the department
OCEANOGRAPHY-
Special Report No. 66
PCB Monitoring in the Duwamish River
A Study of Their Release Induced by the
Dredging Activities in Slip-1 I
by
S. P. Pavlou, A. J. Hafferty,
K. A. Krogslund and W. Horn
U.S. Environmental Protection Agency
Region X Laboratory
Contracts WY-6-00-0451-J
and 68-01-3369
Reference No. M76-46
July, 1976
Seattle, Washington 98/95
-------
UNIVERSITY OF WASHINGTON
DEPARTMENT OF OCEANOGRAPHY
Seattle, Washington 98195
Special Report No. 66
PCB Monitoring in the Duwamish River:
A Study of Their Release Induced by the
Dredging Activities in Slip-1
Submitted to the
U. S. Environmental Protection Agency, Region X Laboratory,
in partial fulfillment of the Services rendered under
Contracts WY-6-99-0451-J and 68-01-3369.
S. P. Pavlou, A. J. Hafferty,
K. A. Krogslund and W. Horn
Spyros P. Pavlou
Contract Director
Research Assistant Professor
Francis A. Richards
Associate Chairman for Research
July, 1976
Reference No. M76-46
-------
TABLE OF CONTENTS
Page
ACKNOWLEDGMENTS i
ABSTRACT ii
INTRODUCTION 1
METHODS . . 5
Sampling 5
Analyses ...... 6
RESULTS AND DISCUSSION 9
Hydrography . 9
PCB's 10
REFERENCES ....... 14
APPENDICES 15
Appendix 1 - Hydrographic and Chemical Measurements 16
Section A.1.1 - Hydrographic Data . 17
Section A.1.2 - Hydrolab Data ..... 43
Section A.1.3 - PCB Data 73
Appendix 2 - Hydrographic Profiles .... 88
Appendix 3 - Selected Hydrolab S°/oo Profiles . 133
-------
ACKNOWLEDGMENTS
We would like to extend our gratitude to Robert Dexter, Robert
Ralston and Steve Pope for their valuable help during the sampling
phase of the project, and to Marge Archer for typing the report.
-------
ii
ABSTRACT
An evaluation of the input of PCB's into the Duwamish River as a
result of the dredging operations at Slip 1 during March, 1976, is
presented. No significant quantities of PCB's were dispersed into the
river channel. The Pneuma dredge appears to be efficient in minimizing
the resuspension of contaminated sediments. However, prop-wash from
the dredge barge did generate a transient PCB pulse within the immediate
vicinity of the barge.
-------
1
INTRODUCTION
Studies of PCB distribution and bioaccumulation within Elliott
Bay and the Duwamish River estuary are an integral part of a more general
program undertaken in these laboratories to determine the fractionation
of environmentally stable organic chemicals in Puget Sound. These
studies are currently supported by the Environmental Protection Agency
(EPA), Grant No. R-800362. Concentrations of 40 ng/1 in water and
3 ug/g dry-weight in suspended particulate matter (SPM) have been
measured in the river as compared to open Puget Sound concentrations of
2-6 ng/1 in water and 0.1-0.3 ug/g in SPM. Consequently, the Duwamish
River can be considered as a major source of PCB's to Puget Sound
(Dexter and Pavlou, 1976a).
The primary objective of this work was to evaluate the mass input
of PCB's into the Duwamish River as a result of the dredging of con-
taminated sediments in Slip 1, conducted by the Seattle District Office
of the Army Corps of Engineers from March 4 to April 23, 1976. This
project was part of an overall effort conducted by the EPA, Region X
Laboratory (J. N. Blazevich and A. Gahlor, Principal Investigators)
to make pre-dredge evaluation of sediments and to monitor trace con-
stituents (trace organics, trace metals, nutrients, etc.) released in
both the dredge and disposal sites. A brief historical background of
the problem is given below.
On 13 September 1974 an electrical transformer was dropped on the
GSA dock at Slip 1, resulting in the leakage of 265 gallons (722 kg) of
pure Aroclor 1242, a mixture of predominantly 2-, 3-, and 4-chlorobiphenyls,
-------
2
into the Duwamish River and the adjoining Slip 1 area (On-Scene
Coordinator Report, 1975). During the initial limited clean up (hand
dredging) conducted in October 1974, approximately 30% of the original
material was recovered (70 to 90 gallons). Subsequent field studies
(J. Blazevich, 1975) have shown a continuous spread of PCB's throughout
the slip and into the channel with considerable quantities of PCB's
remaining in the sediment within the area of Slip 1.
Recognizing the seriousness of the problem and the potentially
adverse biological consequences, an attempt was made by the Army Corps
of Engineers to remove the remaining material by using a pneumatic
dredge technique designed to minimize resuspension of contaminated
sediments.
These laboratories have conducted the river monitoring functions of
the overall project. A conservative sampling scheme was adopted to provide
maximum information from the data obtained. The rationale was as follows:
All samples were collected during the large ebb of the semi-diurnal tide
because recent measurements near Slip 1 (Dexter and Pavlou, unpublished
results) indicate a four-fold difference in SPM-PCB concentrations
between 8 m samples taken on an ebb tide and 8 m samples taken on a
flood tide.
Time composites from the fresh water and salt water layers were
collected at the dredge site and analyzed separately. Analyses of
samples from surface and depth were desirable because the Duwamish
River is a salt wedge estuary with a fresh water surface layer usually
separated from the deep layer of salt water by a strong pycnocline. It
was believed that if dredging did disperse PCB into the water, it would
-------
3
be initially confined to the deep layer before being entrained and carried
away by either surface or deep water movement. By sampling both layers
independently, the total PCB input to the river could be measured while
allowing evaluation of any discontinuity in the vertical concentration
profile. Based on Santos and Stoner's (1972) observations, even with the
net flow of surface water downstream and deep water upstream, the dredge
site could not be expected to flush rapidly because salt water entering
the river mouth at depth is advected upstream and entrained into the
surface layer before it is carried downstream. The travel time of the
salt water and surface water has been estimated to be 200 hr and 100 hr
respectively, for the lower 10 km of the river (Stevens et_ al_., 1972).
Therefore, it is not an unreasonable estimate for a particle originating
in the deep water layer at Slip 1 to have a 200-hour residence time in
the river. If the PCB concentration in the river was increased signifi-
cantly, flushing was not expected to be too rapid to prevent detection
of the pulse. A reference station (upriver from the dredging site) was
also occupied to monitor the variability of ambient PCB levels in the
river including increases due to dredging. Another aspect we intended
to investigate with the "two-layer" sampling scheme was the effectiveness
of the Pneuma dredge system (Faldi, 1975). Since this lab established
4
that PCB enrichment on SPM is of the order of 10 higher than the ambient
water, any dredging technique which might induce resuspension of sediments
could increase the PCB load in the river significantly. However, the
degree of sediment resuspension as a result of the dredge-barge (M. V.
Puget) prop-wash was not considered. This prop-wash effect could tempo-
rarily destruct the two-layer system and create a transient uniform
-------
4
resuspension of sediment throughout the water column. If the prop-wash
effect was the predominant mode of resuspension of PCB-contaminated
material, it is reasonable to assume that a faster removal of PCB's
would occur if the material was brought directly into the surface layer
and consequently advected out of the river.
-------
5
METHODS
Sampling
The sampling schedule consisted of seven cruises, six onboard the
R/V HOH and one on the R/V Kestrel. The first cruise was made on
27 February 1976, seven days prior to the initiation of the dredging
activities at Slip 1. Five cruises were taken during the dredging
operations and one post-dredging cruise was completed on 20 April 1976,
twenty-six days after termination of dredging. Each cruise was timed
to coincide with the ebb tide. The cruise schedule is summarized in
Table I.
The station locations shown in Figures 1 and 2 include the Dredge
Site (DS), 2.23 miles (3.59 km) upriver from the mouth of the Duwamish
River; the Primary Reference Site (RS-1), near Slip 2, located 2.99
miles (4.81 km) from the mouth of the river and the Secondary Reference
Site (RS-2), near Slip 6, 5.47 miles (8.80 km) from the mouth of the
river. Stations DS and RS-1 were occupied every cruise, while station
RS-2 was occupied only on the pre-dredge cruise. PCB samples were
separated into fresh water and salt water composites, as well as time
composites for the first and second halves of the ebb tide. The
reference stations were not true composites but single samples of fresh
water and salt water. The composite scheme is summarized in Table II.
Hydrography. Standard hydrographic samples, salinity (S°/oo),
temperature (T), and dissolved oxygen (DO), were collected using Scott-
Richards bottles. Nutrient samples were collected for analysis by EPA
personnel. Additional supporting data included conductivity, T, DO and
-------
VO1 N* sue i
Spill (Dredge) Station (DS)
Primary Reference Station (RS-1)
SLIP 3
-\\
Secondary Reference
Station (RS-2)
STATUTE MILES
Figure 1. Station Locations in the Duwamish River
-------
Sampling
Area
t i\
DEPTH
2 6 ft.
WAT
Initial
Spill Area
*Ica!e in
'Too
Toe
700
Figure 2. Dredge Site and Sampling Area in SLIP 1
-------
TABLE I. Cruise Schedule for PCB Monitoring
Cruise No.
Date
OH-999
27 February 1976
0H-1000
6 March 1976
OH-1000
K7-065
OH-1005
OH-1005
OH-1012
8 March 1976
18 March 1976
22 March 1976
23 March 1976
20 April 1976
Time of
Ebb Tide
0405 - 0941
PCB Sampling
Time Interval
0507 - 1003
0735 - 1427
0815 - 1453
0849 - 1610
0551 - 1229
0859 - 1610
1009 - 1719
0832 - 1533
0901 - 1517
0835 - 1343
0934 - 1631
1014 - 1733
0904 - 1440
-------
Surface
(Composite No.)
TABLE II. Composite Sampling Scheme for PCB Monitoring.
STATION
DS£
RS-1
RS-2
Hours of Ebb
0-1 1-2 2-3
3-4 4-5 5-6
6-7
Deep
(Composite No.)
2, 3
5, 6
Dredge site samples were taken every hour to generate two 3-hour composites.
-------
6
pH. These parameters were measured with a Model 6D Hydro!ab Surveyor.
Percent transmission was also measured with a Model 410 BR Hydroproducts
transmissometer unit with a 10 cm path length.
Chlorinated Hydrocarbons. Water samples were collected with three
53-I stainless steel samplers (Young et al_., 1969). Four liter aliquots
for whole water PCB analysis and suspended load measurements were
obtained first. Subsamples were then taken for trace metal and oil-
grease analyses performed by the EPA laboratory. The remainder of the
water was filtered through a precombusted 0.45 u glass fiber filter for
SPM-PCB analysis using a Large Volume Filter (LVF) system (Dexter and
Pavlou, 1976b). The whole water PCB samples were stored under hexane
in solvent-rinsed 1-gal 1 on glass bottles with aluminum-foil-lined caps.
The filters were stored in solvent-rinsed glass jars, also capped with
aluminum-foil-lined caps.
Analyses
Dissolved oxygen concentrations were determined by the standard
Winkler technique and salinity was measured with a University of
Washington bridge salinometer. PCB1s were analyzed in both whole
(unfiltered) water and SPM.
Handling of PCB Samples. Each 4-I whole water sample was shake-
extracted twice with hexane in a 1-liter separatory funnel. The hexane
fractions were passed through a ^SO^ column to remove water and then
condensed in a Kuderna-Danish evaporator to approximately 10 ml. The
condensate was shaken with 2 ml of 5Q% (v/v) sulfuric/fuming sulfuric
acid and stored for at least 24 hours. After neutralizing with 2% KOH
-------
7
in ethanol, the hexane layer was saponified as described by Thompson
(1974); 2-, 2-, 4-trimethylpentane (TMP) was used as the final solvent
instead of hexane. The sample was then ready for gas chromatographic
analysis.
The suspended particulate load in the river was estimated by
filtering 1,000 ml of water through a preweighed 0.45 u nuclepore filter
and reweighing the dried filter on a Cahn Model 4700 automatic electro-
balance.
The SPM filters were macerated and placed in a pre-extracted Soxhlet
thimble and extracted for 24 hours with 300 ml of acetonitrile. The
solvent volume was then reduced to under 50 ml using a Snyder column.
The remaining fraction was transferred to a 1-1 iter separatory funnel
and extracted twice with at least 60 ml of hexane and 400 ml of distilled
water. The two hexane fractions were passed through a ^SO^ column and
reduced to approximately 5 ml with a Kuderna-Danish evaporator. The
remaining hexane fraction was transferred into a glass-stoppered
graduated centrifuge tube, containing about 1 ml of TMP, and fitted with
a micro-Snyder column. The solvent volume was reduced over steam until
only the higher boiling TMP remained. One to 2 ml of concentrated
H2S04 were then added and the two phases were vigorously stirred for
one minute with a vortex mixer. After a minimum of 24 hours, the sample
was centrifuged for 10 minutes on a Sorvall Model SS-3 centrifuge at
1,000 rmp to break up the acid-solvent emulsion. The sample was then
ready for injection into the gas chromatograph.
-------
8
PCB Quantitation. All gas chromatographic analyses were performed
on a Microtek MT-220 gas chromatograph fitted with a Ni electron capture
detector. A 6 ft x 2 mm Pyrex column packed with 1.5% SP-2250/1.95%
SP-2401 on 100-120 mesh Supelcon AW-DMCS was used with a mixture of 95%
argon and 5% methane as the carrier gas.
PCB homologs were identified by their retention times. Mass spectro-
metry conformation was not performed on these samples since the spectral
component distribution is similar to those confirmed during previous
work. The quantitation of PCB was carried out using the technique of
Dexter and Pavlou (1976c) which involves identification and quantitation
of individual chlorine homologs as well as measuring total PCB concentra-
tions.
-------
9
RESULTS AND DISCUSSION
The data presented in Appendix 1 includes the basic hydrographic
and chemical measurements, the suspended load determinations and the
PCB values for total water and suspended particulate matter. All data
reduction has been accomplished on the CDC 6400 computer system of the
University of Washington. The glossary of symbols and abbreviations
used throughout this report are presented in Table A.I.I. The hydro-
graphic and hydrolab data are tabulated in Sections A.1.1 and A.1.2,
respectively. Section A.1.3 contains the PCB data together with the
suspended load determinations summarized in Table A.l.II.
Hydrography
The Duwamish River remained stratified during the entire monitoring
period. The upper layer of fresh water^maintained a salinity of 4 to
10 °/oo compared to the deep water salinity which ranged from 27 to
29 °/oo. The pycnocline varied between 1 and 4 meters in depth, there-
fore the proposed scheme for collecting separate fresh-water and salt-
water composites was rigorously adhered to. Water temperature did show
a significant change over time. Surface temperatures increased from an
average of 6°Z to 9°C while the deep water increased from 7.51 to 8°C.
This was most likely due to increased solar radiation warming the fresh
water as it moved downstream, increasing the stability of the existing
stratification by further decreasing the density of the surface water
as compared to the deep water. The temperature, salinity, and density
profiles with depth throughout the monitoring period are included in
Appendices 2 and 3.
-------
10
PCB's
Variations in the PCB composition in the composite samples can be
seen most easily by comparing the relative mass fractions, F^, for the
different chlorobiphenyl components. Duwamish River sediments, water,
and SPM, outside the influence of Slip 1, usually have an FN distribution
similar to what is shown by Aroclor 1254. Typical vs N plots for
whole water and SPM, together with the characteristic distributions for
A-1254 and A-1242, are shown in Figure 3. The river values are those
of composite 8 obtained during the predredge cruise. These plots are
representative of the majority of composites,, Deviations from this
pattern will be discussed later.
Normal fluctuations in the PCB concentrations may occur in the
river, but these will not be expected to alter the FN distribution.
However, any increase caused by the dredging of spilled material
(Aroclor 1242) should induce a significant change in the FN's as well
as increase the total PCB concentration. No such long-term increase
in either total PCB concentration or drastic change in FN distributions
were observed during the monitoring period. By inspection of Table III,
the temporal variability of the total water and SPM-PCB concentration
at DS, as compared to RS-1, can be assessed.
Most composites were relatively close to the 95£ confidence interval,
calculated using the standard Student's -t Distribution on RS-1 samples
(Table III), indicating that no significant differences existed between
the dredge site and reference station. This invariance of the PCB load
in the system, throughout the dredging activities, can be clearly seen
-------
0 2 4 6 8 10
N
Figure 3. Plots of the relative homolog abundance, F.., vs the
chlorine number, N; (a) observed homolog distribution
for a typical SPM, ~ ; and corresponding water, 0; sample
(b) homolog distributions for Aroclor 1242,©: 1254, A.
and 1260, fl.
-------
TABLE III. Temporal Variability in Total H,
r a
Tot. Water SPM
Cruise (ng/1) (ug/g)
Surface (Om)
RS-1
16.20
1.10
(all cruises)
(±5.50)
(±0.32)
DS
OH-999
20.00
-
OH-1000
26.65
1.43
OH-1000
25.95
2.95
K7-065
35.90
1.85
OH-1005
21.40
1.25
OH-1005
139.00
17.65
OH-1012
9.20
0.65
deep (8m)
RS-1
12.77
1.20
(all cruises)
(±5.64)
(±0.54)
DS
OH-999
13.55
-
OH-1000
17.55
1.00
OH-1000
39.90
2.15 ,
K7-065
33.60
0.75
OH-1005
20.50
1.35
OH-1005
458.70
18.40
OH-1012
6.10
0.70
95% Confidence Interval
Tot. Water
(ng/1)
SPM
(ug/g)
11.84 to 20.56 0.82 to 1.38
8.30 to 17,24 0,68 to 1.72
aAverage PCB concentration of the composites.
^Based on the primary reference stations, calculated using the student
t-test.
cNumbers in parentheses represent one standard deviation for the RS-1
values above.
-------
11
from plots of the total PCB, 5-chloro-biphenyl, arid the combined 3- and
4-chloro-biphenyl contributions for water and SPM, as shown in Figures 4
through 9. It is obvious that the increase in PCB concentration at DS
on 23 March 1976 (Julian date 083) was due almost exclusively to an
increase in the 3- and 4-chloro-biphenyls, while RS-1 showed no change
in ambient PCB levels. This highly transient pulse was mainly due to
resuspension of contaminated bottom material from the dredge-barge
(M. V. Puget) prop-wash. This observation was highly biased for the
following reasons: 1) The dredge was working directly over the spill
area, and 2) the samples were collected almost exclusively in the prop-
wash of the Puget, which was often positioned less than 4 meters from
the sampling area, which was 7 meters from the southwest corner of the
GSA dock. All previous samples had been collected 15 to 70 meters
downstream from the Puget.
These composites contained an order of magnitude more PCB's at the
surface and at depth than in most other samples (Table IV) and exhibited
the characteristic distributions for Aroclor-1242. On the preceeding
day (Cruise 0H-1005, 22 March 1976) composites from the usual sampling
area showed no significant PCB variations; however, a special sample
taken beyond the spill area (8 meters from the stern of the Puget) did
show an order of magnitude increase in the PCB concentration above
background with the change in the FN distribution expected from an
Aroclor-1242 pulse.
The total water analyses closely paralleled the SPM trends. Com-
posites taken on 23 March 1976 from both surface and depth averaged over
-------
0COMP-1,4
oerth-surface;
*C0MP-7
PCa «OI^IT8flINS-^RIirSH-RrVE8
20.0
1 15.0
en
u
5.0
2Z
Q_
cn
20.0
15.0
CJ
gio.o
e-©
20.0
15.0
u
2
o
CJ
gio.o
LO
cj
50.0
60.0
70.0
100* *Ch 120.0
jutrftrf DftJE
Figure 4
-------
OCOMP-2.5
ACOMP-8
20.0
(JEPTH-OEEP
PCa HONMORING-OUWflttISH RIVER
©
i 15.0
m
SlO.O
Q_
gio.o
Q_
gio.o
Q_
80-0 90*0 100 *0
JULIflN DflJE
no.a i20.o
Figure 5
-------
©CGMP-1
^COMP-7
300.0
I250-.0
:200-0
8150.0
Q_
DEPTH-SURFflCE^
PCa MONTTGR ING-OUWRtl ISH RIVER
100.0
AS
300-0
250.0
u20u .0
g150.0
Q_
in
4100.0
300.0
250.0
^200.0
150.0
100.0
85 50.0
0©
5CM> 60.0
70.0
80.0 90.0 100.Ch
JULIAN OftTE
110*0 12£N0
Figure 6
-------
©COMP-2 .J5
ACOMP-8
300.0
DEPTH-OEEP
ppr MnwrmRmG-nuwRtllSH-RIVER
9250.0
©
200.0
8150.0
Q_
+ 100.0
©
300.0
§250.0
200.0
g150.0
Q_
in
4100.0
©©
300.0
$250.0
200.0
100.0
50.0
60-0
70-0
80.0 90-Ch 10CM>
JULrflN DftTE
t IO^-O 12CN0
Figure 7
-------
OCOMP-1 »4
ACOMP-7
DEPTH-SURFACE
PCB MQNI TOR I NG-DUWRfl ISH RIVER
©
t2fr.O
70.0
80-. 0
90.0 10CN0
JULIAN DATE
HO-O
Figure 8
-------
0COMP-2,5
ACOtlP-8
c3
500.01
400.0
i
c_>
°300-0|
0Q
O
a.
o200.0|
+
CD
(_>
Sioo.ol
500.0
OEPTH-OEEP
PPR MAN T TOR ING-OU Wfltl ISH RIVER
<&
_2===^^e
=©-
CD
400.0
a
§300.0|
03
U
0_
in 200.0|
u
%
Q£
UJ
jgioo.ol
500.0
400.0
cs
z
I
c_>
z
°300.01
CO
u
Q_
^200.0|
t
a
ij-i 100 *0
0'
50.0
©
-0-0-
-0
a>
©
0
.©
¦ "©-
o
-0-
60.0
70.0
80.0 90.0 100.0
JULIAN OflTE
110.0 120.0
Figure 9
-------
TABLE IV. Comparison of "Prop Wash" and Normal PCB Composites
Cruise
OH-1005
23 March
Depth
(m)
OH-1005
22 March
Prop Wash
Comp No.
1
4
2
5
Special
0 yA
?r
SPM
(uq/q)
33.10
2.23
18.02
18.83
8.77
pf
£
Whole Water
(ng/1)
185.1
92.9
380.0
537.4
128.1
Normal
0
8
1.4
2.5
1.34
1.20
19.42
16.97
aAverage PCB concentration of all (DS and RS-1) composites, excluding
OH-1005 (23 March).
-------
12
an order of magnitude above background (Table IV). Of the composites
taken on the previous day, only the special sample was significantly
above background. As with the SPM, these samples had the characteristic
Aroclor-1242 distribution.
These pulses were in part the result of the dredge-induced resuspen-
sion of sediment into the water column, which either dispersed very
rapidly or sank back to the river bottom. This argument can be further
supported by data from the two surface composites taken on 23 March
(Table IV). The first surface composite concentration was twenty-five
times greater than background, but the second surface composite was only
slightly above background. The corresponding deep composites were nearly
equalwell above background level. Similarly for the water, the first
surface composite concentration was twice the second, while the second
deep sample was 40% more concentrated than the first.
These variations could have been due to the prop wash of the Puget
not being as close or strong during the second composite period, as com-
pared to the first; or they could have been due to the resuspended sediment
not being as contaminated as the material sampled earlier. However, the
suspended load in both the surface and deep waters did not decrease but
increased significantly between the first and second composites (Table IV).
Therefore, a decrease in the PCB concentration in the resuspended matter
probably accounted for the variation between composites.
The primary reference station (RS-1), away from the immediate
influences of the dredging, did not at any time show a significant
increase in either water or SPM-PCB levels in the surface or deep water
composi tes.
-------
13
The following summarizes the conclusions which may be safely drawn
from this study:
1. No significant quantity of PCB's were dispersed in the Duwamish
River as a result of the operations at Slip 1.
2. The Pneuma dredge appears to be efficient in minimizing the
resuspension of contaminated sediments. However, prop wash from the
dredge barge did generate a transient PCB pulse within the immediate
vicinity of the barge.
-------
14
REFERENCES
Blazevich, J. 1975. July 16, 1975 memo to Francis Nelson, EPA, Region X.
Dexter, R. N. and S. P. Pavlou. 1976a. Partitioning characteristics of
trace organic compounds in Puget Sound. Report to the Fifth Technical
Conference on Estuaries of the Pacific Northwest, Oregon State
University, Corvallis, Oregon, April 1-2, 1976.
Dexter, R. N. and S. P. Pavlou. 1976b. A large-volume filter for trace
organic sampling (in preparation).
Dexter, R. N. and S. P. Pavlou. 1975c. Characterization of polychlorinated
biphenyl distribution in the marine environment. Bull. Environ. Cont.
Tox. (in press).
Faldi, G! 1975. Pneuma pump system reduces chances of secondary pollution.
World Dredging, Nov. 1975.
Santos, J. F. and J. D. Stoner. 1972. Physical, chemical, and biological
aspects of the Duwamish River estuary, King County, Washington. U. S.
Geol. Survey Water-Supply Paper 1873-C.
Stevens, Thompson, and Runyan, Inc., Engineers. 1972. Study on Effect of
Dredging on Water Quality and Sediment Transport in the Duwamish
Estuary for the U. S. Army Corps of Engineers.
Thompson, J. F., ed. 1974. Analysis of Pesticide Residues in Human and
Environmental Samples. Primate and Pesticide Laboratory, Environ-
mental Protection Agency, Perrine, Florida.
Weiss, R. F. 1970. The solubility of nitrogen, oxygen, and argon in
water and seawater. Deep-Sea Res. 17\121-735.
Young, A. W., R. W. Buddemeier, and A. W. Fairhall. 1969. A new 60-liter
water sampler built from a beer keg. Limnol. and Oceanog. 14:634-637.
-------
15
APPENDICES
-------
16
Appendix 1
Hydrographic and Chemical Measurements
-------
TABLE A.I.I. Glossary of Symbols and Abbreviations
Hydro report for
Time
Station no.
Lat
Long
Marsden square
Depth
Temp
Salinity
Sigma-t
Oxygen
Oxygen
Oxygen % Satd
AOU
Dredge Notes
Tide Notes
Cruise number, followed by local data as month-
day-year.
Cast messenger time in GMT. GMT = local time + 07.
Sequential station number.
Latitude in degrees, minutes, and tenths of minutes.
Longitude in degrees, minutes, and tenths of minutes.
Marsden square location
Depth of water samples after wire angles were taken
into account; in meters.
In degrees Celcius.
In parts per thousand.
An expression for the density of seawater at
atmospheric pressure.
In milliliters per liter.
In milligram atoms per liter.
Percent oxygen saturation; observed oxygen concen-
tration divided by the surface equilibrium solubility
value (from Weiss' formula).
Apparent oxygen utilization; the difference between
the surface equilibrium solubility of a water sample
as determined from Weiss' (1970) formula and the
observed oxygen concentration in mg-atoms/liter.
Time periods when dredging was actually taking place.
Tide heights and times for Slip 1.
-------
TABLE A.I.I. - Continued
Comp Composite number.
PCB CONC or Cj Total quantity of polychlorinated biphenyls measured
in a sample expressed in nanograms/1 iter water and
micrograms/gram-dry SPM.
N Integral number of chlorine atoms attached to a
biphenyl molecule.
Relative homolog abundance of the N-chloro fraction
of PCB. The concentration of homolog N can be
calculated as = F^Cy
Suspended load Quantity of sediment and detritus in the water
column.
C., Concentration of the Nth chloro biphenyl homolog.
-------
17
Section A.1.1.
Hydrographic Data
-------
HYDRD REPORT FOR 0H999 2-27-76 TIMfc-12.7 HR GMT
STATION NU 001 CAST i LAT-47 33.5 LUNG-122 20.5
DEPTH
M
0
2
4
10
TEMP
C
6.01
7.0b
7.59
7.64
SALINITY
U/00
7.052
20.785
27. 690
28.054
SIGMA-T
5. 59
16.29
21.63
21.91
OXYGEN
ML/L
6. 90
5.74
5.97
3. 69
OXYGEN
MG-AT/L
.616
. 513
.533
. 3 30
HYDRO REPORT FOR 0H999 2-27-76 TIME-14.4 HR GMT
STATION NO 003 CAST 1 LAT-47 33.5 LONG-122 20.5
DEPTH
M
0
2
4
10
TEMP
C
5.92
7.01
7.53
7.66
SALINITY
O/OQ
5.513
22.057
26.382
28.063
SIGMA-T
<.38
17. 29
20.61
21. 91
OXYGE N
ML/L
7. 19
6.15
6.01
5.93
OXYGEN
MG-AT/L
642
. 5 49
.537
. 530
MARSDFN SQUARE-157
OXYGEN AOU
0/0 SATD
83 .126
78 .14 8
85 .091
53 .292
MARSDEN SQUARE-157
OXYGEN AOU
0/0 SATD
85 .109
84 .107
85 .094
85 .092
-------
HYDRO REPORT FOR 0H999 2-27-76 TIME-15.6 HR GMT
STATION NO 004 CAST 1 LAT-47 33.5 LPNG-122 20.5
DEPTH
M
TEMP
C
SALINITY
O/UO
SIGMA-T
OXYGEN
ML /L
OXYGEN
MG-A T/L
0
2
10
6.13
6.77
7.62
7.086
20.534
28.007
5.61
16.12
21.87
7. 19
6.27
5. 97
.642
.560
5 34
HYDRO REPORT FOR 0H999 2-27-76 TIME-16 4 HP put
STATION NO 005 CAS, 1 L4T-<7 ll.l L ONG-122 20.5
DEPTH
TEMP
SALINITY
M
C
0/00
0
6.20
8. 945
2
6. 6ti
18.839
8
7.65
20.018
SIGMA-T
7.07
14. 80
21 . 08
OXYGEN
ML/L
7.06
6.4b
6.01
OXYGEN
MG-AT/L
.631
. 5 78
.537
MARSDEN SQUARE-157
OXYGEN AO U
0/0 SATO
87 .098
84 .107
86 .089
MARS0EN SQUARE-157
OXYGEN AOU
0/0 SATO
87 .098
86 . 0 W
86 .086
-------
HYDRO REPORT FOR 0H999 2-27-76 TIME-17.3 HR GMT
STATION NO 006 CAST i LAT-47 32.8 LONG-122 20.2
DEPTH
M
0
2
4
10
TEMP
C
5 .96
6.64
7.
7.66
SALINITY
0/00
4. 569
15.397
26.45 3
27.962
SIGMA-T
3.63
12. 11
20.68
21.83
OXYGE N
ML/L
7.25
6. 35
5.85
5.86
UXYGEN
MG-AT/L
. 648
. 567
.523
.523
HYDRO REPORT FOR 0H999 2-27-76 TIME-18.4 HR GMT
STATION NO 007 CAST 1 LAT-47 31.2 LONG-122 18.3
DEPTH
M
0
2
5
TEMP
C
5.93
5.98
7.34
SALINITY
0/00
.494
2.482
22.761
SIGMA-T
.40
1.98
17.80
OXYGEN
ML/L
7.56
7. 39
5.53
OXYGEN
MG-AT/L
. 675 "
. 660
.4 94
MARSDEN SQUARE-157
OXYGEN AOU
0/0 SATD
86 .107
82 .124
83 .109
84 .099
MARSDEN S QUARE-157
OXYGEN AOU
0/0 SATD
87 .101
86 .105
76 .155
-------
HYORU RfcPORT FUR DHOOO 3- 6-76 TIME-15.7 HR GMT
STATION NO 001 CAST 1 LAT-47 33.5 LUNG-122 20.5
MARSDEN SQUARE-157
DEPTH TEMP SALINITY SIGMA-T OXYGEN UXYGEN OXYGEN AGU
M C 0/00 ML/L MG-AT/L 0/0 SATO
0 5.44 9.545 7.59 6.90 .616 83 .124
2 6.82 22.843 17.92 6.24 .557 85 .099
4 7.36 27.858 21.79 4.27 .362 61 .245
6 7.37 28.101 21.98 5.56 .497 79 .129
8 7.35 28.181 22.04 5.89 .526 84 .1U0
ro
HYDRO REPORT FOR OHOOO 3- 6-76 TIME-16.7 HR GMT
STATION NO 002 CAST 1 LAT-47 33.5 LONG-122 20.5 MARSDEN SQUARE-157
DEPTH Tfc MP SALINITY SIGMA-T OXYGEN OXYGEN OXYGEN AOU
M C 0/00 ML/L MG-AT/L 0/0 SATD
0 5.49 8.461 6.73 7.03 .62b 84 .117
2 6.87 23.941 18.78 6.15 .549 84 .101
4 7.36 27.781 21.73 5.85 .523 83 .105
6 7.34 28.047 21.94 5.97 .534 85 .093
8 7.34 28.143 22.01 5.89 .526 84 .100
-------
HYDRO REPORT FOR OHOOO 3- 6-76 TIME-17.6 HR GMT
STATION NO 003 CAST 1 LAT-*7 33.5 LONG-122 20.5
DEPTH
M
0
2
*
6
8
TEMP
C
5. 52
6.58
7.3*
7.37
7.39
SALINITY
U/00
5.656
21.702
27.39*
28.0*9
28.130
SIGMA-T
*. 51
17.06
21. *3
21.9*
22 .00
OXYGfcN
ML/L
6.11
5.88
5.6b
5.82
. 00
OXYGEN
MG-AT/L
.5*6
.525
.525
.520
.000
HYDRO REPORT FOR
OHOOO 3-
6-76 TIME-
17.7 HR
GMT
STATION
NO 00*
CAST 1
LAT-*7 33.5
LONG-
122 20.5
DEPTH
1EMP
SALINITY
SIGMA-T
OXYGE N
UXYGEN
M
C
U/00
ML /L
MG-AT/L
0
5.72
7.801
6.19
7.06
. 631
2
6 *0
16.829
13.25
6.75
.603
*
7.3*
27.0*3
21.15
5.82
. 520
6
7.39
28.135
22.00
5.77
.515
8
7 .*0
27.958
21.86
5.7b
.516
MARSUEN S QU ARE-15 7
OXYGEN AOU
0/0 SATD
72 .212
79 .139
8* .10*
83 .107
0 .000
MARSDEN SQUARE-157
OXYGEN AOU
0/0 SATD
85 .113
87 .087
82 .111
82 .110
82 .110
-------
HYDRO REPORT FOR OHOOO 3- 6-76 TIME-19.8 HR 6(IT
STAT1UW NO 005 CAST 1 LAT-47 33. 5 LONG-122 ^Q,'J
DEPTH
M
0
2
4
6
8
TEMP
C
5.81
6*66
7.24
7.38
7.40
SALINITY
0/00
6. 704
18.326
27.363
27.912
28.115
SIGMA-T
5 . 32
14.40
21.41
21.83
21.98
OXYGEN
ML/L
7.19
6.22
5. 73
5.78
5.81
OXYGEN
MG-AT/L
.6 42
. 556
.511
.517
.519
HYDRO REPORT FOR
OHOOO 3
- 6-76 TIME
-20.9 HR
GMT
STATION
NO 006
CAST 1
LAT-47 33.5
LONG-
122 20.5
DEPTH
TEMP
SALINITY
SIGMA-T
OXYGEN
OXYGEN
M
C
u/00
ML/L
MG-AT/L
0
5.92
7. 399
5.87
7.05
. 629
2
6.12
10.596
8.37
6. 72
.600
4
7.26
26.48 5
20.73
5.72
.5 11
6
7.35
27.17b
21.26
5. 72
.^11
8
7.40
28.014
21.90
5. 78
. 517
MARSDEN SQUARE-157
OXYGEN AOU
0/0 S AT D
86 .105
82 .12<£
81 .119
62 .110
83 .107
MARSDEN iQUARE-157
OXYGEN AOU
0/0 SATD
85 .113
83 .123
81 .123
81 .119
83 .109
-------
HYDRO REPORT FOR OHOOO 3- 6-76 TIME-21.8 HR GMT
STATION NO 007 CAST 1 LAT-47 32.8 LONG-122 20.2
DEPTH TEMP SALINITY SIGMA-T OXYGEN OXYGEN
M C 0/00 ML/L MG-AT/L
0
6. 10
6.293
4.98
7.14
.637
2
6.20
13.950
11.01
6.34
. 566
4
7.23
26.379
20.65
5.66
. 505
6
7.37
27.863
21.79
5.66
. 505
8
7.40
27.991
21.89
5.72
.511
MARSDEN aQUARE157
OXYGEN AOU
0/0 SATD
86 .106
80 .139
80 .130
81 .121
82 .lib
-------
HYDRO REPORT FOR OHOOO 3- 8-76 TIME-16.2 HR GMT
STATION NO Oil CAST i LAT-47 33.5 LONG-122 20.5
M4RSDEN SQUARE-157
DEPTH
M
TEMP
C
SALINITY
0/00
SIGMA-T
OXYGEN
ML/L
OXYGEN
mg-at/l
OXYGEN
0/0 SATD
AOU
0
6.19
4.762
3.77
7. 10
.634
85
. 116
2
7.13
24.706
19.35
5. 94
.531
82
.113
4
7. 30
27.7*1
21. 70
5.86
. 523
83
.105
6
7.32
28.049
21.94
5.85
.523
83
.104
8
7.34
28.079
21.96
5. bd
.525
84
.101
HYDRO RfcPOkT FOR OHOOO 3- 8-76 TIME-17.6 HR GMT
STATION NO 012 CAST 1 LAT-47 33.5 LONG-122 20.5
MARSDEN SQUARE-157
DEPTH
M
TEMP
C
SALINITY
0/00
SIGMA-T
OX YGE N
ML/L
UXYGEN
MG-AT/L
OXYGEN
U/0 SATD
AOU
0
2
4
6
8
6.63
7.17
7.32
7.33
7.33
15.718
23. 248
27705
28.095
28.242
12. 36
18.20
21. 67
21.98
22.09
6.37
6.11
5.b8
5. 89
5. 90
. 569
.546
. 525
.526
.527
82
84
84
84
84
.121
.104
.104
.100
.099
-------
HYDRO REPORT FOR OHOOO 3- 8-76 TIME-18.5 HR GMT
STATION NO Oli CAST 1 LAT-47 33.5 LONG-122 20.5
MARSDEN SQUARE-157
DEPTH
M
TEMP
C
SALINITY
0/00
SIGMA-T
OXYGfcN
ML/L
OXYGEN
MG-AT/L
OXYGEN
0/0 SATD
AOU
0
6.49
6.610
5.21
6.94
.620
8 4
.115
2
6.97
18.650
14 .63
6.32
564
84
.108
4
7.31
27.657
21.64
5.89
.526
84
.102
6
7.33
28.066
£1.95
5t<16
. 523
84
. 103
8
7.33
28.263
22*11
5. ««
.525
84
.100
HYDRO REPORT FOR
OHOOO 3-
8-76 TIHE-
19.5 HR
GMT
STATION
NO 014
CAST 1
LAT-47 33.5
LONG-
122 20.5
MARSDEN
SQUARE-
DEPTH
TEMP
SALINITY
SIGMA-T
OXYGEN
UX Yl» EN
OXYGEN
AOU
M
C
0/00
ML/L
MG-AT/L
0/0 SATD
0
6.69
8.314
6.54
6.85
.612
85
.111
2
6.9 7
16.384
12. 85
6. 36
.568
83
.114
4
7.23
26.626
20.84
5 . 86
.523
83
.111
6
7.33
28.137
22.01
5.85
. 523
83
.104
8
7.34
28.189
22.05
5.86
.523
84
.103
-------
HYDRO REPORT FOR OHOOO 3- 6-76 TIME-20.5 HR GMT
STATION NO 015 CAST 1 LAT-47 33.5 LONG-122 20.5
MARSDEN S QU AR E-l5 7
DEPTH TEMP SALINITY SIGMA-T OXYGEN OXYGEN OXYGEN AOU
M C 0/00 ML/L MG-AT/L 0/0 SATD
0 6.77 12.307 9.67 6.60 .5119 84 .114
2 6.87 12994 10.20 6.56 «5b6 84 .112
4 7.32 28.066 21.96 5.82 .52U 83 .107
6 7.32 28.065 21.96 5.85 .523 83 .104
8 7.34 28.157 22.02 5.84 .522 83 .104
INJ
HYDRO REPORT FOR OHOOO 3- 8-76 TIME-21.7 HR GMT
STATION NO 016 CAST 1 LAT-47 33.5 LONG-122 20.5 MARSDEN SQUARE-157
DEPTH TEMP SALINITY SIGMA-T OXYGEN OXYGEN OXYGEN AOU
M C 0/00 ML/L MG-AT/L 0/0 SATD
0 6.85 8.252 6.48 6.77 .605 84 .116
2 7.00 22.153 17.36 6.00 .536 82 .1<10
4 7.26 26.639 20.85 5.77 .515 81 .118
h 7.34 27.860 21.79 5.80 .518 83 .109
8 7.35 27.957 21.87 5.79 .517 83 .110
-------
HYDRO REPORT FOR OHOOO 3- 8-76 TIME-22.5 HR GMT
STATION NO 017 CAST 1 LAT-47 32.8 LONG-122 20.2 MARS 0 EN SQUARE-157
DEPTH TEMP SALINITY SIGMA-T OXYGcN OXYGEN OXYGEN AOU
M C 0/00 ML/l MG-AT/L U/0 SATO
0 6.79 5.079 3.99 7.03 .628 85 .109
2 6.80 9.741 7.66 6.65 .594 83 .121
4 7.26 25.587 20.02 5.69 .50b 80 .129
6 7.33 27.582 21.58 5.70 .509 81 .119
8 7.34 27.904 21.83 5.76 .514 82 .113
ro
CO
-------
HYDRO REPORT FOR K7065 3-18-76 TIME-16.2 HR GMT
STATION NO 001 CAST 1 LAT-47 33.5 LONG-122 20.5
DEPTH
TEMP
SALINITY
SIGMA-T
OXYGEN
OXYGEN
M
C
0/00
ML/L
MG-AT/L
0
8. 36
7.943
6.12
6.76
.604
2
7. bO
19.979
15.58
6. 26
559
4
7.56
26.328
20. 57
6.05
.540
6
7.55
27.578
21.54
5.86
524
8
7.51
28.166
22.01
5.90
.527
HYDRO
REPORT FOR
K7065 3
-18-76 TIME
-17.1 HR
GMT
STATION NO 002
CAST 1
LAT-47 33.5
LONG-
122 20.5
DEPTH
TEMP
SALINITY
S IGMA-T
OXYGE K
OXYGEN
M
C
0/00
ML/L
MG-AT/L
o
8. 30
9. 328
7.21
6.53
.583
2
8.04
15.359
11.95
6.28
.561
4
7.63
25.040
19.55
5.94
.530
6
7.55
27.472
21. 46
5. 89
.526
8
7.51
28.124
21.98
5. 56
.497
MARSDEN SQUARE-157
OXYGEN AOU
0/0 SATO
b7 .093
66 .0*4
86 .090
84 .10^
85 .096
MARSDEN SQUARE-157
OXYGEN AOU
0/0 SATD
84 .lOd
84 .100
83 .105
84 .100
80 .127
-------
HYDRO REPORT FOR K7065 3-18-76 TIME-17.9 HR GMT
STATION NO 003 CAST 1 LAT-47 33.5 LONG-122 20.5
DEPTH
TEMP
SALINITY
SIGMA-T
OXYGEN
UXYGEN
M
C
0/00
ML/L
MG-AT/L
0
b. 23
10.560
8.18
6.46
. 579
2
7.91
16.016
12.47
6.23
. 5 56
4
7.60
26.735
20. 88
5. 85
. 523
6
7.53
27.982
21.86
5.85
.522
8
7.51
28.141
21.99
5. 94
. 530
HYDRO REPORT FOR
K7065 3-
18-76 TIMfc
-18.8 HR
GMT
S T AT 1 UN
NO 004
CAST 1
LAT-47 33.5
LONG-
122 20.5
DEPTH
TEMP
SALINITY
SIGMA-T
OXYGEN
OXYGEN
M
C
0/00
ML/L
MG-AT/L
0
8.33
10.655
8.25
6.60
. 590
2
7.92
16.710
13.01
6.25
559
4
7.58
26.914
21.02
5.93
.5 30
6
7.53
27.778
21.70
5.93
.530
8
7.50
27.939
21.83
5.86
.524
MARSDEN SQUARfc-157
OXYGEN AOU
0/0 SATO
8 4 .108
83 .112
83 .105
84 .102
85 .0V 3
MARSDEN SQUARE-157
OXYGEN AOU
0/0 SATO
86 .095
84 .107
84 .09b
85 .095
84 .101
-------
HYDRO REPORT FUK K7065 3-18-76 TIME-19.8 HR GMT
STATION NO 005 CAST i L AT-47 33.5 LONb-122 20.5
DEPTH
M
TEMP
C
SALINITY
0/110
SIGMA-T
OXYGEN
ML /L
OXYGEN
MG-AT/L
0
8.26
10.023
7.76
6.61
. 590
2
7.9 8
13.067
10.16
6.48
.579
4
7.69
23.191
18.10
5.96
.533
6
7.56
27.189
21.24
5. 85
.522
8
7.50
28.041
21.91
5.87
.524
HYDRO REPORT FOR K7065 3-lb-76 TIME-21.0 HR GMT
STATION NO 006 CAST 1 LAT-47 32.0 LONG-122 20.2
DEPTH
M
TEMP
C
SALINITY
0/00
SIGMA-T
OXYGEN
ML/L
OXYGEN
MG-AT/L
0
2
4
6
7.55
8.48
7.80
8.04
8. 783
16.119
16.922
26.2*7
6.85
12.49
13. 19
20.44
6.69
6. 39
6. 26
5.90
.59b
. 57u
. 559
.527
MARSDEN SQUARE-157
OXYGEN AOU
0/0 SATD
86 .098
85 .101
83 .109
83 .105
84 .100
MARSDEN SQUARE-157
OXYGEN AOU
0/0 SATD
85 .100
87 .009
84 .107
84 .097
-------
HYDRO REPORT FOR 0HU05 3-22-76 TIME-16.9 HR GMT
STATION NO OOl CAST 1 LAT-47 33.5 LONG-122 20.5
DEPTH
M
0
2
4
6
8
TEMP
C
7. 3*»
7.50
7.59
7.57
7.56
SALINITY
O/QO
6.526
21.305
2 6.014
28.275
28.382
SIGMA-T
5. 09
16.65
21.88
22.09
22.17
OXYGEN
ML/L
6.68
6.29
5.87
5.84
5.90
OXYGEN
MG-AT/L
.596
.562
.524
.521
. 527
HYDRO REPORT FUK 0H005 3-22-76 TIME-18.2 HR GMT
STATION NO 002 CAST 1 LAT-47 33.5 LONG-122 20.5
DEPTH
M
TEMP
C
SALIN1TY
0/00
SIGMA-T
OXYGtN
ML/L
OXYGEN
MG-AT/L
0
2
4
6
8
7.43
7.55
7.60
7.59
7.56
10.148
25.346
27.607
28.067
28.326
7.93
19. 80
21. 56
21.92
22.13
7 .05
6.03
5. 89
5.94
5. 80
.630
8
.526
.530
.516
MARSDEN SQUARE-157
OXYGEN AOO
0/0 SATO
83
.124
86
.090
84
.099
84
.101
85
.095
MARSDEN SQUARE-157
OXYGEN AOU
0/0 SATD
90 .073
85 .096
84 .099
85 .093
83 .104
-------
HYDRO REPURT FUR QH005 3-22-76 TIME-19.4 HR GKT
STATION NO 003 CAST 1 LAT-47 33.5 LONG-122 20.5
MARSDEN SQUAR E-x 57
DEPTH
M
TEMP
C
SALINITY
0/00
SIGMA-T
OXYGcN
ML/L
0
7.28
7.173
5. 60
7.21
2
7.54
26.100
20. 39
5 .90
4
7.57
27.844
21.75
5.43
6
7.57
28.208
22.03
5.23
8
7.5 5
28.362
22. 16
5. 54
uXYOEN
MG-AT/L
.644
.527
. 48r>
.<~67
.<*95
OXYGEN
0/0 SATD
90
83
78
75
80
AOU
.07*.
.105
.139
.155
. 127
HYDRO REPORT FOR
0H005 3-
22-76 TIME-
21.3 HR
STAT ION
NO 004
CAST 1
LAT-47 33.5
LONG-
DEPTH
TEMP
SALINITY
SIGMA-T
OXYGEN
M
C
0/00
ML/L
0
7 .4o
8.413
6.56
7.08
2
7.51
9.507
7.42
7.05
4
7.55
12.150
9.49
6.81
6
7.57
24.114
18.83
5.97
8
7.56
26.941
21.05
5.82
20.5 MARSDEN SOUARE-157
OXYGEN
MG-AT/L
.632
.630
.608
.533
.520
OXYGEN
0/0 SATO
89
89
88
83
83
AOU
.077
.074
.083
.106
.10b
-------
MYDRU REPORT FOR 0HU05 3-22-76 TIME-22.3 HR GMT
STATION NO OOb CAST 1 LAT-*7 33.5 L0NG-122 20.5
MARSDEN S QU ARE- 1 57
DEPTH
M
0
2
*
6
8
TEHP
C
7.6*
7.50
7.56
7.59
7.56
SALINITY
0/00
7.825
lb.27*
2*.629
27.61*
2b.291
SIGMA-T
6.09
1*. 28
19.2*
21. 57
22. 10
OXYGtN
ML/L
7.0b
6.3*
5.90
5.79
5.80
OXYGEN
MG-AT/L
.632
5 66
.527
.517
.518
OXYGEN
0/0 SATO
89
85
83
83
83
AOU
.077
.099
.111
.10b
.10*
HYDRO REPORT FUR
0H005 3-
-22-76 TIME-22.9 HR
GMT
STATION
NO 006
CAST 1
LAT-*7 33.5 LONG-
122 20.5
MARSDEN
SQUARE-
DEPTH
TEMP
SALINITY
SIGMA-T OXYGEN
OXYGEN
OXYGEN
AOU
M
C
0/00
ML/L
MG-AT/L
0/0 SATD
0
7.6*
8.11*
6.32 .00
. 000
0
.000
2
7.57
16.725
13.06 6.*6
.577
86
.09*
*
7.57
2*.560
19.18 5.92
. 529
83
.109
6
7.58
27.8*3
21.75 5.80
.51b
83
.106
8
7.57
28.302
22.11 5.81
.519
83
.103
-------
HYDRO REPORT FOR OH005 3-22-76 TIME-23.7 HR GMT
STATION NO 007 CAST 1 LAT-*7 32.8 LONG-122 20.2
DEPTH TEMP SALINITY SIGMA-T OXYGEN OXYGEN
M C 0/00 ML/L MG-AT/L
0
7.69
6.667
5.19
7.06
. 630
2
7.60
11. 1*0
8.69
6. 68
.597
*
7.57
2*i. 631
19.2*
5.86
. 52*
6
7.57
27.931
21.82
5.75
.513
8
7.56
28.215
22.0*
5. 82
.520
MARSDEN SOUARE-1
OXYGEN AOU
0/0 SATD
86 .083
86 .098
82 .11*
82 .110
83 .10i
-------
HYDRO REPORT FOR 0HQ05 3-23-76 T1ME-17.5 HR GMT
STATION NO Oil CAST 1 LAT-*7 33.5 LQNG-122 20.5
hARSDEN SGUARE-157
oesth tt sS/ioiTY SIGHA~T T"N o)iTm 40U
0 7.26 9.198 7.20 6.92 .618 87 .092
2 7.«B 21.37^ 16.70 6.11 .546 84 -J06
A 7.56 27.**0 21.43 5.85 .5*2 83 .104
6 7.55 28.271 22.09 5.84 .521 84 .101
8 7.55 28.373 22.17 5.80 .518 83 .10*
TXZlil SS?*i .o.s kaksoen s.uare-i.7
CO
cn
SALINITY SIGHA-T OXYGEN OXYGM OXYGEN^ AOU
.614 88 .067
,5
-------
HYDRO REPORT FOR 0H005 3-23-76 TIME-20.2 HR GMT
STATION NO 013 CAST 1 LAT-47 33.5 LONG-122 20.5
DEPTH
M
TEMP
C
SALINITY
0/00
SIGMA-T
OXYGE N
ML/L
OXYGEN
MG-AT/L
0
7.5b
12.244
9.56
6.73
.601
2
7.48
20.019
15.64
6 .23
. 556
4
7.56
26.679
20.84
5.90
.527
6
7.5 6
28.226
22.05
5.87
.524
8
7.54
28.239
22.06
5.76
.515
HYDRO REPORT FOR
0H005 3-23-76 TIME-21.4 HR
GMT
STATION
NO 014
CAST 1 LAT-47 33.5
LONG-
122 20.5
DEPTH
TEMP
SALINITY SIGMA-T
OXYGEN
UXYGEN
M
C
0/00
ML/L
MG-AT/L
0
7.53
9.050 7.06
6.97
.622
2
7. 52
21.010 16.41
6. 18
. 552
4
7.56
26.947 21.05
5. tib
.525
6
7.55
28.286 22.10
5.85
.523
8
7.54
28.356 22.15
5.81
5 19
MARS OEN SQUARE-157
OXYGEN AOU
0/0 SATD
87 .090
85 .102
84 .102
84 .098
83 .10a
MARSDEN SQUARE-157
OXYGEN AQU
0/0 SATD
88 .Od3
84 .101
84 .103
84 .100
83 .103
-------
HYDRO REPORT FOR 0H005 3-23-76 TIME-23.9 HR GMT
STATION NO Olo CAST 1 LAT-47 33.5 LONG-122 20.5
DEPTH
M
0
2
4
6
8
TEHP
C
7.39
7.48
7.51
7.54
7.55
SALINITY
0/00
8.063
14.133
24.228
26.882
28.265
SIGMA-T
6.30
11.04
18.93
21.00
22.08
OXYGEN
ML/L
6.93
6. 58
5.96
5.85
5. 68
OXYGEN
MG-AT/L
.619
588
5 33
.522
507
HYDRO REPORT FOK 0H005 3-23-76 TIME-
STATION NO 017 CAST 1 LAT-47 32.8
.8 HR GMT
LONG-122 20.2
DEPTH
M
TEMP
C
SALINITY
0/00
SIGMA-T
OXYGEN
ML/L
OXYGEN
MG-AT/L
0
2
4
6
8
7.27
7.36
7.51
7.54
7.54
5.885
13.918
25.507
28.189
2b. 328
4. 59
10.89
19.93
22.02
22.13
7.05
6.46
5.83
5. 75
5.79
.630
.577
.521
.514
.517
MARSDEN SQUARE-157
DXYGEN AOU
0/0 SATO
87 .093
86 .095
b 3 .107
83 .106
81 .115
MARSDEN SQUARE-x57
OXYGEN AOU
0/0 SATO
87 .093
8 4 .109
82 .114
82 .109
83 .106
-------
HYDRO REPORT FOR 0H012 4-20-76 TIME-16.4 HR GMT
STATION NO 001 CAST 1 LAT-47 33.5 LONG-122 20.5
MARSDEN SQUARE-157
DEPTH
TEMP
SALINITY
SIGMA-T
OXYGtN
M
C
0/00
ML/L
0
8.75
6.393
4. 88
7.13
2
8.31
17.319
13. *5
6.69
4
b . 3 5
27.638
21.^9
6.26
6
7.93
28. 314
22.07
6.27
8
7.92
28.497
22.21
6.31
OXYGEN
MG-AT/L
.637
.597
~ 559
.560
. 564
OXYGEN
0/0 SATD
91
91
91
91
91
AOU
.060
Oi>9
.055
.057
.053
HYDRO REPORT FUR 0H012 4-20-76 TIME-17.3 HR GMT
STATION NO 002 CAST 1 LAT-47 33.5 LONG-122 20.5
MARSDEN S QUARE-15 7
DEPTH
M
TEMP
C
SALINITY
0/00
SIGMA-T
OXYGfcN
ML/L
0
8.64
6. 806
5.21
7.05
2
6.25
21.916
17.04
6.44
4
7.98
27.817
21.68
6.34
6
7.93
28.258
22.03
6. 34
8
7.92
28.350
22.10
6.34
OXYGEN
OXYGEN
AOU
MG-AT/L
0/0 SATD
.630
90
.067
.575
90
.063
^66
92
.052
567
92
.051
.566
92
.051
-------
HYDRO REPORT FDR 0HO12 4-20-76 TIME-18.3 HR GMT
STATION NO 003 CAST 1 LAT-47 33.5 LONG-122 20.5
DEPTH
TEMP
SALINITY
SIGMA-T
OXYGEN
OXYGEN
M
C
0/00
ML/L
MG-AT/L
0
8.79
7.296
5.58
7.11
. 635
2
8.38
lb.881
14.66
6. 56
. 5b8
4
7.98
27.699
21.58
6.30
.563
6
7.94
28.290
22.05
6. 32
.564
8
7.94
26.412
22.15
6.34
. 567
HYDRO REPORT FOR 0H012 4-20-76 TIME-19.4 HR GMT
STATION NO 004 CAST 1 LAT-47 33.5 LONG-122 20.5
DEPTH
M
TEMP
C
SALINITY
0/00
SIGMA-T
OXYGEN
ML/L
OXYGEN
MG-AT/L
0
9.02
8.018
6.12
7.08
.633
2
8.46
17.170
13.31
6.66
.595
4
8.07
26.624
20.73
6.06
.542
6
7.93
2U.271
22.04
6.26
.561
8
7.93
28.317
22.07
6.27
.560
MARSDEN SQUARE-157
OXYGEN AOU
0/0 SATO
92 .057
91 .061
91 .056
91 .053
92 .050
MARSDEN SQUARE-157
OXYGEN AOU
0/0 SATD
92 .052
91 .060
87 .OoO
91 .056
91 .057
-------
HYDRO REPORT FUR 0H012 4-20-76 TIME-20.4 HR GMT
STAT1UN NO 005 CAST 1 LAT-47 33.5 L0NG-122 20»->
DEPTH
M
0
2
4
6
8
TEMP
C
9.28
8.70
8.11
7.93
7.84
SALINITY
U/00
7.5^7
14.578
23.515
27.976
28.371
SIGMA-T
5.71
11. 27
18.30
21.81
22. 13
OXYGEN
ML/L
7.04
6.75
6.38
6.29
6.26
OXYGEN
MG-AT/l
.628
.603
.570
.562
.559
HYDRO REPORT FOR 0H012 4-20-76 TIME-21.3 HR GMT
STATION NO 006 CAST 1 LAT-47 33.5 LONG-122 20.5
TEMP
SALINITY
SIGMA-T
OXYGEN
C
0/00
ML/L
0
9.5b
6.738
5.07
7.01
2
8.69
13.228
10.22
6.67
4
8.10
26.370
20.53
6.23
6
8.05
27.885
21.72
6.23
8
7.93
28.365
22.11
6.24
OXYGEN
MG-AT/L
.626
.596
5 56
.556
.557
MARSDEN SOUARE-157
OXYGEN AOU
0/0 SATO
92 .055
91 .059
90 .063
91 .056
90 .059
MARSDEN SQUARE-157
OXYGEN AOU
0/0 SATD
92 .056
89 .072
89 .066
90 *061
90 .060
-------
HYDRO REPORT FOR 0H012 <.-20-76 TIME-22.0 HR GMT
STATION NO 007 CAST 1 LAT-47 32.8 LQNG-122 20.2
MARSDEN SQUAR E 1 7
DEPTH TEMP SALINITY SIGMA-T OXYGEN OXYGEN OXYGEN AOU
M C 0/00 ML/L MG-AT/L 0/0 SATD
0
9.55
5.467
4.08
7.00
.625
91
.062
2
8 .02
14.486
11.18
6.64
.593
90
.066
4
8.01
25.bd8
19.93
6.17
.551
b8
.076
6
7.9*
28.165
21.95
6. 19
.553
89
.065
8
7.92
28.300
22. 06
6.22
.556
90
.06 2
ro
-------
43
Section A.1.2.
Hydro!ab Data
-------
44
HDH 999 27 FEB 197*
HYDPDLflE MEfllUPEMEUT:
jTfl 001 05 00 hp:
DEPTH TEMP COND pH DD
0 0
5
9
11.0
1
4
o
,^l
05
if.
t*
1 9. 0
1
cr
_i
l~.
e-
_i
10
1
1
33. 0
1
5
I~l
C.
1 J
*
I
4
42. 0
l
i
I
9
2 0
I
4
42.5
I
l~l
0
Z> cr
I
4
42. 5
<
i~i
1
'!»
30
I
4
-t-C m 1'
1
i~i
1
in
c
*1 J
I
4
42.5
1
1
"j
4 0
I
cr
42.5
1
'U
1
45
I
5
45.5
1
9
1
c.
49
I
c
_l
48.5
1
>Z'
1
c.
HDH 999 27 FEE lr'Ti
HYDPOLFB MEftZUPEMEMT:
-Tfl 0 0c 0*00 HP.
DEPTH
TEMP
c arm
PH
DD
0 0
5
K
9.5
f .
i
1
O
05
if.
1
31.0
1 i
3
s.
*
10
1
0
36. 0
1
7
8.
o
15
I
41. 3
l
"i
I «
3»
2 0
1
J,
45. 0
l
1 a
4
£5
1
4
^2. 0
i
3
1 i
2
30
I
4
^2. 0
l
n
t
*.e
2? J
P
C
Jt
42, 0
t ¦
i
4 0
r
C
J
42. 0
1
y
45
~
4
41.9
l
r
3
4'?
l
5
42. 0
1
i
1
-------
45
HGH 999
FEE 197*
HVDPOLflB MEfll
UPEMENT
I TiH 0 0 3 07 0 0
hp:
DEPTH
TEMP
0 0
5.9
05
6. 3
1 0
- i 3
15
I I
£ 0
i J1
- rr
, -
C.
f J»
30
7. 4
35
7.5
4 0
7.6
45
7. 6
48
i'. 6
HDH 999 c7 FEB 197*
HYDPOLflE MEfl II
jsENEMr:
ITh 0 04 08 0 0
hp:
depth
TEMP
0 0
5. 7
05
6. 5
1 0
6.8
15
7. 1
c'O
i . ;
"iC
C
7.4
3 0
7.4
35
7. 4
36
7. 5
COHD
lb. 0
c6. 0
34. 0
4 0. 0
41.5
42. 0
45. 0
45. 0
42. 0
45. 0
42. 0
CDMD
11.
3 0.
34.
39. 0
4 0.5
41.0
41.5
41. 5
41.5
PH
*
6
PH
. K-
¦ I
DC
8. 1
8. 1
t
7.6
7. 6
i i
7.6
7 o
DO
0 . J
8. 1
1 r
7. 6
'. 6
'.4
".4
-------
46
HOH 99? IT FE? 1976
HYDPDLhE: MEflZUPENENT:
!TH OOti 090 0 HPT
DEPTH
TEMP
CDMD
PH
DD
0 0
5.3
16. 0
7. 4
c
05
6. 1
£ 0. u
7. 5
C;
1
1 0
6. 5
31. 0
1 » *1
1
Q
i 5
6.9
3'3. 0
1 ¦ 1
1
o
c.' 0
* iZ.
40.5
i
*
1
r.
c5
1 m 2>
41.0
1
4
3 ij
7.4
41 . 0
1 'I
1
J
35
7. 4
41.5
( c
1
4 0
7.4
41. 5
1 3
1
4
45
7.5
41.0
i C
1
1
49
r
1 a J
41.0
1
0
HDM 999
i-EE 1976
HYBPGLfiE MEHIIJPEMEMTI
ITh 00o 1 000 hp:
DEPTH
TEMP
CCIND
PH
DO
0 0
05
10
15
£0
r-c*
u. --J
30
35
4 0
4 3
6. 4
6.9
7. 0
7.4
7.4
7.4
ijg. 3
1 u. ij
c'6. 0
0
I
4 0
41
41
41
41
41
ij
0
0
0
0
-------
t-: >
47
VDPQLPE MEhIUF'EMEfJ
Tfi OCT i 1 05 HP
DEPTH
TEMP
LLirin
PH
H ~
0 fi
05
1 0
15
£0
. o
5.7
t. o
t.. 9
ij 1
I! ?
OS
c6
1
1
4
3 U
-------
40
HOH 1 0 0 0 6 MfiPCH
HYDPOLfiB MEfiIUPEMEUTi
;th ooi os15 hp:
DEPTH
TEMP
CDHD
PH
DO
TPflM;
0 u
5.
o
1 o.
0
d.. 5
c
J.
W(
LL
ij
05
'J
5
3S.
0
7.5
*.
5
i~i
0
1 0
*5.
j£.
38.
o
1 3
t-.
jy.
0
J 4
i n
-------
MCH lOi'iO
6 MHKfh 1 ?76
49
HYDPQLfil; MEHI IJPErlEMT
. TR 0 Uc 0'r11 j HP
DEPTH
TEMP
COND
F'H
DD
"PAN
00
Or.'
ru
06
J l'
1 d
" . o
6. 0
£ ¦ 5
6.5
6 > 6
o. 7
6.7
11 , _i
! H
be!
6 b
b
o3
b .'3
HDH 1 0 fi 0 6 I'lf.PC H 1976
H'.'DPOLRB MEh I UF'ENEHT I
:tft oo:-: i ui j hp:
DEPTH
TEnp
corin
PH
DO
TF'iiN
0 iJ
Od
04
06
03
1 0
1 3
5. 1
5. 6
*.4
6. 6
6. 6
6. 7
6. 7
13
C J
90
9d
96
9 if.
96
94
-------
H ~ H 1 0 0 0 6 r IH p C H :7 6
HVDPDLfiB MEFtrUPEhEMTI
:th 004 in? hp:
50
DEPTH TEM?
CDMD
PH
DO
TPRM
0 0
01
04
iV".
03
I 0
II
5. 0
j. 6
*im 4
6 - G
£. 6
6 7
b. 7
S. 0
I o
1
I a (
3 3
MM
MM
MM
HCJH 1000 6 MRPCH 1976
STB 004 1145 HP!
DEPTH TEMP
CDMD
PH
DD
TP AM
-------
51
hDr-i 10 on I'lHr'M 197*
HYDPOLhB MEflIUPENENT:
TH 0 05 1215 HP
EEPTH
TEMP
CQND
PH
DO
I
uu
OS.
04
06
03
I 0
II
5. *
5. b
b. 0
6. r
b. 7
b .
b. y
u y
15
34
Z1 i
3. 4
1
m ij
94
9 b
9 b
94
i1
t-iQH 1000 b MflPCH 197b
H'i'DPDLRE MEhZUPEMENT!
-TA UO5 Id45 H*' .
DEPTH
TEFlP
CDMD
PH
DO
tphh:
00
5.4
07
0
7.5
y.
p
9 0
oa
5.3
15
0
-* Cj
i a
«»
9 0
04
6. 0
0
1 « 1
i ¦
i
92
0 b
b. 7
~i *
S1 i
0
o
5
9 b
08
b. 7
33
0
i
4
95
1 0
6. 7
?3
o
i
4
9 c
1 0. 5
b. 7
"¦ i~>
o
o
i ¦
4
9d
-------
52
HG'rl 1 IJ'J i.i if, MRr'LH l'?7t>
hvdpolhb meh : ijpememt?
:TH 0 06 1315 hp r
DEPTH
TEMP
CDHD
PH
DD
TF'Hf ^
IJU
Oc
04
Ot,
05
10
1 l.S
_l
&. 7
if>. 7
6.3
d?
1 1
8. I
3. 1
"r1 Li
94
'? 0
¦=i i r
HOH 1 fl
t MRr ¦_ H l'?7ti
hvdpolhb mefulpenent:
,TH iJ0t. 1 ;'4j HPT
DEPTH
TEMP
CCHD
PH
DO
TP AM
-------
HGH t!JUO MR PC H 1
HYDF'CLRB NERIUPEMEMT'
str oor 1415 hp:
53
DEPTH
TEMP
CC3ND
F'H
DO
TPRNC
0 0
5. *
10
0
7. c
.3
1
S3
Oc'
5. 3
12
0
-
0
ft ft
04
0
~. 4
1
ij
7 6
I
1
'?£
Oo
6. r
3 b
0
1 a 1
I
c
_l
3,:.
03
ȣ. s
~7
1
0
1 O
1
4
94
1 0
6. y
Zt i
0
7 ft
I ¦
4
9 0
HOH 1000 t. MR PC H I''-*76
H1. DPDLflS MERC UF EMENT!
:tr nor 1445 hp:
DEPTH
TEMP
COMB
PH
DO
tprh:
0 0
5.7
OS. 0
1
1
3
L.
I
¦~i
90
0£
5.r
15. 0
1
2
I
/£,
O f
04
6. 1
35. 0
r
ti
I
-»
93
Co
6.3
sr. 0
«
i
t
9Z
ij y
b. 3
jr. o
< t
s
I
5
95
1 0
£.8
sr. o
1 a
l^»
7.
35
1 c
6.3
sr. o
1
o
4
9£
-------
54
HCf-' 1 0ri u l-SFCH i'f7r.
HYDPGLhB MEri: IJPEflENT:
?Th 0 01 ij9 nn HP I
DEPTH
TEMP
CDND
F'H
DD
tprn:
I.I IJ
02
04
'V,
0:3
1 0
1 3
£. £
i.T
6. 7
6. 7
0*. 0
3c. 0
40. 0
-t 1. 0
41 . f
4 2. 0
42. 0
C \Zf
34
HGH 1 00 0 8 MhF'CH 1 ?7t
H'-TPGLrtE meaiupemeut:
_¦ T H 0 'J c! 1 'J 0 _i H P _
DEPTH
TEMP
CDND
PH
DO
TPRH:
U 'J
02
04
06
08
1 0
13.
J . >
6. c
6. t»
f.. 7
ri. 7
6 7
o
03 - 0
26. 0
4 0.5
42. 0
42. 0
42. n
42.5
7. 1
i Z*
7.6
i 6
7. 6
7 6
7 6
8. 1
90
95
9 6
95
96
9 6
9 0
-------
HGH 1 or.'i 8 f'lnf'CH l?.
55
HYLPOLFiE MER Z UPZMENT :
:TH 00 3
1104 hp:
DEPTH
TEMP
CDMD
:'H
na
tp am:
rj o
Oc
04
06
05
1 0
icl. 5
6. 1
6. 6
6.7
t>. o
6.3
11.0
£4. 0
J. o. 0
4,2. 0
4c. 0
4ii. 0
4 c!. 0
HDH 100 0 9 MflPCH 1976
HYIiPDLflB NEHlL'PEMEMT?
iTR 0 04 li'OO HC'I
DEPTH
TEMP
COMD
PH
DO
"PfiM:
04
06
03
10
11. 5
O . LI
6.4
6. 6
6. 7
6. 7
6. S
.-i
1 fJ. 0
39. 0
4 0. 0
43. 0
42. 0
43.
43. 5
. 1
.4
. 6
. 6
.6
c.
S. 1
I I
7.4
7.6
7 ¦ 6
7.5
9 0
9 0
91
93
9 0
S3
36
-------
56
HGH j U i.i 11 MripL H i ';'T c
HYDPDLflB meaiufement:
ITA 0 05 1 303 HP"!
DEPTH TEMP CDND PH DD TPAN I
0 0
6. 4
08. 0
1
1
j
6
92
'Jc.'
6. 4
1'?. 0
i
a.
*
i
»;»
'? c!
04
6. 6
38. 0
1
PT
J
j
95
06
6.7
4c'. 0
1
ȣ>
t
if,
95
U 3
6 ¦ y
45. 0
l
f.
i
A
94
1 0
6. 3
42. o
1
r£.
c
9 1
1 1
o. 8
42.5
1
i
5
3 0
HQH 1 0 00 3 NAPCH l'?7o
HYDPDLAE MEFCUPEriEilT:
:tr oOb 1400 hp:
DEPTH
TEMP
CCHH
PH
DD
TP AN?
00
C£
04
06
08
1 0
11.5
j j
6. 5
6. r
6 ~
6.
6.
t..
13
41
42
4 c'
42
A
4
5
4
33
?o
91
9 3
"?4
!-!!-{
!-! r,
-------
57
HC3H 1 rnj.j x MhPiIH 1976
HVSFDLRE MERIUPEMENT:
^Tfl
oor 155 0
hp-:
DEPTH
TEMP
CQHD
PH
r a
0 0
6. 1
09
o
7. 1
7.9
OS
6. 3
14
c-
_t
7. 1
t O
OA
6. if.
Ij
7.4
i z
i; 6
i'. 7
31
H
7.5
1 m U.
OS
6.7
4S
LI
7. 6
7 4
1 0
^
t'. i
J.,£
o
i
7.5
TPRHZ
I I
*X| |*|
Q 2
HDH 100 0 § MhF'CH 1976
HYDPDLhB HERIUPEMEUT:
IL IP 01 09 0 0 HP I
ZPECIRL CDHB DRTR
DEPTH
CGMD
:hl
0 0
06. 0
0 3
c
j
0.15
05. 5
0 3
c
0. 3 0
05. 9
i*| "r
Cj
0. 46
05. S
fl *
4
0. 61
08. 3
05
0
0.99
11.0
06
c
1 . 47
19. 0
11
1
1. 5 0
19. 0
1 1
1
1. 75
30. 0
IS
5
1. 93
3 c'. 0
19
Q
=;
Z' M
C. L_ J
_ 'J
S. 5 0
33. 5
£0
9
3. 00
36. 5
C -
0
3.5 0
38.0
24.
1
4. 00
39. 0
£4
i~i
4. 5 0
39. 5
- r
C J
C
5. 0 0
40. 0
C J
5
6. 0 0
41. 0
db
0
7. 0 0
41. 0
£.6
0
x. 0 0
41.0
c6
0
-------
58
hOH 1I"t r, ,3 fir-iPCh l '-7if.
HYDPDLRB mer:upement: IPECIRL CuHD DfiTR
:lip oi 1451 hp:
DEPTH
;ann
:rl
oo
0. 30
d. 46
0,61
0. 76
0.91
1. 0 0
1 , £5
1.50
£. 0 0
£. 5 0
3. 0 0
3. 5 0
4. 0 0
4.50
5. 0 0
5. 5 0
6. 0
U 'r1.
4
1 C I
1£.
1£.
14.5
18.
19.
£0.
£1.
£1.
£6.
,:"=i.
41 ,
41.5
U5. 1
06. 8
06. 8
06. 8
00. 3
10.4
11.1
11.8
1£. 4
1 £. 4
15.3
17.8
14. 1
;4. 8
:6. 0
"6. 5
hDH 100
8 MRPC H 1976
hvdpdlrb ner:ijpeneht:
i
:fecial cdnd drtr
:lip o£ is£o hp:
depth
CDMD
:rl
00
£. 00
£.50
£.75
3. 0 0
3. £5
3.50
4. 0 0
6. 0 0
8. 0 0
1 0. 0
IJ9. 0
15. 0
£ 1. 0
30. 0
31. 0
3£. 5
41.0
4£. 0
48. 0
05. 1
08.6
1 £. 4
15. 1
18.5
19. £
c 0. c
£4. 1
c 6. 'J
£7. 0
c i U
-------
59
f i' U>:>5 1 KnF'CH i ?76
HYDPDLflE MEflIUPEMEMTI
I TP 0Li 1 0320 hp:
I'EPTH TEMP COMB PH DD TPflNT
0 0
7.6
15
0
c
J
Z' C'
y 'r
01
7. 6
1' t"
o
1
o
X , tf»
y 'r
03
7,6
3'?
0
i
s
8 J
8'?
04
7.5
4 i'i
5
>
9
8. 5
8'?
06
7.5
42
0
1 a
Q
8. *
;-J*3
03
7.5
42
_J
7 m
|
8. 6
8'?
1 0
7.5
42
c
t
Q
y 1
y y
12
7.5
42
5
8.
0
7. o
38
'< 7 >J65 la MiHr'LH l'ri76
HVDPCLflB mepiupememti
I-Th 0 02 0920
DEPTH TEMP CDND PH DD TPflHI
0 0 8.1 14.0 7.4 9.0 36
02 7.7 37.0 7.3 3.7 ?0
04 7. 6 39.0 7.3 3.3 90
06 7.5 41.5 7.9 3.3 90
05 7.5 42.0 7.9 3.0 90
10 7.5 42.5 7.9 3.0 90
12 7.5 43.5 7.9 3.1 33
-------
60
l7 0-35 13 MPC'CH 197o
HYIiPDLriB MEhIIJPEMENTI
ITh 0 fl3 1 0c'0 HP
DEPTH
TEMP
CDND
PH
DD
trhh:
0 0
0£
04
06
03
1 0
12
3. 1
16. {
3 0. :]
41. C
41. 0
4d. 1.
4c!. i
45.5
9. 1
8. 8
:¦. 1
3. 0
3 i"i
t'O
r. Ij
V 7 065 13 MhPCH 197b
H". DPOLFlP riEH IUPEMEHT'I
;tr 004 11a3 hp:
DEPTH
TEMP
CE3ND
F'H
DD
TRAM I
0 0
02
04
06
0:3
1 0
o. 1
s. 0
r
7.5
18. 0
£9. 0
40. 0
4 0.5
4£. 0
4c". 5
'.4
. J
3. 4
-1
c
3.1
54
34
-------
61
f 7 lo NRPC H l'?76
HYDPOLRB MERIUPEMENTI
!.TR 00j lcc'3 hp:
DEPTH
TEMP
CDMD
PH
no
TPR!^
IJ !_'
0c'
04
06
08
1 0
15
16.
c 0.
J6.
40,
il.
4c'.
4c!.
I . -r
7. 6
I I
r. s
7. y
7.7
Hh
pa
'36
86
06
SI
! 7 065 13 MRPCH 197c
HYDPDLRE MERIUFEMENTI
;TR IJ 06 1 :'ii 0 HP
DEPTH
TEMP
CDMD
PH
DG
TPRM
-------
62
HGH ] 'J U j c'c' HhP'_ hi i '"76
hvdpdlhe mep: ijpenemt'I
"TR 001 OS30 HFI
DEPTH
TEMP
conn
PH
DO
TRANS
0 0
01
G£
04
' It*
1 3
7. 3
ijy. i.i
c'c. 0
3 c'. 0
4 0.5
41.5
4c'. 0
4c'. 0
S. 1
M
0
o
0
0
0
I I
65
6 c!
61
59
5'?
HGH 1 005 c'S MFiPCH 1976
HYUPQLhP MEfilUPEMEMT"
_Tfl nod 1045 Hk.
BE=TH
TEMF
CDMD
PH
DO
TPflh I
u£
i'i 4
06
OS
1 0
. =¦
1 0. 0
3 0. 0
41.0
41.5
4c'. 0
4c. 0
¦-I
Q
'3
9 0
9 c'
9 6
94
91
64
-------
63
HCH '0 03 £2 f'H-fu i _-rr,
H'.'In-'OLRE MEnZU' FMEM I
I Tfi 003 I £00 HP i'
DEPTH
TEMP
COHD
PH
DO
tram:
0 0
0 Li-
ft 4
Do
1 j y
: o
13.0
30. 0
J- o, 5
4c. 'j
42. 0
42. 0
42, 0
o -
8"?
94
95
?4
92
91
HGH 1005 22 MR PCH 197*
HYDPDLflB MERIUh EMEHT!
TH 0 04 140 0 hp:
DEPTH
TEMP
nor
D
PH
DD
TPr
0 0
1 a t
12.
0
i c
y. o
74
02
1 t
£1.
0
r. 4
8. 0
7?
O-i.
1 1
Z' t m
o
7.6
i . o
89
06
t c'
41 .
0
7. t>
7. t-
9 0
08
.*1
1
41 .
Cj
7.6
7. *
90
1 0
1 ,
42.
M
i # ^
7. t>
p
-------
64
HDH : Li li5 iic s'lh^l. ri 1 H7i£'
HVDPQLfiB MEflZUPEMENT:
_ T H UIJ 5 1 "5 ij ij HP _
DEPTH TEMP
CDMD
PH
I'D
tphm:
IJ Ij
02
iH
0t
OS
i 0
14. 0
£'3. 0
39. 0
4c'. 0
42. U
4 c' ¦ ij
a
j
74
KQH l'JU5 c'll' MHPC H 1976
h'i'dfdlhe meriupememt:
:th out i55u hp:
depth temp cghd
ij ij 7. S 15. 0
'Jc i ¦ y Cui ij
|J4 7.9 c'S. ij
06 7.'? 39.0
07.9 41. ij
10 7.'? 4c'. 0
PH DD TPRN-:
i . c! o. 1 76
7.4.7.9 S 0
7.4 7.7 33
7.4 7. 5 90
7.6 7.4 91
7.6 7. J y?
-------
HDH 1 i'i 05 £3 f'lF:!7 Crl r?~V.
HYDPDLflB MEhIUPEMEMT:
ITR no? 1*£0 HPT
DEPTH TEMP COMD
65
PH DO TF'FtM
-------
!¦'Lji ] 'iijS l.'J <"'S"'i_11 1
H'.'Ir uL:-l": I'ic-IL-'EM^fl T I
. i H Oil 1 'J 15 HP _
66
DEPTH
TEMP
COHD
PH
no
t^rm
0 0
os
04
06
03
1 0
i '"i. 5
t-
i£.
14.0
c' 3. 0
j ~t cr
41.0
41.0
41.3
40. 0
IJ
91
63
66
HDH 1 0f;5 £3 rift PCH 1976
H'.'DPnLflF MEfl IUPEMENT :
TH 01 £ 1130 hp:
DEPTH TEMP
ccnd
PH
DD
TPflM I
0 i":
3. 1
17.0
~' C
1 J
i i
0 c'
¦3. 0
£7. 0
r. t.
7. i
:'I4
3. 0
36. 0
i «i
7.5
06
7.9
39. 0
, -
f C1
i
'J o
7.?
41.0
7.9
7. 3
1 0
7.9
41.0
r c
s
34
9 0
90
34
45
-------
!ijH iUUj c ? nfir-IH i ¦'T'o
67
H 7 D F ~ L R B MERI UPEMcNT I
ITfl 013 1£45 hp:
DEPTH
TEf'iP
CDMD
PH
CD
tprh:
0 0
1
>
i r. o
l
4
¦ I
0£
1
1
£4. 0
1
4
i o
ij
04
1
1
4 0. "5
1
I
T m
91
06
1
1
41.0
i
1
1 . t'
91
OS
<
1
41.5
i
7, 5
9 0
o
1
45. 0
(
t
r. 4
i
HDH 10 0 j c.' Z' MR PC H l'?7t'
HYDPOLRD MERIiJPEfENT I"
:tr oi4 1400 hp:
DEPTH
TEMP
CDflD
PH
DQ
TPftN;
0 0
c
4
6
c' 1 . 0
54. 0
36. 0
41.0
4 0. 0
4 1. 0
.4
.4
. 6
8 0
i ¦ c
9 0
* fi
-------
68
HCJH IOCS £3 MP-FCH i'-TV.
HYBPOLftE MEfilUPEMENTI
:tr
015 151=
hp:
DEPTH
TEMP
COMB
PH
I'D
0 0
» «
16
0
7. 5
02
t r
19
0
t i>
7. o
04
a 1
36
0
cr
i J
7. 4
06
i y
4 0
i C1
i d
OS
¦ c¦
41
fl
i I'
7. 1
HDH
10 05 £3
MflPCH 1"?76
HVDPDLfiB hEflI
UF Ef'lENT I
1.' 1
t
-J.'
016 16 30
HP.
DEPTH
T E M c'
CDND
PH
DD
tram:
TPfln:
oo
0£
04
06
1 3
£0
£'?
-;Q
41
1
1
4
'.4
c.
1
3 0
-------
69
hcjh in05 j3 r^'CH i_:
HVDF'DLhB riER:'J?ENEMT:
:ta 01? i7io hp:
DEFTH TEMP CD MI" F'H DD
-------
HOH i1 c! d 'J rtPPIL i97t
HYDF'DLhB MERIUPEMEnT-:
:tr ooi o?iu hp:
DEPTH TEMP
CDMD
!.! I.i
01
0£
04
06
05
1 0
3 '3
3. 9
8.6
3.5
3. 3
1 3. 0
16. 0
£7. 0
33. 0
4£. 0
43.5
4 3.5
HDH 1 01 £ £0 hP^' IL 1976
H'i'IiPGLRE MER. UPEMENT:
. i .h ooc; iu
hp:
DEPTH TEMP
CCJMIi
00
02
04
06
3.4
3.4
y. o
11.0
3 3. 0
41.0
4£. 0
-------
71
HDH 1&1£ cO flf=PIL 1?76
h'i'dpolhe i-ier : upemeht :
STB oo3 iioo hp:
DEPTH TEMP CDHD TPRM
0
C.
04
Li's
03
1 0
i'. r
3. 4
1 0. 0
.26. 0
41.5
42.5
43.5
43.5
id
I I
i 0
7'?
7m
HDH 101c' 20 RPPIL 1976
HVnPDLflE MEFtZUPEMENT:
ZTri 004 1500 HP!
DEPTH
TEMP
CDHD
TPfiN
-------
HDH i L1 i c! c. b
HYDFDLhB HEflIUPEMENTI
ITfl 0 05 15 0 0 HF'Z
DEPTH
00
OS
04
Ot.
05
1 0
TEMP
10. 4
10
09. 5
09. 1
09. 1
09. 7
C Drill
1 0,
IS
It i
41
4 3
4 3
HOH 1015 £0 RF'PIL 1976
H'-'DPDLflB MEfl I UPENENT :
. T'rl IJ Lit 1 41 j IJ HP?
DEPTH TEMP
CDND
0 0
Oc'
04
Ot.
05
1 0
1 0. 0
09. S
09. 1
OS
OS
OS
1 0. 0
17.
3:4.
41 .
41.
4 5.
HDH 1015 SO RF'PIL 1976
HYDPDLflB NEfllUPEMEHTI
STfl 0 07 14 35 HP!
DEPTH TEMP
CDND
0 0
05
04
OS. 0
14. 0
33. 0
-------
73
Section A.1.3.
PCB Data
-------
74
PCS MONITORING IN THE DUWAMISH RIVER WHOLE WATER
OH 999 27 FEB 76 JULIAN DATE=058
DREDGE NOTES:
27 FEB 76 PREDREDGE
TIDE NOTES:
26 FEB 76 2051 0.2 FEET
27 FEB 76 0*05 11.6 FEET
27 FEB 76 09*1 5.5 FEET
27 FEB 76 1*54 10.0 FEET
27 FEB 76 2136 0.4 FEET
DEPTH: 0
METERS
COMP F3
F*
F 5
F6
F7
NG/L
1 .20
.32
.30
.08
.11
20.*
* .18
.38
.28
.08
.09
19.6
7 .12
.35
. 32
.11
.11
21.8
9 .21
.*1
.29
.05
.05
19.7
COMPOSITE
TIMES
COMP
i, 0507,
06*5
COMP
*,
0 703#
0755#
0903
COMP
7,
1000
COMP
9,
1102
PCB CONC
DEPTH: 10 METERS PCB CONC
COMP F3
F*
F 5
F6
F7
NG/L
2 .15
.38
.36
1 .10
.02
19.1
5 .21
.33
.36
.10
.02
8.0
8 .23
.*0
.27
.06
.06
13.2
COMPOSITE
TIMES
COMP
2,
0515,
06*8
COMP
5,
0710,
0758,
0900
COMP
8,
1003
DEPTH: 7 METERS PCB CONC
COMP F3 F * F5 F6 F7 NG/L
0 .22 .39 .32 .02 .02 15.0
COMPOSITE TIMES:
COMP 0* 110
-------
75
PCB MONITORING IN THE DUWAMISH RIVER WHOLE WATER
OH 1000 06 MAR 76 JULIAN DATE=066
DREDGE NOTES:
6 MAR 76 DREDGING ARRIVAL TO 1000
b MAR 76 UREDGING 1300 TO DEPARTURE
TIDE NOTES:
5
MAR
76
2011
9.7
FEET
6
MAR
76
01*7
* 9
FEET
6
MAR
76
0735
10.6
FEET
6
MAR
76
1*27
1.6
FEET
6
MAR
76
2110
9.*
FEET
DEPTH: 0 METERS PCB CONC
COMP F3
F * F 5
F6
F7
NG/L
1 .22
*3 .29
.05
.01
3*. o
* .2*
.*0 .31
.05
.01
18.7
7 .22
.** .27
.07
.02
21.6
COMPOSITE
TIMES :
COMP
1, 0815,
0920,
1018
COMP
*, 1121,
1232,
1336
COMP
7, 1*51
DEPTH: 8 METERS PC3 CONC
COMP
F3
F*
F 5
F6
F7
NG/L
2
.19
.*0
.30
.07
.05
13.6
5
.20
.*0
.30
.07
.05
21.5
8
.18
.*2
.31
.07
.02
1*.*
COMPOSITE TIMES:
COMP 2i 0819, 0925, 1021
COMP 5, 1125, 1233, 1338
COMP 8, 1*53
-------
r
76
PCB MONITORING IN THE DUWAMISH RIVER WHOLE WATER
OH 1000 08 MAR 76 JULIAN DATE=063
DREDGE NOTES:
8 MAR 76 DREOGING ARRIVAL TO 0930
8 MAR 76 DREDGING 1100 TO 1230
8 MAR 76 DREDGING 1330 TO DEPARTURE
TIDE NOTES:
7
MAR
76
2219
9.3
FEET
8
MAR
76
0325
6.6
FEET
8
MAR
76
08*9
9.9
FEET
8
MAR
76
1610
1.5
FEET
8
MAR
76
23*2
9.*
FEET
DEPTH: 0 METERS PCB CONC
COMP F3 F1 .23 .05 .01 19.9
* .3* .** .19 .03 .00 32.0
7 .17 .*4 .32 .07 .02 10.6
COMPOSITE TIMES:
COMP 1, 0901, 1020, 1115
COMP *, 1216, 1321, 1*30
COMP 7, 1515
DEPTH: 8 METERS PCB CONC
COMP F3
F*
F 5
F6
F7
NG/L
2 .23
.3*
.3*
.08
.02
8.6
5 .38
.*2
.17
.02
.00
71.2
8 .20
.39
.32
.10
.02
23.7
COMPOSITE
TIMES
COMP
2,
090*,
1021,
1118
COMP
5,
1220,
1323,
1*33
COMP
8,
1517
-------
77
PCB MONITORING IN THE DUWAMISH RIVER rfHOLE WATER
K7 065 18 MAR 76 JULIAN DATE=078
DREDGE NOTES:
18 MAR 76
TIDE NOTES:
17 MAR 76
18 MAR 76
18 MAR 76
18 MAR 76
19 MAR 76
DREDGING 1030 TO 1130
2353
0351
1229
1858
0041
2.6 FEET
12.3 FEET
-0.5 FEET
11. 4 FEET
3.6 FEET
DEPTH: 0 METERS
COMP F3
1 .18
4 .16
7 .13
COMPOSITE TIMES:
COMP 1, 0835,
COMP 4, 1125,
COMP 7, 1340
0939,
1228
1024
PCB CONC
F4
F 5
F6
F7
NG/L
.37
.33
.07
.06
54.0
.33
.31
.05
.10
17.2
.36
.35
.09
.09
21.3
DEPTH: d METERS PCB CONC
COMP F3
F4
F5
F6
F7
NG/L
2 .10
.28
.44
.11
.08
33.9
5 .18
.41
.35
.07
.01
33.3
8 .15
.36
.32
.09
.10
7.4
COMPOSITE
TIMES
COMP
2,
0845,
0943,
1030
COMP
5,
1128,
1230
COMP
8,
1343
-------
78
PCB MONITORING IN THE DUwAMISH RIVER WHOLE WATER
OH 1005 22 MAR 76 JULIAN DATE=»082
OR EDGE NOTES:
22 MAR 76 DREDGING ARRIVAL TO 1200
TIDE NOTES:
21 MAR 76 2226 10.5 FEET
22 MAR 76 0336 6.3 FEET
22 MAR 76 0859 10.2 FEET
22 MAR 76 1610 0.2 FEET
22 MAR 76 23** 10.5 FEET
DEPTH: 0 METERS PCB CONC
COMP F3
F*
F 5
F6
F7
NG/L
1 .19
.26
.3*
.12
.10
17.7
* .15
.36
.39
.10
.02
25.1
7 .15
.33
.38
.12
.02
1*.0
COMPOSITE
TIMES
COMP
1,
093*,
10*8,
1202
COMP
*,
1*03,
1*50,
1531
COMP
7,
1628
OEPTH: 8 METERS PCB CONC
COMP
F 3
F*
F5
F6
F7
NG/L
2
.**
.33
.16
.0*
.0*
31.1
5
.3*
.38
.22
.07
.02
9.9
8
.20
. 3*
.36
.10
.02
13.3
COMPOSITE TIMES:
COMP 2, 0937, 1051* 1205
COMP 5, 1*06, 1*5*, 153*
COMP 8, 1631
DEPTH: 6 METERS PCB CONC
COMP F3 F* F5 F6 F7 NG/L
0 .** .*1 .1* .01 .00 128.1
COMPOSITE TIMES:
COMP IN DREDGE PROP WASH,20 FT FROM PIE* COKNER, 1612
-------
79
PCB MONITORING IN THE DUwAMISH RIVER WHOLE WATER
OH 1005 23 MAR 76 JULAIN DATE=083
DREDGE NOTES:
23 MAR
76
DREDGING ARRIVAL TO 1200
23 MAR
76
DREDGING 1245 TO 1600
TIDE NOTES:
22 MAR
76
2344
10.5 FEET
23 MAR
76
0500
6.6 FEET
23 MAR
76
1009
9.5 FEET
23 MAR
76
1719
0.8 FEET
24 MAR
76
0057
10.6 FEET
DEPTH: 0 METERS PCB CONC
COMP F3
1 .46
4 .38
7 .16
COMPOSITE TIMES:
COMP 1, 1014# 1135, 1248
COMP 4, 140 4* 1520* 1635
COMP 7, 1730
F4
F 5
F 6
F7
NG/L
.39
.14
.01
.00
185.1
.41
. 19
.03
.00
92.9
.29
.38
.09
.08
15.5
DEPTH: 3 METERS PCB CONC
COMP F3
F4
F5
F 6
F7
NG/L
2 .33
.49
.16
.01
.00
380.0
5 .46
.40
.13
.02
.00
537.4
8 .25
.33
.35
.08
.01
10.4
COMPOSITE
TIMES
COMP
2,
1017*
1138,
1251
COMP
5,
1407*
1523#
1638
COMP
8,
1733
-------
30
PCB MONITORING IN THE DUWAMISH RIi/ER WHOLE WATER
OH 1012 20 APR 76 JULIAN DATE=111
OREDGE NOTES i
20 APR 76
TIDE NOTES:
19
APR
7b
20
APR
76
20
APR
76
20
APR
76
20
APR
76
POSTDR
EDGE
2203
11.3 FEET
0338
6.2 FEET
0832
9.2 FEET
1533
0.3 FEET
2309
11.1 FEET
DEPTH: 0 METERS
COMPOSITE TIMES:
CGMP 1, 0904,
COMP 7, l
-------
81
PC B MONITORING IN THE DUWAMISH RIVER SPM
OH 999 27 FEB 76 JULIAN DATE=»058
DREDGE NOTES:
27 FEB 76 PREDREDGE
TIDE NOTES:
26 FEB 76 2051 0.2 FEET
27 FEB 76 0*05 11.6 FEET
27 FEB 76 0941 5.5 FEET
27 FEB 76 1*5* 10.0 FEET
27 FEB 76 2136 0.* FEET
DEPTH: 0 METERS PCB CONC
COMP
F3
F*
F 5
F6
F7
NG/L
UG/G *
1
.12
.29
.37
. 13
.09
12.7
2.7
*
.12
.27
.37
.13
.10
3.9
1.9
7
.1*
.29
.3*
.12
.11
11.2
1.7
9
.13
.25
.30
.15
.17
21.5
3.3
COMPOSITE TIMES:
COMP 1, 0507# 06*5
COMP *, 0703, 0755, 0903
COMP 1* 1000
COMP 9, 1102
DEPTH: 10
COMP F3
2 .17
5 .13
8 .15
COMPOSITE
COMP
COMP
COMP
METERS
F*
.23
.29
.29
TIMES:
Zt
PCB CONC
F5
F 6
F7
NG/L uG/G*
.*0
.12
.09
*.* 0.9
.35
.12
.11
*3 0.9
.3*
.12
.10
5.5 0.9
5,
8,
0515,
0710,
1003
06*8
0758,
0900
DEPTH: 7 METERS PCB CONC
COMP F3 F* F5 F6 F7 NG/L UG/G *
0 .15 .30 .33 .12 .10 10.7 1.8
COMPOSITE TIMES:
COMP 0, .1104
* The samples taken for suspended load analysis during cruise OH-999 were
destroyed due to extremely rapid bacterial growth which made it impossible
to obtain accurate measurements of filterable material. The SPM dryweight
concentrations have been calculated using the mean suspended load for all
cruises except 0H-1005.
-------
82
PCB MONITORING IN THE DUWAMISH RIVER SPM
OH 1000 06 MAR 76 JULIAN DATE=066
DREDGE NOTES:
6 MAR
76
DREDGING
ARRIVAL
TO 1000
6 MAR
76
DREDGING
1300 TO
DEPARTURE
TIDE NOTES:
5 MAR
76
2011
9.7 FEET
6 MAR
76
0147
4.9 FEET
6 MAR
76
0735
10.
6 FEET
6 MAR
76
1427
1.6 FEET
6 MAR
76
2110
9.4 FEET
DEPTH: 0 METERS
PCB CONC
COMP F3
F4
F5
F6
F7
NG/L UG/G
1 .20
.33
.32
.09
.06
7.5 1.7
4 .16
.33
.34
.10
.08
8.4 1.5
7 .21
.32
.25
.11
.10
10.4 1.6
3 .09
.29
. 36
.14
.12
3.1 1.1
COMPOSITE TIMES:
CQMP
1, 08
15,
0920,
1018
COMP
4, 1121,
1232,
1336
COMP
7, 1451
COMP
3, 1414
DEPTH: 8 METERS
PCB CONC
COMP F3
F4
F5
F 6
F 7
NG/L UG/G
' 2 .20
.30
.33
.10
.07
3.4 1.1
5 .16
.27
.36
.11
.10
5.4 1.0
8 .21
.27
.35
.09
.07
9.8 1.5
6 .12
.24
.38
.15
.12
5.1 .9
COMPOSITE TIMES:
COMP
2, 0819,
0925,
1021
COUP 5, 1125, 1233, 1338
CQMP 8, 1453
COMP 6, 1416
-------
83
PCB MONITORING IN THE DUWAMISH RIVER SPM
OH 1000 08 MAR 76 JULIaN DATE»068
DREDGE NOTES:
8 MAR 76 DREDGING ARRIVAL TO 0930
8 MAR 76 OREDGING 1100 TO 1230
8 MAR 76 DREDGING 1330 TO DEPARTURE
TIDE NOTES:
7
MAR
76
2219
9.3
FEET
8
MAR
76
0325
6.6
FEET
8
MAR
76
0849
9.9
FEET
8
MAR
76
1610
1.5
FEET
8
MAR
76
2342
9.4
FEET
DEPTH: I
COMP F3
1 .38
4 .33
7 .26
COMPOSITE TIMES:
COMP 1, 0901# 1020, 1115
COMP 4, 1216, 1321, 1430
COMP 7, 1515
METERS
PCS CONC
F 4
F5
F 6
F7
NG/L UG/G
. 37
.20
.03
.03
9.2 2.4
.45
.17
.03
.02
16.2 3.5
.25
.29
.10
.10
6.6 1.1
DEPTH: 8
METERS
PCS CONC
COMP F3
F^
F 5
F6
F7
NG/L
UG/G
2 .28
.36
.24
.06
. 06
5.8
1.9
5 .23
.46
.19
.04
.02
14.9
2.4
8 .22
.27
.33
.10
.09
7.4
1.9
COMPOSITE
TIMES
COMP
2,
0904,
1021,
1118
COMP
5,
1220,
1323,
1433
COMP
8,
1517
-------
84
PCB MONITORING IN THE DUWAMISH RIVER SPM
K7 065 18 MAR 76 JULIAN DATE=»078
DREDGE NOTES
18 MAR
76
OREO
GING 1030 TO
TIDE NOTES:
17 MAR
76
2353
2.6 FEET
18 MAR
76
0551
12.3 FEET
18 MAR
76
1229
-0.5 FEET
18 MAR
76
1858
11.* FEET
19 MAR
76
0041
3.6 FEET
DEPTH: 0 METERS
PCB CONC
COMP F3 F*
F 5
F6
F7
NG/L
UG/G
1 .15 .23
.35
.13
.1*
10.7
2.2
* .17 .23
.35
.12
.12
7.8
1.5
7 .23 .25
.33
.10
.10
9.5
1.3
COMPOSITE TIMES
COMP I,
0835*
0939,
102*
COMP *,
1125,
1228
COMP It
13*0
DEPTH: 8 METERS
PCB CONC
COMP F3 F*
F 5
F6
F7
NG/L
UG/G
2 .22 .23
.31
.11
.13
2.8
.8
5 .25 .28
.28
.10
.10
3.6
.7
8 .30 .27
.28
.09
.07
*.3
.9
COMPOSITE TIMES
»
COMP 2t
08*5>
09*3#
1030
COMP 5t
112 8;
1230
COMP 8,
13*3
-------
85
PCB MONITORING IN THE DUWAMISH RIVER SPM
OH 1005 22 MAR 76 JULIAN DATE=082
DREDGE NOTES:
22 MAR 76 DREDGING ARRIVAL TO 1200
TIOE NOTES:
21
MAR
76
2226
10.5 FEET
22
MAR
76
0336
6.3 FEET
22
MAR
76
0859
10.2 FEET
22
MAR
76
1610
0.2 FEET
22
MAR
76
2344
10.5 FEET
DEPTH: 0
METERS
PCB CONC
COMP F3
F4
F5
F 6
F 7
NG/L
UG/G
1 .04
.25
.33
.17
.21
9.2
1.8
4 .09
.18
.34
.20
.19
7.2
.7
7 .09
.17
.36
.19
.18
9.3
1.0
COMPOSITE
TIMES
COMP
1,
0934,
1048,
1202
COMP
4,
1403,
1450,
1531
COMP
7,
1628
DEPTH: 8 METERS PCB CONC
COMP
F 3
F 4
F5
F6
F7
NG/L
UG/G
2
.09
.47
.29
.07
.08
9.5
1.3
5
.14
.39
.27
.10
.10
5.1
.9
8
.13
.21
.37
.14
.15
3.8
.6
COMPOSITE TIMES:
COMP 2t 0937, 1051/ 1205
COMP 5, 1406* 1*54, 1534
COMP 8, 1631
DEPTH: 6 METERS PCB CONC
COMP F 3 F4 F 5 F6 F7 NG/L UG/G*
0 .39 .42 .16 .02 .02 87.7 6.4
COMPOSITE TIMES:
COMP IN DREDGE PROP WASH,20 FT FROM PIER CORNER, 1612
* No sample was taken for suspended load analysis. The dry weight concentration
has been calculated using the average of composites 2 and 5 of 23 March 1976.
-------
86
PCB MONITORING IN THE OUWAMISH RIVER SPM
OH 1005 23 MAR 76 JULIAN DATE=083
DREDGE NOTES
«
23 MAR
76
DREDGING ARRIVAL TO 1200
23 MAR
76
DREDGING 1245 TO 1600
TIDE NOTES:
22 MAR
76
2344
10.5 FEET
23 MAR
76
0500
6.6 FEET
23 MAR
76
1009
9.5 FEET
23 MAR
76
1719
0.8 FEET
2 4 MAR
76
0057
10.6 FEET
DEPTH: 0 METERS
COMP F3
1 .*5
4 .27
7 .06
COMPOSITE TIMES:
COMP 1, 101*,
COMP 4, 1404#
COMP 7, 1730
F 4
F 5
F6
F7
.41
.13
.01
.00
.43
.25
05
.01
.25
.37
.16
.15
1135,
1520,
1248
1635
PCS CONC
NG/l UG/G
188.0 33.1
16.3 2.2
9.0 .9
DEPTH: 8 METERS PCB CONC
COMP F3
F4 F5
F6
F7
NG/L
UG/G
2 .44
.39 .15
.01
.01
194.1
18.0
5 .48
.37 .12
.01
.01
313.4
18.8
8 .19
.44 .25
.07
.06
9.5
1.6
COMPOSITE
TIMES:
COMP
2, 1017,
1138,
1251
COMP
5, 1407,
1523,
1638
COMP
8, 1733
-------
37
PCB MONITORING IN THE DUWAMISH RIVER SPM
OH 1012 20 APR 76 JULIAN DATE=111
DREDGE NOTES:
20 APR 76
TIDE NOTES J
19 APR 76
20 APR 76
20 APR 76
20 APR 76
20 APR 76
POSTDREDGE
2203 11.3 FEET
0338 b.2 FEET
0832 9.2 FEET
1533 0.3 FEET
2309 11.1 FEET
DEPTH: o METERS PCB CONC
COMP
F 3
F 4
F5
F6
F7
NG/L
UG/G
1
.13
.17
.36
.16
.17
3.4
.4
4
.11
22
.37
.16
.14
4.3
.9
7
.14
.22
.35
. 16
.13
4.3
.7
COMPOSITE TIMES:
COMP 1, 0904, 1001* 1104
COMP 4, 1209, 1304, 1404
COMP 7, 1437
DEPTH: 8 McTERS PCB CONC
COMP
F3
F 4
F5
F6
F7
NG/L
UG/G
2
.22
.24
.29
.12
.13
3.9
.7
5
.19
.27
.29
.12
.13
4.1
.7
8
.26
.21
.28
.12
.13
5.4
.7
COMPOSITE TIMES:
COMP 2, C906, 1004, 1107
COMP 5, 1211, 1307, 1406
COMP 8, 1440
-------
TABLE A.l.II. Suspended Load Data
Cruise
Composite No.
Load (mq/1)
0H-1000
1
4.44
6 Mar 76
2
3.06
4
5.66
5
5.31
7
6.71
8
6.75
0H-1000
1
3.89
8 Mar 76
2
3.12
4
4.66
5
6.22
7
6.30
8
3.96
K7-065
1
4.88
18 Mar 76
2
3.49
4
5.12
5
4.97
7
7.37
8
4.95
0H-1005
1
5.15
22 Mar 76
2
5.45
4
11.03
5
5.89
7
9.53
8
6.64
0H-1005
1
5.68
23 Mar 76
2
10.77
4
7.34
5
16.64
7
10.44
8
6.06
0H-1012
1
3.89
20 Apr 76
2
5.66
4
4.63
5
6.17
7
5.81
8
8.24
-------
88
Appendix 2
Hydrographic Profiles
-------
09
0 TEMPERATURE SHIP-0h.CRUISE-999.STfi N0-001
+ SALINITY 2-27-76.TIME-12.7 HR DMT
X SIGMA T LOCATION-SLIP 1
SIGMfi T
0 5 10 15 20 25
1 1 1 1 1 1
SALINITY
0 5 10 15 20 25 30
1 1 1 1 1 1 1
TEMPERRTURE-C
TEMPERRTURE-C
-4 -
CD _8 -
C£ u
LU
\
LU
5-io-
Q_
Ld
°-12-
-14-
-16-
-18-
-20
LflT-47 33.5 ,L0NG-122 20.5
MRRSDEN SQURRE-157
j
-------
~ TEMPERATURE
+ SALINITY
X SIGMA T
90
SHIP-OH»CRUISE-999,STA N0-003
2-27-76,TIME-14.4 HR GMT
LOCATION-SLIP 1
0
0
-2
-4
-6
co _ft
en u
LU
LU
-10
Q_
LU
~
-12
"14
-16
-18-
-20
10
SIGMA T
15
20
~
LAT-47 33.5 .LONG-122 20.5
MARSDEN SQUARE-157
'k
\
X +
25
1
0
\
5
1
10
1
SALINITY
15 20
25
30
5
6
< i i
TEMPERATURE-C
7 8
1
9
»
10
-------
^ I
~ TEMPERATURE
+ SALINITY
X SIGMA T
SHIP-OH,CRUISE-999,STA N0-004
2-27-76,TIME-15.6 HR GMT
LOCATION-SLIP 1
0
0
-2
-4
-6
CD -8
Cd u
UJ
h
UJ
5-10
Q_
Ld
~
"12
-14
-16
-18-
-20
10
SIGMA T
15
20
25
1
0
I
5
1
10
¦¦¦T"
SALINITY
15 20
T
25
30
5
1
1
6
i
1 1 T
TEMPERATURE-C
7 8
1 1
1
9
i
1
10
\ .
%
\
\
\ «
\
\
>
\
\
\
\
t +
LAT-47 33.5 .LONG-122 20.5
MARSDEN SQUARE-157
-------
~ TEMPERATURE
+ SALINITY
X SIGMR T
92
SHIP-OH,CRUISE-999»STR N0-005
2-27-76,TIME-16.4 HR GMT
LOCRTION-SLIP 1
0
Or
-2
-4
-6
co -fi
en u
IxJ
4
UJ
5-io
Q_
LU
~
-12
-14
-16
-18-
-20
10
SIGMR T
15
20
25
1
0
5
i
10
' i
SALINITY
15 20
1
25
1
30
5
i
6
l 1 ' T"
TEMPERATURE-C
7 8
1
9
l
10
X +
LRT-47 33.5 ,L0NG-122 20.5
MRRSDEN SQUARE-157
-------
93
~
TEMPERATURE
SHIP-0H.CRUISE-999
»STA N0-006
+
SALINITY
2-27-7S.TIME-17.3
HR GMT
X
SIGMA T
LOCATION-SLIP 2
SIGMR T
0
5
10 15
20
?5
1 I
SRLINITY
T
i
0
5
10 15 20
25
30
¦ i i -
TEMPERATURE-C
i
1
5
i
6
i
7 ?
9
10
\*
X +
-20
LflT-47 32-8 ,L0NG-122 20.2
MARSDEN SQUARE-157
j
-------
0 TEMPERATURE SHIP-OH,CRUISE-OOO.STA N0-OO1
+ SALINITY 3- 6-76.TIME-15.7 HR GMT
X SIGMA T LOCATION-SLIP 1
SIGMA T
0 5 10 15 20 25
1 1 1 1 I i
SALINITY
0 5 10 15 20 25 30
1 l 1 1 1 I I
TEMPERRTURE-C
-4
-14
-16
-18
-20
LRT-47 33.5 ,L0NG-122 20.5
MflRSDEN SQUARE-157
-------
yb
~ TEMPERATURE
+ SRLINITY
X SIGMA T
SHIP-OH,CRUISE-000 »STA N0-OO2
3- 676TIME16.7 HR GMT
LOCATION-SLIP 1
0
0
-2
-4-
-6
cd -8
oi u
LJ
t
LU
1-10
Q_
LJ
O
-12
-14
-16
-18
-20
10
SIGMA T
15
20
25
1
0
1
5
1" -
10
r
SALINITY
15 20
l
25
i
30
1
5
6
TEMPERflTURE-C
7 8
9
10
C3
~
f
LflT-47 33.5 ,L0NG-122 20.5
MRRSDEN SQUARE-157
-------
~ TEMPERRTURE
+ SALINITY
X SIGMA T
96
SHIP-OH,CRUISE-000.STA N0-003
3- 676»TIME17.6 HR GMT
LOCATION-SLIP 1
0
0
-2
-4
-6
co _Q
cm u
LU
f
LU
5-io
Q-
LU
Q
-12
-14
-16
-18
-20
10
SIGMA T
15
20
#
[]
~
LAT-47 33.5 ,L0NG-122 20.5
MARSDEN SQUARE-157
\
\
\
* t
i
i
i
i
X +
25
1
0
l
5
I
10
SALINITY
15 20
1
25
o
00
5
6
TEMPERATURE-C
7 8
r
9
1
10
-------
0
-2
-4
-6
-8
10
12
14
16
18
y/
D TEMPERATURE
t- SALINITY
£ SIGMA T
SHIP-OH»CRUISE-000»STA N0-004
3- 6-76.TIME-17.7 HR GMT
LOCRTIGN-SLIP 1
10
SIGMA T
15
20
25
1
I
I
SALINITY
1
1
5
10
15 20
25
30
1 1 7
TEMPERATURE-C
1
1
6
1
7
!
8
i
9
i
10
i
X +
LAT-47 33.5 ,L0NG-122 20.5
MARSDEN SQUARE-157
-------
98
~ TEMPERATURE
+ SALINITY
X SIGMA T
SHIP-OH»CRUISE-000»STA N0-005
3- 6-76,TIME-19.8 HR GMT
LOCATION-SLIP 1
0
Or
-2
-4
-6
CD -8
en u
LU
UJ
|-10
Q_
LU
~
-12
-14
-16
-18-
-20
10
SIGMA T
15
20
25
0
5
10
I
SALINITY
15 20
1
25
o
CO
5
6
¦ 1 T ¦
TEMPERATURE-C
7 8
i
9
1
10
LAT-47 33.5 ,L0NG-122 20.5
MARSDEN SQUARE-157
-------
99
~ TEMPERATURE SHIP-OH,CRUISE-OOO.STA N0-006
+ SALINITY 3- 6-76,TIME-20.9 HR GMT
X SIGMA T LOCATION-SLIP 1
SIGMA T
0 5 10 15 20 25
1 1 1 1 1 1
SALINITY
0-5 10 15 20 25 30
I 1 1 1 1 1 1
TEMPERRTURE-C
LU
|-10-
*
o_
UJ
°-12-
-14-
-16-
-18-
-20
LRT-47 33.5 ,L0NG-122 20-5
MRRSDEN SQUARE-157
-------
~ TEMPERATURE
+ SALINITY
X SIGMA T
TOO
SHIP-GH,CRUISE-000,STA NG-007
3- 6-76.TIME-21.8 HR GMT
LGCATIGN-SLIP 2
0
r
0
r
5
0
-2
-4
-6
co _R
en u
LU
I
LU
5-iof
Q_
LU
o
-12
-14-
-16
-18-
10
SIGMA T
15
10
SALINITY
15 20
TEMPERATURE-C
7 8
20
25
25
30
-20
i
LAT-47 32.8 ,LGNG-122 20.2
MARSDEN SQUARE-157
-------
I U I
~ TEMPERATURE
+ SRLINITY
X SIGMA T
SHIP-OH,CRUISE-000.STA NO-Oll
3- 8-76 »TIME-16.2 HR GMT
LOCATION-SLIP 1
0
10
SIGMA T
15
20
25
0
10
SALINITY
15 20
TEMPERATURE-C
7 8
25
30
10-
12-
14-
16-
18-
on 1 ' 1 1
^ LRT-47 33.5 .LONG-122 20.5
MRRSDEN SQUARE-157
-------
102
~
TEMPERATURE
SHIP-OH,CRUISE-000
,STR N0-012
+
SRLINITY
3- 8-76.TIME-17.6
HR GMT
X
SIGMA T
LOCATION-SLIP 1
SIGMR T
0
5
10 15
20
25
I
SALINITY
1
i
0
5
10 15 20
25
30
1
i i i
TEMPERRTURE-C
l
l
5
6
i
7 8
1 1
9
" i
10
T
Or
-2-
-4-
f
LflT-47 33.5 .LONG-122 20.5
MRRSDEN SQURRE-157
-------
0
-2
-4
-6
-8
¦10
12
¦14
¦16
18
20
TEMPERATURE SHIP-OH,CRUISE-000 , STA NO-O13
SALINITY 3- 8-76,TIME-18.5 HR GMT
SIGMA T LOCATION-SLIP 1
10
SIGMA T
15
20
25
10
SALINITY
15 20
25
30
TEMPERATURE-C
7 8
9
T""
10
* +
LAT-47 33.5 ,L0NG-122 20-5
MARSDEN SQUARE-157
-------
~ TEMPERRTURE
+ SRLINITY
X SIGMA T
104
SHIP-OH »CRUISE-000 »STR N0-014
3- 8-76,TIME-19.5 HR GMT
LOCRTION-SLIP 1
0
0
-2
-4
-6
co _Q
on u
LU
h
UJ
5-io
Q_
UJ
~
-12
-14
-16
-18
-20J
10
SIGMR T
15
20
25
1
0
5
10
1
SRLINITY
15 20
25
i
30
5
1
6
i i I
TEMPERRTURE-C
7 8
i
9
i
10
X +
LRT-47 33.5 .L0NG-122 20.5
MRRSDEN SQUARE-157
-------
0
-2
-4
-6
-8
¦10
12
14
16
18
20
105
D TEMPERflTURE SHIP-0H,CRUISE-000,STA N0-015
I- SALINITY 3- 8-76»TIME-20.5 HR GMT
I SIGMA T LOCATION-SLIP 1
10
SIGMA T
15
20
25
10
SflLINITY
15 20
25
30
TEMPERATURE-C
7 8
10
? >
CD
* +
~
X +
LRT-47 33-5 ,L0NG-122 20.5
MARSDEN SQUARE-157
-------
~ TEMPERRTURE SHIP-OH,CRUISE-OOO.STA N0-016
+ SALINITY 3- 8-76.TIME-21-7 HR GMT
X SIGMA T LOCATION-SLIP 1
SIGMA T
0 5 10 15 20 25
1 1 1 1 1 1
SALINITY
0 5 10 15 20 25 30
1 1 1 1 1 1 1
TEMPERATURE-C
LU
1-10-
»
Q_
LU
°-12-
-14-
-16-
-18-
-20
LAT-47 33.5 ,L0NG-122 20.5
MARSDEN SQUARE-157
-------
107
~ TEMPERATURE
+ SALINITY
X SIGMA T
SHIP-OH,CRUISE-000,STA N0-017
3- 8-76,TIME-22.5 HR GMT
LOCATION-SLIP 2
0
0
-2
-4
-6
cn _8
a: u
IxJ
H
UJ
5-io
Q_
UJ
~
-12
10
SIGMA T
15
20
25
1
0
5
1
10
SALINITY
15 20
25
i
30
5
i
6
i i i
TEMPERATURE-C
7 8
1"
9
i
10
-14-
-16-
-18-
LRT-47 32.8 ,L0NG-122 20-2
MflRSDEN SQUARE-157
-------
0
2
4-
6-
8-
0-
2-
4-
6-
8-
n -
108
TEMPERATURE SHIP-K7,CRUISE-065.STA N0-001
SALINITY 3-18-76,TIME-16.2 HR GMT
SIGMA T LOCATION-SLIP 1
SIGMA T
5 10 15 20 25
i 1 1 1 1
SALINITY
5 10 15 20 25 30
T 1 1 1 1 1
TEMPERATURE-C
6
T
LAT-47 33.5 ,L0NG-122 20.5
MARSDEN SQUARE-157
-------
~ TEMPERATURE
+ SALINITY
X SIGMA T
109
SHIP-K7.CRUISE-065.STA N0-002
3-18-76,TIME-17.1 HR GMT
LOCATION-SLIP 1
0
0
SIGMA T
10 15
20
25
10
SALINITY
15 20
25
30
TEMPERATURE-C
7 8
<5 -8
LAT-47 33.5 ,L0NG-122 20.5
MARSDEN SQUARE-157
-------
110
~ TEMPERATURE
+ SALINITY
X SIGMA T
SHIP-K7.CRUISE-065.STA N0-003
3-18-76,TIME-17.9 HR GMT
LOCATION-SLIP 1
0
r
0
r
5
0
-2
-4
-6
CO
or u
LU
t
LU
S-io
Q_
LU
~
-12
-14
-16
-18
-20
10
SIGMft T
15
10
SRLINITY
15 20
TEMPERflTURE-C
7 8
20
25
X +
LRT-47 33.5 ,L0NG-122 20.5
MflRSDEN SQUARE-157
25
30
-------
~ TEMPERATURE
+ SALINITY
X SIGMA T
m
SHIP-K7,CRUISE-065,STA N0-004
31876»TIME18-8 HR GMT
LOCATION-SLIP 1
SIGMA T
0
0
-2
-4
-6
CD _P
or u
LU
|-10
Q_
LU
Q
-12
-14
-16
-18-
-20
10
20
LAT-47 33.5 ,L0NG-122 20.5
MARSDEN SQUARE-157
25
1
i
i |
SALINITY
1
i
0
5
10 15 20
25
30
1 1
TEMPERATURE-C
1
1
5
1
6
i
1
-o
-co
9
i
10
1
-------
112
~ TEMPERATURE SHIP-K7,CRUISE-065.STA N0-005
+ SALINITY 3-18-76,TIME-19.8 HR GMT
X SIGMA T LOCATION-SLIP 1
0
-2
-4
-6
co _g
en u
LlJ
5-10
0
5
SIGMA T
10 15
20
25
0
5
1 1
SALINITY
10 15 20
l
25
i
30
5
i
6
¦ i
i i i - -
TEMPERATURE-C
7 8
1
9
1
10
Q_
LlJ
Q
-12
-14-
-16-
-18-
-20 1 1 1 i
LflT-47 33.5 ,L0NG-122 20.5
MflRSDEN SQUARE-157
-------
11J
~ TEMPERATURE
+ SALINITY
X SIGMA T
SHIP-0H.CRUISE-005.STA N0-OO1
3-22-76,TIME-16.9 HR GMT
LOCATION-SLIP 1
0
10
SIGMA T
15
20
25
1
0
i
5
" T ' 1
SALINITY
10 15 20
I
25
30
1
5
i
6
TEMPERATURE-C
7 8
9
10
f
LflT-47 33.5 .LONG-122 20.5
MRRSDEN SQUflRE-157
-------
I 14
~ TEMPERATURE
+ SALINITY
X SIGMA T
SHIP-0H.CRUISE-OO5.STA N0-002
3-22-76,TIME-18.2 HR GMT
LGCATIGN-SLIP 1
0
Or
-2
-4
-6
co -8
£E U
LU
I
LU
±-io
Q_
LU
Q
-12
-14
-16
-18
-20
10
SIGMA T
15
m
[]
~
20
25
1
0
"" i
5
V i
SALINITY
10 15 20
i
25
i
30
r
5
i
6
i i i
TEMPERATURE-C
7 8
9
10
>
*+.
»
\
i
it
k +
LflT-47 33.5 .LONG-122 20.5
MRRSDEN SQUARE-157
-------
~ TEMPERATURE
+ SALINITY
X SIGMA T
.115
SHIP-0H.CRUISE-005.STA N0-003
3-22-76,TIME-19.4 HR GMT
LOCATION-SLIP 1
0
0
0
-2
-4
-6
co _R
en u
LU
LU
5-io
Q_
Ld
Q
-12
10
SIGMA T
15
10
SALINITY
15 20
TEMPERATURE-C
7 8
~
[]
[]
20
25
25
30
10
H-
* *
+
!
i
i
t +
-14
-16
-18
-20
LAT-47 33.5 ,LONG-122 20.5
MARSDEN SQUARE-157
-------
m TEMPERATURE
+ SALINITY
X SIGMA T
116
SHIP-0H.CRUISE-005,STA N0-004
3-22-76,TIME-21.3 HR GMT
LOCRTION-SLIP 1
0
0
-2
-4
-6
co _8
tr u
l±J
LU
5-io
Q_
LlJ
Q
"12
10
SIGMA T
15
20
25
1
I
1 1
SALINITY
i
i
0
5
10 15 20
25
30
» 1
TEMPERATURE-C
r
1
5
i
6
CO
9
10
-14-
-16-
-18-
201 1 1 ' l
LAT-47 33.5 ,L0NG-122 20.5
MARSDEN SQUARE-157
-------
0
-2
-4
-6
-8
10
12
14
16
18
20
D TEMPERATURE
f SALINITY
5 SIGMA T
117
SHIP-OH,CRUISE-005»STA N0-005
3-22-76»TIME-22.3 HR GUT
LOCRTION-SLIP 1
SIGMA T
10 15
20
25
1
J T"
SALINITY
1
1
5
10 15 20
25
30
i
1 1 1
TEMPERATURE-C
1
1
6
7 8
9
10
LAT-47 33.5 ,L0NG-122 20.5 '
MARSDEN SQUARE-157
-------
~ TEMPERRTURE
+ SRLINITY
X SIGMA T
118
SHIP-OHpCRUISE-005,STR N0-006
3-22-76pTIME-22-9 HR GMT
LOCRTION-SLIP 1
0
0
-2
-4
-6
co _8 ¦
C£ u
IxJ
I
LlI
5-iqi-
Q_
UJ
Q
-12
-14
-16
-18
-20
SIGMA T
10 15
20
25
1
0
1
5
T
10
¦' " '"-f
SRLINITY
15 20
I
25
30
1
5
«
6
1 1 1
TEMPERRTURE-C
7 8
1
9
1
10
LRT-47 33o5 ,L0NG-122 20.5
MRRSDEN SQURRE-157
-------
119
~
TEMPERATURE
SHIP-0H,CRUISE-005,STA N0-OO7
+
SALINITY
3-22-76,TIME-23.7
HR GMT
X
SIGMA T
LOCATION-SLIP 2
SIGMA T
0
5
10 15
20
25
I
i
i i
SALINITY
i
0
5
10 15 20
25
30
1
»
1 1 1
TEMPERATURE-C
i
5
6
7 8
9
10
-2-
..
...
[]
[]
G3
S *
i
i
i
i +
LflT-47 32.8 .L0NG-122 20.2
MARSDEN SQUARE-157
-------
0
-2
-4
-6
-8
10
12
14
16
18
20
120
TEMPERATURE SHIP-OH,CRUISE-005,STfl NG-011
SRLINITY 3-23-76,TIME-17.5 HR GMT
SIGMA T LOCATION-SLIP 1
SIGMA T
5 10 15 20 25
i 1 1 1 1
SRLINITY
5 10 15 20 25 30
T 1 1 1 1 1
TEMPERRTURE-C
6 7 8 9 10
T 1 1 1 1
4
LAT-47 33.5 ,L0NG-122 20.5
MRRSDEN SQURRE-157
i
-------
~ TEMPERATURE SHIP-0H,CRUISE-005,STA N0-012
+ SALINITY 3-23-76,TIME-18.9 HR GMT
X SIGMA T LOCATION-SLIP 1
SIGMA T
0 5 10 15 20 25
¦ i 1 I 1 l
SALINITY
0 5 10 15 20 25 30
1 1 1 1 1 1 1
TEMPERRTURE-C
LU
f
LU
J-10-
*
Q_
LU
a-12-
-14-
-16-
-18-
-20
LRT-47 33.5 »LONG-122 20-5
MRRSDEN SQURRE-157
-------
0
-2
-4
-6
-8
10
12
14
16
18
20
122
TEMPERATURE SHIP-OH.CRUISE-005,STA NO-O13
SALINITY 3-23-76,TIME-20.2 HR GMT
SIGMA T LOCATION-SLIP 1
SIGMA T
5 10 15 20 25
i 1 1 1 1
SALINITY
5 10 15 20 25 30
-l 1 1 1 1 1
TEMPERATURE-C
LAT-47 33.5 ,LONG-122 20.5
MARSDEN SQUARE-157
-------
0
-2
-4
-6
-8
¦10
¦12
¦14
16
18
20
vis
D TEMPERATURE
V SRLINITY
£ SIGMA T
SHIP-OH.CRUISE-005,STA N0-014
3-23-76,TIME-21.4 HR GMT
LOCATION-SLIP 1
SIGMA T
10 15
20
25
1
- i
¦ ' I
SALINITY
I
1
5
10
15 20
25
30
i
i i i
TEMPERATURE-C
i
i
'6
7
8
9
10
C3
[]
CD
*
ft
i
i
i
X +
LAT-47 33.5 ,L0NG-122 20.5
MARSDEN SQUARE-157
-------
0
-2
-4
-6
-8
10
12
14
16
18
D TEMPERATURE
f SALINITY
S SIGMA T
124
SHIP-0H,CRUISE-005,STA N0-016
3-23-76,TIME-23.9 HR GMT
LOCATION-SLIP 1
10
SIGMA T
15
20
25
1
5
1
10
\
SALINITY
15 20
1
25
1
30
6
i 1 T "
TEMPERATURE-C
7 8
I
9
1
10
X +
LAT-47 33.5 ,L0NG-122 20-5 '
MARSDEN SQUARE-157
-------
~ TEMPERATURE
+ SRLINITY
X SIOMR T
125
SHIP-0H,CRUISE-005,STR N0-017
3-23-76,TIME- .8 HR GMT
L0CRTI0N-SLIP 2
0
0
-2
-4
-6
(D _R
en u
LlJ
J
UJ
5-10
Q_
LlJ
CD
-12
-14
-16
-18
-20
10
SIGMR T
15
20
25
1
0
5
i
10
t "
SRLINITY
15 20
25
i
30
5
i
6
« i j -
TEMPERRTURE-C
7 ?
i
9
10
X +
LRT-47 32.8 ,L0NG-122 20.2
MRRSDEN SQURRE-157
-------
Of
2-
4-
6-
8-
O-
2-
4-
6-
8-
n -
TEMPERATURE
SALINITY
SIGMR T
126
SHIP-OHpCRUISE-012.STR N0-001
4-20-76,TIME-16.4 MR GMT
L0CRTION-SLIP 1
10
SIGMR T
15
20
10
SRLINITY
15 20
25
TEMPERRTURE-C
7 8
*
LRT-47 33.5 .LONG-122 20.5
MRRSDEN SQURRE-157
-------
127
0
-2
-4
-6
co -ft
C£ u
LlI
h
UJ
£-10
~
TEMPERATURE
SHIP-0H.CRUISE-O12.STA N0-002
+
SALINITY
4-20-76,TIME-17.3 HR
GMT
X
SIGMA T
LOCATION-SLIP 1
SIGMA T
0
5
10 15
20
25
i
« r
SRLINITY
1
1
0
5
10 15 20
25
30
¦ i ~r
TEMPERATURE-C
r
i
5
i
6
i-
7 8
r 1
9
10
Q_
LlI
Q
-12
-14
-16
-18
-20
LflT-47 33.5 ,L0NG-122 20.5
MflRSDEN SQUARE-157
-------
~ TEMPERATURE
+ SALINITY
X SIGMA T
128
SHIP-0H.CRUISE-012,STA N0-OO3
4-20-76,TIME-18.3 HR GMT
LOCATION-SLIP 1
0
10
SIGMA T
15
20
25
1
0
I
5
¦ 1
10
1
SALINITY
15 20
1
25
o
CO
5
6
i i 1
TEMPERATURE-C
7 8
T
9
1
10
10-
12-
14 '
LAT-47 33.5 ,L0NG-122 20.5
MARSDEN SQUARE-157
-------
~ TEMPERATURE
+ SALINITY
X SIGMA T
129
SHIP-0H.CRUISE-012.STA N0-OO4
4-20-76pTIME-19.4 HR GMT
LOCATION-SLIP 1
0
0
-2
-4
-6
co
cz u
LU
UJ
z:
i
31
I
Q_
LU
Q
>10
-12
-14
-16
-18
-20
10
SIGMA T
15
20
25
1
0
1
5
... ,
10
1
SALINITY
15 20
i
25
i
30
5
6
i i ¦ --|
TEMPERATURE-C
"7 8
1
9
1
10
X +
LAT-47 33.5 ,L0NG-122 20.5
MARSDEN SQUARE-157
-------
130
~
TEMPERATURE
SHIP-0H,CRUISE-012
,STA N0-005
+
SALINITY
4-20-76,TIME-20.4
HR GMT
X
SIGMA T
LOCATION-SLIP 1
SIGMA T
0
5
10 15
20
25
1
i
1 <
SALINITY
1
i
0
5
10 15 20
25
30
r
i
TEMPERATURE-C
1
1
5
6
7 8
9
10
LflT-47 33.5 .LONG-122 20.5
MARSDEN SQUARE-157
-------
~ TEMPERATURE
+ SALINITY
X SIGMA T
131
SHIP-0H,CRUISE-012.STA N0-OO6
4-20-76,TIME-17.3 HR GMT
LOCATION-SLIP 1
SIGMA T
0
Or
-2
-4
-6
co _ft
a: u
LU
LlJ
-10
Q_
LU
~
-12
-14
-16
-18
-20
10
20
25
1 ¦
0
"T
5
¦ 1
10
i
SALINITY
15 20
1
25
- -i
30
5
i
6
-i
i i 1
TEMPERATURE-C
7 8
i i
r -
9
1
i
10
i
i +
LAT-47 33.5 .LONG-122 20.5
MARSDEN SQUARE-157
-------
132
~
TEMPERRTURE
SHIP-0H,CRUISE-012,STA N0-007
+
SRLINITY
4-20-76,TIME-22-0 HR
GMT
X
SIGMfi T
LOCATION-SLIP 2
SIGMA T
0
5
10 15
20
25
1 |
SALINITY
¦
1
0
5
10 15 20
25
30
i 1
TEMPERRTURE-C
i
i
5
i
6
7 8
9
10
X +
LAT-47 32.8 .LONG-122 20.2
MARSDEN SQUARE-157
-------
133
Appendix 3
Selected Hydrolab S°/oo Profiles
-------
OH 1000 8 MflR 76
Y-SALINITY.0900 HR
134
PCB MONITORING-DUWflMISH RIVER
-2.0
CO
C£
LU
I
-8.0
-10.0
-12.0
25.0
20.0
SRLINITY
15.0
5.0
10.0
-------
OH 1000 8 MRR 76
Y-SRLINITY,1451 HR
135
M0NI TOR ING-DUWflM ISH RIVER
-2.0
00
LU
-8.0
-10.0
-12.0
30.0
25.0
20.0
15.0
10.0
5.0
SALINITY
-------
OH 1000 8 MRR 7B
Y-SRLINITY»152Q KR
136
PCB MONITORING-DUNRMISH RIVER
-2.0
CO
C£
UJ
~=
I
a_
Q "6-°
-8.0
\/
-10.0
-12.0
30.0
25.0
15.0
10.0
5.0
------- |