U.S. ENVIRONMENTAL PROTECTION AGENCY
              NATIONAL EUTROPHICATION SURVEY
                       WORKING PAPER SERIES
                                            REPORT
                                             ON
                                          COFFEENLAfc
                                        IWTGOTERY COUNTY
                                           ILLINOIS
                                          EPA REGION V
                                       WORKING PAPER No, 300
    CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
                                and
    ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
•jVG.P.O. 699-440

-------
                                  REPORT
                                    ON
                               COFEENlAfc
                             MOMUQDPtRY COUNTY
                                 ILLINOIS
                               EPA REGION V
                           WORKING PAPER No, 300
     WITH THE COOPERATION OF THE
ILLINOIS ENVIRONMENTAL PROTECTION AGENCY
               AND THE
        ILLINOIS NATIONAL GUARD
             JUNE, 1975

-------
1
CONTENTS
Page
Foreword Ii
List of Illinois Study Lakes iv
Lake and Drainage Area Map v
Sections
I. Introduction 1
II. Conclusions 1
III. Lake and Drainage Basin Characteristics 3
IV. Lake Water Quality Sunviary 4
V. Nutrient Loadings 8
VI. Literature Reviewed 12
VII. Appendices 13

-------
ii
FOREWORD
The National Eutrophication Survey was initiated In 1972 in
response to an Administration comitment to investigate the nation-
wide threat of accelerated eutrophication to fresh water lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point-source discharge reduction and non—point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey’s eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and Its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [ 3O3(e)J, water
quality criteria/standards review [ 5303(c)], clean lakes [ 314(a,b)],
and water quality monitoring [ 5106 and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.

-------
iii
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation’s
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environmental Protection Agency)
expresses sincere appreciation to the Illinois Environmental
Protection Agency for professional involvement and to the
Illinois National Guard for conducting the tributary sampling
phase of the Survey.
Dr. Richard H. Briceland, Director of the Illinois Environ-
mental Protection Agency; and Ronald M. Barganz, State Survey
Coordinator, and John J. Forneris, Manager of Region III, Field
Operations Section of the Division of Water Pollution Control,
provided invaluable lake documentation and counsel during the
Survey, reviewed the preliminary reports, and provided critiques
most useful in the preparation of this Working Paper series.
Major General Harold R. Patton, the Adjutant General of
Illinois, and Project Officer Colonel Daniel L. Fane, who directed
the volunteer efforts of the Illinois National Guardsmen, are also
gratefully acknowledged for their assistance to the Survey.

-------
iv
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF ILLINOIS
LAKE NAME COUNTY
Baldwin Randolph
Bloomington McLean
Carlyle Bond, Clinton, Fayette
Cedar Lake
Charleston Coles
Coffeen Montgomery
Crab Orchard Jackson, Williamson
Decatur Macon
DePue Bureau
East Loon Lake
Fox Lake
Grass Lake
Highland Silver Madison
Holiday LaSalle
Horseshoe Madison
Long Lake
Lou Yaeger Montgomery
Marie Lake
Old Ben Mine Franklin
Pistakee Lake, McHenry
Raccoon Marion
Rend Franklin, Jefferson
Sangchris Christian
Shelbyville Moultrie, Shelby
Slocum Lake
Springfield Sangamon
Storey Knox
Vandalia Fayette
Vermilion Vermilion
Wee Ma Tuk Fulton
Wonder McHenry

-------
V
/
c)
OFFEEN
1
LAKE
COFFEEN LAKE
Lake Sampling Site
Sewage Treatment Facility
Drainage Area Boundary
1 2
I I
Location

-------
COFFEEN LAKE
STORET NO. 1711
I. INTRODUCTION
Coffeen Lake was included in the National Eutrophication Survey as
a water body of interest to the Illinois Environmental Protection Agency.
This report relates to point sources of nutrients and lake water quality
only. Tributaries and the lake outlet were not sampled.
It. CONCLUSIONS
A. Trophic Condition:
Survey data show that Coffeen Lake is eutrophic. It ranked
third in overall trophic quality when the 31 Illinois lakes
sampled in 1973 were compared using a combination of six param-
eters*. One lake had less median total phosphrous, two had
less and one had the same median dissolved phosphorus, seven
had less median inorganic nitrogen, two had less mean chloro-
phyll a, and two had greater mean Secchi disc transparency.
Dissolved oxygen was nearly depleted at stations 1 and 2 in
August and at station 1 in October.
Survey limnologists noted extensive growths of rooted aquatic
vegetation.
B. Rate—Limiting Nutrient:
The algal assay results indicate Coffeen Lake was phosphorus
limited at the time the sample was collected (08/10/73). The
* See Appendix A.

-------
2
lake data indicate phosphorus limitation in May as well but
nitrogen limitation in October.
C. Nutrient Controllability:
The only nutrient loads to the lake that were measured during
the Survey were from the Hilisboro Mine and Coffeen Power Plant
wastewater treatment plants which discharge directly to the lake.
It Is calculated that these two sources collectively discharged
40 kg of total phosphorus and 275 kg of total nitrogen to the
lake during the sampling year. The phosphorus contributions of
these plants alone resulted in a loading rate of less than 0.01
g/m 2 /yr. Since the loading rate proposed by Vollenweider
(Vollenwelder and Dillon, 1974) as an oligotrophic rate is 0.45
g/m 2 /yr (see page 11). it does not seem likely that phosphorus
removal at the two treatment plants would result in a signifi-
cant improvement In the trophic condition of Coffeen Lake.

-------
III.   LAKE CHARACTERISTICS1"
      A.   Lake Morphometry*:
          1.   Surface  area:   4.86  kilometers2.
          2.   Mean  depth:   5.6 meters.
          3.   Maximum  depth:  >13.7 meters.
          4.   Volume:  27.216 x 106 m3.
          5.   Mean  hydraulic retention time:  3 months
      B.   Precipitation**:
          1.   Year  of  sampling:  127.8 centimeters.
          2.   Mean  annual:  94.9 centimeters.
 t Table of metric  conversions—Appendix B.
 * Fornerls, 1973.
 ** See  Working  Paper  No.  175,  "...Survey Methods, 1973-1976",

-------
4
IV. LAKE WATER QUALITY SUMMARY
Coffeen Lake was sampled three times during the open-water season
of 1973 by means of a pontoon-equipped Huey helicopter. Each time,
samples for physical and chemical parameters were collected from three
stations on the lake and from a number of depths at each station (see
map, page v). During each visit, a single depth-integrated (4.6 m or
near bottom to surface) sample was composited from the stations for
phytoplankton identification and enumeration; and during the August
visit, a single 18.9-liter depth-integrated sample was composited for
algal assays. Also each time, a depth-integrated sample was collected
from each of the stations for chlorophyll a analysis. The maximum
depths sampled were 13.7 meters at station 1, 9.4 meters at station 2,
and 3.4 meters at station 3.
The lake sampling results are presented in full in Appendix C and
are summarized in the following table.

-------
3 SITES
A. SUMMARY OF PHYSICAL AND CHEMICAL CHARACTERISTICS FOR COFFEEN LAKE
STORET CODE 1711
1ST SAMPLING ( 5/ 7/73) ND SAMPLING ( 8/10/73)
3 SITES
3RD SAMPLING (10/18/73)
3 SITES
PARAMETER
RANGE
MEAN
MEDIAN
RANGE
MEAN
MEDIAN
RANGE
MEAN
MEDIAN
TEMP (C)
13.7 — 23.8
18.7
19.0
14.1
37.9
29.3
30.1
13.9 — 28.2
22.6
22.9
DISS OXY (MG/I)
5.2
— 8.6
7.6
8.0
0.1
— 8.0
3.7
5.2
1.0
— 8.0
6.0
7.1
CNDCTVY (MCROMO)
430.
— 505.
482.
495.
404.
— 641.
539.
537.
469.
— 590.
521.
520.
PH (STAND UNITS)
7.2
— 8.1
7.9
7.9
7.0
— 8.6
7,6
7.2
7.5
— 8.2
7.8
7.9
TOT AL (MG/I)
73.
— 77.
75.
74.
70.
— 105.
77.
75.
74.
— 138.
84.
81.
TOT P (MG/I)
0.028
— 0.067
0.040
0.032
0.025
— 0.065
0.040
0.034
0.022
— 0.343
0.055
0.027
ORTHO P (MG/I)
0.003
— 0.026
0.011
0.0U8
0.004
— 0.022
0.011
0.010
0.011
— 0.297
0.036
0.013
N02.NO3 (MG/I)
0.410
— 0.580
0.454
0.435
0.030
— 0.370
0.139
0.100
0.020
— 0.140
0.062
0.060
AMMONIA (MG/I)
0.050
— 0.100
0.074
0.070
0.030
— 0.820
0.142
0.045
0.020
— 1.980
0.193
0.040
KJEL N (MG/L)
0.400
— 0.700
0.49)
0.500
0.600
— 1.700
0.850
0.850
0.400
— 2.500
0.662
0.500
INORG N (MG/I)
0.460
— 0.660
0.528
0.510
0.060
— 0.860
0.281
0.150
0.060
— 2.000
0.255
0.100
TOTAL N (MG/I)
0.820
— 1.160
0.947
0.915
0.690
— 1.740
0.989
0.945
0.480
— 2.520
0.724
0.550
CP4LRPYL A (UG/L)
3.7
— 11.7
7.0
5.7
5.7
— 18.4
10.2
6.6
5.1
— 6.9
5.8
5.5
SECCHI (Pt TERS)
0.6
— 1.3
1.0
1.2
0.8
— 1.1
0.9
0.9
0.9
— 1.8
1.4
U’

-------
6
B. Biological characteristics:
1. Phytoplankton -
Sampling Dominant Algal units
Date Genera per ml
05/07/73 1. Nitzschia p. 7,837
2. flagellates 635
3. Centric diatoms 282
4. Green lunate cells 247
5. Oscillatoria .a• 177
Other genera 353
Total 9,531
08/10/73 1. Osclllatoria p_. 2,825
2. Nitzschia . a• 900
3. Raphidlopsis . 300
4. Dactylococcopsis p. 177
5. Scenedesmus p. 71
Other genera 159
Total 4,432
10/18/73 1. Nitzschia p. 271
2. çyclotella p. 204
3. Anklstrodesmus a• 115
4. Oscillatoria p_. 89
5. Lyngbya p.. 80
Other genera 30
Total 789

-------
7
Station
N unibe r
01
02
03
Chlorophyll a
(pg/i)
3.7
5.7
11.7
01
02
03
01
02
03
Inorganic N
Conc. (mg/i )
0.270
0.270
1 .270
1 .270
5.7
6.6
18.4
5.1
5.5
6.9
Maximum yield
( mg/i-dry wt. )
0.7
5.1
14.0
1.1
2. Chlorophyll a —
Sampling
Date
05/07/73
08/10/73
10/18/73
C. Limiting Nutrient Study:
1. Filtered and nutrient spiked -
Ortho P
Spike (mg/i) Conc. (mg/l )
Control 0.015
0.050 P 0.065
0.050 P + 1.0 N 0.065
1.0 N 0.015
2. Discussion —
The control yield of the assay alga, Selenastruni capri-
cornutum , indicates that the potential primary productivity
of Coffeen Lake was moderate at the time the sample was col-
lected (08/10/73). Also, the results indicate the lake was
phosphorus limited at that time. Note that the addition of
orthophosphorus resulted in a marked increase in yield, but
the addition of only nitrogen did not.
The lake data indicate phosphorus limitation in May as
well (the mean inorganic nitrogen/orthophosphorus ratio =
26/1) but nitrogen limitation in October (the mean N/P =
7/1).

-------
8
V. NUTRIENT LOADINGS
(See Appendix D for waste treatment plant data)
Coffeen Lake was included in the National Eutrophication Survey as
a water body of interest to the Illinois Environmental Protection Agency,
and the tributary nutrient loads were not determined. However, the
operators of the Hillsboro Mine and Coffeen Power Plant wastewater treat-
ment plants provided monthly effluent samples and corresponding flow data.
A. Waste Sources:
1. Known treatment plants —
Pop. Mean Flow Receiving
Name Served Treatment ( rn 3 Jd) Water
Coffeen Power 50 sand filter 22.7 Coffeen Lake
Plant*
Hilisboro 110 act. sludge 106.0 Coffeen Lake
Mine**
2. Known industrial - None
* DeSollar, 1973.
** Smith, 1973.

-------
9
B. Annual Total Phosphorus Loading - Average Year:
1. Inputs —
kgP/ %of
Source yr total
a. Tributaries (non-point load) —
none sampled
b. Minor tributaries & immediate
drainage (non-point load) —
c. Known treatment plants -
Hillsboro Mine 25 20.0
Coffeen Power Plant 15 12.0
d. Septic tanks - Unknown
e. Known industrial — None - -
f. Direct precipitation* - 85 68.0
Total 125 100.0
* See Working Paper No. 175.

-------
10
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs —
kgN/ %of
Source yr total
a. Tributaries (non-point load) —
none sampled
b. Minor tributaries & immediate
drainage (non-point load) -
c. Known treatment plants -
Hillsboro Mine 160 2.9
Coffeen Power Plant 115 2.1
d. Septic tanks - Upknown
e. Known industrial - None - -
f. Direct precipitation* - 5,250 95.0
Total 5,525 100.0
* See Working Paper No. 175.

-------
11
D. Yearly Loading Rates:
In the following table, the phosphorus loading rate
attributable to the two point sources is compared to those
proposed by Vollenweider (Vollenweicler and DIllon, 1974).
Essentially, his “dangerous” rate Is the rate at which the
receiving water would become eutrophic or remain eutrophic;
his “permissible” rate Is that which would result In the
receiving water remaining oligotrophic or becoming oligo-
trophic if niorphometry permitted. A mesotrophic rate would
be considered one between “dangerous” and “permissible”.
Note that Vollenweider’s model may not be applicable to
water bodies with short hydraulic retention times.
Total Phosphorus Total Nitrogen
granis/m 2 /yr <0.01 0.06
Vollenweider loading rates for phosphorus
(g/m 2 /yr) based on mean depth and mean
hydraulic retention time of Coffeen Lake:
“Dangerous” (eutrophic rate) 0.90
“Permissible” (oligotrophic rate) 0.45

-------
12
V. LITERATURE REVIEWED
DeSollar, Richard W., 1973. Treatment plant questionnaire (Coffeen
Power Plant STP). Coffeen.
Forneris, John J., 1973. Personal communication (lake morphometry).
IL Env. Prot. Agency, Springfield.
Smith, Earl D., 1973. Treatuient plant questionnaire (Hilisboro Mine
STP). Pinckneyville.
Vollenweider, R. A., and P. J. Dillon, 1974. The application of
the phosphorus loading concept to eutrophication research.
Natl. Res. Council of Canada Pubi. No. 13690, Canada Centre
for Inland Waters, Burlington, Ontario.

-------
13
VI. APPENDICES
APPENDIX A
LAKE RANKINGS

-------
LAKE DATA TO BE USED IN RANKINGS
LAKE MEDIAN MEDIAN 500— MEAN 15- M L)IAN
CODE LAKE NAME TOTAL P INORG N MEAN SEC CNL)WA MIN 00 0155 Ui. )lriU P
1703 LAKE &OOM INGTON 0.050 5.730 464.667 26.200 1’..800 0.020
1706 LAKE CARLYLE 0.084 1.270 477.889 17.367 11.000 0.032
1708 LAKE CHARLESTON 0.160 4.680 490.661 12.000 8.400 0.065
1711 COFFEEM LAKE 0.032 0.260 ‘.56.222 7.700 14.900 0.012
1712 CRAb ORC IARD LAKE 0.082 0.200 482.222 59.861 13.600 0.013
1714 LAKE DECATUR 0.129 3.750 414.571 43.000 14.500 0.06
1725 LONG LAKE 0.70’. 1.190 482.b61 49.333 8.800 0.398
1726 LAKE LOU YAEGER 0.186 1.600 489.583 10.662 11.400 0.07o
1727 LAKE MARIE 0.098 0.370 467.667 39.533 14.700 0.057
1733 PISTAKEE LAKE 0.203 0.370 ‘.85.667 75.861 7.000 0.062
1735 REND LAKE 0.071 0.210 471.500 23.533 12.100 0.012
1739 LAKE SHEL8YVILLE 0.062 3.290 461.333 17.161 14.800 0.019
1740 5IL ER LAKE (HIGHLAND) 0. 226 0.970 489.500 5.822 14.800 0.057
1742 LAKE SPRINGFIELD 0.108 3.265 483.385 13.013 10.800 0.059
1748 VERMILION LAKE 0.109 4.695 481.500 31.150 14.200 0.050
1750 WONDER LAKE 0.426 0.890 486.000 98.533 7.800 0.132
1751 LAKE STORY 0.072 2.510 459.333 17.250 14.800 O.u21
1752 OEPUE LAKE 0.438 4.050 490.000 56.833 7.600 0.276
1753 LAKE SANGCrIHIS 0.050 1.970 475.417 19.292 14.500 0.009
175’. LAKE HOLIDAY 0.167 3.135 485.167 51.217 7.200 0.046
1755 FOA LAKE 0.219 0.375 486.167 63.850 8.800 0.083
175o GRASS LAKE 0.301 0.820 481.000 83.500 5.900 0.093
1757 EAST LOON LAKE 0.076 0.120 450.000 22.300 14.900 0.018
1758 SLOCUM LAKE 0.865 0.200 487.333 221.100 5.800 0.362
1759 CEDAR LAKE 0.029 0.170 400.333 5.767 12.800 0.0 13
1761 LAKE WEMATUK 0.069 1.770 466.333 7.967 14. 00 0.031
1762 RACCOON LAKE 0.106 0.310 484.333 19.217 13.800 0.020
1763 8ALU IN LAKE 0.044 0.140 461.167 11.333 13.200 0.001

-------
LAKE DATA TO 8E USEI) IN RANKINGS
LAKE MEDIAN MEDIAN 500— MEAN 15- MEDIAN
CODE LAKE NAME TOTAL P INORG N MEAN SEC C 1LORA MIN DO DISS OkTIiO P
1764 LAKE VANDALIA 0.116 0.480 478.111 11.278 14.800 0.023
1765 OLD BEN MINE ESERVOLR 0.930 0.205 478.333 31.433 11.200 0.575
1766 HORSESHOE LAKE 0.127 0.705 482.833 182.250 6.dOO 0.018

-------
PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)
LAKE MEDIAN MEDIAN 500— MEAN 15— MEDIAN INDEX
CODE LAKE NAME TOTAL P INORG N MEAN SEC CPILORA HIM DO 0155 ORTHO P NO
1703 LAKE dLOOMINGION 88 ( 26) 0 4 0) 0 4 24) 47 4 14) 13 4 2) 68 20) 296
1706 LAKE CARLYLE 63 4 19) 40 4 12) 63 4 19) 63 19) 63 4 19) 53 4 16) 345
1708 LANE CHARLESTON 37 4 1 1) 7 4 2) 0 4 0) 77 4 23) 77 4 23) 27 4 8) 225
171) COFFEEN LAKE 97 4 29) 77 4 23) 93 4 28) 93 4 28) 2 4 0) 92 4 27) 454
1712 CRAB ORCHARD LAKE 67 4 20) 90 4 27) 43 4 13) 20 4 6) 42 4 12) 85 4 25) 347
1714 LAKE DECATUR 40 4 12) 13 4 4) 53 4 16) 33 4 10) 30 4 8) 32 4 9) 201
1725 LONG LAKE 7 4 2) 4 13) 40 4 12) 30 4 72 4 21) 4 1) 195
1726 LAKE LOU YAEGER 30 ( 9) 37 4 11) 7 ( 2) 87 4 26) 57 4 17) 23 4 7) 241
1727 LAKE MARIE 60 4 18) 68 I 20) 73 4 22) 37 4 11) 23 4 7) 42 1 12) 303
1733 PISTM(E LAKE 27 4 8) 68 4 20) 23 4 7) 13 I 4) 90 I 27) 32 4 9) 253
1735 REND LAKE 77 4 23) 80 I 24) 70 4 21) 50 4 15) 53 1 16) 92 4 27) 422
1739 LAKE SHEL YVILLE 83 4 25) 17 4 5) 83 4 25) 70 I 21) 13 4 2) 73 1 22) 339
1740 SILVER LAKE (HIGHLAND) 20 4 6) 47 4 14) 10 4 3) 97 4 29) 13 1 2) 42 1 12) 229
£742 LAKE SPRINGFIELD 53 I 16) 20 1 6) 33 4 10) 73 1 22) 67 4 20) 37 1 11) 283
1748 VERMILION LAKE 50 4 15) 3 4 1) 47 ( 14) 43 I 13) 37 4 11) 47 ( 14) 227
1750 WONDER LAKE 13 I 4) 50 4 15) 20 ( 6) 7 4 2) 80 4 24) 13 1 4) 183
1751 LAKE STORY 73 ( 22) 27 4 8) 90 4 27) 67 1 20) 13 ( 2) 63 I 19) 333
1752 DEPUE LAKE 10 I 3) IC 1 3) 3 1 1) 23 I 7) 83 4 25) 10 4 3) 139
1753 LAKE SANGCHRIS 88 I 26) 30 4 9) 67 I 20) 57 1 17) 30 4 8) 97 1 29) 369
1754 LAKE HOLIDAY 33 4 10) 23 1 7) 27 4 8) 27 1 8) 87 4 26) 50 I 15) 247
1755 FOX LAKE 23 I 7) 63 4 19) 17 4 5) 17 I 5) 72 21) 20 1 6) 212
1756 GRASS LAKE 17 1 5) 53 I 16) 50 4 15) 10 1 3) 97 I 29) Ii I 5) 244
1757 EAST LOON LAKE 70 1 21) 100 I 30) 97 I 29) 53 I 16) 2 I 0) 77 C 23) 399
1758 SLOCUM LAKE 3 4 1) 87 4 26) 13 I 4) 0 I 0) 100 I 30) 7 C 2) 2)0
1759 CEDAR LAKE 100 I 30) 93 4 28) 100 4 30) £00 4 30) 50 1 15) 85 ( 25) 52d
1761 LAKE EMATUK 80 I 24) 33 4 10) 77 I 23) 90 I 27) 30 I 8) 57 C 17) 367
£762 RACCOON LAKE 57 1 11) 73 4 22) 30 I 9) 60 I 18) 42 I 12) 68 1 20) 330
1763 BALDWIN LAKE 93 4 28) 97 I 29) 87 I 26) 80 1 24) 47 I I’.) 100 1 30) 504

-------
PERCENT OF
LAKES WITH HIGHER VALUES (NUMBER OF
LAKES WITH HIGHER VALUES)
LAKE
CODE
LAKE
NAME
MEDIAN
TOTAL P
MEDIAN
INORG
N
500—
MEAN
SEC
MEAN
CHLORA
15—
MIN
DO
MEDIAN
DISS ORTHO
P
1764
LAKE
VANDALIA
47 ( 14)
60 C
18)
60
( 18)
83 ( 25)
13 (
2)
60 C 18)
1765
OLD
BEN MINE i ESERVOIR
0 ( 0)
83 C
25)
57
C 17)
40 ( 12)
60 (
18)
0 C 0)
1766
HORSESHOE LAKE
43 ( 13)
57 C
17)
37
( 11)
3 ( 1)
93 (
28)
80 C 24)
NO
323
2’. 0
313

-------
LAKES RANKED BY 1NDE NOS.
kANK LAKE CODE LAKE NAME INDEX NO
I 1759 CEDAR LAKE 528
2 1763 BALDWIN LAKE 504
3 1711 COFFEEN LAKE 454
4 1735 REND LAKE 422
5 1757 EAST LOON LAKE 399
6 1753 LAKE SANGC,1R15 369
7 1761 LAKE WEMATUI 367
B 1712 CRAB ORCHARD LAKE 347
9 1706 LAKE CARLYLE 345
10 1739 LAKE SH€LBYVILLE 339
11 1751 LAKE STORY 333
12 1762 RACCOON LAKE 330
13 1764 LAKE VANDAL IA 323
14 1766 HORSES,IOE LAKE 313
15 1727 LAKE MARIE 303
16 1703 LAKE BLOOMINGTON 296
17 1742 LAKE SPRINGFIELD 283
18 1733 PISTAKEE LAKE 253
19 1754 LAKE HOLIDAY 247
20 1756 GRASS LAKE 244
21 1726 LAKE LOU TAEGER 241
22 1765 OLD BEN MINE RESERVOIR 240
23 1740 SILVER LAKE (HIGHLAND) 229
24 1748 VENMILION LAKE 227
25 1708 LAKE CHARLESTON 225
26 1755 FOK LAKE 212
27 1758 SLOCUM LAKE 210
28 171’. LAKE DECATuR 201

-------
LAXES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
29 1725 LONG LAKE 195
30 1750 WONDER LAKE 183
31 1752 DEPUE LAKE 139

-------
APPENDIX B
CONVERSIONS FACTORS

-------
CONVERSION FACTORS
Hectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 = feet
Cubic meters x 8.107 x 10 = acre/feet
Square kilometers x 0.3861 = square miles
Cubic meters/sec x 35.315 = cubic feet/sec
Centimeters x 0.3937 = Inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = lbs/square mile

-------
APPENDIX B
CONVERSIONS FACTORS

-------
CONVERSION FACTORS
Hectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 = feet
Cubic meters x 8.107 x = acre/feet
Square kilometers x 0.3861 = square miles
Cubic meters/sec x 35.315 = cubic feet/sec
Centimeters x 0.3937 = inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = lbs/square mile

-------
APPENDIX C
PHYSICAL and CHEMICAL DATA

-------
STORET RETRIEVAL DATE 75/10/23
171101
39 02 15.0 089 23 10.0
COFFEEN LAKE
17135 ILLINOIS
1 IEPALES 2111202
3 0048 FEET DEPTH
00010 00300 00077 00094 00400 00410 00610 00625 00630 00671
DATE TIME DEPTH WATER DO TRANSP CNDUCTVY PH T ALK NP$3—N TOT KJEL NO2 NO3 PHOS—DIS
FROM OF TEMP SECCIII FIELD CACO3 TOTAL N N—TOTAL ORTHO
TO DAY FEET CENT MG/L INCHES MICROMHO SU MG/L MG/L MG/L MG/L MG/L P
73/05/07 15 30 0000 23.8 52 500 8.00 74 0.060 0.600 0.420 0.005
15 30 0006 19.6 7.8 500 8.00 74 0.070 0.400 0.430 0.007
15 30 0015 18.5 7.6 490 7.90 74 0.080 0.400 0.440 0.009
15 30 0025 17.7 7.2 490 7.80 73 0.090 0.400 0.450 0.014
15 30 0035 15.8 6.5 500 7.70 74 0.080 0.400 0.580 0.021
15 30 0044 13.7 5.2 505 7.70 74 0.070 0.400 0.580 0.026
73/08/10 16 00 0000 37.9 42 641 7.10 70 0.050 0.900 0.110 0.004
16 00 0005 34.8 6.4 602 7.70 70 0.040 0.700 0.100 0.006
16 00 0015 31.2 5.2 566 7.10 72 0.060 0.600 0.370 0.010
16 00 0025 29.6 0.1 534 7.00 73 0.040 0.600 0.350 0.011
16 00 0035 19.4 0.1 440 7.20 94 0.570 1.000 0.220 0.017
16 00 0045 14.1 0.3 404 7.20 105 0.820 1.700 0.040 0.022
73/10/18 16 35 0000 28.2 56 590 7.90 83 0.020 0.600 0.080 0.011
16 35 0005 27.5 7.0 574 7.90 83 0.030 0.410 0.080 0.013
16 35 0010 24.5 7.2 545 7.80 81 0.020 0.400 0.080 0.011
16 35 0015 24.0 4.8 521 7.60 79 0.030 0.400 0.140 0.016
16 35 0025 22.7 5.2 515 7.50 81 0.060 0.400 0.100 0.015
16 35 0035 22.0 5.2 504 7.50 83 0.130 0.600 0.060 0.020
16 35 0045 13.9 1.0 490 7.50 138 1.980 2.500 0.020 0.297

-------
SIORET RETRIEVAL DATE 75/10/23
171101
39 02 15.0 089 23 10.0
COFFEEN LAKE
17135 ILLINOIS
11&ALES 2111202
3 0048 FEET DEPTH
00665 32217
DATE TIME DEPTH I HOS—TOT CHLRPHYL
FROM OF A
TO DAY FEET MG/L P UG/L
73/05/07 15 30 0000 0.029 3.7
15 30 0006 0.032
15 30 0015 0.029
15 30 0025 0.036
15 30 0035 0.045
15 30 0044 0.046
73/08/10 16 00 0000 0.030 5.7
16 00 0005 0.034
16 00 0015 0.025
16 00 0025 0.029
16 00 0035 0.044
16 00 0045 0.055
73/10/18 16 35 0000 0.028 5.1
16 3S 0005 0.027
16 35 0010 0.023
16 35 0015 0.022
16 35 0025 0.026
16 35 0035 0.034
16 35 0045 0.343

-------
ST0 ET RETRIEVAL DATE 75/10/23
171102
39 03 20.0 089 24 30.0
COFFEEN LAKE
17135 ILLINOIS
IIEPALES 2111202
3 0034 FEET DEPTH
00010 00300 00077 00094 00400 00410 00610 00625 00630 00671
DATE TIME DEPTH WATER DO TRANSP CNDUCTVY PH 1 ALK NH3—N TOT KJEL N02 NO3 PHOS—DIS
FROM OF TEMP SECCHI FIELD CACO3 TOTAL N N—TOTAL ORTHO
TO DAY FEET CENT MG/I INCHES MICROMHO SU MG/I MG/L MG/I MG/L MG/L P
73/05/07 16 00 0000 20.1 48 495 7.90 75 0.070 0.500 0.410 0.003
16 00 0006 20.1 8.2 495 8.00 74 0.060 0.500 0.420 0.004
16 00 0015 20.1 8.0 495 8.00 74 0.060 0.500 0.410 0.004
16 00 0022 20.0 8.3 495 8.10 74 0.050 0.500 0.410 0.005
16 00 0030 19.8 8.2 495 8.10 74 0.060 0.400 0.420 0.008
73/08/10 14 35 0000 34.7 36 600 8.20 76 0.040 0.900 0.100 0.005
14 35 0005 32.2 8.0 580 8.10 75 0.030 0.600 0.090 0.007
14 35 0015 30.8 6.0 564 7.20 73 0.050 0.700 0.080 0.008
14 35 0025 29.8 1.4 538 7.20 71 0.060 0.700 0.200 0.011
14 35 0031 28.2 0.4 492 7.10 75 0.130 0.800 0.180 0.015
73/10/18 16 13 0000 23.7 72 530 8.10 77 0.030 0.500 0.050 0.012
16 13 0005 23.7 8.0 531 8.00 78 0.030 0.500 0.050 0.013
16 13 0015 22.9 7.4 520 7.90 79 0.040 0.500 0.060 0.013
16 13 0030 21.7 7.2 505 7.90 82 0.040 0.600 0.050 0.013
0066S 32217
DATE TIME DEPTH PHOS—TOT CHLRPHYL
FROM OF A
TO DAY FEET MG/I P UG/I
73/05/07 16 00 0000 0.028 5.7
16 00 0006 0.030
16 00 0015 0.032
16 00 0022 0.032
16 00 0030 0.032
73/08/10 14 35 0000 0.029 6.6
14 35 0005 0.028
14 35 0015 0.030
14 35 0025 0.035
1’. 35 0031 0.048
73/10/18 16 13 0000 0.025 5.S
lb 13 0005 0.025
16 13 0015 0.023
16 13 0030 0.035

-------
STO ET RETRIEVAL DATE 75/10/23
171103
39 04 45.0 089 24 50.0
COFFEEN LAKE
17135 ILLINOIS
11EPALES 2111202
3 0015 FEET DEPTH
00010 00300 00077 00094 00400 00410 00610 00625 00630 00671
DATE TIME DEPTH WATER DO TRANSP CNDUCTVY PH 1 ALK NH3—N TOT KJEL NO2 NO3 PHOS—QIS
FROM OF TEMP SECCHI FIELD CACO3 TOTAL N N—TOTAL O THO
TO DAY FEET CENT MG/L INCHES MICROMHO SU MG/L MG/L 146/L t4G/L MG/L P
73/05/07 16 30 0000 17.7 24 430 7.20 77 0.090 0.700 0.460 0.017
16 30 0006 17.6 8.4 430 7.70 76 0.100 0.600 0.470 0.017
16 30 0011 17.6 8.6 430 7.90 77 0.090 0.600 0.460 0.015
73/08/10 14 10 0000 30.4 30 536 8.60 76 0.040 0.900 0.040 0.009
14 10 0005 29.1 7.2 526 8.40 76 0.030 0.900 0.030 0.012
14 10 0009 28.6 6.0 518 8.00 76 0.030 0.900 0.040 0.016
73/10/18 16 00 0000 20.0 34 479 8.20 74 0.040 0.710 0.020 0.014
16 00 0010 19.2 7.4 469 7.80 76 0.060 0.500 O. 12S •.I17
11665 32217
DATE TIME DEPTH PHOS-TOT CHLRPHYL
FROM OF A
TO DAY FEET MG/L P UG/L
73/05/07 16 30 0000 0.058 11.7
16 30 0006 0.067
16 30 0011 0.061
73/08/10 14 10 0000 0.046 18.4
14 10 0005 0.065
14 10 0009 0.063
73/10/18 16 00 0000 0.037 6.9
16 00 0010 0.062

-------
APPENDIX D
WASTEWATER TREATMENT PLANT DATA

-------
STORET f(ETRIEVAL DATE 75/10/23
171121 AS171121 P000110
39 03 20.0 089 23 00.0
HILLSbORO MINE STP (COFFEEN)
17135 MONTGOMERY COUNT
0/COFFEEN LAKE
COFFEEN LAKE
I IEPALES 2141204
4 0000 FEET DEPTH
00630 00625 00610 00671 00665 50051 50053
DATE TIME DEPTH N02&N03 TOT KJEL NH3—N PHOS—DIS PHOS—TOT FLOW CONDUIT
FROM OF N-TOTAL N TOTAL ORTHO RATE FLOW—MGD
TO DAY FEET MG/L MG/L MG/L MG/I P MG/I P INST MGO MONTHLY
73/08/06 13 45 0.250 5.800 0.420 0.380 0.590 0.028 0.028
73/09/07 10 00 0.320 2.100 0.529 0.200 0.338 0.028 0.028
73/10/05 10 00 0.400 2.100 0.350 0.250 0.380 0.028 0.028
73/11/06 10 00 0.240 3.900 0.260 0.330 0.800 0.028 0.028
73/12/07 10 00 0.250 3.500 0.410 0.447 0.580 0.028 0.028
74/01/07 10 00 0.280 4.900 0.067 0.550 0.710 0.028 0.028
74/02/07 10 00 0.280 4.600 0.190 0.270 0.670 0.028 0.028
74/03/11 10 00 0.480 4.000 0.050K 0.410 0.b90 0.028 0.028
74/04/OS 10 00 0.160 4.600 0.190 0.410 0.670 0.028 0.028
74/05/13 10 00 0.330 4.000 0.070 0.380 0.810 0.028 0.028
74/06/1 10 00 0.240 3.700 0.0 50K 0.300 0.620 0.028 0.028
74/07/08 10 00 0.560 1.000K 0.050K 0.410 0.470 0.028 0.028
74/08/16 10 00 0.280 5.000 0.075 0.370 0.610 0.028 0.028
K VALUE KNOWN TO BE
LESS THAN INDICATED

-------
STOkET F ETPUEVAL DATE 7/10/23
171131 SF171131
39 03 35.0 089 24 13.0
COFFEEN POWER STAT ION
17 MONTGOMERY COUNT
D/COFFEEN
C OF F E EN
1 1€PALLS
4
P0000 ,0
DEPTH
2141204
0000 Ft.ET
00630
00625
00610
00671
00665
50051
50053
DATE
TIME
DEPTH
NO2 .NO3
TOT KJEL
N 13—N
PHOS—DIS
PHOS—TOT
FLOW
CONL)UIT
FROM
OF
N—TOTAL
N
TOTAL
ORTHO
RATE
FLOw—MG I )
TO
UAY
FEET
MO/L
MG/L
MG/L
MG/L P
M&/L P
INST MGD
MONTHLY
73/08/23
14 00
2.200
0.140
0.378
0.’.10
0.006
73/09/26
09 00
22.000
0.060
0.058
1.385
1.440
0.006
0.006
74/01/17
08 00
6.100
15.000
5.850
2.640
3.000
0.006
0.006
74/02/16
14 00
18.500
5.700
2.100
4.700
5.100
0.006
0.006
74/03/13
13 30
17.600
1.350
0.050K
3.600
3.900
0.006
0.006
74/04/19
14 00
13.000
1.000K
0.270
1.950
2.100
0.006
0.006
74/u /14
13 30
17.600
2.300
0.160
1.850
2.100
0.006
0.006
74/06/13
11 00
4.200
1.000K
0.115
0.680
0.760
0.006
0.006
74/07/11
13 30
2.320
0.400
0.290
0.895
0.900
0.006
0.006
74/08/14
13 00
14.300
1.000K
0.050K
1.400
1.400
0.006
0.006
74/u9/14
10 30
3.500
0.500K
0.068
0.810
0.8,0
0.006
0.006
74/10/13
15 00
3.520
1.000K
0.050K
0.310
0.310
0. OOo
0.006
K VALUE KNOWN To BE
LESS THAN INDICATED

-------