U.S. ENVIRONMENTAL PROTECTION AGENCY
               NATIONAL EUTROPHICATION SURVEY
                        WORKING PAPER SERIES
                                             REPORT
                                               ON
                                          LAIC CHARLESTON
                                           COLfS COUNTY
                                             ILLINOIS
                                           EPA REGION V
                                        WORKING PAPER No, 299
     CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
                                 and
    ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
ifG.t.O. 699-440

-------
                                   REPORT
                                     ON
                               LAIC CHARLESTON
                                COLES COINIY
                                  ILLINOIS
                                EPA REGION V
                            WORKING PAPER No,  299
      WITH THE COOPERATION OF THE
ILLINOIS ENVIRONMENTAL PROTECTION AGENCY
                AND THE
        ILLINOIS NATIONAL GUARD
              JUNE, 1975

-------
I
CONTENTS
Page
Foreword ii
List of Illinois Study Lakes lv
Lake and Drainage Area Maps v, vi
Sections
I. Conclusions 1
II. Lake and Drainage Basin Characteristics 4
III. Lake Water Quality Summary 5
IV. Nutrient Loadings 9
V. Literature Reviewed 14
VI. Appendices 15

-------
II
FOREWORD
The National Eutrophication Survey was initiated In 1972 in
response to an Administration comitment to investigate the nation-
wide threat of accelerated eutrophication to fresh water lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point-source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey’s eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [ 3O3(e)], water
quality criteria/standards review [ g303(c)], clean lakes [ 3l4(a,b)],
and water quality monitoring [ lO6 and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.

-------
lii
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation’s
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environmental Protection Agency)
expresses sincere appreciation to the Illinois Environmental
Protection Agency for professional involvement and to the
Illinois National Guard for conducting the tributary sampling
phase of the Survey.
Dr. Richard H. Briceland, Director of the Illinois Environ-
mental Protection Agency; and Ronald M. Barganz, State Survey
Coordinator, and John J. Forneris, Manager of Region III, Field
Operations Section of the Division of Water Pollution Control,
provided invaluable lake documentation and counsel during the
Survey, reviewed the preliminary reports, and provided critiques
most useful in the preparation of this Working Paper series.
Major General Harold R. Patton, the Adjutant General of
Illinois, and Project Officer Colonel Daniel L. Fane, who directed
the volunteer efforts of the Illinois National Guardsmen, are also
gratefully acknowledged for their assistance to the Survey.

-------
iv
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF ILLINOIS
LAKE NAME COUNTY
Baldwin Randolph
Bloomington McLean
Carlyle Bond, Clinton, Fayette
Cedar Lake
Charleston Coles
Coffeen Montgomery
Crab Orchard Jackson, Williamson
Decatur Macon
DePue Bureau
East Loon Lake
Fox Lake
Grass Lake
Highland Silver Madison
Holiday LaSalle
Horseshoe Madison
Long Lake
Lou Yaeger Montgomery
Marie Lake
Old Ben Mine Franklin
Pistakee Lake, McHenry
Raccoon Marion
Rend Franklin, Jefferson
Sangchris Christian
Shelbyville Moultrie, Shelby
Slocum Lake
Springfield Sangamon
Storey Knox
Vandalia Fayette
Vermilion Vermilion
Wee Ma Tuk Fulton
Wonder McHenry

-------
Ill.
Map Location
1
.t\__%. •• -
LAKE CHARLESTON
Tributary Sampling Site
X Lake Sampling Site

-------
‘U.
LAKE CHARLESTON
Tributary Sampling Site
Lake Sampling Site
Sewage Treatment Facility
Drainage Area Boundary
1 I- I I
Sc a1e

-------
LAKE CHARLESTON
STORET NO. 1708
I. CONCLUSIONS
A. Trophic Condition:
Survey data indicate that Lake Charleston is eutrophic. It
ranked 25th in overall trophic quality when the 31 Illinois
lakes sampled in 1973 were compared using a combination of six
parameters*. Nineteen of the lakes had less median total phos-
phorus, 22 had less median dissolved phosphorus, 28 had less
median inorganic nitrogen, seven had less mean chlorophyll a,
and all of the other lakes had greater Secchi disc transparency.
Survey limnologists noted the occurrence of emergent aquatic
vegetation along the shorelines near both sampling stations.
B. Rate-Limiting Nutrient:
The algal assay results indicate the lake was phosphorus
limited at the time the sample was taken (05/07/73). The lake
data also indicate phosphorus limitation; i.e., the mean N/P
ratios were 32/1 or greater at all sampling times.
C. Nutrient Controllability:
1. Point sources-—The phosphorus contribution of known
point sources amounted to 13.7% of the total load reaching
Lake Charleston during the sampling year. These sources
include Arcola (3.7%), Cabot Carbon Company (0.2%), Tuscola
* See Appendix A.

-------
2
North (2.6%), Tuscola South (3.2%), and Villa Grove (3.0%).
Shoreline septic tanks were estimated to have con1 ributed
less than 0.1%.
The present phosphorus loading rate of 52.51 g/m 2 /yr is
nearly 16 times that proposed by Vollenweider (Vollenweider
and Dillon, 1974) as a eutrophic rate (see page 13). However,
Vollenweider’s model probably does not apply to water bodies
with short hydraulic retention times, and the mean hydraulic
retention time of Lake Charleston is a very short one day.
Nonetheless, the existing trophic condition of the lake is
evidence of excessive nutrient loads.
On the basis of Survey data, it appears that the trophic
condition of Lake Charleston will continue to deteriorate
unless the present phosphorus loading is reduced. Because of
this, and because the lake is phosphorus limited, all phos-
phorus inputs should be minimized to the greatest practicable
extent to reduce the rate of eutrophication.
It is noted that an apparent loss of phosphorus from the
lake occurred during the sampling year. While phosphorus
wash-out can occur following a substantial reduction of phos-
phorus inputs, no such input reduction was involved, and the

-------
        "loss"  most likely  was  due  to  insufficient  outlet sampling
        in relation to the  very short  hydraulic  retention time.
            2.   Non-point sources—The phosphorus contribution of
        non-point sources accounted for 86.3%  of the  total  load
        reaching the lake during the sampling  year.   The only
        measured tributary, the Embarras River,  contributed 79.0%.
        The ungaged drainage area was  estimated  to  have contributed
        7.3% of the total phosphorus load.
            The non-point phosphorus export  rate of the Embarras River
        was 32  kg/km2/yr (see page  12).   This  appears to be within the
        range expected for  non-point sources in  this  area of Illinois
        and compares well with  the  export rates  of  the unimpacted
        tributaries of nearby Shelbyville Reservoir*  (mean  = 31 kg/km2/yr;
        range of 20 to 44 kg/km2/yr).
* Working Paper No.  315.

-------
4
II. LAKE AND DRAINAGE BASIN CHARACTERISTICSt
tt
A. Lake Morphometry
1. Surface area: 1.45 kilometers 2 .
2. Mean depth: 0.9 meters.
3. Maximum depth: >1.5 meters.
4. Volume: 1.305 x 106 m 3 .
5. Mean hydraulic retention time: 1 day.
B. Tributary and Outlet:
(See Appendix C for flow data)
1. Tributaries —
Drainage Mean flow
Name area (km 2 )* ( m 3 /sec)*
Embarras River 1,864.8 13.3
Minor tributaries &
immediate drainage — 169.4 1.2
Totals 2,034.2 14.5
2. Outlet —
Embarras River 2,035.7** 14.5
C. Precipitation***:
1. Year of sampling: 155.7 centimeters.
2. Mean annual: 97.4 centimeters.
t Table of metric conversions--Appendix B.
ft Forneris, 1973.
* For limits of accuracy, see Working Paper No. 175, “...Survey Methods,
1973-1976”.
A Includes area of lake.
See Working Paper No. 175.

-------
5
III. LAKE WATER QUALITY SUMMARY
Lake Charleston was sampled three times during the open-water season
of 1973 by means of a pontoon-equipped Huey helicopter. Each time,
samples for physical and chemical parameters were collected from two
stations on the lake and from a number of depths at each station (see
map, page v). During each visit, a single depth-integrated (near bottom
to surface) sample was composited from the stations for phytoplankton
identification and enumeration; and during the first visit, a single 18.9-
liter depth—integrated sample was composited for algal assays. Also each
time, a depth—integrated sample was collected from each of the stations
for chlorophyll a analysis. The maximum depths sampled were 1.5 meters
at station 1 and 1.5 meters at station 2.
The lake sampling results are presented in full in Appendix D and
are summarized in the following table.

-------
P AN A ME TER
1ST SAMPLING ( 5/ 7/13)
2 SITES
A. SUMMARY OF PHYSICAL AND CHEMICAL CHARACTE 1STICS FOR LANE CHARLESTON
STORET CODE 1708
RANGE
MEAN MEDIAN
2ND SAMPLING 1 8/ 9/73)
2 SITES
RAN&E
15.)
9.1
60S.
d. 1
3RD SAMPLING UO/18/73)
2 SITES
RANGE
MEAN MEDIAN
25.8 25.8’
6.8 6.8
548. 54.8.
7.9 7.9
MEAN MEDIAN
TEMP (C)
15.2
— 15.)
15.3
25.3
— 26.4
15.9
— 17.8
16.6
16.1
OISS OXY (MG/U
9.0
— 9.2
9.1
6.6
— 7.0
7.4
— 8.4
7.9
7.9
CNDCTVY (MCROMO)
600.
— 610.
605.
517.
— 578.
497.
— 555.
519.
505.
PH (STAND UNITS)
8.1
- 8.1
8.1
1.9
- 8.0
1.9
— 8.1
8.0
8.0
TOT AL (MG/L)
144.
— 178.
163.
164.
203.
— 270.
237.
237.
275.
— 305.
287.
280.
TOT P (MG/L)
0.106
0.116
0.112
0.112
0.160
— 0.168
0.164
0.164
0.172
— 0.229
0.207
0.221
ORIHO P (HG/U
0.056
— 0.060
0.058
0.057
0.075
— 0.078
0.076
0.076
0.065
— 0.125
0.086
0.067
N02.N03 (MG/L)
8.010
— 8.200
8.090
8.075
3.960
— 4.590
4.275
4.275
2.290
— 2.8.40
2.480
2.310
AMMONIA (MG/U
0.080
— 0.090
0.085
0.085
0.090
— 0.100
0.095
0.095
0.110
0.300
0.233
0.290
tcJ(L N (MG/U
0.300
- 0.500
0.42S
0.450
0.900
— 1.400
1.150
1.150
0.800
— 1.800
1.433
1.700
180kG N (MG/L)
8.100
— 8.280
8.175
8.160
4.060
— 4.680
4.370
4.370
2.590
— 2.950
2.713
2.600
TOTAL N (MG/LI
8.500
— 8.540
8.515
8.510
5.360
— 5.490
5.425
5.425
3.640
— 4.090
3.913
4.010
CHLRPYL A (UG/L)
2.5
— 2.8
2.6
2.6
11.6
- 19.0
15.3
15.3
11.2
— 24.9
18.0
18.0
SECCH1 (METERS)
0.2
- 0.3
0.2
0.2
0.2
- 0.3
0.2
0.2
0.3
— 0.3
0.3
0.3

-------
7
B. Biological characteristics:
1. Phytoplankton —
Sampling Dominant Algal units
Date Genera per ml
05/07/73 1. Cryptomonas p. 282
2. Synedr& 2.• 84
3. Flagellates 84
4. Eu lena .2.• 56
5. Pjpnularia . .2..• 56
Other genera 142
Total 704
08/09/73 1. Flagellates 2,776
2. Stephanodiscus a• 882
3. Melosira p. 493
4. Euglena p. 337
5. A ctinastrum p_. 104
Other genera 260
Total 4,852
10/18/73 1. Euglena p. 5,010
2. Stephanodiscus p... 1,160
3. Phacus p. 740
4. Chlaniydomonas p.. 550
5. Pennate diatoms 370
Other genera 1,140
Total 8,970

-------
8
C. Limiting Nutrient Study:
1. Autoclaved, filtered, and nutrient spiked -
Ortho P Inorganic N
Spike (mg/i) Conc. (mg/i) Conc. (mg/i )
Control 0.015 7.375
0.050 p 0.065 7.375
0.050 p + 1.0 N 0.065 8.375
1.0 N 0.015 8.375
2. Chlorophyll a -
Sampling
Date
05 / 07/73
Station
Number
01
02
08/09/73 01
02
10/18/73 01
02
Chlorophyll a
( pg/l )
2.8
2.5
19.0
11.6
24.9
11.2
Maximum yield
( mg/i-dry wt. )
1.7
22.6
21.8
2.8
2. Discussion —
The control yield of the assay alga, Selenastrum capri-
cornutum , indicates that the potential primary productivity
of Lake Charleston was relatively high at the time the sample
was collected (05/07/73). There was a significant increase
in yield when orthophosphorus was added, but there was
no significant change when only nitrogen was added. Based
on these results, phosphorus limitation is indicated.
The lake data also indicate phosphorus limitation; i.e.,
the mean inorganic nitrogen to orthophosphorus ratios were 32/i
or greater at all sampling times, and phosphorus limitation would
be expected.

-------
9
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the Illinois National
Guard collected monthly near-surface grab samples from each of the
tributary sites indicated on the map (page vi). Sampling was begun
in June, 1973, and was completed in May, 1974.
Through an interagency agreement, stream flow estimates for the
year of sampling and a “normalized’ or average year were provided by
the Illinois District Office of the U.S. Geological Survey for the
tributary sites nearest the lake.
In this report, nutrient loads for sampled tributaries were deter-
mined by using a modification of a U.S. Geological Survey computer
program for calculating stream loadings*. Nutrient loads shown are
those measured minus point—source loads, if any.
Nutrient loads for unsampled “minor tributaries and immediate
drainage” (“ZZ” of U.S.G.S.) were estimated using the adjusted nutrient
loads, in kg/km 2 /year, at station A-l and multiplying by the ZZ area in
km 2 .
The operator of the Arcola wastewater treatment plant provided
monthly effluent samples and corresponding flow data. The operators of
the Cabot Carbon Company, Savoy, Tuscola North, Tuscola South, and Villa
* See Working Paper No. 175.

-------
10
A. Waste Sources:
-I-
l. Known municipal
Pop.
_____ Served
2,200
125
Name _______
Arcol a
Cabot Carbon
Co., Tuscola
(domestic)
Savoy 650
Tuscola North 1,760
Tuscola South 2,150
Villa Grove 2,050
2. Known industrial
act. sludge
trickling
filter
act. sludge
act. sludge
- None
Recei ving
Water
Scattering Fork
Scattering Fork
Erubarras River
Hackett Branch
Scattering Fork
Embarras River
t Anonymous, 1972; Barganz, 1975.
* Estimated at 0.3785 m 3 /capita/day.
Grove wastewater treatment plants did not participate in the Survey,
and nutrient loads were estimated at 1.134 kg P and 3.401 kg N/capital
year.
Treatment
act. sludge
act. sludge
Mean Flow
(m 3 Id)
1 ,377.4
473*
246.0*
666.2*
813. 8*
7759*

-------
11
B. Annual Total Phosphorus Loading - Average Year:
1. Inputs -
kgP/ %of
Source yr total
a. Tributaries (non-point load) -
Enibarras River 60,150 79.0
b. Minor tributaries & immediate
drainage (non-point load) - 5,540 7.3
c. Known municipal STP’s -
Arcola 2,795 3.7
Cabot Carbon Co. 140 0.2
Tuscola North 1,995 2.6
Tuscola South 2,440 3.2
Villa Grove 2,325 3.0
Savoy 735 1.0
d. Septic tanks* - <5 <0.1
e. Known industrial - None
f. Direct precipitation** - 25 < 0.1
Total 76,145 100.0
2. Outputs -
Lake outlet - Embarras River 78,115
3. Net annual P loss - 1,970 kg.
* Estimate based on 6 shoreline dwellings; see Working Paper No. 175.
** See Working Paper No. 175.

-------
12
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs -
kgN/ %of
Source yr total
a. Tributaries (non-point load) -
Enibarras River 3,137,940 90.8
b. Minor tributaries & immediate
drainage (non—point load) - 285,190 8.3
c. Known municipal STP’s —
Arcola 8,600 0.2
Cabot Carbon Co. 425 <0.1
Tuscola North 5,985 0.2
Tuscola South 7,310 0.2
Villa Grove 6,970 0.2
Savoy 1,075 <0.1
d. Septic tanks* — 65 <0.1
e. Known industrial - None - -
f. Direct precipitation** - 1,565 < 0.1
Total 3,455,125 100.0
2. Outputs -
Lake outlet - Embarras River 2,882,870
3. Net annual N accumulation — 572,255 kg.
D. Mean Annual Non-point Nutrient Export by Subdrainage Area:
Tributary kg P/km 2 /yr kg N/km 2 /yr
Embarras River 32 1,683
* Estimate based on 6 shoreline dwellings; see Working Paper No. 175.
** See Working Paper No. 175.

-------
13
E. Yearly Loading Rates:
In the following table, the existing phosphorus loading
rates are conipared to those proposed by Vollenweider (Vollen-
weider and Dillon, 1974). Essentially, his “dangerous” rate
is the rate at which the receiving water would become eutrophic
or remain eutrophic; his “permissible” rate is that which would
result in the receiving water remaining oligotrophic or becoming
oligotrophic if morphometry permitted. A mesotrophic rate would
be considered one between “dangerous” and “permissible”.
Note that Vollenweider’s model may not be applicable to
water bodies with short hydraulic retention times.
Total Phosphorus Total Nitrogen
Total Accumulated Total Accumulated
grams/ni 2 /yr 52.51 loss* 2,382.8 394.7
Vollenweider loading rates for phosphorus
(g/m 2 /yr) based on mean depth and mean
hydraulic retention time of Lake Charleston:
“Dangerous” (eutrophic rate) 3.30
“Permissible” (oligotrophic rate) 1.65
* There was an apparent loss of phosphorus during the samoling year. This
may have been due to underestimation of the minor tributary and immediate
drainage load or septic tank contributions but more likely was due to
insufficient outlet sampling in relation to the very short one-day
hydraulic retention time of the lake.

-------
14
V. LITERATURE REVIEWED
Anonymous, 1972. Wastewater treatment works data book. IL Env.
Prot. Agency, Springfield.
Barganz, Ronald M., 1975. Personal communication (point sources
in Lake Charleston drainage). IL Env. Prot. Agency, Springfield.
Forneris, John J., 1973. Personal communication (lake morphometry).
IL Env. Prot. Agency, Springfield.
Vollenweider, R. A., and P. J. Dillon, 1974. The application of
the phosphorus loading concept to eutrophication research.
Nati. Res. Council of Canada Pubi. No. 13690, Canada Centre
for Inland Waters, Burlington, Ontario.

-------
15
VI. APPENDICES
APPENDIX A
LAKE RANKINGS

-------
LAKE DATA TO BE USED IN RANKINGS
LAKE MEDIAN MEDIAN 500 MEAN 15— MEL)IgN
CODE LAKE NAME TOTAL P INORG N MEAN SEC CHLORA MIN Do DISS Oi THO P
1703 LAKE 8LOOMINGION 0.050 5.730 444.667 26.200 1 ’ . .800 0.020
1706 LAKE CARLYLE 0.0’.4 1.270 477.889 17.3o7 11.000 0.032
1708 LAKE CHARLESTON 0.160 4.680 490.667 12.000 8.400 0.065
171! COFFEEN LAKE 0.032 0.260 458.222 7.700 14.900 0.012
1712 CRAb ORCHARD LAKE 0.082 0.200 482.222 59.867 13.800 0.013
1714 LAKE DECATUR 0.129 3.750 479.571 43.000 14.500 0.062
1725 LONG LAKE 0.704 1.190 482.667 49.333 8.800 0.398
1726 LAKE LOU YAEGER 0.186 1.600 489.583 10.662 11.400 0.076
1727 LAKE MARIE 0.098 0.370 467.667 39.533 14.700 0.057
1733 PISTAKEE LAKE 0.203 0.370 485.667 75.867 7.000 0.062
1735 REND LAKE 0.071 0.210 471.500 23.533 12.700 0.012
1739 LAKE SHEL8YVILLE 0.062 3.290 461.333 17.161 14.800 0.019
1740 SILVER LAKE (HIGHLAND) 0.226 0.970 489.500 5.822 14.800 0.057
1742 LAKE SPRINGFIELD 0.109 3.265 483.385 13.013 10.800 0.059
1748 VERMILION LAKE 0.109 4.695 481.500 31.150 14.200 0.050
1750 WONDER LAKE 0.424 0.890 486.000 98.533 7.800 0.132
1751 LAKE STORY 0.072 2.510 459•333 17.250 14.800 0.u21
1752 DEPUE LAKE 0.438 4.050 490.000 58.833 7.600 0.276
1153 LAKE SANGC 1WIS 0.050 1.970 475.417 19.292 14.500 0.009
175’. LAKE HOLIDAY 0.167 3.135 485.167 51.217 7.200 0.048
1755 FD A LAKE 0.21 0.375 486.167 63.850 8.800 0.083
1156 GRASS LAKE 0.301 0.820 481.000 83.500 5.900 0.093
1757 EAST LOON LAKE 0.076 0.120 450.000 22.300 14.900 0.O lp
1758 SLOCUM LAKE 0.865 0.200 487.333 221.100 5.800 0.362
1759 CEDAR LAKE 0.029 0.170 400.333 5.767 12.800 0.013
1761 LAKE WEMATUK 0.069 1.770 466.333 7.967 14.500 0.031
1762 RACCOON LAKE 0.106 0.310 484.333 19.217 13.800 0.020
1783 OALUWIN LAKE 0.044 0.140 461.167 11.333 13.200 0.007

-------
LAKE DATA TO BE USED IN RANKINGS
LAKE MEDIAN MEDIAN 500— MEAN 15— MEDIAN
CODE LAKE NAME TOTAL P INORG N MEAN SEC Cr4LORA MIN DO DISS O ThO P
1764 LAKE VANDALIA 0.116 0.480 478.111 11.278 1’..800 0.023
1765 OLD BEN MINE RESERVOIR 0.930 0.205 478,433 31.433 11.200 0.575
1766 HORSESHOE LAKE 0.127 0.705 482.833 l82.2 0 6.d OO O.01

-------
PERCENT OF LAKES WiTri ,IIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALULS)
LAKE MEDIAN MEDIAN 500- MEAN 15- ME U IAN INUEX
CODE LAKE NAME TOTAL P INORG N MEAN SEC CHLORA 4IN DO 015s Ok )- (O P NO
1703 LAKE BLOOMINGTON ( 26) 0 C 0) 80 C 24) 7 C 14) 13 ( 2) 68 1 20) 296
1706 LAKE CARL’VLE 63 C 19) 40 C 12) 63 C 19) 63 C 19) 63 ( 19) 53 C 16) 345
1708 LAKE CHARLESTON 37 C 11) 7 C 2) 0 C 0) 77 C 23) 77 C 23) 27 C 8) 22
171) COFFEEN LAKE 97 C 29) 17 I 23) 93 C 28) 93 C 28) 2 C 0) 92 C 27) 454
17)2 CRAB ORCHARD LAKE 67 I 20) 90 C 27) 43 C 13) 20 1 6) 42 C 12) 85 1 25) 347
1714 LAKE DECATUR 40 C 12) 13 C 4) 53 I 16) 33 C 10) 30 C 8) 32 C 9) 20)
1725 LONG LAKE 7 C 2) 43 C 13) 40 C 12) 30 C 9) 72 C 21) 3 C 1) 195
112€ LAKE LOU YAEGER 30 I 9) 37 I 11) 7 C 2) 87 C 26) 57 I I l) 23 C 7) 241
1727 LAKE MARIE 60 C 18) 68 C 20) 73 I 22) 37 I 11) 23 C 7) 42 C 12) 303
1733 PISTAKEE LAKE 27 C 8 68 C 20) 23 C 7) 13 I 4) 90 C 27) 32 C 9) 253
1135 REND LAKE 77 C 23) 80 C 24) 70 C 21) 50 C 15) 53 I 16) 92 C 21) 422
1739 LAKE SHELBYVILLE 83 I 25) 17 C 5) 83 C 25) 70 C 21) 13 I 2) 73 C 22) 339
1740 SILVER LAKE (HIGHLAND) 20 C 6) 47 C 14) 10 C 3) 97 C 29) 13 C 2) 42 C 12) 229
1742 LAKE SPRINGFIELD 53 I 16) 20 C 6) 33 C 10) 73 C 22) 67 C 20) 37 C 111 283
1748 VERMILION LAKE 50 C 15) 3 C 1) 47 C 14) 43 I 13) 37 I U) 47 C 14) 227
1750 WONDER LAKE 13 C 4) 50 C 15) 20 1 6) 7 C 2) 80 C 24) 13 I 4) 183
1751 LAKE STORY 73 C 22) 27 C 8) 90 C 27) 67 I 20) 13 C 2) 63 1 19) 333
1752 DEPUE LAKE 10 I 3) 10 C 3) 3 C 1) 23 I 7) 83 C 25) 10 I 3) 139
1153 LAKE SANGCHRIS 88 C 26) 30 C 9 bi I 20) 57 C 17) 30 C 8) 97 C 29) 369
1754 LAKE HOLIDAY 33 I 10) 23 C 7) 27 C 8) 27 C 8) 87 I 26) 50 C 15) 247
1755 FOX LAKE 23 C 7) 63 C 19) 17 ( 5) 17 C 5) 72 ( 21) 20 C 6) 212
1756 GRASS LAKE 17 C 5) 53 C 16) 50 C iS) 10 C 3) 97 ( 29) 17 I 5) 244
1757 EAST LOON LAKE 70 C 2)) 100 I 30) 97 C 29) S3 I 16) 2 C 0) 77 C 23) 399
1758 SLOCUM LAKE 3 C 1) 87 C 26) 13 C 4) 0 C 0) 100 I 30) 7 C 2) 2)0
1759 CEDAR LAKE 100 I 30) 93 C 28) 100 ( 30) 100 C 30) 50 ( IS) 85 I 25) 528
116) LAKE ENATUK 80 C 24) 33 C 10) 17 C 23) 90 C 27) 30 1 8) 57 C 17) 367
1762 RACCOON LAKE 57 C Il) 73 ( 22) 30 I 9) 60 C 18) ‘.2 C 12) 68 I 20) 330
1763 BALL)WIN LAKE 93 I 28) 97 I 29) 87 I 261 80 ( 24) 41 I I ’ .) 100 1 30) 50’.

-------
PERCENT OF
LAKES WITH HIGMER VALUES (NUMBER OF
LAKES WITH HIGHER VALUES)
LAKE
CODE
LAKE
NAME
MEDIAN
TOTAL P
MEDIAN
INORG
N
500—
MEAN
SEC
MEAN
CHLORA
15—
MIN 00
MEDIAN
DISS OMTMO
P
INd X
NO
1764
LAKE
VANDALIA
47 ( 14)
60 C
18)
60
( 18)
83 ( 25)
13 C 2)
60 C 18)
323
1765
OLD
bEN MINE RESERVOIR
0 ( 0)
83 (
25)
57
( 17)
40 ( 12)
60 C 18)
0 ( 0)
240
1766
HORSESHOE LAKE
43 ( 13)
57 C
17)
37
C

-------
LAKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
1 1159 CEDAR LAKE 523
2 1763 BALDWIN LAKE SO’.
3 1711 COFFEEN LAKE 454
4 1735 REND LAKE 422
S 1757 EAST LOON LAKE 399
6 1753 LAKE SANOCr4RIS 369
7 1161 LAKE WEMATUK 367
8 1712 CRAB ORCHARD LAKE 347
9 1706 LAKE CARLYLE 345
10 1739 LAKE SHELBY9ILLE 339
II 1751 LAKE STORY 333
12 1762 RACCOON LAKE 330
13 176’. LAKE VANDALIA 323
14 1766 1ORSESr4OE LAKE 313
15 1727 LAKE MARIE 303
lb 1103 LAKE BLOOMINGTON 296
17 1742 LAKE SPRINGFIELD 2 3
18 1733 PISTAIcEE LAKE 253
19 175’. LAKE HOLIDAY 247
20 1756 GRASS LAKE 244
21 172b LAKE LOU YAEGER 241
22 1765 OLD BEN MINE RESERVOIR 240
23 1740 SILVER LAKE (HIGHLAND) 229
24 17 ’ .B VEHMILION LAKE 227
25 hOd LAKE CHARLESTON 225
2’. 1755 FOX LAKE 212
27 hiS’. SLUC (JM LAKE 210
28 1714 I AKE DLCA1U 2O

-------
LAKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
29 1725 LONG LAKE 195
30 1750 WONDER LAKE 183
31 1752 DEPUE LAKE 139

-------
APPENDIX B
CONVERSIONS FACTORS

-------
CONVERSION FA(;TORS
Ilectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 feet
Cubic meters x 8.107 x l0 = acre/feet
Square kilometers x 0.3861 = square miles
Cubic meters/sec x 35.315 = cubic feet/sec
Centimeters x 0.3937 = inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = lbs/square mile

-------
APPENDIX C
TRIBUTARY FLOW DATA

-------
TRIdUTARY FLOW INFORMATION FOR ILLINOiS 10/23/75
LAIcE CODE 1708 LANE CHARLESTON
TOTAL DRAINAGE AREA OF LAKE(SO KM) 2035.7
SUB—DRAINAGE NORMALIZED FLOWS(CMS)
TRIBUTARY AREA(SO KH) JAN FEB MAR APR MAY JUN JUL AUG SE. OCT NOV DEC MEAN
170841 1864.8 13.79 18.01 23.73 25.03 26.73 14.38 9.37 5.13 3.94 4.93 6.88 8.10 13.30
170842 2035.7 15.06 19.60 25.94 27.30 29.17 15.72 10.25 5.66 4.36 5.44 7.56 8.86 14.54
1708ZZ 170.9 1.27 1.59 2.21 2.27 2.44 1.33 0.88 0.54 0.42 0.51 0.68 0.76 1.24
SUMMARY
TOTAL DRAINAGE AREA OF LAKE = 2035.7 TOTAL FLOW IN 174.91
SUM OF SUB—DRAINAGE AREAS = 2035.7 TOTAL FLOW OUT 174.91
MEAN MONTHLY FLOWS AND GAILY FLOWS(CMS)
TRIBUTARY MONTH YEAR MEAN FLOW DAY FLOW DAY FLOW DAY FLOW
170841 6 73 39.08 2 16.54
7 73 20.78 8 10.39
8 73 7.08 5 13.17
73 2.49 10 3.06
10 73 5.38 10 7.93
11 73 6.34 4 4.76
12 73 47.86 1 30.04
1 74 102.22 5 34.26
2 74 37.66 2 48.14
3 74 38.51 16 56.92
4 74 39.64 6 48.14
5 74 65.98 4 16.03
170842 6 73 42.48 2 18.07
7 73 22.74 8 11.38
8 73 7.82 5 14.55
9 73 2.75 10 3.40
10 73 5.92 10 8.75
11 73 6.97 4 5.21
12 73 52.39 1 32.85
1 74 111.57 5 37.38
2 74 41.06 2 52.67
3 74 41.91 16 62.30
4 7 ’ 43.04 6 52.39
5 74 71.92 ‘. 17.50
1708 1Z 6 73 3.40 2 1.53
7 73 1.95 8 0.99
8 73 0.74 5 1.39
9 73 0.25 10 0.34
10 73 0.5’. 10 0.82
11 73 0.62 4 0.45
12 73 4.53 1 2.80
1 7’. 9.34 5 3.11
2 76 3.40 2 4.53
3 74 3.40 16 5.38
4 74 3.40 6 4.25
5 74 5.95 4 1.47

-------
APPENDIX D
PHYSICAL and CHEMICAL DATA

-------
STORET RETRIEVAL DATE 75/10/23
170801
39 27 30.0 088 08 25.0
LAKE CHARLESTON
17029 ILLINOIS
1 IEPALES
3
2111202
0007 FEET DEPTH
73/05/07 16 30 0000
16 30 0004
73/08/09 10 50 0000
73/10/18 13 45 0000
13 45 0005
0.114
0.116
0.160
0.172
0.221
DATE
FROM
TO
TIME DEPTH
OF
DAY FEET
73/05/07 16 30 0000
16 30 0004
73/08/09 10 50 0000
73/10/18 13 45 0000
13 45 0005
00010
00300
00077
00094
00400
00410
00610
00625
00630
00671
WATER
DO
TRANSP
CNOUCTVY
PH
T
ALI(
NH3—N
TOT KJEL
NO2LNO3
PHOS—DIS
TEMP
SECCNI
FIELD
CACO3
TOTAL
N
N—TOTAL
ORTHO
CENT
MG/L
INCHES
MICROMHO
SU
MG/L
MG/L
MG/L
MG/L
MG/L P
15.3
10
600
8.10
178
0.090
0.500
8.010
0.060
15.3
9.2
600
8.10
150
0.090
0.500
8.010
0.057
26.4
7.0
10
517
8.00
203
0.100
1.400
3.960
0.075
16.1
10
505
8.10
280
0.290
1.700
2.310
0.067
15.9
8.4
497
8.00
275
0.300
1.800
2.290
0.065
DATE
F ROM
TO
TIME DEPTH
OF
DAY FEET
00665 32217
PHOS-TOT CHLRPHYL
A
MG/L P IJG/L
2.8
19.0
24.9

-------
STORET RETRIEVAL DATE 75/10/23
170802
39 28 10.0 088 08 30.0
LAKE CHARLESTON
17029 ILLINOIS
1 1EPALES
3
2111202
0117 FEET DEPTH
73/05/07 16 50 0000
16 50 0005
73/08/09 11 05 0000
73/10/18 14 00 0000
00665 32217
PHOS—TOT CHLRPHYL
A
MG/L P UG/L
0.106
0.111
0.168
0.229
DATE
TIME DEPTH
FROM
OF
TO
DAY FEET
73/05/07
16 50 0000
16 50 0005
73/08/09
11 05 0000
73/10/18
14 00 0000
DATE
TIME DEPTH
FROM
OF
TO
DAY FEET
00010
00300
00077
00094
00400
00410
00610
00625
00630
00671
WATER
DO
TRANSP
CNDUCTVY
PH
T
ALK
P4 143—N
TOT KJEL.
P402 1 .1403
PHOS—OlS
TEMP
SECCHI
FIELD
CACO3
TOTAL
N
P4-TOTAL
ORTHO
CENT
MG/L
INCHES
MICROMIIO
SU
M4WL
HG/L
MG/L
MG/L
N6/L P
15.3
8
610
8.10
144
0.080
0.400
8.140
0.158
15.2
9.0
610
8.10
178
0.080
0.300
0.200
0.056
25.3
6.6
8
578
7.90
270
0.090
0.900
4.590
0.078
17.8
7.4
10
555
7.90
305
0.110
0.800
2.840
0.125
2.5
11.6
11.2

-------
APPENDIX E
TRIBUTARY and WASTEWATER
TREATMENT PLANT DATA

-------
STORET RETPUEVAL DATE 75/10/23
1708A1
39 33 20.0 088 05 27.0
EMBARRAS R1VE
17027 15 TOLEDO
1/LAKE CHARLESTON
A1 TI&HT BNDG 5 M l NE
1 IEPALES
4
OF CHARLESTON
2111204
0000 FEET DEPTH
00630
00625
00610
00671
00665
DATE
TIME
DEPTH
N02&N03
TOT KJEL
Nr13—N
PHOS—DIS
PHOS—TOT
FROM
OF
N-TOTAL
N
TOTAL
ORTHO
TO
DAY
FEET
MG/L
MG/L
MG/L
MG/L P
MG/L P
73/06/02
14
14
7.700
2.800
0.096
0.080
0.135
73/07/08
10
00
8.400
2.900
0.074
0.081
0.175
73/08/05
09
30
5.000
2.700
0.310
0.089
0.125
73/09/10
09
00
6.600
2.040
0.140
0.040
0.110
73/10/14
09
50
2.020
1.350
0.252
0.080
0.220
73/11/04
09
00
3.800
1.300
0.390
0.250
0.315
73/12/01
13
00
6.500
0.300
0.116
0.080
0.250
74/01/04
13
30
8.100
0.300
0.048
0.052
0.065
74/02/02
14
14
15
40
7.700
7.000
2.500
0.300
0.095
0.035
0.060
0.065
0.110
0.105
74/03/16
13
30
7.200
0.900
0.070
0.060
0.175
74/04/06
13
00
6.720
0.800
0.045
0.055
0.135
74/05/04
15
00
6.400
0.700
0.055
0.052
0.135

-------
STORET RETRIEVAL DATI. 75/10/23
170 8A2
39 27 30.0 088 08 40.0
EMBARRAS NIVER
17 IS TOLEDO
0/LAKE CHARLESTON
ST RD 130 bROG JUST BELO RIVERVIEW DAM
11E ALES 2111204
4 0000 FEET DEPTH
00630 00625 00610 00671 00665
DATE TIME DEPTH N02&N03 TOT KJEL NH3—N PIOS-DIS PHOS—TOT
FROM OF N-TOTAL N TOTAL ORTHO
TO DAY FEET MG/I MG/L MG/L MG/L P MG/L P
73/06/02 15 00 6.600 1.540 0.100 0.075 0.180
73/07/08 10 30 4.000 0.980 0.070 0.070 0.145
73/08/05 10 20 4.600 2.400 0.270 0.089 0.150
73/09/10 09 45 1.140 2.200 0.230 0.078 0.195
73/10/14 08 30 3.500 0.450 0.058 0.150 0.210
73/11/04 10 00 2.600 1.050 0.105 0.084 0.175
73/12/01 13 45 6.400 0.100K 0.044 0.088 0.270
74/04/05 13 30 8.000 0.300 O.Q44 0.052 0.065
74/02/02 13 50 7.200 0.300 0.050 0.065 0.095
15 00 7.200 1.400 0.345 0.065 0.135
74/03/16 11 45 6.900 0.900 0.055 0.060 0.180
74/04/06 12 30 6.800 0.800 0.040 0.055 0.130
74/05/04 15 00 6.500 1.100 0.065 0.055 0.150
K VALUE Ki 0WN TO &E
LESS IHuN INi)ICuTED

-------
STORU RETRIEVAL OATE 75/10/23
17O8AA AS1708A4 P002200
39 41 00.0 088 15 28.0
CITY OF ARCOLA
17 250 DECATUR
T/LAKE CHARLESTON
EMBARASS RIVER
1 1IPALES 2141204
4 0000 FEET DEPTH
00630 00625 00610 00671 00665 50051 50053
DATE TIME DEPTH N02&N03 TOT KJEL NPI3-N PHOS—DIS PHOS—TOT FLOW CONDUIT
FROM OF N—TOTAL N TOTAL ORTHO RATE FLOW—MOD
TO DAY FEET MG/L MG/L M(,/L MG/L P MG/L P INST MOD MONTHLY
73/07/10 07 00
CP(T)— 0.160 16.800 5.700 7.700 8.900 0.238 0.296
73/07/10 16 00
73/08/14 07 00
CP(T)— 0.050 10.500 0.610 2.100 12.600 0.320 0.441
73/08/14 16 00
73/09/11 07 00
CP(T)— 0.024 45.000 3.800 5.100 5.900 0.248 0.341
73/09/11 16 00
73/12/13 07 00
CP(T)— 0.330 14.500 2.600 3.400 4.200 0.374 0.222
73/12/13 16 00
74/01/17 07 00
CP(T)— 5.040 24.000 0.070 4.100 5.100 0.250 0.492
74/01/17 16 00
74/04/09 07 00
CP(T)— 5.600 2.800 0.050K 1.250 2.200 0.518 0.516
74/04/09 16 00
74/04/23 07 00
CP(T)— 0.240 10.000 0.120 2.200 3.150 0.540 0.420
74/04/23 16 00
74/07/24 07 00
CP(T)— 0.560 25.000 7.800 7.000 9.000 0.150 0.183
74/07/24 16 00
K VALUE KNOWN TO BE
LESS THAN INDICATED

-------