U.S. ENVIRONMENTAL PROTECTION AGENCY
           NATIONAL EUTROPHICATION SURVEY
                    WORKING PAPER SERIES
                                      REPORT
                                        ON
                                    BALDWIN LAKE
                                    RANDOLPH COUNTY
                                      ILLINOIS
                                    EPA REGION V
                                 WORKING PAPER No, 295
 CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
                            and
ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
 699-440

-------
                                  REPORT
                                    ON
                               BALDWIN LAKE
                              RANDOLPH COUNTY
                                  ILLINOIS
                               EPA REGION V
                           WORKING PAPER No, 295
      WITH THE COOPERATION OF THE
ILLINOIS ENVIRONMENTAL PROTECTION AGENCY
                AND THE
        ILLINOIS NATIONAL GUARD
              JUNE, 1975

-------
I
CONTENTS
Page
Foreword ii
List of Illinois Study Lakes iv
Lake and Drainage Area Map v
Sections
I. Conclusions 1
II. Lake and Drainage Basin Characteristics 3
III. Lake Water Quality Summary 4
IV. Nutrient Loadings 8
V. Literature Reviewed 13
VI. Appendices 14

-------
11
FOREWORD
The National Eutrophication Survey was initiated in 1972 in
response to an Administration comitment to investigate the nation-
wide threat of accelerated eutrophication to fresh water lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point—source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey’s eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and Impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and Its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [ 3O3(e)], water
quality criteria/standards review [ 3O3(c)], clean lakes [ 314(a,b)],
and water quality monitoring [ lO6 and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.

-------
lii
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation’s
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environmental Protection Agency)
expresses sincere appreciation to the Illinois Environmental
Protection Agency for professional involvement and to the
Illinois National Guard for conducting the tributary sampling
phase of the Survey.
Dr. Richard H. Briceland, Director of the Illinois Environ-
mental Protection Agency; and Ronald M. Barganz, State Survey
Coordinator, and John J. Forneris, Manager of Region III, Field
Operations Section of the Division of Water Pollution Control,
provided invaluable lake documentation and counsel during the
Survey, reviewed the preliminary reports, and provided critiques
most useful in the preparation of this Working Paper series.
Major General Harold R. Patton, the Adjutant General of
Illinois, and Project Officer Colonel Daniel L. Fane, who directed
the volunteer efforts of the Illinois National Guardsmen, are also
gratefully acknowledged for their assistance to the Survey.

-------
iv
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF ILLINOIS
LAKE NAME COUNTY
Baldwin Randolph
Bloomington McLean
Carlyle Bond, Clinton, Fayette
Cedar Lake
Charleston Coles
Coffeen Montgomery
Crab Orchard Jackson, Williamson
Decatur Macon
DePue Bureau
East Loon Lake
Fox Lake
Grass Lake
Highland Silver Madison
Holiday LaSalle
Horseshoe Madison
Long Lake
Lou Yaeger Montgomery
Marie Lake
Old Ben Mine Franklin
Pistakee Lake, McHenry
Raccoon Marion
Rend Franklin, Jefferson
Sangchris Christian
Shelbyville Moultrie, Shelby
Slocum Lake
Springfield Sangamon
Storey Knox
Vandalia Fayette
Vermilion Vermilion
Wee Ma Tuk Ful ton
Wonder McHenry

-------
LAKE
]i 1
Location
BALDWIN LAKE
® Tributary SampHng Site
x Lake Sampling Site
Sewage Treatment Facility
9 1 12 I nfl.
M l.

-------
BALDWIN LAKE
STORET NO. 1763
I. CONCLUSIONS
A. Trophic Condition:
Survey data show that Baldwin Lake is eutrophic. It ranked
second in overall trophic quality when the 31 Illinois lakes
sampled in 1973 were compared using a combination of six param-
eters*. Two of the lakes had less median total phosphorus,
none had less median dissolved phosphorus, one had less median
inorganic nitrogen, six had less mean chlorophyll a, and four
had greater mean Secchi disc transparency. Marked depression
of dissolved oxygen occurred at sampling station 1 in August.
B. Rate-Limiting Nutrient:
The algal assay results indicate phosphorus limitation at
the time the assay sample was collected (05/07/73). The lake
data also indicate phosphorus limitation; i.e., the mean N/P
ratios were 17/1 or greater at all sampling times.
C. Nutrient Controllability:
1. Point sources--The phosphorus load from the wastewater
treatment plant serving the Baldwin Power Plant was estimated
to be 1.3% of the total load reaching the lake during the
sampling year. The present loading rate of 0.58 g/m 2 /yr is
* See Appendix A.

-------
2
almost five times that proposed by Vollenweider (Vollenweider
and Dillon, 1974) as a eutrophic rate (see page 12). Baldwin
Lake is a large, relatively shallow lake maintained primarily
for evaporative cooling in power production at the Baldwin
Power Plant. It has been assessed as a “normal, healthy lake”
without a serious algae problem but with excessive rooted
aquatic plants being supported by nutrients trapped in the lake
bottom (Miller, 1973). Based on the data presented herein,
phosphorus control at the Baldwin wastewater treatment plant
probably would not improve the trophic condition of Baldwin
Lake appreciably.
2. Non-point sources--Most of the phosphorus load (95.7%)
is estimated to have originated from non-point sources. A
pumping station on the Kaskaskia River was the primary source
of make-up water to supplement natural inflow during the
sampling year. This source of water was also the major source
of phosphorus (93%) during the sampling year. The other gaged
tributary (A-i) was estimated to have contributed 2.1%, while
the ungaged drainage areas contributed less than 1%.

-------
II.   LAKE AND DRAINAGE BASIN CHARACTERISTICS1"
     A.   Lake Morphemetry  :
         1.   Surface area:   8.00 kilometers2.
         2.   Mean depth:   3.1  meters.
         3.   Maximum depth:   12.2 meters.
         4.   Volume:  24.800 x 106 m3.
         5.   Mean hydraulic  retention  time:  7.9 years  (based on outlet  flow)
     B.   Tributary and Outlet:
         (See Appendix C  for flow data)
         1.   Tributaries  -
                                               Drainage       Mean flow
             Name                              area  (km2)*    (m3/sec)*
             Unnamed Stream  (A-l)                 4.0          <0.1
             Pumped flow  from Kaskaskia  River        -            0.7
             Minor tributaries &
              immediate drainage -                0.6           0.1
                         Totals                  4.6           0.9
         2.   Outlet -
             Kaskaskia River (inflow and outflow
               difference is evaporative loss)     12.6**         0.1
     C.   Precipitation***:
         1.   Year of sampling:  118.4  centimeters.
         2.   Mean annual:   102.0 centimeters.
 t Table of metric  conversions—Appendix  B.
 tt Miller, 1973.
 * For limits  of accuracy,  see  Working  Paper  No.  175,  "...Survey Methods,
   1973-1976".
 ** Includes area of lake.
 *** See Working Paper No.  175.

-------
4
III. LAKE WATER QUALITY SUMMARY
Baldwin Lake was sampled three times during the open-water season
of 1973 by means of a pontoon-equipped Huey helicopter. Each time,
samples for physical and chemical parameters were collected from two
stations on the lake and from a number of depths at each station (see
map, page v). During each visit, a single depth-integrated (near
bottom to surface) sample was composited from the stations for phyto-
plankton identification and enumeration; and during the first visit,
a single 18.9-liter depth-integrated sample was composited for algal
assays. Also each time, a depth-integrated sample was collected from
each of the stations for chlorophyll a analysis. The maximum depths
sampled were 9.1 meters at station 1 and 4.9 meters at station 2.
The lake sampling results are presented in full in Appendix 0 and
are summarized in the following table.

-------
2 SITES
A. SUMMARY OF PHYSICAL AND CHEMICAL CHARACTERISTiCS FOM UALDIIN LAKE
STORET CODE 1763
1ST SAMPLING ( 5/ 7/73) 2ND SAMPLING ( 8/10/73)
2 SITES
3Wi) SAMPLING (10/17/73)
2 SITES
PARAMETER
RANGE
MEAN
MEDIAN
MANGE
MEAN
MEDIAN
RANGE
MEAN
TEMP (C)
18.7
— 19.2
19.0
19.2
28.4
— 33.6
30.7
30.1
21.5
— 22.1
21.8
21.9
0155 OXY (MG/U
8.7
— 10.5
9.3
8.8
1.8
— 8.0
5.3
5.5
7.8
- 7.8
7.8
7.8
CNDCTVY (MCROMO)
470.
— 475.
471.
470.
509.
— 559.
S3 .
533.
451.
— 471.
457.
453.
PH (STAND UNITS)
8.4
— 8.5
8.5
8.
7.5
— 8.8
8.2
8,2
8.1
— 8.4
8.2
8.2
TOT ALK (MG/L)
113.
— 117.
us.
us.
10 .
— 117.
110.
109.
113.
— 117.
US.
115.
TOT P (MG/L)
0.023
— 0.040
0.030
0.030
0.044
— 0.087
0.054
0.046
0.040
— 0.052
0.045
0.044
ORTHO P (MG/L)
0.003
— 0.004
0.004
0.004
0.007
— 0.020
0.013
0.012
0.004
— 0.010
0.007
0.008
N02.N03 (MG/LI
0.030
— 0.050
0.038
0.040
0.060
— 0.230
0.106
0.080
0.110
— 0.150
0.138
0.140
AMMONIA (MG/LI
0.030
— 0.040
0.038
0.040
U. Ob O
— 0.290
0.116
0.080
0.030
— 0.060
0.046
0.050
KJEL N (MG/LI
0.500
— 0.700
0.620
0.600
0.800
— 1.300
0.980
0.900
0.600
— 1.200
0.760
0.700
INORC N (MG/LI
0.060
— 0.090
0.076
0.080
0.130
— 0.520
0.222
0.140
0.140
— 0.210
0.184
0.190
TOTAL N (MG/L)
0.540
— 0.740
0.658
0.650
0.860
— 1.530
1.086
1.000
0.710
— 1.340
0.898
0.840
CHLRPYL A (UG/L)
6.5
— 7.3
6.9
6.9
14.2
— 16.2
15.2
15.2
11.8
— 12.0
11.9
11.9
SECCHI (METERS)
0.9
— 0.9
0.9
a,

-------
6
B. Biological characteristics:
1. Phytoplankton —
Sampling Dominant Algal units
Date Genera per ml
05/07/73 1. Kirchneriella . a• 866
2. Oscillatoria !p. 784
3. Microcystis p. 757
4. Scenedesmus p•. 649
5. Tetrastrum p. and
Crucigenia p. 649
Other genera 650
Total 4,355
08/10/73 1. Nitzschia p. 921
2. Merismopedia !p•. 877
3. Microcystis p. 405
4. Lyngbya p. 360
5. Cyclotella p. 247
Other genera 650
Total 3,460
10/17/73 1. Osclllatoria p. 1,417
2. Microcystis p. 945
3. Cyclotella p. 420
4. Melosira p. 314
5. Merismopedia p. 210
Other genera 1,365
Total 4,671
2. Chlorophyll a -
Sampling Station Chlorophyll a
Date Number ( ig/1 )
05/07/73 01 7.3
02 6.5
08/10/73 01 14.2
02 16.2
10/17/73 01 11.8
02 12.0

-------
7
Maximum yield
( mg/i-dry wt. )
0.1
3.2
20.1
0.1
C. Limiting Nutrient Study:
1. Autoclaved, filtered, and nutrient spiked -
Ortho P Inorganic N
Spike (mg/i) Coric. (ma/fl Conc. (mci/i )
Control 0.010 0.127
0.050 p 0.060 0.127
0.050 P + 1.0 N 0.060 1.127
1.0 N 0.010 1.127
2. Discussion —
The control yield of the assay alga, Selenastrum capri-
cornutum , indicates that the potential primary productivity
of Baldwin Lake was low at the time the assay sample was
collected. The increase in yield when orthophosphorus was
added, as well as the lack of increase in yield when nitro-
gen alone was added, indicate phosphorus limitation.
The lake data also indicate phosphrous limitation (the
mean inorganic nitrogen/orthophosphorus ratios were 17/1 or
greater at all sampling times).

-------
8
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the Illinois National
Guard collected monthly near-surface grab samples from each of the
tributary sites indicated on the map (page v), except for the high
runoff months of February and March when two samples were collected.
Sampling was begun in June, 1973, and was completed in May, 1974.
Through an interagency agreement, stream flow estimates for the
year of sampling and a “normalized” or average year were provided by
the Illinois District Office of the U.S. Geological Survey for the
tributary sites nearest the lake. The Illinois Power Company provided
pumpage data for station C-i (Kelly, 1975).
In this report, nutrient loads for sampled tributaries were
calculated from mean annual concentrations and mean annual flows.
Nutrient loads for unsampled “minor tributaries and iiniiediate
drainage” (“ZZ” of U.S.G.S.) were estimated using the nutrient exports,
in kg/km 2 /year, at station A-l and multiplying by the ZZ area in km 2 .
Water from the Kaskaskia River, station C-l, is pumped into the
lake as make-up water at times when the lake volume is below the usual
operation level. Nutrient loads at this station were estimated using
the mean concentrations of the nutrients and the mean daily flow for
the month.

-------
9
A. Waste Sources:
1. Known treatment plant* -
Pop. Mean Flow Receiving
Name Served Treatment ( m 3 /d) Water
Baldwin Power 144 trickling 44.3 Baldwin
Plant filter Lake
2. Known industrial - None
* Walden, 1973.

-------
10
B. Annual Total Phosphorus Loading — Average Year:
1. Inputs —
kgP/ %of
Source yr total
a. Tributaries (non-point load)
Unnamed Stream (A—l) 95 2.1
Kaskaskia River 4,315 93.3
b. Minor tributaries & immediate
drainage (non-point load) - 15 0.3
c. Known STP’s -
Baldwin Power Plant 60 1.3
d. Septic tanks — None
e. Known industrial - None - -
f. Direct precipitation* - 140 3.0
Total 4,625 100.0
2. Outputs —
Lake outlet — Kaskaskia River 90
3. Net annual P accumulation - 4,535 kg.
* See Working Paper No. 175.

-------
11
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs —
kgN/ %of
Source yr total
a. Tributaries (non—point load) -
Unnamed Stream (A—i) 1,170 2.1
Kaskaskia River 46,285 81.8
b. Minor tributaries & immediate
drainage (non-point load) - 175 0.3
c. Known SIP’s —
Baldwin Power Plant 310 0.5
d. Septic tanks - None
e. Known industrial - None - -
f. Direct precipitation* - 8,635 15.3
Total 56,575 100.0
2. Outputs -
Lake outlet - Kaskaskia River 4,075
3. Net annual N accumulation - 52,500 kg.
* See Working Paper No. 175.

-------
12
D. Mean Annual Non-point Nutrient Export by Subdralnage Area:
Tributary kg P/kni 2 /yr kg N/km 2 /yr
Unnamed Stream (A-i) 24 293
E. Yearly Loading Rates:
In the following table, the existing phosphorus loading
rates are compared to those proposed by Vollenweider (Vollen-
weider and Dillon, 1974). Essentially, his “dangerous” rate
is the rate at which the receiving water would become eutrophic
or remain eutrophic; his “permissible” rate is that which would
result in the receiving water remaining oligotrophic or becoming
oligotrophic if morphometry permitted. A mesotrophic rate would
be considered one between “dangerous” and “permissible”.
Note that Vollenweider’s model may not be applicable to
water bodies with short hydraulic retention times.
Total Phosphorus Total Nitrogen
Total Accumulated Total Accumulated
grams/m 2 /yr 0.58 0.57 7.1 6.6
Vollenweider loading rates for phosphorus
(g/m 2 /yr) based on mean depth and mean
hydraulic retention time of Baldwin Lake:
“Dangerous” (eutrophic rate) 0.12
“Permissible” (oligotrophic rate) 0.06

-------
13
V. LITERATURE REVIEWED
Kelly, Robert, 1975. Personal communication (pumpage data for
station C-i). Baldwin Power Station, Baldwin.
Miller, Wendell E., 1973. Personal comunication (lake morphometry).
IL Power Co., Decatur 0
Vollenwelder, R. A., and P. J. Dillon, 1974. The application of
the phosphorus loading concept to eutrophication research.
Natl. Res. Council of Canada Pubi. No. 13690, Canada Centre
for Inland Waters, Burlington, Ontario.
Walden, Rawls W., 1973. Treatment plant questionnaire (Baldwin
Power Plant STP). IL Power Co., Decatur.

-------
VI. APPENDICES
APPENDIX A
LAKE RANKINGS

-------
LAKE DATA TO BE USED IN RANKINGS
LA KE MEDIAN MEDIAN 500— MEAN 15— MEDIAN
CODE LAKE NAME TOTAL P INORG N MEAN SEC CNLONA MIN DO DISS ORTfrIO P
1703 LAKE IILOOMINGION 0.050 5.730 46’..667 26.200 14.800 0.020
1706 LAKE CARLYLE 0.084 1.270 477.889 17.367 11.000 0.032
1708 LAKE CHARLESTON 0.160 4.660 490.667 12.000 8.400 0.065
1711 COFFEEN LAKE 0.032 0.260 456.222 7.700 14.900 0.012
17I CRAB ORCHARD LAKE 0.082 0.200 482.222 59.867 13.800 0.013
1714 LAKE DECATUR 0.129 3.750 479.511 43.000 14.500 0.062
1725 LONG LAKE 0.704 1.190 482.667 49.333 8.800 0.398
1726 LAKE LOU VAE&ER 0.186 1.600 489.583 10.662 11.400 0.076
1727 LAKE MARIE 0.098 0.370 467.667 39.533 14.700 0.057
1733 PISTAKEE LAKE 0.203 0.310 485.667 75.867 7.000 0.062
1735 REND LAKE 0.071 0.210 471.500 23.533 12.700 0.012
1739 LAKE SHELBYVILLE 0.062 3.290 461.333 17.161 14.800 0.019
1740 SILVER LAKE (HIGHLAND) 0.226 0.970 489.500 5.822 14.800 0.057
1742 LAKL SPRINGFiELD 0.103 3.265 483.385 13.013 10.800 0.059
1748 VERMILION LAKI. 0.109 4.695 481.500 31. 150 14.200 0.050
1150 WONDER LAKE 0.426 0.890 486.000 98.533 7.800 0.132
1751 LAKI. STORY 0.072 2.510 459.333 17.250 14.800 0.021
1752 DEPUE LAKE 0.438 4.050 490.000 58.833 7.600 0.276
1753 LAKE SANGCrIHIS 0.050 1.970 415.417 19.292 14.500 0.009
175’. LAKE HOLIDAY 0.167 3.135 485.167 51.217 7.200 0.046
1755 FOX LAKE 0.219 0.375 486.167 63.850 8.800 0.083
2756 G$ ASS LAKE 0.301 0.820 481.000 83.500 5.900 0.093
1757 LAST LOON LAKE 0.076 0.120 450.000 22.300 14.900 0.018
1758 SLOCUM LAKE 0.865 0.200 487.333 221.100 5.800 0.362
1759 CEDAR LAKE 0.029 0.170 400.333 5.767 12.800 0.013
1761 LAKE WIMATUK 0.069 1.770 466.333 7.967 14.500 0.031
1762 RACCOON LAKE 0.106 0.310 484.333 19.217 13.800 0.020
1763 8ALOUIN LAKE 0.044 0.140 461.167 11.333 13.200 0.007

-------
LAKE DATA TO BE USEO IN RANKINGS
LAKE
P
INORG N
MEAN SEC
CMLO A
HIN DO
DISS ORTMO P
CODE
LAKE
NAME
TOTAL
0.023
1764
LAKI
VANOALIA
0.116
0.480
478.111
11.278
14.800
0.575
1765
OLD
BEN MINE
1 ESE VOIN
0.930
0.205
478.333
31.433
0.018
1766
HO SESNOE LAKE
0.127
0.705
482.833
182.250

-------
PEHCENT OF LAKES WITrI ,UGIIER VALUES (NUMBER OF LAKES WITH rIIGNER VALUES)
LAKE MEDIAN MEDIAN 500— MEAN 15- MEDIAN INDEX
CODE LAKE NAME TOTAL P INORG N MEAN SEC CHLORA MIN 00 DISS OWTHO P NU
1703 LAKE BLOOMINGTON 88 C 26) 0 C 0) 80 4 24) 47 4 j4) 13 1 2) 68 1 20) 296
1706 LAKE CARLYLE 63 1 19) ‘.0 4 12) 63 I 19) 63 I 19) 63 I 19) 53 1 16) 345
1706 LAKE CHARLESTON 37 I I I) 7 1 2) 0 C 0) 77 1 23) 77 1 23) 27 I 8) 225
1711 CUFFEEN LAKE 97 C 29) 77 I 23) 93 1 28) 93 1 28) 2 1 0) 92 C 27) 454
1712 CRAB ORCHARD LAKE 67 C 20) 90 C 27) 43 1 13) 20 ( 6) 42 1 12) 85 I 25) 341
1714 LAKE DECATUR 40 C 12) 13 C 4) 53 1 16) 33 1 10) 30 1 8) 32 C 9) 201
1125 LONG LAKE 7 4 2) 43 C 13) 40 I 12) 30 C 9) 72 1 21) 3 1 1) 195
1126 LAKE LOU YAEGER 30 4 9) 37 C 11) 7 C 2) 87 1 26) 57 I Li) 23 1 7) 241
1727 LAKE MARIE 60 1 18) 68 1 20) 73 I 22) 37 4 11) 23 1 7) 42 1 12) 303
1733 PISTAKEE LAKE 27 4 8) 68 I 20) 23 C 7) 13 C 4) 90 1 27) 32 I 9) 2 53
1735 REND LAKE 77 I 23) 80 C 24) 70 1 21) 50 1 15) 53 C 16) 92 1 27) 422
1739 LAKE SHELBYVILLE 83 1 25) ii C 5) 83 4 25) 70 C 21) 13 I 2) 73 1 22) 339
17’.0 SILVER LAKE (HIGHLAND) 20 ( 6) 47 1 14) 10 C 3) 97 1 29) 13 1 2) ‘.2 I 12) 229
1742 LAKE SPRINGFIELD 53 I 16) 20 C 6) 33 C 10) 73 I 22) 67 I 20) 37 I 11) 283
1748 VERMILION LAKE SO ( 15) 3 4 1) 47 I 14) ‘.i 4 13) 37 I 11) 47 I 14) 227
1750 WONDER LAKE 13 1 4) 50 15) 20 1 6) 7 I 2) 80 1 24) 13 1 4) 183
1751 LAKE STORY 73 4 22) 27 I 8) 90 1 27) 67 I 20) 13 1 2) 63 4 19) 333
1752 DEPUE LAKE 10 C 3) 10 I 3) 3 C 1) 23 C 7) 83 I 25) 10 1 3) 139
1753 LAKE SANGCrIR IS 88 I 26) 30 C 9) 67 4 20) 57 C 17) 30 1 8) 97 4 29) 369
1754 LAKE HOLIDAY 33 1 10) 23 1 7) 27 4 8) 27 C 8) 87 C 26) 50 C 15) 247
1755 FOX LAKE 23 I 7) 63 1 19) 17 4 5) Il I 5) 72 t 21) 20 C 6) 212
1756 GRASS LAKE 17 1 5) 53 1 16) 50 C 15) 10 1 3) 97 1 29) 17 I 5) 244
1757 EAST LOON LAKE 70 I 21) 100 1 30) 97 C 29) 53 4 16) 2 I 0) 77 C 23) 399
1758 SLOCUM LAKE 3 I ) 87 1 26) 13 1 4) 0 4 0) 100 1 30) 7 C 2) 210
1759 CEDAR LAKE 100 4 30) 93 I 28) 100 C 30) 100 4 30) 50 1 15) 85 1 25) 528
1761 LAKE WEI4AIUK 80 1 24) 33 1 10) 77 I 23) 90 I 27) 30 I 8) 57 C 17) 367
1762 RACCOON LAKE 57 C 17) 73 I 22) 30 I 9 60 4 18) 42 4 12) 68 I 20) 330
1163 8ALOIIN LAKE 93 C 28) 97 I 29) 87 4 26) 80 4 24) 47 4 14) 100 I 30) 504

-------
MEAN 15— MEDIAN INi)E
CMLORA HIN DO DISS O THO P Ni.)
83 C 25) 13 C 60 C 18) 323
40 C 12) 60 C 0 ( 0) 240
3 C 1) 93 C 80 C 24) 313
PEkCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)
LAKE MEDIAN MEDIAN 500—
CODE LAKE NAME TOTAL P INORG N MEAN SEC
1164 LAI\E VANDALIA 47 C 14) 60 ( 18) 60 C 18)
1765 OLD bEN MINE RESERVOIR 0 C 0) 83 C 25) 57 C 17)
1766 HORSESHOE LAKE 43 C 13) 57 ( 17) 31 ( 11)
2)
18)
28)

-------
LAKES PANNED BY INDEX NOS.
PANK LAKE CODE LAKE NAME INDEX NO
1 1759 CEDAR LAKE 528
2 1763 BALDWIN LAKE 504
3 1711 COFFEEN LAKE 454
4 1735 REND LAKE 422
5 1757 EAST LOON LAKE 399
6 1753 LAKE SANGC, R1S 369
7 1761 LAKE WEMATUK 367
8 1712 CRAB ONCHARD LAKE 347
9 1706 LAKE CARLYLE 345
10 1739 LAKE SHELBYVILLE 339
I I 1751 LAKE STORY 333
12 I 762 RACCOON LAKE 330
13 1764 LAKE VANDALIA 323
14 1766 HORSESI-IOE LAKE 313
15 1727 LAKE MAR11 303
16 1703 LAKE BLOOMINGTON 296
17 1742 LAKE SPRINGFIELD 283
18 1733 PISTAKEE LAKE 253
19 175’. LAKE HOLIDAY 247
2u 1756 GRASS LAKE 244
21 1726 LAKE LOU YAEGER 241
22 176 OLD bEN MINE RESERVOIR 240
23 1740 SILVER LAKE (HIGHLAND) 229
2’. 1748 VERMILION LAKE 227
25 1708 LAKE CHARLESTON 225
26 1755 FOX LAKE 212
27 1758 SLOCUM LAKE 210
28 1714 LAKE DECATUR 201

-------
LAKES RANKED bY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
29 1725 LONG LAKE 195
30 1750 WONDER LAKE 183
31 1752 DEPUE LAKE 139

-------
APPENDIX B
CONVERSIONS FACTORS

-------
CONVERSION FA(;TORS
Hectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 = feet
Cubic meters x 8.107 x lO = acre/feet
Square kilometers x 0.3861 square miles
Cubic meters/sec x 35.315 = cubic feet/sec
Centimeters x 0.3937 = inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = lbs/square mile

-------
APPENDIX C
TRIBUTARY FLOW DATA

-------
TRIBUTARY FLOW INFORMATION FUR ILLINOIS
TOTAL DRAINAGE AREA OF LAKE = 12.6
SUM OF SUB—DRAINAGE AREAS = 12.6
NOTE °° MONTHLY AND DAILY FLOWS WILL BE SUPPLIED BY POWER COMPANY
10/23/ 75
LAKE CODE
1763 LAKE
BALDWIN
TOTAL
DRAINAGE AREA
OF LAKE(SQ KM)
12.6
TRIBUTARY
SUB—DRAINAGE
AREA(SO KM)
JAN
FEB
MAR
APR
MAY
NORMALIZED FLOIS(CMS)
JUN JUL AUG
SEP
OCT
NOV
DEC
MEAN
1763A1
1763b1
1763ZZ
4.0
12.6
8.6
0.02
0.07
0.05
0.04
0.12
0.08
0.05
0.15
0.10
0.05
0.15
0.10
0.04
0.12
0.08
0.03 0.02 0.01
0.10 0.06 0.03
0.07 0.04 0.02
0.01
0.02
0.01
0.01
0.02
0.01
0.01
0.03
0.02
0.01
0.04
0.03
0.02
0.08
0.05
SUMMARY
NO DAILY FLOW DATA ON FILE
TOTAL FLOW IN =
TOTAL FLOW OUT =
0.91
0.91

-------
APPENDIX D
PHYSICAL and CHEMICAL DATA

-------
STOkET RETRIEVAL DATE 75/10/23
176301
38 12 25.0 089 51 55.0
BALDWIN LAKE
17157 ILLINOIS
1JEPALES 2111202
3 0010 FEET DEPTH
00010 00300 00077 00094 00400 00410 00610 00625 00630 00671
DATE TIME DEPTH WATER DO TRANSP CNDUCTVY PH 1 ALK NH3—N TOT KJEL N02&N03 PHOS-DIS
FP OM OF TEMP SECCHI FIELD CACO3 TOTAL N N—TOTAL ORTHO
TO DAY FEET CENT MG/L INCHES t4ICROMHO SU HG/L M6/L MG/L MG/L MG/L P
73/05/07 10 50 0000 18.7 36 475 8.40 116 0.040 0.700 0.040 0.004
10 50 0006 18.7 10.5 470 8.50 117 0.040 0.600 0.050 0.004
73/08/10 15 05 0000 33.6 5.8 48 558 8.80
15 05 0005 30.6 535
15 05 0010 30.2 5.6 530 8.30 109 0.070 0.800 0.060 0.010
15 05 0015 29.8 5.4 525 7.80 110 0.080 0.900 0.100 0.014
15 05 0020 29.5 520
15 05 0025 29.1 520
15 05 0030 28.4 1.8 509 7.50 117 0.290 1.300 0.230 0.020
73/10/17 11 20 0000 21.9 37 452 8.30 117 0.050 1.200 0.140 0.010
11 20 0015 21.7 7.8 451 8.20 117 0.050 0.700 0.140 0.008
11 20 0026 21.5 7.8 471 8.10 115 0.040 0.600 0.150 0.008
00665 32217
DATE TIME DEPTH PHOS—TOT CHLRPHYL
FROM OF A
TO DAY FEET MG/L P LJG/L
73/05/07 10 50 0000 0.023 7.3
10 50 0006 0.030
73/08/10 15 05 0000 14.2
15 05 0010 0.046
15 05 0015 0.045
15 05 0030 0.087
73/10/17 11 20 0000 0.052 11.8
11 20 0015 0.043
11 20 0026 0.044

-------
STORET RETRIEVAL DATE 75/10/23
116302
38 14 00.0 089 51 50.0
bALDWIN LAKE
17157 ILLINOIS
11EPALES 2111202
3 0013 FEET DEPTH
00010 00300 00077 00094 00400 00410 00610 00625 00630 00b71
DATE TIME DEPTH WATER DO T ANSP CNDUCTVY PH 1 ALK NM3—N TOT KJEL NO2 NO3 PHOS—DIS
FROM OF TEMP SECCHI FIELD CACO3 TOTAL N N—TOTAL ORTHO
TO DAY FEET CENT MG/L INCHES MICROMHO SU P4G/L MG/L P4G/L MG/L MG/L P
73/05/07 11 10 0000 19.2 36 470 8.50 115 0.040 0.700 0.030 0.003
11 10 0005 19.2 8.7 470 8.50 113 0.030 0.600 0.030 0.004
11 10 0009 19.2 8.8 470 8.40 114 0.040 0.500 0.040 0.003
73/08/10 14 50 0000 33.2 8.0 40 559 8.60 108 0.060 1.100 0.080 0.001
14 50 0004 32.8 551
14 50 0006 30.1 5.4 541 8.10 108 0.080 0.800 0.060 0.012
73/10/17 11 52 0000 22.1 36 458 8.40 115 0.060 0.700 0.150 0.005
11 52 0016 21.9 7.8 453 8.20 113 0.030 0.600 0.110 0.004
00665 32217
DATE TIME DEPTH PHOS—TOT CHLRPHYL
FROM OF A
TO DAY FEET HG/L P UG/L
73/05/07 11 10 0000 0.023 6.5
11 10 0005 0.040
11 10 0009 0.035
73/08/10 14 50 0000 0.04’. 16.2
14 50 0006 0.0 0
73/10/17 11 52 0000 0.044 12.0
Ii 52 0016 0.040

-------
APPENDIX E
TRIBUTARY and WASTEWATER
TREATMENT PLANT DATA

-------
STORET RETRIEVAL DATE 75/10/23
1763A1
3 12 00.0 089 51 22.0
UNNAMED STREAM
17121 7.5 BALDWIN
I/BALDWIN LAKE
CULVERT tJIWER DIKE RD AT SE CORNER OF LK
I 1EPALES 2111204
4 0000 FEET DEPTH
00630 00625 00610 00671 0066 5
DATE TIME DEPTH NO2 NO3 TOT KJEL NH3—N PHOS—DIS PHOS—TOr
FROM OF N—TOTAL N TOTAL ORTHO
TO DAY FEET MG/L MG/L MG/L MG/L P MG/L P
73/06/03 14 20 0.010K 3.075 0.058 0.018 0.135
73/07/07 10 00 0.031 4.000 3.176 0.028 0.120
73/08/04 11 02 0.03’. 1.150 0.013 0.014 0.070
73/09/02 10 35 0.010K 1.760 0.070 0.032 0.135
73/10/07 09 25 0.035 1.800 0.078 0.012 0.095
73/11/04 10 00 0.160 0,650 0.017 0.029 OelO O
73/12/02 09 30 0.380 1.000 0.06’. 0.120 0.280
74/01/06 10 15 0.990 1.100 0.080 0.100 0.180
74/02/03 09 20 0.570 1.300 0.110 0.070 O.2 0
74/02/16 09 45 0.650 1.700 0.100 0.050 0.260
7k/03/02 15 00 0.336 1.100 0.045 0.020 0.142
74/03/17 15 00 0.340 1.100 0.040 0.020 0.140
74/04/06 11 00 0.400 1,550 0.110 0.025 0.155
74/Q /04 09 45 0.010 0.800 0.020 0.005 0.050
K VALUE KNOWN TO BE
LESS THAN INDICATED

-------
STOREE RETRIEVAL DATE 75/10/23
176381
38 12 38.0 089 52 40.0
UNNAM O STREAM
17 1.5 RED BUD
0/8ALUWIN LAKE
SPILLWAY ON w SIDE OF LAKE
11EPALES 2111204
4 0000 FEET DEPTH
00630 00625 00610 00671 00665
DATE TIME DEPTH N02&N03 TOT KJEL Nr13—N r OS—DIS PHOS—TOT
FROM oF N—TOTAL N TOTAL ORTHO
To DAY FEET MG/L MG/L MG/L MG/L P M(,/L P
73/06/03 14 40 0.0 18 3.200 0.067 0.007 0.035
7i/07/07 10 31 0.020 4.000 0.110 0.012 0.040
73/08/04 11 29 0.030 2.400 0.037 0.010 0.025
73/09/02 11 47 0.010K 1.540 0.100 0.023 0.045
73/10/07 09 25 0.168 1.100 0.085 0.006 0.040
73/11/04 09 45 0.096 1.200 0.042 0.009 0.040
73/12/02 09 40 0.100 1.100 0.036 0.012 0.045
74/01/06 40 25 0.160 1.000 0.028 0.012 0.020
74/02/03 09 30 0.120 0.600 0.017 0.007 0.035
74/0 /16 10 00 0.032 0.800 0.025 0.005 0.035
74/03/02 IS 30 0.044 1.600 0.040 0.00 5 0.050
74/03/17 15 30 0.012 0.500 0.020 0.010 0.035
74/04/06 11 30 0.018 0.900 o.037 0.005K 0.010
74/05/04 09 30 J.140 1.700 0.082 0.014
K VALUE KNOWN TO UL
LLSS THAN INDiCATED

-------
STORET NETRIEVAL DATE 75/10/23
176 - ic’
38 11 40.0 0 9 53 15.0
KASKASKIA RIVEN(PUMPED)
17 7.5 RED 8U0
I/8ALL)WIN LAKt
PUMPING STATION AT SW CORNER OF LAKE
1 IEPALES 211120’.
4 0000 FEET DEPTH
00630 00625 00610 00671 00665
DATE TIME DEPTt-1 NO2 NO3 TOT KJEL NH3—N PHOS—DIS PHOS—TOT
FROM OF N—TOTAL N TOTAL URTHO
TO DAY FEET H(.,/L MG/L MG/L MG/L P MG/L P
73/Ob/20 13 00 0.800 0.780 0.048 0.062 0.220
73/09/21 13 00 0.870 1.500 0.250 0.044 0.220
73/10/22 13 00 0.700 0.650 0.042 0.063 0.115
73/11/21 13 15 0.588 0.800 0.068 0.068 0.210
73/12/21 15 00 0.640 0.700 0.072 0.0 ’.0 0.170
74/01/22 10 00 0.616 0.700 0.052 0.065 0.300
74/02/22 09 10 1.180 0.900 0.065 0.097 0.280
74/03/20 15 30 1.920 1.000 0.035 0.095 0.22u
74/04/23 13 30 1.160 1.050 0.140 0.065 0.110
74/05/21 13 30 0.830 0.800 0.035 0.041 0.115
74/06/21 11 00 0.9a0 1.000 0.010 0.055 0.260
74/07/23 10 30 1.200 0.800 0.045 0.040 0.1.5
74/08/22 17 00 1.040 0.600 0.020 0.040 0.140

-------
STOMET RETRIEVAL DATE 75/10/23
176321 TF 176321 P000200
38 12 09.0 089 51 12.0
UALOWIN POWER PLANT
17157 7.5 6ALDWIi 1 ILL.
D/8ALDWIN LAKE
8ALDWIN LAKE
1 1EPALES 2141204
4 0000 FEET DEPTH
00630 00625 00610 00671 00665 50051 50053
DATE TIME DEPTH N02&N03 TOT KJEL N113—N PHOS—DIS PHOS-TOT FLOW CONL)UIT
FROM OF N—TOTAL N TOTAL ORTHO RATE FLOW-MGI)
TO DAY FEET MG/I HG/L HG/I MG/I P MG/L P INST MOO MONTHLY
73/07/30 12 00
CP(T)— 7.400 4.700 0.038 2.200 2.610 0.012 0.012
73/07/31 12 00
73/08/20 12 00
CP(T)— 8.200 6.700 0.069 2.620 2.900 0.009 0.009
73/08/21 12 00
73/09/21 13 00
CPU>— 10.400 7.400 0.180 3.260 3.900 0.010 0.011
73/09/21 24 00
73/10/22 12 00
CP(T)— 4.000 3.200 0.029 1.700 0.011 0.013
73/10/23 12 00
73/11/20 11 00
CP(T)— 11.400 11.000 0.660 3.020 3.700 0.011 0.016
73/11/21 11 00
73/12/21 15 15 2.600 23.000 5.400 2.400 3.450 0.011 0.012
74/01/20 16 30
CP(T)— 2.520 20.000 17.600 3.700 4.900 0.012 0.012
74/01/21 15 30
74/02/22 09 00 2.080 8.000 0.220 2.600 3.150 0.0 14 0.011
74/ 3/2O 12 00
CPU)— 4.400 22.000 3.200 3.300 4.500 0.012 0.012
74/03/21 11 00
74/04/22 11 30
CP(T)— 7.900 24.000 5.300 3.750 6.600 0.013 0.012
74/04/23 10 30
74/OS/21 14 00
CP(T)— 9.800 13.000 1.150 3.200 4.150 0.011 0.011
74/05/22 14 00
74/06/20 10 00
CPU)— 7.600 7.500 3.100 2.700 2.800 0.008 0.01u
74/06/21 10 00
74/07/23 10 00
CP(T)— 12.100 8.600 0.082 3.300 4.000 0.010 0.011
74/07/2k 10 00

-------