United States Office of Air Quality EPA-340/1 -86-009b
Environmental Protection Planning and Standards May 1986
Agency Washington, DC 20460
Stationary Source Compliance Series
v>EPA CEMS PILOT
PROJECT:
Evaluation of
Opacity CEMS
Reliability and
QA Procedures
Volume II
Appendices
-------
EPA-340/1 -86-009b
CEMS PILOT PROJECT:
Evaluation of Opacity CEMS
Reliability and QA Procedures
Volume II
(Appendices)
Prepared by
James W. Peeler
CEM/Engineenng Division
Entropy Environmentalists, Inc.
Reseerch Triangle Perk, North Caroline 27709
Under Contract No. 68-02-3962
Work Assignments 2-52 and 3-101
With JACA Corp.
Fort Washington, PA 19039
Prepared for
EPA Prolect Officer: John Busik
EPA Work Assignment Managers: Anthony Wayne
ana Mary Cunningham
U.S. ENVIRONMENTAL PROTECTION AGENCY
Stationary Source Compliance Division
Office of Air Quality Planning and Standards
Washington, D.C. 20460
May 1986
-------
APPENDIX k.
CITY UTLITIES, JAMES RIVER STATION
DYNAT N OPACIT’! CEMS
o QA Procedures
o Dai .y QA isck Results, Unit No. 4
o Daily QA Cfl.ck Results, Unit No. 5
o Source S.l Audit Data ana Calculattons,
Units No. ‘e and 5
-------
OPACITY MONITOR QUALITY ASSURANCE PROCEDURES
CITY UTILITIES, JAMES RiVER STATION
DYNATRON MODEL 1100 OPACITY MONITORING SYSTEMS
OV VtEW OP QA PROCEDURES
A proposed quality assurance program has been developed for the City
Utilities James River Station opacity monitoring systems. The specific QA
procedures have been developed to be compatible with the James River Station
(1) opacity monitoring instrumentation and monitoring system configuration,
(2) data recording devices, (3) effluent handling system, and (4) management
and organizational structure. The proposed QA program will be field—tested
during implementation, reviewed and evaluated periodically, and revised as
necessary over a one-year period. Through this process, it is expected that
QA procedures Will, be developed and demonstrated which are both adequate for
maintaining high levels of data quality and cost effective in terms of
necessary time and material resource expenditures.
The following elements are included in th. proposed James River Station
opacity monitor quality assurance program.
(1) Daily Log, Daily Check Instructions — The Daily Log is to be
completed by the personnel responsible for checking the monitoring
system on a daily basis. Step-by—step Daily Check Instructions are
provided for completing the Daily Log. The Daily Check and Daily
Log do not require extensive time to complete, nor do they require
that the person performing the procedure be intimately familiar
with the opacity monitoring inatri entation. The Daily Check and
Daily Log provide for identification of monitoring problems and
initiation .of corrective action.
(2) Corrective Action Log and Instructions — The Corrective Action
Instructions and Log are used when adjustment, repairs, and/or
other non-routine corrective action is necessary as indicated by
the Daily Checks. The Corrective Action procedures are to be
utilized by technical personnel experienced in resolving problems
with the monitoring systems. The specific corrective action
procedures are relatively extensive, but will provide adequate
documentation for future refinement of QA procedures and
demonstration of their effectiveness. The corrective action
procedures are utilized only on an as necesaary basis.
(3) Periodic QA Check and Instructions — The Periodic QA check is
intended to be performed in conjunction with the opacity monitor
routine maintenance program performed monthly at the James River
Station. The Periodic QA Check procedures provide for checks of
monitoring system components and operating status which are
unfeaaibl.a, impractical, and unnecessary on a daily basis.
A-i
-------
(4) The docu nentation of the QA program will, be reviewed periodi a1l,y to
determine if modification to the proposed procedures are
appropriate. Such modifications may be made as additional experience
and data are obtained.
A-2
-------
CITY UTILITIES, JAMES RIVER STATION
DAILY CHECK INSTRUCTIONS
DYNATRON MODEL 1100 OPACITY MONITORING SYSTEMS
The foilowing are step—by—step instructions for conducting the Daily
Check of the James River Station Uni #4 and Unit #5 opacity monitoring
systems. Criteria are provided for determining when corrective action should
be initiated. The prson conducting the Daily Check of each monitoring sys tan
should complete aU blanks on the DaIly Log as indicated below. (Separate
forms are used for the Unit #4 and #5 monitoring systems.)
I • GENERAL INPORNA ZI0N
o Enter name of person performing check, the date (month, day, year), and
the time of day (24—hour clock) that the check is begun.
o laura Boiler Down — Enter the nianber of hours the boiler was not in
operation (i.e., not combusting fuel) during the preceding 24—hour
period.
o flours Monitor Down — Enter the nimber of hours the monitor did not
provide a record of effluent opacity during the preceding 24—hour
period. Describe monitor downtime in “Comments” section (i.e., cause of
outage, time began, time ended, and any corrective action taken to return
monitor to service).
II. FAuLT LAMPS
o Examine the fault lamps on the Control Unit. Check the appropriate box
on the Daily Log to indicate the status of each fault lamp (check “YES”
if lamp is illtinated>.
o U any fault lamp. are ilhi. .tnated, correctiv, action should be initiated
a. soon as possible.
III. ZERO/SPAN CHECK DATA
o Examine the strip chart to determin, the zero and span responses of the
most recent monitor calibration. Record the zero and span calibration
values on the Daily Log in units of 2 opacity.
o Examine the data logger tap . to determine the zero and span response of
the most recent monitor calibration, and record these values on the Daily
Log.
o Check the appropriate boxes on the Daily Log to indicate whether the zero
and span values are outside acceptable limits.
o Check the data logger tape to determine if the proper time of day is
displayed. Reset the timer of the data logger if necessary.
A-3
-------
Note: IF YES ANSWERS ARE INDICATED FOR ANY OF THE QUESTIONS ON THE
DAILY LOG, CORRECTIVE ACTION SHOULD BE INITIATED AS SOON AS
POSSIBLE.
IV. CC Q4ENTS
o Describe any prob1 a observed d aring the performance of the Daily Check
and/or any other apparent problens which may affect monitor performaxice.
o Ebi TEE TD1E OF DAY THAT TEE DAILY CHE is co urEa (PART I).
A-4
-------
Opacity Monitoring Syst
DAILY LOG
JAMES RIVEa STATION UNIT:________
— Date: __________ Time Start:
Time Complete:
__________ Hours nitor Down:
FAULT LAMPS ON? NO YES
Lamp _________
Wiudow _______
Air_Flow _________
NO YES
Does
Zero
Value
exceed acceptable limits of
1.
2%
opacity?
Does
Span
Value
exceed acceptable limits ot
+
ZZ
opacity?
I Data
Correct Iàcorrect
Logger Timer
IF YES ANSWERS ARE INDICATED FOR ANY OF TUE ABOVE QUESTIONS, CORRECTIVE
ACTION SHOULD BE INITIATED AS SOON AS POSSI3LE.
IV. C tNENTS:
CITY UTILITIES
I. GENERAL INFORMATION
Name:__________________________
flours Boiler Down: -
II. FAULT LAMPS
III. ZERO/SPAN CEECE D&TA
Chart Recorder, Zero Value:
Data Logger, Zero Value: —
Span Value:
Span Value:
A-5
-------
CITY UTILITIES, JAMES RIVER STATION
PERIODIC QUALITY ASSURANCE CHECK INSTRUCTIONS
DYNATRON OPACITY MONITORING SISTEM
The following are seep—by—step instructions for performing the Periodic
QA. Checks of the James River Station opacity monitoring syst a. Initially,
the Periodic QA Checks are to be performed once per month. The person
performing the monthly checks should complete all blanks on the Periodic QA
Check Log. (A separate data form should be used for each monitor.) The
manufacturer’ a instructions for cleaning optical surfaces, performing
electronic adjustments, and inspecting/servicing the purge-air systen should
be followed throughout the Periodic QA Check.
I. CENE AL INFORMATION
o Enter the Unit number for the monitor on the QA Log.
o Enter the name of th. person performing the check, the date (month,
day, year), and the time of day (24—hour clock) that the check is
begun.
II. CALIBRATION CHECK DATA
(1) Place the CYCIE TDfE HoURS” Imob on the “MANUAL POSITION.” Rotate
the “METER DISPLAY” knob to the OPAiIIf ’ position. Depress
ZUO/SPAW switch and record the low range calibration check
responses of the panel meter chart recorder, and data logger
(1 opacity).
(2) Record the high range calibration check responses of the panel meter,
chart recorder, and data logger (1 opacity).
(3) Corrective action should be initiated if all “zero” and “span”
responses are not within + 21 opacity of th. proper values. A
Corrective A,tion Log should be completed if such action is
necessary.
(4) Using an accurate volt meter, measure the Lamp Reference voltage from
available test points on th. back of the control unit. Record the
voltage on the QA log. If the Lamp Reference voltage is outside the
range of 6.5 + 1.0 volts, adjust the monitor according to the
manufacturer’ a instructions and record the post—adjustment Lamp
Voltage on the data sheet.
(5) Record the minimum 6—minute average opacity indicated by the chart
recorder for the hour preceding the QA check.
III. TRANSNISSOMET!R CHECK/SERVICE
This segment of the Periodic QA Check requires that effluent opacity
measurenents “before arid after’ both alignment adjustments and cleaning of
A-6
-------
optical windows be obtained in order to assess the impact of these
activities. These measurements may be obtained by t methods: (1) have an
assistant record real—time data if two—way communication between the control
unit and aon.ttoring location is available, or (2) synchronize watch and chart
recorder, and note the exact time each action is performed to facilitate
recovery of opacity measurements froin the chart recorder alter the various
activities are completed.
(1) Alignment Check — Determine the optical alignment status of the
transceiver and reflector components by looking through the alignment
sight on the transceiver and observing whether the Image is within
the circular target (acceptable), or outside the circular target
(unacceptable). Indicate the position of the light beam on the
diagram, and check the appropriate box for alignment status on the QA
Log.
U the optical alignment is unacceptable, note the effluent opacity,
and then realign the opacity monitoring system in accordance with the
manufacturer’ $ instructions. Record the effluent opacity after
realignment is completed. If a shift in the baseline opacity occurs
alter realignment, note the magnitude of the change which was
observed in Part V CCt NENTS.
(2) Reflector Window Check — Record the exact time (or effluent opacity)
prior to cleaning the reflector optics. Remove the protective window
(slide) from the reflector and clean the glass according to the
manufacturer’ s instructions. Replace the reflector protective
window. Record the exact time, and wait at least ti full
integration periods before performing th. next step, (or record
directly the effluent opacity).
(3) Transceiver Window Cleaning/Check — Record the exact time (or
effluent opacity) prior to cleaning the transceiver optics. Remove
the protective window (slide) from the transceiver and clean the
glass according to the manufacturer’s instructions. Replace the
transceiver protective window and record the exact time, (or record
the effluent opacity).
(4) Purge Air Service — Inspect and service, as necessary, the purge-air
blowers, air filters, and shutter mechanism as per the manufacturer’s
instructions. Note any corrective action taken on the QA Log.
IV. FINAL MEASUREMENTS
(1) U necessary, exine the data record to obtain the average opacity
values corresponding to the times recorded on the data sheet (i.e.,
before and after alignment adjustments, before and after cleaning of
the reflector window, and before and after cleaning of the
transceiver window). Record all data on the QA Log.
(2) Record the minImum 6—minute average effluent opacity value during the
hour period following completion of all adjustments, repairs, and
service for the monitor. -
A-7
-------
(3) Note periods of alignment adjustment and tndow cleaning on the
permanent data record to ensure that these periods sill not be later
mistaken for excess aissiona. Reset alarms if activated during QA.
checks. Note that the periodic QA check was performed in the Part V
CQI)CNTS 0 section of the Daily Log.
V. CCI1IIENTS
All observations regarding monitor performance should be detailed and
explained.
ENTER t E 0 1 D i! PERIODIC Qi CHECK IS CCflLETED (PART 1).
A —8
-------
Opacity Monitoring System
PERIODIC QA CREC
CITY UTILITIES JAMES RIVER STATION UNIT:
I • GENrnT. INFORMATION
Name:________________________ Data:____________ Time Start:_____________
Time Complete:___________
II. CAI.ThRATION CHEcK DATA
______________ I Opacity ______________
________________________________ Pane]. Meter ( 2 art Recorder Data Logger
( 1) Low Range Response
(2) High Range Response
(3) Adlusted Low P ’ Riie n m
I (4)1 Adjusted High Range Response
.
Lamp Reference Voltage: S Adjusted Lamp Reference Voltage:__________
Minimum 6—mm. opacity value (hour preceding QA check):____________
III. TRANSXISSOMETER CHE /SERVICE
1. Aligz .nt Status (Note position of light beam on diagram)
YES NO See instructions if
tA1ivz ent Acceptable ? alig ent is not acceptable
___________________________ Tm ! EFFLUENT OPACITY
2. Before reflector cleaning ____________ ______
After reflector cleaning _____________ ______
3 • Before transceiver cleaning _____________ ______
After trancaiver cleaning ____________ ______
IV. FINAL MEASUREMENTS
Mi’%iaua 6—sin, opacity value (hour. folloving QA Qieck):
V. C 1 lTS:
A—9
-------
CITY UTILITIES, JAMES RIVER STATION
CORRECTIVE ACTION INSTRUCTIONS
DYNATRON OPACITY MONITORING SYSTEM
The following are step—by—step instructions for completing the Corrective
Action Log when adjustments and/or repairs of either the Unit #4 or U nit #5
opacity monitoring systmns are necessary. The person performing the corrective
action should complete all blanks on the Corrective Action Log as indicated
below.
I. GENERAL INFORMATION
o Enter the Unit nunber corresponding to the monitor for which repairs or
adjustments are performed.
o Enter the name of person performing repairs or adjustments, the date
(month, day, year), and the time of day (24—hour clock) that the corrective
action is initiated.
II. FAULT LAMPS
o Enter “Or or “OFF” for each fault lamp on the Log.
o MDnitor calibration and completion of Part III of the Log are not required
if an Air Flow problam initiates the Corrective Action. However, if the
“WINDOW,” or “LAMP” fault lamp. are ilhz inated, data listed below must be
obtained prior to adjusting the monitor.
o U “LAMP” is illuminated, (1) measure and record the lamp reference
voltage, (2) adjust reference voltage to manufacturer’ a specifications, and
(3) record the poet—adjustment reference voltage.
o If WINDOW is illominated, (1) record the effluent opacity indicated by
the data recorder, (2) clean transceiver and reflector windows, and (3)
record the effluent opacity indicated by the data recorder.
o Record the time when the fault is corrected. Describe all corrective
• action taken in the Part IV C( IMENTS.”
III. CALIBRATION DATA/ADJUSThENTS
(1) Place the “CYCLE TD(E HOURS” knob on the MANUAL POSITION.” Rotate the
“MEi & DiSPLAY” knob to the “OPAcITY” position. Depress “ZERO/SpAN”
switch and record the low range calibration check responses of the
panel meter, chart recorder, and data logger (% opacity).
(2) Record the high range calibration check responses of the panel meter,
chart recorder, and data logger (Z opacity).
(3) Adjustment of the monitoring systea is necessary when the low range
check responses of the panel. meter, chart recorder or data logger
exceed + 2Z opacity from the correct low range check value. (Correct
value of the low range check should be labeled on the front cover of
the control unit.)
A- 10
-------
If no adjustment is made, enter “NA” on line 3 of the Corrective
Action Log, and proceed to step (4).
Describe all, adjustments and/or corrective action in “Part IV
CC U4ENTS. After all adjustments are completed, repeat step (1)
above, and record the post—adjustment lo range responses on line 3
of Log.
(4) Adjustment of the monitor is necessary if the high range responses of
either the panel meter, chart recorder, or data logger exceed + 2%
opacity from the correct value. (Correct value of the high range
check should be labeled on front of control unit.)
If no adjustment is made, enter “NA” on line 4 of the Log. Describe
all, adjustments and/or corrective action in “Part IV COMMENTS.”
After all adjustments are completed, repeat steps (1) and (2) above,
and record post—adjustment span response on line 4 of Log.
IV. C NTS
All repairs and/or adjustments performed as a result of the above
procedures should be described. Sufficient explanation should be
provided to determine what done and what effect it had on monitor
performance.
In addition, any preventive or non-routine iI {ntenance performed on
the monitor should be detailed in this section.
ENTER TDfE OF DAY ALL CORRECTIVE ACTION IS COMPLETED. (Part I)
A-Il
-------
Opacity Monitoring System
CORRECTIVE ACTION LOG
CITY UTILITIES JAMES RIVER STATION UNIT:___
I. GENERAL fl FORMATION
Name:________________ Date: __________ Time Start:
Time Complete:
ii. s Ys MONITOR i am. 1 rs
FAULT
LAMPS ON/OF! DATE/TIME CORRECTED
L W
WIND J
AIR FLOW
.
“LAl(p” ON Lamp Voltage — before adjustment:_______ after adjustment:_______
WINDOW’ ON Recorded Opacity — before cleaning:_______ after cleaning:_______
III. CALIBRATION DATAJADJUS!NENT
______________ Z_Opacity _____________
____________________________ Panel Meter Chart Recorder Data Logger
[ ci) Low Range Response ___
( 2) Ri h Range Response ____
( 3) Adjusted Low Rang. Response ____
( 4) Adjusted High Rang. Response ____
IV. CU4NENTS
A- 12
-------
OPACITY CEtIS DALY CHECK RESULTS
crrv UTLITIES
JAMES RIVER STATION
MONTh: JUNE, 1Q83 B 3fl *4
MONITOR 2
DAY
T 1E
REQ.
(MIN.)
BOLER
D0 WN
(HRS.)
MONITOR
O0 dN
(I I NS.)
FAULT
LAMPS
ZERO
CHART LOGGER
SF
CHART
AN
LOGGER
.
COMMENTS/OPERATOR(1)
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
9*
18
0
0
8
8
61
60
29
8
0
0
9
9
61
61
30
7
0
0
9
9
61
51
Not.:
Automotlo oci. ,heck.
(1) 0p.r tor is Roy Bailoy aWss oth.rwsl not.d.
* Fb’st d j of QA impl.m.ntathn.
A—i 3
-------
OPACITY CUIS DALY CHECIC RESULTS
CITY UTILITIES
JAMES RIVER STATION
MONTH: JULY, 1983 DO ILER *4
MONITOR *2
TP’E
LER
MONITOR
F AULT
ZERO
5PM
DAY REQ.
DOWN
DO VN
LAMPS
CHART
LOGGER
CHART
LOGGER COMMENTS/OPERATOR(1)
(Met)
(HRS.)
(HRS.)
1 9 0 0 9 8 81 81
2
3
4
5 2 0 0 9 8 61 61 R.Dr’snmond-Op.
6 2 0 0 9 8 61 61 R.Drummond-Op.
7 2 0 0 9 8 61 61 R. Dri mond-Op.
9 2 0 0 9 8 61 61 R.Drummond-Op.
9
10
11 2 0 0 9 8 61 §1 R.Drunwno -Op.
12 2 0 0 9 8 61 61 R.Drummond-Op.
13 2 0 0 9 • 8 61 61 R.Drummond-Op.
14 2 0 0 9 9 61 61 R.Dr*snmond-Op.
15 2 0 0 9 8 61 61 R.Dr imond-0p.
16
17
18 2 2385 0 9 9 61 61 K. Ros.-Op.
192 24 0 8 9 61 61
202 24 0 9 8 61 61
21 2 24 0 9 8 §1 61
222 24 0 9 8 61 61
23
24
25 2 0 0 8 9 82 61
262 0 0 9 9 61 61
272 0 0 9 9 61 61
28 2 0 0 9 9 61 63 Mot.: Op .r tor oI.an.d
windows-opocitij 19% to
8%.
29 2 0 0 9 8 61 62
31
(1) Op.rathr1sRo j BolI .q Lm1issoth*r v1s*notd.
A -14
-------
OPACITY CEllS DAILY CF4ECJ( RESULTS
crri uTiuii s
JAMES RIVER STATION
MONTH: AUGUST, 1983 BOILER *4
MONITOR *2
TPIE
8OLER
MONITOR
FAULT
ZERO
SP
AN
DAY REQ.
D0’WN
DOWN
LAMPS
CHART
LOGGER
CHART
LOGGER COMP’IENTS/OPERATOR(l)
(MIN.)
(HRS.)
(HRS.)
1 2 0 0 8 81 61
2 2 0 0 9 9 61 61
3 2 0 0 9 9 61 61 Not.: Po .r surg. affect-
fog timer and emissions.
4 2 0 0 9 8 61 62
5 2 0 0 9 8 61 81
8 2 0 0 11 8 81 63
9 2 0 0 8 52 Mote: Chart recorder geor
broken.
10 3 Mote: Data logger not print-
rng 0; rnonu zero/span ok.
11 2 0 0 9* 9* 61* 62* Note: Reset c timer
12 2 0 0 9 $ 61 62
13
14
15 2 0 0 10 9 61 82
162 0 0 9 8 62 62
17 2 0 0 9 8 62 52
18 3 0 0 9* 9* 61* 62*
192 0 0 9 9 62 82
20
21
22 2 0 0 9 62 Note: Data logger not
ptinthg.
23 — 0 0 9 9 62 61 Not.: Data logger not
pr i nthg.
24 2 0 0 9 8 81 82
2 2 0 0 9 8 61 82
28 2 0 0 9 8 61 52
27
28
29 2 0 0 10 9 62 62
30 — 0 0 10 9 61 62
31 3 0 0 10 St Note: Data logger timer off
Manud zero/span checks.
(1) Operator Is Rag Bai1.4J unless otherwise noted.
* Zero and span responses transposed on data sheet.
A—15
-------
OPACITY CEllS DAILY CHECK RESULTS
MONTH: SEPTEMBER, 1983
Cfrf UTIIJTIES
JAMES RIVER STATION
BOILER *4
MONITOR
(1) Operator is Rog Baileg unless otherwise noted.
* Zero au span values transposed on data h..t.
TIME
BOILER
MONITOR
FAULT
RO
SPAN
DAY REQ.
DOVN
DO’ ’N
LAMPS
CHART
LOGGER
CHART LOGGER COMMENTS/OPERATOR(1)
(Mitt)
(HRS.)
(MRS.)
1 2
0
0
9
9
51
01 Ilote: Data Io. ger not
printing span value.
2
2
0
0
10
8
51
00
3
4
S
5
2
0
0
9
8
61
50
R.Drumrnond/Op.
7
2
0
0
9
8
01
02
R.Drummond/Op.
8
2
0
0
10
8
51
02
R.Dnsnmond/Op.
9
2
0
0
9
9
61
63
R.DrummondlOp.
10
11
12
2
0
0
9
8
01
50
13
2
0
0
9
8
61
51
14
2
0
0
9
8
61
51
15
2
0
0
9
8
61
51
15
2
24
0
10
10
51
81
Note: Data logger not
printing.
17
18
19
2
24
0
8*
9*
50*
61*
Note: BoW ti * leak.
20
2
24
0
9
9
50
61
Note: Boiler tub leak.
21
2
24
0
9
8
51
61
2
24
0
‘)
8
51
00
23
2
24
0
g
8
01
61
24
25
26
2
24
0
8
8
61
51
27
2
24
0
9
8
51
51
28
2
24
0
9
8
61
61
29
2
24
0
8
8
01
51
30
2
24
0
8
8
51
51
A- 16
-------
OPACITY CEllS DAILY CHECI( RESULTS
CITY UTILITIES
JAMES RIVER STATION
MONTH: OCTOBER, 1983 BOI *4
MONITOR *2
IPIE
BOILER
MONITOR
FAULT
ZERO
SP
AN
DAY REQ.
DOWN
DOWN
LAMPS
CHART
LOGGER
CHART
LOGGER COMMENTS/OPERATOR(1)
(MIN.)
(HRS.)
(HRS.)
-p
3 2 24 0 5 8 00 61
4 2 24 0 9 $ 61 81
5 2 24 0 9 8 61 61
6 2 — — 9 8 81 61
72 10 0 9 8 61 61
8
9 2 0 0 9 8 81 61 R. Drun nond/Op.
10
11 2 0 0 9 8 81 81 R.Dnrnmond/Op.
12 2 0 0 9 8 61 61 R.DruruvnondiOp.
13 2 0 0 5 8 81 03 R.Druimiond/Op.
14 2 0 0 9 8 61 62 R.Dniwnond/Op.
15
16
172 0 0 9 9 81 61
182 0 0 9 8. 61 63
15 2 0 0 10 8 61 62
20
21 — 0 0 9 8 61 01
22 -
23
24 2 0 0 9 8 61 61 Not.: Zero oh.cka9;
data logger print 8
252 0 0 11 8 61 60
20 2 0 0 9 8 01 62
272 24 0 9 8 61 00
282 24 0 9 8 01 62
29
30
31 2 24 0 9 8 61 02
• (1) Operator is Roy Bailey uNiss oth.rwls. noted.
A- 17
-------
OPACITY CEMS DALY CHECI( RESULTS
CiTY UTILITIES
JAMES RIVER STATION
MONTh: NOVEMBER, 1Q83 BOLER *4
MONITOR 2
DAY
TIME
REQ.
(MIN.)
BOLER
DOWN
(HRS.)
MONITOR
DOWN
(HRS.)
FAULT
LAMPS
ZERO
CHART LOGGER
SPAN
CI4ART LOGGER
.
COMMENTS/OPERATORCI)
1
2
24
0
9
8
51
63
2
2
24
0
9
8
62
63
3
5
.24
24
g
s
si
si
4
2
0
0
9
8
61
52
5
S
7
2
24
0
9
8
61
62
8
2
24
0
9
8
61
62
9
2
24
0
9
8
61
60
10
2
24
0
9
8
61
63
11
12
13
14
2
24
0
9
3
62
60
Not.: Tim.r 0ff 1
hour.
15
2
24
0
9
8
61
62
16
17
18
19
20
21
2
24
0
9
9
52
62
R.Drun nond/0p.
22
2
24
0
10
9
61
62
23
2
24
0
8
8
61
62
24
25
26
27
28
2
24
0
10
9
52
52
R.Drummond/Op.
29
2
24
0
9
9
62
62
:30
(1) Op.rotor is Ro j $oii.q unless otherwis noted.
A- 18
-------
OPACITY CEllS DAILY CHECK RESULTS
CITY UTILITIES
JAMES RIVER STATION
MONTh: DECEMBER, 1983 BOILER *4
MONITOR 2
TP1E
BOILER
MONITOR
FALLT
ZERO
SP
AN
DAY REQ.
DOWN
DOWN
LAIPS
CHART
LOGGER
CHART
L ER COMMENTS /OPER ATOR( 1)
(Mtt)
(HRS.)
(HRS.)
1 2 24 0 10 9 82 82
2— 24 0 9 9 62 62
3
4
5 2 24 0 10 9 82 52
52 24 0 10 9 52 52
7
82 24 0 10 9 52 62
9
10
11
122 24 0 10 9 62 62
13 2 24 0 10 52 02 Note: Data logger not
pr t1ng zero v *JeS.
14
152 24 0 10 9 62 62
152 24 0 10 9 52 62
17
18
19
20
21 2 0 0 10 9 62 62
2 0 0 10 11 52 62
23
24
25
272 0 0 10 9 52 02
28 2 0 0 10 9 82 62
292 0 0 10 9 62 52
302 0 0 10 9 02 52
31
(1) Operator is Rag 9a .g m iss othervls noted.
A-I 9
-------
OPACITY CEMS DALY CHECI( RESULTS
CITY UTILITIES
JAMES RIVER STATION
MONTH: JN&JARY, 1984 80 LER 84
MONIT OR°
TIME
BOLER
MONITOR
FAULT
ZERO
SP
AN
DAY REQ.
D0’dN
D0’i N
LAMPS
CHART
LOGGER
CHART
LOGGER COMMENTS/OPERATOR(1)
(ME4.)
(HRS.)
(HRS.)
32 0 0 10 9 62 62
42 24 0 10 9 62 62
52 0 0 10 9 82 62
8 2 0 0 10 10 82 62
7
8
10 4 0 0 10 10 62 82
11
12
132 0 0 10 9 52 62
14
15
16 2 0 0 10 9 62 62
172 0 0 10 9 52 62
18— 0 0 9 9 62 62
19
202 0 0 10 9 62 62
21
22
23 2 0 0 10 9 82 62
242 0 0 9 9 62 82
2! 2 0 0 10 9 62 62
252 0 0 10 9 62 62
272 0 0 10 9 62 62
28
29
30 2 0 0 10 9 62 62
31 0 0 9 10 62 82
(1) Operator is Roq Bailog unless otherwis. noted.
A-20
-------
OPACITY CEMS DALY CHECK RESULTS
CITY UTILITIES
JAMES RIVER STATION
MONTh: F9RUARY, 1984 BOILER 4
MONITOR *2
DAY
TPIE
REQ.
(MIN.)
BOILER
DOWN
(HRS.)
MONITOR
DOWN
( S.)
FAULT
LAMPS
ZERO
CHART LOGGER
SPAN
CHART LOGGER
cOMMENTS/OPERATOR(1)
1
2
0
0
10
9
02
02
2
2
0
0
10
9
62
62
3
3
0
0
10
9
02
02
4
5
6
2
0
0
10
9
62
62
7
2
0
0
10
9
62
02
8
2
0
0
10
9
62
82
9
2
0
0
10
9
62
62
10
2
5:42
0
10
9
62
62
11
.
12
13
6
0
0
10
10
02
02
14
2
0
0
10
10
62
62
15
2
0
0
10
9
62
62
16
2
0
0
10
9
62
62
17
2
0
0
10
9
82
62
18
19
20
21
2
0
0
10
9
62
62
K. Ros./Op.
22
2
0
0
10
9
62
62
K.Ros./ .
23
2
0
0
10
9
62
62
K.Ro /Op.
24
2
0
0
10
9
62
62
K. Ros./Op.
26
27
28
29
2
0
0
10
9
62
62
K.Ros./Op.
(1) Opirator is Roij Baileg ‘.mkss otherwis* tid.
A-2 1
-------
OPAC11 CD 1S DALY CHECK RESULTS
CITY UTILITIES
JAMES RIVER STATiON
MONTH: MARCH, 1994 BC LER *4
MONITOR *2
T 1E
BOILER
MONITOR
FAULT
ZERO
SP
AN
DAY REQ.
DOWN
DOVN
LAMPS
CHART
LOGGER
CHART
LOGGER COMMENTS/OPERATOR(1)
(Met)
(HRS.)
(HRS.)
2 2 0 0 10 9 62 62 K. Rose/Op.
3
4
52 0 0 9 9 ‘ 52 62
52 0 0 10 9 62 62
7 — 0 0 Mote: RpcirinqDl
8 3 0 0 10 9 62 62
9 2 0 0 10 62 52 Note: D l. not prnting
10
11
12 5 0 0 10 9 62 62
13 2 0 0 10 9 62 62
14 2 0 0 10 9 62 62
152 0 0 10 9 62 62
16 2 0 0 10 9 62 52
17
19
19 — 0 0
20— 0 0 9 9 62
21 2 0 0 10 9 62 62
222 0 0 10 9 62 52
23 2 0 0 10 9 52 52
24
252 0 0 10 9 62 62
272 0 0 10 9 62 ‘52
29 2 0 0 10 9 62 62
29 2 0 0 10 9 62 62
30 2 0 0 10 9 52 62
31
(1) Operotor is Roç Bai ley unless otherwise noted.
A-22
-------
OPACITY CEMS DALY CHECK RESULTS
CITY UTILITIES
JAMES RIVER STATION
MONTh: APRL, 1984 BOILER *4
MONITOR 2
DAY
TWIE
REQ.
(MIN.)
BOILER
00 1 W’N
(MRS.)
MONITOR
DOWN
(MRS.)
FAULT
LA’PS
ZERO
CHART LOGGER
SPAN
CHART LOGGER
COMMENTS/OPERATOR(1)
2
2
0
0
10
9
62
62.
3
2
0
0
10
9
62
52
4
2
0
0
10
9
62
52
5
2
0
0
10
9
62
62
6
3
0
0
10
9
62
62
7
10
9
62
52
8
10
9
62
52
9
2
0
0
10
9
62
62
10
2
0
0
10
9
62
62
11
2
0
0
10
9
62
62
12
—
0
0
10
9
62
62
13
2
0
0
10
9
62
62
14
15
15
2
0
0
9
9
62
62
17
2
0
0
9
9
62
62
18
.2
0
0
10
9
62
62
19
0
0
10
9
62
62
20
21
22
23
2
0
0
9
9
62
62
24
2
0
0
10
9
62
62
25
2
0
0
10
9
62
62
26
2
0
0
10
9
62
62
27
2
0
0
10
9
62
62
2$
29
30
0
0
.
Not.: R.s.t tim..
h .ck.
No .roi
(1) Op.rtor is Ro j Bd..j wWss oth.r vis. no*.d.
A-23
-------
o crri CEMS DAILY CHECK RESULTS
cITY UTILf IES
JAMES RNER STATION
MONTH: MAY, 1984 BOILER 34
MONITOR 2
TIME BOILER MONITOR FAULT ZERO SPAN
DAY REQ. DOSdN 00’e N LAIPS CHART LOGGER CHART LOGGER COMMENTS/OPERATOR(1)
(MIN.) (MRS.) (MRS.)
2
3 0 0 10 9 62 Data Ioqger will not print.
4 0 0 11 62
5
8
7 24 0 10 Datulogger not printing.
Zero and ipon check.
8 2 24 0 10 10 62 62
92 24 0 9 9 62 62
10 2 24 0 10 9 62 62
11 2 24 0 9 9 - 62 62
12
13
14 2 24 0 9 9 62 62
152 24 0 10 9 62 62
162 24 0 10 9 62 62
17 2 24 0 10 9 62 62
18 2 24 0 10 9 62 62
20
21 2 24 0 9 9 62 62
22 24 0 9 9 62 62
23 2 24 0 9 10 62 62
24 2 24 0 9 10 62 62
252 24 0 9 9 62 62
27
28
292 24 0 9 9 62 61
30 2 24 0 9 9 62. 61
31 2 0 0 9 9 61 62
(1) Operator is Roq BaI3 ig unless otherwise noted.
A— 24
-------
OPACITY CEMS DALY CHECK RESULTS
c r un.rr s
JAMES RIVER STATION
MONTh: JUP , 1Q84 BC ILER *4
MONITOR 2
TPIE
8OLER
MONITOR
FAULT
ZERO
SPN
DAY REQ.
DOWN
DOWN
LAMPS
CHART
LOGGER
CHART
LOGGER COMMENTS/OPERATOR(1)
(Met)
(HRS.)
(IIRS.)
1 2 0 0 9 9 61 82
2
3
42 24 0 10 9 62 62
52 24 0 9 9 82 82
6* 2 24 0 10 9 62 62 Timinoorr.otondata
logger - corrected.
7
9
9
10
11
12
13
14
15
lb
17
18
19
20
21
23
24
28
27
28
29
30
(1) l r itor Is Roy Bdeq un’ess otherwIs noted.
* F n performono. audit coInç .t.d; last day of QA mp .m,ntafton.
A-23
-------
o crrv CEMS DAILY CHECK RESULTS
cm’ UTILITIES
JAMES RIVER STATION
MONTH: JUNE, 1983 BOLER *5
MONITOR 1
DAY
IPIE
REQ.
(MIN.)
BOLER
DOWN
(HRS.)
MONITOR
DOWN
(HRS.)
FAULT
LAMPS
ZERO
CHART LOGGER
SP C
CHART LOGGER
COMMENTS/OPERATOR(1)
2
3
4
S
6
7
4
9
10
11
12
13
14
15
16
17
18
19
20
.
21
22
23
24
26
27
28*
15
24
0
10
10
50
50
29
15
24
0
9
9
49
50
30
-
24
0
9
9
49
50
Iot•:
Data Logger
(1) Operator is Ray Ballay muss otherwise noted.
* First day of QA impi.nwntation.
A-26
-------
OPACITY CEMS DALY CHECK RESULTS
CITY UTILITIES
JAMES RIVER STATiON
MONTH: JULY, 1Q83 BOILER *5
MONITOR *1
•
DAY REQ.
(MIN.)
BOILER
DO’WN
(HRS.)
I1)N CR
( IIRS.)
FAULT
LAMPS
ZERO
CHART LOGGER
SPAN
CHART LOGGER
COMMENTS1OPERATOR(1)
1 2
24
0
Q
10
49
50
2
.
3
4
5 2
0
0
9
10
49
)
R.Drummond-op.
6 2
0
0
9
10
49
50
R.Drummond-op.
.7 2
0
0
9
10
49
50
R.Drummond-op.
8 2
0
0
9
10
49
50
R.Drum,nond-op.
9
10
11 2
0
0
8
10
49
50
R.Dnanmond-op.
12 2
0
•
0
8
10
49
50
R.Drsnmond-op.
13 2
0
0
8
10
49
50
R.Dr snmond-op.
14 2
0
0
8
10
49
50
Note: Reset Timer
15 2
0
0
8
10
49
50
R.Drummond-op.
16
17
18 2
0
0
8
8
48
50
KenRose-op.
19 2
0
0
11
11
49
50
202
0
0
9
10
50
50
21 2
0
0
9
10
50
50
222
0
0
9
9
50
50
24
2
0
0
9
9
49
50
262
0
0
9
9
49
50
272
0
0
9
9
49
50
28 2
0
0
8
9
49
50
Not.:Op.ratorot. n.d
29 2
0
0
8
9
49
50
w1ndo’ws18 -1O
30
31
(1) ir itor Is Rog Bd.q unless otherwis, noted.
A—27
-------
OPACITY CEMS DALY CHECIC RESULTS
CITY UTILITIES
JAMES RIVER STATION
MONTH: AUGUST, 1983 BOILER
MONITOR 1
TIME
BOILER
MONITOR
FAULT
ZERO
SPAN
DAY REQ.
DOWN
DOWN
LAMPS
CHART
LOGGER
CHART ‘LOGGER COMMENTS/OPERATOR(1)
(MIN.)
(HRS.)
(HRS.)
1 2 0 0 8 9 49 31
22 0 0 8 9 49 51
3 2 0 0 8 9 49 . 51 Mote: Reset t m.r after
4 2 0 0 8 9 49 50 powersurg.
5 2 0 0 LAMP 8 9 49 50 Mote: Maintenance for lamp
6
7
3 - 0 0 LAMP Not working Lamp, plus no zero pan
9 2 0 0 12 11 51 50 Manu zero span-auto broke
10 4 0 0 11* 11* 50* 51* DataloggernotprintingO:
manu zero/span cfleck.
11 4 0 0 t2 50*4 51 50 Mote: ResetCal timer
12 2 0 0 10 12 50 51
13
14
15 2 0 0 11 10 51 50
16 2 0 0 10 11 50 51
17 2 0 0 10 11 30 51
182 0 0 12 12 50 31
19 2 24 0 10 10 51 50 Note: UnitS tripped
20
21
22 - 0 0 10 50 Data logger not monitoring
23 - 0 0 11 10 51 50 Data logger not monitorinq
24 2 0 0 10 11 49 50
252 0 0 11 11 30 30
26 2 0 0 11 11 50 50
27
28
29 2 0 0 10 11 30 51
30 2 0 0 11 11 49 50
31 3 0 0 10 61*4 Data logger timer off:
zero/span check
(1) Operator is Rog Ba eq unless otherwise noted.
* Zero and span responses transposed on data sheet.
*4 Recording error ; value ignored.
A-28
-------
OPACITY CEllS DALY CHECK RESULTS
CITY UTILITIES
JAMES RIVER STATION
MONTH: SEPTEMBER, 1983 BOILER *5
MONITOR *1
T BOLER MONITOR FAULT ZERO SPAN
DAY REQ. DOWN DOWN LAMPS CHART LOGGER CHART LOGGER COPIMENTS/OPERATOR(1)
(Me.) (HRS.) (HRS.)
1 2 0 0 10 11 50 50
2 2 0 0 10 11 49 51
3
4
5
6 2 0 0 10 11 49 50
7 2 0 0 10 11 50 50
8 2 0 0 10 11 49 50
9 2 0 0 10 11 49 50
10
11
12 2 0 0 10 11 50 50
13 2 0 0 10 11 50 51
14 2 0 0 10 11 50 51
15 2 0 0 10 11 50 50
16 2 0 0 10 10 50 50 Data Ioqg.r net printing
17
19
19 2 0 0 11 10 50 49
20 2 0 0 11 10 50 49
21 2 0 0 9 10 49 50
22 2 0 0 10 11 49 50
23 2 0 0 10 11 50 50
24
25
26 2 0 0 10 11 50 50
27 2 0 0 10 11 50 50
28 2 0 0 10 11 49 50
29 2 0 0 10 11 49 50
30 2 0 0 10 11 49 50
(1) Operator Is Rog Bd.g aMes otherwis, noted.
A-29
-------
OPACITY CEllS DAILY CHECK RESULTS
CITY UTILITIES
JAMES RIVER STATION
MONTH: OCTOBER, 1Q83 BOILER 5
MONITOR *1
T 1E BOILER MONITOR FAULT ZERO SPAN
DAY REQ. DOWN DOWN LAMPS CHART LOGGER CHART LOGGER COMMENTS/OPERATOR(1)
(t”flN.) (HRS.) (HRS.)
2
3 2 0 0 10 11 49 50
4 2 0 0 10 11 49 50
5 2 0 0 11 l I 49 50
6 2 0 0 10 11 50 50
7 2 10 0 11 11 30 50 No.48o11.rStart-up
$
9 2 0 0 10 11 49 50 R.Dnimmond-op.
10
11 2 0 0 9 11 49 30 R.Drummond-op.
12 2 0 0 10 11 50 50 R.Drummond-op.
13 2 0 0 g ii 49 50 R.Drummond-op.
14 2 0 0 9 11 49 50 R.Drurrwnond-op.
15
16
17 2 0 0 9 11 49 50
18 2 0 0 9 11 49 30
19 2 0 0 10 11 49 30
20
21 2 0 0 10 11 49 50
22
23
24 2 0 0 11 50 No0onchart
25 2 0 0 10 50 50 Data logger won’t print 0
262 0 0 9 10 49 50
27 2 0 0 9 10 49 50
282 0 0 10 10 49 50
2g
30
31 2 24 24 g 11 49 50
(1) Operator Is Ro Ba1k j unl.ss otherwise noted.
A-30
-------
OPACITY CEMS DAILY CHECIC RESULTS
crr UTILITIES
JAMES RIVER STATION
MONTH: NOV ER, 1983 9OLER 5
MONITOR 1
DAY
IPIE
REQ.
(MIlL)
LER
DOWN
(HRS.)
MONITOR
DO VN
(HRS.)
FAULT
LAMPS
ZERO
CHART LOGGER
.
CHART
SPAN
LOGGER
COMMENTS /OPERATOR(1)
1
2
0
0
.
9
10
49
50
2
2
15
0
9
10
49
50
3
2
24
0
10
11
49
50
4
2
0
0
10
11
49
50
S
6
7
2
24
0
9
10
49
50
8
2
0
0
9
10
49
50
9
2
0
0
9
10
49
50
10
2
0
0
10
11
49
50
11
12
13
14
2
0
0
9
10
49
50
Timer off 1 how
15
2
0
0
9
10
49
50
16
17
18
19
20
21
2
0
0
10
11
49
50
22
2
0
0
10
11
49
50
23
2
0
0
10
11
49
50
24
26
27
29
2
0
0
10
11
49
50
R.Drummond-op.
29
2
0
0
10
11
50
50
30
(1) Operotor is Roy 8o oy unless otherwise noted.
A-3 1.
-------
OPACITY CEllS DALY CHECX RESULTS
CITY UTILITIES
JAMES RIVER STATION
MONTH: DECEMBER, 1983 8OLER 5
MONITOR 1
TIME BOLER MONITOR FAULT ZERO SPAN
DAY REQ. DOYN DOYN LAMPS CHART LOGGER CHART LOGGER COMMENTS/OPERATOR(1)
(MN.) (IIRS.) (HRS.)
1 2 24 0 10 11 49 50 R.Drejmmond/Op.
2 2 0 0 10 11 50 51 Note: Repoired unit
3 Iqrm; cleaned window
4 inc id.andout.
5 2 0 0 10 11 49 50
5 2 0 0 10 11 49 50
7 2 0 0 10 11 50 50
a
9
10
11
12 2 0 0 11 50 Note: Recorder not
working.
13 2 0 0 9 11 49 50
14
152 0 0 10 10 49 50
152 0 0 10 10 49 50
17
18
19
20
21 2 0 0 9 ti 49 50
22 2 0 0 10 11 49 4
23
24
25
25
27 2 0 0 10 11 49 30
28 2 0 0 10 10 49 50
29 2 0 0 10 10 49 50
30 2 0 0 10 11 48 49
31
(1) Operator is Roy Bailey t less othe.-wis. noisud.
A-32
-------
OPACITY CEMS DAILY CHECK RESULTS
CITY (mUTES
JAMES RIVER STATION
MONTh: JANUARY, 1964 BOILER 5
MONITOR *1
TPIE BOILER MONITOR FAULT ZERO
DAY REQ. DOWN DOWN LAMPS CHART LOGGER CHART LOGGER COMMENTS/OPERATOR(1)
(MIN.) (HRS.) (HRS.)
2
3 2 0 0 10 11 49 50
4 2 0 0 10 10 49 50
5 2 0 0 10 11 49 50
6
7
9
92 0 0 10 10 50 50
102 0 0 10 9 50 50
11
12
13 2 0 0 11 11 49 50
t4
15
16 2 0 0 10 11 49 50
17 2 0 0 10 11 49 50
18 — 0 0 11 11 50 49
19
20 2 0 0 11 11 49 50
21
23 2 0 0 10 11 50 50
242 0 0 10 10 49 50
25 2 0 0. 10 11 50 50
28 2 0 0 10 11 49 50
27 2 0 0 10 11 49 50
29
29
30 2 0 0 10 10 50 50
31 2 0 0 10 11 49 50
(1) Operotor Is Roy 8d.y fless otherwise noted.
A-33
-------
o crrv cElls DAILY CHECK RESULTS
CF Y UTILITIES
JAMES RIVER STATION
1 2 24
2 2 24
3 2 24
4 2 24
5
6 2 24
2 24
2 24
10 2 24
0
0
0
0
0
0
0
0
11 11 50 50
10 10 49 50
10 11 49 50
9 11 48 50
9 11 49 50
8 11 4.8 50
0 10 37 50
BOILER *5
MONITOR 1
MONTH: FEBRUARY, 1984
TIlE
BOILER
MONITOR
FAULT
O
SPAN
DAY REq.
DOWN
DOWf4
LAMPS
CHART
LOGGER
CHART
LOGGER COMMENTS/OPERATOR(1)
(MI I I.)
(HRS.)
( IIRS.)
7
8
9
Note: I rt recorder
different from DL
10
50
4g
50
Note: D I. printed 50 for
0 value.
11
12
13
14
2
24
0
9
10
49
50
15
2
24
0
9
10
49
50
16
24
0
10
11
49
50
17
2
24
0
10
11
49
50
18
19
20
2
24
0
9
10
49
50
21
2
24
0
10
11
49
50
K. Rose/Op.
22
2
24
0
9
10
49
50
K. Ros./Op.
23
2
24
0
10
10
49
50
K. Rose/Op.
24
2
24
0
10
11
49
50
K.Rose/Op.
25
26
27
28
29
2
24
10
10
49
49
K. Rose/Op.
(1) Operator is Rog Boikq ml.ss otherwise noted.
A-34
-------
OPACITY CEMS DAiLY CHECK RESULTS
Crr ’ UTiLITIES
JAPtES RIVER STATION
MONTH: MARCH, 1984 BOiLER ‘5
MONITOR ‘1
TIME
BOiLER
MONITOR
FAULT
ZERO
SP
AN
DAY REQ.
DOWN
DOWN
LAtPS
CHART
LOGGER
CHART
LOGGER CCMMENTS/OPERATOR(1)
(MIN.)
(HRS.)
(MRS.)
2 — 24 0 10 49 Not.: K. Rose/Op. C .
cks not printing on DL.
3
4
S — 24 0 9 49 Note: DL not printing.
— 24 0 10 49 Mote: DLnotprintlnq.
7 — 24 0 Not•: DL not printing.
8 — 24 0 10 49 Note: Repairing DL.
9 2 24 0 9 11 49 50 Note: DL not printing.
10
11
12 3 24 0 9 11 49 50
13 2 24 0 10 11 49 50
14 2 24 0 10 11 49 50
15 2 24 0 10* 9* * 62*
16 2 24 0 10 11 49 30
17
18
19 — 24 0 Note: Data incorrct
No ziro/span check
204 24 0 9 11 49 50
21 2 24 0 10 11 49 50
22 2 24 0 10 11 50 50
23 2 24 0 10 11 50 30
24
25
26 2 24 10 11 50 50
27 2 24 0 10 11 49 50
28 2 24 0 10 11 49 50
29 2 24 0 10 11 49 50
30 2 24 0 10 11 49 50
31
(1) Operator Is Rog BaIIIV unless otherwise noted.
* Recording error (aN values san e as for Bo .r ‘4, Monitor ‘2); values ignored.
A—35
-------
OPACITY CEllS DAILY CHECK RESULTS
MONTh: APRIL, 1984
CITY UTILITIES
JAMES RIVER STATION
9OLER*
MONITOR 1
2 2 24
3 2 24
4 2 24
5 2 24
6 2 24
7
21
22
2 24
2 24
2 24
2 24
2 24
2 24
2 24
2 24
2 24
23 2 24
24 2 24
25 2 24
26 2 24
27 2 24
28
29
30 24
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
10 11 49 50
10 11 49 50
10 11 50 50
10 11 49 50
10 10 49 50
10 11 50 •50
10 11 49 50
10 11 50 50
10 11 50 50
10 11 50 50
10 11 50 50
10 11 50 50
10 11 50 50
10 11 50 50
Reset tim. and date.
No zero/span check.
(1) Operator I s Roq 8oiI.y unless otherwis. noted.
* Recording error ( values sam . as for Boiler 4, Monitor 2); values l iored.
TitlE
BOILER
tIONITOR
FAULT
ZERO
SPAN
DAY REQ.
D0 e’N
DO’WN
LAIPS
CHART
LOGGER
CHART
LOGGER COMMENTS /OPERATOR(1)
(tIIN.)
(HRS.)
(HRS.)
0
.10
11
49
50
0
10
11
50
50
0
10*
9*
62*
62*
0
10
11
49
50
0
10
11
49
50
e
8
9
10
11
12
13
14
15
16
17
18
19
20
A-3 6
-------
OPACITY CEMS DALY CHECK RESULTS
CITY UTLITIES
JAMES RIVER STATION
MONTh: MAY, 1984 BOLER 5
MONITOR 1
T 1E
ILER
MONITOR
FAULT
ZERO
SPAN
DAY REQ.
DOWN
DOWN
LAMPS
CHART
LOGGER
CHART LOGGER COMMENTS/OPERATOR(1)
(MflL)
(HRS.)
(HRS.)
2
3 3 21.5 0 10 9 50
4 0 0 tO 50
5
6
7 0 0 10 Data logger down - not
printing on .ro/span
8 0 0 10 10 50 50
9 0 0 No zero and span check
10 0 0 No zero and span check
11 1 0 0 10 11 49 50
12
13
14 2 0 0 10 11 50 50
15 2 0 0 10 11 50 50
16 2 0 0 10 11 50 50
17 2 0 1 10 11 50 50
18 2 0 0 10 10 50 50
19
20
21 2 0 0 10 9 50 49
22 2 0 0 9 10 49 50
23 2 0 0 9 10 49 50
24 2 0 0 10 11 50 50
25 2 0 0 10 10 49.5 50
26
27
28
29 2 0 0 10 10 50 49
30 2 0 0 10 10 50 49
31 2 0 0 10 10 49 50
(1) Operator Is Ro j BalI.g sn ess otherwisi noted.
A-3 7
-------
OPACITY CEMS DALY CIIECK RESULTS
CITY UTILITIES
JAMES RIVER STATION
MONTH: JUNE, 1q84 BOILER
MONITOR *1
TIME
BOILER
MONITOR
FAULT
ZERO
5?
AN
DAY REQ.
DOWN
DOWN
LAMPS
CHART
LOGGER
CHART
LOGGER COMMENTS/OPERATOR(1)
(MN.)
(HRS.)
(HRS.)
1 2 0 0 10 10 4 30
2
3
42 0 0 10 10 4Q 50
52 0 0 10 10 4 50
* 2 0 0 10 10 4Q 50 Thund.rstormchonq.d
tim. on opacity monitor
Data logger corrected
7
8
10
11
12
13
14
15
17
18
ig
20
21
23
24
25
25
27
28
30
(1) Operator Is Roq Balleg muss otherwise noted.
* FIM performance audit completed; lost day 0 f QA implementation.
A-38
-------
jAt ’/ 7
DYNATRON, INC. 1100 PERFORMANCE
Date ________ Auditor 1
7
______ ____ Source ID NO. ______
1 4//
AUDI? DATA RETRIEVAL
A. Stack Exit Correlation
1. Stack exit diameter (ft),
2. Transmissometer pathlength (ft), t.
3. Calculated pathlength ratio
4. Preset pathlength ratio
B. Fault Indicator Lamps ON 0? ?
5. LAMP
6. WINDOW
7. AIR PURGE
C. Internal Zero and Span Check
8. Automatic calibration timer position
9. Meter display position
10. Zero reading on panel meter (% Op)
11. Span reading on panel meter (% o
12. Zero reading on chart recorder (S Op)
13. Span reading on chart recorder (S Op)
D. Zero and Span Responses from Operation Manual
14. Zero response (S Op)
15. Span response ( Op)
E. Alignment Check
16. Image status (centered)
\
0 ?
.f —
AUDIT DATA SHEETS
A-39
-------
G. Retrofi.ector Window Check
18. Time of cleaning
iz: 3 ?
H. tnsart tow Range Filter
19. Time at er d of first waiting period
20. Time at end of second waiting period L /7.
21. Filter opacity (% Op)
22. Filter serial number
23. Time at end of third waiting period
/ O 3 / 3 b
I. nsertMid Range Filter
24. Time at end of first waiting period
25. Filter opacity ( Op)
26. Filter serial number
27. TIme at end of second waiting period
J. Insert High Range Filter
28. Time at end of wai(ting period
29. FIlter opacity ( Op)
30. Filter serial number
z;O3
4R1
‘ 7- I 3O
F. Transceiver Window Check
17. Time of cleaning
1; 3.v
S
5-3,;
A-40
-------
¶7 ’
K. Monitor Response Repeatability
31—54. Time at end of waiting periods:
Low Mid High
First Second Third’ First Second First
Period Period Period Period period Period
___ ___ ___ 3 ? ___ 53
31 32 33 34 ‘ 35 36
37 38 39 40 41 42
43 44 45 46 47 48
49 50 5]. 52 53, 54
55. Final waiting period
t. Retrieve Transceiver Window Check Data
56. Initial opacity reading ( op)
57. Final opacity reading (S Op ) _________
M. Retrieve Retroreflector Window Check Data
58. Initial opacity reading (S op)
59. Final opacity reading (S Op)
A—4 1
-------
First
Period
3Z
60
66
72
78
84
90. Final
N. Retrieve A ] .]. Calibration Filter Data
60—89. Opacity readings ( o )
Low
Second Third
Period Period
____ 15,, ____
61 62
67 68
73 74
79 80
85 86
opacity reading ( Op)
Mid
•
High
First
Second
First
Period
Period
Period
•
63
64
65
69
70
71
75
76
77
81
82
83
87
88
89
A-42
-------
/
A.
Stack Exit Correlation Error
91. Error (%):
1(Blank 4) — (Blank 3)1
I
I (Blank 3) J
xløø
) — ( )1
SI I
I ) i
xløø
a
B.
Control Panel Meter Correction
Factor
92. Panel meter factor:
.
(Blank 15)
a
(Blank 11)
6
a 5
C. Intecnal Zero and Span Analysis
93. Zero error (% Op):
— (Blank 12)—(Blank 14)
• c )—( t7 ’ )
94. Span error ( Op):
a (Blank 13)—
a (
__/, L?i
LL1 ? .- 1Q.-I---
AUDIT ANALYSES
)
a
A—43
-------
9/
/
D. Optical Surface Dust Accumulation
95a. Transceiver Dust Accumulation (% Op):
— (Blank 56)—(Blank 57)
i1 — C 3 -
95b. Retroreflector Dust Accumulation (% Op):
— (Blank 58)—(Blank 59)
a ( )- ( ) . Z
95c. Total Dust Accumulation (% Op):
— (Blank 95a)+(Blank 95b)
a ) ( 2’% - ________
E. Pathlength Ratio Correction of Audit Slides
96. Low range slide :
— (l—(Blank 21 / 100 )]2(Blank 4)
- (1-C 1O / ØØ)]26
97. Mid range slide :
a (l—(Blank 25 / 100 )]2(Blank 4)
0/ ,,
(1—C I ‘0 /løø)]’ ’ ‘ a ________
98. High range slide:
a (l—(Blank 29 / 100 )]2(Blank 4)
a (j_( L t.f /løø)]2( 6 ’’ ’ a ________
(I
•
p
A-44
-------
102.
tA/(f y -
F. Calculation of Expected Response to Low Range Audit Slide
99.
10]..
103.
a
Test 1
expected re
sponse (S op)
I f
I 1— I 1—
L L
(Blank
60)+(Blank
62)11
JL
(Blank
96)
200
1
)+( ‘
200
Test 2 expect*d response (S Op)
I f. (Blank 66)+(B].ank 68)
—Il—Il— —
L, 1 200
I I C )+( )11
11—i1— — tic
L 1 200 JL
Test 3 expected response (% Op)
r I (Blank 72)+(Blank 74)
—.11—Il—
L L 200
I I ( )+( )11
I.1—I1— MC
L L 200! JL
Test 4 expected response J
I I (Blank 78)+(B] ank
— 1— 1—
(
L,L 200
Testi 5 expected respons. (%
I I (Blank 84)+( 1ank 86)11
I lj- Ii— fl (Blank
L L 204 JL
r r )+ )11
L7 L’ JU
96)]Jx 100
)]]x 100
96)]] x 100
Op)
80)11
] [ (Blank 96)
)
96)
Si
flfx
]Jx 100 a
Jx 100
] ØØ a
100
x 100
ØØ
A-4 5
-------
Determine Mean Error for Low Range Audit Slide
Test 1 difference (% Op)
— (Blank 61)—(Blank 99)
-c/5 % )—(( O ,)’.
Thst 2 difference c
— (Blank 6 )—(Blank 100)
—( )
Test 3 diffàrence(%
— (Blank 73) -(B1ank
Test 4 difference (%
— (Blank 79);—(Blank
) — C _____
Test 5 difference(% op)
— (Blank 85)i—(Blank 1031
—C )—( ___
Mean error (% Op)
• Blank 104)+(Blank 105)+(Blank 106)+(Blank 107)+(Blank 108)
10
107
108.
109.
5
)+( )+( )+( )+(
5
,1
y
a
Op)
101)
) —
102)1
;
104.
/
—C
A-46
-------
k .•
/ V - .
# ,
H. Calculation of Expected Response to Mid Range Audit Slide
110.
Test
1 expected response ( op)
— [ 1_
•
r (Blank 64)+(Blank 62)
{i_ 200 J [ (Blank 97)]]x 100
[ _. )+( 5’]{ . (9 ]]x
200
5
i
,
I
‘
I
I
1
111 Test
- [
I
2 expected response’ (Z Op)
. ‘
L - 200
r (Blank 70)+(Slank 68)J [ 97)]J l00
I
r )+(
L’ 200 1 )
112.
i
I
3 expected response (% Op)
r (Blank 76)+(Blánk 74)
J’ [ (Blank 97)]]x 100
)+(
Test
• [ i..
— 1— 1-
L L 200
Test 4 expected response ( Op)
r r (Blank 82)+(Blank 80)
— 1-.
L L 200
r r
— I 1— I 1- S
L L 200
Test 5 expected response (%
•
\
I r (Blank 88)+(Blank
• I 1— I 1-
L Li 200
(
97)]]x 100
100
97)]]x 100
)]]x 100 —
100- _____
P 1 .
I .. .‘
100 —
113.
114.
A-47
-------
I
,;#,.-- .
I. Determine Mean Error for Mid Range Audit Slide
115. Test 1 difference( Op)
a (Blank 63)—(Blank li.0)
- (3?Z)-( pi1rP ) - ____
J16. Test 2 difference(S Op)
(Blank 69 j Lank 111)
I .( //) (\
117. / Test 3 d. ff.rencf (%
/ a (Blank 75)—(Bl nk
I — • I )—( / ) —
ll 8 J Test 4idiiferençe(% Op)
—(Blank 8l)—(B ank 113)
a ( ). .( ) — ____________
119 Test 5 diiierenc* (S op)
a (Blank 87)—(3lank 114)
)(1 ) \
120 Meaà error (% ap)
— ( 1ank 115)+(Blank116)t(Blaflk 117)+(Blank 118)+(Blank 119)
/ ) /
J
A-48
-------
7’ 7_
,l ’ (, K.J” _ z :.
3. Calculation of Expected Respons
121. Test 1 expected response ( op)
r r (Blank 64)+(B].ank 66)
— I 1— I 1—
L 1 200
122.
123.
124.
125.
— [ _ [ _
(
)+(
x 100
Test 2 expected response (Z Op)
f r ( 1ank 70)+(B3.arik 72)
— I 1— I 1— .—
I L \ 200
r °r c )+( )
a 1— I 1—
I 1 200
,
Test 3 expected re por se ( Op)..
I r (Blank 7 )+(Blank78fl I
[ 1.. [ 1_ ‘200 J [ (Blank
98)
r r c ).+
—Il—li— .. Nc
L L 00 JL
)
Test 4 •xpect.d response C Op)
r r • . (Blank 82)+(Blank 4)11
[ l_ 200
98)
r r )+( )
—11—1,1— C
L 1. 200
‘
)
.
Test 5 expected response (Z Op)
r I (Blank 88)+(B],ank 9 )1I
— [ l_ [ 1— 200 JL
I r )+( )1I
1]— Ii — II(
L L 200 JI
98)
)
/
[ (Blank 9&)j]x 100
[ (. )]] x 100 a
x 100
x 100 —
x 100
x 100 —
x 100
x 100 —
x 100
A-49
-------
-
K. Determine Mean Error for High Range Audit Slide
126. Test 1 difference( Op)
— (Blank 65)—(Blank 121)
- ç3O -C 55 i - ___
127. ,, T$tr4—4444ererrce14L.QpL
• (Blank 7l) —(81ank l22
a ( ) -( I
1 8. Test : diffeçence (% Op)
— .(Blank 77) 1 (Blank 123)
)
I 9. Thst 4 dijfe 9 ence (% Op)
a (Blank 83) r(B1ank 124)
1 Test 5 ditfe ence (% Op)
— (Blank 89)—(Blank 125)
—C ) ( )
Mean error (% Op) i
— (B’ank 126)+(Bla k 127)+(Blank 128)+(Blank 129)+(Blank 130)
30.
13
\
5
.
a (
\J
•
)+(\J
.
)+(
.
,
4+(
)+(
-•- )
5
.
—Zi -.,
A-50
-------
DYNATRON, INC. 1100 PERFORMANCE AUDIT DATA SHEETS , ,4 ..c
A -
Date ‘ ± Auditor ___________ Soi ,rce ID NO. ______
L.e, rnc J ’ ” F
A. Stack Exit Correlation
AUDIT DATA RETRIEVAL
1. Stack exit diameter (ft) ,
2. Transmissometer pathlength (ft) ,
3. Calculated pathlength ratio
4. Preset pathlengtb ratio
B. Fault Indicator Lamps
5. LAMP
6. WINDOW
7. AIR PURGE
-
—
/ A,
D. Zero and Span Responses from Operation Manual
14. Zero response (S Op)
15. Span response (S Op)
E. Alignment. Check
16. Image status (centered)
C. Internal Zero arid Span Check
8.
9.
10.
11.
12.
13.
Automatic calibration timer position
Meter display position
Zero reading on panel meter (S Op)
Span reading on panel meter (S Op)
Zero reading on chart recorder (S Op)
Span reading on chart recorder (S Op)
YES NO
/
k-5 1
-------
LA. j
. Transceiver Window Check
17. Time of cleaning
/ 2 1’
C. Retroflector Window Check
18. Time of cleaning
0. tnsert tow Range Filter
19. Time at end of first waiting period
20. Time at and of second waiting period
21. Filter opacity (Z Op)
22. Filter serial number
23. Tim. at end of third waiting period
first waiting period
J. Insert Righ Range Filter
28. Time at end of wai ting period
29. Filter opacity (% Op)
30. Filter serial number
A—fl
4 ’ hi- —
/ —
1,1
::2 ‘ —‘
I. InsertMid Range Filter
24. Time at end of
25. Filter opacity ( op)
26. Filter serial number
27. Time at end of second waiting period
: i-’-—.
-s
// ‘,‘.
-------
/1 e. .— __l_•
__I_,— _ 7
K. Monitor Response Repeatability
31—54. Time at end of waiting periods:
Low Mid Righ
First Second Third First Second First
Period Period Period Period Period Period
31 32 33 34 35 36
37 38 39 40 41 42
43 44 45 46 47 48
/
49 50 51 52 53 54
55. Final waiting period ________
L. Retrieve Transceiver Window Check Data
56. Initial opacity reading ( Op) _________
57. Final opacity reading (% op) _________
M. Retrieve Retroreflector Window Check Data
58. Initial opacity reading (% Op) _________
59. Final opacity reading (S Op) ________
A—53
-------
. iQ -
N. Retrieve All Calibration Filter Data
60—89. Opacity readings (% op)
Low Mid Nigh
First Second : Third First Second First
Period Period Period Period Period Period
_______ _______ i/ ‘ _______ ‘ i 2
60 6]. 62 63 64 65
66 67 68 69 70 71
72 73 74 75 76 77
78 79 80 81 82 83
84 85 86 87 88 89
90. Final opacity reading ( Op) —
A-54
-------
M(7 5
Ci2’(2 jZ P
AUDIT ANALYSES
a
a
93. Zero error (% Op):
— (Blank 12)—(Blank 14)
— •( 10 . 10 ). —
94. Span error ( Op)
— (Blank 13)—(Blank 15)
a ( ) —
A. Stack Exit Correlation Error
91. Error (%):
1(Blank 4) — (Blank 3)1
I xlaø
L (Blank 3) j
)—(
—I I xløø—
L ( ) J
B. Control. Panel Meter Correction Factor
92. Panel meter factor:
(Blank 15)
a
(Blank 11
(9)
C. Internal Zero and Span Analysis
—
)
)
A-53
-------
U K” 7 ‘ -C ‘s
D. Optical Surface Dust Accumulation
95a. Transceiver Dust Accumulation (% Op):
— (Blank 56)—(Blank 57)
- )-( L )
95b. Retroreflector Dust Accumulation (% Op):
— (Blank 58)-(Blank 59) / ‘ ;W ) , A
L7 J , )
)( (3 )
95c. Total Dust Accumulation (% Op)
.
(Blank 95a)+(Blank 95b)
a ( O”2 )+(“O’- ) - ______
E. Pathlength Ratio Correction of Audit Slides
96. Low rang. slide :
I.
a (l—(Blank 2 1/løø)]2 l flk 4) ,/
0/
(i-c 10 0,løø)12( “1 ) : _______
97. Mid range slide :
a (l—(Blank 25 / 100 ) 1 2(Biank 4)
(1—C 3 ( / 1 ØØ)]2 3 & f)
98. High range slide :
a (l—(Blank 29 / 100 )]2(Biank 4)
a (1-( L 1 L / ØØ)]2 (132& ) a ________
___ ,i I
______
7 -,Y ?
I —
q —
7 ”
A-5 6
-------
/w-f
F. Calculation of Expected Response to Low Range Audit Slide
99.
Test 1
expected re
S OflSO (S. Op)
I r
— I i I i
L L
(Blank
60)+(Blank
62)11
II
JL
(Blank
96)
200
[ .
[
y ’
)+( ‘i’ 3
)J [
Ct’3 7
)J]
200
Tà5t 2 expected response (S op)
—‘
a
_ [ (BlanW’ ?fl Lank 68)
L / 200
I ( / )+(
/ 200
Te
t 3 .xp.cted response
—
a.
I (B Lank 72)+(Blai
i—li—
L 200
I (
L 200
Tee: 4 expectEd response (% Op)
1% f (B ank 78)+(Bli Lk 80)
—I .-I1—
L\ L 200
i\i )+(
— [ l\ L 200
Test *xp.cte response (% Op)
f [ (Bl4nk 84)+(Blan1 86)
—I1—I 1— —
L L\ J 200
r r J
— [ . L ”----’ 200
x 100
x 100 —
. —1 LP
96) llx ;’
x 100 —
96)]]x 100
)]] x 100 —
96)]]x 100
x 100 —
[ (Blank
[ (Blank
96)]]x 100
100 —
100.
101.
A-57
-------
S —7Lï
Test 4 difference (% Op)
— (Blank 79 —(Blank 102)
— 2 6 cj
C. Determine Mean Error for Low Range Audit Slide
104. Test 1. difference (% Op)
(Blank 61)—(Blank 99)
— C ‘ )—((OiC ) —
105. Teflt 2 difference (% Op)
— /(B lank 67) — (Blank 100’)
— /c )—( )
106. lest 3 difference(% Op)
(Blank 73)—(Blank 101)
I. ). .( )
107.
108. Test 5 difference(% op)
(Blank 85)—(Blank 103)
( i)—( ) —
109. 1 ean error s Op) j
_\ B1ank ]i4)+(Blank 105)+(8ank 106)+(Blank 107)+(Blank 108)
\ \5•
— ) +( )+( \ )+( )+( /
-
( )
I
I
/
(
A—58
-------
UrW7
—T . -i 3
H. Calculation of Expàcted Response toMid Range Audit Slide
110. Test 1 expected response x op)
— [ 1_ [ .
— [ i. [ i_
(Blank 64)+(Blank 62)ir
iL (B c 97)]]
]{ .7 31)]]x 100 — _______
200
)+(
200
2 expected response (Z Op)
11... (B1ank/ i Blank
[ / 200
r )+(
Ii—
L 200
3 expect.d response ( . p)
r (B1ar k 76)+(Blank 74)11
Ii- II(Blank
L 200 JL
r )ir
st
I _____________________
‘Cl ..
1st
— [ 1_
i. [ i .
T et
a ____________
L\L J20 0
Test\5 expected re ponse (x --
(Blank .88)+(Blank 86;)
/ 200
200
4 expected r 1sponss (% Op)
r .(B lank\82)+(Blank
\ 200
)+(
(
68) lr 11 -
II(Blank 97) I IxIii
JL J.y
J [ ( ,il I x 100 a \\
—
7)
100
100 —
x 100
x 100
x 100
111.
112.
113.
114.
200
j [ (B lank
a
)
x 100 a
A-59
-------
J. Calculation of Expected Response to High Range Audit Slid,-
121. Test 1 expected response (% op)
r r (Blank 64)+(Blank 66)
L
r r _______
a — I 1-
L L 200
122. Test 2 expected response (Z Op)
\1 r (Blank 70)+(Blank 72)11 -11
I 1— I 1— II (Blank 98) I f x 100
L L 200 JL JJ
r r ) ÷c\ ill 1 1
all—Il— III )Ilx
L L 200 .JL JJ
123. Test 3 expected response ( Op)
r r (Blank 76)+(Blank 78nr 11
1— I 1— IJ (Blank 98) x
I L .200 JL JJ
I r ) +( )lr 11
—Il --Il— III )IIx
I L 200 JL ii
124. Te t 4 expected response :(Z Op)
I I (BiLk 82)+(Blank 84)lr ii
a J \i_ I 1— I I (Blank 98) I I x
Lt 200 JL Ji
)+(
125. Testt5 sponse (x Op)
r \ 88)+(Blank 9oYlr
a l—\ 8) J x 100
a ::: llL ) )flx 100
200
x 100
( i’ O
) ]] x 100 a
iao
be
100 —
100
a
A—60
-------
—‘ .- ..
I. Determine Mean Error forMid RangeAudit Slide
115.
Test 1 difference( Op)
— (Blank 63)—(Blank 13.0)
— C 2.L1,l )—( 2.’f ’7 )
114. Test 2 difLE I ce(S op)
/
— (Blank; 69)—( ank 111) -.
/ )—( I —
1l7. Test 3/difierer ce (% op):
— (Blank 75)—(alank 112)
C
118. Test 4difiererlce(% o \
a.(Blai 1 ik 81)-’lølank 113)
)—( )\,—
1l9. Test 5 ifferenke (S Op)
— (Blank\87)—(B4nk 114) \
120. \e nerL (%Op\
— (Blank U5)÷(Bla\k 116)t(B ank 117)+( 1ank 118)+(Blank
-m.D
1 9)
+( 5 j+(
/1
-J 5
/
;).
A—61
-------
- .1. -_
K. Determine Mean Error for High
1.26.
Test 1 difference(% Op)
— (Blank 65)—(Blank 121)
a ( 3 .)_( 3 L 1 1,tf
Test 2 difference (S Op)
— (Blank 71)—(Blank122)
\ )
Test 3 difference (s o )
— .(Blank 77)—(Blank 12?)
a ( ). (
Test 4 difference (S
(Blank 83)—(Blank
\ —c
Test 5 difference (S
(Blank 8 )—(B1ank
error (S Op)
a\(B1ank 12 )+(Blank
Range Audit Slide
a
a
127.
128.
129.
130.
131.
\
Op)
1214)
I)
/
I,
/
/
01
U
1
5)
127)+(Blarik 128)+(Blank 129)+(Blank 130
(\ I )+ .)+() )+(
a
/1.
A—62
-------
APP NDIZ a.
UNION EC R.tC COMPANY, PORTAGE DES SIOUX STATION
LEAR SI2XLER OPACITY CEMS
o Procsdurss
o Daily JI Check Results, Units No. 1 and 2
o Source 5.Lf Audit Data and Calculations,
Units No. 1 and 2
-------
UNION ELECTRIC, SIOUX STATION
DAILY CHECK INSTRUCTIONS
1.31 OPACITY MONITORING SYSTEM
* 3)141 Tranaaia somerers
* 622 Emission Monitor Combin.r and Chart Recorder
* DP—30 Data Logger and Printer
The following are step—by—step instructions for conducting the
Daily Check of the Sioux Station Unit #1 and Unit #2 opacity monitor-
ing system. • Criteria are provided for determining when corrective
action should be initiated. The person conducting the Daily Check of
each monitoring system should complete all blanks on the Daily Log as
indicated below. (Separate forms are used for the Unit #1 and #2
monitoring systems.)
I. (2NERAL INPORZ4ATION
* Enter . a of person performing check, th. date (month, day,
year), the ti m. of day (24—hour c.lock) that the check i begun,
and the total. boiler 0.0.5 time for the previous 24 hours.
II • CElIB flIER DATA
* Examine the fault lamp. on the Combiner • Check the appropriate
box on the Daily Log to indicate the status of each fault lamp
(check “YES” if lamp is ill mated).
* Rot*te the Measurement switch to the “CCMP” position. Rotate
the Avialyzer switch to position (1) and record the zero compen-
sation level for Monitor A. The panel meter readout is in units
of optical density (OD). Rotate the Analyzer switch to position
(2) and record the zero compensation level for monitor B.
Return the ANALYZER switch to the “EXIT” position and return the
Measurement switch to the “302 OPACITY” position.
* Examine the strip chart to determine the zero and span responses
of the most recent monitor calibration. Record th. zero and
span calibration values on the Daily Log in units of I opacity.
The zero and span calibration comes in every 4 hours.
III. DP-30 HOURLY REPORT DATA,
* Record on the Daily Log the zero and span values displayed on
the most recent Hourly Report.
* Check the appropriate box on the Daily Log to indicate whether
the zero and span values are outside acceptable limits.
* Circle on the Daily Log the Reason Code and/or Flags which ap-
pear on the moat recent Hourly Report.
B-]. ENVuzqaO l—glh
07/06/83 — ce r n
-------
—2—
* Check the appropriate box on the Daily Log to ii,dicate whether
the )1 or V Flag. are present.
* Check the appropriate box on the Daily Log to indicate whether
the listed error msuag.a are shown on the Hourly Report.
NOTE: US ANSWERS ARE INDICATED FOR ANT OF THE ( JESTIONS ON
THE flATLY LOG, A JOB REQUISITION MUST BE INITIATED.
IV. CO TS
* If a JJ. is required, enter J.2. number in specs provided.
* Describe any problems observed during the performance of the
Daily Check and/or any other apparent problems which may affect
monitor performance.
* Enter the TINE OF DLY that the Daily Check is completed.
3-2 ENVsxqaOl—glh
07/06/83 — cem
-------
Opacity Monitoring System
DAILY LOG
UNION ELECTRIC SIOUX STATION UNIT: 1
I. N &T INPORNATION
Name:_________________ Date: — — 83 Time Start:
TOTAL BOITK 0.0.3. TINE (PREVIOUS 24 HOURS): _____
II. COMBINER DATA
FAULT LAMPS ON? NO YES
Filter
Shutter
Ref
Windows
Over Range
Zero Compensation L.vel: Monitor A COMP (OD):_____ Monitor B COMP (OD):_____
Chart Recorder, Zero Value: ____________________ Span Value:_____________
III. DP-30 HOURLY REPORT DATA
Zero Calibration: _____________________ Span Calibration: ________________
NO YES
Doss zero value exceed acceptable limits of + 2.52 opacity?
Doss span value exceed acceptable limits (67.52 to 72.5% opacity)?
Reason Code/Flags (Circle thos. present on hourly report)
H * D M R A
NO YES
Is the 11” ar R Flag present?
Error Messages on Hourly Report? NO YES
1. A/D REFERENCE FAULT
2. DIGITAL/ANALOG DIFFERENTIAL ATARJI
3. A/D TINE OUT
IF YES ANSWERS ARE INDICATED FOR ANY OF TEE ABOVE ( 3ESTIONS, A JOB
REQUISITION SHOULD BE INITIATED
IV. COMMENTS: J.R. No. __________ was initiated
TINE COMPLETED: _______________
Route: Operating Engineer
File 4/13/26(d)
SP—192
B3 ENVsxqa O l—glh
07/06/83 — cam
-------
Opacity Monitoring System
DAILY LOG
UNION ELECTRIC SIOUX STATION UNIT: 2
I. GENERAL INFORMATION
Name:________________ Date: — — 83 Time Start:
TOTAL BOILER 0.O.S. TINE (PREVIOUS 24 HOURS): _____
II. COMBINER DATA
FAULT LAMPS ON? NO YES
Filter
Shutter
Ref
Wfndovs
Over Range
Zero Compensation Level: Monitor A COMP ( 01)) : Monitor B COMP (01)): ___
Chart Recorder, Zero Value: ____________________ Span Value:___________
III. DP-30 HOURLY REPORT DATA
Zero Calibration: _______________________ Span Calibration: ________________
NO
Does zero value exceed acceptable limits of + 2.5% opacity?
Does span value exceed acceptable limits (67.02 to 72.52 opacity)?
Reason Code/Flags (Circle those present on hourly report)
H * D H a A
NO YES
Is the ‘)I or R Flag present?
Error Messages on Hourly Report? NO YES
1. A/D REFERENCE FAULT
2. DIGITAL/ANALOG DIFFERENTIAL AT.4RM
3. A/DT tE OUT
IF YES ANSWERS ARE INDICATED FOR ANY OF THE ABOVE QUESTIONS, A JOE
REQUISITION SHOULD BE INITIATED
IV. COMMENTS: J.R. No. was initiated
TThE COMPLETED: ________________
Route: Operating Engineer
File 4/13/26(e)
52—193
B4 ENVsxqaO l—glh
07/07/83 —
-------
Page 1 of 8
JOB INSTRUCTION BR A K—DOWN
Job Periodic QA Check J.I.B. No. 1—13—5.1
G.J. Gi].bertsan
Prepared by L.P. Koehier Data 1-].Q-7’9 Job Class. Tech .
The following are step—by—step inatructions for performing the
Periodic QA checks of the Sioux Station opacity monitoring systems..
The Periodic Q checks are to be performed at least once per month.
The person performing the monthly checks should complete the Periodic
Q& Check Log. (A separate data form should be used for each monitor.)
I. General Information
* Enter the Unit number (1 or 2) and the monitor indentifier (A
or B).
* Enter the name of the person performing the check, the date
(month, day, year), and the time of day (24—hour clock) that
the check is begun.
II • Calibration Check Data
(1) Enter PA/PD commands at the DP—30 printer to initiate display
of Instantaneous .“..log and digital computer values at one—
lnute intervals for the monitor being evaluated.
a ple: Control is gained by pressing the CTL and I keys
•j*nI taneously. The DP—30 system response and the operator
response should be as follows:
System Response Enter System Response Enter
DP—30 I/O REQ
SI&CK ID? 1 (or 2) 1 (or 2) Return
?/1 (or 2) P A. PA Return
?/1(or2) PD PD Return
?/1 (or 2) Return
(2) Rotate the Analyzer switch on th. combiner to the position
corresponding to the monitor being evaluated. Position 1
corresponds to the A monitor and position 2 corresponds to
the B monitor. Rotate the measurement switch to the R.EPH
position and record the reference current value (ma) on the
Log. Return the Analyzer switch to the aEXITU position and
the Measurement switch to the “30Z Opacity” position.
ENVsxqaO2—glh
B—5 08/12/83 — jn
-------
J.I.B. 1—13—5.1 Page 2 of 8
(3) Switch the monitor (duct) not being eva.Luted out—of—service
at the Combiner and initiate a manual zero ca.Libration.
Record the zero calibration responses of the panel mater and
strip chart recorder. Record the analog system zero calibra-
tion response from the DP—30 printout (see sample DP—30 prin-
tout sheet. attached).
(4) Rotate the AnAlyzer switch to the position corresponding to
the monitor being evaluated. Rotate the Measurement switch
to the “C 4P ” position and record the zero compensation value
indicated by the panel meter. Return the Analyzer switch to
,the “EXIT” position and the Measurement switch to the “1002
Opacity” position.
(5) Initiate a span calibratid’ check and record the panel meter
and strip chart responses on the Log. Record the analog sys-
tem span response from the DP—30 printout.
(6) Record the i t1mue 6—minute average opacity indicated by the
chart recorder and DP—30 printout for the hour preceding this
check.
(7) Switch the out—of—service monitor (duct) back to operate.
(8) Repeat steps 2 through 7 for the monitor (duct) which was
previously taken O.O.S. 3. sure to use a separate form.
(9) Ratiarn the combiner unit back to normal operation, that is...
* “Operate” light i.Un.{natsd
* Measur —ent switch in the “302 Opacity” position
* Analyzer switch in the “Exit” position.
(10) Reissue the PA/PD command to stop the DP—30 printout.
Example: Control. is gained by pressing CTL and I keys
simultaneously. The DP—30 system response and the operator
response should be as follows:
System Response Enter System Response Enter
DP—3Ø REQ
S!&C ID? I (or 2) 1 (or 2) Return
?/1 (or 2) P A PA Return
?/1 (or 2) P D PD Return
?/1 (or 2) P D PD Return
?/1 (or 2) Return
B—6 ENVsxqaO2—glh
08/12/83 —
-------
J.IJ. 1—13—5.1 Page 3 of 8
III. Transmis.ometer Cbeck/Service
All the time spent p.rfor ’ing this procedure on each instrument
La counted as out—of—service hours • It is very important that
this job be don. as quickly and as thoroughly as possible so the
system r. a(ni as continuous and trouble fre. as possible.
(1) In the Control Room:
Before starring to work on any monitor, transceiver, and/or re-
flector, log that particular monitor out—of—service with the ‘QS’
commands. It is suggested that both monitors be taken O.O.S.
before prece.ding out to the field in order to save time.
Example: Control is gained by pressing the CTh and I keys
simultaneously. The DP—30 system response and the operator
response should be as follows:
System Response Enter System Response Enter
DP—3 REQ
STACK ID? 1 (or 2) 1 (or.2) Return
7/1 (or 2) 0 3 OS Return
Th&TRUZ4ZNT? MONA MONA Return
?/1(or2) OS OS Return
INSTRUMENT? MONB MOMB Return
7/1 (or 2) Return
NOTE: Both field monitors cannot be taken 0.0.S. on the same in-
struction line, that is, MONA and M014r is not a valid entry and
viii result in the computer issuing the instruction ENTR’Z’.
(2) At the Reflector:
A. Remove, empty, and wipe clean with a rag, the pre—cleaner
collector.
B. Remove, empty, and wipe clean with a rag, the prefilter
collector.
C. Remove and inspect the filter element and replace it with
a new or clean one.
NOTE: These filter elements can be cleaned and several
times before a new one is needed by following the in-
structions on the blower housing.
ENVsxqaO2—glh
08/12/83 — jn
-------
J.I.B. 1—13—5.1 Page 4 of 8
D. After cleaning, inspect the filter by dropping a light
down inside the element. If any ruptures or pin holes
are observed, discard and use a new ele’ nt.
E. Replace the filter element and the pre—tilter collector
only.
P. Before replacing the pre-cleaner collector, place your
K.1i4 over the intake to completely obstruct air flow.
* Check to i.e that the shutter falls.
* Check that the “shutter and “filter” alarms occur,
on the combiner panel in the Control Room, for that
particular duct by positioning the analyzer switch.
G. Replace the pre—cleaning collector.
B.. Restore the shutter to the open position by de—energizing
the blower motor and then re—energizing it again.
NOTE: If shutter fails to open after the above proce-
dure, the shutter solenoid or T.D. relay may be faulty.
Replace the defective part and try the above procedure
again.
I. Inspect aU. air hoses for mecK.nical integrity. Test all
hose clamp, for tightness.
J. Clean the reflector lens coipletely by removing the iris
plate and wiping with the clean, dry, lint free cloth
stored inside the cylinder located in the reflector
mounting flange.
L If any moisture, small beads, are present within the re-
flector (between glass cover and reflector) then the des—
sicant cartridge should be changed.
NOTE: Be sure th. reflector module is replaced in the
exact 3—hole position found, when changing dessicant.
L. Inspect the duct mounting flange for any accumulation of
dust. Rod Out any accumulation with wire brush rode.
M. Close up the reflector unit.
N. Perform an alignment check at the reflector by determin-
ing if the light beam is within the circula! target of
the viewing port • indicate the position of the image
within the circular target on the diagram and check the
appropriate box for alignment status on the QA Log.
(3) At the Transceiver:
A. Repeat Steps 2—A through 2—I.
B—B ENVsxqa O2—glh
08/12/83 — jn
-------
1.1.3. 1—13—5.1 Page 5 of 8
3. clean the projection lens and the zero mirror face with
the clean, dry, lint free lens cloth by positioning the
aode switch from “Operate” to “Zero”.
C. Return the mode switch back to “Operate” position. Be
sure the zero mirror returns to the rest (down) position.
Do not change node switch from “Operate” again until zero
mirror cam comes to rest.
D. It any moisture, sin 11 bead, are. present on the inside of
the projection lens, the desaicant cartridge should be
changed.
3. Inspect the duct mounting flange for any dust
accumulation. Rod out any dust with wire brush rods.
P. close up the transceiver unit.
G. C1 eck the AGC LED (Automatic Gain Control light emitting
diode) on the right hand side of th. transceiver, and
record whether it is “ON” or “OPT’.
If the AGC is not on, repairs to the monitoring system
must be completed before continuing.
0 .. Perform an align ’.nt check by removing the plastic cover
from th. mode switch on the transceiver and turn the
switch to the “ALIGN” position. Determine th, optical
alignment status of the transceiver and retroreflecto by
looking through the “bull ‘s eye” and observing whether
the imag. is within the circular target (acceptable), or
outside the circular target (unacceptable). Indicate the
position of the light beam on the diagram, and check the
appropriat, box for alignment status on the QA Log.
Return the transceiver to the “OPER’ position.
* If the optical alignment is unacceptable, realign the
opacity monitoring system in accordance with the
manufacturer’ $ instructions Lf a shift in the base-
line opacity occurs alter realignment, note the mag-
nitude of the chance which was observed in “Part V
Cooments”.
I. Repeat the above instructions for the other field monitor
starting at step number 2.
(4) In the Control Room:
A. At the combiner unit isir , a manual “zero” calibration
(1 minute) and a manual “span” calibration (1 minute).
8. Issue the “is” commend to stop tht DP—30 printout.
8 —9 ENVsxqaO2—g lh
08/12/83 — jn
-------
JeI.B. 1—13—5.1 Page 6 of 8
Example: Control is gained by pressing CTL and I keys
simultaneously. The DP—30 system response and the opera-
tor respons. should be as follows:
System Response Enter System Response Enter
DP—3 I/O REQ
STACK ID? 1. (or 2) 1, (or 2) Return
?/1 (or 2) IS IS Return
INSTRUME 4T? M 0 N A 14 0 N A Return
?/]. (or 2) IS IS Return
ThSTRU14E T? 14 0 N B 14 0 N B Return
?I1 (or 2) See step C
C. Using the AC comm and type in the following comment for
the particular stack:
“QA” ZIAII4TENANCZ FOLL0W—UP
Example:
System Response Enter System Response Enter
A C AC Return
C( IkENT IS Type in System will Return
the above print out
comment comment
entered
?/1 (or 2) Return
IV. Final Measurements
(1) Upon completion of a.U the above steps, record the minimum 6—
minute average effluent opacity value during the hour period
following completion of a.U adj ustments, repairs, and service
for the monitor.
(2) Record the final zero compensation value for such monitor us-
ing the procedure detailed in Part II Step (4) above.
(3) Write a J.L for any problems that cannot be immediately
corrected. Write comments on the QA Log about the nature of
the problems.
(4) Write down the time on the QA Log when this procedure is
completed.
B-lO ENVsxqaO2—g lh
08/12/83 —
-------
1. 1.3. 1—13—5.1 Page 7 of 8
Opacity Monitoring System
PERIODIC Q& CHECK
SIOUX STATION
I. UNION ELECTRIC
UNIT. ______________ MONITOR ______________
Name _____________ Date: — — 83 Tins Start: ___________
II. ( ALTBR&TION CHECK DATA
Panel Meter Chart DP—30
Recorder (Analog)
Reference Current (ma) I/I//I//I Il//I/I/i
Zero Value (% opacity)
Zero compensation COD) 1//I/I//I I/I//I/I
Span value (2 opacity)
Minimum 6—mm. average opacity
value for preceding hour
III. AZ SMISSO iZTZR CBECR/SERVICE
US NO
1. AGC ON? (S.. Instructions if AGC is not or.
2. Alignment Status (Note position of L.tght Beam on Diagram)
Transceiver Retroreflector
Alig” —nt Acceptable? YES NO (See Instructions if alignment.
Transceiver is not acceptable.)
Retroreflector
IV. FINAL MEASUR 4ENTS
1. Minimum 6—min. average effluent opacity during hour: _________
2. Final Zero Compensation value (panel. meter, OD): _____________
V. C 1MENTS:
Time Completed: __________
Route: Operating Engineer
Pile: 4 —13—26(g)
B—il
ENVsxqaO2—glh
b8/12/83 — jn
-------
J.I.3. 1—13—5.1 Page 8 of 8
SAMPLE DP—30 PRINTOUT — PA/PD
CC lMAND — QA PERIODIC CHECX
Analog System Rasponee Zero or
Span (Z Opacity)
STACK# 1
ADRS. 02/0 3.88 0.36 VOLTS
ADES. 02/1 3.80 0.97 VOLTS
4 RS . 02/2 1.02 VOLTS
ADRS. 02/3 0.95 VOLTS
ADRS . 02/4 1.01 VOLTS
ADRS. 02/7 1.00 VOLTS
STACX# 1
ADRS . 00 0100010000000000
9-12 ENVsxqaO2—g lb
08/12/83 — jn
-------
Page 1 of 5
JOB ThSTIUCTION BR AI(—DOWN
Job Corrective Action Log J.I.3. No. 1—13—5.3
Prepared by G.J. GL lbertsen Date 6-15-83 Job Class. Tech .
Tb. fa.Uoving are step—by—step instructions for completing the
Corrective Action Log when adj ustments and/or repairs of tither the
Unit #1. or Unit #2 opacity monitoring system are necessary. The per-
son performing the corrective action should complete all blanks on the
Corrective Action Log as indicated below.
I. (ZNEBAL INFORMATION
* Enter the Unit number corresponding to the monitor for which
repairs or adjustments are performed.
* Enter th. name of person performing repairs or adjustments,
th. date (month, day, year), aud the tim. of day (24-hour
clock) that the corrective action is initiated.
U. SYSTEM/MONITOR FAULTS
* Enter 0N or “OFF” for each fault lamp on the Log.
* If the filter or shutter fault lamps are illu {nated, rotate
the i a1yzer switch on Combiner between monitor positions on—
nil th. lamp begins flashing, thus indicating the monitor
which ii affected. Note which monitor (A or 3) is at fault
on the Log. Position 1 corresponds to the A monitor and
position 2 corresponds to the 3 monitor.
* If th. reference fault lamp is iIlumi ated, rotate the co
bluer measurement switch to the REP” position. Note which
monitor reference ma value is not within the green band on
the panel meter when th. analyzer switch is rotated to po$i—
tions land 2.
* If the window fault lamp is illuminated, rotat. th. measure-
ment switch to the “C IP ” position. Note which monitor is
reading in the red zone on th. zero compensation scale when
the analyzer switch is rotate to position 1 aM 2.
* Tb. highest possible optical density rang. has been selected
on the optical density cards in th. combiner. If the over
range fault lamp is illuminated, higher possible optical den-
sity ranging is not possible. This fault lamp ii normally
indicating other possible problems in the system such as
monitor breaker or shutter faults, etc.
* List Reason Code Flags and/or Error Messages which are pre-
sent on DP—30 Hourly Report.
3—13 ENVsxqa O3—glh
08/12/83 —
-------
1.1.3. 1—13—5.3 Page 2 of 5
* Monitor calibration and completion of Parts III of the Log
are not required if Filter or Shutter problems activate cor-
rective Action. However, if the “REP”, “WINDOW”, or “OVER
RANGE” fault lamps are illuminated, the Combiner and DP—30
Data listed in Parts III must be obtained prior to adjusting
the monitor.
* Record the date and time when the fault is corrected.
Describe a.U corrective action taken in the “Part IV.
Comments”.
III. COMBINER DAI&/DP—30 DATA
(1) Rotate the Measurement switch on the combiner to “REP” posi-
tion and record on the COMBINER DATA CHART, the panel meter
me reading for each monitor obtained by rotating the Analyzer
switch to each monitor position.
(2) Enter PA/PD co anda at printer to initiate display of in—
itantaneoua analog and digital c puter values at 1-minute
intervals. Control ii gained by pressing the CTL and I
key. simultaneously, the DP—30 system response and the opera-
tor response should be as follows:
S!ST i RESPONSE ENTER SYSTEM RESPONSE ENTER
DP—3 I/O REQ
STACR ID? 1 (or 2) 1 (or 2) Return
?/J. (or 2) P A PA Return
?/1 (or 2) P D PD Return
?/1 (or 2) Return
Record the monitor A and B “Reference Value” voltages on the
DP—30 DATA CHART. (See sample DP—30 printout sheet
attached •)
(3) Rotate the Measurement switch to the “30Z OPACITY” position
and the Analyzer switch to EXIT. Depress “OPERATE/CAL”
switch and record on the COMBINER DATA CBART, the system zero
check response indicated by the chart recorder (Z opacity).
Rotate the anplyzer switch to position (1), switch Duct 3
monitor out—of—service, and record, on the COMBINER DATA
cHART, the zero check response for Monitor A indicated by the
chart recorder. Rotate the Analyzer switch to position (2),
switch Duct A out—of—service, and record, on the COMBINER
DATA CHART, the zero check response for Monitor B indicated
by th. chart recorder.
(4) Record, on the DP—30 DATA CHART, the Monitor A and B Measure-
ment voltage values and the analog system response during
zero calibration of the monitoring system.
B-14
ENVsxqaO3—gjb
08/12/83 — ju
-------
1.1.3. 1—13—3.3 Page 3 of 5
(3) Rotate the Measurement switch to the “COMP” position. Rotate
the Analyzer switch to each monitor position, and record, on
the COMBINER DATA CHART, the zero compensation level, for each
monitor in units of optical density (OD) as read from the
combiner panel aster.
(6) With Measur.m ,nt switch on “1002 OPACITY”, the Analyzer
switch in the EXIT position, and the monitor still in zero
check mode, depress “ZERO/SPAN”. Record, on the COMBINER
DATA ChART , the system span check respons. of the chart
recorder (2 opacity). Rotate the Allalyzer switch to each
monitor position, temporarily switch th. alternate monitor
out—of—service, and record, on the COMBINER DATA CHART, the
span check responses for each monitor as indicated by the
chart recorder (2 opacity).
(7) ‘Record, on the DP—30 DATA CHART, the Monitor A and B Measure-
ment Voltage values and the analog system response during
span calibration of the monitoring system.
(8) Cleaning of the transceiver and recroreflector optics and/or
other adjustments are necessary when:
(a) The “REP” ma value, for either monitor, on the COMBINER
DATA ChART, is not within acceptable range (green band of
panel meter: 17.9 — 22.2 ma). Make necessary adjust-
ments, and enter post-adjustment “REP” ma reading on the
COMBINER DATA CHART. Lf no adjustments are required, en-
ter “NA”.
(b) The “Reference Value” voltage, for either monitor, on the
DP—30 DATA CHART, is not within the acceptable range
(.913 to 1.1.3 volts), mak , necessary adjustments and en-
ter post—Adjusted Reference Value” voltage readings. If
no adjustments ar. required, enter “NA”.
(c) The combined system zero check respänse exceeds + 2.32 or
the individual monitor zero check response exceeds + 22
on the COMBINER DATA CHART. make necessary adjustments
and nter post”Adjuscecj Zero Values”. 11 no adjustments
are necessary, enter “NA”.
(d) The combined system analog zero check response (2 opa-
city) exceeds + 2.52 on the DP—30 DATA CHART. Make
necessary adjustments and enter post—”Adjusced Zero
Values” • If no adj ustments are necessary, enter “NA”.
(e) Th. zero compensation for either monitor on.the COMBINER
DATA CRART exceeds — .02 to + .03 optical density, make
necessary adjustments and enter post— ”Adjusted Zero Comp”
value for each monitor. If no adjustments are necessary,
enter “NA ”.
Ct) Th. combined system span check response exceeds + 2.52
opacity from the correct value or the response of either
monitor exceeds + 22 opacity from the correct value on
the COMBINER DATA CHART. Make necessary adjustments and
B- 15 ENVsxqa O3—gjh
08/12/83 — jn
-------
J.I.3. 1—13—5.3 Page 4 of 5
enter post—”Adjusted Span Vslue’. If no adjustments are
necessary, enter Ná”.
g) The combined analog system span check response (Z opacity
exceeds + 2.5Z from the correct value on the DP—30 DATA.
ChIART. Make necessary adjustments and enter post—
“Adjusted Span Values”. If no adjustments are necessary,
enter ‘NA.
(9) ReISSUe the PA/PD cowit nnd to stop the DP—30 printout. Con-
trol, is gained by pressing the CTL and I keys
simultaneously. The DP—30 system response and the operator
response should be as follows:
SYSTEM RESPONSE ENTER SYSTEZ4 RESPONSE ENTER
DP—3 1/O REQ
SIACE ID? 1 (or 2) 1 (or 2) Return
?/1 ( r2) PA PA Return
?/ 1 (or 2) P D PD Return
?/1 (or 2) Return
IV. CCiINENTS, CORRECTIVE ACTION, MAINTENANCE
All repairs and/or adj uatments performed as a result of the above
procedures should be described. Sufficient explanation should be
provided to determine what was done and what effect it had on
eonitor performance.
BE SURE TO ENTER TI tE OP DAY ALL CORRECTIVE ACTION IS COMPLETED.
3-16 ENVsxqaO3—gj.h
08/12/83 — in
-------
J.I.3. 1—13—5.3 Page 5 of 5
Opacity Monitoring System
CORRECTIVE ACTION LOG
UNION ELECTRIC SIOUX STATION UNIT: _____________
I. (ZNERAL INFORMATION JR No._____________
Mama:_______________ Data: — — 83 Time Start:________
II. STSTflI/MONITOR FAULTS
Monitor Corrected
Combiner Fault Lamps On/Off A or B Date Time
Filter
Shutter
Ref
Windows
Over Range I/I/I//I//I/I/I
DP—30 FLAGS and/or ERror Messages present on hourly retort (list): ________
Note: Monitor calibration and completion of Part UI below is not required
if Filter or Shutter problems activate Correction Action.
III. C L8INER DATA
Monitor A Monitor B System
ur value (ma) /1//I//I f/I
ZERO value (Z opacity)
712p comp (OD)
SPAN value (Z opacity)
Adjusted ZERO value (2 opacity)
Adjusted zero COMP (aD)
Adjusted Span value (2 opacity)
Note: (me) and (OD) values from panel meter, all other data from strip chart
recorder.
DP—30 DATA (Analog/Digital Printout)
• Monitor A Monitor B System
(volts) (volts) (2 opacity)
REFERENCE VALUE 1/I/I//I//I
Zero value
Span value
Adjusted REFERENCE VALUE
Mj us ted ZERO VALuE
Mj uated SPAN VALUE
IV. C lMENTS: (Describe adjustments to monitor and other corrective action)
Time All Corrective Action Completed:__________________
ROUTE: Operating Engr.
File: 4—13—26(f)
SP—194
ENVaxqaO3—glh
08/12/83 — jn
-------
April 2, 1984
Greg Gilbertson:
RE: EPA/MoDNR Pilot Pro ect
Sioux Power Plant
Please find enclosed the revised CORRECTIVE ACTION
LOG instructions, 1. 1.3. No. 1-13-5.3. Per your sug-
gestion, this log specifically asks for a description
of the problem and a description of al]. corrective
action taken; and no longer requires collection of
detailed performance data. Additionally, the LOG now
requires a final QA check by the Unit Control Operator
to ensure that the reporting system is indeed opera-
tional.
Please implement this new procedure as soon as practical.
If you have any questions, ,lease call me.
‘ Gar ? Huber
GLH/ratn
Enc.
CC: Jim Peeler
3—18
-------
Page 1 of 3
JOR INSTRUCTION 3R.EAIC-DOWN
Job CORRECTIVE ACTION LOG INSTRUCTIONS 7.1.3. No. 1-13-5.3
Lamr-St.gler RN4I. Opacity Monitoring System
Prepared by C. Gilbertson/G. Huber Date 2-29-84 Job Class. Tech/UCO
Tb. following are step—by—step instructions for completing the
CORRECTIVE ACTION LOG when adjus ents and/or repairs of either the
Unit #1. or Unit #2 opacity monitoring system are necessary. The per-
sons performing the corrective action should complete all blanks on
the CORRECTIVE ACTION LOG as indicated be low.
I. GENERAL INFORNATION
lnter the date, plant and unit number corresponding to the maui-
toring system for which repairs or adjusumenta are performed, and
th. number of the job requisition that initiated the corrective
action.
!nter the name of the technician performing the repair or ad-
ju. .nt and the tin, started.
II • DZSC IBE STSTVA PtO3L f
Describe the system problem in as much detail as necessary to
clearly state th. as found condition, to include meter readings,
fault lamps, calibration data, etc. L isa the reverse sid. of the
CORRECTIVE ACTION if necessary. Refer to the DAILY LOG which in-
itiated corrective action.
UI. fESCuE! ALL CORRECTIVE ACTION TAXER
Describe all th. corrective action taken, in as much detail as
necessary to clearly stats the repairs or adjus enta or other
actions taken. Reference and attach all data sheets, DP—30 hand-
copy, calculations, etc. which resulted from this corrective
action.
IT. RECORD TINE AND DATE CORRECTIVE ACTION WAS CON L!TLD
Racord the time and date when the corrective action was com-
pleted, i.e. when the system is again considered operational .
V. TRE NUT DP-30 HOURLY REPORT DATA
Rand carry the CORRECTIVE ACTION LOG to the UCO responsible for
the affected generating unit. Notify the UCO that the opacity
onitoring system La again operational and that it will be neces-
sary for the UCO to obtain certain information from that unit’s
NEXT hourly opacity report generated by the DP-30 terminal. Per-
form the following:
5—19 ENVsxqaO3-gth
03/30/86 — di
-------
J.Z.3. 1 .13.5.3 Page 2 of 3
On the CORRECTIVE ACTION LOG, record the zero and span cali-
bration values printed on he next Hourly Report.
Cbeck the appropriat, box on the CORRECTIVE ACTION LOG to
indicate whether th. zero and span values are outside accept-
able Limits.
‘On the CORRECTIVE ACTION LOG, circle the Reason Code and/or
flags which appear on the next Hourly Report.
‘Check the appropriate box on the CORRECTIVE ACTION LOG to
indicate whether the “N” ox “B” Flags are present.
‘Check the appropriate box on the CORRECTIVE ACTION LOG to
indicate whether the listed error aessages are shown on the
Hourly Report.
TI : IP YES ANSWERS ARE II4CIATED FOR ANY OF THE QUESTIONS,
A JOB REQUISITION MUST BE INITIATED.
VI. COMMmq’ $
*11 a J.ft. is required, enter the J.R. number in space provided.
‘UCO to route co*plet.d CORRECTIVE. ACTION LOG as indicated at the
bottos of the LOG.
B—20
ENVsxqaO3-g lh
03/30/84 — di
-------
. 1.1. 5. 1—13—5.3
Page 3 of 3
I. ZNKRAL INFORMATION
Date ____________________
Plant ________________
Unit No. ____________
.7. 1. No. ____________
Technician ___________
Time Corrective Action Started
II. DESCRIBE SYSTEM PROBLEM
III. DES RIBZ ALL CORRE iivn ACTION TAREN
IV. RECORD TIME AND DATE CORRE rj v ACTION WAS COMPLETED
Time__ERS.
Date ___________
V. TU w DP30 HOURLY REPORT DATA
Zero Calibration:
Span Calibration:
INO JTES
[ Does
Does
zero
span
valus
value
exceed
exceed
acceptable
acceptable
limits
limit.
of +2.3Z
(67.52 to
opacity?
72.5% opacity)
lesson Cods/Flags (Circi. those present on hourly report)
H * D N H A
I NO I!ES I
the “M or V Flag present? I - I
Error Messages on Hourly Report? NO YES
1. /D REFERENCE FAULT
2. D CITAL/ANALOC DIFFERENTIAL ALARM
3. A/D TIME OUT
I! IRS ALthWERS ARE INDICATED FOR ANY OF THE ABOVE QUESTIONS, A JOB
REQUISITION SHOULD SE INITIATED
VI. CO Q(ENT3: .1.1. tb. _________ was initiated
ROUTE: Original to Operating Engr.
Copy to File 4—13—26(g)
ENVsxqaO3—glh
04/03/84 — di
Opacity Monitoring System
CORRECTIVE ACTION LOG
Hr..
8—21
-------
_ v’.’-
April 10. 1984
Greg Gilbertson:
REz EPA/MoDNR Pilot Project
Sioux Power Plant
3.1.8. 1—13.5.1
Please find enclosed revisions to pages 2 and 5
of the Periodic QA check, 3.I.B. 1—13.5.1.
it you have questions or need further revisions
please caU me.
Gary liuber
GLH/mtn
Enc.
CC: Jim Peeler
3—22
-------
J.L.8. L—L3—5.l Page 2 of 8
(3) Switch the monitor (duct) not being eva].uted out—of—service
at the Combiner and initiate a azanual. zero calibration.
Record th. zero calibration responses of the panel meter and
strip chart recorder. Record the lnalog system zero calibra—
tion response from the DP—30 printout (see sample DP—30 prin—
tomt sheet attached).
(4) Rotate the nalyzer switch to the position corresponding to
the monitor being evaluated. Rotate the Measurement switch
to the C( IP position and record the zero compensation value
LndicatsL by the panel. meter. Return the Analyzer switch to
the E .&ir 1 ’ position and the Measurement switch to the “100%
Opacity’ position.
(5) Initiat, a span calibration check and record the panel meter
and strip chart responses on the Log. Record the analog sys-
tem span response from the DP—30 printout.
(6) Record the miniaom 6—minute average opacity indicated by the
chart recorder and DP—30 printout for the hour preceding this
(7) Switch the ant-of-service monitor (duct) back to operate.
(8) Repeat steps 2 through 7 for the monitor (duct) which was
pteelouaLy taken O.O.S. Be sure to use a separate form.
(9) Return the combiner unit back to normal operation, that La...
* “( pu. ” light illuminated
* T*aaur nt switch Lu the 30 2 Opacity position
* aLyz.r switch in the “Exit” position.
(tO) Reissue the PA/PD c -nd to stop the DP—30 printout.
Le: Control La gained by pressing CTL and I keys
slaultemeously. The DP—30 system response and the operator
response sheu.td be as follows:
System Response Enter System Response Enter
DP-30 REQ
t(or2) 1(or2) Return
?IL(ar2) PA PA Return
?/L(or2) PD PD Return
l/t (or 2) Return
ENVsxqaO2—glh
B23 04/09/84 — ds
-------
J.I.B. 1—13—5.]. Page 5 of 8
B. Clean the projection lens and the zero mirror face with
the clean, dry, Lint free lens cloth by positioning the
mode switch from Operate” to “Zero”.
C. Rturn the mode switch back to “Operate” position. Be
sure the zero mirror returns to the rest (down) position.
Do n_ct change mode switch from ‘Operate” again until zero
mirror cam comes to rest.
0. If any moisture,. , .ll bead, are present on the inside of
the projection lens, the dessicant cartridge should be
changed.
E. Inspect the duct aoim f”g flange for any dust
accumulation. Rod out any duet with wire brush rods.
F. Close up the transceiver unit.
G. Check the AGC LED (Automatic Gain Control light emitting
diode) on the right hand side of the transceiver, and
record whether it is or or “OPT”.
If the AGC is not on, repairs to the monitoring system
must be completed before continuing.
3. Perform an alignment check by removing th. plastic cover
from the mode switch on the transceiver and turn the
switch to the “ALIC ’ position. Determine the optical
alignment status of the transceiver and retroreflector by
looking through the “bull’s eye” and observing whether
the Image is within the circular target (acceptable), or
outside the circttl r target (unacceptable). Indicate the
position of the light beam on the diagram, and check the
appropriate box for alignment status on the QA Log.
Return the transceiver to the “OPU” position.
* If the optical alignment is unacceptable, realign the
opacity monitoring system in accordance with the
manufacturer’s instructions. If a shift in the base-
line opacity occurs after realignment, note the mag-
nitude of the ch.nge which was observed in “Part V
Comuents”.
I. Repeat the above instructions for the other field monitor
starting at step number 2.
(4) In the Control Room:
A. At the combiner unit make a manual “zero” calibration
(1 minute) and a manual “span” calibration (1. minute).
B. Issue the “IS” command to stop the DP—30 printout.
ENV.xqaO2—glh
B—24 04/09/84 — ds
-------
6 32 63 - S 0.005 0.032
I W3G&(P S 6 33 d l .. _PL1tMt I
* HAUS*VUS 6 *6 oj o.ses 5.033
1 N0US$FUS 6 U 63 24 1.005 Q. I
1 Il*UFUS 6 ii 81 21 1.105 —.;-..
I NAUS4ISJS 6 9 63 4 _!! .:! t!!. t
1 NAUSArUS 6 S 6% 0 0.006 -0.005 • 1.3$
I NAUS’FUS 6 21 03 0 0.I0S , . .1.”
6 2 ? 83 - — 0.004 —0.014 6 - 2q64
I BIMROQ 6 23 0) 1 0.OOA —O.4Q __ • 0.5$
I 000000 6 25 d l I -0.ooc-i .ii -
* GAK I(R 4 2
I GIONCO 6 27 03 1 -0.03? 0.S0S
I COUSEY 6 70 Dl
I 900009 24 63 0 0.00 •.osa
* 660 1 1(0 6 29 01 6 —o. oos —0.003
I 660W0 14 03 0. $v40j 0.004 4 11 6
I VOU.MER 7 I 0* 0 0.OO1S.0S? _l I
* CAUSEY 7 2 63 - 0-0.604 —0.002 0
I COUSEi 7 3 b3 $ I
0 0.000 6.o.o • 0.36
a. i—a...u.i —o.oso •
I L II I £0 03 U 0.UU5 U•UUU
I ELAN 7 21 DI S—Al —0v466 —0.006
- -- - - .. .._.I t3 I4 M9 1 ... .. *4010 8t0I 104y, QC108E LI . lOst__I
0P*CJVY CONTINUOUS EMISSiON ..ai.ii0i so SVSTEi.s
El Eefl&Ie ro
I 11166195 6 *4 01
I 11*661 .15 6 15 63
010110 POWEM PL4IOU
I aI—e4 IINØi3flW3I DAILY LO6 04 ,6
NT is Do VO $01L0O A_CO4P I*COMP CI1I_1N0 DAS ZE0O C$1_%PAN OASSPAN sA rNC1N 7LAOS J1190 $16 5 11 C000& (Tt JO7 TIN (
0.,5 —0.005 1.114,61
24 0.065 0.00*
S 0 .24 64 70.73 .. U.
0 1 .Z0.41. .. N
7.9 .1 4$ 69 71.11 N SI.
- 99
G.4I 69 1 5.1) t i I 532
1.51 69 70.65 i I Ski
f ??/ i c
- ç ’s shutter
4; 4ek,c,s c.
w a
b$ L r J 4nf .
F F tier ‘
/A 1 bi :4raIIAn9k1
t I flW.t’
51$ 1$
S b ______
506 6
9
SI. a
Sic 6
69 10.61 1 0 I I I
!0eO4.A ..- ss
69 70.46 09 513
7I 14 * . t t .. ...
65 13.45 i S..
6 3 165 n.s
I
a
0
0
0
0
• • 34
0.77
51, 56
•2 1
015 5
I_________
514 3
- ____
io .L’ I% O t S
64 70.11 N
6 5 • .14, .fl .. N
6 73.01 .5
. 1li 11.. -._ ft. —
64 70.49 11
69 1• .p3 _.IL.
10.91 11
70.60 N
-.
10.03 N
10.95 11
504 117 3
S..
s.3 5. I
• 554 S0 2
ci. ci i
- 64 511 010 3
_________________ - - _ .514_. 5fl_. 3_._.___
66 560 509 9
_____________
I CAt y 7401 60 5 5 5 5o 6
CAUSEy 1561 - - 6$ SOS Sti 7
— COUSLY 1 6 6% •... —iu*j -0.105 I O.11 60 7 1.95 N 500 $10 35
COUSfV 1 1 03 •..sI L !i -0.005 5 5,? ? 6$ 10.92 5 I 506 ____
1 OwIOGES 7 0 I I 41 * 444 -Eli i -. 1.14 67 N - $
911106(5 1 9 8! I#1 —0.004 . a i, 9 . 61 iWO . . . .SIi ._. 4-
— AMIDGES 7 10i3 6 - . 4 —Eiii S •.1* 61 - )i. * 520 52c
510)05 (5 7 *3 63 o —o.osq —0.002 0 0.16 1$ 7 5.01 N 570 52i I
09306 (5 7 32 M I S I 0.32 6* 14.70 N S 4 $1 4
0.1)05(5 1 II WI 9f . Hj . .454... .__ 0,15 48 ..!P 9_ . I’ . 519.. 5*5 - .
I P011 (7* 7 34 D ’ $e 11j 0.000 0 5.32 60 10.50 .1 507 SRi 3
P0 . 5 (10 1 IS 61 * -0.0U 5.55 .4-. __.1±.I . . .35,f .3 N ... ... 500 S O s __
P0I VA 7 14 M1 4 —l.D0 —s.ooI 0 I. IY 60 )•.oi 500 5*0 I I
CSJLV I M 1 I I ol I 4 44o S.l4S I 6 .JI 6 1* - 7j , _____________ 7LSis 0
— SMItH 7 39 81 - . - - -. .—- - —-- —-
1 SMII I’I 7 II 61
— — -
I 0.000 1.001 0 —0,03
_____ _________ _o .Q00 0.000 ___9
. .... I ei ol I 0.002 ..air 0 —0.04
I S’sUs 1 22 o3 S —0.00 9I2 __ . _._D.0O
I SMITH 7 23 03 U ii0A •.0il S —,..
1 isAusarus 7 s oi . —..aoc I.e.. • -
. 4
63
63
66
66
60
I0.13
10.30
la 39
10.11
. 0.004 —0.005 -) 007
* ELAN 7 35 03 I 0.000 —0.005 0 — -
I ELAO 7 II 83 24 Ti.iôi iIi 0 5.07 -
I B0000o I I 63 24 —0.0I —0.007 0 0 12
I S
V
V
V
6
031
1I I92L .575.
2 169;S 540
, 734!
2 169i 1 660
410
0.01 61 7i55 N
• 0.09 4__.9,9 ._ ..__#i...___ -—
60 10.11 9
67 11.43 9
6$
60
0_Is S
. 5 _ I a -
545 5
4 -Is __ _S. ____
63 S
512 2
15.40
10.50
I
I
000000
80000$
S
I
3
si
81
24
74
-0.006
—0.003
-0.006
-0.901
•
0
0.49
i.L1_ ._
•
60
70.49
70.49
N ZI14 3 5.5
N__. 504
50
5 p
3
3
1
I0R 0N
•
4
03
•
0.000
—0.005
0
0.03
6$
70.4 .
N
559
SI
3
OIl 016
512 S I
II
N
506 5)
530 SIc
S
I
S
S
SOS
$07
2
305
50a
6
-------
70.3*
70.1’
78.36
I
1 5.31
in -
V 11JA 21 1414 557
- N -. S04 .
N 506
- - -
N
saa
us
- 50!.
505
S., 2
509 3
53* -
3
ue - _ 3_
So 3
-
_____ - 9 4S L 81N N5 P&LQI UJEC1
OPACITY CONTINImUS ENISSION wO.4170Nl.46 SvSf(i s
__________________________________________ UNIO .i EI q1C __ ... .
SIOU* POWER Pi.AN T
*9*3—84 PM4 1#0P30 06kv LOG 0*14
jii7i NIME •)Ay YR *J$L )OS a_COb 0_COUP CNI_ZERO 045 ZERO tNT_SPAN 0*5_SPAN NAI FNC1N FLAGS JRNO $1007 COMPUTE T0T T1N
14$ 18 wEoN soav.oc1oIEo *1.-TIM-. 7
I 130080(1 8
1 P0NE!A__i -
I HAUSAfIJS 8
- AUSAFUS 8
— RAUSCHER 8
VOLLMER 8
81 I Q . —0.005
i._!_ .__Q ..PQh tLQ0 _.8
7 8% 0 .1.0,0 0.S05
8 0 1 ftj.— 9II
9 ul I 5.0 55 S.OaS
*0 4% 6 IOl 0 .085
0
A
5
•
—0. 8?
0.0O. ...
0.81
0.53
• 11
61
U_.
68
of
67
70.42
70.31
75.45
1 1.43
7_ A8.1S
808890 8 11 81 S 0.007 —8.054 0 —0.13 60
HORROR A 12 dl 0 OOft—Q,ftU —- ft
— ö Woa 13 d l 0 0.001 —0.085 a —0.05 60
HORROR H * dl —— S — 4I.QUt.0.0 16 • —..0 - -
— TT 1 1 - - 0.00* —0.005 0 —0.0* 68
HoRROR 0 1 b! 0 0.00) —onnc •
V
Sb 5I S
_s1S______ SI o ._
-.
N
‘I
N
‘a
5*7
4
— RAUSCHER I I? 8- i I n.oo 4:o - :i-—— - N 511 i i ; .5
I RAUSCHER 9_ - Ol - N . .. . -—
* RMJSCHER A $9 81 0 0.001 —0.005 5 0 .00 67 71.21 N 5 )5 SI;
* RAUSCHER H 20 81 0 ,ft) 4f 1 1t2 2 K .__ _____51L___52 s S
*IISCHER 21 8) 0 0.003 —0.055 0 1. 17 67 75.7) N 5*5 SIs S
W RAUSCHEK 8 i ) I 0.00 —0.pp4 a 1. 17 68 71.14 N 521 52c
WEGOINS I 2Tb3 S 5.è0 5 —8.005 S —1.1$ 68 7s. )5 N $5 5) 4
WIGGINS 8 2481 S 0.0040.055 5 .. 9 )L .._tS V JII__
1G6$NS H 25 d l S 0.006 —0.025 —- 0 0.23 68 70.44 N 5* 5 5$i 5
• WIGGINS N 26 l 0 6l_ . 7f 3I P 1 112. 2
— JG6IwS I fl i i0.073 b.012 A S. )? 67 70.48 N 5*0 SI 3
aRIUGES 8 28 6) 0 0.007 —0.002 0 5.12 68 7 1 S OS 1I
— 08100(5 0 2981 0 5.000 —0.0 12 4 5.1$ 60 S.3T N 5*3 3
8.1 100(5 0 a — e.oi -b 2 a1j • ft.5L_ R . 10,4ft P s - ? 9?96_ Sfti_._
— ORIDGES o 3* t i 0 0.007 —0.OoI A 0 , 1 5 68 70.32 N 2507 ,6 5)5
OCHOA 9 I d l 0 0.000—8.0*? - - 70 ,3 1 N -
VAYLES 9 - i1S —0.0i j.iU * 0.14 60 10.15 N 5 )4
VAYLES 9 3 81 24 —0.00 —0.004 0 0.25 67 fS.32 554
VAYLES 9 4 81 24 —0.00* 0 0 5 ) 7 68 75.25 N —— 556 5 ) - 4
— VATLES - 9 5830 G.0000.0$2 .,.. - - 0 12 - 70.24 N 515 5*8
VAYLES 0 A 8.3 0 0.090 —0.505 5 0.00 U 69.85 N 5*2 5*6 4
I VAYLES 9 1 dl I 0 OW0—0.0Sj - 0 0,ftft . - - 76 ,1 4 - - (4 .SIL Sb - a
9 0 d l - 5 0.006 0.8A3 0 —0.02 61 70.34 N 5*0 SI - - 7
I 9 d l 0 0.000 0.000 4 —0.06 61 70.2 __j. . jA 24Il I 509 si
* 9 10 81 0 0.007 —0.003 0 0.00 67 70.25 H 551 5) S
* 9 o 0.009 —0 . 0n* ft ,9f_.. 67 J0.U -
9 i 2 bj I o.ó oo —0.002 13 a. 59 67 70.23 N 5 )7 S2 S
I - 9 1383 0 O.00 -0.O7 J 9.12___6?_1Q.1 __N J4 ) - S 4
1 CAUSEY 9 *4 83 - S s.ii E104 S - 5. ) ? 66 75.2) N 505 SI s 5
I CAUSEY 9 *5 83 II 0,006 —0.004 0 0.12 67 75.70 N S OS S o s
— l CAUS Y 9 *6 53 I 0.506 —5.052 0 1.04 67 70.15 N 505 5II $
* CAUSEY 9 *7 83 1 0.006 —0,004 5 N ___ St _ .iQ* I
l o,iua 9 II 83 24 s.o.s 0.0 51 5 0,23 68 70.21 N 500 SI 5
I VANJ$OO$ 9 20 8) • • .0 t 7j9 .i. . ..... .1.14 67 — I t t_. . ._3fI__ . . . .5I7
I VANjsOOS 9 2F11 iTi.0i. —I.S3Ô S 0 ) 1 67 75.10 N 505 50 $
I VAN_ ’ OOS 9 U 8 0.006 —0.005 0 5.21 67 7 5.2 N. 85 5 50* a
t VaNj*oo 9 23 83 S 0.886 —0.084 I 5.1$ 67 10.2) N SOS S0 I
I VAN$OOS 9 24 83 5 5.004 —0,003 I 0.13 67 7a. L_ .. o 508 51. a
ooø* 0 rij • 0.0,4 I 0.10 : 47 70.13 I d 512 5) a
SI’
509 ____________
SI, 4
S’s
S Ifi 4
5 1* 8
-------
• I *4.E A, fl .P1L9I
UPA $y CO’flINIJflUS M1S$l0Iis HONIIO*1N6 SY51E .s
______________________________—- .•-- UlM.ftLlLKt . . Q_. --___________
SIOU* POWER PLANT
I 1- 4 044*/OPI$ DAILY 1.06 DAJA
i [ Ia.t MIPI 0* ! YR dJIL j’0S A_CU .,P OCONP C .$I_Z(HO 0*5 -2 (00 CHI_SPAN 04$_SPAN MA$ FNCIN LA6S J0’Nfl START C0IN iTt 10$TIN(
— 0 0 10* 9 26 Ni 0 0.116 0.0 )2 0 l 7 67 1s.$3 N 503 5 5* 3
OCHOA 0 Q3 OaP0I. , fl 0.fl . -- l0.29._ . ZL16 I 321 523
0 0 1 0* 03 0 1.006 —0.00* 6 A a.&a 66 70.09 I II sli a
OC*)A 929 03 I 3.646 -I,a4 ) I . 44 _i., .Lt....t_ 309 51 ) 2
SNIbt II 1 81 0 0.006 -0.013 4 0 .69 6* 7 1.12 N 6)5 OZa 5
si.IIs o 2 oi I 0,046 -I,00j . jL _ he. __ . _ ?I.II N *00 600
— SMItH 0 3 si S 0.006 —a.00 [ I 0. 14 67 70.19 N 540 545 5
SMIEs _ 1l 4 di I S.0UA j .,199 _ 4 g 4.12 06 ...iI I)•__N — 5S . 62O
— SOIIN 0 6 bi 0 0.006 -0.013 a •as 66 10.0. N 1I7Ii 7 600 6)3 5
SMIT’s J oi 0 l,064:G,q L .9t .4.Sa * .70.94 ______ 551 I0& .___
EL6 1S7 N) 0 I.0U —0.60* I . 0.0) 66 10.56 N SOS 507 7
( LAM *0 0 di 0 I.0I ?..00 5 S t •.S1 __ . _ 64 .13.$ N 305 51* 0
RAUSCWER 0 9 ui 0 0.006 -ô... l 0 0.03 66 , ta .’n.. . 5•5 Sb S
R*USCHER JO IQ 1__t_. h•1 9I5._.!.iL 0.0$ - . 66 ._ .ll ft __ . _ . .s 310 SJ g S
V0LL IF0 *0 I I si • 0.006 —0.002 $ 1. 1$ 64 71.15 N 5*0 S* 5
WIGGPsS I I I? W3 I 43_ _ 1LJ6 N 5 )4 Sl 3
I WIGGh S I I *3 5*3 0 0.005 —0.005 63 (N Oh 63 71. 14 N 5*0 Sli
-.1 N IGGINS . I I 14 5*1 0 0,005 —0.005 63 0.07 63 11.11 N - 320 526
S.ISA — 5. &4 61 l i.Ia - -
—0,005_—0.00*43 LL...s.Iz.. ________________ ___________
0.005— ...a 64J 0.09
_________ ______ 0.000 — — . - ______ ____ _______________
* .. ___ t :::
— .sau Apus I I fl 51 I—ON 0.SU a 6.20 60 71.14 N 5* 5 5*7 1
* NAUSAFUS II 22 03 O o ,.1:±!!L. °.!“ ‘ .. I 39 204!.. . _____ __lL I1z________________
—* NAUSAFUS *623 83 0.o.oI—4.46j . .S. 0 0.01 69 70. S N 5*5 5*5 3
I WI050R *026 03 fl -, —l.4I4 0.00Z 4_ ..__ .I ,I 4$. . 7S,j . •_N . . .._. __SIL . ._i1s
j OUMNOR I I 25 03 0 —0.01* —0.00? 0 —l. 1 60 70.03 N 507 Sb 3
I 00000is *0 26 di 0 -0,0*? —6.0*4 0 •.0I __ 39 7I.01 N 504 50 *
I 505*509 I I 27 03 P-. -. —#.SI.* —1.013 0 0.01 69 10.I N 565 ko 4
I 00R HI I ’ S 20 d l fl -a.o1l .oo3 $ -. •••3 30. - ! 4 IL — ._ Ut_ _i0t -. ______
— I II 29 — 0.0*1 —5.004 0 5.04 08 70.57 N 500 Sb 0
I 0 *0 ui 0 0.5*3 •ei . . 9 •.I !4 t!._ .‘i _._ _____
-il——_ 161 1 1.014 S 0.07 65 70.00 N 554 SO s 4
* I I I hI 0 0.0*) 0.0*4 0 . 0.07 60 69,97 IR 2381L6 61) 61c 6
I VOLI.MFR II 2 8) IDhaJ—0lô -I 1.011 0 6.04 60 1 0 .0* N 5*0
I S411H I I 1 di o0 0. - - - . 2 1 ,4 5 __. kI.9 ______
USRITis ii 1 01 0 iJTi—I..i3 I 1.14 69 71.01 N 655
I SHUN. II 7 03 U — 1 . 01 L 0 .° 2 1,04 4L.._J1, .9S_ N_ .__ ._ __ ___________
I 5$IIH I I S N1 I I61 —$.OS 4 $.0 49 71.0* N 605 61. 5
I SNIRN * 4 03 0 —0.01? 0.003 6 2.33 39 71.13 H 605 31* S
•* SMIPSI I I I II I 1.Ifl S.0U 30O 1.01 64 11.16 N 6,5 ‘Is 5
I PU* Ta $ 9 03 0 . —l-.0Ol 5.000 0 • 04 47 Jlea .L . .. ._ . . N SOS SLL __ .&
i PONCTA 1$ I I 03 0 —0.0*1 —0.004 0 $.S5 *9 71.13 N 311 SIa * 0
I PONUA I I IS d l • O4l4 0 SI2 0 ___ .l,i ! __ ...4t... _ !1.04 N SOS Sag p
j PONCTA ii IT 83 $-e.os-S.S*$ —0.004 I 0.9 1 69 71.0, N 505 510 s
I ORIOGFS U *3 Ni •—•. s 04 I ) I .00 69 .71.09 N 305 SOp 3
—i 0NIUG 5 II )4 $3 I ’ S.* 4.001 5 .00 49 71.01 N 503 S0 3
1 WIGGINS U 15 13 0.a•D4, 90 ) —5.06* -60— 0.91 69 10.91 N 510 52*
I CAt5CY II $6 53 S —..oI’9.S I$ —0.044 4 0.94 49 7$. a1 N 505 507 3
IS
03
Ni
I
I
_.._..__ I.
WIGGINS *0 _________
WIGGINS *0 *7 5*3 0
NALISSFUS II L II 63 S •. ___ _
IISaaC.r..C —- - --— — .-— -
HAUS&7US
‘U
*0
IS
2*
51
Is ’
• —0.003
0 0.00s —s. 6 64
Si
43-..
6 5
‘9
‘I ..,
71.50
fl as
N
N
U
‘9
10
72,53 V
‘ a
ST. Sli 2
510 Sla 1
520 521 3
_110 Its.. 5
14?3oZ 509 5* lC0trcC 4I C
307 56
•_ .. --- F rt SSjj F dr v
-------
L )9LP4LNQIM*LPLLQI PHU*C1. III.WEONOIOCTONEO.1I. 11I8
OPACITY CONTINUOUS EMISSION NONITO$ 1N6 SYST&NS
_____- LmtOo ELECTRL... _
SIOUs POWEl PLANT
$9$$-84 NI44 l OP3I DAILY LOG D I I I
• 067 60 71.13 4 V 505 SIs 5
a 66 76.96 v 905 Sna I
.‘-u— . -.- .. II I O l 0 -0.007 —0.003 0
RAuSC . EM IL I” )!! ‘ Ot QI,q9?_ 1.
N.JWOS U i’ &it fl-l*$—S.-UI 0.Oa. n
sNI 14 I ?‘l $11 ..:Q 1 L I. 003 -.
SNETW I? 1 - ..h —.;.i i
cMIIN 2? In U -0.00$ —0.0.1 a
an. I .’
51 1tH
VOLL MFR
ELAN
(LAM
ELAN
uNir NAME 411 flAY vi i ‘$itL_ )OS 4_COMP 0_COMP CMT 1E*40 flaS.7(RO CPu_SPAN DAS_SPAN NAp FNCTN FLAGS J 1No START COMPLETE TOTNYIMI
I.. ) - —
0.94
_____ -
I.. ’
i_Op
?1 bi
24 in
—- s in
24 d l
71 bi
in
0 U 00a —0019
- -
ii u.aoc o.oos
0 .0IS
2d._..a -*i-b9l —0.041
24 -a.as—.003 —0.661
- S Los i TL.04
-- hft 4 5
• I.. . • 7 1.IS
1_.. _.h59 - - ft Ha lL
• 1.06 69 71.05
O 197 76
69 7I.i ’ N 510 520 0
- _H.a? - Ils _______
69 71.10 N 510 SIs S
4* _fl,44 _._. _5)5_i1s_ __S________
Al 71.17 N 519 52 S •
6* 71.09 -- 505 51 s I 4It .
N
if-.----
N
.11 --
N
S OS Sb S
_____ _ _5OL_.S$o - ______
511 515 5
_____ — 5I5_ .S IS_ 7 -_____
455 S6 . 4S
_______ - - - -- . ..-—— 459 So .
1 ELAN is in in 4.hiI—....AA1 — i.II • 1.02 70 71.05 N S OS SO S
I ELAM _ I? in j. .Q• 4 JO 11J01.._ N -- Slt _JOs__ _ 5 _______
VAN_IGOS 12 P ii) 2M -0.011 —0.0 12 0 0.05 49 71.54 N SOS S0 5
VAN _ WIOS 17 3 01 - 24 QIL ! IJ$ S •.9L _6 !LIl - - - 505 - - S
VAN_MOOS 12 in 24 —...r , —1.051 $ 1.9$ 69 71.02 N — — SOS - - So; - S
VA f _ MOOS I? d l 24O. S. -GOJ 0.0lI I 0.84 69 70.95 H _ . _ . 510 SOc
VAN _ MOOS I? 01 24 —i.IIj —1.111 0 0.55 69 70.9$ N su So s
V4N_I4OO I? I in 74 5.015__0.005 00 ,45 - ft N - - - _ JtL S OS S
— oc o* ash I.0i a 0$5 6$ 75.04 N -- 500 50 3
OCHOA I? 9 in S!!i ) !! t __O..N!__ ft. iL , _ N __ ifl ._SI? __________
— 00 10* 1iW ói ?40.Si i 0.0i4 $ 0,04 65 75.04 - N - - - sso S I) 3
HAUSAPUS 12 II dl 24 -j. -- - .0I -$ —0.00$ I 9.02 e 7 ,9O N 504 Sit
— VULLHFN i I? in 24..., 6i. 1.001 5 o.k 69 71.03 SOS • .
BO61Oa iz I I dl ? :p iL! 0’L .L___.._i,H !_ 7 ItIl . .. ____5e1_SPL_ 4
I 00000o - 4 -..oli —i.iii I 0.5? 69 ti..i 504 509
I 000ROk 12 IS in 74. -a.Ol 0 - - 4 - -- _5•5_.. SOL__ 4________
I 1PE ái P4 - -0.01? —1.1 11 0 0.55 69 75.04 916 509 — 3
I NOPRUR 12 *7 eu P -1.014 —1.015 0 1.00 69 11.27 506 Sb 4
I WJWMOO 12 1* Ii 24 —0.011 —1.014 0 I I I 69 7 1.15 N 505 50$ 3
I 0010* 12 $9 *1 P4 i OI4 0.0 14 -- - , 2. 4fi_.. 7I,2 ‘p _21__1Z4 - - 4
O - óI ? - -i.øt —1.015 2 0.94 • 71.20 N 243643 SOS S0 I
- 00106 I? ?i dl 2 . -a.OIl—0.013 h$ 9 b4 !hiU 5It_ Sl _ 2 ____
— OCHUA 1T 01 4 —o.ok $ 0.94 • 11.19 N 502 S0 —— ____
OCMUA 17 2) in 24 0.004 0.OOS 0 0.94 ._ 7 11.25 P4 55 , S2a 3
WIGGINS. I? 74 d l 24 -0.055 —I.0$S • 095 6$ 75.26 N SO7 Sb 3
WISUI’iS 12 ES in 0IS —d .OiS 9 ! 7I Z N __S5Q_ JSa - I ____
11 I SF2 24 -o.oI; —1.015 0 0.90 65 1i.iJ N 555 SO s -— 3 C
--1 — H4 ------t %---1- -- --—: --—-2I--— -n I1—-- --a-—---- ---—-- - - --F
I MIG6I’4S 12 29 03 24 —0.004 —1.005 0 0.05 60 7 1.16 N 506 Sla 4
I NAON*FIJS $2 ii d i 74 —1.114 —1.014 I 1.15 64 7 1. 19 1 y $ 1’ SO, 5I
I HAUSAFLIS 12 ! i ----14 4l _!_ _hh___44 i _L_ 4i i11LP_1I2 _______
N
Pp
N
N
N
I
I
r- ii
POIt TA
I
I
2
04
04
74
24
0.Vt$ .0.0
—5.011 —0.011
I VILLN N i 04 €4’?V-.VUl I lI3
I VOYLES 5 4 04 24 ’ 11 - -ift °itt
I VUTLES I S 04 24
I VOVLES I 6 04 24 _!,OI1 h4W
0
0
l.14
0.70
6 0
67
I 0.6$
o 0_6 1
7$.ØI
71.19
S
S
V
V
60 71.05 7 V
60 7 1.54
so.
500
Sb
Si.
is
II
510 SIs $
SOS SI. 4
T U YA$kfOOL 1 7 14 24 •I.U —0.111
- U 70.90 .5 V
50$ 5,5
-------
____i S P Q CI -.- W SD&Y.1O RI0.j 5$ S
oParflv CONIRMJALIS 1’ I;SIUN SUNI10R $6 SvSrE
$ffl(Jj POd(R PlaNt
3—84 0N4 1/flP3s DAILy LOG DAtA
itul N i& i i jLu *_oi *ji. Cefi 7( ,lO DAS U4O N1 SPAN DAS_SP,AN s [ jNCtN PLA6SWNn SiACONPLflITOT81IN
a . ?4 —0.012 —0.00* a s.ss a 7• l soa 5*. 4
____ 14 ‘ 91t .!hUI_ .l _ j.4* 47__. 1i,01. 7 - 9414.ib50} 3IS __.L_______
*044 24 —0.0*3 -0.0s5 I 0.4* as 7$. ol y A 500 53 a 30
I I 84 2’ -O.0 -S.Sl3 • 514 I1s -J — ____
ia $4 2 *.lEj -1.009 I as )s.. — N 506 Sb
I 13 84 ‘1 a.0I& a..le 0.12 40 70.70 0 c i i ci
— VOYLES I ii. 84 •.Il • *ij o.j 9 a j iau—-—— -——
OYLES I *5 .4 L1.! .4!r ! . S.1 7 ._J0 Th 0 5I . i1o S
r— c4usEi Via 84 i—aöI—pft —S.o•1 I l. 4 60 70.90 - - — 505 5S $
CAUSEy I *7 44 —0.005 0 I.4 as 7$ 94 596 59i 3
rflDS2i i $84 fli4J11 0 so* 1 o t*.iY - s.Ts 00
CAUSEy I 19 84 I..4—..Odj —0.002 0 0 6 64 73.1$ S 53 Oh 2
— CAU FY I 2004 24 S.IS9 i.l07 S i 346j 7 .l’U N — 506 507 I
- - P9N(1a I 2* 84 24 —0 i !, 2. ÔS 1bI ti 4 159 i1 I. . . . .t.I
• 1 L.k4R I 22 84 24 5.513 0.0*3 a 0.64 60 7 1.00 N 320 S3 — 3
CAUSEY I 2384 24 —0.0*1 —0.40* 0 - - 0,4* 75 9I P4 591 •_iQa a
W 1 24 84 7 J.M 8j4o 5 I S.3$ as - 7.J$ — .
I VOLLbII -N I 75 86 S —S.00 —0.0.7 0 • 2) 67 70,94 501 Sic
l J I zi .4 • —0.0 51 —0.056 I 0.2$ 60 70.90 N 525 $
I OCisOA * 214k 0 4Ø9 -I.so7 9 1,45 47 ? [ ,59 - - SOL. 5QL 2
* ocso. j U —oOIW 1.sas S 033 67 70.94 N SIS 5*6 I —
I OCHOA I 2984 0 —0.007_-0.056 I 5,49 67 t$ , SI N 516 547
I OCP$)A 1 *0 04 0 6 SI7 •lii1 i 1 . 7 10.91 - N 5I%iz. s
I OCNOA ) y 84, 0 —0.05* —0.005 0 0.35 6 77 9,90 N 503
I UCb*I4 2 1 P4 5 1.III. 0.00$ 4 0.25 67 70.01 N 5 16 So
* SHUN 2 2 84 0 —0.007 -0.0 55 0 0,36 4 7$ 92 N 5*0 1s
I 5411W 7 T U Oe u ii5 i e.ir aa 4s.ó5 61*
SMIIH 2 4 84 5 —0.00* -0.006 0 0.36 60 7s.s 3 N 5II SI I
— 54JTH 75P4 -— jeo .;eaa -—— -. SI 3 2.
2 684 0 -$.ISl —0.009 5 5,36 60 71.06 N 310 S%ç
— WI68JP4 7 7 54 0 5. 1 10 —5.009 I 0.14 60 70.99 N 5.6 S
9CsOA 2 ‘I 84 4 0.012 0.014 4 6,34 67 79. I N 550 5 3 3
5 5.39 67 - ta.o - — 50
C4USEY 2 I I 84 II 0. OOIl -0.004 A 0.37 49 74,09 - 590 S9
2 12 84 I - —a;1 17 -6.oö?. i .Zo - 67 ?I.$4 N — SOS SD - ____
‘$& 0llOR 2 Ii 8’. 0 —0.0U7 -0.005 0 4P 6* ig,eo — 506 Sf 2
I *U5APIJ5 7 IS 54 27IS.Sl1 S.0 14
NAUSArUS 2 *4 114 0- -S.$0 -0.00* —-
— 7 70 54 5—Ill—S. , ,, U•5fl • .; . a N 519 sk
* HAUSAFUS 2 21 84 •-b..e-.I5l -0.0*3 0 •t 2 _ __74.91 N _____ SIL SLZ 2
I NAUSAFUS 2 22 54 I...g—l,.,i 0.0*20 i.4i as ?oi2 506 4
I I4ALISAFUS 2 23 $4 0- ..oa—ti -l$i —0.0*1 I _._•1 , ! L 70.9*
a 4
I 805NUR 2 24 54 S -—0.009 —I.5 I I 0j4 as 1o17 N IU1 1 s 3 3
* 400IIOR 2 25 114 0 -a. .-0-..G0-j - -0.0*2 • 0 ,3 6* 79,92 593 07 2
I VAil HOOS 7 2704 I • --.ê j — 5 .0i 4 0 0.33 67 11.00 N 515 52$ S
I QAUSCHER 1 I 54 0Iil.ô0 0.O 0 I_.!IIt - - 7 !t’ 5 510 52i to
I RAUSCH(R 3 2 84 IT 0.003 0.0*10 0,42 60 tS.9I N -
&II ACL4C
I ocsua
PON(Ia
ocH . a
4IJ V
VOYLES
7 14 54 17 5.009 1.005
HUP000 2 5 84 24 —0.009 -0.005
— 1*004Db 2 16 54 24 ó0-Oó
CALVIN 2 Il 84 24 0.0*1 0.01 1
a
a
a
S
S
S
U . 14
42
0.45
5,42
‘.Si
0 39
0JI iI.SV N
oa 70.09 N
64 70. 9 H
65 t5. 1 N
6$ loa7 N
504 556
_595 597
504 50
— - 9 I 693
S0 SI
507 SI.
2
- - - _______
2
1_____
J c q
Ill Sz o
-------
LCP4/’4°Q’IS £I 0I. f99 CL . —. ... 14ltS.Wt rS0bY. .QCIQNCR *0 . U 4_
OPAtIIY CONIJNUA*.S EMISSION NONITOo*$NG SYSIENS
.n_I P CO ___________________
.mI — -
UOJ0 POWCR PLANY
—- *903-84 P04 1fl)P30 OAILY LOG 0*7*
._____wflI NANt 147N 1)*YYN IDIL...OOS A_COUP 4C0NP C$T_l&140 flAc ZERO CIiISPAN OAS_ PAN N**JNCIN VLA6SJa..NO 51*47 CO LIE 107
1 RAUSCH(R 3 3 06 24 0.004 0.0*0 0 0.36 61 10.90 N 5)0 S? 0
I O8ERLOH; L_ ._±14 7... .0,!1Li .tS!.? 0 6! lI,9 ‘ 4 - .. 5$, 5*2 . ._.a_
I VOLL ..ER 3 5 84 0b.4l-S.$i-4 0.0I2 0 0. 10 61 70.01 N 510 5L 4
I 40*000 1 604 0 —0.099—00*2 1I 0 9 4 -. 5•’ 100_. . ..__i
I H0000R T 1N4 0. .Wt. &I I 0.10 61 10.9$ N S OS 507 2
1 40*00K 3 8 04 0 —0.099 —O.0I1_ 0 0.77 60 .J9 )
I BONWON 3 9 04 I-b -SI I_-isI —0.013 0 s.?9 A7 *I96 N 505 0
1 80*000 3 ID 04 0 p fl 1 5 ., I - -. 5I -- . 590
• CAIISCY I 1$ 04 0 —0.009 —0.012 I 0.24 91 10.92 N SOS 50*
I P0 14 (11 1 *2 P4 0àojO OiO.0I) ! . .. A? . !O, $ . ...N . . .119. S$
I PO( TA 313 04 6iI1 1.0SI * *. 6 61 70.04 N SOS S$a 0
I PONCTA 3 )404 ! 0. ’) . .9 _1LL *0
i .-u . ,A I I !4 ‘I —1.10$ —... i 5 5.20 1 70.06 N 500 iS
1 PON(T* 3 16 . _ O_:9eQ.9!_e00* S tI . -.._6b ... !9t ! N _._.._ IQ9._S 5I5 _. ._ . .$S ______
I VOYLES ___ _ Ø —0.075 —o,.iI I 5.10 67 10.03 1 4 5*0 SI S
w 1 VOILES 3 $0 A . 0 —0.001 5 .I •I ._. ! -, —. 61 _70,S .W_ . ____._5I __ 2a_ ._ S
S 1 VOTLES 3 *9*4 ‘1-4.8.lt-,.a1I I 5.17 60 70.04 N SOS 50* I
1 VOILES 3 20 84 0 —0.0)4 —0.sO$ S •.$4 *7 __ J $
0 1 VOTLE5 3 21 04 I —1.105 —0.00* 0 *. 14 67 70. N SI 0 3
Ii VOYLFS * 2? 84 j- .ag--e. -0Ii O 5$ .tl 7 _ 61_. . N .Si . _ 1I5 591.._ 2
O&RL 3 2304* 0. I3 8.0*4 I 5. ! ) 61 70.82 N -. s 04 - SSj 3 —
OBLRLOU4 3 24 84 0 —0.5095.0OI 0. iI?!. —- . ..._1I5 “a . 3
— VAN_ O5 I 5 o e;on9—a.ooI I o. $S 61 10.11 S 5l
VOYLES 3 ?I $4 •0.*—S.0I-l 0.A0I I 1.12 67 10,16 N 51$ 52*
— V -L 0 3 21 04 • .O.I 4 1.,00 S 0. 1 0 67 70.79 N SOS 5$ s
1 voLLi4(H 3 28 84 • . 0 . .otS .. 19.0’ N . $# . 5I.. S
1 CLAN 3 29 04 I —e.11.Si1 —1.05$ 0 a.I5 6i 70.03 N - 50. S RI 3
_____ 1 (LAN .1 30 04 o-a. —.$a-1 —0.00$ 0 1. 16 • 70.40 • N 510 S)3 ___________
$ ELAN 3 31 ! --——-o3.1t— - F Eoo$ -. - • • _S_S_ SSS S• I _ • - - is
____ 1 (LAN 4 I 04 0-,. J—b-.J**J —5.55* I 0. 1$ 6$ 10.0) N SOS Sb S
$ IAN 4 2 04 I. -I..1*i 4.009 0 ‘5. 17 60 75.0? N III 5s S
1 (L I I 4 3 *4 0.149 .004* —0.00* . . 0 .0 9 70 . I’ b ‘ 4 . 59! SRo ii
* VAN_$ O0S 4 i A s..Ii .jf—iO0N 5 5.21 91 10.42 N 5*0 5* 5
____ 1 VANHflOS 4 6 $4 . 0.0*2 —0.508 0 0.2?! -. 07 7o.1a N . 5$S 52p ____
I VAN_ .OS 7 -- o.St44j7 —0ó0 0 0.2* 67 70.04 ‘ 4 5$i Sis -. ____
____ $ VAN MOOS 4 4 04 I2b. I.0sI —0.000 0 0.24 61 * 82 _____ 505 Sb S
1 000IOU 4 l 4 0- —4r091 —0.006 0 0.7* *1 ti 7& N 509 SI) 2
____ I 000000 4 I ? 04 • _ 8p —u.ooo -. S -- #1 7 . 19 N 55S 597 I ____
I o.. iiF —O116 0 - 8.2% 6* 10.), 14 - 5Q4 506 7
____ & 00000* 4 *4 $$4 0.à 4 I.S0l —0.006 5 . D.L7 _ 1 ._ 70,14 . N . 1I 5 S0 . _______
1 o u c o 4 15 04 U 1013EU7 1 *.IS 60 70.10 - N - - . j 5
____ * PONCTA 4 *6 84 o-ój.—LI s-* —0.505 I g.$2 60 10.19 ‘4 500 5fl 7
* ELAO 4 Il 84 •_o.•, i -ISO 1.SIb 0 0. 16 60 70.75 N SOS 5*5 II
1 4 04 . #.0 •ySI * —0.006 iI! __’ 5LS.. .._ _____
* V .LN(H 4 19 $4 2 —i.Oi1 i$ia I —0.22 6 1 70.72 N 511 5*5 3 -- _____
1 RAUSCH(R 4 20 04 24 0.I$2 I.001 I . AI11_ . !i 6_ _ M_..____________ I D S2a. _ S
* N*U5O R 4 21 04 14 .. —s.sfl 1.t6 j •.1U 67 — 7117 - N 510 S25 $0
* RAUSCI*R 4 2? 84 6 —0.013 —0.008 0 60 10,1k N 5*0 52o a
* N*U3CI 4 4 23 04 I — 1.5 1* I.0I7 I •. 12 60 10.16 ‘ 4 510 3 !. is
I RAUSCI4(4 4 2484 0 0.0 30.0 10 0 0,J6 50 PS .14 5fl 53*
JNAUSDtW4 no .j —I.I02 I •.J2 Sà N Ill U.
-------
J 3 -B gPAiNo$. q PILOI POUJECI
-- - — A 11Y CO I*J 6 EiisSIos NI 0NI SYSTEMS
- 111109 E 1RIC CO —.
5 1mb PO Wij I
1903—84 0441/hell O&ILY LOG 0*1*
I”i. W 1 Q1YL1Q a iIL.13I4
p
11IT Mt 1 Wb)j OoS. C 3Mp s _C C’*1_i L.l nAS 2fROOsI SPAN Das_sPA NAI.FNCIN ILAGS
• lUSh ‘13
M 166 1!IS
4
‘ w IG 1 ç Fó
I WIGGINS 4 79 04
IVIGO 1NS 4 38 dZ
1 d1GGI iS b I 04
9
.iaus*rus S
—...us —V...4 •
PD 04 0 —.. ;1—a.ao5 ! ..
_i_ .;..*a-1..is • 1.1,
o . ItI T
:
• • ol5 • 0.1?
C U
4 04
0 U•UU3 —..ois
a
6?
A D
‘7
61
A?
6$
• I .I$
•
- --—
I...
0.11
HAUSIFUS 5 5 - 86 u -4.0114-0.005 I
VOYLfS 5 04 0 —0.006 -J.. o a
— 1VQTLTS 5 1 • * S
VOYLFS S $ 04. ‘ • 30-6 ..O64 0
— VUTLe5 5 9 44 I .o.IS i 6 S 0.14 61
VUTLES S I’l 0. I •#.OOZb-e.84S6 S 0 3a 67
PODWT._5 12oI —o O 4605 6ô.öá
$00030 5 13 ui 5 —0.002 —1.003 0 6$
i. 5ORRI 168r U511 -.1.. --- 60
I_ I oouaoq s is * a —0.003—0.005 a II ? 6$
1.1
61
‘p
61
67
‘7
1!,!!
,_p•i;_i_•-.__i--
D U 516 S2
S
70.14
. ‘ I
. -
-
2
10.1$
io’rr
N
-
i i
--
510 SIs I
.---—-—W--- i---——1--—-—-
506 Sb
10.72
i•. i
10.73
O.6 9
N
s
N
541 543
- O1 51$
iK 5 0
S OS S1
3
- .
3
j________
70.73
N
S15
51$ 52*
4
7 ItS U 0 V.VU 0.000
800000 5 Il u I —0.004 —0.005
I Au5 y -5—-1 a - -sui .;oo
I CAUSEy S I ” W i • —0.004 —0.004
— — —.——— -——— . rc
10.11
10.64
70.6*
N
N
N
N
N
511 513
501 SO s
• 1.1r 60
2
TI
• 0 113 67
--a---- SI% 6,
$ 1. 1 5 6*
510 515
605 607
2
706 --- ——W
. N
70.66 N
N
70.63 N
S
P
300 307
. 536S SO7 50$
I lI lUS0 S JO 54.
I OCHOO 5 31 D4
— I lWA 5 , —Si
OCHO* 6 3 04
8303$4 SOS
SOS
.
, ja o
. —a. ss — .•.,
I
CAUSET
5 71 44
• —0.001 —0.004
. —5.007 —0.101 0 •.i [ W 71.7j
I
4.Uaty
S 04
5*5
I
duSty
5 73 06
• —0.006 —0.006 0 0.24
10 113 Eli -
0 —0.003_—0.004 0 1.17
1 .—O1 04 —u.oasi- 01q
60
12
oP
61
10.70
1.;A7
10.63
70 9
N
N
N
501 SS
I
I
pu#o.rp
P00 (1*
5 14 04
S u..
- 500 S0 p
is
555 51* 1
S
INLUI
S t . 54
I
VA’4_HO0S
5 21 44
0 -0.003 —0.014 0 0.1%
67
Is.a1
N
I
V4.N_ PU3
5 04
— —-
-
515 515 5
*
VOLL tR
5 79 54
I
+
I
550
503
— 0 100 •007 0
0 —0.004 —0.005 S
r a-u —o;oes a
0 0.007 —0.003 0
• -...ts...i —0.001 a
0 0.013 0.000 0
I
S
SIiWO —- b h4 • • ..s V.111
800000 6 5 134 )
51011050 p i
000008 l 7 44 0 ‘.o 5i404
0.12
I.’.
- .
0 ,54
.3,
61
67
60
60
67
0 000
0.000
1U • 60
10 • 64
71.71
lb 33
1 1.4 5
0 04 I0.0I I,5$ ...u.
808808 6 9 04 0 las S.44 1 1.001
N
N
N
N
N
ii • VI U I
• . .
• .
• 0. 1$ 68
u s;ic -- - 60
O 5.79 U
510 315
SOS 51
5I
506 S1•
I
-—__________
S
4
355 537 3
N 511 Sli _______
1I. e W SoD 515
044 f’I 506 SOp a
Ii .sa in 1i5 5u7 —--——U
10.94 N * ff$4f0pw 506 501 2
--- : --- --- . a4a ::
— 50110 0 I I 14 0 •.al 0.304 0.00 5 1 0,10 61 10.0$ N $ III In 530 535
800000 6 II 04 S .0• 061-1 0.001 0 0.73 60 70.04 N_ CPI 503 SOi
— 4 NU8 6 17 54 548.01 *,8I 5.001 5 194 “7I.61 N 0 566 507 I
BOR008 6 13 04 24 . s I4j 0.51* 0 1,92 60 70.03 N 0 504 Ss
5w.wuw 6 54 04 Z40ThT4$U 0.001 • N LU4 Sig
I 8005500 6 IS 04 II 0.011 0.000 5 • 0i 6$ 70.81
b vavi_ .aiu e is 84 U OURs 1.112 5 133 61 7 .SI 0 6 Sop
I 6i%
I WIGGINS 6 17 04 S 0.011 0.005 5 ____________________________________________________
I 8166105 6 II 84 •S.•l I 4I- . p.a 5 . N 500 5)p
.03 N S OS 113 S
-------
• ‘ffil-n4 *.P0#MOANN P& O7 PRO4C . j JJj , 19a4 I
OPaclIvc4NIIIlunus 1 .IsstuN NONI1OIIIN6 SVSPt.á’ - -.__________
IRiIOq £L C7RIC £0 __________________________________________________
--- - ________________________________________
1 $3-84 PM4 l0P3fl DAjLY L0 0AI*
JN1T iV-i ‘SA ji IL.O 1 6_COsp NCO..P C$11 o naS i ai, Cisi s A 0AS_SP HALi N 0 JqNI TsiAaT .äiiPiiii vofbT Im
2 U(W’43R
- ,
W G*11 ICR
I WIO5JNS I , I) 64 0 u05$ U.S ?5 0 07 T 1 lo.9 1 507 3
I B IDGiS ‘ . 20 iii. 0 4.O0 0.004 0 0,34 60
2 CMJS [ Y W T I -o.ok O.li 1 11
10.94 N 500 Sli
2111 SOS 5077
2 CauSfy 6 II 01 a -0.003 0.005 0 0.61 60
e 6 15 oi 0 -ü.o0 0.OoS - a — 0.62 6a
wio s is tn a -o.oai 0.005 t4.. 0 67 o
e 4 —0.006 U. 103 . j) $
2 HWSAFIJS 6 *1 03 24 ’ -u.0O’I •.aa*S 7 a ,,q os
— i fl5 14 o3 2$ • 0 .8* i
fl.IJ N 500 504
7fU 11 1IIS1
li.ø1 N SOS s
7 . 56 N 2114.7 51 1 fti
71.01 N flL ,L 15 4
1 14a7 S ja 4
.
2 I4JS4F.IS 1. 19 3 2 —0.006 1 1. 104 P 0.05 60
z 1JS h70i3 * 1 .004 0.064 I 7• .
1 1.14 N 517 52 3
7F N -— 516 Si7 1
2 H&JS4FtJS 1. 2* 63 24 —0.006 0.004 • 0.04 6*
— —
64 -
64
71. 16 N 2S 527
it.ii Y 444 ,11 2II4 0 507 511
‘.k 4 _._. _ ____ IIflII ift °*
7 1. 11 N
69
60
70.96 N
i1.or — 505 s6j
70.91 N 500 SIn 0
6 2? WI 24 —0.005 1.005
6 23 b 1 —0.004 0.005
-‘ c i -. 2 i oO o:ens
1. 26 03 24 —0.005 0.005
40 14 - 10 05
1. 7* 83 25 0.004 0.005
nuw_u_ ‘I Ce
G*2’ (11 6 29
G0W W 0 30
C I
83
03
CC U.CU.
24 —0.004
2 T00Y -
VOLLM€N
P
I
63
0
p 0.0?
2 0.03
I
I 0?1*
0 0.79
C
W LT
C
CJ
2
C0JS Y
7
3
03
g .u y C 5 , • U.CUq U. S . , ,
2 CMIS v 7 5 83 • d.ê 0.006
C IW tT 1 0 03 • 0.100 •;o07
2 CAUSEy 7 7 dl • 0.000 0.0*1
- - -
—0.004 0.003
5 57
514
5 0
51*
a
4
U.005
1
179
64 71. 1 1 N
507
509
2
.
—0.005
O OQ5
0.006
0.006
0
_ .
0
0.02
70
0.02
69 70.00 N S S1 3
4_ • 7j $9 - so7 SI.
. j 5j!IS SI
60 70.03 N 500 Sb
r
.
iV
.
—0.1031.001
0
0.74
60 70.00 N
500
SOp
I
• U . S
• 0.79
o
0 0.0*
0 0 7I
I
5•
60
61*
‘ I ,
6*
l 5• 5 5
70.04 N _____
70.03 N
10.03 N
70Ø4
N
UU UR
500 5o
S
7
500 51$
P&-4ic tIA CIj
Oil SIA 3
C •1 5.1 •
2 BNI 6€S 7 ‘1 01 . - 10.83 -
7 IPI$II0t 1 15 51 • 0.0 53 0.003 I 0.1’ . *0 10.03 N 525 52A
2 INIDGES 7 I I o • —0.003 a. I 0.14 1.11 10.76 N 523 524
— TFS 7IP a - I’ 07i 69 lo.4o N •• _ 3
2 nilIOG€S 1 I I • —0.004 0.064 I 0 .7* 1.0 lo.*l N 515 519 4
- o;gas a - o;a. 10 71 - - - . -——--—. .
2 P0.EI& 7 IS ol 0 -0.045 —0.001 0 0.73 6* 10.67 N 500 50 0
C U ii r i , ., U —0,00 1 U.00S I 0.1* 61 is7i N 550 5*0 5
2 C0i.VI’ 7 *7 01 oq S AL •v-.1a61 0 0,7% 72 70.12 N 525 537 12 1
2 ij- T;a 03T ooo - o;soo- _ __7_ 7 ..-. W - _ .
2 SNIhI. 7 20 03 0 —0.00? 0.000 0.10 64 70.61 N 513 Sl S
7 uIsi U i si .I .QTS515 I.7U 64 71Th3 S a s
2 SME1 ’ 1 22 83 I 0.000 0.007 0.70 60 10.64 N 615 6 2i S
g a..ul .e V J 53 I p, 5I 5,005 0.66 II 0 ,55 N I I I 635 5
2 sAUSoFUS 72583 0 0.0040.000 u 60 • N 513 515 2
0 LL*W 7 2* 5 ) 5 Iii? IUT T E76 70T059N —-5$6 sI .
2 £14 14 1 77 83 0 0.000 0.001 I 0.79 70 70.61 N 507 5I 5
7 LL*0 Z9 . .. o00 l O79 72 70.54 N 509 SIj
2 ELAN 1 30 03 I 0.000 0.00* 5— .05 0.00 72 10.55 N 535 54p 5
C i .L*0 1 II 53 p 1. 1 15 5.035 3 5 ,74 60 70.54 N 507 51$
a -eoo oø 0 3 dl 0 0.002 0.00* 0 0.16 60 10.52 N 510 511 3
c . a toi i 2 J. 0 5. 1 1 ? 1? 1U P 0.71 50 70.53 N 5JFSI 4
-------
- ... S -- I9 4 ! € 94 PILOT PqO MC
— - oP6c$trCoNiT u5 EMISSI N . 4óNIIONING SYSTtMS
_________________________ _______ UN1!! jJLECTh1C CU
__________________- — s1 oP o toP 4r - -.
$4 $ 0 w mlrso t.Qç!Q ft . iIti.U4 0_
i9 o.i;a w.i7npi. b*ILY I061i41&
—win 91. i ,fma ft NW ACO ON T?öAi l OCIPAN uAs.5P*s MAçFNC,.s ñ A6sJ0N sT N iTDbTii*
I I I I I 0 0. 005 0.11$ • 1.77 61 7I. c N * SI? 4
2 $ 4 * 1 I 0.004 1.101 0 1a79 60 70.53 N i2 Ii I
o . a;oo roi’ a 1.ti ô .pe.;5 .j... - 5i4 —Iii 2
2 PGN(1A 0 603 I 0.004 0.001 0 I 7S 60 7 .4I N 504 509..
a071 - 60 - 7è-Sb
2 .4M15*FUS 0 0*1 • 0 *7* 72 10.45 N 535 53
I KMJ $ N ‘ ‘ •..à3.. 571 3. Th; T— ————— — 515 5 •
2 VULLM(R 4 10 d i U 0.OOq 0.0)4 0 0 00 7•.S0 . 1 5*0 S$ .ft,,aJ,c. 4A
-- •- 4
2 00800R 4 I? 8 0.00g. 0.00? • • 61 60 70.43 so, 5I
2 ROP” 9—.. 13 -. — 4; aot. .,1 7 •• . - 3o*5I
2 00000R $ *4 Di 0 0.005 0.004 I 0,14 4* 71.41 H 5)1 5)4
e I S i S P,5 l .3014 0 1.79 27i41 N 5 )1 Sb
2 808*409 0 16 01 0 0.004 0.005 0 i 70 72 70.40 50* 5I
USC 8 TTl1 I 0.0*3 Eó00 a -—1.11 6a 1.;36
2 RAUSCH(N I 1$ 0.3 S -0.004 0.005 I 0 .1k 60 10.3? ‘4 015 52 L ..
‘V 2 wMI CL.Ifl IS i i I •,1 70,i5
2 RAUSC,l€8 0 •* 5 —0.00) 0.005 I 0,73 60 70.3? 525 S3
£ M U C’RX S I I Si I P.DS? 0. 504 I 0.79 60 70.33 520 52
2 RAUSCHE.$ I 1203 * —0.003 0.005 * 0.74 6* 10.3* N 530 535. j
l 016G1N5 9- 23 I i o;aoss;sos s s;is 6* 2 - j4 6
2 WIGGINS 0 2401 S 0.006 0.001 0 0.7) 0* 71.21 N 510 SI 4
2 VJ001N 5 1511 i s;aoci;S7srS74 6a 7o27 ii
I WIGGINS 8 2603 24 O.01 0.00% I 0.41 70 72.49 N 5)? 5*6 4
2 •iuulrq3 S C I Ii €4 1.1 11 5.0 1 1 I 0.17 40 7I10 N — . 514 510 4
2 0*IDG S 0 ?I d l 24 0.004 0.0,9 0 0.73 60 70.25 N 5)0 515 4
p(III$iLS I 19 S i o.oow on - -i-_ 0.75 10 .19 t4531651o 5
2 40IDG S 8 30 d i 0 0.009 0.01) 0 0 7) 60 70.21 N 510 ° I
2 —_________ .-. 16 1 -. -6*— - 70.0$ SI952 4
2 (iCNO* 9 3 o:. 0 0.000 0.0)1 0 0.61 61 10.15 515 534
a VUTLt V ( 53 U 0. 5501. 144 0 5.01 *9 1 0 .11 Si. 52? 4
2 VOILES 9 • 0.004 D.oi a 0 ,73 6* 10.15 N 5)4 SL 4
2 V0T EScI3 0.007 •;sI ? -* -372 -au 7•24
2 VOYLES 9 5 03 I —0.0l%S- ... 4 I 0.1? 68 10.28 N 5*0 5J
2 VUTIXS - n;oss b -.1-- - 7 •$ 514 51
2 V.IYLfS 9 7 Ni a 0.0I 0.014 0 0.70 60 70.13 N SRI S? 3
£ *UW y s si a • .uo sill 5 •.13 bI1O15W 5$7 5 ?p
2 OIIFHLA$04 9 90.1 S 0.001 0.014 I 0.65 60 70.13 N 514 51* 4
l ERL q I, I 030fl •;ir —is6* 6* “7ó.$2
2 OOLMLpN4 9 I I d l a 0.0*3 0.5 )4 I 0.67 6* 7$ .%4 N Sn SI S
2 1 M.U’I ii r 1*0A lO0W è 0.70 6t 76 13 1ft 52
2 O0(RLO* 9 l3o) 0 0.0*3 0.007 0 0.64 47 70.12 H 546 SSa 4
2 su ty - £003 CU .., .4 ..uus U 0. 52 *0 II.13 N - 500 51 -
2 CAUSEY 9 IS 03 24 0.009 0.050 S 0.79 7* 70.14 N 510 OIl
e ouSty jo •3 24 1.5 15 lUl l I 0.40 70 7i1 Y H21 14p2 Si. l ii
2 ChiSEl 9 11*3 24 0.001 0.008 0 0.10 60 70.14 N 506 S Op
a P 1tI* 9 1551 . ‘- .;os4 ...9 - 50 1 Si.
2 WAs.soOS 9 19 *1 0 0.000 0.009 I 0,70 60 71.11 N 504 S$
£ V5NjIJU 1 lSJ I U.Pi 1.5 11 I IS) 07 71.13 H 500 5ft $ •
2 V*t4j400S 9 2% *3 0 0.017 0.090 0 0,13 61 70.09 N 500 SI . g j # q j I1c.
V IIJ U 5 9 * 3 U 0019 5.009 S 0.71 67 7ET9- N 500 509 3
,.
.
-------
______ 9 -o ip*rnoO. P; t 1 ! t & . _1t_
OPACIly CO ’l I*JOIIS VNISSIDNMONJIO$JNG SYSTINS -
______________________________________ UNIO’i £L C1M1C CO ____________ ________________________________
cr POW Wr i4T
*903-1*4 rlNe.1/0P30 DAILY LOG D MA
I!
*
=
9 23 83 0 0.019 0.0*9 S 5,70 61 15.i.
2 9AP4_ OOS 1 24 1*3 • 0.00* 0.009 S 0,71 61 75.86 N
T 0CH3* W T iF LOiE $ólt ö è.Pa e PIS T
2 OCNOA 926 01 0 0.1*12 0.011 • oO 18.81 N
T UCH0 T2T W W 0.01 0 s*2 4 1.70 370Q”N
I OCNO* 9 28 03 0 0.01* 0.0*2 S 0,67 67 1 5,07
2• u i T? f T E11T •.iio 1 167 i
2 5.4*1.4 5 I 83 1* 0.8*5 8.0*3 0 . 0,7? 65 15.03
T SiI1TW IF 2 01 U E81r ioi o -i*a;7i oe ti.ii
2 SNII* 5 3 3 • 0.001 0.015 0 S 0.74 60 69.99
ii-w-- w---or i o;oir—o.ois 0 a;67 68 70.00
2 S s11.4 *0 S 83 0 0.0(4 0.015 0 0.11 ____ 60 70.0* _____
2 MJIH iT T T Y ETLr 0111 F T1r U $5 . 5 w
2 £144 10 7 ol 0 0.014 0.015 a 0,79 • 10.03
T EEI* 1TWBT T Loll 00t5 0 O•1 ’ .
I RAUSCN€R 18 9 03 0 8.011 0.014 0 0.7* 70 10.01 N
r NAU CI iT I L 8T T t;465 -o;oer $ - o;u o Hio
P VOLLMLR *0 11 1*3 $ 0.012 8.815 0 ê 7 7 69.97 ______
r , rr1 -ri- u- u.u 0U5- 6 0)
P bIIG6INS 10 *3 81 0 0.015 0.015 61. 1 0.70 •“&5 70.aS
io 83 ii15 0.015 o4f O1 60 7O O5
2 4IGGINS *0 *5 83 fla $ S. .426$.j f4 1 0 79 -M 8 69.99
-z- dIb IN WIF 8T T •EI*15 El $b (1J4 . o;7i -M 61 76.02
2 4IGGINS *0 *7 ul 0 0.01.1 0.018 65 J 0 0 78 &$ 69.94
-r *uwir TFTF 3T Y ZL6 p. o,7o -r •io r
2 IAUSAFUS *0 *9 d l 0 •.4. a.4413 0 0 79 60 70.02 __ N
r usarus w20 ar- w .;a,zI • a’i3 0 E’7* —60 64:4*
2 IAUSAVUS 10 2* dl I •.4’z3 •• J$ 0 0.07 60 69.94 N
r .‘JS TL72 wr i se; l- •.O19o 0 519 - 68 £992 -. -
? IAUSAFIIS 10 23 d l S •.ol* 5 0 5.0 ? 40 10.01 N
T pqw M . Ir2LST T EUU VWTT F u .is 6F *9.9 1 W
2 flR0S)8 10 25 1*1 I 0.8*2 0.0*9 0 0,1 1 . 60 69.96 N
2 6UWR( jF 2 ST 0 OS1Z -6.Uel a -. 01S 6* -. 7o.36 .i
2 N00804* *0 27 83 $ 0.0*1 —0.003 II 0.1* 68 10.35 N
2 3 9OL 10 * os —w—O;oo —E043 6 S1 76.36
2 00* 4 1 14 *8 ) I 0 U.liI i — 0.0*2 0 0.02 68 70.4* N
C - I V JO 01 P 1.012 U.ll4 0 I ,1* 6UTI.36 N
2 O&I4LO*4O *0 31 8] 0 0.012 0.0*5 0 0,76 68 10.3] N
o owr ir—r a1 o—n;ow 0 Dl4 a 6$ Th 37
2 VOLL*W.R I I .s3 5 0.006 —0.00* 0 0 ,82 6$ 70.34 N
2smTHrr3g • .;sos o;oou a U $76L W
2 SNIIN I I 4 D l 5 0.0*6 0.000 0 0,10 6$ 10.36 N
c . ,p1n fl •3 U I ,Uli -0,051 I 1,09 65 75.45
2 5811$ I I *. 81 0 5.0*5 0.002 0 0.77 60 71,34 N
2 SMIPI 11 i • I t0OT00421 - 6II
2 5811$ I I 5 03 I 0.013 0.000 I 0 .06 60 70.36 N
I r ia ii — . Eooro;ooS - ;a — . i.;ir i-
2 00* 4 11* II *0 d l I D.OIS 0.00* 0 0.16 60 10.33 *4
,.w J* 11 JI 83 U 0 . 1 15 JI1 I 0 15 68 70,37 iU
3 P0*417* I I 12 83 2 0.015 0.0 11 0 091 65 10,41 N
e wiii s 1$ *3 I ) 24 ....rioo. u—i .r 68 70.36 $
N
N
N
N
N
H
N
N
N
N
N
N
TT lA 41W *Y f0 )1LJ*OSL c . .*p U Co .P
CNT Z1.1OOAS ZEROCH1_SPAN
-—- -.
OAS_SP . f rNc N FLAGS .$Nà SjAR1C0$PtSTE TOT$IINU
- - -. -rzF __ _ -_
N
N
- Y
N
$ - -__________________
SOS SOo
- i .e !! lI .
SI?. SRi I
SI, 5 1 L 6
. -
_______ 45$ 55p ______ _________
238673 515 -sir
____._i __ _ _._ _.__i_.___
*05 61* 5
34$ SSa S
_ -—.-_-4_ -_- --_— —-
613 _411 ______ S ________
ur us -r
3
555 5* . ii
_ * _ ?j. _L ._____
Sh 525 S
5)0 S2 ______ 4 _________
57i
5*3 Sl 3 _____
I. A I
2 rr v Ht IOh
5fl 31*
523 S2
515 52s
SIt 5l _____
511 Stq ____
— 4*7 Sti
____________ 5)1* 52i__________________
ffr 5r4
5*0 5*3
SI
509 51
SI? Sin
501* 5*1 _____
4io
515 52g. _____
*15 6?
610 615 ___________
Oil 6*5
0 )0 6 _________
all lii —
1. •IL
I 5 Sip
5
3
4
2
I . --—
— 3
3 QA c% c4
-------
19ft1-O4FP*INOO’4R P!L01 PNO4CI
NON 1a j 6 SvSU s
___—__
$4 1$$ . IS. $OM II
1903-114 M4$,0p3$ DAlI.! L041 0*14
1U14 •.VUJ U
u.0*4 0.003 I
a
5.0*2__S.$aS a
* .II? 1.1.5 0
u.0i __a.,.5 I
U
a
a
a
0
a
• • 79
I. *4
l a s
-. ; si
• • $2
U.U1 SI IU.jl
5 .9 5 61 1 .fl
- - io;n
60 10.20
69 1s ?S
65 70.2.)
500 503
S.. S0
SOS Soc
I.
S
U
11 1L 49 CMLh
.
Cor .t vc. ISl. ’
3
- _ .1 _____
3
S
u’nr ia’ — rv a 1.jios 4_cONPW toMPcn1JI.0o 0*Sq(RbCIjJ SpA.4uA$_sp5i4 l )4I5NCIN a6sja,.j sjAoyO.,P j jó 5,y$.
____________ Fa .Hs -
2 il1D S I I II 01 24 0.0S 1.5 1 1 I • 13 - 6$7 .1b N 517 SSq 1
2 IGGIN5 II IS 01 24 0.105 —0.00* 61 I,$o 67 Ip,14 5?S
2 I60fiiSI 5 IS b-T o:o i;ur---- S t. s - 67 10.34 - N - S2 52 S
2. cAusly I I U. wj 24 v.009 0.501 a I!94 6$ 7 1.3 1 N 501 51. 3
2 N 1mc1 .0ri 17 01 14 0.IOT0I628 0.9 - 7a;4. - N - -*o s j I .
2. QAUSCH(R II *0 01 2.4 0.005 0.003 I 0,9* 75 12.45 520 S?ç
C va _uu u II 19 01 24 0.114 1. 0 1 1 • 0 ,91 U-—-711.-ir ——” 515 52a
2 S411N I I 20 111 2.4 0.0* ) 0.00* I 60 ?I.Z N S sz _
2 SMUI — II 21 3 T SIIj aji3 2. I.0? -•- l - )i .3I - I i 5F i2s
SN 5hI •, a •.oo ...az i au 6* 1a. N 511 SIc
II ?33% 0$0 1i(. l0* 2 4 12 6A 70.22 - 1405q 5 5$i
2. S’411s II 2.4 01 0 5.01* 0.003 2. Q ,0I 6* 10.31 N 5)5 SIc
I I - -- ------ . --
I I
C V(0.LJ ’
2 (LAN 20 01 0
— 2 ELAN s r— iI - I -
2 [ LA s II ? vI 0
tiM ir wwr-—---u
2. (LAN I l I b3 •
F V N_ )IJ I C 701 U ...wij •.UU U 1.15
VAN_.IOOS *2 3 ol I 0.00* 0.015 a 1,70
r i:i’*os I i oi— a *oa o;us- o
2. VAN _ . O0S *2 5 11.1 II 0.00* 0.514 0
e v*’mosi7 -g 24 — .:os* Eu5- -i-- --- _.1% -
2 V*N_iooOS *2 7 sa l 24 —0.0)7 —0.012 S 5.06
C W D I C 0 Ii €4 •.W !5 1. 115 -
2 flCHOA *2 9 •3 4 •. aj9 n.ig*
6$ 1 . 03 . 1 N
60 70.30 N
60 70.26 N
60 s
. - -
60 10.30 N
5 )5
SOS
52i
SI;
61 is;iu
I I 7$. 4
7jØ 4
6$ 70.26
70.2$
60 71.03
5
6
C J U IC IU 01 14 5.014 U01 5 1
I 5$AU 4FUS 12 II dl 24 0.004 0.050 I 5.80
ZV E R u2 i —-wr-’ z
2_ ‘*0RRO *2 *3 d l 24 0.00* 0.00) 0 0.85
U
I
N
N
N
N
N
lJY
C %UVUJII IC i II €4 9W5 ,40j •.i Ii
2 wRRoe *2 IS d i 9 5.0*4 5.002
280RROW I 1631 101A 111F
2 Buoo a *2 *7 sal a.Ols 0.002
— HL rw - - - - -
0.0*4 a. 4S
551 5)5
501 S$
— oi -— i s --
501 S*
- i7Ug -
s* 2439a9 501 SIc
I,
N
N.
N
N
H
U..’
• • 5*
a; 7S
0.73
0:67
0.61
• 0
6*
67
‘7
61
67
504 504 - p
- -________ - _______
504 5o
512 t* 4
-
501 Sli
10. 25
70.32
10.36
10 • 31
70.34
70.24
‘U
N
N
N
N
N
‘ “JM5 6l’ 511
dV35?V 500 -
50 5I
S)._ .S1j
— I$ Sti
520 SIc
IC III UI €4
2 0001* *2 *9 03 2.4
- - - -
C OUJ* 1€ Cu Si €0 •.u14 ‘b. il u—.;u o77123
2 OCNO* *2 2* 111 24 0.003 0.054 0 0.40 66 15.52 N
2. acHDATr—aT—-- -—- -e;o1c s;uus 67 P d
2 OCHOA, *2 2) 03 0 0.0* 5 0.005 0 0.42 66 10.09 N
2. 1 TNSi2 e I . uais— -rus--- I 0.36 è7 - i.;w - -‘-
2. OIG4 INS *2 .25 01 . gj .-12S s.o.s 8 0 ,52 67 10.09 N
C UIUU1W 5€ CS Si I- 1.0*5 U.UU I l • 4 01 1 1. 1* N
2 0166 )NS 12 27 113 5 I.$lg 0.055 I 5.43 67 10.50 N
C WIW,INS Ii 83’b 1tI$&1j5 •.I s5-—I-— l,4— 67 7 56 1 W
2 OIGGINS *2 29 v3 I 0.015 0.015 0 s .3 61 70.00 N
e .sauSiFUS r -- ir— •sois uoss 0 iOs i ——ijrr M -
sn soc
5*2 553 . 1
sOl. 16* - - - -——%- -
5*0 Sl 6
---
559 604
500 51$
5)0 SI ) _ )
I [ i H3 .-.- 3
gfl 5
1
—
2 IIAUSAFUS I? ii 01 S 0.0*4 5.005 0
C PUP IA I I 04 I 5.58) 8.005 I
2 PONflA * 2 00 I 0.006 0.505 0
2 VI .LIER I 104 • I,0) i.II5 I
0, 41 64 75.2*
5.45 67 71.15
•,* 5 67 70.53
I .5 S • 70.fl
N
N
N
N
ss* si.
5*2 Sb
Us SI.
I 51 .
SI IIj 3
-------
19 1 11-44 FpA Nq&) 14 P11.01 P4UJ(C7
-. - üeacflv C041*NUIWS E,4*SSIOiI M NIIU*1NG sysnos
______ UNlO FL(CINIC CO ______
PtANV
IM3—44 RN4$/*W30 94*1. ? 1.06 (1*1*
5
S
a
0 _________
ri,eL iv. Ac a
UN1T ‘1AI . THfl Vt4 3)(L 00S *C0’4p 4C 4P C.I1_?( i0 AaS ZEWo CHI_SPA 0ASJSP*N tFN TN
rau4b
V0YL 5 1 4 04 0 0.0*4 I.S1 1 1 0 .5U
2 IH)VLIS I 5 6’. 0 0.014 0.0* 5 - I I •.4 40
290W!S à4 U 0.0 14 b.OIs n O.So oa
2 v*N_Il0OS I 1 o . (4.a 0,444 0.40% 0 0.55 67 70.2*
—z- **us*ros-i woc 4i44 0.466 0 0:54 ‘4 1 70.2*
2 CHOA 9 01 0 0.000 0.406 0 0.60 41L1 10.20
r .ia . .ii ———--— •;or
2 flC004 I I I 84 II 0.0I 0.001 4 0.64 61 10.2*
C U5EY I ‘I 5 ”T o;ols b.OU a O;6 1 61 10.2*
2 VOYLES I Ii 4 . 4 0.014 0.0*5 fl 0.65 bO 10.20
— vovur c 1434 O 00I2 0 005 0 4.64 44.U 1*;34
2 IIOYLES I IS 04 11 0.uI1 0.001 0 0 2 SS 61 70.26
C C0tI tT I lb 04 eo •.o0SD.6t 4 $•6 t
2 CAUSIY I I l .1’ l 0.0*2 0.006 0 1.61 60 10.31
C USEv 1 IW6 4 24aM 4ltO.0fl 0 0.10 60 7O.iL
2 CAUSEY I *9 44 24 0.014 0.046 0 0.64 61 70.75
CAUSE? 1 2U&A 24.aIl—o;oss— 0 • 64 1 0
fla6S .Wi j
9t*RT Co.LTc1ö t1Nc
2 PON *a I 2* 44 24 0.0*. 4.005 0 0.50 61 10.1 ,
‘J0 ’ JP .4 I 5% CO 0.0l •.a1% a
w CAUSEY I 23 bo 20 0.005 0.001 0 1.54 61 70. 12
I ‘ ELa’I - o;oos 0.064 a o * 67 7 .fl
(.1 VOLL4ER I 25W. 0 0.006 0.00* a 0.39 10 1 .Ø9
•V . MEQ I 26 4 00.0050.00i a - 0 57 6* 70;16
OCiiOA 1 21 *4 4 0.00 1 0.00* 0 0.5* 67 10 . 1 1
C 5J0 I t’5 5% 0 0.0 1 1 •.IU 4 ..4 47 7ET
2 OCNO& * 29 04 4 0.0*2 0.004 0 0.50 67 70.21
2 .OCIIOA_ I 36 0 03I9 0.0*4 0 0.5* 67 10.22
2 OCHUA I II 04 0 0.0*6 0.004 0 0.54 67 10.25
1OCIWO i 86 - —1 0.4*5 0.005 0 0.41 47 7a;is
2 SMI*H 2 2 04 0 0.001 4.004 0 0.61 67 la.I1
C I IT1I C .I 54 u ,.ur o.uoc a E54 67Th.Zl N
2 Sill Iii 2 4 04 0 0.0*5 0.00% 0 0.51 61 70.2* N
2SM17W C -504 - 0016 o;aoc a 0.50 7 * 70.21
2 SIll Ii 2 6 8. 4 0.011 0.40% 4 0.52 67 14.22 N
2 V1Gu .vs rir 0 0.002 0.40% a 0.52 67 7a 26 - N
- -
2 OCHUA 2 4 o .. 0 0.0I 1 0.005 S 0.47 67 70.2* N
2 APOJO C IS 54 • y .s*l’g .. .• • ‘Sr 61 fljI
10.2*____________________________________________________
2 CAIJSIY 2 I I a4 fle,j0...00.* 0.00% 0 0.5* 67 70.16
e1? n 4-0j444 0.005 a - •;5A 67 70.$9 -
2 130R404 2 I) b •* 0.0*4 0.006 4 0.55 61 1..a2
2 flLA(IUJI ( C T*8 0t4l5 *.006 0 •5 1 70 7021
2 804M04 2 *5_04 0 0.4*2__0.006 0 1.52 60
C u1UII’OII( C lb 54 U U.IIJ 0.500 U 1 . 9 9 01 10.10
2 COLVIN 2 Il *4 0 0.0*2__0.001 0 0.4* 67 10. 14
— — i jo so —i EJ1o 0.005 0.67
2 NAUSA I1S 2 1904 24 0.0*5 0.005 0 0.62 6* 70.24
2 i,ou5o uS c 24 54 e4-—a01r;osc I I - 0.64 - -- 67 T 11 2
2 IAUSAFUS 2 2* 04 24 0.0*3 0.005 a 0.71 6* 10.22
2 rI5IIWU C CC 0$ €4 U.Ul 0.007 0 l.15 7i7S w
a H*USArUS 2 23 8* 24 0.016 0.005 0 0 10 60 10.3*
g e* o o iii. ..iW 2E7U41 7ó13
I
.4
I
2
--
I.
N 5*0 S*
---- ----- -- .-
N ________ 507 51 L _______
- N 514 - _______
500 See
i,tv rsij 500 53
5*5 6______________
N 500 31* *1
N ________ 515 S2 _____ 5
- .w.--—-—.. 1o9 S1i —
N 51* SI 4
sos söi
N 50$ I2
- N 50 i 1 0
N ____________SOS Sb _____
N a 50• 5 IL _____________
533 53* — ______________
N - 900_ - S1 ____
N 515
N. _____S17_ S2
N 520 52c
N 507 5o
51* 517
N 500
i1T si
N 503 505 2 ________
N 5 UL SOq -. ______
1 5*5 52a 5
oil •I5 S i . or i4v £/sa,t
___5* S2q
SN Sa S
515 520 5
__51. - - - -- .5I —
_____ 550 S5 S -
N 500 50* i
N 505 So, 9
5O9 SI
N _____50$ 51* 2 _____
5$ 56è
N 507 Sb 3
N • 50 505
14 ______ 650 60 3 _______
SflSIg
N 5*0 51* 4
-- N - 521 52 a
N 5*3 SI 2
207792 510 511
_N 510 5*1 3
N 455 5I
-------
1983—84 EP*i$0O. I PILOI P0OJ C1 14$l0 Em jso*y, 0C10 E9 p, *904 fl
-
E MICCO
- .
• ;p4fl•q - -• ill W)vL3*S i_Cai$ fl cUHp CHrZE O fla 5 ZERO TSPA$bA5iPAi* ijAj .yi TN ILAG% JNNA SjARTCONPLflE iOfkrjij
-
—‘ ? . os e. a.Siq I.S . O I I .TT U 71.31 -W Ui 3
2 V*N .rIO’I5 ? 2? b4 24 0.01* 0.006 I 0,1 5 67 70.33 N Sal 525
RALiSc 24 fl•M - 0 00.62 . . - —.- sUS o -.
2 il*USC.il 1 3 ? 04 2’. 0.0*4 0.004 I ••7Q 60 10.30 N 520 53p i i
e •(NJ (T Itg 1 rd424 J ) l 003• ---- - • •4$ 7,2I - - 121 53.j1 -
2 0IWolLu- . . 3 4 b4 2’ 0.000 0.0.0 • 40,47 • N 512 517 s U Ou E
j ø0u 0D11I ’ 60.41 • S ’ .1*4 y /iy 915 920 1 j3
2 puaooa 3 2 0.a9q 0.064 I 0.90 60 70.36 N 50* Slj
—- s;or •;0a6 ó u 1639 ii —
I 800004 I 8 t.4 2. 0.011 0.006 0 1.91 60 1034 507 50*
24 0.0I 0 0fl6 UI.$4-61
2 80RRO 3 II ) 04 i ”. 0.011 0.0*4 0 0,85 60 70.35
500 Si
e i .*u ey j ii 04 24———w;005 - - -•o;u7- I 0,05 07 10.31 N Sib S
2 1 1 0 10T* 3 I) 4.. 1 0.013 0.000 0 0.00 70 12.13 V 26I6 9 500 Sip
-- Po.Lri ‘. a;ooq 0.006 — 76 3 N -. siiSia A •
‘ POlitia 3 14 o4 24 3.00* 0.10$ I 0 79 60 70.21 N 500 5 1g l I’ iod . 4 1 4C1,es .L
PW TI T1 44 4 •_ 40O oo 5j ‘o.7tw7 3 jj ... - — ue - --- - -st 0
• PONUa 3 I.. 44 2. 0.0*4 0.00’. 0 0.79 60 70.35
500 SI
L .I vu,ie , i’ 04 € •. .is ..ssu S oi 10.30 •V - t sis 517
—J : v0VL S 1 IS 64 i.. o.oic 0.005 0 0.79 60 70.31 N - 520 524 4
- ai 0boS 0 — 67 7•3 . -- l 6Sã 7
c V0VL S I 2* 44 2’. 0.012 0.005 0 0 ,70 67 70.21 N 532 53 I
c ,uvs 32F34 24a0á$.g 7 aso5 5 — .;70—-67 --— 0?6 •5$_ • Ui -
2 vOvLis 3 22 44 # ‘ .b ..S - 5.00*- I 0 5 0.69 10.23 N SI? Sop p
c .i ‘j . ?* I.0I OIS • 1TW 5*7 blO 3
2 O&RLo.i l 3 4 44 0 —0.00 —0.005 0 0.6* 67 10.25 N 60$ bI 3
10 14 0 - iS IS ,; ‘4_ 4 _._ 7.;fl . -
-
— -
1I5 •
S.
2 VOYL c I l 04 )4 0.00* 0.005 0 0.63 67 10.2* 4 520 5 p
-5w’ ? ‘ . 0.00$ 0.005 0 165 67 — 700 -
S135I 1
2 VULL$fw 3 24 44 21. 0.011 0.005 0 0.60 7? 70.26 N 5*5 523 5
C 1L4’I j . e ..uls S. o. S U 0.07 00 10.20 4 515 bI 3
2 ELA. 3 .14 44 2’. O.Olj 0.0*5 0 0.10 61 70.29 N 513 51%
a* •••; _ it 56 25 — 0.015 10 15 A 17 64 70.3 St.
2 aa ‘ I 64 24 0.0*6 0.015 I 0.70 60 71.25 N 505 51 . S
7 4• • 24 o;oic o;ois 1 :61-- —- ——-.---- - 76;?? - . • - . —
2 ELAI ‘. I 04 14 0.015 1.015 I 0.43 • 70.2 1 N
500 5l ii
C vaii_ ,vrj 4 .4 (4 0.0 )5 0.115 I Ph 67 is33 — 515 52i
2 V*N_-sO )S 4 A 4.. 1 ’ . .Ie,.ao 0.009 0 0.61 67 10.22 N 5*0 51 5 0
€ VCIifl )S 7a4- 1’ o;ooo I;000 I 67 7O 2 - 15 5
2 VAPI_r$O0S 6 0 04 2’ 0.00* 0.000 S 0.43 67 70.20 N 5*5 52* S
p W Z4 1; 0 17 1 010 1 - .Ib36 07 ; pg—j -51rsir-- -- p
2 NUOMOR 4 Il 44 24 0.007 0.007 0 064 70 10.21 N 506 507
C 10KM .4( I C 04 a’. •.U 0* 0. 0 01 I ••SI 00 fU. U N 507 0*
2 NORuIOq 5 14 64 V. O. S 0.44j 0.009 I 1.02 i i 70.26 N 500 5Lp
s 15os 2 0Ut IU7 U S 6 7 4* 7pfl N - — -—
2 PONETA 4 lo 84 10 0.004 0.007 I 0.71 60 71.10 N 500
C LL . 4 4 Il I4 TUU0O0-r•T s62—-U1Ii15 56 1 5Iaj
2 VOLLNFII 4 IS 04 0 0.01’. 0.001 0 0,50 6$ 70.20 N
515 SIp
v I.i ’u 4 I ’ S 04 0 0.9)4 0.00 ) I I. 5 $0 505 509
2 RAIJSCnER 4 20 04 0 0.OIp 0.003 I I 63 6$ 70.18 N
521 530 II
— C N*J5C}t ( 4 21 0 1.511 S.UU U 60 w.ir — i1— iO5jj I.
-------
‘V
ta
I’l .i -d4 (PA#$ib0’IR ‘ILOI PROJ(C1 %4$Ib W(flIqSAAY, OCfOb1l ) 4 14
L#ACIrV Co’ lNumIs 14issiON ONITuRING SYSILMS -
44t4f0p4 FLI:ciIl lc CO
5160* POw PEoNY
lINi—$’. QNI.$/flIJ ) 1 4 DAILY LOG DATA
J IjT ‘I MC - 41.I ‘%l (. is.’iL_O.) 3 _C *lls N..Cu ..P C41_ft .lo fl*5?(Qi) CflJ_5PANl*AS_$PAN .4A1 1NCTN nAGS j i:i 510*11 CO$i L(TETOTbflMI —
n o.oo ;o 0 D bS ro i/ -M. 1 i
2 AI$SCrf4 I. S . 4 (,.AO1 4.OIi! 0 0.46 68 10.4?Z l i 2I 3’1 1$
2 qLuSC.41 1 2 . à4 .1 o.0U 0.u I 14 0. 4 1 * 12 11 1.Id - sIi 52 .
2 *tISCHf. I. ç o . 1* 0.0I 0.1414 0 0.6? 60 10.2.2 N 520 53q
2 gr.GT!i5 4 2. 5.. - a •.i,s **.Q 0 .*c 67 10.24 521 52* 5
d G( . ’4 4 1 D. . 4 M 4 . t .0 ,64 47 70.22 N 500 5) _____ _____
61 7è.*3 “5 15 51i ——____
2 . .lC,6l’ 6 ‘. 24 u . 4 0.006 l$ .. 0.44 67 10.21 N 508 511 3
41GGT IS 4V 5 17 i4is -0- * 04lhi ., ,. i so 10 a9 W v N fl 3 so S 5t _ --V —
2 4 14& 1 15 S $ o’. 24 0.125 0.010 4& 0.7S 64 10.30 530 Si 3
- 2 IAI154FlS S 2 24 0.AJ. 0.01*1 14 0.74 *1* 70.28 - 546 54q -- -s B Iisr -
2 iiatJ af.*5 5 4 2 . o,40 0.04 0 0.14 68 10.22 y 5*0 513 oc9
e II APiJ3 5 ?4 01107 0.001 -- Ii 0774 --- __________________
2 JyL 4 o . 0.01 o.ao • 0.0 • 10.72 N 510 SIc S
7 14 23 •.oO$Oe.oo d i 01 1 6$ • N 515 5 A - S —
2 VOYLE4 I 1 •. g.jS •.4 5 0 0.6* 60 10.21 N 5214 52? 2 _____
V YLFQ S 9V 34T I I 0.d )O 0.0050 14 G). . .4 68 10; I 9 - s 3 Sis
V.JYLF$4 S $0 84 1* A.OOo 0 0.44 68 10.16 N _______ 509 51* 2.
u, &ia 5 T2 5 W V001T T.J05 0 0.S4 68 7E18 1i ST 5
q0QkOl S I) 44 II 0.004 0.005 14 0.5? 60 1 .i2 N 60$ 6$ 2
$10 ROQ S 14 5’. 0 0.OI . 0.4n6 o 0. S *8 10.11 w sos - -
IIQOR3R S IS a.. I I 0.016 0.onS A 0 ,40 60 71.15 V )JA 2603 4 501 SOo 2 _____
- I1. 84 4 ) 0.0i 0.006 8 0.54 68 7o.I$ %iI v K 6q3 7 509 5 *?
2 40040o 5 )7 ul. 0 e-.-0- 44 0.0146 0 60 • N 268345 500 Sb 2
- p. -o;-n- cn --oj.i — I
2 CouSfy S l e .’ • 14.O0 i 0.044 14 0.59 64 70.12 N 500 507 7
?‘I 04 • 0 .flOq 14.004 0 0 ,49 57 7o I0 N - 500 So V
2 C8USL S ?l ‘ • 0.01.9 0.unl 0 a .S n 14 10.06 N 500 50 5
— C*US(y ‘ 5 ?7 II . 0.1*06 0.0141. 0 0.54 60 7ø o6 - ••
2 CAUSIT s • 5.0 0 ,G4*. 0.005 0 0. n ô 714.0$ N _____ 505 507 2 .
- V5 VV._ V4.V4q 7WO5 sb S21 1
2 P(r,kIA . a’. ?5 11.0110 0.1405 0 0.1$ 64 10.12 N 500 Sin
7 POP4(T* S 24 04 - 74 .s I.J 14.005 0 0.67 6* 70.14 V 500 5$ $0 -
2 w _,ioo ‘i a.. u.unc o.ops o 0.6? *1 70.09 N 5)5 5 2n S
? -v 4:w S ‘ 5 24 84 24 0.004 0.0145 4 0.41 67 70.12 N 515 52n -- 5 -
2 v’)iLNiM •, .‘0 o 2’. 0.0*4 0.0146 14 0.64 67 10.15 N 5*0 5*4 4 ________
2. ,C. .u . . , ji p.. QTT0U7 a Vo;u - 6770.15 •M - 51 5 5Tr -z
2 OCNOo 5 I *4 2* 0.014 44.00? 14 0.644 61 1o. )4 N 510 SIp 2
2 00 10* ‘1 7 144 0 - 0.009 0.000 14 0 ,44 61 70.65 N Sb. SSç - - 5 -
P JCii )* * 14.. ‘4 0.0.0 0.00$ 0 0.4? 67 10.06 N 512 513
b’ OCHO* 1. 4 $4 II o.aSflS.097 0 0 .4Q 67 4iN’ . N - 520 - --V -. -
2 BOONOR 1. S 84 0 0.00$ .44.043 0 0.7? 60 11.34 ii 500 S1
p p • i 1.Uui 1.5UJ d i U.b1 8W. ,i.jv 11 587 SIo 3
2 B0440R 6 1 o’. 0 0.000 —0.002 0 0 . ln 60 71.30 N 509 5I 2
— 0 RflR- 6 48 W 0 005 —8.007 , OS 6$ 7$96 So$ 5I
2 NU4 1I4OR 6 9 84 4 —0.005 —0. 0a1 0 0.51 60 71.94 N S OS SI 2.
_SVV2 VV 1’41r4r---—$ 10 -04—-- 0 - -:-O;0 04 o;oni I 05I - 70 - 71.94 535 S6
2 I304ROR 6 II 141. 4 ) -0.007 —0.0144 0 0.51 60 11.94 N 505 SIn I _________
C 0ulurU ’( p a’. a -1 0U6 U46U 051 SW 7)9 _______
2 000*400 6 13 04 0 -0.OOp —0.006 0 0.51 67 1 .94 V 2 5 241944 501 SI 3 _____
--?- -—-a R q-— 6-rSJ . •— fJ0 -0;0o5 - 0 -.;si -- - 60 7l.S4 F •V V • 5•5 507 ____
0 . 5
-------
I $3.t4 fP #NflC* Pft.OI PN ) CI 4Ij bNFSaay, OCTO&fi Ii , IK4 R
s S;t s
UlfiOw £I.ECIRIC C 1 ____
Sioux P RPCA1y •—— -—- - ____ ________________________
“Ib)417fl3ID*iL LO
UJ4JT NI MTWf)A fq IL US C EPB 041’ CiITuI nA aAtHT_SPA.l
:_D*IA — . . --- ---
IAS SPMU.4 LFNtTN
‘ IS 4 U ,.UP U.•Ss • ..SI
P VA _I4( OS 6 16 X4 • 0.003 0.AIS • •.sI 61
ii tns 6 ‘IT . • .;5rAs’
wIG6pd 6 I ’ as I —0.o o —0. 1 50 4 s.SI 40
—---- - . oops-G; .ss—---’.----- ------,;sI—- - -
dödI)GIS 6 ?‘I M4 0l. lJ—V-. -OM —0.005 S 0.5 * 69
C b ?I ‘ l U •4 1.U*-I- 0.0 15 0 5,44 I
7I. 4
7$.94
7 1.94
71. 10
‘- fl;96-
71.11
7115
I Ul
N 410 6$j
N SIT
N SI. S*
- ‘w 5 14 SIa
“
P
s
P
p
N______ SIS 5*4
4 404 6S
4
4
3
— ‘ .0 — ‘--- ‘-— - —-----—--—- ‘- - -.- - _____
-------
:c .e — ‘/2 Ja4 . _:= D..Surbrlaf_. ce :: :: - ____
£ ,lkeniaii ,jn (Je’frr,
C. Sc.*’
AUDIT DATA R T EVAL
Ct - P - Panel n r
_______________________ Cl C..v,bit,er - Ch.rt ggcar r
- 0i j á V.it Meter
1. Stack exit daa e:er tft), L
2. Tranz issometer athiength tft), L
3. Calculated OPL
C I ‘lmss arwd . .‘z a rsss Re on ffim epa”+y cer
4. Preset O?I.R an4 d qf.ded by400.
C ,.-. i3
Fault Indicator Lamps
a ç
? . ——
ZF
1
r iJV .iamp
OVER RANGE 1on p
,
V
L v,
I’ .
(
D H( ç
N (y i .
DVM- Z& ,
M -
1 (iso
Z. Instrument Zero Check
13. Cl art recorder opacity (%. Op)
C, .4.j j’
C - 0./.
Pm— ‘i.
F. Zero Co er.sation Check
:4. Control panel meter opti a1 ãe sity (CD’
—. 0•1
A.
Stack Exit Ccrrelatiofl
6.
I.
8.
9..
jp.s4. 0 .9SS75
RECEIVED
FEB 6 1984
ENVIRONMENTAL;
SERVICES
f e’ce S r ai c: eck
... Cr:çir. pcEit3cr cf asi.re.. ent k :
—
frer:e scr i c .. rert (r. )
-_. -
:: :r 2 a . :cs t:c.r. f:p .y rage itc .
-4O
-------
In:err.al roan Check
15 ..
16.
17.
18.
19.
• 5s44-
‘.
og
t. AGC Check
22. Lamp status
ON
23. Ii ag. status (centered)
:‘. etroreflector Windox Check
24. ‘i:me of clear ing
. fransceiver Window Check
25. Tire at end of waiting period
2 . :t :f :ar.ir.
Install AudIt Device
27. Time of zero of audit device
c,
fnsert tow Rangy Filter
YES NO
L
- 4-
- 4-
-
- --
—i--
Original position of optical density range switch
Control panel meter opacity (% O
CaP-
C2 art recorder opacity (% Op)
Control panel meter input current (LA)
Control panel meter optical density (OD)
. Span Filter Check
Span filter optical dei sity (OD)
Span filter output current (mA)
.5
___ (G •/ .
2C..
21.
_ (.1. 5 •/ .
‘-I
. Alicnment Check
22.
Tim. at end of waiting period
Fiter opacity (% Op)
Fi er serIal nur ber
e n.i.
4 Used Ifl3t4fl QfldQUqS 4jfl S
-
B-41
-------
0. IrisertM Ra .r ge Filter
31. Tim . at end of waiting period
32.. Filter opacity
33. Filter serial ni.u ber ae3 .-AL
P. Insert Ei h Range Filter
34. Time at end of waiting period
35. Filter opacity Op)
36. Filter serial number
Q.’ Monitor Response Rep.atabilt Y (Sis It,’riVb’e , 3ee v)
37—4E. Tima at end of waiting periods:
.ow Mid High
41
•
44
—: :
. :: l ; e :;t :al density COD)
S. Wir.dow Check a:a
SC. Initial opacity readinq (% 09)
SI. Fina opacity reading (% Op)
T. S.tri*v* TransceiVer Window Chec3 Data
52. Ir. tial opacity reading (% Op)
53. ? .na1 opacity re .d ng
rn ti eJ Ins an+aneea.s 1eada i
3—42
39
a
.3
46
43
4E
42.
49.5 % __
=
45
48
-------
U. R*ttj ve Audit Device Installation Data
54. Opacity reading (% Op)
v. Retrieve All Calibration Pilter Data
— 0.1.
— a ‘I.
•GL JL7
55—69.
Opacity readings (% Op)
Low
C* 120
i in*I
55
Ct /7.0
A,, /á.&
I .. J? I0
Mid
37..
56
.59
go..
“. 5 .
62
as..
“.0
sa
Ct /7.1
Au
0
7,.
. - . c
57
7,.
.4
.5
Ca
AN
61
,zs
,7.D
aJL
•
64
c*I7.
,
, .s
L
60
4
u . s
, &_ /
65
so..
we
.19.72
63
,i.4
, _ ,
68
66
73. t
73.0
7&.S
69
3—43
-------
AUDIT ANALYSES
. Stack Exit Correlation Error
70. Error (U:
* 11 5nk 4) — (Blank
L (Blank 3) J
rc )—•(
a’
L C
Control Panel Meter Correction
71. Opacity seal. factor:
4) (Blank
LBiank
16)
.
•i-.iz — (
:
.
C
factor:
21)
—
—
)
)
)
S
72. input scale
(Blank
a —
(Blank
* a
.;: ca der a :v sca a fa::cr:
(Blank 20)
a
(( 1ank 19)/5
*
—
C .)
—
% .o76 ,.
x C2
0 ’ ,.
C,— .1
x100
Tactors
6
2e) 1 _________________
J x 1O 0 _
‘1
x 100
pIn—
.1
. 5144
.54.
.3.
so_
47.5
Xc ç
)/S)
—
-------
er.nce Signal Error JOO L5/.
74. Error (%): l a o * 0.5%.
a ( ((Blank 11)/201 —1 1 x 100
•a ( (( )/20] —1] x10O ___
ro Compensation Analysis
75. Zero compensation (00):
(blank 14)
‘.00 !
76. Pest cleaning Zero compensation (CD): - K cri .s ?
— (Blank 49.)
tci- to
Inte rnal Span Error 4
7 7a. Error (%. Op): GP— 7&13)_
— (B1ank 17 ))_(( .. —(B1ank 4) (Blank 2 )x1 0]
a (( ) )((llØ x2 2] *
t.rna 2e:o Analysis
Ze:o : a ity .ading (% 0:;
: —
C - 0/.
C ) *
B..45
-------
O;tics2. Sur e Dust Ac uz u1atior
78. Transceiver Dust Accumulation (% Op):
[ (Blank 52 ]— [ (Bl,ank 53)3
[ C )] *
79. etrorai1ector Dust Accumulation (% Op)
a ((Blank 50))— [ ( 1ank 5 .1))
* [ ( ))... [ ( )] a
80. Tota L Dust Accumukation (% Op :
a ((3 5flJ 78)]+f(3lanJc 79)]
a ))* [ C H —
C? .R Ccrrectior s on Audit ? iters
81. !.ow rang. fflter (% Op):
U- (l— [ (!lank 29)/ g]) 2 31 )j
— C1- (l-(( j,iøø 2( T ”r) x 100 _ 17. 0
‘.•. ‘. d ange ilter ( Op)
a l. [ .Jfl 2 )/ Q ])Z lank 4) >,
s .2 i &7 ) v : a
• ra ;e :ar •,
— .—Cl—1Ea. 3 ). 1 .2lani 1 7
a f((( x j3 a 74, . 7/ ’
3—46
-------
I. Determine I ean Error fcc Low Range Audit Filter
84. Teat )..Diif*rGflC (% Op): C I7. -/7.a o
—° (Blank 55)—(Blank 81) P ’ / ., /7.0a .?o
a CP ,7.51-/7. .J1
85. ‘rest #2 Diifereflce (% Op): C /7s /7.Da 0
* (Blank 58)—(Slatlk 8].) Pifl /6.Z /7O. —.10
* CF I7.fl-I7 *
86. Test 13 DiUer.flCt (% op):. CL /7.S-/7.9a aS
(Blank 61)-(Blaflk 81) /4S /7aa . •f
• ( )-‘.( ) a 9 17.M17.# a
87. Test 4 ifference (% Op): c 17.5-/7.a. e.6
*(Blank 54)(3 nk 8].) Pm 7.0-/7.a’ o
• ( ) • CF /7.9g/7.a : 9 :
88. TeSt #5 DiLfereflCe (% Op): c . ,7.(,-,7.a • o
• (Blank’67)CBlank 81) 9n, /&. -/7.a:
— )( ) a CP 7.bS//.s’
89. Mean Error (% Op):
— (I J 34)+(3.&nk 35)+(S1a k 86)+(E .an S7 #( iar k 3a)
3
.5
a # #,.S ..I a.5 o.sa
..‘
-0.54..
0.792
5—47
-------
. Deter1T ine ! ean £rror fcrKid e :ft i er
90. Test 11 Difference (S Op): C* 37.ö—32.oZa —1.02
a (3laj k 5G)—(3lank 82) Fm 37.0- 35.og s -I.o2
— C )—( ) CF 3 .Zff-.3La s 1.27
91. Test #2 Difference (5 Op): C 37.q —sa ..z .12..
a (Blank 59)—(Slank 52) P , 3 - 3ô,oZ -1.82
c sc.s - 3Z.oz: 1.S+
92. Test #3 Difference (5 Op): Ct. SL.o 3S.aZ .0Z
(Slank 62)—( lank 92) Fm 3 .2- 3&oZsI.82
— C )—( CF sq. 3 3LO3s • j
93. Test #4 Difference (5 Op): Ct 38.o— 38.oZa -.02 .
a ( .ank 65)—(Slank 82) Fi77, 37.o—3J.oZ -1.02
CF 3t•53_35.aZs 1.51
94.. Te*t !5 DiZf.ren:e (S Op): c 34.-3S.oZs .OZ.
— (Blank 68)—(3lank 92) 35.0 3403 t
- CF 3 .72-S8.D3s 1.70
,. z .ea £:: r Fs Op) :
a (E ek—-e-)+ ( .ank 1)+( iank 2)+(Elank 93)+(S1 .nk 94)
—
a.
5.
/.i02 -1.IZ -1.IZ 1 D2 .DZ
I. 27 ’ /.Slm . #/. p/. L 1.5/ t/.7p : 1. C24
S
8—48
-------
I L Determine Mean Error for High Rai,ge Audit Filter
96. rest #1 Dif erence(% Op): C 3.?—74 e7 a -.17
• (3lank 57)—(Elark 83) Pm 7F. — 7 7s Z./7
— ( ) — CP 74.!5 74. 7a.t.2S.
97. Test #2 ifferenc.(% Op): C& 7 .?—7*..7’ _. 17
(Blank 60)—(Blaflk 83) fl 7,s. ,_ 7*.47’ -Z.17
CP 7 . 1#’71i 7a 1.37
98. ‘rest *3 DLU.rencet% Op): C 7 1 O 7 j7a 07
(Blank 63)—(Blank 83) :Pm 7/.S-74.a7a 2.57
— C ) — CP 7 7 7a 2.34
99. Test $4 Difference(% op): c*
•(Blank 66)—(3lank 83) Pm
Cf 74.f7 - g7; 2.50
180. Test #5 DiZi.reriCt(%OP) C& 71.f.ui7Øg7 - ‘.17
— (Blank 69)-(3larik 83) p, j 20 .7Øj7 -‘1.7
• ‘C )— ( ) — Cf 7 .S4 7.7T 2.47
Mean Err ):
— (Blank 96)+(3lank 97).+(Blank 98)f(Blank 99)+(Blank ioe•
5
—C
5
.C2 h1.
— Z. 17j./7 $7 Z.zi
2.2 ’ Z.S7
5
0—49
-------
S.o ‘ ‘-.. ‘‘
Uc,e E-L-
103. t(DiUerences):
2 2 2 2
(Blank 84) +(Blank 85) ÷(Blank 86) +(Slank 87) +(Blank
_ ( )2+( )2+(
interval % op):
((5x(BlarIk lC3)]t(3la1 ’
(f5x( ))t( 2 ))C.5
91)I+1(Slank 92)1+ (Blank 93)I+1(Blank )1
cg
p -5.70
, 7.(,3 __
2
CC /D f6
P P 8.744
C P /1. 7447 .. .
• C7. Confid.flCe.IfltIrVal(% Op):
e.2776 x ((5x(B]aflk l 0 6))_I(Blaflk .l05)2))05
8.2776 x ((5x( •flt( )2 ))t.5
Ca $44
- — m .9224
p •igg .c
• —— —
IC . .
-A
I... L.cw Range Audit Filter Confidence InterV
102. tIDifferenCesI
L(Blank 84)l+1(Blaflk 85)L+l(Elaflk 86)L+((3laflk 87,1+1(3lank
a
88)1
m -2.10
C ,? S.91a. .
r04. Confid*flC•
8.2776 X
0.2776 x
86)’
Ct 0.84
;
14. jg j *Audit Filter CCflfidSflCCI t*t’
105. tIDifferefletsi :
a 1( k 9C) l(Elaflk
Ca
pm •
• Ic
a
- 2
: ——
2
—.
2
35O
-------
- Range Audit Filter Confidence Interval
t IDiUerencesI :
a I( ’ 96)(+j(BlarIk 97)I+1(Blaflk 98)l+J(Blank 99)j+1(Blank 100)1
a )H( )H( )H( If
— p ij.g _
iØ . (Differences) 2 :
a (Blank 96) 2 +(Blank 97) 2 +(Blaflk 98) 2 +(3lank 99)’+(Blank ‘CC) 2
— ( )24 ( )24( )24(
i . 12 05
Pin 14 .5425
a
U0. Confidence irtterval(% Op)
— 0.2776 x ((5x(3l flk ], 9)j-((Elank l08)2]) 5
a 0.2776 x ((5x( ) 2 fle 5
ibration Error
L.pw rang . error (% Op):
a 89 1+(Blank 104)
—k ‘1k’
112. Mid range error (% Op)
c31ank9 (11an 107)
113. R gh rang, error Or):
a l0l)I+(Blaflk 110)
)
“I
‘
(&
N. iah
108.
. Cal
111.
• 0565
p. .074 ’
c. •H36
•
• ,r ”i
Psi
o.sj .*.4334’
‘ ‘ ..Jc4k-A
)
ci’
o.7q2 i”.1S9#
• I4’
eg
.,.Z4.#.544*
.30+—,
ni•
1.I*#.?2t4’
‘rr7 , .
)
•
g
J•5 ,.1cqsa
1.1215
, 75 ?
z_.
94 ’S ‘ ‘
.Z.j/ .•g 74 : • ‘ J.95Z(. ,s ‘i.;.( 7
j.Sfg,.1/3(a Z.So5 ____
B ’S].
-------
.
30%
-
• 2
—. —... - •. -. . S.
12. CrigLr al positior. Cf ra ;e s tC
E. Instrument Zero Check
13. Chart recorder opacity (% Op)
CP— 1.%
C4 - 0 %
- o% _
F. Zero Compensation Check
14. Control panel meter optical density COD)
—.
• . ... • ... • - .. .—. ... .-. —. :..
‘-
tate ___________ • -: tc’r ce :; ::o. ____
.
C. Sc’.’Y S iu.i
4P /
AUDIT DATA RETRIEVAL
Akb, ,ah,,,s:
P p .
. . Stack Exit Correlation C C 5 âIR Q .
OVM $ *
1. Stick exit diar eter (ft) ,
2. Trans iSSCmeter pathlength (ft), t.
3.. Calculated OPLR p
Ca- M &r.d . .‘t o croo s Rc on +hm o ocif srd
4. Preset OPLR slid 4W did by 400
c .- us
B. Fault Indicator Lamp
- -
—. 9&
!. FILTER lau p
€. SBUTTER 1a p
7. E .F lax
8. WINDOW lan p
9. OVER RANGE lau p
C. Reference Snal Check
ON
•0
RECEiVED
FEB 6 1984
ENVIRONMENTAL
SERV ICES
11.
V.
Oriçir ? pos ticn of r asi. re er.t )c ob
,ferer. rs’ii flal c r e t ( A)
8—52
-------
C. InterT al 5 n Cheek
15. Original pcsitiofl of optical density range switch
16 Control panel meter opacitY (% 0p)
17 Chart recorder opacity (% Op)
i .e Control panel meter input current (mA)
19 Central panel meter optical’ density (OD)
.5
(aI . •/.
(atà /a
6.2
Span Filter Chec
2 . Span filter optical density COD)
21 . Span filter output current (mA)
CC check
22. Lamp status
‘ Alignment Chec
23. Image status (centered)
ON TT
YES NO
L R.t orefleCtCr Windox C eç
26. Tim. cf ear ir g
• Transceiver Window Che
2!. Time. at •n wa tinq period
rf ::.ar. .c,
Irstell Aud±t Devie. !
27. Time of zero of audit device
C C, ” 7o.8q/a)
. 523k
-7--
7 —
—
7 z—
Zero.4 Audit De ’i
P ,va1#ri1
N, Ins.rtLow Range Filter
28. Time at end of waiting period
29. Filter opacity (% Op)
. riittr serial number
—
* Used Z#’StQfltQi7eDiI i eadi ,
5—53
-------
0. Ir sertM d RangeFilter
31. Tim. at end of waiting period *
32. Filter opacity 0p
33. Filter serial number
P. Tr.sett High Range Filter
34. Time at end of waiting period
35. Filter opacity (% 09)
36. Filter s.rial number
Q. Monitor Response Repeatability (See 14’PICVC 0 4/a s ’e v)
37—48. Time at end of waiting periods:
Low Mid High
37 38 39
40 — 41 42
43 44 45
4.6 48
. : : —;.!m:
4 . : :r l ;a l :;t :a1 er.sity C) ______
S. R.tri.v.RetOfl*Ct Window Check Data
53. Initial opacity reading (% Op)
51. Finalopacity reading (% Op)
1’. RetrIeve Transceiver Window Check Data
52. Initial opacity reading (% 09)
53. Final opacity reading 09’)
h’ rd’a Z, $ta, ta,7g!4a d d(eoafr, g s
3—54
-------
U. Retrieve At. dit Device Installation Data
54. Opacity reading (% Op)
p . , )- •/.
V. Retrieve All Calibration Filter Data
55—69 .
Opacity readings (% api
Low
Cs-. ad ..
*1.1
1J
55
Ca .- $7.1
- If..0
_..
58
cS
. w
17.g
, .o
- -
g
61
17.1
9
Mid
37. S
56
U. 0
1 .0
62
S...
Jb. 0
65
a’..
- - .I_
Niqh
7S. a
7g. a
74.. 77
57
72.0
•ia. a
60
73.
70.0
63
73.9
70.0
66
72.9
79.•
. ig.
*4
.59
at. .
3’. 0
6£
Ct 17.5
rn ? “I .’
67
68
69
-------
AUDIT ANALY5ES
!lank
.16)
)(
4 .)
A. Stack Exit Correlation Error
70. Error (%) :
1(!lank ) —. (Elank 3 1
a! I xløø
L (Blank 3) J
IC
—l I x100
L C. ) J
B. Control Panel Meter Correction Factors
71. Opacity seal. factor:
4) (Blank 2e)1
— Jx lCO
— { j x ioo
72. Input scale fac or:
(Blank 21
a —
(Blank IE
*
;t caZ !. sf:y sca.c fa::.r:
(Blank 20)
a
NBlank 19)/S
— ppt-
) /5]
—
S
)
—
I
(
C
I c
I
—
. i8ai5 . . ffaaI
C5- {
C,.. [
PM-
.,sa—.ts.
-gsa - -r’°° * O’/.
•
4’
toe
g
B—56
-------
C 1 R.Z,rence Signa l £rror PM - oo .
74 Error (%): DVM a.3%
( ((81.ank 11)/20] —1 1 x 100
c )/203 —3 . ] x 100 _________
Zo Compensation AnalysiS
75. Zero compe nsation (OD):
— (8lank 14)
75. Pest cleaning zero compensation (CD):
— (Blank 49)
P*• — —
Internal Span Error cg• [ c t to._ :
7 7a. Error (% Op): C s _gJo 4 i)C . 3 ) ..j
— ((31k 7 ))_ [ ( 1 1 Ø(B1a 4) (Blank
— (C )(
‘• Internal Zer An3lySiS
‘ b. .:o a i y rea ir; (% Op :
o’6
— ) * C’
3—57
-------
. O .: al Surface Dust Ac. u .atjon
78. Transceiver Dust Accumulation (% Op):
— [ (Blank 52)] . [ (Blank53)]
.— [ C fl—U )]
79. Retroreflector Dust .ccumulation (% Op)
a [ (8 lank 50)J—((3lank 51)]
a )]... [ ( )] —
80. Total Dust Acc n ulatjon (% Op :
(( 1ank 78)]+ [ ( 1ank 79)]
— ( ))+ ( )) —
. CP .R. Cc r. icr s n .Z ud it ?iters
81.. Low rang. filter (% Op):
• [ 1—(1— [ (3lank 29 )/ 1 QØ])2( laflk 4)
• [ 1-U—(( $. )/ 100 ])2(?1S )j
. a e.fzit*:
— —( -- ,-i-em’ ‘ j x
* — a ’s *
• t . .... • . —
— .• .. .• & ‘—— ‘ — •
a i—(l—((81.a K ‘ :cc
a ( ..( (( #‘S ),l 0])2( ‘“ x * 74 7
B—58
-------
I. Determine rnean Error for Low ange Audit Filter
64. TeSt 11 DiUerenC (% Op): C* p7.5—l1.0 0.S
a (Blank 55) —(Blarlk 81) PM /( .9 17.9’ 0.1
C, ,7 34- i7.’ 0.3+
a ( )( ) —
65. TeSt #2 Dif er*r C* (% Op): C* i7 .S-i7.D 0.5
a (Blank 53)—(Slank 81) PM i(..a/7.’ /.o
a ( )—( . ) CP /7.3,-,7.a- 0.3/
86. Test 13 DiLZ*r ence (% op): /7//7.9 0/
- a (Blank 6l) —(31a.flk 81) rn •, _/7.as -1.9
C, 17.37-17.9 * 0.37
67. Tea: #4 if*rE Ce (% Cp): c t 175-,7sa 0.5
— (31311k 64.)-(3.aflk 81) PM 14.0 /7.D: -l.a
a ( )—( ) — . p /74.17920*
58. TeSt #5 Dif .rInoS 1% Op): ct il.5 -/7.aa 9.5
a (3lank E7C ” E.) PI’l 1 .e -l7.D.’ 1.0
( C.P 17.Vl?. 2 0.31
89.. r4.aa. . . . or % Cp :
* ‘ ‘an’c !4( at 5 + 1a k 36) . r sc ‘ 1ar k
a
5
Ct 0.5+ 0.54 0.1 p0.5
— 0.J 1.0 1.01.O ‘1.0
PM. 5 —
0.34 # O.3/# & $7 #.o.40#o.s / -
_________________________ - . 44
3—59
-------
. etern ir e t 1ean £rror fc:Mi ae iz. i ter .
90. That #1 Difference (% Op): C& £ 53i.o . - 5z
a (Blank SG)—(Blank 82) PM
- C )( Cf 38.743$.,Z” •7
91. T.st #2 DiUerence (% Op): cg 38.o-aa.oz .oz.
(3lank 59)—(Blank 52) Pm 3 .o-3a. zs 2.O&
).. .( C,, 38.1-:a.oz . o
.92.. Test #3 Difference (% Op):. 37.5- 3 8o ;
a (Blank 62)—( 1ank 82) pi 3 .O SLô2s Z.D
C f 3L77 3a. t .75 ______
93. Test *4 Difference (% Cp) C t &
a ( .ar 65)—C5.lank 52) Pi Z o-33.o , -z.•z
CP 39 .4& 39. Zs 1.0
94. Test #5 Cifferen:. (% Op): c* ss. S1.oa a
— (Slank 58)—(Blank 82) 1 t4.Ofl.. .
cP 3 S.%.3 .ø 1 , .q4 _____
. ea £:::: ( ,
a ( i nk )+( iar k 9 .)4( 1.ank 92)+(Bia k 93)+(Elarik 9 )
-..oZ .
5
_______________ -
______________ - 8/8
S
3—60
-------
C,
Audit Filter
C* 73.0—74.07.
P’ I 71.o-. 74.7s
CP 7477. 74. z
Cl 7Z.O.74ôja
Pv,7 7i. . 74. :
Ce
Ct
Pm
C,
71,4&.. 7Ø 7,
- 79i o a
-
7Ø g.. 7 o7 *
7t. ; .,,
- 74m .7 $
C l
,I,p
Cf
S
- a7 a -3.67
£
4.
.73 ‘ 1.37 *.7f
Z .84.
—1.07
-3.0 7
.70
-3. D 7
.6 ’ !
—I.07
-4.01
.73
. 1.07
—4.’ 7
I. 37
1.47
407
• 7’?
K Determine Mien Error for liiq.b Ranae
9g.. Test $1 Difference(% Op):
— (Blank 57)—(Blank 83)
97 Test $2 iffsrence (% Op):
— (Blank 60)—(Blank 83)
—(
98. Test $3 DiU.r.ne.t%Op):
(Blank 63) —(Blank 83)
‘a
99. Test * ifieranca %
(3lank ee)—(3lank 83)
S
ift. Test $5 Di fierence(% Op):
— (Blank 69)—(!lank 83)
— :
!L . Mean £rr r (
a (8lank 9€)+(8.ank 9 7 )+lElank
—C
a
a
C l
pn,
Cp
98)+ (Blank
99)’(31*nk lø )
5
Pm
3—61
-------
,- ‘ ‘ JJ
b .EL
103. E(Differences) 2 :
• (Blank 84) 2 +( Lank 05) 2 + (Blank 86) 2 +(Slank 87) 2 +(Blank ES)
• ( ) +( )2 (
c* i. l
Pn, .•.ot
*
Interval (% Op)
i15x’ 1ank i 3)j—(( 1ank
)2 1 )C.5
107. Coniidene..lnterval(%• Op):
• 0. 776 x ( [ 5x(Blank 106)J—NBlank 1 Ø 5 )2 1 )L5
* 0.2776 y. ((5x( —
L•.
102.
.-. . —.
cr ..c cj
Rana _ e Audit Filter Ccr fid.ence Interval
JDifZerencesl:
a k i r 84)(+f(Slank 85)J+I(Blank 86)I+1(Blank
* ( )I I ( )I 1(
S .:-
B ) + (a1ank 89)1
c* £
P —4. 1
104. Confidence
.2776 x
a
* ( .4;te :
CL
.50
— L. I
pm —go. 1
CF
J . j eAudit FUt r C fldence Interval
: iffer.ncas!
* !‘C ‘çEar k )l+!(Eiank 92 (4 Blank 93)fI {(31ank
a
* I — — •- -— : - .. :
)‘ ( -t c.*.54 .(’
m to.4
Pm
c p
3—62
-------
i ci ;ence Audit Filter Conf5dence Interval
108. £ jUerenCSS( :
I(51a 96)I+I(3lank 97)I+1(Blank 9$)(+I(Blank 99)H(Elank 100)1
a I C )H( )H’ c. )I 35
•m
—
2
t (Diff.rences) :
a C3lank 96) 2 +(Blank 97) 2 +(Blank 98) 2 +(Blank 99) 2 +(3lank I C C ) 2
( )2 ( )24( )2 ( )2÷(
‘In 43.54.
ill.. Canjjc3enc* int.rvalC% Op):
— 0.2276 x (r5x(Blank 109))-( (Slink 108)23)0 .5 Ct .55+
m .I.7ff
* 0.2776 X ((5x( ) ( ) 2 J) 0 • 5 a CF
Q Calibration £rr
111. I.ow rang• •rrOf (% Op) Ct .4i .zzz . 4a
a I( k 39)+(3lank l C) OM .IL ‘-ac s
CF .3% • .o5e
1 .2. . .p ge.rroC % 0J C t -ZZ .34 .LZ .
j(31.ank .% j JJ1aflk 107) 0 :75
a ) a c# .813 ‘. i. .998 _____
113. NLg1 range error . Ct. •I.Z7r.554 ‘,7’jl. ( T
a l01)1+(3.lank 110) P4 3.47..4.7f
cP •84+ .379= J.ZL ________
Th \
,,\ I
3.63
-------
urce :: ::o. _____
,#,jl,l, (Ide
£sa* flu. ,, ,’
IdI
#4
C ‘ ‘4V PM- Panel T7.+e,-
- - Cd - Co ’ib.n€r c - C}iar+ £ew&d es
OV$ - Os iraI ‘ t e1er
1. Stack exit ia eter (ft) ,
2. Tranamissometer pathlength (ft) , L
3. Calculated OPLR
4. Preset OPL.R
ca- maneuvwa s scr g A o the opacii y card -
and 4ivide by 400.
.
Origir 1 position of easure ent )c ob
Reference signal current (mA)
ON
OFT
v,-
V I
,
/
,
-. _ e
.2. Cr g r4a1 positior. of a it ra c sv .tc
.J_
E. instrument Zero Check
13. Chart r*corder opacity (%. Op)
- .34 ’ ,.
c ,it 0 %
pr - 0 ‘1. —
.- — . . :...,. .— .- —-..—
:ate _____________ A tor 0.
A.
e.
‘. .seI.*j.
AL DIT DATA RETRIEVAL.
Stack Exit Correlation
S
.991 —
3U+40o . gi5
. Fault Indicator Lamps
. FiLTER lamp
6. SHUTTER lamp
7. REF lamp
S. WINDOW lamp
9. OVER RANGE lamp
C. Reference E :nai Check
RECEIVED
FEB 6 1984
ENVIRONMENTAl.
SERVICES
:c.
•1
-
- 2o
F. Zero Comper.sation Check
14. Control panel meter optical density (CD)
4’ .OIJ
B—64
-------
a
6i;, .i
‘S.,
.Z$ *Z
. S an Filter Check
20. Span filter optical density (OD) —
21. Span filter output current (mA) _________
t. AGC Check
2. Lamp status
‘ . Alignment. Check _________
23. Image status (centered)
R. P etzor.f1ector WLndox Check
24. im. of cleanLflg
L Transceiver - 1 Check
25. r Ime at .nd of waiting period
S * —
— — — — —
. Install Audit Device
27. Tim. of zero of audit device
N, Insert Low Range Filter
28. Time at end of waiting period
29 Filter opacity (% Op)
Filter serial number
C. tn ernal Sean Check
1.5. original position of optical density range switch
16. Control panel meter opacity (% Op)
C ’7o. .& %)
17. Chart recorder opacity (% Op)
18. . Control panel meter input current (mA)
19. Control panel meter optica] density (OD)
(IS. 62.
- -
- --
.- ---
- --
tgroed 4 dit evs t
CP A’intaid’
g-O.1a
• Used tn tan ngous Raodin s
3—65
-------
0. Insert Mid Rar ge Filter
31. Time at end of waiting period
32. Filter opacity (% op)
33. Filter serial number
-
P. Ir.sert PUgh Range Filter
34. Time at end of waiting period
35. Filter opacity (% Op)
36. Filter serial number
Q. Monitor Response Repeatability (s * tt+rfeleb4P S g. V’)
37—42. Time at end of aiting periods:
P id High
38 39
41 42
43 45
47 48
:. 4:p _______
——.
4 . : r i ;a—E: rater :; :a1 ens ty
.
S. Retrieve R.trc leCtOr Window Check ata
50. Initial opacity reading (% Op)
51. Final opac.ity reading (% Op)
-
T. RetrleVe Trar.sceiver Window Check ata
52. 2nitlal opacity reading(% Op)
53. Final opacity reading
•* £4 d InsPanianeou Rc d v,o s
a —66
Low
44 _ S
007- AI.. _ . .
3,
46
-------
Ti. Retrieve Audit Device Installation Data c - 0.1.
PM — 0F.
54. Opacity reading (% Op) ________
V. Retrieve All Calibration Filter Data
55 -69. Opacity.. readings (% op)
Low Mid Eiah
Ce *4.0 44..
$Vp I4. U.. 7 .•
ii ei 74.15
55 56 57
C4 .l 71.0
71.0
58 .59 60
14.S $4.1 71.0
n.S
e i .
6]. 62 63
C*. /4.0
4. n ‘1.1 U., 72.0
‘•
65 66
C* 4.1 7$,
*6 SI., 7*.o
— -
67 68 69
-------
AUDIT ANM. SES
A Stack Exit Correlation Error
70. Error (U :
1(9lank 4) — ( Blank 3)1
(3lank 3) J
Ill x100
L J
5. Control Panel Meter Correction Factors
73.
r?_ ff4 7j
qqi *Joo 0’ ,.
a
Opacity scale factor:
YtOO
F 11 -( lank 4) (Blank 2e)1
L 3lank 1€) c 100 _______________
Ca- —
_______________________ 100 =
— L J
— 1o :z —
a
factor:
21)
72. Input scale
(Blank
a
a
(3lank
IB)
1
)
___________ a
ar a : zc. 1 f ::r:
(Blank 20)
*
1(Slank 19)/53
(
- I: -• 953 7’
qil
M- ...!1 •*
C..’
((ft
) /5]
) _____
• 50
B—68
-------
_
C. .i.rence signal Error PM — U * iao 0.5/.
74. Error (%):
•1
OYM t.11*b00$ o
( ((Blank 11)/20] —1] x 100
— C U )12E —1 ] x 100 • ________
. Zero Compensation Analysis
7.5. Zero compensation (OD):
a ( lank 14)
- C ) . \ç •
1p ...
76. Post cleaning Zero compensation COD): i
(Blank 49)
a
_ — c . i — o” C. .1S)(.sos1)) * oo3 - 188
• Internal Span Error
* - — c — ,o - a.s
77&. error (% op):
((B1er k I7) ui_ir(Blaflk 4) (Blank 20 )x1 ]
— :—•l2 t _________
.‘
• Lnterna.i Zeo f a VSIS
-S.
— e.
.ro c s ity : a ir ; (% C
• , .
• a--; ::
*•. o•l.
— ( ) * 4 p .54 . 4
3—69
-------
• ical Sur Ce Dust Accu u .at1Ofl
Transceiver Dust Acct.u ulati0fl (% Op):
((blank 52)]—((Blank 53)]
‘a (( ))—t( )]
79.. RetrOreilector Dust Accumulation (% Op)
— ((Blank 5 Ø))— ((3lank 51)]
a (( )]—(( )] a
80. Total Dust Accumulation (% Op.):
((Blank 7 $)]+((31111k 79)]
i i( )]+L( )] a
.. P.R Ccrrectiofl$ on Audit Fi te !
81. Low range filter ( Op):
.t1 (1I(514T 29)/1cø3) 2 lank 4)] x100
a (].—t1—(( •.0 )/ Q3)2 x iøø 17.14
2. : id r ef lter
— [ l (1 t- .a rrK _2 , 3 cj)2t_l
2 • zi . ff1 ) — 3 2ff
::. *
a [ l—(1— [ (31a K )2 1a ‘ x
a [ i—Cl—U’ 4 5 )/1003)2( “ x lOG 2
3—70
-------
t.. D.ter1n Me Mean £rrar ar w 7 afle Audit Filter
84. Test #1 Diii.re11C (% Op): C . U..O l7.I4* -1.1+
— (Blank 55)—(Blank 31) 9M j6.5 /7./4’ -. +
— C C? ,4f,_17.14* .23
55. Test #2 Di i.r*r1Ce (% Op): C& I .0”i7.I ’ —LII.
(9lank 53) —(Slank 81) /7..—/7.14 .14
— C )- ‘ c ,i.t,q•—ii., —.05
86. Test 13 DiZi.r.fl e (% up): C /4.9 — ‘7.i -1.14’
(Blank 61) —(Blank 81) 9m i7.Z-.’7./4 .0
C, 17.2/ /Z14’ .0?
7. Test #4 iff. *Ce (% (3p): Ct /,,.o—/7./4’ —1.14
a ( 1aflk 64 —(8 a k 81) n /7.5 j7 .I4& .34
CF i7•34’I7.i .Z0
88. TeSt #5 iff*rsn e (% Op).: C t #Y,.l —’7./ø’ — 4
a ( 3 k67 (â. a k 82 .) i7 g—IZi4. .04
— C C? /743 . 7. /4s .fl
59. Mean.. p):
cal.a 34: 35 31a ’k 5!ar 57 + r.-; :‘
5
a
— ____________________
S. $
-
S S
c.P — +07 +.20 i’.Zff .c5 .
3—71
-------
j• eter ine 7:ean errOr i r! :id ar ge JC : !i r
90. Test 12. Difference (% 3p): C . a.iq
(Blank 56)—(3lanJc 82) Pm 3&o—3S.zq — gq
) -.( C, 3LJo—38.zi*—.jq
92.. Test *2 DUfer mnce (% Op); C L 3b.J-38.2 -3.,f
— (Blank .59)—(Blank 82) P) 3$.o—a. : -.2g.
) ci 31. 13 -38.2ev .It.•
92. Test #3 Difference (% Op): Ct 3 .13S.2 ? •24q
— (Blank 62)—( 1ank 82) Pm 38.g-u2qr .5,
) — CF 3S.J8-3.2f -.11
93. Test 6 iUere ce (% Cp): CL
* ( 87 6 )— B1ank 82.) P,fl 34jj.2f’ ,4
C, S4., —u.,,. -. 13
4. Test 15 iiere :e 1% Cp): C s .t - S$.29s ..l.7.
— (Blank 68) - (Blank 32)
* C ) ) CF 3a.u•u.zes -.04
:. i a : r i
(E.ar )+ ( 1ar k 91.)+ ar k 9 ( a t: 9 Z) (8 nk 94)
-
CL: - _____________________
5
2. U
• Is -.‘4 — . iee.
1-72
C,-
-------
R . etermin. Mean Error for _ High Range Audit Filter
9 , Test #1 ifference(% Op): Cg (.$.ø 74.Sqs - ..3p
a (Blank 57)—(Blank 83) PI 7t.o .7g .j a .,a,
) a c 74.JS .74.3q -.z*
97. Test #2 Difference C ’ s Op): C . 7i.o. 74.j ..3.3
(Blank 60)—(Blank 83) fl 7 ’e 7 3 a Z.31
) — c.P •,,,
91. Test $3 Difference IS Op): c, — 74 q, .3 .3
— (Blank 63)-(Blank 83) 72..
— ( ) C?
99. rest $4 Difference (S Op):
* (Blank 66)—(BianA S 3) Pin
)C ) — C l
1Ø . Test $5 Diffirenc.(t 0;): ct -231
(Blank 69)—(Slank 82) p 1
Ce ? •2f $ø jP a. ‘. 15
L . Mean Errcr_(%Op ’:
* ( la k 96 +($lar k 97 )+(!lank. 9 8) (Blank 95 )+(3 ank 1 )
-
Pm 1 2 L3Z..3V.S.,.g ,j ,
CF — - — /7
S —
13 —73
-------
I ; -—
S d• J: cr .c ‘.. ‘ c
•j 6 ; .k
88)1
)J
CL 5.(.
-4. 3
L)c ’ 4L
L
L . t.ow Range Audit Filter Confidence Interval
h.Z2. :IDifferences(:
I(Blank 84)I+I(Slarxk 85)I+1(Blank 86)I+J(B2ank 87)J+j(Elank
* )1+,( )1 i(
a
103. r(DUferences) 2 :
* (Blank 84) 2 +(Bjank 85) 2 +(3]ank 86) 2 +(Blank 87) 2 +(5ja 88)21
— ( )2 ( }2 ( )2 (
C 4.28
—
e .IR4 .4 .
104. Confidence Interval (% O )
* 0.2776 x C(5xC3lank 1 3 ]—tC 1ar.k 1C ) fl 5
-
* 0.2776 x ( 5x( - ‘. *
14. Mi ra eAudit 1i .ter Confidence Ir.terval
iCE.
J(B1a k 44(Blank )I+tElank 92)I.&f(Biank 93)f+1(Blank 94.
— ) +k
a Pm 0.35
. aL-
4
: , — — ..
jr
C L. U.3
a
1g7, Confidence.Int,rval(% op):
* G. 7 76 x ((5x(Blank 106)J-E(Blank 105)2])5 C L .2t34 .
2 0.5
0.2776 x ((5x( )] (( ) 3) *
B—74
-------
N. Hiqh Ranae Audit Filter Confidence Thterval
108. t l ifferenCeS1:
— l(31an c 96)L+I(Blank 97)l+1(B1an c 98)I+I(alank 99)H(Biank 100)1
— )Hç )H( 4 .qs
pm .ii.
—
.109. t .(Diff.renc.s):
— (Blank 96) 2 +CBlank 97) 2 +(Blank 9S) 2 +(Blank 99) 2 +(31ank 1CC) 4
a ( )24( )2f( )2 ( )2+( c
em £$.54
1.10. ConfideflCS Int.rval(% 09):
a 0.2776 x ((5x(3laflk 109)].1(Slank lCS)Z))015 c* 2.04.
a 0.2776 x ((5x( )3-f( cp o
0. CalibratIon Zrror
Lii. t.ow range error (% 09): i 6 • i.1 ’
— I(31an c E.9)I+151ank 104) Pm . . f# 5q5x .
C, .,S i ..Sf50a .311 -—
112. Mid range error t 0) C t z..n r 2fl a -i I, ;3
a 107) Pm .97#.S4 S’ .429
a )j+ . .l7O4 d55 . ______
113. RIgi range error . cç ): Ct’ SS # .oa -/ 55 S•
— I(B1a 101)I+(Elaflk 110) Pm .3q*.Q/Jf: .Z J8 2 1 ’
I ..
______
B—75
-------
• a. S Se . a.. . — — —— — . ——a —— — — —. — — —
• — - •‘— —-- _—.
. ai/6,, ,‘s#i,
ate ‘ /Z7/ 4 .;uditcr 0. &#r4r:d qe
4
. Saa#
AUDIT DATA RETRIEVAl .
•CP- c p.1ei - Pøn l I etcr
i.- Can,4uv, C Char4 c r4ev
Wl : O $t I V fr Mg4 r
1. Stack exit dia .ter (ft), L
2. Trar.smiSSOm*ter pathlength (ft), t.
- W an IU’S A.s a r s . on hi pmciè card
3. Calculated OPLR mad divfded b 1 44.
CP . 7
4. Preset OPLR
ON Q
• /
12. Crigi a position of p c::y range s tc ________
. lnstrument Zero Check
13. Chart recorder opacity (% Op)
F. Zero Compensation Check
14. Control panel meter optical density (OD)
Stack Exit Correlation
E t rce .o.. —
4 ’d1#4 Ue j r’
Si .up #Ja c?
2
B. Fault Indicatot Lamps
— -
ff1 —
+4Os
* .
6.
7.
•8.
9.
FILTER lamp
SHUTTER ia p
P.EF lain;
wIi;Dow lamp
OVER RANGE lamp
RECEIVED
FEB 61984
ErIVIRONMENrAhI.
SERVICES
l .
11.
C. Refeer’c. Si nal Check
Origir. positicn of asure ent kflob
e erenCe signal cur er.t (mA)
30 i. .
Prs - 20. 1
3V t- 2o . .
•#
, ( I C , ,
C l 1.14 ‘1’
CR 0
Ai a
3—76
-------
-i-----
‘ 14 5 1 y&
1 e Sean Filter Che
ZCL Span Lit.r optical density COD)
21 . span filter output current (mA)
. AGC Check
22. Lamp tu$
• A jgnm*flt Ch.c! ’
23. I ag. statue
• etr ref1.Ct0r wLndox Chec}
24. Tii e of lean ng
L. Transceiver WtndOW *
25. Ttm. at end of waiti g period
: .
e Install Audit Device
27e ri e of zero of audLt device
. Insert Low Range Filter
28. Tim.at end of waiting period
29. Filter opacitY (% 09)
. Filter serial nurnber
7 -
—7 ---
-7 --
int.rrtal S an Chec
15 Original position of âptical densitY range switch
16 ContrOl panel meter opacity (% Op)
(c 7&5&%)
17 Chart recorder opacity (% Op)
18 Control panel m.t.r input current (mA)
19. Control panel miter optics)? density COD)
ON ,OTT
YES 4 NO
lrnvorJ 4tidifDdVk
l4$iv CP Aini.a*
9.0’1
—
4 Used In +onfangous % adsn s
3—77
-------
0. Ir 5ertX id RangeFilter
31. Time at end of waiting period
32.. Filter opacity 21.5’1 . .
33. Filter serial number
P.; InSert High Range Filter
34. Time at end of waiting period _JL_. -.
35. Filter opacity (% Op)
36. Filter serial number
Q. Monitor Response Repeatabilit Y (S.e Rets’er’. ‘*#a — S . v)
37—48. Time at end of waiting periods:
Z.ow Mid High
37 35
40 41 42
43 44 45
46 47 48
: :- ::—;.! : c —
. . C :r te7 :;.ti:a der.S tY ;CC) _______
S. Retrieve Retrof lector Window Check Dati
50. Initial opacity reading (% Op)
51. Final opacity reading (% Op)
T. RetrieVe Tra”sceiver Window Check Data
52. Initial opacity reading (1 Op)
53. Final opacity reading op )
* Used Ir)d’orxtaneoLis ‘Readin
B—78
-------
U. Retrieve Audit Device Installation Data
4. Opacity reading (% Op)
V. Retrieve All Calibration Filter Data
c* - 0/.
Pm - O•/.
CF
55—69.
Opacity readings (% Op)
Mid
‘7..,
. 0
56
•7. S
• .59
3_7. f
.3 .
62
U..
a..
4,
High
73.0
7+. 0
7%. 71
57
7,..
S
60
75.4
0
63
75.0
1.0
66
73.0
74.9
71’. V
69
r l
C?.
Low
l•7. 0
‘7.7
a i
C l
A”l ,7.
I J7 I .
sa
CA I7.
AR IS..
f .•
61
Ct
I. /7. ,
CP . LLL.
c ,. .6,4
AR IS..
CP 4LLL_
3—79
-------
AU 1’i’ ANAL’ISES
4 . Stack Exit Correlation Error
70. Error (%):
1(Blank 4) — CElank 3 )
•1.
L (Blank 3)
I c ) — C )
—I
L
. Control Panel Meter Correction
71. Opacity scale factor:
I 11 _(31ank 4)(3lflk
—I
L (Elank 16)
f —ae
L
72. InFut scale factor:
(Elank 21)
a
( 1.nk IE
a
;t ca *:y ; : r:
(!lank 2 )
a
(5lank 19)/51
C )
(C
)j53
)
4
—
—
isis—. n7l a -. 4 3
CtL 47 J
X — o ’.
x 100
Factors
pm—
I, i io•
oc T ______________
I — 10 _ (.lql)(.1Z14 )
x 70.SL
____ a
PM—
a
.52
,,.Ioe •a
. f19
, v .__
B—80
-------
C. Reference Sicnal Error
74_ Error (%) :
• ( ((Blank 11)/201 —1 ] x 100
• C (C )/2a] —1 ] x 100 •
“ - [ L_i)*soo o.5%
o1.
. Zero Compensation Ana 1 YS!L !
75... Zero compensation (00):
(Blank 14)
)
76. PoSt cleaning zero co p*flSatiQfl (OD):
— (3laflk 49)
0
—C
p — [ l) [ 10 . .(Q1 )S.5114)) 1
*10O • j .44
• Internal S;a Error CL•
77... Error (% Op): L7 St] (io(4 h1 ) iDo3 S
— I.(3lank 17 )]_(( 11 —(B1ank 4) (Blank
*
— N
j r
‘• Znt.rnal Zerc TTVSi !
77 . :ero c a i y r*a ir ;
— • .a: • :
PM
cp
0
a.,
‘1.
&.i.
S •
—
S
-------
c. tical S rf Ce Dust A Ci. u1atiOfl
78. TransceiVer ouSt AccumUlation (% Op):
a ((Blank s2)] ((a1ank 53)1
a ))—t( )]
79. RetroreflectOr Dust Accu U1atiOfl (% Op)
a ((Blank 5g)]— [ (Blank 51)]
a )]—(( a
80. Total Dust Accumulation C% Op):
a ((Blank 72)3+((Blank 79)]
* It ))+ [ ( )3 —
i. O? R C rec:iOr 5 on it ? 1 e:s
81. Low range filter %
— [ 1 U_((!1ank 29)/lCO]) 2 ’ 4)] x10ø
(i—(1 t( )/100])21 )] x / 7 .14 -
_. rangefilt* tc op):.
• 1_(l ( s1ank 4)3 X
-ff7 x
. ! —. t-
——. •• . . bW. .1 •
a ( _(l. -t(Sla K
a (l ..(l.—(( 41.5 )/1GQ])” .‘ x i ø •
3-82
-------
i. Determine Mean rrc: for Low Rar e Audit Filter
84. Test 11 DiU.r.flC (% Op): Ct 7 -I7 ./4’ — i4
(Blank 55)—(Blank 81) m i1.7 i7./ .5
— ( ) —. CF /1 . 1- 17.14’ ..37
85.. Test #2 Di Z.rence (% Op): C /7? 17./# .14
* (Blank 58)—(5].ank 81) Fm /7q - 17.14. .74
— cp ,.i -i7.iø’ .7t
86. TeSt 13 DifferenCe (% p): /7•f/7•/4. •74
— (Blank 61)—(3lAflk 81) •m /s .-/1iø .a4
C, /7.S •/7.14a •7
87. Test 4 Ciffer.nce (% Op): Ct /7.f-/7./4. .74
( laflk 64—(Slank 81) m /Zc-17./4a.7/,
CF /7 5-/7./4s •g,
88. TeSt 15 DifferenCe (% Op): c.t /a.o —.’7. /q’.si,
—. (3lank 57)—(Slank 8U P n /S.s —17.I ’ .S4
a epil.lc/Z/4a .75
3 . Mean Error (% Cp):
a (B1an c 34 + 3 ank 85 + 1a r: 86 ’ ar,I !7 &
-a -
S
— C )+( )+(
5,
— .I *.74 i .74 #.74 ‘.Sé
0.4
S4 .74 i . /# .7 *.S( .
B -83
-------
. et*rrnine tean error f :r :id ar e
U. Test *1 Difference (% Op): C S7.q. 3 8 L, —. q
(Blank 3G)—(Blank 82) Pm j.,
C )( ) CP 3&48-Sg.29 .;ê .
91. TESt #2 Difference (S Op): c 5 -3Lq .79
(Blank 59)—(Blank 32) Pm 4...- 3a.z ’ 1.71
C ) a . 4 _______
92. Test #3 Difference(% Op): cg —.3f
(Blank 62)—( 1ank 82) 3&Zq .71
a ( ) ( ) a p aeq-s&sq’ .40 -
93. Test 4 Difference (S Op): Ct 3S.e.S8 z . -.2
— (E ank 65)—(3iank 82) fl4,s • j
) a p 3a.sq-J&Zf . o
94.- Test #3 Difference (S Op): Ct S7. -U.Z9 . .•
• (Blank 68)—(aaank. 32) Pm .71
a , Sa.gq-3a.zq .eO
i 3
* (E )+( ank 9 )+( lank 92)+(B1a k 3)+( ar 1 k 94)
*
.S1 .’.7q-. 3 _ 2 - ‘9
c t - -.51
$ I.ij
•4f*. *.ôé*, ’,ô#.4
a.
3-84
-------
Determine MCafl Error for Nigh Range Audit Filter
96L Test #1 ifference(% Op): Ci 73.0— 74 3f: / 3q
(Blank 57)—(Blank 83) 9 177 74.0- 74 Jqa . 3ff
— C ) CP 7 7, 74Jqa
97. TeSt #2 j ferenCe(% Op): C 13.0- 74Sf. ../.3
(Blank 60) —(Blaflk 83) Pm 74.5- 74.jq: .1/
- ( ) — 75. $.74.34S I.z,
98k. Test 13Difi.rSflCe Op): c 73..-7+.3 . -, .
— (Blank 63) —(Blank 83) i 7+. —74 q - q
— ( ) — CP 75d.S -74.S a.v,
99. lest *4 ;iff.r.nC*(% Op): Ct 75o —74. r —/3
• (3lank 66)—(Blank 23) p y —.39
—. P 7S 1.5-74.j *i.2 .
100. Test #5 Diif.r.nc*(% op): c t 13.a—74.3f —/.3f
(Blank 69) —(Slank 83) P S -7 . z 31
— 7f.7/ 74.$ s I. 2 _____
• Mean Error (% 0?):
• ( Blank 9 +(3lank 97)+(Blank 98)+(!lank 99)+(3lank 100 )
a
—c )+(
5
a
•./.Sf-/. 3 - / 3f /.M- 4ff
-‘•I. S f
S
1.32#/.2qiJ. t.4#/.Z
CO _ —a /.tf
5——
B—85
-------
U f - L J.
—
L . 1,ow Range Audit Filter Confidence InterVal
tjDiffereflceSI
1(Blank 84)1+L(31:ank 85)1+1(Blank 86)L+I(Blank E7)1+L( 1ank 68)1
— )F 1(
m 5.8
103. t( ifferenCeS) 2
(Blank 84) 2 +(B flk 85) 2 +(Elaflk 86) 2 +(Slaflk 67) 2 +(Slank 65)2
— ( )2f( )2•4 ( ) S
- Ct 2.4
pm z.q5
104. Confid*flC Interval Op)
e.2776 x (( x flank 1C3))t(!1a1 k lC2) 2 i) 5 c •5 .
2 c
e.2’76 x f l— IC ) ])
z . .Audit !i .ter ConfidenCe 1r.t* .rV
ICS. L iffereflCeS
— :E .a,k 4!1ank 91)I+ CBiank 92)t+I(Blaflk 93)H(Blank 94)
: —v )I I(
M I f.55
.2
— : .
2 2
c i.4f
Mn 7.3
— C, j•gq _
107. ConiidSflCS1nter’ al(% Op):
— O.27’76 x.(rSX(Blaflk 1aGfl —(Calank l05)2)) 5 Ct .270
2 0
0.2776 x ( [ Sx( )]E( ) ) —
3—86
-------
Rance Audit Filter Confidence Interval
Z IDifferencesI:
— I(BlanIc 96)1+kalank 97)1+j(Blaflk 98)j+j(Blank 99)I+1(Blank 100)1
— I( )H( )H( )H(
•m -1.05
—
o . t (Differences) :
a (Blank 96) 2 +(Biaflk 97) 2 +(Blank 98) 2 +(Blank 99) 2 +(3lank 1CC) 2
* )2+( )2 ( )2 ( )2(
Cd 9.44
pip, .( ,2
a
kow rangi error (% 09):
* (31ank 89)fI.(Blaflk I 4)
Mid ran error (% op :
a j(33.ank 9elfrtllank 107)
a!
13.. HLg rar.ge error ( . 0 V
a l01)1+(Blank 110)
1 b ’7
o.7 +.JSS* .qZI
0.774 +. O 7S * •. 5 —
.5).1’.27O* —.2:’ ‘
i.H’. Do’ 1.71
•(,3+.044* .48
—
—1.Sf 4’.D!Sf& . .s..kb J’i1
.?4’.z77f 1.w(Z 7
,z ,u./3,S j. 30
N. jab
108.
110. Confidence I t.rval(% Op):
• 0.2776 x ((5x(Blank 109fl—((Blank 108)23) 5
a 0.2775 x ((5x( )I—t( )2 )O.5 a
O Calibration Error
3.11.
Cd •0I3
m •277
fl •p1 9
C.’
p in
Cp
CL
Pm
ct
Pm
CP
3 -87
-------
APWZNDU C.
W4W CITY PQWZ AND ZiICèiLT CQIIPANY, XATAN STATZON
LIAR S!Z OPACITY CEMS
o QA Pxoc.dUrS$
o Daily QA 1sck iasulta
o So ras aslf A i4.tt Data and CaJ.cu2ationa
-------
OPACITY MONITOR QUALITY ASSURANCE PROCEDURES
RANSAS CITY POWER A W LIGHT C PANY, IAIAN StATION
LSI RM41 OPACLII MONITORING SYSTEM
OVERVIEW 07 pA PROCEDURES
A proposed quality assurance pregran has been developed for the lansas
City Power and Light Co. (ECPL) tatsu Station opacity monitoring systam. me
specifiC QA procedures have been developed to be compatible with the tatan
Station (1) opacity monitoring instrunentation and monitoring syst
configuration, (2) data recording device, (3) effluent handling syst , and (4)
aanagexent and organizational structure. Th. proposed QA progran will be
field—tested during lmplent*tion, reviewed and evaluated periodically, and
revised as necessary over a on.-year period. Through this process, it is
expected that QL procedures sill be developed and damonstrat.d which are both
adequate for inr.aining high levels of data quality and cost effective in
terms of necessary tine and material resource expenditures.
The following .l.ints are included in the proposed latan Station opacity
monitor quality assurance progrexo
(1) Daily Log. Daily Check Instructions The Daily Log is to be completed
by Operations personnel in the boiler control roam. Step-by-step
Daily (mack Instructions are provided far completing the Daily Log
Tb. Daily Check and Daily Log do not require ext sneive time to
complete, nor do they require that th. person performing the procedure
be intimately f liar with th. opacity monitoring iustrientacion.
Tb. Daily Check and Daily Lag provide for identification of monitoring
probloms sad initiation of corrective action.
(2) Corrective Action Los and Instructions — The Corrective Action
instructions and Log are used iuhen adjustment, repairs, and/or other
non-routine corrective action is necessary as indicated by the Daily
Checks. Tb. Corrective Action procedures are to be utilized by
technical personnel experienced in resolving probiw with the
monitoring systs. The specific corrective action procedures are
relatively extensive, but will provide adequate docunentation for
future ref inent of Q& procedures and donatracion 0 f their
effectiveness. The corrective action procedures are utilized only on
an. as necessary” basis.
(3) periodic QA Check and instructions — Tb. Periodic Q& check is intended
be performed in conjunction with the opacity monitor routine
preventive uintsw’cs pragran performed three times per year at the
latin Station. The Periodic QA Check procedures provide for checks of
.onitoring aye t components and operating status which are
unfeasible, impractical, and unnecessary on a daily basis.
C—I
-------
(4) The documentation of the QA program Will be reviewed periodically to
determine if modification to the proposed procedures are
appropriate. Such modifications may be made as additional. experience
and data are obtained.
(5) An attampt wiLl. be made to develop a practical method for conducting
an annual clear—path check of the tatan Station opacity monitoring
systam. If successful, this method will be utilized in conjunction
with a performance audit of each monitor to be conducted by station
personnel during the project and a p.rfor an e audit to be conducted
at th. end of the one—year study by the Pilot Proj ect Staff.
C—2
-------
KANSAS CITY POWER AND LIGHT COMPANY
IATAN STATION
DAILY CHECK INSTRUCTIONS
OPAc iTY MONITORING SYSTEM
(Lear Siegler, Inc. PM4L)
The following are step-by-step instructions for conducting the Daily
Check of the latan Station opacity monitoring systems. Criteria are provided
for determining when corrective action should be initiated. The person
conducting the Daily Check of each monitoring system ehould complete all
blanks on the Daily Log as indicated below.
I. GENERAL INFORMA I0N
o Enter ne of person performing check, the date (month, day, year), and
the time of day (24—hour clock) that the check i. begun.
o Hours Boiler Down — Enter the nomber of hours the boiler was not in
operation (i.e., not cosbusting fuel) during the preceding 24—hour
period.
o Hours Monitor Do — Enter the nisiber of hours the monitor did not
provide a record of effluent opacity during the preceding 24—hour
period. Describe monitor downtime in ‘Part IV Comments” (i.e., c e
outage, time began, time ended, and any corrective action taken to
return monitor to service.)
II. FAULT LAMPS
o Exius the fault lanpe on the Control Unit. Check the appropriate box
on the Daily Log to indicate the status of each fault lp (check “YES”
if lp is illominatsd).
III. PANEL METER DATA
o Rotate the Measurement switch to the “Re position and record the
reference current value (ma) indicated on th. 0 to 30 scale.
o Rotate the Measurement switch to the “COM? ” position and record the zero
compensation level.. (The panel. aster readout is in units of optical
density, OD.) Return the Measurement switch to the “100Z OPACITY”
postion.
o Check the appropriate boxes on the Daily Log to indicat, whether the
reference and zero compensation values are outside of acceptable limits.
IV • STRIP CHAR ? DATA
o Enemine the strip chart to determine the zero and span responses of the
most recent monitor calibration. Record the zero and span calibration
values on the Daily Log in units of I opacity.
C-3
-------
o Check the. appropriate boxes on the Daily Log to indicate whether the
zero and span values are outside acceptable limits.
Note: IF YES ANSWERS ARE INDICATED FOR ANY OP THE QUESTIONS ON THE DAILY
LOG, CORRECTLv ACTION SHOI LD BE INITIATED AS SOON AS POSSIBLE.
V • C 1ENTS
o Describ, any problems observed during the performance of the Daily Check
and/or any other apparent problems which may affect monitor performance.
o zai a THE TINE OF DAY TEAT TEE DATtY CHECZ IS COI1PLITED. (Part I)
C-4
-------
III. PANEL Mzi & DATA
‘REP vali.te (ma): _____
Zero Compen*atiOfl (00):
Iv.
Opacity Monitoring System
DAILY LOG
KANSAS CITY POWER AND LIGHT IATAN STATION
I • GENERAL INFORMATION
Date: __________ Time Start: _________
Tim. Complete:__________
Hours Monitor Down:
Hours Boiler Down:
II. FAULT LAMPS
-
FAULT LAMPS ON?
NO
‘ zs
Pii .ter
Shutter
Eel
Windows
Over Range
.
trO
Does
Doss
“REP” value exceed acceptable, range
“zuo CON?” .xce.a acceptabLe range
(17.9-22.2 ma)?
. .011 00)?
.
STRIP
Zero
Span
CE&BT DATA
Calibration (Z opacity):
Calibration (% opacity):______________________
NO
YES
Doss
Does
zero value exceed acceptable limits
span v Lue exce accepti5ls limits
of + 2.OZ opacity?
± 2. m opacityT
:
IF YES ANSWERS ARE INDICATED FOR ANT OF THE ABOVE QUESTIONS, CORRECt iVE
ACTION SHOULD BE INITIATED AS SOON AS POSSIBLE.
V. CONNENTS:
c—5
-------
KANSAS CITY POWER AND LIGHT COMPANY, IATAN STATION
PERIODIC QUALITY ASSURANCE CHECK INSTRIJC’rIONS
LSI OPACIii MONITORING SYSTEM
The foUoving are step—by—step instructions for performing the Periodic
QA Checks of the tatan opacity monitoring system. Initially, the Periodic QA
Cheeks are to be performed in conjunction with th. routine opacity monitoring
syst maintenance progr performed at least once every four months. The
person performing the QA Checks should complete all bl tnk on the Periodic QA
Check Log.
I. GENERAL INYORMATION
o Enter the ne of the parson performing th. check, the date (month,
day, year), and the tine of day (24—hour clock) that the check is
begun.
II. C0N OL UNIT CALIBRATION CHECK DATA
(1) Rotate the Measurement switch to the “REP” position and record the
reference current value (me) on the Log. Return the Measurement
switch to the “100% Opacity” position.
(2) Initiate a manual calibration by depressing. the “OPERATE/CAL”
switch. Record the zero calibration responses (Z opacity) of the
panel meter and strip chart recorder.
(3) Rotate the Measurement switch to the COMP” position and record the
zero compensation value indicated by the panel meter (OD). R*turn
the Measurement switch to the “100% Opacity” position.
(4) Initiate a span calibration check by depressing the “ZERO/SPAr
switch, and record the panel meter and strip chart span check
responses (% opacity) on the Log.
(5) Record the minimum 6—minute average opacity indicated by the chart
recorder for the hour period preceding the QA check.
III. TRANSMISS( (ETER CHECK/SERVICE
(1) Ac the monitoring location, check the AGC LED (Automatic Gain Control
light itting diode) on the right hand side of th. transceiver, and
record whether it is “Or or “OFT.” If the AGC is not illuminated,
repairs to the monitoring system must be completed before co cinuing.
(A Corrective Action Log Sheet should be filled out.)
(2) Alignment Check — Remove the plastic cover from the mode switch on
the transceiver and turn the switch to the “ALIGr position.
Determine the optical alignment status of the transceiver and
retroreflector by looking through the “bull’ s eye” and observing
C—6
-------
whether the image is. within, the circular target (acceptable), or
outside the circular target (unacceptable). Indicate the position of
the light bean on the diagrsm, and check the appropriate box for
alignment status on the QA Log.
Open the retoreflector, and determin, if the light bean appear, to be
centered withia he port. Indicate the apparent position of the
light bean on the diagr and check the appropriate box for
retroreflector alignment statue on the QA Log.
If the optical. alignment is unacceptable, realign the opacity
monito ring sy. tan in accordance with the manufacturer’ $
instructions. If a shift in the baselin, opacity occurs after
realignment, note the magnitude of the change which was observed in
‘Part V CC* MENTS. ’
(3) Inspect and service as necessary, the purge-air blowers, air
filters, and shutter sch it1am a. per the manufacturer’s
instructions. Note wh.ther the blower systan status is accsptable,
and describe any corrective action taken Ofl the QA Log.
(4) Letroreflector Cleaning/Check Record the average current value (ma)
corresponding to th. double-pass transmittance indicated by the S—Box
ester. Also, record the ac t time to allow sub sequent determination
of the ‘before cleaning’ effluent opacity from the chart record (or
have an. assistant note the panel. meter opacity value if t -way
caumonications are available). Release the retroreflector latches,
swing the retroreflector open, and ranove aLl accnmulatsd particul ate
within the optical path of the monitor. Clean the retroreflector
surfaces according to the manufacturer’ a instructions. Close and
secure the retroreflector.
Record the avenge tnai’ttance indicated by the J”Box meter and the
‘pose cleaning’ exact time (or effluent opacity level) • Wait at
least t mo full. integration periods (12 minutes) before performing
step (5) unla.s an assistant records real t ine data.
(3) Transceiver Cleaning/Check — Record the average effluent
transmittance indicated by the 3-Box aster and the exact time (or
average effluent opacity). Balsa.. the transceiver latches, swing
the transceiver open, and rove all acenmulat.d particulate matter
from the optical path of th. monitor. Clean both the transceiver
window and the zero reflector according to the manufacturer’
instructions. Close and secure the transceiver,
Record the average effluent transmittance indicated by the 3—Box
meter and the exact tine (or the ‘post-elwttng ’ effluent opacity).
(6) Return to the control unit/data recorder station and obtain the
average opacity values indicated by the 6—minute chart recorder
corresponding to the times recorded on the data sheet (i.e. before
and after alignment adjustments, before and after cleaning of the
r.etroreflector, and before and after cleaning of the transceiver).
c_i
-------
Record all data on the QA Log. (This step is not necessary if an
assistant records real—time opacity values during the QA Check
activities.)
(7) Note periods of cleaning on the strip chart record to ensure that
these periods will, not be later mistaken for excess missions. Reset
alarms if activated during QA Checks. Initiate zero calibration to
reset zero compensation and record the post—QA Check zero
compensation level (OD) on the QA Log.
(8) Note that the periodic QA Check was performed in the Part V
CCMMENTS” section of the Daily Log.
IV. PINAL MEASUREMENTS
(1) Upon completion of all, th. above steps, record the min4 6—minute
average effluent opacity value displayed on the strip chart for the
hour period following completion of all adjuatmenta, repairs, and
service for the monitor.
(2) Initiate a manual calibration by depressing the OPERLTE/CAL” switch.
Record th. final zero compensation value using the procedur, detailed
in II (3) above.
V. C MENTS
All observations regarding monitor performance should be explaine4.
ENTER TII E OF DAT PERIODIC q& CEE IS C PLETZD (PART I).
C—8
-------
Opacity bnitoring Systen
PERIODIC QA CHECK
AND LIGHT COMPANY
_______ Date:_____________
Panel Meter
TAT&J STATION:
Tins Start:
Tue Coaplete:
Chart Recorder
KANSAS CITY P JER
I. Baa.:________________
II. CALIBRATION HECK DA
Reference Current (as)
f / / / / / j
Zero valu. (% opacity)
Zero ccsp.nsatiofl OD
Span value (Z opacity)
‘ / / / Z / ,
III.
nu -iiin. opacity value (hour
TBANSMISSCMETER CHECK/Sas.VICE
preceding
QA. Check):____________
S.. instructions
if I CC is not on.
Be on Diagr)
tetroreflector
YES
NO
1.1
2.
AGCON? I
ij ent Status (Note position
Transceiver
of
Light
4
A1ig .nt A cepCabla?
YES
Transceiver
Retror.fl.sCtOr
E
[ itoi.sr Status OK?
YES
transceiver
&.troref3.eCtOr —
3
4.
5.
See instruction. if
a1igi .nt is not acceptable.
as tore I
T E
STRIP CaA T .7—BOX
(% opacity) (Z tranaaittance)
After
r.t;;r.fleCtDr
cleaning
Before
transceiver
cleaning
IV. FINAL MEASVR NTS
1 • ) nimus 6-win, opacity value (hour following QA Check):
2. Final Zero Coap.naatiofl value (panel aster, OD):______
V. COMMENTS:
C—9
-------
KANSAS CITY POWER AND LIGHT CO., IATAN STATION
CORRECTIVE ACTION INSTRUCTIONS
LSI OPACITY MONITORING SYSTEM
The following are step—by—step instructions for completing the Corrective
Action Log when adjustments and/or repairs of the opacity monitoring systen
are necessary. The person performing the corrective action should complete
all blanks on the Corrective Action Log as indicated bilow.
K. GENERAL INFORMATION
o Enter the ne of person performing repairs or adjustments, the date
(month, day, year), and the time of day (24—hour clock) that the
corrective action is initiated.
II. SYSTEM/MONITOR FAULTS
o Enter “ON” or “OFF” for each fault l p on the Log.
o ) nitor calibration and completion of Part III of the Log is not required
if “FILTER” or “ u&i-rraR ” problens initiate th. correctiv, action.
However, if the ‘REP, IJINDQW, or “OVER RANGE” fault l p.
illuminated, the Control Unit data listed in Part III must be obtained
prior to adjustment of the monitor.
o Record. the time when the fault is corrected. Describe all, corrective
action taken in the “Part IV CCRNENTS ”.
UI. CONTROL UNIT
(1) Rotat, the Msaaurweent switch to “REP” position and record the pane].
meter as reading (0 — 30 scale).
U the “REP” is not within acceptable range (green band of panel meter:
17.9 — 22.2 ma), — .k . necessary adjustments, and enter post—adjustment
“REP” ma reading on the Log. (If no adjustment is ..required, enter
“14.”)
(2) Rotate the ifeasurweent switch to the “100% OPACITY” position. Depress
the “OPERATE/CAL” switch and record the monitoring syatwe zero check
responses indicated by both the paneL meter and the data recorder
(I opacity).
(3) Rotate the Measurement switch to the “C (P ” position, and record the
zero compensation level displayed by the panel meter in units of optical
density (OD).
C—tO
-------
(4) Cleaning of the transceiver and retroreflector optics and/or ocher
adjustments are necessary when:
(a) zero check response exceeds + 2% opacity, or
(b) zero compensation exceedè + .018 optical density.
If no adjustment is necessary, enter “NA” on “Adjusted. Zero Value” and
“Adjusted Zero Camp” lines of the Log.
Describe all adjustments and/or corrective action in “Part IV
COMMENTS.” After all adjustments are completed, repeat steps (2) and
(3) above and record the post—adjustment zero responses and zero
compensation values on the Log.
(5) With )lsaaurexsnt switch on “100X 0PAC ix and th. monitor in zero check
mode, depress “zElO/SPAN ” switch.. Racord the monitoring sys tel span
check response displayed on bOth th. panel set et’ and th. chart recorder
( opacity).
(6) Adjustment of the monitor is necessary if either of the span responses
of eke monitor exceeds + 2% opacity from the correct value.
TI no adjustment is necessary, enter “NA” on the “Adjusted Span Value”
ha, of the Log. Describe all. adjustments and/or correctiv, action in
Part tY cn,amzwrs.” After all adjustments are completed, repeat step
(5) above and record the post—adjustment span respous. on the Log.
IV.. C TS
The reason for initi*tiu$ corrective action should be stated, and all.
repairs and/or adjustments perfoimed as a result of the above procedures or
as a result of other monitor salfimctioua should be described. Sufficient
explanation should be provld.d to determine what was done and what effect it
had on monitor performance.
ENTEE TIME OF DAY ALL CORBEGTIVS ACTION IS COMPLETED. (Part I)
C—il
-------
KANSAS CITY POWER
I. GENERAL INFORMAflQN
Name: -
II. SYSTEM/MONITE FAULTS
FAULT UZ4PS ON?
NO
YES
CORRECTED
Date
FILTER
Stiur
.
REP
WINDOWS
OVER RANGE
PANEL METER
REPvalus(ma)
Adjusted “REP” value (u)
1/y /Zd
ZERO value (2 opacity)
ZERO camp (OD)
i uated ZERO value (2 opacity)
/ /
AdpustedzERoccsp(QD)
SPAN value (2 opacity)
/‘Z / 7/
Adjusted SPAN value (2 opacity)
Opacity Monitoring System
CORRE( ijy ACTION LOG
AND LIGET COMPANY
____ Date:
IATAN STATION:
Time Start:
Time Complete:
Note: Monitor calibration and completion of Part III below is not required if
“FILTER” or “ sui a ” problems initiate Correction Action.
III. CONTROL UNIT
CHART RECORD
Note: (am) and (OD) values from p ”' ’ aster; all other data from strip chart
recorder.
IV. C *4ENT3: (Describe adjustments to monitor and/or all other corrective action)
C—12
-------
OPACITY CEMS DAILY CHECK RESULTS
KANSAS CITY POWER AND LIGHT COMPANY
IATAN STATION
MONTH: JUNE, l 3
‘rilE FAULT REFERUCE ZERO SPAN
DAY RE. LAMPS jp pJT METER CHART COMP METER CHART OPERATOR COMMENTS
(MIN.) (MA) (CD)
1
2
3
4
5
6
7
$
10
Ii
12
13
14* 7 20.1 0 0 0.016 30 31.5 Bird
15 10 20.1 0 0 0.016 31.7 31.7 Bird
16 7 20.1 0 0 0.015 31 312 BPt
17 5 20.1 0 0 0.016 31.7 32 Bird
18 11 20.1 -02 -02 0.015 32 32 Opol,n
Ig 8 20.1 -1 -1 0.014 32 32 Opolin
20 5 20.0 0 0 0.01532 32 Opol.n
21 11 ig.8 0 0 0.015 32 32 W tz
22 4 202 0 0 0.015 31.7 31.7 8P
23 5 20.2 0 0 0.014 31.7 31.8 Bfr 1
24 4 20.2 0 0 0.015 31.7 31.8 Bird
25 3 20.1 0 0 0.014 32 32 Opoi.n
26 5 20.0 0 0 0.01432 32 Opolen
27 13 20.0 0 0 0.014 31.7 31.7 St ’S
28 10 20.0 0 0 0.014 31.7 31.3 Sti*
30 5 20.1 0 0 0.014 31.7 31.7 Bird
* First d ij oIQA rpl.mintatlon.
C-I. 3
-------
OPACfrY CEllS DAILY CHECK RESULTS
MONTH: JLY,1993
KANSAS CITY PO ’ER AND LIGHT COMPANY
IATAN STATION
TIlE
FAULT
REFERENCE
ZERO
ZERO
SPAN
DAY REQ.
LAMPS
CURRENT
METER
CHART
COMP
METER CHART OPERATOR COMMENTS
(MIlL)
(MA)
(CD)
32 32
2 8:00 REF. on REF. on -1 -1 -0.02 29 29 Changed transceivr band
15:30 REF. on 18.3 -1 -1 32.4 32.4 on P1141.
3 6 20 0 0 0 32.4 32.4
4
5
6
77 20 0 0 0 32 32
85 20 0 0 0 32 32
95 20 0 0 0 32 32
105 20 0 0 0 32 32
11 5 20 0 0 0.00232 32
12
13
14 5 20.3 1.5 1 -0.005 33.5 33.5
15 5 20.4 1.5 1 -0.004 33.1 33
165 33 32
17 5 20.3 12 1 -0.005 34 33
18 5 20.4 1.4 1 0.004 33 33
196 20.4 2 2 -0.00234 34
20
21 5 — 2 1.5 -0.002 34 34
225 — — — — — —
23 A*
24
25 4 20.5 2 1 -0.002
26
27
28 ‘ 20.5 2 1 -0.002 33 32.4
29
30
31
c—14
-------
OPACITY cais DALY CHECK RESULTS
MONTH: AUGUST , 1Q83
KAI AS CITY POYER AND LIGHT COMPANY
IATAN STATION
TITlE
DAY REQ.
(MEl.)
FAULT
LAMPS
REFERENCE
CURRENT
(MA)
ZERO
METER CHART
ZERO
COMP
COD)
SPAN
METER CHART OPERATOR COMMENTS
1 3 20.5 2 1 -0.002— 32.2
22 20.0 0 1 0.00232.3 322 SmIth
333 20.4 1 1 0 :33 33 Drqdin
4 2 20.4 2 1 -0.001 32.5 32.2
5 5 20.5 2 1 -0.001 32.5 32.1
‘35 20.4 2 1 -0.00132.532.2
7 6 20.5 1 .Q 0.8 -0.001 32.5 32.2
8 3 20.5 1.8 1.7 -0.001 32.3 32.1
Q 5 20.0 0 0 0 32 32
105 20.0 0 0 32 32
11 8 20.0 0 0 0 32 32
127 20.0 1 1 0 :33 33
136 20.0 1 1 0 33 33
146 20.0 1 1 0 33 33.
15 5 20.3 1.8 1 0.001 32.2 322
16
17
18
1Q
20
21
23
24
25
26
27
28
30
31
c—15
-------
0PACIT IXMS DALY CHEcK RESULTS
MONTH: SEPTEMBER, 1Q83
KANSAS CITY P0’WER NO LIGHT COMPANY
IATAN STATION
DAY
TIME
REQ.
(MEL)
FAULT.
LAMPS
REFERENCE
CURRENT
(MA)
ZERO
METER CHART
ZERO
COMP
(00)
SPAN
METER CHART
OPERATOR
COMMEJ.rr$
•
.
1
2
3
4
5
6
7
8
Q
10
11
12
13
14
.
15
16
5
20.5
0.5
0
0.015
324 322
17
4
20.5
1.2
1
0.009
32.4 322
18
5
20.5
1
1
0.01
32.4 32
1Q
20
21
22
5
20.5
12
1
0.008
32.6 32
23
5
20.5
1.2
0.8
0.0075
32.4 32
24
?
20.5
12
1
0.012
32.4 32
Adjusted p e4 miter.
Meoh.urowa 1%hiqh.
25
5
20
1
1
0.01
32.4 32
28
5
20
0
0
0.01
32 32
Dr jd.n
27
28
6
20.1
1
1
0.01
33 32.5
BIrd
29
5
202
02
02
0.009
32.4 32.4
30
5
20.0
1
1
0.008
32.4 32.2
C—i 6
-------
OPACITY CEMS DALY CHECK RESULTS
KANSAS CITY POYER AND LIGHT COMPANY
IATAN STATiON
MONTh: OCTOBER, 1983
TPIE FAULT REFERENCE ZERO ZERO SPAN
DAY REQ. LAMPS CURRENT METER CHART COMP METER CHART OPERATOR COMMENTS
(Mift) (MA) (00)
1 5 20.0 1 1 0.01 32.1 32.1
25 20.0 1 1 0.01 5322 322
3 5 20.1 1 I 0.015 32.4 32.4
4
5
6 5 20.0 0 0 0.009 32 32 Dr jden
74 20.0 0 0 0.0132 32
85 20.1 1 1 0.00932 32
95 20.1 11 0.00932 32
10
11
12 5 20.1 1 1 0.00932 32 BPd
13
14
155 20.1 1 1 0.00932 32
16 10 20.1 1 1 0.009 32.1 32
17
185 20.1 1 1 0.00832.1 32 BPd
19
20
21
22 5 20.1 0.5 0 0.011 32 32
23 — 20.1 0 0 0.01132 32
24
25 10 20.1 0 0 0.01 302 302 BPd
26
27
28 5 20.3 0 0 0.014 31.9 31.9 8*d
29 3 20.1 0.2 0 0.012 32 32
30
31 8 — 0.3 0 0.0132 32 St
C— 17
-------
OPACITY CEMS DAILY CHECK RESULTS
KANSAS CITY PO’WER AND LIGHT COMPANY
IATAN STA11CN
MONTH: NOVEMBER, 1 83
TtIE FAULT REFERENCE ZERO ZERO SPAN
DAY REQ. LAMPS CURRENT METER CHART COMP METER CHART OPERATOR COMMENTS
(MIN.) (MA) (00)
1 6 20.1 1 1 0.01 31.S 37 Sbd
2 5 20.1 1 t 0.01 32 32 Dr’jden
3 5 20.0 1 0.5 0.01! 32.2 32
4
55 20.1 1 0.5 0.00832 32
6 5 20.1 0.! 0.5 0.008 — —
7
8
10 5 20.0 0 0 0.009 32 32 Dnjdsr*
11
12 5 20.1 1 0.! 0.005 32.1 32
13! 20.0 1 0.! 0.00532 32
145 20.1 1 1 0.00532 32
15
16
17
18
19 20.1 0.5 0.5 0.01 32.2 32.5
20
21
22
23
24
25
26 5 20.1 0.5 0 0.01 32.4 32.4
27 5 20.1 0.5 0 0.009 32.4 32.5
28
29
-------
OPACITY CEllS OM.Y CHECX RESULTS
KANSAS CITY POYER AND UGHT COMPANY
IATAN STATION
MONTh: DECEIBER, 1983
TIME FAULT REFERENCE ZERO ZERO SPAN
DAY REQ. LAMPS CURRENT METER CHART COMP METER CHART OPERATOR COMMENTS
(M I t) (MA) (00)
1•
2
3
4 5 20.1 0.8 02 0.07 32.4 32.5
55 20.1 3 0.5 0.00932 32.7 8b d
6
7 5 20.1 0 0.5 0.006 32 32.1
85 20.1 0.8 .0.6 0.006322 33
9 3 20.1 0.8 0.5 0.005 32.5 32.9
10 1 20.1 02 — 0.00532.3 —
11
12
13
14
15 5 20.1 0.5 0 0.00$ 32.4 32.3
16
17
18
19 5 20.2 0.1 0 0.003 32.1 32 Bb d
20
21 4 20.1 0.2 0.1 0.003 32.5 32.8 Bfr d
22
23 5 20.0 0.1 0.1 0.001 32.5 32.5 Dnjd.n
24
25
26
27
28
29
30
31
C— 18
-------
OPACITY CEllS DAILY CHECK RESULTS
MONTh: JANUARY, 1984
KANSAS CITY POWER M LIGHT COP1P ANY
IATAN STATION
TIME
FAULT
REFERENCE
ZERO
ZERO
SPAN
DAY REQ.
LAMPS
CURRENT
METER
CHART
COMP
METER
CHART OPERATOR
(MIN.)
(MA)
(00)
1
2
3
4
5
7
8
10
11 5 20.1 0 0 0.00932 32 Bird
12 5 20.1 0 0 0.01 32 32 Bird
13 5 20.1 0.2 0 0.009 32 31 Bird
14
15
15
17
18 5 20.2 02 0 0.007 32.1 32.8 BIrd
19
20 • 5 20.1 0 0.006 32.1 32.1
21
22
23
24
253 20.2 0 0 0.0132 32 Bird
25
27
28
29
30
31
C—I. 9
-------
OPACITY CEMS DALY CHECK RESULTS
MONTH: FEBRUAR 1Q84
KANSAS CITY POYER Af LIGHT COMPANY
IATAN STATION
DAY
TIME
REQ.
(MIN.)
FAULT
LAMPS
REFERENCE
CURRENT
(MA)
ZERO
METER CHART
ZERO
COMP
(00)
SPAN
METER CHART
OPERATOR COMMENTS
1*
5
20.1
1.8
1.8
0.015
32.4
32.4
Smith
2
3
4
5
6
7
8
I ;
10
11
12
13
14
15
10
17
18
Ig
20
21
23
24
25
26
27
28
2Q
‘Listdaujofr.port.dQAdota.
C—20
-------
APPENDIX B.
— -
c
LEAR SIEGLER RM-.4].
PERFORMANCE AUDIT DATA SHEETS
I
— — — — C-2] _ — — — — —
-------
LEAR SIECLERS INC. RM41 PERFORMANCE AUDIT DATA SHEETS
Date ___________ Auditor — Source ID No. _____
AUDIT DATA RETRIEVAL
A 4 Stack Exit Correlation
Stack exit diameter (ft), L
Transmissometer pathlength (ft),
Calculated OPLR
Preset OPL.R
B, Fault Indicator Lamps
FILTER lamp
SHUTTER lamp
REF lamp
WINDOW lamp
OVER RANGE lamp
• Reference Signal Check
10.
U.
D. Opacity Measurement Range
12. original position of opacity range switch ______
E, Instrument Zero Check
13. Chart recorder opacity (% Op)
‘ Zero Compensation Check
14. Control pan.l meter optical density COD)
1.
2.
3.
4.
‘1
5.
6.
7.
8.
9.
( /,/
‘I
. $__—
Li 4 .
1 1
:‘ f .f1 .4_ I r
l’t
ON OF?
,
Original position of. measurement knob
Reference signal current (mA)
C—22
-------
C. Lnternal Span Check
j • Original position of optical density range switch AJ/if
16. Control panel meter opacity (% Op) —
17. Chart recorder opacity (% Op) 31
18. Control panel meter input curreift (mA) _________
19. Control panel meter optical density COD) 3; I
H. Span Filter Check
20. Span filter optical density COD) -
21. Span filter output current (mA) _________
I. AGC Check ON OFF
22. Lamp status ________
J.. Alignm.nt Check YES NO
23 . Imag. status (c.nter.d) iv -i
K. Retroreflector Windox Check
24. Tim. of cleaning
I .. Transceiver Window Check
25. Time at end of waiting period
26. Time of cleaning / r,& ’
M. Install Audit Device
27. Tim. of zero of audit device
N. Insert Low Range Filter
28. Time at end of waiting period
29. Filter opacity ( op)
30. Filter serial number _________
C .-23
-------
0 InsertMid Rangefilter
31. Tim. at end of waiting period _________
32. Filter opacity (% op) ________
33. Filter serial number ________
. Insert High Range Filter
34. Time at end of waiting period _________
35. Filter opacity (% Op) —
36. Filter serial number
Q. Monitor Response Repeatability
37—48. Tim. at •nd of waiting periods:
t,ou • Mid High
_______
3•7 ’ 38 39 ’
3 / f•,vs. ( / _______
40 4 42
43 44 45
46 47 48
R. Recheck Zero Compensation
49. Control panel meter optical density COD)
S. Retrj.v.R.troflectOr Window Check Data
50. Initial opacity reading (%
51. Final opacity reading (% Op)
‘r. Retrieve angcajver Window Check Data
52. Initial opacity reading (% op)
53. Final opacity reading (% op)
C—24
-------
U. Retrieve Audit Device Installation Data
54. Opacity reading (% Op)
V. Retrieve All Calibration Filter Data
55—69. Opacity readings (% Op)
Low Mid High
______ 2 % w - (7
55 56 /‘57
58 59 60
61 62 63
64 65 66
67 68 69
C—25
-------
-‘-
AUDIT ANALYSES
A. Stack Exit Correlation Error
70. Error (%) :
(Blank 4) — (Blank 3)
at
L (Blank 3)
rc ) — C
at
L
Control panel Meter Correction
71. Opacity scal. factor:
I 1 _ 10 —(Blank 4) (Blank 20)
—
72. Input scale
(Blank
(Blank
C
73. Optical density scale factor:
(Blank 20)
a
((Blank 19)/51
-I
— N 3 1 )/%1 —
7
)
B.
x 10•0
x 100
Factors
1 , d
x 100
x lOO=
(Blank 16)
s) )(. y
factor:
21)
18)
a
/ ,
. _,—. )
C—26
-------
C. Reference Signal Error
74. Error (%):
a ( ((Blank 11)120] —1 1 x 100
— ( (C )/201 —1 1 X 100 =
D. Zero Compensation Analysis
75. Zero compensation (OD):
(Blank 14)
—( 0
76. Post cleaning zero compensation COD):
— (Blank 4 )
)
E. Internal Span Error
77a. Error (% Op):
a ((Blank 17 )]_(( 1 ... 10 —(B lank 4) (Blank 2 )xl00)
((3 s3 )]((11O ) )xlOO] ______
F. Internal Zero Analysis
77b. Zero opacity reading (% Op):
a (Blank 13)
) a _______
C—27
-------
C. Optical Surface Dust Accumulation
78. Transceiver Dust Accumulation (% Op):
* ((Blank 52 )]—((Blank 53)]
- (C )](( )3 (
79. Retroreflector Dust Accumulation (% Op)
((Blank 50 )]-((Blaflk 51)]
— (( )]—(( )] — __________
80. Total Dust Accumulation (% Op):
((Blank 7 8)]+((Blank 79)1
- (( )J+(( )J - _______
H. OPL.R Corrections on Audit Filters
81. Low range filter (% Op):
(l_(1 (CB1ank 29),l001)2 1
2 __
— (1.(1(( $ #‘ )/100]) x 100 — ________
82. Mid angefilteC (% Op):
— (l_(l ((alank 32 )/ 100 ].)2(B lank 4)] 100
/
— (].—(1—(( t)’ )/100])2( ‘ * 100 — _________
83. High rang* filter (% Op):
* (l_(1 C(B1ank 35 )/ 100 ])2( Blank 4) x 100
— (l—(l—(( )/ ØØ])2( )] x 100 —
c.-28
-------
I. Determine Mean Error for Low Range Audit Filter
84. Test l Difference (% Op):
— (Blank 55)—(Blank 81)
* ( , 1. )—( ) a
85. Test #2 Difference (% Op) :
— (Blank 58)—(Blank 81)
* ( • )..( (> ) a
86. Test 3 Difference (% Op):
— (Blank 61)—(Blank 81)
—C )—(
88. Test #5 Difference (% Op):
a (Blank 67)-(Blank 81)
—C
89. Mean Error (% Op):
a (Blank 84)+(Blank 85)+(Blank
a ( &c:; )+(
5
86)+(Blarik 87)+(Blarik 88)
a
)
—
C j C
87. Test #4 Difference (% Op) :
— (Blank 64)—(Blank 81)
C—29
-------
J. Determine Mean Error for Mid Range _ AUdi ilter
90. Test ]. Difference (% Op):
a (Blank 56)—(Blank 82)
a ( )_(t..3r ) a
91. Test #2 DifferenCe (% Op):
a (Blank 59)—(Blank 82)
a ( )—( ) a
92. Test *3 Difference (% Op):
— (Blank 62)—(Blaflk 82)
—I .‘ ‘—
93. Test #4 DifferenCe (% Op):
a (Blank 65) (Blank 82)
a ( )—( ) a
94. Test #5 DifferenCe (% Op):
a (Blank 68)—Calank 82)
)—(
95. Mean Error (% Op):
a (Blank 9Ø)+(BJ .aflk 91)+(Blank 92)+(Blank 93)+(Blank 94)
a (
5
I.’
— 0.
C—30
-------
IC. Determine Mean Error for High Range Audit Filter
96. Test *1 Difference (% Op) :
— (Blank 57)—(Blank 83)
— ‘r’?’ )—(.. i 7 ’ ) a
97. Test *2 Difference (% Op) :
a (Blank 60)-(Blank 83)
— ) ‘ ‘
98. Test #3 Difference(VOP)
/
— (Blank 63)—(Blank 83)
a ( )_(/ ) a
/
99. Test *4 Diff èrence (% op):
/‘
(Blank 66)—(Blank 83)
a ( ) ( ) a
100. .Test#5 Diff rence(% Op):
• (Blank 69) (B1ank 83)
a
— be ? 7
I
I
I
I
I
I
I
I
101. Mean Error (% Op) :
— (Blank 96)+(Blank 97)+(Blank 98)+(Blank 99)+(Blank 100)
5
• ( )+(..-( >% )+(
C—31
-------
APP!NDU I).
ST. JO8 Ph LZG T AND PQW CQMPA ,
ROAD STA XLON, UNIT NO. 5
CONTNAVZS GOb’ BZ OPACITY C MS
o QA Procs uxeI
o DL .2.y Q& ch.ck Rssu ts
o period.tc/CorrSCtiVe Acti on Logi
o Soura. 5.1. Audit Data and Ca .cigat.ton.
-------
OPACITY MONITOR QUALITY ASSURANCE PROCEDURES
ST. JOSEPH LIGHT AND POWER COMPANY, LAKE ROAD STATION
CONTRAVES GOERZ MODEL 400 OPACITY MONITORING SYSTEM
OVERVIEW OF pA PROCEDURES
A proposed quality assurance program has been developed for the St. Joseph
Light and Power Co., Lake Road Station opacity monitoring system. The specific
QA procedures have been developed to be compatible with the Lake Road Station
(1) opacity monitoring-instrumentation and monitoring system configuration, (2)
data recording device, (3) effluent handling system, and (4) management and
organizational structure. The proposed QA program will be field—tested during
implementation, reviewed and evaluated periodically, and revised as necessary
over a one—year period. Through this process, it is expected that QA
procedures will be developed and demonstrated which are both adequate for
maintaining high levels of data quality and cost effective in terms of
necessary time and material resource expenditures.
The following elements are included in the proposed Lake Road Station
•opacity monitor quality assurance pro raa.
(1) Daily Log. Daily Check Instructions — The Daily Log is to be completed
by Operations personnel in the boiler control room. Step—by—step
Daily check Instructions are provided for completing the Daily Log.
The Daily check and Daily Log do not require extensive time to
complete, nor do they require that the person performing the procedure
be intimately familiar with the opacity monitoring instrumentation.
The Daily Check and Daily Log provide for identification of monitoring
problems and initiation of corrective action.
(2) Corrective Action Log and Instruction . The Corrective Action
structions and Log are used when adjustment, repairs, and/or other
non—routine corrective action is necessary as indicated by the Daily
Checks. The Corrective Action procedure. are to be utilized by
technical personnel experienced in resolving problems with the
monitoring systems. The specific corrective action procedures are
relatively extensive, but will provide adequate documentation for
future ref inement of QA procedures and demonstration of their
effectiveness. The corrective action procedures are utilized only on
an as necessary” basis.
(3) Periodic PA Check and Instructions — The Periodic QA check is intended
to be performed in conjunction with the opacity monitor routine
preventive maintenance program and shoeld be perfbrmed once per month
at the Lake Road Station. The Periodic QA check procedures provide
for checks of monttoring system components and operating status which
are unfeasible, impractical, and unnecessary on a daily basis.
r)— 1
-------
(4) The documentation of the QA program will be reviewed periodically to
determine if modification to the proposed procedures are
appropriate. Such modifications may be made as additional experience
and data are obtained.
(5) An attempt will be made to develop a practical method for conducting
a clear—path check of the Lake Road Station opacity monitoring
system. If successful, this method will be utilized in conjunction
with a performance audit of each monitor to be conducted by station
personnel during the proj ect and a performance audit to be conducted
at the end of the one—year study by the Pilot Project Staff.
D—2
-------
ST. JOSEPH LIGHT AND POWER COMPANY
tARE ROAD STATION
DAILY CHECK INSTRUCTIONS
OPACITY MONITORING SYSTEM
(Contravee Coerz Model. 400)
The following are step—by—step instructions for conducting the Daily
Check of the Lake Road Station opacity monitoring systems. Criteria are
provided for determining when corrective action should be initiated. The
person conducting the Daily Check of each monitoring system should complete
all blanks on the Daily Log as indicated below.
I • GENERAL INFORMATION
o Enter name of person performing check, the date (month, day, year), and
the Urns of day (24—hour clock) that the check La begun.
o Hours Boiler Down — Enter the number of hours the boiler was not in
operation (i.e., not combusting fuel) during the preceding 24—hour
period.
o Hours Monitor Down — Enter the number of hours the monitor did not
provide a record of effluent opacity during the preceding 24—hour
period. Describe monitor downtime in Part IV COMMENTS” (i.e., cause of
outage, time began, time ended, and any corrective action taken to
return monitor to service.)
II. FAULT LAMPS
0 EXamine the fault lamps on the Control Unit. Check the appropriate box
on the Daily Log to indicate the status of each fault lamp (check “(ES”
if lamp is illuminated).
III. STRIP CHART DATA
o Examine the strip chart to determine the zero and Span responses of the
most recent automatic monitor calibration. Record the zero and span
calibration value on the Daily Log in units of Z opacity.
o check the appropriate boxes on the Daily Log to indicate whether the
zero and span values are outside acceptable limits.
Mote: ii’ yES ANSWERS ARE INDICATED FOR ANY OF THE QUESTIONS ON THE
DAILY LOG, CORRECTIVE ACTION SHOULD BE INITIATED AS SOON AS
POSSIBLE.
IV. COMMENTS
o Describe any problems observed during the performance of the Daily check
and/or any. other apparent problems which may affect monitor performance.
o ENTER THE TIME OF DAY THAT THE DAILY CHECK IS COMPLETED. (Part I)
D—3
-------
Opacity Monitoring System
DAILY LOG
ST. JOSEPH LIGHT AND POWER CO.
I. GENERAL INFORMATION
____ Time Start: __________
Time Complete:________
Hours Monitor Down:
Name:
LAKE ROAD STATION, UNIT 5
Date:
II.
III.
Iv.
Hours Boiler Down:
FAULT LAMPS
FAULT LAMPS ON? NO YES
Stack Power
Dirty Window
STRIP CHART DATA
Zero Calibration (2 opacity):____________________
Span Calibration (2 opacity):____________________
.
S
NO YES
Does zero value exceed acceptable limits of ± 2.02
opacity?
Does span value exceed acceptable limits of + 2.02
opacity?
IF YES ANSWERS ARE INDICATED FOR ANY OF THE ABOVE
QUESTIONS,
CORRECTIVE
ACTION SHOULD BE INITIATED AS SOON AS POSSIBLE.
COMMENTS:
D-4
-------
ST. JOSEPH LIGHT AND POWER COMPANY, LAKE ROAD STATION
PERIODIC QUALITY ASSURANCE CHECK INSTRUCTIONS
CONTRAVES GOERZ MODEL 400 OPACITY MONITORING SYSTEM
The following are step-by—step instructions for performing the Periodic
QA Checks of the Lake Road Unit #5 opacity monitoring system. Initially, the
Periodic QA Checks are to be performed in conjunction with the routine opacity
monitoring system maintenance program performed at least once a month. The
person performing the QA Checks should complete all blanks on the Periodic QA
Check Log.
I. GENERAL INFORMATION
o Enter the name of the person performing the check, the date (month,
day, year), and the time of day (24-hour clock) that the check is
begun.
It. CONTROL UNIT CALI3RATION CHECK DATA
(1) Rotate the “MODE” switch on the control panel to the “ZERO” position,
and record the zero check responses of the panel meter and chart
recorder (Z opacity).
(2) Rotate “MODE” switch on the control ianel to the “SPAN” position, and
record the span check responses of the panel atsr and chart recorder
(% opacity).
(3) Record the minimum 6—minute average opacity indicated by the chart
recorder for the hour period preceding the QA check.
III. TRANSMISSOMET!R CHECK/SERVICE
(I) Al gnP.flt Check — Determine the optical alignment status of the
transceiver and reflector by looking through the alignment sight and
observing whether the image is within the circular target
(acceptable), or outside the circular target (unacceptable).
Indicate the poeitiofl of the light beam on the diagram, and check the
appropriate box for alignment status on the QA Log.
Open the reflector, and determine if the light beam appears to be
centered vithin the port. Indicate the apparent poeition of the
light beam on the diagram and check the appropriate box for reflector
alignment status on the QA Log.
If the optical alignment is unacceptable, r ’ealign the opacity
monitoring system in accordance with the manufacturer’s
instructions. If a shift in the baseline opacity occurs after
realignment, note the magnitude of the change which was observed in
“Part V COMMENTS.”
D—5
-------
(2) Inspect and service, as necessary, the purge-air blowers, air
filters, and shutter mechanism as per the manufacturer’s
instructions. Note whether the blower system status is acceptable,
and describe any corrective action taken on the QA Log.
(3) Reflector Cleaning/Check — Record the average effluent opacity value
indicated by the transceiver meter. Also, record the exact time to
allow subsequent determination of the “before cleaning” effluent
opacity from the chart record (or have an assistant note the panel
meter opacity value if two—way communications are available).
Release the reflector latches, swing the reflector open, and remove
all accumulated particulate matter within the optical path of the
monitor. Clean the reflector surfaces according to the
manufacturer’. instructions. Close and secure the reflector.
Record the average effluent opacity value indicated by the
transceiver meter and the “post cleaning” exact time (or effluent
opacity level indicated at the control unit). Wait at least two full.
integration periods (12 minutes) before performing step (4) unless an
assistant records real time data.
(4) Transceiver Cleaning/Check — Record the average effluent opacity
indicated by the transceiver meter and the exact time (or effluent
opacity indicated at the control unit). Release the transceiver
latches, swing the transceiver open, and remove all accumulated
particulate matter from the optical path of the monitor. Clean both
the transceiver window and the zero/span chopper according to the
manufacturer’s instructions. Close and secure the transceiver.
Record the average effluent opacity indicated by the transceiver
meter and the “post—cleaning” exact time (or the effluent opacity
indicated at the control unit).
(5) Install the zero jig” on the transceiver and determine the initial
response of the monitor (i.e., before any adjustments are performed)
at a minimum of three test points (e.g., 02 opacity, 302—702 opacity,
and 1002 opacity). Adjustments to the monitor should be performed
and a Corretive Action Log completed if the monitor response exceeds
+ 32 opacity of the correct teat values.
(6) Return to the control unit/data recorder station and obtain the
6—minute average opacity values indicated by the chart recorder
corresponding to the times recorded on the data sheet (i.e. before
and after alignment adjustments, before and after cleaning of the
reflector, and before and after cleaning of the transceiver). Racord
all data on the QA Log. (This step is not necessary if an assistant
records real—time opacity values indicated at the control unit during
the QA Check activities.)
D—6
-------
IV. FINAL MEASUREMENTS
(I) Note periods of cleaning on the strip chart record to ensure that
these periods will not be later mistaken for excess emissions. Reset
alarms if activated during QA Checks.
(2) Note that the periodic QA Check wee performed in the “Part V
COMMENTS” section of the Daily Log.
(3) Upon completion of all the above steps, record the minimum 6minute
average effluent opacity value displayed on the strip chart for the
hour period following completion of all adjustments, repairs, and
service for the monitor.
V. COMMENTS
All observations regarding monitor performance should be explained.
ENTER TIME OF DAY PERIODIC QA CHECK IS COt LETED (PART I).
D—7
-------
Opacity Monitoring System
PERIODIC QA CHECK
ST. JOSEPH LIGHT AND POWER COMPANY LAKE ROAD STATION, UNIT #5
I. Name:___________________________ Date:
II. CALIBRATION CHECK DATA ________________________________
___________________________ PANEL METER CHART RECORD
ZERO value _________________
Adjusted_ZERO_value _________________ _________________
SPAN_value _________________
Adjusted SPAN value ________________
X OP CtTY
Minimum 6—mm. opacity value (hour preceding QA Check):____
III. TRANSMISSOt .i CHECK/SERVICE
1. Alignment Status (Note position of Light Beam on Diagram)
____________ See instructions if
____________ alignment is not acceptable.
TINE STRIP CHART TRANSCEIVER METER
_______ (Z onacity) (Z opacity)
Before reflector cleaning
-
After reflector cleaning
Before transceiver cleaning
After transceiver cleaning
Zero Jig Calibratt ,n Data
TEST VALUE
MONITOR RESPONSE
DIFFERENCE —
Z Opacity
2 Opacity
% Opacity
02
1.002
IV. FINAL MEASUREMENTS
1. Minimum 6—mm. opacity value (hour following QA Check):
V. COMMENTS:
Time Start:
Time Complete:
Transceiver
-0-
Reflector
Alignment Acceptable?
YES
NO
Transceiver
Reflector
Blower Status OK?
YES
NO
Transceiver
Reflector
2.
3.
4.
5.
D—8
-------
ST. JOSEPH LIGHT AND POWER CO., LAKE ROAD STATION
CORRECTIVE ACTION INSTRUCTIONS
CONTRAVES GOERZ M400 OPACITY MONITORING SYSTEM
The following are step—by—step instructions for completing the Corrective
Action Log when adjustments and/or repairs of the opacity monitoring systes
are necessary. The person performing the corrective action should complete
all blanks on the Corrective Action Log as indicated below.
I. GENERAL INFORMATION
o Enter the name of person performing repairs or adjustments, the date
(month, day, year), and the time of day (24—hour clock) that the
corrective action is initiated.
II.. SYSTEM/MONITOR FAULTS
o Enter OtJ ” or “OFT” for each fault lamp on the Log.
o If the “DIRTY WiNDOW” lamp is illuminated, note the minimum 6—minute
average effluent opacity which occurs during the one hour period
preceding the initiation of corrective action. After cleaning both the
transceiver and reflector windows, note the minimum 6—minute average
effluent opacity which occurs during the following one hour period.
o Record the time when the fault is corrected. Describe all corrective
action taken in the “Part IV COMMENTs”.
III. CALIBRATION DATA/ADJUSTMENT
(1) Rotate the “MODE” switch on the control panel to the “ZERO” position,
and record the zero check responses of the panel meter and chart
recorder (2 opacity).
Cleaning of the transceiver and reflector optics and/or other
adjustments are necessary when the zero check responses of either the
panel meter or the data recorder exceed + 2% opacity. Describe all
adjustments and/or corrective action in “Part IV COMMENTS.
(2) Rotate “MODE” switch on the control panel to the “SPAN” position, and
record the span check responses of the panel meter and chart recorder
(2 opacity).
Adjustment of the monitor is necessary if either the panel meter
response or chart recorder response exceeds + 2% opacity from the
correct value. (Correct value of span filter should be labeled on front
of control unit.) Describe all adjustments and/or corrective action in
“Part IV COMMENTS.”
(3) If corrective action requires the installation of the “zero jig” on the
transceiver, the initial response of the monitor (i.e., before any
adjustments are performed) for the 0% opacity and 100% opacity test
points should be recorded on the Log. After all adjustments are
completed, the adjusted” response of the monitor to the 0% opacity and
1002 opacity test points should be recorded on the tog.
D— 9
-------
IV. COMMENTS
The reason for initiating corrective action should be stated, and all
repairs and/or adjustments performed as a result of the above procedures or
as a result of other monitor malfunctions should be described. Sufficient
explanation should be provided to determine what was done and what effect it
had on monitor performance.
ENTER TIME OF DAY ALL CORRECTIVE ACTION IS COMPLETED. (Part I)
ID— 10
-------
Opacity Monitoring System
CORRECTIVE ACTION LOG
ST. JOSEPR LIGHT AND POWER COMPANY
I. GENERAL INFORMATION
Maine: Date:
II. SYSTEM/MONITOR FAULTS
CORRECTED
FAULT LAMPS ON? NO YES Date Time
STACK POWER
DIRTY WINDOW
Adjusted ZERO value
SPAN value
Adjusted SPAN value
[ -ZERO JIG DATA:
Llnitial Values
OZ OPACITY
1002
OPACITY
4juated Values
.
IV. COMMENTS: (Describe adjustments to monitor and/or all other corrective action)
LAXE ROAD STATION, UNIT #5
_______ Time Start:______
Time Coinplete:_
III. CALIBRATION DATA/ADJUSTMENT
L LW vaJ.ue
PANEL METER
2 OPACITY
CHART RECORD
D— 11
-------
ST. JOSEPH LIOHT POYER COMPANY
MONTh: MARCI4, i UNiT NO.: 5
flME BOILER MONITOR FAULT ZERO SPAN
D#W REQ. DOWN C OVN LAMPS METER CHART METER CHART OPERATOR COMMENTS
(MIN.) (HRS.) (HRS.)
:3
4
S
S
7
8
I ;
10
11 * 5 < 0 <0 52 62 Lonjers
12 2 <0 <0 51 62 Lonj.rs
13 3 <0 <0 51 63 Lonj.rs
14 3 <0 0 62 63 Lonjers
15 2 <0 0 63 64 Gullsmore
15 2 <0 <0 62 64 euasnwe
17 2 <0 <0 64 54 BuJsrnore
18 2 <0 0 64 64 BuHsmore
1 3 0 <0 64 54 Bullsmore
20 5 0 <0 62 64 Raq
21 1 0.5 0 54 63 Godbok
22 2 0.5 0 82 82 Godbok
23 1 0 0 62 62 I3odbok
24 :3 0 <0 53 62 Lan jers Chart drops be4ow zero then
increases to +2.
25 — 0.5 0 54 63 Godbok
26 1 Window 0 -1 52 54 Oodbok
27 5 0 0 53 54 Raid Red light on in .Patus box.
2 3 Window 0 0 63 65 Lan j.rs
2g 2 Window 0 0 64 63 Lan jet’s
:30 2 Window 0 0 62 65 Lan jers
:31 <0 0 54 52 Raij
* Initta ouditinQ of opacit j CEMS.
D—12
-------
ST. ‘JOSEPH L D3HT POWER COMP ANY
MONTH: APRIL, 1q83
TIME
8OILER
MONITOR
FAULT
ZERO
SPAN
DAY REQ.
DOWN
DOWN
LAMPS
METER
CHART
METER
CHART OPERATOR COMMENTS
(Mlii.)
(HRS.)
(HRS.)
1 3 3 ‘ 3 ‘55 ‘55 R ‘/indow ;kctus o.k. ith
power )tf.
2 :3 ‘ 3 0 ‘53 ‘57 R
3 3 0 0 ‘54 1515 Ra j
4 3 0 0 ‘53 ‘55 Rou
5 2 ‘ 3 <0 ‘54 154 Bulismore
6 — 1 0 ‘54 66 ‘3o4bok
7 — 1 0 62 ‘54 White
8 <0 0 63 ‘34 Bul lsmore
g 2 0 <0 ‘53 1.4* Builsrnore
10 3 0 3 ‘ 54 ‘54 Ro
11 2 1 0 ‘53 ‘55 I3odbok
12 1 1 3 ‘54 ‘56 ‘3odbok
13 2 0.5 0 ‘54 86 ‘3o’ bok
14 3 0 0 82 ‘54 Go bok
1 1 OZ 0 65 ‘55 Oodbok
16 5 0 ‘3 65 ‘53 Feebock
17 5 0 ‘3 ‘52 65 LonJer ’
18 :3 2 0 ‘53 84 Lonj.r
ig 3 0 0 153 84 Lonjers
20 3 0 <0 53 65 Lonjerz
21 5 0 0 ‘54 ‘58 Feeboclc
2 0 < ) 83 66 Wilcox
23 2 0 <0 64 84 Wilcox
24 2 0 0 152 ‘52 Wilcox
25 — ‘3 0 ‘52.8 65 Feeback
26 5 <0 <0 ‘54 ‘56 White
27 10 0 <0 ‘54 ‘58 White
28 .5 0 <0 83 65 Whit.
2g .5 0 0 ‘54 ‘53 BuNsmore
20 5 0 <0 ‘34 54 Whi+*
* V’,Iu. obviously incorrect: ignored.
13—13
-------
ST. J0SEPH LIGHT ;J PO WER COMPANY
MONTH: MAY, 1 ‘3$3 IJNIT NO.: S
TIME
BOILER
MONITOR
F AULT
ZERO
SPAN
DAY REQ.
DOWN
DOWN
LAMPS
METER
CHART
METER
CHART OPER ATOR COMMENTS
(MIN.)
(HRS.)
(HRS.)
1 5 0 iD 82 84 eebock
2 1 15 0 85 85 I3odleski
:3 20 0.! 0 85 65 OodI.ski
4 5 0 0 53 ‘54 God leski
.5 5 0 0 65 85 Godleski
5 1 0 0 65 85 GodI k1
7 2 0 0 8! 85 Achorn
8 3 0 0 52 54 Ast orn
4 0 0 62 84 A horn
10 4 0 <0 53 84 Lojers
11 2 0 <0 63 54.5 Lojers
12 5 0 0 53 54 Bullsmore
13 3 0 0 53 66 Whit,
14 15 0 <0 83 53 Bufismore
15 2 0 <0 54 54 Wilcox
1(5 2 0 <0 54 54 WIlcox
17 5 1 <0 64 84 Whit.
18 4 <0 1 54 t54 White
1’ 3 1 <0 64 64 Whit.
20 2 0.5 0 54 84 White
21 .5 0 <0 54 54 White
22 2 0 <0 53 84 Lonjer
23 5 <0 <0 64 62 Bohr
24 5 <0 <0 52 64 Bohr
25 5 <0 <0 62 54 Bohr
25 — 18 18 < 13 <0 52 i55 Bohr Boiler tube leok.
27 — 6 5.5 <0 <0 52 64 Bohr
— 13 <0 52 54 Bohr
2Q 5 0 0 52 64 Osborn
30 2 <0 0 82 54 Lonjer
31 2 2 0 63 84 Lonjer ntere in Odjust4 column.
Entere i in odjusted column.
13—14
-------
ST. JOSEPH LLOHT c POWER COMPANY
MONTH: JUNE, 1’83 UNIT NO.: 5
TIME
BOLER
MONITOR
FAULT
ZERO
SPAN
DAY REQ.
DOWN
DOWN
LAMPS
METER
CHART
METER
CHART OPERATOR COMMENTS
(MIN.)
(HRS.)
(HRS.)
1 7 7 11 .5 0 <0 62 64 Lonjer
2 2 0 <0 64 64 Wilcox
:3 2 <0 <0 54 68 Wilcox
4 2 <0 <0 86 §4’ WIlcox
5 2 O <0 64 65 Wilcox
8 2 <0 0 84 64 Wilcox Operators continued o mis-
read pane4 meter 8 data
recorder.
7 1 0 0 64 65 Godleski
8 1 0 0 85 64 Oodlskl
‘3 1 0 0 64 55 Oodl.ski
O 3 10 0 0 03 65 Oodleslci
11 1 21 0 0 85 88 Godleski
12 3 24 0 0 63 65 Bohr
13 3 24 0 0 63 85 Bohr
14 15 24 0 0 64 84 Bohr
15 — 24 0 0 64, 64 Bohr
18 60 24 0 0 64 64 Bohr
17 10 24 0 0 52 64 Bohr
18 3 24 0 <0 50 64 Loniers
10 3 24 0 <0 81 84 Lonjers
20 2 24 0 <0 61 84 Lan jers
21 3 24 0 <0 50 53 Lan jers
22 2 24 0 <0 §2 ‘54 Lan jers
23 10 24 Window 0 0 80 61 Bullsmore
24 10 24 Window 0 0 80 60 Bullsmore
25 10 24 Window 0 0 60 60 Bullsmore
26 1 24 Window 0 0 §0 61 Bullsmore
27 3 Window 0.5 4 81 52 ‘3odkcki
28
20 -1 52 Hayes
30 Periodic QA/Corrective
oction.
D— 15
-------
ST. JOSEPH LIGHT $1 PO WER COMPANY
MONTH: JULY, 1983 UNIT NO.: S
TIME SOLER MONITOR FAULT ZERO SPAN
DAY REQ. DOWN DOWN LAMPS METER CHART METER CHART OPERATOR COMMENTS
(Mitt) (HRS.) (HRS.)
1 P r odio QAICorreotiv.
Action.
2 2 -1.! 82 Ilcqes
3 2 0 ‘52 White
4 4 0 0 03 60 Fe.b ck
5 5 0 0 ‘52 04 Feebock
‘5 2 0 64 F,ebxk
7 4 0 52 Fe,bock
8 5 0 ‘54 Bohr
9 3 1 ‘52 Lonj.rs
10 3 2 ‘53 Lonj.rs
11 3 1 ‘52 Wilcox
12 3 2 63 WIlcox
13 3 2 ‘51 Lonjers
14 10 WIndow 0 02 BuUsmore
15 2 0 62 Whft.
16 10 0 62 Bullsrnore
17 10 0 62 Bullsmor,
18 10 0 62 Buffsmore
19 1 -0.5 62 Whit.
20 2 0 ‘52 Haçies
21 2 0 ‘52 Lonjers
22 5 0 ‘52 Hoijes
23 3 0 ‘52 Wilcox
24 1 0 02 White
2! 10 24 0 153 Bohr
20 10 24 ‘3 62 Bohr
27 10 0 ‘54 Bohr
28 5 ‘3 ‘54 Bohr
29 :3 0 62 Lonj.rs
:30 5 ‘3 ‘52 Wilcox
:31 2 0 82 Wilcox
D— 16
-------
ST. J0SEPH LIGHT POWER COMPANY
MONTH: AUGUST • I 083 UNIT NO.: 5
huE
OLER
MONITOR
FAULT
ZERO
SPAN
DAY REQ.
DOWN
DOWN
LAMPS
METER CHART
METER
ChART OPERATOR COMMENTS
(Mift)
(HRS.)
(HRs.)
.
1 3 :3 :3 0 52 IJmphre j
2 0 51 IJmphre j
:3 — 0 62 Umphre
4 2 0 52 White
0 62 Bullsmore
15 1 0 ‘52 White
7 1 0 52 White
8 5 0 151 Bullsmore
0 152 Whit.
10 1 1 0 52 Whtte
11 1 0 62 Whit,
12 1 WIndow 0 52 White Work order written for
dirt’j ‘window.
13
14 3 52 50 F..book
15 5 ‘WIndow 0 152 Builsmore
115 10 0 50 Umphreij
17 6 0 60 Umphresj
18 10 0 52 Umphr.i
19 10 0 150 Wilcox
20 2 Window 0 0 Wilcox
21 2 Window 0 51 Wilcox
22 2 Window 0 61 IJmphr j Absence of mork in pon box.
23 10 0 150 Umphre j
24 5 0 50 Umphre’j Period QA/Repoir window
fault.
25 7 0 50 Umphre
26 10 0 50 Umphreq
27 2 0 62 White
28 3 ‘3 61 Wilcox
29 7 ‘3 60 Umphr.y
30 7 0 50 Umohre
:31 7 0 60 IJmphrey
D— 17
-------
.51. JOSEPH LD3HT & POWER COMP ANY
MONTH: SEPTEMBER, 1Q83 UNIT NO.: S
TIME BOILER MONITOR FAULT ZERO SPAN
DAY REQ. DOWN DOWN LAMPS METER CHART METER CHART OPERATOR COMMENTS
(Mill.) (HRS.) (1IRS.)
1 2 0 30 Lonj.r
2 3 0 50 Lon jets
3 — 2 ‘SO Lonjers
4 3 1 50 Lon jets
5
7
B
Q 2 0 ‘ 51 Lonjers
10 2 0 52 Lonjers
11 2 0 51 Wilcox
12 2 0 51 Wilcox
14 2 1 ‘52 WIlcox
15 2 24 <0 ‘51 Hc jes Strip chcrt not working.
15 3 24 1 51 Hcyes Strip chort not working,
waiting for parks.
17 10 0 ‘52 Umphre.j
18 10 0 ‘50 Umphre j
ig .9 0 ‘50 Umphre
20 10 0 ‘50 Iimphreg
21 .9 0 50 Umphre j
22 3 0 52 Bohr
23 ‘ 5 0 52 Bohr
24 13 0 ‘ 50 Umphre
25 7 0 ‘50 Umphreij
25 2 <0 ‘52 White
27 1 2 ‘52 White
29 4 2 SQ Lon jets
2g 3 1 ‘51 Lonj.rs
:30 3 1 ‘50 Lon jets
D— 18
-------
ST. .JOS H LIGHT i POWER COMPANY
MONTH: OCTOEER, I 983 IJNIT NO.: 5
TIME
BOILER
MONITOR
FAULT
ZERO
SPAN
DiW REQ.
DOWN
DOWN
LAMPS
METER
CHART
METER
CHART OPERATOR COMMENTS
(MIN.)
(HRS.)
(I S.)
I 0 52 Wilcox
2 5 ‘3 52 \I1ICOX
:3 3 0 ‘52 Bullsmore
4 5 0 52 Bullsmot’,
5 5 0 52. BuUsmore
‘5 5 WIndow 1 ‘ 51 Hayes
7 5 1 52 Hoys Periodic 0 A/C rreotive
Action.
8
g
10
11 2 24 0 ‘51 Feebcck
12* :3 24 0 61 Febock
13 P riodic QA /Corrective
Action.
14
15
15
17
II
18
19
20
21
44
1.
25
27
28
21
* Lost day ofr.port.dQAdota.
D— 19
-------
7 ’—
ST JOSEPH LIGHT & POWER COAPANJY
ZO P ANCIU iiqccr • IT. JCICPPI. MIUSQURI 4I 3 •1 I-233-SSUS
February 9, 198 i.
Mr. Jim Peeler
Entropy- Environmentalists, Inc.
P.O. Box 12291
Research Triangle Park, NC 27709
Dear Mr. Peeler:
Please find enclosed, intenance reports on our transmissometer
on No. 5 Boiler. I bad thought these had already been: sent to you,
but then I found the originals. My apolo r, and I hope they are still
of some use to you and have no adverse effect on the opacity monitoring
study.
ThR nk you.
Re .rds,
ST. JOSERH LIGHT & POWER CO.
Steven D. Brooks
Environmental Engineer
SDB : rh
cc: file
Attachments
D—20
-------
Opacity Monitoring Syst
PERIODIC QA CHECX
COMPANY tARE ROAD STATION, UNIT #5
Date:___________ Time Start: O CO
Time Complete: /4 3o
,- . i-4’J
[ ZERO value
lAdlueted ZERO
ITPA$ value
[ Adjusted SPAN
value
value
I
Q
2
4 Y
9:
‘9:
,
Alignment Acceptable?
Transceiver
YES
NO
Reflector -.
,1J,4
Reflector
Before
reflector cleaning
.
4
After
reflector cleaning
‘1’
Before
After
transceiver cleaning
transceiver cleaning
lop
/ c
-
Zero 3
ig Calibration Data
TEST VALUE
Z Opacity
MONITOR RESPONSE
Z Opacity
D!YFERENCE
Z Opacity
Ox
box
it
ND
iv • rn &t su a rrs
1 • Minimum 6—mlii. opacity value (hour following QA check):___________
V. cO O( TS: 43 / /44
( J. )Q e tc a
a- . (
__
ST. JOSEP!! LICRT AND POWER
I. Naae:fiJ. o6,#J #Z
II. CALIBRATION CHE(X DATA
Z OPACITY
PANEL METR CHART RECORD
Minimum 6—am, opacity value (hour preceding QA Check):
III. TBANSMISSOht .K CHECK/SERVICE
1. Alignment Status (Note position of Light Beam on Diagram)
,uor,el,p4
Transceiver Reflector
Blower Statue OK?
Transceiver
TEE
NO
See instructions if
alignment is not acceptable.
1.
3.
4.
5.
TIME
sTat? CHART
(Z opacity)
TRANSCEIVER METER
(Z opacity)
D—2 1
-------
Opacity Monitoring System
c RRECTIvE ACTION LOG
ST. JOSEPH LIGHT AND POWER COMPANY
I • GENERAL INFORMATION -
Name:____________________ Date:__________
II. SYSTEM/MONITOR FAULTS
FAULT LAMPS ON?
.
NO
YES
CORRECTED
STAC1C POWER
-
Date Time
DIRTY WINDOW
fr__
III. CALIBRATION DATA/ADJIJSThEIFr
Z OP Ct’y -
ZERO value
Adjusted ZERO value
SPAN value
-
/
Adjusted SPAN value
4 2....
2
(... :?
ZERO 31C DATA:
0% OPACITY
Initial Values
-
100% OPACITY
Adjusted Values
/
IV. CO flS: (Describe adjustments to monitor and/or all other corrective action)
AL-tQ L - A4 . . 144
1 x 0 r 4 ) &..d 2.J La 3
TPI2 /O.o V
_ - m -t . #.
,vn 4 L Ai L &. CA. lO a O ‘ OJ
øj
— -
ic c: . 4& oi k
fr iaø iq £ ) L)o Q . v..? q. j
e *LJ 4 2 _ j_1ao) VoLi / / (J
r t 4 , s j_ 4 ‘, — s Qs-
,4i L4 d 4 4 —
> , UJ Q; ) Y ‘ tZ& C v ) (aL
o- 14tL L 3
D—22
LAKE ROAD STATION, UNIT #5
Time Start: C O J
Time Complete:J 3
PANEL METER
CRART RECORD
-------
PERIODIC GA CHECK LOG
CONTRAVES GOERZ MODEL 400/500 OPACITY MONITORING SYSTEM
(1) Name:________
Date:
Time Start: ?$O
(2) Alignment Status:
acceptable
____ unacceptable
Opacity prior
Opacity after
Apparent dust
ceiver (4A—4$)
Time
Data Recorder’
Transceiv
Meter”
b ___ z__
.
-_.__ 1_
; ;
2’/i
- --
zzz
V/7
-__- -
___
• Not.: ‘Data recorder provides single pass opacity valu.s corrected to stack exit
- diameter.
“Transceiver meter provides uncorrected double—pass opacity measurements.
(5) Tim. GA check completed: /2.00
(6) COMMENTS: j I _____
1ø —
ct. — 1s .s) Z J - j ‘ a .
Station: 1 L+ P Unit:
Monitor:
(2*)
(23)
(2C)
(3*)
(33)
(3C)
(4*)
(4B)
(4C)
Effluent opacity prior t realignment
Effluent opacity after realignment ,*) *
Bias du, to misalignment (ZIA_4B)
Opacity prior to retroreflector cleaning
Opacity after retrorefleotor cleaning
Apparent dust accumulation on retro—
reflector (3A33)
to transceiver cleaning
transceiver cleaning
accumulation on trans.-
D—2 3
-------
Opacity Monitoring System
PERIODIC QA CHECK
I ZERO value
I Adjusted ZERO
ISPAN value
lAdjusted SPAN
value
value
I(•)
—
,3
—
•
.
—
— ..
—._
(a .
Minimum 6—sin, opacity value (hour preceding QA check): 7 4 .A)
_ QA)1
III. TRNSMIS5OM L cHECK/SERVICE
TThE
(Z opacity)
TRANSCEIVER METER
(Z opacity)
I. Name: G # 33âA’ Date: 10- ”) ... \
ST. JOSEPH LIGHT AND POWER COMPANY LAKE ROAD STATION, UNIT #5
It. CALIBRATION CHECK DATA
Time Start:______________
Time Complete:
% OPACITY
PANEL METER CHART RECORD
1. Alignment Status (Note position f Light Beam on Diagram)
Transceiver _.( )_.._ - Reflector —
2.
Alig aent Acceptable?
Transceiver
- YE , J_
NO
Reflector
Bloizer Status OK?
YES
NO
Transceiver
.. —
Reflector
See ‘instructions if
alignment is not acceptable.
3.
4.
h
[ Before reflector cleaning ‘o Z3
LAfter reflector cleaning
[ Before transceiver cleaning O9
[ After transceiver cleaning
5. Zero jig Calibration Data
TEST VALUE MONITOR RESPONSE DIFFERENCE
Z Opacity Z Opacity I Opacity
01 &iA A) ‘ Pz
1001
IV. FINAL MEASUREMENTS
1. Minimum 6—sin, opacity value (hour foijiowing QA Check):___________
aM) eL / ) Zt 7. 4 l
V • COFgtENTS: ‘- <. ‘‘
f ) 4
$‘ L& k o L$ ,
C o c
2 o’7 ,
D—2 4
-------
PERIODIC QA CHECK LOG
CONTRAVES GOERZ MODEL 4OO/5OO OPACITY MONITORING SYSTEM
Opacity prior to retroreflector cleaning
Opacity after retroreflector cleaning
Apparent dust accumulation on retro—
reflector (3A33)
(? .
. HC, t V
9% (Lcf 1 E e.4 1
R \2 çr -kt
CDi - \e Ot4 4 co
Station: ... e j L4- Unit: 5 S L
(1) Name: N Date :_jfl- )..
(2) Alignment Status: Lceptable
Monitor: C 4 A J S
Time Start:O
unacceptable
Effluent
Effluent
Bias due
opacity prior to realignment
opacity after realignment
to misalignment (4A—4B)
(2A)
(23)
(2C)
(3A)
(3B)
(3C)
(‘A)
(‘B)
( $C)
Time
Data Recorder*
Transceiver
Meter
_
/0
1/
f///
//X
Z/ZZ/
////
0
I .C)
//t
‘Z’r
/////
p
‘///
> ,
Opacity prior
Opacity after
Apparent duet
ceiver (4A—43)
to transceiver cleaning
transceiver cleaning
accumulation on trans—
• Note: •Data recorder provides single pass opacity values corrected to stack exit
diameter.
**Trw,scejver meter provides uncorrected double—pass opacity measurements.
(5) Time QA theck completed:_________
(6) COMMENTS:
D—25
-------
Opacity Monitoring System
CORRECTIVE ACTION LOG
ST. JOSEPH LIGHT AND POWER COMPANY LAKE ROAD STATION, U 4IT #5
I. GENERAL INFORMATION
Name:_____________________ Date:__________ Time Start: 0200
Time Complete: 1330
II. SYSTEM/MONITOR VAULTS
ZERO value
Adjusted ZERO value
SPAN value
•__5__________
Adjusted SPAN value
ZERO_JIG__DATA:
0% OPACITY
100% OPACITY
1Oc3
IV. CO? ENTS: (Describe adjustments to monitor and/or all other corrective action)
TP = - e
t r ..
c o
v c
aT
r
-
.77
FAULT LAMPS ON?
III. CALIBRATION DATA/ADJUSTMENT
PANEL METER
% OPACITY
D— 26
-------
Opacity Monitoring System
PERIODIC QA CHECK
LAKE ROAD STATION, UNIT #5
__________ Time Start:
Time Complete:
1 OPACITY ______
Alignment Acceptable?
YES
— NO
Transceiver
Reflector
Blower Status OK?
YES
NO
Transceiver
Reflector
COMMENTS: •
C.kec K
/O
•1 ,
1 . .
4
ST. JOSEPH LIGHT AND POWER COMPANY
I. Name: s ô
- PL&
II. CALIBRATION CHEOC DATA
PANEL METER
ZERO value
—
Adjusted ZERO value
()
SPAN value
Adjusted SPAN value
—
CHART RECORD
Minimum 6-min. opacity value (hour preceding QA Check): <. C
III. TRANSMISSOM i it QIECX/SERVICE
1. Alignment Status (Note poe tion of Lig
Transceiver .._( )_..4 4 ) ,
t Beam on Diagram)
—Reflector —.
2.
3.
4.
See instructions if
alignment is not acceptable.
TINE
STRIP CHART TRANSCEIVER METER -
CX opacity) (1 opacity)
Before reflector cleaning
After reflector cleaning
/p9(
ôc
c 7
Before transceiver cleaning
/OFicS
—-
After transceiver cleaning
// 0
—
• ( p
5. Zero Ji Calibration Data
TEST VALUE
MONITOR RESPONSE ,
DIFFERENCE
I Opacity
OX
1001
I Opacity
l )
1 Opacity
V.
IV. FINAL MEASUREMENTS -
I. Minimum 6—win, opacity value (hour following QA Check): YoJ , .. /o
‘-f& & .’
‘ S Qfi. mvL
D—27
0
/8, 1
C
/2 S
0
—
_i U
(; / - L1- —••
S
-------
Opacity Monitoring SysLern
CORRECTIVE ACTION LOG
ST. JOSEPH LIGHT AND POWER COMPANY LAKE ROAD STATION, UNIT #5
I. GENERAL INF L9ATION
Name:_____________________ Date: IO — ’3 Time Start:
R Time Complete:
II. SYSTEM/MONITOR FAULTS
FAULT LAMPS ON? NO YES CORRECTED
__________________________________ Date Time
STACK POWER ____________________________________
D IRTY WINDOW e& )
III. CALIBRATION DATA/ADJUSTMENT ________________________________
X OPACITY
PANEL ER CBART RECORD
ZERO value
Adjusted ZERO value
7(!I
0
??‘
0
SPAN value
-
Adjusted SPAN value
—
ZERO JIC DATA:
OX OPACITY
100Z OPACITY
Initial Values
> 6
Adjusted Values
p
,‘-ô
IV. COMMENTS: (Describe adjustments to monitor and/or all other corrective action)
. dLL / PO& - 4 -
7 t t ’ *_, .• T It C AIcJ . Z d 1 S o,L
II9d.J CQd P lcje
, ,;,, 6 ’ A d
+, rL4— ‘ o s e .<_
Sc€/ ’L c - 1 & s
Pr’ “.d’
,. : 4
TP)2.. —/O c33
,4p elQ. ç _1O.Oc) ) -
Aecke.d ‘ ‘ S?- Ls (AD 1? R ôpe 4\1’)
g V
: 7. ’OV
D—28
-------
PERIODIC QA CHECK LOG
CONTRAVES GOERZ MODEL 4OO/5OO OPACITY MONITORING SYSTEM
Station: L4 f
Unit:
Monitor: ( tI’ .Pr J& .
(1) Name:_________________ Date: IO / f3
____ eptab le
Tô
opacity prior t ignment
opacity after realignment
to misalignment ( A—11B)
Opacity prior to retroreflector cleaning
Opacity after retroreflector cleaning
Apparent dust accuaiulation on retro—
reflector (3A—3B)
A _ Oacity prior to transceiver cleaning
(14B) Opacity after tr sceive cleaning
J. z4C) Apparent ccumulation on trans—
(5) Time QA check completed:
(6) COMMENTS:
. _J 4 L c .
h J L
0 LLL ‘L
(2) Alignment Status:
A.D3u - 1aD
Time Start:
unacceptable
Effluent
Effluent
Bias due
(2A)
(2B)
(2C)
(3A)
(3B)
(3C)
Time
Data Recorder*
Transceiver
Meter*
q •
p
( )
v/’/
f//
ZZZZ/.
-
/ //
__
—
-
97 _
9’
/
(/////,
‘// /‘;
---
-
% .
-
• Note: *Data recorder provides single pass opacity values corrected to stack exit
diameter.
•*Transcejver meter provides uncorrected double—pass opacity measurements.
D—2 9
-------
Opacity ? onitor1ng System
III. TRANSZIISSOMtmR cHECK/SERVICE
PERIODIC QA CHECK
COMPANY LAKE ROAD STATiON, UNIT #5
Time Start:
Time Complete:
5. Zero Jig Calibration Data
See instructions if
alignment is not.-acceptable.
STRIP CHART TRANSCEIVER METER
(Z opacity) (Z opacity)
TEST VALUE
MONITOR RESPONSE
DIFFERENCE
I
Opacity
10
1 Opacity
0 P
1 Opacity
IV. FINAL MEASUREMENTS -
1. Minimum 6-mm. opacity value (hour following QA Check):
iiLL i UJ && LACi
J 4 z , j&A . ppL
c L -a A L..
ST. JOSEPH LIGHT AND POWER
I. Name: A) I iJoA:
II. CALIBRATION CHE( ( DATA
Date:
O O
I OPACITY
PANEL METER CHART RECORD
ZERO value
IAjijusted ZERO
I SPAN value
[ Adjusted SPAN
value
value
A’4
?it:; ..
,1J -
Minimum 6—mm. opacity value (hour preceding QA Check):
Transceiver
1. Alignment Status (Note position of Light Beam on Diagram)
JA
Transceiver
Aligument Acceptable? YES’ 4... NO
Reflector
Reflector —
2.
3.
4.
Blower Status OK?
YE
NO
Transceiver
Reflector
.
TThE
Before reflector cleaning
After reflector cleaning
K J,4
,11,.L:?
Before transceiver cleaning
A.f tar transceiver cleaning
/4 ’I’9
1,4
D—30
-------
PERIODIC QA CHECK LOG
CONTRAVES GOERZ MODEL ‘ OO/5OO OPACITY MONITORING SYSTEM
Station: /. J p ,* _ P
(1).Name: /iJ
Unit:
Date: ;_ç._ q
Monitor:____________
Time Start: 6i
(2) Alignment Status:
t’i ptable
unacceptable
Opacity prior to retroreflector cleaning
Opacity after retroreflector cleaning
Apparent dust accumulation on retro—
reflector (3A—38)
Opacity prior
Opacity after
Apparent dust
ceiver (4A—45)
(5) Time QA check completed:
(6) COMMENTS:
Effluent opacity prior to realignment
Erfluent opacity after realignment
Bias du. to misalignment ( lA-J4B)
(LI)
(2B)
(2C)
(3A)
(38)
(3C)
(1A)
(RB)
(MC)
Time
Data Recorder 4
Transceiver
Meter’_
Z//
,v ____
t
‘/z//
IJ/*
2
/U/
to transceiver cleaning
transceiver cleaning
accumulation on trans—
- Note: *Data recorder provides single pass opacity values corrected to stack exit
diameter.
‘ 4 Transceiver meter provides uncorrected double—pass opacity measurements.
D—3 1
-------
Opacit). Monitoring System
CORRECTIVE ACTION -
ST. JOSEPH LIGHT AND POWER COMPANY
I. GENERAL INF
Name:____________________ Date:IS— f
pl p.f - - LL
4Ar 6 0 -- ’
II. SYSTEM/MONITOR FAULTS
LAKE ROAD STATION, UNIT #5
Time Start: O&
Time Complete: /S jO
FAULT LAMPS ON? NO
YES
CORRECTED
Date Tlae
STACK POWER
DIRTY WINDOW
it )
£11. CALIBRATION DATA/ADJUSTMENT
PANEL METER
Z OPACITY .
CHART RECORD
ZERO value
/7) fl
i/V ,4.
Adjusted ZERO value
SPAN value
Adjusted SPAN value
11)A .-
, -2_..
1’ )
,lJiq
/ . L
ZERO J1C DATA:
OZ OF CITY
100% OPACITY
Initial Values
Adjusted Values
/Vf —
?(/A
/
IV. COMMENTS: (Describe adjustments to monitor and/or all other corrective action)
D—32
-------
PERIODIC QA CHECK LOG
• CONTRAVES GOERZ MODEL 400/500 OPACITY MONITORING SYSTEM
Monitor:
(2) Alignment Status:
acceptable
unacceptable
Opacity prior to retroreflector cleaning
Opacity after retrorefl. ector ci caning
Apparent dust accumulation on retro—
reflector (3A35)
Opacity prior
Opacity after
Apparent dust
ceiver (4A—43)
(6) COMMENTS:
Station: 1- p
V
(1) Name:
Unit:
Date: -7n .- Y
Time Start: dti 1 1f
Effluent opacity prior to realignment
Effluent opacity after realignment
Bias due to misalignment (JIA-J43)
(2k)
(2B)
(2C)
(3A)
(38)
(3C)
(qA)
( ‘IB)
( 4C)
777
- —
7//>
JW7
/ 7/;
Time
Data Recorder’
Transceive
Meter”
,AJ/
22 __
‘2i
‘/1/
to transceiver cleaning
transceiver cleaning
accumulation on trans—
f/////
‘ / 7/t
Note: ‘Data recorder provides single pass opacity values corrected to stack exit
diameter. -
•Transceiver meter provides uncorrected double—pass opacity measurements.
(5) Time QA check completed:__________ A) t’r’
t cLL
D—3 3
-------
upacicy :lonitortng System
CORRECTIVE ACTiON LOG
ST. JOSENb LIGHT AND POWER COMPANY
I - GENERAL INFO i TION —
Name:___________________ Date:__________
II. SYSTEM/MONITOR !AUT
FAULT LAMPS ON? NO YES CORRECTED
_________________________________ Date Time
STACK POWER
DIRTY WINDOW
III. CALIBRATION DATA/ADJUSTMENT
ZERO value
Adjusted ZERO value
SPAN value
Adjusted SPAN value
ç.—
s_9
ZERO JIG DATA:
0% OPACITY
100% OPACITY
Initial. Values
C
Adjusted Values
/
IV. COMMENTS: (Describe edjustaents to monitor and/or all other corrective action)
Se e i e c. t .f2frr s: CO , dM 44 L4.J 4
m
/ A •
LAKE ROAD STATION, UNIT #5
Time Start:J bo - 9-ty
Time Complete:
PANEL METER
% OPACITY
CHART RECORD
D.-34
-------
Opacity Monitoring System
PERiODIC QA CHECK
ST. JOSEPH LICHT AND POWER COMPANY
I. Natue: __________
II. CALIBRATION Q4E C DATA
LAXE ROAD STATION, UNIT d5
Date:____________ Time Start: / Q j- - Ij
Time Complete: I
CHART RECORD
III..
Minimum 6—sin, opacity value (hour preceding QA Check):
TRANSMISSOMETER CHECK/SERVICE
I. Alignment Status (Note position of Light Bean on Diagram)
PANEL METER
ZERO value
NA
AlA
Adjusted ZERO value
SPAN value
.
I 4 j q_
,4J,q.
Adjusted SPAN value
57
Transceiver
-E
4
Reflector
Alignment Acceptable?
YES
NO
Transceiver
YeS
Reflector
7 ) (JJ .
Blower Status OK?
YES
NO
Transceiver
Reflector
c
See instructions if
alignment is not acceptable.
2.
3.
4.
5.
TThE
STRIP CHART TRANSCEIVER METER
(2 opacity) (2 onacity)
Before reflector cleaning
]1J,4
After reflector cleaning
Before transceiver cleaning
After transceiver cleaning
‘tj
.
Zero Jig Calibration Data
TEST VALUE
2 Opacity
MONITOR RESPONSE
I Opacity
DIFFERENCE
2 Opacity
02
1002
IV. FINAL MEASUREMENTS
1 • Minimum 6—sin, opacity value (hour following QA Check):____________
V. COMMENTS: Se s J icc Rc p u w
)q J J *e S, q k i Aop e,DLtFl d T ft1 /ôSe. A4 eø d
7 ,4II)i / yL Vo /LL ‘ ‘o S L 4 r
VaIu.Ls W . j. AeI
c J c4 k
D.- 35
-------
,ha Drive
PSTTSaU GM 1U31
“ ‘ 963—0913 aisra ti
St. Joseph Light & Power Co.
Ann p c LOwer Lake Road—Lake Road Plant
St. Joseph, MO 64504 ____
Mike Ceglenaki
816/233—8888
SHEET OF
DATE f 11 Tm IN 2: co TIME ()sr ‘ i
HaIRS WARR 4 NTf R AIR
ITEMS REPAIR OR PL.ACED
Tai Fbu s
T0T L ON SITE IOIRS ________
PART lb.
DEscRwrIatil
o— o 7
o4
1.
T’t’-i3
.
3
4
.
5
P a o C(AJ,71 “ Ci4A*7 Ei1 sr f Fe q_
c. 4. C1e4/? 7 c IC . t. , D &J 4 g A. C E •i EC To it
CaIIENTs4A,1r c LA ’d4( E4L O C.’iL, flAA7 Z .a 4 :- ,i( ,q c . ,,
Thc....K Z ik0 1_i41,’r £044(.liIS f 1. .4._rL.y
4,A
CU ER Q n
SIGN TLRE ‘4 1•fl .E .2ç / , ______
BAT /I
SERVICE CHARGE PER..
UvIPG EXPENSES: $ -
ft
Tami.. S v ICE CHARGE: $.
T va EXPENSES: $ ____
D—3 6
T0mL CHARGES TO CUSTaIER: $
FIELD SERVICE REPORT
N 12699
CCNTACT
Ti va TIME 10
—
j E l 43 O
CGCORDERlb.
EQUIPMENT TYPE
T—8412
00
‘ “4VEI. TIME REIURN
ON SITE
Tvp€ c SERVICE
SERVIcE TECH. —
insiectiot /calibrat
Joe Ziolkowski
DATE #/ TIME 2 00 To 7.’O C
DATE ____ TIME _______ To __________________
BATE 1 TIME INi . .TIMEC JT 4!.?o
B i ii-, g TitlE IN F 00 TIME ()ir
• fb s, c
___ fb s._____
TomL. Hoi s__L . ._
TomIJbtRs
DIST*13gfl wITt-(u$t.u(a .ua-k ,.a fl .i. ,. C .. . .a,-Siuv,a F,i.g P,,,.-Tic..scia. Fti.i— .i
SERVIcE r .GER
-------
APPENDIX D.
CONTRAVES 400
PERPORMANCE AUDIT DATA SHEETS
D—37
-------
CONTRAVES-GOERZ CORP. 400 PERFORMANCE AUDIT DATA SHEETS
Date _________ Auditor _______________ Source ID No. ______
AUDIT DATA RETRIEVAL
C. Instrument Zero Check (Control Unit )
11. Chart recorder opacity (% 0p
7 ’
a
7’
I.
D. Internal Span Check (Control Unit )
12. Control panel meter opacity (% Op)
13. Chart recorder opacity (% Op)
-
E. Span Value Check
14. Chopper span opacity (% Op)
A. Stack Exit Correlation
• 1. Stack exit diameter (ft) , Lx
2. Transmissometer pathlength (ft), Lt
3. Calculated STR
4. Preset STR
B. Fault Indicator Lamps
5. CAL FAULT
6. DTRTY WINDOW
7. PURGE AIR
8. STACK POWER
9. LAMP FAILURE
10. ALARM
1.O c
ON
OFF
P\J ’
7 d—
1 ) P r
tJ—
,‘J —
Li
D-38
-------
!. Zero Check at Transceiver (no Control Unit )
15. Time of check
16. Transceiver meter opacity (% Op)
G. Span Check at Transceiver (no Control Unit )
17. Time of check
18. Transceiver meter opacity (% Op)
fl 22
a. Alignment Check
19. Image status (centered)
I. RetrorefleCtor Window Check
20. Time of cleaning
j• Transceiver’Window Cheek .
21. Time of cleaning
• - ,.i -(
-.
,‘
K. Install Audit Device
22. Time at end of waitin period
I... Insert Low Range Filter
23. Time at end of waiting period
24. Filter opacity (% Op)
25. Filter serial number
1303
—
2
D—39
-------
M. Insert Mid RancTe Filter
26. Time at end of waiting period
27. Filter opacity (% Op)
28. Filter serial number
— i I
‘— ——
N. Insert High Range Filter
29. Time at end of waiting period
30. FIlter opacity (% Op)
31. Filter serial number
Tc
I _ _1 /
, —
—“-S.
- _S— • ‘
Low
32
35
3-
38
I
41
High
34
‘3\’? ‘ .42..
37
I3 ) 4 - .
40
j3 ! ‘4L
43
P. Retrieve Internal Zero Response (,.no Control Unit )
44. Chart recorder opacity (% Op)
Q. Retrieve Internal Span Response (no Control Unit )
45. Chart recorder opacity (% Op)
R. Retrieve RetrorefleCtor Window C1 eck ata
46. Initial opacity reading (% Op)
47. Final opacity reading (%
0. Monitor Response Repeatability
32—43. Time at end of waiting periods:
Mid
___ / 3/3 -
33
1 10 -,
I -
36
\• /,-? ;‘
39
42
I .-
I /b
D—40
-------
Retrieve Transceiver Window Check Data
48. Initial opacity reading (% Op) io2 ;
49. Final opacity reading (9 0 )
T. Retrieve Audit Device installation Data
50. Opacity reading (% Op)
U. Retrieve All Calibration F?lter Data
51—65. Opacity readings (% Op)
Low Mid High
9 .
5]. 52 53
54 55 56
____ _____ 42 -
57 58 59
____ _____ L1z
60 61 62
9 _____ ___
63 64 65
D—4 1
-------
AUDIT ANALYSES
A. Stack Exit Correlation Error
66. Error (%):
i(Blank 4) — (Blank 3)
I (Blank 3)
1( sc ) — ( 1 a )
L )
C
a -
(
C. Internal Span Error
69. Span error with control unit (% Op).
(Blank 13) — (Blank 14)
(5q,5 )—( 1 ) —
xlOO
x 100
B. Meter Correction Factor
67. Panel meter factor:
(Blank 14)
a
(Blank 12)
68.
a
C
•)
Transceiver
meter
factor:
(Blank
14)
a
(Blank
18)
1_
)
5,
a
)
I. “
—
D—4 2
-------
70. Span error without control unit CX Op)
(Blank 45) — (Blank 14)
a ( )( ) — ) VA
Optical Surface Dust AccuinuThtion
71a. Transceiver Dust Accumulation (% Op) :
a (Blank 48) — (Blank 49)
a ( , ) — ( )
71b. Retroreflector Dust Accumulation (% Op):
a (Blank 46) — (Blank 47)
a ( )—( / )
71c. Total Dust Accumulation (% Op):
a (Blank 71a) + (Blank 71b)
) — C
Pathlength Ratio Corrections on Audit Filters
72. Low range filter (% Op) :
a (l—(1—((Blarik 24 )/ 100 ])(B lank 4)] x 100
a (] (]—(( q )/lO0]) ‘ ‘ ) x 100 a ____
73. Mid rangefilter (% Op):
a (1—(1—((Blank 27 )/ 100 ])(Blank 4)]
a (1—(1—(( ,,o )/100]) ,.OO )] x 100 a
74. High range filter (% Op) :
a (1 —(1—((Blank 30 )/ 100 ])(Blank 4) 100
a (1—(1—(( ‘1 i’,’ )/100]) ! O x 100
D—43
-------
F. Determine Mean Error for Low Range Audit Filter
75. Test ti difference (% Op)
= (Blank 51)—(Blank 72)
a ( )—( ,a’4 ) =
76. Test #2 difference (% Op)
a (Blank 54)—(Blank 72)
a ( )( 0) ) =
77. Test #3 difference(% Op)
(Blank 57)—(Blank 72):-
a ( c ’..OI ‘ ).-( ) =
78. Test $4 difference (% Op)
a (Blank 60)—(Blank 72)
a ( ) ( 40 )
79. Test #5 difference(% Op)
a (Blank 63)—(Blank 72)
JI —
‘i—, /
—It
( ) (
80. Mean error (% Op)
— (Blank 75)+(Blank 76)÷(B].ank 77)+(Blank 78)+(Blank 79)
-
a ( o a
-5
)+( -,.a )+( - 1 )+(
5
+ (
)
D—44
-------
G. Determine Mean Error for Mid Ran ieAudit Filter
81. Test #1 difference (% Op)
(Blank 52)—(Blank 73)
a ( /., )—( ) —
82. Test #2 difference (% Op)
(Blank 55)—(Bi k 73)
a ( )—( ) ______
83. Test #3 difference(% Op)
— (Blank 58)—(Blank 73)
) ( 1,2: ) a
84. Test #4 difference (% Op)
— (Blank 61)—(Blank 73)
a C )—( I ’- ) ______
85. Test #5 difference (% Op)
a (Blank 64)—(B]ank 73)
a ( j ’ ).( /41 ) _____
86. Mean error (% Op)
— (Blank 81)+(Blank 82)+(Blank 83)+(B].ank 84)+(Blank 85)
5
- ( )+( I,o )+( 1L7c
5
D—45
-------
H. Determine Mean Error for High Range Audit Filter
87. Test *1 difference (% 0p
(Blank 53)—(Blank 74)
-
— ( 2’ )_(L )
88. Test *2 difference (% Op)
a (Blank 56)—(Blarlk 74)
Y -
* ( ‘l )_( )k’ ’ ) a
89. Test $3 difference (% Op)
— (Blank 59)—(Blank 74)
a ).-( ) a ________
90. Test *4 differenCe (% Op)
a (Blank 62)—(Blank 74)
— <1
* ( * ( “ )—( ) a ________
91. Test *5 difference (% op
— (Blank 65)—(Blank 74)
a ( ¶r )—( r )
92. Mean error (% Op)
* (Blank 87)+(Blank 88)+(Blank 89)+(B].ank 90)+(Blank 91 )
)+(—4
5
/
_ ; — - -. -- - --
-
D—4 6
-------
I. Low Range Audit Filter Confidence Interval
93. ElDifferencesi:
I(Blank 75) +1(Blank 76)I+f(B].ank 77)l+I(B].ank 784+fralank 79)(
— l( )I I( — )I I( — )I t( c )I÷k 7 2
1 2 2
94. E(DiffererLces) 2 :
(Blank 75)2÷(5] 76) 2 +(Bj.ank 77) 2 +(B lank 78) 2 +(Blank 79)2
a aO )2 ( )2 ( )2÷( )2 ( ;7 )2
95. Confidence interval (% Op)
0.2776 x ((5x(Blank 94)]—((Blank 93)2])015
a 0.2776 x ((5x( )](( /, )2])0.5 —
3. Mid RangeAudit Filter Confidence Interval
96. ElDifferencesl:
a 8l) fk21ank 82)I+J(Blank 83)I+I(Blank 84)f+J(Blank 85)1
il k )I I( )I 1( :d 1c- )I 1( )J
1.
97. E(Differences) 2 :
a (Blank 81) 2 +(Blank 82) 2 +(B].ank 83) 2 +(B]arik 84) 2 +(Blank 85)2
a (I )2 ( , 1#t ) 2 +(OD )2 ( )2 ( )2
98. Confidence interval (% Op)
a 0.2776 x ((5x(Blank 97)]—((Blank 96)21)0.5
0.2776 x ((5x( )]-(( ,75 )2])0.5 a _______
D—47
-------
K. High Range Audit Filter Confidence Interval
99. t IDiffe I
I(Blank 87)I+I(Blank 88)l+l(Blank 89)l+f(Blank 90)j+l(Blank 91)1
a )I L( . )I I( 1 )I I(
a
100. Z(DifferenceS) 2 :
(Blank 87) 2 +(Blank 88) 2 +(Blank 89) 2 +(Blank 90) 2 +(Blank 91)2
a ( )2 ( )2 ( 1,, )2÷( ) )2÷( ).2
101. Cohfidence interval (% Op)
a 0.2776 x ((5x(B].ank 100)]—((Blank 99)2])05
0.2776 x ((5x( )]—(( )2])0.5 a _____
L. Calibration rror
102. Low range error (% Op)
a I(Blank 80)I+(Blank 95)
)I ( ) a _____
103. Midrange error (% Op)
a ICalank 86)I+(B].ank 98)
a )I ( ‘ f’ )
104. High range error (% o )
I(B r 92)f+(Blank 101)
a I (’ ’•° )l ( ) a ______
D—48
-------
APPENDIX C.
CALI3RATIOLi PROCEDURE AND RESULTS FOR
NSUTRAL DENSITY FILTERS
USED IN PE !QRMANCE AUDITS OF
OPACITY CONTINUOUS EMISSION MONITORING SYSTEMS
-------
CALIBRATION PROCEDURE AND RESULTS FOR
NEUTRAL DENSITY FILTERS USED IN
PERFOP.MANCE AUDITS OF
OPACITY CONTINUOUS EMISSION )NITORING SYSTEMS
OPACITY CEM PILOT PROJECT
MARCH 1985
CEM/Engineering Division
Entropy Environmentalists, Inc.
Research Triangle Park, NC
Prepared nor:
United States Environmental Protection Agency
Stationary Source Compliance Division
Contract No.: 68—02—3962
Task No.: 2—52
Task Z nager: Anthony P. Wayne
(EPA Region VII)
Under Subcontract To:
JACA Corporation
-------
DISCIAI1 R
This document was prepared by Entropy Environmentalists, Inc. under
Contract No. 68—02—3962, Task No. 2—52. This document has not been reviewed
by the U. S. EPA or any of the other project participants, and does not
reflect official, policy or standards.
Mention of specific trade names or products within this report does not
constitute endorsement by either the J. S. EPA or by Entropy Environmentalists,
Inc.
-------
1.
Introduction
Performance audits were conducted on opacity continuous emission monitoring
systems (CEMS’ s) installed at four electric utility steam generating stations
in Missouri. Neutral density filters were used for these audits in order to
assess the quality of the opacity CEMS calibration. This report addresses the
calibration of the neutral density filters that were used for the performance
audits. Presented are a description of the calibration procedure and a suw’ ry
and brief discussion of the results • The raw data from the calibrations axe
contaiAed in Appendices A and B for the pre—audit calibrations and the post-
audit calibration checks, respectively.
Procedures for Pre—Audit Calibrations and Post-Audit Calibration Checks
Filters used as primary standards were obtained from the U. S. EPA Quality
Assurance Division. The opacity values for the filters were supplied by the
QAD. When not in use, the filters were individually stored in special felt
holders which were secured within a locked cabinet. Each filter was
permanently marked with a unique identification number.
Opacity measurements for the calibrations of the audit filters were made
using specially modified opacity monitors and calibration jige. Two opacity
monitors were employed: a Lear Siegler, Inc. RM7.and a Dynatron M del 1100; the
latter was used for the majority of the calibrations • Each opacity monitor
required its own calibration jig, which was fitted to the face of the
transceiver (with hardvare such as flanges and probes removed). The
calibration jigs had two basic design features: (1) an adjustable iris mounted
over a reflecting surface to enable setting of a zero” opacity response, and
(2) a filter holder. Opacity data were obtained either from a Fluke digital
volt meter or from strip chart records.
Before making opacity measurements, the opacity monitor was allowed to warm
up and to equilibrate, after which it was calibrated with four pr(m*ry standard
filters having different opacity values. For the calibrations involving the
Dynatron monitor, it was necessary to offset the zero. For this instrument,
zero opacity is ambiguous, because the monitor is incapable of indicating
negative opacity responses. A 2 percent opacity offset was typically used.
Calibration curves were prepared using the five., data points: namely, the
four upscale values reflecting responses to the pr{m-* ’ry standard filters and
the zero value. All curves were drawn through the origin.
Audit filters ware measured using the calibrated opacity monitor, and
opacity values were derived from the instrument response and the calibration
curve. Opacity values were rounded to the nearest 0 • 5 percent opacity.
Results and Discussion
Table 1 presents the results obtained from the calibrations and calibration
checks of the filters that were performed before and after their use during the
aduiti. No changes in opacity values are indicated for those filters for which
calibration check results are available. These results indicate that the
quality of the filters’ opacity values was adequate for the audits in which
they were used.
-------
2
TABLE 1.
SUMMARY OF RESULTS FOR PRE-AUDIT
CALIBRATIONS AND POST-AUDIT CALIBRATION
CHECKS OF OPTICAL FILTERS
Audit Materials
Pre-Audits
Calibration Value
Post
Calibration
Audits
C eck Value
Filter No.
Set
(% Op)
(%
Op)
002—a 9.0 *
I 003—G 20.5 *
007—G 515 *
002—A 8.0 8.0
II 003—A 19.5 19.5
005—A 39.0 39.0
1219 18.0 18.0
III 1153 58.0 58.0
1163 78.0 78.0
002—CL 8.5 8.5
IV 003—CL 23.0 23.0
007—CL 46.0 46.0
002—2 9.5 9.5
V 003—2 18.5 18.5
007—2 56 56
002—EL 8.5 *
VI 003—EL 23.0 *
007—eL 47.5
003— aD 10.0 10.0
VII 005—ED 31.0 31.0
007—ED 44.0 44.0
002—AL 9.0 9.0
VIII 003—AL 21.5 21.5
007—AL 49.5 49.5
I X 003-C 18.0
005—c 30.0 *
002—1 8.5 ok.n
1 003—1 19.0 19.0
007—1 44.0 44.0
* Post-audit calibration not conducted because filters were either
shipped to EPA Regional office or loaned to another user before
calibration checks were performed.
-------
The opacity values for Set IV, Filter
differ from values stated for the audit.
the field and their calibrations checked,
values had bean misnamed as a consequence
Nos. 002-CL, 003—CL, and 007-CL,
After the filters were returned from
it was discovered that the opacity
of an administrative error.
Set X, Filter No. 002—1, was broken sometim. after the audit. The
calibration check of this filter was therefore precluded. Nowever, based
th. results of all the other calibration checks, it would appear unlikely
any significant deviation from the pre-audit calibration value would have
observed if the check had been performed.
Table 2 identifies the sources at which the filters were used. Identification
of the time when the filters were used is also provided.
3
upon
that
been
-------
4
TABLE 2.
I DENT I F’ ICAT ION ‘ OPT 1CAL F I LTERS USED F(
AUDITS (1 OPACITY Ce4S’s INSTALLED AT THE
FCt. Pt LOT PROJECT SO& CES
Audit Material
St.
and
Joseph
Power
Light
Company
Union
Po
Electric
rtage Des
Company
Sioux
Kansas City Power
and Light Company
Springfield
City Utilities
Set
Filter
No.
Lake Road
Station
Station
iatan
Station
iemes River Station
002—R 1 1
I 003-G 1 1
007—G 1 1
002—A 1 3
Ii 003—A 1 3
005—A 1 3
1219
Iii 1153
1163
002—CL 2
IV 003.-CL 2
007-CL 2
V 002—2 3 1
003-2 1
007—2 1
VI 002-eL 2
003-BL 2
007—8 1 2
003-eP 2;3
VII 005—60 2;3
007—80 2;3
002—AL 2;3;4
Viii 003—AL 2;3;4
007—AL 2;3;4
IX 003-C 3
005-C 3
002—1 3
X 003—1 3
007—1 3
Note: Entry nijabers refer to audits as follows:
(1) Initial performance audit (March—April ‘83)
(2) Source self—audits (December ‘83—July ‘84)
(3) Final performance audit (June-August ‘84)
(4) Foiiow—up audit (July ‘84)
-------
APPENDIX A.
Prs—Audit Calibrationa:
Data, Strip art R.cords,
and Data
-------
£1’ ii-,
P4 ’-J-,7 7 ,‘;# .77a ’.-’
,‘AJ a
7 r7
7 MJ 9/ .7,’ 182
P/ 1 ’h 7, &. -’ Jc ? /
.
1/_c-_7 S8. S.
i/ _, 5° . r
- 12/9
- Cht s 7”•
7P. o
i1 J’ 8. c)
/219 - - i5,
£41 —
L5/ 1 c7 .E
-
L5,’ -‘ 7Z ,o1 1gz
oJ ‘-/ 8. .5
OJ p JC ooj - / i
oJ fr’ 007 —i
03 fA 002-i
& 1 ,iJ 00 - / 1k’, B
oJ f,’ c, -/ :
-------
TT1T
-__
I __________
I -I
1I2 1 - ”
•1
I
: d7T 17b/j
— — — — .
‘I •I •i•I . .& .
I1 I:
IZ L j
-—r+-. :_____
LL;
....L t# S&d I’ .__I .tI I $
-: -- - - + -
.t —
• ;. 13 .•4 ;;i.p I• ’ •‘; ;:1 ?t;
L
• • : I I :1 Ii —I
•_ 44 r.i_ J &
1’ i i :11 . .
-t - c.Th/ 1 ;,f j 4 — -
T T
— — .T
1
r t.L
4 ’ —-
J • • :....:. .
- “7’ & ._ a Z_ — ._
C I •
9 _____
•1
— •: •••
-------
Th jTF3
-------
a.
U
$E
0
L_ 0
r
I
a
__
-__
— .______J I
;
—-
-__T_
:: :! i
1 0
•0•
—— i—.-- i
;
i’ 0
.
.
•.
0 I
0
0•
. .:
0
H
: :1
.. 0 .
•7.” T. I .
0
: :
:: jH. 1 • 1•
I I
•
‘
0
f I :
•• L .
.
.
;
—
0
•
:
•
-___
..
I -- -
•0 .
,. I I
-H - —
0
— — - — —
L’-
0I
:
— 1
- -
1’
.
:
I
;
0
.
. - —i-’ .
‘
:
j
—
—
—
— .
>1
•
•
.(_._. —
0
0
I.,
II
I
——
01
0 ——
. 0
• 1
0 0
0 0 •
H .
• • I::
T,T
1 6 5
.
-J. I
1
• 0• • • • • 1 •0 _
I ——
:1
- . 0 • 0
— I 0 0_ • lilt £0 iii L&l’ Ill
-------
H
L IN ROPY
oo 1 ,
- - — ‘. .
I i .‘,
n i I__
.LJ.. i J. .L . I
!II 1
i 1:
• ...:j’ :
;i [ i
::.;.H.
1 •
.
— —
‘
—
:
1-
i I I: Ii
-_-— ..1 —r,.
I —
: lT T!ITT
—
I
..
.
..
.
.
.
-
I
E1
• ,
u I
i::
i i; ;
; I:
: ::i
.
i:.:I:; :;,
..
•.:
.
.
.
!! : :
sj: : I ’
: _—J— _ : .
1 I :
; J
1!.. II; : -
5 .7. 4
c T . I1T
.
I
r .
-, . J
t
I
I
-------
I
-J
I-
..,
r 1
•_____ ;
.
.
S
;
;.ct!j
•
.
; :
;
•::
51 5 2]63
:
:‘4
—
. !:
: :
• .5 ;:•• j •? S
9
H
I___
!
I ’ !uf_j..).. I
‘: j ; i
1 —
i___
1
—
;.;I: ! :.
•‘:
. S
r
I
.
.‘_ ..
:
:,
.
.
.
••.‘
H
.:
I
S
;
LI_.___ .ii
—
,
..
-
•
a :
.
:
__
U
—
I ’
.
I.
C
7.
If
3’
C
I.
• 1
I
r
S
•t I
. , i
L
‘ I
L
)
.
I
a.
>
0
i.., ic.’i’ t
..... ..1....L
• .
:
•‘
:
I-
.,
‘.
!j’
.:;:;
!.,.._J _L;:J .
H
.1
i
:
•;
;. II•
:!
.: ;
•.:
..:
•,•
:
L
.
••
••.i
•
•‘••
‘S.
. :
.L _L
:
•
i•
,. ‘ ;JT
:
.:
I
••
-------
( ‘I
I-
I >
4 .
I I
&
I.
f
1
:
H
- -— -- --,
: : ‘ :‘
:
_!.._....i..
;
-__
o
I
I
I —s /1 —— — I
T .I I . ‘
::
i
8 7i 6 [ 1 4 3 ’T2
: : : : ::w..i :: r :
I ;
i; :,..t.T1 I; :iI
.L . J
rr
I
.1 ;
: 11 _
—
.t
::
;!f.II .,:
.
j :
—
l !; !
II.
L — .:l T(E r__ iJT T TTTT
‘uiI _ iT T TT 1T
T Tif •rTtTT 1 t r TcTT :
—.——. _ t L....
1 H
tir, J_L)!
I • .. I ‘ .
— •‘!.;i
..r......:t___ j.H
t; ! ;
t.1’ • I 1—
t’h1.Ji i.;;
L
L :
•
I
•
•
!
i.;
•
•.
.
—ri T ’T
C,
—
I
I.
I
I,
I;
-------
i .T rF. .; p\(
oo ,
-------
:c; f
‘1
-
I
1T4:
c 11 —;•——•———;
I;;
e. •--
:.
L__
2’
I :
:
T
.
‘
•—
—•—
.
i:
—
Ii :1;..
H- —4 % ‘ I__
1. LLJ4Jr’:
= :
cL
;l i;i’t: t;:.’— ::
1:2 : 2 ’I r•_
10’ 9 6 .’: 5 H; 3’ 2 L IL O
I I_. Jfj ,IiL.ti Ht; Jj! I .
E L’ t h1 J :::Dr ,
I Jir Jr
I ‘
•: : i i L : :
II
I i T jT = ==
: =
— _ ,‘ I t , I I
(l.!.. —p!!,’I.!t..P ’__._!._I I
;:3
— — -. - —. — — — •L_
1
9..
I
I.
I
r
•1
,
- UI
II
-------
I.
I I
I.
0°
— —
1 •1 I
I
L
0
£
•
— — — —
I ILl
•
•
,j [ 1fZ
.
.0
‘
E
Ti
: :
I ;I ,;I:
•:
‘ :t
I •. I’ , . :
TT
-
b .::: i .:‘:J
0 •
Iii$LIi:Li
.
I
•
:.
.
: .
•
:
=
:
I____
— —r —
;s:l;
::
:z
E
:,, M UL I
LIII. U J
Ij.,
:Ii
: __
•
t..e1i..I Ii;1;.il;i. I;i
j
•=== I• r L.
!_! t i
•._ __ .‘
I 2 3 j
.4 :5
6
.7.
a • ‘ _______
‘ = — - - -
: zjj :j.;. -:
•t !:;:: • •: •
1
——
0• — •• - I • -
• I • o •
• : :
L J
1
I
I
1
Ii
-------
—I
Ii I
I.
: ç —•••••••— —— —
——
H ••
I — I I I
H1
— • —— ‘ .. .
I-
F l — :
Iii
— —— I . . s I
4- 1.
— .__L_ ‘ I 1
t
. ITI I .1
FE p -
P TEELHhhi.ii::ILL_I
I l H
i !“ , - ‘:.
.:_ I I I i t ‘ ‘
.H
liii ‘±L i___ : IIm’:±
:;
c L — = — — —.——— — — —
r!I • ; 1
il-i
—11111:1’ • :
— — 0 — — P . — — . I. ..
— . I ‘I ••‘•
‘I 1 • 1• 4 3 _W.
, I_L _L —L —— -__,J_t L !.L’!
I I i 1 H
j,V TTi ThIL
iTi aT f :tt.H
if ’1cr9;; .8 .i 7 ____ . . 5T _:4 , . ’ 1 3 H ‘2_Hi 1 ._0
-f _I: 1 iiTi.r__
‘II . . I ;‘IL
I s I i . I 0 I
- ! sit
.!LI l 4 J. .LI -— -.L LLJ,.. L-
1I1 ‘ L! ..LI .4H IH I• ::
II
• 1
-------
öcY?-AL
V
Z
2 1 °Z
C S2 .‘
((r
1,2. Z
l.a z
- tctjvcrecL —
/ 2. %/
.
V
.
.
•
.•
- • V
H -1
I ci:\ç _. ) 2 1
J ‘/
1.1 -
:
(‘
1j
V
D c ) ) 1.3L..
V
(2 ,4
(p 5 /.c)7.
( , c/ c .
.
// r
/.c)7
/.2-
4 A (f1isreJ
V •
[ .c -7 4 ?
.
V
V
7
c rrf S t. 0
•
/1 %
•V•
V V V V
V
V
I z T ’ 7 V
V V V
•
•
%
V •• V
V
••VV•
‘t z
•• • •V V EV
...1rV V
V ••• V
1.
.
.
—
) )9,V.
V
[ C /
V• 7
V
ii_
.
—
-------
:
.
c (A 17 p
O,9
( iii: c ?
/1?. ç 1
•
.
/ 7 J
: / L( 1 e -
àpe r ‘/,
.
•
cb ,i/,,# /.o 7
= ‘ / Z
•.
4tre J
.
f/o,
.
.7 -
.
.
.
.
• ACIUAL d -7 o./’ô ,, 7
.
• o — _c ,
•
•
.
f2 j 0pi r 7
.fc.; tf
•..
.
:
:
.
( j’ 2IJ I. ‘ 2’\
..
-------
(kiS -M
• fl ’ L
27,r’7
O) 2.7-7 %
-
/c) 7
.
AcIrJ(rc_k
—s-.
• /2.7, %,t
.
.
j 7 -S %
l.7 7Z
2.7 . 7 Z
.cTtiT ki orf\c#t17
F
/c) (
i. t Z
%
/; i7
•
.
.
•
•
—
•
.
ft
/2 1 ? TZ7
r
,i4 ir T (.
.-
(0
(z •
io,
• . •
(
•
.
• • )‘cTTy
S •,
2.ac —-c
ckAj
(I) 22 ,—
.
jfc-.
. ., •
.-.. S. .
/Ii icr4
•
. 5
—
.
.
S.
.. S
z7
• .. -..
•— •
.
ilII\t
JI: 7 ô. çL 5/f
-------
Qi 7
— c
Q//; r-
r r -c - . L
Lj& c,
—
Li 1 . I 2 ,
to %
ij7 Ir /.
® ‘jp,I Z
.
/oZ
/.‘)
0•
—
(/‘ui 7
/ L1$ O Z 7
0
coi—iW
,.
9 ’
.—
P L cr l7
— (p cF17,O 7 o
(7.c •
( )
.
0
.
.
LJ!i c(
.
1 6. z/
0,
.
0 0
/,()%,
0
( ci’Jf’f rrc 7
• Ii 1t(.o 7 7
•..
.
:
0 ( j
wr’
0•
0
A4 J.
0
.
•
£2_i& - —
z
0
—
0
%
io ’
I
J_L/ I o % (
.
-------
0o2-AL
(Z AA c . _t: 1 o 4 r \ lp 1-cJ ‘ i 3 —
.
• L J
C !) LLc7
/1 rAC = ‘ 1• t/ 0, 3 Z -
!A O(s4 T7 r ,8zI •. . .
- Oô2 - i L • ..
• (2.ei ° r c k r- 1p rre_L -
• : g
• 1c, Z 017 Z / ‘?7 ( Y’6 *
• •
4o7
•.•
- ••_> ___• :• •
! O2. L S - . ;. . S
• . _ •• A
.
/-sZ
i . 0 7 . •
c A T 7 S
-------
Oo —f L
3,7
•
o 4r ..r
tcT
, ‘z
L z. i i1
‘Z
i i
.
.
2 .7
/.v%
.
, c-m c) t.c. T7
[ 2L 7
Oô?— i?L.
.
2 A 1 17
2. ç Z
.
,.ô z
-
(2)
i.
/ 2- i o
Cl) °L
S
/1 G7
.
f T7:
.
0i?—CL
S
.
—. (2 ’
I 2”(t c7
‘L 2
2 t o
.
.
•
J J iT7
/.z9.o
A ‘ ‘c ’-’ 2 ‘I- t i
o ‘
S
f\ TVE\( )(17
-
L1LO 7
S S
-------
V,’ uiu5 fr O/ ’
9,cAIf/r/ l 2h z1le$
f.0%
/9.5-Q/
• ••ao •-• ________________
- - / 7;f 1 ; -
T.e -’ ______ ___ ___
(_ —
--
I
.. ... .
° i1
.
-
.
T1
. j
• o I I -.
“I
74
‘J ” ooZ
1/ O
‘Jf,a aô3
J ’ _ /71 L ’vo
‘3/ fi o’5
• / r• Q3
‘9;
—1.-I . ._._ _
(J I A
• I • ‘17 937 P____
+ t Tt
:
i TTTI
:: .;f.,1
-. .•.
,
T
T77 1 LiZ_______
g.g% r
---- -•.
L ___u
• ( _ t r--..
: 3 q,o:J1”
•i
I
I__ — ‘__: -
E+ ‘! -: - - -
—— - I — —
—U - I P -
t) 1 i AI ’
Z Zf’ 2 i
4 5 - 7 I
___‘. ‘T “--76
________________ • • 2 o. gf
___________________
. J J%o
LL L.
• Q,_
-
,
- ———c, -#— — 4 ._ ___
- -
d?I H
r--—- -
-------
III
I
I,
t I
I I
S I
II I
I .
•1
I
I
I
1..
I ..
— L j .LL! : : J:I ’-o ‘ JJ.. ‘ IH
—
I —‘a :
:L ‘‘
I ’ , ’ !1.
i !’ !
• . (I . ;
1 1 ‘Y—G I! j.:
o____ 3 &- ‘ ‘7’ 8 5 10
••• ii.. ...;‘j
;::I ’ ’i!T1 ..
: fJ’T 1
- ___ — -- -. -: --—rJ
‘r ’•
0 ._C__
4 ’o3fi ooS 1 , tO 1 à . , ‘
o ‘ iJ ’’I 1
— •1
t i L [
• : •:.
G 3 . • 1 •
I
I _: [ _j I jn I:I. . •. I L •
i _ 4 _ [ i; .. ::: :,Ii
I fl;I1I! jL 1:
ic 8 , ii 1i 1 6i 1 II 5 :4 . . I
• Itft I’I11 : U ’ t’m i; i I
7
(I
I-
p4 c4• 2 -
-------
80
I II’
‘rr
I ,
I •
II;
•iI
• 4 I’
‘I
• I
t 1
I • I-’• ’•
4 -1- - .Li . .LLL .-LL
iT! i r
.4.-—
II
I I
i , I
j-
:
• I
• . ‘4
•1 H
, ; I .
II ,
.4
tjZ 2
“rr ‘ -• -:-‘- —r -
-, F
:4, .
II I •
II, ,
‘1! !
‘ ‘ii
I I
I I
‘I
.4.
I!
II
•4I
‘I.
‘I .
‘iiI
•11I
- . ‘fc
‘ii,
II
I I
I
I •
• I I
I I
• , I’
‘I;
-I-
• I’
‘I..
Jill
I’
I ..
‘I’
4.
.4
.4..
! I
I.
:1
III
rT
I .—
II
II
. 4’ ,
I.
.4.
I!
I’.,
II
II
‘I
I.
.4.
: I!:
• I.
• •I.
‘I .
‘I
II
I
I I
I’I
I I
I !
I j
r
I I
I. I I
• I
Ii
!‘ -I T•
‘IT’
ii
• L1
: UI -
ii
Ii,,
.4
.4
L.
•1
.4’.
‘I..
:1
‘.4
•11’
I I
I I!
I,,.
4;:
• I
I1 I
I! i
‘— 4
‘a
‘a
I’
‘I
Ii
‘II
I ..
•..‘
I:I
I:
I ,
444
I.
• 1 ’
I,
I.
S- - I---’
I I 4
.4,
.4
:
:
-r
i: *
441
•III
I tI
III
4 ’H’’u’ ‘iH ’L’ 1 1i
*
I
ii
L
.
11III
I
lr
liii
i
II
tU I1 L a
•I0
-ii
I I
•;
I I
II
•
;:j
•
‘II
•
I
:
— —
f
.4
il
Ilil
I.,.
I,
II I
:iIfflt r1E L 4I1 ü’
II
.4
‘II
I ,
I I
I I 1k ill LL !JJJ LLi° .. ii Llli?i d i I i_4 Jj
14c Cc c. ( t oc 4 j
r rh 1
I I
I I
I 4 II
IL1 iiiJ
LLL!JLI -.
I a
II
I ,
‘ 4
‘ . 4
-------
-
D s’
c r ( A O(
1.LSX___________
—
00s_______
3 LsX_____
.1
——--
—
L ç . . .
— I V 4 c \
L
A\ & c C ___-
r ( 6• :
.:
-;r __
.
(1 r
‘ o7-& - I2 ..
.:- l s
f
.
1
/cø2. 1 j_______
L. ôo7 ç .2.
/t1fd2
. lo.8 2. ____
_ . B7 ____
__1 2 ___ _.Zo.q __ __
—. —V
r _
-------
APPENDIX B.
Poet—Audit Calibration Checks:
Strip Chart Records and Data Stmwn ries
-------
,z 4& / ,
H 1 ’
- — ..
-
v ZLd - LL =2J q
4i 4_ A
AL dt - A
.
‘s’
I 4 i -‘/ .
-
—
.4
..
/ 0
0 2o.
5
- -
2O 7-
53
S
£2. ’ O
_I
S
-------
//__ —
, - /4 ’2____ V
‘J, -, . /. - 2 /
£27. £ 7
ØC
/
ir,4 57 Z
•
- t i . s ic .. /
• I
- V
eO7- ! .
cJ- 1 4 •
.
/p . /12
•
t - ,4 z
Ø(d
••
‘ ‘;-A
1. , o. 7A -
3 v
f 2
4
.
...... ••.
3-f
-7-, 4 ’ 4 __
• ‘7-f
-------
2 4 a4sd d 4
• - - ---—.=--— -- ——- “,- p —
ii 2 1 2.
3 - /
V
• •
‘4”
e b ;44 2 4(5 O 2
!
• V • /6 c2 4’
—
o7 . ..72D
V —
+ - 2
V —
, td -
___
•
1 ’IDV 44( ’2 V
ç 4 2c . 0 V 0
?2 7frb V • V • 2
V
- - •_V -. z - z < -
V • • V V• •V
J O2 /c i
S -L V• V 1 5 ‘X-
: vj , 9
•
-------
__ e :
, ‘7 , 2 0
.
//.5:
//& • 7 c /
6 O 5 . ‘
5 P Jt9 r ’
..
ik /
•Z3- .Z , 5_ : -,‘ ‘ d ’
7-2 t 57
1•
I
ot Z7
.
2a2
• • .•
72f 73 D
-8
J 4 /d
—
2 3 ______
C2
•7 ;.
-------
94
!
v___
—-
-
7 0
/ 0 0
..
-------
.1c
rj
i , L±; ‘:E
— I —
•
:: _
—
- -
_,
hI iH=L
..
.: ii II i• I ThL .° I I
I H • j.r
I I
•
JIC L ‘J
J . ; II : —
i : : :
1! • i.
1——!— — — I — —
Dr 1 2 ‘i ’ 4 i á ‘6 8 :!’
?: :: :
. 1!; I;4 ,:
- ; ‘ E L s
—
—___ ,r ——— ,
I
I
—
,•
I
-
Ii
. I
!
:
‘L
: :
H
I
: :
-------
-------
I
C.
1
.1
o07 ,44
a
.
-------
I —
I —
• 1
-------
‘I
-------
I .
t
I
— t
-------
;•; i
I
-------
t
r
I.
-------
.1
_________ I
I —
1.
.
.‘!
•
i 3 3 6
OH 3.7:,6
•.i
.
7
i i. :
j I...
t
—
8
:; ..:
.
.
.
2
:
., . — I
I
•
•
:
.
: I
I
•
:-:
• I.
‘-
I. J
I-
,
1!:
‘ : ti_III _
— — : — - I — —
:iL.H I;I •I
I j I
—
t —
I I
-•,
—— -•— - II. — — —
1
• ••
• ‘H.
- - I
a ‘- • .
: -——
•
—— —
•,
I
.T
-.•— - —
3
-------
-------
k T 1 ——,__
r
I 0
r
:
•
.
I_• ‘
——
i. 4
— -r
.
..
r’ - •-
— . I - - • —
! j
- I T:::
it; 1’
;.
I;
.
;.
,
•
,
‘ Ei EEl___
: ‘2:.H . _ 4.
II II . t
E .
: ..L LI ’ è
—.
cf
0
1
I
I.
I.
.
•.
- —
•
L
T
i ’ t t ‘
JbTr -r-:- • i
!j:
• 0 1’
I.
I __
f I
I í
.1
I.’
•
:
II I I I I I
II
-------
ENT PY
.
———,—————
lit I
.. I.
,
:
,
:.
.
—
•
,,
.
.
.
,.
•
I
.
•
Hi
-lJv
I —
I —.
-
I
. .
,:
•
.I.
• .
I,
:
l I
..
.
•‘
:
I:
. 1
I
•
,
..I
:
.
.
. it
II
,.•
—
.
. .
..
— . —
.
—
•.
• .i:!:t
. I . —
‘ I a
[ . ; Ill I
,•————-
• i’ 1
r7 ‘ !!E T
3 7 b 2’l
I I ‘ —
T iT 1 : I 1
fl
= iI
I
:I::_
I.
I.
I,
-------
I i
• ______ .....
.111
Hi
• *
:
— : __ :
1
L •TT’. :L::.1 ..i.
— -H- -
=
I. :
- ‘ .. . .0
•
- — .. • I
I .. .i .1 I
- — — : .
H 1
1 H ’?
;:;
C H:H 1 2; 3 , 4 L_ 6 _LL 7 .H.B
IC :7 .;6 5 : :4H 3. 2
It
• ;:I:..• *:
• I • I
—_____
‘:L’ :1 :
- _
!
•
.4
-------
2
±1±± ._ HH
44C
I
‘
-
THH ——
—
—
..____
li:j
- ‘ I’
:
±:
t ;
.
,_
.
I ‘H
;:.
:‘HL.
ti__ _+ [ ::
!
ii
•‘
!
•
,
;
•‘
:1
‘
.
‘
— —
!
———
:
-------
- —-.
_ TLOPY.
.1
------- |