EPA 660/2-73-029
December 1973
                        Environmental Protection Technology Series
  Mathematical  Model For Barged

  Ocean Disposal Of Wastes
33

\,
                                                UJ
                                                CD
                                  Office of Research and Development

                                  U.S. Environmental Protection Agency

                                  Washington, D.C. ZG460


-------
             RESEARCH REPORTING SERIES
Research  reports of the  Office  of   Research  and
Monitoring,   Environmental Protection Agency, have
been grouped  into five series.  These  five  broad
categories  were established to facilitate further
development   and  application   of    environmental
technology.    Elimination  of traditional grouping
was  consciously  planned  to  foster   technology
transfer   and  a  maximum  interface  in  related
fields.   The  five series are:

   1.  Environmental Health Effects  Research
   2.  Environmental Protection Technology
   3.  Ecological Research
   4,  Environmental Monitoring
   5.  Socioeconomic Environmental Studies

This report has  been assigned to the ENVIRONMENTAL
PROTECTION    TECHNOLOGY   series.     This   series
describes  research   performed  to  develop  and
demonstrate    instrumentation,    equipment    and
methodology   to   repair  or  prevent environmental
degradation from point and  non-point  sources  of
pollution.  This work provides the new or improved
technology  required for the control and treatment
of pollution  sources to meet environmental quality
standards.
                  EPA REVIEW NOTICE
This report has been reviewed by the Office of Research and
Development, EPA,  and approved for publication.  Approval does
not signify that the contents necessarily reflect the views
and policies of the Environmental Protection Agency, nor does
mention of trade names or commercial products constitute
endorsement or recommendation, for use.

-------
                     THE GUNTER LIBRARY
               GULF COAST RESEARCH LABORATORY
                  .OCEAN SPRINGS, MISSISSIPPI
                  MATHEMATICAL  MODEL FOR

             BARGED OCEAN DISPOSAL OF WASTES
                            by

             Robert C. Y. Koh and  Y.  C. Chang
                    Grant No.  16070FBY

                  Program Element  1BA025



                     Project Officer

             Walter F. Rittall,  Civil  Engineer
   Pacific  Northwest Environmental  Research Laboratory
          National  Environmental Research Center
                  Corvallis, Oregon  97330
                       Prepared  for
            OFFICE OF RESEARCH AND DEVELOPMENT
           U.S.  ENVIRONMENTAL PROTECTION AGENCY
                   Washington, D.C.  20460
For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 - Price $4.85

-------
                         ABSTRACT

    Theoretical and experimental studies were performed on the
dispersion and settling of barge disposed wastes in the ocean.   A
computer program based on the mathematical model has  also been
written.   Comparison of predictions with experiments, both in this
study and from previous investigations were found to be good.   Ex-
ample solutions based on the model for prototype situations  are also
presented.
    The waste is assumed to consist of two phases,  i)  a. solid phase
characterized by constituents with various densitites and fall velo-
cities, and ii) a liquid phase.  The methods of disposal considered
include i) discharge from a bottom opening hopper barge,  ii) pumped
discharge through a nozzle  under a moving barge-and iii) discharge
into the barge wake.  The effects of ambient horizontal currents, den-
sity stratification,  variation of diffusion coefficients are  incorporated
in the model.
    Three phases of dispersion are envisioned:  i) a convective  phase,
ii) a collapse phase and iii) a long term diffusion phase.  Transition
between phases  are accomplished automatically in the numerical
model.  In addition, the collapse phase may a) be replaced by or b)
include a  bottom, spreading  phase.  Under certain circumstances, the
collapse phase is bypassed.
    Every attempt has been made to minimize the amount of input re-
quired in  the use of the numerical model.  The integration steps and
grid sizes are all automatically chosen by the model.   Both detailed
printout and  graphic output  are incorporated.   The  solution may also
be terminated at the end of  any of the three  phases  of dispersion.
                                 ii

-------
                     TABLE  OF CONTENTS
                                                                    Pag<

1.    INTRODUCTION                                                 1
2.    CONCLUSIONS AND RECOMMENDATIONS                       3
3.    DEVELOPMENT OF THE MATHEMATICAL MODEL               6
      3.1   Properties of Waste Material                               6
      3.2   Ambient Conditions                                         9
           3,2.1  Ocean. Density Structure                             9
           3.2.2  Ocean Curreats and Turbulence                     11
           3.2.3  Horizontal Diffusion Coefficient -- K (or K )         14
                                                     x     z
           3.2.4  Vertical Diffusion Coefficient                       18
      3.3   Barge Operation 1 - Simple Over-Board Dumping           22
           3.3.1  Convective Descent                                 24
           3.3.2  Dynamic Collapse                                  31
           3.3.3  Bottom Encounter                                  39
      3.4   Barge Operation 2:  Jet Discharge                          45
           3.4.1  Jet Convection                                     47
           3.4.2  Dynamic Collapse                                  52
           3.4.3  Bottom Encounter                                  60
      3.5   Barge Operation 3 - Discharge Into Barge Wake             66
           3.5.1  Initial Mixing in the  Near Wake of a Barge           68
           3.5.2  Convective Descent                                 74
           3,5.3  Subsequent Motions                                 76
      3.6   Long Term Diffusion                                      77
           3.6.1  Formulation of the Theoretical Model               80
                  3.6.1.1   Flow Configuration and Basic  Equation     80
                  3.6.1.2   Method of Mpments                       85
           3.6.2  Diffusion Coefficients                               88
           3.6.3  Limitations of the Theoretical Model                91
                               iii

-------
      3.7  Numerical Procedure and Computer  Program               93
           3.7.1  Numerical Procedure                               93
           3.7.2  Computer Program                                195
                  3.7.2.1  Empirical Coefficients                   105
                  3.7.2.2  Transition between Different Phases      108
                            and Input of Solid Particles to Long
                            Term Diffusion
4.    EXPERIMENTAL INVESTIGATION                              115
      4.1  Objective and Scope of Experimental lavestigations          115
      4.2  Apparatus and Procedure                                  115
           4.2.1  Ambient Condition                                 Ufa
           4.2.2  Discharge Material                                115
           4,2.3  Procedure and Data Reduction                      117
      4.3  Results and Discussions                                   119
           4.3.1  Instantaneous Release of a  Three-Dimensional      119
                  Slug
           4.3.2  Continuous  Discharge from a Horizontal             143
                  Travelling Vertical Jet
           4.3.3  Instantaneous Release of Two-Dimensional          152
                  Puff
5.    COMPARISON OF EXPERIMENTS WITH THE                    153
      MATHEMATICAL MODEL
      5.1   Barge Operation 1                                         153
      5.2   Barge Operation 2                                         155
      5.3   Discussion                                               158

6.    EXAMPLE SOLUTIONS                                         159
      6. 1   Interpretation of the Results of Computations from          169
            the Mathematical Model for Long Term Diffusion
REFERENCES                                                       173
APPENDIX A
APPENDIX B
                                iv

-------
                          LIST OF FIGURES
Figure No.                      Title                     Page

3- 2« 1            Ocean Density Structure                   10
3- 2. 2            Horizontal Diffusion Coefficient as
                 a function of Horizontal Scale
                 (from Orlob  1959)                          15
3- 2. 3            Variation of  Transport Rates as
                 Functions of Richardson Number
                 R., (u1 :horizontal velocity
                 fluctuation,  t1  : temperature  fluctuation;
                 from Webster,  1964)                       17
3. 3. 1            Schematic Definition Sketch                23
3.3.2            Definition sketch                           35
3.4. 1            Definition sketch                           48
3.4.Z            Definition sketch                           54
3. 5. 1            Definition sketch (After
                 Naudascher  1968)                          69
3. 5. 2            Radial variation of mean-velocity
                 difference in the wake of a disk            71
3. 5. 3            Radial variation of mean-velocity
                 difference in the wake of a slender
                 spheroid                                   72
3. 5. 4            Axial variation of effective width for
                 various jet and wake flows                 73
3.6. 1            Coordinate System and Ambient
                 Conditions for  long term diffusion
                 model                                     81
3. 6. 2            Schematic for boundary conditions
                 for solids settling to the bed                84
3. 7. 1            Grid System  for Long Term Diffusion      94
3. 7. 2            Definition Sketch                         104
3. 7. 3            Flow  Chart for the Computer Program   106
3.7.4            Definition Sketch                         112
4. 3. 1. 1         Comparison  of experiment with          133
4.3. 1. 2          numerical model                         134

-------
Figure No.                     Title                     Page

4. 3. 1. 3a       Ambient density stratification            135
4. 3. 1. 3b-d     Comparison of experiment with
                numerical model                         136-138
4. 3. 1. 3e       Waste concentrations from
                numerical model                         139
4, 3. i. 4_       Comparison of experiment with
4.3.1.6        numerical model                         140-142
4. 3. 2. 1-       Comparison of experiment with
4.3.2.8        numerical model                         144-151
5.  1            Comparison of present theory
                with Fan's experiments                  157
                                  vi

-------
                         LIST OF TABLES
Table No.                       Title                      Page

3< -1              Great Lakes Dredging Spoil
                 Characteristics                          8
3« 2. 1            Summary of Values of Vertical
                 Diffusion Coefficient K in the Ocean      19
3- 2. 2            Summary of Formulas on Correlation
                 of Vertical Diffusion Coefficient K
                 with Richardson's Number R. (or y
                 Density Gradient e)         X            21
3« 6              Use of Moments to Describe
                 Dispersion                              89
4- la            Summary of Experimental Parameters   120
4. lb            Summary of Experimental Parameters   122
4. lc            Summary of Experimental Parameters   124
4. 2a            Density Stratification for Runs
                 M-S,  S-S and N-S                      125
4. 2b            Density Stratification for Runs
                 N.-S and S.-'S                           128
                  J        J
4. 2c            Density Stratification for Runs
                 M2-S  and S2-S                          130
6. 1              Summary of Parameters of Runs Made
                 for Barge Operation 1                  160
6. 2              Summary of Parameters of Runs Made
                 for Barge Operation 2                  162
6. 3              Summary of Parameters of Runs Made
                 for Barge Operation 3                  163
6. 4              Summary of Solid Waste Characteristics
                 used in Simulation Runs                 165
                                 vii

-------
                           LIST OF SYMBOLS
 drag
cfictn
CM
  f
 'l.Frictn
For simplicity, symbols of secondary importance which appear only
briefly in the text are omitted from the following list:
^                                 dissipation parameter based on variance
AT                                dissipation parameter based on size
g                                 buoyancy
                                  drag coefficients
                                  drag coefficient
                                  friction coefficient
                                  apparent mass coefficient
                                  k, 1^ moment of concentration distribution
                                  concentration of ijth solid
                                  drag force
                                  entrainment function
                                  buoyancy force
                                  frictional  force
                                  friction coefficients
                                  depth
                                  inertial force
                                  vor ticity
                                  horizontal diffusion coefficient
                                  vertical diffusion  coefficient
                                  vertical diffusion  coefficient specified
                                  horizontal diffusion coefficient
                                  length  scale
                                  momentum
 p..                               volume of ijth solid
 R.                               Richardson number
 S..                               volume of ijth solid settled out of convective
  ^                               element
 ~t}                                velocity vector
 U                                ambient velocity vector
 V                                mass
 W,                                surface concentration of floating solid
 Wo                                bottom concentration  of settled solid
E
F
F
F
H
I
K
K
K
Kyl,Ky2jKy3
 L
"M
                                    viii

-------
                                   minor axis of collapsing element
                                   major axis of collapsing element
                                   concentration
°                                  gravitational acceleration
                                   distance along jet or wake  axis
*•                                  time
u                                  velocity component in x-direction
ua                                 ambient velocity in x-direction
Uao                                ambient velocity in x-direction at surface
v                                  velocity component in y-direction
vl                                 tip velocity due to  collaps'e
V2                                 tip velocity due to  entrainment
w                                  velocity component in z-direction
wa                                 ambient velocity in z-direction
wao                               maximum ambient velocity in z-direction
ws                                 settling velocity of solid particles under
                                   consideration
wsij                               settling velocity of ijth solid
x                                  horizontal coordinate
Y                                  vertical coordinate
^kl, ^kZ, yk3, y^4                  y-positions where Ky changes values
Yw,yejyu                          y-positions where ua Wa specified
                                      ix

-------
                                  eatrainment coefficients
a? CX3 <*4                          used in convective and collapse phases
a  a                              absorbancy coefficients for solids  settling
  '                                to the bed or free surface
.y  y                              re-entrainment coefficients for solids settling
 1»                               to the bed or free surface
p..                               settling coefficient
ft   0_ 9                           angles  s makes with x, y,  z axes
 1 j L. f 3
,.   c                              angles  ambient current makes with x, z axes

Af                                = Pa(o)  - Pa
A

 p   /„)                            ambient density at y
 0  .                               density of i1-^1 solid
 c                                density gradient
   2                              x-variance  of diffusing pool
  x
 a 2                               z-variance  of diffusing pool
  z
                                   covariance  of diffusing pool
si
                                 density
 xz

-------
                       ACKNOWLEDGMENTS

    The support of the project by the Water Quality Office, Environ-
mental Protection Agency and the helpful discussions provided by
Dr. Donald Baumgartner and Mr, Walter Rittal,  the Grant Project
Officer,  is acknowledged with sincere thanks.
                                 xi

-------
                          SECTION I

                       INTRODUCTION

One method of disposal of concentrated wastes such as dredge spoil,
sewage sludge and industrial wastes is to barge it out to sea and
dump it overboard.  Several distinct schemes for the  discharge of
the waste cargo from the barge into the sea can be envisioned.  These
include:  a)  dumping the waste load from a bottom opening hopper
barge,  b) discharging it by pumping  the waste through nozzles at
the bottom of the  barge and c)  discharging it into the barge wake.
A more detailed review of current practice and typical waste char-
acteristics can be found in Clark, et al (197D.

As  a first step in the overall evaluation of the environmental impact
of this practise, it is necessary that the mechanics  of dispersion  of
the discharged waste be analysed.  The analysis must include the  de-
termination of the concentration of the waste material in suspension,
in solution and the distribution of disposed solids, either floating  at
the surface or settled on the ocean floor.

It is the  primary  purpose of the present study reported herein to
develop a mathematical model  for the  analysis  of dispersion  of
the  disposed waste in the ocean environment.   The model
is detailed in Section III of this report.  A computer program based
on  this model is also included  as Appendix  A  in this  report. Based
on  this model, the fate  of the waste can be determined given the waste
characteristics, the ocean environmental conditions and the  method
of disposal.

In addition, a series  of preliminary laboratory experiments have been
performed and reported in Section IV.  The primary purposes of
these experiments are the establishment of the adequacy of the mathema-
tical model and the verification of the important assumptions made.
Comparison of the experimental results with the predictions  based on
the mathematical model is presented in Section V.

-------
A sequence of example cases have been analysed based on the model
and the results are presented in Section VI and Appendix B.

-------
                            SECTION II

            CONCLUSIONS AND  RECOMMENDATIONS
In this study, a mathematical model has been developed to predict the
physical fate of wastes  discharged from barges.  A computer program
has also been written based on the mathematical model.  In addition,
a set of preliminary laboratory experiments were performed to verify
and supplement the mathematical model.  Based on the study,  the
following conclusions and recommendations are made.

1)    The general behavior of the discharged waste, with  or without
solid constituents  of the type  used in the experiments, behaves similarly.

2)    The comparison between the experimental results and the theo-
retical predictions is good.

3)    The mathematical model requires the knowledge of various empir-
ical coefficients.  A set of suggested values are built into the computer
program. However,  as better knowledge  becomes available through
experiments, these may be modified.  It is recommended that experiments
be performed in. the future to better define these coefficients.

4)    With the built in coefficients, the model is believed  adequate in
predicting the physical dispersion and  settling characteristics of typical
solid wastes over  the long run when a number of discharges are  made
even though  the detailed description for each  single discharge may not
be as accurately predicted until  the coefficients are better defined.

-------
5)    A set of representative runs has been made using the  numerical
model and presented in Section VI.  However,  due to the large number
of parameters, in no way can these runs be considered a parametric
study.  It is  recommended that a parametric study be performed to
obtain a complete description of the dependence of the result on the
parameters .

6)    While the basic mathematical model for  long term diffusion allows
the ambient conditions such as  the  diffusion coefficients, and currents
to be functions of time,  they are treated as only functions of the vertical
coordinate in the computer program.  It is recommended therefore that
the program be modified to allow them to be functions of time so that
the effects of temporal variations,  such as encountered in tidal currents,
can be obtained.

7)    The model as developed assumes that the waste will undergo a
phase of descent and that the gross density of  the waste is larger  than
the ambient.  While in practice this should always be the situation lest
the waste would undesirably spread on the surface, .the  model can and
should be modified to include this possibility.

8)     In the  model, after  the descent phase, the waste is directed by
the program to either a) collapse if the local ambient is stratified or
if the bottom is encountered, or b) go directly to the long term diffusion
phase; Due to the settling of solid particles,  the waste pool may reach
the end of the descent phase in a uniform ambient with or without first
passing through a density gradient. Depending on the latter condition,
going directly to long term diffusion may or may not be valid. The
user of the model must exercise some judgement as to  whether or not
to slightly modify the input density stratification to ensure a collapse
phase.

-------
9)    Based on the results presented in Section VI, the method of.
discharge in Barge Operation 1 results  in the most likelihood of the
waste  cloud reaching the bottom even if there exists a fairly strong
pycnocline.  In. Barge Operations Z and  3, a relatively weak pycnocline
is usually sufficient to arrest the vertical descent of the waste plume.
This phenomenon should be further explored in a detailed parametric
study since it has  practical implications.

10)   One of the main drawbacks  of the  method of moments used in this
study for the  long  term diffusion phase is  the fact that the ambient  con-
ditions cannot be functions of horizontal position.  While strictly speaking,
there is no way  to overcome this  without abandoning the advantages of the
method of moments,  physically, it may be argued that as long as the
characteristic horizontal scale  of the variation of ambient  conditions is
large compared with the size of the diffusing waste pool, horizontal
variation of the  ambient condition can be allowed to provide at least a
first approximation.   It is recommended that this capability be incor-
porated in the model.

-------
                          SECTION III

      DEVELOPMENT OF THE MATHEMATICAL MODEL
In this section,  a mathematical model will be developed for the pre-
diction of the dispersion and settling  of waste material discharged from
barges into the  ocean environment.  Only the physical aspects of the
phenomenon will be analysed since the chemical,  biological and eco-
logical aspects  are  beyond the scope  of the  present investigation.

In this investigation,  three different modes of operation for the dis-
posal of  waste from barges  are considered, namely  1) simple over
board dumping,  2)  discharge through a nozzle under the barge bottom
and  3)  discharge into the barge  wake.  In  spite of the apparently-
different methods of disposal, the waste material  is ultimately either
settled to the bottom or mixed into the ambient. The dispersion pro-
cess  in each of the three modes can be roughly divided into three
stages.  In the  early stage,  the phenomenon is dominated by the ef-
fects of the initial momentum and buoyancy of the  discharge.  In the
final stage  the waste material is  essentially dynamically passive and
subject to diffusion .due to the effects of ambient turbulence. In be-
tween,  there is a transition phase between  the two stages.  In the fol-
lowing, the properties of  the waste material and the ambient conditions
will first be discussed, then mathematical  models will be developed
for each barge  operation  and for  each stage of the mixing process,
finally a numerical solution to  the whole problem  and a computer pro-
gram will be presented.

3 . 1    Properties  of  Waste Material

According  to Clark et al. (1971), the most important waste materials
 presently being disposed  by barges are  dredge spoil, sewage sludge  and
 industrial wastes.  The dredge spoil can be organic or inorganic solids
 with or without contamination from fertilisers, chemicals, pesticides
 as well as  a  variety of industrial wastes.   Among the ecological effects
 of the discharge of dredge spoil  found are  i)  a temporary  reduction in

-------
fish abundance and dissolved oxygen, ii)  an increase in turbidity,  iii)
an increase in the level of pesticide concentration in fish and iv) an
increase in nutrients  in the water.  For the sewage  sludge, the  in-
herent public health hazard and the potential for build up  of organic
solids on the  ocean bottom are most  significant.  Industrial wastes
vary widely in their properties, depending on their particular origin.
In addition, there  are  other  waste materials which may be discharged
from barges such as radioactive wastes,  garbage and refuse.

Dredge spoil  constitutes by far  the largest percentage of  waste material
dumped from barges.  For  example, in 1968, it contributes  to 80%
of all such discharges.  The characteristics of dredge spoil  for the
Great Lakes region is summarized on Table 3-1.  It is observed that
most of the solid  particles are in the silt  (4U < d< 63 M. )   and sand
(63 JJ. 
-------
00
                                                        TABLE  3. 1




                                GREAT LAKES DREDGING  SPOIL CHARACTERISTICS*
Location
Buffalo
Calumet
Cleveland
Green Bay
Indiana
Rouge River
Sodus Bay
Toledo
aj Based on
Percent
Solids
37. 0
40.7
44. 9
43. 0
35.2
43.7
53. 1
Average
Density
gm/ml
1. 27
1. 33
1.36
1.37
1.23
1.28
1. 51
39.0 1.30
30 minute settling
Settling
Velocity
ft/hr a/
0.068
0. 144
0.201
0. 103
0. 150
0.290
0. 506
0.023
Average Percentag
Gravel Sand
d>2 mm 63u
-------
3 . 2    Ambient Conditions

Knowledge of pertinent aspects  of the ocean environment is ess.ential for
predicting the fate of waste material discharged from a barge into the
ocean environment.   These include the structures of ocean density,
ocean current and ocean turbulence.

 3.2.1  Ocean Density Structure

 The density of sea water depends upon temperature, salinity and pres-
 sure.  In the ocean,  the potential density is often inhomogeneous due
 to variations in temperature and salinity.  A typical ocean density
 profile is shown in Figure 3.2.1.  In general, the density of sea water
 increases with depth.  The ocean ijs then said to be stably density
 s tratified.

 The  surface layer in the ocean is  characterized by relatively low sa-
 linity (35°/oo) and high temperature (20°C).   The density is fairly
 uniform within this  so-called "mixed layer"  because of wiad induced
 agitation and vertical circulation induced by evaporation and temperature
 reversals  across the free surface.  The thickness  of the mixed layer
 varies depending on local wind and weather conditions but is typically
 of the order of a few hundred feet.

  The ocean  depths are characterized by higher salinity (37°/oo)  and
  lower temperature (2°C). It is relatively stagnant  and much less dis-
  turbed than the mixed layer.  In this deep layer, a moderate  or weak
  density gradient is ususally maintained. According to Defant  (1961),
  the  density gradient e[ = -  Up^/dy)]  ia the deep layer is roughly
  in the range of 10"  to 10"  /m.

-------
   WIND
EVAPORATION
         'HEAT
                   THERMOCLINE
                   DEEP LAYER
 OCEAN  FLOOR
V
                                                        To
                                SALINITY
                                PROFILE
          TEMPERATURE
             PROFILE
DENSITY
PROFILE
                         Figure 3.2.1

                   Ocean Density  Structure
                                10

-------
Measurements of ocean currents are made difficult  by instrumentation
limitations.  Data on the ocean currents are mostly limited to the sur-
face and in the surface mixed layer.  Current velocities here often
reach 1 fps or more.  Information on the current velocity in the thermo-
cline or  the deep layer is scare.  Recently, velocity measurements
carried out in the deep layers  showed the existence of velocities  of
the order of  0. 1 fps.

The distinction between ocean  current and turbulence is often not clear
until the mode of averaging is  specified.  In other words, the length
scales used in the averaging process must be  chosen based upon  the
scale of the interested phenomenon. Turbulence in the ocean may be
visualized as the coexistence of eddies of various sizes.  In the pres-
sent study eddies much greater in size than that of the diffusing pool
should be regarded as currents.  For a much  larger pool, these  ed-
dies should be considered as turbulence.

The detailed characteristics of turbulence in the  ocean is almost en-
tirely lacking.  The difficulty in instrumentation  for measuring tur-
bulence  in the ocean is tremendous.  Progress is beginning to be made
in direct measurement of ocean turbulence,

In analysing  ocean diffusion problems, the turbulent transport is often
represented  by semi-empirical diffusion coefficients defined as follows:
                             ., i (— i
                    K   =  - —- +D  .
                             ,,
                    K   =  - ?-±- +  D                        (3.Z.I)
                                12

-------
                    K   -  -        +  D
 where  K   and K   are the horizontal diffusion coefficients  K   is
         x       z                 	     	     	    y
 the vertical diffusion coefficient - u'C1,   - v'C1,  - w'C'  are tur-
 bulent transport .quantities in (x, y,  z) directions, C is the mean
 concentration of the transported material,  D ,  D  , D   are the
                          c                   x   y   z
 molecular diffusion coefficients.
Equation (3.2.1)  defines  the diffusion coefficients in such a way that
they represent the combined effects of turbulent and molecular trans-
port.  Generally, molecular transport is negligible in comparison with
J:he turbulent counterpart.  However, in some instances,  for example,
when vertical turbulence is completely suppressed by a strong density
stratification, the vertical transport may entirely be due to molecular
diffusion; i.e.,   K  = D .
                  Y    Y

The nature of these diffusion coefficients will now be disucssed.  Note
that the  values of these coefficients  were not usually determined by
measuring  turbulent transport  quantities as  given by Equation  (3.2.1)
but from observations on  some gross diffusion characteristics such as
the rate of  spread of dye patches.

The vertical diffusion coefficient  K   is usually several orders of mag-
                                   y
nitude smaller than the horizontal diffusion coefficients because of the
presence of stable density stratification and boundaries imposed by the
free surface and the bottom of  the ocean.  The nature of the vertical
diffusion coefficient is different from its horizontal counterpart and thus
they are discussed separately.
                                13

-------
3.Z.3.   Horizontal Diffusion Coefficient  -- K  (or K )
         	     x      z[

Most investigators concentrated on the investigation of horizontal tur-
bulent diffusion in the ocean.  Dye or other tracer  objects were-'re-
leased and the size  of the dispersing patch was observed as  it grew
with time.  Sometimes existing materials in the ocean were used as
tracers.  Horizontal diffusion coefficients were then derived based upon
diffusion models disregarding both curr'ent shear and vertical transport.
Extensive information in this respect is available in the literature.
[e.g., Stommel (1949), Richardson and Stommel (1948), Olson and
Ichiye (1959),  Munk, Ewing and Revelle (1949), Gunnerson ( I960), Ichiye
(1962), Okubo (1962), Bowden (1962), Joseph and Sendner (1962),
Foxworthy, Tibby and Barsom (1 966 ), and Snyder  (1967)].

The values  of horizontal diffusion  coefficients obtained in the ocean
                    2          82
ranged from  5x10 to 4 x 10   cm /sec.  Most values  were obtained
at the ocean surface.  The  values  of K  (or K ) were  found to increase
                                     x       z
with the size  of the  diffusing patch L  as  shown in Figure 3.2.2.  Al-
though data scatter  is significant,  the general trend follows a 4/3
power law:  i.e.,

              KX  = ALL4/3         lO^ft^  L< 108 ft          (3.2.2)

where AT   is a constant called dis sipation parameter (in fps system:
  2/3,   L                      2/3,
ft    /sec and in cgs system:  cm    /sec).

The 4/3  power relation has some theoretical batis according to
Kolmogoroff's similarity hypotheses  [Batchelor (1950)]. However,
Equation (3.2.2) is strictly empirical since its range extends well
 beyond the  limiting scale of the Kolmogoroff  inertial subrange.  The
 value of A   varied from  5 x 10"   to 1.5 x 10   ft    /sec.
                                14

-------
o
0)
    10"
    10'
    10'
1  io5
    10
UJ
o
u.
u.
LU
8
    io
U.
t
Q
t   10
O
N
            I      i      i     i      r
          O OR LOB, 5 = 0.00327, l" MESH
          • OR LOB, 5 = 0.00055, T'MESH
          O SVERDRUP
          C PROUDMAN
          O MUNK
          A PEARSON
          A HANZAWA
                                  Kx= 0.00015 L
                                   Kx=0.005 L
   A STOMMEL
   • "MOON , ET AL
\-  3 HARLEMAN
   a VON ARX
   X GUNNERSON
   + HIDAKA
   T PARKER-1961-^
.  SUMMARY
) BY PEARSON

  NRDL
  DEEP LAYER
 EXPERIMENT
    1968
                                            ^\f  V
                                              W  /
                                              '7   '
                                               LIMITS OF
                                        /  /*
                                          DRIFT CARDS

                                          RADIOACTIVITY
                                / ' /      IN BIKINI LAGOON
                                ' /M— I  MILE OUTFALL FIELD
                                  /—CURRENT-CROSS PAIR
                                               DATA, OLSON
                                              AND 1C HI YE _
                                 STREAMS
                                          G
                        O               \  R
                             GUNNERSON, <  M
                                I960    /  C
                                          D
                                        I
      OJ     I     10    10     10    10    10     10    10     10

      HORIZONTAL  SCALE OF DIFFUSION  PHENOMENON,L-ft.
       Figure 3.2.2  Horizontal Diffusion Coefficient
                      as a function of Horizontal Scale
                      (from  Orlob  1959)
                           15

-------
It is expected that as the depth increases and approaches the thermocline,
the horizontal turbulent transport might decrease.  Thus one might expect
AT  to decrease with increasing density gradient.  Munk, et. al.  (1949)
 J_i
found that in Bikini  Lagoon at 50 rn depth, the value of horizontal diffusion
coefficient was only one-third of that observed near the surface.  However,
in this case, an error might  have been introduced since horizontal  exchange
was calculated separately from the vertical exchange.  Snyder (1967)
found that at 9 ft depth the value of AT drops to one quarter  of the value
                                         2/3
at the free surface  (0. 00017 vs 0. 00065 ft    /sec). However,  the tracer
objects used in the  9 ft depth test  appear to respond somewhat  slowly to
the turbulence which might have caused such  fast drop-off.  Nevertheless
at present there  is no definitive determination of the variation  of hori-
zontal diffusion coefficient as a function of ambient density structure.

In general,  the horizontal transport is  expected to be less affected  by
the density  stratification than the  vertical transport.  Based upon
Webster's (1964) measurement in a uniform shear flow with constant
temperature gradient generated in a laboratory wind tunnel,  the hori-
zontal transport (-u't1), as shown in Figure 3. 2. 3a, was found to be
unaffected by the increase of the Richardson number, R., defined as:

                                                                (3.2. 3)
                                       >r
                                   \ dy

where  e is the  density gradient
        du
             is the velocity gradient
        dy
On the other hand, he found that the vertical transport (-v't1) decayed
rapidly with R.  as shown in Figure3. 2. 3b.  Therefore, at present,  a
constant value of AT  (independent of depth) may be used as a first approxi-
                   j_j
mation.  It must be reiterated that in the past determinations of these
horizontal diffusion .coefficients,  the effects of vertical exchange
                                  16

-------
                0.8

2
O

H 0.6
<
_J
UJ
£ 0.4
LL.
0
o
." 0.2
"^ o
1 1 1 . 1


O ^j
— 8 o ° - - "^
no o _ -
o _ - o
o o _ — °-o •" o —
~"°"°" o f 0°
— ° —
0 °
00
0
— —
1 1 1 1
                   0     0.2    0.4    O.G    0.8

                              Ri

                   a) HORIZONTAL  TRANSPORT
                0.8
             O
             UJ
             ir
             cr  0.4
             o
             o

             '-  0.2
1 1 1 1 I
o
o
0 o
O jp
o°!0 8 0
	 R^-PO
o
1,1,
1 1
—

—
_
O —0

, 1
                   0    0.2   0.4   0.6   0.8

                              Ri

                   b)  VERTICAL  TRANSPORT
Figure 3.2.3  Variation of Transport Rates as Functions
               of Richardson Number R. ,  (u1  horizontal

               velocity fluctuation,  v '  : vertical velocity
               fluctuation,  t1 : temperature fluctuation;
               from Webster.  1964)
                               17

-------
and current shears were neglected.   Thus the values of K _  obtained
include implicitly such effects.
x
It is interesting to note that if an experiment is performed at the sea
surface with floating tracer objects,  the objects stay at the surface and
are not subject to either  vertical exchange or current shear  effects.
For these experiments, effects  of shear and vertical exchange were
automatically excluded.  However, results from such experiments were
not much different from the other sets of data and is  in fact within the
range of scattering.  Therefore, it is very Likely that values derived in
previous experiments are close to the cases with zero shear effects.

3. 2. 4  Vertical Diffusion Coefficient

The vertical diffusion coefficient in  the ocean is generally much smaller
than the horizontal diffusion coefficient because of the suppression of
vertical transport by stable density  stratification.  Values of vertical
diffusion coefficients have  been obtained by numerous investigators under
various  ocean conditions.  These are summarized in Table 3.2. 1.  These
                      -22                       2
values ranged from  10   to 300 cm  /sec.  (Note that 1 cm /sec =  1. 1 x
  - 3  2
10  ft /sec. )  They  are much smaller than horizontal diffusion coeffi-
cients as discussed previously.  These K  values were  obtained by using
various  methods including  observations of salinity and temperature changes
or diffusion of tracer substances in  the ocean.  There is no apparent uni-
versal law  or values for  K .  Generally, the vertical diffusion coefficient
has its  maximum at  the surface and decreases as the depth increases.
This is as expected since the  surface layer is subjected to wind agitation
and convective instability.   That is,  in fact, the reason it  remains rela-
tively well  mixed. As pointed out by Koczy (I960), the vertical diffusion
coefficient  decreases as  it approaches the thermocline because of the
increase of density stratification.  The value of K  may decrease  close
                                         -3    2 y
to its molecular value  (for heat: 1.  5 x 10   cm /sec and for NaCl:  1. 3 x
                                  18

-------
                              TABLE 3.2.1

                        SUMMARY  OF VALUES
OF  VERTICAL DIFFUSION  COEFFICIENT K   IN  THE  OCEAN
                                                  y

Note: Molecular  diffusivity for heat:  1. 5 x 10"  cm  /sec (at 20°C,  1 atm)
                              salt:  1. 3 x 10"5 cm2/sec (at 20°C,  1 atm)
Current or oceanic
region
Philippine Trench
Algerian Coast
Mediterranean
California Current
Caspian Sea
Barents Sea
Bay of Biscay
Equatorial Atlantic
Ocean
Randesfjord
Schultz Grund
Kuroshio
Kuroshio
Southern Atlantic
Ocean
Arctic Ocean
Carribean Sea
South Atlantic Ocean
South Atlantic Ocean
West Atlantic Trough
(50°S to 10°N)
North Atlantic
Indian Ocean
Pacific Ocean
Tidal Channel
(Mersey estuary
and Irish Sea)
Near Cape Kennedy,
Florida
Bikini Lagoon
Coast of Denmark
California Coast


Depth of
layer (m)
5000-9788
0- 20
0- 28
0- 200
0- 100
0- 100
0- 50
0- 15
0- 25
0- 200
0- 400
400-1400
200- 500
500- 700
3000-Bottom
Near Bottom
.Near Bottom
Near Bottom
0- 20
(bottom)
Surface Layer
0- 50
(bottom)


4
Vertical Diffusion
Coefficient K
(cm2/sec) Y
Z. 0-3. 2
35-40
42
30-40
1-3
4-14
2-16
320
0. 1-0.4
0. 04-0. 74
30-80
7-90
5-10
20-50
2. 8
4
4
7-50
4-30
2-40
19 (in August)
1. 3 (in Summer
260
0. 05-1
0. 1-10
15-180
(at wind force
3-4)
Reference
Schmidt, 1917 >
Schmidt, 1917
Schmidt, 1917
McEwen, 1919
Stockman, 1936
Subov, 1938
Fjeldstad, 1933
Defant, 1932
Jacobsen, 1913
Jacobsen, 1913
Sverdrup-Staff, 1942
Suda, 1936
Defant, 1936
Sverdrup, 1933
Seiwell, 1938
Defant, 1936
Wattenberg, 1935 -'
Wust, 1955
Koczy, 1956
Bowden, 1965
(with R. from
0. 1 to * 2. 0)
Carter and Okubo,
• 1965
Munk, Ewing and
Revelle, 1949
Harremoes, 1967
Foxworthy, Tibby
and Barsom, 1966
1 ^
Stommel and
Woodcock, 1951 ***
   * As given by Defant,  1961
  ** As given by Bowden,  1962
 *** As given by Harremoes, 1967
**«* As given by Wiegel,  1964
                                     19

-------
10   cm /sec for sea water at 20°C and 1  atm)  if vertical turbulence
collapses completely.  The value of K  may increase somewhat from
the thermocline to the deep layer as indicated by Koczy (I960).  Varia-
tion of K  in the ocean remains to be investigated more extensively.
Present  day methods of determination are  based upon variation of the
vertical  spreading of a certain substance.  In the region of small vertical
diffusion coefficient, a long observation period is required to achieve a
moderate accuracy in determining  K .  In the future, direct measurement
of the vertical transport rate (-v'C1) may become feasible as instrumen-
tation improves.
The vertical transport decreases as R.  increases.  For R.= 0,
i.e. , no density gradient, the transport rate is at its maximum.  The
dependence of K  as a function of R.  is a basic problem in fluid
mechanics which should be fully investigated.  When such a relation is
known,  it can be used to estimate K   in the ocean if p  and du/dy
are known.
A summary of results of various investigators is  as  shown in Table
3.2.2.  These relationships all  show correct trend but are all  dif-
ferent in quantitative prediction. This  remains to be clarified  in the
future. Among these eight proposed equations, all have  right asympto-
tic behavior  for  R.=0, i.e.,  tr-° neutral case, except Kolesnikov et.
al. (1961)  and Harremoes (1967).  The  equations proposed by Kolesnikov
et, al. , and Harremoes are based upon the density gradient ( £  ) only.  The
equations  porposed by Holzman  (1943) and Yamamoto (1959) show  that
there is a  limiting value of R , or a critical Richardson number, at
                            i
which K  vanishes.  The values of the constant 8  in. these equations
have  to be determined before these equations can be  applies.  A major
difficulty is the lack of accurate relevant data on K .
                                                  y

 For further  discussion  on the diffusion coefficients,  the reader is
 referred to Koh and Fan (1969).
                                   20

-------
                               TABLE  3.2.2


                       SUMMARY  OF FORMULAS
   ON CORRELATION OF  VERTICAL DIFFUSION  COEFFICIENT  K
   WITH RICHARDSON'S NUMBER R. (OR DENSITY  GRADIENT e)  '
Note: K  0  : K  at R.  = 0, i.e., the neutral case 6 :   proportionality constant varies
                                                   from case to case
Rossby and Montgomery
    (1935)*
                               K
Rossby and Montgomery
    (1935)*
                               K
Holzman (1943)*
                               K
Yamamoto  (1959)*
                               K
Mamayev  (1958)*
                               K   =  K Q
                                y      y°
Munk and Anderson
    (1948)**
                               K   =  K
                                       yO  {   °   i'

                                        = 3.33  based upon data by Jacobsen (1913)
                                               and Taylor (1931)
Harremoes  (1968)
                               v      ,   ,n-3   -2/3   2,
                               K   =  5 x 10  xe     cm  /sec
                                y                 -i
                                      note:  g in m  ; approximate experimental
                                                -9          -5-1
                                      range 5x10  
-------
3. 3    Barge Operation 1 - Simple Over-Board Dumping

Perhaps  the  simplest way of discharging waste material into the ocean
from a barge is a simple over-board dumping.  After its release from
the barge, the  cloud of waste material will descend by virtue of its
momentum and buoyancy. As  the cloud moves downward it will push the
ambient  fluid around it, experience drag from the flow field,  while
entraining some of the  surrounding fluid.  During this process the solid
particles inside the cloud tend to settle out of it.  If the ambient is
density stratified,  the cloud could reach a neutrally buoyant position
and oscillate about it.   At this point the vertical motion is much reduced
and the effects of ambient density stratification become dominant with
the result that  the cloud tends  to collapse  vertically and spread out hori-
zontally  seeking a hydrostatic  equilibrium with the ambient fluid.

If the waste material consists of fluid only, then it can be treated as a
buoyant element (sometimes termed a thermal by meteorologists).
Buoyant  thermals have been studied in a still water tank by Scorer (1957).
Both Scorer  (1957) and Woodward (19&9) reported on the flow field in and
around a  thermal.  Their description can be  summarized schematically
for the barge operation 1 as shown in Figure 3.3.1.  The buoyant element
is seen to have the shape of a hemisphere reminiscent of a vortex ring.
The rise  of thermals in a stratified still environment has also been inves-
tigated by Morton, Taylor and Turner (1956) and buoyant vortex rings
have been investigated by Turner (1957 and i960).  Other related articles
on this subject include Richards (1961, 1965),  Turner (1963),  Hall (1962)
and  Turner (1966).  More recently Koh and Fan (1968) applied the thermal
model to the prediction of the radioactive  debris distribution subsequent
to a deep underwater nuclear explosion. Their model included both den-
sity stratification and shear current.  In the  same report, Koh and Fan
 (1968) further  analyzed the dynamic collapse of a neutrally buoyant cloud
in a quiescent  stratified ambient assuming no entrainment.
                                 22

-------
            U(t)
  y
Figure 3.3.1  Schematic Defiaition Sketch
                  23

-------
la this study, Koh and Fan's approach is further extended to apply to
a waste cloud with (or without) solid particles in it.  In the dynamic
collapse phase, their model is extended to include entrainment and
shear current.

3.3.1    Convective Descent

After being released from the barge, the  waste material mass will be
assumed to retain its identity  as an entity as it  convects.  Settling of
solid particles is  allowed as the situation occurs.  A mean linear size
and mean velocity will  be defined for the element as  b(t) and U(t) where
t is  the time.  Let p(fc)  be  the mean density of the element and p (y)
the ambient density.  Let U (y) be the ambient current,  assumed hori-
                           a
zontal and function only of vertical coordinate  y (See Figure 3.3.1).
The  characteristics of  the element are assumed similar at all stages of
its motion, and to retain the shape of a hemisphere.   The various solid
particles  inside will be assumed to have densities  p  .(i = l,2,...,n).
                                                   S L
Because of size distribution, the solids are further characterized by
their fall velocities w  . . , (i = l,2,...,n;j = l,2,...,m).   For each
                       J
specific density p . and  fall velocity w ..  the concentration is desig-
nated C
Then the equations governing the motion are:

Conservation of Mass:
       f  -  EP. -
 Conservation of Momentum:
                                 SSSijPs.U                    (3.3.2)
                                 24

-------
Conservation of Buoyancy:
 dt
                 .-..   .
                 f  .  .   ii  si

                    1  J
                                                               (3.3.3)
Conservation of Vorticity:
       dK

       dt
     =  -AG
(3.3.4)
Conservation of Solid Particles:
TT--
dt  ij
                   "
                   ij
                                                               (3.3.5)
where
       V
         2   3
       p jnb




       total mass in the cloud
       E    = 2nb
               -4   ->


               U - U
                           a
               entrainment in volume
S..   =  nb  |w  ..
                        C  ..(1 - B.
               settled solids in volume
M
                    "nb  U
               inomentuni
                                 25

-------
       2   3
    =  JTT b g(p - pa)
       buoyancy force
                   2, I:
 x
- u
                               (u - u )
       drag force in x-direction
D
       drag force in y-direction
D
      (w - w )
    ct        3.
       drag force in z-direction
B    =  f nb3(p  (o) - p)
       j      a
       buoyancy
                         26

-------
A    =  Cb2
              pa(o)


        coefficient for  vorticity dissipation
       dP
          a
        dy


       ambienb density gradient
       ambient density difference between that at the free
       surface and that at the position of the centroid
       of the cloud
       density difference between that at free surface and
       the solid particles
P.. =  |nb3C ..                                        (3.3.6)
 U    3      sij
       solid volume in the cloud

                         27

-------
'In the above equations,  a  is  the enbrainmenfc coefficient,  |3 . .  is the settling
            ~t
coefficient, j is a unit vector in the vertical direction,   C    is the  drag
coefficient, C   is the apparent mass coefficient, p  (o) is the density at
              m                                   a
the free  surface,   K  is the vorticity, and  C  is a vorticity dissipation
coefficient (equals  to 3,  according to Turner,  [I960]).

In the above formulation, the entrainment is assumed to be proportional to
the relative velocity between the element and the surrounding fluid and to
the area of the hemispherical  front.  The entrainment coefficient a should
in fact depend on the  properties  of the cloud and the ambient fluid and the
turbulence structure  inside and outside the  convective element,  a has been
experimentally determined to  be approximately 0.25 by Scorer (1957) and
Richards (1961).  Generally,  it is  found to be  constant for each single
experiment,  but tends to vary significantly  among experiments. In one
rare experiment,  Richards (1961)  even observed a t° change abruptly
from 0.15 up to 0.62 during convection.  In studying the motion of a  vortex
ring, Turner  (I960) found that

                         a  = - S_   ,                      (3.3.7)
by assuming similarity where C,was found to be 0. 16.  When waste mate
rial is dumped from a  barge, vorticity can be generated from the initial
momentum and buoyancy.  However,  as  the cloud descends the vorticity
becomes zero, Turner's assumption cannot hold.  Since a is expected to
approach a  found in  turbulent thermals,  it seems reasonable to postu-
late that the dependence of a on B  and  K  might be of the form
                    a =a0(tanhf	^	)  1                 (3.3.8)
                                28

-------
The  only justification for Equation (3.3.8) is  that it tends to the correct
limits.  Thus when  K is large,  a approaches Turner's assumption,
while when  K is small a approaches  Q.  •  However this expression
has not been verified by experiment and is presented here only as a
conjecture .

The  mechanism of settling  from a convecting cloud is another complicated
subject that has not  been thoroughly investigated.  As observed in the
related research of  buoyant thermals, the convective  cloud is often a weak
vortex, and the turbulence  inside the cloud is related  to the descending
velocity of the cloud.  From dimensional analysis,  it  may be argued that

       f (q..,  w ..,  v, b, Q  ., C  .., C   ) =  0
         ^ij'   sij'   '   ' Hsi    sij'   s

where q. . is mass rate  settling  out of the cloud and C  is .£, .<£,  C • • ,
the total concentration.  Thus
               WsijPsi

Equation (3 . 3 . 9) shows that the dimensionless mass rate of settling
is a. function of the ratio of the descending velocity and the fall
velocity of the  solid particle,  the concentration of each group and the
total concentration. At high concentrations,  hindered settling could
occur.  Now equation (3 . 3 . 9) can be  further simplified to the  following
form
       q.. =  w  .. nb2 p  . C .. (1 - «..)                       (3.3.10)
        1J     S1J       S1
where (3. . is defined to be a settling coefficient which  depends on
                                                                  c i

C  .. and C.  Although the functional form is not available at present,
                                29

-------
B. . is expected to be between 0 and 1, the extreme representing the two
cases of settling freely or no settling.  Discussion of several situations
will  help in the understanding of j3... If v is zero and the concentration
                                  J
is low,  the solid particles would settle  freely and'hence  R.. is 0. For
                                                         J
particles  with positive fall velocity, and for v>w  ..,  it can be visualized
that  even  if a solid particle  does settle  out of the cloud,  it will be over-
taken by the cloud,  i.e., no settling will occur and 8 • • - 1 •   However,
when the cloud is moving opposite to the direction of settling, i.e. ,  float-
ing particles  in a descending cloud 'or sinking particles in a rising cloud,
the criteria for 8- • are less obvious. If v is relatively large, the solids
are  envisioned to be trapped in the cloud by turbulence,  and if v is small
settling will occur.  The actual functional form of 8 • • must be determined
by future  experimental investigation.  In the present model,  8-- is assumed

                   if  I v/w .. I <; 1
                       1     sij i
                o  if  l^siji^1
where 8   is a constant which is assumed known.

The drag coefficient, C_^ , is in general a function of Reynolds number,
hence it depends on  b  and lU - U  I  . In .the convective phase  C-.- is chosen
to be 0.5.  C^_,  the apparent .mass coefficient should be  in the range
to be of the  form
In Equations (3. 3. 4) the  decay of vorticity is assumed to depend on the
ambient stratification only.  In fact, the vorticity decay is likely to be much
more complicated and the formulation is therefore subject to change when
better knowledge is acquired.
                                30

-------
3.3.2    Dynamic Collapse

In undergoing the convecfcive  descent phase,  the waste  material cloud
usually gains a significant amount of mass and momentum through
entrainment,  particularly if the ambient is moving.  As the cloud comes
close to a neutrally buoyant position, it may have a horizontal velo-
city close to that of the ambient. At the same time, the  concentration
of the waste  material would be greatly reduced while the vorticity,
having been dissipated through the action of ambient stratification and
turbulence would become insignificant.  At this point the further motion
and deformation  of the cloud  is still governed mostly by its momentum,
buoyancy and ambient density stratification.   The momentum  tends to
overshoot the convective element beyond the  neutrally buoyant position,
while the buoyancy force tends to bring the convective  element back to
the neutrally buoyant position.  The combination of these two  forces
tends to make the cloud  oscillate vertically.   While the gross  vertical
motion  of che cloud is largely suppressed, the cloud tends  to collapse
vertically and spread out horizontally seeking a hydrostatic equilibrium
with the ambient fluid due to  the density stratification in the latter.  The
conservation equations used in the convective descent phase still hold.
However, as the cloud is collapsing more dimensions are needed to des-
cribe the phenomenon fully.  If the  cross  section of the cloud is assumed
to retain an ellipsoidal shape, it could be characterized by its major and
minor axes  b and a.

Neglecting vorticity, the conservation equations read:

Conservation of Mass
         dV    _   -.-^     ...._.„
         •dt    '   Epa-SijPsi                             (3.3.11)
                             31

-------
Conservation of Momentum
         d.M

         dt '
                   F j  - D + Ep U  -• EES.. p  .  U
                     J          a a  . .   ij r si
                                    i J   J
(3.3. 12)
Conservation of Buoyancy
         dB

         dt
                   EAr - XIS..A  .
                      f   .  .  ij  si
                         i  J   J
(3.3. 13)
Conservation of Particles
         dP. .
            11
          dt
                                                               (3.3. 14)
where    V
                     4   ,
                   p -T-TT ab
                   total mass inside the cloud
                   2iri b
                               a2b
                                                               x ^
                                                                c dt ,
                   entrainment in volume
         S..
                     b   w  . .
                   settled solid in volume
         M
                   i-nomentum
         F
                   4    2
                    TTab g(p -
                   buoyancy force
                                  32

-------
D
              U - U
                      (u - u J
          drag force in x-direction
D
 y
2PaCD
             U - U
          drag force in y-direction
D
•=• P  C   nab
2  a  D0
             U - U
(w - w )
          drag force in z-direction
B
        p  (o)

         a
              -  P
          buoyancy
          p  (o) - p
            3.      3.
          ambie.nt density difference between that at the free

          surface and that  at the position of the  centroid of

          the cloud
 si
          P  (o) -  p  .
           a       si
          density difference  between the ambient at the free

          surface and solid particles
P..
  U
3
         ..
        sij
          solid volume in the  cloud
                                            [3.3.15)
                        33

-------
Most of the symbols are as defined before.  Q,  is introduced in the
formulation to take into account the entrainment due to the collapse.
The above equations cannot be solved unless pertinent information on
the cloud is further introduced as follows.

In studying the collapse of the cloud,  it will first be assumed that the
cloud always retains an ellipsoidal  shape  characterized by its major
and minor axes b and  a.  Choosing coordinate axes with origin fixed
on the  centroid of the cloud, the  shape of  the cloud may be represented
bv
                  ,2      ,2
                                                              (3.3.16)
where a and  b  are functions of time.  In this formulation, the cloud is
assumed to be symmetrical.  It should be noted that in practice a sym-
metrical cloud can only obtain if there is no relative velocity between
the cloud and  the ambient fluid.  Following the convective descent,  the
velocity difference between the cloud and the ambient is expected to be
very small, and its influence on the  shape may be assumed insignificant.

The ambient density distribution is

                 p  (y)  =  (p  + Ap)(  1 -e(y)y')                 (3.3.17)
                   a              \          /

where p is the average  density inside the cloud,  Ap is the density dif-
ference between the cloud and the  ambient at  y1 = 0.  (Note that Ap  can
be  positive or negative.) e(y) is the density gradient at y1 = 0.  Note
that p, Apande(y) are continuously changing as the cloud moves in an
arbitrary density  stratified ambient. The cloud and ambient condition
are shown in  Figures 3.3.2a and 3.3.2b.
                                34

-------
                                                                     -i-\-;
                                                                      I?
(a) Configuration of the cloud    (b) Ambient conditions         (c) Slice segment
                        Figure 3.3.2  Definition sketch

-------
As the vertical motion of the cloud slows down, the entrained ambient
fluid might also make the density inside stratified.  It is therefore fur-
ther assumed that the density distribution inside the cloud is

           P*(y',  r',  t)  =  p/l -^ e(y)y'j                     (3.3.18)

where o < y< 1 is a distribution  constant to  be determined from actual
density distribution inside the region.  If the  density distribution inside
the region is  the same as the environment,  i.e.,  y = 1>  there will be no
spreading.  Otherwise, v <  1 > an<^ the cloud will collapse to seek a hydro-
static equilibrium.
               a
The quantity  Y —  represents a much simplified approximation to the
                3,
ratio of the density gradients inside and outside the cloud.   This |hould
be further examine
possibly modified.
be further examined experimentally in the future and the term y —
                                                               ct
Since it is assumed that the cloud is always symmetric,  the collapse
of the cloud can be determined by studying a slice of a segment as  shown
in Figure 3.3.2c.  Taking this slice as a free  body it is  seen that there
are  two categories of forces on the slice:  a) the driving force  arising
from the  difference in the density structure, and b) the resistive forces
consisting of  i) the local inertia force of the segment,  ii) the form drag
of the collapsing segment and iii) the skin friction of the collapsing region.

In computing  the driving force,  one is referred to Figure 3.3.2.  The
pressures at  B and B1,  C  and C1 should be equal respectively.  Assum-
ing hydrostatic pressures,  the pressure distribution in the ambient can
be calculated.  The pressure inside depends on Ap» the acceleration of
the  convective element and  the parameter y.   In the present study, Ap is
always very small and the acceleration effects are generally averaged out
as the cloud oscillates about its neutrally buoyant position,  thus the
                                 36

-------
pressure distribution inside the cloud is approximately hydrostatic.  Then
the horizontal pressure force  acting on the slice is
                               T5	d8                  (3.3.19)

where d0  is the angle of the segment at y1  =0.

In computing the resistive forces, it is assumed that che horizontal
velocities of elements inside the  slice are  related to the
distance r1  from the centroid of  the cloud, and the velocity of hori-
zontal deformation is characterized by the velocity of the centroid  of
the slice segment which is  linearly related to the major axis of  the
ellipsoid  b.

In collapsing, the horizontal spread and entrainment occur simultaneously,
and the velocity of the centroid of the slice can be divided into two  parts;
one due to entrainment and the other due to collapse.  Entrainment adds
mass to the slice segment and it  may entrain  momentum into the cloud
if the ambient is moving; however, the entrained momentum is already
assumed to  contribute to the momentum of the cloud as a whole as  shown
in Equation (3 . 3. 12)and the  cloud  retains a  symmetric shape.  So when
entrainment is considered for the slice, although the centroid of the
slice is moving,  there is no dynamics  involved in this velocity.  Hence,
we will designate two velocities v, and  v?  representing the velocity of
the segment tip for collapse and entrainment respectively and

                  db
                  dt  "  Vl   V2                                (3.3.20)

Then the local horizontal inertia  force is

                                v, }dQ                         (3.3.21)
                                37

-------
The form and skin friction drags are
          Dd
                            2
          F:, "=  C. .  .  p    - v, de                             (3.3.Z3)
            f      fnctn^a Za   1 ^

where C,    and'C.  .    are numerical coefficients similar to that of
        drag       frictn
the drag coefficient for a wedge and the kinematic viscosity of the fluid.
The equation of motion in the horizontal direction for the slice is
              ~  FD " Dd  " Ff                                 (3.3.24)
In Equation (3. 3. 20),  the tip velocity is related to the  velocity induced by
entrainment v-> .  However, in Equation (3.3. 11),  only the gross mass
entrained into  the cloud is  considered.  In the dynamic collapse phase,
as the cloud collapses horizontally, it can be visualized that the entrained
mass is mostly added to the  tip of the cloud,  hence equation (3.3. 11)  can
be rewritten to specify how entrainment adds to the growth of  b.  That is
                EP  _    Is...p .
                   a   i  j   ij Msi
                	gj	J	                              (3.3.2b)
                     .P --Ti ab
Equation (3 . 3 . 25) states that in each step of entrainment the contribution
of the entrainment to the growth of b  is approximated by holding p and
a constant.

Equations (3. 3. 11--25) constitute  a set of equations readily solvable.
for the pertinent-parameters a,, b, U, P and C; . . given a set of initial
                                              S1J
conditions that ca".-n be obtained-from  the solution of the convective
descent phase.
                                 38

-------
3. 3. 3     Bottom Encounter

If the density stratification is not strong enough the waste cloud is
ultimately going to hit the bottom and spread out at the bed while the
settling of the  solid particles continues.  In this Section, a mathematical
model will be developed for this  possibility.  The model used will be
essentially an  extension of the model for dynamic collapse.

When the cloud hits the ocean bottom, it is assumed that it keeps the
shape  of half an ellipsoid as  shown in the upper half of Figure  3. 3. 2a.
The equation for its shape is
                             '2     r'2
                              —  +—  =  1                    (3.3.26)
Again the cloud is assumed to remain symmetric although velocity dif-
ference between the cloud, the bed and the  ambient is  allowed.  The
ambient density distribution is

                      ?Jy)  =   (p+Ap)(l- e(y)y')                  (3.3.27)
                       3,
where  e(y) is the density gradient at the centroid of the half ellipsoid.

The density inside the cloud is assumed to  be
                                   /    Ya       \
                   p'V.r'.t)  =   ,- 1 - —-- e(y)y')              (3.3.28)
                                   \     a       /

The situation is very close to  that of dynamic collapse; the vertical
motion is suppressed by the bottom,  and the cloud is mainly undergoing
only horizontal spreading.  The equations used in dynamic collapse can
essentially be  used again.  However, two more forces, the reaction force
and friction force at the bed, must be incorporated into the equations.
The equations  are
                                 39

-------
Conservation of Mass





         ~ =  EC  - EE S..c  .                                 (3.3.29)
         dt     -a  .  .   11 si
                     i  J    J



Conservation of Momentum


         ~»


            =  Ff-S+E; ft- -r.^rs..:  .tf-F^                 (3.3.30)
                J       • a a   .  ..  ij • si      F
Conservation of Buoyancy




        dB _  „ A    	q  "                                     n  3 31)
        ^T^ -JCrf--i_;_o......                                   ij.j.ji;
        dt        f   .  .   ij  s]t
                    1  J



Conservation of Particles



        dP..

        •~3-  = - Sr                                            (3.3. 32)





Dynamic Equation for a Slice of a Half Ellipsoid





        I =  F.-Dj-F.-FJ:                                    (3.3.33)
              Q    a   f    DI




The Tip Velocity of  the Segment




        db      ,                                                /->  i i * \
        -rr =  v,+v                                              (3. 3. 34)
        at      i  c
Contribution of Ei>tra|nment to tne Growth of b





                                                               (3.3.35)
               E :  - i T S. . ;• :
                 a   .     i"s
                                 4,0

-------
                 2
where  V   -   p-r
        E
                tobal mass  in Lhe cloud
                       Vb2-a2
                  *•  ,,
                   c dt
                entrainment in volume
        S..  -   nb2 |w  .. 1C  ..(1 -  5 ..)
         13          '  sij   sij      ij
                settled particles in volume
        -»            2     2~*
        M   =   C, , -— nab U
                  M  3
                momentum
                buoyancy force
        D   =   4- P  CT- nab
         x      4 ^a  D     '     a '
                drag  force in x-direction
        D   -    0
         y
                drag force in y-direction
                                 41

-------
D    =    -p  C   nab
 z       4 a   D,
             U-U
(w- w
         drag force in z-direction
            2    2
           u  + w
V

resultant horizontal velocity
F_  =    F, Frictn uAy
  r x       D
         friction force in x-direction
         + rrb2 Z I |w ..I;  . C ..(l-g..
                   1  sij ' • si  sij    pij
         reaction force at bed
         FbFrictnw/'
         friction force in z-direction
         2    2
B    =   -^nab ( p  (o) - p)
         J       3.
         buoyancy
         p (o)  - p
          cL      d.
         ambient density difference between that at the free

         surface and that at the position of the cloud centroid
/,  .  =   P  (o) - P  .
  si       a       si
         density difference between the ambient at the free

         surface and the solid particles
                          42

-------
                       sij

                solid volume in the  cloud
                inertial force of a slice  segment of a quadrant
                ellipsoidal cloud

                driving force of the slice segment


       D^   =    C,    P ¥" KKde
         d        drag a 4  '  1 '  1

                form drag of the slice segment

                           2
       F,   =    Cc .  .  p  — v.d8
         f        frictnKa2a  1

                skin friction of the slice segment
       Fbf  =    FbFFde/2-                             (3-3.36)
                friction force at the bed


In addition to the Equations (3.3.29-35), one more equation is  needed for
closure.  That is

                     av
        v    =   0.75-T-1                                       (3.3.37)
                      b


where  v is the vertical velocity of the centroid of a half ellipsoid.
                                43

-------
Equation (3.3.37) is obtained by assuming zero entrainment, and the
vertical deformation is readily obtained from horizontal deformation by
continuity.  Note that in computing the friction forces at the bed, reac-
tion force times the friction coefficients F, and F      is used.
                                          1      rictn

Now Equations (3.3.29-37) are readily solvable given initial conditions
that can be either obtained from the end of convective descent or from
dynamic collapse.  The solution and the links between these three phases
will be deferred to Section 3.7.
                                   44

-------
3 . 4    Barge Operation Z:  Jet Discharge

A large number of barges discharge the waste material through nozzles
at  the bottom of the brrge,  either by gravity or  by pumping, while the
barge is  cruising  at a certain speed.  Near the nozzle, the flow phenom-
enon is that of a sinking jet in a cross  current.  The jet entrains ambient
fluid and momentum while also experiencing a drag force from the ambi-
ent due to the pressure difference between the upstream and downstream
faces of the jet.  As a result, the jet grows in size and bends over in the
direction of the ambient current. The waste material is diluted through
entrainment  of the ambient  fluid and solid particles settle  out of the jet
as  the situation allows.  As the jet goes further  downstream, it becomes
less active and the influence from the ambient density gradient becomes
dominant, and the jet fluid will  spread out horizontally seeking a neu-
trally buoyant position.

The mixing  phenomenon in buoyant jets and plumes has been studied by
numerous investigators.  Morton,  Taylor and Turner (1956) applied an
integral method to the problem  of a buoyant plume  discharged  from a
point source into a linearly stratified ambient fluid.  Brooks and Koh
(1965) analyzed the two dimensional buoyant jet  problem with applica-
tion to the design  of submerged ocean outfall diffusers.  Fan (1967)
examined the case of a buoyant  jet discharging at an arbitrary  angle
into a linearly density stratified quiescent ambient.  Fan also analyzed
the case  of a buoyant jet in  a uniform cross current.  In the Latter case,
the ambient is not density stratified.  In treating the problem of a buoyant
jet  in a uniform cross current,  Fan assumed an entrainment mechanism
based upon the vector difference between the characteristic jet velocity
and the ambient velocity and the existence of a gross drag  term for the
unbalanced pressure field on the sides  of the jet flow.  Fan found that the
drag coefficient needed to be varied from 0. 1  up to 1.7 in fitting the predic-
tions from his mathematical model  to experimental data.  Abraham (1970)
                                45

-------
examined the same  problem of a buoyant jet in a uniform cross current
employing a  similar approach except that the entrainment was assumed
to consist of two parts:  one due to the momentum jet and the other  due
to the buoyant plume.   Abraham was successful in fitting all of Fan's
data with the  mathematical model with a  single value for  the drag coef-
ficient .

Singamsetti (1966) investigated  the diffusion of sediment in  a  submerged
jet.  The jet containing  sand was injecting vertically downward into a
quiescent ambient.  Singamsetti found that the concentration distribution
in the jet is approximately normal and the mass diffusion is slightly
faster than the diffusion of momentum.

In this investigation, Abraham and Fan's approach will be extended to
study a  sinking jet containing  sediments in a density stratified non-
uniform two  dimensional cross  stream for the flow pattern  near the
nozzle.   As the jet goes further downstream,  since mass and momentum
of the ambient fluid are continuously entrained into the jet,  it will move
more or less at the velocity of the ambient,  and the  ambient density
gradient effects will become dominant so that  horizontal spreading
similar to that treated in Section 3.3.2  for Barge Operation 1 will
occur.  Collapse of a  two dimensional wake  in a density stratified still
ambient has  been studied experimentally by  Wu (1965) and analytically
by Koh  (1967) assuming no entrainment.  In  the analysis of  dynamic
collapse of the jet detailed in  the following,  Koh's basic approach
extended to incorporate entrainment and  cross current will be used.
                                46

-------
3.4.1    Jet Convection

In this section,  equations for a sinking jet in a stratified cross current
will be formulated.  Figure 3.4. 1 shows a round jet discharging at a
velocity into a cross current.   It is assumed that the jet cross section
remains  circular.  Top-hat velocity, density and concentration of
waste material distribution are also assumed.   Then the pertinent
parameters for  the jet are  b, U,  p and C  .. which are the radius,
velocity, density and concentration of  waste material respectively.
The ambient density stratification is designated p  (y) and the  cross
                                                ct
current U  (y).
         3.

As  shown in Figure  3.4. 1,  the  jet can flow in any direction depending
on its initial momentum and ambient current.  In the figure,  s is  in
the direction of  the jet trajectory; 9 . ,  Q~ and 0 ., are the angles between
s and the x, y and z axes;  6, and ft,, are the directions  of the  resultant
ambient current at position s  with  respect to the x and  z axes respec-
tively; and Y i-s  the angle between  s and the resultant ambient current.

Physically, the  flow is very similar to that in a momentum jet close to
the nozzle.   However, as the jet bends  over towards the  direction  of the
ambient current, the rise or fall of the plume is more like a two dimen-
sional thermal.  In this study,  it is assumed', following  Abraham (1970),
that the entrainment mechanism depends on the  local mean flow and con-
sists  of two parts as  follows.

              E   = 2TTba.(U-U cosy)                        (3.4.1)
                m          la

              E^  =  2TTba7U  siny                            (3.4.2)
                T         £  a

Equation (3.4. 1) states that the entrainment due to  a momentum jet is
proportional to the perimeter of the jet and the velocity difference
                               47

-------
                     (a) Jet configuration
(b) Ambient density profile     (c)  Ambient velocity and drag forces




                Figure 3,4.1  Definition sketch
                               48

-------
between the jet and the ambient in the direction of the jet travel.
Equation (3.4.2) states that the entrainment due to a two-dimensional
thermal is proportional to the perimeter of the jet and the velocity of
the thermal.  Note that Equation (3.4.2) is formulated by visualizing
that the plume is essentially moving with the ambient velocity with a
rising or  descending velocity  U siny .  In  order to adequately take
                               3.
into account these two types of entrainment mechanisms, it is further
assumed that  the entrainment  E  is given by

              E   =   E  +E  sin8->                          (3.4.3)
                        lil.    -L     C*

Thus,  the total entrainment is equal to the  sum of the entrainment by
momentum jet and the entrainment by a two-dimensional thermal modi-
fied by sinQ?.  sin9?  is arbitrarily chosen to diminish the  thermal
type of entrainment when the jet is close to vertical.

In the  presence  of a cross current, a force arises due to the  unbalanced
pressure  field at the upstream and downstream faces  of the jet.  A gross
drag force will be introduced and assumed  to be perpendicular to the
trajectory of the jet.  The force is

                           p  (U  siny)
              F   =   C-J     -  2b                      (3.4.4)
where  C  is the drag coefficient.  The drag force components in x,  y
                        shown to be
                       -cosy cos 9, + cos&
                                 *
and  z directions can be shown to be
              p   -   - -
                Dx            siny          D
                       -cos'r cos 87
              p   -   - £. p
                Dy         siny     r D
                Dz            siny           D

                                49
                                         .,
                                          F                   (3.4.4a)

-------
The  settling of solid particles from a jet is a most complicated phenom-
enon.  The  s<>lid particles in the jet tend to settle out by gravity, however,
they are also kept in the main stream by the turbulence in the jet.   In the
formulation  of the settling,  a settling coefficient  a., will be introduced
just  as  in Section 3.3.1.   Then the term for settling of the solid becomes

         S..    =   2b  w ..  I C  ..(1 - 8..)                       (3.4.5)
          ij             sij  i  sij     ij

Based on the mechanisms of entrainment, drag and settling represented
by Equations (3.4. 1-5), the conservation equations become
Conservation of Mass
               _   F    TVqo
         ^—    —   J-/ P  - Jir .*» O . . H  .                             / o  .  / \
         ds            a .  .   ij  si                             (3.4.6)

Conservation of Momentum
                                        si-D               (3.4.7)

 Conservation of Buoyancy
                      f-      ..   .                             ,, . Q»
         ds           f   . .   ij  si                             (3.4.8)
Conservation of Particles
         dP..
          ds   "   ""ij                                        (3.4.9)
11       -S..
where
         V
                   flux of mas s
                                50

-------
         "*           2   ~*
         M     =    rrb p UU
                   flux of momentum





                   JT b g ( P - pa)




                   buoyancy force per unit length
        if     =    Pa(o)-p
                    d.     d.
                   density difference between free surface and

                   position s
         B     =    (p (o)- p)nb2 U
                     3,
                   flux of buoyancy
                   density difference between ambient free surface

                   and solid particle
                  rrb2UC ..
                   f lux of solid particles                      (3.4.10)
Together with the geornetric relationship





        cos  fl  +cos 82+cos6=l                            (3.4.11)





Equations (3.4.6-9) and Equation (3.4. 11)  constitute seven-simultaneous


ordinary differential equations for seven unknowns.
                                51

-------
The equations can be solved with the initial conditions

         U(o) = UQ,   b(o) = b0,  p(o)=p0,  Cg..(o) = (

         8l(o)=8lo'   e2(o)=82o'   83(o)=93o                 (3.4.12)

The trajectory of the jet center line can be obtained through the follow-
ing equations
         dx      Q
         -T— = COS8,
         ds      1
            = COS87
         ds       2
         dz _    Q
         ds ~ C°S 3                                             (3.4. 13)
Note that the formulation above is slightly different from that of Fan and
Abraham. In particular,  top-hat distributions are assumed for density
deficiency, velocity and solid concentrations.  However, since the inte-
gral approach integrates the distribution over  the jet cross section,
there is no essential difference in the resulting equations  except for
some modifications on the coefficients which are normally obtained
through experiments.
3.4.2    Dynamic Collapse

When the jet plume is far downstream from the nozzle, it no longer
behaves like a jet.  Similar to  the dynamic collapse phase of Barge
Operation 1, the jet-plume tends to collapse vertically arid spread out
horizontally seeking a hydrostatic equilibrium in the ambient density
                                 52

-------
 gradient.  In this section,  a mathematical formulation is  derived
 accounting for both the convection and the collapse  of the  waste mate-
 rial plume similar  to that in Section 3.3.2.

 Far downstream from the nozzle, the jet is  expected to be moving
 approximately with the same velocity as the ambient, and the plume
 would be more like a two-dimensional thermal rather than a jet.  In
 analogy with the arguments presented in Section 3.3.2,  the cross
 section of the two-dimensional thermal will  be assumed to have the
 shape of an  ellipse.

                ,2      ,2
              •2=-   + •%-  =  1                                  (3.4.  14)
               a*     b^

 where  x1 and y' are coordinates with the origin fixed on the centroid
 of the thermal,  a and b are minor and major  axes  of the  ellipse and
 are functions of time.  Again, the ambient density distribution is

               pa(y)  = (p+ApMl - e(y)y')                      (3.3.15)

 and the density distribution inside the cloud  is

                                  Y a
               p*(y',x',t)  =  p'l - -^-eWy' i                  (3.3.16)

 The  configuration of the two-dimensional thermal is shown in Figure
 3.4.2.

 By considering a two-dimensional thermal with a length  L, the conserva-
 tion equations are:

Conservation of Mass
        —    =  E      S2
        dt     ~    pa "  1 i
                                 53

-------
2   ,2
                                      UQ
                                                      y
                                                      I
                                                                  (d)
        Figure 3.4.2  Definition sketch

-------
Conservation of Momentum



         ->
        .-) Tyf      _».     ->        -»    .. „        _»

        ~-    = F.   -  D + E o   U  - *? S  p.U               (3.4.18)
        dt          j           pa  a   i j  ij Hsi




Conservation of Buoyancy
         ^    =  EAf - *4 S..A  -                               (3.4.19)
         dt              i j  ij si




Conservation of Particles





         dP..

         —rfL  =  -  S..                                          (3.4.20)
          dt         11
 where
          V     =    p rr abL





                    total mass in the buoyant element
                       V  2 ,, 2      .»   ^

          E     =    2n ^a :"b  L(a.,|u- U ,  ,-.
                           dt       J      cl    TC
                    total entrainment in volume
S..    =   2bJL
                         w  ..1C ..(1 -8..)
                          sij|  sij     ij
                    settled solids in volume
          M     =    CMprrabLU
                    momentum
                    TTabL(p - p  )g
                              cL
                    buoyancy force



                                  55

-------
D     =   ic^  2a L sin cop  I U - U  I (u - u )
 x        2  D            a i     a '     a


          drag  force in x-direction


D     =   yCp,  2bLP  U- U I v
 y        2  D       a      a'


          drag  force in y-direction

          .                 -*    -»
D^    =   T^n  ^aJLcoscop  |U- U&  (w - w )
              3                         a

          drag  force in x-direction
B     =   nab L(P  (o) - p)
                  3,
          buoyancy
          ambient density difference between that at the  free
          surface and that at the position of the centroid of
          the buoyant element
  .    =   p  (o) -p  .
 si         a      si
          density difference between the ambient at the free
          surface and the solid particles
P..   =   nabLC  ..                                  (3.4. 21)
  ij               S1J
           solid volume in the buoyant element
                        56

-------
In the above equations, cc3  and a4 are entrapment coefficients for
convection and collapse respectively.  CDS  is drag coefficient for a
two-dimensional streamlined wedge,  CD4 is drag coefficient for a
two-dimensional plate, and cp is the angle between  L  and thex-axis.

The equation for the dynamic collapse of a quadrant of the elliptical
cylinder with length  L is (in analogy with Section 3.3.2)

         1      =    F-D-F                                 0.4.22)
where
                   d /ab
                   inertia
                   driving force
                         P a
         DD   =    '
                  form drag
         Ff    =    CLv                                  (3.4.23)
                   skin friction

The tip velocity of the segment is given by

        |p   =    vj  + v3                                    (3.4.24)
                                57

-------
In the Equations  (3. 4.22 ) and (3. 4. 24)  v,  is the tip velocity due to
collapse and v?  is the combination of the tip velocity due to dynamic
collapse and that due to the stretching of L.

                        D d 1—I                                   / Q  ^  *3 £ ^
         V2    =    vl - L^F                                   (3.4.25)

v_  is the contribution  to tip velocity from entrainment by instantan-
eously holding p,  a  and  L  constant.
In the present formulation, at the end of jet convection, the two-
dimensional thermal model immediately takes over the convection of
the waste material plume.  At that moment,  the horizontal velocity  of
the element may be different from that of the ambient velocity.  As  the
buoyant element is moving downstream, it will be slowed down or
speeded up by entrainment of ambient momentum and by the drag force
applied on it.  However, the supply of waste material is continuous  from
the jet, hence,  the two-dimensional element  L  should be able to be
either stretched or  squeezed in  order that the trajectory of one convec-
fcive element be capable of representing the steady picture of a continu-
ous  plume.  In the estimate of the stretching  of  L,  it is  assumed that
                                  =  constant                   (3.4.27)
 The contribution from the stretching of  L  to the tip motion is obtained
 by assuming that the minor  axis  a  is kept constant, and that no entrain-
 ment occurs at that moment.
                                 58

-------
The trajectory of the two-dimensional buoyant element is furnished by
         dx
         dF   =    U
         dt


         |p    =    w                                          (3.4.28)



The initial conditions for dynamic collapse are from the information at

the end of jet convection.
                                59

-------
3.4.3       Bottom Encounter

Just as in the case of Barge Operation  1, the waste material plume can
reach the ocean bottom and spread out there if the ambient density
stratification is not strong enough to arrest the vertical descent of the
plume  somewhere  above the bottom.  A mathematical model \vhich is
an extension of the model  presented in Section 3. 4. 2 will be developed in
this  section for this special situation.

At bottom encounter,  the cross  section of the plume is  assumed to have
a half elliptical shape as shown  in the upper half of Figure (3. 4. 2a)

                           ,2      ,2
                          £_. + 2L_ =  i                      (3.4.29)
                           L,      ,t,
                           a       b
The  ambient density distribution is

                          p (y) = (p+ AP)(1- -c(y)y')             (3.4.30)
                           Si
The  density distribution inside the plume is
                          >•-                 Ya
                         p'V.x'.t)  =  p(l-—-  e(y)y')       (3.4.31)
                                             cL

The  ocean bed is assumed  to be  horizontal.   The plume is allowed to  move
as an entity with respect to the ambient fluid and the ocean bed, while it
collapses vertically and spreads out horizontally.  By following es-
sentially the same arguments as presented  in Sections 3. 3. 2, 3. 3. 3 and
3.4.2,  the equations become

Conservation of Mass

        dV
        3-     =Ep-L;;S..p.                             (3.4.32)
        dt          Ka   .  .   ij Ksi
                        1  J   J
                                 60

-------
Conservation of Momentum

Conservation of Buoyancy
                      - ESS.. A                                 (3.4.34
                    f   .  ..  !j 81
Conservation of Particles




       dP..
where


       V      = — prrabL
                 total mass in the buoyant element




                                           db ,
                 entrainment in volume
       S..     =  2bL |w .. |C  ..(1-R..
        ij            '  sij '  sijv  Hij'
                 settled solid in volume
                 | CMpnabLtf
                 momentum
                -nab L( p- p )g
                LJ           3,
                 buoyancy force
                                 61

-------
  Fx       b  rictnv	




         bottom friction force in x-direction
F_    =  - F,  =  -F + ~c.. pnabLv) + £ ES..VP .
  Fy         b       dt  2 M K          .  .   11   si
   y                                         J
          reaction force at the bed
F_    =  F, F  . , (w-w, )
  Fz       b nctn     b
         bottom friction force in z-direction
Dx
          resultant velocity difference between the plume element


         and the bed
         drag force in x-direction
D      = -cn.2bLp  |-   j v
 y       2  D4    Ka '     a1
         drag force in y-direction
         drag force in z-direction
B      = j TrabiXp , (o)- p)
         u        3.
         buoyancy
                           62

-------
       M     =  Pa(o)-pa

                 ambient density difference beyween that at the free
                 surface and that at the position of the buoyant element

       Asi    =  pa(o) " psi
         O i        Q.      S i

                density difference  between the  ambient at the free
                surface and the solid particles

       P..    = 4-nabLC  ..
         13      2"      sij

                solid volume in the buoyant element           (3. 4. 36)

In the above equations, u,  and w, are velocities of the bed with respect
to a coordinate fixed on the moving barge.

The equation for the  dynamic collapse  of a quadrant of the elliptical
cylinder is

       I     =  F  -D  - F  - F                               (3.4.27)

where
       I       -A^L  v )

               inertial force
               driving force
                                63

-------
                 form drag

       F,     =  C, .  -Lv.,
         f         fric a   2

                 skin  friction

       F     =  F  F      F
         bf       b  rictn   1

                 friction at the bed                             (3. 4. 38)

The tip velocity of the segment is

       f  =  v1+v3                                            (3.4.39)

In the above  equations,  v,  is the tip velocity due to collapse, v- is
tip velocity due to the combination of collapse and the stretching of
element length, and v, is the tip velocity due to entrainment (see Section
(3.4.2)).   And the vertical velocity of the  centroid is obtained by
continuity  assuming no entrainment and settling at an instant.
The trajectory is again furnished by
         dx
         dF
             =  v                                                (3.2.41)
         dz
                                  64

-------
The initial conditions for this phase  can be obtained from jet convection
or dynamic collapse.
                                65

-------
3 . 5    Barge Operation 3 - Discharge into Barge Wake

In  the disposal of highly harmful waste material, it may be desirable to
discharge it into the wake of a moving barge to achieve high initial mixing,
After the initial mixing, the waste material plume is again expected to
undergo a convective descent phase due to the density difference between
the mixed waste material and the ambient fluid, and a dynamic  collapse
phase when the plume reaches a neutrally buoyant position.

The initial mixing process in the  wake  of a moving barge is essentially
a mass transfer process in separated flow.  The flow field in the wake
of  a moving barge is  complicated by flow  separation from the stern,  wave
generation, turbulence developed in  the shear zone,  and back flow  fol-
lowing the  separation.  The phenomena  of mass and  heat transfer in
separated flow has been investigated in  the literature; for example,
Richardson (1963) studied experimentally the heat and mass transfer in
the wake of a cylinder.  He found that shear and mass transfer  in a
separated region is proportional to the two thirds power of Reynolds
number.   Ruckenstein (1970) and Spalding (196?) developed some theo-
retical relationships  between the  mass transfer coefficient and  physical
parameters of  the flow for two  simple flow conditions:  constant shear
and linear  shear.  There is some confirmation between the studies by
Richardson and Ruckenstein.   Hanson and Richardson (1968) further
investigated the flow field in the wake of a cylinder in great detail in
an  attempt to find a relationship between the flow field and heat or  mass
transfer.   Elzy et al (1968) studied the heat transfer for a porous cylin-
der in a cross  flow where the local heat transfer coefficient for different
injection rate and turbulence intensity were obtained.  Mass transfer in
separated flow depends heavily on the pattern of the  flow field.  For the
flow field in the wake, in spite  of its being a classical problem,  theo-
retical development has been mainly limited to the far field of the wake
                                66

-------
as presented by Swain (1929).  Carmody (1964) and Chevray (1968)
made extensive experimental and analytical studies on the near wake
of a disk and an ellipsoid respectively.  The results were found to
depend on the form of the body.  Kuo and Baldwin (1969) examined the
formation of wakes behind elliptical plates ••  Strong dependence of the
far field on the results of the near field was found. •  Naudascher  (1967,
1968) in a -study of the general characteristics of jet and wake flows,
developed a general self-preservation hypothesis.  The lateral distri-
bution of various mean-flow and turbulence  characteristics obtained
from  measurements in axisymmetric jets and wakes were shown  to
confirm his concept of self-preservation.

Ketchum and Ford (1952) have analyzed the  discharge of fluid waste
material into the wake of a  moving barge where mixing was observed
to be  instantaneous in the vertical direction; The transverse dispersion
coefficients were  calculated from prototype experimental data.  Abraham
et al (1970) investigated the mixing of acid into a propeller stream of a
moving  ship for the case where the mixed stream density is very close to
the ambient density so that  the mixed stream stays'-clos'e to the free sur-
face.  The dilution in the wake was measured..

In the -following, an initial mixing phase will.be-formulated based on the
assumption that the material is perfectly mixed into the main stream as
calculated  by Naudascher',s- semi-empirical analysis.  After the initial
mixing a two dimensional thermal approach will be-'iis-ed for the convec-
tive de.scent phase.  For the subsequent dynamic collapse  phase,  the
analysis presented in Sections 3 . 4. 2 and 3'. 4 .3' wild be' us'ed.
                                67

-------
3.5.1    Initial Mixing la the Near Wake of a Barge

The mixing phenomenon in the near wake of a barge is so complicated
that a  complete analytical solution to the problem is impossible.  Here
a simple gross approach will be used.  This is desirable from a prac-
tical point of view since at least some insight into the significance of
disposal into the barge wake can be obtained from the present analysis .

It is first assumed that the flow rate  of the  waste material is compara-
tively  small so that it is  completely mixed into the wake  by the turbu-
lence without altering the wake flow pattern.  Secondly, the effect of
waves  is disregarded so  that the flow pattern can be approximated from
Naudascher's analysis of jet and wake flows.

In generalizing the distribution and development  of mean-flow and tur-
bulence characteristics in jet and wake flows,  Naudascher reduced the
flow pattern in the near field of  disk and ellipsoid wakes (Figure 3.5.1)
to a similarity form by introducing a  length scale 4    which is  a func-
tion of measured  velocity distributions .  The velocity distributions are
approximated by
as shown in Figures  3.5.2 and 3.5.3.  In Equation (3.5.1),  U , is the
local velocity deficit,  U ,  is the maximum velocity deficit and
               n  =
where y is the  radial distance.  The length scale &Q was found to vary
for different flow conditions as shown in Figure (3. 5.4).  It can be ap-
proximated by
                                68

-------
vO
                         B
                                                     VT
                                                          -u
                                  •£
                                    Q
                                      oi
(O)
                                                         (X)
                           Figure 3.5.1  Definition sketch  (After Naudascher 1968)

-------
                                                               (3.5.2)
where C, is a constant for each group of data and approximately varies
from 0. 15 up to  1. 0 for the two extreme cases  of a blunt disk and a
streamlined body of revolution.  R is a characteristic length of the  body
which can be chosen as  the geometric mean of the barge depth and half
width in the  present analysis.

By assuming that similarity exists after a distance x = C_R downstream
from the barge  stern, the velocity distribution  at that position becomes
                                                               (3. 5. la)
By referring to Figures 3. 5. 2 to  3.5.4,  if we take T)= 2.0 as the
nominal boundary of the wake, then the radius of the wake is

        Y  =  2C1C*/3R                                        (3.5.3)

and the mean velocity is
        U  =  —^-  I  U,(l-e" Tl2)2n-ndT1 =  0. 75 U,              (3.5.4)
             4 n   k    d                         d
 at x = C_R where similarity of flow pattern begins.

 If the waste material is assumed to mix uniformly intovthe wake within
 the nominal boundary, then the concentration can be estimated by
                 Q C
                  d   °                                        (3.5.5)
                0.5nY2U
 where Q, is the discharge rate  and C..  is the initial concentration of the
         d               6            ijo
 solid particles.  Note that the formulation in Equations (3. 5. 3, 3. 5. 5)
                                 70

-------
 •o
ID
     0
                                                                                     2DO
       Figure 3.5.2 Radial variation of mean-velocity difference in the wake of a disk.
                     (After Naudascher 1968)  (Data by Carmody for  UR/v~35,000;
                     m = -0.57.)

-------
tM
                  0
                   0
0.25
0.50
0.75
1.00
1.25
1.50
2.00
                    Figure 3.5.3  Radial variation of mean-velocity difference in the wake of a
                                  slender spheroid.  (After Naudascher 1968) (Data by Chevray
                                  for  UR/v~ 1,375,000; m = -0.03.)

-------
   20
    10
    8
DC.
\
 o
,-k

tr
  r   1           I           i      i    i    i
tQ/R  IM/R
  o     CD   Chevray (1967), wake of slender  spheroid
  O     e   Carmody( 1963), wake of disk
 -O     c   Uj/Uo=3.72l  Curtet  &Ricou(l964)
  o-    3         2.03J  round  jet
        9         2.00  Ortega(1968), round jet
                 SLOPE  I'-3
      o
    1.0
   0.8

   0.6

   0.4cr
   0.2
  e
  O
     o
     -o
     o-
 €
-O
                                      SLOPE 1:3
                                              I	i
          8   10
                20
                40
60   80 100
200
                             x/R
      Figure 3.5.4  Axial variation of effective width for  various
                    jet and wake flows.  (After Naudascher (1968))
                              73

-------
 is quite general and by properly choosing C,  and C_ the flow pattern
 of any barge wake can be approximated.  The judgment as to the exact
 values  of C, and C? should be based on further experimental information.

 3. 5. 2   Convective Descent
 In the initial mixing phase,  it is tentatively assumed that because of
 the  strong turbulent mixing in the near wake, the buoyancy effect is
 of secondary importance.  However, after the initial mixing,  as the
 turbulence  subsides the buoyancy will make the half cylinder waste
 material plume descend  vertically to seek a neutrally buoyant position
 while it is convected downstream by the ambient current.

In this convective descent phase,  it is  assumed that the plume retains
 a half cylindrical shape so that a two-dimensional thermal approach
 can be used.  Then by considering a two-dimensional thermal with a
 length L, the conservation equations become

 Conservation of Mass

        —•  =  Ep  -2SS..p .                                 (3.5.6)
        Q.U         cL  • *   11  SI
                      i j   J

 Conservation of Momentum
                 T-D + E0 ft  - ZES..p .ft                     (3.5.7)
dM
dt
 Conservation of Buoyancy
                          ..   .
        dt            .    ij  si
 Conservation of Particles
        dP..
                  Af - ££ S.. A .                                 (3.5.8)
             -  -S..                                          (3.5.9)
                                 74

-------
where




       V
                total mass in the buoyant element
lav + aJ (u -u
                                   2
             = nbL |av + a,( lu -u ) + (w-w )
                                 cL        3,
                total entrainment in volume




       S..   =  2bL |w     JC  ..(1-p..)




               settled solids in volume
               momentum
       F    =  jnb2L(p-pa)g
               buoyancy force
       Dx
               drag force in x-direction
       D     =   cr^ 2bL
        y     2  D
               drag force in y-direction
       D     = ic   bLcoscpp \tf-ti j(w-w )
        z      £  LJ -,         a     a     a




               drag force in z-direction
       B     = ynb2L(p (o) - p)
              £>        3.
               buoyancy

                                75

-------
        Af
                ambient density difference between that at the free
                surface and that at the position of the centroid of the
                buoyant element
        A .   =  p (o)  - p  .
         si      Ma     psi
                density difference between the ambient at the free
                surface and the solid particles

        P..   = ^rrb2LC ..
         ij     2        sij
               solid volume in the buoyant element             (3. 5. 10)

In the above equations,  a and a, are the entrainment coefficients for a two-
dimensional thermal and a momentum jet respectively, C_  and Cn
                                                         Ul       U2
are the drag coefficients for a two-dimensional wedge and a two-
dimensional cylinder respectively, cpis the angle L makes with the
x-axis.

The element length and velocity relationship is assumed to be such that
                                 L
                             J
                             \u
                                        =  constant            (3. 5. 11)
2    2
    w
 The contribution from stretching of L to the growth of b is obtained by
 assuming no entrainment or settling occurring at that moment.  The
 Equations (3. 5. 6-11) are readily solvable given initial conditions from
 the initial mixing phase.

 3. 5. 3   Subsequent Motions

Following the convective descent phase,  the subsequent motions and
 dispersion of the waste plume is obtained by  using the same model
 developed for the corresponding phases for jets (see Section 3.4).
                                 76

-------
 3, 6    Long Term Diffusion

In the long run,  regardless of the exact method of disposal of the waste
 material from the barge, after the initial phases of convection and col-
 lapse the waste plume becomes dynamically passive subject only to
 turbulent diffusion, advection and settling of the  solid particles.

 Ocean diffusion has been studied by investigators from various disciplines
 including geophysicists, oceanographers 'and engineers.  Previous
 studies of marine  diffusion have not only determined quantitatively ocean
 transport characteristics as discussed in Section 3.2, but also established
 different methods  of analyses.  In general, most of the analysis starts
 Trom the concept of the conservation of material  expressed as
             u|£ + v|£ -f w|£
               ox     oy     da
                                                               (3.6. 1)
 where c is the concentration of the diffusing substance, (u, v, w) are local
 instantaneous velocities in (x, y, z) directions, (D ,D ,D  ) are molecular
                                                x   y  2
 diffusion coefficients in (x, y, z) directions.  In turbulent flow,  Equation
 (3. 6. 1) may be further simplified by resolving the instantaneous con-
 centrations and velocities into the sum of time averaged and fluctuating
 components.
                     -
        c =  c  + c',  u= u + u'

 where the overbar indicates the averaged value which is the result of
 averaging over a sufficiently long period to permit convergence of the
 averages of the primed quantities to zero.  Making the appropriate
 substitution in Equation (3. 6. 1),  and averaging the resulting equation
 over a  sufficiently long period, introducing the definitions  (3.2. 1)
                                 77

-------
                                -,                    -W
       K   =  !__ + D  ,  K   =        + D ,   K   =   _«_ + D
         x     ^—     xy      ^ —      y    z      ^ —     z
               oc           y      dc       y           dc
               ox                oy                   dz
                                                               (3.2. 1)
and dropping the overbars for simplicity gives
       |£  +  u|£ +v|£ +w|£  -_   B /K I^V-r
       ot      ox    oy     oz    ox ^ xdxy  oy
                                                               (3.6.2)
Most of the early investigations were confined to the study of horizontal
diffusion only, employing simplified versions''of Equation (3.6.2); current
shear and vertical exchange were ignored,  i. e. , in Equation (3. 6. 2)
K  ,  v and w are taken to be zero.  Horizontal diffusion has been in-
 y
vestigated  by  stommel (1949), Joseph and Sender (1962),  Okubo (1962),
Carter and Okubo (1965),  Snyder (1967) and others.  These studies
yielded information on the horizontal transport characteristics of the
ocean, as was summarized in Section 3. 2.   Perhaps the most significant
result from these studies is the empirical 4/3 power law,  (Equation
(3.2.2)) for the horizontal diffusion coefficient.

A  model neglecting the effects of vertical shear current and vertical dif-
fusion is inadequate in describing the whole dispersion phenomenon in
the ocean.   The shear  current tends to stretch out the  distribution and
shift the centroids of material distributions at different levels.  Vertical
diffusion tends to redistribute the material in the vertical direction.
These effects result in greater dilution of the diffusing substance than
a model which only considers horizontal  diffusion.

The effect of  current shear in ocean (or lake) diffusion problems haye
been studied by Okubo  (1968), Okubo and  Carter (1966), Bowden (1965),
and  Csanady (1963,  1966).  These analyses  were mostly aimed  at the
determination of apparent longitudinal diffusion coefficient.  Recently,
Koh and Fan (1968, 1969), studied the diffusion of the  radioactive debris
                                 78

-------
distribution subsequent to a deep underwater nuclear explosion.  In this
investigation,  shear current and vertical diffusion were  incorporated.
For the horizontal diffusion, the empirical 4/3 power law were used.
Jobson and Sayre (1970) examined the vertical transfer of fluid and
sediment particles in open channel flow.  From experimental data of
the vertical distribution of the dispersant at sections downstream from
a continuous source across the width of a channel, they evaluated the
vertical  transfer coefficient as function of depth.  It was found that for
fine sediment (w  =  0.035 fps) the vertical transfer coefficient distribu-
tion is close to the momentum transfer coefficient obtained by assuming
a logarithmic vertical velocity distribution.   For coarse sediment
(w  = 0. 2 fps), more  diviation between the two coefficient distributions
   s
were  observed.  However, from the results of numerical simulation of
the vertical transfer phenomenon, Jobson and Sayre concluded that the
predicted concentration profiles were not very sensitive  to the distribu-
tion of the vertical mass transfer coefficient.

Sayre  (1968) investigated the longitundinal dispersion of silt in open
channel flow.   Vertical momentum transfer coefficient was  used for
the mass transfer coefficient.  Comparison of the results with exper-
imental data was found to be good.

The approach used by Bowden (1965), Okubo (1968),  Sayre (1968) was  the
so called method of moments.  The method begins by defining the moments
of the concentration distributions across horizontal planes.  Equation
(3. 5. 2) is then transformed into a set of equations for these moments
with t and y as the independent variables.  The equations of moments
are considerably simpler to solve, and the important characteristics
of the diffusing substance can be  determined from only the first few
moments.  The problem then is  solved with no sacrifice  of rigor but at
the expense of some loss of detail. With its simplicity and capability
of incorporating fairly realistic  ambient conditions,  the method of mo-
ments will be adopted in this investigation  and presented in detail in
the following sections.
                                 79

-------
3. 6. 1    Formulation of the Theoretical Model

For  solving the long term diffusion problem of waste material in the
ocean  environment,  the method of moments will be used.  Coordinate
system,  ambient conditions and basic equation will be  given in Section
3. 6. 1. 1,  Derivation of equations will be presented in Section  3. 6. 1. 2.
Numerical solution of the equations  and the computer program will be
deferred to Section 3. 7.

3. 6. 1. 1   Flow Configuration and Basic Equation

The  coordinate  system is chosen to  be  as shown in Figure 3. 6. 1.   x, z
are horizontal coordinates,  y is the vertical coordinate pointing down-
ward from the free surface.  The ambient current in the ocean are
designated as (u , o, w  ) in  (x, y, z) directions.  Note that the mean v-
                a     a
component is neglected here,  considering the effect of the stable
density stratification in the ocean.   The mean u   and w  components
                                              a      a
are taken to be  independent of the x  and z coordinates but may be  functions
of y  and t.  These  are all assumed to be known functions.  By con-
sidering a specific group of the waste material particles settling with
fall velocity w  while being convected and diffused by the ambient  cur-
              s
rent and turbulence, the conservation of material equation is  similar
to Equation (3. 6. 2) except for one more term involving the fall velocity
as follows.
       ac  ,    ac ,    ac     a /,_ acV 8 (v  ac\,  a  (v  ac\  a /   J
       •vr— + u -r— +w  -^—  =  3— |K -r— I + -—IK  —- I -t- -—|K  — I- T—-fw  C
       ot      3idx   a.dz    oxV  xdxy   dy y yBy/  9z I  z Bz /  ayl s  ,

                                                               (3.6.3)

where C is the time averaged  concentration of the waste  material,
u  and w   are ambient currents and w  is the fall velocity.   Note that
 cl      3,                           S
Equation  (3. 6. 3) is satisfied by both the liquid and the  solid part of the
waste matter depending on the value assigned to  the fall  velocity w .
                                                                 S
                                 80

-------
oo
             y=0
WASTE

MATERIAL
              (a) Coordinate System
                                                 0
                                              Yk2
                                                H
                                                        0
                                                           K.
                                     K  -profile
                                      y
                                                                     'U
                                                       H
                                                                                'oo
               H
u -profile     w  -profile
         Figure 3.6. 1  Coordinate System and Ambient Conditions for long term diffusion model

-------
Corresponding to Equation (3. 6. 3), boundary conditions  are needed for
 each of the waste material treated as follows.
        i)   For fluid         w   =  0
                              s

            y  =  0,H         ~ =  0                             (3.6.4)
                             oy

 Equation (3. 6.4) indicates that there is no diffusion of material through
 the boundaries,  and the boundaries act as  reflecting barriers to the
 diffusion material.
        ii)   For sinking particles    w   =  positive
                                      S
            y =  0,   K      - w  C  =  0                          (3. 6. 5a)
            '        y dy     s
           y = H,   K-  (l-0,)wC-YW  = 0               (3. 6. 5b)
                    oW
                    -    - owC + YW   = 0                  i3.6.5c)
       iii)  Floating particles; w  = negative
                                S
            y = 0,   K     - (l-a1)wgC + Y1W1 =  0              (3. 6. 6a)
                    aw ;        aw         aw
at
                           u ,-3-- +  w  . -~ - + a,w C +v,W.
                            al ax      al  bz     Is    '11
                    -.       aw  \    , /     aw .
                =  -1/K   -— 1 )+ -2- K   —JL                (3.6.6b)
                   ax  \  xw  ax
                                 82

-------
           y=H,    K  ~ - w C =  0                           (3.6. 6c)
           7        ydy    s
In the above equations, ais a bed absorbency coefficient representing
the probability that a particle of sediment coming into contact with the
bed is deposited, W represents the amount of sediment  stored per  unit
area of bed surface  (or free surface),  and yis an entrainment rate
coefficient, defined  in such a way that yAt is the probability that a
typical  particle resting on the bed is entrained during a short time
interval of duration  At. yW represents an average rate of entrainment.
The subscripts 1 and 2 signifies the values at the free surface and at
bed respectively.

As shown in Equations (3. 6. 5, 3. 6. 6), the boundary conditions for solid
particles  are fairly  complicated.   The settling of the sinking solid
particles  will be further discussed below.  At the free surface the
transport by fall velocity is balanced by diffusion as shown in Equation
(3. 6. 5a).   At the bed, a fictitious double layered bed is  introduced;
the first boundary is the boundary of the fluid and the second is the
boundary  where the  solid particles can be stored.  At the first boundary
there are  three mechanisms for transport, namely  convection by fall
velocity,  diffusion by turbulence and entrainment by ambient flow.  These
are schematically presented in Figure  3. 6. 2 .  As  shown in Figure
5.6.2,   CL, w C represents the  rate of deposition down to the second
          fw S                                               -v «
boundary,  (l-a->)w C is the rate of retention in the  fluid,  K -r — is the
                  s                                       y ay
rate of diffusion and Y -^ ? =LS ^e rate of entrainment of particles from
the second boundary back into the fluid.  Equation (3. 6. 5b) summarizes
these mechanisms and indicates that the combined actions of diffusion,
entrainment and settling contributes no net transport across  the boundary.
On the second boundary, whatever is  settled there will increase the
storage of waste material which in turn again is subjected to  detrain-
ment.  Equation (3. 5. 5c) just  expresses the  conservation of waste
material while allowing the waste material to be stored,
                                83

-------
  y = 0
                         wsc
                                    K
  dc
VT7

' ' ' X"X" ^ /" /
\
Q2wsc
I(l-a2)wsc
Ai^ dc
pvay
r
rzw2
^^^^^
Figure 3.6.2  Schematic for boundary conditions for solids
              settling to the bed
                           84

-------
and exchanged with those in the fluid.  For the floating particles the
same argument applies.  However,  after the solids have settled to the
surface, it is also subjected to horizontal diffusion by turbulence and
advection by ambient currents at the free  surface and therefore these terms
are added a.s shown in Equation (3. 6. 6b).

3. 6. 1. 2  Method of Moments

Equation (3. 6. 3) with any one of the corresponding boundary conditions
for fluid,  sinking particles orfloating particles can be  solved given the
initial conditions of the concentration distribution in the fluid and the
deposition of the waste material on the bed or free surface.  However,
Equation (3. 6. 3) can have analytical solutions only in simple cases,  and
with its four independent variables x,y, z and t,  a numerical solution of
Equation (3. 6. 3) will require considerable storage and computer time.
Also, as noted in Section 3. 2, the values of the diffusion coefficients
are often determined based upon the gross characteristics of the dispersant.
It is believed to be more consistant  in the  analysis to ignore the detailed
distributions but solve for  only the gross characteristics of the dis-
persant as functions of time and depth.

Applying the technique of the moment method, as given previously by
Saffman (1962), Smith (1965), Tydesley and Wallington (1965) Bowden
(1965). and Sayre (1968),  the moments of the concentration C(x, y,z,t)
and waste material deposition W(x,y,z,t)  across horizontal planes are
defined as follows:
                            /*°° r m  k 0
                  C    =11   x z  Cdxdz                  (3.6.7)
                    k, A    J J_
                                85

-------
                                  "xVwdxdz                   (3.6.9)
These express respectively the k, 4'th moment of the horizontal distribution.
 Thus,  for example taking k =  4 = 0,  Equations (3. 6. 7-9) represents
 respectively:  (1) The amount of dispersant contained in a lamina of unit
 thickness at a distance y below the free surface; (2) all the waste material
 in suspension; (3) the amount  of dispersant on the  bed or free  surface.
 The sum of Equations (3. 6. 8) and (3. 6. 9) M,    +W   ,  is the k, !L 'th
                                            K, Hi   rC, X,
 moment of the horizontal distribution of all the waste material.

                                                    k JL
 Multiplication of each term in Equation (3. 6.  3) by x z  followed by
 integration over the horizontal plane yields the transformed equation,

        rr—C,   - ku C,  .  ..-^w C,    ,
        dt   k, SL    a k- 1, H    a k, 4- 1
                                   Ek
                     dC
 The boundary conditions transform to
         i)  Fluid       w  = 0
                          s
             y  =  0,H            =  0                            (3.6. 11)
        ii)   For sinking particles   w  =  positive
                                      S
                                                                (3.6. 12a)
                                       ,

                                  86

-------
                        ac

                                (1-a)wc-Yw     =  °    (3-6-12b)
                    dW

                       at '  * - cuw  C,   t + v_W_,    =  0      (3. 6. 12c)
                       ot       2  s k, -i,   '2  2k, £
      iii)   For floating particles; w  = negative
                                  S
                                                      =  0   (3.6. I3a)
                    r-W,,    - ku  .W..  .  -jgw .W,.   .  , + 0^ C.
                    3t   Ik, A    al   lk-l,£    al  Ik,  Sb-1   1  s  k,
                             + Y W..   = k(k-l)K   C,  .  .
                              1 1   Ik, JL         xw  k-2, S,
                       SC

           y = H,    K  ———  - w  C,  , =  0                 (3. 6. 13c)
           y       .  y   3y      s  k, I




The initial distribution of  deposited waste material and that in suspension


can be transformed in the same  manner.





It should be noted that the independent variables x and  z have been eliminated


in the moments.  The solutions to the new set of equations are correspondingly
                               87

-------
simpler.  The penalty for this is that the solutions give only the
moments of the horizontal distribution of waste material rather than
the distribution itself.  Still, the behavior of the moments provides a
sufficient basis for the description of the dispersion process.   In
principle,  any desired degree of detail can be achieved by solving the
equations for sufficiently high values  of k and  £,.  In practice,  the  first
three moments are usually all that are required.

Table 3. 6 shows how the O'th,  first and second moments can be used to
calculate statistical parameters which are  useful for describing various
aspects of the dispersion process.   In the formulas the subscripts s
and w denote  respectively the suspended and deposited  components of
the waste material,  and T denote the  sum of both.  The argument  (y, t)
indicates the  value  of the function at y and t.  The argument (t) in  con-
junction with  the subscript s indicates a depth integral  for all the suspended
material.

3. 6. 2       Diffusion Coefficients

From Equation (3. 6. 10), it  is  seen that the  diffusion coefficients  K ,
                                                                  X.
K  and K  are important to  the dispersion process.  Following the dis-
cussion of Section 3. 2,  the relationship between the horizontal diffu-
sion coefficient and cloud size can be defined.  However, the interrela-
tionship between the vertical diffusion coefficient and the ambient  con-
dition   is less well known.  In this study the vertical diffusion coefficient
will be assumed to be as given in Figure 3. 6.  Ib; the K  value is
minimum at the thermocline, and maximum in the  mixed layer.

For the horizontal  diffusion coefficient, the 4/3 - power law in the ocean.
as discussed in Section 3. 2. 3 will  be  used.  The relation is given  by
Equation (3. 2. 2)
                                 88

-------
                 TABLE 3.6
USE OF MOMENTS TO DESCRIBE DISPERSION
Moment
0



1



2





Desired Statistical Parameter
Volume under concentration
curve



Mean displacement



Variance





Formula
V8(y,t)
vs(t)
vT(t)

xs(y,t)
*s(y,t)
Y(t)
Xw(t)
2
axs
2
azs
2
a
xzs
2
a
y
2
axw
2
zw
2
^xzw
= co.o
= MQ(t)
= M0(t)+W00(t)
= Total waste material
= ci.o/co o.
= C0 1/C0 Q
= M, / M«
1 0
- w /w
W1.0' 0 0
- r / r x 2
~ C2 0' 0 Os
- r / r 7 2
0 2' 0 0~ s
= ci i/co o:xszs
= M-/ Mn - Y2
2 0
- W / W _ x
* * O O ' ** A A
20 00 w
- W / W - x 2
~ W0 21 W0 0 w
= W, ,/ Wn n- x z
11 00 w w
                      89

-------
                         K ,K  -  ATL4/3                     (3.2.2)
                          x   z     J-'

where A  is a constant called dissipation parameter, and L is the size
        L
of the diffusing patch.

The size  of a pool of waste material L is defined to be 4 times the
standard  deviation a of the distribution, i.e. L = 4 cr.  Equation (3. 2. 2)
can be written also  in terms  of a, i. e.
                                       .
                         K ,K   = Aa                         (3. 2.2a)
                           x  z
where A  =  6. 34 A  is a dissipation  parameter defined based upon
                   J_j
the value of standard deviation or L/4.

Since a  and a  in  general  are not equal,  and a   may not be zero,
       X      Z                               XZ
there are several possibilities in adopting the horizontal diffusion law
(3. 2. 2) for use  in the  present theoretical model.  One way is to
define K  and K separately by their  corresponding a  and CT  values,
        X       Z                                    X.      Z
i. e.
                                 4/3                   4/3
                      K   =  Aa       and  K  =  Aa          (3. 2. 2b)
                       XX            Z       Z
Another method is  to define the horizontal diffusion coefficients based
upon the geometric mean of the standard deviations along the principal
axes,  . e.
                      Kx
Equation (3. 2. 2b) is not entirely logical because the K  and K  values
                                                     X      Z
depend on the choice  of the coordinate system.  Solutions will change
with a change of coordinate directions.  Equation (3.2.2c) gives identical
K  and K   values  but the length scale chosen is invariant under coordinate
 A.     £*
transformations.  Moreover, in the field determinations of the values
of AL or A, the length scale was often taken to be proportional to the

                                90

-------
square root of the  patch area which directly corresponds to the quantity
.22    2 ,1/4
(a  a  - a  )
  X  Z    XZ

The  value of A in Equation (5. 2. 2c) based upon a choice A,   =   0. 00015
    2/3                         2/3
feet     /second is A = 0. 001 feet   /second.  In the model the  relation
(3. 2. 2c) is chosen to represent the horizontal diffusion law for  the
waste  material in suspension,  in solution or  on the free  surface.
Note that the theoretical model can handle more complicated diffusion
laws.  e. g. when A is a function of y,  the depth instead of being a
constant.

3. 6. 3       Limitations of the Theoretical Model

The theorectical model  formulated in the previous section can handle
cases where the ambient velocities,  u  and w  , and the diffusion
                                     a      a
coefficients, K ,  K  and K  , are functions of both time t  and depth y.
               x   y      z                                       }
As  described in Section 3.2. 3,  these environmental quantities in the
ocean are,  in fact,  generally functions oft and y.  Therefore  the model
is thought to be sufficiently  general to describe adequately the long-
term diffusion of waste  material in the ocean.   However, the model is
subject to the limitation that these environmental characteristics are
independent of the x, z coordinates or invariant over the horizontal
planes.  This limitation is minor especially in the open ocean. In the
practical case, if the environmental condition  is slowly varying in the
horizontal planes,  or the horizontal variation across the pool  of waste
material is small, the  average condition  within the pool of waste
material can be used at each instant as a good approximation.

Also note that  in the formulation, the waste material is assumed  to be
in an open  sea bounded  only by horizontal bottom from below.   However,
if the ambient  is bounded horizontally,  such as an inland lake  or a bay,
the ass '.imptions should  be modified.  If there  is ambient current, since
the  velocity at the boundary  has  to be zero, by continuity the vertical
                                  91

-------
velocity cannot be zero everywhere.  In such situations, care must be
taken in the application of the present model.  If the area of the
bounded ambient is large, and the discharge site is far from the boundary
present assumptions  can still be valid.  If the  bounded ambient is
small horizontally, then the convective descent and dynamic  collapse
phases are of most interest anyway.

-------
3. 7   JMumerJcaJ^ Procedure and Computer Program

In the previous sections, sets of equations for different stages of mixing
for  different barge operations were formulated.  These sets of equa-
tions do not yield closed form analytical solution?.  Therefore,  they will
be solved numerically on a digital computer.  In the following sections,
the  numerical procedures for the solution of these equations will be
presented.

3.7.1    Numerical Procedure

In Sections 3.3,  3.4, and 3. 5,  the formulations presented for convective
descent and dynamic collapse phases  consisted of systems  of ordinary
non-linear differential equations which are readily solvable given a
set  of initial conditions.  A standard fourth order Runge Kutta method
is employed in the  solution of these equations.

For long term diffusion, in solving the hyperbolic partial differential
equations, Equation  (3.6. 10), the Crank-Nicolson method with a relaxa-
tion factor of 0.5 is used and this will be briefly presented in the
following.

A grid system shown in  Figure 3.7.1  is  chosen for finite difference
approximation.   In the diagram,  i signifies the vertical grid points,
j  indicates the time steps and &y(i) is the distance between y. and y-,i •
For the unsteady term,  a forward difference is used.
              3Ck t    Ck *(i'J+1) - Ck *(i'j)
                 K> JL  _   K,I	k, &                    (3.7.1)
                dt                At
                                 93

-------
At



Jt
4

,
1


































































>.i









•

































1 .
      0    I     2345
       Ay,  Ay,  Ay2
      n       n+l
Ayn      Ayn
      Figure  3.7.1  Grid System for Long Term Diffusion

-------
The diffusion term is  approximated by a central difference averaged

over times j and j+1.
    dy  \    dy
                             Ay(i][Ay(i)
                                             Ay(i-l)]
                                                 (i.
                            Ay(i)[Ay(i) + Ay(i-l)]
                                     (i,j) - C(i-l.j)]

                                          Ay(i-l)]
                                                                (3.7.2)



For the  advective term involving the fall velocity, a backward difference


is taken for a positive fall velocity and a forward difference for a


negative fall velocity.  The finite difference is also averaged over times


j  and j + 1.


                          C^  .(i+k,  ;il) - C^  , *  =   0. 5w
         dy            s
                           k.i.j+i-k.Jt-2..i+i
                               [kjAyU) +k2Ay(i-D]
                            C.  ,(i+k. .) - C,  .(i-k- .)
                    •H 0  5w   k- *   1»3      k' *   _2'-T
                          s    [kjAy(i) +k2Ay(i-l)]
                                                                (3.7.3)
where
                             and k.
                                         1          >0


                                             if w^
                                         0
                                                    <0
                                 95

-------
At the boundaries, the diffusion term, is approximated by a central



difference using fictitious grid points beyond the real boundaries.  Thus
         f
        at y=
                   sck A       ck  J1^1'^ - ck ji(0>V
   n     j    TT         KI *        K.I Jfr           K-j *             /o -7  .1 \
and    at y=H        dy      -   - TfcfW -        (3.7.4)





Substituting Eqs.  (3. 7. 1-4) into Eq. (3. 6. 10) and the boundary conditions



yields a system of simultaneous difference equations as follows.
w >0,  particles in suspension:
  s
K  (1)    0. 5(k2-k1)^>


     2 + (k+k)Ay(l)     ^T)   (kkK (l)
          •H
    Air/H    V  1   7 '  ' V '      " » '    ^I'^T/^  V
    '-•y^j-/      ^^.                    i/cy


C  (1)      0. 5(k -k.)we
y	 j_ 	^   J-	s
            0.
             Ayd-)2 +   (ki+k2)Ay(lS7Ck^(2lj)J
                                96
                                                              "I

                                                              JCk,
                            k(k-l)Kx(l, j)(Ck_2i ^l.j, -f-
                                                              Ay(l)2

-------
i=2 to n-1
                                         0.5w k_
                                              s 2
                  i) + Ay(i-l)]
             K (i)Ay(i-l) + K (i-l)Ay(i)
        1  A   y    .     .     y
At    Ay(i;


         K  a;
                             DAy(i)         0. 5w  (KO-KJ  -,
                                                  O   M   1   I
                                      ,            S          |/~*    li i _L T \
                             "7—T"—TTT "" i	7	7^\—i—.     t,—rr JO,  „(!> 1T J. j
                             Ay(i-l)]   k, Ay(x) + k7Ay(i-l)  k, Ax
                                         i         t-        j
      r         %UJ
      [Ay(i)[Ay(i) + Ay(i-
                                  0. 5w- k
                                          .
                                          j.
                      1)]    kjAyd)  +k2Ay(i-l)_
               K (i-1)
                 y
                                             (i. J)
                                     0. 5w k
                                          s 2
                        Ay(i-D]
              K  (i)Ay(i-l) + K (i-l)Ay(i)
                             •DAy(i)          0. 5(k0-k.)wc  \
                                  . • -.	?	1   s .. \
                              Ay(i-l)]    kjAy(i) + k Ay(i-l) I



   /        K (i)                 0.5k w        \
   /          y  	             1  s	\r    ,.  ,  .

   I Ay(i)[Ay(i) + Ay(i-l)]  " k  Ay(i) + k  Ay(i-1)1  k,/'  i>3
   \                           i          £        i
                                                                        (3.7.6)
i=n
                       0.5(k  -k )
  r       K (n-1)      0.5(k,-k.)w     (l-a,)w    k (l-a,)w2     "I

_  _L +    y.       +  	2  1  s       ^  s +  i     ,—§	 C   (n i
  [At       ,    n2     (k +k  ) Ay (n-1)  ' Ay (n-1)    (k,+k  )K (n- 1)J  k,/  '-1
         Liy ^ii"" if        J.  C*                         *t<   y
                                                                                H-l
                                   97

-------
    =  -0.5(kua(n)(Ck_ljA(n,j)
                      +k(k-l)Kx(n,j)(Ck_2>je(n,j)
               (n, j)(C      (n,j) +   C     (n, j
                                        -
                                                       K (n-1)
                                  r /is. (n-

                                   M -

                                  L\Ay(n-
                                                        Ay(n-l)'
       0. 5(fc0-k.)w
            ^   i   i
                       K (n-1)   0. 5(k  -kjjw
                                          Ay(n-i;
       (l-o2)wg      kj(l


       "STKTir " (k1+k2)K
           2
           r
           s
           k w
                                                                (3. 7. 7)
For  particles deposited on the bed:
    W.
•f 0.
                                                                 (3. 7. 8)
                     °kwsCk,je(h>j) ' Y2W2k,je(j))
w  <0 particles floating on the free surface:
  S
                                 98

-------
     w
                                                                 (3.7. 9)
w  <0 particles in suspension:
AT
           ,
  K (1)   0.5(k_-kJw     (1-oJw     (l-ou)k
   V     ,      
-------
                  K(l)    0.
           I At    A /i\2     (k,+k_)Ay(l)       Ay(l)
           \      Ay(l)      V127V           ' v  '
          K (1)     0.5(k0-k,)w
       + '   "
           Ay(l)2
i=2 to n-1  same as Eq.  (3. 7. 6)

i=n

        K (n-1)     0.
     =  -0.
                                                               K.(n-l)
 «K (i
__X_
Ay(n-
           0.5(k -k )w   \               /     K
                Z   1  S
                                                Ay (n-1)2
                                   100
                K (n-1)    0.5(k-,-k1)w        w          k,w
                _X	  +       21   S  . ^B    +      1  8         JC   (   j + 1)
                        X   (lr  -T-lr  \ Airfn  I 1   i\\r (-n  I 1    (lr  -r-lr  J K  fr> 111  ir 6   **
                 A  /   i\'-'   IKi'*^^/ uy IH— J. J   tav 1*1*- J. J    lix-.~iv— iJ.\.  IH—J./  /  Kjji
                Ay (n-1)      1  £   '         '           IZy

-------
                                              2

         0.5(k_-k,)w         w             k.w
              21s,     s             Is
       " (kj+k2) Ay(n-l) +  Ay(n-l)   "  (kj+k^K (n-1)    k, 4>




                                                              (3.7. 11)



Note that the solution for the fluid part of the waste can be obtained by


using either equations (3. 7. 5-7) or Equations (3. 7. 9-11) only by setting
w  to zero.
 s
The implicit schemes in Eqs.  (3. 7. 5-7) and Eqs.  (3.7. 9- 11) are in


the form of
                        =  di
            a.u.  . + b.u. -}• c.u. , .  = d.,  i  = 2, 3, .... n-1     (3. 7. 12)
            a u  ,  + b  u  = d
             n n-1    n n    n
or


                           [A][U] =  [D]                       (3.7. 13)




where [A] is a tridiagonal matrix.  The system of equations is  solved


by the Thomas algorithm as presented by Ames (1965)




            u  =  dn'
             n




            vu  =  d/ - c. 'u    ,   i=n-l,  n-2, . . . , 1              (3. 7. 14)
where
            ci  =  ci/br  di =  di/bi
        . + 1




        d. , ,- a. , ,d.'
'   -    l+ i   1+i 1
.,-,  -  -r - r

1+1     bi+rai+ici
                                       -10        i          it  n  ic\
                                       1= 1, 2, . . . , n- 1          (3.7.15)
                                101

-------
The above numerical procedure for the  solution of the equations for long
 term diffusion follows the Standard Crank Nicolson scheme.  The only
 point which should be emphasized is the difference  scheme employed for
 the term involving the fall velocity w .  As mentioned before, different
                                     s
 difference approximations are used for the term involving the fall
 velocity w  based on the  sign of w .  This is  important as will be  shown
 in the following analysis.  In the following, subscripts k and & will be
 dropped for simplicity.

 For a simple derivation of the effects  of the term

                                  6C
                              w
                                s
on the transport phenomenon,  terms involving ambient currents and
diffusion are deleted from Equation (3. 6. 10).  Equation (3. 6. 10) then
becomes

                                        L£                      (3<6> 10 }
                                        y

The solution to Equation (3. 6.  10 a) is simply

                           C  = f(y - w t)                       (3.7. 1)
                                       &

which indicates that given an initial distribution

                           C(y,0)  = f(y)                        (3.7.2)

the functional form of f(y) will be preserved  at any instant t subjected only
to a linear transformation w t.  Now let us try to solve Equation (3. 6.  10a)
by a finite difference approximation, using a forward difference for both
the independent variables y and t.  It is obtained

       Ct)            (3.6. 10b)

Equation (3.  6. lOb) is incapable of correctly  predicting the concentration at
time t+At from a known distribution at time t.  For instance, for a
                                102

-------
concentration distribution as shown in Figure  (3. 7.2 ), Equation (3. 6. lOb)
will predict at t+At a negative concentration at position A and a zero
concentration at position B which is completely wrong according to the
analytical solution in Equation (3. 7. 1).   If a central difference is used
for
                                ac
                                97  '

a similar result may be found depending on the relation "between the
concentration distribution and grid point position.  If  a backward dif-
ference is used for the term
                                dy

Equation (3. 6. 10a) becomes

           C(y,t+At) =  C(y,t)-wJ|(Cy>t-Cy_Ayit)         (3. 6. lOc)

Critical points such as A and B in Figure (3. 7.2) can again be tested.
The results show that at t+At, the concentration at A will be zero, and at
B the concentration will increase which is exactly what it should be.
Following the same argument a forward difference should be used for the

                                 ac
                             W  -r	
                               s dy

term in the finite difference approximation for solving Equation (3. 6. 10a)
if w  <0.
    O
                                103

-------
    A--
    B •
           > t+At
Figure 3.7.2  Definition Sketch
        104

-------
3.7.2    Computer Program

Using the numerical procedures in Section 3.7.1, a computer  program
has been developed for the prediction of the mixing characteristics in the
various phases of dispersion when waste is discharged from a barge into
the ocean.  A flow chart of the program is shown in Figure 3.7.3.  The
input sequences and detailed explanations  of the input and output symbols
are presented in Appendix A.  Attention should be called to the many
options  of printing and graphing in the  outputs, to whether or not built in
suggested coefficients are to be used, and to the options of terminating
the computation at the end of different phases of dispersion.  In the fol-
lowing,  some of the details of the program are discussed.

3.7.2.1  Empirical Coefficients

For each of the  three barge operations, values of a package of empirical
coefficients introduced in the formulations are needed. A  set of coeffi-
cients are built  into the program based on  either available knowledge  or
educated guess.  These are subject to change when better estimates are
available through  experiments.   The user of the program has the option
of inputting  his own estimates of the  coefficients.

In Barge Operation 1,  the entrainment coefficient  ALPHAO  is  set to  be
0.235 which is the mean of the best fit values from numerical simulation
on the experimental data in density stratified ambient  experiments in
this study.  It ranges from  0.21 up to 0.265 as will be discussed in
Section  V.  The coefficient  is believed to be accurate  to at most two
digits.  BETA  is set to 0.  which is believed true when the solid concen-
trations are relatively low.  CM is set to  1.  CD,  CD3 and CD4  are
estimated to be  0.5, 0.1 and 1.0, from drag coefficient diagrams for
sphere,  spheroidal wedge and circular plate respectively.   For the coef-
ficients  GAMA,   CDRAG,  CFRIC,  ALPHAC, FRICTN and  Fl, esti-
mates are based only on educated guesses.  More extensive experiments
are needed  to provide  these coefficients.

                               105

-------
                        READ CONTROL PARAMETERS
                                   AND
                            AMBIENT CONDITIONS
                                    I
BARGE OPERATION
1 \


PUFF
CONVECTION
1

DYNAMIC
COLLAPSE




BARGE OI
Z
BOTTOM
TEST METHOD OF
DISPOSAL

' BARGE OPERATION
3EI

ENCOUNTER
NATION ' l)f 3
JET
CONVECTION
WAKE-PLUME
CONVECTION
\ 1

J
DYNAMIC BOTTOM
COLLAPSE ENCOUNTER



      I
 UPDATE INPUT
DATA FOR LONG
TERM DIFFUSION
LONG TERM DIFFUSION
 UPDATE INPUT
DATA FOR LONG
TERM DIFFUSION
                                    END
  Figure 3. 7. 3   Flow Chart for the  Computer Program
                                    106

-------
In Barge Operation 2, in the jet convection phase the entrainment coeffi-
cients  for a momentum jet and a two-dimensional thermal,  ALPHA1 and
ALPHA2,  are set to 0.0806 and 0.3536 respectively.  The values are
from Abraham (1970) after  correction by a numerical factor arising from
the different similarity distributions for density deficiency,  velocity, etc.
used in Abraham's and the present formulations.

The settling coefficient  BETA  is set to ?ero.  The drag coefficient CD
is set to be 1. 3 as obtained from the drag diagram  for a two-dimensional
cylinder.  The above coefficients are considered quite good since numer-
ical simulations using those coefficients fit the experimental data well.
In the dynamic collapse  phase,  the entrainment coefficient  ALPHA3  is
again set to 0.3536.   The approximation should be good if the shape of
the elliptical cylinder is not too far off from a circular cylinder.  The
drag coefficients  CDS  and  CD4  for a two-dimensional wedge and two-
dimensional plate  are estimated to be 0. 2 and 2. 0 from the drag coeffi-
cient diagram.  There is again  no experimental information on GAMA,
CDRAG,  CFRIC,  FRICTN  and Fl. The estimated values are accord-
ingly subject to change when better knowledge is available.

In Barge Operation 3,  Cl and  C2  are important in determining the
initial  mixing and  are estimated to be 0.6 and 4 respectively.  Since
there is  no field data, these  coefficients are set to  the above values in the
numerical  simulation.  Their choice can be made with confidence only
when adequate experimental data is  available.  For the convective descent
phase, the entrainment coefficient  ALPHA  is set to be  0.3536.  The drag
coefficients  CD1  and CD2  are again estimated to  be 1.3 and  0.5 from
drag coefficient diagrams for a two-dimensional cylinder and a two-
dimensional wedge.  For the dynamic collapse phase Barge Operation 2
and Barge  Operation  3 use the same  coefficient.

For the long term diffusion phase,  if there is no ambient current  near the
free surface and the bed, the boundary absorbency  coefficients  ALFA1
and ALFA2  should  be 1 and the re-entrainment coefficients  GAMA1 and
                               107

-------
GAMA2  should be 0.  However, if there is a current near the boundaries,
the coefficients may take on other values.   The dissipation parameter
AJLAMDA  is  set to 0. 001  which is the value for the ocean (see Section
3.2.2).  It may be smaller for inland lakes.

3.7.2.2    Transition between Different Phases and Input of Solid
            Particles  to Long Term Diffusion

During the mixing  processes beginning with the discharge of waste mate-
rial and ending with the end of long term diffusion,  there is no clear
demarcation between  the different stages of convection, collapse and
long term diffusion.   In the computer program, the first stage of convec-
tion is either  terminated by bottom encounter or when the cloud  reaches
the first neutrally  buoyant position for Barge Operations 1  and 3, and the
first horizontal position of the jet trajectory for Barge Operation 2.  The
dynamic collapse phase for all three barge operations stops when the
estimated horizontal spreading due to diffusion is  larger than that due to
dynamic collapse.  In this second stage of  computation, the computation
can  switch from dynamic collapse  to bottom encounter if the cloud or
plume hits the bottom or from bottom encounter back to dynamic collapse
if the reaction force at the  bed is less than or equal to zero.

During the convection and collapse phases,  the mechanism of entrainment
is important in the mixing phenomenon.  In the dynamic collapse and
bottom encounter phases,  the entrainment due to both convection and
collapse are included  in the formulation.  However, it is believed that
the entrainment is  dominated by that due to  convection and collapse at
the beginning  and end  of dynamic collapse respectively.   In the program,
it is assumed  that the  entrainment is solely due to collapse after either
the cloud reaches  the  bottom or  the cloud passes the second neutrally
buoyant position.  Also after  the waste pool starts to collapse, the cloud
or plume is more  like a disk or a two-dimensional plate and the  added
mass coefficient in the vertical direction must be modified.  It is postu-
lated herein that CM  in the vertical direction is increased by the ratio
                                108

-------
of b/a.  This is equivalent to taking the hydrodynamic mass in the  ver-
                                     3                              2
tical direction to be proportional to  b  in the case of a disk and to  b L
in the case of a  plate.  While the numerical value of Cx,  is uncertain,
                                                     M
this functional behavior is expected to be correct.
For a reasonable presentation of the characteristics of the waste cloud
or plume in these two stages,  a  maximum of 600 computation  steps  is
allowed; 100 to ZOO steps for the convection stage  and 100 to 400 points
for the collapse or bottom stage.  DINCR1  and DINCR2   are  controls of
integration steps for the first and second stages respectively.  The com-
puter proceeds during the first stage with step size of DINCR1  times a
program estimated step size (based on density gradient and/or depth)
until either a normal termination (see previous paragraph) or the compu-
tation exceeds  600 steps.  At that moment the computer prints DINCR1,
the step size, the number of computation points and checks whether  the
computation points are satisfactory.  If it is not,  DINCR 1 is modified
and the computation is  started over.  The computer enters the second
stage only if both the physical and the computation  points criteria are
fulfilled.  In analogy to the first stage,  the  computation of the second
stage is completed b,y repeated trials of modifying  the step size to ful-
fill both the physical and computation points criteria. For each stage a
maximum of five trials is allowed.  If the computation is  not satisfactory
within five trials, the computer  prints a diagnosis  and exits.   Then by
the trial history of  DINCR 1  or   DINCR2,  the user should be able to  pick
a best trial value for  DINCR 1  or  DINCR2 and start the  program over.
Situations requiring more than five trials have not  been observed in any
normal run.

At the end of the dynamic collapse phase, the waste material is con-
sidered to be dynamically passive and long  term diffusion takes over.
However,  for those  solid particles  which settled out  of the waste cloud
or plume in the first and second stages,  long term diffusion must start
whenever  they  are out of the main cloud.  Hence the  long term diffusion
                                109

-------
computation in the program can be further divided into two phases: before
and after the end of the dynamic collapse phase.  Before the end of dynamic
collapse, there are inputs  of solid particles into the long term diffusion
mode] while the diffusion proceeds.  After the end of collapse only diffu-
sion and settling are involved.

For  Barge Operation  1,  if  there are  solid particles settled out of the main
cloud between two  time steps,  the settled particles are considered to form
a circular slab  of the  same radius as the cloud right  beneath or above  the
cloud depending on the sign of  the fall velocity.  The  thickness can be
evaluated by the fall velocity and positions of the cloud. While it is pos-
sible to  input each slab individually into the long term diffusion model  and
let the model perform the calculations  for  diffusion and settling between
successive inputs it is much more efficient in terms  of computation time
to wait until several or possibly many slabs have settled out.  A charac-
teristic  time interval given by the settling  velocity and the  vertical grid
spacing  in the diffusion model  is  chosen and all slabs which settle out of
the cloud during each such period are inputted into the  Long term  diffusion
model simultaneously.  However each slab is updated to the time of input
by allowing it to settle, move with the ambient currents and diffuse accord-
ing to a  simple  diffusion law.  During each such  time interval, the solid
particles already in the long term diffusion model undergo  several time
steps of diffusion.  In this  manner,  the solid particles  settled out  of the
cloud are updated toward the end of dynamic collapse.  At that moment
all the solid particles which still remain in the cloud are thrown into the
long term diffusion model all at once.  As  for the  fluid part of the waste
material, it is thrown into  the  long term  diffusion  model only at the end of
dynamic collapse.  For input of a circular slab of solid particles into the
long term diffusion model,  the following  formulas are used
                                 110

-------
         CQO   =    Cnb2
         C01   =    zC00

         C20   =    C0o(x2+ib2)

         r         r   ( 2  ±  l  T\
         C02   =    C00\z  +4b2/

         Cll   =    xzC00                                     (3.7.2.1)

where  C is the concentration,  b is  the radius,  x and  z  are the
centroid of the slab.
For Barge Operations 2 and 3,  because of the limited discharge time,
attention should be called to the front and tail of the plume in inputting
solid particles to the long  term diffusion model.  In Figure 3.7.4, curve
ABC  shows the front of the plume in space-time, point B is where solid
particles start to settle and point C  is when long term diffusion takes
over for the front of the plume.  Curve A'B'C1  shows the tail of the
plume.  Starting from T,,   there should be solid particles  to be put into
the long term diffusion model.  The  solid particle slabs  are thrown into
the long term diffusion model at intervals  of At.  It is therefore seen that at
T, + At,  there are slabs only below positions i,  iH-1  and i+2  to be
taken care of.  As  time moves from  T, + At,  to  T . + At, + A t^,   the
number of  slabs increases  as shown in the figure.  When time is larger
than  T-,,   solid particles inside the  main plume have  also to be  put into
the long term diffusion.  And when time is larger  than T,,  there no
longer are any slabs under position  j  as shown in the figure.   When
time is  larger than  T ,  all the solid particles are in the long term
diffusion model.
                                Ill

-------
Til	
                 Figure 3. 7.4 Definition Sketch
                             112

-------
For inputting the solid particle slab into the long term diffusion model,
rectangular horizontal slabs just above or beneath the plume are used
according to the plume sizes, positions,  solid particle fall velocity and
time interval At.  For computing the moments,  the following formulas
are used
         C00   =   C2bL
         C     -
         So   ~       oo
         coi   -    zCoo
                           ,                .
                     00X  + T2COS Y+— sin Y
XZ +snY COSY     ~
                                                               (3.7.2.2)
where  b  is the half width of the  plume,  L,  is the length of the plume
segment,  x  and  z are  the horizontal centroid  and Y  is the angle
between  L,  and the x-axis.

After all the  waste material is in the long term diffusion model (at the
end of dynamic collapse for Barge Operation 1 and  at the time when the
tail of the plume comes to the end of dynamic collapse for Barge Opera-
tions 2 and 3),  the model will continue to perform the dispersion calcu-
lations until terminated either when the time exceeds a read-in time
limit or by the fact that a substantial amount of the  solid particles  have
settled to the boundaries or that  the fluid waste is well mixed vertically
into the water column.

In the long term diffusion part of the program, special consideration has
been given to the change  of grid size and  computation time step according

                                113

-------
to  the characteristics of the diffusing pool such as  the vertical  spread
of  the plume,  the fall velocity of the solid particles and the vertical
diffusion coefficient.  The change is automatically  done in the program.
The  vertical grid lines are chosen to be close together within and
near the waste material and farther apart where there is little  waste.
Thus, for example, if at the beginning of long term diffusion, all the
waste is within a thickness of  5 feet in an ocean of  depth 100  feet,  the
grid lines would be packed close together within and around the cloud.
As the diffusion and settling proceeds however, the grid automatically
changes to accommodate.  The time step of integration  is  also  auto-
matically controlled based on  the characteristics of the waste pool and
the diffusion coefficient.   However  a provision for  change  by  the user
is  incorporated.

It  should be remarked that the computer program developed herein must
not be regarded as the ultimate achievable in the solution of the basic
problem.  Modifications and improvements are possible which  can greatly
enhance its utility.  It should further be pointed out that the program is
not designed to be able to  handle all situations  and  any user must first
fully understand its limitations.  For example,  it is assumed in the
program that  the waste will go through  a stage of convective  descent.
Thus, the gross density of the waste discharged must be greater than the
ambient density and the  initial downward velocity of the waste should be
larger than 0.  Moreover, when the convective descent phase ends,
either at the first neutrally buoyant  position for Barge Operations  1 and 3
or a horizontal position  in Barge Operation 2,  the local ambient may not
be stratified.   In that event the program will bypass the collapse phase
and  go directly to the long term diffusion phase. This is not  necessarily
always  valid because  the pool  may return upward into a density gradient
and  collapse resulting in different predictions.  In  the latter  case  the
program user may force the collapse simply by recalculating the case
after first introducing a very slight  density gradient at the  proper
location.
                                114

-------
                          THE GUNTER  LIBRARY
                    GULF COAST RESEARCH LABORATORY
                       .OCEAN SPRINGS,  MISSISSIPPI
                            SECTION IV
                 EXPERIMENTAL INVESTIGATION


4. 1     Objective and Scope of Experimental Investigations
The mathematical model developed in this study is intended to predict
the physical behavior of the waste material discharged from a barge into
the ocean.  To test  the applicability of the theory, experiments are needed
to confirm the hypotheses made and to obtain the coefficients  introduced
in the formulation.  For a  complete experimental check,  a large number
of experiments would have to be performed in a  complex ambient with
cross currents and  density stratifications similar to that of the prototype.
However, in the  present study, only a set of simplified but representative
preliminary experiments were performed in a stagnant laboratory tank with
or without density stratifications.  Results of the experiments were used
to evaluate mainly the entrainment coefficient  and test the applicability of
the mathematical model up to the onset of the long term diffusion phase.
                                 115

-------
4- 2     Apparatus and Procedure

4.2.1   Ambient Condition

 Experiments were performed in a tank 9 inches  wide,  15 inches deep
 and 40 inches long.  For uniform density ambient runs,  the tank was
 filled with cold water.  For runs with density stratification,  the tank was
 first filled to half depth with cold water,  then hot water was gently intro-
 duced on top of the cold water through a cup residing at the water surface,
 with holes on the sidewalls  near its  bottom. The position of the cup  was
 adjusted as  the water surface rose.   Thus the  lighter hot water spread out
 horizontally on the heavier  cold water.  When  the water  level reached the
 top of the tank, there were  two  layers of water with an interface of fairly
 strong temperature gradient. To destroy the interface and obtain a nearly
 linear  gradient, a  piece of plastic cloth about 4 inches high and 9 inches
 wide was put vertically with its  middle at the interface and towed slowly
 horizontally by two rods attached to the ends of the plastic cloth.  After
 about 10 minutes,  the  turbulence generated by the towing of the plastic
 cloth died away and a nearly linear stratification was obtained.  The
 temperature distribution was measured and the density stratification was
 calculated from the temperature distribution.

 4.2.2  Discharge Material

 Four different discharge materials were used  in the experiments, namely:
 a) mud,  b)  digested sewage sludge  c)  dredge spoil and d) salt solution.
 Mud was obtained by mixing a quantity of earth with water.  The digested
 sludge was provided by EPA and LA  County Sanitation District.  The
 coarser particles in the mud and larger sticks in the sewage sludge were
 filtered off by a screen of about 1/32 inch mesh  size.  The dredge spoil,
 obtained at San Francisco Bay,  was provided by the Corps of Engineers
 at  San Francisco.  The particles in  the mud were in the  range  of clay
 to  silt,  and  those in  the dredge  spoil were small sands.  The mud and
 dredge spoil are non-cohesive in nature.  The digested sewage sludge

                                116

-------
consisted of very fine particles up to about 1/32 inch in size and it
seemed tobe slightly  sticky at high concentration.  Salt solution is ob-
tained by dissolving table  salt into water.

4.2.3  Procedure and Data Reduction

Three different modes of discharge were used including  i) an instan-
taneous three-dimensional slug, ii) a continuous discharge from a hori-
zontally  travelling  vertical jet, and  iii)  an instantaneous two-dimensional
line.   The first mode simulating Barge Operation 1  was achieved by in-
jecting the waste material through a modified syringe,  cut-off at the
shoulder and covered by a screen of about 1/32 inch mesh size.  The
special feature  of the syringe was  that the screen could hold the waste
material in the  syringe by surface tension when the  syringe was held in
the vertical position  in air.  For injection, the syringe was lowered and
when  the front  of the  syringe was just below the water surface,  the  waste
material was injected downward by the plunger.  The second mode of
discharge simulating Barge Operation 2  was achieved by discharging the
waste material  continuously through a vertical glass tube fixed  on a
carriage which  was towed horizontally along the center line of the tank
by a system consistingof a cable, pulleys, and a variable speed drill
motor.  The glass  tube is  connected by a Tygon tube to a constant head
Mariotte tank which provides constant discharge.  In the third mode, a
half-cylindrical trough filled with the waste  spanning the width of the
tank was inverted to  simulate a two-dimensional puff.

For the experiments, the aforementioned materials  were made to various
densities  by mixing with water.  The density was measured by weighing a
knownvolume of was  te material or by a hydrometer .  After the waste
material was injected into the  water,  the position  and size was recorded
by time lapse photography.  The timing of the pictures  taken was indica-
ted by either a clock  placed in front of the tank or a  wax ball of known
fall velocity set free  in the tank before the injection. The intervals  be-
tween successive pictures were variable depending on the time scale of
the dynamics.   The shortest interval achieved was about 0.3 second.
                                117

-------
For the position and size of the waste material after injection, the time-
lapse pictures  on the 35 mm film were  projected frame by frame by an
enlarger.  The pictures were adjusted to be one-third of life size.  A
sheet of graph  paper was lined up accurately on each frame using the
markers on the tank as a guide.  The outlines of the cloud  were then
traced.

For injection modes 1 and 3, the distance of the centroids  of the cloud
below the injection point and its horizontal and vertical  dimensions were
measured off from the traced picture.  For  each position,  the corres-
ponding time starting from the injection was obtained from the clock  or
the position of the wax ball, and the position-time plot  was extrapolated
to the point of injection.  The initial velocity for each run was also esti-
mated from the slope of the position-time plot.  For injection mode 2,
the traveling velocity of the jet was measured from the  horizontal posi-
tion vs.  time plot of the glass tube,  and the  trajectory  and size  of the
plume was obtained by taking the average of several traces.
                                 118

-------
4 . 3     Results and Discussions

Seventy experiments were performed in this investigation.  The experi-
mental parameters and density stratification profiles are  presented in
Tables 4. 1 and 4.2.  The run number designations listed in  the tables are
as follows: The  first letter in the designation signifies the nature of the
waste  material:  M for mud, S for sludge,  D for  dredge spoil,  and N
for salt water.  The  subscript on the first letter signifies the mode of
discharge:  blank for three-dimensional instantaneous,  2  for two-dimen-
sional instantaneous  and  j for jet.  The second  entry in the  designation
signifies the density stratification in the receiving water:  0 for uniform
and S  for  stratified.  The last entry is just the  numerical sequence
within each group of experiments.

4.3.1    Instantaneous Release of a Three-Dimensional Slug

The pertinent parameters on those runs involving an instantaneous  re-
lease of  a  three-dimensional slug,  i.e. ,  simulation of Barge Operation 1,
are summarized in Table 4. la.    Those experiments in Table 4. la can
be subdivided into two groups  a)  with uniform ambient  and b) with strati-
fied ambient.  The primary purposes of the runs in the first category are
to obtain an estimate of the  entrainment coefficient a and to attempt a
correlation of the entrainment coefficient with other measurable quan-
tities in  the experiments.  The experiments in the second category are
used to verify the mathematical model.

In the  formulation of the  mathematical model  for Barge Operation 1, it
was assumed that the cloud  is always in a hemispherical shape.  It was
noted in  the experiments that the  initial momentum and buoyancy some-
times  generated  a vortex inside the  cloud, and the shape of  the cloud was
strongly affected by the strength  of the  vorticity.   The  increase of vor-
ticity changed the shape of the cloud from spherical to hemispherical
                                119

-------
                       TABLE 4. la




          Summary of Experimental Parameters








Run  No.            V(cc)          p (gm/cc)         a
M-0- 1
M-0- 2
M-0- 3
M-0- 4
M-0- 5
M-0- 6
M-0- 7
M-0- 8
M-0- 9
M-0-10
S-0- 1
S-0- 2
S-0- 3
S-0-- 4
.S-0- 5
S-0- 6
S-0- 7
S-0- 8
S-0- 9
S-0-10
S-0- 11
S--0-12
S-0-13
D-0- 1
D-0- 2
D-0- 3
D-0- 4
.86
.86
.86
.86
.86
.86

.372
.372
.372






.74
.74
3.66
3.66
5.. 16
5.16
8.55
3.66
0.86
3.66
NA
t -» r\
1.053
1.053
1.143
1.143
1.217
1.217
1.053
1.053
1.053
1.217
1.077
1.139
1.11
1.11
1.11
1.139
1.074
1.108
1.13
1.016
1.13
1.108
1.108
1.997
1.894
1.997
1.997
,29
.39
.35
.25
.25
.26
.29
.40
.27
.27
.34
.45
.25
.40
.20
.19
.22
.19
.18
.44
.23
.19
.16
.25
.26
.23
.30
                        120

-------
(Table 4. la continued)
&un No.
M-S-1
M-S-2
M-S-3
M-S-4
S-S-1
S-S-2
S-S-3
S-S-4
S-S-5
S-S-6
S-S-7
N-S-1
N-S-2
N-S-3
N-S-4
N-S-5
V(cc)
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
p (gm/cc)
1.432
1.202
1.290
1.290
1.128
1.128
1.1233
1.0655
1.0655
1.0655
1.1233
1.080
1.080
1.179
1.179
1.179
u (fps)
0.294
0.190
0.236
0.318
0.350
0.292
0.244
0.143
0.152
0.242
0.156
.210
.181
.240
.250
.3
a
.265
.265
.22
.23
.235
.25
.22
.255
.255
.25
.26
.21
.25
.22
.225
.230
          V  = volume of waste discharged
          p  = overall density of waste discharged
          tt  = observed entrainment coefficient
          u  = velocity of waste at discharge point
                           121

-------
                       TABLE 4. Ib

              Summary of Experimental Parameters
Run No.
Nj-0-  1
Nj-0-  2
Nj-0-  3
Nj-0-  4
Nj-0-  5

Sj-0-  1
Sj-0-  2
Sj-0-  3
Sj-0-  4
Sj-0-  5
Sj-0-  6

Nj-S-  1
Nj-S-  2
Nj-S-  3
Nj-S- 4
Nj-S-  5
Nj-S- 6
Nj-S- 7
Nj-S- 8
Nj-S- 9
Nj-S-10
Nj-S-11
D. (in)
,0725
,0725
,0725
0725
0725
0725
0725
0725
125
125
125
0725
0725
0725
0725
0725
0725
0725
0725
0725
0725
0725
U. (ft/sec)
3.86
3.86
3.86
3.86
3.86
2.05
2.05
2.05
.593
.593
.593
3.7
3.7
3.7
3.7
3.2
3.7
3.2
3.7
3.2
3.2
3.2
U.(ft/sec) k=U./
D J
.442
.432
.238
.275
.216
.142
.146
,146
.145
.146
.140
.150
.464
.276
.135
.141
1.03
.141
.341
.258
..45
.3
8.73
8.95
16.20
14.00
17.85
14.42
14.05
14.05
4.09
4.06
4.23
24.64
8.00
13.40
27.40
22.70
3.60
22.70
10.85
12.40
7.12
10.65
Ub p(gm/cc) F
1.1455
1.1455
1.1455
1.1455
1.1455
1.030
1.030
1.030
1.030
1.030
1.030
1.134
1.134
1,134
1.134
1.163
1.163
1.163
1.163
1,163
1.163
1.163
18.40
18.40
18.40
18.40
18.40
690
690
690
3.5
3.5
3.5
19.00
18.00
18.00
18.00
9.00
12.00
9.10
12.00
8.70
8.70
8.85
                                   122

-------
(Table 4. Ib continued)
Run No.
Sj-S-
SJ-S-"
Sj-S-
Sj-S-
Sj-S-
1
2
3
4
5
D. (in)
.0725
.0725
.125
.125
.125
Uj(ft/sec)
2.05
2.05
.593
.593
.593
Ub(ft/sec)
.147
.146
.153
.142
.138
17.
17.
3.
4.
4.
k
00
12
87
18
30
p(gm/cc) F
1.
1.
1.
1.
1.
03
03
03
03
0
0
0
0
030
540
540
2.
3.
3.


6
3
3
                D.   = ID of discharge tube



                U.   = velocity of discharge



                U,   = horizontal velocity of discharge tube



                p    = density of waste
                        7       -  _
                    = U7/g - - - D.
                        J  B     p       1
                             123

-------
                       TABLE 4. Ic

               Summary of Experimental Parameters

Run No.            p(gm'/cc)          u (ft/sec)     a
                                                  .45
                                                  .34
M.,-0-1
s2-o-i
M2-S-1
M2-S-2
s2-s-i
S2-S-2
S2-S-3
1.171
1.138
1.138
1.060
1.060
1.1233

,0983
.0865
.095
.126
.0716
                 p =  density of waste
                 u =  velocity of waste at discharge point
                 a =  observed entrainment coefficient
                                124

-------
Table 4. 2 a.  Density Stratification for Runs M-S, S-S and N-S
Run
y
0. 0
0. 083
0. 166
0. 250
0. 333
0.416
0. 500
0. 583
0. 666
0. 750
0. 833
0. 917
1. 000
1. 083
1. 168
M-S-1-2
P
0. 9911
0. 9911
0. 9911
0. 9911
0. 9911
0. 9911
0. 9913
0. 9922
0. 9938
0. 9949
0. 9958
0. 9965
0. 9971
0. 9975
0. 9978
M-S-3
P
0. 99125
0. 99125
0. 99125
0. 99128
0. 99142
0. 99176
0. 99278
0. 99395
0. 99505
0. 99588
0. 99650
0. 99695
0. 99725
0. 99755
0. 99776
M-S-4
P
0. 99182
0. 99183
0. 99185
o. 99190
0. 99200
0. 99225
0. 99280
0. 99395
0. 99505
0. 99588
0. 99650
0. 99695
0. 99725
0. 99755
0. 99776
                             125

-------
(Table 4.2a continued)
 S-S-1-2
S-S-3
S-S-4-5
S-S-6
S-S-7
0. 9959
0. 9959
0. 9959
0. 9959
0. 9959
0. 9960
0. 9961
0. 9963
0. 9964
0. 9966
0. 9967
0. 9969
0. 9970
0. 9972
0. 9976
0. 99388
0. 99389
0. 99390
0. 99391
0. 99398
0. 99440
0. 99498
0. 99537
0. 99572
0. 99600
0. 99625
0. 99645
0. 99660
0. 99669
0. 99672
0. 99422
0. 99422
0. 99422
0. 99422
0. 99430
0. 99450
0. 99498
0. 99537
0. 99572
0. 99600
0. 99625
0. 99645
0. 99660
0. 99669
0. 99672
0. 99280
0. 99280
0. 99280
0. 99281
0. 99285
0. 99297
0. 99330
0. 99386
0. 99455
0. 99530
0. 99595
0. 99651
0. 99695
0. 99724
0. 99745
0. 99225
0. 99228
0. 99233
0. 99245
0.99265
0. 99295
0. 99335
0. 99380
0. 99435
0. 99490
0. 99548
0. 99607
0. 99652
0. 99684
0. 99715
                                126

-------
(Table 4.2a continued)
             N-S-1
N-S-2
N-S-3-4-5
0. 99315
0. 99315
0. 99315
0. 99315
0. 99316
0. 99321
0. 99330
0. 99345
0. 99368
0. 99406
0. 99442
0. 99480
0. 99519
0. 99550
0. 99580
0. 99285
0. 99285
0. 99285
0. 99287
0. 99289
0. 99300
0. 99317
0. 99344
0. 99368
0. 99406
0. 99442
0. 99480
0. 99519
0. 99550
0. 99580
0. 99253
0. 99253
0. 99253
0. 99255
0. 99262
0. 99281
0. 99305
0.99342
0. 99368
0. 99406
0. 99442
0. 99480
0. 99519
0. 99550
0. 99580
                                 127

-------
                            Table 4. 2b.  Density Stratification for Runs N.-S and S.-S
                                                                             J         J
tv
oo
N.-S-l
J
0. 99205
0. 99205
0. 99205
0. 99205
0. 99205
0. 99235
0. 99280
0. 99343
0. 99435
0. 99557
0. 99645
0. 99713
0. 99765
N.-S-2-3-4
J
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

98960
98986
99025
99080
99155
99242
99350
99435
99510
99572
99630
99680
99730
N.-S-5-6
J
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

99500
99500
99503
99510
99521
99532
99548
99563
99581
99608
99621
99643
99668
N.-S-7

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
J
99550
99552
99553
99555
99560
99562
99569
99575
99581
99591
99600
99610
99625
N,-S-8

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
J
99550
99552
99553
99555
99560
99562
99569
99575
99581
99591
99600
99610
99615
N.-S-9-10
J
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

99255
99260
99272
99295
99332
99372
99425
99480
99540
99608
99678
99748
99823
N.-S-ll
J
0. 99333
0. 99333
0. 99340
0. 99360
0. 99390
0. 99430
0. 99476
0. 99530
0. 99590
0. 99652
0. 99720
0. 99790
0. 99865

-------
(Table 4.2b continued)
S.-S-l
J
0. 98900
0. 98900
0. 98900
0. 98912
0. 98985
0. 99U2
0. 99335
0. 99488
0. 99612
0. 99710
0. 99772
0. 99808
0. 99925
S.-S-2
J
0. 99020
0. 99020
0. 99021
0. 99025
0. 99065
0. 99165
0. 99335
0. 99488
0. 99612
0. 99710
0. 99772
0. 99808
0. 99925
S.-S-3
J
0. 98938
0. 98938
0. 98940
0. 98960
0. 99022
0. 99121
0. 99250
0. 99390
0. 99520
0. 99635
0. 99720
0. 99795
0. 99820
S-S-4-5
0. 99065
0. 99065
0. 99065
0. 99072
0. 99105
0. 99175
0. 99280
0. 99395
0. 99505
0. 99617
0. 99700
0. 99765
0. 99850
                                 129

-------
Table 4.2c  Density Stratification for Runs M -S and S -S
                                             J_>        L*
M2-S-1
0. 99438
0. 99439
0. 99439
0. 99440
0. 99441
0. 99448
0. 99460
0. 99475
0. 99500
0. 99530
0. 99565
0. 99615
0. 99670
0. 99710
0. 99744
M -S-2
S--S-1
L-t
0. 99163
0. 99163
0. 99165
0. 99165
0. 99165
0. 99167
0. 99168
0. 99173
o. 99190
0. 992ZO
0. 99258
0. 99315
0. 99383
0. 99455
0.99542
S2-S-2
0. 99550
0. 99551
0. 99552
0. 99552
0. 99554
0. 99558
0. 99564
0. 99573
0. 99582
0. 99592
0. 99602
0. 99613
0. 99627
0. 99640
0. 99655
S2-S-3
0. 99291
0. 99293
0. 99294
0. 99297
0. 99300
0. 99312
0. 99337
0. 99380
0. 99435
0. 99490
0. 99548
0. 99607
0. 99652
0. 99684
0. 99715
                              130

-------
and finally to a convective vortex ring.  It was also noted in the experi-
ments that the shape of the cloud could depend on the injection mode.  A
single well formed cloud was  not always produced;  every once in a while,
a cloud consisted of a better shaped front with some residue behind it,
similar to the dirty thermal found by previous investigators. Although
there exist anomalies in the experiments,  such as dirty thermals,  in
general the cloud was of a shape  which can  be  best described by a hemi-
sphere.  Most significant  of all,  the experiments showed no  significant
and consistent .differences among different waste materials,  with or
without solid particles  settling out of the cloud.
In the integral technique used in the formulation of Barge Operation 1,
one of the most important items requiring experimental determination is
the entrainment coefficient.  From the conservation of mass equation, by
assuming  no settling, small density difference between the  cloud and  the
ambient and that the entrainment is  only through the front part of the
hemispherical shaped cloud, the entrainment coefficient can be easily
shown to be  equal to the  tangent of half of the angle the cloud spreads,
i.e., a  = —.  Strictly speaking, — can be taken as the entrainment coef-
ficient only if the assumptions  are fulfilled.  From the general observa-
tions made in the experiments,  it is believed that  this estimate for the
entrainment coefficient is the best available.  The estimates of entrain-
ment coefficient from experimental  data are shown in Table 4. la.  It varies
from 0.16 up to 0.45,  with most of its values  around 0.24.

From simple dimensional analysis,  it can be shown that the entrainment
rate depends on the buoyancy and vorticity.  However,  no consistent
definite  correlation has been found in  the present investigation.  It is
speculated that the entrainment rate is related to the structure and the
development of the vorticity inside the cloud,  a detail which is not
                                131

-------
included in the present integral approach.  As will be shown later,  the
entrainment rate is important to the accuracy of the  prediction of the
waste material's final position in a stratified ambient.  The entrainment
rate and its relation to the buoyancy, vorticity and other parameters
should be further investigated.

Since in most cases the ambient density in the ocean is stratified due to
temperature and salinity variations, the adequacy of the mathematical
model depends on its verification by the experiments in a stratified
ambient. Experiments  with instantaneous  release  of a three-dimensional
slug in a stratified ambient are summarized in Table 4. la. Selected
detailed results are shown in Figures 4.3.1,1-6, consisting of graphs of
i)  centroid locations vs.  time,  ii) ambient stratification,  iii) vertical
size vs. time and iv) horizontal size vs. time.  Comparison with numer-
ical predictions are also shown.

In the  experiments for  runs with uniform ambient condition, the cloud always
reached the bottom and spread out horizontally there.  For runs with a
stratified ambient,  the cloud may or may not reach the bottom,  depending
on the strength of the stratification.  If the cloud did not  reach the bottom,
it  was observed to first descend, then halt, return upward and oscillate
very slowly.  In general the cloud had initiated its  horizontal collapse
before it came to  the first halt.  From the  general  observation of the
experiments, the  transition from convective descent to dynamic collapse
was found to be a  continuous  process; the shape  of  the cloud changed con-
tinuously from approximately hemispherical to approximately ellipsoidal
near the neutrally  buoyant position.  There was  no clear demarcation to
separate the convective descent and dynamic  collapse phases.  However,
the experiments clearly showed the general characteristics such as
entrainment,  convective descent and collapse as postulated in the for-
mulation .
                                132

-------
OJ
OJ
                                                                         THEORY

                                                                         EXPERIMENT
                                                                                          5,0
                                           t, TIME , ft.

            Figure 4.3.1.1 Comparison of experiment with numerical model (Run N-S- 1 )

-------
                                                               THEORY
                                                           o   EXPERIMENT
                                                   10.0
                                t, TIME ,ft.
Figure 4.3,1,2  Comparison of experiment with numerical model (Run N-S-2)
15,0

-------
     o.o
     0.2
     0.4
LU
Q
DC
O
O
     0.6
     0.8
ce
s
^    i.o
      1.2
      1,4
       0.990      0.992
                                                  RUN  S-S-5
0.994      0-996      0.998

  pt gm/cc.
         Figure 4.3.1.3a  Ambient density  stratification
                          for Run S-S-5
1.000
                            135

-------
       0.4
       0.3
    LJ
    M
UJ
    J-
    cr
    UJ
        0,1 -
       o.o
              RUN  S-S-5
          0.0
5,0
                                      THEORY


                                       EXPERIMENT
I OX)
15.0
                                           t, TIME , sec.
          Figure 4. 3. 1 . 3b  Comparison of experiment with numerical model (Run S-S-5)

-------
   0.4
-   0.3
LJ

N

0)
o
N

o:
o
   0.2
    O.i
    0.0
            RUN S-S-5
       0.0
5.0
                                                                       THEORY


                                                                        EXPERIMENT
10.0
ISO
                                        t, TIME, sec.



        Figure4.3.1.3c  Comparison of experiment with numerical model (Run S-S-5)

-------
u*
00
                                                                          THEORY


                                                                     o    EXPERIMENT
                                                                100
                                              t, TIME , sec.


             Figure 4.3.1.3d Comparison of experiment with numerical model (Run S-S-5)
ISO

-------
UJ
        0,8
  RUN   S-S-5

SOLID PARTICLE
CONCENTRATION
FLUID CONCENTRATION
                                          t, TIME, sec.

           Figure 4. 3. 1. 3e Waste concentrations from numerical model (Run S-S-5)

-------
                                                             THEORY
                                                             EXPERIMENT
                          5.0
10,0
                                 t,  TIME , sec.
Figure 4.3.1.4  Comparison of experiment with numerical model (Run S-S-6)
15.0

-------
-  0.8  -
ui

5


6
DC
o
o
o
o

I-
a:
UJ
                                                                     THEORY


                                                                 o   EXPERIMENT
                                                           10.0
                                         t, TIME ,sec.



        Figure 4.3.1.5  Comparison of experiment with numerical model (Run M-S-1)
15,0

-------
                                                             THEORY
                                                             EXPERIMENT
                         5.0
10,0
150
                              t, TIME ,sec.
Figure 4.3. 1.6 Comparison of experiment with numerical model (Run M-S-2)

-------
It is interesting to note that dirty thermals  were never found in the runs
with stratified ambient.  This could be explained in terms of the stability
in the flow field.  In the uniform density runs, the density of the cloud is
always larger  than the ambient, hence it is always unstable, and a devia-
tion of the cloud shape caused by the initial injection tends  to be magnified
by the unstable condition.  However, in a stratified ambient, when the
cloud penetrates the neutrally buoyant position, the stability condition
changes from that of unstable  to stable, and any deviation in shape tends
to be restored.

4.3.2    Continuous Discharge From a Horizontal Travelling Vertical Jet

Tables 4. Ib and 2b summarize the experiments simulating Barge Operation
2 involving  a jet type discharge.  Selected detailed experimental results
are shown in Figures 4.3.2.1-8 where the predictions based on the mathe-
matical model are also shown.  It is readily observed that  the  comparison
between the model and the experiments is very good.

Two different materials  were used  in the experiments, namely salt water
and sewage sludge.   Experiments with a salt water jet in a uniform density
were used to test  the adequacy of the mathematical model in the simplest
situation.  Salt water jet  in a stratified ambient was used to delineate the
influence  of the density stratification on the  behavior  of the jet.  The experi-
ments using sewage sludge  were employed to verify the compatibility of the
model for handling both the ambient density  stratification and  the settling
of solid particles .

In the experiments performed the velocity ratio of the jet to the cross
current ranges from 3.6  up to 24.64,  while  the densimetric Froude number
varies from 2.6 up  to 1840.

The experiments simulating Barge  Operations 1 and 2 will  be  further dis-
cussed and  used to verify the mathematical models in Section  5.
                                143

-------
   0.0
UJ
CC
o
o
o
o

H
tr
UJ
   0.5
   1.0
                               I
                                                                PREDICTED  JET

                                                                TRAJECTORY


                                                                TRACE  OF JET

                                                                BOUNDARY
     0.0
 0.5                        I JO


x , HORIZONTAL  COORDINATE ,ft
1.5
      Figure 4.3.2.1  Comparison of experiment with numerical model (Run N.-O- 1)

-------
        0.0
Ul
     UJ
     o
     ac
     o
     O  r\ 5
     o  u
     o

     H
     cc
     UJ
         .0
           0.0
                                                                RUN  Nj-0-2
                                 PREDICTED JET

                                 TRAJECTORY


                                  TRACE  OF JET

                                  BOUNDARY
0.5                       I,O

x, HORIZONTAL  COORDINATE , ft
1,5
           Figure 4.3.2.2 Comparison of experiment with numerical model (Run N.-O-2)

-------
  LU
  h-
  O
  or
  O
o--
 O
 I-
 o:
 LU
                                                             PREDICTED  JET

                                                             TRAJECTORY
                                                             TRACE  OF JET

                                                             BOUNDARY
                               05                       1.0

                              x , HORIZONTAL  COORDINATE , ft
        Figure 4.3.2.3  Comparison of experiment with nvimericai model (Run S.-O-l)

-------
   0.0
111
o
cc
o
o
o
o

H-

QC

LiJ
0.5
      0.0
                                                          RUN Sj-0-2
                                                        -o
                                                         PREDICTED JET

                                                         TRAJECTORY


                                                         TRACE  OF JET

                                                         BOUNDARY
                                                         I
                           0.5                       1,0

                          x, HORIZONTAL   COORDINATE ,ft
      Figure  4.3.2.4 Comparison of experiment with numerical model (RunS.-O-2)
1,5

-------
         ao
00
      LJ
      h-
      a
      tr
      o
      o
      o
      o

      h-
      ce
      UJ
         0.5
                                                                 RUN  Nj-S-l
                   PREDICTED JET TRAJECTORY


                   TRACE  OF JET BOUNDARY
           0.0




           Figure 4. 3. 2. 5
         0.5                       1,0

        x , HORIZONTAL  COORDINATE , ft


Comparison of experiment with numerical model-(Run N.-S-l)
1.5

-------
        0.0
vO
    UJ
    Q
    a:
    o
    o
    o
    <
    o
    h-
    
-------
LU
o
a:
o
o
o
o

h-
(T
LU
                                                               RUN  Sj-S-4
                                                          $S SOLIDS SETTLING

                                                                     OF JET    ^
                                                              PREDICTED  JET

                                                              TRAJECTORY
                                                              TRACE  OF JET

                                                              BOUNDARY
                             0.5                       1,0

                            x , HORIZONTAL  COORDINATE , ft
      Figure 4.3.2.7 Comparisoa of exper-iment with numerical model (Run S.-S-4)

-------
   0.0
llj
a
tr
o
o
o
o


ft
UJ
   0.5
      0.0
                                                            PREDICTED  JET

                                                            TRAJECTORY


                                                            TRACE  OF JET

                                                            BOUNDARY
                                                         1
  0.5                       1.0

x, HORIZONTAL  COORDINATE, ft
1.5
       Figure 4.3.2.8 Comparison of experiment with numerical model (Run S.-S-5)

-------
4,, 3. 3       Instantaneous Release of Two-Dimensional Puff

Tables 4. lc and 2c  summarize the pertinent parameters and density
stratifications for experiments involving the instantaneous  release of a
two-dimensional puff.  The entrainment coefficient evaluated from the
experiments in a uniform ambient was found to be close to  0. 3536 as
found by Richards (1965) who used salt water in a uniform ambient.
Again these runs also showed the general characteristics of entrainment,
convective descent,  and collapse  of the two-dimensional puff as
postulated in the mathematical model.
                                152

-------
                            SECTION V

            COMPARISON  OF  EXPERIMENTS  WITH THE
                     MATHEMATICAL MODEL
In this section the predictions based on the mathematical model developed
in Section III will be compared with the results of the  experiments reported
in Section IV.  In the following, comparison will be made for Barge Opera-
tions  1 and 2.  The three experiments performed for the two-dimensional
thermal  were exploratory in nature and no comparison will be made herein.

5 . 1    Barge Operation 1

In the comparison,  the initial velocity, volume,  gross density of the dis-
charge and density stratifications obtained directly from experimental data
are used in the numerical simulation. The fall velocity of the particles  was
estimated by putting a small amount of very dilute  waste material in the tank
and timing the time needed for the particles  to pass a fixed distance.  For
the mud  and sewage sludge the fall  velocities are found to be less  than 0. 005
fps and 0. 02 fps  respectively.  The density and concentration of the solids
are estimated.  For the various coefficients needed for the numerical simu-
lation, the Tetra Tech suggested values are  used except for the  entrainment
coefficient which is allowed to vary for different experiments and  the best
fit value is  chosen.   The best fit entrainment coefficients for the stratified
ambient  runs are presented in Table  4. la and are found to be between 0.21
and 0.265.

All the experiments with stratified  ambient listed in Table 4. la  have been
compared with the mathematical predictions.  However, to avoid excessive
repitition only six selected runs are presented in Figures  4. 3. 1. 1-6.  All
other runs compare at least as well as those  selected.  The positions of
the centroid of the waste cloud are  plotted vs. time and presented for all
the runs selected.   Further information such as  ambient density stratifica-
tion,  gross size  and variation of concentration inside  the cloud are shown
only for  RUN S-S-5.
                                153

-------
la Figures 4.3.1.1-6, the waste clouds are seen to descend and then
oscillate about a neutrally buoyant position.  The comparisons between
the experiments and the theory are found to be fairly good.  Note that
in spite of some uncertainty in the values  of some of  the coefficients,  it
seems that the positions of the cloud can be predicted with good accuracy
by only varying the entrainment coefficient between 0.21 and 0.265 in
the present investigation.

Figure 4.3.1.3a shows a typical ambient density stratification used in the
Experiments .

In Figures 4. 3 . 1. 3b and 4. 3 . 1. 3c,  the gross size of  a sewage  sludge cloud
is compared with the numerical simulation. The comparison for a  , the
vertical size, is good.  However,  the experimentally obtained horizontal
size b is larger than the theoretical prediction beyond a certain time.
Since the  experiments were performed in  a 9 inch wide tank, the discrep-
ancy in the prediction of b  is believed to be from the influence of the
limited width.  The presence of the walls-forced  the cloud to spread more
in the  other directions which led to the apparent excess expansion observed
in the  experiment.  Note that salt water was used in the experiments for
RUNS N-S-1 and N-S-2.  No significant difference was observed between
these runs and those with solid particles in the cloud except for the phenom-
enon of settling.

Figure 4.3.1.3e shows the fluid and solid concentrations in the cloud as pre-
dicted by  the mathematical model for RUN S-S-5. The  concentrations are
seen to decline very rapidly in the early stage of convection due to entrain-
ment.  This  rapid decline  of the solid concentration suggests that the
phenomenon  of hindered settling would not be of major concern in the
selection  of the settling coefficient  B.. as  discussed in Section 3. 2. 1.
No experimental data is obtained on the concentrations.  However,  since
the size of the  cloud is directly related to the concentration during convec-
tion when settling was minor,  the favorable  comparison on the  position and
size between prediction and experiment indicates that the  model is adequate.
                               154

-------
From general observations of both the numerical simulation and the
experimental data, it is found that the initial gross density and velocity
of the waste  cloud play important roles in the convection phase. For a
waste cloud with high density, the initial velocity is of less importance.
However, if  the gross density is nearly the same as the ambient density,
then the influence of the initial velocity dominates.

In the numerical simulation for comparison with the experiments the
density and concentration of the  solid particles were estimated. However,
it was  found  that changes of the inputs for solid density and concentration
over a factor of two did not change the results significantly.  The reason
is that the fall  velocities are  very small for the mud and digested sewage
sludge used in  the experiments .   The mechanics is affected much more
by the  dilution  and entrainment than  by settling in the whole period of con-
vection and collapse.  Hence  the gross density is made more important
rather than the solid density and concentration. However, regarding the
final phase of long term diffusion of  the waste material, accurate informa-
tion on the concentration would be needed to predict the concentration at
the end of dynamic collapse for input to the long term diffusion model.

5 . 2    Barge Operation 2

In the comparison between predictions and experiments for Barge Opera-
tion 2,  the jet discharge characteristics and ambient conditions used in
the predictive model are those measured in the experiments.  The empir-
ical coefficients  used are those built into the program.  The concentration
and density of the solid particles in  the discharge were estimated based
on gross measurements.  For comparison, the centerline trajectories of
the jet obtained by numerical  simulation are plotted against experimental
data of the jet boundaries. Although all runs  were compared, only eight
representative runs are selected and presented in Figures 4.3.2.1  to
4.3.2.8 to avoid excessive repetition.
                                155

-------
For  showing the influence of the ambient density and solid particles on the
gross behavior of the jet,  the data will be presented in the order of N.-O,
S.-O, N.-S and S.-S successively,  The designations are for  salt water jet
 J     J        J
(N.)  and sewage sludge jet (S.) in a homogeneous density (0) or density
stratified (S) cross current respectively.  The results of the first group
are shown in Figures 4.3.2.1-2. The jet is  seen  to bend over in the direc-
tion  of the cross  current and it tends to reach the  bottom. Figures
4.3.2.3-4 show that the solid particles inside the  sewage sludge jet do
not change the jet behavior significantly.  The effects  of density stratifica-
tion  on the salt water jet are shown in Figures 4.3.2.5-6. Figure 4.3.2.5
shows  that the salt water jet is trapped in a neutrally buoyant position; the
jet first  overshoots the neutrally buoyant position; however,  it is forced
back by the density stratification.  Figure 4.3.2.6 does  not show the
influence of the density stratification since the jet has  not reached  the posi-
tion  of strong density gradient yet.  Figures  4.3.2.7-8 show clearly that
the main core of  the jet  is trapped in a neutrally buoyant  position while
particles are settling out of the jet as shown  in the figures.

For  another check,  two  runs were made to compare with Fan's (1967)
experimental data and theoretical predictions.   The comparisons are
found to  be very good as shown in Figure 5. 1.

From, the comparisons of numerical simulation  to the  experimental data it
is found  that the jets with or without solid particles behave closely to what
is assumed in the formulations. In the experiments,  the  development of
horse-shoe profiles as found by other investigators were  observed; how-
ever, the assumption of top-hat profiles appears adequate to provide useful
predictions.  Hayashi  (1971) reported that a bent-over plume splits  sideways
into  two  concentrated regions with a clear space between  them when the
upward injected plume comes close to the free surface.  This phenomenon
was not observed when the jet plume was trapped in a neutrally buoyant
position in a density stratified  ambient in the present investigation.  The
                               156

-------
200
                                 I   I	1	!	1	1	1	I
                                    FANS  THEORY
                                    TRACE OF JET BOUNDARY
                                    (0.5lem ORIFICE, PHOTO N0.763O.!}
                                 X  PRESENT THEORY
                                 •  EXPERIMENT
                                                            100
  a)
         100
                           X
                           •
        FAN'S  THEORY
        TRACE OF JET BOUNDARY
          {PHOTO NO. 7628.10)
        PRESENT  THEORY
        EXPERIMENT
        f     I      I     |._    1
                                                               50
b)
F=20
 Figure 5. I  Comparison of present theory with Fan's
               experiments  (from Fan (1967))
                            157

-------
free surface can be considered as a  position with an infinite density
gradient and perhaps if the density stratification is  sufficiently strong in
the ambient the phenomenon of splitting a plume  into two separated regions
may occur.

5.3    Discussion
From the above comparisons, it can be concluded that the mathematical
model  developed is able to provide good estimates  on the behavior of wastes
discharged from barges.  Perhaps the most important verification which
can be inferred from these experiments is that the general behavior of the
buoyant (or sinking) elements and  jets are not materially affected if  at all
by the  presence of solid particles  of the type encountered in typical wastes
(those  with relatively small settling velocities).
                                 158

-------
                           SECTION VI
                     EXAMPLE  SOLUTIONS

The computer program based on bhe mathematical model developed in
Section III has been used to obtain the dispersion characteristics in a
variety of cases.  These will be presented in this section.

Before the computer  program can be used, it is first necessary to specify
a) the ambient conditions, including the currents, diffusion coefficients,
and density stratification, b) the waste characteristics,  including the
density,  size, and  solid characteristics, c) the discharge method and other
control parameters,  and d) the  various  numerical coefficients.  Examina-
tion of the list of inputs presented in Appendix A reveals that a great
number of parameters are needed for the complete  specification of each
case.  A parametric  study based  on this model, although highly desirable,
would entail a very large number  of cases and is beyond the scope of the
present investigation.  While a  parametric study should be  performed in
the future, in the following,  only  representative cases are presented to
a) test the model and program and b) delineate  the effects of some of the
more important parameters.

Tables 6.1, 6.2, and 6. 3 summarize the parameters used in the various
example runs for Barge Operation 1, 2,  and 3 respectively.

The computations for most of the  cases are terminated at the conclusion
of the dynamic collapse  phase.  A few representative cases are selected
from the tables  for which the computations are allowed to proceed further
into the long term diffusion phase.

The run designations used for identification consist of three entries, e.g.
D-S-6.  The first letter signifies  the barge operation (D for bottom open-
ing hopper dump, J for jet discharge, and W for discharge  into the barge
                                159

-------
                        TABLE 6. 1
         SUMMARY OF PARAMETERS OF  RUNS MADE
                FOR  BARGE OPERATION  1
RUN NO. p_ .      Remarks
D-L-1
D-L-2
D-L-3
D-L-4
D-L-5
D-JL-6
D-L-7
D-L-8
D-JL-9
D-L-10*
D-L-11
D-S-1
D-S-2
D-S-3*
D-S-4
D-S-5
D-S-6
D-S-7
D-S-8
D-S-9
D-S-10
D-S-11
D-S-12
D-S-13
D-S-14
a
1.
1.
1 .
1 .
1.
l.
l .
l.
1 .
l .
1 .
1 .
1 .
1 .
1 .
1.
1 .
1.
1 .
1.
1.
1 .
1 .
l .
1 .
030
029
028
02?
026
025
024
0235
024 UAO = 1
024 UAO = 1, WAO = 1
030 U(l) = l, W(l) = l
028
027
026
025
024
0235
024 UAO = 1
024 UAO = 1, WAO = 1
026 V(l)=0
026 V(l) = 5
026 V(l)=5, H=65
026 RB = 10
024 FI=10
024 FI=1
                            160

-------
Table 6. 1 (continued)

RUN NO.  p         Remarks
          3. 1

D-S-15    1.024    FRICTN = 0.5
D-S-16    1.024    FRICTN=0.
D-S-17    1.026    CFRIC = 0.01
D-S-18    1.026    ALPHAC = 0.1
D-S-19    1.026    ALPHAC = 0.

D-LL-1* 1.023    V(l) = 0.6  Collapse phase bypassed

D-F-1    1.0231   V(l) = 0.6
                    UAO=1, Y(F) = 0, 20,40, 100, ROA(I)=1. 02, 1.02, 1.03,
                    1 . 035, YK1 = 18, YK2-22, YK3-38, YK4=42, YU = 20,
                        20, YE=40
 D-FS-2*            Same as D-FS-1 except GAMA1 = 0.02
 D-2S-1             UAO=1, YU=30, YW=40, YE=50, ROA(I)=1 . 023, 1 . 023,
                    1. 024, 1. 0245
   Calculations carried to long term diffusion phase
                               161

-------
                          TABLE 6.2
          SUMMARY OF PARAMETERS OF  RUNS MADE
                 FOR  BARGE  OPERATION  2
RUN NO.  P  .        Remarks
J-L-1
J-L-2
J-L-3
J-L-4
J-L-5
J-S-1
J-S- ;.
J-S.-3
J-S-4
J-5-5
J-S-6V
J-S-7
J-S-8
J-S-9
J-S-10
J-S- 11
J-S-12
OL
1.
1.
1.
1.
1.
1.
1.
1 .
1.
1 .
1.
1 .
1.
1.
1.
1.
1.
JL
024
0235
0231
024
024
024
0235
0231
0230
024
024
0235
0235
0235
0235
0235
02311



UAO = 1
UAO = 1, WAO = 1


Collapse phase bypassed

UAO = 1
UAO=WAO = 1
BC(1) = 1
U(l) = 10
CY(1)=20
UB = 5
THETA2(1)=45

J-F-1     1.024    SAI=225
J-F-2     1.024    SAI=225, UAO=1,
J-2S-1    1.024    UAO=1,YU=30, YW=40,  YE=50, UB = 5

J-4S-1    1.024    UAO = 1, WAO = 1

* Calculations carried to long term diffusion phase

                              162

-------
                          TABLE 6.3
          SUMMARY OF PARAMETERS OF  RUNS MADE
                  FOR. BARGE OPERATION 3
RUN NO.  P
Remarks
W-L-1
W-L-2
W-L-3
W-L-4
W-L-5
1
1
1
1
1
a J.
.0232
.0230
.0232
.0232
.0232


BB = 10
QD = 100
UB=5
W-S-1     1.0232
W-S-2*   1.0230
W-4S-1   1.0232
UB=5
  Calculations carried to long term diffusion phase
                               163

-------
wake).  The second letter  signifies the solid whose characteristics are
listed in Table 6.4.  The last number is simply a  numerical sequence
within each group.

i)   Ambient density stratification.

The ambient density  ROA(I)  is specified  by  four  points at depths Y(I)
taken to be 0.  , 40. , 60. , and 100 feet.  The density at the surface and
40 foot depth is  1.023 gm/cc.  The density p  ,  at 60 and 100 feet varies
from  1 . OZ3 to 1.030 for different runs.  The  value of p  ,  is  indicated in
the tables.  For some runs, a density gradient is  inserted between 60 and
100 feet.  In such cases,  ROA(I)   is provided in the tables.   A few runs
also use different values for  Y(I).  These are also indicated in the tables.

ii) Ambient currents,   (see Figure 3.6.1)

The ambient currents are  specified by the parameters  YU,  YE, YW,
UAO,WAO. These are taken to be 50., 50., 100.,  100.,  0.,  0., respec-
tively unless specified otherwise in the remarks column.

iii) Vertical diffusion coefficients,  (see Figure 3.6.1)

The vertical diffusion coefficient profile is specified by the parameters
YK1,  YK2,  YK3,  YK4,  AKY1, AKY2,  AKY3.   These are taken  to be
35.,  45., 55., 65., 0.05,  0.005, 0.01 respectively unless specified
otherwise in the remarks column.

iv)  Waste characteristics

The waste  characteristics  are specified by its gross density  ROO,  and
the solids characteristics.  The  characteristics for the various solids are
summarized in Table 6.4.
                                164

-------
                  TABLE 6.4
SUMMARY OF SOLID WASTE CHARACTERISTICS
          USED IN SIMULATION RUNS
esignation ROC CS
(gms /cc)
S
L
LL
F
FS
2S

4S



1
1
1
1
1
1

1



. 12
.3
.
.05
. 10
. 13

.2



0.
0,
0.
0.
0.
0.
0.
0.
0.
0.
0.
15
2
2

2
2
1
1
2
15
005
ROAS
(gms/c
1.
2.
2.
--
1.
0.
2.
1
1
2
2
8
5
5
-
0
9
5




WS
c) (ft/sec
0.
0.
0.
0.
-0.
-0.
0.
-0.
-0.
0.
0.
005
05
5

01
05
05
1
001
15
0015
                        165

-------
v)  Discharge characteristics

In Barge Operation 1,  the discharge characteristics are characterized
by  RB the radius of the waste load, and U(l),  V(l), W(l),  the velocity
components of the waste at the point of discharge.  These are taken to be
5, 0,  1,  0.  respectively unless specified otherwise in the remarks column.

In Barge Operation 2,  the discharge characteristics are characterized by
the jet radius BC(1),  discharge angle  THETA2(1)  with respect to the
vertical, discharge velocity  U(l), and discharge depth  CY(1).   These
are taken to be 0. 5, 0. , 5. ,  and 10. respectively unless  specified other-
wise in the remarks column.

In Barge Operation 3,  the discharge characteristics are characterized by
the discharge rate  QD which is taken to be 10.  In addition the barge
width  BB  and barge depth  DD are taken to be 25 and 10 respectively
unless specified otherwise .

Moreover, in Barge Operations 2 and 3,  the quantities UB, the barge
velocity,  SAI,  the barge direction, and  TIME  the discharge time are
needed.  These are taken to be  7 . 5, 180°, and 500 respectively unless
specified otherwise.
In all runs, built in coefficients are used except for runs  D-S-13  through
19  where the deviations from the built in coefficients are noted in Table
6.1.

The graphic output from the calculations for the runs  are grouped in the
order given in the tables and presented in APPENDIX B.  Each
graph is identified by the run number.  The case data are collectively pre-
sented at the beginning of the appendix before the graphs for ease of access.
                                166

-------
The computer runs presented in the tables can be  divided into three
groups:  1) runs using standard inputs for solid L, 2) runs using standard
inputs  for solid  S  and 3} runs using non-standard inputs and/or other
solids.  Within groups  1 and 2, the only quantity which varies between runs
is  the ambient density stratification parameter  p  , .  By comparison among
these runs,  the effect of ambient density stratification can be observed.
By comparing runs in group 1  with the corresponding runs in group 2,  the
effect of solid characteristics  can  be seen.  For the solid  (L)  with larger
fall velocity, the waste pool sometimes reaches the bottom and then leaves
the bottom when sufficient solids settle out.  The effect  of some  of the
other input parameters such as those  relating to ambient currents and
waste discharge characteristics can be seen by comparing ru"ns in group
3 with  corresponding runs in the first two groups.  An effort has also
been made to investigate the effect of the numerical coefficients.  Only
Barge  Operation  1  is used for  this  purpose.  Runs  D-S-13 through  D-S  19
are the same as run  D-S-3 or  D-S-5  except  for one of the coefficients.
The net effect of  these  coefficients are found to be as expected, e.g.
increasing the friction  coefficient  Fl hastens the transition from collapse
to  long term diffusion while decreasing the rate of spreading due to
collapse.  It is believed that while  the effect may be significant for  each
single  discharge,  the integrated effect for many discharges such as in the
prototype would not be  of major  influence  to the predictions.

An item of some  interest is the reentrainment coefficients  GAMA1 and
GAMA2.  Two runs D-FS- 1 (GAMA 1 = 0) and  D-FS-2 (GAMA2=0. 02 ) are
made to investigate the effect of this coefficient.  It is found that the rate
of material  accumulation on the  surface is decreased for D-FS-2.  At
the same  time, the values of x, z, a  ,  a   at the surface and those
                                    .X    Z
very near the  surface tend to be more nearly equal in  D-FS-2.  Both
phenomena are expected physically.
                               167

-------
In summary, the model predictions are all reasonable physically.  When
the coefficients are fully defined through experiments,  both in the labor-
atory and the field,  it is believed that the model will be a valuable tool
in the assessment of the physical impact of barge discharge of solid
wastes.  Even  in the present state, before the accurate determination of
some of the coefficients, the model is believed capable of predicting the
overall effects  over the long run even though for  each single discharge,
the details may not be as accurately predicted.

It should be pointed out that in the  graphs,  wherever several different
quantities are plotted versus  the same independent variable, the scale of
the ordinate for the various quantities are different.  They are automati-
cally set in such a  way as to result in graphs which span a reasonable
scale.  For comparison purposes, attention is  called to the headings
where the maximum and minimum values of each plotted variable are
noted.  It should further be mentioned that the last point plotted corres-
ponding to the largest value of the  independent variable is a fictitious
point used in setting the scale and  should therefore be disregarded.

The coordinate  system used for Barge Operation 1 is always an inertial
system with the origin attached to  the earth.  For Barge Operations 2
and 3, the origin of the coordinate system is attached to the barge which
is moving.  However, after the time when the input to the long term dif-
fusion model is completed, the motion of the coordinate system is
arrested.
                                168

-------
       Interpretation of the Results of Computations from the
       Mathematical Model for Long Term Diffusioa
The mathematical model developed for evaluating the long term
diffusion phase of the phenomenon is  based on the method of moments.
Instead of obtaining the detailed concentration of the waste (both fluid
and solid phases) in the  environment,  only  their first few moments
are obtained as functions of time and of the vertical coordinate.  This
greatly reduces the computational labor and yet retains the most
significant aspects of the solution.  The primary result of the cal-
culations in each specific case consists ,  then,  of C..(y, t),(i,j=0,l,2),
     th                                            ^
the ij   moment of the concentration defined previously in Section 3.6.2.
Their relations to the physically more meaningful quantities of cen-
troid locations x . z  ,  and variances c     a  , o~    have also been
                 o    o                 x '  z   xz
discussed in Section 3.6.2. In the following, an interpretation will be
given on the  physical  significance of each of the quantities.

a) C
     oo

The quantity  C     is  simply the total amount of waste material at
depth  y and time  t   within a  horizontal slab of unit thickness.

b) x ,  z
    o    o

The quantities x ,   and  ZQ» are x   and   z  coordinates  of the cen-
troid of the waste at  depth  y  and time t.

 ,   2     2
c) a   , a   , a
    x  '  z  '  xz

These  are  the variances of the distribution at depth  y and time  t
(see  below for further discussion).
                              169

-------
d) C
     max
This is the peak concentration at depth  y and time  t  based on the
assumption that the distribution is Guassian.

All the above quantities are self-explanatory. Their physical signi-
ficance are also clear.  However,  in the event a    ^ 0,  the  relation
between the variances o   , a.  ,  a   and the physical shape of the
waste pool is somewhat obscure.   An attempt will now be made to
clarify this aspect.

A Guassian distributed waste pool  with parameters

                    r    x    z      2
                    C  '  O'  Z0'  av  '  °7  ' av7
can be written
C
oo
, / 2 2 2
2nVa._ cr - a,_
2 2
~ax az
22 2
Ma a -a )
    x   z
                            X  Z    XZ
                                           X - X
                                              X
                                                       z - z
         2a
          xz
          2  2
         °xaz
                 x - x
By a rotation and a translation of the coordinates from x, z  to  x, ,
z,,  it is possible to remove  the terms  containing  x ,  z   and  xz in
the exponent.  The new axes  x,  z,  are then the principal axes  and
                      2     2
the corresponding  a   ,  Q   ,  then correspond to the variances in the
                    xl    Zl
principal axes whose physical interpretation is more obvious.   It can be
demonstrated that the origin of the principal axes are at  x ,  *.  with
respect to the old axis and the clockwise angle Q  which the old axes
needs to be rotated is such  that
                              170

-------
                                2a
                   tan  29 =    -> XZ  i
                              ax  "  az
It can further be shown that the  variances
                    Xl
                      2     2
                       » CT
in the  principal axes are
_ 2 2 //2 2\2
x + CTz ACTx + az j
2 ' V ' 4 ' '
a 2+a 2 '(a 2_ a 2f
V "7 / \ V T /
- .X - Z */ VJS 	 z / 4-
2
xz
2
           x,
          _  2
          az       _	_ _
           Zl    ~     2             4          xz
from which it can be seen that

              22      22      2
           a   a     =  a  a   - a
            Xi   Z,      X  Z    XZ

With the help of these equations, the physical interpretation of the
variances can be readily made.

When solid waste  such as dredge spoil is discharged into the ocean,
an item of interest is the build up of the discharged material on the
ocean floor.  In the mathematical model developed in this  investigation
based on the method of moments, the following quantities are obtained
as functions  of time.
           W       Total deposited solid

           X       x-coordinate  of centroid of deposited solid

                              171

-------
            Z      z-coordinate of centroid of deposited solid




           a       x-variance of deposited solid




           0       z-variance of deposited solid
            Z



           a       covariance of deposited solid
            xz                     r




The significance of the variances have already been discussed.


Thus, a set of principal axes can be found and the variances in these


axes obtained.  In the present situation involving deposited solids,


an additional item of  interest is the maximum height h  of the mound


built up on the ocean  floor.  This can  be  shown to be
           h  =
where p  is the porosity in the deposited solids.  In the above ex-


pression, aGuassian distribution is assumed.  If the distribution were


assumed to be more nearly uniform over the range





               t xl  l
-------
REFERENCES
Abraham, G.,  "The Flow of Round Buoyant Jets Issuing Vertically into
        Ambient Fluid Flowing in a Horizontal Direction," Proc.  of
        the 5th International Conf. of Water Pollution Research, San
        Francisco, 1970.

Abraham, G.,  van Dam, G.C., Eysink, W.D.,  Miiller, K. and Sydow,
        J.S. ,  "Full Scale Experiments on Disposal of Waste Fluids
        into Propeller Stream of Ship, " FAO Conf. on Marine  Pollution,
        Dec. 1970.

Ames, W.F., "Nonlinear Partial Differential Equations in Engineering, "
        Mathematics in Science  and Engineering, Vol. 18, Academic
        Press, 1965.

Batchelor, G.K.,  "The Application of the Similarity Theory of  Turbu-
        lence to Atmospheric Diffusion," Quarterly J. of Roy. Meteorol.
        Soc.,  Vol. 76, pp.  133-146,  1950.

Bowden,  K.F.,  "Horizontal  Mixing in the Sea Due to a Shearing Current,"
        J. of Fluid Mechanics, Vol.  21, pp.  83-95,  1965.

Bowden,  K.F.,  "Turbulence, " Chap.  VI of "The Sea" Vol. I edited by
        M.N.  Hill, Interscience Publishers, New York,  1962.

Brooks, N.H. and Koh, R.C.Y., "Discharge of Sewage Effluent from a
        Line Source  into a Stratified Ocean, " Intn. Assoc. for Hydr.
        Res. IXth Congress, Leningrad 1965.

Carmody, Thomas, "Establishment of the Wake behind a Disk, " J. of
        Basic  Engineering,  Dec. 1964, pp.  869-880.

Carter, H.H. and  Okubo, A., "A Study of the Physical Processes  of
        Movement and Dispersion in the Cape Kennedy Area, " Ref.
        65-2],  Chesapeake Bay Inst. ,  The Johns Hopkins Univ. March
        1965.

Chevray,  R. , "The Turbulent Wake of a Body of Revolution, " J. of
        Basic  Engineering,  June 1968,  pp. 275-284.

Clark, B.D. , Rittal,  W.F.,  Baumgartner,  D.J. and Byram, K.V.,
        "The Barged Disposal of Wastes, A Review of Current Practice
        and  Methods of Evaluation, " Environmental Protection Agency,
        Water Quality Office, Northwest Region, Pacific Northwest
        Water Laboratory,  Corvallis, 1971.
                                173

-------
Csanady,  G.T., "Turbulent Diffusion in Lake Huron, " J.  of Fluid
        Mechanics, Vol. 17, pp. 360-384, 1963.

Csanady,  G.T., "Accelerated Diffusion in the Skewed Shear Flow of
        Lake Currents," J. of Geophy. Res., Vol. 71, No. 2,
        pp.  411-420,  Jan.,  1966.

Defant, A.,  "Physical Oceanography, " Vol.  1,  The MacMillan Co. ,
        N.Y., 1961.

Elder, J.  W.  , "The Dispersion of Marked Fluid in Turbulent Shear
        Flow," J. of Fluid Mechanics, Vol. 5,  pp. 544-560,  1959.

Elzy, E.  and Wicks, C.E., "Transpirational Heat Transfer from a
        Cylinder  in Cross Flow  Including the Effects  of Turbulent
        Intensity, " Chemical Engineering Progress Symposium,
        Series 82, Vol. 64, pp.  150-165, 1968.

Fan,  L.N.,  "Turbulent Buoyant Jets into Stratified or  Flowing Ambient
        Fluids,"  W.M.  Keck Laboratory of Hydraulics and Water
        Resources Division of Engineering and Applied Science,
        California Institute of Technology, Pasadena,  California,
        Report No. KH-R-15, June  1967.

Fischer,  H.  B. ,  "Longitudinal Dispersion in Laboratory and Natural
        Streams, " W.M. Keck Lab. of Hyd. and Water Res. ,  Tech.
        Rep. KH-R-12, June, 1966, California Institute of Technology.

Foxworthy, J.E., Tibbey, R.B., and Barsom, G.M., "Dispersion of
        a Surface Waste Field in the Sea, " J.  of Water Poll.  Control
        Fed., Vol 38, No.  7, pp.  1170-1193,  July, 1966.

Gunnerson, C. G. , Discussion on "Eddy Diffusion in Homogeneous
        Turbulence," by G. T. Orlob,  J. Hyd.  Div. ,  Proc. ASCE, Vol.
        86,  p. 101, April,  I960.

Hall, W.S. ,  "The Rise of an Isolated Thermal in Wind Shear, " Quar-
        terly J.  of Roy. Meteorol. Soc.,  Vol.  88, pp. 394-411, 1962.

Hanson, H.B. and Richardson, P.D.,  "The  Near-Wake of a Circular
        Cylinder  in Cross Flow," Transactions of the ASCE,  Dec.
         1968.

Harremoes,  P. ,  "Diffuser Design  for Discharge  to a Stratified Water, "
        The Danish Isotope Center,  Copenhagen,  Denmark, 1967.

Hayashi, T. ,  "Turbulent Buoyant Jets of Effluent Discharged Vertically
        Upwards  from an Orifice in  a Cross-Current in the Ocean, "
        Proc. ,  Hydraulic Research  and Its Impact on the Environment;
        Vol.  1, 14th Congress of the Intn. Assoc. for  Hyd. Res. ,
        Sept. 1971, pp.  A19-1-9.

                               174

-------
Ichiye,  T.,  "Studies of Turbulent Diffusion of Dye  Patches in the
         Ocean," J. of Geophy. Res., Vol. 67, No. 8, pp. 3213-3216,
         July, 1962.

Jobson, H.E. andSayre, W.W.,  "Vertical Transfer in Open Channel
         Flow," J.  Hydr. Div. Proc. ASCE, March 1970.

Joseph, J. and Sender, H. , "On the Spectrum  of the Mean Diffusion
         Velocities  in  the Ocean," J. of Geophy. Res., Vol. 67,
         No. 8,  pp. 3201-3205, July, 1962.

Ketchum, B. H.  and Ford, W. L. , "Rate of Dispersion in the Wake of a
         Barge at Sea, " Trans. AGU, Vol. 33,  No. 5, pp. 680-684,
         Oct.  1952.

Koczy,  F.F. , "The Distribution of Elements in the Sea, " "Disposal
         of Radioactive Wastes, "  Vol. II, Proc. of  Scient. Conf. on
         Disposal of Radio. Wastes, Monaco, Nov. 1959,  Pub.  by
         IAEA, Vienna,  pp. 191-197, I960.

Koh, R.C.Y.  et al, "A Survey of  Radiometric  Detection, " Tech.  Rept
         (Classified SECRET) National Engineering Science Company,
         Pasadena,  Calif.  1966.

Koh, R.C.Y.  and Fan, L.N.,  "Prediction of the Radioactive Debris
         Distribution Subsequent to a Deep Underwater Nuclear  Explo-
         sion, " Tetra  Tech Inc. Tech. Rept. TC-129,  1968,  (Classi-
         fied Confidential).

Koh, R.C.Y.  and Fan, L.N.,  "Further Studies on  the Prediction of
         the Radioactive Debris Distribution Subsequent to a Deep
         Underwater Nuclear Explosion",  Tetra Tech  Inc. Tech.  Rept
         TC-154, 1969.

Kolesnikov,  A.G.,  Ivanova, Z.S., and  Boguslavska, S.G.,  "The
         Effect of Stability on  the  Intensity of Vertical Transfer in the
         Atlantic Ocean, " Okeanologiya, 1961, Vol. 1, (4), pp.  592-
         599,  English  Translation.

Kuo, Y.H. and Baldwin, L.V., "The Formation of Elliptical Wakes,"
         J.  Fluid Mech. V. 29, pp.  353-360,  1969.

Morton,  B.R., Taylor,  G.I. and  Turner,  J.S., "Turbulent gravita-
         tional Convection from Maintained and Instantaneous Sources, "
         Proc. Roy. Soc. A, Vol. 234,  pp. 1-23,  1956.

Munk,  W.H., Ewing,  G.C., and Revelle,  R.R., "Diffusion in Bikini
         Lagoon," Trans.  Amer.  Geophy.  Union,  Vol. 30, No.  1,
         pp.  59-66, Feb. 1949.
                              175

-------
Naudascher,  E. ,  "On a General Similarity Analysis for Turbulent Jet
        and  Wake Flows," IIHR  Report No.  106, Iowa Institute of
        Hydraulic Research, The University of Iowa,  Iowa  City, Iowa,
        Dec. 1967.

Naudascher,  E. ,  "On the Distribution and Development of Mean-Flow
        and  Turbulence Characteristics in Jet and Wake Flows, " IIHR
        Report No.  110, Iowa Institute  of Hydraulic Research, the
        University of Iowa, Iowa City,  Iowa, Aug.  1958.

Okubo, A.,  "A Review of Theoretical Models for Turbulent  Diffusion
        in the Sea, " J.  of Ocean. Soc.  of Japan, 20th Anniv.  Vol. ,
        pp.  286-320, 1962.

Okubo, A.,  "Horizontal  Diffusion from an Instantaneous Point - Source
        Due to Oceanic  Turbulence, " Tech. Rep. 32,  Chesapeake Bay
        Inst., The Johns Hopkins Univ.,  Dec.  1962.

Okubo, A.,  "The Effect  of Shear in an Oscillatory Current on Horizontal
        Diffusion from an Instantaneous Source," Int. J.  of Oceanology
        and  Limnology, Vol. 1,  No.  3, pp.  194-204,  1968.

Okubo, A. and Carter,  H.H.,  "An Extremely Simplified Model of the
        'Shear Effect1 on Horizontal Mixing in a Bounded Sea, "
        J. of Geophy. Res., 1,  No.  22, pp.  5267-5270, Nov. 1966.

Olson, F.C.W.,  andlchiyeT.,  "Horizontal Diffusion, " Science, 130,
        p. 1255, 1959.

Orlob, G.T., "Eddy Diffusion in Homogeneous  Turbulence," J.  Hyd.
        Div.,  Proc.  ASCE, HY9, pp. 75-101,  Sept.  1959.

Richards, J. M. ,  "Experiments on the Penetration of  an Interface by
        Buoyant  Thermals," J.  of Fluid Mechanics,  Vol. 11, p. 369,
        1961.

Richards, J. M. ,  "Puff Motions in Unstratified  Surroundings," J.  of
        Fluid  Mechanics,  Vol. 21,  p. 97, 1965.

Richardson,  L.F. and Stommel,  H. ,  "Note on Eddy Diffusion in the
        Sea," J. ofMeteorol., Vol.  5, pp.  238-240,  1948.

Richardson,  P. D. , "Heat and Mass  Transfer in Turbulent Separated
        Flows," Chemical Engineering Science,  1963, Vol. 18,
        pp.  149-155.

Ruckenstein, E. , "Mass or Heat Transfer to Turbulent Separated Flows
        for  Large Schmidt or Prandtl Numbers, " Chemical Engineering
        Science,  1970,  Vol.  25, pp.  819-824.
                                176

-------
Ruckenstein, E. ,  "Mass or Heat Transfer from a Solid Boundary to a
         Turbulent Fluid," J. Heat and Mass Transfer, Vol. 13,
         pp.  1283-1291,  1970.

Saffman, P.G. ,  "The Effect on Wind Shear on Horizontal Spread from
         an Instantaneous Ground Source, " Quarterly J. of Roy.
         Meteorol. Soc., Vol. 88,  pp.  382-393,  1962.

Sayre, W.W., "Dispersion on Silt Particles in Open Channel Flow, "
         Proc.  of ASCE,  J. of HYD.  Div. , Vol.  95, No. HY3,  May
         1969, pp.  1009-1038.

Scorer, R.S., "Experiments  on Convection of Isolated Masses  of
         Buoyant Fluid, " J. of Fluid  Mechanics,  Vol.  2, p. 583,  1957.

Singamsetti,  S.R., "Diffusion of Sediment in a Submerged  Jet, " Proc.
         of ASCE, J. of  HYD. Div. ,  Vol.  92,  No. HY2, March, 1966,
         pp.  153-168.

Smith, F.B., "The Role of Wind Shear in  Horizontal Diffusion of
         Ambient Particles, " Quarterly J. of Roy.  Meteorol. Soc. ,
         Vol. 91,  pp 318-29,  1965.

Snyder, W.H., "A Field Test of the Four-Thirds Law  of Horizontal
         Diffusion in the Ocean," M.S. Thesis Dissertation,  U.S.
         Naval Postgrad. School, June,  1967.

Spalding,  D.B.,  "Heat Transfer from Turbulent  Separated Flows,"
         J.F.M.  1967,  Vol.  27, Part 1, pp.  97-109.

Stommel, H. , "Horizontal Diffusion Due to Oceanic Turbulence, "
         J. of Mar.  Res., Vol. 8,  No. 3,  Sears  Foundation for
         Marine Research,  Bingham  Oceanographic Lab. Yale Univ.,
         pp.  199-225,  1949.

Swain, L. M. , "On the Turbulent Wake behind a Body of Revolution, "
         Prqc.  Roy. Soc. London,  A125, 647, 1929.

Turner,  J.S. , "A Comparison between Buoyant Vortex Rings and
         Vortex  Pairs, " J.  of Fluid Mechanics, Vol. 7, pp. 419-432,
         I960.

Turner,  J.S. , "Buoyant Vortex Rings, " Proc. Roy. Soc. ,  A,
         Vol. 239,  p. 61, 1957.

Turner,  J.S., "Jets and Plumes with Negative or Reversing
         Buoyancy," J. of Fluid Mechanics,  Vol.  26,  Pt. 4,
         pp.  779-792,  1966.
                               177

-------
Turner,  J.S.,  "The Motion of Buoyant Elements in Turbulent Sur-
         roundings," J.  of Fluid Mechanics, Vol, 16, pp. 1-16, 1963.

Tyldesley, J.B. and Wallington, C.E., "The Effect of Wind Shear and
         Vertical Diffusion on Horizontal Dispersion, " Quarterly J. of
         Roy. Soc.  of Meteorol.,  Vol.  91, pp. 158-174,  1965.

Webster, C.A.G. ,  "An Experimental Study of Turbulence in a Density-
         Stratified Shear Flow, " J. of Fluid Mechanics . Vol. 19,
         pp.  221-245,  1964.

Wiegel, R.L., "Mixing Processes," Chap 16 of "Oceanographical
         Engineering, " Prentice-Hall Inc. ,  pp. 424-441, 1964.

Woodward, B. ,  "Motion in and around Isolated Thermals, " Quarterly
         J. of Roy.  Meteorol. Soc.,  Vol. 85, p.  144, 1959.

Wu,  J. ,  "Collapse of Turbulent Wakes  in Density Stratified Media, "
         Hydronautics,  Inc., Tech.  Kept. 231-44,  Jan.  1965.
                              178

-------
                          APPENDIX  A

                      COMPUTER PROGRAM

The computer program is  described  and listed in this appendix.  It should
be noted that the program  listed was tested on a CDC 6600.  Modifications
may be necessary if it were to be adapted to other systems.   It should
further be cautioned that since the choice of such parameters as integration
step size and grid points are built into the program, the efficiency of the
processing is a function of the data for the particular case.  Under certain
circumstances, the program may not be able to choose a satisfactory step
size to complete the calculations.  The choices of step  sizes are made
assuming that

            1)    the waste load will descend into the ocean
            2)    the convective phase will terminate (either by reaching
                 bottom or  by reaching neutral buoyancy condition) in a
                 reasonable amount of time.
            3)    the collapse phase  can occur (either by reaching bottom
                 or by being in a density gradient) and will terminate in
                 a reasonable amount of time.

Several tries may be necessary in cases when the discharge and ambient
conditions deviate from  those envisioned in typical coastal waters.
Section 3. 7  should be consulted for more details.
                                   Al

-------
            READING SEQUENCE IN BARGE OPERATION 1
  Symbol
  METHOD, IGCN,  IGCL, IGLT, IPCN,
     IPCL, IPLT,  NSCALE, NX,  NY, IBUG
  (TRIGER(I), 1=1,4)

  *
N
(Y(I), 1 = 1, N)
(ROA(I),  1=1, N)
YK1, YK2, YK3, YK4, AKY1.AKY2, AKY3
YU, YW.  YE, H, UAO, WAO
TSTOP
      **
ISIZE   , KEY1, KEY2, KEY3
DINCR1, DINCR2 +
ALPHAO,  BETA, CM, CD +
GAMA, CDRAG, CFRIC, CDS, CD4, ALPHAC
    FRICTN, Fl +
ALFA1,  ALFA2, GAMA1.GAMA2, ALAMDA +
RB, ROO.U(l), V(l), W(l)
K, L++
(ROAS(I), 1=1, K)
((CS(I, J), J=l,  L),  1=1,  K)
((WS(I, J), J=l, L),  1=1,  K)
Format
1615

8F10. 5

 110
8G10.4
8G10.4
7G10.4
6G10.4
 G10.4
41 10
2G10.4
4G10.4
8G10.4

5G10.4
5G10.4
2110
4G10.4
8G10.4
8G10.4
Subroutine
  DISPSN
AMBIENT
  DUMP
 *    N< 30
 **   Option of 51, 101 or 151
 +    Skip card if KEY 1  = 1
 ++   K< 4, L< 2
                                 A2

-------
             EXPLANATION  OF  THE INPUT SYMBOLS
In Program

METHOD


IGCN
IGCL
IGLT
IPCN
IPCL
IPLT
In Text                    Remarks

             Method of barge operation must be 1
             for barge operation 1

IGCN = 0      No graph plotted for convective phase
IGCN = 1      One graph plotted for convective phase
IGCN=2      Extra graphs of concentrations plotted for
             convecfcive phase

IGCL=0      No graph plotted for collapse phase
IGCL=1      Graph  plotted for collapse phase

IGLT = 0      No graph plotted for long term diffusion phase
IGLT = 1      Graphs of CQQ, Size and settled solids
             characteristics  plotted
IGLT = 2      Extra graphs of centroid locations plotted
IGLT > 2     All graphs  plotted for  long term diffusion

IPCN = 0      No detailed  printed output for  convective phase
IPCN = 1      Detailed printed output included

IPCL=0      No detailed  printed output for  collapse phase
IPCL=1      Detailed printed output included

IPLT = 0      No detailed  printed output for  long term
             diffusion phase
IPLT>  0     Approximate number of pages  of detailed output
             desired before  input to long term  diffusion
             completed
                                  A3

-------
In Program     In Text
                            Remarks
NSCALE
             Scale for plotting
NX
            Size of graph along independent variable
NY
            Size of graph along dependent variable
IBUG
                             Number of integration steps between inputs to
                             long term diffusion
TRIGER(I)
 N
             Triggers for graphing in long term diffusion
             (graphs are at times when the peak value of
             Cnn in the  y direction first falls below
             TRIGER(I) times the maximum of CQO ever
             achieved after input to long  term diffusion
             completed).

             Number of points where ambient density is
             specified
                              Vertical position from free  surface where
                              ambient density is specified (ft)
 ROA(D
             Ambient density at Y(I),  (gram/cc)
 YK1, YK2,
 YK3, YK4
yk3'
 AKY1, AKY2,   k ,,  k 0
                  yl'   y2
 AKY3           k „
Positions where the vertical diffusion coef-
ficient changes (ft)

Vertical diffusion coefficients:  near to the
free surface, at thermocline and below the
thermocline (ft /sec)
 YU,  YW, YE   y , v
          '       7   r
 H
H
Vertical positions where ambient velocity is
specified (ft)
Total depth (ft)
       A4

-------
In Program     la Text
                                             Remarks
UAO, WAO
u ,  w
 a'   a
Maximum horizontal velocities in  x and
z directions (ft/sec)
TSTOP
 ISIZE
             Physical time limit in second in the long
             term diffusion computation.  Time started
             from the commencement of dumping.

             Vertical grid point size in the long term dif-
             fusion computation, 3 options:  51, 101, and
             151
 KEY1
             KEY1 = 1  Use Tetra Tech suggested coefficients
             KEY1=2  Use read in coefficients
 KEY2
             KEY2 = 1  The computation stops at the end of
             convective descent phase
             KEY2 = 2  The computation stops at the end of
              dynamic  collapse
             KEY2=3  The computation stops at the end of
             long term diffusion
 KEYS
             KEY3 = 0  Long term diffusion computation also
             performed for the fluid part
             KEY3 = 1  No long term diffusion performed  for
             the fluid part
 DINCR 1
             Factor in obtaining  suitable trial time step in
             the convective descent phase
 DINCR2
             Factor in obtaining suitable trial time step in
             the dynamic collapse phase
                    A5

-------
 la Program     In Text
                                Remarks
ALPHAG

ALPHAO

BETA

CM

CD
a
a
 C
  m
C
                  D
Entrainment coefficient for collapsing

Entrainment coefficient for a thermal

Settling coefficient

Added mass coefficient

Drag coefficient
GAMA

CDRAG


CFRIC


CDS

CD4

FRICTN


Fl
ALFA1
ALFA2
Y

C
  drag
Cfric
C
C
  D3
  D4
•p
  rictn
                a
Gradient factor in the cloud

Form drag coefficient for the quadrant of
a collapsing  ellipsoid

Skin friction coefficient for the quadrant of
a collapsing  ellipsoid

Drag coefficient for an ellipsoidal wedge

Drag coefficient for a plate

Friction coefficient between  the cloud and
ocean bottom

Modification factor used in computing the
resistance of the friction force to the  col-
Ipse of a quadrant of an ellipsoid

Absorbency coefficient of the bed to the
solid particles

Absorbency coefficient of the free surface
to the solid particles
     A6

-------
In Program     In Text
                                R emarks
GAMA1
             Entrainmenfc coefficient (for resuspension)
             at the bed
GAMA2
              Entrainment coefficient (for resuspension)
              at the free surface
ALAMDA
              Dissipation factor used in computing  the
              horizontal diffusion coefficient
RB
             Initial radius of the waste material (ft)
ROO
              Density of the waste material (gram/cc)
                              Initial velocity in x direction (ft/sec)
                              Initial velocity in y direction (ft/sec)
                 w
             Initial velocity in  z direction (ft/sec)
K
K
Number of different solid density
                 L
ROAS(I)

CS(I, J)
              Number of different solid fall velocities for
              each solid density

              Solid density (gm/cc)

              Concentration  of  solid particles with a
              specific, density ROAS(I ) and fall velocity
              WS(I, J),  (ft3 /ft3)
 WS(I, J)
W
Fall velocity of the solid particles with
density ROAS(I) (ft/sec)
      A7

-------
                  EXPLANATION OF OUTPUT SYMBOLS
          In Convective Descent and Dynamic Collapse  Phase
In Program     In Text
                            Remarks
TIME
             Physical time from conmencement of
             dumping (sec)
X,  Y,  Z
x, y, z       Position of the centroid of the cloud in
             x, y,  and z direction respectively (ft)
U, V, W
u, v, w       Velocity of the cloud in x, y, and z direction
             respectively (ft/sec)
DEN-DIF
RADIUS
VORT.
                P - P.
K
Density difference between that of the cloud
and the ambient (gram/cc)

Radius of the hemispherical cloud (ft)

Vorticity of the cloud (sec"  )
ALPHA
FLUID CONC.
                a
                   KL
             Entrainment coefficient
     j C  ..   Concentration of the fluid part of waste
          J               -j   -3
             material (ft  /ft )
SOLID VOL.
CONCENTRATION
                C
                  s
A               a
             Solid volume of waste material with a specific
             fall velocity (ft3)
             Concentration of the solid particle with a specific
             fall velocity
             Minor axis  of the waste material in dynamic
             collapse phase
             Major axis  of the waste material in dynamic
             collapse phase
                  A8

-------
                      In Long Term Diffusion
In Program.

TIME


MEAN Y

FALL  VEL.

TSS
In Text
Y

X, Z


SIGMAX,

SIGMA Z,

SIGMXZ

CONG.


COO
w
V
 xz
                   oo
 Physical time from the commencement of
 barge operation

 The centroid of waste material in y direction

 Fall velocity of the solid particles

 Total  suspended solid

 Total  boundary material

 Position of grid point

 Centroid of waste material on a horizontal
 plane  at Y

 Variances of the waste  material  on a
 horizontal plane at Y
             Concentration assuming the waste material
             is normally distributed
f  f
J^coJ _o
                    C dxdz at Y
For Solid on the Bed or Free Surface
X, Z

SIGMAX,
SIGMAZ,
SIGMXZ
SIZE
DEPOSITED SOLID
             Centroid of deposited waste material
             Variances of the deposited waste material
             Geometric mean of 0  ancj 0 along principle axes
                                 x      z
             Solid deposited either on bed or free surface
                  A9

-------
             READING SEQUENCE IN BARGE OPERATION 2
 Symbol
                                               Format
Subroutine
METHOD, IGCN, IGCL, IGLT, IPCN,
   IPCL, IPLT,  NSCALE, NX,  NY, IBUG
 (TRIGER(I),  1=1,4)
                                               1615
                                               8F10. 5
                                                             DISPSN
N                                               I 10
(Y(I), 1=1, N)                                   8G10.4
(ROA(I), 1=1,N)                                 8G10.4
YK1, YK2, YK3,  YK4, AKY2, AKY3               7G10.4
YU,  YW,  YE, H,  UAO, WAO                      6G10.4

TSTOP                                          G10.4
ISIZE**,  KEY1, KEY2, KEY3                     4110
DINCR1,  DINCR2*                              2G10.4
ALPHA1, ALPHA2, BETA, CD+                  4G10.4
GAMA, CDRAG, CFRIC, CD3, CD4, ALPHA3,    8G10.4
   ALPHA4, FRICTN, Fl, CM +
ALFA1, ALFA2, GAMA1, GAMA2, ALAMDA+     5G10.4
BC(1),ROO, THETA2(1), U(l), CY(1)             5G10.4
K, L++                                         2110
(ROAS(I), 1=1, K)                               4G10.4
((CS(I, J),  J = l, JL), 1 = 1, K)                        8G10.4
((WS(I, J), J=l, L), 1=1, K)                       8G10.4
UB,  SAI,  TIME                                 3G10.4
                                                             AMBIENT
                                                                JET
      N< 30
      Option of 51, 101, or 151
      Skip card if KEY 1 = 1

      K< 4, L<  2
                                A10

-------
             EXPLANATION OF THE INPUT SYMBOLS
In Program     In Text
METHOD
                                 Remarks

             Method of barge operation must be 2 for
             barge operation 2
IGCN
IGCN = 0      No graph plotted for convective phase
IGCN= 1      One graph plotted for convective phase
IGCN=2      Extra graphs of concentrations plotted for
             convective phase
IGCL
IGCL=0      No graph plotted for collapse phase
IGCL=1      Graph plotted for collapse phase
IGLT
IPCN
IGLT=0      No graph plotted for long term diffusion phase
IGLT=1      Graphs of COQ,  Size and settled solids
             characteristics  plotted
IGLT=2      Extra graphs of centroid locations plotted
IGLT>2      All graphs plotted for  long term diffusion

IPCN=0      No detailed printed output for convective phase
IPCN= 1      Detailed printed output included
IPCL
IPCL=0      No detailed printed output for collapse phase
IPCL=1      Detailed printed output included
IPLT
IPLT=0      No detailed printed output for long term
             diffusion phase
IPLT >0      Approximate number of pages of detailed output
             desired before input to long term diffusion
             completed
                                 Al 1

-------
 In Program     In Text
                                 Remarks
 NSCALE
              Scale for plotting
 NX

 NY
              Size of graph along independent variable
              Size of graph along dependent variable
 IBUG
              Number of integration steps between inputs to
              long term diffusion
 TRIGER(I)
              Triggers for graphing in long term diffusion
              (graphs are at times when the  peak value of
              CQQ in the y direction  first falls below
              TRIGER(I) times the maximum of C   ever
                                                 00
              achieved after input to long term diffusion
              completed).
N
             Number of points  where ambient density is
             specified
                             Vertical position from free surface where
                             ambient density is specified (ft)
ROA(I)
             Ambient density at Y(I),  (gram/cc)
   '   k2
YK1, YK2,
YK3, YK4
AKYl, AKY2,   k  j, k 2
AKY3           k  ,
Positions where  the vertical diffusion coef-
ficient changes (ft)

Vertical diffusion coefficients:  near to the
free surface, at  thermocline and below the
thermocline (ft /sec)
YU  YW  YE   V  , v    v    Vertical positions where ambient velocity is
        '        u Jw'  7
H
H
specified (ft)
Total depth (ft)
     A12

-------
 In Program    In Text
                   Remarks
UAO, WAO       u , w
    '             a'   a
Maximum horizontal velocities in x  and
z  directions (ft/sec)
TSTOP
 Physical time limit in second in the long
 term diffusion computation.  Time  started
 from the commencement of discharging
 through the jet.
ISIZE
Vertical grid point size in the long term dif-
•fusion computation, 3 options:  51, 101, and
151
KEY1
KEY1 = 1  Use Tetra Tech suggested coefficients
KEY1=2  Use read in coefficients
KEY2
KEY2 = 1 'The computation stops at the end of
jet convection
KEY2=2 The computation stops at the end of
 dynamic collapse
KEY2 = 3 The computation stops at the end of
long term diffusion
KEY3
DINCR1
DINCR2
KEY3 = 0  Long term diffusion computation also
performed for the fluid part
KEY3 = 1  No long term diffusion performed for
the fluid part
Trial value in obtaining distance step DS =
DINCR1 x BC(1) in the jet convection phase
where BC = jet size

  Trial value in obtaining  distance step  DS =
  DINCR2  x  BC(INDEX) in the dynamic col-
  lapse phase, where INDEX is the step at the
  end of jet convection
        A13

-------
 In Program     In Text
                                                  Remarks
ALPHA1
ALPHA2
BETA
                 a-
 Entrainment coefficient for a momeatum jet
 Entraiament coefficient for  2-D thermal
Settling coefficient
 CD

 GAMA
 CDRAG


 CFRIC


 CDS

 CD4

 FRICTN
Drag coefficient for a cylinder

Gradient factor in the cloud
Form drag coefficient for the quadrant of
a collapsing elliptical cylinder

Skin drag coefficient for the quadrant of
a collapsing elliptical cylinder

Drag coefficient for an  elliptical wedge

Drag coefficient for a two-dimensional plate

Friction coefficient between the cloud and
ocean bottom
  Fl
 CM

 ALFA1
 Modification factor used in computing the
 the resistance of the friction force to the
 quadrant of an elliptical cylinder

 Added mass coefficient

 Absorbency coefficient of the bed to the solid
 oarticles
 ALFA2
 GAMA1
Absorbency coefficient of the free surface to
the solid particles

Entrainment coefficient (for re suspension) at
                              the bed
                                     A14

-------
GAMA2

A LAM DA


BC(1)           b

ROO            p

THETA2(1)     9.
                  i.

U(D            u

CY(1)           y

K

 L


 ROAS(I)

 CS(I, J)
 WS(I, J)
 LIB
 SAI
 TIME
Entrainment coefficient (for re suspension)
at the surface
Dissipation factor used in computing the
horizontal diffusion coefficient

Radius of nozzle  (ft)

Density of the waste material  (gram/cc)

Angle of the nozzle (degree)

Velocity of the waste material at the nozzle  (ft/sec)

Vertical position of  the nozzle (ft)

Number of different solid density

Number of different solid fall velocities
for each solid density

Solid density (gm/cc)

Solid concentration  of the solid particles
 with density ROAS(I) and fall velocity
 WS(I, J) (ft3/ft3)

 Fall velocity of the  solid particles (ft/sec)

 Barge velocity  (ft/sec)

 Barge moving direction (limited to 180 - 270  )

 Time  of continuous  discharge (sec)
                                    A15

-------
              EXPLANATION OF  OUTPUT SYMBOLS
          la Jet Convection And Dynamic Collapse Phase
In Program     In Text
                                            Remarks
TIME
                             Physical time taken for the front of jet to
                             move from the nozzle to position S (sec)
                             Distance along the axis of the jet (ft)
X, Y, Z
                x, y, z
Position of the center of the jet at position S (ft)
U
                u
                             Velocity of the jet at S (ft/sec)
RADIUS
                             Radius of the jet (ft)
DEN-DIF
                P '  P:
                             Density difference between that of the jet and
                             the ambient (gram/cc)
FLUID CONG.
                             Concentration of the fluid part waste material
FLUX OF SOLID
                             Flux of solid particles through a cross section
                urr b2Cg..    at S (ft3/ft3)
                        J
CONCENTRATION
                C  ..
                             Concentration of solid particles with a specific
                             fall velocity (ft3/ft3)
                             The minor axis of the two dimensional thermal
                             in the  dynamic collapse phase (ft)
B
                             The major axis of the two dimensional thermal
                             with length DS (ft)
                                  A16

-------
In Program
In Texb
Remarks
SOLID VOL.
                Solid volume in the two-dimensional thermal
                with length DS (ft3)
                      In Long Term Diffusion
      See Explanation of Output Symbols In  Barge Operation 1
                                    A17

-------
           READING SEQUENCE IN BARGE OPERATION 3
Symbol                                       Format
METHOD,  IGCN, IGCL, IGLT,  IPCN,           1615
    IPCL, IPLT,  NSCALE, NX, NY,  IBUG
(TRIGER(I), 1=1,4)                             8F10.5
N*                                            110
(Y(I), 1 = 1, N)                                  8G10.4
(ROA(I), 1=1, N)                                8G10.4
YK1, YK2,  YK3, YK4, AKYl, AKY2, AKY3        7G10.4
YU, YW,  YE, H,  UAO, WAO                     6G10.4
TSTOP                                        G10.4
ISIZE**,  KEY1, KEY2, KEYS                    4110
Cl, C2+                                       2G10.4
DINCR1,  DINCR2+                             2G10.4
ALPHA, BETA, GDI, CD2, CM , ALPHA 1 +      8G10.4
GAMA, CDRAG,  CFRIC,  CD3, CD4, ALPHAS,    8G10.4
    ALPHA4, FRICTN, Fl +
ALFA1, ALFA2,  GAMA1,  GAMA2, ALAMDA+     5G10.4
ROO, QD, BB, DD                             4G10.4
K, L++                                        2110
(ROAS(I), 1=1, K)                                4G10.4
((CS(I.J), J=l, L), I=1,K)                       8G10.4
((WS(I, J), J=l, L), 1=1, K)                       8G10.4
UB,  SAI,  TIME                                3G10.4
                                                           Subroutine
                                                           DISPSN
                                                                I
                                                           AMBIENT
                                                             WAKE
*    N< 30
**   Option of 51, 101,  151
+    Skip card if KEY 1 = 1
++   K< 4,  L< 2
                                A18

-------
             EXPLANATION OF THE INPUT SYMBOLS
In Program     In Text
                                 Remarks
METHOD                    Method of barge operation must be 3
                             for barge  operation 3

IGCN           IGCN=0      No graph plotted for convective phase
                IGCN=1      One graph plotted for convective phase
                IGCN=2      Extra graphs of concentrations plotted for
                             convective phase
IGCL
IGCL=0      No graph plotted for collapse phase
IGCL=1      Graph plotted for collapse phase
IGLT
IPCN
IPCL
IPLT
IGLT=0      No graph plotted for long term diffusion phase
IGLT=1      Graphs  of COQ, Size and settled solids
             characteristics plotted
1GLT=E      Extra graphs of centroid locations plotted
IGLT>2      All graphs plotted for  long term diffusion

IPCN=0      No detailed printed output for convective phase
IPCN= 1      Detailed printed output included

IPCL=0      No detailed printed output for collapse  phase
IPCL^l      Detailed printed output included

IPLT=0      No detailed printed output for long term
             diffusion phase
IPLT>0      Approximation number of pages of detailed output
             desired before input to long term  diffusion
             completed
                                 A19

-------
 In Program     In Text
                                 Remarks
 NSCALE
              Scale for plotting
 NX
              Size of graph along independent variable
 NY
              Size of graph along dependent variable
 IBUG
              Number of integration steps between inputs to
              long term diffusion
 TRIGER(I)
              Triggers for graphing in long term diffusion
              (graphs  are at times when the peak value of
              CQO in the y direction first falls below
              TRIGER(I) times the maximum of C.,,. ever
              achieved after input to long term diffusion
              completed}.
N
             Number of points where ambient density is
             specified
Yd)
             Vertical position from free surface where
             ambient density is specified (ft)
ROA(I)
             Ambient density at  Y(l),, (gram/cc]
YK1, YK2,
YK3, YK4
             Positions where the vertical diffusion coef-
             ficient changes (ft)
AKY1, AKY2,   k  p k 2
AKY3           k  ,
             Vertical diffusion coefficients:  near to  the
             free surface, at thermocline and below  the
                            2
             thermocline (ft  /sec)
YU,  YW, YE,   y  , y^, yg    Vertical positions where ambient velocity is
H
H
specified (ft)
Total depth (ft)
     A20

-------
In. Program

UAO,  WAO


TSTOP
ISIZE
KEY1
In Test
u .  w
 a'   a
                    Remarks

Maximum horizontal velocities in x and
z directions (ft/sec)

Physical time limit in second in the long
term diffusion computation.  Time started
from the commencement of discharging into
the wake

Vertical grid point size  in the long term dif-
fusion  computation, 3  options: 51, 101, and 151

KEY1=1  Use Tetra Tech suggested  coefficients
KEY1 -2  Use read in coefficients
KEY2
            KEY2=1 The computation stops at the end of
            convective decend
            KEY2=2 The computation stops at the end of
            dynamic collapse
            KEY2=3 The computation stops at the end of
            long term diffusion
KEY3
Cl,  C2
 DINCR1
V C2
KEY3=0  Long term diffusion computation also
performed for the fluid part
KEY3=1  No long term diffusion performed for
the fluid part

Barge shape factors, used in computing plume
size BC(1) = 2 (Cj  x GZ  1/3) x (BB x DD)  1/Z
where BC = plume  size, BB =  barge width,
DD = barge draft

Trial value in obtaining  distance step DS  =
DINCR1  x BC (1) in the convective decend phase
                                   A21

-------
In Program       In Text                          Remarks

DINCR2                      Trial value in obtaining distance step DS =
                             DINCR2 x BC (INDEX) in the dynamic collapse
                             phase,  where INDEX is the step at the end of
                             convective decend
ALPHA
BETA

GDI

CD2

CM

ALPHA1

GAMA
CDRAG

CFRIC

CD3

CD4

FRICTN
a
P

C
  Dl
 'D2
  m
Y
C
  drag
  fric
C
C
  D3
  D4
                   rictn
Entrainment coefficient for 2 - D thermal
Settling coefficient

Drag coefficient for a half cylinder wedge

Drag coefficient for a cylinder

Added mass coefficient

Entrainment coefficient for a jet

Gradient factor in the cloud
Form drag  coefficient for the  quadrant of
a collapsing elliptical cylinder
Skin drag coefficient for the quadrant of
a collapsing elliptical cylinder
Drag coefficient for an elliptical wedge

Drag coefficient for a two-dimensional plate

Friction coefficient between the cloud and
ocean bottom
Fl
CM
C
                   m
Modification factor used in computing the
the resistance of the friction force to
quadrant of an elliptical cylinder

Added mass coefficient
                                  A22

-------
In Program     In Text
                                 Remarks
ALFA1
                al
              Absorbency coefficient of the bed to  the solid
              particles
ALFA 2
                a-
              Absorbency coefficient of the free  surface to
              the solid particles
GAMA1
               Yl
              Entrainment  coefficient at  the bed
GAMA2
             Entrainment coefficient at the bed
ALAMDA
             Dissipation factor used in computing the
             horizontal diffusion coefficient
ROO
             Density of the waste material (gram/cc)
QD
             Discharge rate of the waste rnaterial(ft  /sec)
BB
B
Barge width (ft)
DD
D
Barge depth (ft)
K
K
Number of different solid density
L
             Number of different solid fall velocities for
             each solid density
ROAS(I)
             Solid density
CS(I, J)
C
Solid concentration of the solid particles with
density ROAS(I) and fall velocity WS(I, J) (ft3/ft3)
WS(I, J)
W
Fall velocity of the solid particles
UB
              Barge velocity (ft/sec)
                  A23

-------
In Program     In Text                        Remarks






SAI                         Barge moving direction (limited to 180  ^270 )






TIME                       Time of continuous discharge (sec)
                               A24

-------
             EXPLA-NATION OF OUTPUT SYMBOLS
             In Convective Descent And Dynarnic Collapse
In Program     In Text
                            Remarks
TIME
x.y.z
x,y, z
U


RADIUS         b

DEN-DIF       p-p


FLUID CQNC.

SOLID VOL.
CONCENTRATION
                C  ..
Physical time taken for a two-dimensional
thermal to move to positions  (sec)

Distance along the path of a two-dimensional
thermal (ft)

Position of the two-dimensional thermal at
S (ft)

Velocity of the two-dimensional thermal at
S (ft/sec)

Radius  of a half cylinder thermal (ft)

Density difference between that of the two-
dimensional thermal and the ambient (gram/cc)

Concentration of the fluid  part waste material

Solid volume in the two-dimensional thermal
with lengthDS (ft)

Concentration of solid particles with a specific
fall velocity (ft3/ft3)

The minor axis  of the two-dimensional thermal in the
in the dynamic collapse phase (ft)
                                 A25

-------
Program       In Text                    Remarks
                           The major axis  of the two-dimensional
                           thermal in the dynamic collapse phase  (ft)
              In the Long Term Diffusion Phase

   See Explanation of Output Symbols in Barge Operation  1
                               A26

-------
      PROGRAM DISPSN (                             .
C     PROGRAM FOR PREDICTING THF FATF OF WASTfc  MATERIAL  OISCHARGtD
C     FROM A i'ARGfc INTO THE OCEAN   ENVIRONMENT
r.
C
      F.XTFRNAL DfcfclVEl ,DERIVE?,DtRIVF3,DERIvE MDTRN, INDFX, IfiEl), ILF.AVE
        ,IJK,FBFO,AMO,OLDT,METHOD»TSTOP
                                     JPCL,IPtT,NSCALfc
                    INDE  ,THIGEH(«),CMAXMAX,TOT^AX,KKK
C
      DATA G,PAI/32.2,3,H1S9/
C
    0 CONTINUE
      URXsO,
      WHZ*0,
      RFAO(5,10)  METHDO,I6CM»16CL»IGLT,IPCN,IPCL»IPLT,NSCALE,NX,NY,1BUC
      IKMETHOO.LT.l)  CALL  EXIT
    20  FORMAT C8F10.5)
       TlMt«)sO,
       OAXMAXsO,
       IF(I5UM,E'G,0)  CALL  EXIT
       CALL  AMHIFNT
    10  FOWf.AT(lfcI5)
 C      NO,  OF  BARGE  OPF.RATIOM
 C      1    3 DIMENSIONAL  AXI  -SYMHKTPIC    INSTANTANEOUS RfLEASt OF
 c          THF  WASTF.  LOAD  FROM A  SARGF
 C      2    TIME  LIMITED  CONTINUOUS  DISCHARGE CJF THE WASTE MATERIAL THROUGH
 c          A MOZZLF  UNDER  THt BOTTDH OF  A MOVING BARGE
 C      3    TIMf  LIMITED  CONTINUOUS  DISCHARGE. OF THt wASTt MATERIAL INTO
 c          THE  WAKE  CT  A  MOVING BARGF
                                    A27

-------
     GO TO (1,2,3) METHOD
   1  CALL DUMP
     IFdJK ,r,t. 5) GO TO «0
     IFCKEY2 ,EQ, 1) GO TO 100
     IFdPl.UWG.EQ.l) GO TO 800
     DO 88P TIIsl,NMN
     IF(CYdSTE.P).GE,YdII).ANO,CYdSTEP),LE,YdII+l)) DENGRAs
    * ROAUll + n-RQAdll)
 888 CONTINUE
     1F(OENGRA,GT,1,E»10) GO TO 800
     IF(xEY2.fcQ,2) GO TO 100
     00 2001  lAMsi,N\CC
2001 CMAX(IAM)*SS(IAM,ISTtP)
     YYsCY(ISTtP)
     AO=0,5*BC(ISTEP)
     IF(YY-AO,LT,0,) YY=AO
 666 FflRMATClHlfiOX,  38HGR ADIEKiTsO GO DIRECTLY TO LT DIFFUSION)
     CALL DIFU8W1
     GO TO 100
 800 CONTINUE
     CALL COLAPSJ
     IP(IJK ,6t , 5) GO TO ^0
     IF(KfcY2 ,EQ. ^) GO TO 100
  11 CALL D1FUSN1
     GO TO 100
   2 CALL JET
     IFdJK ,GE, 5) GO TG «0
     IFCKEY2 .FQ, 1) GO TO 100
               .F0,l) GO TO 700
     00 777 IIIa
     IF
-------
    3 CALL wAKfc
      IFCIJK ,GE, 5) GO TO UO
      IFCKEY2 ,EQ.  1) GO  TO  100
      IF(NOTf  ,EQ,1) GO.  TO  900
      DO 999 III»i
      IF(CY(ISTFP).GE.YC!I!).ANO,CY(ISTEP).LE.YCIII+1))  DENGRA
     * ROA(in + l)-RUA(!II)
  999 CONTINUE
      IF(t)ENGRA.GT.l.E»10) GD  TO  900
      IF(KEY2,E.Q,2) GO  TO  100
      M
      DO
 2003
      CMAX(K'MCC+1)=USEJET(ISTEP)
      IF(WS(1,1).FO.O,)
      INDFXelSTFP
      YYsCY(ISTEP)
      AO«sft.5*8C(ISTEP)
      IF(YY-AO,LT.O,) YYaAO
      CALL PIFUSN2
      GC TO 100
-  900 CClMIWUE
      CALL COLAPS2
      IFCIJK  ,6E. 5)  GD  TO  «0
      IF (KtY2  .EO. ?) GU TO  100
      CALL. DIFUSN2
      GO TO 100
   «0 WPITE(6,1000i)DT
JOOOt frOR/M4Tnx,28H***THE S7FP
     ,   34H  LONG TFRM DIFFUSION*  IN  TROUBLE***,  3H *
  100 CONTINUE
      GO TO U
      END
vv
                                    A29

-------
             /Af»CO/  V(  30)»Rl)AC  30) , YK1 ,YK?,YK3, YK4,AKY1,AKY2,
                     YIJ,YW,YE,H,UAO,WAO,N,CKYU5n»UA(15n,iNA(l$l)
             /TRASFER/  KK, JJ.TT, ISIZt,NOTF, *0, I Y , w(j T »N , I K'PE. X , I BED , T L fc A VE
C
C
      RE An(5,1 )N
    1 FORMATdlO)
C     N-Mfl, OF DATA PTS,  ON  DENSITY
    2
C     Y(^) V.IJST  Bfc.  L'OUAL  TU THp: TUTAL DFPTH
C     Y-DEPTH
C     ROA-AMbjfNiT ntNSITY
      WPITF(6,3)
    3 FORMATUH1,10X, IHHAMBIE.'vT CUNDTTIONS/1 OX, IttHDSPTH  IN  FT.
     ,   ^SHDFNSITY  IN  GRA>' PEW cc,  ,^IMKY IN  SOFT PER  src.
     ,    14HVEH. .
      on 10 jsirK:
      IFC.JJ  ,GE. fOJJ = w
      «RITfc(6,«)(Y(I),I=J,JJ)
    a FORMAT(10X,SHDFPTH,9X,8E12,^)
    5 FORl*ATCtOX,liHA*8-DF.NSITY,
   10
    6
      DO 20  1=1
   20
C     YK-THF VERTICAL  POSITIO^S WHE«E KY CHANGES VALUES
C     AKY-KY VALUE
      fcRITE{6,7)YKl,YK2,YK3,YK4,AKYl,AKY2,AKYl
    7
C    YO-THfc POSITinN  UA  STARTS TO DECREASE
c    YW-THF POSITION  »IA  HAS ITS HAX,VALUF
c    YE-THE POSITION  A^B-VFI,  GO TO
C    W-TOTAL DEPTH
C    UAO WAO»
    8 FORMAT (10X,3HYU  ,E10,a,3HYW ,E10,U,3HYE  ,E10,U,2HH  ,E10.U/10X,
     ,3HUA  ,E10,a,3H^A  , E10.il/)
      lYsN
      RETURN
                                    A30

-------
C
r
      SUBROUTINE DUMP
      3-OIMfcNSIONAL AXI
      LOAD FROM BARGE
                        -SYMMETRIC    INSTANTANEOUS RELEASE OF  THE
      EXTERNAL TFR I VE1, DERI VE2, DERIVE 3, DERI VE«,DEKIVf 5, DJRIVE6, DERI VET
      COMMON /R/DINCR1,01NCR2,KEY1,KF. Y2,KEY3
             /A6CD/  Y( 30),KOA< 30 ) , YK 1 , YK2 , YK 3 , YK,
             ,SS(8,600),5AVE(600),DUMY?(6,600),FC(600),BC(600),WS«l,?),
                                                               ,   VF ,
     ,     0(8,lbl),YJ Clbl),Y2(lSl) ,PY
     ,                CCMAX(15n,VAR(lbl)
      COMMON /cON55T/G,PAi,AuPHAof ALPHA, AL.PH AC, ALPHA i,ALPNA2,
           ALPHA3,ALPHA4,GAMA,CDRAG,CFRIC,BE TA,CM,CD,CDl,CD2,FRICTNi,Fl
      COMMON-1 /TORS/ DT.DT1 , DT2, CDT , NGH ID, MGRID1 , ^(iRID2« NGRIO3 ,
      COMMOM /TRASFER/ KK , J J, TT , IS I ZE , NOTF. , AO , I Y , MOT RM, I KiDfTX , I BED , RE AVE
     ,   , IJK,FBF. 0, AMD, OLD T,*FTHOO,T STOP
      IJKsO
      KVsl
      KV CONST
      IPF.OSO
      ILF.AVE=0
               ABOUT  VORTICITY GENERATION
c
c
c
c
c
c
c
    2  FORMAT(     //10X,17H8ARGE OPERATION 1,
     ,              //10X,37w«ASTE MATpRIAL DUMPfcD
     ,   15H INTO THt  OCEAN,
     ,    //10X,50HTHE SHAPE OF Tut CLOUD  IS
      RF. ADtb,     DTSTOP
                                       ,/)
                                                   iMSTANTAMt'CUSLY,
                                             ASSUMED TO BE HfrM]SPHFRE>
      KEY 1=2
FORMAT(/I OX,5HTSTOP,t1?,4,UHSFC,
TIMf. LIMIT IN THE COMPUTATION
READCb,    6)ISm,KEYl,KEY2,KEY3
        USE TETRA TECH SUGGESTED COEFFICIENTS
        USF READ IN COEFFICIENTS
       COMPUTATION STOPS  AT  THE EMQ  OF  CONVECTIVfc, DESCENT
       COMPUTATION STOPS  AT  THE, END  OF  OYN'AMK COLLAPSE
       COMPUTATION STOPS  AT  THE END  OF  LUN'G TERM DIFFUSION
       LONG TERM DIFFUSION FOR  FLUID PART  ALSO
       MO LONG TERM DIFFUSION  FOR  FLUID PART
      KEY3eO
      KFY3*1
      WRITE.C6,9007a)ISIZF,KEYt,KFY2,KFY3
9007U FORMAT(lOX,lbHGHIO POINT SIZt»I^»5H
      IF (KEY1 .EG, 2) GO TO 500
                                           KfYi,I5»5H KEY2,I5,SH  Kt.Y?,IS)
 90070
      FOHMATf/10X/37HUSE
      DINCHlsl.
                          TETRA TECH SUGGESTED COEFFICIENTS/)
       ALPHAQs.235
       BFTA=0,

       CHs.5
                                    A31

-------
      CDRAG=1 .
      CF»JC*,01
      C03s,l
      ALPHAC=,001
      FHICT'^s.Ol
      F 1 s . I
      AlFAlSl,
      ALF A2si.
      AL i
      r,(.: TO soi
  500 kRTTE(fe»90071)
90071 FnR"AT(/lCX»24HUSF- HEAD  IN  COEFFICIENTS/)
      RFAPC5,
    1  FliRMAT(8G10,4)
C     ALPH.*0«»F'NTRAJNN£-'NT COFh,
C     HFTA-SFTTlIMG COEF,
C     CHADDED  MASS COEF,
C     CD-DRAG COEF,
      REAO(5,    UGAMA,CORAG,CFRIC,C03,C04,AIPHAC        ,FRICTN,FJ
      READC5,    !)ALFA1,A|.FA2,GAMA1,GA*A2,AUMDA
  bOl
90073 FUR*AT(10X,feHDlNCKl.F10,4,7H  DINCR2»FI 0,«)
      WR1TE(6,4)ALPHAO,BETA,CM,CD
    a FORMAT(10X,6H*LPHAO,FiO,a,5H  Pt" T A , F 1 0 , 4 , 3H  C.M,Fin,a,3H CD,F10,4
      WRITE(6,90072)GAMA,CDRAG,CFRIC,CD3,CD«.ALPHAC        ,FR1CTN/F1
90072 KORMATdOX, 4HG AM A t Fb, 2 , 6H COR AfJ, Fb' ,2, 6H  CFRIC,  F'Sti^H CD3,F-15,,
     ,   4H C04,F5,2,7H ALPHAC,F10.4   ,/9X,          ,7H FRICTM,F10,4,
     ,     3H F1,F10,4)
90068 FORMAT ( 1 0 X , 5HALF A 1 , f- 10,4, 6H  Al.F A? , F 1 0 , 1 , 6H  GAM A 1 , F 1 0 ,
     ,     6H GAMA2,Fl0.a,/9X,7H  AL AHO A , F 1 0 ,
C     INITIAL CONDITIONS
c     RB-PADJUS
C     ROD -DENSITY CF WASTt  HAThRlAL
c     u,v,w,-i< INITIAL VEL,
      RPO»ROO*1,V4
      READC5,fe)K,L

C     K.NO, f)F  DIFFFREMT SOLID  DENSITIES
C     L-NO, OF  DIFFERENT FALL VEL,FOR  A SPECIFIC  DENSITY
      WRITF(fa,7)K,L
   10 FORMAT(10X,16HOENSITY  OF  SOLID,  8X,4E1?.,4)
      ^RnF(fe,ll)
   11 FORMAT(10X,13HCUNCENT«ATION)
      00 101 jsl,l

                                    A32

-------
101 WP!TE(6,16MCS(l,J),Isl,K)
 16 FORMAmux,Ufcl2.«)
    WRITE(6,12)
 12 FORMAT (10X,22HFALL VELOCITY OF SOLID)
    DO 102 J«1,L
102 WRITF.tfe, 16) (wS(I,J) ,Isl,K)
    DO 200 1*1 ,K
200 ROAS(I)=R{.iAS(I)*l .94
    ROAAsRnA(l)
    Cle(Rno«RrjA(l})/ROA(l)
    El=CROA(IY)-ROA(l))/(H*ROACl))
    F SV(1)/SQRTCG*C1*RB)
    F.E1=E1*RB/C1
    IFCROAUY)  ,EQ,  ROAC1))3
-------
C     VOLUME r.1F SOLID
C     VF-VOLUME OF THE FLUID PART OF WASTE MATEP-IAL
      T(l)sO,
C     MF.-NO, OF TOTAL EQS
      IVsl
C     IY-INOEX OF DfcPTH WHERF DENSITY SPECIFIED
      ISTEPsl
C     ISTEP»TIMF STF.P
C     NC IS FQN, NO, FOR SOLIDS
C     NU1RL si IKiDlCATE NEUTRAL POSITION REACHED
      IPLUNG«O
C     IPLUNG*INDICATQR OF HITTING BOTTOM
  111 CX(ISTfcP)=FC13
      V(ISTEP5aFC6)*CMHASS
      ENTRCn£lSTFP)*ALPHA
      IF CF(9),LF, 0) E(<>)30,
      WHEN VORTICITY GOES TO ZERO, IT IS SET TO ZFRO
      VDRT(ISTEP)«f.(9)
      BC(IS1EP)B£VDLUMF*3,/C2,*PAI))**,35333^
      BC-RADIUS OF CLOUD
      AA(ISTFP)8.5*BCC1STEP)
      KKsl
      OD 120 Isl,K
      DO 120 jsl,L
      SS C KK, I STfeP)»E(<> + KK)/ VOLUME
  120 KKsKK+1
      SS SOLID CONCENTRATION IN VOLUME RATIO
      FCCISTEP)*VF-/VOLUMF
      DEMDIF(lSTEP)»CROO"ROAA)*,5i5«5
      IF(£CY(ISTEP)+3,*8C(ISTEP)/8t) ,GE, H)
      IFdPLUNG ,EQ, 1) GO TO 1000
      IF(NUTRL ,EQ,  1)GQ TO 1000
      IFCISTEP ,GE, fcOO) GO TO 1000
      C&LL «UNGSCDERIVE1»NE)
      ISTFPsISTEP+1
      TClSTFP)sT(ISTEP-n*DT
      GO TO 111
 1000 WRITEU,22)IJK,DTrIPLUN.G,NUTRL>ISTEP
   22 FQPMATC/5X,i5,Ei2tU,3I5)
      IFCISTEP ,LT. 100 ,OR. ISTEP  ,GT, 200)210,220
  210 OT*OT*ISTf.P*OINCR/lt>0,
      IFUJK.EQ, 5) GO TO 220
      GO TO 25
  220 CONTINUE
      IF(IPCN,EQ,0) GO TO 8001
      WRITEC6,13)
   13 FORMATC/7 8X ,i)HTIME,5x , 1HX,7X , 1HY ,7X, I HZ, bX, IHUr 6X, 1HV,SX, 1HW, feX ,
     ,       7HOEN-DIF,3X,6HRAOIUS,1X,5HVQRT,,2X,5HALPHA,2X,
     ,      12HFLUID CONC, ,

                                    A34

-------
    ,        10HSiJlID*vrJL.»2X,
     OH ?«0 Jjjsl ,ISTrP,NG«ID
     DO 23C1 KKsl,NC
 230  ACONC(K*)=2,*PAI*BCCJJJ  ) * *3* SS ( K K , J J J ) /3 ,
     WP1TF(6,1U)T(JJJ),CX(JJJ>,CY(JJJ),CZ(JJJ),U(JJJ),VCJJJ'I,
    ,       «(.JJJ),OFNOlF(JJ.n,f5C(,M,n , VO«T(JJ,T) , ENTRCO C ,J JJ ) , FC ( JJ J ) ,
    ,       ACOMC( 1) rSSCl ,JJJ)
  la  FUKHATC aX,«Fe,£,^6.2,F7,3,F6.?,t 1 2 . 4 , 2F7 , 2 , F7 , a , 3E. 1 2 , « >
     IF(MC ,f:Q,  U fin TO 240
            KK*2,K'C
                   NC(KK),SS(KK, JJJ)
  IS FCIHMATUOOX,2tl3.«)
 2ao CONTINUE
flOOl IF(IGCM.tO.O) GO TO 6002
     ISTEPlsISTtP+1
     T(ISTEP1)B2,*T(ISTEP)-T(1STEP«J)
     CX(ISTEPl)=2,*CX(lSTF:P).CX{I8TFP«n
     CZCISTtPJ5=2
*CZUSTtP)-CZ(ISTFP*n
     CY(ISTF.Pl)sO
     RC(ISTFP1)*0
     Ff.(!STtPl)=0,
     CALL DRAW(T,T,T,T,CY,BC,CX,CZ       , ISTt-.Pl , 1, MSC AL t, U )
     IF(IGCN.FO,1) GO  TO  8002
     DO 8004  1=1,NC
     on sooa  jsi,isTfc'p
800« AUX(J,I)sSSCI,J)
     DO R005  .' = 1,NC
800S AUX(ISTFP1»J)»0.
      IF(N'CP1,GT.4)
      CALL  PRA*(T,T»T,T,FCf AUX(l,i)f Ai)X(l,2), AUX(1,3),ISTEP1, lfr»N3CALt.»
    *NCPt 3
      IF(NC.LT,4)  50  TO 800?
      N C M 1 * N C
      IFfNC^l.GT.a)  GO TO 8006
      CALL  DRAW(T,T»T,T,AUXCl,i),AllX(l,2),AUX(l,3),AUX(l,4),I8TFPl»10,
      GO  TO  8002
      CALL  DRA»(T»T,T,T»AUX(1, 1) » AUX ( 1 , 2 ) , AUX { 1 , 3) , AUX ( 1 , U ) , ISTtP 1 , 10,
      CALL  ORAW(T,T»T,T,AUX(l,5),AUX(1,6)fAUX(l,n,AUX(l,8),ISTEPl,ll,
     *NSCALfc"^CM5)
8002  CONTINUE
      RTlsDT
      DO  300  KK=1,NC
      KKKsNC-KK+i
  300  E
      INOfcXsISTEP
      IFdPLUNG .FO. 1) GO TO 310
      E(10)sO.
      AO=.5*8CCI5TtP)
      RETURN
  310  E(10)3ROO*PAI*E
      A0=   SCCISTFP)
      RETURN
                                       A35

-------
      SUBROUTINE. JE.T
      TIME LIMITED CONTINUOUS DISCHARGE  THROUGH  A  NOZZLE  UNDER A
      MOV I MR BARGf.

      EXTERNAL DERIVE 1, OF. RIVF2, OF & I Vf3,l>F. RIVE «, PERI Vfb, DERIVE*., nfRIVF7
      COMMON/ AUXX/AUX(hOO, 8)
      Ci'KMON/GP/IGCN,IGCL»IGLT,IPCN,!PCL,IPl.T,NSCALE
             /B/DINCRi,OlN'CR2,KEYl,KEY2,KEY3
             /APCD/ Y( 30),ROA( 30 ) , YK 1 , YK2, YK3, YK4 , AK Y 1 . AK Y? , AK Y3 ,
           N         CX(600),CY(bOO),THETA2(600),UC600),
       SZtTA(600),CZFTA(600),AA   CfcOO ) » DFNDIF (600) ,    DL(600),
                               V2,CMAX(9),YY
             /COMPUT/Ft(7.
      COMMON /CONST/G,PA1/ Al.PHAO* ALPHA, ALPHAC, ALPHA 1 , ALPHA2,
           ALPHA3,ALPHAq,GAMA,CORAG,CFHIC,MtTA,CM,CO,COi,C02
             /TORS/ DS,OTt,r)TZ,CDT,NGRIO,NGRl01,NGRI02,NGR!D3,NCD
      COMMON /TRASFEiP/ KK , .J J, TT , ISI Zt , NOTE, AO , I Y , NHT«N , J.NOE.X , I BED, ILE AVE
      IJKSO
      IHEDau
      ILEAVEsO
      wRITECb,90051)
90051 FOR^ATC    //I OX, 1 7H8 ARf.E OPERATION  2/10X,
     ,        47HDISCHARGE THROUGH  A  N'OZZLE  UNDER  A  MOVING
      REAOC5,9000nTSTOP
      kRITF(b,90069)TSTOP
90069 FORMAT C/10x,5HTSTOP,E12,<4,UHSFC,/)
C     TIME LIMIT IN THE COMPUTATION
      U C A Pi ? CT Qrtftft!3^TyT7t.° If t V t tf t V 2 Lf (r V 1
      n(_fll_/VJ^^>'v^JC / Awi/.L^'^w.T \ ^ ^ i. TC^^p TJ
C     KtYlsl  USE TETRA TECH  SUGGESTED COEFFICIENTS
C     KEY1=2  USF. READ IN COEFFICIENTS
C     KEY2rl COMPUTATION STOPS AT  THF  END  OF  JET  PHASE
C     KEY2=2 COMPUTATION STOPS AT  THE  END  OP  DYNAMIC COLLAPSE
C     KEY2=3 COMPUTATION STOPS AT  THfc  END  OF  LONG TERM DIFFUSION
C     KEY3sO LONG TF.RM DIFFUSION FOR  FLUID  PART  ALSO
C     KFY3sl NO LONG TERM DIFFUSION  FOR  FLUID PART
      fR!TE(6,9007«)I3lZe,Km,KF.Y2,KEY3
9007a FORMATClOX,1SHGRID POlMT SIZE,IS,'iH  KbYl,I5,5H KEY2,I5,5H KEY3,I5)
      GO TO  (1,2)KFY1
     1 WHlTECfe,900705
90070 FORHAT(/10X,37HUSt TETRA TECH  SUGGESTED COEFFICIENTS/)
      DINCRlsl,
      DINCR2sl,
      ALPHilsO.0806
      Al.PHA2s.3536
      BPTAsfl,
      CDsl,3
      CDRAG=1 ,
                                    A36

-------
      ALPHA3=,3536
      A I PH Ail = ,001
      FRICTNs.Ol
      ALFAlsl.
      GAMA2«0,
      ALAMOAr.OOl
      GO 70 3
    ? KHITE(6, 90071)
90071 FORMATUOX, 2UHUSE READ  IN  COEFFICIENTS)
      RFAD(5,90001)niNCR1.0INCR2
      «FAO(5',90001)ALPHA1,ALPHA2,BFTA,CD
      FORMAT(8G10,5)
      ALPHA1-FNTRAJNMENT COEF  FOR JtT
      AL.PHA2-FNTRAINMENT COEF  FOR 2-0  THF.RMAt
      BETA-SETTLING  COEF.
      CD-DRAG COEF,
      RF AD (5, 90 001) GAM A, CDRAG,CFR 1C , C03,C04, ALPHAS, ALPHA4I, FRICTN, Fi , CM
      RF.AD(5,90001) ALFAt,ALFA2,GAMAl,GA'-IA2,ALAMDA
    3 CONTlNUe
      wWITt(6, 90073)01 NCR1. 01 NCR2
90073 FUHMAT(10X,6Ht)lNCHl/F10ttt,7H DINCR2 » K 1 0 ,4)
90001
C
C
C
C
900S2  FORMATC10X,6HALPHAt ,HO,«,8H  ALPH A2 , F 1 0 , U , 6H  BtTA,F10.a,
      .            3H  CO»F10,a)
       WRITE(6,90072)GAMA,CDRAG,CFRIC.CD3,CD«, AI.PHA3, ALPHA4,FRICTN,F1,CM
90072  FORMAT C  9X,bH  GAHA,F5.2»6H CDR AG,F5 .2, 6H CFRIC, F5,3,ttH CD3,F5,2,
      ,                            /9X,7H ALP*AU,F10,4,7H PRICTM,F10.'
      ,      3H  F1,F10,4,3H CM,F10e(4)
       WRlTF(6,900K)
       RtAO(5,90001 )((WSU,J),J*l.L)f 1 = 1 ?K)
       00 15 I=l,K
       wRITE(&,90055)ROAS(I)
 90055 FORMATUOX, 16HDENS1TY np SOL 10 , 8X , F 1 2 ,«
       hRTTE(6,90056)(CS(I,J  ),Jsl,L>
 90056
 90057 FORMAT (10X,22hKALL VELOCITY OF  SOLI D, 2X , 8E1 ?. . <

       RF.AO(5,90001)U8fSAI,TIMfc
 C     SAI IS LIMITED TO 180-270  DFGREES
                                     A37

-------
90058 FDRMAT(lOX,14HRARGt  VELOCI T Y ,H 0 ,4 , 18H  ANGlb  *ITH X- AX I S , F 1 0 , a ,
     ,      flH DEGREES, 
-------
      CFsCF-CS(I,J)
C     FLUID CONCENTRATION AT THE 8
   30 KK3KK+1
      DINCRsOINCRl
      DO 31 JjBifNE
   31 SAVF(JJ)sEMJ)
      wRITE(6>,197J)
 1973 FO«MATflHl,10X,tSHJET CONVECTION  /)
   25 r>0 26 JJBI,N,E
   26 E(JJ)»SAVF(JJ)
      DSsOINCR*8C(l)
      OSAVEa20e*DS
      IJKaIJK+1
      T(l)aO.
      S(i)aO,
      IY=1
C     IY-INDEX OF  DEPTH  WHERE  DENSITY  SPECIFIED
      ISTEPsl
C     ISTEP-COMPUTATION  STEP
      NOTF  -  INDICATE  HITTING  BOTTOM
      NUTRL  -  FIRST  HORIZONTAL  POSITION  RFACHED
  100 CX(ISTEP)«E.C13
      CY(ISTEP)s£C2)
      CZ(ISTFP)s£(3)
      BC(I8TEP)eSRRT(CE(«)+E(8)>/(ROA(i)*J(131EP)*PAn)
      AA(IST£P)e8C(ISTEP)
      FUJXeu(ISTEP)*PAJ*8C
-------
      !F(IST£P .(it, 600) GO TO 200
      IFCNOTE ,EQ. 13 GO TO 200
  103 CALL RUW6S(DERIVF3,Mn
      DSsDSM ,1
      IF(DS.GT.DSAVE) DSsDSAVE
      OT= DS/UCISUP)
      ISTEPelSTfrP+i
      TUSTEP)sTCISTEP-l)*DT
      SCZ(JJJ)»U(JJJ),
     ,     BC(JJJ),RFNDIf:(JJJ)fFC(JJJ),ACONC(l),S3(i»JJJ)
9006U FORHAT(8X,5F9t2,2F8.3,«E12,
-------
     hfi (101  KKrr'J,?
'JO 1  fc ('IK ) nf- (KK 1 *UU
     on iio?  KK = I,M;
•'402  F ( 1 ( i +• K K ) = I. ( 1 0 -t K' •< ) * U 1 1
     v^"Mf isTf:p)*r.f-S(THL'iA;'CiSTr;p) )
     F(9)r.ur. ( i sim
     V r - C. f- *• H C ( 1 ) * * c? * ' I ( i) / ( .••. C ( 1. S T L P ) * * f! * U ( KS T t P ) )
     FlUJD  CHNCr.' TK4THK'  AT  1 ;n- fMi)  i)i   .H. T
     II- C'-UTt  ,rri, ) )i;n TO  'JlO
     F.(10)=0,
     AO = Mf:( ISTPP)
     RF Ti;i = (^Aj*.ciS
     f-'NO
                                          A41

-------
      SUBROUTINE
      WASTE MATERIAL DISCHARGED INTO THt BARGE
      EXTERNAL DERIVF..l,DERIVE2,QERIVFi,DtRlVE4,DERIVE5,D£RIV£6,DERIVE7
      COMMON /B/DINCfn,DlNC*2,KEYi,KEY2,KEY3
      COMMON /A6CO/ Y( 30),«OA{ 30) , YKl , YK2, YK3, YK« , AKY1 , AKY2, AKY3,
     ,              YU,YW,YE,H,UAO,WAO,N,CKYn51),UA(15i),WA(15n
      COMMOM         CX(600),CY(600),TH£TA2(600),U(600),
     , SZETA(600),CZ£TA(foOO),AA  (60 0 ) , DENDI F ( 600 ) ,   DLC600),
     ,  CZ(600),SS(8,600),SAVEC600),DUMY2C5,600),FCC600),T«»00),
     ,     BC(600)»«SC4,2),
     ,       ROAS(a),S(600),K,L.IPLUNG,NUTRU,UB,SAI,TIKE,I3TEP,Vr,
     ,               Ul3XfW8Z,  V2»CMAX(9) ,YY
      COMMON /COMPUT/£E(7,l'3l),E(20},ACONC(123),C3(^,2),
                     CCMAX(1S1),VAR(151)
      COMMON /CONST/G,PAI»ALPHAO, ALPHA, ALPHAC, ALPHA 1 , ALPH A3,
     ,      AlPHA3,AlPHA4,GAMA,CORAG,CFRICfBETA,CM,CD,CDl,CD2,FRICTN,Pl
      CQMNGN /TORS/ DS,OTl,DT2«CDT,NGRID,MGRIDl,HGRID2fNGRlD3,NCD
      COMMON /TRASFER/ KK, JJ,TT, I8IZE,NOTE» AO, IY,NOTRN, INDEX, 1BED»1LEAVE
      COMMQN/A UXX/AUXC 600 ,8)
      COMMON/GP/IGCN,IGCL/IGLT,IPCN,IPCL,IPLT,NSCALF
      IJKsO
      INDfcXsO
      If3EOsO
      ILEAVEaO
      WRITECfe, 90051)
      FORMATC     / 1 OX, 1 7HB ARGE OPERATION 3 //IOX,
     ,  62HWASTE MATERIAL  IS DISCHARGED CONTINUOUSLY INTO THE BARGE WAKE,
     ,/10X,56HAKTF« THE  INITIAL MIXING, THE WASTE MATERIAL IS ASSUMED
     ,  /10X,«iHTQ IJE.  IN  A FORM OF HALF CYLINDER THERMAL,  /)
      READ(5,90001)TSTOP
      WRITE(6,90069)TSTOP
      FORMAT(/10X,SHTSTOP,E12,a,4HSEC./)
      TIME LIMIT IN THE  COMPUTATION
      RFAD(5,90002)ISIZE,KEY1,KEY2,KEY3
      KEYIsi  USE TET9A  TECH SUGGESTED COEFFICIFMTS
      KEY1=2  USfc READ IN COEFFICIENTS
             COMPUTATION  STUPS AT THE END OF CONNECTIVE Dt'SCFNT
             COMPUTATION  STOPS AT THE FNQ OF DYNAMIC COLLAPSE
             COMPUTATION  STOPS AT THE END Of- LONG TFRM DIFFUSION
             LONG TERM DIFFUSION FOR FLUID PART ALSO
             NCI LONG  TERM DIFFUSION FOR FLUID PART
      WRITE(6,9007tt)ISlZF,KFiYi,KtY2,KEY3
9007a Fn«MAT(10X,15HGRID  POINT SIZE, IS, 5H KtYi,Ib»5H KEY2,I5,5H KEY3,I5)
      GO TO (1,2)KEY1
      WRITEU, 90070)
      FORMAT(/10X,37HUSfi  TETRA TE.CH SUGGESTED COEFFICIENTS/)
      Cls, 6
90069
C

C
C
C
C
C
C
C
90070
      KfcY2si
      KEY2a2
      KF.Y2 = 3
      KEY3=0
      KEY3el
      DINCRU.2b
      ALPHAsO.3536
      ALPHA130.0806
      BFTAcO,
      CMsl.
                                   A42

-------
      GAMAS.2S
      CDRAG=1.
      CKWICs.O
      CD3=,2
      ALPHAUx.OOl
      FKK.TNs.Ol
      Fts.l
      GAMAl 80 .
      GAMA2=0.
      Al AMOAs.OOl
      GU TO 3
    2 HRITEC6, 90071 )
90071 FCRMATdOX, 2«HUSE «EAO  IN  COEFFICIENTS)
      READ(5,90001)C1,C2
      RE-AD(5,90001)DINCR1,OINCR2
      REAnC5,90001)ALPHA, tip TA,C.D1,CD2, CM, ALPHA!
90001 FORMAT C8G10. iO
C     ALPHA -FNTRAINMfcNT CDEf-  FOR 2.r>  THERMAL
C     BETA-SETTLING  COtF,
C     C01  -DRAG COEF. (IF A HALF  SPHERE  "EOGt.
C     C02-DMAG COP.F, FOR CYLlMOtR
C     CM • ADDFD MASS CUEF,
      Rt.A[){S,90001)GAMAf CO«AG,CFHlC,CD3,COa,ALPHA3, ALPHA«,FRJCTN,F1
      RE'AD(5»90001)ALFA1,ALFA2, GAMAl,
    3 CONTINUE
9007.3 FDRMAT(inx,6HOlNCRl ,F10.
-------
90055 FQRMATdOX, 16HDFNSITY OF SOLIO,flX,F12,4)
      WRITEC6,90056)(CS(I,J  ),Jsl,L)
90056 FORMATC10X,13HCONCENTRAT10N,11X,8E1?,4)
      WRITE(6,90057)(WSU,J),Jsl,L)
90057 FQRMATUOX,22HFALL VELOCITY OF SOLIO,?X, 8E12,4)
   15 CONTINUF
      REAO(5,90001)U8,SAI,TIM£
C     SAI IS LIMITED TO 180^270 DEGREES
      WRITE(6,90058)UB,SAI,TIME
90058 FORMATC/10X,14HBARGF VELOCITY,F10,4,18H ANGLE w!
   20
     ,     8H OEGRttS,4H FOR, 6.10,4, 5N SEC,)
      DO 20 Isl,K
      ROAS(I)=RQAS(I)*1,94
                                                         X*AXISrF10 ,4,
      SAHaSAI
      S A IBS A I*P A I*, 005555556
      UBXaUB*COS(SAI)
                   180,)WBZaO,
                   270,)UBXaO,
      IFCSAII ,feO.
      IFtSAII ,EQ,
      UlsUAO«U8X
      U2*U1
      U3««UBX
      W3S-KBZ
      WPITEC6,90059)
90059 FORMAT(/10X,45HAMBIENT CURRENT FOR A MOVING COORDINATE FIXED,
     ,          13H ON THE BARGE)
      rtRITfc C6,90060)
      FORMAT (HX,4X»i HO, 6X ,2HYU,6X, 2HY* , 6X/
      WRITE(6,90061)U1,U2,U3,U4
      FORMAT(9X,3H UA,2F8,3,8X,2F8,3)
      WRITEC6,90062)Wl,W2fW3,M
      FORMAT(9X,3H HA,F8,3,8X,3FR.3)
90060
90061
                                               , 6X , 1HH)
90062
C----
      BPsSQRT(B8*DD*,5)
      VB-AMBIfeNT VfcLOClTY I M THE BARGE DIRECTION1
      C3«l ,/(Cl*C2**. 333333)
      FtUXs,5*PAI*BCCl)**2*VB*,75
      CF*1,
      DO 21 !el,K
      DH 21 J«1,L
      CFsCF-CS(I»J)
      CnNCfcMTRATIUN OF FLUID
   21 eS(I,J)sCS(I,J)*QO/FLUX
      CF*CF*QO/FLUX
      RDUsROU
:      INCREMENT IN OS - DINCR*BCU)

      WPITF(6,1973)
 1973 FORHATflHl,10X,18HCONVECTIVE DESCENT,/)
   25 ROOs(Rf3U*OD+CFLUX-QD)*ROA(l))/FLUX
                                  A 44

-------
              ( 1 )
              1
      DS«DIN.'CR*flC(l)
      E(n«0.
      E(2)=«,*BC(n/(S.*PAI)
      E(3)«0.
      E«J)"Rnn*,5*PAI*RC(l)**2*DS
      E(5)*F*»CM*COS(SAI-PAl)*t750*VB
      Et6)«o,
      E(7)=F;acM*SIN(SAl*PAI)*,7SO*V6
      IF(SAT! ,EQ, 180,)F(7)sO.
      IFCSAT: .to. 27o,5F(S)so,
      DO 30 Iel,K
      DO 50 J«1,L
      E(8+KK)e,5*PAl*BC(t)**2*CS(I,J)*OS
   30 KKsKK+1
      Vf--«CF*f5*PAI*BC(l)**2*(3S
      VOLUME OF FLUID
      Ttl)sO,
      S(l)nO,
C     NONQ, OF TOTAL FQS

c     IY-INDEX OF DEPTH WHERE DENSITY SPECIFIED
      ISTEPsl
C     I5TEP-COMPUTATIC3N STEP
C     NC IS EGJN, *C1, FOR SOLIDS
      NUTRLsO
C     NUTHL -MUTRAL BUOYANT POSITION HtACHtP
c     NOTE -INDICATOR OF HITTING BOTTOM
c.......	..—.................	
  100 CX(ISTEP)sEU)
      CYCISTEP)=E(2)
      CZ(1STEP)=E(3)
      IFCISTEP  ,EQ.  1)111,112
  111 DL
-------
      Ui'=l,/UU
      SZETAdSTEP)sV3*UU
      C2ETAdSTFP)sVl*UU
      SIN AND COS OF ZETA
      ROAAsROAdY)+(E(2)-YdY))*(ROAdY+n»ROAdY))/{YdYM)-YdY))
             1=1, K
             J = 1,L
  110
      KKsl
      DO 110
      00 110
      SSCKK
      KKsKK+1
      FCdSTFPJsVF/VOlUMF.
      IF((CYdSTEP)+BC(ISTEP)*,
-------
      If- (NCCC,GT,4)  *
      CALL  DWAW(CX,CX,CX,CX,AUX(l,n,AUX(l,2),AOXU,3),AUXn,<4),ISTePl,
     *  JO,NSCAL.E,NCCC)
      !FCNC.LE.
-------
r.
c
      SUBROUTJNF rOLAPSl
      EXTERNAL OERIVEl,DERIVE2»DFHlVt3,OF.RIVEa,DERlVE5,DERIVE6,DERIVE7
             /8/DINC«l,DINCR2,KEYi,KEY2,KEY3
             /ABC0X YC 30),<*QA( 30),YK1,YK2,YKJ, YM,AKY1,AKY2,4KY3,
                    YU.YW,YF. ,H,UAO,WAO,M,CKY(151},UA(15i),WA(151)
                     CX(600),CY(f>00), AA    (600) ,U(600),
     ,      VC600),    W(AOO),VORH600)/DEMDIFf600),ENTHCn(A0n),
     ,CZ(600),SS{6,600),SAVF(600),DUMY2(6,600),FC(600),BC(600),WS(U,2),
     ,        R0*8(«)f T(600),K,l..IPlUNGfNUTKL,UB»SAI,nME,lsn.P,   VF,
                                       ALPHACtALPHAl ,A|.PHA2,
           AIPHA4,
             /cnHPUT/EE(7ilbl)fE(20),ACONC(l23)^CSU,2),
          0(8/151), Yl(iSl),Y2Cl51)»OYn501,F(8),FwC8),Wrt
                     CCMAXU51),VAR(lbl)
             /TORS/ OT/OTl»OT2»COT,ivGRIO,MGRI01»N6RI02»NGHI03,MCD
      COMMON' /TPASRtR/ i^K,JJ/TT/l SIZE, NOTE, AO , 1Y,NOTRN, INDEX, I BED, I LEAVE
        ,IJK,FbFD,AMO,DlDT,MEtHriD,TSTOP
      IJKsO
               ,fcOt
    3 Els(ROA(IY*n«HOA(IY))/(HUA(l)*(Y(IY+l)"YUY)))
             INDEX) **3*,8y*EG*i 000, )**,«2857
      DT2B.OOl*(Bl/BCClNDtX))**'5/EG*tl
      DTSOT2
      GO Td a
    1  Fn«MAT(lHi,////10X,l«HCOLlAPSE PHASE)
      MC»K*L
      NC IS EON. NQ, FOR SOLIDS
      00 100
  100 SAVE (KK)sE(KK)
   2S DO 101 KK*i,Nr
  101 E(KK)rSAVE(XK)
      IJKsIJK+1
      ISTtPsINDEX
      NUT«L=0
      NUTRL=3 DIFFUSION TAKES OVER OYMAMJC COLLAPSE
      IFdSTEP ,EO, IBEO
      IPLUNG-.INOICATCR OF HITTING BOTTOM
      IFCISTEP ,ER, I8FD )GO TD IbOO
      IFdSTEP .60, INDFX) GO TO 1??
  Ill CXUST£P)sF(iJ
      CY(ISTEP)sFC2)
      CZ(!5TEP)sE(3)
                                   A48

-------
    CMMASS*! ,
            ) «3,* VOLUME/ C«,*PAI*E(9)**i>)
             RADIUS
    BC(ISTEP)sfcC9)
    BC-MAJQR RAIUS OF CLOUD
    UClSTt:P}=fc(5)*CMMASS
    VCISTFP)=E- (b)*AA(ISTEP)*CKMASS/RC(ISTEP)
    RnAA«ROA{IY)*(t<2)-YClV))*(HpA(IY*l)»ROA(lY))/miY+l)»Y(lY))
     DD  120  1*1, K
     OP  120  J=1,L
     SSCKK, IS TFP)«E(10+KK) /VOLUME
 120  KKSKK+1
     SS  SAVE SOLID  CONCENTRATION FOR DIFFUSION
     FC(ISTEP)=VF/V0LUME
     IF  UPIUNG  .EG,  4)  GO TO 5
     IF(CCYClSTtP)+3t*2.*AA(ISTEP}/8,}  .GE, H) IPLUNG«2
   b  AKXaa.*ALAMDA*(.5*E ( 9 ))**. 333333
     AKX -  CHANGE  DF  8 BY  DIFFUSION
     BBOTs(8C(ISTEP)-RC(ISTEP«l))/DT
     IF(CY(ISTEP)«AA(ISTEP).LE.O.) GO TO 420
     IFCISTEP  .UP,  iNDEX+b) GO TD 121
     IF(AKX  .GE,  BBDT)NUT»La3
 1?1  IF(\'UT«L  .feO.  3) GO TO £000
     IF  (IPLUK'G  ,EQ,  23  GO TG 1000
     IKISTEP  ,GF,  599)  GO TO 2000
 122  CALL RUNGS(DERIVE2,NE)
     T(ISTEP)BT(ISTEP-U*OT
     GO TO 111
1000 IPFD=ISTEP
     DRTsE(10}*lfc,/(pAI*AA(ISTEP)*BC(!STFP)**?*ROU)
     £(10)sRnO*PAI*AA(ISTEP)*BC(ISTF.P)**2
    »     *(DBT+,6666fefe7*8CClSTEP3*V(ISTEP)/AA(ISTEP))/ 8,
     AO=AO*2,
1500 CALL BOTTOM1
     IFCISTFP ,GF, 600) GO TO 2050
     IFCNUTRL ,EO, 3) GO TO 2000
     TFtlPLUNG .EG, «)1600,1500
1600
     OBT»EC10)* «./'(PAI*AA(!STf P ) *BC ( 1STEP 3
     E(10)=RnO*PAI*AA(ISTEP)*SC(ISTEP)**2*OOT/16,
     AOsAO*,5
     ILEAVF.sISTFP
     GO TO 122
     ISTEPsISTfP-1
2000 WRITE<6,22)IJK,DT,IPL.UNG,MUTRL»ISTEP
  22 Fn*?MAT(lX,l5,E12,
-------
  13 FORM Alt/ 3X,UHTIME,8X, lHX,9X,lHY,9X,lHZ,6X,lHU,6X,lHVf 5X,1HW,
    ,       6X,7HDEN«OIF,SX,1HA,9X,1HB,5X,11HFLUID CONC,, Sx,
    ,        10HSaLlOVOL.»2X,13HCONCFNTRATIUN)
     NCR IDBCISTEP- INDEX) /iOO
     IFCNGRID ,LT. I)
     DO «30 JJjBl*DEX
     00 442 KK*1,NC
     ACOK.'C(KK)sa,*PAI*AA(JJJ)*BC(JJJ)**2*SS(KK, JJJ)/3,
     WRITE(6,U)T(JJJ),CX(JJJ),CY{JJJ),CZ(JJJJ,U(JJJ),V(JJJ),
           W(JJJ),DENr)IF(JJJ)»        AACJJJ),BCCJJJ)»FC(JJJ),ACONC(1),
           ssa.jjj)
            3F12.4)
     IFCNC .EG. 1) GO TO «JO
     DO «50 KK82»NC
     WRITE.C6,15)ACONC(KK),SS(KK,JJJ)
  IS FQRMATU01X,2tl2,T,T,T,AA,BC,CX,CY      » ISTEP1 ,2» NSCALE,4)
     CALL ORAW(CX,T,T»T,CZ,T,T,T»ISTEPt»15fN8CALE»t)
8002 COMTINUE
     DT2*DT
     DO  iao KK«I,NC
     CMAX(KK)=SS(KK,ISTF.P)
 140 CONTINUE
     CMAX(NC+l)sFC(ISTEP)
     FOK LCJNG TERM DIFFUSION U8F
     IFChSCl,!} ,EO, 0,)C«AX(1)«CMAX<2)
     AOsAA(ISTtP)
     IF(CY(ISTEP)»AA(ISTF,P),LE.O.) YY*AA(I8TfP)
     RETURN
     END
                                  A50

-------
     SUHHOUT JN-fc  Ct'LAPS2
      CnHMON/GP/IGCK',IGCU»IC.LT,IPCN,IPCLpIPLT,MSCALE
      COMMON  /A/  tP(20)
      COMHQN  /B/OlNCRl,OlNCH2,KEYl,Kf.Y2,KEY.S
      COMMON  /Af00),
     ,  SZETA(600),CZHA(600),  A A (600 ) , OF.NO IF (60 0 ) ,    CL<600),
                               V2,CMAX(9),YY
             /TUPS/ DS,Oti fOT^^CDT^NQHIDfNG
             /CnNST/G,PAI/ ALP^AO, ALPHA, ALPHA Cr ALPHA 1, ALPHAS,
             /COMPUT/FF(7,lbl) ,E(205 » ACOKCU23) ,CSC«,2) ,
             ,tbn,Yl(15n»Y2C15n»DY(lbO),F(fl),FW(8),taW(9),
                     CCMAX(151 ) »VAP(151)
             /TkASFfH/ KK,JJ,TT, I S I ZF , NOTE , A 0 , I Y , MCJTfrM , I NDfc X , I BtO •
             FHtDi AfO,OLOT,METHnp,TSTOP
C
C
      OSS=DL(ISTfcP)
      IFC*FTHOD  .1-0, 2)  AA(I3TF.P)«BC(1STFP)
      IJKsO

            •?
90051 FORMAT(1H1,///10X,27HCOLLAPSF PHASE OF THE
      INDFXsISTfcP
          N'P.  OF TOTAL. tQS
       DO  101
   101  SAVE CKKJstMKK)
    25  00  102  KK«i,Mf
   102  E'(KK)«SAVE(KK)
       IJKsIJK+1
       ISTEP=INDEX
       UUUsUOLD
       V2 = V5
       DO 103 KKs«,8
   103 F(KK)sf (KK)*OS
       00 104 KKslO,Nf
   100 E(KK)»F(»
-------
C     NOTRN -INDICATE ENTRAPMENT FITHEK BY CONVECTION OR BY  COLLAPSF
      NUTRlsO'
C     WJTRL -INDICATE DIFFUSION TAKING  OVER
C     IPLLINOINDKATOR OF HITTIMG BOTTOM
      IFCISTEP ,EQ, IBED)IPLUMGsl
      IFCK.OTE ,FO, 1) GU TO 500
      IFC1STEP .EQ. INOEX)G(j TO 121

      CY(ISTEP)sE(2)
      CZ(ISTEP)*E(3)
             i./ccM*t'(a))
      UUs   SURT(V1**2+V3**2)
      OL(ISTFP)=UU*DL(ISTEP»1)/UUU
      DLDTs(DL(ISTEP)»DL(ISTEP«l))*UUU/OL(ISTEPi-l)
      AREAaVfiLUMF/OLClSTEP)
      BC(ISTEP)sE(<»)
      BC-MAJOR RAIUS OF CLOUD
      AA(ISTEP)»AREA/(PAI*E(9J)
      V2SF(6)*CMMASS*AA(TSTEP)/BC(1STFP)
      U(ISTEP)sSORT(Vl**2*V2**2+Vi**2)
      THETA2(IRTEP)=,5*PAI
      DS=U(ISTFP)*DL(ISTEP)/UU
      AKXs2,29*ALAMDA*      E ( 9 ) **t^33333
      BBDTs(BC(ISTEP)-BCCISTEP»l))*UUU/OL(ISTEP-l)
      IFCISTFP.IF.IM3FX+5J GO TO 111
      IFCAKX ,GE. BBOT)NUTRL»3
      IF(CY(ISTFP)-AA(ISTEP).LE,0.) on TO 220
  111 CONiTIWUF
      UUU*UU
      UUsl./UU
      SZETA(ISTEP)sV3*UU
      CZETAf ISTFP)sVl*IJU
      DO 120 IS!,K
      DO 120 J=1,L
      SS(KK ,ISTEP)sE(10+KK)/VOLUME
  120 KKsKK+1
      SS SAVE SOLIDS FOR LONG TPRw DIFFUSION;, CO^C, IN  VOL. RATIO
      FCf ISTEP)SVF/VOLU«E
      IFtlPLUN-G ,EQ, «) GO TO 122
      IF(CCY(!STFP)+AA(ISTEP)*,B5)         .GF, H)
  122 IFCNUTRL .EG. 3) GO TO 200
      IF (IPLUNG .EG. 2) GO TO 300
      IFUSTEP ,GE, 599) GO TO 200
  121 CALL RUNGS(DERtVE«»NE)
      DT« DS/UdSTFP)
      ISTEP=1STEP-H
      TCISTEP)sT(ISTEP-l)*DT
      S(I5TEP)=S(ISTFP»1)+DS
      GO TO 110
  300 CONTINUE
      OBTsE(10)*3t/(AA(ISTEP)*8C(ISTFP)*ROO*DL(ISTEP))

                                    A52

-------
      E(10)BRDO*AA(ISTfcP)*BCdSTEP)*((5BT
     ,   +.375*PAI*BC(ISTEP)*V2      /A A(ISTfcP))/1,5*CL(ISTEP)
      IBED*ISTEP
  500 CALL BOTTOM2
      IFCISTEP ,GE. 600) GO TO 2020
      IF(MJTRL tEO, 3) GO TO 200
      IFdPLUNG ,FQ, 4)ifeO,SOO
  160 E(6)«CM*E«O*V2
      ROnsE(a)*ROA(l)/(E(tt)+E(8))
      PBT*E(10)*1,5/(AA(ISTEP)*BC(ISTEP)*ROO*OL(ISTEP))
      F(10)eROO*AA(ISTEP)*BC(ISTEP)*OBT/S,*DLdSTEP)
      AOsAO*,5
      !LEAVF=ISTEP
      GO TO 121
 2020 ISTFPBlSTfcP-1
  200 WRITE(6,90056)IJK,[)lNCRf
90056 FORMAT(1X,IS,2F1?,4,3I5)
      IF(IJK ,EQ. S) GO TO 220
      IFmSTFP-I^eX) ,LT, 100 .OR,  (ISTtp.IMDEX)  ,GT. «00) 210,220
  210 DINCH«OINCR*(ISTEP»IMDEX
      GO TD 2^
  220 COMTINJUE
      IF(IPCL.F-Q.O) GO TO 8001
      WRITEC6, 90053)
90053 FURMATdBXMHT/TX^lHS^X
     ,,7HOEKi-DIF,2X,llHFLUID CONC,,13H   SOLID  VOL,  »2X , 13HCOMCENT H AT ION)
      NGRIDe(ISTFP-!NOF.X)/100
      IFC^GRID  ,LE, 03 NGRIDSI
      DO 240 JJJsINOFX, ISTEP, MGRID
      DO 230 KKel/NC
  230 ACQNC(KK)8    PAI*8CCJJJ)*AA(JJJ)*SSCKK,JJJ)*DL(JJJ)
      WRTTE(6,9005a)T(JJJ).SfJJJ),CX(JJJ),CV(JJJ),CZ(JJJ)rU(JJJ),
     ,  AA(JJJ),BC(JJJ),DE.MOIF(JJJ)»FC(JJJ}»ACONC(1)»SS(J»JJJ)
       IF(NC  §EQ.  1)  GO  TO  2ilO
       00 201  KKe2,NC
  201  WRITE C6,900bS) ACONC(KK),SSCKK,JJJ)
90055  FO»PAT(101X,2fc'12,^)
  2«0  COK.TINUF
 6001  IFCIGCL.FQ.O)  GO  TO  8002
       ISTEPlsISTEP*!
       CZ ( I STEPl)s2,*CZ(I8Tfc'P)-CZ( ISTfcP- 1)
       CX(ISTEPl)s2t*CX(I3TKP)"CX(ISTfcP-l)
       AA(ISTEPl)sO,
       CYdSTEPDeO.
       CALL  ORAW(CX,CX,CX,CX,AA,8C,CZ,CY   , ISTEPI,«»^SCALE»'
  8002  CONTINUE
       DO  260  KKel,NC
       CMAX(KK)SSS(KK,ISTEP)
   260  Cf.'N'TINUE
       CHAX(NC+l)sFCCISTEP)
       !F(wSd,l)  ,EQ,  0,)CMAX(l)sCMAX(2)
       YY=F(2)
       IF(CY(ISTrP)-AA(!3TEP),LE,0.)  YY«AA(ISTEP)
       AOsAA(ISTEP)
       DT2«DS/U(ISTFP)
       RFTURM
       (-MD

                                   A53

-------
      FXTFRMAL
                    Y( SO},HfUC 30 ) , YK J , Y«2 , VK 3 , YK tt , AK Y i , AK Y2 , AK Y3 ,
                     CX(bOO) ,CY(feOO) , AA     (600) ,IJ(600),
           V(bOO),    n(600),VORH600),OtNniF«>00),COLAPV(faOO),
     ,C?(600),SS(8,600),SAVf: (600),nUMY2(6,600),FC(600),BC(600),wS(U,2),
     ,       RnASU),T(feOO),K,l,IPUJNG,Num.liH,SAl, TlMf.iSTEP.   VF,
             /TPHS/ DT , DT 1 , DT? , CDT , ^GRI 0 , NG« ID1 , N(;P ID?, NGRI 05 ,
             /CnMP
          n(8,lbl)

             /TRASFERX KK, JJ, TT, IS I2t, MOTE , AO , 1 Y, NJOTR*, INDEX , l8ED,IlEAVfc
                    (8))/RDA(l
      IFCISTEP ,fcO, I8EO)12a,125
      FREDsO.
      GO TO 126
      CX(I5TEP)af (1)
      CY(1STEP)=E.(2)
      CZ(15TEP)sE(3)
      NUSTEP)=fc fS
      VCISTEP)s.75*16.*F(10)/(PAl*BC(ISTtP)**3*P-nn)
      «ClSTF.P)=t (7
      KKsl
      DM 120 I=i,k
      DC 120 JsJ,L
      IF (ABS(VnSTEP)) ,U. ABS ( *S (I, J) ) )  121,122
  121 RFTAAsi.
      GO TO 123
  122 BET*A=fitTA

      FBED*F8FD-PAl*BC(ISTfcP)**?*ABS(wS(I,J))*ROAS(I)  *SS(KK,ISTEP)
     ,       *(1.-BF.TAA)*V(ISTEP)
  120 KKsKK+i
      FC(ISTtP)sVF/VCLUHE
      RfUABRriA(IY)*(F(2)»Y(IY) ) * (ROA CI Y* 1) -KG A (I Y) ) / ( Y ( I Y+ 1 )-Y(IY))

      FRED = FBFD+1,33333*PA I*A A(I STEP)*BC(1STEP)**2*(RQO-ROAA)*G
     ,     -C«*CKC«)*V(ISTEP}-E(fc)*V(ISTEP»i))/DT
      AKXsjJ,*AL AMD A*(,b*E (9))**,333333
C     AKX » CHANGE OF R BY DIFFUSION
      BPOTs(BC(ISTEP)-BC(ISTEP-l)5/DT
      IFfAKX ,CE. BBOT)
  126 E(6)=F{U)
C     STOKF OLD MASS IN
      IKCFBF.O ,LT. 0,5
      IF(MUTRL .EG, 3) GO TO 200
      IFUPLUMG ,ER. a) ILF.AVEsISTFP
                SEQ, A) GO TO  200

                                    A54

-------
    CALL RUMGS{nFRIVE6,NiE)
    JSTfPsjSTFP+1
    T(ISTEP)sT(ISTEP"l)+DT
200 CONTINUE
    RETURN
                                  A55

-------
    SUBROUTINE  BOTTO*2
    EXTERNAL DERlVFl,DERlVF?,DERIVt3,DERlVfcil,DEHlVFS,DJfR!Vfc6,DERlVE7
    COMMON /ABCO/ Y( 30),RDA( 30 ) , YK I r YK2, YM, YKU , AKY 1, AK Y2, AK Y 3,
   ,               YU,YW,YEfH,UAO,WAO,N,CKY(15l),UA(151),WA(lbl)
    COMMON         CX(600J,CY(600),THETA2(600),UC600),
   ,  SZETA(600),CZETA(600),AA  (600),DFND1F(600),   DLCbOO),
   ,   C2(fcOO),SS(8,600),SAVE(600),DUMY2(5,600)fFC(feOO),T(feOO),
           ROAS(«)»S(600),K/L»IPLUNG,NUTRL»UBlSAI,TlME»ISTEPfVF,
                   UBX,WBZ,  V2»CMAX(9),YY
    COMMON /Ct)NST/G»PAI,ALPHAO»ALPHA,ALPHAC,ALPHAl,ALPHA2,
         ALPHAS/ At PHA«,GAt*A, COR A6»CFKIC» BETA, CM, CD»CD1,C 02, FR!CTKi»Ft
      ,ALFA1,ALFA2,GAMA1,GAMA2,ALAMDA,CD3,CO<»
    CUMMOK' /TORS/ OS,OTl,OT2,CD
-------
    SS  SAVE  SOLIDS  FUR LO^G  TFRw  DIFFUSION.  CONC,  IN   VOL,  RATIO
    FC(ISTEP)=VF/VOLUME
    FBEDsFBf O+PAI    *AA(ISTF.P3*8C(1STF.P)*(RUO-RQAA)*G*DL(ISTFP)
                                          )*uuu/oi. USTFP-U
    1KAKX .GT, BBDT)NUTRLS3
126 f (fa)*t«J)
    va = v2
    STORE 010 MASS IN E(6)
    IF(FBfcD ,LT, 0,) IPLUNGsil
    IF CMUTRL .tO, 3) GO TO 200
               ,tQ, a) ILEAVE*ISTEP
               ,EO. 4) GO TO 200
    CALL RUfcGS(DFRIVE7»NE)
    OTs DS/UC1STEP)
    ISTEP*ISTFP*1
    T(ISTFP)aT(lSTEP»l)*DT
    S(ISTFP)sStISTtP«l)+OS
200 CONTINUE
    RFTURN
    END
                                   A57

-------
      SUBROUTINE RUNGS(DERJVE,NF>

      COMMON /A/ FPC20)
      COMMON /COMPUT/tFC7,lSn,E(20),Wl(20),W2(2Q),w3
-------
                 DFP-IVUCt)
              N f
      CUMHI1M /A/ EP(20)
             /ARCH/ Y( 40),«OA( 30),Y*UYK2,YK'4,YM,AKY1,AKY2,AKY3,
                     CX(e>00),CY{600) , AA     C 600 ) , U ( 600 ) ,
           V(600).    i*(600) ,VO«T(feOO) ,DF.ND!F(600) f
                     CZ(feOO)
                   O ,T(60
-------
      EP(«)=ENTRV*ROAA
      EP(fl)*FN!7RV*(K[}AU)"RnAA)
      EP (<»)*• 3, *B**2*f5*CE/RQACl)
      KKst
      DD 150 IBJ,K
      00 150 J*lfL
      IP(&BSWS-ABS(VV)) 151 ,151,152
C     IF FAIL VEL. IS SMALLER  THAN  THE  COVECWE  VEL,  NO  SETTLING  OCCURS
  151 BFTAAH.
      GO TO 153
  152 BFTAAsBETA
  153 SETLVBPAI*B**2*ABS(WS(I,J))*(1 ,-RtTAA)*E ' (9 + KK) /VGLUMF
                              I)     3
                              I)     3*UU
                              I)     )*VV
      EP(7)«EP(7)"SfcTLV*(ROAS(I)
      EP(e}=E
      EP(9+KK
  150 KKSKK4-1
vv
                                   A60

-------
                 DFklvfc2(F)
                t (20)
             /A/ EP(J?0)
             /ARCP/ Y{ 30),«IU( 30 ) , YK 1 , YK2, YK 3 , YK a , t h Y 1 , AK Y?, AK Y3 ,
                     CX(600),CY(feOO), AA     ( 600 ) , U (60 0 ) ,
           V(fcOO),
                  a) rT(t>00)
                     iJRX,wB
      COMMON /CONST/G,PAI, A LPHAO. ALPHA, ALPH AC, ALPHA 1 , ALPNA2,
                       KK , JJ, TT, ISIZE ,NOTe , AO , I Y ,NDTRw, INDEX, IBtP, ILf- A VE
C
c
      IF (F(?) ,Gt .0,) GG Tf  88B
      FHR^ATl  U7H Y LT 0 --  CHAK'GF  INPUT  DATA  TO FMSUNE
      CALL EXIT
  100 IF(t(2)  .LE, Y(IY*m  GP  TO  101
      IYsIY+1
      GO TO  100
  101 IF Ct (2)-Y(IY))102,200,200
  102 IYsIY-1
      GO TO  100
      Kr.AAsROACIY)+(E(?)»Y(lY))*(ROA(IY+l)-fOA(IY))/(Y(IY+l)^Y(IY))
       IF(ROO  .Gh,  PUAA)
       IFfMOTR^1  ,FO,  1)  10/20
    10  ALPHAIsO
       ALPHAsALPHAC
    ?0
       UA«0,
       !F{fc(2)  ,LE.  YU)
       IF(F(2)  ,GT.  YU  ,AN-D,  E(2)  ,LT, YE) GO TO 110
       GO  TO  120
   110  LIAS  (YE»F(2))*UAO/(YE-Ytl)
   120  WAso,
       IF(t(2)  .LE.  Yw)  WA«sE(2)*WAO/YW
       1F(E(2)  ,GT,  Yh  ,AMO,  §(2)  ,LT, YE) GO TO 130
       GO  TO  140
   130  WAs(YE-
   140  B=f(9)
       CMMASSSsCMMASS*B/A
       UUBEtSi/CMMASS
       VV*t (6)/CMMASSS
       PHlsSQRT((UU-UA)**2*VV**2*(W|«/»HA)**2)
       EP(
-------
      GO TO 3
    2 APEA2sA**2*B/DUMY
      AREA2sAREA2*ALOG((DUMY+A)/A)
C     EMRV-EK-TfrAIMMENT IN VOLUME
C     MAIN COMPUTATIONS
      f PCi)aUU
      EPf2)=VV
      EP(3)aww
      DRAG=   PAI*ROAA*PHI*,5
      FP(U)aENiTRV*ROAA
      EP(5)sEHTRV*ROAA*UA-ORAG*A*B*(IJU-UA)*f:D3
      EPC8)sEMTPV*CROA(13-ROAA)
      EPdOJs     PAI*(l,«GAMA*AO/A)*CE'*G*A**X*B/lfe,
             »CDRAG*ROAA*A*8*FP(
-------
      SUBROUTINE DERIVES CE)
      DIMENSION EC20)
      COMMON /A/ EP(HO)
      COMMON XABCH/ Y( *0),ROA(
                     CX(600),CY(600),THETA2(600),U(600>,
     t  SZ£TA(fcOO) ,CZ6TA(tiOO),AA  (600 ) ,DENDIK CfeOO) ,   DL(feOO),
     »                CZ(600),SSC8,   600), DUMY2 (8 , 600 ) , BC (600) , WSC4 , 2 ) ,
     »        ROAS(tt) ,S(600),K,L,IPLUNG,NUTRL,UB,SAI,TIME,ISTEP,VF,
     »                UBX,«8Z,  V2,CMAX(9),YY
      COMMON /CONST/G,PAI, ALPHA 0, ALPHA, A tPH AC; ALPHA 1, At PHA2,
      COMMON /TORS/ DS,OTl,DT?,CDT,MGRID,NGRI01,NGRJD2fMGRID3,NCD
      COMMON /TRASFER/ KK, JJ, TT, I SIZfc , NOTE, AO , I Y , NQTRN, INDEX, I BED, REAVE
     ,   • UK, FBED,APO,DLDT, METHOD, TSTOP
c
c
      IF(F(2),Gt ,0.) GO TO 888
      CALL EXIT
  999 FORMAT(  fl?H Y LT 0 -- CHANGE INPUT DATA TO ENSURE DESCENT    )
  888 CONTINUF
  100 IF(F(2) ,LE. YCIY*!)) GH TO  101
      IYsIY+1
      GO TO 100
  101 IF(F(2)-YCIY))102,200,200
  102 IYalY-1
      GO TO 100
  200 ROAAsROACIY)+(E (2)"Y ( I Y ) )* (ROA ( I Y+i )»RQA ( I Y) ) / ( Y ( I Y* 1 )«Y ( IY) )
      BHsSQRT((F.(«)+F(B))/(ROA(l)*UU*PAI))
      FLUX«PAI*BB**2*UU
      UASO.
      IFCFC2)  ,LE.  YU) UAsUAO
      IF(E(2)  ,GT.  YU  .AND, E(2)  ,LT.  YE) GO  TO  110
      GO TO  120
   110 DAB  (YE-E(2))*UAO/tYF.-YU)
   120 WA=0,
      IF(E(2)  ,LE.  Yi«) WA*E(2)*WAO/YH
      IF(E(2)  iGT.  YW  .AND, E(2)  .LT,  YE) GO  TO  130
      GO TO  lan
   130 wAB(YF«E(2)
   UO CONTINUE
      UA=UA»UHX
       OEN1*S(3RT(UA**2*WA**2)
       CQSD3KWA/DEN1
       OENOef («)*UU
       D!RCOSisEC5)/OENO
       OIRCOS2*EC6)/DENO
       COSGAMA«C0301*OIRCOS1*-COSD3*OIRC083
       AGAMAc  ACDS(COSGAMA)
       FD=CO*ROAA*fUA**2+^A**2)*SIN(AGAMA)**2*BB
       OENO»8IN(AGAMA)
       FDXc(cOSDlfCOSGAMA*OlRCOSl)*FD/DENO

                                       A63

-------
    FDY*«eQSGAMA*[JIRCOS2*FD/DENO
    FDZB/FLUX
    RUUsROAS(I)*UU
    FP(5>sEP(5)-SI:TL*RUU*OIRCOSl
    EP(fe)sFP(6)»8ETL*RUU*OIRCOS2
    EP(7)*EP(7>»SETL*RUU*nlRC083
    FP(8)sEP(8)»SETL * (RDA ( 1 J-ROAS ( I)
    EPCB+KK Js.SETL
150 KKSKK+1
    RETURN
                                 A64

-------
      SUBROUTINE DERlVfcU(E)
      DIMENSION t(20)
C
c
             /A/ E.PC20)
             /APCD/ Y( iO),ROA< 30 ) , V K 1 , YK2 , YK3 , YM , AK Y 1 , AK Y2 , AK Y3 ,
                     CX(600).CY(600),THETA2C600),U(600),'
     ,  SZFTA(feOO) ,CZETA(fcOO),AB  (600 ) , DENDIF (600 ) ,   DLC600),
     ,                CZ(6003,SS(8,  600),DUNYa(8,fcOO),BC(600),WSC
-------
   10 ENTRsALPHA3*SF*PHl*OL(ISTEP)
      GO TO 30
   20 £NTRsALPHA«*SF*tPC
-------
      SUBROUTINE T--ERIVE5 CE)
      DIMENSION EC20)
      COMMON /A/ FPC20)
      COMMON /ABCF/ Y( 'iOfHUAC 30 ) , YK 1 , YK2 , YK 3 , YK U , A K Y 1 , AK Y2 , AK Y 3 ,
                     CX(600),CY(600),THFTA2(60Cn,UUOO),
     ,  SZFTA(600),CZETA(fcOO),  A A (6005 , OENOIF (600) ,    DL
     .                CZ(bOOD ,SSC8,  600),DU^Yi>(e,feOO) ,BC(feOO) ,hS(«,2
     ,        ROAS(u),S(600},K,L,IPLUNG,NUm »UB/SAI, T IMF ,ISTt.p,   VF,
     ,                UBX|WB£,RDAF- ,C«AX(9) , YY
             /CCNST/G, PA!, AI.PHAO, ALPHA, ALPHAC,ALPHA1,AI.PHA2,
      COMMfik /TRASFFR/ KK , J J, T T , IS I ZE , NOTE , AO , I Y , K.OTRK , IK'OF X , I BED, I l.fc A VE
     ,  , TJK,F BFO,Af'0,DLDT, METHOD fTSTOP
C
C
      IF(E(2).GF ,0,) GO in H88
      CALL EXIT
  999 KORMATC  ^?H Y LT o --  CHANGE  INPUT  DATA  TO ENSURE DESCENT   )
  888 COMTINUE
  100 IF(F(2) .LE, Y(IY + D) GO  TO  101
      IYBjY+1
      GO TO 100
  101 IFCE(2)-YCIY))102,200,200
  102 IY»IY«1
      GO TO 100
  200 RnAA«RO*(IY)*(fc(2)"Y(IY))*(ROACIY+l)«ROA(IY))/(YCIY*l)*Y(lY))
      CF«CRPA(IY*l)-ROA(IY))/(Y(IY*n»Y(IYj)
      UAnO,
      IF(F(25 .LE, YU) UAsUAO
      IF(E(2) ,GT. YU  .AND, F(2)  .LT,  YF.)  GO  TO 110
      GO Tf 120
  110 UAs  (YF-E(2))*UAO/(YE»YU)
  120 HA«0,
      IF(E(2) ,LE, Yw) WAst(2)*WAO/YW
      IF(E(2) ,GT, Yin  ,AMO, E(2)  ,LT.  YE)  GC'  TO 130
      GO TO 140
  130 WAs(YF-E(2)
  HO CONTINUE
      UAsl'A-UBX
       AREAevnLUHE/DLdSTtP)
       IFCROO  ,LT,  RCAA
       BRsSORT(2,*AREA/PAl)
       CMMASSaS ,/(CM*t(«))
       V2BE(fe)*CHMASS
       PHI*SOPT((VUUA)**2*V2**2+CV3-1«(A)**2}
       PCY«SORT( (Vl»UA)**2+       (V3«1*A)**23
       ENTR*PAI*BB*DL(I3TEP)*(ALPHA*V2tRCY*Al.*»HAl)
 c      ENTR  -FNTRAIKMENT IN  VOI.UHE
                                       A67
       PX*V3*UUU
       PZ=VI*UUU

-------
    DRAGJ=,b*CDl*ROAA*PHl
    FP(1)*V1
    FP(?)cV2
    EP(5)sEMTR *ROAA*UA»DRAGt*RB*PX*(vr-UA)*OL(TST!P)
    tP(6)aG*(ROf)»HCAA)*PAI*B8**a*.5*OL(ISTKP)»ORAG2*BB*va*2,*DL(I3TtP)
    F.P(7)*ENTR *ROAA*WA«0«AG1*BB*PZ*(V3»WA)*DUISTFP)
    UU*lt/UU
    KKxl
    DO 150 islfK
    00 150 J*l,L
    AHSWSsABS(WS(I/J))
    IFCABSWS«ABS(V2        ) ) Ib I , 15 t f 152
    IF FALL VEL. IS SMALLER THAM  THt  CONVFCTIVE VEL, NO SFTTLING OCCURS
151 BETAAsi.
    GO TO 153
152 BETAA*BETA
i53 SFTL  s2.*BB*ABSWS*OUISTEP)MU-BETAA)*f (
    EPCa)s(EP(«)«SfTL*ROAS(I)>
    F.P(5)«(EP(5)«5ETU*ROAStI)*Vl)
    FP(fe)s(FP(6)«SETL*RCAS(I)*V2)
    EP(7)*(EP(7)"SETL*WOAS(I)*V3)
    FP(8)e(fP(8}*SETL * ( ROA ( i) -ROAS ( I ) ) )
    tP( 8 + KK)s«Sf.TU*UU
IbO KKSKK4-J
    DO 160 KK*1,8
160 EP(KK)Bf P(KK)*UU
    RETURN
                                 A68

-------
    DIMENSION E(20)
    COMMON /A/ EPC20)
    COMMON XARCOX Y( 30),RQA( 30 ) t YK 1 , YK2 , YK3, V«l , AK Y 1 , AK Y2 , AK YS ,
                   CX(600),CY(600),AA     ( 600 ) / IJ C 600 ) ,
   ,      V(fOO),    «(600)»VOHT(600)»l)F NDU' (600 ) » FMTRCOC600 } ,
           ROAS(a),T(600).K,L ,IPLUNGfNUTRt , HB» S* I , T IHE, ISTFP »   VF ,
                   UBX,WBZ,(?nAf-,C^AX(9) , YY
    COMMON /CONST/ G^PAI.ALPHAO, A LPHA.ALPHAC, ALPHA i,
           /TRASFtH/ KK , J J, T T , I S 1 ZF , NOTE , A 0 , I Y, NOTRfc, INPFX, T BED, REAVE
   ,  , UK , FBtD, AMD, DIDT, METHOD,! STOP
    IF(t (2),Gfc.O,) GO TO BRP
    CALL fcXlT
    Ff)R^AT(  ^7H Y IT 0 »- CHA^Gt I^PUT 0/»TA TO ENSURE  DfcSCfcNT    )
888 CUMlMJt
100 IF(t(2) .LE. Y(IY + 1)5 G(i TO  101
    GO TO 100
101  IF (E(?)-Y(IY))102,200,200
102 IYsiY.1
    GO TO 100
200 ROAAsRQA(IY) + (F(2)»Y(IY))*(f
-------
    2
      AREA2»AREA2*ALOG{ (DUMY*A)/A)
    3 EMTPVB   PAl*(AREAl + AREA2)*
C     ENTRV-»EMRAlNHfcMT IN VOLUME
C     MAIN COMPUTATIONS
      EPU)=UU
      EP(2)«VV
              PAI*PCAA*PHl*,5
      EP(8)sENTRV*(ROA(l)-RUAA)
      E'P(10)s     PAI*(l.»GAMA*AO/A)*CE*G*A**1i*B/16,
     ,        «CDRAG*ROAA*A*B*EP(9)* ABS (EPO) ) /« ,
             »CFRIC*RDAA*B**2*EP(9)/(2.*A)
         -Fl* PBFD*FRICTN/C2,*PA1)
      OVaEKTHV*HOAA
      DO 150 jsl,K
      DO 150 J«1»L
      APSWSaABS(W3(l,J3)
      !F(ABSWS»A8SCVV))15if i51f 15?
C     IF FALL VFL, IS SMALLER THAM  THE CONVECTlVt VI- L, NU SETTLING OCCURS
  151 BETAAsl.
      GP TO 153
  152 BFTAAsRF.TA
  153 SfcTLV*PAl*B**2*ABS(wS(I/ J) ) * (1 ,»3ETAA) *h ( 1 0 + KK)/ VOLUME.
      EP(4)eEP(tt)«SFTLV*(ROAS(I)     )
      FP(5)sfp(5)-StTLV*(ROAS(I)     )*UU
      EP(7)sF.P(7)-SETLV*CROAS(I)
      EP(l
-------
      DIMENSION EC20)

      COMMON /A/ EP(20)
      COMMON /ABCO/ YC 30),MOA(  30 ) , YK 1 , YK2 , Y*3 , YK« , AK Y i , AK Y2 , AK Y3 ,
     ,               YU,YW,YE,HfUAO,wAO,N,CKY(l51),UAC15l)»WAn5l)
      COMMON         CX(600),CY(600),THETA2(feOO),U(600),
     ,  SZFTA(600),CZtTA(600),AB   (600 ) , flENDIF (600 ) •   01_(600},
     ,                CZC600;»SS(8,  600) »DUKY;>C8,600),BC(600),»S(4,
     ,        ROAS(«),S(600), K,L,IPLUNG,MUTRLiU6»SAI,TIME,ISTEP,VFf
      COMMON /cnNST/C/PAI,ALPHAO,ALPHA,ALPHAC»4LPHAl » ALPHA2,
      COMMON /TRASFtR/ KK , J J , TT , I SIZfr., NOTE , AO , I Y , NOTRN, I MOEX , I BED/ ILE A VE
     ,   i UK, F RF D » AMD, DLDT, METHOD,! STOP
      IF(E(2).GE.O.)  GO TO  888
      WHITE (6,999)
      CALL FXIT
  999 FORMAH   a?H  Y  LT 0 -- CHANGE INPUT DATA  TO ENSURE DESCENT   )
  888 CONTINUF
  100 IPCFC2)  .LE.  YCIY41J) GO TO 101
      IYsIY+1
      GO TO 100
  101 IF(E(2)"Y(IY))102»200,200
  102 IY*IY»1
      GO TO 100
  200 ROAA=«OA(IY)*(F(2)-Y(IY})*(ROACIY-H)«RUA(1Y))/(Y(1Y+1)«YCIY))
      UAsO,
      IF(F(R)  ,Lt, YU)
      IF(E(2)  ,GT, YU .AND, EC?) .LT, YE) 50 TO 110
      GO TO 120
  110 UA= (YF"EC2n*UAO/(YE-YU)
  120 fcAsOg
      IF(F(2)  .LE. YW) WAtEC2)*WAO/Yw
      IF(E(2)  ,GT, YW .AND, E(2) ,LT, YE) GO TO 130
      GO TO HO
  130 VJAs(YE»E(2)
  1«0 CONTINUE
      VOLUMFB(t(«)+E(8))/ROA(l)
      ROOeE(tt)/VOLUMfc-
      AREAsVOLUMf/DLdSTEP)
      AAa2,*ARf.A/(PAI*BB)
      CMMASSBl./(CM*E(«))
      V3=E(7)*CMMASS
      EP(9)=E(10)*3,/(ROO*UU*AA*BB*DLUSTEP))
      EP(9)*EP(9)»BB*DLDT/DL(ISTEP)
      ENTRs.5*SF*DLtISTEP)*C          ALPHA«*EP(9)*UU)
C     F.NTW »eNTRAINMENT IN VOLUMF
c     MAIK COMPUTATIONS
      UUU=1./SORT(V1**2*V3**2)

                                  A71

-------
      PXeV3*UUU
      PZ«V1*UUU
      DRAGls,5*CD3*ROAA*PHl
      UiKVUUBX
      U3*V3+WBZ
      FP(1)=V1
      FP(2)*V2
      EP(3)»V3
                 *ROAA
                 *RCAA*UA«OR*61*AA*PX*(V1»UAJ*2.*DL(I8TEP)
              +FRICTN*FBED*U1*PH

                 *ROAA*(NA«ORAG1*AA*P2*(V3«WA)*2,*DL(ISTEP)
              +FRICTN*F8tD*U3*PM
      EP ( I 0)=. 1666667  *CE*(l.»GAMA*AO/AA)*AA**3*G*DL(ISTtP)/UU
         »CDRAG*.b*ROAA*AA*UU*EP(9)*A8S(EP(9) 3  *OLCISTEP)
          «CFRIC*BB*tP(9)*DL(ISTEP)/AA
            «F1   *FRICTN*FBED
      UUsl ,/UU
      KKeJ
      00 150 1=1, K
      DO 150 J*1,L
      1F(ABSWS-ABS(V2        ))151,151»1S2
      IF FALL VEL. IS SMALLER  THAN THE COMVECTIVE VEL, NO SETTLING OCCURS
  151 BETAAsl.
      GO TO 153
  152 BFTAAsRETA
  153 SFTL »?,*B8*ABS«VS*DL(ISTEPJ*{Jf»BETAA)*F(10*KK)/VOLUME
      EPU)s(£PU)«SeTl*ROAS(I>)
      FPt7) = (EP(7)»SET|.*ROAS(l)*V3)
      EPCe)"(EP(8)»SETL * (ROA( 1 )«ROA5 C I) ) )
  150 KKaKK+1
      FP(9)sEP(9)+nV*UU/(PAI*AA*ROO*DLUSTEP))*2t
      nn uo KXBii8
  160 EP(KK)*fPCKK)*UU
      RfTURM
      END
vv
                                  A12

-------
      SUBROUTINE  DIFUSN1
      COMMON  /B/DINCRl,OINCR2,KEYl,KfcY2,KEY3
      COMMON  /C/XO.ZO
      COMMON  /MATRIX/  A(lbl),B(151),C(151),CP(151)
      COMMON  /ABCD/ Y(  SO),RQA(  30) , YK1 , YK2, YK3, YKa , AK Yl , AKY2, AKY3,
                    YU,YK,YE,H,UAO,WAO,N,CKY(15i),UA(151),HA(151)
      COMMON  /COMPUT/EE<8,151)»
          E(e,lbl),Yl(151),Y2(151),DY(i50).FCfl),FW(8),WW(9),
                     CCMAXC151),VAR(151)
      COMMON  /TORS/ OT,DT1,DT2,CDT,NGRIO,NGRID1,NGRID2,NGRID3,NCD
      COMMON  /CONST /G, PA I, ALPHAO, ALPHA rALPH AC »ALPHA1, ALPHAS,
           ALPHA3,ALPHA
-------
  110 t(I,J)sO,
C     Sf-T VALUES IN E AND F TO 0,
      IFfKK ,EO. k'CPl ) GO TO 250
      DO 120 !«l»J2
      OY(I)sH/J2
  120 Cf.lMTINUE
      YKUsO,
      Y2(l)«0.
      OH 130 1*2, Jl
      YlCIJsYl (I-l)*DY(I»l)
      Y2(I)«Y?U-n+DY(l-l)
  130 CONTIMJf
C     SET UP A G»10 OF EQUAL SIZE
      CALL IfcABCD
      CALL SUMAPCO
      DO 131 JJM»IST£P
  131 SVOI.(JJ)«1,333333*PA!*AACJJ)*BC(JJ)**2*SS(KK,JJ)
      DH 132 JJs?»lSTEP

  132
      DO 133 JJ*2,ISTEP
      IFfSVOLUJ) fGT, ORIGIN) GO TO
  133 CONTINUE
      JJsISTEP
      TTsT(JJ)
      T2GRIDB   H/(J2*ABS(Ki.'(K)<)n
      DTOaTgGPID
      TPLOTBT(ISTfP)
      IF(TPIOT/T2GK!D,GT,100,) T2GRIDaO ,Ot*TPl.OT
      NCAKE«(TPLOT»TT)/T2GRIO
      IF(IPLT.EO.O) GP TO 12347
      IF(NOUTPT,LT,n
      GO TO 12348
123a7 NOUTPTsS
      CONTIMUE
      IFCISTART .fcQ, ISTtP) GO TD !<»$
  13
-------
194 CALL SOLUTN
    ZAMQsO,
    Df! 997 1*1,J2
997 ZAMOeZAMO+(E(l,mE(lf I«-l))*DYU)*0,5
    If-UEWTOT.LF.O.) 60 TO 991
    RTOTsOLDTOT/ZtwTOT
    DO 99fe 1*1, Jl
996 EU,I)sECl,I)*RTOT
    FU)eF(l)*RTOT
991 CONTINUE
191 TT*T(ISTOP)
    DO 190 JJ*ISTART,ISTOP
    IFCSVOLCJJ) tGT, QRIGIKOGO TO 142
    SVOL(JJ)sO.
    GO TO 190
142 IF(WWCKK)) 170, 170, Hi
    UPDATING FOR SOLID WITH POSITIVE FALL VELOCITY
143 IFCJJ ,LE, INDEX) 144,145
    IN THE CONVtCTIVF. PHASE
144 THlCKCJJjsCYUJ-l)              +WW (KK ) * £ T < J J )»T ( J J" 1) )
   ,     »CYCJJ)
    PUSITNCJJ)sCY(JJ)+,fc25*BC(JJ)+,5*THlCKCjJ)
    GO TO 146
145 IF(JJ ,GT, IRFO  .AMD, JJ ,U. HEAVE) 151,158
    H' THE DYNAMIC  COULAPSf PHASE
158 THICK (JJ)*CY(JJ-»1)+AACJJ»1)*WW(KK)*(T(JJ)«T(JJ»1))*CY(JJ)«AA{JJ)
    POSITNCJJ)*CY{JjHAACJ
    F(1)BF(1)+RASVOL
    F(2)sF(2)+RASVOL  *CX(JJ)
    F(5)*F(3)+RA8VDL  *CZ(JJ)
    F(4)BF(4)+RASVOL  * ( CX C J J ) **2+ , 2S*BC ( J J ) **2 )
    Ft5)sF(5)+RASVOL  * (CZ ( JJ)**2+ ,2b*BC ( JJ)**2)
    F(6)«F(6)'«-RASVOL  *CX ( JJ )*CZ ( JJ)
    SVQL(JJ)=(1 ,»RATIO)*SVOL(JJ)
    THICK (JJ)*(1,-RAT 10) *THIC«(JJ)
    PDSITN(JJ)«H»,501*THICK(JJ)
    DISTa,50l*THlCK(JJ)
400 IF(JJ ,feO. ISTOP) 401,402
401 XCCJJ)sCX(JJ)
    ZC(JJ)sCZCJJ)
    CBCJJ)sBC(JJ)
    SVOL(JJ)*SVCL(JJ)/(PAI*CB(JJ)**2*THICK(JJ))
    GO TO 190
402 CONTINUE.
    DO 147 J»1,J1
    IF(Y2(J)  ,GE,  POSITM(JJ)) 148,147
147 CONTIMUE
148 RATIO s(P(.iSITN(JJ)-Y2(J-l))/DY(J"l)
    SUMKYlsSCKYCJ-n*CSCKY(J)-SCKY(J-l))*RATIO
    SUMUA1BSUA{J«1)+CSUACJ)-SUA(J«1))*RATIO
     IF(WW(KK)*(T(ISTOP)-T(JJ))  ,GE,  OIST)  152,155
 152  THICK(JJ)sSQRT(THICK(JJ)**2*2«,*(SCKY(jn»-8UMKYl)*WlNV)

                                A75

-------
      XC(Jkn=C.X( J.I) + (3UA( J1 1-S
                              lJM^Al)*
                              ,06*ALA
                                  iGf,  OIST+,5*THICK(JJJ)
      THF rtnun HITS
  isi xcuj)sc:x(jj)
      ZC(JJ)sCZ(JJ5
      CBCJJ)SHC(JJ)
  1U9 F(1)*F(1)+SVOL(JJ)
      K2)=FC2)+SVUL(JJ)*XC(JJ)
      FC3)=F m*SVOL(JJ)*ZC(JJ)
      F()*F(5)+SVOL(JJ)*(ZC(JJ)**2+,2b*C8(JJ)**2)
      F(fe33F(fc)+SVnL(JJ)*XC(JJ)*ZC(JJ)
      SVDL(JJ)=0.
      THOSt PEACHF.D   THE BtO  AKF  OFPOSITED
      GP TO 1QO
      KATlO=fcMTBFDXTHICK(JJ)
      F(1)SF(1)+RASVCL
      Ff2)sF(2)+RASVOL  *XC(JJ)
                        *ZC(JJ)
                        *(XC(JJ)**2+,2S*CB(JJ)**2)
      F(S)=F(5)+RASVOL  *(ZC(JJ)**2+,25*f.B(JJ)**2)
      P(6)sF(6)+RASVQL  *XC(JJ)*ZC(JJ)
      SVDL(JJ)sSVOL(JJ)/(PAI*CB(JJ)**2*THlCK(JJ))
      THKK(JJ)s(l.-PATin)*THICK(JJ)
      POSITN(JJ)SH-.501*THICK(JJ)
      SAVE THOSE NOT REACHED BOTTOM FOR  LONG  TERM  DIf-FUSlON
      GO TO 190
  153 POSlTK'(JJ)sPf3SITN(JJ)+WW(KK)*(T(ISTOP)»TCJJ))
      DO 155 KSJ,JI
      IF(Y2(K) ,GE, P03ITNCJJ))
  155 CONTINUE
  156 RATin
      ZC(JJ)aCZ(JJ)*(SL'M»*BC(JJ)«(CY(JJ"l)-,375*BC(JJ«n
     ,     *w«(KK)*(T(JJ)«T(JJ-l)})
      GO TO 176
  175 1F(JJ ,GT, IBFO  .AND. JJ ,LE.  U.EAVF.)  159,lfcO
c     THE CLOUD HITS BOTTOM
  159 THICK (JJ)*CY(JJ)-lf 25* AA(JJ).(CY(JJ»l)t.lt25*AA(JJ»l)
      PnSITN(JJ)aCY(JJ)-1.25*AA(JJ)-,S*THICK(JJ}
      GO TO 176
  160 THICK (JJ)sCY(JJ)»AA(JJ)*tCY(JJ.[)-AA(JJ»t)-).Wtv(KK)*CTf JJ)-T(JJ-J)))
      POSITN(jJ)aCY(JJD«AA(.JJ)-.S*THICK(Jj)

-------
176 DlSTnPOSITN(JJ)
    IMDISU.5*THICK(JJ) ,LE, 0.) 60 TO  171
    IFCDIST .ST. ,5*7HICK(JJ>) GO TO 410
    EMTSURFtt  ,5*THICK(JJ)*DIST
    RATIOENTSURP    /THICK(JJ3
    RASVQLsRATIU*SVOLCJJ)
    F(2)*F(2)+RASVCL  *CX(JJ)
    F(3)BF(3J+RASVOL  *CZ{JJ)
    F(U)EF(a)+RASVOL  *
    F(fc)sF(fe)*RASVOL  *CX(JJ)*CZ(JJ)
    SVCllCjJ)s(l,.f»ATIO)*SVOU(JJ)
    TH1CK(JJ)«(1.-RA7!0)*THICK(JJ)
    POSI7N(JJ)B  ,501*7HICK(JJ)
    OISTs,501*7HlCK(JJ)
«10 IF(JJ ,F.Q. ISTDP) «11,«12
ail Xf (JJ)aCX(JJ)
    ZC(JJ)»CZ(JJ)
    CB(JJ)*BC(JJ)
    SVOLCJJ5*SVOL(JJ)/(PAI*CB(JJ)**2*TH!CK(JJ})
    GO 70 190
«12 CON7IMUE
    DO 177 J«1»J1
    IKY2(J) .GF. POSITN(JJ)} 178,177
177 COMTI^UF
178 RATIO s{PDSITN(JJ)-Y2(J-l))/DY(J*n
    SUMUAlsSUA(J«l)+(3UA(J)»SUA(J.l))*RATIO
    SUMWAl»SWA(J«l)+(SWA(J)-5WAt J«1))*RATIO
    IF(-WW(KK)*(T(ISTOP)«T(JJ)) ,RE, DIST) 182,183
182 THICK (JJ)*SO»T( THICK (JJ}**2»2flt*SUMKYl*^lMV)
    XC(JJ)aCX(JJ)-         SUMUA1 *WINV
    ZC(JJ3=CZ(JJ)«         SUHwAl *«TMV
    C8 ( JJ) a f8C(JJ)**. 666666-1. 06* ALAMf>A*DIST*l*INV)** 1,5
    IF(-W»/(KK)*(T(ISTOP)-T(JJ)) ,GE. DIST* ."SuTHlCK ( JJ) )  179, 18»
171 XCCJJ)SCX(JJ)
    ZC(JJ)»CZ(JJ)
    CB(JJ)sBCCJJ)
179 C^^TI^^UE
    F Cl)sF(l)*3VOL(JJ)
    f C?)aF(2)+SVQL(JJ)*XC(JJ)
    F (3)«F(3)+SVOL(JJ)*ZC(JJ)
    F (iOeF(«)+SVOL(JJ)*(XC(JJ)**2+.25*CBCJJ)**2)
    F (5)*F(5)+SVDL(JJ)*(ZCCJJ)**2+,?5*CB(JJ)**2)
    F (fc)sF(6)*SVOL(JJ)*XC(JJ)*ZC(JJ)
    SVOL(JJ)=0,
    TwOSF REACHED   7HE SURFACE ARE CONSIDERED  TO  STAY THERF.
    GO TO 190
lea ENTSURFe-Wh(KK)*(T(ISTaP)-T(JJ)3»DIST+,b*THlCK(JJ)
    R^TIQ sEMTSURF/THICKfJJ)
    RASVOL «RATIO*SVOL(JJ)
    F (l)ep(l) + RASVOt.
    F (?)«tFf2)+«ASVOL  *XC(JJ3
    F (3)8F(3)+RASVnt  *ZC(JJ)
    F (aj«F(a)+RASVt)L  *(XC(JJ)**2+.25*CB{JJ)**2)
    F (5)sF (5)+RASVOL  * (ZC ( JJ) **2*,25*CB(.U ) **2)
    F (6)sF(6) + RASVfJL  *XC ( J J) *ZC ( J J)
    THOSE REACHFD    THE SURFACF IS CONSIDERED  TO  STAY THFRE"
    SVOl. (JJ)sSVOL(JJ)/(PAl*C8(JJ)**2*THlCK(JJ)J

                                A77

-------
      THICK(JJ)=(1.»RATIO)*THICK(JJ)
      POSITN(JJ)=.50!*7HICK(JJ)
      SAVF THOSF NOT REACHED SURFACE  FOR  t.ns,G  TERM  DIFFUSION
      GO TCI 190
  183 PPSITN(JJ)sPOSITM(JJ)+WW(KK)*(T(lSTOP3»T(JJ))
      DO 165 K = 1,J
      IFCY2CK) ,GE. POSIWJJ))  186,185
  185 CONTINUE
  186 RATIOe(POSITN(JJ)"Y?(K«l ))/DYCK-.l)
      SUMWA?sSWA(K»l)*(SVU(K)«»SWA(K"i))*RATIl)
      THICK (JJ)sSSRT( THICK (JJ)**2+2tt,*(SUMKY2»SUMKYl}*W!NV)
      IF(»WMKK)*(T(ISTOP)»T(JJ)) .GE, OIST* ,5*THICK( JJ) )  184,187
  187 SVDL(JJ)sSVCL(JJ)/(PAI*C6(JJ>**2*THICK(JJ))
      GO TO 190
  190 CONTINUE
      00 192 JJslSTART,ISTOP
      1F(SVOL(JJ3 ,LE, 0.) GO TO 192
      CALL INDATAI
  192 CONTINUE
      IFCISTGP.EQ.ISTEP) GO TO 12346
      KJI*IJK/NOUTPT
      XIJKzIJK
      XXXsXIJK/K'OUTPT
      IFfABS(XXX-KJI),LT.l,f»10)  1 2346,1 2.545
12346 CALL OUTPT
      IF(IPLT.eo.O,AND.NOHOW,EQ.1)  GO TU 1000
12345 CONTINUE
      CALL SHIFT
      CALL GRIOSA
      CALL IMABCD
      CALL SUMARCD
      CALL INSOL
      IFCISTOP .EO, ISTEP)  195,196

      GO TO 139
  195 CONTINUE
      COTsOTO/IBUG

      lF(kh(KKn 257,258 ,257
  257 CALL CU^VKT2
      CALL ADD
      GO TO 259
  258 IF(KEY3  .EG. J) GO TO 1001
      CALL COK)VRT2
      OH 256 J=1,J1
      OH  256  1=1,6

  259  TTeT(ISTfcP)
      CALL  OUTPT
      CALL  INABCD

    2  FORMAT(lHJ,loX,y?H**lMP(iT TO LONG TERM DIFFUSION COMPLETED** ,/,10
      IF(IPLT.FO.OtANiO,NOMOR,EO,i)  GH TO 1QOO

                                   A78

-------
      NOTE*0
  255 CALL GRIOSB
      CALL INABCD
      CALL HATXCO
      CALL INSOI.
      CALL SHIFT
      OLDTOTOAMO + FU)
      DO 300 !Jsi,NGR!D
      CALL SOI.UTN
      TTsTT+DT
  300 CONTIKiUt
      ZAMQsO,
      DO 999 Isl,J2
  999 ZAMOs2AMQ>(Ml»i
      ZEWTOTsZAMO + FU)
      IF(ZfWTOT.LE,Of) GO TO 992
      KTOT*OlDTOT/ZfUTOT
      00 998 1*1,Jl
  998 Etl»I)*E(l»I)*»TnT
      F(U»F(t>*RTOT
  992 COWTIK'UF
      CALL OUTPT
      !F(MOMOR,EO,1) GO TO 1000
      IF(TT ,GE, TSTOP) GO TO 1000
      IF (WW(KKmiO,3?0 >310
  310 IF(AMO,LT.ORIGIN) 60 TO 1000
      GO TO 255
  3?0 VMAXsOe
      VMlNslOOOOOO,
      DO 340 1*1,Jl
      IF(E(1,I) ,LE. 1,OOOE-»1S) GO TO 340
      COKC*E(l»n/VAR(I)
      IF (VMAX ,LT, CONC) VMAXaCONC
      IF< VMJKi ,GT, CONC) VHIK8CONC
  3«0 CONTINUE
      RATIOsVMlN'/VHAX
      IFCKATIO .GE. 0,9b) GO TO 1000
      GO TO 255
1000  CONTINUE
      IFIMSHsl
      CALL OUTPT
      DO 1003 Isl,IST£P
      CX(I)sCXCI)+XO
 1003 CZUJsCZCn
 1001 CONTINUE
      RETURN
      END
vv
                                   A79

-------
      SUBROUTINE
      COMMOhJ/SHtAKE./AVtDTU
             XB/DlNC«l,OI'lM:P<15n
             /AHCD/ Y( 30)>WCA( 30 ) , YK 1 , Y*2? Vk 3, YK4 , AK Y 1 , AK Y2 , AKY3,
      COMMON /COMPUT/FP (8,
                     CCMAXC151),VAR£iSi)
             /THRS/ DT,OTJ,bT2/COT,WGRIOiNGKJ01,NGKI02,KGKID3,AMCVT5
             /CONST/6, PA I, ALPHAO,ALPH A, ALPH AC, ALPHA i
                     CX(600),CY(600)»THETA2(600)fU(600),
     ,  SZtTA(600),CZfcTA(600)f AA  (600),   DTT(fcOO),   01(600),
     ,                CZ(bOO),SS(8f   600),
     f      SVOL(600),XC(600)f ZC(600),POSITN(600), T C600) , THICK (600 5 ,
     ,     SUA(aoO),S*A(200),SCKY(200),CON
-------
      TCTSTtP)=TUSTE.PH.5*DL(ISTtP)/U(ISTfcP>
      CX(IS7FP)sCXUSTEP)*.S*(CX
-------
      IFCINDEX.EQ.ISTFP)  GO TO U14
      DO  U12  JJsIlvDEX,ISTFP
      SVOL(JJ)«PAI*/tA(JJ)*BC(JJ)*DLCjJJ*SS(KK,JJ)
  412  CONTINUE
      DO  «13  JJ*INDEX,ISTEPNi
      IF(SVOLCJJ)  ilE,  QRIGIN)SVOL(JJ)»O
      CONTINUE
  «l«  CONTINUE
      SVni.CISTEP)«0,
      DO  U20  JJ«1,ISTF.P
      IF(SVOICJJ)  ,GT.  0,)
  420  CONTINUE
      JJsISTEP
      TT«T(JJ3
      ISTARTsJJ
      T1*T(JJ)
      T?ET(I3TEP)
      T3BTIHE+T1
      TUBTIME+T2
      IF(JJ ,FO.  ISTF.P)  GO TO 250
      IF(TPinT/TGRID,&T,100,} T6RIO»TPLQT*,0 J
      TSTARTeTCJJ)
      IF(IPLT,EO,0) GO TO
      NDUTPT*MCAKE/JPLT
      GO TO 123«8
123U8 CONTIMUF
      IF (NDUTPT ,LE, 0)NOUTPTBl
  fcOO CONTINUE
      IJKsIJK+1
              ,GT.
              ,tT. T3) GO TO U2fe
      DO i)28 JJsISTARTiISTFP
      IF(TEND ,LF. TlME+T(JJ))a29,«28
  U28 CONTINUE
      GO TO U26
      00 a2« JJsIBEGIN,I3TfP
      IF (TFND ,LF, T C J J) ) «25,A2«
      CONTINUE
  425 TFNOeTCJJ)
      CONTINUE
      DTsTEK'D-TSTART
      NNssIBUG*DT/DTO
      IF(NN ,LE. O
      DT*DT/NN
      IFdJK ,£0, J)CO TO 473
      CAUL MATXCO
      DO U7Q 11*1, NN
      DO
 9871 OAMOBOAMO+(E(l»I)+FCl,l4-l))*OY(n*,5

                                    A82

-------
     OTOTsOAMO+FfU
     IFCIJK ,FO. 1) 471,47?
 472 CALL SOIUTM
     DO 9872 1=1, J2
9872 ZAMPsZAMD+Ct CUimtl, ! + !))* DY(J)*, 5
     ZTOT=ZAMfHF(l)
     IFCZTOT ,LE, 0,)GO TO 9873
     RTtlTsOTUT/ZTOT
     DO 9874 1=1, Jl
9870 EU»n*F
-------
    IF (Ufc(KK) .LT. 0.) GO  in  500
    IF(MFTHfiO ,fO, 3) GO  TO
    IFfJJ .If. IfcDEX)«at,/.|C(.lJ)sCONC(JJ)/(2t*BC(JJ)*DL(JJ)*THICK(JJ))
    (iO TO U30
         ,J = CX{JJ)-(OT4»0,ri*DT3)*UPX
    CZZ.fJJsCZ(J.l)-(OTa-0,5*DT3)*WBZ
    F(1 )*F(1)+RASVOL
    F(2)=F(2)+RASVOL*CXXJJJ
    F(3)sF(3)+RASVOL*CZZJJJ
    F(a)sF(^J)*HASVCL*(CXXvlJJ** 2+ (Dl(JJ)*CZtTA(JJ))**2*. 083333
   .    +CBC(JJ)*SZtTACjJ))**2*,333333)
    F{5)rF(5)*RASVQL*(CZZJJJ**<'+(DL(JJ)*SZETACJJ))**2*,083333
   ,     +(BC(JJ)*CZFTA(JJ))**2*. 333333)
    F(fe)sr(6)+»ASVDt*(CXX,UJ*C7?JJJ+S2ETA(JJ)*CZETA(JJ)*
   ,     (PL (JJ)**2*,oem3-BC(JJ)**2*. 333333))
    CONC(JJ)=0,
    GO TH 430
    CaMC(JJ)=CDWC(JJ)/(2,*BC(JJ)*OL(JJ)*THItK(JJ) )
    GO TO «30
SOO IK^ETHHO  ,tO,  3)  GO  TO  5a5
    IF(JJ ,LT,  INCF.X)S«1 »545
501 POSITMf JJ)=CY(JJ)»SIMaHF.TA2(JjM*flC(JJ)+*n(KK)*DTa + ,5*TMICKf JJ)
    GO TP 549
    IFCJJ ,LT.  U'DEX)  5«6,5«7
    PPSITM(JJ)=CV(J.n-.37b*PC(JJ)4wlN(KK)*DT*t+f5*THICK(JJ)
    GU TO 5U9
    IFC'JJ ,PT.  IBtO  .AND,  JJ .Lf.  I LKAVt )5bl
    GO TO 509

                                  A 84

-------
     PPSlTfcCjJ)*CY(JJ)»l,3*AA(JJ)+Kw(KK)*DT4+tS*THICK{JJ)
     Cr.NTlNUF
     CONC(JJ)sSVOL(JJ3*DT3
     DISTBPOSITN(JJ)
     iMflST *.5*THICK(JJ3  8L£.  0,)  GO TO 550
     IFCDIST ,GE»  ,5*THICK(JJ))  GO  TO 560
     EMTSURFs,5*THlCK(JJ)-DIST
     RATIDaFNTSURF/lHICK(JJ)
     RASVOLSRATIO*CONC(JJ)
     CXXJJJsCX(J,J)-(in4«O.S*D73* RATIO) *UBX
     CZZJJjBCZ(JJ)»(OTa«0(!5*DT3*RATIC»**BZ
     F(2)*F(?)+RA8VOL*CXXJJJ
     F(3)*F(3)-»-RASvGL*CZZJJJ
     FCa)cF(iJ)*RAS VOL *(CXXJJJ**?+(DL(JJ)*CZETA(JJ))**2*. 083333
     ,    +(Rf(JJ)*SZfcTA(JJ))**2*,333333)
     FC 53 sF(S)+P AS VOU*(CZZJJJ**2+(DL(JJ)*SZtTACJJ))**2*. 083333
     »      +(BC(JJ)*CZETACJJ)3**2*f333333)
     F(63eF(fr)+RASVCU*(CXXJJJ*CZ7JJJ*SZETA( JJ}*CZF7
     .      C[)L(JJ)**2*.083333-BCCJJ)** 2*. 33333:5))
     COKiC(JJ)s(J .-RATIQ)*CO^C(,!J)
     THlCK(JJ)s(i,-HATIO)*THICK(JJ)
     PHSITK'CJJ)*   ,501*THICK(JJ)
     CONC(JJ)scr.lNC(JJ)/(2,*BC(JJ)*DL(Jxl)*THlCK(JJ)3
     RO  TO «30
  550 RASVOL*CONC(JJ)
     CXXJJ,!sCX(JJ)-(OTa»0,5*DT3)*UBX
      F(3)»F(3)*RASVnL*CZZJ>lJ
      F{a)sKii)+RASVPL*(CXXjJJ**2+(DLCJJ)*CZETA(JJ)3**2*.083333
     ,     +(BC(.fJ3*SZETA(JJ)3**2*,333333)
      F(5)eF(5)+RASVOl*l(JJ)*SZF.TACJJ))**2*,083333
     ,      +CflC(JJ)*CZFTA(JJ) )**?*. 3333333
      F(fa3e^(6)t«ASVOL*(CXXJJJ*CZ2JJJ+SZtTA(JJ3*CZETA(JJ3*
     ,      (DL(JJ)**2*,083333"BC(JJ3**2*,333333)3
      GO  TO
  560  CnN
  i)30  CONTINUE
      DO 465 JJ«ISTART,IEMD
      IF(CONC(JJ3  ,LE, 0,3 T,U TO C65
      CALL  INDATA2
  U65  Cd^TI^UE
      CALL  GRJDSA
      CALL  INAbCD
      CALL  INSOI.
              GF .Til) GO TO 123U6
      KJIsUK/NOUTPT
      XIJKSIJK
      XXXSXJJK/KOUTPT
      IF(ABS(XXX«KJI)ftT.l.E.-lO) 12 3« b, 1
123a6 CALL OUTPT
      IFdPLT.BQ.O.AK'O.NQMCR.EQ.l) GO TU 1000
      CGNTIMUF
      CALL SHIFT
      IF(TEMO ,GE, T«) GO TO 480

                                    A85

-------
    IFHSTART ,GT, T3) U75,600
UTS DO U76 JjslSTART»lSTEP
    IF(TIM£ +TCJJ) ,GE, TSTART)
476 CONTIMIF
477 ISTARTsJJ
    GO TO 600
?50 COWTINUF
    1FCYY ,Lt. YKl)YKKsAKYl
    IFCYY ,GT, YKJ .AMD, YY ,LT, YK? ) YKKs ,5* C AK Y 1 + AK Y2 }
    IF(YY ,GF.t YK2 .AND. YY ,LE.» YK3)YKKsAKY2
    IFCYY ,KT, YK3 .AND. YY ,LT, YK4 ) YKKs,5* C AK Y2+ AK Y3)
    JFfYY ,GE. YKU) YKKSAKY3
    IF(NGRID1 ,tt. 0)251,252
2S1 AHCVT3e(T««.T2)/DT2
    CALl
    DO 750
750 Yl (
    OH 760 1*1, b
    DCl 760 jsl,Jl
760 eCI.JJsFEtlf J)
    TT = TU
    CALL OUTPT
    1F(IPLT.EO.O()AND,NOHUR.EQ,1) GO TO  1000
    CALL INABCD
    GO TO HBO
252 AMCVT3=DT/DT2
    CALL CONVRT3
    DH 770 1=1, Jl
770 Yi(I)eY2U)
    DP 780 1=1 »6
    DO 780 jsj,jl
780 F. CJ,J)stT(!,J)
    CALL OUTPT
    IFCIPLT.tG.O.AND.NOMOR.EO.l) GO  TO  1000
    IFC^GPIOUNF, 1) GO TO 253
    AKf.VT3s(TIMF«DT)/OT2
    CALL
    CALL MATXCG
    CALL SOL.UTM
    CALL SHIFT
    CALL CO^VRT3
    CALL ADD
    CALL OUTPT
    IFCIPl T.EO.O.ANO.NOHOR.f 0,1) GO  TO  1000
    GO TO 080
253 CONTINUE
    CALL GH10SA
    CALL INABCD
    CALL INSOL
    CALL MATXCO
    CALL SHIFT
    AMCVT3=DT/DT2
    00 254 JJ=2,NGRID1
                                  A86

-------
     CALL  S0|. MTV
     CALl
     CALL
     TT=TT+DT
     I F (.1J , f Q , 1 0 * ( J J / 1 0 ) )
     CALL  OUTPT
     If- (l^LT ,F ft, 0 , ANin, N^MHS 0 E Q 11 )  QH  yn 1000
 25a  CONTINUE
     DT=AMCVT3*DT£
     CALL VATXC.O
     CALL SOLUTN
     CALL
     CALL
     CALL CHITPT
     IF ( JPl T.ECO.O , ANO.NO^O*'.FG, 1 )  GO TO 1000
 tt 8 0  C 0 K" T I NI L) F
     "RITE(6,?) TT
            1H1, 10X,i)2H**IMPUT  TO  LOMT, TER^ DIFFUSION CO^PLF. Tf D**  ///10
     K'OTF OF COMPUTING SPRf-.ADO  ftf.FORE  UO^G TFWM DIFFUSION
     CDT=DTO/IBUR
     NGRIPSNGRIP3
     CALL
     CALL
     CALL HATXCD
     CHI TMSOt
     CALL SHIFT
     DO 300 IJsi,N)GRID
     CALL SOLUTE
     TTsTT+DT
     COMTINUF
     ZAMf.lsO,
     DO 9877 Ir|,j2
9877 ZAMpBZAMO+(F.(l fIJ
     ZTOTsZAMO + FM)
     IPfZTHT ,LE.  0,)G
     RTOTsOTUT/ZTDT
     DO 9879 lsj,jl
9879 F(i,nsfc(l,i
9fl78 CDNTIN'UF
     CAUL OUTPT
     lF(MfjMQR,fcO,l)  GO  TO 1000
     IF(TT  ,Gh,  TSTOP)  GO TO 1000
     IF  (Wi*-'(KK))310,320  .310
 310 IF(AMO  ,Lt,  ORIGIN)  GO TO 1000
     GO  TO  25b
 320 V^AXsO,
     VMJN*1000000,
     DO  3UO  I=1,J1
     IF(E(1,I)  ,LF,  1.0006*15) GO TO
     CONCsEd »I)/VAR( J)
     IF  (VM&X  ,t.T,  COMC)
            :N  ,GT.  CONC)
                                    A87

-------
      IfCRATin ,GE,  0,95)  GO  TO 1000
      GO TO 255
 teat  CONTINUE
      CALL  DUTPT
      00 1003 I*i,ISTEP
      CX(I}«CX(I)*XO
      CZ(I>»CZ(IHZO
      RETURN
      fNP
wv
                                    A88

-------
                   V-ATXCO
c
C     COMPUTE THE FLEMfNTS  OF  A  TR I -D I AGHN AL K
C
      COMMON XAPCD/  YC  30),KOA(  30 5 , YK1 , YK2, YKJ, YKil , AK Y 1 , AK Y2, AKY3,
     ,               YU,Yh.YtfH,UAO,WAO,N,CKY(15i),UAU51),WA(l51)
      COMMON /COMPUT/EE(8,151),
     .    fc(8,lbl),YlClbn,Y2(lM),DY(150),FC8),FW(fi),WtK(9),
                        MAX
      COMMON  /MATRIX/  AUM), 8(151), CU51),CPH51)
      COMMON  /CONST/G,PAI,ALPHAO, ALPHA, ALPHAC,ALPHA1, ALPHA2,
     ,     ALPHA3,ALPHA«,GAMA,CDRAG,CFRIC»BETA,CM,CD,C01,CD2,F'RICTM,F1
     ,  ,ALFAl,ALFA2,GAMAl,GAMA2,ALAMOA,CD3,COa
      COMMON  /TORS/  OT,DTl,OT2»CDT,NGRH),NGRIf)l,NGRID2rMGR10.1J,NCO
      COMMON  /TRASFtR/  KK,JJ,TT,ISIZF,NOTE,AO,IY,MOTRN,lNDex,IBED,ILEAV6
     ,  , IJK,FBtD,AMO,OL^T,MrTHOD, TSTHP
C
C
      J1=ISIZE
      J2=Jl«l
      DODDTel ,/DT
      IF(wh(KK))
  '300 K 1 s l
      K
-------
      DY1=1./DY(I)
      DYinrl,/(DY(I-l
      A(!)= CKYU»1)*DYI1*DYI1I
        +K2*rtKDY
      eCI)=-(rDDDT+(CKY(I)*OY(I-l HCKYCI»n*DY(n)*DY!i*DYI*OY!lI
      A(Jl)sCKY(J?)/DY(J2)**?
            +,5*(KP-K1)*WW(KK)/((KUK2J*DY(J2))
      B(Jl)s.(ODDDT+ CKY(J2)/DY(J2)**2
     ,       •(l,»ALFA?)*W*.tKK)/DY(J?)
     ,
  200
      C(Jl)sO,
      DH 220 Jel,J2
      DFNOB8CJ+l)-A(J+i)*CP(J)
  220 rP(J+l)«C(J*t)/OFNO
      HETURM
      FMD
vv
                                   A90

-------
c
C     SOLUTION BY  THOMAS  A
C
        MNDN DH(lbl) , n(iSl) , SOLdbt )
              XABCU/  Y(  30),RPA(  30 ) , YK 1 , YK 2, YK 5 , YK n , A K Y 1 , AK Y^ , AK Y
          E(fl,lbl),YlClbl)»Y2(15n»DY(150),K«),F»((i3),wW(9),
                      CCMAXC1«51 ),VARC151 )
                      CX(600),CY(600) ,AA    ( 60 0 ) , U ( 60 0 ) ,
            V(600),  ALOW(600) ,VMBT(6001 ,DENOIK600),6NTRC(*(«>005i
                      CZ(600),SS(8,   600),
            SVOL(600),XC(600J ,ZC(600),POSITN(fcOO),CHt/SOfl),THlCK(f>00) ,
           BC(600) ,wS(a
              RfJASf«) , T
                      UBXfWB2fWDAF,C^AXCc')f YY
              /TGHS/  DT,DT!,nT2,COT,^GRIO,WGPID! , NRRI D?^-{,«1D1, N.CO
              /MATRIX/  ACISD ,R(isn »cdbi) ,CP(ibi )
              /CONS T/G,PAI,ALPHAO, AL^HA, AUPHAC,ALPH At, ALP HA?,
            ALPHAI, ALPHAS, GAMA, CORA G,CFRIC:,BFTA,CW,CD,CPI, en?, f-ff c TN,FI
              /TRASFtR/ KK , J J, T T , ISI ZF , NOTE , A 0 , 1 Y , NiOTRN , I K-DF X , TBfeO, ILE
                                   T STOP
       BUXsUBX
       IF(TT  .LT.  TPLPT) GO TO «00«
       BUX=0,
  400U
       J 1 = I S I Z (
       J2SJ1-!
       DDDDTsl ,/DT
       hswu ( KK )
       DO  993  Jsl,Jl
       F.(7,J)sEC»»J)
   993  F(8f J)sF(b.J)
       F (7)»F(a)
       F(8)*Ff.5)
       DO  99ft  1*1,8
       VAR(n=F(T3
       00  998  J«=1,J1
   998  EE(I,J)at(I,J)
       IF(w> 995,996,997
   995  Ki=l
       K2 = 0
       GO  TO 999
   996  Kl=l
       GO TO 994
   997 KlsO
       K2sl
       SULUTION rnw POSITIVE FALL  VEL,
   994 DO 1000 1=1,8
       GO TO (1,2,3,4,5,6,7,9),!
    1   DP 101 J*1,J1
   101 DCJ)=0.
                                    A91

-------
    G(- TO 200
    00 102 J=1 ,J1
    D(J)s-UACJ)*(Mi,J)+EE(l,J))*0,5
    GO TO 200
 3  DO 103 J=1,J1
103 D(J)s.wA(J)*(E(l,JHFt*O.S
    F-if:(ns-H^2*(F- (n+VAW(l))*,b
    GO TO 200
 4  DO 104 J=1,J1
lOtt D(J)=-(UA(J)*(E(2, J)+FF(2, J))fDISPC(ALAMDA, J)*(E(1 ,J
    F*(I)s-RUX*(F(2)+VARC2))
    GO TO 200
 5  DO lOb J*1,J1
105 0(J)s.(WA(J)*(EC3-,J)*E.E(3,jmi>ISPCCALAf'DA,J)ME(l,J
    Fw(l)=-BWZ*CF (3)+VAP(3)3
    GO TO 200
 fc  CD 106 J=1,J1
106 DCJ)*-(UA(J)*(fc(3»J)+fcF.(3,J))+wA(J)Mt(2,J)+tf-(2,J)))*0,S
    F^(I)=-(8UX*(F(3)»VA»(3))+Bi«Z*(F{2}+VAH(?)))*,s
    GP TO 200
  7 DO 107 jsl.Jl
107 0(J)=-(U»fJ)*(E(2,J)+t.K2,J))+OISPCC(ALAMOA,J)*(t(l»J)+bE(l,jn)
    Fw{I)e.PUX*(F(2)+VAR(?))
    GO TO, 200
  8 DO 108 J=l,Jl
108 D(J)s-(WA(J)*(E(3»J)+tt(3»J) )+DISPCC(ALAMDA,J)*(t ( 1, J ) +h fc ( 1 t J ) ) )
200 F(I) sFd)* (F*(mA|_FAJ>*W*e (J,JlJ-GAMAi>*F(I))*DT
   ,«»(DDDDT-CKYC1)/DY(1)**?-(K2»K1 )*,•}**/( (K 1 +K?) *DV U ))
   ,      .K/DY(J)-K2*W**2/((Kl+K2)*CKY(l)))*t(T»n
    00 210 J=2,J2
    DYJsl,/OY(J)
    DYJ1J=1 ./(DYCJ)+OY(J-1))
210 D(J)=D(,!)-( CKYCJ)*DYJ*DYJ1J
   >"CDDODT -
   ,
   .-( CKY(J-1)*DYJ1*OYJKT
   ,       4K?*^DY
    D(Jl)BD(Jn-(CKY(J2)/nY(J2)**2
   ,           +.5*(K?-Kl)*^/C(K
              -CKY(J2)/I)Y(J25**2
           *(l,»Al FA2)*K/DY(J2)
           -KJ*(1 ,»ALFA2)*w**2/((Kl+K23*CKY(J2) ))*F (I, J1)
       -(1./OY(J2)-K1*K-/((K1+K2)*CKY(J?)))*GAK.A2*(F(I)+VAPCI))
    DO 220 J=1,J2
    DENO=B(J*1 )»A(J+1)*CP(J)
220 r>p(j + l)s(0(J+l)-A(J+l
    SnL(Jl)=OP(Jl)
230 SPL(JP)=DPCJP)"CP(JP)*Snu(JP+l
    on  300 j=ifji
300 fc U,J)=SOL (J)
                                  A92

-------
     GO TO 1001
     SnU'TJOK FOk KFGATIvE FALL VFL.
     Of 10000 1 = 1,6
     GO T(i f 10,r>0,.SO,UO,SO,hP,70,80) , 1
  10 F*(I)=0,
     Dn 1010 JslrJl
1010 r>(j)=o,
     GO in 20 on
  20
  bO
     nt  1020 J=i,Ji
1020 DtJ)=-UA(J)ME
     GP TO ?noo
  30 Fw(I)rwAtl)*(F
     r»f 1030 Jsi.Ji
1030 DCJ5s-w*(J)*(F
     GO TL' 2000
     DC 10«0 Jel,Jl
     [)(J)s-(UA(J)*(
     GO TO 2000
     Fw{!) = l.*(WA(l
     DO J050 J=1,J1
     GO Tfl 2000
  60 FMI)s(L'Ad )*(
     DO 1060 J=1,J1
1060 D(j)s*(uA(j)*(
     GO TO 2000
  70 FMJ) = aiA(l)*(
     DP 1070 jsl,Jl
1070 &Cj)=-(uA(J)*(
     GO TO ?000
  80 Fw(n = l,*
     00 1080 J
1060 D(J)B»i f*
    /  )
2000 Ftl) sp.-(I
                            (1,J))*O.S
                                                                 J)
                                                  2)})*0,5
         -Cl.-ALFAl)*K2*u**2/CKY(l))*t(I»l)
     no 2100  J=2,J2
     DYJsJ ,/DY(J)
     DYJ1J=1,/(DY(J)+OYCJM))
2100 DfJ]so(J)-(  CKYCJ)*DYJ*DYJ1J
            -K1*WDY                        )*F(I^J+1)
      'CDDODT -  (CKY(J-n*OY(J) + CKY(J)*DY(J-l) ) * D Y J * D YJ 1 *D Y J U
        CKY(J-1)*DYJ1*OYJ1J
             *E(I»J2)
             ,5*(«2»Kl )*w/((Kl+K2)*DY( J2) )
             rKi*w**2/((Kl+K2)*CKY(J2)))*E(I»Jl)
                                   A93

-------
      00 2200 Jsl,J2
      DENOsB(J+l)-A(J+l)*CP(J)
 2200 DP(J+l)=CD(J+l)-A(J+l)*nP(J))/OFMO
      DO 2300 J»1»J2
 2300 SOL(JP)=DP(JP)-CP(JP)*SOL(JP+1)
      00 5000 J=1,J1
 3000 t(I/J)=SOL(J)
10000 CDNTlKiUE
 1001 CUMIMUF
      00 1002 JaliJi
      E(4,J>*.5*(F«l,.J>*E<7,J)>
 1002 E(5» J)s.b*(F{b
      RETURN
      END
vv
                                    A94

-------
      SUBROUTINE   GRIDSA
C
C     COHPDTt THE GRID  SIZF  ACCORDING  TO  THE  SPRMDIK.G OF THt CLOUD
*..
      COMMON /COMPUT/tfc(8,151),
     ,    E(fl,151),Yld51),Y2d$n»DYd50),F(tt),Fw(a),|«w{9>,
     t                CCMAXdSl) ,VARdSl )
      CPMKON /TORS/ DT,DT1,OT2,CDT,NGRIO,NGRICM,NGRID2,MGRI03,AMCVT3
      COMMON /CONST/G,PAI,ALPHAO,ALPHA, A.LPHAC,ALPHAI, ALPHA2,
     ,     ALPHAS, AIPHA4,GAMA,CDRAG,CFRIC»BF.TA, CM, CO, CDJ»CD2,FRICTN,F1
     ,  »ALFA1,ALFA2,(;AMA1,GAMA2,AL.AMOA,CD3,CD«
      COMMON /ABCD/ Y(  30),ROA(  30} , YKl , YK2 , YK3, YKU , AKY 1 » AKY? , AK Y3 ,
     »              YUfYWfYF.Hrl.UO/WAOfN^CKYdSnfUAdSn^WAdBl)
             /TPASFFR/  KK , J J, TT , I SI ZE , NOTE , AO , 1 Y , NOTPi^, TNDEX , I 8FD, ILF- AV?
      J3=U*J2/10
      AMO=0.
      A M 1 s 0 ,
      AM2=0,
      DO  170  J=
   170
       IFCAMO  .EG,  O.DGO TO 230
       IF(YL  ,LE.  0,)YL=0,
       YHsYBAR+SPRFAD
       IF(YH  .RE.  H)YHSH
       SPREADS, 5*{YH-YL)
       YfiARsYL + SPRF.AD
       IK^W(KK)  ,LT, 0,)GU TD 5bO
       !P(H -(YHAR + 8PRe'AO + HW(KK)*NGRID*DT)   ,LT. 0,)SOO,600
   500  DHs(H.(YBAR«SPRtAD))/J3
       GO TO  650
   550  IF(YBA»-SPREAD*wwCKK) *WGW!0*DT  ,LT, 0,3560,600
   560  DHs(YBAR+SPREAD)/J3
       GO TO  650
   600  DHs(2.*SPf>FAD+ABS(M(KK))*NGRlO*PT)/J3
   650  ODDHSI./OH
       IF (WW(KK)  ,LT,0.) GO TO 300
       N2=(H.(Y8AR + SPRtAD   +h^ ( KK ) *MGR I 0
       IF (M2 ,LT, 0) M2=0
       Nl=(YBAR"SPRfcAD   )*DOOH
       I F { N 1  . 1. E ,  0) NisQ
       NNSN1+M2
       IF (MM ,LT, J«) GO TO 210
       MJsKl* J4/KN
       IF (M2 ,FO, 0) GO TG 171
                       AO+WW ( KK ) *NGR I D*DT )-M2*OH ) *2 , / (M2*DH*
   171  IF(M1 ,FO, 0) GO TO 400
       AA sCYPAK-SPRtAD   -M 1 *OH D *2 , / ( M 1 *DH* ( M 1 + 1 ) )
       GO TO «00

                                     A95

-------
300 N/l = (YBAR-SPRt AD   * WM KK ) *MGR ID*OT ) *DDDH
    IF (M ,U, 0} NisO
    N2s(M..(Y8AR + SPRf AD    ))*DDDh
    IF(N2 ,Lfc. 0) N2*0
    IF f*JM ,LT, J4) i;u TO 210
    MlSNli* Jtt/NN
    M2=j««Mi
    If (Ml ,EQ? 0) GO  TO 301
    AA s(YBAR»SPREAD   + *« (KK)*N(fRI D*»T«Ml *DH) *H,/ (MI *(>H* (MI * 1 ) )
301 IF(M? ,FO. 0) GO TO «00
    BB s(H»( YBAR+SPRFAO    )«M2*DH) *2 ./ («2*OH*
    IF (Ml .EG.O) GO  TO
    DO 180 1*1^1
    IJs^l-I+1
    DY(1)=(IJ*AA+1)*OH
ieo
181 CONTINUE
    DO 190 I»1»J3
190 CONTIMUf
    IF (M2 ,EO, 03 GO TO 2
    00 
-------
      SljRRCJUTINfc    GRIDSB
      COMMON /CPMPUT/tF(8,15n ,
          KB,lbl),YlClbl},Y2(lSl),DYU50),F(8),FWCB>,lM
                      CC.MAX(151),VARUb'l)
      COMMON /TOWS/  DT.DT1 , OT? , CDT, KTU
       GO  Td 26?

                               A97

-------
200 DTs,004*SPRfc.AD**2/VMAX
26? CONTINUF
    IF(Wi-l(KK3 ,LT, 0,3GO TO
    IF(H .(YBA» + SPREAD+wW(KK)*MGRir>*DT)    ,LT,  0.3510,600
510 DHs(H.(YBAR-SPRFAD3)/J3
    GO TU 650
550 lP(YB4»-SPREAD + -«/w(KK} *NGRID*DT   ,LT,  0,3560,600
560 DHs(YBAR+SPREAD)/J3
    GO TO 650
600 DHS(2.*SPREAD*ABSCW*(KK))*NGRID*DT)/J3
650 DDDhsi,/DH
    IF (WW(KK) .LT.O.) GO TO 300
    N2e(H»(YBAR+SPREAD   +WW (KK 3*NGRID  *OT))*ODDH
    IF (N2 ,LT, 0) *2*0
    M*(YBAR"SPREAO   }*ODOH
    IF (Ml ,i.E. 0) MSQ
    M M s b 1 + M ^
    IF (MM .IT. JO) (JO TO 310
          M J
    IF (M? ,f.Q. 0) GO TO 261
    OH2B(H«(Ye/iR + SPRfc:AD   +Ww (KK) *MGRID  *DT )-H2*DH) *2,/
261 IF (MI ,EQ, 0) GO TO «00
    OHle(YBAR-SPRFAD   -Ml *OH) *2 , / ( M 1 *DH* (MU 1) )
    GP TO 400
300 Nls(YBAP«SPRfcAD   4-WW ( KK ) *NGR ID*OT ) *ODOH
    IF (Ml .IE, 0) Nl«0
    IKN2 ,LE.
    NNsNl+Nt2
    IF (NN ,LT, Jfl) GO  TU  310
    IF  (Ml  ,EfJ,  03  GO  TO  301
    DHls(YBAR-3PRtAO    +WW ( KK)*N6RID*DT«M1 *PH)*2 t
301 IF( M2  ,EQ.  0)  GO  TO  aoo
                     AO    3    -H2*DH 3 *2 , / ( M2*OH* (
    IF  (Ml  ,EQ,0)  GO  TO
    DO  MO  I*l»  Ml
    DO
    V2(Ml+i+I)=Y2(Hlf I3+OH
    DY(M1+I)=DH
420 CONTINUE
    IF  (M2  .EQ,  0)  GO  TO  500
    DO  U30  I=l/  H2
               )s(I  *OH2+1)*DH
U30
    GO  TO  500
310 DHSH/JP
    Y?(l)aO.
    00  320  isl.jg
    Y?(I+l)sY?(l3*DH
    OY(I)sDH
                                  A98

-------
•500
CONTINUE-
CONTINUE
RETURN
f MO
                                    A99

-------
C
C     iNTERpru ATP  DATA  u>  SOLIDS FROM ro.-vEt.TtvF  DESCENT  PHASF  OR
c     DYNAMIC  COLLAPSE  RHASf-  rn PR in vt SUITABLE.  FOR  LOG Tt»^  UT
c     COMPUTATION
C
              /c/xo,zo
          F. (8,lM},Yl(l5n,Y?
                      CC.MAX(151)»VAR(t«51 )
              /IPWS/  DT,01 1 ,nT2,C[>T,NGWlO/N6Hlr>l,NGHID2»NGKID.J,
            -  /C OK; ST/GfPAl,ALPHAO, ALPHA, ALPHAC,ALPHA1,&LPHA2,
                      CK(bOO),CY(600) , AA
                  ,     K(600).VQWT(600) ,O
                      C/(600),SSC»,  600),
           5 VOL (600) ,XC(600),ZC(hOO),MOSlTN(600),CH(feOO),7HlCKt600).
          SUA(?OOJ,SwA(200),SCKYC200) , OUMY^ ( 60 0 ) ,
                   «) ,f(600) ,K,L,]PLUNfi,NUTRL.Ut3,SAI,TIMF,ISTFP,   VF
                      UBX,wBZ,RQ4F,CMA)
-------
            'Ai>
    E(l,J-l)=t(l
    XCCsXC(JJ)
    ZCC=ZC(JJ)
    E(2,J-l)=t(2

    £.(4,>!)«£.(«> J"1)+I*«A1*(XCC    **2K8CJJ5**2*.25)
    t"(5, J-l )=F (5,,
    f:'«J.J-i)sf(fefJ«'l)+RWAi*XCC    *ZCC
    E(t,J)sfc(l,J
    E(3.J)st(3
    fc: C«,J)st(a
    E(5,J)sFCb,J)+RRA2*(ZCC
    E (6, J)=E.(fcf J) + RRA2*XCC    *ZCr
    IF  CMOPF  .to, o  )  GU  TO  l&o
    PSNl=Yi(J)
150
IfaO
    END
                                   A101

-------
      SUBROUTINE' INDATA2
c
C     U'TFRPOLATF DATA ON SOLIDS  f-KO1"  PLUMfc,  CR JfT TO GRID Yl FOR LUNG
C     TEP* DIFFUSION
C
             XC/XO,ZO
             /COMPUT/FF(8,1M) ,
             /Tf)HS/ DT»OTl
             /CONST/G, PAI,AI_PHAO, HPHA, ALP n AC, ALPHAI, ALPHA?,
        »ALFA1
       OMKON         CX(600),CY(600),THETA?(600),U(600),
       SZfcTA{hOn),C2tTAC600),AA   (600)»    OTTC600),    r>L
                     r.Z(600),SS(8,   600),
           SVni(600),xe(600),ZC(hOO),POSITN(600),
          SUA(200),SWA(2do)fSCKY(200),COMC (600),
             RnAS(«),S(600),K,L,IPLUNGfiviUTRL»UB,SAI,TlME,ISTFP,  VF ,
                     UPX,wB£,RUAF,CMAX(9),YY
             /TPASFER/  KK, JJ.TT, ISIZF, MOTE, A O,IY,NOTRN,IN-REX,IBED,I LEAVE
                D,AKO,nLOT
                AKE/AVfDTU
      J?sJl-l
      PSNl=pnsjTN(JJ)-THICK(JJ)*.5
      1FCPSN2  ,GT,  YKJD)
      00   100  1=1, Ji
      IF  (PSNJ-YKD)  110, 10n, 100
   100 CfiNTIMlF
      I=J1
   110 no  iso ,i = i, Ji
      IF  (PSM2-YlfJ))    120,120,130
   130
      GO  TO
   120 MORF=0
       IMJ  .fcfJ.  2  .OR.  J  ,EQ.  JI)  1U1,1^2
       IF(J  ,EQ,  ?)  l«3,iay
       DtMl=  CY1 (J)»CFNTtR)*(         nY(J-D)
      ,        +(CtNTER»Yl(J-l))*(DY(J-l)*nY(J))
       GO  in  las
       DFA'()=  (Y1(J)»CFNTEK)*(OY(J-2)*OY(J-1))
      ,        +(CFVTFK-YUJ«1))*(DY(J-1)      )
       GO  TO  1US
       DFNO=  (Yl (J)«CENiTER)*(OY(J»2)+OY(J-l))
                                    J-1 HDY(J) )
                    "Yl (J-l))/ntNO
       AREAs2,*(3C(JJ)*!)L(JJ)
       KP   =        CC.'NCt  JJ)*AREA*(POS2-PSM1)
       CJP4J =RR*A1

-------
CZZsCZ(J«J)»AVFDT4       *0
EM , J»1)*EU, J-O+RRA1
F(2, J-1)=E<2, J»l)+RRAl*CXX
FC3,J-1)3E(3,J-1>+RRA1*CZZ
    EC6
                                   Dl ( JJ)*CZET A (JJ))**2*, 083333
                                   Dt. (JJ)*3ZET A (JJ) )**2* .083333
    +(BCCJJ)*CZETA(JJ))**2*,333333)
    J^1)=F(6, J»1)+RRA1*(CXX   *CZZ   +SZET A ( JJ)*CZETA( J J)
      *(OL(JJ)**?*I083333-.fiC(JJD**2*,333333))
E(l,J)sE(l,J)+RRA2
f.(2,J)sF(2,J)+RRA2*CXX
fc (3» J)«E !C3,J)+RRA2*CZZ
F(«, J)sE (a,J)+RRA2*(CXX   **2+ (DL ( JJ)*CZfcTA ( JJ) )**2*,083333
     +(BC(JJ)*SZETA(JJ))**2*,333333)
f (5,J)«E(b,J)*RRA2*(CZZ   **2+ (DL ( JJ)*SZET A (JJ))**2*. 063333
     +(BC(JJ)*CZETA(JJ))**H*,333333)
F.C6, J)sE«b» J)+RRA2*(CXX   *CZZ   +SZET A ( J J) *CZET A ( J J) *
    IF (MORE. ,EO,
    PSNI=Y1 (J)
150 CONTT.NUF
160 CONTINUE
    RETURN
    END
               0  )  GO  TO
                             A103

-------
              Nif-  CGMRT2
c
C     COK'VLRT DATA FROM DYNAMIC  COLLAPSE  TO  DATA FUR LONG TER* DIFFUSION!
C
             XC/XO,ZO
             /cnMPUT/EF(8,lbl),
          F.(8,151)fYl(lbl),Y2(151),OY(l50)»F(B),Fi«(8)jWK(9),
                     CC*AXU51)fVAR(l51}
      COMMON /TORS/ OT»DTl,OT2,CDT,NGRID,NGPIni,Wf;RID2,NGR]:DS,NCO
      COMMON /cnNST/G,PAI,ALPHAO, ALPHA, ALPH AC, ALPHA 1.ALPHA2,
           ALPHAS, ALPHAS, G A MA, CDRAG/CF«IC»8tTA, CM, CO,CD1»C 02, FKICTN,F1
        ,ALFAl,ALFA2,GAMAi,GAMA2,ALAMDA,C05,COtt
          OM         CX(600),CYC600),4A     ( 600 ) , U (600 ) ,
           V(fcOO),     w(600),VOHT(6005 ,PE!M01F(600),EMTRCO(600),
                     CZ<600),SSC8,   600),
           SVnL(600),XC(600) , ZC(600),PUSITN(600),CB(fcOO) ,THICK(600),
          8UA<200),SWA(200),SCKY(200),OUMY2(600),
             Rf3AS(U)»T(600),K,L,IPLUNG,NUT«l.,UB,SAI,TIHE,ISTEP,  VF
                      UBX,wBZ,ROAF,CHAX(9) fYY
             /APCD/  Y(  50),ROA(  30J,YKl,YK2,YK3,YKa,AKYl,AKY?,AKY5,
      COMMON) /TRASFfcR/  KK , J J, TT , ISI ZE, MTTE, AO , I Y , NUTRKi, INDFX, I BF.O, I LEA VE
     ,  , UK, FBfcD,AKO,OLOT, METHOD,? STOP
C
C
      OsAO
      IF(YY*0  ,GE,  H)  YY=H"D
      Ji=!S!ZF
      J2SJ1-1
      J3s2*J2/in
      D  IN'DICATFS  THF  MINOR  AXIS  np  THE. CLOUD
       I F ( N 1  , L F .  0 ) N 1 = 0
       K^rPN2/nH
       IF(K;2  ,LF.  0)N2sn
       N>OSK'I +KI?
       IKK'Ni  ,LE.  J5)  GO  TO  500
       IF (MI  ,e.o.  03  GQ  Tn  90
       AAs(PHl-Mi *[)H)*2./(Ml*
       IF(M?  ,EO.  0)  GU  TO  <» 1
   91 Y2(l)sO,
      IK MI   ,FQ.  0  5  GO  TO ill
      00  JOO  T = l^'l
      IJ="1-I+1
      OY(I)=( AA*IJ+1)*OH
      Y2(I*1 )=YP t D + DYCI )
   100 CONTINUE
   111 CPNTTMl'F
      DO  200  1=1 ,ja
       DY(

                                    A104

-------
    IF (M2 ,CO, 0) GO TO 301
    OH 300 jsl,M2
               = U *Hrt+l)*DH
300 CONTINUE
    GO TO 301
500 OHSH/J2
    Y2(l)=0.
    DO SOI I=?,J1
501
301 C.nNCsCMAX (KK )
    C2Z=CZ(ISTEP)
    on aoo isi,ji
    IF(ABS(Y2(I)-YY)  ,GF,  0)  GO  TO  «10
    AREA sPAI*BC (1ST FP)**2*(1,-((YY-Y2(I))/0)**2)
    HSQSARE.A/PAI
    ffc (i ,I)=CDNC*ARF.A
    EE(2.I)=EF(lrI)*CXX
    EF.(«,I)=tE (1,1)  *(CXX
    EE(5,IJ=FF.(1,I)  *(CZZ
    EF.(fc,I)at:E(l,I)*CXX       *CZZ
    RO  TO  UOO
    on  a^o  *HCY£i,6
    EF (KKCY,I)=0,
    CHNTIMUE
    COMTIV'UF
    KfcTURM
                                 A105

-------
                   CON'VWT'i
c
C     CONVERT DATA  FROM  FNJD Of-  PLUME TO OATA  HI*  LO*G  TERM
C
      COMMON) /C/XO,ZO
      COMMON /C.nMPiJT/Efc(8,lb'l)»
                      CCMAXUbl
              /TORS/  DT.nTl,OT2,CDT,Njr,RIO,N;Gf<'IDl,'JGR!tV,NGPir>3>AMCVT3
              /CON!ST/t;,PAl,AlPHAO, ALPHA, ALP HA C,AIPHA1,AIPHA2,
     ,  , ALFA1 , AI..FAi?,GAMAl ,KAf'A;?, Al A MO A , T D J5 , CPU
      COMMON;          CXChOO ) ,CY (600) . THETA2 (600) , U(600 )»
     , SZt"TA(600) fCZE'TA(600),A8  (600)»   OTT(600)»    OL
     ,                C7(600),SSC8,  600),
     ,      SVPL (600),XC(600),ZC(600),PUS1TN(600),  T (600) , THICK { 600 ),
     ,    SUAf?00),SWA(iJOO)»SCKY(200),XXXX  (600),
     ,    RC(600),'*S(«,2),
                   a) ,5(600) ,K,L,!PLUNG,NLITRL,UB,SAI,TIMf, ISTpP,  VF ,
            !  /A8CD/  Y(  30),HOA( 30 ) , YK 1 , YK2, YK3, YK« , AKY 1 , AKY? , AK Y i ,
      COMMON  /T RASPER/  KK,JJ,TT,ISIZF.,NflTE,AO, IY,MGTRM,IMDEX,I6ECi,ILEAVF
     ,   , ux, r Bf- o, A MO, OLOT, METHOD,? STOP
c
c
      n=Ao
      IF(VY+D .PF.  H)
      J 1 = I S I Z fc
       D  INDICATES  Thf MINOR AXIS OF  THE  CLOUD
         2sH-( YY+0)
       NlcPNl /OH
       I f ( N 1  . L E .  0 ) M a 0
             ,LE.
       IFfNNJ  .I.E.  Jb)  GO TO 500
       Ml S J5*N1 /MM
       M2S.I5-M1
       IF (MI  ,tQ,  0)  GO TO 90
       AAs(PM-Ml*r)H)*i»./(Ml*l)H*(Mm
   90  IF(Mi>  tfQ,  0)  GO TO 91
   91  Y2(l)sO.
       1F(  Ml   ,tO. 0 ) GO TO ill
       no  100  1=1, MI
       IJsMl-T+1
       nY(I)s(AA*TJ+l )*DH
       YJ?(H-l)sY2(I)+DY(l)
   100  CONTINUE
   HI  Cn^TI^Uf
       DO  200  lsl,J«
       DYU + M )aOH

                                    A106

-------
  200  CONTINUE
      Tf-' (M2 ,EQ. 0} on TO 401
      nr. 300 isi ,M2
  300  CONTINUE
      GO TO 301
  bOO  DHSH/J?
      Y2(l)sO.
      DO 501 1=2, Jl
  501
  301
      OLLsA«CVT3*OL(ISTEf)
      CXXscx(ISTEP)t,5*(OLL-DI. < ISTF.P) ) *CZtT A (
      CZZrCZ(ISTE^) + ,cJ*(DLL -DL ( I STFP) ) *SZF. 1 A(ISTKP)
      DO aOO Jsl , Jl
      IF (AHSCY2C D-YY) .Gfc, 0) GO TO 410
               . (I3TFP)*nL(ISTtP)*cc
      F»CCCsRCCISTEP)*CC
      rF.(2,I)sF.F.(l,I)*CXX
      FE(5»I)stE(l»I)*CZZ
      EF(ttfnsfcr(l,l) *(CXX      **2+(DLU      *C?ET A ( I STfc P) ) **2* . 083333
      EE(5.I)*Ft(l»I) *(CZZ      **2+(DLL      *SZfcTA{ ISTF.P) )**2*. OB3333
          *(RCCC     *rZETA(ISTFP))**2*,333J33)
      F.E(6,I)stt(lf I)*(CXX      *CZZ      +SZETA(I5TEP)*CZETA(1STEP)
     ,      *(HLU      **2*,083333-BCCr     **2* , 333333) )
      GO TO 400
      00 ^20 KRCYsl.6
      thCKRCY, I)sO.
      CONTINUfc
  400 CONTINUE
      HET
      FND
vv
                                   A107

-------
            MF  SUMA8CD
    COMMON  XABCD/  V(  iO)»«OA(  30) ,YKl , YKR, YK3, YKU, AKY1, AKY2, AKY3,
   ,                CCM&Xdbl )
    COMMON          CX(feOO) ,CY(6005 , AA    (600 ) , U C600 ) »
   ,      V(hOO),     W(ftOO),VOKT(600),OfcNDIKC600) , F NTRCO C 600 ) ,
   ,                CZC600),8S(8,  6005>
   ,      SVOL(feOO) , XC (600 ), ZC (600 ), POSITN (600 ),C8( 600), THICK (600),
   ,     SUA(aOO)»SwA(200),SCKY(200) ,DUMY2(600),
        RC(hOO),wSC«,2),
                                                                VF,
    COMMON  /T«ASFf«/ KK,JJ,TTfI3IZt,NaTE,AO,IY,N()ThM,IMDKX,IRCDfILtAVt
    SUA(J )30.
    SWA(l)sO,
    SCKYd)sO.
    00 100 Is2,Jl
    8CKY(T)sSCKY(l-n*(CKYCI»l)+CKY(l))*DY(I.l)*fb
100 CONT1NUF
    RFTtJKN
    END
                                 A108

-------
        stfc
    INTERPOLATE: THE
                  Y(
                              T 1 DNS  TH  Y?  f-Win
                           30) , YKI , Y*2, YKS, YM , AKYI , AT(600)/K,L»
Cn>»MnM
                                           |. ,HR>SAI,
                                          YY
                      KK,JJ,TT,IS!Zt , MUTK ,60, I Y ,
                        T,MFTHf
                        » T PLOT
                                                   Ej ISTfP.   VF,

                                                   I NOf.X , IBtO,lLFAVE
JUISJ7F
J2=J1"1
on 170  isi.ji
UA(I)sO.
IF (Y2(I)  .IF-.  YU)  UA(I)=UAO
IF fY2(T)  .GT,  VI) .AND, Y?(I)  .LT,  Yh)  U A ( I ) = ( YF.- Y? C I) ) *UAO/
IF  fY?(I)  .I.E.
IF  (Y?(I)  ,KT.
                        wA(I)s
                       ,AND, Y2(I)
                                 Yi>(T)*'-AO/Y*'
                                 L^.  Yt) - A ( I ) a C Yf- - Y? ( I ) ) ** A 0 / ( YF
    IF fY2(T)  .Lfc.  YKl)  CKY(I)=AKY1
    IF CY2CI)  ,GT.  YK1  .AND, Y2(I)  .LT,
   ,       *(YK2-Y?(I) )/(YK2"YKl)
    IF (Y?(I)  ,GF.  YK?  .AND, Y2(I)  .l.K.
    IF (Y?(I)  ,t;T,  YK^  .AND, Y2(I)  .UT,
   ,       *(Y2(I)»YK5)/(YK«-YKj)
    I? (Y2CJ)  ,r,E.  YK4)   CKY(I)cAKY^
170 CONTINUE
    DO 180  1 = 1,, 12
1 ft 0 CKYC I) = {CKY(D+CKY(I+1))*,5
    IF C^f THnn.tt-1.!)  HETUKM
    IF(TT,Gf .TPLOT)  WE.TUHN
    DO 190  lst,Jl
    UACI)=llA(I)-!.IHX
                                           CKYfl)  * AK Y2+ ( AK Y 1 . AK Y2 )

                                            CKY(I)=AKY?
                                           CKY(I)=AKY?+CAKY%»AKY?)
                               A109

-------
      SlWRfHITINfc
c
c     INTFHPOLATE DATA ON  YI  TO  Y?
c
      COMMON /COMPIIT/EFC8, 151),
     ,    Efa,l51),Yl(lSl)fY2{151),OY(lb
     ,               CCMAX(151),VAR(151)
      COMMON' /TRASFt.H/ KK, J J , T T , I SI ZE , MOTfc , AO , J Y , NOTRN , I NDEX , I BEI5 , HE A VE
     ,  , IJK,FBED,AMO,DLDT,METHOD,TSTOP
C
C
      JlsISIZF
      J2=ISJZt-»l
      DO 90 Ksl,6
      DO 90 Jsl,Jl
   90 EE(K,J)sO,
      DO 100 jal,Jl
      IF(PM2 ,LE. YKJ))  GO  TO  110
  100 CONTINUF
  no on i?o Ksi,f>
  120 VAR(K)=E (K, J-1) + (F.CK,.J)«E(K,J»1 ))*
     ,                 (PN2-YKJ-i))/(Yl(JJ-Yi(J-t))
      IF(J  ,F.O, 2)  GO  TO  ISO
      on i«o K»i,6
      DO 130 jsl,jP?
  130 Et(K,n=Et(K,l
      GO  TO  151
  IbO DO  152 Ksl.
  152 FE{K,l)s
      JP1*J
  151 CONTIMJF
      DO  3in Is2,
      PM=PN2
      DO  160 js
      IF(PN2 .LF,  Yl(JI)  GO  TO 170
  160 COMTINUF
  170 DO  180  K=l,6
  180 VAR(K + 6)at(K,J-n-Kfc(KfJ)-t(
      IF(JP1 .fc'O,  J)  GO TO 190
      IF  (JPJ + 1  ,e.Q,  J1  GO TO 200
      JP2=J-2
      DO  210 Ksl,6
  210 ttCK,I)=fcF(K,I)+
      DO  220 Ksi.b
      DO  230 jsjPl ,JP2
  230 E6CK,I)=f.F(K,I)*
  220 f.t. (.<, I)=2,*(f-f «, I) + ,5«(F fK, JP2+1 )+VAK(6 + K))*(PN2-  YKJP2+1)
      ,
      JP1=JP2+?
      GO  TO 300
  190 DO  191 Ksj,6
  191 fc.F.(K,l)
      ,
      JPlsjf'l
      G"  TL! 300

                                    A110

-------
200 DO 201 Kcj ,6
201 EE(K,I)s2.
300 CONTINUE
    DO 310 Ke 1,6
510 VAR(K)svAR(K+6)
    PN13PN2
    JP2sj?
    IFCJPl .EQ, Jl) GO  TO  320
    DO 330 K=l,6
    DO 340
    DC 3bO
350 EE(K,j
340 ef(K,.Jl)B2t*EE(K,Jl)/ DYCJ1-1)
    GCI TO «00
320 DO 360 K*l,6
360 EE(K,Jl)s        (VAH(K)+ECK,jm*(Yl(Jl)«PNl)
400 CONTINitjf-
    00 500 1=1, Jl
    Yl (I)sY2(I)
    00 500 K=l,6
SOO CONTINUE
    RtTURN
                                 Alll

-------
             TIMf"  ADD
C
C     Anr> OfcTA  ON  Y2  TO OAT& ON Yi
C
      CHMMOM          CX(600),CY(60(n,THETA2C600), UC600),
     , SZFYA(bOO) »C/!ETA(6005 , AB   C600),    OTT(600),    01(600),
     ,                C2C600) ,SS(8«  600) ,
     ,            SVOL(600),CC(6,200),PC1SITN(600) ,  T ( 600 3 , THICK ( 600 3 t
     ,    SUA(200),SwA(200),SCKY(200),XXXX  (600),
                     ,3(6005 ,K,l, IPLUMG,MJTRI»UB,SA1, TIME , ISTtP,
                      U BX,^ HZ, «O
           M  /CflMPUT/EF (8, 1 5 1 ) ,
                     RX
      J1-1SIZF
      J2 = ISI7.e-i
      DO  90  ,?al , J2
   90 OY(.J)=YtCJ*l)«Yl(J)
      DO  95  !«!,&
      DG  Q5  Jsi , Jt
   95 CCU, J)=0«,
      00  300  J=!?J1
      IF(PV?  0Lt. .  Y2(J))  fil.l TO 11Q
  100 C CM T I ,v u t.
  110 DO  120  «=!,&
  1 ? 0 V A w C K ) = h fc C *< , J - i ) * C F. F C K , J > - P. E ( K , J * I) ) *
                       CP^2-Y2(J-1))/(Y2(J)-Y2(J»1))
      U"(j ,F.O,  a)  e;o  TO  iso
      J P 2 - J »• 2
      DO  i'-JO  >n  130   K = i , 6
      r      /(V2(j)-Y2(J-n)
       IFCJPJ  .EO.  J)  GO TO 190
       IF  CJPl-i-i  , hQ,  J) GO TO 200
       JP2=J-2
       Oil  (> 1 0  K = 1 , 6
                                        A112

-------
230 CCfK,I)sCC(K,
220 CCCK, n=2,*(CC(K,l) + ,5*(tFCK, JP2+l)+VAR(6+K))*(PN2»  Y2(JP2+1)))
   ,
    JPl=JP2+2
    60 TIT 300
190 DO 191 K=l,6
    JPlsJPi
    GO TO 300
200 00 201 K=i,6
201 CC(K,I)e2,
   ,   f ,5*(F.f
    JPlejPUl
300 CONTIMUfc
    r>n 310 Ksj
310
     1FCJP1  ,fC4,  Jl)  RO TO  3?0
     DO  330  K=l,6
 330  CC(K,Jl)sCC(K,Jl)+.S*(VAR(K)+FE(K,JPl))*(Y2(JPl)»PNl)
     DO  340  K=l,6
     DO  350
 350  CC(K/J
 3«0  CC(K,Jl)s2t*cc(Kf Jt>/  DY(Jl-i)
     GO  TO ilOO
 320  00  360  K=l,6
 360  CC(K,Jl)s       (VARCK) + F:t(K.Jl))*(Y2CJl)»PNl) /DYCJ2)
 aoo  CONTINUE
     on
     DM
     E(IrJ)sf CI» J)+CC(1> J)
                                   All 3

-------
             SHIF r
             l(151),Xl(15l>f Zl(ll>nfS!GX(lSl),SI(;Z(151),SIGXZCl!>l>
  COMMON /C/XO,ZO
  COMMON         CX(600),CY(600),TH6TA2(600),U(600),
 ,  SZf-TA(fcOO),CZF.TA(600),AA  (600),   OTT(feOO),   DLC600),
 ,                CZ(600),SS(8,  600),
 ,      SVni.C600),XC(600),7C(600),POSITN(600),  T(600),THICK(600),
 ,     SUA(200),SWA(i>00)fSCKYC200),C:ONC  (600),
         »OAS(U), 3(600), K,U,IPUUNG,^UTRLfUB,SAI, TIME, ISTFP,   VF,
                 URX,»/BZ,KO
  COMMON /COMpuT/te(8,lbl ),
                 CCMAX(151),VAR(151)
         /THASFtH/ KK> J J , TT , ISIZK , NHTt , AO , I Y , NQTRN, INDEX , IBtOr ILfc AVE
 ,   , UK, FBED, AMD, PLOT, MET HOD, 1ST OP
  JcO
  00 5 1=1, Jl
  IF(E(1,I) ,FO.
  IF(J .EO. Jl)6,7
6
7
  00 1  I«1,J1
  IF(E(1,I) ,FO. 0.) GO TO 2
  E1CI)«1./E(1»I)
  XHr>«F(2»I)*fi(I)
  Z1(I)*K3»IJ*E1(I)
  SlGX(i)sFta,I)*El(I)-XHI)**2
  8lGZ(l)sEf5»I)*El(I}"Zl(I)**2
  SIGXZ(I)=E(6,I)*tl(I)-Xl(I)*ZKI)
  GO TH 1
2 Xl(I)sO.
  zi m=o.
  SIGX(I)cO.
  S!GZ(I)sO,
  SIGXZ(I)sO,
1 CONTINUE
  IF(KCl)  ,F.Q, Of)RO TO <)
  F1«1./F(1)
  XX1«F(2)  *F1
  ZZ1»F(3)  *F1
  SIGXX=F («)*Fi-XXl**2
  SlfiZZaF (5)*F1-ZZ1**2
  SIGXXZZ«F(6)*FI»XX1*ZZ1
  GH TO 8
9 XXlsQ,
  ZZlsO,
  SIGXXsO.
  SIGZZsO.
  SIGXXZZaO.
8 COMTIMJE
  AM2BO.
  DO 3 1*1, J2
           E(1,I)+E C1,H-1))*DY(I)*,5
                               A114

-------
    3
      XOi=AMl/AMO
      00 a !sj,Jl
      E(a,I)sE(l,I)*(Xl (I)-XOi)
      € (3,I)sF(i»I)*(ZlU)»Z01)
      E(6fI)*F. (l»I)*C(Xl(I)*XOl)*(Zl(I)»ZOi)*SIGXZ(l))
    u COM IN/ME
      F(2)=F(1)*(XX1»X01)
      F («) sABS (F (!)*(( XXI -XO 1 ) **2 + S IGXX) )
      F(5)eA8S(F(l)*((ZZl-Z01)**?+SrGZZ))
      Ff6)sF(J)*((XXl«X01)*(771-Z01)*SIGXXZZJ
      Z08ZO+Z01
      DO 11  Iel,ISTtP
      CX(!)*CX(J)«X01
   11  CZ(I)«CZ(I)-Z01
      f NO
w
                                  A115

-------
                DISPC(AL
              /COMPUTE!- (a, isn >
     ,    t.(fl,lbl),YlUbl),Y2(151),nY<150)fKfl)/F*C P. ),'««(<»),
     ,                CCM4XC1S1) ,VA»(lbi)
c
C     FUNCTIOS'  FOR  Cf>PiJTlMU THF DI SPf- WS TfJM  CPtfFICIEM KX,K
C
      IFfFLd.J)  .I.e.  1.00E-1S)  GH TO 1
      D1SPC SAL /SMr-A*(ARS(4»S(FF(^,J)*FF.( I » J)-fcT(2, J)**2>*
     ,              •CEF(6,J)*tt(l.JJ-EE(?»J)*KC3,jn**2)/FE(l,J)**
-------
                              J)
                           1*51 ),
      IF( E(1,J)  ,Lt. .  l.OOE-lb)  GO TO 1
      D!SPeCsALAMOA*UBS(AB!3(  E(£J»J)* fc
     ,           ABSC  fc(5»J)*  F(1»J)» F(
     ,              •(  FCfe,J)*  E(i^J)- F.
     ,                    **0, 3333333
      RF.UIRKi
    1 PlSPCCaO,
v v
                                    All?

-------
              /C'iMPU1/Ft(B,m),
C
t     FU^CTIOK'  HOK COMPUTING THt  DISPFRS10N C'lfcFF ICIE.MT  KX,KZ FOR 501,10
C     OKi SURFACh
C
      iFrvAR(i)  ,I.E, i,oof«is5 c;u  in  i
                      A«3S(ABStVAP(a)*  VAK(1)»
                                     A118
                                                        ** 0 ,
      RF. TURN;
    1 DISPwsO.

-------
 FUNCTION
 COMMON /CnMPUT/FU8.151),
     n8,15l),Yl(151),Y2(151),DV(150),K8),FWC8),V..«l(<»,
                CCMAX(i51),VAR(15i)
 IK   Ml)  .IE. 1 .OOE-15) Gtl TO 1
 OISPWwsALAMDA*(AHS(ABS(  F(4)*   F(l)«  F(2)**2)*
,            ABS(  F(5)*  F(l)-  F(3)**2)
   -(  F(fe)*  F(l)-  F(?)*  f(3))**2)/  F(l)**a)**0,33333J5
 RETURN
 KFTUHKi
                               A119

-------
              NF TUTPT
c
C     OUTPUT SUbRfUTlNF
C
      DIMENSION! Sr.U52,
-------
     I F f. H I* ( K K ) )  110,120 ,110
 110  IF (F(l)   ,U ,  ELIMIT   ) 111,112
 111  X=0.
     Z*0,
     sic;x=o,
     SIGZsO.
     SIGXZ=0,
     GO TO 120
 112  Fl = l ,/Ffl)
     X=F(2) *(• 1
     Z=F (3)*F1
     SIGX = A6S(K1)*F1  -X**2)
     SIGZeAHS(F(b)*Fl  -Z**2 )
     SJGXZsF (6)*F1   -X*Z
     x=x+xo
     ZsZ+ZO
 120  AMO=0,
     A M 1 = 0 ,
     nn I3o  i*i,, IP
              F(J,I)+F. (1,I + 1))*OY(I)*,S
 130 CONTINIJF
     IF (IFIMJSH ,F.Q, 1)GO TO 7007
     IF(IPLT.F.C,0)  GO TO 8001
     nn 7002 isi,ji
     IF (F ( 1 , 1 ) .GT , CDOMX ) CQOMXsfc 1 1 , 1 )
7002 CONTINUE
     IFCAKO.FQ.O.) GO TO 7001
     IF(TT.LE.TPLOT) GO TO 7001
     IF(A5S(fCOOMX»(Jir>MX)/OlC>MX),LT.O,l .AND, (GAMA 1 *GAMA2) ,CE , 1 ,
    * GO TO  8001
7001
7007
     WKlTF-(6,n
   1 FORM AT (t HI      )
     IF(AMO  ,EQ, Of)131,l32
 132 YRARsAMl/AMQ
     GO TO  133
 131 YBA»BO.
 133 CONTINUE
     IF(HI»(KK))  iaO,150,160
 1«0 WKITF(6,2)TT,YBAW,WOAS(IP),WW(KK),AMO
   2 FORMAT(10X,«HTlMt,F12.fl»1HSEC,f2X, 6HMtAN Y,       F9,3,3HFT,,  2X,
    ,     13HSOLIO DENSITY, F5. 3, 5HG«/CC,2X,
    ,           9HFALL VEL,,F12,«,feHFT/SEC,«H TSS, E 1 2, a ,5HCUFT, )
     WRITF(6,3)
   3 FORMAT(/25X,?OHSOLIO ON THE SURFACE/)
   U FORMAT(3bX,lHX,9X,lH2,7X,6HSIGMAX,<»X,t.HSIGMAZ,6X,7HSIGMAXZ,5X,
    ,        IUHFLOATING SOLID)
     WRITE(6,20)X,Z,SIGX,SIGZ,SIGXZ,F(1)
  20 FORMAT(2ex,6E12.U/)
     IFCAMO ,EO. 0,)GO TO 200
     ^RITE(6,5)
   5 FOHMAT{/2bX,19HSOLID IN SUSPENSION/)
     WRITF(6,10)
  10 FORMAT(25X,1HY,9X,1HX,9X,1HZ,7X,6HSIGMAX,6X,6HSIGMAZ,6X,7HSIGMAXZ,
    ,        UX,5HCGNC.,7X,3HCOO)
     DO 1«1 I31,J1,JS

                                  A121

-------
 1«1  HRITE(6,21)Yim,XX(I),ZZU),SlGMAXm,SIGMAZ(l),SIGMAXZCn,
    ,            CCMAX(I),E(i, I)
  21  FORMAT(20X,F6tl,7E12,«)
     GO TO 200
 150  WRITE(6,7)TT,YBAP,A«0
   7  FnRMAT(25X,UHTm,E12.4,4HSEC.,?X, 6HPEAN Y,       F9,3,3HFT,,
    ,        12H TOTAL HASTF.,E12t4,5HC(5FT,)
     WRITE(6,B)
   «  FOPMATf/25X,28HFLUID PART OF WASTE MATERIAL/)
     WRITEC6,6)
   6  FORMAT(25X,1HY,9X,1HX,9X,1HZ,7X,6HSIGHAX,6X,6HSIGMAZ,6X,7HSIGMAXZ,
    ,        «X,10H  CONC,   ,5X,3HCOO)
     00 151 I=l»JlfJ8
 151  HRITE(6f2l)Yl(I),XX(I),ZZ(J),5IGMAX(n»SI6MAZ(I),3I6HAXZ(I)p
    ,            CCMAXCI)»E(1,I)
     GO TO 200
 160  WRlTE(6»2)TT»YBAR,ROAS(IP),Kh{KK),AMO
     IFCAMQ ,EQ. 0,)60 TO 16?
     WR!TE(6,5)
     WRITF(6,10)
     DO 161 I»1,J1,JS
 161  WRITfc(6,21)Yl(I),XX(I),ZZ(IJ»3I6MAX(I)»8I6MAZ(I),SIGMAXZ(I)»
    ,            CCMAX(I),E(1.I)
 162  h»ITE.(6,9)
   9  FnRM&T(/25X, IfcHSOLin ON  THE BED/)
     w«ITE(6,l 1)
    ,        15HDEPOSITEO SOLID)
     HRITE(6»20)X,Z,SJ6X,SI6Z»816XZ,Ftl)
 200 cnNTIKiUF
R001 IF(IGLT.EQ.O) GO TO 8002
     IF(WW(KK)) 8000,800,8000
8000 IFCKKK.fQ.i99) GO TO 800
     TP(KKK)sTT
     FKC(KKK)sFd)
     FKX(KKK)BX
     FKZ(KKK)*Z
     FKSX(KKK)sSlGX
     FKSZ(KKK)cSIGZ
     FK8XZ(KKK)8SIGXZ
     FSIZ(KKK)B»1,
     TFMPORs             SIGX*SIGZ»SIGXZ**2
     IF(TEMPDR.GE,Ot) FSIZ (KKK)sSQRT (SORT (TEMPOR) ) *2 ,
 800 CON-TINUF
     IF(TT,LT.TPUOT) GO TO 8002
     COGMAXsO,
     DO 8003 1*1, Jl
     I F ( E ( 1 , 1 ) . GT . CfiOM AX ) COOM AX»E (1,1)
8003 CONTINUE
     IF(AMO,FQ,0.) GO TO 800«
     IFCCOQMAX.GT.CMAXMAX) CMAXMAX*COQMAX
     IF(AMO.GT.TOTKAX) TOTMAX«AMO
     CnORsCDOMAX/CMAXMAX
     TOTRsAMO/TOTMAX
     IFCCOOR.GT.TRIGERdNOF. ) , AND . TOTH ,GT .TRIGfR ( INOE" )) GO TO 8000
     lF(TIM(i|).GT.O,5) GO TO 800«
                                 A122
     DO 8005 I«1,J1
     8G(1,INDE

-------
     Sf (I,I*f>F )=F ( 1 , I)
     sxn, IMDF ) = xxm
     SZCI.IMU )=ZZ(I)
         I,I*'OF )=SIGMAZCI)
     SXZ(I,TMM 5=SIGMAX7(I)
     SlZCIf IMnt)=-l.
     Tt-MPOs                S
     IFCTf^pr:  .RF.O.) STZCI»
8005 CPNTlMiie
     IF UNOE ,to,a) GO TO «ona
     IMDF =
sooa CONTIHUF
                FO.O) GH TO 800?
     IF twiw(KK) ,(-0.0,) Gil TO 601 1
     KKKSKKK+1
     TP(KKK)s2,*TP(KKKM)-TP(KKK-2)
     FKC(KKK)sO,
     FKX f KKK )sn ,
     FKZ(KKK)=0,
     FKSX (KKK )eO ,
     FKSZ(KKK)sO.
     FKSXZ(KKK)sO,
     FSIZ(KKK)=0,
8011  IFCTMOF. .fcO.l) GO TO 801^
     JJJ=J1*1
     Df R007 ! = 1,INDF.
     SG CJJJ ,1    )s2.*Yl (Jl )-Yl (Jl-1)
     SC (JJJ »I    )sO.
     SX (JJJ ,1    )sQ,
     SZ (JJJ ,1    )sO,
     SSX(JJJ ,1    )*0,
     SSZCJJJ ,1    )=0,
     SXZ(JJJ ,1    )sO.
     SIZUJJ tl    )=0,
8007
     IF(TjM(«).GT,(b)
     CALL nRAW(SG(lM)»SG(l,2),SG(l,3)»S6(l»«)»3C(l>l)»SC(l,2)»SC(l»i)f
8012 IFCWirf(KK) .F.Q.O.) GO TO 8010
     CALL DRA"(TP,TP,TP»TP,FKCfFKX,FKZ,FSIZ,KKK,12,KSCALEf4)
     CALL f>RAI*(TP,TP»TP»TP.FKSX,FKSZfFKSXZ,FKC,KKK,ri,NSCALt,3)
8010 CONTINUE
     IF (INDt.ER.i) GO TO 800h
     CALL DRAW(SG(l»l)»SG(l,2),S6(l,-J),SG(l»a).SIZ(l,l),SIZ(l,2)»SlZ(l,
     iF(IGLT.fcO.l) GO TO 8006
     CALL DRA»<(SGCl,l),SG(l,;?),SG(l,3),SG(l,U),SX(l,n,SX(l,2),SX(l,3),
     CALL nRArt(SG(l»l)fSG(l,2),S6{l,i),SC(lffl},8Z(lf 1)»8Z(1,2),8Z(1»J)»
     1F(IGLT.EQ.2) GO TO 8006
     CALL DRAMSGU,nrSGCl,2),SG(1,3),Sr,Cl,4),SSX(l,n,SSX(l,2),SSX(l,
     CALL nRAW(SG(i,n,sG(i,2),sG(i,3),sG(i,ii),ssz(i,n/ssz(i,2),ssz(i,
     3)»SSZC1»«),JJJ,7,NSCALE,INDF)
     CAUL D«AW(S6(l/l)fS6(l,2),S6{J,3),SCCl»a),SXZf 1,1)»SXZ(1,2),8XZ(1»
                                A123

-------
 8006  CONTINUE
      KKKsO
      CMAXMAXsO,
 8002 CONTINUE
      IFU'ISHsO
      RETURN
      END
vv
                                   A124

-------
           Nfe DRAW  (Xl,X2,X3,X«,Yl,Y2,Y3,YO,K.,IG,K/SCAtE,NCURV)
           N Xl(l),X2(l),X3(l),X«(n,Yl(l),Y2d),Y3(l),YU(n,X(800),
  *Y(800),YY(800),SYM(u),SIM(lh)»P(2a.OO)
   COMMON/GRAPH/TJM(/O
   DATA SIV1HY,1HB, 1HC,1HS,1HA,1H1, 1H2, )H3,1HU,1HS, iHfc, 1H7, 1H8,1HT,
  * IHX,!HZ/
   IF(K»CU«V.LT.l)  RETURN!
   IF (KJSCALE.nT.60)  NSCALE=feO
   IN  B N/NSCALE
   IFdM.LT.J) IN=1
   ,JsO
   DO  1 ISJ,M,IIM
   J = J + 1
   X(J)sXld)
 1  Y(J)»Y1(I)
   J = J+1
   X( J)cXi (N)
   YCJ)sYl(N)
   NNeJ
   IF (NCURV.f-.Q.l)  GO TO 5
   DO  2 Isl,M,JM
   X(J)«X2(I)
   Y(J)«Y2(I)
   Y(J)*Y2(K')
   IF(MCURV,FG,2) GO  TO  5
   DP 3 JSI,M,IM
   J = J+l
   X(J)=X3(I)
 3 YCJ)sY3(I)
   lF(MCURV,tQ,3) GO  TU
   00 H I = l,Ni,IN.'
   J = J41
   X(J)sXfld)
   Y(J)sY«(N)
     -
   Gf.i TU (10, 20, 10, 20, 30, 30, 30, 30. 30. SO, hO, 70, 80, 90, 2000, 1000, 3000)
  *  ,TG
10 DO 11 I «1, a
11 SYMd)BSlM(I)
   IFdG.EQ.J) SYM(3)=SIM(15)
   CA|.L NOR M ( Y , Y Y , N N , 1 , , 0 f , A M X Y , A M N Y )
   NNlsNN* 1
   CALL MOPM(Y(NN.'l ),YY(MNil),WNJ,0,«,0,,AMXH,AMN8)
   MKil SNNI +^^^l
   IMIG.FQ.3) CALL NORM ( Y { NN'l ) , YY (K
-------
   * , AhNY , AMKR, A*N.'C , AMNS
    IF(IG. 1:0,3) wKITt (*»» MO)  X ( I ) . X f NN ) , A V X Y , A •" X B , A "X I'. , Af'-X S
   * , 4 * N Y , 4 « N B > A * N C , A M M S
    CALL SPLOT(YY,X,P,J,NY,NX,l,NN,i,a,SYK)
110 FPRMATdwl ,/////»21X,JflHOATA  POP  GRAPH IMMEDIATELY FOLLOWING
   *///, 10X,«6HlNDFPEMOfM  VARIABLE  IS   TlKfT    nvt'R  RANGE    »2X
   1 2G12, *>,///, 30X, 19HDfPFMf?FN.!T  VAHIABLFS   , // , 1 0* , 6HSYMSOL , 1 JX
   3 3(?XfG12.5)»/, lOX^UHMlN  PLOTTfO , JX, G 1 2, 5, 3 f 2X, Gl ^, S) , / , 1 OX,
   *                    7HKFMA»KS»flX, 1 1HVFP-T,  DIST, ,UX/9H  HAOIUS
   a MM WOP, DIST.   ,3x,lln HOW,  njST,  )
130 FO»MATfJH3 ,/////, 21X,38^DATA  FOR  G«APH IMULDI ATfL Y FOLU-mNG
   *///, 1 OX,«6HIMDF.PFND(:NT  VARIABI.F  IS HOP..OIST, IWF» RAN'GL    »?X,
   1 2Gl2.5,///,30X,19HnEPF.NDE'"T  VARIABLES   , // , 1 OX, 6HSYMHOL , 1 3X f
   2 )HY,l«X,lHt!,13X, lHC,r3X,lHZ,/,10X,llnt«AX PLOTTfr. ,3X,G12,S,
   3 3(2X,G12,5) »/» IDXfllHMiM  PlOTTtO , 3X,G12 fb » 3 (i>X, Gl ?„•?),/, 1 nx,
   *                    7HRt.MARKSr«X, 1 IHVtRT.  DIST, ,«X,9H  RADIUS
   « 11WFLUID CONC,   ,?X,11M HOP,  OIST,  )
 20 SYM(1 )*SIM
    IF(IG, fcQ.il)
    SYMJUjsSIfd)
    CALL MJRM ( Yf YY,NM, J , , 0 , , AMXA, AMNA )
    N H 1 c N ^i + t
    CALL NORM (Y(NN1 ) ,YY(K-N1) t tvH t ,5,0, , AMXf, AMNB)
    NN1 SNN1 +NN'
    CALL NMRM (Y(K-N1) ,YY(MM1) , MM, ,ft,0.» AMXC,
    CALL MHRM (YCMN1 ), YY(NN1 ) , NK> 1 ,  , 0 , , A KX S , A MNS )
    IF(IG,f Q.2)' WRITE (6,120)  X ( 1 ) , X (MM) , AMX A , A«XH, AhXC , AMXS
   * ,AMNA,AMK'B»AMNC»AMNS
    IF(IG.FO.a) t^RJTP.(6»HO)   X ( 1 ) , X (NN) , AMX A , AMX8, AKXC , AMXS
   * , AMNA, AMNR, AMNC, AMNS
    CALL SPL.OT(YY,X,P,J,NY,NX, l,NK!,l,a,SYK)
120 FnRMATdm, /////, 21X»38HOATA  FDR  GRAPH IM^FDIATUY  FOLLOWING    ,
   *///,10X,
-------
    Gf TO (41,42»43,44,AHXX,AMNX)
    CALL wORMfY(NM) , YY(NMl) , NN),0,5  , 0 . , AMXZ ,
    M NJ 1 s \j H] + N K
              V(NM ),YY(NN1) ,N'N,0.6  , 0 .
    CALL SPLOT(YY,X,P,J,NY,K'X,1,K:N,1, NCURV, SYM)
701  FORMATdHl, /////, 2X, 7«HPLC)T OF TOT  BDRY  MAT  (T)  CENTROID LOCATION
   *S (X,Z) AND SIZE (S) VS TJKf.       ,//  »2X,  12HT1MF  RAKifiE    ,4X,
   1  2G20.8// ,2X,16HMAXIMUM T,X,Z,S   ,aG20 ,8»/»2x, 16HMINIMIJM T,X,Z,S
   3   ,   4G20.fl,7(/))
    R E TURN!
 80  CONTINUE

                                 A127

-------
      SYM(1
      SYM(2)«SIMU6)
      CALL  NORMCY,YY,NM,l,,o,
      NK'lsNKi+1
      CALL  NOPM(Y(NM),YY(N*l) »K'N,0.5  ,0,, A^XX,
      CALL  N00M(Y(MM),YY(NN1},N*,0,75,0.,AMXZ,
      *RITE(6,80i)
      CALL  SPLOT(YY,X,P,J,*Y,*x,l,NN,l,MCURv,SYM)
  801  FORMATUH1, /////, 2X,70HPLOT  OF  BOUNDARY  MATERIAL  SIGMA* AND 2 (X,2
     *)  AND SIGMAXZ  (S)  VS,  TIME.    ,//  ,2X,  12HTIMf  RANGF= .flX,2G20 .8, /
     1  ,2X, J6HMAXIMUH  X,Z,S     , 3G20 . 8 , / , 2X , 1 fcHM I MMUM  X,Z,S     ,
     2  3G20,B,7C/))
      RFTURM
   90  DO  91  Id,
-------
      SUBROUTINE SPLOT(8,A,P,H,I,M,JSTR,MREP,NUM8,NSYM,SYM)            SPLOT
      DIMENSION AU),B(1),SYM(1) ,P(1),0(20),H(10)
      DATA 0/20*5H-»--I/
      DATA STR/lHs/
      DATA END/IH//
      DATA BL6/6H      /
      DATA EYE/1HI/
      DATA BINK/1H /
      LQBL6-1
      NNUM8N*
      MUMlBNUMB-1
      JZA»0
      ZPOsQ.
      DO 1916 J«1,ML
1916  P(J)»8L6
      FMSM-1
      AMXsACl )
      DO 100 J*2,N
100   IF(A(J).LT.AMN) AMN=A(J)
      DO 105 J«2,NNUM
105   IF(BCJ) .I.T.BMN) 8MN*B(J)
      DAa(AMX»AMN)/FM
      KRITEC6.2000) AMX,AMN,DA
2000 FG»HAT(/////f 1X,26HMAX,MIN,INC, OF JND.VAR,
2001 FO«MAT(//,1X,26HMAX,MIN,INC, OF DEP. VAR,   ,/,IX,6G20.«)
2002 FORMATC36(/))
      TESTAaAMX*AMM
      TFSTBaBMX*BMN
      IF(TRSTA) 1971,1972»19T2
1971  JZAs-AMM/DA
1972  IFCTESTB) 1973, 1 975, 1975
1973  Ifls-6MN/DB
      LIA8-L6
      DO 197« J«l,H
      LIA»LIA+L6
197a  CALL PFIX(P,IB,LIA,EYE)
1975  CONTINUE
      L10*LOLD/20*1
      DB?OB20,*D8
      HBM=BMN-D820
      DO 2020 Jsl.LlO
2020  H(J)*HBH + .J*DB20
      WRITE(6»2021) (H(J)r Jsl»HO
2021  FORMATC  3X,6G20.5)
      WRITE(6,1200) (8(J)»Jel»20)
1200  FORMAT(16X,20A5')
                                  A129

-------
vv
       00 200 JsJPQ,NPQ
       DO 2f>0 KsJKNP, JNUC
       CALL Pf-'IX(P,IB,L,IA,SYM(ISY"))
 200   CONTINUE
       DO 300 Jsl,M
       JUi=(J/10)*10
       JHI»JLO+LO
       WHITE (6,1000) (P(K),KsJLO,JHl)
       IF(J.EO,J2A) WRITF(6^i550) Z»0, {Q(X) ,K«1 ,20)
       IF(JO,NF.J) GO TO
                  ( J-i )
 300   CONTINUE
 1000
                     (H(J),J*l»L10)
          UMN
       tNO
                                   A130

-------
      SUBROUTINE RANGt. CA,N,AMX, AMN, JMX,
      DIMENSION A(i)
      AMX=A(1)
      AMNsA(l)
      PO 100
      IFtA(J).LT.AHX) GOTO 50
      JHXsJ
      AMXcACJ)
50    CHN/TINUE
      IKA(J).6TtAMIw) GOTO 100
      JHKrj
      AMMSA ( J)
100   CONTINUE
      RETURN
                                   A131

-------
     SURRPUTINF NORM(A,B»NfCl»C2,AMX, AMN)
     f.ALL
     CC=C1-C2
     Xs(AHX»AMN)/CC
     IMX,EO.O,)XS1,
     Y = (Cl*AMKi-C2*AHX)/CC
    Zsl./x
     DO 100 J=1»N
     B(J)=(A(J)-Y3*Z
100  CONTINUE
     RET
     FND
                                  A132

-------
             I^E PF IX(P,IB,1 IA.SYI*)
      DIFFUSION BUFC6),P(1)
      IB6SIP/6
      LIBsLIA+IBfi+1
      OFCOpfc (6,1000,P(LIB))  BU^
1000
      PUF (IRES)sSYV-
      FNr.OOf(6,1000,P(Llfl))  PUF
      PFTUPM
                                   A133

-------
                          APPENDIX  B
                GRAPHIC        OUTPUTS

            (See Tables 6. 1 through 6. 4 and Section 6. 4
                          for explanation)

The results presented in this appendix may not be exactly reproduced by
running the program listed  in Appendix  A  due to  i) a difference in computer
system,  and  ii)  some of the runs in Appendix B may have been obtained
with an earlier version of the program.
                                  Bl

-------
                               RUN D-L-l
 AMBIENT CPNDITTPNS
DEPTH TN, FT.  DENSITY  IM  GRAM PFR CC,  KY IN SOFT  PFR  SF.C.   Vtl.. IN FPS.
npPTH            n.           O.OOOOF+OI  6.oooo.F+oi   I.OOOOF. + O?
AMR-nfcNSTTY      1.0210E+00   1.0230F+00  1.0300F. + 00   1.0300E+00


YK                3.5000F+01   4.5oooE+oi  5.5000F+01   ft
KY                b.OOOOF-O^   b.OOOOF-03  l.COOOF-0?

Yll b.OOOOf+OIYW  b.OOOOF+01YF  1.0000E+02H 1.0000F+02
UA 0,        WA  0.
RAWGF OPFWATIUN  1

WASTF ^ATFPIAL PLIMPEO  INSI AMTANEPUSLY INTO THE

THF SHAPF f:F  THF  CLO'IO  IS  ASSHMFD TO RF HFM

TSTHP  i.nooor + o'iSEC.

r-RTD PtJTM SIZF    51 KFY1     1  KFY?    2 KEY3     0

USF TFTRA Tfc'CH SUGHFSTFO  CdFFF TCIEMS

DP:CR1    1.0000  DTMCK?     J.OOOO
iLPHAO     .2^50  BETA     0.0000 CM    l.OQOO CO      .5000
T,AMA  .25 r.DRAr,  i.oo CFRIC  ,010 CD?  .10 CD« i.oo  AI.PHAC      .0010
FRICTN     .0100  Ft      .1000
ALFAI     i.oooo  ALFA?     i.oooo GAHAI    o.oooo  GAMA2     o.oooo
ALAMDA     .0010

PB  5.0000F+00 WOP  1.^00OF+OOU  0.         V   1.0000E+00^  0.
       K     1  L     1
DENSITY (JF SPLID           2.5000F + 00
COMCFNTRATTON
                           2.0000E-01
FALL VPl.OCITY PF  SOLID
                           5.0000F-OP
                                   B2

-------
                                RUN D-L-2
 AMBIENT CONDITIONS
DEPTH TW FT.  DENSITY IN GRAM PER CC.  KY IM SQFT PEP SFC.   VFL.  I to  FPS,
DEPTH           0.          a.OOOOE+01  6.0000F+01   1 . OOOOF. + 02
AMB-DFNSITY     1.0P30F+00  1.0230F+00  1.0290F+00   1.0290E+00


YK               3.5000E+01  a.SOOQF. + Ol  5.5000E+01  6.5000Ft01
KY               5.0000E-02  5.0000E-03  l.OOOOE-02

YU 5.0000F+01YW S.OOOOF+01YE 1.OOOOE+0?H l.OOOOE+0?
UA 0.        WA 0.
BARGF. TiPFRATION 1

WASTE MATERIAL DUMPED INSTANTANEOUSLY INTO THE UCEAN

THF S"HAPF OF THE CLOUD IS ASSUMED TH BF HEMISPHERE

TSTHP  1.0000E+03SEC.

GRID POINT SIZE   51 KEY!    1 KEY?    2 KFY3    0

USE TFTRA TECH SUGGESTED COEFFICIENTS

DINCR1     1.0000 DINCR?    1.0000
ALPHAO      .2350 BETA    0.0000 CM    1.0000 CD     .SOOO
GAMA  .25 CDRAG 1.00 CFRIC .010 CD3  .10 CD4 1.00 ALPHAC      .0010
FRTCTN      .0100 F1      .1000
ALFA1    1.0000 ALFA2    1.0000 GAfAl    0.0000 GAMA2    0.0000
ALAMDA      .0010

RR  5.0000F+00 RHO  1.3000F+001I  0.         V  l.OOOOE+OOW  0.
       K    1   L    1
DENSITY OF SOLID          2.5000E+00
CONCENTRATION
                          2.0000E-01
FALL VELnCITY  OF SOLID
                          S.OOOOE-02
                                   B3

-------
                                RUN D-L-3
 AMPTFf-'T rr-NOITTDNS
HFPTH I*1 FT.   OFNSTTY TN
PFPTH            n.
                                   CC.   KY  TM SOFT PFR SFC.   VF.|_
                                                      1 .OOOOF + O?
                                                                       FPS,
KY
YU 5.nnn^F + oi YUI  s.
ii* n .         WA  o .
                  s.onooF-o?  5.nnooF-o3   I.OOOOF-O?

                           YF 1 . noOf)F-»-o?H  i.nonoF + o?
WA^TF "ATFPT4I.  HIIMPFO T^PTAMTAMFnilSLV  INTO  THF

TMF CHAPF PF  THF  ci nun T? ASSMMFO TO RF  HFMTSPHFQF

TSTOP  1 .ooftOF+nuRFc.

                              )  KFY?    ?
r,RTH PPT^T CJ7F    51  KFY]


URF T^TPA TFi-H  SUGGF. tTFn
r^T>"C
-------
                               RUN D-L-4
          FT.   nFN^TTY  T N'  n
                 n.
                              M PFR CC.   KY  I M SOFT PFP  SFC.  VFl
                              y.ooooF+A}   ^.nonoF + oi   i.oonoF+o?
                                                                      T *'  FPS,
vw
              WA 0.
                               a . "? n n p F + 0 1
      nPFRATin\i 1

      '-'iTcPT4|  nUMPFH  T MS T A K'T 4 MFOI |C (_ Y  T

    SHAPF  PF  TMF C I OHH TS  AP-SII^FH TO Rf


TSTPP   1 . nnAnp + n/JSPr .

^.PT^P^'T^•T<5T7F   ^IKFYI     IKFY?

IIRF T^'TPi  TFrH SI'^OFSTFn  rnFFFTrTF''1TS

           i.nooo OTMrpp     t
P-AWA   ,?s  rn^Ar; i.on rFPTC  .oin
FPTTTM      . o 1 00 F 1       ,inon
AIFAI     i.nnnn JLFA?     i . o o o o
/, i A M n A      .nn\r>
                                         to
DR
             t   I
        HP  pnirn
        !• TTHN
FAI i  VFI/TTTY  n^ ''HI r
                                 n  n.
                            ?. 0001F-0 1
                                              THF
                                                i.no Ai.pw,»r
                                                v  t.ooooF+on  w  n.
                                  B5

-------
                             RUN D-L-5
      TN FT.  DFNSTTY
DFPTH            0.
                          GRAM  PFR CC.  KY TM SOFT PF«  SET.   VFL.  IN FPS,
                             U. 000^ + 01   ft.nOOOF + 01   l.OOOnF+0?
YK
KY

YU s.
1 1 A 0 .
                 3.5nnoF+oi
                                          1.00POF-0?
                           YF
             VI ft 0 .
WASTF WATFPT4I.  OUMPFH  T MS T i NT i NFOI I PL Y TNTH THF

THF ^HA°F OF  IMF  cinnn TS ASsiiMFD Tn RF

TSTOP   i .oonoF+

f.RTO °nTMT ST7F

i)SF T^TD* Tjr(-H

njwr.Pi    i . n ft o n  r
«i PHAO
                     KFY1     1  KFY?    ?
AI.FAI
 :  rn«Ap; i.oo
    .m no F1
  i.nnno A
        pnn  i
K    1   I     1
 OF sni rn
=-A! I  VFl.nryjy
                                 CM    t.onoo rn
                            .010 cn^  .in cnu j.on  AIPNAC
                                          o.onoo
                                               v   i.oonnF+nn
                                                               ,ooin
                                n  n.

                           p.snooF + r.n
                                  B6

-------
                              RUN D-L-6
 AMBIENT CONDITIONS
PFPTH IKJ FT.  DENSITY  IN  GRAM PER  re.   KY  IN SOFT PER SEC.  VEL. IN FPS
D(rpTN           0.           a.OOOOE+01   6.0000F4-01   l.OOOOE + O?
AMB-DE^STTY     1 . 02^0E+00   1.0230F+00   1.0250F+00   1.02SOE+00
                              i(.SOOOE^01   5.5000F*01
                 s.ocone-n?   ?.ooooE-o3   I.OOOOE-O?
YU S.OOOOF + OIY") S.OOOOFfOtYF  l.nnonE + 0?H i.OOOOE+0?
It A 0.        WA fl.
                 1.

WASTE HATF.PIAL  DUMPED  INSTANT ANFOUSLY  IMTO THF OCEAN!

THE SHAPF GF  THE  CLOUD  IS  ASSUMED TO BE HF.MISPHFRE

TSTOP   l.OOOOE+OaSFT.

GRID PDJMT  SIZE    51  KEY1     i  KEY2    ? Kf.Y3    0

USF TETRA TECH  Sl'GGESTFO  COEFFICIENTS

OlNCRi    1.0000  DIMCP.2    1.0000
ALPHAD      .23SO  BETA     0.0000 CM    1.0000 CD     .5000
GA^A   ,?5 CD^AG 1.00  CFRIC .010 CD3  .10 CD« 1.00 AlPHAC      ,0010
FRJCTN      .0100  Fl      .1000
ALFA!     1.0000 4LFA2    1.0000 GAMA1     0.0000 GAMA2    0.0000
            .0010
 P8   S.OOOOE+00 POO  1.3000E+00 U  0.         V  l.OOOOEtOO W  0.
        K     11.     1
 DENSITY CF  SOLIH           2.5000E+00
 CPNCf MTP4TICN
                           2.0000E-01
 FALL VFLHCITY OF  SOLID
                           5.0000E-02
                                  B7

-------
 AMBIENT
DFPTH INJ FT
DEPTH
                              RUN D-L-7
               DENSITY U1 GRA" PER CC.   KY  IN SPFT PE" SEC.   VFL.  IN FPS,
                 0.           4.0000E+01   6.0000F+01  l.OOOOF+02
                 i .0230F+00  1 . 0?30K. +0 0   1.0240P+00  1.02UOt>00
                  3.5noOF-i-ni
VK
YU S.noTOF + 0 t Y/l  5.00POF.
MAO.         « A  0 .
                                       fi3   l.OOOOF-02

                           YF 1.0000E + 02H  1.0000E + 0?
                                             THF
P4RG.-

«.'ASTF MATERIAL  OUMPF.D I'JSTANTAMF.DUSLY  IM

THF SHAPF OF  THF  rinup is A.SSUMFD in HF

TSTOP  1 .nonnp + O'jSFr.

f-PIO POINT  SIZE    SI  KF.Y1    1 K.FY?     ?  KFY3

i;SF TFTR4 TPfh  SUGr.FSTFn COFFFIC IEK«TS
1.0000 OTNC1??     1. 00(10
       HKTA     o.ouoo  CM
      l.OQ CFPK  .010  CD3
 . 1 1 0 0 F 1       .
4LPHAO
r.A^A
F P I C T N
ALFAI
ALAMOA
«n  s.ooooFtoo  woo  i.?ooot>oo ii  o.
       K     ILI
r-FNSTTY OF-  SMI. 10           2 . SO 0 0 tf + 0 0
cr^rr- ^TWATTHM
                           P.OOOOE-01
FALL VFIJ'CTTY  f)F  S-'lt. 10
                                        j.onoo  en
                                        10  CM  1.00 AI.PpAC
                                                  i.ocnoE + oo
                                                                .0010
                                                                 o.
                                  B8

-------
                               RUN D-L-8
 AM«IE>T  CONOT T I HNS
DEPT^  JN  FT.   DENSITY T * G3AM  PER TC.   KY I Ki SOFT  PFR  SEC.   VFL.
"FPTH            n.           u.OOOOE+01   6.0000F+01   l.OOOOF. + O?
AMp-nF.v?ITY      1.0P30F+00   i.0230F+00   1.0P35F+00   1 . 0??1^!-: + 0 0
                                                    I K! FPS,
KY

YU
  3.SOOOF+01   u.500nf+oi   S.5000E+01
          O?   S.onooE-oS   l
               I.OOOOE + OPH i.noooe
 n .
IMF ?HSPF

1ST I.F   I .           .

Q K I D P P I ^ T  ? I 7 F   S1KFY1

U?K TETkA  TFCH .SUGGESTED
r)l|MPFP TN?T ANTAMFOUPLY JNTO THF. OCFANi

      'D IS  AS-SUMFr>  jn «F HEMISFHBRF
                               1KEY?
DT^CRl     l.nnno OT\T,t?S     1.0000
A I P M 4 0      .23SORF.TA     0. "0 00  CM
r.AMA   . pf.  r.DRAG 1.00 CFPTC  .010  CD?
FRJCTM      .0100 Ft      .1000
*LFAi     l.oooo ii.r'A?     1.0000
4LiMOA      .0010
     5.0000F + 00 C'
        K     II.
  i ! s T T Y  nc 5 n i i n
rON'CFMTRATJ PN
                      1.?OOOF + 00 IJ  0.
                      1
                            p . s o o o E + o o
FALL  VFIHCITY ilF S n|. in
            P.OOOOE-01

            5 , 0 0 0 0 F - 0 2
                         PKF.Y?
                        1 . 0 0 n 0 C 0      .SOOO
                        10 CHa 1.00  4I.PWAC
                                                                .0010

                                                            o.ooon
                           o.oooo  OAMA?


                                V   1.0000F + 00 W  0.
                    B9

-------
                               RUN D-L-9
 A'-'-BIFNT f. 0 H 0 I T 10 N ^
      IN FT.  DENSITY  IN r,PAM PER CC.   KY  IN  ?PFT PER SFC.   Vfl..  IN;  FPS.

                          0  l!
YK                3
*Y                S.OOOOF-O?  •'S.noooE-oi   i.nnooF-o?

YU 5.0000E+01YW  5.0000F+01YF i.ononF+o?H  l.onnnF+0?
:IA ) .OOOdF + OOWA  0.
      |1PK'PATTI1M  1

WASTF MATFfvjiL  ^UMPFD J «ST 4 M T ANpOUSL Y  TNTD  THF  f.iCF

THp SHAPF OF  THF  CLHUO IS ASSUMFD TC"!  BE  Hf.MISPHF.RE
r-PTD PPlivT  SIZE    51  KFY\    ') KEY?     ?

USF TFTPA T'FCH  SUGGESTFD fllfc. FF I C I F*TS
           i.nnoo  DINCR?    i.nooo
            .P350  BF.TA    O.OO'OO C^     1.00^0 C r>     .'iOOO
       ,?S  r.HRAG  1.00 fPRTC .010 CD?   .10  TDU l.nn 41 PH4C      .0010
FRICTN      .0100  FI      .1000
ALFA1     1,0000  4LFA?    1.0000 GA("A1     0.0000 f, AMA2    0.0000
AL.AMPA      .0010

RR  S.OOOOt + 00  WOO  1.3000E + OOLI  0.          V  l.OOOOF + 00  w   0.
       K     1   I     1
MENSTTY OF SOI. IP           2.5000F + 00
                           2.0000E-01
FALL VF-LnrjTY  OF  SOLID
                           S.OOOOF-O?
                                    BIO

-------
                               RUN D-L-10
 AM8TEM CONDITIONS
DEPTH IN FT.   DENSITY" IN GRAM PEP CC.  KY  TN  SOFT  PER SEC.  VEl. IN F?S,
DEPTH            o.           u.onooF+ni  fc.ooooE+oi  t.oooop+o?
           V      1.0?30fc+00  1.0230F+00  1.0PUOE+00  l
3 . 5000 F. -f 01
5. ooo of- o?
YK
KY
Ytl 5.0000F + 01YW  5
Li A l.Ononf + OOWA  1.0000F + 00
                                          5.SOOOE + 01
                              «.SOOri£ + oi
                              5.ooooF-o3
                               l.onOOF-fO?H  1.0000F + 0?
                                                        , '5 n 0 0 F. + 0 1
RARGE  nppRATION 1

WASTF  MATERIAL  DUMPED INSTANTAMFHIISI Y  INTO THF: OCFAN

THF SHAPF  OF  THF. CLOUD IS ASSHMFD  Tl)  RF  HEMTSPHFPF

TSTHP   3.hOOO£403SFC.

GRID PPIKT SIZE   SI KFY1     1  KFY?     3 KFY3    0

USE TFTRA  TF.CH SUGGESTED COEFF I C I FNTS
DINCR1     1.0000  DINCR2    1.0000
AL.PHAO      ,?3SO  BETA     0.0000 CM"
PAHA   .25  TDRAG  1.00  CFRTC .010 CD3
FRICTN      , 0 1 0 0  F 1      .1000
&LFA1     1.0000  ALKA2     1.0000
ALAMDA      .0010

RB  S.OOOOFfOO  ROl'r  t.30nOF + 00 II
        Kill
DFNSITY  OF SOLID           P
CONCENTRATION
                           2 . 0 0 0 0 fc - n t
FALL  VFLUCTTY  OF  SOLID
                           S.OOOOF-n?
                                        1.0000 CD     .S'OO"
                                        10 CDa l.On ALPHAC
                                                               . 0 0 1 n

                                                           0.0000
                                           0.000" GA*A?


                                               V  I.OOOOhtOO  W  In.
                                     Bll

-------
                              RUN D-L-11
 AMBIENT CONDITIONS
DFPTH in f-T.  ()tMSITY IN GRAM Pt« CC.   KY  IN  SOFT  PFK SEC.  VEL. IN FPS,
DEPTH           0.          q.OOOOfcfOl   6.0000t+01   l.OOOOt+02
AMB-DhNSJIY     1. 02301+00  1.0230E+00   1.0300E+00   1.0300t+0u
YK               .S.50COF-KJ1  «,^iOOOE + 01   b.SOOOfiOl   6.bOOOf.-»01
KY               5,OOUOt-C
-------
                               RUN D-S-I
 AMRTFNT  nPNDTTTnNS
HFPTH TN  FT.   nFNSTTY TM  GRAM  PFP CC .  KY  TW  SfiFT PFR SF.C.   VEL. TN FPS,
nF^TH            o.           u.ooooF+01  f.ooooF+oi
AMP-HFNSTTY      I
Y ! i s.onnnc + ojYW ^.no^OF + ^IYF" 1.00nPE*npH  l.
1 1 A n .         win.
  4?TF  K'ATFRTAI.. rvjMOfrpv  T M <5 T A W T 4 MFOU^(_ Y  INTO THF

           nF TMF ri.nl'r  T S  A^^llMFn TQ RF
          T ST7F    SI  KFY1     \ KFY?     ? KFY"?    0

     TFTR& TFCU SIlRRF^TFn fOFFF I C T FMT ^

 r. T w r P t     t . o o o f>  n T w r P >
            ,              o.onnorM     t.nooo rn
       .?c rn^jp '1. .00  CFRTC .^10  cn^   .in rr»u i.oo  ALPHAT     .noto
            . 0 1 (1 0  F 1      .1^00
 AIPA1     1.0000 Aj. FA?    1.. 0000  GAMA1     0.0000  RAMA?     0.0000
            .0010
 OP   c;.ooooFfOo  pnn  1 . 1 ?noF + oo  n   o.           v   I.OOOOF + OO w   o.
        V     11     1
     TTY OF  Sn|TH           l.ROOOF + nO
 FAI.I  VFLn(".TTY  HF  S^l. JH
                            ^ . noooF-o"?
                                    B13

-------
                               RUN D-S-2
       T rrMr)T TTTiTv
      TV PT. .  ncr.^TTY IN n°AM PF9 TC.   KY T N SOFT PF0  SfT .   VFI
^ F " T M            n.           u. oooo r + 01   f, . o P o o F + o 1   I.OOOOF+O?
ys M n - n p Ki c. T T Y      i
                                                                  .  TM FPS,
ICY
          TF
                  n.nnn T?
                                    TP
    TCTP6
                              1KFY?
AI PWAn
<~Aw4  .
r " T r T u
AIFA1
AlAMhi
           i.nnno  OTK:rop    l
                  QFTA    o.onnn CM
                  .oo pFPTr .010 cn?
            . o i o o  F 1      .1000
          1.0000  ALFAP    1.0000 HA^
            .00)0
             1   I
                     1.1?OOF + 00 "   ft.
                     1
                                        i.nnpn rr?
                                        10  rnu i.no *IPHAT      .0010

                                           O.OOOO r, A M A ?     0.0000
                                               V  I.OOOPF + OO  w   o.
F4| I. VF|. TCTTY  OF  Snl. TO
                           1 .SOOOF-0 1
                           S.OOOOF-O-?
                                   B14

-------
                              RUN D-S-3
     fiMT  CCiNDT ri'.JMS
DEPTH  IN  FT.   OFNS11Y  IN  GHAI  PfK  CC.   KY IN SOFT PtK  SEC.   VEL. I IN FPS.
DtPTH            o.           U.OOOOEtOl   6,0000t + 01   1 . 0 0 0 0 1" + 02
AMb-OtK'SITY      l.0230r+00   1.0250ttOO   1.0260t+00   l.0?6()k+00
KY

YU 5.00HOF
DA 0.
                  i.SOOOt+01   U.bOOOfc+01  S.6000K+01   h.bOOOh+01
                  S. 0000 £-02   b.OOOOE.-0'i  l.OOOOt-02
Yw
                             F  1 . OOOOt" + 02H l.OOOOfc + 02
                 0.
RAKGF UPFNAlIOiM 1

WASTK MAff-.kiAL DUHPLO  INST AMANFOUSLV  INTU

THE. SHAPf:  UF THK CLC'UD  IS  ASSUMED T U Bt HEMJSPHtKt

TSTOP   2.1000L + 0.4SF.C.

RHID PliI NT SIZE   b'l KEY!     1  KfcY^    3 HF.Yi    0

USE 1ETKA  TF'CN SUGGESTED  CdfcF F It I F.N I S
DINCR1     1,0000 DINCK2     1.0000
ALPHAO      .^:SbO iiiLTA     0.0000  CM
(JAMA   .2b CDRAG 1.00 CFRIC  .010  CD3
F R 1 C T N      . 0 1 0 0 F 1      .I0i>0
          i.oooo ALFA?     i.oooo  GA^AI
            .0010

«b   s.oooot+oo  nno   i.iifoottoo  u  o.
        K     i  L     i
DENSITY  OF  SUI..ID           l.SOOOt + 00
CUNCf-.lvTkAT 1UM
                            1 .bOOOE-01
FALL  VtLUCITY OF SOLID
                            S.OOOOE-03
                                        1,0000 CD      .5000
                                        10 CO'J 1.00  AI.PHAC
                                                  .0010

                                              o.oooo
                                           ti.ooco GAMAS

                                               v  i.oooot + oow  o.
                                 B15

-------
                             RUN D-S-4
 AMBIENT CONDITIONS
DEPTH IN FT.  DENSITY IN GPAM PER CC.  KY IN SOFT PFR  SEC.   VFL.  IN  FPS,
DEPTH           0.          y.OOOOE+01  6.0000E+ni   l.OOOOE+02
A.MR-DENSITY     i.OSSOE+OO  1.0250E+00  1.0250E+00   1.0?50E+00
YK
KY
                 3.5000E+01  U.5000E+01  5 .5000E + 0 1  6.5000E+01
                 5.000PE-02  5.0000F.-03  l.OOOOE-0?
YD 5.0000E+01YW 5.0000E+01YF 1.0000Et02H l.OOOOE+02
U4 0.        WA 0.
RAPGE

KASTF MATERIAL PUMPEH I NST AMT ANFOUSL Y INTO THR OCEAN

THF SHAPE OF THF CLOUD IS ASSUMED TO RE "EMTSPHFRif

TSTOP  J.OnOOFfO'JSEC.

PHID POI*'T SIZE   51 KEY1    1 KEY2    2 KFY3     0

USE TFTBA TECH SUGr,E?TED rnEFFlCIEKTS
          t.onon DINCP?    i.oooo
Al.PHAO     .2^50 BETA    n.OOOO CM
      ,?s COPAG i.oo CFRIC .010 rn?
           .0100 Fl      .1000
ALFAI    i.oooo ALFA?    i.oooo GAMA
ALAMOA     .0030

KR  S.OOOOF+OO RCO  1.1200F+00 U  0.
       K    1  L    1
DENSITY OF SOLID          1.8000E+00
                          1 .SOOOE-01

                          5.0000E-03
FAI L VFLTC1TY OF SOLID
1.0000 CD
to  cna i.
                                                     .5000
                                                   ALPHAC
                                                              .ooto

                                                          o.oooo
                                          n.oooo  GAMA?


                                              V   l.OOOOE+OO  W   0.
                                  B16

-------
       IN  FT.
DEPTH
DF.MSITY !M Gf
  o.
  1.0230F + 00
                               RUN D-S-5


                             M PF«  CC.   KY IN VSPFT PFR  SFC.   VEL
                             U.OOOOF+C1   f-.^POOFfOl   l.OOOOE + 02
                             1.0P30F + 00   !.0?40E + 00   1.0?aoe*00
                                                                       FPS,
YU s.
                  3.SOOOF+01   a.5000E+0!   5.5000E+01   6.SOOOE+01
                  5.0000E-0?   S.nOOOF-03  l.OOOOE-0?
                            YF  i
              'rt a o .
•s'43TF

TH£

TSTHP   1 .

GPID POIN'T  SI?F.   SJ KFYi

t'SF TET^A
              L ni|MCF!> JNST AMI A\'K.riilSL.Y TMTf! THF PT.F4W

              THE CLn:i[)  IS  ASSUMED TO Pfe HFMJSPHFPF
                               1  KFY?    ?. KFY3
           1.0000 D
AlPHiQ      .?^508ETA     O.OOOnrM    1 . 0 0 0 0  C D      .5000
r,iMi   .PC; CORAS. 1.00 C F " T C  .010 Cr>3  .10 CDil  1.00  aiPH*c     .0010
F P I C T M      . 0 1 0 0 F I      .1000
4LFM     1.0000 4 1. FA?     1.0000 Giwi1    O.OPOO  '~AMA2    0.0000
Al A^PA      .0010
     C;.OOOOF+-OO Ron  i.i?'ioF*oo  u  ^
        K     i   L    1
         OF SGI TO           1.8000F + 0
 FALL  VFLOriTY OF SOLID
                            5.0000E-03
                                                v   I.OOOOF + OO K  o.
                                     B17

-------
                                RUN D-S-6
               DENSITY IN G»AM PER  CC.   KY  ]> SOFT PEP SEC.  VFl.  IN  EPS,
                 0.          4.0000E+01   6.0000F + 01   l.OOOOE+0?
                 l.o?30F+no  1.0?30E+oo   1
                  3.5000F+01  ii.SOOOE + 01   5.SOOOE+01   6.5000E+01
                  5.000nE-0?  5.0000E-03   l.OOOOF-0?
                                           l.OOOOE + 02
                 0.
MATE"TAL
                       INSTANTANEOUSLY  INTH  THE  OCEAN
     SM4PE OF  THF CLOIJH IS ASSUMED TO  «F  HE»-
-------
HEPTH
r F D T H
         FT.
                             RUN D-S-7
               TicviS
               DENSITY  I*  GPA"  PFR CC.  KY IK- SC.'F'T PFP  SEC.   VEL.  IN FPS,
                 0.           4. 0000 E +01  ^.OOOOF+ni   1.0000E+02
                 1.0?30F+00   1.0230F+00  1
KY
YU
                  5.0000E-0?   5.0nnnF-03  l.OOOOF-02

                         ^IYF  l.nooOE + n^H l.OOOOF + 0.?
i ) A l . 0 o 0 0 F + n 0 w A  0 .
                                       TNTH THF. OCFAN
THF PHAPE OF  THE  CLOUD  IS  ASSUMED TO BE HFMISPHF.PE
r.PTO PnjijT  STZF    51  KEY]     i  KEY2    ?. KEY3    0

IISF TFTRA TEC*  SUG^FSTED CPFPFTCIEMS
AlPHiO
f-A^-A
FRICTN
4LFA1
ALAHOA
           1.0000  DIMTR2    J.OOOO
            ,?351RETA     n. 0000 CM
           CDPAG  1.00  CFRIC .010 CH3
            .0100  Fl      .1000
          1.0000  ALFA2     1.0000
            .0010
RB  ^.OOOOE + 00  POO  1.1200E + OOU  0.
        K     1   L     1
DENSITY PF  SOLID           l.«OOOE+00
CONCFNTRATJON
                           1.5000F-01
FALL  VELOCITY  OF  SOLID
                           5.0000E-03
                                       1.0000 CT)      .5000
                                       10 CQ4 1.00 ALPHAC
                                          0.0000
                                                               .0010

                                                           0.0000
                                                  l.OOOOF + OO
                                                                '0.
                                 B19

-------
                            RUN D-S-8
 AMBIENT CONDITIONS
DFPTH JM FT.  DENSITY  JN  GPAM  PER  CC.   KY IN SOFT Pp.R SEC.  VEL . IN FPS,
DEPTH           0.          4.0000F+01   6.0000F+01   1.0000E+0?
        TTY     1.0??OE + 00  1 . 0?30{- +00   l.OPUOF+00   1.0?«OE + 00
YK               3.5000E+01   4.5000F. + 01   5. 5000 F. + 01   6.5000E + 05
KY               5.0100F-02   5.00006-03   l.OOOOE-0?

Yll 5.flinOF+OtYW 5.0000F+01 YE  l.OOOOE+OPH  l.OOOOE+02
UA l.noor.FfOOWA l.nnonF + 00
    F MATERIAL DUMPFD  INS T A MT ANEOUSL Y  INTO THF.  DCEAN

THE SHAPF (IF THF CLOUD IS  ASSUMED  TO  <3F.  HEMISPHERE

TSTOP  1 .OOOOF-t-OUSEC.

G&ID POIMT SI7E   SI KEY1     1  KEY?     ? KEY^    0

USE TETRA TFCH SUGRFSTFD  COEFFICIENTS

C'lNCKl    1.0000 DIN'CR?    1.0000
AI.PHAO     ,?350 RPTA     0.0000  CM    J.OOOO  CD     .5000
GAMA  .?S CORAG 1.00 tFRTC .010  CD3   .10 CD4  1.00 ALPHAC     .0010
FPICTN     . 0100 F1      .1000
AI.FA1    1.0000 ALFA?     1.0000  GAMAJ     0.0000 GAMA?    0.0000
AL.AMHA     .0010

CP  S.OOOOF+00 ROD   1.1200F+00  U  0.          V   1.0000E+00 K  0.
       K    1  L     1
HFK'SITY rip SOLID           1.8000E + 00
CONCFNTRATIflM
                           1 .5000E-01
FALL VFLDCITY OF SULID
                                B20

-------
 AMHIFNT
DEPTH  IN  FT.
f.'EPTH
AMR-hENiSTTY
                               RUN D-S-9
               DENSITY T.M GRA" pfR  c C .   KY TS SOFT PFP S(-C
                 n.           a.oooot+oi   6.0000F+01   l
                         00  1 . 0?30F- +00   1.0260F+00   I
                                                               VFI .  TM FPS.
YU s.
MAO.
                  S.ononp-n?
                               i.ooooF
              \fl A  0 .
WASTF WATH.KIAL  DUMPF.D TMSTAMTANFOUSLY  TMTO IMF

THF SHAPF  PF  TMF ClHIin IS ASSU^F.n  TIT  HI-

rstnp   i.onooE+oasFc.

ORIO POINT SIZE   SI KFY1     1  KFY?
USF TETPA  TFCH SUGGFSTFD CHfFF TC IF^'TS
           1,0000 DINCR?     i.nooo
            ,?i,bo PF;TA     o.oooo  rn
GAMA   .?S CDHAG 1.00 CFPIC  .010  COT
  . 0 1 0 0 F 1
1.0000 ALFA?
  .0010
FRTCTN
AI..FA1
ALiMDA
                Rnn  i.i
        K     1   I     1
        nf-  SOLID
CflMCFNTRATIGN

KAIL VFL"CTTY  OF SOL.IO
                           1000
                           1.0000
                                 ti  o.
                            i,«ooor + oo
                            1 .SOOOF.-01
                                         I
                                        1.0000 en
                                        10 Cnu t.OO  A| PI-AC

                                           0,0000 GAMA?
                                                  o.
                                                                .0010

                                                            0.0000


                                                              «   o.
                                  B21

-------
                             RUN D-S-iO
 AMBIENT CONDITIONS
DEPTH TM FT.  DENSITY  IN  GRAM  PER CC.   KY IN SQFT PER SEC.  VtL.  IN  FPS.
DEPTH           0.           U.OOOOF. + 01   6.0000F+01  1.0000F. + 02
AMR- DENSITY     1.0230F+00   1.0?30F+00   1.0260F+00  1.0260F+00
YK
KY
                 3.SOOOF. + 01   4.5000F.+ 01   5.5000F+01
                 5.0000E-0?   5.00QOE-03   l.OOOOE-0?
YU S.OOOOF+OtYW S.OOOOF+OlYfc  1.00(10E + 02H 1.0000E. + 0?
UA 0.        WA 0.
RARGF

WASTE MATFRIAL PUMPED  TMSTANTAMFHUSLY  INTO THF OCFAN

THF SMAPf fF THE Cl ODD  IS  ASSUMED  TO Btf HF^ISPHfcPf

TSTOP  1 .onoOF + OISEC.

RRTO Pr.IKiT SIZE    SI KFY1     1  KEY?    2 KFY3    0

USE TFTRA TECH SURGESTFD  COEFFICIENTS
DIMCP.1    1.0000 DINCR?     1.0000
ALPHAO     .2350 RFTA     0.0000  CM
GAMA  ,2S CDWAt; 1.00 CFRIC  .010  CD3
FPICTN     . 0 1 0 0 F 1.      .1000
AL.FA1    1.0000 ALFA2     1.0000  r, A *» A
4| AMDA     ,0010
PH  s.oonoF + 00
       K    1  L
DENSITY np SOLID
tOKCFNTRATTON
                     1.1200F + 00  U   0.
                     1
                           l.BOOOf+00
FALL VELOCITY OF Si.H.TD
                           ! .SOOOF-01

                           S.OOOOt-03
                                       1.0000 CO     .5000
                                       10 C0<4 1.00 AIPHAC

                                          0.0000 GAMA2
                                                               .0010

                                                          0.0000


                                                          o ^   0.
                                 B22

-------
                              RUN p-s-ii
 AMBIENT CONDITIONS
DEPTH IN FT.   DENSITY IN GRAM PER CC.  KY  IN  SOU  PER SfC.  vfL. IN FPS.
DEPTH            0.           /J.OOOOe+Ol  fc.OOQOE+01   6.5000F+01
AMB-DfcNSlTY      1.0230F+00  1.0230F+00  1.0260F+00   1.0P60E+00


YK                3.SOOOE't-01  a.5000f + 01  b.bOOOE + 01   b
KY                b.OOOOE-02  5.0000fc-03  l.OOOOE-02

YU 5.0000E+01YH b.OOOOEtOlYt o.SOOOh+Olh 6.bOOOE+01
U A 0 ,         W A 0 .
BARGF DPtRATIUN 1

wASTt MATERIAL  DUMPED I MS] A NT ANhCuJSl Y  INTO  THE  OCtAK

THE SHAPE  OF  THE  CLOUD IS ASSUMED  TO BE  rifc'M I SI'HERF

TSTQP   1 .OOOOE + 02SEC.

GHIO POINT SIZF   SI KEY I    1 KEY2    £ KEY3     0

USt 7FTHA  TECH  SUGGESTF.O CUt.FF 1C ItM T S

DINCH1     1.0000  OINCK2    l.OOOu
ALPHAO      .2450  BETA    O.OOOU  CM     1.0000  CL>     .bOOO
KAMA   .25  CD«AG 1.00 CFRIC .'.HO  CDS  .10 C\)U  l.UO Al PrAC     .OHIO
F R I C T N      . 0 1 0 0  F 1      .1000
ALFAI     i.oooo ALFA?    i.oooo  GAMAI     o.oooo HAMA^    n
ALAMQA      .0010
H6   5.0000E + 00 ROH  1.1200F.+OD u   0,          V   b . iKi'Mfc-nxi •••  0 .
        K     1   L    1
DENSITY  l!F  SOLID          1.8000E + 00
CONCFNTRATION
                           1 . 5 0 0 0 fc - 0 1
FALL  VH f)CI TY  OF SiJLlD
                           b.OdOOE-lii
                                  B23

-------
                           RUN D-S-12
      IN FT.   OffNSTTY  IN r;WA* PfJR CC.   *Y  TN SOFT PtR SFT.   Vfcl.  T
PFPTH            o.           4.ooooF+oi   6,onnofc+oi  i.ooon
AMf-r>h>isTTY      j .op.^oE' + no  i.op^or + fio   i.n?hOF + nn  i.o^^or
YK
KY
HA o.
                  ?.5nnoF+oi  /4.SOOOF + 01   s
                  S.ooooF-n?  s.oonofr-03   l.nnonF-o?
                                           1.0000F+OP
                 o ,
WASTF MATFRIAI  DIJMPFn T H.STAN' T A NFPIJSI. Y  7 M 7 f) IMF OTF4N

THF .SHAPF  PF  THF  CLOUD IS ASSHMF.O  TO  BF  HEMJSPHFHF

TSTQP   ! .OOOOKtOaSFC.

RWTD PRINT  SIZF   SI  KfY1    i  KEY?     2 KKY^    0


IISF TETR/s  TFCH  SHRRfSTFO CHFFF If. TF^'TS
4LPHAO
          i.nnno  OTNTR?    i.oono
            .2^50  HETA     0,0000 CM     l.nono  CO     .5000
          CDRAG  1.00  Cf-RIT .010 fUi?   ,10  CDa  1.00 ALPHAC
F « T C T N      .0100F]      ,1000
AIFAI    i.oooo  ALFA?     i.nooo
ALAMDA      .0010
RH  l.OOOOF + 01  HHI]  1.1200F + 00 If   0.
       K     It.     1
DFN'STTY OF  SOLID           l.«OOOF + 00
                           1 .SOOOF-01

                           'j.OOOOF-03
FAIL  VFl.HCTTY  fjF SOL TO
                                                                .00(0

                                                            o.oooo
                                           o.oooo I;AMA?


                                               V  l.OOOOF + 00  w   0,
                               B24

-------
                              RUN D-S-13
 AMBTFNT CPWrnTiriNS
DFPTH IN FT,   DFNSITY IN GRAM PF.R  CC.   KY IN SOFT PfcS  SFT.   VFI_.  IN FPS,
DF.PTH            0.           4.0000F+01   6.0POOF+01   l
YK
KY

Yll 5.1
UA 0.
              YW S
              WA 0
). .1

1 .OOOOF+02
BARGF PPFRATinw  J

WASTF WATFPTAL  OHMPFH U'st ANTAMpniisi. v  TNTO

THF SMAPF  OF  THF CLnilD IS ASSUMFn  TO RF

TSTOP   1 .nnonFtoysec.

PPTI.) POINT ST7F    SI KFY1     ?.  KFY?

MSF READ  TW COFFFICIFNTS
           1.0000 DTNTR?     1.000ft
 ALPHAO      .2350 RFTA     0.0000 T
 GAMA   .2S CDRAG 1.00 CFRIC  .010
 FP, TTTM      .01 00 F 1    10.0000
 ALFA1     1 . 0 0 ft 0 A L F A 2     1.0000 KAMA
 At.AMDA      .0010
 PR   S.OOOOF + 00 R'lO   1.1200F
        K    1  I      1
 DENSITY np sni.in           I.ROOOF + OO
                            t .
 FAl L  VFLOCTTY OF
                                                 OCFAN
                                        i.oooo r. r>      .5000
                                        , i o cna l.oo  AI.PHAT
                                           0.0000  f, A M A ?     0.0000


                                               V   1.OOOOFtOO W  0.
                                 B25

-------
                              RUN D-S-14
 AMRTRMT CONDTTinMS
      IN FT.  DFMSTTY  IN  RRAM PfP fC.  KY IN SOFT PFR  SEC.   Vfl .  TH FPS.
                o.           'i .OOOOF + O i   fc.ooooF+o)   1 .ooniu'
VK                ^
KY                s.noonF-o?   s.onnoF-oj

YII 5.ononF+o i YW s.nooor+oi YF  i.nonnF+o?H i.ooooK+n?
IIA n .        WA a.
RARGF OPFRATTHN  )

WASTF HATFRTAL DPMppp  TNST AMT ANFOlISI Y T^'TH TMF

THF SHAPF HF THF  ci.nun  is  ASSU^FD TH HE HEHISPHFRF.

TSTOP  i .nonnF+nusFc.

nPJD PHTNT SI7F    SI KFY1     ? KF-'Y?    ? Kf-Y'*     0

IISF "FAO TN c
           1.0000  DTNCP?    1.0000
AtPHAO      .PSSO  PFTA     0.0000 CM    1.0000 CH      .5000
T,AMA   ,?5  CORAG  1.00  rFPTf .oio cn^  .10 cna i.no  AIPHAC      .onto
FRTCTN      .0100  F1     t.0^00
ALFA1     1.0000  AI.FA?     1.0^00 RAMA1    0.0000  RAMA?     0.0000
            .0010
Rfi  9.0000F400  PHfl  1.1200F+00 II  0.          V   1.0000F + 00 w  ri .
       K     1   L     1
        HF  snirn           j
                           1 .SOOOE-01
FALL VFLHCTTY  OF  SOI TD
                           s.noooF-oi
                                  B26

-------
                             RUN D-S-15
 AMBIENT CONDITIONS
DF.PTH IN FT.  DENSITY IN GRAM  PER  CC.   KY  IN  SOFT PER SEC.  VEI . IN FPS,
HFPTH           0.           a.OOOOF-fO!   6.0000E+01   l.OOOOE+n?
AMB.DENSITY     1 .0 ?30E+00   1.0?30F+00   1.0?aOE+00   1.0?
-------
                             RUN D-S-16

DEPTH TK FT.  DENSITY  TN  GRAM PFW ft'..  KY J K' SOFT PF.R  SFf.   VFL. TN
                o.           u
YK                3.snooE+oi   a.soooE+nt  s
KY                S.nooOF-O?   S.ooonE-03  i.naooF-o?

vti S.oooflF+oi YW  s.nooor+niYF i.ooonE*o?H j
1)40.        l»' A  0 ,
RARGF

WASTF KATFRTAI  DIIMPFD  I MS T ANT AMFOUSl Y TN'TO THF

THF SHAPF Op  THE  CLnilD TS ASStJMFH TO 8F HF.MTSPHFRF

TRTOP   \ .OOnnF + OdSFC.

HRIO POINJT SI7f    «51  KFYt    ? KFY?    ? *FY3     0

USF RfeAD  TM  COFFFICIFWTS
           i.ooon  DTNCR?
ALPHAO      .2^50  RFTA    0.0000 CM     1.0000  CH      .SOQO
RAMA   .?S  TDRAG  1.00 CFRTC ,OJO Cn?   .10 C^/J  1.00  Al PMAC     .0010
FRTCTN     0.0000  F1      .1000
ALFA1     1.0000  ALFA?    1.0000 RAHA1    0.0000  r,AMA?    0.0000
ALAMDA      .0010

PR  S.OOOOF400  ROO  !.1?OOF + 00 U  0.          V   1.0000F. + 00 W  0.
        K     1   L     1
DFNSTTY OF SOLID           l.BOOOE+00
mNCFMTRATTON
                           t .
FAt |   VFLHCTTY  OF  SOLID
                                 B28

-------
                              RUN D-S-17
 AMBIF.MT CHNntTinNS
DFPTH TM FT.  DENSITY  TN  GRAM PFP  CC.  KY T» SOFT PER SFC.   VF-.l. .  IN  FPS,
HFPTH            o.           u.onooF+01   *.OOOOF+OI  I.OOOOF+O?
                                                     i.o?60F+oo
YK                3
KY                s

YU 5.0000F4-01 YW  s,
UA o.         ^A  n.
                                          S.SnonF + 0
                              5.ooooF-o^
                           YF
P4RGF

WASTF MATF»IAL  D'

THF SHAPF PF  THE  ci.nnn  is

TSTHP  1 .ftftOOF + OUSFC.

RR70 POINT  SIZE    S! KF-Yt

USF RFAD  TM fOFFFICIFNTS
                                       twin TUF

                                   TO MF H
                              ? KFY?
                                        ? KFY^
DINCRi     1.0000  OT^TR?    1.0000
AIPHAO      ,?350  BFTA     o.oooo CM    i.nnnn r:n
RAMA   ,?S  TDRAG  1.00  CFRTC .100 CD'S  .10 C^/i 1.00  AIPHAC      .onto
FRTCTN      .OtOO  Ft      .1 000
ALFA1     t.oooo  ALFA?     i.oooo GAMAI    o.ooon GAMA?     o.oooo
ALAMPA      .0010

PR  s.oonof+oo  Rnn  i.iponFtoo n  o.         v  I.OOOOF+OO  w   o.
       K     1   L     1
nFMSTTY OF  SOt TD           1.POOOF+00

                           1 .SOOnE-01

                           S.OOOOF-03
FAI.l  VFLHCTTY  OF SOLIO
                                   B29

-------
nFPTH TN FT.
HFPTH
                             RUN
              DENSITY  TM  KRAM  Pf-R PC.   KY IN SOFT PFR St'C .   VFI
                o.           a.oooftFffM   fc.oonoF+fti  i.oonnp + n?
                I.O?IOE+OO   i.o?30Ffon   1 .
                                                                   IN  EPS
KY

YU s.
DA o.
             WA n,
                              U .
                                          B.'SOOOF. + Ot  fe.SOOOF +
                                          t.onnnF-n?
                              t ,nonnF+o?H i.noooE-»-n?
RARGF OPFRATTHM  1

WASfff MATFRrAl. OI/MPEO  rMST/SMTAWEOUSI.Y INTO THf

THF SHAPF OF THE rt nun  is  ASSUMED TO RF HC^

TSTOP  i .OOOOF + O^JSFC.

RRTD POINT SI7F    SI KFYt     ? KFY?    ? KEY3

USE P-EAD IM COFFFirTFNTS
DINCR1     1.0000  DTNTR?    t.OOOO
ALPHAO      .?"?50  RFTA     0.0000 CM
GAMA   ,?S  CDRAG  1.00 CFHTC .010 CD3
FRTCTN      .0100  Fl      .lOftn
AI.FA1     1,0000  ALFA?    .1.0000 GAMA1
ALAMOA      .0010

RB  S.OOOOE+00 RQn  1.1POOF+00 U  0.
        K     1  I     1
DENSITY OF  SOLID           l.flOOOEtOO
rnNCFNTRATTON
                           1 .SOOOF-01
FAIL  VFLPriTY  OF  SOLID
                                       1.0000 CD      .SOOO
                                       10 COO 1.00  AlPHAC
                                                               .1000

                                                           0.0000
                                          0.0000 RAMA?


                                              V  t.OOOOF+00  W   0
                              B30

-------
                             RUN D-S-19
 AMRTFMT CONDITIONS
DFPTH TN FT.  OENSTTY  TN GRAM PFR CC.  KV TN SOFT  PFR  SFC .   VFl .  IN FPS.
OEPTH            o.           ^.OOOOF+OI  6.ooooE«-oi   i.ooooE+02
                 1.0210F+00  1.0P30F+00  1.0260F+00   1.0260F. + 00
YK                s.snooF+oi   a.5onnE+ot  s.soooFtoi   6.5nooF+oi
KY                S.OnOOE-02   5.0000E-03  l.OOQOF-0?
YU S.OOOOEtCHYW  S.OOOOF + 01YF l.f»OOOE + 02H  l.OOOOE + 0?
IIA 0.         WA  0.
HAPRF nPFHATTON  1

WASTE ^ATFPTAl  nUMPFD I WST 4 MT ANFOUSt Y  J WTO  THF

THE  SHAPF  OF THF CLOUD IS ASSUMED TO HF

TSTHP   i.ooncF+ft«SFr.

T.RTD POINT SIZE    51 KFY1    2 KEY?    ?  KFY^

USF  «FAO IN
 HTNCR1     1.0000 DINCR?     1.0000
 ALPHAO      ,23so RFTA    o.oooo  CM     i.oooo rn     ,«sooo
 r,AMA   ,?S f.DRAG 1.00 CFPTT  .010  CDl   ,tO  Cny t.OO At PHAC    0.0000
 FPTCTN      .0100 Fl      .1000
 AI.FA1     1.0000 4LFA?    f.OOOO  GAMA1     0.0000 GAMA?    0.0000
            . 00 J 0
 RR  ^.OOOOFtOO Rnn   1.1200F+00  H  0.          V  l.OOOOF+00  W   0.
        K    II.     1
 DFMSITY np sni.in           I.ROOOF*OO
                            t .5000E-01
 FALL VF| nrTTY flF SHL.m
                            S.OOOOF-0?
                                  B31

-------
                             RUND-LL-1
         CHNO J f JiiN.S
    H IN FT.   DH-lSUY IN GkArt PI- K  1C.   KY II* SUFI  PfcR  SPC.  Vf.L.  IN  FPS
                 •).           a.OOOOltOl   b.OOOOt + 01   i.OOOOE+02
          I Y      l
VK                3
KY                s.oooot-o^  5.oooot-o3  i.ooooe-ca
YIJ b.OOOOf+OlYw b.DOOOt + OlYK  1.0000F + Oi?H l.
L'A 0.         MO.
WASTi- MAlF^IAL UUMPtO INSTANIANHUUSLY IiMlLi Tut  Utfc'AN

Ihfc" SHAPF  OH  TliF CLdUU IS  A.SSUMhD TU lit
t,Hlu t'UIhl  bl/t   SIKfYI     1KF.Y?    3 Kf. Yi     1

HSK Tt'THA  TFCH SUGUt'STFfj  CUFFT 1C 1 1 N I S

IUNCK1     1.0000 OlNt;«2     1.0000
AL^HAO      .^^50 bh.TA     0.0000  CM    1.0000 CD      .5000
GAMA   .25  CDKAii 1.00 CFNIC  .010  CDS  .10 CD'* 1,00  ALPHAC      .0010
FHTCTN      .0100 Kl      .1000
ALFA1     1.0000 ALFA?     1.0000  T,AMA1    0.0000  GAMA2    0.0000
ALAMDA      .0010

Rb  5.0000h+00 KUU   l.OSOOEtOO  II   0 .          V   6.0000E-01 rt   0.
        K     1   L     1
Dt'NSlTY IjF  SOLID           2 .50 00f>00
CUMC6N1RATION
                            2.0000L-01
FALL VELOCITY OF SOLID
                                   B32

-------
                              RUN D-F-1

 AMBItNT CUMHTIUNS
DEPTH  IN FT.   OFNSITY  IN GRAM PER CC.   KY IN  SOFT PER  SEC.  VEL. IN FPS,
DEPTH             0.            4.0000Et01   6.0000E+01   1.0000E.+ 02
AMH-OENSiTr      I .ci^OE + OO   1.0230E+00   1.0231EtOO   1 . 0.      5  K F. Y 3     0

usr   U-TKA  IFCH s^G^FSitu  ccFFt-ICIE^TS

Dlr.'O 1     l.OfUjd  OIMI'.»2     1.0000
Al PHAD      .^ibO  riEIA     0.0000 CM     1.0000  CO      .5000
GA.-IA  ,,fS  C.I)HA(,  I.no fF^lt .010 CO3   . 1 «'>  C'i«  1.00  ALPHAC      .0010
FU'ICT:!      .0100  Fl      ,1000
ALF/'l     J.OooO  ftl.FAf.'     l.uoOO bAHAl     O.CUOO  f.A^A^     0.0000
A I Ai-IH A      .OHIO

'•'«   S.fiOr. Of >0'J  f^1111   1 • '''Si/01 +00 U   n.          V   6.0000fc-01  «  0.
        K     !   L      1
DtUSlT/  i/F S'H I'.1           1 ,0230k. tOO
CUNfK'. l ^A  i If1;,
                              o.
FA1.L VKI ' :i. J T Y  uF S"l  ID
                              0.
                                     B33

-------
                            RUN D-FS-l

 AMBIENT CONDITIONS
DEPTH IN FT,  DENSITY IN GRAM PER CC.  KY IN SOFT PER SEC,  VEL. IN FPS.
DEPTH           0.          2.0000E+01  4.0000E+01  l.OOOOE+02
AM8-DENSITY     1.0200E + 00  1.0200E+00  1.0300E+00  1.0350E400


YK               I.BOOOEfOl  2,2000Et01  3.BOOOE+01  4.2000E+01
KY               5.0000E-02  5,0000t-03  l.OOOOE-02

YU 2.0000E + OIYW 2. OOOOE-t-0 1 YE ^.OOOOE-fOlH l.OOOOE + 02
                0.
BARGE GPfcHATIQN 1

KASTE MATERIAL DUMPED INSTANTANEOUSLY INTO THE OCEAN

THF SHAPE OF THE CLOUD IS ASSUMED TO BE HEMISPHERE

TSTOP  3.6000E+03SEC,

GRID POINT SIZE   SI KEY1    1 KEY?    3 KEY3    1

USE TETRA TECH SUGGESTED COEFFICIENTS

DINCKi    1.0000 DINCR2    1.0000
ALPHAO     ,?350 BETA    o.oooo CM    i.oooo CD      ,5000
GAMA  .25 CDRAG 1,00 CFH1C ,010 CD3  ,10 CD4 1,00 ALPHAC      .0010
FRICTN     ,0100 Fl      ,1000
ALFA1     1.0000 ALFA2    1.0000 GAMA1    0.0000 GAMA2    0.0000
ALAMDA     .0010

RB  5.0000E+00 ROO   l.lOOOfctOO U  0,         V  l.OOOOE+00 W  0.
       K    1  L     1
DENSITY OF SOLID          l.OOOOE+00
CONCENTRATION
                          2.0000E-01
FALL VtLUCITY OK SOLID
                         -l.OOOOE-02
                                 B34

-------
                            RUN D-FS-2
 AMBIfcNT CONDITIONS
DEPTH IN FT.  DENSITY IN GRAM PER cc.  KY IN SOFT PER SEC.  VEL, IN FPS.
DEPTH           0.          2.0000E+01  4.0000E+01  l.OOOOE+02
AMB-DENSITY     1.0200E+00  1.0200EtOO  1.0300E+00  1.03bOh+00


YK               l.flOOOE+01  2.2000E+01  3.8000£tOi  4.2000E+01
KY               S.OOOOE-02  5,0000t-03  l.OOOOfc-02

YU 2.0000E+OIYH 2.0000E+01YE 4.0000fc+01H l.OOOOE+02
LIA l.OOOOE + OOWA 0.
BARGE OPERATION 1

HASTE MATERIAL DUMPED INSTANTANEOUSLY INTO THE OCEAN

THE SHAPE OF THE CLOUD is ASSUMED TO BE HEMISPHERE

TSTOP  2.0000E+03SfcC.

GHID POINT SIZE   bl KEY1    2 KEY2    3 KfcYJ     1

USF READ  IN  COEFFICIENTS

DINCR1    1.0000 DINCR2     1,0000
ALPHAO     .21^0 BETA     o.oooo  CM    i.oooo CD      .5000
GAMA   .25 CDRAG 1,00 CFKIC  .010  CD3   ,10 C[>4 1,00 ALPHAC      .0010
FWICTN     .0100 Fl      ,1000
ALFA1     1,0000 ALFA2     1,0000  GAMA1      .0200  GAMA2     0.0000
ALAMDA     ,0010

R6  5,OOOOE*00 ROU   1.1000E+00 U 0.         V   l.OOOOE+00  W   0.
       K     1  L     1
DENSITY  OF SOLID           l.OOOOE+00
CONCENTRATION
                           2.0000E-01
FALL VELOCITY  OF SOLID
                          -l.OOOOE-02
                                 B35

-------
                              RUN D-ZS-1
 AMBTFt"T  CONDITIONS
HFPTH IN  FT.   DENSITY IN f,PAM PF.R PC.   KY  TM SQFT PRR SRC.   VEl .  IN FPS.
                 o.           4.ooooE+oi   6.ooonF>oi  I.OOOOE+O?
                             t.O?.30F4-00   1
                                           5.5000F+01  fr.SOOQE-t-01
KY                5.0nnOF-n?  S.OOOOF-03   l.OOOnF-02

vii 3.ooooF4.niYw  a.nnooF + ni YF. S.IOOOE + OIM  i.ooooF + o?
114 t . OOf>nf*OOwA  0.
WfiSTF  ^iTFPUL  niJMPF.n TMSTiNTAMFOuSL V  I^TO IMF

THF SHAPE  OF  THF rL^IlD Tc ASSUMED  TO  BF

TSTOP   1 .OOOOF + O'iSF.C.

aRin PrilMT ST?F   S1  KFY1    ? KfY?

IJSF PEAH  TN C
           i.oonn DIMCP?    i. oooo
            .(^so BFT4    o.onno  r.«
G4'-'A   ,?S  rrjHAU 1.00 CFPTC .OtO  CD3   .10 CHU 1.00 41.PHAC      .0050
F (-• T C T M      . M n o F i     .1000
AI.FA1     1.00^0 ALF4?    1.0000
            .0010
RP   s.oonoF + no won  i.t?ooF + oo  u   o.          v  I.OOOOF + OO  **   o.
        K     ?  I     1
PENSITY  CF  SHI.JO          
-------
 AM8IFMT
nfPTH TM FT.
DEPTH
                                  SUN J-L-I
     DENSITY JM RRAM PF.R CC.   KY  IN SOFT PFR SFC.  VFL.
       0.           U.OOOOF+OJ   6.0000F+ni  l.OOOOEfO?
                   i.o?30E+oo   i.o?aoF+oo  1.0240E+00
                                                                      FPS,
VK
KY

YU S.
i.l A 0 .
        3.5000F+01
                                          5.5000E+01   6.5000F. + 0
                              5.0000F-03  l.OOOOE-02
                                          l.OOOOF + 0??
      npffR«TION  2
        ne  TKPnucM 4 NOZZLF UMOFP A

TSTllP   1 .OOOOF-fOUSKC.

     POJMT  SIZF    =>! KFYJ    ). KFY?

    TFTRA  TFO  SUfir.FPTFP COFFF T r 1 EM

'•>r»iCRl
                                           RARGF
                                        ? KFY3
A |_ F A 1
4 I. 4 M r* A
 l.onno OI
  ..1806  ALPHA?
       l.iiO CFPJC
I . n n n o & L F A ?
  . 0 0 t 1
                            1.0000
                                     HFTA     O.nooo  C r>    t.3000
                                 CD3  .20 CH«  ?.on  ALPH43     .3536
                             .0100 Ft     .1000  CM     1.0000
                          1,0000 R A c. A i    0.0000
.TFT RADIUS
VFLOTJTY
       K
   1
                I.
        .sooo  DENSITY     1,3000  ANGI.F OF JFT
          AT   1f>,0000  FT.
            1
                                                             o.oonn
PALL VP.I. TCTTY  op  s^i. in    ^
PAPGH VFIOC7TY    7.5000 ANT-LE WITH X-AXIS   ISO.nOOP OFGRFF.S F'lRS . OQIOF + n?  SF.C,
        i'F  SOI 70
      0
    7.SOOC1
   - n . o n p i
   Yl..:
                 FHQ t MI;. VI MR C(inRDINATF  FIXfD  ON THF
                     Y*      YF      »
                            7.5^00  7.5000
                    o.nnno -o.oooo - o . o n o o
                                     B37

-------
                               RUN J-L-2
      'T C(in TIT TOMS
      IN FT.  PF'iSnY  I K:  G&AM PJ-R CC.  KY  IN  SOFT PF.P SEC.   VEI .  TN FPS.
 E ° T -<            a.           y. nooo F + 01   *> . 0 n 0 0 F. + n l   t.ooooF+02
                 i ,i
                             1 .
                                                      I .
YK
"Y

YH s.
i ' 4 n .
                              «.500nE+ol   S.^noiF+n i
                              S.^nonp-oS   1 . '• oo^F.-n?

                            F: 1.0000F + n2H  l.onooF + o?
                   A K:077LF. UMREW  A

TSTOP   1 .OO^-I^ + O'JSFC.

r,Rin onT\'T  si?F    51  KFYI     i KEY?     ?

USf TFT-iA TFCH  SUGQKSTFO C'lFFFTCIFN'TS

nr^'C^i    i.oooo  oi NCR?    i.o^oo
ALPHA)   '   .0806   ALPHA?      .^S^6   RFT\
G/SMA  .?S CO«AG  1.00  CFRIC .010 CD?   .20
ALf^AU      .0010  FP1C1N      .0100 Fl
4LFA1    1.0000  ALF4^    1.0000 GA'-'A]
            .0010
FALL VELOCITY  OF  S^H. in    S.OOOOE-0?
CIARGF VFLOCITY     y.sooo AK>GLF. WITH X-AXIS  iso.oooo OFGRKES  FnR5.noooE + o? SEC,

AMHTFUT riiffpNT  F0« A MOVING COQROINATF  FIXfO ON THE
     0       Ylf       YW      YE      w
   7. SO on   7.S010           7.5001  7.SOOO
                    O.OOOn -0.0000  -0.0000
                                              0.0000 Cr:     1.3000
                                               2.00 ALPHA?
                                           . 1 0 n 0 C^    1.0000
                                           0.0000 GAMA?     0.0000
JFT RADIUS       .SOOO  OR'-i?ITY     1.3000   ANGLF. flF .TRT     0.00^0
VFI.OCTTY     5.0000  4T   10.0000 FT.
       K     1   L     1
nfrSITY OF  Sfllln           ?.5000F.+ C'0
                                   B38

-------
                               RUN J-L-3

 AM8IENT CONDITIONS
DEPTH IN FT,  DENSITY IN GRAM PtR CC,  KY IN SOFT PER SEC,  VEL, IN FPS,
DEPTH           0.          4,OOOOE+01  6.0000E+01  l.OOOOE+02
AMB-DENSITY     1.0230E+00  1.0250E+00  1.0231E+00  1.0231E+00


YK               3,5000F.tOi  4.5000E+01  5.5000E+01  6.5000E+01
KY               5.0000t-02  5.0000E-03  l.OOOOt-02

YU 5.0000E+01YW b,OOOOE+01YE 1.0000E+02H l.OOOOE+02
UA 0.        WA 0.
BARGF OPERATION 2
01SCHARGF THROUGH A NOZZLE UNDER A MOVING BARGE

TSTUP  l.OOOOE + OySP.C.

GRID POINT SIZE   51 KtYl    1 KEY2    2 KEY3    0

USE TETRA TECH SUGGESTED COEFFICIENTS

DINCR1    1.0000 DINCR2    1.0000
ALPHA1     ,0806  ALPHA2     .3536  BETA    0,0000 CD    1.3000
GAMA  ,2b CORAG 1,00 CFHIC .010 CD5  ,20 CD« ?,00 ALPHA3     ,3b36
ALPHAS     .0010 FRICTN     .0100 Fl     .1000 CM    1.0000
ALFA1    1.0000 ALFA2    1.0000 GAMAJ    0,0000 GAHA2    0.0000
ALAMDA     .0010

JET RADIUS       .5000  DENSITY    1.3000  ANGLE OF JET    0.0000
VELOCITY    s.oooo AT   10.0000 FT.
       K    1  L    1
DENSITY OH SOLID          2.5000E+00
CONCENTRATION             2.0000E-01
FALL VELOCITY OF SOLID    5.0000E-02
BARGE VELOCITY    7,5000 ANGLE WITH X-AXIS  180,0000 DEGREES fDH5,OOOOEt02 SEC.

AMBIENT CURRENT FOR A MOVING COORDINATE FIXED ON THE HARGt
     0      YU      YW      YE      H
   7.5000  7,5000          7.5000  7,5000
   -0.0000          0,0000 -0,0000 -0,0000
                                   B39

-------
DFPTH IN' FT.
C-EPTH
                               RUN J-L-4
              OFMSTTY  IN  RRAM PER CC.  KY IM  SOFT  P£R  SEC.   VEl.. Jw FPS,
                o.           'j.ooooF. + oi  6.ooooF+nt   i.ooooF+02
                1.0230F+00   1.0230F+PO  t
VK
                  3.500PF. + 01   /I.5000F + OI  5.50PPK+01   6.5000E+01
                  5.oocPE-o2   s.ooooE-03  l.ooooE-c?
YD s.ooooE+oiYy  S.ooooF+o i YE
i.t A 1 . n n o ft c + 0 'H. 4  n .
                                          l.poooE + n?
        P THPllur-H  a  t:n?Zl.E  UNDER 4 MrvtMG
fi L P H A a
A L c A 1
     pnir.'T SfZE    M  KFY]     i  KEY?    2 KPY3

          TFCH SUGGESTED C HFFF 1C IEMS
          1.0000  njMrP?     1.0000
            .OP.rift   ALPHA?      .3S36  HFTA     O.OOin  CO    1.3000
          CPPftG  1.oo  TFPTC .010 CD3   .20 COU  ?.00  ALPHAS     .3536
            . (i 0 1 n  F c J f T v      . 0 1 0 0 p 1      . 1 P 0 0  C '•'     1.0000
          1,0000  i\ L F fi ?     1.0000 GA"A1    0.0000  RA-A2    0.0000
            .0010
.'FT HADIUS       .sooo  HF^STTY     i.soon   ANGLE np JET
vnnrrTY     s.ooofi AT   in. oono FT.
                     1
        K     11.
PFMPTTY rr  RPLIO
                           ?.SoooF*no
      vrirrjTY
       VFLOTITY
     FM  ri.iRRF.vT
      0       YD
   P. SO O1"'   ?
  - f) . 0 6 0 f-
                                                             o.oooo
                  si a in    S.OOOOF-O?
                   7.^000 A">'GLF WITH X-A^IS   180,00nn DEGREES FPS)5 . 0 0 noF + 0 2  SEC,

                  'ltJ  A MOVTMT, Cnn^nTMATF  F I V F P>  PU THE
                     Y'-f      YE      H
                            7.SOOO  7.SOO"
                    0 . Q o 0 0 -0.0000 -0.0000
                                    B40

-------
                                RUN J-L-5
     ip>. T rrt>:ri T T T^Mt;
       TM FT.   np^PTTY  TM T.PAM  opo r f .   XV  T »>  S'""'PT  OF" ?Ff. .   VFl.  Tkl
<•> F r- T P             n .            /4 . A r. ft n F + n 1  A.npprF*l1   l.ftftOOF. + ft?
       "c.TTv      t . ipinF^n   1 . /v Ti F + 1 p.  t ,r>?urF +no   I . HP/IPF* on
                            .n 1   a . s nnoF + n 1
Hi  j , o f> n « F + n o t: A i.
°APf:r  nppr.- 1. y { n»i p
            T|JOr,i,r.u  ^  V077| F
T?THP   i^

r.STP  PPTVT  ST7F    SI  KFY1     1  KFY?     j> K F Y "?

M.cc  7FTPA TFr^J Slirr.p             P
                               -LP wTTH X-AVTC   jpo.p-ftnn r.FrroFFS FOP*;. rr.ooF-t-n?  ?FC.

                                              p T Y F ^ Ofi  TWF
                                      B41

-------
                                RUN J-S-1
 AMRIfcNT  rr-J'ITT Ilj'.S
OFPT><  IN  FT.  HKMSfTY TN fiPiM  P£P CC.   *Y  1 1>  SOFT  PFP  SEC.  VFI. .  TM  FPS.
                  o.            U.OOOOF+OI   h.^nooF+ni   I.OOOOF+O?
YK
•^Y                 S.OOOdF-0?   S.QiOOE-O^
    A M r p  T(."^nijGr(  A  ST771 F I'Nirif.rf 4 KnvIMG  i*
    : pi ] > T  ST 7f    si  KPYI     1  Ki-Y2     P  KKY3    0

    TFIPA  TFC^ 5ur,r-FSTPn CnFFFIC TEMS
Al,PHA1      .0^06   ALPHA?      ."5S"!,6  SFTA     0.0000  TO     1 . T, fi fl 0
            .0010  ForrTf»      .OlrtO Fl      .1000 C''     1.0000
AI^A)     1,0^00  AI.FA?    i.nooo  GA^AI     o.ooon GA^A,?     o.onoo
4 L !•• * r1 A      . n o j n
.'FT RADIUS        .SOOO  HF^SITY     1.1205   AMGLF. '"'F JF.T     p.onno
VFlHTTTY     S.O^PO  AT    10.^000  FT.
        '     11.     1
         f-F  f-r-Lir.-           l.«QOOt>oO
FAI.L  VFI/TTTY nc  SOLIO    S.noooe-03
  Pr.F  VFIPCITY     7.5ono ANGLE  *TTU X-AXIS   i K.I, noon  HF.GPFFS FORs.ooooF + ns SF.C,
       T  rf'PFN'T  FO^  i >-:OVIN!G  COMKO I N A TE  FTXFO ill., THF  PAPGF.
      fj       Y|i       Yw       YF       H
   7.^000  7.^000           7 . S n 0 0  7. SO 00
  -0.00 Of-           O.OnOO -n.1000 -0.0000
                                    B42

-------
DEPTH JM FT.

n-PTH
                            KUN j-s-2
              T Tn»c;

              OFMSITY  IN  GPAM  PF.tf CC.  KY I N SnFT  Pf1?  SFf.   VEl. Il>: FPS,
                0.           '4.0000F + 01   6.0000E+01   l.OOOOE+02
'Y


YU 5.
"40.
                          ni   a.SOOOE + ni  5.
                 S.OTIOF.-O?   S.O^OnE-^S  t.OOfiriK-02
                                           l.OOOOE + 0?
            i Y'V 5 . no 0 »P + n ] YF  l.OOOOF.
             A' 4 0 .
       1 .
r, R T n  P n I v T  S T 7 E
                                  4 MPVJNG PAPT,F
                              1KEYS
                                        ?KFY3
           i.nnoo O!\T
r,A-'A   .?s  CD^AP i.oo
ALPHA/I      .0010 Fwtc
ALFAI     1.0000 ALFA2
            .0010
-J^1 RADIUS       .soon
VELOCITY    ^.oooo  AT
       K    1   l_     t
OF^SITY PF  SOI. TO
      VFI^CTTY
       VFLHCITv
                            i.oono
                              .JS56  «FTA     n.nooo  CD     \.
                          C  .OM cn^  .20 cou  ?,on  ALPHAS
                             .0100 PI     ,iooc  c>-     i.oooo
                          l.oooo GA^AI    0.0^01  RAMA^     o.
                         nh'-'ST.TY  .   1.t?no
                         10.0100  FT.

                            l.«OOOF + 00
                                                   OF  JFT
A",PTFMT

      0
  -o.o
             YU
                   7.500ft A'T^LE  «'ITH X-AVTS  16(1.00^0 PFC-PFFS


                 F(i-" A M-nviMU  COOPOTNATE F1XFO OH THF P
                     Y"f       YE.       W
                             ^ . 5 0 o o   7.S010
                    o.oooo  -o.f>ooo  -o.oooo
                                                                   . 0 0 0 OF + 02  SEC.
                                B43

-------
                               RUN J-S-3
 AM (4 IE. NT  CtMHTI'iNS
ffepTh IN  FT.  IJK-JSITY  JK OAM  PER cc.  KY  TC.  SUM PE»  SEC.   VEL.  IM  FPS.
DEPTH            0.           4.000'JttOl  6.0000E+01   i.OOOOE+02
AMH-TEMSJIY     1.0230E+00  1.0230F+00  1.02ME. + 00   1.0231E+00


YK                 3.SOOOE+01  y.SOOOE+01  S.5000E+01  6.5000E*01
KY                 lj.OOOOF-0?  b.OOOOE-OJ  l.OOOOt-02

YU 5.UOUUE + 01 YH S.OOOut + OlYF l.OOOOttfliJH I.on00tt02
LI A 0 .         K A 0 .
BAkfaK  I PEKil Il'li-l r'
           iHUfiljGH  A  MJ^LF UNOEW  A MOVING
1ST UP   1.0000KtC4SFC.

GhlU HdlM  SI2R:    S)  KfYl     1  Kfct2    .5

ust ILIWA  TECH SUGGESTED rdrFur.itf'is

I>1NCH1     1,0000  UJNCH?     I.OOUO
ALPHAl      .uHOb   ALPHA2      .3S36  HtU     0.0000 CD     1.3000
fiAMA   ,'eLb.  COriAG  l.'*0  C^hlt:  .010  CU3  .^0
ALPnA A      .0010

Jti f-At'U.-.s         .boon   IJF^SITY     i.i?oo   ANGLE I.IF- JET     o.oooo
VFLtJCHY     b.0<>00  A I    lO.OuOO  KT.
        K     11.     1
HfKSirr  C'f  SfJL]0           1.HOOOF. + 00
CDNCf-Ml^Al HJN              l.bOUOE-01
FALL V'Hi'C.11Y nF  Sill ID     b'.OOOOF-OS
       VFl.OCllY     V.bOuO Ai-,r,i.r.  v-JTh x-AXJS   160.0000  Dtlil-FFS  t- L'^S . OOOOF •» 0
-------
                           RUN j-s-4
 AMBIENT CONDITIONS
DEPTH  IN FT.  DENSITY  IN GRAM  PER CC.  KY  JN SOFT PER SfcC.  VfcL. IN FPS.
DEPTH            0.          U.OOOOE+01  6.0000E+01   l.OOOOE+02
AMB-DENSITY      1.0230E>00  1.0230E+00  1.0230F+00   1.0230E+00


YK               3.SOOOF+01  4.5000E+01  5.5000E+01  6.5000E»01
KY               5.0000E-02  5.0000E-03  l.OOOOE-02

.YU 5.0000E+01YW  b,OOOOE + 01 YE 1.0000E+02H l.OOOOE+02
UA 0.        WA  0.
BARGE UPERATIUN  2
DISCHARGE  THROUGH  A  NOZZLE  UNDER  A MOVING BARGE

TSTOP   1.0000E+04SEC.

GRID POINT  SIZE    51 KEU     I  KEY2    2 KEY3    0

USE  TETRA  TECH  SUGGESTED  COEFFICIENTS

DINCR1     1,0000 DINCR2     1.0000
ALPHA1      .0806  ALPHA2      .3536   BETA    0.0000 CO     1.3000
GAMA   ,2b  CDRAG  1.00 CFRIC  ,010 CD3   .20 CD4 2.00 ALPHA3      .3536
ALPHAS      .0010 FRICTN      .0100 Fl     .1000 CM    1.0000
ALFAI     i.oooo  ALFA2     i.oooo GAMAI    0,0000  GAMA2     o.oooo
ALAHDA      .0010

JET  RADIUS       ,5000  DENSITY    1,1200   ANGLE OF JET    0.0000
VELOCITY     b.OOOO  AT   10,0000 FT.
        K     I   L    1
DENSITY OF  SOLID          1 ,8000E + 00
CONCENTRATION              1.5000E-01
I-ALL VELOCITY OF SOLID     S.OOOOE-OS
BARGE  VELOCITY     7,5000  ANGLE  WITH  X-AXIS  180,0000 DEGREES  FURS,OOOOE+02 SEC.

AMBIENT CURRENT  FOR  A  MOVING  COORDINATE FIXED ON THE BARGE
     0       YU       YW       YE       H
    7,5000   7.5000           7,5000  7.5000
   -0.0000           0,0000 -0,0000 -0.0000
                               B45

-------
                             RUN j-s-s
      TNj FT.   DFWSITY  TK! GRAM PER C. C .  KY  IN  SOF T  PFP SEC.  VEL. I *•' FPS,
                 0.           U.OOOOF+OI  6.oonoE+oi   i.onooF+os
      '"SITY      i.n?30F+no   i.o?30f+oo  i .
YU S.
"'A l  .
                  S.nnnnE-n?  5.nnoof-oJ
             i YW
                 o .
                              i.oonnp+o?H  l.onnnp. + n?
                                  A MOV IMC-  °-4PGF.
GRID pniri ?i7F    st  KFYI     i  KF.Y?

n$F TFTR4 TFC4  S'JRRESTF.D rnFFFICIE^

          i.nooo  OTNT.P?    1.0000
                                     ^fc"T4     n.oooo  rn    1.3000
                 1.00 CFRir .010 CDS   .?0  COU  2.00  ALPHA}     .3536
AI.PHAU      .nnio  F«ICT*I     .0100 Ft      .jonn  C1-1.     1.0000
it.FAJ     t.OOni  4 (. c A ?    1.0000 G A * A 1     0.0000  RAMA?    0.0000
& I.. A * fi A      .0010
'FT RADIUS       .^ooo   DENSITY    I.IPOO
VEI.nr.ITv    S.OOOrt  AT    10.0000 FT.
       y.    11.     1
r.f'SITY rp SCLIO           l.BO'JOF. + OO
                                                   OF JFT
                                                             n.ooon
FAI.i. VFi.PCITY  OF  SOLIO    ^.OOOOE-03
OAT.F Vp|.nriTv     T.sboo A^GLF WITH V-AXIS   i^o.ooon OFGRFES Fnos.nnn'oF. + oa

AMRJFMT CU^RF.k'T  FH-> A MOVJMG COORDINATE  FIVFD  HM THE PAf^RF
     0       YU       YW      YE      M
   A.S^O.I   ft.sooo           7.soor>  y.sooo
  - o . o n o •"           o.onno -o.ooo" -o.oooo
                                  B46

-------
                              RUN j-s-6
 AMiTFM (.OMJ t I ili'iS
      JN Fl.   DFMSUY JN  UWAM PHW CC.  M  I* SUH l  PFK  Sfcf. .   vtl. IN
                 0.           '4.0000F + 01   6.GOOOF+01   1.0UOOF. + 0?
      '^S 11 V      1 .
YK
KY
YH S.DOOnr+01 Yrt
U A 1 . 0 C1 0 0 b + U 0 Vi A ! . 0 0 0 0 f + 0 0
                                            S'.bOOOCtOl  6.5000t+OI
                               5.i)«oot-0.i   l

                               1 .OOI)Ott02H  1.00oOfc>02
      OPfrlVAT I(H«I 2
           IHRlUJGH A
                                   A MlwTNli

1HTIJP   1 .bOOOH tOaStC.

GrtJO PlilNt  SIZE   SI KFY1     i  KtYc;     .5  KFY3

USf  TFlkA  TtCri  SUGGt S I t.O  (Ml I- f l(. I (• MS
ALPHAl
      ,?'
AlPHA«
           i.oooo OJNCK?
            .OHOf)  ALPHAS
           CiJKAb i.ou CFK
            .0010 K^ICTN
                             i.ouoo
                               ,3b5h   Rb.fA     0 . 0 0 0 0  CO     1.3000
                             .010 CDi   .<^o  COa ^.00 ALPHAS
                              .Oltin (• 1      . lOOu CM     l.OODU
ALF'Al     1.0000 ALFA2
ALAMDA      .0010
                           1.0000 GAUAJ
                                            0.0000 (,AMA0
COMCtNT^Ant:^              1.5000t-01
FALL  VF.L{lCITy OF SOLID     b.OOOOt-03
BAKUK  vhl.nr.ITY    7. bOOt) AM(,LE WITH  X-AX]S  IbO.OOOO DEGKFfcS F URb . 00 0 OF. + 02 SEC.

AUblFNT  CURKF.wr FUK  A ML'VINif, COI.lHD I NA T R  HXfcO UN  FHF  BAKGL
      0       YU       VW       YE       H
   8. SOOO   B.bOOO           7.bOOQ   7.SOOO
  - 0 . U 0 0 0           1.0000 -0,0000  -0.0000
                                   B47

-------
                             RUN J-S-7

         CONDITIONS
OEPTH IN FT.  DENSITY IN GRAM PF.H CC.  KY IN SOFT PFR SEC.  VEL. IN FPS,
DEPTH           0.          U.OOOOF+01  6.0000E+01  t.OOOOE+02
AMB-DENSITY     1.0P30E+00  1.0230F*00  1.0235F+00  1.0335E+00


YK               3.5000E+01  «.5000F+0)  5.5000E+01  6.5000F+01
KY               5.0000E-02  5.0000E-03  l.OOOOE-02

YU 5.0000E+01YW 5.0000F + 01YE l.onooE + 02H l.noOOF + 0?
HA 0,        WA 0.
BARGE OPERATION 2
          THROUGH A N07ZI F UNDER A MOVING BARGE
TSTOP  l

GRID PRINT SIZE   51 KFY1    1 KEY?    2 KEY3    0

USE TETRA TFCH SUGGESTFD COEFFICIENTS

OINCP.1    1.0000 DINCR2    1.0000
ALPHAI     .0806  ALPHA?     .3536  BFTA    o.oooo co
RAMA  ,?5 CDRAG 1.00 CFRIC .010 C03  .20 CD/4 2.00 ALPHAS     .3S36
ALPHA«     .0010 FRICTN     .0100 Fl     .1000 CM    1,0000
ALFA1    1.0000 ALFA2    1.0000 GAMA1    0.0000 GAMA2    0.0000
ALAHHA     ,0010

JET RADIUS      1,0000  DENSITY    1.1200  ANGLE OF JET    0.0000
VELOCITY    5.0000 AT   10.0000 FT.
       K    1   L    1
DENSITY PF SOLID          1.8000F+00
CONCENTRATION             1.5000E-01
FALL VELOCITY OF SOLID    5.0000E-03
BARGF VELOCITY    7.5000 ANGLE WITH X-AXIS  iso.oooo DFGRFES FrjRs.ooooE+o? SEC.

AMRIENT CURRENT FOR A MOVING COORDINATE FIXED ON THE 8ARGE
     0      YU      YU      YF      H
   7.5000  7.5000          7.5000  7.SOOO
  -0.0000          0.0000 -0,0000 -0.0000
                                B48

-------
                             RUN j-s-a
 AMBIENT rONOTTiniMS
OFPTM IM FT.  OFNSTTY  IM  GRAM  PKP  CC.   KY IN SOFT Pf» SfC.  VFL.  TM
OFPTH           n.           u,oooor+oi   h.oooo£+oi  I.OOOOF. + O?
AMR-OENSTTY     l
YK               3.5000F+01   «.5onnE+ot   5.5onoF+oi
KY               s.nnoor-n?   S.oonnf-03   i.nnnnf-n?

YD S.OOOOF + OIYW 5 . n none •»• o 1 YF  i.nnont + o?H i.onoOF + o?
I.'A 0.        WA 0.
FJARGF
PISCH4KGF THROUGH  A  NOZ7LF  UNOER  A MOV] MR PAPRE
TSTOP  1 .OOOOE-f

RRTH POINT SIZF   61  KFY]     1  KFY?    2 KF.V5

iiSF TFTHA TECH SUBRFSTFO  CHFFF T
          1.0000 OINCR2     1.0000
ALPHA1      .0806   ALPHA?      .T53A  RFTA    0.0000 CO     t.3000
GA^A  .?S COHAG 1.00  CFRIC  .010 CD3  ,?0 Cr>U 2.00 ALPHA3      ,3536
ALPHAa      .0010 FPICTN      .0100 Fl      .1000 CM    1.0000
ALFA1    i.oooo ALF-A?    1.0000 GAMAI    o.oooo GAMA?     o.oooo
ALAMDA      .0010

JET RADIUS       .SOOO   DENSITY    1.1POO  ANGLE OF JFT     0.0000
VELOCITY    10.0000  AT   10.0000 FT.
       K     1  L     1
DENSITY PF  SOLID           l.flOOOF+00
CONCENTRATION              l.SOOOF-01
FALI  VFLHCTTY Of SOLID     S.OOOOF-0?
RAPGF Vfl nr.ITY     7.5000  ANGLF WITH X-AXTS  180.0000 DECPtFS  FDRS. OOOOE +0? SFC,
         CURRENT  FOP  &  ^(.IVTwy C'JDRfJlNATF HXFO ON THF
     0       YD       YW      YF      H
   7.5000   7.SOOO           7.5000  7.5000
  -0.0000           0.0000 -0.0000 -0.0000
                                  B49

-------
                            RUN j-s-9
 AMBIFNT CPNOITinNS
DEPTH IN FT.  DENSITY  IN GRAM  PER  CC.   KY  IM  SQFT  PER SFC .  VEL. IN FPS.
OF.PTH           0.          «.OOOOF>01   6.0000F + 01   l.OOOOF+02
AMR.pF.NSI TV     ! ,n?30£->00  1.02TOF+00   1.023SF+00   l
YK
KY

YU 5,
UA 0.
                                          5.soooE+ot
                 S.OOOOF-n?   "5.0000F-03   l.OOOOF-02
                          i Ye.  i.nonoe+o?H j.noooE+o?
             WA 0
PAPGK PPF. RATION ?
          THRHIIGH A NCZZLF.
                                  A  MOVING
TSTHP  1 ,0000£4-0«SFr.

GRID PPIKiT STZt   51 KEY1

USF TFTRA Tfc'CH SUG^ESTFD
                              1  KEY?
                                        ?  KFYT
ALPHA1
          i.onno
           .0806  ALPHAS
                            i.oooo
                                     RFTA
                                             0.0000 CH
GA"A  ,?5 CO«AG 1.00 CFRIC  ,010  Cf>3   ,?0  COO  2.00  ALPHAS
ALPHA4     .0010 FRICTN      .0100  Ft      ,1000  CM     1.0000
ALFAI    i.oooo ALFA?     i.oooo  GA^AI     o.oooo RAMA?    o.oooo
Al AMOA
           .0010
.JFT RADIUS       .SOOO  DFNSITY     1.1200
veinrnv    s.oooo AT   20.0000  FT.
       K    i  L     i
nFNSTTY OF SOLID           l.flOOOEtOO
rONCFNTRATinN              1.5000F-0!
FAIL VULHCTTY OF SOI  ID     S.OOOOE-03
HARGF VFLOriTY
                  7.SOOO AK'GLF.
AMBIFNT CURRENT FOR A MOVTMT,  COnPRTNATE
     0      YD      YK      YF       H
   7. SOOO  7.SOOO          7,5000   7.5000
  -0.0000          0.0000 -0.0000  -0.0000
                                                  OF  .JTT
                                                            0.0000
                                     X-AXIS  IBO.nflOO 0EKHFFS FHRS . 00 0 OF + 02 SfcC,

                                               ON ?HF. BARGE
                                B50

-------
                             SUN j-s-io
 AMBIENT CONDITIONS
DEPTH IN FT.  DENSITY IN GRAM PER CC.   KY  IN  SQFT  PER  SFC.   VEL.  IN FPS.
DEPTH           0.           a.OOOOE+01   6.0000E+01   l.OOOOF+0?
AMR-DENSITY     1.0P30E+00   1.0230F+00   1.0235E+00   1.0235E+00


YK               3.5000E+01  4.5000E+01  S.SOOOF+Ol   6.SOOOF+01
KY               5.0000E-02  5.0000F-03   l.OOOOF-02

YU 5.0000E+01YW 5.0000F. + 01 YE 1.0000E+02H l.OOOOE + 0?
IJA o.        WA o.
BARGF OPFRATION 2
DISCHARGE THROUGH A Nn?ZlF.  UNOFR  A  MHVING  RARGE

TSTOP  1 .OOOOFfOUSEC.

GRTD POINT SIZE   SI KFY1     1  K£Y2     ? KFY3

USF TFTRA TFCH SUGGESTED  COEFFICIENTS
          1.0000 DTNTR2     1.0000
ALPHA t     ,0806   ALPHA2      ,353ft   BETA     0,0000 CD    1.3000
GAMA  ,?S CDRAG  1,00  CFRIC  ,OJO  CO}  ,20  CD4 ?,00 ALPHA3     ,3"536
ALPHAS     .0010 FRICTN      .0100  M      .1000 CM    1.0000
AtFAl    1.0000  AI.FA2    t.OOOO  GAMA1     0,0000 GAMA2    0.0000
Al AMDA     .0010

JET  RADIUS        .SOOO   HEMSITY     1.1?00  ANRI.F OF JET    0.0000
VEinciTY    5.0000  AT   10.0000  FT.
       K    1  L     1
DEMSTTY np SGI.ID           i.floooE+oo
rONCFNTRATTON              1.5000E-01
FALL Vtl.rCTTY  OF  S'lLTD     5.0000E-03
BARGE VELOCITY     S.OOdO  AMGLF WITH X-AXIS  180,0000 DFGWEES FH»S . ^OOOf+02 SfcC,

AMPJFNT fliRRENT  FQP 4 MOVING C'lnRDTNATF FI*Fn ON THF HARGF
     0      YD       Yw       YE      H
   5.0000  5.0000           S.OOOO   5.0000
  -o.oooo           n.onoo -O.OOPO  -o.oooo
                                B51

-------
                             RUN j-s-ii
 AMHIfcNT CONDITIONS
DEPTH  1H M.   fJF'ojSUY  I'M GUAM PfR Cti.  Kr  IN SUM  PKk  SFl.   vtL. IM F'HS.
DtPTH            0.           4.0COOF+01  6.0000t*-u!   1 . OOOOt + 1)2
AMR-DF.NSJTY      l.o230EtOO  1.02.SOF + OQ  1 . 0255F + 00   1.0235MUO


YK                3.500oe+ni   U.bOOGb + 'il   b.5000k+OI   h.SOOOfc + 01
KY                b.OOOUt-02   b.OOOOL-Oi   l.OOOOt-02
YU S.OOOnt+OlYK  S.OOOOK + 01 YF  1.0000L+02H l,OOOOt
U A 0 .         w A  0 .
bAKGE uPF RATION  ^
DISCHAKGb  IHKOUGM  A  MJ/iJLt'  UMDfcH A hUVIN'i liAKlit
mop  i .oooob

f,RJU PfilMT SIZt    SI  KFY1     1  KEY?    i5 KEY3

DSf: ItTHA ItCh SUG'ifcSIEU
           1,0000  DINCK?     1.0000
ALPhAl     .0806   ALPHAS      .3536  BETA    0.0000 CO     1.3000
GAMA  ,2b  (.DKAG  l.ou  Cf-KIC  .010 CD3  .20 GDI 2.00 AI.PHA3      ,3S'i6
ALPHAS     .0010  F-KKIN      .0100 Fl     .1000 CM     i.oooo
ALFAl    1.0000  ALKA^    1.0000 GAMA1    0.0000 GAMAr>     0.0000
ALAMUA     .0010

JE1 RADIUS        .bOOO   DENSITY    1.1200  ANGLT OF  JfT    aS.OOOO
VELOCITY    ^.0000  AI    10.0000 FT.
       K    1  L     1
DENSITY OF SOLID           I.fl000t>00
CUNCFMRATIGN              1.5000F-01
I-ALL VELOCITY UF  SML10     b.OOOOE-Oi
BAKGF. VELOCITY     5.0000  ANGLE WITH X-AXIS  iso.oooo  OEGKEES  FURG.OOOOE+O^ stc,

AMPIENT CURHtfil  FOH  A MOVllMf,  COOKOINATE FIXED UN THE  RANGE
     0      YU       Y*       YF      H
   S.OOOO  b.OOOO           5.0000  b.OOOO
  •0.0000           0.0000  -0.0000 -0.0000
                                  B52

-------
                             RUN J-S-12
      .T (.bNDl I IIIIMJ
DfPTn 1M KT.   DE^SIIY  IN KKAM PER CC.  KY  IN  SMM  Pfr.K Sfc C .   VEL . 1 M FPS.
otPTh            o.           ^.Doooe to i  b.oonor +01   i . oooot. + o^
AMb-|)FNSITY      1.U230E+HO  1.0250E+HO  I.0231E+00   l.023l£ti>0
                                                           1

Y K                i . 5 0 <> 0 K + 0 1   a . S 0 0 0 f. + 0 1   b . S 0 0 0 1 + 0 1   6 . b u 0 0 E + 0 1
KY                S.()()OflF.-Oc>   5.000ut-03   l.OOOOt-02
YU b.OOOOE + DlY«  S.'-iUliOF + Ol YF 1.0000£ + Oi>H  1 .OOOOL + ii^
L'A 0.         WA  0.
BARGF UPFKATIUN  ^
UlSChAKtiE THKIlUGH  A  MUZ2LF UNDER A MDVlMi;  BARGE

1S1DH  I .OOOOK + 04SLC.

GRID PLUM SIZE    bl  KhYl     1 Kf.Y?    2 KFY5

USE TfcfRA ThCH SUUGtSitU IHKKI- R I EM -S
           1.0000  OINCHi?    i.OOOO
AI.PHA1      ,0fl06   ALPHAS     .%S36  BF1A     0.0000 CD    1.3000
RAMA  ,2S  CURAG  l.ou  CFKIC .010 COi   .20  C0«  2.00 AI.PHM     ,3S"46
ALPHAS      .0010  FWICTN     .0100 f- 1      .1000  CM    1.0000
ALFA1    1.0000  ALFA2    1.0000 GAHA1     U.OOOO GAMA?    0.0000
            .0010
JEl RADIUS        .5000  Ofc'MSITY     1.1POO   ANGLE OF Jfc I     0.0000
VELOCITY     b.OOOO  AT    10.0000 FT.
       K     1   L     1
DENSITY OF  SOLID           1.8000F+00
CCiNCFNTRATICiN              1.5000E-01
FALL VELOCITY  Oh  SOLID    5.0000E-03
PARGF VFLnciTY     /.SOOO AwULE ^ITH X-AXIS   180.0000 OFGHEtS FOK5 . OOOOE+02 SEC.

     NT CURRENT FUR A  MLIVJNG COdHDINATE  HXFO ON THE BARGE
     0       Yll       Yh      YF      h
   7. SOOO   7.bOOO          7.5000   7.5000
  -0.0000           0.0000 -0.0000  -0.0000
                                 B53

-------
                              RUN J-F-I
  AMBIENT CONDITIONS
 DEPTH  IN FT.  DENSITY  IN  GRAM PER CC.   KY  IN  SUM PfcH SFC.   vtL.  IN FPS.
 DEPTH            0.           «.OOOOE+01   6.000CF. + (J|  1.0000F. + 02
 AMB-DENSITY     1.0230E+00   1.02.30E+00   1.0? 1   6 .50 OuEtO 1
 KY                5.0000E-02   S.OOOOfc-03  1.0000t-0,f
YU  5.0000t + OlYW b.OOOOEtOl Yt  1 . l'000h + 02n  l.OOOOt + 02
UA  0.         hA 0.
8ARGF  OPERATION 2
DISCHAh'GF  iHROiJCH A NUZZLE  L»iJL>tK A Ml.iVlM;  HAt^Gt

TSTOP   1.0000F+03StC.

GHlO PLUM  SIZE   Si KEV!     1  KtY2    \ KKY3

USt TfclKA  UCH SUGGESTED COLF F 1 C I EN T i>
           1.0000 Q1NCK2     1.0000
AUPHAl      ,080b  ALPHA2      .4S36  BtTA     11.0000  CO    l..<0i;0
GAMA   .2S  CDKAG 1.00 CTKIC  .010  C03  .20 COM 2.0(>. ALPnAj
ALPHAS      .0010 f-KlCTN      .0100  hi     .1000  C^    l.OfluO
AL^Al     1.0000 ALFA^     1.0000  GAMA1    O.OfiOO  l,A^/    O.
ALAMI1A      .0010

JtT RADIUS        .3000  Oht-SIlY     1.1200  ANCLK  OH  .1(1    O.OOiiD
VELOCITY     5.0000 AT   10.0000  FT.
       K     1   L    1
DENSITY Of-  SOLID           l.OOOOKtOO
CIINCFMRATin.N               0.
FALL VfLOClFY  OF SdLlO     ".
BARGt VELOCITY    /.booo  ANGLE  ^irn X-AXIS   22'j.oonn  ftG'VhKS I 'ird .I.IHMU '+02 si-c.

AMBIFNl CU^KtNT FL1« A HOVlNi;  CUdrtDTiMA TF F1XH) (.<'<  l^F  hAi-T,t
     0       YU      Yis       i*b       H
   5.3033   S.3033           5.30^   S.3033
                                     b.3033
                                  B54

-------
                             RUN J-F-2
     FM CUMD! T FOMS
      Ii! M.   uF'-.SHY  JN GUAM P£H CC.  KY IN SOU  PEP  SEC.   VfcL.  IH I-PS.
OfcPTh            0.           U.OOOOEtOl  b.OOOOF. + OI   l.OOOOEtOS
Ar-iK-UKNSn i      I . !i£l'i
Vu f).00u0t + 01 1M S. OllOOF. + Ol Yt  1.0000fi02h l.OOOOfc + 02
UA 1 ,00 DOR tO flu, A l.OyliOK
      l;PfcKATlON  f.
OISCHAkCF:  fHKUUfJH  a  t-OZZLF UNDER A MOVING OARGt
TSUIP  1 . OOOUb

UK ID Hii^.f SJ7E    f>l  KFY1     1  KEY?    i.KtY3     0

uSt  TETRA  1ECM SuGGESieO CUEFFICIEMS

DINCH1     1.0000  IJlNC«/e     1.0000
ALPriAJ     .OflOo   ALPHAS     .3S36  BETA    0.0000  CO     1.5000
      .25  CUKAG  1.00  CFKIC .010 CD3  .20 CD4 2.00  ALPHA?      .3S36
           .0010  FrflCTN      .0100 f- 1     .1000 CM     1.0000
ALFAl    1.0000  ALKA2    1.0000 GAh'Al    0,0000  GAMA2     0.0000
ALAMO A     .0010

JF.T  UA01US        .SUOO   UE-NSITY    1.1200  ANGLE  OF JFT     0.0000
VLl'jriTY    S.OOOO  AT   10,0000 FT.
       K    1  L     1
DENSITY  OF SUL10           l.OOOOEtOO
CDMCEi^TKATIOni              0.
FALL VFLUCJlY UF  SOLID     0.
      VFLUCHY     y.booo ANGLE  MTH X-AXIS  22^.0000  DEGREES FORS.OOOOE+OI SEC,
AMBIENT CUKkENT  FOri  A  MOVING COORDINATE FIXFU  ON  THE  BAHGfc
     0       YU       Y^       rt'      H
   6.3033  6.3033           S.3033  b.3034
  , b.3033          6.3033  5.3033  jb. 3033
                                  B55

-------
                            RUN J-2S-1

 4MBIFNT CONDITIONS
DEPTH IN FT.  DENSITY  I *  GRAM  PF."  CC.   KY IN SOFT PER SEC.  VEL. IN FPS.
DEPTH           0.           q.OOOOF. + Ol   6.0000E + 01  l.OOOOE + 0?
AMP-DENSITY     1.P230F+PO   1.0230F+00   1.0240E+OP  1.02aSE+00
YK
KY
                 3.5000E+01   4.5000E+01   5.5000F+01   6.5000E+01
                 5.0000F-0?   5.0000F-03   1.0000E-02
YU 3.00POF.+ 01 YW U.nOOOF + O
U A 1.000nF + OOW4 0.
                              5.0000E + 01H l.OOOOF + 02
P.APGF
                ?.
          THROUGH A V07ZLE
                                  A MOVING BARGF
TSTGP  i .
                              ?.  KEY?
                                        ? KFY3
                                                  1
GPTD pfir-'T SI7.F   51 KFY1
i'SF PEAD IN COEFFICIENTS
          1.0000 DI^CK?     1.0000
           .0806  ALPHA?      .3536   BETA    0.0000 CO    1.3000
GAM*  .25 CTFMr, 1.00 CFRTC  .010  CD3   .20 CD« 2.00 ALPHA3      .3536
Al PHAU     .0010 FPTCTN      .0010  Fl      .1000 CM    1.0000
                          1.0000  GAMAl      .1000 GAMA2    0.0000
ALFA!
          1.0000  ALFA2
            .0010
JET RADIUS       .5000   DENSITY     1.1300  AMGLE OF JET
VELOCITY    7.5000  AT    10.0000  FT.
       K    ?.   I     1
                                                             0.0000
DFNSTTY np
FALL VFI.PCITY  OF  SOLID
        PF
FALL VFLfiflTY  OF
                           ?.5000F+00
                           1 .OOOOF-Ot
                           5.0000E-02
                           Q.OOOOE-Ol
                           2.0000E-01
                          -5.0000E-02
                   5.0000  ANGLE WITH V-iVTS  IfiO.OQOO PEG«EES  FQR6.000OE+02 SEC,
APRTFNT  CIJPREMT  FOP  A  "fWIMG COOPOINATF FIVFO ON  THE  RAHGF
      0       YU       YW      YE      H
   6.0000   6.0000           5.0000  5.0000
   -.0000           -."000  -.0000  -.0000
                                B56

-------
                             BUN J-4S-1
 AMBIENT Cl'NOITKiNS
DEPTH IN FT.   DENSITY IK GHAH PFR  fC.   KY  T IV S'JFT Hh.H StC.   vFL.  1 ••) FPS.
DEPTH            o.           '1. OnOOF + 01   6.0000f+(;J  l.OGOOE+02
AMR-DENSITY      1.023Ut+00  1.0230t+00   1 . <)2'U)f + 0 0  I.u?«0fc+o0
YK                3.5000E+01  y.SOOOt' + Ol   S.SQOutt'il  6.HUOCF + 0
KY                S.OOOOi-02  S.OOOOt-03   1.0noOt-0?

YU S.OOOOF+OlYin  S.OOOOf-' + OlYt l.«OOOt + 02H l.OOOOF + 0^
UA l.OOOOt+OOKA  l.DOOOE+Ou
BARGt OPERATION  2
DISCHARGE THROUGH  A t-flJ^ZLt LifJOtH  A

TSTUP  1.500oF+OaSEC.

GRID PLUM  SIZE    bl Kf.Yl     1 KF.Y2     ?  Kf.YJ    1

USE  TETRA TECH  SUGGfcSTtU CflEFF 1C IE* IS

DINCR1    1.GOOD D1NCK2    1.0000
ALPHA!      .0606  ALPHAS      ..5536   fe 1 *     O.OOC'O CO     1.3l>0<>
f.AMA  .^S CDRAG  1.00 CFRIC .010  COS   ,?0  CDo P.OO ALPHAS
ALPHAS      .0010 FK1CIN      .0100 (- 1      .1000 t>     1.0000
ALFA1     1.0000  ALKA2    1.0000  (JAMA1     0.0000 GAMA?     (1.0000
ALAfDA      .0010

JET  RADIUS        ,r)000  DENSITY     1.2000  Ah'GLF dF JET     O.OOO'i
VELOCITY     S.OOOO AT   10.0000  FT.
       K     21,    2
DENSITY OF  SOLID           l.OOOOEtOu
CUKiCENTRATION               I.OOOOF-ul   2.00f>OE-01
FALL Vtlf.'ClIY  UF SuiID   -l.QOOOk'-Ol  -l.OOOOt-03
DENSITY UF  SOL IlJ           2.0U()Ot*00
CQNCfcNTHATIUN               l.SOOOE-01   b.OOOOF-02
FALL Vt'LUClTY  iJF SOLID     1.S-OOOF.-01   1.500UF.-U3
BARGE VFLOCUY     7.SHOO ANfjI.F nl]t-  X-AXIS  160.0000  UEGRtES  H'M'3. OOOOfc + 02 SEC

AM8IFNT CURRENT  FOR A MUVIMG  C'KI«DJNATK  FIXED nn IMP.
     0       YU       Yk       YE       H
   8.5000   8.5000           / . b 0 0 0   7. '^ 0 0 n
  -0.0000           1.0000  -0.0000 -0.0000
                                    B57

-------
                            RUN W-L-1
 AMBIENT CONDITIONS
DEPTH IN FT.  DENSITY IN GRAM PER CC,  KY IN SClFT PER SEC.  VEL.  IN FPS.
OtPTH           0.          4.0000E+01  6.0000E+01   l.OOOOE+02
AMR- DENSITY     1.0230E+00  1.0230E+00  1.0P32E+00   1 . 0232E + 00


YK               3.5000E+OV  «.SOOOE+01  5.5000E+01   6.5000E+01
KY               5.0000E-02  5.0000E-03  l.OOOOE-02

Y(J 5.0000F+0! Yrt 5.0000M01 YE I.OOOOE+02H t.OOOOE + Oi!
UA 0.        WA 0.


BARGE OPERATION 3

WASTE MATEKIAL IS UlSCHARGtD CONTINUOUSLY INTO THE BAKGE
AFTER THf INITIAL MIXING, IHE ^ASTE MATERIAL IS ASSUMED
TO BE JN A FORM OF HALF CYLINDER THERMAL.


TSTOP  l.OOOOE+OiSEC.

GRID POINT SIZE   51 KEY1    1  KEY2    I KEY3    1

USE TETKA TECH SUGGESTED CUEFFICIENTS

DINCR1     .2SOU OINCR2    1.0000
      SHAPE FACTORS el  .60 ca i.oo
ALPHA      .3536 BETA    o.oooo GDI      .booo en?     1.3000  CM     i.oono
GAMA  .25 CDRAG 1.00 CFHJC .010 C03  .20 CD« 2,00 ALPHA3      .3536
ALPHA«     .0010 PRICTN     .0100 n     ,1000  ALPHAI      .0806
ALFA]    1.0000 ALFA2    1.0000 GAMA1    0.0000 GAMA2-    0.0000
ALAHOA     .0010

 DENSITY    1.3000 DISCHARGE RATE   10.0000 BARGE UIIHH      25.00  BARGE OlfPIH      10.00
       K    1  L    1
DENSITY OF SULID          2.5000EfOO
CUNCENTRA110N             2.0000E-01
FALL VELOCITY OF SOLID    5.0000E-02

BAKGF. VELOCIir    7.5000 ANGLE "ITH X-AXIS  180.0000  DfcGKt.ES FDR5 . OOOOE + 02  SfcC.
        CURRtNT FOR A HCWlNC, COURU1NA1E f-'IXFO (IN  THE
     0      YU      YW      Y£      H
UA   7.500   7.SOO           7.5UO   7.500
WA  -0.000           0.000  -0.000  -0,000
                                 BS8

-------
                           t
-------
                            KUN W-L-3
 AMBIENT CONDITIONS
DEPTH  IN FT.  DENSITY IN GRAM PER CC,  KY  IN SOFT PER  StC.   VfcL.  IN  FPS.
DEPTH           0.          4.00006*01  6.0000E+01   1.0000E*02
AMU-DENSITY     1.0230E+00  1.0230E*00  1.0232E*00   1.0232E+00


YK               3.SOOOE+01  4.5000E+01  S.SOOOfc+01  6.5000E+01
KY               S.OOOOf-02  5.0000E-03  l.OOOOE-02

YU 5.0000E+01YW 5.0000E+01YE 1.0000E+02H l.OOOOE+02
UA 0,        WA 0.


BARGE OPERATION 1

KASTt MATERIAL IS DISCHARGED CONTINUOUSLY  INTO THE BARGE WAKE,
AFTER THE INITIAL MIXING, THE WASTE MATERIAL IS ASSUMED
TO BE IN A FORM OF HALF CYLINDER THERMAL.


TSTfJP  1.0000F+04SEC.

GKIO POINT SIZE   SI KEY1    1 KEY2    2 KEYS    0

USE TETRA TECH SUGGESTED COEFFICIENTS

DINCR1     .2500 DINCR2    t.OOOO

BARGE SHAPE FACTORS Cl  .60 C2 a.00
ALPHA      ,3S36 BETA    o.oooo CDI     ,5000 002    1,3000 CM    i.oooo
GAMA  .25 CORAG 1.00 CFKIC ,010 C03  .20 C0« 2.00 ALPHA3     .3546
ALPHA«     .0010 FRICTN     ,0100 Fl     ,1000 ALPHA1     .0806
ALFA1    I.OOOO ALFA2    I.OOOO GAMAI    0.0000 GAMA2    0,0000
ALAMDA     .0010

 DENSITY    1,3000 DISCHARGE RAIE   10.0000 BARGE WIDTH     10.00 BARGE DEPTH     10,00
       K    1  L    1
DENSITY OF SOLID          2.5000EtOO
CONCENTRATION             2.0000E-01
FALL VELOCITY OF SOLID    s.ooooe-02

BARGE VELOCITY    7.5000 ANGLE WITH X-AXIS  180.0000 DEGREES FQR5. OOOOE + 02 SEC.

AMBIENT CURRENT FOR A MOVING COORDINATE FIXED ON THE BARGE
     0      YU      YW      YE      H
UA    7.500   7.500           7,500   7.500
WA   -0,000           0.000  -0.000  -0.000
                                B60

-------
                                W-L-4
 AMBIENT CONDITIONS
DEPTH IN FT.  DhNSITY IN CHAM Pf.K CC.  KY IN SOFT PER SEC.  VF.L. IN FPS.
DEPTH           0.          a.OOOOE»01  6.0000E+01  l.OOOOE+02
AMB-nENSITY     1.0230F. + 00  1.02SOE+00  1.0232EtOO  1.02i2E+00


YX               3.5000E+01  «.5000£*01  5.5000E+01  6,SoOOEf01
KY               5.0000E-02  5.00006-03  l.OOOOE-02

YU 5.0000E+01YW 5.0000E+01YE 1.0000fe+02H l.OOOOE+02
UA 0.        WA 0.


BARGE OPFRATION 3

WASTF. MATERIAL is DISCHARGED CONTINUOUSLY INTO THE BARGE NAKE,
AFTER THE INITIAL MIXING, THE WASTE MATERIAL IS ASSUMED
TO BE IN A FORM OF HALF CYLINDER THERMAL.


TSTOP  i.OOOOE+04SfcC.

GRID POINT SIZE   51 KEYI    1 KEY2    2 KEY3    0

USE TETRA TECH SUGGESTED COEFFICIENTS

DINCR1     .2500 DINCR2    1.0000

BARGE SHAPE FACTORS Cl  ,60 C2 U»00-
ALPHA      .3536 BETA    0.0000 CD!     ,5000 COS    1,3000 CM     1.0000
GAMA  .25 CDRAG 1.00 CFRIC .010 Cl)3  .20 CD4 2.00 ALPHA3      ,3S36
ALPHA4     .0010 FRICTN     .0100 Fl     ,1000 ALPHA1      .0806
ALFA1    1.0000 ALFA2    1.0000 GAMA1    0.0000 GAMA2    0.0000
ALAMDA     .0010

 DENSITY    1,3000 DISCHARGE RATE   100.0000 BARGE WIDTH     25,00  BARGf- DEPTH      10.00
       K    1  L    1
DENSITY OF SOLID          2.5000E+00
CONCENTRATION             2.0000E-01
FALL VFLDCITY OF SOLID    5,ooooE-o2

BARGE VELOCITY    7.5000 ANGLE WITH X-AXIS  180,0000 DEGREES  FCIK5,OOOOE+02  SEC,

AMBIENT CURRENT FOR A MOVING COORDINATE FIXED ON THfc BARGE
     0      YU      YW      YE      H
UA   7.500   7.500           7.500   7.500
WA  -0.000           0.000  -0.000  -0.000
                                B61

-------
                               W-L-5
  AMBIENT  CONDITIONS
DEPTH  IN  FT.  DENSITY  IN  GRAM  PfR  CC.   KY  IN  SOFT  PER  SEC,   VEL.  IN  FPS,
DEPTH            0.           q.OOOOE+01   6.0000E+01   l.OOOOE+02
AMB-OtNSITY      1.0Z30E+00   1.0230E+00   1.0232E+00   1.0232E+00


YK                3.5000£+01  «,5000E+01  S.SOOOEtOl  6.5000E+01
KY                5.0000E-02  5.0000E-03  l.OOOOE-02

YU  5.0000t+01YW  5.0000E+01YE 1.0000E+02H l.OOOOE+02
UA  0.        WA  0.


BARGE  UPERA1ION  3

HASTE  MATERIAL IS DISCHARGED CONTINUOUSLY  INTO THE BARGE WAKE,
AFTER  THE  INITIAL MIXING, THE  WASTE MATERIAL  IS ASSUMED
TO  BE  IN  A FORM  OF HALF CYLINDER THERMAL.


"TSTUP   1.0000E + 03SEC.

GRID POINT SIZE   51 KtYl    t KEY2     2 KEY3     I

USE TETRA  TECH SUGGESTED  COEFFICIENTS

DINCR1     .2500  DINCR2    1,0000

BARGE  SHAPE FACTORS Cl  ,60 C2 <4.00
ALPHA      .3S36  BETA     0.0000 CD1      ,5000 CD2    1.3000  CM     1.0000
GAMA   .25  CDRAG  1.00 CFKIC .010 CD3   .20 CD«  2.00  ALPHAS      .3536
ALPHAS     .0010  FRICTN      .0100  FI     .1000 ALPHAI      .0806
ALFAl     1.0000  ALFA2     1,0000 GAMA1    0.0000 GAMA2    0.0000
ALAMDA     .0010

  OFNSITY    1.3000 OISCHAHGE RATE   10.0000 HARGE  WIDTH      25.00 BARGE DEPTH      10.00
        K    1  L    1
DENSITY OF SOLID          2.5000E+00
CONCENTRATION             2.0000E-01
FALL VELOCITY OF  SOLID    5.0000E-02

BARGfc  VELOCITY    5,0000  ANGLE WITH X-AXIS  180.0000 DEGREES  FORS.OOOOE+02 SEC.

AMBIENT CURRENT  FOR A  MOVING COORDINATE  FIXED ON  THE BARGE
     0      YU      YW      YE      H
UA   5.000   5,000           5,000   5.000
WA  -0.000           0,000  -0,000  -0,000
                             B62

-------
                            RUN w-s-i

 AMBIENT CONDITIONS
DEPTH IN FT.  UENSITY  IN  GRAM  PER  CC.   KY IN SOFT PtR SEC.  VFL.  IN  FPS.
DtPTH           0.           '4.0000E + 01   6.0000t + 01  l.OOOOF+02
AMB-DENSJ1Y     I.0230E+00   1.0230E+00   1.0232E+00  1.0232E+00


YK               JS.bOOOt + 01   1.SOOOE+01  5.5000E+01  6.500Utt01
KY               b.OOOOE-02   b.OOOOE-03  1.0000t"-0?

YU 5.0000E+01 Yrt S.OOOOFtOlYF  1 . OOOOtt H2H l.OOOOE+02
U A U .        »•! A 0 .


UARGF UPfcHATlON 3

WASTfc MATtftlAl. IS OISCHAHGtP  C'JN I 1NUUUSL Y I H TO THF. BARGE HAKf ,
AFTE.N THE INITIAL MIXING, THE  WASH  MATERIAL IS ASSUMED
Til BE IN A KDKM OF HALF  CYLINDER THERMAL.
TSTOP  l

GRID PPIdl SIZE    SI  KEY!     1  KEY2    2 KEYS    1

USt TETKA TFCH SUGGESTED  COEFFICIENTS

OlNCftl     .HbOO D1NCR2     UOOno

BARGE SHAPE MCTU«S  Cl   .60  C2  U.UO
ALPHA      .J536 BETA     O.OOOu CU1     .bOnO CD?     1-.3000  CM     1.0000
GAMA  .2b CDRAG  1.00  CFRIC  .010 CL)3  .20 Cl><) 2.00 ALPHA3      .ibib
ALPHA4     ,0010 FWK.TN      ,0100 H     .1000 ALPHA1      .0806
ALf-Ai     i.oooo  AI.FA?     i.oooo GAMAI    o.oooo GAMA^     o.oooo
AUAHOA     .utiio

 DENSITY    1,1200 OI8CHAKGL HAH.   10.0000 UARGt «10!H      Hb.OO  (UK UK OfPTH     10.00
       K    1  L     1
OENSIlY OF SIJI.JD           l.flOOOE + 00
CUNCFNTKA110M              l.bOOOF-01
FALL VtLOLllY Uh SuLID     5.0000E-03

BAKGF VELI.'CJrY     /.50»0  ANGLE  WITH X-AXIS  180.0000  UEGKFES ^ OK5 . OOOOE + 02 SFC.
        UUHRF.Nl  FU><  A  hOvi'NG CilltkDlNAlt (-1XF1) ON  1 HK  BARGfc
     0       YU       YW      YF      H
UA   7.bOO    V.SOO            7.bO()   7.500
"A  -o.oi<0            0.000  -0.000  -0.000
                                 B63

-------
                            HUN w-s-2
 AMBIENT CONDITIONS
DEPTH IN FT,  DENSITY JN GRAM PEW CC.  KY IN SOFT PER S€C.  VEL. IN FPS.
DEPTH           0.          1.0000M02
AMB-DENSITY     1.0230E+00  1.0230E+00


YK               3.5000E+01  «,5000E+01  5.SOOOE+01  6,5000fc+01
KY               5.0000E-02  5.0000E-03  l.OOOOE-02

YU S.OOOOE+01YW 5.0000E+01YE 1.0000E+02H l.OOOOE+02
UA 0.        WA 0.


HARGE OPERATION 3

WASTE MATERIAL IS DISCHARGED CONTINUOUSLY INTU THE BARGE WAKE,
AFTER THE INITIAL MIXING,  THE rfASTE  HATEHIAL IS ASSUMED
TO BE IN A (-URM OF HALH  CYLINDER THERMAL.


TSTOP  S.OOOOE+04SEC.

GRID POINT SIZE   51 KEY1     1 KEY2     3 KEYS    1

USF 1ETRA TECH SUGGESTED COEFFICIENTS

DINCR1     ,2500 OINCR2     1.0000

BARGE SHAPF FACTORS Cl  .60 C2 a,00
ALPHA      ,3536 BETA    0.0000 CD!      .5000 CD2    1.3000 CM    1.0000
GAMA  ,25 CDRAG 1.00 CFKIC .010 CD3   .20 CDO 2.00 ALPHAS     ,3536
ALPHAS     ,0010 FRICTN      ,0100 FI     .1000 ALPHAI     ,oeo6
ALFAl    1.0000 ALFA2    1,0000 GAMA1    0,0000 GAMA2    0.0000
ALAMDA     .0010

 DENSITY    1,1200 DISCHARGE RATE   10,0000 BARGE WIDTH     25,00 BARGE DEPTH     10.00
       K    1  L    1
DENSITY OF SOLID          1.8000E+00
CONCENTRATION             1.5000E-01
FALL VELOCITY OF SOLID    s.oooo£-o3

BARGE VELOCITY    7.5000 ANGLE WITH  X-AXIS  iso.oooo DEGREES FUHS.OOOOE+OS SFC.

AMBIENT CURRENT FUR A MOVING COORDINATE FIXED ON THE BARGE
     0      YU      YW      YE      H
UA   7.500   7.500           7.500   7.500
WA  -0,000           0,000  -0.000  -0.000
                              B64

-------
                             RUN w-43-1
 AMBI£NI CONDITIONS
OFPTH  IN Fl.   OENSIIY  IN GRAM MH< LC.   KY  IK  Swt- T  PF •< StL.  VhL. 1 •'•. M'S.
DEPTH            0.           H.OOOOfc+Ol   h.OliOOC + Ul   1 ..'JOliCl + ('•. V'Ouf •><) 1
KY                b.ooooF-o^   s.ouo1      .5000 CO?     I.HOHU C:i     1.0000
GAMA  .2b  COKAG  i.oo  CFHIC .010 CDS   .20 cot  2.00  ALPf.A3      .3536
ALPHAU      .0010 FRICIN      .0100 Fl     .1000  ALPHAI      .0606
ALFAl    1.0000  ALFA?     1.0000 GAnAl    0. 01)00  r,A«A2     O.'JdtiO
ALAMOA      .0010

 DENSITY     1.2000  DISCHAkGh RATt   10.0000 HAKGt  * 1 U 1 H     2^.00  HAWGfc UfPTH      10. OU
       K     2   L     2
DENSITY OF  SOLID           l.OOOOE+00
CONCENTRATION              1.000uE-01   2.00nOt-01
FALL VELOCITY OF SOLID    -I.OOOOE-OI  -I.OOOOE-OJ
DENSITY UF  SOLID           2.0000E+00
CONCENTRATION              1.50HOE-01   b.OOOOE-02
FALL VELOCITY OF SOLID     i.booot-oi   i.booot-03

BARGE VELOCITY     S.OOOO ANGLE WITH X-AXIS  1SO.OOOO  Utl.WfcKS F(,U5 . OOOOE* 02  SEC.

AMBIENT CURRENT  FU« A  MOVING COORDINATE  KIXFD I'lN  THE
     0       YU       YW       YE      H
UA   b'.OOO   5.000            b.OOO    5.000
WA  -0.000            0.000  -0.000  -0.000
                                 B65

-------
                             RUN-D-L-1
INOF.PFNDFM VARIJOIF  is    TIMK    PVFH
                 o.
                               69.35"
SYMHMI.
"4X PLHTTFP      OO.PUT
                o.
                VF-wr.  IHST.
 HFHFM1KNT VARIAHLtS


V               I'


          n.
           0.
           n.
            HOW. DIRT.
                                                           0.
                                                           1.
                                                           .HOW. DIST.
                                           a. :L Ei x. x
B66

-------
VARIABLE  IS
                 RUN D-L-1
               TIMt     rvFK
                                                    ens.90
SYMBOL              A               P             >
HJX pf'Tiff;      ii.iT?v         «i.9iQ       n.
'"In PI nttfc h     n.              n.             o.
iTfAPKS         VFNT. 5I7E.     Him.  SIZT     HI.IM. MST.
                                               n.
                                               Vt»T.
                      B67

-------
                           RUN D-L-2

!ND£P£>"nFNT VARIiBl.f. IS    TIMF    OVFR RiUfit
SYMRUl
            •MT  VAP14RLF.S

    V                P

o.              n.
VFW1.  OIS1,      RA01US
                                                0.              0.
                                                0.              0.
                                                 «nc. PIST.     HOR.  DIST.
                                                            Z X: a. CL
                                                    a; tr   cc
                                     B68

-------
                  HUN D-L-2

VARIABLE  IS    TI«F     OVER RANGF      0.
     12S.01
MAX PimTFD     13.0?S
»IN PLdlTFH    0.
REMARKS         VFRT.  SI?r,
T  VARIABLES

      R

 0.
  HOR. SIZF
                                 0.
                                 0 .
                                   HOW.  HIST,
     Y
 S7.HOH
n.
VFRT. 9ISt.
                                   c:   X1 x cc
                                            a. a:  a: a x c:

-------
      KUN D-L-3


,s   MMF
«1X oi"TTFP
MJN PI HTTrr
        0.
          B101H S
                                                  0.
0.
0.
 HPR. nTST.
                                                               . ITST.
                                  B70

-------
                          D-L-3
Of y
                                                      .ftopoooon
                          B71

-------
                                 RUN D-L-3


            v/ini»QI.F  IS    TtMF     PVFR  R4MGF       1.
                                                                       •57U.Q?
« D| r-T

w A DK?
                    .  
-------
RUN D-L-4
<^
M
(^
»-
»-
»-
f-
1-
|~
»-







;


>-

>•

V »•






> a
a
a
> 3 »-
a
3
a
c
a •-
a >
c
> t-
fxoni
IY PI PTTFH qo

•HACirs VFP
-1 t-
- >•
t-
"
* «•

t-
-• »•
> *
>-
>*

>-

- >" f

>-







«
a a
a a
u cr
a u
a a >•
a
a







«•



v (=
."^1 a ?fc.2?
n.
T, HTST. Riri
•* »-
•« *•

-• *•
3
- »•
•
-. »•



••




«
a Q
a. a.
sr a.
a. -
>
>•
-
-•





a
a a a:
a a a.
b a a a























7
^ .
f1 »
= T ^ wn», r>7?T .
. »-

>• >
>
>•
>- >.
•





a a
Q a. a."
a cr a
d






























>-
>- »-*
> >-
> >• »-
•-
*

a
a a. a
a a a a
a




























'
     B73

-------
                                RUN D-L-4
pjur.F "F
                                        n.
                                        n.
                                                              m .
                                     B74

-------
                               HUN D-JL-4

              j «n( p  ye;    T T^F     PVFP R


                    nf ppfc rpMf  VAPT AR| P<^
               ) "S .no*.
 c t p T r r r
* DU- c
 90 . ^P ft
o B
 HOP.  ST7P
                                                cr   an
                                                         CL Q   a a a a
                                   B75

-------
         RUN D-L-5




ts   Ti«F     rvfP
                         HOP. r.T?;T
              B76

-------
                        RUN D-L-5
OF v
HF rn
                                                        (JS.177700
                            B77

-------
                                            RUN  D-L-5
                                                                     n.
             PS.HTTFr

             01 OTTrr
                                              0} .
    tr rf
  u. u.
t. c
                                                                           Q a a a   no.
                                                                                                ouna   n u. o o
                                                   B78

-------
                              RUN D-.L-6

        FMT VAHHSI.E  is    TI«E     CVER RANGE
                                                  o.
SYMBOL             1               F             X              Z
M4K PLOTTED     50.352         ?6.?32       0.            0.
»I>' PLOTTF"    P.             0.             0.            0.
RFM40KS        VfftT. ITI5T.      P40TUS       H0». DT?T.     HPH. OIST.


                                B79

-------
                               RUN D-L-6
      pF wiSTF
RJMGF PF
R4NGF PF
                         "l.nTTfn
.snooonno
            t- L •(_•(_> I
                                   B80

-------
                            RUN D-L-6
!NP£PENI>FKT VARIABLE  is   TIME    HVER  R*NGE      o.
PEI'iFKS
FT












»~
X
«
«I

-
0. 0.
VEWT. STZF. HH
>-






^
tt
a:
a:
a
tc
a.

«~
«j
•« <5
•< 

(
a. n n.
cc a
1
cc.






»-
»-
t~
-

1-
•
0.
OIPT. VERT. 01
-4
CT CO
3: a. a. an 
-------
      f t'DKIT
                                   RUN D-L-7

                                  WF.     (,-VEP
                                                         a I .Uftb
M4Y  PL r, MFC
•••IN  PI l-fTPr
p p S A s.'1/ c
0.
                 0.
0.
 H'J».
      7.
0.
0.
 H'lR. HIST,
I                    I                     I                    I

                                      B82

-------
  RUN
GRAPH OF «*Srt:   rrji.,(

BANT,'; OP x
       OF Cf"iwrE'.'TP4Tio>JS  "
„,,<;
                                    .POOOOOOO
       B83

-------
                                             "UN D-L-7
                                      IS
 PLITIF.^      !.?.'><>?
 PLOTTKO    o.
ARKS        VFRT.  SIZE.
T V4WIARLFS

      P
  oq.qos
 o.
  HO". SI7F
                                                             o.
                                                             0.
                                                                 .  DIPT.    VEST.  CUST.
v   a. *
  3C (Tl
  ET
>->*XXX>>XX»X>   XXXX

fr.
1-
t-














0
3.







*-
•* *•
1-
•* »•

— »-





a
a.
« c -
a
cc
EC
CT





* •-
•or

;X XX.XX XXi
>
" >-
-« »-
-i »-
- H


tt CL
•« ff CD »-
or. oc-
tc
'












• •
1-
•* «-
•« t-
-» *•
OJ C
a a a a* a. a:






•» H






- »-



-. H


•* >•
•" *•
" »•
* 1-
•• »•
•• »•
•* >•
a- a. a, cc en a. a







•« >-





•* •-




•* H
•-
x x > xxx x :

cc
OC
IP





if
c

-< rv
53
*




IT
C"
r.


•
                                                  B84

-------
                              RUN D-L-8

            VARIABLE IS   TIME    OVER R»NGE     0.
                                                              U0.867
                    DEPENDENT VARIABLES

SYMBOL             Y              ft
»4X PLOTTfD     90.a57        36.PS7
MIN PLOTTED    n.            o.
REMARKS        VE^T. OIST,     RADIUS
                                           0.
                                           0.
                                            H0R. OTST.
0.
0.
 HOR, OIST.
t-
t-
t-
t-
fe
>•
t-
|-
»-
t-
t-
K



>•




»•

;


h-
>•

>•

>- H

>-
(
CD
> tt* »-
CC
v tr »r>
a
cc- >- >-
cc
S^N.'^N)N»fs(/vrM,
1-
»-
»•
t-
»•
»•
I-
»-
;
>- »-
>•
>-
»-
X
>

>•
>• H

>-


X »•




H

CD a
CL
cc or-
CC: 1-
a. cc
cc cc-
cc

»-



H1

MN.-MNMNOs.l^NI
-4
-4
-4
-4
-*
_
-4
:
>.
>•
>-
V
>-
*-








»-

cr t
CD co a:
cc
er cc cc »-
CO
CO


k-








*"

^^NJ^^N/tV^K-r



>-
>-
>-
>-
>-
>-








CC {
a. CD co
CC CO CD
CD CO
cc


t-




k-




**•



t-

.fviMh^ivr^isJ(NifNtrs;fi


X


H



X CC CC 1
a: cc CD or
co a.
cc

»•




»-




»-




>"





MrNirv.rs.f^iN.-KJMhJfi
>* >-
-• >-
>-
-



cc
a: tt a.
CC X
CD UD CO










*-i




l™i




>-(





iNjts;[vjts;(sitsjr^Mr>Jr».
nj
•c
                                B8S

-------
GRAPH rip  .SA



RAWRf OF  x
    RUN D-L-8






ITKl^S
                                                               10.P671
                                   B86

-------
                                               RUN D-L-8

                             V40I4PLC  IS    T ] MFf     OVF»
                                                                      0.
                                                 VARIABLES
MJX punirE"
•^1*1 PLPTTpr
i}F"4RKS
                                  tj.nr?          102.??
                                 n.             0.
                                 VFOT.  SIZE,      HO".
0.
(1 .
 HCIR.  OIST.
     Y
 Q9.UQ3
0.
VERT. OIST.
                                                                             a.   or x EC
                                                                                      ID   CCO.O-
>-X>>>XXX>*X>
                                                  XX*   > >• X  M X X X   XXX   X X X >*   * X X  XXXX   X*
                                                    B87

-------
                    I1?
                              fiUN D-L-9

                          Tl'l£      r.Vf.P O
                                                     0.
                                                                     "I .
01 rr '
              00.?
                              n,
                                p a n ] i ; s
 3".777
n.
 Hllh ,  PI ?T .
                                                               fl.
                                     B88

-------
RUN D-L-9
        0.
        0.
                                l .73U02R
   B89

-------
                                         RUN D-L-9
                                                             0.
                                                                           JIO.19
        «•«» PL

        »J'i 01 I
n.
VF
-------
                                 RUN D-L-10
              VARJAHLfc  IS    Tint     PvFK  R4NGF
                                                         0.
                                                                         a I ,<
KiX  P(.MTTFf>
WIN  PLOTTED
RfMAHKS
                        PFPfNOENT VAHT4RLFS
 90.361
0.
VFRT.  II 1ST.
      P
 ?6.576
n.
  U4D1US
            o.
'.  IMST.      HUH.  I)TST,
                     *-    a: ft x iv
                                              rxj   x
                                              X X
                                            SJ X
                                          Nl X
                                       B91

-------
                                                RUN D-L-10

                              VAPTftBLF IS    TIMp     r-vtR RANRF      0.
                                                                                      291.6
                                                  VARJ4BLF.S
                     PLnTTF.D
                     PUOTTFC
 13.1S6
0.
       STZF.
 100.71
o.
 H'IK.  SIZF
 168.?7
0.
 Him.
                                                                                    T. HIST.
                                                                             x   a: tt ct a-
                                                                                                   xxcoa   cc
                       -   z x
   a: =: x
   £ X
» J.   X
 tt. X
 Q. X
                                                      B92

-------
                    RUN D-L-10
                  GRAPH (IF  X  VS  7
RANGE OF X
RANGE OF 7
0,
n,
                       BS3

-------
                          RUN D-L-10
                   GKAPH OF   rnn    VS  Y  41  TIKES
               -l.onoooon          -l.ounooon
RANfiE IF    Y
H6MGF "F   cno
                 PLfHTf 0
0.
0.
                       -t.nonoooo

                      loo.i

                               B94

-------
                                         RUN D-L-10
PLOT OF TOT HfW «AT  (T)  CENTROID mcATIONS (X,Z) AND SIZE (S) VS TIME
TIHF MANGE
MAXIMUM T,X,Z,R
MINIMU" T,X,Z,S
 11J.11772
 ba.501128
1.
 2<>B.71033
 78.S61629
0,
                                                                                    0.
                                                                                                   IT.
                                                                                                   10
                                                                                                   •c
                                              B95

-------
PLOT OF


TJMF RAN
                                RUN D-L-10

                 MATERIAL  SIHMAX AND z fx,7.) 1*0  SIRMAXZ  (S)  vs. TIMF
        X,Z,S
                       0.
                                           0.
                                                                I).
                                                                                          •s-
                                                                                          o

                                                                                          rv
                                    B96

-------
      OF
RANGF
            v
           ceo
                         RUN D-L-10
                    GRAPH OF    TOO   VS
0.
1.
PU'TTF.n
PLMTTFO
                                        Y AT TJMFS
                                                                               no A.


                                                                               (V f\i
                              B97

-------
     RUN D-L-10

GRAPH OF    SIZF  VS Y  AT  TIMFS
                  362.85903
RANGE OF     Y    PLOTTFO         ft.
RANGE DF    SIZF  PLOTTED         o.
                                     I 00,00299
                                                              fv.1 f
                                                         r"    ru


                                                     (^      *\J


                                                            r\. —

                                                           r\j
                                                           nj  —
                                                       i>j
                                                         
-------
H«NRF OF

HANGF OF
                  PLOTTED
                         RUN D-L-lfl

                         or     xn   vs i AT TiMfs
n.
0.
                                                       IOC.00219
                                                                                    IT
                                                                                    •O

                                                                                  •- to
                              B99

-------
UF
MF
Y
7P
                  RUN D-L-10
             GKAPH OF    ZO   VS Y  »T  TTM£S
0.
1.
           PLOTTED
   1015.U7

100.afl?<)9
623.78031
                       BJOO

-------
299.i|9U5«
      RUN D-L-10

 GRAPH OF SJr.MA-X VS Y  AT  IJH£S
a.86129           362.R5903
    RANGE OF    Y     PLOTTED
    RANGE OF SIGMA-X  PLOTTED
              0.
              0.
   1095.0775

!00.10299
                                                                               f  — rv i
                                                                              ^      —
                                                                                  rv
                                 B101

-------
RANGE OF
HANGF. OF
                           RUN D-L-10

                    GRAPH  DF  StGMA-Z VS Y AT  TIKES
o.
o.
                  PUITTFD
                                                                                 t I* f\t
                                                                                 - n. fu *•
                                                                                 - re ry

                               B102

-------
PJNGf OF
M4NGF OF
         RUN D-L-10

  RHAPH OF STGMAX7 VS  Y  AT  TJMF.S
0.
1.
PLDT1ED
PLHTTFP
                                        109S.1773
           B103

-------
                                 RUN D-L-ll

JNOtPtNDlNl  VAKI4HLK  IS    IIHfc      IIVF.K
                                                                           71. '
SYHHUL
"IN  PLUT1II
KEtlAKKS
                        DLP£.NUt"T  V«HI4Bl.tS
U.
VF.KI .  D1S1 .
                                   0.
              0.
RADIUS         H(iR,  It 1ST,
0.
 HUM.  01SI.
                                                    X X X X
                                                                                *• >-
                                                                          >->->•-•
                                                                        >- x
                                                              X X X X X X
                                                                            XX   XXXXXXX
                                                                ^5 20 £ :£ r. x
                                      B104

-------
                                           RUN D-L-ll
                            VARIABLE  IS   li«F     L-vtK
                                                                    0.
SYMBOL               A
MAX PLUTTKU      13.076
Mlh PLIM Tfci;     0.
                 VF.K1 . S12F ,
                                                VAKIABLF.S
                                                81.60"
                                               0.
                                                              0.
                                                               Ht'K. OIST,
0.
VtHl.  DIST.
  5-    xx
      X H
  V X X
                 XXX  XX   XX*   XX  XXX   X    XXX  XX   X;*X   XX  XXX   *X  XXX   XX
-4 >
  X
X
X >
                                                                £  CC CB 23
                                                 B105

-------
RANGE OF X
MANSE UF 2
 RUN D-L-ll

  GH»PH OF X VS Z

o.
0.
                      B106

-------
                          RUN o-s-i
                  TS    TT"F    PVFS
                                                                «.la?
nl r»TT FT      S?.\^?         J7. ?cfc        0 .
?i nr rep     n,              o.              0.
3K?         VPBT. PlSt.      Q4HTOS        HOP.
                                                          HQR.  OTST.
                                                            d cr a  »—
                              B107

-------
                          RUN D-S-I
np WASTF   r OMP c w ro i
np cnwrF>'TP»TTOw< Pl.lT
                             BJ08

-------
                                         RUN D-S-I
                                      TT«F     PVFP  D4N.-.F
                               rFPFi.rr».'i
         M/ y PI OTTFO
         "1" PI PTirn
         n p w js P K P
                                            S. HOT,
p.
: >-     -a
                                                                         a  a a   a
                                                                                      a. a   a    a. a
                        XX   X  >>   >   >>   >>   X   XX  >   >X
                                                                                      >. X   X   >  X
                                             B109

-------
                         D-S-2
V»»T/.B|F  JS    TI«F
          r-FPFfc'PFMT  VAHT A0| F <=
t-fiYPtOTTFf SiJ .«"*? 1 7.7° 1 P . fl .
t'TK'PIMTTpT- r\ f ft ^ n . n ,
»-
»-.


















>



> EI

C 3
c
a 'a >-
a a >
a
F"ApkC VFO
* >-
k_
»-
t-
1-
*-
>
>
>•

>-


>•
>-





>-



a cr.
cc a.
a tx
cr a
a






—
»-
*->

»-
i-
>•
:
>-
>-
>
>
>-










a. a
a cr
cc c
cr  >
>•
>•
>
>







a a: a
a. a c.
c. ct a.
a. a.

















ST . hpo. OTST .
4 »-
V
>
>•
>-



a.
c a." a
a. a c
a c





















>-
>• >•

.
3
a a a a.
ff o 2 a
a
























                         B110

-------
                                RUN  D-S-2
P A NftF  PC Y
oavnf-  OF t<"1"irr"T"AT TOMS;
                                    Bill

-------
IS
      RUN D-S-2
     Tlif    "VFP
370.
            BUZ

-------
                            RUN D-S-3

                   I p yc   TT^r     nyFP OAWG
 AV PI f

MTU D|

 ff A Pk
                                                  a a
                                              tr tr tr
                                           a a a.
                                 Bin

-------
                         RUN D-S-3
r.F y
nr ro
                             B114

-------
                                 RUN D-S-3
           i-T V«DTASI.F  TC    TT"f     rvFe  B»wr:F
c Y M P r i
•JAY  D|pfTFr
"iw  Pinner-
CC •• fl Dlf C
                                   V4&TAPI FS

                                        P
                                                    MOR.  HIRT.    VPDT^  f>TST
                                                                                       a   a    a. a.
                                                                     a a.   a-
         >   >•   >•>   >>   >   x>
                                                                                     >x   x
                                      B115

-------
.229S1

 RANGl OF
 M4NGF OF
     <5o7. 33600
cnu
          l Ttl)
      PLOTTED
 RUN D-S-3

Ul-   ton




       o!
                          vs v AT TIMES
                          I 127.0*)iu
                                               1630,2S85
                   B116

-------
PLOT OF TUT  BOKY  MAI  u)
                                        RUN D-S-3

                                 LOCMI^NS  (x.n »ND sizt (S)  vs
1]HF HANUE
M4XIMUM T,X,ZrS
MINIMUM t,X,2.S
(I.
                   0.
                   0.
                                      o.
 .S5.869Mb
0.
                                         B117

-------
                               RUN D-S-3

PL01 OF bUUNnAKY  MAItWltL SIGMAX AM) L (X,Z) AND S1GKAXZ  CS) VS. TI«t
MAXIMUM X,Z,S

        X.Z.S
                          l .65912
                       I).
                                            0.
u •
0 .
                                   BJJ8

-------
                              RUN D-S-3
                      GKAPH  OF
                   <**>?. JibOO
 HANC.E  OF     V     PLOTltl)         0.
 HANGt  OF   sii:t   PLOTTED         o.
VS Y AT  TIMf.S
1127.0911
                   101.92772
\ »*   (\J »4 IM **
                                                  <\J fl r-1
                                                 1^4*  f
                                                 \   ~ ry
                                                                          nj    f\i   r\j
                                BU9

-------
                           RUN D-S-3     Fluid part of waste

                    GRAPH Uf    CUD   VS Y  AT  1IHES
HSNC.L
                  PUJ1TLO
      OF
            COO
                                  n .
104.17670
7fi.652?6<;
                               B1ZO

-------
                              RUN D-S-3
                                             Fluid part of waste
7bP.I7JS7
                         GKAPH IU    SUE   VS Y «1  TI
                      797./6«8b            9»3.01242
    KAKGfc  Oh    Y     PLUI1ED
    ^ANGt  (if   Sm   PLUI U.t>
U.
0.
                             ?.6.307

                         'i. !767()
                                    »=r^3^^^33^'-'
                                  B121

-------
                 • RUN D-S-4

V1HI4BIF  IS    TIME    OVER
5VMB'JI.
Mjy P|
VJN PI.OTIFO
OJ;MA"KS
n.
vf.PT.
                   V4RI4SIES

                       P
                   2f>.??6
                  o.
                    R4DIUS
                              ft.
                              0.
n.
0.
 HOP. HIST.
                   CD 03 tt ^
                       B12Z

-------
RUN D-S-4
                                 .RSnnnnno
    B123

-------
   RUN D-S-4
 TIMF     OVFP t>

DC'IT  VIP It 81 ES
          F
                      '
                                         .  ,,ST.
                                      re a   i> T a.
                                                     tr tf j.  a 3--
       BI24

-------
                             YJRJ1HLK
                                              RUN D-S-5
                                                             P4HCF
              "T-
              Of "41-XS
 90. ^
n.
VK"T.
                                                 0.
                   HtlMUS
                                                                  0.
                                                                  0.
o.
o.
 nn».  OIST.
                                                                                      >-     »-i
                                                                                    {£ 2. ET.   »-
                                                    r-   CT Oj
                                                  o: a a.
                                              T CD IT
>-     -j. a
                                                  Bias

-------
                        RUN o-s-i
OF K
IF CPNf r''TRAT
                    PLi'TTFn
                                                          7S.')<1776S
                              B126

-------
                         RUN D-S-5
T.F^T  V8HISBI.F IS    TI"F     OVER PSNGC
                         VARIABLES
MAX P1.0TTEP 15. on? 10<».70 0. 99.373
"T*: PLOTTED o. o. o. o.
PF"
-• *.
-> ».
•* :
1 >• V
" < 1-
V
•
•* »•



*•
«t



-* H



- > t-




<
>• t

cc
a:
a: tr
- a a; »•
>- a: cr
a1 oc
a.

- a. x- »-
rt.
cc
&RKS Vf'OT.
H 1-
•
•< »•
-* t-



- «•
H »-



t t-
'



- >•




•» ^1






f
a
- cc •-
< cc
T
CC
1 < H
a-
a>

-.CD >-
^s
 >•


-t •-
-1 >-
- »-



•* »•




-> a
a.
i »
CL
cc
GC
CC
L

4 »"







1-



* * ^
< •







JZF w('R, riST
"• >




-< t-
H ).
•* »•

».
t-



•t 1-
CD CC
a: cc
01 CD
CC
» CC, "








t-













* <*""1<<*l<^



H


VFP7. OIST.
-t ,
•*



•*
•"


h
k-
t.

EC a
tr ct a> CD
a: cc ».
£C



».








»•







i-












-« *•
•^
H


«
H


"1 *
fr
x cc a. cc cc tr
a: a























*•





H



»-






fV

-------
                                           RUN D-S-&

                                           TI'"1     r'vfp
     71.1S-?
              P r «•' A F K S
                               0.
                               V f Q T .
                                                               0.
0.
0.
 HO".  "MSI.
  >-     a- a
        a
>-   3  1
                                                B128

-------
                           RUN D-S-6

GRAPH. PC h/>MF   CCWFMTRil ICMS

      nc X
71 .153020
.8SOOOQOO
                               B129

-------
V«SHHLP
                 RUN D-S-6
                TjMf     r.VfR R»n.r,E      n.
                                                             .06
SYMHf.ll.               4                I-

>•!(.:  Pl.OTTFr.     n.              I).
«ffs»K.<;         vrpT. SI7E.      MHO. si?F
                                    0.
                                                    0.
                                                         
-------
               RUN o s 7
                                  0.
                                               77.013
VE"T. OTSt.
              0.
 60.102       0
°-            <>!
 ^•0".  DIST.     HOR. nrsT,
                   B13!

-------
                             RUN D-S-7
GRl.w
          VUSTF
Pa • f.F  f'F X
"Vr.F  MF rn':rF*1i;.TI(W
                                  B13Z

-------
                                              RUN D-S-7
                                                                      0.
lYWftHL               A
*tx PLOTTFT.      ii.«'i6
*• j * P i n T T £ r    0.
JFMAPK?         VFWT. SJ
                                                     P
                                                 1 01 ,?.7
                                                0.
                                                 M0».  SI7E
0.             0.
 HOP. OJST.    VFRT.  OIST.
     > X
   tr x
• tt a x
                                                                                               to a:  a: a.>   a"1
                                                   B133

-------
 RUN D-S-8
                                   HOP. OIST.
x fvj   cr
      B134

-------
                              RUN D-S-8
C.ajspH  Of V:A$TF  C f-r.FMTO tT 1P:<5
   T.f  «F
                ' T1»TI'"J.S
                                                                    .esntinooo
                                    B135

-------
                  RUN D-S-8
VH»I4R(.F IS    TIMF    PVFP  RSNGf      I).
"»v PlfiTTCp li.b'jfi JP7.7S t6". V
< t-
< >-
>• H-
•4
X
•I »-

> •-
-J >




s-







<• >

< > <


>•



>




«i X o


>- X


X
>- X
x
X
X
ft X
X
X


•a X

> X
X
X
IT.
X
> a
V X
x a. t:
•j. -r. :;,
x r «.
"*c*S VFR
^
i-
*-




t-

















X
X

X
X

X










it
- a. a:
a















* * *
















                        B136

-------
                      RUN D-S-8

                    r.PS»H OF  X  VS 7
RtNRF  ^p i
R»nir,F  rip 2
p.
r .
                                          1uu.07B«q
                                  X    t-<
                   B137

-------
                               RUN D-S-9

   INOFPE'IOENT  VARIABLE  IS    Tl^fc     CVFR RAMGF
                                                     0.
                    PEPENDFN1 VARIABLES

SYMBOL             v               R
fix PLOTTFn     57.R9U        IB.bOS
«IN PLOTTED    n.             ".
Rtk<»PKS        VERT. DTST.
n.
n.
 HOH. 01 ST.
                                                                   2
                                                             0.
                                                             n.
                                                              HO". f)IST.
>       tc tc
                                    B138

-------
                 RUN D-S-9
VARIAIUK  is    TIMF    OVFR RANCt
                                       o.
OEP&NDFNT VART&RLFS
SYMHni A H X ¥
KJVX P|_miFO ^.^nptj ^S.ftQS 0. fcfe.O?!
HTW pumen o. n. o. o.
RF«APKS VFRT. SIZF. MOW. sizt HHW. OIST. VFKT. oisi.
** :
>• *-
« —
**
>- i-
"*•
M
*•
•<( V
•
^
*
a:
ff e
|
>• ^.
r.



F-
*.
•a
»-
0
<; t-
< •-
>.





- >








I-
i
1C
s
cc "



-> r
•< t-
t-
>• :
>- f~

t <-

•• H




CC
oj a:
-CD *•
S3




it
•


" »•
»•
*.
>,

•* •>
»•
*.


i i.
OJ Q
03 C.
" CC CC »•
'





<
•a «X
•< «5


*.
>• >-
V i-
*"






X CC tt.
CO CC









••


fV

-------
SYMBOL
         RUN D-S-10
•.  is   TIME     rvtH »«f«r,t      o,

 DEPFNDFNT  VARjafiLFS
                                                                  •55.678
MAX PinTTFP "i7.6jh 18, sal o. o.
RFKARKS VF'HT. uist. 'RADIUS HOR. n
*~" »-• h-t »•
»-




























'





> *"


a
CC d
> cc
i a •-

a:
T * >-
•-

••

i-

t-



|M





1-
>•
>
>-
>•





>•



•




x a:
c: i a
x s
— X
CL


«


~






»-

"

*-
;
:
>•
J. ** _
1-
>- »
*-

f










a: a
X. CC
ff B
CC X X
i or cc i-



*-











4 f~

" »•


'
-. >. I-
>
>
>•
>
>-
K
•





•* »•




H >•

£ (
CC E CD
CC CL
- CC CC 3> H




•> *•







•« h



0.
ST, HOW. OIST
H fc


^ W

>• *•
> *" *"

• >•
V
• >-
• t-
•• !•











a. cc E •-
B) CC CC'
(C







- 1-



1 *






1 H
•* »"
>
>•
V
>• V
4 >. *
• >
« ••

^ »-



H •"



1 t-
-t "•
I ••


a:

CD er ce cc
c cc

























H


rx.
•* a
cc




c
tfl
- l*\
X
J^
o
i rv
«r















y-
c

re
*





                                  B140

-------
                                            RUN D-S- 10

                            VARIstjtF  IS   TIMK    nvFP RAM;F
                                                                   0.
                                                                                721.EPfc"OFWT
                                                      tS
                                               6S.70S
                                0.             0.
                                VFHT.  ST7F.    HHR. SI2F
                                                           o.
                                                   OIST.   Vf.HT.  DIST.
                                                                                             a   a: a

>-XXXX  XX   X  XX   XX   X  »X  XX  X   XX   XX  X  XX   X»   X  XX   X  XX  XX  X   XX  »
                                                 B14!

-------
                     RUN D-S-II
M v/sRHULt  IS   lint     IWEV HAI,-I;(      I".
s
p
(•*
R






-
1- . 33 X ~
CC
X X-
X
a? 32
a; >-
V
YMBOl.
AX PLHTltD *>
IN PLUI 1 FO 0.
f.MARKS VEf



.-
;
•
T- a:
X 35


Y
.8hb 18.6
0.
* T , f I S 1 , * 4 fi



:
>-
>-
>-
>-

D .T T>
r; xi
E ^r :D
> cr r



h X
Ui <>.
luS h('R. LI


4
1
-t >• ••
.

_T J
XXX
I i CC
•« X X X
r


-• »•
L
1' .
it ,
SI. nllt. 01 SI
.
5-
>•
>•


-T CC X




v- >.
>•
•



X i ± £
c. i -. : i
c x




                         B142

-------
                               RUN D-s-ii
iNDF.PENDt NT VAKIAdU IS    IMF.    ( vf M  KANGt
SYHBIIL
MAX  PL!
•IR.
                                               0.
                                               0.
                                                               u.
                                                               VfT.
         XXX  X*XX  XXX  XX*   XXX  XXX  XXX   XX
                                                                         ac   xx
                  •f
                  
-------
                    RUN D-S-12

NT V4KI4BLF  IS   TIME    PVF"
SYHHOL              Y
M4X PLfTIpn      HK.TtH


Pt»ARKS         VFRt . PTST.
                           P
                       %0.«63
                        KAnilJS
     K              /.
1.             0.
0.             0.
 HUM. nisi.     HUH, HIST,
                          B144

-------
                            RUN D-S-!Z

            ViPJifllF  IS    TI"F     PVFR R4NKF     n.
                                                                069.<
M4X

KIN
HEMJRKS
                     nfPFMOFNT
o.            n.
VtKT. SIZF,    H(.W, SIZE
0.
n.
 HOP. msr.
     Y
 <> <),&*>!
0.
VF.RT. OIST.
<
>- ;
»•
>• r

>-
•3
>*
t-
4


<• V
X
x
•a
•«i »•
4
•< X

5-
:

c.
CD
»-
>
2C -
CC
CL
X X
CD
X
>• x x x x .* x x ;

>- V
1 f
•* *•

*.
" ^

-< t-

1 >>
• t>
tc »•
X
tt.
EC ••
X
X)
!


ft.
< t-
«f
•4


K XXX XXXX
^ *•
-• h
•« t-
•* *-

•* t-
-" N
-" *-
-t t-

•» t-
:
x
X X
x
-* •-
ri H







•a < •

XXX XXX X 5
•* »•
•*
•*

•• »•

•^ »•

•• a x i
x x
a: cc
c a:
i »-









<
•a -i «s 
-------
TUflEPFHtlFNT VARIABIE  IS
                               RUN D-S-13




                               IHf     CWFR  RAfcKF
                                                       0.
                                                                      75.SUR
DEPFNDENT VARIABLES
SYMBOL V P X 7
MAX PLHTTFT po.'5('i ?*.?i2 n. o.
MJN PLOITFO o. ft. n. o.
BFHAPKS VFRT. DTS1. RADIUS HHR. nTST. HflR. niST.

t-




»»

»•
OJ
3 *-
-


ec
IT
HI
*O



U"
c
IX
a















FO
IT"
C

Ou
•











•-




t-

t-

t-

»-
»-





















*

>-

>-
»
>

>




>- cc
>- CL CC
CD
CC
CC
cc
"* CD
CC >~
QC
•H
>

k-




»•

|x

>-


*>






^
a
V

X
-* f
>-
X

x
" »•


X

"" »-





cc a
cc

cc.
- CC CC f
(L CC
CO
,
—




•4 ^


-»

1-




t-

t-

~ I-

»-
»-
:
X
X

X >
x
X »•
- •-



1 •-




- t-




•* t-
cc a
CC CO CC
-
X



»•

t-
»•










1
cc a a:
a cc a:
i CC CL
a



-.




-.



-




«i


_

»•




»-
:
x *•
X
X »







t-

».

K


*>



cc a
cc cc cc *•
a: CD £
cc cc
•

»•




*








•* »-




r.



X
- X »-
X
X X
X
X
X i-



•4 *

» ^>
-. •-






-1 *•
-. f




a.
ir s. a.
cr cc a
t X CC





K




•• *•




•fl 1-



t-




H


• »-









nj
- 53
CL





-------
                                 D-S-13

7NOFPFNDF.NT  V4P.14RLF IS    TIMF     fWFR R4NC,E
                                                    0.
                                                                  ??6,II
SY"RPt
MAX PinTTff)
PF.MARKS
                     nFPFMDFNT  VARI4BLFS

                                    P
    A
 1?.OC7
0.
   I. ST7F..
                                M .?lf>
                               0.
                                HHP, S1ZF
.  nisi.
          0.
          VFRT.  OTST.
                                                                             ^ cr ct cr a cc
                                B147

-------
                           RUN D-S-14

                      is    TJMF    OVER RANGF      o.
SYMBOL
MAX PLOTTFT
MIM PintTFn
 90.SOI         2h.2.

>•



>.




> a
s
> a a.
CC
a
a:
a.
•- a:
ec >
cc
*-
N-
h>

|-


»-
1-
t-


**


:
>- »•
>""
>•
X
>.


i-
>.

>-

i-





CC 1
X
E CC
tc
CL CC f
CC CC
CD


*•






~» ••
l-

r-

1-


»-
*-
3
> *"
3. *"
>
i > »

>•
X »•
»•
t-
i t-




*•





s. a
CC CC CL
a a
fC £C
•« ec tc »•
t



^ *•




- ••




^ ••

-t i-
*-
»-


>•

j
a
>
v >•
>.
>- »•
>-
•
^


^


- »•
- •<





».

a
IE a: ct a
tt (L CC
cc co -
a








^









•* ^

• »


;
>•
> >-
>
> ••

•
i-
•» >•
"« *•
»•


•* >•

>






00 I
a. a cc >•
CD CC CC
t a. a:


•* ^.




i I-




- i-




H ^




^


V
•« >- »•
>-
>- >
>-
>• t-
>- >
>
•
- »»




t-
« 1-





. ».
•4 •-

1 »>
CC
cc cc cc
a ct a
cc cc
-1 »•




4 >•




*•




»-




H




»-

1 1-



(V
- c
CO
•



ec
tf>
f^
x


in
c
- IX
a
»














K"
in
c

ry
•










                                BUS

-------
                                             RUN D-S-H
                JNnEPFNOFNI VARIABLE  IS   TTMF    nvFR RANC.f      0.
                                                                                A02.77
                SYKBHL
                MAX
                MJN PLDTTFO
                OEMARKS
                                     DEPENDENT VARIABLES

                                                   R
    4
 IS.007
0.
VERT. SIZE.
0.
 Una. SIZE
0.
0.
 HHR. DIST.
n.
VF.RT. OTST.
cc cc.
ff
a
VXXXXXXX   JkXXXXXXXX  XXXXXXXXXX
                                                    xxxxxxxxx
                                                                                                        IT

                                                                                                        £
                                                                                          o: cc CD cc CD cc cc
                                                                     xxxxxxxxxx  xx:
                                                B149

-------
                RUN D-S-15



VifmRLF TR   TIMF    OVER  RANGF      0.






        nEPENDENT V»R.T»RIES
                              7S.SUR
SYMBOL Y P X 7
«AX PLOTTFn 90.3QI 26.?«2 0. 0.
«TN PI OTTFfi n. n. o. C.
R
t-
t-




»-


1-

•-
»-
»~














*




>• *•


> ar (
cc
>• a o *
DC-
cc
EC
c. >-
F"«RKS VFfi
« It.







t~

*-

t-
X
>• ••
>-
>•
> •-
1-

>-

>-



>-





" *•
to a
cr
CC CC
cc

ID CC-
cc


•• fr



-t )•
T. DIST. R4f>
j t-
t


»•


t-
:
x »•
>-
>
v »•

>-
i > ••
>-
>-
^






• *•




X G
EC CC X
ff CC
CD CC
- tc 
c








4 »



— »
[US H(1R. HI
* t-
i-
»•

•* ••

;
;
>-
>-
>
>-
h
»-











.
a
cc tc cc a
a. DC a
: cc








— »




— >•



- >
ST» HOP. OTST.
- t-
a
> i-
>•
>-
-i >- •-
>- >-


*•

•• ^>

H t-
-> *•
- »•
•• »-



X (
cc c: a: >-
cc cr cc
c cc cc
p










- »•




»•



-1 »-

>-
>- -
*•

-1 •-


_ •-
t-

H

*•
>•


a
CL EC- CC
cc cc cr
a cc









•4 *•




4 «-












f\.
- ^
a.
•

a.
IT
- r*\
•C

\f
C
-. fV
a














K1
IT
C

n.
*







B150

-------
                                 VARTJRIE  is
                                                   RUN D-S-15
                                                TT«F     HVF.R
                    SYMRflL
                    MAX PLOTTFH
                    ••IN P|.nTTFl
                    BEM/SRKS
     DFPFNPEHT VtRTABLES

    A               P
 13.on?         76.UPS
0.             0.
VFRr.  SJ7F.     HOR. STZF
                                                                                 VF9T.  HIST.
                                                                                       tr tt- tr a. tr
                                                                                                a: a.   cc CD cc oo CD
JT
C

rv *-
                                                          XXXXXXXXXXX  XXXXXXX»XXX   XXXXX»
                                                                                            IX
                                                                                            CD
                                                                                            A;
                                                       B151

-------
VARIABLE  IS
                RUN D-S-16
               TIME    (1VFR  PANGF
                                        0.
        OEPENflFMT VARIABLES
SYHpni. Y R V I
MAX P| flTTFC 90,391 ?.h.?U? 0. 0.
«TW PI.OTTFD o, o. o. o.
PFMAPKS VEP.T. IMS*. R&njiJS HOP. DT



























^v

*•

>- a.
DC
> -et c.
IE
a
cc
tc
cr >•
CD
»-
»-
»-







>-
>.
>
J.
>

>

^_









CO
er
- »-
>-
>
^
>-













OL
tC CC £
CC X
tc a
CC CO












-•
•-
t-
»-
(-
4
:
>- •"
>-
>-
>-
> f
>
V


1-

l>
K








0
cc tc cc
cc tt a:
a. CD ••
cc






t-










ST. HPR. 1TST.
1-
;
>.
>- >•
>.


^



-» »•
»•






cc- cc a. >•
CCCC.CC-
L tu a.
;

».







^



— ^






, *•
> *•
>-
>• >•
>•
>• >•
>•
t-
*-
t-
»-
•-

^ »-
*•
•» »•
. ^

•* »•
cc
a. cc cc
cc a a
c cc cc





•« '•




-, ^>


_ »•



_ »•





-I t-


t\s
SS
a.

CC
IP
to
•Xi
IT
c
- (V
=3
•













ro
ir
c
tv










c
0 O 9 (C K. CO
f\. t\i Kl K*. O 13

— a r^ o- AJ IT

-------
INriF.PF>'nFMT  VARURIF  IS
                                                 RUN D-S-16
                                                MF     nVFR RiUGF
                                                                       0.
SYMBni.                A
K/U  PLniTFn      13.007
HTH  PI OlTFt1     0.
                 VFRT.  ST7f .
                                                  VARIAPLfS

                                                       P
                                                  ! IO.PO
                                                 n.
                                                  HOP.
                                                                       DTST.    VERT. HIST.
                                                                                       a  IT. a cc <
                                                                                                  (r CE a.   cc cc cr
>-     tt (T
    a: a:
    tt


                                                      B153

-------
                                    RUN D-S-17

                  V1RT4BLF IS   TTMF     nvFR RtNfiF      -    *-1
                                         *-<  CC ffi (T
                                ec E a.
                            ic cc ic
                         a: EC cc
> tt
cc
                                        B1S4

-------
                TNOEPFMOFNT VJRIAHI F  IS
                                              RUN D-S-I7

                                            TTMf     OVFR
SYHRHI
HAX
WIN pt.niTEn
RF»ARKR
                                      HFPENOFNT V4HF4RLFS

                                    .A               R
                                  <3.?1IO        OR.SP7
                                 o.             n.
                                 VFRT. SI7F.    HHR. STZF
                                                                     n i s T.
     Y
 f>fc. 1 1 7
0.
VF.RT. HIST.
>- X X X X
                                                           >      V
                                                   B)55

-------
                RUN D-S-18
VAR1SBI.F TS    TIMF     OVFB RANGt
   0.             0.
   VFRT.  D1ST.
     V              7
P.            0.
0.            0.
 HtlR. OTST.     HPP.  OIST.














fV
-

>
V

>- cc cr
a;
cc *
C. 2 >-
a ff >
>.
V
>
>
>-



















t~



^



••




i-




^







>•
>•
>
>
>
>

>•
>

>
>

>
>

>

cc
c. a:
cc cr
a a.
cr cc
a cr








-i


i-




H




»>•















>•

J
y
>
*>
>
>
>
>-
X f
>-
>
X
X
>
>•
>•
»•


1-




f




»•
a
tO <£
CC ff EC
cr IT tt »•
c



>•









^







|M




1-



fri


a
> *•
>-
>
>•
>• »•
>•
>-
>
> »•
>








•» >•










t>




»•

a G
cc a: a.
a. cc a
tc cc a: >•
a.


»i




i-









t»









:
9
>- >
i >- »-
>- >-
v
>
X
»- »•
>- >
>
>
t




"* K



•* N









H t-







^


^ *•



a: fl) a
c cc a. ec *-
ic a: a
a


• »



i-




»-









1 ••

V
>
>
>• >
>-
> >
>-
>• >•
h








































cc
CL CC, CC CC.
a a ec cc
D CC


























                      B156

-------
                               RUN  D-S-18

INr>FPEN[)FNT V4RTA8LE IS    TIME     HVER RJN.'E
                                                      0.
                                                                     1 Ofvfe.S
                      DEPENDENT VlRfiBlFS
SYMRC1L
M4X PLOTTED
REMARKS
n.              o.
VFRT.  ST7F.     HnR.
n.
0,
 HHR..  mST.
o,
VFRT.  OTST.
                                                                                  a.  co it   cc
                        •< IT

                        ID -a

                                    B157

-------
                 RUN D-S-19
VARIABLE IS   .TI«F     PVFR
                   VARIABLES
srwniu Y P x ;
MAX Pi.nTTFn 57.^36 IP.SUU n. o.
MiwpLniTFn o, o, o. o.
BFMARKS VJTRT. OTST. RAO


t-
t-
t-

t-










>












>• a. cc
X
cc
cc
cc cr >
a
cc a. >
>
»-
»-
»-
- »-


- »-
y-
>-
>.

y-


>-
>-

- >-
>•

>•
i-
-
1- CC
EC tt
CC CD
x- ct
CC CC
a. cc
:


-




f
•4
»-
*•
»•
»•
^
H
:
:
V
>-
>
>
>.
>
>-
>.










c
X. CC
cc cc cc
cc cr tt
cc cc a *•
CD












-. ••

MIS HfiR. ni
i *•

1-
•« *•
,
•«>•»•
>-
>-
>- ^
K
*•
- ••
-• »•



- »•

a c
tt CC CC
CL a. a.
-. CD CC X t-
X



-1 C













— *•
— »•
ST. HOR. HIST

:
;
•4 >. H
V
>-
•* >- »•
V >-
>•
>-
k
*.
K



t-


X CC C
X tt CC tt -
cc x cc
a


- >.




- »•













-^ »•
- •-

V
•
^>
-1 *-
•



X
tt ct cr a
cr a x a
X


























                     B158

-------
                             RUN D-S-19

         Ni v*RI«Bi.E  is   TIMF    nvp.R  R*NGF
                     DFPENOF'IT V4RU8LFS


                                   P
MAY PLOTTED
HIM
    A
 P. 27??
o.
VFRT. SIZF.
                              n.
                               HHR.
o.
n.
 HflR. OJST.
0.
VERT. DIST.
                                                                              cc cc  CD
                                 B159

-------
                                    RUN D-LL-l
IliHF'Ptl«l>tf'l  VA«I*HLi   IS
SYMOIM.
MA* i-'ui'i H.I
MI" Ht.nl It r.
                    ••).
                    VI « I .  1)1 SI .
                                        HADllj.S
i>.
0.
                                                                                .  0[Sf .
                                          B160

-------
                                                          RUN D-LL-l
                                                         n  1)1-     C.I in    vs  Y  M
                             i(,t  -If-
                                         CH..I
                                                     ! It'll
                                                     I 1 tl)
^ — a a    a
                                                                B161

-------
                                          RUN D-LL-l

PLOT W  TO I  fllihY  MAT  (!) CEMKUH;  LDCATIU'-S (X,Z) AW)  SlZf  (S)  VS !l»fc

                        9b.111i

                       0,
TIMf. RAMifc
         I , X,
              , S
 1S9.U1SB1
0.
0.
0,
                                                B162

-------
                               RUN D-LL-l

     Of-  Kijiiril)«uf nutl'liu  SIGMA* AND f  (X
TI«f  HAIliU =
MAXIMUM  X,2,S
MINIMUM  x,?,s
6.J'ISO
                                                AND SIO««X?  (S)  VS. TIML
 1SO.U15B1
 lib.37150
u.
                                       0.
                                       0.
                                    B16?

-------
                   RUN D-LL-l

               GKAPH OF    Sill   VS ¥  AT  TIMfcS
UF
       Y     PuulTEO
      St?h  PU'i! ffcO
                                                        154.U1S81


                                                     101.3U5JS
                        T .T
                      c y^ -H
                      N^ AJ (U
                                                                   t\t
                                                                H-  AI  m
                                                                       -H   t»
                                                                  f\J  f*l   5T
                                                                TJ  K%
                                                                       5
                                                                •—  KI a-
                                                                     nj
                                                                         ^
                                                                           Kl
                                                                           i*l
                                                                                  j— 7


                                                                                    O1
                         B164

-------
                  BUN D-F-1



VAUlA-tLf  IS    TJMt     OVfH  KANtit      0.







                    VAUIAUI.kS
                                  jJ2.se
SYl-tHIL Y B X 2
I'.AX HLUtlFP 90.U75 ?0,8bl 0. 0.
"Ji. Pl.litU'l1 0. 0. 0. 0.
KfMAKnb VJ.KI. •
+.
i_


f.




-4 *•


-4



-4









*~
-^ >-^





>-


>- a: £
>- X -X
— x.
a: >-
•• *-
^
K



t-

»•


f



X
>-
._
>-
-t >-
••
>•

>-
J_


.




CO
_^ ^ r as

X 3J ""

.11
X





H k.
-< »•
-» b



-* *i
•^ !•
•H I-
>-
V
•H r-
>*"
-« > H
>-
1 >- C
•






•* f



-t ••

XI C
'.£) CC-
-c 2} £ 3C "
TJ OJ
:








-4 f
* *"• H« «,

"* H
•« *•
H ^



:
•« •
-*>•••



•< »•

-* ^
H )•








CC
•a: cc aa


)












•+ »•

•4 ^
** H
>- :
"• ^ f
>-
>• >•
•• >• N
>-
'
*« *•
•* f
•^ r-


•* *

H b.
•• ^



-» f

a

B cc re X
>










-* •-





-4 h

>-
>-
V
t >- 1.
V
K
* h

H ).

^ 1-
H c
•4 h


-* *•

-1 (•





03
; ±> a: "~




-« «•














H V


•«
-t
f\J
-• »
CO
•
•4


«
IT
« fO
•C
•



J^
o
-t r\.
a-











i-n
yi
C

Aj





B165

-------
                              RUN D-F-l


 NUEhti OH.l  VA«IA,JLF  tb    Tim      (ivt K MtNGh      0.              lUOh.J
SYmOl
«A« i>l in I
  KCCtnliKiNl VA*I«H| FS

 ft                ,.               »                Y


            ll.              fc.              p.
I. Sl^f.     HUM.  SI2I      hl>U.  01ST.    VH<].  OISI.
                                                                    cc r.  2.
                                    B166

-------
                            RUN D-FS-l

            VAMIAKLF  IS    TIMt.    UVCK  KANGE      0.
                                                               17.6
SYMBOL
MAX PLOTTED
MIN PLUTItO
RfMARKS
                    IMPENDENT VARIABLES
    Y
 J5.365
o.
VERT. OIST.
 12.960
o.
  RADIUS
     X
 13.380
0.
 HUH, OIST,
0,
0.
 HOK, OIST.



-. ,.



-* „


'


1 *
1














>-« «•




f-» 1
1. CD
X X
35 CO >•
CD cc
>- 33 >
>-

>-

H-. >. *

>•

>-
*— 1
>- X
>- XX
X X
•W^J•*J'^J^4^J^J•*J^Jn
•*
^

-«



*





—
—

>-

>-
>-



>

>-

>-

•« >• -r i
X- CD
>- (X) CD
a? fc
> 1C
B CC ••







X
X
XX -
X
X

X
X f


i.iN»Njfsifs;rjfsiMisafs(f
t.


i-



b
1
>-
>- ••
>"
>-
>- ^
>-
>- f
>-
"



»





CD co a

tC 3D 00
tc cr a
CD X -



X
X »
x

X
X
X *
.








f


iJWNJfrfNlrvNjNJrMfV?
'
>-
>•
•* >-
>-
>-
>-
>-
>•
>-
•« >-
•

> .


1
•



X
-« X »-
X
X X
X CO (D 3>
X 21
M a> -3d i x •-
C X
X
X











-t t-












jrsiNjN4Nir\jr^fNtr>4is]n
                                                                              ^4N
                                 B167

-------
VARIABLE IS
                 RUN D-FS-1

              Tint     OVER RANGE
                   352.33
SYMBOL
MAX PLOTTED
HIK PLOTIEO
HEMARKS
        DEPENDENT VARIABLES
    A
 6.«658
o.
VEftT. Sin.
o.
 nn». SUE
 122. sb
o.
 HUR. Oisr.
                                              J6.88&
                                             o,
                                             VERT,  OIST.
                    B168

-------
SSO.O'JSbb
                     771.18U9.S
RANGE 01-    V    f'LOTftO
RANGE OF   COO   PLOT1EO
                            RUN D-FS-1


                              UF    con   vs r AT
                                     0.
                                     o.
  -1 ,0000000


103.914t>0
8.HUS8893
                               B169

-------
                                        RUN D-FS-l

PUC1T OF TOT 80HY MAT (T> CtNIROll) LOCATIONS  (X,2>  AND  SUE  (S)  VS TI«E
0.
o.
      H T,X,Z,S
MINIMUM 1,x,Z/S
 28.S73J38
0.
 3050.2918
0.
o.
                                            B170

-------
                               RUN D-FS-l
PLOT 11F BOUNDARY  HiTtRI»L S1GMAX A-NQ Z (X,2) AND S1GH»XZ  (S)  VS.  UMt
Ting
M4XJMUM X,2,S
HJNJMUM X,2,S
                       0.
                                   BI7J

-------
530,
        RUN D-TS-l

   GKAPH UF   SI/E  VS  Y  AT
771.1819J           Ib03.8i72
        E of    v     PLOTTED         o.
    RANGE UF   SIZt   CLOTTED         0.
  -1.0000000

103.91160
                                                       •« (M .-« nj —• r\j  —r
                                  BJ72

-------
                               RUN D-FS-2

              VARIABLE IS    TIME    OVtR  RANGt      0.
                                                                    17.622
                      DEPENDENT VARIABLES

SYMBOL               Y               B
MAX PLOTTED      3i.38S         12.980
»1H PLI1TT5P     0.              0.
REMARKS          VERT, DJST.      RADIUS
      X               2
 n.jHO        o.
o.             o.
 HUK,  DIST,    HOR. OIST.
                                                                   X     »-»
                                                                                             in
                                                                                             o
                                                                                           ^ nj
                                      :o a x x
                                CD CD      X
                             CO GD
                       X CD OS
                     CC X
                * * 30             X
   >-     X 03
                                                                                             O
                                                                                             *H
                                                                                             r^
                                                     jf*jrsjrs(fN(f^i*4f*JfNiMrvj|»jisjf^'y^NJ'sjrMM'sjNJ'*
                                                                                           nj
                                                                                           ni
                                                                                           •e
                                   B173

-------
                            RUN D-FS-2

INDEPFNDEN1  VARIABLE IS   Tint    tm R RAMGt
                                                 0.
                    DEPtNDfNT VARIABLES

SYMBOL             A              B
MAX PLCniED     6.U658        58.91H
MIK PLOTTED    o.            o,
REMARKS        VERI. SIZE.    HOP. sizt
o.
 HOW, oist.
                                                              Y
                                                          36.886
                                                         o.
                                                         VFHT. OIST.
                                 BI74

-------
530,01856
          UF
    RANGE UF
 Y

CUU
   GRAPH (JF

771.19000


 PLOTTED

 PLOTTED
RUN D-FS-2


   CUU   VS  Y AT TIMES

         iSlJ.OOdS


     0.

     0.
                                                            •1.0000000
                                                                    rvj
                                                                    K\
                                                                     •
                                                                    «r>
                                 B173

-------
                                           RUN D-FS-2
PLOT 
-------
                               RUN D-FS-2

PLl'T OF BOUNDARY MATERIAL SIGMAX AND Z  CX.Z) AND SIGMAX*  (S3 VS.  TIME
TJht
MAXIMUM X,Z,S
MINIMUM x,Z,S
 23018.100
0.
                                          0.
0.
0.
                                  B177

-------
530,0(1856
                             RUN D-FS-2
   GRAPH OF
771.19000
                                   SIZE
VS Y 4T TIMtS
1513. 0
-------
     SJO.01856
RANGE  OF
RANGE  C^
                            RUN D-FS-Z

                     GRAPH  OF    XO    VS V AT  TIMES
                  771.19000             1513.04(15
PLOTTED
HLUTTED
o.
o.
                                                                      -1 ,0000000

                                                                     O?.7i)J 15
Ml    *-«
                                 HI
                          JV
                            r\t      fO
                            f\t       t
                            ru ru
                          r~l ^4  f\J r\J
                                               K1 Kl f^
                                                     r
                                            AJ *\J  IM
                                                     AJ Aj  (\t «-»
                                         B179

-------
530,04656
         RUN D-FS-2


   GRAPH OF SIGMA-X  VS Y AT U«IS

771.19000            1513.0<4
-------
        bJO.01856
         RUN D-FS-2


   GRAPH QF SIGMA.Z  VS  Y  AT  TIMES

771.19000            1513.0«fl5
             KANGt  OF    Y    PLOTTED
             RANGE  OF SIGMA-Z PLOTTED
                0.
                0.
  -1 .0000000


102.7*115
   i,8625
Kl f 1^ -o Kl
                         • * M
                             nj
                            — fw

                            *-  (V
                            -.    rv
                             «  IM
                                         B181

-------
                                 SUN  D-2S-1

INnEFF'iDF'lT V4M1SPIF.  IS    T T MF.     OVFR RtNGt      fl.
"•'IN
                  0.
                  VF.01 .  01 ST.
      P
 ?A>.77Q
0.
  3407'IS
                                                    HOB.
                                                                   o.
                                                                   o.
                                                                        .  l)tST.






*•





























1-





>

>.
cr
tr v
> a. 3.
2 >
i >*
c:- x
tf- >- x
a.
x
>- X
X
1-
»-

>«-
*.


»-
*-






>•

>
>.

V
V
V
*"
>.


X
>-
X
>- X
X

X
X

X
X

X tt.
x or
a tt
a. u
> ti
a











»-
t-

*-



t-
:
V
k-
>-
>- »•
>~
>•


>•







X
X X
X
X
> X
X
X








a
a: or a
a a cc
cr x
cr cr

















V-
>.

1-
.


>-







X X
X X
XXX
X
X X











a
cr a: n;
a. a. a.
X CC C






















t-
1-
:
>- V
>- >-
>- V


»-


X k
X > X
XXX
X X
K












CD C- £
or cr a »•
tt- QI £f
£H


-i »•






















^ > »-
H V •— '
•
'


'
t~4
X X X X
X X >• X
4 X




-,




_


.
a
or a, u- u.
c. cr a-
D a.














i











•

                                       B182

-------
GRAPH MF WtSTF

RANGF IF X
R4NRF np cnwcFM
                                D-ZS-I
0.
0.
                                                            .70000000
                               B183

-------
                  RUN D-ZS-I
                                                         9.ft?
••TTFT     0.
5          VFPT.  SI7F.
                 T  V4RI4RI.FS

                       p
                   R6.UOO
                  0.
                   H[!P.
                                         0.
                                   HHH. HIST.
                                                              Y
                                                          97.7S6
                                                         0.
                                              a: !t it   ac T m a
                                                             eta:   aj c. a: a. cc
m    «—
                      B184

-------
                           RUN J-L-I

         VJtfHBLF IS HO°.0!ST.  iwpo  R4NCF      0.
                                                               euj.sa
                  r>f 0|:.T>EHT  V45J nil ES
 pLr,lTrr     ft.

jUKS         VFPT.
     i=              r              ?

o.             o.              o.
  H40IIIS       FU'JO CONC.     K'.O. TIST.
                             B185

-------
                             RUN J-L-I
GR4P,<
                        PUOTTE,
                                                            ,20000009
                                B186

-------
                             RUN j-L-l
      MIRUT V4RI13LE  IS  W.DIST.  fVFR RiNGE      0.
                    r>FPF.vDENT
>-i'« PLHTTFO
               o.
               VFPT.
0.
0.
 HOP.  OIST.
 SI.6SU
0.
VFPT. OIST.
                                 B187

-------
             RUN J-L-Z

    IS  KOR.DIST. r\'F» R
             VARISRLFS


                 p
                           0.

                           i-LUlD
                                          n .

                                          0.
-0».  01 ST.
                                                      tt* X — X a. a. -   a. a:
  a:
a- a
                B188

-------
                        RUN  J-L-2
ri"-""F'''Tc/nii"'."S
                                                                  .91 an
                            BI89

-------
                  TN1)EPF.-DKMT  v.PI»RLE  IS
                                                RUN J-L-Z
                                                       PVFP
                                       A               R
                                    ,7.?77         1(19.11
                                   n              0.
                                      T. SIZF.     HnR
     Y
 S7.32"
 .
VEST. D1ST.
»-.   a. a.
                                                    B190

-------
                    RUN J-L-3

VARIABLE IS hUR.OIST. nVFR RANGE      0.
SYHHIIL
MAX PLOIUD
MIW PLiniEO
RtXSWKS
        DEPKNDENt V4H1ABLES
    y
 /6.J25
0.
VfKT. DiST.
                 0.
                   KAOIUS
     c
 .80000
0.
H.U10
                                                   1S78.J
0.
0.
 HOW. 01ST,
                      B191

-------
                                            RUN J-L-3
                INOEPENOFNT  VARIABLE IS HCW.D1ST. OVER RANGE
0.
                                    DEPENDENT VARIABLES

               SYMBOL              A              B              'L              Y
               MAX  PLOTTED      2«.679        131.10       0.              90.887
               HIN  PLOTTED     0.             0.            0.             0.
               REMARKS         VtHt, SIZt.    HOH. SIZE     HOR. DIST.    VtKI. OIST,

   33 03
   (D
^ 30 CD
                                               B192

-------
                               ^UN J-JL-4

                        TR H00.01ST.  I VFfP  RANGF      0.
                                                                       «77.
•MM  Ptr.T

«F-*BKS
                 >

VFST.  fJTST.      R40U,S
 .„„„„„
p-              0.


       CONC.     HOR .  OIST.
                                                                     rr cr n. cr a
              tr a   «-i
                                     Bigs

-------
                                                RUN J-L-4
GPAPH OF


RANGF OF  X

RANGF PF
                                       in"S PLOTTED
                                                                                 <>77.ii787P

                                                                                 .POOOOOOO
rv,
K»
•c
ru
                                                     B194

-------
                              RUN J-L-4
         r'iT viRiaSLE  is  nnR.oisT.  PVFR Rsur.E      o.
SYI'HOL               A
"«x  PLOTTED      i'i.«^6         qu.b
"IfJ  Pt'lTTEP     0.             0.
PE>-4KKS          VE»T. SIZF.     HpB.
0.
                                                    '.  HIST.    VEPT. DIST.
                                                                  a-  a cc
                                                                          a1 -* a  ru
                                   B195

-------
                                                  RUN J-L-5
                             VADTS/HP  Tc
                e Y«nm.

                MAX pj PTTfr

                "T>* °l nTTrr
 ifr.IPO
0.
                                                                  0.
                                                                  Fij'rn  rnvp.
                                                                                       LL a cr   »-
  (_ (C
  u a.
a. u. L.     f
D   <_ r*» N.
a   P". rx. c-
                                                       B196

-------
                           RUN J-L-5
,~ F
OF
o R (. , 7 p c p 7
                              B197

-------
                                                 RUN jr-L-s

                              VART4BI F  TS  HOP ./ll ST . OVF3
                                   If-.t 1Q          I I'.31
                                   .               n.
                                  /^OT.  ST7.F.     H-.V».  ST7P
0.
 HOP.
 5ft.f


VFPT.
                                                 >•   > »-*
                                                                                             a a a' a cr
                                                                                                       a a a   a.
      c a
<   a. a:  N
    a   i^
                                                      B198

-------
               RUN j-s-i
V««IA«LF. IS MPR.DIST. PVER
                                     0.
MIM Pi.nriFn
PFMAMKS
o.            o.
VFRT.  OIST.     RADIUS
                                    C
                                .65000
                               o.
                               FLUID C
                                          n.
                                          0.
                                                  .  oist.
                    B199

-------
                             RUN j-s-l
R4CGF CIF  X
RA'JGf OF  CPNCf'TPiT JONS PLHTTf.n
.ISOOOOfiO
                                  B200

-------
              RUN j-s-i
      I? «0».OIST. PVF9  RAN'Gf
               VsRIiBLE?
 13. "f        7Q.6P5        0.              Uh.J«<0
0.             0.             o.             o.
Vt«T. S1ZF.    HO".  SIZF      HPB. DIST.   VERT.  OIST.

                                                              
-------
RUN j-s-2
tv
e


»-








>
>-
>_
>.

>•







>•












i
a 2
3.
<_ u
j*. n_nTT*-r o .
fiiCKP VP
* *-






V
X 1-

V
V
>






-












tf
I X
a.
ft 3
a a
.



1.
c I . !> I S T . ° 4 [
< !•
>.























CO CC
cr x
cr a
a~ a:
cr r.










0.
HUS FLUIO C
-i »
- t-
-4 >->-»•
>-


— t-













X
a
a: x
a c
-23 •-
a x















0.
n»-c. HOR. OTST
-t t-
v
i-

H >>

-I •-




-• 1-





d CL a a
x r- a
u a »•
r ct



-* *•
















-4 *-
•



-1 »•








a
C! X £1 Q, ££ Ql J'' £2.
•

*-








»~














rv
5j
(C


r«
^


IT
ru
c














t^>
\f
c
-~
<\,
•





    B202

-------
                                RUN j-s-z
      OF  X
R4Nr,F OF  Cn
                  Al fON/S
0.
                      12C6.607=1
                      .! snnftrjnp
                                   BE03

-------
HUN j-s-2
T*nFFF»--nF».'T VAOI46LF IS KJP.OIST. OVFR QiN'GF 0. 11330
riEPpKOF^T VARIABLES
<;v*HrL A u 7 V
K-i1* PL Miff i0 AU.SM p. "9.526
..T.. PLOTTFI <* o. o. o.
PFM4DKS VF.OT. SIZF. HOD. 5 j ?E *C». OIST. VFRT. OIST.
v >- »•
»•
> a
> <

*"
> >•
< *•

>•
< H
«•



»•




> t-




"
*"
(•

<



>- »-



<
rr
cr- tf\
t£- 0.
0. O
cc*
a- u »•
1 CC
a a.
a.
i »•
-> *•
h
:

-i h-

*.
* H


•« H
« < H
-i t-


-• 4 H




•« »•




« OH
'


«
CC
CD
a *
0"
cc
X

OJ
cr
•









-i •-
>.^>>v>.
•

H *•

•* *
»•


p« H
H •"
-1 C


^ »•







a*
CC ID
0 »-
«L X
•* 00 < "
•« <
<

*•

1 1-









t-




f
>• > f
;

t-


*•


>•




»•

(
O3 OJ
a cr.
2j *•
a cc
cr


*•

c


•a 4
< -



H
*



-t
H

cr. x
- cr a. a
as CD
cc














- > >









cc cc a.
cc a 3* a











H
























/v
a

-------
                               RUN j-s-3

 INUEPfNDtNl  VAHIABLt IS HOh.OIST. OYtR RANGE.
                                                     0.
 MAX PLUITEU
 MI'.- PLorrf.o
 KFMARKS
                      DEPfcNOK«7  VARIAdLtS
                    Y
                66.SOU
               0.
               VERI.  OIST.
     a
 £0.351
0.
  RADIUS
     c
 .ebooo
0.
FLUID CUNC.
0.
0.
 HOR. OIST.
  : •


>- »-<
                                                                                         »-. r\i
~    x>
    t
  *J
                                                                                           IT
                                                                                           o

                                                                                           ni
                                   B205

-------
                 RUN j-s-3
VARIABLE  IS HOU.OIST.  UVEK HANGE
                                                     0.
S1MHOL
MAX PLUITEO
HEMAWKS
                0.
                     ,  Slif..
                    VAHIIbLtS

                        B
                    20.3bl
                   0.
                    MU».
0.
0.
 HOW. DIS1.
 06.801
0.
VFHT. OIST.
         >-     <
                                                               to a: 03 cc CD as

                                  B206

-------
                            «UN J-S-J



                     GHA^M Pf   COM   VS Y  41  UMtS
i. A.
-------
PLOT IIP iui
MAXIMUM l,X,/f,S
M1MIWUK 1 ,X, i .5
                   RUN j-s-a
I)  CFMKUin i.i'CAUUNS  tx, 21  »MJ Sl-!t (S) VS
 VBU.hiJXJ            10111.Pil
).                    0.
0.
0.
                                             B208

-------
                                     SUN J-S-3


PL01  UK H()IIM>Al
-------
                                                   RUN j-s-s
                                            C;KAP». Of    SlZt   vs  Y  «t  TJHtS
                                                                                        10U1 .831
                                          HLOTIKI)
                                   SUE-
                                                           0.
r\j --vj nj IM (V AJ nj
                                                          f\j nj <\J ru rv
                                                                                                                   *-* r*
                                                                                                                     (C
                                                       B210

-------
         RUN J-S-3      Fluid part of waste
I ISi'S.JIO
an:   vs v  «i  Tints
     -1.0000001
»~
»•





f\i f\» f\i
r\. -V -\J r\; -v
*iA"lGE "f- CO
* _
*-
_
>-
».
r-
r-





-. *•
.
'XJ (\.
*V -X!
HJ nj
nj nj
u
PLiU TtO
L- PLUTTtD
i *•
»-
r.
*.
*

<\1
AJ
r\i
(\l
*M
in
-, r^ .-
f
0.
0.
•4
OJ
nj





                                         -1.0000000

                                       103.00000

-------
                            RUN J-S-3   Fluid part of waste

                    GWAHil  Of
                                SIZE  vs  v  AT  nuts
                                     -l .ooooniMi
                                  0.
                                                           -1.0000000


                                                         !0c!.000fl0
wauct 'If
            SUF  PU'lTED
                                J1


                               B212

-------
                                              RUN j-s-4
                              VARIABLE is HOR.OIST.  ovm  RANGE
                                                                                2376.8
                  SYMBOL
                  MAX PLOTTED
                  «rw PLOTTED
                  REMARKS
                                      DtPENDENT  VARIABLES
    Y
 79.307
0.
VEHT. OIST,
     B
 2U.791
0,
  RADIUS
     C
 .85000
0.
                                                                   CONC.
0.
0.
 HUW. OIST.
ai
o

<\j

                                                  B213

-------
                              RUN j-s-4

            VARIABLE IS HOR.PIST. UVER RANGE      0.
SYMBOL
MAX PLOTTED
     DEPENDENT VARIABLES

    A              B
 21.012        72.515
0.            0.
VEHT. SIZE.    HUR, SIZE
o.
o.
 HOK, DIST,
 93.086
0.
VERT, DIST,
                                                                        CD CD CD SI CD
                                                              i> m x  >t
                                  BZI4

-------
                             RUN j-s-5
                      !S  HOR.01ST. OVER
                                                   0.
"A*
"IM
                0.             0.
                VFHT.  mST.     R40IUS
               n.
n.             0.
Fl UIO CONC.     HOP.  9TST.
                                                                         cc en cn it o: a: (
                                  B215

-------
                         r-s-5
                   RU1
                                                        .15000000
X                    /•
r->MCEf T°»Tin-)S oLf)TT'
                         B216

-------
TH"fPF"IHNT
                           RUN j-s-5

                  IS hflP.DIST. PVFP  *»*r,E
PflTTFr
            VF»T.  SI7F.
                              0-  "           0]
                               nn».  SIZE      HOB. nisi.
                                                        VFRT.  OTST.
                                                                      a. a. a ^
                              BZ17

-------
                              RUN j-s-6
JNDFPENUFNl  VAH1ABU  IS  Hnk.OIST.  UVFH  KAWU      0.
\ihb.b
l>EPf HOtfcT VAKiAbl £S
SY"H 0, 0. 0. 0.
RfKAWKS VtRl. UIS1. KAUIUS FLUID CONG. hl)R. OIST.
»-« HH »-l H* fcl i-i _




*\J
^ *
S3




«
if*

*"» *•
•C
•






.ft
o
ru -
9
•










•*i
^
'N;
•













LJ


-t *•





•* f




•4 *.





'u
3
>- -
>.

^ *"
*-

LJ >




>•
U >•
" >
>- *"
t^
^
;_»

^j


v»
U J
X
— — j X Z ••
X
(J X

X X" - f

J.5"
*•
*•


•


















:
X -2
OD 07 11
g; 'W
X >J
: M
N!
-1 "^ fSJ f

NJ
1






4 >•
4 *•




1 |
>-
>
1 >• ••
^
•« > f

•







1 t-














•< »•

« -M CC I
fsi X
M x £•
D NJ
.N(
I




•* «-









-» i-
a
•« •
>-
V
i_
•* V (.
>-
>-
^
•* ^
H b



•* *


H •


-" c

« f
1
fsl
H ^ »
•s*


rsi
•« Nl t-
1S(

XI
NJ 3
* Xi I
E » =1:C
1 "" t-


-• •-



•* *•


•* »•




-i i-




>-
-t >- »
-
"4 f

H F



H c




H 1

!SJ
-. rsg ».
rsi
fNI
1 1-
Nl

NJ
4 ••
i






co r< a


a? D
? c&
i -



















v
>- >- v
•
•4 1—

H

'
rvj
.NJ
•* H
H t—
rsj


rsi
-i •-


•4 •-


H H

4 >_



3
2 X 33
1C CC H
X. XI D
I —






-< >—









-i P




-i •_


C
— a- .0 «T a- ^
ru tn j\ e\i •
• ••*-> x
•o r*. nj r* ji ^
ff- o ry rn o f\
                                 B218

-------
ViMlAKLt  IS
                    RUN  j-s-6
                          l"Jt n
                                             0.
SV-Millt.                »
"4<  Pl.Ol Tt L1      1". 161
Ml'<  HL'll 1 t L     u .
W^AKuS          VtKI . St'/t.
                      •)« ,^>W
                     I'.
                      HilK,  S17.L
U.
 HUH. HIST.
0.
VFW1 .  I>I SI ,
                         B219

-------
hANRL lif     Y
KAfvGF I If    Cl'lj
                            RUN J-S-6
                     GWA^H UF    CUII   VS
0.
0.
                                             AT TIMLS
PLunEO
    I TED
I OZ.OOOOf)
i!S, 790657
                                 11
                                 ! J
                               B2ZO

-------
      IF  Tor  HURY

11«E Hinr.E
MAXlKIJi".  T,»,2,8
    . <5tt7.il
D,
                     HUN j-s-6

            LOCATIUWS  u,n  AN
                    0,
                                         0.
                        B221

-------
PI.HT  Of  IIUMNIIAI-Y M
                                    RUN j-s-6

                               S1I.H4X  AtJD Z  CX,^>  AtiD
HAX 1 Mllh  X r L t $
MINIMUM  X,Z,S
                          0.
                                                                    (S)  VS.  U"t
                                                                          0.
                                         B232

-------
   AM;E OK     T     PLUTTFD
   ANtJF OF    SUt
                                 J-S-6


                      GRAPH UK    SUE   VS Y  *T
0.
o.
102,00000
2U17.2363
•M  X" AJ r\)
                                B3Z3

-------
                    GK/SPH
                           RUN j-s-6
                                 xu
hAH(,t OK
(•'flliut OF
taOITfcl)
t'LHIl tO
                                       VS V «1  ims
                                       3173.S227
0.
n.
   10302.*

102.00000
2176B.522
               i AJ f\t r^ IM
                               B224

-------
                       
           •X   O/   nj
                                                               •u rx -v. *\j "v; .'
                                                              BZ2S

-------
           RUN j-s-6
I 1 . J'((J6

  KAwr.f I.IF     r
  HANfifc OK  S1U«A-X
          OF SKJMA-X VS  Y  AT  TIStS
2578.5763            J'l7i.S?27
   llF ttU
                  0.
                  1.
   10302.J

102.00000
3192/J77.0
      "•i f\ nj

   j AJ AJ —•
                                                                       < 
-------
i'Ol ! . j
                              «UN J-S-6

                               Oh  SJBHA-^  VS  y AT lints
                 ir    ftm i to
              SlliHA-Z t'LUlttll
?.00000
uojua .0
                                  B227

-------
201 I ,
        GE OF     Y     PLOTTED
    PANG*. UK SH;MAXZ
                                 RUN j-s-6

                         GHAPH  Uf-  S1KMAX2 VS Y AT  TJHfcS
                                       o.
102,00000
                                ~  pn
                                nj
                              I\J Kl
                                   ~H ,-1 M   ft;
                                                                           f f\t      ^
                                                           IV     «O ^

-------
                                  RUN j.s-7
   INfiFPfUOFNT VARIABIF  IS HDR.DtRT. OVfR RANP.f
                                                      I).
                                                                    10 76.'?
"AX PinTTfn
HIM PLfirten
                        r>EPFwDFNT VARIABLFS
                       y
                    60.BS6
                   n.
                   VPRT. nisi,
    c
.85000
                                   RADIUS      Fl UID rriNC.
              n.
              i>.
               HOH.  f)IST.
u u «; u
                                     B229

-------
                             RUN j-S-7
             V4RI4HLE IS HOP.UIST.  OVER WANGf
                                                    0.
                                                                   11174
SYWROl.
MSX PIOTTFT
"IK' PLPTTF"
     r>FPF.NOFNT  VARIABLES

    t               f>              7
 IB. 689         IfJ.hfl        0.
0.             0,              0.
VFRT. SIZF.     HOH. SI7F      H()R.  OIST.
                                                            0.
                                                            VF»T. OIST.
                                                                          ct OJ 3?   a
                                  B330

-------
                            RUN j-s-s

            V4RI4HIL  IS HW.niST.  HVER  R4NGE      0.
                                                               1136.5
SYMRPL             Y               n
MAX Pi.nrrEO     5'i.oq.j         11,  1^3
"IN Pu>rrfr    n.             0-  '
               VFRT. mst.     'wsnius
     c              2
 .65000       o.

^             0.
HUTU f.ONC.     HCIK, niST.
<_)






















1-


o




*-
>
>
>-
>
u >

>•

>-
>- *•

>
>•
>









.
l_) X
(_' X ~
tj a:
oc
(_> a z
u i
a.- a *_•
x c;
X U. LJ
x «_; u <-' LJ

,-





















;
>-
>-
>-
>•
>-
>
>•
>
















X
cr a:
- x
CL
:o
i
a.
i a.









ijcjf.jrv.r-.rsJNirsftsjrsir
^ >~
*-








*~


*.
;
>
>- c
>
>
>-
>-
>
>
> i-
t~








^






a
cc a
x
(C X
a:
a: *•
x x-


>•







x I-






wtvjNjrsiis)is.is.isiiNitsir
f
i.




i-

v a
>
> »•
>
>
>-
>- *•


i-







»-


•* *•



t-

•* »•

c
a ca
X X
<£. CC
CC
> a: *•




*.








- i-






— »


j Kj(sjMisjrvN.rNifsfn
- *-

>- a
>- >-
>-
> >-
- >- H
>•
h

(.


4 »•






~ f


1 «-
i »-









CC X. X
cc cc a?
1 X. X •-









-< i-



-t »•











-i »•


•* k-
>-
X



•* »•













- r-


- >-
- »4


-* I—

•* >-•

•

-• ^«
1C
. ai a. x cc x- a. x










- »-








»—






- i—


jrMfs;iNlhsjisjNjrs)rMfs*fi.r«.^is*rvfwNJNrfw M
                                B231

-------
                 RUN j-s-s
VAHJABIE  TS  HflR.nlST. OVFR  BANGF

        DEPFNDFN1  V6-
>
•* >- N
-
< •
>• *
•* ^ *
 < C

>-
- »•


-. <. *-




4 *


V
4f





- > ••


~< > *•



t
SO
-« CC »•
•« cr aj
a. a
- cc a> »•
CD
FMARKS VF
-« »-
i »-
,
V
•* > t-
-1 »-
•• »•
•* »•

« t.
-• *.
•* K
<

-1 »




1 < ».

«





•1

" «
CC
CC
(T H.
CC
a:
-• CC. r,
CC
?

•« r.


-« h

^T. SIZt. Hll»,
-! »•
•
•4 •"
1 *•
W *•

-t >-
- *-
-1 t-


t •-




-( *•

1

CO
- CD •"
£
a.
R CC
01
I - > *-
- »•
-« ••



4 1-




cc
CC X!
CC CC
i 02 H
CC CD
,










• < i-
< < <
<
t h







ST. VF.RT; OIST
>-xi->- >>->->-

H »-

-t 1-


•* CC X CC »-
C CC
CC







-> 1-




M ••




« ««. <









'
•
- ^
^ »-


.
CC X CC
x cc a. cr
L
-1 1—

















(





f-l


^

•
C
o- r\t ^ r-. c- vC
• . • . »a
o- r*i *c a- i\j o
*\i *c cr ix' x ^
B232

-------
                               SUN j-s-9

             VAHltlll.F  IS HOB.OIST.  PVFH
                                                                   1079.S
SVHfH.
W4X fL

"T11 PLf'lTfil
                                V4HURLES
    Y
  J.9I a
                11.
0.             n.
VFRT.  HIST.
                                               o.
                                               H inn
     o,
     o.
;.     HUH.  nisi.
                                                                          a. a. r c. 3; a. a: i
                                  B233

-------
                                RUN j-s-9

              VAWTARI.r  IS Hf.m.nlST,  nvFR  RANf.E      0.
                                                                          . u
SY*HI>|.
«IN  Pi.PMfr     n.              o.
                 VCHT.  SI?F.     HIIR.
      7               Y


0,              0.
 HHO. BIST.    Vt»T. 'DIST.
                                                                           « >•   > > x >
                                                                             cc   a. a x a
                                                            <   < 
-------
RUN j-s-io
                      c.
                                    *.aw
SVMfjnL V ,; C ?
MAX PiniTfr. si.«*o« is. o)7 PSOKO o
"IM PI mur n. o. n. o!
~

—
A.
a
QC
a
j~
"O
X

V
c
•X
o
•















J-
c
A.





;
*-
•-









V

<-• >- *"
>-


>-


i- >




u- >
>-

L.
>-

•_
>•
^

•Su ^*
«- ^
C '.-
li U
a <_• <_ i_> «_
•• F M A k K 5> v F
p.
-
^
*_



„
•-

>- •
^ >•
>
V
V f
>-





















3 2.
3. i
.




M i . DIM. PM
* «-
^
>_
(_.



> v>
>-
>• -
>
•


t-
•














X Z.
e. ci
2 Z
x ar
CC i
rr
r







">JUS F! Ujn C
- ^
>-
I-
>. >- •-
V
>-

> >• *.
>
>-
f.
».
!•












a;
x c:
x cc c
CC 2.
X 2T
a














l^C . KflP. 01 ST
•• »-
:











»-

(
E i CC 3
a: =• J-
- EC X i >-




















-
•












.j.




















•



     BE35

-------
                               RUN j-s-io
      i Dr«JT VA»I*8I E  IS  HflK.OTST.  nvFR
                                   n.
MAX Pl.PTTEr
         NDf.'NT VAPJSBIFS

    »               H              7             Y
 1 5 u 1 u        *M . HSfl        f1 •              ^1,900
n.             o.             ".             n.
   f, S1ZF.    HOB.  SIZf      HOP. OIST.   VERT. DIST.


rw
3 f
4,

CC
J-
m 1-
.£•







IT
C
rv •-
CJ
•











H^i
iT
v>
f^











> I-
>• >-
<
*
4
>- a
< ^

< »-
<
>-
*•
^
•(
•* »•
>
<


V
- -C I-





<


>•



< c



•* f
*•


V

>•
-* f

. « . |
X
er
< tt X X
X
< X
x a. •
< cc
x
X

>-
>• > H.

•> ^

H
;
- i-


- K-
<









*

<




•C

rf *•
X
£
- tr *•
x

X
a
c.
" c










>- a
V


















i
X X
X
X t-
X
a:
< x
•» X < f
" «
<
1







>







•" *•
>
>• V
- X •














x a
a: x
c x
•« X> X >-
c
1









< «r K
< < <
< < •



-i t-



— »•
- >- >->•>- r







-* H

XXX
x c a x x














i-






«,.













CM
- 51


et
IT
'".







IT
C
n.-

•












j"
c.
rv











                                 B236

-------
                               RUN j-s-n
     fwUtNT  VAKUHLf  IS  HIIH.OIS1. UVtK  MAMGI
                                                    0.
                                                                  80«.<)0
SYhBUL
MAX PlU
niN PLOTTED
Kt «A
                     DtPF.M.lEM
 b!.757
0.
   l. OiSl,
                                 KAOIUS
     c
 .85UOO
0,
FlillU CUflC.
0,
0.
 HOW. OtST.
                                  B237

-------
                 BON j-s-ii
VARIABLE  IS  Hlitf.DISl. jjVhR

        iif.PtNDtNl  VArtTABl.tS
H/iX PLnnf-1) li.bbO 93. Ol/ 0. 51.747
MINI PLOT i ED o. o, o. o.
K fi W A K K S '^ L
;
>- >-
i-
>- t-
>->->->*
«5
<
t— . t-
<


-Cj
l~-t *-
<

«i



n
x
)
KM . S! ZF . HuR
^ t-
>- >-








;
3? E
£
X
0^
22
X
X
<£
-J It
^
•j- >-
>• y-
>- &>



^
'.C :£
CD 0^
X













< *5
- ""

X X)
d1 X ^3
3> X1 30
:












































                     B238

-------
                                «UN J-S-12

                       IS  "Uk.i'isi. HVfcfc
                                                      0.
SYl-BUL
••')'
       i.' llth
       >! II 0
                     .  HI SI.
                                0.
      t               i
 .BSOod        0.
0-             0.
Hull) time.     Milk. OIS1 ,

                                    32)9

-------
                                         is
                                                    RUN j-s-!2
                                                        UVI.H
i'AX  cij'i 111;
H]N  I'LllIILI'
KL"AHK.S
                                  0.
                                  VtHl. S12f-
 Ilh.7i        0.
0.              0.
 HIIK.  SIZl       >•
C t S 1 .
           66.U61
         0.
         V I" k 1 .  I)) S I ,
<:     xxx
                                                      B240

-------
        RUN J-F-I
is HUK.OISI.  nvfH
         VARIABLES
SI
WA
»J
Hf-
_)













t_t

>•'
>-
>- l-

>-

<_) >-



>-.
>•
UJ >-
>-
£
>- -
Li

>-
.*•

U>


<— )


u ai *
m rsi
o aj
CO rsi *•
O OJ rst
03 fsj
U 03
(J CO ^sl
£ U *sj *•
X rst
X fsj U U
IM rsi o u o
MBOL
X PLOUtO 46
w Ptn/rto o.
HANKS VF.H
•«
•* K
-» f.
*
•• ^




-1 t.
t *.


•
H >. h
V
>-
>
*•

"" 1-
r-




•* ••



*.


f


^
•si
Q
-» fsl 33 U >•
rst t-
fst (C

rs; (£
rj >.
D
I


fe







Y fa
•S12 13.11
0.
I. tUST. RAD1
H »•
•«
•«
•* *•

••

*"
•• >-
>•
>-
*"
•
-4

-< •"

•• f-



1

•sj
fSI
rsj *
01
rst

Nl x
fsj
.
J CC &
£ ^
£
X1 3D


-i »•




*•












c
5 l.OOOOd
0.
us FLUID c£i<
-i B
•*
•«
1 I
-* >
>-
V
"* >-
•





-1

-t
t
-« Nl
fs)
ISI
rsj
-« *SJ
rsi
rsi
;



-*
X
±1
a t
•H 33
X CD
: 33











-4












<:
7Sb.ao
0.
^C. liOK. OISI .
•• ^
>•
>-
•* >
>-
•* •-
-< »




•# «-

t
rsi
*sj
»sl
IS(
7s>
-* -
rs)
.-"^


-i *•



X i>
a; n
CC CC ••
x> c


>.


























1
•
rsj

•st
•sj
SJ
•< NJ
SJ
rx
-si
1



1





i
0. 33 Ji £.XDDa;""
'

-i •-


























*-



U"* nj (T- -O K\ —
H^ (J-l -O CO O A
           B24)

-------
                             RUN J-F-I
INDEPENDENT VARIABLE IS MO*.DISK OVfH  RANGE      0.
                   6269. 7
SYMBOL
MAX PLOTTED
MJW PLUT1EO
    A
 13.111
0.
V£R1. SIZt.
T VARIABLES

      B
  77.342
 0.
  HOH. SIZt
     Z
 6269.7
0.
 HU« , IMS1.
                                                               Y
                                                           
-------
                            RUN J-F-2

                      IS Hnw.oiSI. ,.VFR
                                                                9 I'I.
H I. f A P K S
puimr     »b.«M
           (>.
           V K h I .  L> 1 h 1 .
                                                  r.
                                                                Z
                                                              (.39
I.00000         gi
"•             0."
fLUID CONC.     hUk.  oisi,
                                                                           CD ED -c ao tr.
                                 BZ43

-------
                              KUN J-F-2

INDEPENDENT VARIABLE  IS  HOR.DIS1. UVER HANGt
                                   0.
                                                8168.
                     DEPENDENT  VAK1ABLF.S
SYKBUL
MAX HIOTTED
«IN PLUTTEL)
KfcKARKS
    A
 12.692
0.
vEKl. Slit,
     b
 91.619
0.
 HUB. SIZE
     Z
 8189.1
0.
 HOK. DIS1.
 «6.010
0.
                   (D <    no
      ID  IM

    X  Nf
                                 B244

-------
                                               RUN j-23-1
                             v»»IAHLf I? *0».OIST. OVER  R4NGF     0,
                                                                                    <><)&.71
PL'lTTRfi     0.
            VFHT. OIST.
                                                                    r.
                                                                .70000
                                                               0.
                                                               Fl UlD
                                                                                  ?.  OIST.
  o    oc
cr    u
           a- a   •-
          ; u i_ u.* a;

                                                                                                     ts.    »- i

                                                   B245

-------
                  RUN J-2S-1
U4STF.
R4MGF OF X
RIWRF CF co
               PLOTTED
                                                   ,?oooonno
                      B246

-------
                                 RUN j-z

                V4PJ4BI.F  IS MOR.niST. fWFR  R4Hr,E      0>
   "IN  PLOTTFn    (1
             •
.
"•
                                        S12E
                                                                       U755
                                                                     Y
                                                                 19.0«.S
>   » >•
                                                                   ID EC  X
                                     B247

-------
                                RUN j-45-1



1NUEPENDF.N1  VAH148LL  IS MliR.OlSI.  I'VUJ K4NC.I






                      utHtMJFM
0.
sr
M«
HI
wt










•J
>-
>

>•
-J
>-


{_J >_
U
>-
LJ
LJ 3j
a 3
X!
u :c ist isi
CJ rs'
co a^ LJ sj
CC U »si rs-
CC sj sj t_> UJ
X PLiMTFD «7
N PLD7UIJ 6.
hAPKS V^-H






>-
>-
>-











~
re
. =
-• fsl
IS!
J
y h
,68? lb.16
0.
. oist , >^AD i

»
>- "
^ >-
V
>-













C2 CC
a: -si
( fSf
SJ
.



C
1 , b 'J I' 0 0
0.
US H.uIO CD-
3
V
>-


-t "








SJ
fsl
IS,
• *sl
sj
i> X,
"• ""






0.
C. Mil''. D!S? .
>-
•






-• r>
•SI
sj
•si
SJ
IS!
-« "si
k



) X









^- V
:
•si
rsl
•si
XI
sj —
rs.
—






t










                                    BE48

-------
                                                RUN J-4S-)
                             VAMUHLf  IS  H'IK.OIST.  i.VFK KANOt
SYMbUl
MAX PU
»IN Humto     o.
                 VfMl. SUh.
                                                      n
                                                  io'i,i7
                                                o.
                                                                o.
<. X X  r-J
CC 2; '^J »VJ
:£ M .NJ
                                                    B249

-------
                            RUN W-L-I
IMDF.PtNOtNl  YiRlABUt  IS unU.DlSI. UVtK KANUE
                   0.
VAKIABIFS
SVNbilL < U C Z
MAX 1'LUTTf.D S3. 709 UU.971 1.996I9E-03 0.
MJW uunifn o. o. o. o.
K-F-VARKS Vtfil. DISI, HAD1US H.U1D CIIMC. HUH. D1S1.
U
U
U
o
u
u
o
»•
U
;


>- a
1C X, •£,
3i X 33 3T



H ».
H *•


-t t-

>
- u
u
^J
LJ
- U -
U
U
tj
J
> u
V
>-
-. >- t.
>•
>•
>-
>•
•
r 3; a
r t r
X* £
x tn -
V
^ ••
>.
>-
>•
•« "
-
>
u
^j U
- u -
U)
tJ
tJ CJ
u
-" t
t£ Jj X
33 a: a
>
-i »-
1 »-
-( *
•« c

•« »•
^ «•
-i ^
•* •
>-
>-
t > r-
>-
>-
1 >• f
•


-t r.
x •
x: r x
D 2) XT
4 CO 31 -
U U
u u



* »
>•
>. *"
>-
M f-
-1 t-
-4 »•

•4 -

•i *•
33 -.fi :
I 3)
U
LJ U
-* O O 1
^ H.
H >- •-
>•
4 >• 1-
>-
>•
>-
•» »—

•t *-
•« <—





CQ
i) CQ x a:
tf i-
o u u
-1 1— 1
O- ;j O- U"l -O r^
a < ru 
-------
                              RUN W-L-I
IM)tPtM)|N| VARlABir IS MflH.niSl. I'VER  RANGE      0,
                                                                     SW898
SYMBOL
MAX Pl.nllFP
M]N PV.('Ilbl)
                 0,
.in  vAkiaBLF.S

        H               7.
    7to.8o        o,
   n.             o.
    HUH. Slil      HI'R,  Dl SI .
                                                               0.
                                                                   . OIS1.
                                   B251

-------
                                                 N W - L-2

              INDEHEKOfM  VARIABLE IS HUR.OIST. (JVtK KANGt      0.
              SYMBOL
              KAX  PLOTTED
              MIN  PLOTTtD
              Kf.MARKS
 77.189
0.
VFRT. OIST,
 VARIABLES

     0
 58. S6U
0.
  RADIUS
l,99619t-03    0,
0.             0.
FLUIO CDNC.     MOH.  UISI,
                                      u u  to as te
                                      OD ID LJ
                                  * 03 X OS    u
                                  3           (_) u
    CO 03 05 J
(D 2] fD    >

                                                 B252

-------
                            RUN
IM>tPENOfNT VARIABLE IS HQS.OIST. OVER KANG6
                                                 0.
                                                               27333
                    DEPENDENT VARIABLES

SYMBOL             A              H
WAX PLOTTED     27.070        ^90.03
WIN PLOTTED    o.            o
HtHARKS        VEHT. SIZt.    HUM.
     Z             Y
"•             93.813
o.            o.
 HOR.  D1ST.    VEHT.  OIST,

                 •-i    •« <

                                B253

-------
                              RUN W- L-3

1NDEPENOEN1 VARIABLE IS HOH.DISr. OVER  RANGE      0.
                                               2038.9
SYMBOL
MAX PLOTTED
Mil" PLOTTED
HEMAKKS
                    DEPENDENT VARIABLES
    f
 ao.bij
0.
VEKI. OIST,
                                  B
                              15.915
                             0.
                               RADIUS
o,
FLUID CIINC.
0.
0.
 HOK. DIST.
 »-  I: X

                                  B254

-------
                                             XUN V -L-3
                          M  VAKlABLt  IS HUR.01S7. OVER HANGt
                                                                  0.
SYMHDL
MAX PIOTTF.O
MI*. PUlTTtD
Rt«A«KS
                                     DEPtNDENT  VARIABLES

                                    A              B
                                 H.jaa         238.86
                                0.             0.
                                VERT. SIZC.     HOR. SIZE
                                                                  OISI.
0.
VERT, OISI.
 >- as
 O3 33
. 1C
                                                 B255

-------
                             HUN w-L-4

                     is HUR.msi.  OVSR  RANGI
                                                  o.
                    Df.PtNDENI
''JiX PL'.iTTtl)
HIM PLHTTFO
WEM4DKS
 ao.uoi
0.
VKHT. U1SI.
     h
 I/.118
0.
  K4DIUS
0.
HUID CUNC.
0.
0.
 HOR. OIST.
                                B256

-------
                                                 W-L-4

                           VAHIABLE  IS  HllR.OJST,  CWtR  RAMGfc
                                                                0.
                                                                              18070
SYMBOL
MAX PLOTTED
RE"AHKS
                                   DtPtKDENT  VARIABLES

                                                 B
    A
 i^.jes
o.
VE«1. SIZE,
                                             <;«<>. bb
                                            o.
                                             HQR,  SliE
0.
0.
 HOR.  DIST.
0.
VEHT. 01ST.
>-      <
                                                BZ57

-------
                                        W-L-5
                   VARIABLE. IS HOR.OIST, OVfcR RANGfc      0.
                                                                      991.51
SYMBOL
MAX PLOTTtU
"IN PLfintO
HFHAKKS
                           OtPEMOfcNT VARIABLES
    Y
 78.88S
0.
VEH1. OIST.
                                         B
                                     49.9S3
                                    0.
                                      RADIUS
     c              z
2.99«29E-Oi   0.
0.            0.
FLUID CONC.    HOH. D1ST,
                               O U CD
                             ID ffi O
   >- cc :
  >• 00 x .
CD X
                                                                      *J L3 U ID

                                       B258

-------
                            RUN w-L-s
                     is MOR.OIST.  OVER RANGE
                                                 o.
                                                               15818
                    DEPENDENT VARIABLES

SYMBOL             »              »
MAX PLOTTED     2U.6BO        2UK.ul
MIN PLOTTED    o.            o.
REMAKKS        VEKT. SJZt.    HUR. SIZE
0.
0.
 HOR, DIST,
 89.2J9
0.
VERT. DIST.
                                                               lsJ^siltjNJ
                                B259

-------
                RUN w-s-i

      IS hOH.DIST, CiYtR  SANGt
                                                   0,
                                                                2207.b
SYMBOL
MAX
KIN PLOTTED
HEMAKKS
n.

VCHI. DIS1.
T VAKTABLtS



      b


 0.

   HADIUS
     C              Z

2.1209SE-Oi   0.

0.            0.

FLUID CUNC.    HUH.  OIST.
            u >-
            > u
          >-   o
                                                        33  u
                          u

                      a> 03 -.   o u
                                                                             u -_j u u

                                 B260

-------
                             RUN w-s-i
INDEPENPfNI  VAKlABLt  IS  HOR.D1ST.  liv£R
                                                 0.
                                                              53806
                    DEPKNUKNT  VAKlABltS
SYMBOL A B I V
MAX PLIimo i3.?ab 636.49 0. 06.601
MIN PLOTTED 0. o. 0. n.








— »
AJ
C







CO
in
r^ #.
0










IT
0
«
r\J -
^J













•f\
J*
e
-'N*







HtwAKxs vtm. size. HUH. SJZE HDR. BIST. VEKT. OIST.
< >•
'
< >-
< >- >- ;
»-
<
4 >-
< H
•«
4 >•
'

>
<
<
< •-
4
>~ t»
4
4
>-
4 > 1
•
<
>•

4
>•
4
•« 4 > i-

<
>-


<
>-


^



-t >- i-


>•

-t i-
>-


« >- -
>-


>- ;
2
£C
CD
'
X OJ
20 a:
tc

>- X
>- >- >• >-
>-
4 t-

••







t-

>* *•




4


4
i 4

4

H »•
•<

<
^t
H »-









4 Z> -
X

33
CD
31
CC

CD
1


•« ^l
-< *•


fsJfMMM 'NjMNJ -•il^'M NlfSJ f>jfsjfsj

i-

- ».

i ••







•1 !-

4 «•


•* 1-





-1 P



"C f




-1 f
<
•
t» :Q
}




V
<
4 4
-i < «t < -















>< ^

* >- >- •





H H







^ ».









:

r aj
» »













K « 4
.

4 h

•* b






•* ^
aj CD
qo ED CD x
C X
« ,.




•* x




* r-







< 4














•4



-•
ru
H «
ao
*



*

£>
•J^
i '•O
£
*









J^
o

-« ft.-









-t




K\
IT
0
"Ij
•






js.(sifxj rsj.-sj !Sjrsi,-ij fNj(Sir*j IM>J rsi^M rsj»sjisj .-sjr^ ^i-^r^ isivj^ rsj -«w »•
0 0
,0 ts. r- .C ^> -0
• fVJ 3 -O * O
f*. fi ;? Ji -o tc
0 r^ ,0 :T *T •*>
*r r\ .A » in

-------
                                                    W-S-2

                 INDLHENDW VARIABLE  IS  HOR.DIST. OVER HANCt
                                                                   0.
                    ieoi.u
                                      DKPtNOENT  VARIABLES

                 SYHBHl              Y               B
                 MAX PLUTTEO     71.056         61.191
                 MIN PLOTTED    0.             0.
                 REMARKS        VEfll.  DIST,      HADIUS
     c              z
2.12095E-03   0.
0.            0.
FLUID "CI1NC.    HUH. OIST.
•-*    o
                                 o « x as -
                                                                          jK!rsj^
                                                  B262

-------
                             RUN w-s-z

INDEPENDENT VARIABLE IS HUR.OIST.  OVEK WANGf
                                                  0.
                    DEPENDENT  VARIABLES
SYMBOL
MAX
MIN PLOTTED    o.
REMARKS        VERT.  SIZE.
                              214.81
                             0.
                              HUR.  SIZE
o.
0.
 HUR. DIST.
     Y
 92.60S
0.
VEHT. DIST.
                                                 jltifwrMtNirslNNi   rsjrsiiw'
                                B263

-------

.3132
W4NGE OF
KANIJt. OF
A\Jt
GHAPH UF
0685.1113
Y PLUTIEO
CUU PLOTTED
>! W-S-2
CUU
0,
o.

VS Y 4T TI^ES
5500.9153

                                                             (\J     ^-»
B264

-------
                                          «UN W-S-2
PLOT UF TOT PORY MAT (T) CENTROIR LUCATIONS (X,2) AND SIZE (S) VS TIMt
TIME R«NGE
MAXIMUM T,X,i,S
MINIMUM T,X,2,S
 aoa. 01358
 6S9.51J81
0.
6772.5)75
                                          0.
                                        701,275bb
                                       0.
                                            B265

-------
                            HUN \v-s-2

PLOT or KUUNDARY *AIEKIAI SJGHJX AND I (x,z)  AND  SK,MAX
-------
                              w-s-z

                     GRAPH UF   SUE   VS Y AT  Tints
                 1865,liaj            bbOO,<>153
KANGE OF     Y    PLUTTEO         0,
RANGt OF    SIZE  PLOTTED         0.
                                        /v   rv
                                       J       H>

                                            -« r\j
                                                                                ru fw (\J t-i r\j
                                                     f\4  py r\j r\j
                              B267

-------
422<».MJ2

    KANGE OF
    RANUt OF
V
xo
                             RUN w-s-2
   GRAPH OF
4665.1143

 PLOTTED
 PLOTTED
                                   xo
o.
o.
                                        vs y AT TIMES
                                        5500.9153
   6772.5175

100.H91U9
24952.1182
                                B268

-------
                                     w-s-z
U229.11J2
GRAPH UF SIGHA-X VS  Y  AT  TIM£S
   133           5500,9151
          OF    Y    PLOTTED
    kANGE OF SIGMA-X PLOTTED
             0.
             0.
   6772.517S

100.891«<)
191002^.6
                                     ~ 
-------
                         RUN W-S-2

                  GftAPH OF SIGMA-Z VS Y AT TIMES
     OF     V    PIUITEO         0,
     ^F  SIG«A-/ PLfUien         a.
   6772



30J02.
(V  (\j  (\|  nj —i
                                                                             333 —

-------
                                   w-4S-i
             V4K1AHI.E. IS nUfc.DIST.  CVfW  H
                                                   0 .
SYMBOL
»1H PK'TTPO 0. o. ' ci! " ~° I!"

0
^ .
*:














«
>-
>-

-t •£> >•
,"£ ij x >• »•
»•
t^AHKS VE»


tf p
i_)
•4 l_)
0
— !
U
-i LJ
•• t
« •


>.
>. *"


v
>•
-i> i n
- a T i
x en a;
! c: *r


-4 h
n. I;IST. HAD
"* •
•*
— f.




>-
>-
d >-
>- ;_;


•* iJ t
U

-t (
r 3^ i
2 21 tr
X T <£.
t






1US HUIU Cl
•* >•
— •-
-• »•
-«
•* >*
j_

•

-4


* f
J
Z, •-> LJ ™ '
X o -
O LJ

>







NC . hOK. UJ SI
*« .
>-
•
i






Zj tO 3"
X 2J 33





U LJ

U) U U

i

'

>-
H






_ » i S. "
> ""











t U O

O (J O
ro ^ C 31 ®
m a in o x
• • « • •
o- *- o ^ £
— IT « ^ *
^ rv ^ lA *
                                  B271

-------
                                RUN w-43-1
           T  V«Hl*tlLt  IS HOH.OJST.  rvt'H
MAX PLriiitr.
"•IN PI
 ?\ .OOi
0.
vt«l.  Sl/E.
 SU0.6U
il .
0 .
c.
 nuw.  |: ISI,
 'I'J.OilJ
0.
V K hi I .  i) I S1 ,
                                    B272
                                                      "U.S. GOVERNMENT PRINTING OFFICEM971  546-315/200 1-3

-------
 SELECTED WATER
 RESOURCES ABSTRACTS

 INPUT TRANSACTION FORM
                    '. Re,-
                                       w
Mathematical Model for Barged Ocean Disposal of Wastes
Robert C. Y. Koh and Y. C. Chang
Tetra Tech,  Inc.
630 North Rosemead Boulevard
Pasadena, California
                                        •'• ,R  art Di

                                        6.

                                        #. Performifl  Orgxr  ution
                                                                     16070FBY
                                       13   Type. Repo;  >nd
                                           Period Covered
   Environmental  Protection Agency  report number,
   EPA-660/2-73-029,  December  1973.
           Theoretical and experimental studies were performed on  the  dispersion  and
settling of  barge  disposed wastes  in the ocean.  A computer program  based  on  the  mathe-
matical model  has  also been written.  Comparison of predictions with experiments, both
in this study  and  from previous  investigations were found to be good.   Example solutions
based on the model  for prototype situations are also presented.
     The waste is  assumed to  consist of two phases, 1) a solid phase characterized by
constituents with  various densities and fall velocities, and 2) a  liquid  phase.   The
methods of disposal  considered include 1) discharge from a bottom  opening  hopper  barge,
2) pumped discharge  through a nozzle under a moving barge, and 3)  discharge into  the
barge wake.  The effects of ambient horizontal currents, density stratification,  varia-
tion of diffusion  coefficients are incorporated in the model.
     Three phases  of dispersion  are envisioned:  1) a convective phase,  2) a  collapse
phase, and 3}  a long term diffusion phase.  Transition between phases  1s   accomplished
automatically  in the numerical model.  In addition, the collapse phase may a) be  re-
placed by, or  b) include a bottom  spreading phase.  Under certain  circumstances,  the
collapse phase is  bypassed.
     Every attempt has been made to minimize the amount of input required  in  the  use  of
the numerical  model. The integration steps and grid sizes are all automatically  chosen
by the model.   Both detailed  printout and graphic output are incorporated.  The solution
may also be  terminated at the end  of any of the three phases of dispersion.
    Mathematical model, ocean disposal, dredge spoils, sewage sludge, liquid wastes,
    barge
        •

    Waste dilution
    dispersion
    ocean dumping


     ••   •  •
       Unclassified
                         19.
                            (Report)
20. Seciuny Class.
   (Ptgf)
21. f. . of
   Pages

2,2. Price
Send To :


WATER RESOURCES SCIENTIFIC INFORMATION CENTER
US DEPARTMENT OF THE INTERIOR
WASHINGTON. D C. 2O24O
           Halter F. Rittall
                       EPA.  PNERL.  Coastal  Pollution Branch

-------
                   KD-674
ENVIRONMENTAL PROTECTION AGENCY
      Forms and Publications Center
     Route  8, Box 116, Hwy. 7O,  West
      Raleigh,  North Carolina  27612
     POSTAGE Af
ENVIRONMENTAL f

          EPJ
IOCNCY
             Official Business

                                                                 SPECIAL FOURTH-CLASS RATH
                                                                                BOOK
                \22z
                                           If your address is incorrect, please change on the above label;
                                           tear off; and return to the above addr ss.
                                           If you do not desire to continue receiving this technical report
                                           series, CHECK HERE Q ; tear off label, and return it to the
                                           above address.

-------