U.S. ENVIRONMENTAL PROTECTION AGENCY
           NATIONAL EUTROPHICATION SURVEY
                    WORKING PAPER SERIES
                                        REPORT
                                          ON
                                       LAI€ STOREY
                                       KNOX COUNTY
                                        ILLINOIS
                                      EPA REGION V
                                  WORKING PAPER No, 318
CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
                            and
ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
 699-440

-------
                                   REPORT
                                     ON
                                 LAI€ STOREY
                                 KNOX COUNTY
                                  ILLINOIS
                                EPA REGION V
                           WORKING PAPER No,  318
      WITH THE COOPERATION OF THE
ILLINOIS ENVIRONMENTAL PROTECTION AGENCY
                AND THE
        ILLINOIS NATIONAL GUARD
              JUNE,  1975

-------
1
CONTENTS
Page
Foreword ii
List of Illinois Study Lakes iv
Lake and Drainage Area Map v
Sections
I. Conclusions 1
II. Lake and Drainage Basin Characteristics 3
III. Lake Water Quality Summary 4
IV. Nutrient Loadings 8
V. Literature Reviewed 13
VI. Appendices 14

-------
ii
FOREWORD
The National Eutrophication Survey was initiated In 1972 in
response to an Administration commitment to investigate the nation-
wide threat of accelerated eutrophication to fresh water lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point-source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey’s eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and Its drainage basin is
documented. The report Is formatted to provide state environmental
agencies with specific information for basin planning [ 3O3(efl, water
quality criteria/standards review [ 3O3(c)], clean lakes [ 314(a,b)],
and water quality monitoring [ lO6 and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.

-------
111
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation’s
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLE DGMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environmental Protection Agency)
expresses sincere appreciation to the Ilinols Environmental
Protection Agency for professional involvement and to the
Illinois National Guard for conducting the tributary sampling
phase of the Survey.
Dr. Richard I-I. Briceland, Director of the Illinois Environ-
mental Protection Agency; and Ronald M. Barganz, State Survey
Coordinator, and John J. Forneris, Manager of Region III , Field
Operations Section of the Division of Water Pollution Control,
provided invaluable lake documentation and counsel during the
Survey, reviewed the preliminary reports, and provided critiques
most useful in the preparation of this Working Paper series.
Major General Harold R. Patton, the Adjutant General of
Illinois, and Project Officer Colonel Daniel L. Fane, who directed
the volunteer efforts of the Illinois National Guardsmen, are also
gratefully acknowledged for their assistance to the Survey.

-------
iv
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF ILLINOIS
LAKE NAME COUNTY
Baldwin Randolph
Bloomington McLean
Carlyle Bond, Clinton, Fayette
Cedar Lake
Charleston Coles
Coffeen Montgomery
Crab Orchard Jackson, Williamson
Decatur Macon
DePue Bureau
East Loon Lake
Fox Lake
Grass Lake
Highland Silver Madison
Holiday LaSalle
Horseshoe Madison
Long Lake
Lou Yaeger Montgomery
Marie Lake
Old Ben Mine Franklin
Pistakee Lake, McHenry
Raccoon Marion
Rend Franklin, Jefferson
Sangchris Christian
Shelbyville Moultrie, Shelby
Slocum Lake
Springfield Sanganion
Storey Knox
Vartdalia. Fayette
Venii lllon Vermilion
Wee Ma Tuk Fulton
Wonder McHenry

-------
go
goon,
(I
(
I
r)
:111.
Map Location
LAKE
S TORE V
I
I-
1
(
LAKE STOREY
x
Tributary Sampling Site
Lake Sampling Site
Sewage
Treatment Plant
o 1/2 1 11/2
I I I
I I I
0 1/4 1/2 3/4
yJn.
Scale
Mi.
405*’

-------
LAKE STOREY
STORET NO. 1751
I. CONCLUSIONS
A. Trophic Condition:
Survey data indicate that Lake Storey is eutrophic. It
ranked eleventh in overall trophic quality when the 31 Illinois
lakes sampled in 1973 were compared using a combination of six
lake parameters*. Eight lakes had less median total phosphorus,
11 had less median dissolved phosphorus, 22 had less median
inorganic nitrogen, ten had less mean chlorophyll a, and three
had greater mean Secchi disc transparency. Marked depression
of dissolved oxygen with depth occurred at both sampling
stations in August, and depletion occurred at station 1 at 20
feet in depth in October.
Survey limnologists noted a blue-green algal bloom in pro-
gress in October and reported much emergent and submerged
vegetation in the, shoreline shallows.
B. Rate—Limiting Nutrient:
The algal assay results indicate the lake was phosphorus
limited at the time the sample was collected (05/12/73). These
findings are substantiated by the lake data; i.e., the mean N/P
ratios were 32/1 or greater at all sampling times.
* See Appendix A.

-------
2
C. Nutrient Controllability:
1. Point sources—-The phosphorus contribution of known point
sources amounted to 54.5% of the total reaching Lake Storey during
the sampling year. These point sources were Carl Sandburg Junior
College (51.5%) and the Hawthorn Motel (3.0%).
The present phosphorus loading rate of 2.18 g/m 2 /yr is nearly
five times that proposed by Vollenweider (Vollenweider and Dillon,
1974) as a eutrophic rate (see page 12). A 100% reduction in phos-
phorus loading from the known point sources would only lower the
overall loading rate to 0.99 g/m 2 /yr (about twice the eutrophic
rate). However, because Lake Storey is phosphorus limited, all
phosphorus inputs to the lake should be minimized to the greatest
practicable extent to slow the aging of this water body.
2. Non-point sources--Over 45% of the total phosphorus input
to Lake Storey came from non-point sources during the sampling
year. The Unnamed Creek A-2 contributed 31.2%, and the ungaged
tributaries were estimated to have contributed 13.4% of the total
phosphorus load.
The phosphorus export rate of the Unnamed Creek A-2 was a
relatively low 29 kg/krn 2 /yr (see page 12).

-------
II.   LAKE AND DRAINAGE  BASIN  CHARACTERISTICS'1"
     A.   Lake Morphometry   :
         1.   Surface  area:  0.53  kilometers2.
         2.   Mean  depth:  4.6 meters.
         3.   Maximum  depth:   >7.2 meters.
         4.   Volume:  2.438 x 106 m3.
         5.   Mean  hydraulic retention time:  282 days.
     B.   Tributary and  Outlet:
         (See  Appendix  C for flow data)
         1.   Tributaries -
                                              Drainage       Mean flow
             Name                              area (km2)*    (m3/sec)*
             Unnamed  Creek (A-2)                  12.4           0.1
            Minor tributaries &
              immediate drainage -                 5.3          <0.1
                         Totals                  17.7           0.1
        2.  Outlet -
            Unnamed Creek (A-l)                  18.2**         0.1
    C.  Precipitation***:
        1. 'Year of sampling:  140.7 centimeters.
        2.  Mean annual:   85.5 centimeters.
t Table of metric conversions—Appendix B.
tt Forneris, 1973.
* For limits of accuracy, see Working Paper No.  175, "...Survey  Methods,
  1973-1976".
** Includes area of lake.
*** See Working Paper No. 175.

-------
4
III. LAKE WATER QUALITY SUMMARY
Lake Storey was sampled three times during the open-water season
of 1973 by means of a pontoon-equipped Huey helicopter. Each time,
samples for physical and chemical parameters were collected from two
stations on the lake and from a number of depths at each station (see
map, page v). During each visit, a single depth-integrated (4.6 in or
near bottom to surface) sample was composited from the stations for
phytoplankton identification and enumeration; and during the first
visit, a single 18.9-liter depth-integrated sample was composited for
algal assays. Also each time, a depth-integrated sample was collected
from each of the stations for chlorophyll a analysis. The maximum
depths sampled were 6.1 meters at station 1 and 3.7 meters at station 2.
The sampling results are presented in full in Appendix 0 and are
summarized in the following table.

-------
..
‘4pt. -Y
)
- V .ICAL A’ .., £ik_MICAL
L kALFL (L ,I ICS
FO’
LAIcE SIOPY
ST0 Y1T
CuL)L 11,1
151
SAM LI: .o
¶/ )2/Ii
2N1) SAMPLING I 8/
9/ /. )) 3PLj SAMI LING (10/17/73)
‘ 5111’ 2 SuES 2 SITES
A- AlL1t8
)l ) Ar
MtU146
A,.,t.
MLAN
MLtJIAN
PIANOL
MEAN
MEDIAN
1E’ I c)
l’..i
—
16. I
18.5
l .l
— 2 i.u
2s.0
25.5
17.0
— 17.9
17.?
17.8
jIGS JAY (MG/LI
‘.J
- I l. ?
.I
9.7
0.2
— 6.8
3.2
2.8
0.0
— 9.0
5.4
5.0
CNDCIVY (MCWOMO)
‘80.
— 575.
55’..
545.
380.
— 417.
422.
408.
390.
— 485.
‘.08.
399.
i (SlANt) UNITS)
7.’.
— N.’.
8.?
8.2
7.3
— 9.1
6.1
6.0
7.3
— 8.5
8.0
7.9
TO) AL6 (MG/LI
(75.
— ?‘0.
I9’ .
to2.
l lc.
— 2(0.
ISO.
141.
(25.
— 248.
173.
(57.
TOT ‘ (10/LI
0.07?
- 0.203
0.O ’u7
0.Ofo
0.034
— 0.070
0.052
(1.054
0.053
— 0.321
0.125
0.075
(JPITHI) P (MG/LI
0.016
— 0.0’6
0.025
0.01’.
0.010
— 0.021
0.015
0.013
0.021
— 0.233
0.066
0.031
N02•N03 (MG/L)
2.000
- 5.130
3.430
3.160
0.810
— 3.690
(.597
1.180
0.160
— 2.890
1.224
0.990
AMMONIA (MG/Li
0.160
— 0.660
0.370
0.280
0.080
— 1.100
0.567
0.355
0.040
— M.720
0.920
0.430
AJEL N (Mo/Li
0.700
— 1.000
0.833
0.800
1.500
— 2. 00
2.050
2.000
0.900
— 6.200
1.900
1.300
16040 N (MG/L)
2.240
- 5.460
3.800
3.595
1.040
— 4.130
2.163
2.075
1.340
— 4.880
2.144
1.440
TOTAL N (MG/U
2.700
- 4.030
4.2b3
4.000
2.900
— 5.190
3.647
3.440
2.180
— 6.360
3.124
2.360
CHL4PYL A (UC./L)
6.6
- 23.C
1’.’Y
14.0
6.1
— 7.8
6.9
6.9
16.2
— 43.8
30.0
30.0
SECC-’I (MLTE4S)
I.’
1.5
1.4
1.4
0.7
— 0.’.
0.6
0.8
0.8
— 0.9
0.9
0.9
U,

-------
6
B. Biological characteristics:
1. Phytoplankton -
Sampling Dominant Algal units
Date Genera per ml
05/12/73 1. Asterionella p. 1,491
2. Stephanodiscus !P• 983
3. Melosira p. 813
4. Anabaena 576
5. Synedra p .. 68
Other genera 168
Total 4,099
08/09/73 1. Coccoid cells 360
2. Oscillatorla a• 206
3. oe1astrum p. 129
4. Oocystis . 2.• 77
5. Crucigenia • p.. 77
Other genera 256
Total 1,105
10/17/73 1. Aphanizomenon .p.. 2,524
2. Coelastrum p. 677
3. Anabaena . 431
4. Mlcrocystis p_. 431
5. Melosira p. 246
Other genera 801
Total 5,110

-------
7
08/09/73 01
02
10/17/73 01
02
C. Limiting Nutrient Study:
1. Autoclaved, filtered, and nutrient spiked -
Ortho P Inorganic N
Spike (mg/i) Conc. (mg/i) Conc. (mg/i ) _____________
Control 0.015 4.475
0.050 P 0.065 4.475
0.050 P + 1.0 N 0.065 5.475
1.0 N 0.015 5.475
2. Discussion -
The control yield of the assay alga, Seienastrum capri-
cornutum , indicates that the potential primary productivity
of Lake Storey was moderately high at the time the sample
was collected (05/12/73). Also, the addition of phosphorus
alone produced a significant increase in yield, but no such
increase occurred with the addition of only nitrogen. This
indicates limitation by phosphorus.
The lake data substantiate phosphorus limitation. At
all sampling times, the mean inorganic nitrogen/orthophosphorus
ratios were 32/1 or greater.
2. Chlorophyll a —
Sampl Ing
Date
05/1 2/73
Station
Number
01
02
Chlorophyll a
( ig/l)
6.6
23.0
6.1
7.8
16.2
43.8
Maximum yield
( mg/l-dry wt. )
3.3
30.6
32.2
3.3

-------
8
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the Illinois National
Guard collected monthly near-surface grab samples from each of the
tributary sites indicated on the map (page v), except for the high
runoff months of February and March when two samples were collected.
Sampling was begun in June, 1973, and was completed in May, 1974.
Through an interagency agreement, stream flow estimates for the
year of sampling and a “normalized” or average year were provided by
the Illinois District Office of the U.S. Geological Survey for the
tributary sites nearest the lake.
In this report, nutrient loads for sampled tributaries were deter-
mined by using a modification of a U.S. Geological Survey computer
program for calculating stream loadings*. Nutrient loads shown are
those measured minus point-source loads, if any.
Nutrient loads for unsampled “minor tributaries and immediate
drainage” (“ZZ” of U.S.G.S.) were estimated using the nutrient loads,
in kg/km 2 /year, at station A-2 and multiplying by the ZZ area in km 2 .
The wastewater treatment plant operators of Carl Sandburg Junior
College and the Hawthorn Motel did not participate in the Survey, and
nutrient loads were estimated at 1.134 kg P and 3.401 kg N/capita/year.
* See Working Paper No. 175.

-------
9
A. Waste Sources:
1. Known muniCipal*
Pop. Mean Flow Receiving
Name Served Treatment ( m 3 /d) Water
Carl Sandburg 525** sand filter 198.7 Lake Storey
Junior College
Hawthorn 30 sand filter 11.4 Lake Storey
Motel
2. Known industrial - None
* Anonymous, 1972.
** 1,400 students x 0.375 population equivalent.

-------
10
B. Annual Total Phosphorus Loading — Average Year:
1 . Inputs -
kgP/ %of
Source yr total
a. Tributaries (non-point load) -
Unnamed Creek (A-2) 360 31 .2
b. Minor tributaries & immediate
drainage (non—point load) - 155 13.4
c. Known municipal STP’s —
Carl Sandburg Junior College 595 51.5
Hawthorn Motel 35 3.0
d. Septic tanks — Unknown
e. Known industrial — None — -
f. Direct precipitatiorl* - 10 0.9
Total 1,155 100.0
2. Outputs -
Lake outlet - Unnamed Creek (A-i) 355
3. Net annual P accumulation — 800 kg.
* See Working Paper No. 175.

-------
11
C. Annual Total Nitrogen Loading — Average Year:
1. Inputs -
kgN/ %of
Source yr total
a. Tributaries (non—point load) —
Unnamed Creek (A—2) 14,445 62.6
b. Minor tributaries & immediate
drainage (non-point load) - 6,175 26.8
c. Known municipal SIP’s -
Carl Sandburg Junior College 1,785 7.7
Hawthorn Motel 100 0.4
d. Septic tanks - Unknown
e. Known industrial - None —
f. Direct precipitation* - 570 2.5
Total 23,075 100.0
2. Outputs -
Lake outlet - Unnamed Creek (A-l) 16,620
3. Net annual N accumulation - 6,455 kg.
* See Working Paper No. 175.

-------
12
D.
E.
Mean Annual Non-point Nutrient Export by Subdrainage Area:
Tributary kg P/km 2 /yr kg N/km 2 /yr
Unnamed Creek (A-2) 29 1,165
Yearly Loading Rates:
In the following table, the existing phosphorus loading
rates are compared to those proposed by Vollenweider (Vollen-
welder and DIllon, 1974). Essentially, his °dangerous” rate
is the rate at which the receiving water would become eutrophic
or remain eutrophic; his “perniissible° rate is that which would
result in the receiving water remaining oligotrophic or becoming
oligotrophic if morphometry permitted. A mesotrophic rate would
be considered one between “dangerous” and “permissible”.
Note that Vollenweider’s model may not be applicable to
water bodies with short hydraulic retention times.
Total Phosphorus Total Nitrogen
Total Accumulated Total Accumulated
grams/m 2 /yr 2.18 1.51 43.5 12.2
Vollenweider loading rates for phosphorus
(gfm 2 /yr) based on mean depth and mean
hydraulic retention time of Lake Storey:
“Dangerous” (eutrophic rate) 0.48
“Permissible” (oligotrophic rate) 0.24

-------
13
V. LITERATURE REVIEWED
Anonymous, 1972. Wastewater treatment works data book. IL Env.
Prot. Agency, Springfield.
Forneris, John J., 1973. Personal communication (lake morphometry).
IL Env. Prot. Agency, Springfield.
Vollenweider, R. A., and P. J. Dillon, 1974. The application of
the phosphorus loading concept to eutrophication research.
Natl. Res. Council of Canada Pubi. No. 13690, Canada Centre
for Inland Waters, Burlington, Ontario.

-------
VI. APPENDICES
APPENDIX A
LAKE RANKINGS

-------
LAKE DATA TO BE USEL) IN RANKINGS
LAKE MEDIAN MEDIAN 500— MEAN 15— MEDIAN
CODE LAKE NAME TOTAL P INORD N MEAN SEC CHLORA NIN DO DISS ORTHO P
1703 LAKE BLOOMINGTON 0.050 5.730 464.667 26.200 14.800 0.020
1706 LAKE CARLYLE 0.084 1.270 477.889 17.367 11.000 0.032
1708 LAKE CHARLESTON 0.160 4.680 490.667 12.000 8.400 0.065
liii COFFEEN LAKE 0.032 0.260 456.222 7.700 14.900 0.012
1712 CRA8 ORCHA D LAKE 0.082 0.200 482.222 59.861 13.800 0.013
1714 LAKE OECATUi 0.129 3.750 479.571 43.000 14.500 0.062
1725 LONG LAKE 0.704 1.190 482.667 49.333 8.800 0.398
1726 LAKE LOU YAEGER O. ldé 1.600 489.583 10.662 11.600 0.076
1727 LAKE MARIE 0.098 0.370 467.667 39.533 14.700 0.057
1733 PISTAKEE LAKE 0.203 0.370 485.667 75.867 7.000 0.062
1735 REND LAKE 0.011 0.210 471.500 23.533 12.700 0.012
1739 LAKE SHELBYVILLE 0.062 3.290 461.333 17.161 14.800 0.019
1740 S1L (R LAKE (HIGHLAND) 0.226 0.970 489.500 5.822 14.800 0.057
1742 LAKE SPRINGFIELD 0.108 3.265 483.385 13.013 10.800 0.099
1748 VERMILION LAKE 0.109 4.695 481.500 31.150 14.200 0.050
1750 WONDER LAKE 0.424 0.890 486.000 98.533 7.800 0.132
1751 LAKE STORY 0.072 2.910 459.333 17.250 14.800 Q.u2 1
1752 DEPUE LAKE 0.438 4.050 490.000 58.833 7.600 0.276
1753 LAKE SANGCrIWIS 0.050 1.970 475.417 19.292 14.500 0.009
1754. LAKE HOLIDAY 0.167 3.135 485.167 51.217 7.200 0.046
1759 FOX LAKE 0.219 0.375 486.167 63.850 8.800 0.083
1756 GRASS LAKE 0.301 0.820 481.000 83.500 5.900 0.093
1757 EAST LOON LAKE 0.076 0.120 ‘.50.000 22.300 14.900 0. O lt .
1798 SLOCUM LAKE 0.865 0.200 487.333 221.100 5.800 0.362
1759 CEDAR LAKE 0.029 0.170 400.333 9.767 12.800 0.013
1761 LAKE WEMATUK 0.069 1.770 466.333 7.967 14.500 0.031
1762 RACCOON LAKE 0.106 0.310 484.333 19.217 13.800 0.020
1763 BALUWIN LAKE 0.044 0.140 461.167 11.333 13.200 0.007

-------
LAKE
DATA
To BE USED IN RANKINGS
LAKE
CODE
LAKE
NAME
MEDIAN
TOTAL
P
MEDIAN
INORG
N
500—
MEAN SEC
MEAN
C l -fLORA
15-
MIN 00
MEDIAN
DISS ORTHO
P
1764
LAKE
VANDALIA
0.116
0.480
478.111
l1.27b
14.800
0.023
1765
OLD
BEN MINE RESERVOIR
0.930
0.205
478.333
31.433
11.200
0.575
1766
fIORSESHOE LAKE
0.127
0.705
482.833
182.2 0
6.800
0.018

-------
PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH 1IGHER VALUES)
LAKE
CODE
LAKE NAME
MEDIAN
TOTAL P
MEDIAN
INORG N
500—
MEAN SEC
MEAN
CMLORA
15—
HIN
00
MEDIAN
0155 ORTHO P
INDEX
NO
1703
LAKE 8LOOHINGTON
88
( 26)
0
( 0)
0
( 24>
47 I 14)
13
( 2)
68
C 20)
296
1706
LAKE CARLYLE
63
C 19)
40
C 12)
63
I 19)
63 C 19)
63
C 19)
53
C 16)
345
1708
LAKE CHARLESTON
37
C 11)
7
C 2)
0
C 0)
77 C 23)
77
C 23)
27
C 8)
225
1711
COFFEEN LAKE
97
C 29)
77
C 23)
93
C 28)
93 C 28)
2
C 0)
92
C 27)
454
1712
CRAG ORCHARD LAKE
67
C 20)
90
C 27)
43
C 13)
20 C 6)
42
C 12)
85
C 25)
347
1714
LAKE DECATUR
40
C 12)
13
C 4)
53
C 16)
33 C 10)
30
C 8)
32
C 9)
201
1725
LONG LAKE
7 C 2)
43
C 13)
40
C 12)
30 C 9)
72
C 21)
3
C 1)
195
172
LAKE LOU YAEGER
30 C 9)
37
C 11)
7
C 2)
87 C 26)
57
4 17
23
C 7)
241
1727
LAKE MARIE
60 C 18)
68 C 20)
73
C 22)
37 C 11)
23
C 7)
42
C 12)
303
1733
PISTAKEE LAKE
27 C 8)
68 C 20)
23
C 7)
13 C 4)
90
1 27)
32 C 9)
253
1735
REND LAKE
77 C 23)
80 C 24)
70 C 21)
50 I 15)
53
16)
92 C 27)
422
1739
LAKE SHELU’I’VILLE
83 C 25)
17 C 5)
83 C 25)
70 C 21)
13
I 2)
73 C 22)
339
1740
SILVER LAKE (HIGHLAND)
20 C 6)
47 C 14)
10 C 3)
97 C 29)
13
C 2)
42 C 12)
229
1742
LAKE SPRINGFIELD
53 C 161
20 C 6)
33 C 10)
73 C 22)
67
C 20)
37 C 11)
283
1748
VERMILION LAKE
50 C 15)
3 C 1)
47 C 14)
43 C 13)
37 C 11)
47 C 14)
227
1750
WONDER LAKE
13 C 4)
50 C 15)
20 C 6)
7 C 2)
80 C 24)
13 C 4)
183
1751
LAKE STORY
73 C 22)
27 C 8)
90 C 27)
67 C 20)
13 C 2)
63 C 19)
333
1752
DEPUE LAKE
10 C 3)
10 C 3)
3 C 1)
23 C 7)
83 C 25)
10 C 3)
139
1753
LAKE SANGCHRIS
88 C 26)
30 C 9)
67 C 20)
57 C 17)
30 C 8)
97 C 29)
369
1754
LAKE HOLIDAY
33 C 10)
23 C 7)
27 C 8)
27 C 8)
87 C 26)
50 C 15)
247
1755
FOA LAKE
23 C 7)
63 C 19)
17 C 5)
17 C 5)
72 C 21)
20 C 6)
212
1756
GRASS LAKE
17 C 5)
53 C 16)
50 C 15)
10 C 3)
97 C 29)
17 C 5)
244
1757
EAST LOON LAKE
70 C 21)
100 C 30)
97 C 29)
53 C 16)
2 C 01
77 C 23)
399
1758
SLOCUM LAKE
3 C 1)
87 C 26)
13 C
4)
0 C 0)
100 C 30)
7 C 2)
210
1759
CEDAR LAKE
100 C
30)
93 1 28)
100 C
30)
100 1 30)
50 C 15)
85 C
2S)
52d
1761
LAKE (MATUK
80 C
24)
33 1
10)
7 C
23)
90 C 27)
30 1 8)
57 I
lfl
367
1762
RACCOON LAKE
57 C
17)
73 C
22)
30 C
9)
60 1 18)
42 C 12)
68 C
20)
330
1763
8ALOWIN LAKE
93 C
28)
97 C
29)
87

-------
PERCENT OF LAKES WI l l- i HIGHER VALUES (NUMBER OF
LAKE MEDIAN
CODE LAKE NAME TOTAL P
1764 LA$ E VANDALIA 47 ( 14)
1765 OLD EN MINE RESERVOIR 0 ( 0)
1766 HORSESHOE LAKE
LAKES WITH HIGHER VALUES)
MEDIAN 500—
INORG N MEAN SEC
60 C 18) 60 ( 18)
83 C 25) 57 C 17)
57 C 17) 37 ( 11)
MEAN
15—
MEDiAN
INO .X
CHLORA
MIN
DO
DISS
OMTrIO P
NO
83 (
25)
13 C 2)
60
C 18)
323
40 (
12)
60 ( 18)
0
( 0)
2’.O
3 C
1)
93 ( 28)
80
C 24)
313

-------
LAKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
1 1759 CEDAR LAKE 528
2 1763 BALDWIN LAKE 504
3 1711 COFFEEN LAKE 454
4 1735 REND LAKE 422
5 1757 EAST LOON LAKE 399
6 1753 LAKE SANGC1IRIS 369
7 1(61 LAKE EMATuIc 367
8 1712 CRAB ORCHARD LAKE 347
9 1706 LAKE CARLYLE 345
10 1139 LAKE SHELBYVILLE 339
II 1751 LAKE STORY 333
12 1762 RACCOON LAKE 330
13 1764 LAKE VANDALIA 323
14 1766 HORSESiIOE LAKE 313
15 1727 LAKE MARIE 303
16 1703 LAKE BLOOMINGTON 296
17 1742 LAKE SPRINGVIELD 283
18 1733 PISTAKEE LAKE 253
19 175’. LAKE HOLIDAY 247
20 1756 GRASS LAKE 244
21 172b LAKE LOU YA(GER 241
22 17 S OLD EN MINE RESERvOIR 240
23 1740 SILVER LAKE (HIGi-4LANO) 229
24 1748 VE NILION LAKE 227
25 1708 LAKE CHARLESTON 225
2b 1755 FOA LAKE 212
27 1758 SLOCUM LAKE 210
28 171’ LAr E D [ CATU 201

-------
LAKES RANKED BY INDEX NOS.
RANK LAKE CODE LAKE NAME INDEX NO
29 1725 LONG LAKE 195
30 1750 WONDER LAKE 183
31 1752 DEPUE LAKE 139

-------
APPENDIX B
CONVERSIONS FACTORS

-------
CONVERSION FA(;TORS
Hectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 = feet
Cubic meters x 8.107 x 10 = acre/feet
Square kilometers x 0.3861 = square miles
Cubic meters/sec x 35.315 = cubic feet/sec
Centimeters x 0.3937 = inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 = lbs/square mile

-------
APPENDIX C
TRIBUTARY FLOW DATA

-------
TRIBUTAHY FLOW INFORMATION FOR ILLINOIS 10/23/75
LAKE CODE 1751 LAKE STOHEY
TOTAL DRAINAGE AREA OF LAPSE(SQ KM) 18.2
SUB—DRAINAGE NORMALIZED FLOWS(CMS)
TRIBUTARY AREAISU KMJ JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC MEAN
ITSIA I 18.2 0.11 0.18 0.21 0.22 0.17 0.15 0.09 0.04 0.03 0.03 0.05 0.06 0.11
175 1A2 12.4 0.07 0.12 0.14 0.15 0.12 0.10 0.06 0.03 0.02 0.02 0.03 0.04 0.07
17512Z 5.7 0.04 0.06 0.07 0.07 0.05 0.05 0.03 0.01 0.01 0.01 0.02 0.02 0.04
SUMMARY
TOTAL DRAINAGE AREA OF LAKE = 18.2 TOTAL FLOW IN = 1.33
SUM OF SUB—DRAINAGE AREAS = 18.2 TOTAL FLOW OUT = 1.33
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TRIr4UTARY MONTH YEAR MEAN FLOW DAY FLOW DAY FLOW DAY FLOW
uSIA! 6 73 0.40 2 0.48
7 73 0.20 8 0.21
8 73 0.05 13 0.12
9 73 0.03 16 0.01
10 73 0.34 14 0.45
11 73 0.10 4 0.13
12 73 0.34 1 0.14
I 74 0.59 5 0.37
2 74 0.24 3 0.42 16 0.15
3 74 0.31 2 0.20 17 0.37
4 74 0.42 6 0.20
5 74 0.42 19 0.99
1751A2 6 73 0.28 2 0.34
7 73 0.13 8 0.14
8 73 0.03 13 0.08
9 73 0.02 16 0.01
10 73 0.23 14 0.28
11 73 0.07 4 0.09
12 73 0.23 1 0.09
1 74 0.40 5 0.24
2 74 0.16 3 0.28 16 0.10
3 74 0.21 2 0.14 17 0.25
4 74 0.28 6 0.15
5 74 0.28 19 0.68
IT5 IZZ 6 73 0.12 2 0.14
7 73 0.07 8 0.07
8 73 0.02 13 0.04
9 73 0.01 16 0.01
10 73 0.11 14 0.17
11 73 0.03 4 0.04
12 73 0.10 1 0.04
74 0.20 5 0.13
1 7 ’. 0.18 5 0.11
2 74 0.07 3 0.14 16 0.05
3 74 0.10 2 0.07 17 0.12
4 7’. 0.14 6 0.OS
5 74 0.14 19 0.31

-------
APPENDIX 0
PHYSICAL and CHEMICAL DATA

-------
STORET RETRIEVAL DATE 75/10/23
175101
40 9 20.0 090 24 30.0
LArcE STOI Y
17095 ILLINOIS
11EPALES 2111202
3 0018 FEET DEPTH
00010 00300 00077 00094 00400 00410 00610 00625 00630 00671
DATE TIME DEPTH wATER DO TWANSP CNDUCTVY PH T ALK NH3—N TOT KJEL NO2 NO3 PHOS—DIS
FROM OF TEMP SECCHI FiELD CACO3 TOTAL N N—TOTAL ORTHO
TO DAY FEET CENT MG/L INCHES MICROPIHO SO MG/L P4&/L M(,/L MG/L M6/L P
73/05/12 13 35 0000 16.2 60 540 8.10 240 0.660 0.800 2.130 0.032
13 35 0004 15.9 8.9 540 8.10 240 0.630 0.700 2.000 0.022
13 35 0015 14.8 6.3 675 7.90 176 0.230 1.000 2.010 0.046
73/08/09 15 00 0000 25.8 6.4 34 380 9.00 112 0.100 2.000 0.990 0.012
15 00 0005 25.3 405
15 00 0009 24.2 1.0 433 7.80 148 0.440 1.500 3.690 0.010
15 00 0015 19.1 0.2 475 7.30 210 1.700 2.800 0.810 0.020
73/10/17 11 00 0000 17.9 37 399 7.90 167 0.450 1.300 0.990 0.022
11 00 0005 17.8 5.0 400 7.80 167 0.430 1.200 0.980 0.031
11 00 0015 17.8 4.8 399 7.40 170 0.640 1.400 0.960 0.076
11 00 0020 17.0 0.0 485 7.30 248 4.720 6.200 0.160 0.233
00665 32217
DATE TIME DEPTH PHOS-TOT CKLRPP-IYL
FROM OF A
TO DAY FEET MG/L P UG/L
73/05/12 13 35 0000 0.079
13 35 000’. 0.073
13 35 0015 0.203
73/08/09 15 00 0000 0.061 6.1
15 00 0009 0.034
15 00 0015 0.041
73/10/17 LI 00 0000 0.053 16.2
11 00 0005 0.075
11 00 0015 0.106
11 00 0020 0.321

-------
STORET i ETRIEVAL DATE 75/10/23
I 75102
40 59 20.0 090 23 25.0
LAKE STORY
17095 ILLINOIS
1 IEPALES 2111202
3 0015 FEET DEPTH
00010 00300 00077 00094 00400 00410 00610 00625 00630 00671
DATE TIME DEPTH WATER DO T ANSP CNDIJCTVY PH 1 ALK NH3—N TOT KJEL NO2 NO3 PHOS—DIS
FROM OF TEMP SECCI-il FIELL) CACO3 TOTAL N N—TOTAL ORTHO
TO DAY FEET CENT MG/L INCHES MIC OMHO SD M(,/L M(,/L MG/L M(,/L MG/L. P
73/05/12 13 55 0000 17.0 54 560 8.30 175 0.210 0.800 4.190 0.016
13 55 0004 17.0 10.7 550 8.43 185 0.330 0.900 5.130 0.017
13 55 0011 16.8 10.5 460 8.30 178 0.160 0.800 5.120 0.017
73/08/09 15 25 0000 28.0 6.8 26 393 9.10 113 0.080 2.000 0.960 0.012
15 25 0005 27.4 404
15 25 0009 27.4 4.3 410 8.20 134 0.270 1.900 1.370 0.014
15 25 0012 22.5 0.4 477 7.40 180 0.810 2.100 1.760 0.021
73/10/17 11 15 0000 17.9 33 390 8.50 167 0.090 1.400 1.250 0.021
II 15 0005 17.9 8.4 392 8.50 167 0,070 0.900 1.340 0.031
11 15 0010 17.8 9.0 391 8.50 125 0.040 0.900 2.890 0.047
00665 32217
DATE TIME DEPTH PHOS -TOT CHLRPHYL
FROM OF A
TO DAY FEET MG/L P (JG/L
73/05/12 13 55 0000 0.074 23.0
13 55 0004 0.079
13 55 0011 0.072
73/08/09 15 25 0000 0.060 7.8
15 25 0009 0.070
15 25 0012 0.049
73/10/17 11 15 0000 0.070 43.8
11 15 000S 0.071
11 15 0010 0.178

-------
APPENDIX E
TRIBUTARY DATA

-------
STORET RETRIEVAL OATE 75/10/23
1751A1
‘+0 59 20.0 090 2’. 40.0
UNNAMED CREEK
17111 KNOX Co MAP
0/LAKE STOREY
SEC NO t RDG JUST 8ELO DAM
11EPALES 2111204
4 0000 FEET DEPTH
00630 00625 00610 00671 00665
DATE TIME DEPTH N02&N03 TOT KJEL NH3—N PHOS-DIS PHOS—TOT
FROM OF N-TOTAL N TOTAL ORTHO
TO OAY FEET MG/L MG/L MG/L MG/L P MG/L P
73/06/02 11 00 3.800 4.400 0.160 0.019 0.065
73/07/08 09 15 2.500 3.230 0.231 0.015 0.030
73/08/13 08 45 0.520 4.400 0.096 0.021 0.065
73/09/16 10 20 0.240 1.540 0.325 0.027 0.115
73/10/14 16 00 2.900 2.650 0.095 0.098 0.250
73/11/0’. 14 00 1.140 1.750 0.357 0.011 0.065
73/12/01 10 00 1.400 1.450 0.224 0.012 0.021
74/01/05 10 15 2.400 0.600 0.160 0.009 0.030
74/02/03 13 50 3.740 1.700 0.210 0.210 0.315
74/02/16 10 00 2.760 1.400 0.130 0.095 0.145
74/03/02 11 00 4.700 1.200 0.050 0.015 0.015
74/03/17 09 45 9.600 1.000 0.035 0.030 0.057
74/04/06 13 20 4.200 1.500 0.050 0.010 0.03S
74/05/19 10 40 3.300 1.000 0.030 0.010 0.045

-------
STORET i ETRIEVAL OATE 7b/10/23
1751A2
40 59 20.0 090 22 55.0
UNNAMED CREEK
17 KNOX Co MAP
1/LAKE STO EY
US HWY 150 t3PDG AT E END OF LAKE
11EPALES 2111204
4 0000 FEET DEPTH
00630 00625 00610 00671 00665
DATE TIME DEPTH NO2 i.NO3 TOT KJEL NH3—N PHOS—DIS PHOS-TOT
FROM OF N—TOTAL N TOTAL ORTHO
To DAY FEET M6/L MG/L MG/L MG/L P P46/L P
73/06/02 10 40 4.500 3.500 0.076 0.013 0.110
73/07/08 08 50 2.500 2.940 0.074 0.022 0.110
73/08/13 08 30 0.990 4.600 0.096 0.030 0.080
73/09/16 10 00 0.280 2.300 0.294 0.054 0.195
73/10/1’. 15 40 0.560 1.000 0.095 0.011 0.050
73/11/0’. 13 45 9.200 0. 100K 0.075 0.042 0.100
73/12/01 09 45 8.300 0.116 0.116 0.044 0.270
74/01/05 10 30 9.100 0.300 0.048 0.036
74/02/03 13 40 5.300 1.100 0.230 0.310 0.490
74/02/16 09 30 3.200 0.900 0.110 0.100 0.150
74/03/02 11 00 7.200 0.800 0.050 0.020 0.075
74/03/17 10 05 4.100 1.100 0.025 0.010 0.065
74/04/06 13 40 5.460 0.800 0.015 0.010 0.025
74/05/19 11 10 9.700 0.700 0.075 0.075 0.135
K VI LUE KNOWN TO bE
LESS TfrIAN INDICATED

-------