Pb (NO 3 ) 2 ’ 50
. j D FLUORIDE
Shipping Forms: Pure Specific Gravity: 8.24
Solubility (mg/i): 640 Vapor Pressure (mm Hg S °C): Negligible
Environmental Half Life: Lead is a bioconcentrative metal. The carbonate and
hydroxide salts will precipitate.
Mammalian Toxicity (mg/Kg body wt) : 4000 guinea pig (low lethal dose oral)’’
Freshwater Critical Concentration: ‘19 ppm — based on 6.7 ppm 48 hr LC 50 to
rainbow trout for NaF 2
Ssltvatsr Critical Conc•ntratien: 278 p - based on 37$ p 48 hr LC 50 to
prawn for Pb(N0 3 ) 2 ’
IODIDE
Shipping Forms: Purl Specific Gravity: 6.16
Solubility (mg/i): 440 Vapor Pressure ( isa Hg S °C): Negligible
Environmental Half Life: Lead is a bioconcentratjv. metal. The carbonate and
hydroxide salts will precipitate.
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 150 ppm - based on 69 ppm 96 hr TLm to
bluegill for lead cation 8
Saltwater Critical Concentration: 522 ppm — based on 375 ppm 58 hr LC 50 to
prawn for Pb (NO 3 ) 2 ’
. .. D NITRATE
Shipping Forms: Pure Specific Gravity:
Solubility (mg/i): 376,500 Vapor Pressure (mm Hg S ‘C): Negligible
Environmental Half Life: Lead is a bioconcentrative metal. The carbonate and
hydroxide salts will precipitate.
Mammalian Toxicity (mg/Kg body wt): 1000 — 10,000 rat (oral)’’’
Freshwater Critical Concentration: j 5 ppm - based on 69 ppm 96 hr TLm to
bluegill for lead cation”
$altvater Critical Concentration: 375 ppm - 48 hr 50 to prawn
111—51
-------
LEAD STEARATE
Shipping Forms: Pure Specific Gravity: 1.4
Solubility (mg/i): 50 Vapor Pressure (mm Hg 9 ‘C) : Negligible
Environmental Half Life: Lead is a bioconcentrative metal. The carbonate and
hydroxide salts will precipitate.
Mammalian Toxicity (mg/Kg body wt): 20,000 guinea pig.(MLD—oral)”
Freshwater Critical concentration: 253 ppm - based on 69 ppm 96 hr TLm to
bluegill for lead cation
Saltwater Critical Concentration: 877 ppm — based on 375 ppm 48 hr LC 50 to
prawn for Pb (No 3 ) 2 ’
LEAD SULFATE - Pbso 4
Shipping Forms: Pure Specific Gravity: 6.2
Solubility (mg/i): 425 VapOr PressUre (mm Hg 8 ‘C: Negligible
Environmental Half Life: Lead is bioconcentratiVe metal. The carbonate and
hydroxide salts will precipitate
Mammalian Toxicity (mg/Kg body wt): 300 guinea pig (I.P.)”
Freshwater Critical Concentration: 101 ppm - based on 69 ppm 96 hr TL to
blusgill for lead ion’s
Saltwatsr Critical Concentration: 343 ppm - based on 375 ppm 48 hr LC 50 to
prawn for Pb(N0 3 ) 2 ’
LEAD SULFIDE — Pbs
Shipping Forms: Pure Specific Gravity: 7.5
Solubility (mg/i): .86 Vapor Pressure (mm Hg 8 ‘C): Negligible
Environmental Half Life: Lead is a bioconcentratiVa metal. The carbonate and
hydroxide salts will precipitate.
Mammalian Toxicity (mg/Kg body Vt): 1600 rat (I.P4”
Freshwater Critical Concentration: 83. ppm - based on 69 ppm 9 hr T½ to
bluegill for lead cationD
Saltwater Critical concentration: 270 ppm — based on 375 ppm 48 hr LC to
prawn for Pb (NO 3 ) 2 ’ 50
LEAD TETRA ETATE - Pb(C 2 H 3 0 2 ) 4
Shipping Forms: Fur. Specific Gravity: 2.28
Solubility (mg/i): Decomposes Vapor Pressure (ruin Hg 8 ‘C): Negligible
Environmental. Half Life: Lead is a bioconcentrative metal. The carbonat, and
hydroxide salts will precipitate.
Mammalian Toxicity (mg/Kg body wt):
Frsshwatsr critical concentration: 147 ppm - based on 69 ppm 96 hr TL to
bluegill for lead cation 5 ’ m
Saltwater Critical Conc 1 ntration: 502 ppm — based on 375 ppm 48 hr LC to
prawn for Pb(N0 3 ) 2 50
111—52
-------
LEAD THIOCYA1 ATE - Pb (SCN) 2
Shipping Forms: Pure Specific Gravity: 3.82
Solubility (mg/fl : 500 V ipor Pressure (mm Hg C) : Negligible
Environmental Half Life: Lead is a bioconcentrative metal. The carbonate and
hydroxide salts will precipitate.
Mammalian Toxicity (mg/Kg body wt)-:
Freshwater Critical Concentration: 108 ppm — based on 69 ppm 96 hr TL to
bluegill for lead cation
Saltwater Critical Concentration: 366 ppm - based on 375 ppm 48 hr LC 50 to
prawn for Pb(N0 3 ) 2 ’
LEAD TRIOSULFAIt - PbS 2 O 3
Shipping Forms: Pure Specific Gravity 5.18
Solubility (mg/i): 300 Vapor Pressure (mm Hg S ‘C): Negligible
Environmental Half Life: Lead is a bjoconcentrative metal. The carbonate and
hydroxide salts will precipitate.
Mammalian Toxicity (mg/Kg body wt):
Pres jat.r Critical Concentration: 107 ppm — based on 69 ppm 96 hr TLm to
bluegill for lead cation”
Saltwater Critical Conc 1 ntratjon : 360 ppm — based on 375 ppm 48 hr I L 50 to
prawn for Pb (NO 3 ) 2
_ LEAD TUNGSTATE PbWO 4
Shipping Forms: Pure Specific Gravity: 8.46
SOlubility (mg/t): 300 Vapor Pressure (nun Hg 0 ‘C): Negligible
Eflvjro1u ntal Half Life: Lead is a bi000ncentrative metal. The carbonate and
hydroxide salts will precipitate
Mammalian Toxicity (mg/Kg body Vt):
Freshwater Critical Concentration: 150 ppm - based on 69 ppm 96 hr TLm to
bluegill for lead cation”
Saltwater Critical Concentration: 515 ppm - based on 375 ppm 48 hr 5O to prawn
for Pb(N0 3 ) 2 ‘
- C 6 H 6 C1 6
Shipping Forms: Pure, wettable Specific Gravity: 1.07
SOlubility (mg/i): 10 Vapor Pressure (mm Hg S______
Envjre nta1 Half Life: Persistent, bioconcentrative”
Mammalian Toxicity (mg/Kg body wt): 76 rat (oral)’’
Freshwater Critical Concentration: .077 ppm — 96 hr TLm bluegill’
Saltwater Critical Concentration: .36 ppm - 96 hr LC 50 oyster
111—53
-------
LITHIUM BICHROMATE - Li 2 Cr 2 O 7 .2H 2 0
Shipping Forms: Pure Specific Gravity: 2.34
Solubility (mg/i): >1,000,000 Vapor Pressure (mm Hg @ ‘C):
Environmental Half Life: Chromate will remain dissolved until reduced to
trivalent form. c hromitixn can be concentrated by a factor of 2000.
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 190 ppm - based on 213 ppm 48, hr TL to bluegill
for sodium bichromate m
Saltwater Critical Concentration: 133 ppm - based on critical concentration for
sodium bichromate
LITHIUM CHROMATE Li 2 CrO 4 .2R 2 0
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/i): >1,000,000 Vapor Pressure (mm Hg 6 ‘C):
Environmental Half Life: Chromate will remain dissolved until reduced to
trivalent form. chromium can be concentrated by a factor of 2000.23
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 146 ppm - based on 300 ppm 24 hr TL to bluegill
for sodium chromate ‘ In
Saltwater Critical Concentration: 166 ppm - based on critical concentration for
sodium chromate
LITHIUM FLUORIDE - LLF
Shipping Forms: Pure Specific Gravity: 2.601
Solubility (mg/i): 2700 vapor Pressure (mm Hg 8 ‘C):
Environmental Half Life: Fluoride will precipitate as calcium salt.
Mammalian Toxicity (mg/Kg body wt): 200 guinea pig (oral) ’ 5
Freshwater Critical Concentration: 4 ppm - based on 6.7 ppm 48 hr to rainbow trout
for NaF’ 2
Saltwater Critical Concentration: 186 ppm - based on >300 ppm 48 hr LC and prawn
for NaP 2 ’ 50
MALATHION - C 10 H 19 0 6 P8 2
Shipping Forms: Pure, wettable Specific Gravity: 1.23
Solubility (mg/i): 145 Vapor Pressure (mm Hg 0.7 ‘C):
Environmental Half Life: Hydrolyzes rapidly, however, toxicity remained after 14 days
in solution 5 ’
Mej” lian Toxicity (mg/Kg body wt): 1000 rat (oral)
Freshwater Critical Concentration: .115 ppm — 96 hr Th bluegill”
Saltwater Critical Concentration: .033 ppm - 96 hr LC 50 marine crustacea”
111—54
-------
MALEIC ACID - C 4 H 4 0 4
Shipping Forms: pure Specific Gravity: 1.59
Solubility (mg/i) : v. Sol. (100,000) Vapor Pressure (mm Hg 9 °C) : Negligible
Environmental Half Life; BOD 5 — .63 lb/lb (76% theoretical) with acclimated seed 28
Mammalian Toxicity (mg/Kg body wt): 850 rat (oral) 11 ’
Freshwater Critical Concentration: 138 ppm — 48 hr Thm bluegill 1
Saltwater Critical Concentration: 138 ppm — approximated from freshwater data
. . .j4 LEIc ANHYDRIDE - C 4 H 2 0 3
Shipping Forms: Pure, molten Specific Gravity: 0.734
Solubility (mg/i): 163,000 Vapor Pressure (mm Hg 9
Environmental Half Life: SOD 5 — .63 lb/lb (76% theoretical) with acclimated seed —
based on that for the acid 2
Mammalian Toxicity (mg/Kg body wt): 850 rat (oral)”
Freshwater Critical Concentration: 117 ppm - based on 138 ppm 48 hr Thm bluegill
for maleic acid
Saltwater Critical Concentration: 117 ppm - approximated from freshwater data
. .MERCURXC ACETATE - Hg(C 2 5 3 0 2 ) 2
Shipping Forms: Pure Specific Gravity: 3.28
Solubility (mg/i): 250,000 Vapor Pressure (mm Hg 9 °C): Negligible
Environmental Half Life: rcury is bioconcentrative to 10,000 time. ambient levels”
Mercury enters biochemical recycling system regardless of initial chemical form.
Mammalian Toxicity (mg/Kg body Vt):
Freshwater Critical Concentration: 0.48 ppm - bas.d on 0.3 ppm 96 hr LC 50 tO pwnpkinseed
for mercury ion”
Saltwater Critical Concentration: 0.32 ppm — based on 0.21 ppm estimated 96 hr LC
shrimp for mercury ion ’
CHLORIDE - HgCl 2
Shipping Forms: Pure Specific Gravity: 5.44
Solubility (mg/i): 36,000 Vapor Pressure (sin Hg 8 ‘C): Negligible
Eflvj nmental Half Life: Mercury is bioconcsntratjv. to 10,000 times ambient leve1e ’
Mercury enters biochemical recycling system regardless of initial chemical form.
Mammalian Toxicity (mg/Kg body wt): 1 human (low lethal dos, oral)”
Freshwater Critical Concentration: 0.41 ppm - based on 0.3 ppm 96 hr LC 50 to pumpkinsaed
for mercury ion”
Saltwater Critical Conóentratjon: 0.28 ppm - based on 0.21 ppm estimated 96 hr LC
to shrimp for mercury 2 ’
111—55
-------
MERCURIC NITRATE - Hg (NO 3 ) 2
Shipping Forms: Pure Specific Gravity: 4.39
Solubility (mg/i): V. 501. (100,000) Vapor Pressure (nun Hg @ C) : Negligible
Environmental Half Life: Mercury is bioconcentrative to 10,000 times ambient levels 5
Mercury enters biochemical recycling system regardless of initial chemical form.
Mammalian Toxicity (mg/Kg body wt): 5 rat (I.?.)”
Freshwater Critical Concentration: 0.51 ppm — based on 0.3 ppm 96 hr 50 tO pumpkinseed
for mercury ion 5 ’
Saltwater Critical Concentration: 0.34 ppm - based on 0.21 ppm estimated 96 hr LC 50
to shrimp for mercury jon 25
MERCURIC OXIDE - HgO
Shipping Forms: Pure Specific Gravity: 11.14
Solubility (mg/i): 52 Vapor Pressure (rnxn Hg S °C): Negligible
Environmental Half Life: Mercury is bioconcentratiVe to 10,000 times ambient levels 5 ’
Mercury enters biochemical recycling system regardless of initial chemical form.
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 0.32 ppm - based on 0.3 ppm hr 5O to pumpkin.eed
for mercury io n 5
Saltwater Critical Concentration; 0.22 ppm - based on 0.21 ppm estimated 96 hr 50
to shrimp for mercury ion 25
MERCURIC SULFATE - Hg 50 4
Shipping Forms: Pure Specific Gravity: 6.47
Solubility (mg/i): Decomposes Vapor Pressure (mm Hg 5 °C) : Negligible
Environmental Half Life: DeconpOses to H 2 50 4 and mercuric precipitate. Mercury is
bioconcentrative to 10,000 times ambient levels 5 Mercury enters biochemical
recycling system regardless of initial chemical form.
Mammalian Toxicity (mg/Kg body wt): 57 rat (oral) (U. S. Air Force — Dept. of
Transportation)
Freshwater Critical Concentration: .44 ppm — based on 0.3 ppm 96 hr LC 50 to pumpkinseed
for mercury ion 59
Saltwater Critical Concentration: .31 ppm — based on 0.21 ppm estimated 96 hr LC 5 to
shrimp for mercury ion 25 0
Hg (SCM)
MERCURIC THIOCYANATE - 2
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/i): 700 Vapor Pressure (mm Hg 5 ‘C):
Environmental Half Life: Mercury is bioconcentrative to 10,000 times ambient L.v.ls”
Mercury enters biochemical recycling system regardless of initial chemical form.
Mammalian Toxicity (mg/Kg body wt):
Frsshwater Critical Concentration: .47 ppm — bas.d on 0.3 ppm 96 hr LC 0 to pumpkins..d
for mercury ion 5 ’
Saltwater Critical Concentration: .33 ppm — based on 0.21• ppm aitimat.d 96 hr LC to
shrimp for mercury ion 2 ’ 50
111—56
-------
MERCUROUS NITRATE - Mg 2 (N0 3 ) 2 .2H 2 )
Shipping Forms: Pure Specific Gravity: 4.79
Solubility (mg/i): Decomposes Vapor Pressvtre (mm Hg @ CC): Negligible
Environmental Half Life: Decomposes to basic salt, H 0 0 is soluble to .1 ppm
Mercury is bioconcentrative to 10,000 times ambient levels 55
Mammalian Toxicity (mg/Kg body wt): 4 mice (IP)’ 5
Freshwater Critical Concentration: .42 ppm — based on 0.3 ppm — 96 hr LC to pumpkinseed
for mercury ion 5 ’
Saltwater Critical Concentration: .29 ppm - based on 0.21 ppm estimated 96 hr LC 50 to
shrimp for mercury ion 25
METHOXYCHLOR - C 16 H 15 C1 3 0 2
Shipping Forms: Pure, wettable Specific Gravity: 1.41
Solubility (mg/i): Sl. (0.1) Vapor Pressure (mm Hg @ °C): Negligible
Environmental Half Life: Somewhat persistent
Mammalian Toxicity (mg/Kg body wt): 5,000 rat (oral)’
Freshwater Critical Concentration: 0.062 ppm — 96 hr TLnt bluegill
Saltwater Critical Concentration: 0.08 ppm — 96 hr TLTh marine fish°
_ MZThYL MERCAPTAN - CH SH
Shipping Forms: Pure Specific Gravity: 0.867
Solubility (mg/i) : Si. $01. 23,300 Vapor Pressure (mm Hg 8 7.5 °C) : 760
Environmental Half Life: Decompoi•s slowly in water through hydrolySis
Mammalian Toxicity (mg/Kg body wt): 2.4 mice (subcutamsoui)”
Freshwater Critical Concentration: 1 ppm — 6 hr lethal to bluegill’
Saltwater Critical Concentration: 1 ppm - approximated from freshwater data
_ TWiL METRACRYLATE - C H çCOOCH
Specific Gravity: 0.936
Shipping Forms: Pure
Solubility (mg/i): $1. 501. 1,000 Vapor Pressure (mm Hg 8 7.5 C) : 17
Environmental Raif Life: 500 io — theoretical with sewage seed 5
Mammalian Toxicity (mg/Kg body wt): 9400 rat (oral)’
Freshwater Critical concentration: 250 ppm — 96 hr TLm bluegill’’
Saltwater Critical ConoEstratiOns 250 ppm - approximated front freshwater data
111—57
-------
METHYL PARAThION C 8 11 10 N0 5 P 5
Shipping Forms: Pure, wettable Specific Gravity: 1.35
Solubility (mg/t): so Vapor Pressure (mrs Hg 8 .06°C):
Environmental Half Life; Hydrolyzes fairly rapidly in water 33
Mammalian Toxicity (mg/Kg body wt) ; 9 rat (oral)
Freshwater Critical Concentration: 7.5 ppm — 96 hr TLm fathead minnow 1
Saltwater Critical Concentration: 0.003 ppm — 96 hr TLm grass shrimp’ 1
I4ZVINPHOS -
Shipping Forms: Pure Specific Gravity: 1.25
Solubility (mg/I): >1,000,000 Vapor Pressure (mm Hg 8 ‘C);
Environmental Half Life: Not persistent
Mammalian Toxicity (mg/Kg body wt): 4 rat (oral)”
Freshwater Critical Concentration: 0.023 ppm -, 96 hr TLm bluegill”
Saltwater Critical Concentration; .040 pp - 24 hr LC 50 hermit crab”
1 LYBDIC TRIOXIDE MoO 3
Shipping Forms: Pure Specific Gravity: 4.7
Solubility (mg/i); 81. 801. (5,000) Vapor Pressure (fl% t Hg 8 ‘C): Negligible
Environmental Half Life: May pracipitate
Mammalian Toxicity (mg/Kg body wt): 125 rat (oral) 3
Freshwater Critical Concentration: 370 ppm — 96 h Thm fathead minnow
Saltwater Critical Concentration: 370 ppm — approximated from freshwater data
MONOEThYLAMINE - C 2 H 5 NH 2
Shipping Forms: 70% solution Specific Gravity: 0.689
Solubility (mg/I): ‘ l,ooo,ooo VaPOr Pressure (mm Hg #J6.6 ‘C); 760
Environmental Half Lifer ao 5 - .76 lb/lb (17% th.oretjcaj)’ 2
Mammalian Toxicity (mg/Kg body vt): 400 rat (oral) ”
Vrs.hwatsr Critical Concentration: 40 ppm — 24 hr lethal ooncsnt atjon to ch ib
Saitwatar Critical Concentration: 40 ppm - approximat.d from freshwater data
I El— 58
-------
NOM v THYLAMINE - CH 5 N
Shipping Forms: Anhydrous, 25%, 40—60% Specific Gravity: 0.699
Solubility (mg/i): 800,000 vapor Pressure (mm Hg 9_7.5_DC): >760
Environmental Half Life: HOD 5 - estimated 20% theoretical from monoethylamine data
Mammalian Toxicity (mg/Kg body wt): 2500 rat (subcutaneous)”
Freshwater Critical Concentration: 30 ppm - 24 hr lethal to chuk
Saltwater Critical Concentration: 30 ppm - approximated from freshwater data
_ JtALED - C 4 H 7 C 1 2 Br 2 O 4 P
Shipping Forms: Pure Specific Gravity: 1.97
Solubility (mg/U: Si. sol. (500) Vapor Pressure (mm Hg 9 ‘C):
Environmental Half Life: Hydrolyzes
Mammalian Toxicity (mg/Kg body wt) 430 rat (oral)”
Freshwater Critical Concentration: .ie ppm — 96 hr TLm bluegill’ 1
Saltwater Critical Concentration: .ia ppm — approximated from freshwater data
NAPHTI4ALENE C 10 M 8
Shipping Forms: p . Specific Gravity: 1.162
Solubility (mg/i): 30 Vapor PresiLire (mm Hg 9
Environmental Half Life: a with sewage seed ’
Mammalian Toxicity (mg/Kg body wt): 2000 rat (oral)’
Freshwater Critical Concentration: 4 ppm — 1 hr lethal to sun fi sh
Saltwater Critical Concentration: 1.8 ppm — 72 hr critical level to fingerling
Salmon’
. i!APHTHENIc ACID - C 7 R 12 0 2
Shipping Forms: Pure Specific Gravity: 1.050
Solubility (mg/i): 2010 Vapor Pressure (ma Hg S ‘C): Negligible
Environmental Half Life: Considered persistent
Mammalian Toxicity (mg/Kg body wt)s
Freshwater Critical concentrations 7.1 ppm - 96 hr TLm bluegill’
Saltwater Critical COnosntration 7.1 ppm — approximated from freshwater data
111—59
-------
NICKEL ACETATE Ni(C H 3 O 2 ) .4U 2 0 —
Shipping Forms: Pure Specific Gravity: 1.744
Solubility (mg/i) : 166,000 Vapor Pressure (nun Hg ______°C) : Negligible
Environmental Half Life: Hydroxides and carbonate salts precipitate
Mammalian Toxicity (mg/Kg body wt): 420 rat (low lethal dose I.V.) ’
Freshwater Critical Concentration: 114 ppm - based on 27 ppm 96 hr LC 50 to fathead
minnow for nickel cation ’ 3
Saltwater Critical Concentration: 528 ppm - based on 125 ppm 48 hr LC to oyster
for nickel cation’ 50
NiSO .(NH ) SO .6R 0
NICKEL AI4MONIUM SUL TE - 4 4 2 4 2
Shipping Forms: pure Specific Gravity: 1.923
Solubility (mgJL): 25,000 Vapor Pressure (mm Hg 8 °C): Negligible
Environmental Half Life: Hydroxide and carbonate salts precipitate
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 181 ppm - based on 27 ppm 96 hr LC 50 to fathead
minnow for nickel cation ’s
Saltwater Critical ConSentration: 837 ppm - based on 125 ppm 48 hr LC 50 to oyster
for nickel cation
— - NiBr .3H O
Shipping Forms: Pure Specific Gravity; 4.64
Solubility (ing/t): >1,000,000 Vapor Pressure (mm Hg 8 °C): Negligible
Environmental Half Life: Hydroxides and carbonate salts precipitate
Zianunalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentra +on: 125 ppm — based on 27 ppm 96 hr LC 50 to fathead
minnow for nickel cation
Saltwater Critical Concentration: 578 ppm — based on 125 ppm 48 hr LC 50 to oyster
for nickel cation’
NICKEL CHLORIDE — NiCl 2 .6H 1 0
Shipping Forms: Pure Specific Gravity: 3.55
Solubility (mg/i): 2,540 .000 Vapor Pressure (mm Hg 8 ‘C): Negligible
Environmental Half Life; Hydroxide and carbonate salts precipitate
Mammalian Toxicity (mg/Kg body wt): 1.5-30 dog (oral) 7
Freshwater Critical Concentration: 109 ppm - based on 27 ppm 96 hr LC to fathead
minnow for nickel cation 50
Saltwater Critical Concentration: 504 ppm — based on 125 ppm 48 hr LC to oyster
for nickel cation’ 50
III— 60
-------
Ni (CR0 2 ) 2 . 2H 2 0
NICKEL FORMATE -
Shipping Forms: Pure Specific Gravity: 2.154
Solubility (mg/i); sol. (100,000) Vapor Pressure (mm Hg 8 °C): Negligible
Environmental Half Life: Hydroxide and carbonate salts precipitate
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 85 ppm - based on 27 ppm 96 hr LC 50 to fathead
minnow for nickel cation’’
Saltwater Critical Concentration: 392 ppm — based on 125 ppm 48 hr LC 50 to oyster
for nickel cation’
_ NICKEL HYDROXIDE - Ni( OH) 2
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/i): 13 vapor Pressure (mm Hg 8 °C): Negligible
Environmental Half Life: Hydroxide and carbonate salts precipitate
Mammalian Toxicity (mg/Kg body wt);
Freshwater Critical Concentration; 43 ppm - based on 27 ppm 96 hr TLm to fathead
minnow for nickel cation’
Saltwater Critical Concentration: 197 ppm — based on 215 ppm 48 hr LC 50 to oyster
for nickel cation’
_ NZCHZL NITMTE - Ni ( NO 3 ) . 6H 2 0
Shipping Forms: PuXe Specific Gravity: 2.05
Solubility (mg/i): >1,000,000 Vapor Pressure (mm Hg 8 °C): Negligible
Environmental Half Life: Hydroxide and carbonate salts precipitate
Mammalian Toxicity (mg/Kg body wt): 1620 rat (oral) 11 ’
Freshwater Critical Concentration: 135 ppm - based on 27 ppm 96 hr LC 50 to fathead
minnow for nickel cation”
Saltwater Critical concentration: 617 ppm — based on 125 ppm 48 hr 50 to oyster
for nickel cation’
_ NICFaL SLILPATE - NiSO 4 .6H 2 0
Shipping Forms: Pure Specific Gravity: 2.07
SOlUbility (mg/ I.): >625,000 vapor Pressure (rum Hg 8 C): Negligib3.e
Environmental Half Life: Hydroxid. and carbonate salts precipitate
Mammalian Toxicity (mg/Kg body wt): 5 dog (subcutaneous) 1 ‘
Freshw t.r Critical Concentration: 120 ppm — based on 27 ppm 96 hr TLm to fathead minnow
for nickel i on ’
Saltwater Critical Concentration: 7 ppm — based on 125 ppm 48 hr LC to oyster
for nickel cation’
111—61
-------
NITRIC ACID - 0N0 3
Shipping Forms: 58.5—68% MNO3, 94.5—95.5% Specific Gravity: 1.502
HNO 3 , 36°, 38°, 40° and 42° Be
Solubility (mg/i): >1,000,000 Vapor Pressure (mm Hg 8 °C): 10
Environmental Half Life: Neutralizes with dilution
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 80 ppm — 96 hr TLm bluegill in io alkalinity’
Saltwater Critical Concentration: 215 ppm — 48 hr LC 50 Pogge’
NITROBENZENE — C 6 H 5 N0 2
Shipping Forms: Pure Specific Gravity: 1.205
Solubility (mg/i) : 1900 Vipor Pressure (mm Hg 8 °c) : Negligible
Environmental Half Life: BOO 5 — 0 with sewage seed 2 ’
Mammalian Toxicity (mg/Kg body wt): 700—799 mammal (oral)’
Freshwater Critical Concentration: 150 ppm - estimated 72 hr TL fathead minnow’
Saltwater Critical Concentration: 150 ppm — approximated from freshwater data
NITROGEN DIOXIDE - NO 2
Shipping Forms: Pure Specific Gravity 1.448 as liquid
Solubility (mg/Lh Forms nitric acid Vapor Pressur• (mm Mg 8
Environmental Half Life: FOrms 11N0 3 which neutralizes with dilution
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 58 ppm — based on hydrolysis product HNO 3
Saltwater Critical Concentration: 157 ppm — based on hydrolysis product HNO 3 ’
NITROPHENOL — C 6 H 5 N 0 3
Shipping Forms: Pure Specific Gravity: 1.485
Solubility (mg/i): 13,500 vapor Pressure (mm Hg 8 °C): Negligible
Environmental Half Life: Persists without acclimation
Mammalian Toxicity (mg/Kg body wt) : 328 lab animals (oral)’
Freshwater Critical Concentration: 46.3 ppm — 48 hr TLm bluegill’
Saltwater Critical Concentration: 46.3 ppm — approximated from freshwater data
111—62
-------
PARAFORMALDAHYDE - (CH 2 0)
Shipping Forms: 91% flake, 95% powder, Specific Gravity: 1.46
98%
Solubility (mg/f) : 170,000 Vapor Pressure (mm Hg 9 24.1 ‘C)
Environmental Half Life: BOD 5 — 0.47 lb/lb - (44% theoretical)’ 2
Mammalian Toxicity (mg/Kg body wt): 800 rat (oral) 10 ’
Freshwater Critical Concentration: 25 ppm - based on 25 ppm 96 hr TL to channel
catfish for formaldehyde’ m
Saltwater Critical Concentration; 215 ppm - based on 215 ppm estimated 48 hr LC
to flounder for formaldehyde’ 50
PARATHION C 10 H 14 N0 5 PS
Shipping Forms: Pure, wettable Specific Gravity: 1.26
Solubility (mg/f) : 20 Vapor Pressure (mm Hg 9 0.6 ‘C)
Environmental Half Life: >1 year in water 3 ’
Mammalian Toxicity (mg/Kg body wt): 6.5 rat (oral) 1 ’
Freshwater Critical Concentration; 0.071 ppm — 96 hr TLm bluegill’ 5
Saltwater Critical Concentration: .007 ppm — estimated 48 hr LC 50 shrimp 2 ’
PENTACELOROPHENOL - C 6 HC1 5 0
Shipping Forms; Pure Specific Gravity; 1.978
Solubility (mg/i): 80 Vapor Pressure (inns Hg 8 C): Negligible
Environmental Half Life: Persistent
Mammalian Toxicity (mg/Kg body wt): 180 rat (oral) 10 ’
Freshwater Critical Concentration: 5 ppm — 3 hr lethal concentration bluegill 2
Saltwater Critical Concentration: .25 ppm - based on <.25 ppm 48 hr LC 50 oyster
PHENOL - C 6 0 6 0
Shipping Forms: Pure, 90—92% (Cresol 7—8%) Specific Gravity: 1.071
95% (Cr•sel 8—10%) and 82—84% (Cresol 16—18%)
Solubility (mg/i): 67,000 vapor Pressure (mm Hg 8 ‘C): Negligible
Environmental Half Life: BOD 5 — 70% theoretical irs freshwater, 55% in saltwater.’
Mammalian Toxicity (mg/Kg body wt): 530 rat (oral)’°
Freshwater Critical. Concentrations 12 ppm — 96 hr TLm bluegill’
Saltwater Critical Concentrations 23.5 ppm — 48 hr LC shrimp 2 ’
111—63
-------
Cod
PIIOSGENE 2
Shipping Forms: Pure Specific Gravity: 1.392
Solubility (mg/i): Decomposes Vapor Pressure (mm Hg 8 7.5 C): 700
Environmental Half Life: Decomposes to HCL which neutralizes with dilution
Mammalian Toxicity (mg/Rg body wt>
Freshwater Critical Concentration: 62 ppm - based on 46 ppm — 96 hr TLm to bluegill
for decomposition product HCL’
Saltwater Critical Concentration: 292 ppm - based on 215 ppm - 48 hr LC 50 to shrimp
for decomposition product HCLt
PHOSPHORIC ACID - H 3 P0 4
Shipping Forms: 52—54%, 72%, 75%, 80%, Specific Gravity: 1.834
85% solutions
Solubility (mg/i) : >1,000,000 Vapor Pressure (mm Hg 9 _______ C) : Negligible
Environmental Half Life: Neutralizes with dilution. Calcium precipitates phosphate
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 200 ppm - 96 hr TL bluegill’
Saltwater Critical Concentration: 934 ppm — 96 hr TL 50 brook trout”
PHOSPHORUS —
Shipping Forms: Pure Sp.cific Gravity: 1.83
Solubility (mg/i) : 3 Vapor Pressure (run Hg 8 __ C) : Negligible
Environmental Half Life: Mydrolyssi to R 3 P0 4 after short term exposure to air and water
Mammalian roxicity (mg/Kg body wt): 7 rabbit (oral) °
Freshwater Critical Concentration: .053 ppm - 72 hr TL 11 , hlueqill’°
Saltwater Critical Concentration: .003 ppm — 96 hr TL 50 bz ook trout’’
PHOSPHORUS OXVCHLORIDE — POd 3
Shipping Forms: Pure Specific Gravity: 1.67
Solubility (mg/i): Decompose. Vapor Pressure (mm Hg # 7.5
Environmental Half Life: In water decomposes rapidly to HCL and H 3 P0 4 which
neutralizes with dilution
Mammalian Toxicity (mg/Kg body Vt):
Freshwater Critical Concentration: 63 ppm - based on 46 ppm 96 hr TLm to
bluegill for hydrolysi, product NCL’
Saltwater Critical Concentration: 296 ppm - based on 215 ppm 48 hr LC 50
to shrimp for hydrolysis product HCL’
111—64
-------
PHOSPHORUS PEHTAFLUORIDE -
Shipping Forms: Pure Specific Gravity: 4.49
Solubility (mg/i): Decomposes Vapor Pressure (mm Hg 9
Environmental Half Life: Decomposes to H 3 P0 4 and HF
Mammalian Toxicity (mg/Kg body wt) :
Freshwater Critical ConcentratiOn: 4.0 ppm - based on 3.1 ppm 96 hr TLm
to bluegill for hydrolysis product HF:
Saltwater Critical concentration: 158 p m — based on 120 ppm 48 hr TLm
to shrimp for hydrolysis product HF
PHOSPHORUS PENTASULFIDE —
Shipping Forms: Pure Specific Gravity: 2.03
Solubility (mg/i): Decomposes Vapor Pressure (mm Hg 8 °C): Negligible
Environmental Half Life: In water decomposes rapidly to H 2 S0 4 and H 3 P0 4
which neutralize with dilution
Manunalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 55 ppm - based on 123 ppm 96 hr TLm to
bluegill for N 2 50 4 hydrolysis product
Saltwater Critical Concentration: 33 ppm - based on 75 ppm 40 hr LC 50 to
crabs, shrimp for H 2 S0 4 hydrolysis product’
PHOSPHORUS TRICHLORIDE -
Shipping Forms: Pure Specific Gravitys 1.574
So].ubility (mg/i): Decomposes Vapor Pressure (an Hg •_7.5_C): 52
Environmental Half Life: In water decomposes rapidly to HCL and H 3 90 4 which
are neutralized with dilution
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical concentration: 58 p m - based on 46 ppm 96 hr TLm to
bluegill for HCL hydrolysis product
Saltwater Critical Concentration: 273 ppm - based on 215 ppm 48 hr LC 50
to shrimp for HCL hydrolysis product’
POLYCHLORINATED BIPHENYLS - (C 6 H 5 -x/ 2 ) 2 C1X
Shipping Forms: Pure Specific Gravity: 1.182 — 1.492
Solubility (mg/i): .3 — 5 Vapor Pressure (mm Hg 9 C): Negligible
Environmental Half Life: Bi000ncentrative by a factor of 47,000’’
Mammalian Toxicity (mg/Kg body wt): 500 — 4,000 rat (oral)h 7
Freshwater Critical Concentration: 0.278 ppm - 96 hr TLm bluegill”
Saltwater Critical Concentration: 5 - 49 LC penai.d shrimp’
111—65
-------
POTASSIUM ARSENATE - ( 3 AsO 4
Shipping Forms: Pure Specific Gravity: 2.867
Solubility (mg/i): 188,700 Vapor Pressure (mm Hg 9
Environmental Half Life: Arsenate will precipitate with calcium and enter a
soluble organic - insoluble inorganic cycle.
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 13 ppm - based on 30 ppm 168 hr TLm
goldfish for sodium arsenate’s
Saltwater Critical Concentration: 13 ppm - approximated frost freshwater data
POTASSIUM ARSENITE —
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/i): aol. (50,000) Vapor Pressure (nm Hg 9
Environmental Half Life: Arsenite oxidizes to assenate. Arsenate can be
concentrated 300 times. ’
Mammalian Toxicity (mg/Eq body wt): 1140 rat (oral)”
Freshwater Critical Concentrations 34 ppm — based on 35 ppm 96 hr LC 50 to bluegill
for sodium arsenite’”
Saltwater Critical Concentrations 34 ppm — approximated frost freshwater data
POTASSIUM BICHROMATE - ic 2 cr 2 o 7
Shipping Forms: Pure Specific Gravity: 2.68
Solubility (mg/i): 49,000 Vapor Pressure (mm Hg I •C) : Ne ligjbLe
Environmental Half Life: Chromium may be concentrated by a factor of 2,000’’
Chrostat.. remain dissolved until reduced to the trivalent form
Mammalian Toxicity (mg/Kg body wt) : 107 rat (oral)’’
Freshwater Critical Concentration: 133 ppm - 96 hr TX bluegill’ 3
Saltwater Critical Concentrations 147 ppm — bassd on 100 ppm 48 hr LC 50 to
prawn shrimp for Cr0 3 ’
POTASSIUM CHROMATE - ( 2 LrO 4
Shipping Forms: Pure Specific Gravity: 2.73
Solubility (mg/i): 629,000 vapor Pressure (mm Hg 9
Environmental Half Life: Chromats will remain dissolved until reduced to
trivalent form. Chromium may be concentrated by factor of 2000 ’
Mammalian Toxicity (mg/Kg body wt) t 430 Ifuman (low lethal dose oral)
Freshwater Critical Concentration: 169 ppm — 96 hr TI bluegill’”
Saltwater Critical Conc.ntr ions 194 ppm - based on 100 ppm 48 hr LC to
brown shrimp for Cr0 3 50
111—66
-------
POTASSIUM CYANIDE - K N
Shipping Forms: Pure Specific Gravity: 1.52
Solubility (mg/U; 500,000 Vapor Pressure (mm Hg S ‘C): Negligible
Environmental Half Life; Cyanide is oxidized in aerated water to lees toxic
cyanate
Mammalian Toxicity (mg/Kg body wt): 10 rat (oral) 11 ’
Freshwater Critical Concentration: 0.43 ppm - 96 TLn bluegill’ 3
Saltwater Critical Concentration: 0.25 ppm - 48 hr LC 50 prawn’
— POTASSIUM HYDROXIDE - KOM
Shipping Forms: Pure Specific Gravity: 2.044
Solubility (mg/i): 970,000 Vapor Pressure (mm Hg S ‘C): Negligible
Environmental Half Life: Neutralizes with dilution
Mammalian Toxicity (mg/Kg body wt): 1230 rat (oral)’’ 2
Freshwater Critical Concentration: 80 ppm - 96 hr TLm mosquito
Saltwater Critical Concentrations 53 ppm — based on ratio of saltwater to
freshwater toxicity for sodium hydroxid.
POTASSIUM PERMANGANATE -
Shipping Forms: Pure Specific Gravity: 2.7
Solubility (mg/i): 63,800 Vapor Pr•ssur. (mm Hg I ‘C):N. ligib1e
Environmental Half Life: P.rmsngnat. ion is reduced slowly to es. toxic
forms
Mammalian Toxicity (mg/Kg body wt)s 1090 rat (oral)’ 2 ’
Freshwater Critical Concentration: 4.2 ppm — 96 hr TLn bluegill 7 ’
Saltwater Critical Concentration: 2.3 ppm - estimated 96 hr TLm pompano”
CM CM COOH
PROPIONIC ACID - 3 2
Shipping Forms: Pure Specific Gravity: 0.993
Solubility (mg/i): >1,000,000 Vapor Pr.ssur. (ma Hg 57.5 ‘C): 1.4
Environmental Half Life: SOD 5 - .60 lb/lb (40% theoretical) with sewag. seed”
Mammalian Toxicity (mg/Kg body wt): 4290 rat (oral)’
Fr.shwat.r Critical Conc.ntrationx 188 ppm — 24 hr TLm bluegill 2 ’
Saltwater Critical Concentrations 186 ppm - approximated from freshwater data
11 1—67
-------
PROPIONIC ANHYDRIDE - 3 2’ 2
Shipping Forms: Pure Specific Gravity: 1.013
Solubility (mg/f): Decomposes Vapor Pressure (mm Hg @ °C) : Negligible
Environmental Half Life: Decomposes to propionic acid. BOD 5 - 40% theoretical
with sewage seed’’
Mammalian Toxicity (mg/Kg body wt): 2360 rat (oral)’ 22
Freshwater Critical Concentration: 165 ppm - based on 188 ppm 24 hr TL to
bluegill for propionic acid hydrolysis product 2 ’ m
Saltwater Critical Concentration: 165 ppm - approximated from freshwater data.
PROPYL ALCOHOL — 3 ’2>2 ’ ’
Shipping Forms: Pure Specific Gravity: 0.804
Solubility (mg/f) : >1,000,000 Vapor Pressure (mm Hg @ 7.5 °C) : 5.6
Environmental Half Life: SOD 5 — 64% in fresh water, 53% in salt Water ’
Mammalian Toxicity (mg/Kg body wt): 1870 rat (oral)’’’
Freshwater Critical Concentration: 350 ppm - estimated 24 hr TLm creek chub”
Saltwater Critical Concentration: 4200 ppm - 24 hr TL brine shrimp’
PYRETHRXNS - C 21 H 28 0 3
Shipping Forms: Pure, wettable Specific Gravity: >1.0
Solubility (mg/I): insol. (1) Vapor Pressure (ass Hg @ •C):
Environmental Half Life: moderately persistent
Mammalian Toxicity (mg/Kg body Vt): 1200 rat (oral)”
Freihwater Critical Concentration: 74 ppm - 96 hr TLm bluegill”
Saltwater Critical Concentration: 74 ppm - approximated from freshwater data.
PYROGALLIC ACID - C 6 H 6 0 3
Shipping Forms: Pure Specific Gravity: 1.45
Solubility (mg/I): 600,000 Vapor Pressure (mm Hg 8 °C): Negligible
Environmental Half Life: BOD 5 — .016 lb/lb (1% theoretical) with sewage seed 2 ’
Mammalian Toxicity (mg/Kg body wt): 25 dog (oral)’
Freshwater Critical Concentration: 18 ppm - 48 hr TLm goldfish’
Saltwater Critical Concentration: 18 ppm - approximated from freshwater data.
111—68
-------
QUINOLINE - C 9 M 7 N
Shipping Forms: Pure Specific Gravity: 1.09
Solubility (mg/i): 60,000 Vapor Pressure ( mm Hg @ °C) : Negligible
Environmental Half Life: BOD 5 — 1.75 lb/lb (50% theoretical) using sewage seed. 2 ’
Also subject to photodegradation.
Mammalian Toxicity (mg/Kg body Vt): 460 rat (oral) ’°°
Freshwater Critical Concentration: 5 ppm - 14 hr lethal to rainbow trout’
Saltwater Critical Concentration: 5 ppm - approximated from freshwater data.
RESORCINOL - -6”6°2
Shipping Forms: Pure Specific Gravity: 1.27
Solubility (mg/fl: >1,000,000 Vapor Pressure (mm Hg 8 °C): Negligible
Environmental Half Life: HOD 5 — 1.15 lbs/lb (61% theoretical) with sewage seed 21
Mammalian Toxicity (mg/Kg body wt): 980 rat (oral) 12 ’
Freshwater Critical Concentration: 35 ppm - toxic threshold for bleak and carp’
Saltwater Critical Concentration: 35 ppm — approximated from freshwater data.
SELENIC ACID.- H 2 SeO 4 .4H 2 0
Shipping Forms: Pure Specific Gravity: 2.608
Solubility (mg/fl : ,ooo ,o Vapor Pressure (mm Hg 8 °C ) : Negligible
Environmental Half Life: Persiets, but may precipitate. May be concentrated up
to 400 times.’’
Mammalian Toxicity (mg/Kg body wt): 3 rat (I.V.)’
Freshwater Critical Concentration: 26 ppm based on 12 ppm 168 hr TLm for Seleniulil
dioxide 2 ”
Saltwater Critical Concentration: 26 ppm — approximated from freshwater data.
SELENIUM OXIDE - s 2
Shipping Forms: Pure Specific Gravity: 3.95
Solubility (mg/i): 384,000 Vapor Pressure (mm Hg S_____ C): Negligible
Environmental Half Life: Forms selenic acid. May be concentrated up to 400 times. 2 ’
Meinmalien Toxicity (mg/Kg body wt) 4 rabbit (subcutaneous)”
Fr..hwatsr Critical Concentration: 12 ppm 168 Hr TLm goldfish. 2 ’
Saltwater Critical Conc.ntration 12 ppm — approximated from freshwater data.
111—69
-------
SEVIN - c 10 iL,OQC CR 3
Shipping Forms: Pure, wettable Specific Gravity: 1.232
Solubility (mg/I) : 1000 Vapor Pressure (mO Hg 8 °C) : Negligible
Environmental Half Life: Persists less than 2 weeks in river water
Mammalian Toxicity (mg/Kg body wt): 505 rat (oral)’ ’
Freshwater Critical Concentration: 6.7 ppm - 96 hr TLm bluegill’ 2
Saltwater Critical Concentration: 3 ppm - 48 hr TL 50 oyster”
SODIUM - Na.
Shipping Forms: Pure Specific Gravity: 0.9715
Solubility (mg/I) : Decomposes Vapor Pressure (inn Hg 8 C): Negligible
Environmental Half Life: Decomposes to NaOH which is neutralized with dilution
Mammalian Toxicity (mg/Kg body Vt):
Freshwater Critical Concentration: 57 ppm — based on 99 ppm 48 Hr TLm to bluegill
for hydrolysis product NaOH. 1
Saltwater Critical Concentration: 39 ppm — based on 67 ppm estimated 48 Hr LC 50 to
shrimp for NeON hydrolysis product.’
SODIUM MSENATE - Na 3 A SO 4 .l2H 2 O
Shipping Forms: Pure Specific Gravity: 1.16
Solubility (mg/i): 389,000 Vapor Pressure (mm Hg • •C) : Negligible
Environmental Half Life: Calcium arsenate will precipitate, but biological action
can resolubi ].ize leading to cycling. 7 ’
Mammalian Toxicity (mg/Kg body wt) : 238 rat (oral) °
Freshwater Critical ConcentratiOnt 28 ppm — 168 Br TL goldfish 2
Saltwater Critical ConcentratiOfl 28 ppm — approximated from freshwater data
_ 9DIUM ARSENITE NaASO 2
shipping Forms: Pure Specific Gravity: 1.87
Solubility (mg/I): v. so].. (100,000) Vapor Pressure (mm Hg ______ C) : Negligible
Environmental Half Life: will oxidize to arsenate and enter a cycling process
transferring from soluble to insoluble forms and back.”
Mammalian Toxicity (mg/Kg body wt): 4]. rat (oral)”
Freshwater Critical Concentration: 35 ppm — 96 hr LC 0 bluegill’s
Saltwater Critical Concentration: 35 ppm — approximated from freshwater data
111—70
-------
SODIUM BICHROMATE - Na 2 Cr 2 O 7 .2H 2 0
Shipping Forms: Pure Specific Gravity: 2.348
Solubility (mg/f) : >i,ooo,ooo vapor Pressure (mm Hg @ C) : Negligible
Environmental Half Life: Bichroniate may exist in solution indefinitely.
Mammalian Toxicity (mg/Kg body wt): 140 rat (in)’ 8
Freshwater Critical Concentration: 213 ppm — 48 Hr TLm bluegill
Saltwater Critical Concentration: 149 ppm - based on 100 ppm 48 Hr LC 50 to brown
shrimp for Cr0 3 .
SODIUM BIFLUORIDE - NaF.HF
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/f): 32 500 Vapor Pressure (mm Hg 9 _____
Environmental Half Life: Fluoride is precipitated by calcium ions
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 5 ppm — based on 6.7 ppm 48 Hr LC 50 to
rainbow trout for NaF.’ 2
Saltwater Critical Concentration: 221 ppm - based on >300 ppm 48 Hr LC 50 to prawn
for Na P.
SODIUM BISULFITE - Na 5 50 3
Shipping Forms: Anhydrous, 38% solution Specific Gravity: 1.48
Solubility (mg/i): 3oo,ooo Vapor Pressure (mm Hg S °C): Negligible
Environmental Half Life: Oxidizes to Sulfate
Mammalian Toxicity (mg/Hg body wt): 115 Rate (I.V.)’°°
Freshwater Critical Concentration; 240 ppm - 96 Hr TL mosquito fish (turbid
water)
Saltwater Critical Concentration: 240 ppm - approximated from freshwater data
SODIUM CHROMATE
Shipping Forms; Pure Specific Gravity: 1.483
Solubility (mg/i): 317,000 Vapor Pressure (mmHg S °C): Negligible
Environmental Half Life: Chromium can persist in solution until reduced to the
trivalent form. Chromium may be concentrated by a factor of 2000.2$
Mariuttalian Toxicity (mg/Kg body wt): 243 rabbit (subcutaneOus)”
Freshwater Critical Concentration: 300 ppm — 24 Hr TLm b1uegiLl
Saltwater Critical Concentration: 342 ppm - based on 100 ppm 48 Hr LC 50 to brown
shrimp for Cr0 3 . 2 m
I I I— 71
-------
SODIUM CYANIDE
Shipping Forms: Pure, solution Specific Gravity: >1.0
Solubility (mg/24: >1,000,000 Vapor Pressure (mm Hg 9 C): Negligible
Environmental Half Life: Cyanide oxidizes to less toxic cyanata in aerated water.
Mammalian Toxicity (mg/Kg body wt): 5.22 sheep (lethal dose oral) 1
Freshwater Critical Concentration: 0.15 ppm - 96 Hr TLm bluegill.’ 1
Saltwater Critical Concentration: 0.19 ppm — based on .25 ppm 48 hr LC 50 prawn for KCN’
SODIUM DODECYLBENZENESULFONATE -
Shipping Forms: Solid Specific Gravity: >1.0
Solubility (mg/i): Sol. (50,000) Vapor Pressure (mm Hg S_____ C): Negligible
Environmental Half Life: HOD 5 - 43% Theoretical with activated sludge. 2 ’
Mammalian Toxicity (mg/Kg body wt): 1400 rat (oral)’
Freshwater Critical Concentration: 19 ppm - 96 Hr TLm - bluegill.”
Saltwater Critical Concentration: 10.1 ppm — 96 Hr TLm — inu l l.t.”
SODIUM FLUORIDE - Na !
Shipping Forms: Pure Sp.cific Gravity: 2.78
Solubility (mg/Li: 43,000 Vapor Pressurs (nun Hg e_____ C): Negligible
Environmental Half Life: Calcium salt precipitates
Mammalian Toxicity (mg/Kg body wt): 75 human (low lethal doss oral)”
Freshwater Critical Concentration: 6.7 ppm — 48 Hr 5O rainbow trout. 52
Saltwater Critical Concentration: 300 ppm — based on >300 ppm 48 Mr LC 50 prawn.’ 5
- SODIUM HYDROSULFIDE — HaMS
Shipping Forms: Pure Specific Gravity: 1.79
Solubility (mg/i): V. aol. (100,000) Vapor Pressure (imn Hg 5 ‘Ci: Negligible
Environmental Half Life: Hydrolyzes to NaOH and Na 2 S in time
Mammalian Toxicity (mg/Kg body wt): 115 rat (I.V.)”
Freshwater Critical Concentration: 10 ppm - 24 Hr lethal creek chub.’
Saltwater Critical Concentration: 10 ppm — approximated from freshwater data
111—72
-------
SODIUM HYDROXIDE - NaOH
Shipping Forms: Pure Specific Gravity: 2.13
SolubiLity (mg/i) : 420,000 Vapor Pressure (mm Hg 9 °C) : Negligible
Environmental Half Life: Neutralizes with dilution
Mammalian Toxicity (mg/Kg body wt): 500 rabbit (oral)°°
Freshwater Critical ConCentration: 99 ppm - 48 Hr ‘rLm bluegill. 1
Saltwater Critical Concentration: 67 ppm — estimated 48 Hr LC 50 shrimp. 6
SODIUM HYPOCHLORITE - NaOC1 ________________
.-
Shipping Forms: Solution Only Specific Gravity: >1.0
Solubility (mg/fl: >1,000,000 Vapor Pressure (mm Hg 8 °C): Negligible
Environmental Half Life: Subject to equilibrium partition between Na014, HOd,
OC1 and Cl 2
Mammalian Toxicity (mg/Kg body wt): 12 rat (low lethal dose oral) 12 ’
Freshwater Critical ConcentratiOn: .21 ppm - based on 0.1 ppm 96 Hr TL 50 to fathead
minnow for chlorine which is released. 3 ’
Saltwater Critical ConcentratiOn 2.1 ppm - based on effects of chlorine to oysters,
cessation of pumping.’
SODIUM ME9 HYU.TE - NaOCH
Shipping Forms: Pure Specific Gravity: 0.56
Solubility (mg/fl: Decomposes Vapor Pressure (mm Hg 8 °C) 5gligible
Environmental Half Life: Decomposes to NaOH which neutralizes with dilution and
methanol which biodegrades
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 134 ppm - based on 99 ppm 48 Hr TL to bluegill
for hydrolysis product NaOH.
saltwater Critical Concentration: 90 p im - based on 67 ppm estimated 48 hr LC 50 to
shrimp for hydrolysis product NaOH.
SODIUM NITRITE - NaNO 2 ________________________
Shipping Forms: Pure Specific GraVity 2.17
SolubilitY (mg /fl: 81.5,000 Vapor Pressure (mm Hg 8 °C) : Negligible
Environmental Half Life: Forms nitrous acid which will oxidize to nitric acid and
si . bseq11entlY will be neutralized with dilution.
Maismalian Toxicity (mg/Kg body wt): rat 180 (oral)”
Freshwater critical Concentration: 7.5 ppm — 96 Hr TL 1aO5gUitO fish (turbid water). 1
Saltwater Critical Concentration: 7.5 ppm - approximated from freshwater data
111—73
-------
SODIUM PHOSPRP.TE (monobasic) - NaH PO 4 .N 2 o
Shipping Forms: Pure Specific Gravity: 2.04
Solubility (mg/U: 599,000 Vepor Pressure (inn Hg @ _____°C): Negligible
Environmental Half Life: Phosphate will be precipitated
Mammalian Toxicity (mg/Kg body wt):
Freshw5ter Critical ConcentratiOn: 720 ppm - 96 hr TL mosquito fish (turbid water).’
in
Saltwater Critical Concentration: 720 ppm - approximated from freshwater data
SODIUM PHOSPHATE (djbaijc) - Na 2 HPO 4 .7H 2 0
Shipping Forms: Pure Specific Gravity: 1.67
Solubility (mg/I): >1,000,000 VapOr Pressure (mm Hg 0 •C): Negligible
Environmental Half Life: Phosphate will precipitate.
Mammalian Toxicity (mg/Kg body wt): 2000 rat (IP) le
Freshwater Critical Concentration: 426 ppm - 96 Hr TLm daphnia magna. 2 ’
Saltwater Critical. Concentration: 426 ppm - approximated from freshwater data
SODIUM PH0SPaATE (tribacic) - Na 3 P0 4 .l2R 2 0
Shipping Forms: Pure Specific Gravity: 1.645
Solubility (mg/I): 15,000 Vapor Pressure (mm Hg •C): Negligible
Environmental Half Life: Phosphate will precipitate.
Mammalian Toxicity (mg/Kg body wt): 430 rat (I?)’’
Freshwater Critical Concentration: 151 ppm — 96 Hr TL mosquito f jib.’
Saltwater Critical Concentration: 151 ppm - approximated from freshwater data
SODIUM - N6 2 5e0 3 . 5H 0
Shipping Forms, Pure Specific Gravity: >1.0
Solubility (mg/I) : sol. (100,000) Vapor Pressure (mm Hg 0 °C) : Negligible
Environmental Half Life; Persists at low levels. May oxidize to selenat.. Selenium can
can be concentrat 400 tiaea ’
Mammalian Toxicity (mg/Kg body wt): 7 rat (oral)’
Freshwater Critical Concentration: 55 ppm — estimated 96 hour LC 50 f or fathead minnow’”
Saltwater Critical Concentration: 55 ppm - approximated from freshwater data
11 1—74
-------
Na S.9R 0
SODIUM SULFIDE - 2 2
Shipping Forms: Pure Specific Gravity: 2.47
Solubility (mg/i) 475,000 Vapor Pressure (mm Hg 9 °C) : Negligible
Environmental Half Life: Sulfide will oxidize to sulfate
Mammalian Toxicity (mg/Kg body Vt): 53 mouse
Freshwater Critical Concentration: 61 ppm - 48 hr TLm Bluegill 1
Saltwater Critical Concentration: 61 ppm — approximated from freshwater data
STRONTIUM CHROMATE - SrCrO 4
Shipping Forms: Pure Specific Gravity: 3.895
Solubility (mg/i): 1200 Vapor Pressure (mm Hg 9 Sc):
Environmental Half Life: Chromium persists in dissolved state until reduced to trivalent
form. Chromium may be concentrated by a factor of 200021
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 179 ppm — based on 300 ppm 24 hr Tk to bluegill for
sodium chromate’
Saltwater Critical Concentration: 204 ppm - based on 342 ppm critical concentration for
sodium chromate
C H NO
STRYCHNINE - 23. 22 2 2
Shipping Forms:PUre Specific Gravity: 1.36
Solubility (mg/i): 160 VapOr Pressure (mm Mg 9
Environmental Half Life: Moderately persistent
Mammalian Toxicity (mg/Kg body wt): 30 Human (low lethal dose oral)
Freshwater Critical Concentration: 28 ppm - based on 56.7 mg fatal doss to man and 2 liter
water consumption’
Saltwater Critical Concentration: 1.7 ppm - 1 sased on 1.7 ppm strychnine nitrate required to
incapacitate lemon shark in 10 minutes’
STYRENE - C 6 M 5 CHCH 2
Shipping Forms: Pure Specific Gravity: 0.909
Solubility (mg/L):320 Vapor Pressure (mm Hg S_____ C):lO
Environmental Half Life:30D 5 — 65% theoretical in fr.uhwatsr, 8% in saltwater
Mammalian Toxicity (mg/Kg body wt):4920 rat (oral) ’ 2
Freshwater Critical Concentration: 22 pp. — 96 hr TI blu.gil1’
Saltwater Critical Concentrstion:52 ppm — 48 brine shriap
111—75
-------
SULFURIC ACID - H 2 S0 4
Shipping Forms:l00%, 66° Be, 60° Be and Specific Gravity:l.834
20% fuming oleum
Solubility (mg/&):>l,000,000 Vapor Pressure (mm Hg @20 °C):O.6
Environmental Half Life:Neutraljzes with dilution
Mammalian Toxicity (mg/Kg body wt):2140 rat (oral)’ 25
Freshwater Critical concentration: 123 ppm — 96 hr TLm bluegill based on acidity at
alkalinity’
Saltwater Critical ConcentratiOfl2ls ppm - 48 hr LC flounder”
SULFUR MONOCMLORIDE - S 2 Cl 2
Shipping Forms: Pure Specific Gravity: 1.69
Solubility (mg/f):Decomposes Vapor Pressure (mm Hg @ 7 5 °C):2.2
Environmental Half Life:Decomposes to Md, H 2 S0 4 , sodium sulfite, and thiosulfite
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 86 ppm — based on 46 ppm 96 hr TL to bluegill
for HC1 hydrolysis product 1 m
Saltwater Critical ConcentratiOn:403 pm - based on 215 ppm estimated 48 hr LC to
shrimp for HC1 hydrolysis product 50
C1C}IOCHCOOH
2.4.5—T (acid) — 3 6 2 2
Shipping Forns:Pure, wettable Specific Gravity: 1 21
Solubility (mg/L):140 Vapor Pressure (mm Hg 8 ‘C):Negligib le
Environmental Half Life:Loss is 44% in 4 days. This increases to 79% with low intensity
sunlight and 92% with high intensity’’
Mammalian Toxicity (mg/Kg body wt) : 300 rat (oral)
Freshwater Critical Concentration: 11 ppm — 24 hr TLm bluegill°
Saltwater Critical Concentration:.14 ppm — 96 hr EC 50 oyster’°
2,4,5-T (esters) C1 3 C 6 H 2 OCH 2 COO+ester
Shipping Forms: Pure, wettable Specific Gravity: 1.21
Solubility (mg/I) : 140 vapor Pressure (mm Hg 8 °C) : Negligible
Environmental Half Life: More persistent than acid
Mammalian Toxicity (mg/Kg body wt) : 300 rat (oral)’
Freshwater Critical Concentration:17 ppm — varies greatly - this ii 48 hr TLm to bluegill
for propylene glycol butyl ether eater’’
Saltwater Critical Concentration: 17 ppm — approximated from freshwater data
111—76
-------
TMINXC ACID - C 76 H 52 0 46
shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/I.): >1,000,000 Vapor Pressure (mm Hg 9 ‘C) : Negligible
Environmental Half Life: BOD 5 - .38 lb/lb ( 5% theoretical) with sewage seed ’
Mammalian Toxicity (mg/Kg body wt):6000 rat (LD 100 )°°
Freshwater Critical Concentrations 37 ppm - 96 hr TLm mosquito fish 1
Saltwater Critical concentration: 37 ppm — approximated from freshwater data
TDE — C 14 H 10 C1 4
Shipping Forms: Pure, wettable Specific Gravity: 1.29
Solubility (mg/I.): insol. (100) Vapor Pressure (mm Hg S ‘C):
Environmental Half Life: Persistent
Mammalian Toxicity (mg/Kg body wt): 3400 rat (oral)
Freshwater Critical Concentration: .042 ppm — 96 hr TLm blnegill’
Saltwater Critical Concentration: .042 ppm - approximated from freshwater data
ThTRAETRTh LEAD — (C 2 5 5 ) 4 Pb
Shipping Forms:p . • Specific Gravity: 659
Solubility (mg/Lh30 Vapor Pressure (mm Hg 8 ‘ChNeg ligible
Environmental Half Life:Per.jst.nt and bioconcentratjve
Mammalian Toxicity (mg/Kg body wt):1o rat (I.P.)’
Freshwater Critical Concentration: 0.2 ppm - 96 hr TLm bluegill’
Saltwat.r Critical Concentration:0.2 ppm — approximated from freshwater data
- (C 2 0 3 ) 4 P 2 0 7
Shipping Forms:Purs Specific Gravity:l.l85
Solubility (mg/I.) 1,0O0,000 Vapor Pressure (mm Hg 9 ‘C):
Environmental Half Life:7 hrs.
Mammalian Toxicity (mg/Kg body wt) ’ 1.2 rat (oral)’’
Freshwater Critical Concentration: 0.84 ppm — 96 hr Thm bluegill”
Saltwater Critical Conceatrationt0.84 ppm — approximated from freshwater data
111—77
-------
TOLUENE - C 6 H 5 CH 3
Shipping Forms: Pure Specific Gravity: 0.866
Solubility (mg/f) : 470 Vapor Pressure (mm Hg @ 7.5 °C) : 11
Environmental Half Life: Biodegrades with acclimation
Mammalian Toxicity (mg/Kg body wt) : 5850 rat (oral) 125
Freshwater Critical Concentration: 24 ppm - 96 hr TLm bluegill’’
Saltwater Critical Concentration: 33 ppm - 24 hr TL brine shrimp’
TO CAPHENE - C 10 H 10 C1 8
Shipping Forms: Pure, wettable Specific Gravity: 1.66
Solubility (mg/f) : 1.5 Vapor Pressure (mm Hg 9 °C) : Negligible
Environmental Half Life: Persistent. Bioconcentrates in oysters to 2920’’
Mammalian Toxicity (mg/Kg body wt): 69 rat (oral)’
Freshwater Critical Concentration: .0035 ppm 96 hr TLm bluegill””
Saltwater Critical Concentration: .045 ppm — 48 hr TLm brown shrimp””
TRICHLORPON - C 4 11 8 C1 3 0 4 P
Shipping Forms: Pure Specific Gravity: 1.73
Solubility (mg/f): 130,000 Vapor Pressure (mm Hg 9
Environmental Half Life: Persistent
Mammalian Toxicity (mg/Kg body wt): 450 rat (oral) 3 ”
Freshwater Critical Conceptration: 180 ppm — 96 hr TLm fathead minnow’
Saltwater Critical Concentration: 180 ppm - approximated from freshwater data
TRICHLOROPHENOL - C 6 R 3 C1 3 0
Shipping Forms: Pure Specific Gravity: 1.49
Solubility (mg/f) : 800 Vapor Pressure (mm Hg 9 °C) : Negligible
Environmental Half Life: D O D 9 4 — 4.1% theoretical with pure bacteria culture 2
Mammalian Toxicity (mg/Kg body wt):820 rat (oral)”’
Freshwater Critical Concentration: .1 ppm — 96 hr TLm fathead minnow’ 2 ’
Saltwater Critical Concentration: .1 ppm — approximated from fre.hwater data
111—78
-------
TRIETMANOLAMINE DODECYLBENZENESULPONATE - (O SC 5 H 0 ) (CH,OHCM ,) 3 N
Shipping Forms: Pure specific Gravity: >1.0
Solubility (mg/i): sol. (100,000) Vapor Pressure (sin Hg @ C)
Environmental Half Life: SOD 5 - 43% theoretical based on sodium salt 2 ’
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 22 ppm - based on 19 ppm — 96 hr TLm to bluegill
for sodium salt”
Saltwater Critical Concentration: 13 ppm — based on 10.1 ppm — 96 hr TLm to mullet
for sodium salt 7 ’
TRXETHYLAMINE - (C 2 H 5 ) 3 N
Shipping Forms: Pure Specific Gravity: 0.729
Solubility (mg/t): >1,000,000 Vapor Pressure (mm Hg @ 20 °C): 45
Environmental Half Life: Moderately degradable assume n .80D 5 — 30% theoretical
Mammalian Toxicity (mg/Kg body wt): 460 rat (oral)
Freshwater Critical Concentration: 80 ppm - 24 hr lethal to fish 2
Saltwater Critical Concentration: 80 ppm — approximately from freshwater data
TRD4ETHYLPJ(INE ( 3) 3 N
Shipping Forma: Anhydrous, 40—60% Specific Gravity: 0.662
soLution
Solubility (mg/i): 410,000 Vapor Pressure (me Hg 8 7.5 •C): >760
Environmental Half Life: Moderately degradable — assum. SOD 5 — 30% theoretical
Mammalian Toxicity (mg/Kg body wt): 400 rabbit (oral)’’’
Freshwater Critical Concentration: 48 ppm - approximated from 80 ppm lethal leval
to fish for triethylamine 2
Saltwater Critical COflCentration:108 ppm — approximated from freshwater data
DANIUM PEROXIDE — GO 4 . 2 520
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/Lh 6 Vapor Pressure (mm Hg 8 °C) : Negligible
Environmental Half Life:Precipitates
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: .25 ppm - based on 2.8 ppm 96 hr Tk fathead minnow
for uranyl lulfate’
Saltwater Critical Concentration: ios ppm - approximated from freshwater data
111—79
-------
URANYL ACETATE — U0 2 (C 2 H 3 0 2 ) 2 .2H 2 0
Shipping Forms: Pure Specific Gravity: 2.893
Solubility (mg/i) : 76,940 Vapor Pressure (mm Hg 9 °C) : Negligible
Environmental Half Life: Will precipitate as uranium salt
Mammalian Toxicity (mg/Kg body wt):400 rat (I.P.)’ 8
Freshwater Critical Concentration: 178 ppm - 96 hr TL fathead minnow 1
In:
extrapolated to hardwater from uranyl aulfate data
Saltwater Critical Concentration: 178 ppm - approximated from freshwater data
.JRANYL ItTRATE- tJO 2 (N0 3 ) 2 .6H 2 0
Shipping Forms: Pure Specific Gravity: 2.807
Solubility (mg/i) : >1,000,000 Vapor Pressure (nun Hg 8 °C) : Negligible
Environmental Half Life: Precipitated as uranium ion
Mammalian Toxicity (mg/Kg body wt): 135 rat (I.P.)’ 6
Freshwater Critical Concentration: 149 ppm - 96 hr T fathead minnow 1
extrapolated to hardwater from uranyl sulfate d a’
Saltwater Critical Concentration: 149 ppm —approximated fF n freshwater data
URANYL SULFATE - U0 2 S0 4 .3H 2 0
Shipping Forms: Pure Specific Gravity: 3.28
Solubility (mg/i) : 205, 000 Vapor Pressure (mm Hg @ ‘C): Negligible
Environmental Half Life: Precipitates as uranium salt
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 2.8 ppm — 96 hr TLm fathead minnow’
Saltwater Critical Concentration: 2.8 ppm - approximated from freshwater data
135
VANADIUM OXYTRICHLORIDE - VOC1 3
Shipping Forms: Pure Specific Gravity: 2.824
Solubility (mg/i) : insol. (500) —decomposes Vapor Pressure (mm Hg @ 12.2 °C) : 10
Environmental Half Life:Many vanadium salts are insoluble. Slowly decomposes
in water.
Mammalian Toxicity (mg/Kg body wt):l40 rat (oral) 9 ’
Freshwater Critical Concentration 1 104 ppm - based on 55 ppm 96 hr TLm to bluegill for
vanadium pentoxide’
Saltwater Critical Concentration: 104 ppm - approximated from freshwater data
111—80
-------
Vo
VANADIUM PENTOXIDE - 2 5
Shipping Forms:Pure Specific Gravity:3.357
Solubility (mg/L):8000 Vapor Pressure (mm Hg @_____
Environmental Half Life:Many vanadium salts are insoluble
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 55 ppm - 96 hr TL bluegill’
Saltwater Critical Concentration: 55 ppm - approximated fr an freshwater data
VANADYL SULFATE - VOSO 4
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/i): aol. (5000) Vapor Pressure (mm Hg @ °C); NegJi nb)e
Environmental Half Life: Many vanadium salts are insoluble
Mammalian Toxicity (mg/Kg body wt): 1 rat (oral as V)’
Freshwater Critical Concentration: 55 ppm — 96 hr TLm bluegill’’
Saltwater Critical Concentration; 55 ppm — approximated from freshwater data
VINYL ACETATE - CH 3 COOCHCH 2
Shipping Forms: Pure Specific Gravity: 0.9317
Solubility (mg/L): 20,000 Vapor Pressure (aim Hg % 7.5 ‘C): 45
Environmental Half Life; BOD 5 — 35% theoretical in freshwater, 51% in sa1twater
Mammalian Toxicity (mg/Kg body wt): 2120 rat (oral)’
Freshwater Critical Concentration: 18 ppm — 96 hr TLm bluegill’’
Saltwater Critical Concentration: 50 ppm — estimated 48 hr LC 50 shrimp’
XYLENE - C 6 H 4 (CH 3 ) 2
Shipping Forms: Pt r.
Solubility (mg/i) : insol. (500) ______
Environmental Half Life: SOD — 021
Mammalian Toxicity (mg/Kg body wt): 4000 rat (oral)’°
Freshwater Critical Concentration, 22 ppm - 96 hr TL bluegill’’
Saltwater Critical Concentration: 30 ppm - based on ratio of saltwater to
freshwater toxicity noted for toluen.
Specific Gravity; 0.B685
Vapor Pressure (mm Hg 8 7.5 ‘C) : 2.5
111—81
-------
XYLENOL - (CH 3 ) 2 C 6 H 3 0H
Shipping Forms: Pure Specific Gravity: 1.04
Solubility (mg/i): el. aol. (5000) Vapor Pressure (mm Hg 9 50 °C): 1
Environmental Half Life: BOO 5 — 31% theoretical ’ ’
Mammalian Toxicity (mg/Kg body wt): 296—727 rat (oral)’ 2 ’
Freshwater Critical Concentration: 36 ppm — estimated 24 hr TLm tench, carp’
Saltwater Critical Concentration: 36 ppm - approximated from freshwater data
ZECTRAN - C 12 H 18 N 2 0 2
Shipping Forms: Pure, wettable Specific Gravity: >1.0
Solubility (mg/i): 100 Vapor Pressure (mm Hg 9 CC): Negligible
Environmental Half Life: Moderately persistent
Mammalian Toxicity (mg/Kg body wt): 19 rat (oral) ‘‘
Freshwater Critical Concentration: 11.2 ppm — 96 hr TL blu.gill ’
Saltwater Critical Concentration: 11.2 ppm — approximated from freshwater data
ZINC ACETATE - Zn(C 2 H 3 0 2 ) 2 .2H 2 O
Shipping Forms: Pure Specific Gravity: 1.74
Solubility (mg/i): 310,000 Vapor Pressure (mm Hg 8 ‘C): Negligible
Environmental Half Life: Zinc accumulates in organisms but is not consid.r.d
bioconcentrative. Hydroxide and carbonate salts precipitate.
Mammalian Toxicity (mg/Kg body wt): 2460 rat (oral)’
Freshwater Critical Concentration: 42 ppm — based on 12.5 ppm 96 hr TL to
bluegill for zinc ion’ a
Saltwater Critical Concentration: 32 ppm — based on 9.5 ppm 48 hr LC to shrimp
for zinc ion’
ZINC AI2IONIUM CHLORIDE - ZnC1 2 .NH 4 CL’
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/i): Decomposes Vapor Pressure (mm Mg 9 ‘C); Negligible
Environmental Half Life: Zinc accumulates in organisms but is not considered
bioconc sfltratiVe. Hydroxide and carbonate salts precipitate
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critigal concentratiofl 37 ppm - based on 12.5 ppm 96 hr mm to bluegill
for zinc ion’
Saltwater Critical concentration: 26 ppm — based on 9.5 ppm 48 hr 50 to shrimp
for zinc ion’
111—82
-------
ZINC BICHROMA’I’E - ZnCr 2 O 7 .3H 2 0
Chipping Forms: Pure Specific Gravity: >1.0
SolUbility (mg/L) : el. aol. (1000) Vapor Pressure (mm Hg 2 ‘C)
Environmental Half Life: Hydroxide and carbonate salts precipitate. Zinc
accumulates in organism. but is not considered bioconcentrative
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical concentration: 64 ppm - based on 12.5 ppm 96 hr TLm
bluegill for zinc ion
Saltwater Critical Concentration: 49 ppm — based on 9.5 ppm 48 hr 50
to shrimp for zinc ion’
ZINC BORATE - 3ZflO.23 2 0 3
Shipping Forms: Pure Specific Gravity: 3.64
Solubility (mg/i): aol. (50,000) Vapor Pressure (mm Hg S ‘C): Negligible
Environmental Half Life: Zinc accumulates in organisms but is not considered
bioconeentrative. Hydroxide and carbonate salts precipitate
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concsntr tion: 24 ppm — based on 12.5 ppm 96 hr TLm
to bluegill for zinc ion’
Saltwater Critical Concentjation: 19 ppm — based on 9.5 ppm 48 hr I C 50
to shrimp for zinc ion
ZINC BROMIDE
Shipping Forms: Pure Specific Gravity: 4.219
Solubility (mg/L): >1,000,000 Vapor Pressure (mat Hg P •C):Negligib le
Environmental Half Life: Zinc accumulate. in organisms but is not considered
bioconcentrative. Hydroxide and caxbonate salts precipitate
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 43 ppm - based on 12.5 ppm 96 hr TL
to bluegill for ZnC1 2 ’
Saltwater Critical Concentration: 33 ppm - based on 9.5 ppm 48 hr 0
to shrimp for zinc ion’ 5
ZINC CARBONATE
Shipping Forms: Pure Specific Gravity: 4.42
Solubility (mg/i): 10 Vapor Pressure (mm H I ‘C):
Environmental Half Life: Hydroxide and carbonate salt. precipitate. Zinc
accumulates in organisms but is not conaid•red bioconcentrative
Mammalian Toxicity (mg/Kg body wt) :
Freshwater Critical Concentration: 24 ppm - based on 12.5 ppm 96 hr TL
to bluegill for zinc ion’ m
Saltwater Critical Concentration: 18 ppm — based on 9.5 ppm 48 hr LC 50
to shrimp for zinc ion’
111—83
-------
ZINC CHLORIDE
Shipping Forms: Pure Specific Gravity: 2.91
Solubility (mg/i) : >1,000,000 Vapor Pressure (mm Hg @______ : Negligible
Environmental Half Life: Zinc accumulates in organisms but is not considered
bioconcentrative. Hydroxide and carbonate salts precipitate
Mammalian Toxicity (mg/Kg body wt): 350 rat (oral)
Freshwater Critical Concentration: 26 ppm - based on 12.5 ppm 96 hr TL to
bluegill for zinc ion 1 m
Saltwater Critical Concentration: 20 ppm - based on 9.5 ppm 48 hr LC 50
to shrimp for zinc ion 0
ZINC CYANIDE
Shipping Forms: Pure Specific Gravity: 1.852
SolubilitY (mg/i): 5 Vapor Pressure (mm Hg @ °C): Negligible
Environmental Half Life: Hydroxide and carbonate salts precipitate. Cyanide
will oxidize to less toxic cyaflate. Zinc accumulates in organisms but
is not considered bioconcentrative
Mammalian Toxicity (mg/Kg body wt): 100 rat (low lethal dose I.P.)
Freshwater Critical Concentration: .18 ppm - based on .15 ppm 96 hr TLm
to bluegill NaCN 7 ’
Saltwater Critical Concentration: .23 ppm - based on .19 ppm 48 hr LC 50
to prawn for NaCNe
ZINC FLUORIDE - ZnF 2 .4H 2 0
Shipping Forms: Pure Specific Gravity: 2.535
Solubility (mg/i): 16,000 Vapor Pressure (mm Hg 8
Environmental Half Life: Hydroxide and carbonate salts precipitate. Zinc
accumulates in organisms but is not considered bioconcentrative
Mammalian Toxicity (mg/Kg body wt): 200 guinea (low lethal dose oral)’’
Freshwater Critical Concentration: 14 ppm - based on 6.7 ppm 48 hr LC 50
to rainbow trout for Na?’ 2
Saltwater Critical Concentration: 26 ppm - based on 9.5 ppm 48 hr LC 50
to shrimp for zinc ion 9
ZINC FORMATE - Zn(CHO 2 ) 2
Shipping Forms: Pure Specific Gravity: 2.36
Solubility (mg/i): 52,000 Vapor Pressure (mm Hg 8
Environmental Half Life: Hydroxide and carbonate salts precipitate. Zinc
accumulates in organisms but is not considered bioconcentrative
Mammalian Toxicity (mg/Kg body wt)
Freshwater Critical Concentration: 30 ppm - based on 12.5 ppm 96 hr TL
to bluegill for zinc ions
Saltwater Critical Concentration: 23 ppm — based on 9.5 ppm 48 hr LC 50
to shrimp for zinc ion’
111—84
-------
ZINC HYDROSULFfl’E - ZnS 2 O 4
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/i): aol. (50,000) Vapor Pressure (mm Hg @ ‘C):
Environmental Half Life: Hydroxide and carbonate salts precipitate. Zinc
accumulates in organisms but is not considered bioconcentratjve
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentr tion: 38 ppm - based on 12.5 ppm 96 hr TLm
to bluegill for zinc ion
Saltwater Critical Concentration: 29 ppm — based on 9.5 ppm 48 hr LC 50
to shrimp for zinc ion.
ZINC NITRATE - Zn(N 0 3 ) 2 .6H 2 0
Shipping Forms: Pure Specific Gravity: 2.07
Solubility (mg/i): >1,000,000 Vapor Pressure (mm Hg 8 °C): Negligible
Environmental Half Life: Zinc accumulates in organisms but is not considered
bioconcentrative. Hydroxide and carbonate salts precipitate
Mammalian Toxicity (mg/Kg body wt): 2500 rat (oral) 10 ’
Freshwater Critical Coneentrjtion: 57 ppm - based on 12.5 ppm 96 hr TLm
to bluegill for zinc ion
Saltwater Critical Concentration: 43 ppm - based on 9.5 ppm 48 hr LC 50
to shrimp for zinc ion
ZINC PERMANGANATE - Zn(Mu0 4 ) 2 .6H 2 0
Shipping Forms: Pure Specific Gravity: 2.47
Solubility (mg/i): v. sol. (330,000) Vapor Pressure (mm Hg 8 C)
Environmental Half Life: Hydroxide and carbonate salts precipitate. Zinc
accumulates in organisms but is not considered bi000ncentrative
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentr tion: 79 ppm - based on 12.5 ppm 96 hr TLm
to bluegill for zinc ion
Saltwater Critical Concentration, 60 ppm - based on 9.5 ppm 48 hr LC
to shrimp for zinc ion’
ZINC PHENOLSULFONATE - Zn(C 6 H 5 50 4 ) 2 .8H 2 0
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/fl: 625,000 Vapor Pressure (mm Hg 8 C): Negligible
Environmental Halt Life: Zinc accumulates in organisms but is not considered
bioconcentrative. Hydroxide and carbonate salts precipitate
Mammalian Toxicity (mg/Kg body wt)
Freshwater Critical Concentration: 107 ppm — based on 12.5 ppm 96 hr TLm
to bluegill for zinc ion 1
Saltwater Critical Concentration, 8]. ppm - based on 9.5 ppm 48 hr LC 50
to shrimp for zinc ion’
111—85
-------
ZINC PHOSPHIDE — Zn 3 P 2
Shipping Forms: Pure Specific Gravity: 4.55
Solubility (mg/i): insol. (500) Vapor Pressure (inn Hg 8 °C) : Negligible
Environmental Half Life: Zinc accumulates in organisms but is not considered
bioconcentrative. Hydroxide and carbonate salts precipitate
Mammalian Toxicity (mg/Kg body wt): 41 rat (ora1)’
Freshwater Critical Concentration: 17 ppm - based on 12.5 ppm 96 hr TL
to bluegill for zinc ion’ m
Saltwater Critical Concentration: 13 ppm — based on 9.5 ppm 48 hr LC 50
to shrimp for zinc ion
ZINC POTASSIUM CHROMATE - ZnCrO 4 .K 2 CrO 4
Shipping Forms: Pure Specific Gravity: >1.0
solubility (mg/i): Insol. (500) vapor Pressure (mm Hg 8
Environmental Half Life: Hydroxide and carbonate salts precipitate. Zinc
and chrome accumulate in organisms but they are not considered biocon—
centrative
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 72 ppm - based on 12.5 ppm 96 hr TL
to bluegill for zinc ion’ m
Saltwater Critical Concentration: 55 ppm - based on 9.5 ppm 48 hr LC 50
to shrimp for zinc ion ’
ZINC PROP IONATE
Shipping Forms: Pure Specific Gravity: l.O
Solubility (mg/&): sd. (50,000) Vapor Pressure (mm Hg 8
Environmental Half Life: Hydroxide and carbonate salts precipitate
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical concentration: 41 ppm - based on 12.5 ppm 96 hr TLm
to bluegill for zinc ion’
Saltwater Critical Concentjation: 31 ppm — based on 9.5 ppm 48 hr 50
to shrimp for zinc ion
ZINC SILICOFLUORIDE
Shipping Forms: Pure Specific Gravity: 2.104
Solubility (mg/&): v. sol. (10,000) Vapor Pressure (mm Hg 8 C): Negligible
Environmental Half Life: Zinc accumulate’ in organisms but is not considered
bioconcentrative. Hydroxide and carbonate salts precipitate
Mammalian Toxicity (mg/Kg body wt): 100 rat (low lethal dose oral)’•
Freshwater Critical Concent 9 tion: 61 ppm - based on 12.5 ppm 96 hr TLm
to bluegill for zinc ion
Saltwater Critical ConcentSation: 46 ppm - based on 9.5 ppm 48 hr LC 50
to shrimp for zinc ion
111—86
-------
ZINC SULFATE
Shipping Forms: Pure Specific Gravity: 1.97
Solubility (mg/i): 965,000 Vapor Pressure (mm Hg °C): Negligible
Environmental Half Life: Zinc accumulates in organisms but is not considered
bioconcentrative. Hydroxide and carbonate salts precipitate.
Mammalian Toxicity (mg/Kg body wt): 40 rat (I.P.)’ 27
Freshwater Critical Concentration: 55 ppm — based on 12.5 ppm 96 hr TL to bluegill
for zinc ion 1
Saltwater Critical Concentration: 42 ppm — based on 9.5 ppm 49 hr LC 50 to
shrimp for zinc ion
ZIRCONIUM ACETATE - H 2 ZrO 2 (C 2 fl 3 O 2 ) 2
Shipping Forms: 13% ZrO 2 , 22% Zr0 2 Specific Gravity: 1.2-1.46
Solubility (mg/i): 801. (50,000) Vapor Pressure (nun Hg 8 °C): Negligible
Environmental Half Life: Hydroxide will precipitate
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concsntrat .on: 307 ppm - based on 115 ppm 96 hr TLm to
fathead minnow for Zr 1
Saltwater Critical Concentration: 307 ppm - approximated from freshwater data
ZIRCONIUM NITRATE - Zr (NO 3 ) .5H 2 0
Shipping Forms: Pure Specific Gravity; >1.0
Soluhility (mg/i): sol. (50,000) Vapor Pressure (mm Hg 8 _ °C): Negligible
Environmental Half Life: Hydroxide salt precipitates
Mammalian Toxicity (mg/Kg body Vt): 853 rat (oral)’
Freshwater Critical Concentration: 542 ppm - based on 115 ppm 96 hr TL to fathead
minnow for Zr ion
Saltwater Critical Concentration: 542 ppm - approximated from freshwater data
ZIRCONIUM OXYCHLORIDE - ArOCl 2 .80 2 0
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/i), .01. (50,000) Vapor Pressure (mm Hg I_____ C): Negligible
Environmental Half Life: May precipitate in zirconium oxide form
Mammalian Toxicity (mg/Ky body wt): 3500 rat (oral)’
Freshwater Critical Concentration: 966 ppm - 96 hr TZ bluegill’
Saltwater Critical Concentration: 966 ppm - approximated from freshwat tr data
111—87
-------
ZIRCONIUM POTASSIUM FLUORIDE- ZrF 4 .KF
Shipping Forms: Pure Specific Gravity: >1.0
Solubility (mg/U : 801. (50,000) Vapor Pressure (mm Hg 8 °C)
Environmental Half Life: Hydroxide precipitates
Mammalian Toxicity (mg/Kg body wt):
Freshwater Critical Concentration: 7.2 ppm — based on 6.7 ppm 48 hr LC 50 to
rainbow trout for
Saltwater Critical Concentration: 284 ppm - based on 115 ppm 96 hr TLm to
fathead minnow for ZrSO 4 ’
Zr(SO ) .4H 0
ZIRCONIUM SULFATE - 4 2 2
Shipping Forms: Pure Specific Gravity: 3.22
Solubility (mg/U: 525,000 Vapor Pressure (mm Hg _____ C): Negligible
Environmental Half Life: Hydroxide salt will precipitate
Mammalian Toxicity (mg/Kg body wt): 1253 rat (oral) 12 ’
Freshwater Critical Concentration: 449 ppm - based on 115 ppm 96 hr TLm
fathead minnow 1 for Zr ion in sulfate salt’
Saltwater Critical Concentration: 449 ppm — approximated from freshwater data
ZIRCONIUM TETRACHLORIDE -
Shipping Forms: Pure Specific Gravity: 2.8
Solubility (mg/t): Decomposes Vapor Pressure (mm Hg 9
Environmental Half Life: Decomposes in water to ziconium oxychloride
Mammalian Toxicity (mg/Kg body wt): 1688 rat (oral)”
Freshwater Critical Concentration: 145 ppm - based on 46 ppm 96 hr TLm to
bluegill for MCi by-product 1
Saltwater Critical Concentration: 677 ppm - based on 215 ppm 48 hr LC 50 + shrimp
for MCi by-product’
111—88
-------
REFERENCES
1. McKee, J. E. and H. W. Wolf. “Water Quality Criteria,”
HEW/USPHS, The Resources Agency of California, and the
State of California Water Resources Control Board, Publi-
cation 3—A, April 1971.
2. Ryckman, D. W., A. V. S. Prabhakara Rad and J. C. Buzzell,
Jr. Behavior of Organic Chemicals in the Aquatic Environ-
ment , Manufacturing Chemists Association, Washington, DC,
Summer 1966.
3. Cairns, J. and A. Scheier. “A Comparison of the Toxicity
of Some Common Industrial Waste Components Tested Individ-
ually and Combined,” Progressive Fish-Culturist , Vol. 30,
No. 1, pp. 3—8, 1968.
4. Price, K. S., G. T. Wagg and R. A. Conway. “Brine Shrimp
Bioassay and Seawater BOD of Petrochemicals,” J. WPCF ,
Vol. 46, No. 1, January 1974.
5. Ludzak, F. J. and M. B. Ettinger. “Chemical Structures
Resistant to Aerobic Biochemical Stabilization,” J. WPCF ,
Vol. 32, No. 11, November 1960.
6. National Academy of Sciences. Water Quality Criteria--1972 ,
Environmental Protection Agency, December 1973.
7. A. D. Little, Inc. “Relationship Between Organic Chemical
Pollution of Fresh Water and Health,” FWQA # 1632, Decem-
ber 1970.
8. Portman, J. E. “The Toxicity of 120 Substances to Marine
Organisms,” Shellfish Information Leaflet, Fisheries Experi-
mental Station; Conway, North Wales Ministry of Agriculture,
Fisheries and Food, September 1970.
9. Unpublished data, The Dow Chemical Company, June 4, 1974.
10. Butler, P. A. “Effects of Herbicides on Estuarine Fauna,”
Proceedings of Southern Weed Conference , Vol. 18, pp. 576-
580, 1965.
11. Butler, P. A. “Commercial Fishery Investigations,” Pesti-
cide-Wildlife Studies, U. S. Department of the Interior!
Fish and Wildlife Service, Vol. 199, pp. 5-28, 1964.
12. Barn, J. M., et al. “The Fate of Aidrin and Dieldrin in
the Human Body,” J. Agr. & Food Chem. , Vol. 4, pp. 937-941,
1956.
111—89
-------
13. Gloyna, E. F. and J. F. Mauna, Jr. “Petrochemical Wastes
Effects on Water,” Water and Sewage Works , R-273, 1963.
14. Pickering, Q. H. and C. Henderson. “Acute Toxicity of
Some Important Petrochemicals to Fish,” J. WPCF , Vol. 38,
No. 9, pp. 1419—1429, 1966.
15. Wallen, L. E., W. C. Greer and R. Lasater. “Toxicity to
Gambusia affinis of Certain Pure Chemicals in Turbid Water,”
Sewage & Industrial Wastes , Vol. 29, No. 6, pp. 695—711, 1957.
16. Sanborn, N. H. “The Lethal Effect of Certain Chemicals on
Freshwater Fish,” Canner , Vol. 101, No. 5, p. 13, 1945.
17. Patrick, R., J. Cairns and A. Scheier. “The Relative
Sensitivity of Diatoms, Snails and Fish to Twenty Common
Constituents of Industrial Wastes,” Progressive Fish-Culturist ,
Vol. 30, January 1968.
18. Mertz, W. “Chromium Occurrence and Function in Biological
System,” Physiological Reviews , Vol. 49, No. 2, April 1969.
19. Udy, M. J. “Chemistry of Chromium and Its Compounds,”
American Chemical Society Monograph - Chromium , Reinhold
Publishing Company, New York, NY, 1956.
20. Hazelton Laboratories, Inc. “Calculation of Provisional
Limits for Air, Water and Soil for Hazardous Materials,”
prepared as an appendix to “Recommended Methods of Reduction,
Neutralization, Recovery, or Disposal of Hazardous Wastes,”
draft copy to EPA February 1, 1973.
21. Henkelekian, H. and M. C. Rand. “Biochemical Oxygen Demand
of Pure Organic Compounds,” Sewage & Industrial Wastes ,
pp. 27-29, September 1955.
22. Anon. “The Effect of Pesticides in Waters,” a report to
the U. S. Environmental Protection Agency, 1973.
23. Lawrence Radiation Laboratory. “Prediction of the Maximum
Dosage to Man from the Fallout of Nuclear Devices,” UCRL-
50163, Part IV, May 14, 1968.
24. Weir, P. A. and C. H. Hine. “Effects of Various Metals on
Behavior of Conditioned Goldfish,” Archives of Environmental
Health , Vol. 20, January 1970.
25. Portmann, J. E. and K. W. Wilson. “The Toxicity of 140
Substances to the Brown Shrimp and Other Marine Animals,”
Ministry of Agriculture, Fisheries and Food, Fisheries
Laboratory, Burnham-on-Crouch, Essex, England; Shellfish
Information Leaflet No. 22, December 1971.
111—90
-------
26. Gillette, L. A., D. L. Miller and H. E. Redman. “Appraisal
of a Chemical Waste Problem by Fish Toxicity Test,” Sewage
& Industrial Wastes , Vol. 24, pp. 1397—1401, 1952.
27. Dowden, B. F. and H. J. Bennett. “Toxicity of Selected
Chemicals to Certain Animals,” J. WPCF , Vol. 37, No. 9,
pp. 1308—1316, 1965.
28. Jones, H. R. “Environmental Control in the Organic and
Petrochemical Industries,” Noyes Data Corporation, NJ,
1971.
29. Eisler, R. “Cadmium Poisoning in Fundulus Heteroditus
( Pisces cypinodontidal ) and Other Marine Organisms,”
J. Fish. Res. Bd. Can. , Vol. 28, pp. 1225—1234, 1971.
30. Raymont, J. E. G. and J. Shields. “Toxicity of Copper and
Chromium in the Marine Environment,” Advances in Water
Pollution Research , Proceedings of International Conference
held in London, England (September 1962), Vol. 3, pp. 275-
290, MacMillan Company, New York, NY, 1964.
31. Brungs, W. “Effects of Residual Chlorine on Aquatic Life,”
J. WPCF , Vol. 45, No. 10, October 1973.
32. Earnest, R. “Effects of Pesticides on Aquatic Animals in
the Estuarine and Marine Environment,” in Annual Progress
Report, USD1/Fisheries and Wildlife, Columbia, MO, 1971
(unpublished data).
33. Eichelberger, J. W. and J. J. Lichtenberg. “Persistence
of Pesticides in River Water,” Environmental Science &
Technology , Vol. 5, No. 6, June 1971.
34. Pimental, D. “Ecological Effects of Pesticides on Nontarget
Species,” Presidential Report, Office of Science & Tech-
nology, June 1971.
35. Personal communication, Hazardous Materials Branch, Environ-
mental Protection Agency, 1973.
36. Doudoroff, P. and M. Katz. “Critical Review of Literature
on the Toxicity of Industrial Wastes and Their Components
to Fish, II,” Sewage & Industrial Wastes , Vol. 25, No. 7,
July 1953.
37. Mount, D. I. “Chronic Toxicity of Copper to Fathead Minnows
( Pimephales promelas rafinesque),” Water Research , Pergamon
Press, Vol. 2, pp. 215—223, 1968.
38. Cairns, J. and A. Scheier. “The Effect of Temperature and
Hardness of Water upon the Toxicity of Zinc to the Common
Bluegill ( Lepornis macrochirus rafinesgue),” Notulae Natur. ,
No. 299, p. 12, 1957.
111—91
-------
39. McKinney, R. E., M. D. Tomlinson and R. L. Wilcox.
“Metabolism of Aromatic Compounds by Activated Sludge,”
Sewage & Industrial Wastes , Pp. 28—34, April 1956.
40. Davis, H. C. and H. Hider. “Effects of Pesticides on
Embryonic Development of Clams and Oysters and on Survival
and Growth of the Larvae,” Fish Bulletin , Vol. 67, No. 2,
1969.
41. Hughes, J. S. “Acute Toxicity of Thirty Chemicals to
Striped Bass ( Morone saratilis ) ,“ presented to Western
Association of State Game and Fish Commissioners, Salt
Lake City, UT, July 1973.
42. Macek, K. J. and W. A. McAllister. “Insecticide Suscepti-
bility of Some Common Fish Family Representatives,” Trans.
Am. Fish. Soc. , Vol. 99, No. 1, pp. 20—27, 1970.
43. Macek, K. J. and S. Korn. “Significance of the Food Chain
in DDT Accumulation by Fish,” J. Fish. Res. Bd. Can. , Vol. 27,
No. 8, pp. 1496—1498, 1970.
44. Wilber, C. G. The Biological Aspects of Water Pollution ,
Charles C. Thomas Publishers, Springfield, IL, 1969.
45. “Environmental and Health Criteria for Cadmium,” Environ-
mental Protection Agency, in response to designation of
substances as toxic under Section 307, Public Law 92-500
(unpublished draft).
46. Ibid. 33.
47. Tucker, B. B. “Handbook of Toxicity of Pesticides to Wild-
life,” U. S. Department of the Interior, Denver, CO. NTIS
PB198 815, March 1970.
48. Eisler, R. and R. H. Edwards. “Effects of Endrin on Blood
and Tissue Chemistry of a Marine Fish,” Trans. Amer. Fish.
Soc. , Vol. 95, No. 2, pp. 153—159, 1966.
49. Mills, E. J. and V. T. Stack, Jr. “Suggested Procedures
for Evaluation of Biological Oxidation of Organic Chemicals,”
Sewage & Industrial Wastes , pp. 27-29, September 1955.
50. A. D. Little, Inc. Preliminary work for the Chemical Hazard
Response Information System (CHRIS), U. S. Coast Guard (in
print).
51. Ibid. 41.
52. Katz, M. “Acute Toxicity of Some Organic Insecticides to
Three Species of Salmonids and the Threespine Stickleback,”
Trans. Amer. Fish. Soc. , Vol. 30, No. 3, pp. 264—268, 1961.
111—92
-------
53. “The Effects of Chlorination on Selected Organic Chemicals,”
Environmental Protection Agency, 12O2OEXG, March 1972.
54. Pickering, 0. H. and C. Henderson. “The Acute Toxicity of
Some Heavy Metals to Different Species of Warm Water Fishes,”
Proceedings of the 19th Industrial Waste Conference, Purdue
University, 1965.
55. Eaton, J. G. “Chronic Malathion Toxicity of the Bluegill
( Lepomis macrochirus rafinesgue),” Water Research , Vol. 4,
1971.
56. Eisler, R. and M. P. Weinstein. “Changes in Metal Composi-
tion of the Quahaug Clam ( Cercanarai mercenaria ) After
Exposure to Insecticides,” Chesapeake Sd. , Vol. 8, No. 4,
pp. 253—258, 1967.
57. “Duration of Toxicity of Malathion,” Progressive Fish-Cul-
turist , October 1955.
58. “Environmental and Health Criteria for Mercury,” Environ-
mental Protection Agency, prepared in support of designa-
tion of toxic substances pursuant to Section 307 of Public
Law 92-500 (unpublished data).
59. Schweiger, G. “The Toxic Action of Heavy Metal Salts on
Fish and Organisms on Which Fish Feed,” Arch. Fischereiwiss ,
Vol. 8, pp. 54—78, 1957.
60. Ibid. 56.
61. Eiseler, R. “Acute Toxicities of Insecticides to Marine
Decapod Crustaceans,” Crustaceana , 1969.
62. Ibid. 50.
63. Manufacturing Chemists Association. Manual W-6, Soluble
Organics .
64. Wiliford, W. A. “Toxicity of 22 Therapeutic Compounds to
Six Fishes,” in “Investigations in Fish Control,” U. S.
Fish and Wildlife Service/Bureau of Sports Fisheries and
Wildlife Resource Publication 35, 10 pp., 1966.
65. Pickering, Q. H., C. Henderson and A. E. Lemke. “The
Toxicity of Organic Phosphorus Insecticides to Different
Species of Warm Water Fishes,” Trans. Amer. Fish. Soc. ,
Vol. 91, pp. 175—184, 1962.
66. Gustaf son, C. G. “PCB’s—--Prevalent and Persistent,” Envi—
ronmental Science & Technology , pp. 4-10, October 1970.
111—93
-------
67. Nimino, D. R., R. R. Blackman, A. J. Wilson, Jr., and
J. Forester. “Toxicity and Distribution of Aroclor® 1254
in the Pink Shrimp ( Peneas duorarum),” Marine Biology ,
Vol. 88, No. 3, November 1971.
68. Sanders, H. 0. and J. H. Chandler. Arch. of Environ. Con-
tamination and Toxicology , Vol. 1, p. 257, 1972.
69. Davis. H. C. and H. Hinder. “Effects of Pesticides on
Embryonic Development of Clams and Oysters on Survival and
Growth of the Larvae,” U. S. Fish and Wildlife Service,
Fisheries Bulletin, Vol. 6—7, No. 2, 1969.
70. Isom, B. G. “Toxicity of Elemental Phosphorus,” J. WPCF ,
Vol. 32, No. 12, pp. 1312—1316, 1960.
71. Fletcher, G. L., R. J. Hoyle and D. A. Home. “Yellow
Phosphorus Pollution: Its Toxicity to Seawater-Maintained
Brook Trout ( Salvelinus fontinalis ) and Smelt ( Osrnerus
mordax),” J. Fish. Res. Bd. Can. , Vol. 27, No. 8, 1970.
72. Pickering, Q. H. “Some Effects of Dissolved Oxygen Concen-
trations upon the Toxicity of Zinc to the Bluegill ( Lepomis
macrochirus rafinesgue ) ,“ Water Research , Vol. 2, pp. 187—
194, 1968.
73. Cairns, J. and A. Scheier. “Environmental Effects upon
Cyanide Toxicity to Fish,” Notulae Natur. , No. 361, p. 11,
1963.
74. Cairns, J., A. Scheier and J. J. Loos. “A Comparison of
the Sensitivity to Certain Chemicals of Adult Zebra Danios
[ Brachydanio rerio (Hamilton-Buchanan)] and Zebra Eggs
with That of Adult Bluegill Sunfish ( Lepomis macrochirus
rafinesgue),” Notulae Natur. , No. 381, p. 9, 1965.
75. Kemp, H. T., R. G. Fuller and R. S. Davidson. “Potassium
Permanganate as an Algicide,” J. Airier. Water Works Assoc. ,
Vol. 58, No. 2, pp. 255—263, 1966.
76. Birdsong, C. L. and J. W. Avault, Jr. “Toxicity of Certain
Chemicals to Juvenile Pompano,” Progressive Fish-Culturist ,
Vol. 33, No. 2, April 1971.
77. Wilber, C. G. The Biological Effects of Water Pollution ,
Charles C. Thomas, Springfield, IL, 1969.
78. Ferguson, J. F. and J. Gavis. “A Review of the Arsenic
Cycle in Natural Waters,” Water Research , Pergamon Press,
Vol. 6, 1972.
111—94
-------
79. Battelle-Northwest Laboratories. “Oil Spill Treating
Agents—-Test Procedures: Status and Recommendations,”
American Petroleum Institute, Washington, DC, May 1970.
80. Mulla, M. S., J. St. Amont and L. 0. Anderson. “Evaluation
of Organic Pesticides for Possible Use as Fish Toxicants,”
Progressive Fish-Culturist , Vol. 29, 1967.
81. Bauer, J. R., R. W. Bovay and H. G. McCall. “Thermal and
Ultraviolet Loss of Herbicides,” Arch. of Environ. Contami-
nation and Toxicology , Vol. 1, No. 4, December 1973.
82. Hughes, J. S. and J. T. Davis. “Variations in Toxicity to
Bluegill Sunfish of Phenoxy Herbicides,” Weeds , Vol. 11,
No. 1, pp. 50—53, 1963.
83. Tarzwell, C. W. and C. Henderson. “Toxicity of Less Common
Metals to Fishes,” Sewage & Industrial Wastes , Vol. 5,
p. 12, 1960.
84. Op. cit., 64.
85. Unpublished work by the U. S. Environmental Protection
Agency obtained from Dr. A. L. Jennings, Division of Oil
and Hazardous Materials.
86. Henderson, C., Q. H. Pickering and C. W. Tarzwell. “Rela-
tive Toxicity of Ten Chlorinated Hydrocarbon Insecticides
to Four Species of Fish,” Trans. Amer. Fish. Soc. , Vol. 88,
No. 1, pp. 23—32, 1959.
87. Sanders, H. 0. “Toxicities of Some Herbicides to Six
Species of Freshwater Crustaceans,” J. WPCF , Vol. 42, No. 8,
Part 1, August 1970.
88. Cope, 0. B. “Contamination of the Freshwater Ecosystem by
Pesticides,” 3. Applied Ecology , Vol. 3 (supplement),
pp. 33—44, 1966.
89. Gilderhus, P. A. “Effects of Diquat on Bluegills and Their
Good Organisms,” Progressive Fish-Culturist , Vol. 29,
pp. 67—74, 1967.
90. Butler, P. A. “Effects of Herbicides on Estuarine Fauna,”
Proceedings of Southern Weed Conference , Vol. 18, pp, 576-
580, 1965.
91. Cope, 0. B. “Sport Fishery Investigation--Effects of
Pesticides on Fish and Wildlife, 1964 Research Findings of
the Fish and Wildlife Service,” U. S. Fish and Wildlife
Service Circular 226, pp. 51—63, 1965.
111—95
-------
92. “The BOD Textile Chemicals, Updated List,” American Dye-
stuff Report , Vol. 55, No. 18, Pp. 39-41, 1966.
93. Patrick, R., J. Cairns and A. Scheier. “The Relative
Sensitivity of Diatoms, Snails and Fish to Twenty Common
Constituents of Industrial Wastes,” Progressive Fish—
Culturist , Vol. 30, No. 3, pp. 137—140, 1968.
94. Bridges, W. R. and 0. B. Cope. “The Relative Toxicities
of Similar Formulations of Pyrethrum and Rotenone to Fish
and Immature Stonef lies,” Pyrethrum Past , Vol. 8, pp. 3-5,
1965.
95. Cairns, J. and A. Scheier. “Bioassay Studies for the Manu-
facturing Chemists Association: The Relationship of Body
Size of the Bluegill Sunfish to the Acute Toxicity of
Common Chemicals,” Philadelphia Academy of Natural Sciences
and Philadelphia Department of Limnology (unpublished
report), February 1955.
96. Baldridge, H. D., Jr. “Kinetics of Onset of Responses by
Sharks to Waterbound Drugs,” Bulletin of Marine Science ,
Vol. 19, No. 4, 1969.
97. Henderson, C. and Q. H. Pickering. “Toxicity of Organic
Phosphorus Insecticides to Fish,” Trans. Amer. Fish. Soc. ,
Vol. 87, pp. 39—51, 1958.
98. “Toxic Substances, Annual List — 1970,” U. S. Department
of Health, Education and Welfare, Rockville, MD, 1971.
99. Stecher, P. G., ed. Merck Index , Merck and Company, 7th
Edition, Rahway, NJ, 1960.
100. Stecher, P. G., ed. Merck Index , Merck and Company, 8th
Edition, Rahway, NJ, 1968.
101. Spector, W. S. Handbook of Toxicology , Philadelphia, PA,
Volumes 1 and 2, 1956.
102. Brit. J. md. Med. , Vol. 23, p. 305, 1966.
103. ygiene and Sanitation , (translation of Gigigna Sanitariya) ,
Vol. 26, No. 16, 1964.
104. J. of Allergy , St. Louis, MO, Vol. 16, p. 195, 1945.
105. Hygiene and Sanitation , (translation of Gigigna Sanitariya) ,
Vol. 30, p. 169, 1965.
106. University of Rochester Atomic Energy Project, Quarterly
Report, New York, Vol. 47, 1948.
111—96
-------
107. Water Quality Criteria Data Book - Vol. 2 , Arthur D. Little,
Inc., EPA Contract 14-12-538, 18010 DPV, July 1971.
108. Ibid. 99.
109. Arch. Industrial Hygiene and Occupational Medicine , Amen-
can Medical Association, Chicago, IL, Vol. 4, p. 119, 1951.
110. Sunshine, E. Handbook of Analytical Toxicology , The Chemical
Rubber Company, Cleveland, OH, 1969.
111. Patty, F. A. Industrial Hygiene and Toxicology, Vol. 1 and
2, 2nd Edition, Interscience, New York, NY, 1958.
112. J. Amer. Industrial Hygiene Assoc. , Cincinnati, OH,
Vol. 30, p. 470, 1969.
113. Oser, B. L., M. Oser and H. C. Spencer. “Safety Evaluation
Studies of Calcium EDTA,” J. Toxicology & Applied Pharmacology ,
Vol. 5, pp. 142—162, 1963.
114. Arthur D. Little, Inc. “Relationship Between Organic Chemi-
cal Pollution of Fresh Water and Health,” FWQA * 71632,
December 1970.
115. CRC Handbook of Analytical Toxicology , Edition 1, Sunshine
Chemical Rubber Company, Cleveland, OH, 1969.
116. “Pesticides—-1972, Parts 1 and 2,” Chemical Week , June 21
and July 6, 1972.
117. Op. cit., 8.
118. Gigigna Truda , Professional Nye Zabaleyaniya USSR, Vol. 13,
p. 42, 1969.
119. J. Toxicology & Applied Pharmacology , New York, NY, Vol. 11,
p. 327, 1967.
120. J. Amer. Industrial Hygiene Assoc. , Cincinnati, OH, Vol. 30,
p. 470, 1969.
121. J. Amer. Industrial Hygiene Assoc. , Cincinnati, OH, Vol. 23,
p. 95, 1962.
122. Union Carbide Data Sheet, New York, NY.
123. Industrial Hygiene Foundation of America, Chemotology Series
No. 6, Pittsburgh, PA, 1967.
111—97
-------
124. The Chiorox Company Report , Oakland, CA.
125. Noller, C. R. Chemistry of Organic Co ounds , 3rd Edition,
W. B. Saunders Company, Philadelphia, PA, 1966.
126. Hygiene and Sanitation , (translation of Gigigna Sanitariy ) ,
Vol. 33, p. 329, 1968 (USSR).
127. Academie des Sciences. Comptes Rendus Hetdomadaires des
Seances. Paris, France, Vol. 256, P. 1043, 1963.
128. Arch. Industrial Hygiene and Occupational Medicine , American
Medical Association, Chicago, IL, Vol. 1, pp. 637—695, 1948.
129. Manufacturing Chemists Association. “The Effect of Chlori-
nation on Selected Organics,” EPA 12020 EXG, March 1972.
130. Am. J. Veterinary Res. , Chicago, IL, 29, 897, 1968.
131. Wilson, P. C., and C. E. Bond. “The Effects of the Herbicides
Diquat and Dichiobenil (Caroson) on Pond Invertebrates.
Part I- Acute Toxicity, “ Trans. American Fisheries Society ,
Vol. 98, 1969.
132. Water Quality Criteria Data Book - Volume 3, Battelle-
Columbus. For the Environmental Protection Agency, 18050
GWV, May 1971.
133. Das, M., and P. H. Needham. “Effect of Time and Temperature
on Toxicity of Insecticides,” Ann. Appl. Biol., 49 (1): 32—38
1961.
134. “Environmental Effects of Photoprocessing Chemicals - Volume 1”
National Association of Photographic Manufacturers, Inc.
Morrison, N.Y., 1974.
111—98
-------
APPENDIX B
SPECIFIC EVALUATION PROCEDURES EMPLOYED TO DERIVE
VALUES FOR VOLUMES OF FRESHWATER LAKES
AND SURFACE AREAS OF ESTUARINE SYSTEMS
The following appendix includes the original notes and
references employed in developing Figures IV-4 and IV-7,
respectively. The number of the entry corresponds with the
identifying number given in these figures. All values were
reduced to present worth quantities for the purpose of
comparison.
111—99
-------
NOTES TO FIGURE IV-4
1. POND LICK LAKE, OHIO
• Value is based on the amount expended to rehabilitate
the lake after an intentional pesticide spill, $150,000.
$177,000 in 1973 dollars.
• Volume of lake was measured at 56,700 cubic meters
(46 acre-feet).
• References: Ryckman, Edgerly, Tomlinson and Associates,
Inc., “Pesticide Poisoning of Pond Lick Lake, Ohio——
Investigation and Resolution, June 2-July 5, 1971,” EPA,
OHM 71—06—002, 1971.
Personal Communication, Dr. C. H. Thompson, Director,
Hazardous Materials Branch, Division of Oil and
Hazardous Materials, EPA, January 1974.
2. LAKE TAHOE, CALIFORNIA-NEVADA
• Value is based on the present worth (infinite life,
6 percent) of total capital and operating cost expendi-
tures for proposed treatment facilities ($100,000,000
capital costs, $1800/day operating)-—$132,000,000, and
the present worth of income foregone through implemen-
tation of the sediment control program by the Tahoe
Regional Planning Authority. The latter limited pro-
jected living unit and hotel capacities from 750,000
to 300,000 people. Hence, in the long run, income from
450,000 individuals—-either full—time residents or vaca-
tioners—-was foregone. If this growth occurred uniformly
over a 10—year period and each unit capacity meant
$5000 to the region, the total present worth (10 years,
6 percent) would be $7,800,000,000 in 1973 dollars,
• Volume of Lake Tahoe is 1.5 c 10 million cubic meters
(122 x i0 6 acre—feet).
• References: Personal Communication, Russell Cuip,
Manager, South Lake Tahoe Wastewater Treatment Plant,
February 20, 1974.
Personal Communication, Greg Hanson, Manager, Tahoe
Regional Authority, March 25, 1974.
Personal Communication, Wally White, Real Estate Agent,
Incline Village, Nevada, March 14, 1974.
111—100
-------
3. PINE LAKE, WASHINGTON
• Value is basedon bond levy cost of $100,000
in 1971 dollars.
• Volume is approximately 1.6 million cubic meters
(1300 acre-feet) if average depth is assumed at
4.7 meters (15.5 feet) for the 34 hectares (84 acres)
of water surface.
• Reference: Personal Communication, Dr. N. W. Lorenzen,
Senior Research Engineer, Battelle—Northwest, February 22,
1974.
4. LAKE WASHINGTON, SEATTLE
• Value is based on present worth (infinite life, 6 percent)
of total expenditures incurred to divert and treat sew-
age otherwise discharged to Lake Washington, $3,000,000!
year. Value is $50,000,000 in 1973 dollars.
• Volume of the lake is 2.5 x 1O 3 million cubic meters
(2 x 106 acre—feet).
• References: Ibid.
Assorted brochures published by the Seattle Metro
organization.
5. MISSISSIPPI MINNOW POND, MISSISSIPPI
• Value is based on damages granted by court when release
of sewage destroyed the ponds productivity for a several
year period——$30,000.
• Volume of 0.22 million cubic meters (180 acre—feet) was
obtained by assuming a 0.9-meter (3-foot) depth for the
24 hectares (59 acres) of pond. $41,700 in 1973 dollars.
6. LAKE ERIE
• Value is based on the present worth (infinite life,
6 percent) of capital ($1,400,000,000 in U.S. and
$200,000,000 in Canada) and operating costs
($200,000,000/year in U.S. and $30,000,000/year in
Canada)-—$5,500,000,000 required to meet desired
water quality levels. $7,150,000 in 1973 dollars.
• Volume reported as 4 x 10 million cubic meters
(3.4 x 10° acre—feet).
111—101
-------
• Reference: “Lake Erie Report-—A Plan for Water Pollution
Control,” U.S. Department of Interior, FWPCA, August 1968.
7. LAKE ONTARIO
• Value is based on the present worth (infinite life,
6 percent) of capital ($1,400,000,000 in U.S. and
$200,000,000 in Canada) and operating ($200,000,000/
year in U.S. and $30,000,000/year in Canada)--
$5,500,000,000 required to meet desired water quality
levels. $7,150,000 in 1973 dollars.
• Volume is reported as 1.7 x io6 million cubic meters
1.4 x l0 acre-feet).
• Reference: “Pollution of Lake Erie, Lake Ontario,
and the International Section of the St. Lawrence
River,” International Joint Commission Canada and
United States, 1970.
8. GLEN LAKE, VERMONT
• Value is based on valuation made prior to purchase by
the Nature Conservancy, $2,000,000. $2,260,000 in 1973
dollars.
• Volume was determined from estimated 9.1—meter (30
foot) depth and charted surface area of 83 hectares
(205 acres), 7.6 million cubic meters (6150 acre—feet).
• References: Personal Communication, Jack Lynn, The
Nature Conservancy, March 7, 1974.
Personal Communication, Vermont Department of Forests
and Parks, March 8, 1974.
9. MILL POND, MARION, WISCONSIN
• Value is based on the cost of a clean—up program insti-
tuted to restore water quality, $100,000. $118,000 in
1973 dollars.
• Volume was derived by assuming an average 3-meter
(10-foot) depth for the 40 hectares (100 acres),
1.2 million cubic meters (1000 acre-feet).
• Reference: Personal Communication, Tom Wirth, Wisconsin
Department of Environmental Resources, March 8, 1974.
111—102
-------
10. LAKE ONONDAGA, NEW YORK
• Value is based on the present worth (infinite life,
6 percent) for the estimated annual social benefits
($3,000,000/year), $50,000,000. $61,000,000 in 1973
dollars.
• Volume is based on a surface area of 1036 hectares
(2560 acres) and an average depth of 12.8 meters
(42 feet), 133 million cubic meters (107,520 acre—feet).
• Reference: “Benefits of Water Quality Enhancement,”
EPA 16/10 DAJ 12/70, Civil Engineering Department,
Syracuse University, December 1970.
11. WILLIAM SYMINGTON LAKE, WASHINGTON
• Value is based on construction cost estimate, 230,0O0.
to construct the lake. $327,000 in 1973 dollars.
• Volume is that recorded in state records, 0.86 million
cubic meters (700 acre-feet).
• Reference: Personal Communication, William Symington,
Land Developer, March 13, 1974.
12. LAKE TOHAPEKALIGA, FLORIDA
• Value is that estimated for the entire fisheries resource,
$20,000,000. $24,400,000 in 1973 dollars.
• Volume is reported by State Fisheries Agency as 197
million cubic meters (160,000 acre—feet).
• Reference: Personal Communication, John Woods, Chief
Freshwater Fisheries Division, Florida State Fish
Commission, March 15, 1974.
13. TROUT LAKE, MINNESOTA
• Value is based on the purchase price, $2,000,000 in 1973
dollars.
• Volume was derived from USGS topography maps as 79
million cubic meters (64,000 acre-feet).
• Reference: Personal Communication, George Campbell,
Forester, Chippewa National Forest, March 13, 1974.
111—103
-------
14. BEAVER LAKE, MINNESOTA
• Value is based on the purchase price, $24,000. $28 300
in 1973 dollars.
• Volume was derived from USGS topography maps as 0.76
million cubic meters (620 acre—feet).
• Reference: Ibid.
15. HORSESHOE LAKE, WISCONSIN
• Value is based on the cost of a eutrophication control
program, $38,100. $46,500 in 1973 dollars.
• Volume is reported as 0.46 million cubic meters
(375 acre—feet).
• Reference: op. cit. 9.
16. SNAKE LAKE, WISCONSIN
• Value is based on cost of restoration program, $15,640.
$19,100 in 1973 dollars.
• Volume is reported as 0.11 million cubic meters
(91 acre—feet).
• Reference: op. cit. 9.
17&18. COST OF PROPOSED RESERVOIRS, PENNSYLVANIA
• Value is based on the average cost estimate for a
moderate system reservoir ($26,800,000) and an elabo-
rate system reservoir ($26,500,000) • $38,100,000 and
$37,100,000 in 1973 dollars respectively.
• Volume is based on design capacity for the average
moderate System reservoir 145 million cubic meters
(118,000 acre—feet) and the average elaborate system
reservoir 200 million cubic meters (162,000 acre—feet).
• Reference: “A Dynamic Model of the Economy of the
susquehanna River Basin,” Battelle Memorial Institute
for the Susquehanna River Basin Utility Group, August
1966.
19. LEWIS AND CLARK RESERVOIR, SOUTH DAKOTA
• Value is present worth (infinite life, 6 percent) of
estimated annual recreational value ($1,400,000 in
1960), $23,400,000. $33,200,000 in 1973 dollars.
111—104
-------
• Volume is reported as 678 million cubic meters
(550,000 acre—feet).
• Reference: Clawson, M. and J. L. Knetsch, Economics
of Outdoor Recreation , John Hopkins Press, Baltimore,
Maryland, 1966.
20. ODELL LAKE, OREGON
• Value is present worth (infinite life, 6 percent) of
reported recreational value for 1968 ($151,455/yr)—-
$2,500,000. Lake is considered to be one of the less
used recreation lakes in Oregon and, hence, is under-
valued considerably due to its location. $3,250,000
in 1973 dollars.
• Volume is based on an estimated depth of 40.8 meters
(134 feet) for the 1457 hectares (3600 acres) of water,
596,000 cubic meters (482,400 acre-feet).
• Reference: Reiling, S. D., K. C. Gibbs, and H. H.
Stoevener, “Economic Benefits Prom an Improvement in
Water Quality,” EPA, EPA—R5—73—008, January 1973.
21. KLAMATH LAKE, OREGON
• Value is based on the present worth (infinite life,
6 percent) of the estimated annual recreational value
($82,035/year)——$l,100,000. This lake is also con-
sidered undervalued because of its poor water quality.
$1,430,000 in 1973 dollars.
• Volume is reported as 925 million cubic meters
(750,000 acre—feet).
• Reference: Ibid.
22. RECREATION LAKES, COLORADO
• Value is the present worth (infinite life, 6 percent)
of the estimated annual average recreational value
($196,000/year) for recreational lakes constructed
in Colorado, $3,300,000 in 1973 dollars.
• Volume is the average capacity of the lakes constructed,
3.3 million cubic meters (2711 acre—feet).
• Reference: Personal Communication, Dave Lemons,
Colorado State Wildlife Division, Planning Section,
March 13, 1974.
111—105
-------
23. LAKE OF THE WOODS, OREGON
• Value is based on the 1968 derived recreational value
of $231,704/year or $3,900,000 present worth (infinite
life, 6 percent) . $5,100,000 in 1973 dollars.
• Volume is recorded as 42 million cubic meters (30,367
acre—feet).
• References: Reiling, S. D., K. C. Gibbs, and H. H.
Stoevener, “Economic Benefits From an Improvement in
Water Quality,” EPA-R5-73008, January 1973.
personal Communication, Ralph Swan, Staff Biologist,
Oregon Wildlife CommissiOn, March 25, 1974.
24. WILLOW LAKE, OREGON
• Value is based on the present worth (infinite life,
6 percent) of the 1968 derived recreational value of
$53,641/year or $900,000. $1,170,000 in 1973 dollars.
• Volume is reported to be 12 million cubic meters
(10,000 acre-feet).
• References: Ibid.
25. DUINCAN RESERVOIR, OREGON
• Value of $95,000 is the actual cost of construction.
$132,000 in 1973 dollars.
• Volume is the design capacity of the reservoir, 0.35
million cubic meters (284 acre—feet).
• Reference: Personal communication, Mr. Gilson, Federal
Aid Division, Fisheries and Wildlife Service, Bureau
of Sport Fisheries, Portland Office, March 28, 1974.
26. LOWER ST. REGIS LAKE, NEW YORX
• Value is based on the capital cost, $50,000, and the
present worth (infinite life, 6 percent) of $500/year
operating costs for secondary and tertiary treatment
plants to maintain water quality: $58,000. This
value is also considered to be low. $68,400 in 1973
dollars.
• Volume is reported as 24 million cubic meters (19,214
acre—feet).
• Reference: Ibid.
111—106
-------
27. CANADARAGO LAKE, NEW YORK
• Value is based on capital costs, $500,000, and the
present worth (infinite life, 6 percent) of $19,000!
year operating costs for secondary and tertiary treat-
ment plants to maintain water quality: $817,000.
This value is also considered to be low. $964,000 in
1973 dollars.
• Volume is reported as 57 million cubic meters (46,533
acre—feet).
• Reference: Ibid.
28. ALABAMA FISHING LAKES
• Value is the present worth (infinite life, 6 percent)
of the $711/acre/year estimated expenditures for
fishing in 20 artificial lakes constructed and main-
tained by the State of Alabama: $21,000,000. $25,620,000
in 1973 dollars.
• Volume is based on an average depth of 2.29 meters
(7.5 feet) and an average area of 35 hectares (87
acres) for each of the 20 lakes: 16 million cubic
meters (13,000 acre—feet).
• Reference: Sullivan, C. R. “Economic and Social
Significances of Sport Fishing,” National Conference
On Complete WateReuse, AIChE-EPA Technology Transfer
Series, April 23—27, 1973.
29. SPORT FISHING IN NEW MEXICO
• Value is the present worth (infinite life, 6 percent)
of the $3,960,000 annual expenditures for sport
fishing on New Mexican reservoirs: $66,000,000.
$101,000,000 in 1973 dollars.
• Volume is 188 million cubic meters (152,825 acre-feet)
of reservoir water.
• Reference: Woliman, N., et al. The Value of Water in
Alternative Uses , University of New Mexico Press,
Albuquerque, 1962.
30. WINTON WOODS RESERVOIR, OHIO
• Value is the present worth (infinite life, 6 percent)
of the $1,360,000 annual recreation value of the lake:
$23,000,000. $31,300,000 in 1973 dollars.
111—107
-------
• Volume is reported as 5.7 million cubic meters (4600
acre—feet).
• Reference: Colorado State University, “Economic Value
of Water,” National Water Commission, NTIS PB—210 356,
March 1972.
31. CAYUGA LAKE, NEW YORK
• Value is the present worth (infinite life, 6 percent)
of the $20/acre—foot estimated annual recreation value:
$2,800,000,000. $3,420,000 in 1973 dollars.
• Volume is estimated at 1 X 10 million cubic meters
(8,400,000 acre—feet) based on a surface area of
17,000 hectares (66 square miles) and an estimated
average depth of 61 meters (200 feet).
• Reference: Ibid.
111—108
-------
NOTES TO FIGURE IV-7
1. TOTAL ANNUAL HARVEST
• Value is based on the present worth of the annual income
from commercial fishing ($750,000,000/yr) sport fishing
($800,000,000/yr) , and recreation ($150,000,000/yr)
An infinite life series at 6 percent interest was employed
(conversion factor——l6.7). This yields a total present
worth of $27,500,000,000. $38,200,000 in 1973 dollars.
• Area was set at 12,000,000 hectares (30,000,000 acres).
• Reference: “The National Estuarine Pollution Study,”
FWPCA, November 1969.
2. GREAT BAY, NEW HANPSHIRE
• Value is based on the present worth (infinite life,
6 percent) of $2,000,000 annual harvest, or $33,400,000.
$46,400,000 in 1973 dollars,.
• This value is reported for 1139 hectares (2815 acres)
of shellfish beds. This point falls below the general
trend because only the producing beds were evaluated.
If the total estuary had been included, the value
would raise slightly, and the acreage considerably.
This would put the point more in line with the other
values.
• Reference: Ibid.
3. MARISH AND GREAT SOUTH BAY, LONG ISLAND
• Value is based on the present worth (infinite life,
6 percent) of annual income of $5,000,000 for shellfish
and $5,000,000 for sport fishing, or $167,000,000.
$232,000,000 in 1973 dollars.
• Area covered is 28,000 hectares (70,000 acres).
• Reference: Ibid.
4. APALACHICOLA, FLORIDA
• Value is based on present worth (infinite life, 6 percent)
of annual receipts which average $11,200,000. Hence, the
total value is given as $187,000,000. $260,000,000 in
1973 dollars.
111—109
-------
• Area is approximately 53,000 hectares (132,000 acres)
• Reference: Ibid.
5. ALABAMA ESTUARIES
• Value is based on present worth (infinite life, 6 per-
cent) of $18,600,000 annual receipts, or $311,000,000.
$404,000,000 in 1973 dollars.
• Area is given as 223,000 hectares (550,000 acres)
• Reference: Ibid.
6. YAQUINA BAY, OREGON
• Value is based on present worth (infinite life, 6 percent)
of annual sport fishing income, $317,000, or $5,300,000.
$5,990,000 in 1973 dollars.
• Area involved is 1214 hectares (3000 acres)
• Reference: “A Case Study of Yaquina Bay, Oregon,”
Oregon State University Agricultural Experiment Station,
Corvallis, Oregon, February 1972.
7. CHESAPEAKE BAY
• Value is based on present worth (infinite life, 6 percent)
of annual commercial harvest ($65,000,000) and estimated
sports activity ($65,000,000) , or a total of $2,100,000,000.
$2,850,000,000 in 1973 dollars.
• Area is 1,900,000 hectares (4,600,000 acres).
• Reference: op. cit. 5. Estimate of sports activity based
on ratios observed in other nearby estuarine systems and
he national total.
8. PENOBSCOT BAY
• Value is based on the present worth (infinite life,
6 percent) of the $7,500,000 annual primary and second-
ary harvest: $125,000,000. $174,000,000 in 1973 dollars.
• Area is reported as 21,000 hectares (51,900 acres).
• Reference: Op. Cit. 1.
111—110
-------
9. ALBEMARLE, PINALICO, AND CURRITUCK BAYS, NORTH CAROLINA
• Value is based on the present worth (infinite life,
6 percent) of the estimated $15,000,000 annual harvest:
$250,000,000. $383,000,000 in 1973 dollars.
• Area is reported as 670,000 hectares (1,648,000 acres).
• References: Op. Cit. 1.
Personal Communication, Dr. Chestnut, University of
North Carolina Oceanographic Institute, March 28, 1974.
10. ESTUARINE SYSTEM OF THE STATE OF GEORGIA
• Value based on present worth (infinite life, 6 percent)
of the $17,000,000 annual expenditures for sport and
commercial fishing: $284,000,000. $369,000,000 in
1973 dollars.
• Area is reported as 193,000 hectares (476,000 acres).
• References: Battelle Memorial Institute, “The Economic
and Social Importance of Estuaries,” Environmental
Protection Agency, April 1971.
Personal Communication, Rick Linthurst, Sudaway Island
Oceanographic Institute, Sapdo Island, Georgia,
March 28, 1974.
11. DELAWARE BAY
• Value is the present worth (infinite life, 6 percent)
of the estimated $483/acre/year estuarine value:
$570,000,000. $695,000,000 in 1973 dollars.
• Area is reported as 29,000 hectares (70,500 acres).
• Reference: Stroud, R. H. (ed). “Estuary Values,”
Sport Fisheries Institute, Bulletin No. 213, April 1970.
“I—ill
-------
APPENDIX C
TABLE OF INTRINSIC ADJUSTMENT FACTORS
FOR THE RESOURCE VALUE METHODOLOGY
The following table denotes the persistency classification
and the physical/chemical classification for designated
hazardous substances with respect to selection of adjustment
factors for the Resource Value Methodology. The individual
Anf (annuity factors) and Disp (dispersion factors) are also
presented. Entries for pesticides have been split to allow
differentiation between pure and wettable forms. When
materials decompose on contact with water, the physical/
chemical classification is that of the more toxic hydrolysis
product. Similarly, for inorganic salts, classifications
refer to the more toxic ion. These notes and descriptions
of the symbols employed in the table appear in the legend
on page 111-125.
111—112
-------
KEY TO TABLE OF INTRINSIC ADJUSTMENT
FACTORS FOR THE RESOURCE VALUE METHODOLOGY
PERSISTENCY CLASSIFICATIONS
OB = Organic BioconcentratiVe
OP Organic Persistent
OD Organic Degradable
lB = Inorganic Bioconcentrative
IN = Inorganic NonbioconcentratiVe
PHYSIC L/CBEMICAL CLASSIFICATIONS
Pt Miscible — liquids with ol.>l,O0O,OOO ppm, or highly soluble materials with specific gravity — 1.0
SM = Soluble Mixer — sol.>l,000,000 ppm, solids
P = Precipitates
IVF = Insoluble Volatile Floater - specific gravity1O nun Hg, solublel000 ppm, specific gravityl000 ppm, specific gravity>l.0
IS = Insoluble Sinker - sol.l.0
Pure
— Entry for pesticides is split to allow for variance in classification based on the pure
Wettable — chemical and the commercial formulation (i.e., wettable application forms).
When material decomposes in water, physical/chemical classification is that of product.
For inorganic salts, rating refers to toxic ion.
-------
Physica l/
Che a ical
Persis-
tency
Classifi-
cation
AM - Annuity Factor
Coastal
Cla sif i-
Coastal
Lake River Estuary Zone
cation LaJ e River Estuary Zone
Disc — Disoersion Factor
1-4
I-I
F
I-I
Hazardous Material
Acetaldehyde
on o.ii 0.06 0.16 0.06 N 1.0 1.0 1.0 1.0
Acetic acid
on 0.11 0.06 0.16 0.06 N 1.0 1.0 1.0 1.0
Acetic anhydride
OD 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
Acetone cyanohydrin
00 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
Acetyl bro*ide
00 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Acetyl chloride
00 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
?tcro lein
00 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
Acrylonitrile
00 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
Adiponitrile
00 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
Aidrin
0.59, 0.38, 1.35 0.43
OB 0.25 0.11 0.25 0.11 IS/SS —
../ 0.83 - “0.85 —“1.05 -‘ 0.59
Allyl alcohol
on 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
Allyl chloride
on 0.11 0.06 0.16 0.06 IVF 0.31 0.31 0.27 0.35
Alwsinum fluoride
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Aluajnum sulfate
in 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Am nia
IN 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
Alonium acetate
IN 0.11 0.06 0.16 0.06 SM 0.84 0.80 0.84 0.78
Aj nium benzoate
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
-------
H
H
7
I-I
U i
Physica l/
Ch ica1
Classif
cation
Persia—
tency
Classif
cation
knf — Annuity Factor
Coastal
Diep - Dispersion Factor
Hazardous Material
Coastal
Lake River Estuary Zone Lake River Estuary Zone
Aoniu bicarbonate
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
A niu bichroaate
1w 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
nju bjfluoride
IN 0.11 0.06 0.16 0.06 88 0.83 0.85 1.05 0.59
A ni bisulfite
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
AOniu* broalde
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
A niu* carbawate
IN 0.11 0.06 0.16 0.06 ss 0.83 0.85 1.05 0.59
An fliua carbonate
iw 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Aj niua chloride
iw 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
A onium chroaate
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
?. niuTh citrate
iw 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
AllwnofliUIR fluoborate
fl 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
A .noflium fluoride
iN o.ii 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
nswrniuii formate
IN 0.11 0.06 0.16 0.06 SM 0.84 0.80 0.84 0.78
A nium hydroxide
1w 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
aoniua hypophosphite
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
-------
H
‘-4
I 1
0\
Phyeica l/
Ch ica1
Classifi-
cation
Persia—
tency
Cla s iti—
Ant - Annuity Factor
Dian — Dispersion Factor
Hazardous Material
utal Coastal
cation Lake giver Estuary Zone Lake River Estuary Zone
A ni iodid,
flU 0.11 0.06 0.16 0.06 SM 0.84 0.80 0.84 0.78
A niu. 1ybdate
IN 0.11 0.06 0.16 0.06 SM 0.84 0.80 0.84 0.78
hniu nitrate
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
A niun oxalate
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
niua pentaborate
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Aoniua persulfate
IN 0.11 0.06 0.16 0.06 SM 0.84 0.80 0.84 0.78
A ni% silicofluoride
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
A niua sulfanate
IN 0.11 0.06 0.16 0.06 SM 0.84 0.80 0.84 0.78
A niua sulfate
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
AoniUa sulfide
IN 0.11 0.06 0.36 0.06 SS 0.83 0.85 1.05 0.59
A oniua sulfite
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
ni tartrate
IN 0.11 0.06 0.16 0.06 SS 0.83 0.95 1.05 0.59
A niua thiocyanate
IN 0.11 0.06 0.16 0.06 SM 0.84 0.80 0.84 0.78
Aoniua thiosulfate
IN 0.11 0.06 0.16 0.06 SM 0.84 0.80 0.84 0.78
A yl acetate
00 0.11 0.06 0.16 0.06 IN? 0.74 0.62 0.60 0.94
Aniline
00 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Anti ny p.ntachloride
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
-------
‘-I
H
Ii ’
persis-
tency
Classif
cation
Anf — Annuity Factor
Phyeica l/
Chesiical
Classifi-
cation
Disp — Dispersion Factor
Coastal
Hazardous Material
Coastal
Lake River Estuary Zone Lake River Estuary Zone
Antimony pentafluoride
IN 0.11. 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Antimony potassium tartrate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Antimony tribroetide
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Antimony trichioride
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Antimony trifluoride
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Antimony triiodide
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Antimony trioxide
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
7,.rsenic acid
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Arsenic disulfide
IN 0.11 0.06 0.16 0.06 IS 0.59 0.58 1.35 0.43
Arsenic pentoxide
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Arsenic tribroinjde
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Arsenic trichloride
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Arsenic trifluorjde
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Arsenic triiodjde
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Arsenic trioxide
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
IN 0.11 0.06 0.16 0.06 IS 0.59 0.58 1.35 0.43
Arsenic trisulfjde
-------
H
H
Persis-
tency
Classifi-
cation
Anf - Annuity Factor
Physica l/
Chemical
Classifi—
Diso — Dispersion Factor
Coastal
Hazardous Material
Coastal
Lake River Estuary Zone cation Lake River Estuary Zone
Benzene
OD 0.11 0.06 0.16 0.06 IVP 0.31 0.31 0.27 0.35
Benzoic acid
OD 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Benzonitri le
OD 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Benzoyl chloride
OD 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Benzyl chloride
On 0.11 0.06 0.16 0.06 Is 0.59 0.58 1.35 0.43
Beryllium chloride
IN 0.11 0.06 0.16 0.06 p 0.73 0.71 1.3 0.55
Beryllium fluoride
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Bezyllium hydroxide
IN 0.11 0.06 0.16 0.06 IS 0.59 0.58 1.35 0.43
Beryllium nitrate
IN 0.11 0.06 0.16 0.06 p 0.73 0.71 1.3 0.55
Beryllium sulfate
IN 0.11 0.06 0.16 0.06 p 0.73 0.71 1.3 0.55
Brucine
OD 0.11 0.06 0.16 0.fl6 Is 0.59 0.58 1.35 0.43
Butyl acetate
on 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
Butyl amine
OD 0.11 0.06 0.16 0.06 N 1.0 1.0 1.0 1.0
Butyric acid
On 0.11 0.06 0.16 0.06 N 1.0 1.0 1.0 1.0
Cadmium acetate
lB 0.25 0.11 0.25 0.11. 0.73 0.71 1.3 0.55
Cadmium bromide lB 0.25 0.11 0.25 0.11 P 0.73 0.71 1.3 0.55
-------
Persia- Physical! Diap - Dispersion Factor
Anf -_1 nnuity_Factor ___________________________________
tency Chemical
Classifi— Coastal Classifi— Coastal
Hazardous Material cation Lake River Estuary Zone cation Lake River Eatuary Zone
Cadmiu chloride lB 0.25 0.11 0.25 0.11 P 0.73 0.71 1.3 0.55
Cadmium nitrate lB 0.25 0.11 0.25 0.11 P 0.73 0.71 1.3 0.55
Cadmium sulfate lB 0.25 0.11 0.25 0.11 P 0.73 0.71 1.3 0.55
Calcium arsenate I X 0.11 0.06 0.16 0.06 IS 0.59 0.58 1.35 0.43
Calcium arsenite IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Calcium carbide IN 0.11 0.06 0.16 0.06 P 0.73 0.73 1.3 0.55
Calcium chromate IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
H
H
Calciu* cyanide IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
H ___________________
Calcium dodecylbenzenesulfonate IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
‘ -a _________________
0
Calcium hydroxide IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Calcium hypochiorite IN 0.11 0.06 0.16 0.06 SM 0.84 0.80 0.84 0.78
Calcium oxide IN 0.11 0.06 0.16 0.06 SM 0.84 0.80 0.84 0.78
0.58 1.35-
Captan 00 0.11 0.06 0.16 0.06 IS/SS —,
Carbon disulfide OP 0.06 0.21 0.11 SS 0.83 0.85 1.05 0.59
Catechol OD 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
o 1 35
Chiordane o 0.25 0.16 0.25 0.11 tSISS , 6 v’ 76 S ,4<5 459
Chlorine IN 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
-------
H
H
I ii
0
Persis-
tency
Classif
cation
A.nf - Annuity Factor
Coastal
Phys ice 1/
Ch nical
Classif i—
niqo — Dicoersion Factor
Coastal
Hazardous Material
Lake River Estuary Zone catiOn Lake River Estuary Zone
Chlorobenzene
OP 0.16 0.06 0.21 0.11 Is 0.59 0.58 1.35 0.43
Chloroform
OP 0.16 0.06 0.21 0.11 IS 0.59 0.58 1.35 0.43
Chiorosulfonic acid
IN 0.11 0.06 0.16 0.11 SS 0.83 0.85 1.05 0.59
Chromic acetate
IN 0.11 0.06 0.16 0.11 SS 0.83 0.85 1.05 0.59
Chro4flic acid
IN 0.11 0.06 0.16 0.11 SM 0.84 0.80 0.84 0.79
Chro,aic sulfate
IN 0.1]. 0.06 0.16 0.11 SS 0.83 0.85 1.05 0.59
Chroinous carbonate
IN 0.11 0.06 0.16 0.11 IS 0.59 0.58 1.35 0.43
Chroe ous chloride
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
chromous oxalate
IN 0.11 0.06 0.16 0.06 SS 0.83 0.95 1.05 0.59
Chromyl chloride
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Cobaltous acetate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
CobaltoUS bromide
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
CobaltouS chloride
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
cobaltouS citrate
IN 0.11 0.06 0.16 0.06 - P0.73 0.71 1.3 0.55
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Cobaltous fluoride
Cobaltous fo mate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
-------
H
H
I 1
I-a
Per is—
tency
Classifi-
cation
Physica l/
Ch ical
Classif
cation
Ant - Annuity Factor
Coastal
Diap - Dispersion Factor
Hazardous Material
Coastal
Lake River Ertuary Zone Lake River
Cobaltous iodide
Estuary Zone
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Cobaltoua nitrate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Cobajtous perchiorate
IN 0.11 0.06 0.16 0.06 p 0.73 0.71 1.3 0.55
Cobaltous succinate
IN 0.11 0.06 0.16 0.06 Is 0.59 0.58 1.35 0.43
Cobaltous sulfamate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Cobaltous sulfate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Co*apbos
OD 0.11 0.06 0.16 0.06 15/55 0 59.— 0 58 1 35 0 43
3
Cresol
OD 0.11 0.06 0.06 SS 0.83 0.85 1.05 0.59
0.16
Cupric acetate
IN 0.11 0.06 0.16 0.06 p 0.73 0.71 1.3 0.55
Cupric acetoarsenjte
IN 0.11 0.06 0.16 0.06 Is 0.59 0.58 1.35 0.43
Cupric acetyjacetonate
IN 0.11 0.06 0.16 0.06 IS 0.59 0.58 1.35 0.43
Cupric bromide
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Cupric chloride
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55 -
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Cupric formate
Cuprie gluconate
Cupric glycinate
0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
-------
H
H
‘ ii
Persi.-
tency
Classif i—
cation
Physical]
Ch ica1
Classif
cation
Hazardous Material
Anf - Annuity Factor
DieD — Dispersion Factor
Coastal
Lake River Estuary Zone
Lake River Estuary
Zone
Cupric lactate
IN 0.11 0.06 0.16 0.06 p 0.73 0.71 1.3 0.55
cupric nitrate
IN 0.11 0.06 0.16 0.06 p 0.73 0.71 1.3 0.55
Cupric oxalate
IN 0.11 0.06 0.16 0.06 Is 0.59 0.58 1.35 0.43
Cupric subacetate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Cupric sulfate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Cupric sulfate a oniated
IN 0.11 0.06 0.16 0.C6 P 0.73 0.71 1.3 0.55
Cupric tartrate
IN 0.11 0.06 0.16 0.06 Is 0.59 0.58 1.35 0.43
Cuprous broe ide
IN 0.11 0.06 0.16 0.06 IS 0.59 0.58 1.35 0.43
Cuprous iodide
IN 0.11 0.06 0.16 0.06 Is 0.59 0.58 1.35 0.43
IN 0.11 0.06 0.16 0.06 N 1.0 1.0 1.0 1.0
Cyanogen chloride
Cyc].ohexane
OD 0.11 0.06 0.16 0.06 IVF 0.31 0.31 0.27 0.35
0.43 -
2 4—D (acid)
0 59.. o.sa— 1.3S
OD 0.11 0.06 0.16 0.06 IS/SS —ii83 .85 —i .os 0.59
0 43
2 4—D (esters)
1.35
OD 0.11 0.06 0.16 0.06 IS/SS 0.83 -1.05
Dalapon
OD 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
0.94 -
DDI
0.74 0.62--
—
OB 0.25 0.16 0.25 0.11 INF/SF -
0.86 0.86 0.82 0.86
Diazinon
0.59_ 0.58.. 1.35 - 0.43_
OD 0.11 0.06 0.16 0.06 IS/SS -
0.83 — 0.85 1.05 0.59
-------
H
I-4
I i ’
1_I
Is.)
(A l
Hazardous Material
Persis-
tency
Classifi-
cation
Ant - Annuity Factor
Physical/
ca ica1
Classif
cation
Disp — Disoersion Factor
Coastal Coastal
Lake River Estuary Zon. Lake River
Dica ,a
Estuary Zone
OP 0.16 0.06 0.21 0.11 SS 0.83 0.85 1.05 0.59
Djchjobeni l
0.59 0.58 1.35 0.43
OP 0.16 0.06 0.21 0.11 IS/SS , ._‘‘
Dichione
0.59 0.58 1.35 0.43 -
OP 0.16 0.06 0.21 0.11 IS/SS ,.—‘ ._ -
Dichiorvos
0.83 0.85 1.05 0.59
OP 0.16 0.06 0.21 0.11 SS 0.83 0.85 1.05 0.59
Dje ldrjn
— 0.59_- 0.58,,... 1.35 ,.. 0.43
08 0.25 0.16 0.25 0.11 IS/SS , , .“ , , , . . ‘ , . .
Diethylamine
. .— 0.83 . .-‘‘0.85 — ‘1.05 -‘ 0.59
OD 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
Diiethy laaine
OD 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
Dinitrophenol
OD 0.11 0.06 0.16 0.06 Ss 0.83 0.85 1.05 0.59
Diquat
00 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Disulfoton
0.59,,... 0.58 . 1.35. 0.43.
00 0.11 0.06 0.16 0.06 IS/SS , ,.- ‘ — - ‘
Diuron
‘0.83 i .85 .- 1.05 ‘0.59
— p.59,, , ,.- 0.58,,,,,.. 1.35. 0.43.
OP 0.16 0.06 0.21 0.11 IS/SS •
Dodecylbenzenesujfonjc acid
0.83 0.85 1.05 - 0.59
OD 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Dursban
0.59 , 0.58, 1.35 0.43.
00 0.11 0.06 0.16 0.06 iS/SS - . -‘
Endosulfan
0.83 ‘0.85 1.05 0.59
0.59_ — 0.58 1.35 0.43
OD 0.11 0.06 0.16 0.06 IS/SS .
Endrin
1.05 -0.59
0.59 , 0 8 1.35,,.. 0.43
OB 0.25 0.16 0.25 0.11 IS/SS —
EthiOn
0.83 0.85 1.05 -‘ 0.59
0.59- 0.58_- 1.35,,,. 0.43
00 0.11 0.06 0.16 0.06 IS/SS -
-------
H
H
I- .
Persi.—
teucy
Cla ssif
cation
Anf - Annuity Factor
Phy.ical/
Ch ica1
Clasaif
Disu - Diauersion Factor
Coastal
Hazardous Material
Coastal
Lake River Estuary Zone cation Lake River Estuary Zone
Ethythenzene
OD 0.11 0.06 0.16 0.06 1sF 0.74 0.62 0.60 0.94
Ethy lenediaine
00 0.11 0.06 0.16 0.06 H 1.0 1.0 1.0 1.0
EDTA
OP 0.16 0.06 0.21 0.11 IS 0.59 0.58 1.35 0.43
Ferric aonius citrate
IN 0.11 0.06 0.16 0.11 p 0.73 0.71 1.3 0.55
Ferric chloride
IN 0.11 0.06 0.16 0.11 p 0.73 0.71 1.3 0.55
Ferric fluoride
IN 0.11 0.06 0.16 0.11 P 0.73 0.71 1.3 0.55
Ferric nitrate
IN 0.11 0.06 0.16 0.11 P 0.73 0.71 1.3 0.55
Ferric phosphate
IN 0.11 0.06 0.16 0.11 Is 0.59 0.58 1.35 0.55
Ferric sulfate
is 0.11 0.06 0.16 0.11 P 0.73 0.71 1.3 0.55
Ferrous oniua sulfate
IN 0.11 0.06 0.16 0.11 P 0.73 0.71 1.3 0.55
Ferrous chloride
IN 0.11 0.06 0.16 0.11 P 0.73 0.71 1.3 0.55
Ferrous oxalate
IN 0.11 0.06 0.16 0.11 Is 0.59 0.58 1.35 0.43
Ferrous sulfate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Fornaldehyde
00 0.11 0.06 0.16 0.06 H 1.0 1.0 1.0 1.0
Poruic acid
00 0.11 0.06 0.16 0.06 N 1.0 1.0 1.0 1.0
Puaric acid
00 0.11 0.06 0.16 0.06 SB 0.83 0.85 1.05 0.59
-------
H
H
U’
Persi.—
tency
Classifi-
cation
Physicaif
Chemical
Classif i—
cation
Ant - Annuity Factor
Coastal
Lake River Estuary Zone
fliRt) — flisoergion Factor
Lake River Estuary Zone
Coastal
Hazardous Material
Furfura ].
OD 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Guthion
0.59 0.5
OD 0.11 0.06 0.16 0.06 is/sg
-0.83 -
Heptachior
1.05 0.59
0.59 .. 0.58 1.35__ 0.43
08 0.25 0.16 0.25 0.11 IS/SS .. - -
0.83
0.85
Hydrochloric acid
-
- 1.05 0.59
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Hydrofluoric acid
IN 0.11 0.06 0.16 0.06 M 1.0 1.0 1.0 1.0
Hydrogen cyanide
IN 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
Hydroquinone
OD 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Hydroxy lamine
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Isoprene
OD 0.11 0.06 0.16 0.06 fl /F 0.31 0.31 0.27 0.35
Isopropanolamine dodecylbenzene—
sulfonate
OD 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Ke lthane
0.59 0.59 1.35 0.43
OP 0.16 0.06 0.21 0.11 IS/SS -
-
Lead acetate
0.85 1.05 0.59
lB 0.25 0.11 0.25 0.11 p 0.73 0.71 1.3 0.55
Lead bromide
lB 0.25 0.11 0.25 0.11 P 0.73 0.71 1.3 0.55
Lead chloride
lB 0.25 0.11 0.25 0.11 p 0.73 0.71 1.3 0.55
Lead fluoborate
lB 0.25 0.11 0.25 0.11 P 0.73 0.71 1.3 0.55
Lead fluoride
lB 0.25 0.11 0.25 0.11 Is 0.59 0.58 1.35 0.43
-------
H
H
0
Persis-
tency
Classifi-
cation
Coastal
Zone
Physical!
Anf — Annuity Factor Chestical
Coastal Classifi-
cation
Lake River Estuary Zone
Disc — Dispersion Factor
Hazardous Material
Lake River Estuary
Lead iodide
jB 0.25 0.11 0.25 0.11 Is 0.59 0.58 1.35 0.43
Lead nitrate
IS 0.25 0.11 0.25 o.ii p 0.73 0.71 1.3 0.55
Lead stearate
lB 0.25 0.11 0.25 0.11 P 0.73 0.71 1.3 0.55
Lead sulfate
lB 0.25 0.11 0.25 0.11 IS 0.59 0.58 1.35 0.43
Lead sulfide
lB 0.25 0.11 0.25 0.11 iS 0.59 0.58 1.35 0.43
Lead tetraacetate
lB 0.25 0.11 0.25 0.11 p 0.73 0.71 1.3 0.55
Lead thiocyanate
lB 0.25 0.11 0.25 0.11 IS 0.59 0.58 1.35 0.43
Lead thiosulfate
lB 0.25 0.11 0.25 0.11 IS 0.59 0.58 1.35 0.43
Lead tungstate
lB 0.25 0.11 0.25 0.11 IS 0.59 0.58 1.35 0.43
Lindane
0 59 0
OP 0.16 0.06 0.21 0.11 IS/SS 0.43
-0.85 .-f.os _- 0.59
Lithium bichrcstate
IN 0.11 0.06 0.16 0.06 SM 0.84 0.80 0.84 0.78
Lithium chromate
IN 0.11 0.06 0.16 0.06 SM 0.84 0.80 0.84 0.78
Lithium fluoride
IN 0.11 0.06 0.16 0.06 SS 0.23 0.85 1.05 0.59
Malathion
OD 0.11 0.06 0.16 0.06 is,ss 0.59-- 0.58 1.35- 0.43.
— 6.83 .-1.85 - i.05 0.59
Maleic acid
00 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Maleic azthydride
00 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
-------
I-I
H
I 1
I .. . ,
-4
Persi.—
tency
Class if
cation
Anf — knrn.4 ., ‘‘r Physical/
Chemical
Coastal Classif i—
cation
Disp — Dispersion Factor
Hazardous Material
Coastal
Lake River Estuary Zone Lake River Estuary Zone
Mercuric acetate
TB 0.25 0.11 1.0 0.11 p 0.73 0.71 1.3 0.55
Mercuric chloride
lB 0.25 0.11 1.0 0.11 P 0.73 0.71 1.3 0.55
Mercuric nitrate
lB 0.25 0.11 1.0 0.11 P 0.73 0.71 1.3 0.55
Mercuric oxide
lB 0.25 0.11 1.0 0.11 IS 0.59 0.58 1.35 0.43
Mercuric sulfat,
lB 0.25 0.11 1.0 0.11 P 0.73 0.71 1.3 0.55
Mercuric thiocyanate
lB 0.25 0.11 1.0 0.11 Is 0.59 0.58 1.35 0.43
Mercurous nitrate
lB 0.25 0.11 1.0 0.11 P 0.73 0.71 1.35 0.55
Methoxych lor
0 59 0.58 1.35 0.43
OP 0.16 0.06 0.21 0.11 Is/Ss - -ç
Methyl aercaptan
05 —
00 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
Methyl aethacrylate
OD 0.11 0.06 0.16 0.06 IV? 0.31 0.31 0.27 0.35
Methyl parathion
0.5 _. 0.58 1.35 0.43
-
on o.ii 0.06 0.16 0.06 IS/ES
—-
Mevinphos
0.83
1.05 —
00 0.11 0.06 0.16 0.06 P 4 1.0 1.0 1.0 1.0
Molybdic trioxide
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
M000ethylsaine
00 0.11 0.06 0.16 0.06 M 1.0 1.0 1.0 1.0
Moncaethylaaifle
00 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
P3 tled
00 0.11 0.06 0.16 0.06 IS 0.59 0.58 1.35 0.43
-------
H
H
Ii i
I-.
a,
Physical/
Chemical
Coastal Classifi—
Zone cation
Persis-
tency
Classif
Anf - Annuity Factor
flieD — Disoersion Factor
Lake River Estuary Zone
Coastal
hazardous Material
cation Lake River Estuary
Naphthalefle
OP 0.16 0.06 0.21 0.11 IS 0.59 0.58 1.35 0.43
Naphthenic acid
OP 0.16 0.06 0.21 0.11 SS 0.83 0.85 1.05 0.59
Nickel acetate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Nickel a onium sulfate
IN 0.11 0.06 0.16 0.06 p 0.73 0.71 1.3 0.55
Nickel bra ide
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Nickel chloride
IN 0.11 0.06 0.16 0.06 p 0.73 0.71 1.3 0.55
Nickel formate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Nickel hydroxide
IN 0.11 0.06 0.16 0.06 IS 0.59 0.58 1.35 0.43
Nickel nitrate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Nickel sulfate
IN 0.11 0.06 0.16 0.06 p 0.73 0.71 1.3
Nitric acid
TN 0.11 0.06 0.16 0.06 M 1.0 1.0 1.0 1.0
Nitrobenzefle
OP 0.16 0.06 0.21 0.11 SS 0.59 0.58 1.35 0.43
Nitrogen dioxide
IN 0.11 0.06 0.16 0.06 N 1.0 1.0 1.0 1.0
Nitrophenol
Op 0.16 0.06 0.21 0.11 SS 0.83 0.85 1.05 0.59
Paraformaldehyde
00 0.11 0.06 0.16 0.06 sS 0.83 0.85 1.05 0.59
0.43.
Parathion
1.35_
Op 0.16 0.06 0.21 0.11 ‘O.BS ‘l.OS - 0.59
‘ 0.83
-------
H
H
t J
0
Persis-
tency
Classif
cation
Physical/
Chemical
Classif i—
cation
Coastal
Zone
Hazardous Material
Anf - Annuity Factor
Coastal
Lake River Estuary Zone
Diso — Dispersion Factor
Lake River Estuary
Pentachiorophenol
OP 0.16 0.06 0.2]. 0.11 IS 0.59 0.58 1.35 0.43
Phenol
00 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Phosgene
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Phosphoric acid
IN 0.11 0.06 0.16 0.06 M 1.0 1.0 1.0 1.0
Phosphorus
IN 0.11 0.06 0.16 0.06 Is 0.86 0.86 0.82 0.86
Phosphorus oxychioride
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
phosphorus pentafluoride
IN 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
phosphorus pentasulfide
IN 0.11 0.06 0.16 0.06 S5 0.83 0.85 1.05 0.59
Phosphorus trichloride
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Polychiorinated biphenyls
03 0.25 0.16 0.25 0.11 Is 0.59 0.58 1.35 0.43
Potassium arsenate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Potassium arsenite
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Potassium bichromate
IN 0.11 0.06 0.16 0.06 55 0.83 0.85 1.05 0.59
Potassium chromate
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Potassium cyanide
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Potassium hydroxide
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
-------
H
H
0
Persis-
tency
Classif 1—
cation
Hazardous Material
Anf — Annuity Factor Physica l/
Chemical
Coastal Classif i—
cation
fliso — Disoersion Factor
Lake River Estuary Zone
Coastal
Lake River Estuary Zone
Potassium pegmanganate
TN 0.11 0.06 0.16 d.06 SS 0.83 0.85 1.05 0.59
Propionic acid
0D 0.11 0.06 0.16 0.06 14 1.0 1.0 1.0 1.0
Propionic anhydride
OD 0.11 0.06 0.16 0.06 14 1.0 1.0 1.0 1.0
Propyl alcohol
OD 0.11 0.06 0.16 0.06 M 1.0 1.0 1.0 1.0
Pyrethrins
0.59 0.58 l.35 - 0.43-
OD 0.11 0.06 0.16 0.06 IS/SS V V
0.83 ‘0.85 ‘ l.05
Pyrogallic acid
OP 0.16 0.06 0.21 0.11 SS 0.83 0.85 1.05 0.59
Quinoline
OD 0.11 0.06 0.21 0.06 SS 0.83 0.85 1.05 0.59
ResorCiflOl
OD 0.11 0.06 0.16 0.06 IS 0.59 0.58 1.35 0.43
Seleflic acid
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
selenium oxide
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Sevin
0.59—: 1.35 . 0.43.
00 0.11 0.06 0.16 0.06 IS/SS V
.‘0.83 — iL8S - 1.05 ‘ 0.59
Sodium
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Sodium arsenate
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Sodium arsenite
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Sodium bichrouiate
IN 0.11 0.06 0.16 0.06 SM 0.84 0.80 0.84 0.78
Sodium bifluoride
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
-------
H
H
I -I
“I
I -I
Physical/
Chemical
Coastal Classifi-
Zone cation
Hazardous Material
Persis-
tency
Classif i—
cation
An! - Annuity Factor
Lake River Estuary
Diso - Disnersion P ctnr
Coastal
Lake River Estuary Zone
Sodiem bisulfite
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Sodi chro.ate
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Sodi cyanide
IN 0.11 0.06 0.16 0.06 SN 0.84 0.80 0.84 0.78
Sodiem dodecylbenzenesulfonate
OD 0.11 0.06 0.1.6 0.06 SS 0.83 0.85 1.05 0.59
Sodiu fluoride
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Sodiem hydrosulfide
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Sodii hydroxide
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Sodiem hypochlorite
IN 0.11 0.05 0.16 0.06 SM 0.84 0.80 0.84 0.78
Sodiua .ethylate
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Sodiua nitrite
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Sodi phosphate (mono—basic)
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Sodiu phosphate (di—basjc)
IN 0.11 0.06 0.16 0.06 SM 0.84 0.80 0.84 0.78
Sodii phosphate (tn-basic)
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Sodi selenite
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Sodi1 sulfide
IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Strontium chrossate
IN 0.11 0.06 0.16 0.06 Is 0.59 0.58 1.35 0.43
strychnine
OD 0.11 0.06 0.16 0.06 IS 0.59 0.58 1.35 0.43
-------
Persis— — Aflfl y’ Factor Physical! Disp — Dispersion Factor
tency Chemical
Classif i— Coastal Classifi— Coastal
Hazardous Material cation Lake River Estuary Zone cation Lake River Estuary Zone
Styrene OD 0.11 0.06 0.16 0.06 I’JF 0.31 0.31 0.27 0.35
Sulfuric acid IN 0.11 0.06 0.16 0.06 M 1.0 1.0 1.0 1.0
Sulfur monochloride IN 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
2,4,5—T (acid) 00 0.11 0.06 0.16 0.06 IS/SS 0.58 - 1.35. 0.59
0.83 . .05 - 0.59
0.59 0.58 1.35 0 43
2,4,5—T (esters) 00 0.11 0.06 0.16 0.06 __“ ___— ‘ - ‘ ____••—• - ‘
— 0.83 -‘0.85
Tannic acid 00 0.11 0.06 0.16 0.06 SM 0.84 0.80 0.84 0.78
0 59 0 58 1 35 0 43
TDE OP 0.16 0.06 0.21 0.11 IS/SS _____— _____ — _____ - ____—•—-——
H —_______________ -
H Tetraethyl lead lB 0.25 0.11 0.25 0.11 IS 0.59 0.58 1.35 0.43
H _____________________
Tetraethyl pyrophosphate 00 0.11 0.06 0.16 0.06 M 1.0 1.0 1.0 1.0
Toluene OD 0.11 0.06 0.16 0.06 IS 0.59 0.58 1.35 0.43
0.59 0.58 1.35 0.43.
Toxaphene 0 5 0.25 0.16 0.25 0.11 IS/SS
________________________________ RI ‘ fl oc - lnc - fl çg
Trjchlorfon OP 0.16 0.06 0.21 0.11 SS 0.83 0.85 1.05 0.59
TrichiorOphenol 00 0.11 0.06 0.16 0.06 Is 0. 9 0.58 1.35 0.43
Triethanolamine dodecylbenzene-
sulfonate 00 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Triethylamine 0 13 0.11 0.06 0.16 0.06 M 1.0 1.0 1.0 1.0
Trimethylamine 00 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
Uranium peroxide IN 0.11 0.06 0.16 0.06 IS 0.59 0.58 1.35 0.43
-------
H
H
I i i
I-I
Coastal
Zone
Hazardous Material
Persia—
teitcy
Class if
cation
Anf — Annuity P&ctor
Lake River Estuary
Physical/
Chemical
Coastal Classif i—
Zone cation
Dian — Disnersion Factor
Lake River Estuary
Uranyl acetate
IN 0.11 0.06 0.16 0.06 P 0.84 0.80 0.84 0.78
Uranyl nitrate
IN 0.11 0.06 0.16 0.06 P 0.84 0.80 0.84 0.78
Oranyl sulfate
IN 0.11 0.06 0.16 0.06 P 0.84 0.80 0.84 0.78
Vanadiu oxytrichloride
IN 0.11 0.06 0.16 0.06 Is 0.59 0.58 1.35 0.43
Vanadiu pentoxide
IN 0.11 0.06 0.16 0.06 P 0.84 0.80 0.84 0.78
Vanadyl sulfate
IN 0.11 0.06 0.16 0.06 P 0.84 0.80 0.84 0.78
Vinyl acetate
I
00 0.11 0.06 0.16 0.06 SF 0.86 0.86 0.82 0.86
Xylene
-—______
OP 0.16 0.06 0.21 0.11 INF 0.74 0.62 0.60 0.94
Xylenol
00 0.11 0.06 0.16 0.06 SS 0.83 0.85 1.05 0.59
Zectran
0.59 0.58 - 1.35 0.43
00 0.11 0.06 0.16 0.06 IS/SS -
Zinc acetate
‘.85 0.59
IN 0.11 0.06 0.16 0.06 p 0.84 0.80 0.84 0.78
Zinc anvnoniua ch1c ride
IN 0.11 0.06 0.16 006 P 0.84 0.80 0.84 0.78
Zinc bictroinate
IN 0.11 0.06 0.16 0.06 P 0.84 CJ 0 0.8.. 0.78
Zinc borate
IN 0.11 0.06 0.16 0.06 P 0.84 0.80 0.84 0.78
Zinc broride
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Zinc carbonate
IN 0.11 0.06 0.16 0.06 IS 0.59 0.58 1.35 0.43
Zinc chloride
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
-------
Persis-
tency
Classif 1—
cat ion
Anf — Annuity Factor
Lake River Estuary
Coastal
Zone
Physical!
Chemical
Classifi—
Disp — Dispersion Factor
cation Lake River Estuary Zone
Coastal
H
H
1 i 4
L)
t
Hazardous Material
Zinc cyanide
IN 0.11 0.06 0.16 0.06 Is 0.59 0.58 1.35 0.43
Zinc fluoride
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Zinc formate
IN 0.11 0.06 0.16 0.06 p 0.73 0.71 1.3 0.55
Zinc hydrosulfite
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Zinc nitrate
Zinc permanganate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Zinc phenolsulfOflate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Zinc phosphide
IN 0.11 0.06 0.16 0.06 IS 0.59 0.58 1.35 0.43
Zinc potassium chrosate
IN 0.11 0.06 0.16 0.06 IS 0.59 0.58 1.35 0.43
Zinc propionate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Zinc silicofluoride
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Zinc sulfate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Zirconium acetate
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Zirconium nitrate
IN 0.11 0.06 0.16 0.06 p 0.73 0.71 1.3 0.55
zirconium oxychloride
IN 0.11 0.06 0.16 0.06 P 0.73 0.71 1.3 0.55
Zirconium potassium fluoride
IN 0.11 0.06 0.16 0.06 P 0.73 0. l 1.3 0.55
Zirconium sulfate
IN 0.11 0.06 0.16 0.06 p 0.73 0.71 1.3 0.55
Zirconium tetrachloride
IN 0.11 0.06 0.16 0.06 p Q•73 0.71 1.3 0.55
-------
APPENDIX D
MATHEMATICAL MODEL DETERMINATION OF THE
TOTAL WATER VOLUME SUBJECTED TO A CRITICAL
CONCENTRATION FROM A POINT SOURCE SPILL
OF A HAZARDOUS MATERIAL
THE BASIC MODEL FOR SPILL INTO LAKES
The volume of water included within a given isoconcentration
surface resulting from a point source spill of a completely
water miscible substance expands to a maximum value and then
declines as dispersion continues. The model employed to derive
the Loc, locational dispersion factor, determines the maximum
water volume which is subjected to concentrations greater than
or equal to the critical concentration. The model is based
upon the technique of Wnek and Fochtxuan’ wherein eddy diffusion
is used as the mechanism of dispersion.
The equation based on this concept, which governs distribution
of a pollutant, is given by the partial differential equation
!E+ . - +v !E+ . —
x x y y z z —
- ( ) + + ( ) - R(c) (D-l)
subject to the initial condition
c(x,y,z,O) = 0
and the boundary condition of no mass flux across the bounding
surface S
= 0 on s
9n
where C is concentration; x,y,z are coordinates measured respec-
tively in the direction of the shore , normal to shore, and
1 Wnek, W. J. and E. G. Fochtman. “Mathematical Model for the
Fate of Pollutants in Near-Shore Waters,” Environmental Science
and Technology , Vol. 6, No. 4, April 1972.
111—135
-------
vertically downward (Figure D-l); t is time; n is normal to S;
V , Vy and v are velocities for the x 1 r z directions, respec-
tively, functions of x,y,z; k , K 1 K are turbulent dispersion
coefficients for x,y,z directions, respectively, functions of
x,y,z; and R is rate of reaction of pollutant with its environ-
ment. Since the AnF factor has been included to describe degra-
dation of materials, the R—rate of reaction can be dropped from
further consideration.
FIGURE D-l. DIAGRAM OF COORDINATE SYSTEM
This equation is arrived at by performing a material balance on
a differential element of volume anywhere in the lake. The
first term represents local time rate of change of concentration,
the next three terms define changes in concentration due to
advection, the next three terms account for dispersive action
of the pollutant due to turbulence, and the last term allows
for depletion of the pollutant due to chemical reaction with
its environment.
It was possible to allow for nonconstant dispersion coefficients,
relatively complex boundaries such as sloping bottoms, and a
three dimensional coordinate system and reduce the computation
time by developing an analytical solution by particular trans-
formations and the concept of Green’s functions. The model
can calculate the amount of pollution due to any number of
sources on a lake at any time and point in the shore waters
of the lake. The dispersion coefficients, velocities, and
reaction term can be arbitrary functions. The model also allows
for boundaries such as a lake bottom and shoreline, thermoclines,
thermobars, and haloclines (for estuaries).
x
SHORE
/ Ow
SURFACE
BOTTOM
111—136
-------
QUANTITATIVE DESCRIPTION OF MODEL
Eddy diffusion coefficients are characteristic parameters of a
given body of water and are empirically determined. Order—of—
magnitude estimates can be made from the following correlations.
Longitudinal dispersion means dispersion in the direction of
flow. It includes the combined action of turbulence and variation
of velocity with position. Diffusivity in longitudinal direction
due to flow in the x direction is
— R *
,sec, — cKX Hv
A similar formula for transverse dispersion is
K 0 (ft 2 /sec) = cKYRHv
and for vertical dispersion
K (ft 2 /sec) = cKzHv
where
c , CK , CKZ = empjrj aj. constants for a given body of
Kx water whose values are approximately
500, 0.72, and 0.067, respectively
v*(ft/sec) = v /N , (shear velocity)
g = gravitational constant
v (ft/sec) inshore velocity in x direction
N = 1.49 RH°• 167 /Nm (Chezy coefficient)
RH(ft) HL/2 (H + L) (hydraulic radius)
H(ft) = depth of lake or thermocline
L(ft) = width of lake or thermobar
Nm Manning’s constant 0.O25
Similar formulas apply for flow in the y and z directions. To
account for the variation of these eddy diffusion coefficients
with distance due to transition from small to large eddy motions
inherent in homogeneous turbulence, the following correlations
111—137
-------
from the oceanography literature may be used. The longitudinal
and transverse coefficients decrease with depth according to:
L K/ Z K / z
K Or
x surface y surface
where
a 4.6 x lO ft 1
Longitudinal and transverse coefficients on the surface increase
with distance from the source up to the length scale of large
eddy motion
4/3
K =cr
x surface S
4/3
K =cr
y surface s
where r (ft) = ÷ y is the absolute distance from the
source and
i x Cs < 2.5 x ft 2 ” 3 /sec
For Lake Michigan for example, this length scale is about 800
ft so that for distances greater than 800 ft, diffusivities do
not vary. Combining these relationships, the expressions for
the eddy diffusion coefficients as functions of the three space
variables are
= K 0 + c 5 r 4 ” 3 (1 - cxz)
= K 0 + c 5 r 4 ’ 3 (1 - c z)
K 2 = cKZHv
Although the model can include flows in more than one direction,
these coefficients include only velocity in the x direction,
along the shore. The effect of shear is incorporated in K
so that Kx should be larger than K and Kz, since the latter
include only the effect of turbulence.
Mean diffusivities are defined as
111—138
-------
z y x
1 (p
= J J K (x’ y’ 1 z’)dx’dy’dz’
p z 0 Yo X
i = 1,2,3 (D—2)
where i = 1,2,3 represents x,y,z. The subscripts o and p denote
the source and the point where concentration is desired, respec-
tively. Vp is the volume element equal to (Xp - x 0 ) (Yp — Y )
(zp — z 0 ).
Performing the necessary manipulations the solution to equation
(D-1) for an instantaneous point source at x = o, y = o, z = o is
8(7lt) 3 ” 2 Vi xi exp [ _(x - xt) 2/4 -
(y — t) 2 /4 R t - (z - t) 2 /4 i t] (D-3)
The Green’s function is the solution for a unit instantaneous
point source released at x’,y’,z’,t’ and no decay. Thus,
G(x,y,z,t; x’,y’,z’,t’) = 1 x
8N(t — t;)] 3 ” 2
[ (x - x’) - - t’)] 2 [ (y - y’) - (t - t’)] 2
exp - — —
4K (t-t’) 4K (t t ’)
[ (z — z’) — (t — t’)] 2
4 (t — t’) (D—4)
Given a concentration, c, and a spill mass, in, the objective was
to determine the location of the surface which enclosed the
maximum volume.
It is important to realize that the objective of this formulation
was not to predict the concentration of a soluble substance at
agiven distance from a constant discharge source, but to deter-
mine the maximum volume subjected to the critical or higher
concentration of a spill or step input of hazardous material.
As such, the problem was not steady state but required
111—139
-------
evaluation throughout time. It would be helpful to consider
the volume enclosed within the critical concentration surface
(three dimensional) as a semi-ellipsoid which expanded with time
to a maximum size and then contracted until it disappeared as
the hazardous material was diluted to sob critical levels.
Since the final desired result was the maximum volume enclosed
within a given isoconcentration surface, a Lagrangian coordinate
system was employed. In order to provide a realistic starting
point for the model, the point of spill was defined at x 0 = 0,
y 0 = 1 ft, z 0 = 0, to = 0. The resultant equation becomes:
2
N 2 ____
C exp -x/4Kt- _
8(iit) 3 ” 2 4Kyt
- z2/4kztj (D-5)
The model allowed satisfactory treatment of a relatively complex
set of boundary conditions including various angles of bottom
descent and several maximum depths by utilizing a series of
image sources such as those shown in Figure D—2. The image
sources in effect make the boundaries (shoreline, surface and
bottom) reflecting surfaces. Each time the plume approaches a
boundary, a new image source is added. Thus, the original
source can continue to spread with the image source offering
the mass that would have been reflected. This is analogous to
representing a mirror with a window on the other side of which
identical images are placed to match the original source.
For a sloped bottom, if the angle 0 is equal to where m is a
positive integer, the 2 mth image will coincide with the source
so that a closed system is obtained. If the source is at the
surface the mth image will coincide with the source. Additional
image sources with restrictions upon the area affected are
required for the situations with a constant maximum depth.
The use of image sources results in a net material transport of
zero across the system boundaries. The following figures
illustrate two possible paths of hazardous material transport
from the source, s. ThG image sources cause the boundaries to
appear as if they were reflecting surfaces which was the desired
result. Examples of the action of the image source are given
in Figures D-2 and D-3.
111—140
-------
IMAGE IMAGE 2
IMAGE 4
IMAGE 3
FIGURE D-2.
LOCATION OF IMAGES FOR A SLOPING BOTTOM
Surface
Bottom
FIGURE D-3.
EFFECT OF USING IMAGES TO ACCOUNT FOR
REFLECTION OF THE SOURCE TERN
Rearranging equation D-5
C 8(1rt) 3 ’ 2 %(K K K
xyz
M
m 2
/ 2 (— (z—z)
(x ____ + S
E exP [ r+ K K
y z
s=1
IMAGE 7 SURFACE
IMAGE 6 IMAGE 1
Source
Image
.4
(D—6)
111—141
-------
where s corresponds to the actual source or the various image
sources. Equation D—6 was solved for y (assuming distance away
from shore to be the positive y direction) with x=o and z=o for
increasing increments to time, t, until a maximum y was reached.
Or in the case of the river model, until a maximum x was reached
(y = y 0 and z = 0). Equation D-5 at x=o, z=o and yymax defined
the time at maximum volume. The various K 5 had to be reevaluated
at each successive iteration of y. With t (max volume) defined,
the volume of the spill was determined by incremental elements
of x and z. During the iterative determinations of the various
y values of the maximum volume critical concentration surface,
the correct value was assumed if the difference between the
left and right hand sides of Equation D-6 was smaller than a
specified value, c. EpislOn, e, was defined as 0.01 x
where y 1 was the latest value of y in the iterative sequence.
When the latest value of y caused the right hand side of the
equation to exceed the value of the left side, the step size
was half ed and the process repeated. The z direction step size
was also reduced by a similar procedure when the maximum depth
of the spill was exceeded.
The determination of the maximum value of x at the top surface
permitted an initial estimate of the location of the critical
concentration surface by assuming each “slice” parallel to the
top surface to take the shape of an ellipse. This permitted
improved starting values for the iterative calculations of y
and consequently reduced computer run time.
Since the spill is symmetrical about the yz plane, only the
volume in the positive x direction was calculated and the result
multiplied by 2. Also, the spill was assumed to occur at the
surface and the three dimensional dispersion was symmetrical
about the xy plane, so that the mass, m, actually used in the
calculations was 2m and thus the volume obtained was equivalent
to that for a spill of mass, m, in the lower half of the
ellipsoid, that lying below the water surface, which is the
voluni of interest. This modification reduced the number of
image sources required by a factor of 2, and was possible only
because of the assumption that the spill occured at the surface.
The calculation was made assuming a value for Vx of 0.11 kilo-
meters per hour (0.1 fps), and a spill mass in 45.4 kg (100 ibs).
The angle of descent and average depth were varied to produce
the matrices presented in the accompanying tables for various
critical concentration levels. Entries in the matrices are the
actual locational variable, Loc, and therefore represent the
ratio of the volume predicted by the model and the instantaneous
mixing volume to an isoconcentration equivalent to the critical
concentration. Hence, for model predicted values (Vp) based on
spillage of mass (m) and an isoconcentration surface (cc), the
denominator of the ratio is simply
111—142
-------
V m/cc
max
Consequently, the entries in the matrices are
Loc = Vp/Vmax
= (v) x (cc)/m
COASTAL MODEL
The coastal model was a simplified version of the lake model
with no image sources for the sloping shoreline, as the spill
was assumed to occur relatively far from shore. Since, for this
situation, the critical concentration surface was symmetrjcai
about both the xz plane and the yz plane only a quarter of the
volume needed to be calculated and the result multiplied by 4.
Also, as for the lake model addition, the spill was symmetrical
about the xy plane so that twice the given mass of material was
supplied to the model but only that portion of the volume lying below
the surface was used in determining the final result. One image
source was used to assure that the bottom surface boundary was
accounted for if the isoconcentratjon surface reached the bottom.
RIVER MODEL
The lake model was applied to the river situation by utilizing
Wards equations to generate a mean velocity VX, river width,
and river depth. A 450 slope was assumed for each case. In
addition to the image sources necessary to establish correct
boundary conditions for the sloping shoreline near the spill,
a second set of image sources was often necessary to account
for the opposite shore boundary. This set was located in the
y direction (normal to the shoreline) at a distance of twice
the river width minus y 0 . In this manner, as the critical con-
centration surface of the original spill reached the opposite
shore boundary, the surface from the extra set of image sources
reached the same boundary moving in the opposite direction.
Thus, the effect of a reflecting surface was achieved. Wards
equations are a set of empirical relationships between flow
rate and mean depth, width, and velocity.
mean river wepth (ft.) - w = aQb
mean river depth (ft.) - d = cQ
mean river velocity (fps) - = kQm
The coefficients a, b, C, f, k, and m are empirical coefficients.
The values of these coefficients used in the model are
111—143
-------
a = 4.81
b = 0.5
c 0.16
f 0.4
k = 1.30
m = 0.10, and
Q is the flow rate in cfs.
ESTUARINE MODEL
No simple model configuration could be derived for the estuarine
environment based on only two variables. Rather, models require
designation of where in the estuary the spill occured, at what
point in the tidal cycle the spill occured, the tributary inflow,
the depth to the halocline, and the nature of the estuary, i.e.,
partially mixed, completely mixed, or stratified. These com-
plications eliminate the benefits to be derived from tabular dis-
play of LOC factors as a function of two or less environmental
variables, consequently no factors were derived. It is
recommended that the appropriate river or coastal water values
be employed instead based on the location of the spill with
respect to the importance of current factors.
Model Summary
A. Model as Formulated in the Literature
1. Image source concept allowed simple consideration of
relatively complex boundaries.
2. Adjustment of the dispersion coefficients with distance
allowed limited response to boundary effects upon dis-
persion.
B. Model as Formulated by BNW
1. The model permitted the time dependent calculation of
a changing volume.
2. The occurrence of maximum volume was determined by the
point in time at which the volume began to decrease.
3. The maximum volume was then calculated by a summary
series of horizontal tislicesli
111—144
-------
4. Assumming each slice of the volume to take the shape
of a semi—ellipse reduced the computations necessary
in the iterative calculation of the critical concen-
tration surface.
5. The computations were reduced by a factor of 4 without
impairing the accuracy of the final result by assuming
the spill occurred at the surface and that the critical
concentration was symetrical about a line passing
through the spiii point and perpendicular to the shore.
6. Since the maximum critical concentration was desired
and not a concentration at some particular distance
from the original spill point, a Lagrangian coordinate
system was employed. With Lagrangian coordinates the
origin is moved with the net flow, for example, in
a river. The result in this application greatly
simplified the formulation and calculations.
111—145
-------
TABLE D-1
LOCATIONAL VARIABLES FOR SPILLS INTO LAKES*
*For multiples of
Loc1p
LOC]. Loc 5 .
the critical concentrations employed, ratio the Loc factors, e.g., for Loc 50 take
Angle of
Descent
Concentration ( gL ±
Average Depth - Meters (Feet)
3 (10) 7.6 (25) 15.2 (50) 30.4 (100) 60.8 (200 )
304 (1000)
H
H
5
1
.026
.044
.046
.046
.046
.046
2
.036
.055
.055
.055
.055
.055
3
.045
.059
.059
.059
.059
.059
5
.059
.064
.064
.064
.064
.064
10
.072
.072
.072
.072
.072
.072
10
1
2
3
5
10
.023
.072
.076
.078
.041
.063
.072
.087
.053
.065
.072
.078
.090
.058
.064
.072
.078
.090
.058
.064
.072
.078
.090
.058
.064
.072
.078
.090
15
1
2
3
5
10
.076
.073
.075
.074
.087
.036
.047
.053
.064
.083
.048
.060
.070
.082
.100
.060
.071
.075
.088
.102
.061
.071
.075
.088
.102
.061
.071
.075
.088
.102
30
1
2
3
5
10
.074
.069
.064
.064
.045
.066
.037
.042
.055
.072
.038
.050
.058
.067
.091
.050
.065
.082
.090
.114
.063
.079
.089
.105
.130
.069
.080
.096
.106
.130
45
1
2
3
5
10
.087
.078
.077
.070
.077
.074
.068
.051
.061
.078
.038
.048
.061
.075
.100
.082
.088
.101
.129
.066
.085
.109
.130
.178
.090
.113
.137
.151
.188
60
1
2
3
5
10
.033
.026
.024
.021
.0008
.058
.052
.050
.050
.030
.082
.073
.082
.040
.111
.124
.101
.115
.127
.049
.056
.070
.073
.061
.082
.084
.103
-------
TABLE D—2
LOCATIONAL VARIABLES FOR SPILLS INTO COASTAL WATERS*
*For multiples of the critical concentrations
factors, e.g., for Loc 50 take i..oc 10
Loc 1 X Loc S
employed, ratio the Loc
TABLE D-3
LOCATIONAL VARIABLES FOR SPILLS INTO RIVERS
Ocean Current
(knots/hr)
Concentration
(mg/i)
30.4 (100 )
_D pth, meters (feet)
76 (250) 152 (500) 304 (1000 )
0.1
1
.234
.241
.244
.247
2
.238
.244
.250
.252
3
.239
.245
.251
.254
5
.242
.248
.254
.256
10
.249
.254
.260
.261
0.2
1
2
3
5
10
.192
.188
.192
.194
.200
.203
.200
.204
.206
.213
.212
.210
.211
.214
.223
.219
.220
.221
.224
.231
0.3
1
2
3
5
10
.156
.152
.155
.158
.166
.171
.166
.168
.170
.178
.180
.175
.178
.183
.188
.191
.187
.188
.193
.199
0.4
1
2
3
5
10
.131
.126
.130
.132
.138
.145
.140
.142
.145
.152
.155
.149
.151
.155
.161
.166
.160
.162
.167
.175
0.5
1
2
3
5
10
.113
.109
.109
.114
.121
.126
.120
.124
.126
.131
.136
.130
.132
.134
.143
.146
.141
.143
.146
.152
0.6
1
2
3
5
10
.098
.095
.098
.101
.108
.110
.106
.108
.113
.1.17
.119
.115
.118
.120
.128
.130
.125
.126
.131
.137
Flow Rate
(cf 8)
1
2
3
5
10
100
.00278
.00443
.00573
.00801
.0120
250
.00416
.00808
.00746
.0105
.00999
500
.00556
.00876
.0125
.00862
.0238
1,000
.00683
.0102
.0132
.0202
.00919
3,000
.00154
.00140
.00176
.00257
.00364
10,000
.00119
.00159
.00213
.00294
.00490
25,000
.00151.
.00235
.00314
.00440
.00717
50,000
.00201
.00321
.00418
.00585
.00942
100,000
.00272
.00409
.00533
.00797
.00593
200,000
.00346
.00570
.00699
.0101
.0156
750,000
.00461
.00600
.00812
.0112
.00825
111—147
-------
APPENDIX E
IMCO/GESAMP GUIDELINES FOR PROFILING
HAZARDOUS MATERIALS
This appendix contains the IMCO/GESAMP guidelines for
profiling hazardous materials in five hazard potential areas:
• BioaccumulatiOfl
• Damage to Living Resources
• Hazard to Human Health, oral intake
• Hazard to Human Health, skin contact and inhalation
(solution)
• Reduction of Amenities
Also included in this appendix is a sample page 1 which
illustrates the profiling operation.
“Report of an Ad Hoc Panel of IMCO and GESAMP Experts to
Review the Environmental Hazards of Noxious Substances other
than Oil Transported by Ships,” Joint Group of Experts on the
Scientific Aspects of Marine Pollution, London, England,
1073/73.
111—149
-------
LEGEND TO THE HAZARD PROFILES 1
_____ A - Bioaccumulation
Bioaccumulated and liable to produce a hazard
to aquatic life or human health
o Not known to be significantly bioaccumulated
Z Short retention of the order of one week or less
T Liable to produce tainting of seafood
Column B - Damage to living resources
Rat ing ___
4 Highly toxic
3 Moderately toxic
2 Slightly toxic
1 Practically nontoxic
o Nonhazardous
BOD Problem caused primarily by high
oxygen demand
D Deposits liable to blanket the
sea floor
Column C - Hazard to human health, oral intake
Ratings ____
4 Highly hazardous
3 Moderately hazardous
2 Slightly hazardous
1 Practically nonhazardous
o Nonhazardous
Column
+
TL
<1 ppm
1—10 ppm
10—100 ppm
100—1000 ppm
>1000 ppm
LD 50
<5 mg/kg
5-50 mg/kg
50-500 mg/kg
500—5000 mg/kg
>5000 mg/kg
111—150
-------
Column D - Hazard to human health, skin contact
and inhalation (solution )
II Hazardous (solution)
I Slightly hazardous (Solution)
o Nonhazardous (solution)
Column F — Reduction of amenities
Ratings
xxx Highly objectionable because of persistency, smell
or poisonous or irritant characteristics; beaches
liable to be closed
xx Moderately objectionable because of the above
characteristics, but short-term effects leading
to temporary interference with use of beaches
x Slightly objectionable, no interference with
use of beaches
o No problem
All Columns
Ratings in parentheses ( ) indicate insufficient data
available to the Panel on specific substances, hence
extrapolation was required.
111— 1 .5 ].
-------
SAMPLE
HAZARD PROFILE OF SELECTED SUBSTANCES
Hazard to
human
health
o •
0
.lJ l 4. )-r-4
Substances 0 Remarks
, 0u) ( i 4 Jl 4 cn
-l. )Q ) 4J Q
2 U 0. •’-4 •- •.-4
0 w .- o 4 4 J 4 _)
0 0 -l3 Q.,-(
nj O -
o Lu) “UO ‘ w
( ) 4 05
o 0
A B C D E
Acetaidehyde 0 2 1 0 x
Acetic acid 2 0 0 0
Acetic anhydride 0 2 0 0 0
Acetone 0 1 0 0 0
Acetone cyanohydrii 0 4 3 II xx
Acetonjtrjj,e
(methylcyanide) 0 0 1 0 0
Acetyl chloride 0 2 1 0 0
Acrolein T 4 3 I xxx
Acrylic acid 0 (2) 1 I xx
Acrylic latex 0 ? 0 0 xx ? in Column B due
to possible pre-
sence of unknown
inhibitors.
Acry lonjtrj] .e 0 3 3 II xxx
Adiponitrile 0 1 3 I x
Aidrin 4 2 I xxx
Alkyl benzerie
sulfonate
(straight chain) 0 2 1 0 0
(branched chain) 0 3 1 0 0
Allyl alcohol 0 3 2 0 xx
Allyl chloride 0 2 2 0 xx
Allyl isothiocyan—
ate 0 (2) 2 II xx
Alum (l5%solution) 0 1 0 0 0
Alumina C D 0 0 0
Aluininwn phosphide 0 (3) 4 II 0
SAMPLE
111—152
-------
APPENDIX F
IMCO/GESAMP GUIDELINES FOR CATEGORIZING
HAZARDOUS MATERIALS
This appendix contains the IMCO/GESAMP 1 guidelines for
categorizing hazardous materials on the basis of their
hazard profiles (see Appendix E).*
Category A Substances which are bioaccumulated and liable
to produce a hazard to aquatic life or human health,
or which are highly toxic to aquatic life (as
expressed by a Hazard Rating 4, difined by a TLm
less than 1 ppm); and additionally certain substances
which are moderately toxic to aquatic life (as
expressed by a Hazard Rating 3, defined by a
TLm of 1 or more, but less than 10 ppm) when
particular weight is given to additional factors
in the hazard profile or to special characteristics
of the substance.
Category B Substances which are bioaccumulated with a
short retention of the order of one week or less,
or which are liable to produce tainting of the
sea food, or which are moderately toxic to
aquatic life (as expressed by a Hazard Rating
3, defined by a TLm of 1 ppm or more, but less
than 10 ppm); and additionally certain
substances which are slightly toxic to
aquatic life (as expressed by a Hazard Rating
2, defined by a TLm of 10 ppm or more, but
less than 100 ppm) when particular weight
is given to additional factors in the hazard
profile or to special characteristics of the
substance.
Category C Substances which are slightly toxic to aquatic
life (as expressed by a Hazard Rating 2, defined
by a TLm of 10 or more, but less than 100 ppm),
and additionally certain substances which are
practically non—toxic to aquatic life (as
expressed by a Hazard Rating 1, defined by a
1 ”RegulatiorLs for the Control of Pollution by Noxious Liquid
Substances in Bulk, Annex II,” International Conference on
Marine Pollution, October 31, 1973.
*These categories are used under the INCO convention to deter-
mine operational discharge requirements for ships transporting
hazardous materials
111—153
-------
TLjn of 100 ppm or more, but less than 1,000 ppm)
when particular weight is given to additional
factors in the hazard profile or to special
characteristics of the substance.
Category D Substances which are practically non-toxic to
aquatic life, (as expressed by a Hazard Rating 1,
defined by a TLm of 100 ppm or more, but less than
1,000 ppm); or causing deposits blanketing the sea-
floor with a high biochemical oxygen demand
(BOD); or highly hazardous to human health,
with an LD 50 of less than 5 mg/kg; or produce
moderate reduction of amenities because of
persistency smell or poisonous or irritant
characteristics, possibly interfering with use
of beaches; or moderately hazardous to human
health, with an LD5O of 5 mg/kg or more, but
less than 50 mg/kg and produce slight reduction
of amenities.
Other Liquid Substances (for the purposes of Regulation 4
of this Annex)
Substances other than those categorized in
Categories A, B, C and D above.
In reviewing the guidelines of the IMCO subcommittee,
an attempt was made to obtain a precise definition of the
expressions “additional factors” and “special characteristics”
of the substances. Although a complete clarification of
these expressions was not possible, it was determined
that they referred in part to a sub-system devised by the
committee for considering multiple effects. This sub-system
is illustrated in the following table. This table shows
that a given hazardous material can be placed in a higher
category when its ability to exert multiple effects is
considered. For example, the major criteria for Category A
substances are bioaccumulation (+ rating) or high aquatic
toxicity (4 rating); however, moderately toxic materials
(3 rating) which are also tainting to fish (T rating) can also
be placed in Category A.
I]1— 154
-------
TABLE F-i
SUB—SYSTEM FOR CATEGORIZING HAZARDOUS MATERIAL*
IMCO/GESAI4P
Hazard Profile ___
A B C D
Category A
+
—
-
:
-
Category B
T
Z
—
-
-
3
-
-
—
-
-
—
Category C
—
-
-
—
—
2
1
-
1
—
—
4/3
-
—
4
—
xx
xxx
—
—
Category D
-
-
-
D(BOD)
3
-
x
xx
*NOTE: This system was developed by the working group at
the 1973 International Convention for the Prevention
of Pollution from ships. The hazard profile ratings
are based on the work of the IMCO/GESAMP ad hoc
committee of experts (see Appendix E).
111—155
-------
REFERENCES
1. “Regulations for the Control of Pollution by Noxious Liquid
Substances in Bulk, Annex II,” International Conference on
Marine Pollution, October 31, 1973.
II I- 156
-------
APPENDIX G
TABLE OF IMCO METHODOLOGY
CLASSIFICATION OF HAZARDOUS MATERIALS
This appendix contains hazard profiles and hazard categories
for the hazardous materials. Materials were profiled and
categorized in accordance with the IMCO/GESAMP guidelines
contained in Appendices E and F. The reader should refer
to these appendices for the key to the hazard profile syithols
and hazard category definitions.
Physical/chemical profiles are also contained in this appendix.
The physical/chemical group symbol (Roman numeral) is
used to enter the adjustment factor table in Appendix I.
111—157
-------
REFERENCES AND NOTES TO TABLE OF
IMCO METHODOLOGY CLASSIFICATION OF HAZARDOUS MATERIALS
1 Profile differs from that of IMCO on the basis of data reported in Appendix A.
2 Category agrees with IMCO category.
3 Category differs from IMCO category.
4 Tnis material concentrates in biota, but not to a degree that threatens higher trophic levels
and therefore the hazard is not related to bioaccumulation Der se.
5 For material categorized on the basis of long tern bioaccumulation potential, the physical/chemical
profile is based on the insoluble precipitate which may form over long periods of time in the environment.
H
H
Appendix E for discussion of symbols used in Hazard Potential Frcfile.
NP = Non-persistent V = Volatile
P = Persistent NV = Nonvolatile
F = Floats S = Soluble
= Mixes I = Insoluble
SK = Sinks NOTE: See Appendix I for full description cf each
of these physical/chemical characteristics.
CI azard potential(s) upon which assignment to category was based are underlined.
Hazard potential(s) which, in combination, cause material to he assigned to category are overscored.
Parentheses indicate assumed values.
aunder “Damage to Living Resources’ and “IMCO Category”, the diagonal is used to distinguish between
freshwater and saltwater values (freshwater value/saltwater value).
eSee Appendix I for discussion of “Physical/Chemical Groups” and adjustment factors for these groups.
under “Solubility” and “Physical/Chemical Group”, the diagonal is used to distinguish between the
pure and wettable form of certain pesticides (pure form/wettable fern).
pesticide with both pure and wettable forms.
-------
HAZARD POTENTIAL POFfl. 5 • C
PHYSICAL/CHEMICAL [ ,ROFILEb
Da.Iage° H* an Eu*an P.educ- J PRYSICAL/
Bioaccu— to Living Healt1 Health tion of INCOd IPersis- Vola- Solu-1 CHEMICAL
Mulation Resources (oral)l(external) AJ enitie1 CATEGORY tence Behavior tility bilityl GROUP 5 ’
Hazardous Material
Acetaldehyde
0 2 1 0 X C 2 NP F V S VIII
Acetic acid
0 2 1 0 0 C 2 NP H XII
Acetic anhydride
0 2 0 0 C 2 NP H X II
Acetone cyanohydrjn
0 (2)1 II C 3 NP M XII
Acetyl broi ide
0 (1) (1) 0 0 D NP SR S XIII
Acetyl chloride
o (1)1 1 0 0 D 3 NP U XII
Acrolein
4 3 I X XX A 2 NP F V S VIII
Acrylonitrile
0 21 II x oc C 3 NP F V S VIII
Adiponitri le
0 21 I X D 2 NP F NV S X
Aldrin 9
± 4 2 I XXX A P SK I/S
Allyl alcohol
2 0 XX NP F V S VIII
Allyl chloride
0 1 0 XX 3 i P F V S I
Aluminum fluoride
0 ( ( 1 0 0 P SX S VI
Aluminum sulfate
0 ii 0 0 D 2 P SR S VI
Ammonia
-
0 3 (1) I 0 B 2 NP F V S VIII
Ammonium acetate
0 (2) 0 0 D NP N XII
Ammonium benzoate
0 (1) (1) 0 0 D NP SR S XIII
1-4
I- I
‘I I
p- I
0
-------
T) POTENTIAL PROFILEa ,c
PHysIcAL/cHEMIM PROFILEb
Damageb Human I Human Reduc- I I PHYSICAL/
Bioaccu— to Living Healtb Health tion of I 1 0 d (Persia— Vola- Solu— CHEMICAL
uiulation Resources (oral)J(external) Amenitiesf CATEGORY j tence Behavior tility bilityl GROUpe,
Hazardous Material
Aninonium bicarbonate
0 (2) (1) 0 0 C NP SE S XIII
Azumonium bichromate
2 0 0 D NP SE S XIII
Aminonium bifluoride
0 (1) 0 0 D NP SE S XIII
Ammonium bisulfite
0 (1) (1) 0 0 D NP SE s x i i i
Asmonium bromide
0 (2) (2) 0 0 C NP SE S XIII
() (3) (2) 0 0 H NP sic S XIII
Ainmonium carbainate
Ammonium carbonate
2 /
(2) 0 0 C NP SE S XIII
0 7(2)
AlTtmonium chloride
0 (2) 0 0 B NP SE S XIII
i/
(2) 0 0 D NP SE 5 XIII
Aminonium chromate
Ammonium citrate
0 (1) (1) 0 0 D NP SE S XIII
Anunonium fluoborate
0 (2) (1) 0 0 C NP SE S XIII —
Ammoniuin fluoride
2 0 0 D NP SE 5 XIII
0 7 ( 1)
Ammoniulfi formate
a (1) i a a D NP SE S XIII
Aminoniufli hydroxide
0 7 ( ) (1) 2 0 C NP M
Amnonium hypophosphite
0 (3) (2) 0 0 B NP SE S XIII
‘-I
H
I-a
0
-------
HAZARD POTENTIAL PIE)FILEa, C
PHYSICAL/CHEMICAL PROFILEb
Da_ageb Hi an H an R.duc- I I 7 - - PHYSICAL,
Bioaccu- to Living Healt I4 Health tion of INCOd ‘ersis- Vola- Solu- CHEMICAL
aulation Resources (oral)I(sxt.rnal) Aaenitiel CATEGORY tence Behavior tility bility CROUPe,
Hazardous Material
A niu iodide
0 (2) (1) 0 0 C NP SE S XIII
A niu solybdate
0 (2) 2 0 0 C NP SE S XIII
Ams niu nitrate
0 (3)1 (1) 0 0 B 3 NP SE S XIII
A nius ozalate
0 (1) (1) 0 0 0 NP SE S XIII
Aaaoniua pentaborate
0 (2) (1) 0 0 C NP SE S XIII
A nius porsulfate
0 (2) 1 0 0 C NP SE S XIII
Aonium silicofluoride
o (1) 0 0 C NP SE S XIII
A nium sulfa_ate
0 1 0 0 0 NP SE S XIII
A snoniua sulfate
0 (3) 1 0 0 B NP SE S XIII
A niua sulfide
0 (1) 0 0 0 NP SE S x i i i
Ajiuuonium sulfite
o (1) o o 0 NP SE S XIII
A unoniua tartrate
0 (1) (1) 0 0 0 NP SE S XIII
?*a_oniuiu thiocyanate
0 (2) 0 0 D NP SE
Ani niuzn thiosulfate
0 (!) (1) 0 0 D NP SE S XIII
Anyl acetate
0 2 (1)1 0 X C 2 NP F NV I XI
Aniline
7i > 11 II XX C 2 NP H XII
Antisony pentachioride
o (2) 4 0 X C P SI( S VI
H
H
l. I
0
I-a
-------
HAZARD POTENTIAL PROFILE 5 C
PHYSICAL/CHEMICAL PI O!ILEb
Hazardous Material
Damageb B an Rian Rsduc— I PHYSICAL!
Bioaccu- to Living Healtl4 Health tion of I iicod IPersis- Vola- Solu- CHEMICAL
mulation ReourCes (oral)I(ezternal) Amienitiell CATEGORY tence Behavior tility bilityj GRDupe,
Antimony pentafluoride
- 4’2 (2) - 0 - X - B/C - P - SR S VI
Antiaony potassium tartrate
2 0 X C P SR S VI
Antimony tribra.ide
(2) (2) 0 X C P SR S VI
Antimony trichioride
1 0 X C P SR S VI
Antimony trifluoride
(2) 2 0 X C P SR S VI
Antimony triiodide
o (2) (2) 0 X C P SR S VI
Antimony trioxide
(l) 01 0 X D P SR S VI
Arsenic acid
+ (3) 0 0 A P SR S VI
Arsenic disulfide
+ (3) 0 0 A P SR I VII
Arsenic pentoxide
± 3 0 0 A P SR S VI
Arsenic tribroinide
4. ( ) (3)1 01 0 A P SR S VI
Arsenic trichioride
+ ( ) “ (3)1 01 0 A P SR S VI
— (3)
Arsenic trifluoride
± (3) 0 0 A P SR S VI
--
Arsenic triiodide
+ (2) (3) 0 0 A P SR S VI
Arsenic trioxide
+ (2, ’ 31 0 01 A SR
— (3)
Arsenic trisulfide
± (2) (3) 0 0 A P SR I VII
H
H
I 1
I—a
t.-)
-------
HAZARD POT IAL PRDFILE 5 ’ C
- PHYSICAL/cHEMICAL PROFILEb
Hazardous Material
R an I Hen Rsduc- I I J PHYSICAL/
Bioaccu- to Living H.altI4 Health tion of I I* 0 PersiR- Vola— Solu- I EMICAL
uiation Re.ourc.. (oral)I(external) Aaenitie CATEGORY tence Behavior tility bilit4 GROUP
B.nzene
0 2 O 0 X C 2 NP P V I IX
Benzoic acid
0 3. 0 0 D NP SR S XIII
Bensonitrile
0 (2) II XX C NP H XII
Benzoyl chloride
0 (1) (2) I xx D NP M XII
Benzyl chloride
0 (1)1 (2) I XX NP SR I XIV
Bery1li chloride
(1)1 2 0 0 D P SR S VI
S.ryllit fl ride
(3 _ ) (2) 0 0 B/C P SR S VI
Bezyl1i hydroxide
(2) (2) 0 0 C P SR I VII
Berylliu nitrate
(2) 0 0 0 P SR S VI
Bery11i sulfate
( 2 0 0 0 P SR S VI
Brucine
(Z) (2)Y 0 B/A P SR S VI
7 i i) -
Butyl acetate
0 21 1 o x 1 c 3 NP F NV S X
Butyl same
0 1 0 X C NP P V S VIII —-
Butyric acid
I 0 X B 2 NP N XII
H
H
‘ ii
I- .
-------
HAZARD POTENTIAL pROFILEa, C PHYsIcALfcHE?Uc A L pi ori i
Damageb Human Human Reduc— I I PHYSICAL!
BioacCu- to Living Health Health tion of I iwod I ersis- Vola Solu- I CHEMICAL
Hazardous Material utulation Re.ourcee (oral)j(external) Amenities CA!PZGORY tence Behavior tility bilityl GROUP
Cadmium acetate ± (3) (2) 0 0 A P SR [ S VII
Cadmium bromide ± (3) (2) 0 0 A P SR 1 S VII
3l_ S
Cadmium chloride ± ___i 2)l 2 0 0 A 2 P SR I VII
Cadmium nitrate ± (3) 2 0 0 A P SR 1 S v i i
Cadmium sulfate + (3) 2 0 0 A P SR 1 S VII
Calcium arsenate + (2) 21 0 XX A P SR I VII
H Calcium arsenite + (2) 21 o xx A P SR 1 S VII
H
Calcium carbide 0 (1) (1) 0 0 0 NP SR S XIII
Calcium chromate o (2) 0 0 0 P sic S VI
Calcium cyanide 0 (4) 31 0 A NP Sic S XIII
Calcium dodecylbenzenesulfonate 0 2) (1) 0 X C NP Sic s x i i i
Calcium hydroxide o 0 0 0 02 NP SR s xii i
___________________________________ ,— _(1)
Calcium hypochiorite 0 o 1 x A/B NP SR S XIII
Calcium oxide 0 (].) (0) 0 0 D NP Sic S XIII
XIV
Captan o1 7” 4) ( 3) 0 x x A NP SI i/s
Carbon disulfide o1 __ - 1 2 I XXX C 3 P SIc S VI
-------
HAZARD p u w. PRDPIL!agC pays ICAL/CHEIUCAL Pl )FILEb
ED,aJ.agsb 1 Ht Sfl I Hi an I R.duc- I
Bioaccu— to Living a.aiti4 Maalth I tiom of ersis vole solu
CHEMICAL
Hazardous Material ‘ enitis C* GOXX tence Behavior tilit; bi1it •
Cat.cbol 0 2 1 0 0 C NP SX S XIII
Chlordene ± 4 2 I XX X A P sX I/S
Ch lorin. 0 4 MA I I XX A 2 NP SK S X 1 11 4
Ch lorob.nzen. (!) 1 0 K B 2 P SK I VII
__________________________________ —__(2)
Ch1orofor 1 (1)1 1 0 XX B 2 P SX I VII
Chlorosulfonic acid 0 (1) i o c2
________________________________ ( 1)l NP SX S XIII
H Chr .ic acetate ? f ) 0 B/C P SK S VI
H ___________________ ______________________________________________________
H
Chronic acid 21 0 0 C P S VI
H ___________________ ____________________________________________________
0 i
Chrcsic sulfate (3) - ’ (1) 0 0 B/C P SK S VI
__________ 7(i)
Chr ous carbonate (1) 0 0 B/C P SX S VI
___________________________ (g)
chro.Ous chloride (3) (1) 0 0 B P SK S VI
Chr ou8 oxalate
(1) 0 0 B/C P SI( S VI
______________ -12)
Chromyl chloride (2)
(1) 0 0 C/D P SK S VI
Cobaltous acetate (2) 0 0 C/D P SK S VI
Cobaltous bromide (2) 0 0 C/D P sx S v i
Cobaltous chloride (2L- (2) 0 0 C/D P SK VI
(2)
(2) 0 0 C/D P SX S VI
Cobaltous Citrate / ‘ ‘ 1) - - ____ - - - -— ——
-------
HAZARD POTENTIAL pJ 5 )p 1 a C
PHYSICAL/CHEMICAL PI )FILEb
Damageb Human J Human Reduc- I PHYSICAL!
Bioaccu- to Living Healtbl Health tion of I 1 0 d persis- Vole— 501 - CHEMICAL
mulation Resources (oral)j(external) A nenitie CATEGORY tence Behavior tility bility GROUPe f
Hazardous Material I
Cobaltous fluoride
(2) 0 0 C/D P SE S VI
(1)
Cobaltous formate
(2) 0 0 c/v p sic S VI
(1)
Cobaltous iodide
2 0 0 C/O p SE S VI
(0)
Cobaltous nitrate
2 0 0 c/v p SE S VI
(1)
Cobaltous perchiorate
(2) 0 0 dO P SE S VI
(0)
Cobaltous succinate
(2) 0 0 C/v P SE S VI
—• (1)
Cobaltous sulfanate
(2) 0 0 c/v P SE S VI
-(l)
Cobaltous sulfate
(2) 0 0 C/v P SK S VI
(1)
Co phos g
0 4 3 I xxx A P 51< I/S
Cresol
T 1 I XX B 3 NP N XII
cupric acetate
1 0 0 C/B P SE S VI
Cupric acetoarsenite
± (3)1 (3) 0 XX A P SK I VII
Cupric acetylacetonate
(3) 0 0 B P SE S VI
Cupric br iide
o 4 (3) (1) 0 0 B P SE S VI
Cupric chloride
o (3) (1) 0 0 B p S1( S VI
(3) (1) 0 0 B P SE S VI
Cupric formate
Cupric gluconate
(1) 0 0 B/C P SK S VI
H
H
o.t
-------
HAZARD POTZN?IAL P )FILEa.C
PRYSICALIcHEI4ICAL P R OFILEb
H
H
I;l
Hazardous Material
th an I Huaan Maduc- I I 1 PEYSICAL/
Bioaccu- to Living Health Health tion of I x,,cod er.is- Vola- S 0 1 - I CHEMICA
u1ation Resources (ora1) exti,rna1) asniti..( CATEGORY tence Behavior tility bilityl GROUP
Cupric glycinate
(3) (1) 0 0 B P SK S VI
Cupric lactate
4 (3) (1) 0 0 B P SX S VI
Cupric nitrate
(3) 1 0 0 B P SI( S VI
Cupric ozalate
(3) (1) 0 0 B P I VII
Cupric suhacetate
(3) 1 0 0 B P SK S VI
cupric sulfate
(3) 2 0 0 B P SE S VI
Cupric sulfate aoniated
4 (3) (3) 0 XX B P SE S VI
Cupric tartrate
( ) (1) 0 0 B P SE I VII
Cuprous brceide
(1) (1) 0 0 B P 5K I
Cuprous iodide 0 ( ) (1) 0 o B p 5K i VII
Cyanogen chloride 0 4 (2)1 II XX A P M
Cyclohexane
0 0 0 C 2 NP F V I ix
2,4—D
(2) 0 XX 1 D/B NP 5K I/S
XIII
2 ,4—0 (esters) g
3 (2) 0 XX 1 B NP SK I/s X _,
Dalapon
0 (1) 0 0 D/B P SK S VI
)fyp
+ 4 2 0 XXX A P SK I/S V 3_
- VI
j 1 jfl 0 fl
2 0 XX A NP SK i i ’s
(j) x i i i
-------
NaThan pn’rp,ppTaT. Danvl-rpa,C
PHYSIAL/CHEMIAL PROFILEb
Damage 1 Huaan Human J Reduc— I 1 PHYSICAL/
Bioaccu— to Living Healt3 Health tion of I 0 d IPersis- Vole- Solu- I CHEMICAL
mulation Resources (oral)I(external) Amenitie CATEGORY tence Behavior tility bility GROUP
Hazardous Material
Dicamba
0 2 1 0 0 C P SR S VI
2 VII —
0 (1) 0 0 c/B P SR I/S
VII ‘
0 4 1 I XXX A P SR I/S
Dichiorvos
0 4 2 I XXX A P SR S VI
VII
± 4 3 I XXX A P SR I/S ,/
Diethylamine
0 (2) I X C 2 NP F V S VIII
Dieethylamine
0 (2) 1 I X 1 C 2 P F V S VIII
Dinitrophenol
(2)1 3 I XXX B NP SR S XIII
Diquat
0 2 0 XX c/B P SR S VI
Djsu lfOtOn 9
VII ‘
0 !,/ I) 3 I XXX A P SR I/S
—— VII
0 3 21 0 XX B P SR I/S
Dodecylbenzenesulfonic acid
0 / ) 2 0 X C/B NP SIC S XIII
VII
0 4 2 I XXX A P SI c I/S
VII
01 4 2 I XXX A P SR I/S
VII
± 4 3 I XXX A P SR I/S -“vx
4 / VII,”
0 /( ) 3 I XXX A P SR I/S
H
H
I—
0•i
-------
HAZARD PGT I?IAL P PTLR • C
PHYSIAL/CHEIIICAL PROFILEb
Hazardous Material
H an I Th an R.duc- I I - - PHYSICAL/
ioaccu— to Living HealtbI Health tion of I 1 0 d ersis- Vole- Solu- I CHEMICAL
ulation Resources (oral)I(.xt.rnal) kasnit.ieaj CATEGORY tence Behavior tility bilityl GROUP 5 ’
Ethylbensene
0 7’ ’2) o c 2 v x x i
Ethy l.nediamine
0 2 i x x C 2 NP N XI I
EDTA
0 (1) 2 0 0 D P SK I VII
Ferric aoniun citrate
0 (1) 0 X C P SK S VI
—
Ferric chloride
0 1 0
X C P SF S VI
Perric fl rjde
o (1) 0 F C P SF S VI
Farric nitrate
o / ‘2) (1) o X C SF S VI
Ferric phosphate
0 (1) 0 X C P SF I VII
Ferric sulfate
0 (1) 0 X C P SF S VI
Ferrous oniua sulfate
o (1) 0 X C P SF S VI
Ferrous chloride
0 (1) 0 X C P SF S VI
Ferrous oxalate
o (a / ) (1) 0 X C P SF I VII
Ferrous sulfate
0 1 0 X C P SK S VI
Formaldehyde
2/1 il Xl NP F V S I
0 —/ ( )
Formic acid
0 ! /‘ l 1 i o D / 3 Np N XII
H
H
I-I
-------
HAZARD PO AL p p 1 a , c PYSICAL/CHEMI C AL
FDamagab I Human Human I Reduc- I
Bioaccu-Ito LivingIRea1tl1 Health tion of I 1 0 d arsis- Vola Solu PHYSICAL/
CHEMICAL
Hazardous Material mulationlResourcesl (oral) 1 (external) I anitie CATEGORY kence Behaviorjti1it;lbi1itJ GROUPO,f
Fumaric acid o (2) 0 X 0 NP SR S XIII
Furfural 0 7 i ) 2 0 x C NP M XII
VI I —
0 ± 3 I XXX A P SR I/S ,VVI
VII —
HeptaCh lor 9 ÷ 4 2 I XXX A P SR I/s
Hydrochloric acid 0 (1) 0 0 NP SR S XIII
HydrofluoriC acid 0 2 01 0 NP N S XII
Hydrogen cyanide 0 4 41 II 0 A NP N XII
H ____________________
H
H Hydroquinofle 0 2 0 0 B NP SR S XIII
_____________________ —
—4 Hydroxylamifle 0 (1) (1) 0 0 0 NP H XII
Isoprene 0 _ . _ <; )1 (0) 0 X 1 C 3 NP F V I IX
Isopropanolamine dodecylbenzene- 0 (2) (1) 0 X C NP SR S XIII
sulfonate —
VI I_-
0 1 I XXX C P SR
1 0 0 A P SK I VI-
Lead acetate ± (1) — VI
Lead broside ± (1) 0 A SR VII
(1)
______________________________________ ( 1 )
Lead chloride + 1 1 0 0 A P SR I VII
Lead fluoborate ± 2 0 0 A P SR I VII
(1)
-------
BAZA P Jr TIAL P PTL 5 . C
PHYSICAL/cx acaL PEGYILEb
DISBG.b H%5*% I H sn Mduc- I I I PRYSICAL/
Bioaccu- to Living 5sait1 Bealth tion of I ncod ersis- Vola- Solu- I CHEMICAL
ilation RSSOUZCS. (Or&1)I(SXtSrflal) a4ti.4 CATEGORY tenc. Behavior tility bility GMOuP’
Hazardous Material
Lead fluoride
+ (1) 1 0 0 A P SR I VII
Lead iødid.
± (1) (1) 0 0 A P SR I VII
Lead nitrate
+ (1 o o a p sx VII
Lead stsarat.
+ U) (1) 0 0 A P SR VII
Lead .fate
± U) (1) 0 0 A P SR I VII
Lead sulfide
+ (1) (1) 0 0 A P SR I VII
Lead t.tra.cetat.
± (1) (1) 0 0 A P SR I VII
Lead thiocyanat.
+ (1) (2) 0 0 A P 5K I VII
Lead thiosulfat.
± (1) U) 0 0 A P SR I VII
Lead tunqstat.
± (1) (1) 0 0 A P SR I VII
Linden.
± 4 2 0 XX A P SR I/S v i /
‘VI
Lithi bichronat.
(1) (2) 0 0 D P SR S VI
Lithiu* cI rc.ate
o (1) (2) 0 0 D P SR S VI
Lithiu fluoride
0 2 0 0 B/D P SR S v i
/ _(1)
0 4 1 0 XX A P SR I/S
Maleic acid
-
1 0 0 D NP SR S XIII
,- (1)
Maleic anhydride
0 (1) 1 0 I D NP F tiv s x
H
H
H
-4
I.- ’
-------
p( L’I 1 TkT pD( vTyv& C
PHYSICAL/CHEMICAL P ROFILEb
Hazardous Material
Dan%ageb Hu s an Reduc— PHYSICAL!
mulation Resources (oral) (external) Amenitie CATEGORY kence haviOr tilityj1itY GROUP
Bioaccu _ !to Living 1 Hea1 1 Health tion of INcod ersis- vola Solu- CHEMICA
Mercuric acetate
+ (4) (3) 0 0 A P SK VII
Mercuric chloride
± (4) 41 0 0 A P SR I VII
Mercuric nitrate
± (4) (3) 0 0 A P SR I VII
Mercuric oxide
± (4) (2) 0 0 A P SR I VII
Mercuric sulfate
± ( ) (2)1 0 01 A P SR I VII
Mercuric thiocyanate
± ( ) ( ) 0 0 A P SR I VII
Mercurous nitrate
+ (4) (3) 0 0 A P SR I VII
I-I
H
I-J
‘ -3
1 )
Methyl znethacrylate
0 4 1 I XXX
Methyl p 5 j 0 fl
MeVinphOs
A
Methyl ercaptan
3-,
0 (3) I XX B P F V S
0 o1 0 X V I
/‘ U i
P SR
0
3
D 3 NP F
I XX B/A NP SR
IX
0 (1) I x x A NP SR S
Molybdic trioxide
0 ! ,/‘ 2 0 0 D F SR S VI
/ _(1)
Monoethylamifle
0 - / 2 I X B NP F V S VIII
/‘_(2)
Monomethylamine
0 // I X B NP F V S VIII
/ (2)
N’ 1ed
0 2 I A NP SK I XIV
I/S
X III
XIII
-------
HAIARI) PG? IPTAL DRfl TIN ‘C PHYSICAL/CH IICAL PROFILE 1 ’
Da age 1’ Huaan Human Reduc— I I P hYSICAL,
Bioaccu— to Living Health Health tion of I INCOd IPersia- Vola- Solu- j ChEMICAL
iulation Reiources (oral)I(external) A enitie.( CA?EGORY tence Behavior tility bilityt GROUPe f
hazardou5 Material
-
Naphthalene
-
T 1 0 X A P SE I VII
Naphthenic acid
( ) /‘ (1) 0 X A 2 P SE S VI
‘-(3)
Nickel acetate
0 ( ) (1) 0 0 D P sic S VI
Nickel aonium sulfate
0 (1) (2) 0 0 D P SE S VI
Nickel bro.ide
0 (1) (3) 0 0 D P SE s v i
Nickel chloride
0 (1) 3 0 0 D P sic S VI
Nickel for ate
a (2 /’ (2) 0 0 C/D P SE S VI
7W
Nickel hydroxide
o ( ) “ (2) 0 0 C/D P SE I VII
7W
Nickel nitrate
0 Wy’ (1) 0 0 D P S s v i
W
Nickel sulfate
3 D VI
Nitric acid
(2)1 Ii C 2 /D 3 NP S XIII
Nitrobenzene
o 1 0 X D P Sic S
Nitrogen dioxide
NitrOphaflOl
(2) C/D NP sic s xi ii
T ,‘ 2 I X i i B P SK S VI
Paraformaldehyde
(2)
,%) 1 I X C/D NP SE s x l i i
parathiong
VII /
0 4 31 II XXX A P SE I/S / vi
H
1-4
H
-4
J C)
=
- -
4
-------
HAZARD POTENTIAL PROFILEa,c
PHYSICAL/CHEMICAL PROFILEb
Hazardous Material
Danlageb u m an uu an Reduc- I PHYSICAL/
accu— to Living Hea1tb Health tion of I 1 0 d IPersis— Vola— Solu- CHEMICAL
lm.iation Resourcee (oral)I(external) 3unenjtie CATEGORY tence Behavior tility bility GROUPe,
Pentachiorophenol
,/. 1 I XX A P SE I VII
Phenol
T 2 11 32 NP N XII
Phosgene
(2) /
0 7(]) — 0 0 C/D NP SR S XIII
Phosphoric acid
0 / 0 I 0 NP SE S XIII
Phosphorus
01 4 31 (J(1 A 2 NP SR I XIV
Phosphorus oxychioride
0 , ‘l) (2) I XX C/D NP SE S XIII
Phosphorus pentafluoride
// ) (2) B/D NP SE
Phosphorus pentasulfide
0 (2) (2) I XX C NP SE S XIII
Phosphorus trichloride
Polychiorinated biphenyls
(2)
0 7/’ (2) I XX C/L) NP SR S XIII
+ 7/3 1 0 XX A SE i VII
Potassium arsenate
(1) 0 0 A P SE S VI
Potassium arsenite
+ (2) 1 0 0 A P SE S VI
Potassium bichromate
0 1 2 0 0 0 P SE S
Potassium chromate
o 1 2 0 0 0 P SIC S VI
Potassium cyanide
0 4 3 I 0 A NP SE S XIII
Potassium hydroxide
0 1 0 0 C 2 NP SE S XIII
H
H
-------
HAZARD POPENTTAT P VILER C
PHYSIL/cfiPMTt1.T PR1 PILE”
Hazardouc Material
DamageD Human I Human Reduc- I J PHYSICM../
Bioaccu— to Living Health Health tion of I ii cod Fersie- Vole- Solu- CHEMICAL
mulation Resources (oral)I(external) A snitie CATEGORY tence Behavior tility bilityf G e,
Potassium permanganate
0 1 0 XX B P SR - S
Propionic acid
0 1 0 01 D 2 NP N XII
Propionic anhydride
0 (p 1 0 0 D 2 NP K XII
Propyl alcohol
0 /‘ l 1 0 0 D 2 /0 NP F V S VIII
yr.trins g
Pyrogallic acid
0 /1) 1 0
3 0 0 B P SR S VI
Quinoline
( ) 2 0 0 A NP N XII
Resorcino l
1. 0 X B NP SR S XIII
Selenic acid
± (2) (3) 0 0 A P SX I VII
selenium oxide
± (3) 0 0 A P sx i v i i
S.vin*
VII/’
0 31 1 0 X B P SR I/S /vi
Sodium
0 (2) (1) 0 0 C NP N XII
Sodiua arsenate
± 1 2 0 0 A S VI
Sodium arsenite
4 31 0 0 A P SR S VI
Sodium bichrcmate
0 .‘ )l 21 0 0 D 3 P SK S VI
Sodium bifluoride
0 (2) 0 0 B/D P SR VI
H
H
i 4
-4
Ui
-------
HAZARD POTENTiAL p FILEa C
PHYSICAL/CHEMICAL PROPILEb
DamageL) Human Human Reduc- PHYSICAL!
Bioaccu— to Living Bealtt4 Health tion of INCOd Persis- Vola- 50 — CHEMICAL
mulation Resources (oral)I(external) M enitiesJ CATEGORY tence Behavior tility bilityl GROUP
XIII
Hazardous Material
Sodium bisulfite
2 0 0 D NP SR S
Sodium chromate
o ‘ ‘ ) (2) 0 0 1) P SR S VI
Sodium cyanide
o 4 3 0 0 A NP SR s x i i i
Sodium dodecylbenzenesulfonate
o (2) 1 0 X C NP SR S XIII
Sodium fluoride
o 2 0 0 B/D P SK S VI
Sodium hydrosulfide
o (2) (2) 0 0 C NP SR S XIII
Sodium hydroxide
o 1 I 0 C 2 NP SE S XIII
Sodium hypochiorite
(4)
o (3) 0 x A/B NP M XII
Sodium methylate
(1)
(1) 0 0 D/C NP M XII
3 2 B NP SR XIII
Sodium nitrite
Sodium phosphate (mono—basic)
o --‘ o o D P SR S XIII
Sodium phosphate (di-basic)
o - ii) (1) 0 0 D P SR S XIII
Sodium phosphate (tn—basic)
o (1) 0 0 D P SK 5 XIII
Sodium selenite
+ (2) 3 0 0 A P SR I VII
Sodium sulfide
o (2) (2) o 0 C NP SR S XIII
Strontium chromate
o (1) (2) 0 0 D P SR I VII
H
H
H
-------
HAZARD POTEMTIAL p p 5 • c
PHYSICAL/CHEMICAL PROFILEb
H
H
p 1
-J
Huflan I Human R.dUC I I
Bioaccu— to Living Hea1tl Health tion of 11 0 d er.is Vola 501 - i CHEMICAL
sulation Resources (oral)I(external) A enitie4 CATEGORY tence Behavior tility bilityl GROUP 5
Hazardous Material
Strychnine
.
(i.) 3 0 0 a v i i
Styr.ne
0 2 1 0 XX C 2 NP F V I IX
Sulfuric acid
o i o c 2 SR S XIII
Sulfur noch1oride
(2)
o (1) 0 0 C/B NP H XII
2.4.5—? (acid)g
0 21 0 XX B/A NP SR I/S
2 ,4 .5— ? (esters)
0 (1 2 0
XX C
NP SR
I/S
Tannic acid
2
0 0 0 0 C P H V
TDE*
4 v i i
+ 1 I XXX A P SR If S
Tetraethyl
(3) II XXX A 2 P SR I VII
Tetra.thyl pyrophosphate
4 I XX
A NP Pt XII
Tolnens
•
o 2 o o x c 2 NP F V I IX
?n .p .M p
VII -
z i 2 I XXX A P SR I/S - - -‘
— VI
Trichiorfon
1
0 2 0 0 D P SR S VI
Trichloropbeno l
T i xx A N p SR I XIV
Triethanolaine dodecylbenzene-
ulfonate
0 ( ) (2) 0 X C NP SR S XIII
Triethylamine
o 21 i x C 2 NP F V S VIII
-------
HAZARD POTENTIAL PROFILEa C
PHYSICAL/CHEMICAL PROFILEb
Damageb Human j Human Reduc— I I PHYSICAL!
Bioaccu— to Living Healt1 Health tion of I INcod jPersis- Vola- Solu- CHEMICA
ulation Resources (oral)I(external) Amenitiesi CATEGORY tence Behavior tility bilityl GROUP
NP VIII
Hazardous Material
Trimethylalnifle
0 (2) 2 I X C F V S
Uranium peroxide
o (1) (2) 0 0 D p SE I VII
Uranyl acetate
0 (2) 0 0 D P SR S VI
Uranyl nitrate
0 (1) (2) 0 0 0 P SE S VI
Uranyl sulfate
0 (1) (2) 0 0 D P SR S VI
Vanadium oxytrichioride
o (1) 2 0 0 D P SE I VII
Vanadium pentoxide
2
0 (2) 0 0 C P SE S VI
Vanadyl sulfate
22
o 4 0 0 C P SR S VI
Vinyl acetate
2
a i 0 x C 2 NP - M XII
Xylene
2
1 0 X C 2 P F V I II
Xylenol
0 (2) 2 0 X C NP SR S XIII
VII
Zectran*
2
o 3 o 0 C P SR I/S
Zinc acetate
(2) 1 C P SE VI
Zinc a onium chloride
( ) (2) 0 0 C P SR S VI
Zinc bichromate
o (2) (2) 0 0 C P SR I VII
Zinc borate
4 (2) (2) 0 0 C P SR S VI
H
H
1 i 4
I-J
- 1
-------
HAZARD I’UTENTIAL
PHYSICALfCIuo4ICAL PItOFILC
tamageb Human Buaan Reduc— d PHYSICAL!
Bioaccu- to Living Healt1 Hea1t tion of I INCO IPersis- Vola- Solu-1 CHEMICAL
mulation Resources (oral)I(external) enitie CATEGORY tence Behavior tility bi1ity cpoupe,f
Hazardous Material
Zinc broide
(2) (2) 0 0 C P SE S VI
Zinc carbonate
(2) (2) 0 0 C P SE I VII
zinc chloride
o ( .) 2 0 o C P S S VI
Zinc cyanide
(4) (2) 0 0 A NP 8 SE S XIII
Zinc fluoride
0 (2) (2) 0 0 C P SE S VI
Zinc for*ate
(2) (2) 0 0 C P SE S VI
Zinc hydrosulfite
(2) (2) 0 0 C P SE S VI
Zinc nitrate
(2) 1 0 0 C P SE S VI
Zinc per anganate
0 (2) (2) 0 0 C P SE S VI
zinc ph.nolsulfonate
(1)
,7<) (2) /C P SE VI
Zinc phosphide
(2) 3 0 0 C P SE I VII
Zinc potaasi% chromate
(2 (2) 0 0 C P SR I VII
Zinc propionate
(2) (2) 0 0 C P SE S VI
Zinc silicofluoride
(2) 2 o 0 C P SR S VI
zinc sultate
2
o (2) 0 0 C P SR S V I
H
H
0
-------
H
H
H
03
0
HAZARD POTENTIAL PROFILE 4 .C
PHYSICAL/CHEMICAL PROl ILEb
Damage 1 ’ Huan Human Reduc— I f PRYSICAL/
Bioaccu— to Living Health( Health tion of 1 0 d IPersis- Vola- solu- CHEMICAL
mulatjon Resources (oral)I(external) Amenities CATEGORY tence Behavior tility bility GR0UD
Hazardous Material
ZirconiuM acetate
o (1) (1) 0 0 I ) P SR S VI
ZirconiuM nitrate
(1) 1 0 0 D P SR S VI
Iirconii oxychioride
o 1 0 0 D P SR S VI
.
zirconiuM potassiue fluorIde
(3)/
o 7 (1) (1) o o B/D P SR S VI
ZirconiuM sulfate
0 1 0 0 D P SR S VI
ZirconiuM tetrachioride
0 (1) 1 0 0 0 P SR S VI
-------
APPENDIX H
HAZARDOUS MATERIALS
BY IMCO HAZARD CATEGORY
This appendix lists hazardous materials by hazard category.
Certain materials can be placed in two different categories
if there are substantial differences in their freshwater and
saltwater aquatic toxicities.
CATEGORY A
Acrolein Guthion
Aidrin Heptachior
Allyl alcohol (FW) Hydrogen cyanide
Acetic acid Lead acetate
Arsenic disulfide Lead bromide
Arsenic pentoxide Lead chloride
Arsenic tribromide Lead fluoborate
Arsenic trichioride Lead iodide
Arsenic trifluoride Lead nitrate
Arsenic triiodide Lead stearate
Arsenic trioxide Lead sulfate
Arsenic trisulfide Lead sulfide
Brucine (SW) Lead tetraacetate
Cadmium acetate Lead thiosuif ate
Cadmium bromide Lead tungstate
Cadmium chloride Lindane
Cadmium nitrate Malathion
Cadmium sulfate Mercuric acetate
Calcium arsenate Mercuric chloride
Calcium arSenite Mercuric nitrate
Calcium cyanide Mercuric oxide
Calcium hypochiorite (FW) Mercuric sulfate
Captan Mercuric thiocyanate
Chiordane Mercurous nitrate
Chlorine Methoxychior
Couinaphos Methyl parathion (SW)
Cupric acetoarsenite Mevinphos
Cyanogen chloride Naled
DDT Naphtha lene
Diazinon Naphthenic acid
Dichione Parathion
DichiorvoS Pentachiorophenol
Dieldrin Phosphorus
Disulfoton Polychiorinate biphenyls
Dursban Potassium arsenate
Endosulfan Potassium arsenite
Endrin Potassium cyanide
Ethion Quinoline
111—181
-------
Selenic acid 2,4,5—T acid (SW)
Selenium oxide TDE
Sodium arsenate Tetraethyl pyrophosphate
Sodium arsenite Toxaphene
Sodium cyanide Trichiorophenol
Sodium hypochiorite (FW) Zinc cyanide
Sodium selenite
CATEGORY B
Allyl alcohol (SW) 2,4-Dichiorophenoxyacetic
Allyl chloride (SW) acid (SW)
Aluminium fluoride (FW) 2,4-Dichiorophenoxyacetic
Ammonium carbonate esters
Ammonium chloride Dalapon (SW)
Axnmonium hypophosphite Dichiobenil (SW)
Ainmoniurn nitrate Dinitrophenol
Ammonium sulfate Diquat (SW)
Antimony pentafluoride (FW) Diuron
Beryllium fluoride (FW) Dodecylbenzenesulfonic
Beryllium hydroxide acid (SW)
Brucine (FW) Hydrofluoric acid (FW)
Butyric acid Hydroquinone
Calcium hypochiorite (SW) Lithium fluoride (FW)
Chlorobenzene Methyl mercaptan
Chloroform Methyl parathion (FW)
Chromic acetate (FW) Monoethylamine
Chromic sulfate Monomethylamine
Chromous carbonate (FW) Phenol
Chromous chloride Phosphorus pentafluoride
Chromous oxalate (FW) (FW)
Cresol Potassium permanganate
Cupric acetate (SW) Pyrogallic acid
Cupric acetylacetonate Resorcinol
Cupric bromide Sevin
Cupric chloride Sodium bifluoride (FW)
Cupric formate Sodium fluoride (FW)
Cupric gluconate (FW) Sodium hypochiorite (SW)
Cupric lactate Sodium nitrite
Cupric nitrate Strychnine
Cupric oxalate Sulfur monochioride (SW)
Cupric subacetate 2,4,5-T acid (FW)
Cupric sulfate Zirconium potassium
Cupric sulfate ammoniated fluoride (FW)
Cupric tartrate
Cuprous bromide
Cuprous iodide
111—182
-------
CATEGORY C
Citrate
Acetaldehyde
Acetic acid
Acetic anhydride
Acetone cyanohydrin
Acrylonitrite
Allyl chloride (FW)
Ammonium bicarbonate
Ammonium bromide
Animonium carbonate
Arnmonium fluoborate
Mimonium hydroxide
Ainmonium iodide
Arrunonium molybdate
Ammoniuin pentaborate
Ainmonium persulfate
Ainmonjum Silicofluoride
Amyl acetate
Aniline
Atimony pentachlorjde
Antimony pentafluorjde (SW)
Antimony potassium tartrate
Antimony tribromide
Antimony trichioride
Antimony trifluoride
Antimony triiodide
Benzene
Benzonitrite
Beryllium fluoride (SW)
Beryllium hydroxide
Beryllium nitrate
Butyl acetate
Butyl amine
Calcium dodecylbenzene-
sul fonate
Carbon disulfide
Catechol
Chiorosulfonic acid (FW)
Chromic acetate (SW)
Chromic acid
Chromic sulfate (SW)
Chromious carbonate (SW)
Chromous oxalate (SW)
Chromyl chloride (Fw)
Cobaltous acetate (Fw)
Cobaltous bromide (FW)
Cobaltous chloride (FW)
Cobaltous citrate (FW)
Cobaltous fluoride (Fw)
Cobaltous formate (FW)
Cobaltous iodide (FW)
Colbaltous nitrate (FW)
Cobaltous perchlorate (FW)
Cobaltous succirtate (FW)
Cobaltous sulfamate (FW)
Cobaltous sulfate (FW)
Cupric acetate (FW)
Cupric gluconate (SW)
Cyc lohexane
Dicamba
Dichlobenjl (FW)
Diethylamjne
Diquat (FW)
Dodecylbenzenesui fonjc
acid (FW)
Ethylenedjamjne
Ferric amlnonium
Ferric chloride
Ferric fluoride
Ferric nitrate
Ferric phosphate
Ferric sulfate
Ferrous arnmoniurn sulfate
Ferrous chloride
Ferrous oxalate
Ferrous sulfate
Formaldehyde (FW)
Formic acid (SW)
Furfural
Hydrochloric acid (FW)
Isoprene
Isopropanolamjne dodecy-
lbenzenesulfonate
Kelthane
Nickel formate (FW)
Nickel hydroxide (FW)
Nitric acid (FW)
Nitrogen dioxide (FW)
Paraforinaldehyde (FW)
Phosgene (FW)
Phosphorus oxychloride (FW)
Phosphorus pentasulfide
Phosphorus trichioride (FW)
Potassium hydroxide
Pyrethins
111—183
-------
Sodium Xylenol
Sodium dodecylbenezenesulfoflate Zectran
Sodium hydrosulfite Zinc acetate
Sodium hydroxide Zinc arnmonium chloride
Sodium methylate (SW) Zinc bichromate
Sodium sulfide Zinc borate
Sodium fluoride (FW) Zinc bromide
Styrene Zinc carbonate
Sulfuric acid Zinc chloride
Sulfur monochioride (FW) Zinc formate
2,4,5—T ester Zinc hydrosulfite
Tannic acid Zinc nitrate
Triethaflolarrtine dodecylbenzene Zinc permanganate
sulfonate Zinc phenolsulfonate (SW)
Triethylamifle Zinc phosphide
TrimethYlamine Zinc potassium chromate
Vanadium pentoxide Zinc propionate
Vanadyl sulfate Zinc silicofluoride
Vinyl acetate Zinc sulfate
Xylene
CATEGORY D
Acetyl bromide Calcium oxide
Acetyl chloride Chiorosulfonic acid (SW)
Adiponitrile Chromyl chloride (SW)
Aluminum fluoride Sw Cobaltous acetate (SW)
Aluminum sulfate Cobaltous bromide (SW)
Ainmonium acetate Cobaltous chloride (SW)
Ammonium benzoate Cobaltous citrate (SW)
Arnmonium chromate CobaltouS fluoride (SW)
Ammonium citrate CobaltouS formate (SW)
Ammonium fluoride CobaltouS nitrate (SW)
Ammonium formate CobaltouS succinate (SW)
Ammoniu.m oxalate CobaltouS sulfamate (SW)
Ammonium sulfamate CobaltouS sulfate (SW)
Ammonium sulfide 2, 4-DichiorophenOxyacetic
Arnmonium tartrate acid (FW)
Ammonium Thiocyanate DalapOfl
Ammonium thiosulfate EDTA
Antimony trioxide Formaldehyde (SW)
Benzoic acid Formic acid (FW)
Benzoyl chloride Fumaric acid
Benzyl chloride Hydrochloric acid (SW)
Beryllium chloride HydrofluOric acid (SW)
Beryllium nitrate Hydroxylalnifle
Beryllium sulfate Lithium bichromate
Calcium chromate Lithium chromate
Calcium hydroxide Lithium fluoride (SW)
111—184
-------
Maleic acid
Maleic anhydride
Methyl methacrylate
Molybdic trioxide
Nickel acetate
Nickel animonium sulfate
Nickel bromide
Nickel forrnate (SW)
Nickel hydroxide (SW)
Nickel sulfate
Nitric acid (SW)
Nitrobenzefle
Nitrogen dioxide (SW)
Paraformaldehyde (SW)
Phosgene
Phosphoric acid
Phosphorus oxychloride (SW)
Phosphorus pentafluoride (SW)
Phosphorus trichioride (SW)
Potassium bichromate
Potassium chromate
Propionic acid
Propionic anhydride
Propyl alcohol (FW)
Sodium bichromate
Sodium bifluoride (SW)
Sodium bisulfite
Sodium bisulfite
Sodium chromate
Sodium fluoride (SW)
Sodium methylate (FW)
Sodium phosphate (monobasic)
Sodium phosphate (dibasic)
Sodium phosphate (tribasic)
Strontium chromate
Trichiorfon
Uranium beroxide
Uranyl acetate
Uranyl nitrate
Uranyl sulfate
Vanadium oxytrichioride
Zinc phenolsulfonate (FW)
Zirconium acetate
Zirconium nitrate
Zirconium oxychioride
Zirconium potassium
fluoride (SW)
Zirconium sulfate
Zirconium tetrachioride
Cobaltous iodide (SW)
Cobaltous perchiorate (SW)
Propyl alcohol (SW)
CATEGORY 0
111—185
-------
APPENDIX I
DETERMINATION OF IMCO METHODOLOGY ADJUSTMENT FACTORS
FOR DEGRADABILITY AND DISPERSIBILITy THROUGH
THE USE OF A DELPHI TECHNIQUE
GENERAL
Adjustment factors to compensate for degradability and dispers-
ibility in the IMCO Methodology were derived through the use of
the DELPHI technique.
The DELPHI method is a procedure involving the repeated questioning
of persons knowledgeable in the area of interest in an attempt to
obtain a coalescence of “expert opinion” on an otherwise intrac-
table question. It is an iterative process which attempts to
control the interaction between participants so as to minimize
direct confrontation and the personality conflicts and biases
which can arise as a result of such confrontations. Interaction
between the participants is realized through the investigator(s)
who attempts to remain impartial. Information and opinions are
transferred between participants through questionnaires and inter-
views conducted by the investigator(s). Hopefully this process,
when repeated enough times, results in a clarification of the
basic questions at issue and a convergence of opinion by the
participants.
Thus, the approach taken under the IMCO Methodology is a subjective
one which attempts to quantify the rather elusive effects which
the physical/chemical properties of the hazardous materials have
on their ability to exert various hazard potentials.
P ROCEDURE
From the staff of Battellets Pacific Northwest Laboratories, a panel
of ten individuals was selected to participate in the DELPHI.
This panel was composed of three environmental engineers, one
chemical engineer specializing in hazardous materials, one chemical
engineer specializing in oil pollution abatement, two aquatic
chemists, a hydrodynamicist, a mineralogist, and an aquatic
biologist. These individuals were selected in such a manner so
as to obtain a fairly broad representation of disciplines qualified
to relate to the problem. This was felt to be especially important
because there is no single discipline completely qualified to
address the question. Although such a broad spectrum of back-
grounds could potentially lead to wide variations in the results,
it was felt that evaluation of the question from as many points
of view as possible was a more important consideration. Having
selected the participants, a questionnaire was prepared and
111—187
-------
distributed. The questionnaire briefly described the project
for which the DELPHI was being conducted and then posed the
following question.
“The particular problem to be studied is that of
determining a series of adjustment factors which will be
applied to the basic rate of penalty derived from the
“worst case” approach described previously. Specifically,
we wish to know the extent to which the physical/chemical
properties of a hazardous material can act to reduce its
impact in a number of hazard potential areas. The hazard
potential areas we have identified are listed and described
in Enclosure I. The important physical/chemical proper-
ties which we are considering are listed and described in
Enclosure II. Furthermore, we wish to consider impacts
in four basic water body types: rivers, lakes, estuaries,
and coastal zones. Since we are developing a very general
methodology, we have chosen not to define the water bodies.
Instead, the participants are to use their own individual
conceptions of each of the four water bodies. *
Following the statement of thE basic question, the participants
were given detailed instruction as to how they were to complete
the questionnaire. They were instructed to assign an adjustment
factor between zero and one based on their assessment of the
ability of a given set of physical/chemical characteristics
attributed to a hypothetical hazardous material to mitigate a
given hazard potential (e.g., bioaccumulation) in a given water
body type. A value of one indicated that there was no mitigation,
whereas a value of zero meant the physical/chemical properties
were such that they would completely inhibit the ability of the
hazardous material to exert the specified hazard in the specified
water body type. Figure 1-1 is a sample of one of the question-
naire sheets. Referring to Figure 1-1, the participant, on this
particular sheet, would be evaluating the ability of hazardous
materials with the various sets of physical/chemical properties
described by the “line diagram” to bioaccumulate in a lake.
Following completion of the first round, selected participants
were interviewed by the investigators. The comments from these
interviews were reported in a second questionnaire along with
the numerical results of the first rounc’.. A number of issues
were clarified during the interviews, but by far the most important
disclosure was that many of the participants were making unnecessary
value judgments with respect to the hazard potentials themselves.
This point was clarified in the second rounc’. by expanding and
restating the question as follows:
*Enclosures I and II from the questionnaire are included in this
appendix as Enclosures I-i and 1-2.
111—188
-------
WATER BODY TYPE Lake
HAZARD POTENTIAL Bioaccumulation
ADJUST-
MENT
FACTOR
SOLUBLE ______
VOLATILE
LINSOLUBLE ______
FLOATS
SOLUBLE ______
NON-VOLATILE
INSOLUBLE ______
PERSISTENT MIXER ______
SOLUBLE
SINKS
INSOLUBLE
SOLUBLE ______
VOLATILE
INSOLUBLE ______
FLOATS
SOLUBLE ______
NON-VOLATILE
INSOLUBLE ______
NON-PERSISTENT MIXER _
SOLUBLE
SINKS
INSOLUBLE
FIGURE I-i. EXAMPLE QUESTIONNAIRE SHEET
111—189
-------
“The particular problem to be studied is that of
determining a series of adjustment factors which will be
applied to the basic rate of penalty derived from the
“worst case” approach described previously. Specifically,
we wish to know the extent to which the physical/chemical
properties of a hazardous material can act to reduce its
impact in a number of hazard potential areas. The hazard
potential areas we have identified are listed and described
in Enclosure I. The important physical/chemical properties
which we are considering are listed and described in
Enclosure II. Furthermore, we wish to consider impacts in
four basic water body types: rivers, lakes, estuaries, and
coastal zones. Since we are developing a very general
methodology, we have chosen not to define the water body.
Instead, the participants are to use their own individual
conceptions of each of the four water bodies.
“Participants are again cautioned not to make value
judgments concerning either the relative importance of the
five hazard potentials or their opinion of the relative
significance of the hazard potentials in the various water
body types. In all cases, assume that the hazard potential
exists and base your evaluation only on your estimation of
the degree to which the physical/chemical properties are
mitigating.”
The results of the second round of questioning are reported in
the following table as the median adjustment factor value and the
range of reported adjustment factor values. During the second round
of questioning, coalescence of opinion improved markedly. For
purposes of computing final rates of penalty, the median adjust-
ment factor values are used.
111—190
-------
TABLE I-i
IMCO METHODOLOGY PHYSICAL/CHEMICAL ADJUSTMENT FACTORS
LAKE
SYMBOL KEY
BA = Bioaccumulation
AT = Damage to Living Resources
11110 = Hazard to Hur an Health
(oral intake)
l INE Hazard to Human Health
(external exposure)
AN Reduction of Amenities
= Range
X = Not Applicable
111—191
PhYSICAL/CHEMICAL PROPERTIES
BA AT HHO HHE AM
I. Persistent, Floats,
Volatile, Soluble
.4 .5 .45 .7 .6
(.3—.8) (.3—.8) (.3—.8) (.4—.9) (.1—8)
II. Persistent, Floats,
Volatile, Insoluble
.2 .3 .25 .65 .6
(.l—.8) (.l—.7) (.l—.6) (.5—.9) (.1—1.0)
III. Persistent, Floats,
Nonvolatile, Soluble
.8 .8 .8 .85 .7
(.4—1.0) (.4—1.0) (.5—1.0) (.7—1.0) (.3—.9)
IV. Persistent, Floats,
Nonvolatile, Insoluble
.4 .5 .35 .9 .85
(.2—.8) (.2—.8) (.2—.6) (.5—1.0) (.6—1.0)
V. Persistent, Mixer
( 0) (.6—1.0) (.5—1.0) (.3—1.0) (.3—1.0)
VI. Persistent, Sinks,
Soluble
.9 .85 .75 .5 .4
(.4—1.0) (.4—1.0) (.3—.9) (.2—.8) (.2—.7)
VII. Persistent, Sinks,
Insoluble
.6 .5 .35 .2 .2
(.2—1.0) (.2—.9) (.1—.8) (.l—.5) (0—.4)
VIII. Nonpersistent, Floats,
Volatile, Soluble
.3 .25 .4 .3
(.l—.6) (.l—.7) (.l—.7) .0s—.6)
IX. Nonpersistent, Floats,
Volatile, Insoluble
.15 .2 .45 .35
(0—.3) (.05—.5) (.2—.7) (o—.6)
X. Nonpersistent, Floats,
Nonvolatile, Soluble
.4 .35 .55 .5
(.2—.7) (.2—.8) (.3—.8) (.05—.6)
XI. Nonpersistent, Floats,
Nonvolatile, Insoluble
.25 .25 .6 .5
X (.l—.4) (.01—.5) (.3—.8) (.1—.8)
XII. Nonpersistent, Mixer
X (.2—.8) (.i—.8) (.i—.8) (.0S—.6)
XIII. Nonpersistent, Sinks,
Soluble
.4 .4 .3 .2
(.2—.8) (0—. 8) (.1—.8) (.05—.4)
XIV. Nonpersistent, Sinks,
Insoluble
.2 .25 .15 .1
(.l—.5) (0—.4) (.0l—.3) (0—.2)
-------
TABLE I-i (Cont’d.)
RIVER
PI-IYSICAL/CHEMICAL PROPERTIES BA AT HHO HHE AM
I. Persistent, Floats, .3 .5 .4 .6 .45
Volatile, Soluble (.2—.8) (.2—.8) (.2—.7) (.4—.8) (.2—.8)
II. Persistent, Floats, .1 .35 .4 .6 .5
Volatile, Insoluble (.05—.8) (.l—.7) (.l—.6) (.4—.8) (.1—1.0)
III. Persistent, Floats, .5 .7 .75 .75 .6
Nonvolatile, Soluble (.3—1.0) (.5—1.0) (.4—1.0) (.5—1.0) (.5.8)
IV. Persistent, Floats, .3 •4 5 7 7
Nonvolatile, Insoluble (.l—.8) (.3—1.0) (.1—.7) (.5—1.0) (.4—1.0)
V. Persistent, Mixer (39) (.4—1.0) (.3—1.0) (.4—.9) (.4—.8)
VI. Persistent, Sinks, .8 .75 .8 .55 .4
Soluble (.2—.9) (.3—1.0) (.1—1.0) (.2—.8) (.l—.6)
VII. Persistent, Sinks, .55 .5 .5 .4 .15
Insoluble (.1—1.0) (.2—1.0) (0—.8) (.1—.7) (0—.5)
VIII. Nonpersistent, Floats, .35 .2 .35 .25
Volatile, Soluble (.l—.5) (.l—.5) (.2—.6) (.l—.5)
IX. Nonpersistent, Floats, .2 .15 .4 .3
Volatile, Insoluble (0—.3) (.1—.5) (.2—.6) (0—.6)
X. Nonpersistent, Floats, .35 .45 .5 .5
Nonvolatile, Soluble X (.2—.7) (.l—.6) (.2—.6) (.l—.5)
XI. Nonpersistent, Floats, .2 .2 .5 .5
Nonvolatile, Insoluble (.l—.7) (.l—.5) (.2—.7) (.2—.7)
XII. Nonpersistent, Mixer X c.2—.8) 0: 8 (.j —.7) (.2—.4)
XIII. Nonpersistent, Sinks, .45 .5 .3 .2
Soluble X (.1—.7) (0—.7) (O—.6) (.l—.4)
XIV. Nonpersistent, Sinks, .3 .25 .2 .1
Insoluble (.1—.7) (0—.5) (0—.4) (0—.3)
III— 19 2
-------
TABLE I-i (Cont’d.)
ESTUARY
PhYSICAL/CHEMICAL PROPERTIES BA AT HNE AM
I. Persistent, Floats, •4 •45 •55
Volatile, Soluble (.2—. 8) (.3—.8) (.l—.8) (.2—.8)
II. Persistent, Floats, .2 .4 .6 .5
Volatile, Insoluble (.1—.9) (.l—.7) (.1—.8) (.1—1.0)
III. Persistent, Floats, .8 .8 .6 .6
Nonvolatile, Soluble (.3—1.0) (.5—1.0) (.1—1.0) (.4—.9)
IV. Persistent, Floats, .4 .5 .6 .75
Nonvolatile, Insoluble (.l—.8) (.4—.8) (.3—1.0) (.4—1.0)
V. Persistent, Mixer (469) ( 3 9) (.2—.8) (.2—.7)
VI. Persistent, Sinks, .9 .9 .45 .4
Soluble (.3—1.0) (.4—.9) (.l—.7) (.2—.7)
VII. Persistent, Sinks, .75 .9 .3 .25
Insoluble (.2—1.0) (.2—1.0) (0—.5) (.1—.4)
VIII. Nonpersistent, Floats, .3 .3 .25
Volatile, Soluble (.l—.5) (.1—.6) (.1—.6)
IX. Nonpersistent, Floats, .2 .4 .4
Volatile, Insoluble (0—.3) (.l—.6) (0—.6)
X. Nonpersistent, Floats, .35 .35 .4
Nonvolatile, Soluble (.2—.7) (.1—.6) (.2—.6)
XI. Nonpersistent, Floats, x .25 .4 .45
Nonvolatile, Insoluble (.l—.5) (.1—.6) (.2—. 7)
XII. Nonpersistent, Mixer X (.2—.8) (0—.7) (.1—.4)
XIII. Nonpersistent, Sinks, .55 .25 .2
Soluble (.l—.8) (0—.7) (.05—.3)
XIV. Nonpersistent, Sinks, .1 .1
Insoluble (.1—.6) (0—.4) (O—.2)
111—193
-------
TABLE I-i (Cont’d.)
COASTAL ZONE
PHYSICAL/CHEMICAL PROPERTIES BA AT lIME AM
I. Persistent, Floats, •35 3 .4 35
Volatile, Soluble (.2—.8) (.2—.8) (.2—.8) (.1—.8)
II. Persistent, Floats, .2 .2 .5 .45
Volatile, Insoluble (.l—.8) (.l—.7) (.l—.8) (.1—1.0)
III. Persistent, Floats, .5 .7 .7 .55
Nonvolatile, SolubJ.e (.3—1.0) (.4—1.0) (.3—1.0) (.2.8)
IV. Persistent, Floats, .3 .45 .7 .7
Nonvolatile, Insoluble (.l—.8) (.l—.8) (.2—1.0) (.3—1.0)
V. Persistent, Mixer (.2: ) (.3—1.0) (.2—.7) (.2—.6)
VI. Persistent, Sinks, .7 .65 .3 .3
Soluble (.2—1.0) (.2—1.0) (.1—.7) (.l—.5)
VII. Persistent, Sinks, .7 .55 .25 .15
Insoluble (.1.9) (.1.9) (0.5) (0.4)
VIII. Nonpersistent, Floats, x .2 .3 .25
Volatile, Soluble (.l—.5) (0—.5) (.l—.5)
IX. Nonpersistent, Floats, x .1 .3 .45
Volatile, Insoluble (0.3) (0.5) (0.6)
X. Nonpersistent, Floats, x .3 .3
Nonvolatile, Soluble (.l.7) (0—.5) (.l—.6)
XI. Nonpersistent, Floats, .2 .4 .45
Nonvolatile, Insoluble (.l—.5) (0—.6) (.1—. 7)
XII. Nonpersistent, Mixer x (.l—.8) Co—.7 (.1—.4)
XIII. Nonpersistent, Sinks, x .15 .15
Soluble (.1.7) (0.6) (.05.3)
XIV. Nonpersistent, Sinks, .25 .1 .1
Insoluble (.1—.6) (0—.4) (0—.2)
111—194
-------
ENCLOSURE I-i
PHYSICAL/CHEMICAL PROPERTIES
PERS ISTENCE
Persistent Materials - Persistent materials are primarily those
materials which are known to not be significantly degradable in
the environment. For purposes of this study, we consider any
hazardous material which is less than 10 percent degradable in
five days (either biologically or chemically) as persistent.
Certain materials whose hazard potential is associated with
radical pH changes are considered non—persistent because of their
anticipated dissipation by the alkalinity/acidity present in
natural waters.
Non—Persistent Materials - This is any material which is not per-
sistent (as defined above).
BEHAVIOR CLASSIFICATIONS
Mixers - This behavior group contains all hazardous materials which
produce a significant amount of dissolved chemical (in a spill
situation) in a relatively short period of time. In the absence
of specific data on the behavior of a given chemical in a spill
situation, all materials with solubilitieS greater than one percent
and specific gravities between 0.9 and 1.2 have been placed in this
group.
Floaters - This behavior group contains all those hazardous mater-
ials that will float on the surface of the water in a spill situa-
tion. In the absence of specific data on the behavior of a given
chemical in a spill situation, all chemicals with solubility less
than one percent and specific gravities less than 1.0 have been
placed in this group.
Sinkers - This behavior group contains all those chemicals or
reaction products that will sink to the bottom in a spill situa-
tion. In the absence of specific data on the behavior of a given
chemical in a spill situation, all chemicals with solubilities
less than one percent and specific gravities greater than 1.0 have
been placed in this group.
SOLUBILITY
There is, of course, no clear line of demarcation between soluble
and insoluble materials. For purposes of this study we have
adopted the following convention.
111—195
-------
Soluble - Any material whose solubility is greater than 0.1 percent
(1000 ppm) is considered soluble.
Insoluble - Any material whose solubility is less than 0.1 percent
(1000 ppm) is considered insoluble.
VOLATILITY
Volatile — This is any material for which significant dissipation
from the water body through evaporation is expected. In the
absence of specific data on the behavior of a given chemical in
a spill situation, all chemicals with vapor pressures greater than
10 mm Hg at 10°C have been classified as volatile.
Non-Volatile - This is any material which is not volatile (as
defined above).
111—196
-------
ENCLOSURE 1-2
HAZARD POTENTIALS
I. BIOACCUMULATION
Bioaccumulation occurs when an aquatic organism takes up a
chemical to which it is exposed so that it contains a higher
concentration of that substance than is present in the ambient
water or its food. If the bioaccumulative material is toxic,
a potential hazard exists not only to the organism but also
to organisms at higher trophic levels (including man). Certain
non—toxic bioaccuinulative materials may produce tainting in
aquatic organisms which may render the flesh of edible fish
or shellfish unpalatable and/or interfere with consumer
acceptability. For purposes of this study, only persistent
materials can be bioaccumulative (i.e., non—persistent
materials receive a score of zero).
II. DAMAGE TO LIVING RESOURCES
In considering the damage to living resources, we are primarily
concerned with direct toxicity to aquatic life. The panel
members are requested not to consider the longer range effects
of hazardous material spills (effects on larvae, food organisms,
etc.) since the critical concentrations used to profile hazard-
ous materials were based on acute toxicity to fish and shell-
fish. Ratings in this category should consider benthic
organisms such as clams, oysters, and crustaceans which have
significant recreational and commercial value.
III. HAZARD TO HUMAN HEALTH (OPAL INTAKE )
This hazard potential deals with a situation in which a
hazardous material spill into a waterway (or infiltrating
into a groundwater supply) contaminates the water and thus
poses a direct threat to human health through ingestion of
the contaminated water. Coastal zones and estuaries are not
considered under this hazard potential. The panel members
should be aware of the fact that many hazardous materials
are not removable by standard water treatment methods.
IV. HAZARD TO HUMAN HEALTH (EXTERNAL EXPOSURE )
This hazard potential deals with the ability of hazardous
materials, their vapors, or aqueous solutions to cause
irritation to skin, mucous membranes, and eyes. Contaminated
beaches may be considered here; however, the evaluation
should be based on the threat to people recreating on the
111—197
-------
beach and not on aesthetic considerations. Other mechanisms
of exposure include primary contact (swirmning, water skiing,
etc.) with aqueous solutions and exposure to vapor plumes.
V. REDUCTION OF AMENITIES
For our purposes, amenities are defined as values of the
recreational use or scenic aspects of the environment.
Reduction of amenities by hazardous material spills can occur
in a number of ways including the presence of irritant or
strong smelling vapors, objectionable scums or slicks,
floating or suspended materials, and extensive discoloration
of the water. As in other areas, the persistence of effect
is quite important.
111—198
-------
APPENDIX J
DERIVATION OF REPRESENTATIVE STREAM FLOW
The United States can be geographically subdivided into 24
principal drainage basins (Figure J—l), and each of these drainage
basins can be classified into six annual runoff categories as
indicated in Table J-l. The percentage of the total mean daily
runoff in the United States contributed by the individual drainage
basins can then be calculated by dividing the contribution from
the basin by the total for the United States (Table J-2). The
percentage of the total U. S. flow occurring from each runoff
category (e.g., 0-5 inches) can be obtained by summing the
individual drainage basin percentages for each category. Later
in the text these runoff percentages will be utilized as weighting
factors for each of the runoff categories (Table J—3). The
weighting factors represent the percentage of the mean total
daily flow which originates in basins falling within one of
the six categories mentioned in Table J-l.
Within each category, representative river basins can be selected
for detailed analysis. Basins selected for this study are listed
in Table J-4. Each of these basins can be analyzed to obtain
(as a final result) a curve which depicts the cumulative percentage
of total water in the drainage basin (for median flow conditions)
as a function of discharge. With such a curve one can select a
percentage of water and determine a stream or discharge rate (X)
in which the selected percentage of water flows. In terms of a
harmful quantity determination for a given drainage basin, one can
select a percentage of total water (e.g., 5 percent) which is too
small to merit use in the model. The flow rate (X 005 ) asso-
ciated with this percentage would be used as the threshold for
calculation of the harmful quantity. The spillage of such a
harmful quantity would result in substantial harm to the stream
with the selected flow rate or less. Within the context of the
DORM plug flow model, streams with flow rates greater than X 005
would sustain substantial harm only frcm spillage of amounts
larger than the harmful quantity.
Following this procedure the stream flow rates (Xi) from each
of the selected stream systems can be combined in a weighted
average to a given final flow rate (Q) representative of the
entire nation. Mathematically the preceding takes the following
form:
Q = W 1 X 1 + W 2 X 2 + . . . + W 1 X
where Q = representative discharge value to be applied in the
DORM model,
111—199
-------
FIGURE J-1. PRINCIPAL DRAINAGE BASINS
H
‘-4
Q
0
CQL A
-------
TABLE J-l
MAJOR RIVER BASIN CATEGORIES
Average
Annual
Runoff
( inches) Drainage Basin
0—5 Great Basin
Colorado
Upper Missouri-Hudson Bay
Upper Arkansas-Red
Eastern Pacific N.W.
Western and Central Western Gulf
5—10 Eastern Western Gulf
Lower Missouri
Upper Mississippi
Southern California
10-20 Lower Arkansas-Red—White
Lower Mississippi
Ohio
Western Great Lakes
Eastern Great Lakes
South Atlantic
Spokane & Upper Snake
20-30 New England
Eastern Gulf
Cumberland-Tennessee
Northern California
30—40 Delaware-Hudson
Chesapeake
> 40 Pacific Northwest
111—201
-------
TABLE J-2
APPROXIMATE MEAN RUNOFF BY SUB—BASINS 5
r
I
Easin. Classification
R r.off i Inches)
Drainage Basin
Arproxi atc
Area (Sq. -ti.)
Natural flunoff
CD per GD
Percert of
Total Flow
1
C -.
•— -1•
Great Basin
191,800 I
0.042
8,100
0.6
Colorado
255,300
0.014
11,300
0.9
Upper Nissouri—ilunison ay
‘ cr Aa r s— d
E t ’ - 0zic f. N.W.
w t rn ir d Cc r.tra1 Western
Gulf
505.100
171,000
125,030
2. 0,l00
0.059
0.023
0.124
0.113
29.700
15,100
15,503
25,400
2.4
1.3
1.3
2.4 Subtotal
8.5
510
Eastetn Western Gulf
Lower Missouri
Upper MiesissiPpi
Suthcrn C 1ifor ia
83,000
54,100
134,900
02,000
0.34
0.43
0.3
0.24
28,400
23,400
63,000
14,300
2.4
2.1
5.4
l.2 Su tcta1
11.1
Lo.cr 1 rras-ped—White
Lo ,ier 0 .sziissiDpi
O -io
112,600
61,900
143,400
0.70
0.31
0.78
75,000
50,200
111,400
6.7
4.3
9.5
‘
rn Great Lakes
E tr i Great La”eg
85,500
48,200
0.48
0.85
43,200
40,900
3.6
3.5
SoTh .t1antjc
S:; . e & Upper Snake
151,000
50,100
0.53
0.63
179,200
31,600
6.7
2.7 Subtotal
37.
20—30
New E g1and
Eastern Gulf
Cunbcr1and—Tenne see
Northern California
62,500
123,300
60,300
60,000
1.09
1.09
1.03
0.80
67,900
135,500
60,500
48,000
5.7
11.5
5.1
4.0 Subtotal
26.
30—40
Delaware—hudson
Chesapeake
36,500
67,600
0.91
0.77
33,300
52,000
3.3
4.4 Subtotal
7.7
>40
Pacific Northweat
0—
75,000
1.4
105,500
9.0 Subtotal
9.0
51T Has the United States Enough Water?”, U. S. Geological Survey Water Supply
Paper 1797, USGPO, Washington, DC, 1965.
H
H
F..)
*Esti,Itated from natural precipitation minus evaporation Total .1,175,600
-------
TABLE J-3
WEIGHTING FACTORS
Average Annual
Runoff (inches) weighting Factor (Wi )
0—5 0.089
5—10 0.111
10—20 0.370
20—30 0.263
30—40 0.077
> 40 0.09
Total 1.00
TABLE J-4
SELECTED REPRESENTATIVE RIVER BASINS
Average Annual
Runoff (inches) River Basins
0-5 Brazos; Loup
5-10 Sangamon; Neches
10-20 Upper Snake; Roanoke
20-30 Merrimack; Tuoluxnne
30-40 Susquehanna
> 40 Willainette; Skagit
111—203
-------
w. = fractional weighting factor, based upon a drainage
1 basin’s average annual runoff category, and
x. = individual stream flow values for each average annual
1 runoff category.
The majority of the streams selected as being representative of
the six average annual runoff categories were investigated by
Stall and Yang’ in a study conducted for the Illinois State Water
Survey and the U. S. Department of the Interior. The authors
studied twelve selected stream systems within the United States
and developed hydraulic geometry equations to calculate discharge
(Q), cross-sectional area (A), width (W), depth (D), and velocity
(V) as functions of discharge frequency (F) (percent of days per
year that the discharge was equaled or exceeded), and the drainage
area (Ad-square miles).
The study investigated streams and rivers under a variety of
physiographic and hydraulic conditions. The seasonal distribution
of runoff for the streams investigated ranged from 5-10 inches
of runoff to >40 inches of runoff. The authors did not address
the arid zone (<5 inches of annual runoff) because of the complexity
of the hydraulic geometry patterns which are frequently altered
by flash floods. Streams representing these arid areas were
evaluated by Battelle-Northwest utilizing actual drainage basin
data, and this procedure is described later in this text.
The procedure for formulating the hydraulic geometry relationships
utilized in Stall and Yang’s study included the following components.
• Identification of the number of gage stations within the
basin which had adequate records, and synthetic expansion
of those gage station records which have fewer values
than the chosen “standard” period.
• Development of a hydraulic rating curve for each gage
station. These curves contained actual cross-sectional
areas, widths, depths, and velocities plotted against
discharge.
• Development of flow duration curves for each gage station
based upon existing and synthetically produced data. Flow
duration curves consisted of discharge values plotted
against the percent of days the discharge was equaled or
exceeded within the basin.
1 Stall, J. B. and C. T. Yang. “Hydraulic Geometry of Twelve
Selected Stream Systems of the United States,” University of
Illinois, Water Resources Center, Research Report No. 32,
July 1970.
111—204
-------
• Utilization of the hydraulic rating and flow duration
curves in conjunction with the drainage area (Ad) for
each gage station to plot the parameters of interest
(W, Q, V 1 A, and D) versus drainage area (Ad) for
various frequencies of discharge.
• Fitting a curve to the data plotted in the parameter
versus drainage area graph. All frequency curves were
fitted as one total least squares multiple regression
to the points that define each curve. The fitting
process was carried out mathematically using the natural
logarithm of the parameter (P) as the dependent variable
and the values of frequency (F) and the natural logarithm
of the drainage area (Ad) as independent variables (e.g.,
lnP = a + bF + cm Ad). A mathematical fitting was
carried out for all the parameters (Q, A, W, V 1 and D).
The acceptability of a gage station’s records was based on several
criteria. Records were not used if
• there was diversion into or out of tILe basin above the
gage in an amount equivalent to 10 percent of the lowest
daily discharge of record,
• there was upstream regulation affecting as much as 20
percent of the drainage area of t1 .e gaging station, and
• the gage station had less than three years of record.
Once the stations which had recorded usable data were identified,
a standard period of record was selected for each drainage basin
(ranging from 15 to 46 years). The standard period was selected
to make maximum use of the records available, as well as to provide
a reasonable areal coverage of the basin.’ The data from stations
with records less than the standard number of years were expanded
synthetically.
The synthesizing method utilized to extend the data has been
described by several authors. The procedure consists of choosing
an index gage station which has complete records for the standard
and developing graphs that depict the discharges at other (secondary
stations) as a function of the known discharge at the index station
(Figure J-2). Once this plot is established, the index station’s
discharge can be utilized to locate the “synthesized” discharge
at a secondary gage station.
From hydraulic rating curves (Figure J-3) (which are graphical
representations of actual gage station data), formulae of the
following form can be constructed to describe the gage station’s
value for width (W), depth (D), velocity (V) , and cross-sectional
area (A) as functions of discharge (Q).
111—205
-------
DISCHARGE, cfs, AT INDEX STATION
FIGURE J-2.
SAMPLE CURVE-OF-RELATION FOR CORRELATING FLOWS
BETWEEN THE INDEX STATION AND SECONDARY STATION 2
“Rivers,” American Scientist , Vol. 50, No. ,
0
>-
z
0
uJ
L)
=
L)
LPJ
—
10,000
5000
1000
700
700 1000
5000
10,000
2 Leopold, L. B.
pp. 511—537, 1962.
111—206
-------
100
FIGURE J—3.
4 . -
- >
1r ‘ .1
1u.u >
1.0
flA
1000 10,000 50,000
DISCHARGE (Q), cfs
TYPICAL HYDRAULIC RATING CURVES’
I I I I I IItJ
I I I I IIIF1
O —
o0 —
AREA
10,000
1000
100
C
— —
U
—
0
000
0
0
0
DEPTH
I
VELOCITY
I I I I I _ tIII
I I I I I liii
I I
111—207
-------
W = a Qb
D = c
V=kQm
A = d Qfl
where Q = discharge, and
a, b, C, d, f, k m, and n are numerical constants.
From the flow duration curves of each gage station (Figure 3-4),
the values of discharge (Q) for any desired frequency can be
obtained and the preceding formulae utilized to calculate the
corresponding values of W, D, V 1 and A.
For each drainage basin and any parameter (Q, W, D, V, or A),
a log—log plot of the parameter versus the gage station’s drain-
age area (Ad) for given discharge frequencies (F) can be developed.
Figure 3-5, for example, plots discharge (Q) in relation to area
(Ad) for two frequencies (0.1 and 0.9). A hydraulic geometry
curve is then fitted to the data points through a least squares
multiple regression.
The multiple regression equation utilized is of the form:
lnP = a + bF + cm Ad
where P = parameter of interest (Q, W, D, V 1 or Ad),
F = frequency of occurrence,
Ad = drainage area (square miles), and
a, b, c = numerical constants.
From the flow duration charts, the discharge vs drainage area
charts, and the index to secondary station correlations, median
(F = 0.5) discharge values were determined for each gage station.
These values were in turn used to obtain velocity (V) and cross-
sectional area (A) values from the hydraulic rating curves (see
Figure 3-3). With these values it is possible to estimate the
amount of water in the stream when the flow in the stream is
equal to the median discharge value.
Figure 3-6 illustrates a hypothetical drainage basin where gage
stations, A, B, and C are located. Distances Lj , LB, and LC
exist between the gage stations or the gage station and the
headwaters. Utilizing the hydraulic geometry relationships
111—208
-------
20 40 60 80
PERCEI’.ff OF DAYS
FIGURE J-4.
95 2 10 30 50 70 90 98
PERCENT OF DAYS
TYPICAL FLOW DURATION CURVES FOR THE
BASINS ANALYZED BY STALL AND YANG’
E
‘-I
C -,
L)
10.0
1.0
0.1
0.01
H
H
5
-------
L&J
C-)
100
10
1
10 100 1000
DRAI NAGE AREA (Ad), sq ml
FIGURE J •-5.
DISCHARGE AS RELATED TO DRAINAGE
AREA FOR TWO FREQUENCIES SHOWING
THE 67 PERCENT CONFIDENCE INTERVALS’
100$300
10,000
10,000
111—210
-------
FIGURE J-6. IDEALIZED DRAINAGE BASIN
developed by Stall and Yang, the discharge (Q) and corresponding
velocity (V) can be developed for the median flow rate (F = 0.5)
and a given drainage area at each gage station. The volume of
water represented in the length, LC, could then be calculated by
idealizing the river as illustrated in Figure J—7. This form is
represented by a pyramid and the volume of the pyramid can be
calculated from:
Volume = VOlE = - — L
cc
where Qc/Vc = cross—sectional area (Ac) at point C.
The volume of water located between gage station A and B would
be calculated utilizing the following technique:
Volume = VolAB
The volume of water, \JOlC, is flowing at an average median
discharge of Q /2 and the volume of water, Vol , is flowing at
an average median discharge of (QA + Q&/2.
utilizing the preceding formulae, the volume of water existing
in each tributary or reach of a river basin at a specific median
discharge value can be calculated. In order to accomplish these
calculations, a river basin map indicating gage station locations
and river miles must be utilized. Unfortunately, such maps do
111—211
-------
VOLUME lI3AcxLc
A=
C i
vC
D IS CHARGE, cfs
Vc VELOCITY, fps
Ac CROSS-SECTIONAL AREA
Ac
vc
FIGURE J-7. IDEALIZED STREAM FROM GAGE STATION TO HEADWATERS
not normally indicate the smaller sized tributaries. In order
to estimate the volume represented by the smaller tributaries
(drainage areas on the order of 1 to 5 square miles 2 ), the
relationships of Horton and Strahler 3 were utilized.
Horton, and later Strahler, 3 have shown that a relationship
exists on semi-log paper between stream orders and the number
of such streams (Figure J-8). Hence, if the number of streams
of large order for a basin are known, then the number of smaller
order tributaties are known, the volume of water which they
represent at the median flow rates (F = 0.5) can be determined by
utilizing generalized drainage area data for small order streams
(for streams of order 1, Ad “ 1. square mile, streams of order
2, Ad “.‘ 4.7 square miles 2 ).
Stall and Yang’ calculated the higher stream orders for the rivers
they investigated and the preceding methodology was utilized to
determine the number of smaller order streams.
Once the preceding volume formulae and methodology were utilized
to calculate the volume of water existing within the entire rive
3 Leopold, L. B., et a].. Pluvial Processes in Geomorphology ,
W. H. Freeman & Co., San Francisco, CA, 1964.
Lc
111—212
-------
1,000.000
100,000
10,000
1000
c - f l
i loo
FIGURE J-8.
1 6 11
STREAM ORDER
RELATIONSHIP BETWEEN STREAM
ORDERS AND NUMBER OF STREAMS
0
16
111—213
-------
basin based upon the median flow rates, the corresponding dis—
charges were ranked from highest to lowest with their respective
volumes. Then the volume figures were added to obtain a total
figure for the basin. The total volume figure was divided into
each discharge’s corresponding volume to yield a percentage. The
percentages were added to develop an cc mulative percentage
(based on the ranking of discharge values from high to low).
In order to supplement Stall and Yang’s’ work, a different method-
ology was utilized tc determine the volume represented by various
discharges for two streams within the 0-5 inch runoff classification
and for the Willamette River (>40 inches of runoff).
Data from USGS water supply papers for various gage stations within
the preceding river basins and their corresponding river basin maps
were utilized in order to determine lengths and mean discharge
values for the tributaries and reaches. The median discharge
values were assumed to be roughly fifty percent of the mean
discharge values and this approximation was utilized to reduce
the mean to median values. 4
‘ RiggS, H. C. “Frequency Distribution of treaiu Miles by Flow
Rate,” Open File Report, U. S. Geological Survey, Water Resources
Division, Washington, DC, 1973.
111—214
-------
REFERENCES
1. Stall, J. B. and C. T. Yang. “Hydraulic Geometry of 12
Selected Stream Systems of the United States,” University
of Illinois, Water Resources Center, Research Report
No. 32, July 1970.
2. Leopold, L. B. “Rivers,” American Scientist , Vol. 50,
No. 4, pp. 511—537, 1962.
3. Leopold, L. B., et al Pluvial Processes in Geomorphology ,
W. H. Freeman & Co.,, San Francisco, CA, 1964.
4. Riggs, H. C. “Frequency Distribution of Stream Miles by
Flow Rate,” Open File Report, U. S. Geological Survey,
Water Resources Division, Washington, DC, 1973.
5. “Has the United States Enough Water?”, U. S. Geological
Survey Water Supply Paper 1797, USGPO, Washington, DC,
1965.
111—215
-------
APPENDIX K
ESTUARINE TYPES AND MODEL DERIVATION
The three major types of estuaries are discussed below. A model
of a partially mixed estuary is analyzed and a formula developed
for computing the harmful quantity as a function of salinity and
fresh water inflow rate.
SALT WEDGE ESTUARY
When the inflow of fresh water is large with respect to the tidal
discharge, the fresh and salt water tend to remain separate with
the fresh water flowing out to sea over the top of the salt water
layer and the salt water layer intruding underneath the fresh
water in a rough wedge shape.’ If friction were completely absent,
the interface would remain horizontal and extend upriver to the
point where the river bed was at sea level. The existence of
friction causes the interface to slope slightly downwards in the
upstream direction. 2 The steep density gradient at the interface,
amounting to a discontinuity, reduces the turbulence and mixing
to a very low level (Figure K-i). 2
At high river flow rates, interfacial waves form between the fresh
surface water and the underlying salt water wedge. These waves
will tend to break and lead to an entrapment of some of the salt
water from the wedge into the upper fresh water layer. In this
situation, there is little or no admixture of fresh water into
the salt water wedge, only the upward migration of salt water
into the fresh water layer. Increased flow causes additional
frictional drag at the interface and retards the upstream
protrusion of the wedge, so that it no longer extends as far as
the fall line. The greater the river flow, the further down-
stream the upper edge of the wedge is found. Within the wedge,
increased upstream flow occurs to compensate for the increased
loss of salt water upward into the freshwater upper layer.
A spill of material with a low density (specific gravity <1.0)
will be rapidly flushed from the area. On the other hand, the
introduction of a dense material into the estuary may lead to
entrainment in the salt wedge with sJ.ow exchange with the over-
lying freshwater and a slow exchange with uncontaminated ocean
water caused by the oscillatory motion of the tides. Thus the
‘Semons, N. B. “Field Experience in Estuaries,” Estuary and
Coastline Hydrodynamics , McGraw-Hill Inc., pp. 673-690, 1966.
2 Bowden, K. F. “Circulation and Diffusion,” Estuaries , American
Association for the Advancement of Science, pp. 15-36, 1967.
3 pritchard, D. W. “Estuarine Circulation Patterns,” ASCE, Hydraulics
Division , pp. 717—1 — 717—11, June 1955.
111—217
-------
SEA
RIVER
DEPTH 1
- -U
SALINITY PROFILE
FIGURE K-i. SALT WEDGE ESTUARY
depth location of the spill will dictate the rate of expulsion
from the estuary. However, the spillage of a relatively light
material into the subsurface salt wedge may result in an
increase in dilution of the substance’s concentration by entrain-
ment of the estuarine waters as the plume of material rises from
the estuary’s bed.
PARTIALLY MIXED ESTUARY
In comparatively shallow estuaries affected by tidal currents of
increasing amplitude, vertical mixing extends throughout the
depth, mixing freshwater downwards and the more saline water
upwards. Two layers of flow still exist. The surface of no
motion separating the seaward-flowing upper layer from the
landward-flowing lower layer usually occurs somewhat above mid-
depth (Figure K-2). 2
No marked interface exists, but the salinity profile shows a
continuous increase in salinity from surface to bottom, the
maximum gradient occurring near the level of no net motion. 2
The area of maximum rate of change is relatively stable. However,
the density gradient is not sufficiently sharp to completely
inhibit vertical mixing between the surface layer and bottom layer,
4 4—
FRESH
4-
LONG ITUDI NAL CROSS-SECTION
0 S 0
____________________________ I
— - C. — — —
a
—
VELOCITY PROFILE
111—218
-------
SEA
RIVER
1
4— 4— 4— 4— 4- 4-.
DEPTH
FIGURE K-2. PARTIALLY MIXED ESTUARY WITH ENTRAINMENT
The controlling parameter in this class of estuary is the ratio
of the amplitude of tidal currents to the river inflow and,
therefore, a wide range in the degree of stratification occurs.
The total increase in salinity from surface to bottom ma be
as much as 10 ppt while in others it is less than 1 ppt. Within
a given estuary, large variations may occur in the conditions
with changes in river flow, and smaller but significant differences
between periods of spring and neap tides. 2
Within the estuary a net seaward flow exists at the surface layers,
and a net flow directed from the mouth towards the head of the
estuary in the deeper layers. Furthermore, a small net vertical
motion directed from the deeper layers to the surface layers exists.
The volume rate of seaward flow in the surface layers increases
as one proceeds from the head towards the mouth of the estuary.”
A pollutant initially introduced into the bottom layers in a
partially mixed estuary, in addition to participating in the
oscillatory movement of the tidal currents, is carried in the
net motion towards the head of the estuary. 5 The pollutant which
“Pritchard, D. W. “Observation of Circulation in Coastal Plan
Estuaries,” Estuaries , American Association for the Advan exnent
of Science, pp. 37—51, 1967.
5 Pritchard, D. W. “Dispersion and Flushing of Pollutants in
Estuaries,” ] . Hydraulics Division, ASCE , pp. 115—124,
January 1969.
SALINITY PROFILE VELOCITY PROFILE
111—219
-------
becomes mixed with the surface layers is carried in the net flow
toward the mouth. Seaward from the point of introduction, the
pollutant being carried toward the ocean in the surface layers
is partially mixed downward into the deeper layer and reintroduced
into layers moving toward the head of the estuary. 5
A pollutant introduced into the surface layers is initially carried
in the net flow toward the mouth of the estuary. Turbulent mixing
leads to horizontal and vertical dispersion, and the materials are
also added to the deeper layers having a net flow directed toward
the head of the estuary. 5
In the region of the estuary headward from the point of introduction,
the concentrations of the pollutant will always be greater in the
deeper layers than in the surface layers, while seaward from the
point of introduction the converse will be true. These conditions
prevail regardless of whether the wastes are initially introduced
into the surface layers or into the deeper layers. 5 The pollutant
is ultimately flushed from the estuary in the seaward—directed
flow of the surface layers. 5
The subsequent fate of a pollutant will be influenced by the
physical properties of the contaminant, the rate of discharge,
and the depth of introduction. 5 If the density of the contaminant
is less than that of the receiving waters, and the material is
introduced at the surface of the estuary, vertical mixing of the
contaminant with the receiving waters will be inhibited. However,
if such a contaminant is introduced into the estuary near the
bottom, the material will initially rise as a buoyant plume,
entraining dilution water from the environment enroute to the
surface. Since the estuary is seldon deep enough so that the
ascending plume reaches the density of the receiving waters at
an intermediate depth, the plume will spread out on the surface
still somewhat lower in density than the surrounding estuarine
waters.
Each reversal of the tidal current will result in a folding back
of the spreading plume. However, because of the large scale
turbulent eddies, the plume will seldom fold exactly upon itself
and will normally follow a different path on successive tides. 5
Thus, there will develop a widespread contaminated field of
relatively low concentration on which is superimposed, during
each tide, a relatively narrow plume of higher concentration. 5
WELL-MIXED ESTUARY
In a well-mixed estuary, the tidal forces predominate over the
freshwater inflow to such an extent that the fresh and salt water
are fairly well mixed throughout the vertical. Salinities decrease
horizontally from sea water at the entrance to fresh water in the
upper reaches and bottom salinities normally exceed those at the
surface by 15 to 25 percent.k
111—220
-------
The currents reverse with tidal phase throughout the estuary.
In the fresh and brackish water regions, ebb currents at all
depths predominate over flood currents because of the freshwater
discharge. In the intermediate and highly saline regions, however,
the bottom flood currents usually predominate slightly over the
bottom ebb currents. Very few estuaries fit this idealized
situation.
MODEL EQUATION DERIVATION
Applying a salt and water balance to the estuarine plug flow
model developed in Chapter VII, HQ=K (QT + RP/D) (T) (C) (S) will
result in simplifying the necessary input data to the basic model.
In order to apply such a balance the following terms must be
defined 6
Vf = total water volume entering the estuary on the flood
tide
Vfe = portion of Vf which flowed out of the estuary on the
previous ebb
Vo = volume of new ocean water entering the estuary during
flood tide
Vt = volume of fresh water added by the tributary
ye = volume of water leaving the estuary in the ebb tide
Sf = average salinity of water entering the estuary on the
f]ood tide (equivalent to total salt in estuary divided
by total estuarine volume).
Se = average salinity of water leaving the estuary on the
ebb tide
So = salinity of the ocean water.
For continuity of salt and water to hold
SfVf = SeVfe (K—i)
Vf + Vt = ye (K-2)
111—221
-------
and,
SfVf = SeVfe + SoVo (K-3)
Vf = Vfe + Vo (K-4)
6 Fischer, H. B. Affidavit concerning Section 307, for the EnViron—
mental Protection Agency.
and the tidal exchange ratio can be defined as
R = Vo/Vf (K-5)
Substituting (K-2) into (K-3)
SfVf = Se(Vf - Vo) + SoVo
Vo — Sf - Se — / Se \ (Sf_—_Se\
or, — So - Se — \ So — Se ) Se ) (K—6)
Substituting (K—2) into (K—i) yields
SfVf = Se(Vf + Vt)
or Vt Sf-Se
Vf Se
Substituting into (K-6)
Vo_ Se Vt
Since Vt = QtD:nd P=Vf, therefore R = ( So ( D)
Substituting the preceding equation into VII-4 yields
H > K [ Qt + ( So S ) (QtD) ( .)] (T) (C)
rearranging
H > KS ( So °se ) (Qt) (T) (C) (K—7)
111—222
-------
REFERENCES
1. Semons, N. B. “Field Experience in Estuaries,” Estuary and
Coastline Hydrodynamics , McGraw-Hill Inc., pp. 673-690, 1966.
2. Bowden, K. F. “Circulation and Diffusion,” Estuaries , American
Association for the Advancement of Science, pp. 15-36, 1967.
3. Pritchard, D. W. “Estuarine Circulation Patterns,” ASCE,
Hydraulics Division , pp. 717—1 — 717—11, June 1955.
4. Pritchard, D. W. “Observation of Circulation in Coastal Plan
Estuaries,” Estuaries , American Association for the Advancement
of Science, pp. 37—51, 1967.
5. Pritchard, D. W. “Dispersion and Flushing of Pollutants in
Estuaries,” J. Hydraulics Division, ASCE , pp. 115—124,
January 1969.
6. Fischer, H. B. Affidavit Concerning Section 307, for the
Environmental Protection Agency.
111—223
-------
APPENDIX L
DERIVATION OF THE TIME AT WHICH THE
MINIMUM HARMFUL QUANTITY IS OBTAINED
IN THE PLUG FLOW MODEL
It has been stated in Chapter VII that the minimum harmful quantity
for a substance will occur under conditions requiring an exposure
time of less than six hours. In order to establish this, one must
analyze the basic relations involved. The plug flow model can be
written as
HQ = kQQCT (L-l)
where HQ harmful quantity
k = constant for conversion of units, value depends on
units employed.
Q = flow rate of the receiving water, a selected constant
C = critical concentration for a substance
T = time of passage for the plug.
The relation can be simplified to
HQ = k 1 CT (L-2)
since Q is held constant, but both C and T are time dependent
variables. In order to determine the point where a minimum HQ
will occur, the relation must be converted to one varying only
in time, T. To do this, it is necessary to establish the relation
between C and T. In a review of time-dose mortality relations
which describe the empirically determined relation between time
and dose, Wuhrmann 1 and others 2 have noted that the time-dose
relation can be described mathematically in the form
(C—C 5 ) (t—t 5 ) = k 2 (L—3)
where C = incipient toxicity threshold (a constant see glossary)
= incipient time threshold (a constant see glossary)
1 Wuhrmann, K. “Concerning Some Principles of the Toxicology Of
Fish,” Bull. Cent. Gelge Dacum, Eaux, No. 15: 49, 1952 . (FiSh-
eries Research Board of Canada Translation Series, No. 243).
2 Alabaster, J. S. and S. H. Abram. “Development and Use of a
Direct Method of Evaluating Toxicity to Fish,” Advances in Wat
Pollution Research , Proceedings 2nd International Conference,
Tokyo, August 1964, Vol. I, 1965.
111—225
-------
t = time variable
= constant for any given chemical
n = constant for any given chemical, no units
Rearranging,
-n
t = k 2 (C-C 5 ) + t (L-4)
This can now be substituted into the simplified plug flow equa-
tion to yield
HQ = k 1 k 2 (c-C 5 ) n + k 1 Ct (L-5)
since T = t for the two relations.
The minimum will occur where the derivative has a value of zero;
therefore, at the minimum
dHQ/dC = -nk 1 k 2 (C-C 5 ) 1 C + k 1 k 2 (C-C 5 ) + k 1 t 5 = 0 (L-6)
or,
_nk 2 (C_C 5 )nlC + lk 2 (C-C 5 ) + t 5 = 0 (L-7)
and
k 2 (C—C 5 ) [ (C-C ) — nC] + t = 0 (L-8)
It is the time of passage (or exposure time) which must be deter-
mined at the minimum point and, therefore, the following trans-
forms from equation (L—3)
(C-C )fl — t _ t 5 ‘c-c — (ttg l/fl
s — ‘ s’ —
c = k )1./hl + c
t-ts S
can be substituted into equation (L-8) to get
k 2 ( t _ tS ) (ttS)l/fl - n - nC 8 ] + t 8 = 0 (L-9)
(t—t 5 ) (ttc) h1 1 [ (k )l/fl — ( 2 )l/fl - nC 8 ] + t 5 = 0 (L—l0)
(t-t 5 ) [ l-n—nCs (tts)hhh1 ] + t 8 = 0 (L11)
II I— 226
-------
If the term nCs ( t SL ) 1/n is sufficiently less than 1-n it can
be treated as 0 anl2removed from the expression. This simplifi-
cation will be verified at the end of the proof.
consequently,
(t—t ) (1—n) + t = 0 (L—12)
t-t 5 -nt + nt 5 + t = 0 (L-13)
t (1-n) + nt = 0 (L-14)
t = (L-15)
Empirical data from time-dose mortality tests reveals that n
always has a negative value. Consequently, the time value (t)
associated with the minimum HQ will always be less than the incip-
ient time threshold(t 5 ). Empirical data also reveal that for the
hazardous substances studied, t never exceeds one hour. Hence,
the minimum harmful quantity will never occur at a time of exposure
in excess of six hours unless the term L-16 dropped out of equation
L-ll is found to be significant. To check this, the values
obtained for the various parameters will be placed back into the
expression
nCs ( ttS ) 1/n (L-16)
with
t = ( )
Sprague 3 reports that Cs typically falls in the range 0.1-0.01 C
for t=96 hours, e.g., the incipient toxicity threshold is one
tenth to one one-hundredth of the 96 hour LC5O. Employing the
larger of these values and substituting expression (3) for k 2 ,
expression N-l6 can be written as
n (.1C) I (t-t 5 ) ] 1/n
L(C—0.lC)” (t—t 5 )J
which reduces to
( nO.1C ) = 0.11 (L—17)
Recalling the simplifying assumption made between equation L-ll
and L—12, it is now possible to check how much the dropped term
L-16 affects the relationship L-ll. This can be done by determining
3 sprague, J. B. “Measurement of Pollutant Toxicity to Fish - III:
Sublethal Effects and ‘Safe’ Concentrations,” Water Research ,
Vol. 5, pp. 245—266, 1971.
111—227
-------
the percentage change (at the limits of n) in equation L-ll when
expression L—16, substituted as expression L-17, is included.
Recalling that n varies between (0 and _co) one obtains
urn [ (t—t ) (l—n—.lln) + tg] — [ (t—t ) (l—n)+t ]
n o (t-t ) (i—n) + t
= urn ( ttq) (—.lln ) — o o
fl O (t t ) (1-n) + t —
and
urn ( t—t ) (—.lln ) — 11
n - (t—t 5 ) (1-n) +t
Thus, a maximum variation of 11 percent in equation L-ll occurs
as n approaches — and the variation approaches zero as n
approaches zero. For almost all of the time-dose curves, the
value of n lies between 0 and -1. Thus, the deletion of expression
L—16 from equation L-ll remains valid.
The single step remaining is proof that the point with slope 0
is indeed a minimum, and not a maximum. This is done by taking
the derivative of the first derivative and determining if it has
a positive or negative value. It has been shown that
d = nk 1 k 2 (c_c 5 )-n-l C + k k 2 (C_C y 4 1 + k 1 t
(L—18)
and therefore,
= n k 1 k 2 (C-C ) + (n+l) (n)k 1 k 2 C(C-C 5 ) 2 - nk 1
k 2 (C-C 5 ) (L-19)
Recalling that n has been found to always be negative and C and
Cs must be positive (a negative concentration is impossible) and
C>C by definition, one needs only determine values for k 1 k 2 .
From equation L-3, it can be shown that k2 > 0 since the C-Ce
and t-t terms are positive by definition.
Also,
k 1 > 0 by definition of the basic plug flow model in equation
(L-l)
111—228
-------
Therefore in equation (L-17),
term 1 = (nO) (k 2 >O) [ (C —C 5 ) >0] = positive
term 2 = (n+l) (n0) (k 2 >0) (C>O) I (C—C 5 )’ 2 >O] positive
or zero for n<—1, negative for n>—l, zero for n=—l
term 3 =(n<0) (k 1 >0) (k 2 >0) [ (C—C 5 ) >O] = positive
Thus
HQ
dcZ = > 0 for all values of n<-l and the point where
dHQ
= 0 is a minimum.
It remains only to evaluate the case where n > -1. Since at the
same time, n < 0 (n is always negative), the absolute value (n) is
always less than 1. But terms 1 and 2 of equation L—17 differ
only by a factor of (n+1)/(C-Cs). In this expression, the
numerator (n+1) by virtue of -l < n < 0 will be a positive decimal
and, hence, the first term in equation L-17 is always greater than
the second term if (C-C 5 )>l. In the zone of interest (i.e.,
r = t 5 ) C approaches infinity, whereas Cs = O.1Ct 96 is relatively
small, and it can be safely assumed that (C-Ce) is always greater
than one as C Cj . Thus, the second term in equation L-17, though
it may be negative, is insufficient in absolute value to override
the first term let alone the sum of the first and third terms,
and hence, the second derivative is positive; the point where
dHQ/dc = 0 is a minimum.
111—229
-------
APPENDIX M
TABLE OF COST OF PREVENTION ADJUSTMENT FACTORS
Cost of prevention adjustment factors (rk’s) which correct the
base rate of penalty for toxicity, degradability, and dispers—
ibility have been computed for each hazardous material and are
summarized in the following table. These adjustment factors
were computed from the following formula:
ro = D 1 x T x D 2
rk = adjustment factor = 1 + 1.41 ro
D 1 = dispersion-solubility term
=1— 1
1+log Solubility (mg/i )
TLm (mg/i)
T = toxicity factor
=1- 1
1+log 500 (mg/i )
TLm (mg/i)
= degradabiiity factor
= (1—Deg)
where Deg equais the estimated percentage loss of
materials in a four day period.
111—231
-------
Dispersion—Solubility Toxicity Factor Degradability Adjustment Factor Adjustment Factor
Factor (D 1 ) (5 ’) Factor (D 2 ) ro (D 1 x T x D 2 ) rk 1 1.41 ro
SW FW SW FW SW
Acetaldehyde
FW SW
0.81 0.81 0.51 0.46 0.18 0.07 0.07 1.11 1.11
Acetic acid
0.80 0.82 0.45 0.54 0.33 0.12 0.15 1.17 1.21
Acetic anhydride
0.77 0.78 0.47 0.54 0.33 0.12 0.14 1.17 1.20
Acetone cyanohydrin
0.77 0.77 0.50 0.50 1.00 0.39 0.39 1.55 1.55
Acetyl bromide
0.16 0 0.36 0 0.25 0.01 0 1.02 1.00
Acetyl chloride
0.80 0.76 0.41 0.03 0.25 0.08 0.01 1.11 1.01
Acrolein
0.85 0.89 0.73 0.83 0.96 0.35 0.71 1.49 2.0
Acrylonitrile
0.79 0.78 0.62 0.58 0.53 0.26 0.24 1.37 1.34
Adiponitrile
0.44 0.44 0 0 0.65 0 0 1.00 1.00
A ldrin
R8 0.82 0.81 1. 00
Allyl alcohol
0.86 0.84 0.73 0.67 0.92 0.58 0.52 1.82 1.73
Allyl chloride
0.65 0.76 0.52 0.70 0.95 0.32 0.51 1.45 1.72
Aluminum fluoride
0.84 0.77 0.67 0.25 1.00 0.56 0.19 1.80 1.27
Aluminum sulfate
0.76 0.76 0.23 0.23 1.00 0.17 0.17 1.24 1.24
Ammonia
0.82 0.82 0.68 0.68 1.00 0.56 0.56 1.79 1.79
Ammonjum acetate
0.78 0.78 0.24 0.24 1.00 0.19 0.19 1.27 1.27
Ammonjum benzoate
0.73 0.73 0.06 0.06 1.00 0.04 0.04 1.06 1.06
+
H
H
Iii
(A)
F..-)
-------
Dispersion—Solubility Toxicity Factor Degradability Adjustment Factor Adjustment Factor
Factor CD 1 ) (F) Factor (D 2 ) ro (D 1 rk — 1 + 1.41 ye
Hazardous Material
D 2 )
FW SW EW SW
Fw SW FW SW
* niu si bicarbonate
0.79 0.79 0.57 0.57 1.00 0.45 0.45 1.63 1.63
Ameoniumbichromate
0.77 0.78 0.36 0.37 1.00 0.28 0.29 1.39 1.41
Aam niumbif1 ride
0.75 0.75 0.41 0.41 1.00 0.29 0.29 1.41 1.41
M%monium bisulfite
0.68 0.68 0.13 0.13 1.00 0.09 0.09 1.13 1.13
Ajanonium bromide
0.83 0.83 0.62 0.62 1.00 0.51 0.51 1.72 1.72
Amn niuM carbamate
0.82 0.82 0.66 0.66 1.00 0.54 0.54 1.76 1.76
Ammor*ium carbonate
0.80 0.80 0.54 0.54 1.00 0.43 0.43 1.61 1.61
Ammonium chloride
0.82 0.82 0.66 0.66 1.00 0.54 0.54 1.76 1.76
Aavnonium chromate
0.76 0.76 . 0.24 0.24 1.00 0.18 0.18 1.25 1.25
mmonium citrate
0.68 0.68 0.13 0.13 1.00 0.09 0.09 1.13 1.13
Ammonium fluoborate
0.80 0.80 0.62 0.62 1.00 0.50 0.50 1.71 1.71
AiwnofliUm fluoride
0.73 0.73 0.28 0.28 1.00 0.20 0.20 1.28 1.28
Aminoflium formate
0.79 0.79 0.29 0.29 1.00 0.23 0.23 1.32 1.32
AiaflQfliUzN hydroxide
0.78 0.78 0.60 0.60 1.00 0.47 0.47 1.66 1.66
Aamonium hypophosphite
0.79 0.79 0.63 0.63 1.00 0. 0 0.50 1.71 1.71
H
H
F’,
1.)
L A)
-------
Dispersion—Solubility Toxicity Factor Degradability Adjustment Factor Adjustment Factor
Factor 0 (T) Factor CD 2 ) ro = CD 1 x T x D 2 ) rk 1 + 1.4]. ro
Hazardc, Material
PW
A niua iodide
SW lit SW FW SW FW SW
0.83 0.83 0.60 0.60 1.00 0.50 0.50 1.71 1.71
A niu melyl date
0.82 0.82 0.58 0.58 1.00 0.48 0.48 1.68 1.68
nium nitrate
0.83 0.83 0.64 0.64 1.00 0.53 0.53 1.75 1.75
Aonium oxalate
0.64 0.64 0.05 0.05 1.00 0.03 0.03 1.04 1.04
A nium pentaborate
0.76 0.76 0.50 0.50 1.00 0.38 0.38 1.54 1.54
A niua persulfato
0.82 0.82 0.56 0.56 1.00 0.46 0.46 1.65 1.65
A ni silicofluoride
0.78 0.78 0.50 0.50 1.00 0.39 0.39 1.55 1.55
Aonjua sulfamete
0.79 0.79 0.28 0.28 1.00 0.22 0.22 1.31 1.31
Aoniua sulfate
0.82 0.82 0.60 0.60 1.00 0.49 0.49 1.69 1.69
A nium sulfide
0.77 0.77 0.23 0.23 1.00 0.18 0.18 1.25 1.25
A nit. sulfite
0.76 0.76 0.24 0.24 1.00 0.18 0.18 1.25 1.25
nji tartrate
0.70 0.70 0.20 0.20 1.00 0.14 0.14 1.20 1.20
?.onium thiocyanate
0.80 0.80 0.39 0.39 1.00 0.31 0.31 1.44 1.44
A njuim thiosuIfate
0.78 0.78 0.22 0.22 1.00 0.17 0.17 1.24 1.24
Amy ] . acetate
0.52 0.54 0.47 0.49 0.44 0.11 0.12 1.16 1.17
Aniline
0.78 0.78 0.62 0.62 0.47 0.23 0.23 1.32 1.32 —
Antimeny pentachioride
0.83 0.83 0.60 0.60 1.00 0.50 0.50 1.71 1.71
H
H
I. 4
F. .,
-------
Adjustment Factor
rk 1 + 1.41 ro
Hazardous Material
Factor D 1 )
SW SW sw FW SW
Benzene
0.59 0.61 0.55 0.58 0.79 0.35 0.28 1.49 1.39
Benzoic acid
0.52 0.52 0.31 0.31 0.39 0.06 0.06 1.08 1.08
Benzonitri le
0.68 0.68 0.45 0.45 0.47 0.14 0.14 1.20 1.20
Benzoyl chlorice
0.52 0.26 0.31 0 0.25 0.04 0 1.06 1.00
Bensyl chloride
0 0 0.33 0 1.00 0 0 1.00 1.00
Beryllium chloride
0.74 0.74 0.37 0.37 1.00 0.27 0.27 1.38 1.38
Beryllium fluoride
0.72 0.76 0.68 0.45 1.00 0.49 0.34 1.69 1.48
Beryllium hydroxide
0 0 0.52 0.52 1.00 0 0 1.00 1.00
Beryllium nitrate
0.79 0.79 0.58 0.58 1.00 0.46 0.46 1.65 1.65
Beryllium sulfate
0.77 0.77 0.25 0.25 1.00 0.19 0.19 1.27 1.27
Brucine
0.62 0.74 0.56 0.71 0.95 0.33 0.50 1.47 1.71
Butyl acetate
0.69 0.71 0.51 0.54 0.49 0.17 0.19 1.24 1.27
Butyl ine
0.82 0.82 0.58 0.58 0.76 0.36 0.36 1.51 1.51
Butyric acid
0.71 0.71 0.28 0.28 0.45 0.09 0.09 1.13 1.13
cadmium acetate
0.80 0.79 0.63 0.61 1.00 0.50 0.48 1.71 1.68
Cadmium bromide
0.80 0.82 0.65 0.58 1.00 0.52 0.48 1.73 1.68
Dispersion—Solubility
Toxicity Factor
(T)
Degradability Adjustment Factor
Factor (D 2 ) ro — (D 1 x T x D 2 )
1-4
1-4
I;l
p..,
I - f l
-------
Dispersion-Solubility Toxicity Factor Degradability Adjustment Factor Adjustment Factor
Factor (D ) IT) Factor (0 ) ro — ID x T x 0 ) rk - 1 + 1.41 ro
Hazardous Material 1 2 1 2 _________________
LW SW LW SW LW SW LW SW
Cadmium chloride 0.84 0.83 0.67 0.61 1.00 0.56 0.51 179 1.72
Cadmiu, nitrate 0.84 0.83 0.65 0.59 1.00 0.55 0.49 1.77 1.69
Cadmium sulfate 0.84 0.83 0.66 0.60 1.00 0.55 0.49 1.78 1.69
Calcium arsenate 0.48 0.52 0.60 0.62 1.00 0.29 0.32 1.41 1.45
Calcium arsenite 0.66 0.66 0.49 0.49 1.00 0.32 0.32 1.45 1.45
Calcium carbide 0.53 0.53 0.36 0.36 0.25 0.05 0.05 1.07 1.07
Calcium chromate 0.74 0.73 0.25 0.02 1.00 0.19 0.01 1.27 1.02
I—I Calcium cyanide 0.84 0.84 0.77 0.77 0.50 0.33 0.33 1.47 1.47
Calcium dodecylbenzenesulfonate 0.73 0.75 0.58 0.62 0.62 0.26 0.29 1.37 1.41
Calcium hydroxide 0.52 0.52 0.33 0.33 0.25 0.04 0.04 1.06 1.06
Calcium hypochiorite 0.85 0.82 0.77 0.70 0.25 0.17 0.14 1.23 1.20
Calcium oxide 0.80 0.80 0.38 0.38 0.25 0.08 0.08 1.11 1.11
Capt.an ___ • ‘•• •• 0.76 0.76 0.75 <7i
Carbon disulfide 0.55 0.55 0.36 0.36 0.95 0.19 0.19 1.27 1.27
Catechol 0.82 0.82 0.61 0.61 0.68 0.34 0.34 1.48 1.48
0.40 0.45 0.10 0.11 1.14 1.16
Chiordane 0.81 0.82 0.30
0.88 0.89 0.21 0.22 1.30 1.31
Chlorine 0.84 0.81 0.79 0.73 0.25 0.17 0.15 1.23 1.17
-------
H
H
I71
t )
—I
Hazardous Material
Factor 0 i (T) Factor (D 2 ) ro (D 1 x T x 02) rk 1 + 1.41 re
1 i5Per8iom So1ubihit ’ Toxicity Factor Degradability Adjustment Factor Adjustment Factox
FW SW FW SW FW
Chlorobenzene
SW
0.58 0.58 0.58 0.58 0.99 0.33 0.33 1.47 1.47
Chloroform
0.47 0.47 0.38 0.38 0.98 0.29 0.29 1.41 1.41
Chloroaulfonjc acid
0.80 0.77 0.45 0.14 0.25 0.09 0.03 1.13 1.04
Chromic acetate
0.80 0.77 0.66 0.59 1.00 0 53 0.45 1.75 1.63
chromic acid
0.82 0.80 0.54 0.41 1.00 0.44 0.33 1.62 1.47
Chromic sulfate
0.79 0.77 0.64 0.57 1.00 0.51 0.44 1.72 1.62
Chromoui carbonate
0.69 0.64 0.69 0.64 1.00 0.48 0.41 1.68 1.58
Chromous chloride
0.82 0.80 0.69 0.64 1.00 0.57 0.51 1.80 1.72
Chromous oxalate
0.80 0.78 0.68 0.62 1.00 0.54 0.48 1.76 1.68
Chromyl chloride
o.ei 0.79 0.50 0.34 1.00 0.69 0.73 1.97 2.00
Cobaltous acetate
0.70— 0.52—
0.52 0 1.00 0.36— 0 i.oo
0.77 0.67 0.40 1.56
Cobaltous bromide
0.81 0.76 0.53 0 1.00 0.43 0 1.61 1.00
Cobaltous chloride
0.80 0.73 0.52 0 1.00 0.42 0 1.59 1.00
Cobaltous citrate
0.76 0.65 0.54 0 1.00 0.41 0 1.58 1.00
0.77 0.67 0.57 0.04 1.00 0.44 0.03 1.62 1.04
Cobaltous fluoride
Cobaltous forinate
0.76 0.66 0.55 0 1.00 0.42 0 1.59 1.00
-------
Hazardous Material
Cobajtou. iodide
Fw SW LW SW LW SW LW SW —
0.82 0.76 0.49 0 1.00 0.40 0 1.57 1.00
Cobaltoua nitrate
0.81 0.75 0.50 0 1.00 0.41 0 1.58 1.00
Cobaltous perchiorate
1.81 0.74 0.48 0 1.00 0.36 0 1.5). 1.00
Cobaltous succinate
0.60 0.18 0.55 0 1.00 0.39 0 1.55 1.00
Cobaltous sulfamate
0.68 0.44 0.52 0 1.00 0.35 0 1.50 1.00
Cob*ltou. sulfate
0.79 0.72 0.50 0 1.00 0.40 0 1.56 1.00
Co apbos
048 053 028 031 139 144
0.77 0.79 0.75 ‘iu1 /<‘3
Cresol
0.77 0.72 0.63 0.49 0.67 0.33 0.24 1.47 1.34
Cupric acetate
0.77 0.80 0.56 0.66 1.00 0.43 0.53 1.61 1.75
Cupric acetoarsenite
0.73 0.68 0.71 0.64 1.00 0.52 0.44 1.73 1.62
Cupric acetylacetonate
0.75 0.70 0.73 0.67 1.00 0.55 0.47 1.78 1.66
Cupric brouide
0.83 0.81 0.72 0.65 1.00 0.60 0.53 1.85 1.75
Cupric chloride
0.85 0.84 0.73 0.67 1.00 0.62 0.56 1.87 1.79
Cupric for.ate
-
0.84 0.81 0.73 0.67 1.00 0.61 0.54 1.86 1.76
Cupric gluconate
0.83 0.81 0.69 0.61 1.00 0.57 0.49 1.81 1.70
Dispersion-Solubility
actor 0
Toxicity Factor Degradability
(F) Factor (D 2 )
Adjuatment Factor Adjustment Factor
ro — CD 1 x F x D 2 ) rk - 1 + 1.41 ro
H
H
F
L )
-------
1-4
H
Hazardous Material
Diepersion-Solubility Toxicity Pactor Degradability Adjustment Factor Adjustment Factor
Factor CD 1 ) (T) Factor CD 2 ) ro • CD x T x D 2 ) rk — I + 1.41 ro
SW
Cupric glyCinate
0.77 0.74 0.71 0.65 1.00 0.55 0.48 1.78 1.68
Cupric lactate
0.83 0.81 0.71 0.65 1.00 0.59 0.53 1.83 1.75
cupric nitrate
o.as 0.83 0.71 0.64 1.00 0.60 0.53 1.85 1.75
Cupric oxalate
0.58 0.42 0.73 0.67 1.00 0.42 0.28 1.59 1.39
Cupric subacetate
0.78 0.75 0.73 0.66 1.00 0.56 0.50 1.79 1.71
Cupric sulfate
0.92 0.82 0.64 0.65 1.00 0.52 0.53 1.73 1.75
Cupric sulfate ameoniated
0.84 0.83 0.71 0.65 1.00 0.60 0.54 1.85 1.76
Cupric tartrate
0.67 0.57 0.71 0.63 1.00 0.48 0.36 1.68 1.51
Cuprous bromide
0.73 0.67 0.73 0.67 1.00 0.53 0.45 1.75 1.63
cuprous iodide
0.44 0.13 0.72 0.66 1.00 0.32 0.09 1.45 1.13
0.82 0.82 0.79 0.79 0.50 0.32 0.32 1.46 1.46
Cyanogen chloride
Cyclohexane
0.14 0.14 0.55 0.55 0.20 0.02 0.02 1.03 1.03
24—D (acid)
— 84 .‘i’64 0.66 0.50
2,4—D (esters)
0.71 0.64 0.50
Dalapon
0.79 0.85 0.40 0.73 0.75 0.24 0.47 1.34 1.66
DDT
0.83 0.81 4 oo
Diazinon
0.81 0.81 0.80 __ —
,- 0.88 0.88 0.71 0.71 2.00 2.00
-------
x
Hazardous Material
SW ow FW SW
Dicamba
0.67 0.67 0.52 0.53 1.00 0.35 0.35 1.49 1.49
Dichiobenil
‘<83 0.61 0.61 1.00 ,,“ ‘<5 ’ -
Dichione
0.28,... 0.28 , .. 0.22 O.22 ,— 1.31,- 1.31,’
.- ‘ , - ‘ 0.80 0.80 1.00 ._- -“ ,-
-‘0.88 “0.86 0.70 -‘0.65 “1.99 -‘1.92
Dich lorvos
0.81 0.81 0.74 0.74 1.00 0.60 0.60 1.85 1.85
Die ldrin
0.58 0.36,.,. 0.40,..- 0.29,- 1.68,’ 1.41,’
,,,. ‘ -“ 0.83 0.80 1.00 ,- “ . -‘
0.89 “0.88 , - ‘ 0.74 —‘0.70 —‘2.00 /1.99
Diethylamine
0.80 0.80 0.43 0.43 0.91 0.31 0.31 1.44 1.44
Di thy1amine
0.75 0.75 0.43 0.41 0.95 0.31 0.29 1.44 1.41
Dinitrophenol
0.72 0.72 0.54 0.54 0.65 0,25 0.25 1.35 1.35
Diguat
0.81 0.79 0.54 0.63 0.85 0.37 0.42 1.52 1.60
Disulfoton
0.74, 0.74 , 0.50_. 0.50_. 1.71,. 1.71,,.
, “ , ,/“ 0.80 0.80 0.85 ,.— ,- , “
..“0.88 .“ O.88 —‘0.60 —‘0.60 —‘1.85 -‘1.85
Diuron
o.si ô.si 0.33 ,. — 0.39 1,47,, - 1.55
.- ‘ ,,,- ‘ “ 0.68 0.71 0.95 — - .----
.—‘b.84 - . “b.$5 -“0.54 0.57 , ‘1.76 ./180
Dodecylbeozenesulfonic acid
0.77 0.79 0.59 0.64 0.62 0.28 0.31 1.39 1.44
Dursban
Endosulfan
Endrin
j’e — :‘88 0.80 0.80 0.85 ‘ ‘ — ‘ ‘60
“<89 0.85 0.82 0.85 ‘i ’T - ‘<62 . -‘<92 “I ’87
“‘<90 “<$9 0.86 0.84 0.50 . . “ T ” -‘<54
Ethion
0.47,, 0.47 .. , 0.31,. 0.31,- 1.44,’ 1.44,—
,“ ,-‘ 0.78 0.78 0.85 , ,- ‘ , .-“ , - ‘
. “'0.87 “0.97 —“0.58 -“0.58 “1.82 -“1.82
Dispersion-Solubility Toxicity Factor
Factor CD 1 ) (T)
Degradability Adjustment Factor
Factor (D 2 ) ro (D 1 T x D 2 )
Adjustment Factor
rk — 1 + 1.41 ro
H
H
ts.)
0
-------
Dispersion—Solubility Toxicity Factor Degradability Adjustment Factor Adjustment Factor
Factor (D 1 ) (T) Factor (D 2 ) ro = (D 1 D 2 ) rk = 1 + 1.41 ro
Hazardous Material
8W SW FW SW FW SW FW SW
0 0 0.55 0.55 0.97 0 0 1.00 1.00
Ethy lbenzene
Ethylenediamine
0.82 0.83 0.55 0.61 0.79 0.36 0.40 3.51 1.56
EDTA
0 0 0 0 0.99 0 0 1.00 1.00
Ferric a lonium citrate
0.82 0.81 0.56 0.50 1.00 0.46 0.41 1.65 1.57
Ferric chloride
0.77 0.75 0.58 0.53 1.00 0.45 0.40 1.63 1.56
Ferrjc fluoride
0.72 0.69 0.61 0.56 1.00 0.44 0.39 1.62 1.54
Pezric nitrate
0.76 0.74 0.55 0.48 1.00 0.42 0.36 1.59 1.50
Ferric phosphate
0.60 0.56 0.60 0.56 1.00 0.36 0.31 1.51 1.44
Ferric sulfate
o.o 0.84 0.58 0.52 1.00 0.49 0.44 1.69 1.62
Ferrous oniuun sulfate
0.80 0.79 0.58 0.52 1.00 0.46 0.41 1.65 1.58
Ferrous chloride
0.83 0.83 0.58 0.52 1.00 0.48 0.43 1.68 1.61
Ferrous oxalate
0.55 0.48 0.61 0.56 1.00 0.34 0.27 1.48 1.38
Ferrous sulfate
0.81 0.77 0.58 0.52 1.00 0.47 0.40 1.66 1.56
Formaldehyde
0.82 0.79 0.57 0.27 0.13 0.06 0.03 1.08 1.04
Formic acid
0.79 0.80 0.31 0.43 0.58 0.14 0.20 1.20 1.28
xTx
H
H
-------
sw SW FM SW
Fuaaric acid
0.63 0.63 0.36 0.36 0.31 0.07 0.07 1.10 1.10
Purfural
0.78 0.78 0.57 0.57 0.72 032 0.32 1.45 1.45
Guthion
0.75,— 0.79, 0.49 , - 0.52,- 1.69,. 1.73,.-
/‘ . . - ‘ 0.81 0.83 0.80 .- ‘ ..- ‘ .— ‘
-‘0.88__— ‘0.89 -‘0.57 -‘0.59 -‘1.00 -‘1.83
Heptachior
0.32 , - 0 , 0.26 ,. 0 — 1.37,- 1.00,-
,- , - , - ‘ 0.82 0.74 1.00 -‘ ,‘
“0.89 —‘0.86 , ‘ 0.73__ — ‘0.64 —‘2.00 -‘1.90
Hydrochloric acid
0.81 0.78 0.51 0.27 0.25 0.10 0.05 1.14 1.07
Hydrofluoric acid
0.85 0.80 0.69 0.38 0.25 0.19 0.08 1.17 1.21
Hydrogen cyanide
0.84 0.85 0.77 0.79 0.50 0.33 0.34 1.46 1.41
HydroqUinone
0.80 0.80 0.67 0.67 0.53 0.28 0.28 1.39 1.39
Hydroxylamine
0.74 0.74 0.34 0.34 0.75 0.19 0.19 1.21 1.27
Isoprene
0.11 0.11 0.45 0.45 0.90 0.04 0.04 1.06 1.06
Isopropanolaeine dodecylbenzene—
0.79 0.90 0.58 0.62 0.62 0.28 0.31 1.39 1.44
Keithane
0.41,. 0.41.- 0.17 ..— 0.17,- 0.24,- 1.24 ,-
..- ‘ ,-‘ 0.41 0.41 1.00 , .-‘ ,— ‘ , .- ‘
—‘0.80 “0.80 -‘0.33__-‘0.33 - ‘1.46 -‘1.46
Lead acetate
0.78 0.74 0.37 0.06 1.00 0.29 0.04 1.41 106
Lead bro.ide
0.61 0.51 0.37 0.07 1.00 0.23 0.04 1.32 1.06
Lead chloride
0.57 0.40 0.05 0.17 1.00 0.03 0.07 1.04 1.10
Lead fluoborate
0.80 0.70 0.37 0.06 1.00 0.30 0.04 1.42 1.06
Di.persion—Solubility Toxicity Factor
Factor CD 1 ) CT)
Degradability Adjustment Factor Adjustment Factor
Factor (D 2 ) ro — CD 1 x T x D 2 ) rk — 1 + 1.41 ro
H
H
F ’.)
a
F’.)
-------
Hazardous Material
LW SW LW SW
Lead fluoride
LW SW LW SW
0.60 0.27 0.59 0.20 1.00 0.35 0.05 1.07
Lead iodide
0.32 0 0.34 0 1.00 0.11 o 1.15 1.00
Lead nitrate
0.82 0 0.39 0 1.00 0.32 0 1.45 1.00
Lead stearate
0 0 0.23 0 1.00 0 0 1.00 1.00
Lead sulfate
0.38 0.09 0.31 0.14 1.00 0.12 0.01 1.17 1.01
Lead sulfide
o 0 0.44 0.21 1.00 0 0 1.00 1.00
Lead tetraacetate
0 0 0.35 0 1.00 0 0 1.00 1.00
Lead thiocyanate
0.40 0.12 0.40 0.12 1.00 0.16 0.01 1.23 1.01
Lead thiosulfate
0.31 0 0.40 0.12 1.00 0.12 0 1.17 1.00
Lead tungstate
0.23 0 0.34 0 1.00 0.08 0 1.11 1.00
Lindane
0.68 0.59,— 0.54 0.45 1.76 1.63
.- ‘ , 0.79 0.76 1.00 ,,. ‘ “ ,_‘‘ _ ‘ “
Lithium bichromate
0.79 0.79 0.30 0.37 1.00 0.24 0.29 1.34 1.41
Lithium chromate
0.79 0.79 0.35 0.32 1.00 0.28 0.25 1.39 1.35
Lithium fluoride
0.74 0.54 0.68 0.30 1.00 0.50 0.16 1.71 1.23
Malathion
0.76 . .. 0.78, 0.53 ,.- 0.57 l.75 ..— 1.80 .. -
- ,‘ 0.78 0.81 0.90 .._‘
‘ 0.87 ‘0.88
Maleic acid
.‘0.61__—‘0.64 “1.86 ‘ 1.90
0.74 0.74 0.36 0.36 0.33 0.09 0.09 1.13 1.13
Maleic anhydride
0.76 0.76 0.39 0.39 0.33 0.10 0.10 1.14 1.14
Dispersion—Solubility
Factor (D 1 )
Toxicity Factor Degradability
CT) Factor CD 2 )
Mjugtment Factor Adjustment Factor
ro CD 1 x T x D 2 ) rk • 1 * 1.41 ro
I-I
1-4
li i
t’J
-------
H
H
Dispersion—So lubility Toxicity Factor
Factor (D 1 ) (T)
Degradability
Factor (D 2 )
Adjustment Factor Adjustment Factor
ro (D x T x D 2 ) rk — 1 + 1.41 ro
LW
SW
FW
SW
LW
SW
LW
SW
Mercuric acetate
0.85
0.85
0.75
0.76
1.00
0.64
0.65
1.90
1.92
Mercuric chloride
0.83
0.84
0.76
0.76
1.00
0.63
0.64
1.89
1.90
Mercuric nitrate
0.84
0.85
0.75
0.76
1.00
0.63
0.65
1.89
1.92
Mercuric oxide
0.69
0.70
0.76
0.77
1.00
0.52
0.54
1.73
1.76
Mercuric sulfate
0.26
0.34
0.75
0.69
1.00
0.20
0.23
1.27
1.33
Mercuric thiocyanate
0.76
0.77
0.75
0.76
1.00
0.57
0.59
1.80
1.83
Mercurous nitrate
0
0
0.75
0.76
1.00
0
0
1.00
1.00
MethoxychiOr
0.17,
...‘
..“0.88__ ‘ 0.88
O.09, .
,‘
0.80
0.79
1.00
0.14 —
, -‘
- 0.70__ ‘ h70
O.077
‘
1.20 , .-
y
,‘ 1.99
1•10 7
..‘1.99
Methyl erCaptan
0.81
0.81
0.73
0.73
0.90
0.52
0.52
1.73
1.73
Methyl aethacrylate
0.38
0.38
0.23
0.23
0.59
0.05
0.05
1.07
1.07
Methyl parathion
0.45
0.81
0.66
0.84
0.50
0.15
0.347
—
1.21 1.48
—_________
MeviflphOS
0.68
0.88
0.81
0.80
0.45
0.71
0.32
2.00
1.45
Molybdic trioxide
0.53
0.53
0.12
0.12
1.00
0.06
0.06
1.08
1.08
Monoethylamine
0.81
0.81
0.52
0.52
0.85
0.36
0.36
1.51
1.51
Monomethylamine
0.78
0.78
0.55
0.55
0.82
0.35
0.35
1.49
1.49
J-iled
0.77
0.77
0.77
0.77
0.50
0.30
0.30
1.42
1.42
-------
I-1
H
F
p..)
U,
Dispersion—Solubi lity
Factor (D 1 )
Toxicity Factor
(T)
FW SW
Degradability
Factor (D 2 )
Adjustment Factor Adjustment Factor
ro — (D 1 x T x D 2 ) rk • 1 + 1.41 ro
Naphthalene
0.47 0.55 0.68 0.71 1.00 0.32 0.39 1.45 1.55
Naphthenic acid
0.71 0.71 0.65 0.65 1.00 0.46 0.46 1.65 1.65
Nickel acetate
0.76 0.71 0.39 0 1.00 0.30 0 1.42 1.00
Nickel ai ioniu_m sulfate
0.70 0.62 0.37 0 1.00 0.26 0 1.37 1.00
qickel brosaide
0.90 0.76 0.38 0 1.00 0.30 0 1.42 1.00
Nickel chloride
0.79 0.76 0.40 0 1.00 0.32 0 1.45 1.00
Nickel foranate
0.75 0.71 0.43 0.10 1.00 0.32 0.07 1.45 1.10
Nickel hydroxide
0 0 0.52 0.29 1.00 0 0 1.00 1.00
Nickel nitrate
0.85 0.76 0.72 0 1.00 0.61 0 1.86 1.00
Nickel sulfate
0.79 0.76 0.38 0 1.00 0.30 0 1.42 1.00
Nitric acid
0.80 0.79 0.44 0.27 0.25 0.09 0.05 1.12 1.07
Nitrobenzene
0.52 0.52 0.34 0.34 3.00 0.18 0.18 1.25 1.25
Nitrogen dioxide
o.Bo 0.79 0.46 0.27 0.25 0.09 0.05 1.13 1.07
Nitrophenol
0.71 0.71 0.51 0.51 1.00 0.36 0.36 1.51 1.51
Paraformaldehyde
0.79 0.74 0.57 0.27 0.61 0.27 0.12 1.38 1.17
Parathion
.‘89 0.74 0.83 0.95 . . T 99
-------
Dispersion-Solubility Toxicity Factor Degradability Adjustment Factor Adjustment Factor
Factor (D 1 ) (T) Factor (02) ro — 0 i x T x 02 ) rk — 1 + 1.41 ro
Hazardous Material
FW SW SW - FM SW
Pentach loropheno l
0.55 0.71 0.67 0.77 1.00 0.37 0.55 1.52 1.78
Phenol
0.79 0.78 0.62 0.57 0.40 0.20 0.18 1.28 1.25
Phosgene
0.81 0.78 0.48 0.19 0.25 0.10 0.04 1.14 1.05
Phosphoric acid
0.75 0.75 0.28 0 0.25 0.06 0 1.08 1.00
Phosphorus
0.64 0.75 0.80 0.84 0.75 0.39 0.48 1.55 1.68
Phosphorus oxychloride
0.80 0.78 0.45 0.13 0.25 0.09 0.03 1.13 1.04
phosphorus pentafluoride
0.82 0.79 0.54 0.33 0.25 0.11 0.07 1.16 1.09
Phosphorus pentasulfide
0.81 0.82 0.49 0.54 0.25 0.10 0.11 1.14 1.16
Phosphorus trichloride
0.81 0.78 0.48 0.21 0.25 0.10 0.04 1.14 1.06
Polychlorinated biphenyls
0 0.76 0.77 1.00 0 1.03 1.00
Potassium arsenate
0.81 0.81 0.61 0.61 1.00 0.49 0.49 1.69 1.69
Potassium arsenite
0.77 0.77 0.56 0.56 1.00 0.43 0.43 1.61 1.61
Potassium bichroinate
0.72 0.72 0.37 0.35 1.00 0.27 0.25 1.38 1.35
Potassium chromate
0.78 0.78 0.32 0.29 1.00 0.25 0.23 1.35 1.32
Potassium cyanide
0.86 0.86 0.75 0.75 0.50 0.33 0.33 1.47 1.47
-H
-------
DispeFsion-Solubility Toxicity Factor Degradabi lity Adjustment Factor Adjustment Factor
Factor CD 1 ) (T) Factor (D 2 ) ro — CD 1 x T x D 2 ) rk — 1 + 1.41 ro
FW S W SW
Potasiium hydroxide
0.80 0.81 0.44 0.51 0.25 0.09 0.10 1.12 1.14
Potassium permanganate
0.81 0.82 0.67 0.70 0.75 0.41 0.43 1.58 1.61
Propionic acid
0.79 0.79 0.30 0.30 0.65 0.16 0.16 1.23 1.23
Propionic anhydride
0.79 0.79 0.33 0.33 0.65 0.17 0.17 1.24 1.24
Propyl alcohol
0.78 0.70 0.13 0 0.44 0.04 0 1.06 1.00
Pyrethrins
— c 0.45 0.45 0.85 — i i .‘iT 4 4 <44
Pyrogellic acid
0.82 0.82 0.59 0.59 0.99 0.48 0.48 1.68 1.68
Quinoline
0.80 0.80 0.67 0.67 0.56 0.30 0.30 1.42 1.42
Resorcinol
0.82 0.82 0.54 0.54 0.46 0.20 0.20 1.29 1.29
selenic acid
0.78 0.78 0.56 0.56 1.00 0.44 0.44 1.62 1.62
Selenium oxide
0.82 0.82 0.62 0.62 1.00 0.51 0.51 1.72 1.72
Sevin - - - -
‘84 85 — 0.65 0.69 0.45 - 1
Sodium
0.79 0.80 0.49 0.53 0.25 0.10 0.11 1.14 1.15
Sodium arsenate
0.81 0.81 0.56 0.56 1.00 0.45 0.45 1.63 1.63
sodium arsenite
0.78 0.78 0.56 0.56 1.00 0.44 0.44 1.62 1.62
Sodium bichromate
0.79 0.79 0.27 0.34 1.00 0.21 0.27 1.30 1.38
H
I-1
i 4
-------
Dispersion-Solubility Toxicity Factor Degradability Adjustment Factor Adjustment Factor
Factor 0 i (T) Factor (02) ro 0 i x T x D 2 ) rk = 1 + 1.41 ro
Hazardous Material.
FW SW FW SW P54 SW P54 SW
Sodium bifluoride
0.79 0.69 0.67 0.26 1.00 0.53 0.18 1.75 1.25
Sodium bisulfite
0.76 0.76 0.24 0.24 1.00 0.18 0.18 1.25 1.25
Sodium chromate
0.73 0.72 0.18 0.14 1.00 0.12 0.10 1.17 1.14
Sodium cyanide
0.97 0.87 0.78 0.77 0.50 0.34 0.34 1.48 1.47
Sodium dodecylbensenesulfOflate
0.77 0.79 0.59 0.63 0.62 0.28 0.31 1.39 1.44
Sod:um fluoride
0.79 0.68 0.65 0.18 1.00 0.51 0.12 1.72 1.17
Sodium hydrosulfide
0.8 0.8 0.63 63 1.00 0.50 0.50 1.71 1.71
Sodium hydroxide
0.78 0.79 0.41 0.47 0.25 0.12 0.09 1.16 1.13
Sodium hypochiorite
0.87 0.85 0.77 0.70 0.25 0.17 0.15 1.24 1.21
Sodium methylate
0.78 0.79 0.36 0.43 1.00 0.28 0.34 1.40 1.48
0.83 0.83 - 0.65 0.65 - 1.00 0.54 0.54 - 1.76 1.76
Sodium nitrite
Sodium phosphate (mono—basic)
0.74 0.74 0 0 1.00 0 0 1.00 1.00
0.77 0.77 0.07 0.07 1.00 0.05 0.05 1.07 1.07
Sodium phosphate (di—basic)
Sodium phosphate (tn—basic)
0.67 0.67 0.34 0.34 1.00 0.23 0.23 1.32 1.32
Sodium selenite
0.77 0.77 0.49 0.49 1.00 0.38 0.38 1.54 1.54
0.80 0.80 0.48 0.48 1.00 0.38 0.38 L54 154
Sodium sulfide
H
H
-------
Disper.ion-solubjljty Toxicity Factor Degradability Adjustment Factor kdjustaent Factor
Factor (D 1 ) (T) Factor (D 2 ) ro — (D 1 x ? x rk — 1 + 1.4]. ro
Hazardous Material
Strontium chr ate
— PW 8W sw SW
0.45 0.43 0.31 0.28 1.00 0.14 0.12 1.20 1.17
Strychnine
0.43 0.66 0.56 0.71 0.85 0.20 0.40 1.28 1.56
Styrene
0.54 0.44 0.58 0.50 0.43 0.13 0.09 1.18 1.13
Sulfuric acid
0.80 0.79 0.38 0.27 0.25 0.08 0.05 1.11 1.07
Sulfur monochjorjde
0.80 0.77 0.43 0.09 0.25 0.09 0.02 1.12 1.02
2,4,5—1’ (acid)
0.52 . 0.75 - 0.18_... 0.33 1.25 .., 1.47
. .—‘ ,—‘ 0.62 0.78 0.56 ..—
- ‘0.B3 70.87
2.4,5—1’ (esters)
70.29 0.38 ‘ 1.41 1.54
0.59 0.59 0.65 3’ 32
Tannjc acid
- iT4S
0.82 0.02 0.53 0.53 0.96 0.42 0.42 1.59 1.59
E
0.77 0.77 0.62 0.62 1.87 1.87
0.80 0.80 1.00
0.88 0.88 70.70 0.70 P71.99 71.99
0.69 0.69 0.77 0.77 1.00 0.53 0.53 1.75 1.75
Tetraethyl lead
Tetraethyl pyrophosphate
0.86 0.86 0.74 0.74 0.25 0.16 0.16 1.23 1.23
Toluene
0.56 0.54 0.57 0.54 0.75 0.24 0.16 1.34 1.23
Toxaphene
0.84 0.80 1.00 ‘ 7 <70
Trichiorfon
0.74 0.74 0.31 0.31 1.00 0.23 0.23 1.32 1.32
TrichloropJ eno1
0.80 0.80 0.79 0.79 0.80 0.51 0.51 1.72 1.72
Triethanolamine dodecylbenzene—
stalfonate
0.79 0.80 0.58 0.61 0.62 0.28 0.30 1.39 1.42
H
H
-------
Dispersion—Solubility Toxicity Factor Degradability Mjuataent Factor Adjuathent Factor
Factor (D 1 ) (F) Factor (D 2 ) ro — (V 1 x T x D 2 ) rk — 1 + 1.41 ro
Hazardous Material
. FW SW P 11 SW 911 SW O i l SW
Triethylseine
0.80 0.80 0.44 0.44 0.74 0.26 0.26 1.37 1.37
Tri.ethy1 ine
0.79 0.79 0.05 0.05 0.74 0.40 0.40 1.56 1.56
Ur.ni peroxide
0 0 0.40 0.40 1.00 0 0 1.00 1.00
Uranyl acetate
0.72 0.72 0.31 0.31 1.00 0.22 0.22 1.31 1.31
Uranyl nitrate
0.79 0.79 0.34 0.34 1.00 0.27 0.27 1.38 1.38
Urenyl sulfate
0.76 0.76 0.36 0.36 1.00 0.27 0.27 1.39 1.39
Vanadi ozytrichloride
0.42 0.42 0.42 0.42 1.00 0.18 0.18 1.25 1.25
Vanadi pentoxide
0.68 0.68 0.49 0.49 1.00 0.33 0.33 1.47 1.47
Vanadyl sulfate
0.75 0.75 0.49 0.49 1.00 0.37 0.37 1.52 1.52
Vinyl acetate
0.75 0.72 0.59 0.50 0.69 0.30 0.25 1.42 1.35
Xy lene
0.58 0.55 0.58 0.55 1.00 0.34 0.02 1.48 1.03
Zylenol
0.68 0.68 0.53 0.53 0.73 0.26 0.26 1.37 1.37
Zectran
0.49, 0.49,- 0.26,- 0.26,- 1.36..- 1.36
.-‘ .. ‘ 0.62 0.62 0.85 ‘ 7 7
-“0.83 -‘0.83 ‘0.44 -‘0.44 “1.62 -‘1.62
Zinc acetate
0.79 0.80 0.52 0.54 1.00 0.41 0.43 1.58 1.61
Zinc a niua chloride
0 0 0.54 0.57 1.00 0 0 1.00 1.00
Zinc bichroxate
0.56 0.50 0.49 0.52 1.00 0.27 0.30 1.38 1.42
I-I
H
U’
0
-------
Hazardous Material
Factor (0
1.
FW SW FW SW FM SW FM SW —
0.77 0.77 0.57 0.59 1.00 0.44 0.45 1.62 1.63
Zinc borate
Zinc bromide
0.83 0.62 0.62 0.54 1.00 0.51 0.44 1.72 1.62
Zinc carbonate
0 0 0.57 0.59 1.00 0 0 1.00 1.00
Zinc chloride
0.84 0.82 0.56 0.58 1.00 0.47 0.48 1.66 1.68
Zinc cyanide
0.59 0.57 0.77 0.73 1.00 0.45 0.42 1.63 1.59
Ziflc fluoride
0.74 0.75 0.61 0.56 1.00 0.45 0.42 1.64 1.59
Zinc formate
0.76 0.77 0.55 0.57 1.00 0.42 0.44 1.59 1.62
Zinc hydrosulfite
0.76 0.76 0.53 0.55 1.00 0.40 0.42 1.56 1.59
Zinc nitrate
0.51 0.81 0.49 0.52 1.00 0.40 0.42 1.56 1.59
Zinc permanganate
0.76 0.76 0.44 0.48 1.00 0.33 0.36 1.47 1.51
Zinc phenolsulfonate
0.79 0.80 0.40 0.44 1.00 0.32 0.35 1.45 1.49
Zinc phosphide
0.59 0.61 0.59 0.61 1.00 0.35 0.37 1.49 1.52
Zinc potassium chromate
0.46 0.49 0.46 0.49 1.00 0.21 0.24 1.30 1.34
Zinc propionate
0.76 0.76 0.52 0.55 1.00 0.40 0.42 1.56 1.59
Zinc silicofluoride
0.76 0.77 0.48 0.51 1.00 0.36 0.39 1.51 1.55
Dispersion—Solubility
Toxicity Factor Degradability
(T) Factor (02 )
Adjustment Factor Adjustment Factor
ro (D 1 xTxD 2 ) rk—l+l.4lro
H
H
I;4
U i
I-I
-------
H
H
F
U.’
Dispersion—Solubility Toxicity Factor
Factor CD 1 ) CT)
Degradabi lity
Factor (02)
Adjustment Factor Adjustment Factor
ro (D 1 xTxD 2 ) rkl+1.41r0
Hazardous Material
.1
FW SW FW SW FW SW FW SW —
Zinc sulfate
0.81 0.81 0.52 0.53 1.00 0.42 0.43 1.59 1.61
Zirconium acetate
0.69 0.69 0.17 0.17 1.00 0.12 0.12 1.17 1.17
Zirconium nitrate
0.66 0.60 0 0 1.00 0 0 1.00 1.00
Zirconium oxychioride
0.63 0.63 0 0 1.00 0 0 1.00 1.00
Zirconium potassium fluoride
0.79 0.69 0.65 0.20 1.00 0.51 0.14 1.72 1.19
Zirconium sulfate
0.75 0.75 0.04 0.04 1.00 0.03 0.03 1.04 1.04
Zirconium tetrachioride
0.72 0.65 0.35 0 1.00 0.25 0 1.35 1.00
-------
APPENDIX N
FINAL HARMFUL QUANTITIES AND
RATES OF PENALTY
Final harmful quantities and rates of penalty for the various
methodologies have been computed and are given in Tables N—l
through N-4. This format of presentation was selected to
facilitate comparison of the numbers derived from the different
methodologies. The values are given in scientifj notation.
An entry such as 5.4E02 is equivalent to 5.4 x 10’ or 540.
The top entry is in metric units, the bottom in English. The
KG/LB and LTR/GAL notations differentiate between solid and
liquid species.
111—253
-------
TABLE N-i
13
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY Ft)R LAKES
‘C 1TC ACID
S. E 03
1, 3
4.11. 413
73
5 6€ 03
1.21. 04
2,11. 93 LIP
5,5 02 14 1.
A fTIC A(’MY I!)€
? ,Q1. 03
6,31. di
4.1€ 413
9•0€ ‘3
4.01. 93
t,t€ ‘ Q
2.11. 03 LIW
5, € 0? GAL
&C1.Tr)%€ CYA U .lYI)I41
2.01. 63
S
.1” 03
,0E
3.11. 03
8.21. 83
2,11. 03 1.1,1
5.51. 02 GAL
*CLTyL. bqoMI €
-
,31. 113
1.01. 04
2.21. 414
‘1,91. ‘4
3,11. i 14
2,31. 84
1,51. 01 . LIP
4,11. 03 GAl.
ACLI9L C ’4LO 3DI
4.4€ 25
4.7€ 3
4.9€ 410
7,41. 03
1 .1.1. 04
1,51. 134 LIR
4.91. 05 hAt.
4t ’ L€14
1.11. 81
4.5€ 01
3.71. 11
9.21. 01
(‘.51. 433
3.41. 82
3,91. lii LIPI
5.31. 430 GA
AC4Ya,0.jT41
5.2€ ,iO
1.1€ 03
a ,11. 0 )
9,01. 413
9,01. 41?
1.91. 03
41,31. 7.3 LT(’
5.51. 22 GAL
OI 39311
5.41. 84
7,91. 0
0.21.
4,91. E4
6.31. 04
3,51. 7 15
1 .5w 94 LI I ’
4,41. 03 GAL
AL J 4 T (Pul .1.)
5,7L—i1
1.3€ 00
1.11. 01
4 ,?E 31
9.7E— 11
2,11. ti?
2,31. 03 PG
5.41. 411 10
ALD 4 I’4 (. TTARLE)
5 ,71..0l
1,31. oil
3.71. 01
“.01. 03
9.7€—BI
2.31. 1141
2,31. 011 toG
5,41. L I
*L I.’I. ALLO. .IL
5,J . 01
5.51. 111
5.71. ‘I
1.0€ 9 13
6 ,51. 1 1
1,41. 82
1,91. Q ’3 LT
1,711. 910 GAl.
L’L HLOWI (
3,0( 43
4.1€ 93
4.11. 03
9.61. 413
5.11. 41
4,71. 03
2,31. OS LI I .
5,51. 00 GAL
£LL 1 MI’ .ljP rLUI.,R10t
2.411. 22
4.41. 442
4,31. 02
(.411. 410
3,31. 00
7,41. 8?
2,31. 02 KG
5.10€ 02 L 3
ALUMINUM SULFAT€
1.11 04
2,41. 74
2.21. 444
,9E ‘4
1,91. 04
4,11. 04
1,51. 01.
3,01. 04 LB
1,01. £13
4,71. 6 (11
1.4€ 81
(‘,31. 343
9.66—03
4,51.— l I
6,IE—03
2,AE—Qh1
9 ,91.—Qh0
4.5€. ”?
1 ,M—4I L I ”
(‘,61...1 GAL
1.01. 01
4.71. 140
3,41. 01
(‘.21. 109I
9.71.—Ol
4 ,46.93
6.11.—BI
2,01.—0I
9.8€.112
l,4F.D.9
l,61. 0l LIP
9.8€—i ’l GAL
1.41. 01
. .2€ 02
3,81. 71
9.31. 1341
1.3€ 00
5 ,9f —53
1.1€ 3 0
5.1€—Ol
1.31—01
5.eE—02
5,56.61 ,I14
1.31. 00 G2L
9,01. “0
‘4,11. 00
1,21. 01
5,5k 00
8,66—41
3,91..?1
9,2E—4d?
‘l ,1E—42
4,31.—9?
2,OE.02
?,6E.22 119
1,0t. . ’01 GAL
7,81. 02
013
1,31. 0%
5.91. 04
9 .31.— I l
4.2 6. 11
1,11.—I l
5.16—0?
6,11.—
2 .0€—Ol
i, 8 LIP
1,21.—ill GAL
1.31. 411
( ‘.431. 1111
1,81. 01
‘.711. 110
1,51. @0
1 ,11.—lI
4.06 01
3.61. 83
1.01. 0 1 1
3,31. 44’
3,23. 111 119
Q.11. Oi 5*
1,21. ,13
5,51. 14
1,61. 03
1.3€ 80
1.21. 710
‘j ,2€—21
7,31.—Ol
3,31.—Ol
j ,4 9 . . .’j
?,51.—o1
0.?é—il LiP
9,aE-. 1 GAL
8,01. 011
4,01. 04’
I , ?! 113
5.31. 04
6 .7€— lIt
3,OE—Q’ l
9,01.—IlO
4,1€.U
7 ,8E.713
3,5 1—03
2,61.0? 1113
1,01—01 GAL
1,51. 03
6.71 4141
?. ‘E 01
( .‘11. 0
1,41. 00
6.36—01
1,51. 92
6.11. 01
7.61. 02
3.51. 00
4,51. ol K1.
2,01. I I Il)
1,81. 01
9,411. i341
2,41. 91
1.11 411
1,71. 09
7 .6 1— 1
0.41. 22
3,17 ; 9?
1,11. k’ S
4.91. 1 ’?
1,21. .‘I KG
i.it l1 Lb
1.61. 01
7,31. 4191
2.lt 01
9,71. 00
1.1€ 041
6,91.—Ol
4,01. . 1
1,61. 01
7 ,21 00
3,31. 041
1.21 Vt
4,11. 11 GAL
1.31. 93
‘5,87; 43 ?
1.71. 01
1,81. 4119
1,01. 80
S.5E—21
6,11.—Ot
?,8E.71
5,5€—O2
2.51—112
1,91.—ill 1113
B ,4€— ’1 GAL
3,11. 03
5,11. 014
3,56 01
6.81. 010
1.11. 00
4. 0 1 .—Il
1.06 61
4,71. 40
1.21. 4141
5,56.01
3.11. 11.1 I I I.
1,41 2341 L I I
1,11. 03
5,01. 00
1.3€ 03
6,61. @0
1.411. 00
4,16.01
1.Qt.01
8.16 —02
2,21.710
9 ,8E—43
5,b1.. KG
2,51—82 L II
£1.1? £L # ’v0E
73
2.3!
5,11.
4.1€
4 • .11.
3 • 91.
0,71.
03
03
2.11.
5 ,5 I ’
113
a?
LIP
GAL
3.3€
3,91.
01
244
I—f
I-I
p . .)
U.’
U.’
3,11.— li
I
I .4E ’ ’t
1 .lE.4’i
I • 1€— .i I
114
GAL
-------
SUMMARY OF HARMFUL QUANUTIES
AND RATES OF PENALTY FOR LAKES
£ “M fl. ” ACETATE
1,00 34
?.!F (4t (
2.2€ 4
4 ,9k 04
1.4€ 04
3,q 04
1,30 04 146
3 .2F 4 LB
4t C .*tE
1 .4€ (44
04
?. . E d4
U,90 04
3,P1 .34
7,00 04
1.50 044 K(
3,20 04 LB
*o. I ’M
BIC* ’O &t €
1.16 03
2.3€ oB
a .1F 03
03
1,8k 03
3,Q i S
o,so 3 ‘c
.0€ 03 LB
£ M .I LM
OIC I. OCM*7E
8 ,-E 33
1,30 04
2,20 4
4.40 144
1, 04
2,20 134
1,50 0 4
3,20 04 LB
A ’ ’ .t
€IFLUC4 10 0
. .4E 13
9,1 3$
2,20 ‘4
Bu
7.4€ 143
1. ’t 04
1.36 134 46
3.00 134 LB
—
£ M ILK BISULFIIO
1, E I a
j,44 34
04
4,90 444
2,60 04
5,40 04
1,50 04 KG
3,?E 04 LB
A ’ O ’dIL” 4 BIY ’IUE
44.3€ 43
1.11 43
(4,50 33
9 liF 01$
1 1,26 112
1. € 133
0,30 133 KG
5,00 03 LB
£MMCfl4LM CAl7oa.oaI€
4, E 30
4,76 02
4.10 V 2
9 . 0 20
6.7€ 02
1,30 133
2,50 13? KG
5,10 03 LB
AW:1O. 1LM CA4 IO ’ .&TF
1.5€ 35
013
2,00 0L4
(4.40 4 4
2 .440 03
3,70 03
,5f 13 KG
3.20 04 LB
A 4!4 4 C ,”LOPID6
2. E Ii?
1i
4.10 1 ’?
9, 44 2
4,50 13?
9 ,66 112
00 446
5.20 02 LB
O .!UM C. ,4L *rE
1,36 34
2 , 56 a
0 ,?E 04
1.60 ( 4
3.96 444
1.50 04 46
3.20 1144 LB
A 1 ,IL CIT.&TL,
1, ,0
3.5€ 34
. .oo oo
(4.90 .94
o,io ‘a
5,46 014
,5E 134 KG
3.20 04 LB
“ ‘ 1L ”
#LJL0044447 0
3 . € 0?
1.06 .43
4,10 03
9,36 0.3
4,90 6?
2,416 443
2.30 03 KG
5,. 0 03 L.B
A —r.! F( .ijij4 B
3.4€ 05
1.96 04
2.20 04
4, ’ E 04
1,56 34
3,30 04
1.50 04 KG
3.00 04 1.11
1.13 01
5,IILIO
1.56 01
f .BE @13
1,1! 03
4 , .?I
1 , 3 6— Il
3,10—1 ?
0.b€4’0
l.?E. ?
3,36.3? KG
1.56—V? LB
9,33 c I A
(4,03112’
j,o . ,l
5.76 0(1
6.90—133
4,06.01
9 ,0(— ’?
4.10—22
1,40—” .3
44.50—013
KG
l,2o —02 LB
1.443 01
44 ,31 13
1,96 31
4.70 1413
1,40 P
b.3L —01 1
4,9t—31
? . ?o —o1
0,60—01
1,20—011
1,46—31 KG
44,32 . ’2 LB
0
5.443 143
1,60 31
1.4 (0 02
l.OE 01.1
5.36—441
9,2 — 2
4 , 10—02
4,50.010
2.I6—4 2
0,46— 2 KG
1.?F.. ? LB
3,03 01
5 ,1100
1,76 91
1,50 03
1.00 c ’O
5.46—01
9.06—22
0,16 .00
6,10—012
0.86—30
2.*6—L.2 KG
l.0 .40L
1,OE 01
00
1,30 31
4,06 03
9,5E .Ot
4,36.01
9,06—32
4,16—LO
1,70L 7 2
4,96.03
?, E.20 KG
1,26..’2 b
1,5 441
6,9140
1.1 ,6 01
7.1000
3.130 “I
4,20 00
1,40 03
6,66—63
4,90.01
0,00—01
3 ,6E.V l1
2.S —0l
1,46—21 KG
.SE.42 %
2.31. 01
9.40 00
1.50 01
44.70—01
4,90 40
2,20 l14
b. 411
3,10—01
1,46 33 KG
44.56.33 3.0
1.4€ 03
“.5! 1344
3 ,9f 01
4,66 3Q3
1.4€ 00
6,1 — j
9,00.02
4,lfeO?
l.80 0i
0,00.02
?.44N. 2 KG
1,06—32 LB
1.4 .0 131
7.10311
0,16 ol
9,40 0?
3,50 03
6,1E— .3I
4,90 00
0.26 00
1.1€ 03
4.70—01 1
1,40 00 46
44.56.01 LB
1.10 01
5 .L ’030
l,St 01
6,10 301
1.010 013
4,40—111
9.76—02
4,10—02
2 ,440—’2
1.26—02
KG
I ,? —(l3 LB
I II
‘1,00 (43
1,?! 01
5,30 30
8,40—01
3 ,8f . .03
9 ,06—22
4,30.012
1,16—02
1,80—133
0,440—02 K
1,00.3? LA
3.56 31
6,96044
2.00 01
9,10 00
1,40 00
6,50—01
K.9!—k ’l
0,06.01
5,36—41
0.36—01
1,46.01 46
6,56—32 LB
1.10 01
5,1! 433
1,56 31
6,00 30
1.1€ 03
4,90.31
9,00.02
0.10.02
3,1f —4
1,46.00
?,b —110 K(
1,26—30 LB
4.1€
02
02
I
2.36 02
3,40 130
2,3! 13?
5,00 13?
KG
L 0
H
H
t’J
U,
05
1.63 01 0,10 01 1,50 03 3,70 00 1.90 1311 1,10 20 KG
7,?’ 1 ’ 9,44 .0 4? 6.86.011 1.76 (12 8.30—31 0.96.21 LB
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
* M 1I,I
P’P.. SP4TT
0.1€ 42
Q•I€ 22
0.1€ 04
9.2€ 22
7,41€ 02
1.5€ 23
2.3€ 02 PIG
5.2€ 22 LB
1M .’) .flJM 1 )1!)€
1.’€ 917
•5€ 43
4 jF 2.
9 . ’E 4i3
1,2€ 03
2,b€ 913
2.3€ @1
S,OE Q 3 115
AI4;,fl !u0 “GLY4DATE
4.4€ 2?
1.1€ l3
1.1€ 03
9.2€ 03
6.2€ 2?
1 .6€ 113
0; PIG
5.2€ @3 L
PMO -1L .4 J!Y4 A7E
3 Q€ 02
l2
4.1€ 02
9.2€ 22
6.6€ 02
1,5€ 03
2.5€ 02 PIG
5.0€ 02 115
a I— )4.ILl4 OXAL4t€
q.PI,€ €3
2.1€ 04
2.fl Ill
4 9€ 04
1.0€ 04
5 0€ @4
i, oa KG
3.20 24 10
L :TL,l
PF T*0IW6T€
1,3 03
2.9€ 05
4.1€ 03
9. € 23
2.2€ 03
4.9€ 03
2.3€ 03 KG
5 .tlE 03 B
£ I 4
P€RSUI.FATE
5.7€ 22
I,3€ 01
4.1€ 01
9.00 03
9.7€ 0?
2,10 113
2.3€ 03 KG
5.20 03 LB
£‘“ .IL.l
s3LICocLUQ 1 11 ) €
2.2€ 23
4 PI 3
4.10 23
9.2€ 03
3,70 03
0.2€ 03
2.30 03 KG
5.0€ @3 LB
4 Y J 4III’
Si,tF8 ’*TE
0 ,9E 23
2.2€ o4
2 ,2E 04
o .qF 24
1.5€ 04
3.30 04
1.50 00 KG
3.20 04 LO
£MNOP .IUl 3 ,10*70
3.5€ 02
7•70 912
u .50 00
0.40 42
5.90 @2
1,30 03
2.30 02 KG
5.00 €a LB
* ‘IrJ .1IJI $uLff’)C
1 I0 914
2.4€ 4
2.2€ gP O
4,90 00
i .i € 14
0•5( 04
1.50 @4 KG
3.2€ 04 LB
&HMOj,.IUM SULOITE
1.10 04
2.3€ 20
2.20 04
0.90 II
1.8€ 04
3.9€ 04
1.50 04 G
3,20 04 LB
£ .Iu0 TORTOATO
1q30 00
0.60 04
0.20 @4
4,90 0
0,10 04
4,70 04
1.50 04 KG
3.20 04 1
1.5€ I I
6.90 0
?. € 01
9,10 01’
1.0€ @0
6.50.21
0.90 @0
2.20 910
6.50—21
3.00.21
1,40 02 KG
6.50—911 LB
1 . E 11
6.9€ iO
2,00 01
9.1€ 02
1.0€ @
‘ (—911
4.9f—4 1
?,2t—ol
3.90—01
1,40—Pt
1.o — .’I K
8,51—2? 18
1.5€ Pj
b 10 10
2.20 21
9,00 00
l.oO o i
6,40.21
o,9F. ’1
2,20—2*
‘1,00.01
2, €’01
i,oo—.t p
6,50—42 LB
1.50 0*
7,00 40
2.10 01
9,40 00
1.5€ 02
6.70—01
4.9€ 22
2.20 40
6.90.21
3,10—01
1.0€ .10 KG
6.50.01 18
9,20 10
4,20 tO
1,20 911
5.60 20
8.70—21
0.20—0%
9,4E—. 2
0.10—22
2.40.0?
1,30.22
2.60 .22 KG
1e0002 LB
l .sE ‘1
6,20 ‘2
1,50 ‘1
6,60 110
1.60 @1
4.20 00
1,30 00
5,90—01
4,90—01
0.20.01
2,OE—21
9.30—02
1,40—4* KG
6,51—42 L
1.90 01
8.80 04
1,40 091
6.30 —01
4.90.21
2,20.21
4,60.21
2,20.01
1.00.0* KG
6,50—20 LB
1.4€ I
8.2€ I 0
1.80 0*
4,30 01!
1.30 02
5.90—911
4,90—31
2,20—21
1.20—01
5.60.912
1,00—01 KG
6,St.02 Lb
1.20 41
5.30 10
1.50 01
7,00 00
1.1€ 04
3 ,00—21
1’002
4,10.02
3.10—22
1,40—912
2.60—42 KG
1,20.42 LU
1.50 1
8,80 10
2.00 01
9.00 00
1.4€ 00
6.50—01
4.90 00
2,20 00
7,70.21
3,30.01
1.40 20 kG
6.50—01 LB
* .1f 11
5,00 10
1.50 01
8,70 00
1.0€ 04
4,80—01
9,930—02
4,10—22
2,50—42
1.1E—22
2,01 — . 12 c.
1,20.02 LB
1.1€ I I
3.0€ 10
1.5€ @1
6.70 @0
1.iOE 04
‘4,60—01
9,00—02
4,10.02
2 ,80.02
1,20—02
?,60..t2 KG
1,20—22 LB
6.8€ €2
4,00 II
1.21 0*
5,30 00
8.40.01
3,80.01
9,00.02
4,10—02
2,20.02
9,80.03
2,bE—42 KG
1,20—20 18
HARMFUL QUANTITIES
$7 ft K (10 TOE
I .50
/
a?
43
4,10
‘4 .2 11
4 13
23
1.1€
23
2.10
OS
@2
1744
GAL
H
H
0 )
U i
- .2
I .50
1.40 291
4.90—2*
0.20.01
1 ,9E . . 1
% .40—21
110
-------
H
H
I;l
0 ’ . )
U i
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
1 COSTOFPREVENTION
/ HARMFUL QUANTITIES I / RATES OF PENALTY - ______________
/ DESIGNATED
/ MATERIAL /
£M 0K1IJW
IfC!KNA7E
5,21 03
1,11 04
2,21 04
0,91 04
8,50 03
1,90 00
1,5! 04 KG
3 1 04 (.0
A”.lO ’ I’JM
tst!5t 0A7
1,21 44
2,40 44
2.20 04
o.90 44
2,9*1 04
4,31 04
1.5! *14 kG
3.2€ *14 LB
64L £111410
2.9€ .43
‘ ,3E 43
0.10 03
9,01 3
4,40 1*3
1,10 04
2.1! 43 LT’4
3.51 02 GAL
A ’ IL1N 1
4.41 02
1, 11 45
4.1€ 03
9,01 *3
4,21 0?
1,01 03
2,10 03 ( .7*1
5,50 02 OAL
£‘.TIP O4V
Pf 4 (flw 1u
Q,7t 42
2,19 45
4.11 03
9 ,40
1,60 03
3, ,1 05
2,31 03 ‘40
3.01 03 ( .0
& ‘Tt-iP Y
p9 yaI,o o3,;
3•09 02
4.71 2?
4.11 42
9,00 4?
5,1! 0?
1.11 03
2,30 02 KG
5,01 42 ( .0
0’Y1s* Y POTASSIUM
TaG 4t0*It
1. E 21
3,11 23
4,1 ! 43
9 ,c! 03
2,41 03
S,2E 03
2,31 43 4(0
5.00 05 1.0
£ ‘.T*MO ’Y
T 01P C .MIDE
1.21 03
2,61 43
4.11 ‘ 43
9.01 23
2.41 03
4,41 03
2,30 03 KG
5,40 43 1.0
ON!1’(lP .Y
TR1tnLG21f E
7,51 42
1.6€ 01
4.11 03
9,20 41
1,31 03
2,6! 443
2.30 03 KG
5.9’! 03 (.0
a rf—,)p.v
? IFLU kICE
5,71 ‘42
1,31 25
0,11 ‘43
9.01 23
9,70 42
2,11 03
2.10 03 KG
5,9*1 03 LB
T7HDP .Y
Twl ICJLTt’€
l.fif 4S
‘. 1 43
4.11 143
9 . 41 913
2.00 ‘ 43
6,10 oS
2.30 03 KG
3.9’! 03 LB
£ ‘4TIP ’O Y Twioxiol
4,’40 03
9.7€ .43
2.?! 44
4,91 ‘4
7,41 ‘ 43
1.61 9 ’4
1.50 144 KG
3,21 24 LB
Ak 3 9 3(. Ado
,
4.40 0?
1.11 05
3.71 01
4.20 ‘ l
*1,21 02
1,81 03
1,90 41 ( .114
5,00 00 GAL.
£031 1.11 035 ALIbI
1.41 7?
1.10 ‘43
S.7( 03
8.21 911
4,21 0?
1.81 43
2.31 01 KG
3.00 01 (.4
AKSC4IC P 1 9 7 03 010!
7.01 02
1.51 03
3.71 41
4.2! 41
1.21 03
2,61 ‘43
2,31 01 KG
5.00 01 1.8
1,31 01
5.0*00
%,7 01
1,7 1 00
1.21 04
5,bE .0*
9,01.42
4.11—02
5,50—02
2,5€. 2
2,61—02 KG
t ,24 .c2 (.8
1,11 41
3,4* ‘40
1,3! 01
4,61 00
1.01 04
4,11—01
9,01—02
4.IE— ?
2,31.02
1.10.02
2,6I.e 2 KG
*,21 — ’2 L II
3,1*! 01
4,70 02
1,41 01
6,?! 00
9,11—01
4.41—01
3,37.03
1,41—01
4,41—9’?
3.80.0?
9. ’€. ’2 LIP
3,41.41 GAL
1,2! 01
5,30 00
1.60 01
7,11 00
1,11 02
¶,0€.0$
6.31.41
2,81.01
5.61.21
2, 0.03
l.A ’.?l ITO
4,41—01 GAL
1,5! 03
6.90 04
2,41 0$
9,1! II
1.41 00
6,ff—0I
1,20 00
4,10—0*
2,51.21
1.l1—l’t
3,1t.ö1 KG
1.40 .81 (.4
01
4,7! 4414
1.50 41
4,6! 0
2 ,41 11
4.91 20
1.40 00
4,30—41
1.41 01
4,10 08
1.81—2*
3,61.01
3,11 14.4 *0
1,4* ‘41.1 (.44
1, ! 01
8.61 00
1,40 00
6,30—0*
1,01 00
4,71—01
1,10—441
7,10—3 ’?
3,11.41 4(0
1,07.01 ( .4
1.6€ ‘41
1.1€ 04
2,11 01
9,40 00
1.51 40
6,70.01
1,01 00
4,11.01
2,01—9*3
9,10.02
3,11.01 KG
1,41—41 LB
3,50 41
00
2.01 01
9,00 00
1,41 00
6,51—01
1.0€ 04
4.71.21
3,21—01
1,40—01
3,11—41 kG
1,41—01 (.0
1,50 41
6,90 44
2,01 d l
9,21 08
1,4! 44
6,61.41
1,01 ‘44
4,71—01
4,21.01
1,90—01
3,11—41 KG
3,41.141 LB
1.40 4*1
6.3! 44
1.9€ 01
0.61 00
1,01 00
6,11.0*
1.41 919*
4.71—01
1,50.01
4,60—22
3.11.01 *9.
1.41.01 LB
1,102*
‘Li,?! 410
1,51 01
6,91 44
1.71 04
7.61 08
1,21 20
5,41.01
1.91—0*
6,71—02
5,41.44?
0,51—02
5,4.9—94? ‘(4;
2,54—42 LB
2,941 0*
9, 11 20
1,41 00
6,50—21
1,21 4?
5,51 0*
‘4,91—4%
2,21—03
3,71 01 LIP
1,41 4?
1,30 01
5,70 04
1.7€ 01
1 ,61 00
1,?! 00
5,40.0$
6.11 01
3,70 01
4.00—01
1.81—04
2.51 I I KG
1,11 01 LA
1,5! 01
6,91 00
0,01 01
9,11 00
1,41 08
6,50.01
1,21 02
5.50 01
3,40—01
1,51.01
3,70 4* 4(0
1,11 01 (.4
-------
SUMMARY OF hARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
1-4
H
H
U I
DESIGNATED HARMFUL QUANTITIES I / RATES OF PENALTY
7’! COST OF PREVENTION
/ / _ ______
MATERIAL / 5
__ _ _ _ ‘4/
£Q5€ ’.tC TB!—
aao TDc
1,41 03
3.11 03
3.71 41
8.21 01
2,41 03
5,21 03
2,31 51 PIG
5,01 01 *.B
*037•IC 701.
CM cc1r€
0,31 42
1.4€ 43
3.71 01
4.21 01
1,41 03
3.11 03
2,31 01 PIG
5,21 01 LB
£“SI ’ .!C TOj—
ILucoifl I
6.11 00
j•I 03
3,71 01
8,21 0%
1,01 03
2,31 03
2.31 Ii G
5.ctE 01 LB
tR5 0IC TB!.
7O’)%’)6
2,01 03
4.31 03
3.11 01
8.21 0%
3,41 03
7,51 03
2,31 0%
5.01 01 LB
403 1P.IC TBI IX1u(
4 ,If 02
4,71 0?
1,71 0%
P,?0 0*
7,41 02
1,61 03
2,31 01 PIG
3.01 0* LB
£kS€P. C TR1S II . 1DF
5.11 02
44
‘.71 41
0.20 01
0,91 02
2 .01 01
2,31 0% PIG
•, .QI1 0* LB
0 1 ,lFI ” I
1,o€ fl
3.01 03
4,11 03
9.01 03
2,31 03
5,11 03
2.11 03 LIP
3.51 02 GAL
4(’.lnIC £CI
7.91 03
LiE 44
2,21 04
o ,9 04
1,31 04
0 ,91 64
1,51 54 LT
4,00 * 13 GAL.
ZO ’ .2TWIL 1
5,41 43
7,61 25
4.11 *13
9, € ‘S
5,81 03
1,31 04
2.31 03 PIG
3.01 0% 1.0
BINZOYL C ’ILO*.lOE
7,91 03
1,71 24
0.21 1*4
1,91 1*4
1.31 04
2,91 04
1,31 04 LT
4,01 03 GAL
d MlVL CHLORIDE
7,01 03
1,31 04
2.01 04
4.91 04
1.2€ 04
2 ,61 04
1,51 04 110
4,01 03 GAL
b 0YL1.IUM CPIL .O0ID(
5•Of 03
1.51 04
.?1 1 14
‘ ,91 Oil
4,91 03
2,21 04
1.51 44 PIG
3,21 0 LB
.310YLL 1J0 LUUNIDE
1,61 02
5,61 42
4,11 02
9. 11€ 02
2,81 02
6,11 02
2,31 02 PIG
5,01 02 L I I
004YI.L1U$ HY )BO1I )1
2.51 03
3.51 43
1.11 03
9,21 43
4,21 43
9,31 03
2,31 03 PIG
5,01 03 LB
BlOYLLIuM IsITBaTE
1,01 34
0.01 84
2,21 04
4 , 1 04
3,11 04
6,81 81
1,51 04 PIG
3,21 SI IS
3.31 01
00
1.11 81
7,91 00
1.21 04
5,61—01
1,21 02
5,51 01
1,71.01
7,71.02
3,71 41 PIG
1,71 2% LB
3,11 01
•,31 00
1.01 01
0,31 04
1,31 04
f,_0E .0 1
1,21 02
5,51 01
0.51—4*
1.31—01
3,11 01 00
I,7I 0% LB
2,41 01
6,21 00
%,0E 01
0.21 00
1,31 04
5,91—01
1,21 92
5,51 41
3,41.01
1,81.01
5 ,IF 01 OG
1,11 01 L II
1.41 61
6.21 00
1,81 01
1.3€ 04
1,31 48
3,91.02
1,21 00
5,51 01
1,21—01
5,31—22
3 ,11 01 PIG
1,71 0% LB
1,41 01
a,5F 04’
1,91 41
3,61 00
1,01 44
6,11.0*
1,21 02
5,11 0*
5, 11—I l
3,31—0*
3,71 11 PIG
1 ,11 I I LI
0,01 00
1.20 00
1,01 41
5.31 04
6.41.4%
3.01—02
5.11 01
5.71 01
3,61—01
t.7F—i ’l
2,51 41 kG
1,11 ‘l t..o
1,31 I I
6,01 04
1,81 41
8.01 08
1.31 00
5,11.01
1,51.01
5,31—02
7.41—20
3,41—42
3,4t— .%0 LIR
2,IE.. ’l G*(
9,51 00
4,31 00
1,31 0*
5,81 40
9,11.41
4.11—01
9,01—02
4.11.02
3,41.02
1,61—02
2,61—02 LIP
1,01.41 G4L
111 01
601 00.
1,41 01
6.41 01*
1,01 10
4.67.41
0,11—01
2,0101
1 ,91—02
5.61.02
1,81—41 PIG
0,2Cs’2 LII
9.31 114
4,21 00
1.21 01
5,71 40
8,91—01
4,01—01
1, 11 .01
5.11.02
3,4102
1,61—02
3.31—22 ITO
1,21—21 GAL
8 81 40
4 0 *11*
1,01 0*
5,31 05
0,41—4*
3 ,01—51
6,71—0?
3,11.02
0.11.03
1.21—22
2.01.02 LIP
1.5L.U GAL
21 01
5 51 00
2.61 0%
1.41 40
1.21 110
5,31—01
1.91.01
6,71—02
4. 11—02
1,81.112
5 ,6 1—i l ? PIG
0,5t —42 LB
* 51 0*
6.81 00
2,01 41
9,1*1 34
1,41 02
6,51—01
1.01 0%
4 ,11 00
1.5€ 03
6,61—0*
3,11 04 00
1,41 4” LI
5 51 00
0.41 40
1,21 0*
3,31 40
6,41—41
3,81—01
6,11—01
2,81—41
1.74.03
3,51.02
1.00.01 00
0,21.02 1.8
1,51 01
p61 I I
1,91 01
8,131 08
1,41 00
6,31.01
1,91.01
8,71.02
1.31—02
5,91.43
5.61—22 PIG
2,51.02 LB
/
-------
H
I-1
0
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
HARMFUL QUANTI TIES
/ DES IGNAIED
/ MATERIAL /
I I RATES OF PENALTY
COST Of PREVENTION
/4i& s 7J,;/u/u,/;I;# /& /7
BE0YL4 .IUM SULFATE
1.0! 04
2.3€ B4
2•2€ 04
0.9€ 2”
4.131 134
3,91 44
1.5! 04 k4
3.2! 04 LB
BjCJ ’d !
8,0! @3
2,71 I ’ S
4.1 ! 52
9 , ’E 0?
2,41 03
4,61 03
2,31 02 Kr.
5,131 02 LB
BUTYL ArITATE
2.5! 03
5,61 23
4,1! 03
9.01 03
4,3! 03
9.51 03
2.11 03 LIR
5,51 II ? GAL
O)TYL AII
0,61 02
1.9€ 03
‘4.11 03
9.. E 03
1,51 03
3.31 03
2,1! 03 LTR
5.51 02 GAL.
jTV14 C AC 0
1.8€ 23
1,Kf 04
14,41 ‘ 2
140
1 1 i1 44
3,31 44
2,41 02 LT
5,51 01 GAL.
CADMIUM ACITAT!
2,441 02
4.41 22
3,11 24
8,21 01
4,71 U
1,01 23
,3E 21 KG
5.0! 01 LB
3 !U” bOOMID !
3,31 22
7,31 02
3.71 01
4.?! 01
5.61 02
,2E o3
2,31 (141 KG
5.21 41 LB
C140M7U CMLO ..ID(
0,01 44?
4,01 2
3,70 21
44,2! 01
3•7C 22
0.21 02
2.31 01 KG
5.01 01 LB
C*I)M1II .1t @ATE
3. E 22
4.61 02
3.71 2)
,d1 01
5.11 22
1,11 23
2.31 @4
5.01 01 LB
C14 )MIUM SULFATE
2.5€ 02
S,41 22
3.11 01
8,2 01
4,21 142
9,21 02
2,31 01 KG
5,21 01 L
CALCIUM ABS€’.aT !
1.01 22
1.51 25
3.71 431
4.01 21
1,01 03
2,hE 43
2.31 714 KG
5.21 04 LB
CALCIUM AQSE i1
1.51 0 ’S
3 ,31 o
3,11 01
0.21 01
2, 51 03
5,61 03
2,31 01 KG
5.21 01 LB
CALCIUM C ’4BI(i1
4 ’,! ! 3
1.31 24
0.21 2 4
“.9! o ’
1,01 @4
0.31 @4
1,51 04 KG
3,21 714 LB
CALCIUM CI0O44T1
I.L 1 04
04
2.21 4144
4.91 24
1.11 410
3,81 04
4.51 04 KG
3.21 Oo
CALCIUM CYA .1DE
4.71 044
2.11 01
3,71 04
0.21 04
1.61 01 2,31 01 KG
3.41 01 131 LB
1,11 141
5.11 4114
1,51 01
6.81 213
1,1! 00
4.01.01
t.9E.41
0,71—02
2,31—02
1,11—442
5.61—22 KG
.5€ —02 LB
1.31 *
5.2€ ‘0
1.1€ 01
7.9€ oo
1.21 440
s,e€ —ol
1,11 01
5,o€ 04
1.61—01
1, —02
‘.21 20 KG
1,51 oo LB
1,11 41
s,oE ! 1
1.51 21
6,61 40
1.01 440
4 , 1 1— 431
4,91.04
2,21.21
4,40.01
5,71.4?
1.41—24 LIP
5.01.44 GAL
1.31 51
‘.1E 42
4,61 21
4 ,11 02
1.31 0?
,8E—2I
3.71.01
1,11—24
3 1E—01
1.71441
4.11—24 LIP
‘i.tt l GAL.
1,01 51
‘4,51 12
1.31 41
4,411 20
9.51—01
4,31.01
4,11 00
2,01 20
3,71—00
1,71—22
1,01 00 LIP
6,81 .444 AL
1,5! 1
S .9 ! 44
2,01 44
9.11 00
1,41 00
6,51.21
2 ,11 01
3.71 01
?.?E 00
1,1’! 02
2,51 01 KG
1,41 441 LB
1,51 ‘1
6,91 2
2,21 04
9.0€ 0
1.51 04
6,61.01
8,11 01
3.71 24
1.41 oo
7 ,KF —01
0.51 44 KG
1.41 21 LB
1.61 1
7.21 2
2.1! 04
9.61 20
4.51 440
6.00—01
44.11 €11
3 .YE 01
0,51 710
4.11 22
2,51 411 KG
1.41 .41 LB
1.61 (1
1. 11 2
2.11 01
9,51 24
1,51 2
6,21.04
5.11 01
3,71 04
1,81 02
8,21—04
2,51 21 44.G
1,31 .31 LB
1.6€ 1
7,11 40
2.1€ 01
9,51 00
1.51 1444
4,81—41
3.11 04
3.71 01
2.21 0
1,21 04
2.51 01 KG
1.lt 41 LB
1.21 11
5,51 2
1.61 21
7,31 00
1,21 00
S.OE.01
8.1€ 141
3 ,11 01
2,71—04
1.21—01
?,K€ 21 KG
1.1€ 141 LB
1.21 41
5.71 40
1,11. 04
7,51 00
1,21 02
5.41.01
8,11 01
3,71 @4
1,81—04
5,21—02
?,SE 21 KG
4.1! 24 LB
9,41 40
4,31 40
4,31 @4
5,71 00
9,21—431
4.11—41
9,01.0?
4.11—02
3,9102
1,01—442
2,61.00 KG
4,21—.? Lb
1,41 21
5,11 00
1,31 21
6,21 04
1.11 100
4,8 .k41
1,91—01
8,71 —02
2.4,1—02
l.2 !.4 2
5,61—0? KG
2.51—02 LB
1,3! 04
5,91 40
1,11 21
7,41 00
1,21 00
5,41.01
5,41 04
2,61 01
2,8! 01
4,31 01
1,61 41 44
1,41 40 LB
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALlY FOR LAKES
HARMFUL QUANTITIES
II
COST OF PREVENTION/
RATES OF PENALTY
/ DESIGNATED F __________________
7/c 4y
/ MATERIAL
---s__________
1, E 01 1.61 01 1 ,21 00 4,9f.Ql 1 3 .2€—Ol l,Q1.. 1 KG
5,’E 00 1.31 @0 5,141—01 2.01—01 1,01.11 b .51 .’14 LB
/
H
H
H
0•i
I—I
/
C*LC2U 2 CVLt41 ’ —
7E’ € 5 ’L’u’ .aYE
5,51 02
1,91 33
4.11 05
03
1,51 @3
3 ,5 ,3
14,3! @3 66
5, 1145 LB
CAt.C1UI . ,iYIJ14 j4j1)
7.14€ (43
1,’1 34
2.21 04
4.9w 35
1.2€ . 34
2,61 64
1.5€ 110 16G
3.21 Oo LB
CALCIUM $YP!
CHLORIT€
1.11 01
2,4! ol
3.11 31
0.141 01
1.91 01
‘4,11 0*
2,3E (II KG
5,1’ ! 01 LB
CALCIUN 082 )1
5.31 33
1.2€ .24
2.21 @4
4.91 04
9.21 03
2,141 04
j 51 04 KG
3,21 04 1.3
C*PT*’s (PU.t.)
1,41 41
3.11 01
3,11 31
0.21 Ill
14,4! ‘ 4 I
5,21 141
2,31 61 kG
5.01 01 LB
C8PTa ’ (TYA6i ( F)
1.4€. d l
,1€ 21
2.fl 01
0.21 01
2.41 (d l
‘ . 0K 0*
2,31 @1 .66
5. 11€ 31 LB
C .ir’. !)IStjLNXDE
5,91 23
*31 34
‘4.1€ 03
914€ 03
2.01 (44
2.21 04
2,11 03 LT14
5,51 02 GAL
CA?EC’4CL
6,11 02
1,41 .33
‘i.1€ 33
9, iE 145
1,01 03
2,31 03
2,11 03 LTI(
5,51 02 GA l.
C’4LORIP .1
4,41 32
9 ,7 .1 2
3,71 31
( 4.2€ 9 *2
7,41 30
1,61 01
2,31 01 KG
5.01 31 LB
OL .AP ( CP’J14€)
9. 7 1 — 01
2.11 00
3.10 @1
14.2! 0*
1,61 @0
3,61 00
1,91 01 LT0
5,141 04 GAL.
Cf (P0A’.
( .€.1144L 1)
9.71—141
2 ,11 03
3.71 01
3.21 31
1,61 1491
3,61 20
0.31 01 KG
5,01 01 LB
C L0 ’ 01 1 dZ 1 € .
8,5 1. 32
1.9€ 03
4.11 842
‘9,21 02
1.51 03
3,31 03
2.11 32 LYR
5.51 01 GAL
Co * .0k0 O6M
5.51 05
1.21 34
4.11 4414
9,141 (42
9,31 03
2,01 424
2.11 02 LIW
5 . *F 141 OAL
C$L0003JLFIJ’ ,IC ACIO
3,21 33
7,141 33
4.11 03
9,01 443
5,51 03
1.2! 04
2,11 @3 L ’14
5,51 32 GAL
CH000IC AC6IAI!
2,11 6?
6,01 62
4,11 30
9,01 .142
4,61 02
1.0€ 03
2,31 02 KG
5,01 02 LB
9,31 06
4,21 (43
1,21 61
6.71 03
8,91.01
4,911.41
9,21.02
4,11.02
5,01.32
1.71—01
2.61—22 kG
1.21. .’14 LB
1.1! 01
‘4,91 00
1,41 01
16,60 00
1.2€ 02
4.71—01
5,41 0*
2,41 01
2.51 11
1,11 01
1,1.1. 01 6
7 ,s1 0 LB
9 ,81 20
00
1,31 01
5,91 Oo
9,31.01
4,21—141
9.01.142
4,11 —02
5.11—7?
2.31.32
2.f .E— , ’l KG
1,?€. .12 LB
1,11 b 2
1441
2.51 61
6.01 04
1,11 00
‘4.61.0*
2,71 0*
1.21 21
1,41 4(1
6.01 02
0.01 2* KG
3,71 0 .t LB
1.50: 01
6,9. 0.
14.01 01
9,11 01
1.4€ 30
16 ,51—141
5.01 141
2, ’ 4L 141
1.9€ l
0.71
1.61 141 KG
7,41 1414 LU
1.1: *i
02
1.5€ 01
6.01 03
1,11 00
8.61.01
4,91.31
2,21.0*
6.61—??
5, ’1 .1’0
1,41.11 LTR
5 .”1—0* 6*L
1.3101
5,91 9*14
1,71 01
1,90 03
1,21 00
5,71—01
4,91.01
2,21—01
4.41—71
2,ol.0i
1,41—2* LIR
5.41.141 GAL
1.1* 01
‘4,9* 014
1.81 61
16,61 @3
1.01 03
4.71—31
5.41 61
2,41 01
6,41 31
2.91 01
2,41 01 KG
1,41 2 LB
1.0* 14%
‘ 4 ,61 1214
1.31 31
16.11 00
9,61—01
4,41—3*
1,51 02
6,71 01
‘4.51 (14
2,141 1(14
..St 01 L1R
1.1€. o2 GAL
1 -:-ri--;;i—
5.21 9114
1.5€ 411
‘,91 33
1.1€ 00
5,31.141
0.01 1414
2,11 02
6,31 ‘0
2,91 3?
1.Ot 14*
3,31 31 LB
1.31141
5,91 1414
1.71 01
7,91 03
1.21 03
5.61—01
7,31 00
3,31 03
3,2€—l’l
1,41—31
2.2€. 2’ LT’4
8.21 0(4 GAL
1,21 01
5.71 014
1.7€ 01
7,51 32
1.0€ 00
5,41—01
1,31 30
3,31 00
5.IE —?l
2,31—714
0.01 .i ) LTK
8,21 214 GAL
1.01 01
4,51 00
1,31 01
6.01 03
4.51.21
0,31—01
4.91.31
2.21—31
8.31.32
3,81.02
1 . 61—14* LIR
5,41.01 CAL
1.51 01
7,01 00
01
00
1.51 00
6.11.61
2,01 01
4,71 00
9,91—31
4,51—3*
3.11 06 163
1.41 00 LB
2.1!
9.41
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
C MIC OULFAI4
4•24 0?
8.7€ 02
1.14 k 1
9,04 02
B,7€ oo
1,51: 113
?.3€ I’ ? KG
.2€
C lwO. V uS CA’4’5o’ *TE
1.21 02
2 ,14 02
4.11: 02
q . 16 00
2,14 0?
4.64 U
2,34 02 KG
5,01: 0’? L 9
C$AOMOLS C’ L,) Ifl€
_____________________
1,34 0?
2,94 02
1.1€ 02
q. E 412
2,21: 02
4,91: 14?
2.31: 82 KG
5.04 0? 1.8
C 4’1OM( S 0081.474
1.84 142
3.9€ 4?
4.14 U
9.24 ‘12
L0E 0?
,5€ 142
2.34 2 KG
s,o€ 0? 1.8
C .’ Yt. CkL’1 . 3uE
03
8,91 03
8,14 03
9•w4 OS
3,84 03
8,34 113
2,32 03 KG
5,04 143 1.6
CC <DU5 AC44A 4
1.84 113
4.14 03
4.14 83
9.04 03
3,11: 03
6.94 03
2.34 03 KG
3.84 143 L I I
LOII*LT0JS 0R( ’1fl4
1,14 23
21
4,14 03
9.04 143
?•8€ S
6.14 03
2.34 03 KG
5 , 44 03 1.8
C4*LT013 C ’IL’)92’)6
1.64 03
3.9€ OS
41.1€ 03
E 03
3.21: 03
6,52 03
2.31: 03 KG
5.00 03 1.6
C ”O8LICUS CITwATE
l .ø€ 03
3.?! 23
‘.14 03
9.04 23
2,51 o3
5,44 i
2.34 03 KG
5,04 03 LB
c’ ’8L’L ,5 PLU JkIt,l_
4.81 02
1.14 03
i1, 4 43
9. 4
0,04 812
1.84 03
2,34 03 06
3. € 03 LM
fl4*LTQI3 FDWNAYE
!•1( 3
3 2 23
4.1€ 03
1. . € 03
?,32 03
5,14 03
2.3€ 03 KG
5.04 03 1.8
C )’ 8L70$ IOuflO4
2.3€ 113
03
‘4.24 03
9 . E 03
3,94 03
6,14 03
7.34 03 KG
5.04 03 3.8
C0’44L70’J3 41144T2
7.24 143
4,14 03
.i,j( 03
9,04 23
3,62 03
K•0€ 03
2,34 03 KG
5 ,04 03 3.8
CC ’b AI.TGI ’5
0404$ l.IJ4Ay(
2,74 135
6.0€ 143
‘4,14 0) 4,62 03
9 ,414413 04
2,34 03 KG
5.04 03 1.0
Pt
40
1,44 00
6.64—01
01
041
3,11
.4 4
KG
1.41
00
1.14
1,51 01
4,71 00
2,04 01
9,714 00’
1.44 02
6,44.01
1.02 Pt
4,7E 00
1,64 “0
7,1€—I ’t
3,14 2 KG
I.’4t 1114 1.6
1.14€ 01
7,24 02
2.14 01
9,A4 00
1,51: 0 1
6,94—01
1,04 01
4,74 00
2.04 00
9,34.01
3.1€ i 4 KG
1,01 410 LB
1.44 01
1, 14 00
2.14 01
9,44 00
PP
4,76—lU
I.C’E 01
4,74 04
1.5€ 00
1,01—01
3.14 00 46
1.41 02 1.6
1,74411
7,91 00
2.31:
1,11 21
1.7€ 7381
7.54 —lU
1,04 02
0.71 .01
l.22—1’l
5 ,54.&iO
3.12.21 4c
t. .41.01 LB
1,414 01
6.20 014
6,54 00
1.4€ 411
6,04 02
1.61: @1
6.04 08
1.3€ 00
5.94—01
1.04 00
4,74—01
1.34—01
5,04—02
3.14.01 Ku
1.41—01 16
1.94 01
.3.64 4371
1.4€ 14’O
1.14—01
1.04 02
41,14—01
1 .54 .0 1
6.6E— 2
3.14—811 KG
1,42—412 L I I
1.9€ 01
8,51 00
1.31: 081
6,14—01
1,24 00
4.7€41
1,44—41
b,1€.P0
3,14.01 kG
1,42—411 1.0
1,44 01
6,34 041
1,94 01
6,44 20
1.3€ 00
6.04.111
1,04 110
4,74.01
1,64—141
1,46.02
3.12—01 R I,
1.44.01 10
4,54 00
1.9€ 01
8 ,14 00
1,14 7314
6.2€—Pt
1.01. 014
4.14—01
‘ 4,94—141
0,21.111
i .1# — I1 R i.
1.41.21 19
1,41:11*
6.24 00
1,64 01
8.31: 00
l.3e (114
5,94—01
1.814 110
4.71—01
1,74 —01
1.94—02
!.1 —.’1 KG
l ,M1 —01 LB
1.4€ 01
6,34 00
1,61: 01
143,44 00
1.3€ 00
6,26.01
2,21 28
4,11.01
1.86—01
4,66.00
3,11.01 kG
*. ‘t .0* 1.0
j•aE 01
6,34 00
1.91: 01
8.44 28
1,34 (373
6,24—01
1,04 110
4,74—01
1.14—411
5,04—112
3.It— .1 KG
1,44.01 1.0
1,34 02
6.18 00
1,04 01
0,14 00
1,34 00
5,84.01
1.02 00
4,74—01
0,74—02
4 ,04—02
3.11—01 kG
2.44.21 1.0
C$ 0”IC ACT!) 1,44 03 4.14 1413 2.54 03 2.14 03 LT
3.21: ‘ii 9.2€ 1443 9,44 03 5.52 02 GAL
0%
00
H
H
I;4
C. ’
1• )
1.41 2* 1.94
6.51 (30 6,74
1,51
6,91
1.4! 00
8.24—01
1.84 00
4, 12.01
1 .94.01
8.41—041
I • Q34
4.71:
3.16.01
41 ’ ,
LIR
GAL
6.84—111
3.14—01
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
Cr LTDU5 5ut ,raM*T€
1,60 415
3.90 413
4,10 513
03
3 ,00 413
6.50 83
2,30 03 110
SS€ 03 18
CIOALTOUS SIJ1,F*TE
2,10 03
4,40
4.1€ 03
9. € 453
3,60 03
7,90 03
2.30 03 KG
5,00 03 B
C1’UIAP,t(iS (PL,Ot
7.90 4143
1.7€ .31
3.10 01
3.20 01
1,30 41
2,90 01
41,3! 0* KG
141 18
:r *P, .is
(I.f3T* 1 1t€)
7,9 oo
1.7€ .11
3 ,10 81
0.fl 511
1.3€ 01
2.90 0*
O.I€ ol KG
5,140 0* 141
C ESOt.
‘1.41 i42
9.70 41?
4.10 02
.i ’€ U
7,40 02
1,41 03
2,10 5441 1,74 ’
5.50 4’1 Gal.
. “1!C ICETAI O
3.10 .53
2,50 03
“.10 413
9,410 433
1.9€ 03
4,31 03
2,30 @3 KG
5,00 03 1,8
ClP41IC
?.SE .31
1,60 22
3.70 01
.2€ 0*
1,30 02
2,80 442
2.30 411 G
5,00 0* 141
tJP111C LUl 1,.
AcEr) .aT€
1,91 01
1.7! 72
0.10 132
9.00 1341
1.3€ 02
2.90 1*2
2.30 U KG
5 ,44 02 10
CLP41IC K M1O€
5,60 d l
1.5€ 412
‘ .t€ 02
9.00 02
1.10 02
2,50 0?
2.31 3 12 46
5,00 02 1,8
CLIPPIC CHL()54100
4,11 01
1, 10 4141
0 ,$0 02
9 d€ 02
0.20 01
1.80 3441
2,30 02 KG
5,00 @2 1,8
CJPKIC 004061€
4.4! Al
9.7! 01
4.1€ 4141
9,41! 02
1,40 01
1,40 00
0.30 4141 419
3.20 4341
CflOP€13 ,l.UCC ’ ATE
1.31 412
2,941 ii?
4.1! 041
9.940 02
2,20 412
4.90 132
2,31 9441 1(9
5,14! 041 18
CUPOIC ,YC1’.6TC
6.00 01
1,90 02
4,10 9441
9.13! 1341
1.5€ 02
3,3! 02
2.3! 02 19
3,00 041 10
CuØRIC L6CTAT !
8.31 21
1.9€ 41.
9.1 ! 02
9,11! 142
1,50 02
3,30 02
2,3! 02 KG
5.80 02 .0
1,3! 01
1,61 01
0,10 00
1,30 00
5,70—0*
1,41! 00
0,70 —01
1,4041
4,10—U
3, It.41I 116
1,41—0* 141
1,40 01
6,30041
1.51! 01
3,30 p51
1.3! 910
b,4’1—01
1,310 PIP
‘ 1,10.941
1.10—01
5,10—02
3.10—41* 46
t,4 01 141
1,?! 01
5,6! 1341
1,4! 01
7.40 30
1,20 00
5.30—01
6,10 01
3.10 01
2,40 8*
1.1€ 01
2.10 @1 KG
9,31 2 1,15
1,50 411
6,90 5141
41,0! 01
9,10 00
1,00 041
6.30 .94*
1,10 82
5.20 54*
3.00 0*
1.1,0 941
3,30 01 09
1.6€ I I 1,45
1,3! 01
5.9€ Ill’
1.1€ 01
7,90 i 0
1,20 00
5.60 . 21
6,10 00
2,00 4124
6.10—Pt
2.0F—. 1
1.8€ 00 1 * 4
3 ’•94€ U C.AL
1.40 1*1
6,50 4141
1,90 01
13.60 00
1,40 @15
6.10—71
1,00 20
4,70—01
2.11—01
9.4€—U
3,10—2* KG
1,01—Pt 5.41
1.50 01
4,90410
2,00 01
9,20 4141
1.50 00
6,40.411
8.1€ 01
3.10 41*
2.60 00
1,20 04
2,51 21 KG
1,10 di 5.15
1.60 411
7.IE 0.’
2,10 01
9.50 0 15
1.50 00
6.80—21
1.00 8*
4.10 00
2,0! 041
1.10 0i
3.30 00 KG
1.4€ 00 1*4
1.60 141
1,00 4141
0,20 01
9,90 00
1,60 01
7,10.01
1,130 l
‘4,70 00
3.bE 9441
1,60 4141
3,1! 130 46
1,00 00 L.8
1.60 I I I
1,50 84
1.60 I I I
1,60 41.4
2.20 01
1.13€ 0*
1,6! 4141
1,10—81
1,00 541
4,10 00
4,90 20
2,20 80
3,10 4144 KG
1.01 4113 1,8
2,20 03
9.9€ 4113
1,60 041
7,10.01
1,00 0*
4,70 20
5,40 00
2,5! 02
3,10 40 40
1,40 00 143
1,60 2*
7.3070
2,10 01
9.71 00
1,50 9115
6,90—411
1,00 13*
4,70 00
2.00 00
8,20—01
3.1€ 410 119
1.00 1344 16
1,40 01
7,1080
2,10 01
9,50 04
1,50 (‘3
6,80—0*
1,940 01
4,70 1313
2,70 4!
1.2! 80
3,11 00 KG
1,40 08 1.8
1,60 01
1,3010
2,20 01
9,30 00
1,30 8 1
7,00.01
1,80 01
4,70 80
2.70 410
1.20 Oo
3,10 00 kG
1,41 24 5.45
HARMFUL QUANTITIES
CflbA5.TO J3 SLJCCPIATI
0.1€
9,. ’!
03
I
1,50 : 83
3,3! 03
2.3€
5,91
KG
413
03
1 ,30
5.90
411
841
H
H
0% )
0 1
‘A)
1,70 01
7.90 •1I_
1.20 00
3.60—411
*.1i0 00
4.1 1.0 1
2,20—01
9,90—02
3,10—131
1, 40 ‘.41*
4(6
113
-------
H
H
I ii
0• .
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
HARMFUL QUANTITIES
/ DES IGNAIED
/ MATERIAL /
I / RATES OF PENALTY I
I / COST OF PREVENTION / /
/ 4 /& / 1fr/5/jy /
/4q/sI // /
/
CUPOIC ‘4 17061€
8 t€ 1
2.9€ 2?
0.1€ 2
9.’1 112
1,51 02
5,31 02
2.31 0? 41 ;
s .o€ II ? *.B
CuP C OX4LAI!
0,Of 21
j,l 2?
4.11 112
9,01 722
0,21 21
1,81 02
2,31 00 KG
S ,€1 II? t.B
C’;POTC
SLi B&Ct Tall
5.41 14 1
1.01 02
0.11 0?
9,01 110
9.21 01
2,01 02
2,31 @2 KG
5,01 @2 LB
uP17IC SULIAT!
3,51 02
1.7€ 20
4,21 ‘ 0
9.01 0?
5,91 0?
1.31 03
2,31 0? G
5.411 02 LB
CuP”IC SULFATE
lift)
7.51 2*
1.60 *2?
4.11 422
9,00 44.
1.3! (62
0,01 0?
2,31 @2 KG
02 L44
CuPRIC 7*010*11
1..t dl
1,71 0?
4,11 22
9.01 00
1,31 02
0,90 Ii?
0.31 02
301 0? LB
CUP’iCk (S 600Mb!
4.31 22
9,51 2*
4.11 02
9. 16€ 02
7,31 01
1.61 02
2,31 02 KG
5,01 02 LR
C P0GUS X0 X0E
5.01 01
1,01 22
0.11 02
9,01 02
9,01 01
2.11 142
2.31 0? KG
5,01 0? L5
CYAM0G1 C ’4LUR O€
3.51 0 ’
7.71 0
3,71 721
0.2€ 01
5,91 03
1.31 01
2.31 01 KG
3.41 01 LB
CYCLOw 1YA 0
1.41 03
3.0€ 03
4.11 03
9,71 03
0,31 03
3,1! 03
7.!! 723 LI:
5,31 02 GAL
2,4—0 AdO (0 110€)
2.5€ 04
3,41 00
2.21 04
*,Q! 04
2.61 04
5,71 24
i.s€: 04 Kr,
3,21 04 LB
2.a— ACID
(.€?T*OL I)
3.3€ 02
7,71 02
0.11 02
4,0! 0?
3,91 02
1.31 t 3
2,30 0? KG
5,01 02 LB
2.4—c 157(45 (P1 142!)
8.01 21
2.9! 00
.1f 02
9,00 02
1.5€ 0?
3.30 02
2,31 02 KG
5,111 722 LB
l,a•t) 137111$
(.ET1’IOL€)
d l
1.4€ 2?
4.11 02
9,01 02
1,31 .142
3,31 02
2.31 02 41;
5.01 02 LB
0 2 L 60 0P ’
4.61 23
1,01 (60
2,21 £ 10
4.91 II
1 ,01 03
1,71 04
1.51 00 KG
3,21 Ba LB
1.61 2%
7 .01 (
2.21 01
9.91 02
1,61 00
7.11—01
1,01 0%
4.11 00
2,71 02
1.21
3,11 00 KG
j_0 40 1 ( 6
1,41 41
...
1,91 01
8 SE 20
1.3€ @0
4.11.0*
6,11 00
? .8f 00
4.01 00
1.81 722
1,11 .20 KG
8.1E .11 LB
1,41 I I
7 ,21 721
2.11 @1
9,61 00
1.51 00
0,81.0%
1,01 9*
4,71 00
4.41 160
2,721 00
3,1 172 kG
1,81 0
1,51 01
6,91 7213
?,0! 01
9,21 00
1,51 00
0,61—2%
1,OE 01
4,71 00
0,81.0*
3 11—71
3.1€ 013 KG
2,41 0 Ltl
1,01 01
7,41 120
2,21 01
9.41 00
1.61 00
7.11 —0*
1,131 01
4,71 42
3,21 720
2,41 110
3,1! .10 kG
1.41 . l42 10
1,51 01
6.7€ 0
2.01 21
4,01 00
1.4! 00
0.41.01
6,11 @2
2,01 40
2,41 00
1.1€ 00
1,Bt 30 KG
0,1€— 1 LO
1.51 01
7,01 (3.’
2.11 01
9 ,41 0?
1.51 @7
0.11—21
6.1€ €0
2.01 20
4.51 04
2.01 (‘1
1,81 00 KG
0.%€.. . ’t LB
1.31 02.
5,81 .34
1,71 01
7,01 02
1.21 02
5,51—01
0.11 00
2,81 00
3,41 00
2.01 110
1,47 22 KG
8.*1 I LB
1,31 02.
5.91 04
1,71 01
7,8! 00
1.21 00
5,61.02
1,31 02
6.1! 01
9.21 @1
4,21 02
4,11 01 KG
1,91 2* LB
9,1! 02
4.11 2
1,21 01
3.51 00
6.11—01
3,91—01
1,01—01
8,31—02
7,41.02
3,41—00
5.41.02 Lb
2,91.01 GAL
1.01 0
4,71 0)
1.41 2*
4.2€ 00
9,10—01
4.41—01
4.31.11?
2.91—02
1.01—2’?
5,71—03
1,’t. .2 KG
4,4E — 3 LO
2.11 0
4,91 @;
1.4€ 2*
6,4.1 0?
1,0 ! 00
4,71.01
4,91 00
2,21 00
7,71—01
3,51—0*
1,41 .‘11 KG
6.31.02 LB
1,21 0
5.0€ 0#’
1,61 01
7,21 213
2,11 00
5.11.01
2,41 00
1.1€ 00
2,21 00
9,91—01
7,21.01 KG
3,34—0* LB
1,31 02
5,71 Oi
1,16 01
1.61 80
2.21 00
5,41—01
4,91 00
2.21 00
3,11 00
1,41 00
1,41 02 41;
0,51—02 LI’
1,2! 0:
.41 0I_
1,61 01
i.e€ @@
1,11 00
5,11.01
1,91.01
6,11.07
5.81.02
2,71.0?
5,61.22 kG
2,S1.oO LB
-------
H
H
C. ’
U7
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
/
/
DESIGNA D / / /
/ RATES OF PENALTY
7 I COST OF PREVENTION
/
‘4/
I
GflT (PUB!)
1,01—01
3,10 S
8 .21 61
7,11.61
1.61 00
2,30 01 KG
s ,oo 61 LB
D?)T ( I€TT* )
a,Pr —a 1
9 ,21 .4*
4.71 02
6.21 01
7.11—61
1,61 60
6,11 61 ICC
5.00 01 LB
D142P40¼ (Pm!)
0.71—01
0,21 00
3.71 01
0.60 01
1,61 06
3 .60 04
2.31 61 KG
5.00 CI I LB
OILZ7ICO ( —€1748 1.1)
9,70.01
2.11 00
3.10 01
‘2.21 01
1.61 66
3,61 00
2.31 01 KG
5.0€ 01 LB
G1CA 0*
1,00 43
3.91 03
0.10 03
9.61 03
3,61 63
6,51 03
2,31 6.3 KG
5.00 03 LB
IC 0 LOBE ’ .!L (Pu6!)
6.31 02
I. 43
a,U 03
q.#1 03
1,11 03
2.41 03
2,31 63 KG
5.01 03 LB
Cq. b1 IL
( . ?A I1)
6,50 42
1,40 03
0,10 3
9.60 03
1.11 03
2,41 03
2.31 63 KG
3.oF 03 (.6
oic .q o ! (PJ4€1
1,61 0
3,91 00
3.10 01
6.20 01
3,61 00
6.51 06
2,30 01 KG
5.I’€ 01 ( .8
UCMLO .0 CI .OTlaIILt)
.61 00
3,91 60
3,71 01
0.21 01
3,01 00
6.50 06
0,31 01 KG
5,81 01 LB
OlCsI.C OvOS
3,11 6*
0,81 01
3,7! 61
6.01 61
5,21 CIt
1.11 22
2,31 II I KG
5,01 3* LB
O!€LDRI’2 (6 1 16€)
3.51—01
7 , f—61
3,71 01
0,21 01
3,90—01
1,31 06
2.30 6* KG
5,61 0* ( .0
GIILDICIN (.,EtTAt ’L€)
3.51—0*
7 ,01.41
4,70 02
o.2E 01
5,91—61
1.3€ 00
2,31 01 KG
3,00 01 (.8
011 7 14Y1 1M16 1
3,71 03
6,20 03
4,11 03
9,61 03
0,30 03
1.01 04
2.31 03 KG
5,01 03 1.0
IM 1TH ’ 2LA$1N 1
3,71 03
6.21 03
0.1€ 93
9,01 03
6,31 03
1,41 01
0,30 03 KG
3.01 03 1,8
DIPi IY000HENOt.
1.5€ 63
3,4! 03
4,11 02
9,61 00
2.61 03
5,71 03
2,30 02 60
5,01 02 1,8
9,71 00
4,4;0S
1,31 01
5•9€ 06
9.21.01
4 2E .01
1,51 02
6,71 01
1.31 63
6.60 62
‘3,50 3 I KG
? . € 4* LB
I,$ 01
8,01 00
0.11 0*
1,11 II
1.71 06
7.61.01
6,01 62
1,11 U
I.c! 3 ’4
6,91 62
7..’E .12 kG
3.11 d l Lb
1.5: 61
6 .8 60
2.61 01
9.11 60
1.40 00
o. 1.6i
2,71 01
t.PE 01
0,01 I ’ ?
9.61 “1
6,21 . 0
1.7€ .‘ .3 iB
1,6! 331
8,0: 00
2,41 231
1,11 01
1,71 1523
1,61—01
5,41 62
2,41 01
2,81 62
1,31 62
1,C .E . 1 KG
1 ,o . ‘6 LB
t.k Ill
0,01 00
2,81 01
0,01 60
1,31 06
5,11.01
1,111 60
4,71—01
2,?1—’3l
1,61—61
3 .1!..’l Kb
1,01.01 (.0
v.a oo
4,31 06
1,30 81
5.71 00
9,01.61
4,11—0*
6,11.01
2.81—61
0,31.01
2,61—331
1,60.21 &
8 ,2 .o2 LB
1.5. 41
60
2.41 61
9.01 00
1,41 00
0,01 .01
1,61 00
0.71.61
6.11—61
2.01.01
3,11—01 KG
1,00.21 LB
1,2 01
5 ,3 06
1,50 01
7,61 00
1,11 00
5,01—01
6,11 01
3,1! 0*
1.61 3 2
7.21 01
2,11 d l Kb
9.31 04 (.8
1.66*
8,0: 02
2.30 01
1,11 01
1.71 00
7,60.01
1,11 02
5,21 01
2.21 (32
1,81 62
3.30 41 00
1,61 01 Lb
t.o 01
7,4 60
2.20 01
9,91 00
1.61 110
7,110*
1.11 02
5,21 0*
1.31 6*
5,81 66
3. ’.€ .1 66
1,61 I LB
1,5: 01
6.7 06
2,01 01
9.01 06
1,41 1133
6,01.01
1,51 02
6,71 0*
1,51 33
5,71 “0
lI.’t 61 Kb
2. ”E 0* LB
1.6(0*
8 ,6 014
4,4! 4*
1.11 01
1,71 00
1.ht.0i
2,41 02
1,11 0?
1.81. 3
6,341 02
7,21. .1* KG
3,31 01 LB
1,3: 01
5,8: 00
1,71 01
7,70 06
1,20 66
3.51.01
3.11—01
1,71.61
7,51.42
3.01.02
1.1€—.U KG
4,9f 2 LB
1,3: 01
5,0: 60
1,70 01
1,71 00
1,20 06
3,51.01
3,11.0*
1,71.01
7,51.62
3,al.60
1.11—01 KG
a,9t —44 Lb
1,2 01
5.4: 66
1,61 01
7,21 00
1,11 00
5,21.01
4,91 00
2,20 00
1,61.01
0,01.62
1,01 00 KG
0,50.01 ( .8
-------
H
H
p. .)
0•i
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTI’ FOR LAKES
/
/DESIGNAThD
MATER IAL
/
L
COST OF
/
PREVENTION 0.., /1
OT ’JlT
1.51 03
S.IL 83
4.10
9.140
03
05
2.60 03
5.71 123
2.30
5.01
03
123
KG
LB
! 0O U . (?UK€3
2.01 d i
6,01 80
3,71
0,01
0*
121
4.60 00
1.21 141
2.5€
5.120
Ill
01
KG
LB
U1SULFOT(
( .ETTL L €)
2.4€ 4
6.21 03
3.7 €
0.2!
01
12*
4.80 20
1, . E 02
2,30
5,1’!
12%
01
KG
LB
DTi. ’i96 (PUR l)
1.80 02
3,9 o
4,10
9.20
132
142
3,40 142
6,50 o
2,31
0€
02
922
KG
LB
CilUROR (. 1TTAaL€)
1.8€ 22
3.90 o?
4,11
0,21
922
3,120 0?
6,50 922
2,30
¶1.81
02
“2
KG
L’ S
OCYL,t’.Z 1 . €
% L fl .IC ACT’)
7,90 02
2.11 25
4,10
9•oiF
53
01
1,31 55
2,91 V’
2,30
5,141
923
03
KG
LB
( t ’ u13E)
2.61 12
3.61 926
3 ,10
0.81
01
I I I
2.80 02
1.1€ 02
2,30
5. 1€
21
01
KG
LB
T S ’A (TT&92I.1)
1,61 80
3,61 095
3,70
0.00
01
01
2.01 12.3
6,11 212
2,31
5 ,41
02
141
KG
LB
DU% . 0 A’I (PURl)
1,41 .41
5,21.21
3,71
.‘€
0*
01
2,50—81
3. ”1—151
2,30
5.40
131
01
1KG
LB
L ’ .) ’ SSULF A R
( . 1T’A . IL I
1.41 .01
3.20.41
3.10
0.20
t
02
2,31—22
5,41—02
2.30
5,41
0%
II
KG
LB
E ’ QW ’ CPJ14F)
- ?. i,022
5,2—??
3 ,70
0.21
01
122
4 ,5E— 3?
9,60—122
2,31
5.25!
01
01
KG
LB
ENORI 1 (‘ . !IYAOLI)
2,61—122
5.81.0 ?
5.71
8,20
142
01
4 .3€—o?
9,60—02
2,30
5,21
0*
01
KG
LB
07.41DM (PURl)
5,71 1492
1.30 81
5,10
2,11
‘ 51
01
9,70 8 i
2,10 14*
2.30
5,01
01
01
KG
LB
€T 1O C..ETTABL€)
5,70 42
1.39 141
5.70
8.20
01
01
9,71 00
2.10 01
2.31
5,01
0*
922
KG
LB
!?$YLa11Z€ ’€
1.31 03
2,20 03
4.10
9,00
03
03
2,21 03
1.70 03
2.1€
5,51
83
02
LYR
GAL
1, E 01
6.20 02
2.01 02
.1€ 00
1,31 020
3.81.242
1,931 00
4,70—01
1,80—121
0.31.22
3,10—21 KG
t,4E. i1 LB
1,’! ot
2,20 02
.1E 214
1.4! 10
4.51—01
0,10 01
*.10 @1
6,81 21
5.21 141
2,11 1 KG
9.31 52 LB
1.10 231
7,iE 08
? ,?E 01
9,91 20
2,60 130
7,11—01
2,20 02
3,21 01
9,80 0*
4,40 81
3,51 21 KG
2,61 81 1.0
02
00
1,10 01
7.91 00
2.20 00
5,40—141
4,20 00
2.61 00
2,60 00
7,20—21
1,00 20 KG
8.10—01 LO
1,61 01
7.1€ Ilil
2,11 01
9,a SO
1.51 022
6.71—81
2,11 01
4,10 00
2,20 1 16
t.. € 920
3.1€ .112 kG
1,41 L3 ’
1,20 01
5,20148
2,61 72
1,41 0 (5
1,20 *50
5 .Sf —Oj
‘2,91—01
2,21—01
S.a 1—”1
t,6€— 1
1.41.01 KG
6,30.)? LB
1,’! 01
4. !232
1.9! *21
8.40 6?
1.41 06
6,10—01
4,11 02
3,11 01
1,20 12
5.30 141
2,20 21 kG
9,31 114 LB
1,11 01
82
2,21 4
9,91 00
i, E 022
1,11—241
1,11 02
5.21 61
2.60 02
7,41 01
3.31 01 KG
1.60 01 L14
l, 0 ‘31
1412
2,141 01
9,20 00
1.4€ 03
4,60—02
0,11 01
3,21 01
1,30 I ’ S
6,OE 02
1.10 81 02.
9,30 512 LB
1.70 01
7. E 00
2,31 01
1,95! 81
1.61 00
7,31—01
1.1€ 02
5,21 01
1,90 23
6.51 02
3,31 2% kG
1.60 01 LB
1.!L 41
3,01 014
1.10 01
1,11 00
1.2€ 08
5,50—01
1,50 02
6.11 81
I ,?! 24
1,51 63
4.51 01 44
2,11 51 LB
1.’! 0%
6,cE 00
1,00 01
8,30 591
1,30 *00
5,90—01
2.41 32
1,11 02
2.3€ 140
1.10 14*
1.2€ 01 kG
5.31 01 LB
1, 0 01
5.01 60
1.10 01
1,10 00
1.20 00
5.50—01
6.11 01
3.21 81
3,41 01
1,50 21
2,10 21 kG
9,31 80 LB
1.20 01
1, E 08
2.1€ 01
9,11 88
1,51 140
6,90—01
1,10 02
5,21 0*
‘ 1.1€ 911
2,20 01
3.51 01 KG
1,40 0* 1.8
8,80 40 *.OE 81
4,EEIO 5,30 00
8.40.02
3.61—01
3,70.01
1,71.01
1,91—61
6,60.22
2,11—02 1.10
1.10—li GAL
-------
H
H
‘r
0
- .1
SUMMARY OF hARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
1,31 3*
3.9€ 00
2,60.02 1.70
1,01.01 GAL
/
“ NA D HARMFUL QUANTITIES RATES OF PENALTY
COST OF PREVENTION .
MA RIAL /ii /h s/u ’/3g
/
€TMVLC 0 IAM1 ’ E
1.30 73
? ,4 3
4,10 @1
9,Ø 03
2,2E @3
0,90 353
2,10 03 LT4
5,51 02 GAL
1 ! T A
2.0€ ,30
04
.2€ 04
4,90 (04
3,70 04
1,21 @0
1,51 @4 1.77
0,141 03 GAL
F€o4JC 3 ’ HC ’ 1UP4
CI? . 5 AT€
1.1€ .53
2.30 23
4,3.0 03
‘.5,’E 03
1,01 03
3,91 03
2,31 03 ‘ CC
5.01 @3 1.0
Ff ’ 4wIC tHt.O’4IF E
@ ,0 0?
1,91 .53
‘ê ,1€ 03
9.20 05
1,50 @3
3,31 @5
2 ,31 @3 KG
5,01 03 1.16
P0 ’4TC FL’J09101
0.6€ 0.
1.1€ OS
4,10 03
I ,oE 03
0,21 02
1,01 03
2,30 03 G
3,01 L
0 TC MIT ’4*T1
1,30 03
P . 4€ 03
‘4,10 S
4.1•E k ’3
2.21 o3
0,90 03
2,50 13 KG
‘j , .iE 73 LU
¼I1C P 3 tsAT€
6,10 02
1.00 35
4,10 03
4.01 313
1.01 03
2,31 03
2.50 03 KG
.0€ 75 0
S€ ( .OIC SULF470
8. E 32
1,90 03
‘1.1€ 03
9,21 03
1,51 oS
3,31 03
2,30 03 ‘CC
5.00 03 LB
FE4CU$ £M OP.IU
Al l
0.01 22
1,90 01
4,11 03
9.01 343
1,51 33
3,31 @3
2,30 @3 G
S,o€ 353 LB
CILO ’ 1 1
6,11 02
1.41 23
4,10 53
4 , F 03
1,21 @3
2,30 03
2,30 353 KG
5.20 23 LB
‘ RooUb UKALATI
5,70 .io
3,31 oS
a , @3
‘4,00 03
9,71 02
2,10 03
2,30 03 ‘KG
5.40 @3 LB
774 ’ 4OUS SULFATE
0,00 @2
1.91 0)
‘4,10 03
9,00 03
l,SE csl
3,31 03
2.31 9 13 ICC
5,20 03 LB
F02Mo l. €kYO €
1.11 23
2.4€ 3
‘1.11 @3
9 .vK OS
i,90 03
4,30 @3
2.11 03 1.7W
5,50 @2 GAL
FO14MIC ACID
1.70 03
1.7€ 34
2.20 @4
4,91 ( ‘4
1,30 04
2,91 3514
1.50 04 LI”
4,00 013 GAL
F s*4IC oClO
6.11 03
1,30 04
2.20 @4
0.90 0’-
1,00 04
2,31 04
1.50 04 l TR
4,00 05 GAl.
1.30 31
6.1€ 30
1,01 01
6,10 @0
1,31 00
5.01.01
6,10—01
2,01.01
2,50—351
1.11.03
1,0121 1.74
.,8 —d1 (,A3
0,60 03
s,ot .I
1,21 541
5,31 00
6,41—01
3,01—01
3,10.541
5,10.02
1,31.02
¶.0€.”3
3,31.42 1.791
t,21.C ’l GAL
3,50 II
6,0 ,1 90
1,90 01
0,00 02
1,40 00
6.51.01
1,351 00
4 ,11—31
2,30.21
1,01—21
3,11.41 KG
1,41—01 LB
1.40 01
6,51 00
1,90 01
0,71 00
1,41 00
6.21—03.
1,651 00
4,71—01
2,71.01
1,21—21
3,10—01 ‘KG
1,41—01 LB
1,41 01
04
3.91 01
0,10 00
1.4€ 02
6,20—911
1.01 00
0,11.01
4,90—21
0,2€—(’l
3,11.23 ‘CC
l,0C.01 LU
1.40 @1
b,00 2.4
1.91 31
8,50 02
1.31 @0
o,lE—0l
1,01 @0
0,71—01
1,81—01
0,21—02
3,11.03. KG
3,41—0* Ltl
1.30 21
3,10 ‘ñ
( . E 01
6,60 (58
1,81 01
0.10 40
1,50 00
5,60.71
6,10—01
2,SF—0l
3,10.03
1,01—03
1,81.43. KG
91,21.’@ LO
2,00 21
9,01 00
1.40 @9
6,51—0*
1,351 30
4,71.01
?,71—01
3 ,21—21
3,11—01 KG
1,41.01 LB
1.50 03.
½,60 04
1,91 01
0,01 0V
1.40 00
6,31—01
1.01 00
4.71—01
?,70.31
1.20.01
3,10.11 KG
1.40—01 L II
1,51 01
6.70 00
2,01 21
4,01 235
1.41 @0
6,40—0*
1,71 @0
4,71—01
3.91—01
1,01—71
3,IE . 1 c4
3,41—01 LB
1,50 01
5,90 04
1,70 353
7,91 @0
1,01 20
5,70—01
6,30.951
2,81—01
3,41.0*
1,St —0 l
1,61—01 ‘KG
8,20—02 1.34
1,51 31
6,7E 353
0,31 01
0,91 00
1.1 10 00
6.31—01
1.00 I II
4,71—01
0,70.73
1,20.01
3,11.01 ‘KG
1,40.21 LB
9,51 934
4,10 @5
1,30 @1
5.81 00
9.10—01
4.11—01
6,11.01
2,01.0*
3,01—73
1,31—01
1,61.01 L791
6,01—01 GAL
1.1€ 01
4,80 01.3
3,41 01
6,00 00
1.OE 350
4,60.01
1,11—01
5,11.02
4.20—02
1,90.02
3,50.42 LIP
1,21.0* GAL
9,70 00
4,40 03
9,00—02 4,00.00
0,10—02 2,00—03
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
GUT.lIflN (PuB !)
l ,3 04
0.91 4 1
3,11 01
0.4 ? 41
2.21 00
4•9! 04’
2.31 01 KG
5.4’ Q’I LB
JT43OI (AITTAdL !)
1.3€ 00
00
3.11 01
8.?€ 41
2,21 00
4,41 00
2.31 4’j KG
5.01 01 LB
‘€PTAC ’ t.GR (PU. )
0,31—n
1,81 oo
3.7! 01
o.ok 01
1,4! 00
3,1! 00
2,3! 4’I 4(G
5,0! 01 2.6
‘4tPTAC,.L1 9
(77492.1)
0.91—21
1.01 0
1,7 ! 01
8.21 41
1.01 82
3.1! 00
2,31 0 KG
5 ,0! 01 LB
#YUN( CP.LC41C ACID
2.41 43
4.5€ 09
4,11 43
,4E 03
3 ,41 03
7 ,SF 03
2,11 43 LT
5.5! 02 GAL
tKcPLurozc ACt )
1.41 20
3 . 1 02
4.11 04
9. 1 02
2,31 42
5,11 02
2,11 02 L I I ’
5,51 01 GAL
Y10oG i CYANIDE
1,91 00
1,71 01
3.71 81
0.21 81
1,31 01
2.91 01
2,31 01 kG
5.01 01 2.0
N4fl Lp Q N 1
2,21 42
4.81 02
4,11 00
9,41 .14
3.7! 82
0,21 122
2.31 I l? KG
5,01 02 2.8
$V14(X’4L*M1N
6.61 03
1.51 2
1.21 04
4.91 04
1,11 04
?•SL 04
1,5! ( 4 LT ’
4,01 03 GAL
ISz ot, o
3 .31 03
1,31 03
4,11 03
9 .oE 03
5,61 43
1,21 04
2.1! 83 LI’
5,51 02 GAL
IS P.10aLA0t4 E
)ri3 SIJLIONAT!
9,?! .‘?
2.4’! 03
o,1! 03
9.4! 03
1,61 43
3.41 ( 13
2,31 03 G
5,01 03 LB
‘ !t.Ti ’A”1 (P’ iRE)
03
9.11 di
4,11 43
9,12! 03
7,01 03
1.61 04
2,31 03 KG
5,01 03 LB
1LYNA 1 ( .!rTaPLE)
4.41 33
9.71 .3
4.11 43
9.41 03
7,41 03
1,61 04
2.31 03 KG
5,41 03 2.0
LIAr) ACETATE
5.61 03
1,21 24
3.71 01
8,21 01
4.41 03
2,11 44
2,31 01 KG
9,01 01 LB
1,51 01
6,61 OIl
2,01 01
9,01 00
1.4€ 00
6, 1—01
6.11 01
3.11 01
1,51 02
6,01 I I
2.11 01 KG
9,31 4 ’
1,6! 01
7,21 04
2,11 01
9.61 ei’
2.51 413
4,91.01
1.11 212
5,21 01
2,01 44
9.31 411
3,51 01 ‘G
l,b i ’l LB
1.21 01
5.51 04
1,61 01
1,31 00
1,21 00
5.21—01
1,51 @2
4,7E 01
5,21 02
0,41 ø
4,51 01 kG
d ,.L 01 L
1.81 01
0,41 412
2,01 01
1,11 01
1 ,71 03
7,61—01
2,41 02
1,11 02
1,31 02
3,3! 00
1,21 0* KG
3,31 01 LB
1,141 01
4.61 00
1,31 01
2 .1€ 041
9,01—01
4,41—01
9,91—02
2,21—01
1,31.01
6,11—02
1,01—41 LIR
5.41—211 GAL
2,01 411
4,71 00
2,41 21
4,31 00
9,81—01
4,51.01
4,11 00
2,81 00
0.q ! 00
1,11 04
1,81 00 2.10
6,81 04 GAL
1,31 01
5,91 00
1,11 @1
7,81 00
1,21 00
5,61—01
6,71 31
3,1! 01
3,51 01
l,bE 01
2.1€ @1 KG
9.3! @0 LII
I ,?! Oj
04
1,01 01
7,01 @0
2.21 00
5.31—01
4,91 00
4.21 00
1.21 00
5,41—Ill
2,41 02 KG
6,51—21 2.0
1 -:ii- -i—
5,11 00
1,51 01
6,81 120
1,11 02
6,01—21
1,11.01
5,1102
0,11—02
I,9€— .l
3 ,3u—2 L1
1.?1i1 r.*L
9,31041
4,21 00
1,21 01
5,71 00
8,91.0*
,0E—01
1,01—0%
0,91 —02
3,11—42
l,41—(’2
5,41—02 LIR
2, t.4I GAL
0,01.01
o,oE.’31 4,01—41
0.07—01
0.41—01
4.91—01
2 ,2101
0,91—01
1,3101
1,41.211 KG
6,51.02 L I I
1,1101
5.2! 00
1,51 0%
2..01 00
1.01 4141
4.71—0*
2.41—0*
1,11—01
6,91—412
2 ,91—I’2
7,21—02 KG
3,31.122 L II
1.31 01
5,91 00
1,71 01
1,8 00
1,21 00
5,81—02
4,91—01
2,21—01
8 ,91—02
4,11—00
1,41—01 kG
8,51.02 LB
1,21 01
5.11 00
2,11 01
7,51 00
1.21 00
5,41—01
8.11 01
3,71 0*
9.71—02
4,41.02
2,51 41 KG
1.11 II 2.0
1,11 03 4.21 03 1,81 03 2,21 03 LII’
2,31 23 9,. ! l3 3,91 43 5,51 02 GAL
I
1,31 01 1,71 01 1.21 210
5,81 02 7,81 02 5,51—01
H
H
2,61—01
1,21—01
2,81—41
• 41.41
LIR
GIL
-------
SUMMARY OF HARMFUL CUANTITIES
AND RATES OF PENALTY FOR LAKES
1.1*0 CPPLflOXI)€
1.91! 04
4,31 24
3.? ! 21
3.21 351
3.31 04
7,21! 04
2.31! 01 Kr.
5,01! 2* 1.13
L1’0 PLt.I08 00AT I
5,41 03
1.21 2*
3.11! 01
6.21 41
9,41! 03
2.11! 04
2.31 01 PIG
5.01 41 LB
1* F ,&irs4 0(
8,31! 22
j.AE 05
3,11 01
8.21 0*
1,41! 03
3,11! 03
0,31 01 kG
5,111 131 1.8
L!4 TOr,1OE
b,l 1! 23
I,SE 04
3,71 41
0.?! 21
1,11! 04
2,51! 04
2.31 01 Kr,
5,41! 01 1.13
1.14) 4 1114*1!
3.01 03
1,11 04
3,71 01
0,21 21
8,51 03
1.91! 04
2,31! 0* KG
5,01 21 1.0
L€ 511*0*71!
1,11! 04
?.41 24
3,71! 01
4.PE 01
1,91! 134
4,11 24
2,31 0* KG
5,41! 351 1.13
1.1*) 31.5.0*11!
4.41! 03
9,21! 03
3,71 I I
8,21! 21
1,51 03
1.11! 04
2,31! 01 kG
5.21! 01 LB
L1!* SLILFIUI
3.6 03
7.01! 23
3.11! I II
11.21! 01
6.21! 353
1.31! 04
2,31! 01 KG
5,01 01 1.6
LOAf) 1ETkA.*CITAT!
6.31 53
1.41! 24
3,71! 01
0,21! 01
1.11! 04
2,41! 04
2.31! 01 KG
01 LB
1.1*0 7P’IOCY*NK11!
4,71 03
3,21 8*
3.11 01
8,21 01
8.21! 03
1.01! 04
2,31! Oj KG
5,21! 01 LB
1.1*0 TOZUSULOAI1!
4,71! 03
1.21 04
3.71! 531
8.21! 01
0,01! 23
1,71! 04
2.31! I I I KG
5,01 II I LB
1af) t G51*tE
6,61! 03
1.51! 54
3,71! 01
0,21 01
1.1! 04
2,51! 354
2.31! 0* PIG
5.01! 01 1.8
LT ’.0A ’ 1 (PUR l)
3,41! 02
1.51! 02
3,71! 01
8,21! 01
5,71! 00
1,31! 21
2,31! 01 kG
5,41! 01 LB
L1 ’ .1*M1! (b.ITTABL I)
3,41! 20
7.51 04
3,71! 01
13,21 01
5,71! 30
1.31 13*
2,31! 131 P10
5,01! 01 LB
9,2! 0
4,21! 513
1.21! 131
5,51! 00
6.11—01
4.21.01
8.11! 81
3,71! sIt
2,01—22
1,31.22
?.‘E 01 KG
1,11! 0* LB
1.51! I I
6,9! 50
2.351! 21
9,11! 130
1,41! 0*5
6,51—01
8,11! 01
3,71! 01
9,71.02
4,4t.I ’2
2.51 2* KG
1.11! .31 LB
1,31! *
6,01! r 2
1,01! 21
11,01 42
%,31 3513
5,71—01
6,11! 851
3,71 01
5,21—PI
2,41—0*
2,31! 0* KG
1,11 0* 5.8
1,111! 21
5535
1,41! 01
8,11! 20
4.71.01
4,41.21
8,11! 01
3,11 01
6,61—02
3.01.02
2,51 Ol KG
1.11 2* 1.8
1,31! ‘1
5.131 50
1,11! 13*
7 81 03’
1,01! 350
5,51.01
13,11! 13*
3,71! 131
1,11—2*
4,91—02
2,51! 13* 40
1,11 0* 1.13
8.51! 50
0.21 30
1,21! 01
5,31! 035
6,40—131
3.81.01
0,11! 01
3,71! 131
4.91—02
2,21—22
2,SL *1 PIG
1,11! 01 LB
1,s’1! 51
4.11! ‘4
1,41! 0*
6,31! 03
9.81.351
4.51—01
8.11! 01
3.11! 21
9,131—02
‘3,5E— 52
2,51 51 10
1,11!. 21 LB
0.01! 14
4,01! 50
1,21! 2*
5,31 20
8,41—41
3,81.21
8,11 21
3,71! 01
1,21!—?1
5,St—02
2,51 21 kG
1.11! 01 LB
8.81 10
2
1,21! 131
5,31 1353
8,41—01
3,81.0*
8,11 131
3,71 01
8,41!.22
3,81—02
2,51! 131 kG
1,11! 131 1.8
1.11! 11
4,91! 12
1.41 31
4,61 00
1,21! @0
4,11.01
8,11 0*
3,11! 21
9,21—02
‘5,21—02
2.51! 01 KG
1,11! 0% LB
1,21! I I
53.71! 553
1.40 01
6,31! 00
9,01.01
4,51—01
0,11 01
3.11 21
9,3F . 1?
4.21—02
2,51! 21 PIG
1,11 01 L I I
9,551 50
4,51! 40
1,31! 0%
5,91! 00
9,31—0%
4,21—01
8,11 01
3,11 01
6,61.22
3,21—132
2,51! 01 kG
1,11 131 LB
1,41 51
7,11! *2
2.11 01
2,41 213
1.51 00
6,71.01
1,51! 02
6,71! 01
8,21 21
3,71 35%
8,51! 131 KG
?,OE 21 LB
1,61! I I
6,21*13
2,31 01
1,11 01
1,11 00
7,41.01
2, 151 02
1,11! 02
1.21 22
3,31 01
1.21! 0* KG
3,31! 81 LB
LE*0 800K 1)E
I
5,ls! 03 3,71! 0* 9,41 03 2,31! 01 KG 1,41 1 1.9! 01 1,41! 02 8,11 01 9,71.02 2.51 81 kG
3.21 0 11,21! 01 2,11 04 5.01 01 LB P ,S1! 2 8,71 00 5,21.01 3,71 01 4,41.02 1.1€ 01 1.8
1-4
H
1!’ )
0 .
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
_____ HARMFUL QUANTITIES RATES OF PENALTY
COST OF PREVENTION
1.21 0*
S.4I7.
1,61 0*
7,21 07
1.1€ 02
5,1€—0
*, €—0*
8,11—02
3 ,3E—7
1 ,51 .02
5 . .42 Kt
,5E—?2 LB
1.2* 01
, I2 i
1.61 03
7,41 02
1.21 7 12
5.3E —0
1.91—01
8,11—72
a .sE—. 2
1,91—00
s..€.i *ti
2,5122 LB
1,5 1 lii
_ __ _
2.01 01
9 7 00
1.4€ 712
6,41 —43
1.71 01
4,71 02
1,51 10
7,21—7*
3,11 02 KG
1,41 00 Id
1.51 01
7,0 !7 $
2.11 01
9,41 30
1.31 04
6,71—01
8.71 0*
3.11 01
3.81 € 1
1.7€ 21
2.1€ 81 LTQ
7 . 41 21 GAL
1.61 01
7,51 08
2,21 01
9.91 00
1,61 1*0
7,31—41
1,11 02
5,21 01
5,31 71
2.41 73
3.5€ 01 LIR
1,31 2 CAL
1,41 1
4.51
1,31 01
6,01 00
‘l.S1 e1
4 .31—0*
9,01—00
4,11.02
4,41.72
2, E —72
2,81.4 ? KG
*,e’€ — 2 LB
1,01 01
4.61 00
1,31 2*
6.1! 00
9.61—01
4.41—01
9.01.00
0,11.02
5.l1. 10
2,51—72
2,61.42 KG
l,?E— .’2 LB
1.11 0*
7,81 07
2.21 21
1,01 01
1.61 ç,
7.31.01
1,51 02
6,71 01
2.81 81
1.21 7*
4,31 01 KG
2.Vt 01 LB
1.7€ 01
7,61 0
1,71 41
7,61 2 .
1,5101
.9E 7 i
1.11 21
5.11 07
1.81 91
7.21 04
2.21 01
1,71 01
1.61 00
7.21.0*
1.3€ 02
6.71 41
3,21 21
1.41 71
4,51 41 KG
2,.1 01 LB
0.21 21
1,01 01
1,61 00
7,21—0 1
1.51 02
8.71 0*
2.41 7*
1,11 l
4,51 01 KG
2 , t d l Id
2.71 03
9.2€ 20
1.5€ 72
b.B€—fl1
1.51 2
#.,7f Ø
3.11 0*
1,41 7*
6.51 71
? , t- 8* LB
1.5€ 01
6,61 00
1.1€ 02
4,61.0*
I.K€ 22
6,71 0*
0 ,41 71
1,31 0*
4.50 ‘it KG
2 ,71 I I LB
2,11 41
9.81 00
1,51 00
8.91—41
1,51 o2
8.71 0*
2,11 91
9,61 02
4,31 91 KG
2.01 01 Id
8.61 84
4,01 82
1.21 91
3,31 20
8.41—01
3.41.81
1,51 02
6,71 21
2,91 01
1.3€ 81
4.30 01 KG
2,01 41 LB
1,21 91
0,01 00
1,01 d l
6 .11 I I
3,01 82
1.61.91
8 ,71 0*
3,11 9*
1,01 42
1,71 01
2,11 I I (JR
7,01 I I GAL
/ DESIGNATED
MATERIAL
1- I
I 1
1 . .)
0
LITHIUM 0ICH.I0 ’ArE
0,31 05
1,51 24
2.01 (74
4.91 74
1,41 04
3.11 04
1.31 04 KG
3,21 80 LB
L11 ’IIU(7 C’1. flMAT€
8.4€ 03
1.41 04
0.’! 06
‘4.91 44
1.11 04
2,41 44
1.31 74 KG
5.21 04 Lt3
LITHIUP OLLiflOIJI
1,61 02
5.91 02
4.11 72
9,. E 22
5,71 3(2
6,51 3(2
2.31 02 KG
5,01 02 LA
LATM1 (P j €3
5.0€ 24
1.1€ 01
5,71 71
8.21 7*
6.51 00
1,91 01
1.91 01 LT
S , ’€ oo GAL
M 1 1T ’ t .
l . €1Ya9L€)
5,71 0
1.11 01
3,71 01
01 01
6,51 00
1,91 01
1,91 01 LTW
3,71 04 GA
MALFIC 43.1)
6.11 d i
1,31 24
2.01 44
4,91 t 4
1,01 04
2,51 74
1,51 74 KG
3,21 04 LB
a3.€1C 4t,H’!r (OTUL
5.11 03
1.1€ 74
2,21 74
.1E 24
0.71 93
1.91 04
1.51 04 KG
3,21 04 I_B
FwC , 4IC ALETAII
2,11 2*
4,81 03
3,11 01
6,21 l
3.81 01
7,91 0*
2,51 71 KG
S, 1E 01 I_A
Mf .e lJq1c C-ILCOZD€
1.41 0*
4,.iE . i1
3.71 2*
8.21 21
3,71 @1
8 ,71 01
2,31 7* KG
5,21 71 LI
l€4Cu9 C 1TR*TE
2.21 01
4.91 2*
3.71 01
0,01 71
3,81 01
8,31 (71
2,31 01 kG
5.01 41 LB
CL 4 *C 011)1
I, € 3
%.11 2*
3,11 71
.4.21 *7!
?, 1 01
3.01 01
2,31 0* KG
‘...‘E “* LA
f C . IC 5t . L4AT€
1,91 7*
4.31 01
3,71 01
6,01 7*
3.31 01
1,21 0*
2.51 71 KG
3,01 l Id
F .Cu ’3 1 ’
‘. irCV’’.*T(
2,11 01
4.51 0*
1.71 0*
8,01 71
5.5€ 21
1,11 91
2.31 01 KG
5.41 01 LB
—€RCLOCUS ‘ i1WAI1
1,11 2*
4.11 0*
5.71 01
5 ,2 ! 01
3.11 01
8,91 01
2.31 81 KG
3.01 0* LB
M TH0%YC,.(Uq (.U7()
2.71 24’
6.01 d O
1,71 4*
0.21 31
1,61 00
1.01 I I
1.9€ 8* I_Ti
3,01 84 GAL
-------
SUMMARY OF HARMFUl. QUANTITIES
AND RATES OF PENALlY FOR LAKES
.(3wyI 10C&PTA1(
4,410 01
343
4,10 02
9,40 02
1,41 03
1.00 02
2,51 02 KG
3 .10€ 02 1.0
M€TWYI. M I T VL ’T
1,t $4
2,41 44
2,20 04
4,40 U
3,90 04
4,10 44
3,50 144 l TR
4,20 43 GAL
M€T.IYL PA4ATH1Q I
(Ptj €)
3,30 02
7.3€ 412
41,10 0?
0
5,60 02
1,00
2.1€ 02 LT
1 GAL
4 FY ”L 044 14 1 ,110 ’ .
( —tt?*’iL. 13
! .3 02
1.3€ 42
4.30 42
9,40 42
5,60 82
3.20 43
2.11 02
5 5€ 01 GAL
‘ .Fv1 Pkr l$
1.2€ 00
2.20 4 141
0,70 I I I
0,20 343
1,70 4141
3.01 300
1,90 03 1.70
3,00 34.1 GAL
MOE.Y0’)IC T’ 1DX1O0
1,61 104
3.60 44
.21 04
4.10 0
2,00 04
6.1€ 04
1,51 04 KG
3.20 44 1.43
,(i . YLAMl3, 0
1.0€ 43
1.4€ 03
‘4,11 412
9,410 442
3,331 5
6,30 03
2.1€ 02 1.133
5,30 03 GAL
O ’ .€ 7u .. 9L 4 1N 1
1,31 03
2,90 43
4 ,l1 42
9,40 142
2,20 03
4,41 03
2,10 0? L7
5,51 01 GAL
43*100
‘ .40 08
1.1€ ot
3.70 01
@*
1,30 0%
e, o 101
2,30 01 KG
3 ,OE Q’l L I I
. aP T 4L 1’ t
1,304 10?
3,10 22
0.10 03
-.,20 01
3.431 102
6,51 4?
2.30 411 1((.
5,00 01
43AP$tp4€11C £010
1 ,% 4?
0,90 2 ?
3.70 301
9,20 01
5 ,30 0?
3,20 03
1,30 01-KG
5,41 41 1.4
.ICKfI. ACETATE
3q40 $3
1.1€ $4
2.20 04
3 1.9€ 04
4.30 03
1.9€ 04
1,50 04 KG
3,20 3110 ItO
43IC1(€t. AMM0 .3U43
5j l.PATC
7,90 143
1.0€ a
2,20 04
,9€ 4110
1,31 04
3.340 04
3,51 04 KG
3,20 04 1.8
‘IC ’31l . 84O ’11u0
5.51 43
1.20 44
2,00 04
4,90 04
9,30 03
2,00 04
1.51 44 KG
3,21 04 1.4
01
04
2,01 0*
9,20 300
1,50 04
6,60—01
6,11 00
0,80 1’0
2,31 04
1,20 334
3.80 00 1(11
.3t .01 1.11
0)
1010
l,IE 01
3,7€
9 . 40— 41
4,1€— 3
3,100.02
1,50.42
9,90.3 LOP
5,8 1 —dO GAL
1.1€ 01
4. 3I
1,01 01
.SE 4143
1.41 40
0,60—411
2.41 00
1.1€ 40
5 .40.411
2.60—21
7.20—41 ITO
2.70 .34 GaL
1,20 01
),1)€
1.40 dl
7,41 00
1.2€ 04
5,30.01
4,90 0?
2.10 00
8.20—21
3 ,1L — t
1.40 44I LIP
,40 ‘$ GAL
3,31 01
43,11 4133
3, ,€ 01$
33. 3€ 1314
1, 31 131
B, 1 4
2,40 41
1,30 03
1,70 02
1,40.01
5,40 01
2,40 0%
3,20 342
1,50 144
l,bL 43 1133
‘.20 01 GAL
1,30 21
5,40 330
9,11.01
4.11—0*
1,91.03
0.11.0?
1.10 .112
1,50.23
‘ .,60— !2 KG
2.51—22 LB
1,00 01
4,10 1041
3.31 00
5,01—03
3.70 44
1 ,10 430
1.301—411
0,40—1 ’2
3.11 09 1.133
4,11 24 GAL
2,31 03
‘
1,00 01
4,00 80
1.3€ 00
5,70.03
3,70 40
1,10 100
2.31.41*
9,61—42
3.10 4141 ITO
,l0 04 1
1. 11 01
5. ‘0 1341
1.10 41
7,430 00
1.21 344
5,40—91
2.70 41
3.20 01
2,41 01
1.1€ ‘1
0,20 3341 KG
3,11 241 LB
1 ,30 01
5 .3€ Oil
1.7€ 01
7,60 1041
1 ,20 340
5,50—03
7,40 4 1
3,40 41
1.0€ ‘ ‘
1,20—411
4.31 “1 oG
1. 1 21 LB
I. iF 01
6, ,€ 00
1.40 0%
8,0 00
3.90 00
6,30—01
1.20 42
5,30 341
l,3F 04
5,71—41
3,60 21 KG
1,01 01 LB
1,30 01
110
1,71 01
7,430 44
1.20 02
5.41—91
1.91.01
B,7€. .34.
4,71.22
0,21.42
5.6E— J KG
2 ,51.02 16
I, ‘1 01
3,0 00
1,60 $1
7,31 00
1,21 20
5.20—01
1,90.21
8,71—42
3,21—22
3,40—22
5,6t.22 KG
2,51—2 ? L I I
1,30 0*
00
1.70 41
1.40 40
1.21 04
5,41.03
1,90.0*
4,70.41?
4,31.02
2,00—142
5,61.412 KG
2 ,51.22 B
(3. 11 T * OL O)
3,70
4.20
01
131
4,01
I .410
al a,
411
1.90
5.4€
01
444
1 . 141
GAL
01
4141
2,30
1.10
01
41
I- I
I- I
1. -i
-J
1.7€ 04
7.60. 01
1. II
8. 1
1. il
0, sO
9, II
13, 11
1.1€
5.21
02
101
3,51 413 1.70
1.3€ .32 GAL.
-------
H
H
N)
N)
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
HARMFUL QUANTITIES
/ L
/ COST OF PREVENTION
/ DESI G NA D / / 4 / /
/ MA RIAL / / __ ________
/
RATES OF PENALTY
91C’IL C’1L04 100
4.8€ 13
1.1 84
2, ?E 4’
4i Q1 4’4
4.11 23
1.81 4
1.51 04 s r.
3,22 04 LB
4ZC 1L 0 M6T1
3.10 43
3.22 ‘43
4,12 03
9.01 03
6,31 3
1,42 04
2,32 43 KG
5,02 03 1.13
! TCK1L ‘IYOP(l*TOE
1.4€ 03
a ,4 ‘3
4.12 (43
9 ,’E 03
1.02 03
1 0E 03
2,30 03 Kr.
5,01 43 LB
‘ TCKFL 9110*12
5,91 83
1.32 0’
3,40 —22
4 . 1’41
1,02 04
2.21 84
1,52 12 211
1,5c 39 LI
.ICK0I. SuL *VE
5.31 03
1.21 44
2.22 04
4, E 44
8,91 03
2.02 04
1.55 0* aS
3.22 44 1.8
‘ .tT .iC aCID
3,50 73
7.71 03
4, 12 03
9.80 03
5,95 03
1,31 44
2,10 03 L19
3,50 02 GAL
N114O 2€.€
4. € 3
84
4.2€ 04
4,92 04
1.15 04
2,51 44
1.32 24 L’T
4,40 43 GAL
‘ 110rGE9 Dm8 102
2.3€ 03
6 83
4.12 43
3,02 (43
4,32 23
9,56 03
2,31 03 KG
5,01 03 1.0
. lTROP ENOL
2,01 o3
452 03
“ ,t 02
i .0E 02
3,40 03
7.65 03
2,32 33 ? Kr.
S.QE 2? LB
P AL FHVO1
1,10 3
2,41 03
‘ ,1F 43
9.01 03
1. 1 03
4,16 03
2.11 03 LT
s.se 0? GAL
4*3 149 CPIJRI)
3,10 .31
6,92 d l
3.72 01
4.02 01
5,31 01
1,21 02
1.92 0! 1.30
5,40 00 GAL
P*1P4 )P.
t .!?T*OL I)
3 . ol
6,92 81
3.7€ (4%
i.22 01
5.31 01
1,21 02
1,31 41 L1
5.41 04 GAl.
Pi .T*Cp,LGPOP. .U .(1
2.02 0?
4.46 00
3.70 01
4 ,00 0%
3,71 72
4.20 0?
2,31 ‘1 KG
5.01 01 LB
1 (’I.
5.30 07
1,21 03
i.1! 02
1,01 02
8.95 22
2,01 03
2,32 42 kG
5,01 @2 LB
0 1 433 52 62
2,72 83
6.40 03
.12 03
1.180 03
4.62 03
1,01 04
2,32 @3 1(5
5.81 43 1.8
1,31 0
5,80 2 1
%,15 01
1,82 0.3
1.26 08
5.52.01
1,91 .01
8,12—42
5,81 ’2
2.30.40
5,82.42 1 (
0.50.02 LB
1,31 0.
5,81 01
1,71 0%
7,81 00
1.20 04
3,51.01
1,01 08
4,72—01
6,42—1’?
2.92—42
3 .%1. .l f .
1,41.01 LB
8,81 01
‘4,02 4 1
1,21 01
5,31 20
0.42.41
3.80—01
6,11—01
2,41—21
l,of.21
4.62—82
1,81— . I 15
4.21.02 1.4
1,61 711
7.52 1.31
2,21 01
9,90 241
1,61 00
7,11.01
1.31 23
5,12 22
4,00—4?
1,80—02
8,10—34 2kG
1,31.33 L
1.30 01
5,72 01
1.72 01
1,60 24
1,20 08
3,42.0*
1,91.01
8,71.02
4,51.2?
2,01.02
5,61.42 ar.
2,5t.’2 LB
9,40 01
4,52 01
1.32 01
8,41 00
9,41—01
4,36.01
4,42.41
2,21—01
9,22—02
4,20—02
I,4E. ?1 ITO
4,40.01 1.6!.
1.12 0,
5.0001
1,52 01
6,7100
1,01 0?
4,81.01
1,91—21
8,11—??
6,02—0?
2,12—02
5,61.?? 1.14
2.I2— ’l G L
1,22 0.
4,52 01
1,32 41
6,01 00
9,51.0!
4,31.01
4,91—01
2,26.01
1.30—21
5,80—2?
1,4t.01 45
6,5E.40 LB
%,35 0,
6.11 01
1,82 41
4,12 04
1,30 02
5,82—21
1,16 0!
5.22 44
1,96—01
8,81—82
3,20 88 11.1.
1,31 4? Lb
1.2€ 0
5.52 an
1,60 31
1,41 ‘40
1,21 04
5,36—01
4.92—41
2,25—01
2.51—’!
1.12—01
I.40— i1 1.10
5, 1—41 SAL
1.41 01
6,50 0!
1,91 81
4,12 04
1,41 04
6,21—2!
6,11 01
3.IE 21
4,91 @8
4,12 22
2,11 41 1 .1K
1 ,81 01 GAL
1,15 i41.
7.81 41
2,30 01
1,02 01
1.42 00
7,42.01
1,10 02
5.01 I l
1.32 01
5.70 20
3.32 41 LIP
1,36 .32 561.
1,36 0
.15 01
1.02 21
8,11 ‘40
1.32 00
5.45—0*
1.41 01
3,30 0!
1.31 02
5,80—0!
4.31 4% I I .
1,’€ e1 LB
1.12 01.
.12 4.1
1,30 01
6,82 00
1,12 00
9.91.8%
6,12 08
2,85 00
3,12.0!
2,31—81
1,80 88 KG
1,10—41 LO
1,02 4*
.61 01
1.31 0*
6.11 04
9.62.33*
4,42—4*
4,91.81
2,21—81
9,90.02
4,52.02
1,41.8* 114
6,51.22 LB
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
I
/
MATERIAL
HARMFUL QUANTITIES
II
RATES OF PENALTY
051 OF PREVENTION
___ __ /
I
H
I-f
-4
PMOSPIOQIC ACID
A•B 03
1.9€ 24
0,21 04
4,91 04
1,51 04
3.31 04
1,51 114
5.21 04 LO
P SPP1( .Mj5
2.31 0
5.1€ 2
3.7€ 01
M. E 0%
3.91 04
0,7F. 00
2,31 @1 KG
5,riE 01 (.0
PH)SP$CUS
OXYC$L i .1D€
2,01 05
0,11 03
4.11 I ’ S
9,21 03
4,71 @3
1,01 04
2 ,32 03 ‘(C
5,01 @3 (.8
DSDW 4u3
P 1’lTa t GoIoe
1.8€ .12
3,QE 22
4.11 2
9.01 @2
,
6,St 02
2,31 @2 KG
5.01 02 1.0
P S00c9tj$
PT4 iLFIDE
2 ,4% Di
5.31 05
4.11 03
9,01 03
4,11 43
9,01 03
2.31 I ’ S KG
5,01 @3 (.9
4t J$
7 . .7t ’lV) . . I )t
2,51 03
5 61 ;
.I€ 03
;,ol 43
4,31 03
9,51 03
2,31 Iii KG
5,01 03 (.8
PDLYC ’ L.( 142NATED
8IP , €* .4 l .S
1.2€ 01
2.11 01
5,71 01
0,21 01
2. 1€ 01
4,51 21
1.9€ 01 (.7k
5.01 00 GAL
POTASSIL’P4 A0S wAT
5,71 02
1,11 03
3,11 @1
,2€ 0*
9.1€ @2
2.11 00
2,31 1 KG
5.01 01 (.6
POTA3SItjo £R3€ . IT1
1,61 03
3.31 @3
5,71 0*
21 01
2,51 05
5.61 03
2.31 0* KG
5,11 Ii .@
PttA S3IJl4
0 11 0110 . 1 * 71
5.$ 03
1,31 04
2.21 @4
4,91 014
9,91 @3
2,20 @0
1,31 04 KG
3,21 04 (.8
PflTA%33JM C.4010IAT€
7 ,4 @3
1.01 04
.20 04
4.91 00
(.31 44
2.61 @4
1,51 @4 4G.
3.21 @4 ( .8
P DT*551JM CYA4I0€
1.91 01
4.21 0*
3.71 @1
0.21 I I I
3,21 01
7,02 *
2,31 01 KG
5,01 01 1.0
P0?ASSI ,JO 09(1400101
3,31 03
1,71 03
4.11 05
9.21 23
5,91 03
1,31 04
2,31 03 KG
5,01 @5 (.1*
•0T*$51’iM
0 1 1 1 0AP .CAN AYE
1.0€ 92
0.1€ 02
4,11 02
,OE 02
3.1€ 02
6,91 02
2.31 02 KG
5,01 02 (.0
110007003C ACID
0 ,31 23
1,01 04
,20 00
.91 04
1,40 04
3,11 I I
1.51 04 (.70
4,fl @3 GAL
9,51 01’
‘
1.3€ @1
5 .0k 00
9, 11.01
4,11.21
9,21.72
3,71—02
?.00.0? KG
1.0€ 01
6,0140%
1.01 01
0,31 012
1.31 22
6.9€—DI
4.11—02
2,71 21
1.71—012
8,21 l 1
1.01—42 (.0
3.2€ 42 kG
1,%0E 01
eo.51 @ 0
1,31 01
0,01 00
9,51.0*
4.31.01
4,91.91
2,?E—0t
3.71 0%
9 ,7E. 0
3,71 20 LtI
1.41.01 K0
1.01 01
4,71 00
1,41 01
6,21 00
9,71.01
4 ,41—Pt
4,91 00
2.21 00
1,61 0.’
7.21.01
6,St.. ? ( .t4
1.41 @8 KG
1.01 01
4,61 00
1,31 01
6.11 00
9.61—01
4,41—01
4.91.01
2,21—01
1. 11.01
5,11—02
8,51.01 114
1,41.21 KG
6,51.02
1,01 @1
0,61 00
1.3€ 01
8.11 @0
9,61—01
4,41.01
4,91—01
2,21.01
1,11—01
4,81.02
LB
1,91.01 KG
6,51.02
1,21 0%
5.31 OIl
3,61 01
1,31 00
1.11 00
5,01—01
1,51 02
6,71 @1
3,61 I I
1,41 @1
(.0
4,51 01 LTK
02
1.5€ @1
0,81 @ )
0,01 01
9,01 9144
1.4€ 0 .3
8,50.01
1,21 22
5.51 01
4,21—01
1,91—c%j
GAL
3,?( 0% KG
1,41 01
8 ,01 04
1,91 0%
0,01 00
1,01 @0
6, 11—01
1,21 02
5,51 01
1,61—2%
7,21—02
L I I
3,71 0* KG
1,71 .11
1,21 01
5,51 @0
1.61 01
7,41 I II’
1,21 00
5.31—0*
1,91—0%
0,71.02
4,61.00
2,11—00
5,81—0 ? kG
2,51.02 (.0
1,21 @1
5.41 00
1.81 01
7,21 02
1.1€ 0101
S,?1 .01
1,91—0%
.7f—07
3.61—0,0
1,11—22
6,61—00 64
7.31—22 10
1.31 @1
00
1,71 01
7.9€ .12
1.22 02
5.61.01
5.41 0
2,41 @1
1,41 81
4,51 00
1.61 01 kG
7,41 20
9.91 20
4,51 40
1,51 @1
6,01 08
9,41 —01
4.31—01
4,91.81
2,01.O(
1,71—22
3,51—02
1.41.0* KG
6,5€02
1,41 01
6,31 40
1.41 01
8.01 00
1.31 00
6,01—01
1,4*1 I I
4,11 08
1,31 9 10
6,61—8%
(.8
3,11 00 KG
1,01 00 (.8
1.11 41 1.4€ 01
.0(88 6,61 II
1.01 00
4,11.01
1.11—0*
5,11.02
3.91.02 3,31—02 ( . 7K
1,81.02
-------
DESIGNATED / /
MATERIAL / /
I O( I
c
p0flP3D?t £ .iYO91OE
PRrJP?l. ALCO 4OL
1.5€ 04
3,4 ! S
2.2 44
4 .9 04
2,61 09
,7 ! 08
1.51 04 L,TP
0 . E 03 GAL
pF 3P 3 (PUWE)
3•2 03
7,?! o3
4•j€ 03
9.0€ 03
5,51 03
1,21 0 4
0•11 03 LT
5.5€ 02 I . L
7y 0 11b47 ’i3
( . €TT O.iLE)
5 , 7 03
1.21 23
4,11 03
9,01 43
5.5! 03
1,2E 04
2,11 03 1.71
5,51 02 4 AI
PYOOGALI.IC ACID
1,9 ! 02
1.7€ 03
,1€ 02
9.01 02
1,3! 03
2,91 03
2,31 02 ‘IG
5.41 02 LB
OU LI ’ 4E
2,?! 22
2 ’
3,11 01
6,?1 @1
3,71 02
0.21 22
1.9! 01 LT
5.01 00 GAl
soac ’ ut
1.51 03
3,41 23
4.11 0?
9.31 0?
2.6 ! 83
5.71 03
2,31 02 kG
5.01 02 LB
S€L€’IIC *C10
1.1€ “3
2,51 03
3.71 0*
0.21
1.9€ 43
4,41 03
2,3! 01 KG
5.41 01 1.0
S€LU’11.” 0*7 1)1
5.31 02
1.2€ 23
3,1 ! 01
a.a 0*
0,9 ! 02
2.1€ 03
2,31 01 KG
0.01 0* LB
S€vl ,. (0 ,jQ€)
2,91 22
6,5! .12
4.11 02
9.21 02
5.01 0?
1.1€ 03
2,3! 02 KG
5.2! 42 1.4
3v1’ 1tTA L !)
2,91 0?
6.5€ ?2
4.11 02
9,01 02
5.01 0?
1.1€ 03
2,31 02 06
5,01 02 LB
S .)2IA
2.51 21
5.5€ o3
4.31 03
‘ .0€ l3
4 .?! 03
9.3! 03
2,31 45 KG
5,01 03 LB
S(’OIUM II.S aTf
1.21 43
2,71 03
3.7! 41
6.21 0$
2.11 03
4,6! 03
2,31 0* KG
5,21 01 LB
SODlu ’ 4 &P 5(I437
1.5€ 03
3,4 ! 43
3.71 01
6,21 41
2.61 03
5,7! 43
2,31 01 KG
5,01 01 LB
3O01,i OICHOQMATE
0,41 03
2,11 04
2.21 44
4.U 04
1.61 04
3. € I I
l.SE 04 KG
3.2€ 04 1.4
0,01 20
4,2! 70
l.fl 01
5.31 00
8.41—01
3 .6€—BI
8,21.21
2 ,81—0*
5,91—02
2,11—02
1.0€—Ol LY
‘,8€—2 1 GAL
1.3€ 01
6,0E 0
1.5€ *1
6.7! *0
1.61 01
0.01 00
1,3! 00
5,11.01
1,01 00
4,71.01
8 ,31.02
3,eE— ’2
3,11—01 1.10
1.2€ 00 0*1.
2,21 01
0,01 40
1,41 04
6,41—01
1,11 01
5,21 00
1,0!—01
2,31 .91
5,21 00 KG
1.51 00 LB
1,3! 31
5,71 30
1,7! 01
7,61 00
1.2E 04
5.91—01
6,71 01
3,11 01
1,?! 00
5,6L01
2.tt 41 1.10
1.01 01 GAL
9,61 30
9,51 10
1,3! 41
5.91 00
9,31.01
4,21.01
4,91 00
2,21 00
1,21.0*
5,71.02
1,41 00 kG
6,51.01 LB
1.41 11
6.5€ ‘0
1.51 31
8,91 I
3,91 01
6,11 00
1,41 04
6,21—0*
6,11 01
3,11 01
2,91.0*
1,11—01
2,51 2* kG
1,11 01 LB
2.01 01
9.2€ 20
1,41 00
6,61—0*
8,11 01
3,71 21
5,11—01
2 ,3 —0t
2 ,St 21 kG
3,1! 0* 1.0
1.11 “1
5,11 ‘
1.5€ 03
6.8€ 02
1.11 Q ’0
4,91—01
6,11 00
2.01 00
6.51—21
5,01—2*
1,01 24
0.11.21 18
1,21 01
i. f 10
1,61 0*
1,21 00
1,11 00
5,21—91
1,0! 0*
4,71 00
9,21.4*
4,21—2*
3,11 00 oG
1,41 00 LB
1,4! ‘i
4,6! 44
3.31 01
6,31 40
9.61.01
4,41—01
é.1E.41
2,01.0*
1,11.21
4,91.02
1.0*— ’1 KG
6.21—22 1.4
1,41 *1
8,51 40
1.9€ 01
8,71 00
1,41 $14
8,21—0*
1,21 02
5.51 01
2,21—0*
1,01.01
3,71 01 kG
1,7 ! 01 1.0
1.41 01
6,51 04
1,9! 01
8,71 00
1,41 00
8,21—01
1,21 02
3,51 01
1,6€— 1
6,01.02
5.71 01 KG
I,? ! 0* LB
1.11 01
5 .21 00
1,51 4*
6,91 II
1,11 00
5 ,01.0*
1,91.0*
8,71.42
2,91.02
1 ,31—02
5,b !.o2 KG
2,51.04 1.5
/
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
I-I
H
- 1
Ii .
9 ,3E 44 1,21 0* 0.91.0* 8,71—22 2,11—02 ?,01.. 2 ITO
‘4.2€ l 5,71 80 4,01—0* 3,11—22 9,61.03 7,51—02 GA l.
-------
SUMMARY OF HARMFUL OIJANTIT ES
AND RATES OF PENALTY FOR LAKES
OflheIuK 4Z%uI_ I10
1,11 d l
2,30 04
2 ,21 ‘44
4,91 00
1q80 .30
3,91 04
1.50 04 KG
3.20 04 1.8
500IUN CHQ(j IAT€
1,30 44
2.91 !A
2 ,21 44
4.90 00
2,21 04
0,90 44
1.5€ 44 KG
3,20 04 1.0
SflULM C4 ’ .!D1
6.61 42
1.50 41
3.71 01
4 .20 41
1,10 01
2.51 01
2.30 41 i(
5,41 dl 1.6
1D1U$ )LOtCVLdE ..
u * s ”Lru 4vE
6,31 42
1.40 . 13
4,11 03
9.40 43
l 41 43
3,11 03
2,31 05 KG
3 , E 03
3O lu 4 LtJOOVII
2,90 44
6 .5t 02
9,00 ‘32
9..l1 02
5.41 42
1.10 *3
2,SF 42 KG
5,40 ? LI
SO !uw ‘4Y000.
5 Jt.,1 0
4. E . ,
9.70 4?
,1f 03
$.it ‘33
7,04 02
1,’1 43
2,10 *35 KG
5.41 Ii 1.8
5’)(IUM ‘3!0003It,0
4.3 85
4.61 .‘3
4,10 43
9. .’€ 05
7,40 43
1,60 44
2.30 43 KG
5.20 03 1.6
Sfli,!u4 .4YPOCHLUOXYO
9.71 . ‘o
2.40 01
3.7€ 1
4,20 41
0,60 41
3,40 72
0.30 41 KG
5.21 01 1.8
3 ’)!UM T ,vLA1’
5. 0 dl
1,31 04
2.20 04
4,90 04
1,00 04
2.41 04
1.51 44 KG
3.21 04 1.0
InDIuM 017411€
3,30 02
84
0,10 42
9,01. 40
3,60 02
2.20 05
2,31 02 KG
3,40 02 1.4
Stiulus P0 l5PI ,ATL
N*J O 00S1C
3.21 d l
7,00 04
2.20 * 4
4,90 *34
5.00 44
2.20 43
1.51 00 KG
320 44 1.4
Srjol .,P9 Pp’QSPoATO
DISASIC
1,90 ‘44
4.1€ 44
2.21 04
4.90 44
3.20 04
1,40 44
1.50 04 KG
3.20 00 1.0
S( ?)1&j3 •.IDSPHAVE
1 . 1PASIC
4,61 43
1,50 04
1,20 44
4.91 04
1,11 04
2.50 44
2.50 04 KG
3.21 44 LI
SODIUM SOLIII IE
2,40 423
5,30 43
3.71 01
8 ,21 II
4,10 03
9,00 03
2.31 II KG
5,00 I I 1.8
1,1! 01
5,01 0
1,50 81
6,71 44
1.01 09
4.80.41
9 , 0 1— I ’?
4,11—41
2.61.42
1,90—02
2,4.0.0? KG
1.91.)? 1.8
1.41 01
1,40 01
6,30 04
9,61.8*
4,51.41
1, 4 0— I l
8,VE—U
2.01.02
9,30—45
3,61.42 KG
2 .51.02 LB
1,30 01
5,q10
1.70 41
1.9€ )4
1.21 00
5.10.41
5.00 01
2.41 i
4.11 41
1.90 41
1.81 411 KG
1,40 4 LI
1.2€ 41
3,60 9*3
1.3€ 01
6,91 00
1,4.0 0*
7,41 80
1,20 00
5,31.41
0.90 —0*
2,20.0*
3.20 .02
1.50—02
1,40—81 kG
6,50.42 14
2,80 01
9,20 44
1,40 00
6,61.01
1,40 01
4,70 00
9,21 —Pt
4,20—4*
3,00 44 Kf.
1,41 04’ 1.6
1,51 41
6,91 08
2,40 01
9.1! 20
2.40 00
6.50.41
4,91.4$
2.21—01
6, 1.0j
2.00—01
1.01.01 KG
6.51—4 ? LB
2,01 440
4,71*34
1,41 01
6.21 08
9,70—01
4,41—41
4.90.01
2,21—01
8.21.02
2.41—4 ?
1.40—8* KG
6 ,5c—42 LB
1.1€ 4*
5,01 04
1.50 01
6.61 00
1.00 00
4,11—01
6,71 0*
3,10 01
3,01 Ii
1,30 I I
2,10 01 KG
9,31 40 1.8
1.2€ 42$
5,41 144
1.60 4*
7.3! 20
1.2! 44
5 .3€—0
1,10—4*
5,l€—
4,60.82
2,i1.0
3.31—U KG
1.50—02 LB
1.61 01
7,10 4.’
2,20 01
9,40 40
1.50 00
é ,1t —
4,91 00
2 , 4c .‘o
4,40.41
3,ir. ’
I. L • 4 KG
.51— ’I it’
8,60 00
4,41044
1,20 01
5,30 60
6.40.0*
3,81—41
9,01—42
4,11—42
6,50—83
3,91—03
2,61.02 KG
1,21.22 16
9,41 94
4,30 414
1.3€ 8*
5,70 84
9,01—0*
4,10—4*
9.00—02
4,10—42
1.50—0?
6,81—03
2,41—02 KG
1,20—42 1.8
1,20 41
5.30 40
1,61 I I
1.11 04
1,10 40
5.81.0*
0,00.02
4,10—42
4.10—42
1,60—8?
2 ,8E—o2 KG
1,21.82 LI
1.01 01
6,2004
1,81 01
6,21 00
1.31 60
5,91—01
6.1! 01
3,1! 01
1.11—41
5,11.62
2,51 01 KG
1,10 01 LI
2,20 42 4.10 41
9? 9.00 02
H
H
I 1
0. .)
-J
U i
3,71 0? 8,30 0? OG 1,51 01 1.21 4* 1,51 4.3 I. . ’! 82 1,70 0.’ 3,10 00 KG
4,21 02 5,40 02 1. 1.01 4o 9,41 00 6,70—61 4.71 0 5.61—4* 1,41 09 1.8
-------
H
H
—0
0 •i
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
/ / COSTOFPREVENTION
/ HARMFUL QUANTITIES / / RATES OF PENALTY
DESlG D /
/ MATERIAL / / ___ ____ ___ ___ ___ ___ ____
—
$OUIIjM SUL II E
2.7€ 03
5.9! 03
a,1E 03
4,4! 03
0,3! 03
%,AF. 04
2,3 ! 03 KG
5.0! o3 LB
3T4 1lUM C040MAIE
7.9€ 03
I ,? ! 44
2.2! lii
0,91 04
1.3! 04
2,4! l ’i
1.5! 04 KG
1 .21 04 1 .
ST0,CW’ t i€
I.? ! 03
?,7E 43
0.1! 02
9,5! 02
2,1! 03
4,6! 153
2.3! 82 KG
5,0! 82 LB
St Q ! E
9,7! 42
2,1! 43
4.1! 45
9. L 03
1,6! 03
3,6! @3
2,1! 03 LT
3,5! @2 GAl.
SL L!U01C ACID
5.4! 53
1.0! 04
4.1€ OS
9 . ’€ 43
4,1! @3
0,0! 04
2.5! 03 ‘
s.o€ 03 LB
SULFIJO MJ OCBLORI0!
3.4€ 23
4,3! 25
4.1! 145
9,20 03
6,4! 143
1,41 44
2,3! 03 G
5.OE 05 LB
4 ,4 .3—7 adO
(PU lL)
0,8 ! 02
1.1€ 23
4,1! 04
9.0! 02
8.2! 42
1,0 ! 03
2.3! 02 KG
5.0! @2 LB
2.4,31 Ad’)
cc T’v a4L !J
4.8! 02
1.1€ 03
4,1! 02
9,1 ! 00
8,2! 82
1,0! 03
2,31 02 KG
5.0! 442 LB
!ST !05
(PIP !)
1,5! cO
1,’ .! 03
4,1! 03
,2E 03
1.3! 03
2,4! 4 3
2,3! 45 KG
3,0! 83 LB
l,4.5t !STE43
( oFTT* B L ! )
Y,St 02
1,6! 03
4,11 05
9,0! 43
1,3! @3
0,8! 03
2,5! 05 KG
5,7! 05 LB
TA ’.tC Id ’ )
1.5 ,1 23
3.6! 43
4,11 03
9,01 03
2.8! 03
6,1! 03
2,3! @3 KG
5.0! 3 LB
1O (P )
1,4( 22
4,1! 02
3.7 ! 0%
3,0! 81
3,1! @0
4,9! 440
0.3! @1 KG
3,2! 01 LB
T )C ( .tT*aoLe)
1.6€ .17
4.)! 00
3,?! 41
.01 01
3,1! 80
6,9! 40
2,3! 01 KG
3,01 01 L 8
T!TOA(TOYL L!AO
8,8! 04
1.9€ @1
3.7! 01
8.?E 01
1,5! 01
3,3! 01
1.9! 01 LT
5,0 ! 80 GAL
1 €746— !? 440L
•v4oP i5PoATE
3,11 41
0,1! 4)
3.7! 41*
8,2! 01
6,2! 01
1,4! 02
5,91 01 LT44
5,0! 00 GAL
1,4! 31
4.,2E 40
5,8! 01
0,24 00
1.3! 00
5.9€—Ol
4,41.51
2,24—01
1.OE—P%
4,bf—b 4
1 ,4 1 — il KG
4.3t.02 LB
1,8! 31
4,7! 40
5,8! 01
6.32 20
9,9f—Sl
4.5E.441
1,1E.01
5,11—00
2,41.02
l,%!.0?
3.3€—U KG
l ,S !—22 LB
1,1! U
5.11 40
1.0€ 3%
4 ,7! 50
1,51 II
4,8! 08
1,1! 08
4,9E—01
6.11 00
2.8! @0
1,61—01
1,lE—U
1,0! @0 KG
8,12—41 LB
1,41 01
4,31 00
9,9E. @1
4,5E.@1
l,8 !—0*
S,3!.02
1,01.01
4,71—02
5,4E.U 1.74
0, 0 4 —il GAL
9,8! 40
‘4,5! 40
1,3! 01
5,9! 00
9,3E .01
4,21—81
4,91.01
2,2€—01
6,01.02
0 ,7(—02
1,0 !—d1 KG
b ,5 !.U LB
9,9 40
‘1.3€ 40
1,3! 41
6,0! 40
9,U !.01
4,31.01
4 .1€—OS
0,BE ’ 0i
7,1t le
3,2€02
$,8 —4$ KG
0,?!.0? LB
1,1! 41
5,01 ‘0
1.54 41
6,11 00
1.0€ 40
4,8E @*
2,4! 00
1,11 00
4,82—01
1,BE —01
7,11—11 KG
3 ,3!0I LB
1,21 41
5,71 444
1,71 0%
7,3! 04’
1.2! 00
3,41—2*
4,91 00
2,21 @0
5.61—0*
2,31.411
%•4! 00 KG
b,51 ’OI LB
1,1! U
144
1.5! 01
6,7! 00
1.14€ 04
4,81—81
2.46—01
%,IE—01
0,61.01
1.21—01
7.2 —.3l KG
.32—72 LB
1.51 31
5.81 14
1,71 01
7.8! 40
1.0€ @0
5.5E @1
4.91.01
2.21—41
3,61—81
1.41.41
1,4 2—il
b,5 !.d2 LB
KG
1.4€ 31
6,4! 10
1,9! 01
8 ,51 88
1.3€ 08
4.1€—Ol
I ,? ! 00
5,61—41
1,1 ! ’Ot
7,61—42
1,b€—41 LB
1.6€ 51
1,3! 40
2,21 8%
1,1.4! 21
1.64 @4
1,11—01
1,51 82
4.7! 81
1.51 80
6,41 01
4,51 41
2.01 01 LB
1,0EU
4,41 10
0,31 81
1,11 21
l,7 ! 40
7,61—41
2,’4! 42
1,1! 82
0.11 00
9.71 01
1.21 .11 KG
3.32 01 LB
1.5€ 41
7,0! 30
2,11 0%
4,4! 04
1.5! 00
6,7(.0l
6,71 @1
3,11 01
5.44! 01
2.3! 01
2.1! 4* LTR
7,8! 01 GAI.
1.1€ 31
4,91 50
1,41 II
6,61 00
1.0! 00
4,11.01
6,11 01
3,10 01
8.0! 00
4,01 0?
2.1€ 0* LIP
1.8! 31 CI I.
-------
DESIGNATED
MATERIAL
1.1€ 05
2,31 03
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
TAP .E. € (PuOf)
1.51—.’!
3. r — . i
3,7E 0!
8.2€ oi
?,4,E.oj
s .7t—oi
2 ,3E 01 KG
, . € lii 1.9
11)OAp .•l1 €
, .Ey7 4 oLf)
1.5$—lU
4.a al
3.71 01
4.21 81
2,6E 0j
5.fl—0t
2,31 01 iG
5.01 i LR
t tCuLC @F” .
7,91 i3
1.71 04
0,21 04
4.91 Oi ,
1,31 04
2.9€ OS
1.51 04 KG
3.21 04 LB
—
T0XC . L 0OD..F . ,0L
4, € 01
010
4.71 0!
8.01 01
7,41 oa
1,61 01
2.31 01 KG
5.01 01 LB
YETMA OLAMIPd$: 00r4
3L$Ot .AT
9•7 .12
0.1€ d3
1.11 3
9.0€ 03
1,61 03
3,t1 03
0.31 03 KG
5.101 03 LB
T41 €y .Iy A’i! .
3.51 03
7,11 01
0.1€ 03
9,01 43
5.91 03
1,31 104
0,31 03 KG
5,01 03 1.8
I P X TH L 4 11 €
o.ie ø
114
4.11 03
9•01 03
5.61 03
1 ,91 03
?.3E 03 KG
3.01 03 LB
UOA ’IILJM PER00 1t)E
4.71 03
1. L 04
2.01 00
‘1,91 104
8.01 04
1,bl 04
1,31 @4 KG
3.21 04 LI
URA ’4YL AC€T1TE
1 ,81 03
LiE . 14
0.21 104
4.9€ 04
1.3€ Ba
.7,91 04
1,51 04 KG
3.21 @4 LB
kl 4y 1. P .1T1 A1!
4 3t .13
1.41’ 00
0.01 04
‘4.91 10 ’.
1.11 414
2.40 04
1.30 04 .G
3.21 04 LI
J 4 * JYL OULFATI
3.91 .13
1,31 05
? ,OE ‘ Ia
4,91 04
1.01 00
2,01 oa
1.51 05 KG
3.21 04 1.6
‘ .AI X l
OKYTi IICMLU9XO I
4,61 03
1.0s 041
1.21 444
4,9$: 04
7,71 03
1.7€ @4
1,51 04 KG
3,21 04 LB
vaMAo1u ’4 @ 1 970 * 1 0 1
2.41 03
3.31 03
4.10 03
9.01 03
4.11 03
9 ,40 03
0,31 03 KG
3.01 03 LB
VANA0YL $ULFAT(
2.4€ 103
5,31 03
“.11 03
9.01 03
4,11 03
9,01 03
2,31 03KG
5.01 03 LB
l•6 1 31
2.01 ‘ Il
1.6€ @0
#,7€ 01
e,o€ 03
2.1€ 101 kG
7,41
1.81 @1
00
9.91 oo
0.41 01
1,11 00
3.11 ‘ I I
1.1€ 02
1.4€ .‘3
‘1,111 413
9•9€ . 4’ LI
1.31 .iI KG
1,01 @1
5,31 02
1.1€ 0!
1,61 01
7.61.41
1,11 010
5.11 2!
1.91.01
1.00 103
5,01.00
1.60 21 L I I
5.61.02 KG
1.5! 44j
6,9! 04
1,11
2,01 01
9,21 02
5,01.Oj
1,41 20
6,61—01
8.71.02
2.71 I II
1,21
2,31—02
4,41 01
2.51 .102 LB
0.21 00 KG
1,21 21
3,6! 010
1,61 01
1,21 00
0!
4.91—01
0.21 0!
2.81—01
3.71 @0 LB
1.00 .41 KG
1,41 01
8,3! 00
1,81 21
0.31 20
5.31—101
1.3€ 00
2,21—01
3,71—01
1.31—01
9,01—210
6.51—02 LB
1.11—01 PIG
1.21 01
5,5! 4 ’2
1.61 01
1.5€ 00
6.01—01
1,01 00
l.7E.01
3,71—01
4.01—I ’0
t,3E .0
4.9 .102 LB
1,11.0! KG
00
.2i
1,101 01
5,41 00
5,10—01
8,41.01
3.8€—fli
1.70—01
1,11—01
5.IE—o2
6,01—1 12
0,4’€—Wa
4.91—02 LB
3,3L— 2 KG
1,2 1 91
5.3! 00
1.51 01
7.41 00
1.1€ 010
5,101—01
1,91—101
8.71.02
1.81—02
3,01—00
I,S . .2 LB
5 ,hE. . 12 KG
1,2 1 01
5.51 4441
1,61 0!
1,21 00
1.40—412
i.61.02
2,SE .o2 LB
5,6 1ol KG
1,212!
3.81 00
1,41 00
1,61 01
7,41 100
3,31—0!
1.21 00
0,71.02
1.91—41
1.60—00
4.01.02
2.51.22 LB
5.61.22 KG
1.11 01
5.0$ 02
1,51 01
6,71 00
1,101 010
8,11.22
1.11—01
1.eE—oa
4,21—
2,St—00 LB
3,31.02 KG
1.31 411
5,91 @0
1,71 01
1,91 00
4,01—41
1.2€ 00
5.81—01
5.11—02
1.0€ 110
4.1E— @1
1.91—02 1 .3E — 1? LB
9,8€—L o 3,11.01 MG
1.31 01
1.81 01
1,31 @0
1,01 oO
4.51—02 1.41—01 LB
9,81—ol 3,11—21 KG
/
MFUL QUANTITIES
701 h O 90
03
03
1,41 03
4,91 03
I
03
02
GAP.
1.21
4,4 1
01
04$
H
H
-.4
—3
1,61
1,21
01
20
1,11 00
5.11—01
1. 81—01
I .81—01
8,3 1 .00
5.41.20 LIP
2, . t.o 1 GAL
-------
SUMMARY OF HARMFUL QUANT T ItS
AND RATES OF PENALTY FOR LAKES
KYL OI ’€
9.7€ 22
2.11 23
4.30 S
9,21 03
1,PE 43
3,60 23
2.30 83 LT’
5,51 02 AI
ZYL€’. L
i3
3,50 i3
4.1€ 43
Q OS
2,71 413
3,9 3
2.10 03 LI’
2
ZECTRAs (PURl)
4 .9€ 4?
3,10 03
4. 1€ 03
9,81 4 ’S
0,31 02
1.90 83
2.31 03 KG
5,01 QI3 1.8
ZECTRa (71441.1)
•,90 02
1.1€ 83
s,U 83
9 .9F 43
0,30 02
1 8E 145
2,31 03 ‘G
3,21 03 4.8
ZP.C 81,(1A4(
5,61 23
4.3€ 03
4.51 03
9.9€ 23
3,51 44!
6,90 @3
2.30 03 KG
5,01 83 4.8
ZP.C ‘ . ‘3JM
C.,LOkI O I
1,KE Z3
3,60 23
4.51 83
9,00 03
2,81 03
b 10 413
2,31 83 4(3 ’.
5,4)0 03 4.0
Z1 C 91C ’”’O’ 4 A €
2,90 23
6,21 25
,1€ 4 3
9 , E 05
4,01 33
5,141 04
0,30 443 KG
5.01 03 4.8
Z1 ’ C OCOATE
1.1€ .11
2,31 05
4,11 #3
9,E 413
3,90 03
3.9€ 03
2,31 143 ‘ G
3,’€ 03 1.8
Z14C J0ID€
1.90 23
4 ,20 23
4,10 93
9 , 4E 03
3,21 03
7,41 93
2,31 03 40
5,91 95 1.9
11 ”C CA ’b’)44T€
3.4€ .U
2.38 23
4,11 03
4,20 83
1.81 03
3,90 83
0,30 143 41.
5,21 @3 19
1I’.C Ci-LORI )€
1.3€ 03
93
4,11 83
9. . )E 03
1,41 03
4,31 43
2.31 @3 KG
5.441 83 1.4
Z1 ’ .C CY4NIOE
7,91 1 .0
3,7k 43
3.11 845
9.21 01
1,31 01
2.90 01
2,31 21 KG
3,441 01 1.8
119C 84 L0’JRIO€
B,I€ 02
1,Q 03
4.10 433
9,00 03
3.0€ .33
2.30 03
2.31 03 KG
3,81 03 4 ,8
ZIsC ‘094*71
3.30 03
2.91 03
4,31 03
9,01 83
1,21 03
4,91 03
2,30 83 41G
5,81 03 1.0
1,31 @1
0.3
1,10 01
7,41 38
1.2€ @0
3,71.05
3,70—23
5,70.21
3,40—21
5,61 .01
t,14 ’0l 118
4,11.0% GAL
3.2€ 0%
(10
2.21 01
b,S€ ‘ 4 .’
1,40 03
6,30 20
5.41 01
6,31 00
9,81 00
4,21 90
1,28. 441
5,51 08
1.f’E 01
7,31 00
1.21 00
5,01.01
4,91.21
2,21—01
1.70—85
7,80 —02
1,40.81 1.19
S.4o .91 GAL
1.61 01
1,31 08
1.11 440
5.21—01
8,31—01
2.81 .23
3,9€8 1
l.9€ ’Ol
1 .8t— 1 KG
9 , ,’0—42 LB
3,41 01
‘,7 0k
1.41 00
6.20—03
3,01 80
4,70—03
5,51—01
2.5€—Al
3.10.01 4(4.
1,40.01 19
3,91 01
8,40 @0
5,31 80
6.01—01
5,80 00
4,71—01
1,31.01
5.81.22
3,11 —01 c
3,40.01 10
1,20 01
5.30 .414
8.40.01
3.80—01
3,51 ‘40
4,70—01
1,51—01
b ,4,E.b’2
S,lt—8I 4(G
3 ,42—01 10
1,60 81
7,41 0Q
1.01 90
5.31—21
8,11.01
2,81.01
8,40—20
3,00—02
-
1 ,Bt—0I P. 1..
8,21.02 Lb
1,4191
00
1,90 01
9,71 20
1.41 00
6.20.81
1.21 @0
4.70.01
2,31 .01
1,91—81
3,10—01 KG
3,41.01 Lb
,,E 81
6,91 00
2.0€ 81
9,20 00
1.40 90
b.P.f21
1,01 00
‘4.11—21
1.50—oIl
5,70—02
3 .32—81 8.1.
3.41—0 1 14
4,01 04’
1.21 *1
5,30 044
0.41.23
3,81—01
8,11—0%
2,91—91
3,90.01
8,31—92
3,90—23 4(1,
8,20—02 18
r i
6,10 01.4
2.90 01
8,91 8Q
1.40 02
6.31—01
1,4 1 82
4.11—01
2,10—21
9,41—02
3,10.21 4(0
1.41.11 1.8
1,4101
6.50 00
3.41 01
9.71 00
3,41 @4
6.01—01
5.41 01
2 . 311 21
2.441 01
1.1€ 03
3. 1.0 01 IIG
7 ,at 80 LB
3,41 1.53
8,41 00
1,90 01
6,01 00
1,41 00
8,31—01
1,00 08
4,7€01
3,90—03
1,81—81
3.10.21 KG
1,41—21 18
1,4101
41,91 09
5,91 81
8,51 00
1,31 00
4.11—01
1,01 08
4.71.01
1,81—01
8,21—02
3,12—23 8.1,
3,41 .01 18
7.91 02 4,11 03 1.51 03 2.11 @3 LT
1,10 03 1.311 03 2.91 03 5.51 02 GAL
1,30 ‘41
24
I - I
I —I
—3
41 1.21 4144 8,10—81 3,31—01
48 5.40—01 2.91—01 1,61—21
I ,8t . ..4l
4,41—01
1.19
( “1
-------
H
H
H
-4
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR LAKES
uI
/
1/ COST OF PREVENTION
DESIGNATED HARMFUL QUANTITIES I / RATES OF PENALTY
MATERIAL /1/i_ ‘4
ZXNC $VOOflSULFITE
1.71 03
3,71 )3
4,11 05
9.2! 03
2,01 03
6,21 03
2 .31 03 KG
5.01 03 LB
Z! .C 1V6ATE
0,51 03
23
4.11 03
‘., 41 03
4.21 03
9.31 03
2,31 03 KG
03 LB
Z1 . .C PLR.A ’.G*o4i
3,51 03
7.01 43
“.11 03
9.141 143
S ,9E ;3
1.31 04
2.3€ 03 KG
5.01 03 LB
X’ .C “(? .OL—
S ILFO . AT €
4,71 03
1.01 04
2.21 2’
6,91 04
4,01 03
1,71 04
1.5! 00 KG
3,01 04 LB
2T C P— 5P 10€
7,51 0?
1.1€ 43
4.1€ 05
9.01 05
1.31 03
2.81 03
2.31 03 KG
5.01 03 LB
Z!.C PCIASSIUi
C.l0 %M4tE
3.2€ 23
7 , ’E 05
4.11 03
9.01 03
5.41 03
1,21 04
2.31 03 KG
5,41 43 LB
Z) C PNOp! kAt1
1,0! 03
8, ?t 23
4.1! 03
9,111 03
3,01 01
6,71 03
2,31 43 *6
3,01 03 LB
Z!’ C SZLZCOFi.UoOw€
2,71 23
5.9€ 03
4,11 03
9.?E 03
4.5€ 03
1.01 04
2,31 03 KG
5,01 03 LB
ZT ’ C SULFATE
2,o€ 23
5.31 03
4.11 03
9.01 03
4,11 03
9,01 03
2,31 03 4
5,01 03 LA
£!4CD ’ 1uo ACITATI
1,31 04
3. ’E 24
2,21 04
4.91 04
2,31 44
5.01 04
1.5€ 44 KG
3,2! 04 LB
ZT 3 C .1JK .jT6AT
2,01 04
5.2€ oo
2.21 04
4.01 04
4,0! 0
4.91 04
1.51 04 KG
3,21 04 LB
Z1 CC .1U OSV
CNLc 01 J 1
4,21 04
9. € o4
2,21 04
4.9€ 04
7,21 04
1,01 05
1,51 04 KG
3,21 06 L I I
Z1 Co 1us P0T*53Tu-
FL1I QP)L
3.2€ 0?
7.0€ A?
4.1€ 42
9.0€ 12
5.41 02
1,21 03
2,31 02 *G
5,01 02 LB
ZIOCO ’UUM SULFATE
2.01 144
4.3€ 04
2.21 04
4.91 04
3 ,J a
7,31 04
1.5€ 04 KG
3.21 04 1.0
ZIKCo ’dluM T !TOA.
C’4L04 10 €
6.41 43
1.’€ 04
4.1€ 03
9.41 03
1.1€ 04
2•Qf 04
2.31 05 KG
5,01 03 1.8
1,41 01
1.6! 01
1.3€ 00
1.01 00
1,41—01
3 ,11—il KG
1,41 01
0 3E 02
1,61 01
6.0€—cl
1,31 00
4.71—01
1.0€ 00
6.5 .— W
9,51—02
1,4 1—UI LB
3,11.01 KG
1.31 01
5,91 01
0,31 20
1,11 01
6.01.21
1,21 02
4.71—01
1,01 00
4,31—02
6,61—0?
1.41.01 LII
3.1L. l KG
1,31 01
B
1,71 01
5,01—01
1.21 00
4,71—21
1,91—01
3.11—02
5,01.02
1.6€— 1 LB
5,61.22 06
1,31 01
6.01 01
7,8! 00
1.81 01
4,01 00
5,51 —01
1,31 00
5.71—01
8,71—0?
6,1E—01
2,51—01
0,31.02
2.61—01
1,21.01
2,51—22 LB
1,81.41 KG
1.11 01
5,21 4;
1.5€ 01
6.91 00
1.1€ 04
6,11—01
6,11—02
8,21.22 LB
1,61—41 KG
1,41 01
6,31 01
1,81 41
6,31 08
1,31 00
6,01.01
2.81—01
1,01 4?
2.81—2?
1,31—01
0.21—42 LB
3,l —.i 1 K
1.3€ 01
6.1€ 01
1,61 II
8.11 00
1.3€ 02
5,61—01
1,01 00
0,71—01
6.01—02
0.91—02
4,01—22
1,41.01 LB
3,11—il KG
1.41 01
6.61 0k
1.91 41
0.51 00
1,31 04
6,11.01
1,01 40
4.71—01
9,81—12
LB
3.1€—il KG
1,01 01
4,7! 01
1,01 01
0,31 00
9.81.21
4,51—01
1,91—01
5,71—4?
4,51—02
1,81—02
5,21.03
1,41.41 LB
S.6 —22 KG
8.8€ 00
4.0€ 00
1,?! 01
5,3! 614
8,41—01
3.81—01
1,91.01
8,71.02
1,01.02
LB
5,61.02 *6
8,81 OL
4,01 QI
1.21 01
5.31 02
8,41—01
3,81—01
1.91—cl
8.71.02
5.01—03
2,51—73
2,31.02 LB
5,01.02 *6
1,51 01
6.91 111
2,01 41
9,?! 00
1,61 00
6.61—el
1,01 01
,7€ 00
7,51—ij
2,51.02 LB
3.1€. 00
9,21 01’
4,21 00
1,21 01
5,01 00
8,71—01
4,01.01
1,91.01
8,71.02
3,41—41
1.21.02
1.4€ 00 16
5,61.02 KG
1,21 01
5,51 60
1,61 Il
7,31 36
1.11 04
5,21—01
1,01 00
4,71—01
5,51—03
3,71—02
2.51—22 LB
3.11—01 KG
-------
TABLE N-2
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
*c€iie ACID
3,31 05
7 . € 03
4.11;
9 . ’1;
13
03
5,61 @3
1,21 .14
7.21
5. ’1
13
“2
LI I I
GAL
ACITIC 4 NyOl ,IU1
2,91 (‘3
1,31 03
4,11
9 , 1E
03
‘ 43
4.81 03
1.11 04
2.1!
5,51;
03
12
(JR
GAL
AC€T”.f CV DWZ - .
2,? 73
4 41; .1;
4.11
Q ;
43
6 (3
3 .U 03
0.21 23
2,11
S .51
03
22
1.1 ( 4
GAL
LCOTYL 9’4O?’! L
4.3t. 05
1,11 e
2.21
,Q€
‘4(4
.14
1,11 Ila
2,31; @4
1,51
‘i.0E
@4
03
1.1W
GAL
‘C1Y L C. LORiO(
4 ,4 43
9,71; 25
2.01;
4.91
444
04
1,41; 03
1,61; 04
1.51
4.01
84
03
1.1 ( 4
GAL
IC9JL II’ I
3,91 01
6,51; 01
3.71
8,71
411
01
6.51 01
1.41 02
1.91
5.01;
41
00
1.1(4
GA
4CR VLQP 1TRIL €
5 ,7 72
(.11 05
9,01
03
‘13
0.4€ 02
i .o€: @3
2,21
5.5E
03
02
L i i i
GAL.
£‘)!PD’d IT ( 41I.€
3 0 00
1,41; 04
2.71
4.91
414
114
6.21 40
1.3€ It 5
1.51
4,41;
04
43
1.1W
GAL
‘LD4I (PU ’ 4€)
.it—oi
1,31 0
3,71
4,21;
01
01
9,11—41
2.21 440
2,31;
5,01
01
0*
KG
LB
AL 40I (.111*81.1;)
5,71.71
1.5€ 02
3,71
o .2€
21
01
9,71—71
1.11; @0
2.31;
5.01
01
01
KG
LB
ALLYL ILCO 1IL
5. € 71
‘4,51 21
3.71
.21
01
0*
6.51 01
1, 1; I D ?
1.91
5.01
41
00
LTW
GAL
ALI.VL CWLOOTUE
(.00 413
4,11; 43
4.11
9 . E
03
03
3,11 43
6.91; 443
2.1!
5,51;
45
07
i .T.
GAL
AL•I9(4UM OLUORI’)!
7.2€ 72
4,41; 02
‘4.11
4.01
‘42
“2
3,31 42
1,41 4 (2
?,3f
5,00
07
02
KG
LO
*LUMI’4UM SUIJAIE
(.11 ‘44 2.21-04
7•01; 44 4.91 04
2,91 44
‘1,11; 04
1.51
3 ,71
84
04
KG
LB
(.01 01
‘1,7100
1.41 0*
4,31 00
9.61—01
4.51—01
7,51—0 1
5.41—72
? ,2 .4I1 Liii
1,01 0*
4,710 ( 4
1,41 @1
6,21 00
9,71 .411
4.41—Q’t
S,3E.0j
7,31—01
3,31—21
2.41—12
5 .31—02
2 ,41—07
D.2L—01 GAL
2,21.01 Liii
1,41 01
6.21 04
1,61 03
4 , 1; 00
1.3€ 00
5,91—01
1.2€ 04
5.61.01
6.91 —02
5,21 —02
4.21—03 GAL
3,60 01 LIP
044
9,01 02
4,3€ 00
1,21 01
5.51 04
8,61.03
3,91—01
l ,clf—0 l
4,61.02
2.4€—Il ?
1 ,11—02
G* ,
3. ’E.o2 LIP
1,11—01
1,80 0 4
4,51 00
1.31 01
5.91 00
9,31 .03
4,21.01
l ,30 .ol
6,11.27
3,61.07
4 ,Qt.22 L iii
1.31 411
6.01 00
1,01 II
6.OE 00
1,31 7(7
5,71.01
4,71; 01
2,11 01
1,61—02
3.90 Po
1,51.01 GAL
1,41 0* L
1,20 01
,5€
1.61 7(1
7.31 00
1.21; 00
5.21.01
1.3E—ol
3.31—01
2,91—41
1 ,3t —01
5.St 01 6*
2,P1— .4l L ’4
0.21—4*
6 (4
4.711 00
1.50 4(1
8,11 @41
2,21 01
5.31 00
8 ,41—21
3.80—01
7.81—07
3.61.02
4.71—23
1,91—05
GAL
2.31—42 119
2,01 03
5,91; OlD
1,41; 00
6,31.0*
1,41; 07
6.41 01
4,81 02
GAL
4,31 @1 KG
1,6101
‘4
7.41 01
1.11 @1
1,11 00
7.6€—Ill
2,21; 07
9,51; ‘41
7.21 “2
3,21 42
? , ‘1 @2 LB
P. 1 d l KU
2,90 .3* Lii
1.60 @1
1.30 02
7.11 0*
9,71 00
1.iE 02
b . 9 c..03
4,71; 01
2,11 01
3.90 00
1,00 ‘ 44
l,4 II Liii
5,51 0* GAL
1,31 01
5,8022
(.11 01
7.8€ 00
1.21 00
5,51.01
6,11.0*
2.80—01
3.01—20
1.41—02
(.01.21 LTR
1.20 4* (.51 01
00 8,81 00
1,10 01 1.51 01
5,00 04 4,G1 00
1,21; 00
4,01 .21
9.21; 20
‘1,71; 00
6.46—0*
2.90—2*
6 ,8E. .71 GAL
2,11; 70 46
1.2€ .344 LB
1.0€ 20
,7€—’41
1,71—01
7,61.22
1,11—02
5,”1;. 2 KG
4.1€
9 • .‘ I
(43
03
3.9€
8,71;
‘ 43
6 (3
I
2.2€
5.5€
05
147
LT4
H
H
II I
Is.)
H
I.U 00 2,31 01 9 ,31—01
4.5€ 00 5,91; @0 a,2r.o l
I, 3o . l
LIP
GAL
-------
3,30
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
*N$D .Xu £CETATE
01
2.30
2.20 04
0’
1,8E 04
3,9k 0.4
1 . 0 04 Kr 1
3,dE 04 L3
& 4’J 4Xv ’
h .l aT 0
1,90 44
4.20 4
2,?E 44
4,40 04
3.20 04
7,110 04
1,50 04 4(4
3,20 Q 14 LB
O’I ’
91C* O .*TE
1.10 03
2,30 23
4.10 3
9.00 03
1,80 113
3,90 03
2.30 03 KG
5,00 S 1.0
* ‘) l.TUM
1t— O4TL
4 .910 03
1,3 wa
0.20 04 1
4 4 •9F 4’(l
1,00 0
2, . 0 ‘44
1,30 44 46
3,01 04 LB
*MMO 4IUM
41Vt.UD IO€.
1,40 1S
9,71 43
2.2€ 04
41,90 98U
7,”0 14$
1.60 04
1.50 04 Kr.
3,21 4
AP 1 .1U B13JLOITO
1.40 .4Q
3.40 144
2.20 04
4.90 04
2.60 444
5,80 114
1.50 #4 *(
3.20 04 1.6
A#KO4ZUII KRC4.’4IJE
4.80 14?
1.1€ 03
,10 03
9.7€ 03
8,20 (4?
2,80 03
2,30 913 46
5.20 03 4
£M ’IO*.!u ’ CA0! A$AT€
4.20 02
8.70 4?
4.10 I I ?
q.oE 142
4.70 41?
1,50 03
1.30 9 ’ ? 46
5,10 02 1.6
C* 8t€
1.30 33
3 .41 03
2,10 oa
a.90 04
.€ 03
5.70 03
1,50 04 46
5.20 04 LB
A ’4O 1Ll C.4LDW1f)0
2,40 fl
5.40 02
Q .oE 7?
4,50. 442
9.80 02
2.30 02 KG
5.30 02 LB
4M. ’Ot ,IUM C.4901147(
1.1€ 041
2.30 114
2.20 04
,4€ 43
1,40 04
3,90 04
1.50 #4.46
3,20 414 1.8
AMMONIUM ci, ay€,
j•e0 44
5,30 d l
2.20 04
4.90 044
2.70 04
s,8 44
1,50 04 KG
3,20 04 1.8
4 MO 41(iM
F LUf) 404141(
5.30 02
1,20 03
4.10 03
9,410 43
8,90 02
2,00 03
2,30 03 KG
5.430 05 LB
AMMOP,IL.M 9’ U34IO1
0.80 03
1.10 dl
2.20 0
4,90 04
1,50 04
3 ,30 04
$ ,S0 44 KG
3,20 44 1.8
00
l . € 01
. _!._ !
1,50 41
4,80 00
1,10 00
4,00—111
1,30—21
6,10—02
1.40—
6,00—73
4 ,4’0—02 KG
1.80’02 LB
9.: E oo
4, E 00
1,20 01
5.70 02
8,90—01
4,00.20
1,110—0 1
4,60.02
3.60—43
3, . —00 P.6
1,30—02 Lb
01
6,’ 0 20
j94 01
8.70 40
1.40 03
6,20—01
5,30—41
2,50—01
1.40 —01
b,5E—’ 2
1 ,4,0—21 KG
7,30.22 Lb
l.?E 01
(‘0
1.6€ 41
7,40 @
1.20 O ’
3,30—441
1.00—441
4 ,40—02
2.S0’ l
1.1F— ”2
3. 0 2 4(4
I ,3E— 1 L I I
t 0 L4
5.0 Q ’ ’
1,70 21
750 440
1,20 913
5.40—111
1,40—01
4,bL.1 ’2
3 ,4E— ?
1,61—00
3,L’0 ’ . ’2
l.30—o2 LO
1 .’ 0 41
(4.0 .111
1.30 01
6,00 04
9,50 .01
4,30—01
1,0041
4,60—4?
9,7005
a,40— ’3
3 .0022 KG
1.36—02 LB
, 0. 141
6.0 00
2,20 01
9.20 04
1,40 44
4.60—41
5,50—40
2,50—11
3.10—00
1,44—21
l.”E ’ l KG
1,30.02 LII
1,0 01
7, 0 130
2.10 00
9,40 011
1.50 00
6,70—01
5.30 00
2,50 00
3,60—01
1.10—01
1.60 00 KG
7,30—01 L I I
j .••E 01
6,0 910
1,90 41
8,4,0. 00
1,40 40
6,10—01
1,40—01
4,40—02
9,61—00
4,50—02
3,41—02
1,30.02 1.6
00
1. 0 01
7, 0 934
-; :- —;i•
5, ‘0 934
b, 0 00
4,’i€ 00
1,0 911
4, 40 00
1 , E SI
5,0 00
0.10 01
9,40 00
1,50 93(4
6,70—01
5.50 110
2.50 20
5.70—01
2,40—01
1,41
7.30—01 LB
4(4
1,50 01
6,70 011
1,00 00
4,80—41
1,00—01
4,60—02
1.41—02
4,50—03
1.30—02 16
*
1,20 01
5,30 40
4,40 .01
3,80—01
1.01—01
4,61—02
9,60—03
l,aO—(’3
1.31—.’? 1.6
KG
1,910 01
9,10 00
1 , 0 043
4,50—41
5.50—41
1,50.01
2,90—4%
1,30—01
1,40— il
7,30—42 1.0
1,30 Ii
4,50 00
1.1€ 091
4,90 — 51
1.00.01
4,60 .02
1,70—02
7,00 .03
3,00.02 41G
1.30— I l LI
1.50 02 ‘1.10 )2 2,50 42 2,30 02 KG 1,40 2.10 00 1.50 00 4,30 04 1.00 01 1,30 00 KG
.4? 9.430 00 3,60 1’? 5.110 02 LB 7, 10 9,60 04 6.80—71 1,90 00 4 ,61—141 5,70—ol I.b
440
H
H
F .)
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
£ ‘“ .O .1u4
ivpoPInflspp1!T€
4.1€ ifl?
9.1€ 02
4.1€ 02
9.0€ i2
1.0€ i2
1,5e 03
2.3€ 02 KG
5, S€ 02 LB
AM1O 41uM 1O311 €
1 .2€ lS
1.1€ 03
4• 03
9.. € 03
1.2€ ø
2.6€ 03
2.3€ 03 KG
5.0€ 03 LB
£‘NrD.TU. . MOLVKUAT€
K ,’ A?
1.11 03
4.1€ A3
4.0€ 03
8.?E 02
1.8€ 03
0. € 03 KG
5.0€ 01 LB
AM i S 1jM 41TWATF
1.9€
02
4. IF 82
9, € 4 2
b .Af raP
113
0,5F QI KG
5.0€ 02 L i i
A’ MO 1uM O*ALAT€
9.6€ 03
2.1€ 04
2.0€ Pa
‘4.9€ IlU
1.6€ Ba
3. 04
1.31 04 KG
.2I 04 LB
aO . .1JM
t.3€ ras
2 .9€ KS
.i€ 3
.0€ 0$
2.2€ 03
4.9€ 03
2.3€ 03 KG
5.8€ 43 Lii
* ‘P4O* .IUM
P€PSJL *T
5 .1€ 0?
1.3€ 23
gj 83
‘i. E 83
9 ,71 82
2.1€ 83
2.3€ 0$ ic
5.111 03 LB
£M4O !UM
SlLTCOFL J(JQXflE
2.2€ 03
4,8€ 03
4.1€ 0$
9 .JE 013
3.7€ o3
01.2€ 43
2.31 03 KG
5.8€ 03 LB
SuL,aM .TE
8.9€ 21
o os ..4
2,21 04
‘. .9€ 04
1.3€ 04
3.3€ €4
1.5€ 04 KG
3,21 04 LB
AMO%IUM SULOATI
3.5€ 2?
1.7€ 02
‘4.1€ l 2
9,21 02
5 9€ 82
t,3€ 03
2,31 02 KG
5,01 02 LB
A081(JM SULF1 €
1 .1€ 04
2.01 00
2.2€ 014
8.91 014
1.6€ 014
4.11 04
1.51 154 KG
3,?1 04 LB
* 8D9ju BuLPITE
t i€ 04
‘.31 24
2.21 04
4.91 013
1.81 04
3.91 04
1.51 04 KG
3,21 04 1.0
A’4MOKXUM 1*4701*71
1,31 04
2.6€ 24
2.2€ 0a
‘4,91 04
2,11 04
4,11 04
1,51 014 kG
3.21 04 1.8
1,51 01
00
2,01 01
9.1€ 00
1.41 00
6,St—4l
3.5€ 00
2.5€ 00
S.bE—01
1.1€—Ol
1,61 00 kG
1,3t.01 LB
1,51 01
6,91 00
2.01 01
9.11 00
1.41 00
6,51—41
5.51—01
2,51—01
2.d€.&il
9,2€—82
1.bt.P1 Ku
1,3E.02 LB
1,51 01
6,71 640
2 .01 01
9.8€ 40
1.441 00
b ,4I 0j
5 ,5f.. j
2.SEwPl
I ,3€ 81
7.31.02 LB
I,S8 41
r,aloo
2,11 01
,4t 00
I,5E 00
b,7t—0
5,51 00
2.1€ 01
3.91—01
1.0€—Ol
1.6€ gi
7,3L45% LB
0.21 40
4,21 00
1,21 01
S,6 ØQI
0,71—01
‘ .4E— 1
1,01.01
4.61—02
1,6Er02
7, 1E.03
S , i€. .11 kG
1,3t.00 LB
1,01 01
B
1.61 01
0,21. 00
1.31 00
,9€—01
5,51—01
2 .5€— I l
1 ,11—01
.2E—fl2
1.41.01 KG
7 .3L—112 LB
1,51 01
6.41612
1.9€ 01
8.81 001
1.4€ 010
6.31—611
5.5€—el
0,5€.0l
2,5E — ’I
l.1E.0I
1.6€—al KG
7.31 .02 LB
t ,4€ 01
6,21 610
1.8€ 01
8.3€ 045
1.31 02
5,9E.6l1
5.51—01
2,5E—01
o.9E.02
3, 11—02
1,bE.01 KG
7.31.02 LB
1,21 01
5.31 ho
1,51 21
7 . E 00
1,11 00
5.01—01
1.01—01
4,61—02
1,61 —452
1,2€—43
3,0€.42 KG
1.31—02 LU
1.51 81
6,81 640
2.01 01
9,01 00
i.4E 02
6.5€—Ol
5.5€ 00
2,51 00
4,31—01
1.9€—hI
1.6€ 25 KG
7,31.01 LII
1.11 611
5,0108
1,51 01
8,71 00
1.01 08
a .81 ,Pt
1.0€—al
0.61—02
1.4€ .02
6,31—613
3,01.02 KG
1,31 .02 10
1,11 01
5,0100
1.51 0*
6,71 00
1.01 04
4,61.01
1.0€—Pt
I,b€—02
1.41—02
6,51—03
3.01.22 KG
1,31.02 LII
0.81 04 1,21 0*
‘!!_! _. 00
0,41—01
3,lE.0
1.0€—Pt
4,61.02
1,21.612
5,51—03
3,01.02 kG
1.31.82 1.8
AM1O i1IjM MY(,0I X!.JE K.K€ 4? 4.11 83 1,11 613 2.11 03 LT’4
1.51 03 9.01 03 2 .51 83 5 .5 612 GAL
H
H
1..)
1,51 01 2,011 01
6.7€ th’ A,9E 80
5. 5 1— 01
2,5 1— 81
2,31—61*
I .11.81
S .41—01
6,11—01
LIR
GAL
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
U ’.tL ’
‘ L3 .LIat0
1..€ .44
2,60 24
2.2€ %14
4,40 04
2,1W 154
4,30 04
,‘iP ‘34 KG
3,20 @4 LR
A ’5I. ACUATE
2.9€ 23
6 ,3F 123
44.10 03
9,20 23
4.80 03
1.1€ 04
2.10 03 17 w
5.50 02 GAl.
A ILJ’d€
4,80. 02
1.1€ 03
4,LE 0.5
4• 0
8 .21 02
1,80 03
2,10 03 LIR
S. ’,0 @2 1 .M
AP.T 4Y
PT Ir ’ .10 44 1.)€
1.?E 22
2.1€ 23
4.10 01
9.20 25
1 .K€ 03
3,60 123
2.3€ 23 KG
5.20 @3 LB
PFAFLIJO 4 4I)E
3?
K .lf 2?
‘.,l€ 02
9.00 . 2
5,10 02
1,10 03
2.3€ @2 KG
5,00 @2 LB
£ ‘.7j ’, PoTA535 ’4
TA4T44A’€
%.u€ 03
3,10 .33
4,10 03
‘9,50 03
2,40 @3
5,20 03
2 ,30 03 KG
5 , .JE 03 LB
•‘ ‘.Tt ’’
T Ir @L IOE
1.20 23
2,40 43
44.10 5
9.2F R3
2.2€ 05
4.4€ 03
2.30 23 KG
S , ,SE Q13 LO
‘t ’O’Y
T441 1 ”LO4TD(
7.50 27
1 ,E 43
4,10 @3
9.00 @3
1,31 @3
2.81 @3
2,30 @3 KG
5.2€ 03 LB
A ’Tj . ) ’.8
TK1 LIjOR!fl €
‘3.7€ 2.9
1.30 03
‘4.10 05
4,OE @3
3.70 @2
2,10 @3
2.30 743
5.00 743 LB
£ ‘ 117449P.V
70! T)D!P€
1,60 23
5.4€ .33
4.1€ @3
‘9,,iE 25
2 ,80 03
8.1€ OS
2.30 @3 KG
5.20 03 LB
aw l TI ’lP.Y 1010820€
Q 1 03
‘ ,7L 23
‘.20 04
.9€
7,40 03
1.60 @4
1.5€ 04 KG
3,20 @4 Lb
£44504 .IC aciD
4,00 02
1.1€ 13
5.70 @1
‘4.20 8*
8.20 132
1,740 @3
%,90 0% 110
5,00 00 GAL.
LOSE8IC DIS JLFI )€
4.80 22
1.10 23
5.70 01
4.,2€ €1
8.20 02
1.8€ 03
2.30 @1 kG
5,00 0* Lb
a@SE .!C 000TAOx!D(
7,00 22
1. 23
3.10 @1
8.20 01 -
1,20 03
2.6€ 03
2,30 01 K
5,00 I I LB
1.10 151
5,20 @1
1,5 . Il l
02
1,00. 00
4,71—01
1,01—01
4,60—02
l,20—4’2
5,50—03
3 ,20—0? KG
1,30—02 LB
1,OE @1
4,7% @0
1.4€ 01
6.20 00
9,70.01
‘4,40—01
2,40.21
1.10—21
3,80—02
1,10—22
7.00—22 LTR
2.7€— ’1 GAL
1.20 01
5,30 @0
1,60 01
1.1€ 00
1.10 @0
5.00—71
7,30—01
3. 50—2%
3,10—0 1
1.4€—Vt
2,00—21 LIK
@,01—31 GAL
1.50 01
6,90 04
2.00 01
9,10 00
1.40 22
b,sf.@l
9,20.0%
4,21—21
1,30.7%
5,41—22
7.70—21 KG
1.21—4% Lb
1.5% @1
4,70 742
2,00 741
8.90 00
1,40 @0
6,30.21
9,00 @0
4.20 @2
4,20.0%
1.90—01
2.71 22 Kr.
1,2% 22
1,70 131
6,60 00
1.90 @1
0.741 02
1.40 @2
6.30—0*
9.20—01
4,20—01
9,00—02
4.10—2.2
2,70—01 KG
1,20—2% Lb
1,60 01
7,10 00
2,10 @1
9.40 02
1,50 00
6.70—01
9,21—21
4.21—21
1.lE— ’ 1
4 0F ’2
2.70.41 80
1,21.21 Lb
1,50 @1
b,00 00
2,00 @1
4.00 20
1,41 @0
6.S€. @l
9.21—01
4,20—71
1, 7€—01
7,70—02
0,71—41 80
1,21.01 Lb
1,50 @1
5,90 @15
2.20 @1
9.2€ @0
1.4€ @2
b.6E—01
9.20—01
4.2€—OS
2,20.01
1,21—Al
0,70.21 KG
5,20—21 LB
1.440 01
6,51 00
1,90 Ii
74.81 00
1.4€ 20
6,10—01
9.2€—OS
4,21—G 1
7,70—72
3. ’ 30— ’2
2,71—21 KG
1,21—2 1 L I I
1,30 01
5,10 @0
1.7€ @1
7,51 140
1,41 01
5,40—0*
1,70.21
7,40.02
2,91—72
1,31—02
5,01—...4 K(.
2.21—00 18
1,51 01
6,90 00
2,01 01
9.50 00
1,40 @2
6.30.0%
1.10 02
4,40 @ 5
2.60—01
l ,2(—0
3,30 01 118
5,21 22 GAL
1.3€ 81
5,70 00
1,70 81
1,61 00
1.2€ @2
S,a€.0l
7.40 @1
3.4% 01
2,10—01
9,70.2?
2.30 21 KG
1,01 01 113
1,30 01
00
2,01 01
9.10 00
1,00 00
6.50—01
1.10 02
4,90 I I
1,80—01
8,10—02
3.31 01 K
1.30 01 LB
RATES OF PENALTY
5.01
1 ,10
43
12 ’4
2.2€
I ’ .9 F
@4
4144
0.5€
1,40.
/
03
A
I ,50
3.2€
04
@4
KG
LB
5,30
5.8€
@1
1315
5,70
7,70
H
H
0..)
0%
2’0
1,20 @0
‘ 3.51—01
* .70—01
4.50.0?
2,8 0. 02
1,30—02
3,0 0. 20
l ,3E— 7
KG
LB
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
HARMFUL QUANTITIES ________________________________________________
IGNATED
COST OF PREVENTION
/ MTERIALA,Ai _ /
*h5€ I6 901.
0 O .W€
1.4€ 03
5 ,ic
3,7! *31
#1.02 ‘I
2,4! @3
5. ?! 03
0.32 @ KG
5.02 l 18
a S 4 TRI—
€nLcq lflE
8.3€ 22
1 .8 !
3.72 911
#1.?! 01
1.4! 03
3.1€ 03
0,3! 0* KG
5.02 01 LO
&5€ C 1R*—
FLULOIC !
6.12 22
1 ,42 43
3.1 ! .‘l
8.02 9 11
1,91! 913
2.3! 913
2,32 01 oG
5,02 9 11 1.6
aOS€ .IC 7911.
1!Y’ 1’) !
2,11! 43
4.52 .13
3.72 911
8,25 (41
3.42 03
7,5 ! 03
2.32 911 KG
5,91! l 1.9
£€‘ .1L ,kZr)IXD(
4.4€ 91?
o?
; .lf “I
0.22 01
1.4€ 91?
1,62 *33
2.32 111 KG
5,02 0* 1.6
A %E ’.1C TQ15Jt. IO6
‘5,12 .1?
1,91! 913
3,72 61
8.2! “1
8,9c €1?
91,02 01
2,32 81
5,02 0* L.l*
4 7€N €
1.42 03
3.91€ 43
4.11 OS
03
0 ,3! 03
5 .i€ 933
2.1! 03 1.1.
5,52 02 GAL
EoznIc ACID
7.42 43
1.1€ 04
0,22 04
.9E 914
1.32 04
91.9! 04
1,5! 04 LT’
( 1.0€ 113 GAL
Zo ’ . 1 7091.2
3,02 03
7 .62 *33
4.12 03
9 .9*2 (13
5,65 03
1.1€ 04
2.3€ 01 KG
5, 9 (3 LB
,EI .ZCVL C’4LO49 !
7,9 ! 03
1,12 04
0.02 64
4.9! 04
1,32 04
2,92 04
1,52 914 LT9
4,02 03 GAL
0€#1ZYL CI’LQR1Q2
i,o€ o3
1,52 04
2.02 04
‘(.92 04
1.22 60
2,62 04
1.52 04 T0
0,02 03 GAl.
UERYLLILIM C ’ILO’1I )E
5.42 03
1,32 914
91,0! 64
04
9,92 03
2,?! 44
1,52 04 KG
3,?! 04 LR
(1200LLIU .4 FLufl4!ü !
1.62 02
3.6€ 912
4.12 02
02
2 ,OE 02
6,12 02
2,32 02 KG
5,32 @2 1.8
8E.,YLLIUM I10000X1DE
2.52 03
5,5! 03
4,12 05
9.02 03
4,?! 03
9,32 43
2,32 03 KG
5.112 03 L I I
B !#1YLLJVM 0914*9!
J4
4.0€ 44
0,02 0
.9E 04
3.1€ 914
4,82 64
1,52 04 ‘ 14
3.22 04 LB
a
1,3! 0,
5.95 *3 ’
1,72 31
7.9! 00
1,22 03
5.bF—0l
1,12 02
4.92 01
9.915—61
4,16— 2
3,35 01 KG
1.52 0* 18
1.4€ 0.
#1.3! 41
1,82 01
0.35 00
1.32 03
6,02—01
1.12 02
4,95 01
1,52—01
6,92—02
3,32 )1 KG
1.52 01 LB
1,42 01
6,22 01
1.0€ 21
8,?! 8 16
1,3 ! 09 ?
5,92.41
1,1! @2
‘ (.92 (61
2.2t—01
9.35—62
3,3! . l KG
1,5! 21 LB
1,42 Q l1
06
1,91! 01
0,3! @16
1.32 00
5,9€—01
1,12 02
4.92 01
6.22—02
2.85.00
3,3k .11 oc
1,52 01 1.13
1.42 II
6.3€ 44
1,92 01
0,62 00
1.42 1191
6.1€—Ol
1,12 02
‘ 1,92 01
0,92.6*
1,52.01
3,32 0* KG
1.52 .11 LII
8,82 9*91
4.091. @a
1,22 01
S .3C 091
8.45—41
3.091—0*
7.42 0*
3,42 9 (1
0.0€ . .ll1
8.9f— 0
2.32 41 KG
1.09 2(1 1 -91
1,32 71
6,42 9191
1,91! I I I
8,91! 00
1.3€ @91
5,12.911
2,42—111
1,12—01
4.9(2.00
1.112—00
7,26.02 hR
2,7€—.1 GAL
9,5 ! @6
4,32 91*3
1.1€ 91
4,82 *0
1,32 @1
5.6! 00
9,12.461
4.12—01
1,112—01
‘1,62.02
1,92—00
4,72—03
3.02.12 LTR
1,lt .4l GAL
1.4€ 21
‘ .4! 02
1,02 04
A.b€—1’1
7.3€—Ot
3.3€—Ol
4,42—0?
2.12—02
2,2 5— il KG
9,86 .32 10
‘9,3! o
4,02 &3
1,22 01
5,75 02
6.95—01
4,02—931
1,32—01
6.12—02
1,96—162
91 .7( 03
0,02—00 ITO
1.52—91* GAl.
3,82 (*1
4.02 10
1,0! 61
5,32 9311
8,42—01
3.82.01
9,02.91?
4.12—02
1,51.914
6 ,62—03
0,62—02 LYR
1.02—01 GAL
1,02 (1
5,52 0
1,65 0*
91,4! 9146
1.?! @0
5,32—01
1,72—91*
7,b!—00
2.25—4’?
9,62—05
5.02—2(2 KG
2,0t . , *2 LU
1.52 1
6,82 0
0.11! 0*
9,02 03
1.4€ 09!
6,52—31
9,?! 9191
4,? ! kb
1,72—91*
3,51—911
2,7! 091 KG
1.93! *10 LB
6.62 0
4,02 4
1,21 01
5.32 04
8,42—61
3,85—0*
8,12—01
2.112.911
‘1,12—60
1.95—912
1, 0 1—il KG
8.2€—i? LB
1,52 ‘1
4,62 (91
1.9€ 01
6,8! 916
1.4€ 910
6,32.01
1,12—0*
1,62—02
6,92—03
3 ,12 —03
5 ,o !.4 ? KG
2,22—0? 1.0
RATES OF PENALTY
/
H
H
5 .’ ,
01
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALT” FOR RIVERS
j:i €
1,20 03
2,10 03
4.12 00
9.00 00
2.16 03
4.60 o3
1.90 02 KG
5,06 02 1.0
A ’JTVL AC€TATF
2.51 03
3• 03
4,*€ VU
P’S
4.30 P’S
9.51 03
2, 10 03 1.14
5,50 00 GAL
BUTYL 14140
0,01 00
1,91 .i3
4.16 03
‘I,V0 03
1.50 03
3.30 03
2.1€ 03 1,70
.50 oo GAL
b iTY01C Ado
6.0€ 03
j . ’o€ 04
00
4.20 02
1,51 04
3.30 04
0.10 0
5,50 01 GAL
CADMIuM *C€lATt
2,00 0?
112
9.10 81
6.01 102
0,70 02
I, ”0 03
2.30 01 KG
5,06 01 1.0
Ca ’ 4TUM B MI’IE
3.90 12
7.30 02
‘,70 $1
‘ d l
5,60 02
1,21 03
2.30 81 KG
5,00 UI Lb
CAD9UM CNLO ,.IOE
2.2€ 22
2
5.10 01
4,20 41
3.7E 02
0,00 82
2.36 81 KG
5,30 61 1.6
CADMIUM P . 1 7 .170
.s,o€ oO
oO
3.76 01
6,20 0%
5,10 14?
1.11 03
2.30 01 KG
5,0 01 I_b
i M3uJM Si ,i,_fA1
. 2
5.0€ 00
9.70 01
.2€ 02
4.20 02
9,20 02
2.30 01 KG
5,01 0* 1,0
CALCIUP’ £QSE.,AT€
7. 1€ 02
1,51 25
3.70 21
4.02 01
1.2€ 43
2,62 03
2.30 01 KG
5,02 01 LB
CALCIUM
1.5€ OS
9.31 03
3.70 01
4.20 01
2,52 03
5.bt 03
2.32 01 KG
3,110 0* 46
C1LC2JM CAWBIDO
0.10 03
1 ,3E .44
04
0,96 ill
1.01 04
2.30 40
1,ff 04 KG
3,02 04 LO
CALCIUM C400MAT(
j,0 01
2,32 04
2.2€ S I
4,92 04
1.7€ 04
3,06 04
1,56 01 KG
3,22 44 LB
CALCIUM €914190
‘.71 00
2.1€ 01
3.76 02
6.U II
1,66 01
3.6€ 01
0.30 01 u G
5,50 01 L I
1 ,1 01
148
1.7€ 01
1,90 011
1.20 $41
5,61.01
0•OE 00
‘4,41 60
6,40—00
3,60.C0
2,90 01 KG
4,31 .? ‘ ‘ LU
1.10 01
3.7 ‘10
4,50 01
“.60 011
l. ’€ 00
4 ,10.01
4.SE—oI
1.70—01
4.0€—
2,7€— ’2
1.30—JI LTQ
4,61—01 GAL
1.30 0
0.1€ 410
l ,0 01
(4.10 (11’
1,30 110
5.bO—01
0,30—21
1 ,90—01
2,110—0*
9 ,21—2
1,31—41 1.74
4,61—0* GAL
1,00 01
4,50 100
1.3€ 0*
6,00 20
9,50—21
0,31—01
7,30 02
3,30 60
0,70.02
9.21—03
2,20 00 LIR
8,22 2.4 GAL
1,50 01
6,90. 11(4
2,00 0*
9.10 00
1.40 00
6,50—01
7,40 01
3,41 01
1,140 ‘10
4,50—0*
2,51 21 KG
1.00 d l Lb
1 .’E 01
00
2.00 101
,00 00
1.50 00
6.40.0*
7.46 UI
3.41 01
1, 10—01
3.20—l ’l
0.10 .41 KG
1.10 01 LB
1.(0 01
7 . .E 40
2,10 01
9.60 20
i.’E 110
4,80—01
7,40. 01
3,40 01
1.11 110
4,80—UI
2.60 .1* kG
1,00 .51 (.0
1.10 21
30
?,1€ dl
4,50 00
1,91 08
6,80—0*
7,40 01
3,40 I I
7,70—21
3.50—0*
1.31 i KG
1. E 01 LB
1,tE Ut
00
1.16 01
9,50 OIl
1.50 20
0,41—01
1.46 91
3,41 01
9,010 1
4,30—01
2,30. d l KG
1.11€ 6* LB
1.0. 2*
5, 0 110
1,60 01
7,30 00
1.20 Uo
5.20.0*
7.01 0*
3.41 21
1,5E— ’l
6.00—02
0,31 101 kG
1.0€ UI LA
I ,E UI
5. 1 40
1,72 01
7,51 00
1.22 010
5.42.0*
1,40 01
3,40 01
1.01.21
l.bE—1 ’2
?,31 UI oG
1.00 2* 1.8
9,1 00
4, .0 02
1,30 101
9,70 4 1
9,010i
4 , 1 6—UI
l G0.Ul
4,00.22
0,10—02
9,40—03
9,01.02 KG
1,31.00 LB
01
5, .2 (10
1.50 01
1,82 00
1.1€ 00
4.80—0*
1,70—GI
7,60—02
1,50—00
0,02—03
5,140.22 kG
2.20—02 1.8
1,12 Ii
5, (0 00
1,72 II
7,90 00
1.2€ 00
5,60—01
0,10 41
2,86 0*
1,61 0*
1,11 II
1.8€ 0* KG
8,40 00 1.0
IL QUANTITI
bE0’LLIUM SULFATO
0,00
4 • 4€
1 .52
3.20
I
04 KG
*14 LB
1.1
9,1
11
08
1,51
4.8€
I- I
I;1
0 .
d l i
00
1,10 00
4,80—01
I • 71.21
7,6 0— 22
1.21—20
5,50.03
I • ‘ IT — .42
2,00 .112
KG
L I I
-------
H
H
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
HARMFUL QUANTITIES
/ DESIGNAffD t
/ MATERIAL / “
I I RATES OF PENALTY - /
7 / COST OF PREVENTION
/ i /4t / /
/ ¶/9i 7 N , pq/
/
CALCIiJ ” u€CYLR0 ’ .
?EP.E 5JtFO’ *TL
8.00 0?
1.Qt 3
9.1.0 03
9.V€ 03
1,50 03
2.30 Q 3
2,30 013 kG
5..1E OS LII
CALCIUM MA(J4114 I)0
7.110 03
1,50 24
2.20 134
u ,90 124
1.?€ 04
2,41 04
I 2F 04 kG
3.20.04
C*LCI JM MVPO
C IILOOITO
1.10 01
0,40 81
3.70 01
0.00 01
1.90 131
0.10 @1
2,30 01 KG
II.0E 01 LB
CALCIdM ox:r,o
5,30 03
1.00 114
oao 04
4,90 OIl
9.110 03
0,410 04
1.50 04 KG
3.20 814 LB
C*PT*II (PUWO )
1.40 21
3.10 @1
3.70 01
8.20 41
2,41 01
5.00 01
2,30 131 kG
5,110 02 LB
C*PT*o (.011*61 .0)
1.40 01
3.1€ 01
5.1€ 01
•i.2E 01
11,4001
5.21 811
0,30 Ot KG
5. 10€ 01 LB
CA05 11 . )!SLJLI 10€
5.91 2 5
1.31 04
4.1E 03
‘1.11€ 435
1.00 04
11.20 04
2,10 03 LOW
2 .SE 012 GAL
cATtC .4CL
6,20 22
03
4,10 03
.41E .13
1.00 03
2,30 03
2.1€ 03 LTR
5.50 02 GAL
CHLURT½€
4,40 00
9 .1 1113
5.1€ 01
.0E 01
7,41 00
1.60. @1
2,3! 01 KG
5,00 01 LI
CMLOI .fl0AP.E (PU4E )
0.7€—Al
2,10 /2
3.11 01
.2E .11
2.40 @0
3.60 013
1,90 It LT43
5.20 1381 GAL
CHL0 I40* .t
( .tTT * oL€)
9.10—21
2.10 0
5.70 01
0.2€ 1
1,60 00
3 . 1 0I
2.30 01 KG
5.0! 811 LB
C 4l .0wC 806 1 0 ’ .0
0 .6€ 112
1.90 03
4.10 2
‘0.20 02
1,50 03
3,30 03
2.10 02 LIR
5,50 011’ GAL
CHI 0 4 0FORN
5 .5E 03
1.00 0
‘4,10 132
‘0. . 0 02
,3€ @3
2.20 04
2.1€ 02 L III
5,50 01 GAl.
CML000S)Lr0 1c ACili
3.00 23
7.00 03
4,10 105
9.410 03
5,51 03
1.2€ @4
2.10 03 LT I
5.50 02 GAl.
CHRINIC ACOTAIO
2,70 02
6,00 102
.1! 02
c,ø( 02
4,bE 02
1,00. 03
0,30 02 KG
5.00 02 LB
I,’E 01
1343
1,40 01
1.30 044
1.00 1301
5.110—01
5,51—011
2.30—71
1, 70—I l
1,40—62
1,60—101 06
7,31—22 LB
9,S0 1113
4313
1,00 811
5.70 1301
14 ,90 —01
4,410—02
2.410—01
4,60—02
2.11 .4 12
9,70— 3
3.0E—. 2 K(
I,30..12 Lb
1.1€ 01
4.70 00
2,00 @2
‘,,b( 02
1.00 00
4.10—01
6.10 01
2,00 01
1,30 01
5.90 4’0
1,00 2* KG
0,40 22 18
9.sE @2
4 . € 1141
1,30 01
5,90 1114
9,30—01
4,00—131
1.01.131
‘4.60—22
2.11—02
1,20—02
3.00.22 KG
1.3€— 2 LB
2,10 01
5.10 00
1,50 01
6.81 00
2.10 00
4,@0—0l
4,140 111
2,80 01
1,30 4401
3,30 00
2,20 01 KG
4.sO l
1.50 01
6,90 00
2.01€ @1
9,10 00
1,40 00
6,50.01
6,10 01
2,81 @2
1,IE 141
41.9€ 00
1,80 01 Kr,
0.40 1013 1.6
1.10 01
5,10 00
1,50 01
6 ,8 8143
1.10 00
4,00—01
4,90—21
2,20—01
2.50—02
1,00—02
1,40.01 LIR
5.40— .1 1 GAL
1,30 01
5,90 1313
0.10 01
1.90 1301
1,20 00
5.10—011
5.51.21
0. 50— lI
2.50—21
1.1E— ’1
1,40—21 LTR
6.11— 41 GAL
1,10 1
4,90 00
1,40 02
6.60 00’
1,20 20
4,10.01
6,10 02
2.80 01
3,50 01
2,60 01
1.86 dl 06
4.40 110 LB
1.20 01
4,60 1111
1,30 21
0.11 @0
9.60.111
‘ 1,40—21
1.40 02
6,41 01
2.80 02
1,30 2
4.3E 02 LIP
1,60 .12 GAl.
0.10 (41
5,20 4114
1,50 02
6.40 III
1.1€ 1011
5. iE .2t
2.10 22
9.51 01
4.20 1’2
1,91 02
‘ .IE .2* k
2,90 .1* L II
1,30 01
5. E 4101
1,10 01
1,90 00
1.20 00
5.60—131
6,70 1111
3.10 90
1,21—01
5,30.02
2,111 22 LIII
7,50 00 GAL
1,20 01
‘0.70 00
1,70 01
1.50 011
1.20 00
5.40—01
6,10 02
3.10 20
1,90—02
8,51—03
0,00 00 LIP
1,50 4)0 GAL
1,00 01
4.50 00
0,30 01
6,00 00
9.50—01
4,50.21
5.50—111
2,51—01
4,60—02
2,10—02
1,60—112 LIP
6.10.01 GAL
1,50 01
1.00 00
2,00 01
9.40 013
1.50 00
6.70—01
9,20 00
4,2E 00
S.bE—01
2,50—01
2,70 SO KG
1,20 @0 LB
-------
33
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
C 4 ” P’IC SULFATO
0,70 . 3
4 1 ‘2
0.10 00
9.1. #2
6,10 32
j 5 03
2.30 112 oG
5.OF 32 LB
C ’Mfl 0.i3 C* 6070
1.20 01
02
4.1! 32
9. E V t ’
2 ,tE 32
44,60 32
2.30 32 KG
5,ME 112 LB
co oou5 C41L04 1D0
1,30 oO
I I?
o,i0 (‘2
q . .’l ! L 2
,2F 32
4,90 32
2.30 02 KG
5.30 112 LB
CHW7 .IU5 000LAT!
1.00 0?
3,440 1?
a ,1€ 32
9.30 413
3 .00 2
3 , ’0 02
2.30 02 KG
.30 02 LB
CO”YL C4LO ID !
2.?! 23
44 .90 03
44.1 ! “3
9. 0 OS
3 .St 33
8,50 04
2,30 4 13 KG
5.0! 03 LB
C 00L1’OUS AC€T*1
1,80 33
u ,iI 03
a , ( i3
9.30 33
3,10 113
6,90 35
2,50 1”3 KG
5,00 03 LB
CC d0LYOLt5 t ’QO ’lIr)E
1.60 33
3,60 1143
4,10 (‘3
9.30 03
2 , 0 03
6.10 113
2,30 33 icG
5.00 33 LB
C( ’BALTOUS CWLOOIQO
1,00 33
3,9 3
0,10 143
‘4•3 ‘ IS
3,00 03
6,50 33
2.30 oS
1,00 03 L 3
C000LTO ’J3 C I 10410
1.00 03
3,?! 34
o ,1E 33
9.00 33
0,51. 83
5,40 95
2,30 03 G
5,00 33 LB
CnOALYDJ3 !LUO44IOE
4.80 3?
1,10 03
6.10 33
9.00 415
8,20 02
1,60 03
0,50 03 KG
5,00 33 L
L080L10U3 PO. MA11.
143
3.30 03
4.10 113
9.00 03
2,30 03
5.10 83
2,30 443 KG
5.430 03 LB.
Cfl8ALT o$ 101100
3,30 33
5.40 33
0.10 05
9,00 05
3,90 03
8,10 03
2,30 03 KG
5.14! 83 LB
CflO’LT0U8 P.1TRATO
2.20 05
4,10 03
4,10 05
9.30 03
3,60 03
6,00 03
3,30 33 KG
5,00 93 LB
CC B*LTOUS
P C.ILOW*T!
2.70 33
6,30 6)
4.10 03
9.0! 83
1,60 03
4,00 •
2,30 93 KG
5,430 03 ,5
1,50 TI
13
?.21. 01
9,20 93
1,40 31
6,60.01
44.21. 4 ( 0
4,20 GO
3,00—31
1,70— li
0,70 (‘1 ’ “34
1,21 33 LB
1,50 Ii
6.10 )0
2,70 01
9,30 30
1.40 70
6,40.111
9,20 211
4,20 (‘3
8,440—01
5,30—01
2,70 23 Kb
t,?t .13 LB
1,bO 31
7,2000
2.10 01
9,60 30
1,50 03
6.90.01
9,20 03
4,20 1144
1.50 00
5.20.01
2,70 03 KG
1,20 30 LB
1,60 01
1 ,10 33
2,10 31
‘4,40 O4T
1.SE 00
6,70—01
9.20 041
‘4,20 0.1
8.hO ..01
3,90—71
2,70 4141 KG
5,20 d LB
1,70 01
1,90 “4’
2,30 01
1,10 01
1,10 02
1,50—01
9,20—01
4,20.01
b,7032
3,10—12
2,70—01 64.
1,20—21 144
1.40 31
34 )
1,80 31
0,20 00
1,30 00
5,90—31
9,20—31
4,20—31
6,80—03
3,10—02
2,71—31 G
1,20.01 16
1.00 01
1,50 30
1.90 01
8,60 03
1. 33
6,IE—01
9,20—01
4,20—01
1,70—02
3,50—112
2.10.31 634
1,20.01 LB
t,oE 31
6,40 03
1,90 05
8,50 00
1,30 ‘3
6.10—21
9,20—21
4,20—01
7,?1—1’2
3.3E—02
2.10—31 634
1.20.01 LB
1.40 01
6,30 00
1,90 4
8,40 00
1,30 00
6,30.01
9,20—31
4,20.01
0,10—32
3,90—30
2,70.31 634
1,20—31 Lb
1.40 01
6,50 83
1,90 31
3,70 341
1.40 00
3,20—01
9,20—21
4,10.04
2,60—01
1 ,7031
2,10—11 Kb
1,20 —TI LO
5,40 31
6,20 00
3.30 31
8,30 03
5,30 33
5,90—01
9,21.01
4,20—01
9.20—13
4,20—10
2,70—31 634
1,20—31 LB
1,40 01
6,30 00
1.60 01
6,00 00
1.30 00
6,30.05
9,20—31
4,20—01
5,40—02
2,50.82
2,10.31 634
5.20—01 Lb
1,40 05
6,30 #8
I ., ! 01
0.40 00
1,30 30
6,30—01
9,20—01
4,20—01
5,80—00
2,70—02
2,70.01 64 .
1,20.31 LB
1,30 91
6,10 80
1,60 01
8,10 SO
1,30 00
5,60—01
9,20—0*
4,20 —41
4,60—02
2,10—02
2,70.01 634
1.20.01 LB
HARMFUL QUANTITIES
C’Qfl”IC ACID
1,40
S • 30
13
4,10
4.30
3,
O s
2,50
5,40
03
33
2,10
5.50
03
I I ?
IT ’
GAL
1,9!
8,71.
H
H
0’.)
01
00
1.40 00
6,20.0*
9.80—00
4,40—32
2.10—01
1.30 30
IT O
GA l.
-------
H
H
Iii
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
HARMFUL QUANTITIES RATES OF PENALTY
COST OF PREVENTION s...
DES IGNA
/
C084LYCUS SUCCIWATE
6,81 22
1,02 05
4.12 03
9.22 03
1,51 03
3.52 03
2,32 03 06
5.21 03 LB
Ct’BALIOUS SlL A A1t
1.81 03
3.9€ 23
4,12 23
9. € 03
3, ’E 03
A ,52 03
2,32 03 46
5 , € @3 LB
coOaLtOus 5UL A12
2,I1 .43
4,k 23
0.11 03
9 . 2 23
3,61 03
7,91 d3
2,32 03 kG
5,26 @3 LB
COu042oOS COuPE)
7.9€ oO
1.7€ 0$
3.7€ ‘51
8,22 2$
1,52 0*
2,91 01
2.3€ 01 06
5,21 0% LB
CfltJP’*P”OS
c . 4 TTa’ LE,
7,42 00
1,7E d l
3 ,71 21
0,?€ 01
1.3€ 01
2.92 01
2,32 01 k
4.02 01 %2
CPLS L
9,72 22
V
9,21 21
7,42 02
I,6 1 03
2.12 02 LIP
5.52 01 6*1.
CUPPIC AC17*t1
1.11 85
2 ,56 03
4,12 03
9.01 03
1,91 03
4,31 03
1,32 03 06
5,22 03 LB
C1 P 01C
*C€TO*P S INITE
7,52 01
1, III
3.72 01
8,22 0$
1,32 0?
2,62 0?
2,32 01 06
5,01 01 L ’ S
CuPOIC £C€T L.
£CETO .AT 1
7,92 01
1,12 02
2.12 02
9,21 02
1.31 ol
2,92 0?
2,31 02 06
54€ @2 1.6
CuP IC BR o1uL
6.62 01
1.56 0?
4,12 02
9.02 62
1,11 0?
2.52 02
2.32 02 I G
5.02 02 LB
C( ’FPIC CHLURIO€
4, 2 4%
1,12 02
4 ,12 0?
9.22 02
0,21 01
1,02 @2
2,51 02 06
5.02 0? LB
CUP4IC FUIMATE
4,42 @1
9,11 01
4.12 01
9.02 21
7,41 21
1,62 0?
2.32 02 ‘(6
1,22 212 L’S
C020€0 GLUCEV.AT€
1.3€ 22
2,92 02
4.1€ 22
0.02 22
2.22 02
4,92 02
2,32 02 ‘16
5,01 02 1.0
CUPOIC GLYCI AT€
6,6€ $1
1,91 0?
0,11 02
0.22 42
1,51 02
3,32 02
2,32 02 06
5.01 0? LB
CUPPIC LACTATE
8,02 t
1.92 22
0.12 02
1.0€ 0?
1,52 0 2
3,32 02
2,32 02 oG
5,02 01 LB
l,3 Ill
S9 ’ 58
1,72 01
1.91 00
1,22 00
5.62—01
9,22—21
a.2€01
1.21—81
5,32—02
2.71—01 46
1,22—21 LB
1,3 21
6.2! 20
1,62 01
0 ,62 20
1,32 @0
,7E.61
9,21—01
4.22—21
7.2€02
3.31—22
2,72.21 16
1.21—01 LB
1.02 21
6,3! 00
1,02 01
0,32 00
1,3! 20
6,26.01
9,2E—1 l
4,21 —21
b. ’€—02
2 .1E— 2
? ,7E— ’1 kG
1,21—41 L ’ S
1,21 41
5,6100
1,61 01
7,42 00
1.2€ 00
5,32—01
6.12 21
3,11 01
1.3€ ‘41
5 .UE 22
2.1€ 01 06
9,31 .4i Lb
1,52 01
00
2.02 0*
9.11 00
1,42 00
6.52—01
1,01 22
4.62 01
1.9€ 01
8,72 02
5,11 21 kG
1.02 01 Lb
1.3€ 0%
20
1,72 2%
7.92 26
1.22 02
5,62 .21
7,32 @2
3,32 00
3.42—21
1.62—21
2.?E 00 LIR
0,22 .‘d GAL
l, E 01
6, 1 02
1,92 21
8,6E 00
1.02 80
6.12—01
9,22—01
0,22.0%
1,12—9%
5.02 .02
2,72.01 kG
1,22—01 L ’ S
1 , E 21
02
2,02 01
9.22 00
1.5€ 00
6,62—01
7,42 01
3,46 0%
1.41 02
6,32—0%
2,32 01 kG
1,06 21 LB
1.22 01
1.1€ 00
2.1€ 01
9,52 62
1,52 00
6.82—01
9,22 00
4,22 00
1.32 ‘40
5,92—01
2.12 04% kG
1,21 00 1.2
1,22 01
0,02 20
2,22 01
9,92 00
1.62 00
7,16 —01
9,22 20
4,26 00
1.9€ 22
8,72—01
2.71 241 06
1,26 00 LB
1,42 21
412
2.22 01
1,02 01
1,61 00
7.12—01
9,26 @0
4,22 00
2.41 .10
1.2€ *0
2.11 .40 06
1.2€ 02 L’S
1,12 01
7,.E 00
2.22 21
9,91 00
1.62 00
1, 12—21
9,22 00
4,22 00
2,92 “0
1,52 (10
2.7€ 1’* KG
1.22 40 LB
1.1€ 91
1, E 02
2.12 61
9.71 00
1.51 00
6.91—01
9,22 22
0.21 60
9.62.01
4,32—21
2,71 02 10
1.2€ 440 LB
1.42 0%
00
2.11 01
9.51 00
1.51 00
6,81—0*
9.22 00
4.21 @0
1,42 00
6,52.21
2.12 00 KG
1,22 20 L’S
1,42 01
1,1 00
2.22 01
9.82 00
1.51 00
7,02.01
4,21 00
4,21 00
1,42 08
6,52.0%
2,72 00 06
1,21 00 1.8
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
COST OF PREVENTION
HARMFUL QUANTITIES RATES OF PENALTY
/ / ?f
l,6 01
l ,4 &30
2,01 01
9.91 08
1,6! 00
7,11—01
9,21 00
4,21 00
1,41 0.
8,51—01
2.7€ 144 KG
1 .2$ .‘ ‘ LB
1.4 I I
6,0:00
1.0! 01
8.51 00
1.31 00
8,11.01
6.11 08
2,81 00
2.11 06
9,71.21
1.81 00 KG
4.11.11 1.0
1.6: 1
oo
2.1€ 01
9, 1 .1 00
1.51 00
6,81—01
9 ,21 00
4,21 00
0.31 02
1,11 0 ’
2,11 142 KG
1.2€ ‘2 LB
l.5’ m l
2.01 01
9,21 00
1,51 00
6,81—W I
9.2€ 00
4,21 00
3.61—01
1,61.21
0,71 0 KG
1,11 00 LB
1.6€ Ill
7,41 oo
2.?! 81
o ,Ot. or
1,61 QIØ
.ti—ot
9,21 00
a, oo
1,71 00
7,71.01
2,71 014 KG
t . € .‘ ‘ Lb
I,S 01
r:o
2.01 01
9.0€ oo
1,41 013
.q€—oI
6.11 00
e,ot oo
1.3€ 0o
.o€— ’
1.81 00 kG
0.tt— I Lb
1,5: 01
7,000
2.11 01
9,4 08
1.51 00
6,71—21
8.11 00
2,61 .10
2.41 ? 1
1,11 140
1.01 @0 KG
14.l1— l L I I
,i: ri
s.e:oo
1,1! 81
7,81 04
1.21 08
5.31—01
6.11 00
2.81 00
1,51 00
8.01.21
1.01 00 KG
8,11 —.1I LB
1.3: 01
02
1.71 01
7.41 08
1,21 00
5,81—01
1.1! 02
a,9€ 01
5,01 4*
0,31 01
3,31 01 KG
1.51 1 Lb
9,1 : 04
4,1 . 04
1.21 01
5,51 00
8 ,7€—M
3,91—21
2,41—01
1,11—131
4.01—02
1,61—02
7.2€—o2 LTR
0.7€— .I GAL
1 ,o ’: I
4 ,1 00
1.4€ 01
1..2€ 8?
9,11.0 1
4,41—01
6,71—02
3.11—02
6,71—05
3,01—03
2.0€..2 KG
9,01.23 LB
1.11 01
4,91, 00
1,41 21
6,81 00
1.0€ 140
4.71—01
5.51 00
2.5€ 00
4,31—01
1.91—01
1.61 130 KG
7,31—41 Lb
1,21 0
5,41 ‘48
1.6€ 01
1 .01 00
1.11 00
5,11—01
3,71 00
1.11 00
1,21 00
S,31 ’01
1.1€ 0 ’ KG
4.9 .— 1 Lb
1.3k 01
., ,7 00
1.7€ 41
7,61 00
1.21 00
5,41—41
5,51 00
2,51 00
1.7€ 140
7 ,0 1— 01
1.81 08
7,31—01 1.8
1.2r: $1
. ,0I00
1.6€ 01
1,?! 00
1.11 00
5.11—01
1,11.01
1,61—02
3.31—142
1.31—02
5,01.22 kG
2,21.02 1.8
/ DESIGNATED /
I MATERIAL /
H
H
0
CIJPR7C Ut AT(
0.81 01
1.91 02
4,11 82
9. 1! 02
1.51 02
3.31 02
2.31 02 KG
5.01 02 LII
CUP IC nIALATE
0.61 01
1.1€ OP
4,11 82
9, E do
3.21 01
1.8€ 02
2,31 02 KG
5.01 02 Lb
CUPRIC
Su 8*Cf TATE
5.41 01
1,21 0?
4.11 @2
9,. 2
9.21 II I
2,01 22
2,31 02 KG
5.21 02 LB
C’iP IC SUL€ATE
3,51 02
7,71 22
4.1€ 02
9,1’€ 02
5,91 02
1.3€ 113
2.3€ 02 AC
5,21 ‘42
CUPOIC 3IJL€ATE
AM K( k1aT €U
7.51 01
1,41 .12
4.1€ 02
9,0I 02
1.3€ 02
2,81 02
2,31 02 KG
5,131 @2 LII
CUPOIC 70070*71
7,91 01
1.7€ 02
4.1€ 02
9,.it 0
1,3102
0,91 00
2.31 62 KG
5,,11 00 1.4
CU000Ub bRU’41’)1
4,11 01
• €
4,11. 02
oo
1,31 01
1,bf oa
2.31 02 KG
s ,oe 02 1.0
CU000JS 100It ) !
5,1.1 ‘141
02
4.11 02
9.21 0?
9 ,41 01
0,11 0
2,31 02 kG
5.21 ‘42 LA
CY*’oOG€N C.lLIJOZfll
3,51 00
1.1€ 130
3,11 @1
0,21 81
5,91 40
1.31 01
2,3E 01 KG
5,01 ($1 L’4
CYCL0 ’ 4 €XA k€
1,41 23
3, L 03
0,11 03
9.01 @5
2,31 03
5,11 03
2,11 03 LT
5,51 @2 GAl,
2.4.0 ACID (P’JWE)
1,51 04
3.41 @4
2,01 04
4.91 00
2,61 04
5,71 04
1,51 04 KG
3.21 04 LII
2,4—0 A’II)
C. !TTA 1 4LE)
3,51 02
7,71 .12
4,11 02
4,41 02
‘1.91 142
1,31 @3
2.31 02 I cC
5,01 912 LB
2,4—0 £STE .IS (Pu .IE)
4.41 01
1,91 02
‘.11 02
9,141 02
1.5€ ‘42
3,31 02
2.31 02 KG
5,01 02 LB
2,4.0 134145
( . .ITT*8L 13
6,01 01
1. € 0?
‘.11 82
1,01 02
1,51 42
3,31 912
2,31 02 KG
5.91€ 02 1,5
06 1 .400g .
4.81 03
1,01 04
!,2€ 04
.9184
7.01 03
1.71 04
1,51 II AG
3.21 04 LB
-------
H
H
I .jl
0%)
I— .
SUMMARY OF HARMFUL QUANTIT%ES
AND RATES OF PENALTY FOR RIVERS
RATES OF PENALTY
COST OF PREVENTION
I
I /‘ ____ ___ ___ ___ ___ _____
O? T (P( 0 )
1,21—it
9.21—41
3.7€ 2*
5.21 t
21
1 ,t€.oi
1,61 07
2.3€ It
5,ol 01 i.B
2.31 0* KG
O , (411T0.bLL)
0.2c.dL
9 .2€.— %
3,71
0.2€ 01
0*
1.61 30
1.61 0
3,01 2 LB
2.1€ 01 KG
DIOZP4CN (v J.4€)
9 .71—3%
2.11 30
8,31 0%
3.01 1’0
5,00 01 t .
IaZi’ .O ( .ETTAB (.1
9 ,71—31
,tt .10
3 ,71 01
0,21 01
1,61 00
3.61 00
2.31 21 KG
5.21 01 (.8
05 KG
O1L&P’80
(OuWt)
1. € 03
3,41 45
3.’
o.10 03
9,00 03
o,It . i
5.21 3
6.50 03
1,11 03
2,31
5,01 05 (.8
2,U 0$ KG
1,41 04
.r1 OS
2,4103
3.21 03 (.8
)1C Lv%b€?1IL
( , . €rTaoL l)
0•3€ 02
1,41 33
.i-
4,1.0 73
9.01 3
01
1,11 03
2,41 85
02
2.31 73
3,81 83 (.0
2,31 01 KG
1c ’L ’ .E (Puwl)
l,h
3.91 .18
30
1,10
0,21 s*
3.70 s*
6,51 o
3,01 07
5.71 01 1.0
2.30 I i KG
JIC’ LO’0
5,91 04
0.21 1
3.71 0%
6 , 1 0 10
0*
5,01 01 ( .0
2.51 0* KG
‘ZCM (. ( .4 435
3.11
6,01 2*
8.21 21
01
1.11 02
5,90—0%
5,71 01 LB
2,31 81 KG
O1 LIJ 1N (‘ u ’t)
3. €—0t
7,61.01
8.20 01
1,11 01
1.3€ 80
5, ’i1—3 1
5,01 01 L.B
2,31 I I I . G
‘1.l)41’ ( €TTA8LF)
1.6E l
8,21 0*
1.3€ 02
013
5,81 01 (.8
2,31 *13 G
D111 ’4VLA11 €
3.1€ #3
0,21 #5
4.1.1
9.41 03
1.01 01
03
5.01 @3 (.8
2.31 05
O1M€T0YLAM1 1
3. 1 03
0.21 41
.e.11 05
9,70 3
6,31
1.40 41
03
5.0€ 03 (.8
2,31 02 KG
‘1 .17P,it” ) l..
1.51
3.’1 03
4,11
9,00 02
- 5,71 03
5,01 02 (.0
9.7€ 80
4,01 33
1.0€ 0*
1,31
0
2,46 d l
0,20—31
1,71 00
6.41 01
2.11 02
3 ,10 012
9,11 1’2
7,71 01 Lb
0,01 01 KG
8,00 03
1.51 01
1,10 81
2.01 01
1,61.01
1,41 00
3,51 01
4,01 0*
4,41 22
1.10 02
2,91 0* (.3
1.2€ 0* KG
6,01 190
1.00 01
9,11 20
2.41 01
6,31—01
1.71 214
1,01 I I
6.11 01
4,81 ( Ii
1.61 02
1.60 03 L I I
1.01 (31 KG
0 , 1 00
1.31 01
1,11 2%
1,81 01
1,61.0*
1,31 00
2,81 01
9.21.0%
1.11 01
0.01—72
0.41 30 Lb
2,11 —It KG
01’
9,41 00
0.01 010
1,36 01
5,11—01
9,01—0*
4,21.01
6,11—011
3,91.72
*,bE— 1
j,2t .(t LB
1,01—01 KG
0,30 78
1,51 01
0 ,71 OIl
2,01 71
4,11—2*
1,41 00
2,81—0*
9,21—01
1.20.83
2,51—01
0,21.2? (.0
2,71.01 KG
6.71 02
1,21 01
9,21 22
1,51 31
6.41—01
1.1€ 20
4.21—3%
6.71 0%
1,11—71
5.91 01
1,21—31 LB
2,10. 3*
5,51 00
1,01 Ii
1,01 (17
2,36 Ii
5,01—01
1.11 03
3,11 01
1,31 02
2,71 0*
8,61 0%
9,31 02 LB
3,11 I I KG
8 ,oC 00
1.61 21
1,11 01
2 .?E #1
1,61—01
1.3.0 00
4.61 0*
1.71 32
1.91 I I
9.90 80
1.41 I I LI
3.11 31 KG
7,41 00
1.5€ 01
9,91 00
2.01 01
1 ,11—01
1.41 20
4.3.1 01
1,41 02
2.21 00
7,91 72
1,41 01 Lb
4.31 ii ti
0,76 00
1.81 0*
9,01 40
2,41 (1
6,96—011
1,71 01(1
6,41 01
2,16 32
3,61 02
1,21 23
2,”1 0* (.0
4,01 01 JIb
8.01 00
1,31 0*
1,11 01
1,71 01
2,61—0*
1.2€ 00
9,51 01
0,31.01
5,31 02
0,11—02
3,91 01 (.0
1,31—4* KG
5,01 0
1.31 81
5,01 00
1.21 0*
7,11 00
1,71 01
5.50.01
1,21 00
1.91—01
4,31—71
1.91—32
4,11—72
5.11.02 Lb
1,31—01 KG
1,71 20
1,60 0*
5,11—01
1,11 00
1.91.01
5,51 SO
1,91—72
9,61—02
5,71 .02 Lb
1,61 00 KG
01
7,21 00
5.21.01
2,51 00
4,51.01
7,31.0* ( .0
/
HARMFUL QUANTITIES
DESIGNATED /
/ MATERIAL /
I
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
/
DESIGNATED
MATERIAL
HARMFUL QUANTITIES
RATES OF PENALTY
COST OF PREVENTION
/
H
H
Fjl
¼0
t J
T J4T
(.3! 01
3.4 3
4 ,1! 03
9.3€ 03
2 .K€ 03
5,1! 03
2.3 03 KG
5,1! 03 LB
U1S JL’OYON (PuoE)
0,0! 22
,,? 4I
3.7! 0*
3*1
0,0! 8
1.2! 01
2,3F 01 p(
3,2! 0* LB
i1S )Lcr)To .
(.ETTa0L 3
0.’
0,?! 20
3,7 ! 0*
9.2! 01
4,5 ! 01*
1.3*! 0*
2.3! 21 KG
5,0! 01 LB
UXt.4 ’d (FJ— !)
1.8€ 0?
3,9! 22
4,1! 02
Q, . E ‘ 2
3,3*! **
5,5! *3?
2,3! 1*2 *15
5,0! 02 LB
‘)IU Cd ( .€TTA0I. !)
1,4! 2?
3,90. .1?
4,1! 02
9.2! 02
3,00. 02
6,5! 0?
2,3! 02 KG
5,00. 02 LB
Dr3O5€Nl( . !
S ’L7 ’ .1C C1U
7.9€ 0?
1,70. 8S
3.1! I ’ S
9,A0. 03
(.3! 03
2,4 ! 03
2,17 03
5.20. 05 8
t U4S0*P (P O )
1,61 01*
5.6€ 00
3.7! ot
0,20. 01
2 ,8! 3*3*
6,10. 01*
‘,S€ Q’1 KG
5,00. (I I LB
ij1 5 K . (. !TJ*BL !)
1. E 00
3 ,60. 07
3,70. 01
2.2! I’1
2.0! 00
6,10. 3*1
2,30. 21 KG
5.0! 01 L II
€‘ *C5ULFA9 (OUR!)
1.41—81
3,?€— ’
S. ?! RI
9.2! 01
2.50.—01
5 ,4E—0l
0.37 @1 45
5,70. Ol LB
su LrA . I
(w ! 7 7*4 1 !
1.41 —21
3.20—01
3.71 01
8,? ! 0*
2.50.—Ot
S,4E—01
2,3! 01 45
5.21 1*1 LB
ti j5 (P JKE)
2 . 4 1 — 02
5.3*€—02
3.7! 01
9.20. 01
a,5E— 2
Q,8 ! —02
2.3! 01 KG
5,?! 21 LB
4 14 )R ( . !TT*I,t.E)
2.01.2?
5 ,40—02
5,11 01
‘ .20 01
4,5!—. ’?
9.14!—.’?
2,31 01 KG
5.2! 01 LB
€T$tOd (PJR !)
5,1! 1*0
1.5! 0*
3.70. Ill
0,20 @1
9,7! 00
?,lt £1
2.3! 0 KG
5.0! 01 LB
E? ’ .lOw (. !TTKOLE)
5,lf
1.3€ 21
3.7€
4.21 01
9,71
2,1! 01
2,3! II KG
5,01 01 LB
€714VLt ZE 5(
1.3€ 23
0.Af 03
11.1€ 01
9.0! 03
2,2! 413
0,71 03
2.1€ 03 4.10
5,51 02 GA(.
1.4 ! (1
6,11
1.1*! 01
‘.10. 00
1,31 00
S.Bf—O’l
9,2E—B1
4,21.0*
9.0E.02
9,50.—??
2,70.3*1 KG
1.2€—dI LB
1.5€ 12
6.9€ *39
2,01 01
9.10. 20
1,41 20
6.3€—BI
6,71 81
3.1! 01
5,71 21
1.1€ 2*
2.1€ 01 KG
4 .3t 02 LB
1,61 U
1,41 (‘0
•2 ! 01
9.90. 00
1,6! 02
8.11—0*
1,00. 0?
4,60. 01
5,41 1*1
2.OE 01
3,10. 01 KG
1.4€ 21 LB
1,3! 7*
5,91 70
1.7€ 02
7,90. 80
1.20. 00
5,bE.01
6,10 00
2,80. 2?
5,90.—Ol
?,7€.71
(.80. 00 KG
8,IE.81 LB
1.1.! 2*
7.20 (0
0.1€ 0*
9.40. 00
1.5! 3*2
4,1E.lil
9.20. @0
4.20. 02
0.00—2*
5,91—71
2,70. 011 45
1,?! 00 LB
1.2€ 41.
5,60. *0
1,61 02
7,46 00
1,20. 02
5,50.—QI (
5,5E—21
2,50.—kU
l,9E—01
5,7€—4 ’0
1,61—21 45
1,50. - . ? LB
1,4! (1
6 ,5! (‘0
1,90. 01
8,0.0. 20
1 ,41 00
5.10—01
6.70 01
3,1! 01
0.20. 0*
2.81 @1
2,11 01 45
9,30. 02 LB
1.60. (1
1.00 *2
1,30. ‘1
6,90. ( wI
2.20. 21
9.91 (31*
1.60. 00
7,11—71
1.00 02
0,6! 01
9.1! 0*
9,20. 01
3,11 01 45
1.41 .31 LB
2,01 21
9.20. 00
1,40. 490
6,61.21
6.70 01
3.1€ 01
1,11 02
2.?! 22
2,10. 01 45
9,3! 2 . LB
I,? ! (1
1,70. 42
0,3! 0*
1 ,Ot 01
1.60. 0 1*
7.30.—Ill
1.00. @2
4,60 01
1,0! 03
4.70. 72
3,1! 01 45
1,4! 01 LB
1,3! 1
5.8€ I 0
1,7! Q 11
7,71 00
1,21 00
5,5€.01
1.40. 22
6,4( 4*
(.0! 04
4,71 03
2.31 81 KG
2.70 81 LB
1,40. 1
6.20. r 0
1,87. 01
41,3! @0
1,3E 0?
5,91—01
2,10. 02
9.50. 0 (
1,51 4*4
6 ,91 (*3
6.40. 01 KG
2.90. 02 LB
1.3€ “I
5.8€ 10
1.7€ 01
7,71 00
1,2! 0 .1
5,51.0*
6.10 0*
3.10. 01
1,80 21
8,2! 00
2.1! 01 KG
9,30. @2 LB
1,61 ‘1
1,30. wIØ
2,20. 0*
9,7! 00
1.50 00
6,91.01
1,81 71?
0,60 01
2.60. 0*
1.2! II
3,20. 01 KG
1.41 *1 LB
8,81 “0
4,01 ‘0
1.?! at
5,31 II
‘ 0,41.01
3.81—01
4,30—01
1.9€—Ol
6,61—02
3.91—412
1,3E.Jl 4.80
4,61—21 GAL
-------
H
H
1 i 4
‘ .0
1..)
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALT’( FOR RIVERS
7
/
DESIGNATED
MATERIAL
I
/ /
/ /
HARMFUL QUANTITIES
RATES OF PENALTY
/
/
/
COST OF PREVENTION
€TsYLC .EDI IMI’ t
1 .3€ 03
2.9€ 23
4.1€ 0 )
9, E 03
2 .20 03
9.90 03
0.1€ 03 1 . 1 W
! .S€ 02 GAL
0014
2,20 04
4• A4
.2E 2$
4.90 04
3,70 04
4.20 44
1.5€ 44 LT
4.0! 03 GAO.
K4 C £MMU ’ .IUM
CITRATE
1.1€ 3
2,30 03
q.i€ 03
9.20 03
1,80 03
3.90 03
0,3E 0) 4G
5,00 03 i.
04P1C CHLURIOE
6.4€ . 2
1,90 5
4,10
9.00 05
1.50 03
3,30 03
2.30 03 40
3,00 03 .B
F044 1C LUO4IOE
4,8E 22
1.11. $3
4q10 03
9.4! 03
4,20 02
1,60 133
2,30 23 40
i.$€ 03 1.71
F004IC NIlbATO
1.3€ 03
2.9€ 05
4.11 23
9.0! 03
2.00 03
4.90 03
0,3! 03 40
5.00 03 LB
P€ 4IC PNo3o IATE
6.10 02
1,4! 23
4.1€ 03
).$E 43
1,01 43
2,30 03
2,30 03 40
5.40 03 1.8
oE o C SULfATO
9, E 02
1,9! 03
4.10 03
4.20 03
1.50 03
3 ,30 03
2,3 ! 23 KG
5,00 43 1.8
FOO9OUS A M TuM
5j% .FATE
8 . E 42
1,90 23
4.10 83
9,00 83
*,5E 03
3,30 23
2.30 43 40
1.2! 03 1.8
FE4POUS c .4Lo 1r’E
4.1! 42
1,40 03
4.1! 03
9,0E 0)
1.OE 03
2.30 03
2.3! 03 40
5.00 03 LA
704#OUS CIALATO
5.1€ 22
131
4.10 03
9.20 133
9,70 02
2,10 03
2.30 03 40
5.00 03 1.8
F OU3 b-JL AT0
8.40 .32
1.90 23
4.1€ AS
9.40 03
1.5€ 03
3,30 03
2.30 03 40
5,20 03 1.6
F( 4MALO!$Y )I
1.1! 23
2.40 03
4.10 03
9,40 03
1,00 03
4,10 133
2,10 03 LTI
5,50 02 GAL
F K .41C 1C30
7,70 03
1.70 44
4.20 04
4,9E 04
1.30 04
2,90 44
1.50 04 LIW
4.00 03 GIL
FIJr’A4ZC AdO
6,10 03
t,3 04
0,00
o,90 B9
1,00
2,30 04
1,50 04 LIR
6,00 03 GAl.
1,30 01
0,10 24
1,60 01
4.10 02
1,50 20
5.00—01
7.30.01
3,30—41
1.50.0%
6.10.02
2,00.01 1.70
5,40—31 GAL
4,70 20
4,00 40
1.20 01
3.31 04
2.40—21
3 .6F 11
1.10—21
5.l€02
4 .70.03
2. 1€— C ’s
S.i€—.’2 1.14
1.2€—.’1 GAL
l, E 1
6,00 04
1, E 01
8.80 00
1,40 00
6,30—41
9,20—01
4,20.01
1.20—21
5.4002
.1E—01 KG
l.20 l LB
t,LE %
I I
1,01 I I
.7E 00’
1,40 00
6,20—01
9,20—01
4,21.01
1,40—21
6,50.22
0,70—21 kG
1,01.0% 1.0
1,90 01
6,50 00
1,90 01
‘4.70 20
1.40 04
6,20—01
9.2€0t
4,20—21
2.b€0l
1,2€— t
2.?001 40
1.2021 LB
1,40 21
6,40 40
3,90 21
8,50 00
1.30 d l
6,10.01
Q.?F—21
4,20—01
4,# !— 12
4,31.20
?,Tf.4% KG
1.00.01 LU
1. E I I
6,10 00
1.5€ 41
4,1E 20
1,30 02
5.80—01
‘ ..l€.01
2,40—01
1.7€—At
7,60—130
1.40—ot AG
8,21—22 L I I
1.30 01
6,10 28
2, E 41
9 ,iT0 00
1.4! 00
6.50—131
9,20.0 1
4,01—41
1.40—171
6,50—00
2.71.21 .
1.0t— .l 1.4
1.0 41
6 . C 02
1,90 0%
0.80 0
1.4€ 22
6.30—01
9.2€—el
4,20.21
1.40—dI
b ,5E1’2
4.7€— I KG
1,20—01 1.14
1,0 01
0,s0 04
2.00 01
9.20 20
1,40 00
6.40—01
9,20—01
4,20 —01
2.4E .1’l
9.30—40
4,70—21 40
1,00—2 1 LII
I .E 01
I.E 20
1.7€ 01
1,90 00
1,20 1313
5,10—21
6,10—01
2 .80—21
1.8€—At
8,20—172
1,80—01 40
8,20—22 LB
I.E II
b, 1 00
2,40 41
0,90 00
1.40 00
6.30 .21
9,20.41
4.21—21
1,40—01
6,50—22
2,71—01 40
1,21.171 LB
9,0 02
00
1.30 01
5.61 00
9.10—21
0,10.131
6,10—01
2.80—61
1.6021
1,30—02
1.8121 1.70
0,80—21 GA l.
I , .0 01
4,10 00
1,40 0!
6.40 00
1.00 00
4,60 .01
1,30—01
6,10—02
2,30— 2
l.0€132
4.10—02 LTR
1,51—01 6*1.
9,’€ 00
4, 10 00
1.3€ 21
5.90 00
9.20—01
4,20—01
1.41—21
4.60.02
2.50—22
1.11—42
3.21—02 1.32
2,11—01 GAL
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
C. T11OP , (Pu’ 1)
1.30 00
2.91 03
3,70 01
0 F 3j
2 ,21 00
4,9k 00
2•31 01 KG
5,01 o*
____________________
GIjtil O. ( “LTTABLO)
1,31 04
33
3.71 41
01
2.21 03
4.91 ( ‘3
2.31 01 KG
5.01 01 LB
$EPTACP LO4 (PU01
0.30—01
1.00 001
1.70 01
4.20 01
1,41 140
3.11 00
2.30 01 KG
5.01 01 LB
P I AC ”L LW
( ‘ TT ’6L1)
8,30—01
1.40 00
3.71 01
4,00 01
1,41 011
3.10 04
2,31 01 PIG
50001 LB
M 39OCI LQRIC AdO
2..’0 3
4,51 03
Q. IE 03
9.00 05
3 .40 35
7,51 33
2,11 113 $79
5, ’ E 02 GAl.
H 04OFLUcR1C *C10
5,01 22
5.140 02
4.10 0?
i 0E 02
2.31 0?
5,10 02
2,11 02 L16
3,51 31 GAL
sYC K CYA ’ ,li)L
7,91 00
1,71 01
3,71 01
4.21 01
1.10 01
2,9t 01
2,31 0 11 KG
4,20 01 LB
MYD01!P 0 l . 1
2.21 02
4,80 32
,I1 02
0,oI 02
3,71 0?
0,21 012
2,30 02 10
5.00 02 LB
MY 1 1OXYLAM1 J 1
6.61 03
5.51 04
?.2€ 014
P . 01 24
1,11 04
2,50 04
1 ,50 00 LIP
0,71 05 GAL
ISoPk 1 ’ 0
3,31 03
7.31 03
,1E 03
9.01 33
5,60 03
1.21 24
2.11 03 LIlO
5,50 02 GAL
X5 A . .ULA ,.IP E
0’ l OtLI0 ..ATE
0,00 02
2,01 03
4.11 23
9. E 03
1,61 03
3.40 03
2,31 03 KG
5.01 03L8
LTP ’A’ .E (PIJ 1)
4.41 03
4.70 03
4,1 03
9.21 03
7,41 03
1,61 04
2,31 03 KG
5.01 03 LB
4(L?,oA .0 C.ITTABLE*
4 ,A( 43
9.71 03
4.11 03
9.041 03
7,41 03
1,61 444
2,31 03 KG
5,01 03 LB
LEAD ACETATE
5,61 03
1.21 04
3,70 01
K. E SI
4,40 03
2.11 44
2,31 0* KG
5.01 01 LB
1,51 01
6,31 04
2.01 II I
0?
1.00 00
6,71 01
7.61 01
0.11 14* PIP,
1,51 . 1
1 . 1 1104
2,11 01
0,60 00
6,51—31
1.50 1111
.90 —8j
3,11 01
1,00 012
2
3.51 01
1,11 02
9,31 40 LB
5.10 0* KG
1,71 03*
5.,1 0304
1,60 01
7,30 00
1.21 00
5,20.01
1,41 0?
6,41 01
1
3,31 02
1,31 oo
1, 0 41 L I I
4,31 71 PIG
2,01 001
1,51 31
01,00 40
2,41 01
1,11 01
1,71 00
7,60—01
0,10 0?
9.5E 01
,8fr 02
2.21 22
LB
..4E 01 KG
0,90 01 LO
1.41 01
M•5 00
1.31 01
6,10. 00
9,60—01
4.41—21
3,51.01
2,51—01
7.51.02
5.41—k 2
1,6E—ol LIP
1,31 01
4,11 003
1,41 01
6 ,31 30
9,01—01
0,51—2*
7,31 00
3,30 40
1,31 02
5,91—11
6.11—01 GOL
2.21 20 LIP
140
1,31 01
5,3 ! 00
1,71 31
7,80 30
1,21 00
5,60—41
8,11 01
3,70 01
1,91 2*
6,81 02
GAL
2,51 0* Ku
1.11 iii L II
I .?! 01
1111
1,61 01
7.41 00
0,21 00
5.31—01
5.51 00
2.41 20
6,91—01
3.11—Oil
1,61 20 KG
1.3E—2l LB
1,01 01
5,pl 00
1,51 35
6,81 00
1,10 02
4,81—01
1,40—31
6,11—02
2.31— ’2
1,01—012
.,;l1—. 2 L1
1.51—21 GAL
9.11 030
4 .!E 30
1,20 01
5,71 24
8.91.01
4.01.01
2,41—01
1,11—01
1,71—02
7,61—33
7.2E . , 2 LIP
2 ,70—01 GAL
14 . 0.2I
2.PE 01
01,01.0*
2,00.01
14,00—01
0,01.31
3,51—21
2.SE—t’j
1,61—71
7,40—02
1,60.2* KG
7,31— . 2 LB
1, 1 81
5,31 03
1,51 02
6.61 40
1,01 20
4.71—01
1,81—21
8,30—22
2,31—o’o
1.10—12
5.01—02 KG
0.41—22 LB
1.01 00
5,11 00
1,71 01
7,81 00
1,21 00
5,61—01
4,913j
2,21—01
3.01—02
1,61—02
1.41—01 KG
6,51—o2 LB
1. E 01
5.1 40
1,71 31
7,51 00
1.21 30 7,41 01 4,11—02
5.10.01 3,41 II 1.91—42
2,31 01 KG
1.01 II LB
4.01 1,81 23 2,11 05 LIP
2,30 33 9.01 3,91 03 5.50 32 GAO.
I
I
H
H
Iii
1. .)
0
1,71
7, 110
41
00
1,20 00
5,50—01
7 • 31—01
3., 31—01
1,41—01
6,51—22
LIP
GAL
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
IJID C LOk1fl1
1. t. 04
4 ,31 dl
3.11 III
6.?E NI
3,31 04
1.2€ 04
2.31 14* ‘r .
5.11 I LB
LEaD FLuO ,RATt
3, 1 .1 13
1,21 ‘04
3,11 01
B,2E I II
9 s4€ 0$
2,11 II I
2,31 d l
5,141 dl LB
LEA!) OLIIUWIflI
0.3€ 02
1.91 143
5.11 01
K .OE 141
1,41 Ill
3,11 5
2.31 01 KG
3.4€ 01 LB
€aQ loulOt
6.61 03
1,51 .40
3.1€ dl
0.17 II
1.11 04
1.5€ 74
2.31 0* KG
5,141 01 LB
I .1AG .STK*T 1
9, .€ 03
1.11 00
3,71 dl
6,21 ‘ dl
6,31 03
1,91 I I I
2,31 01 1.6
3.0€ d l LB
L 0 $ E*BATE
1,11 4 10
2.41 Ill
3.11 01
6.21 01
1,41 440
4,11 04
2,30 01 (6
5,141 01 LB
LEM) SLJL7ATE
4,41 I I I
q ,* A3
3,71 01
.dE Ill
7,31 05
1.71 04
2.31 dl KG
5.01 01 LB
L1A S(LFI1’E
1,41 03
7.61 03
3.71 Ii
9,21 II
6.01 03
1,31 04
2.31 01 KG
3,0 ? d i LB
L?A TttoI—ACLTATI
6.51 03
1.4€ 04
3.71 01
6.141 dl
1.11 14
2.4€ ‘ dl
2,31 dl KG
5.01 dl L8
L1 ’) y . . 10CvA .ATI
4,71 413
1.01 00
3.11 dl
0.141 dl
0.140 03
1.61 04
2,51 0% KG
5,31 diLl
LIAD T.-TOSULFATI
4.7€ 413
1.0€ 04
5.71 I II
6.21 01
6,01 03
1,71 04
2,31 01 G
5.11 di LB
LOAD Tu .6$T*1€
6,41 03
1.5€ dl
3.71 01
‘ .‘E t
1.11 ‘ d l
2.5€ 144
2.3€ II ‘6
5,01 Q t LB
LI )” ( U 1)
i . € dl
oo
‘ dl
4,21 It
3.7L 0
1,31 lii
2.1€ 01 KG
5.0€ 01 1.0
L1 .DA ’ 1 1 (.ETTABL€)
3.4€ 00
7,51 00
3.11 41
8.21 01
5 ,7€ 00
1,31 01
2,31 II oG
5.01 61 1.8
‘1 00
4 . €&*0
1,21 01
5,61 00
6,70.01
4,01—21
1,11 01
3,41 II
l.2€ ’2
5,01.03
2.31 ‘ dl kG
l,4 ’€ 01 Lb
i,€ I I
6,11 d l
2,01 II
9,11 00
1,41 044
4,51—01
1,41 01
3,41 II
4,11.02
1,91.02
2.3€ d l KG
1.14€ 01 Lb
1 ..lE 0*
6.41 1414
1.8€ 01
4.141 1414
1.31 00
5.71—01
1,41 dl
3.4€ di
2.31.01
1.01—01
2,31 141
1.01 .11 Lb
1,11 dl
04*
1,41 01
6.11 00
9.11—01
4,41—01
7,41 ‘ dl
3,41 01
14,91— . ’2
1,31—02
0,31 41 ‘ (4.
1,141 01 Lb
1,11 II
5,31 00
1,11 ‘ dl
7,61 00
1,21 00
5 ,51.01
7,41 01
3,41 01
i, 1—’ 2
2,11—02
2.3€ dl KG
1.01 bIt LII
0.41 1411
4,11 00
I, [ 441
5,31 d l
8 .41.0 1
3.81.01
7.41 01
3,41 01
2.10—142
9,41.03
2.31 I’i KG
1,01 01 Lb
1, 31 II
4 .’E @0
1,41 di
# . ,3E 014
9 ,8 1— Il
4.SE—d1
7.41 01
3.4€ It
4,2€—414
1,9€ . ’2
2.31 dl K ,
1.1 ’1 01 Lb
3.11 00
4.3€ II
1,21 01
5.3€ 00
8,41.01
3,81 .131
7,41 01
3.4€ 01
5,31.02
2,4€— 2
2,31 II KG
dl Lb
0.41 00
(4.1€ 00
1,21 @1
5,31 4%4
8.41—01
3.81.01
7.41 Ii
3.41 II
5,61.02
1.41.04
2.31 4* KG
1. 1 01 LI
;:- € 01
4,11 0 17
1.40 l It
6,61 00
1.0€ 00
4 ,7€. 1
7,41 01
3.4€ l’i
4.01—142
l,61— 2
2.31 01 KG
1.141 0* 1.0
01
4,71 00
1,41 01
4,31 00
9,01.01
4.51.01
1,41 0*
3.41 01
4,01—142
1,61.02
2,31 d l KG
1.01 d l Lb
4.11 014
44.31 044
1.3€ 01
5.91 044
9,31.01
4,21—01
1,41 01
3,41 01
2,91—72
1,31—02
1,31 Ii KG
1.44€ ‘ dl 1.0
1,11 01
7.11 00
2,11 Ii
9.41 00
1.5€ 0 )
6,71—01
1,41 02
6,41 01
5.141 01
1.4€ 01
.4 ,31 b ’t KG
0,141 di Lb
1 • 11
6 , 11
2.31 I I
1,11 Ii
1.7€ 00
7,61.01
2,11 02
9.51 01
4,31 01
2,01 Ill
6,41 01 KG
2,91 ‘ dl LI
LEAD 600141411
5.41 03 3,71 01
1 .141 $ 0.21 01
/
9,41
2.1€
443
444
2.3€
5.44€
I ii
KG
LB
H
H
1’.)
U i
1,11 141 1,91 01 1.40 00 1.1€ dl 4,31.02 2.31 01 06
6.41 d v i 6,TO 014 6,01.21 3.41 ‘ dl 1.904 ’2 1. ’E 141 L I I
01
00
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
I
/ DESIGNATED
MATERIAL
HARMFUL QUANTITIES
7/
RATES OF PENALTY
/ / COST OF PREVENTION
/i / ii
/i
/7S’
/
H
H
I i i
0•i
/
LIT’47U” BICW4OMATE
8,31 .33
1.4€ 74
2.’E @4
4.91
1.4€ 04
3.11 04
1, 1 04
3.21 04 Lb
LTT ’4IU C kOM4I€
6.4€ 03
1.4€ 2
a,o€ @4
4.9€ CIA
j,j 04
2 ,41 oa
i.s€ 84 G
3.21 04 LB
L7TPI1J ’ lLUO IOf
1.4€ 0.?
3.91 02
‘1.11 02
30
3.431 02
6 ,51 02
2,51 02 4G
,J€ 02 1.0
OALATPIION (P J4 )
5,01 00
1.1€ 2*
3.71 41
4,21
1,51 @0
1.91 01
1.9€ @1 1.7%
S.aE Oa GAL.
M*LAI$I
( .ETTAML€J
5. € 04’
1.11 iii
3,11 81
4.2€ 0*
8.51 04
1.91 01
1.9€ 01 L1
5.81 08 GAL
‘4111C ACIO
0.1€ 03
1.3€ 0’4
2,01 04
,9E ‘44
1 ,01 04
?.31 a4
1,51 04 OG
3,21 04 LO
0LEIC £M1LkILI
5,11 .‘3
1.1€ 04
0.2€ 44
44
4 7€ 05
1,91 44
1.50 04 4G
21 444 LB
MEOCç9 1C 6107*70
2.11 41
4,60 01
3.70 01
8.21 01
3,61 81
7,9t €11
2,30 01 (G
5,20 01 LB
€6CL%*C C 4LUP!U€
1.4€ at
at
3.7€ 01
o,a€ ot
3,440 431
6,11 01
2.30 01
5,41 01 LB
‘E4’CuR1C 9*70*11
2,20 .41
0,90 21
3.70 0*
0,21 01
3,81 L I I
8,3t. 41
2.31 01 OG
5,00 18$ 1 ,8
4’E0CIJR1 OlIDE
1 .oo 01
Silt ul
3.7€ 01
0.21 04
2.ao ot
5.21 01
2.30 01 G
5.40 @1 LB
MOOCUIfiC SULFATI
1,91 41
4 3 44j
3.71 441
0.21 8$
3.31 44*
7.20 01
2,31 01 PIG
5.01 01 LB
ML. .C(.R1C
7 ’4TOCYAP AT€
2.1€ @1
4,PIf 01
3.71 0*
8.20 01
3,51 8*
7,71 0*
0.31 01 PIG
5,01 @1 1.8
ME#Cu4 U$ 9170071
l. € 41
4.1€ at
3.1€ 81
8.20 01
3.1€ 31
6,90 01
2,31 01 kG
5.01 01 LB
M17 . ICXYCp,1.OR (PUNE)
2,70 08
6,01 00
3,70 01
0.21 01
4,6E 00
1.00 01
1,90 01 1,T
5.30 03 GAl.
1.2€ 01
5,41 0o
1.61 01
7,21 40
1.1€ 03
5,11—31
1.71—81
7,60 .02
1,11—02
1,70.03
5,01—12 kG
2,21.02 LO
1.2€ l
5.60 00
1,40 0*
7,40 00
1.20 @4
5.30—01
1.7€—OR
7,60—02
2,20—co
1.81—02
5,00—22 oc.
2.21—02 LB
l,SE @1
6,71 1*0
2,00 31
9.00 00
1.41 00
6,41—01
9.20 00
4.2€ 08
8,60—41
3,91—2*
2.71 30 kG
l.2 . 0.’ 1.0
1,51 31
7,0004’
2,11 01
9,40 00
1.50 04
6.7E —21
6.70 01
3.1€ 0*
2,81 @1
9.31 00
2.11 0* 1.14
7,81 01 GAL
1,61 31
7.51 30
2.21 01
9,90 00
1.61 00
7.10—81
1.0€ 02
4.60 31
3,00 01
1.4€ 41
3,11 @1 LYR
1.1€ 82 GAL
1.0€ 711
7141
1,31 4*
6.01 20
‘1 ,51—21
4.31—01
1,01—01
4.61—02
2,51.42
1. 10—01
3,80—84 PIG
1.3 1— l I 1.4
1.61 Ill
4,61 00
1,31 81
6,11 00
9.60—01
4,41—01
7,01—22
3.61.42
3,30—430
1.31—02
2,3 — . 2 G
1,01—4? 1.0
1.70 31
1,61 .3.’
1,71 8$
1,61 00
1,70 01
1,60 04
2,21 01
1.01 d l
1.60 00
7,31—01
1,41 82
6.41 31
1,1! I I
5,00 00
‘.31. 01 PIt,
2.11 01 1.5
2,20 0*
1.00 01
1.6€ 40
7.21—0*
1.41 02
6,41 01
1,31 21
5,81 00
4,31 01 k
2,41 41 LB
2,20 31
1,40 01
1,61 @2
1,21—01
1.4€ 32
6,41 21
1,00 81
4,70 00
4.31 41 KG
2 ,i’t 0* LB
1,50 01
5,90 00
2,00 01
4,21 48
1.51 00
6,61.01
1.40 02
0,40 I I I
1,31 0*
5,11 84
0,31 ot t ,
?. ,€ 01 II
1.1101
‘5,11 30
1,30 0*
S.OE 871
1.11 80
4.81.01
1,40 02
6.41 01
1.31 01
5.40 00
4.30 01 PIL
0.41 0* LB
1,60 41
7,20 30
2.11 41
9,41 03
1.51 20
6.91.01
1.41 @2
6.41 01
9.1€ 1444
4,11 4444
4,31 01 kG
2.41 0* Lit
0,81 00
1.0€ 00
1,21 @1
5,31 00
0,41—01
3,81—01
1,41 82
6,40 01
1,31 01
5,11 00
4,31 01 PIG
2.41 01 10
1,11 01
4,81 80
1.40 81
6.41 00
1,31 00
4,61.01
6,11 @1
3,IE II
3,81 01
1,11 01
2.11 0* ITO
7,81 01 GIL
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
. €TMYL M€RCAPIAH
4.00 ol
9.7€ 01
a .1E 02
9. E 0?
7 4E 01
1.6€ 02
2.30 82 AG
5.40 0? Lb
MET YL M€T$L YLATE
1.10 74
2.40 04
2.. E 74
4.90 6;
1 oe oa
4.10 4
,s€ oa LIP
4 7 83 GAL
M THVL PAAAT 4IO
(P ukE)
3 3E 72
7,1 ?
4.10 0?
9, 0?
5,60 02
j,fl 03
2.10 02 LIP
5,50 Ø GAL
METHYL PAWATMION
( TIA4LL)
3,3€ 22
7,iE 02
‘4.10 02
9,00 02
¶5,60 fl2
1,20 03
2,1 .0 ‘2 LI ”
5,10 01 GAL
ME4Tf PM’)5
I•’4€ 00
2,20 07
l1
4.20 01
1.10 00
3,80 i o
1,90 01 Lb
s,oo eo GAL
MnL000IC TRI(iXj()0
1.6€ 24
3 ,6k 1.10
2.20 04
‘..90 04
2.80 04
6.1€ II
1.30 @4 KG
3,20 @4 L’
MC 0ET4lYL*MhI5€
1,80 03
3,90 .9
0,1,0 02
9,40 02
3,00 03
.5.50 03
2,10 02 LT
5.50 01 GAL
HDTHYLA”IH 0
1.30 03
2.9€ 03
4.10 02
9.00 1.12
2.20 03
4,90 03
2.1€ 02 LI’
5.40 71 GAL
4AL€D
7,90 02
1,10 71
3.70 01
5.00 01
1.30 01
2.40 01
2.5€ 01 AG
5,00 01 LB
MADMIHALENE
1.4€ 22
4.90 0?
3,70 01
o.20 01.
3 ,0L 0?
6.50 44?
2,3€ 01 AG
5 , 61 LB
.AP.4T.iL IC AG 14)
3,1.0 02
.5.90 02
1.7€ 01
8.20 Q 1
5,30 04
1,20 03
2.30 61 AG
3.00 61, ( .6
NICAEL ACETATE
3,00 63
0
2.20 04
0,90 014
6,50 03
1.9€ 1.14
1.3€ 64 AG
3,20 04 ( .5
HICOOL A ’IG”LU”
SuLFAI
7.9€ 03
1,,00 0
2.2€ 64
4.90 04
1,30 04
3,00 04
1.50 64 AG
3.20 414 LB
‘4 1C*OL BROMIDE
5.5€ 03
1.20 04
2.20 04
0.90 04
9 ,3L 03
2,00 04
1.50 04 AG
3.20 04 B
1.50 81
6,90 00
2,00 01
9,21.. 00
1,10 60
6,60—21
6,10 70
2,80 00
1,30 70
5,1€— 1
1.80 00 AG
5.IE— .l 40
9 ,40 00
‘4,30 00
1,50 01
5,70 00
9,00—01
‘4,10—01
‘ 4, 5 0— 02
2,70—02
5, E—23
2,30—03
1,,3 —0? LIP
5,70—02 GAL
1.1€ 01
4,9007
1,20 01
4,60 60
I • 81 01
5,00 00
1,40 01
‘4,10 00
1,440 00
4.00—01
3,70 08
1.10 70
3,10—01
1,40.71
1,10 00 LIP
4.1€ 00 GAL
1,60 01
1,40 00
1,20 22
1,30.01
3,50 00
2.10 00
4,10 .01.
2,10—01
1.60 00 LIA
‘4,10 70 GAL
‘,4€ 01
1,10 01
1,10 .40
7,60.01
6,10 61
2,80 01
1. • 0€ 00
8.00 01
I • 8 .‘ I L TA
7,00 d l GAL
9,50 80
4,30 1.40
1,30 01
5.60 06
9.10—01
4,1€01
1.10—01
7 ,60’02
9,50—443
4,20.03
5,oo—02 KG
2,Ot —02 LO
1,30 01
A.I€ 70
1.8€ 21
0,10 00
1.3€ 72
5.00— 1
4.3€ 00
1.90 40
1,00—71
14,4.1—72
1,30 20 LIP
4,8t 7 T CAL
1.3€ 01
6,0000
1,80 01
8,60 62
1.30 00
5.7E—01
4,30 00
1 ,90 00
1,20—01
5.30—00
1,30 00 LTR
4.80 20 GAL
1.30 01
5,10 00
1,70 01
7.00 00
1.2€ 044
3 .40—4)1,
4,00 01
1,80 21
1,50 01
‘ ,0€ 514
1.20 01 KG
5.60 510 I .”
i5 7
5.80 00
1,10 01
7,80 00
1.40 07
1.51—01
7.70 01
3.21 01
.9t—0l
2.70—01
4.10 d l AG
0.10 2.4 I_Il
1,50 ‘11
6.60 02
1.9€ 01
‘ 4,80 20
1.40 02
b,30 ’Il
1.10. 22
5.00 21
4,81.—0l
0,20—21
3.40 71 AG
1.5€ 61 Lb
1,30441 1,70 01
5,10 00 7,60 00
1.2€ 440
5.40—01
1.70—0 1
7,60—02
2,30.7 ?
1.10—02
5,4) d Al,
2,20—02 ( .0
1.20 01
3,10 00
1.1€ 01
7,30 0
1.20 00
S.?€01
I.71—01
7.60—72
I, E—02
7.20—03
5. .0. ’2 84
2,20—02 LB
1.3€ I I
5,1000
1.7€ 01
1.00 00
1.20 06
5.40.01
1,70—01
1,00.02
2.30—02
1.00—00
5,00—02 KG
2,20—0? ( .0
M( IKYCHLO’ 4
I sO 7 7 A ALE )
3.7€
4.2€
61
€1
I
4.6€
1.440
044
01
1.9€
5 , OE
01 LI”
GAL
80
H
H
ill
-4
7,30 01 1.1€ 07 1.70 02 5.51 7% 3.40 71 (.114
1.1€ 01 1.60—01 4.60 01 2.10 411 1.?0 .i2 GAL
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
I HARMFUL QUANTITIES
I I RATES OF PENALTY /
COST OF PREVENTION
2T7
—
1,31 I I
38
3,71 43
.6! 00
1,21 08
5,51—01
1,11.03
7.61.02
,bf —c 2
t,2E 0
, t— Z KG
.21.22 LB
1,30 1
,OtjO
1.71 83
7.81 41)
1.21 00
51.0%
9.2F—. t
4.21—41
3.41—t ’2
1.5 !’ 0
‘ .71—03 KG
1.01—4% L
5.81 0
10
3,21 01
5.31 48
8,41.01
3,81—81
6,11—03
2.01—21
5 ,441 .82
2, ’?
a ,61—.â& R(
3.01 . ’2 LB
1.61 3%
7,51 48
2,21 81
9,41 00
1,61 00
7,11—01
1.11 23
5, ” ! 22
2,31—02
9,61—03
7,21—34 2KG
1,11—33 L8
3,31 93
1,1! 01
7,61 20
1.2! @0
5,41.21
3,71—0*
7 ,61—22
2 ,0 !— 2
1.11—02
5,’1—22 KG
7.21—02 16
9.91 30
4,’,! 6
1,31 6%
80
9,41—01
8,31—01
5,51— l It
2,31—81
5.01—22
2,31—02
1,61 —01 LTR
3,11—01 h1AL
1,31 I I
5,8138
1,51 01
6,71 80
1,01 08
4,81—21
1 ,7L. %
7,31—22
2,31—82
1.—22
5 ,fll— . )2 LI”
3,91—01 GAL
1.01 31
45130
1,31 01
6,01 00
9.51—01
‘4.31—01
5,51—01
2.51.01
0,01.20
3,2! 0
1,4.1.03 KG
7 ,31-02 LO
1,31 ii
6,11 38
3,81 01
0,11 02
1.31 00
‘ , ,8( —cI1
9,61
‘3,41 00
7,aE.oo
3,41—00
o•9 1 00 KG
3.31 08 LB
1.21 33
5.5130
1,61 01
7,01 40
3,21 28
5,31—01
5.51—21
2,51.03
1 , ’4E—l 1
6 ,— 0
l.b 1— .’l LTR
6,11—03 GAL
1.41 43
6,5(30
1.91 @1
6,71 0&
1.41 00
6,21—01
6,71 41
3,11 01
3.31 00
3.51 20
2 ,lt 81 LiK
7,01 61 GAL
1.11 01
7,61 48
2.31 @1
1,01 03
3.61 00
7.41—21
3,01 02
4,4.! @1
0.51 @0
2.?! 8o
3.1! 01 LIR
3.?! 02 GAL
1,31 31
6.11 38
1,81 01
5.11 40
1,31 00
5.81—01
7.21 81
3,21 01
0.71—21
2,11—81
2.11 41 KG
9,71 20 LB
1,11 II
3.11 84
1.51 51
4,81 00
1.11 00
4,91.01
7,31 03’
3,31 60
2,91.01
I,3 (.k’1
2.21 00 KG
9,01.01 LB
1.01 *1
4,61
1,31 01
6,11 00
9,61.03
4.41.01
3,51-41
2,51.01
5.51.0?
2,51—02
1.61.83 KG
7 ,31—02 LB
DESIGNATED /
/ MATERIAL /
I—I
i-I
F
I ’ . .)
tO
Ic’c !L C0LOR )!
0,41 .13
1.11 2
2,21 64
,9€ 1’4
8,11 03
1,0 04
3.5! 04 KG
3,71 @4 LB
4 ,ICK !L 000PIAT!
3,71 83
0,21 89
4.31 143
9,8! 03
4.31 Q15
1.41 04
2.31 343 oG
5,QIP 03 LB
‘ .ZC’IL 4YI KflXIOE
1,41 63
4,11 03
9,31 05
3 ,21 433
1,431. 03
2,31 03 KG
5,21. @3 LB
4.ICK !1. NITNAT!
5,91 03
1,11 80
3,41.20
, 40— . )1
1,01 04
?•?0 344
1.5! 1? 2KG
1,31-39 Lb
‘41C’ !t. Bui..3A1 !
5,31 83
1.234 140
7.21 0’4
j•934 04
8,9! 05
2,01 10
1,51 00 KG
9.21 04 LB
‘.IT !C ICID
3,51 23
7,11 1.13
4.11 03
1,81 03
5,91. 813
1.31 04
2,11 03 LIR
5,51. 02 GAL
tTK 6 1 -Z !4. 1
6,61 03
3,51 144
2,21 04
4.91 60
1,31 04
2.51 24
1,51 04 LI”
4.01 03 GAL
.1T8OGL I 01 ’)K7U(
2,51 03
5.81 83
4.11 03
‘1,21 23
4,3! 03
9,51 8!
2,934 03 KG
5,71 03 LB
NIT OC IPP4 ! PIOL
2,01 #3
4.51 333
4,%! 02
9,01 482
3,41 83
7,4! 343
2,31 02 KG
5,11 Q 2 LB
PA0034064ALh1! ,1YU1
1,31 83
?, 1 63
4.11 03
9,81 ‘43
1,91 03
4,11 03
2,31 03 LIR
5.51 02 GAL
.At.410’4 (PUR l)
3.11 61
6,40 #1
3 ,11 @1
6,? ! 03
5,31 61
1.21 02
% ,9! 01 170
5.81 08 GAL
PA . .AT 41ON
t EITA5LE)
3,11 81
6.91 03
5,71 01
4,21 03
5,31 01
1.?! 02
1 ,QE 0% 1114
5,01 00 GAL
?f4.?aLOQOPoE OL
2.21 42
8,01 .02
3,11 43
4.?! 03
3,71 02
6,21 02
2,31 01 KG
5,01 01 LB
P . 4 ! ’ OL
5.31 02
1,21 83
4,1! 02
9,411 @2
5,91 02
2.331 03
2,31 62 KG
5,01 @2 LB
PMOSG !P .E
2,7! 83
6,01 03
4,11 03
9,01 03
4,61 03
1,01 44
2,31 03 KG
5,01 @3 LB
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
I HARMAJI.. QUANTITIES - - L
DESIGNATED /
MATERIAL /
COST OF PREVENT ION / / // .
/4’676, u
,/
,“
P ’QSF.4O03C Ado
8.51 03
1.90 444
0,21
4,40
04
000
t,SE 24
3,31 04
1,51 44 KG
s,oc 04 LB
P3P . . )S
2,3K
5,11
02
20
3.70 01
44.21 01
3,91
5,71
00
0L’
2,31
5,01
01
01
KG
1.8
Pc P ’ Cw S
(49C . 1 91 4 1
2,01
b,lF
03
03
oo,1E 25
9..1 03
0I,1
1,01
03
04
•5
5.01
115
03
KG
LB
pSP . .4 ’5
P.TL..J’ 4I ) 1
j,8
3.91
0?
224..
‘1,11 00
11 2
3,131
b.51
440
02
2,31
5.01
0
22
KG
1.0
pr )W j5
P0 1 j .
2,001
5 1
.13
03
4.11 03
9.71 05
‘0,10
9,
03
43
?,31
5,21
403
143
KG
.6
•fll o’.Oc ’ 0 )JS
T .IC L1wi0
0 ,5K
5,bE
09
;‘S
‘4.41 03
9. E 3
04,90
9,51
09
133
2,30
5.01
03
43
KG
tM
pO,VCHL W7 4 A1LI)
“4’’1 YL5
i,?&
2,71
.i I
01
3.11 01
i,OF 1
2.11
‘ 4,SF
01
04
1,9E
5.00
01
00
1.144
GAl
PGTASSIJM *o.G0 ..ATE
5,71
1.31
20
43
4 .11 21
.4.10 21
9,71
2.10
00
03
2,31
5,20
01
o
KG
1.44
P )14 5I 1$ £00,1 I11
PUTASSIli
,SE
3•31
,5E
.13
03
73
5,11 21
4, .?1 04
2,21 0
2,51
5 ,4,t
9,91
9
3
73
0,30
5,00
1,51
01
01
004
KG
LI
KG
lATE
I.’1
.,5F
?,?1
c
3.21
0(4
K31AS53ul 0A11
7 .’E
I ’ E
0.1
,00
‘.01 7’
4,.1 24
4.31.
2.41
04
74
4,50
3.01
000
4G
LB
?flTA59j ji C ’ 4’ .1U1
4. 9 L
4,7
.11
21
3,70 74
4.00 21
3,20
7 ,IE
24
21
0.30
5.01
01
21
KG
LB
PGTASS1 JM .4YJ ’ 4jx101
3,51
7.70
o3
23
‘4.11 29
9.21 03
5,90
1.31
.13
000
2.30
1,00
03
03
KG
LB
Pfl1*$54J 4
P& . * 4 .ATt
1.81
o ,41
02
42
4.11 02
5.2100
3.11
6,90
02
0?
2.30
5,21
0?
02
G
LB
ICP 4C ACID
4.30
1,91
03
0 ’ 0
2,20 04
4.9€ 4
1,40
3,11
04
2000
4.51
4,21
000
403
LTK
GAL
9,51 40
4.30444
1,30 401
5 .*0 4411
9.10.114
4.11—01
1.01—01
04,60—22
2,0t—4’2
9,20—03
3.tlL—22 KG
1.3f . ’ 2 18
4,41 01
6,211400
1.80 21
8,30 20
1,30 4 )0
5,91—01
0,430 01
1,51 21
4,040 01
2,21 01
1.00 491 KG
B,t5E 2.. 14
1,20 41
‘4,50 1144
1,30 01
5,491 00
9,51—21
4,30.01
5,501
2,51—01
5,40.492
2.51.0?
1.b1491 KG
7,31.132 L
1,21 21
4,1000
I. 0 01
6.21 02
9,70—01
4.41.21
5,51 02
2.50 02
8.71—01
3,90.04
1, ’t. 00 KG
7,30 .01 1.0
4,490 03
4,60 20
1,30 01
6,10 22
9,61—04
4,4 ?1
5,51—01
2,31—01
6,21—42
0,81—02
4,61—21 KG
7,31—22 LB
1.0401
‘0,60
1,3101
6.11 130
9.bl—71
4,40.01
5 .51.01
1 .01
S,QK— ’0
0,71 —70
t,4 )01 42.
P,5r—42 LO
4,20 01
5.31 02
1,60 01
1 ,11 049
1, 10 02
5.20.21
1,41 02
6,41 01
0.20 21
1,01 0%
4,31 01 1.14
1,60 72 GAL
4,50 411
6.84 440
1,40 01
6,50 4413
1,2121
5,50 4’
1.2101
5,4070
2,01 01
9,01 447
1,40 20
6.50—21
1.11 22
‘4,90 01
2,0E .0 1
4,71—04
3,31 71 KG
4,51 01 LB
1.90 24
0,60 00
1,41 20
b ,1E ’21
1,11 72
‘4,91 01
8 ,4t’2
3,41’0?
3,30 0 KG
4,5 01 4.44
1.60 21
7,0010?
2,20 22
5,31—01
1,7101
7.61—02
0.61.02
1,20—492
5 ,oo.oO 4
2.21—024.44
1,61 01
1,2042
1.11 20
5,2 —01
1,71—71
7,01—02
0 .0L— ’o
9,20—03
5 ,OL.22 ‘G
2,Or —iO LB
4.31 134
5,90
1,71 01
7.91 190
• E 77
5.61—01
6.41 02
2,81. 71
5,70 7
3.61 0/
1 .4
,‘4E 27
9,910.11,3101
4,5100 6,0120
9.oE—?1
,31.21
5,51—22
2,51—21
‘4,31—02
1,90..?
t.6 —0i K(
7,31.00 LB
1,41 01
5.41 00
4,91 04
0,40 00
1.’! 49.4
6,01—01
4.01 00
‘4 ,21 .10
o,2E—i4
5.70—0%
02 KG
i ,Ot 00 LB
1.10 01
4,90 140
1,41 41
6,61 22
1.21 00 1,31—01
4,11—01 6,11—??
0.10—.)?
9,81.73
4,01.02 4.TR
1,51.441 GAL
/
RATES OF PENALTY
I
H
‘-4
H
-------
SUMMARY OF HARMFU.. QUANTITIES
AND RATES :OF PENALTY FOR RIVERS
P ( YL £LCIJNUL
1,SE . 4
3,4E ‘34
?.2E 04
.9E 04
2,AE 04
S . 434.
,5E 434 LYW
q .43 433 4*1.
PYkti sP .3 ( ‘ .t)
3 0 13
7•? 3
‘4.1k 433
13
5, 03
1 .2E oU
,143 S L7R
5.SE 02 GAL
PY ETIi 3
( EA L )
3,?e o3
7, 3
4, IE-43.S.. 5,S 433.
3 , E 433 1,2 4
2 .1 03 t.T
5 .,5E Y2 GAl.
pV4O ’5AILIC Ado
•
1.91 02-
I..?E 01
432 1.3 03’
9./E 02 ‘2.9 .433
2 ,3E 432
5.,0E432’LB
.. ‘JIA.OL1 E
2 .4343 1?
a,b
(•7F .431.
431
.1F 432.
8I2 432
L.9E 43l LT’
5,43 BOCiAL
q1S 43C! ’ UL .
1,51 03. 4.10 02.
3,4E k 3 i43 i
2,AE 03
C,7C 443
2,31 02KG
432 LB
5_1 IC C1
.
1 ,tE . 3
‘ .SE 431
3.71 41
0,430 431
1,91 03
4,30 103
2,31 0 1104
5 .Q 0 0l LB
L L1JM O•xIu(
.5.3f 432
1,430 433
3.71 ‘31
4 ,21 431
8,91 432
.431 433
2.3E 01KG
5,21 01 LB
51Y71 (PU ) -•
•
2.
o?
4.11 ‘ 43 :
9, 4F. 02
4 2
1..1E ol.
2.36
S . ’ E 02 LB
•5rvt ( .. .TTA0Le)
,
2.4343 02
.5E ‘432
4.21 02
9,01 02
5,431 432
1,11 03
2,31 02 KG
5,00 ‘02 ‘LB
.Sir.ttI’I
2.51 2’3
5,5i. 03
4.11 03
9.21 ‘433
I4 00 433
9,30 ’@3
2.31 03 KG
5.431 03 LB
,-
5O jfljM LOSENATE
2.?,E 03
0.71 03
3.7€ .01:
H.21I11
2.11433
4,431 433 ‘
2.31 43104
5 ,43101 LB
SODIIJM £kS0MJ?
1.51 433
$ ,4 433
3.70 01
0.20 I
2,61 03
3,70 03
0.31 0$ KG
5,00 01 1.0
$OoIu” BICo 0o’i 1E
9,01 03.
2,01 04
2,00 43A ’
4.91 04
1,6104
.3,51 04
$ ‘5E.04 .KG
3 20 r 04 LB
4343
430
1,21 01
5.11 00
8,90.01
‘ ,01.41
7,80—02
3 ,B0—43E
t.?E’00
5,21.03
2,30.0? LYR
3.71.024*1.
43,81. .
4•43L.00
1.2E Q°1 B,40—43$
5, 0 4343 3.430—01
6,11—01
2.31—431
3,20.432
1.443—4 2
1,3113 1 L1043
“.,01—01 GAL
1,3101
0,01 32
2,5 0 .431
43,72 4343
181 431
8.00 1143
1,31 00
5.10—01
9,21 —00
4,20—OL.
4,431—02
2,10—02
0,7121 1.743.
1,00 4343 GAL
2 Q ’1 0$
9 .ØE ‘430
1,40.00
6,41.431
9,60 20
0,4E 20
1,1—01
8,10—02
43,90043 kG.,
1,30 043 LB
I
5.12 1143
, 432.
7,431 4343
1.430
5.40.41
3,10 01
6.9 — 2
3,10—kIt.
1 ,43
9,40 I I I GAL
r
0,51 l43
1,30 01
5 .9t 00
9,30—01
4.201
5.50 4343
2,50 43
b,7€ . 2
1.60 ‘ 3 KG
1.31 . 1 L I I
c rii
43.5€ 00
1,51111’
043
l.IE’43l
5,11 0043
1,91 01
8,11 00
1,40,430
6.20—01-
1,40 01
02
1,31—”l
6,431—432
2,51 2 1 kG
1.01 Q’l LB.
‘.11101
9,21 071
1,40 011
ó,*1—cI$
7,41 01
3,40 21
2,91—oo
1,31•431
0,31 01 06
1.0k 101 1.03
I 50 01 ,
.,81 ‘043
1.11 043
4 9E —43t
43,11 4343
0,81 430’
3,51—431
$,K1—01
1,B 4343 01k
A.1 —4 ’1 LR
iii i
5,40 ‘00
2,60 1
7,21 043
1,11 243
5.20—01
9,21 00
4,21 H
5.1 0i
2.30—431
2.7 4343
‘1,20 00 LB
— r- i
4,6E-0k)
..
1,31 01
6,11 4344
—.. -
9.b l .01
44 4
‘
7.31—01
‘331431’
,. .,
b .0 .o2
2,70—02
. . . .
2.20.22 04
9,8 .o2 1.43
.
1.AEOI
b ,51 4343
1.91 01 .
8,71 4343
1 ’.4E 4343
b,431 ’01
143.432:
4,90 431
1.?1_ I
5,61—02
i.5L\ 1 K,U
1,51 01 UI
.
43,50 0010
r
1,90 ”Ol
8 71 2110 ‘
1.4E 430
6 ,01.0k
‘ ‘,
1.11 432
‘0,91 00’
.-- 1 ,
9,81.432
‘0.51—02
- -
,3c 01 KG
1.51 01 LII
1.10 01
,5,fl 00
1,50 01
6.90043
1,10 0.43
5,00,431
1,70—01.’
i, o—ao
1,50—02
6.90.03
5,431.432 06
2.20.4343 1.03
/
T OF PREVENTION /
-RATES OF PENALTY /
H
H
li -I
0
0
-------
SUMMARY OF HARMFUL UANTITIES
AND RATES OF PENALTY FOR RIVERS
5i Otul BISULOITO
1.1€ €4
2.3€ 04
2.2€ 04
4.30 24
l.8E 64
3,90 24.
1.50 04 KG
3,20.04 LB
50!)1V l CO 1€
.
1.3€ 04
2,90 0(1
2.20 0( 1
4,90 04
0,00 04
4,90 24
1,30 04 KG
3,00 09 LB
3001UM CY*’4 1U0
S,b0 20
1,50 ol
3.10 0l
.2€ 01
1,1001
2.5€ 01
2,30 01 ‘ G
5,00.01 LW
S(mILJM OOU0CViL .
ZF 5 )LF1’ A!’€
5•30 0?
1,140 03
4.10 33
9.00 63
1,40 P13
3.1€ 03
0.30 03 KG
5,20 03 LB
SO()IUM LUU ”T ’)4
2,90 i2
6.5€ 02
4,10 (02
9,20 110
5.00—02
1,1.0 03
2 ,3E 90 KG
3,0€ 132 LB
SOflTL M M O4( ( —
BUL l ICE
‘4,’iE- 02
9,70 02
i,j€ 03
9.00 03
7,40 02
1,60 03
0.30 133 -KG
5,00 03 LB
301)1 1. 1K WYO ( 10*100
4.3€ 03
9.6€ 03
4.10 03
9,20 03
1,40 113
1.6€ 04
0.3003 KG
3,2003 1.0
SODIUM IYPOCHUORIT
9.00 ‘(0
2,40 .4!
3,10 01
8.20 01
1,60 01
3,4001
2,3F 01 KG
5,00 01 LB
SODIUM M TMy A3
5.9€ 03
1,30 04
2.2004
4,90•24
1,20 04
2,20 44
1,50 04 KG
S,2E 04 LB
SODIUM MITMITO
3.3€ oo
1.3E 2?
‘ .i€ oo
9,00 02
.5.60 02.
1.20 03
0,30 00_KG
5,20 0? LO
SOCIUM p .cJ5P ,iAT€
MD 0AS IC
3.20 04
?. €
0,20 04
4,90 44
3.40 ‘4
1,20 €3
1,50 04 KG
3.OE 04 LB
5 ’ DIUM PMOSPMATE
D10AS1C
1,90 04
4.101 0I (
2.20 04
4,90 04
3.20 04
7,40 04
1.50 04 KG
3,20 04 LB
SODIUM PHOSPPIATE
T010*stC
b ,KE 03
4,50 04
2.20 1(4
4.90 04
1,10 04
2,50 04
1,50 04 KG
3,OE 04
SODIUM SELOMITO
2,4€ 23
5.30 03
3.10 01
8.OE 01
‘4.10 03
9,00 03
2,30 01 KG
5,00 01 LB
1,10 01
3,1(0 10
1.50 01
6.7€ 00
1,00 00
4,80—01
1,00—01
4.60—1(2
1,40 .02
3.00—0? KG
1,00 41
4,10 40
1.3€ Ii
5,90 40
1.20 I I
.3,60 (9
1,40 01
6,30 60
9,60—1(4
4.50—01
1,70 —01
7 .60.02.
1,10—22
5,20—23
1.3L— 12 LB
5,00—02 KG
2,00.02 LB
1.10 01
7,90 .06
1,00 00
3,70—01
6,10 0 !
?,BE 01
0 ,20 21
9,80 00
1.8€ d l KG
8,40 06 LB
1,60 0!
7,40 00
1,20 014
5,30.01
5,50—01
2,30 .’Ot
1.80—ol
8,20.02
1, e.o1 ‘
.7.30—22 LB
1,50 11
8,90 10
2,00 01
9,20 1111
1,40 00
6,60.01
9,20 00
4,20 00
5.10—01
0,30—01.
2.16 . 10 r.
1,00 00 LB
1.5€ 41
6.9€ Ill
2.00 01
9,*E 80
1.4F 00
6,30—01
5,50—ol
0,50—01
3,40—01
1,80—21
1,60—01 KG
1 ,30—02 LB
.1,00 41.
4.70 lO
1.14€ 01
K.?E 00
9,10—61
4.40—01
5.50—01
2,50—01
3,50.22
1,80.20
1,60—ill MG
7,30.22 La
I•1E (I
3.00 0
1,50 01
6.66. 00
1,00 1(4.
4. 10. 1 )
8,10 01
3.10 01
1.5€ 0!
7,00 02
2,50 01KG
1.1€ 01 LB
1.2€ 1
5.6.0
1,60 01
7.50 00
1.2€ @0
5.30—01
1,30—01
6.10—02
2,60—02
1,20.02
4,00.02 KG
1,140—22 LB
.1.80 ‘ Ii
1.1€ 10
2.10 0!
9.40 02
.1.5E 00
6.10—01
5.30 60
2.50 00
.4,6E—c’l
2,10.01
.1,60 00, KG
7,31.01 Us
4,00 130
4,00 40
1.20 01
5,30 04
8,40.01
3,80.21
1,2E— 11
4,80.02
4,80—03
0,20—03
3,00—DO K
1.3€.o2 LB
9,40 (0
4,30 110
4 .30 01
5,70 00
9.00.01
4.10—21
1.0.0—01
4.60.02
7,60 .03
3,40—03
3.00— 0 2KG
1,30.20 LB
1,20 D l
5,30 (10
1,60 01
7.1€ 00
1.1€ 00
3.00.01
1,00—0)
4,60.02
2,30—02
1.00—1(2
3.00—22 KG
1,30—02. LB
1.40 Ill
6,20 010
1,80 01
8,20 00
1.3€ 00
5,90.01
1 .40 01
3,40 01
6,20—02
2,80.i2
2,30 01 KG
1.80 01 LB
2.20 62
4,80 00
4.1€
9.0€
1(12
Ba
• 3 • 7€-
8,20
02
02
1
2,3E 02 KG
-5.00 02 LB
H
H
C ’)
0
1,50 I I 2,10’ 01 1,50 20 9,20 02 6,90—01 2,70 00 KG
i,e€ 10 9 40 00 6,70 —01 4.00 00 -3,16.0! 1.2€ 60 LB
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY IOR RIVERS
HARMFUL QUANTITIES
/1
COST OF PREVENTION I
RATES OF PENALTY
/
/
/ MAWR IAL /
______ ___ __ __ ___ __ __ / 7 /__ ____
‘1/
1,40 01 1,61 01 1.30 00 5.51—21 5,bE—o2 1.60.01 M D
____________________ 6.00 0 8 ,20 0 l 5 ,9f.. 3 ?.5E— 1 l,btE— ? 1.3 —. 2 LII
/
L
H
H
L)
0
0• )
/
SOO1 M SULOICO
2,70 03
5 ,’ .i3
4.10 03
9.40 fdl
4,50 03
1 ,40 44
2,30 23 KG
5,01 3 (.14
‘ ,T6D’.Thjp 40D 14410
7.90 3
1.70 04
2,20 ‘40
4.90 0.4
3,30 4
2,90 04
1,50 04 i
3.00 00 L
SYCM’ I ’ . !
1,20 03
0.10 03
4.30 22
9 .OE 40
0.10 23
4,4,0 03
2,30 00 KG
5.00 02 LO
STvQO 0
9,10 2?
?,IE 03
4,10 23
9. IE 03
1,60 03
3,60 03
0.30 03 LI I
5,50 02 GAl
SIJ(.FI.RIC ACIU
5,40 23
1,20 24
‘4.10 03
9,00 ‘43
9,11 03
2,00 04
0,31 03 KG
5,00 43 LB
SULOIB MONOCIILOMIUL
3,00 ‘43
0,31 23
4.30 03
9.0! 03
6.40 3
1,40 04
0,30 03 KG
3,330 03 3.0
0,4.5—1 0C31J
(Pj ’ 4 )
40
1,31 03
4,10 02
9.00 02
4 ,00 42
1,80 03
2,3r 02 MG
5,21 02 LB
2,4.5.! ACID
( . 0TT*’Lt)
4.4€ 20
1, 10 03
0.10 02
9,00 00
8,00 02
1,40 03
2,30 02 KG
5.20 “2 ( .0
2,0,5—1 OSTL.4$
(PjP0)
7.50 02
1.61 014
4,11 03
9.00 tS
1,31 03
2,40 o 1
0,30 03 lID
5,20 .fl LB
2,4.5.1 ESIOwS
(.011*43.0)
7.50 2
1,60 3
4.10 03
9•3I 03
1.30 ‘13
2,80 43
2,30 03 kG
5,40 03 3.0
T*643C &C7LJ
3.60 03
23
4,10 03
9,40 03
2,80 03
6.10 43
2,30 03 MD
5,00 03 LB
TI (P&j0t)
1 . t 00
4.10 oO
5.10 01
3,20 03
3,10 00
6,90 00
2.30 01 MD
5.00 01 3.8
TOO (WOIT*BLO)
1,40 00
4,10 00
3,70 03
Q,?€ 01
3,10 00
6.90 00
2,30 03 kG
5,00 01 LB
TET000IMYL (.0*0
8,00 00
l, E 0*
3,70 03
4,00 01
1,30 01
3,30 01
1,90 01 LTM
5.01 00 GAL
T O IMo—OTMYl.
4 7 4CPMOSPH*1E
3,70 03
8,10 01
3,10 01
8,20 01
8,20 01
1,40 82
1,90 01 (.74
5,00 00 GAL
1,00 03
4.10 43
1,40 01
6,30 00
9.90.23
4.50—03
1,10.01
5,10—02
3,30—22
5,90—03
4 ,30—oO MD
I,50 .oO Lb
1,1! 01
.1E 03
1,30 03
6.00 00
3.30 00
4,90—0*
6.10 00
2.80 00
8,40—00
3,00—42
1,60 033 lID
8, Io —oi LB
1,20 31
4 ,70 23
1.40 01
6,30 00
9,90—31
4 ,50—31
0,41—01
1,31—01
i,10—00
2,60—02
1.20—20 3.10
2,70.0* r ,AL
9,80 48
4 ,50 06
9,90 02
4,50 06
1,30 01
5.90 20
9,30.01
4.21.01
5,51—03
2.50—01
3,30.00
1,SE—o2
1,4 ,0—21 KI
7.31.22 L I I
3,30 01
6,00 20
9.40.03
4,31.03
1,30.03
3,30—01
4,2O—0
3,60.00
0,2 (—.’l Mb
9,60.22 LB
1,10 01
5,00 03
3,50 I I
6,7k 00
1,00 00
4,80.01
1,70 00
1,70 00
0,10.01
9,11.02
1.30 410 MD
4 ,9103 Lb
1.20 01
,70 434
3,70 01
1,50 04
1,20 00
5,440—JI
5.50 00
0,50 00
3.30—71
3,41—01
1.60 00 M C
7 3L— ’1 3t)
1,10 23
5.00 03
1,51 01
6 ,70 00
3,00 00
4,60—03
3,70.01
1.10—0*
3,40—23
6.40—22
1,10.01 KG
4,91.20 (.8
1,30 01
5.80 00
3.70 01
1,80 00
1,20 00
,SE—0I
5,50—31
2.50—21
2,01—01
9,?1— 2
1,60—21 KG
7,30—00 L I I
1.40 03
6,40 02
1,90 03
6.50 00
1,30 00
6,t0.c t
9,80—01
0,401—03
8,70.02
4,01—02
2 ,90. 1 Mt.
1.30—01 (.4
1,60 “1
7,50 02
2,01 01
1,01 01
3,60 00
7,10—01
1,40 02
6,40 I I
5,60 03
0.50 @1
I,3L 41 014
2,20 01 3.0
1.81 03
6,00 06
2.30 01
1,11 01
1.70 00
7,60—01
2,10 82
9,50 01
8,20 03
3.70 0*
6,40 .‘1 KG
2.90 23 Lb
1.51 Ii
1,40 00
2.30 81
9,40 00
1.50 00
6,70.01
6,70 03
3,10 01
2.10 03
9,50 00
2.30 dl (.14
7,60 21 GAl,
3.10 01
8,90 03
1,40 I I
6,60 00
1,00 44
4,10.0*
8,30 41
3,71 01
4,60 08
2,20 I I
0,50 I I 3.14
9,10 01 GAL
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
T0440v .€9€ (PuRl)
1,51 .01
3.01—d (
3,70 01
4.20 41
2 , 61 —01
5.70.01
2.30 02 KG
c.oF ei 6
TO**PMl .E
( ..ETT*$LE)
1.51—01
i ,4r—M
3.70 41
4.21 01
2.60—41
5.7€—ol
2.30 01 KG
5.4€ 01 LB
7,91 43
1,70 (44
?,21 04
‘ 1.9€ ‘0a
1,31 00
2,90 04
1.50 44 KG
3.20 04 LB
T# ICD PO” . €’.O L
4,00 00
9.7€ 04
1.70 02
3,20 01
7,40 ‘30
1,61 01
2,30 01 KG
5,00 01 LB
T0!€Tsa . LAMI E OO
3 L ’D ’T €
9.70 22
2.3€ 3
4.10 03
0 43
1,60 .03
3.61 ‘33
2,30 03 KG
5,20 03 LB
T€TP4Y LAMI lt
3,50 03
1.70 03
0,10 03
“3
5,90 03
1,30 04
0,30 03 KG
5,00 23 LB
T0 MfTpiY AIl7Il
2.11 03
0.61 43
4.10 03
9.21 43
3,61 03
7,90 03
2,31 03 KG
5.40 05 LB
URANIUM POkOAlDO
4.70 03
1.00 44
0.21 04
4•90 0$
0.40 03
1,80 44
1.50 444 kG
3.20 04 LB
, 0 0 .VL ACOIAIE
7.00 43
l.7 .34
2.20 04
‘4.91 04
1.3€ 444
2,91 A14
1,51 04 kG
3,20 04 LB
t . (P*49L ‘AITM*Tf
6,50 03
t,4 ‘34
2,20 .94
1.90 (44
1.10 04
2.40 Pa
1.5€ 44 KG
3.20 04 LB
UPAkYL SuLFATE
5.90 03
1.3€ 04
2.21 444
(4.91 iA ’ 1
1,7 (0 04
2.00 44
1,50 04 KG
s,oo 44 LB
A,* (3 (j ’
flXY103C . LU’43QE
4,00 23
I, E 04
2.20 04
4.9€ 04
7,70 B3
1,7€ 04
1,50 04 kG
3.0w 04 LB
vA AoIuM P14104 100
2,40 03
5,30 03
‘ ,1E 03
9.00 03
‘4,10 43
9,40 03
2.30 03 kG
5,00 43 LB
VAkACYL SULFATO
2,40 03
5,31 03
‘4.10 03
9.0€ 03
4,10 03
9,41 43
2,30 03 kG
5.41 43 LB
1.6€ 01
2,20 01
9.9E 40
1,60 00
1,10 —21
6,70 41
3,10 41
1,00 03
6.10 02
2.10 01 kG
9,31 .30 LB
1.8€ 91
8 .OEOB
2.40 01
1.10 01
1,10 20
7.60—03
1.00 02
4.60 01
2,60 03
1.20 03
3.10 01 KG
3,40 01 LB
1,20 41
‘i.3E40
1.60 01
7.30 00
1.10 40
5.00—41
1.70—01
1,60—22
1,9 1—42
8,71—23
5,00—02 kG
2,2€— 2 LB
1,50 01
6,9044
2,21 01
9,20 02
1,40 02
6.60.0*
4,01 01
1,00 0$
2,30 01
1,30 0*
1,21 21 KG
5,60 00 LB
1,20 31
5,6024
1,60 01
1,40 00
1,20 00
5,30—01
5,50.21
2,50—01
1,60—01
7.10—40
1.60—01 KG
7,3t—22 LB
1,41 31
6,3024
1,60 01
6,30 00
1.3€ 00
6,00—0*
4,30—01
1,90.01
5.07—02
2,30 .41
3,31—41 kG
5.l1. .J2 LB
1.20 31
5 , E04 ’
1,61 0*
1,31 00
1.2€ 00
5,20—01
4,31—21
1,90.43
7,20—02
3,30—02
3.30—01 KG
5.71—02 LB
0.00 00
4,404(4
9.11 01
5,SEOO
1.2€ 21
5.5€ 0(4
1.2€ 01
5,3 0
8,40.01
3,00.01
1,10—01
5.17.02
2,20—42
4,91—03
3,31—22 KG
3,51—0? LB
1,50 01
1,20 20
1,10 00
5,00—4*
1.71—02
7.01—22
1.60—7(2
7,30—73
5,40—o2 KG
?.2t —o0 LB
1.00 01
7,40 40
1,20 07
5.30—01
1,7E—0$
1.6€ 02
1,90—42
4,70—03
5,40—02 KG
2.2t—02 3 -0
1.2€ 0$
5.60 B
1.6€ 0$
1.40 00
1,21 20
5,30.01
1,70—01
1, 0 0— 0 ?
2,10—02
9,61.23
5,21.82 KG
2,0E—’2 113
1,11 01 1, € 01
5.4080 6.70 00
1.01 00
4.41—41
1.11—01
5,10—22
2,31—02
1.21.22
3.30.02 KG
1,5 1—02 LB
1.3€ 01
5,91 02
1,10 01
7,90 84
1.21 40
5.61—01
9,21—01
4,21—01
5 ,20—02
2,40.22
0,7 —3i ‘G
1,21—01 Lb
1,30 01
0,1004
1.80 01
8,10 02
1,30 00
5,60—01
9,20.01
4,20—21
5,20.02
2,41—02
2,71.01 KG
1,20.01 LB
T0LUF E
1,10 03 4.10 03 2,40 43 2.11 03 1.76 1.21 01 1.6€ 01 1.31 80 2.41—21 9,01—42 7,20.22 114
444 4.40 414 449K 1144 0?GaL 5,00 04’ 7,20 00 5,11.01 1,11—01 4,41—22 2,70—01 GAL
H
H
Ii . ’
1..)
0
(I )
-------
SUMMARY OF HARMFUL QJANTITIES
AND RATES OF PENALTY FJR RIVERS
9.7€ 22
2.11 .iI
4.31 LI
4 ,OE 83
1,81 03
3.6k 13
0.11 03 LTP
0.91 8? GAL
XYLE .DL
i ..-’’ 05
3. 1 3
.3€ 03
9.01 ,S
2.11 o3
5,91 ‘13
2.11 73 L 4
5.51 7
ZL.77A (PUOl)
4,91 2
1,11 03
o , E 03
83
8,31 02
1.81 03
2,31 03 KG
5.01 03 LB
ZECt A’ . (OKiTABLE)
4,91 ‘?
1.1€ 3
4.11 03
9,71 03
0.5k. 02
1 .8 03
2.31 113 (
5,01 03 LB
Z .C 4(11”!
1,01 03
10
4.1€ 03
• .i1 03
3,11 3
8.91 3
2,31 23 KG
5.2€ LB
L’ C 4 (‘.11)”
C Lt 1
1,41 03
3,8! 03
4.10 3
9.21 23
2,01 03
8.1€ 03
2,31 03
5,01 03 LB
L7. C MJCHROMAT !
? ,A€ o3
6.21 03
4,11 “1
4.8! 03
0.01 03
1.81 84
2,31 03 KG
5.2! 5 LO
ZT .C tkjOATE
1.1€ 03
. 1,31 03
4.11 03
‘4.01 03
1,81 03
1,97. 713
2,3! 03 KG
3,01 03 LB
£1.C J”I E
1,91 03
J3
4. 1€ 3
‘4.0€ OS
3,21 03
1.01 03
2,31 743 KG
5 ,oF 03 LB
Z1 ’.C C4980 ’ .* !1
1.11 03
2.31 03
4,11 03
i•0€ 83
1,81 03
3.91 03
2,51 05 KG
5.71 03 LB
zi ’.c C”LO4ID7.
1,11 03
0,51 . 13
4.11 03
4,01 05
3,91 03
4.31 ‘13
2,31 03 KG
5,01 03 LB
ZP.C CIAPlIJE
7,91 110
1.71 .11
3.11 01
9.21 01
1.31 01
2.31 01 KG
LB
lI’ C uBlOt
6 ,l€ 4
l .4€ 23
“.1! 03
9,11 03
I,’ 1 03
2.31 03
2,3! 03 KG
5,01 03 LB
Z1t C IDO ”ATE
1,31 113
2,97. 113
0.11 03
9,21 03
2,21 03
4,91 03
2,31 03 KG
5,01 03 LB
1.31 113
s.9E 00
3,71 01
1,91 00
1,21 00
5.71—01
0,31—01
1.91—It
1,11—81
0,21.00
1.3E—c ’3 LIP
o .RE —01 GAL
3,01 71
OL
1.6€ 01
7,31 00
1.21 00
5.01—01
5,51—21
2.51—01
9.51.82
0,3€ — 2
3,6€.Ot ITO
8.1t— .1 GAL
1,21 01
5,51 110
1,61 01
7,31 00
1.1€ 00
5,21—01
6,11—21
2.81—01
2,11—711
9,51—20
1,81.81 KG
0,21.00 B
1 4E 01
6,51 07’
1,91 01
8 ,11 20
3,441 00
6,01 —03
9.01.01
4,21—81
3,11.71
t,441—c’l
2.71.21 KG
1,20—01 10
1,41 01
00
1,91 01
8.41 00
1.3€ 00
6. .’E —11t
9,21—21
4.21.01
6,81—20
1,31.02
2,71—01 47,
l.2t.01 L I I
0,0100
(4.01 00
1,2101
5,31 02
8,41—01
3,81.01
9,21—23
0,21.01
7 1t4 ’0
3,51—72
2 .lt.01 KG
1.21—01 18
1.0€ 01
3,51 00
3•Af 81
7.41 07
1.21 00
,3!—0t
6,11—21
2,81—01
4.51—12
0,81—02
I.0E—.’l Kr.
5,21—0? LB
1,41 01
b,5( 00
1.91 21
8 ,71 00
1,41 00
6,21—731
9,21—01
‘4,21—03
1 ,21—01
5.4€—4’2
0.71—21 4(.
1.21— .1 LB
1,51 01
6.91 02
0.81 01
‘4.21 02
1.41 00
6.61—01
9.21—01
4,21—21
6,71.70
3.01.02
2,71.03 KG
1,21—21 LB
08
4,01 00
1,?! ‘11
‘,,3€ 20
8,41.01
3,81—0*
1.11—01
2.0€ —”I
9,81—00
a,a —o
1.81—01 KG
B.2 —Jd LB
1,51 81
4,71 071
2,01 01
0.91 20
1.41 02
f, ,3E—01
9.OE—21
4,21—01
1.11—81
5,01—02
2,71—21 Kb
1,21—21 LB
1,4! 01
6,51 80
1.91 01
0,11 00
1.41 04
6.21—01
6.11 01
2.81 01
1,31 03
5,91 02
1.81 01 KG
0,41 00 1.8
1.0€ 01
6,61 00
1,91 81
0,81 00
1,01 02
6,31—03
4 ,20.8*
4.21—01
2,01—713
9,31.02
2 ,11.03 KG
1,21—ot Lb
3.41 01
6,41 00
1.91 01
0,51 00
1,31 02
6.11.01
9,21.01
0,21.01
9,61—02
4,31—02
2.11—01 KG
3,21.21 LB
VT” YL ACf7 11 1,98 0? 4.11 1.3€ 83 2.1€ LIP
1.11 03 9,21 03 2,91 03 3,51 82 GAL
I
7 13
I • 31
21
3,71
1. 4€
21
H
H
F
C)
1.21 00
08
7, 31—01
5. 31.21
3,91—01
8,8 1—7 1
0,21.01 LIP
$,01..’1 GAL
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR RIVERS
lP C ‘IlYkati
2,51 11$
3,51 03
41.1€ 03
9.o€ os
4.21 03
9,31 03
2,31 03 KG
5,0 ! 03 L
Z1’.C P0 4* f,*NA7
3 ,5 oi
1,bI ‘3
4,%E 03
Q.Y€ 3
5,91 03
2.3€ 04
2.31 03 KG
5.04 03 LB
hOC P’€ ’L.
St.JL7O &7€
4,71 03
1,71 44
2.21 4;
11,91 I I;
0,41 43
1.71 04
2.51 44 KG
3,21 04
ZIOC Pn 5P .,*0E
7,51 02
2.4€ 23
4,21 03
9.01 03
2,31 03
2,81 03
2 ,34 93 gG
5,01 43 Lb
£Z ..C •IJTASSIU ,1
C .i4 .KT1
3.21 03
7.0€ 3
4.24 03
9. E 43
3 1f,43
1,21 04
2.31 05
1.2! 3 LB
hOC P rIPIn . .AD
‘.€ 05
4, I€ 05
4.1€ s
9.01 93
3.1$1 03
6,71 03
2.51 143 KG
5,01 03 LB
ZIOC SILICOFL000II)I
2,71 03
5. 1 03
4,21 93
9.1.1 03
4,51 03
2.01 00
2,31 03 KG
5,41 03
ZJ ’.C 5.JL !*T€
4,44 43
1.31 03
4.11 05
9.01 03
4.11 03
9,01 03
0,31 43 KG
5.01 43 LB
ZIOCC’41U0 £CETA7E
1.31 24
3.01 04
2.21 24
041
2,31 04
1,11 04
1.51 04 Kr.
5.21 244 LB
Z1wCo ’ I io 0 11 144T€
2.411 04
5,21 04
2.21 00
4,94 44
4.21 04
8,91 04
1,51 44 KG
3,21 04 L
110C0 .I .J ” OKY.
CMLC411 €
4,21 04
9.41€ 1.4
2.21 40
4.9€ 40
7,21 04
1.61 05
1,51 04 KG
3.21 04 LB
ZZ’ Ce ’ Ius POTaSSIUM
FLU’ -1
3,21 00
7,01 02
4,11 02
9 .01 02
5,41 02
2,21 03
2,31 02 KG
5,01 02 LB
ZI0Co 1UM auLrATl
2 ,01 04
4,31 04
2.21 04
4,91 04
3,31 04
7,31 0*
1,54 04 KG
5,21 44 LB
ZIOCOKIUM 1170*.
CH o0 E
6,41 03
1,01 44
4.11 03
9,01 03
1,11 04
2,41 04
2.31 03 KG
5.01 03 LB
1,01 4*
j120
2.31 01
5.9r.00
2,3! 02
1,4700
1,61 01
p.31 00
1,31 00
..0E —4j
9,21—01
4 .2E— , 1
5, ,€—oo
2.3f— 2
2.11—4* KG
i. .2E—J1 LO
1,71 01
1 ,91 90
1,21 40
5,61.01
9,21—01
4,21—01
3,61—02
1.41.r 2
2,71.01 KG
1.01.01 LB
1,71 I I
1,81 00
1.PE 04
5,51—01
2,71—41
1, 1 .1—02
2,71. ’2
1.21.00
5.21.02 KG
?.2L . 2 LB
1,31 0*
6,O’K4
2,81 21
0.01 00
1,31 00
5.71—01
6,11—0*
2.01.0*
1,41.21
6,51—02
2,01.01 KG
0.71.0? LB
l ,1 4*
5.2 02
1,51 0*
4,91 00
1,11 00
5.01—41
6.11—01
2 ,01—01
3,1—02
1.5!—”?
l ,431..’l KG
M.?1. 1? LB
1 ,4k 0*
6,31&$
1.04 41
0,31 44
1.51 00
6 ,01.91
4..’L—OI
4,21—0*
1 ,0E. .’
3.21—02
‘,l€—2I KG
2,21—01 10
I.3 0*
00
1,81 01
0,11 00
1.31 04
5.81—141
9,21—02
0.21.21
4,11.00
2,1L— 2
2,11—21 KG
l,0€. I LB
1,41 4*
6,4 02
1,91 01
4,51 00
1.31 00
6,21—01
9.21—0$
4.21—01
5,21.02
2,41—142
2,71.41 KG
I.2E. ’I LB
l ,0 01
4,7.00
2,41 41
,30 00
9.41—41
4,31—21
2,11.01
7, 1—22
9.31—03
4,21—03
5.. 1—02 KG
2.oL— .•o LO
8,81 44
s,or.oo
1,21 01
,31 00
8,41—01
3,81—0*
1,71—41
7,61—1,2
5,31.03
0,41—13
5.141—22 KG
2,01.22 LB
8,81 00
4,41,04
1,21 41
5,31 00
0,41 —41
3,41.01
1,11.42
7.81—02
3,01.03
1.31.143
5,01.42 KG
?.2E— 2 10
l , . 01
j 40
0,01 01
9,21 00
1,41 00
4,61—71
9,21 08
4,21 00
4, 1—01
2,41—01
2,11 00 KG
I , ? ! 00 LB
00
4,2104
1,21 01
3.61 00
6,71.0*
4,01—41
1.11.0*
1,61—02
b,4€1’3
2,91.73
S,0€—442 K4
2,21.02 LB
1,21 01
5,5*00
1,61 41
7,31 09
2,21 40
5,21.41
9,21—0*
0,21.0*
2,01.02
9,01.03
2,71.01 KG
2 ,21— 1* LB
1,71 03 4,11 5 2.41 03 2,31 03 KG
3•17 03 ,1,4 143 6,21 03 3.07 P3 Lfl
H
I— I
Il l
01
1,’1 21 1,81 4* 1,31 20 9,21—41 7,51—02 2.11.31 KG
6.37 0 1* 43.3! 20 4. 4 !.4t “— 41I 0.’ I .)F..1I I i i
-------
TABLE N-3
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENA.TY FOR ESTUARIES
ACETIC AC!’
6,90 44
, .IE 05
0.70 05
9E .43
1.60 03
3.40
2, ,0 05 LTR
5,50 012
ACETIC *4 ).42(
7.40 Oa
1,70 01%
0 .1€ 113
5.911 113
1.4€ 03
113
GAf
2.10 03 LT0
AtETO’ E CYMYnR1.
3.40 u 3
3,20 05
0.10 115
5.90 I ’ S
2 .4€ 03
,if 04
‘i,5F GAL
2, IF 93 LI lA
5,50 42 GAL
000SVI, OiAOPiTOE
1,Q 46
4,10 116
1.5€ 04
3.20 04
3,30 o4
7,00 o4
0.50 04 LTO
4.00 03
£COTYL CIALn4IQO
1.30 06
0.R0 116
1.50 04
3.20 04
2.30 04
5.00 134
1,50 04 1 . 1 W
03
AC4CLE I 2
3.50 0?
3.uE 92
0.40 111
5.40 110
0,70 0114
5.90 00
1.90 01 1.00
5,00 1111 GA
ACQYLOP. ITRZLE
6.10 .34
1.3€ 45
0.70 03
,.90 43
1,01. 03
2 ,4E 43
2,10 63 1.10
112
£r IPo4 T,lj
2.30 116
5 . 0 OF,
1,50 04
0.00 04
4.00 04
01.40 04
GAL
1,50 04 1.T
4,00 03 GAL
ALo p CPUAAO)
6,90
1.50 110
2.40 01
.4( OS
1,20 (111
0,70 4.11
o ,so 01 K .
3,00 02 1.14
AL AIW C . .ETTAI3LE)
6,9€ os
1,50 212
0.40 01
,a( (31
1,20 04
2,70 0101
2,30 01 KG
5,00 (31 LB
ALLYL ALCOOr1L
1,00 114
3.10 44
2,70 00
, ,9 140
2,40 ( ‘2
5.30 02
2,10 13? 1.111
5.50 Oh GAL
ALLYL CsLOWIOO
6.7€ 03 ‘.70 02
,50 04 130
0,00 442
0?
2.10 02 LIR
ALUMI . .M ‘LUGOIDE
5.50 05 1.50 04
1.20 116 3.20 014
9,10 03
2.11. 04
3,50 GAL
1,50 04 hOG
3.20 44 L I I
ALtJM! ’4u4 SULrAlO
6.90 45 1,50 04
1,50 26 3.20 04
1,00 04
2.70 04
1,50 0* ‘(8
3.20 •a L
1.1€
1,10
I .01 0
4111
01
1,40 01
1,OE 40
6,40—41
5,10—01
2.60.01 110
-
0*
d(’
2,4! 01
.b(0*
1.00 64
3 , E—41
8 .40—01
2.30—01
‘2.80—01
‘.10—01 GAL
1.60.01 LIR
- (‘
1,30 111
4 , E 001
5,60 01
4.bE—01
l.3 00
3.80—01
1.40 0111
9,20.01
?.1E—91
..I€—?I GAL
0,50—01 ITO
11,80 0143
$ .3 1111
1,20 01
5.90—OS
8,40.01
b.0E— t
1,90—01
1.20—01
0,60—02
4 ,5 0—70 GAL
3,60—02 1.14
,4E €@
7.90 00
5.30 00
2,20 01
3.80—21
8.50—01
8,4E, .22
1,50.01
1,22—02
3.70—92
l,4t—. l GAL
3.11E—o2 LIP
,110 00
1,8E 01
3.40 00
2,40 01
3.90—11*
1.10 Ed
7.00—02
b,20 01
1,7€— 0
2.50 430
t.IL— 5 GAL
2.20 41 LTR
t, E 444
1,20 15
40 02
1,20 01
1,61 00
7.20 00
7,1 .0—01
1,10 00
2,431 01
1.440 00
1,10 s o
6,10.01
4,70 (‘5 GA
2.00.01 LTR
8.80 (‘0
(.OL 00
1.20 OIl
5,30 011
8,40—01
3,80—81
4.10—01
1.20—01
5,50—02
2.010—01
1,60—02
7,50—01 GAL
2.30—.i2 LTR
1.80 01
4.40 00
1,90 111
,40 09
1.30 00
h .r.(’5
3.40 l’0
1.50 02
7,50—03
2,80 03
b,30 02
9,70 90 GAL
8.00 02 kG
1,80 01
4.00 00
2,40 01
2,20 02
1.7€ 00
7.60.01
3,70 42
1,10 113
141
7•at 01 kt.
1,50 111
4,90 2414
2,00 01
9.00 00
1.5€ 00
8,60—01
5.60 00
4,90 0?
0 ,10 00
.I€ 01 1.44
1,11 00 LIP
1,50 ( I 5
,9€ 0
0 ,110 01
9.2€ 00
1.40 1111
6.60—01
R,af 2411
1.20 09
1.91 110
4.10 00 GAL
1,80 00 LIR
1.1€ 01
5,50 85
1,10 08
3.80 00
3.10—ot
6,40—01
1,10.01
‘.t0 1171 GAL
5.90—02 KG
8,80 46
1,10 0* 2,50 0*
i,00 SO 80
4.430—01
5.00 00
1,40—01
3,10—01
14 ,90—90 .‘,7 —00 LO
6.60.00 5,91 —92 kG
45 ,,7f 113 3.40 03 2.10 441 LIR
5 .9F. 03 1.50 04 5_sO .40
I
H
H
( . 4- )
0
—4
,60 04 2,30 01 9,30—01
5.90 1144 4_?F.01
0,40—1 31
1.3 1—01
I • 20—0*
4. 10.71
L I I I
r.AL
-------
H
H
Ii. ’
0
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
HARMFUL QUANTITIES RATES OF PENALTY . 7 /
, /
/ MATERIAL / _____
//: // / COST OF PREVENTION
AMIOlIA
a.SE al
2.1€ 444
44 .1€ 4444
• .9f p
1,70 02
j ,f €
2.30 044 AG
5 ’! 02
A( ,I4 l ACETATE
6,60 45
1,50 e .
1.50 414
3 .410 00
1.41€ 04
2.5€ 04
1,30 04 KG
3.20 44 LA
AM 1L4
ee zoATI
1.20 446
2.10 446
1, € 414
3,444 04
1,10 44
4.A€ 414
j, 0 04 AG
3,441 04 L 4
1 ’
B1C AT(
ô ,7 Ie
•5E IS
1 ,V€ €3
.90 03
1,20 i
2,60 443
2,30 443 kG
5.40 443 LB
.M.,o, ii i
h1C. C T(
3.30 445
7,70 445
L.SP 0
3.2€ 44
6,24 V ’S
0.30 214
2.50 44 AG
5.20 44 LB
£ ‘ a1t.t ll
1 L.I W1 €
44.00 419
,tl. S
2.80 44
3,20 4 .e
0,90 411
1,10 04
1.10 414 AG
3.20 04 LB
AM S3 1UM BISJLFITE
9•PF AS
44,20
1.5€ 04
3.2€ Ba
2.7€ 414
5,00 €4
2.51. 04 AG
3.440 444 L I I
AWMfl TLJl BwOlIuE
3,10 444
6,70 414
2,70 443
3 ,90 0$
5.30 442
2.44€ 3
2.30 03 ‘(G
5.411- 03 LB
*M .IQ dul CAAI,& ’ATE
2,50 444
5,50 .44
44.70 412
5•9f 444
4, € 442
9.40 4144
2.30 412 AG
5.0€ 02 LB
aw O 4ij” C 41 ’s’2.A7E
Q ,7 [ 444
2.1€ 415
1.5 G’
3.20 0”
1.10 413
3,14 443
1.50 44 kG
3 ,20 oo LB
al’rll 1V C ,i 1l)
2.7€ 444
3,70 44
. .?€ Q 1
s,90 02
2,90 V 2
6. 14€ 452
2.50 02
5,440 4444 LB
1MM 1 .I4jM CP ’ Q9AT0
6.7€ 05
.
1.50 44
3.20 424
1,20 04
2 .60 424
2,50 04 AG
3.21 1 14 L
aOV.lt .,4 GITKATO,
9,90 .35
2,20 04
1.50 04
3.20 44
1.70 424
3,00 04
2.50 414 AG
5.20 64 LB
A;441V ’1L ’
F LU 4L.4&Tt
3,30 444
7,30 444
2.70 43
5,90 0$
3 ,40 0?
1,30 43
44.30 03 AG
5•440 L
0M410P4.IU M OLU41RZD€
2.20 06
1.50 04
3.2€ 04
9 ,70 03
2.10 04
2.50 04 AG
3.20 04 .0
1.60 412
7,20 .113
2,10 01
4,10 2 3
1.50 412
1 .00 —412
3,60 00
44 ,BL 44
4.20 41 i
1.1 1€ 4’
0.10 .3k ’ P. .
4 9V I 41’
t ,IE 01
5.21 4144
1.50 411
4.60 44
1.20 03
4.81.441
1.51—412
7.40—442
5,00—244
2 ,4E — 44
3,tF.i’2 KG
5.30.412 Lb
9,30 044
4,440 4441
1.20 01
¶i .7E 410
6,0E 0t
4,440 —441
1.90.01
B,6L—. 2
4,01—4144
1 .B1• ’ 44
3,60.442 KG
L,Bt.412 LB
1.40 411
6,50 4144
1,90 01
0.70 4444
1.40 80
6.20—442
1,00 00
4.70—01
T,2 € ’lli
3 .4I—l ’l
2,Kt 442 KG
9 .410.421 441
1.441 441
5,70 40
1.10. 01
7,50 00
1.410 4244
5.40.412
1.90—41
0,11—02
1.4E l ’1
b .212 ’2
3,60.442 KG
2.40—02 Lb
8,6t..’2 41.
1.20 412
5,70 4441
1.10 02
7,50 €44
2,444 1141
5.40—411
2,90 ’l
8,60 .02
l.70s’l
7,90—4144
1.6L.z 2 Lb
2.41€ 1
45k ’
1,30 01
6.00 00
9.5€441
4,30—141
1.90—01
6,60—02
4441
4 ,Qf—.2
2.20—412
1.60 ‘.‘
8,f .t—.2
l. ’E ’412 Lt’
? ,‘0—441 AG
1,50 411
4,90 1ib
44.00 01
9,20 40
1.40 4144
b,b ’4 1
4.7L— I
7.11. . l
9,410—4444 LA
4441 Kr .;
1.6€ 01
1,10 4144
2,20 01
9,40 4144
1.50 00
S.1f— 1
00
i. € 01
4,70 4’2
1.91
8.70—412
4,91—71
9,01.4’l LI
3.81.442 KG
1.40 01
b .S 4141
1,90 01
A.Bt. 344
1.40
‘ ,.IE—21
41.40—442
411
2.20—412
2,91 1 .
1.60—412 L I 4
2,411 4441 AG
1,t € 01
7.1€
2.10 411
9,40 4444
41
1.50
4.70.412
1.410 40
9.7€ 4444
1.90—21
1.3€ 41.
7.20—417
9,71—01 LII
3,60.72 KG
1.10 441
5,00 00
2,50
6,74 441
4,00.441
4.00•01
8,40—4 ’?
2.90—441
i.30—”44
4,80—4144
1.61.412 Lb
3.60.12 kG
6,00 4142
•,440 041
1.20
3.30 4144
3.80—01
8.4E—442
2,20—412
1.11—4444 Lb
KG
1,50 411
6,90 043
2,440 01
9,20 4441
1.40 .344
4. 50— 01
1.L E 77
4 .7t—Q’l
2.40
6,50 .21
2,01.412
9.431.422 LII
2.10 01
5,10 044
1.50 41
6,64 00
2.10 00
4,90.02
1.90—21
6,60.442
4,40.044
3,90.4144
3,60.4?
1,60.044 LB
-------
SUMMARY OF HA MFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUAR IES
£ .ttl
#vPcPh.’)5p., ITE
2.6€ 20
5.7€
2.71 00
‘ .,91 90
4.6€ 02
1.01 03
2,31 02 kG
5,21 02 L I I
A .IL” I)1 1
2G
9. € 04
,IE 03
5.91 I3
7.81 02
1.71 03
2.31 03 KG
5 . € 03 LA
AMfrONILJM MULyt3 ,At1
3,11 00
,71 44e
2.71 43
,91 OS
5.31 02
1,21 03
2,31 S ‘G
5,01 03 Lb
* 4()\1UM 4 W4T
2.A1 44
S. AE 44
0,71 0?
5,91 02
0,31 00
9.51 02
0,31 oo
S .OF 00 LB
A$vQkflM 000L&T1
4.1€ OS
1,31 26
1.51 24
3, E Oo
1.1€ 94
?,3€ 20
l.SE 04 KG
3.21 44 LA
AMM0 4U
p 1. a, r) (Ay €
8,31 20
1.41 .45
2,71 43
5.91 03
1,51 23
3•’€ 03
2.31 03 KG
S•21 43 LB
J’ 1 (j ’
P IPSULFAT€
3.6€ 00
7,91 94
2 ,11 03
5.91 03
4,31 22
1.41 03
?,3€ 03 KG
5,01 03 LA
A ” )’fl
S ILTC3FLUO OJO €
1.4€ 05
3.11 05
2.71 03
5,91 05
2,41 03
5,31 os
2,31 43 KG
5,01 3 Lb
SOLO
5.6€ OS
L € 46
1.51 44
5.01 4
9,91 23
2,21 24
1.51. 04 G
3.21 04 Lb
A $U . L”4 SULFATE
2,2E 00
0.91 44
2.7€ 02
5.91 02
3,91 02
8,61 02
2,31 02 KG
S,Y€ 40 LB
A M IL SULIIOE
6.9€ 45
1,51 46
1.51 44
1.01 04
1.2€ 04
2.1 1 44
1,51 04 KG
3.21 4 LA
AMMO !uM SULFITE
,7E OS
1.51 06
1.51 04
3.2€ 04
1.2€ 04
2.6€ 00
1.5€ 44 KG
3.21 04 LB
AM IONIuM 7601441€
7,91 05
1.1€ 06
1.51 04
4,21 04
1,4E04
3.0€ 04
1.51 04 KG
3,21 04 LB
1.51 91
6,91 02
2,01 81
9.1€ 00
1.41 00
6,51—41
1.9€ 01
9,71 00
1,81 44
8.0 —41
2.01 04 06
0.41—41 1.8
1,51 01
6,91 40
2,01 21
9,11 00
1.4€ 00
6.51—01
1,21 00
.7€—91
6,61—01
3,91—21
2.01—41 00
9.91—02 LB
1,51 01
6.7€ 22
2,01 01
9.01 00
1.41 00
6,41.01
1.71 90
4.71—01
1,31 00
5.71—41
2.. 101 KG
9.01.22 10
41
7,91 04
2,11 01
9,41 00
1.51 24
6.71—0*
1.01 .11
4.71 00
1.’?1 20
8.81 ”4I
2,’ 20
9.01.01 LB
9,21 00
4,21 00
1.11 01
5,61 00
8.71—01
4,21—01
1.91—21
8 , t—42
1.91—22
3,41.42
5. 1—o2 KG
1,41—02 LB
1,41 01
6.2€ 10
1,01 01
5.21 0(
1.31 02
5.91—01
1.01 22
‘4.71—41
5,01—21
4,b —21
2. 71— 21 kG
9.’102 LB
1.51 01
6.61 40
1.91 0*
0.81 00
1,41 02
6.31—01
1.41 00
4.71—41
1.1€ 04
4 ,8 1— r I
2.it—21 KG
9,(’€.02 8
1.4€ 21
6,21 00
1.0€ 01
8.31 @0
1,31 00
5.91.01
1,41 071
4.11.2*
3,SE.01
1 .61. 21
2.01—0* 00
9.01.2? LB
1.21 01
S,3E 02
1.51 01
7,41 00
1.11 00
5,41—01
1.91—41
8,61—22
6,51—02
3,31—
3.61—02 KG
1,61—00 Lb
1,51 I I I
6,51 (49
2,41 01
9,01 20
1.4€ 00
6.51—01
1 71E 21
4,11 00
2.21 40
9.81—01
2,21 00 KG
9, €.41 Lb
1.1€ 01
5.01 02
1,51 @1
6,71 0(4
1.01 00
4,81.01
1,91—01
5.41—02
1,01.40
5,21—02
3,81.42 KG
1,61.02 Lb
1.11 21
5.01 00
1.51 01
6.11 02
1,21 00
4,81.01
1.91—21
8 ,61.02
1,21—00
3,31—0?
3.61—02 00
1.81—02 LB
6.OE 00
.6,01 00
1.2€ 01
5,31 08
8.41.01
3,81—0*
1.91—21
8,61—02
6,11—22
2,01.00
3,41—02 kG
1,61.02 LB
2,11
I-I
1-1
l i . 3
I- ,)
w
43
00
L I I
GAl
1.51 01
6.11 0
1,41 4’
F ’ • 3€— “I 1
1,21 00
4.70—41
9, 01 —21
4. (1.21
O • 01—01
LT
GAL
-------
H
H
I .1
I- .
0
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
COST OF PREVENTION
7/ ’
/// IGNATED / HARMFUL QUANTITIES RATES OF PENALTY
MATER IAL / s/y( 4 t ,/J /& s / i ’ / ff/
/
AP. U tv4
3U C & 41€
3,20 05
i ,%it oS
1.50 04
3,20 o’
5,50 03
.01 74
1,50 04 06
3.20 44 1.8
AM’i .I JM
¶CS L0&TE
1.30 153
1.00 OP.
1.50 l’l
6,20 44
1.31 04
2,80 04
1 . 04 OG
3,20 04 LB
AMYL £ EIA7E
1.S 35
3.00 05
0.10 04
5. E 23
? P.E 03
5,70 03
2,10 03 LI
5.50 4
A ’4IL! ’ 0
3.10 44
P. ,1 04
2,70 03
5,90 43
5,30 02
1 21 03
0,10 03 1.10
ATi OP Y
PC0Y4C .4L 6 1 5I(, !
6,10 04
1,30 O
2,71 03
5.)L IU
1.11 03
2 Q0 03
2,30 43 06
5,20 43 LB
£ ‘it!’O Y
PENTA O LUO O IU O
4,40 444
9.00 04
2,70 03
5.90 06
7,80 02
1 ,10 03
2.30 03 P.C
5. 0 43 LB
POTAS5IUM
T A OT OAT O
8,90 04
05
2,70 153
5,90 03
1,00 03
3,41 .63
2,30 03 06
5.20 03 1.0
¼ 1LP JV
?0T ( M1OE
1,50 04
1,70 45
2.10 os
5,90 03
1 .3t o3
?.90 63
2.30 03 i(C
5.20 03 1.8
* PT1 ’CDV
T o C.lLO4Iu 0
4,10 04
1,00 65
2,70 03
,,9E 03
0,30 42
1,80 3
?.3O Os P.C
5,00 03 1.0
* T1 POhY
IqL rThTl
3,60 04
7,90 .64
. .71 03
5,91 03
6,31 02
j ,lf 03
2.30 03 OG
5,20 03 LB
* .,7j l1P.Y
TRIIOOZuO
1.20 03
2.31 05
2.10 03
5,90 03
1.00 03
4,00 43
2.30 03 kG
5,00 03 LB
*P 1t0O .Y TWIOXIflO
2 ,80 .65
6,10 .65
1.50 04
0.20 04
4,90 03
1.10 44
1.50 04 kG
3,20 44 1.8
AR50?4C aClO
1,21 04
2,60 04
.1, 40 01
5.40 01
0 ,1 1 42
4,60 02
1,91 0* 1.10
5,150 00 CAL
£R3€P .IC 02SU1.FI 0
1.11 04
2,40 04
0.40 &
5,40 01
1,90 02
4,30 02
2,30 0* kG
5.00 01 1.15
ARS0P.IC PEP.1 0XIDE
1.70 04
3 ,70 04
2.40 00
5,40 01
2,90 02
6,40 U
2,30 I I IC
5.00 S I 1.0
1,50 41
5, 160 00
1,70 01
7,70 00
1.20 02
5,50—00
1,90—0*
0,60—02
1,20.0*
5,30.02
3.60.02 KG
1,60.42 LB
1,20 01
00
1,51 01
6,60 00
1,b ’E 00
4.70.00
1,90—21
8.60—02
5,20—4’0
2,40.02
3.40.40 KU
1,61.2? LB
1.00 21
4,70 00
1.10 01
0,30 0?
9.80—01
4,50.00
4 .10—0*
2.10—20
I.9( —l ’I
8,5020
4,00.02 LIR
3.40.00 GAL
2,20 01
3,30 00
1,60 01
7,10 00
1,10 0
5.20—00
0,40—2*
3,80—01
1,40 7.4
7, 11.71
1,40—0* LT0
0.10—01 CAL
1.50 131
S,90 00
2,40 0*
9,10 40
1,40 02
6,51.41
2.70 00
1,11—0*
9 ,10 .71
4 ,404’1
3,21.0* KG
l ,5L•4I LB
1,50 01
20
2,00 01
4.90 00
1.40 00
6,30—21
1,70 00
7,71—22
1,30 0.1
0,10—7*
3.00—0* KG
1.51.21 1.15
1,50 01
1,60 00
1,90 01
8 ,80 00
1.40 02
6.31—0*
1.10 02
7,70—0*
671 —71
3,21—21 KG
1.51.21 2.15
1,60 01
1.10 04
2.10 01
Q ,4( 04
1,50 00
6.10—71
1,71 00
1.11—0*
0,91.71
5 61—01
3,00—01 KG
1,51.01 LB
1,50 01
00
2,00 I I
9,20 20
1.40 0.1
6.50—131
0.70 00
7,70.01
1,31 21
3,10.01
3.20—41 KG
1,50—OS LII
2,50 01
Go
2,00 21
9,20 00
1,440 02
6,60—01
1,71 20
7,10—21
1,60 1’’
7,51.21
3.20.01 KG
1,50.31 LB
,2t. 61 KG
1,40 0*
00
2,90 01
0.60 00
1,40 20
6,10—21
1.70
1.70—01
S,00.(’l
0,600*
1.50.2* Lb
KG
1,30 41
,,1! 00
I ,? ! 01
1,61 02
1,20 40
5. ’001
3.10—il
l.’lL—0l
2, 101’1
9,70—02
5,91.02
0,71.22 1.16
1,60 01
‘.1! 00
0,10 01
9,51 20
1,51 22
6,80.2*
1.90 72
0.41 01
9.4’0 0.1
2,30 1’.’
0,70 01 LI 4
2.41 22 CAL
1,11 45
,,20 00
1,60 I I
8,30 40
0,30 00
5,90.01
1,51 02
1,00 41
3,00 00
2.50 00
3.10 01 KG
1.40 01 LB
,60 01
‘.10 04
2,10 01
9,50 00
1.50 04
6.00.01
1,90 02
0,41 II
3,60 64
1,40 42
3,70 05 KG
1.71 0* LB
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
£OSr,.1c TQ .
Ur.4I 1 €
1,71 04
3,11 4
2.40 41
5.41 01
2.91 e
6,41 02
2,30 0* KG
5 ’€ 0 .0
£Q$E . !C 791.
IU( i *i)€
5,01 i4
1,1€ 5
2,40 01
5,40 41
8,70 0?
1,90 03
2,30 01
5,ol 41 LB
£“Sf’ !C i4j!)*XUI
1.10 04
2.01 G
2.41 SI
S_4 01
1,91 8?
4.21 £ 12
2,31 01 00
5.01 01 LB
A S1 I T0X5’JLPTD€
1.41 04
3.10 04
.41 01
5,41 ‘il
2,40 oa
5.30 82
2.30 01 KG
5 ,dE 0* LB
S.ZE ’ E
3.81 04
1.3€ 25
2,71 443
5.90 43
1.01 03
2,20 03
2.10 43 LI I
5,50 02 GAl
81 ’dzoZC AC!!)
5.00 05
1,10 46
1.51 04
3.21 04
4,10 03
1.9€ 04
1,50 00 LI
4.b !E 143 Ga
B 20611911€
2.2E 05
4,80 45
?.7E 03
..qE £13
3,81 03
0,31 03
2.30 03 KG
5,AF 03 l.FI
b€P Z0Yl. CHLO6IU€
2,60 0 .
5,11 446
1,50 44
3.20 04
4.6€ 04
1.401 05
1,50 04 LT
4 ,00 43 GA]
bE .Z t. C .D 1oE
404
5.21 06
1.50 144
3.20 04
4,10 444
9.441 04
1.50 44 LYR
4.0003 GAL
IIOYLLIUM CML’)O!OE
3.1€ as
4,10 05
1 .sE aa
3,21 40
4,5 [ 03
I. E 04
I,51 04 KG
5,20 04 LB
8€OYLLIW . FLUO#ID€
2.20 05
4,80 05
2.71 03
5,91 03
3,80 03
8,3 d3
2,30 03 G
5.00 03 LB
8(44Y1L1u0 MYD44Ox o€
l , 05
3.50 05
2•7€ 43
5,90 03
2.80 03
6,10 23
2.30 03 KG
5.00 03 LB
810YLLZuM NZIRATL
1.20 46 1.51 04
2,51 26 3.21 04
2.41 144
4,40 84
1.3€ 04 KG
5,20 04 L8
1,50 01
6,60 1444
1.90 21
0,81 40
1.41 00
6,31—01
1.90 02
2,90 04
3,71 Al KG
1,40 0*
6,51 04
1,91 21
8,70 oIl
1,41 00
6,20—41
441
1.91 02
1.30 0.!
3,61 44
1.70 II LB
3.71 01 kG
1,51 0
6,PE 44
2.0€ 01
8,90 02
1,40 00
6,31.01
411
1.9€ 82
1,61 410
1,20 00
1,70 0! LB
3,11 .11 46
1,30 SI
4,70 08
2,40 01
9.140 88
.00 08
6.00.4%
1.9€ 0?
8,41 01
5.40.4 1
S, t oo
2.50 00
1.71 41 10
1,10 01 kG
8,80 144
4,01 013
1.2€ 41
5.30 00
8.41—0%
3 ,61.41
1.51 42
7,41 41
4,40 04
2.141 00
18
3.10 ‘ dl KG
1.41 dl LB
41.21 01
5,61 44
1,60 0*
7,40 20
1 ,21 40
5,30.8 1
3,1t—0l
1,10—01
9.60.00
7,21—22 ITO
2,71.01 GAL
9,50 0A
0,30 04
1,30 01
5,81 40
9,10.0*
4.11 —41
1.90.0%
5.61.02
9.60.02
0.4L—4’2
3,61—42 ITO
1,at .0i GAL
1.1€ 01
4,40 011
1.41 01
6,40 08
1,00 4141
4,4’0—81
8,41 —2 1
3.M€—o
2.2€—Al
1.00.01
1,60.01 06
7,30.22 10
8,81 90
4,40 00
1.20 01
5.31 00
8,40.51
3,80—41
1,50—ol
7,i€.aa
1,40—42
8,40—43
3.00—?? ITO
1.10—21 GAL
8,81 04
4,01 00
1.20 41
5.31 02
8.41—0*
3.80—01
?,2E—Oj
1.01.01
2,61—42
1.01—22
4,31.02 114
1,41.01 GAL
1.2€ 81
5.51 08
1,61 01
7,40 00
1.00 00
5,30.01
3.1€— i
1,41—01
1.60—4 1
7.30.410
5,91—42 KG
2,70.442 LB
1.3€ 0*
5,90 00
1,70 01
7,91 24
1,01 20
5,70.21
1.1€ 00
7.70—21
?,7L.ol
1.20.41
3 ,21.41 06
t,50— t
8,81 1444
4,00 00
1.2€ 01
5,36 00
6,41.01
3.81—01
1,70 140
1.71.01
3,91—41
1,61.01
LB
3,21.0* ‘16
1.51—01 LB
1.50 01
6,61 00
1.90 0*
8,80 05
1.40 04
6,31—81
3.11—0* 3.21.02
1,41.41 2.30.142
5.91.02 KG
44450611 141. 2.11 84 2,41 Ill 3,61 02 2.3€ 81 KG
4.50 84 5.40 441 1.9€ I I ? 5 ,41 01 I.! ’
H
H
H
(.3
I - .
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
I / LI RATES OF PENALTY
COST OF PREVENTION
AI: ;s/ &,¼q /
I ,IE
¶10 _______ _________________
I ,50
(, .90 __________________ ________ _____________
01 1,50 01
0O . ,80 00
1 ,10 00 3.10—01 9. 10—22
4.60—01 l.UE— t o.tE ’2
,QE—02 KG
.70—02 L I I
(*1
02
2.00 01
9.10 00
1.40 00 1,90 20
6,50—01 B ,4E D l
1,30 01
5,90 22
,1€ o 1 KG
1,70 ol LB
1.1€ (01
5,10 010
1.5€ 01
6,00 (00
1.10 00 6.50—01
4,80—01 3.00—01
4,20—01
1,90—21
1,30—01 L19
4,00—01 GAL
1 .30 01
00
1.80 01
,1€ 0(0
1.30 2 3
5.00—01
S, E—0i
2, 1.0—01
5.?E — 1
3,10—0%
t.1t 2t
‘e,tE. ..0t GOL
1 .00 01
‘4, 50 02
1,30 01
6,00 0(0
9,50—01
4.30—01
8,40 ‘01
3,00 03
4,00—01
3,1t02
1,40
€‘,tt 00 GAL
01 KG
1 . 50 0*
4,70 010
2,010 01
9,00 001
1,40 (00
0,40—01
1 ,50 02
7,00 2*
1.4€
20—01
1.40 01 LB
I .50 01
0 10 0113
0,00 01
9.20 ( 00
1.40 0101
(.,,4E—0t
1.50 02
7. 01
1,70 010
1 ,bE— 1
3.10 01 KG
1,40 01 LB
I .50 @1
,9 . 00
2,00 01
9 20 00
l.4E 012
b,6001
1,50 22
1,iO 0*
2,60 Oo
1.20 kO
3.1€ 21 KG
l,’4€ 11 LB
011 KG
I 50 (01
5.80 00
0,010 01
9.00 00
1.40 01(0
6.50—01
1,30 02
7,00 01
1,90 13.0
8,40—011
1,40 0* LB
1.50 011
6.8€ 00
2,00 41
9,010 001
1. E 0 (0
0,50—01
1,50 22
7.00 01
‘?
2.20 130
1.20 02
0,00 ‘O
3,10 0* KG
1.4€ 0! LB
3.10 21 KG
120 01
5.50 00
1,00 011
7.30 010
1.2€ OIl
5,20—01
1.00 21
‘4,20—01
1,40 01 Lb
1.30 01*
00
1.1€ 01
7,00 00
1.20 01.4
5,50—81
1,50 02
7,130 01
5.10—0!
2.30—01
3.10
1.40 01 LB
KG
‘4,40 00
00
9,00 (0 ( 0
4,10 013
1.30 01
5.70 00
9,00—011
4.10.01
1.90—01
8 ,6E— . 2
1.00—21
1,1E— ’2
3,00—42
1,60—02 LB
1,20 (01
5,50 00
8.60•111
3.90—011
3,1001
l,4021
3,00—010
1.00—20
5.90—02 KG
2.70—02 114
1,30 01
00
1,70 01
7.90 00
1.20 00
5.60 .81
1.10 012
5,10 01
9,00 01
4,40 (01
0.10 01 40,
1.4€ (01 LB
HARMFUL QUANTITIES
/ DES NA D/
I
H
H
l i . 4
I- ’
1 )
B0 YLL1L M SULFATE
6.5€ G5
1,40 150
1.S0 04
3.00 29
1.1! €4
2 ,S 04
1.5€ 04 K ,
3.20 04 LB
KRLC INE
4,70 0*
0
.4E 01
5.40 01
0,30 01
1,80 02
0,30 0*
01 Lb
B’JTYL ACETATE
8,90 04
2.2€ OS
0.10 43
,9€ 83
1.0€ 03
3,40 03
2,10 “3 LT’4
5,50 02 GAL
8UT L Au3 ’ €
5.50 04
3.2€ 25
. .70 03
.9E 23
9 ,70 0?
2,10 23
0.10 03 LTW
5,SE 02 GIL
BU7YOIC ACID
5,5! 05
i,o€ 0t
‘.7f 42
.9E 02
9,70 (03
2,10 ‘04
0.10 142 LIB
S,50 01 GAL
*C 1IJM ACETATE
4.7€ .14
115
1*1
‘,.40 Q ’I
8,30 ITO
1. E 03
2.30 41 KG
5,20 0* L 8
CAQ 1Ur BRCMIDE
5,50 04
1.2€ oS
2.40 01
5,60 01
9.70 0(2
2,10 0(3
2.30 01 KG
5.00 01 LB
CAU ’IJ# C ”L IL’€
3,60 04
24
? ,IF 81
5.40 01
6,30 02
1.40 03
2.30 Oj
S , 0* Lb
CADM1tiP 0114*10
5,80 04
1. 1E 25
2,40 01
*41
8,70 02
1.90 03
2,30 01 KG
5.20 031 LB
0*QMI’JM SULFATE
4.10 24
9,20 (04
2.40 041
, ,40 01
7.30 02
1.60 83
0,30 41 KG
5.20 01 LB
CILCIUO a4s0’ ATE
3.10 04
4,70 00
0, 1 10 0*
5, .oO 01
5,30 82
1.20 03
2,30 01 KG
5.20 81 LB
CALC*U’ AQSE 11€
9,40 74
2,10 35
0.40 131
5,40 (81
1.70 03
3.60 (03
2.30 01 KG
5,00 8* Lb
CALCIUP CAlIBlUE
3,00 05
0.40 05
1,50 04
4,20 04
4,70 83
1,50. (04
1.50 04 KG
3,20 04 LB
CALCIUK C-I . 0’1AT0
1,30 26
2•9E 06
1.50 04
3.20 04
2,30 04
S ,1€ 04
1,50 04 KG
5.20 04 LB
CALCIUB CY* ’ 10E
5,00 82
1.1€ 03
2.110 81
5,40 01
8,70 00
1,90 01
2.30 01 KG
5.00 01 LB
-------
CKLC1L ri QJKID !
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
C LC!j’ .-YPQ—
C. L01 I
b.QE ?
i .S 44
‘.7E 32
5,90 02
1.?E 02
2.11
2 ,31 2? KG
CALCTU’ uXI !
3 .4
7. t 5
1, E 04
3.OE 444
5.91 oS
2.31 04
5.o 02 LB
1.51 04
CIPTI’ (Puwl)
6,90 4?
2.00 43
?,aE 21
‘,.4E 141
1.61 0
3.40 02
3,OF 04 2.
2,3! 01 4G
CAPT*’ , (TTABLfl
0.91 42
2,44 05
2 ,40 02
5.’ € 01
1.6€ 01
3.41 01
01 LB
2,31 01 K
CA.BLI ’ QISULPIO!
3.11 45
5•30 S
7.71 i3
.9 ! 2 S
6.61 13
2.40 04
02 LB
2,10 83 1.1’
5,50 02
—________________
CATF(AC IL
44
R .’ 0 04
.‘.7l! 443
5,90 03
‘.80 0?
1.51 03
GAL
2,21 03 LIW
5.50
C ’ l.Oo!r. !
2,00 03
6.21 25
‘.40 02
5.40 01
4.90 02
2.11 02
GAL
2,30 Oj
5,01 01 LB
CHLflki DA . E (P.iOF)
4,2 01
9,11 01
?,4! 01
.4 ! 01
7.30—141
1.61 00
1.9! 01 L714
5,OF 00 GAL
CHLflk a !
( ETTABL !)
4 ,?E 01
9.?! 441
0.40 01
5.41 02
7.31 —01
2,60 00
2,3! 41 KG
5.44! 01
C ’LO3 0’ -2 .E
5,51 24
1.?! 25
0,70 22
5,90 42
9.10 42
2.20 03
LB
2.11 02 LTR
5.50
C 4LOI FOR4
3.51 45
7,60 05
?.71 02
5.’ E i2
b,jt 03
1.3! 04
GAl.
?,1E 02 LT ’
CP4L 0 006ULFO.dZC ACII)
9,60 05
2.11 06
1.51 04
3.20 04
1.10 04
3,70 04
5,51 QIj GAL.
1.5€ 04 2.70
4.01 03
CI4000IC ACETAT!
5,00 04
1.20 225
2,70 03 0,71 02
5,80 03 1.90 03
GAL
2,30 03 KG
5,40 03 1.0
1.3! 00
1,20 41
0,91.02
2,91—21
1 ,11—Il
3,éE. 2 KG
,2E 02
.20 01
5.70 00
1,40 01
4.oF.41
1.20 90
A.6 —02
2.01 02
4.91—02
5,50 4444
LB
2.40 24 kG
‘.8! 02
.60 00
6.40 00
2,30 81
4.61—21
,3 !—141
4,71 00
1.91—21
2.51 4444
2.10.02
9,?t — .l LB
3,60.42 kG
,5E 022
.10 01
5,90 00
1,50 0*
42.20.01
1,1! 00
8.2’1 ..42
1,20 02
5,?!—”
6.91 21
1,bt—.2 L1
2,31 41 KG
‘.11 00
.51 82
6,80 80
2.00 01
4,60.01
1,41 00
5,20 01
1.1€ 02
3,20 01
5,41 01
1, ’ ! 02 LB
2,31 221 KG
..9! 00
.1! 81
9.20 80
1.5€ 01
6.30.0%
1,11 00
.1! 01
1,5!—
2.30 01
1.7L—22l
2,01 41 2.0
1. lo—.’ l LIR
5.41. j GAL
? ,c’E..j 2.142
‘.10 00
.3! II I
f,.80 90
2,70 01
4,441—01
1.20 04
3.41—01
2,440 20
l ,* ,€ —O
1,20 24
.9! 042
.01 01
7,90 00
1,40 81
5,71—01
9,81—01
4.71—01
1.10 02
5,61.01
1.40 01
7.S — $ GAL
2,30 01 KG
4 ,70 420
2,01 01
,?E 00
S3 ! 00
1,90 01
4,51—01
9,71.01
3.20 01
3,42! 02
4.11 00
2,30 03
1.?! 01 LI
6.60 01 LTO
.21 01
1,51 22
. €—471
1,21 00
2,51 12
3,71 02
1.10 03
1,81 03
2.61 02 GaL
7,10 441 KG
‘,30 440
,3E 01
‘ -.9! 02
7,01 02
1,70 01
5,41—22
1,20 00
1,10 02
1,40 82
8,?! 02
2,51 04
3,30 01 LB
2,71 00 2.19
,2E 721
7,80 02
1.7€ 21
5.61—01
1.20 00
6,41 @0
1.41 01
6.40—01
2,31—01
1,00 01 GAL
2.71 22 119
.7! 00
9 ,OE 00
7,5( 00
1,20 01
5.41—21
8,10—44%
b,4t 00 1.11—21
1,91—41 5,o(.4
j .c1 . 02 GAL
3,60 ,42 LTK
,2E 00 5.60 00
.40 01 2.90 01
4.01.01
1.40 00
8,61.02 2,31—02
1,70 00 9.60—02
1.41—41 GAL
3,20—01 KG
C Lr , ,w r: YLIIA,.
7 ,
I
.4€ 25 1.51 04 1,80 03 1,51 04 KG
9 .0 OS 3.21 444 1.70 04 3.20 04 LB
I
H
H
1j4
K. .)
H
K. .)
-------
SUMMARY OF HARMFUL QUANUTiES
AND RATES OF PENALTY FOR ESTUARIES
L 1TC 5JL ATt
1 5 . ‘‘4
t.PE ‘
I,7L iS
S. ’ ;‘l
j ,3
2 .’ 3
‘3 K
S
Ci C.jS C 4Y) ATL
? .SE Q
‘4
3
3
4 .4E ?
9,b k4
03 (G
75 L
C ’LO IC
2 . E i4
, is
4.’ € c)2
‘ ,AL
,3 2 G
5,;
C Ox*L*1
! ,3E .54
.5
? .7 .5$
S .9E .53
02
t,3 03
2 3 .53 KG
5. 03 LR
LC1 IO
4,3 . 5
. 5
1. ’E 04
3.0 B4
7,5L .13
i.7 : 04
1.SE 44 KG
3,2 04
C 194LT 5IJ5 *CU&TE
0 .3 06
5 t Oh
1.5 0’
S,2t 08
4.1€ 04
9 . E 04
1.5€ 04 KG
3.2€ 4
s qio
2. ’
0 .
.5’ 0 i
3.0 44
j 4
7 .9E 04
l.S€ 04 t
3.2€ € LB
C4*L’C1’58 CHLOWIU€
2.0€ flh
a•4E OS
I. € 44
3.0€ 44
3•9E 04
44
1.5€ 44 cL
3.2€ 04 LB
CC 8LTnU8 CIT4AI€
*. 08
4.1€ .16
1.S 04
3.0€ 03
3.0€ 04
1.1€ 46
1.5€ 4
3.2€ 04 LB
CCBALIOUS FLUO9TLI€
1.2€ 6*.
.14
1.5€ 04
3.0€ (‘4
0,2E 04
4,B€ 44
l .5E Q ’4 KG
3.0€ 84 LB
CflF5AL CUS Fr) . MAT€
1.7€ 44
4*.
1.5€ 44
3.2€ 08
3.4€ 84
6.6€ (14
1.SE 04 . G
3.2€ 44 LB
C084LTCJS 100 10€
?,9€ 44
OS
4.0€—Ol
0•øE —.11
5.14 04
1.14 85
1,44—41 KG
(1,9 14—31 LB
CCSaLTLUS ls!TRAT€
2.7€ 46
6.04 46
1,54 04
3.24 04
8.84 04
1.44 09
1.54 84 KG
3.24 04 LB
COBaLtOUS
PC i.O’ TE
3,44 06
7,44 46
0,44 .01
4.04—01
4,44 04
2,34 B
0,04—02 KG
8,44’02 LB
j ,4 1
‘ .SE
1.4€ l
6.31
5. € 01
S ,lt 0 .
t,4E 0.1
5, 2E—01
1,7k .13
1 .1€—3t
,€—51
0 .4E—2t
3 L ’ 1 K ,
I ,5t— t LI
1.94 01
a 4L 04
1.31 0.1
,. 4—01
1.71 00
1 ,1 —01
2,54 2.5
1 , (E 4.5
3 .Ot— .l Kr,
I .5 — .5l L
1 .5€ U
4,95. 5.3
? ,01 01
9.22. .34
1.44 00
,sE.0t
1.11 01
1.1€ 40
1,94 2
h,1 5—’i
3.5€ .52
I.St 4 €8
1.51 51
4,74 33
2.01 01
9.44 02
1.44 0
4,41—01
1 ,14 O
7,74—21
1,42 3.1
,5F—2l
3. €—11 kG
L. 6 t—#l Ls
1,84 I I
0.0450
0,41 41
1.1€ 5*1
1,74 02
7,54—01
3.14—01
1.44—331
l,l6—3U
5,14.40
5.91—00 G
2,71—02 L
0,84 4
£4 ,4€ . 5
1.04 01
5,31 : 3333
0,44.01
3.84—pU
3,11—21
5.44—01
0,54.40
5,21—40
5.91—02 KG
?.7E—oO LB
9,84 ‘33
4, E 0
t.0 41
,3€ 40
b ,4E—3’l
3,84—41
3.l ..11
3.41—44
O,92— 2
t.34—. ’0
5 ,91 — .’d K
2,71—33? LB
‘1.54 9
4,04 14
5,24 .31
5.34 00
0 ,44 —01
5,81.541
3.11—01
1 ,44 .544
0,74—
1,24.02
5,44—02 9s
2.71—00 LB
91,84 . ‘0
4.8€ ‘33
1.24 4*
5,34 40
8.44—01
3.61—04
3.14—01
1,44.541
S ,?4— ’2
1.51.00
5,44—12 P.4
33,12.—02 LB
9,24 44
4,24 54
1,21 4*
5,64 64
8.71—0*
0,01—01
3,14—01
1,44—01
4,81—02
2.2E—. 2
5,94—22 KG
2,12—04 LB
8.8€ .sB
4 , 44 ‘(1
3,24 01
5,34 00
8,44—541
3.04—54*
3.14—541
1,41—41
3.54 .4 4
1 ,b1—0
5.94—02 914
2.72—330 LB
0,84 40
4.44 00
1.2€ 0*
5,34 40
A•44 (11
3 ,04—01
4.44—21
4.44—41
2,04—40
9.21—43
. E— ’ 1 KG
0.06—02 18
8.64 118
4,04 04
1,24 01
5,31 00
8.44—04
3.64—541
3,11—43
1.44—01
2 2E—42
9,94—03
5 ,04.02 KG
2,74—32 LB
e,oE ‘4
4,04 ‘4
1,26 0*
5,34 04
4,44.01
3,64.01
0,01.02
0,04—41
1,74.02
1,84 —03
0,Pt.0l KG
54,06—04 LB
s 5 .5,74 3 ‘3,94 43 2,l 43
s.i .5 •j ,9 4 ?‘3 .1E 33.1 5 ,
.3
L
4 j
1,31 ‘1
.4
1 • 7€
5-I
H
5 - . )
I- .
27
3.0€ 53.1
4 3 440
2,331 535*
GA—
-------
H
H
( ,J
I 1
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
,/“
/
DESIGNATED
MATERIAL
HARMFUL QUANTITIES RATES OF PENALTY
COST OF PREVENTION
/
/ (,
/ 5
CQBALTJU3 SucCI6aTO
1.1€ 06
2 ,OF 26
1,50 04
.?E 04
1,90 vI a
4,30 24
1,50 44 KG
3,20 04 LB
CI 44LTOU5 SULPAMAY1.
2.2 26
4.90 06
1.5! 04
1,00 04
3.90 00
4,80 04
1,50 04 KG
3,20 04 LB
CObALTtUS SULFATO
2,70 06
06
1.5! 04
3.70 00
4 ,70 04
1,00 45
1,50 40
3,20 04 LB
COUMAPI4OS (0 1 )00 )
3,10 02
8,70 0?
7.40 01
5.00 01
5.30 40
1.20 oi
0.30 01 KG
5,00 d l LB
CO UMA000S
( LYTA0L0)
3,10 42
6,70 0?
2.40 01
5,40 01
3,30 00
1.20 0 1
2,30 Ol KG
5,40 01 LB
C B OSCL
1,50 43
3.40 05
2.70 42
5.90 02
2,70 03
5.90 03
2.10 02 L7
5,50 01 GAL
CUPOIC ACETATO
1,60 04
3.60 44
2,70 02
5.90 02
0,90 42
6,30 0?
2,30 U KG
5,00 02 LB
CUPRIC
ACfT8 SE% !TP.
2,10 00
4 ,10 24
0,40 41
5.61 01
3,10 02
0.20 02
2.30 41 KG
5,40 01 LB
CUPOIC OCO1YL.
*C0T kIT0
2.20 04
4,50 04
0,10 42
5,90 42
3,00 42
4,30 02
2,30 42 aG
5,00 00 LB
CUPRIC BPOPITJE
1.8€ 44
4,40 04
2,70 42
5,90 2?
3,20 02
1,10 02
2.30 4 KG
5.00 02 LB
CUPRIC C’4LUOIflE
1,00 04
3,10 24
2 ,10 22
5,90 42
2,40 02
5,30 02
2.30 02 KG
5.04 42 LB
CUPRIC FORoATE
1,40 04
3,10 44
2,70 ‘ 2
5.90 U
2,40 42
5,30 42
2,30 02 KG
3,00 02 LB
CnPPIR G ,UCQNAT1
3,90 04
4.60 44
2 ,10 43
5,90 43
6,40 02
1.50 43
2,30 03 KG
5,00 03 LB
CIIPRIC GLYCINATE
1,90 04
4,30 04
2,70 42
5,90 02
3,40 02
1.50 02
2,30 02 KG
5,00 02 LB
CUPRIC LACTaTE
1,90 04
4,3! 4*
2.10 02
5.90 02
3,40 02
7,30 02
2,30 42 KG
5,00 02 LB
8,80 00
4,40 02
1,20 01
5,30 00
8,40 — 71
3,40—01
3,10—01
1,40—el
5,60—72
0,5 0— U
5,90.42 iUi
0,70—02 LB
3,00 74
400 02
1.20 01
5.30 00
8,40—01
3,BE—01
3,10—21
1,40—01
2,70—42
1,20—72
5.90—U KG
0,71—02 LB
0,80 00
‘ 1,80 40
1,20 21
5,30 00
8,40—01
3,80—01
3,10.01
1,40—01
0,20—72
1,00—02
S ,90—. 2 KG
2,70.42 LB
1,30 41
40
1,70 01
7,10 00
1,20 00
5.50—41
1,90 22
B,aO 01
2,of 02
9.20 ‘I
3,70 41 KG
1.70 4* LB
1,50 01
b,9E 011
2.110 01
9,20 42
1.50 00
6,60—01
1.90 02
8,40 ‘31
1,60 02
1,10 0*
3.70 01 ic
1,70 01 LB
1.20 01
,40 00
1,60 01
7,20 00
1,10 04
5,10—01
8,40 00
3,80 03
3,10—01
1,00.01
1,60 20 LYR
6,10 00 GAL
IS O 01
1 ,00 47
2,10 01
9.40 00
1.50 04
6,70—01
1,70 01
7,70 00
3,60 04
1,40 04
3,20 00 KG
1,50 00 LB
140 2*
6.50 U
1,90 01
0,70 00
1,40 00
,20—01
1,50 02
7,00 81
2,90 02
1,30 00
3,10 01 KG
1,40 41 LB
1,50 41
6 70 00
2,00 21
5,90 00
1.40 02
6,30—0*
1.10 41
7,70 00
2,90 1’0
1,30 20
3,00 20 KG
1,50 00 LB
1.50 41
1,40 00
2.10 01
9,40 00
1,50 00
6,70 .0*
1.7€ 01
1.70 00
3,20 42
1,50 40
3,20 00 KG
1,50. 02 LB
1,60 01
7,20 00
2,10 4*
9,60 00
1.50 00
6.80—81
1.70 41
7.70 00
4.30 @2
1,90 00
3,20 02 KG
1,50 20 LB
1 60 01
1 10 07
2,10 01
9,40 00
1.50 00
6,10—01
1,70 01
7,70 80
4,30 04
1.90 04
3.20 00 KG
1.30 20 LB
1 ,7! 01
1,60 04
2,2! 01
1,00 01
1.60 02
7.30—01
1,7! 00
1,70 .41
1,50 00
7,0001
3,20—41 60,
1,50.21 LB
1.50 01
470 00
2.40 01
9.00 00
1.40 00
6.00—01
1,70 01
7,70 00
3,10. 00
1.40 00
3.20 04 KG
1,50 04 LB
1 50 I I
10! 44
2,10 01
9.10 00
1.50 00
6,71 .01
1,70 01
7,7! 00
3,10 04
1,0! 40
5,20 00 KG
1,50. 00 LB
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
I
/ DESIGNATED
/1 MATERIAL
HARMFUL QUANTITIES
I I RATES Of PENALTY /
/ / / I COST OF PREVENT ION / / ,
1-4
H
1*)
H
a . ’
/
CUPBIC tTKAT€
1,91 04
4.51 04
?.7€ 02
5.91 02
3 .4€ 02
7.51 0?
2 .SE 0.? KG
5.8€ 02 LB
CUPKIC 048161€
.
1.30 04
2.9€ Ba
?.71 B?
5.9€ 02
2.3€ 81
5.1€ 432
2.31 II ? KG
5.2€ 0? Lb
CUP4iC
8Ub*CtT*T€
1.51 04
3.41 04
2.71 02
) .9€ 02
2.71 P2
5.9€. 02
2.31 02 KG
5.01 6? LB
CUP4IC SULO’TE
2.11 24
(1.5€ 414
0,11 02
5,91 0?
3,61 0?
7 . 4€. 02
2.3€ 02
5.1’! 02 LB
CuPc .1C BUL A1E
AMMfl .d A7 €I)
2.21 04
4.SE oa
0.71 02
5.9€ 462
3.51 o2
1 .41 02
2,31 432 KG
5.0€ 02 LB
C WRiC 3A4611 18T1
2.21 oa
0,8! Ba
2.1€ 42
5.9€ (‘B
3,41 02
4,41 0?
2,31 02 KG
5.0! 0? LB
Cu000JS 040MIDI
1.2€ 44
2.8€ 84
2.7€ 22
5,91 02
2.11 o
4.61 02
2,31 02 KG
5,01 00 LB
cuP ouS ior.in€
1.61 B
1.4€ 04
,1E 1’?
5.41 02
2 7€ B?
6.0€ 02
2,31 02 KG
5.0€ 02 Lb
cvA i( G !4 CML3 U1 (’€
?,?E 0?
4,90. 02
2,41 01
5.41 01
3.4€. PB
8,61 00
2 ,3f 01 KG
5,01 0* Lb
CVCL0H€XA t
8,81 ( Ia
1,91 05
2.7€ 463
5.91 03
1.5€ (13
3,30. 03
2.1€ 03 LT$
5.51 02 GAL
2,4—0 6C40 (BUKI)
1.7€ oa
3,11 04
0,71 .32
5,91 02
0,91 02
6.41 02
2,31 02 KC.
5.81 02 Lb
2,a—D ACID
C. T A B L € .3
1,7€ 04
3.71. (34
? ,7E 22
.91 00
2,91 02
6.41 (32
2.31 0? KG
5.01 412 LB
2,0—0 €.50 1k3 (PuRE
2,21. .34
a,9 04
0 ,11 C 2
5.91 (6?
3,91 22
8.61 02
2.31 (6? KG
5,QI€ 22 LB
2,a—D €51103
( .€1T*bL €
2.2€ 04
a,91 oa
2,71 02
.91 2?
3,91 02
8,81 .32
2,31 02 KG
5.461 0? LB
DALAPOB
2,41 03
8.1€ 03
.71 (32
.91 02
4,91 01
1.11 42
2,31 (62 KG
5.01 02 LB
1.51 01
00
2.11 01
),4€ 20
1,51 00
6,71.01
1.71 01
1.71. 243
5.11 P0
1.641 00
3.4€. .30 KG
1.51 00 Lb
1,21 01
,8€. 00
(.61 0*
1 ,41 00
(.21 00
5,31 —01
1,71 01
7,71 00
4,61 00
2,11 00
3,2L 00 kG
1,51 02 Lb
1.51 21
6,9t B
2.21 01
9.1€ 00
1.41 00
8.51—01
1.7€ 01
7.11 00
3.91 00
1.81 20
3.21 04 KG
1,St .‘0 L II
1,50. 01
1.0€ 04
2, 11 01
9,41 02
1,50. 0?
8.71.01
1.71 01
7.71 00
0,91. 2(6
1.3€ 00
3.2€.. 00 KG
1.5€. 24 L II
1,41 01
1 ,11 00
2,11 01
9,641 00
(.51 00
6,71 .0*
1.7€ 01
7.7€. 04’
2,91 0.3
1.3€ ( 6
5,21 00 KG
1.5€. 22 LB
1.31 01
6.1€ 00
1.81 01
5 ,IE 6(6
1.31 00
5.81—21
(.71 0*
7.71 00
2,01 00
1,31 70
3,21. 20 KG
1.51 00 Lb
1,41 71
8.5€ 43(6
5,91 01
K,7E 00
1.41 00
6,21.—Ol
1.7€ 21
7,71 40
5.2€ 00
0,41 00
3.2€. 00 kG
1.51 .32 Lb
1,361 01
4.8€ 0(3
1,31 01
8.01 00
9,51—01
4.31.01
1,71 21
7.7€ 00
(4,01 00
1.0.1. 0i 3
3.2€. 441 KG
1,31 00 LB
1,31 2*
5.91 00
1.11 01
7.81 02
(.21 00
5,61—01
1.51 02
7,01. 01
2,11. 00
B.64€ 01
3.1€ 21 KG
1.41 01 LB
9,11 20
0,LE 00
1.2€ 01
5,81 00
8,7C..01
3,91—01
3.71—01
1,71—21
1.81—21
6,51—22
7,?L— . 2 LTO
?,7€—21 GAL
1.21 01
5.31 00
1,51 01
1.01 00
1.1€ 00
5,21—0 1
1.01 21
0,71. 00
3.71 04
1.7€ 00
2,01 02 80
9.01—01 LB
1.21 0*
4641
1.61 01
1.41 63(3
1.21 00
3.3€—01
1.01. 21
.7€.. 02
2,91. 00
1.31. (I 6
2.01 20 KG
9.43612 1 LB
1,IE ( 1
5.11 0(6
1,51 0*
6.80. 00
1.1€ 00
4,91.01
1,01 (61
‘6,71 07
2.81 00’
1.3€ 2?
0.01. 40 kG
9.21.0* LB
1.21 01
J .S€ 00
1,61 0*
7,40 00
1.21 00
5,31—01
1.431 01
4.7E 00
2,21 00
9.81—01
2.461 00 KG
9.2€—BI LB
1,80. 0*
.11 02
2.01 01
8,90. 00
1.41 00
6.31.01
1.7€ 01
1.71 00
1.7€ 01
7.91 00
3.21 00 KG
1,51 464 LB
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
0111 ( t11AhL2)
2.32 01
1. 02
0,42 21
5.42 21
1.52 02
3,25 112
0.1! OIl KG
5,22 21 Lb
Ia7 1 O (Pu .€)
6,15 01
1.32. 2
?,42 ‘31
.‘46 01
1.1€ 20
2,42. 22
2.36 01 Kr.
‘3.110 01 1.1*
0I*Z 40 ’I ( . !TTI.BLS
I,I5 101
1.16 2?
2.142 01
5.42 2*
1,11 00
2,46 112
2,3! 2 KG
3.06 il Lf
0!cA 3A
1,12 5
115
2,72 05
‘I , .9 6 ‘2
1,92 i3
(4 .35 23
2,3! 03 KG
5,06 23 62
DIC ,1LO2 !f.IL (P JR6)
4,12 414
9. ’ ! 04
2,72 02
5.96 112
1,12 22
1,85 03
2,32 02 KG
5.25 112 L 14
01C E’.3L
( . IETTAOLE)
0,12 04
9,25 04
2.12 22
5.95 02
7,12 22
1,61 03
2,35 02 KG
5,22 32 LB
D1C ’4L0 .E (PJ4 !)
1.12 22
2.46 2?
2,42 21
5.42 01
1,92 241
4,32 021
2,3! 01 KG
LA
0IC IL02 ! (wEIT&BL€
1,15 112
2,4! 22
2.42 *31
5.’! 21
1,91 oo
4,3! 011
2.16 111 KG
5,3! 01 LB
I *3IC .L0 . V08
1.16 03
2.4€ 3
2.46 01
‘ 3. ’ 2 01
1.96 21
0.22 01
2.36 I I I KG
5.26 21 LA
0115091 ’O (PURE)
1,42 112
3.12 11?
2.42 141
5.41 01
2.4! 00
5,36 41*1
2,31 *41 KG
5,10! 21 L
OIILQ2IN ( 2tTA8L!
1, 142 22
3.12 *32
2.”! 01
5,42 0*
2,02 41?
5,32 04*3
2,16 01 G
S.0 21 LB
01 23w 2L 6 214 !
2,”2 25
5.22 *15
2,72 03
5,02 ‘43
0.11 03
9.1! 23
2.32 03 i*G
5,0! 03 LB
OIM !P ,YL*M 1 4€
2.62 03
6 ,IE 25
2,12 05
5,92 05
4,95 03
1.12 04
2,35 03 AG
5,21 03 LB
OI½ IT KOPM S I4OL
9,16 40
2,12 05
2.72 02
5.91 02
1.12 03
3.1€ 03
2,32 02 KG
5,02 02 LB
1.11€ I I I
8.2€ *32
2.42 01
1,12 41
1.72 04’
7.62—0*
3,1! *‘2
1,75 2?
7 . , ’ ! 21
3,22 422
7,145 2* KG
3,3t 21 LB
1.112 21
8,82. 02
2,02 21
9, E 00
l.’45 22
8,52.21
1.12 22
5,12 01
1,02 423
4.45 00
2.36 d l ‘G
t. ’2 $1 LU
1,82 0*
6,0! 20
2,4201
1,12 21
1,72 00
7,86—2*
1,12 22
5,16 01
7,92 422
3,42 02
2.36 21 PIG
1.Ot 21 Lb
1,32 01
22
1.62 21
8,22 20
1.35 00
5,72—01
1.72 00
7.16—01
5,72—7*
2,82—71
3.22—21 KG
1.36—21 LB
0,42 00
4,35 02
1,32 21
5,12 00
9,06.0*
4.12.21
1,72 *41
1 .76 02
2,20 2.3
9, . 6—21
3,26 22 KG
1,56 00 LA
1,55 01
7,22 22
2,11 0*
0,42 00
1.55 02
6,72—21
1,72 01
1,12 *40
1.5! 22
1,02.31
3,22 20 KG
1,55 *12 LB
1,21 21
, ,3E 32
1,52 4*
7,22 20
1.12 30
5,26—21
1,92 02
6.45 01
1,32 22
3.35 72
3,71 4* AG
1,12 01 LB
1,12 01
7,72 0
2,3! 01
1,02 41
1.65 02
7,32—01
1,92 22
0,46 01
5.7! 22
2,62 02
3,76 .31 KG
1,72 01 LB
1.4€ Al
7,42 00
2.22 01
9,95 80
1,62 @11
7,t! 21
1.92 2?
8.45 01
5.82 2*
2,82 @1
3.11 4* KG
1,72. 01 LB
1,22 01
5 ,11 00
1,72 0!
7,32 00
1,2! 02
5,42—2*
3,42 32
1,5! 02
2,95 22
3.26 02
4,62 01 KG
3,12 2* LB
1.8! 01
8,145 20
2,32 01
1,15 2*
1,11 22
7,62—2*
3.72 02
1.7€ 2?
8,46 20
2.56 22
7.42 01 KG
3.St 01 LB
1,3! 21
5,82 @2
1,72 01
7.12 00
1,25 02
5,55—01
5,62—01
2,65—0*
1.66—411
7,22—02
1,12.01 l G
4,96—02 LB
1,25 01
3 ,11 00
1,16 01
1, 52 00
1.2! 02
5,42.01
5,62—01
2,62.01
1,45—21
6, 12.22
1.12—21 AG
4,96.22 52
1.21 01
5,85 0*1
1,66 01
1,21 20
1,12 00
5.26—01
1.02 01
0.75 20
4.91—21
2.25—01
2,06 20 KG
9.06.21 LB
U’)T (2 1 . 146) 6,51 21
I .$E 210
1,52
S.?!
I
80
00
2,36 21
5,22 01
KG
54
H
H
L I
I- ’
-Si
5,85 00 *.2s 01 8.42—0* 3,4! 02 5.11 02 8,82 0* KG
(4.26 2* ’ 5,32 00 3,BE.0l 1.5€ 02 2,32 2? 3,16 01 58
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
I HARMFUL QUANTITIES 7 / RATES OF PENALTY
COST OF PREVENTION
0 (
.00 041
2,10 81
Q,4E 410
1,50 041
4.10—01
1.10 01
1,7! 410
1.10 00
1,90— ( ’l
3.2 1)0 46
‘1.50 00 LB
,50 M I
•,90 00
2,00 01
9,30 4141
1.60 041
6,50 —01
1.90 0?
8,40 01
3.51 02
1,60 02
,1€ ‘l , G
1,70 01 LB
,60 II I
.40 4341
2,20 01
9.90 00
1,60 00
7,10—01
1.90 102
41,4 ! 01
0,70 M i
(.00. 02
3,7k 01 kG
1,10. ii LB
.40 01
.20 00
1.8€ 01
4.30 00
1.3€ 4341
s.90—4u
1, 1 0 01
7,10 00
1,40 01
1 ,40 0 ’
3.20 4141 KG
1,00. 00 LB
.40 0%
• ,2E 00
2,10 81
9,60 02
%.5! 00
6,90—411
1,10 01
7.10 02
1,30 81
5.10 40
3,20 08 KG
1.50 03 (.41
.30 01
.80 00
1,10 01
1,70 001
1,20 00
5.50—01
1,80 0%
4,10 00
1,90 010
8.70—01%
2,Mt 00 KG
.0t .0% 1.41
.4! 01
.50 00
1.90 01
8,60 00
1,40 00
6.10—01
1,90 02
8.40 0%
5.60 02
2,50 72
3.70 41% kG
1.70 0% LB
,60 01
.40 4341
2 ,20. 81
9,90 4 (4
1.40. 00
7,10—0%
1,90 00
0,00 (41
4,30 00
0,00 43?
3,10 .31 KG
1,70. 0% (.0
,b0 01
70
0,00 01
•9 04
1.60 00
6,3041%
%,9( 00
0,40. 411
2.20 03
1,430 03
3,70 .11 KG
1,10. 01 (.0
1,60 21
4 ,50 48
p.0! 01
1.00 01
(.6! 00
7,10—01
1.90 02
8,40. 01
1,10 73
1,90 00
3,10 01 KG
1,70. 01 1.41
,30 01
.9! 00
1.10 01
1,90 00
1,20. 4343
5.10.4(1
3 ,60. 00
1,50. 02
1.1€ 24
5,10 03
4,80. d l KG
3.10 01 ( .
,40 01
00
1,80 01
6,20 .30
1,30 00
5,90—21
3.70 02
1.7€ 00
8,70 03
a ,4 0 03
1.40. dl KG
3.30. .41 LB
.30 0%
. ,d€ 00
1,10 01
1,10 00
1,20 00
5,50—01
1.90 02
0.40 01
1,7E 02
1,80 0%
3,70. 81 kG
1.7€ 01 LB
1,60 01
‘.30 4441
2,10 01
9,10 00
1.50 00
6,90—01
1.90 02
8,40 01
1,30 02
6,440 01
3.70 01 KG
1.7€ 01 LB
.60 00
.00 00
1.2€ 01
5,30 00
8,40—01
3,80.01
7,50—0 !
3,60—01
3,40.01
1,50.01
(.40.01 ( .70
5,40.01 GAL
/ DESIGNATED /
/ MATERIAL /
H
I- I
lii
L I
()V ( IAT
2,80 04
6,10 44
2,7! 142
5.90 432
4,90 02
1.10 03
2,30 1141 KG
5.00 00 LB
D18UL DT(j I (PUW!)
1,00 44?
3,90 21
0,40 01
5,40 01
3.10 4141
0,80 043
2,30 0( KG
5.00 01 (.0
31SJLF4 Tt
( .tT I’S ( .0.)
1.80 42
3,90 02
2.40 01
5,60 0%
3.10 00
6,80 20
2.30 01 KG
5,80 01 (.8
0IuRO CPU4E)
i . E 03
2.10 04
0.10 02
.9€ 02
8,70 01
1.90 (4?
2,30 132 KG
5.00 02 LB
&?uJ N (. ‘ !TT*bLE)
5.OE 03
1,10 04
2.70 02
5,90 02
6,10 01
1,90 02
2,30 02 KG
5.00 02 LB
D O D L 7 L 0 . ’.Z !.E
301.00910 ‘dO
2,5 414
5,50 24
2.70 62
5.90 22
4,40 02
9,60 0?
2,30 02
5,13! 02 LB
044304 ’. (PLO !)
1.1! 22
2.40. 02
43,4! 01
,40 01
1,90 00
4,30 20
2.30 0% KG
5,00 01 L I I
DUOS!1’ . (4 7TA41(. )
1.1€ •‘?
?.oE 432
,0E (1%
5.40 01
1,90 24
4.30 00
2,30 01 KG
5.Ot 01 ( .8
7Mfl 3IJ(. A9 (P lW !)
44,00 0%
6.10 31
0.40 01
5,40 01
4,90—01
1,10 00
2.50 01 KG
5,130 01 (.8
E ’ 0D5 JLPA4
(0T1 f
2,40 01
4,10 2%
2.40 01
5.40 0%
4,90—11
1,10 00
2.30 01 KG
5.410 01 (.8
€N I? $V (PIJWE)
8•67 d (
1.90 441
2,40 0%
5.40 01
1,50—01
3,30—01
2,30 01 KG
5,00 01 (.8
E04RI 1 (wET?Ati ( .E)
8.40 010
1.90 01
?,oE 01
‘,.4E 01
1.50—01
3.30—01
2.30 01 KG
5.00 01 ( .8
€To1f (PUkE)
3.40 0?
7,90 02
?,aO 01
5,40 01
4,30 00
3,40 0!
2,30 0% KG
5.00 0! ( .8
((1010’. (. .€1TABL€)
I
3,60 02
1,90 02
2,40 01
5.40 01
6,5! 044
1,40 01
2.30 01 KG
5,00 01 Lb
1 €1MYL8€NZ000
L___________________
8,00 6
1.40 05
,70 03
.4.9 ! 03
1.4€ 03
3,10 03
2,10 03 L144
5.50 02 GAL
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
HARMFUL QUANTITIES I /
/ MAURIAL
COSTOF PREVENTION
RATES OF PENALTY I
/
H
H
(A)
H
I ’D
1THYLEP II1 1
3.91 4
0€
2,71 03
0. E 03
0,01 80
1.51 03
2,11 03 ,.T
3.01 02 GAl.
EnTA
1.41 Pb
3.11
1,00 80
3.21 04
2,41 04
0,31 oa
t.or 04 1.14
4 .ol o; GAL
FIPPIC AMMOIdIUI
CIYRA I!
1,30 00
2 , 1 05
2,71 03
5,91 03
2,31 03
5,11 83
2,30 03 G
5,dl 313 LO
FIMPIC CMLDPII)0
1.21 05
2.41 85
2,71 83
0,90 03
1.90 83
4,21 03
2.31 03 KG
5.00 03 1.0
FOPPIC FLUCOIDE
7.01 00
1.71 85
2.70 03
0.90 03
3.40 03
3 .80 83
2,30 03 KG
0,20 03 LB
FEPRIC 3tksTe
1,71 05
3.70 25
2,71 03
0,91 03
2,91 83
0,41 03
2,30 03 KG
0.21 83 LB
IE4; C PsOSPp AT0
7,01 oa
1•70 oS
2 ,10 03
0,90 9 13
(.40 03
3,100 03
2,30 03 PG
s,o 03 1.8
FERPIC SULFIi1E
1,10 710
2,40 85
2,11 03
0.91 03
1.90 03
4.30 03
2,30 03 KG
3.81 03 1.0
FERPt U5 AMMD .tUM
SULFATE
1.10 05
0,00 25
2.11 03
5.90 03
3.91 03
4,30 03
2,30 03 KG
5.00 83 1.3
Olpoflub CHLIWIDE
7,$ OP
1.10 20
2•11 03
5.90 03
1.41 03
3,21 03
2.31 03 KG
0,00 03 LO
P0000U3 OXALATE
7.20 04
1,01 85
2.71 103
5,91 03
1,30 1I
2,80 03
2,30 03 KG
5,00 03 L I I
F0#ROUO SULFATE
3,3 05
2,41 03
2.11 03
0. 9E 03
2,91 83
4.31 03
2.30 03 PG
5.00 03 1.0
000MALI7U0
0.81 05
1,30 80
1.00 l O P
3,21 00
$ 01 00
2,31 04
1.50 1 143 LTO
4.80 03 GAL
000MIC ACID
2,40 95
5.20 85
2.71 03
5.91 03
4,10 03
9,10 03
2.10 03 L1 ’
5,50 02 GAL
FUMARIC Ado
3,80 05
4,40 05
1.50 04
5.21 04
0 ,11 03
3.51 04
1,50 04 LT
4,01 03 GAL
1 ,0 03
,,3E 3194
1,81 03
6.31 00
3.31 100
0.83:—PI
3,4t—01
3,81—01
3.20 310
5,30—21
1 ,bt— 2 ITO
0.21.81 GAL
4.8000
3.01 390
1.21 03
‘.51. 00
8,40—01
3,01.01
3.11—21
1.40—01
9 0f—02
2,70—312
S ,9 —’l LIP
‘ .2E—d1 GAL
3,21 321
,.51 44
1,81 01
7,31 310
3,21 02
5.01—41
1,70 00
7 ,7 — 31
4,00—01
2, i0 .I1t
3.20—al K1
1,5 —41 1.0
1,40 911
910
1.31 01
8,30 00
1.31 00
0.00—01
3,71 00
7,70—01
5.51—02
2.51.03
3,2t.J1 KG
l .S0— ’1 10
1.41 01
.20 3931
1,30 01
0.20 20
1.3 042
0.91—01
1.71 033
7,70—711
7,60—01
3 ,51i1
S ,? .21 i c c ,
1 ,, .2l 1.8
t,30 01
. ,00 00
1,60 01
0,81 00
3.31 00
5 ,71— 3 21
1,70 00
7,11—01
3,61—81
1 ,01—PR
3,21—02 KG
l .51 . .81 LII
L,3 0 01
3,80 00
1,10 01
7,71 06
1.20 00
5.51—01
3.70 00
7,71.01
7,PE.Q’l
3.0081
3.21—03 KG
1.51.21 1.8
,4E 01
310
1,90 01
0,71 08
1.41 00
6,00—03
3,71 00
7 .7 0—01
5,41—03
2.40—81
3,21—01 KG
1.01—UI LII
,00 01
i,31 00
1,91 01
0,40 00
1.30 02
0.81—03
3,70 310
1,70—01
0, €—1’1
2,00—01
3.2o— 1 KG
1.01—01 1.8
,4b 01
.,.50 00
1.90 03
8,60 00
2,41 00
0,10.01
3.11 00
1,71-01
1,60—03
3,50.111
3 ,21.01 KG
3,50.03 1.8
1,21 81
1.51 08
1.60 03
1,41 00
1.20 00
5.31—01
1,71 00
7.70—03
8.00.03
3,91—111
3.20—03 PG
1,51—01 LII
,44E lii
gp
1.81 81
0,31 lo
1.30 00
6,00—01
1,71 80
7.7t—Qli
0,40—01
2,40111
3,21—01 G
.50—21 L I I
.20 00
u ,20 00
1,20 01
5,00 08
0,10.81
4,21.01
1,50—01
7,01—82
7,71.312
3,50—02
3,20.22 LIP
3.10—01 GAL
.10 01
,1E 00
1,50 01
4,61 00
1.11 00
0,90.01
8,41—03
3,81—01
1.100—01
6,01.912
1 ,60—21 IT O
0.11.31 GAL
‘ .10 00
00
1,31 01
5.90 00
9.21.03
0,21 .01
1 ,91.03
6,01.02
1.30—03
3,71—00
3.00.02 1.18
1.40.01 GAL
-------
U1 .U1 ( 4 (PUOI)
7.01 01
.,,t€ 01
0,’ € 01
,‘4E 01
4.91 —01
1,11 02
0,31 01 01.
5,01 01 LB
GUT .410’ (OIITAIILI)
‘
7.81 21
6,31 oi
0.41 ‘ 1
‘ ,of ol
4 ,9f 4lt
1.11 07
7,11 01 KG
5,01 71 LB
,(PTAC’ L’)(4 (PJP€)
3.9€ j3
4.31 03
01
.40L 01
3,41 01
1.51 01
2,31 21 KG
5.01 21 LO
HEPT0C LL 0
( . €1TA 4 L 1)
1, € 03
4,ft 28
2.41 21
5.41 01
3,41 01
1 ,51 21
2,31 71 KG
5,21 I I LB
HYD4r CI’.LUQIC ACID
8,01 o3
1,31 46
1.5€ 00
i,o’€ a’;
1.01 04
7.38 a 4
1,51 84 LYR
4,01 a’3 GAL
..VORC€L ,J0WIC AClu
3.31 45
7.31 73
1,51 7
3.2E 04
5.81 73
1.31 04
3.51 4 1.74
4,21 03 GAL.
0vC4r 1 CYA’ .IQE
0.81 02
8.3€ 02
? ,4E @1
.4€ 01
4.91 00
1.11 01
2,31 01 KG
5.01 01
s90R7j’ 0
1.41 24
3,11 24
2.71 72
5.91 22
0.41 22
5.31 82
2,31 72 KG
5,01 42 LB
HYQW JAVLAMI 4E
4,21 05
OS
1.51 04
7.OE 04
7.31 23
1.61 04
1,51 04 LT .
6.71 03 GAL
ISOPP 4U.!
2.3€ 05
45
0.71 23
5.91 ‘73
3,61 03
0,01 5
2.11 03
5,51 02 GAL
I50P(40P 0LAMZN1
008 3uLF0 ATE
3.31 04
7.3€ 00
2,71 03
‘,.9E 03
5,81 @2
1.31 03
2.31 23 KG
5.01 03 LB
KELT$A ’ .E (PL”.€)
2,61 05
6,11 05
2,71 03
5,91 23
4,91 03
1,31 04
2.3€ 03 KG
5.01 03 LB
L A 1 (—ETTABLE)
2.81 25
6,11 05
2.71 @3
5.91 03
4,91 83
1.1€ oa
2,31 03 KG
5,01 03 LB
LEAD ACETATE
1.2€ 86
2,66 46
2,41 01
5,41 @1
2,11 01
4.61 04
2,31 81 KG
8.01 01 1.8
21
00
2,71 ‘l
9.2€ 80
1.51 00
6,61—01
1.91
8,41 21
‘S
1.oE 173
i ,11 .11 o.
1.7€ 1 LB
73
oo
0.21 81
9,66 02
1.51 70
1,21 .01
1,91 02
8,41 01
1.7€ 03
1,91 02
3.76 01 KG
1,11 01 1.”
8,81 00
4,01 00
1.21 81
5,31 07
0,41.01
3 , 01—UI
3.41 02
3.51 02
5.01 03
2.5 111
.8€ 01 KG
3.1€ .71 LB
1,71 71
7,61 @4
2.21 01
3,01 21
1,61 00
7,31—71
3.71 12
1,71 02
3.91 03
3,81 21
7.41 2! KG
3,31 01 LB
9,41 00
4.31 00
1,31 01
5,71 08
9,0E 03
‘1,11—01
3.91 .03
8,61.72
6,41.02
3.31.00
3,61—02 1.14
1.41.01 GAL
1.1€ 01
4,91 02
1,41 01
.51 00
1.01 02
4,61—01
1,51—71
7.11—72
1.01—01
8.21— 72
3,01—02 LTW
1.31—01 GAL
1,31 01
5,96 74
1,71 01
1,91 20
1,71 02
5,61—01
9.31 71
4.21 21
1,41 72
8.11 01
1.8€ 01 KG
8,81 07 Lb
1,21 01
5.81 00
1.81 01
7,41 00
1.21 20
5,31—01
1.01- 21
4,71 08
3.51 .72
1.61 00
, ‘, Tt 02
9,Ot.21 LB
1.IE 21
5,11 02
3.51 01
8.81 (30
1.11 27
‘1,81—01
1,31—01
7 , 1—@2
1.21—21
3,21—02
3,7302 LIP
1,11—01 GAL
4 ,31 172
Q 2E 20
1,21 01
5.1€ 00
8.91—01
‘1,01—03
3,71—0!
1.11—01
5,91— ’2
2.71—02
7,21—22 LIP
2.11—01 GAL
0. 21—21
0.71—0 !
7,01.0!
7,71—0%
2,41.01
0,01—01
1,01 00
4,71—01
1.4€ 00
6.51.21
7.Ot—o1 KG
9,41—12 ( .8
I I I 81
5,01 00
1.3€ 01
8.8.1 00
3.11 20
(4.71—01
4,71—01
2,11—21
2,91—01
1,31—21
9,21—42 KG
‘ 4.11—2 0 LB
3,31 @1
5,91 02
9 31 00
4 21 7 13
1.7€ 03
1,81 00
1.21 80
5.61.01
7,51—21
3.41—21
2,31—01
1.OE—01
1.41-—al KG
6.51—22 LB
1,21 81
5.71 80
8,91—81
0.01—01
1,51 02
7,06 01
7,81—02
3,51—02
3,18. d l KG
1.41 41 LB
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
luRK’ u AL
0.1€
S • ‘01
03
.33
I
1,21 03
0,5E 73
03
2,11
S • S E
02
GAL
01
00
I; . ’
1’ .)
0
8.41—0!
3 • 81.01
1,31 03 1,11 7.21—21 1,61.21 1.14
5,31 00 7,81 3.31—21 8,11—01 GAL
4,01
I .81
7, 31
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
LEAB CMLOOIr 4 E
8 .7€
1.90
05
ill.
2,40
‘ .00
01
01
1,50
3.440
24
‘4
2,30
5..1€
01 K( ’
01 LB
LEAo Fi .UOOUW*T€
1.2€
2 , €
16
06
2,40
5,40
01
41
2,10
4,60
04
04
2.3€
5,00
01 r.
41 1.0
L€a0 OLUO”100
7.70
1.70
413
2.40
• €
441
01
l 4€
3, ’€
24
04
2,30
,,0€
lU KG
41 LU
L A r,% j
1.4€
5•
446
.4
2,40
5.’40
01
411
2.50
•).•3
04
43’
2.30
5,l
l It KG
411 L I
€AI 44114447€
l, €
0 10
06
06
2,40
5,’40
01
141
1.60
4,40
00
444
2.30
5,00
II I KG
Qlj 1.14
1.040 0*0*1 .0
2 ,40
5.4€
Of.
26
?,o€
5,40
431
01
4,30
9,40
04
04
0,30
5,00
01 KG
01 LB
1.0*0 3uL0*1E
9.5€
2,10
25
416
2.40
i ,4E
01
431
1.70
3 ,70
04
o4
2,30
5,410
01 KG
01 LB
1.0*3 SULFIPO
7,50
1,70
l5
416
0.’40
5,41
21
01
1.30
2,91
04
04
2.30
5.20
2% KG
l 1.14
LOAB TE1R&—OC€1*TE
i,a€
5.10
06
06
2,40
5.40
431
21
2,40
5,40
40
04
2,30
5,00
Q 1 KG
01 LB
L0*0 144 10C0* ’ .*T0
1,00
2 ?E
Of.
26
2,40
5.40
Q 1
01
l.6t
3,90
04
24
2.30
5.00
01 KG
01 LB
LOAD TUZ4jSULFATE
1.41€
2,20
44* .
J6
2.40
‘3.0€
01
“1
1,70
3,80
4144
444
2,30
5,00
01 KG
01 L i i
LOAD TUNr.S1aT€
1.4€
3.1€
06
06
2,40
5.40
01
01
2,50
5,50
434
04
2,30
5,00
01 KG
01 LB
LI’ 0AN€ (PuRl)
1.01
2,20
03
43
2.00
‘3.00
41
(01
1.11
3,60
01
01
2,30
5,00
21 KG
61 LB
L1440A’.I ( .077*81.1)
1,00
2,20
03
63
2.40
5,40
01
01
1.71
3.81
21
01
0,30
5.00
61 4G
01 1.4
9.0€ (143
u .20 ( 1 .6
1.20 . 1
5,60 00
6,7€—4’l
‘4,140.01
1.50 01
7,00 01
I.10—’ I
4 .80—22
4.10 01 KG
1.0€ 01 1.0
4,30 043
4143
1.2€ 21
5,70 00
41,90 —01
44,00.41
1.5€ 2
7.00 01
7,70—0?
3,,€—40
3,IE 01 KG
l ,4 4€ I LU
9,40 .36
0,30 00
1,30 01
5,71 06
9,00 —01
w ,1€ .1’l
1.5€ 42
7 , ’€ 411
1,20—411
‘ 3,71—i?
3.10 61 KG
1,41 01 L I I
1,80 20
K• 0 4141
1.2€ 01
5,30 0
8,40.01
3.01.01
1.5€ 02
1. ’€ 01
b,70 4!O
4,441—412
3.10 Ol KG
1.40 01 16
1.8€ 432
4441
1,20 01
5,30 00
6.40—01
3,140.01
1.50 02
7.00 411
8,91— (’2
‘4, 10 —440
3.10 01 KG
1.4€ .31 LU
1,80 00
4 ,00 26
1,20 01
5,30 80
8,40.01
3,80.01
1,50 02
7,21 01
3,80.42
1,70.02
3.1€ 01 KG
1.4€ 61 LB
1,90 00
‘.40 4141
1.?€ 01
5,440 00
2.50.01
3,90—01
1.50 02
7,00 01
1,00—01
4,60—22
3.1€ 01 KG
1.40 41 LB
1,80 00
4,00 00
1,20 01
5,30 00
8,4E21
3,80.411
1.30 02
7,00 1*1
1 ,3F—01
5.80.70
3.10 21 KG
1,00 01 LB
0,80 00
C ,00 00
1.20 01
5.30 02
6,40 .01
3,60.21
1.50 02
7.0€ 01
6 ,71.00
3,00.00
3,11. 01 KG
1.40 01 LB
44,90 00
‘.00 00
1,20 01
5.00 00
6,50.01
3,90—01
1,50 432
7,20 01
9,50—410
4,30.00
3,10 21 KG
1.40 01 Lii
440
4444
1.20 01
5,40 00
8.50—01
3,90—01
1.50 22
7,00 01
4,60—02
4,00—l’0
3.11 21 KG
l, € . 1 Lb
02
40
1.2€ 61
5.30 00
0,00—01
3,00.21
1,50 02
7,00 21
6,70—02
3,10.20
3.10 01 KG
1.00 41 1.8
1,40 01
6,50 440
1.40 01
6.70 08
1.40 02
6,10.01
3,40 00
1,50 42
6,10 21
3,71 21
6,80 01 KG
3.1€ 01 LB
,VE 01
00
2.30 01
1,01 01
1,60 00
7,40.81
3,70 02
1.70 02
6,30 01
2,40 01
7,4 1( 01 KG
3.30 01 1.8
I
01 2,00 04 2,30 2% KG
01 4,50 144 3,60 01 1.5
H
H
0. ..)
I-J
1,20 41 8,90.01 1,50 02 8,00—00 3,10 01 kG
5.70 410 4,20—21 7,00 71 3,60—0? 44,40 01 LO
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALlY FOR ESTUARIES
‘ “
/
DESIGNATED HARMFUL QUANTITIES RATES OF PENALTY
COST OF PREVENTION .
MA RIAL /
I- I
H
Ill
hi
hi
01
00
01
00
1.4€
6,40
01
4l
2.10
101
9,f’0
00
2,20
01
1,00
01
1.01 00
44 ,60 ’ 0t
1.50 00
b , I
1.6€ 00
7 • 3€ • 1 l 1
01
O ld
3. i ..oi
I . 40—01
1.9€ 22
6.441. 01
1.9€ 02
8.4€ 2*
9. 3E—oO
4.00.22
6.70 02
3.10 b’2
5.07: 0
2,47: 412
LITM!U’ iIC,IOOMATE
3,70 05
0,10 05
1,50 ‘14
3 ,cE
6,50 03
0 04
1,50 04 iG
3.20 04 LB
L1 MZU ” CI 4OMATE
4,40 .45
1.0€ 6
1,51 04
3.20
8,10 03
1,00 .14
1,50 @4 iG
3.20 04 L i i
L1144!U ’ I Lu)44IuE
5,00 445
1,10 06
1,50 44
3 .20 24
9,20 03
2,00 04
1,51 04 KG
3 .2 04 L I I
.ALA4 11OP (Pu44)
9,07: 01
412
0.40 01
5 40 01
1,60 4141
3.50 01*
1,90 01 LOW
5,00 .ho GAL
MALATHI()# .
(. . 077L OJ
.c’0 0*
2,410 I2
2.40 01
,40 01
1,60 00
3,50 20
1,91 01 LT
5,00 00 GAL
MALEIC ACI,)
3,”0 05
0.4€ 05
1,51 04
3,21 414
4,70 03
1,50 414
1,50 04 KG
3,21 0 i L I I
4ALLIC AP .BSIHIO€
3.20 25
7.01. .45
1.3€ 04
3.20 04
5,10 03
1,31. 04
1,50 04 KG
3.20 04 LII
MLRCUQIC LC€TATO
0,40 22
2,40. 03
0.40 t
5,40 91
1,60. 01
3.40 01
2,30 01 KG
5.00 01 L I I
M04441C CNLORIT)€
7,71 02
1,71. 03
0,441 01
5.40 01
1.40 01
3.00 01
2.30 01 KG
5,20 01 1.6
MO4CL .WIC 4.3744470
9, E 02
2,17. . 3
‘.40 411
,,40 01
1.71. 1.1
3.60 01
2.30 01 KG
5,00 01 LII
MCt 4 C Oxtuf
6,10 00
1,30 23
2.40 01
S .4E 01
1.1€ 21
0.41 61
2.30 01 KG
5 .GE 01 LII
“0’9CUQOC 50L1 All
9,60 02
1,90 03
0,40 0*
5,440 01
1,50 01
3,30 01
2,30 01 06
5.00 01 1.8
MEkC41C
144fl C 7A’ ATE
9.00 0?
o ,o1. .13
2,41 01
.,a€ 411
1.60 01
3,50 21
2.30 01 KG
5,00 OIl L
ME44 u44OUS K3T4AT
0.00 402
1.0€ 03
0 ,4E 01
,40 01
1,00 01
3,10 01
2,30 01 KG
5,00 01 1.8
$E1$C ’XYCiLOQ (PUWE)
2.20 02
4.90 02
2.90 01
5.40 01
3,90 00
6,60 00
1,90 01 1.17
5,00 62 GAL
5,90.02
2 ,10 . 0 0
KG
Lii
4,70 01
LTK
1,41. ‘0
GAL
3.71. 21
1.19
1.90 00
GAL
1,20 C i
5,70 4041
1,70 01
1,50 01’
1,20 00
5.40—01
3,10—01
1,40—411
1,00—411
0,70—02
5.90—00 KG
0,70—02 Li
1,00 01
00
I .10
4,50
1. • SE
7,00.
I • 70
1,60
1,00 01
4,50 00
1,60 01
7,20 02
1,10 00
5.20—01
3.tt—01
1,40—01
8.31 .’2
3,oL.oo
S ,41— .’2 kG
2,7o—o2 Lii
1.30 61
6,00 00
9,50.31
4,30.01
1,90.01
8,61—22
1,30—01
5,70—00
3,60.02 KG
I.60.,)2 LU
1.00 21
4,40 00
1,30 01
4,10 041
9,60—21
4.4E—0t
1,20—01
5.50—02
1,20.21
5 ,OE—02
2.30—00 KG
1,00.02 L I I
1.7€ 21
7,70 00
2,30 01
1,441 0*
1.60 00
7.30—01
3,41. 02
1,50 .12
1,20 00
‘4.80 01
6,80 .41 KG
3.10 01 Lii
1,70 21
1,60 00
2,00 01
1,00 61
1,60 00
7,30—61
5,41 00
1.5€ 02
1.20 410
5,40 01
i.,90 01 kG
5.10. 101 L i i
1,71 01
1,71 00
0,30 0*
1,00 21
1,60 20
7.30—01
3,40 02
1.50 02
9,60 01
4,50 411
6.80 .3* KG
3,10 dl Lii
1.60 71
7.11 00
0.10 0*
9,41 00
1.50 00
6,10.21
3.44E 22
1.50 02
1,67 02
7.20 01
o ,00 01 KG
3,10 01 LII
1.20 21
530 02
1,60 0*
7,10 00
1,10 00
5,10—01
3,40 @2
1,50 @2
1,10 20
4,90 01
4,90 dl KG
3,10. d l LB
1.6€ 01
1.30 00
2,20 01
9,60 00
1,50 00
7,20.01
3,40 02
1,50 02
1.1€ 00
9,00 21
6.81 01 KG
5.10 Ol L I I
4,00 02
4,440 00
1,20 01
5,30 00
8,41—01
3,81—01
3 ,4E 02
1,50 02
1,20 02
5,21 01
4,80 01 KG
3.10 01 1.9
9 70 00
4 ,40 04
1,30 I I
5,90 00
9.20.01
4,20.01
1,90 02
8,40 01
3,60 02
1,1E 02
3,70 01 1.79
1.4€ 02 GAl.
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
M€T( L Mtk APTAN
2.0€ iS
6.1€. 03
2,70 04
5,9! 412
4,96 01
1.16 02
2,36 02 KG
5.OF 02 LB
M€T 41L M5I (IACOVLAT€
S. 6 05
1.55 36
1.50 0 14
3.20 04
1.21 40
2,76 44
1,56 04 LIX
4.06 03 GAL
MOTIIYL PAOATMIUO
(PUKL)
8.35 QI
1.06 01
2.46 01
,,00 @1
1.56—0%
3.26.01
1,96 0% LII
5,05 Oo bAt.
OSIMYL PARATP4IDO
( . €TT*BLE)
0,35 00
1.05 011
2.46 0%
5,46 44%
1.56.01
3.20—01
1,96 111 LTk
5,20 02 GAL.
, €vINP I-o6
1.15 22
2 ,46 02
2,46 411
5,46 01
1,96 041
4.30 04
1,92 01 LTI
5,06 0(4 GAL.
MOLYBOIC 1410010€
1.7€ 1(6
2,30 416
1,50 04
3.26 00
1,82 04
4,05 04
%,5€ 04 KG
5,22 4 .8
M0NET 4YL 19€
1.16 05
2.46 05
2.12 U
5. € 02
1.96 03
4,36 03
2.10 02 L IX
5,52 01 GAl
MON 5TMYLA 1 ’ 5
6 ,30 @4
1.8€ 25
2,10 412
5.90 00
1,56 03
3.26 03
2.16 @2 1.11
5.55 I I I GAl
NAL€O
5.86 41 ?
1,10 o3
2,45 0%
5,46 01
6,75 00
1.96 01
0,36 01 hG
5,66 W I LB
NAPHT NAL6M €
5.00 445
1,16 04
2.40 01
5.40 8%
6.76 61
1,96 60
2.35 01 KG
5,06 81 LB
NAPPITI41NIC ACID
2.412 0 4
4 ,3f 04
2.46 01
5,40 01
3,40 02
1,65 41?
2,32 01 X C
5.06 81 LB
dC0EL ACETA1E
1.56 @4
3,20 446
1,55 04
9.22 04
2,60 04
5.62 04
1,56 04 XC
3.25 44 LB
NICKOL AMMUMIUM
SuLFAT€
2.36 06
5,16 26
1,52 64
i.OE 04
4.10 64
8,96 04
1,50 04 KG
3,26 04 L 6
NICXSL BROMILIE
1.60 06
3,50 06
1.5€ 04
3,26 44
2.86 04
6.20 04
1,50 04 XC
3,22 04
.50 01
,9€ 00
2,05 0%
9,22 40
1.5€ 142
6,46—61
8.00 00
3,80 00
4.45 00
2,25 00
.46 A,0 KG
7,3t.01 LB
•40 00
•35 Oil
1.3€ 01
5,16 00
9,26—01
4,16—21
6,91.02
3.11—02
1,6600
8,16—03
1.36’. .0 L IX
S, ’t.—22 GAL
.31 01
.96 02
1.76 01
7,91 10
1.26 00
i.!F—0%
1.15 02
5,15 01
1.45 05
,4€ 413
2,36 . ‘l LIX
6.66 .‘1 GAL
.36 01
.16 0144
1.86 01
8,20 003
1,30 00
5,80—01
1,16 02
5,12 01
5,85 05
2,66 @5
2,35 01 LIR
0,65 031 GAL
,3€ 01
00
1,72 01
7,86 00
1,22 00
5,56—Pt
1.1€ @2
5.16 @1
4,16 42
1,46 62
0,36 01 LIX
8,62 @1 GAL
46
,3€ 00
1.3€ 01
0,82 42
9,16 .61
4.10—01
3,16—61
1.46—21
4,70—42
2,16—442
5 ,96 Kb
2,71—22 LB
.36 01
00
1,80 61
6,10 00
1,36 00
5,80.01
5,46 06
2,66 08
(4,1601
i. s—as
1,16 .‘O LTR
4,16 00 GAL
.36 01%
.,0€ 00
1,00 @1
0,02 40
1.36 @2
5,76—0%
5,66 1(0
2,66 00
4,5501
2,40—01
1,11 00 LiR
4.10 46 GAL
1,36 01
04
1.16 01
7,66 @0
l, € 02
5,46—01
1.12 02
5.16 01
7,25 ‘42
5,66 C l
2 ,3f .1 4(3 ,
1, ’5 41 LA
1,46 @1
r,22 00
1,86 01
6,30 00
1.30 @0
5.90—01
1.16 02
1,70 01
7,62 01
7.00 06
3 ,At 01 K ,.
1,56 2%
044
7.56 61
04
1,90 @1
6,60 00
-
1.45 00
4,36—0%
t,9€ .42
8,46 01
3,26
1,55 00
5,76
1,76 2% LB
1,86 20
1,06 112
1.20 01
5.36 30
6,41—0%
3,05—01
3.10—21
1,45—01
4,16—02
1,66—02
5.9f— . 0 Kb
2,72—42 Lb
1,62 (44
4,06 00
1.20 01
5,32 00
6,4E.01
3.80.01
3,15—21
1,45—01
2,66—02
1,26—22
5,92—20 4(31
2.76—22 16
1,86 80
4,00 60
1,26 01
5,36 00
0,40.41
3,85.01
3,16—01
1,40.01
3,76—02
1.75—02
5,46.02 4(0
2,75.02 LB
ME1MC V 4CP ,L00
I . S I TA ‘4 L€ )
2.40 0*
5.46
41
3 ,95
0 ,4 6
00
00
1,96
S. 736
01
00
L1’
,20
4 31
073
H
H
(A)
“A)
( A)
1,76 00
7,65—01
0,46
01
2, Ot.
1,36
(0
02
j.1 ( ..1
1,46. 02
LIN
GAL
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
I- ,
1-4
F
( J
F’.)
NIC*4L CMLO4Lt)E
1.4€ 06
06
t,s€ 84
1.21 04
2 ,44 04
5,44 04
1.5€ 04
3,24 04 LB
IC 4L PUR *1€
1,14 06
2,44 28
1.5’ 44
3,04 04
1•94 44
4,24 84
1,34 014
5.24 04
6XCXEL 080404 1UE
.
5,54 35
1,24 28
1.54 04
3.42 i4
9,64 43
0.14 24
1. )€ 04 KG
3.?2 44
IICK2L 427411€
8.75 26
21.
1.44—81
1.04—01
3.122 04
6.64 OIl
8,54—30 2KG
1,64 14 Lu
NIC*.4L SULO’.TE
1.5€ 121,
5 ,44
3.54 04
3.25 04
0.74 84
é•04 04
1.54 04 c L
3,24 44 (.8
iXTOIC ACID
6,15 .15
I .54 08
1.54 44
,?5 04
1,74 04
2,55 04
1,54 24 ( .14
4.24 03 GAL
9254
4.26 35
9.2€ 015
3.52 24
3.24 04
7.35 03
1.64 24
1.54 04 ( .10
4, 5 03 GAL
6I14rLtN 010*2014
4,44 05
9,62 015
1.55 04
5.22 04
7,82 03
1,76 24
8,54 00 cS
3.26 44 LB
931
1.3€ @5
2,e€ .15
2,74 42
5.94 22
2.24 23
4 ,95 03
2.3€ 02 KG
5,14 02 LB
PAWA4QPM1 4 .1YUE
8,24 65
1,44 40
1,54 @4
3.26 14
1,05 04
2,36 44
1,54 04 ( . 79
4,24 03 GAL.
PARATMI’)N (PuIJ )
1 ,4 01
4.35 01
.4.44 41
5.44 01
3,44.03
1,56—21
1.94 41 LTO
5,24 001 GAL
pA6aT li1
(‘STIL l.)
l, E 1
‘1.3€ 01
2.44 01
5.42 01
3,44—23
1 .,t—B1
1 .9 01 ( .T
5,14 22 GAL.
PTACHL0R0PP E’,I0L
6,95 22
1,54 23
2.45 01
3.42 01
1.22 01
2,74 01
2.34 01 85
5.84 01 (.1
4 € CL.
6,52 24
1.’14 .45
2.72 02
5.96 02
1,14 01
0.54 03
2.3€ 02 KG
5,05 02 (.8
P’ O3G( 4
8.14 0 (5
1,44 26
1.54 04
3.24 04
1,42 04
3.12 4
1,52 414 ‘45
3,22 04 LB
1,84 114
4.04 44
1.22 23
5.35 70
8,42—81
3,04.01
3,14—21
1.44.01
4,24—02
1,94—02
5,94.12 I I .
2.74. .iO LB
4,74 0 5
4,44 0
1,4441
5,94 00
9.2L.—Q’l
4.24.01
5,34—21
1.04—01
¶ ,S6.c ’0
2,54—22
S,9 .02 IL
2.72—22 (.0
1,84 20
00
8.24 01
5,34 28
8,46—01
5,44—01
3,1t—21
1,44—41
l.1€21
5,1t012
5,9ti. . 2 KG
0.14 .22 LU
1 ,4€ 134
1,04 1401
8,24 01
5,54 02
8,44.48
3,04.21
01,24—01
0.22—141
3.54—22
1.4—24
2.7 .2l OIL
3.22—59 10
1.84 00
1,14 02
1.25 21
5.34 201
8,44.03
3 ,bE— .31
3,14—41
1,04—71
3 ,86.L.’2
8.15.0 ?
5,96—22 KG
2,72.02 LB
‘2
4.34 20
1.3€ 0%
5.14 00
9,24.03
4,11.01
1.94—21
8,64—2?
1,74—42
3.5F—V2
3,62—c? (.54
l.42— . ’l GAL
,1€ 01
,4 14 00
1,52 08
. .7€ 44
1.04 00
4,85.41
3,14.01
1,44—21
8,54—41
8,98—012
5,96—12 LIR
2,26.08 GAL
1,44 09
4,35 04
1.3€ 01
5.74 00
9,24.23
4,15—71
1,94—01
3,84—02
1.04—01
4,85—22
5,62—42 Kb
1,bt— 2 LB
,5E 01
,.1E 40
1.85 31
0,14 00
1,34 40
5,84.21
1.74 11
7,16 42
‘4,92—21
2,?E—41
3.24 00 IL
1.54 0101 LB
01
1,72 00
1,42 01
8,34 00
9,04.28
4,54.01
1,94—01
8,64—20
2,02—10
3,74.02
3,42—01 L1
1,42.01 GAL
4,44 1
‘.54 00
0.24 01
1,74 03
8.64 @4
7.14—01
1.9€ 02
8,45 31
4,.’E 43
1,94 23
5.72 d l LII
i, E oO GAL
t,86 21
3,02 24
2,34 08
1,14 01
1,7E 02
1,85—01
1,94 22
0,44 41
3.24 03
1.54 23
3,72 81 LIR
2? GAL
4,65 81
‘.14 00
2,14 01
9,52 04
1,54 02
6.85—01
1,76 22
1.1€ 01
1.25 42
5.32 21
3,44 01 KG
1.5€ 81 (.0
1,12 01
,0E 130
1,52 41
6,72 00
1,04 04
4.84—01
8.46 08
3,84 78
7,46—48
3,34—01
1,64 44 KG
7,32—01 LB
1,31 00
4,24 04
1,21 01
5.64 00
8.84—01
4.42—01
1,92—01
0,62—22
5,92.02
2,74—02
3,61— 2 4 KG
1,64—142 LB
HARMFUL QUANTITIES
/ DESIGNATED
/ MATERIAL
_7/ / RATES OF PENALTY
COST OF PREVENTION /
-------
SUMMARY OF HARMFUl. QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
PHU3P 4( @U3
8,11 018
1,61 01
0.418 0*
5.40 01
1.30.0*
3,2t.01
2,31 181 46
5,01 01 Lii
PMr 3PI(JI P3
!C$L 0 E
8 ,21 145
1,818 . 16
j5F_ 04
3.21 184
1.418 184
3,218 184
1.518 0 KG
3,21 Q14 8
P SPhD4u3
PtLU ’ I l., l
4,418 45
i.718 5
1.51 0 4
3.01 04
7,718 03
1,718 04
1.51 04 KC.
3 .? 04 1.13
pHflS4 4( 1 8U5
PL 1A sjl .FLrL
9 018 04
2,01 45
0.7€ 03
5,91 @3
1.41 @3
3 ,50 03
2,31 05 KG
3,01 03 L i i
PM SPP4L4US
1MIO P)€
1.61 05
1.7€ 446
1,51 04
3.20 114
1.31 34
?.918 184
1,518 04 66
3•?1 04 L I I
POLYtO OII. ATEU
BIP 4 . 1 8 6YL 5
1,4118 74
3.1€ 84
2.41 181
5.418 @1
0.418 182
5.31 (12
1,918 181
5,181 018 GAL
PCTASSIIJM AQ €N*T€
3,61 24
7.918 134
2.41 01
5.418 181
6.30 02
1.4€ 03
1,31 01 KG
5,018 18* 1.8
OOT4SSIQM *9504.111
9, 18 114
2.118 (35
0, 1.1 01
5.01 181
1,11 183
3.6€ 03
0,31 01 KG
5.01 181 1.13
PQT I S3JUM
9LC ,.Q ’ .A1
0,11 05
9. 1 .45
1.51 184
3.218 04
7.11 03
1,61 (34
1.5€ @4 KG
3,21 09 .18
POTKSSIUM C$I OIAT€
5.418 @5
1,21 06
1.51 @4
3.2€ *0
9,181 913
2,118 04
1,51 184 46
3,21 04 1.8
POTASSIUM CYAKIOl
6.9€ 0?
1.51 03
2,40 01
5,41 01
1,21 01
0,71 181
2,30 II I KG
5,20 Oj 1.13
POTASSIUM IIY01800It(€
1.51 05
3,21 ( 45
0.71 183
5,918 185
2,60 03
5,718 03
2,31 183 KG
5,711 03 Lii
POTASSIUM
P4 ,lfrAp ,GAN*T 1
6,41 .33
1.41 184
2,71 182
5. ’8€ *12
1,118 02
2,51 @2
2,318 02 KG
5,180 180 LB
POOPIOI¼IC ACID 5.218 185
I 1.11 06
1,51 04
3,01 184
4,10 183
0.018 04
1,518 04 LTH
4.181 03 GA
1.5€ 181
4,718
2.71 181
.81 130
1.440 188
6.41—0*
1.11 80
5.11 61
7,40 03
3.1818 03
2,31 01 46
l . 4t 01 Lii
4,21 18.3
4.0€ (40
1.218 01
5,61 @0
3.71.01
‘4.018.14*
1.91—01
8,618—60
,,418—02
?,7E—1’0
3,181.42 KG
1,e .18.442 Lii
013
1,91 14.4
1.31 II I
5,61 .3
9,218—131
4.21—01
1,918—01
8,118.00
18,518—20
3,918.2
3,1818—02 KG
1.11.22 Lii
1.0€ 1811
3,71 lb
1,41 181
6,21 *118
9,11.01
4.1818.01
1,01 0
4,718—21
5,21—21
2,418.21
2.1118—181 KG
4.218—20 1.8
3,318 02
4,21 (40
1,218 01
5,71 00
8,91—01
4,018—01
1.918—131
18,618—02
6,31.02
2.9F. o
3,618.02 KG
l.—.91 iii
1.818 110
0,01 00
1.218 181
5,31 02
8,41—01
3,81.31
3,41 182
1,518 32
6,91 1818
3,21 180
6,818 01 LTR
.7.61 02 GAL
1,518 01
1 8E 08
2,180 181
9,00 00
t.41 1818
6.51—181
1,918 02
8,41 81
1,618 00
7,51—2*
3,718 01 KG
1.718 01 Lb
1,41 ‘41
1,518 0o
1,91 0*
8,618 1813
1.418 08
6,11—31
1.9€ 62
3.4418 61
6,318.21
2,91.01
3.118 2* “6
1.71 181 Lii
1.21 43*
5,141 00
1.618 18*
7,21 1818
1.11 00
5,01.181
3.118—01
1,418—0*
l.?1—2t
5,318—20
S,418—’2 KG
2,118—180 L I I
1,218 01
5,318 1840
1,618 @1
1.11 30
1,11 (‘0
5,G€ . .01
3.318—01
1,418—2*
6,141—70
4.118—00
5,918—02 41.
2,71—20 Lii
1,318 01
5,91 1818
1.7€ II I
7.918 *118
1.2€ 1818
5,618.01
1,11 82
5.118 81
6.91 01
3.11 .3*
2.3€ 21 KG
1.13€ (1$ Lii
1.0€ 01
44,61 140
1,31 01
6,118 01)
9.61—01
4.018—0*
1.44€ @2
18.718—21
3,31—01
*,5€. *
2,Ot—181 KG
9,I’E— ( 42 LB
1,41 01
6,51 00
1,90 01
8,618 00
1,4E 00
6, 11—181
1,71 (31
7,71 08
7.51 180
3,01 00
3,21 30 KG
1.518 1818 Lb
1.118 01
018
1,41 18*
6,61 180
1.61 018
4,70—01
1,518—01
7,018—32
8,518—180
4.01—22
3,018.180 1.18
1,11.11 GAL
PH1.SPP ICRIC *011)
1.5€
3.018
1814
I
44,51 04
i, ;€ i5
1.518
1.2€
34
@18
KG
LB
H
H
U,
3,81 1818 1.018 dl 8,418.01 1,918—21 1,ii€20 1,618.22 01.
4.218 4418 5.31 00 3,818.01 8,61—22 8,01.23 1,618—00 L II
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
PYI (TM11I S CPU4E)
2.1€ OS
05
2.7€ OS
5.9€ 03
3.8€ 03
1,9€ 03
0.1€ 03 LT4
5. E 4 GAL
PY4E1P11 3
( .FTTA L€)
2.1€ 05
4 .SE .15
4,1€ 03
S I 03
3,b€ o3
1.9€ 03
0.1€ 2.3 LII I
5•S€ 0? GAL
PYOOGALL1C £C11
3.0€ 04
l•l OS
0.7€ 02
S .Q€ 02
8.1€ 02
1.9€ P 13
2.3€ oo cr ,
5.0€ 02 LB
Ut CLI . €
l,OE 34
3.1€ 24
2.4€ 41
5.4€ 111
2.4€ 02
5,3E 02
1.9€ 01 L7
5,0€ 02 GAL
4E$39C I O l.
9.7€ 24
0.1€ OS
2.1€ 22
,.9E 02
1,7€ 3
3.7€ 03
0.3€ 02 1G
5. . E L 2 1.4
S€L€ .IC ACID
Ba
1.8€ 25
0.4€ II I
5.4€ 01
i,s€ 03
2.8€ 03
2.3€ 01 kG
5.0€ 21 LB
SE 1 ..0 TUM OXItI€
3.3€ 24
7.4€ .10
).4€ 01
.4t 21
.0E .1?
l,3€ 03
2.3€ 01 KG
5.2€ 21 LB
S€VIP . (°iR€)
4.3F 43
04
0.1€ 02
5,9E 22
1 .R€ 02
3.2€ 02
2.3€ 02 kG
5. E O LB
S€VTI (OETTAIIL€)
4.3€ 03
1.8€ 04
7.7€ 02
5.9€ 02
1.5€ 02
3,2€ 02
2.3€ 02 kG
5.11€ 00
SODIUM
1.1€ 03
OS
2.7€ 43
I,4E OS
1.9€ 03
4 ,2t 03
2.30 03 kG
5.00 03 L
SODIUM A85 II4TE
1.8€ 04
1.7€ 05
2.48 01
5,40 21
1.11€ OS
3.00 03
0.3€ 01 kG
5•P1€ 01 LB
SOL ILM £RS0 170
9.70 04
2,10 05
‘ 4E 01
3.40 01
1.7€ 23
3,70 03
2,30 01 kG
5.00 01 LB
SODIUM 3XCIIOOMA7E
4.10 25
9.10 05
1.50 04
3.20 04
7,20 03
1,60 04
1.50 04 kG
3,20 44 1.8
•8E (“0
0 ’
1.20 21
. 3€ 23
4,40.0*
3.88—01
1.10 110
7, 1€—0t
3.J€—01
I 2€— ’l
3 .2€— :t LIP
I .21. 03 GAL
,3€ 2*
00
l,7€ 21
7,70 40
1.2€ 00
5,50—01
1.7€ 00
1,70.0*
0,31.—Ol
1.10—01
3,2€— I L III
1,28. .10 GAL
.58. I I I
1.78 02
2.30 01
9.20 20
1.40 02
6.40.21
1.7€ 4*
7.70 40
1,30 20
5,10—01
5,20 7 ’
1,50 20 Lb
1.3€ It
t .7€ 20
1.7€ 01
7,60 00
1.00 00
5.00.21
9.30 01
4, 01
3.50 00
1,e.E 2.1
1,88. 01 LIII
1 , ’E 1 GAL
00
02
1,30 21
5,98. 00
9.30.01
4,20—01
1,08. 0*
0 ,10 30
6,40—01
2.90 —01
2,110 .12
9. E —0% LO
1.4€ 01
.50 04
1,90 0*
4 ,10 02
1.11€ 0.1
6.20—01
1.50 02
7.00 01
b ,78.0*
3,08.21
3,10 0* 411
1.4€ 01 LB
1.58 0*
.9E 04
0.28. 41
00
1.1€ 20
8.60.01
1,52 02
7.00 21
1.4€ 3
6.50—71
3.1€ . l kG
1.40 41 Lb
1.2€ 41
5,30 24
1.50 41
7,70 20
1,10 04
5 ,40—0*
1,7€ 01
1.70 20
140 03
3,48. 2.1
.00 04 KG
1.58. 00 Lb
1.20 2*
5,58. 00
1.80 21
7,30 00
1.20 00
3.20—01
1.10 21
7.78. 04
5,80 42
2.68 211
5.20 (0 kG
1.3 .19 Lb
I . 1€ 31
.60 011
1.40 41
I, 1 22
9,71—01
u.11U—0I
8,00—4*
3.41—11*
‘4 0 (
.‘.(‘0 l
1.8F—.1 KG
I • 3t— .’ Lt’
I .40 21
6.5€ 00
1.9€ 0*
0.10 00
1.4€ 00
6,20—41
1,90 02
8.40 3*
b ,4€—.’I
2.80—0*
K ,70 0*
1,70 41 LB
1,40 01
6.50 00
1.90 21
8.10 40
1.40 04
8.20.01
1,90 0?
8.40 81
4,90.0*
2,20—01
3.1€ 4* 46
1.10 dl LB
1,20 01
00
1,60 01
7,40 22
1,20 *30
5,30.01
3,10—21
1,40—01
9,30 —00
4,00—22
5.92.42 kG
0.70—42 LB
F O YL ALCUMIJL 1.02 1 4.08.*31
2,60 .37 ‘.30—41
I
0,— Ill
3 • 08.— 4 1
LI
GAL
H
H
(.0
Os.)
CS
I .58
,110
22
20
‘
3.80.0 1
.11. —2 1
4.0 0—21
1,91—05
1 , 0 0. 03
. ‘ L — .11
A 41.—i I
L I
081.
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
3fl011,M 0T IiLF1T
4.11 05
I,St 06
1.5€ 04
3.21 04
1,21 .14
2.f .1 04
1,51 04 KG
3.21 041 LB
S O1u4 CIIROM*TEL
9,31 05
2.1€ 06
1.51 04
3.21 114
1,71 04
3,11 041
1,51 04 KG
3,21 419 1.8
sr oxii . ’ Cy* . tJ !
5 ,31 dO
1,21 415
•4f 0
5,41. 01
9,21 00
2,01 01
2,31 411 ‘CC
5,21 111 L 0
sr ,)1tM dtD€CYL0€N —
8 FO *T
2, 1 11 04
4.21 OIl
2.71 413
5•QF 115
4,91 o2
1.11 i5
2.31 03 I G
5.00 05 LB
s oxuo FLuCRIt 1
8,31 25
1,01 06
1.51 4)4
J.OE 04
1,51 04
3,?! 114
1,51 04 KG
3.20 04 LB
S )1u ’ 4)k!) —
uLF!D€
2.11! 24
6.11 04
2,71 03
5.91 03
4,91 02
1.11 3
2,31 03 KG
5.31 @3 L
SO Ijw .41 oItF.
1.9€ 25
4.11 5
2.11 113
5,91 4 1•4
3,31 03
7,?! 03
2.3! 413 KG
5,01 03 LB
Sfleiu Y OC ’ LW4t1
5,8! C l
3.31 o
2,11 110
5.9€ 9)2
1.11! d i ?
2 ,21 02
2.31 I I? Kl
5,21 0 1_B
80U1u5 ‘ 11$YLIt !
.7,51 05
5,51 25
2,71 43
5,91 413
4,41 03
9,61 413
2.31 415 ‘CC
‘5,4)1 05 L 3
S )OILM J11$1TE
2.11 04
4,61 04
2,11 0 ?
5.91 412
3,61 02
8.11! 02
2,51 112 KG
5.01 22 LB
30()Iu’ 4 PI.losediATt
P j Jria31C
2. 111 6
4.41 06
1.51 04
3.21 04
s,s 04
7,11 04
j , 04 KG
3,21 04 LB
5 )D 31 M Pp.I)5POATI
015*3 1 !
1.21 86
0.61 26
1.51 04
3,21 04
2.31 04
4,61 04
1.51 04 KG
3.21 24 LB
$lflIuM PH SPPI*T1
T4I4A5tC
4,21 05
9,21 415
1,51 44
3.21 04
7,31 03
1,61 04
1.51 44 KG
3.21 04 1_B
S00IU 311.1. 111
1.51 85
3,41 83
2,41 01
S ,41 01
2,11 03
5,91 03
2,31 01 KG
5,81 01 LB
1.11 2%
5,01 011
1.51 04
5,l 02
I•( F 0 ’
4,81—Ill
1,44—21
8,61—22
7.24—. ’
3,31—1)2
9 .41—.2
1,bt—ll0 LO
1,01 4)1
44,61 00
1,31 01
6.31 02
9,61—01
4,91—01
3,11—21
1.41 .01
5,11—02
0,3 — 02
,91—22 KG
? ,14— ’O LU
1.3€ 01
5.9€ &
1.71 41
7.91 00
4.21 02
5,11—111
1.11 02
5.11 .11
1.31 21
5.31 l ’t
0,31 21 ‘CC
1.01 04 LB
1.31 01
5,81 011
1,11 01
1,71 70
1 ,21 031
5.5€—Ol
t.4 IE 20
4.11—21
1,71 112
7.01 . .i1
4l1.l 1 BC
9. .P . ’? Ill
1,01 01
4,71 4)11
1,41 81
6.31 00
9,81.01
4,51—411
3,11.01
1.41—21
5,81—02
2.N’C— -)e
5,91—02 K
? ,1E— 2 4.0
1.51 01
6.9€ 00
2,01 01
9,31 00
1.4! 02
6,51—01
3,01 00
4,70—ol
3.11 02
7,41—04
2,01.21 XC
Q ,01— . 0 LU
1,111 01
• ,5€_04
1,31 04
6,01 08
9.51—01
4,31—01
1.1’! 00
4,71—01
2,61—04
3,21—11 1
2,01—21 KG
9.11E.4iO LB
1,41 01
4,91 00
1,41 01
6.31 02
1.01 00
4,61.01
8,41 11?
3,31 20
6,61 di . ’
3,01 41.1
1,11 02 ‘CC
1,31—01 1.0
1,31 21
5,91 1111
4 ,7 ! 04
7,91 00
1.21 80
5,11—01
8,41—21
3,81—21
1,91—24
8,71—22
1.64—01 KG
7,3E— 2 Lb
1,61 01
1,11 011
2.11 24
9,41 00
1.51 411’
6,71—01
1,01 .)1
4.71 80
2.11 1’.
1,01 ‘32
2. ’t .1. ’ K(
9 ,01—01 LU
0.81 00
4,111 211
1.21 01
5,31 011
8.41—01
3,81.01
1,91—21
8,61—02
2,41—02
1,11.”O
3,61—.12 KG
1.61.112 Lb
9,41 1141
4,31 4)0
1,31 03
5,71 04’
9.01—81
4.11—01
1.91—01
8.61—22
3.21—00
1,51—02
3,61.02 KG
4.61.112 LU
1,21 01
5,31 111
1,61 01
7.11 0
1.11 00
5 ,oE—01
1,91—21
8,61—412
1,31.03
5,2!—
3.61.02 ‘CC
1,11—22 LU
1.41 01
b,2! 02
1,61 01
8,21 80
1.31 00
5,91.01
1.51 41?
7,81 01
3.11—411
1,41—01
3.11 01 r.
4,41 21 1.8
SrlOW4 810Lt) J41I0t
6.11 25 1,51 04 1.11 04 1,50 04 ‘CC 1.11 01 1,51 01 1.01 00 3.11—81 1,81—00 5,91.20 ‘CC
1.4€ 116 .0E 04 ?. € 04 3,01 04 i 3.014)2 ,11 o 1.4E— 1 3.64—112 2.71—02 LB
H
H
1..)
1 .)
- .4
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
7O .TI..1 C ”I J’AT€:
7 . .7E MS
06
2.Sr .7’4
3.2€: .14
9.91 ..5
2 .21 .34
1 . 5€: 04
321 04 LB
Yri .1 f
‘4.7€: 25
1.1€: .3’s
0.2€: 0
5 . L 120
‘4,31 t
1.8€: 120
? ,3F 4.12 Br.
5,21 .7.7 L I I
51791 .1
1,41 05
75
2.71 03
5,91 03
2.51 ; 3
5,61 33
2.11 03 LT6
5.141 172 G’.L
5t:L’4L ’ 41C ACT’)
6. € I ’ S
1.21 26
2.1€ 23
5.96 ‘ 35
1 , E 74
0.3€: 4
2,34. 23 cG
‘3,36 23 LB
5 € : .L€: . . C-’LC ’ 41)
2.11 /4
2.14€: I’8,
2 ,11 72
5.9€ .72
2.21 34
‘4,31 174
2.2€: @2 BG
22 LB
2,4,5—1 *C1
(P €)
3, ’ € . 3?
‘4. 1 .i
2,”€ @1
01
5.51 o
1,51 21
2,SF 01 B
5,21 01 LB
2.’4,5—7 A 3
(T IA I IL I)
3.9€: 24
‘4.61 14
.72
5.41 3I
4,01. ‘3?
1.5€: 03
2.3€: 41j cG
5,01 02 LB
2,0,6—1 €:S 1145
(P . )
.1€ o
I •. ,i ’5
.7.71 .73
14.9€ 163
8.31 02
l.8€ 05
2.31 1233
5.21 4.33
?,Q,”—T tSll’43
( 7 T 4 Lf)
‘4,71 4.14
1.1€ 25
2.71 24
5.91 03
‘3 ,51 472
1,81 03
.7,31 23 4G
5.21 03 LB
1A ’ , ’ . C LCII )
1.4.11 ‘ 35
2,31 4.45
0.11 03
5.91 03
1.81 03
0,431 23
2.31 23 BG
5,01 33 LB
T E (PL-4 € :)
1.0€ .32
22
0 .41 01
5,41 21
2.”41 473
‘4,51 02
‘3.31 01 cG
5.21 22 Li i
1 €: (.E1TA iLt)
1.0€: 32
2,61 ‘32
2. ..E 01
5,41 4.41
2,01 0Q
4 ,S€: 20
2.31 01 ‘4&
5,21 ‘11 LB
?ETQ*ET.IYL LEAI
5,51 12
2.21 .33
?.‘ E ‘ 31
14.41 01
9,71 450
2.11 01
1,91 01 L7’4
5.31 00
T€T 0*.€ IMVL
Y 4DP ’ P. ’ATE
2.31 03
5,10 03
2,41 01
5.91 02
4,21 01
9,01 81
1.9€ 01 LTO
5,01 08 GAl.
. ‘€: “1
4.1€: 22
1,44102
20
9,11—62
4,41—21
5.l 1— .’t
1,41—01
1 .14—121
5,21—00
M ,9 . .’? ‘ 4t.
2,71.42 Lb
.41 2%
.,31 14.3
1,81 01
.1,31 2
2,31 .7.7
€:.4.’1.21
1.7€: 71
7.2€: 2.7
1,31 01
5.51 . 77
3.2 .3 ’) 43
1.51 ‘36 14
.01 21
‘.51 2 ’
1.3€: 01
6 . € 07
9.51—31
4,31—21
3.11—21
1.71—21
3.4E—’’3
3.’4f—
4 ,71.22 LT4
? ,71.’1 IAL
4.4€ 22
4.3€: 2o
2,31 31
.,1€ 00
9 .0€—Ol
3.11.21
1.7€: 02
4.71—01
7,71.7.3
3.141.2.3
?,4.’€:— ’1 BC.
Q ,7E. 2 Lb
4.2€ 72
4.1€ “0
1.2€ 01
S,5 20
8 ,b€. 1
3.9€—.71
8,41 00
3.0€: 4.12
0 ,31—72
2..’1— .’3
1, €: ‘32 BC.
,3t— 1 LB
..3E 2
4,91
1,71 71
1,41 122
2,21 .7.7
5.6E471
1,11 7?
3,11 02
1,61 70
2,01 71
2,31 21 BC.
I. t .1 LB
.41 .11
00
1,81 ‘31
3,21 20
2.31 00
5.91—02
1,11 11?
14.11 .31
1.01 72
‘3.41—21
2,51 11 BC.
1,01 21 LB
4,11 ‘11
2.01 74’
1,51 ‘31
,7€ 32
1..-’I 02
4.81—02
1.4.31 02
4,71—21
1,51 12’)
5,91—71
‘3.0 .ll BC.
9,01.22 LB
432
3,81 32
4,71 01
1.81 02
2,21 ‘3.3
5.51—01
1,11 17
‘3.71—21
1,21 4/
9.41—01
? /4—0l P .4.4
9,71—72 Lb
1.4€: 1
470
1.91 21
8.14€: ‘30
1.31 20
6.11—22
1.41 20
6.41—22
3.78—vt
1.71—c’l
2.78—22 ‘4
2.2t—d% Lb
.41 “I
‘.141 p4.7
2.21 ‘31
l, ’€ ‘31
1.6€ 3’)
1.21—21
3. 1 @2
1,51 72
6,91 ‘ 12
3.01 1.!
6,01 .72 BC.
3.1€ .31 LB
1,41 02
1,01 20
2,3€: 22
1.1€ 01
2.71 73
7.61—71
3,71 02
1.71 .10
5,441 C ’
.2,51 02
7,’4€: ‘32 XC.
3.31 ‘32 L I’
1,51 01
7,21 20
2,10 01
9,41 03
1.51 434
8.71.01
1,91 ‘32
8,91 0%
1,71 02
1,91 431
3,71 ‘31 ( .14
1,91 ‘32 GAL
1.11 ‘31
1 ,9E 450
1,41 01
4,61 80
1.0€ 02
4,71.02
9,31 81
4.21 02
‘3,01 Q I
0,91 00
1,81 21 (.70
7,01 01 GAl.
2 • 7€
S • 21
23
43
2.51
5, ol
443
23
BC.
LB
•41
.,2E
4 51
I ,A1
‘4.2€
6- 3
H
‘ -3
NJ
0 3
01
00
1,31 Q ’2
2 .471 4.32
‘4 ,7E—.Y1
O , 8€—V I
7., 11—01
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
TC x ’5 t (Pu 113
1.Ot 02
.
0.40 01
c,
,?5 oO
4,05 10
4 ,30 01 KG
s , s 01 Lb
Tf)%AP, 1F
( ETTA4LtJ
1 .)F 4?
2.”t .1?
‘,45 01
‘ l
?,?0 oo
4 .M0 20
.if 2
5,45 01 LB
T4IC L ON
S ,Us 25
h
1.50 13 ’ 1
ti ’4
8.15 @3
1,91 04
1.5F 04 €5
1.2€ 24 LB
TRIC L i _4I 1PN ,OL
2,00 8?
4.11 0?
l
S.’1E 01
a .QE 00
1.1€ 01
2,35 0%
5.80 01 LB
T 1. 1FT LAM% ’ E rn’,
S’ILP ) ATE
3,65 24
7,10 041
2,10 0 13
,,95 1 13
K,35 02
1,410 (LI
2,30 03 4G
3 ,25 03 i_A
T111€TL M1P 1.
2.25 05
4,95 25
0.75 03
S,9F 03
5,90 03
0 , .5 013
2,35 03 KG
5,45 l3 i_3
T0I ’1TP LAMT
1,50 03
OS
2.70 33
5,95 113
2.3€ 03
5,10 03
2 ,30 03 KG
5.00 03 i_B
J4a’JJ r P 4DXI)E
3 ,- . 05
5.51 05
i,35 04
3.2€ 44
3,45 03
1.20 24
1,10 04 KG
3,20 04 LB
.J2A ’ VL Li_ STA lE
4,45 25
1.15 45
1.50 114
5.20 @4
8,60 03
%,95 44
1,30 04 €
3,05 04 LB
URA4KL “1744110
4.1€ 03
9,15 23
1.55 4 141
5,25 04
7,20 03
1.65 44
1.5€ 114 KG
3,20 04 LB
iAR* YL SuLIATE
3,75 85
6,35 23
1.SE 44
3,20 04
K, 43
1.40 04
1,50 04 KG
.8,20 44 i_B
vANa0 Iu ”
CXY141Cf4L( 41!00
2.95 5
6. ( 4E 05
%,SE 44
3.20 44
5,10 133
1,10 04
1,50 04 €6
3,20 04 LB
VA .AOflJ PE 1T0X1)€
1,55 45
3.40 115
2,70 03
5.40 03
2.70 03
5,90 43
2.30 03 KG
5.40 I ’ S LB
VA ’ ACYi_ SUL A10
1.55 45
3,40 0%
2.70 03
5,90 23
2,70 43
5.90 43
2.30 03 KG
3,00 03 LB
1,5k 41
5.71 14 .1
2•25 01
9 05 02
1,40 24
o .4E01
1 ,9k 42
8,45 21
7,11 ‘2
3.55 02
4,7F 21 K(
1.71 23 i_b
3,65 0%
, .41 414
2,30 0%
1,15 01
1.7€ 0.1
7,1.5—01
1,91 22
8,45 41
6,00 I ’.
2,70 “2
5,7t oi €r,
1.71 .11 L I I
1,20 431
,3E 22
1,50 01
7,10 00
1.1€ 00
5,20—13%
3,10—4%
1,41.01
1,30—01
3,70—42
91.42 K
?,Vt.22 LA
1.55 01
( ‘ ,91 OIl
2.00 01
9,25 07
1,45 00
6.60—0%
1,15 02
. ,IE 01
2.21. ‘o
1.3€ 22
2.35 0% KG
1.00 21 LB
1.30 01
5 .7€ 40
1,10 21
1,60 00
1.20 04
5,40—81
1,115 40
•7E—01
1,31 0.’
b,?51 ’L
2,05—41 €r,
9,’5—02 LB
1,40 01
6,30 24
1,00 01
8,30 00
1.30 90
6,00 .01
5.50—21
2,55 .0%
2,15—01
9.40.00
1,11—21 KG
4,91 ’vO LB
1.25 01
5.55 00
1,55 0%
7,30 00
1.25 00
3.20.21
3,1 E—21
0.1.5—il
2,05—01
1,30.01
1,15—2% KG
4.91—2? i_t I
4,05 (10
4,415 (42
1,00 0%
3.35 20
5,415.01
3,430.41
3 ,15—or
1,45—21
,l1—. ’4
0,130—02
,9 — .I2
1.71 —22 LB
1,25 01
3.35 00
1.50 0%
1,00 00
1.11 00
5,00—01
3 ,1 5—fl
1,40.21
1,2t—. ’t
5,51—02
3,91.02 KG
2,70.02 i_
1.2€ 01
3,50 041
1.1.0 0%
7,40 02
1.20 00
3.30—02
3.15—21
1,40—21
1.45—0%
6,55—”0
5,9€—. 2 KG
2 ,11—42 Lb
1 .1€ 41
3,55 24
1,65 01
1,”5 00
1,00 00
5,51—01
3,30—21
1,45—21
1,55—01
7,25—42
5.91— .2 KG
2 ,7S—. 0 i_B
1,10 0%
5,20 22
1,50 01
1.,70 @0
% ,00 02
4,80—01
5.1541
1,40—01
2 ,10.01
9,70.02
5,91—42 AC.
‘.10.02 LB
1,30 01
3,90 00
1.1! 01
7.90 00
1,20 80
5,60—01
1,70 00
1 ,70—01
3,90—01
1.85.81
3,20—01 KG
1,51.03 LB
1.35 0%
4,10 00
1,85 01
8,10 00
1,35 04
5,65—01
1,70 42
7.70—01
3,95—0%
1,05—21
3,01—01 kG
1,50—01 LB
9,25 24 2 ,15 3 1.50 13 2,10 03 i_TR
. 3 ‘ .,95 05 5.55 43 5,31 02 GAL
1,10 21
‘1.91 27’
H
H
4- .)
‘ .D
1,00 00
‘ 1 ,75—01
3,70—01
1.75—21
7, 25— 42
2.71—01
i_TA
GAL
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
4.3 “
3,41 43
0.7’. 03
03
1.31 oi
3.21 03
2.11 3
i. ! 42 GAL
*YL( ’ML
1 . . E .75
2.-’! ‘
0.11 343
• .9t 03
3.11 03
3,61 03
2,11 03 LTR
•5. ’, ! 3 )2 1.AL
2ECTr A’ C ’J !)
3,11 4
b.ME 0
0.71 03
03
S•4E 3’ ?
1.21 03
,31 313 K
5.01 ‘43 LA
Z !CVAA . ( 1T1AAL. !)
3.11 .4
., 1 4’3
2.11 03
5.9 03
3,41 02
3 ,? ! 03
2,31 143 KG
3.21 343 LB
Z3’ C ACETATE
8.91 04
2, 1 45
2,71 03
S.98 03
3,81 #3
3.41 43
2.31 03 KG
5,01 34 -3 LB
ZTkC A’’t’’.1U
C. ’Lr 4 1 ’ !
1.21 ,‘3
l. .E 5
. .7E 03
‘33
3.31 143
0 , 1 43
2,31 ;‘13 A’;
5,31 3 LB
ZT ’ .C ‘ “E
3,41 4
3,01 45
2.11 #3
,9 ! 43
,4E 03
3.21 03
0,31 ‘ 33 KG
5,” ! ‘S L ’
fl ’.! BCAAT!
5,31 04
I.? ! .iS
4.71 03
S.9A 43
9.21 0?
2.01 343
2,31 03 8’;
5.71 03 LB
Z1 .C )Mt1) !
7 .’€ 0”
. ,‘ ! oS
0.71 i3
‘ .9E #3
I. E 05
3.51 03
?.3F 03 K’;
5.01 03 LB
it .! CA. d’ ,ATE
5.01 0
3,11 45
‘.7 os
5.Q1 05
b,7E 00
1,91 03
0.3€ 03 AG
5,41 35 16
2781 C8 O I)E
5.31 44
1.0€ 43
2.71 03
.9E 43
9.71 02
2.11 #3
2.31 03 KG
5•0€ 43 LU
ZINC CYA ’ !C !
8,41 .4?
1,’! Q43
2.41 01
‘,.a! 01
1.11 ‘41
2.51 01
2.31 #1 KG
5 .01 3)1 L
ZI ’.C .Cj4I ’)E
7,21 34
1.01 s ’S
2,71 .33
5,91 03
1.31 03
2.61 03
2,31 @3 KG
5. 11 05 LB
ZPAC €04 ,403 !
6,41 04
05
2.11 ‘43
3,91 03
3,11 03
2,5! 03
2,31 03 KG
5,21 0) ,8
9,1 !
Q , E 32
1,21 03
5,51 00
‘ 4.1F—3 ’t
3,91 .141
0,. —01
3,—
3E—.t
4,11—01
1,4!—,1 1417
5 ,At—4I GAL
1.1 01
5..! 00
1,81 41
7,31 #7’
1.21 00
‘ ,2E—0l
1,01 42
‘4,71—01
9,01 .0%
? ,?3— ’l
2,11.01 LT’3
7.”!—. 1 f.*i.
l. 1 01
, ‘E47.4
1,61 21
7,’! 04
1.11 20
5,01—N
1 ,11 00
7.—0I
4,:’! ‘o
9 . E— . ’1
3 ,21—01 KG
1.”!— ’1 LB
t, E .31
8.1 04
1,91 0%
4,71 42
1.41 ‘30
6,41—01
1,71 00
7,11—1
1.31 #2
7,.’!—41
3,221 KG
3,51—di LA
1,’! 01
04
1.91 01
‘4,81 047
3,41 00
8.11—41
1,71 02
7,11.01
6,11.11
3.01—01
3,0!—.)1 K’;
3,51—03 L
8..! 24
4, 1 oo
3.01 41
5,31 22
8.41—41
3.81—01
1,71 0 -
7,71—21
5.21—”l
3 ,71— 41
3,2L— i Al.
1.51—01 LU
3, 1 01
5, 1 00
1,11 01
7.84 00
1,21 00
5.441—01
1,71 .1:)
7,71—03
4,3!— ’l
2.01—41
3 ,2!— . t Al.
1,51—01 Lb
1,1 41
8,)! 40
1,91 03
0,71 0?
1.4! 04
6,21—01
1.71 04
7,71—41
1,11 344
5,11—01
3.21—41 K’;
1.51—41 LA
I•41 #1
6, ’ ! 344
3.91 31
0,71 40
1.41 03’
h,0t01
1 ,71 02
1,71—01
6 ,51— 1
4. ’ 41— ”l
3.?E— ’1 A44
l. ’ (—.’l LU
8,41 44
4,’! 07
3.21 ‘41
4,31 034
.4E—B1
3,01—01
1.71 oo
7.11—01
,oc. oo
‘5 ,81—03
At,
1•S1— . ’l L
I,1 01
8,4104
2,01 01
4 ,0104
1,41 64
8.41—03
3,71 00
7.11—01
3,31 314
4.91—41
3,Ot—01 KG
l.5!— t LA
1,41 #1
ti
1,91 01
0,51 40
1.31 04
6.31—01
1.11 02
3,11 .71
9.11 03
‘i, ! 03
2,31 0% 4’;
1,01 d l L’
1,41 01
6,41 00
1,91 #1
6,5! 00
1,31 04
8.11.01
1,71 22
1.71—01
8,21—41
3,71—41
3,21—31 444
1,51—41 LA
1.41 I I I
6,51 00
1,91 01
6.71 00
1,41 00
6,Z1—01
1,11 00
7,71.43
9,31.41
4,21—41
3,20 .43 KG
1.51—41 LB
9! ’YL ACE1AT! 3.41 .5 2.71 43 0.41 0.11
3,1’ t.S ,.4 03 3,31 ‘5,51
I
00
GAL
H
H
L .)
0
,i1 ‘1 1,61 01 1,11 oo
5.41 04 1.21 47 ‘5,21—21 3,81—03
1.4F — 0 1
8.11—41
LTR
GAL
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR ESTUARIES
LIP C ‘ 11 4€
1,4141 415
2 .641 05
41,741 413
5.941 413
0,141 411
4,641 411
2 .541 413 IG
5,4141 413 LII
Z1 ’.C PL4MA (jANAT41
i. € OS
3•7E . 5
41.741 413
5.941 413
2 .941 03
6,4€ 03
2,341 05 ‘ 4G
5.;€ 413 LU
ZYiC P t)L
SLL€ ’.41T €
?,?E i 5
5,441
2.741 413
5,941 1413
3,9€ ol
8,1t 413
2.1€ 413 85
5,041 I3 LO
Z!’ C Pp.r)sP iIr)E
1.641 so
4141
2 .141 ;I3
5,941 v3
4,341 4141
1,4€ 413
41,341 413 ‘ 4I
S. ’E 0$ LII
Z1’ t P41TASSIUM
Cn8iM T41
1.5€ 115
3 .4€ €5
2,741 03
5,441 413
2.741 03
3.941 11$
2.341 415
5.4141 113 LB
ZINC P ,(j .3i) 41T41
41,641 414
1,941 415
0.7€ 413
5.441 413
1,541 1 53
3,341 I ’ S
2,341 413 41G
5 .4141 33 LB
ZI’.C 51LICCFLU )P1)
1.3€ Os
2,841 05
2.741 33
5,1141 413
2 ,4141 413
4,941 413
2,341 113 ‘4G
5,4141 413 LU
Z1’ C SJLFATE
1.041 415
2,641 45
2.741 413
S ,9F ‘53
2.041 413
4.541 413
2,341 33 6
5,4141 413 LB
ZIWCU ’.I iJM £C 741341
41.5€ 4’,
416
1.5€. 4441
3.241 4114
1,541 4144
3•341 414
5,541 414 KG
3,241 414 LB
Z!kCC SZUB IT’4A141
5,541 04.
3.341 .46
5.541 I”4
$.2E Oo
2.641 414
5.BE eo
1.541 4114 ‘IC
3,241 419 LB
ZT.41C 1iJM 041!—
2 ,14 .34,
5,941 416
1.541 1541
3.241 04
4.741 414
1.4541 415
5,441 4141 KG
3,041 04 LU
ZI44C0’ 1iI.4 P01*5 51 11
F LUCBI’ 1 4 1
7,941 415
5.1€ 416
41.741 ‘$
5,941 433
1,041 4141
3,4141 414
2.341 413 KG
5,041 03 L
Z1BCc Iun 5iJ _PaTE
1.241 416
41,141 414
1,541 1544
3 .141 414
2.241 414
4,841 oa
1,541 414 KG
3,241 4141
41143C0 ’41$IH TETRA.
CMLC 9IC) 4 1
1.441 26
4,141 06
2.741 03
5 ,c41 ( 3
3.341 04
1 ,241 04
2.3E 03 PIG
5.341 03 LB
5.4€ 41.’
1,441 01
5.4141 4141
5,941 .55
41.541 410
1,341 4141
6,141.411
1,741 4141
7,741.01
5,411.14
2,341—01
3,41e.—.1l ‘444
1.5€—OS LB
5,341 05
4141
1,841 411
41.341 4141
1,341 411’
3,841—411
5.15 4141
7,141—01
3,641—05
1.b€—(’t
3.?F—41l kG
1,51—411 LB
1.341 ‘1
4141
5.4141 411
8,41414141
5,341 41.’
5,1t ’.41 1
5.741 70
1 t—411
41.f’f— . S
1,4141—ill
3,241—’l ‘IC
1, t . .11 LI
1,341 411
5.541 i”
5,841 05
4,54141 !’
1,341 4141
5,4141—05
1.741 0
7.75—411
5,741 4141
7 , F—i’ 1
3,241—23 G
s.s€.—.’i 144
1.2€ 411
5•4441 1441
1,641 411
7,241 411’
1,141 4141
5.141—01
1,741 4141
7.71—01
44 ,;’F.1i 5
1 .SFOI
3,21—411 KG
I,St .21 L41
1.441 411
b.441 4141
1.441 411
41,541 04’
1.541 4141
6.141—21
1.7€. 4141
7.741—411
5,941 . .411
5,1t 1
3.241—ol KG
1,5c—.11 LB
1.441 31
6,241 4141
1,041 01
8,341 041
1.541 03
5,941 ’.01
1.7€ 4141
1.141—411
4,741.411
2,141—415
3,411—35 KG
1.541—411 LO
1,441 411
5,541 oo
1,941 411
8,641 241
1,441 4141
6.141—411
1,141 041
7 ,7 4 1— 1 11
5,141—411
2,3E—c’l
3,241—31 ‘II
1,541—31 LB
1.4141411
0,741 011
1,44101
6,341 4141
9,4141—411
0,541—411
3.541—21
1.45—01
7,411—410
3,4141—410
3 ,41 — .’41 KG
2,741—4141 LB
41,4141 041
4.0€ 4141
5,241 35
5,341 054
l1 ,4e41.0j
3 ,4541—411
3,541—411
1.441—411
s.q€ —i’e
1,4141.412
5,941.02 ‘IC
2.741.4141 LB
15.8€ 4141
4,1141 30
1,241 05
3,341 oo
8.4141—01
3.841—411
3.141—411
1.441—411
2,415—412
t ,4’41—i’d
5,9 —. l KG
2,141— 0 Lb
1.4141 411
‘4,841 4141
1,441 51
6,4t 00
i 4141 4141
4,541.lj
1,741 411
7,141_41 1
7,541—41,5
3 ,0E—i41
3,241—411 KG
1,Sc—411 LB
9.241 4141
‘4,241 4141
1,241 01
5,441 00
8,141—01
4,4141.01
3,141—31
1,441—411
41,841.42
41,241.4141
5,941.32 KG
2,141.02 LB
0,841 4141
4,041 04
1,241 01
5.341 045
8,441.01
3,841—01
1,741 00
7 ,141 ”Ol
3.241.4141
5 ,441—412
3.241.411 KG
1,541—01 LB
ZT’C $ .‘CSJLFIT€ 8, ’E 418 2.141 413 1, E 113 2,341
1. :15 5,41t 03 3.141 413 5,141
I
I
413 L 41
H
H
‘A)
‘ - A )
‘-I
1,441 S’S 5,441 01 410
15.541 5441 6,141.415
1.7€ 4441
1.7 4 1—C’’
41 , leE — 4 I
3 . 0 —415
3 .2 €— O l
I ,S41.41l
KG
LU
-------
TABLE N—4
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
Lr€TIC ACIO
3.9€ 2’.
2 .cE: 5
1.9! 05
.i! o5
1.1€ 25
0.4€ oi
2,1! os
5.5€ 00 GL
4C€TIC £ .w ! !
7 ,3! 04
1..?! 7 ’S
1.0! 05
4.1! 015
9,4! 24
0.1! 03
2.1! 23 LTR
3 ’S€ 02 GAL
1O’ € CYA —YCQX’
—-____________________
1.4€ 05
3.1€ ‘3
1,0! 05
4.1! i ’ S
1,76 5
3.7€ 05
0.1.! 03 LT
5.5! 02 GAL
£C !IYL OM1 ,t
1,4! 06
.1E 44
1,4! rOb
4, ! 04,
2,2! 26
‘4,9! 06
1,3! 04 1.1 .4
4,.)! 28 GAL
AC !TYL C ’4L0’41OE
1.3€ 2’.
4 ,
1.0€ 06
? ,?E 2)’.
1,6! 04 ,
1.5€ P 4 L14
I I! C,A
“ L21 ’9
1.5€ 0?
0?
1,7! 03
%.7 7.1
1.0€ 2?
‘4.1! 0?
1.9! Ol LT’.
5 , .l
4 C 4 Yr 0 IL
4,1! 24
1,30 AS
1.5! 05
1.15
7,4! 24
1,6! S
2.1! 013 L T ’4
3,5! 22 G L
Af PO91 2I . !
2 ,3! o ’ .
S ,4’F .24,
1..’! 04
0.?! 41’.
2.7! 0’.
6.0! 014’
1,3! 04 LIW
4,0! 03 G’L
AL’)’4I” CPj E)
4 ,9 ot
1 50 2.’
.7E 03
5,0! 43
4,44.
1.4’! 0?
0,3! 01 KG
5.4! 21 1.0
£L P4 (T7A4’L )
6,9! 01
4,5! .4?
1.7€ 23
3 ,7! 03
8.4! 141
1.6! 42
2.3! 01 KG
5,2! 011 LM
‘LI . 4L ALCOHOL
1.40 04
.1€ 4
1,0! 104
‘ ,3F 04
1.7! 04
3,7! 24
2,1! 02 LT
5,5! 21 GAt
AILYL CHLO4’IOL
6.7€ 3
.14
1.4’! 04
‘ .tE ‘4
2,01! 03
1.0€ “4
? .tE 22 L T ’
5,5! 01. r .A
ALUMI ’.LjM FLUU.4IO€
s.s€ 5
1.?! ‘26
j,o€ 136
0.?! c s
4 ,1 ! 05
1.5€ 014’
1.5! 04 kG
3 ,2 ! 04
ALUI ’4LIM SULOATE
6,9! 425
1.5€ .24
1,01! 446
.46
4,4! 05
1,4! 06
1.5! 04 KG
04 LB
01 1.4€ 01
‘. ,5e oo
1.4! 410
‘4,bE—11l
8.8€—OS
3,7!—03
2.8€—OS
t.3f—013
t,1E—21 LTR
4,IE— . ’I GAL
01 1,4! d l
6.5! 20
1,3! 00
4,6E.01
8,1L—03
3 .1€ —OS
2,7€—03
1.2€—A’S
1,1 !.81 LTR
4.lE 3l GAL
01 1.4! 01.
0,5! 00
1,3!
5.9E—0I
1.4 !—42
4,2€—43
1 .5€—OS
7, .i24
1. —ol LT ’ 4
8 .6 —O1 GAL
414
00
1 ,2 . 01
5,3 ! 0?
8, AE—O 1
2,0E—23
9, .1 t —44
7 ,9E—0 3
? , . 2 L 4
l.0€ ,21 ( AL
00
Lf
I , ?! 21
5,4! 02
8,5!.01
5.9!—011
1 ,SE—2)3
6.06—04
l,1€—04
5. IE— .’S
0, ! 2 LTO
7 ,5E .2 GAL
1,8 21
. J_ !_
1,0 414
4)02
2.4! 01
1.1€ 21
1,7! 00
0,4,0—0k
b,OE.?1
?.7E— 11
1.4! 20
5.4E—0€
0.? ! 00 1.70
3.1€ OlGA
8.4! 411
7,2! 00
1.1€ 0?
5,1E—Ol
1, 1 1E—02
5.5€—03
3,5 !.v$
1.6€—AS
1 , E—?1 4 -14
• ,1€.?t GAL
8,8
4,4
1,4.
6,3
1.8. 01
.5,4. 4 ,
8,9:
L!.
1,4
4.’
I , ? ! 01
3,3! 10)1
b,4E—01
3 ,8f .01
1,5€—03
6.511—04
0,4€—0,
4.3€—Oh
0.0€.?? LIR
7,1 !—0d GAL
04
101
1,9! 01
01.4! 30
1.3! 00
6 o !—01
3,7! 40
1.7€ 0l
0.0€ 410
1.3! 02
5.11 101 02
2.341. 01 LB
0.4! 01
1.1! 21
1.7€ 410
7,6F—01
44 ,0! 241
1.8! 00
3,4! 02
1.8! 041
5,51 21 KG
?.,5 ! 01 LB
1
03
2,221 21
9,2! 00
1,5! 50
b,b€—01
3,411—22
2,5!—00
1,5€—2O
7,0€—03
7.?€. ’1 L1
0,1! 02 GAL
01
120
2,01! 41
9,0! 40
1.4! 20
b,h! .0l
8,1L—.42
3,711—0?
1.31—20
5,91—23
1.1! ..24 LTR
4,1! 33 G 4 L
01
40
1,5! 81
4,8 ! 40
1,8! 00
4,dE.01
3 ,2E—03
1,511—73
2,SE.2’4
1,11—74
4.311 —02 KG
1,411—20 LB
1,1 01
3,01 00
1,5! 01
6.8! 480
3,?€—03
t.SE —03
2,0E..04
6 .9€—os
4 .3€—AS? KG
1,911.02 LB
AC€TALOE4IYD ! 1. E
a. It
05
1 . 18!
‘ 4.1!
Os
l ’ s
2,3!
I
05
03
2.1€
S • 5!
03
0141
LIR
GAL
H
H
(A)
(a.)
(.2)
1.3€ 21 9,SE.01 5,2E—423 1,3E—413 7.21—4? 1.14
4.9000 u.OE—l’1 0.5E—03 2.811—04 0 ,711.2)1 GAL
0,84 22
‘ • jj oo
I • 14
4.94
I • II
1,41
8 ,61
9,21
a • 1E—0 A
-------
SUMMARY OF UAFMFUL QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
A ’4M01.1UM £CETATE
6.fIE 5
1.50 . 16
1. E $6
2.20 26
I.’40 7 ’S
1,80 06
1.50 04 KG
3,20 44 LB
K4N1V ’
* .Ln8T€
1,7)0 7)6
2.6€ 06
1.00 06
2.00 @6
1,40 Oh
3.7)0 06
1.5*’ 04 K( ,
3,20 714 1.0
BICKRf”) 1 €
4.10 1*4
1,50 2)5
1.00 05
4.1€ 05
0,00 @4
1 .8€ k ’S
2.30 @3 G
5,00 03 LB
AMM’ ’ . 1tj4
RICCM*1 €
3,50 7)5
7,70 oS
1.00 @6
2.2€ 06
‘4,20 05
9,30 @5
1,50 Q ’4
3,20 04 LB
* ‘“ .J Tj1
@IFLLJQ O ID€
2.10 . 5
6,10 25
1.7)E 26
2.20 06
3, ’ 40 5
7 ,40 05
1.50
3,20 734 LB
£) MO .1IJ 0!SLJL*’ITO
9 , € 0 5
2.7)0 @4 ,
t, ’€ *36
2,00 04
1,20 06
2,60 46
1,50 I4 KG
5,20 04 LB
£$M .1L4 1MI 1€
3,10 04
6.70 04
1.00 4
&,lE 05
3,70 $14
B, 0 04
2,30 03 KG
5,30 @3 LB
A’’t1 CIO &M4T0.
0,S 74
5.50 04
t .K! $0
‘4,10 Oo
3,00 $4
4,60 ‘‘l
?•5E 0? K(
5, E 02
&MMO ’4UM CAQBO4*1€
9,70 04
2,10 05
1, ’€ 06
2.20 @6
1,20 05
2.60 05
1,50 04 KG
1,20 04 1.6
N1uM ClLu 1 0
1.7€ 7)4
3,10 @4
1,30 0 ’ 4
‘8,10 @88
2,1*0 04
4.00 04
2.30 1’? KG
5,00 @2
AMMO4!UM C 44OMAT0
6,70 .‘5
€ ,
1.0€ 06
0.2’ OK ,
O , ’0 05
I,’E ‘16
I,S€ 730 jIG
1,20 ‘4 LH
£MMO6!LJO CIT . ,*T€,
9,90 05
.,?€ 06
1.0€ 4*6
2.20 04.
1,20 06
2,60 06
1.50 04 KG
3.2€ 04 LB
a MONIL9
FLUOBC4A’ €
3,30 04
7,30 04
1.8€ PS
4.10 @5
4,40 04
8,90 04
2.30 03 G
5.41€ @3 1.8
£MP’041U’8 0L’ RID€
5.50 25
1,20 @6
1.00 04.
2.20 06
6,70 @5
1,50 06
1.5€ 4*4 4G
3,20 04 LB
I, 0
S. .0
9. 10
4, €
I •
6, ,€
I, €
5.7€
01 1.50 01
00 6,80 00
1.1€ 00 i,5€— 3 2.90— 4
4.8001 6,80—24 1,3E—N
2.7)0.22 KG
9, @ .7 ’3 LB
030
730
1,20 41
5,10 00
8,90—01
4.;51—O1
2,00—23
9 ,10— ’ 8
1.2E—k’4
5,b€ ’S
2,b0— 2 IIG
i.2€—oO 1.0
0*
00
1,90 31
0,10 00
1.40 7)2
6,20—01
1,IE—1
4,90—23
2,20—033
1.20—03
1 ,4f—’l or.
b,SE. . 2 1.0
01
714 3
9 •
4.O€k’4 2.80—02 KG
1,90.04 1.20—02 LB
1,20 01
5,10 @43
1.70 01
7,50 07 ’
1.20 710
5.40—01
2. . ’E—7)3
9,00—24
5,3€ . ’ 4
2,40—04
2.60—02 KG
1.7)0—02 LB
1.0€ 0*
7)2
1.1*0 ‘1
6,00 U.’
0.57—0*
4,30—01
2. ’ —k’’
9,$E— 4
1
6,00$S
2.60—712 41.
l102 LI I
1.5€ 0*
6,90
2,030 31
9.20 00
1.40 00
6,60—01
1.IE—.32
4,90 ”0
4,00—05
2 ,Ot —0S
1,40— t KG
b.5€ .02 LB
1,60 @1
oo
2.10 01
00
1.50 00
6,10—01
1.10—0*
o, t.o2
5 .9 0—03
2,7E•*’3
1,40 * ‘O *188
50.7)1 e
1,880 01
6,50 02
1,90 01
8,60 UO
1,40 $ 0
6,10—01
2,20—23
9,430—44
j, €— ’3
6,40—7)4
2 ,40 10 *1*;
1,20—02 1.6
40 01
7.10 02
0,10 01
9,40 00
1,50 @0
6,10.01
1,10.0*
4.90—22
8,8t03
a ,0(— 3
1,Kt 02 KG
4,50.01 1.6
Tto @1
5 430 0.
1,50 81
6,10 00
1,00 @0
4.80—41
2,7)E—23
9,00—24
2, E.o4
1,00—04
0.60 .0 ? KG
1,20.32 1 .8
8,60 flO
4,00 *40
1,?€ 01
5,30 00
8. 4E.QI1
3,80—731
2,00—o3
9,20—44
1,50—04
6.1C— ’5
2,60.32 *188
1.21—02 LB
1,50 41
6,90 00
2,00 @1
9,10 00
1.40 @0
6.50.01
1,10—02
4,90—03
4,4003
2,00—03
1.4L01 KG
6,50—02 LB
1,10 @1
5,10 07)
1,50 01
6,80 00
1,10 00
0,90.01
0,80—43
9,01—84
3,61—04
1,20.04
2,60—02 KG
1,21.02 LB
A OMO6 I 4 9,40 03 1,60 09 1,10 04 2,30 02 KG
2,10 04 4.10 04 2.50 04 5,00 @2 LB
H
H
(0)
1,0 *11 2,10 01 1,50 80 5,40—22 2,3€—*3 1,?f.21 KG
1, ‘0 419* 9,80 00 6,80—01 2,50.02 1.@E ’2 3,30—01 LB
1,10 61 1,20 08
7,50 00 5,41—01
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALT” FOR COASTAL ZONES
AIM O7U4
s P pp.( 0otTE
2,40 24
5,7 04
1,80 04
4, 44
3.20 04
4,90 04
2,30 42 KG
5,00 02 10
A040’41l 100100
4.40 04
9.80 O i
1.40 05
4 , ( L15
5,40 04
1 ,20 05
2.30 03 KG
3.00 05 LB
nN jo M$ YbjAT
3,11 , 4
4.?! 00
1,01 05
0.10 0 5
3,1 04
0.11 44
2,30 3 4G
S . E 03 $.R
0 .1ul 0014*1!
2.50 04
5 ,0k .44
1,00 04
‘ ,l0 20
3.00 04
4,60 24
2.30 02 oG
3,00 02 LB
AM00 4W4 0*AL4TO
4.10 3
1.3’ 06
1,00 06
?.2 ! 74
7,30 05
1.60 46
1,50 04 KG
3,20 04 LB
*PM0 ’ M
PA f)4* 1
4,30 34
1,00 05
1,40 05
o , l 25
1.40 OS
2,20 05
2,30 03 KG
5,40 S LB
A0 ”1U 4
P 0 051 0* 0 !
3,60 04
7.90 24
1.81 25
‘1.11 75
4.40 04
9,60 04
2,30 03 KG
5.70 23 LB
*0 . $L
SIt1CCFuJc RtflE
1.40
3,10 23
1,41 05
4,10 45
1,70 os
3,71 05
e,30 03 KG
5,00 05 1,4
AMMOP4U ’4
SuLF6 ’A1€
5.41 23
1,20 04
1.00 06
2, E b
6.41 03
1,50 06
1,30 04 KG
3,?! 04 LB
AW’l0 .1UM SLJ1,FATE
2.21 04
4,90 80
1,00 04
4.10 00
2,70 04
5,90 04
2,30 02 KG
5,00 02 L
AMMOP .IUM SULPIUl
6.91 35
1,30 06
1,00 06
2,21 06
8.30 25
1,80 46
1,50 04 kG
3,20 04 1,0
AMM0 J!UM SULPITE
4,10 45
1.50 04
1.00 06
2,20 46
8.00 05
1,80 04
1,50 04 KG
3,20 04 18
AMMOIsIuM 1*410*11
7,90 05
1,71 46
1,00 26
2,20.86
9,60 05
2,10 Sb
1,50 04 46
3.20 04 5.4
1.50 ill
4 90 00
2.70 01
9.1! 00
1,40 03
6,51.01
1,10—01
4,90 .32
3 ,40.05
2,60—73
1,10 33 kG
0,50—01 LB
1,50 4$
6,9002
2,00 I I
9,10 20
1,40 04
6,31.01
1,10—02
4,91.23
4,40.03
2 .00.75
1,41.35 kli
6.50—02 10
1.50 4$
4,?! 00
2,00 01
9.0! 00
1.41 00
6,40—81
1 ,1 1—I’ ?
4.90.23
6,31—03
2.9 !.L45
1, 10.01 KG
4,50.02 10
1.50 01
7,00 00
2,10 0$
9,30 1154
L,SE 00
6,70—01
1.11.21
4,90—0?
3,91.74
2,10.05
I.4I 00 kG
4,50.0* LO
9,21 00
4,2* 00
1,20 41
3,60 00
8,70—01
4,01—01
2,21—33
9,00—04
2,40—04
1,10—04
2,60—22 KC,
1,21—22 10
1,41 01
1,21 00
1,40 01
4,20 00
1,30 00
5,90.01
1,10—02
4,90—03
1,60.05
0,00.04
1,40.31 KG
8,54.00 1,4
1.50 41
6,61 00
1,90 01
0.80 00
1,40 04
6,30—01
1.10.02
4,90.03
3,41.03
2,40—03
1,40.01 KG
6,50.32 LB
1,40 %41
6,20 00
$,40 2*
6,3! 44
1,51 77
5,90.01
1.10—02
4,90.23
1.lE—”S
4.60—24
1,41—01 0t
6,50.2? LB
1,20 01
5,50 00
1,50 01
7,110 04
1,10 00
5,00—21
2,00 . 13
9,01.44
3.4E— ’4
1,60.00
2.60.,,? 61,
1,21—02 5.8
1.50 01
6,81 00
2.20 2*
9,20 04
1,40 00
6.50—01
1,11—01
4,91—02
6,61.03
3,20.03
1,40 .‘2 KG
6,31—01 10
1,1021
00
i,so oi
6,70 40
s,oo oo
4,80—01
2, ’1—os
9,00—04
o.10 . o
9,70—OS
a ,to—ol o
5,20—02 LU
I ’l l
5.0$
4,61
4,01
01
00
1,50
6,70
I I
00
1.1*! 013 2,00—03
4,60—21 9,00—04
2, 2!— a
S • 01—74
2,61.22
I .20.32
KG
LB
00
00
1,21 45
3,30 00
6,40.01
3,30—li
2,00—03
9,01.44
1,91.84
4,41.43
2,60.22 KG
1,20—40 LB
AM0061U4 .4Y0004100 4,20 24 1,80 05 5,00 04 2,10 03 LT
___________________ 4.20 04 4.11 545 1.11 05 5,30 02 GAL
I
H
H
LI
LI
U,
1.5$ 41
6,10 40
5,10.03
1, . 41
5,40.41
ITO
GAL
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
A 6Y LM
T1433 &T€
7 35 45
1.’4 26
3 ,r 4 04
2,2 06
8,96 05
2.06 ‘36
1,34 04 KG
3.26 4 L
‘YL £C61AYE
1.56 5
3, ii5
1,86 05
4.16 ‘ .5
1,86 05
3,94 ‘.5
2,14 03 LY!
5,56 02 G&4
A !LI ’ E
3.1€ 04
11 4
1.84 05
4 ,j€ 05
3,14 04
‘1,14 04
2,14 03 LIf
5.54 0 GAL
£ T3- .Y
PY4C’4LO4 D 4
4,14 44
1.3€ .35
1,84 05
4.14 25
7,44 04
j, ,4 ‘.5
2,34 03 KG
5.OF 613 LB
a pv
P 3.U’ 01i)4
4,44 oa
9 ,0k ‘.4
i,8E 05
4.14 ‘ .5
S,a2 04
5,04 03
0,34 05 KG
5.05 03 LB
TP)’.Y P 1A5SIti ”
Th ’ 4Tw*t6
5,94 ‘Q
2.06 5
5.3€ I’ S
‘4.10 05
1.16 05
2.45 03
2,54 03 KG
5.04 043 LB
A ’.TT .”} ’ Y
T ”1OE
1,56 04
1.7€ OS
1.04 03
“.16 0
9,14 04
?, 1€ 03
2.36 03 KG
5,114 043 i3
£ ‘.TY
T41rNL 1. .IDC
4,74 4
1,114 .45
1.86 ‘ .5
4,14 05
5,72 04
1,34 05
2,31 03 KG
3.05 033 LB
s—o v
‘L I3E
3,42 ‘ .4
7.44 ‘.4
t.o2 o5
4.14 05
4,41 oa
9,66 04
2,34 03 KG
3.05 03 LB
A T1 .O* ,y
Tbi )O1)E
1.06 115
2.32 l3
1.86 45
4,14 05
1,24 445
0,74 15
2,36 043 AG
5,115 613 LA
& . 7 .oo.Y 74500004
2.82 05
6.1€ 115
1.84 06
2.04 44
3,44 05
1.46 05
1,56 04 KG
3.26 04 LB
40524C aC5I
1,24 04
0.64 04
1,74 03
3.72 43
1.44 04
3.06 04
1,94 01 LTK
5,05 00 G4
£23EP,1 D!3JLFIO€
3,16 II
•44 04
1.12 43
4,72 03
1.34 04
3,04 04
0.32 01 KG
5,040 01 LB
A0SI .1C 0440760030€
1,74 04
3,74 ‘.4
3.74 03
5,74 03
2,44 04
4,44 04
2,34 I I KG
5.04 I I LB
1,14 0.
, .115 01._
3,34 03
6.6€ 004
1.04 01 1
4.75.41
2.06—43
9.oE—o4
2,64—04
1.21—04
2,64.02 P G
1.? —.42 LB
1,06 04
44 ,75 I’L
1,24 01
5.3€
3,44 01
4,34 00
9.82.01
4.55—01
5,42—03
2 .55—73
1,64—13
7 , . 4E .Og
7,2L. 4? LTR
2.7 ’— t G4L
1,66 01
7.1€ 00
1,14 00
5,05.05
8,14.43
3.72—43
4,85.03
1,36—01 LTR
4.16—01 (AL
1.54 01
6.92 0
2,64 01
9,34 42
1,44 042
6,55—01
1.84—02
0,02—043
2,24.03
1,06—43
2,36—41 KG
1.14.23 Ltl
1.5€ 011
6,74 0
2,04 21
0,95 004
1,44 00
6.3E 041
1.64.042
3,14—05
4 , f7$
2,31—03 K
1 .5F — i L
1,55 I I
6.6€ O
1,92 01
8,86 04
1.42 40
6,34—05
3,84—22
8,04—03
l. 5243
1,04—444
0,32—05 KG
1,12.45 LB
1.64 01
7.1€ 0.4
2,14 41
9,44 2’.
1,52 04
b,1€—0t
1,85.02
8.442—03
1 ,A€—4’3
,34—04
0,56.11 ‘ 40
5,14—01 LB
1.54 45
6,84 0 4
1.5€ 21
6.94 40
0.06 41
9,02 00
1,44 0’.
6,54—01
3,04—0?
8.02—03
0,95—4’3
1,31—613
2.3 ’01 At.
1.16—01 1.0
2.04 01
9,22 00
1.4€ 040
6.62—01
1,86—02
8,41—03
3,84—03
1,72—443
?,SE—01 At.
1,16.01 1.0
1,44 11
‘4.5€ 044
1,92 01
6.64 0444
1,42 @4
.1€—01
1,81—02
0,114.03
3,36—03
6.04—114
0,34—21 KG
1.1€.’.1 Lii
1.3€ 11
,,1E 0
1,72 01
@0
1.24 04
5.44—01
3,22—05
1.34—43
1.QE .I44
2.26—444
‘4 ,3402 KG
1.Q2— 2 1.0
1.6€ (1
OJ j _ 03
44,12 01
9.56 0404
1,54 0?
6,04.05
2.14 80
9.52—03
1,14.02
5,22—03
2.92 @1 1.704
1.1€ 02 GAL
.44 1
.L .Li !_
1.6€ 01
1.32 40
3,94—01
2.14 08
9,56.01
9,64.03
4,41.83
2.92 03 KG
1,32 01 1.
.44 11
.4.LLII_
2,1! 81
9.56 00
5,52 40
6,84.03
2,12 @8
9,54.03
6,24.03
3,74.03
0,94 03 40
,3E 01 LB
3,2 2
1.7€
‘ .5
2,24
04
/
6.4€
03
1,
3.2€
44 LB
1,32
5 _86
04
0)
I-I
H
0 i
1,74
1 .1 !
01
003
1.2€ 00
5.54—41
2, 06.03
4_O S— el
2,62.02 00
1_.0? LR_
-------
SUMMARY OF HARMIUL QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
HARMFUL QUANTITIES RATES OF PENALTY
COST OF PREVENTION
1.4€ 0
6.3€ 11
1.80 01
4.30 02
1.30 oo
6.110—01
2.1€ 011
9,50—01
.1E—23
1.90—23
. ,9€ 21 KG
1.3€ 01 1.0
0
6.611. 0
1,90 01
8.8€ 00
1.40 00
6,30—81
2.1€ 00
9,50—01
6,60—03
3.20—03
2 ,90 21 KG
1.30 1 10
1,40 0
6.50 04
1.0€ 01
8,70 00
1,40 &‘0
6,20.111
2,10 00
9,50—21
8,20—03
3.70—23
2.90 01 KG
1,30 0! 10
1.5€ 0
6,70 Oi
2,00 81
0,90 211
1,40 112
6,30.0!
2.10 00
9,50 .01
2,70—23
1,20—03
2,90 01 KG
1.3€ 01 _0
1,SE 11!
6,70 0
2.11€ 01
9,00 00
1,40 102
0,40.01
2,10 00
9,30—01
1.30.110
5,70.03
0,90 01 0 !,
1,30 101 1.13
,8E Oi’
@
1,20 01
4,30 011
8.00.01
3.00.01
0.10 00
9.50—0!
7.70—03
3,30.03
2,90 01 KG
1,30 !l 1.0
1,2€ 0
5.60 114
1.60 01
1 ,4 110
1,20 02
5.30.81
2,10—113
!,?E.03
1.50—03
6.80—04
4,60—32 1.14
GAL
9,50 11’
‘4,30 01
1,30 01
5.80 00
9,10—01
0,10.31
2,20—03
9,20—04
2,90—80
1 .30.00
2,2 ITO
1,110.01 GAL
1.1€ 0
‘4,00 Tfl
1.40 01
6.40 211
1.20 00
0,60—01
8,10.23
3,70—03
6.BE—Oo
3,10—00
1.10.01 KG
0 ,0t— 2 L I I
5,80 0
2
1,20 0!
5,30 00
8,40.2!
3,80.01
1,50e23
6,80.04
5.00—05
2,60.113
2,00..12 LIP
1,50.00 GAL
5,80 04
4,00 01
1,2t , 1
5,30 011
8,aE .0
3.80—01
1 . 10 .113
7,90—04
4,60—03
2,10—05
0,30—.’0 ITO
8.70.22 GAL
1.2€ 8
5,5 Oc
1.60 01
7,4g 2 .
1.20 00
5.30—01
3,20—23
1,50—OS
3.70.114
1,10—04
4.30—22 KG
1,90—0 ? 1.0
1.30 01
5,90 31
1,70 01
1,90 00
1.20 00
5,10.01
1,80—22
8,00—03
6.30—114
2.90.244
2,30—. ’! 01.
1.10.01 LII
8,80 01
4.440 01
1.20 0!
5.30 08
8.40.01
3 .00.10!
1.50.02
6,80.03
6,71.114
3,10.844
2,00.01 01.
9,00.142 LII
1.5€ OP
6,60 81
1,90 01
0,00 20
1,40 II
6.3€—Il
3,20.03
1.50.03
1,20—Os
5.40.83
4,30.82 KG
1 ,00.22 10
/ DESIGNATED /
I MATERIAL /
H
H
( 4 )
(a)
—3
3€ ’ -IC T’4T.
8140# . !CE
3.3€ 00
7,36 04
1,10 05
5.10 113
4,130 04
4,90 04
2,30 01 KG
5,20 01 18
A I5Es!C T I
C ”LG OIZ €
2.IE 24
0 , 04
1.7€ 03
4.10 113
2,50 @1
5,50 104
2,30 0! KG
5,140 0! 18
A E.:T ( TO !.
FL 11 €
t .7 ?‘l
3.7€ 24
1.10 443
3.70 73
2.130 04
1,4E 04
2,30 111 KG
5,20 0! LB
A .1S IC T11 .
11’T E
5,110 04
1.10 05
1.70 113
5,70 03
6,20 444
1.3€ 05
2,30 01 KG
5,00 0! 15
£0,04!C TRiOOI !J0
1.10 04
2,40 a44
1,10 113
5,70 I ’ S
1,50 04
7,90 (04
2,30 lij KG
5,00 111 1.0
‘h,€ iIC TRISuLPIO0
1.1€ 4
5.10 24
1,70 113
3.1€ 23
1.1€ 04
3.10 134
2.30 111 KG
5,00 01 18
Z ! at
5.110 24
1.34 5
1,00 115
4.10 845
7,140 04
1,50 433
2,10 23 110
5.50 442 GAL
5( ..ZCIC ACID
3.’€ 25
1.10 06
1.0€ 05
2.20 06
6,00 135
1.30 116
1,50 04 ITO
4,OE 03 GAL
5T lZc 1Tk!L0
2 ,’E OS
4.11€ 45
1.8€ 115
4.1€ 05
2 .30 115
5,00 05
2,30 03
5,20 03 1.9
,€ ..ZpY1 C ”L!3 4 1(s€
2,60 20
3 7€ 2’.
1.00 4 ’ S
.00 06
3,20 116
6.90 04
1,50 044 ITO
4,20 113 GAL
50’ZYL CHLOO IO€
2,30 26
S. E .33 .
1.24 3b
2.20 06
0,80 06
6,20 134
1,50 04 ITO
0,00 25 GA l.
6E**YL 1 .!JM C ’4L0.4!DF
0.70 05
0,10 03
1.00 06
2.20 116
4.30 25
9,50 445
1.30 444 KG
3,20 04 18
,00YLLIUM 01.1400100
.
2,20 03
4,80 25
1.00 25
4.10 05
2.60 03
3,80 05
2.30 03 011
5,14! 03 10
OOIITILIUM oVUOUIIDE
1.6€ 25
3 ,50 4(5
1,80 00
4.1! 03
1.9€ 25
4,20 05
2,30 03 *11
5,00 03 16
600YII. !UM 443144T(
1,20 00
2.50 06
1 ,40 06
2 ,20 06-
1.44€ 106
3.10 06
l ,S0 114 1111
3.20 04 18
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
HARMFUL QUANTIIIES 1/ PREVENTION
/ /
L/i /
/ /454y4/ !/ ,/ /
1,21 01
.21 00
1,51 01
4,01 00
ISlE 00
‘4,81.0*
3 .OE—03
*,5 —03
,l1 .04
9 , 51—05
,3 .00 K
*.91 ’ 2 LB
1.51 01
00
2,01 01
9,11 0 1 ’
1,40 00
4,51—01
2,01 00
9.21—11
2.31.02
1.21.02
.81 01 M L .
1.3k 0* LB
01
.11 OtI
1.51 21
‘,,81 00
1.11 02
‘4.80.121
8.lE— 3
3.71—03
1.11.03
1,11—21 i .TR
“.21.122 GAL
1.31 0*
6,11 oo
1,61 01
0,11 00
1,31 00
5,81.01
5,41—03
2,50—23
,51.V3
2.00—03
7 ,2t.02 LTR
2,71—ot GAL
1,01 01
.20
2,31 01
6,121 012
9 , 50 —01
4,31.01
8,11.02
3,71.22
4,51—04
0,01.04
1,l 00 LTR
4,11 00 GAL
I. ’E Ill
6.71 00
2,01 21
9,01 00
1.40 O
6.41— Il
2.11 00
9,51—0*
5,71—1 3
2.60—G3
2,91 01 MG
1.31 01 1.0
1,50 2
6,10 010
2 ,0t 01
9,01 00
1,41 0
6.41—01
2,11 10
9,51—01
4,5103
2,11—03
0,01 01 M
1.31 0* LB
1 ii
4,90 40
2,01 01
9.20 00
1 ,’41 00
6.61—01
2,11 00
9.50—41
b,91— ’3
5.21—03
0,91 01 MG
1,31 0* LB
6,60 00
2,01 02
9.00 10
1.4€ 00
6,51—01
0.11 00
9.SL ’.Bt
3 , 41—03
2,31.03
2.41 . 1 KG
1.31 81 LB
-;- i-- i•—
6,60 40
2 ,01 01
9,121 00
1,41 00
4,50—01
2,21 02
9.51—01
6.L 1— .’3
2.71—US
2,9 22 M l
2,31 01 LB
1.20 01
S ,S1 00
1,3002
5,02 00
1,61 01
1,31 00
1.21 *20
5,21—01
2,11 420
9 5L.01
3,51 .103
1.61—OS
0 ,41 51 ML .
1.31 02 LB
1.71 01
7,81 00
1.21 120
5.51.01
2,11 00
9.SE—*iI
*,6E—0
7,11 .04
o, o
1,31 01 LB
9,41 00
‘4.30 80
1.3€ 01
5,71 00
9,01.01
4,11—01
2.L’t—0S
9,01.04
3,b1 —2’4
1,61—04
2,6E20 M G
1,21—02 LB
9,420 00
4,30 0’2
1,21 01
5,51 00
6.60.81
3,91—01
3.21.03
1,50—03
2.11.04
5,00—05
4,31.02 o
2,91.02 LB
1,30 01
3 ,91 II
1.70 61
7,90 66
1,21 00
3,60—0*
1,21 00
5,40.01
2.91—01
1,30.61
t,60 02 oG
7, 0 00 .0
/
/ MAWR IAL
RATES OF PENALTY
I
H
H
P;1
1..)
5t YLL1UM 5UL AT1
6,51 25
1.41 24
2. 1 Q’b
,20 04
1,91 425
1,71 .26
1,51 044 20
3,2F 04 LB
ONUC IN I
4,71 23
1.01 04
1.71 03
2,70 03
5,71 03
1,31 12.4
2.31 0* kG
5,00 01 LB
*2I .1YL £C(lAYr
‘. E
2,01 .45
1, E 05
0,10 125
1,11 05
2,41 oS
2,10 423 LIR
,st 02
OUTYL AMINE
5.51 0
1.21 05
1,21 05
4.10 05
4,71 04
1.50 05
2,11 03 LTR
5.50 02 GAL
BuTYOIC ACID
3. 1 05
1,00 . 44
1.01 124
4,21 04
6,71 05
2,51 06
0,11 ‘02 LI’
02 GAL
CADMIUr AC TA1f
4,71 .4
1.01 5
1.71 43
2.7* ‘ 05
5.71 04
1,31 05
2,31 41 ‘CD
5,01 01 LB
CADMIUM OMI E
5,51 0
1.01 25
1.71 43
3.1E IS
4.11 04
1.50 05
2,31 01 KG
5,01 0 LU
C O I ’J CWLOOIDI
5.60 04
7, * . 14
2,71 43
3,70 03
4,41 04
4,61 04
2,30 01 M D
3,01 01 LB
C0 1U P .1tNAT1
5,01 hA
1,10 OS
1.71 123
3.70 05
6,01 04
1.31 US
2.30 81 kG
5.00 01 LB
COOkIUM SULOATI
4,20 144
9,21 04
1,70 03
3,71 123
5,11 04
1.11 05
2.30 001 KG
5,01 01 1.00
CALCIUM A4SE ’ ATE
3,11 04
.7t ‘4
1.70 03
3,11 03
3,11 0’
0,11 04
2,30 01 kG
5,01 01 LB
CALCIUM ARSEWITE
9.41 04
2.21 .‘%
2,71 03
3.71 03
1,11 05
2,31 05
2.31 01 MD
5,01 01 L .4
CAI.CIUM CA6OIDE
3,81 03
6.41 03
1,100 46
2,01 46
4,60 05
2,121 04
1,51 *24 kG
3,21 04 LB
CALCIUM CH600ATE
1,31 06
2,91 08
1.01 06
0.20 06
1.6€ 06
3,51 06
2.51 04 G
3,21 24 1.8
CALCIU’ CIA ”IOE
5,00 02
1.11 23
1.71 03
3.7063
6,01 02
1,31 63
2,31 I I MG
S,U 01 1,0
-------
H
H
(A)
‘-A)
• ,0
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTy FOR COASTAL ZONES
I DESIGNATED
/ MATER IAL
HARMFUL QUANTITIES 7
I
RATES OF
PENALTY
/
/ ,4 /s:7s1 /j
! :,/
COST OF PREVENTION
/
/
CALCIUM 0000CVLO !N.
704 5 I 09070
3,10 64
6.10 04
1,90 05
4.10 95
3,10 04
.t0 04
2,31 03 KG
5,40 03 L6
CAI.C7J” Y1jR( X1flC
4.0€ 05
os
1.40 96
2.2€ 06
5,40 45
1,2E 06
1,50 94 kG
3,21 04 1.0
CA1.C7U MOOD.
CsLORT IL
6,90 93
1.5€ (04
1 ,40 04
4.10 04
6,40 03
1,60 04
2,30 02 KG
5,01 02 ,6
CALCIUM 0030€
3,40 95
7,01 05
1.20 96
2.20 06
4.10 05
0,90 65
3,50 04 49
3.20 04 1.8
C1PYA (PUKE)
8, € 02
2, ’E v’3
1,10 43
3,70 43
3,10 93
2,40 43
2.30 61 KG
5.90 01 1 ,8
C’ TA 4 ( .ETYA8L !
9,90 62
2.01 4 ;
1,71 95
3.10 05
1,30 03
2.41 333
2,31 0% KG
5.20 03 L9
C0460’d OZOULOIDO
3.10 05
0,30 05
3.40 05
0,11 25
4.50 05
1,00 06
2,10 03 LIP
5.50 02 GAL
CAT€C ’ 0L
3,90 9*
4
1.8€ OS
o,30 05
0.7€ 04
1,00 05
2,10 93 Lb
s.5€ 62 GAL
CM 1 .00I9 !
0.00 03
6,30 93
3,7! 03
3.10 35
3,40 03
7,40 03
2,30 01 KG
5,60 01 LO
CWL00000KE (PURE)
4.20 01
9,?! 01
1.70 03
3,70 03
5,00 01
1,11 0?
1.90 01 LIP
3,00 00 GAL
CHL04 00W€
( .. OTTAILE)
1.2€ 41
9,20 21
1,70 01
3.1€ 03
5,00 01
1.1€ 02
2,30 03 KG
5. ’ ! 01 LB
CH L 0 00L ’€ ’ . 2 1 91
5,50 04
1.2€ 95
1,80 0 ’
4.10 04
6,70 44
3,30 05
2.10 0? 1.14
5,50 01 GAL
CML
3.51 i5
7,61 43
1.81 0*
4.10 04
4,21 65
9,20 45
2.10 02 LIP
3.50 03 GAL
CKL000SJI.OOPZC ACID
9.60 05
2,10 06
1.00 06
0.20 06
1,20 04
2,61 06
1.50 04 LI I ’
4,00 03 GAl
CHRONIC ACIIAT!
5,00 44
1,10 03
1.60 45
4.1€ 45
6,00 04
3,30 03
2,31 03 KG
3,00 03 1,3
1.20 61
3 .T ,!_f . _.
9.30 04
3,10 I I
1,30 40
3,21 90
5.40—01
1,11.22
4.90—03
4,80.03
2.20—03
1,40.01 KG
6,30—02 LO
1,21 01
5.11 @0
4,91 .03
4,00.03
2.40.43
9,00 —64
3,31—94
0 .O4
2,60.22 KG
10.00 .b
1,10 01 1,40 01
4.0106 ,40 00
1,91 00
4,60.03
1,11.91
4,90.02
2,80—92
3,30.00
1,40 00 KG
6,3 .01 1.6
9,40 99
.e!i _
1,30 01
3,90 60
9,30—01
4,20—03
2,61.93
9,331.04
3,80.04
2,60.04
2,60.02 KG
1.20.02 1.6
1.10 63
3.3
1.30 91
4.61 00
1.10 06
4,81—0*
7,50.01
3,40.61
1,20—61
5,50-02
1.01 @1 kG
0,10 00 11*
1,51 01
6,90144
0,00 01
9,10 00
1,40 @0
4.51.01
1,20 00
5,40.03
1,60.03
7,50.02
3,00 41 NI
7,40 00 Lb
1.31 0*
_!.!!_ _.
1,50 I I
6,60 69
1,10 06
4,81.01
0,10—03
3,11—03
7,20.04
3,30.64
1.10.01 1.10
4,10.01 GAL
1,30 01
5,9000
1,70 01
7.90 00
1,20 60
5,70—01
1,10—02
4,90.03
3,60.43
1,70.03
1,01 .41 110
5.41.01 GAL
3.00 01
4,70 00
1.40 01
4.31 00
9.80—01
4,50—01
1.2€ 02
5,41.91
7,11.02
3.50.0?
1,60 01 KG
7,40 04 LB
3.00 01
11,70 00
1,41 03
6,20 00
9,70—03
4,40—01
3,70 06
1,70 00
4,70 00
2,10 00
5,20 01 LIP
2,66 02 GAL
1.20 01
, ,31 00
1.5€ 01
1,90 00
1.1€ 00
3.00—01
4,00 00
3.81 00
6,50 l ’2
2.91 04
3.50 01 KG
2,50 43 10
1,30 01
5,90033
1,71 01
1,90 031
3.21 00
5,6E . .O1
1,90.03
8,61.92
3,50—93
1,60.333
2.51 93 ’ LIP
9,50 00 GAL
3,20 01
5,7004
1,70 01
7,50 90
3.20 00
5.40—01
1,90.03
0,60.02
5,61.04
2,60.04
0,50 00 174
9,50 40 GAL
9,20 09
4,20 04
1,20 01
5,61 00
6 ,70—03
4.01 .03
2,00—03
9,01.94
1,50—64
6.9€—OS
2,60.02 LIP
3,00.0* GAL
3,40 01
4,5144
1,90 0*
6.70 60
1,40 00
6.20.01
1,60.42
6,01.43
2,91.03
1.30—03
2,30.01 Kb
1,10.01 LB
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
7, ,1 I4
1.71 vS
1,81 0 5
4.1E 5
9.11 t 4
? . € vS
? . .f V4
5_Se , a
•vr
“.11 Q’ .
2.3€
03
G
S.OF
I ’ S
LB
C$kO O S CMLOo IOE
2,51 43
5. E 044
1.B1 b4
3.11 04
3, ’1 04
6.61 444
2,31 02 46
5 0E B2 LB
C WOMULJ3 OXaLATI
3.51
7,3E BO
VS
4,11 4 5
a.vl oa
0,91 04
2.3€ ,
5,I’E 03 8
C44B M L CP4LO44fl)E
‘I,5t I’S
9.5€ 05
1,1 E 06
? .0I! 06
5,21 05
1.11 04
1,51 04 KG
3.4€ 00 LB
CCbALT LtS ACE.TA1E
0.31 I”
5,11 .44.
1,01 ‘,
2, € lb
2.01 06
4.21 06
i,sc oo
3.21 00 LB
COB8LTC.S BOOMIDI
2 .* Pb
4 . 5 06
1.51 06
2.21 ( b
2,51 06
5.5€ 06
1,51 04 aG
3,21 44 LB
CCFSALTCUS CWL044!DE
2.2€ 26
4,91 06
1.I’E 46
2.21 46
06
5,91 06
1.51 04 KG
3.2€ 414 LB
CCBat.IOJS CI WA1t
,91 156
4,11 46
1.0€ B
0.21 06
2,21 ob
4.91 36
1,51 oo
1.21 4s LB
COe .ALT( IJ3 PLUOWIDI
1,41 04 .
2,81 . b
1.01 06
2,21 06
1.51 144.
3,31 06
1,51 04 KG
3.21 04 LB
COb<GtJS FOWMAT€
1.71 06
3,41 06
1.0€ 06
2.21 46
2.1€ 06
4, E 04.
1.51 414 KG
3,21 04 LB
CGBALTOuS lOUlul
2.9€ 06
6,41 lb
44.41—01
0,01—441
3,51 06
7,81 06
1.01—01 KG
0,01—01 LB
CQBALTOV5 MITOATI
2,71 lb
6.4€ 06
1, 11 06
2.22 06
3,31 lb
7,21 lIe
1,51 04 IIG
3,2104 LB
CCBALYCUS
PC CHLflRAT 1
3.4€ Be
7,61 06
1,01—01
0,01.01
4,21 446
,11 06
1,0 1—lI KG
0,01 .01 (.0
4,51 I’
o
0.71 02
6.21—01
8.Ql .I’3
8 ,91—04
1,11.01 LB
44141
6,31 40
1,5141
6_91 40
It
6,71 0
1,8171
3,01 .414
4 r
4,61 444
B
4,01 444
4,01 70
B :Ti I —
4,01 00
1.91 11
o ,a€ 00
1 _SE Ba
b.0€ .0
1.411—02
6,Ot.03
4. 1—73
1.9€—IS
2.3E— ’1 OG
4,11.01 Lb
2,01 01
9,21 00
1,31 00
6.61—21
4,81.21
41_ ’E.04
,91—B3
2.71—43
2.3€. dI’ PIG
1,41 .4.4 LB
2,441 I I
9,01 00
1.41 00
6,01.0$
1.41.02
8,0€..23
4,41—VS
21.443
2.34.11 KG
1 ,11—8* L$
,4€ 41
1.1€ 01
1,71 044
7,61.01
3,21—03
1.51—23
3 ,4 .I’4
1.SE —I’4
4,31.42 PIG
1.91.02 LO
1,21 01
5,31 I I?
8,441—01
3,01 .01
321.03
t,51e23
5.91—05
2,7105
4.31—22 G
1.91 .02 LB
1 ,2 01
5.31 0.4
0,41—01
3.81.41
3,2E. 3
1,51.03
6,61.05
3,01.05
4,3 72 IG
1.91.82 LB
1.21 41
5,31 00
8,41—01
3,81—4*
3,21—03
1,51—03
7 E—45
2 .0€—OS
ast—Jo o
1,91—43? LB
1,21 41
5,31 00
*,41B1
3,01.01
S,2t•03
t.S1. 3
l,441 5
3.31.05
,)1—20 4G
1,96.02 LB
ri
0.21 40
1.21 41
5,61 00
6,71.01
4,01—01
3.01—1)3
1,51.03
1 .41—00
5.01.05
4,3€ —u€ ‘I.
1.91.42 LB
6.86 40
4,01 30
1,21 01
S,31 00
0.41— U I
3.61—01
3,26—03
t.5103
7,91.05
3,4.1—05
0,31.00 40
1.91—42 L ’ s
4,01 00
1,21 I I
5,31 00
8.41—01
3.81.01
0,141—01
0,01—01
4 ,71—05
2,11.05
0.Ot—I’1 KG
0,41.01 LB
0,81 00
4,81 00
1,21 01
5,31 00
8,41—01
3.01.01
3,21.03
1.51.43
5,01—05
2,31.05
4,31.01 KG
1.91.02 Lb
3,81 I I
4,01 00
1,21 01
5,30 SO
8,41—01
3,01.01
1, 1 1—lI
5.01.51
I,oL—0S
1,01.55
0,01.31 WG
0.01.54 ( .8
L QUANTITIES
4,01 05
6.11 445
1.0€
4.11
145
.45
3,01
7,41
Cr fl ,JS CA14flONATE
05
05
I
2,11
5,51
03
02
GAL
5,91 40
H
H
L .)
0
1.2€ 00
5,61.0 1
I • 81—32
8,01.23
0,31 03 KG
5,4 1 43 L I I
1, 0 1— 04
3,21 • 1’ 4
4,31—01 LIR
8,411—41 GAL
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
_________________________________ RATES_OF_PENALTY
“ 1 DESIGNATED / HARMFUL QUANTITIES -1/ COST OF PREVENTION
/ MATER IAL /i4 _q; //h______/
H
H
$11
( J
I-.
00
3.81 00
,ot 0l
1,21 0*
00
6,41.01
3.81—01
3,21—03
1.31—03
9.61.1’S
4,41—05
4,31.02 KG
1.91—0.2 1.0
1.21 Ii
5.3€ o
3,21—03
i.SE.03
6,21—05
2.41—05
4,31—32 KG
1.91— 2 11
COIALIOUS IUCCZ4AT€
1.1€ 04
2 ,41 26
1.01 04
2,21 Pb
1,31 lb
3 . € 06
1,51 04 KG
3.21 04 L
COIILTOUS SULPAMAY1
2.21 06
4,91 06
1.0€ 06
2,21 06
2.TE lb
5,91 06
1,51 04 KG
3,21 04 (.8
COIALIOUS 5L1 ( .1’l1C
2,71 04
5.91 06
1.01 lb
2,21 06
3,21 06
7,11 46
1.51 04 KG
3,21 04 LI
C0u444 ”OS (P WE)
3,11 V
4,71 02
,71 03
3.71 03
3,11 82
4,11 02
2,31 01 KG
5,01 01 1.8
CC1uAP4 $
(.111 4411)
3.1€ 22
4,71 0
1.71 flS
3.1€ 43
3,71 02
4.11 02
2,31 II KG
5,01 01 LI
CWLSOI.
1, ’1 05
03
1.81 04
1,11 04
1.61 05
8.11 05
2,11 02 1.TW
5.51 0* GAL
CUPIIC a VAT€
1,61 04
A4
1.61 04
o.1E 44
0.01 04
4.41 04
2,31 04 KG
5,21 02 LI
C000YC
*C€T *4SE ’ ,5T€
2.1€ ii
4,71 84
1.1€ 44
3.71 43
2.61 II
5 ,11 04
2.11 0* KG
5.41 01 (.8
CUPPJC ACITYL—
AtETC *T€
2,21 04
06
1.4! 04
0,11 04
?,K! 04
3,81 144
2.3 ! 0? KG
5,21 02 ( .8
CUPOIC 4404!.,!
____________________
1.41 114
4,A1 04
1,41 04
“.1! 84
2.2! 84
4,91 44
2,31 02 KG
3.6! 42 (.8
CUPRIC C’4L04101
1,41 44
1,1 44
1,61 24
‘4.11 44
1,11 04
3,71 04
2,31 02 KG
3,01 42 LO
CUPOIC FOKKATF
1.41 84
5.11 04
1.81 44
(.1! 04
1,71 04
3,71 04
2,31 4 ? KG
5.2! 42 LB
C PP€0 GLUCOOAT 1
3.91 24
4,61 04
1.81 05
1,11 05
4 ,7 ! 01
1.01 05
2,31 43 KG
5.01 43 LI
CUPOIC ‘ ( .YCI4AT(
1,91 ‘4
4,31 I I
1,01 04
4.11 04
2,31 04
5,21 04
2,3! 02 KG
5.41 42 LB
CUPRIC LACTATE
1,91 04
4,31 04
1,01 04
1,11 04
2,31 04
5,2! 04
2,31 112 KG
3.01 82 1.8
8,81 00
4.0 40
1,21 01
S,31 0,
0,41.01
3,81—0*
3,2€43
1,51.43
5 .11—45
2.51—05
6,31—22 KG
(.91—02 1.0
1,31 01
1,11 01
1,71 00
1,21 00
5,51.0*
1,41 00
7,51—0*
,51ø01
1,61— l I
2,3! 01 KG
1,01 01 LI
1,51 01
6.91 40
2,01 01
9,21 00
1,51 00
4,41.01
1.91 00
8,01—01
4,61—4*
2.21—01
2,71 01 KG
1,21 01 LB
1.21 01
5,4100
1,61 II
7.21 00
1,11 00
5.11—01
6,11—0 ?
3.71.02
9,61—04
4,41.44
1.1€ 00 1.14
4.11 20 GAL
1.5€ 41
1,0 (20
2,11 01
9,41 00
1,51 04
4.71—01
1,3*— lI
4,81—02
8,31—03
3,41—03
2,01 00
9,01—01 LI
1.4€ 01
6,51 40
1,91 01
6,71 60
1.41 00
6,21.01
2,11 00
9,51.01
5,01—05
2,31.03
2.91 01 KG
1.3€ 01 LB
1.5! 41
6.71 44
2.01 01
8,91 00
1,41 00
6,31— Il
1.61—11
8,01—02
4,91—45
2,21—03
2,31 10 KG
1,11 00 (.6
1,51 I I
7,2100
2,11 01
9,41 00
1,51 00
6,71—01
1,11.01
8,01—02
7,31—03
3,a€—oi
2,31 08 KG
i.te 04 1.0
1.41 41
1.21011
2,11 I I
9.41 40
1,51 06
6,61—01
1,81—0*
8,01.22
9.81.03
4,51—03
2.31 00 KG
1,11 0b (.8
1,61 01
1.11 04
2,11 01
9.41 00
1,51 00
6,71—01
1.81.01
4.01—42
9,81.13
4,31.43
2.31 00 KG
1,11 00 LI
1,71 0*
1.61 00
2,21 01
1,01 0*
1,61 00
7.31—01
1,81—02
8,01—03
5.51—03
1,6*-IS
2,31.01 KG
1.11—01 LI
1.51 0*
4,7140
2,01 81
9,01 00
1,4! 00
4,41—01
1,61—01
8,81—0?
7,01—03
3,21—83
2,31 00 KG
1,11 II (.8
1,51 01
,SEU8
2,11 01
9,41 00
1,51 60
6,11—01
1,81.0*
8,01.02
7,01—03
3,21—03
2,31 00 kG
1,11 06 ( .0
-------
H
H
I 1
1 . .)
1’.)
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
/
DESIGNATED / HARMFUL QUANTITIES 7 I RATES OF PENALTY .
/ MATER IAL
CLiPOIC 911$AT(
1.91 44
s ,3 44
1,IIF 64
u.l( 04
?,31 44
24
2,31 !‘2 KG
3.2! 02 LB
CUPOIC OKALATE
1,31 04
2.01 04
1,81 44
4.1€ 04
1,61 08
3.51 OS
2.31 02 KG
5,01 02 LB
CUPOIC
5u ” sC€Y*T€
I,S€ 2*
3.41 04
1.81 85
4.1€ 04
1,81 04
1.1€ 04
2.31 2 KG
5 .fi€ 02 1.8
CUP9IC SULIAT!
2.1€ 24
0,51 04
1.1.1 4
4,11 II
2,St Oil
5,51 84
2,31 4*2 kG
5,6 ! 02 LB
CUP$TC SuLFAT!
A1C *T€0
2,01 .14
4.51 04
1,81 04
4.11 04
2,41 *3*
5.81 08
2,31 02 KG
5,01 *32 LB
CUPRIC T*RTOAT€
2.21 314
4,01 04
1.41 44
“.11 84
2.61 44
3,01 04
2,31 02 KG
5,41 42 1.8
C(IPRC*US *1004101
1,21 .14
2,61 44
1.KE 04
4. L 44
1.4€ *35
3.24 04
2,31 82 KG
5,01 42
CU000US 100101
1,61 04
3. € $4
1.81 04
4,11 04
1,91 04
4,11 V I
2,31 0? KG
5,0! 42 L.
CYA4OC€Pd CNLO4IO !
2.21 02
4•0( *12
1.71 83
4.71 03
2,11 42
5.91 0?
2,5! * KG
5.01 0* i.0
CVCI .0H4 *91
8,’.! 00
1.91 “5
1.4! 83
4.1’ 05
1.01 05
2.31 05
2,1! 03 L7
5,5! 02 GA
2,8—1 AdO (PUQI)
•
1.1€ 24
3,71 04
1.61 44
4,11 04
2,01 04
5,41 04
2.31 02 kG
5. 11€ 02 1.4
2.4—fl ACID
(.€TTA8L()
1,11 04
3.71 *14
1.4€ 0;
L4.11 .44
2,01 a
4.41 44
2.31 02 kG
5,141 02 L I I
2.4—0 131103 (00*1 !)
2,21 III
1.0€ d l
1.81 04
4,1104
2,11 04
5.91 04
2.3! 02 KG
5,00 02 1.4
2. 4 —fl F$T003
(.€YT L !)
2.?! 44
s ,91 II
1.8! 04
1.1€ 04
2.7! I I
3,9! 04
2,30 V2 KG
5.01 02 LB
0*1.6000
2,8! 03
6,11 03
1,01 05
4,1! 04
3,4! 03
7,4! 03
2,5! 02 KG
5,01 02 LB
1,5* I I I
7,41 00
2,11 01
9,41 00
—________
1,51 80
4,71.41
1,81.01
8,4€ .o2
1,01.45
3,21.03
2.31 00 KG
44*
1,21 4*
,6I 00
1,61 8*
1.40 00
1,21 40
5.31—01
1,51.01
6.81—02
4,01.03
3,61—83
1,11
1.0
2.01 04 KG
1,51 I I
6,91 00
2,01 01
9,11 80
1.50 44
6,51.01
1.61—01
6,01.02
8,91.43
4,1 !— *3
0,Ot.$$ LB
2.31 014 KG
1.11 00 LB
1.5* 41
7,01 04
2.1! 01
9,41 04
1 ,S€ $0
6,71.01
1,80.61
8,01.02
6,60—03
3,01.03
2.30 02 KG
1,11 08
1,40 01
7,11 00
2.11 0*
9.40 I I
1,51 00
6,70.81
1,81.4*
6,00—82
6,70 .03
3,11.03
2,31 82 KG
1,11 00 1.8
1,fl 4*
6.11 *10
1.40 8*
0,10 00
1.31 00
5,81—41
1.51—0*
4,81.02
4,91.03
2,21.03
2,.’! 04 KG
9,41.01 LB
.41 01
4,51 4*0
1.9€ 01
8,74 82
1.41 42
4,41 .01
1.51—21
6,64.42
6,91—43
4,1€4S
? . .E 0.3 kG
9.01.81 LV
1,41 0*
4,51 09
1.3€ 0*
6.01 40
9,51—8*
,3€.*i$
1,51—0*
6,61.82
6,91.03
3,11—03
2.61 00 KG
9,U€ —21 LB
1,31 41
5,44 00
1,71 0*
7,40 08
1.21 04
S ,IE —0$
2,11 40
9,31—4*
1.11 0$
5, 11.01
2.91 01 KG
1,31 0* LB
9,14 44
4.14 08
I.? ! 0*
5,5! 01.’
6,11—01
3,91—0*
2,71—03
2,21—23
1.0E—”s
4,41—04
3.41—42 L14
1.4 .4I GAL
1,24 8*
,3t 00
1,51 61
7,41 80
1,11 02
5.41—01
6,61.02
3,11.42
6,40—03
2 ,91—03
9,141.01 KG
4,11.41 LB
1,240*
5,41 00
1,41 I I
7,41 40
1,21 60
3.30—01
1 .1 1.01
4,91—02
6,81—03
4,01.03
1.41 014 KG
b ,5 .oI LB
1,14 81
5,14 40
1.51 81
4,81 08
1.1€ 84
4,91.81
6,81.02
3,11.02
4.81.05
2,21—03
9.01 .01 KG
4,11—2% LB
1,24 6*
5,58 06
1,60 81
7,41 00
1.2! 04
5,31.41
1,110*
4,90.02
8,61.43
3.01—03
1,11 44 KG
6.50 l* LB
1,54 0*
4,70 00
6 ,01 01
8.91 II
1,41 80
6,31.0*
1, 61—I l
8,01—02
5,31.02
2 ,41—04
2,30 00 KG
1,11 I I LV
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
05
03
I ,3IE
I • 2€
GI T (W1TT*d 1)
3,31 01
1.8€ 02
1.11 03
3,10 43
1,01 02
2,21 0?
2,31 01 G
5,20 01 ( .3
IJIIZI .O ’ 4 (PUi E)
4.1€ d l
1,30 U
1.7€ 05
3.1€ 43
1 ,41 81
1,61 02
2 ,31 I I KG
5,01 01 LB
OZAZIWON ( 1177*0 1 .1
4.10 41
1,31 02
1.1€ 03
3.7€ 05
7.41 0*
1,61 02
2.3€ 01 KG
5,00 01 1.8
oIcaIeo
t ,1 05
2.0€ . S
(,0C 05
4.11 05
1,31 45
3,01 05
2,31 43 ‘IG
5,01 03 ( .2
DICU4L081P.fl. (Puwl)
4,11 ii
9.01 04
1.61 *0
0.11 48
0,90 04
1,10 05
2,30 42 KG
5,01 02 LB
1C 1L 0€ 4!L
(..LTT * 0 I.f)
4,11 41
9,411 04
1.40 *4
0,10 04
4,90 04
1.11 05
2,31 02 KG
5.41 02 LB
o ’s ,0’.( (Pu.t)
1,10 02
2.4€ 02
1,70 43
3,70 03
1.31 02
3,00 02
2,30 01 KG
5,40 41 (.6
OICHLOP.€ (411T788L€ )
1,11 02
2,41 2?
1,11 05
3,70 03
1,31 02
3.00 02
2,31 II KG
S,OE I I LB
OICI I.O KvO$
1,11 03
2.4€ 5
1,71 03
3.11 23
1,51 43
2.90 *3
2,31 01 KG
S.G1 01 (.0
o1€Lr’IPJ LPUOE)
1,41 0?
3,11 22
1.1€ *3
3,71 03
1,71 lii
3,11 02
2,31 I I KG
5,oE 01 1.0
DhLOOIN ( .077*81.1)
1,00 d l
3.1€ 02
1.70 03
3,71 03
1,71 02
3,11 02
2,31 01 KG
5,01 01 (.6.
O IET I IYL KMIN I
2,01 I ’ S
5,?€ 05
1,31 05
4.1€ *3
2.9€ 05
..3E 05
2,31 03 KG
5,41 03 (.0
T ’4 7L*MIML
2.K€ 45
0.11 25
1,81 05
4.10 05
3,41 05
7,40 05
2,31 03 KG
5,01 03 ( .0
O! oZT 0PNCh 1.
9,10 0*
2,10 05
1.8€ 04
4.11 •4
1,21 05
2,61 05
2,31 02 KG
5,01 02 LB
1,41 I I
8,01 10
2,41 01
1,10 01
1.1€ 00
7,61—01
4.111 00
1,81 00
4,71 00
2,11 00
5.51 II I KG
2,51 0* LII
1.5€ I I
6,01 10
2,01 41
9,11 40
1,40 00
6,51—0*
7,51.41
3,41.01
1.7€ 40
7,91.01
1,01 01 KG
4,71 21 1.8
1,01 31
8,00 10
2,11 41
1.1€ 0*
1.71 00
7,60—01
1,20 00
5.41.11
2.00 00
1,11 00
1.40 81 x c
7,11 00 1.8
1.31 3*
6,00 1310
1,81 01
8,00 00
1,31 00
5,71.01
1.00.02
8,01.03
2,01—03
1,21.03
2,31—41 *6
1,11—0* ( .8
9,01 40
4,3040
1,31 I I
5.71 40
9,00.01
4,11.01
1,51.01
6,61.02
4,11.03
2,21—03
2,01 00 KG
9,00—01 LB
1.50 31
1.4100
2,11 01
9.41 00
(,SE *0
6. 1 1 —01
2,41.01
8.00 .02
6,41.103
3.41 .03
2,31 00 *6
1.1€ *0 ( .8
1,21 01
5.31 00
1,51 01
1,01 00
1,11 00
5,01—01
1,60 *0
1,51.01
l.KE40
8,41—01
2,30 01 KG
1.01 41 (.6
1,71 I I
1.70 00
2,31 0*
1,01 01
1,61 00
7,31—01
1,91 00
8,61.01
2,41 *0
1,11 04
2,71 21 KG
1,21 I I Lb
2,61 41
7,41 00
2,21 I I
9,91 00
1.61 00
1,11.01
1,91 04
6,61.01
2.51.41
1,11.01
2,71 I I KG
1,21 V I (.8
1,21 01
,71 *0
1.71 01
7.51 00
1,20 I I I
5 ,4 1 .CIt
3,71 00
1.11 10
1,41 0.3
6, 41.0%
5.10 01 KG
2,51 I I (.4
1,81 0*
8,01 00
2,31 0*
1,11 01
1,71 00
7,61.01
4,41 00
1.61 00
1,91 00
8,01.01
5,51 0* KG
2,51 01 L I I
1,31 0*
5,61*0
1,11 01
7.71 00
1,21 00
5.51.01
5,41—03
2,51.03
9,10—04
4,10.01
7.20.02 *6
5.31.02 LII
1,21 01
5,71*0
1,20 0*
5,4100
1,10 01
7,51 44
1,20 00
5,01.01
5,41—03
2.51.03
1, 10—00
3,51.00
7,21.01 KG
3,31.62 Lb
1,01 01
7,21 00
1,11 00
5,21.01
1.11.41
4,91.82
1.51.43
0,91—04
2,41 40 KG
6,50.01 (.8
/ DESIGNATED
MATERIAL
/; /
007 (PuOL)
6.31 6*
1,41 02
1,1 0
3,71
/
62
02
2,31
5,01:
SI
01
KG
(.0
8,0 1
4,01
II
I.
1,20
5,31
0*
•0
I-i
I .-’
I; ’
I . ’ ,
3,11 6!
1.70 04
5 ,10
2.30
$0
44
5,11
2.31
II KG
0* LO
-------
SUMMARY OF HARIIFUL QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
OTSULFOTU’4 (PUk !)
l. 0 i?
3,1 ! 02
1.7€ 03
3,10 03
2.1€ 02
• ,le 82
2.3€ 01 KG
5,00 21 Lb
0 1 6 1
(—ETT ’ ’ji€)
I . 0 02
3.90 02
1,70 83
3,70 83
2,1 ! II?
4 7 82
2 .3€ 81 KG
3.00 01 LR
D1t,00’4 CPuO€)
S.oo 03
1.10 0*
1,80 84
4,10 04
6,80 03
1,30 04
2,30 02 KG
5,80 02 Lb
OIu4O’ (KETIABLE)
5,10 03
lii! Ia
1.00 ‘$4
14,11 04
b ,8I0 03
1,30 04
2,30 02 KG
5,80 ? L8
urYt o .j
S LF3P .1C *CZ )
o.n oa
5. 1 OM
l,ee oa
84
3,00 04
6,00 04
2.30 82 KG
5.20 02 LB
QLJW3BAP. (Pui4 )
1.10 02
?.GE 0?
1.70 03
3,70 03
1,30 02
3,00 0?
2,30 01 KG
5.80 01 Lb
0Ii’$3s*14 (KOTTOOL!)
1,10 ‘$2
2.40 02
1.7€ ‘$3
3.1€ 03
1 ,3€ 0?
3,00 0
2.30 “1 KG
5,80 01 LB
F. l )OSULFao ( U 0)
2.40 11
$,1E ‘81
1.70 03
3.70 03
3,40 01
1,40 01
2.30 01 X C
5.20 01 LB
€NOC SULF* .4
(.(TT6 L !
2.8€ 21
6 ,10 01
1.10 03
5.70 s
3,40 dl
7,40 21
2.30 01 KG
5.00 01 LB
E$.DRI (PUa()
8 ,60 00
1.90 01
1,70 03
3.70 83
1,00 01
2.3€ 01
2,30 81 KG
5. E 81 LB
L’408 1 ’4 1 14017*OLO)
6.60 00
1.9! 01
1.70 05
3.10 913
1.0€ 01
2.30 01
2.30 01 KG
5,00 01 LB
ET 4Z0½ (PURE)
3,60 32
7,90 32
1.70 03
3.70 03
4,40 02
9,60 22
2,30 01 X C
5,00 01 LB
0TP ’1c” (i€TT&b tj
3,60 02
7,0( s
1,70 03
3,10 13
5,40 0?
9,61 02
2.3€ St KG
5,0! 01 LB
EINVL 8 0 0Zf ’4(
6,00 04
1,8! 25
1.8€ 85
1,10 05
4 ,10 04
2,10 05
2,10 03 L I I
5,50 52 C II
1.4€ 00
6,50.01
1.60 20
1, S e —2$
6,00. 101
2 • 70—i’ I
2,30
I • .‘ 0
KG
1.0
1,01 01
7.4 1 488
2,20 01
9.90 00
1.6€ 22
1.90 00
6 ,21—01
2,71 01 KG
1,41 01
6,2100
1.60 51
0.30 00
1,30 048
3,90—21
4.00—e l
1.50—01
b.8t.4 ?
3 ,7€.?t
3,90—02
l.8€ . ’2
1.20 I 14$
2.00 00 XC
1,01 01
7.21 044
1,31 01
5.01 00
2,10 31
9,60 00
1,51 @0
0,90.01
1,80—21
8,00.0?
5,40.02
2,40.02
LB
2,30 00
00
1.1€ SI
7.70 @0
1.1€ 00
,50—01
l.1€ —O I
4,90.0?
3,40 —03
LB
1.’! 02 KO
1,41 01
0,51 00
1.90 01
8,60 50
1,40 00
6, 10.01
1,60 00
7,5E— 1
2,70—03
9,60—01
0,51—Ill LB
2,31 21 KG
d l
1,01 21
7.41 08
2,20 01
9,9€ 02
1,61 00
7,10.01
1,90 20
6,80.01
( o
o,o€.oi
1,100
Lb
2,70 01 KG
1,20 01
1.51 01
6,71 20
2,00 SI
0,90 02
1,40 02
0,30—0 1
1,61 20
1,50—01
3,60 100
2.30 01 kG
1,61 141
1,51 00
2,20 01
1.0€ 01
1,40 03
1,10 .Ji
1.90 00
6,80.21
1,71 80
5,31 00
2,41 ‘?
1,00 21 Lb
2,70 dl k
1,31 481
5,91 ‘ 0
1,70 81
7,40 00
1.2€ 02
5,70—01
3,7! 00
1,70 0
2,30 0*
1,00 SI
1,20 01 1 -0
5.10 431 KG
?,3! 01
1.41 01
6,21 00
1,80 01
0.20 00
1,30 03
S,q .0j
4,00 00
1.40 00
3.10 01
5.50 01 X C
1,31 01
5.81 00
1.10 21
7,10 00
1.20 00
5,50—01
1,60 00
1.50.21
1.40 01
3.00.01
2.50 0* LB
2,30 21 KG
1,61 01
7,3 1 00
2.10 d l
9,10 00
1.50 00
6,90—01
1,90 00
8.80.01
4,11—0 1
1,80.01
1.00 21 LB
2,10 01 kG
8,81 00
55
1,20 01
5,3 IS
8,40.01
3,80.01
5,41.03
2.50.03
2,91.03
LB
7,20.02 LTR
1.4€
4.10
04
64
3.4€
7,40
Ia
24
F
2,30
5 • 0!
22
KG
LB
H
H
L I
1,51 01 1,5 00 1,80—71 3,30 . ’3 2 $1 20 KG
7,2100 6,70—01 6,0 .22 2,40—oS 1,10 00 Lb
1,30 01 2.00 I I
4,90 80 9.11 00
01
Cl
-------
J
I GNATED
/ MATERIAL /-
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY IOR COASTAL ZONES
HARMFUL QIJANTITIES RATES OF PENALTY
COSTOFPREVENTION / /
/‘ /
/
I-I
H
F
L ..1
U i
0TP4YL( .EpIAMPd 0
3,90 04 1.80 us
8,60 o4 *.10 435
1 ,10 hO
1,00 I ’S
2.10 @3 LTN
S,S( 02 GAL.
0010
1,41 06 1,00 06
3.10 “ lb
1,70 Ob
3,10 04
i,so em
4 , l$0 433 GAL.
F($4 1C AMK I1UM
CITwATE
3 ,I 45
2.9E i5
1,00 415
4,30 05
1.60 05
3,50 oS
2,30 03 KG
5,00 03 3.0
ct.i0!C CML 1t 0
1.10 3
2,111 .l!
1.60 4
11,10 165
1.30 433
2,30 05
2,30 I ’ S KG
5,00 43 3.13
F000IC r3.UU4100
1,00 04
•7 o5
1,80 4 5
o,%E 5
9,40 @4
2,10 45
2,30 83 KG
3,40 03 LB
0000IC ‘ . TwATt
1.1€ 05
3.70 45
L .8E OS
4,10 05
2,40 05
4,40 45
2,30 03 KG
5,00 03 LB
IIWQTC PHfl3P”&TO
7 , 0 04
1,70 .fS
1,80 Q
o ,tE 433
9,40 @4
2,10 05
2,30 03 KG
5,00 03 LB
1K0TC SULFATE
3,10 03
2,40 os
1.8€ @3
o,1E AS
1,30. 05
3,00 45
2,30 @3 KG
5.00 03 1.8
FFhR JS AMMONIUM
5 110010
l ,IE 05
2.40 05
1.80 05
4.10 43
1,30. 03
3,40 05
2,30 03 16
5,20 03 LB
FOAAI’US C,4LOmIøE
1•80 I
1.7€ 05
1.00 05
o.1E OS
9,40 44
2.1€ OS
2,30 03 KG
3.0€ I’ S LB
0040Q’jS VOALATE
7, 0 44
1.60 85
1,00 05
4.10 @ 5
0,70 04
1,90 05
2,30. 03 KG
5,20 03 3.0
FE .IQOUS SULFATE
3.10 05
2.4€ 45
1.80 05
4.10 05
1,30 I’ S
3,00 05
2.30 03 KG
5.40. 03 LB
00 1 6 ”*L O EI4 000
6.00 05
1,SE @4
1.20 00
,20 46
7,20 05
1,60 436
1,50 04 LIR
4,00. 03 GAl.
ow’qc mciu
€.‘E 05
S,2 05
1,00 03
,IE 05
2,90 05
6,30 @5
2,10 @3 LT4
5.50 02 GAL
FUMAOIC ACID
3,80. 135
8.40 75
1.00 06
2,20 26
4,60 05
1,00 06
1,50 04 LTR
8,00 03 GAL
1.40 01 1,80 81
6,30 04 8.30 40
3.30 00
6,00—01
1,10—43 6.40.03 3 ,1E— .i1 LTR
3,10—43 2,40.03 4.10.01 G L
0,81 04
4 ,40 Oi
1,20 01
% ,3E 013
6,40.01
5.00.01
2,10.83 3,40.44
1. 2 4— 4 3 6,44—43
3,80.02 L II’
3,40.03 GAl.
1,21 01
,5E 00
1.60 01
7,30 00
1,21 00
5,21.01
1,00 .02
0.00.03
,RE.03
4,10.04
2,30—01 06
1,10—41 3.B
1.40 41
1.30 134
1,50 01
8,31 00
1.30 04
b ,00 ’ .Ol
1,00.432
8,00.03
1,30—03
5,70.04
2,0—01 KG
1.11—.’l 3.13
1,40 433
6,20 01
1,00 01
0,20 00
4,30 00
3,90—01
1,60—02
8,00.03
1 .BE.4 3
8, 0—B4
2,3t—. l KG
1,10.01 1.14
1,30 01
@
1,01 01
4,00 00
1,30 110
5,70.01
3,430.02
8.00.03
0,20—04
3,70.434
P,3E. ’l
1,10.01 LB
KG
1,30 01
s,8E 04
1.70 01
1,70 00
1.20 00
5 ,5001
1,50—42
6,80.43
3,40—43
6,20.04
2 ,00.0*
9,40.42 18
KG
3,40 01
6.30 00
1,90 01
8,71 00
3,40 00
6,21.01
1.80—02
B,4t.03
1.20—03
5,60—44
2,30.03
1,10.43 1.8
1.40 01
6,30 0
1,40 131
6,50 @4
1,90 01
8,40 00
1,30 00
6,20—81
1.80—02
0,00—03
1,20.03
3.40—04
2,31.41 KG
1,10.01 LI
1,90 01
8.60 00
1,40 013
1,10.01
1.80.02
5,430—43
1,8023
0,0004
2,30—03 KG
l,10.01 LB
1,20 01
5,30 @4
1.60 01
7,40 40
1,20 08
3,30—01
3.51.02
6,8043
3,5E45
6,7 .F4
2,00—431
9,00 LB
KG
1,40 01
0,31 04
1,00 01
8,30 @0
1.30 00
6,00—01
1,60—02
8,03. —OS
1.21.03
5,60—04
2,30.431
1,10—41 1.6
9,20 01.
4,20 434
1,20 01
5,00 @0
8,70—01
4,140.01
1.50.43
0.80.04
4.20—04
1,9E ’04
2,00’ 2
1,3002 CI I.
3,10 01
3,11 44
3,50 01
6,60 00
1.10 04
4,90.01
8,10—43
3,11.03
1,10.83
4,80.04
1.10—01 L II’
4,10.41 GAL
9,70 00
4 o1 00
1,30 01
3,91 00
9,20.01
4,20—01
2,00—03
9,01—04
3,80.04
3,71—04
2,60.42 3.10
1,431.41 6*4.
-------
G’J74470p , (PURE)
2.00 l
4.1€ 411
1.70 03
1.71 23
3,40 01
7,40 lii
0.30 01 KG
5.00 0* 0
u7’ 47 . ( €TTA8L1)
Pt
0.10 4 1
1.70 03
.?0 03
3,40 02
1 .QE 01
0.30 21 KG
5.PF 01 1.0
PTiCl. O0 (PUWE)
(.Q1 23
4,*( l3
,71 13
3,70 03
2,30 03
5.20 03
2.3! 01 kG
3,00 01 1.8
PT*C q_o0
(wFTA8. E)
1. E 23
4.3€ 03
1,70 83
3.70 23
2,31 03
5.20 03
2,30 01 G
5 .20 III LB
1’I’8( C$LOIUC ACID
4,410 . 3
1,3w 14
1,20 04
2.20 114
7,21 05
I, E ob
1.30 01 LT
4,00 03 GAl
sv 0 joozc AC J
3.30 25
7 .3k OS
1.00 06
2.2€ 114
4 ,00 05
4.90 05
1.30 04 1.14
0,00 03 GAL
$0000GEP4 CYA4IDE
2.0€ .2
6.1! 0?
1 ,70 05
5,10 03
3.40 02
1,40 02
2.3! II KG
5.00 01 1.8
NYD0Di U1 O .,0
2,40 04
3.1€ 24
l.80 24
4.10 24
2.10 04
3.70 24
2 3 ! 02 KG
5.20 02 LB
NV I4O*YLAMI4E
4.20 03
9.2€ OS
1,0! 06
2.20 86
5.00 115
1.1€ 09 .
1,30 04 LT. .
1.0! 03 GAl
3 P ,E, .1
2,10 85
1,00 25
1,00 25
4.10 05
2,50 uS
5,30 03
2,1! 03 L1
3.5! 02 GAL
13 Pa L M1 .E
‘.8 0U af [
3.30 . ‘4
7.3€ 44
1.40 05
4,10 4 5
4,00 84
2,’ € 04
2,30 03 46
3.00 03 LB
(0I TNa4t (PUPO)
2.61 05
6,10 OS
1 ,80 05
4,11 OS
3,30 05
7,41 03
2,30 03 KG
3.00 03 LB
(01.714101 (WETTABLE)
2,00 013
4,10 43
1.80 OS
4,10 03
3,40 45
7,10 05
2.30 03 4
5,30 03 LB
LOAQ ACOTAT!
1.20 04
2.60 04
1,71 43
3.11 03
2.40 04
3.20 04
2.30 P1 02
3.0! P1 1.0
2,00 01
,20 08
1.3€ 00
0,40.01
1.60 08
1,51—81
3.80 04
1,70 00
2.30 21 KG
1,00 21 LB
8.6€ 4
4,20 0.
2,20 01
5,300?
8,40.21
3,80.21
3,70 00
1.70 28
1,20.02
4,40.62
5,10 441 KG
2,30 21 1.8
1,11 01
7,40 01
2 .? ! 01
1.00 01
2,60 82
1.30.01
4,00 60
2,80 24
2.40—01
b,3€—4 ?
5,51 21 KG
2,30 21 1.0
9,40 01
4,30 04
1,30 d l
5,70 00
9,20.01
‘4,10.01
2,01—23
9,410.04
2,50—04
1,10—1,4
2,60.22 1.141
1,20.01 GAL
1.1€ 01
4,90 00
1,11 0*
4,50 00
1,00 40
4,60—01
1,50—23
4,80.04
1,50.04
3,40.04
2,411.02 L.IR
7,5o—82 GAL
1.30 0*
5,90 00
1.70 0*
7,90 00
1,20 00
5,60—0*
4,40.01
4,11—01
7,71—01
3,30e01
1.20 0* KG
5,60 84 LB
I , ? ! 01
041
1,60 61
7,40 60
1,20 02
3,31.01
1.1€—Pt
4.01—02
1,10—02
‘4.80.413
1.40 211 kf.
4.50—01 Lb
1,10 01
5,10 110
9,30 04
4.20 00
1,51 01
6,80 00
1.1€ 82
4,80.01
1,50—03
6,81—04
3.50—64
i ,o€—o.
2,00—02 LTR
1,5c. 2 GAl.
1,20 01
3 ,10 00
8,90—01
4,00.01
2,70.03
1,20—03
4,20.04
1,90.20
3,60.41 1.14
2,40.61 GAL
8,00.41* 41,20.111
d ,u t—01 2.00.2*
41.40—01
2,00—01
2,10.02
4,90.03
4,40—03
2,00—03
1.l€— .1l KG
6,50—02 LB
1,10 01
5,00 0!
1.51 01
6.60 20
1,00 00
4.10.01
4,10—03
1.80—23
7,1E.Oo
3.20—04
5,40—02 kG
2,0€— 2 LB
1,30 01
3,90 II
1,70 01
1,81 00
1.20 00
3,60.01
3.10.03
3,11.03
9,70.04
4,40.04
1.10.01 KG
4,90 .02 LB
9.30 00
4,21 02
1,20 01
3.70 I I
4,90— Il
4.00—Il
2.1€ II
9,50.01
2,10.04
3,40.05
2,91 I I KG
1,30 01 (0
SUMMARY OF HARMi UI QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
6,70 414 1.00 05 0.00 444 0,10 03 L II
1 .So 4 45 o,i€ los 1,00 445 5.50 02 GAl
I
H
H
(A)
0
1170
7.80
01
00
1.20 02
5.50—01
1,30 0
5,60 0 ’
1.5€ 0
6,90 44
1.60 0
7.3€ a ’
6,11.23
3,10.03
2.20. 4 13
2.00.03
1, 1€ . 22
1, 1 1.01
2,20 01
410
L I I I
GAL
1.50 02
7,00—0 1
1,9E 00
6.80.01
5,3! 00
2,00 44
2,70 01 kG
1.2€ 61 LB
-------
SUMMARY OF HARP*IFUL QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
1.71 03
3.7€ 133
1.47
3.11
L766 7 ,1.00101
8,77 05
j,If Sb
1.11 03
3.71 03
1.11 64
2,31 016
2.31 01 KG
5.01 SI 1.0
1.160 F1 .U0600A1€
1.21 06
2.6€ 06
1.71 03
3,71 03
1.41 06
3,21. 06
2,31 61 KG
3,91 0* LB
1.1*0 FLUflOIDE
1.7€ 65
1.7€ .‘b
1.7€ 03
3,7! 03
9,31 05
2,11 08
2.31 01 kG
3,01 01 1.6
1.160 100101
1,47 06
3,?! 06
1,71. 03
3.11 03
1,61 366
3,91 06
2,3! 6* KG
5,01 0* 1.0
1.1*0 4*tRA7L
IS! 06
2,31 .36
1.71 03
3,11 03
1.31 06
2,61 08
2.3! 0* KG
5,01 01 1.6
1.160 $3fA4*T1
?,aE 2..
46
3,11 I3
3,71 133
2,91 08
6,51 08
2,31 01 KG
3.01 6* 1.0
1.1*0 SULPATE
9,17 oS
2.1€ OS
t ,71 “ IS
3.11 63
1.27 06
2,51 06
2.37 03 kG
5,01 03 1.6
1.1*0 SuLF!O!
7,3! 05
1,11 56
1,11 83
3 ,71. 03
9,11 03
2,81 . 4
2,31 01 KG
5,61 81 1.0
1.1*0 tE?R*.ACETAI€
1,41 48
3,11 06
.7E 63
3,71 53
1,71 336
3,11 06
2,31 03 kG
5.01 01 .0
1.1*0 y zQcy iaT1
1.81 4 5
2,21 25
$ ,7E 03
3,71 03
1,27 06
2.1€ 06
2.31 01 KG
5.81 01 LA
1.1*0 TOTOSULF*T1
1.2€ 06
2.21 06
1.71 05
3.77 03
1.2! 66
2,11 I ’S
2,31 8* KG
5,01 01 1.8
1.1*0 Tt,NGST6T€
j,Ii( 56
3.11 336
1,71 03
3.17 163
1,11 06
3,61 06
2.37 01 kG
5,311 01 LB
1.100*91 (PuBI)
1 ,Q € 03
2,2103
1,71 03
3.71 03
1.21 63
2,71 03
2,31 01 KG
5,01 01 LB
LIKO*Nf (0177*01.1)
1, 1 03
2,21 43
1,71 03
3,71 03
1,?! 03
2.71 03
2,31 01 KG
5,01 01 1,3
9,21 80
4.2100
1,fl I I
5.61 00
0,71.0*
4.01.81
2,11 00
9,37.03
2,91—94
3,31 —31a
2.91 VI KG
1.37 6* L I I
9,31 0 10
4,2100
1,27 01
3.77 00
6 ,97 —01
0,01.0*
2,17 06
9.57—01
2,11—84
9,51—03
2,91
1,37 ol 1.9
01 kG
9,41 00
4,31 00
1,31 81
5.71 00
I,I€eBI
4.31.01
2,11 00
9,57.01
2,57.04
3,2304
2,91
3,31 01 LB
0,51 034
4.0! 00
1,21 01
5,37 00
0,41.0*
3,67.61
2,31 60
9,51.0*
00
1,41—31’
5,11.03
2,41.04
2,91 93 kG
1,31 01 1.0
2,9! 03 KG
8.31 00
4,6050
1.21 01
5.31 00
8,47—01
3,67.01
2,31
9,51—01
i,tt0 ’
1,37 01 1.34
2.91. 01 KG
3,67 00
6.4180
1,01 21
5,31 00
•,4701
3,81.03
2,17 02
9,51.21
3,PF —1 ’4
6,11 5
1,31 83 1.0
2.91 41 KG
3,91 05
4,50 80
1.21 01
5,41 00
0,57—01
3,97 .03
2,1! 42
9,31.0*
9,31.—OS
1,31 II 1.0
6,80 “I0
4,21 0.’
0,61 00
4,03 00
1.2€ 01
5.31 00
6,47.01
3,61—03
2,11 60
9,37.43
2.61.64
$,l !.flI
2,91.
1,31 SI 1.0
1.21 01
5,31 30
6,41.01
3,61—01
2.11 00
4,57—21
*.57.0K
8,27.05
0,97 01
1,31 01 LO
01 KG
8,91 00
4.0700
1,21 SI
5,01 00
6,57.0*
3,97. 51
2,11 00
9,51.81
06
3,91.04
5,57.05
2,01.04
2,97
1.3€ 01 LB
2,91 01 KG
6,91 00
4,87 60
1.21 01
5,41 3410
8,51.01
3 ,970 1
2,11
9,51—81
6,97—315
1,51 01 LB
01 kG
6,81. 130
4,10109
1.?! 01
5,31 06
6,01.01
3,87.0*
2.17 00
9,51—01
1,01.04
6,27.05
2,91
1,31 I II LB
01 KG
1.11 01
6,51 00
1,91 01
0,71 00
3,41 62
6,21.01
3,11 00
1,77 00
2,01—21
8,41.02
3,11
2,31 01 LB
1 ,11 03
1,7100
2,31 01
1,51 51
1,81 II
7,41.01
4,91 00
2,21 05
2,71.51
3,21.01
4,81 St
3.11 01 1.8
/
DESIGNATED / /
MATERIAL
/
1.1*0
0000*0 ! 1,21
2,31
Sb
06
06
08
2.31
5,01
Pt
SI
KG
LB
9,31
4,21
06 1,21
00 3.11
H
H
li i
1. ..)
- 1
51
536
5.97—01
4, 27 .01
2.17 00
9,51.01
2,21.0*
9, 67. I ’ S
2,97 01 00
1.51 01 1.0
-------
COST OF PREVENTION /
SUMMARY OF HA .MFUL QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
HARMFUL QUANTITIES RATES OF PENALTY
1.0’ 01
3, 7 II
1.10 01
7,30 00
1.2 .0 00
3.40 .01
3,20.33
1,50.53
3,20.04
2,40.04
a ,3o.oa 1.6
1.9€—dO
ot
5,4: 0 i
1,o! 11*
7,20 60
I.tg lie
5,20. 5*
3.20.03
4.20—00
ø,1t- 2 KG
,1: 01
4,6 04
1,40 51
6,40 50
2,00 00
4,60—01
3.20.4 13
2.40—04
I,90—.)2 LII
4,30—.!0 KG
l,6 4 I
7,2:00
2,10 II
9,60 66
1,50 06
6,90—01
1,60 00
?,SEeOj
l,31—4 ’o
1,20 4 0
5,3E.P 1
1,90—.f2 LO
2,50 411 LTR
9,1.0 I I GAL
1.7 I
1 ,6 II
2,20 I I
1.0k 01
1,60 00
7,30—411
1,90 00
41,50—0*
1,60 00
7.30—01
2,70 01 LIP
1,110 02 GAL
1,0 01
1,0 51
o . : 041
1,30 01
6,00 00
1,30 0*
6.10 50
9,50—01
6.30—31
9 ,60—0*
44,40—01
2,00—23
9,410—06
1,50.03
6,50.04
3,50—04
1,7E—41
6,60.414
3,o0.o
? ,40.cO KG
1,20.02 LB
2 ,4I0.llKj
9.00—03
1 , 1. 11
1,7. 00
2,30 51
1,10 01
1,60 00
T,3Eø0
3,70 .15
1,70 00
2,410.414
1 .30 — l I
5, 10 01 116
2,30 21 LB
1 ,7. It
7,6. 00
2,20 01
t,IE I I
1,60 410
7,30.01
3,70 00
1,10 00
3,20—411
1,50.411
3, 10 0* JIG
2,30 01 Lb
1,7 01
7 ,7t.
2,30 II
t,oo ol
1,60 02
7,30—01
3,7 00
1,10 00
2,70—411
1,20—41
5,10 01 ‘(6
2,30 01 LB
l.b .01
1,30 00
2,10 II
9.40 00
1.50 50
6.70—0*
3,10 00
1.10 00
3,21—01
1.50—Pt
5,10 01 KG
2.30 I I LI
1,00 I I
5,30 $10
1,60 oi
7.10 00
t.io so
5.10—01
s,io so
1,10 00
2.90—111
1,30—01
s. € l it KG
2,30 d l LI
1.6. I I
7,3.. 00
2,20 0*
9,60 60
1,50 00
7,00.0*
3,70 00
1,70 00
2,20.41
5,11 0% ‘ (6
•, r. 00
ASOL II I
1,20 I I
5,30 II
6.40.01
3.50.01
3,70 II
1,70 II
3.11.51
1,40.01
2,30 0* LB
3,11 I I KG
2.30 01
9,70 II
4,40 06
1,30 •t
5.90 I I
9,ao—ij
4,20.01
1,60 II
7,51—01
6,60—0*
4,00.01
2,30 I I L IP
01
/ DESIGNATED /
MATERIAL
H
H
H
/
LIINflJM IICHMDM*T!
5,10 05
0.10 05
1,00 06
0.20 06
4,30 63
9,80 05
1.30 04 46
3.20 04 1.0
LIINIUM CHRONATE
I ,’0 115
l,oE 06
4.110 44 ,
€ 06
5,1.0 4 15
1,20 04
1.30 04 ‘16
3,20 1 4 1.5
LITNIUP. rLL4O’ TI)E
5,20 OS
1.1€ .46
1. E 06
0.20 40
6,20 05
1,40 116
1,50 41.4 KG
3,20 44 1.11
N* 4 ’4 QJ4 (PuRE)
9,20 34
2.00 0?
1,70 05
3,70 03
1,10 02
2,40 442
4,90 54 1.111
5,00 00 GAl.
M*LAT 7O 4
( . E ITABLE)
9.20 01
2.VF 22
1,70 @3
,7€ 03
1,10 02
2,440 02
1,90 01 LIP
5,40 00 GAl.
NALEIC ACID
3.4€ 115
8.440 05
1,00 06
2.20 46
4,60 05
4.00 416
1,50 04 KG
3,21 04 LB
NALEIC AP NYD44IDI
3,20 35
7,20 oS
t, ’0 06
.4.110 116
3,90 05
0,60 43
1,50 o
3,20 04 1.9
NtIICUR!C ACITATO
4,00 02
2.110 03
1.10 03
3,70 03
1,40 oN
2.40 03
2,51 411
3,00 041 LI
MERCIJOIC CMLURIOO
1 . E 412
1,70 o3
1.70 03
3.70 03
9,40 0?
2,10 03
0.30 41 ‘(6
5,00 I I LI
NERCIlPIC W T ATE
9.00 $12
2,10 03
1,10 03
3,70 43
1,10 43
2,50 03
2,30 I I KG
5.4! 1 LB
MEPCt.9!C OxIDE
6,10 52
1.30 43
1,10 03
9.70 03
1,10 02
1,60 03
2,30 01 40
5.0! 5* LR
1104C% ,RIC 3ULPATE
6.1.0 02
1,40 03
1,70 43
3,70 03
1,00 03
2,30 03
0,30 61 116
5,30 01 LI
4 02C’9iC
Ti4fl .CYANAT(
9 , E 02
2,00 o3
1,70 03
5.70 03
1,10 03
2.40 03
0.3! 61 KG
3.11 01 1.0
MEKCUICU$ NITRATE
$, 0 02
1.60 03
1.71 53
3,71 03
9,70 52
2,11 03
2,30 01 KG
5,01 Il LB
M(TNOXyCp ’LflR (PuRE)
2,20 02
4,90 02
1,10 II
3,10 03
2,71 •a
5.OE ea
1.90 01 1.0’
5.00 05 GAl
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALT I FOR COASTAL ZONES
I ’IYI. oLllCAPTAl
2.61 03
4,11 23
3.li o
4.11 04
s .a
1.40 43
2,31 02 OG
5.01 02 10
1€TwvL . TMaCqytATE
•
4.91 05
1.50 04
1,01 06
2,21 04
8,40 05
1,61 04
1.51 314 LT ’I
4,00 03 G L
MEIWYL Pa14aTs1o
(P P€)
8,31 00
l .4f d l
1,11 03
3,71 03
3,111 01
2,21 0*
1,91 313 L I I I
5.01 00 GAL
O T 4VL 14A A1M1QM
C . 1TT& LE)
*,30 00
1,00 01
1 .71 343
3,71 05
3 ,0 01
2,21 01
1,90 01 ITO
5,01 310 GAl.
oEvf .P. 4O5
1.11 02
2.01 02
1.10 95
.3.11 03
1.31 02
5.01 02
1,91 9 11 ITO
5.140 00 GAl.
sO o0iC TWIUZIOL
1,311 04
2.30 04
1.i E 314
.‘ .?l 3i6
3,21 316
2.70 3’
1.50 04 AG
3.20 04 18
MOT 43LAP 1 I 0
3.11 05
2,41 03
i,o€ oa
.11 04
I.31 05
5,311 05
2.10 02 ITO
5,51 01 GAL
Mn,.OM !T, lyLaMZ E
8,30 24
3,00 03
1.81 04
4,11 04
1,01 05
2.20 05
2.11 02
5,30 01 Gil .
‘ .*L€
3.01 22
1.11 03
1.11 43
3.71 03
4,00 02
1,31 03
2.31 01 AG
5,00 01 10
iAP$fl43 l . 1N 1
5.01 353
1.11 04
1,71 353
3,71 03
6,311 o3
1,31 04
2,30 01 G
5.01 01 3.31
MAI’OTMI’dlC ALID
2 .311 04
4,31 oO
1,70 353
3,71 03
2,41 04
5,21 04
2,30 01 130
3,01 01 I.,8
.IrA!L LCITATE
1.5€ 06
3.21 04
1.01 06
2,21 06
1,81 04
3,91 06
1.31 I I AG
3,21 04 I _B
‘ TCAEL AM13035IUM
5 jAT
2.30 .1*
5.lt 04
1.01 04
0,21 06
2,81 06
6,21 06
1,51 04 130
3,21 04 18
NICAOI. 600MIUL
1, 1 06
3,51 04
3.01 04
2,21 04
1,90 06
6,31 Sb
3,50 04 AG
3.21 04 18
1,51 01
S,9I 00
2.00 01
9 ,20 00
1,50 00
6.61—01
8,11—02
3,71.02
3,11—912
1 a1—?2
1.11 19 KG
4.91.21 18 -
9,41 430
4,31 00
1,31 01
5,71 00
9,01—01
4,11.03
5,01—04
2,31—00
1,31 .Oo
5,71—145
S,#.E .03 ITO
2,31.02 GAL.
1,30 01
5.9100
1.31 03
b,1l 00
1,70 03
7.91 00
1,21 00
5,71.01
1,51—0*
3,41-81
3,3! 01
5.81 00
1,01 01 I.T0
3,40 01 GAL.
1,80 01
0,21 00
1,30 031
5,81—01
1.21 00
5,41.01
1,01 01
0,01 00
1,I 1 03 ITO
4,21 01 GAL
3,31 453
S.., oo
1,11 81
7.81 00
1,21 90
S, 0.01
1,20 04
3,01—41
2,21 00
1,01 45.3
1,61 01 LT
0,21 0* ()AL
9.51 00
4.31 00
3.31 01
5.01 00
9,11—41
4.IE01
3,21—03
1,SE —03
1,41—04
6, ’.F—3 ’3
0,51.02 KG
3,41.22 18
1,31 01
6,11 00
1,30 01
31,10 09)
1.31 00
5,80—01
5,41—02
2,51—22
2,21—03
1 ,01—OS
7,01—01 114
2,71 23 GAL
1.33 03
6,01 430
2.81 01
31,00 00
3,31 9131
5,71—81
5,41—02
2,50—02
2.61—03
1,21.3)3
7,21—01 3.14
2,71 00 GAL
1,31 01
.7I 00
1,71 01
1.61 00
1,21 00
5,41—01
7,51—01
3,01—01
2.10—01
9,71—32
1,01 01 130
4,7 00 10
1.41 03
6,21 00
2,81 03
8.30 00
1,31 00
5,91—0%
1,01 00
0,41.81
3,931—00
1,81—22
? ,51 01 *0
3,01 311 10
3,51 03
6,41 00
3,91 4*
8,61 00
1.4*1 00
6,31—01
2.01 4)2
9,10—01
l ,41 — 4 ’2
6,20—03
2 ,11 .‘l AG
3,21 01 18
8,61 450
4,01 42
1,21 01
5.30 00
0.41.01
3,81.01
3,20—03
1,51.03
9,31—05
0,21—05
4,31.02 ‘30
1,91—02 16
8.00 00
0,01 00
1.20 01
3.30 00
8,40—01
3,81—01
3,21—03
3,50—03
5,91.05
2,11— b ’S
0,31.02 *0
1,91—22 10
6.81- 00
4,00 40
.21 0*
5,31 00
8 ,40—01
3,80.03
3,21—03
1,50—03
8,331—05
3,9E.
4,30.22 130
1,91—22 16
M IT .4fl 0 S C ‘ I I . 00
( , ITTA OL O)
1.70
3,71
03
03
2,71
5,91
I
02
02
1,90
5,81
3*1 ITO
00 GAL
1,81
3,6 1
01
02
2,31
1.11
01
0$
H
H
(A)
1,7! 00
1,b —0l
1,21 00
5,30.03
2,71 01
I. . 1 02
LIR
GAL.
-------
H
H
I 4
U,
0
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
/
/DESIGNA D
/ RATES OF PENALTY
1/ COSTOF PREVENTION /
MATERIAL//
1CK1L CNLOQI1
1.1€ 06
3.11 06
1,01 06
2.21 06
1,11 04
3,71 06
1,31 Øi( oi;
3,21 04
NIIOIL rOOMATE
1,11 v 6
?.0E 06
1, ’E 06
0,21 0 ’.
(.31 06
0 ,9k 06
1.51 04
3.21 04
‘ .!C L ‘4YDwO*IoE
5.51 23
1.21 Ub
1.01 06
?,?1 06
6.61 95
1,51 06
1,51 So KG
1.21 34 LB
‘ .1 1I. ½1T ATE
1,71 1b
3.8€ 06
0,61—01
.0E—03
2,21 06
4.61 04
4,31—33 2K
1,61 03 (.0
‘ .TC°EL SULFATI
1,51 (‘6
3,4 06
1. ’1 46
2.21 06
1,91 06
4.21 36
1,51 04 KG
1,21 04 LB
PsflRIC ACIU
6,01 05
1.31 06
1,01 06
2,21 46
1,21 05
1,61 06
2.31 04 ( .10
03 GAL
‘ .Z14L .jt’
4, 1 03
q,p os
1.01 04
a, t o
5.01 05
I,IE 06
1.31 04 1.10
4,01 03 GAL
T0OGL DIOOIDE
4.01 05
9.61 05
1.01 06
2.21 06
5.31 03
1.21 04
j,5 04 KG
3.21 04 LB
!1Rt’PI E ,OL
1.31 05
2.81 05
1,01 04
(1.11 04
1,41 05
3,41 05
2,31 02 KG
3,01 02 LB
0000000MALD(PIYU(
6,01 05
1.31 06
1.01 06
2.21 06
7,21 95
1.61 06
1,5! 64 ( .70
8,01 03 GAl.
PA7 , DP (PuRE)
1.91 01
4.3! 01
1.71 03
3,71 83
2,31 41
5,21 01
1.90 01 (.70
5,40 00 GAL
P&0&T o D ,
( ,. l I T asL l)
1 ,4 e
4,31 01
03
3.11 03
2.31 5
5,21 01
j ,Q 02 ( .TIJ
5,01 00 GAL
•EoYAC .LoeoPwEMo ( .
6.91 0?
1.51 o3
1,71 03
3.71 ‘13
6 ,41 02
1,01 83
2,31 II KG
Pl4 oQ ( .
4.51 d l
1.41 05
1.01 I I
4,11 44
7,90 01
1,71 05
2.31 02 *9
5,01 02 (.5
PNOSGE# 1
8.11 93
1.81 04
1,oE 06
2,21 04
9,81 03
2 , 0 II
1,31 I I KG
01
—
8.61 90
4,0199
9.70 03
1,21 01
8,41.01
3.21—03
9,01.118
4,31.02 KG
3,31 00
1.31 01
3.81 .31
9,21—01
1,31.03
3.21.03
a ,o—05
1.31.04
1,00.02 (.0
4.31.02 KG
o ,aEOo
0.01 00
‘1,91 00
1,21 91
4 ,71.0k
0,41.01
1.51—23
2,71—23
8,71.08
2.01—00
1.91.92 LB
3.61.02 KG
4,21 oo
8,8! 40
4,81 06
0,61 00
9.0140
00
4,31 00
5,31 32
1,21 I I
3,81.41
3,41.01
1,21—03
0,01.91
8,91—05
8,0E—0
1.61.02 LO
0,21.01 2KG
5,31 00
2.21 02
5.31 00
3.01.81
0,41—03
0,01.01
3,21.03
3,61.05
8,81.05
0,01.01 (.8
4 ,31— 4 2 KG
1,31 01
5,7! 90
9,01.02
1,51—03
2,01.03
4,oE—05
9,21.44
1,91.8? Lb
0,61.22 LYR
1,11 81
8,01 08
1,51 01
6,71 00
4,11.01
2,91 00
9,01—00
3,21—03
1,91—84
b.51 —9’4
1,01—91 GAL
0,3E.9 LIP
9.41 93
4,31 00
1,31 81
6,1182
1.31 01
3,7( 09
9.01—01
4,11—01
1,51.03
2,01—03
9,01—84
.04
5,71.04
1.61.81 r.* ( .
2,61—82 KG
1,81 02
6,11 00
1,31 00
5.81—01
1,91—01
6,61.02
2,41.94
0.11—63
1,21.22 Lb
2,51 30 KG
1,01 01
4,11 00
1,41 01
6,31 00
9,8(—0
4,51—01
2,01—83
9,01.04
9,51—84
2.51—84
1,11—04
1,11 0.’ Lo
0,61—00 (.14
1,61 01
7,51 60
2,21 I I
1,01 01
1,61 00
1,21 —02
1,61 90
1,61 61
GAL
2,31 02 (.14
1.81 91
0,01 80
2,31 01
1.11 01
1,11 09
7,6E.0$
1,51.01
1,91 80
8,81—01
4.41 08
1,41 61
6,31 00
0,41 $1 GAL
2,71 82 ( . 1 4
02
1,41 I I
7.11 SO
2,21 I I
9,31 50
1,31 00
1.81 90
1.81.01
GA ( .
2,31 01 KG
1.1! I I
5,91 II
1,51 01
6,11 05
4,31—81
1,01 05
0,41—01
6,11.02
1.31.51
2.21—03
1,21 01 LB
1,11 08 KG
0,31 00
4.20
1,21 Pt
4,51—5*
0.81.01
3,11—02
2,01—53
(.01.03
1.01—04
4,91.81 1,5
2,41.02 kG
-------
SUMMARY OF HARM:U1 QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
p KuspMoq s
0,31
1,8 ’
10
01
1.71
3,70
93
63
1.00
2,21
41
91
2,30
5.91
01
01
KG
1.9
PP 103P409U 5
flXVC4LO OII)€ —
psp ,c. s
P 1 ’dTA LUOWZO 1
0.21
3.6€
0 5
11$
1,91
2,21
06
$o
9,90
2.21
03
06
* ,sE
3.2E
94
04
IIG
1.5
a.ae
9.11
as
05
1. t
2,21
A4
96
5,31
1,21
oS
06
1,51
3,20
04
04
kG
LB
P ’cs ’ oaus
PTAS JL 1 ) 0
9,
2.90
oa
03
9,10
*3
05
1,31
2,41
03
95
2,31
5,01
03
03
KG
1.8
PWOSP40 4U$
T ’ 1c4L $IU0
7,61
1.11
33
66
1.11€
2. 1
06
06
9,21
2,01
05
96
1,31
3,21
04
04
(G
1.0
0 ’ I .YC q. kIN*tEU
9P€. ,L3
1,41
3.1€
84
44
1.71
3 ,71
03
03
1.71
3,71
0 4
94
1.91
5•OF
01
$3
1.1)
GAL
PoTASSIUM aq ATL
3, 1
1,90
44
34
3.70
3,71
03
33
4,41
9,60
44
84
2.31
5,01
01
51
‘16
LB
PoTASSIUM £4511 1170
9.10
2,30
34
03
3,71
3.71
03
93
1.10
2,51
05
03
2,30
5,01
Ii
01
KG
LB
P TA$5I1tM
PICwROMAT€
4 ,3
9,I ’t
oS
35
3,01
2.21
06
06
4,91
1,10
05
114
3.51
3,21
04
04
KG
LI
PiTA3S1tJM c iaO T(
5,41
1.2€
S
04
j,. 0
0,21
Pb
96
6,50
1,40
05
96
1.51
3,21
04
04
KG
1.8
POTASSIuM CYANIDE
9.90
1,51
02
03
3.71
3,11
93
03
8,41
1,81
32
03
2,31
5.01
Ii
01
KG
1.8
POT*SSIUM ,,Y090XIO1
1.51
3.21
05
05
1,61
.11
93
OS
1,61
3.91
OS
63
2.31
5.01
03
93
KG
LB
POTASSIUM
P €RMA ’. A ’ $T 1
6,41
1,41
43
04
1.01
4.11
04
94
7,70
1.71
03
04
2,31
5,01
02
52
46
1.8
eROPIOMIC AdO
5.21
1.11
95
96
1.ol
.21
06
06
6,31
1,41
05
06
1,51
4,01
04
93
LIM
0*1.
1,51 11
6,71 10
2.01 01
9,01 30
1.41 03
4,41 .01
1, 51—01
3,41 —0*
1.31 01
5,61 90
3.00 01 KG
4,71 00 1.0
9,21 9l
4,21 34
1,21 01
3,41 00
8,71—Si
4,91—01
2,01.03
9,o€.e$
3,01.04
o.1E—oS
2,61.02 kG
1.20—. ’2 LA
9,61 30
0,41 C
1,31 63
5.61 06
9,20—01
4.21.01
2,01—03
9.00.04
4,01—94
2,21.04
2,61.42 kG
3,21—.12 (
1,01 I I
4.71 10
%,41 0%
6,21 08
9,71.01
4,41.41
1,11.82
4,91.83
i, 1—03
7,31.94
1,41.01 KG
6,51.42 1.0
9,30 II
4,21 48
1,20 01
5,71 I I
8,91.01
4,01—03
2,01.03
9,01.09
1,91.04
8,81.1’S
2,61—0? KG
1,21.42 1.9
8,01 30
4,01 710
1,21 I I
3,31 09
6,41—01
3,81—91
3 ,11 00
1,71 80
1,41—92
6.41.03
5.11 01 170
2,151 02 GAL
1,51 01
6,81 06
2,90 01
9,51 80
1.41 00
6,51.131
2,11 00
9,31—131
3.01—03
1,71—03
2,91 41 KG
1,31 31 1.0
1.41 0*
70
1.91 It
8.61 65
1,41 03
6,11—0*
2,11 00
9,31—01
1,41—03
6.61.99
2,91 01 KG
1,31 01 Lb
1.21 01
3,40 73
1.41 01
7,21 00
1.11 90
5,21.133
3,21—03
3,31.03
3.11.44
1,40.134
4.31—02 kG
1,90—02 LA
1,20 01
5,31 o
1,61 01
1.11 00
1,10 00
3,01.91
3,21.43
1,51.43
2,71.04
1,21.04
4 .31 . 2 KG
1.QE—o2 Lb
1,30 61
3,91 03
3,71 03
1,91 00
1,21 00
5,61.01
1,20 00
5,01.91
2,10.01
9,61—02
1,61 d l KG
7,41 OS 10
1,01 01
4.61 0
1,30 Ii
6,31 00
9,61—01
4,41—01
1,11—32
4.91.03
1,01—03
4,51.04
1,01.01 KG
6,51.42 Lb
3,41 01
6,51 03
1,90 61
8,61 00
1,41 00
4.11.91
1,81—01
6,01—02
1,31—02
1.Ql1— 2
2,31 04 kG
1,10 33 Lb
1,11 01
.91 II
1,40 01
6,40 00
3,01 00
4,71.01
1.31.03
6,61.54
4,81.04
2,21.04
ITO
7 ,5102 GAL
PMf3SPMOQIC ACID 2,41 06 1,00 06 5,30 06 1.51 04 KG
5,11 90 2.20 06 4,91 338 3.21 I II L
I- I
H
l;4
I - T I
I- ,
6,61 1,21 0* 6,41—01 2.90.03 9,*1 .JS 2.61.92 KG
4.131 I I I 5.30 50 3,81—01 9,61—04 0.41—05 I. 1—.I2 LB
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
PYK€7U u (P”R !)
2 ,10 65
4 ,S( 3%
i .46 65
6.10 I ’ S
2.50 05
5,50 05
2. 1€ Q33 1.76
i,5 ! 00 4*1,
pv4€r,1j, , s
(. U* l!L0)
2 ,10 0%
w,50 i
1.60 45
a, 10 05
2 ,50 45
5,50 05
2,10 03 LTR
S,S0 02 Gai
PY6OG*LLIC ACIO
5,30 64
1,20 35
1,8E 36
4,% 06
8,90 6 ( 1
1.3€ 05
0,30 02 KG
5,00 62 1.6
UIt O 1 .I E
1.40 44
3.10 44
1.10 63
%,7E 03
1 ,10 24
3.10 04
1,90 01 L I I
5,60 66 GAl
4 !$ 6CI OI.
9,P0 64
2.1€ OS
1.6€ 06
4.1€ .34
1.20 85
.6E OS
2.3€ 02 KG
5,30 02 L6
SELE .?C AdO
1, E 04
1.6€ 85
1, E 03
3,10 113
6,10 06
1,90 65
2,3E 01 KG
5,80 01 LB
5€LE .XL,M Oxiet
3,30 4
7.3€ 64
1.10 03
3 .7I 03
4.00 04
6,90 04
2,30 01 KG
5.00 01 LB
50V76 (Pu6EJ
8,30 93
34
1.80 64
4.10 94
1,60 04
2.20 04
2.30 62 KG
5.00 02 LB
SOviw (WETtAsiL !)
6.50 03
1.60 6*
1,60 84
4,10 64
1,1’! 04
2,20 84
2,30 46 KG
5,60 02 LB
SODIUM
1.1€ OS
2.10 05
2.60 65
4.26 05
1,30 OS
2,90 65
2.30 03
5. 14€ 03 1,0
SCIDIUM *0506*70
1.60 04
1,70 145
1.? 43
3 ,70 63
9.4€ 04
2,10 05
2,30 01 ‘(S
5,60 0% LB
.
SODIUM *W$19 T
9.10 64
2.1€ OS
1.7€ 63
3,70 63
1.20 05
2,60 65
2,30 01 KG
S. f 1 LB
SODIUM SICliROM ATO
4,20 03
9,10 05
1.6! 06
2.20 08
5,00 65
1,10 06
1,5! 04 KG
3,2! 04 1,4
6.6€ $9
4,60 $9
2,20 6%
5,So 00
8,40 .61
3.60—01
1.5€ ’ ?
8,60—03
5.20.04
2.a0.l ’4
?,ot—ol LT6
1,54. ’j GAL
1,30 I
%,Bt 0
1,70 41
7,10 110
2,20 00
5,50—61
1,8 —62
6,110—33
7,20.04
3,30—00
0,30.01 1.16
6,40—31 GAL
1,50 32
6,10 30
5,70 Ii’
2,30 01
9,00 00
l,SIE 00
6,40—02
1,40.61
6,60—32
5,40—43
2,40 .113
2,50 i’d KG
1,10 02 2.0
1,70 01
7,60 60
1,20 03
5.60—01
8,90—42
4,10—111
2,21.62
4,80—113
1.20 02 1.10
4,70 .21 (1*1
9,80 30
4.5€ 13
2,30 61
5.90 09
9,30—01
4,20—0%
1.10—01
4,90—62
1,11.73
S,c’€—64
1,40 96
6 .50.61 2.8
1,40 U
6,50 34
1,90 21
8,70 20
1,4E Oil
8,20.02
2,10 06
9,50—81
2,30—33
9.20—3si
2,9t 61 ‘14
1.3€ 41 LB
1,50 I I
6,90 66
2,60 61
9.20 06
1.40 00
6,60—01
0,10 od
9,50—01
( 1,60—03
2,60.63
2,91 01 ‘14
1,30 01 (.8
2.21 51
5,30 86
2.50 01
7,00 00
1.1€ (1111
5.00—01
1,50.61
6,8€—.32
1,30—02
5,80—03
2,20 00 KG
9,l2 .61 1.6
1,20 31
5.51 66
2.60 61
1,30 04
1,20 66
5.20—61
1,80—31
6.00—63
1,8L—
8,111—03
1 J 4 3
1.1€ 36 LB
1.00 62
I$.6E 04
1.40 61
6.20 60
9.71—0%
0,40—01
6,10—03
3.10—33
1, L—33
6,20—2(1
1.10—01 KG
1,60.60 1.8
1.4! 41
6.50 66
1,90 41
6.10 60
1.4€ 06
6,20—01
2.10 00
9,50—02
1,90—63
0,80—04
2,90 d l 46 -
1.30 22 2.9
1,40 I I
6,50 60
2,90 01
0,10 00
1.40 60
6.20—02
2,10 40
9.50—01
1,51—03
6,90-04
2.90 01 44
1,30 61 LB
1,?! 01
5,5006
1,60 01
7,40 60
1,20 66
5.30.01
3,20.03
1,51.03
4,10.04
2,11.64
4,3o.02 KG
1,90.04 1,0
P4 ,jP l. ALCOM..L 1,20 47 4.40—’1% 1.40 147 4,60—01 LT(1
2.60 37 3.?0— 1 .3,1! 91 6,70.01 GAL
H
H
II I
(A,
17 3
F ’)
1,20 (2
5,30 0
8,60 I 6
6,00 0
3,10.112
9.70—46
3,01.01
, —01
LIR
-------
H
H
(A)
U,
(A)
SUMMARY OF HARI%FUL QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
HARMFUL QUANTITIES RATES OF PENALTY
/ DESIGNATED
COST OF PREVENTION
/ MATERIAL
I
/
SODIUM OIr 1 .uuRxDE
6,18 05
1.48 06
1.02 146
2.22 06
7 48 05
1,68 06
1.52 04 40
3.21 04 1.0
SODIUM OISULFITE
4.78 03
1.32 06
1,02 86
2,28 86
6,02 45
1.08 64
1.52 04 KG
3,28 04 1.0
SODIUM CMODMATE
9.58 .65
?.I€ 6,
1.08 26
?F 06
1.1€ 06
?,5€ 66
1.52 04 KG
3.28 04 1.9
S’ DI&Ji CVAKTO€
3.38 0?
I.2 83
1,18 03
3,78 05
4,48 02
1,48 03
2,38 41 KG
5.82 01 1.8
S D!U” DC CYLilEN.
7801 SuLFO 4ATE
2 ,68 II
6,28 04
1.88 05
4.18 05
3,48 84
7,58 04
2,32 83 KG
5.62 03 1.0
sODIUM PLuoq1D 8
6.3€ 05
1,88 04
1.02 06
2.2 04
1.08 06
2,28 04
1,58 04 KG
3,28 04 %,8
S ’TUM M 3RO
9. L 11c€
2,82 64
4.18 .64
1,88 05
o.1E 5
3,42 84
7,42 04
2,38 03 KG
5.08 03 1.9
S(,OIuM NY0000 102
j .9 os
4,18 185
t ,o8 S
o.IE 85
2 , 2 8 09
4,98 05
2.32 03 KG
5.26 03 1.8
SODIUM MVPOC.ILUOITI
5.4€ 03
1.52 4
1.88 84
4,18 144
7,01 03
1,32 84
2.38 82 KG
5.08 02 1.0
30u71M M2T)IYLAT€
2.52 03
5.38 05
1.86 05
4.16 OS
3,08 05
6,48 05
2,38 83 KG
5,28 03 1.8
SOt)! M ‘.ITRIT€
2.12 44
4,8 .8 04
1.8€ 84
4,12 frO
2,52 04
5,52 64
2.38 62 KG
5.08 @2 1.9
SI OtUM PMOSep *T€
i ”p r8*5!C
2,08 64
4. 182 64
1,22 04
2,28 04
2,48 06
5,38 04
1,58 04 46
5,28 114 1.8
sr;tL PM 5PMAT€
cio*uc
1.2€ 06
?. € 144
1.08 06
?.?8L 84
1,48 06
3.18 26
1.5€ 04 KG
3,28 04 LB
SODIUM PPIDSPI *12
1 @I14*3!C
4.28 03
9.22 05
1,08 96
2,28 06
5.18 95
3,15 06
1,36 84 8.6
3,21 84 1.8
SODIUM 381.84571
1,58 05
3,48 05
1.78 “3
3.72 03
1.68 83
4,18 03
2.38 01 116
5.08 03 1.,
1.18 81 1.58 81
_.!5_!!__ 6,12 80
1,08 00
4,02—61
3.28—03
1,5223
2,48—04
1.1€’04
4.38.02 k.
8,92.22 1.8
1,12 01
5,08 00
1.38 61
6,78 00
1,08 80
0,61—01
2.81.03
9.88.04
2,22—04
8.08.80
2,82—6? KG
l,2 .02 LO
1.06 01
‘ ,bE00
1,38 81
6.18 02
9.6881
4.48—91
3,2823
1,98—23
1,58.04
1,08—05
4,3202 KG
1,98.02 1.8
1,38 01
5,9880
1,78 03
7.92 00
1,28 00
5,62.01
1,28 80
5.48 . .i33
3,78—01
8,78.01
1.88 03 KG
7,01 20 Lb
1.38 01
5.88 60
1,12 01
7,78 00
1.22 00
5,58—01
1,12.02
4.98.03
5,28—03
2,42.03
3,48 —01 KG -
6,58.02 1.8
4,72 00
1.08 03
6,38 00
9.88—01
4,52—01
3,22.03
3.52.83
1,82.04
8,08.03
2,3t.02 KG
1.92.02 1.8
1.52 01
4,98 08
1.68 01
4,38 80
2,38 01
0.18 00
8,48 00
6,58—21
1,31—02
4,08.23
5,38—63
2,48.83
1,42—21 8.0
6,52—82 Lb
1.0€ 01
4,02 00
9,52—01
4,32.01
1.11—02
4.98.83
7, 98— 84
3,48—84
1 ,18I.Oj
8,58 —02 Lb
1.88 01
4,92 00
1,42 01
6,92 00
1.28 00
4,62 .81
8,32.02
3,18.62
3.38—02
1.58—02
1,12 118 40
4,02—01 1.-
1.32 lit
5,98 00
1,72 01
7.98 02
1,08 00
5,7281
4,18—03
3,78—03
5.92—04
2,18—60
1,18.01 8.0
4,08—62 1.8
1.42 23
1,11 86
2,12 01
9.41 00
3,58 00
6,12.83
1.18—01
4.98—62
1,0E—8 S
5.02.03
1,442 217 40
6,5 .01 L I I
6,68 00
4,01 00
1,22 81
5,32 08
8,08—01
3.68—01
2,168.63
9,08.04
1,31.05
3,32—05
2,62.62 40
1,22.02 1.8
9,48 04)
4,3880
3,32 01
3.18 00
9,0€41
4,16—161
2,0E63
9,02—64
1,66.84
7,48—05
2.8.8.12 Ku
1 ,22.02 Lb
1,22 01
5.38 00
1.48 01
7,12 00
1,12 140
5,08—01
2.01—03
9,62—04
3,58.04
3,42.00
2,82.02 40
1,28.42 LB
1,42 01
6,28 06
1,88 I I
6.28 60
1.3€ 00
3,92.01
2,38 00
9,58—01
9.8E—Q 4
4,48.04
2,92 08 46
1,38 01 1.6
-------
SUMMARY OF HARM:U1. QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
SIBOoTIUM CHROPKAI I
3.71 05
1.21 06
1.01 06
2.?! 06
4,41 03
5,51 06
1.51 04 KG
3,fl 04
5,c o .1
,7! 03
1. f 04
1,01 04
0.11 04
5,7! 03
1,3! 04
2.31 02 KG
9.21 02 LO
STVPF ’.L
1, € OS
5.21 05
1,61 25
4.1! (3
1,11 05
3,81 05
2,11 03 LTI
5,5! 02 GAL
SLil ,FL,QIC ACID
8,01 03
1.31 06
1,111 03
4,21 05
7,2! 05
1,61 @8
2,31 03 I C
5,0! @3 LB
SLL’L 4 C C$104ID !
1.11 26
2.31 k 4
1.0! 04
.1 ! MO
1,41 06
3.0€ i6
2,31 @2 10
5,01 02 Lb
2,0,5—1 ACID
Coj E)
3,91 0?
8.61 (32
1,71 03
3,71 23
4,71 02
1,01 45
2,31 01 KG
5,21 01 LB
2.4,5.7 aCID
( !ITA SL!)
3,9! 44
0,41 44
1.7! 03
3,11 03
4,71 04
I,C3 ! 05
2,31 01 KG
5.oE 01 LB
2 ,4.5—7 1 3 71w!
(PtJL l)
4 .tf 04
1.’ ! S
t.K ! 85
4.1! 05
5,71 144
1.31 115
2,31 03 KG
3.21 03 LB
2 ,a ,5.T ISTEMS
( . !TTA$L0)
4,11 04
1.01 43
3.0! 05
4,11 @5
5,71 01
1,31 03
2,31 03 KG
5 , ! (33 LB
Ta’ IC *CID
1. 1 25
2.31 03
1.01 S
.11 05
1.21 ( ‘3
2.7! 03
2,31 03 KG
5.3! 0) Lb
701 (PuQE)
4,?! 22
2,61 02
1.1! 03
3,71 03
1.11 02
5.31 02
2,31 01 IC
5,01 01 2.8
T ! Cw1TT&’$L !3
I.?! 02
U
1.7! 03
3,71 03
1,41 02
3,31 02
2.3! 01 KG
5,01 01 LB
TITIIETMYI . IJAD
3,31 02
1.?! 23
3,71 03
3.71 II
4.71 @2
1.31 03
3.91 0* 3.70
3,01 00 GAL.
?t?4*. ITKY I .
PY 1 00sQS* ’ w ay(
2.31 43
3,11 23
1,7! 43
3.71 US
2,41 03
8,U 03
3.9! I I 3.70
s ,er @1
1.01 1
4,7! 0
1,4! 01
9,71.03
2,71.03
1.91.04
3,81—02 KG
2,41 1
6,31 “0
1.8€ 01
0.31 00
4.11.01
1.3! 00
6.01—01
1,21.03
1.51.01
6.81—22
8.61—05
2,31—02
1,01.42
3.81.32 LB
2.01 00 KG
9,01.0* 2.6
3.3€ “1
4 , ! ‘0
9,41 ‘0
4,31 I I
3,31 31
6,01 00
9,51.03
4,31—03
2,11.03
1,21.03
6.01.24
5,61—42 LT4
1,51 01
5,7! 40
9 , @E .0$
4,11.01
1,1(.o2
I,9E03
4,21—04
1,91*04
t,41. 31 GAL
3,41.03 KG
6,51.02 LB
4,01 ‘3
1.3! I 0
1,?! 03
5.51 00
4,61—01
3.91—01
4,11.02
3,71—02
1,31—04
3,21 00 06
1.31 3
5.91 ‘4
3,71 02
7,91 20
3.41 04
5,61—43
7.s ! — *
5 ,41—03
6,01—05
2.7 1.I’l
1,21—02
4,91.01 Lb
1,01 (‘2 01
4.71 20 LB
1.41 I I
( ‘.21 II
1,41 01
8,21 00
1.31 00
5,91—01
3.21 23
5.41.01
3.PE. 3
1,71 .03
1.61 21 KG
7,i (1 44
1.11 33
5,01 30
1.51 01
f ..7 ! 00
1,01 00
4,01—03
6,01.43
3 .l !. ( 3
2,31—03
1.&i ! —03
9,41.42 46
4.31.22 LB
1.31 31
5.4€ B
1,7 ! 01
7,81 00
2.21 00
5,5!.0j
1,31—02
4.91-03
3,jE . 33
3,41—03
1,’1—01 KG
6,51—42 Lb
3,41 53
.,41 30
3.91 I I
0.5! 00
1.31 04
6.31.01
1.91—02
8,81.03
3,91—03
0,61.04
2,51.21 kG
1.21—23 2.8
1 i 1
7.5! 50
P.?! 0*
2,0! I I
1,61 @0
7,11.01
3,7! 00
1.71 00
5,71 @0
7.61—02
5,11 01 110
2.31 I I LB
1.81 31
0,3100
2,31 01
1,11 21
1.7! 04
7,61.02
4.01 00
1.01 00
00
1.41 30
5.51 I I KG
2,51 42 3.0
1,51 01
7.0100
2,11 01
9,01 00
2,51 @2
6,71.01
5.61 II
7,91.01
3.31—01
3,61—33
2.31 01 2.70
8,61 31 CAt.
1.11 41
. CbS
3,41 I I
e,ac ••
3 ,01 00
4,71.01
8,91.01
4.11.0*
1,11.02
4,01.40
1,21 I I 2.70
4,71 01 0*3.
1,71
3.71
.15
“3
I • II !
4,11
813
OS
2.0€
4,31
.3
05
2.31
5,01
03 (C
113 LB
I • 4!
6,21
£5
C l
H
H
L I
U i
1,8! 01
0,21 80
1.3! 252
3,91—01
I • IF—B?
4,91—03
4,71.04
3,91.114
-------
SUMMARY OF HARMFL I QUANTITIES
AND RATES OF PENALTY FUR COASTAL ZONES
TOXAPI ’L ’dE (PUOC)
1.21 U
2,81. 02
1.1! 43
3,?! 05
1.51. 02
3,31 02
2.3! 01 46
5.141. 01 4.6
TOX&P ’ !N 1
f . O IT*OLE)
1,21. 02
2,81. 442
1,1! 03
S.?! 43
1,5! 02
3.3! 412
2,31 01 46
5.01. 4* LB
191C4 .4.G OFO.I
5.71. 35
1,11. 26
1,.)! 86
2,21. 06
6.81 55
1,31. 06
4,51. 44 40
3,?! .0 LB
1 ICPLD9DPMEiOL
.
2.81 01
6,11 U
1.71. o.
3,1! 03
3,81 0?
1,01. 02
2.31 01 G
3.01 01 4.0
TQTftMA ø4.*N KE
5 O A1 !
3.61. 4
7,91 64
1.01. 3
‘.11. 05
41. 04
9,61. 04
2,31. 03 K
5,18! 183 4.5
1 1 7 0 £ ‘Z ’ . 1 .
i ,? ! os
4.91 03
4.01. 05
85
2,11 05
5,51. 05
2.31 03 46
5,oE 03 LB
T414 !T$Y4.*MZ E
1.31. 05
2,91 25
4.01 03
4,1! 85
4,61. 143
3,51 05
2.31 413 PIG
5.41! 03 4.0
U ’ 1iN!UM P141 (31*01
3,21. 55
6,61. 05
4,181. 06
2.21 86
3,61 05
8,01. 4 15
1.51. 04 KG
3,21 114 4.13
‘ .y 4 .
0.91 os
1.1€ .46
4,21. 136
2.21 06
4,01. 415
1,31 06
1.51 04 116
3,21. 184 4.0
i.j A ’,Y4. Ti 411
4.11. .35
9,11 5
1,.3! 0
?.2! 146
5,Q 1 45
1,11. 06
1,51. 00 46
3.21. 00
L 41& ’ .y4. SUL418TE
3,71 25
8,31 03
1.21 436
2,21 46
4,51. 05
4.411 06
1,51 44 46
3,21 04 i.B
VA ’ .kI)tUM
rTR1C”Luo1 )E
2,91. 183
4.41. 45
1,01 86
2,21. 06
3,51 aS
7,71 85
1,51 00 46
3,?! 414 LB
V& ’ .IDIUN P1 ’ .TOXI1 L
1.51 25
3,41. 185
1.01 85
4.11 05
1,5! 05
4,11 4 1%
2,3! 03 46
5.01 03 4.6
va ’ .8094. $uL..F*1 !
4.51 183
3.41 185
1.01 05
4,11. 1.5
1,81 09
4 ,11. 45
2,3! 03 *6
5.181 03 4.8
1.5! 411
6,71. 00
2.01. 81
9.411. 88
1.41. 00
6,41—01
1,61 00
1.31 .84
1.61. 418
7,11—141
2,31 01 KG
1,0! 141 4.0
1.81. 44
8,01. 40
2,31. 04
1,41. 04
1,7! 02
7,61.01
1,91. 48
5,01.01
2,2! 00
5,81.01
2 ,11. 81 116
4.2! 01 10
1,21 44
5,31 00
1,61 I I
7,11 00
1,11 U
5,01—01
3.21.03
1,51.83
5,41—04
2,41.04
4,31.22 46
1,91—22 1.0
1,51. 01
6,91 140
2,01. St
9.21 85
1,41. 0 18
6,b1. ’OI
7,51—04
3,01. ”0*
3,81.411
1,71.’411
1.01. I I I 116
0 ,1 ! 00 LB
4,31. 0*
5 ,71. 048
1,71. 81
7,61. 044
4,21. 00
5,01.184
1,41.5?
0,91.03
,41.03
4,81.83
4,41.81 46
4,51.02 4.8
1,01. 04
6,31 1414
1.01. 4*
41,3! 80
4,3! 00
6,81.04
5,41.03
2,31—03
1,41—03
5,11.84
1,01 .32 46
3,31.02 4.6
1.21 01
5,51. 00
1,61. 01
1,31 841
1.?! 00
5,21—01
5,41—03
2,51 .83
1,61.413
1,31—00
7,21.22 $46
3 ,3l. i2 Lb
8,81 00
‘4,01 00
4.2! 01
5,31. 00
0,01—01
3,01.04
2,71.03
1,21.413
3,ol—20
1.61—04
3,01—22 416
1,41—442 LB
1,21 01
3,31. 00
1,31. 01
7,01. 00
1,11. 04
5,481.41
3,21.53
4,51—03
2,41.04
4,31—04
4,31.02 KG
*,9P ,.i82 4.0
1,21 14*
5.51. 4143
1,61 01
1 ,41 00
1.21 08
5.31—01
3,21—03
4,31.413
3,31—414
l,51—fr’4
4,31.82 KG
l.9 1;02 LB
4,21. 01
.6E 00
1,61. 0*
7,41. 00
1,21 00
5,31—01
3,21.03
1,51—23
3,61—04
1,71—414
1,31—22 06
1,91—82 LB
1.11. 01
5,21 140
1.51. d l
6,71. 00
4,181. 1818
14,81.04
2 ,11.83
1,21.03
3,71—04
1.71—00
3,61.02 KG
4,61.22 LB
1,31. d l
3,91. 00
1,71. 01
7,91. 00
4,21. 410
5.61.01
1,01.02
8,01.03
0,91—04
4.10—04
2,31.24 436
1.41.01 4.0
1.31. 41
6,11 430
1,01 01
0,11. 00
4,31 00
5,81..01
4,81—02
0,81.03
8,91—414
4,41.04
2,31—24 kG
1,11.04 1.0
HARMFUL QIJANTI’
RATES OF PENALlY
-i
I
T OLU ! ’ . l 9,21. 04 1,81 45 1,11. 55 2,11 83 4.7 4,4! 4* 1,91. 01 4,411 II 2,70—83 1,21—413 3.61—02 4.741
2,411. 05 4.11. 05 2.41. 83 6,51 02 68’ 4,91 40 6,61 50 4,71—01 1,21.03 5,3!—414 4,01.181 L
I-I
I-4
Ii ’
4 . .. )
U,
U,
-------
SUMMARY OF hARMFUL QUANTITIES
AND RATES OF PENALTY FOR COASTAL ZONES
HARMFIJL QUANTITIES / ( RATES OF PENALTY
/
I / ___/ I , 1 :,/q I q i: /
- ,/ // / / COST OF PREVENTION
1,2 l
,,411 0
1,61 01
1.21 00
1.11 0
5.21—01
8.11.03
3,743.03
1,543—03
1,11.01 1143
9,11 0*
4,11 0
1,21 01
5,51 08
8,71.01
3,9t—431
5,443.03
2,51—03
5 i1.03
2 3(—83
4.l1. .31 GAL
7,21.02 LTR
GAL.
1.2€ 21
s.s€ 01
1.41 01
7,343 00
1.243 013
i,2L . 11
I.11— . 2
4,943—23
1,51—”3
6,71.04
l.4L— iI l .1J
5.41.01 GAL
1 ,21 0*
.5E 0¼
t. 01
7,3L 00
1,11 00
5.21.01
1,51—u
6,043.03
3.41—03
j,6f .0S
? ,P1— 40
9,ol .62 LB
1.41 01
6,51 44
1.91 0*
8,71 00
1.41 *10
6,243—01
1,643.02
8,01.03
4,743.03
a , o.e3
1,31. . 1 KG
LO
1.41 01
6,)t 2
1,91 81
8,643 0*1
1.41 00
b,1 ! O1
1.01—0?
8,01.03
1.51 .03
7. )€ — ø
?.3E. 1l KG
1,143.’I LB
5,81 I II
4, o1 0
1,21 41
5,31 00
8.41—21
3,80.01
1.843—02
2,01 —03
1.91—03
8 .a.f’ ’4
?,343— 1 .u
1.lE—?1 18
1,31 01
5.71 8
1,71 It
7,643 40
1,21 00
S,443 ..0 t
1,SE—U
6,01.433
1,643—03
4,61 .04
2.01.01 KG
4,01.02 1*1
1.41 01
0
1.91 0*
2 ,11 430
1.41 00
6.21—01
1,81—02
2.043—03
2.61—01
1.01—83
2,31—01 KG
1. 11—01 LB
1.41 *11
6,51 0¼
1.91 01
8,11 0*1
1.41 80
6,21.01
1,81.22
8,043.03
l.51— *’3
6,81.414
2.31—01 KG
1,i€—01 LO
8.81 04
0,01 0*
1,243 43%
5,343 60
8.043—01
3,81—431
1,51—02
6,81.01
2,143—03
9.11.04
2,00—01 kG
9,00.02 %,B
1,543 01
B
2.01 01
9,01 00
1.443 (4
6 ,443—41
1,1E—02
0,01 —03
2.5E— i
P,3€. ’1 KG
o
1.4€ 01
6,443 0*
1.943 0*
0,51 4316
1,343 Q’43
6,143—0*
1,243 00
5,41.0*
1,743—01
7,61—02
1.6€ 0* AG
7,41 J LB
i.oe at
8,443 0*
1,943 01
3,543 02
1,31 00
6.11—01
1.81—U
8.843.433
*, 943.o3
l,U—R’4
?,30 . ,4l KG
1,143—01 10
1.41 I I
6,543 00
1,943 01
0,743 II
1,443 430
6,243—01
1,043—02
6.01.433
2,143.03
9.71.24
2,31.43* AG
1,143— f l 1,8
/ DES
I//I
H
H
4 . . )
U i
v: - . I . *C 1TATI
1,441 115
3.1€ .15
1.0€ 446
‘4,143 05
1,71 05
3.71 05
2.1€ 03 L34
5.51 02 GAL
L 1 ’ .E
9,343 04
1,41 . 5
1,81 25
4.143 05
1,01 05
2,21 05
2,143 03 LT41
5.543 82 GAL
IYL0.OL
1,43 . 6
25
1,21 t’
‘,l€ PS
1,21 135
?,743 05
2 ,11 03 LTI4
5,51 0? GAL
ZtC1o* . (PJRt)
3,10 04
6,043 04
1,’343 *15
4,%E 05
3,01 04
8,31 44
2,343 03 AG
5,1043 03 LB
Z€C1’RAP . ( .€TTABLL)
3,11 *14
6.8! 84
1.843 435
4.11 05
3,4343 04
0,343 04
2.3€ 03 KG
5,41 433 LO
Z!.C ACETATE
0,91 *14
2.01 05
1,!,€ OS
4,11 45
1.11 05
2,443 05
2,31 03 IG
5,4343 43 LB
-_____________________
LT C Ap ’NONZu .,
CNLO.E1)E
7,21 04
1.4€ 25
t. 1 05
‘1.1€ 05
8,743 04
1.91 09
2,3! 03 65
5.043 83 LB
ZI .C BICMOOMATE
1.4€ 45
3 *143 05
1,443 05
‘4.143 *15
1,443 *15
3.6€ 65
2,343 03 KG
3,043 @3 LB
ZI’ .C OCOITE
5,3€ 44
1,243 45
1,11 03
‘4.1€ CS
6,443 04
1.48 85
2.31 03 45
3,01 *43 LA
1* C 843021043
9,243 434
2,101 045
1.843 *15
‘4.IE 443
1.11 05
2,443 435
2.31 ‘33 AG
5,21 83 Lb
ZIoC CAK80#iATC
5,4443 64
1.11 05
1.8€ 05
4,11 05
6,043 01
1,31 05
2,31 03 AG
..BE 03 LB
ZINC CMLORXOI
5 .343 84
1.243 05
1.043 4 ’ S
e,i43 415
4.71 44
1,51 05
2,3! 83 AG
5.01 03 LB
ZINC CYA’ .IDE
0,443 40
1,443 03
1.143 413
3,11 03
7,11 42
1.71 *13
2,343 01 AG
5,81 0! 18
ZINC ‘IQURIDI
7.2€ @4
1,81 65
1,81 05
‘.143 03
8.743 84
1,01 45
2.31 03 AG
5,8! 03 1,0
ZINC 004MATE
6.41 04
1,443 45
1.01 05
4,11 *15
1,71 44
1,11 05
2,343 03 AG
5.01 03 1,0
-------
SUMMARY OF HARMFUL QUANTITIES
AND RATES OF PENALTV FOR COASTAL ZONES
zX’dC PF . MAP Ga 4AT8
1.1€ .35
3,78 4
1.4€ 05
4,14 45
2.44 43
4,48 45
2.34 03 JIG
03 1.0
ZP C Pu ’€’ .C..
3uLFO ’AIt
2.2€ 05
5,44 5
1.68 •
aj€ os
2.7€ (IS
•ot ,
2.38 03 KG
03
z: .c P”OSP’3 1 1)C
3,64 0
7,94 .34
1.8€ 05
‘z, (E OS
4 . 6 04
9•31 04
2,38 03 KG
5,48 03 LA
Z1 .C P T1S31UM
CATE
*SF ‘
3.44 45
1.84
4. 1€ 45
4.14 05
2,34 03 KG
5.o€ 03 i.B
Z1 C P4fl4 c)’eAT4
8.64 44
1,98 i s
1,88 05
, . 05
5,04 05
l,h 05
2,38 03 JIG
5.44 03 5.8
Z1 ’IC SIt.1CQFLUJ R2D4
1,30 .45
2.’4 .33
1.0€ OS
o.14 35
5,54 05
3 .44 45
2.3€ 03 KG
5.48 43 LB
1INC SJL 4 JIT!
1,28 45
2,68 ‘5
1.8€ 45
4,14 05
1.4€ 45
S 51 05
2,38 03 KG
5,04 03 1.8
z!RCo r’JM ACE1’*T4
0,58 83
1.34 04
1 . E 06
4.0w 46
1,44 36
2,31 46
1.54 04 KG
3,24 44
Z1kCj .I’M ‘3174418
1.S8 JI
3,31 76
86
2 ,2E 06
5.84 06
4,48 @6
1.51 44 JIt.
3.24 04 5.4
aM .3KV.
t Lno1r (8
?.74 04
5,94 46
(.“€ 06
2.24 44
1.28 06
7.18 6
1,54 44 JIG
3,28 04 5.13
l1wCr’ 1’1 ’ POTi 31u’
LU )RX.’ 8
7,44 o
1.lc 24
1,84 45
4.14 25
9.58 45
2.14 06
2,38 03 G
S.U 43 LA
Z1RC .1UM SULFiTE
1.24 26
2.1€ 06
t. ’€ 26
2.14 SIb
1.58 @6
3,30 06
1 ,S2 04 KG
3.22 44 1.8
Z1RCC .1UM T€TRA—
C ,4L 41OL
1,98 545
4.1€ 46
5 ,OF 05
4,52 05
2,34 06
5,04 06
2.34 03 KG
5,04 03 5.8
1.51 81
5.11 013
1,44 45
6.18 00
1.34 44
5,64.131
1,81—2?
6,82—0.5
8.24.44
3,71—44
? .3C—41 KG
1,12.21 1.8
1.38 01
6,4 144
1.8€ 01
0,144 40
1.34 04
5,74— 4 5
2.82.42
8.44—03
8,14.44
2,6€4*
2,32..01 KG
1,18.05 1.8
1,11 41
8.1(84
1,04 4*
4,54 00
1,34 @0
5,88.05
1.58—02
8,81—43
3 ,44. .43
1,34—03
2.42.21 KG
9 ,’E—40 18
5,21 41
543544
1 ,64 01
7,28 00
1.54 04
S,1E—01
1,54—02
6,82.23
7 ØF.@0
3,it.Oa
2 .V4.0% KG
LO
1.41 41
6,4144
1,98 01
4,54 00
1.38 08
6,11—01
1.61—02
8,41.83
1 5E.433
1,24. (”l
2.3t.Oi KG
1.14.2* 10
2.41 @1
b.IFO4
1,81 41
4.38 04
1.3€ 00
5.94.01
1,04—42
8,04.63
1,11—143
4,94—44
2.34—oS ‘G
1,14.2* 10
1.41 0*
6,58413
1.98 01
8,64
5 ,44 44
6,11—01
1.44—4?
8,01—03
1.2 8. 1 ’ S
5,31—04
2,34—45 KG
1,11—41 5.4
1.08 531
4,71 330
1,44 01
6.34 44
9,81 .05
4.54—01
3,21—43
1.54.23
*.b€44
7.3 uS
l .3€. 4 KG
l,Qk. .32 133
8,131 3314
04
1.24 01
5.’€ 04
8,44—01
3,44—21
3,22—143
1,58—43
9 . 32—05
4,54—45
0,Se.142 KG
5.44.132 1.8
8,81. 141)
4,141 0.4
1,24 41
5.34 4
8 ,48—”l
3 ,81.21
3,24—43
1.5843
5,54—45
2 .31V
4.*E 12 KG
1,9r—132 18
1,148 41
4,48 04
5,44 61
4,42 540
1.8! Ilo
4,54—01
1,84.02
4,141—43
1,74—04
7,94.45
2.3t.1l KG
1,11.25 LB
9,21 534
4,24 44
1.24 01
5,66 06
8.11.01
4,134—01
3.28—83
1,54.23
1,11.04
5,28—45
4,31.8? KG
t,9t—02 LU
8,81 00
4.41 40
1,24 01
5,38 08
6,48.01
3,64.01
1,84—02
6,24.83
7 ,34—46
3,31.45
2,34.81 88
1,16.01 LI
Z13.C #4374114
5.24
2,62
F
Os
25
I • 8 F
‘4. 1 8
(43
45
3.2€
03
‘45
2.3€
5,34
I-I
1-4
II I
L 2
(1 1
-J
43
03
(t I
1,4 1 81 1,94 81 1.38 04 1,41.02 3 ,54.143 2,St.dt hG
6,4 I U 6,56 00 6,12—41 8,24—03 5,24—84 1.14.41 48
-------
APPENDIX 0
GLOSSARY
ADJUSTMENT FACTOR (AF) - In the IMCO Methodology, a factor rang-
ing between 0 and 1 which is applied to the base rate of
penalty in order to compensate for certain mitigating pro-
perties of the various hazardous materials. This factor
was necessitated by the “worst case” approach used to derive
the base rate of penalty in this methodology.
ADJUSTMENT FACTOR (rk) - A factor which incorporates the charac-
teristics of a hazardous material (toxicity, solubility,
dispersal) into a mathematical form to utilize in adjusting
the penalty rate.
ANNUITY - An annual payment or income.
ANNUITY FACTOR (Anf) — Adjustment factor employed in the Resource
Value Methodology to account for differences in persistence
characteristics between the designated hazardous substances.
ANNUALIZED CAPITAL COST - Capital costs converted into equivalent
uniform annual figures based upon an expected life for the
equipment and a stated interest rate.
APPLICATION FACTOR - An adjustment factor utilized to adjust the
plug flow model in order to recognize the potential for
spills to be concentrated in plugs requiring less than
96 hours to pass a point.
BASE RATE OF PENALTY - As used in the IMCO Methodology, this term
refers to a rate of penalty derived from a “worst case”
approach. In the Resource Value Methodology, the base rate
of penalty results from application of the intrinsic compo-
nents for the dollar ranking factor to the rate of penalty.
BODY CONTACT ACTIVITIES - Swimming, boating, and beach activities
which include contact with natural waters.
CFR - Code of Federal Regulations
CIVIL PENALTY - A regulated fining mechanism intended to dis-
courage undesired actions by providing negative economic
incentive.
COMPLETE MIXING - All constituents of a water body uniformly mixed.
111—359
-------
CONTIGUOUS ZONE - The entire zone defined as contiguous under
Article 24 of the Convention on the Territorial Sea and
Contiguous Zone.
COST OF PREVENTION - Cost of installing and maintaining equip-
ment for the sole purpose of preventing the spill of
material.
CRIMINAL PENALTY - A regulated fining mechanism intended to
carry punitive consequences in addition to a negative
economic incentive for undesirable actions.
CRITICAL CONCENTRATION - For a given hazardous material, the
concentration (in water) at which substantial harm is
expected to occur.
CRITICAL VOLUME - The volume associated with the threshold of
substantial harm for a given methodology. The critical
volume for a water body will be that volume of water
brought to the critical concentration if a harmful quantity
is spilled.
DECISION TREE ANALYSIS - A method for weighing the consequences
of mutually exclusive decisions based on the probability of
related outcomes.
DELPHI - A procedure for obtaining a consensus of opinion through
systematic repeated questioning of participants in an
environment which controls confrontation between the
participants.
DESIGNATED HAZARDOUS SUBSTANCES - Specific hazardous substances
enumerated in pending federal regulations to comply with
the mandate in Section 311 of Public Law 92-500.
DIRECT EFFECTS - Effects noted directly in the target species
of interest.
DISP - Dispersal component employed as an intrinsic factor in
the Resource Value Methodology to account for differences
in the ability of a material to spread in the environment
as a result of its specific gravity, solubility, and
volatility.
DOHM - Division of Oil and Hazardous Materials, U.S. Environmental
Protection Agency.
DORM METHODOLOGY - An approach to setting harmful quantities
based on the use of a plug flow model operated with a
statistically derived stream flow rate.
111—360
-------
EC 50 — Median effective concentration. The concentration at
which the effect of interest is noted in 50 percent of
the test sample.
ECONOMIC THRESHOLD - Dollar value level which when exceeded
represents a substantial economic amount, i.e., damage
with a monetary value in excess of the economic threshold
is considered substantial.
EXTRINSIC PROPERTIES - Properties whose values depend upon the
nature of external events or circumstances.
FEDERAL WATER POLLUTION CONTROL ACT AMENDMENTS OF 1972 - Public
Law 92—500.
FINAL RATE OF PENALTY — Rate Of penalty assigned in the Resource
Value Methodology after application of extrinsic components
in the dollar ranking factor to the base rate of penalty.
FISH KILL - The observation of dead fish in normally habitable
waters.
FLOW DURATION CURVE - A plot of stream discharge versus frequency
(the percent of a year which the discharge is equaled or
exceeded).
GESAMP - An acronym for the Joint Group of Experts on the
Scientific Aspects of Marine Pollution. GESAMP is composed
of experts from a number of international organizations and
serves in an advisory capacity in the area of marine
pollution.
HARMFUL QUANTITY - Relative to hazardous materials, “those
quantities, the discharge of which, at such times, loca-
tions, circumstances, and conditions, will be harmful to
the public health or welfare of the United States, including,
but not limited to fish, shellfish, wildlife, and public
and private property, shorelines and beaches . . .“
(Sec. 311).
HAZARD CATEGORY - In the IMCO Methodology, one of the four
categories (A through D) to which a hazardous material
can be assigned on the basis of the degree to which it
is expected to exert its various hazard potentials in a
spill situation.
111—361
-------
HAZARDOUS MATERIAL (SUBSTANCE) - As defined in Section 311,
such elements and compounds (other than oil) “which, when
discharged in any quantity into or upon the navigable
waters of the United States or adjoining shorelines on
the waters of the contiguous zone, present an imminent
and substantial danger to the public health or welfare,
including, but not limited to fish, shellfish, wildlife,
shorelines, and beaches.”
HAZARD POTENTIAL - In the IMCO methodology, this term refers
to any one of the five identified hazards which can be
presented by a hazardous material.
HYDRAULIC RATING CURVE - A curve of river discharge versus the
water’s physical characteristics (velocity, depth,
width, and cross—sectional area).
IMCO - An acronym for the International Maritime Consultative
Organization, a depository of the International Convention
for the Prevention of Pollution of the Sea by Oil, 1954.
Its purpose is the formulation of international agreements
to prevent and control pollution of the sea.
IMCO METHODOLOGY - The name assigned to the second methodology
developed in this report. This methodology is based on a
hazardous material rating/classification proposed by the
1973 International Convention on Marine Pollution as part
of their regulations for the control of pollution by
noxious substances transported in bulk.
IMPACT DURATION - Period during which the receiving water
continues to show the effects of a spill. This includes
both the acute effects period, and the period of re-
population.
INCIPIENT TIME THRESHOLD - Minimum time required to observe
death in aquatic organisms exposed to high levels of a
toxic material. The value is derived graphically as the
asymptote on the time-dose mortality relation at high
contaminant concentrations.
INCIPIENT TOXICITY THRESHOLD - Concentrations just toxic to
aquatic organisms over infinite exposure time. On the
time-dose mortality relation, the asymptote approached
at infinite time.
INDIRECT EFFECTS - Effects borne by segments of the ecosystem
not of direct interest, the ramifications of which in
turn affect the target species of interest, e.g., the
destruction of an important fish food organism which
subsequently causes depletion in the population of the
receptor of interest.
111—362
-------
INDUCED EFFECTS - Effects which occur as a result of intro-
duction of one agent which activates the potential of
other agents already present in the water, e.g.,
synergism between natural constituents in the water and a
spilled material.
INSTANTANEOUS MIXING - Dispersion and diffusion of a substance
immediately upon its entrance into a water body.
INTRINSIC PROPERTIES - Properties whose values result from the
nature of the material itself.
LITTORAL DRIFT - A beach and longshore drift resulting from a
combination of onshore wind and oblique wave fronts.
LOCATIONAL DISPERSION FACTOR (LOC) - Extrinsic factor employed
in the Resource Value Methodology to adjust for differences
between the receiving waters’ actual capacity to disperse
a spill and the instant mixing assumption utilized in
establishing the base rate of penalty.
MARGINAL VALUE - The value of one additional unit.
MEDIAN RECEPTOR - An aquatic organism which has shown a median
sensitivity to various hazardous material concentrations.
PLUG FLOW MODEL - A simplified model which assures that material
spilled into a water body instantaneously mixes to a
uniform concentration with a definite leading and trailing
edge and that the contaminated volume of water moves
uniformly downstream (in the case of a river).
PRESENT WORTH - The value today based on all future payments as
adjusted according to the prevailing interest rate assuming
that the interest rate remains constant.
RATE OF PENALTY - For a given hazardous material, a ratio of
dollars per unit mass of hazardous material which when
multiplied by the mass of hazardous material spilled,
results in a penalty assessable to the spiller.
RECREATION DAY - A user day dedicated to recreational pursuits.
REDUCTION IN AMENITIES - Refers to loss or decrease in value
for recreational use or scenic aspects.
RESOURCE USE MODIFIER (ResU) - Extrinsic factor employed in
Resource Value Methodolo y to adjust rates of penalty
to account for deviations between the actual recreational
value of the receiving waters and the average value
employed to establish the base rate of penalty.
111—363
-------
RESOURCE VALUE METHODOLOGY (RVM) - An approach to setting rates
of penalty and harmful quantities based on equating
penalties to the value of damages sustained by the en-
vironrrient. Harmful quantities are defined as those
capable of causing damage in excess of a threshold dollar
value.
SALT WATER WEDGE - A saline mass of water which has a distinct
salt gradient between itself and the overlying waters.
Normally formed during periods of high runoff in estuaries.
SCATTER DIAGRAM - Graphical plot of points characterized by
two individual parameters in an attempt to define a
relationship between the parameters.
STATIONARY SOURCE - A fixed location which potentially will
discharge or spill a hazardous material (i.e., industrial
plant site, tank farm, municipal storage facility).
TIDAL EXCHANGE - Amount of water which leaves the estuary during
an ebb tide and is not returned during the following flood
tide.
TIDAL PRISM - Amount of estuarine water represented by the
volume of water existing between the mean high water (MHW)
and the mean low water (MLW) level.
TIME-DOSE MORTALITY RELATION - Relation established by plotting
the TLm concentration against the time of exposure.
TIME OF PASSAGE - The time required for a plug flow of water to
pass a point.
TLm - (Median Tolerance Limit) For a given material, the con-
centration which produces a given effect in 50 percent of
the sample population during a specified time period.
TYPE III BARGE - A barge designed to carry products of sufficient
hazard to require moderate degree of control (sulfuric acid,
etc.). Each barge must meet certain specific standards of
water tight subdivision, structural hull strength, and tank
arrangement to protect the cargo.
UNIT OF MEASUREMENT METHODOLOGY (UM) - An approach based on
selection of units of measurement common to the trans-
portation of hazardous materials as the harmful quantity.
The rate of penalty is scaled between $100 and $1000 per
unit of measurement on the basis of physical—chemical
properties.
111—364
-------
USER DAY - A visit to given site by a single individual for a
period not exceeding a single calendar day.
VARIANCE - Deviation from expected values. In statistics,
variance is defined as a square of the standard deviation,
but the term is used in a more general sense here.
U.S. GOVERNMENT PRINTING OFFICE: 1975—582-423:2e0
111—365
------- |