COMPUTER PROGRAM
DOCUMENTATION
for the
STREAM QUALITY MODEL QUAL-K
AN INTERMEDIATE TECHNICAL REPORT
Larry A. Roesner
John R. Monser
Dona Id E. Even son
prepared for
THE. ENVIRONMENTAL PROTECTION AGENCY
SYSTEMS DEVELOPMENT BRANCH
WASHINGTON. D.C.
Contract No 68-01-0742 Iowa And Cedar River Basins Model Project
MAY, 1973
2700 MITCHELL DRIVE " WALNUT CREEK, CALIFORNIA 94598
Walnut Creek. California • Springfield. Virginia • Austin, Texas
11760
1 r'
-------
TABLE OF CONTENTS
Page
SECTION I
BACKGROUND AND INTRODUCTION
BACKGROUND I_1
QUAL-I !_]
QUAL MODIFICATIONS: QUAL-II I_2
DOCUMENTATION REPORT I_3
SECTION II
THEORETICAL CONSIDERATIONS
INTRODUCTION H_1
GENERAL MODEL RELATIONSHIPS H_2
CONSTITUENT REACTIONS AND INTERACTIONS 11-3
SUMMARY OF MATHEMATICAL RELATIONSHIPS II_8
REACTION RATES AND PHYSICAL CONSTANTS 11-10
SECTION III
MODEL DESCRIPTION
INTRODUCTION IH_1
PROTOTYPE REPRESENTATION IH-1
MODEL LIMITATIONS HI_2
NUMERICAL PROCEDURES HI-3
MODEL STRUCTURE AND SUBROUTINES 111-4
SECTION IV
PROGRAM DESCRIPTIONS
MAIN PROGRAM - QUAL2 IV-1
SUBROUTINE ALGAES IV-4
SUBROUTINE BODS IV-6
SUBROUTINE COLIS IV-8
SUBROUTINE CONSVT IV-10
SUBROUTINE DOS IV-12
-------
TABLE OF CONTENTS (Continued)
Page
SECTION IV (Continued)
SUBROUTINE FL0AU6 IV-14
SUBROUTINE HEATEX IV-15
SUBROUTINE HYDRAU IV-16
SUBROUTINE INDATA IV-17
SUBROUTINE NH3S IV-18
SUBROUTINE N02S IV-20
SUBROUTINE N03S IV-22
SUBROUTINE P04S IV-24
SUBROUTINE RADIOS (Not Programmed) IV-26
SUBROUTINE REAERC IV-27
SUBROUTINE SOVMAT IV-29
SUBROUTINE TEMPS IV-30
SUBROUTINE TRIMAT IV-32
SUBROUTINE WRPT2 IV-34
SUBROUTINE WRPT3 IV-35
DEFINITION OF SYMBOLS IV-36
SECTION V
.QUAL-II
DESCRIPTION OF VARIABLES IN COMMON
SECTION VI
QUAL-II INPUT DATA DESCRIPTION
TITLE DATA CARDS VI-1
PROGRAM ANALYSIS CONTROL DATA VI-1
NONSPATIALLY VARIABLE A, N, AND P CONSTANTS VI-3
REACH IDENTIFICATION AND RIVER MILE DATA VI-4
FLOW AUGMENTATION DATA VI-5
-------
TABLE OF CONTENTS (Continued)
Page
SECTION VI (Continued)
COMPUTATIONAL ELEMENTS FLAG FIELD DATA VI-5
HYDROLOGIC DATA VI-6
BOD AND DO REACTION RATE CONSTANTS DATA VI-7
ALGAE, NITROGEN AND PHOSPHORUS CONSTANTS VI-8
OTHER CONSTANTS VI-9
INITIAL CONDITIONS DATA VI-9
INITIAL CONDITIONS FOR ALGAE, N, P, COLIFORMS AND
ADDITIONAL NONCONSERVATIVES VI-10
INCREMENTAL RUNOFF DATA VI-11
INCREMENTAL RUNOFF DATA FOR ALGAE, N, P, COLIFORMS
AND ADDITIONAL NONCONSERVATIVES VI-11
STREAM JUNCTION DATA VI-12
HEADWATER SOURCES DATA VI-13
HEADWATER SOURCES DATA FOR ALGAE, N, P, COLIFORMS AND
ADDITIONAL NONCONSERVATIVES VI-14
WASTELOADINGS AND WITHDRAWALS DATA VI-14
WASTELOAD DATA FOR ALGAE, N, P, COL I FORMS, AND
ADDITIONAL NONCONSERVATIVES VI-15
LOCAL CLIMATOLOGICAL DATA VI-16
SECTION VII
EXAMPLE PROBLEM
EXAMPLE VII-1
TEST PROBLEM DATA AND RESULTS VII-2
-------
SECTION I
BACKGROUND AND INTRODUCTION
BACKGROUND
QUAL-I
QUAL Modifications: QUAL-II
Documentation Report
-------
SECTION I
BACKGROUND AND INTRODUCTION
Page
BACKGROUND
QUAL-I
QUAL Modifications: QUAL-II
Documentation Report
1-1
1-1
1-2
1-3
-------
SECTION I
BACKGROUND AND INTRODUCTION
BACKGROUND
Beginning on June 13, 1972, the Environmental Protection Agency
(EPA) awarded Water Resources Engineers, Inc. (WRE) a series of four contracts
to modify and apply certain water quality models to four river basins in the
United States. These four contracts and the project titles are:
Project Title EPA Contract No.
1. Chattahoochee-Flint River 68-01-0708
Basin Mathematical Model
Project
2. Upper Mississippi River 68-01-0713
Basin Mathematical Model
Project
3. Iowa and Cedar River 68-01-0742
Basins Model Project
4. Santee River Basin 68-01-0739
Model Project
An element of work common to all four projects is the modification and
application of the mathematical model QUAL-I to simulate steady-state
water quality levels in selected river reaches in each basin.
QUAL-I
QUAL-I is a computer program originally designed to simulate the
dynamic behavior of conservative minerals, temperature, biochemical oxygen
demand, and dissolved oxygen levels in streams. The program simulates this
1-1
-------
dynamic behavior by numerical integration of the one-dimensional form of the
advection-dispersion transport equation. The following two reports by
F. D. Masch and Associates and the Texas Water Development Board contain
detailed descriptions of both the theory and structure of the model:
1. Simulation of Water Quality in Streams and Canals,
Theory and Description of the QUAL-I Mathematical
Modeling System. Prepared by Frank D. Masch and
Associates and the Texas Water Development Board,
Report 128, The Texas Water Development Board, May 1971.
2. Simulation of Water Quality in Streams and Canals,
Program Documentation and User's Manual. Prepared
by the Systems Engineering Division of the Texas
Water Development Board. September 1970.
QUAL MODIFICATIONS: QUAL-II
Within the four projects, WRE modified QUAL-I to simulate both
the steady-state and dynamic behavior of the following constituents:
Chlorophyll a_
Ni trogen
Ammonia
Ni trite
Nitrate
Phosphorus
Carbonaceous BOD
Benthic Oxygen Demand
Dissolved Oxygen
Coliforms
Radioactive Material*
Conservative Substances
*The version of the program documented herein does not contain a solution
subroutine for Radionuclides; however, the Input-Output routines are set up
to accommodate the subroutine once it is programmed. RadionucIines will be
included in the program documented in the Upper Mississippi River Basin Project.
1-2
-------
The temperature simulation capability of the program was not modified to
simulate steady-state temperature directly. The modified program will, as
before, simulate dynamic changes in temperature. The modified version of
QUAL-I is referred to in this report as QUAL-II.
DOCUMENTATION REPORT
The theoretical considerations and program structure, which are
discussed in Sections II and III, respectively, are intended to supplement
Report 128 referenced above. The diagram documentation and user's manual
which comprises Sections IV through VII, is self contained, i.e., these
sections replace the existing QUAL-I Program Documentation and User's Manual.
To the extent possible, this documentation uses the same symbols and
terminology that were used in the previous reports and program code. The
reason for making the program documentation and user's manual self contained
was to avoid the possibility of confusing program users by requiring them to
use two documents to set up and use QUAL-II.
The following section of this documentation report presents the
theoretical foundation of the modified model. Section III describes the
overall capabilities, limitations, and structure of QUAL-II. Subroutine
descriptions, including theory, flowcharts and listings are presented in
Section IV, while Section V defines the program variables. Section VI
contains users information on input data preparation. Input data and output
reports for an example problem are presented in Section VII, which concludes
the documentation report.
1-3
-------
SECTION II
THEORETICAL CONSIDERATIONS
o
z
INTRODUCTION
11-1
GENERAL MODEL RELATIONSHIPS
11-2
CONSTITUENT REACTIONS AND INTERACTIONS
11 - 3
Chlorophyll a_
11-3
Nitroqen Cycle
11-4
Ammonia Nitrogen
11 - 5
Nitrite Nitrogen
11 -5
Nitrate Nitrogen
11-5
Phosphorus Cycle
11-6
Carbonaceous BOD
11-6
Benthic Oxygen Demand
11-7
Dissolved Oxygen
11-7
Coliforms
11-7
Radionuclides (Not Programmed)
11-8
SUMMARY OF MATHEMATICAL RELATIONSHIPS
11-8
REACTION RATES AND PHYSICAL CONSTANTS
11-10
Input Parameters
11-10
Temperature Dependence
11-10
-------
SECTION II
THEORETICAL CONSIDERATIONS
Page
INTRODUCTION
II-l
GENERAL MODEL RELATIONSHIPS
11-2
CONSTITUENT REACTIONS AND INTERACTIONS
11-3
Chlorophyll
11-3
Nitrogen Cycle
11-4
Ammonia Nitrogen
11-5
Nitrite Nitrogen
11-5
Nitrate Nitrogen
11-5
Phosphorus Cycle
11-6
Carbonaceous BOD
11-6
Benthic Oxygen Demand
11-7
Dissolved Oxygen
11-7
Coliforms
11-7
Radionuclides (Not Programmed)
11-8
SUMMARY OF MATHEMATICAL RELATIONSHIPS
11-8
REACTION RATES AND PHYSICAL CONSTANTS
11-10
Input Parameters
11-10
Temperature Dependence
11-10
-------
SECTION II
THEORETICAL CONSIDERATIONS
INTRODUCTION
Basically, QUAL-II numerically integrates the advection-
dispersion mass transport equation for all water quality constituents
to be modeled. This equation includes the effects of advection,
dispersion, individual constituent changes, and sources and sinks;
for any constituent, c, this equation can be written as
c = concentration (M/L3)
x = distance (L)
t = time (T)
Ax = cross-sectional area (L2)
D[_ = dispersion coefficient (L2/T)
u = stream velocity (L/T)
s = source or sink (M/T)
There are two terms in this equation that deserve special
attention; these are the two derivatives that describe the local gradients
and individual constituent changes. Under steady-state conditions, the
local derivative becomes equal to zero; in other words
Changes that occur to individual constituents or particles independent of
advection, dispersion and waste inputs are defined by the term
(Axdx) gt
3(AxQc)
II-l
where
II-l
-------
^ = individual constituents changes 11-3
These changes include the physical, chemical, and biological reactions
and interactions that occur in the stream. Examples of these changes are
reaeration, algal respiration and photosynthesis, and coliform die-off.
The basic differences between QUAL-I in its original form and
the version documented in this report is that QUAL-II can now solve
steady-state problems directly plus it includes all the complex reactions
and interactions of the nonconservative constituents listed in Section I.
In order to differentiate between the original and modified versions of
QUAL, the latter version is referred to in this report as QUAL-II.
GENERAL MODEL RELATIONSHIPS
QUAL-I in its original form had the capability to simulate
conservative constituents. Thus, the necessary modifications were directed
toward the development of a model that could simulate the nonconservative
constituents listed in Section I. Of this list, QUAL-I already had the
capability to simulate carbonaceous BOD and dissolved oxygen as dependent
constituents with first order kinetics.
To accommodate the other constituents, WRE modified QUAL-I to
include the major interactions of the nutrient cycles, algae production,
benthic oxygen demand, carbonaceous oxygen uptake and their effect on the
behavior of dissolved oxygen. Figure 11-1 illustrates the conceptualization
of this model. It should be noted that the arrows on this figure indicate
the direction of normal system progression in a moderately polluted
environment; the directions may be reversed in some circumstances for some
constituents. As an example of process reversal, consider that under normal
conditions oxygen will be transferred from the atmosphere into solution and
thus into the oxygen resources of the stream. Under conditions of oxygen
11-2
-------
'ATMOSPHERIC1
^ AERATION )
BENTHIC
DEMAND
AMMONIA
-CARBONACEOUS
V BOD X
NITRITE
NITRATE
PHOSPHORUS
CHLOROPHYLL A
(ALGAE)
FIGURE n-1
GENERAL MODEL STRUCTURE
FOR QUAL-II
-------
supersaturation, however, which might occur as a result of algal
photosynthesis, oxygen might actually be driven from solution, opposite
to the indicated direction of the flow path.
CONSTITUENT REACTIONS AND INTERACTIONS
The following paragraphs define the mathematical relationships
that describe the individual reactions and interactions among the
constituents treated.
CHLOROPHYLL a (PHYTOPLANKTONIC ALGAE)
Chlorophyll a was considered to be directly proportional to
the concentration of phytoplanktonic algal biomass. For the purposes of
this model algal biomass was converted to chlorophyll a_ by the simple
relationship
C = a0 A 11-4
where
C = chlorophyll & concentration
A = algal biomass concentration
a0 = a conversion factor
The differential equation that governs the growth and production of
algae (chlorophyll a} is formulated according to the following relationship
where
HI = uA - PA - A II"5
A = algal biomass
t = ti me
y = the local specific growth rate of algae as defined
below, which is temperature dependent
the local respiration rate of algae, which is
temperature dependent
11-3
-------
ai = the local settling rate for algae
D = average stream depth
Now, the local specific growth rate of algae is known to be coupled to
availability of required nutrients and light. The standard formulation
for the local specific growth rate in a stream takes the form
NJ_ . „ P., . 1 in Kl * 11-6
y = y N3 + KN ' P + Kp ' AD Kl + Le~*D
where
y = the maximum specific growth rate
N3 = the local concentration of nitrate nitrogen
P = the local concentration of orthophosphate
L = the local intensity of light
X = the light extinction coefficient in the river
Kn, Kp, KL = empirical half-saturation constants (temperature dependent)
It should be noted that Equation 11-6 couples algal production to the
available nutrient supply, and thus algae and chlorophyll a_ can be expected
to vary in time and space as nutrients are added to the stream. It should
also be noted that Equation 11-6 includes light intensity. Thus, other
factors remaining equal, algal production will be increased during daylight
hours and will cease at night, although respiration will continue at night
as indicated in Equation 11-5. Finally, the growth and respiration
constants will be temperature dependent and will be formulated, along with
all other temperature dependent systems variables, according to the
procedure explained in a later paragraph of this section.
NITROGEN CYCLE
The nitrogen cycle in QUAL-II contains three components as
shown in Figure II-l. The differential equations governing transformation
of nitrogen from one form to another are given below.
11-4
-------
Ammonia Nitrogen
dN
dF" = aj pA - Bj Nj + a3/Ax
where
N = the concentration of ammonia nitrogen as nitrogen
B = rate constant for the biological oxidation of ammonia
nitrogen, temperature dependent
a = the fraction of respired algal biomass which is
1 resolubi1ized as ammonia nitrogen by bacterial action
a3 = the benthos source rate for ammonia nitrogen
Ax = average stream cross-sectional area
and other terms are as previously defined.
Nitrite Nitrogen
dN
af = 5.N. " M* 11-8
where
N = the concentration of nitrite nitrogen as nitrogen
2
6 = rate constant for the oxidation of nitrite nitrogen
2 temperature dependent
and other terms are as previously defined.
Nitrate Nitrogen
dN
TP " e2 N2 " ai
11-9
Note the coupling that exists between the conversion of nitrate
and the production of algae to close the loop indicated in Figure II-l.
11-5
-------
PHOSPHORUS CYCLE
The formulation of the phosphorus cycle is less complex than
the nitrogen cycle because the model considers only the interaction of
phosphorus and algae plus a sink term. Correspondingly, the differential
equation describing the distribution can be written as
= a2pA -
-------
BENTHIC OXYGEN DEMAND
i.e.
where
The benthic oxygen demand is considered to be a fixed demand,
dL2
dT = K*/AX n"12
L2 = benthic oxygen demand
K„ = constant benthic uptake
DISSOLVED OXYGEN
The differential equation that describes the rate of change of
oxygen in the model is written in the form
$ = K2(0* - 0) + (c3y - a„p) A - K, L, - K,/Ax - a, 6, N, - «s S2 . . 11-13
where
0 = the concentration of dissolved oxygen
0* = the saturation concentration of dissolved oxygen
at the local temperature and pressure
a3 = the rate of oxygen production per unit of
algae (photosynthesis)
= the rate of oxygen uptake per unit of algae respired
a5 = the rate of oxygen uptake per unit of ammonia oxidation
ag = the rate of oxygen uptake per unit of nitrite
nitrogen oxidation
K2 = the aeration rate in accordance with the Fickian
diffusion analogy
COLIFORMS
The differential equation that describes the die-off of coliforms
in the stream is
11-7
-------
{& = " V IM4
where
F = the concentration of coliforms,
Kc = coliform die-off rate.
RADIONUCLIDES (NOT PROGRAMMED)
This portion of the model will be completed in the Upper
Mississippi River Basin Project, and the documentation will be updated
at the time that project is completed. However, it is tentatively
envisioned that the differential equation to describe the changes in
radionuclides will be written as
S = - KrR - KaR H"15
where
R = concentration of radionuclides,
Kf = radioactive decay rate
K = radioactive adsorption rate
a
SUMMARY OF MATHEMATICAL RELATIONSHIPS
Table 11-1 summarizes the complete set of equations solved by
QUAL-II with the exception of the temperature relationships. The equations
that describe the temperature routing as well as the associated relationships
for all the heat budget terms can be found in the report by F. D. Masch and
Associates and the Texas Water Development Board. The equations presented
in Table II-1 include the effects of dispersion, advection, constituent
reactions and interactions, and a source term. The following chapter of
this documentation describes how QUAL-II is structured to solve these equations.
11-8
-------
TABLE II-1
SUMMARY OF DIFFERENTIAL EQUATIONS TO BE SOLVED BY QUAL-II
I
<*D
Conservative mineral (c)
at
3
Ax3x
a(Axuc)
Ax3x
Algae (A)
M =
3t
3
Ax3x
3(AxuN1)
Ax3x
Nitrite nitrogen (Nz)
fUlo
3t
3N
3(Ax°L 33T>
Ax3x
3(AxuN2)
AX3X
Nitrate nitrogen (N3)
3N
L n
at
3N,
3^x°L 33T>
AX3X
3(AxuN3)
Ax3x
Phosphate phosphorus (P)
3P =
at
3(AX°L S>
Ax3x
3(A uP)
¦ v«
Biochemical oxygen demand (L)
3L _
at
3(AxDL
\3X
a(AxuL)
Ax3x
Dissolved oxygen (i]>)
li _
3t
3(AxDL 1x>
Ax3x
a( axu<}>)
Axsx
Coliform (F)
3F _
3t
3(AxDL §7>
Ax3x
3(A uF)
" Axax
Radioactive material (R)
ii =
at
3 A
" KsF
- K_R - K,
-------
REACTION RATES AND PHYSICAL CONSTANTS
INPUT PARAMETERS
The chemical and biological reactions that are simulated by
QUAL-II are represented by a complex set of equations (3, 4) that contain
many system parameters: some are constants, some are spatially variable,
and some are temperature dependent. Table II-2 lists these system
parameters and gives the possible range of values, units, types of
variation, and reliability of the ranges for each parameter. References
(5) and (6) give detailed discussions of the basic sources of data,
ranges and reliabilities of each of these parameters. Final selection
of the values for many of these system parameters will be made during
model calibration and verification.
TEMPERATURE DEPENDENCE
All rate constants and other factors (except the saturation
concentration of oxygen) that are known to be temperature dependent are
formulated according to the relationship
XT = XT e(T_Ts> 11-16
1 s
where
Xj = the value of the variable at the local temperature, T
Xjs = the value of the variable at the standard temperature, Ts
6 = an empirical constant for each system variable
11-10
-------
r
REFERENCES
1. Frank D. Masch and Associates and the Texas Water Development Board,
Simulation of Water Quality in Streams and Canals, Theory and
Description of the QUAL-I Mathematical Modeling System, Report 128,
the Texas Water Development Board, May 1971.
2. Systems Engineering Division of the Texas Water Development Board,
Simulation of Water Quality in Streams and Canals, Program Documentation
and User's Manual, September 1970.
3. Water Resources Engineers, Inc., Technical Proposal, Upper Mississippi
River Basin Model Project, submitted to Environmental Protection Agency,
May 1972.
4. Water Resources Engineers, Inc., Progress Report on Contract No.
68-01-0713, Upper Mississippi River Basin Model Project, Sponsored
by the Environmental Protection Agency, submitted to Environmental
Protection Agency, September 21, 1972.
5. Kramer, R. H., A Search of the Literature for Data Pertaining to
Bioenergetics and Population Dynamics of Freshwater Fishes, Desert
Biome Aquatic Program, Utah State University, August 1970.
6. Chen, C. W. and G. T. Orlob, Final Report, Ecologic Simulation for
Aquatic Environments, Water Resources Engineers, Inc., prepared for
the Office of Water Resources Research, U.S. Department of the
Interior, October 1972.
v.
WATER RESOURCES ENGINEERS, INC.
-------
SECTION III
MODEL DESCRIPTION
Page
INTRODUCTION
III-l
PROTOTYPE REPRESENTATION
III-l
MODEL LIMITATIONS
111-2
NUMERICAL PROCEDURES
111-3
MODEL STRUCTURE AND SUBROUTINES
111-4
-------
SECTION III
MODEL DESCRIPTION
fiSi
INTRODUCTION III-l
PROTOTYPE REPRESENTATION III-l
MODEL LIMITATIONS III-2
NUMERICAL PROCEDURES III-3
MODEL STRUCTURE AND SUBROUTINES II1-4
-------
SECTION III
MODEL DESCRIPTION
INTRODUCTION
This section of the report describes (1) how the prototype river
system is approximated in the model; (2) the numerical procedures used to
integrate the differential equations presented in Section II and applied
to the prototype representation; (3) the general limitations of the model;
and (4) the overall model structure and subroutines.
PROTOTYPE REPRESENTATION
QUAL-II permits any branching, one-dimensional stream system to
be simulated. The first step involved in approximating the prototype is to
subdivide the stream system into-geaehesT'Wh'ich are stretches of stream that
h'ave uniform h^dxaulic characteris-t-icsEach reach is then divided into
computational elements of equal length so -that all computational elements
.i,n«,all. reaches^are the same length. JT-hus-, all reaches must consist of an
j»n.teger number of computational elements.
In total, there are seven different types of computational elements;
£|-|oce are
fl. Headwater element
2. Standard element
/'
^3. Element just upstream from a junction
-^4. Junction element
-^5. Last element in system
^6. Input element
^ 7. Withdrawal element
III-l
-------
Headwater elements begin every tributary as well as the main river system,
and as such, they must always be the first element in a reach. A standard
element is one that does not qualify as one of the remaining six element
types. Since incremental inflow is permitted in all element types, the
only input permitted in a standard element is incremental inflow. A type
3 element is used to designate an element on the mainstem that is just
upstream from a junction element (type 4) which is an element that has a
simulated tributary entering it. Element type 5 identifies the last
computational element in the river system; there should be only one element
type 5. Element types 6 and 7 represent elements which have ir,uts (waste
loads and unsimulated tributaries) and water withdrawals, resr- ctively.
River reaches, which are aggregates of computational elements,
are the basis of most data input. Hvdraulic-jdata. reaction rate coefficients,
initial conditions, and incremental runoff data are constant for all
computational elements within a reach.
MODEL LIMITATIONS
QUAL-II has been developed to be a relatively general program;
however, certain dimensional limitations have been imposed upon it during
program development. These limitations are as follows:
Reaches: a maximum of 75
Computational elements: no more than 20 per reach nor
500 in total
Headwater elements: a maximum of 15
Junction elements: a maximum of 15
Input and withdrawal elements: a maximum of 90 in total
III-2
-------
QUAL-II can be used to simulate any combination of the following
parameters or groups of parameters:
1. Conservative minerals
2. Temperature
3. BOD
4. Chlorophyll a
5. Phosphorous
6. Ammonia, nitrite and nitrate
7. Dissolved oxygen
8. Coliforms, and
9. Radioactive material
The only limitation placed on the parameters to be simulated is that
temperature can only be simulated under dynamic conditions. All other
parameters can be simulated under either steady-state or dynamic conditions.
If either phosphorus or the nitrogen cycle are not being simulated, the
model presumes they will not limit algal growth.
NUMERICAL PROCEDURES
The complete set of equations that must be solved have been
presented in Table II-l. QUAL-II numerically integrates this set of
differential equations using a wholly implicit numerical scheme. Report
128, Simulation of Water Quality in Streams and Canals, prepared by F. D.
Masch and Associates and the Texas Water Development Board (1) describes the
numerical formulation and method of solution. The only difference between
the original version of QUAL and the version documented herein is that all
terms that describe the local derivative (e.g., reaeration and decay rates)
are now described implicitly rather than explicitly.
111 - 3
-------
MODEL STRUCTURE AND SUBROUTINES
QUAL-II is structured as one main program, QUAL2, supported by 20
different subroutines. Figure III-l graphically illustrates the functional
relationships between the main program and the 20 subroutines. The
original version of QUAL, as programmed by William A. White, was structured
to permit the addition of parameters easily through addition of subroutines.
This basic concept, which proved to be an extremely valuable one, was
maintained in the extension of the original version to QUAL-II. Thus, if
it becomes desirable at some later time to add new parameters or modify
existing parameter relationships, the changes can be made with a minimum
of model restructuring.
The following section of this documentation describes, in detail,
the main program, QUAL2, and its 20 subroutines.
111-4
-------
LEGEND
Calling Sequence
In ELEMENT A
Celled by
ELEMENT A
(10)
o
>
o
to
o
(13)
(14)
CO
(15)
Q1
(16)
o
u.
(17)
(18)
(19)
o
(20)
QC
(22)
(23)
(24)
(25)
(26)
(29)
HYDRAU
COL IS
WRPT3
RADIOS
(NOT PROGRAMMED)
HEATEX
INDATA
ALGAES
WRPT2
BODS
TRIMAT
DOS
NH3S
CONSVT
REAERC
P04S
TEMPS
N03S
FLOAUG
N02S
Progrun
ELEMENT A
FIGURE HI-1 GENERAL STRUCTURE OF QUAL-H
-------
SECTION IV
PROGRAM DESCRIPTIONS
Page
Main Program - QUAL2
IV-1
Subroutine
ALGAES
IV-4
Subroutine
BODS
IV-6
Subroutine
COL IS
IV-8
Subroutine
CONSVT
IV-10
Subroutine
DOS
IV-12
Subroutine
FLOAUG
IV-14
Subroutine
HEATEX
IV-15
Subroutine
HYDRAU
IV-16
Subroutine
INDATA
IV-17
Subroutine
NH3S
IV-18
Subroutine
N02S
IV-20
Subroutine
N03S
IV-22
Subroutine
P04S
IV-24
Subroutine
RADIOS (Not Programmed)
IV-26
Subroutine
REAERC
IV-27
Subroutine
SOVMAT
IV-29
Subroutine
TEMPS
IV-30
Subroutine
TRIMAT
IV-32
Subroutine
WRPT2
IV-34
Subroutine
WRPT3
IV-35
Definition
of Symbols
IV-36
-------
SECTION IV
PROGRAM DESCRIPTIONS
Page
Main Program - QUAL2
IV-1
Subroutine
ALGAES
IV-4
Subroutine
BODS
IV-6
Subroutine
COL IS
IV-8
Subroutine
CONSVT
IV-10
Subroutine
DOS
IV-12
Subroutine
FLOAUG
IV-14
Subroutine
HEATEX
IV-15
Subroutine
HYDRAU
IV-16
Subroutine
INDATA
IV-17
Subroutine
NH3S
IV-18
Subroutine
N02S
IV-20
Subroutine
N03S
IV-22
Subroutine
P04S
IV-24
Subroutine
RADIOS (Not Programmed)
IV-26
Subroutine
REAERC
IV-27
Subroutine
SOVMAT
IV-29
Subroutine
TEMPS
IV-30
Subroutine
TRIMAT
IV-32
Subrouti ne
WRPT2
IV-34
Subroutine
WRPT3
IV-35
Definition
of Symbols
IV-36
-------
SECTION IV
PROGRAM DESCRIPTIONS
This chapter describes the main program QUAL2, and its 20
subroutines. Each program description contains: (1) a brief written
description of what the program does, including mathematical relationships;
(2) a program flow chart; and (3) a program listing. Section V contains
definitions of all program variables in COMMON storage.
MAIN PROGRAM QUAL2
QUAL2 is the main program of QUAL-II; it calls most of the
subroutines, computes some miscellaneous constants, sets up the initial
conditions, performs the convergence checks when a steady-state problem
is being solved, and controls the printing of the output reports. The
only subroutine not called by the main program is HEATEX, which is
called by Subroutine TEMPS.
After QUAL2 calls INPUT, which reads in the input data, and
computes some miscellaneous constants, it sets up the initial conditions
for each computational element. Initial conditions for each reach are
read in and used to define the initial conditions for all computational
elements within a reach. QUAL2 then calls the subroutines necessary to
simulate the water quality parameters specified on the title cards.
The input Title Data Cards (see Section VI) prescribe which
water quality parameters QUAL-II will simulate. Whenever a Title Data
Card indicates a parameter is to be simulated, the program assigns a
positive integer to an internal variable (M0D0PT) that indicates which
model options are to be used. The correspondence between internal model
options and parameters is as follows.
IV-1
-------
Model Option
Parameter(s) to be Simulated
M0D0PT
(1)
Conservative Constituents
M0D0PT
(2)
Temperature
M0D0PT
(3)
Biochemical Oxygen Demand
M0D0PT
(4)
Chlorophyll a
M0D0PT
(5)
Phosphorus (as P)
M0D0PT
(6)
Ammonia, Nitrite and Nitrate (as N)
M0D0PT
(7)
Dissolved Oxygen
M0D0PT
(8)
Coliforms
M0D0PT
(9)
Radionuclides (not programmed)
Any combination of the above options will work. However, it should be
noted that if chlorophyll a_ is to be simulated when either phosphorus
or the nitrogen cycle or both are not to be simulated, the program
assumes they will not limit algae growth. Also, when chlorophyll a^
is to be simulated under steady-state conditions, QUAL2 uses an
iterative numerical scheme to converge on a solution. Basically the
procedure works as follows:
1. Calculate an algae growth rate based on the
initial conditions for the first iteration.
2. Compute the resulting phosphorus and nitrate
concentrations.
3. Recompute the growth rate based on the newly
computed phosphorus and nitrate levels.
4. Compare the previous and newly computed growth rates.
5. If all growth rates have not changed by at least
0.05 per day, the problem is considered solved. If
the growth rate change in any one computational
element exceeds 0.05 per day, steps 2 through 5 are
repeated.
Upon completion of the stream quality computations, QUAL2 selectively
reports the results and execution is terminated.
IV-2
-------
The flow chart for QUAL2 is illustrated in Figure IV-1 and
is followed by the program listing. All program variables contained in
COMMON are described in Section V.
IV-3
-------
START
PROGRAM RETURN FOR FLOW
AUGMENTATION OPTION
PROGRAM RETURN FOR
DYNAMIC SOLUTION OR
STEADY-STATE ITERATIVE
SOLUTION
UPDATE TIME OR
ITERATION NUMBER
ESTABLISH
REQUIRED
CONSTANTS
INITIALIZE
TITLES
CALL HYHAU
CALL TRIHAT
ROUTE SELECTED
QUALITY PARAMETERS
SET INITIAL
CONDITIONS
CALL
INDATA
FIGURE 12-1 FLOW CHART FOR MAIN PROGRAM QUAL2
-------
YES
CALL CQNSVT
CALL SOVMAT
YES
CALL TEJPS
CAl1 SOVHAT
YES
CALL BOOS
YES
CALL ALGAES
CALL SOVMAT
IS
«DOPT(5) > 0
. YES
CALL P04S
CALL SOVMAT
FIGURE EM (cont.) FLOW CHART FOR MAIN PROGRAM QUAL2
-------
YES
MOOOPT(6) > 0
YES
M0D0PT(7) > 0
YES
M0D0PT(8) > 0
YES
YES
STEADY-STATE SOLUTION
s. REQUESTED .
HQD0PT(4) > 0
CALL REAERC
CALL DOS
CALL SOYMAT
CALL COL IS
CALL SOVMAT
cau iias
CALL SOVNAT
CALL NQ2S
CALL SOVMAT
CALL mi
CALL SOVMAT
FIGURE E-Mcont.) FLOW CHART FOR MAIN PROGRAM QUAL2
-------
TIME < THAI
YES
YES
YES
IS
NODOPT(2) » 0
CALL WRPT2(T)
NQDQPT(7) > 0
CALL URPT2(00)
FIGURE EM(cont.) FLOW CHART FOR MAIN PROGRAM QUAL2
-------
V
YES
CALL MRPT2(CNH3;
CALL WRPT2(CH02(
CALL WRPT2(«03,
YES
HOOOPT{6) > 0
YES
CALL HRPT2(PH0S)
YES
CALL OTPT2(ALGAE)
HODOPT(4) > 0
YES
«D0PT(8) > 0
CALL HRPT2(C0NS(1,1))
CALL WRPT2 CONS 1,2 i
CALL WRPT2(CONS(lf3))
YES
HOOOPT(I) > 0
FIGURE 12-1 (cont.) FLOW CHART FOR MAIN PROGRAM QUAL2
-------
YES
NODOPT(9) > 0
is now
AUGMENTATION
REQUIRED
YES
YES
TIME
END
COMPUTE
PHOTOSYNTHESIS-
RESPIRATION RATIOS
CALL WRPT2(GROWTH)
CALL HRPT3
CALL FLOAUG
FIGURE EM (cont.) FLOW CHART FOR MAIN PROGRAM QUAL2
-------
c PROGRAK QUAL-2 #neu
C *NEW
C UUAL-? IS f SET OP IMTCRRElATED STREAM ~ NEW
C QUALITY PCUTIMG "IPOELS, IT HAS THE ••-3
C CAPABILITY TO ROUTE TFMP, «HOP/flO.
c NIT^OnEr SERIES. PH05PHATT. ALflGE.
c cniiropM*?, rapip riucLIDE« AMn
c UP TO THRFE CONSFKVATIVE ^INFPALS
C THROUGH A FuLLY-MIXfr STPEA^ SYSTEM.
C THESE PARATTEhS PAN PE POUTED ON AN
C INDIVTPI'AL BASIS OR SIMULTANEOUSLY U
C SUCH a rOPRTNftTIOr' AS THE USER «AY
C OFSIRE. OHAl- J ALSO HAS THE CAPABILITY
C TO COMPUTE THF FLOW AUGHFNT ATI ON RFOEfl.
C TO HEFT PRFSFLECTTD HIHirilM 00 LEVELS.
C HYQPflULTCS ARE CONSTP^RFn STFAPY-STATE.
COMMON TITLE (?0« 20 ).RCHI0(75.5) .PNTHOR (75) . RHTEOR f 75 > »NHWWAF( 15 ) .
• TaRGDO( 7? I «1 AUGOH (75.6) , MCf L RH ( 75 ) . IFL AG ( 75 . ?0 ) .
» I CI ORU< 75.20 ) • C0EFOV < 7S) .flXPOOV < 75 ) ,COFFQHI 75 ) .EXPOQHI75 ) .
• r«flWN(75 ) .CK1 ( 75) tCK3 (75) .h?PPT t 75 ) . CK2 < 75) ,C0C0K2( 75) ,
« EXPQK2(75).TINITC75).DO!NTT<75).BPINIT(75). COTNIT<75•3)•
• on 75).TI(75).001(75).BPOI(75).CONST(75.T) .JUNCIU<15.5).
» JUNCl15. "M .HWTRID(1^.5).HWP LOW(15),HWTEMP| 1 5)«HUnO.
» HWBOD 41S)« HWCONS(1*,3> * WAST IP(q0.5).TRFACT(90),USFL0W(90).
» WSTF*P(90) • wSOO ( 90 ) ,WSBPP(901 . ^J>CONS ( 90. 3 ) . OATOT( 15) .
• A(500).n.C|50P).0<5).S(5orw,z|50fU,U<50n),C<500).
• Fl nw(50 0 >tDEPTH<500I.vEL(^OO) «DTOvCL(500),K2(500).K1|500).
• HSf F T ( 50 P ) .DL< 500 ) . VHW! 15) iPrPHW(is > •OLHWf 15) .T I 500 ) .
• 00(500)»P0P« 500)tCONSisOO,5).PT1ME « TPPINT,nELX.
• fJHWTRS.NPEACH.NWASTE.NjUNC.nFLT .PH T . 02LT , OTOOX2 . DT20DX .
• LAT,LS«,I L^,ELEV.0AT»AF.PE.f)AYOFY,nRYPL^tWETPLB, DEWPT •
• ATMPR.WINU.CLOUO.SONET.MI.NJ.TRLCD.TOFDAY•NT.NciTIHE.NCS
C
C
COMMON/nOOIF/ CK<»(75) .CK5(7rO .CKNHM 7*) .Ck>JO?(75) .CKN03I 751 .
• CKN.CKP,CKL.ALPHA0<75>.ALPHA1.ALPMA2.ALPHA3•ALFHA4.
• ALPHAS.ALPHA6.6R0MAX.RFSPRT.ALGSET< 75).SPH0S( 75).
• SNH3(75 >•KNH3(500),KNO?(^nO)* RESPRPJ 50 0).COL I(500)•
• ALGAL(500 >.PHOScSOO).CNH3< 50ft),CNO?( 5P0 ).CNOH(50 0).
• COL IR(75) • ALGII 75) .PHOSII 75) >CNM31 I 75) ,OJO?I ( ?•>) ,
» CN0 3I (75) .COL I IT( 7«< 1 . ALGIT ( 7*) .PHOSI T( 751 «CNH3l T < 75) .
• CtiOZI T ( 75) • CN03IT (7^ ) • WSCOl I I °0 ) .kr«ALG<90 ) . WSPHOSI 90 ) .
• WSMH3I90).WSN02(90 > « WSNO?I 90).HWCnLI(15)«HWALP(15).
• HWPHOS ( 15) .HWNH3< 15 ) .HWNO?( 1 5 ) • HWMP3 ( J 5 ) . APOWTH ( 5fl 0 ) .
• MOOOPT(IP).IPCHNOi 750),EXC0FF(75)
c
c
C0«*0t!/SST ATE/ X(500).TSS
C
C
COM^ON/RAD ION/ CK£> ( 75 ) .RAPMIT( 7e ) .PAPM ( 75 ) . HWR ARM (1 5 ) . WSRAPM90 )
C
DI^FN^ION TITL19(15).TITLPO(15)
RFIAl. K1 »K?.LAT.LL«.LSM. JUNCIP
-------
/t»H ALG.MHAF r,,4nnOUT,UMH PA.MHTES «MHIM
Hfif «UH ,MH .<4M «**>' /
/i| H PHO.UHTOSY .MHNTHF • «*MSI S- » HHWESP » 4HI Ho
• T.UMIM, .UHRATI ,«*HOS A«HHPF .UH ~<*M «UM .<*H «1M /
PAT A T I Tl 1 9
M.MHAf
DATA TITI ?n
LO 10 J=f»?0
TlTLF.t l^i J) =TITL1CM 1 )
TITl F(?n » J)=T TTL201I I
IP CfiNTirtUF
STEP 1-0
IMlTlALTZr certaim PARAMETERS
STE.P ''-ft
RFAO IN TITLES
<*TFP 3-0
PTAH IfJ ALL DATA REQUIRED TOR
OP THF KOO^LS.
oooimoo
00005900
0000^500
00003600
00005900
00006000
00006100
00004300
000DW00
OPOOOOBSOO
00006600
STFP «*-0 0006<+600
IF THF CORRECT no. OF DATA C ARPSO 0 0 6«»70 0
WOT *3EEf RE AO IN, THF PROC-RAP* wl0006«*800
CM.l IMP AT A | IlIST.IRPTl .IAUGOP
TFR^INATE*
PT"1AX»NCFI
STEP 5-0
EST APLISH &EOUTPEP CONSTANTS.
.900
9rn
nri.*=PEi x»^2an.o
IF ( I^S) 901.901 1
01LT = 1 . 0/2M . 0
&2LT = 1.0
['Fl.T = 3600.0
IF (PTlMF.LE.n.> PTIhE=T«AX
GO JO 90?
Dll 1 = l'FLT/2Q.n
n?LT=( FL T
OEtT=n|LT0600.0
T"AVrT> *X-0.Jl
f DMT I NOf
OTPiix9 = OF.l T/ < nEL x*DELx)
OTPOPXs?.C*PELT/OFLX
C/.Ll HYPPAM
CALI TRl^AT
CKL=ChL*60.
IF (i*>nnnkT<2).GT.P> CKL=CKU«3.
if (iss.LE.n i go to iin
FUNCTrO.O
IF CSOI»rT.LT.l.nr-U) Go TP M
STFP *-n
SFT INITIAL CONDITIONS.
0006H900
00065000
00066500
00066600
00066700
00066000
• NEW
00067000
U0067100
00067200
00067300
0n067<*00
00067500
00067600
00067700
00067*00
00070^00
OUC70900
CONVFRSION Oc CKL TO L4NGLEYS/HX
CONVEPSTON TO PTM/SQ.FT./HR
THE FOLLOWING COPPIITFS fHF
AVERAGE LIGHT I ¦VTf WS1 T Y FPR
STFftOY-STATE COMPUTATION
-------
NULM=i «*
OLHrFLOATINDLH)
SOAVE=SONFT/ULH
DO *30 K=l.flDLH
F^=F
TOTsSOAVfl* < 1 . 0-rOS(6.2«»FH/OLH ) )
50 FUMTT=FUNCT+(TOT/(CKL+TOT))
51 CONTINUE
FUNCT = FUNCT/2«».
SOWWtN=CKL *FUNCT/<1.-FUNCT)
110 CONTINUE
DO *1* T=1 ,NRrACH
NCFI RsNCELR HI I )
DO J=1.NCFLP
IOH=ICLOHFM I,J)
T < I OR I =T IMT( I )
{»0( |OP)=DOINIT« I )
BOn( I OR > =P0I.JIT< I )
CONS! I OR ~ 1 ) =C0 I'J I T ( I«l)
CO^M T0R«2)=C0INIT<1*2)
CO* S< I OK « 3) sCOIMT ( I« 3 )
AL^AElI0RI=ALGIT(I>
PHQC=PHOSIT(I)
CNH^CIOR)=CNH3IT(11
C'J05 < IOR > =CN02IT ( I >
CN03< I Of ) =CfJ031T (11
COLT IIOR)=C0LIIT(I)
IF<*OnOPT
GHOWTH
G«OWTH
-------
HOOOPTI *)
^odopt(«)
pnooPT<« >
*opopt0 *f)M ! = 1 • NCFLLS
con*(t .'.r >=z( t >
/•nP C^fjTl'M-r
777 CONT If UF
C
70? lp i*irnPPTip> .rQ.p) GO TO 703
(>*«**•~*• III! F 1, 1975 ^TFrtRY STATE TCP SOLUTION NOT OPERABLE
IF II?S«GT.nI GD TO 70^
r = f»
CVH TE7«r^
C'.LI SOV ^ftT
L>(. nl»^ T = i ~"'CELLS
T < T » - 7 ( I >
M(iO C'IMT ! f IT
C
70 ^ jr If Ol»OPT( .TQ.p) Gu to 704
NT =7
C/»I I f.UUS
CM I ^OVNAT
DO Por* 1 = 1,NCFLLS
Bon(n =?(i)
80? Cw'.TP UF
C
7p»* ir tnnPi'PT 1«+1 . Z<) .0 ) GO TO 705
NT = n
CALI AL^AFS
CAiL SOVMAT
L)'J m(k«» 1 = 1, r CFLL S
Ai Gf r ( I ) = 2(1)
IF (ALf*AL(I)»GT»50.) ALOAFi»r
C
7r* IF (- O.iOPT («S I .EO.O ) GO 10 706
IT r «~
C| I HO'IS
C »LI SOVfJfT
CM *0b 1 = 1.NCfLL S
P-.OS (II = 7. Ill
*0* COM IftUE
c
7P6 IF ( ~iQC'OPT (& ) •EG « 0) GO TO 707
NT = 10
CALL .JH5S
C ILL SOVMAT
r»0 °n^ 1 = 1 ,NC"U S
CPU* M) = 711)
00072300
0007?500
0007?600
0007P700
00072AOO
00072900
00073000
0007M0O
00073200
00073300
• NEW
• NEW
00073500
00073600
00073700
00073800
00073900
ooo7moo
0007^200
0007M300
ooo7«moo
00074500
-------
«0* CONTINUt
NT = 11
CALL h02S
c«m i sovr- * T
nn pi^ t = i ,'icru.s
Cf 05( I > = 7(1)
BIS Cn»TJnuE
"JT = 12
Cali ':05S
CALI SOV.'AT
*}(j I=lt'JcELLS
c ,o*< n = ?i m
CC'MTlMUr
70 ° If IKOHOPT | » ,EO.C» GO TO 799
fT = m
cm l roL rs
CHI SOVMAT
U'; n(j7 T=1 ,ncrLi s
Cnl TIT) = Z( 1)
*07 CONTINUE
709 CONTINUE 00079000
IF < TPRIM.LT.PTIHE) GO to **97 0007^100
TPH Tf r=n.0 00079200
"97 coriTirur 00079500
C 00079«»00
C STEP 7-3 00079500
c if steady-state condition has ^000079*00
r RFACHEO, CONTIMUE ROUT TNG. 00079700
C 0->079800
lF(IS^) ^QC>Af*9Q6.9990
99«»n IF (MfpOPT (M ) > 1 001 .1001«°9*2 »NEW
MJM = u » *-1
ITE» = TTFK ~ 1
WWITF {MJ % 77 79) ITER
777*» FOMMAT <1?H I TEP ATI ON ,IS)
00 «»9a«4 JJ = 1 «NRF «CH
MCCLf<=Nrf Lt'H (JJ )
DO 99<>4 KK = 1 ,NCrLR
T=TCLOPH(JJ.KK)
Tc = o.«tif>»
e*pt =f xp< -f xcnEF i jj )*nrPTM( I >)
TLf>r = AL 0G< < CKL + SOMNEN > / ( CKL*SOriMFN*FXPT > )
XGhl'V'rGRPMAX^Tl PG/lEXCOCF< JJ)»DEPTH< I ) )
yrpr^ = xCKrv »1# 0U 7»»TC
TT = 0rLX/(UtU >#B6*»00. I
TSKOU = M.POw
IF (K.DniMlhl.FC.O) GO TO 9*20
L'CW = -1 . 0/< ALFHA2* ALGAEI 1 ) *TT )
XA _ OGHP
= gpoviTh( i) ~ < chp+phps ( t ) > *nGr>p-ypRf>w
>i = nkc'ti ( i » * < r^p+pnns< t ))-xgpcw*phoS< i »
c
7f>7 IF < M'pOHT ( 7 I . fO.O ) GO TO 706
NT r 13
cm l prrcfr
CAU l»0*?
CrL | SOUf *T
nn I = J ,,
-------
kci'T = sui T< rt/xf + P.i>»RonT/Ansc ( I ) = PHCS< T ) +nFHOS
it i h»ios(:) .lt.n.o) Pnnsm = o.o
lfKft = X( Pf U»PHOS( I )/»TT)
X/i = |M»P
xr — rf-c'V TH< i ) 4 < CKN+CnoS ( T > > ~PGnp-xnpow
Xf = T CV TM ( I ) • ( CKM4-CN03 < T ) >-XGRnU«fN03 < I )
rtooT = r < xnoxh-^ .n»x a*xc )
Df ir'r-n *>h/vA + 0 . 5«R0OT/APS ( X A )
COM1) = Ct>OM I > ~ DCM03
ir (C, I'M U .LT.r.O) CN03(T) = o.o
T< PPt = TfRC «*cr 03( I >/(CKM4>CrJ03( T I )
9<\ul COUTH LT
I «r, = n \it:v - GRPWTHt I)
IF (/-I'S(C'C-) .LT.P.P*) GO TP ft99«*
Mii*t = f-.-r* ~ l
fi'i94 CHOWTf (I) = OPOUTMl) + 0.7«OG
C«»f-T H'l f
V'.'TTL {^J.77«n) N vr
77fln Pf iTfll (3PM GPOWTH ft AT f NOM CONVFRGENT IN.IU.9H ELEMENTS)
IF (MUM 1 001 .1 001 .994*
99°* IP c>Q9H.999fl«1001
l run rr it n ur
IF '11 = 1 3
C4LI kRPTlOOl
10?1 C V T Ii •»*
IF (.-riV.PT<3) ) 1031.1031.1022
\n?o nT=7
Cm i;hf,l?(RCO)
l')*1 COHT 1' "E
ir f»U[CPT(6l) 1Pg1•10«Ht10^?
in*? *jt = io
CALL VHPIP(CNHJ)
NT=1 1
CALl upPT? (CP02)
mr = i2
CAlJ lPPT> ( CM03)
inu 1 C.V'T [' UL
n cmjI'Pi Tf^n 1051. insi, 10^2
13M? NT=°
C A LI • KPT? (PHOS)
insi co it11 uf
if MrrrpTmn 1 om . 10^1.10^2
ins? nr=F
Call vrpi? ialgal>
L l 1 r»71 , 1071 , 1 0*2
I I * T = 1 M
C^LI IC^LTI
• NEW
~ NEW
-------
1071 CONTINUE
if ("nnopTdn loei,loei,1o?2
107? M = ^
co i075 nr=i«NCS
CALL URPT? (CONS(l.r-O)
107* NTSWT41
10*1 CONTINUE
IF 06«5 •NEW
XTE^P = AlPHA 3/ALPH A H
on o9fn 1=1,urn ls
2
COLl WHP1? iZ)
y-»r^ CONTUUE ~NEW
f
NT = 1 s
CALl URPT? (GROWTH)
C
C
C
C
r
c
r
c
c
IF FLOW AUGMENTATION IS OESIREO,00060200
HOW MUCH IS REQUIRED, AUGMENT TH00080300
necessary headwater flows and stooobohoo
ROUTING AGAIAT TIME = ZERO. 00080500
STEP 8-0
00080600
00060700
00080800
00060900
00091000
00080000
00080100
IF ( 1 Al«r.On.ru,fl ) r,p TO 99^Q
CALL FlP/VI'r,
IF
00081500
00081600
F.r
-------
SUBROUTINE ALGAES*
Subroutine ALGAES completes the setup of the equations necessary
to calculate algal biomass concentrations in each computational element.
Specifically, the subroutine completes the definition of the diagonal
term of the coefficient matrix and defines the vector of known terms on
the right hand side of the equations. In addition, solar radiation is
read at three hour intervals if a dynamic simulation is being performed.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computation element is:
TYPE DIAGONAL TERM
All except type 7 b-j = Xi - (ni - p - a^At
7. Withdrawal bj = Xj - (yi - p - Oj)At - q0 —
where is defined in Subroutine TRIMAT.
The growth rate, , is computed according to Equation 11-6
as
N 3 p i + L
= ymax N3 + KN P + Kp In KL + Le "xiDi
i i
For dynamic stimulation, nitrate (N3) and phosphorus (P) values from the
previous time period are used to calculate the growth rate; for steady-
state simulation, values from the previous iteration are used.
If, under the program options, algal concentrations are being
simulated and either nitrate or phosphorus or both are not being
simulated, the program assumes that the parameter or parameters not
simulated are not limiting. For example, if both nitrate and phosphorus
are not being simulated the growth rate would be computed as
IV-4
-------
Kl + L
iui "" Kl + Le"Aiui
Pi = y O7 In K. + I o"^i"D
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
1. Headwater S-j = A* + q-jA^ - an-A^
* 1 1 At At
6. Waste Input = Aj + q.^ — + —
~ i i At*
All Others = A^ + q^A^ —
For steady-state simulation, the only difference is that the value from
the previous time step, A*, is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-2 and
is followed by the program listing. All program variables contained
in COMMON are defined in Section V.
*AI I symbols used are defined at the end of this section of the
Documentation Report.
IV-5
-------
ENTRY
SUBROUTINE ALGAES
DO coopuUtlons
from • to b for
ill co^uUtlonil
elemnts
/ DETERMINE \
TYPE OF COMPUTATIONAL
v ELEKNT /
(Set DftU
Form 19)
INITIALIZE COUNTERS AND
CONVERSION FACTORS
READ SOUR RADIATION IF
SIMULATION IS DYNAMIC
CONTINUE
ADD HEADWATER
INPUTS TO KNOWN
TEW, S(I)
TYPE 1
TYPE 6
ADD WASTEWATER
INPUTS TO KNOWN
TEW, S(I)
CALCULATE GROTTO RATI,
AND INITIALIZE KMMN
TERM AND DIAGONAL
TERM FOR STEADY-STATE
OS DYNAMIC SIMULATION
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM, B(I)
TYPE 7
FIGURE GZ-2
FLOW CHART FOR SUBROUTINE ALGAES
-------
SimwniiTlwr AuGAFS
T lTLE.(?ft «?0> •«CMI0C7S,S) «R«TWOR(75) «RnTE0R(7S) »NHWWAR<15) ,
TAWGD0I7S) ,TaUG0H{7S.<9),MCFLRH(7fi> • I FtAG(75«20)«
ICLORlM7S,?o).COEFOV(7S)«Ey»0GV<75)»C0EF0H(75)tEXP00H(75)»
C M A NN (7">)«CK1(75) »CK3(75) .K?0PT<75) »CK2(75) •C0E9K2(7S) t
r) • 001NI T ( 75 ) • BOINIT ( 75 >. COTNIT C 75 . 3) •
0 1 ( 7t)) . T 1 (75 ) tOOI 17-j) t BOP t ( 7ni) • CONS I < 75» 3 )« JUNCIO< 15t5)•
JUMM15.MfHWTRIOC1S«5)tHUFLnwt15»,HWTENP(15)•HWOO<15)•
H/ F-OD < t 5 ) .HWC0NS(15»^I »WASTTn(90«5) ,TRFACT(90) ,WSFLOW(90) ,
^STE^P ( qn >,WSDO(yO > «WSROrM90)•WSCOMS<90«5).QATOT(15>.
A(5pO)tt*(5nri),C(5C>)«O|^)«Sf^00l»2(5fl0>«W(50fl>»G(500)«
FLOW(-3noi«nrpTH(5Dn), VEL(500) ,OTOVCL(SOO) ,K2<500)tKl(500),
HSNET< 50 0>«OL<500) .VHU(15)« OEPHW(15)»OLHU(15)•T(500).
»J0( 50n ) ,PUP( S00 ) «CON*?( 50 0 • T) .PT!«"E . TPR JNT .DELX .
NHHTRS»BREACH«NWASTF « NJUf'C•OELTiOlLT*O2LT«DTO0x2«OT2ODx*
LAT «LbM«LLM»ELEV»OAT• AE « EF ~ OA YOF Y » DR YBLB•HETBLB•DEWPT•
A I KPK , w I ft'O * CLOUD* SONET »NI «(J J« TRLCO •TOFDAY »NT « NC « TIRE * NCS
COnKOU/rtUDTF/ C««M75> .CK5C75) .CKNHM75) « CKN02 (75)« CKN03 ( 75) ~
* CKN,CKP,rKL»ALPHA0(7S),ALPHAI«ALPHA2tALPHAS.ALPHAS•
* ALPha5«ALPHAS,GROflAX«RESPRT•ALGSET(75)»SPHOS(75).
* Snh V 75 ) , KNH"M 500 ) • KN02 ( *00 ) »R^SPRR (500) »C0L1 ( 500 > »
* AL^AE(PTO).PHOS(50 0)*CNH3(50 0),CNO?(SOO)»CN03(50 0).
» COLIR < 75).ALGI(75).PHOSI(75) •CNH31(75)«CN02I(75)•
* CIJ03I (75 ) • COL I I T ( 75 > • ALGIT I 7S) .PHOSIT( 75) «CNH3IT(75) .
* CN02IT(75)«CN03IT(75).USTOLI ( 90 ).WsALG(90\.WSPHOSf90).
* WS^'HSI °0 1 t V(SN02 ( 90 ) .WSN03C90) «HuC0Ll (13) iHUALG(13) •
* HWPH0b( 1 ri) »HWNH3( 15) tHWN02 (15) »HWN03(15) •GROWTH!S00) ~
* fonoprt10)•IPCHNO(750),EXCOEF(75)
Cf>M^on/SSTATL/X(500) , ISS
INITIALIZE COUNTERS
NHW = 0
I.WS-fl
RE AO SOLAR RAOIATION OATA IF REQP
If (ISS .GT. 0 • nil • POhOPTt?) .GT.
ir(TRLCO) 10«10«1S
in FEAncnitii) bOhTT
11 FORMAT(TftX,Flo.0)
T^LCt"=3.r.
1« TPLCI =TRLC['-U2LT
?0 Co'jtir ut
n) GO TO 20
LOOP THROUGH PEACHFS AND CHRP. ELEMENTS
On !0(1 I=1.MHEACH
NCEL*=rwcn uh(i)
CKCELR='JCFLR
AL«IJ = 01 ( I l/CUCCLKtALGK T)
r>r• ion J=t ,MCFLP
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
•NEw
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEw
•NEW
• NEW
• -29
-------
10H=lCL0RniI.J)
C
C
c
COMPUTE ALbAF GROWTH RATES
TC = P ( T ( I OR ) -f»8, 0 )
KrSP«P ( I OP ) =RrSPHT#l .0<«7»#TC
ALSIN* = PUGbTT/AX«TLOG/ < r*COEFt I) ~PCPTHl I OP > )
G"fH T»M lor j = GPQk'TH( I OR ) • I . 0«*7** TC
ic ( *olWT ( S » .fO.O ) GO TO 50
r,./OMTh( I UK ) = GROMHM I Of< ) #PHO$ ( TOR )/l CKP-*PHOS( IOR ) J
\V i MOUOPT C & I .F.P.P ) GO TO 52
i-kOUTH(K)P) = r.PCWTlM IOh ) »CNO^ ( T0« >/< CKN4-CN03( IOP) J
r.P COMTinuf
wran=r,RowTHi iop)-resphr( toR)-alsink
n(lOR»=X(jnp)-RFACT*DlLT
S HOP) sALGAEt TOP )
tF0 TU (101 ilj0t30n*100vl00«l03tl00|« IFL
C
1P1 NHW=NHW+1
S(tOR) = ^(IOR) - A(IOR)*HWALG
Gn TO 100
lp^ NHS=NUS*1
S11 OR) = S(IOP) + WSFLOW(rWS)»WSALG
-------
SUBROUTINE BODS*
Subroutine BODS completes the setup of the equations necessary
to calculate BOD levels in each computational element. Specifically,
the subroutine completes the definition of the diagonal term of the
coefficient matrix and defines the vector of known terms on the right
hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b-j = Xi + (Kj + K3)At
7. Withdrawal bi = + (Kt + K3)At - q
where x-j is defined in Subroutine TRIMAT.
0 V-j
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
1. Headwater S^ = L* + q^L! - a^L^
6. Waste Input Si = L* + q\l\ qwl_w ^
All Others Si = L* + q!|_J ^
*AI I symbols used are defined at the end of this section of the
Documentation Report.
IV-6
-------
For steady-state simulation, the only difference is that the value from
the previous time step, L*, is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-3 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section V.
IV-7
-------
ENTRY
SUBROUTINE 600$
DO computations
from a to b for
all computational
element*
' DETERMINE >
TYPE OF COMPUTATIONAL
V ELEMENT /
CONTINUE
INITIALIZE KNOWN
TERM AND DIAGONAL
TERM FOR STEADY STATE
OR DYNAMIC SIMULATION
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
SU8TRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM, 9(1)
TYPE 7
ADD HEAOWATER
INPUTS TO KNOWN
TERM, S(I)
TYPE 1
TYPE 6
ADD WASTEWATER
INPUTS TO KNOWN
TERM, S(l)
FIGURE
EZ-3
FLOW CHART FOR SUBROUTINE
BODS
-------
SUBMnuTl^E tons
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• -16
concur /s^tate/xisooi.iss
HFAl k 1 , K ^
initialize counters
N>tw=0
.ws=o
loop through reaches and coup, elements
no 100 i = i»NKFach
f ICE LH = f CCtRM 1 )
Cf.rrLR = ^CFLR
^001 J=0 I ( I ) /L*»crLR*ROOI < I )
on 100 J=1,NCFL*
I PR =ICLOk D( I~J J
INITIALIZE DIAGONAL ANO KNOWN TERMS
TC=0 .556# ( T (10R ) -6A,0)
KI(TOR) =CK 1 (I ) • 1 .P«*7*»TC
K3=fK3lI)
PFAfT=01LT« » IFL AG I 75 • 20 ) «
» ICI ORlH 7,i«?0 ) »COLFnvt 75)tEXPOOV(75) «COEFQH< 751 .EXPOQHl75)•
* rKANNf 75) tfKl ( 75) f CK3I75) .K20PT ( 75) tCK2(7S) «C0E0K2I75) •
+ E*POK2< 7*),TINIT(7*>.nOINIT(75)«BOTNIT(7S).COINIT(75»3)«
« OJ < 7S )iTT< 7S)» 001(7S) .rODH 7S).CONS I<75»3).JUNCIDC15.5) .
* JUN>C < IS. ^ ) «HUTRI0( 1 5.S) « HWFLOU (IS) , HUTC*P<15) .HWOOt15) ~
* HUPrini 1 si • MUCOUS! IS , 3) .UASTini 90 .5) •TRFACK 90 ) . USFLOU(90 ) ~
* WSlFPP(9n>•WSDO(90).WSR00<9r>),USC0NS(90.3)0P I ,Z< 500) ~ W(500 ) .GC500) •
* FLOu(tHO).PEPTH(50n).VFL(500 )•OTOVCLI 500).K2(500)«Kl(500).
» USNET(SOO). 0L<500) .VHU «PLHW(15)«T(500)•
* no(sno) «Rur(5no) .cons* soo. m «ptime«tprint»oelx.
* MHWTRb,NPEACH,NWASTFtNJUNC,OrLT,OlLT,02LT,DTOOx2,OT20DX«
* LAT.Lb".ILh.ELfV.OAT.AE.BE•HAYOFT,DRTRLRtWET0LOtOEWPT.
* AT*PR.WlNQ.CLOUn,SnwFT,NT .MJ.TRLCC,TOFOAY•NT.NC•TIWE«NCS
00002300
00002400
00002000
00002900
00003000
00003100
00003600
00003700
00003800
00003900
00004000
00004100
00004200
00004300
00004400
00004500
00005300
00005400
-------
GO TO tOO 00005600
10^ NWSsN'VS * 1 00006900
S (10HICI OR)~WSFLOW(NWS)•WSBOD(NWS)*DTOVCL
-------
SUBROUTINE COLIS*
Subroutine COLIS completes the setup of the equations necessary
to calculate coliform levels in each computational element. Specifically,
the subroutine completes the definition of the diagonal term of the
coefficient matrix and defines the vector of known terms on the right
hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 bn- = Xj + Ks At
7. Withdrawal b-j = x^ + Kg At - q0 ^7
where x^ is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
1. Headwater S^ = E* + q^E.J - a^E^
6. Waste Input S, - E* + qjEl ^ + qwEw ^
All Others S, + E- + q'.E.! ^
1 1 1 I V-j
*AI I symbols used are defined at the end of this section of the
Documentation Report.
IV-8
-------
For steady-state simulation, the only difference is that the value from
the previous time step, E*. is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-4 and
is followed by the program listing. All program variables contained
in COMMON are defined in Section V.
IV-9
-------
ENTRY
SUBROUTINE COL IS
DO computations
from a to b for
all comiutational
elements
RETURN
TO OUAL
s determine >
TYPE OF COMPUTATIONAL
V element
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
INITIALIZE KNOWN
TERM AND DIAGONAL
TERM FOR STEADY STATE
OR DYNAMIC SIMULATION
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
OIAGONAL TERN. B(I)
CONTINUE
ADO HEADWATER
INPUTS TO KNOWN
TERM, S(I)
TYPE 1
TYPE b
ADD WASTEWATER
INPUTS TO KNOWN
TERM. S(I)
FIGURE
ET-4
FLOW CHART FOR
SUBROUTINE COLIS
-------
SU8P0UTINT COLIS
COMMON T ITLE( 20 t 20 ) .RCHI0(75.5) ~ RHTHOR ( 75) • RUTEOR ( 75) .NHWUAR(15) .
T APGDO|75).IAUGOR(75•6).NCELRH(75)•IFLAG(75.20)•
ICLORD(75•20).C0tFQV(75).EXPOOVI75)•COEFQH(75)»EXP00H(75) .
CKANN(75 I. CK1(75).CK3(75)«K20PTI 75)«CK2175).C0EQK2(75)t
FXPQK2<75) . TINIT<75) t00lNIH75) .B01NITC75) • COINIT(75* 3) «
01 (75) ,tH75» .001 (75) ~B00I<75) # CONS H 75*3) . JU^C 10 (15.5) .
JUNCC1S»?),HMTHID(15.5)•HUFLOU(15),HWTE«P(15)•HWOOIISI.
HWROO(15 I.HWC0NS(15.3)«WASTID(90.5)«TRFACT(90)«WSFLOW(90>.
WSTEKP<90) tWSOO(90)«WSBOD(9Q|« WSCONS ( 90 • 3) «QAT0T(19)•
Ai50 0)*8(500)< C(50 0)*0(5)•S(500)• Z(300)•W(500)«6(500)•
FLOW(5001 «DEPTH<500)•VEL(500)«OTOVCL< 500)*K2(500 >«K1(500)•
HSNET<500)•OL(500 I.VHW(15)«OEPHWl15)tDLHW(15).T(500>•
00(50 0 >.POO(500).CONS(500.3)~PTIWE.TPRINT.OELX.
fJHWTRS«NREdCH.NUASTE.NJUNC.OELT « 01LT »D2LT.0T0DX2.DT20DX.
LAT.LSH.LLn.ELEV.OAT*AE«BE«OAYOFT.ORTBLB«UETBLB*OEUPT «
ATPPR.WIND.CLOUO.SONET.NI«NJ»TRLCO«TOFDAY,NT.NC»TI«E«NCS
COMKON/MOOIF/ C*«* ( 75>. CK5 (75 ) .CKNH3I75) »CKN02(75> «CKN03(75)t
CKN • CKp,CKL.ALPHAO|75).ALPMA1.ALPHA2 «ALPHA3•ALPHAS.
ALPHAS.ALPHA6.6R0«AX»RESPRT,ALGSET(75).SPHOS(75)•
SNH3(75).KNH3(500).KN02I500)•RESPRR<500)•COLI(500)•
AL6AE(500)« PHOS(500)«CNH3(500l»CN02(500)«CN03(500)•
COLXR(75)«ALG1(75)*PHOSI(75)«CNH31(75)»CN02I(75).
CN031(75 > « COL I IT(7S),AL6JT(?SI•PHOSXT<75)»CNH3IT(75)•
CN02IT(75),CN03tT(75).WSCOLl(90).WsALG(90).WSPHOS(90)<
WSNH3(90)« WSN02(90 > .WSN03(90).HUCOLl(15)*HWALG(15)•
HWPHOS(15)«HUNH3(15).HWN02(15)«HUN03(15).6ROHTH(500)«
MODOPT(in),IRCHNO(750).EXCOEF(75)
COMMON/SST ATE/X(500).ISS
REAL K5
NHW = 0
NWS=0
INITIALIZE COUNTERS
LOOP THROUGH REACHES ANO COHP. ELEMENTS
oo ioo i=i»nrfach
NCELR=NCELRH(I)
CNCFLRrNCELR
COLIJ=0I(I)/CNCELP«COLlR(I)
no tOO J=1.NCELR
IOR=lCLORO(1.J)
INITIALIZE DIAGONAL AND KNOWN TERHS
TC = 0.55*»< Tl I OR) -66,0 )
K5=CH5< I) «1 • OU 7» *TC
*X[ IT T=C1LT*KS
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
•new
• NEW
• -29
-------
HIIOh)sX(IOR I~REACT
S( IOK)sCOLI(IOR>
IF (ISS.GT.O) SIIOR > =0 • 0
IOR)s^(IOR) +COLI J»OTOVCL I IOR)
IFL=IFLAG(I.J)
I10DIFY 01 AGONAL AND/OR KNOWN TERMS
GO TO (101,100.100,100,100.103.104), IFL
101 NHWsNHWM
S(IOR)sS*HWC0LI(NHV|
GO TO 100
103 NWSsNWSM
S( IOR)sS
-------
SUBROUTINE CONSVT*
Subroutine CONSVT completes the setup of the equations necessary
to calculate concentrations of a conservative constituent level in each
computational element. Specifically, the subroutine completes the
definition of the diagonal term of the coefficient matrix and defines
the vector of known terms on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 bn- = x-j
7. Withdrawal b-j = x-j - q„ —¦
where x-j is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
1. Headwater S^ = C? + q!c.| - a^C^
6. Waste Input 5, = C? + qjcj £ - qwCw^
'1 " "1
All Others Si = C* + q!c!
*AII symbols used are defined at the end of this section of the
Documentation Report.
IV-10
-------
For steady-state simulation, the only difference is that the value from
the previous time step, C*, is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-5 and
is followed by the program listing. All program variables contained
in COMMON are defined in Section V.
IV-11
-------
TYPE 1
ADD HEADWATER
INPUTS TO KNOWN
TIW, S(I)
ENTRY
SUBROUTINE COI6VT
DO cOROuULions
from a to b for
all computational
element*
^ DETERMINE >
TYPE OF COMPUTATIONAL
\ ELEKNT /
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
INITIALIZE KNOWN
TERM AND DIAGONAL
TERM FOR STEADY STATE
OR DYNAMIC SIMULATION
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM, B(I)
ADD WASTEWATER
INPUTS TO KNOWN
TERM, S(l)
TYPE 6
FIGURE EZ-5
FLOW CHART FOR SUBROUTINE CONSVT
-------
SUROOUTINF CONSVT
CONSVT PFUF^RriS A conservative mineral
DALANCr FOR EACH fOHPUTATIONAL ELEMENT
IN ThE STSTFM.
COhi-oPj TITtF t?0«2Q).RCHlDt75(5) . RttTHOR ( 75 > , RMTEOR ( 751 ,NHUUAR(15>,
TAPGOo ( 7**) , IAUGOR( 75.6} .NCELRH<75) , IFL AG<75 i 20 ) ,
ICLORDf7c»?O>fC0EFOV< 75)•EXPOOVI 75)•COEFQHJ 75 > •EXPOOH(75)i
CPA*!" (75) if K1 (75 1 »CK^<75) «K20PT(75)•CK2(75} «COEQK2(75 ) i
E XP0K2(7fc>)*800t{7*>*C0NSI<75t3» ~ JUNC IOC 15 . 51 .
JUHC< 15,31 ,HUTRIO< I 5»5) »HWFLOW<15) .HWTEWPC15) *HUDO(15)*
HWPOn< 15) .HWCONSI15.3) .WASTin<90t5) • TRFACT ( SO) .WSFLOW190) «
WSTEKPC^P) ,WSOOI90) .WSR0ri(90) .WSCOnS<90«3) ~ C ATOT (15) .
A(500)*B(500)*C(500)*0(51*SC500).2(50 0 I.W<500)»G(500)*
FLOW!50 0)iDEPTHI 500 )»VEL
DO 1OC J=1%NCELP
I0R=ICLORO(I.J)
INITIALIZE DIAGONAL AND KNOWN TERMS
BUOfi)=X=S* IFL
N>.w=rmv> +j
TOP I = S< TO* )-A( ICR) •HWCOrjSCNHWiNC >
PC TO )Pf
• NEW
• NEW
• NEW
• NEW
• NEg
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• -16
00002300
00002700
00002000
00002900
00003000
00003500
00003600
00003700
00003000
00003900
00004000
00004100
00004200
00004400
00004900
00005100
09005?00
-------
lpT MUS=NUS+1 00006400
S( IOR)=S< I OR I +USFLOW(NWSl •USCONSINHS.NC I »DTOVCL( IOR >
GO TO 10P 00006700
C 00006800
10" NUS=NWS*1 00007300
B< IOR)=fl I IOR l-USFLOU(NUS) »tlTOVCL I1 OP)
ino coNTinur 00007500
RETIIRfl 00007600
END 00007700
-------
SUBROUTINE DOS*
Subroutine DOS completes the setup of the equations necessary
to calculate dissolved oxygen levels in each computational element.
Specifically, the subroutine completes the definition of the diagonal
term of the coefficient matrix and defines the vector of known terms
on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b-j = xn- + (K2)1- At
7. Withdrawal b-j = + (K )• At - qQ
i
where x^ is defined in Subroutine TRIMAT and the reaeration rate
reaeration constant, (K2)-, is determined in Subroutine REAERC.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the concentration
in the previous time step. The known term for each type of element for
dynamic simulation is:
S-j = i + qi-i ^ + (a3Mi " a"»p) AiAt " a5^K7NJi At
- ct6(K8N2) At - K.Ax (K2C5)i At - K^-At
and is corrected for headwater conditions or a waste input as follows:
*AI I symbols used are defined at the end of this section of the
Documentation Report.
IV-12
-------
ENTRY
SUBROUTINE DOS
DO computations
from a to b for
all computational
elements
RETURN
TO QUAl
/ DETERMINE \
TYPE OF COWUTATIONAL
\ ELEMENT /
ADD INCREMENTAL INFLOW
TO KNOWN TERM. S(I). AND
SUBTRACT STREAM
WITHDRAWAL FROM DIAGONAL
TERN. 6(1)
TYPE 7
ADO WASTEWATER
INPUTS TO KNOWN
TERM, S(I)
TYPE 6
INITIALIZE KNOUN
TERM AND DIAGONAL
TERH FOR STEADY-STATE
OR DYNAMIC SIMULATION
ADO TRIBUTARY INFLOW
TO KNOWN TERH, S(I)
COMPUTE S(I) AND B(I)
AND ADD HEADWATER
INPUTS TO KNOWN
TERM, S{I)
TYPE 1
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
CONTINUE
FIGURE EZ-6 FLOW CHART FOR SUBROUTINE DOS
-------
cillRMiMT 11.F TUr
c
c
CO*MOM T|TLE(20«20 ) »RCHl D (75.5) « PHTHOR ( 75 ) «RMTE0R(75) .NHWWflRl 15) •
~ Tf.RFDO ( 7*> I . 1 AUGOR (7S.6| tNCFLRH(7S) # IFLAG(75.20) ~
* ICLr>RO( 75.?0 > .COEFOVC 75) •TxPOQVC 75) * COEFQH< 75) .ExP09H( 75) •
• rtf.N(75),CKl(75)«rK3|7S).K20PT(75).CK?<75).C0E0K2(7S),
~ F *P0K2 ( 7S) , TINIT« 7«i) .OoINTT I 75 ) • P0INITJ75I .COINITI 7S.3) .
« 01(7S),Tl(7*).001(75).ROOT <751.CONS I(75.3).JUNCID(15.5)•
• Jl»f'C( 15."*) * MbTK ID (15 • 5 1 . HWFLOW (IS) .HWTEHP(15) *HW00<15) .
~ HWQ00(15)•HWCONS(l^»5)»WASTlO(q0«5)•TRFACT(90).WSFL0W(90).
* k.'STCKP(90) .WSD0(90) tWSR0D(90) •WSCONS(90»3) .QATOT(15) .
* A<«>OC),0(bOO) . C ( 500 ) . 0 ( 5 ) »S( 500 ) « Z(50 0) • W(500 I .6(500) •
• FLOW I 500),DEPTH<500)•VFL(*0 0).OTOVCL(500).K2(50 0).K1<500).
* HSMET (<^0 0 ) »0L (500 ) • VMW( 15) .OFPHU (15 I .OLHW(IS) «T(S00) *
~ no(500).POD(500).CONS(500.3).PTIME.TPRINT.OELX.
• NHWTRS.NPE0 CH.NWASTE.NJUNC.OEL T•OlLT•02LT tOTOOX2•0T20DX.
~ L f*T , LSM .LLM,ILEV«DAT.AE.BF . OAYOFY » DRYBLB.WETBLB. OEWPT «
~ AT^PR.UI^O.CIOUO.SONFT.NI,nj«trlco«tofday,nt,nc.time.ncs
c
c
CnwMOM/MOniF/ CK«M75) . C«5(75),CKNH3(7S) . CKNOPI 75 > . CKN03 ( 75) .
• CKN•CKP.CKL.ALPHAO(75).ALPHA 1 .ALPHAS•ALPHAS * ALPHAS.
* ALPHAS. ALPHA6.6R0HAX.RESPRT. ALGSET475)•SPHOS(75) .
* SPH3(7S).KNH3(500).KN02(500).RESPRRf500).COL I(500).
* ALGAE(500).PHOS(500).CNH^(510).CN02< 500)•CN03(500) •
• COL TR< 75).AlGI(75).PHOSI(7S).CNH3I<751«CN021(75)•
» CN03I175).C0LIIT(75)•ALGIT(7S).PH0SIT(75)»CNh3IT(7S).
* CN02I1(75).CN03IT(75).WSCOLI(90)«WSALG(90).WSPHOSI 90) .
• WSNHM90). USN02(90),USN03(90).HUCOLI(15)•HUALG(15).
* HWPHOS(IS)«HkNH3(15).HWN02(15),HWN03(15)«GROWTH(500).
~ MOOOPT(10).IRCHNO(750),EXC0EF(75)
C
c
COHPO'J/SSTATE/X ( 500 ) • iss
real K1,k?,ku 00002300
REAL KPHJ.KHO?
DATA UPOD/^H RIO/
C " • • • • •
C CUNVFRT RFTUEEN ULTIMATE AND 5-OAY ROD BASED ON AN ASSUHEO
C L*H (>rCAY rate of 0.23/DAy (RASF E ) URN
IF < TTTLF(7.to) .EG. UROO ) GO TO 50
CFRno = 1.0 - E*P < -5.0*0.23 >
IVF^T = n
10 IVE°T = 1VERT ~ 1
1F( 'IHWTKS .LF. 0 ) GO TO 25
00 ?0 J = 1. NHWTRS
HJ»J0P(J) = HrtROr(J) / CFBOP
20 CflNTlnuF
IF( NtoASTC ,LE» 0 ) GO TO 35
Do J : I, MWASTC
USQOP(J) = WSPOr(J) / CF8O0
CONTINUE
X5 00 J = 1. NRfACH
'prrui = ^ouu><) / cfroo
-------
*jrci K = NCfLMUJ)
Li'j 0 fl K = 1 • HCTLR
J'NT Jfil'F
IF ( IVtrM .r,t. ? l Hi TURN
0^401 = i.o / crnoo
INITIALIZE counters
«5n co^TiNur
NH'W=0
iMHSsr
I Ji C = 0
fact = l.c / (PB.s • e&nop.O)
LOOP THROUGH REACHES AND COUP. ELEMENTS
DO 10n 1=1•hKEAC H
wrci RsMCEl RHI I )
CNCFLRsMCELR
OOIJsGI
rati0=1.o/ > >
00 100 J=1.hCFLP
IGR=ICL ORP(I•J)
00002900
00003000
00003100
00003200
00003300
00003800
00003900
0000*000
0000*100
0000*200
0000*500
0000*400
0000*500
INITIALIZE DIAGONAL ANO KNOWN TERNS
S(IOR)=00(IOR)
IF (ISS•GT #1) S(IOR)=0.0
IF moOOPTf*) .lt.ii SO TO 90
AREACT=IALPHA3»PR0WTH|IOR>-«LPHA*»RESPRR >*OlLT
S(IOR) = IOR) ~ AREAcT*ALGAE0 IF (H000PT{6> .LT.l | GO TO 9?
S(IOH) = S(IOR) - (Al PhA5«KNH3(IOR)*CNH3(IOR)~
1 ALPHA6«KN02IIOR>*CN02(IOR))*DlLT
9? S(inH) = SlIORJ - CK*(11*CEL X»DT0VCL(IOR)*FACT
Tr=n.55f *(T< 1 OR > -6A • 0 )
Kl(T OR > =K1(IOR>•RATIO
OOSAT = 2*.f 9-0,*259*TtIOR)*0»0037^**TIIOR)**2-0•00001328*T(IOR >**3
IF |DO(TOF).GT.noSAT) DO(inR| = POSAT
I FL= IFLAG(I«J)
MODIFY OTAGONAL AND/OR KNOWN TERNS
GC TO (101 ,102,102,10*,102.103.105), IFL
101 nmu=mhw*i
KO=K2< 10PI«1.01B>9»«TC
REArTsMLT* *ROD>
S( IOR)=S< IOR)*RE"ACT^DOIJ*pTOVCL( IOR1-AI I OR ) *hWDO( NHW)
B = X< TOP I*01LT•KO
GO TO ion
IP? KOS|0»b*(K2
n=*+OlLl»KO
OP TO l'l' 00007000
0000*600
0000*700
0000*BOO
0000*900
OOOOSOOO
00005100
00005200
00005700
O0OO5BOO
00006100
00006200
00006700
-------
i
K' :ir.s*|0| inw-1 >*K?< I0-O) »*1.0T5<»**1C
art=i ii MKnifncAT-cn ionunnnnnpi)
i t im* > = c < io\>) ~'^r nrT + (nni j^u^rLOWi w^s) •wsnni mws) ) »nTOVCLi tor >
M P'|:»l^l ) +illLT»KO
•»n x'» inn
1 JL«fc«C= 1 .>,,nC+ 1
• 15 = 1
'jijsjii 'c(iJuri,nc)
K')= I h.p'S* ( K? ( TOP-1 ) *K? jrjN) ~?.n*K?( I OR ) ) )*1 * MS9»«TC
i'f An si'11 tm^^osat-kii iori *noo (inq> )
) ~nTACT + OOI J*PTOVf L < TOR I
t U'l I =* t 7 Of ) * ,l1 LT*KO
O1 T'1 1 111)
n -js = r"f«s 2
k"">=Cd.S»<';Mir>P-lWK2(T0k)>>M.ni59«*TC
'oflrT=riiT»i fvo*noSAT-r\t ( m>« )*Roni I OR > )
Sl IOM) = ^( inio+Rf ftCT + 001 J»nTOVCL < I OP)
«(iriMsX| I OK ) ~fJlLT*KO»WSFl 0W»nTOVCLl I OR)
C')MT U l»F
ic( H1LH7.M -fo. unon ) rttmrn
c,t, T f I 10
E
OP007100
ncoo^boo
oroo77no
ooonpooo
oooohioc
onooflfeoo
0000*700
OOOOBBOO
nnno890o
00009200
0H0O9300
00009800
00009900
00010200
00010^00
-------
TYPE RIGHT HAND SIDE
1. Headwater - a^
6. Waste Input Si = + qw
-------
SUBROUTINE FLOAUG
Subroutine FLOAUG remains unchanged from the original version
of QUAL as documented by the Texas Water Development Board (2). According
to reference (2):
After steady-state conditions have been reached,
FLOAUG checks the calculated dissolved oxygen
concentration against the pre-specified target levels
for dissolved oxygen in each reach. If the computed
dissolved oxygen is below the target level} the routine
then searches all of the upstream headwaters for those
sources that the user has specified to have dilution
water. Dilution water is then added equally from all
sources and calculations are repeated. This sequence
continues until all target levels are satisfied,
whereicpon a summary is written.
The flow chart for FLOAUG shown in Figure IV-7 is taken from reference
(2). The program listing follows the figure.
IV-14
-------
START
.YES
FOR EACH REACH
CEEN CHECKED
\ AGAINST /
\TARGET
TARGET
YES
SAT ISFI ED?
WRITE V
INTERMEDIATE
\ SUMMARY i
WRITE
FINAL
SUMMARY
NO
YES
RETURN
^ FLOW
AUGMENTATION
REQUIRED
INITIALIZE v
AUGMENTATION
FLOWS
COMPUTE AMTV
OF FLOW
AUGMENTATION
REQUIREO
OETERMINE LOCATION AND
MAGNITUDE OF MINIMUM D 0
FOR EACH REACH
CHECK TO SEE THAT AN EXCES
OF FLOW AUGMENTATION
HAS NOT 8EEN USED
DIVIDE TOTAL AUGMENTATION^
REQUIREO EQUALLY AMONG
AVAILABLE HEADWATER SOURCES
FIGURE Iff-7
FLOW CHART FOR SUBROUTINE
FLOAUG
-------
SUwrOMTlur FLOAI'b
FLOAltG searches through thc system by
RFACM TP DETERHINr THE MINIMUM 00 LEVEL
WITHIN EACH REACH. EACH OF THESE MINIMUM
On irvELS IS CHECKED AGAINST A SELECTEO
TARGET LFVEL. IF FLOW AUGMENTATION IS
HCOUIREO* THIS FLOW IS DISTRIBUTED
EPUALI.Y AMONG THE HEADWATER SOURCES THAT
Apr AVAILABLE TO A GIVEN REACH.
CnMMrfl TITLf(20*20 J ,RCHI0(75,5)%RHTHOR( 75),RMTEOP(751,NHWWAR(15),
TAPGOO(75)•IAUGOR< 75.6),NCELRH(75)•IFLAG(75.20)•
ICLOHOf 75.20)» COEFOV C 75).FXPOOV(75)«C0EFQH(75),EXPOOH(75)•
CMANNi75).CK1(75).CK3(75>iK20PT(75)«CK2(75)*COEOK2<75).
EXP0K2(75).UNIT I 75).D0INITI75),B0INIT<75),COINIT(75<3).
01175).TI175).001175)•ROni<7S).CONS I<75*3).JUNCID(15.5).
JUNCJ15,^)t HWTRIO(15*5).HWFLOWI15).HWTEMP(15).HWDOI15)*
Hfe'ROlM 1 *> • HWCONS 115 » * ) , WAST10(90 .5) « TRFACT C 90 ) »WSFL0W< 90) •
U,STEKP(90). WS0O( 90 ) .WSBOO*90),USCONS(90t3) ,0AT0T(15) .
r(500),G(50 0)«C|50n),0(5)«SI 500).Z(500)*W(500)«G(500),
FLOwt sno ) . DEPTH ( 5)00 ) • VEL ( 500 ) * DTOVCL ( 500 » ,K? (500 ) «K1 ( 500) t
HS"ET(50n)•DL(500).VHW(15)•OEPHWI15)«OLHWf15)*T(500).
PO(SOU),POD(500)•CONS1500.3)«PTInE,TPRlNT«OELX.
r.'Hfc TRS,nRCACH.NWASTE«NJUNC»DELT.01LT«D2LT,DTO0X2»DT20DX.
LaT•LSM«LLM»ELEV•DAT* AE•BE«DAVOFY•ORVBLB* WETBLB* OEWPT«
ATfPR » WINO•CLOUD•SONE T•Nlt NJ•TRLCD,TOFOAY .NT.NC * TIME * NCS
OIHr^SlON I0RMlN<7S),RMILr<75)»00MIN(75).I0R0ER<75).QaUG<15>
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• -16
• NEW
• ~-I
00 5 NHU = 1 ,NHWTft S
QAUG< MHW)zO¦0
continue
00 c0 1=1.nrlach
i*)t>MrN( i is] oo.q
IP (( I » .rn . 0 ) GO TO 50
NCELK=NCELRH
-------
x-I * =J
f < i)sdmthari i)-y«iw»nFLy/5?flo
IP^ CHMTI'IUF
=n fo!»Tlnur
**,U1MG = 0
00 P't 1 = 1 t MKLACH
0000*200
,n OOOOhSOO
0O005400
00005500
00005600
00005700
STEP 3*0 00005&00
LOOP THROUGH NREACH REACHES TO *500005900
MINIMUM 00 LEVEL IS BELOW TARGETO0006000
00006100
00006200
IF ( POMlfJ( I ) .GF. TARGOO< I t ) PO TO 25
00006300
00006100
STFP 3-1 00006500
IF TaRGFT LEVEL IS NOT MCT. COMP00006600
AMOUNT OF FLOU AUGMENTATION RECU00006700
00006800
NRTA«G = NrjTARbfl
IOKOER(NnTARG)=I
I0R=I0RMIN(I)
w«mElNBTARG)=RMlLEC I >
DMRFuOsTARGOOl I ) -nOMIN( I) +0 . 1
QHFOi> = FLOW < I OR I * I OOREQD/T AR600 ( IJ ~ 0.15«
» (OORFRO/ r AHG'JOI T ) ) »»2 )
QSUM=n.0
MHWAH = I,HWWAR ( T )
on 350 J=1« NHWAR
NMW=]AuGORI I.J >
QSH«1 = OSUM*OAUG
-------
1.1) ?!J0 Kr1,fy0TftHv. 00011200
IrTri'^FHIKI 00011300
wi'nr. i-ij.'Sb) I. (Rchioi I. ji . j=i .51 .nnniw( t ) ,rhile( I) onontoo
"iS COW'AT I P?X , [t, 1 0* .SA<4 .7* .F*. 1 ,1 1 * ,rs. 1 ) 00011500
?sn comumi; 00011600
jitiir irjj,?6o) 00011700
260 FORMAT < 1"0. 30* • 38H» • » FLOW AUGHEMTATION REQUIRED • • ».//. 00011800
• UX,1OOHHEAHWATER mo. HEADWATER IDENTIFICATION EXIS00011 900
• T IMP HrAOl'ATCR FLOU (CFSI AUG. REOUIREO (CFS)./> 00012000
l)(l ?70 NHN=1,NHWTRS 00012100
UPTTE (NJ.27SI WHU. ( HwtR lri(NHU. J > . J=1 .5 > .HUFLOUINHU) .OAUG(NHW) 00012200
'71 FOC'IAT I flx . lb. l'X .5A". 16X . FlO. 1 .20X.F10.1 ) 00012300
270 CONTINUE 00012100
no J8(l NHU=1 .MHkiTRS 00012500
lljri OW(fJHU) = HWFLOW(NHW) + OAUGfNHU) 00012600
*8(1 CONTINUE 00012700
GO TO 31 '1 00012800
3nn coNTiNur 00012900
c 00013000
c STEP 5-0 00013100
C WRITE FINAL SUHMART OF FLOU 00013200
C AUGMENTATION REQUIREMENTS. 00013300
c 00013400
WRITF (MJ.261I 00013500
»f>1 FORMAT < 1H0.33V. ??HTOTAL FLOU AUGMENTATION REQUIRED.//. 00013600
•5X.1ntnnF»nwATF° NO. hFADUATER IDENTIFICATION INITIAL HE00013700
• ATUATFH FLOU (CFSI AUG. REOUIREO (CFSI./> 00013800
D(1 '"O'j NIIU=l .MHWTPS 00013900
HJFI OI=OATOT(NHU) 00014000
OATOT( NHU) =HWFLOU(t'HW ) -HWFLOI 00014100
H'JFLOW(NHU|=HUFLOI 00014200
WRITE (NJ.275I NHW.(HUTRIO(NHW.Jl.J=1.5).HUFLOU(NHW).OATOT(NHW) 00014300
30^ CONTINUE 00014400
110 CONTINUE 00014500
RF TURN 00014600
ENO 00014700
-------
SUBROUTINE HEATEX
Subroutine HEATEX remains unchanged from the original version
of QUAL as documented by the Texas Water Development Board (2). According
to reference (2):
This routine computes the net amount of heat
radiation flux being transferred across the air-water
interface. It is based on an energy budget which
considers solar radiation, atmospheric radiations back
radiation} conduction, and evaporation.
Detailed equations for all of the heat budget terms are presented in
Report 128 of the Texas Water Development Board (1).
The flow chart for Subroutine HEATEX shown in Figure IV-8 is
taken from reference (2). The program listing follows the figure.
IV-15
-------
READ IN LOCAL
CLIHATOLOGICAL
\ DATA /
YES
RETURN
^ TIHE \
TO READ
LOCAL
CLIHATOLOGICAL
DATA? ^
COMPUTE
REQUIRED
CONSTANTS
CALCULATE NET SOLAR
RADIATION AFTER
SCATTERING. ABSORPTION.
AND REFLECTION
CALCULATE ABSORPTION AND
SCATTERING DUE TO
ATMOSPHERIC CONDITIONS
CALCULATE
HOUR ANGLES
CALCULATE
REFLECTIVITY
COEFFICIENT
CALCULATE AMOUNT OF CLEAR
SKY, SOLAR RADIATION, AND
ALTITUDE OF SUN
CALCULATE VAPOR PRESSURES>
DEW POINT, AhO DAMPENING
EFFECT DUE TO CLOUDINESS
COMPUTE ALL TERMS REQUIRED
FOR EVALUATING THE VARIOUS
FLUXES IN ENERGY BUDGET
CALCULATE STANOARD TIMES
AT WHICH SUN RISES
ANO SETS
COMPUTE OTHER HEAT FLUXES
ANO PERFORM ENERGY
BUDGET FOR EACH CLEMENT
CALCULATE POSITION OF
SUN RELATIVE TO
A SELECTED LOCATION
ON THE EARTH'S SURFACE
FIGURE HZ"-8
^ RETURN
FLOW CHART FOR SUBROUTINE HEATEX
-------
s I Hi'll I r |Hf HE. 1 TP X
HTATEX COMPUTES the NET AMOUNT of hfat
RftnlflTION FLUX BEING TRANSFERRED ACROSS
THF AIR-WATFR INTERFACE BASEP ON AN
E'FRGY pLIOGET irfHlcH CONSIDERS SOLAR
RADIATION, ATMOSPHERIC RADIATION* BACK
HAniATION, CONDUCTION* ANO CVAPORAT I ON•
TITLr .POP I (75 ) « CONS I I 75«3) . JUNC 10 (15 ~ 5) «
JlJf rilS,?)vHWTR 10(35*5) «HUFLOW( 15) ,HWTEMPl 15) ,HW00<15) ,
H*rOO<15)»HWrONS(15«3)»WASTID<90«5)» TRFACT <90 ) ~ WSFLOW( 90) «
WSTFMP ( SO ) ,WSOO(90 > « WSRODI 90 ) • WSCONS ( 90 « 3) .OATOT < 15) ~
A<^nru,H.ofpthj 500 >* vflison)•otovcli5oo)«K2 c 500)»ki(5no)<
HS"ET (•= no I ,0L <500 ) ,VHW( 15) ,OEPHW < 15 ) iOLHWf 15) «T< 500) ~
n0( 5U«)) « ROD ( *01 ) , CONS (SOO « 3 ) » PT 1 ME « TPR INT« DEL* «
'IHWTRSjtNPEACHtNWASTE* NJUNC » HELT i DlL T «n2LT»DT00X2«0T200X«
LAT tLS*1.LLM,rLEV.r>AT. AE.RE ,PAYOFY,ORYRLB«WETRLB.DEWPT,
ATKPR «WINOiCLOUD* SONET.NItNJ»TRLCD« TOFOAT«MT»r>c « TIME»NcS
RfAl LL«,ISM,LAT
STEP J-0
COMPUTE REOUIRFO CONSTANTS
PI=*.1«
r -?.
C 0 N ? = 111
C0N^=1ft
COMi» =?»3
CONc=PI
rr*«fc = w
PELTSl=
Sr>Lrou =
ei rxP=r
16
n«»>I/J65.U
/1^H.0*LAT
O.u/Pi
**«PI/lP0.0
/\? . 0
.O/PI
CLl^-LSM)/1^.0
*3*.0
XP<-ELTV/253?#0)
IF I Tofi-AY .Nl . ^>.0 ) GO TO 77
STEP 2-0
COMPUTE ALL TFR1S REQUIRED FOR
EVALUATING THE VARIOUS FLUXES
F.^FRGY BUDGET
STEP ?-1
COMPUTE SEASONAL AND OAILY POS
SUN RELATIVE TO A SELECTED LOC
THE FIRTH'S SURFACF.
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• -16
»>fftPTH=i.r»n.oi7*cos)
00002600
00002700
00002600
00002900
00003000
00003100
00003200
00003300
00003400
00003500
00003600
00003700
00003600
00003900
0000*000
0000*100
O0OOH2OO
0000*300
iNoooomoo
0000*500
0000*600
0000*700
0000*600
0000*900
IT00005000
AT00005100
00005200
00005300
00005*00
-------
Orfl IfJ=ro^«**COS(CONl*
i«r< =« rakth* *2
ronrf-=n.mni?i-j. i?3t9»s im< coni » acs=pi-acs
Go TO 9
acs=pi/?.o
COUT IMUE
STR = 12. 0-TON6* ACS•fDELTSL
STS=24.<¦>-STR~?tn«oeLTSL
STR=0.0
STE=STD+n2LT
GO TO 78
77 STH=STR+0?LT
STE=STH+D2lT
78 CONTINUE
00005500
C0005600
ooon^Too
00005600
00005900
00006000
00006100
00006200
00006300
00006400
00006500
00006600
00006700
00006000
00006900
STEP 2-2 00007000
COMPUTE STANDARD TIMES AT WHICH 00007100
RISES AND SETS. 00007200
00007300
00007400
00007500
00007600
00007700
00007800
00007900
00006000
00006100
00006200
STEP 2-5 00006300
REAO IN LOCAL CLIMATAL061CAL DAT00006400
AT DESIRED TIMET INTERVAL < MINIMU00008500
INTERVAL IS THREE HOURS). 00006600
00006700
IF (TRLCO.ME.O.O) GO TO 6? 00006800
PCM) 12 * CLOUDtDKYBLR,WETrLB.aTMPR.WIND 00006900
FQ*VAT < 40* «5»-"8.ft )
VrMn=WIND»l.151 00009100
00009200
STEP 2-<* 00009300
COMPUTE VAPOR PRESSURES. DEW POI00009400
DAMPENING EPFECT OF CLOUOINESS. 00009500
00009600
VPWR = n.1001*LXPf 0.03»HETR1 R)-0.0837
00009700
VPAIR = VPV'B-0.0 0 0367»ATHPR*
-------
c
COMPUTE HOUR ANGLES
00011500
c
0 0011600
Tl« = m^- 1 ^ . O-UrLTSL + FQT JhC
00011700
Tf =cTF-l?.n-OFLTSL + rOT IME
00011600
GO TO 4?
00011*00
n
Tm=cTR-12.1-JFLTSI*IQTINE
00012000
TTr^Tl -IP.n-OELTSL + fOTint:
00012100
GO TO
00012200
UP
TP=sTh-12.O-UELTSL+EQTine
00012300
TC = ^TS-1?. ft-uFLT3L + EIOT IMC
00012400
U
COfJT l'lUE
OQ012SOO
T fllT=lT» + TF>/?.0
00012600
r
00012700
r
STEP 2-f.
00012800
c
COMPUTE AMT OF CLEAR SKY • SOLAR
00012900
c
RADIATION, AND ALTITUDE OF SUN.
00013000
c
00013100
bnLAk = SOl C0N/nH**4C0N6*C0S
00013300
Al PHA = SlNtCON?)*SIM«COS(DECLINl*COStCON5*TALT)
00013*00
IF (ABS
00015100
UAN=ELCXP/*«<-l.?53> >
00015200
A1= FXP <-(P.Ib^+O.OMOB^PWC>»in.l29+0.171*EXPI-0.8eO»OAM>)»OAM>
00015300
A2=rXP<- ( 0 ,«*65«-0. 0«*0ft»PWC >~<0.1 79*0.171#EXP< -0. 721*0 AH > >«OAM)
00015100
c
00015500
c
STEP 2-P
00015600
c
COMPUTE REFLECTIVITY COEFFICIENT00015700
r
00015800
GO 10 <"*U.M.M.31.31,31.32.3?.^2.3?,33|. NL
00015900
3P
AR=1.18
00016000
HR=-0.77
00016100
fan TO <>**
00016200
31
AR=?.2U
00016300
BR=-n.P7
00016100
GO TO 31
00016500
3?
ftn=n.9S
00016600
4 < = -n.7^
00016700
bo 10 31
00016800
* <
AP = fi ,
00016900
fl,< = -0 . M1!
00017000
3<*
OmUI'LF
00017100
R«; = f-n » < Con S + AJ PhA)**RR
00017200
f Tr=l "*?~() . ^ * ( 1 . P-A1 -IJAT ) ) / ( 1 .0-O.c*n^»( } .ft-AUOAT ) J
00017300
nOOl7UOO
-------
SONFT=SOLAR«ATC*CS«(1.n-HS)
UP TO ^
** SONFT = 0•0
3 ft COMTI HUE
Clc=i. n + o.i7«rLnun*«2
HA=r • **7»1 • 7^t-f),,«2»fl9E-0 6» ( flRYRLFH
HO 70 I=1»MPEACH
NrELR=NCCLHH|I>
00 70 J=1,NCELR
I0R=ICL^RP(I,J»
VPWrO,1001*EXP(P,03*T< JOR ) >-0,0837
Hb=0.Q7*1.73E-09»(T(I0R)+U60.0)**«
EVAP=f,2.t*» (AE + RF*WI«n)
HE=rVAP»(VPW-VPflIR)»(108q,0-0.5#T|
HC=0.01»EVAP«
-------
SUBROUTINE HYDRAU
Subroutine HYDRAU remains unchanged from the original version
of QUAL as documented by the Texas Water Development Board (2). According
to reference (2):
This routine performs a hydrologic balance for a
branching stream or canal system based on continuity of
flow. It then computes velocities1 volumes} and
dispersion coefficients for every computational element
in the system.
The flow chart for Subroutine HYDRAU shown in Figure IV-9 is taken from
reference (2). The program listing follows the figure.
IV-16
-------
YES
ELEMENT
TYPE
HAVE \
HYDRAULICS
FOR ALL ELEMENTS
. BEEN
COMPUTED'
INITIALIZE
COUNTERS
CALC HYOR
FOR ELEMENTS
CALC HYOR
FOR ELEMENTS
TYPE" 1
CALC HYDR
FOR ELEMENTS
TYPE-2 .3
CALC HYOR"
FOR ELEMENTS
TYPE-4
FIGURE EZ"-9
FLOW CHART FOR SUBROUTINE HYDRAU
-------
Si' U OL T T f r »it ok aii
HYDRAU PERFORMS a HYOROLOGIC BALANCE ON
TMf SYSTEM RASED ON CONTINUITY. IT
COMPUTFS THE FLOW, VELOCITY. VOLU"F«
depth, AND dispersion coefficient FOR
evtry element in the SYSTEM.
common T1TLF(?0.20).RCH10(75,5).RHTHOP(75)«RHTEOR(75 I«NHUWAR< 15) .
T A&GDO( 7s). TAUS0R(75.6)tNCELRH(75)•IFLAG(75*20).
TCLHRIM 7*«?0)•C0tFrtV<75).EXPOQV(75)»C0EFQH<75) ,EXP0QH(75)•
C«ANN( 7S ) .<"K1 ( 75) «fK3<75) »K20PT(75 ) « CK2(7S)« C0EQK2 ( 75 ) .
rxPQK2(75).TINIT(75)•OOINIT(75)•BOINITC75)~C0INIT(75.3)•
OH 75 ) , TM 75).DOI(*5> tROOI(75). CONS I(75.3).JUNC10 <15•5) .
JljnC ( 1*. M .HWTRIU(15.5) .HWFLOW( 15) ,HWTEMP(15) .HWOO( 15) .
MWPOD(15).MUCONS(15.3).WAST IP( 90.5)•TRFACT(90).WSFL0U(90).
WSTFMP()* WSDO(90).WSROO< 90),WSCONS(90•3).OATOT(15) .
A(r , DPPHW (15 ) • OLHW (15 ) . T ( 500 ) .
(10 (SOU) * F' = ni I I > /CNCCL*
Do inn .1=1 .mcfilR
Ioi>=ICLORP( I .J)
UL=IFLAG( I .J)
GO TO (101 .102.102,
00002500
STEP 1-0 00002600
initialize counters for heaowateoooo27oo
waste inputs or withorawls. and 00002500
JUNCTIONS. 0000290 0
00003000
00003100
00003200
00003300
00003900
STEP 2-0 00003500
LOOP THROUGH SYSTEM OF NREACH RE00003600
AND NCELR COMPUTATIONAL ELEMENTS00003700
REACH.
103*10?,10<+.10<4), IFL
STCP 2-1
00003800
00003900
0000^000
00009100
00009200
00004300
00009400
00004500
00004600
00004700
00004800
00004900
ji 4-
ri,«>
Ml * ~1
( f | = )Url fife I
COK.PUTE HYORAULICS FOR AN ELEMEN00005000
TYPE 1. 00005100
00005200
00005^00
00005400
-------
vmm m»«v i =roF rovi 1 > ~hwfluw ( mhu» ••expoovi i )
t-» i»Mki |,HV ) =CUfTOH< I > »HWFLr>WJ MHW) ••EXPOQH< I )
f)LH* IfiMW » s?2#6*C MANNf I > ~ VnW ( MMU ) •UEPHW < NHW 1**0. B^"5
'/«:i ( I OR ) =C^rFnv f I) • FLOW I ICR I •*EXPOQV< 1 »
r TOVCMIOR >=0T?ODX/(HWFLOV(NMU)/VHW< NHW) ~FLOW I I OR >/VEL
&.i TO 1P«
STEP 2-2
COPPUTE HYDRAULICS FOR ELEMENTS
2 • 3» OR 5.
10? Fl Ok M0K ) =FL0u ( I0R-J ) ~OR
VF*LI loR)=COFFRVt I)*FL0W( I OR > ••EXPOO V< I )
DTOvn ( lOP)=UT200X/ ~ FLOw < NN) ~QR
vn * 10R >=COEFOV••EXPOQVtI)
nrovLLiion)=UT?nox//vel ~
~ KLni>'
GO TO 10b
STEP 2-4
COMPUTE HYORftULlCS FOR ELEMENTS
6 OR 7.
tr»* .+QR
VFl f inR > =rOEFOV(I)«FL0U(IOR)••EXPOOVtI I
nmuci (if)P) =ut2^ox//vel
-------
SUBROUTINE INDATA
Subroutine INDATA reads'and prints all data required by the
model except the climatological data which is read in Subroutine
HEATEX and/or ALGAES. INDATA reads a set of title cards and 11
different types of data that are prepared on 19 different data forms.
Seven of the data forms are optional depending on the parameters to
be simulated. Chapter V contains additional details concerning data
preparation, descriptions of data forms and an example data set. If
INDATA detects any data inconsistencies, it prints an error message
and terminates execution.
Figure IV-10 illustrates the flow chart for INDATA and the
following pages contain the program listing. All program variables
in COMMON are defined in Section V.
IV-17
-------
S J»<»- I'UT IfT TUP AT/\ ( Tt I ST « IpPTI , IflUCOn, TMAX , MCCLLS)
T I11S SUPPOUTINE REAPS IM ALL OATA
RPOU1REP fOR THE OPERATION OF THE
MOOFL EXCFPT THF CLIHATOLOGICAL
DATA FOR TEMPERATURE SIMULATION.
rr «-r ni>» TlTLf ( ? 0 » 20 ) . PCH10 ( 75 , S ) ,RMTM0H{75) *RMTEOP< 7S) ,NH^UAR< 15 > •
TAH',rui 7C ) . I AUHOR < 75« M »NCf LRH< 75) « IFLAGC 75* 20 I i
ICI 0*0 < 75. ?0 ) .C0EF0V(75) ,EXPPOV<75) , COEFOH( 75) ,EXPnOH! 75) ,
r-flMNi 7*1) » CK l ( 7S ) «CK* I 75 > • H 20PT (75) » CK2<7?) .COEQK2<75> ~
L XF'OH^ I 71 ). UNIT (75) •DOIMTTI751 .R0INIT<75) .COINlT<75•3) •
OH75) »TI <75) .001 ( 7S) »BODI ( 7s ) «CONSI <75.31 • JUMC 10 < 15 . 5 I .
JU*f ( I*.*) •HUTRID11 5.5) • HWFLOW ( 15) ,HWTEMP<15) .HUQOC15) .
HWPOD<15) • I'WCONS <1 5 » ^ ).WAST in<90 . 5) •TRFACT< 90).WSFLCWt 90)»
WSTftM m)«WSOO< 90)»WS80D< 90).WSCONS(90»3).QATOT(15>»
ft(rton j ,4< 5(10 ) .C(50P ) . 0 < 5 ) .S < ^00) » Z ( 500 ) • W < 50 0) .G{500) «
FLOW < bOO)»PEPTH<50P). VEL < 50 0).OTOVCL <500).K2<50 0).K1<500).
HSNET < 50n j,OL< bOO),VHW<15).OEPHW<15).OLHW<15).T<500) .
P0<5nQ>.POr>«COLI<500>«
ALGAF < 500)»PHOS<500)• CNHM 500 > . CN02 < 500 ) • CN03 ( 500 ) •
COI IR175)iALGI(75),PH0SI<75).CNH3I< 75).CN02I<75)t
CN031(75».COL I IT(75).ALGIT<75)»PH0SIT<75)»CMH3IT<75)•
rfiO?IT< 7q> tCri03lT < 75) • WSCOL I < 90 ) . US ALG ( 90 ) ,WSPHOS<90> •
l.Sr'H3<90 ) iWSM0?< 90) tUSNOV 90) .HUCOLI < 15) .HWAL6U5) •
HWPHOSI15),HWNH3<15)•MWN02(J 5).HWN03.EXC0EF<75)
CnniMOri/RAr.IOM/ CK*< 75) ~ R AON I T (75 ) .RAON I<75 ) »HWRAPN< 15 ) «WSRAON<90 )
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NCW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• -29
• NEW
• •-1
CWOK/^STATD/ y< 50(1) , ISS
Ml Nbl Of, Oft r A <91,25 ) .coor <12) .COPE? (6)
R| Ai ki .K?,LuT.LLM,LSM,JUr'f ID
OA Tf rnl.T/usiEMOT/ . ELDA/UUFNOA/ • YHS/UH Y FS/
OAf* CUC C/4HlTST,MHWRIT« m MFLOW »ttHSTFA« '~HNUMB »HHNU^ *«»HTIME»
• »*MMA
-------
INITIALIZE CCHTAtN PAHAMFTMS
77> V' ' t
c
c
3n
34
3°
T?
Jc
ui i onr 1=1 ,£«so
I I'rur nil I =n
ILlr T=r
iwpi i = <-
iAijnop =o
I bS=n
LftTsO.O
LL-=0.P
LSM=0.C
nAY0FY=0.r
AE=n.n
lJF=0.0
CLFV=n.O
UAT=0.0
NEPPOKsU
ti ir=o.o
TPPihT=n.n
TOFDAYsO.0
ULCPsO.O
CKL=0.n
NI=5
flj=f
STEP 2-0
READ IN TITLES
I
*¦*
C
r
c
c
17] 1
00 3P I=1»16
PLAH (Nl.51) (TITLE< I •J>~J=1*20>
FnR^AT (20A4)
IF 34• 39.34
N = 1-16
WRITE (MJ.32) N
FO«HAT =n
IF ( T 1 TI f (?«J) .EG. YES) P»ODPPT(ll=l
00 1710 1=6*9
iriTirirM.31 .ro. yes) «odopt=i
ctit inuf
IFITITLM1P.4) .FC. YFS> roDOPT(M=l
DC- 17?0 Isn. 1^
-------
Ir ( r nut. ( i, 31 .fj. trs)
I7?rj CV'TIMlt
STEP ?_-?
SET NCS ATA = 0
IMKOPOPTIH) .GT. 0) IDATA=1
IF { *OOOPT <®>) .GT. 0) IOATAsl
IF ( HOllOPT ( ^ ) .GT. H) inAT/» = l
IF ( ~OPOPT(P) .GT, 01 I0ATA=1
N C»[>S=l3
DO ?0 I=l.MCnrS
REAn < NI •P1> (GPTfi(I,K),K = l~16)
00009200
?1
FOP^T 16A« «A1 ,F10.0,inx«£>A(+«Al,
Fin.O )
00009300
IF ICATA1 I,1 )-EM0A)20,25,?n
00009100
?0
CONTIIJUE
00009500
NERRCR=1
00009600
?t*
i = i ~ a
00009700
REAP *
IF lI.fcF.'CPDS) GO TO 5>3
IF i^OOOPT ») 1^2 0,1920.1^30
l s?n
1r N
00010700
FOi^tAT < 1H0 »bX«l 5h+**** TOO FEW
(«I3«1SH> 0ATA1 CARDS REAOI
00010800
?*
COMT 11 lUF
00010900
MLPTSrl
'=1-1
00011000
UO 16 I=1« N
00011200
lir 11> j=i , 1 ?
IF (L'ATAM , 1 i-cnon J) 1 16,U,1 ft
000111*00
u
GO TO (5.r,7,6,9,10,11,12,J3.14,
15,IP). J
C,
II TCI = 1
00011600
no to
00011700
A
I^PTl = 1
00011000
Gf TO lf.
00011900
7
IfiUGOP = 1
00012000
tin tf \<
00012100
-------
WATER RESOURCES ENGINEERS, INC /TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
qUAL-II
TITLE DATA
\ Simulate ? /
CARD TYPE \Write Yes/
ALPHANUMERIC NAME
V
Dr
No
1
3 4 •«
s '
10
11 l?
¦ J 1- 1 Is I »• „ I
i i
i t
l e.
4% . l« .7
1 * i >» 4
ft 1 1 - to 1 r M f u i
-1 4 1 -f -q -« ec
ITLE
0
1
0
TWO B
/ WRE
EX PAN
DE D V
E RS 1 0
N BF
QUAL-
1
ITLE
0
2
NAME
0 F B
AS 1 N
=
ITLE
0
3
C0NS
ERVAT
1 V E M
1 NER A
L 1
1 N
MG / L
ITLE
0
4
CONS
ER VAT
1 VE M
1 N E R A
L 1 1
1 N
MG / L
ITLE
0
5
C0NS
ERVAT
1 VE M
1 NERA
L III
1 N
MG /L
1 TL E
0
6
TEMP
ER ATU
RE 1 N
DEG R
EES F
AH R E N
H E 1 T
1 TL E
0
7
B 1 0C
HEMIC
AL 0 X
YG EN
DEMAN
D 1 N
MG / L
ITLE
0
8
ALGA
E AS
CHL.A
1 N >i
G/ L
ITLE
0
9
PH0S
PH0R 0
US AS
P 1 N
MG /L
ITLE
1
0
AMM0
N 1 A A
S N M
G / L
ITLE
1
1
N 1 TR
1 TE A
S N M
G / L
ITLE
1
2
N 1 TR
ATE A
S N M
G / L
1 TLE
1
3
DISS
0L VE D
0XY6
EN IN
M6/L
ITLE
1
4
C0L 1
F0RMS
AS M
PN
ITLE
1
5
NO
RAD 1
0N UCL
IDE (
NOT P
ROGRA
MM E D )
E
NDT 1
T
LE
-
- _
i i
1 1' ' ' " 1 ' 1 ....
» ' -
FORMAT (20A4)
NOTE 1 NH3, N023 and N03 must be avnulated as a group or not azmulated as a group.
F0RM(T)0F(i9)
/Ly
-------
FORM
©OF@
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
PROGRAM ANALYSIS CONTROL DATA
CARD TYPE
(TYPE 1 DATA)
PARAMETER
VALUE
PARAMETER
VALUE
_
L
I ST
D
ATA
INPUT
W
RITE
F 1 N A
L SUM
MARY
N
0 F L
0
W AU
GME NT
AT 1 0N
S
TE AD
Y
S T A
T E
N
UMBE
R
0 F
REACH
ES
=
C
NUMB E
R 0 F
J UNCT
1 0 N S
=
N
UM 0
F
HEA
D WAT E
RS
=
-
NUMB E
R 0 F
WASTE
L0AD
S
T
1 ME
S
TEP
( H 0U R
S )
S
L NT H
C 0MP
EL E
ME NT
( M 1 ) =
M
AX 1 M
u
M R 0
UTE T
1 ME (
HRS) =
T 1 ME
1 N C
F0R R
PT 2 (
HRS) =
L
AT 1 T
u
DE 0
F B AS
IN ( D
EG ) =
LONG 1
TU DE
0 F B A
SIN (
DEG ) =
STAND
a|r d m
E R 1 D 1 lA N ( D
EG ) =
DAY 0
F YEAR ST A
RT T 1
ME
e|vap
C0EF
- , ( A E
)
3
E VA P
C 0 E F
, ( BE
)
=
e|lev
0 F B
AS 1 N
(FEET
)
DUST
ATT ENlu AT 1 0
N C 0E
F
eIndat
A
1
|
I
i :
FORMAT (6A4, Al, F10.0, 10X, 6A4, Al, FIO 0)
NOTE 1 These cards may be deleted if temperature is not simulated.
NON-SPACIALLY VARIABLE A, N, and P CONSTANTS (SEE NOTE 2)
CARD TYPE
(TYPE 1A DATA)
PARAMETER
VALUE
PARAMETER
VALUE
I
'
0
UPT
A
K E B
Y N H 3
0 X 1 D
( MG 0
/MG N
) =
0 UP
TAKE
BY N 0
2 0X1
D ( MG
0 / MG / N )
S
0
P R 0
D
BY
ALGA
E ( MG
0/MG
A)
=
0 UP
TAKE
BY AL
GAE (
MG 0 /
MG A )
S
N
C 0 N
T
ENT
0 F AL
GAE (
MG N/
MG A )
=
P C 0
NTENT
0 F A
LG AE
( MG P
/MG A )
=
A
LG M
A'X S P
EC GR
OWTH
RAT E (
1 / D AY
) =
ALGA
E RES
P 1 R AT
ion r|atE (
1 /DAY )
=
N
HALF
SAT
URAT 1
ON COIN ST
(MG / Lj) =
P HA
LF S A
turat|i on c
ON ST .
(MG/L)
=
L
I GHT
HALF
SAT
CONSTK LNG LiY /M 1 Nl) =
TOTA
L DAI
L Y R A
D 1 AT 1
ON ( LA
NG L EY S )
=
E
ND AT|A
1 A
i
FORMAT (8A4, F?.Ot 2Xt 8A4t F7.0)
NOTE 2 These cards (except ENDATA1A) may be deteted unless ALGAE, (NH3t U02s N03), P041 Coliforms or adionuclides are to be simulated
-------
FORM
@OF©
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
qUAL-II
REACH IDENTIFICATION AND RIVER MILE DATA
CARD
TYPE
REACH IDENTIFICATION
RIVER MILE
AT
RIVER MILE
AT
(TYPE 2 DATA)
ORDER
ALPHANUMERIC NAME
HEAD OF REACH
HEAD OF REACH
e * «c
ii r i) u i.
lo ' IB 1° *0
'M '1 7* J3
¦V "• * .
11'- - -J
1 ¦> - 4. r. ! «•> «
*1 * O - j i- 63
l> «.l r. \ e*. I. - tO -t,
1 "
3 4 J 6 ?"> ~"6
s
TREA
M
R E A
CH
RCH =
FR
0M
T
0
s
T RE A
M
R E A
CH
RCH =
FR
0M
T
0
s
TREA
M
REA
CH
RCH =
FR
0M
T
0
s
TREA
M
RE A
CH
RCH =
FR
0M
T
0
s
TREA
M
REA
CH
R C H =
F R
0 M
T
0
s
TREA
M
REA
CH
RCH"
FR
0M
T
0
s
TREA
M
REA
CH
RCH =
FR
0M
T
0
s
TREA
M
REA
CH
R C H =
FR
0M
T
0
s
TREA
M
REA
CH
RCH =
FR
0M
T
0
s
TREA
M
REA
CH
RCH =
F R
0 M
T
0
s
TREA
M
REA
CH
RCH =
FR
0 M
T
0
s
TREA
M
REA
CH
RC H =
FR
0M
T
0
s
TREA
M
REA
CH
RC H =
FR
0 M
T
0
s
TREA
M
REA
CH
RCH =
FR
0 M
T
0
s
TREA
M
REA
CH
RCH =
FR
0M
T
0
s
TREA
M
REA
CH
R C H =
F R
0M
T
0
s
TREA
M
REA
CH
RCH =
FR
0M
T
0
s
TREA
M
REA
CH
RC H =
FR
0M
T
0
s
TREA
M
REA
CH
RCH"
FR
0M
T
0
s
TREA
M
REA
CH
RCH =
FR
0M
T
0
s
TREA
M
REA
CH
RCH "
FR
0M
T
0
s
TREA
M
REA
CH
RCH =
F R
0M
T
0
s
TREA
M
REA
CH
RCH =
FR
0M
T
0
s
TREA
M
REA
CH
RC H =
F R
0M
T
0
s
TREA
W
REA
CH
RCH =
FR
0M
T
0
E
NDAT
A
2
I
7 i * a
M 1
1 P
• if _•
- , u *' "J
1 - "r * L*
*Thie la cm unmodified QUAL-1 form (See form B of B)
FORMAT (3A4, 3X, FS.O, 5A4, 3X, A4, ZX, FIO.O, 4X, AZ, 4X, FIO.O)
-------
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
FORM (4)OF([9) FLQW AUGMENTATION DATA*
CARD TYPE
(TYPE 3 DATA)
ORDER
OF
REACH
**Of Aug.
Sources
Available
TARGET LEVEL
DISSOLVED OXYGEN
ORDER OF AVAILABLE AUGMENTATION SOURCES
1 Si
2 04
3
4 Ih
5 lh
6 111
I
7 3 4}
6
7 B « tO II U 13 U 15 l« 17 IS l» 70 71 ?•> ?3 ?« ti
7b 77 23 J9 X
31 )' 13 M Ij
!4 3? M J» O
4| 4? O 44 4) 46 47 *t 40 50
51 51 53 55
56 5/ 56 59 60
61 13 13 64 65
66 67 66 6* 70
71 77
73 7* 75
76 V ,| * ft)
F
L'0!W,
A
UGMT
;s|0!ur
CES1
RC H =
!
'
t 1
,
' 1
1 ;
'
1
, ' J >
F
Lew
A
U G M'T
!S 0 U R
CESi
RC H =
1 '
' '
1 1 (
,
'
' ! '
1
<
' ' 1 i
F
l;0w
A
UGMT
|S!0 U R
C'E S .
RC H =
.
¦
; 1
i 1
,
'
,
. 1 1
F
l 0 w
A
UGMT
S 0 U R
CES
RCH =
F
L0W
A
UGMT
SOUR
CES
RC H =
F
L0W
A
UGMT
S0 U R
CES
RCH =
F
L0W
A
UGMT
S0UR
CES
,RC H =
,
,
[
•
,
1 1 1 :•
F
L0.W
A
UGMT
S;0 iU R
CES,
:R C h =
'
¦ . . •-
r
, ,
i : I !
F
L'0W
A
UGMT
S0 U R
CES
RC H =
1
t ,
' ' 1
' 1
! ! I 1.
F
L0W
A
UGMT
S0 U R
CES
RC H =
F
L0W
A
UGMT
S0 U R
CES
RCH =
F
L0W
A
UGMT
S 0 U R
CES
RCH =
F
L0W
A
U G M,T
;s0ur
CES
R C H =
, ,
;
, 1
i ' ! 1
!
1 1
11
1
1
F
L0W
A
UlG MT
,S,0 U R
C ES ,
RC H =
'
' , 1
»
1
. 1 i
1
1 '
1 1
F
L0W
A
UGMT
,S0UR
CES
. RCH =
.
1
,
1
• i
1 1
1
F
L0W
A
UGMT
S0UR
CES
RCH =
.
F
L0W
A
UGMT
S0U R
CES
RC H =
F
L0 W
A
UGMT
S0UR
CES
RC H =
F
L0iW
A
UG MT
S 0 U R
CES
RC H =
•
'
1
¦1 i
F
L 0iW
A
UGMT
S 0 U R
CES
RC H =
,
, i ,
' 11
F
F
L 0 W
A
UGMT
S 0 U R
CES
RC H =
¦ 1
¦
1 1 ,
1
1 1
: i ! i-
L0W
A
UGMT
S0UR
CES
RCH:
F
L0W
A
UGMT
S 0 U R
CES
RC H =
—1
F
L0W
A
UGMT
S0UR
CES
RCH =
F
LOW
A
UGMT
SOUR
CES
RCH =
E
ND A T
A
3
1
J 3 4 5
6
7 1 • 18 11 1? 13 U 1J l» 17 19 »• V ?¦ r 73 3« » ¦>* 7- 7H ?« W Ji J? 33 U *5 3& 37 38 ->0 41 4? 4J 44 psO rnty vary (Jigfnty
used.
-------
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
FORM (A)OF(l9) QUAL-II
^ W COMPUTATIONAL ELEMENT FLAG FIELD DATA
CARD TYPE
(TYPE 4 DATA)
ORDER
OF
REACH
Num Of
Com p.
Elements
1 2 3 4 5
COMPUTATIONAL
6 7 8 9 10
ELEMENT FLAGS
II 12 13 14 13 16
17 18
19
20
I
7 3 4 3
*
; i i it
II 1/ 13 M 1}
16 17 ig |« to
11 77 7J 7* 75
76 77 28 T* »
11 37 33 34 3)
36 37 30 J« «J
41 47 4} 44 45
4A 47 40 49 30
51 57 53 44 53
56 57 31 $9 to
et eJ 63 64 65
66 6* 63 69 70 71 "»
73 74 73
76
77 71
m
F
LAG
F
i ,el;d
r'c|h =
' ;
; ¦ '
!
<
| I
1 ~
' ' I '
' 1 ¦
t !
1
1 1
1 1 1
J
1
F
LAG
F
1 ELD
rc'h!=
1
'
1 ' ,
1 1
' , 1
' 1 ' ,
; M ' i t
: 1 1 ¦ 1
1
F
LAG
F
1 E,LD
RCH =
1
: 1
t 1 '
j , J ,
:
1
F
LAG
F
1 EL D
RC H =
F
LAG
F
1 E L D
RCH =
F
LAG
F
1 E L D
RCH =
F
LJAG
F
1 ELD
R C H' =
;
|
.
! .
i.i
, ,
, . ' ;
1
: . . 1
F
LAG
F
1 ELD
RC H : =
, 1 1
! .
:
,
1 ;
i ! 1.'
; :: r : i
F
lag,
F
1 E L D
r;c h =
.
, i
. ' '
l-l
1 > 1
! 1 1 '
!!••!:
: ! ' 1 ! 1
F
LAG
F
1 ELD
RC H =
F
LAG
F
1 ELD
RCH =
: 1
F
LAG
F
1 ELD
RC H =
• , ' ' i
F
LAGl
F
1 E LD
r!c h' =
' 1
!
¦
;
:
; I
' • 1 1
II'!
1;; 1 ! i
i-i
F
LAG'
F
1 EL D
rc h:=
1
, ,
¦ -
,
: i ! :
¦ |
. ,-i 1
Ill
1 !.i ; , 1.
! 1
. 1.
F
LAG
F
1 ELD
RCH: =
1 1 '
, :
' • 1.
i M 1
i 1 1 ! i
! !
I-
F
LAG
F
1 ELD
RC H =
.
F
LAG
F
1 ELD
RC H =
,
F
LAG
F
1 ELD
RCH =
F
LAG
F
1 ELD
RC H =
,
, ' ,
! i-
F
LAG
F
1 ELD
RCH =
1
' -
.' i i !.! '.
; i ..i 1 i
F
LAG
F
1 ELD
RC H =
1 '
1
. ( I
il:.1!
: • 1
1
F
LAG
F
1 ELD
RC H =
F
LAG
F
1 ELD
RC H =
F
LAG
F
1 ELD
RC H =
F
LAG
F
1 ELD
RCH:
E
ND AT
A
4
1
7 i * 3
6
' 9 ? 10
II 12 1) 0
It- 1* IB "> 29
'i r ;j » »
2s 27 TP JO
31 J7 33 W ij
36 3* 33 39 U3
41 4? 43 44 i3
46 4? 4| 49 M
51 5? 53 34 35
5. V 51 59 60
6» 67 63 64 63
64 67 ts 1,9 TJ 11 7?
73 74 73
76
"7 78
7»
00
*ThvB is an unmodified QUAL-1 fom (See form B)
FORMAT (2A4, A2, SX, FS.O, SX, F5.0, 10X, 20F2.0)
-------
WATER RESOURCES ENGINEERS. INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
FORM (T)0F(|9) QUAL-II
W V-/ HYDROLOCIC DATA
CA
(TYI
R
>E
D TYPE
5 DATA)
ORDER
OF
REACH
COEFFICIENT
OF FLOW FOR
VELOCITY
EXPONENT
OF FLOW FOR
VELOCITY
COEFFICIENT
OF FLOW
FOR DEPTH
EXPONENT
OF FLOW
FOR DEPTH
MANNING'S
- n"
H
y,d|r:a
U
L; 1 |C,S
;r|c!h =
! . t
•
. 1 ' '
I !
1 I < 1
¦ '] 1
;
; i ! •
1 i i '
1
I j
H
Y|D'R A
U
L, lIC'S
.R'c;h:»
t , 1 ,
¦
' 1
1 '
J
! * 1
t ' '
1 '
; l 1 :
! i ¦ i
i
1 i
1.
~T~
H
Y DIR'A
U
l' i !c;s
R'C'H =
¦ i
I 1 ¦
1 , 1
i 1 1
,
l ;
1 ! i
, 1 1 !
1!: i
! . i !i
ii, • i
i
H
YDRA
U
LICS
R CH =
H
YDRA
U
LICS
R CH =
H
YDRA
U
LICS
RC H =
H
Y|DiR.A
u
l: i ic s
r|c'hi=
, i i
1
, 1 .
i
1
. 1
,
i J
. \
,. 11 i
'
i ! 1 i
i
H
y|d!r.a
u
LJ1 |C|S
RjC(H- =
i . • ~
1
i ,
! i ,
1
,
¦ ¦
, , ! !
'in
;
;!! i.
H
yd|ra
u
L I !C'S
R!C;H »
' 1
1
,
1 '
' '
- i '
..I : '
I'M
'.i.1
1
i -
i 1
H
YDRA
u
LICS
RCH =
1
i
H
YDRA
u
LICS
RCH =
i
i
i
1
H
YDRA
u
LICS
RC H =
'
.
H
yd'rIa
u
L 1 |C,S
rIc H =
i i
1
¦
1 .
1 1
. 1 '
; 1 ;
:.i 1 1
; , ! |
•J ;
: 1 ! !
i.i
i
u
H
YDRA
u
L I jClS
r|c'h,=
' '
'
!
!
1
- i i ¦
!. 1 1
i 1 i
; i i
Ml'
i ! ! :
1.! ,
11
i.l
H
yd;r A
u
L ICS
R C H,=
1 .
! '
' 1
1 i i :
!
11
M
1
j
H
YDRA
u
LICS
RCH =
H
YDRA
u
LICS
RCH =
H
YDRA
u
LICS
RCH =
H
YDlRA
u
LICS
R C H =
¦
,
i
• 1
1
i ; 1 i I
H
yd'r a
u
L, 1 C'S
RCH =
,
1
, |
: 1 ' •
• ! i !
, 1 i ! !
H
Y D'r'A
u
L'l C S
!rch =
1
t ,
' i 1
' ! , >
!•! i I
1
! i 1 i ilT
H
YDRA
u
LICS
RCH =
! 1
H
YDRA
u
LICS
RCH =
1
. ¦ I .
H
YDRA
u
LICS
RC H =
i i
H
YDRA
u
LICS
R C H =
, «
E
NO A T
7 3 * i
A
5
7 6 » 10
u »? n n is
ie i7 ie 19 ?o
7< "7 '3 7* ?j
lb ?' n 30
Jl J7 U Jl J)
34 37 3# 3« »
4 1 4? 4} 44 44
46 <7 4# 45 50
SI 5? J3 54 3)
16 57 J* to
6? 63 64 &5
m tt
-------
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II ^
0FU9) BOD AND DO REACTION RATE CONSTANTS DATA
CA
(TYP
RC
E
TYPE
6 DATA)
ORDER
OF
REACH
DEOXYGE NATION
COEFFICIENT
(1/DAY)
BOD REMOVAL
DUE TO SETTLING
(1/DAY)
OPTION FOR
DETERMINATION
OF K2
REAERATION
COEFFICIENT
(1/DAY)
COEFFICIENT
OF FLOW
FOR K2
EXPONENT
OF FLOW
FOR K2
R
7 3 4 ^
E A CT
C <8EF
R CH =
1
. ' ! !
' '
j '
R
E AC T
C0E F
R C'H =
:
'
• 1
' , . ;
1 !
I
R
E AC T
C0E F
RCH =
i
i
'
¦
R
E ACT
C0EF
RC H =
R
E AC T
C0E F
RCH =
R
EACT
C0EF
RCH =
R
E ACT
C0EF
R C H =
i
, I
'
R
EACT
C0EF
RCH =
'
1
R
EACT
C0EF
R C'H =
R
EACT
C0EF
RC H =
R
EACT
C 0E F
R C H =
R
EACT
C 0 EF
RC H =
R
EACT
C0EF
R C H =
,
i ' 1
R
EACT
C0EF
RC H =
, .
'
R
EACT
C 0 E F
RCH =
R
EACT
C 0 E F
R CH =
R
EACT
C0EF
R C H =
R
EACT
C0EF
RC H =
R
EACT
C0EF
RCH =
'
R
EACT
C0E F
RCH =
R
EACT
C0EF
RCH =
R
EACT
C 0 E F
RC H =
R
EACT
C 0 E F
RCH =
R
EACT
C0EF
RCH =
R
EACT
C0EF
R C H =
E
NDAT
A
6
1
.
7 3 * 5
7 t J 1=
1! •? U l 5
it i* is i" 73 *i i ?' "•<
» r r> 3c
Jl J? 33 Jj 2
J' 39 •>' *0 4» 4J *1
Ifr ' if al t>* -J
t-s eJ *5 '?
73 7* 75 76 7J 73 't K
*Thie is an unmodified QUAL-1 form (See for*n C)
FORMAT (2A4, A2t SX, PS.O, 6F10.0)
-------
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMEt-1 lOARD
STREAM QUALITY ROUTING MODEL
QUAL-II #
ALGAE,NITROGEN AND PHOSPHOROUS CONSTANTS
CARD TYPE
(TYPE 6A DATA)
ORDER
OF
REACH
CHLOR A TO
ALGAE RATIO
ai G/MG
Algae Settling
Rate
(FT/Day)
Role Coef For
NH3 Oxidation
(I/Day)
Rate Coef For
NH2 Oxidation
(I/Day)
Benthos Source
Rate For NH3
MG/FT/Doy)
Benthos Source
Rate For P04
MG/FT/Day)
i
5 J 4 5
i > 10
11 I' 13 14
16 1 lot? J
i > / $
t i ? ^
u «J
.1 33 > *
-1 ij 4t <1 -«
- i u
1 J.S! 1 is
>s
J j6 S* tt>
w ¦ :l i
s ') ft '•> —
A
LG A E
N A
N D P
C0EF
RCH =
'
'
1. .
A
LGAE
N A
ND P
C0E F
R'C H =
1 '
A
LGAE
N A
N D P
C0EF
RCH =
i
'
A
LGAE
N A
ND P
C0EF
RCH =
A
LGAE
N A
N D P
C0EF
RCH =
A
LGAE
N A
ND P
C(9EF
R CH =
A
LGAE
N A
ND P
C0EF
r c!h'=
1 i
A
LGAE
N A
ND P
C0E F
R ClH'*
A
LGAE
N A
N D P
C0E F
R CH -
. i i 1 '
A
LGAE
N A
N D P
C0EF
R CH =
A
LGAE
N A
N D P
C 0 E F
RCH =
A
LGAE
N A
ND P
C 0 E F
RCH =
A
LGAE
N A
ND P
C0EF
RCH-
'
, |
, .'
; ! ! . !
A
LGAE
N A
ND P
C0 E F
r c.h; »
i
• i 1.;
A
LGAE
N A
ND P
C0EF
R CH =
¦ 1 1 :
A
LGAE
N A
N D P
C 0 E F
RCH =
A
LGAE
N A
ND P
C0EF
RCH =
A
LGAE
N A
ND P
C 0 E F
R CH =
A
LGAE
N A
NO P
C0EF
RCH =
A
LGAE
N A
ND P
C0EF
RCH =
A
LGAE
N A
ND P
C0EF
RCH =
A
LGAE
N A
ND P
C0EF
RCH =
A
LGAE
N A
ND P
C 0 E F
RCH =
A
LGAE
N A
ND P
C 0E F
RCH =
A
LGAE
N A
ND P
C0EF
RCH =
E
ND A T
A
6 A
I
-
* '
-
. ' ' .
X > . 1 1 -J
46 . 3j - J *1 »
i
~ 1 > u
* FORMAT (SA4, 5<, Fs 0, 2X, 6F8.0/
T-esii zstYh (except EnDATAbHj ma, os deleted viLvju ALGAE, (iiltS, i. >2, NOi), P04, Conforms or the Radion'ichdeb are tc ?e simulated
FORM (£)0f([9)
-------
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
OTHER CONSTANTS*
CARD TYPE
(TYPE 6B DATA)
ORDER
OF
REACH
Benthos Source
Rate For BOD
(MG/Ft/Day)
COLIFORM
DECAY RATE
(I/Day)
LIGHT
EXTINCTION
COEFFICIENT
(l/ft.)
RADIO-
NUCLIDE
DECAY RATE
1
7 3 * >
A
7 6 » MJ II 17 1] l« 11 16 1/ It 19 A3 71 ?"• 7) 7* 73
76 77 78 7* JO
Ji 3"*
33 3< 31 3ft 17 38 *0
41 *7 <3 '* <5 46 48
«9 JO M H M W 15 W
5' M 5' tO t> 6? M 6*
6} 66 07 (d TO 71 77
73 M 7J 76 77 7» 79
0
TiHlE'R
CiPiElF
f!| 'c
1 ;E
N;T|S|
RCHi =
1 ' 1
1
1
' 1 ' .
1 T 1 t
i
1
•III
1 1 1
1 i <
! ! !"
i - ! 1 ¦
! ! II 1
0
T HE.R
C'OSEiF
f J i !c| i !e
N|T S' •
'R C H! =
1 1
1
1 <
, i
1 '
; |
J
:' i.i
i I i
1 ! :
' 1 ' 1 1 !
i : ! ! 1 I
0
THER
c0!e;f
F 1 C'I|E
NTS
RCH =
'
•
,
: ' !•!
; j
1 1 I
1 . '
• : i i II
0
TH E R
-
C 0 E F
F 1 C 1 E
NT S
RCH =
0
THER
C0EF
F 1 C 1 E
NT S
RCH =
0
THER
C0EF
F 1 C 1 E
NTS
RCH =
0
THE R
c;0'ef
F: 1 |C! 1 E
NT'Si
;R C H =
' 1
'
k
i
'
,
1
¦ . , i i i
0
THER
C 0E,F
F 1 Ci 1JE
NTS: |
iR|C H,=
,
,
; ' 1 i
1
l !
i •
i *
1 ' !
]
; i i
1 I
0
T'H E R
C'0 EF
F'l'CHiE
NTS;
,R'CH =
' ,
'
i i
. i i
i i 1
i !
M
\ i 1
I I !
' 1 1
1 !
11 i
I
0
THER
C 0 E F
F 1 C 1 E
NT S
RCH =
' !
0
THER
C0EF
F 1 C 1 E
NTS
RCH =
.1
i '
0
THER
C0 EF
F 1 C 1 E
NTS
RCH =
¦
: ill;
0
THER
c|0:e,f
Ft 1 C
IE
NT'S' !
iR|C H; =
' ,
1
, ,
¦ , ' 1
. 1 i
; i
|
; 1
i t
1 i i
! i ¦
i 1 !
1
i 1
1
0
THER
C10EF
F.I ,C
IE
NT!S| ,
;r|c;h,=
I
. 1
i ;
11
l
1 H
i «
i •
t ' ;
1 ! !
1
1
. 1
1
0
THER
C0EF
Fl C
IE
N'TlS'
'r'c h =
. '
i
11
1
1
i ! .-i
! , i
; 1 '
! ! : ! 1 I
' ; !
1
0
THER
C0EF
F 1 C 1 E
NTS
RCH =
,
1
0
THER
C0EF
F 1 C 1 E
NT S
RCH =
0
THER
C0EF
F 1 C 1 E
NT S
RCH =
0
THER
C0EF
F 1 C 1 E
NT S
RC H =
,
I 1 ' I
0
THER
C 0 E F
F 1 C 1 E
NT S
RCH =
,
: ' ' 1 !
0
THER
C0E F
F 1 C 1 E
NTS,
RC H =
•
.
1 i
,
,
'ill
0
THER
C0EF
F 1 C 1 E
NT S
RCH =
0
THER
C0EF
F 1 C 1 E
NTS
RCH =
0
THER
C 0 E F
PI C 1 E
NT S
RCH =
•
0
E
THER
A
C0EF
F 1 C 1 E
NTS
RCH =
1
NO A T
6 B
I
1 3 4 >
6
- 8 9 10 11 17 1) M 15 l« W 18 l» 70 71 77 73 7J Ti *6 77 78 7? 30 3i ->2 J3 34 35 36 }> j8 1' ~ *1 *3 " «« » 51 5? 53 H ii it W IB 5' (O (.1 67 63 fc« 65 66 67 o6 69 ^0 71 77
~) ;-l 3 "6 7' "8 79 to
*FORMAT (5A4, SX, PS.O, 2X, 6F8.0)
These cards (except ENDATA6B) may be deleted unless ALG4E, (NH3i N02s N03), P04t Coll forms or Radionuclides are to be simulated.
FORM (9)of(|9)
-------
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II „
0F(|9) INITIAL CONDITIONS DATA
CARD TYPE
(TYPE 7 DATA)
ORDER
OF
REACH
TEMPERATURE
(°F)
DO
( MG/L)
BOD
(MG/L)
CONSERVATIVE
MINERAL I
MG/L
CONSERVATIVE
MINERAL H
MG/L
CONSERVATIVE
MINERAL HI
MG/L
1
7 3 * i
4
7 ¦ 9 10 II 17 13 14 l» 1. 1" is »« ""O /• t *3 "*« "•/
76 n ¦»« 3C
31 37 13 34 1 j- <« 3V «,
11 4? 43 44 4)
<6 47 (I 49 50
31 J? 51 M 55 5s S7 M a' 60
'» fc? fr3 64 ti! t6 6' »» TO
71 7
i « »i » n ;» T9 go
1
N. 1 T 1
A
L: ,C0
n!d i It i
0.N:S
RC H =
(
1 1
[
1 l
1 '
1
, ,
1
! ! !.'
1
N 1 T 1
A
L Cg)
ND 1 T 1
0'N s
RCH =
¦
1
'
i i
1 ^
' '
' I ' !
i
'
' I 1-1
1
N 1 T' 1
A
L C 0
ndi'ti
0 n s:
RCH =
i i
I ^
i >
\
1
N 1 T 1
A
L C0
N D 1 T 1
0 N S
R C H =
1
N 1 T 1
A
L C 0
ND 1 T 1
0 N S
RC H =
1
N 1 T 1
A
L C 0
ND 1 T 1
0N S
RCH =
1
N 1 T 1
A
L C0
NDI T'l
0NS
RC H =
' '
t i
! i :
1 t
1
N.I T 1
A
L' C 0
ND 1 T, 1
0N,S,
RC H =
'
; ,
'
1 i
1
, 1 ! :
: : 1 ! 1 t.
1
N 1 T 1
A
r
o
s
ND 1 T 1
0 N Si
RCH =
,
\ i ¦
i
1
i l , ;
1
i |
1
N 1 T 1
A
r
o
ND 1 T 1
0 N S
RCH--
1
N 1 T 1
A
L C 0
ND 1 T 1
0 N S
RCH--
\
1
N 1 T 1
A
L C0
ND 1 T 1
0 N S
RCH =
' •
1
N 1 T 1
A
L ,C0
ND 1 T 1
0 N S ,
RCH =
,
¦ i i
i !
1
' i i-!
I
i n 1 .
1
N 1 T 1
A
L C0
NDI'T 1
0 N S
RC H =
;
! i ;
!
' 1 : 1
. 1
i 1 u
I
mil.
1
N 1 T 1
A
L C0
ND 1 T 1
0N S
R C H =
,
' . '
! :
1 '
: 1 i.i
i
' ! ! i 1 !•
1
N 1 T 1
A
L C0
ND 1 T 1
0N S
RC H =
1
N 1 T 1
A
L C 0
ND 1 T 1
0N S
RC H =
1
N 1 T 1
A
L C0
ND 1 T 1
0 N S
R C H =
1
N 1 T 1
A
L C0
ND 1 T 1
0|N s
RCH =
1
t
1
N 1 T 1
A
L C0
ND 1 T 1
0N S
RCH =
,
• • : ! :
1
N 1 T 1
A
L C0
ND 1 T 1
0 N S
RC H =
•
.
! 1 1
»
1
N 1 T 1
A
L C0
ND 1 T 1
0N S
RC H =
1
N 1 T 1
A
L C0
ND 1 T 1
0NS
RC H =
1
N 1 T 1
A
L C0
ND 1 T 1
0 N S
R C H =
1
N 1 T 1
A
L C0
ND 1 T 1
0 N S
RCH =
E
NDAT
A
7
1
7 3*5
6
7 6 ' t_» II 1 ? 1) 1 1 I- lb P n 77 i /* 7* > > 'e 75 'i ii .1 . i ; >" li ** 1 -7 O *- *} *' 41 *« 10 51 » 5) »» 53 J> 57 M I4 'O li 6? M al « 6" 6£ "0 71 -j
-) "4 -5 6 77 Tfl T9 to
*Thie ie an unmodified QUAL-1 form (See form C)
FORMAT (5A4, SX, P5.0, F10.0, 2FS. 0, 3F10.0)
-------
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
INITIAL CONDITIONS FOR ALGAE, N . P, COLIFORMS . AND RADIONUCLIDES
CARD TYPE
(TYPE 7A DATA)
ORDER
OF
REACH
CHLOR A
AJ G/L
NH3 AS N
(MG/L)
N02 AS N
(MG/L)
N03 AS N
(MG/L)
P04 AS P
(MG/L)
COLIFORMS
(MPN)
RADIO-
NUCLIDE
1
? 3 « -5
7 ¦ » 10
II 17 I) <4 H
16 17 l| 1*
»
?¦ r ?
vj f, ?T i r> X (' j
31 ^ .
't T4 9 4.
4' 4^ 43 44 4^
k i7 a
49 »
5" 5? 41 44 S3
54 « to
r 1 t, ' I *>4
6j
66 i bl 69 *0 17*
'1 7| )j 7 r, V
rt
7»
•0
1
Nil'T'l
A
L C0
N'Di-12
R'C.H =
I
I J
' , 1
1 1
r. : : ! 1
1
1
N 1 T 1
A
L1 C0
N'D'-'2
RCH =
• '
1 '
. I
I
'
' I 1 1 t
1 : ;1 i
-1
1
N 1 T 1
A
L ;C0
ND'- 2
RCH =
'
'
.;
' ! 1
: ' |,i.
i t!i
1
N 1 T 1
A
L C0
ND - 2
RC H =
1
N 1 T 1
A
L C 0
ND- 2
RCH =
1
N 1 T 1
A
L CO
ND - 2
RCH =
1
N 1 T 1
A
L| |Ci0
ND - 2
RC H =
]
;
<
1
i t
! ' 1
! 1
1
n'iti
A
Li !c'0
ND - 2
R,C H =
1 '
'
' ! '
'
i
, *
. ¦ 11
l.i
1
N 1 ,T 1
A
Ll C 0
ND - 2
RCH =
1
.
I
i • 1 i :
Ml!
:•!
1
N 1 T 1
A
L C 0
ND - 2
RC H =
1
1
N 1 T 1
A
L C 0
ND - 2
RC H =
• '
1
N 1 T 1
A
L C 0
ND - 2
RCH3
1
1
N 1 T 1
A
L C,0
ND - 2
RCH =
'
i
,
. t
] ,
,
1; i; <
M , M
t ! 1 1
1
N 1 T 1
A
L C 0
ND -\2
RCH3
'
1 ,
. 1
. !
1 1 '
, 1 '
1 : ! 1 !
i : i i!
1
N 1 T 1
A
L C 0
ND - 2
RC H "
¦
i j i
' i
(
I
ill 1
• II.'
•
1
N 1 T 1
A
L C0
ND- 2
RC H =
.
1
N 1 T 1
A
L C 0
ND - 2
RC H =
1
1
N 1 T 1
A
L C0
ND - 2
RC H =
1
N 1 T 1
A
L C 0
ND - 2
R C H =
1 ' !
1
N 1 T 1
A
L C 0
ND - 2
R C H =
! : i I
1
N 1 T 1
A
L C 0
ND - 2
RCH =
1 , ' 1
1 ' !
! •1
1
N 1 T 1
A
L C 0
ND - 2
RCH =
1
N 1 T 1
A
L C 0
ND - 2
R C H =
1 •
1
N 1 T 1
A
L C 0
ND - 2
RCH =
1
N 1 T 1
A
L C0
ND - 2
RCH =
E
ND AT
A
7 A
|
. I; j < >
7 e ' io
II 1? 11 14
IS
it 17 te i« a
<1 >5 /-
r>
r n r> 33
J1 '7
3 H
'6 1? ~d ¦" -U
41 t? 4} 44 4
46 47 <8 49 15
51 J* 53 54 55
57 58 59
-1 tl 63 VI
_5
66 t>- 66 69 -0 -1 "
-3 74 't *7
79
BO
FORM (T?)OF(7s)
*POPMAT (IA4, A2, SX, FS.O, 7F8.0)
These cards may be deleted (except ENDATA7A) tf none of the parameters on thvs sheet are to be simulated.
-------
WATER RESOURCES ENGINEERS, INC /TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
FORM (12) OF (5) , «UAL"n *
^ INCREMENTAL RUNOFF DATA
CARD TYPE
(TYPE 8 DATA)
ORDER
OF
REACH
Incre-
mental
Flow
(CFS)
TEMP
<°F)
DO
(MG/L)
BOD
(MG/L)
CONSERVATIVE
MINERAL I
(MG/L)
CONSERVATIVE
MINERAL X
(MG/L)
CONSERVATIVE
MINERAL HI
(MG/L)
1
2 3 * 5
•>
7 i 9 10 H !-» 13 14 IS It 1" -e TO ?' " T 2« »
7t 77 ">8 ?? JO
31 3" 33 34 j
36 3" V 4
-1 J? -J 44 4}
46 ¦>' g 4? JO
SI 5? " y IJ !6 ) M 60
51 * -J 64 tS 6ft »" 68 6« U
71
?3 4 -$ 7 -8 79 do
R
UN0.F
F
,C 0;N
D 1 Til 0
NS,
RC H =
:
I 1
,
1
'
i 1 i
1 1
R
UNO F
F
!c0,n
d i t; 1 0
NS '
RC H =
;
:
,
,
: > 1 ,
¦ ! M
'
| j
R
UN0F
F
;c ,0:n
D 1 T 1 0
NS
RC H =
,
! 1
'
1 ] .
1
1
R
UN0 F
F
C 0N
D 1 T 1 0
NS
RCH =
R
UN0F
F
C 0 N
D 1 T 1 0
NS
RC H =
R
UN0 F
F
C 0 N
D 1 T 1 0
NS
RC H =
R
U'N 0 F
F
C 0N
D 1 T:l 0
NS
R C H =
, ,
I
i 1 ' :
R
UN 0 F
F
c:0:n
D 1 Til 0
NS1 |
;rch =
,
1
,
; ;
1 i -1
¦ : •
R
UN 0F
F
:Cl0N
D 1 T|l 0
NS.
,r:c h =
• ;
1 !
1
• • ' i-i
R
UN 0F
F
C 0 N
D 1 T 1 0
NS
R CH =
R
UN0F
F
C 0N
D 1 T 1 0
NS
R C H =
R
UN 0F
F
C 0 N
D 1 T 1 0
NS
R CH =
R
UN0 F
F
C 0N
D 1 T 1 0
NS
RC H =
j , '
' 1
j
i i •
1 ; 1
I
' ! ! ! i I.I
R
UN0F
F
C'0N
D 1 T,l 0
NS ' '
R C,H =
'
1 -
, 1 !
1
i •
11 !•
j i ' ; 1 j.i
R
UN0 F
F
C0N
D 1 T 1 0
NS
R CH =
> 1
-
, i
1
; ! ! . i !.!
R
UN 0 F
F
C 0N
0 1 T 1 0
NS
RCH =
R
UN 0 F
F
C 0N
D 1 T 1 0
NS
RC H =
R
UN 0 F
F
C 0N
D 1 T 1 0
N S
RC H =
R
UN0F
F
C 0 N
D 1 T 1 0
NS
RC H =
,
i.'
R
UN0F
F
C 0N
D 1 T 1 0
NS
R CH =
i ' i ' i
R
UN0F
F
C 0N
D 1 T 1 0
NS
RCH =
•
, 1 :
R
UN 0 F
F
C 0N
D 1 T 1 0
NS
RCH =
R
UN0F
F
C 0N
D 1 T 1 0
NS
RCH =
R
UN0 F
F
C 0N
D 1 T 1 0
NS
RCH =
R
UN 0 F
F
C 0 N
D 1 T 1 0
NS
RCH =
E
ND A T
A
8
'
? 3 4 i
7 8 ' 10 11 1 'J !- 5 le i >a 20 > ">? ?3 ">¦> ?J 7 t '7 Jl 33 34 _ j: J « .>9 •»_ .1 47 ij m , H 4& 4" V, 51 5* 54 5s >a 58 5» 60 -? 5« iJ sS e6 6" i« *0 "l 77
"3 "4 "v 7/ Tg 80
*Thi8 18 an unmodvfied QUAL-1 form (See fom D)
FORMAT (SA4, SX, SFS.0, 3F10.0)
-------
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
FORM®OF® INCREMENTAL RUNOFF DATA FOR ALGAE, K P, COLIFORMS, AND RADIONUCLIDES*
CARD TYPE
(TYPE 8A DATA)
ORDER
OF
REACH
CHLOR A
(M 6/L)
NH3 AS N
(MG/L)
NO 2 AS N
(MG/L)
NO 3 AS N
(MG/L)
P0 4 AS N
(MG/L)
COLIFORMS
(MPN )
RADIO-
NUCLIDE
I
7 3 * S
; 6 » io
It 1? 1] 14
15
14 17 lb IV
?¦ 77 73 7*
75
it 78 79 TO
31 37
3J 34 "5
u. r ia 3« tc>
41 4? 43 44 4$
44 4? 4|
49 5©
51 5? U 34 55
56
5/ 56 5? 60
t" t? 13 64
65
Sfc 67 M 69 70 n ->
n 74
>
76
77 rt
79
90
R
UiNto F
F
Ctf'N
D!-'2i
r'c H ' =
1
i
'' ;;
¦i 1
1
1 : j i
! ;
;
, i '
1 1 ! i • 1.
R
UN0 F
F
C0N
Dl-'2|
r'c h|=
' '
i :
1
' ' 1
1 1
'
1 !-i
, 1
i; 1
'1 t 1
1 1 1 1 !
R
U N:0 F
F
C'0|N
Di-;2>
RC H! =
> 1
1
, 1
I !
1 1 ;
, t
,
'
1 1 ; 1 i !•!
R
UN0F
F
C 0N
D - 2
RC H =
R
UN0 F
F
C 0 N
D - 2
RC H =
R
U N0 F
F
C 0N
D- 2
RC H =
R
UN0F
F
C0N
D:-,2!
RCH =
1 i
' 1
!
1 ! i , 1 !
R
UN0F
F
c;«n
D|-'2|
r;c,h -
1
1
1 . 1 1
< 1
• i
1
, ;
!
1 |
1
111-
R
UN0F
F
C 0N
Dj-'21
R'C H =
1
1
1 i 1
i t
'
' :
. : 1
: ¦ 1 • 1 1
' 1
I ! |.
R
UN0F
F
C 0 N
D- 2
RC H =
R
UN0 F
F
C 0 N
D- 2
RC H =
, U
R
UN 0 F
F
C 0N
D- 2
RCH =
' ;
R
UN0F
F
C0N
Or, 2!
Ric;h =¦
~
1
, I
! |
\
i
' ,
j ,
: ! 1 1 ! '
;
1
R
UN0F
F
C0 N
D|-2.
RCH =
1 '
'
\
• ! !
!
I ¦ j
, -
¦ ' ill.
1
|
R
UN0F
F
C 0N
d!-!2;
RCH =
1
,
i
,
1 1
1
! i : •
1 1
i
.j
R
UN0F
F
C 0N
D-2
RCH =
R
UN0F
F
C 0N
D-2
RC H =
R
UN 0 F
F
C 0N
D-2
RC H =
R
UN'0F
F
C 0 N
D - 2
RCH =
1 . 1 1
• i
R
UN 0 F
F
C0N
D-21
RC H =
1 ! ; 1
1
R
UN 0F
F
C 0N
D-2
RC H =
• ' .
• 1
I
R
UN0F
F
C 0N
D-2
RCH =
'
R
UNO F
F
C 0N
D-2
RCH =
i.
R
UN0F
F
C0N
D-2
RC H =
R
UN 0 F
F
C 0 N
D-2
RCH =
E
ND AT
A
8 A
|
i
7 3 * 5
i » 13
H >? 14 5
it l"* IS 1"
7C
ji n ?3 n :j
?t v
11 3*
-J 3i
t " Ji 1« a
41 f 4} LI «J
(6 4' 4g
40 50
SI S" 51 54 55
5s
)• 5J >' !0
Jl t? t3 W
a5
67 48 6» *0 71 7?
73 -4
•5
*6
77 79
7«
BO
* FORMAT (3A4, A2, SX, FS.O, 7F8.0)
These cards (except ENDATA8A) may be delated if none of the parameters shoun are to be simulated.
-------
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II ~
0Fv!£/ STREAM JUNCTION DATA
CARD TYPE
(TYPE 9 DATA)
ORDER
OF
JUNCTION
JUNCTION IDENTIFICATION
No. Of
Element
Upstream
OC-JUWL
No Of
Element
Downstrm
Of June.
No Of
Element
On
Tributary
s
T'R'E A
M JUN
C,T|I
0N
! ; .
>
J NC ='
.
. i i
r , ,
1
1 I
; ; N
s
TRE A
M
JUN
C]Ti 1
0N
! M ¦
J NC =
i
' j ;
! 1
i l
1
; i M
s
TRE A
M
j:un
CiTI
0N
i
¦
1
J N C' =
, ,
¦
1 <
1
i m .1
s
TRE A
M
JUN
CT 1 0 N
J NC =
s
TRE A
M
JUN
CT 1 0N
J N C =
E
NDAT
A
9
1
1
1
1
! i 1
ill!
i ' ' 1
• I
1 M '
, 1 ;
Ni.
! '
M 1 !
i
: ; I 1
i ' 1 1
! i M
Ml!
1 i '
! 1 !
MI-
1 i I
! i ! i
MM
j | i
1 i :
i 1 ' I
¦ : i !
1 i i
Mil
1 1 I
I ! ;
i 1
NI.
i i i
! M 1
, j ;
; m :
MM
I i M
1
N N
i i
1 i M
i ' :
'
'
¦
i i !
t
,
1
, i
i ¦
1 I i
! 1 !
¦ i
i |
1 ! ! 1
ill.
: M :
i
! : i
i
t
l
I • i '
i > 1
MM
1 ' 1 ,
1 I • '
! 1 1
Mi;
i
1
! 1
; |
! 1
''it
: ! i '
i , •
;
!
i M !
: j
i ! !
| i • !
'
I
• j
' i
'
1 i
i 1 i
; 1
1
; ;
i * 1
i
!
' ' I
] .
i
: : 1
i ,
»
: i
• 1
*
1
1
1 !
i » i
; ;
• 1 1 !
• i !
1 '
i
.
.
I'll
i j
¦ ! i 1
Ml!
i t
i
l
!
t
1 i
Mli
MM 1
' 1 ,
; *
,
1 '
i !
. ; I
1 1 i
1 M 1
. 1 1 :
i
I
I '
| ¦
' i
' ' '
•
1
1 '
1 I
i ( ]
! i
1 ; . 1
i , 1
! ; t
i
1
:
1
;
*
] i
I
7 3*5
-
7 9 9 10 II >7 13 M IS If 1' IB l« 70 ?' J? 23 7< 25 7s V ^ V* K i' >' jj H '1 ) "18 r * -i u -j <7 *1 <~ 50 <• V SI H 55 , 5/ i8 5' 41 i1 M u 64 6? 5« 4« D 71 77
73 7i 76 "7 78 79 «3
*Thi6 18 an unmodified QUAL-1 foim (See forrn D)
FORMAT (3A4, AZ3 SX, F&.O, 5Xt 5A4, 3($X, F5.0)
-------
WATER RESOURCES ENGINEERS, INC /TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-H
FORM (I5)0F(I9J HEADWATER SOURCES DATA*
CARD TYPE
HEADWATER IDENTIFICATION
HEADWATER
FLOW
(CFS)
TEMP
D 0
BOD
CONS
MINERAL
I (MG/L)
CONS
MINERAL
n(MG/L)
CONS
MINERAL
m(MG/L)
(TYPE
10 DATA)
ORDER
ALPHANUMERIC NAME
( F)
(MG/L)
(MG/L)
1
1 3 i
,
8 » lu M 1/ ll >4
Is l 16 i' JO
/I '» -i i - >
t " 8 "« 80
H
E A D W
A
TE R
H WD =
; ' .
H
E A D W
A
TE R
H WD =
H
EADW
A
T E R
H WD =
H
EADW
A
T ER
H WD =
H
EADW
A
TER
H WD =
E
ND AT
A
1 0
i
» 3 * 5
»
B » '0
i! i n u is
ic- • ic i» n
V ' ^
ji j? »
.6 J3 .j .
41 4? U 3
-6 47 iS M5
JI SI M 5- 55
" * A
£.1 - 11 _4 iJ
t-L i~ U>
-1 "
3 74 -J 5 7 "8 «XJ
*This iq an unmodified QUAL-1 foim (See form D)
FORMAT (2A4, A2, SX, FS.O, 5A43 F10.0, 6FS.0)
FORM (l6) OF (j?) HEADWATER SOURCES DATA FOR ALGAE, N, P, COLIFORMS, AND RADIONUCLIDES *
CARD TYPE
(TYPE IOA DATA)
Order
Of Hsod-
water
CHLOR A
U/G/L)
NH3 AS N
(MG/L)
NO 2 AS N
(MG/L)
NO 3 AS N
(MG/L)
P0 4 AS P
(MG/L)
COLIFORMS
(MPN)
RADIO-
NUCLIDE
1
7 3*1
a
? a ¦> iu
II !¦> t» 14
it. i n ">
*> s /
.1 _ . 4. .. -4 <•
'I > 5* 5* V v.
J?
J-
J -
- IJ 1- .
i= j.
1 5
- ' ' *
J *
•4 )
- - t /' .» 7« s:
*FORMAT (3A4, A2, SX, F5.0, 7P8.0)
These cards (except ENDAXA10A) may be deleted if none of the parameters shoim are to be simulated.
-------
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
, » , , QUAL-II
FORM (17) OF( 19)
@OF@
WASTE LOADINGS AND WITHDRAWALS DATA
CARD TYPE
(TYPE II DATA)
WASTELOAD OR WITHDRAWAL IDENTIFICATION
PERCENT
TREAT-
MENT
WASTELOAD OR
WITHDRAWAL
(CFS)
TEMP
(°F)
DO
(MG/L)
BOD
(MG/L)
CONS.
MINERAL
I(MG/L)
CONS
MINERAL
I(MG/L)
CONS.
MINERAL
nr (mg/l)
ORDER
ALPHANUMERIC NAME
•
? 3 4 )
*•
H > 10
II ! IJ U 1
• * 1 IS •" U ?l . j t i /) Jl J >J
~ ^ 3 -
1 1 > 4 4< it 4 4! It Kr,
i 1 >? >3 >¦ j
f ' a
a aft
i
J ' j
W
W
ASTE
L
0 AD
WS L =
, , •
AS TE
L
0,AD
WS L =
w
ASTE
L
0 AD
WS L =
1
;
w
ASTE
L
0 A D
WS L =
w
ASTE
L
0 AD
WS L =
w
ASTE
L
0 A D
WS L =
w
ASTE
L
0 A D
WS L =
w
ASTE
L
0 AD
WS L =
w
ASTE
L
0 A D
WS L =
w
ASTE
L
0 AD
WS L =
w
ASTE
L
0 AD
WS L =
w
ASTE
L
0 AD
WS L =
w
ASTE
L
0 AD
W S L =
'
w
ASTE
L
0 AD
WS L =
w
ASTE
L
0 AD
WS L =
¦ |.
w
ASTE
L
0 A D
WS L =
w
ASTE
L
0 A D
WSL =
w
ASTE
L
0 AD
WS L =
w
ASTE
L
0 A D
WS L =
w
ASTE
L
0ad|
WS L =
w
ASTE
L
L
L
0 A D
WS L =
WS L =_
WSL =
w
AS TE
0 A D
w
ASTE
0 AD
w
ASTE
L
0 AD
WS L =
—
w
E
ASTE
L
0 A D
WSL =
If I I; U *
— - —
NDAT
A
1 1
i. .
S :—
-1 u .. 1.
-1 -i 4-5 1.
• 1 * J M S->
4 38 4
si r>" e.1 t-i e5
tv a" J j
. " "8 "J 3?
*Thia ib an unmodi.fi.ed QUAL-1 fom.
FOBMAT (2A4, A2, FS. 0, SA4, PS.O, F10.03 6FS.0)
-------
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
WASTELOAD DATA FOR ALGAE, N, P, COLIFORMS, AND RADIONUCLIDES*
(T
CARD TYPE
YPE 11A DATA)
Order Of
Waste-
Load
CHLOR A
UG/L)
NH3 AS N
(MG/L)
NO 2 AS N
(MG/L)
NO 3 AS N
(MG/L)
PO 4 AS N
(MG/L)
COLIFORMS
(MPN)
RADIO-
NUCLIDE
w
w
ASTE
L
BAD-
2 ' 1
WSL =
1
ASTE
L
BAD -
2
WSL =
' ,
.
w
ASTE
L
BAD-
2
WSL =
1
w
ASTE
L
BAD -
2
WS L =
-
-
w
ASTE
L
BAD -
2
WS L =
w
ASTE
L
BAD -
2
WS L =
w
ASTE
L
B AD -
2
WSL =
, , # t
w
ASTE
L
B AD -
2
WS L =
,
'
¦
' 1 ' '
w
ASTE
L
BAD -
2
WSL =
'
,
1
. 1 i 1 1
w
ASTE
L
BAD-
2
WS L =
w
ASTE
L
BAD -
2
WSL =
-
w
ASTE
L
ba|d -
2
WSL =
w
ASTE
L
BAD-
2
WS L =
¦ ¦
(
• I
w
ASTE
L
BAD-
2
-
WS L =
! 1
w
ASTE
L
BAD-
2
WSL =
1
w
AS TE
L
L
BAD -
2
WS L =
-
w
ASTE
BAD-
2
WSL =
-
-
w
ASTE
L
BAD -
2
WS L =
w
ASTE
L
BAD -
2
WS L =
r
w
ASTE
L
BAD-
2
WS L =
-
>
w
ASTE
L
BAD -
2
WSL =
w
ASTE
L
L
BAD-
2
WS L =
-
—
w
ASTE
BAD -
2
WSL =
w
ASTE
L
BAD-
2
WSL =
-
—
—
-
w
ASTE
L
BAD -
2
to SL =
1 j
E
ND A T
' 3 - 1
A
1 1 A x
' i 9 1.
,, , „
1
, ,
j j > —
.1 . ij ii 1
1, - ,s
.9
1 » 1 5- 55
i'
y 5- >* ¦*»
1 0 - _
" >- ^ "
-j - 5 - - re -? n
"FORMAT C3/W, A2, SX, FS. 0, 7F8.0)
These cards (except EF1DATA11A) may be deleted if none of the parameters ahcjn are to be simulated.
FORM (li) OF (j?)
-------
WATER RESOURCES ENGINEERS, INC./TEXAS WATER DEVELOPMENT BOARD
STREAM QUALITY ROUTING MODEL
QUAL-II
@ LOCAL CLIMATOLOGICAL DATA
CARD TYPE
(TYPE 12 DATA)
MONTH, DAY
AND YEAR
HOUR
OF
DAY
NET SOLAR
RADIATION
(LANGLEYS/HR)
CLOUDINESS
DRY BULB
TEMP
<°F)
WET BULB
TEMP
<°F)
BAROMETRIC
PRESS
(IN HG)
WIND SPEED
KNOTS
1
2 3 4 5
6
7 B 9 10 It O 14 1} >0 1
10 I' JO '1 'J 73 ?• j
it , 76 7< TO
21 37 " J4 JS > J" J-» 4^
41 41 4] 44 It 1' U
» SO V V U U » U
s; S(j 59 60 61 ft"1 U i-
«•» bf- a? M S« '' 17
j '* ~i t - a eo
L
0CAL
CL 1 M
AT'01'0
G'Y
-
-
300
'
'
1 ]
. ! I
L
0CAL
C L 1 M
AT0L 0
G Y
-
-
600
'
'
. 1 i
L
0C A L
CLIM
A T 0 L 0
G Y
-
-
900
'
• • i 1
L
CCAL
CL IM
A T 0 L 0
G Y
-
-
1 200
L
0C AL
CLIM
AT 0L 0
G Y
-
-
1 500
L
CCAL
CLIM
A T 0 L 0
GY
-
-
1 8 00
L
0CAL
CLIM
AT.0L0
G Y
-
-
2 1 00
1
f. • '
L
0CAL
CLIM
a:t'0 L 0
G Y
-
¦ -
2 400
'
1
'
1 > ' . '
1
7 3 4 }
6
7 8 9 10 II 1? 1} M U It r
1# n n m 77 71 7i t
26 7' ""8 T* 30
jl J1 H J- 35 1 i U 3« -«0
4 1 4"> 43 44 45 46 47 4S
49 50 St y 53 54 55 56
57 58 59 60 6l 6? 6J 0*
t3 M 67 6(1 69 "0 71 "7
73 74 75 76 77 71 79 BO
L
CCAL
CLIM
A T 0 L 0
G Y
-
-
300
L
0CAL
CLIM
AT 0 L 0
G Y
-
-
600
L
0C]A,L
CL l,M
AT;0L 0
GY
, -
9 OlO
'
. ;
' .
I ;
'
¦ |
'> ' ,
1 ' , ,
; i : I; i i
L
0CIAL
CLIM
A'T '0 L 0
G:Y
, -
-
1200
!
t .
i ; 1 1
1
• » i
1
' 1
i
: t ! i l-i
L
0C A'L
c l!i|m
A!T'0,L0
GY
¦ -
1 50 0
,
: <
» i
;
' i i
1 1 •
i • ;
i •
¦ 1 1 ! 1-
L
0C A L
CLIM
AT 0 L 0
G Y
-
-
1 800
i
i
L
0CAL
CLIM
AT 0 L 0
G Y
-
-
2 100
1
'
L
0C A L
CLIM
AT 0 L 0
G Y
-
-
2 400
1
1 J 4 J
7 J 9 10 II 1? 13 U IS 16 r
tj 1* 70 n n
76 77 71 -1 JO
3" 37 33 U 35 36 }? IS 3? C
41 I* 43 44 41 46 47 48
49 JO 51 5? ^3 34 55 >6
57 58 tC 61 tJ 63 64
63 66 67 6l 69 70 71 77
73 74 75 t 77 71 T) BO
L
0CAL
CLIM
AT0L0
GY
-
-
300
L
0C A L
CLIM
AT0L0
G Y
-
-
6 00
L
0C A L
C LI M
A T,0 L 0
G Y
-
. -
900
1
i
¦ ;
! 1 1 i
: ! ! : i 1 !
L
0C A L
C L, 1 M
AT 0L0
GY
-
-
1 200
,
| ¦ ,
i » 1 • !
: i • ' 1 '
L
0C.AL
CLIM
AT 0 L 0
G Y
: -
-
1 500
•
,
1 1 ' 1
¦ ! • ¦ I 1
L
0CAL
CLIM
AT 0L0
GY
-
-
1 800
L
0C A L
CLIM
AT0L0
G Y
-
-
2 1 00
L
0C A L
CLIM
AT0L0
GY
-
-
2400
1
I ) « J
i a « w ii i? o u '6 m is n 20 71 ?? n f n io ?• n x 3> 3j j- t is 3- it 3' 4i ^ ** u <7 *# so 51 y so 54 53 5s 57 m j? &o 6i t.1 6J _j « «• e* n -7
*Must be chronologically ordered. FORMAT (SOX, FIO.O, 5F(8,0))
Net solar radiation is not required if temperate is simulated.
Only net solar radiation is required for algae simulation.
-------
I
(
STRFAM PETH
L^'OAT A2
*.0 HTHs RFAfH 6
. 0
40.n
• n
20.0
• o
V*t I'ATft TVPC * CT/\H(.FT LC VFL DP AND Fl OW AUGMENTATION SOURCFS) S*S
CA»n TYpF.
E.UOMA3
pr ACM
0.
AVAll HOWS TARGET
n. .o
ORDER OF AVAIL SOURCES
0. 0. 0. 0. 0. 0.
!S< DATA TYPE «~ (COMPUTATIONAL REACH FLAG FIELD) SSS
CArH TYPE
FLAG FIEL^
flag fielo
flag fielh
FL/JG FIELD
FLAG F1FLO
FL AG FIELD
EwnATAi
PFACH FLEHEMTS/REACH
1 .
?.
3.
M .
5.
0.
20,
14.
1?.
l*i.
16.
20 .
o.
COMPUTATIONAL FLAGS
1.2.2.2.?.2,2.2.2.2.2.2.2.2.2.2,2.2.2.2.
2.2.2.2.2.6.2«2*2«2.2.2.2.3»************
I.2.2.2.2.2.2.2.•**•••*•***»«**»
2.2»2.2.?.2«2.2«2.2.2.2.2*2«2»**********
4.2.?.P.P.2.2.2.2.2.2.2.2.2.2.2.
2.2.2.2.2.2,2.2.2.2.2.2.2.2.7,2.2,2.2,5.
Its DATA TYPE S (MYORAUlIC COEFFICIENTS FOR DETERMINING VELOCITY ANO DEPTH) SSS
CARD TYPE
REACH
COEFOV
EXPOOV
COEPOH
EXPOQH
chann
~ .YORAULICS
1 .
• 120
,0
• 15
.00
othfp cgeficiemts
3.
.00
1.50
• 15
• 00
cthfp coeficients
4.
.00
1.50
• l""?
• 00
f.Tnrp cofxicients
5.
.00
1.50
• 15
• 00
-------
othfp coEFirir^Ts
[ IjOAT Af>t
h ,
IJ .
. ^0
.no
1 .50
• no
.15
• no
.00
• 00
1** DATA TVI E 7 (INITIAL CONDITIONS* 1$$
CARD TYPF REACH TE*P P.O. POP CM-I CM-11 CH-III
INTTIAL CONDITIONS
1 .
65.0 .n
.0
.0
.0
.0
INITIAL CONDITIONS
?.
65.0 .0
.0
.0
.0
.0
INITIAL CPr DTTIONS
3.
65.0 .0
.0
• 0
.0
.0
INrTIAL cor OITJO^S
b5.0 .0
• 0
• 0
• 0
.0
INITIAL C^fnTTIONS
*
65.0 .0
• 0
• 0
• 0
.0
INITIAL CQ'iDITIP"S
65.0 .0
• 0
.0
• 0
• 0
ENnATAT
n.
.0 .0
• 0
• 0
• 0
• 0
%%% DATA TTPE 71<
$ss
caqo type
PEACH CHLORA NH3
N02
N03
POt*
COL I
RAON
INITIAL COfD-2
1 .
.0 .00
.no
• 00
.00
.0
.00
INITIAL conn-?
2.
• 0 .00
• 00
• 00
.00
.0
.00
initial conp-2
3.
• 0 .00
.00
. on
.00
.0
.00
INITIAL CO^.f}-?
4.
• 0 .00
.00
• 00
.00
.0
.00
INITIAL COUO-2
3.
.0 .00
• 00
• 00
.00
.0
.00
INITIAL COMn-2
6.
• 0 .00
• 00
• 00
.00
.0
.00
Er-'n«TA7A
0.
• 0 .00
• no
• 00
.00
.0
.00
%\t DATA TTPE * <
RUNOFF CONDITIONS! $*$
CARD TYPE
REACH
0 TC^P 0.0.
BOD
cn-i
CW-II
CM*111
RLJrjOFF CONDITIONS
1.
.0 .0 .0
• 0
.0
• 0
• 0
RUNOFF CONDITIONS
2.
•o .n .o
.0
.0
• 0
.0
RUNOFF CONDITIONS
3.
•0 .0 .0
.0
.0
.0
• 0
RUNOFF CHNnlTlONS
*».
•0 .0 .0
• 0
• 0
• 0
• 0
RUNOFF CONDITIONS
.0 .0 .0
• 0
• 0
• 0
• 0
Runoff conriTiONs
6.
•0 .0 .0
• 0
.0
.0
• 0
ENpATAB
0.
•0 .0 .0
.0
.0
• 0
• 0
SsS OATA TYPE 8 A
-------
Trx>r, . A1 r t' 1)1 VFLr>HI»i;NT HUAfn/wn ICR RFSOUHCF-S lnginecks, inc.
y
YD
• • » OATA I 1ST FOrt MODI FIFO GUM I STREAM OuAllTY ROUTING MODEL • • •
S** = 30.00000
LATITUDE OF RA«5U =
LONGITUDE OF BASIN =
DAY OF YEAR START TIME =
FVAP. COEF..I8E) =
OUST ATTENUATION COEF. s
.00000
.00000
.00000
.00000
1.00000
2.00000
1.00000
.00000
.00000
.00000
.00000
.00000
.00000
StfDAT A TYPE J A f I MG M/hG A) = .n8*»0
ALS «AX bpFC GROWTH f< ATE < 1/DA Y ) = l.SOOO
M MftLF ^ ATl |P A T 1OM TOMS ( PG/L > = .*000
LIGHT HALF SAT CONST 1 Lf'GL Y/MlH ) = .0^00
kCNnflTftift .0000
CARD TYPE
0 UPTAKE BY N02 OXIO =
P CONTENT OF ALGAE l*G P/MG A) =
algae respiration rate =
P HALF SATURATION CONST (MG/L) =
TOTAL DAILY RAOIATIONILANGLEYS>«
1.2000
2.0000
.0120
.1000
.0400
<+00.0000
.0000
\%% HMa TY^ P < H F AC H 1UFNTIFlCATIONi St*
CARH TYFC
PEACH ORPFP AND IDFNT
R. MILE
R. MILE
STRFA1 PEACH
1 .0
PCh= REACH 1
FROM
90.0
TO
70.0
STREAM REACH
2.0
PCH= REACH 2
FRO*
70.0
TO
56.0
STRFA1 REAM'
3.0
l'CM = PF^CH 3 TRIP
FROM
37.0
TO
15.0
STR^A 1 r,FACH
«~. n
r c »i= Pr ACH TRIO
F^or*
15.0
TO
.0
STREAM REACH
r». 0
PCH= Rf /iCH 5
FROM
56.0
TO
<*0.0
-------
Cr ,»<\Ta1 n
.0 ,n .n .0 .r .o .o
oat a t*»l irv imfapwater corniuors row chloropmyll«nitrogen» phosphorous*
TOinuPH AND Rflni Or-liCL T nr ) ***
CA»*n TYPE
~ T'UATFP cmloha
MH3
MO?
NO^
P04
COL I
RAON
»vjA<;rrLCAn-?
^Er.nATAliA
W^STF LOAD ^hOFR AND lOF^'T CHL. A MH3 N02 'NO3 p0«» C'OLI
1. WSL= INDUSTRIAL LOAD ,00 15.00 .50 10.00 20.00 600.00
?. USL= WITHDRAWAL .00 .00 .00 .00 .00 .00
RAON
.00
.00
-------
bu TO 1'
o = I AlAiI.'M
'JJUHC = I T /• ( I , 1 f >
r-n to l6"
in .ji "Th'- = rMi(i»oi
fMASTf = rAT At I«1* >
< ', Tr( \f.
11 On T = 'inT A ( 1.6)
T'FLX = I ATA ( i , lf« )
GO TO 16
J? TMA * = TA1A(1,*)
"TI^F = DATA ( I ,16)
GO TO If
1 * I M = PAT A(I,ft)
LI ^ = UA1A< 1,16)
CtO TO 1A
14 LSP = DAT A ( 1 ,P)
OAYOFY = fAT A( I • 16 )
GO TO 1*
15 AC = OATA(1,0)
PT = DAT A( T,16)
TO 16
1 « ELEV = EA T A( r,n)
OAT=OATA|I,lb)
Gl> TO 1*
roNTiNur
IFINRF ACM* 7S) 610,610,^20
6?n WRITE
00015900
So"*
Format (10 X,21A4 )
00016000
WPIT* (f.J.^O1*)
00016100
50"
FCK*AT < 1M0, 10x* 34HSS* DATA TYPE 1 (CONTROL DATA) £SS./>
00016200
/inr
00016300
FOI'MAT (lr/.^HCAhD TYPE.3^V,9HCARD TYPE)
00016400
WPITF 00
CONT I IliF
00016700
STEP 1 A
REAO IN OATA TYPF 1A (ALGAE PROflUCTION
00012300
00012400
00012500
00012600
00012700
00012800
00012900
00013000
00013100
00013200
00013300
00013400
00013500
00013600
00013700
00013800
00013900
00014000
00014100
00014200
00014300
00014400
00014500
00011600
00014700
00014900
-------
A NO UlTPOr-FN OXIDATION CONSTANTS).
Qo 1nn* 1=1,7
*« at (',1,1001) ( DATA < I , J > . J = 1 .1« )
mpi format ir<"i.F7.o»?x.flA«i.F7.ni
if (*>at* u »i)-rriOA) 1003.' nax,ioo3
ioo^ cor'Ti'iur
Nf -»P(yK = 1
inn* 1=1+1
rtf Af) {f 11»1001) (i)ATMI tJ).J=l«lfl>
If ( f'ATfl I I , 1 )-Ef'UA ) 1005.1007,1005
1301 '=1-7
VMTF (MJ~102 0) N
10?n F'»rmAT I 1 MP «*SX t 16h«* • TOO MANY (.I3.20H) DATA 1A CARDS REAO)
&r tc lio"
10?1 if (i,rr.7> on to joo«*
i f- i ioat a » loa^.iopu.io^B
NfRHSsI
GO TO 102C
10?* J«IPP0R=1
-\J = 7-|
WRITF. < IIJ, 102? ) N
10?2 FORMAT )1006•1008•1056
1 0P« 60 ro ( 1 009, loin ,1011,101?, 1 oi3,iom>, J
1009 AlPHA5=0ATA<1,9)
ALPMAfcrOATA(I,ie)
GO TO lOOfe
1010 ALPMA3=0ATAP=UATA( 1 .18)
Go TO lOOf
101^ r*L=0ATA > .GT, 0) CKL=rKL«0.153Z
IPn* Cif'Tir'Mr
10?* IF (ILIST .Ltt. 01 GO TO IP15
Ir^ITE l^J.1016)
101* THREAT < 1H0»10X. #>6MSSiOAT A TYPE 1A IALGAE PRODUCTION AND NITROGEN
• OXIOATION CONSTANTS
WrtlTf < f,J *1017)
1017 FOH"AT ( l0*.9»«CARn TYpr,3^X«9HCAR0 TYPE!
W 1 T C ( < Of T A < I , J) .J=l.1fl) .1 = 1# NCR OS)
101P FORMAT < ? < 1 G* • « »F1 0 .U > )
101S Cr.MT li UE
c 00016800
r ?TfP 3-? nft01f,900
-------
: RFAO IN DATA TYPE 2 (REACH
RIVFR HILT AT HEAD AND END
II = npEACH-H
00 ^0 1=1.11
RZar criT • l > ( hatc m • J> t j=i • 13l
*1 Format (3A4.4x.FS.0.5au,3x. A4,3x»FlP.O.«»X.A2.«»XtF10.01
tr (PATA< I , ) )-CNuA) 50.55.^0
CJNTinur
NEKROR=1
5" 1 = 14-1
READ IMI« 51) (nATA(I.J|«J = l«13)
IF I DAT A ( I »1 I -ENOA ) 5>i«59.5*
59 N=t-II
UPITE (NJ,92) M
5? FOPMAT (lH0*by,16H»*«*« too MANY («T3,18H) 0ATA2 CARPS REAOl
GO TO 53
IF ( I. GE • T I ) GO TO 53
NFRPOR = 1
N=IT-I
WRITE (NJ.56) N
•=>f FORMAT ( lH0t5x,15H*«*** TOO FEW <«I3.1dH) OA TA2 CARDS READ)
CONTIfUC
NCROS=I
1HAX=0
OP 1050 1 = 1 .fJREACH
IKCH=IFIX(0ATA( I.<4)*10.+ 0.0001)
IRCHNOlIRCH)=1
IMAX=PAX;T< IMAX, IRCH)
10*0 CONTINUE
lOPItFRsO
00 1055 IRCHsj «IHAX
IF (IRCHNOIIRCHli 1055.1055.105?
105? IORHFRzIORaER^l
IRCHNOlIRCH»=IORDER
1055 COMTIfJUF
no •*? i = i.nreach
lPCH=IFlXinATA< I .4) »10.+0 .0001 >
NRCHSTRCHMOIIRCH)
no *8 J = 5.«i
K = J-q
RCHIDINPCH•K) = OAT A(I«J)
Sfl CONTINUE
RKTHOR(MRTH) = PATAU.Ill
RHTFOR(NRCH) = PATA|Itl3>
*7 CO^TiriuE
IF (IlIST.EQ.O) GO TO *25
HMITE (Nj.^05)
•sp«i FORMAT < 1H0,10K .H2H11* OATA TYPE 2 (REACH IDENTIFICATION) SS*
WRITfc (NJ« ?05)
pn? format (IOx.^HCARD TYPE*!!K.21HREACH OROER and IOENT.
* 15X » 7HR. MILE,13X.7HR. MIlE)
WPITE <*'J.<«01) ( ( DATA{ I , J ) , J=l , 1 3 > , T=1 , NCROS )
<~01 FORMAT I 10 X, 3A4,3X,F5.1,2v,*A4,3X, Aft,3X,F10.1 «t*X,A2.t»X.F10.1 )
COJjT IMUC
IDEM00017000
OF RF00017100
OOP17200
00017300
00017^00
00017500
00017600
00017700
00017600
00017900
00018000
00018100
00016200
00018300
00016400
00018500
00018600
00018700
00018800
00018900
00019000
00019100
00019200
00019300
STEP 3-*
RFAO IN OATA TYPE 3 (TARGET
AVAILABLE FLOW AUGMENTATION
00019*00
00019600
00019700
00019800
00019900
00020000
00020100
00020200
00020300
00020*00
00020500
00020600
00020700
00020800
00020900
00021100
00021200
00021300
LEVE00021000
SOUR000?1500
00021600
/1
-------
A1
( u
f-9
( *
r*
8*.?4
f 6
*7
86?*!
1j06
2n*
hp?
4?*
c
c
c
c
c
c
c
c
c
r
c
c
c
r
c
c
or fn i = i«)i
K«"V (M.M) mMA(I»J)iJsl»lH)
k np *<\ r I'lti, jt,r5,n,5<,F5.n,Fi o.n^F'i.n)
if |f *1 a {i, 1 >-r^n/i» 60~ bS«60
rc^T riur
Jr»"ir€ m
FOP^AT (1 HO . :>X ,16H***** TCO MANY (tlS.lftH) OATA^ CARDS READ)
GO TO M
IF < l.GE. ID GO TO 63
If G0P) Bb2^iAf.?3,ft624
NCRHSsl
Gf» TO f>6?5
NFRRCRsl
f »= X 1 -t
white: (tjj,&6> n
Fo*(»mT (1H0«5X.15H*»»»* TOO FFW <,H,lfiH) OATA3 CARDS READ)
continue
mcphs=I
nr f.7 1 = 1 • fJREACM
I tCH=IFIX(jAtA( T»£>)*10« + 0.000l)
N^CH=1PCHM0(IPCH|
N igftH = DAT A ( 1.7)
Nt-WUAR \ NRCH) = f'HWAR
TfcRKOOlMRCH)=DATA< 1,6)
UO A* j=9,14
K = J-b
IMIGUR < NRCH.K J = DATAU.J)
CONTIUbE
COf T IMif
U rlLlST.ro. n) GO TO 426
WPlTE (HJ.SOb)
FORMAT (1H0.10X.^6HJSS DATA TYPE 3 (TARGET LEVEL 00 AND.
» 31H FLOW AUGMENTATION SOURCES) $SS«/1
ta^lTf l\*J»9nb)
FOHMAT (10y,9HCftRD TYPE•1WX•?4HREACH AVAIL HOWS TARGET.
• 5X «22H0R0ER OF AVAIL SOURCES)
WHIT f (NJ.402) ((0ATA(I,J>.J = 1.14).T = 1«NCr0S)
Fn«*AT (10x,5A4.5x,F5.0.5x.F5.0,Fl0.1tfaF5#0)
CONT If'UE
0n021700
000?lrt00
00021900
00022000
00022100
00022200
00022500
00022400
00022500
0 0 022600
00022700
0 0022800
00022900
00023000
00023200
00023300
00023400
00023500
00023600
00023700
00023900
00024000
00024100
00024200
00024300
00024400
00024500
00024600
STEP 3-4
READ IN DATA TYPE 4
ELEMENT FLAG FIELD)
1 =
2 =
5 =
00024800
00024900
0002S000
00025100
00085200
00025300
00025400
0002S500
00025600
00025700
ooorseoo
(COMPUT ATION00025900
00026000
ELEMENT UHICH REPRESEN00026100
HEAOyATFR SOURCE. 00026200
an element with no extooo263oo
INPUTS OTHER THAN INCR00026400
an element on the mainooo26soo
IMMEDIATELY UPSTREAM F00026600
JUNCTION. 00026700
AN ELEMENT UHICH REPRF00026800
A STREAM JUNCTION. 00026900
AN ElEMENT UHICH REPREC0027000
THE LAST COMPUTATIONAL00027100
IN THE SYSTEM. 00027200
-------
s =
f =
Ml FlEWEnT WtFH
AM Fl tMEMT wr TH
n-, ?n i -1 , r i
Pr/\r ( f I » 71 ) |»)M M I • J) • J=i •
71 town7 < ?au ,,ft..n ,5x,fs.n, inx.,O0P2.D >
ir ( "/>7a ( i, 11 .riinA > 7o,7S.7n
7n rjr t ir uf
nf«<* of* = i
7«» 1 = 1-4 1
RFAn (rj I » 71 I (nAIAl I,J) i J = 1 • 25 I
IF (rA7A I I , 1 I-rMl A» 74.79.7U
7<» fJ=T-TI
WRTTF {MJ*7?) N
7? FOR* A7 ( 1 I Ot1)* TOO «aNY PATAU CAROS READ)
f-0 TO 7^
7S If ( I.Gf.TT) GO TO 73
r,rpROl = 3
N'=I T-I
WHITE" (MJ.76) ,j
7(y Format ( 1H0 * bX . 1 bM#*» »~ TOO FEU <.I*.18H> HAT A4 CAROS REAP)
7* COMT If.UE
ijCRns= I
no 77 i=i.nrlach
I^CH=TFIxGCFl I S=IOR
VIASr000?7300
WITnonO?7HOO
U0c-?7500
0 00 2 7600
0P027700
C 00?7ft00
ooo?79on
0 00 2ft0 00
onosmoo
000?8?00
00028300
0002*400
ooo2A5no
00028600
00028700
0P02AROO
0002S900
00029000
00029100
00029200
00029300
00029400
00029500
00029600
STEP 3-*
RFAH 1 r • OATA TYPE
00029800
00029900
00030000
00030100
00030200
00030300
00030400
00030500
00030600
00030700
00030800
00030900
00031000
00031100
00031200
00031300
00031400
00031500
00031600
00031700
00031800
00031900
00032000
00032100
00032200
00032300
00032400
IHYnRAULIC C 0 00 32 500
-------
'11
or
M«4
PS
OA
A *
prp
upc
upf
ror cuhputing velocity and nrpvooosz&oo
O0U32700
CO PO 1=1*11 00032800
°rao irl.P1) (OATAf * •A?»*x«F?.o«ioy«*Fifl.t) ono^sooo
ir (uata < i j-f^-ja \ Pti,t«5,PP onossioo
CorTfNUF 00033200
jgw>ru. = l 00033300
1 = 1*1 00033400
lirop (M.ri) (HAtA| I • J) i J=1 *9) 00033500
lr I T A ( I , i )-C^Ofl I P4.B9.A4 00033600
n=T- 11 00033700
WHITE. < NJ.B2 > N 00033000
Frp"Al M*'n«Sy, 1£H»»**« TOO KaNY ( . T ^ . 1fth ) 0ATA5 CARPS REAO) 00033900
GO TO P 3 00034000
if ii.gc.ii) ro to p* 00034100
•yr^pop = 1 00034200
'|=IT-1 00034300
wf'lTL (MJ.^6) N 00034400
FOk'*AT ( IhP . 5X. 1TOO FEW (.l*.18H) DATA5 CANPS REAOI 00034500
CnNT IMiF 000 3460 0
hC*' ^=1 00034700
On w7 I = 1»NFEAH' 00034800
It/r»'=iriXJlCH=IHe»l*'0< IPC»M
COLFQVUIHCIU = PATA(I.«i)
E*POGV(NPCH> = OATAI I . £> )
CGEFG^(NHCH) = C AT A (1*7)
EXPOl'MI MRCH) = HATAd.A)
CMArr«j(fPCHj = ratmi.9)
CPNTir OE
IT IIllST.EQ.OI GC TO 42*
WRITl (^ J•^06)
Format (lHu.iOX.39Hii% DATA TYPE 5 (HYDRAULIC COEFFICIENTS,
» 40H FOR DETERMINING VELOCITY AND DEPTH) «!»«/)
WI'ITF (IIJ.?0&)
FORMAT (1nx.9HCARO TYPE•8X.SHREACH.13X•16HC0EFQV EXPOOV.
» 4 X . 26HCUFFOH TXPOQH CMANM
W*ITf (Nd«ii04> < < OATA< 1 * J) • J = 1 . 9) « T -1 • NCROS )
FORWPT <10y.2/*'*«A?.5X.F5.0»10X«*iF10.3)
COMTIf
STE"P J-A
RFAO IN DATA TYPE 6
00035000
00035100
00035200
00035300
00035400
00035500
00035600
00035700
00035800
00035900
00036000
00036100
00036200
00036300
00036400
00036500
00036600
00036700
(REACTION C000036800
DFOXYGFNATION AND REAERAT10N).
HO e>0 1 = 1. II
h F A r (DAT A(It J)* J = 1 .10)
FOP"AT (?A4,A?,5X,Fb.0.6Fin.0)
IF ( r a T A ( J , J ) -Ef'DA ) *0,95.9(1
COMT 1 M,F
\jr.) n
Fni"*AT ( il't ,ax. 1 TOO f*ANY
C»n T (• «=» *
J f i I .11) f '» 1 ri
(.T*,14H) OAJA6 CARDS REAO)
ODOS690O
00037000
00037100
00037200
00037300
00037400
00037500
00037600
00037700
000*7800
00037900
00036000
0003*100
00038200
00038300
COO^AUOO
-------
r r \ "i»i' = i
Msit- I
UK I Tf. i'M, rtb ) f
KpOkrtMPfH) = DATAU.7)
C*2(uPCH» = QfiTfii Jf8t
CnF.OK?
°7 CONTlnur
IF ( IL 1 SI.F 0.01 GO TO 4?9
WRITE (NJ«S09)
srq Ff.f^AT (IHfi, 10X*3PM$*S DATA TYPF f. 'REACTION COEFFICIENTS*
• 3f»H FOR DFOXY6CNATION AND REA£RATION ) $$&•/)
WHITE (NJ*?09)
20Q FPPMAT MOX.yHCftRr TTPE,fl*«12HREACH Kl,*X , 2HK3•8*«5HK20PT ,
* sy,23HK2 COEOK2 EXPGK2I
w»» r Tl I I PAT A I 1» J) * J=1 * 10) *1 = 1» NCRDSl
Mt*S FHNHAT linx»;?A4»A?*5*tF5.'S?Fl0.?,Fl0.0.F10»2»2Fl0.3l
continue
noo3*5ur,
ooo3Rf>no
00030700
0003*800
00098900
Q0OJ900Q
0003^100
00039300
00039400
00039500
000*9600
00039700
OC039R00
00039900
000^0000
00040100
00040200
00040300
00040400
00040500
00040600
00040700
00040600
00040900
STEP 3-6A
RFAD fN DATA TYPE 6A (AL6AE* NITROGEN*
AND PHOSPHOROUS COEF.)
UO I 7 00 1=3 »1 I
RFAniM]•11Q1 ) |HATA I I,J »,J = 1,12)
IIM FORMAT <5A».,5X,F5,0,2X*6F8,0>
IF | 0 A T A < T »1 ) -Ef'D A ) 1100,1105,1100
IIP0 CONTINUE
nfrpok=i
1104 1=1+1
~TAni All • 11 01 I (r*TA N
lip? FORMAT IlHn.by»16^***#* TOO MANY <,I3*19H> 0ATA6A TAROS RrAO)
Grt TO 1 If
llp*» IFl T«(«£ . 1 Tl GO TO 1103
IF DATAfeA cards reao»
no's CHIJTII'I'F
N( Rri<5=l
V-'i 3 107 Isii.iRfTACl
iftfvsjr i x (on fit r . ***10.*0.0001 >
Tiprn=iPfi,MQ< ipcii>
/"l P*iA() ( r HTH ) =r»AT A { 1,7)
/il CrET f '«» r M ) =PAT A ( | • M )
C" H» M Mi Ci ) =bATA < 1 ,o )
-------
CKMOJ
gRITF(NJ.)lll)
1111 roRKAT(10X,9MCAPO TYPF,17X,6H RFACH,2X,&HALPHAO•M(«6HALGSET,3X ,
• c>HCkfcH2,HX.c>HCKN0;>««»X«*mSNH3«7X,HHSP0 « J=l,l?>. I=1,NCRDSI
11J 2 FORMAT I 1nx,5AH.?X,FA.O,F8.1.1X.2F8.2, 1 X,F9.2~2F10.1)
1199 CONTINUE
C
c STEP 3-6B
C READ IN OATA TYPE 6B (OTHER COEF.»
C
00 12D0 1=1.11
PEAPINI .1201 > |PATA( I • J) » J=1112)
12 01 FORMAT(5A^.5X.F5.0« 2X.6F8.0 >
IF |P/ATA(I«1 >-ENDA) 1200,1205,1200
1200 CONTIfUE
fjCRROK = 1
12"P9 1 = 1*1
READiri,1?ftl) < PAT A(I,J)«J=1*12)
IF ( PAT A ( I • 1 >-E*'DA> 120* • 1209, l20«l
1209 NsI-II
WRITF (NJ«1202) N
120? FORMAT DATA6B CAROS READ >
12T3 CONTINUE
NCRnS=I
DO 1207 I=1.NREACH
lRCH=TFTX(OATA(It6)*10,+O.OnOl)
r*wCM=!RCHMO( I»CH|
CKH(NRCH»=DATA=0ATA|1,10)
i?r7 continue
i?*n if < tltst.fo.o) r-o to 1299
W.'PITCINJ»123 J)
121H FORMAT (1H0 • 1 OX • lHitS OATA TYPE 6U I OTHER COEFFIC IENTS ) SSSt/)
4RITE ( NJ«1211)
1211 FnRMATI]0X.9HrAPf) TYPE• 18X »£>H RFACH.HX,3HCK*«6Xi3HCK5,6X~*HEXCOEF»
•lX.3hCKfe)
taRITI (I J«321fe) MTATACI.J). J=l«1f))« I=1.NCRDS1
121 7 FORMAT ( 1(>X «*AU, 2X ,F9. 0«HFQ. 2 )
1299 CONTINUE
c ooouiooo
L STEP 3-7 000*1100
-------
111
11 n
n«
n «
1 1 7
11«
lift
113
117
sin
?io
4P6
430
REAO IM OATA TYPE 7 (INITIAL
oo tin 1=1,11
rtfAH (hi. 111) (HATA(t.J)iJ=l«l?)
FVU*r1 CjA4,:>X,F5.0,Fin.0.2F?.n,3FlO*0)
if (f»Ai a (i, i »-er ciA ) lio.ns.iin
C0NT1I I F
r'rqpon = 1
1=1*1
RtAn (r I «1 11 ) (PATAcI«J)•J=1»12)
IF ir.ATA(|,l)-CNrjAI 114.119.114
N=I-T 1
WHITF (IIJ. 112 ) N
FOPHAT (\Ho«b*•16H*#»»* TOO MANY (.T3.18H) 0ATA7 CAROS READ)
GO TO 113
IF (I.GK.II) RO TO 113
NEIRPOR = 1
N=I 1-1
WRITE (NJ.Ilb) f
FORMAT {1w0.5X.15h#»«»» TOO FEW (.I3«16H) 0ATA7 CAROS RE AO)
CONTINUE
riCRDS=l
00 117 I=1,NREACH
1 RCH=TF f X ( PATA
ColNlT(^RCH,2)=nATA(1,11)
COINIT(NRCH,3)=DATA(I,12)
CONTINUE
IF (iLlST.FO.fl) GO TO 430
WRITE INJ.510)
FORMAT (1H0.10X»40H**S OATA TYPE 7 (INITIAL CONDITIONS) $SSv/)
WPITE (N»J,?10)
FORMAT <1 OX * 9HC ARP TYPE .1PX.23HREACH TEMP 0.0. 800.
• P.X.26HCH-I C^-It rh-III)
W*ITF (NJ.406 ) < (OATA(I.J) . J=l .1?) »I=1.NCrDS>
FORMAT (10X,5A4.5x.f5,O.F10.1.2F5.1.3F10.1)
CONT IfJUF
C0r->00041200
oonmsoo
ooouiuoo
00041500
000416,00
00041700
ono4ieoo
00041900
00042000
00042100
00042200
00042300
00042400
00042500
00042600
00042700
00042800
00042900
00043000
00043100
00043200
00043300
00043400
00043600
00043700
00043800
00043900
00044000
00044100
00044200
00044300
00044400
00044500
00044600
00044700
00044800
00044900
00045000
00045100
STEP 3-7A
RFAO IN OATA TYPE7A (INITIAL CONDITIONS
FOR CHLOROPHYLL.NITROGEN.PHOSPHOROUS*
COLlFORn« AND RADIONUCLIDE)
00 13o2 1=1.iI
KEAO(MI•1301 I (PATA(I.J). J=l.l?)
l^m FOR* A1(3 AM,A2.5X.F5«0 »7F8•0)
IF (OATA(I,1).ENOA) 1302,1303,1302
1 ^C2 COMT If UF
NFRRO^=l
13fl4 1 = 1 + 1
RF AU( III .1301) (PATAU ,J) , J = l, 12 >
IF (0 A T A(I«I)-ENOA) 1304.1 305,1304
130*5 N=I-JI
WHITl ( N J . 1 30 F>) N
IV* FOR'AF (1 Ho«b*.TOO MANY (.T3.20H) OATA 7A CARDS READ)
GO TO 1 *P7
-------
HOT lr ii.c.r.m rn to j307
lPIIDftTf) UililWltll^O
1 1?1 'If l'DS = l
r.o to nr.n
1330 i'JFkKOP=l
N=1I-I
Uhlft (NJ«13U8) N
1 FdFiKrtT ( 1 HO i SX . 15>l»»« •» T 00 FEW I.I3.20H) DATA 7a CAROS REAO)
1307 CONTIHU1"
NTHOS-I
OO 1J09 1=1.BREACH
II t-rH=ii,CHtuo( lnr.Hi
AIGIT (NRCH)=DATA I I ,f>) /ALPHAO ( NRCH I
CNH31T(NRCH)=DATA( 1.7)
c\,o?n(NRCH)=nnTA(i.8i
C?,0 3I T (NRCH) =nAT A < I ,9)
PROSIT(NRCH)=DATAMAT(lHn,10X.48HH» DATA TYPE 7A (INITIAL CONDITIONS FOR CHLOROP
» 30^'HYLL A. NITROGEN. PHOSPHOROUS29X. 30HC0LIFORH AND RAOIONUCLI
«PF) i%% ./)
WRITE ("J.1311)
1SH FORMAT llOX.yHCARO TYPE.1SX.5HREACH.IX.6HCHL0RA.4X .3HNH3. 5X.3HN02 .
«SX.3HN0S.5X.3HPO4.4X.4HCOl I .4X.4HRADN)
U9ITE(UJ.1312) (lOATA(I.d), J=1.12). I=1,NCRDS)
131? FORMAT(lOX«3A4»A2.8X,F6.O.2X»F6,l.F6.2.3F0.2tFlO,l»F6.2)
1320 CONTINUE
00045200
STEP 3-8 00045300
READ IN DATA TYPE 8 AT (t>A«.5x.cF'i. 0.3F10 .0 ) 00045900
IF ir-.ATA I I .1 )-EI"DA) 120.1P5.120 00046000
1?(1 CONTIIUJL 00046100
NERROR=l 00046200
I = jtl 00046300
REAP (NI.121I |PATAII.J).J=1.13) 00046400
IF lDATA I I.1 I-E^OA) 124.129.124 00046500
N= I - I T 000*16600
URITF (NJ.122) N 000*6700
1?? FOR? AT (TOO MANY <«T3«16H) 0ATA8 CARPS READ) 000*6600
GO TO 1?3 000*6900
12* IF (I.GE.TI) GO TO 123 000*7000
M HlJOfv = 1 000*7100
N=ii-i 000*7200
•WRITE |Mo»l?6) N 000*7300
FOKfiAT ( 1 HO • 5* • 15H«»*•* TOO FEW DATA8 CARDS REAO) 000*7*00
1?* COMTlUhF 000*7500
UCRMSs 1 000*7600
00 1 ?7 I =1 tNREACH 000*7700
lKCH=|FlX(OATA(I.6)»10.+0.0001)
N»'CII=THr^ 0( IRfH)
l?1
1?*
-------
ni (I.r-Ch I = 11 rtT^ f 1*7)
T I = OA T «\ c I , ft )
DOT If PC I * > = DATA!1,9)
rni'ICiRCH) = OATA( I.10)
criN« I tMCH ,i)=naT0(i.ii)
rnnsi
CONSl(fjK*H,3)=DATA|I«H»
1 ?7 COMTINlir
IF iILIST.FO.O) GO TO 431
WRITE* (NJ.*511)
*i1l FORMAT ( 1HI). lOX.S^HSSS DATA TYPf * (RUNOFF CONDITIONS) i*S./)
WHITE (HJ« 211)
Fnp»'AT (10 X « 9HCARO TYPF • IPX • 23HPFACH 0 TE«P D.O. ROD.
~ 6X.26HrK-I CM-H CM-III)
Mp t tf ( OAT A ( I • J) « J=1t121
moi FOK*At«3A4,A2,5Y»F5.0«7F8.0>
IF (0 AT A (I«1) -ENDA ) 140 0 • 1402 , 140 0
mon CONTINUE
NfRP0R=l
iun? i=i*i
REAn(M I «lu01I (0AT A(I« J)« J=1,I2>
IF ( DATA (111 ) -ENOA ) 1 *03 .1 «04 • 1*03
14f)4 N= I - 11
WRITE (MJ»1«*05) N
mO*> F OR PAT < 1H0 • 5X «1 TOO MANY <»I3»20H) DATA 8A CARDS READ)
GO TO l*»Ofc
I4P? IF (I.GE.ID GO TO 1406
IF< lDATA)1420il<*?0»1430
m?n NCR0S=1
GO TO 14*>0
m^r nerporsI
M=TI-I
WRITE (Nj»14U7> N
1^07 FORMAT J1H0»5Xt1TOO FEU <«I^«20H) DATA 8a CARDS READ)
mn6 continue
ncrts=i
00 140P 1=1«nreach
1 RCM=TFIX(r)ATA/ALPHA0
PFOSl(flRCH)=DATA
-------
• MiroGLN,phosphorous. /«29x.3nHC0LiF0RM and raojonuclioo **
»*•./)
w^itf
|U11 FPnfAT M0<,9MCARn TYPrfl5X.5HRE*CH,lX,6HCHL0RA,4X.3HNH3,5X,3HN02,
~ «5V . "5 m NO 3 »ry«3HPOM . 4X.4HC0LI•4X.4H*AON)
WPTTt:fNJ,]til2) ( ( 0 A T A ( I • J) « J=1 « 1 2 ) • I=1«NCRDS)
1«M2 FORMAT(10*,3AU, *2,ft*,F6.0,2X,P6.1,Fft.2.3Fft.2,F10.I.F6.2>
1UP9 CONTINUE
C 00049600
C STEP 3-9 00049700
C RfAO IN DATA TYPE 9 (STREAM JUNC00049800
C IDENTIFICATION ANO THE ORDER OF 00049900
C CONNECTING ELEMENTS TAKEN CLOCKW00050000
C AROUND THE JUNCTION). 00090100
C 00050200
00050300
00050400
00050500
00050600
00050700
00050800
00050900
00051000
00051100
00051200
00051300
00051400
00051500
00051600
00051700
00051600
00051900
00052000
00052100
00052200
00052300
00052400
00052500
00052600
00052700
00052800
00052900
00053000
00053100
00053200
137 CONTINUE 00053300
00053400
00053500
SI? FORMAT <1HO«10X«38H**S DATA TYPE 9 (STREAM JUNCTIONS) *SS«/I 00053600
00053700
21? FORMAT (10Xi9HCARO TYPE•14X.24HJUNCTION OROER AND IOENT « 00053800
00053900
0005*1000
DO 13ft J=6«10
K = J-5
JUNC10
-------
II = ti.Hk.7l S+l 00051800
DO 110 1=1 . 1 1 00051900
REAP (M.mi) (TATA I I,J),J=1,16) 00055000
1 00055100
IF (nr.in 11.1 )-enda l it0. l"1*. l*n 00055800
lun continue 00055300
rjFP10R = l 00055100
|i|it J = I + 1 00055500
PCAP (M.111) (DATA! I. J) .J=l .16) 00055600
IF (DATA! I . 1 I-EMOA ) 111.119.111 00055700
lqq N=I-II 00055800
WRITE (NJ.11.HW, 3)=DATA( 1,16) 00058100
OATnT=HWFLOW(NHW) 00058200
117 CONTINUE 00058300
IF IILIST.EO.O) CO TO 133 00058100
WRITE (NJ.513) 00058500
51J FORMAT (lHO.lOX.IOHtSS OAT# TYPE 10 (HEADWATER SOURCES) *$$./) 00058600
W'(ITF (NJ.213) 00058700
FORMAT (10X.9HCAR0 TYPE.10X.23HHDWATER ORDER ANO IDENT, 00058800
• hX.llHFLOW TEMP 0.0. BOD CH-I C"-II CM-III) 00058900
WRITE (MJ.109) ((PATA(I.J).J=1.16).1=1.NCROS) 00059000
109 FOR-AT ( lPX.2A1,A2,5X,F5.n,2X,5A<»,F10.1,6F6.1 ) 00059100
133 CONTINUE 00059200
STEP 3-1 OA
READ IN DATA TYPE 10A (HEADWATER
CHLOROPHYLL. NITROGEN. PHOSPHORUS
COLIFORM AND RADIONUCLIDE CONDITIONS)
00 1500 1=1.11
RFAntM .1501) (PATAU.J). J=1.12)
l^nl FORHAT (3A1.A2.5X.F5.0.7F8.0)
IT (DATA ( I . D-ENDA ) 1500.1502,1500
lbrn continue
NfRP 0R = 1
ISO* 1 = 1*1
RE AP ( NI • lc 01) iriATA(I.J). J=1.12)
IF ( OAT A ( I . 1 ) -FMMA ) 1503,1501,1501
-------
fnq
ISO*
ISO 2
i5?n
1530
1507
1506
150 ^
lS«j1
1M0
151 ?
1S09
151
l«sn
15*
159
is?
1s*
IS*
lc^
N=I-IT
VRITF 1NJ«1505) N
FO«"ftT A T A ) 1520.1520.15*0
riCRns=i
GO TO 1550
NFPfrOR=l
N=IT-I
WHITE ( UJ«1 5U7 ) fJ
FORMAT <1H0«5X«15H***** TOO FEU f«I3«2lH) DATA 10A CARDS READ)
CONTINUE
NCPr»s = I
CO 15nP i=i,nhytrs
NHW=CATA(1*5)
HWAI.GCNHW) sOATA ( I . 6)/Al_PHA0< 1 )
HWNH3INHw)sOATA<1.7)
HWN02INHU)=DATA(I.8)
HVJHO3(fJHW)=0ATAI 1.9)
HWPHOS(NHU)=UATA(1,10)
HWCOLT(MWW)=0ATA(1,111
HURADm N»'W| =UATA (I , 12 )
ClfjT INUF
IF(TLIST .EQ. 0) GO TO 1509
UrtlTE (NJ.1510)
FOR*AT(1H0,10X.«mH$$S DATA TYPE 10A (HEADWATER CONDITIONS FOR
* 34HCHLOROPHTLL.NITROGEN, PHOSPHOROUS,/,30X,30HCOLIFORH ANO RADION
•UCLIOF) >*»,/)
WRITE
FORMAT(1 OX ,3AM,A2,0X,F6.0.2X.F6.1,F6.2,3F8.2,F10.1,F6.2)
COWT IfiUE
00059300
STEP 3-11 00059*00
READ IN DATA TYPE 11 (WASTE INPU00059500
WITHDRAuLS ANO THEIR CHARACTERISO0059600
00059700
I r = NWASTE+1
ISO 1=1,11
REM) (M . 1 SI) < OAT A (I. J) «J=1»17>
FORMAT (2AM,A2,F5.0,5A<*,F5.0,F10.0«6F5.0)
IF (UAT®(I.1)-ENOA> 150 «1551150
COMTlPljE
Nrr
-------
h.ckps =»
00061100
LO l b7 1=1vNUASTE
00061900
= PATAI I ,4)
00062000
00 IbP J=e», 9
00062100
K = J-U
00062200
W^STHMNWS.K|=nATA(I ,J>
00062300
l^p
CONTINUE
00062400
THFACT(NW^) = OATA(I,10)
00062500
WSFLOW(NbS) = DAlA(I.ll)
00062600
WSTFMP ( WU'S ) = nATfl(I,lP)
00062700
wsnniNWS) = oatmi»13)
00062600
WSPOH ( Nt'S ) = PATA(I«14)
00062900
WSCONS(NWS•1>=nATMIt 15)
00063000
wsrofcSf It WP,2)=DATA(I,16)
00063100
hSCnNSC ft S,3> =DATA( 1.17)
00063200
1^7
CO"TTr«'Uf
00063300
IF (IlIST.ro,0) GO TO 43<*
00063100
WRITE (NJ.51H)
00063500
5iu
FORhAT HM()«lnX»37HS*S DATA TYPE 11 (WASTE LOADINGS) &$*,/)
00063600
UP I Tf (fJJ,?l4)
00063700
214
FORMAT (10X.9HCAR0 TYPE•2X,31HWASTE LOAD ORDER AND IOENT EFF,
00063600
• fX.UHFLOU TEMP O.O. 0OD C*-I CH-II CH-III)
00063900
WRITE (NJ.M10) <(DATA , J=1.12)
IF (DATA(1,1)-ENDA) 1605.1607,1605
1607 Nsl-Il
WRITE (NJ»1620) N
16?0 FORMAT (1H0*5X«16H***** TOO MANY <«I3*21H) DATA 11A CARDS READ)
GO TO 160«*
1621 IF (I.GE.IT) GO TO 1601
IF ( THATA ) 1650.1630.1640
163(1 NCROS = 0
GO 10 1650
16«*0 N£RR0R=i
risl T- I
WRITC (NJ,1622) N
1622 FORMAT <1H0«5X.15h*»«#» TOO FEW (•I3.21HI DATA llA CARDS READ)
160« CONTINUE
Ncpns=i
DO 160 f 1=1.NWASTT
NWS=OAT A(I,S)
WSAL0(NWS)=DAT&
-------
WSCnLl no TO 1699
tJUTT (r'J»1 61 0 )
IMP F0RfATflPn.lljX,4a»'*ij OATe type 11A (WASTE load characteristics -
• ?PH ALGAE. •rjITROr.LruPHO<;PHOflOUS*/^nX«27HCOL IFORHS ANO RADIONUCLIDES
* f1 J «/)
W»?ITE(NJ11 11 >
1611 FOP^AT <10X,9HCAR0 TYPE«6X~?6HyASTE LOAD OROEP AND IDENT«9 X i 6HCHL.
• A,s y,UH MO? • 6X«9H N03.6X.9h P09»6X.9HC0LI . 6X.9HRA0N)
IF ( I PA T A #fO. 0) r-0 TO 16*15
pjc»»r»s=r ckts-i
oo i6i5 i=i.NCRrs
NV;S = f ATA< I,h|
Frjwi>='.w s
WHITF ( r AT A ( I * J) • J=1,9) « F NWS • . K=1.5> «
* iHATAiI,J), J=f,1?)
161? FORK At < 10y . -*AU, A2.F6.0 ,1 X , A9 , 5< 9 x . Ffr • 2 ) .2F12.2 >
161 S C0N1 PIIJF
16*S WRITE •J=1.3)
1699 CONTINUE
WRITF (NJ.2055)
20SS FORMAT (1HI)
00069300
00069900
00069500
STEP 9-0 00069600
IF THE CORRECT NO. OF DATA CARDS00069700
NOT BEEN REAO IN. THE PROGRAM WI00069600
terminate.
IF (NFRROR.CU.O1 GO
TO 89fl
WRITE X. 1H*
«3l X
3H0
F
• 31X
1H*«
//.
16X * 39H*
E
R R
0 R
S
I
N
•
33HI
N P
U T
D A
T A
• »//
16X « 39H*
• ft
* •
*
ft »
« •
« *
ft
ft
ft
ft
ft «
33Hft
• »
• *
*
ft *
• ft
ft ft
ft
ft
*
ft
*)
STOP
RFTUHfl
END
00069900
00065000
00065100
00065200
00065300
00065900
00065500
00065600
00065700
00065B00
00065900
00066000
00066100
-------
SUBROUTINE NH3S*
Subroutine NH3S completes the setup of the equations necessary
to calculate ammonia nitrogen concentration levels in each computational
element. Specifically, the subroutine completes the definition of the
diagonal term of the coefficient matrix and defines the vector of known
terms on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b^ = x-j + (K?)^ t
7. Withdrawal = x-j + (K7)1- t - q0
i
where xn- is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each
type of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
* I > Af
1. Headwater Si = (N1)i + qi (N1)i — - ai(Nj)h
+ ajpA^t + a2 Ax
6. Waste Input Si = (N^* + (N^. ^ + qw(N,)w ~
+ otjpA-jAt + a2 Ax ^7
*AI I symbols used are defined at the end of this section of the
Documentation Report.
IV-18
-------
TYPE RIGHT HAND SIDE
All Others Si = (Nj* + q! (Nx)! alPA.At
+ a2 Ax VT
i
For steady-state simulation, the only difference is that the value from
the previous time step, (Nx)., is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-11
and is followed by the program listing. All program variables contained
in COMMON are defined in Section V.
IV-19
-------
ENTRY
S IB ROUTINE NHS
00 confutations
from a to b for
All computational
elements
RETURN
TO QUAL
' DETERMINE ^
TYPE OF COMPUTATIONAL
\ ELEttNT /
INITIALIZE
COUNTERS ANO
CONVERSION FACTORS
INITIALIZE KNOWN
TERN AND DIAGONAL
TERM FOR STEADY STATE
OR DYNAMIC SIMULATION
CONTINUE
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM. B(l)
ADD HEADWATER
INPUTS TO KNOWN
TERM, S(I)
TYPE fc
ADD WASTEWATER
INPUTS TO KNOWN
TERM, S(I)
FIGURE EZ-11
FLOW CHART FOR SUBROUTINE
NH3S
-------
SU']C0IITINf r H^S
TTTLE,
VSTfcMPOO) «wSD0(90) «WSR0H(90) .WSC0NS(90«3) «QATOT (15) •
A < enr),fl{500)«C(510).D(5)«S(500)« Z< 500)»W(500).G(SOO)•
FLOWt 50 0 )«PFPTH(50P)* VFL(5flO),OTOVCL(*00)«K2(50 0).Kl<500)•
HSMET(50 0),DL(500),VHW115)*nCP4W<15)«0LHW<15).T(500)•
HO(50 0).P00<*0 0).CONS(500,3).PTIME.TPRINT. 0ELX«
MHWTRS «"REACH•NWASTE « NJUNC »OEL T < DILT « 02LT•OT00X2 * 0T20DX•
UaT.LSM«LLM,FLEV*OaT«AE«PE«0AY0Ft•nRYRLB«WETBLB*OEUPT«
AT^PP.WP'OtClOUn*SONET,NI.NJ.TRLCO.TOFOAt•NT.NC•TIHE•NCS
CN02Tf(7?).CN03IT(75).JSCOLI(90),WSALS(90),WSPH0S(90)<
WSMH3(90).WSN02(90)»WSN03(90)* HWCOL1(15).HUALG(15).
HWPHOS(15),HWNH3(15).HWN02(15)%HWN03<15)tGROWTH(500)•
flOCOPI(10)•IRCHNO(750),EXC0EP<75)
CO^HOI,/SST ATC/X ( 50 0 I • I SS
rffAL knh3
INITIALIZE COUNTERS
NHWrf,
MUS = 0
FACT = 1.0 / (2*.3 » 06^00•0)
LOOP THROUGH REACHES ANO COMP. ELEMENTS
DO 100 1=1 breach
Ncri.N=NCLL«H( I )
cncelr=«icelr
CMH3IJ=0I
K.JHM 10R ) =CK|JH5( I I *1 .0«*7*»TC
• NEW
*NEu
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEu
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
•NEW
•NEW
• NEW
• -29
-------
h" AfT = Al»Mftl*H{!?PHH(IOR)«flLGAr * fact
m 1,11. ) r* ( I ,.r,) -OJ LT*KNhM I OP )
SC Kr« > =CM * (ini? 1
IF (iSS.f.T.O) S|. )='s(IOK»*»FnCT + CNHJIJ*C>TnvCL(inR)
irL=i» lagii,j)
MODIFY 01 AGONAL ANn/OR KNOWN T^RMS
I-J TCI ( 1 01 , 1.JO, 1U0 , 100,lOn, 103, » , IFL
1 ni w* j=f hwm
SM^^SiT^lM-'MlPR) * hUNH "* (riHU )
ro to ioo
in* Nws=f.-s + i
b(tnh):9(inK)4^Sf.-iOW(NWSl*WSrjH^
ino c )"'TTr iir
H 7 TljR'i
€ ,n
-------
SUBROUTINE N02S*
Subroutine N02S completes the setup of the equations necessary
to calculate nitrite nitrogen levels in each computational element.
Specifically, the subroutine completes the definition of the diagonal
term of the coefficient matrix and defines the vector of known terms on
the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b-j = x-,* + (Kg)^ At
7. Withdrawal At - qQ
where x-j is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
1 At
1. Headwater S-j = (N*)i + q^ (N2)i — - a. (N2)h + (K?N1)i At
6. Waste Input = (N*^. + qi (N2)i qw (N2)w + (K7N1)i At
^ i i a
All Others Sj = (N2)i + qi (N2)i — + (K7N1)i At
*AI I symbols used are defined at the end of this section
of the Documentation Report.
IV-20
-------
For steady-state simulation, the only difference is that the value from
the previous time step, is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-12 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section V.
IV-21
-------
ENTRY
SUBROUTINE NQ2S
^ DETERMINE >
TYPE OF COMPUTATIONAL
V ELDCNT /
0~
INITIALIZE KNOWN
TERM ANO 01AGONAL
TERM FOR STEADY STATE
OR OYNAMIC SIMULATION
INITIALIZE
COUNTERS ANO
CONVERSION FACTORS
00 computations
from i to b for
all computational
elements
TYPE 1
ADD HEADWATER
INPUTS
'0 KNOWN
TERM,
SCI)
TYPES 2. 3. 4. 5
CONTINUE
TYPE 6
ADO WASTEWATER
INPUTS TO KNOWN
TIRH. S(I)
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERN. 0(1)
0
RETURN
TO QUAL
FIGURE IE-12 FLOW CHART FOR SUBROUTINE N02S
-------
s Ipl M.IT TKF flu?",
C')*V*0P TlTLn » P^THOR (75) « RmTEOR C 75) « NHWWAR (15).
TAKr(»U|7^)«TAUncH(7StA).NCCLRH(7S>«lFLAGI75«20l«
I C L OR JI 7r»»?0 J «COFFQ\/( 7S) ,EXPnQV< 75) « COEFOh( 75) .EXPOGH(75) .
r> iiMf ( 7 5 » .fx 1 ( 75) .CK^f 75) .K?OPT(75) . CK2( 75) «C0EQK2(75 ) .
f kPOK<>( 7*) «T IN1T( 7S) •OOIMTT ( 75) •qOlNI T(75> tCOTNIK 75t 3 > •
HJ (7 bl.Tic 75).001(7M.80DI(75).CONSI<75.3).JUNCI0(15.5) .
JUNC ( 1^.3) »HUTRIO( 1^.5) .HUFLOW( 15) , HWTEKP(15) .HW00(15) .
nupm< i *>) ,hwcons( 1*. 3), wASTin< po .5)« trfact< 90) .wsflowi90 >.
wsTerpjoo).'wrno<9o > .usnoo(9o) ~ wscows<90.3) ,qatot,PHOS(50
roLTR(75).ALGI(75)
CN031t 75).rOLIIT(7
CNO?n ( 75) .CN03IT (
KS^3(90 ) » WSN02 (90
HUFHO^c15),HWNH3(1
VOCOP r(10)«IPCHNO(
Cn^Mon/SSTATt/X(500)•ISS
HEAI Kf02. Kr.HI
(75),CKNH3(75)iCKN02(75).CKN03(75).
(75) * ALPHA 11 ALPHA2 , ALPHA3 , ALPHA*) •
AX.RCSPRT.ALGSET(75)«SPHOS(75)«
. KriO?(500) tRESPRR ( 500 ) •COLI(500) .
n)• CNH3(500)«CN02(500) *01 LT*KNO?( I OR )
~ NFW
~ MEW
~ NEw
~ NEW
~ NEW
~ new
~ NEW
~ NEW
~ NEW
~ NEW
~ NEW
~ NEW
~ NEW
~ NEW
~ NEW
~ NEW
~ NEU
~ NEW
~ NEW
~ NEW
~ NEW
~ NEW
~ NEW
~NEW
~ NEW
~ NEW
~ NEW
~ NEW
~ NEW
~ -29
-------
s < i nn) =r>joa (10^»
IF IISS.GT.O) S(I OR 1:0.0
s ( InlMsS ( T nP I +RFACT+CN021JtOTOVfl I I OR )
IFL=1FL«G
go TO 3 00
c
in* NHSrNWS*l
S ( ICN ) = S< ToR) ¦* W^Fl OW (NWS) *WSNo2 < NWSI~OTOVCL
GO TO 100
c
in<4 NWS = NWS+1
B< TOR)=B(I OR >-WSFl OW
ion CONTINUE
RfTliKM
FT'O
-------
SUBROUTINE N03S*
Subroutine N03S completes the setup of the equations necessary
to calculate nitrate nitrogen levels in each computational element.
Specifically, the subroutine completes the definition of the diagonal
term of the coefficient matrix and defines the vector of known terms
on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 = x^
7. Withdrawal = x^
where xi is defined in Subroutine TRIMAT.
1o Vi
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE
1. Headwater Si = (N^. + qi(N3). - a1-(N3)h + (KeN2)i At - a^A^t
6. Waste Input Si = (N*^. + q^N^ qw(N3)w ^ + (K8N2)i At - a^At
All Others Si = (N*)i + qi(N3)i + (K8N2). At - a^A^t
*AII symbols used are defined at the end of this section
in the Documentation Report.
IV-22
-------
For steady-state simulation, the only difference is that the value from
*
the previous time step, (N3)^, is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-13 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section V.
IV-23
-------
ENTRY
SUBROUTINE N03S
DO cooputttlons
from i to b for
all coeeutational
• iMMtS
RETURN
TO QUAL
X DETERMINE N
TYPE OF COMPUTATIONAL
v ELEtfNT /
INITIALIZE KNOWN
TERM AMO DIAGONAL
TERM FOR STEADY STATE
OF DYNAMIC SIMULATION
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM. B(l)
TYPE 7
CONTINUE
TYPE )
ADO HEADUATER
INPUTS TO KNOWN
TERM, S(I)
TYPE 6
ADD WASTEWATER
INPUTS TO KNOWN
TERM. S(I)
FIGURE
EZ-13
FLOW CHART FOR
SUBROUTINE N03S
-------
S'JRW'iTINF N03*?
CCMf'Orv TlTLT (PO »nn ) *RcHlO(75tS) »RHTHOR ( 75) « R^TeOR I 75) tNHWWflR (15) •
TAPM)l)( 7 5 i »I AUGOR ( 7"* • 6 ) .NCELRH(75) • IFL AG ( 75 ~ 20 ) «
ICLOI U(7* » ?0 ) • COCFOV ( 75) «EXPOGV(75) •COEFQH I 75 ) •EXP00H«75> »
CWAfJf (75) iCKl * 75) «CK3(75 ) #K?OPT(75 ) «CK2<75) »C0EQK2( 75 >«
f X PQK ^ I 7? ) • T IN I T ( 7*^ ) tDOINIT(75) t BO INI T( 75) « CO INI T ( 75 • 3 ) «
UI ( 7*> >» TI ( 75 ) • DOI (75) .ROD I < 75)«CONS I ( 7513 ) • JUNC 10 (15» 5 ) «
JLflC< 15.3 » • HVJTRIDM 5*5) tHWFLOW( 15) ,HWTEMP(15) .HW00I 15) •
I'WPono 5 > , HWCOn->( 1*,3)«WASTint90«5)• TRFACT ( 90 ) • WSFLOW <90 ) .
WSTE^PC 3 0>,US00< 90)~USROOI90)•USC0NSI 90~3)•QATOT( 15) t
ft(*0 0),R(l>00).C(50 0 )* D(5)« S(500)•Z(500)•W(50 0).G(500)«
FL0u< 50 0).DEPTHt 500)•VEL(500)•DTOVCL(500)*K2(500)«K1< 500)•
»1SNET(50 0l.nLlSnOl.VHW<15)« HEPHW(15)•OLHW(15)«T<500>•
no(500)tROP(500)«CONS!500•3)•PTIRE•TPRINT «OELXt
HI'WTRS.NRCACH.NWASTttNJUWC.nELTt01LT»P2LT«OTOOX2»OT200X«
LA7•Ls*«LLN,ELEV•OA T « AEt BE » OAYOFY•DRYBLB* WETBLB•DEWPT•
ATWPR»W!^iD,CLOun«SnNFT»NI•NJ#TRLCD,TOFOAY,NTtNC.Tl«E*NCS
Cn^PON/flOPIF/ CKI* < 75) tCK5( 75) «CHNH3( 75) « CKN02 ( 75) • CKN031 75 ) #
CKN«CKP,PH0S(50 0>»CNH3<500) •CN02« 500> »CN03(500> t
COLIR(75 >.ALGI(75),PHOSI<75> «CNH3I<75).CN02I(75)•
CN03K75) • COLI I T< 75 ) • ALGIT f 75 > • PHOSI T ( 75) « CNHMT < 75 > •
CNO?IT(75)« CN03IT(75)•USCOLI(90)• USALG(90)•WSPHOS< 90)•
USf'HJt^O ) • USN02 ( 90 ) . WSN03'90) .HWCOLI(15>•HUALG<15) •
HUFHOS(15)«HWNH3
no 1oo J=J.^celp
IOP = ICLORO(I•J >
initialize diagonal and known terns
IF (r.ODOPT(t»).FC.n) ALGAE(IOR) = n.O
hCACT=nlLT*KNO?(I0R)»CN02(I OR)-piLT»ALPHA1*GR0WTH(IOR)•ALGAE(I OR)
(H IOR) = X(IOR)
S( IOK)=CfJ03( iOR )
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
*NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
•NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• -29
-------
IF flSS.GT.m S-A
-------
SUBROUTINE P04S*
Subroutine P04S completes tne setup of the equations necessary
to calculate phosphorous levels in each computational element. Specifically,
the subroutine completes the definition of the diagonal term of the
coefficient matrix and defines the vector of known terms on the right hand
side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions, and
mass changes caused by stream withdrawals. The resulting diagonal term
for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b^ = x^
7. Withdrawal b. = x. - qn —
i i v.
where x, is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for eacn type
of element for dynamic simulation is:
TYPE
1. Headwater Si = ^ + ^'p' ^ " aiPh + a2 (p-^) ^.At + o3Ax ^
6. Waste Input S. = P* + (q'P' + qwPj — + a2 (p-p.) a.At + a3Ax ^
All Others S. = P* + q'P' + a2 (p-y.) a.At + a3Ax ^
*AII symbols used are defined at the end of +his section
of the Documentation Report.
IV-24
-------
For steady-state simulation, the only difference is that the value from
*
the previous time step, , is set equal to zero.
The subroutine flow chart is illustrated in Figure IV-14 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section V.
IV-25
-------
ENTRY
SUBROUTINE P04S
DO computations
from a to b for
all computational
elenents
RETURN
TO QUAL
^ DETERMINE >
TYPE OF COMPUTATIONAL
V ELEMENT /
INITIALIZE KNOWN
TERM AND DIAGONAL
TERM FOR STEADY STATE
OR OYNAMIC SIMULATION
CONTINUE
INITIALIZE
COUNTERS AMD
CONVERSION FACTORS
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM, B(l)
TYPE 1
ADD HEADWATER
INPUTS TO KNOWN
TEW, S(!)
ADO WASTEWATER
INPUTS TO KNOWN
TERM, S(l)
TYPE 6
FIGURE
EM4
FLOW CHART FOR
SUBROUTINE P04S
-------
supnmiTlNF: poic;
coapon TITLt[?n.20) .RCHIDI75.5I . RmTHOR ( 75) . Rr.TEOR ( 75) ,NHWUAR(15) ,
TARGno(7"i I . IAU60R (75.6) .NCELRHI75) . I Fl AG< 75. 20 I .
ICL0RUf7S»?0).COEFOV(75). EXPOQV C 75 > » COEFOH(75) .EXPOOH(75 It
CMAfjN ( 75) • f K1 (75) » rK3(75 I •K20PT (751 • CK2 < 75) . COEQK2( 751,
F!XPqK2{7"S) ,TINIt(75) t DO I NIT ( 75) , BOINIT ( 75) . COIN I T ( 75 . 3 ) .
QI(75I.T1(75).OOI(75I .BO[)I (75) .CONS I<75.3).JUNC10(15.5) .
JUNC(15.3).hWlRIO(15.5).HUFLOWI15)¦HWTEHP(15).
FLOW(bOO).OEPTHI500).VEL(500).DTOVCL(500).K2(300).K1(500).
HSMET(500 ). OL(500).VHU(15).DEPHU(15).0LHWI15I.T(500)•
DO(500),no0(500).CONS(500.3).PTIME,TPRINT.OELX,
NHUTRS.MREACH.NWASTE.NJUNC.DELT.D1LT.D2LT.DT0DX2.0T20DX.
LAT,LS*.LLH,ELEV.O«T.AE•BE « DAYOFY.DRY8LB.WETBLB.DEWPT.
ATHPR.UIHO.CLOUP.SONET.NI.NJ.TRLCD.TOFOAY.NT.NC.TIHE.NCS
COMMON/MOO IF/ CKl»(75),CK5(75 ) .CKNH3<75) • CKN02 ( 75 > .CKN03 ( 75) .
• CKN.CKP.CKL.ALPHAO(75).ALPHA1,ALPHA2,ALPHA3,ALPHAH,
• ALPHAS.ALPHA6.GR0nAX.RESPRT.ALGSET(73).SPH0S(75),
• SNH3(75).KNH3I500).KN02(900).RESPRR(SOO).COL 1(500).
» ALGAE(500).PHOS(500).CNH3(500).CN02(500>•CN03(500).
• C0LIR(7S).ALGI(75),pH0sI(75).CNHSI(75).CN02I(75).
« CN03K75) .C0LIIK75I .ALG1T(7S>.PHOSTT(73 I.CNH31T(73) .
» CN02IT(75).CN03IT(75 ItUbCOLX(90).USALG(90).WSPHOS(90).
» USNh3(90).USN02(90)•WSN03(90)•HWCOLI115 )>HWALG(15).
« HWPHOS(15).HUNH3(15).HWN02(15».HUN03C15)•GR0W7H(500)t
» MOnoPT(lO).IRCHMO(750),EXCOEF(75)
COMHON/SSTATE/X(300).ISS
INITIALIZE COUNTERS
Nhw=o
NwS=0
FACT s 1.0 / (28.3 • 86*100.0)
LOOP THR0U6H REACHES AND COMP. ELEMENTS
DO too i=i,mreach
MCElR=NCEIRH(J j
CNCELRsNctLR
PhOSIJ = OIII)/CNCELR*PHOSl
0( I OR)s X|IOR)
IF< TSS.GT*!> S(IOR)=0,0
PS0RfF=SFHOS(1)»DELX»DTOVCL(IOR) * FACT
• NEW
• new
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
•NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• -29
-------
HMCT = ALPHA?* ( hf^PRR |IOP )-GROWTH! IOR ) ) •OILT
S( i oh I sSC 1Of* »+HHOSI J*nTOVCl I I OK > ~REACT*ALGAE" I IOR>+PSOPCE
IFL=1FLAG(I,J)
C
C KOniFY DIAGONAL ANfl/OR KNOWN FERMS
C
on to I 101,1UC . 100 ,100 ,100«10^.1 OH). IFL
c
101 NHW=NMW+1
S
-------
SUBROUTINE RADIOS
(Not Programmed)
IV-26
-------
SUBROUTINE REAERC*
Subroutine REAERC determines the reaeration coefficient for
each computational element through the use of any one of seven
different procedures. However, the same procedure must be used for
all computational elements within an individual reach. The choice of
which procedure to use is controlled by input options for each reach.
The seven options, procedures, and references are:
OPTION & PROCEDURE
1. Read-in K2 values
0.969
2. K2 = 5.026 Yg73 x 2.31
3. K2 =
(W
v m '
D'
0.5
,1.5
x 86,400
REFERENCE
None
Churchill et al (1962)
0'Conner and Dobbins (1958)
u0-67
4- K2 = 9'4X^X 2'31
Owens et al (1964)
5. K, = 10.8(1 + /F) S- x 2.31
6. K„ = 3.3
7. K, = aQ
TT333
D
x 2.31
Thackston and Krenkel (1966)
Langbien and Durum (1967)
None
where
u = velocity (feet/sec)
D = depth (feet)
Q O
Dm = molecular diffusion coefficient (2.25 x 10 ft /sec)
*This subroutine is unchanged from the original version of QUAL.
All symbols used are defined at the end of this section of
the Documentation Report.
IV-27
-------
F = Froude Number = u//Dg
u* = shear velocity (ft/sec)
= u n /g/1.49 D1'167
g = acceleration of gravity (32.2 ft/sec^)
n = Manning's roughness coefficient
The subroutine flow chart is illustrated in Figure IV-15 and
is followed by the program listing. All program valuables contained in
COMMON are defined in Section V.
IV-28
-------
ENTER
SUBROUTINE RCAERC
DO COMPUTATIONS
FROM 4l TO b
FOR STREAM REACHES
DO COMPUTATIONS FROH a2 TO b
FOR ALL COMPUTATIONAL ELEMENTS
WITHIN THE STREAH REACH
DETERMINE
OPTION FOR Kg
SET Kg EQUAL
TO VALUES READ-IN
OPTION 1
CALCULATE Kg
OPTIONS 2-7
SET Kj OPTION
FOR ALL COMPUTATIONAL
ELEMENTS IN REACH
FIGURE E-15
FLOW CHART FOR SUBROUTINE REAERC
-------
^I'HPpiJ! If*r K£flFwC
c
RFAFMc TAN CITHER READ IN REAERATTON
CnrFFiCirrjTS iopttond* compute them
USING A SELECTED EQUATION (OPTION 2.3.
4.5. ANT 6>» OR COMPUTE THE* BASED ON
K9=A*Q#*R. ALL K?¦S ARE TO THE BASE E.
TITLF(?0.20)»RCHIO(75,51•R^THOR( 75) .RWTE0R(75).NHWWAR (15 ) •
TAPGDCK 75)•IAUGOR(75.6)« NCFLRH(75)«IFLAG(75 « 20)*
TCI 01*0(75 0) . COLFOV < 75 ) .FXP00V(75) , COEFQH ( 75 ) • EXPOOH ( 75 ) ,
C»iANfM 75) .CKU7S). CK3 (75 ) .K?OPT(75) , CK2 ( 75) .C0EQK2(75) .
FxPOK2(75).TINIT< 75)•DOIMIT(75).B0INIT<75),COINIT(75«3).
01 ( 75 ) . TT < 75) .001 ( 75) .BOP I (75 ) « CONS I (75.3) . JUNC 10(15.5).
.iUNC(IS,3).HWTR10(1 5.5).HWFLOW(15).HWTEHPf15).HW00(15).
HHPOD (15) »HWCONSUS,^),WASTID(90.5) . TRFACT ( 90 ) . WSFLOW ( 90 ) »
WST£HP<9P).WSDO(90)« USROP(90)•WSCONS(90,3)iQAT0T(15).
A(rOO).0(500).C(50^)*D(5)*S(^00)«2(500)«U(500)t6(500)*
F10U(boo)iDFPTH(50nI.VEL(500)•DTOVCL(500)»K2(500)«K1(500)«
MSfJFT (50 0 » ,DL(500) . VHW( 15) ,nEPHW(15) « OLHW (15) . T (500 ) «
00(500),ROD(500).CONS(500,3),PTlflE» TPRINT.OELX#
r,HV'TRS.NREACH.NWASTE»riJUNC«DELT»DlLT t02LTfDT0OX2*OT2O0Xt
LAT.LS^.ILM.ELEV.OAT.AE.BE.OAYOFr.ORTBLBtWETOLB.OEWPT.
ATrPR.WINO.CLOUn.Sr>NET.NI.NJ.TRLCO.TOFDAV.NT»Nc«TIME»NcS
REM Y?
00 100 1=1,NRFAfH
NCELR=KCELHH(I)
KOPT=H?OPT(I)
00 ion Jsi.NCFLP
10R=1CL0R0(T.J)
IFL=1FL*G(I.J)
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• -16
i>0 TO ( 101 .102«103.10M.10?.106~J 07)i
1ni h?i ior)=cy?\ 11
00002500
00002600
STEP 1-0 00002700
LOOP THROUGH SYSTEM OF NREACH RE00002800
AMD NCELR COMPUTATIONAL ELEMENTS00002900
REACH, 00003000
00003100
00003200
00003300
00003100
00003500
00003600
00003700
00003800
STEP 1-1 00003900
SFLECT K2 * S FOR AMY OPTION AS DE00004000
BY REACH. 00004100
O0O0H2OO
00004300
K2 IS REAO IN. 00004100
CHURCHILL (1962) 00004500
0•CONNER - OOB9INS <1900004600
OWENS. EDWARDS. - GIBB00004700
THACKSTON - KRENKEL Il00004ft00
LANGPIEN - OlIKUM (196700004900
K2 = A • 0 •• P 00005000
00005100
00005200
00005300
KOPT
=
1
KOPT
=
?
KOPT
=
3
KOpT
=
u
KOPT
=
5
KOPT
r
6
KOPT
=
7
-------
GO TO mo
IP? h? ( TOu ) =^.026* vfLi TOK »«*0.9A9/nE"PTH{ IOR)««1.673*?.31
6 o TO 100
JO* Q'=P.?5f-no
K2< TOP\sSORTlOrt»VTL(IOR »)/nrpTHITOR>•*1 -5»8.
GO TO IPO
1pu K?< TOR)=9.U»VCH1OR)«*0.67/PCPTH -2 •SHRVEL*2.31
GO TO 100
10* K2(IOR 1=3.3* VfU10R)/0FPTh(I OR)**1.^33*2.31
GO TO 100
107 K2(ICRl=COCQK2< T)*FLOU(IOR)•*£XPOK2<1)
inn ccntihuf
RETUKf
CND
oouo^oo
00005500
00003600
00005700
00005800
00005900
00006000
00006100
00006200
00006300
00006400
00006500
00006700
00006800
00006900
00007000
00007100
-------
SUBROUTINE SOVMAT
Subroutine SOVMAT remains unchanged from the original version
of QUAL as documented by the Texas Water Development Board (2).
According to reference (2):
Subroutine SOVMAT solves a 8ystem of simultaneous
linear equations whose coefficient matrix is of
tridiagonal form by using a modified Gaussian Elimination
algorithm.
The solution algorithm is presented, in detail, in Report 128 of the
Texas Water Development Board (1). The subroutine flow chart shown
in Figure IV-16 is taken from reference (2). The program listing
follows the Figure.
IV-29
-------
ELEMENT
3-0
HAVE
EQUATIONS FOR ^
ALL ELEMENTS BEEN
SOLVED 8Y BACK _
^SUBSTITUTION?/
YES
ELEMENT
TYPE
WRITE n
INTERMED-
\ I ATE
\SUMMARY I
YES
RETURN
^ TO WRITE
INTERMEDIATE
SUMMARY'
HAVr^^C
^EQUATIONS FOR\
ALL ELEMENTS BEEN
\ OPERATED ^
ON?
SOLVE EQN
FOR ELEMENT
TYP E-5
OPERATE 0M\
EQS ELEMENT
TYPE ¦ 2.3,5
COUNTERS
OPERATE ON
EQS ELEMENT
TYPE"I
SOLVE EQN
FOR ELEMENTS
T YPE-3
SOLVE EQN s
FOR ELEMENTS
TYPE-1.2 .4.S
FIGURE IC-16
FLOW CHART FOR SUBROUTINE SOVMAT
-------
Sil^POUTinr SOV^AT
SOVHAT SOLVES a system of SIMULTANEOUS
linear equations whose coefficient
F1ATRIX IS OF TRIOIAGONAL FORM USING
A NOOIFIEO GAUSSIAN ELIMINATION TYPE OF
A| GOPlTHM.
COMMON TITLE(20»20)• RCHID<75~S)*R«THOR(75)•RUTEOP(75).NHWWAR(15).
1APGOO< 7S),IAUGORI75.6).NCELRH(75)•IFLAG(75.20)•
ICLORU(7S»20)«COEFOV(75)•EXPOQV (75)« COEFQH(75)»EXPOQH(75)•
Cf«ANNl75> . CK1 <75) .CK3<75) «K20PT(75> «CK2<75) »C0EQK2<75) t
EXPQK2 ( 7s ) .TINITI7«5) .COINIT(75)»BOINlTt75) .COlNlT175•3) •
QI(75 >• T I(75)• 001 ( 75> « BOD1(75)tCONSI(75< 3)•JUNCIO(15•5)•
JUNC(15.3)*HUTRID(lS.S)tHWFLOW(15)•HWTEMP(15)*HWDO(15)•
HWPOO(15 >« HUCONS(1^.3).WASTID!90 .5).TRFACT(90)*WSFL0W(90)«
WS7fMP{90 ) • USOO ( 90 ) « WSBOD < 90 ) * WSCONSl 90 * 3) «OATOT( 15) .
A< SOO>,B< 500)«C(500).0(5).SI 500)*2(900)»W(500)*6(500).
FLOW(50 0)«OEPTH(500)«VEL(500).OTOVCL(500)•K2C500I.Kit 500)«
hSNET(500)«DLI 500).VHW(15)•DEPHWflS).DLHW(15).T<500)•
00(500).BOO(500).CONS(500.3).PTIME.TPRINT,OELX.
NHUTRSiNPEACH * NWASTE«NJUNC«OELT«01LT « 02LTvOTOOX2tOT20DX.
LaT,LSM.LLM(FLEV«OAT«AE «BE~OAYOFTtDRYBLB.WETBLB.DEWPT•
ATPPR ,WIND* CLOUD.SONET «NI.NJ «TRLCO« TOFOAY,NT«NC.TIME.NCS
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
•NEW
• NEW
• NEW
•NEW
•NEW
• •16
DIHFNSION IFLG(500)
00002500
00002600
STEP 1-0 00002700
INITIALIZE COUNTER FOR STREAM JU00002800
00002900
00003000
00003100
STEP 2*0 00003200
LOOP THROUGH SYSTEM OP NREACH RE00003300
WITH NCELR COMPUTATIONAL ELEMENT00003400
REACH.
00 1DO I=1.NKCACH
NCELR = K'CEIRH( I)
00 100 Jcl.NCELR
IOR=1CLORP<1.J)
1FL=IFLAG(I.J)
IFLG
-------
10?
DFNOMsR(I OR)-MlOR)#W-0=G
-------
call vkpt? kd
««» continue:
RFTllRl*
EMO
00011100
00011200
00011300
-------
SUBROUTINE TEMPS*
Subroutine TEMPS completes the setup of the equations
necessary to calculate temperatures in each computational element.
Specifically, the subroutine completes the definition of the diagonal
term of the coefficient matrix and defines the vector of known terms
on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 ^ = x^
7. Withdrawal b^ = x-j ~ 77"
where x^ is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and the concentration in the previous time step.
The known term for each type of element for dynamic simulation is:
TYPE
1. Headwater Sj = T* * + q! T,! ^ - q,Th
6. Waste Input s, - T? ~ -i- ~ $£¦
All Others S, = T* + ~ q! l! ^
*AII symbols used are defined at the end of this section
of the Documentation Report.
IV-30
-------
Steady-state temperature distributions cannot be simulated with the model
The subroutine flow chart is illustrated in Figure IV-17 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section V.
IV-31
-------
ENTRY
SUBROUTINE HHPS
INITIALIZE
COUNTERS MD
CONVERSION FACTORS
DO computations
from a to b for
•11 computational
element*
INITIALIZE KNOWN
TERM ANO DIAGONAL
TERM FOR DYNAMIC
SIMULATION
TYPE 1
ADD INCREMENTAL IN ROW
AND HEADWATER INPUTS
TO KNOWN TERM,
S(D
TYPES 2. 3, 5
ADD INCREMENTAL
INFLOW TO KNOWN
TERM, S(I)
DETERMINE
TYPE OF COMPUTATIONAL
ELEMENT
TYPt
4
ADD INCREMENTAL
INFLOW TO KNOWN
TEW,
S(I)
TYPE 6
ADD INCREMENTAL INFLOW
ANQ WASTEWATER INPUTS
TO KNOWN TERM,
SO)
TYPE 7
ADO INCREMENTAL INFLOW
TO KNOWN TERM, S(I), AND
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM, B(I)
6
RETURN
TO QUAL
FIGURE 12-17
FLOW CHART FOR ENTRY
SUBROUTINE
TEMPS
-------
SUpROl'TINf TCWPS
COMMON TITLE(20~20).RCHlOl 7* .5),RWTHORI 75>.RWTEOR(75).NHWWARI151.
TARR0C<75)*IAUG0R(7Si6).NCELRH(75>.IFLAG<75.20i%
ICLORd<75.201.COEFQVC 751»CxP00V«75).COEFOHI75)•E*P0QH{75|.
r*ANrj(75>«CK1(75)•PK ^|7S).K20PT(75)*CK2I 7?I.COEOK2I751 «
ExPQK?<75l•TTMIT(7*>«nolMITf75)*B0INIT(75),HWTRT0I15.5).HWFL0WU5).HWTEMP(15)»HW00<15>i
HWR0D<15)~HUCONSI15,3),WAST In(90,5),TRFACT < 90),USFLQUt 90),
WSTCKP( ,
t- l^no ) «8 < 500 \ »C( 500) 1 0(5) * S ( 500 I .ZjSOO ) »W|500 >.G(5001 •
fLOWlbOO I tOEPTH(500l ~ VELf 5001 .DTOVCH 500) ,K21 5001 ,Kll 500 I ,
HSNET I *0 0 ) »f)L ( 500 ) •VHWil?) ,DFPHW|15) » PLHWf 15).T J 500)»
00(50 0),POn< 500).CONS«son,3).ptike.tprint.delk.
NHUTRS.NREACH.NUASTE.NJUNC,OELT.D1LT»02LT,OTOOX2,DT200X.
LAT,LSM•LLM.ELEV.OAT.AE•RE•DAYOFT,ORYRLB•WETBLB.OEWPT•
ATWPR,WIND,CLOUD.SONET,NI,NJ.TRLCD,TOFDAY,NT.NC.TIHE.NCS
COMKON /SSTATE/ X<500),ISS
INITIALIZE COUNTERS
NHU=0
NUS=0
1jumc=o
RH0rP=62.4
CALl HEATEX
LOOP THROUGH REACHES AND COUP. ELEMENTS
Oo 100 I=1.MR{TACh
NCELfi=tjCElRH( I)
CNCTLP=NCELR
TP IJ=0I
INITIALIZE KNOWN TfRPSS
n
S< irF. I =T I I OH ) ~PFACT+TPt J»PTflVCL ( IOR ) -A t I OR ) ~H«TEMP( NHw)
Gr* T (• 100
• NEW
• NEW
• NEW
ftNEU
• NEW
•NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
o-U
00002200
OOOB270O
00002800
00002900
00003000
00003100
00003200
00003300
00003400
00003500
00003600
0000*200
0000*300
00004400
00004500
00004600
00004700
00005200
00005300
00005400
00005500
00005600
00005700
-------
Af er>Tl. = r. . ( urnTH( I OP- J ) ~PFPTHt I OH ) )
mi ArTri'«-rrT( low )/ (Phncp»arf pthi
SiTnR|=T(IOP) +WTACT + TP1 J^njOvrL (TOR)
r-»o to )i»o
l,WS = Nt'b+l
Uftf PTI =0.r< I uFPThl JOP-1) 4DEPTI-M TOK > )
Mf nrT=HSUFT(10U ) / ( R HOCP» A HFTP TH )
S ( 1 Or* | =1 t I OP ) ~RTACT+ (TPI J + WSFlOW < NWS t * WSTfMP I NWS ) ) *OTOVCL ( I OR )
on to 100
I JUMC = I JUNO 1
NV = 1
Nfir JUfvC ( IJUMC .U* )
AMfPTH = H ,?«i» ( nEPTH< IOR-1 )-fnFPTH| NN) *2#0*DFPTHt I0R» )
RE AfTrHSNFT ( 1 OR > / I R»'0CP» APFIPTH )
Si I OH I=T FPTH< IOR ) >
WFAfTsHSr-FT t IOK ) / |RHOCP»ADCPTH)
S< I OR I =1 ( IOR ) + PFACT+ ( TPI J ) »OTOVCL ( IOR >
M tOM =R< IOR ) -WSFLOW( NUS) »OTOVCL (IOR )
CONTIMIF
RFTllHf
EriO
00006200
00006300
00006400
00006500
00006600
00007100
00007200
00007300
00007400
00007500
00007600
ooooeioo
00006200
00006300
ooooe«*oo
00006500
00006600
00006700
00006800
00009300
00009400
00009500
00009700
00009600
00009900
-------
SUBROUTINE TRIMAT
Subroutine TRIMAT computes all coefficients for the implicit,
finite difference advection-dispersion equation for each computational
element except for the diagonal term. In the case of the diagonal
term, , TRIMAT computes that portion of term that is fixed and
independent of the constituent to be simulated. This fixed portion of
the diagonal term is designated as x^.
In general, the basic equation that TRIMAT sets up for a
computational element, i, is:
ai2i-l + Vi + cizi+l s si
where
bi = x. + (constituent dependent terms)
a.j ,ci = off-diagonal terms
S. = known term
z = variable
In the case of a computational element that contains a junction and the
upstream element in the tributary stream is n, the basic equation becomes:
Vf-1 + bizi + cizHl + Vn = Si
Table IV-1 contains the equations for each term in each type of
computational element.
The subroutine flow chart is illustrated in Figure IV-18
followed by the program listing. All program variables in COMMON are
defined in Section V.
IV -32
-------
TABLE IV-1
SUBROUTINE TRIMAT EQUATIONS
FOR VARIOUS TYPES OF COMPUTATIONAL ELEMENTS
Reach Type
1. Headwater
2. Regular
.0. fr - 0h £1
n Ax yh
-D. . - q . , —
j-1 Ax yj-l v.
(1.0 + (Dn + D,) + Q- —)
0 J' Axz yJ V.'
J
(1.0 + (D. , + D.) ^1=- + Q. —)
J-1 J AX2 WJ v,;
J
same as 2
AT,
3. Upstream same as 2
from
junction
-D, £72-
j Ax'
same as 1
same as 2
none
none
none
4. Junction
(with n)
5. End of
Reach
same as 2
.(D ,+D.) - Q. ,
J-1 j' ax2 VJ-1
6. Input same as 2
(1.0 + D. , + 2D. + D ) + Q.
J-1 J n Ax^ J Vj
same as 2
same as 2
same as 2
-0-
same as 2
¦ D ^2- - Q —
n ax2 n Vj
none
none
7. Withdrawal same as 2
same as 2
same as 2
none
-------
ENTRY
SUBROUTINE TRIMAT
DO COMPUTATIONS
FROM a TO b FOR
ALL COMPUTATIONAL
ELEMENTS
RETURN
TO QUAL
/ OETtRMINE \
TYPE OF COMPUTATIONAL
\ ELEMENT /
TYPE 4
JUNCTION ELEMENT
COMPUTE COEFFICIENTS
A(I), X(l). C(I), D(I)
INITIALIZE FIXED COMPOMEffl
OF DIAGONAL TERM, x(l),
FOR STEADY STATE OR
DYNAMIC SIMULATION
OTHER ELEMENTS
COMPUTE COEFFICIENTS
AO). XO). C(l)
HEADWATER ELEMENT
COMPUTE COEFFICIENTS
TYPE 1
FINAL ELEMENT
COMPUTE COEFFICIENTS
*0), X(0
TYPE 5
INITIALIZE
COUNTERS
FIGURE
EZ-18
FLOW CHART FOR SUBROUTINE TRIMAT
-------
SlIHPOHl iur THIMAT
TRTMAT COMPUTES THE COEFFICIENT MATRIX
FOR THE IHPLICIT-FINITE-DIFFERENCC FOR*
OF THE ONE-DIMENSIONAL IflOVECTION ~
OTSPERSION) TRANSPORT EQUATION.
T ITl (' ( 30 «^0 > ,RCHID( 75,5) ,RMTHOR ( 75) ,RWTEOR(75) « NHWWAP (15) ,
TARmo< 76 ) . IAUGOR ( 7 5 »6) . NCELRH ( 75 ) , I FLAG ( 75 • 20 ) ,
T CLORi) ( 7 ? 0 ) »COEFOV( 75) .FxPOOVj 7S) , COEFOH(75) ,ExPOQH(75),
fKAMN(75).C*l(75).TK3(75).K?OPT|75)• CK?(75)«C0E0K2< 75) •
E yPOK^(75 )»TINIT(7^|•00INITI75) «BOINIT(75)«COINIT(75•3)*
01( 75).Til 75).0011751•BOD 1(75),CONS I«75.3).JUNC10CIS.5)*
JUNC(15,,HUTRIO(15*5)•HUFLOU(15).HWTEMP(15)*HWOO(15).
wwPOD<15).HwCONS(l*,S),WASTTOI90*5)*TRFACTl90)•WSFLOW(90 I •
fcSTFKP(90),WSnO(90)•USBOD(90)•WSCONSC90«3),QATOT<15),
A(^nO).R(500),C(50n),D(5)* S(500)*2(500)«W(500)*5(500)•
FLOv'(bOO) .PEPTh(50n) «VEL( 500 ) • DTOVCL C 500) • K2 ( 500 ) • K1 ( 500)«
HSfFT(500),OL(500).VHW(15)tDEPHW(15)• OLHW(15)*T<500) •
00(500).POP(500),CONS(500*3)•PTIME*TPRINT,DELX,
HHkJTRS,NREACH,NUASTE.NJUNC,0ELT,DlLT,02LTtDT0DX2,DT200X*
L AT,LSM,LLM,ELEV t DOT«AF,PF,OAYOFY »ORYRLB » WETBLB,OEWPT«
ATKPR, WIND,CLOUD,SONET,NI,NJ,TRLCO*TOFOAY,NT,NC•TIHE,NCS
conMOf/ssT/»Tt/x(5ro)*iss
NHUsO
NWS = 0
IJUMC=0
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• NEW
• -16
00002*00
STEP 1-0 00002500
INITIALIZE COUNTERS FOR HEADWATE00002600
waste loaos or withdrawls* ano soooo27oo
JUNCTIONS* 00002600
00002900
00003000
00003100
00003200
00003300
STEP 2-0 00003400
LOOP THROUGH SYSTEM OF NREACH RE00003500
WITH NCFLR COMPUTATIONAL ELEMENT00003600
RFACH.
DO 100 1=1.NKFACH
NCElR=NCElRH(I)
UO 100 J = 1.NCTLR
IOR = 1CLORD(I,j)
X(I PR) = ] .0
IF (ISS.GT.O) X(I OR ) = O.ft
IFL = 1 FLAG I I.J)
GO TO (101 *10?,10?,103*104*10?,102), IFL
STEP 2-1
COMPUTE COEFFICIENTS B
ELEMENT OF TYPE 1.
1(11 M»w = NMW+l
00003700
00003800
00003900
00004000
00004100
00004200
00004300
00004400
00004500
00004600
AND C FOR00004700
00004800
00004900
00005000
-------
/> < m n-nci a?# Flhw < nh
* i i n( > = \( i m )+ptop*?m
r < l.w ) = -l Tnrx? »pl( i(>n)
GO T" 1 Of
b >-VUFloUJ NMU)~DTOVCL «10H)
PLH 4 ( NHV) *m (TO^) ) + FLOW ( I no | iDTC'VCL f I OR )
»k < I Ja-OTOnA?«l)L< I OR-
«< Iff'IsMJ ^ * )TOPX2*(
C< |r.», »=-nTO0*?«f| (TOR)
r", T ( 1*0
STEP 2-?
COMPUTE COEFFICIENTS AiH. AND
ELEMENTS OF FYPF 2.3.6» OP 7.
1 >-FLOW < I OR-1 I•OTOVCLt IOR)
OLUOR-1>*OL)4FLOU
DIIJIICI=-OTOOX?*PL(NN
A=-nTnbx?»PL(10R-
> ( I on ) ~y < T OR)+nTOrX?»(
• r,TPVCL ( IPW )
C ( I Oh »=-PTOfU?«PL(IOR»
M] TO 110
I - FI nw (NN>»DTOVCU IOR)
1)-fl0W(I0R-1I »OTOVCL(IOR)
DL(TOR-lI»nn NNI^2« 0»DL~nLCIOR))-FLOW IIOR-1 )»0T0VCL(IOR)
DL I IOR-1 ) + OL( TOR) ) ~FLOW < IOR ) •OTOVCLUOR )
00007500
00007600
00007700
00007800
00007900
ANO B FOKOOOOAOOO
ooooaioo
00008200
00008300
00008400
00008600
00008700
00008800
-------
SUBROUTINE WRPT2
Subroutine WRPT2 is basically the same program as documented
by the Texas Water Development Board (2). Minor changes to report
headings and formats are the only differences from the original version
of the program. QUAL-II uses WRPT2 to print intermediate summaries of
simulation results. For dynamic simulations, the intermediate reports
occur at preselected time intervals; while for steady-state simulations,
the reports are printed at a preselected iteration interval. WRPT2
writes the concentration of the quality constituents simulated for each
reach and all computational elements within the reach. For steady-state
simulations the WRPT2 also reports the number of computational elements
that do not satisfy the convergent criteria. The following page
illustrates an example output report from WRPT2 for a steady-state
simulation.
Figure IV-19 illustrates the subroutine flow chart, and the
following pages contain the program listing. Variables in COMMON
are defined in Section V.
IV - 34
-------
TTfKaripf i
f.wowin »A1F *'nr" cO'JV«"».r,r'jT IN °7 ELEMENTS
T TCR AT I Pf» ?
prowth patt mon eONvrnr-' "»t ir> e2 Elements
TTrRrTIOf i
fiop^TH pate mom convenornt in o elements
rch/cl i
Minium nyrfiLw 111 MG/i
* u f, 7
1 R . 3U R. 21 »« . 1 M
2 7.P3 7.fi4 7.flf
3 10.35 in,?J 10.0*
.02
a. 32
7.04
Q 9 Q
7.06
R. 07
7.8«
**.97
T.26
7.09
o.ni
7 . P**
*.H7
9.?3
7.11
7.96
7. 36
9.7P
9.21
7. I J
7.*2
7.11
9.69
9.19
7.16
7.MA
6. A9
9.6?
9.17
7 .1 A
7.05
6.69
9.5*
9.15
7.20
7.3ft 7.MO 7.42 7.MS 7.47 7.49 7.51 7.53 7.55
nlOfHFHlCAL OXrGE" OE^flNn I*. MG/L
1(1
7.63
6.51
9.50
9.14
7.23
7.57
11
7. A1
£¦. 36
9.MM
9.13
7.25
7.59
12
7. AO
6.22
9.MO
9.11
7.27
7.61
7.79
6.10
9.11
7.29
7.63
ITERATION 3
14 15
7.78 7,7ft
6.00
9.10 9.09
7.31 7.33
7.65 7.68
ITERATION 3
16
7. 76
7.35
7. 7M
17 18
7.78 7.79
19 20
7.80 7.81
7.81 7.86 7.92 7.97
RCH/Cl 1
2
w
5
6
7
A
9
10
11
12
13
1*
15
16
17
18
19
20
1
2.e7
2.**
2.5?
2.41
2.3]
- . 21
2.11
?.o?
1.93
1.65
1.77
1.70
1.62
1 .55
1 .*+9
1.M2
1.36
1.30
1.25
2
1 .19
1.1 «~
1 .09
i .oe*
i .ni
7,M?
7.11
6.82
6.53
6.26
6.00
5.76
5.52
5.29
3
1.96
1 . 92
1 .A9
1 .85
l .ri
1 . 7A
1 . 7M
1 .71
t.6A
1 .65
1 .61
1.56
M
1 . *>5
1 .*2
1 .4®
3 .*~*
i
1 .**1
1.38
t .?¦»
1."
1.30
1.2®
1.25
1.23
1.20
1.18
5
3.91
3. P6
3>1
3.76
3.72
3.67
3.63
3.58
3.SO
3.50
3.M3
3.Ml
3.37
3.33
3.29
3.25
6
3. ?1
3.1ft
3.1?.
3.12
3.10
^.07
3.0M
3.01
2.9A
2.96
2.93
2.90
2.88
2.85
2.83
2.79
2.76
2.73
2.69
2.66
AvMONTA aS N Ifg ^G/L
ITERATION 3
pCH/CL 1
?
3
M
5
6
7
6
9
10
11
12
13
1*
15
16
17
18
19
20
1
."9
.9*
.97
.96
-95
¦ 9h
.93
.92
.91
.90
.89
.88
.87
.86
.85
• 8M
.83
.82
• 81
• 60
2
.79
• 79
.7ft
.77
.76
2.03
2.01
1,99
1.97
1.9S
1.93
1.91
1.89
1.87
3
.50
.50
.4°
.M«*
• M 9
.*~9
• M8
. M8
.M8
.MB
.*7
.M7
M
.*»7
.<*7
.M£
• M 6
. M6
• 46
.M5
• 45
.H5
.M5
.*M
.MM
.MM
.**<*
5
1.M1
1 .Ml
1 .MO
1 . MP
1 .39
1 .3®
1.39
1.3®
1.3A
1.37
1.37
1.36
1.36
1.36
1.35
1.35
6
1.34
1 .34
l.V»
1.3?
1
1.33
1.33
1.32
1.3?
1.32
1.31
1.31
1.31
1.30
1.30
1.30
1 .29
1.29
1.29
1.26
'¦ITRlTf hS N Ifi Mfi/L
ITERATION 3
RCH/fL
1
2
3
M
5
6
7
A
9
10
11
12
13
1«*
15
1
.OK
.06
.07
.07
.r,f
.Oft
.09
.09
.09
. 1 0
.10
.10
.10
.10
.11
2
.11
.11
.11
.11
.11
.1*
.17
.1«
.1*
.19
.20
.20
.21
.21
3
.n
.01
.n2
.0?
.05
.0?
.02
.0?
.0*
.03
.03
.03
M
, n 3
.03
.03
.03
.om
.OM
. OM
.OM
• OM
• OM
.0<~
• OM
.0*
• OM
. OM
5
. 16
.16
. 1 7
.47
. 1 7
.17
.17
.17
.17
. 17
.17
.17
.17
• 17
. M7
6
.17
. 1 «
. 1 ft
. 1»
.18
• 1ft
.18
. 1A
• 1ft
• 1ft
• 16
• 18
.18
• 1 A
. 1A
16
.11
.17
• 18
17 18
.11 .11
>18
19 20
.11 .11
• 16
NITRATE AS N Irj «G/L
ITERATION
• 16
rn/cx 1
?
(4
s
6
7
8
9
10
11
12
13
1M
15
16
17
1A
19
20
1
.30
. 31
. M
.
.3?
.33
. 3M
. 3M
.35
. 36
.36
.37
.38
.3P
.39
.<»0
.«*1
.41
.*~2
.**3
?
.UM
.M5
.u«S
.46
.0 7
1.35
1.3ft
1 .07
l.oe
1, MO
l.ftl
1 ,M2
1. MM
1.M5
3
.10
.10
. 10
. 10
.10
.10
.10
.10
.11
.11
.11
.11
M
. 1 1
.11
. 1 1
. 11
.11
.11
.12
.12
.1?
.1*
.1?
.12
.12
.13
.13
b
1 . OM
1.0s
1 .05
1 .0^
1.05
1.06
1 . 06
1 .06
1 .07
1.07
1.07
1.08
1.0ft
1.08
1.09
1 .09
(
1.09
1 .10
1.10
1.10
1.10
1.1J
l.ll
1 .11
1.11
1.12
1.12
1.12
1.13
1.11
1 .1 *
1.13
l.l*
1.1M
1.1H
1.15
RCH/TL
PHOSPf.OMiS AS P If rr,/t
3 4 5 6
12
ITERATION 3
13 14 15
17
19
20
-------
SUBROUTINE WRPT2
YES
IS THIS
A STEADr-STATE
SOLUTION
PRINT TITLE FOR
STEADY-STATE
SIMULATION
PRINT TITLE FOR
DYNAMIC SIMULATION
Loop through
program from a
to b for all
stream reaches
WRITE
INTERMEDIATE
OUTPUT REPORT
RETURN
TO QUAL
FIGURE EZ-19
FLOW CHART FOR SUBROUTINE WRPT2
-------
sunroi.: Inr wnpT2(roro
WRPT2 WRITES AN INTEPMEOIATF SUMMARY
OF THE SFLETCTED QUALITY CONSTITUENTS,
THFSE CONSTITUENTS ARE WRITTEN BY REACH
AND BY ELEMENT. THIS SUMMARY CAN BE
GIVEN AT A TIME INTERVAL OF OELT OR
S°ME MULTIPLE OF OELT.
Conf-Ou Tl Ti_F. (2n» 20 ) i PChID ( 75,5) ,RMTHOR (75) ,RMTE0R( 75) .NhWWAR ( 15) •
TAPGOO175)•IAUGOR(75*6),NCELRH< 75)•IFLAG( 75i20)«
TCI.ORUJ 75,?0 »,COEFGv < 75) ,E)cPOOv( 75) » COEFQHt 75) .ExPOOH(75) .
r<" ANN I 75) .CK1 < 75) »TK3< 75) « K?OPT ( 75) t CK2< 75) ,COEOK?( 75) .
EXPGK2< 7e).TINITI75)«00 INITI 75)«BO INIT(75),COIMIT( 75,3)•
0! (75),TII 75),001(75),RODI(7*),CONS I<75•3).JUNCID(15,5) •
JUNC(15,3)* HWTR10 <15,5),HUFLOW<15),HWTEMP{15),HWOO(15)•
HWB0D<15)* HWCONS(1^,3),WAST IDI 90.5),TRFACT(90),WSFLOW(90)•
WSTEMP(90)* USDO(90),WSRO0I90),USCONS(90,3),0ATOT(15) ,
A(500)«R(5GO)• C(bO 0),0(5)*S(500)*Z(500)*U(500)«G<500)«
FLOW(50 0 )tOFPTm 50n)4 VEL< 50 0)•OTOVCLI 500),K2(500),K1(500),
HSNET<50H).OL(500)•VHW(15)•OEPHW(IS)»DLHU(15).T(500) •
TO(50U)«BOO(500), CONS(500,3).PTIME,TPRINT,OELX,
NHVTRS,NREACH.NWASTE,NJUNC,DELT,01LT,02LT,DT00X2,DT20DX,
LAT,LbM,LLM,ELEV•0AT « AF f BE «DA YOFY «ORYBLB,WFTBLB * DEWPT•
ATMPR , W IN[),CLOUD • SONET , NI . N J « TRLCO , TOFOAY .NT , Nc « TIME « NCS
COMKU»i/MOPIF/ CK .CNH31 ( 75) «CN02U75) •
CN0 3I(75).COL I IT(7^) »ALGIT(75)»PH0SIT(75),CNH3IT(75)•
CNOPIT(75).CN03IT(75),WSC0Ll(90)« WSALG(90),WSPHOS|90).
WbMH3(90),WSN02(90),WSN03(90),HWC0lI<15)•HUALG(15)•
HWPHOS(1*)•HWMH3(1Q).HWN02(15).HWN03(15)Mor/ESTATE/x c 500).ISS
"l.TUSlorj P( ?o I •COMC ( bOO »
ir M ss > ?n,<>o, ln
I T I vF =TIfE
wr< | tr C'J.lL) ( title ( NT « J ) • J=6»?0 ) . ITIME
FORMAT (1HT.19X»15AH^X«9MITERATI0N»I5)
GO TO 5s)
CONTINUE
T 1 iPft Y = T If o
ITE I ' (TITLF(NT»JI. J = f,, ?n ) vTinDA Y
F">R*M f 1HU« l^X«15A
-------
c. =;
c n
< iti i
ul'T T
• J*fI )
*»1«.'*MPCH/CL
10 11
/)
1
1?
?
1"*
1*1
S
16
6
1 7
7
16
?00
LOOP THROUGH SYSTEM OF NRC
qy NCELR COMPUTATIONAL ELEMENTS
REACH.
00003*00
RE00003500
no i on t = i .r.KrarH
'JfFl h rMCELRh l I )
tr pop J=icflp
I(|H=ICI ORT( I « J )
M J)=CONCIIOM
T r(r J T ,FG• 8) P
FOHMM
-------
SUBROUTINE WRPT3
Subroutine WRPT3 prints for each reach the final results of
the simulation. The output report contains three basic parts; these are:
1. Values of hydraulic parameters
2. Water quality results
3. Average values of reach coefficients
The following page contains an example of the output report produced by
Subroutine WRPT3. Figure IV-20 illustrates the subroutine flow chart
and the following pages contain the program listing. Variables in COMMON
are defined in Section V.
IV - 35
-------
FINAL REPORT
REACH NO. 1.0 RCH= REACH 1
RIVER WILES <30.0 TO 70.0
hydraulic parameter values
parameter head of reach eno of peach maximum minimu* average
FLOL (CFS) = 100.000 100.000 100.000 100.OOO 100.000
VELOCITY ( FPS ) = .757 .757 'I5* c'I.t
DEPTH (Fl) = . 5t7 5.5"»7 5.S>»7 5.5»7
ELEM
no
POL)
NH3
N02
N03
POt
ALGY
rtlLI
10
R 0
UAL
1 T Y
PAR
A M Z
ICR
V A
L U E
S *
2
3
U
¦»
6
7
a
9
10
4.21
B.1M
8.07
0.01
7,96
7.92
7.88
7.8?
7.83
2.75
2.6.3
2.52
2.41
2.31
2.21
2.11
2.02
1.93
• 98
, n7
.q6
.95
.9*
.93
.92
.91
.90
.Ofe
.07
.07
.08
.08
.09
.0*
.09
.10
.31
.32
.32
.3^
.3*»
.35
.36
.20
.70
.?n
.20
.20
.20
.20
• 20
.20
in.25
10.
tn.'ii
10.6^
10.79
10.93
11 . OA
11.23
11.38
.<~0
.^6
.33
,29
.26
.2*
.21
.19
.17
P7.00
P7.00
?7 . 00
27.00
27.OP
27.00
27.00
27.00
27.00
•
«
•
0
*
11
12
13
It
15
16
7.81
7.80
7.79
7.78
7.78
7.78
1.85
1.77
1.70
1.62
1.-55
1.19
.89
.88
.87
.86
.85
• 8<»
• 10
.10
.10
.10
.11
.11
.36
.37
.36
.38
.39
.to
.20
• 20
.20
.20
.20
.20
11 .5**
11.70
11.86
12.03
12.21
12.38
.16
.14
.is
.11
.10
.09
17
7.76
l.«
.83
.11
.<~1
.20
12.37
.08
IS
7.79
1.36
.as
.11
.1*1
.20
12.75
.07
19
.80
.30
.81
.11
.42
.20
.95
.07
20
7.81
1.25
.80
.11
.03
.20
13.14
• 06
?7 j 00 ?7lon 27.00 27.00 27.00 27.00 27,00 27.00 27.00 27.00 27.00 27.00 27.00
« NOTE: UMTS ARE HP/L.
EXCEPT FOR ALGAE AS CHL A IN UG/L
AND FECAL COL I FORM AS 1000/100 ML
AND CONSERVATIVE MINERAL I = TOS IN (M6/L X 0.1)
n. AVFRAGF VALUE"? OF REACH COEFFICIENTS
DECAY RATES ,1/OAY, SETTLING RATES U/DAY, BENTHOS SOURCE RATES (M6/FT/DAYI REAERATION RATE CHLOR
Klnon = .'¦O BOO = .00 BoD = .00 K2 = .863 RATIO = 50.00
knh*
.15 ALGAE = .50 NH3 = .00
KUn? = 1.00 P®* = •00
KCOLI = 1.50
KRriN = .00
-------
SUBROUTINE
WRPT3
LOOP THROUGH PROGRAM
FROM a TO b FOR ALL
STREAM REACHES AND PRINT REPORT
INITIALIZE TERMS AND
FINO MIN , MAX , AND
AVERAGE HYDRAULIC
CONDITIONS
URITE
HYDRAULICS SUtfWRI
REPORT
URITE
FINAL RESULTS OF WATER
QUALITY SIMULATION
WRITE
AVERAGE VALUES OF
REACH COEFFICIENTS
Q
RETURN
TO QUAL
FIGURE E-20 FLOW CHART FOR SUBROUTINE WRPT3
-------
SUMPOUTI f'F UKPT5
URPT3 GIVr«5 A FINAL SUH*A*Y (RFACH BY
RFACH) AFTER STEADY-STATE CONDITIONS
HAVE REEN REACHED. IT SUMMARIZES THE
CONDITIONS AT THF BEGINNING ANP END OF
EACH REACH AS WELL AS THF MAXIMUM.
MINIMUM. AND AVERAGE CONDITIONS WITHIN
THE REACH.
COM"ON 1ITl£(?0.20)»RrHlD(7P.5).RMTHOR( 751.RMTEOR(75).NHWWAR(15).
TAKC.no ( 7* ) . I AUGOR ( 75 • 6) .NCELRH(75>.IFLAG(75«20).
ICLnrUI 7--.20) »COEFOV(75) •EXPOQV ( 75 ) .COEFOHI75) .EXP00HI75) .
CMArfM 75) »CK1 t 7S) • f*K3 ( 75 ) »)¦ ?OPT (75) »CK2(75) .C0E0K2(75) •
EKPQK2(7*).TINIT(75).OOINTT(75).BOINIT(75).COINIT(7S>3>.
OII75).TH7SI.00H7SI .BOril <7S) • CONS I C75t 31 • JUNCIOI 15.5)«
JUNC(1S.3).HWTRID(15.5).HWFLOW(15).HUTENP(15).HUGO<15) .
HUPODI IS) .HWCONSI15.3) ,WASTIP(90.5).TRFACT(90I « WSFLOW ( 90 ) •
US. TEMP I 41 ).WSD0I90 ) . WSB0PI90 ) « WSCONS (9P.3)• OA TOT C15) .
A("VOOI.Rt500I.C(50P)«n(5).S(SOO>.Z(500>«WI5001.6l500)»
FLOW(500) .DEPTH | 500 I .VEL(500) . DTOVCL ("SOO ) . K2 ( 500 ) . K1 ( 500 ) .
HSNET(SOO).DLI500 ) ,VHW(15) ,DEPHW(15) .DLHW(15).TI 500).
noCi0O).POP(500> . CONS I50 0.3) .ptime.tprint.delx.
NHWTRS.NREACH.NWASTE.NjUNC.DELT.01LT.DZlT.DT00X2 « DT20DX.
LflT.LSM.LLf1.ELEVtDflT.AE. BE .DA TOFT . OR YBLB. WETBLB > OEWPT .
flTfPR.wind.clouo.Sonet•ni» nj » trlcd•tofday.nt.nc.time.ncS
COKMOM/MOniF/ CK"(75).CK5<75).CKNhS(75).CKNO?(75).CKN03(75).
CKN» CKP. CKL . ALPHAO ( 75 ) .ALPHA1•ALPHA2•ALPHAS.ALPHAS •
ALPHAS.ALPHAt.GROMAX.RESPRT.ALGSET(7S>.SPH0S(75> •
SNH3I7S),KMH3(50 0).KN02I500). RESPRR(300).COL11 500>.
AlGAF(500).PHOSI50 0).CNH3ISOO).CNO?(500).CN03I500).
COIIR(75).AlGI(75).PHOSI(75).CNH3I(75).CN021(75).
CNOM (75) . COL 11T(75) . ALGI T ( 75 ) . PHOSI T ( 75) .CNH3IT(75) .
CNC211(75) . CN031T ( 75 ) .WSCOLI (90) . WSALG ( 90 ) .WSPH0S(90I .
WSt'H3 (90 I ,WSN02(90 ) ,WSN03(90 ) . HUCOLI (15 ) . HWALS (15) <
HVPHOS)15).HVNH31IS)•HWN02(IS).HWN03(15).GROWTH(500).
WODOPT ( 1(1 ) , IRCHM0(75C ).CXCOEF(75)
AO J(W CK6( 75 I ,RAONIT( 75) . R AONI ( 75 ) . HWRAPN ( 15) , WSRADN(90 I
Cn""PN/SSTl>TE/ y I 500 ) « ISS
"EAl S?
CCCCCCCCC
01»FNS1ON PNuME(5.3).P(20).DATA(13)
DATA Pt.Afir /MMFL OW• <*H (TF.tHS) ."»H ,"*H = ,
. ¦tHVFLO.MHCITY.'JH (FP.UHS) • = ,
« tHDFPT.tHH (F. <*HT) .tH ,4H = /
DATS PATA/mi M03 , 4HTEMP. 4H BOD . MHAl GY . HH P01.HH NH3 * **H 00.
1 HirOLI.^H RAD."m N02.«liCnNl.<»HC0N?.UHC0N3/
STEP I-C
011003100
00004200
00003000
-------
00003400
LOOP THROUGH SYSTE* ONE RFACH
AT A TIME
PC "SO h* = l ~ 7b0
30 I^CM'O(KK) = TARS< IRCHNOCKK)
OO inn 1 = ) vMKfA<*H
00 *0 HK=1,750
IF f IP C Hf.O (KK| ) bO.SO.^O
« 0 RCHfO=FLOAT(KK>/10.
KKI=-IPCMNO(KK)
GO TO 60
•so rrrrifvUC
f.0 CONT iMliF
00004700
00004600
WRITE MJ.10U RCHNO.(RCHTDCI«J)
11 FORMAT (1HI•/ »25>X» BUH * •
* R r P 0 " T • « « *
* ^0X,9HREACH NO*• F5.1•3X•
* F 7. W2X.2HTOiF 7.1./)
FLOrtVF=0.0
FlOMAX=0.0
FLO^INsl.oe+06
AyCK2=0.0
NCFLR=NCELRH|I)
IS=ICLOtHj< I« X )
IE= T 1~hCELR
AvtrMCELR
DO *50 J=J.NCELR
lORrICLOROIIt J)
IF fFL0W(IOR).LT.FLOMAX) GO TO
FLOMAX=FLOW
P|OAVF = FUOft VE + FLOW /AVE
AVE"P=AVfIIOR >/4VE
COAlT 1MUE
«J=l«5).RMTHOR(I)« RMTEORI I)
• * • * FINAL
• • «//%
5Aft, /.*)0X«11HR1VER MILES,
STEP 1-1
INITIALIZE TE«HS,
00004900
00009000
00005100
00005200
00005300
00007200
00008100
00008200
STEP 1-2
fino maximum, niNinun, and averaoooo8*oo
CONDITIONS UITHIN EACH REACH. 00006500
00008600
00008700
00008800
00008900
00009000
0000*100
CH2 ( I) =AvrK?>
vrLMAX=rorro\/< T
VFL«IN=COFFQV
-------
PARAMETER
» •/>
V A L U
}f1 POR^-mI ( l# HYDRAULIC
* E S • ~ * * *
wnxr
in? FORMAT < U.n,llX.*HPARAMETFR«9X,HHHFA0 OF REACH.7X.
* 12HEMP OF REACH, 5X t 7HMAX I Ml'* . 5x t 7HMIMIMUM, 5X . 7HAVER AGE . / >
^03 FOK^T t 9X»**A<4.F10.3,10*»F10.?.4X.F10.3.2<2X»F10.3>>
WRITE iUJ.3T3) (PNAFEtJ.l1 •J=1»S),FLOW IIS)•FLOW(IE I.FLOMAX.
* FLOMIN~FLOAVE
WHITE (HJ,^03) (PNAMElJ.2)«J=1«5).VEL(IS)«VFl(lE)«VELHAX«
* VCLWIN.VELAVE
WRITE OlJt30 3) t PNAHE < J. 3)•J = 1*5)»OFPTH(IS ) «REPTHtIE > •
* HEP* A X»OEP**IN«OEPAVE
WRITE 4 NJ *1051
in* FORMAT ( //,ySM ?. WATER DUALITY PARAMETER \
0001*000
00011200
0001«»«*00
a i u F s
URITF f NJ•t 06)
106 FjR^AT (?y,l2^H ELEH 1
• 9 JO 11 12
• 20 t/ )
2
13
3
1*
4
15
~//>
5
16
6
17
7
18
8
19
STEP 2-0
WRITE REACH SUMMARY ON WATER
QUALITY PARAMETERS
MPRfN=0
1«n rPRIN=MPRlN*l
bO TO <15cS«160*16S«17o.l7«Sv18o*165«t90«19S) ,MPRIN
15^ CONTINUE
IF IMOOOPTI 7)•LE•0) GO TO 200
NT= 1 3
00 156 J=1.NCELP
iORzICLORDjI, J>
p GO TO 200
NT = 7
DO 161 J=1,NCELP
IOR=ICLORP(I,j)
P (J)=BOO(IOR)
161 continue:
WRITl (MJ«159) OAT A( 3).(P(K>,K=1.NCELR)
GO TO ?00
16S CofJTlnuE
IF A J=1«WCFLR
IOk=lCLOHniI~J)
P•(P{K),K=1,NCELR)
rjr = u
DO 167 J=1,NCFLR
I0«* = ln OPO( I ij)
P( J I =f f\:02 ( IOR )
U7 COMTI'IUF
00012700
0000*600
0000*900
-------
-I'UII { " J« l^r)) r«T A ( 1 0 1 « { P I K ) » K = 1 « NCELR >
,T = 1^
pn i * I\ J = i « WCPLP
r»«l=lCLL»HPC i» J)
f'< J) = f'iPM I UK I
1*0 COiiTlMUt
WMlTT I UilSB) PATA( n•(n(K|,KstaNCELR)
fin TO 200
1 7n CPNT II Uk
IF (HPCOPTt 51,1 E.0> GO TO 200
NT = 9
DO 171 J=1»NCELP
I0R=ICL0RP(IiJ)
P=PHOS<10rt)
171 CONTIhUL
WRITE
GO TO 200
17C CONTINUE
IF {f*0POPT ( GO TO 200
Ml =
no 176 J = 1,NCEI_R
IORrirLORDiI«J)
P(J)=ALGAE(IOR)»ALPHftO(I)
17* CONTINUE
WRITE ( fJ J « 158 ) PATA ( <~> « i P(K ) ,K=1 «NCELR I
GO TO 200
100 CONTINUE
IF
PI j>=COLKIOR»
lfll COMTlNUr
URITF (NJ «158 > HATAI 8». DATA( 2)•IP(KI«K=1•NCELR>
Gn TO 200
190 CONTINUF
IF (*OPOP T ( D.Lt.O) GO TO 200
00 192 NNC=1»NFS
NT=MT+1
on isi j=i,ricrLP
iPRrlTLOkn I « J )
Pi J)=C0MSCI0R.WNc)
1 r 1 CiVTTPUE
KK = l o + fv'tc
W»ITF ( N J •1 5tM PATA(KK)«(P.IE.0» GO Tr> ?00
N 1 ~ \ =»
• NEW
• •-1
-------
'in J=l»NCEl-R
J =irLOHPI I « J )
r RAIlIONHCLirC not programmed this date ts feb 7^
P=/ (IOR)
19* LOMTl'4Ur
W4ITF f"4J«15d> PATAf 9) » ( o < K ) , K = t, NCELR )
?nn contimje
IF (flPKlN.LT.4*) GO TO 150
Wr^ITtlfiJ.PlO) < TITLE(8~J) « J=6 • 20) *NEW
21° FOU-AT < 17H0* NOTE: UNIT* ARE M6/L. EXCEPT FOR .15A«f) •
WRITr(fiJ,?l5> ( TITLE ( m «J ) .J=6.20) «NEW
ir (*mnnpTii).Lr.ni go to 2?o
no ?\*> kk = i ,r,cs
KhK=K*+2
Wrt J TE (Nd»?15I tTJTLE«J=6«20)
?1*S FORMAT (J3X*HHANO «l5AH>
21f- cc.Timir
2?o coMTira)1:
c oooosroo
c
C STEP 3-0
C
C WRITE AVERAGE VALUES OF REACH
C COEFFICIENTS
C 00007500
C STEP 3-1
C
C LOOP THROUGH ALL COMPUTATIONAL
C ELEMENTS IN THE REACH
C 00007900
rffUTE (NJ.107)
107 FORMAT //,95H 3. AVERAGE VALUES OF REACH C
•0 EFFICIENTS * * • • //~)
WWTTE (NJ.102)
10? FORMAT <3?H DECAY RATES (1/OAY) , 3X •
• ??HSFTTLTNG RATES (1/DA Y)« 3X•32HBENTH0S SOURCE RATES |MG/FT/DAY>«
»3X,l^HRfAFRATIOM RATE 13X »l3HCHL0R A/ALGAE J
WHITE (NJ«103 )
10^ FORMAT < X • I OH (1/OAY ) »9X«13HR AT TO (U6/MG ) / )
WmITF ("J,104 I CKl(II«rK3|I)fCKmi)iCK2(I)«ALPHA0(I) «CKNH3( I) «
1 fllGSFT< I) «SK'H3< I) tCKN02< I » ~SPHOS(I) ,CK5I 11 «CK6< I I
inu FORMAT <9X,8H K1BOO = • F7 . ?.16X~7H0OP =•F7.2•16*•5HBOO =«F5.2«
• 17 X « M UK 2 =.FH,3.^X»7HRATI0 =»F7.2,/,
• SX.flH KWH3 =.F7.?,16X«7HALGAE =.F7.2,16x.5HNH3 =.F5.2./,
» 9X,aH KP02 = «F7.2«*6*»*SHeOH =«F5.2*/«
» CJX^BH KCOLI =.F7.2,/,9X,*H KRDN =,F7#2)
inn CONTINUE 00016200
RFTURM 00005300
e if
-------
DEFINITION OF SYMBOLS
The following tabulation defines the symbols used in the
right hand side of the equations shown in each subroutine description,
except TRIMAT, which is self-explanatory.
SYMBOL DEFINITION
a Coefficient in convection-diffusion
equation due to upstream stream segment
A Algal biomass
Fraction of respired algal biomass
resolubilized as ammonia nitrogen by
bacterial action
Fraction of algal biomass that is
phosphorus
Rate of oxygen production per unit of
algae (photosynthesis)
Rate of oxygen uptake per unit of algae
respi red
Rate of oxygen uptake per unit of ammonia
oxidation
a Rate of oxygen uptake per unit of nitrite
6 nitrogen oxidation
C Concentration of a conservative material
C Difference between oxygen concentration
5 and oxygen saturation concentration
D Average stream depth
D Average stream depth
D Molecular diffusion coefficient
m
-------
SYMBOL
DEFINITION
A Light extinction coefficient
h Net heat flux
Emperical half-saturation constant, light
Emperical half-saturation constant, nitrogen
Kp Emperical half-saturation constant, phosphorus
K Rate of decay of carbonaceous BOD
<2 Aeration rate in accordance with the Fickian
diffusion analogy
K3 Rate of loss of carbonaceous BOD
due to settling
Constant benthic uptake of oxygen
K Rate of coliform die-off
5
K? Rate constant for the biological oxidation
of armionia nitrogen
Kfl Rate constant for the oxidation of nitrite
nitrogen
L Intensity of light (ALGAES)
L Concentration of carbonaceous BOD (BODS)
y Algal specific growth rate
0 Maximum specific algal growth rate
n Manning's roughness coefficient
Nj Concentration of ammonia nitrogen
N Concentration of nitrite nitrogen
2
N3 Concentration of nitrate nitrogen
P Concentration of orthophosphate
p Algal respiration rate
q Stream flow
a Algal settling rate
a2 Benthos source rate for anmonia
a3 Benthos source rate for phosphorus
t Time
T Temperature
IV - 37
-------
SYMBOL
DEFINITION
u
u*
V
X
e
h (subscript)
i (subscript)
0 (subscript)
w (subscript)
* (superscript)
1 (superscript)
Veloci ty
Shear velocity
Volume
Length
Specific heat times density
Headwater
Element
Taken out of system
Waste load
Previous time step value
Upstream element
IV-38
-------
SECTION V
QUAL-II
DESCRIPTION OF VARIABLES IN COMMON
-------
SECTION V
QUAL-II
DESCRIPTION OF VARIABLES IN COMMON
-------
SECTION V
QUAL-II
DESCRIPTION OF VARIABLES IN COMMON
Variable Name Definition Units
A(IOR) = Vector below diagonal in —
tridiagonal coefficient matrix
for computational element IOR
AE = Evaporation coefficient ft/hour-in. Hg
ALGAE(IOR) = Concentration of algae in mg/1
computational element IOR
ALGI(I) = Incremental inflow concentration yg/1
of chlorophyll a^ into reach J
ALGIT(I) = Initial concentration of pg/1
chlorophyll a_ in reach I
ALGSET(I) = Local settling rate for algae ft/day
in reach I
ALPHAO(I) = Ratio of chlorophyll a to ug Chi-a
algae biomass in reacTi I mg A
ALPHA1 = Fraction of algae biomass mg N
which is N mg A
ALPHA2 = Fraction of algae biomass mg P
which is P mg A
ALPHA3 = O2 production per unit of algae mg 0
growth mg A
ALPHA4 = O2 uptake per unit of algae mg 0
respired mg A
ALPHAS = Og uptake per unit of NH3 mg 0
oxidation mg A
ALPHA6 = O2 uptake per unit of NO2 mg 0
oxidation mg A
ATMPR = Local barometric pressure in. Hg
V-l
-------
Variable Name
Definition
Uni ts
B(IOR)
BE
BOD(IOR)
BODI(I)
BOINIT(I)
C(IOR)
CK1(I)
CK2(I)
CK3(I)
CK4(I)
CK5(I)
CK6(I)
CKN
CKNH 3(I)
CKN02(I)
CKL
= Diagonal vector in tridiagonal
coefficient matrix for
computational element IOR
= Evaporation coefficient
= Ultimate BOD in computational
element IOR
= Ultimate BOD of incremental
inflow in reach I
= Initial ultimate BOD in reach I
= Vector above diagonal in
tridiagonal coefficient matrix
for computational element IOR
= BOD decay rate coefficient
(base e) for reach I
= Reaeration coefficient (base e)
for reach I
= Rate of settling or scouring
of BOD (base e) in reach I
= Benthos source rate for BOD
in reach I
= Coliform die-off rate in
reach I
= Radionuclide decay rate
in reach I
= Nitrogen half-saturation
constant for algae growth
= Rate constant for biological
oxidation of in reach I
= Rate constant for biological
oxidation of NO2+NO3 in reach I
= Light half-saturation constant
for algae growth
ft/hour-m. Hg-MPH
mg/1
mg/1
mg/1
1 /day
1 /day
1/day
mg
day-foot
1/day
1/day
mg/1
1/day
1/day
Langleys/day
V-2
-------
Variable Name
Definition
Uni ts
CKP
CLOUD
CMANN(I)
CNH3(IOR)
CNH3I(I)
CNH3IT(I)
CN02(IOR)
CN02I (I)
CN02IT(I)
CN03(IOR)
CN03I(I)
CN03IT(I)
COEFQH(I)
COEFQV(I)
COEQK2(I)
= Phosphorus half-saturation mg/1
constant for algae growth
= Fraction of sky covered —
(cloudiness express as
decimal)
= Manning's channel roughness —
coefficient for reach I
= Concentration of NH^ in mg/"
computational element IOR
= Incremental inflow concentration mg/
of NH3 in reach I
= Initial concentration of NH3 mg/
in reach I
= Concentration of NO2 in mg/
computational element IOR
= Incremental inflow concentration mg/
of NO2 in reach I
= Initial concentration of NO2 mg/
in reach I
= Concentration of NO3 in mg/
computational element IOR
= Incremental inflow concentration mg/
of NO3 in reach I
= Initial concentration of NO3 mg/
in reach I
= Coefficient of flow for depth-
discharge relationship in
reach I
= Coefficient of flow for velocity- —
discharge relationship in
reach I
= Coefficient of flow for —
reaerati on-di scharge
relationship in reach I
V-3
-------
Variable Name
Defini tion
Uni ts
CO INIT(I,NC)
COLI(IOR)
COL IR(I)
COLIIT(I)
CONS(IOR,NC)
CONSI(I,NC)
D(IJUNC)
DAT
DAYOFY
DELT
DELX
DEPHW(NHW)
DEPTH(IOR)
DEWPT
DL(IOR)
Initial conservative mineral mg/1
concentration in reach I
Concentration of coliform in 1000
computational element IOR 100 ml
Incremental inflow concentration 1000
of coliform in reach I 100 ml
Initial concentration of 1000
coliform in reach I 100 ml
Concentration of conservative mg/1
minerals in computational
element IOR
Concentration of conservative mg/1
minerals in incremental inflow
in reach I
Vector of coefficients not in the
tridiagonal portion of the
coefficient matrix for junction
IJUNC
Dust attenuation coefficient
Day of the year on which temper- days
ature routing begins (from
January 1)
Time interval of integration seconds
(time step over which the
solution to the routing equation
is advanced)
Space interval of integration miles
(length of computational element)
Depth of headwater source NHW feet
Depth in computational element feet
IOR
Dew point temperature degrees Fahr.
Dispersion coefficient in ft^/sec
computational element IOR
V-4
-------
Variable Name
Definition
Units
DLHW(NHW)
DO(IOR)
DOI(I)
DOINIT(I)
DRYBLB
DTODX2
DT20DX
DTOVCL(IOR)
D1LT
D2LT
ELEV
EXCOEF
EXPOQH(I)
expoqv(i)
EXPQK2(I)
FLOW(IOR)
GROMAX
GROWTH(I OR)
= Dispersion coefficient at
headwater source NHW
= Dissolved oxygen concentration
in computational element IOR
= Dissolved oxygen concentration
in incremental inflow in reach I
= Initial dissolved oxygen
concentration in reach I
= Dry bulb temperature
= DELT/DELX2
= (2.0 x DELT)/DELX
= DT20DX/(FL0W(IOR)/VEL(IOR) +
FLOW(IOR-1)/VEL(I0R-l))
= Time interval of integration
= Time interval of integration
= Mean elevation of river basin
= Light extinction coefficient
= Exponent of flow for depth-
discharge relationship in reach I
= Exponent of flow for velocity-
discharge relationship in reach I
= Exponent of flow for reaeration
discharge relationship in reach I
= Discharge in computational
element IOR
= Maximum specific growth rate
of algae
= Algae growth rate in
computational element IOR
ftVsec
mg/1
mg/1
mg/1
degrees Fahr.
sec/ft2
sec/ft
sec/ft^
days
hours
ft
1 /ft
CFS
1 /day
1/day
V-5
-------
Variable Name
Definition
Um ts
HSNET(IOR)
HWALG(NHW)
HWBOD(NHW)
HWCOLI(NHW)
HWCONS(NHW.NC)
HWDO(NHW)
HWFLOW(NHW)
HWNH3(NHW)
HWN02(NHW)
HWN03(NHW)
HWPHOS(NHW)
HWRADN(NHW)
HWTEMP(NHW)
HWTRID(NHW,15)
IAUGOR(I,NHW)
ICLORD(I,J)
= Net heat exchanged through air-
water interface in computational
element IOR
= Concentration of chlorophyll A
in headwater source NHW
= Ultimate BOD of headwater source
NHW
= Concentration of coliform in
headwater source NHW
= Concentration of conservative
minerals at headwater source NHW
= Dissolved oxygen concentration
at headwater source NHW
= Discharge at headwater source NHW
= Concentration of 1NH3 in
headwater source NHW
= Concentration of NO? in
headwater source NHW
= Concentration of NO3 in
headwater source NHW
= Concentration of PO4 in
headwater source NHW
= Concentration of radionuclide
in headwater source NHW
= Temperature in headwater
source NHW
= Alphanumeric name of headwater
source NHW
= Order of headwater sources
available for flow augmentation
= Order of computation
BTU/ft'
ug/1
mg/i
1000
TWIT
mg/i
mg/1
CFS
mg/1
mg/1
mg/1
mg/1
degrees Fahr.
V-6
-------
Variable Name
I FLAG(I,J)
IRCHN0(250)
ISS
JUNC(IJUNC,3)
JUNCI D( I JUlNC, 15)
K1 (IOR)
K2(IOR)
K20PT(I)
KNH 3(IOR)
KN02(IOR)
LAT
LLM
LSM
MO DOPT(10)
NC
NCELRH(I)
HCS
Definition Uni ts
Computational flag field —
Number of inserted reach —
Program internal variable —
Order of computational elements —
clockwise around junction IJUNC
Alphanumeric name of stream
junction IJUNC
BOD decay rate (base e) 1 /day
coefficient in computational
element IOR
Reaeration coefficient (base e) 1/day
in computational element IOR
Option for determining reaeration
coefficient in reach I
Internal variable, temperature —
corrected CKNH3 in computational
element IOR
Internal variable, temperature
corrected CKNO2 "in computational
element IOR
Mean latitude of river basin degrees
Local meridian of river basin degrees
Standard meridian of time zone degrees
in which river basin is located
Model option, program internal
variable
Counter for the conservative
mineral being routed
Number of computational elements
in reach I (maximum = 20)
Number of conservative minerals
being routed (maximum = 3)
V-7
-------
Variable Name
Definition
Units
NHWTRS
NHWWAR(I)
NI
NJ
NJUNC
NREACH
NT
NWASTE
PHOS(IOR)
PHOSI(I)
PHOSIT(I)
PTIME
QATOT(NHW)
QKI)
RADNI(I)
RADNIT(I)
RCHID(1,15)
RES P RR(IOR)
= Number of headwaters in stream —
system (maximum = 15)
= Number of headwater sources —
available for flow augmentation
= Input tape —
= Output tape —
= Number of stream junctions in —
system (maximum = 15)
= Number of reaches in system —
(maximum = 75)
= Counter for printing titles —
= Number of waste discharges or
withdrawals (maximum = 90)
= Concentration of PO4 in mg/1
computational element IOR
= Incremental inflow concentration mg/1
of PO4 in reach I
= Initial concentration of PO4 mg/1
in reach I
= Time interval for writing hours
intermediate summary
= Total flow augmentation from CFS
each headwater source used
= Incremental inflow in reach I CFS
= Incremental inflow concentration
of radionuclides in reach I
= Initial concentration of —
radionuclides in reach I
= Alphanumeric name of reach I
= Algae respiration rate in 1/day
computation element IOR
V-8
-------
Variable Name
Definition
Uni ts
RESPRT
RMTEOR(I)
RMTHOR(I)
S(IOR)
SMH 3(I)
SONET
SPHOS(I)
TARGDO(I)
T(IOR)
TI (I)
TIME
TINIT(I)
TITLE(I ,J)
TOFDAY
TPRINT
TRFACT(NWS)
= Algae respiration rate
= River mile at end of reach I
= River mile at head of reach I
= Vector of the known heat or
material balance obtained in
computational element IOR
= Benthos source rate for NH3
in reach I
= Average light intensity in basin
= Benthos source rate for PO4
in reach I
= Minimum allowable target level
for dissolved oxygen
concentration in reach I
= Temperature in computational
element IOR
= Temperature of incremental
inflow in reach I
= Length of time over which a
quality constituent has been
routed
= Temperature of incremental
inflow in reach I
= Alphanumeric program titles
= Hour of day
= Time counter to determine wnen
to write intermediate summary
= Treatment plant efficiency
(decimal fraction) for waste
discharge NWS
1 /day
mi les
mi les
degrees Fahr.
or mg/1
mg N
day-foot
Langleys/day (for
dynamic run use
Langleys/hour)
mg P
day-foot
mg/1
degrees Fahr.
degrees Fahr.
hours
degrees Fahr.
hours
hours
V-9
-------
Variable Name
Defi ni tion
Uni ts
TRLCD
VEL(IOR)
VHW(NHW)
WASTID(NWS,90)
WETBLB
WIND
WSALG(NWS)
WSBOD(NWS)
WSCOLI(NWS)
WSCONS(NWS.NC)
WSDO(NWS)
WSFLOW(NWS)
WSNH3(NWS)
WSN02(NWS)
WSN03(NWS)
= Time counter to determine when hours
to reach Local CIimatological
Data
= Velocity in computational FPS
element IOR
= Velocity at headwater source NHW FPS
= Alphanumeric name of treatment —
plant, withdrawal, or point
source NWS
= Wet bulb temperature
= Wind velocity
= Input concentration of
chlorophyll for waste load
or point source NWS
= Ultimate BOD of waste loading
or point source NWS
= Input concentration of fecal
coliform for waste load or
point source NWS
= Concentration of conservative mg/1
mineral in waste load or
point source NWS
= Concentration of dissolved oxygen mg/1
in waste load or point source NWD
= Discharge of waste load, with- CFS
drawal or point source NWS
= Input concentration of NH3 mg/1
for waste load or point
source NWS
= Input concentration of NO2 for mg/1
waste load or point source NWS
= Input concentration of NO3 for mg/1
waste load or point source NWS
degrees Fahr.
KNOTS
yg/1
mg/1
1000
V-10
-------
Variable Name
Definition
Uni ts
WSPHOS(NWS)
WSRADlN(NWS)
WSTEMP(NWS)
X(IOR)
Z(IOR)
Input concentration of PO4 for
waste load or point source NWS
Input concentration of
radionuclide for waste load
or point source NWS
Temperature of waste load or
point source NWS
Program internal variable for
computational element IOR
Temporary storage vector for
computational element IOR
mg/1
degrees Fahr.
V-ll
-------
SECTION VI
QUAL-II INPUT DATA DESCRIPTION
TITLE DATA CARDS
PROGRAM ANALYSIS CONTROL DATA
NONSPATIALLY VARIABLE A, N, AND P CONSTANTS
REACH IDENTIFICATION AND RIVER MILE DATA
FLOW AUGMENTATION DATA
COMPUTATIONAL ELEMENTS FLAG FIELD DATA
HYDROLOGIC DATA
BOD AND DO REACTION RATE CONSTANTS DATA
ALGAE, NITROGEN AND PHOSPHORUS CONSTANTS
OTHER CONSTANTS
INITIAL CONDITIONS DATA
INITIAL CONDITIONS FOR ALGAE, N. P, COLIFORMS AND
ADDITIONAL NONCONSERVATIVES
INCREMENTAL RUNOFF DATA
INCREMENTAL RUNOFF DATA FOR ALGAE, N, P, COLIFORMS
AND ADDITONAL NONCONSERVATIVES
STREAM JUNCTION DATA
HEADWATER SOURCES DATA
HEADWATER SOURCES DATA FOR ALGAE, N, P, COLIFORMS AND
ADDITIONAL NONCONSERVATIVES
WASTELOADINGS AND WITHDRAWALS DATA
WASTELOAD DATA FOR ALGAE, N, P, COLIFORMS, AND
ADDITIONAL NONCONSERVATIVES
LOCAL CLIMATOLOGICAL DATA
VI-1
VI-1
VI-3
VI-4
VI-5
V1-5
V1-6
VI-7
VI-8
VI-9
VI-9
VI-10
VI-11
VI-11
VI-12
VI-13
VI-14
VI-14
VI-15
VI-16
m
n
-i
o
z
<
-------
SECTION VI
QUAL-II INPUT DATA DESCRIPTION
TITLE DATA CARDS
PROGRAM ANALYSIS CONTROL DATA
NONSPATIALLY VARIABLE A, N, AND P CONSTANTS
REACH IDENTIFICATION AND RIVER MILE DATA
FLOW AUGMENTATION DATA
COMPUTATIONAL ELEMENTS FLAG FIELD DATA
HYDROLOGIC DATA
BOD AND DO REACTION RATE CONSTANTS DATA
ALGAE,. NITROGEN AND PHOSPHORUS CONSTANTS
OTHER CONSTANTS
INITIAL CONDITIONS DATA
INITIAL CONDITIONS FOR ALGAE, N, P, COLIFORMS AND
ADDITIONAL NONCONSERVATIVES
INCREMENTAL RUNOFF DATA
INCREMENTAL RUNOFF DATA FOR ALGAE, N, P, COLIFORMS
AND ADDITONAL NONCONSERVATIVES
STREAM JUNCTION DATA
HFADWATER SOURCES DATA
HEADWATER SOURCES DATA FOR ALGAE, N, P, COLIFORMS AND
ADDITIONAL NONCONSERVATIVES
WASTELOADINGS AND WITHDRAWALS DATA
WASTELOAD DATA FOR ALGAE, N, P, COLIFORMS, AND
ADDITIONAL NONCONSERVATIVES
LOCAL CLIMATOLOGICAL DATA
VI-1
VI-1
VI - 3
VI-4
VI-5
VI-5
VI-6
VI-7
VI-8
V1-9
VI-9
VI-10
VI-11
VI-11
VI-12
VI-1 3
VI-14
VI-14
VI-15
VI-16
(
-------
SECTION VI
QUAL-II INPUT DATA DESCRIPTION
All the input data required by the program are in card form.
The card data and input formats are itemized on the input forms (1
through 19). The following paragraphs give details of the data required,
with suggested parameter limits and explanations of program requirements.
TITLE DATA CARDS (Form 1 of 19)
All sixteen cards are required in the order shown. The first
two cards are title cards, and columns 37 to 80 of card 2 can be used to
describe the basin, i.e. name, date, season. Title cards 3 through 15
require either a YES or a NO in columns 10-12, right adjusted. NH^, N02»
and NO^ must be simulated as a group. Card 16 must read ENDTITLE.
NOTE: QUAL-II simulates ULTIMATE BOD in the general case;
however, if the user wishes to use 5-day BOD for input and output, the
program will make the conversions to ultimate BOD internally. To use
tne 5-day BOD 1-0 option, write "5-DAYZ?BI0CHEMICALZ?0XYGENZ?DEMAND2>INi»MG/L"
on the TITLE07 card beginning in column 22.
PROGRAM ANALYSIS CONTROL DATA (Form 2 of 19)
The first four cards control input-output printing. If any
characters other than those shoun are inserted in the first four columns
of these cards, requested action will not occur.
VI-1
-------
LIST - Card 1, list the input data
WRIT - Card 2, write the final summary
FLOW - Card 3, use flow augmentation, on Form 2 shown
in the documentation there will be no flow
augmentation.
STEA - Card 4, on Form 2 shown this is a steady-state
simulation. If it is not^ to be a steady-state,
write dynamic simulation and it is automatically
a dynamic simulation.
The next four cards describe the system. There are two data fields per
card, columns 26-35 and 71-80.
The first card (card five), contains the number of reaches into
which the stream is broken down and the number of stream junctions
(confluences) within the stream system.
Card 6 has the number of headwater sources and the number of inputs
or withdrawals within the stream system. These inputs can be small streams,
wasteloads, etc. Withdrawals can be municipal water supplies, canals, etc.
(NOTE: Withdrawals must have a minus sign in type 11 data and must have
IFLAG=7 in type 4 data).
Card 7 contains the time step interval in hours and the length
of the computational element in miles. For steady state computations
leave the time step interval blank.
The maximum route time for dynamic simulations is on card 8,
and it represents the approximate time in hours required for a particle
of water to travel from the most upstream point in the system to the most
downstream point. In steady-state solutions enter the maximum number of
iterations required for convergence. 30 iterations should be sufficient
VI-2
-------
in most cases. Also on card 8 is the time increment in hours for summary
reports. For the steady-state solutions, leave this blank.
The next four cards (cards 9-12) are required only if temperature
is being simulated. The data fields are also columns 26-35 and 71-80. The
basin latitude and longitude are entered on card 9 and represent mean values
in degrees for the basin. On card 10 enter the standard meridian in degrees,
and the day of the year the simulation is to begin. The evaporation
coefficients are entered on card 11. On data card 12, enter the mean basin
elevation in feet above MSL, and the dust attenuation coefficient for
solar radiation.
The last card must read ENDATA1.
NONSPATIALLY VARIABLE A, N, AND P CONSTANTS (FORM 2 OF 19)
Six input data cards are required if algae, NH^, NO2, NO^, PO^,
coliforms or radionuclides are to be simulated. Otherwise they may be
deleted. The data fields are columns 33-39 and 74-80. Card 1 inputs
data on oxygen uptake per unit of amnonia oxidation, 4.0 mg 0/mg N, and
oxygen uptake per unit of nitrite oxidation, 1.14 mg 0/mg N.
The next three cards concern algae. Card 2 contains data on
oxygen production per unit of algae growth, usually 1.6 mg 0/mg A, with
a range of 1.4 to 1.8. It also contains data on oxygen update per unit
of algae, usually 2.0 mg 0/mg A respired, with a range of 1.6 to 2.3.
The third card concerns the nitrogen content and phosphorus content of
algae in mg per mg of algae. The fraction of algae biomass which is N
is about 0.08 to 0.09, and the fraction of algae biomass which is P is
about 0.012 to 0.015. Card 4 inputs the maximum specific growth rate of
VI - 3
-------
algae, which has a range of 1.0 to 3.0 per day, and the respiration rate
of algae, which has a range of 0.05 to 0.5 per day. The respiration value
of 0.05 is for pure streams, while 0.2 is used where the N0^ and P0^
concentrations are greater than twice the half saturation constants.
The nitrogen and phosphorus half saturation constants are
entered on card 5 in mg/1. The range of the values for nitrogen is
from 0.2 to 0.4 and the P value is 0.04.
Card 6 inputs solar radiation information. The light half
saturation constant, in Langleys/minute, is 0.03. The total daily
radiation is in Langleys.
This group of cards must e.id with ENDATA1A, even if no data
are entered.
REACH IDENTIFICATION AND RIVER MILE DATA (FORM 3 OF 19)
and river mile by listing the stream reaches from the most upstream point
in the system to the most downstream point. When a junction is reached,
the order is continued from the upstream point of the tributary. There
is one card per reach. The following information is on each card.
The cards of this group identify the stream reach system by name
Reach order or number
Reach identification or name
River mile at head of reach
River mile at end of reach
Columns 16-20
Columns 26-40
Columns 51-60
Columns 71-80
This group of cards must end with ENDATA2.
VI-4
-------
FLOW AUGMENTATION DATA (FORM 4 OF 19)
These cards except ENDATA 3 are required only if flow augmentation
is to be used. The cards in this group contain data associated with
determining flow augmentation requirements and available sources of flow
augmentation. There must be as many cards in this group as in the reach
identification group. The following information is on each card.
Reach order or number
Augmentation Sources (the number
of headwater sources which are
available for flow augmentation)
Target Level (minimum allowable
dissolved oxygen concentration
(mg/1) in this reach)
Order of Sources (order of available
headwaters, starting at most
upstream point)
Columns 26-30
Columns 36-40
Columns 41-50
Columns 51-80
This card group must end with ENDATA3.
COMPUTATIONAL ELEMENTS FLAG FIELD DATA (FORM 5 OF 19)
This group of cards identifies each type of computational element
in each reach. These data allow the proper form of routing equations to be
used by the program. There are seven element types allowed; they are
listed below.
VI-5
-------
I FLAG
Jm.
4
5
6
7
2
3
Headwater source element
Standard element, incremental inflow only
Element on mainstream immediately upstream of
a junction
Junction element
Most downstream element
Input element
Withdrawal element
Each card in this group (one for each reach), contains the following
information.
of a set, identifying each
element by type)
This card group must end with ENDATA4.
HYDROLOGIC DATA (FORM 6 OF 19)
The cards in this group contain variables for determining the
hydraulic conditions in the system. Flow characteristics are determined
for each reach by the program. Velocity is calculated as V = aQ*3 and
D
depth is found by D = aQ . Each card represents one reach, containing
the values of a, b, a, and $, as described below.
Reach order or number
Number of elements in the reach
Element type (these are numbers
Columns 16-20
Columns 26-30
Columns 41-80
Reach order or number
a, coefficient for velocity
Columns 16-20
Columns 31-40
VI-6
-------
b, exponent for velocity
~, coefficient for depth
~, exponent for depth
Mannings "n" for reach
Columns 41-50
Columns 51-60
Columns 61-70
Columns 71-80
The last card for this group must end with ENDATA5.
BOD AND DO REACTION RATE CONSTANTS DATA (FORM 7 OF 19)
This group of cards includes reach information on the BOD rate
coefficient and settling rate, as well as the method of computing the
reaeration coefficient. Seven options for reaeration coefficient
calculation are available. These are listed below.
One card is necessary for each reach, and contains the following information.
K20PT
2
3
4
5
6
7
Method
Read in values of K2
Churchill (1962)
O'Conner and Dobbins (1958)
Owens and Gibbs (1964)
Thackston and Krenkel (1966)
Langien and Durum (1967)
Use equation K2 = aQ*5
Reach order or number
BOD rate coefficient, per day
BOD removal rate by settling, per day
Option for K2 (1 to 7, as above)
K2 (option 1 only) reaeration
Columns 16-20
Columns 21-30
Columns 31-40
Columns 41-50
Columns 51-60
coefficient
VI - 7
-------
a, coefficient for K2 (option Columns 61-70
7 only)
b, exponent for K2 (option 7 Columns 71-80
only)
This group of cards must end with ENDATA6.
ALGAE, NITROGEN AND PHOSPHORUS CONSTANTS (FORM 8 OF 19)
This group of cards is required if algae, NH^, NO2, NOg, PO^,
coliforms or radionuclides are to be simulated. Otherwise, they may be
deleted. Each card of this group, one for each reach, contains the
following information.
Reach order or number
Chlorophyll a^ to algae ratio,
(yg chl a/mg/Algae
range of 50 to 100)
Algae settling rate, feet/day
(range of 0.5 to 6.0)
Rate coefficient for ammonia
oxidation, per day (range of
0.1 to 0.5, about equal to
BOD rate coefficient)
Rate coefficient for nitrite
oxidation, per day (range of
0.5 to 2.0, about five times
BOD rate coefficient)
Benthos source rate for ammonia
(nig/ foot/day)
Columns 26-30
Columns 33-40
Columns 41-48
Columns 49-56
Columns 57-64
Columns 65-72
VI-8
-------
Benthos source rate for Columns 73-80
phosphorus (mg/foot/day)
This card group must end with ENDATA6A, even if no data are entered.
OTHER CONSTANTS (FORM 9 OF 19)
This group of cards is required if algae, NH3, N02» N03> P04,
colifom or radionuclides are to be simulated. Otherwise they may be
deleted. Each card of the group, one for each reach, contains the
following information.
Reach order or number
Benthos source rate for BOD
(mg/foot/day)
Coliform decay rate, per day
Light extinction coefficient, per foot
Radionuclide decay rate, per day
Columns 26-30
Columns 33-40
Columns 41-48
Columns 49-56
Columns 57-64
This group of cards must end with ENDATA6B, even if no data are
entered.
INITIAL CONDITIONS DATA (FORM 10 OF 19)
This card group, one card per reach, establishes the initial
conditions of the system, with respect to temperature, dissolved oxygen
concentrations, BOD concentrations, and conservative minerals. Only
temperature is required for steady-state simulations. The information
is contained as follows.
VI-9
-------
Reach order or number
Temperature in degrees F
Dissolved Oxygen, mg/1
BOD, mg/1
Conservative mineral I, mg/1
Conservative mineral II, mg/1
Conservative mineral III, mg/1
Columns 26-30
Columns 31-40
Columns 41-45
Columns 46-50
Columns 51-60
Columns 61-70
Columns 71-80
This group of cards must end with ENDATA7.
INITIAL CONDITIONS FOR ALGAE, N, P, C0LIF0RMS, AND RADIONUCLIDES
(FORM 11 OF 19)
This group of cards, one per reach, is required only if algae,
NH3, N02, N03, P04, coliforms, or radionuclides are to be simulated.
Otherwise they may be deleted. The following information is on each card.
This group of cards must end with ENDATA7A, even if no data are entered.
Reach order or number
Chlorophyl a^ micrograms/1
Ammonia as N, mg/1
Nitrite as N, mg/1
Nitrate as N, mg/1
Phosphate as N, mg/1
Coliforms (MPN)
Radionuclides
Columns 20-24
Columns 25-32
Columns 33-40
Columns 41-48
Columns 49-56
Columns 57-64
Columns 65-72
Columns 73-80
VI-10
-------
INCREMENTAL RUNOFF DATA (FORM 12 OF 19)
This group of cards, one per reach, accounts for the additional
flows into the system not represented by inflows or headwaters. The flow
rate, temperature of the flow and DO, BOD, and conservative mineral concen-
tration of the flow is taken into account. Each card contains the following
information.
This group of cards must end with ENDATA8.
INCREMENTAL RUNOFF DATA FOR ALGAE, N, P, COLIFORMS, RADIONUCLIDES
(FORM 13 OF 19)
This group of cards, one per reach, is required only if algae,
NH3, N02> N03, PO^, coliforms, or radionuclides are to be simulated.
Otherwise they may be deleted. The following information is on each card.
Reach order or number
Incremental flow, cfs
Temperature of flow, degrees F
Dissolved oxygen concentration, mg/1
BOD concentration, mg/1
Conservative Mineral I, mg/1
Conservative Mineral II, mg/1
Conservative Mineral III, mg/1
Columns 26-30
Columns 31-35
Columns 36-40
Columns 41-45
Columns 46-50
Columns 51-60
Columns 61-70
Columns 71-80
Reach order or number
Chlorophyll a concentration,
Columns 20-24
Columns 25-32
microgram/1
Anmonia as N, mg/1
Nitrite as N, mg/1
Nitrate as N, mg/1
Phosphate as P, mg/1
Columns 33-40
Columns 41-48
Columns 49-56
Columns 57-64
VI-11
-------
Coliforms as MNP
Radionucl ides
Columns 65-72
Columns 73-80
This group of cards must end with ENDATA8A, even if no data are entered.
STREAM JUNCTION DATA (FORM 14 OF 19)
This group of cards is required if there are junctions on
confluences in the stream system being simulated. Otherwise they may be
deleted. The junctions are ordered starting with the most upstream junction.
There is one card per junction, and the following information is on each card.
in the mainstream reach
immediately upstream of the
junction (See example below.
In the example, for Junction 1,
the order number of the last
mainstream element immediately
upstream of the junction is
number 17. For Junction 2 it
is number 43. The Junction 1
mainstream element order number
immediately downstream of the
junction is 29. For Junction 2
it is number 52. The Junction 1
element order number of the last
element of the tributary is number
28. For Junction 2 it is number
Junction order or number
Junction name or identification
Order number of the last element
Columns 21-25
Columns 35-50
Columns 56-60
51.)
VI-1Z
-------
Most Upstream
Point
Reach
Number
30
Junction
33
34
35
36
37
40
42
43
52
53
54
Junction
55
56
58
60
62
63
Computational
Element Number
65
66
67
FIGURE 21-1 STREAM NETWORK FOR EXAMPLE PROBLEM
-------
Order number of the first element
in the mainstream reach
immediately downstream from
the junction
Columns 66-70
Order number of the last element
in the last reach of the
tributary entering the junction
Columns 76-80
This group of cards must end with ENDATA9, even if no data are entered.
HEADWATER SOURCES DATA (FORM 15 OF 19)
This group of cards, one per headwater, defines the flow,
temperature, dissolved oxygen, BOD, and conservative mineral concentrations
of the headwater. The following information is on each card.
Headwater order or number
Columns 16-20
Starting at most upstream point
Headwater name or identification
Flow in cfs
Temperature in degrees, F.
Dissolved oxygen concentration, mg/1
BOD concentration, mg/1
Conservative Mineral I, mg/1
Conservative Mineral II, mg/1
Conservative Mineral III, mg/1
Columns 25-40
Columns 41-50
Columns 51-55
Columns 56-60
Columns 61-65
Columns 66-70
Columns 71-75
Columns 76-80
This group of cards must end with ENDATA10.
VI-13
-------
HEADWATER SOURCES DATA FOR ALGAE, N, P, COLIFORMS AND RADIONUCLIDES
(FORM 16 OF 19)
This group of cards, one per headwater is required only if
algae, NH^, N02, N03, PO^, coliforms, and radionuclides are to be simulated.
Otherwise they may be deleted. The following information is on each card.
Headwater order or number
Chlorophyll a^ concentration,
mi crograms/1
Anmonia as N, mg/1
Nitrite as N, mg/1
Nitrate as N, mg/1
Phosphate as P, mg/1
Coliforms, MPN
Radionuclides
Columns 20-24
Columns 25-32
Columns 33-40
Columns 41-48
Columns 49-56
Columns 57-64
Columns 65-72
Columns 73-80
This group of cards must end with ENDATA10A, even if no data are to be
entered.
WASTELOADINGS AND WITHDRAWALS DATA (FORM 17 OF 19)
This group of cards, one per inflow or withdrawal, describes
the percent of treatment (for wastewater treatment), inflow or withdrawal,
temperature, and dissolved oxygen, BOD, and conservative mineral concentrati
They must be ordered starting at the most upstream point. The following
information is on each card.
VI -14
-------
Wasteload order number
Wasteload identification or name
Percent treatment (use only if
Columns 11-15
Columns 20-35
Columns 36-40
influent BOD values are used)
Wasteload inflow or withdrawal
Columns 41-50
in cfs (a withdrawal must
have a (-) sign).
Temperature, degrees F
Dissolved oxygen concentration, mg/1
BOD concentration, mg/1
Conservative Mineral I, mg/1
Conservative Mineral II, mg/1
Conservative Mineral III, mg/1
Columns 51-55
Columns 56-60
Columns 61-65
Columns 66-70
Columns 71-75
Columns 76-80
This group of cards must end with ENDATA11.
WASTELOAD DATA FOR ALGAE, N, P, COLIFORMS, AND RADIONUCLIDES (FORM
18 OF 19)
This group of cards, one per wasteload, is required only if
algae, NH^, N02, N03, PO^, coliforms, and radionuclides are to be simulated.
Otherwise they may be deleted. The following information is on each card.
Chlorophyll a^ concentration,
Wasteload order or number
Columns 20-24
Columns 25-32
microgram/1
Ammonia concentration, mg/1
Nitrite concentration, mg/1
Nitrate concentration, mg/1
Phosphate concentration, mg/1
Columns 33-40
Columns 41-48
Columns 49-56
Columns 57-64
VI-15
-------
Coliform, MPN
Radionuclides
Columns 65-72
Columns 73-80
This group of cards must end with ENDATA11A, even if no data are to be
entered.
LOCAL CLIMATOLOGICAL DATA (FORM 19 OF 19)
The following cards are required only if dynamic temperature
and/or dynamic algae is being simulated. Otherwise they may be deleted.
Each card represents readings at three hour intervals, chronologically
ordered. There must be a sufficient number of cards to cover the time
period specified for the simulation. The following information is on each
card.
There is no end card for this group.
Required only if dynamic algae is simulated and temperature is not.
2Required if temperature is dynamically simulated.
Month
Day
Year (last two digits)
Net Solar Radiation1, Langleys
Columns 18-19
Columns 21-22
Columns 24-25
Columns 31-40
per hour
Cloudiness2, fraction in tenths
Columns 41-48
of cloud cover
Dry Bulb Temperature2, degrees F
Wet Bulb Temperature2, degrees F
Barometric pressure2, inches Hg
Wind speed2, knots
Columns 49-56
Columns 57-64
Columns 65-72
Columns 73-80
VI-16
-------
SECTION VII
EXAMPLE PROBLEM
Page
EXAMPLE VII-1
TEST PROBLEM DATA AND RESULTS VI1-2
-------
SECTION VII
EXAMPLE PROBLEM
Page
EXAMPLE VII-1
TEST PROBLEM DATA AND RESULTS VI1-2
-------
SECTION VII
EXAMPLE PROBLEM
The example problem was for a branched system of 6 reaches,
97 elements, 2 headwaters, 1 junction, 1 point source waste load, and
1 withdrawal. The water temperature was 65.0°F., and the total daily
radiation was 400 Langleys. The input information is shown on the following
pages.
The problem was set to compute the steady state concentrations
of TD.S, BOD, chlorophyll A, phosphorus, arrmonia, nitrite, nitrate, dissolved
oxygen and fecal coliform. There was no incremental runoff or flow
augmentation. Reaeration was computed by the #3 option, the equation by
0'Conner and Dobbins. The computed values can be seen in the final report
on each reach, shown on the following pages.
The DO saturation at 65°F. is 9.48 mg/1.
The interim report shown on the following pages indicates that
almost all of reach 3 is supersaturated. The point source waste load
effects can be seen in reach 2, element 6, the input point for all water
quality constituents. DO levels and chlorophyll a. levels go down, other
constituent concentrations increase.
VII-1
-------
COMPUTER DATA SHEETS
AND REPORT
VII-2
-------
RM 90 0
RM 70 0
RM 65 0
RM 56 0
RM 40 0
RM 26 0
RM 20 0
The obove basm contains the following features
2 Heodwoters ( moximum allowable «15 )
I Junction (moximum ollowoble * 15)
6 Reaches (maximum ollowable 8 75)
I Woste discharge
o
o
I—
I-*
97 computalionol elements (max allowable * 500)
(moximum allowable *90)
I Withdrowol
FIGURE YH-1
SCHEMATIC DIAGRAM OF A
HYPOTHETICAL STREAM SYSTEM
-------
TTrKAUrv 1
RMOWTM p A T f WOM cONvf^f,r-1T IN 07 ELEMENTS
TTERATlOr ?
GROWTH P T F MO'l CONVFPM^T Jf e2 ELEnENTS
T TTR A T T(V i
r,orwTH pmc *>nN rOrjvERr.FNT ir< o elements
n t
^nj VFH
oxygen
1 II' MP-/1
ITERATION 3
"CM/CL 1
?
T
s
f
7
A
a
IP
11
12
13
1 4
15
16
17
IB
19
20
1
A .
*.21
h. 1 M
A. 07
0.01
7 . 9£
7.02
7.HA
7. A«5
7.83
7. A1
7. AO
7.79
7.78
7.7A
7.7A
7.78
7.79
7.80
7.81
2
7. P 3
7 . A4
7.Af
7.8«
7.*9
7.36
7.11
6. A9
6.69
6.51
6.36
6.22
6.10
6.00
3
1 0.3b
in. pi
10.OH
9.97
9.^7
9.7P
9.69
9.62
9.56
9.50
9.99
9.90
4
°.36
°.32
a po
T.2f
9. ?3
9.21
9.19
9.17
9.15
9.1U
9.13
9.11
9.11
9.10
9.09
5
7.02
7.04
7*06
7.09
7.11
7.13
7.16
7 .1 A
7.20
7.23
7.25
7.27
7.29
7.31
7.33
7.35
f.
7 . 3B
7.90
7.42
7 .US
7.47
7.<*9
7.51
7.S3
7.55
7.57
7.59
7.61
7.63
7.65
7.60
7.7U
7.81
7.86
7.92
7.97
niocHrhicflL oxrGEf' OEKAhn :
[N MG/L
ITERATION 3
RCH/T L 1
2
4
5
6
7
A
9
10
11
12
13
19
15
16
17
1A
19
20
1
2.e7
-> . 7T>
?.**
2.52
2.HI
2.31
2.21
2.11
2.0?
1 .93
1.65
1.77
1.70
1.62
1.55
1 .99
1.92
1 .36
1.30
1.25
2
1.19
1 .14
1.09
1 .OS
1 .01
7.42
7.11
6.62
6.5*
6.2t
6.00
5.76
5.52
5.29
3
1.96
1.9?
1.A9
1 .85
1 . A1
1 .7A
1.79
1 .71
1 . 6 A
1 .65
1 .61
1.58
4
1.55
1 .S2
l.uc
3 .96
1.4*
I .91
1 • 3 A
1.3S
1.33
1.30
1.28
1.25
1.23
1 .20
1.18
5
3.91
3. A6
3.PI
3.7ft
3.72
3.67
3.63
3.5A
3.59
3.50
*.95
3.91
3.37
3.33
3.29
3.25
6
3.21
3.IP
3. 1*
3.12
3.10
3.07
3.09
3.01
2.9A
2.96
2.93
2.90
2.A8
2.85
2.83
2.79
2.76
2.73
2.69
2.66
AMMONIA AS
H I f J
*P/L
ITERATION 3
pCH/CL 1
2
3
4
5
6
7
6
9
10
11
12
13
19
15
16
17
18
19
20
1
.09
.9^
.9?
¦ 96
.95
• 9i»
.93
.92
.91
.90
.89
.86
.67
. 66
.85
.811
.63
.82
• 81
• 60
2
.79
.7?
.78
.77
.76
2.03
2.01
1 .99
1.97
1.99
1.93
1.91
1.89
1.67
3
.50
.50
.49
.49
.99
mua
.98
.98
.98
.97
.97
(4
.*~7
.9f
.46
.96
.*6
.95
.95
.95
.9*
.99
.99
.99
5
1.91
1 .91
1.90
1 .**n
1 . 39
1 .3®
1.39
1 .36
1.38
1 .37
1.37
1.36
1.36
1.36
1 .35
1.35
6
1.34
1 .34
1.3U
1.3?
1."
1.33
1.33
1.32
1.32
1.32
1.31
1,31
1.31
1.30
1.30
I .30
1.29
1.29
1.29
1.26
MITRUF AS
; n in
HG/L
ITERATION 3
RTH/TL 1
2
*
4
5
6
7
A
9
10
11
12
13
19
15
16
17
1A
19
20
1
. OH
.Oft
.07
.07
. r,r
.OP
.09
.09
.09
.10
.10
.10
.10
.10
.11
.11
.11
.11
.11
.11
2
. 1 1
.11
. 1 1
.11
. 11
.1ft
.17
.1A
.ie
.19
.20
.20
.21
.21
3
.PI
.01
.OP
.02
.02
.02
.0?
.0*
.03
.03
.03
. °3
.03
.03
.03
. OH
.04
.OH
• OH
.09
.09
.09
.09
.09
.09
.09
5
.16
. 1*
.17
.97
.17
.17
.17
.17
.17
.17
.17
.17
.17
.17
.97
.17
&
.17
• 1 »
. 1 A
. 1»
. 1 A
.IB
• id
. 1A
• 1A
.1A
.16
.16
.16
• 1A
.18
.16
.18
• 18
• 18
• 16
NITRATE AS
IN IN
HG/L
ITERATION 3
&CH/CL 1
?
*
t*
*>
6
7
8
9
10
11
12
13
19
15
16
17
1A
19
20
1
.30
. 31
. M
. 3?
• 3?
.33
.*«+
.39
• 3S
.^6
.36
.37
.38
• 3A
.39
.90
.91
.91
.92
.93
J>
.99
.*~5
.US
.**(*
."7
1.35
1.36
1 .07
1 .00
1.90
l.M
1.92
1.99
1.95
3
.10
.in
. 1 0
. 1 0
. 10
.10
.10
.10
.11
.11
.11
.11
4
.11
.11
. 11
. 11
. 11
. 11
.12
. 12
.12
.12
.12
.12
.12
.13
.13
b
1. nu
1.0*1
1 .OS
1 . 0^
1.05
t .06
1.06
1 . 06
1.07
1.07
1.07
1.08
1 .OP
1.06
1.09
1 .09
f
1. n9
1.10
1.10
1 . in
1.10
1.11
1-11
1 .11
1.11
1.12
1.12
1.12
1.13
1.13
l.H
1.13
1.19
1.19
1.19
1.15
PHOSPf.OMiS
; as p
If rr,/L
ITERATION 3
RCH/TL 1
2
3
u
5
6
7
A
9
10
11
12
13
19
15
16
17
18
19
20
-------
1 .?<»
.20
"50
.?o
.20
.20
.20
.20
.20
.20
.20
.20
.20
.20
.20
,20
,20
.20
? .?r,
,?0
2n
2.00
2.00
p.on
2,00
2.00
2.00
2. 00
2.on
2.00
* .0*
.oc
n5
or
.05
. OC
.05
05
.05
.05
.05
.05
4 .05*
.05
n«.
.n*
. OS
.05
.05
.OS
05
.05
.05
.05
.05
,05
5 1.39
1 .39
i!«
1 3°
l
1.39
1 39
1 3**
1 . 39
1.3=»
1 .39
1.39
1.39
1.39
1 .39
1 . 39
6 I.*6'
1 3°
i . v-*
1
1 39
1.3°
1.39
1 .39
1 ,3Q
1 .3*
1,39
1.39
1 .39
1.39
1.^9
1.39
1.39
1 .39
1
.39
1.39
al gat as
r.ii a
TN UG/L
ITERATION 3
PCft/r^ i
?
1
u
5
6
7
8
Q
in
11
12
13
1*
1 5
16
17
18
19
20
1 10,1?
10.25
10. *0
1 n.f i
1 0.65
1 1 .79
10.93
1 1 .08
11.23
11.3^
11 .54
11.70
11.66
12.03
12.21
12.3a
12.57
12,75
12
.95
13.14
2 13.34
13.54
13.75
13.97
14.19
13.22
13.57
1 3.93
1 4 . 2Q
14.67
15.05
15. **5
15.86
16,28
? 5.00
5.01
5.01
5.0?
5.02
5.02
5.03
*.03
5.04
5.04
5.04
5.05
'4 5, r 5
*.06
5 07
5.06
*.08
5.09
5,09
5.10
5.10
5.11
5.12
5.12
5,13
5,14
5 J ? . 96
13.05
13.1^
1 3. ^4
13.33
13.43
13.53
1 3.62
13.72
13.82
13.92
14,02
1H.12
14.22
14,32
14.42
6 14.51
14.59
14.A7
1 4 75
14.63
14.91
14 ,99
15,07
1 *, 16
15.24
15.32
15,40
15.49
15,57
15,65
15.77
15,90
16.02
16
.15
16,28
FFCaL CPLIFORM
AS 1000/100
*L
ITERATION 3
»CH/CL 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
1 ,<»5
.40
36
.33
.29
.26
.24
.?1
.19
.17
.16
.1*
.13
.11
.10
.09
.08
.07
.07
.06
2 .05
.05
14
.04
.06
49.39
44.58
40,23
36,31
32,78
29.58
26,70
24,10
21,75
3 .01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
4 .01
.01
.00
on
.00
.on
.00
.00
,00
,00
,00
,00
,00
,00
,00
5 14.09
13.67
13.26
12.86
12.47
12,10
11.73
11,38
11,04
10,71
10,39
10,07
9,77
9,18
9,19
8.92
6 f*.f8
ft.48
A 29
H. 10
7.92
7.74
7 .*6
7.3*
7.22
7,06
6.90
6, 74
6,59
6,44
6,32
6,13
5,95
5,77
5
.60
9,93
CONSERVATIVE MXNEPAl
=
TDS IN
7.78
27
.78
27.78
ALGf-E GROWTH RATES IN
PER
D*r are
ITERATION 3
RCH/CL 1
2
3
i*
5
6
7
8
10
11
12
13
14
15
16
17
18
19
20
1 .?3
.23
.23
.24
, 24
,24
.24
,24
.25
.25
.25
.25
.25
.26
.26
.26
.26
.26
.27
2 .27
.27
.27
.27
.28
.*~2
,42
.42
.42
.42
.*2
.«*2
,42
3 .10
.10
.10
10
.10
.10
.10
.10
.10
.10
.10
.10
4 .10
.10
.1 0
10
.10
.10
.10
.10
.u
.11
.11
.11
.11
.11
.11
5 .1*1
.HI
.U1
.HI
.41
.HI
.*1
.HI
.*~1
.*1
.*1
.41
.*1
.HI
.HI
.HI
6 .41
.41
.HI
.41
.41
,41
.91
.41
.*+1
.<*1
.HI
.*1
.HI
.HI
.H5
. H5
• H5
• H5
.*5
. H5
PHOTOSYNTHES1S-
PCSPlRASJON
p A TIOS
are
ITERATION 3
RCH/CL 1
2
3
4
5
6
7
8
9
10
11
12
13
lu
15
16
17
16
19
20
1 1.98
*.no
?.pl
2-03
2. OH
2.(j6
2.00
2.09
2.11
2.13
2.14
2.16
2.18
2.20
2.21
2.23
2.25
2.27
2
.28
2.30
? 2.n
2.33
2.34
2.36
2.38
3,63
3,63
3,64
3.64
3.65
3,66
3,66
3,67
3,67
* .*2
.83
.63
.*3
• 64
,84
.84
.0*5
.05
.06
,06
4 .P7
.87
Oft
.88
.69
.89
,90
.90
• 91
.92
• 92
.93
.93
.94
.95
5 3.5?
*.52
3.*2
^.5?
3.53
3.53
3,53
3.53
3,54
3.54
3.54
3,54
3,54
3,55
3.55
3.55
6 3. *>5
1.56
* 56
3 . 56
3,56
3.56
3,56
3,57
3,57
3.57
3,57
3.57
3,57
3,58
3,87
3.87
3.B7
3.87
3
.60
3,88
-------
FINAL REPORT
REACH NO* 1.0 RCHs REACH 1
RIVER MTLES 90.0 TO 70.0
\
HYPHAlJLlC PflRAK ETFP VALUES
pa&ametep
HEAD OF PEACH
ENO OF REACH
maximum
MINIMUM
AVERAGE
FLOW (CFS)
=
inn,ooo
VELOCITY
I FP$)
=
.757
DEPTH 1 FT)
=
e».5*+7
P, U A T E
R 0
UAL
I T Y
P A H A M E
ELEM 1
2
3
u
5 6
no «.30
8.21
8.14
8.07
8.01 7.96
ROU 2.87
2.75
2.63
2.52
2.41 ?.31
NH3 ,99
• 98
.*(>
.95 .94
N02 .06
.06
.07
. 07
.08 .08
N03 .30
.31
.M
.32
.32 .33
P04 ,?0
.20
.?o
,?0
.20 .20
AL6Y 10.12
1 0.25
10.^8
in.51
30.65 10.79
POLI .45
.<~0
.16
.33
.29 .26
7.92
2.21
.93
.09
.20
8
7.88
2.11
.92
.09
.34
.20
30.000
mo.ooo
100.000
100.000
.757
.757
.757
.757
5.547
5.547
5.5*7
5.547
L U E
S •
• •
• •
•
9
10
11 12
13 14
15 16
17
18
19
20
7.85
7.83
7.81 7.80
7.79 7.78
7.78 7.78
7.78
7.79
7.80
7.81
2.02
1.93
1.85 1.77
1.70 1.62
1.55 1.19
1.42
1.36
1.50
1.25
.91
.90
.89 .88
.87 .86
.85 .84
.63
.82
.81
.80
.09
.10
.10 .10
.10 .10
.11 .11
.11
.11
.11
.11
.35
• 36
.36 .37
.38 .38
.39 .<+0
.HI
.41
• 42
• 43
.20
.20
.20 .20
.20 .20
.20 .20
.20
.20
.20
.20
11.23
11.38
11.SH 11.70
11.86 12.03
12.21 12.38
12.57
12.75
12.95
13.14
. 19
.17
.16 .1*
.13 .11
.10 ,09
.08
.07
.07
.06
?7,00
27.00
27.00 27.00
27.00 27,00
27.00 27.00
27.00
27.00
27.00
27.00
• NOTE; UMTS ARE MP/L. EXCEPT FOR ALGAE AS CHL A IN UB/L
and fccal coliform AS 1000/100 ML
ANO CONSERVATIVE MINERAL I = TOS IN (MG/L X 0.1)
V r. R A G F
VALUE**
OF REACH COEFF
I C I E N T S
DECAY RATES
(l/OAY)
settling rate*; ii/dayj
BENTHOS SOURCE 1
kirod =
.60
Boo S .00
BOD =
KfJH* s
.15
ALGAE = .50
NH3 =
KMO? =
1 .00
P04 r
KCOLI =
1 .50
KRn*J =
.00
.00
• 00
• 00
reaeration rate
(l/DAY)
K2 =
.663
CHLOR A/ALSAE
RATIO (U6/MG)
RATIO s 90.00
-------
* *
* ~ * * FINAL REPORT * •
• * * *
REACH NO. 2,
RIVER MILES
0 RCH= REACH 2
70.0 TO 56.0
1. HYPRAULIC PARAMETER VALUES
PARAMETER
head or reach
END OF REACH
MAXIMUM
minimum
AVERAGE
FLOy
VELOCITY IFPS)
DEPTH
100.000
.737
5.5*7
110.000
• 787
5.87*
110.000
.767
5.67*
100.000
.757
5.5*7
106.129
.776
5.756
?. u
ATE
R 0
U A L
I T Y
PAR
A M E
T E R
V A
L U E
S «
*
•
•
elfm 1
2
3
*
5
6
7
8
9
10
11
12
13
1*
DO
7.85
7.6*
7.«6
7.88
7.B9
7.36
7.11
6.69
6.69
6.51
6.36
6.22
6.10
6.00
BOD
1.19
1.14
1.09
1.05
1*01
7.*2
7.11
6 . 82
6.53
6.26
6.00
5.76
5*52
5.29
NHS
. 79
.79
.70
.77
.76
2.03
2.01
1*99
1.97
1.95
1*93
1.91
1.69
1.87
N02
.11
.11
.11
.11
• 11
.16
.17
• 18
.18
.19
• 20
.20
• 21
• 21
N03
.**
.*5
• uei
.*6
.<~7
1 .35
1.36
1.37
1.38
1.90
i.n
1. *2
1.99
1.95
row
.20
.20
.20
.20
2.00
2.00
2.00
2.00
2,00
2.00
2.00
2.00
2.00
ALGY
13,3*
*3,5*
13.75
13.97
l«*.l9
13.22
13.57
13.93
1*.29
19.67
15.05
15.95
15.66
16.28
COL I
.05
• 05
.0*
.0*
.06
*9.39
**.58
*0.23
36.31
32.76
29.56
26.70
2*. 10
21.75
C0N1
27.00
?7 . 00
27.no
27.00
27.00
33.6*
33.6*
33,64
33.6*
33.6*
33,6*
33.64
33.64
33.63
15
16
17
IS
19
20
» NOTE: UNITS AfiE KG/L •
EXCEPT FOR
AND
ALGAE AS CHL A IN UG/L
FECAL COLIFORM as 1000/100 ML
AND CONSERVATIVE MINERAL I s TOS IN CWG/L X 0.1)
3. AVfRAGt VALUES OF REACH COEFFICIENTS
DECAY RATES {1/DAY)
Klfion =
Kfcn3 =
KCJH2 =
KCOLI =
KRDN =
.f.0
.15
1 .00
1 .50
.00
SETTLING RATES (l/DAY) BENTHOS SOURCE RATES
-------
FINAL REPORT •
REACH NO. 3.0 RCH= REACH 3 TR1B
RIVER MILES ?7.0 TO 15.0
HYDRAULIC PARAMFTfP VALUES
parameter
PLOW (CFS)
VELOCITY IFPS)
OEPTH
SfTTLING RATES <1/QAY>
BENTHOS SOURCE RATES
(HG/FT/OA Y)
REAERATION RATE
CHLOR
A/ALGAE
11/OAY)
RATIO
(UG/nG)
KIRfiO =
.60
ROD = .00
BOO = .00
K2 = 3.061
RATIO
il
m
o
o
o
KMl3 =
. 1 5
ALGAE = .50
NH3 = *00
KMfi? =
1 .00
PO<* = .00
KCOLX =
1.50
KRDN ~
,00
-------
• *
*
•
* •
2
*¦<
LL
A L R
E P 0 R T
* *
» *
REACH MO.
4.0
RCH= PEACH
4 TRIB
RIVER MLES 15
.0 TO
0
1 . H Y n h
A 1J t
I C
PAR
f. fi E
T F R
value
s
* *
• •
* •
•
paramftep
MFAO OF PEACH ENfl
OF REACH
PlflXinUH
MINIMUM
AVERAGE
FLOw .21
9.19 9.17
9.1?
9.14
9.13 9,11
9.11 9,10
9. 09
noo 1.55
1.52
1 .49
1 .46
1.13
1.41
1.38 1.35
1.3*
1 .30
1.26 1.25
1.23 1,20
l.ie
NH3 .47
.46
.*+6
.46
.46 . 4 *5
.45
.45
.4S .44
.44 .44
.44
N02 .03
.03
.0^
.03
.04
.04
.04 .04
.04
• 04
.04 .04
.04 .04
.04
N03 .11
.11
. i 1
.11
.11
.11
.12 .12
.12
.12
.12 .12
.12 .13
.13
POH .H5
• 05
.n?
. 0*
.05
.05
.05 .05
.05
.05
.05 .05
•05 .05
.05
flLGY S.Ob
S.06
5. oft
5.07
5. nfl
¦>.06
5.09 5.09
5.10
5.10
5.11 5.12
5.12 5.13
5.14
foLI .01
.01
.no
.00
.00
.OP
.00 .00
.00
.00
.00 .00
•00 .00
.00
rnNi ts.no
15.00
is.on
1^. 00
lb.no
15.00 1
5,00 15.00
15.00
15.00 15.00 15.00
15*00 15.00
15.00
~ note:
UNITS ARE HR/L« FXCEP1 FOR
A r 0
ALGAE AS CHL A IN UG/L
FECAL COLIFORM AS 1000/100 ML
16
18
19
20
ANU conservative HINERAL
I = TOS IN IHG/L X 0.1)
3. A V E P A G F V A L II r S OF REACH COEFFICIENTS
DECAY RATES H/DAY)
.60
.15
KlHOO =
KNH3 =
KNO> = 1.00
KCOLI = 1.50
kkdn = .no
settling rates (1/dati benthos source Rates REaERation Rate chlor a/algae
(1 /DAY I —
ROD =
algae =
• 00
• 50
BOO = .00
NH3 = .00
P 04 = .00
K2 = 3.061
RATIO
RATIO = 50•00
-------
FINAL
REPORT
PEACH NO• 5.0 RCH= REACH 5
PIVER MILES 56.0 To 90.0
1. b r P R * U l
PARAMETFR values
PrtRAMETTR
~JC/»n OF PEAC»'
FNO OF RFACH
maximum
MINIPIuh
AVFRAGE
FLOg benthos source Rates cmg/ft/oayj reaeration rate chlor a/al6ae
(l/OAY) RATIO IU6/MG)
POO =
algae =
.00
.50
BOO = .00
NH3 = .00
P04 = .00
K2 = 1.782 RATIO = 50.00
-------
FINAL
R F P 0 R T
REACH NO. 6.0 RCH = REACH b
PIVFR riLES **o,0 TO 20.0
HYpKAULir p r r a f r T f R VALUES
PAPftf^FTff
UFA 11 OF REACH
FNO OF REACH
MINIhUH
FLOJ (CFS)
VELOCITY (FpC)
DEPTH € FT I
1 AO.000
3.6*55
5.253
an.000
2.770
3.06*
160.000
3.655
5*253
AO.000
2.770
3.466
136.000
3.425
0. 765
7 • W
ATE
a Q
IJAL
I T T
PAH
A M E
T E R
V A
L U F
S *
*
•
«
*
•
ElFM 1
2
3
0
5
6
7
A
9
10
11
12
13
10
15
16
17
18
19
20
no
7.36
7.40
7.0?
7 .OS
7.07
7.09
7.51
7.53
7.5S
7.57
7.59
7.61
7.63
7.65
7.68
7.7*
7.81
7.86
7.92
7.97
BOO
3.21
3.18
3.IS
3.12
3.10
3.07
3.00
3.01
2.9P
2.96
2.93
2.90
2.86
2.85
2.83
2.79
2.76
2.73
2.69
2*66
1.30
t .3**
l.3«*
1
1.33
1 .33
1.33
1.32
1.32
1 .32
1.31
1.31
1.31
1.30
1.30
1 ,30
1.29
1.29
1.29
1.26
rjo?
.17
.1A
.1*
. t A
. ie
.IB
.18
,1«
• 18
.16
.18
.10
.18
.18
.ie
.18
.16
.18
.10
• 16
r>l03
1.09
1 ,10
1.10
1 . 10
1.10
1.11
1.11
1.11
1.11
1.12
1.12
1.12
1.13
1.13
1.13
1 .13
1.10
1.10
1.1»
1.15
POO
1.39
1 .39
1. 9
1 .39
1.39
1.39
1.39
1.39
1.39
1.39
1.39
1.39
1.39
1.39
1.39
1.39
1.39
1.39
1.39
1.39
aigy
io.m
10.59
10 .*7
10.75
10.es
10.91
10.99
15.07
15.16
15.20
15.32
15.00
15.09
15.57
15.65
15.77
15.90
16.02
16.15
16.26
foli
«.6A
*.oe
*.10
7.92
7.TO
7.56
7,39
7.2?
7.06
6.90
6,70
6.59
6.00
6.32
6.13
5.95
5.77
5.60
5.*3
CONl
,>7.78
o7 • 78
27.7ft
~ 7.70
27. 7A
?7.7fl
?7.78
?7.7ft
?7. 7ft
27.78
?7. 78
27.78
27.78
27.78
27.78
27.78
27.78
27.78
27.78
27.76
* NOTE:
UNCTS ARE hG/L,
FXCEPT FOR
ANO
ALGAE AS CHL A IN U6/L
FECAL COLIFOPM AS 1000/100 ML
ANO CONSERVATIVE MINERAL
I = TDS IN
-------
TABLE 11-2
INPUT PARAMETERS FOR QUAL-II
mPVT PARAMETER
HAKS HAVE
IH SiU. IX iUAL
PESCRTVTWi
wins
RANGE OF
VALUES
VARIABLE
BY RhACH
TCy^t RATURB
PiriXDENT
REIJABILITY
ALPHAS
Ratio of chlorophyll a
to algae biomass ~
uq Chi-A
ng A
SO-100
Yes
No
Fair
ALPHA!
Fraction of aloae
biomass which Is N
mq N
mg A
O.OB-O.09
No
No
Good
ALPHA2
Fraction of algae
biomass which is P
mq P
mg A
0.012-0.015
No
No
Good
ALPHAS
0. production per unit
of algae growth
ng 0
mg A
1.4-1.8
No
No
Good
ALPHA4
Oj uptake per unit of
algae respired
mq 0
rig A
1.6-2 3
No
No
Fair
a»
ALPHAS
Oi uptake per unit of
NHi oxidation
(ng n
3.0-4.0
rio
No
Good
a.
ALPHA6
Oi uptake per unit of
NOi oxidation
mo 0
mg N
1.0-1.14
No
No
Good
"ma*
GRPHAX
Maximum specific growth
rate of algae
1
day
1.0-3.0
No
Yes
Good
P
RESPRT
Algae respiration rate
1
Bay
0.05-0.5
No
Yes
Fair
6,
CKNH3
Rate constant for biological
oxidation of NH,*f(Ot
1
(lay
0.1-0.5
Yes
Yes
Fair
B,
CKNP2
Rate constant for biological
oxidation of N02-^0,
1
3ay
0.5-2.0
Yes
Yes
Fair
o,
ALGSET
Local settling rate for
algae
ft
3ay
0.5-6.0
Yes
No
Fair
0,
SPH0S
Benthos source rate for
phosphorus
IW P
day-ft
*
Yes
No
Poor
o.
SNH3
Benthos source rate for NHt
mq N
day-ft
*
Yes
No
Poor
K,
CK1
Carbonaceous BOD decay rate
1
day
0.1-2.0
Yes
Yes
Poor
K,
CK2
Reaeratlon rate
1
day
0.0-100
Yes
Yes
Good
K,
CK3
Carbonaceous BOD sink rate
1
day
*
Yes
No
Poor
Kk
CK4
Benthos source rate for BOD
•
Yes
No
Poor
K|
CK5
Coltform die-off rate
i
3Sy
0.5-4.0
Yes
Yes
Fair
K,
CK6
Radionuclide sink rate
i
day
*
No
No
Poor
s
CKN
Nitrogen half-saturation
constant for algae growth
F
0.2-0.4
No
No
Fair to Good
*p
CKP
Phosphorus half-saturation
constant for algae growth
P
0.03-0.05
No
No
Fair to Good
------- |