U.S. ENVIRONMENTAL PROTECTION AGENCY
          NATIONAL EUTROPHICATION SURVEY
                   WORKING PAPER SERIES
                                       REPORT
                                        ON
                                    HORSESHOE LAKE
                                    MADISON COUNTY
                                      ILLINOIS
                                    EPA REGION V
                                 WORKING PAPER No, 308
CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORV ALLIS, OREGON
                            and
ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
 699-440

-------
                                   REPORT
                                     ON
                               HORSESHOE LAI€
                               MADISON COUNTY
                                  ILLINOIS
                                EPA REGION V
                            WORKING PAPER No,  308
      WlTH THE COOPERATION OF THE
ILLINOIS ENVIRONMENTAL PROTECTION AGENCY
                AND THE
        ILLINOIS NATIONAL GUARD
              JUNE, 1975

-------
1
CONTENTS
Page
Foreword ii
List of Illinois Study Lakes iv
Lake and Drainage Area Map v
Sections
I. Conclusions 1
II. Lake and Drainage Basin Characteristics 4
III. Lake Water Quality Summary 5
IV. Nutrient Loadings 9
V. Literature Reviewed 14
VI. Appendices 15

-------
11
FOREWORD
The National Eutrophication Survey was initiated in 1972 in
response to an Administration commitment to investigate the nation-
wide threat of accelerated eutrophication to fresh water lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point—source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey’s eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [ 5303(e)], water
quality criteria/standards review [ 5303(c)], clean lakes [ 53l4(a,b)],
and water quality monitoring [ 5106 and 5305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.

-------
iii
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation’s
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environmental Protection Agency)
expresses sincere appreciation to the Illinois Environmental
Protection Agency for professional involvement and to the
Illinois National Guard for conducting the tributary sampling
phase of the Survey.
Dr. Richard H. Briceland, Director of the Illinois Environ-
mental Protection Agency; and Ronald N. Barganz, State Survey
Coordinator, and John J. Forneris, Manager of Region III, Field
Operations Section of the Division of Water Pollution Control,
provided invaluable lake documentation and counsel during the
Survey, reviewed the preliminary reports, and provided critiques
most useful in the preparation of this Working Paper series.
Major General Harold R. Patton, the Adjutant General of
Illinois, and Project Officer Colonel Daniel L. Fane, who directed
the volunteer efforts of the Illinois National Guardsmen, are also
gratefully acknowledged for their assistance to the Survey.

-------
iv
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF ILLINOIS
LAKE NAME COUNTY
Baldwin Randolph
Bloomington McLean
Carlyle Bond, Clinton, Fayette
Cedar Lake
Charleston Coles
Coffeen Montgomery
Crab Orchard Jackson, Williamson
Decatur Macon
DePue Bureau
East Loon Lake
Fox Lake
Grass Lake
Highland Silver Madison
Holiday LaSalle
Horseshoe Madison
Long Lake
Lou Yaeger Montgomery
Marie Lake
Old Ben Mine Franklin
Pistakee Lake, McHenry
Raccoon Marion
Rend Franklin, Jefferson
Sangchris Christian
Shelbyville Moultrie, Shelby
Slocum Lake
Springfield Sangamon
Storey Knox
Vandalia Fayette
Vermilion Vernilion
Wee Ma Tuk Ful ton
Wonder McHenry

-------
HORSESHOE LAKE
STORET NO. 1766
I. CONCLUSIONS
A. Trophic Condition:
Survey data indicate that Horseshoe Lake is eutrophic. It
ranked fourteenth in overall trophic quality when the 31 Illinois
lakes sampled in 1973 were compared using a combination of six
parameters*. Seventeen lakes had less median total phosphorus,
six had less and one had the same median dissolved phosphorus,
13 had less median inorganic nitrogen, 29 had less mean chloro-
phyll a, and 19 had greater mean Secchi disc transparency.
Survey limnologists reported algal blooms and some macrophytes,
and blue-green algae were present in large numbers and dominant
in all phytoplankton samples (see page 7).
B. Rate—Limiting Nutrient:
The algal assay results indicate that Horseshoe Lake was
phosphorus limited when the assay sample was collected (05/07/73).
These results are substantiated by the lake data. At all sampling
times, the mean N/P ratios were 17/1 or greater, and phosphorus
limitation would be expected.
C. Nutrient Controllability:
1. Point sources--The only known point source discharging
to Horseshoe Lake during the sampling year was the Granite City
* See Appendix A.

-------
2
Steel Company mill. The Company declined participation in the
Survey, and the nutrient content of the treated wastes from the
steel mill is not known. However, such wastes ordinarily are
of little significance as a source of phosphorus, although
concentrations of ammonia and nitrates may be quite high depend-
ing on the mill process(es) being used (U.S. EPA, 1974).
Lakeshore septic tanks were estimated to have contributed
only 0.6% of the total phosphorus input to Horseshoe Lake.
However, the phosphorus exports of the two gaged tributaries
were somewhat high, and it is likely that urban drainage in
the surrounding metropolitan areas (e.g., East St. Louis,
Granite City, and Madison) contributed significantly to the
overall phosphorus load.
The present annual phosphorus loading rate of 0.51 g/m 2 is
almost double that proposed by Vollenweider (Vollenweider and
Dillon, 1974) as a eutrophic rate (see page 13). Because the
lake is phosphorus limited, all phosphorus inputs should be
minimized to the greatest practicable extent to slow the
eutrophication of this water body.
2. Non—point sources-—Over 99% of the total phosphorus
input to Horseshoe Lake during the sampling year is attributed
to non-point sources. The unnamed stream D-l contributed 38.7%,

-------
        and the unnamed canal  E-l  contributed 13.0%.   Ungaged  tributaries
        were estimated to have contributed 44.3% of the total.
            As discussed above, a  part of the phosphorus export  of the
        unnamed stream D-l  and the unnamed canal  E-l  probably  should
        be attributed to urban drainage in the metropolitan  areas  rather
        than to non-point source contributions, since the export rates
        of these streams (see  page 12) were significantly higher than
        the rates of unimpacted Illinois streams sampled elsewhere
        (e.g., the phosphorus  export rate of Raccoon Creek,  tributary to
        nearby Raccoon Lake*,  was  only 36 kg/km2/yr).
* Working Paper No. 312.

-------
4
II. LAKE AND DRAINAGE BASIN CHARACTERISTICSt
A. Lake Morphometrytt:
1. Surface area: 8.78 kilometers 2 .
2. Mean depth: 2.1 meters.
3. Maximum depth: unknown.
4. Volume: 18.193 x 106 m 3 .
5. Mean hydraulic retention time: 420 days.
B. Tributary and Outlet:
(See Appendix C for flow data)
1. Tributaries -
Drainage Mean flow
Name area (km 2 )* ( m 3 /sec)*
Unnamed Stream D-1 30.8 0.2
Unnamed Canal E-1 9.6 <0.1
Minor tributaries &
immediate drainage - 33.9 0.3
Totals 74.3 0.5
2. Outlet -
Unnamed Canal A-l 83.1** 0.5
C. Precipitation***:
1. Year of sampling: 127.8 centimeters.
2. Mean annual: 94.9 centimeters.
t Table of metric conversions--Appendix B.
ft Forneris, 1973.
* For limits of accuracy, see Working Paper No. 175, “...Survey Methods,
1973-1 97611.
** Includes area of lake.
See Working Paper No. 175.

-------
5
III. LAKE WATER QUALITY SUMMARY
Horseshoe Lake was sampled three times during the open—water season
of 1973 by means of a pontoon—equipped Huey helicopter. Each time,
samples for physical and chemical parameters were collected from two
stations on the lake and from one or more depths at each station (see
map, page v). During each visit, a single depth-integrated (near bottom
to surface) sample was composited from the stations for phytoplankton
identification and enumeration; and during the first visit, a single
18.9-liter depth-integrated sample was composited for algal assays.
Also each time, a depth-integrated sample was collected from each of
the stations for chlorophyll a analysis. The maximum depth sampled at
both stations was 0.9 meters.
The lake sampling results are presented in full in Appendix D and
are summarized in the following table.

-------
A. SUMMARY O PI4YSICAL ANt)
Is O SAMPLIN& ( 5/ 7/73)
2 SITEs
CHEMICAL CrIANACTERISTICS F0P HORSESHOE LAKE
STO ET COOL 1766
2ND SAMPLING ( 8/10/i))
2 S ITtS
3RD SAMPLING (10/17/731
d SITES
aRAME1ER
HANuE
MEAN
MEDIAN
MANI.,E
MEAN
MEDIAN
MANGL
MEAN
MEDIAN
TEMP (C)
I5. — 16.0
1.9
15.9
27.9 — 28.6
28.3
28.3
(7.1 — 17.6
17.3
17.3
DISS 11*7 (MG/LI
9. — 9.7
9.6
9.6
8.2 — 9.0
8.6
8.6
10.8 — 10.8
10.8
10.8
CNocrvY (MCROHO)
470. — 560.
515.
515.
609. — 616.
613.
613.
536. — 559.
547.
547.
P .1 (STAND UNITS)
8.’. — 8.7
8.5
8.5
9.2 — 9.8
9.3
9.2
8.8 — 9.0
8.9
8.9
TuE AL1 (MG/LI
78. — 195.
(31.
(37.
39. — 59.
49.
49.
73. — 111.
88.
84.
TOE r (MG/LI
0.08) — 0.145
0.114
0.11’.
0.137 — 0.’.53
0.256
0.216
0.08b — 0.111
0.096
0.094
OWING P (MG/LI
0.006 — 0.101
0.053
0.053
0.0 1 — 0.030
0.026
0.026
0.009 — 0.015
0.012
0.011
N02 .N03 (MD/LI
2.100 — b.600
‘ ..390
4.390
0.200 — 0.270
0.252
0.270
0.130 — 0.810
0.455
0.440
AMMONIA (MG/LI
0.120 — 0.844
O. 83
0.480
0.150 — 0.210
0.180
0.180
0.030 — 2.000
0.975
0.935
KJEL N (MG/LI
0.500 — 2.800
(.65 (1
1.650
4.000 — 4.900
4.300
4.150
2.900 — 4.100
3.350
3.200
INOR(, N (‘lO/L)
3.020 — 6.720
...870
4.870
0.350 — 0.480
0.432
0.450
0.160 — 2.440
1.430
1.560
TUrAL ‘ . (MG/U
‘..9 8 0 — 7.100
6.040
6.040
4.200 — 5.170
‘ ..552
4.420
3.330 — 4.540
3.805
3.675
CMLR-’YL A (UG/LI
142.9 — 2 4.2
188.5
188.5
226.9 - 290.5
258.1
258.7
84.8 — 114.2
99.5
99.5
a
SECCitI (METERS) 0.4 — 0.6 0.5 0.5
0.2 — 0.3 0.3 0.3
0.5 — 0.7 0.6 0.6

-------
7
B. Biological characteristics:
1. Phytoplankton -
Sampling Dominant Algal units
Date Genera per ml
05/07/73 1. Oscillatoria p. 53,701
2. Synedra p. 40,977
3. Flagellates 5,176
4. Merismopedia p. 4,745
5. Scenedesmus p. 4,313
Other genera 12,939
Total 121,851
08/10/73 1. Raphidiopsis 51,017
2. Oscillatoria 26,167
3. Merismopedia 12,049
4. Lyngbya p. 11,107
5. Anabaenopsis p.. 6,777
Other genera 20,330
Total 127,447
10/17/73 1. Raphidiopsis p. 47,913
2. Lyngbya . a• 10,629
3. Flagellates 4,252
4. Merismopedia . p.. 4,252
5. Phormidium (?) p. 4,088
Other genera 15,699
Total
86,833

-------
8
Station
Number
01
02
01
02
01
02
2. Chlorophyll a -
Sampling Chlorophyll a
Date ________ ( pg/i )
05/07/73 132.9
244.2
08/10/73 226.9
290.5
10/17/73 114.2
84.8
C. Limiting Nutrient Study:
1. Autociaved, filtered, and nutrient spiked -
Ortho P Inorganic N Maximum yield
Spike (mg/i) Conc. (mg/i) Conc. (mg/i) ( mg/i -dry wt. )
Control 0.020 2.610 20.7
0.050 p 0.070 2.610 30.1
0.050 p + 1.0 N 0.070 3.610 37.2
1.0 N 0.020 3.610 19.4
2. Discussion —
The control yield of the assay alga, Selenastrum capri-
cornutum , indicates that the potential primary productivity
of Horseshoe Lake was high at the time the sample was col-
lected. Also, the significant increase in yield with the
addition of phosphorus alone, and the lack of response with
the addition of only nitrogen indicate the lake was phosphorus
limited.
The lake data also indicate limitation by phosphorus; at
all sampling times, the mean inorganic nitrogen/orthophosphorus
ratios were 17/1 or greater.

-------
9
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the Illinois National
Guard collected monthly near—surface grab samples from each of the
tributary sites indicated on the map (page v), except for the high
runoff month of March when two samples were collected. Sampling was
begun in June, 1973, and was completed in May, 1974.
Through an interagency agreement, stream flow estimates for the
year of sampling and a “normalized” or average year were provided by
the Illinois District Office of the U.S. Geological Survey for the
tributary sites nearest the lake.
In this report, nutrient loads for sampled tributaries were deter-
mined by using a modification of a U.S. Geological Survey computer
program for calculating stream loadings*. Nutrient loads for unsampled
“minor tributaries and immediate drainage” (“ZZ” of U.S.G.S.) were esti-
mated using the means of the nutrient loads, in kg/km 2 /year, at stations
D-1 and E-1 and multiplying the means by the ZL area in km 2 .
As far as is known, the only point source discharging to Horseshoe
Lake during the sampling year was the Granite City Steel Company mill,
but the Company declined participation in the Survey.
* See Working Paper No. 175.

-------
10
A. Waste Sources:
1. Known municipal — None
2. Known industrial* -
Mean Receiving
Name Product Treatment Flow (cms) Water
Granite City steel settling ? Unnamed Canal
Steel Co. ponds + E-l
anaer. ponds
* Anonymous, 1972.

-------
11
B. Annual Total Phosphorus Loading — Average Year:
1. Inputs -
kgP/ %of
Source yr total
a. Tributaries (non—point load) -
Unnamed Stream D—l 1,735 38.7
Unnamed Canal E-l 585 13.0
b. Minor tributaries & imediate
drainage (non-point load) - 1,985 44.3
c. Known municipal SIP’s — None - —
d. Septic tanks* - 25 0.6
e. Known industrial -
Granite City Steel Co. ? -
f. Direct precipitation** - 155 3.4
Total 4,485 100.0
2. Outputs -
Lake outlet - Unnamed Canal A-l 3,740
3. Net annual P accumulation — 745 kg.
* Estimate based on 82 lakeshore dwellings; see Working Paper No. 175.
** See Working Paper No. 175.

-------
12
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs -
kgN/ %of
Source yr total
a. Tributaries (non-point load) —
Unnamed Stream D-1 8,255 26.5
Unnamed Canal E—1 2,895 9.3
b. Minor tributaries & immediate
drainage (non-point load) - 9,660 31.0
c. Known municipal SIP’s - None — -
d. Septic tanks* - 875 2.8
e. Known industrial —
Granite City Steel Co.
f. Direct precipitation** - 9,480 30.4
Total 31,165 100.0
2. Outputs -
Lake outlet - Unnamed Canal A-i 82,785
3. Net annual N loss - 51,620 kg.
D. Mean Annual Non-point Nutrient Export by Subdrainage Area:
Tributary kg P/km 2 /yr kg N/km 2 /yr
Unnamed Stream D-l 56 268
Unnamed Canal E-l 61 302
* Estimate based on 82 lakeshore dwellings; see Working Paper No. 175.
** See Working Paper No. 175.

-------
13
E. Yearly Loading Rates:
In the following table, the existing phosphorus loading
rates are compared to those proposed by Vollenweider (Vollen-
weider and Dillon, 1974). Essentially, his “dangerous” rate
is the rate at which the receiving water would become eutrophic
or remain eutrophic; his “permissible” rate is that which would
result in the receiving water remaining oligotrophic or becoming
oligotrophic if morphometry permitted. A mesotrophic rate would
be considered one between “dangerous” and “permissible”.
Note that Vollenweider’s model may not be applicable to
water bodies with short hydraulic retention times.
Total Phosphorus Total Nitrogen
Total Accumulated Total Accumulated
grams/m 2 /yr 0.51 0.08 3.5 loss*
Vollenweider loading rates for phosphorus
(g/m 2 /yr) based on mean depth and mean
hydraulic retention time of Horseshoe Lake:
“Dangerous” (eutrophic rate) 0.26
“Permissible” (oligotrophic rate) 0.13
* There was an apparent loss of nitrogen during the sampling year. This
may have been due to nitrogen fixation in the lake, solubilization of
previously sedimented nitrogen, recharge with nitrogen-rich ground water,
or unknown and unsanipled point sources discharging directly to the lake.
Whatever the cause, a similar nitrogen loss has occurred at Shagawa Lake,
Minnesota, which has been intensively studied by EPA’s National Eutrophi-
cation and Lake Restoration Branch (Malueg et al., 1975).

-------
14
V. LITERATURE REVIEWED
Anonymous, 1972. Waste water treatment works data book. IL Env.
Prot. Agency, Springfield.
Forneris, John J., 1973. Personal communication (lake morphometry).
IL Env. Prot. Agency, Springfield.
Malueg, Kenneth W., D. Phillips Larsen, Donald W. Schults, and
Howard 1. Mercier; 1975. A six-year water, phosphorus, and
nitrogen budget for Shagawa Lake, Minnesota. Jour. Environ.
Qual., vol. 4, no. 2, pp. 236-242.
U.S. EPA, 1974. Iron and steel manufacturing point source category.
Effluent guidelines and standards. Federal Register 39, 126, 24114.
Vollenweider, R. A., and P. J. Dillon, 1974. The application of
the phosphorus loading concept to eutrophication research.
Natl. Res. Council of Canada Pubi. No. 13690, Canada Centre
for Inland Waters, Burlington, Ontario.

-------
15
VI. APPENDICES
APPENDIX A
LAKE RANKINGS

-------
LAKE DATA TO BE 05 (1) iN WANKINGS
LAKE MEDIAN MEDIAN 500- MEAN 15- MEDIAN
CODE LAKE NAME TOTAL P INORG N MEAN SEC CNLORA MON 00 DISS ORTHO P
170J LAKE BLOOMINGTON 0.050 5.730 464.667 26.200 14.800 0.020
1706 LAKE CARLYLE 0.084 1.270 477.889 17.367 11.000 0.032
1708 LAKE CMA, LES1ON 0.160 4.680 490.667 12.000 8.400 0.065
1711 CO FEEN LAKE 0.032 0.260 456.222 7.700 14.900 0.012
1712 CRAB ORCHAPZD LAKE 0.082 0.200 482.222 59.867 13.800 0.013
1714 LAKE DECATUR 0.129 3.750 479.571 43.000 14.500 0.062
1725 LONG LAKE 0.704 1.190 482.667 49.333 8.800 0.398
1726 LAKE LOU YAEG (R 0.186 1.600 489.583 10.662 11.400 0.076
1727 LAKE MARIE 0.098 0.370 467.667 39.533 14.700 0.057
173) PISTAKEE LAKE 0.203 0.370 485.667 75.867 7.000 0.062
1735 REND LAKE 0.011 0.210 471.500 23.533 12.700 0.012
1739 LAKE SHELBYVILLE 0.062 3.290 661.333 17.161 14.800 0.019
1740 SILVER LAKE (HIGHLAND) 0.226 0.970 489.500 5.822 14.800 0.057
1742 LAKE SPRINGFIELD 0.108 3.265 483.385 13.013 10.800 0.059
1748 VERMILION LAKE 0.109 4.695 481.500 31.150 14.200 0.050
1750 WONDER LAKE 0.426 0.890 486.000 98.533 7.800 0.132
1751 LAKE STORY 0.072 2.510 459.333 17.250 14.800 0.021
1752 DEPUE LAKE 0.438 4.050 490.000 58.833 7.600 0.216
1753 LAKE SANGCMWIS 0.050 1.970 475.417 19.292 14.500 0.009
1154 LAKE HOLIDAY 0.167 3.135 485.161 51.217 7.200 0.046
1755 FOK LAKE 0.219 0.375 ‘86. 167 63.850 8.800 0.083
175b G. ASS LAKE 0.301 0.820 481.000 83.500 5.900 0.093
1757 EAST LOON LAKE 0.076 0.120 450.000 22.300 14.900 0.018
1758 SLOCUM LAKE 0.865 0.200 487.333 220.100 5.800 0.362
1759 CEDAR LAKE 0.029 0.170 400.333 5.767 12.800 0.013
1760 LAKE WEMATUK 0.069 1.770 466.333 7.967 14.500 0.031
1762 RACCOON LAKE 0.106 0.310 484.333 19.217 13.800 0.020
0763 8ALOWIN LAKE 0.044 0.140 461.167 11.333 13.200 0.007

-------
LAKE DATA TO BE USED IN RANKINGS
LAKE MEDIAN MEDIAN 500— MEAN 15— MEDIAN
CODE LAKE NAME TOTAL P INORG N MEAN SEC CHLORA MIN 00 DISS ORTKO P
176’. LAKE VANDALIA 0.116 0.480 478.111 11.278 14.800 0.023
1765 OLD BEN MINE RESERVOIR 0.930 0.205 478.333 31.433 11.200 0.575
1766 HORSESHOE LAKE 0.127 0.705 482.833 182.250 6.800 0.018

-------
PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)
LAKE
CODE
LAKE NAME
MEDIAN
TOTAL P
MEDIAN
INORD N
500—
MEAN SEC
MEAN
CHLORA
15—
MIN
DO
MEDIAN
DISS ONTItO P
INDEX
No
1703
LAKE BLOOMINGTON
88 I
26)
0 I 0)
tb I 2’.)
47 I 14)
13 ( 2)
68
1 20)
296
1706
LAKE CARLYLE
63 1
19)
40 I 12)
63 1 19)
63 I 19)
63 C 19)
53 C 16)
345
1708
LAKE CHARLESTON
3? I
Il)
7 I 2)
0 I 0)
77 I 23)
77 1 23)
27 I 8)
225
1711
COFFEEN LAKE
97 I
29)
77 I 23)
93 I 28)
93 1 28)
2 1 0)
92 I 27)
454
1712
CRAB ORCHARD LAKE
67 I
20)
90 ( 27)
43 1 13)
20 6)
42 1 12)
85 I 25)
347
171’.
LAKE DECATUR
40
12)
13 ( 4)
53 I 16)
33 1 10)
30 C 8)
32 I 9)
201
1725
LONG LAKE
7 C
2)
43 I 13)
40 C 12)
30 I 9)
72 C 21)
3 I 1)
195
1726
LAKE LOU YAEGER
30
9)
37 C 11)
7 C 2)
87 I 26)
57 C 17)
23 ( 7)
241
1727
LAKE MARIE
60 C
18)
68 C 20)
73 I 22)
37 I 11)
23 C 7)
42 ( 12)
303
1733
PISTAKEE LAKE
27 C
8)
68 1 20)
23 C 7)
13 1 4)
90 C 27)
32 1 9)
253
1735
RENL) LAKE
77 I
23)
80 C 24)
70 21)
50 1 15)
53 I 16)
92 1 27)
422
1739
LAKE SHELBYVILLE
83 I
25)
17 1 5)
83 C 25)
70 1 21)
13 I 2)
73 1 22)
339
17’.0
SILVER LAKE (HIGHLAND)
20 (
6)
47 C 14)
10 C 3)
97 4 29)
13 C 2)
42 C 12)
229
1742
LAKE SPRINGFIELD
53 1
16)
20 C 6)
33 10)
73 4 22)
67 1 20)
37 I 11)
283
1748
VERMILION LAKE
50 I
15)
3 1 1)
47 1 14)
43 13)
37 1 11)
47 C 14)
227
1750
WONDER LAKE
13 C
4)
50 C 15)
20 C 6)
7 C 2)
80 1 24)
13 I 4)
183
1751
LAKE STORY
73 C
22)
27 C 8)
90 1 27)
67 C 20)
13 1 2)
63 C 19)
333
1752
DEPUE LAKE
10 C
3)
10 ( 3)
3 1 1)
23 C 7)
83 1 25)
10 I 3)
139
1753
LAKE SANGCHRIS
88 C
26)
30 C 9)
67 1 20)
57 C 17)
30 1 8)
97 ( 29)
369
1754
LAKE HOLIDAY
33 (
10)
23 C 7)
27 C 8)
27 I 8)
87 C 26)
50
1 15)
247
1755
FOX LAKE
23 1
7)
63 C 19)
17 1 5)
I ? I 5)
72 C 21)
20
C 6)
212
1756
GRASS LAKE
17 I
5)
53 C 16)
50 I 15)
10 I 3)
97 C 29)
17
1 5)
244
1757
EAST LOON LAKE
70 C
21)
100 C 30)
97 1 29)
53 1 16)
2 C 0)
77
1 23)
399
1758
SLOCUM LAKE
3 I
1)
87 1 26)
13 1 4)
0 I 0)
100 C 30)
7
1 2)
210
1759
CEDAR LAKE
100 C
30)
93 1 28)
100 C 30)
100 I 30)
50 C IS)
85
C 25)
528
176)
LAKE WEMATUK
80 C
24)
33 C 10
77 C 23)
90 I 27)
30 C 8)
57
1 17)
367
1762
RACCOON LAKE
57 I
17)
73 C 22)
30 C 9)
60 I 18)
42 1 12)
68
1 20)
330
1763
BALUWIN LAKE
93 1
26)
97 C 29)
87 C 26)
80 I 24)
47 C 14)
100
C 30)
504

-------
PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)
LAKE MEDIAN MEDIAN 500— MEAN 15— MEDIAN INOEX
CODE LAKE NAME TOTAL P INORG N MEAN SEC CHLORA HIN DO DISS ORTHO P NO
1764 LAKE VANDALIA 47 ( 14) 60 C 18) 60 C 18) 83 ( 25) 13 ( 2) 60 ( 18) 323
1765 OLD bEN MINE RESERVOIR 0 ( 0) 83 C 25) 57 ( 17) 40 C 12) 60 C 18) 0 C 0) 240
1766 HORSESHOE LAKE 43 ( 13) 57 C 17) 37 ( 11) 3 C 1) 93 ( 28) 80 ( 24) 313

-------
LAKES RANKED BY INDEA NOS.
RANK LAKE CODE LAKE NAME INDEX NO
I 1759 CEDAR LAKE 528
2 1763 BALDWIN LAKE 504
3 1711 COFFEEN LAKE 454
4 1735 REND LAKE 422
S 1797 EAST LOON LAKE 399
6 1753 LAKE SANGCHRIS 369
7 1761 LAKE WEHATuK 367
8 1712 CRAB ORCHARD LAKE 347
9 1706 LAKE CARLYLE 345
10 1139 LAKE SHELBYVILLE 339
IL 1751 LAKE STORY 333
12 1762 RACCOON LAKE 330
13 1764 LAKE VANDALIA 323
14 1766 HORSESHOE LAKE 313
15 1727 LAKE MARIE 303
16 1703 LAKE BLOONINGTON 296
17 1742 LAKE SPRINGFIELD 283
18 1733 PISTAKEE LAKE 253
19 175’. LAKE HOLIDAY 247
20 1756 GRASS LAKE 244
21 1726 LAKE LOU YA(GER 241
22 1765 OLD BEN MINE RESERVOIR 240
23 1740 SILVER LAKE (HIGHLAND) 229
24 1748 VERMILION LAKE 227
25 1708 LAKE CHARLESTON 225
26 1755 FO LAKE 212
27 1758 SLOCUM LAKE 210
28 1714 LAKE DECATUR 201

-------
LAKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
29 1725 LONG LAKE 195
30 1750 WONDER LAKE 183
31 1752 D PUE LAKE 139

-------
Four
Corn
Stallings
I
a
Edelhardt
Lake
—S
HORSESHOE LAKE
Tributary Sampling Site
Lake Sampling Site
C

-------
APPENDIX B
CONVERSIONS FACTORS

-------
CONVERSION FA(;TORS
1-lectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 = feet
Cubic meters x 8.107 x lO = acre/feet
Square kilometers x 0.3861 = square miles
Cubic meters/sec x 35.315 = cubic feet/sec
Centimeters x 0.3937 = inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = lbs/square mile

-------
APPENDIX C
TRIBUTARY FLOW DATA

-------
TRIBUTARY FLOW INFORMATION FUR ILLINOIS
10/23/75
MO (SESHOt LAKE
TOTAL DRAINAGE AREA OF LAKE(SO KM) 83.1
NORMALILEO FLOWS(CMS)
JAN FE8 MAR A R MAY JUN JUL AUG
TOTAL ORAINAGE ARIA OF LAKE
SUM OF SUES—DRAINAGE AREAS
SIP OCT NOV DEC MEAN
TRIBUTARY MONTH YEAR
MEAN FLOW DAY
FLOW DAY
FLOW DAY FLOW
LAKE COUE 1166
SUB-DRAINAGE
TRIBUTARY AREA(SO KM)
1766A1
8J.1
0.53
0.81
1.00
1.03
0.80
0.68
0.40
0.21
0.15
0.16
0.24
0.28
0.52
1766 1 )1
30.8
0.19
0.30
0.36
0.37
0.29
0.25
0.15
0.08
0.05
0.05
0.08
0.10
0.19
1766E 1
9.6
0.Ob
0.09
0.11
0.11
0.09
0.08
0.04
0.02
0.01
0.01
0.02
0.03
0.06
1786ZZ
42.7
0.2d
0.41
0.52
0.54
0.42
0.35
0.21
0.11
0.08
0.09
0.13
0.15
0.28
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
SUMMARY
83.1 TOTAL
FLOW IN = 6.28
83.1 TOTAL
FLOW OUT
= 6.28
1766A1
6
73
1.56
3
0.93
7
73
0.26
7
0.23
8
73
0.14
5
0.05
9
73
0.09
1
0.03
10
73
0.09
13
0.25
11
73
0.15
‘.
0.08
12
73
0.82
1
0.25
1
74
1.70
5
0.48
2
74
1.90
16
0.54
3
74
1.78
2
1.22
“
74
1.13
6
0.88
5
74
1.39
4
0.51
176601
8
9
10
11
12
I
2
3
4
S
73
73
73
73
73
74
74
74
7’.
74
0.05
0.03
0.03
0.05
0.28
0.62
0.71
0.65
0.40
0.51
5
1
13
4
1
5
18
2
6
4
0.02
0.01
0.08
0.03
0.09
0.18
0.20
0.45
0.31
0.21
176611
8
9
10
11
12
I
2
3
4
5
73
73
73
73
73
7’.
74
7’.
7’.
14
0.01
0.ul
0.01
0.01
0.08
0.18
0.22
0.20
0.12
0.15
5
1
13
4
1
5
lb
2
6
4
0.01
0.00
0.02
0.01
0.03
0.05
0.06
0. 1 ’.
0.10
0.06
1.47
0.54
0.16
16
18

-------
TRIbUTARY FLOW INFOI MATION FON ILLINOIS 10/23/75
LAt
-------
APPENDIX D
PHYSICAL and CHEMICAL DATA

-------
STORET RETRIEVAL DATE 75/10/23
17b601
38 ‘ 1 01.0 090 06 48.0
HORSESHOE LAKE
17119 ILLINOIS
I1EPALES 2111202
3 0003 FEET DEPTH
00010 00300 00077 00094 00400 00410 00610 00625 00630 00671
DATE TIME DEPTH WATER DO TRANSP CNDUCTVY PH 1 ALK NH3—N TOT KJEL NO2 NO3 PHOS—DIS
FROM OF TEMP SECCHI FIELO CACO3 TOTAL N N—TOTAL ORTHO
TO DAY FEET CENT MG/L INCHES MICROMHO SO MG/L MG/L MG/L MG/L MG/L P
73/05/07 12 45 0000 15.8 9.7 24 560 8.40 78 0.840 2.800 2.180 0.006
73/08/10 16 25 0000 28.1 8 610 9.80 39 0.150 4.000 0.200 0.021
16 25 0003 27.9 8.2 609 9.20 40 0.210 4.100 0.270 0.023
73/10/17 13 55 0000 17.1 18 536 9.00 111 0.030 3.200 0.130 0.009
13 55 0002 17.1 10.8 536 9.00 74 0.490 2.900 0.440 0.0 15
00665 32217
DATE TIME DEPTH PHOS—TOT CHLRPHYL
FROM OF A
TO DAY FEEl M(.,/L P UG/L
73/u5/07 12 45 0000 0.083 132.9
73/08/10 16 25 0000 0.137 226.9
16 25 0003 0.180
73/10/17 13 55 0000 0.093 114.2
13 55 0002 0.096

-------
STORET RETRIEVAL DATE 75/10/23
176602
38 42 04.0 090 05 17.0
HORSESHOE LAKE
17119 ILLINOIS
1 IEPALES
3
2111202
0003 FEET DEPTH
73/05/07 13 00 0000
73/08/10 16 45 0000
16 45 0003
73/10/17 14 10 0000
14 10 0002
0.145
0.253
0.453
0.086
0.117
DATE
TIME DEPTH
FROM
OF
TO
DAY FEET
73/05/07
13 00 0000
73/08/10
16 45 0000
16 45 0003
73/10/17
14 10 0000
14 10 0002
DATE
TIME DEPTH
FROM
OF
TO
DAY FEET
00010
00300
00077
00094
00400
00410
00610
00625
00630
00671
WATER
DO
TRANSP
CNDUCTVY
PH
1
ALK
NH3—N
TOT KJEL
NO2 NO3
PHOS—DIS
TEMP
SECCHI
FIELD
CACO3
TOTAL
N
N—TOTAL
ORTHO
CENT
HG/L
INCHES
MICROMHO
SU
MG/L
MG/L
NG/L
MG/L
MG/L P
16.0
9.5
15
470
8.70
196
0.120
0.500
6.600
0.101
28.6
12
615
9.20
58
0.170
4.200
0.270
0.029
28.6
9.0
616
9.20
59
0.190
4.900
0.270
0.030
17.6
26
559
8.80
73
2.000
4.100
0.440
0.009
17.6
10.8
557
8.80
94
1.380
3.200
0.810
0.014
00665 32217
PHOS—TOT CHLRPHYL
A
MG/L P LIG/L
244 • 2
290.5
84.8

-------
APPENDIX E
TRIBUTARY DATA

-------
STORET ET UEVAL DATE 75/10/23
1766A1
38 ‘.0 25.0 090 04 45.0
UNNAMED CANAL
17055 7.5 MONKS MOUND
0/HORSESHOE LAKE
Sr T 111 t3I DG 2 Ml NE OF FAIRMONT CITY
11E 1-’ALES 211120’.
4 0000 FEET DEPTH
00b30 00625 00610 00671 00665
DATE TIME DEPTH N02&N03 TOT KJEL NM3—N PrIOS—DIS PhOS—TOT
FROM OF N—TOTAL N TOTAL ORTHO
TO UAY FEET M&/L MG/L M(,/L MG/L P MG/L
73/06/03 09 00 0.670 3. 00 0.115 0.058 0.430
73/07/07 10 15 3.700 0.043 0.105 0.380
73/u8/05 10 30 0.110 3.800 0.026 0.068 0.330
73/09/01 09 30 0.160 1.890 0.096 0.066 0.300
73/10/13 09 40 0.640 4.000 1.300 0.040 0.200
73/11/04 09 35 0.910 3.300 1.440 0.014 0.130
73/12/01 09 30 1.180 4.000 1.440 0.015 0.120
74/01/05 08 45 1.850 3.900 2.400 0.008 0.040
74/02/lb 10 00 1.800 4.600 1.500 0.015 0.140
74/0i/0 10 30 2. OUO 3.700 1.650 0.010 0.165
74/03/16 10 30 2.200 4.800 2.100 0.010 0.300
74/0 ’./06 10 30 2.400 4.200 0.750 0.020 0.160
7’./0b/04 10 30 1.300 2.500 0.240 0.025 0.210

-------
STORET RETRIEVAL DATt 75/10/23
1Th6u1
38 42 30.0 090 04 15.0
UNNAMED STREAM
11 7.5 MONKS MOUND
T/riORSESHOE LAKE
H Y bNDG NE EDGE OF MOLLLNrSROCKS
L1EPALES 2111204
4 0000 FEET DEPTH
00630 00625 006)0 00671 00665
DATE TIME DEPTrI NU2 NO3 TOT PcJEL NI-i3N PHOSDIS PriOS—TOT
FROM OF N—TOTAL N TOTAL ORTHO
TO OAY FEET MG/L MG/L MG/L MG/L P MG/L P
73/08/05 10 40 0.010K 2.310 0.005K 0.160 0.410
73/09/01 09 40 0.010K 0.780 0.039 0.190 0.450
73/10/13 09 55 0.0d4 2.520 3.189 0.095 0.447
73/11/04 10 00 0.260 0.800 0.036 0.066 0.175
73/12/01 10 00 0.140 1.200 0.048 0.240 0.470
74/0i/0 , 09 30 0.352 0.600 0.120 0.1’i0 0.170
74/02/16 0 00 0.120 0.600 0.02U 0.050 0.120
74/03/02 10 00 O.1 ’ . 1.100 p.020 0.075 0.260
74/03/16 10 00 0.140 1.000 0.095 0.070 0.190
74/04/06 09 45 t ..028 1.000 0.045 0.105 0.225
74/05/04 09 30 J.010 1.600 0.020 0.117 0.420
K V. LUL KNOWN 10 bL
LE 5 THAN INOIcArED

-------
STOi ET RETRIEVAL DATE 75/10/23
1 766E 1
38 42 09.0 090 06 45.0
UNNAMED DITCH
17 7.5 MONKS MOUND
T/HORSF1OE LAKE
RI 162 BRUG S END OF GRANITE CITY
1 IEPALES 2111204
4 0000 FEET DEPTH
00630 00625 00610 00671 00665
DATE TIME DEPTH NU2 NO3 TOT KJEL Nt-43—N PHOS—DIS PHOS—TOT
FROM OF N—TOTAL N TOTAL ORTHO
TO DAY FEET M6/L MG/L M( /L MG/L P MG/L
73/08/05 10 50 0.028 2.200 0.230 0.088 0.185
73/09/01 0.240 2.500 0.091 0.100 0.230
73/10/13 10 30 0.380 1.260 0.161 0.240 0.410
73/11/0’. 10 37 0. lbd 0.400 0.084 0.066 0.155
73/12/01 10 30 0.140 0.900 0.148 0.092 0.450
74/01/05 09 00 0.252 0.900 0.528 0.032 0.170
7 ’ ./02/16 09 30 0.152 1.500 0.430 0.050 0.340
7 ’ ./03/0 09 00 0.240 0.900 3.210 0.055 0.310
7’./0J/16 09 30 0.350 1.400 0.375 0.130 0.510
74/04/0 , 09 00 0.192 1.6’S 0.140 0.085 0.551
74/u /0 ’. 09 00 0.640 0.700 0.090 0.045 0.300

-------