U.S. ENVIRONMENTAL PROTECTION AGENCY NATIONAL EUTROPHICATION SURVEY WORKING PAPER SERIES REPORT ON BALDWIN LAKE RANDOLPH COUNTY ILLINOIS EPA REGION V WORKING PAPER No, 295 CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON and ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA 699-440 ------- REPORT ON BALDWIN LAKE RANDOLPH COUNTY ILLINOIS EPA REGION V WORKING PAPER No, 295 WITH THE COOPERATION OF THE ILLINOIS ENVIRONMENTAL PROTECTION AGENCY AND THE ILLINOIS NATIONAL GUARD JUNE, 1975 ------- I CONTENTS Page Foreword ii List of Illinois Study Lakes iv Lake and Drainage Area Map v Sections I. Conclusions 1 II. Lake and Drainage Basin Characteristics 3 III. Lake Water Quality Summary 4 IV. Nutrient Loadings 8 V. Literature Reviewed 13 VI. Appendices 14 ------- 11 FOREWORD The National Eutrophication Survey was initiated in 1972 in response to an Administration comitment to investigate the nation- wide threat of accelerated eutrophication to fresh water lakes and reservoirs. OBJECTIVES The Survey was designed to develop, in conjunction with state environmental agencies, information on nutrient sources, concentrations, and impact on selected freshwater lakes as a basis for formulating comprehensive and coordinated national, regional, and state management practices relating to point—source discharge reduction and non-point source pollution abatement in lake watersheds. ANALYTIC APPROACH The mathematical and statistical procedures selected for the Survey’s eutrophication analysis are based on related concepts that: a. A generalized representation or model relating sources, concentrations, and Impacts can be constructed. b. By applying measurements of relevant parameters associated with lake degradation, the generalized model can be transformed into an operational representation of a lake, its drainage basin, and related nutrients. c. With such a transformation, an assessment of the potential for eutrophication control can be made. LAKE ANALYSIS In this report, the first stage of evaluation of lake and water- shed data collected from the study lake and Its drainage basin is documented. The report is formatted to provide state environmental agencies with specific information for basin planning [ 3O3(e)], water quality criteria/standards review [ 3O3(c)], clean lakes [ 314(a,b)], and water quality monitoring [ lO6 and §305(b)] activities mandated by the Federal Water Pollution Control Act Amendments of 1972. ------- lii Beyond the single lake analysis, broader based correlations between nutrient concentrations (and loading) and trophic condi- tion are being made to advance the rationale and data base for refinement of nutrient water quality criteria for the Nation’s fresh water lakes. Likewise, multivariate evaluations for the relationships between land use, nutrient export, and trophic condition, by lake class or use, are being developed to assist in the formulation of planning guidelines and policies by EPA and to augment plans implementation by the states. ACKNOWLEDGMENT The staff of the National Eutrophication Survey (Office of Research & Development, U. S. Environmental Protection Agency) expresses sincere appreciation to the Illinois Environmental Protection Agency for professional involvement and to the Illinois National Guard for conducting the tributary sampling phase of the Survey. Dr. Richard H. Briceland, Director of the Illinois Environ- mental Protection Agency; and Ronald M. Barganz, State Survey Coordinator, and John J. Forneris, Manager of Region III, Field Operations Section of the Division of Water Pollution Control, provided invaluable lake documentation and counsel during the Survey, reviewed the preliminary reports, and provided critiques most useful in the preparation of this Working Paper series. Major General Harold R. Patton, the Adjutant General of Illinois, and Project Officer Colonel Daniel L. Fane, who directed the volunteer efforts of the Illinois National Guardsmen, are also gratefully acknowledged for their assistance to the Survey. ------- iv NATIONAL EUTROPHICATION SURVEY STUDY LAKES STATE OF ILLINOIS LAKE NAME COUNTY Baldwin Randolph Bloomington McLean Carlyle Bond, Clinton, Fayette Cedar Lake Charleston Coles Coffeen Montgomery Crab Orchard Jackson, Williamson Decatur Macon DePue Bureau East Loon Lake Fox Lake Grass Lake Highland Silver Madison Holiday LaSalle Horseshoe Madison Long Lake Lou Yaeger Montgomery Marie Lake Old Ben Mine Franklin Pistakee Lake, McHenry Raccoon Marion Rend Franklin, Jefferson Sangchris Christian Shelbyville Moultrie, Shelby Slocum Lake Springfield Sangamon Storey Knox Vandalia Fayette Vermilion Vermilion Wee Ma Tuk Ful ton Wonder McHenry ------- LAKE ]i 1 Location BALDWIN LAKE ® Tributary SampHng Site x Lake Sampling Site Sewage Treatment Facility 9 1 12 I nfl. M l. ------- BALDWIN LAKE STORET NO. 1763 I. CONCLUSIONS A. Trophic Condition: Survey data show that Baldwin Lake is eutrophic. It ranked second in overall trophic quality when the 31 Illinois lakes sampled in 1973 were compared using a combination of six param- eters*. Two of the lakes had less median total phosphorus, none had less median dissolved phosphorus, one had less median inorganic nitrogen, six had less mean chlorophyll a, and four had greater mean Secchi disc transparency. Marked depression of dissolved oxygen occurred at sampling station 1 in August. B. Rate-Limiting Nutrient: The algal assay results indicate phosphorus limitation at the time the assay sample was collected (05/07/73). The lake data also indicate phosphorus limitation; i.e., the mean N/P ratios were 17/1 or greater at all sampling times. C. Nutrient Controllability: 1. Point sources--The phosphorus load from the wastewater treatment plant serving the Baldwin Power Plant was estimated to be 1.3% of the total load reaching the lake during the sampling year. The present loading rate of 0.58 g/m 2 /yr is * See Appendix A. ------- 2 almost five times that proposed by Vollenweider (Vollenweider and Dillon, 1974) as a eutrophic rate (see page 12). Baldwin Lake is a large, relatively shallow lake maintained primarily for evaporative cooling in power production at the Baldwin Power Plant. It has been assessed as a “normal, healthy lake” without a serious algae problem but with excessive rooted aquatic plants being supported by nutrients trapped in the lake bottom (Miller, 1973). Based on the data presented herein, phosphorus control at the Baldwin wastewater treatment plant probably would not improve the trophic condition of Baldwin Lake appreciably. 2. Non-point sources--Most of the phosphorus load (95.7%) is estimated to have originated from non-point sources. A pumping station on the Kaskaskia River was the primary source of make-up water to supplement natural inflow during the sampling year. This source of water was also the major source of phosphorus (93%) during the sampling year. The other gaged tributary (A-i) was estimated to have contributed 2.1%, while the ungaged drainage areas contributed less than 1%. ------- II. LAKE AND DRAINAGE BASIN CHARACTERISTICS1" A. Lake Morphemetry : 1. Surface area: 8.00 kilometers2. 2. Mean depth: 3.1 meters. 3. Maximum depth: 12.2 meters. 4. Volume: 24.800 x 106 m3. 5. Mean hydraulic retention time: 7.9 years (based on outlet flow) B. Tributary and Outlet: (See Appendix C for flow data) 1. Tributaries - Drainage Mean flow Name area (km2)* (m3/sec)* Unnamed Stream (A-l) 4.0 <0.1 Pumped flow from Kaskaskia River - 0.7 Minor tributaries & immediate drainage - 0.6 0.1 Totals 4.6 0.9 2. Outlet - Kaskaskia River (inflow and outflow difference is evaporative loss) 12.6** 0.1 C. Precipitation***: 1. Year of sampling: 118.4 centimeters. 2. Mean annual: 102.0 centimeters. t Table of metric conversions—Appendix B. tt Miller, 1973. * For limits of accuracy, see Working Paper No. 175, "...Survey Methods, 1973-1976". ** Includes area of lake. *** See Working Paper No. 175. ------- 4 III. LAKE WATER QUALITY SUMMARY Baldwin Lake was sampled three times during the open-water season of 1973 by means of a pontoon-equipped Huey helicopter. Each time, samples for physical and chemical parameters were collected from two stations on the lake and from a number of depths at each station (see map, page v). During each visit, a single depth-integrated (near bottom to surface) sample was composited from the stations for phyto- plankton identification and enumeration; and during the first visit, a single 18.9-liter depth-integrated sample was composited for algal assays. Also each time, a depth-integrated sample was collected from each of the stations for chlorophyll a analysis. The maximum depths sampled were 9.1 meters at station 1 and 4.9 meters at station 2. The lake sampling results are presented in full in Appendix 0 and are summarized in the following table. ------- 2 SITES A. SUMMARY OF PHYSICAL AND CHEMICAL CHARACTERISTiCS FOM UALDIIN LAKE STORET CODE 1763 1ST SAMPLING ( 5/ 7/73) 2ND SAMPLING ( 8/10/73) 2 SITES 3Wi) SAMPLING (10/17/73) 2 SITES PARAMETER RANGE MEAN MEDIAN MANGE MEAN MEDIAN RANGE MEAN TEMP (C) 18.7 — 19.2 19.0 19.2 28.4 — 33.6 30.7 30.1 21.5 — 22.1 21.8 21.9 0155 OXY (MG/U 8.7 — 10.5 9.3 8.8 1.8 — 8.0 5.3 5.5 7.8 - 7.8 7.8 7.8 CNDCTVY (MCROMO) 470. — 475. 471. 470. 509. — 559. S3 . 533. 451. — 471. 457. 453. PH (STAND UNITS) 8.4 — 8.5 8.5 8. 7.5 — 8.8 8.2 8,2 8.1 — 8.4 8.2 8.2 TOT ALK (MG/L) 113. — 117. us. us. 10 . — 117. 110. 109. 113. — 117. US. 115. TOT P (MG/L) 0.023 — 0.040 0.030 0.030 0.044 — 0.087 0.054 0.046 0.040 — 0.052 0.045 0.044 ORTHO P (MG/L) 0.003 — 0.004 0.004 0.004 0.007 — 0.020 0.013 0.012 0.004 — 0.010 0.007 0.008 N02.N03 (MG/LI 0.030 — 0.050 0.038 0.040 0.060 — 0.230 0.106 0.080 0.110 — 0.150 0.138 0.140 AMMONIA (MG/LI 0.030 — 0.040 0.038 0.040 U. Ob O — 0.290 0.116 0.080 0.030 — 0.060 0.046 0.050 KJEL N (MG/LI 0.500 — 0.700 0.620 0.600 0.800 — 1.300 0.980 0.900 0.600 — 1.200 0.760 0.700 INORC N (MG/LI 0.060 — 0.090 0.076 0.080 0.130 — 0.520 0.222 0.140 0.140 — 0.210 0.184 0.190 TOTAL N (MG/L) 0.540 — 0.740 0.658 0.650 0.860 — 1.530 1.086 1.000 0.710 — 1.340 0.898 0.840 CHLRPYL A (UG/L) 6.5 — 7.3 6.9 6.9 14.2 — 16.2 15.2 15.2 11.8 — 12.0 11.9 11.9 SECCHI (METERS) 0.9 — 0.9 0.9 a, ------- 6 B. Biological characteristics: 1. Phytoplankton — Sampling Dominant Algal units Date Genera per ml 05/07/73 1. Kirchneriella . a• 866 2. Oscillatoria !p. 784 3. Microcystis p. 757 4. Scenedesmus p•. 649 5. Tetrastrum p. and Crucigenia p. 649 Other genera 650 Total 4,355 08/10/73 1. Nitzschia p. 921 2. Merismopedia !p•. 877 3. Microcystis p. 405 4. Lyngbya p. 360 5. Cyclotella p. 247 Other genera 650 Total 3,460 10/17/73 1. Osclllatoria p. 1,417 2. Microcystis p. 945 3. Cyclotella p. 420 4. Melosira p. 314 5. Merismopedia p. 210 Other genera 1,365 Total 4,671 2. Chlorophyll a - Sampling Station Chlorophyll a Date Number ( ig/1 ) 05/07/73 01 7.3 02 6.5 08/10/73 01 14.2 02 16.2 10/17/73 01 11.8 02 12.0 ------- 7 Maximum yield ( mg/i-dry wt. ) 0.1 3.2 20.1 0.1 C. Limiting Nutrient Study: 1. Autoclaved, filtered, and nutrient spiked - Ortho P Inorganic N Spike (mg/i) Coric. (ma/fl Conc. (mci/i ) Control 0.010 0.127 0.050 p 0.060 0.127 0.050 P + 1.0 N 0.060 1.127 1.0 N 0.010 1.127 2. Discussion — The control yield of the assay alga, Selenastrum capri- cornutum , indicates that the potential primary productivity of Baldwin Lake was low at the time the assay sample was collected. The increase in yield when orthophosphorus was added, as well as the lack of increase in yield when nitro- gen alone was added, indicate phosphorus limitation. The lake data also indicate phosphrous limitation (the mean inorganic nitrogen/orthophosphorus ratios were 17/1 or greater at all sampling times). ------- 8 IV. NUTRIENT LOADINGS (See Appendix E for data) For the determination of nutrient loadings, the Illinois National Guard collected monthly near-surface grab samples from each of the tributary sites indicated on the map (page v), except for the high runoff months of February and March when two samples were collected. Sampling was begun in June, 1973, and was completed in May, 1974. Through an interagency agreement, stream flow estimates for the year of sampling and a “normalized” or average year were provided by the Illinois District Office of the U.S. Geological Survey for the tributary sites nearest the lake. The Illinois Power Company provided pumpage data for station C-i (Kelly, 1975). In this report, nutrient loads for sampled tributaries were calculated from mean annual concentrations and mean annual flows. Nutrient loads for unsampled “minor tributaries and iiniiediate drainage” (“ZZ” of U.S.G.S.) were estimated using the nutrient exports, in kg/km 2 /year, at station A-l and multiplying by the ZZ area in km 2 . Water from the Kaskaskia River, station C-l, is pumped into the lake as make-up water at times when the lake volume is below the usual operation level. Nutrient loads at this station were estimated using the mean concentrations of the nutrients and the mean daily flow for the month. ------- 9 A. Waste Sources: 1. Known treatment plant* - Pop. Mean Flow Receiving Name Served Treatment ( m 3 /d) Water Baldwin Power 144 trickling 44.3 Baldwin Plant filter Lake 2. Known industrial - None * Walden, 1973. ------- 10 B. Annual Total Phosphorus Loading — Average Year: 1. Inputs — kgP/ %of Source yr total a. Tributaries (non-point load) Unnamed Stream (A—l) 95 2.1 Kaskaskia River 4,315 93.3 b. Minor tributaries & immediate drainage (non-point load) - 15 0.3 c. Known STP’s - Baldwin Power Plant 60 1.3 d. Septic tanks — None e. Known industrial - None - - f. Direct precipitation* - 140 3.0 Total 4,625 100.0 2. Outputs — Lake outlet — Kaskaskia River 90 3. Net annual P accumulation - 4,535 kg. * See Working Paper No. 175. ------- 11 C. Annual Total Nitrogen Loading - Average Year: 1. Inputs — kgN/ %of Source yr total a. Tributaries (non—point load) - Unnamed Stream (A—i) 1,170 2.1 Kaskaskia River 46,285 81.8 b. Minor tributaries & immediate drainage (non-point load) - 175 0.3 c. Known SIP’s — Baldwin Power Plant 310 0.5 d. Septic tanks - None e. Known industrial - None - - f. Direct precipitation* - 8,635 15.3 Total 56,575 100.0 2. Outputs - Lake outlet - Kaskaskia River 4,075 3. Net annual N accumulation - 52,500 kg. * See Working Paper No. 175. ------- 12 D. Mean Annual Non-point Nutrient Export by Subdralnage Area: Tributary kg P/kni 2 /yr kg N/km 2 /yr Unnamed Stream (A-i) 24 293 E. Yearly Loading Rates: In the following table, the existing phosphorus loading rates are compared to those proposed by Vollenweider (Vollen- weider and Dillon, 1974). Essentially, his “dangerous” rate is the rate at which the receiving water would become eutrophic or remain eutrophic; his “permissible” rate is that which would result in the receiving water remaining oligotrophic or becoming oligotrophic if morphometry permitted. A mesotrophic rate would be considered one between “dangerous” and “permissible”. Note that Vollenweider’s model may not be applicable to water bodies with short hydraulic retention times. Total Phosphorus Total Nitrogen Total Accumulated Total Accumulated grams/m 2 /yr 0.58 0.57 7.1 6.6 Vollenweider loading rates for phosphorus (g/m 2 /yr) based on mean depth and mean hydraulic retention time of Baldwin Lake: “Dangerous” (eutrophic rate) 0.12 “Permissible” (oligotrophic rate) 0.06 ------- 13 V. LITERATURE REVIEWED Kelly, Robert, 1975. Personal communication (pumpage data for station C-i). Baldwin Power Station, Baldwin. Miller, Wendell E., 1973. Personal comunication (lake morphometry). IL Power Co., Decatur 0 Vollenwelder, R. A., and P. J. Dillon, 1974. The application of the phosphorus loading concept to eutrophication research. Natl. Res. Council of Canada Pubi. No. 13690, Canada Centre for Inland Waters, Burlington, Ontario. Walden, Rawls W., 1973. Treatment plant questionnaire (Baldwin Power Plant STP). IL Power Co., Decatur. ------- VI. APPENDICES APPENDIX A LAKE RANKINGS ------- LAKE DATA TO BE USED IN RANKINGS LA KE MEDIAN MEDIAN 500— MEAN 15— MEDIAN CODE LAKE NAME TOTAL P INORG N MEAN SEC CNLONA MIN DO DISS ORTfrIO P 1703 LAKE IILOOMINGION 0.050 5.730 46’..667 26.200 14.800 0.020 1706 LAKE CARLYLE 0.084 1.270 477.889 17.367 11.000 0.032 1708 LAKE CHARLESTON 0.160 4.660 490.667 12.000 8.400 0.065 1711 COFFEEN LAKE 0.032 0.260 456.222 7.700 14.900 0.012 17I CRAB ORCHARD LAKE 0.082 0.200 482.222 59.867 13.800 0.013 1714 LAKE DECATUR 0.129 3.750 479.511 43.000 14.500 0.062 1725 LONG LAKE 0.704 1.190 482.667 49.333 8.800 0.398 1726 LAKE LOU VAE&ER 0.186 1.600 489.583 10.662 11.400 0.076 1727 LAKE MARIE 0.098 0.370 467.667 39.533 14.700 0.057 1733 PISTAKEE LAKE 0.203 0.310 485.667 75.867 7.000 0.062 1735 REND LAKE 0.071 0.210 471.500 23.533 12.700 0.012 1739 LAKE SHELBYVILLE 0.062 3.290 461.333 17.161 14.800 0.019 1740 SILVER LAKE (HIGHLAND) 0.226 0.970 489.500 5.822 14.800 0.057 1742 LAKL SPRINGFiELD 0.103 3.265 483.385 13.013 10.800 0.059 1748 VERMILION LAKI. 0.109 4.695 481.500 31. 150 14.200 0.050 1150 WONDER LAKE 0.426 0.890 486.000 98.533 7.800 0.132 1751 LAKI. STORY 0.072 2.510 459.333 17.250 14.800 0.021 1752 DEPUE LAKE 0.438 4.050 490.000 58.833 7.600 0.276 1753 LAKE SANGCrIHIS 0.050 1.970 415.417 19.292 14.500 0.009 175’. LAKE HOLIDAY 0.167 3.135 485.167 51.217 7.200 0.046 1755 FOX LAKE 0.219 0.375 486.167 63.850 8.800 0.083 2756 G$ ASS LAKE 0.301 0.820 481.000 83.500 5.900 0.093 1757 LAST LOON LAKE 0.076 0.120 450.000 22.300 14.900 0.018 1758 SLOCUM LAKE 0.865 0.200 487.333 221.100 5.800 0.362 1759 CEDAR LAKE 0.029 0.170 400.333 5.767 12.800 0.013 1761 LAKE WIMATUK 0.069 1.770 466.333 7.967 14.500 0.031 1762 RACCOON LAKE 0.106 0.310 484.333 19.217 13.800 0.020 1763 8ALOUIN LAKE 0.044 0.140 461.167 11.333 13.200 0.007 ------- LAKE DATA TO BE USEO IN RANKINGS LAKE P INORG N MEAN SEC CMLO A HIN DO DISS ORTMO P CODE LAKE NAME TOTAL 0.023 1764 LAKI VANOALIA 0.116 0.480 478.111 11.278 14.800 0.575 1765 OLD BEN MINE 1 ESE VOIN 0.930 0.205 478.333 31.433 0.018 1766 HO SESNOE LAKE 0.127 0.705 482.833 182.250 ------- PEHCENT OF LAKES WITrI ,UGIIER VALUES (NUMBER OF LAKES WITH rIIGNER VALUES) LAKE MEDIAN MEDIAN 500— MEAN 15- MEDIAN INDEX CODE LAKE NAME TOTAL P INORG N MEAN SEC CHLORA MIN 00 DISS OWTHO P NU 1703 LAKE BLOOMINGTON 88 C 26) 0 C 0) 80 4 24) 47 4 j4) 13 1 2) 68 1 20) 296 1706 LAKE CARLYLE 63 1 19) ‘.0 4 12) 63 I 19) 63 I 19) 63 I 19) 53 1 16) 345 1706 LAKE CHARLESTON 37 I I I) 7 1 2) 0 C 0) 77 1 23) 77 1 23) 27 I 8) 225 1711 CUFFEEN LAKE 97 C 29) 77 I 23) 93 1 28) 93 1 28) 2 1 0) 92 C 27) 454 1712 CRAB ORCHARD LAKE 67 C 20) 90 C 27) 43 1 13) 20 ( 6) 42 1 12) 85 I 25) 341 1714 LAKE DECATUR 40 C 12) 13 C 4) 53 1 16) 33 1 10) 30 1 8) 32 C 9) 201 1125 LONG LAKE 7 4 2) 43 C 13) 40 I 12) 30 C 9) 72 1 21) 3 1 1) 195 1126 LAKE LOU YAEGER 30 4 9) 37 C 11) 7 C 2) 87 1 26) 57 I Li) 23 1 7) 241 1727 LAKE MARIE 60 1 18) 68 1 20) 73 I 22) 37 4 11) 23 1 7) 42 1 12) 303 1733 PISTAKEE LAKE 27 4 8) 68 I 20) 23 C 7) 13 C 4) 90 1 27) 32 I 9) 2 53 1735 REND LAKE 77 I 23) 80 C 24) 70 1 21) 50 1 15) 53 C 16) 92 1 27) 422 1739 LAKE SHELBYVILLE 83 1 25) ii C 5) 83 4 25) 70 C 21) 13 I 2) 73 1 22) 339 17’.0 SILVER LAKE (HIGHLAND) 20 ( 6) 47 1 14) 10 C 3) 97 1 29) 13 1 2) ‘.2 I 12) 229 1742 LAKE SPRINGFIELD 53 I 16) 20 C 6) 33 C 10) 73 I 22) 67 I 20) 37 I 11) 283 1748 VERMILION LAKE SO ( 15) 3 4 1) 47 I 14) ‘.i 4 13) 37 I 11) 47 I 14) 227 1750 WONDER LAKE 13 1 4) 50 15) 20 1 6) 7 I 2) 80 1 24) 13 1 4) 183 1751 LAKE STORY 73 4 22) 27 I 8) 90 1 27) 67 I 20) 13 1 2) 63 4 19) 333 1752 DEPUE LAKE 10 C 3) 10 I 3) 3 C 1) 23 C 7) 83 I 25) 10 1 3) 139 1753 LAKE SANGCrIR IS 88 I 26) 30 C 9) 67 4 20) 57 C 17) 30 1 8) 97 4 29) 369 1754 LAKE HOLIDAY 33 1 10) 23 1 7) 27 4 8) 27 C 8) 87 C 26) 50 C 15) 247 1755 FOX LAKE 23 I 7) 63 1 19) 17 4 5) Il I 5) 72 t 21) 20 C 6) 212 1756 GRASS LAKE 17 1 5) 53 1 16) 50 C 15) 10 1 3) 97 1 29) 17 I 5) 244 1757 EAST LOON LAKE 70 I 21) 100 1 30) 97 C 29) 53 4 16) 2 I 0) 77 C 23) 399 1758 SLOCUM LAKE 3 I ) 87 1 26) 13 1 4) 0 4 0) 100 1 30) 7 C 2) 210 1759 CEDAR LAKE 100 4 30) 93 I 28) 100 C 30) 100 4 30) 50 1 15) 85 1 25) 528 1761 LAKE WEI4AIUK 80 1 24) 33 1 10) 77 I 23) 90 I 27) 30 I 8) 57 C 17) 367 1762 RACCOON LAKE 57 C 17) 73 I 22) 30 I 9 60 4 18) 42 4 12) 68 I 20) 330 1163 8ALOIIN LAKE 93 C 28) 97 I 29) 87 4 26) 80 4 24) 47 4 14) 100 I 30) 504 ------- MEAN 15— MEDIAN INi)E CMLORA HIN DO DISS O THO P Ni.) 83 C 25) 13 C 60 C 18) 323 40 C 12) 60 C 0 ( 0) 240 3 C 1) 93 C 80 C 24) 313 PEkCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES) LAKE MEDIAN MEDIAN 500— CODE LAKE NAME TOTAL P INORG N MEAN SEC 1164 LAI\E VANDALIA 47 C 14) 60 ( 18) 60 C 18) 1765 OLD bEN MINE RESERVOIR 0 C 0) 83 C 25) 57 C 17) 1766 HORSESHOE LAKE 43 C 13) 57 ( 17) 31 ( 11) 2) 18) 28) ------- LAKES PANNED BY INDEX NOS. PANK LAKE CODE LAKE NAME INDEX NO 1 1759 CEDAR LAKE 528 2 1763 BALDWIN LAKE 504 3 1711 COFFEEN LAKE 454 4 1735 REND LAKE 422 5 1757 EAST LOON LAKE 399 6 1753 LAKE SANGC, R1S 369 7 1761 LAKE WEMATUK 367 8 1712 CRAB ONCHARD LAKE 347 9 1706 LAKE CARLYLE 345 10 1739 LAKE SHELBYVILLE 339 I I 1751 LAKE STORY 333 12 I 762 RACCOON LAKE 330 13 1764 LAKE VANDALIA 323 14 1766 HORSESI-IOE LAKE 313 15 1727 LAKE MAR11 303 16 1703 LAKE BLOOMINGTON 296 17 1742 LAKE SPRINGFIELD 283 18 1733 PISTAKEE LAKE 253 19 175’. LAKE HOLIDAY 247 2u 1756 GRASS LAKE 244 21 1726 LAKE LOU YAEGER 241 22 176 OLD bEN MINE RESERVOIR 240 23 1740 SILVER LAKE (HIGHLAND) 229 2’. 1748 VERMILION LAKE 227 25 1708 LAKE CHARLESTON 225 26 1755 FOX LAKE 212 27 1758 SLOCUM LAKE 210 28 1714 LAKE DECATUR 201 ------- LAKES RANKED bY INDEX NOS. RANK LAKE CODE LAKE NAME INDEX NO 29 1725 LONG LAKE 195 30 1750 WONDER LAKE 183 31 1752 DEPUE LAKE 139 ------- APPENDIX B CONVERSIONS FACTORS ------- CONVERSION FA(;TORS Hectares x 2.471 = acres Kilometers x 0.6214 = miles Meters x 3.281 = feet Cubic meters x 8.107 x lO = acre/feet Square kilometers x 0.3861 square miles Cubic meters/sec x 35.315 = cubic feet/sec Centimeters x 0.3937 = inches Kilograms x 2.205 = pounds Kilograms/square kilometer x 5.711 = lbs/square mile ------- APPENDIX C TRIBUTARY FLOW DATA ------- TRIBUTARY FLOW INFORMATION FUR ILLINOIS TOTAL DRAINAGE AREA OF LAKE = 12.6 SUM OF SUB—DRAINAGE AREAS = 12.6 NOTE °° MONTHLY AND DAILY FLOWS WILL BE SUPPLIED BY POWER COMPANY 10/23/ 75 LAKE CODE 1763 LAKE BALDWIN TOTAL DRAINAGE AREA OF LAKE(SQ KM) 12.6 TRIBUTARY SUB—DRAINAGE AREA(SO KM) JAN FEB MAR APR MAY NORMALIZED FLOIS(CMS) JUN JUL AUG SEP OCT NOV DEC MEAN 1763A1 1763b1 1763ZZ 4.0 12.6 8.6 0.02 0.07 0.05 0.04 0.12 0.08 0.05 0.15 0.10 0.05 0.15 0.10 0.04 0.12 0.08 0.03 0.02 0.01 0.10 0.06 0.03 0.07 0.04 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.03 0.02 0.01 0.04 0.03 0.02 0.08 0.05 SUMMARY NO DAILY FLOW DATA ON FILE TOTAL FLOW IN = TOTAL FLOW OUT = 0.91 0.91 ------- APPENDIX D PHYSICAL and CHEMICAL DATA ------- STOkET RETRIEVAL DATE 75/10/23 176301 38 12 25.0 089 51 55.0 BALDWIN LAKE 17157 ILLINOIS 1JEPALES 2111202 3 0010 FEET DEPTH 00010 00300 00077 00094 00400 00410 00610 00625 00630 00671 DATE TIME DEPTH WATER DO TRANSP CNDUCTVY PH 1 ALK NH3—N TOT KJEL N02&N03 PHOS-DIS FP OM OF TEMP SECCHI FIELD CACO3 TOTAL N N—TOTAL ORTHO TO DAY FEET CENT MG/L INCHES t4ICROMHO SU HG/L M6/L MG/L MG/L MG/L P 73/05/07 10 50 0000 18.7 36 475 8.40 116 0.040 0.700 0.040 0.004 10 50 0006 18.7 10.5 470 8.50 117 0.040 0.600 0.050 0.004 73/08/10 15 05 0000 33.6 5.8 48 558 8.80 15 05 0005 30.6 535 15 05 0010 30.2 5.6 530 8.30 109 0.070 0.800 0.060 0.010 15 05 0015 29.8 5.4 525 7.80 110 0.080 0.900 0.100 0.014 15 05 0020 29.5 520 15 05 0025 29.1 520 15 05 0030 28.4 1.8 509 7.50 117 0.290 1.300 0.230 0.020 73/10/17 11 20 0000 21.9 37 452 8.30 117 0.050 1.200 0.140 0.010 11 20 0015 21.7 7.8 451 8.20 117 0.050 0.700 0.140 0.008 11 20 0026 21.5 7.8 471 8.10 115 0.040 0.600 0.150 0.008 00665 32217 DATE TIME DEPTH PHOS—TOT CHLRPHYL FROM OF A TO DAY FEET MG/L P LJG/L 73/05/07 10 50 0000 0.023 7.3 10 50 0006 0.030 73/08/10 15 05 0000 14.2 15 05 0010 0.046 15 05 0015 0.045 15 05 0030 0.087 73/10/17 11 20 0000 0.052 11.8 11 20 0015 0.043 11 20 0026 0.044 ------- STORET RETRIEVAL DATE 75/10/23 116302 38 14 00.0 089 51 50.0 bALDWIN LAKE 17157 ILLINOIS 11EPALES 2111202 3 0013 FEET DEPTH 00010 00300 00077 00094 00400 00410 00610 00625 00630 00b71 DATE TIME DEPTH WATER DO T ANSP CNDUCTVY PH 1 ALK NM3—N TOT KJEL NO2 NO3 PHOS—DIS FROM OF TEMP SECCHI FIELD CACO3 TOTAL N N—TOTAL ORTHO TO DAY FEET CENT MG/L INCHES MICROMHO SU P4G/L MG/L P4G/L MG/L MG/L P 73/05/07 11 10 0000 19.2 36 470 8.50 115 0.040 0.700 0.030 0.003 11 10 0005 19.2 8.7 470 8.50 113 0.030 0.600 0.030 0.004 11 10 0009 19.2 8.8 470 8.40 114 0.040 0.500 0.040 0.003 73/08/10 14 50 0000 33.2 8.0 40 559 8.60 108 0.060 1.100 0.080 0.001 14 50 0004 32.8 551 14 50 0006 30.1 5.4 541 8.10 108 0.080 0.800 0.060 0.012 73/10/17 11 52 0000 22.1 36 458 8.40 115 0.060 0.700 0.150 0.005 11 52 0016 21.9 7.8 453 8.20 113 0.030 0.600 0.110 0.004 00665 32217 DATE TIME DEPTH PHOS—TOT CHLRPHYL FROM OF A TO DAY FEET HG/L P UG/L 73/05/07 11 10 0000 0.023 6.5 11 10 0005 0.040 11 10 0009 0.035 73/08/10 14 50 0000 0.04’. 16.2 14 50 0006 0.0 0 73/10/17 11 52 0000 0.044 12.0 Ii 52 0016 0.040 ------- APPENDIX E TRIBUTARY and WASTEWATER TREATMENT PLANT DATA ------- STORET RETRIEVAL DATE 75/10/23 1763A1 3 12 00.0 089 51 22.0 UNNAMED STREAM 17121 7.5 BALDWIN I/BALDWIN LAKE CULVERT tJIWER DIKE RD AT SE CORNER OF LK I 1EPALES 2111204 4 0000 FEET DEPTH 00630 00625 00610 00671 0066 5 DATE TIME DEPTH NO2 NO3 TOT KJEL NH3—N PHOS—DIS PHOS—TOr FROM OF N—TOTAL N TOTAL ORTHO TO DAY FEET MG/L MG/L MG/L MG/L P MG/L P 73/06/03 14 20 0.010K 3.075 0.058 0.018 0.135 73/07/07 10 00 0.031 4.000 3.176 0.028 0.120 73/08/04 11 02 0.03’. 1.150 0.013 0.014 0.070 73/09/02 10 35 0.010K 1.760 0.070 0.032 0.135 73/10/07 09 25 0.035 1.800 0.078 0.012 0.095 73/11/04 10 00 0.160 0,650 0.017 0.029 OelO O 73/12/02 09 30 0.380 1.000 0.06’. 0.120 0.280 74/01/06 10 15 0.990 1.100 0.080 0.100 0.180 74/02/03 09 20 0.570 1.300 0.110 0.070 O.2 0 74/02/16 09 45 0.650 1.700 0.100 0.050 0.260 7k/03/02 15 00 0.336 1.100 0.045 0.020 0.142 74/03/17 15 00 0.340 1.100 0.040 0.020 0.140 74/04/06 11 00 0.400 1,550 0.110 0.025 0.155 74/Q /04 09 45 0.010 0.800 0.020 0.005 0.050 K VALUE KNOWN TO BE LESS THAN INDICATED ------- STOREE RETRIEVAL DATE 75/10/23 176381 38 12 38.0 089 52 40.0 UNNAM O STREAM 17 1.5 RED BUD 0/8ALUWIN LAKE SPILLWAY ON w SIDE OF LAKE 11EPALES 2111204 4 0000 FEET DEPTH 00630 00625 00610 00671 00665 DATE TIME DEPTH N02&N03 TOT KJEL Nr13—N r OS—DIS PHOS—TOT FROM oF N—TOTAL N TOTAL ORTHO To DAY FEET MG/L MG/L MG/L MG/L P M(,/L P 73/06/03 14 40 0.0 18 3.200 0.067 0.007 0.035 7i/07/07 10 31 0.020 4.000 0.110 0.012 0.040 73/08/04 11 29 0.030 2.400 0.037 0.010 0.025 73/09/02 11 47 0.010K 1.540 0.100 0.023 0.045 73/10/07 09 25 0.168 1.100 0.085 0.006 0.040 73/11/04 09 45 0.096 1.200 0.042 0.009 0.040 73/12/02 09 40 0.100 1.100 0.036 0.012 0.045 74/01/06 40 25 0.160 1.000 0.028 0.012 0.020 74/02/03 09 30 0.120 0.600 0.017 0.007 0.035 74/0 /16 10 00 0.032 0.800 0.025 0.005 0.035 74/03/02 IS 30 0.044 1.600 0.040 0.00 5 0.050 74/03/17 15 30 0.012 0.500 0.020 0.010 0.035 74/04/06 11 30 0.018 0.900 o.037 0.005K 0.010 74/05/04 09 30 J.140 1.700 0.082 0.014 K VALUE KNOWN TO UL LLSS THAN INDiCATED ------- STORET NETRIEVAL DATE 75/10/23 176 - ic’ 38 11 40.0 0 9 53 15.0 KASKASKIA RIVEN(PUMPED) 17 7.5 RED 8U0 I/8ALL)WIN LAKt PUMPING STATION AT SW CORNER OF LAKE 1 IEPALES 211120’. 4 0000 FEET DEPTH 00630 00625 00610 00671 00665 DATE TIME DEPTt-1 NO2 NO3 TOT KJEL NH3—N PHOS—DIS PHOS—TOT FROM OF N—TOTAL N TOTAL URTHO TO DAY FEET H(.,/L MG/L MG/L MG/L P MG/L P 73/Ob/20 13 00 0.800 0.780 0.048 0.062 0.220 73/09/21 13 00 0.870 1.500 0.250 0.044 0.220 73/10/22 13 00 0.700 0.650 0.042 0.063 0.115 73/11/21 13 15 0.588 0.800 0.068 0.068 0.210 73/12/21 15 00 0.640 0.700 0.072 0.0 ’.0 0.170 74/01/22 10 00 0.616 0.700 0.052 0.065 0.300 74/02/22 09 10 1.180 0.900 0.065 0.097 0.280 74/03/20 15 30 1.920 1.000 0.035 0.095 0.22u 74/04/23 13 30 1.160 1.050 0.140 0.065 0.110 74/05/21 13 30 0.830 0.800 0.035 0.041 0.115 74/06/21 11 00 0.9a0 1.000 0.010 0.055 0.260 74/07/23 10 30 1.200 0.800 0.045 0.040 0.1.5 74/08/22 17 00 1.040 0.600 0.020 0.040 0.140 ------- STOMET RETRIEVAL DATE 75/10/23 176321 TF 176321 P000200 38 12 09.0 089 51 12.0 UALOWIN POWER PLANT 17157 7.5 6ALDWIi 1 ILL. D/8ALDWIN LAKE 8ALDWIN LAKE 1 1EPALES 2141204 4 0000 FEET DEPTH 00630 00625 00610 00671 00665 50051 50053 DATE TIME DEPTH N02&N03 TOT KJEL N113—N PHOS—DIS PHOS-TOT FLOW CONL)UIT FROM OF N—TOTAL N TOTAL ORTHO RATE FLOW-MGI) TO DAY FEET MG/I HG/L HG/I MG/I P MG/L P INST MOO MONTHLY 73/07/30 12 00 CP(T)— 7.400 4.700 0.038 2.200 2.610 0.012 0.012 73/07/31 12 00 73/08/20 12 00 CP(T)— 8.200 6.700 0.069 2.620 2.900 0.009 0.009 73/08/21 12 00 73/09/21 13 00 CPU>— 10.400 7.400 0.180 3.260 3.900 0.010 0.011 73/09/21 24 00 73/10/22 12 00 CP(T)— 4.000 3.200 0.029 1.700 0.011 0.013 73/10/23 12 00 73/11/20 11 00 CP(T)— 11.400 11.000 0.660 3.020 3.700 0.011 0.016 73/11/21 11 00 73/12/21 15 15 2.600 23.000 5.400 2.400 3.450 0.011 0.012 74/01/20 16 30 CP(T)— 2.520 20.000 17.600 3.700 4.900 0.012 0.012 74/01/21 15 30 74/02/22 09 00 2.080 8.000 0.220 2.600 3.150 0.0 14 0.011 74/ 3/2O 12 00 CPU)— 4.400 22.000 3.200 3.300 4.500 0.012 0.012 74/03/21 11 00 74/04/22 11 30 CP(T)— 7.900 24.000 5.300 3.750 6.600 0.013 0.012 74/04/23 10 30 74/OS/21 14 00 CP(T)— 9.800 13.000 1.150 3.200 4.150 0.011 0.011 74/05/22 14 00 74/06/20 10 00 CPU)— 7.600 7.500 3.100 2.700 2.800 0.008 0.01u 74/06/21 10 00 74/07/23 10 00 CP(T)— 12.100 8.600 0.082 3.300 4.000 0.010 0.011 74/07/2k 10 00 ------- |