U.S. ENVIRONMENTAL PROTECTION AGENCY NATIONAL EUTROPHICATION SURVEY WORKING PAPER SERIES REPORT ON CARLYLE RESERVOIR BOND, CLINTON, AND FAYETTE COUNTIES ILLINOIS EPA REGION V WORKING PAPER No, 297 CGRVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON and ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA T^G.P.O. 699-440 ------- REPORT ON CARLYLE RESERVOIR BOND, CLINTON, AND FAYETTE COUNTIES ILLINOIS EPA REGION V WORKING PAPER No, 297 WITH THE COOPERATION OF THE ILLINOIS ENVIRONMENTAL PROTECTION AGENCY AND THE ILLINOIS NATIONAL GUARD JUNE, 1975 ------- 1 CONTENTS Page Foreword ii List of Illinois Study Lakes iv Lake and Drainage Area Map v Sections I. Conclusions i II. Lake and Drainage Basin Characteristics 3 III. Lake Water Quality Summary 4 IV. Nutrient Loadings 8 V. Literature Reviewed 10 VI. Appendices 11 ------- 11 FOREWORD The National Eutrophication Survey was initiated in 1972 in response to an Administration commitment to investigate the nation- wide threat of accelerated eutrophication to fresh water lakes and reservoirs. OBJECTIVES The Survey was designed to develop, in conjunction with state environmental agencies, information on nutrient sources, concentrations, and impact on selected freshwater lakes as a basis for formulating comprehensive and coordinated national, regional, and state management practices relating to point-source discharge reduction and non-point source pollution abatement in lake watersheds. ANALYTIC APPROACH The mathematical and statistical procedures selected for the Survey’s eutrophication analysis are based on related concepts that: a. A generalized representation or model relating sources, concentrations, and impacts can be constructed. b. By applying measurements of relevant parameters associated with lake degradation, the generalized model can be transformed into an operational representation of a lake, its drainage basin, and related nutrients. c. With such a transformation, an assessment of the potential for eutrophication control can be made. LAKE ANALYSIS In this report, the first stage of evaluation of lake and water- shed data collected from the study lake and its drainage basin is documented. The report is formatted to provide state environmental agencies with specific information for basin planning [ 3O3(e)], water quality criteria/standards review [ 3O3(c)], clean lakes [ 3l4(a,b)J, and water quality monitoring [ glO6 and §305(b)] activities mandated by the Federal Water Pollution Control Act Amendments of 1972. ------- 111 Beyond the single lake analysis, broader based correlations between nutrient concentrations (and loading) and trophic condi- tion are being made to advance the rationale and data base for refinement of nutrient water quality criteria for the Nation’s fresh water lakes. Likewise, multivariate evaluations for the relationships between land use, nutrient export, and trophic condition, by lake class or use, are being developed to assist in the formulation of planning guidelines and policies by EPA and to augment plans implementation by the states. ACKNOWLEDGMENT The staff of the National Eutrophication Survey (Office of Research & Development, U. S. Environmental Protection Agency) expresses sincere appreciation to the Illinois Environmental Protection Agency for professional involvement and to the Illinois National Guard for conducting the tributary sampling phase of the Survey. Dr. Richard H. Briceland, Director of the Illinois Environ- mental Protection Agency; and Ronald M. Barganz, State Survey Coordinator, and John J. Forneris, Manager of Region III, Field Operations Section of the Division of Water Pollution Control, provided invaluable lake documentation and counsel during the Survey, reviewed the preliminary reports, and provided critiques most useful in the preparation of this Working Paper series. Major General Harold R. Patton, the Adjutant General of Illinois, and Project Officer Colonel Daniel L. Fane, who directed the volunteer efforts of the Illinois National Guardsmen, are also gratefully acknowledged for their assistance to the Survey. ------- iv NATIONAL EUTROPHICATION SURVEY STUDY LAKES STATE OF ILLINOIS LAKE NAME COUNTY Baldwin Randolph Bloomington McLean Carlyle Bond, Clinton, Fayette Cedar Lake Charleston Coles Coffeen Montgomery Crab Orchard Jackson, Williamson Decatur Macon DePue Bureau East Loon Lake Fox Lake Grass Lake Highland Silver Madison Holiday LaSalle Horseshoe Madison Long Lake Lou Yaeger Montgomery Marie Lake Old Ben Mine Franklin Pistakee Lake, McHenry Raccoon Marion Rend Franklin, Jefferson Sangchris Christian Shelbyville Moultrie, Shelby Slocum Lake Spri ng11 el d Sangamon Storey Knox Vandalia Fayette Vermilion Vermilion Wee Ma Tuk Fulton Wonder McHenry ------- -.4- Allendale Farm School CEDAR CEDAR LAKE XLake Sampling Site Sewage Treatment Facility 1/4 3/4 Kin. -I 1/2 Mi. Location LAKE E VILLA ------- CEDAR LAKE STORET NO. 1759 I. CONCLUSIONS A. Trophic Condition: Survey data indicate that Cedar Lake is mesotrophic. It ranked first in overall trophic quality when the 31 Illinois lakes sampled in 1973 were compared using a combination of six lake parameters*. None of the other lakes had less median total phosphorus, four had less and one had the same median dissolved phosphorus, two had less median inorganic nitrogen, none had less mean chlorophyll a, and none had greater mean Secchi disc transparency. Depression of dissolved oxygen with depth occurred in August, 1972. Survey limnologists reported the occurrence of rooted aquatic vegetation in the shallow shoreline areas and noted a moderate algal bloom in October. B. Rate—Limiting Nutrient: The algal assay results indicate phosphrous limitation. The lake data indicate phosphorus limitation in May and August (the mean N/P ratios were 15/1) and nitrogen limitation in October (the mean N/P ratio was 9/1). * See Appendix A. ------- 2 C. Nutrient Controllability: 1. Point sources—-The Allendale School for Boys contributed a total of 190 kg of total phosphorus to the lake during the sampling year, and septic tanks serving shoreline dwellings were estimated to have contributed 15 kg of total phosphorus. To reduce the eutrophication rate of Cedar Lake, the phosphorus input from the Allendale School for Boys should be reduced or eliminated. 2. Non—point sources--Because the lake does not have discrete tributaries or an outlet, no estimate was made of non-point source phosphorus loads, except for direct precipitation (20 kg/yr). ------- II. LAKE AND DRAINAGE BASIN CHARACTERISTICS1 A. Lake Morphometry : 1. Surface area: 1.15 kilometers2. 2. Mean depth: 1.2 meters. 3. Maximum depth: >10.7 meters. 4. Volume: 1.380 x 106 m3. 5. Mean hydraulic retention time: not known. B. Tributary and Outlet: Cedar Lake has no discrete tributaries or outlet. The immediate drainage area was not determined. C. Precipitation*: 1. Year of sampling: 112.2 centimeters. 2. Mean annual: 83.3 centimeters. t Table of metric conversions—Appendix B. ft Forneris, 1975. * See Working Paper No. 175, "...Survey Methods, 1973-1976". ------- 4 III. LAKE WATER QUALITY SUMMARY Cedar Lake was sampled three times during the open-water season of 1973 by means of a pontoon-equipped Huey helicopter. Each time, samples for physical and chemical parameters were collected from one station on the lake and from a number of depths (see map, page v). During each visit, a single depth—integrated (4.6 m to surface) sample was collected for phytoplankton identification and enumeration; and a similar sample was collected for chlorophyll a analysis. During the first visit, a single 18.9-liter depth-integrated sample was taken for algal assays. The maximum depth sampled was 10.7 meters. The lake sampling results are presented in full in Appendix C and are summarized in the following table. ------- (SI SAMPLING C 5/ 9/73) A. SUMMARY U I I HYSICAL ANt) CHLMICAL Cr )ARACTENL TlCS FOR CEDAR LAC E STO t1 COOE 1159 I 51T s I SITES I SITES PA )4MLTL ) ) - )ANG ) MIAN MEL)IAN MEAN MEUIAN MANGE MEAN MEDIAN TEMP (C) 12.1 — (4.! 13.6 14.0 22.7 — 25.3 24.5 25.2 14.4 — 15.8 15.2 15.3 0155 OAY (MG/L( 7.b — 9.4 b.9 9.2 2.2 — 8.4 6.8 8.4 6.b — 7.0 7.2 7.4 CNOCIV’ (MCROMO) 430. — ‘.40. 437. 440. 379. — 388. 384. 385. 301. — 303. 302. 303. PC-I (STAND UNITS) 8.0 — 8.3 8. ? 8.2 8.1 — 4.9 8.7 8.8 8.2 — 8.5 8.4 8.4 TOE AL) (MG/L) 166. — (68. 1b1. I 1. 134. — 142. 137. 135. 136. — 143. 140. 140. 101 P (MG/L) 0.022 — 0.035 0.029 0.028 0.024 — 0.032 0.026 0.024 0.029 — 0.093 0.053 0.045 OkTIiO P (MG/L) 0.011 — 0.014 0.012 0.012 0.011 — 0.018 0.013 0.012 0.0(7 — 0.035 0.026 0.025 N02 .N03 (MG/L) 0.09),) — 0.100 0.094 0.090 0.070 — 0.130 0.092 0.085 0.020 — 0.020 0.020 0.020 AMMONIA (MG/L( 0.070 — 0.110 0.08? 0.080 0.080 — 0.130 0.091 0.090 0.120 — 0.390 0.220 0.185 KJEL N (M,/L 0.900 — 1.100 1.000 1.01 ,0 0.900 — 2.400 1.375 1.100 1.100 — 1.700 1.325 1.250 1N0I (G N )PIGIL) 0.160 — 0.200 0.116 0.170 0.160 — 0.260 0.190 0.170 0.140 0.410 0.240 0.205 TOTAL N (MG/U 0.990 — 1.200 1.094 1.090 0.970 — 2.530 1.467 1.185 1.120 — 1.720 1.345 1.270 CHL PYL A (UG/L) 4.5 — 4.5 4.5 4.5 7.2 — 7.2 7.2 7.2 5.6 — 5.6 5.6 5.6 ECCPII (M11E 5) 3.0 — 3.0 3.3 3.0 — 7 ------- 6 B. Biological characteristics: 1. Phytoplankton - Sampling Dominant Algal units Date Genera per ml 05/09/73 1. Dthobryon .p. 440 2. Dictyosphaerium p. 119 3. Flagellates 44 4. Kirchneriella . 28 5. Cryptomonas . 24 Other genera 154 Total 809 08/07/73 1. Gomphosphaeria 229 2. Microcystis . 194 3. Dlnobryon .p. 158 4. Scenedesnius .p. 106 5. Chroococcus .p_. 106 Other genera 561 Total 1 ,354 10/16/73 1. Dinobryon p. 396 2. Aphanizomenon p. 316 3. Microcystis p. 264 4. Merlsmopedia .p. 237 5. Chroococcus . 237 Other genera 765 Total 2,215 ------- 7 Station Number Maximum yield ( mg/i-dry wt. ) 0.2 7.8 22.2 0.1 Chlorophyll a ( g/l) 4.5 7.2 5.6 2. Chlorophyll a — Sampling Date ________ _______________ 05/09/73 01 08/07/73 01 10/16/73 01 C. Limiting Nutrient Study: 1. Autoclaved, filtered, and nutrient spiked — Ortho P Inorganic N Spike (ing/l) Conc. (mg/i) Conc. (mg/i ) ______________ Control 0.010 0.222 0.050 P 0.060 0.222 0.050 P + 1.0 N 0.060 1.222 1.0 N 0.010 1.222 2. Discussion — The control yield of the assay alga, Selenastrum capri- cornutum , indicates that the potential primary productivity of Cedar Lake was relatively low at the time the assay sam- ple was collected. Also, the increase in yield with the addition of orthophosphorus, and the lack of response when only nitrogen was added, indicate the lake was phosphorus limited when the sample was collected (05/09/73). The lake data indicate phosphorus limitation in August as well (the mean N/P ratio was 15/1) but nitrogen limitation in October (the mean N/P = 9/1). ------- 8 IV. NUTRIENT LOADINGS (See Appendix D for effluent data) Total nutrient loads were not calculated for Cedar Lake because the drainage area is unknown. Estimates of phosphorus and nitrogen inputs from point sources are given below. The operator of the Allendale School for Boys wastewater treatment plant provided monthly effluent samples and corresponding flow data from which nutrient loadings were determined. A. Waste Sources: 1. Known muncipal* — Pop. Mean Flow Receiving Name Served Treatment 1 3 /d) Water Allendale 150 trickling 76.9 Cedar Lake School for filter Boys 2. Known industrial - None * Henning, 1973. ------- 9 B. Annual Total Phosphorus Loading — Average Year: 1. Inputs - kg P1 Source yr a. Immediate drainage (non-point load) - not known b. Known municipal STP’s - Allendale School for Boys 190 c. Septic tanks* - 15 d. Known industrial - None - e. Direct precipitation** - 20 Sub-total 225 2. Outputs - unknown C. Annual Total Nitrogen Loading - Average Year: 1. Inputs — kg NI Source yr a. Immediate drainage (non-point load) - not known b. Known municipal SIP’s - Allendale School for Boys 270 c. Septic tanks* - 555 d. Known industrial - None - e. Direct precipitation** - 1 ,240 Sub—total 2,065 2. Outputs - unknown * Estimate based on 52 shoreline dwellings; see Working Paper No. 175. ** See Working Paper No. 175. ------- 10 E. Yearly Loading Rates: Cannot be established with available information. V. LITERATURE REVIEWED Forneris, John J., 1973. Personal communication (lake morphometry). IL Env. Prot. Agency, Springfield. Henning, Lester, 1973. Treatment plant questionnaire (Allendale School waste treatment facilities). Lake Villa. ------- 11 VI. APPENDICES APPENDIX A LAKE RANKINGS ------- LAKE DATA To BE USED IN MANK1NGS LAKE MEDIAN MEDIAN 500— MEAN 15— MEDIAN CODE LAKE NAME TOTAL P INORG N MEAN SEC CHIORA NIH 00 DISS O THO P 1703 LAKE 8LOOHINGTON 0.050 5.730 464.667 26.200 14.800 0.020 1706 LAKE CARLYLE 0.084 1.270 477.889 17.367 11.000 0.032 1708 LAKE CHARLESTON 0.160 4.680 490.667 12.000 8.400 0.065 1711 COFFEEN LAKE 0.032 0.260 ‘.56.222 1.700 14.900 0.012 1712 CRA8 ORCHMD LAKE 0.082 0.200 ‘.82.222 59.867 13.800 0.013 1714 LAKE OECATUi 0.129 3.750 41c..5i1 43.000 14.500 0.062 1725 LONG LAKE 0.704 1.190 482.667 49.333 8.800 0.398 1726 LAKE LOU YAEGER 0.186 1.600 489.583 10.662 11.400 0.076 1727 LAKE MARIE 0.098 0.370 467.661 39.533 14.700 0.057 1733 PISTAKEE LAKE 0.203 0.370 485.667 75.867 7.000 0.062 1735 REND LAKE 0.071 0.210 471.500 23.533 12.700 0.012 1739 LAKE SHEL8YVILLE 0.062 3.290 461.333 17.161 14.800 0.019 1740 SIL EM LAKE (HIGHLAND) 0.226 0.970 489.500 5.822 14.800 0.057 1742 LAKE SPRINGFIELD 0.108 3.265 483.385 13.013 10.800 0.059 1748 VERMILION LAKE 0.109 4.695 ‘.81.500 31.150 14.200 0.050 fl5Q WONDER LAKE 0.424 0.890 486.000 98.533 7.800 0.132 1751 LAKE STORY 0.012 2.510 459.333 17.250 14.800 0.021 1752 DEPUE LAKE 0.436 4.050 ‘.90.000 58.833 7.600 0.276 1753 LAKE SANGCIIHIS 0.050 1.970 415.417 19.292 14.500 0.009 1754 LAKE HOLIDAY 0.167 3.135 485.167 51.217 7.200 0.046 1755 FOX LAKE O.21V 0.375 486.167 63.850 8.800 0.083 1756 GRASS LAKE 0.301 0.820 481.000 83.500 5.900 0.093 1757 EAST LOON LAKE 0.076 0.120 450.000 22.300 14.900 0.O IH 1758 SLOCUM LAKE 0.865 0.200 487.333 221.100 5.800 0.362 1759 CEDAR LAKE 0.029 0.170 400.333 5.767 12.800 0.013 1761 LAKE WEMATUK 0.069 1.770 466.333 7.967 16.S00 0.031 1762 RACCOON LAKE 0.106 0.310 484.333 19.217 13.800 0.020 1763 OALDWIN LAKE 0.064 0.140 461.167 11.333 13.200 0.007 ------- LAKE DATA TO BE USEO iN ANK1NGS LAKE MEDIAN MEDIAN 500— MEAN 1 5 - MEDIAN CODE LAKE NAME TOTAL P INO G N MEAN SEC CriLO A MIN DO 0155 O TrnO I-’ 1764 LAKE VANDALIA 0.116 0.480 478.111 i1.27b 1’..ôO 0.023 176 OLD BEN MINE ESE VO1 0.930 0.205 478.333 31.433 11.2O ) 0.575 1766 HOWSESHOE LAKE 0.127 0.705 482.833 182.2 0 6. 00 O.O1 ------- PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES) LAKE MEDIAN MEDIAN 500— MEAN 15— MEDIAN INDEX CODE LAKE NAME TOTAL P INORD N MEAN SEC CHLORA MIN DO 0155 ORTHO P NO 1703 LAKE bLOOMINGTON 88 C 26) 0 ( 0) bO C 24) 47 C 14) 13 C 2) 68 1 201 296 1706 LAKE CARLYLE 63 ( 19) 40 C 12) 63 1 19) 63 C 19) 63 4 19) 53 4 16) 345 1708 LAKE CHARLESTON 37 C 11) 7 C 2) 0 4 0) 77 C 23) 71 4 23) 27 8) 225 1711 COFFEEN LAKE 97 C 29) 77 ( 23) 93 C 28) 93 C 28) 2 4 0) 92 C 27) 454 1712 CRAB ORCHARD LAKE 67 C 20) 90 4 27) 43 C 13) 20 4 6) 42 C 12) 85 ( 25) 347 1714 LAKE DECATUR 40 C 12) 13 C 4) 53 C 16) 33 C 10) 30 8) 32 1 9) 201 1725 LONG LAKE 7 C 2) 43 C 13) 40 4 12) 30 C 9) 72 4 21) 3 C 1) 195 172€ LAKE LOU YAEGER 30 C 9) 37 C 11) 7 C 2) 87 4 26) 57 C 17) 23 C 7) 241 1727 LAKE MARIE 60 C 18) 68 C 20) 73 C 22) 37 C 11) 23 C 7) 42 1 12) 303 1733 PISTAKEE LAKE 27 C 8) 68 ( 20) 23 C 7) 13 C 4) 90 C 27) 32 C 9) 253 1735 REND LAKE 77 C 23) 80 C 24) 70 C 21) 50 C 15) 53 ( 16) 92 C 27) 422 1739 LAKE SHELUYVILLE 83 C 25) 17 ( 5) 83 C 25) 70 ( 21) 13 C 2) 73 C 22) 339 1740 SILVER LAKE (HIGHLAND) 20 C 6) 47 C 14) 10 C 3) 97 C 29) 13 C 2) 42 4 12) 229 1742 LAKE SPRINGFIELD 53 C 16) 20 C 6) 33 C 10) 73 C 22) 67 C 20) 37 C 11) 283 1748 VERMiLION LAKE 50 C 15) 3 C I) 47 C 14) 43 ( 13) 37 C 11) 47 C 14) 227 1750 WONDER LAKE 13 1 4) 50 C 15) 20 C 6) 7 C 2) 80 C 24) 13 C 4) 183 1751 LAKE STORY 73 C 22) 27 C 8) 90 C 27) 67 C 20) 13 C 2) 63 C 19) 333 1752 DEPUE LAKE 10 C 3) 10 C 3) 3 C 1) 23 C 7) 83 ( 25) 10 C 3) 139 1753 LAKE SANGCHRIS 88 C 26) 30 C 9) 67 C 20) 57 C 17) 30 C 8) 97 C 29) 369 1754 LAKE HOLIDAY 33 C 10) 23 C 7) 27 C 8) 271 8) 87 C 26) 50 C 15) 247 1755 FOX LAKE 23 1 7) 63 C 19) 17 C 5) 17 C 5) 72 C 211 20 C 6) 212 1756 GRASS LAKE 17 ( 5) 53 C 16) 50 C 15) 10 C 3) 97 C 29) 17 4 5) 244 1757 EAST LOON LAKE 70 C 21) 100 C 30) 97 C 29) 53 C 16) 2 C 0) 77 4 23) 399 1758 SLOCUM LAKE 3 C 1) 87 C 26) 13 C 4) 0 C 0) 100 C 30) 7 2) 210 1759 CEDAR LAKE 100 C 30) 93 ( 28) 100 C 30) 100 C 30) 50 C 15) 85 4 25) 528 176) LAKE WEMATUK 80 C 24) 33 C 10) 77 4 23) 90 C 27) 30 1 8) 57 C 17) 367 1762 RACCOON LAKE 57 C 17) 73 C 22) 30 C 9) 60 1 18) 42 C 12) 68 ( 20) 330 1763 BALOWIN LAKE 93 C 28) 97 ( 29) 87 C 26) 80 C 24) 47 C 14) 100 C 30) 504 ------- PERCENT OF LAKES lIfl-4 IUGHER VALUES (NUMBER OF LAKES WITM H1GHE VALUES) LAKE CODE LAKE NAME MEDIAN TOTAL P MIDIAN INORG N 500— MEAN SEC MEAN CHLORA 15 MIN 00 MEDIAN DISS O T iO P INL)tX NO 1764 LAP’E VANDALIA 47 ( 14) 60 ( 18) 60 ( 18) 83 ( 25) 13 ( 2) 60 ( 18) 323 1765 OLD t3EN MINE RESERVOIR 0 ( 0) 83 ( 25) 57 C 17) ‘.0 ( 12) 60 ( 18) 0 ( 0) 240 1766 HORSESHOE LAKE 43 ( 13) 57 ( 17) 37 ( 11) 3 ( 1) 93 ( 28) 80 ( 24) 313 ------- LAKES RANKED BY INDEX NOS. RANK LAKE CODE LAKE NAME INDEX NO 1 1759 CEDAR LAKE 528 2 1763 BALDWIN LAKE 504 3 1711 COFFEEN LAKE 454 4 1735 REND LAKE 422 5 1751 EAST LOON LAKE 399 6 1753 LAKE SANGCrIRIS 369 7 1161 LAKE WEMATUK 361 8 1712 CRAB ORCHARD LAKE 347 9 1706 LAKE CARLYLE 345 10 1139 LAKE SHEL8YVILLE 339 ii 1751 LAKE STORY 333 12 1762 RACCOON LAKE 330 13 1764 LAKE VANDALIA 323 14 1766 P4ORSESHOE LAKE 313 15 1727 LAKE MARIE 303 16 1703 LAKE BLOOMINGTON 296 I? 1742 LAKE SPRINGFIELD 283 18 1733 PISTAKEE LAKE 253 19 1754 LAKE HOLIDAY 247 20 1756 GRASS LAKE 244 21 1726 LAKE LOU YAEGER 241 22 176S OLD WEN MINE RESERVOIR 240 23 1740 SILVER LAKE (HIGHLAND) 229 24 1748 VEI1NILION LAKE 227 2S 170W LAKE CHARLESTON 225 26 1755 FOX LAKE 212 27 1758 SLOCUM LAKE 210 28 17)4 LAKE OECATU-) 201 ------- LAKES RANKED BY INDEX NOS. RANK LAKE CODE LAKE NAME INDEX NO 29 1725 LONG LAKE 195 30 1750 WONDER LAKE 183 31 1752 DE UE LAKE 139 ------- APPENDIX B CONVERSIONS FACTORS ------- CONVERSION FPJ,TORS Ilectares x 2.471 = acres Kilometers x 0.6214 = miles Meters x 3.281 = feet Cubic meters x 8.107 x l0 = acr e/feèt Square kilometers x 0.3861 = square miles Cubic meters/sec x 35.315 = cubic feet/sec Centimeters x 0.3937 = inches Kilograms x 2.205 = pounds Kilograms/square kilometer x 5.711 = lbs/square mile ------- APPENDIX C PHYSICAL and CHEMICAL DATA ------- STORET RETRIEVAL DAlE 75/10/23 175901 42 25 17.0 088 05 22.0 CEDAR LAKE 17097 ILLINOIS 1 IEPALES 2111202 3 0035 FEET DEPTH 000 lu 00300 00077 00094 00400 00410 00610 00625 00630 00671 DATE TIME DEPT 1 WATER DO TI ANSP CNDuCTvY PH T ALK Nh3—N TOT KJEL N02&N03 PHOS—DIS FROM OF TEMP SECCHI FIELD CACO3 TOTAL N N—TOTAL ORTP4O TO DAY FEET CENT MG/L INCHES MICROMHO SO MG/L M(,/L MG/L MG/L MG/L P 73/05/09 14 40 0000 14.1 120 440 8.20 166 0.080 1.100 0.090 0.012 14 40 0006 14.1 9.4 430 8.20 167 0.080 1.100 0.100 0.012 14 40 0015 14.0 9.6 440 8.30 167 0.070 0.900 0.090 0.012 14 40 0022 13.9 9.0 435 8.20 167 0.070 0.900 0.100 0.011 14 40 0031 12.1 7.6 440 8.00 168 0.110 1.000 0.090 0.014 73/08/07 11 15 0000 25.3 8.4 70 388 8.90 135 0.130 2.400 0.130 0.013 11 15 0005 25.2 8.4 386 8.90 135 0.080 1.100 0.080 0.011 11 IS 0010 25.2 384 11 15 0012 25.2 8.4 385 8.80 134 0.090 1.100 0.090 0.012 11 15 0015 23.3 380 11 15 0018 22.7 2.2 379 8.10 142 0.090 0.900 0.070 0.018 73/Iu/16 15 43 0000 15.8 109 303 8.50 140 0.120 1.400 0.020 0.017 15 43 0016 15.7 7.6 302 8.S0 136 0.130 1.100 0.020 - 0.025 15 43 0025 14.9 7.4 301 8.40 140 0.240 1.100 0.020 0.026 15 43 0035 14.4 6.6 303 8.20 143 0.390 1.700 0.020 0.035 00665 32217 DATE TIME DEPTH PHOS-TOT CHLRPHYL FROI ’ OF A TO DAY FEET MG/L P UG/L 73/05/09 14 40 0000 0.022 4.5 14 40 0006 0.035 14 40 0015 0.032 14 40 0022 0.028 1’. 40 0031 0.027 73/oB/07 11 15 0000 0.024 7.2 11 15 0005 0.024 11 15 0012 0.024 11 15 0018 0.032 73/10/16 15 43 0000 0.049 5.6 15 43 0016 0.029 15 43 0025 0.042 15 43 0035 0.093 ------- APPENDIX D WASTEWATER TREATMENT PLANT DATA ------- STOrLI LT 1EVAL. UAEL 7 /10/c 3 17 921 TF175921 ‘ +2 2S 12.0 088 05 45.0 ALL M)ALE SCHOOL FOk 8OY 11097 7.5 ANT lOCH 1)/CEDAP LAKE CEOA LAKE 1 1L ALES P000106 2 1 ’. 1 20’. 0000 FEET DEPTH 0u 630 00825 0u610 00871 00665 50051 50053 (JATE TIME DE 1H U2 NO3 TUE PcJEL Nr13—N PHOS—DIS PHOs—TOT FLOW CONL)U IT F OM OF N-TOTAL N TOTAL OPTHO ATL FLO*—MGI) Tu hAY FEET M(,/L MUlL MUlL MG/L P M&/L P INST MuD MONTHLY 73/u/109 09 00 3.600 .700 0.1t 0 5.700 6.700 0.129 0.120 7j/08/13 5.Ru O 14.700 u.2 00 9.500 19.500 73/09/07 8.900 f .9)U 0.160 9.600 11.500 0.009 0.009 73/10/19 00 00 7.bQ0 11.500 u.120 7.soU ‘ .001 , 0.009 0.008 73/11/0 L..200 11.000 0.094 ,.100 9.100 0.009 73/11/26 10 00 3. ’ +o O 7.900 u.012 3.000 6.000 0.009 7 ’ ./02/02 3.120 8.300 3.087 1.680 8.000 0.009 0.036 74/03/06 1.8 ’.u 1.000K 0.050K 0.630 0.630 0.009 74/04/04 2.50 1.SJu 0.050K 1.600 2.100 0.009 0.009 7 ’ +/0 5/ OH ‘ .J00 6.700 0.110 5.600 8.500 0.009 0.008 74/ Ob/ 07 4.300 3.500 0.075 3.700 4.100 0.009 0.008 74/07/10 1’. 30 4.750 3.300 0.050 3.500 D.100 0.009 0.009 74/08/09 15 00 1. lu O .200 0.100 5.800 8.400 0.009 V :ALUh. \ O ‘J LU r . LL) ) Fi’ N I ii’IC.-. [ Li ------- |