U.S. ENVIRONMENTAL PROTECTION AGENCY
          NATIONAL EUTROPHICATION SURVEY
                   WORKING PAPER SERIES
                                       REPORT
                                        ON
                                  RATUBUN RESERVOIR
                                  AND
                                        I
                                    EPA REGION VII
                                 WORKING PAPER No, 502
CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
                            and
ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA
 699-440

-------
                                   REPORT
                                     ON
                             RATHBUN RESERVOIR
                               EPA REGION VII
                           WORKING PAPER No, 502
       WITH THE COOPERATION OF THE
low DEPARTMENT OF ENVIRONMENTAL QUALITY
                 AND THE
          IOWA NATIONAL GUARD
             DECEMBER,  1976

-------
1
CONTENTS
Page
Foreword ii
List of Iowa Study Lakes iv
Lake and Drainage Area Map v
Sections
I. Conclusions 1
II. Lake and Drainage Basin Characteristics 4
III. Lake Water Quality Summary 5
IV. Nutrient Loadings 10
V. Literature Reviewed 16
VI. Appendices 17

-------
11
FOREWORD
The National Eutrophication Survey was initiated in 1972 in
response to an Administration commitment to investigate the nation-
wide threat of accelerated eutrophication to freshwater lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point-source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey’s eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [ 3O3(e)], water
quality criteria/standards review [ 3O3(c)], clean lakes { 314(a,b)],
and water quality monitoring [ g106 and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.

-------
111
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation’s
freshwater lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
AC KNOWLEDGMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environmental Protection Agency)
expresses sincere appreciation to the Iowa Department of Environ-
mental Quality for professional involvement, to the Iowa National
Guard for conducting the tributary sampling phase of the Survey,
and to those wastewater treatment plant operators who voluntarily
provided effluent samples and flow data.
The staff of the Water Quality Division of the Department of
Environmental Quality provided invaluable lake documentation and
counsel during the Survey, reviewed the preliminary reports, and
provided critiques most useful in the preparation of this Working
Paper series.
Major General Joseph G. May, the Adjutant General of Iowa,
and Project Officer Colonel Cleadeth P. Woods, who directed the
volunteer efforts of the Iowa National Guardsmen, are also grate-
fully acknowledged for their assistance to the Survey.

-------
iv
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF IOWA
LAKE NAME COUNTY
Ahquabi Warren
Big Creek Reservoir Polk
Black Hawk Sac
Clear Cerro Gordo
Darling Washington
Lost Island Clay, Palo Alto
MacBride Johnson
Prairie Rose Shelby
Rathbun Reservoir Appanoose, Wayne
Red Rock Reservoir Marion
Rock Creek Jasper
Silver Worth
Spirit Dickinson
Viking Montgomery
West Okoboji Dickinson

-------
Map Location
RATHBUN RESERVOIR
® Tributary SavnpFlng Site
X Lake SainpUng Site
? Sewege Treatment Faciflty
3 Drainage Area Boundary
Land Subject to Inundation
‘9

-------
RATHBUN RESERVOIR
STORET NO. 1909
I. CONCLUSIONS
A. Trophic Condition:
Survey data indicate that Rathbun Reservoir is eutrophic.
It ranked seventh in overall trophic quality when the 15 Iowa
lakes and reservoirs sampled in 1974 were compared using a com-
bination of six parameters*. Eight of the water bodies had less
median total phosphorus, two had less median dissolved phosphorus,
nine had less median inorganic nitrogen, two had less mean chlorophyll a,
and ten had greater mean Secchi disc transparency. Marked depres-
sion of dissolved oxygen with depth occurred at stations 1, 4,
5, and 6 in July, 1974.
Survey limnologists did not observe phytoplankton concentra-
tions or higher aquatic vegetation but did report high turbidity.
B. Rate-Limiting Nutrient:
The algal assay results indicate that Rathbun Reservoir was
phosphorus limited at the times the assay samples were collected
(04/19/74 and 09/24/74). The reservoir data also indicate
phosphorus limitation at both sampling times.
C. Nutrient Controllability:
1. Point sources-—During the sampling yeEr, the phosphorus
contributions of domestic point sources amounted to 8.7% of the
* See Appendix A.

-------
2
total phosphorus load. The Chariton wastewater treatment plant
contributed 6.1%, the four Corydon wastewater treatment plants
collectively contributed 1.6%, and the Russell and 1-lumeston
wastewater treatment plants each contributed 0.5% of the total
phosphorus load reaching Rathbun Reservoir.
The present phosphorus loading of 2.44 g/m 2 /yr is almost five
times that proposed by Vollenweider (Vollenweider and Dillon,
1974) as a eutrophic loading (see page 15). It is calculated
that 100% phosphorus removal at the above domestic point sources
would reduce the phosphorus loading to 2.25 g/m 2 /yr ( ½ times
the eutrophic loading). However, because the reservoir is phos-
phorus limited, any increase in point—source phosphorus inputs
hould be discouraged to prevent further deterioration of the
trophic condition of the reservoir.
Agena (1975) calculated a phosphorus point—source load to
Rathbun Reservoir of 9,715 kg P/yr which is in very close agree-
ment with the Survey value of 9,535 kg P/yr.
2. Non-point sources--The phosphorus contributions of non-
point sources accounted for 91.3% of the total phosphorus load
during the sampling year. The Chariton River contributed 45.6%,
the South Fork Chariton River contributed 14.4%, and ungaged
tributaries were estimated to have contribut2d 30.5% of this load.
Agena (op. cit.) calculated a non-point phosphorus load of 113,500
kg/yr which compares fairly well with the Survey value of 99,320

-------
3
kg/yr.
The nutrient export rates of the Chariton River were much
higher than those of the South Fork Chariton River even though
the drainage areas are similar in size. The higher Chariton
River rates may be due to urban runoff in the Chariton area,
underestimation of the Chariton wastewater treatment plant loads,
or both (note that the Chariton wastewater treatment plant flows
appear to be estimates).
The Chariton River and South Fork Chariton River embayments
of Rathbun Reservoir are within the 53 km 2 wildlife management
area, and the refuge waters are utilized by migrating geese and
ducks (Harrison, 1976).
On the basis of information provided by personnel of the Iowa
Conservation Commission (Bishop, 1976), the amounts of nutrients
contributed to Rathbun Reservoir by migratory waterfowl were esti-
mated (see page 11 for method of calculation).
Collectively, geese and ducks using the refuge added an esti-
mated 155 kg P and 495 kg N during the sampling year and accounted
for 0.1% of the total phosphorus load and less than 0.1% of the
total nitrogen load.

-------
4
II. LAKE AND DRAINAGE BASIN CHARACTERISTICSTh
A. Lake Morphometrytt:
1. Surface area: 44.52 kilometers 2 .
2. Mean depth: 6.7 meters.
3. Maximum depth: 13.7 meters.
4. Volume: 298.284 x 106 m 3 .
5. Mean hydraulic retention time: 1.0 years.
B. Tributary and Outlet:
(See Appendix C for flow data)
1. Tributaries -
Drainage Mean flow
Name area ( 
-------
5
III. LAKE WATER QUALITY SUMMARY
Rathbun Reservoir was sampled three times during the open-water season
of 1974 by means of a pontoon-equipped Huey helicopter. Each time,
samples for physical and chemical parameters were collected from
a number of depths at six stations on the reservoir (see map, page v).
During each visit, a single depth-integrated (4.6 in to surface) sample
was composited from the stations for phytoplanktor identification and
enumeration; and during the first and third visits, a single 18.9—liter
depth-integrated sample was composited for algal assays. Also each
time, a depth-integrated sample was collected from each of the stations
for chlorophyll a analysis. The maximum depths sampled were 12.2 meters
at station 1, 7.6 meters at station 2, 9.1 meters at station 3, 10.7
meters at station 4, 6.4 meters at station 5, and 7.6 meters at station
6.
The sampling results are presented in full in Appendix D and are
summarized in the following table (the July nutrient samples were not
preserved properly and were not analyzed).

-------
6 SITES
6 SITES
3RD SAMPLING ( 9/24/7’.)
6 SITES
A. SUMMARY OF PHYSICAL AND
CHEMICAL
STO . ET
LrIARACTERISTICS FO RAIH8UN
CODE 1909
RESERVOIR
1ST SAMPLING (
‘.119/74)
2ND SAMPLING ( 7/ 3/74)
PARAMETER
RANGE MEAN
MEDIAN
MANGE MEAN MEDIAN
MANGE
MEAN
MEDIAN
TEMP (C)
9.1
— 13.5 10.6
10.5
19.8
— 26.8 23.8 23.8
16.4
— 18.3
17.6
17.9
DISS OXY (MG/L)
9.4
— 11.4 10.7
11.0
1.0
— 8.8 5.5 6.4
7.8
— 8.’.
8.1
8.0
CNDCTVY (MCROMO)
174.
— 348. 209.
184.
173.
— 285. 258. 273.
222.
— 244.
232.
232.
PH (STAND UNITS)
8.2
— 9.0 8.5
8.4
6.9
— 8.2 7.7 7.8
7.1
— 7.3
7.2
7.2
TOT ALPç (MG/L)
76.
— 142. 90.
81.
*******D***Q** ***OQ**
94.
— 124.
105.
103.
TOT P (MG/L)
0.070
— 0.120 0.085
0.085
*** **
********** * ***Q****
0.036
— 0.104
0.053
0.04
OPIP4O P (MG/L)
0.005
— 0.017 0.00
0.007
* **
*a**o Q*#*** *****D**Q
0.007
— 0.013
0.010
0.009
N02.N03 (MG/L)
0.650
— 1.340 1. b3
1.125
******
1.000
— 1.330
1.135
1.1db
AMMONIA (MG/L)
0.030
— 0.100 0.045
0.040
*D***O
***Q****O* DG****QO *Q
0.020
— 0.050
0.037
0.0’.0
P JEL N (MG/L)
0.600
— 1.500 0.850
0.800
—°° ° °
0.400
— 0.800
0.545
0.500
INORG N (P4G/L)
0.690
— 1.420 1.109
1.180
° °
1.040
— 1.360
1.171
1.160
TOTAL N (MG/U
1.350
— 2.600 1.913
1.890
**QQ**
O** ****G** *G* ******
1.440
— 2.030
1.680
1.655
CHLRPYL A (UG/L)
15.1
— 38.8 27.1
27.0
0.1
7.7 3.0 2.5
4.0
— 7.9
5.9
6.1
SECCrII (METERS)
0.6
— 0.8 0.7
0.8
0.1
0.8 0.5 0.5
0.3
— 0.9
0.6
0.6
C

-------
7
B. Biological characteristics:
1. Phytoplankton
Sampling Dominant Algal Units
Date Genera per ml
04/19/74 1. Stephanodicus 30,898
2. Flagellates 958
3. Ankestrodesmus . 766
4. Melosira 479
5. Trachelomonas p. 287
Other genera 432
Total 33,820
07/03/74 1. Melosira p. 308
2. Flagellates 213
3. Cryptomonas . a• 142
4. Kirchneriella . 95
5. Stephanodiscus 71
Other genera 216
Total 1,045
09/24/74 1. Melosira 2. 818
2. Flagellates 570
3. Cyptomonas p. 248
4. Stephanodiscus . 198
5. Raphidiopsis 124
Other genera 719
Total 2,677

-------
8
2. Chlorophyll a —
Sampling
Date
04/19/74
Station
N urn her
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
Chlorophyll a
(pg/i) —
23.4
38.8
15.1
31.5
25.3
28.8
2.0
7.7
3.4
2.8
2.3
0.1
4.4
6.2
4.0
6.1
7.9
6.9
C. Limiting Nutrient Study:
1. Autoclaved, filtered, and nutrient spiked -
a. April samples -
1) Stations 1, 2, and 3
Spike (mg/i )
Control
0.050 P
0.050 p + 1.0 N
1.0 N
Ortho P
Conc. (mg/i )
0.015
0.065
0.065
0.015
Inorganic N
Conc. (mg/i )
1 . 060
1.060
2.060
2.060
riaximum yield
fmg/1-dry wt. )
2.5
14.4
16.1
0.5
2) Stations 4, 5, and 6
Spike (mg/i )
Control
0.050 P
0.050 p + 1.0 N
1.0 N
Ortho P
Conc. (mg/i )
0. 025
0.07 5
0.075
0.025
Inorganic N
Conc. (mg/i )
1.110
1.110
2.110
2.110
Maximum yield
( mg/i-dry wt. )
6.8
22.7
20.8
5.6
07/03/74
09/24/74

-------
9
2. Discussion -
The control yields of the assay alga, Selenastrum capri-
cornutum , indicate that the potential primary productivity
of Rathbun Reservoir was modcrately high at the times the
assay samples were collected. The addition of phosphorus
alone resulted in significant increases in yields compared to
those of the controls in all cases, but the addition of
only nitrogen did not. These results indicate phosphorus
limitation.
The reservoir data also indicate phosphorus limitation.
The mean inorganic nitrogen to orthophosphorus ratios were
117 to 1 or greater, and phosphorus limitation would be
expected.
b. September samples -
1) Stations 1, 2, and 3
Ortho P
_____ _____ Conc. (mg/i )
0. 005
0.055
N 0.055
0.005
Spike jmq/1)
Conc. (mg/l)
(mg/i-dry wt.)
Control
0.050 P
0.050 P + 1.0
1.0 N
1.065
1.065
2.065
2.065
1.1
22.1
18.8
1.0
2) Stations
4,
5, and 6
Sp ike (mg/i)
Control
0.050 P
0.050 p + 1.0 N
1.0 N
Ortho P
Conc. (mg/i)
Inorganic N
Conc. (mg/l)
Maximum yield
(mg/i—dry wt.)
1.045
1.045
2.045
2.045
0.015
0.065
0.065
0.015
2.3
16.1
18.2
2.2

-------
10
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the Iowa National
Guard collected monthly near—surface grab samples from each of the
tributary sites indicated on the map (page v), except for the high
runoff months of May and June when two samples were collected.
Sampling was begun in August, 1974, and was completed in July, 1975.
Through an interagency agreement, stream flow estimates for the
year of sampling and a “normalized” or average year were provided by
the Iowa District Office of the U.S. Geological Survey for the
tributary sites nearest the reservoir.
In this report, nutrient loads for sampled tributaries were
determined by using a modification of a U.S. Geological Survey computer
program for calculating stream loadings*. Nutrient loads shown are
those measured minus point-source loads, if any.
Nutrient loads for unsampled “minor tributaries and immediate
drainage” (“zZ” of U.S.G.S.) were estimated using the means of the
nutrient loads, in kg/km 2 /year, at stations B—i and C-l and multiplying
the means by the ZZ area in km 2 .
The operator of the Chariton wastewater treatment plant provided
monthly effluent samples and corresponding flow data. The communities
of Corydon, Humeston, and Russell did not participate; nutrient loads
from those sources were estimated at 1.134 kg P and 3.401 kg N/capita/year,
and flows were estimated at 0.3785 m 3 /capita/day.
Estimates of the nutrient contributions of migratory geese and ducks
are based on waterfowl inventory data and refuge information provided by
Bishop (1976).
* See Working Paper No. 175.

-------
11
In 1974—75, goose—use-days totaled 409,000 and duck—use—days totaled
1,598,650 of which 918,450 were mallard-use-days.
In calculating the nutrient loads, the following assumptions were made:
1. One-half of the geese were common Canadas, and the remainder were
snow and blue geese.
2. The geese spend one—fourth of the time away from refuge waters in
the fall and one-half of the time in the spring; i.e., effective goose-use-
days = 222,750.
3. Mallard ducks spent one—fourth of the time away from the refuge
waters in the fall and one-half of the time in the spring; i.e., effective
mallard-use—days = 563,875.
4. The remaining ducks spent practically all of the time on the
refuge waters and thus essentially recycled nutrients from the reservoir
back to the reservoir.
5. The physiology of waste excretion is similar among waterfowl, and
the amount of feces produced is approximately proportional to body weight
(Hutchinson, 1950).
6. The mean weight of common Canada geese is 3.870 kg, the mean height
of snow-blue geese is 2.289 kg, and the mean weight of mallard ducks is
1.148 kg (Kortright, 1943).
7. Common Canada geese contribute 0.439 g total phosphorus and 1.435
g total nitrogen per goose-use-day (Manny et al., 1975).

-------
12
A. Waste Sources:
1. Known municipal t -
Pop.
Name Served
Chariton* 5,000
Corydon #1 60
#2 920
#3 500
#4 50
Humes ton 500
Russell 500
2. Known industrial -
Mean Flow
Treatment ( m 3 /d )
tr. filter 1,892.7
stab, pond 22.7
stab, pond 348.2
stab, pond 189.2
stab, pond 18.9
stab, pond 189.2
stab, pond 189.2
None
Receiving
Water
Chariton River
Unnamed Cr.!
S. Fk. Chariton
River
Unnamed Cr./
S. Fk. Chariton
River
Unnamed Cr.!
S. Fk. Chariton
River
unnamed Cr.!
S. Fk. Chariton
River
Ninemile Cr.!
S. Fk. Chariton
River
Dry Run,’Chariton
River
t Anonymous, 1971.
* Hammons, 1974.

-------
13
B. Annual Total Phosphorus Loading - Average Year:
1. Inputs —
kgP/ %of
Source yr total
a. Tributaries (non-point load) —
S. Fk. Chariton River’ 5,765 14.5
Chariton River 49,410 45.4
b. Minor tributaries & imediate
drainage (non-point load) - 33,200 30.5
c. Known municipal STP’s —
Chariton 6,670 6.1
Corydon (4 ponds) 1,735 1.6
Humeston 565 0.5
Russell 565 0.5
d. Septic tanks* - 10 <0.1
e. Known industrial — None
f. Migratory waterfowl -
Ducks 75 <0.1
Geese 80 <0. 1
g. Direct precipitation** - 780 0.7
Total 108,855 100.0
2. Outputs -
Lake outlet - Chariton River 19,290
3. Net annual P accumulation - 89,565 kg.
* Estimate based on eight lakeshore parks and two camp irounds;
see Working Paper No. 175.
** See Working Paper No. 175.

-------
14
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs-
kgN/ %of
Source yr total
a. Tributaries (non-point load) -
S. Fk. Chariton River 174,950 19.5
Chariton River 371,265 41.3
b. Minor tributaries & immediate
drainage (non—point load) - 280,185 31.2
c. Known municipal SIP’s -
Chariton 15,180 1.7
Corydon (4 ponds) 5,205 0.6
Hunieston 1,700 0.2
Russell 1,700 0.2
d. Septic tanks* — 425 <0.1
e. Known industrial - None -
f. Migratory waterfowl -
Ducks 240 <0.1
Geese 255 <0.1
g. Direct precipitatiorl** - 48,065 5.3
Total 899,170 100.0
2. Outputs -
Lake outlet — Chariton River 546,945
3. Net annual N accumulation - 352,225 kg.
D. Mean Annual Non—point Nutrient Export by Subdrainage Area:
Tributary kg P/km 2 /yr kg N/km 2 /yr
South Fork Chariton River 36 402
Chariton River 105 788
* Estimate based on eight lakeshore parks and two campgrounds;
see Working Paper No. 175.
** See Working Paper No. 175.

-------
15
E. Yearly Loads:
In the following table, the existing phosphorus loadings
are compared to those proposed by Vollenweider (Vollenweider
and Dillon, 1974). Essentially, his “dangerous” loading is
one at which the receiving water would become eutrophic or
remain eutrophic; his “permissible” loading is that which
would result in the receiving water remaining oligotrophic
or becoming oligotrophic if morphometry permitted. A meso-
trophic loading would be considered one between “dangerous”
and “permissible”.
Note that Vollenweider’s model may not be applicable to
water bodies with short hydraulic retention times.
Total Phosphorus Total Nitrogen
Total Accumulated Total Accumulated
grams/m 2 /yr 2.44 2.01 20.2 7.9
Vollenweider phosphorus loadings
(g/m 2 /yr) based on niean depth and mean
hydraulic retention time of Rathbun Reservoir:
“Dangerous” (eutrophic loading) 0.50
“Permissible” (oligotrophic loading) 0.25

-------
16
V. LITERATURE REVIEWED
Agena, Ubbo, 1975. Study of annual nutrient loads into Rathhun
Reservoir. Water Qual. Mgt. Div., IA Dept. of Env. Qual.,
Des Moines.
Anonymous, 1971. Inventory of municipal waste facilities. EPA
Pubi. OWP-l, vol. 7, Washington, DC.
Bishop, Richard, 1976. Personal communication (Rathbun Reservoir
refuge and waterfowl inventory). IA Cons. Comm. Fish. & Wildlife
Station, Clear Lake.
Harnmons, Lynn E, 1974. Treatment plant questionnaire (Chariton
SIP). Chariton.
Harrison, Harry Ii., 1975. Personal communication (reservoir morphometry).
IA Cons. Comm., Des Moines.
__________________ 1976. Personal communication (Rathbun Reservoir
refuge). IA Cons. Comm., Des Moines.
Hutchinson, George Evelyn, 1950. Biogeochemistry of vertebrate excre-
tion. Bull. Amer. Mus. Nat. Hist. 96: 1-554.
Kortright, Francis H., 1943. The ducks, geese and swans of North
America (2nd ed.). Amer. Wildlife Institute, Wash., DC.
Manny, B. A., R. G. Wetzel, and W. C. Johnson, 1975. Annual contri-
bution of carbon, nitrocien and phosphorus by migrant Canada geese
to a hardwater lake. Verh. mt. Ver. Limnol. 19: 949-951.
Vollenweider, R. A., and P. J. Dillon, 1974. The application of
the phosphorus loading concept to eutrophication research.
Nat]. Res. Council of Canada Pub]. No. 13690, Canada Centre
for Inland Waters, Burlington, Ontario.

-------
17
VI. APPENDICES
APPENDIX A
LAKE RANKINGS

-------
LA SE ‘.ATA TO BE •JSEI) IN qAJKI S
iF ) I AN
4EOIAN MEDIAN 500- 4E N 15-
LAKE TOTAL P 1 O G N MEAN SEC CHL 0 A MIN DJ •)ISS i ’TriO I’
CODE LAKE NAME
19 L LAKE ACOUA31 0.062 0.3-35 ‘.69.333 8.600 9.200 0.005
1902 BIG CREEK RESERVOIP 0.04 ” 6.465 43 .5OO 16.867 1 ’ ..800 0.011
1903 8LACtc HAWK LAKE 0.1 35 0.130 48E .167 ‘.9.740 15.000 0.020
190’ CLEAR LAKE 0.059 0.070 465.125 17.400 8.600 0.010
1905 LAKE DARLING 0.077 1.475 482.500 13.817 9.200 0.012
1906 LOST ISLAND LAKE 0.146 0,065 421.161 36.100 8.400 0.021
1907 LAKE MACBRIDE 0.061 2.035 458.444 17.067 15.000 0.010
1908 PRAIRIE ROSE LAKE 0,056 0.210 463.667 17.350 8.600 0.010
1909 RATMBU RESERVOIR 0.071 1.170 475.889 12.039 14.000 o.ooa
1910 RED ROCK LAKE 0.180 1.880 473.400 14.730 14.000 0.104
1911 ROCK CREEK LAKE 0.065 1.400 480.500 18.367 8.400 0.007
1912 SILVER LAKE 0.193 0.565 482.667 95.300 10.000 0.034
1913 SPIRIT LAKE 0.041 0.090 422.667 12.622 9.000 0.007
191’. VIKI”IG LAKE 0.075 0.130 ‘.59.000 26.033 14.200 0.017
7.722 15.000 0.017
1915 WEST LAKE OKOBOJI
0.046
0.060 380.444

-------
PERCENT OF LAKES WITH HiGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)
MEIJIAN MEDIAN
TOTAL P IN0 G N
500-
MEAN
15-
MIN DO
MEt) I AN
LAKE NAME
MEAN SEC
C.ILORA
1901
LAKE ACt)UA8I
57 (
8)
50 C
7)
‘ .3 C
6)
93 (
13)
100 C
14)
79 (
11)
422
1902
BIG CREEK RESERVOIR
89 (
12)
0 C
0)
79 C
11)
57 C
8)
21 C
3)
50 C
7)
296
1903
BLACK AWP LAKE
7
1
68 C
0 C 0)
7 C
1)
1 ( 0)
21 C 3)
110
1904
CLEAR LAKE
71 C 10)
86 C
12)
50 C 1)
36 ( 5)
75 C 10)
64 1 8)
382
1905
LAKE OA LING
29 C 4)
21 C 3)
14 C 2)
71 C 10)
57 C 8)
43 1 6)
235
1906
LOST ISLAND LAKE
21 C 3)
93 ( 13)
93 C 13)
1’. C 2)
89 C 12)
14 C 2)
32’.
1907
LAKE MACBRIDE
4 C 9)
7 C 1)
71 1 10)
50 1 7)
7 1 0)
64 ( 8)
263
1908
PRAIRIE ROSE LAKE
79 1 II)
57 C 8)
57 C 8)
43 C 6)
75 1 10)
64
C 8)
375
1909
RATHBUN RESERVOIR
43 C 6)
36 ( 5)
29 C 4)
86 1 12)
39 1 5)
86
C 12)
319
1910
RED ROCK LAKE
14 C 2)
14 C 2)
36
C 5)
64 C 9)
39
C 5)
0
1 0)
167
1911
ROCK CREEK LAKE
50 C 7)
29 C 4)
21
C 3)
29 I 4)
89
1 12)
96
C 13)
314
1912
SILVER LAKE
0 C 0)
43 C 6)
7
( 1)
0
C 0)
50
( 7)
7
C 1)
107
1913
SPIRIT LAKE
100
C 14)
79
( 11)
86
C 12)
79
C 11)
64
C 9)
96
1 13)
504
1914
VIKING L#,cE
36
1 5
68
( 9)
64
( 9)
21
1 3)
29
C 4)
32
1 4)
250
1915 WEST LAKE OKO OJI
89 1 12) 100 C 14) 100 C 14) 100 C 14)
7 C 0) 32 1 4) 428

-------
LA$ E cANP D 8’s’ INDEX MOS.
RANK LAKE CODE LAKE NAME INDEA NO
1 1913 SPIRIT LAKE 504
2 1915 WEST LAKE OKOBOJI 428
3 1901 LAKE ACOUABI 422
4 190’. CLEAR LAKE 382
5 1908 PRAIRIE ROSE LAKE 375
6 1906 LOST ISLAND LAKE 32’.
7 1909 RATH8UN RESERVOIR 319
8 1911 ROCK CREEK LAKE 314
9 1902 BIG CREEK RESERVOIR 296
10 1907 LAKE MACBRIDE 263
11 1914 VIKING LAKE 250
12 1905 LAKE DARLING 235
13 1910 RED ROCK LAKE 167
14 1903 BLACK HAWK LAKE 110
15 1912 SILVER LAKE 107

-------
APPENDIX B
CONVERSION FACTORS

-------
CONVERSION FA(;TORS
Hectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 = feet
CubIc meters x 8.107 x 1O = acre/feet
Square kilometers x 0.3861 = square miles
Cubic meters/sec x 35.315 = cubic feet/sec
Centimeters x 0.3937 = inches
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 lbs/square mile

-------
APPENDIX C
TRIBUTARY FLOW DATA

-------
TR1 1UTARY FLOW tt’uFOr MAT ION FOk Iowa
l2/ f3/7
LAKE CODE 1909
kATlIBUN RES.
TOTAL DRAINAGE A LA OF LAKE(SQ . M)
TOTAL DRAINAGE ANEA OF LAKE =
SUM OF SLJ -ORA1NAGE APEAS =
SUr —ORA1NA E
NUP MALIZED FLOWS(CMS)
TkIbUTARY
A, EA(S’)
K41
JAN
F1r3
MAR
APP
4A(
JUN
JUL
AUG
SE?
OCT
NOV
L)EC
M .AN
1909A 1
l’ .2 1.9
4.53
8.92
22.46
15.29
14.58
14.22
3.43
2.38
9.17
3.91
8.13
1.81
9.04
1909 1
435.1
1.38
2.73
b.88
‘..67
4.4!
4.39
1.05
0.73
2.81
1.20
2.’.9
0.55
2.77
19 09C1
‘ .71.4
1.50
2.96
7.45
5.07
4.84
‘..7t
1.14
0.79
3.03
1.30
2.70
0.bO
3.00
19 09 1Z
515.’.
1.63
3.23
8.16
5.55
5.30
5.21
1.25
0.86
3.31
1.42
2. I4
O.bS
3.28
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TRIbUTARY MONTH YEAk MEAN FLOW DAY
SUMMARY
1421.9 TOTAL
FLO*
IN
= 108.9b
1421.9 ToTAL
FLOw
UUT
= 108.82
1909u1
190981
FLOW DAY FLOW DAY FLOW
8
74
0.37
17
0.31
9
74
0.31
8
0.31
10
74
0.34
5
0.37
11
74
0.28
3
3.28
12
74
12.26
7
21.61
1
75
0.91
4
1.47
2
75
0.26
1
0.23
3
75
5.44
4
75
20.84
20
5.69
5
75
8.66
3
20.27
6
75
5.41
10
2.94
7
75
11.41
8
74
0.05
17
0.07
9
7 ’.
0.03
8
0.04
10
74
0.74
5
2.10
11
74
0.56
3
0. 51
12
74
0.65
7
2.94
1
75
0.40
4
0.31
2
75
0.59
1
0. 5
3
75
6.29
4
75
4.59
20
2.63
5
75
1.70
3
0.82
6
75
11.04
10
v.45
7
75
0.18
21
25
21
25
1 • 70
S • 64
0.21
39.64

-------
TqIt uTAR’. FLOW INFORMATION FOi IOwA 12/23/IS
LA$ E CODE 1909 P ATr UN RES.
MEAN MONIPILY FLOaS Ni) DAILY FLOWS(CHS)
rkIbUTARY MONTH YLAI MtAN FLOW DAY FLOW DAY r LOW DAY FLOw
19u’ Ck 8 7. 0.06 17 u.12
9 74 0.04 8 0.04
10 74 0.34 5 0.01
11 74 0.96 3 ‘ .•79
12 7’. 1.25 7 3•57
1 75 1.78 4 0.22
2 75 1.47 1 0.59
3 75 10.42
4 75 4.53 20 4.90
5 75 1.22 3 0.65 21 0.24
6 75 5.97 10 0.59 25 8.27
7 iS 0.57
19U9ZL 8 74 0.06
9 7’. 0.04
10 74 0.62
11 74 0.85
12 74 1.J8
1 75 1.25
2 75 1.19
3 75 9.49
4 75 5.18
5 75 1.67
6 75 9.68
7 75 0.42

-------
APPENDIX U
PHYSICAL and CHEMICAL DATA

-------
STJ ET ETRlLIAL OAIL T5/12/ 3
19o’ 0 1
40 4C 30.0 092 53 33.0
AT 18UN WES V0L’
19007 I A
1 1EP ALES
3
2111202
OOeS FEET oE Tri
7’./0’./19 13 30 0000
13 30 0005
13 30 001b
13 30 0040
74/07/03 14 45 0000
14 45 0005
7 /09/24 12 00 0000
12 00 0005
12 00 0008
12 00 0015
12 00 0037
00665 32217
PHOS-TOT CI-tLRPHYL
A
MG/L P U&/L
0.071 23.4
0.073
0.072
0.072
2.0
0.039 4.4
0.039
00031
INCOT LT
REMNING
PERCENT
00010
00300
00077
00094
WATER
Do
TP ANSP
CNDUCTVY
PH
T
ALK
TEMP
SECCHI
FIELD
CACU3
CENT
MG/L
INCHES
MICROMHO
SO
DATE
TIME DLPTH
FP OM
OF
TO
DAY FEET
74/04/19
13 30 0000
13 30 0005
13 30 0015
13 30 0040
74/07/03
1’. 45 0000
14 45 0005
14 45 0015
14 ‘S 0025
14 45 0032
14 45 0040
74/09/24
12 00 0000
12 00 0005
12 00 0015
12 00 0037
DATE
TIME DEPTH
FROM
OF
TO
DAY FEET
10.6
10.3
9.’.
9.3
23.0
22.9
22. 7
22.3
22.0
19.8
18.3
18.3
18.2
17.9
30
30
3
11.4
11.2
10.2
6.8
7.0
6.’
5.8
5.8
2.8
7.8
8.0
8.0
7.8
185
180
119
174
273
272
272
269
268
257
232
232
232
231
00610
NrU-N
TOTAL
MG/L
79 0.050
76 0.030
77 0.030
78 0.040
96 0.050
96 0.030
96 0.030
97 0.040
9.00
8.50
8.40
8.20
7. 8C
7.80
7.80
7.60
7.80
7.60
7.19
7.17
7.17
7.14
00625
TOT ‘SJEL
N
MG/L
0.900
0. 700
U • 700
0.600
0.500
0.400
0.400
0.400
00630
N02 NO3
TOT AL
MG/ L
1 .260
1 • 150
I • 150
1 • 170
1 • 110
1.190
1.320
1.110
00671
r’HOS—DIS
U tviO
MG/L P
0 .00
0.006
0.006
0.007
0.008
o.oo
0 .008
0.012
1.0
1.0
0.044
0.036

-------
STO LJ TRIEvAL DAlE 75/12/23
190902
40 53 19.0 092 52 24.0
r AT rjJt . t:sERvoIM
19007 1O*A
1 1EPAL S
3
2111202
0030 FEET OEPT-
00665 32217
DEPTH PHOS—TOT CrILRPHYL
A
MG/L P UG/L
00031
INCDT LI
REMNING
PERCENT
7 /O4/19 1’. 00
14 00 000S
14 00 0015
14 00 0025
74/07/03 14 20 0000
14 20 0005
14/09/24 11 30 0000
11 30 0005
11 30 0006
11 30 0015
11 30 0021
0.080 38.8
0.070
0.09b
0.087
7.7
0.039 6.2
0.037
00010
00300
00077
00094
00400
00410
00610
00625
0 0b30
00671
DATE
TIME
DEPTH
WAlER
DO
T ANSP
CNDUCTVY
Ph
T ALK
NH3—N
TOT KJEL
NO2bNOJ
PpiOS—OIS
FROM
OF
TEMP
SECCHI
FIELD
CACO)
TOTAL
N
N-TOTAL
Os-eTriO
TO
DAY
FEET
CENT
MG/I
INCIIES
MLCPOMr4O
SO
MG/L
M(,/L
MG/I
MG/L
MG/L
74/04/19
14 00 0000
10.7
30
182
8.80
82
0.040
0.800
0.880
0.008
14 00 0005
10.7
11.4
181
8.70
81
0.040
0.800
0.920
0.006
14 00 OOls
9.6
10.0
179
8.30
81
0.080
0.700
0.970
0.006
1’. 00 0025
9.3
9.4
179
8.20
80
0.100
1.500
1.100
0.008
74/07/03
14 20 0000
24.6
8.2
30
282
7.9C
14 20 0005
24.6
7.6
281
7.90
14 20 0015
24.0
7.4
279
7.70
14 20 0023
23.1
6.8
273
7.90
74/09/24
11 30 0000
17.9
8.0
2 ’.
233
7.26
98
0.050
0.500
1.030
0.007
11 30 0005
17.9
8.2
233
7.26
98
0.050
0.400
1.040
0.007
11 30 0015
17.9
8.0
233
7.25
98
0.050
0.500
1.100
0.00
11 30 0021
17.9
8.0
2j2
7..?3
96
0.050
0.600
1.140
0.008
DATE
FR OH
TO
TIME
OF.
DAY FEET
1.0
1.0
0.046
0.049

-------
STUr E.T 
-------
STOr ET r E.T (1EVAL DATE T /i2/?3
190904
40 5? 21.0 092 9 03.0
RAT ju ESERVO1R
19007 1O A
1 1E ALES
3
211 1202
0033 FEEl 0&Trl
74/04/19 15 50 0000
15 50 0005
15 50 0015
15 50 0028
74/07/08 10 15 0000
10 15 0003
74/09/24 10 35 0000
ID 35 0005
10 35 0011
10 35 )017
00665 32217
PMOS-TOT CHLRPHYL
A
MG/L P UG/L
0.092 31.5
0.087
0.095
0.096
0.055 6.1
0.051
00031
INCOT LT
REI4NING
PERCENT
DATE
TIME
DEPTH
F 0M
OF
To
DAY
FEET
74/04/19
15 50
15 50
15 50
15 50
0000
0005
0015
0028
74/07/08
10 iS
10 15
10 15
10 15
10 15
0000
0005
0015
0025
0035
74/0 /24
10 35
10 35
10 35
0000
0005
0017
DATE
TIME
DEPTH
FROM
OF
TO
DAY
FEET
00010
00300
00077
00094
00400
00410
00 10
00b25
00630
00671
WATER
DO
TRANSP
CNDUCTVY
PP-i
I ALP(
i’ffl3—N
TOT 
-------
TORET RETRIEVA’L. DATE 15/12/23
190905
40 50 31.0 093 02 34.0
ATr UN ESE VOI
19007 IO.IA
1 IEPALES 2111202
3 0022 FEET DEPTH
00010 00300 00077 00( 194 00400 00410 00610 00625 00630 00671
DATE TIME DEPTH *AIER DO TRANSP Ct DUCTVY PH 1 ALK Nr-13-N TOT PcJEL NO2 .NO3 PHOS-UIS
FROM OF TEMP SECCHI FIELD CACO3 TOTAL N N—TOTAL Oi THO
TO DAY FEET CENT MG/L INCHES MLCROMMO SO HG/L MG/L P4 0/L MG/L MG/L P
74/04/19 16 15 0000 13.5 24 348 8.60 140 0.030 0.800 0.660 0.011
16 15 0005 12.8 10.8 345 8.50 142 0.030 0.900 0.660 0.014
16 15 0018 12.1 9•4 343 8.25 141 0.050 0.700 0.650 0.017
74/07/08 10 00 0000 26.7 2.8 2 219 7.30
10 00 0005 25.Y 3.2 224 7.30
10 00 0015 ?2.2 1.0 173 7.00
10 00 0021 22.1 2.0 177 6.90
7 /09/24 10 10 0000 16.5 8.2 12 243 7.25 124 0.040 0.800 1.230 0.012
10 10 0005 16.4 8.2 243 7.29 123 0.030 0.800 1.210 0.011
10 10 0017 16.’. 8.4 244 7.24 122 0.040 0.600 1.210 0.012
00665 32217 00 ( 131
DATE TIME DEPTH PHOS-TOT CIILRPHYL INGOT LI
FROM OF A R MNING
TO DAY FEET MG/L P tiG/L PERCENT
74/04/19 16 is 0000 0.120 25.3
16 iS 0005 0.099
16 15 0018 0.089
7 ’ ./07/0 10 00 0000 2.3
74/09/2’. 10 10 0000 0.081 7.9
10 10 0002 1.0
10 10 0009 0.091
10 10 0017 0.104

-------
ST0 t HETRIEVAL UAIt. 15/12/23
00665 32211
PHOS—TOT CHLRPrIYL
A
MG/L P LJG/L
00031
INCDT LI
R [ MNIN(.,
PERCEN I
190906
‘ .0 52 19.0 093 02 02.0
r ATH8UN EF vU1
19007 iOWA
I IEPALES 2111202
0022 FEET
74/04/19 16 40 0000
16 40 0005
16 40 0018
7../07/08 09 30 00CC
09 30 0002
74/09/24 09 60 0000
09 40 0004
U9 40 0005
09 40 001
09 40 0020
DATE
FROM
TO
TIME OtTPTH
OF
UAY FEET
00010
00300
00077
00094
.ATER
DO
TRANSP
CNDUCTVY
TEMP
SECCHI
FIELD
CENT
MG/L
INCHES
MICROMMO
3
00400 00410
PH T ALK
CACO3
SO MG/L
l4,’04/1 16 40 0000
16 40 0005
16 40 0018
74/07/08 09 30 0000
09 30 0005
Q4 30 0015
09 30 0025
74/09/24 09 40 0000
09 40 0005
09 40 0015
09 40 0020
00610
NH 3—N
TOTAL
MG/L
00625
TOT KJEL
N
MG/L
00630
NO2 NO3
N-TOTAL
MG/L
12.1
24
226
0.030
1.000
1.180
12.1
11.4
225
8.80
0.080
1.000
1.340
10.8
10.4
213
8.40
26.8
6.6
12
281
7.70
25.8
6.0
251
7.60
24.1
5.2
230
7.40
22.6
1.6
222
7.20
0.040
0.800
1.000
16.9
8.2
24
222
7.24
0.040
0.700
1.010
16.9
8.0
222
7.25
0.030
0.700
1.160
16.9
16.9
8.2
8.2
223
223
7.24
7.24
108
108
0.040
0.700
1.060
DATE
FROM
TO
TIME DEPTH
OF
DAY FEET
00671
PrIOS-OLS
OPT HO
MG/L P
0.007
0.005
0.008
0.013
0.011
0.011
0.011
0.08’. 28.8
0.0 93
0.101
0.1
0.05 ’ 6.9
0 .0S •
0.0s
0.05”
1.0
1.0

-------
APPENDIX E
TRIBUTARY and WASTEWATER
TREATMENT PLANT DATA

-------
STORET PETRIEVAL DATE 76/01/27
L9O’ 1
40 48 47.0 092 52 57.0
CHARITON } IVER
19185 7.5 MYSTIC
0/PATrIBUN WESE VOjP
LGHT DIV r O B OG 1 M N OF ATH5UN
11EPALES 2111204
4 0000 FEET DEPTH
00630 00625 00610 00671 00665
DATE TIME DEPTH N02&N03 TOT PcJEL NH3-N PHOS—DIS PHOS-TOT
FROM OF N—TOTAL N TOTAL ORTHO
TO DAY FEET MG/L MG/L MG/L MG/L P MG/L P
74/08/17 09 00 1.200 0.700 0.025 0.025 0.120
74/09/07 15 30 1.060 0.800 0.050 0.020 0.110
74/10/05 15 00 1.010 1.100 0.065 0.020 0.035
74/11/03 09 40 0.910 0.800 0.075 0.015 0.090
74/12/07 14 10 0.910 0,700 .015 0.005 0.030
75/01/04 10 50 0.830 0.600 0.025 0.005k 0.025
75/Od/01 14 25 0.736 0.600 0.072 0.008 0.040
75/03/08 12 40 0.660 1.050 0.075 0.020 0.070
75/04/20 10 00 0.770 0.800 0.065 0.010 0.050
75/05/03 11 50 0.790 1.300 0.025 0.010 0.050K
75/G5/21 16 10 0.790 1.200 0.075 0.015 0.160
75/Ob/lO 16 00 0.770 0.950 0.095 0.015 0.080
75/06/25 09 00 0.790 0.800 0.020 0.310 0.OHO
75/07/12 10 40 0.620 0,900 0,090 0.UJ O 0.060
K VALUE ‘cNOWN TO BE
LESS THAN INDICATED

-------
STORET ETRIEVhL DATE 7h/01/27
i909c 1 1
40 48 03.0 093 11 33.0
S FOr rS C.lA 1TO R1 /E
19117 7.5 CONFLUE’ CE
T/- Atr1t4UN r ESE vO1r
LGHT DTY O B [ iG 1 P41 SSE. OF BETHLEHAM
11EPAL S d1112C’.
4 0000 FEEl DEPTI
00630 00625 00610 00671 0066
DATE TPIE DEPTH NO21 NO3 TOT KJEL NH3—N PPIOS—DIS HOS—T0T
Fi. OM OV Ai-TOTAL N TOTAL ORTr O
TO DAY FEET MG/L MG/L MG/L MG/L P MG/L r
74/08/17 10 15 0.18’. 1.100 0.100 0.040 0.170
7 ’ ./Q9/07 11 50 0.05’. 0.500 0.040 0.015 0.085
74/10/05 12 00 0.024 0.800 0.015 0.050 0.200
74/11/03 13 ?5 1.840 1.500 0.150 0.145 0.355
74/12/07 11 13 1.130 2.000 0.135 0.047 0.400
75/01/04 16 00 0.228 1.000 0.072 0.020 0.120
75/02/01 11 55 0.640 1.200 0.240 0.040 0.120
75/03/0 14 25 0.950 2.500 0.670 0.140 0.320
75/04/20 09 15 0.790 1.200 0.075 0.075 0.220
75/05/03 10 02 0.085 0.750 0.030 0.030 0.110
75/05/21 11 05 0,065 1.080 0.045 0.035 0.205
75/06/10 10 50 1.250 2.100 0.085 0.055 0.350
75/06/25 10 40 2.100 0.150 0.125 0.105
75/07/12 20 10 0.005 0.950 0.070 0.030 0.120

-------
,TJ L1 9ET IEVAL DATE 76/0i/ 7
1909C I
40 57 15.0 093 15 36.0
C,IARITON r 1VEp
£9117 IS CO YDON
T/RATr r3U J ESLNVO1
LGr$T OTY 4D 8 OG 9 M I E OF DERBY
11EPAL S 211120’.
4 0000 FEET DEPTH
00630 00625 00610 00671 00665
TIME DEPTH N02€ .N03 TOT KJEL Nh3—N PHOS-DIS PHOS-TOT
OF N—TOTAL N TOTAL OWTHO
DAY FEET MG/L M( /L HG/L MG/L P MG/L
7 ’ ./0I /17 10 50 2.520 3.200 3.850 0.640k 2.400
74/09/07 11 30 0.270 2.200 0.035 0.080 0.340
7 ’./1U/05 16 32 0.032 1.400 0.035 0.240 0.440
74/11/03 13 25 2.400 2.200 0.175 0.300 0.730
74/12/07 10 37 1.520 3.900 0.360 0.220 0.613
75/02/01 10 65 1.400 1.503 0.504 0.216 0.340
75/04/20 0 50 0.850 1.950 0.150 0.095 0.360
75/05/03 11 00 0.560 1.000 0.140 0.075 0.310
75/05/21 10 25 0.450 2.400 0.210 0.070 0.440
75/06/10 10 25 3.850 2.800 0.150 0.100 0.660
75/06/25 11 03 3.300 0.100 0.065 0.155
75/07/12 19 20 0.780 1. 50 0.030 0.070 0.300
K VALUE KNO N TU
LESS It-tAN INOICATEL)

-------
STORET RETRIEVAL DATE 76/01/27
1909AA TF1909AA P005000
41 01 30.0 093 18 00.0
CPIAR I TON
19165 15 CI4ARITON IA
T/RATrIBIJN RESERVOIR
CHARITON RIVEi
I1EPALES 2141204
4 0000 FEET DEPTI 1
00630 00625 00610 00671 00665 50051 50053
DATE TIME DEPTH NO2 .NO3 101 KJEL NH3—N PHOS—DIS PHO5-TOT FLOW CONDUIT
FROM OF N-TOTAL N TOTAL ORTHO RATE FLOW-MGD
TO DAY FEET MG/L P4G/L MG/L MG/L P MG/L P INST MGD MONTHLY
74/09/27 13 30 16.800 9.000 1.200 12.000 13.000 0.500 0.500
74/10/29 13 00 9.700 16.000 2.300 11.000 12.000 0.500 0.500
74/12/02 10 20 10.800 9.850 0.510 9.300 9.900 0.500 0.500
74/12/31 08 45 0.063 16.000 3.900 8.600 11.000 0.500 0.500
75/02/03 08 42 2.400 17.000 4.500 7.500 9,500 0.500 0.500
75/02/24 14 00 2.160 26.000 10.400 5.700 8.600 0.500 0.500
75/04/10 14 40 1.360 11.000 0.380 5.700 1.000 0.500
75/05/05 13 20 3.400 14.000 0.870 5.250 8.700 0.500 0.500
75/06/18 13 30 14.500 23.000 13.500 3.750 7.550 0.500 0.500
75/07/10 14 45 11.500 10.000 0.024 8.900 9.600 0.500 0.500
75/08/04 13 30 14.000 11.000 2.000 11.500 14.000 0.500 0.500
75/09/15 11 45 9.800 11.500 0.190 6.300 7.100 0.500 0.500
75/10/24 14 20 15.000 9.300 0.230 12.000 12.800 0.500 0.500

-------