U.S. ENVIRONMENTAL PROTECTION AGENCY NATIONAL EUTROPHICATION SURVEY WORKING PAPER SERIES REPORT ON LAI€ STOREY KNOX COUNTY ILLINOIS EPA REGION V WORKING PAPER No, 318 CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON and ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA 699-440 ------- REPORT ON LAI€ STOREY KNOX COUNTY ILLINOIS EPA REGION V WORKING PAPER No, 318 WITH THE COOPERATION OF THE ILLINOIS ENVIRONMENTAL PROTECTION AGENCY AND THE ILLINOIS NATIONAL GUARD JUNE, 1975 ------- 1 CONTENTS Page Foreword ii List of Illinois Study Lakes iv Lake and Drainage Area Map v Sections I. Conclusions 1 II. Lake and Drainage Basin Characteristics 3 III. Lake Water Quality Summary 4 IV. Nutrient Loadings 8 V. Literature Reviewed 13 VI. Appendices 14 ------- ii FOREWORD The National Eutrophication Survey was initiated In 1972 in response to an Administration commitment to investigate the nation- wide threat of accelerated eutrophication to fresh water lakes and reservoirs. OBJECTIVES The Survey was designed to develop, in conjunction with state environmental agencies, information on nutrient sources, concentrations, and impact on selected freshwater lakes as a basis for formulating comprehensive and coordinated national, regional, and state management practices relating to point-source discharge reduction and non-point source pollution abatement in lake watersheds. ANALYTIC APPROACH The mathematical and statistical procedures selected for the Survey’s eutrophication analysis are based on related concepts that: a. A generalized representation or model relating sources, concentrations, and impacts can be constructed. b. By applying measurements of relevant parameters associated with lake degradation, the generalized model can be transformed into an operational representation of a lake, its drainage basin, and related nutrients. c. With such a transformation, an assessment of the potential for eutrophication control can be made. LAKE ANALYSIS In this report, the first stage of evaluation of lake and water- shed data collected from the study lake and Its drainage basin is documented. The report Is formatted to provide state environmental agencies with specific information for basin planning [ 3O3(efl, water quality criteria/standards review [ 3O3(c)], clean lakes [ 314(a,b)], and water quality monitoring [ lO6 and §305(b)] activities mandated by the Federal Water Pollution Control Act Amendments of 1972. ------- 111 Beyond the single lake analysis, broader based correlations between nutrient concentrations (and loading) and trophic condi- tion are being made to advance the rationale and data base for refinement of nutrient water quality criteria for the Nation’s fresh water lakes. Likewise, multivariate evaluations for the relationships between land use, nutrient export, and trophic condition, by lake class or use, are being developed to assist in the formulation of planning guidelines and policies by EPA and to augment plans implementation by the states. ACKNOWLE DGMENT The staff of the National Eutrophication Survey (Office of Research & Development, U. S. Environmental Protection Agency) expresses sincere appreciation to the Ilinols Environmental Protection Agency for professional involvement and to the Illinois National Guard for conducting the tributary sampling phase of the Survey. Dr. Richard I-I. Briceland, Director of the Illinois Environ- mental Protection Agency; and Ronald M. Barganz, State Survey Coordinator, and John J. Forneris, Manager of Region III , Field Operations Section of the Division of Water Pollution Control, provided invaluable lake documentation and counsel during the Survey, reviewed the preliminary reports, and provided critiques most useful in the preparation of this Working Paper series. Major General Harold R. Patton, the Adjutant General of Illinois, and Project Officer Colonel Daniel L. Fane, who directed the volunteer efforts of the Illinois National Guardsmen, are also gratefully acknowledged for their assistance to the Survey. ------- iv NATIONAL EUTROPHICATION SURVEY STUDY LAKES STATE OF ILLINOIS LAKE NAME COUNTY Baldwin Randolph Bloomington McLean Carlyle Bond, Clinton, Fayette Cedar Lake Charleston Coles Coffeen Montgomery Crab Orchard Jackson, Williamson Decatur Macon DePue Bureau East Loon Lake Fox Lake Grass Lake Highland Silver Madison Holiday LaSalle Horseshoe Madison Long Lake Lou Yaeger Montgomery Marie Lake Old Ben Mine Franklin Pistakee Lake, McHenry Raccoon Marion Rend Franklin, Jefferson Sangchris Christian Shelbyville Moultrie, Shelby Slocum Lake Springfield Sanganion Storey Knox Vartdalia. Fayette Venii lllon Vermilion Wee Ma Tuk Fulton Wonder McHenry ------- go goon, (I ( I r) :111. Map Location LAKE S TORE V I I- 1 ( LAKE STOREY x Tributary Sampling Site Lake Sampling Site Sewage Treatment Plant o 1/2 1 11/2 I I I I I I 0 1/4 1/2 3/4 yJn. Scale Mi. 405*’ ------- LAKE STOREY STORET NO. 1751 I. CONCLUSIONS A. Trophic Condition: Survey data indicate that Lake Storey is eutrophic. It ranked eleventh in overall trophic quality when the 31 Illinois lakes sampled in 1973 were compared using a combination of six lake parameters*. Eight lakes had less median total phosphorus, 11 had less median dissolved phosphorus, 22 had less median inorganic nitrogen, ten had less mean chlorophyll a, and three had greater mean Secchi disc transparency. Marked depression of dissolved oxygen with depth occurred at both sampling stations in August, and depletion occurred at station 1 at 20 feet in depth in October. Survey limnologists noted a blue-green algal bloom in pro- gress in October and reported much emergent and submerged vegetation in the, shoreline shallows. B. Rate—Limiting Nutrient: The algal assay results indicate the lake was phosphorus limited at the time the sample was collected (05/12/73). These findings are substantiated by the lake data; i.e., the mean N/P ratios were 32/1 or greater at all sampling times. * See Appendix A. ------- 2 C. Nutrient Controllability: 1. Point sources—-The phosphorus contribution of known point sources amounted to 54.5% of the total reaching Lake Storey during the sampling year. These point sources were Carl Sandburg Junior College (51.5%) and the Hawthorn Motel (3.0%). The present phosphorus loading rate of 2.18 g/m 2 /yr is nearly five times that proposed by Vollenweider (Vollenweider and Dillon, 1974) as a eutrophic rate (see page 12). A 100% reduction in phos- phorus loading from the known point sources would only lower the overall loading rate to 0.99 g/m 2 /yr (about twice the eutrophic rate). However, because Lake Storey is phosphorus limited, all phosphorus inputs to the lake should be minimized to the greatest practicable extent to slow the aging of this water body. 2. Non-point sources--Over 45% of the total phosphorus input to Lake Storey came from non-point sources during the sampling year. The Unnamed Creek A-2 contributed 31.2%, and the ungaged tributaries were estimated to have contributed 13.4% of the total phosphorus load. The phosphorus export rate of the Unnamed Creek A-2 was a relatively low 29 kg/krn 2 /yr (see page 12). ------- II. LAKE AND DRAINAGE BASIN CHARACTERISTICS'1" A. Lake Morphometry : 1. Surface area: 0.53 kilometers2. 2. Mean depth: 4.6 meters. 3. Maximum depth: >7.2 meters. 4. Volume: 2.438 x 106 m3. 5. Mean hydraulic retention time: 282 days. B. Tributary and Outlet: (See Appendix C for flow data) 1. Tributaries - Drainage Mean flow Name area (km2)* (m3/sec)* Unnamed Creek (A-2) 12.4 0.1 Minor tributaries & immediate drainage - 5.3 <0.1 Totals 17.7 0.1 2. Outlet - Unnamed Creek (A-l) 18.2** 0.1 C. Precipitation***: 1. 'Year of sampling: 140.7 centimeters. 2. Mean annual: 85.5 centimeters. t Table of metric conversions—Appendix B. tt Forneris, 1973. * For limits of accuracy, see Working Paper No. 175, "...Survey Methods, 1973-1976". ** Includes area of lake. *** See Working Paper No. 175. ------- 4 III. LAKE WATER QUALITY SUMMARY Lake Storey was sampled three times during the open-water season of 1973 by means of a pontoon-equipped Huey helicopter. Each time, samples for physical and chemical parameters were collected from two stations on the lake and from a number of depths at each station (see map, page v). During each visit, a single depth-integrated (4.6 in or near bottom to surface) sample was composited from the stations for phytoplankton identification and enumeration; and during the first visit, a single 18.9-liter depth-integrated sample was composited for algal assays. Also each time, a depth-integrated sample was collected from each of the stations for chlorophyll a analysis. The maximum depths sampled were 6.1 meters at station 1 and 3.7 meters at station 2. The sampling results are presented in full in Appendix 0 and are summarized in the following table. ------- .. ‘4pt. -Y ) - V .ICAL A’ .., £ik_MICAL L kALFL (L ,I ICS FO’ LAIcE SIOPY ST0 Y1T CuL)L 11,1 151 SAM LI: .o ¶/ )2/Ii 2N1) SAMPLING I 8/ 9/ /. )) 3PLj SAMI LING (10/17/73) ‘ 5111’ 2 SuES 2 SITES A- AlL1t8 )l ) Ar MtU146 A,.,t. MLAN MLtJIAN PIANOL MEAN MEDIAN 1E’ I c) l’..i — 16. I 18.5 l .l — 2 i.u 2s.0 25.5 17.0 — 17.9 17.? 17.8 jIGS JAY (MG/LI ‘.J - I l. ? .I 9.7 0.2 — 6.8 3.2 2.8 0.0 — 9.0 5.4 5.0 CNDCIVY (MCWOMO) ‘80. — 575. 55’.. 545. 380. — 417. 422. 408. 390. — 485. ‘.08. 399. i (SlANt) UNITS) 7.’. — N.’. 8.? 8.2 7.3 — 9.1 6.1 6.0 7.3 — 8.5 8.0 7.9 TO) AL6 (MG/LI (75. — ?‘0. I9’ . to2. l lc. — 2(0. ISO. 141. (25. — 248. 173. (57. TOT ‘ (10/LI 0.07? - 0.203 0.O ’u7 0.Ofo 0.034 — 0.070 0.052 (1.054 0.053 — 0.321 0.125 0.075 (JPITHI) P (MG/LI 0.016 — 0.0’6 0.025 0.01’. 0.010 — 0.021 0.015 0.013 0.021 — 0.233 0.066 0.031 N02•N03 (MG/L) 2.000 - 5.130 3.430 3.160 0.810 — 3.690 (.597 1.180 0.160 — 2.890 1.224 0.990 AMMONIA (MG/Li 0.160 — 0.660 0.370 0.280 0.080 — 1.100 0.567 0.355 0.040 — M.720 0.920 0.430 AJEL N (Mo/Li 0.700 — 1.000 0.833 0.800 1.500 — 2. 00 2.050 2.000 0.900 — 6.200 1.900 1.300 16040 N (MG/L) 2.240 - 5.460 3.800 3.595 1.040 — 4.130 2.163 2.075 1.340 — 4.880 2.144 1.440 TOTAL N (MG/U 2.700 - 4.030 4.2b3 4.000 2.900 — 5.190 3.647 3.440 2.180 — 6.360 3.124 2.360 CHL4PYL A (UC./L) 6.6 - 23.C 1’.’Y 14.0 6.1 — 7.8 6.9 6.9 16.2 — 43.8 30.0 30.0 SECC-’I (MLTE4S) I.’ 1.5 1.4 1.4 0.7 — 0.’. 0.6 0.8 0.8 — 0.9 0.9 0.9 U, ------- 6 B. Biological characteristics: 1. Phytoplankton - Sampling Dominant Algal units Date Genera per ml 05/12/73 1. Asterionella p. 1,491 2. Stephanodiscus !P• 983 3. Melosira p. 813 4. Anabaena 576 5. Synedra p .. 68 Other genera 168 Total 4,099 08/09/73 1. Coccoid cells 360 2. Oscillatorla a• 206 3. oe1astrum p. 129 4. Oocystis . 2.• 77 5. Crucigenia • p.. 77 Other genera 256 Total 1,105 10/17/73 1. Aphanizomenon .p.. 2,524 2. Coelastrum p. 677 3. Anabaena . 431 4. Mlcrocystis p_. 431 5. Melosira p. 246 Other genera 801 Total 5,110 ------- 7 08/09/73 01 02 10/17/73 01 02 C. Limiting Nutrient Study: 1. Autoclaved, filtered, and nutrient spiked - Ortho P Inorganic N Spike (mg/i) Conc. (mg/i) Conc. (mg/i ) _____________ Control 0.015 4.475 0.050 P 0.065 4.475 0.050 P + 1.0 N 0.065 5.475 1.0 N 0.015 5.475 2. Discussion - The control yield of the assay alga, Seienastrum capri- cornutum , indicates that the potential primary productivity of Lake Storey was moderately high at the time the sample was collected (05/12/73). Also, the addition of phosphorus alone produced a significant increase in yield, but no such increase occurred with the addition of only nitrogen. This indicates limitation by phosphorus. The lake data substantiate phosphorus limitation. At all sampling times, the mean inorganic nitrogen/orthophosphorus ratios were 32/1 or greater. 2. Chlorophyll a — Sampl Ing Date 05/1 2/73 Station Number 01 02 Chlorophyll a ( ig/l) 6.6 23.0 6.1 7.8 16.2 43.8 Maximum yield ( mg/l-dry wt. ) 3.3 30.6 32.2 3.3 ------- 8 IV. NUTRIENT LOADINGS (See Appendix E for data) For the determination of nutrient loadings, the Illinois National Guard collected monthly near-surface grab samples from each of the tributary sites indicated on the map (page v), except for the high runoff months of February and March when two samples were collected. Sampling was begun in June, 1973, and was completed in May, 1974. Through an interagency agreement, stream flow estimates for the year of sampling and a “normalized” or average year were provided by the Illinois District Office of the U.S. Geological Survey for the tributary sites nearest the lake. In this report, nutrient loads for sampled tributaries were deter- mined by using a modification of a U.S. Geological Survey computer program for calculating stream loadings*. Nutrient loads shown are those measured minus point-source loads, if any. Nutrient loads for unsampled “minor tributaries and immediate drainage” (“ZZ” of U.S.G.S.) were estimated using the nutrient loads, in kg/km 2 /year, at station A-2 and multiplying by the ZZ area in km 2 . The wastewater treatment plant operators of Carl Sandburg Junior College and the Hawthorn Motel did not participate in the Survey, and nutrient loads were estimated at 1.134 kg P and 3.401 kg N/capita/year. * See Working Paper No. 175. ------- 9 A. Waste Sources: 1. Known muniCipal* Pop. Mean Flow Receiving Name Served Treatment ( m 3 /d) Water Carl Sandburg 525** sand filter 198.7 Lake Storey Junior College Hawthorn 30 sand filter 11.4 Lake Storey Motel 2. Known industrial - None * Anonymous, 1972. ** 1,400 students x 0.375 population equivalent. ------- 10 B. Annual Total Phosphorus Loading — Average Year: 1 . Inputs - kgP/ %of Source yr total a. Tributaries (non-point load) - Unnamed Creek (A-2) 360 31 .2 b. Minor tributaries & immediate drainage (non—point load) - 155 13.4 c. Known municipal STP’s — Carl Sandburg Junior College 595 51.5 Hawthorn Motel 35 3.0 d. Septic tanks — Unknown e. Known industrial — None — - f. Direct precipitatiorl* - 10 0.9 Total 1,155 100.0 2. Outputs - Lake outlet - Unnamed Creek (A-i) 355 3. Net annual P accumulation — 800 kg. * See Working Paper No. 175. ------- 11 C. Annual Total Nitrogen Loading — Average Year: 1. Inputs - kgN/ %of Source yr total a. Tributaries (non—point load) — Unnamed Creek (A—2) 14,445 62.6 b. Minor tributaries & immediate drainage (non-point load) - 6,175 26.8 c. Known municipal SIP’s - Carl Sandburg Junior College 1,785 7.7 Hawthorn Motel 100 0.4 d. Septic tanks - Unknown e. Known industrial - None — f. Direct precipitation* - 570 2.5 Total 23,075 100.0 2. Outputs - Lake outlet - Unnamed Creek (A-l) 16,620 3. Net annual N accumulation - 6,455 kg. * See Working Paper No. 175. ------- 12 D. E. Mean Annual Non-point Nutrient Export by Subdrainage Area: Tributary kg P/km 2 /yr kg N/km 2 /yr Unnamed Creek (A-2) 29 1,165 Yearly Loading Rates: In the following table, the existing phosphorus loading rates are compared to those proposed by Vollenweider (Vollen- welder and DIllon, 1974). Essentially, his °dangerous” rate is the rate at which the receiving water would become eutrophic or remain eutrophic; his “perniissible° rate is that which would result in the receiving water remaining oligotrophic or becoming oligotrophic if morphometry permitted. A mesotrophic rate would be considered one between “dangerous” and “permissible”. Note that Vollenweider’s model may not be applicable to water bodies with short hydraulic retention times. Total Phosphorus Total Nitrogen Total Accumulated Total Accumulated grams/m 2 /yr 2.18 1.51 43.5 12.2 Vollenweider loading rates for phosphorus (gfm 2 /yr) based on mean depth and mean hydraulic retention time of Lake Storey: “Dangerous” (eutrophic rate) 0.48 “Permissible” (oligotrophic rate) 0.24 ------- 13 V. LITERATURE REVIEWED Anonymous, 1972. Wastewater treatment works data book. IL Env. Prot. Agency, Springfield. Forneris, John J., 1973. Personal communication (lake morphometry). IL Env. Prot. Agency, Springfield. Vollenweider, R. A., and P. J. Dillon, 1974. The application of the phosphorus loading concept to eutrophication research. Natl. Res. Council of Canada Pubi. No. 13690, Canada Centre for Inland Waters, Burlington, Ontario. ------- VI. APPENDICES APPENDIX A LAKE RANKINGS ------- LAKE DATA TO BE USEL) IN RANKINGS LAKE MEDIAN MEDIAN 500— MEAN 15— MEDIAN CODE LAKE NAME TOTAL P INORD N MEAN SEC CHLORA NIN DO DISS ORTHO P 1703 LAKE BLOOMINGTON 0.050 5.730 464.667 26.200 14.800 0.020 1706 LAKE CARLYLE 0.084 1.270 477.889 17.367 11.000 0.032 1708 LAKE CHARLESTON 0.160 4.680 490.667 12.000 8.400 0.065 liii COFFEEN LAKE 0.032 0.260 456.222 7.700 14.900 0.012 1712 CRA8 ORCHA D LAKE 0.082 0.200 482.222 59.861 13.800 0.013 1714 LAKE OECATUi 0.129 3.750 479.571 43.000 14.500 0.062 1725 LONG LAKE 0.704 1.190 482.667 49.333 8.800 0.398 1726 LAKE LOU YAEGER O. ldé 1.600 489.583 10.662 11.600 0.076 1727 LAKE MARIE 0.098 0.370 467.667 39.533 14.700 0.057 1733 PISTAKEE LAKE 0.203 0.370 485.667 75.867 7.000 0.062 1735 REND LAKE 0.011 0.210 471.500 23.533 12.700 0.012 1739 LAKE SHELBYVILLE 0.062 3.290 461.333 17.161 14.800 0.019 1740 S1L (R LAKE (HIGHLAND) 0.226 0.970 489.500 5.822 14.800 0.057 1742 LAKE SPRINGFIELD 0.108 3.265 483.385 13.013 10.800 0.099 1748 VERMILION LAKE 0.109 4.695 481.500 31.150 14.200 0.050 1750 WONDER LAKE 0.424 0.890 486.000 98.533 7.800 0.132 1751 LAKE STORY 0.072 2.910 459.333 17.250 14.800 Q.u2 1 1752 DEPUE LAKE 0.438 4.050 490.000 58.833 7.600 0.276 1753 LAKE SANGCrIWIS 0.050 1.970 475.417 19.292 14.500 0.009 1754. LAKE HOLIDAY 0.167 3.135 485.167 51.217 7.200 0.046 1759 FOX LAKE 0.219 0.375 486.167 63.850 8.800 0.083 1756 GRASS LAKE 0.301 0.820 481.000 83.500 5.900 0.093 1757 EAST LOON LAKE 0.076 0.120 ‘.50.000 22.300 14.900 0. O lt . 1798 SLOCUM LAKE 0.865 0.200 487.333 221.100 5.800 0.362 1759 CEDAR LAKE 0.029 0.170 400.333 9.767 12.800 0.013 1761 LAKE WEMATUK 0.069 1.770 466.333 7.967 14.500 0.031 1762 RACCOON LAKE 0.106 0.310 484.333 19.217 13.800 0.020 1763 BALUWIN LAKE 0.044 0.140 461.167 11.333 13.200 0.007 ------- LAKE DATA To BE USED IN RANKINGS LAKE CODE LAKE NAME MEDIAN TOTAL P MEDIAN INORG N 500— MEAN SEC MEAN C l -fLORA 15- MIN 00 MEDIAN DISS ORTHO P 1764 LAKE VANDALIA 0.116 0.480 478.111 l1.27b 14.800 0.023 1765 OLD BEN MINE RESERVOIR 0.930 0.205 478.333 31.433 11.200 0.575 1766 fIORSESHOE LAKE 0.127 0.705 482.833 182.2 0 6.800 0.018 ------- PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH 1IGHER VALUES) LAKE CODE LAKE NAME MEDIAN TOTAL P MEDIAN INORG N 500— MEAN SEC MEAN CMLORA 15— HIN 00 MEDIAN 0155 ORTHO P INDEX NO 1703 LAKE 8LOOHINGTON 88 ( 26) 0 ( 0) 0 ( 24> 47 I 14) 13 ( 2) 68 C 20) 296 1706 LAKE CARLYLE 63 C 19) 40 C 12) 63 I 19) 63 C 19) 63 C 19) 53 C 16) 345 1708 LAKE CHARLESTON 37 C 11) 7 C 2) 0 C 0) 77 C 23) 77 C 23) 27 C 8) 225 1711 COFFEEN LAKE 97 C 29) 77 C 23) 93 C 28) 93 C 28) 2 C 0) 92 C 27) 454 1712 CRAG ORCHARD LAKE 67 C 20) 90 C 27) 43 C 13) 20 C 6) 42 C 12) 85 C 25) 347 1714 LAKE DECATUR 40 C 12) 13 C 4) 53 C 16) 33 C 10) 30 C 8) 32 C 9) 201 1725 LONG LAKE 7 C 2) 43 C 13) 40 C 12) 30 C 9) 72 C 21) 3 C 1) 195 172 LAKE LOU YAEGER 30 C 9) 37 C 11) 7 C 2) 87 C 26) 57 4 17 23 C 7) 241 1727 LAKE MARIE 60 C 18) 68 C 20) 73 C 22) 37 C 11) 23 C 7) 42 C 12) 303 1733 PISTAKEE LAKE 27 C 8) 68 C 20) 23 C 7) 13 C 4) 90 1 27) 32 C 9) 253 1735 REND LAKE 77 C 23) 80 C 24) 70 C 21) 50 I 15) 53 16) 92 C 27) 422 1739 LAKE SHELU’I’VILLE 83 C 25) 17 C 5) 83 C 25) 70 C 21) 13 I 2) 73 C 22) 339 1740 SILVER LAKE (HIGHLAND) 20 C 6) 47 C 14) 10 C 3) 97 C 29) 13 C 2) 42 C 12) 229 1742 LAKE SPRINGFIELD 53 C 161 20 C 6) 33 C 10) 73 C 22) 67 C 20) 37 C 11) 283 1748 VERMILION LAKE 50 C 15) 3 C 1) 47 C 14) 43 C 13) 37 C 11) 47 C 14) 227 1750 WONDER LAKE 13 C 4) 50 C 15) 20 C 6) 7 C 2) 80 C 24) 13 C 4) 183 1751 LAKE STORY 73 C 22) 27 C 8) 90 C 27) 67 C 20) 13 C 2) 63 C 19) 333 1752 DEPUE LAKE 10 C 3) 10 C 3) 3 C 1) 23 C 7) 83 C 25) 10 C 3) 139 1753 LAKE SANGCHRIS 88 C 26) 30 C 9) 67 C 20) 57 C 17) 30 C 8) 97 C 29) 369 1754 LAKE HOLIDAY 33 C 10) 23 C 7) 27 C 8) 27 C 8) 87 C 26) 50 C 15) 247 1755 FOA LAKE 23 C 7) 63 C 19) 17 C 5) 17 C 5) 72 C 21) 20 C 6) 212 1756 GRASS LAKE 17 C 5) 53 C 16) 50 C 15) 10 C 3) 97 C 29) 17 C 5) 244 1757 EAST LOON LAKE 70 C 21) 100 C 30) 97 C 29) 53 C 16) 2 C 01 77 C 23) 399 1758 SLOCUM LAKE 3 C 1) 87 C 26) 13 C 4) 0 C 0) 100 C 30) 7 C 2) 210 1759 CEDAR LAKE 100 C 30) 93 1 28) 100 C 30) 100 1 30) 50 C 15) 85 C 2S) 52d 1761 LAKE (MATUK 80 C 24) 33 1 10) 7 C 23) 90 C 27) 30 1 8) 57 I lfl 367 1762 RACCOON LAKE 57 C 17) 73 C 22) 30 C 9) 60 1 18) 42 C 12) 68 C 20) 330 1763 8ALOWIN LAKE 93 C 28) 97 C 29) 87 ------- PERCENT OF LAKES WI l l- i HIGHER VALUES (NUMBER OF LAKE MEDIAN CODE LAKE NAME TOTAL P 1764 LA$ E VANDALIA 47 ( 14) 1765 OLD EN MINE RESERVOIR 0 ( 0) 1766 HORSESHOE LAKE LAKES WITH HIGHER VALUES) MEDIAN 500— INORG N MEAN SEC 60 C 18) 60 ( 18) 83 C 25) 57 C 17) 57 C 17) 37 ( 11) MEAN 15— MEDiAN INO .X CHLORA MIN DO DISS OMTrIO P NO 83 ( 25) 13 C 2) 60 C 18) 323 40 ( 12) 60 ( 18) 0 ( 0) 2’.O 3 C 1) 93 ( 28) 80 C 24) 313 ------- LAKES RANKED BY INDEX NOS. RANK LAKE CODE LAKE NAME INDEX NO 1 1759 CEDAR LAKE 528 2 1763 BALDWIN LAKE 504 3 1711 COFFEEN LAKE 454 4 1735 REND LAKE 422 5 1757 EAST LOON LAKE 399 6 1753 LAKE SANGC1IRIS 369 7 1(61 LAKE EMATuIc 367 8 1712 CRAB ORCHARD LAKE 347 9 1706 LAKE CARLYLE 345 10 1139 LAKE SHELBYVILLE 339 II 1751 LAKE STORY 333 12 1762 RACCOON LAKE 330 13 1764 LAKE VANDALIA 323 14 1766 HORSESiIOE LAKE 313 15 1727 LAKE MARIE 303 16 1703 LAKE BLOOMINGTON 296 17 1742 LAKE SPRINGVIELD 283 18 1733 PISTAKEE LAKE 253 19 175’. LAKE HOLIDAY 247 20 1756 GRASS LAKE 244 21 172b LAKE LOU YA(GER 241 22 17 S OLD EN MINE RESERvOIR 240 23 1740 SILVER LAKE (HIGi-4LANO) 229 24 1748 VE NILION LAKE 227 25 1708 LAKE CHARLESTON 225 2b 1755 FOA LAKE 212 27 1758 SLOCUM LAKE 210 28 171’ LAr E D [ CATU 201 ------- LAKES RANKED BY INDEX NOS. RANK LAKE CODE LAKE NAME INDEX NO 29 1725 LONG LAKE 195 30 1750 WONDER LAKE 183 31 1752 DEPUE LAKE 139 ------- APPENDIX B CONVERSIONS FACTORS ------- CONVERSION FA(;TORS Hectares x 2.471 = acres Kilometers x 0.6214 = miles Meters x 3.281 = feet Cubic meters x 8.107 x 10 = acre/feet Square kilometers x 0.3861 = square miles Cubic meters/sec x 35.315 = cubic feet/sec Centimeters x 0.3937 = inches Kilograms x 2.205 = pounds Kilograms/square kilometer x 5.711 = lbs/square mile ------- APPENDIX C TRIBUTARY FLOW DATA ------- TRIBUTAHY FLOW INFORMATION FOR ILLINOIS 10/23/75 LAKE CODE 1751 LAKE STOHEY TOTAL DRAINAGE AREA OF LAPSE(SQ KM) 18.2 SUB—DRAINAGE NORMALIZED FLOWS(CMS) TRIBUTARY AREAISU KMJ JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC MEAN ITSIA I 18.2 0.11 0.18 0.21 0.22 0.17 0.15 0.09 0.04 0.03 0.03 0.05 0.06 0.11 175 1A2 12.4 0.07 0.12 0.14 0.15 0.12 0.10 0.06 0.03 0.02 0.02 0.03 0.04 0.07 17512Z 5.7 0.04 0.06 0.07 0.07 0.05 0.05 0.03 0.01 0.01 0.01 0.02 0.02 0.04 SUMMARY TOTAL DRAINAGE AREA OF LAKE = 18.2 TOTAL FLOW IN = 1.33 SUM OF SUB—DRAINAGE AREAS = 18.2 TOTAL FLOW OUT = 1.33 MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS) TRIr4UTARY MONTH YEAR MEAN FLOW DAY FLOW DAY FLOW DAY FLOW uSIA! 6 73 0.40 2 0.48 7 73 0.20 8 0.21 8 73 0.05 13 0.12 9 73 0.03 16 0.01 10 73 0.34 14 0.45 11 73 0.10 4 0.13 12 73 0.34 1 0.14 I 74 0.59 5 0.37 2 74 0.24 3 0.42 16 0.15 3 74 0.31 2 0.20 17 0.37 4 74 0.42 6 0.20 5 74 0.42 19 0.99 1751A2 6 73 0.28 2 0.34 7 73 0.13 8 0.14 8 73 0.03 13 0.08 9 73 0.02 16 0.01 10 73 0.23 14 0.28 11 73 0.07 4 0.09 12 73 0.23 1 0.09 1 74 0.40 5 0.24 2 74 0.16 3 0.28 16 0.10 3 74 0.21 2 0.14 17 0.25 4 74 0.28 6 0.15 5 74 0.28 19 0.68 IT5 IZZ 6 73 0.12 2 0.14 7 73 0.07 8 0.07 8 73 0.02 13 0.04 9 73 0.01 16 0.01 10 73 0.11 14 0.17 11 73 0.03 4 0.04 12 73 0.10 1 0.04 74 0.20 5 0.13 1 7 ’. 0.18 5 0.11 2 74 0.07 3 0.14 16 0.05 3 74 0.10 2 0.07 17 0.12 4 7’. 0.14 6 0.OS 5 74 0.14 19 0.31 ------- APPENDIX 0 PHYSICAL and CHEMICAL DATA ------- STORET RETRIEVAL DATE 75/10/23 175101 40 9 20.0 090 24 30.0 LArcE STOI Y 17095 ILLINOIS 11EPALES 2111202 3 0018 FEET DEPTH 00010 00300 00077 00094 00400 00410 00610 00625 00630 00671 DATE TIME DEPTH wATER DO TWANSP CNDUCTVY PH T ALK NH3—N TOT KJEL NO2 NO3 PHOS—DIS FROM OF TEMP SECCHI FiELD CACO3 TOTAL N N—TOTAL ORTHO TO DAY FEET CENT MG/L INCHES MICROPIHO SO MG/L P4&/L M(,/L MG/L M6/L P 73/05/12 13 35 0000 16.2 60 540 8.10 240 0.660 0.800 2.130 0.032 13 35 0004 15.9 8.9 540 8.10 240 0.630 0.700 2.000 0.022 13 35 0015 14.8 6.3 675 7.90 176 0.230 1.000 2.010 0.046 73/08/09 15 00 0000 25.8 6.4 34 380 9.00 112 0.100 2.000 0.990 0.012 15 00 0005 25.3 405 15 00 0009 24.2 1.0 433 7.80 148 0.440 1.500 3.690 0.010 15 00 0015 19.1 0.2 475 7.30 210 1.700 2.800 0.810 0.020 73/10/17 11 00 0000 17.9 37 399 7.90 167 0.450 1.300 0.990 0.022 11 00 0005 17.8 5.0 400 7.80 167 0.430 1.200 0.980 0.031 11 00 0015 17.8 4.8 399 7.40 170 0.640 1.400 0.960 0.076 11 00 0020 17.0 0.0 485 7.30 248 4.720 6.200 0.160 0.233 00665 32217 DATE TIME DEPTH PHOS-TOT CKLRPP-IYL FROM OF A TO DAY FEET MG/L P UG/L 73/05/12 13 35 0000 0.079 13 35 000’. 0.073 13 35 0015 0.203 73/08/09 15 00 0000 0.061 6.1 15 00 0009 0.034 15 00 0015 0.041 73/10/17 LI 00 0000 0.053 16.2 11 00 0005 0.075 11 00 0015 0.106 11 00 0020 0.321 ------- STORET i ETRIEVAL DATE 75/10/23 I 75102 40 59 20.0 090 23 25.0 LAKE STORY 17095 ILLINOIS 1 IEPALES 2111202 3 0015 FEET DEPTH 00010 00300 00077 00094 00400 00410 00610 00625 00630 00671 DATE TIME DEPTH WATER DO T ANSP CNDIJCTVY PH 1 ALK NH3—N TOT KJEL NO2 NO3 PHOS—DIS FROM OF TEMP SECCI-il FIELL) CACO3 TOTAL N N—TOTAL ORTHO TO DAY FEET CENT MG/L INCHES MIC OMHO SD M(,/L M(,/L MG/L M(,/L MG/L. P 73/05/12 13 55 0000 17.0 54 560 8.30 175 0.210 0.800 4.190 0.016 13 55 0004 17.0 10.7 550 8.43 185 0.330 0.900 5.130 0.017 13 55 0011 16.8 10.5 460 8.30 178 0.160 0.800 5.120 0.017 73/08/09 15 25 0000 28.0 6.8 26 393 9.10 113 0.080 2.000 0.960 0.012 15 25 0005 27.4 404 15 25 0009 27.4 4.3 410 8.20 134 0.270 1.900 1.370 0.014 15 25 0012 22.5 0.4 477 7.40 180 0.810 2.100 1.760 0.021 73/10/17 11 15 0000 17.9 33 390 8.50 167 0.090 1.400 1.250 0.021 II 15 0005 17.9 8.4 392 8.50 167 0,070 0.900 1.340 0.031 11 15 0010 17.8 9.0 391 8.50 125 0.040 0.900 2.890 0.047 00665 32217 DATE TIME DEPTH PHOS -TOT CHLRPHYL FROM OF A TO DAY FEET MG/L P (JG/L 73/05/12 13 55 0000 0.074 23.0 13 55 0004 0.079 13 55 0011 0.072 73/08/09 15 25 0000 0.060 7.8 15 25 0009 0.070 15 25 0012 0.049 73/10/17 11 15 0000 0.070 43.8 11 15 000S 0.071 11 15 0010 0.178 ------- APPENDIX E TRIBUTARY DATA ------- STORET RETRIEVAL OATE 75/10/23 1751A1 ‘+0 59 20.0 090 2’. 40.0 UNNAMED CREEK 17111 KNOX Co MAP 0/LAKE STOREY SEC NO t RDG JUST 8ELO DAM 11EPALES 2111204 4 0000 FEET DEPTH 00630 00625 00610 00671 00665 DATE TIME DEPTH N02&N03 TOT KJEL NH3—N PHOS-DIS PHOS—TOT FROM OF N-TOTAL N TOTAL ORTHO TO OAY FEET MG/L MG/L MG/L MG/L P MG/L P 73/06/02 11 00 3.800 4.400 0.160 0.019 0.065 73/07/08 09 15 2.500 3.230 0.231 0.015 0.030 73/08/13 08 45 0.520 4.400 0.096 0.021 0.065 73/09/16 10 20 0.240 1.540 0.325 0.027 0.115 73/10/14 16 00 2.900 2.650 0.095 0.098 0.250 73/11/0’. 14 00 1.140 1.750 0.357 0.011 0.065 73/12/01 10 00 1.400 1.450 0.224 0.012 0.021 74/01/05 10 15 2.400 0.600 0.160 0.009 0.030 74/02/03 13 50 3.740 1.700 0.210 0.210 0.315 74/02/16 10 00 2.760 1.400 0.130 0.095 0.145 74/03/02 11 00 4.700 1.200 0.050 0.015 0.015 74/03/17 09 45 9.600 1.000 0.035 0.030 0.057 74/04/06 13 20 4.200 1.500 0.050 0.010 0.03S 74/05/19 10 40 3.300 1.000 0.030 0.010 0.045 ------- STORET i ETRIEVAL OATE 7b/10/23 1751A2 40 59 20.0 090 22 55.0 UNNAMED CREEK 17 KNOX Co MAP 1/LAKE STO EY US HWY 150 t3PDG AT E END OF LAKE 11EPALES 2111204 4 0000 FEET DEPTH 00630 00625 00610 00671 00665 DATE TIME DEPTH NO2 i.NO3 TOT KJEL NH3—N PHOS—DIS PHOS-TOT FROM OF N—TOTAL N TOTAL ORTHO To DAY FEET M6/L MG/L MG/L MG/L P P46/L P 73/06/02 10 40 4.500 3.500 0.076 0.013 0.110 73/07/08 08 50 2.500 2.940 0.074 0.022 0.110 73/08/13 08 30 0.990 4.600 0.096 0.030 0.080 73/09/16 10 00 0.280 2.300 0.294 0.054 0.195 73/10/1’. 15 40 0.560 1.000 0.095 0.011 0.050 73/11/0’. 13 45 9.200 0. 100K 0.075 0.042 0.100 73/12/01 09 45 8.300 0.116 0.116 0.044 0.270 74/01/05 10 30 9.100 0.300 0.048 0.036 74/02/03 13 40 5.300 1.100 0.230 0.310 0.490 74/02/16 09 30 3.200 0.900 0.110 0.100 0.150 74/03/02 11 00 7.200 0.800 0.050 0.020 0.075 74/03/17 10 05 4.100 1.100 0.025 0.010 0.065 74/04/06 13 40 5.460 0.800 0.015 0.010 0.025 74/05/19 11 10 9.700 0.700 0.075 0.075 0.135 K VI LUE KNOWN TO bE LESS TfrIAN INDICATED ------- |