EPA-660/2-75-022
JUNE 1975
Environmental Protection Technology Series
Kinetic Model for Orthophosphate
Reactions in Mineral Soils
National Environmental Research Center
Office of Research and Development
U.S. Environmental Protection Agency
Corvallis, Oregon 97330
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development,
U.S. Environmental Protection Agency, have been grouped into
five series. These five broad categories were established to
facilitate further development and application of environmental
technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in
related fields. The five series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
This report has been assigned to the ENVIRONMENTAL PROTECTION
TECHNOLOGY STUDIES series. This series describes research
performed to develop and demonstrate instrumentation, equipment
and methodology to repair or prevent environmental degradation from
point and non-point sources of pollution. This work provides the
new or improved technology required for the control and treatment
of pollution sources to meet environmental quality standards.
EPA REVIEW NOTICE
This report has been reviewed by the National Environmental
Research Center—Corvallis, and approved for publication. Mention
of trade names or commercial products does not constitute endorsement
or recommendation for use.
-------
EPA-660/2-75-022
June 1975
KINETIC MODEL FOR ORTHOPHOSPHATE
REACTIONS IN MINERAL SOILS
Carl G. Enfield and Bert E. Bledsoe
Robert S. Kerr Environmental Research Laboratory
National Environmental Research Center
Post Office Box 1198
Ada, Oklahoma 74820
ROAP 21-ASH , TASK 13
Program Element IBB 045
NATIONAL ENVIRONMENTAL RESEARCH CENTER
OFFICE OF RESEARCH AND DEVELOPMENT
U .S. ENVIRONMENTAL PROTECTION AGENCY
CORVALLIS, OREGON 97330
-------
ABSTRACT
The ability of a soil to remove wastewater phosphorus from solutions
passing through the soil matrix is primarily related to the formation of
relatively insoluble phosphate compounds of iron, aluminum, and
calcium. Based on the solubility of these compounds, an estimate can
be made of the minimum concentration of phosphorus which will be
found at equilibrium in the soil solution.
The kinetics of orthophosphorus sorption with 25 viable mineral soils
were experimentally measured under laboratory conditions. Several
kinetic models were evaluated as a means of describing phosphorus
sorption by soil. A diffusion limited Langmuir sorption model best fit
the experimental data.
This report was submitted in fulfillment of ROAP 21-ASH, Task 13 by
the Robert S . Kerr Environmental Research Laboratory of the
Environmental Protection Agency. Work was completed as of June
1975.
11
-------
CONTENTS
Section Page
I CONCLUSIONS 1
II RECOMMENDATIONS 2
III GENERAL DISCUSSION OF PHOSPHORUS
REACTIONS 3
EQUILIBRIUM PHOSPHORUS SOLUBILITY
MODEL 4
PHOSPHORUS SORPTION 11
KINETICS OF PHOSPHORUS SORPTION 15
IV EXPERIMENTAL STUDIES 21
RESULTS AND DISCUSSION OF EXPERIMENTAL
SORPTION STUDIES 21
V DISCUSSION OF RESULTS 27
VI REFERENCES 38
VII APPENDIXES 48
in
-------
FIGURES
No. Pag
1. Phosphorus cycle. 4
2. Fate of applied phosphorus in soils after Buckman and
Brady. 5
3. Phase diagram for the solubility of selected phosphate
compounds. 6
4. Comparison of phosphorus concentrations observed
under field conditions and phase diagrams. 9
5a. Linear plot of Langmuir and Freundlich regression
equation to experimental data for soil "S" (see Tables
3 and 4) measured after one hour of equilibration. 13
5b. Langmuir plot of Langmuir and Freundlich regression
equation to experimental data for soil "S" (see Tables 3
and 4) measured after one hour of equilibration. 14
5c. Logarithmic plot of Langmuir and Freundlich regression
equation to experimental data for soil "S" (see Tables 3
and 4) measured after one hour of equilibration. 14
6. Sample data indicating the time dependency of
phosphorus reactions . 16
7. Logarithmic plot of experimental sorption data of soil
"S." 27
8. Regression of Equation (5) to the experimental data of
soil "Y." 29
9. Regression of Equation (6) to the experimental data of
soil"Y." 29
10. Regression of Equation (7) to the experimental data of
soil"Y." 30
11. Typical time series step function used in describing the
equilibrating solution concentration versus time for a
solution to the diffusion model Equation (8) . 32
12. Correlation coefficient versus accumulative frequency for
the five kinetic models. 37
IV
-------
TABLES
No.
1. Solubility Equilibria of Orthophosphate Compounds
and the Acidity and Hydrolysis of Phosphates and
Metal Ions 7
2. Comparison of Phosphate Form in Waste Treatment
Stream 10
3. Soil Classification 22
4. Selected Physical/Chemical Properties of Study Soils 23
5. Correlation Coefficients for Sorption Models 34
6. Correlation Coefficients for Sorption Models with'Log
Transformations 36
-------
ACKNOWLEDGMENTS
The authors wish to express their appreciation to the following
individuals who were responsible for obtaining the soil samples
included in this report: Mr. Robert Bastian, U. S. EPA, Muskegon,
Michigan; Dr. Harry M. Galloway, Purdue University; Mr. Skeet
Gregory, Soil Conservation Service, USDA, Ada, Oklahoma; Dr.
Robert S. Mensell, University of Florida; Dr. Donald Post, University
of Arizona; and, Mr. H. R. Sinclair, Jr., Soil Conservation Service,
USDA, Indianapolis, Indiana.
In addition to those individuals responsible for collecting the soil
samples, the authors are appreciative of Mr. Kenneth Jackson and
Mr. Curtis Gillaspy for conscientiously performing the numerous
chemical analyses required for successfully completing this report,
and to Mrs. Joan Elliott for typing the report.
VI
-------
SECTION I
CONCLUSIONS
The study showed the reaction of phosphorus with mineral soils is not
instantaneous. Thus, using equilibrium isotherms will yield erroneous
conclusions as to the ability of a soil to sorb phosphorus.
The suitability of several kinetic models describing phosphorus reactions
in mineral soils was evaluated. Of the models evaluated, a diffusion-
limited process paralleling heat flow theory for the storage of heat in
spheres best describes the experimental data. Combining the kinetic
model with a mass balance equation, one should be able to accurately
predict the miscible displacement of phosphorus through mineral soils.
-------
SECTION II
RECOMMENDATIONS
The study did not determine the effect of reducing conditions on
phosphorus reactions. When considering wastewater treatment
systems , reducing conditions may develop. Therefore, the effect
of reducing conditions on phosphorus reactions should be evaluated.
The study did not determine the actual compounds formed. None of
the simplified kinetic models perfectly fit the experimental data.
Thus, one would anticipate multiple simultaneous reactions. It
would be desirable to study the kinetics of the individual reactions
which take place simultaneously to refine the model presented.
To evaluate the design of a wastewater treatment system using the
proposed kinetic model, it will be necessary to combine the model
with a mass balance equation and develop a transport model for
phosphorus through soils. This should be undertaken immediately
and compared with laboratory column studies to determine the
validity of the transport model.
The study was limited in scope to evaluating phosphorus reactions
in mineral soils. These models should not receive blanket application
to highly organic soils without first determining their suitability for
describing phosphorus reactions in organic soils.
-------
SECTION III
GENERAL DISCUSSION OF PHOSPHORUS REACTIONS
In considering the soil as a possible medium for treating wastewater, the
fate of both applied and in situ phosphorus must be understood. It is
essential that the phosphorus concentration entering surface waters be
sufficiently low to avoid degradation of aquatic systems and to avoid
causing an accelerated eutrophication rate. When considering wastewater
treatment there are two facets of the overall phosphorus problem which
must be considered. First, without considering the addition of phosphorus
by wastewater application, what residual phosphorus concentration would
one anticipate in the soil solution? As considered here, the residual
phosphorus concentration includes not only the effects of natural weather-
ing but the effects of agricultural fertilization and resultant phosphorus in
the soil solution. Since the majority of phosphorus added in agricultural
fertilization is in the form of inorganic phosphorus compounds, it can be
assumed that the residual phosphorus will be controlled by the solubility
of phosphate minerals. A discussion of the residual phosphorus is handled
by developing an equilibrium phosphorus solubility model.
The second facet of the phosphorus problem is the soil's capacity to sorb
phosphorus and the kinetics of this reaction. The term "sorption" here
refers to any process, physical, chemical, or biological, which causes
phosphorus to be lost from the soil solution. It includes such processes
as adsorption, absorption, chemisorption, and precipitation by chemical
reaction. This is discussed in relation to various sorption models.
-------
EQUILIBRIUM PHOSPHORUS SOLUBILITY MODEL
Considerable work has been conducted studying the reactions of phosphorus
in soils. Qualitatively, the fate of applied phosphorus can be visualized
through the phosphorus cycle shown in Figure 1. The phosphorus cycle
was developed due to work directed toward soil fertility where phosphorus
is not available to the plant in sufficient quantities to obtain optimum plant
growth. Another area which receives attention and has helped in develop-
ing an understanding of the phosphorus cycle is soil water interactions
of streams and lakes.
Most inorganic phosphate compounds found in soils can be classified into
three groups: (1) those containing calcium phosphates, (2) those con-
taining iron and aluminum phosphates, and (3) those combining with the
silicate materials. The relative importance of these compounds can be
roughly correlated to the pH of the soil environment. In acidic soils, iron
CROP RESIDUES
MANURES, WASTEWATO
OR6ANICS
PHOSPHORUS BEARING
SOIL MINERALS
OESORPTION
Figure 1. Phosphorus cycle.
-------
and aluminum phosphates control the equilibrium concentration of phos-
phorus in the soil solution. In basic soils, calcium phosphates control
1-4
the phosphorus in solution. Several authors give a qualitative
description of the fate of phosphates in soils versus pH where the soil
system is not saturated with respect to phosphorus. Figure 2 gives a
qualitative example of the phosphorus forms found in soils.
R
Blanchar and Hossner concluded that in natural soil systems complex
inorganic phosphate compounds would be transformed into pyrophos-
phate and orthophosphate within seven days.
Under conditions imposed by land application of municipal wastewater,
detention times for wastewater in the soil system prior to release to free
water bodies, in general, will be in excess of seven days. Thus,
developing an equilibrium model considering only orthophosphate should
adequately describe inorganic forms of phosphorus.
a.
K
O
V)
UJ
UJ
(E
SOLUBLE FORMS
SORPTION BY
HYDROUS OXIDES
OF IRON ALUMINUM
AND MANGANESE
SORPTION
BY SOLUBLE
Fe. At, 8 Mn
SORPTION BY
CALCIUM
pH
Figure 2. Fate of applied phosphorus in soils after Buckman and Brady.'
-------
By studying the solubility of some of the more important iron, aluminum
and calcium compounds found in soils, it is possible to estimate the residual
phosphorus concentration in soil solution under given environmental condi-
tions (i.e., pH, CO2 partial pressure, etc.). Table 1 gives solubility
products of sample orthophosphate compounds, along with the acidity and
hydrolysis of phosphates and selected metal ions. The table was developed
using several different references. Different references give different
values for the equilibrium constant. In some cases more than one value is
presented for a given equilibrium constant or solubility product; thus, it
can be seen that there is some uncertainty in the degree of accuracy that
can be anticipated.
Using the data presented in Table 1, example phase diagrams (Figure 3)
are constructed. Using the phase diagrams, one can estimate equilibrium
10,000
IE
O
X
Q_
o
o
o:
t-
UJ
a:
3
Figure 3. Phase diagram for the solubility of selected phosphate compounds.
-------
Table 1. SOLUBILITY EQUILIBRIA OF ORTHOPHOSPHATE COMPOUNDS
AND THE ACIDITY AND HYDROLYSIS OF PHOSPHATES AND METAL IONS
Reference
Number* Equilibrium
67 MnHPOi»(s) + Mn+2 + HPO^2
68 Al(OH)2H2POit(s) + Al+3 + H2PO* + 2OH~
69 CasOHCPO.,) 3(s) + 5Ca+2 + 3PO^3 + OH~
68 Cai,H(POi,)3'3H2O(s) + 4Ca*2 + H+ + 3PO^3 + 3H2O
67 FePO^Hj-OCstrengite) ^ Fe+3 + PO^3 + 2H2O
70 1 Fe(OH)2H2PO.,(s) + Fe+3 + H2POZ + 2OH~
J? H 3PO n t- H 2PO"i + H+
71
67 - •*- -2 +
71 2 ** "*" **
67 ~2"*"n~3 +
71 HPO" * Olt + H
-gg-&?1 Al+3 + 3H20 t Al(OH)3(s) + 3H+
^ Fe+3 + 3H20 * Fe(OH)3(s) + 3H+
67 Mn(OH)2 ^ Mn+2 + 2OH~
71 Ca+2 + COl2 ^ CaCO3
71 H+ + HCOl ^ H2CO3
71 H+ + CO^2 ^ HCOl
^-
Equilibrium
Constant
1
3
2
1
9
5
7
7
6
5
4
3
4
3
1
1
2
5
4
5
3
mi.
.1
,15
.51
.26
.9
• 52
.1
.58
.2
.93
.51
.43
.1
.16
.1
.0
.0
.0
.0
.4
x
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
nrr
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
-13
-31
-56
-47
-29
-28
~_l
~B
-13
-13
-10
-6°
-13
-9
io-7
lo-11
io-2
1 _L JlC "M lAAAAUi AUlll ^vll O t CLAl t VV do V^K^*,C».J.l i^-v* *•»• v^*** VA A*.* v--*. v*** v *_/^* »-*-. N^-^^^ . ^.»*v .-v.-v.v..
number indicates the reference in the literature where the value was obtained
fThe value presented was calculated from experimental data.
-------
residual phosphorus concentration in the natural soil solution. Four
curves are presented in Figure 3 . The first is for the solubility of
A1H2P04(OH) z in water. The second is for strengite (FePO4'2H2O) in
water. The third is for the solubility of Ca5OH(PO^~) 3 in a 0.001 molar
(M) calcium solution. The fourth is for CasOHCPOi,) 3 in the presence of
CaCOs- Sample calculations are given in Appendix A which demonstrate
how the figure is developed . It should be emphasized that those compounds
selected are only some of the phosphorus compounds which might be
present in soil systems . An example of a less soluble calcium phosphate
is fluorapatite [CasCPOO 3F] and that of a more soluble calcium phosphate
is the dicalcium phosphate dihydrate (CaHPO^HaO) (see for example
/»
H. E. Jensen ) . Looking at Figure 3, one would anticipate the maximum
phosphorus concentration naturally occurring in a soil water system to
be approximately 0.01 ppm and this would be found at a pH between 6 and
7. This favorably compares to the qualitative description shown in
Figure 2 .
To point out some of the advantages and disadvantages of this approach ,
Figure 3 is reproduced in Figure 4 with the addition of some experimental
data . The data points indicate the measured concentrations of phosphorus
found in ground and subsurface drainage water. Some of the values repre-
sent data evaluated from "normal" agricultural lands and other is data
obtained under wastewater treatment systems. Generally, the data com-
pare favorably to the phase diagram; however, there are some cases with
considerable discrepancy .
In Appendix A the phosphorus concentration was calculated based on the
solubility of CasOHCPOt,) 3 in the presence of CaCO3. It was assumed that
the concentration of phosphorus in solution would be controlled by the
solubility of CaCO3. The CaCO3 solubility is controlled by the CO2(g)
concentration in the soil atmosphere. The partial pressure of CO2(g) in
well aerated soils ranges from 0.0003 atm to 0.01 atm. A C02(g) pressure
of 0.0003 atm controls the pH of the soil solution at approximately 8.7
where the solubility of CaCOs is relatively small, thus leading to low
phosphorus concentrations . When considering wastewater treatment by
-------
Ift
o
r
a.
a:
H
cc
5
o
i
110,000
Co5OH(P04)3(s)
0.001 M Co
Figure 4. Comparison of phosphorus concentrations observed under
field conditions and phase diagrams. (Legend: n and
x Aulenbach81; °Bouwer82; 'Carter83; V Johnston8 **.)
application of waste materials to the land, quite often the objective is to
see the maximum amount of effluent that can be treated using a minimum
amount of land surface. This tends to increase the CO2 partial pressure.
In a CaCO 3 system, an increase in CO 2 partial pressure and corresponding
decrease in Oz partial pressure should increase the solubility of the CaCO 3
and thereby increase the phosphorus in drainage water. In acidic soils
relying heavily on the formation of iron phosphates it is possible to reduce
the oxidation state of iron. However, there is insufficient data available
to accurately compare the solubilities of ferrous phosphates and ferric
phosphates.
It should be pointed out that soil systems are at times designed to operate
under reducing conditions where the partial pressure of CO 2 is relatively
-------
high. This is done to promote denitrification and is quite successful in
removing nitrogen from the soil solution, provided there is sufficient
7
energy available for the microorganisms which perform the nitrogen
transformations.
The above mentioned reducing conditions can have detrimental as well as
beneficial effects. From a ground water point of view , it is generally
beneficial to remove nitrates prior to their introduction into the ground
water. In calcereous soils, the removal of the nitrates will be at the
expense of increasing the calcium induced into the ground water . Also,
once the calcium is removed from the profile it is no longer available for
future reaction with orthophosphates and thus reduces the profile's net
capacity to remove phosphorus from the soil solution. Thus, when con-
sidering the overall design of a wastewater treatment system, one must
consider the total impact of the project and not just how to effectively treat
one element.
Thus far organophosphates have been neglected. Neglecting the impact
of organic phosphate compounds can, however, be misleading. Table 2
gives a comparison of total to orthophosphate at several points along the
Table 2. COMPARISON OF PHOSPHATE FORM
IN WASTE TREATMENT STREAM*
Raw Primary Final
Site Reference Total Ortho Total Ortho Total Ortho
Mansfield, 72 9.0 4.1 7.0 3.4 6.4 5.1
Ohio
Indianapolis, 73 10.0 5.2 6.3 5.8 6.3 5.7
Indiana
Cleveland, 74 20.3 7.0 18.4 7.4 12.6 7.3
Ohio
Baltimore, 75 9.1 5.2 12.4 8.6 0.7 0.4
Maryland
*Units are presented as milligrams of elemental phosphorus per liter.
10
-------
treatment system of four selected treatment facilities. In raw wastewater
only about 40 percent of the phosphorus is in the form of orthophosphate
while in the final effluent approximately 70 percent of the phosphorus is
in the form of orthophosphate. The impact of the organic phosphorus
fraction on a wastewater treatment system should not be ignored.
Organic phosphates are much more mobile than inorganic phosphates
and can move rapidly through soil systems. To remove organic phos-
phates from solution using a soil system, the organic phosphate must be
physically filtered and held for sufficient time to allow decomposition of
g
the phosphate compound to an inorganic form. Acquaye presented a
discussion on the rate of mineralization of some organic phosphates
found in soils.
In addition to the organic phosphates, the other organic forms such as the
fatty acids, phenols, and natural chelates found in wastewater can likely
form mobile compounds in soils systems fixing the ions which normally
react with the phosphorus, thereby decreasing the sorption of the applied
orthophosphates. Thus, for example, measuring the total calcium in the
soil solution may suggest the phosphorus content should be much lower
than the observed concentration based solely on the equilibrium solubility
model.
PHOSPHORUS SORPTION
The above discussion of the equilibrium solubility model was limited to
estimating the concentration of phosphorus in the soil solution assuming
the soil profile was not supersaturated with respect to phosphorus. By
itself, the equilibrium model does not give a valid method of estimating
the quantity of phosphorus which can be sorbed by the soil. However,
g
work has been attempted in pure systems by some individuals. To
design a wastewater treatment system, one also needs to know the
9-25
amount of phosphorus that can be sorbed by the soil. Researchers
often relate the ability of a soil to sorb phosphorus to one of the equilib-
rium isotherms. The two equilibrium isotherms most often used for this
purpose are the Langmuir equation and Freundlich equation. The
11
-------
Langmuir equation was originally developed to describe how a gas is
adsorbed on "smooth" surfaces and assumes the gas is adsorbed in a
monolayer . The Freundlich equation , often called the classical equation ,
was originally an empirical equation which seemed to fit a large range of
27
experimental data . Later it was shown that this equation is equivalent
to the Langmuir equation except it includes the possibility of multilayer
sorption with each successive monolayer being sorbed at reduced bonding
energy. These isotherms can be written to relate the amount of phosphorus
sorbed by the soil per unit mass of soil to the concentration of phosphorus
in the soil solution . Note that this is a significant deviation from the
equilibrium solubility model . The equilibrium solubility model would
propose that the most insoluble compound would form first, then followed
by more soluble compounds . There is no indication of the proportions of
the compounds , thus one could not readily predict how much phosphorus
could be sorbed . The Langmuir equation can be written as
SBC
- m
~ l + BC
where B = constant at constant temperature
C = concentration of sorbate species, phosphorus,
in the liquid phase (mg/1)
S = concentration of the sorbate species in the solid
phase [yg sorbate (phosphorus)/g sorbent (soil)]
S = the maximum concentration of the sorbate species
m c
in the solid phase [y g sorbate (phosphorus) /g
sorbent (soil)]
The Freundlich equation can be written
S = m Cn (2)
where m and n are constants at constant temperature . Several other
equilibrium isotherm equations have been proposed for sorption of
12
-------
phosphorus by soil, such as those by Gunary13 and Holford, et al.16
Thus, assuming equilibrium conditions could be attained, it would be
possible to estimate how much phosphorus could be sorbed at some
given solution concentration.
In Figure 5(a-c), experimental data along with regression functions for
a Langmuir equation and a Freundlich equation are shown. Both functions
fit the experimental data reasonably well and different authors have
discussed the pros and cons of each equation.
12, 18, 25
There are numerous references to work relating the coefficients in the
Langmuir or Freundlich equation to the physical/chemical properties of
28 29 30
soils. Ahenkorah, Saini and MacLean, Williams et al., and Blanchar
and Hossner have developed regression equations to predict the coeffi-
cients in the sorption equations. In these studies, multiple linear
regressions were performed which give a linear weighting to different
30Oh
0 10 20 30 40 50 60 70
EQUILIBRATING SOLUTION CONCENTRATION (c-mg/l)
Figure 5a. Linear plot of Langmuir and Freundlich regression equation
to experimental data for soil "S" (see Tables 3 and 4)
measured after one hour of equilibration.
13
-------
10 2O 30 4O 5O 60 70
EQUILIBRATING SOLUTION CONCENTRATION (c-mg/l)
Figure 5b. Langmuir plot of Langmuir and Freundlich regression
equation to experimental data for soil "S" (see Tables 3
and 4) measured after one hour of equilibration.
c. 24.4C060"
O.I
50 100
EQUILIBRATING SOLUTION CONCENTRATION (c-mg/l)
Figure 5c. Logarithmic plot of Langmuir and Freundlich regression
equation to experimental data for soil "S" (see Tables 3
and 4) measured after one hour of equilibration.
14
-------
physical/chemical properties such as amount of clay, aluminum, iron,
etc. Similar work in this laboratory where a wide range of mineral soils
were considered was not conclusive. Depending on which physical/
chemical properties were chosen, illogical regression equations could be
obtained. Thus, it is felt that this type of "black box" approach cannot
achieve successful results for broad geographic regions where one is
limited to those properties which are commonly measured at this time.
Another approach which has been used with some success is to relate
extractable phosphorus to the solubility of some of the phosphate com-
9 18 19 ^1—38
pounds found in soil. ' ' ' ° *° This approach, as it has been
presented in the literature, is probably more adaptable to crop produc-
tion than to wastewater treatment, since in crop production the amount
of phosphorus which can be extracted by the plant is the important
parameter . However, in wastewater treatment the total amount that can
be sorbed by the soil without being toxic to the plant or be leached from
the soil profile is what should be used as a design criteria. It should be
pointed out that there is no evidence in the literature of a problem with
phosphorus toxicity. For the few cases where toxicity was reported,
generally it was found that high levels of phosphorus magnified deficiency
symptoms for other elements rather than being toxic in itself.
KINETICS OF PHOSPHORUS SORPTION
Designing a wastewater treatment system for phosphorus removal using
equilibrium isotherms will probably be adequate where applications of
wastewater of less than 5.0 cm/wk are considered. The problems arise
when considering higher application rates or how one can obtain equilib-
rium isotherms. There are numerous references indicating the sorption
ID 11 22 39-46
reaction is not instantaneous.' ' ' Some references indicate
the reactions are still continuing after ten years of equilibration. Figure 6
is sample data for sorption of phosphorus by a soil sample at one given
concentration. These data were derived from equilibrating 10 g of soil
with 100 ml of 0.01 M CaCl solution initially containing 40 mg/1 P, then
monitoring phosphorus concentration remaining in solution with time.
15
-------
100
200
300
40O 500
10
TIME
50 100
(Hrs.)
500
Figure 6. Sample data indicating the time dependency of phosphorus
reactions.
Looking at the data using a logarithmic time base, it is easy to see there
is no indication of the reaction reaching an equilibrium value. However,
using a linear time scale it is easy to see why numerous researchers have
indicated the reaction was "essentially complete" after a few hours. When
considering a wastewater treatment system, one must consider time scales
in tens of years rather than hours. Thus, it does not appear appropriate
to consider "equilibrium" isotherms which were based on studies with a
few hours of equilibration time. In high rate systems; i.e., systems
with design flow >5.0 cm/wk, it may also be necessary to know how fast
the reaction is taking place.
This introduces a requirement to have a means of describing the kinetics
of the phosphorus reaction during the movement of phosphorus through
soil profiles. The most common approach used to describe ion movement
through soil systems uses a mass balance equation.
Considering the simplified one-dimensional case where the finite element
is oriented such that flow occurs only through two opposite faces of the
16
-------
finite element, then the mass balance equation can be developed with
some ease. In the mass balance equation, one is attempting- to calculate
how fast the solution concentration is changing at some spatial coordinate.
Intuitively, one can see four components which will cause this change in
solution concentration. First, flow will be caused by a concentration
gradient. This is a diffusion process and essentially says a natural
system will attempt to reach equilibrium and ions from a region of high
concentration will migrate to a region of low concentration. The second
term will be due to the flow of water which is carrying the ions under
consideration. In other words, if a water containing a high concentration
of ions flows into an area of low concentration, it will cause a change in
the ion concentration in the finite element being considered. The velocity
which is used in this calculation is not the velocity of the applied solution
but the velocity in the pores of the soil. This points out a third aspect:
the pore water velocity is not a constant. Water flows more easily through
the large pores than the small pores which disperses the flow. The fourth
term is a so-called sink or source term which takes into consideration the
loss or gain of an ion from or to the flow stream by such actions as sorp-
tion, plant removal, solubilization, etc. When considering a wastewater
treatment system, the flow of water is relatively high. Thus, the effect
of diffusion will be minimal and one feels justified in ignoring these
influences. This does not mean that one is justified in ignoring diffusion
under all conditions such as under normal agricultural practices. Under
normal agricultural practices, diffusion may be the significant factor for
47-52
nutrient transport to the plant root. Several researchers have
studied the diffusion of phosphorus in soils and its implication on plant
uptake of the mineral.
In addition to diffusion, hydrodynamic dispersion will be ignored in our
discussion. The mass balance equation can then be written as
!£ = --v 1£ _ _£ 3s
at 3x e IF ^ ;
17
-------
where C = solution phase concentration of phosphorus (mg/1)
"V" = average pore-water velocity (cm/hr)
x = distance from the beginning of the flow path (cm)
p = bulk density of the soil (g/cm3)
6 = fractional solution-filled-volume in the porous
media
S = solid phase concentration of phosphorus (yg/g).
In the above equation, the kinetics of sorption is directly related to the
sink or source term (3 S/3 t). Several sink terms have been proposed and
used to predict the movement of ions through soil systems, such as the
work by Davidson and Chang, Enfield et al., ' Hendricks,
Hornsby and Davidson, Kay and Elrick, Lindstrom et al. , '
Oddson et al. , Skopp and Warrick, and van Genuchten et al.
However, very little of this work is related to the movement of phosphorus.
The majority of the models consider the sink term in differential form. A
general equation may be written for the sorption part of the sink term, as
follows:
("RATE OF \ ("DIFFUSION IN\ /DRIVING"!
^SORPTIONJ IjSOLID PHASE J X 1 FORCE J
9S
IT
= D (C, S) x JF(C) -si (4)
where D (C, S) = the diffusion coefficient in the solid phase
as a function of the solution phase concentration
and solid phase concentration
F(C) = equilibrium concentration of phosphorus in the
solid phase, corresponding to the solution phase
concentration.
18
-------
These sink terms generally follow some previously described chemical
fi9
kinetic model such as those described by Laidler. Lapidus and
fi Q
Amundson used the first order kinetic equation
38 = a OcC-S) (5)
3t
where a and K are constants, to describe the response of chromographic
columns. This equation assumes the driving force is related to the
difference between what can be sorbed at some concentration (i.e., an
equilibrium isotherm) and what has already been sorbed. It further
assumes the equilibrium is a linear function and the diffusion coefficient
59
(a) is a constant. Oddson et al. and other workers used the same
kinetic equation to describe the movement of organic compounds in soils.
55
Hornsby and Davidson and others used the equation
38 = 8 (m Cn - S) (6)
3t
where 6, m and n are constants. This equation is similar to Equation (5)
except it assumes the equilibrium isotherm can be described by the
Freundlich equation rather than a linear equation. By non-linearizing
the sorption function, they were better able to describe pesticide movement
in soils.
39
An empirical function which has been used by Enfield to describe the
kinetics of phosphorus sorption is
-31- = a Cb Sd (7)
where a, b, and d are constants. Since this is an empirical equation, it is
difficult to describe what driving forces or what assumed relationships exist.
39 40 41
However, earlier indications ' ' suggested this model more accurately
predicts the kinetics of phosphorus sorption than Equation (5) .
19
-------
fiO
Skopp and Warrick developed an analytical solution for Equation (3) where
they assumed sorption to be diffusion-limited. In Skopp and Warrick's
development , an integral form of the sorption term was used rather than
the differential form previously discussed. Skopp and Warrick's develop-
64
ment used a solution presented in Carslaw and Jaeger (p. 97, Equation 10)
41
for heat flow in flat plates . Enfield et al . used a similar approach for
phosphorus except they assumed the soil particle was spherical rather than
plate-like. This yields a diffusion limited model
s
S
- 6F(C) r 1 -xn2TT2t/r2
—
avg
where S = average solid phase concentration in the soil
particle (yg "P"/g)
F(C) = function describing the amount of phosphorus
that can be sorbed at equilibrium as a function
of solution concentration (i.e. , equilibrium
isotherm) (yg"P"/g)
K = diffusion coefficient
r = radius of soil particle
64
after a solution presented by Carslaw and Jeager (p. 234, Equation 8) .
The model further assumes the initial concentration of phosphorus in the
soil particle is zero and the concentration of the phosphorus at the surface
is constant .
20
-------
SECTION IV
EXPERIMENTAL STUDIES
RESULTS AND DISCUSSION OF EXPERIMENTAL SORPTION STUDIES
Analyses were performed on 25 mineral soil samples. These samples
were collected in Arizona, Florida, Indiana, Michigan, and Oklahoma.
The samples were given an internal letter code which was used through-
out the studies. Table 3 relates the internal code letter to the classifica-
tion of the soil samples as given by various soil surveys developed by
the USDA Soil Conservation Service in cooperation with state universities,
These samples were then analyzed for several physical and chemical
properties which are tabulated in Table 4. Appendix B is a listing of
the methodologies used in the analyses. Samples were obtained from
eight of the ten orders in the comprehensive soil classification system.
However, data is not presented in this report for any of the Histosols.
Histosols were not included in this report for two reasons. First, this
is not a predominant order nationally. Secondly, the data that were
obtained for the Histosols or organic soils did not fit any of the sorption
models which were considered. For a discussion of soil classification,
£>C
the reader is referred to a text on the subject by Boul et al.
Experimental data for comparison with kinetic models was developed in
batch equilibration studies. In the initial phases of the project, analyses
were performed semi-nondestructively. An aliquot of the equilibrating
solution was analyzed periodically and a volume equal to that removed
was replaced for a continuation of the test. The procedure was later
replaced with destructive analyses which proved to be easier to evaluate
numerically. The experimental procedures are outlined in Appendix C.
The data obtained in this manner are presented tabularly in Appendix D.
21
-------
Table 3. SOIL CLASSIFICATION
Sample
code
A
B
C
D
E
F
G
H
I
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
AA
State
OK
OK
OK
OK
OK
OK
AZ
AZ
FL
FL
AZ
AZ
AZ
AZ
AZ
AZ
AZ
MI
MI
MI
MI
IN
IN
IN
Soil series
Konawa
Vernon
Clarita
Windthopst
Chigley
Chigley
Whitehouse
Orangeburg
Lakeland
Mohave
Grabe
Pima
Vinton
Gothard
Anway
Anthony
Roscommon
Au-Gres
Roscommon
Au-Gres
Rubicon
Rubicon
Maumee
Maumee
Bedford
Family
Fine-loamy, mixed,
thermic
Fine, mixed, thermic
Fine , montmorillonitic ,
thermic
Fine, mixed, thermic
Fine, mixed, thermic
Fine , mixed , thermic
Not classified .
Not classified .
Fine, mixed, thermic
Fine-loamy, siliceous,
thermic
Thermic, coated
Fine-loamy, mixed,
thermic
Coarse-loamy, mixed
(calcareous) , thermic
Fine-silty, mixed,
thermic
Sandy, mixed, thermic
Fine-loamy, mixed,
thermic
Fine-loamy, mixed,
thermic
Coarse-loamy, mixed
(calcareous) , thermic
Mixed , frigid
Mixed , frigid
Sandy, mixed, frigid
Sandy, mixed, frigid
Sandy, mixed, mesic
Sandy, mixed, mesic
Fine-silty, mixed, mesic
Subgroup Order
Ultic Haplustalfs Alfisol
Typic Ustochrepts Inceptisol
Udic PeUusterts Vertisol
Ultic Paleustalfs Alfisol
Ultic Paleustalfs Alfisol
Ultic Paleustalfs Alfisol
Ustollic Haplargids Aridisol
Typic Paleudults Ultisol
Typic Quartzip- Entisol
samnents
Typic Haplargids Aridisol
Anthropic Entisol
Torrifluvents
Anthropic Entisol
Torrifluvents
Typic Entisol
Torrifluvents
Typic Natrargids Aridisol
Typic Haplargids Aridisol
Typic Entisol
Torrifluvents
Molic Entisol
Psammaquents
Molic Entisol
Psammaquents
Entic Haplorthods Spodosol
Entic Haplorthods Spodosol
Typic Haplaquolls Mollisol
Typic Haplaquolls Mollisol
Typic Fragiudults Ultisol
22
-------
Table 4. SELECTED PHYSICAL/CHEMICAL PROPERTIES OF STUDY SOILS
SAMPLE
Surface area m'/g
Percent clay
Percent silt
Percent sand
Cation exchange
capacity (meq/1)
Percent organic m.atter
Total phosphorus (ppm)
Resin extr actable
phosphorus (ppm)
Total iron (percent)
A
<1.
15.
99.
0.25
0.04
17.9
0.94
.034
2.4
<.5
<50.
0.027
12.
0.080
2.
6.8
200.
-.0048
2.10
-.66
.136-3
70.
12.
0.33
4.06-3
1.1
0.66
2.516-2
10.
.12
2.516-2
23
-------
Table 4 (continued). Selected Physical/Chemical Properties of Study Soils
SAMPLE
Surface area m*/8
Percent clay
Percent silt
Percent sand
Cation exchange
capacity (meq/1)
Percent organic matter
Total phosphorus (ppm)
Resin extractable
phosphorus (ppm)
Total iron (percent)
Exchangeable iron (ppra)
Total aluminum (percent)
Exchangeable aluminum
(ppm)
Total calcium (percent)
Exchangeable calcium
(ppm)
Total magnesium (percent)
Exchangeable magnesium
(ppm)
Saturated pH
Electrical conductivity of
H
105.
36.
24.
40.
30.
0.78
764.
18.
3.2
3.6
8.75
<50.
2.15
7020.
1.04
600.
8.0
1300.
I
178.
44.
13.
43.
38.
0.71
325.
6.7
3.55
3.2
7.25
<50.
0.70
2400.
0.65
960.
7.7
550.
L
27.
18.
17.
65.
16.
2.5
150.
1.1
1.17
6.4
2.70
<50.
0.25
142.
0.053
26.
4.8
250.
M
4.8
8.
2.
90.
4.
0.64
355.
4.3
0.14
5.3
0.55
<50.
0.05
328.
0.020
12.8
7.2
260.
N
72.
23.
7.
70.
17.
0.5
220.
98.
2.10
6.4
5.5
<50.
0.70
1110.
0.41
200.
7.7
340.
O
75.
26.
20.
54.
29.
1.4
1320.
47,
0.74
4.0
6.7
<50.
3.25
6780.
1.19
380.
8.4
1560.
P
136.
34.
39.
27.
40.
1.5
870.
19.
3.64
2.8
7.25
<50.
2.73
6920.
1.27
400.
8.0
2050.
saturation extract (u mhos/cm)
a
as _b ed , K
-s-r- = a C S * b
3t
.d
f«
|f = a « C - S) ^
re
J-f = 8 (m C" - S) , n
8
I
DIFFUSION
MODEL • J
F(C) = ICJ \K/r
S
DIFFUSION m
MODEL = rhrc I**
1.88 612000.
1.87
-0.90
.40&-3
326.
880.
0.69
5.66-4
380.
0.58
» 6. 31*5
520.
5.2
* 3.980-4
2.81
-3.87
18.
84.
0.53
1.96-2
13.
0.47
3.98@-3
640.
0.54
3.98@-3
.87
.30
-.27
183.
2.40
-2.91
.SO@-2 .18®- 3
40.3 171.
150.
0.55
1.00-2
1700.
0.20
22.
0.62
1.40-2
26.
0.80
6.31S-5 l.@-3
1200.
0,36
3.98@^
100.
0.12
1.58@-5
10.3
2.0
-1.98
.98@-4
171.
420.
0.58
2.7@-4
160.
0.54
6.316-5
1200.
.13
l.S-4
1.48
2.22
-.97
188.
2200.
0.62
7.7@-5
320.
0.68
6.31«-5
5700.
0.07
3.98@-5
41.
2.4
-1.7
129.
330.
0.60
2.3@-5
350.
0.74
2.516-5
5900.
0.07
2.516-5
24
-------
Table 4 (continued),. Selected Physical/Chemical Properties of Study Soils
SAMPLE
Surface area mVg
Percent clay
Percent silt
Percent sand
Cation exchange
capacity (meq/1)
Percent organic matter
Total phosphorus (ppm)
Resin extractable
phosphorus (ppm)
Total iron (percent)
Q
34.
8.
2.
90.
16.
0.64
495.
32.
3.34
Exchangeable iron (ppm) 4.4
Total aluminum (percent) 6.5
Exchangeable aluminum
(ppm)
Total calcium (percent)
Exchangeable calcium
(ppm)
<50.
1.8
3520.
Total magnesium (percent) 0.77
Exchangeable magnesium 200.
(ppm)
Saturated pH
8.4
Electrical conductivity of 480.
R
90.5
34.
15.
51.
15.
.71
900.
86.
1.5
4.2
3.5
<50.
8.4
5460.
1.9
510.
8.5
6000.
S
179.
45.
42.
13.
25.
1.81
452.
61.
3.6
2.4
7.4
<56.
0.9
4710.
1.1
560.
7.6
2400.
T
38.
13.
10.
77.
4.2
.27
265.
72.
2.0
2.8
5.5
<50.
0.8
1260.
0.4
150.
8.2
305.
U
1.7
4.
4.
92.
3.4
.32
37.5
1.8
0.27
2.
1.35
<50.
0.19
950.
0.047
8.
5.4
100.
V
10.
12.5
12.5
75.
14.
1.8
119.
1.4
0.4
3.
1.25
<50.
0.17
100.
0.044
25.
5.2
170.
saturation extract (11 mhos/cm)
|i = aCbSd
at
|f = «(KC-S) 1
|i = 6 (m Cn - S) .
01
DIFFUSION
MODEL
F(C) =ICJ
DIFFUSION
MODEL
S BC
F<« = rhrc
a 0.56
b 1.93
^d -1.26
'a .416-3
J< 89.
!" 59.
i 0.60
B 4.36-3
I 67.
J 0.68
*/** 3.98@-5
fsm 1200.
B 0.05
\f/rl 3.988-5
3.6
2.06
-0.86
.568-3
470.
2600.
0.50
7.58-4
580.
0.72
6.318-5
8800.
0.10
3.988-5
23600.
3.15
-3.33
.648-2
29.
91.
0.63
1.18-2
210.
0.70
1.6-3
6400.
0.12
1.589-6
5.37
2.18
-2.14
.466-3
59.
48.
0.54
4.96-3
79.
0.62
1.586-5
1000.
0.077
1.586-5
1490.
2.03
-3.86
.18-3
19.
31.
0.30
1.46-3
68.
0.4
1.8-3
460.
0.98
2.518-6
385.
1.99
-2.51
.178-2
10.
23.
0.53
6.46-2
110.
0.58
1.8-3
1700.
0.085
6.319-5
25
-------
Table 4 (continued). Selected Physical/Chemical Properties of Study Soils
SAMPLE
Surface area mVg
Percent clay
Percent silt
Percent sand
Cation exchange
capacity (meq/1)
Percent organic matter
Total phosphorus (ppm)
Resin extractable
phosphorus (ppm)
Total iron (percent)
W
6.5
4.
4.
92.
12.
1.6
216.
2.6
0.68
Exchangeable iron (ppm) 3 ,
Total aluminum (percent) 1,30
Exchangeable aluminum
(ppm)
Total calcium (percent)
Exchangeable calcium
(ppm)
<50.
0.20
250.
Total magnesium (percent) 0.094
Exchangeable magnesium
(ppm)
Saturated pH
23.
5,4
Electrical conductivity of
saturation extract (p mhos/cm)
f
|1 = aCbSd \
1
1
|f = 1.
1.3
2.4
703.
8.9
2.0
Z.
S.18
<50,
0.25
710.
0.25
53.
5.5
100.
34.6
2.07
-1.7
.246-1
14.
44.
0.67
3.5@-2
100.
0.66
2.51S-4
1400.
0.089
2.51&-4
26
-------
SECTION V
DISCUSSION OF RESULTS
Looking at data in tabular form, it is not too clear how to interpret the
experimental result. A logarithmic plot of sorption data for soil "S" is
presented in Figure 7. If a Freundlich or Langmuir equation, Equation (2)
or (1), respectively, were applied to the data at any one measurement time,
a reasonable correlation would be obtained. It can also be seen that with
longer equilibration times, more phosphorus is sorbed at a given equili-
brating solution concentration. Looking at Figure 7, it does not appear
reasonable to use one equilibration time to estimate the sorption capacity
_
0>
o>
5,
""""
o
UJ
CD
CC
O
V)
1-
z
0
^
1000
500
100
50
JO
—
0
o
%
" 0 °
0^ o
o
Q
•
°o
"**. ' ::i
9 Q = 13
• = 39
v = 110
o = 302
i • /v o = 1001
^o % ° • = 3013
1 1 ii ii
-I .51 5 JO 50 100
EQUILIBRATING CONCENTRATION (mg/l)
Figure 7. Logarithmic plot of experimental sorption data of soil
"S" (see Tables 3 and 4) .
27
-------
of a soil for the purposes of designing a high rate wastewater treatment
system. In the following paragraphs five kinetic models described earlier
are considered and an attempt is made to evaluate which model is best
suited for describing phosphorus sorption by mineral soils.
Linear least squares analysis is best suited for describing normally
distributed data. The raw data collected were not normally distributed.
The raw data had a more or less logarithmic distribution. When a linear
regression is used with the type of data that were collected, the net
result will overweight the large values and underweight the smaller
values. With logarithmically distributed raw data, the authors feel that
it would be best to perform log transformations on the kinetic models and
data prior to performing regression analyses. This technique is useful
when there are no negative values or zeros and the kinetic function
lends itself to a log transformation.
The first function which will be considered is a first order kinetic equation,
Equation (5) . Since this equation is linear, regression analyses were per-
formed without making any transformations on the raw data or function.
The function can be thought of as a sorption rate surface. This surface can
then be plotted in a manner similar to a topographic map. Plotting contours
for equal rates of sorption, the sorption rate surface can be displayed.
Figure 8 is a plot of the regression function for soil "Y" using Equation (5) .
Superimposed on this surface are the experimental data from the batch
sorption data. A similar procedure is used to develop Figures 9 and 10
for Equations (6) and (7), respectively.
Looking at these figures conceptually or qualitatively it would appear that
Figure 10 best fits the experimental data, followed by Figure 9, then
Figure 8.
The first three functions are actually kinetic models in differential form.
64
The diffusion limited model after Carslaw and Jaeger is an integral form.
To perform normal curve fitting, it is necessary to differentiate the function
being fitted. Since the diffusion limited model requires a record of previous
conditions to evaluate new conditions, it is not convenient to use standard
28
-------
{kC-S}
ooo —
•^ 100 —
0
UJ
CD
§
V)
(£>
Z
o
Figure 8.
10
10
EQUILIBRATING CONCENTRATION (mg/l)
100
{mCn -3}
OOO —
100
ui
CD
or
o
2
O
_4S_
»t
?&»
' O.I -\ /^> 1.6
•OIIJ034
31.
10 —
•10
Regression of Equation (5) to the experi-
mental data of soil "Y." In the figure, the
rate of sorption is presented in parts per
million per hour. The experimental data
points are plotted numerically with the
data point located at the decimal point of
the value, (a = 0.074; k = 9.2)
.1 I 10 100
EQUILIBRATING CONCENTRATION (mg/l)
Figure 9. Regression of Equation (6) to the experi-
mental data of soil "Y." In the figure, the
rate of sorption is presented in parts per
million per hour. The experimental data
points are plotted numerically with the
data point located at the decimal point of
the value, (b = 0.055; m = 24; n = 0.72)
-------
1000 —
o
LlJ
OD
K
o
O
=0.1
I 10 100
EQUILIBRATING CONCENTRATION (mg/l)
Figure 10. Regression of Equation (7) to the experimental data of
soil "Y." In the figure, the rate of sorption is presented
in parts per million per hour, The experimental data
points are plotted numerically with the data point located
at the decimal point of the value, (a = 7.3; b = 2.28;
C = 1.63)
curve fitting techniques. This would not have been a problem if it had
been possible to maintain a constant solution concentration and still
measure the amount of sorption.
Thus, to obtain regression coefficients for this model, it is necessary
to rewrite the model as a series. In other words, it was assumed the
equilibrating solution concentration could be described by a series of
step functions similar to that shown in Figure 11. Thus, the surface
concentration was described as
30
-------
F(C) = F(C0) 0 < t < ta
F(C) = F(Ci) ti < t < t2
F(C) = F(C2) t2 < t < ta
F(C) = F(Cn) t >tn (9)
To condense the expression, Equation (8) was rewritten as
O CO
avg _ vm _ , 6 1 -icn2TT2t/r2
T7/-/--S - vet; - 1 E — e (10)
F(C) ir2 n=l n2
Then, the average concentration in the soil particle becomes
Savg = F(C0) V(t) 0 -FCC^)] v (t -tn) t>tn (ii)
This can be written in the more condensed form as
Savg = F(Co) V(t) + ._E { F(Ci) " F(Ci-l)f
V(t- t.) 1= J t. < t < t. + 1 (12)
J. J J
j = 1, 2, ...
31
-------
(_>
g 24h
o
z 22
g
o 20
w 18
| 16
< 14
cc
s
20 40 60 80 100 120 140 (60
TIME (Mrs.)
Figure 11. Typical time series step function used in describing
the equilibrating solution concentration versus time
for a solution to the diffusion model Equation (8).
Note, as mentioned earlier, F(C) is a function which relates the solution
concentration to the equilibrium concentration which can be sorbed by the
fiO
soil. Skopp and Warrick assumed this to be a linear function or a con-
stant times the solution concentration. This permitted obtaining an
analytical solution to Equation (3) using Equation (8). Preliminary
regression analyses were performed to this function using the data in
Appendix D, but the correlation between predicted concentration and
measured concentration was not good and the data is not presented in
this report. However, when it was assumed the equilibrium relationship
would follow either a Langmuir or Freundlich equation, reasonable
correlations were obtained.
Regression coefficients for all the models are listed in Table 4, along with
the physical/chemical properties of the soil. As mentioned earlier, several
97 28 29
investigators ' have developed regression equations which correlate
32
-------
the physical/chemical properties of the soil to sorption isotherms. This
was done on soils from limited geographical areas , similar analyses were
performed using our experimental data without developing satisfactory
relationships and will not be presented .
To evaluate which model "best" fits the experimental data, it is necessary
to develop a uniform evaluation procedure . Curve fitting was performed
with some models in differential form and some in integral form . To
compare the models , the differential models were integrated assuming
that at the beginning of the sorption studies no phosphorus was on the
soil (S = 0) . Therefore, initially it would mathematically not be possible
to desorb any phosphorus . Taking the concentration C as a constant with
respect to time, Equation (5) , the first order kinetic model, yields
where t is time and S approaches
-------
There are several ways that the data can be compared. One could look at
the data linearly or with a logarithmic transformation. One could look at
average correlation coefficients or one could compare the frequency a given
model will "satisfactorily fit" the experimental data. Each of these approaches
was considered and is presented here. In Table 5, linear correlation co-
efficients are presented without performing any transformations. In other
words, a linear regression analysis was performed comparing measured
Table 5. CORRELATION COEFFICIENTS FOR SORPTION MODELS
Equation No.
Soil
A
B
C
D
E
F
G
H
I
L
M
N
O
P
Q
R
S
T
U
V
w
X
Y
Z
AA
(5)
0.67
0.74
0.64
0.69
0.94
0.86
0.35
0.94
0.87
0.85
0.72
0.80
0.91
0.86
0.78
0.93
0.88
0.96
0.87
0.57
0.70
0.88
0.94
0.93
0.94
(6)
0.79
0.93
0.90
0.55
0.81
0.87
0.44
0.80
0.91
0.91
0.87
0.83
0.72
0.85
0.90
0.62
0.89
0.95
0.68
0.79
0.86
0.91
0.95
0.96
0.95
(7)
0.87
0.93
0.92
0.95
0.90
0.93
0.43
0.69
0.96
0.66
0.92
0.88
0.59
0.78
0.84
0.55
0.98
0.91
0.68
0.85
0.90
0.95
0.97
0.96
0.97
(8-1)
0.67
0.86
0.84
0.75
0.94
0.94
0.80
0.51
0.91
0.95
0.89
0.88
0.94
0.97
0.92
0.93
0.93
0.95
0.61
0.71
0.86
0.86
0.98
0.93
0.97
(8-2)
0.85
0.91
0.94
0.90
0.87
0.83
0.81
0.85
0.97
0.80
0.87
0.89
0.85
0.92
0.89
0.83
0.93
0.96
0.56
0.79
0.85
0.93
0.97
0.98
0.98
Mean correlation
coefficient 0.81 0.83 0.84 0.86 0.88
34
-------
amount sorbed at some measurement time to the calculated amount sorbed
using one of the sorption models. This analysis gives the slope and inter-
cept of the regression curve as well as the correlation coefficient. The
correlation coefficients were used to evaluate the suitability of a given
model. In Table 5, the correlation coefficients are tabulated by equation
number. The equation number refers to the equation as it was fitted to
experimental sorption data. Equation (8-1) refers to the diffusion model
Equation (8) where the Langmuir function, Equation (1), was substituted
for F(C). Similarly in Equation (8-2), the Freundlich equation, Equation (2),
was substituted for F(C) . No one model was always most accurate in fitting
the experimental data. Depending on the soil type, each of the models
indicated an ability to yield satisfactory results. However, when com-
paring the mean correlation coefficients as listed in Table 5, it would
appear that the diffusion model Equation (8) , using a Freundlich isotherm
equation, best fit the experimental data.
Table 6 is similar to Table 5 except the log of the measured sorption was
correlated to the log of the calculated sorption. After performing this type
of transformation on the data, there did not appear to be a significant
difference between sorption models employing Equations (8-2) , (8-1), and
(7). This transformation, however, made Equation (6) appear less satis-
factory. A graphical representation of the data in Tables 5 and 6 is presented
in Figure 12. Figure 12 permits qualitatively comparing a level of accuracy
by way of a regression coefficient, to the percentage of samples equal to or
exceeding that accuracy.
These analyses do not prove statistically which of the models evaluated is
best but do give the reader a qualitative approach to evaluating the suita-
bility of a given model. From these studies, the authors have concluded
the diffusion limited models, based on Equation (8), appear to be most
generally applicable for describing the kinetics of phosphorus sorption
by mineral soils.
35
-------
Table 6. CORRELATION COEFFICIENTS FOR SORPTION
MODELS WITH LOG TRANSFORMATIONS
Equation No .
Soil
A
B
C
D
E
F
G
H
I
L
M
N
O
P
Q
R
S
T
U
V
w
X
Y
Z
AA
Mean correlation
coefficient
(5)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
(6)
0.71
0.82
0.82
0.30
0.66
0.77
*
0.72
0.80
0.88
0.86
0.67
0.62
0.67
0.80
0.51
0.75
0.71
0.56
0.85
0.84
0.89
0.90
0.92
0.92
0.75
(7)
0.96
0.91
0.93
0.93
0.88
0.96
*
0.88
0.96
0.51
0.96
0.91
0.88
0.95
0.94
0.81
0.96
0.95
0.75
0.96
0.97
0.97
0.96
0.95
0.97
0.91
(8-1)
0.79
0.89
0.88
0.69
0.95
0.94
*
0.50
0.94
0.96
0.93
0.91
0.93
0.96
0.96
0.88
0.95
0.97
0.72
0.93
0.93
0.93
0.97
0.97
0.98
0.89
(8-2)
0.95
0.87
0.91
0.79
0.94
0.96
*
0.88
0.96
0.68
0.96
0.90
0.89
0.95
0.94
0.86
0.94
0.95
0.72
0.94
0.96
0.96
0.96
0.95
0.98
0.91
*Not evaluated.
36
-------
I .9 .8 .7 .6
CORRELATION1 C(
.9 .8 .7 .6 .5
CORRELATION COEFFICIENT
9 .8 .7 .6 .5
CORRELATION COEFFICIENT
FUNCTION 4
i
.9 .8 .7 .« .5
CORREI.ATION COEFFICIENT
mo
80
60
40
20
O
f
FUNCTION 5
_L
_L
JL
.9 .8 .7 .6 .5
CORRELATION COEFFICIENT
Figure 12. Correlation coefficient versus accumulative frequency for
the five kinetic models. The log transformed data from
Table 6 is represented by the dashed curve and linear
presentation from Table 5 is represented by the solid curve.
Function 1 is the kinetic model described by Equation (7).
Function 2 is the kinetic model described by Equation (5) .
Function 3 is the kinetic model described by Equation (6).
Function 4 is the kinetic model described by Equation (8-2).
Function 5 is the kinetic model described by Equation (8-1).
37
-------
SECTION VI
REFERENCES
Bailey, George W. Role of Soils and Sediment in Water Pollution
Control, Part 1 — Reaction of Nitrogenous and Phosphatic Compounds
with Soil and Geologic Strata. U.S. Department of Interior, Federal
Water Pollution Control Administration, Southeast Water Lab, Athens,
GA. March 1968. 90 p.
Buckman, Harry O., and Nyle C. Brady. The Nature and Properties
of Soils, 7th Edition. New York, The Macmillan Company, 1969.
653 p.
MacPherson, L. B., N. R. Sinclair, and F. R. Hayes. Lake Water
and Sediment, III. The Effect of pH on the Partition of Inorganic
Phosphate Between Water and Oxidized Mud or its Ash. Limnol.
Oceanog. 3; 318-326, July 1958.
Scarseth, G. D., and J . W. Tidmore. The Fixation of Phosphates by
Soil Colloids. J. Amer. Soc. Agron. 26:138-151, 1934.
Blanchar, R. W., and L. R. Hossner. Hydrolysis and Sorption of
Ortho-, Pryo-, Tripoly-, and Trimetaphosphate in 32 Midwestern
Soils. SoilSci. Soc. Amer. Proc. 33_: 622-625, 1969.
Jensen, H. E. Phosphate Solubility in Danish Soils Equilibrated
with Solutions of Differing Phosphate Concentrations. J. Soil Sci.
221:261-266, 1971.
Lance, Clarence. Nitrogen Removal by Soil Mechanism. J. Water
Pollut. Contr. Fed. 44(7): 1352-1362, 1972.
38
-------
8. Acquaye, D. K. Some Significance of Soil Organic Phosphorus
Mineralization in the Phosphorus Nutrition of Cocoa in Ghana.
Plant and Soil Sci. 19: 65-80, 1963.
9. Kingston, F. J., R. J. Atkinson, A. M. Posner, and J. P. Quirk.
Specific Adsorption of Anions on Goethite. In: International
Congress of Soil Science Transactions, 9th, Vol. 1. Amsterdam,
Elsevier, 1968. p. 669-678.
10. Carritt, Dayton E., and Sol Goodgal. Sorption Reactions and Some
Ecological Implications. Deep-Sea Research. 1:224-243,1954.
11. Dean, L. A., and E. J. Rubins. Anion Exchange in Soils, I,
Exchangeable Phosphorus and the Anion Exchange Capacity. Soil
Sci. 63_: 377-387, 1947.
12. Dean, L. A. Fixation of Soil Phosphorus. In: Advances in Agronomy,
Vol. 1, Norman, A. G. (ed.). New York, Academic Press, 1949.
p. 391-411.
13. Gunary, D. A New Adsorption Isotherm for Phosphate in Soil.
J.SoilSci. 21: 7 2- 77, 1970.
14. Hsu, Pa Ho, and D. A. Rennie. Reactions of Phosphate in Aluminum
Systems , II. Precipitation of Phosphate by Exchangeable Aluminum
on a Cation Exchange Resin. Canadian J. Soil Sci. 42: 210-221,
1962.
15. Hsu, Pa Ho, and D. A. Rennie. Reactions of Phosphate in Aluminum
Systems. 1. Adsorption of Phosphate by X-ray Amorphous "Aluminum
Hydroxide." Canadian J . Soil Sci. 42:197-209,1962.
16. Holford, I. C. R., R. W. M. Wedderburn, and G. E. G. Mattingly.
A Langmuir Two-surface Equation as a Model for Phosphate
Adsorption by Soils. J. Soil Sci. 25(2): 242-255, 1974.
17. Humphreys, F. R., and W. L. Pritchett. Phosphorus Adsorption
and Movement in Some Sandy Forest Soils. Soil Sci. Soc. Amer.
Proc. 35:495-500, 1971.
39
-------
18. Larsen, Sigurd. Soil Phosphorus. In: Advances in Agronomy,
Vol. 19, Norman, A. G. (ed.). New York, Academic Press, 1967.
p. 151-210.
19. Murrmann, Richard P., and Michael Peech. Reaction Products of
Applied Phosphate in Limed Soils. Soil Sci. Soc. Amer. Proc.
32_: 493-496, 1968.
20. Obihara, C. H., and E. W. Russell. Specific Adsorption of Silicate
and Phosphate by Soils. J. Soil Sci. 23:105-117,1972.
21. Olsen, S. R., and F. S. Watanabe. A Method to Determine a Phos-
phorus Adsorption Maximum of Soils as Measured by the Langmuir
Isotherm. Soil Sci. Soc. Amer. Proc. 21:144-149,1957.
22. Rennie, D. A., and R. B. McKercher. Adsorption of Phosphorus
by Four Saskatchewan Soils. Canadian J. Soil Sci. 39_: 64-75, 1959.
23. Russell, G. C., and P.P. Low. Reaction of Phosphate with Kaolinite
in Dilute Solution. Soil Sci. Soc. Amer. Proc. 18_: 22-25, 1954.
24. Weir, C. C., and R. J. Soper. Adsorption and Exchange Studies
of Phosphorus in Some Manitoba Soils. Canadian J. Soil Sci.
42:31-42, 1962.
25. Woodruff, J. R., and E. J. Kamprath. Phosphorus Adsorption Maxi-
mum as Measured by the Langmuir Isotherm and its Relationship to
Phosphorus Availability. Soil Sci. Soc. Amer. Proc. 2_9:148-150,
1965.
26. Langmuir, Irving. The Adsorption of Gases on Plane Surfaces of
Glass, Mica and Platinum. J. Amer. Chem. Soc. 4J3:1361-1403,
1918.
27. Brunauer, Stephen, andL. E. Copeland. Surface Tension,
Adsorption. In: Handbook of Physics, E . U. Condon and H .
Odishaw (ed.) . New York, McGraw Hill Book Co., 1967. p. (5)90-
(5)115.
40
-------
28. Ahenkorah, Yaw. Phosphorus-Retention Capacities of Some Cocoa-
Growing Soils of Ghana and Their Relationship with Soil Properties.
SoilSci. 105(1): 24-30, 1968.
29. Saini, G. R.» and A. A. MacLean. Phosphorus Retention Capacities
of Some New Brunswick Soils and Their Relationship with Soil
Properties. Canadian J. SoilSci. 45:15-18, 1965.
30. Williams, E. G., N. M. Scott, and M. J. McDonald. Soil Properties
and Phosphate Sorption. J. Sci. FoodAgric. 9:551-559, 1958.
31. Murrmann, R. P ., and Michael Peech. Effect of pH on Labile and
Soluble Phosphate in Soils. Soil Sci. Soc. Amer. Proc. 3_3: 205-210,
1969.
32. Hsu, P. H., andM. L. Jackson. Inorganic Phosphate Transformations
by Chemical Weathering in Soils as Influenced by pH. Soil Sci.
90: 16-23, 1960.
33. Olsen, S . R., F. S . Watanabe , and C. V. Cole. Soil Properties
Affecting the Solubility of Calcium Phosphates. Soil Sci. 90: 44-50,
1960.
34. Sree Ramulu, U.S., and P.P. Pratt. Dissolution of Dicalcium
Phosphate in Relation to Iron Oxide Content of Acid Soils. Soil Sci.
109(1): 35-39, 1970.
35. Sree Ramulu, U . S ., and P. F . Pratt. Influence of Various Treat-
ments on the Dissolution of Dicalcium Phosphate in Soils. Soil Sci.
109(3): 186-189, 1970.
36. Barrow , N . J , Relationship Between Uptake of Phosphorus by Plants
and the Phosphorus Potential and Buffering Capacity of the Soil—An
Attempt to Test the Schofield's Hypothesis. Soil Sci. 104: 99-106,
1967.
37. Cole, C. V., and S. R. Olsen. Phosphorus Solubility in Calcareous
Soils: I, Dicalcium Phosphate Activities in Equilibrium Solutions.
SoilSci. Soc. Amer. Proc. 23:116-118, 1959.
41
-------
38. Taylor, A. W., and E. L. Gurney. The Effect of Lime on the Phosphate
Potential and Resin-Extractable Phosphate in Five Acid Soils. Soil Sci.
Soc. Amer. Proc. 29_: 482-483, 1965.
39. Enfield, Carl G. Rate of Phosphorus Sorption by Five Oklahoma Soils.
Soil Sci. Soc. Amer. Proc. 38:404-407, 1974.
40. Enfield, C. G,, and D. C. Shew. Comparison of Two Predictive Non-
equilibrium One-dimensional Models for Phosphorus Sorption and
Movement Through Homogeneous Soils. J. Environ. Qual. 4:198-202,
1975.
41. Enfield, Carl G., Curtis C. Harlin, Jr., and Bert E. Bledsoe.
Kinetics of Orthophosphorus Reactions in Mineral Soils. (Presented
at Annual Meeting Amer. Soc. of Agronomy. Chicago. Nov. 10-15,
1974.) 25 p.
42. Coleman, N. T., J. T. Thorup, and W. A. Jackson. Phosphate-
sorption Reactions that Involve Exchangeable Al. Soil Sci. 9Jh 1-7,
1960.
43. Fox, R. L., and E. J. Kamprath. Adsorption and Leaching of P in
Acid Organic Soils and High Organic Sand. Soil Sci. Soc. Amer.
Proc. 35:154-156, 1971.
44. Hayes , F. R., J. A. McCarter, M. L. Cameron, and D. A. Livingstone.
On the Kinetics of Phosphorus Exchange in Lakes. J. Ecol. 40: 202-
212, 1952.
45. Haseman, J. F., E. H. Brown, and C. D. Whitt. Some Reactions
of Phosphate with Clays and Hydrous Oxides of Iron and Aluminum.
Soil Sci. 70:257-271,1950.
46. McAuliffe, C. D. , N. S. Hall, L. A. Dean, and S. B. Hendricks.
Exchange Reactions Between Phosphates and Soils: Hydroxylic
Surfaces of Soil Minerals. Soil Sci. Soc. Amer. Proc. 11:119-123,
1947.
42
-------
47. Baker, D. E. A Study of Isotopic Dilution as a Method for Relating
Phosphorus Retention to Availability of Phosphorus in Widely
Different Soils. Soil Sci. Soc. Amer. Proc. 28:511-517, 1964.
48. Bouldin, D. R., and C. A. Black. Phosphorus Diffusion in Soils.
Soil Sci. Soc. Amer. Proc. 18:255-259, 1954.
49. Lewis, D. G., and J. P. Quirk. Phosphate Diffusion in Soils and
Uptake by Plants, I, Self-diffusion of Phosphate in Soil. Plant Soil.
£6:99-118, 1967.
50. Phillips, R. E . , G. A. Place, and D . A . Brown. Self-diffusion of
Phosphorus in Clays and Soil, I, The Effect of Phosphorus Rate.
Soil Sci. Soc. Amer. Proc. 32; 41-44, 1968.
51. Olsen, S. R., W. D. Kemper, and R. D. Jackson. Phosphate
Diffusion to Plant Roots. Soil Sci. Soc. Amer. Proc. 26: 222-277,
1962.
52. Olsen, S. R., W. D. Kemper, and J. C. Van Schaik. Self-diffusion
Coefficient of Phosphorus in Soil Measured by Transient and Steady-
State Methods. Soil Sci. Soc. Amer. Proc. 2^:154-158, 1965.
53. Davidson, J . M., and R. K. Chang. Transport of Piclorgram in
Relation to Soil Physical Conditions and Pore-Water Velocity. Soil
Sci. Soc. Amer. Proc. 36:257-261, 1972.
54. Hendricks, David W. Sorption in Flow Through Porous Media. In:
Fundamentals of Transport Phenomena in Porous Media. Developments
in Soil Science 2, IAHR. Amsterdam, Elsevier. 1972. p. 384-392.
55. Hornsby, A. G., and J. M. Davidson. Solution and Adsorbed
Fluometuron Concentration Distribution in a Water Saturated Soil:
Experimental and Predicted Evaluation. Soil Sci. Soc. Amer. Proc.
37:823-828, 1973.
56. Kay, B . D., and D. E. Elrick. Adsorption and Movement of Lindane
in Soils. Soil Sci. 104:314-322,1967.
43
-------
57. Lindstrom, F. T. , R. Hague, F. H. Freed, and L. Boersma,
Theory on the Movement of Some Herbicides in Soils. Environ. Sci.
Tec. !_: 561-565, 1967.
58. Lindstrom, F. T., L. Boersma, and D. Stockard. A Theory on the
Mass Transport of Previously Distributed Chemicals in Water
Saturated, Sorbing Medium, Isothermal Case. Soil Sci. 112: 291-
300, 1971.
59. Oddson, J. K., J. Letey, and L. V. Weeks. Predicted Distribution
of Organic Chemicals in Solution and Adsorbed as a Function of
Position and Time for Various Chemical and Soil Properties. Soil
Sci. Soc. Amer. Proc. 3^:412-417, 1970.
60. Skopp, J., and A. W. Warrick. A Two-Phase Model for the Miscible
Displacement of Reactive Solutes in Soil. Soil Sci. Soc. Amer. Proc.
3^:545-550, 1974.
61. van Genuchten, M. Th., J. M. Davidson, and P. J. Wierenga.
An Evaluation of Kinetic and Equilibrium Equations for the Prediction
of Pesticide Movement Through Porous Media. Soil Sci. Soc. Amer.
Proc. 38: 29-35, 1974.
62. Laidler, Keith J. Chemical Kinetics, 2nd Edition. New York,
McGrawHill, 1965. 566 p.
63. Lapidus, Leon, and Neal R. Amundson. Mathematics of Adsorption
in Beds, VI, The Effect of Longitudinal Diffusion in Ion Exchange
and Chromatographic Columns. J. Physical Chemistry. 56_: 984-988,
1952.
64. Carslaw, H. S., and J. C . Jaeger. Conduction of Heat in Solids,
2nd Edition. London, Oxford Univ. Press, 1959. 510 p.
65. Boul, S . W ., F. D . Hole, and R. J. McCracken. Soil Genesis and
Classification. DesMoines, Iowa State Univ. Press, 1972.
66. Ballaux, Jean-Claude. Adsorption and Desorption of Phosphorus
in Five Kentucky Soils. Ph.D. Dissertation, Univ. of Kentucky,
Department of Agronomy. 1972. 141 p .
44
-------
67. Wagman, D. D., W. H. Evans, V. B . Parker, I. Halow, S . M.
Bailey, and R. H. Schumm. Selected Values of Chemical Thermo-
dynamic Properties. Washington, B.C., U.S. Government Printing
Office. National Bureau of Standards Technical Note 270-3, 1968,
264 p. , and Technical Note 270-4, 1969, 140 p.
68. Adams, Fred. Ionic Concentrations and Activities in Soil Solutions.
Soil Sci. Soc. Amer. Proc. 3_5: 420-426, 1971.
69. Stumm, Werner, and James J. Morgan. Aquatic Chemistry, An
Introduction Emphasizing Chemical Equilibria in Natural Waters.
New York, Wiley-Interscience, 1970. 583 p.
70. Huffman, E. O., W. E. Cate, and M. E. Deming. Rates and
Mechanisms of Dissolution of Some Ferric Phosphates. Soil Sci.
90:8-15, I960.
71. Garrels, Robert M., and Charles L. Christ. Solutions, Minerals
and Equilibria. New York, Harper and Row, 1965. 450 p.
72. Scalf, M. R. , B. L. DePrater, F. M. Pfeffer, L. D, Lively, J. L.
Witherow, and C. P. Priesing. Phosphate Removal by Activated
Sludge, Amenability Studies at Mansfield, Ohio. U.S. Department
of Interior, Federal Water Pollution Control Administration, R. S.
Kerr Water Research Center, Ada, OK. November 1968. 43 p.
73. Myers, L. H. , J. A. Horn, L. D. Lively, J. L. Witherow, and C. P.
Priesing. Phosphate Removal by Activated Sludge, Amenability
Studies at Indianapolis, Indiana. U.S. Department of Interior,
Federal Water Pollution Control Administration, R. S. Kerr Water
Research Center, Ada, OK. November 1968. 32 p.
74. Lively, L. D., J. A. Horn, M. R. Scalf, F. M. Pfeffer, J. L.
Witherow, and C. P. Priesing. Phosphate Removal by Activated
Sludge, Amenability Studies at Cleveland, Ohio. U.S. Department
of Interior, Federal Water Pollution Control Administration, R. S.
Kerr Water Research Center, Ada, OK. December 1968. 54 p.
45
-------
75. Scalf, M, R., F. M. Pfeffer, L. D. Lively, J. L. Witherow, and
C. P. Priesing. Phosphate Removal by Activated Sludge, Amena-
bility Studies at Baltimore, Maryland. U.S. Department of Interior,
Federal Water Pollution Control Administration, R. S. Kerr Water
Research Center, Ada, OK. June 1968. 52 p.
76. Puri, B. R., and K. Murari. Studies in Surface Area Measurements
of Soils, II, Surface Area from a Single Point of Water Isotherm. Soil
Sci. 9^: 341-343, 1964.
77. Black, C. A. (ed.) Methods of Soil Analysis. Agronomy No. 9.
Madison, Wisconsin, Amer. Soc. of Agron. 1965. 1,572 p.
78. U.S. Salinity Laboratory Staff. Diagnosis and Improvement of Saline
and Alkali Soil. Washington, D .C ., U.S. Government Printing Office.
USDA Agriculture Handbook No. 60. 1954. 160 p.
79. Jackson, M. L. Soil Chemical Analysis. Englewood Cliffs, N.J,,
Prentice-Hall, Inc. , 1960, 498 p.
80. U.S. Environmental Protection Agency. Methods for Chemical
Analysis of Water and Wastes. Washington, D.C., U.S. Govern-
ment Printing Office. U.S. EPA-625/6-74-003, 1974. p. 249-255.
81. Aulenbach, D. B ., J . J . Ferris, N. L. Clesceri, and T . J.
Tofflemire. Thirty-five Years of Use of a Natural Sand Bed for
Polishing a Secondary Treated Effluent. (Presented at Rural Engi-
neering Conference, Univ. of Vermont. September 27, 1973.)
Troy, N.Y. , Rensselaer Polytechnic Institute. FWI Report #73-15.
51p.
82. Bouwer, Herman, R. C. Rice, E. D. Escarcega, and M. S. Riggs.
Renovating Secondary Sewage by Groundwater Recharge with Infil-
tration Basins . Washington, D .C . , U.S. Government Printing Office.
Environmental Protection Agency Water Pollution Control Research
Series No. 16060-DRV03/72. 1972. 102 p.
46
-------
83. Carter, D. L., J. A. Bondurant, and C. W. Bobbins. Water
Soluble NOg-nitrogen, PCK-phosphorus and Total Salt Balances on
a Large Irrigation Tract. Soil Sci. Soc. Amer. Proc. 3j>: 331-335,
1971.
84. Johnston, William R. , F. Ittihadieh, Richard M. Daum, and Arthur F.
Pillsbury. Nitrogen and Phosphorus in Tile Drainage Effluent.
Soil Sci. Soc. Amer. Proc. 29:287-289, 1965.
47
-------
SECTION VII
APPENDIXES
A, Example Calculations for Solubility of Phosphorus
Compounds 49
B. Methodologies of Soil Analysis 53
C. Procedures for Measuring Phosphorus Sorption
Isotherms 54
D. Phosphorus Sorption Isotherm Data 55
E. Comparison of Sorption Models 95
48
-------
APPENDIX A
EXAMPLE CALCULATIONS FOR SOLUBILITY OF PHOSPHORUS COMPOUNDS
1. Solubility of Al (OH) 2H 2PO ^ (s) in the presence of excess Al (OH) 3 (s)
and H2O
-30.5
Al(OH)2H2PO,,(s) + Ar3 + H2PCU + 2OH~ 10
3
Al3 + 3H20 + Al(OH)3(s) + 3H 10 '
Al(OH)2H2P04(s) + 3H20 + H2PO; + 2OH~ + 3H+ + Al(OH) 3(s) 10~4°
i _ . 00
2H + 20H + 2H20 10
Al(OH)2H2PO^(s) +H20 ^HzPO,, + H* + Al(OH) 3(s) 10~12
Assuming the activities of Al(OH) 2H2POif(s) , H2O, and Al(OH) 3(s)
are equal to 1
[H2PO;] [H] = 10~12
The occurrence of the different phosphate species is pH dependent .
Thus, the total phosphorus in solution (PT) is the sum of the different
ionic species. Although only significant quantities of H2POi» and HPOi,2
will be found in soils , all species are included here for completeness .
PT = [PO;3] + [HPO;2] + [H2POi + [H3PO.J (16)
49
-------
aKa [H2PO,j K2 [H2PO,J [H ]
P = + + [H2PCM + (17)
1 [H+]2 [H+] K!
_o
where KI is the ionization constant for H3POi» = 7.58 x 10
_ _o
K2 is the ionization constant for H2POi, = 5.93 x 10
-in
K3 is the ionization constant for HPOif2= 3.43 x 10
Thus , at pH 3
PT = 1.13 x 10 9 M
2. Solubility of Ca 5OH (PO t,) 3 in the presence of 0.001 M Ca 2 ion in
solution
KSP
CasOH(PO%)3(s) •*• 5Ca'z + SPO^3 + OH 10~55'6
Assuming the activity of Ca5OH(POO 3(s) is 1
[Ca+2]5 [PO;3]3 [OH] = 10~55'6
[PO;3][H] [PO^tH^2 [POZ][H+]3
PT = [POi,3] + ^ + =£-*, +—„ K K (18)
I K. 3 K ah. 2 K 3^ 2"- 1
Thus, at pH 6
PT = 7.1 x 10~4 M
3. System equilibrium of H 2O, CaCO 3, Ca5OH (PO ^) 3 and CO 2(g)
This is a more complex system than those evaluated earlier. To simplify
the system, consider first the CaCO3(s), H2O, CO2(g) system to deter-
mine the [Ca 2] concentration which, in turn, permits determining the
phosphorus in solution. In other words, the assumption is made that
just CaCO 3 contro
Table 1 we obtain
just CaCO 3 controls the solubility of Ca . Using the solubility data in
50
-------
H2C03 K = 3.4x 10 2
[H2C03] =KPC(>2 (19)
H2C03+ H^ + HCOl2 Klc = 4xlO~7
KPC02KlC
[HC03] = (20)
HCOl •* H+ -
KPC02K>CK'C
[CO a2] = - (21)
[H]2
K = 5 x 10~8
s
[Ca'2]= Kp ° ^ (22)
KPC02KlC K2C
For the system to be at equilibrium, electro-neutrality must also exist.
Therefore,
2[Ca+2] + [H+] = 2[COl2] + [HCOg] + [OH~] (23)
Substituting into Equation (23), one obtains
10"7[H+] k + 9.5 x 10~19 PC02 [H+]3 = 9.2 x 10"37 PCQ2
+ 9.2x 10~27P 2[H+] + G.SxlO"33?^ [H+] (24)
To solve Equation (24), a value for either the CO2(g) pressure or pH
must be assumed. The partial pressure for CO2(g) in the atmosphere
is approximately 0.0003 Atm. In soils, one would not expect to find the
partial pressure of CO2(g) below what it is in the atmosphere. Solving
for the pH based on a CC>2(g) partial pressure of 0.0003 Atm, one finds
the pH to be 8.7.
51
-------
Knowing the pH and CO2(g) pressure, it is possible to calculate from
Equation (22) the [Ca++] concentration as 9.76 x 10 M. This permits
— —19
calculating [POi,3] as 1.79 x 10 M, which is used to calculate the
_.o
total phosphorus from Equation (18) as 1.07 x 10 M.
4. System equilibrium of strengite FePOi,*2H2O(s), FeOH(s) and H2O.
From Table 1
FePOlf.2H2O(s) ^Fe+3 + PO;3 + 2H2O 9.9xlo"29
Fe*3 + 3H2O + Fe(OH) 3(s) + 3H+ 1 x 10~6
FePO,,-2H2O(s) +H20 + PCU3 + 3H++ Fe(OH) 3(s) 10~34
Assuming the activity of the solid compounds and H2O to be 1, then
,«-34
[H+]3
Since the total phosphorus in solution is
PT =
PT at pH 3 is equal to 5 . 65 x 10"1 M .
52
-------
APPENDIX B
METHODOLOGIES OF SOIL ANALYSIS
Reference
Parameter No.
Surface Area - Water Vapor Adsorption 76
Particle Size Analysis 77 562-567
Cation Exchange Capacity 77 899-900
Percent Organic Matter 78 105-106
Total Phosphorus 79 175-176
Resin Extractable Phosphorus 38 482-483
Total Iron - Atomic Adsorption Determination 77 955-956
Exchangeable Aluminum - Atomic Adsorption 77 967-968
Determination
Total Aluminum - Atomic Adsorption 77 955-956
Determination
Exchangeable Aluminum - Atomic Adsorption 77 986-987
Determination
Total Calcium - Atomic Adsorption 77 955-956
Determination
Exchangeable Calcium - Atomic Adsorption 77 894-895
Determination
Total Magnesium - Atomic Adsorption 77 955-956
Determination
Exchangeable Magnesium - Atomic Adsorption 77 894-895
Determination
Saturated pH 78 102
Electrical Conductivity 78 89-90
53
-------
APPENDIX C
PROCEDURES FOR MEASURING PHOSPHORUS SORPTION ISOTHERMS
DESTRUCTIVE PROCEDURE FOR MEASURING PHOSPHORUS ISOTHERMS
ON SOILS
Ten grains of air-dried soil were placed in a 250 milliliter flask contain-
ing 100 milliliters of a solution of 0.01M calcium chloride and a specified
phosphorus concentration. Fourteen replicates were set up for each
concentration. These were then placed on shaker tables in a constant
temperature (20° C) room. Two of the flasks for each concentration were
80
removed at specific time intervals for phosphorus analysis.
The initial concentrations of phosphorus in the flasks were 1, 3, 10, 30,
and 100 milligrams per liter. The time intervals for sampling and
analyzing the different concentrations were 1, 3, 10, 30, 100, 300, and
1,000 hours.
NONDESTRUCTIVE PROCEDURE FOR MEASURING PHOSPHORUS
ISOTHERMS ON SOILS
Ten grams of air-dried soil were placed in a 250 milliliter flask contain-
ing 100 milliliters of a solution of 0.01M calcium chloride and a specified
phosphorus concentration. The flasks were then placed on shaker tables
in a constant temperature (20° C) room. At specific intervals, 10 milli-
liters of soil suspension were withdrawn and placed in 15 milliliter
centrifuge tubes and centrifuged for five minutes at 4.6 x 10s cm-sec 2.
80
Five milliliters of the supernate were withdrawn for phosphorus analysis.
This volume was replaced with five milliliters of the original solution con-
centration and the soil was hand shaken back into suspension and returned
to the original flask for continuation of the isotherm.
The initial concentrations of phosphorus in the flasks were 1, 3, 10, 30,
and 100 milligrams per liter. The time intervals for sampling and analyzing
the different concentrations were 1, 3, 10, 30, 100, 300, 1,000, and 3,000
hours.
54
-------
APPENDIX D
PHOSPHORUS SORPTION ISOTHERM DATA
This appendix is divided into two parts. Soils "A" through "U" were
analyzed "nondestructively." They are included together with a
computer program which was used to convert the raw experimental data
into the data presented in the appendix. The data presented in this
appendix was used as a basis for evaluating the kinetic models. It
should be pointed out that some smoothing was used to calculate the
rate of sorption from the experimental data. The remaining soils which
were evaluated "destructively" are also included with their computer
program which used the same smoothing technique to evaluate the rate
of sorption. To clarify what is listed in the tabulated data, each table
follows the following format:
Column 1 - Elapsed time from the initial application of
equilibrating solution.
Column 2 - Initial concentration at the beginning of a
time period. On the "destructively" sampled
soils this is the concentration that was measured
at the preceding time. On the "nondestructively"
analyzed soils this concentration reflects the
replacement of solution at a higher concentration.
Column 3 - The measured concentration at the time analyzed.
Column 4 - DC/DT is the rate of change in the solution con-
centration calculated from the previous columns
of data.
Column 5 - DS/DT is the calculated rate of change of
phosphorus sorbed by the soil.
Column 6 - Amount of phosphorus sorbed by the soil and
was calculated based on the initial sample weight.
Column 7 - The sum of the resin extractable phosphorus
and Column 6.
55
-------
PAGE 1
XX JOB
LOG DRIVE CART SPEC CART AVAIL PHY DRIVE
0000 7209 7209 0000
V2 Mil ACTUAL 16K CONFIG 16K
// FOR
*IOCS(DISK»1132 PR INTER*CARD*TYPEWRITER.KEYBOARD)
^EXTENDED PRECISION
*LIST SOURCE PROGRAM
*ONE WORD INTEGERS
C PHOSPHORUS SORPTION ISOTHERM DATA CONVERSION ASSUMES 10 G SOIL SAMPLE
DIMENSION CI(10»7),FC(10.7),DC<10»7}, DS(10»7) »SPAD<10*7) »SPS( 10*7
*) *T(10)
100 FORMAT(13)
READ/2»100)N
C N IS THE NUMBER OF SOIL SAMPLES
DO 1000 ID=1»N
110 FORMAT
C FC ARE THE MEASURED CONCENTRATIONS
150 CONTINUE
170 FORMAT CF10.3)
READ (2,1701 REP
C REP IS THE RESIN EXTRACTABL!" PHOSPj-fORUS
DO 1 I = 2, IN
DC 2 J=1,JN
2 CI(I,J)=0.95*FC(I-1»J)+0.05*CIC1»J)
1 CONTINUE
DO 3 1 = 1, IN
DO 4 J=1,JN
PAD = (CI ( I »J)-FC( I ,J) )/10.
A=I
IF (A-l) 8,8,9
8 SPAD(I,J) = PAD*100.
SPS(I,J) = SPADII»J)+REP
GO TO 10
9 SPAD (I,J) = SPADI 1-1, J)-MPAD*1CO. )
SPS (I,J! = SPS ( 1-1,J) + CPAD*100. )
10 CONTINUE
4 CONTINUE
3 CONTINUE
C RATF CALCULATED ON + POINT MOVING
C CURVE
DO 50 J=l,JN
1 = 1
SUMX = ALOG( l.GE-10 J-fALOG(T( 1)3
56
-------
PAGE
SUMY=CI ( I ,J)+FC( I »J)
A = T( I )
B=FC( I »J)
SUMXY=(-99. )*CI ( I ,J)+(B*ALOG(A) )
SUMXZ=ALOG( 1.0E-10)**2.+< ALOGJ)
RATE= ( (2.*SUMXY)-SL'MX*SU^Y) /DEMCN
DS< I »J)=RATE/T( I )
DO 49 I=2» IN
SUMX = ALOG(T( 1-1 ) )+ALOG
DEMON=2.*SUMXZ-SUMX**2.
RATE=( (2.*SUMXY)-SUMX*SUMY) /DEMON
DC( I »J)=RATE/T ( I )
SUMY=SPAD( 1-1 »J)+SPAD( I »J)
SUMXY=ALOG(T( 1-1) }*SPADl I -1 » J ) + < A LOG < T I I ) )*SPAD! I »J) )
RATE= ( ( 2.#SUMXY ) -SUMX*SUMY ) /DEMON
DS( I »J)=RATE/T( I )
49 CONTINUE
50 CONTINUE
WRITE (3»200) SNiREP
200 FORMAT( ' 1 ' /////14X' PHOSPHORUS SORPTION ISOTHERM'//1
* SOIL '»A2»///' RESIN EXTRACTABLE PHOSPHORUS
*N SOIL BEFORE SORPTION SF5.lt1 PPM1/1 ------------- '
205 FORMAT!
•*
*
#
DC
DT
PPM/HR
OS
SORBED
ri n KA
PPM
SUM
P
ON SO
r\ t~-\ \ • i
PI'M1
I
/
L
|
SUM
•/'
/ »
i
P' /7X» '
HRS
TIME
CONC
MG/L
INITIAL
CONC
MG/L
FINAL
DT
PPM/HR
WRITE0.205)
ICNT = 12
DO 180 J=1»JN
210 FORMAT! lX»F5.0»2F9.2i2E10.2»2F9.2>
WRITE (3»210) IT( 1 ) »CH I» J) »FC( I »J) iDC( I »J) » DS ( I » J 1 iSPAD ( I t J ) »SPS
* ( I » J ) » I = 1 , I N )
220 FORMAT (/)
WRITE(3,22C)
ICNT=ICNT+IM+2
IDUM=54-IN
IF( ICNT- I DUM ) 22 2 » 221*221
223 FORMAT ( ' 1 ' //// /21X ' SOIL '»A2»' CONTINUED'//)
221 IF ( J-JN)224»180»180
224 WRITE(3»223) SN
WRITE(3,205)
ICNT = 5
GO TO 180
222 CONTINUE
180 CONTINUE
1000 CONTINUE
CALL EXIT
END
FEATURES SUPPORTED
ONE WORD INTEGERS
57
-------
PAGE 3
EXTENDED PRECISION
IOCS
CORE REQUIREMENTS FOR
COMMON 0 VARIABLES 1344 PROGRAM 1222
END OF COMPILATION
// XEO
58
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL A
RESIN EXTRACTABLE PHOSPHORUS ON SOIL
TIME
HRS
1.
3.
10.
30.
100.
300.
387.
1016.
3001.
1.
3.
10.
30.
100.
300.
387.
1016.
3001.
1.
3.
10.
30.
100.
300.
387.
1016.
3001.
INITIAL
CONC
MG/L
1
0
0
0
0
0
0
0
0
5
4
4
4
3
3
3
3
3
10
8
8
8
8
7
7
7
7
.00
.74
.75
.62
.48
.43
.38
.34
.36
.00
.33
.27
.13
.83
.57
.19
.08
.06
.00
.90
.94
.78
.44
.91
.33
.25
.25
FINAL
CONC
MG/L
0.73
0.74
0.60
0.45
0.40
0.35
0.30
0.33
0.29
4.30
4.24
4.08
3.77
3.50
3.10
2.98
2.96
2.74
8.84
8.89
8.72
8.36
7.80
7.20
7.11
7.10
6.67
DC
DT
PPM/HR
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0,
-0.
-0.
-0.
-0.
-0.
29E 00
13E-03
12E-01
51E-C2
68E-03
24E-03
76E-03
88E-05
21E-04
14E 01
28E-01
16E-01
10E-01
27E-02
14E-02
21E-02
12E-03
10E-03
29E 01
29E-02
18E-01
12E-01
53E-02
21E-02
22E-02
15E-03
17E-03
BEFORE SORPT
ION
4.1
PPM
DS SUM P SUM P
DT SORBED ON SOIL
PPM/HR PPM PPM
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
11E 00
13E-02
12E 00
51E-01
68E-C2
24E-02
76E-02
88E-04
21E-03
30E 00
28E 00
16E 00
ICE 00
27E-01
14E-01
21E-01
12E-02
1CE-C2
50E 00
29E-01
18E 00
12E 00
53E-01
21E-01
22E-01
15E-02
17E-02
2
2
4
5
6
7
8
8
9
6
7
9
13
16
21
23
24
28
11
11
13
18
24
31
33
35
41
.69
.69
.20
.90
.73
.53
.28
.37
.05
.98
.92
.86
.43
.79
.54
.65
.83
.11
.56
.65
.89
.13
.58
.68
.94
.47
.25
6
6
8
10
10
11
12
12
13
11
12
13
17
20
25
27
26
32
15
15
17
22
28
35
38
39
45
.79
.79
.30
.00
.83
.63
.33
.47
.15
.08
.02
.96
.53
.89
.64
.75
.93
.21
.66
.75
.99
.23
.68
.78
.04
.57
.35
59
-------
SOIL A CONTINUED
TIME
HRS
1.
3.
10.
30.
100.
300.
387.
1016.
3001.
1.
3.
10.
30.
100.
300.
387.
1016.
3001.
INITIAL
CONC
MG/L
40
37
35
37
36
34
33
32
33
100
82
94
95
95
90
89
87
86
.00
.63
.46
.74
.38
.30
.35
.52
.11
.00
.19
.71
.85
.85
.50
.07
.61
.77
FINAL
CONC
MG/L
37.51
35.23
37.63
36.19
34.00
33.00
32.13
32.75
30.77
81.26
94.44
95.64
95.64
90.00
88.50
86.96
86.08
83.26
DC
DT
PPM/HR
-0.
-0.
0.
-o.
-0.
-0.
-0.
0.
-0.
-0.
0.
0.
-0.
-o,
-0.
-0.
-0.
-0.
HE 02
72E 00
17E 00
47E-01
19E-01
39E-02
12E-01
23E-03
72E-03
29E 02
37E 01
76E-01
66E-02
48E-01
60E-02
21E-01
15E-02
10E-02
DS SUM P SUM P
DT SOR8ED ON SOIL
PPM/HR PPf-'. PPM
0.
0.
-0.
0.
o.
0.
0.
-0,
0.
0.
-0.
-0.
0.
0.
0.
0.
0.
0.
10E 01
72E 01
17E 01
47E 00
19E 00
39E-01
12E 00
23E-02
72E-02
81E 01
37E 02
76E 00
66E-01
48E 00
60E-01
21E 00
15E-01
10E-01
24
48
27
42
66
79
91
89
113
187
64
55
57
116
136
157
172
208
.90
.94
•32
.91
•71
.71
.91
.65
.07
.40
.96
.75
.92
.50
• 50
.65
.97
.13
29
53
31
47
70
33
96
93
117
191
69
59
62
120
140
161
177
212
.00
.04
.42
.01
.81
.81
.01
.75
.17
.50
.06
.84
.02
.60
.60
.75
.07
.23
60
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL A
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 4.1 PPM
TIME
HRS
1.
3.
10.
30.
100.
300.
1007.
3004.
1*
3.
10.
30.
100.
300.
1007.
3004.
1.
3.
10.
30.
100.
300.
1007.
3004.
1.
3.
10.
30.
100.
300.
1007.
3004.
1.
3.
10.
30.
100.
300.
1007.
3004.
INITIAL
CONC
MG/L
0.50
0.49
0.43
0.34
0.30
0.21
0.19
0.19
1.00
0.88
0.78
0.66
0.54
0.41
0.37
0.36
3,00
2.61
2.38
2.12
950.14
950.14
950.14
0.15
7,00
6.28
5.93
5.57
5.40
5.27
4.59
6.03
15.00
13.57
13.29
13.10
13.14
13.29
11.88
12.51
FINAL
CONC
MG/L
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
2
999
999
999
0
0
6
5
5
5
5
4
5
4
13
13
13
13
13
11
12
11
.49
.43
.34
.29
.20
.17
.17
.08
.88
.77
.65
.52
.38
.34
.33
.20
.59
.35
.08
,99
.99
.99
.00
.00
.25
.88
.50
.32
.18
.47
.98
.13
.50
.20
.00
.04
,20
,72
.38
.18
DC
DT
PPM/HR
-0.
-0.
-0,
-0,
-0.
-0.
-0.
-0.
-0,
-0.
-0,
-0.
-0.
-0,
-0,
-0.
-0.
-0.
-0.
0.
0.
0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
0,
-0.
-0.
-0.
-0.
-0.
0.
-0.
0.
-0.
14E 00
18E-01
77E-02
16E-02
83E-03
12E-03
13E-04
34E-04
29E 00
35E-01
10E-01
42E-02
13E-02
21E-03
36E-04
48E-04
87E 00
79E-01
25E-01
30E 02
41E 00
15E 00
77E 00
45E-04
20E 01
12E 00
36E-01
75E-02
18E-02
24E-02
11E-02
57E-03
43E 01
HE 00
24E-01
16E-02
51E-03
47E-02
40E-03
40E-03
DS
DT
PPM/HR
0.
0.
0.
0,
0.
0.
0.
0.
0.
0*
0.
0.
0.
0.
0*
0.
0.
0.
0.
-0.
-0.
-0.
0.
0.
0.
0.
0.
0.
0.
0.
-0.
0.
Q.
0.
0.
0.
-0.
0.
-0.
0.
43E-02
18E 00
77E-01
16E-01
83E-02
12E-02
13E-03
34E-03
52E-01
35E 00
10E 00
42E-01
13E-01
21E-02
36E-03
48E-03
17E 00
79E 00
25E 00
30E 03
SUM P
SORBED
PPM
0
0
1
2
3
3
3
4
1
2
3
5
6
7
7
9
4
6
9
-9969
41E 01-10467
15E 01-10965
77E 01
45E-03
32E 00
12E 01
36E 00
75E-01
18E-01
24E-01
11E-01
57E-02
65E 00
HE 01
24E 00
16E-01
51E-02
47E-C1
40E-02
40E-02
-1464
-1463
7
11
15
18
20
28
14
33
14
18
21
22
21
37
32
45
.10
.70
.64
• 17
• 18
.59
.75
.89
.20
.36
.67
.08
.74
.44
.89
.47
.10
.70
.72
.00
SUM P
ON SOIL
PPM
4
4
5
6
7
7
7
8
5
6
7
9
10
11
11
13
8
10
13
-9964
.49-10463
.99-10961
.50
.00
.49
.57
.93
.42
.64
.72
.83
.81
.99
.74
.64
.20
.58
.32
.•36
.62
-1460
-1458
11
15
20
22
24
32
18
37
19
22
25
26
25
41
36
49
.20
.80
.73
.27
,28
.69
.85
.99
.30
.45
.77
.18
.84
.54
.99
.57
.20
.80
.82
.90
.39
.89
.40
.90
.59
.67
.03
.52
.74
.82
.93
.91
.10
.84
.74
.30
.68
.42
.46
.72
61
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL e
RESIN EXTRACTABLE PHOSPHORUS ON .SOIL BEFORE SORPTION 0.6 PPM
TIME
MRS
1.
3.
10.
30.
102.
300.
387.
1000.
3010.
1.
3.
10.
30.
102.
300.
387.
1000.
3010.
1.
3.
10.
30.
102.
300.
387.
1000.
3010.
INITIAL
CONC
MG/L
1.00
0.16
0.20
0.14
0.12
0.12
0.13
0.13
0.20
5.00
1.74
0.63
0.50
0.42
0.38
0.36
0.36
0.41
10,00
5.28
3.29
1.36
1.00
0.85
0.75
0.74
0.74
FINAL
CONC
MG/L
0.11
0.16
0.10
O.C7
0.08
0.08
0.09
0. 16
0.00
1.56
0.40
0.26
0.17
0. 14
0.12
0.11
0.17
0.09
5.03
2.94
0.91
0.53
0.37
0.?7
0.25
D.25
0.16
DC
DT
PPM/HR
-0.32E 00
0.20E-02
-0.86E-02
-0.21E-02
-0.33E-03
-0. 12E-03
-0.42E-03
0.30E-04
-0.62E-04
-0.15E 01
-0.4CE 00
-G.30E-01
-0.98E-02
-0.22E-02
-0.31E-03
-0.23E-02
-0.19E-03
-0.98E-04
-Q.30E 01
-0.7CE 00
-0.1 9P CO
-0.25E-01
-0.51E-02
-0.17E-0?
-G.50G-02
-0.51E-03
-0.17E-03
DS
OT
PPM/HR
0.38E CO
-0.2.0E-01
0.86F-G1
0.21E-C1
0.33E-C2
0.12E-02
0.42E-02
-0.3UE-C3
0.62E-03
0 . 1 4 E 01
C.40E 01
0.30E CO
0.98E-01
C.22E-Q1
0.31F-02
0.25E-01
0.19F-02
0.9BE-C3
0.2 IE 01
0.70E 01
0.1 9E 01
0.2bE 00
Q.51F.-01
0.17E-01
0.50C-01
0.51E-02
0.17C-02
SUM P
iORBED C
PPi--',
8.84
8.77
9.81
10.51
10.93
11.35
11 .77
11 .43
13.55
34.31
47.66
51.34
54.5?
57. 38
60.01
62.49
64.32
67.59
49.68
73. C2
96.91
10b.21
1] 1.58
117.41'
122.38
127.28
133.02
SUM P
)N SOIL
PPM
9.52
9.45
10.49
11.19
11.61
12.02
12.45
12.16
14.23
34.99
42.34
52.02
55.26
53.06
60.69
63.17
65.00
68.27
50.36
73.70
97.59
105.89
112.26
lie. os
123. C6
127.96
133.70
62
-------
SOIL B CONTINUED
TIME
HRS
1.
3.
10.
30.
102.
300.
387.
1000.
3010.
1.
3.
10.
30.
102.
300.
387.
1000.
3010.
INITIAL
CONC
MG/L
40
27
21
14
12
8
7
6
6
100
95
69
56
50
46
43
38
35
.00
.95
.22
.82
.45
.65
.22
.85
.14
.00
.17
.65
.45
.98
.80
.00
.44
.49
FINAL
CONC
MG/L
27
20
13
11
7
5
5
4
3
94
68
54
48
44
40
35
32
27
.32
.24
.50
.01
.00
,50
.11
.36
.11
.92
.06
.16
.40
.00
.00
.20
.10
.28
DC
DT
PPM/HR
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-o.
12E 02
23E 01
64E 00
HE 00
43E-01
97E-02
21E-01
26E-02
91E-03
28E 02
82E 01
12E 01
24E 00
55E-01
21E-01
79E-01
66E-02
24E-02
DS SUM P SUM P
DT SORBED ON SOIL
PPM/HR PPM PPM
0.55E 01
0.23E 02
0.64E 01
0.11E 01
0.43E 00
0.97E-01
0.21E 00
0.26E-01
0.91E-02
0.22E 01
0.82E 02
0.12E 02
0.24E 01
0.55E 00
0.21E 00
0.79E 00
0.66E-01
0.24E-01
126
203
281
319
373
405
426
451
481
50
321
476
557
627
695
773
836
918
.80
.94
.22
.36
.96
.46
.61
.55
.87
.80
.94
.90
• 43
.22
.22
.22
.62
.77
127
204
281
320
374
406
427
452
482
51
322
477
558
627
695
773
837
919
.48
.62
.89
.04
.64
.14
.29
.23
.55
.48
.61
.58
.10
.90
.90
.90
.30
.45
63
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL C
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 6.5 PPM
TIME
HRS
1.
3.
10.
30.
100.
300.
410.
1015.
3025.
1.
3.
10.
30.
100.
300.
410.
1015.
3025.
1.
3.
10.
30.
100.
300.
410.
1015.
3025.
INITIAL
CONC
MG/L
1.00
0.20
0.23
0,05
0.20
0.18
0.16
0.16
0.19
5.00
1.82
0.88
0.53
0.56
0.41
0.38
0.37
0.41
10.00
2.92
2.84
1.60
1.12
0.93
0.86
0.84
0.84
FINAL
CONC
MG/L
0.
0.
0.
0.
0.
0.
0«
0.
0.
1.
0.
0.
0.
0.
0.
0.
0.
0.
2.
2.
1.
0.
0.
0.
0.
0.
0.
16
19
00
16
14
12
11
15
00
72
66
3C
33
17
14
12
16
11
55
47
16
66
46
38
36
35
28
DC
DT
PPM/HR
-0.
-0.
-0.
0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-'0.
-0.
-0.
-0.
-0.
32E 00
50E-02
19E-01
35E-02
57O03
19E-03
37E-03
78E-05
59E-04
15E ,01
36E 00
48E-01
63E-02
32E-02
62E-03
19E-02
22E-03
88E-04
31E 01
13C 00
14E CO
28E-01
53E-02
16E-02
39E-02
52E-03
16E-03
DS SUM P SUM P
DT SORBED ON SOIL
PPM/HR PPM PPM
0.
0.
0.
-0.
0.
0«
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
36E 00
50E-01
19E 00;
35E-01
57E-02
19E-02
37E-02
78E-04
59E-03
14E 01
36E 01
48E 00
63E-01
32E-01
82E-C2
19E-C1
22E-02
8SE-03
32E 01
13E 01
14E 01
28E 00
55E-01
16E-01
39E-01
52E-02
16E-02
8
8
10
9
10
10
11
11
13
32
44
50
52
56
59
62
64
67
74
79
95
105
111
117
122
127
132
.33
.49
.62
.65
.33
.96
• 44
.51
.47
.76
.94
.75
.85
.78
.50
.04
.07
.01
.50
.02
.89
.30
.97
.54
.55
.39
.94
14
14
17
16
16
17
17
18
19
39
51
57
59
63
66
68
70
73
81
85
102
111
118
124
129
133
139
.83
• ?9
.32
.15
.83
.46
.94
.01
.97
.26
.44
.25
.35
.28
.00
.54
.57
.51
.00
.52
.39
.80
.47
.04
.05
.89
.44
64
-------
SOIL C CONTINUED
TIME
HRS
1.
3.
10.
30.
100.
300.
410.
1015.
3025.
1.
3.
10.
30.
100.
300.
410.
1015.
3025.
INITIAL
CONC
MG/L
40
23
19
15
14
11
9
9
9
100
70
63
60
56
53
51
46
46
.00
.85
.67
.87
• 06
.97
.88
.63
.49
.00
.55
.71
.10
.49
.92
.55
.70
.51
FINAL
CONC
MG/L
23.
18.
14.
12.
10.
8.
8.
7.
6.
69.
61.
58.
54.
51.
49*
43.
43.
40.
00
60
60
70
50
30
04
89
79
00
80
00
20
50
00
90
70
60
DC
DT
PPM/HR
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o«
-0.
12E 02
15E 01
42E 00
96E-01
29E-01
11E-01
14E-01
18E-02
81E-03
30E 02
26E 01
47E 00
17E 00
41E-01
14E-01
59E-01
32E-02
17E-02
DS SUM P SUM P
DT SORBED ON SOIL
PPM/HR PPM PPM
0.73E 01
0.15E 02
0.42E 01
0.96E 00
0.29E 00
0.11E 00
0.14E 00
0.18E-01
0.81E-02
0.13E 02
0.26E 02
0.47E 01
0.17E 01
0.41E 00
0.14E 00
0.59E 00
0.32E-01
0.17E-01
170
222
273
304
340
377
395
413
440
310
397
454
513
563
612
689
719
778
.00
.50
.20
.89
.54
.29
.74
.22
.28
.00
.50
.60
.59
.49
.74
.24
.29
.44
176
229
279
311
347
383
402
419
446
316
404
461
520
569
619
695
725
784
.50
.00
,70
.39
.04
.79
.24
.12
.78
.50
.00
.10
.09
.99
.24
.74
.79
.94
65
-------
PHOSPHORUS SORPTJON ISOTHERM
SOIL D
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 2.8 PPM
TIME
HRS
1.
3.
10.
30.
100.
317.
410.
1015.
3025.
1.
3.
10.
30.
100.
317.
410.
1015.
3025.
1.
3.
10.
30.
100.
317.
410.
1015.
3025.
INITIAL
CONC
MG/l.
1
0
0
0
0
0
0
0
0
5
1
0
0
0
c
0
0
0
10
4
2
1
1
1
0
0
0
.00
.10
.05
.05
.18
.14
.14
.12
.19
.00
.67
.78
.51
.50
.41
.38
.38
.44
.00
.73
.56
.48
.26
.02
.88
.84
.86
FINAL
CONC
MG/L
0.05
C.OO
0.00
0.14
0.10
0.10
0.07
0.15
C.OO
1.49
0.56
C.27
0.26
0.17
0.14
0.14
0.20
0.09
4.45
2.17
1.03
0.81
0.55
0.40
0,36
0.38
0.29
DC
DT
PPM/HR
-0.
-0.
-0.
0.
-0.
-0.
-0.
D.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-o.
-0.
-0.
-C.
-0.
-0.
-0.
32E 00
30E-01
41E-02
27E-02
69E-03
12E-03
63E-C3
31E-04
59E-04
15E 01
33E 00
42E-01
75E-02
27E-02
72E-03
23E-02
195-03
10E-C3
sir 01
77E 00
12E 00
20E-01
59E-02
17E-02
49E-02
49E-03
17E-03
OS SUM P SUM P
OT SORBED ON SOIL
PPM/HR PPM PPM
0.
0.
0.
-0.
0.
•t 4
0.
-0.
0.
0.
0.
0.
0.
0.
c.
0.
c.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
41E 00
30E 00
41E-01
27E-01
G9E-C2
12E-02
63E-02
31E-03
59E-03
15E 01
33E 01
42E CO
75E-01
27E-01
72E-02
23E-01
19E-02
10E-02
24E 01
77E 01
12E 01
20E 00
59E-01
17E-01
49E-01
49E-02
17E-02
9
10
10
10
10
11
12
11
13
35
46
51
53
56
59
62
63
67
55
ec
96
103
110
116
121
126
131
.46
.47
.97
.06
.90
.35
.02
.73
.68
.03
.07
.17
.65
.99
.65
.11
. 94
.44
.44
.99
.32
.06
.25
.40
.68
.26
.93
12
13
13
12
13
14
14
14
16.
37
48
C -3
56
59
62
64
66
70
58
83
99
105
113
119
124
129
134
.26
.27
.77
.86
.70
.15
.82
.53
.48
.83
.87
.97
.45
.79
.45
.91
.74
.24
.24
.79
.12
.86
.06
.28
.48
.06
.73
66
-------
SOIL D CONTINUED
TIME
HRS
1.
3.
1C.
30.
100.
317.
410.
1015.
3025.
1.
3.
10.
30.
ICC.
317.
410.
1015.
3025.
INITIAL
CONC
MG/L
40
2 4
21
17
14
12
10
9
9
100
78
67
62
58
53
49
45
45
.00
.87
.34
.69
.85
.26
.07
.76
.31
.00
.77
.83
.81
.71
.45
.65
.46
.26
FINAL
CONC
MG/L
24.
20.
16.
13.
10.
8.
8.
7.
6.
77.
.66.
60.
56.
51.
47.
42.
42.
35.
08
36
52
53
80
50
17
70
01
65
14
86
54
00
00
60
38
04
rs /-
DT
PPM/HR
-0.
-C.
-0.
-C«
-0.
-0.
-0.
-0.
-0.
-C.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
12E 02
13E 01
40E 00
12E 00
33E-01
10E-01
18E-01
22E-02
99E-03
29E 02
38E 01
57E 00
19E 00
64E-01
17E-01
66E-01
33E-02
30E-C2
DS SU.M P SUM P
DT SORBED ON SOIL
PPM/HR PPK PPM
0.69E 01
0.13E 02
0.40E 01
0.12E 01
0.33F 00
0.1CE 00
C.18E 00
0.22E-01
0.99E-02
C.97E 01
C.38E 02
0.57E 01
0.19E 01
0.64E 00
0.17E 00
0.66E 00
0.33E-01
0.30F-01
159
204
252
294
324
372
391
412
445
223
349
419
482
559
623
694
725
827
.20
.36
.58
.22
.75
.35
.40
.01
.01
.40
.77
.50
.26
.39
.89
.39
.29
.50
162
207
255
297
337
375
394
^14
447
226
352
422
485
562
626
697
728
830
.00
.16
.37
.02
.55
.15
.20
.81
.81
.20
.57
.29
.06
.19
.69
.19
.09
.30
67
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL E
RESIN EXTRACTABL.E PHOSPHORUS ON SOIL BEFORE: SORPTION 9.6 PPM
TIME
HRS
1.
3.
10.
30.
100.
295.
363.
1014.
3000.
1.
3.
10.
30.
100.
295.
363.
1014.
30CO.
1.
3.
10.
30.
100.
295.
363.
1014.
3000.
INITIAL
CONC
MG/L
1.
0.
0.
0.
0.
0.
0.
0.
0.
5.
3.
2.
1.
1.
1.
1.
0.
1.
10.
6.
5.
4.
3.
2.
1.
0.
1.
00
42
27
23
19
16
14
13
23
00
04
75
91
53
20
Cl
96
01
00
60
59
48
82
37
45
69
45
FINAL
CONC
MG/L
0.39
0.24
C.19
0.15
0.12
0.09
0.09
0.19
0.03
2.94
2.63
1.74
1.35
1.00
0.80
0.75
0.80
0,48
6.42
5.36
4.19
3.50
2.50
1.00
0.20
1.00
0.49
DC
DT
PPM/HR
-0.
-0.
-0.
-0.
-0.
-0.
-0.
0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
— c •
-0.
-0.
-0.
-c.
-0.
-0.
0.
-0.
31E CO
55E-01
73E-02
24E-02
60E-03
21E-*03
65E-03
52E-04
61E-04
15E 01
12E 00
83E-01
17E-01
44E-02
12E-02
34E-02
15E-03
16E-03
30E 01
37E 00
11E 00
29E-01
11E-01
58E-02
16E-01
29E-03
29E-03
DS SUM P SUM P
DT SORBED ON SOIL
PP.'VHR PPM PPM
0.
0.
0.
0.
0.
0.
0.
-0.
0.
0.
0.
0.
C.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-0.
0.
26E 00
55E 00
73E-01
24E-01
60E-02
21E-02
65E-02
52E-03
61E-03
89E 00
12E 01
83E OC
17E 00
44E-01
12E-01
34E-01
15E-02
16E-02
15E 01
37E 01
HE 01
29E 00
HE 00
58E-01
16E 00
29E-02
29E-02
6
7
8
9
10
11
11
10
12
20
24
34
40
45
49
52
53'
59
35
48
62
72
85
104
116
113
122
.07
.88
.77
.58
.31
.00
.49
.94
.95
.53
.66
.72
.33
.65
.65
.22
.79
.09
.78
.10
.18
.00
.25
.00
.44
.39
.94
15
17
18
19
19
20
21
20
22
30
34
44
49
55
59
61
63
68
45
57
71
81
94
113
126
122
132
.67
.48
.37
.18
.91
.60
.09
.54
.55
.13
.26
.32
.93
.25
.25
.82
.39
.69
.38
.70
.78
.60
.85
.60
.04
.99
.54
68
-------
SOIL E CONTINUED
TIME
HRS
1.
3.
10.
30.
100.
295.
363.
1014.
3000.
1.
3.
10.
30.
100.
295-
363.
1014.
3000.
INITIAL
CONC
MG/L
40
31
30
26
19
8
4
3
2
100
85
83
74
54
26
9
5
5
.00
.82
.45
.24
.10
.65
.47
.03
.37
.00
.59
.31
.21
.40
.85
.75
.97
.27
FINAL
CONC
MG/L
31.
29.
25.
18.
7.
2.
1.
C.
0.
84.
82.
72.
52.
23.
5.
1.
0.
0.
39
95
52
00
00
60
08
39
14
84
44
86
00
00
00
02
28
70
DC
DT
PPM/HR
-o.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
HE 02
56E 00
40E 00
25E 00
10E 00
18E-01
44E-01
25E-C2
68E-03
29E 02
95E 00
86E 00
67E 00
26E CO
68E-01
HE 00
54E-02
14E-02
DS
DT
PPM/HR
0.37E 01
0.56E 01
0.40E 01
C.25E 01
0.10E 01
0.18E 00
0.44E 00
0.25E-01
0.68E-02
0.65E 01
0.95E 01
0.86E 01
0.67E 01
0.26E 01
0.63E 00
C.11E 01
0.54E-01
0.14E-01
SUM P SUM P
SORBED ON SOIL
PPM PPM
86
104
154
236
357
418
451
478
500
151
183
287
509
823
1042
1129
1186
1232
.10
.80
.12
.56
.56
.06
.91
.25
.55
• 60
.17
.75
• 92
.92
• 42
.70
.53
.21
95
114
163
246
367
427
461
487
510
161
192
297
519
833
1052
1139
1196
1241
.70
.40
.72
.16
.16
.66
.51
.85
• 15
.20
.77
.35
.52
.52
.02
.30
.13
.81
69
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL F
RESIN EXTRACTABLE PHOSPHORUS ON SOU BEFORE SORPTION 7.8 PPM
TIME
HRS
1.
3.
10.
30.
100.
295.
363.
1014.
3000.
1.
3.
10.
30.
100.
295.
363.
1014,
3000.
1.
3.
10.
30,
100,
295.
363,
1014.
3000.
INITIAL
CONC
MG/L
1
0
0
0
0
0
0
0
0
5
3
1
C
0
0
0
0
0
10
7
5
3
2
2
1
1
1
.00
.31
.25
.18
.17
.14
.12
.12
.20
.00
.57
.67
.87
.67
.60
.48
.46
.54
.CO
.15
.05
.35
.68
.11
.54
.39
.32
FINAL
CONC
MG/L
0
0
0
0
0
0
0
0
0
3
1
0
0
0
0
0
0
0
7
4
3
2
1
1
0
0
0
.27
.21
.14
.13
.09
,08
.07
.16
.02
.50
,49
.65
.45
,37
.25
,23
.30
.11
,00
,79
.01
.30.
,70
.10
.94
.87
.65
DC
DT
PPM7HR
-0.
-0.
-o.
-0.
-0.
~C t
-0.
0.
-0.
-0.
~0.
-0.
-0.
-o.
-c,
-0.
-o.
-o.
-0.
-0.
*™ c •
--0.
"~0 •
-0.
-o.
-0,
-0.
31E 00
29E-01
95E-02
16E-02
65E-03
•18E-03
63E-03
39E-04
57E-04
14E 01
63E 00
84E-01
12E-C1
25E-02
HE-02
34E-02
15E-03
13E-03
29E 01
71E 00
16E 00
32E-01
81E-02
31E-02
79E-02
50E-03
20E-03
OS SUM P SUM P
OT SORBED ON SOIL
PPM/HR PPM PPM
0.31E 00
0.29E 00
0.95E-01
0.16E-01
0.65E-02
0.18E-02
0.63E-02
-0.39E-03
0.57E-03
0.65E 00
0.63E 01
0.84E 00
0.12E 00
0.25E-01
CillE-01
0.34E-01
0.15E-02
0.13E-02
0.13E 01
0.71E 01
0.16E 01
0.32E 00
0.81E-01
0.31E-01
0.79E-01
0.50E-02
0.20E-02
7
8
9
9
10
11
11
11
13
14
35
45
5C
53
56
59
60
65
29
53
74
84
94
104
110
115
122
.21
.19
.34
.88
.66
.26
.74
.33
.19
.99
.78
.94
.17
.24
.76
.32
.95
• 22
.99
.57
.00
.59
.44
.59
.58
.85
.62
15
15
17
17
18
19
19
19
20
22
43
53
57
61
64
67
68
73
37
61
81
92
102
112
118
123
130
.01
.99
.14
.68
.46
.06
.54
.13
.99
«79
.58
.74
.97
.04
.56
.12
.75
.02
.79
.37
.80
.39
.24
.39
.38
.65
.42
70
-------
SOIL F CONTINUED
TIME
HRS
1.
3.
10.
30.
100.
295.
363.
1014.
3000.
1.
3.
10.
30.
100.
295.
363.
1014.
3000.
INITIAL
CONC
MG/L
40
29
26
23
20
16
13
11
5
100
83
78
73
62
52
43
38
19
.00
.99
.47
.50
,05
.25
.87
.33
.71
.00
.31
.72
.07
.00
.50
.00
.68
.51
FINAL
CONC
•MG/L
29.47
25.76
22.64
19.00
15.00
12.50
9.83
3.91
1.49
82.44
77.60
71.66
60.00
50.00
40.00
35.46
15.28
4.59
DC
DT
PPM/HR
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
HE 02
12E 01
31E 00
13E 00
41E-01
11E-01
53E-01
71E-02
12E-02
29E 02
17E 01
58E 00
39E 00
99E-01
39E-01
10E 00
22E-01
45E-02
DS
OT
PPM/HR
0.45E
0.12E
0.31E
0.13E
0.41E
0.11E
0.53E
01
02
01
01
00
00
00
0.71E-01
0.12E-01
0.76E
0.17E
0.58E
0.39E
0.99E
0.39E
0.10E
0.22E
01
02
01
01
00
00
01
00
C.45E-01
SUM P
SORBED
PPM
105
147
185
231
281
319
359
433
476
175
232
303
434
554
679
754
988
1137
.30
.66
.98
.06
.56
.06
.51
.79
• 04
.60
.78
.38
• 14
.14
.14
.54
.61
.82
SUM P
ON SOIL
PPM
113
155
193
238
289
326
367
441
483
183
240
3-11
441
561
686
762
996
1145
.09
.46
.78
.86
.36
.86
.31
.59
.84
.40
.58
.18
.94
.94
.94
.•34
.41
.62
71
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL G
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 0.9 PPM
TIME
HRS
1.
3,
10.
30.
100.
300.
1007.
3004.
1.
3.
10.
30.
100.
300.
1007.
3004.
1.
3.
10.
30.
100.
300.
1007.
3004,
1,
3.
10.
30,
100.
300.
1007.
3004.
1,
3.
10,
30.
100.
300.
1007.
3004.
INITIAL
CONC
MG/L
0.50
0,54
0.52
0.52
0.52
0.47
0.46
0.45
1.00
0.98
0.89
0.95
0.98
0.94
0.86
0.89
3.00
2.88
2.83
2.83
2.83
2.94
2.77
2.92
7.00
6.88
6.61
6.65
6.68
6.86
6.52
6.86
15.00
14.81
14.65
14.35
14.43
14.48
13.78
14.92
FINAL
CONC
MG/L
0.55
0.53
0.53
0.53
0.47
0.46
0.45
0.32
0.98
0.89
0.95
0.98
0,94
0.86
0.89
0.73
2.88
2.83
2.83
2.83
2.94
2.7.6
2.92
2.82
6.88
6.60
6.64
6.67
6,86
6.50
6.86
6.49
14.80
14.64
14.32
14.41
14.46
13,72
14.92
14.54
DC
OT
PPM/HR
-0.14E 00
-0.53E-02
0.12E-03
0.45E-04
-0.48E-03
-0.34E-04
-0.98E-05
-0.40E-04
-0.-28E 00
-0.27E-01
0.45E-02
0.83E-03
-0.34E-03
-0.25E-03
0.18E-04
-0.49E<-04
-0.86E 00
-0.16E-01
-0.70E-03
-0.25E-03
0.84E-03
-0.55E-03
0.12E-03
-0.31E-04
-0.20E 01
-0.86E-01
0.16E-02
0.36E-03
0.14E-02
-0.11E-02
0.27E-03
-0.11E-03
-0.43E 01
-0.51E-01
-0.28E-01
0.16E-02
C.17E-03
-0.23E-02
0.93E-03
-0.11E-03
DS SUM P SUM P
DT SORBED ON SOIL
PPM/HR PPM PPM
-0.21E-01
0.53E-01
-0-.12E-02
-0.45E-03
0«48E-02
0.34E-03
0.98E-04
0.40E-03
0.86E-02
0.27E 00
-0.45E-01
-0.83E-02
0.34E-02
0.25E-02
-0.18E-03
0.49E-03
0.52E-01
0.16E 00
0.70E-02
0.25E-02
-0.84E-02
0.55E-02
-0.12E-02
0.31E-03
0.52E-01
0.86E 00
-0.16E-01
-0.36E-02
-0.14E-01
O.HE-01
-0.27E-02
0.11E-02
0.86E-01
0.51E 00
0.28E 00
-0.16E-01
-0.17E-02
0.23E-01
-0.93E-02
0.11E-02
-0.49
-0.32
-0.34
-0.35
0.22
0.34
0.46
1.78
0.20
1.11
0.56
0.28
0.69
1.52
1.29
2.91
1.20
1.75
1.84
1.92
0.91
2.74
1.26
2.30
1.20
4.06
3.85
3.73
2.00
5.67
2.32
6.09
2.00
3.70
7.08
6.51
6.31
13,98
2.62
6.46
0.44
0.61
0.59
0.58
1,16
1.28
1,40
2.72
1.14
2.05
1,50
1,22
1.63
2.46
2.23
3.85
2.14
2.69
2.78
2,86
1.85
3.68
2.20
3.24
2.14
4.99
4.79
4.67
2.94
6.61
3.26
7.03
2.94
4.64
8.02
7.45
7,25
14.92
3.56
7.40
72
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL H
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 18.0 PPM
TIME
HRS
1.
4.
10.
30.
100.
304.
1007.
3000.
1.
4.
10.
30.
100.
304.
1007.
3000.
1.
4.
10.
30,
100.
304.
1007.
3000,
1.
4.
10.
30.
100.
304.
1007.
3000.
1.
4.
10.
30.
100.
304.
1007.
3000.
INITIAL
CONC
MG/L
1
0
0
0
0
0
0
0
5
3
2
2
1
1
1
0
10
7
6
5
4
5
3
1
40
37
32
28
17
4
2
2
100
90
86
68
51
14
5
5
.00
,60
.37
.35
.28
.33
.28
.24
.00
.21
.60
.25
.63
.95
.46
.98
.00
.53
.16
.69
.10
.06
.25
.48
.00
.62
.71
,41
,73
.71
.79
.34
.00
.35
.98
.17
.69
.54'
.98
.38
FINAL
CONC
MG/L
0.58
0.33
0.32
0.25
0.30
0.24
0.20
0.29
3.12
2.48
2.11
1.46
1.80
1.28
0.77
0.16
7.40
5.96
5.47
3.80
4.80
2.90
1.04
0.53
37.50
32.33
27.80
16.56
2.86
0.84
0.36
0.42
89.85
86.30
66.50
49,15
10.05
1.04
0.40
0.20
DC
DT
PPM/MR
-0.
-0.
-0.
-0.
0.
-0.
-0.
0.
-0.
-0.
-0.
-0.
0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
30E 00
48E-01
54E-02
31E-02
10E-03
26E-03
63E-04
15E-04
15E 01
13E 00
54E-01
24E-01
13E-02
20E-02
57E-03
25E-03
29E 01
28E 00
75E-01
57E-01
57E-02
63E-02
18E-02
29E-03
HE 02
95E 00
53E 00
35E 00
12E 00
11E-01
20E-02
58E-03
29E 02
73E 00
22E 01
57E 00
34E 00
39E-01
46E-02
15E-02
OS
DT
PPM/HR
0.
0.
0*
0.
-0.
0.
0.
-0.
0.
0.
0*
0*
-0.
0.
0.
0.
0.
0.
0.
0.
-0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
18E 00
48E 00
54E-01
31E-01
10E-02
26E-02
63E-03
15E-03
8J.E 00
13E 01
54E 00
24E 00
13E-01
20E-01
57E-02
25E-02
11E 01
28E 01
75E 00
57E 00
57E-01
63E-01
18E-01
29E-02
10E 01
95E 01
53E 01
35E 01
12E 01
HE 00
20E-01
58E-02
44E 01
73E 01
22E 02
57E 01
34E 01
39E 00
46E-01
15E-01
SUM P
SORBED
PPM
4
6
7
8
8
9
9
9
18
26
31
39
37
44
51
59
26
41
48
67
60
82
104
114
25
77
127
245
394
433
457
476
101
142
346
537
953
1088
1144
1196
.17
.83
.33
.37
.25
.13
.90
.40
.80
.14
.10
.04
.41
.20
.10
.30
.00
.70
.61
.58
.68
• 28
.43
.01
.00
.95
.08
.58
.30
.07
.42
.60
.50
.07
.92
.17
.59
.67
• 53
.34
SUM P
ON SOIL
PPM
22
24
25
26
26
27
27
27
36
44
49
57
55.
62
69
77
44
59
66
85
78
100
122
132
43
95
145
263
412
451
475
494
119
160
364
555
971
1106
1162
1214
.17
.83
.34
.37
.25
.13
.90
.40
.80
.14
.09
.04
..41
.20
.10
.30
.00
.70
.62
.58
• 68
.28
.43
.01
.00
.95
.08
.58
.30
.07
.42
.60
.50
.07
.92
.17
.59
.67
.53
.34
73
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL I
RESIN EXTRACTA8LE PHOSPHORUS ON SOIL BEFORE SORPTION 6.7 PPM
TIME
HRS
1.
4.
10.
30.
100.
304.
1007.
3000.
1.
4.
10.
30.
100.
304.
1007.
3000.
1.
4.
10.
30.
100.
304.
1007.
3000.
1.
4.
10.
30.
100.
304.
1007.
3000.
1.
4.
10.
30.
100.
304.
1007.
3000.
INITIAL
CONC
MG/L
1
0
0
0
0
0
0
0
5
2
1
1
0
0
0
0
10
.00
.16
.05
.14
.05
.15
.16
.21
.00
.04
.49
.07
.82
.50
.47
.61
.00
4.28
3
2
1
1
1
1
40
25
22
19
17
14
12
14
100
74
70
63
62
56
49
51
.22
.42
.88
.25
.13
.01
.00
,95
.90
.67
.23
.35
.16
.16
.00
.71
.72
.90
.74
.70
.47
.79
FINAL
CONC
MG/L
0.11
0.00
0.10
0.00
0.11
0.11
0.16
0.05
1.89
1.31
0.87
0.61
0.27
0.23
0.38
0.13
3.98
2.87
2.03
1.46
0.79
0.67
0.54
0.47
25.22
22.00
18.60
16.04
13,00
10.70
12.80
9.44
73.38
69.18
62.00
60.78
54.43
46.82
49,26
49.13
DC
DT
PPM/HR-
-0.
-0.
0.
-0.
0.
-0.
0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0,
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
0.
-o.
-0.
-0,
-0.
-0.
-0.
-o.
-0.
-0.
32E 00
29E-01
54E-02
43E-02
49E-03
11E-03
65E-05
46E-04
15E 01
13E 00
6HE-01
1<+E-01
46E-02
80E-03
69E-04
14E-03
31E 01
25E 00
13E 00
29E-01
91E-02
17E-02
49E-03
-16E-03
12E 02
71E 00
46E 00
HE 00
35E-01
10E-01
52E-03
14E-02
29E 02
99E 00
95E 00
94E-01
69E-01
29E-01
18E-03
81E-03
DS SUM P SUM P
DT SORBED ON SOIL
PPM/HR PPM PPM
0.
0.
-0.
0.
-0.
0*
-0.
0.
0.
0.
0,
0*
0*
0.
0.
0.
0.
0.
0,
0.
0*
0*
0.
0.
0.
0.
0*
0.
0,
0.
-0.
o.
0.
0.
0.
0.
0.
o,
0.
0.
38E 00
29E 00
54E-01
43E-01
49E-02
11E-02
65E-04
46E-03
13E 01
13E 01
68E 00
14E 00
46E-01
80E-02
69E-03
14E-02
26E 01
25E 01
13E 01
29E 00
91E-01
17E-01
49E-02
16E-02
64E 01
71E 01
46E 01
HE 01
35E 00
10E 00
52E-02
14E-01
HE 02
99E 01
95E 01
94E 00
69E 00
29E 00
18E-02
81E-02
8
10
9
11
10
11
11
12
31
38
44
49
54
57
58
63
60
74
86
95
106
112
118
124
147
187
230
266
309
345
339
386
266
321
408
439
523
621
624
650
.83
.44
.94
,39
.79
.16
.08
.61
.10
.45
.70
.36
,96
.68
.51
.35
.20
.31
.27
.95
.92
.73
.69
.10
.80
.39
.38
.68
.06
.51
.21
.34
.20
.51
.72
.92
.03
• 91
.10
.77
15
17
16
18
17
17
17
19
37
45
51
56
61
64
65
70
66
81
92
102
113
119
125
130
154
194
237
273
315
352
345
393
272
328
415
446
529
628
630
657
.53
.14
.64
.09
.49
.86
.78
.31
.80
.15
.40
.06
.66
.38
.21
.05
.90
.00
.97
.65
.62
.43
.39
.80
.50
.08
.08
.38
.76
.21
,91
.04
.90
.21
.41
.61
.73
.61
.80
.47
74
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL L
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION !•! PPM
TIME
HRS
1.
3,
10.
30.
100.
312.
1015.
3005.
1.
3.
10.
30.
100.
312.
1015.
3005.
1.
3.
10.
30.
100.
312.
1015.
3005.
1.
3.
10.
30.
100.
312.
1015.
3005.
1.
3.
10.
30.
100.
312.
1015.
3005.
INITIAL
CONC
MG/L
1
0
0
0
0
0
0
0
5
2
1
0
0
0
0
0
10
6
4
1
0
0
0
0
40
30
24
18
13
8
5
4
100
32
74
66
55
48
42
37
.00
.35
.18
.05
.05
.05
.05
.05
.00
.91
.67
.54
.38
.34
.25
.33
.00
.86
.30
.83
.92
.69
.65
.62
.00
.50
.70
.34
.21
.65
.89
.28
.00
.90
.73
.37
.73
.70
.62
.18
FINAL
CONC
MG/L
0.
0.
0.
0.
0.
0.
0.
0.
2.
1.
0.
o.
0.
0.
0*
0.
6,
4.
1.
0.
0.
0.
0.
0.
30.
23.
17.
11.
7.
4*
2.
o.
82.
73.
64.
53.
46.
39.
33.
18.
32
14
00
00
00
00
00
04
80
50
31
14
10
00
09
05
70
00
40
45
20
16
13
05
00
90
20
80
00
10
41
76
00
40
60
40
CO
60
88
50
DC
DT
PPM/HR
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
31E 00
66E-01
15E-01
15E-02
41E-03
14E-03
41E-04
30E-05
15 E 0-1
42E 00
HE 00
12E-01
23E-02
97E-03
13E-03
88E-04
30E 01
86E 00
24E 00
41E-01
60E-02
14E-02
43E-03
17E-03
HE 02
20E 01
62E 00
19E 00
51E-01
12E-01
29E-02
10E-02
29E 02
28E 01
84E 00
39E 00
80E-01
25E-01
72E-02
57E-02
DS SUM P SUM P
DT SORBED ON SOIL
PPM/HR PPM PPM
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0»
0.
0.
0.
0.
0*
0.
0.
0.
0.
o.
0.
0.
o.
0.
0.
0.
29E 00
66E 00
15E 00
15E-01
41E-02
14E-02
41E-03
30E-04
95E 00
42E 01
HE 01
12E 00
23E-01
97E-02
13E-02
88E-03
14E 01
86E 01
24E 01
41E 00
60E-01
14E-01
43E-02
17E-02
43E 01
20E 02
62E 01
19E 01
51E 00
12E 00
29E-01
10E-01
78E 01
28E 02
84E 01
0.39E 01
0.80E 00
0.
25E 00
0.72E-01
0.
57E-01
6.76
8.93
10.76
11.26
11.76
12.26
12.76
12.86
22.00
36.10
49.75
53.79
56.62
60.07
61.65
64.52
33.00
61.65
90.65
104.44
111.72
117.02
122.24
127.97
100.00
166.00
241.04
306.44
368.54
414.04
448.89
484.19
180.00
275.00
376.30
505.99
603.29
694.29
781.69
968.55
7
10
11
12
12
13
13
13
23
37
50
54
57
61
62
65
34
62
91
105
112
118
123
129
101
167
242
307
369
415
449
485
181
276
377
507
604
695
782
969
.86
.03
.86
.36
.86
.36
.86
.96
.10
.20
.85
.89
.72
.17
.75
.62
.10
.75
.75
.55
.82
.12
.34
.07
.10
.10
.14
.54
.64
.14
.99
.29
.10
.10
.40
.09
.39
.39
.79
.65
75
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL M
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 43,0 PPM
TIME
HRS
1.
3.
10.
30.
100.
312.
1015.
3005.
1.
3.
10.
30.
100.
312.
1015.
3005.
1.
3.
10.
30.
100.
312.
1015.
3005.
1.
3.
10.
30.
100.
312.
1015.
3005.
1.
3.
10.
30.
100.
312.
1015.
3005.
INITIAL
CONC
MG/L
1.00
0
0
.77
.61
0.46
0
0
0
0
5
4
3
2
2
1
1
1
.39
.29
.28
.30
.00
.05
,47
.62
.24
.77
.58
.53
10.00
7
6
.71
.86
6.20
5
4
4
4
40
35
33
31
31
29
27
28
100
94
91
88
87
83
81
86
.63
.96
.36
.02
.00
.15
.54
.64
.16
.55
.67
.16
.00
.87
.64
.88
.26
.85
.77
.68
FINAL
CONC
MG/L
0.
0.
0.
0.
0.
0,
0.
0.
4.
3.
2.
2.
1.
1.
1.
0.
7.
6.
6,
5.
4.
4.
3.
2.
34.
33.
31.
30.
29.
27.
27.
16.
94.
91.
88.
86.
83.
80.
85.
73.
76
60
44
36
26
24
27
13
00
40
50
10
60
41
35
70
60
70
00
40
70
07
71
13
90
20
20
70
00
03
54
40
60
20
30
60
00
82
98
50
DC
DT
PPM/HR
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
0.
29E 00
52E-01
14E-01
32E-02
10E-02
14E-03
12E-04
54E-04
14E 01
19E 00
81E-01
15E-01
53E-02
10E-02
20E-03
25E-03
29E 01
30E 00
71E-01
24E-01
77E-02
25E-02
54E-03
58E-03
HE 02
59E 00
19E 00
28E-01
17E-01
70E-02
11E-03
36E-02
28E 02
HE 01
27E 00
69E-01
35E-01
85E-02
35E-02
-0.40E-02
DS SUM P SUM P
DT SORBEO ON SOIL
PPM/HR PPM PPM
0.
0.
10E 00
52E 00
0»14£ 00
0.
0.
0.
0.
0.
0.
0*
0.
0.
0.
0.
0.
0.
0.
32E-01
10E-01
14E-02
12E-03
54E-03
43E 00
19E 01
81E 00
15E 00
53E-01
10E-01
20E-02
25E-02
10E 01
0.30E 01
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-0.
0.
71E 00
24E 00
77E-01
25E-01
54E-02
58E-02
22E 01
59E 01
19E 01
28E 00
17E 00
70E-01
11E-02
36E-01
23E 01
HE 02
27E 01
69E 00
35E 00
85E-01
35E-01
40E-01
2.40
4.12
5.91
6.99
8.31
8.81
8.96
10.73
10.00
16.50
26.29
31.54
38,00
41.59
43.99
52.31
24,00
34.20
42.85
50.85
60.14
69.09
75.66
94.60
51.00
70.55
93.95
103.35
124.99
150.20
151.58
269,21
54.00
90.69
124.10
146.95
189.64
219.94
177.93
309.74
45.40
47
48
49
51
51
51
53
53
59
69
74
81
84
86
95
67
77
85
93
103
112
118
137
94
113
136
146
167
193
194
312
97
133
167
189
232
262
220
352
.11
.91
.99
.31
.81
.96
.73
.00
.50
.30
.55
.00
.59
.99
.31
.00
.20
.85
.85
.15
.09
.66
.60
.00
.55
.95
.35
.99
.19
.58
.21
.00
.70
.10
.95
.64
.94
.93
.74
76
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL N
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 98.0 PPM
TIME
HRS
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364,
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
INITIAL
CONC
MG/L
1.00
0.62
0.61
0.50
0,45
0.49
0.49
0.51
5.00
3.54
3.16
2.86
2.52
2.19
1.53
0.80
10.00
7.68
7.18
6.73
5.90
4.07
2.67
2.17
40.00
35.15
34.30
33.19
31.47
29.88
27.08
28.96
100.00
93.73
92.40
94.90
86.32
85.08
83.28
91.71
FINAL
CONC
MG/L
0
0
0
0
0
0
0
0
3
3
2
2
2
1
0
0
7
7
6
5
3
2
1
1
34
34
32
31
29
26
28
17
93
92
94
85
84
82
91
63
.61
.60
.47
.42
.46
.47
.49
.27
.47
.07
.75
.39
.04
.35
.58
.31
.56
.04
.56
.69
.76
.29
.76
.09
.90
.00
.84
.03
.35
.40
.38
.32
.40
.00
.64
.60
.30
.40
• 28
.10
DC
DT
PPM/HR
-0.
-0.
-0.
-0.
0.
-0.
-0.
-0.
-0.'
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
0.
-0.
•• L' •
-0.
0.
-0.
-0.
-0.
0.
-0.
30E 00
89E-02
11E-01
23E-02
79E-04
47E-04
63E-05
72E-04
14E .01
14E 00
34E-01
14E-01
40E-02
17E-02
92E-03
14E-03
29E 01
19E 00
51E-01
31E-01
18E-01
37E-02
88E-03
33E-03
HE 02
35E 00
12E 00
65E-01
18E-01
73E-02
12E-02
35E-02
28E 02
52E 00
18E 00
28E 00
17E-01
56E-02
77E-02
87E-02
DS SUM P
DT SORBED
PPM/HR PPM
0.
0.
0.
0.
-o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-0.
0.
0.
0.
-0.
0.
0.
0.
-0.
0.
16E 00
89E-01
HE 00
23E-01
79E-03
47E-03
63E-04
72E-03
66E 00
14E 01
34E 00
14E 00
40E-01
17E-01
92E-02
14E-02
10E 01
19E 01
51E 00
31E 00
18E 00
37E-01
88E-02
33E-02
22E 01
35E 01
12E 01
65E 00
18E 00
73E-01
12E-01
35E-01
28E 01
52E 01
18E 01
28E 01
17E 00
56E-01
77E-01
87E-01
3.
4.
5.
6.
6.
6.
6.
8.
15.
20.
24.
28.
33.
42.
51.
56.
24.
30.
37.
47.
68.
86.
95.
106.
51.
62.
77.
98.
120.
154.
141.
258.
66.
83.
60.
153.
174.
201.
121.
407.
SUM P
ON SOIL
PPM
90
19
60
37
28
50
57
94
30
06
18
93
72
13
66
56
40
82
02
51
94
78
94
76
00
54
15
82
11
93
93
34
00
29
89
97
17
02
02
18
101
102
103
104
104
104
104
106
113
118
122
126
131
140
149
154
122
128
135
145
166
184
193
204
149
160
175
196
218
252
239
356
164
181
158
251
272
299
219
505
.90
.19
.60
.37
.28
.50
.57
.94
.30
.06
.18
.93
.72
.13
.66
.56
.40
.82
.01
.51
.94
.78
.94
.76
.00
.55
.15
.82
.11
.93
.93
.34
.00
.29
.89
.97
.17
.02
.02
.18
77
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL 0
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 47.0 PPM
TIME
HRS
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
INITIAL
CONC
MG/L
1
0
0
0
0
0
0
0
5
2
2
1
1
1
1
i
10
6
5
4
4
3
2
1
40
32
32
25
15
5
2
2
100
86
93
77
51
24
6
5
.00
.50
.37
.45
.38
.45
.34
.33
.00
.74
.29
.93
.61
.45
.21
.11
.00
.20
.49
.77
.03
.44
.04
.29
.00
.21
.11
.58
.02
.85
.72
.57
.00
.32
.73
.67
.43
,66
.47
.58
FINAL
CONC
MG/L
0.48
0.34
0.42
0.35
0.42
0.31
0.30
0.23
2.63
2.15
1.77
1.44
1.26
1.02
0.91
0.39
6.00
5.26
4.49
3.72
3.10
1.63
0.84
0.38
31.80
31.70
24.83
13.71
4.05
0.76
0.60
0.23
85.60
93.40
76.50
48.88
20.70
1.55
0.62
0.53
DC
DT
PPM/HR
-0.
-0.
0.
-o.
0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o,
-0.
-0.
-0.
-o.
-0.
30E 00
50E-01
45E-02
32E-02
38E-03
30E-03
43E-04
31E-04
15E 01
18E 00
43E-01
14E-01
29E-02
91E-03
30E-03
Z2E-03
30E 01
28E 00
82E-01
31E-01
79E-02
-0.38E-02
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0,
-0.
-0.
-0.
0.
-0.
"*0 .
-0.
-0.
-0.
-0.
11E-02
28E-03
11E 02
15E 00
60E 00
36E 00
92E-01
10E-01
20E-02
71E-03
29E 02
21E 01
14E 01
87E 00
26E 00
48E-01
56E-02
15E-02
DS SUM P SUM P
DT SORBED ON SOIL
PPM/HR PPM PPM
0.
0.
-0.
0.
-0.
0*
0.
0*
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0*
0.
0.
0.
0.
0.
0.
0.
0.
0,
0.
0.
0.
-0.
0.
0.
o.
0.
0.
0.
22E 00
50E 00
45E-01
32E-01
38E-02
30E-02
43E-03
31E-03
10E 01
18E 01
43E 00
14E 00
29E-01
91E-02
30E-02
22E-02
17E 01
28E 01
82E 00
31E 00
79E-01
38E-01
11E-01
28E-02
35E 01
15E 01
60E 01
36E 01
92E 00
10E 00
20E-01
71E-02
62E 01
21E 02
14E 02
87E 01
26E 01
48E 00
56E-01
15E-01
5
6
6
7
6
8
8
9
23
29
34
39
43
47
50
57
40
49
59
69
79
97
109
118
82
87
159
278
388
439
460
483
144
73
245
533
840
1071
1130
1181
.20
.86
.31
• 37
.92
.38
.83
.85
.70
.68
.91
.82
.32
.67
.76
.95
.00
.40
.'38
.88
.22
.40
.49
.67
.00
.10
.95
.73
.45
.35
.57
.88
.00
.19
.49
.44
.80
.95
.48
.07
52
53
53
54
53
55
55
56
70
76
81
86
90
94
97
104
87
96
106
116
126
144
156
165
129
134
206
325
435
486
507
530
191
120
292
580
887
1118
1177
1228
.20
.86
.31
.37
.92
.38
.83
.85
.70
.68
.90
.82
.32
.67
.76
.95
.00
.40
.38
.88
.22
.40
.49
.67
.00
.10
.95
.73
.45
.35
.57
.88
.00
.19
.49
.44
.80
.95
.48
.07
78
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL P
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 19.0 PPM
TIME
HRS
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3..
10.
30.
99.
364.
1009.
3000.
INITIAL
CONC
MG/L
1.00
0.33
0.25
0.22
0.23
0.22
0.20
0,18
5.00
1.93
1.71
1.49
1.28
1.08
0.92
0.82
10.00
4.69
4.43
3.93
3.32
2.66
2.14
1.55
40.00
27.83
27,08
23.49
15.64
11.70
3.45
2.66
100.00
79.10
73.01
71.33
57.07
42.60
22.95
7.28
FINAL
CONC
MG/L
0,30
0.22
0.18
0.19
0.18
0.16
0.14
0.11
1.77
1.54
1.30
1.08
0.88
0.71
0.61
0.31
4.42
4.14
3.62
2.97
2.27
1.73
1.11
0.49
27.20
26.40
22.63
14.36
10.22
1.53
0.70
0.28
78.00
71.60
69.83
54.82
39.58
18.90
2.40
0.54
DC
DT
PPM/HR
-0.31E 00
-0.34E-01
-0.63E-02
-0.84E-03
-0.45E-03
-0.13E-03
-0.60E-04
-0.22E-04
-0.15E 01
-0.11E 00
-0.33E-01
-0.12E-01
-0.34E-02
-0.79E-03
-0.30E-03
-0.15E-03
-0.31E 01
-0.16E 00
-0.67E-01
-0.29E-01
-0.88E-02
-0.19E-02
-0.10E-02
-0.32E-03
-0.12E 02
-0.43E 00
-0.36E 00
-0.27E 00
-0.45E-01
-0.21E-01
-0.26E-02
-0.72E-03
-0.29E 02
-0.22E 01
-0.26E 00
-0.50E 00
-0.14E 00
-C.5CE-01
-0.19E-01
-0.20E-02
DS
QT
PPM/HR
0.30E 00
0.34E 00
0.63E-01
0.84E-02
0.45E-02
0.13E-02
0.60E-03
0.22E-03
0.14E 01
0.11E 01
0.33E 00
0.12E 00
0.34E-01
0.79E-02
0.30E-02
0.15E-02
0.24E 01
0.16E 01
0.67E 00
0.29E 00
0.88E-01
0.19E-01
0.10E-01
0.32E-02
0.55E 01
0.43E 01
0.36E 01
0.27E 01
0.45E 00
0.21E 00
0.26E-01
0.72E-02
0.95E 01
0.22E 02
0.26E 01
0.50E 01
0.14E 01
0.50E 00
0.19E 00
0.20E-01
SUM P
SORBED
PPM
7.00
8.14
8.91
9.19
9.73
10.36
10.98
11.71
32.30
36.21
40.27
44.32
48.34
52.10
55.25
60.43
55.80
61.39
69.52
79.17
89.66
98.98
109.31
119.96
128.00
142.39
186.89
278.28
332.50
434.29
461.82
485.62
220.00
295.00
326.89
492.08
667.07
904.08
1109.63
1177.00
SUM P
ON SOIL
PPM
26,00
27.15
27.92
28.19
28.73
29.36
29.98
30.71
51.30
55.21
59.27
63.32
67.34
71.10
74.25
79.43
74.80
80.39
88.51
98.16
108.66
117.98
128.31
138.96
147.00
161.39
205,89
297.28
351.50
453.29
480.82
504.62
239.00
314.00
345.89
511.08
686.07
923.08
1128.63
1196.00
79
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL Q
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 32.0 PPM
TIME
HRS
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
INITIAL
CONC
MG/L
1.00
0,79
0.71
0,56
0,55
0.59
0.52
0.45
5.00
4.07
3.71
3.36
3.14
3.10
2.69
1.87
10.00
8.26
7.81
7.74
7.62
6.49
4.52
1.84
40.00
37,37
36.39
35.53
30.50
25.46
18.71
7.53
100.00
98.05
93,73
92.40
83.37
79.93
70.72
46,04
FINAL
CONC
MG/L
0
0
0
0
0
0
0
0
4
3
3
3
3
2
1
1
8
7
7
7
6
4
1
0
37
36
35
30
24
17
5
1
97
93
.78
.70
.54
.53
.57
.50
.42
.45
.03
.65
.28
.05
.00
.57
.70
.08
.17
.70
.63
.50
.31
.24
.42
.67
.24
.20
.30
.00
.70
.59
.83
.75
»95
.40
92.00
82
78
69
43
58
.50
.88
.18
.20
.44
DC
DT
PPM/HR
-0.
-0.
-0.
-0,
0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0,
-o.
-0.
-o.
-0.
-0.
-o.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o,
-o.
-o,
-0.
-0.
0.
29E 00
27E-01
89E-02
85E-03
14E-03
28E-03
34E-04
10E-05
14E 01
13E 00
22E-01
73E-02
12E-02
17E-02
82E-03
23E-03
29E 01
17E 00
97E-02
57E-02
11E-01
73E-02
25E-02
35E-03
HE 02
35E 00
57E-01
12E 00
50E-01
25E-01
10E-01
17E-02
28E 02
14E 01
90E-01
23E 00
39E-01
35E-01
22E-01
37E-02
DS SUM P SUM P
DT SORBED ON SOIL
PPM/HR PPM PPM
0.
0.
0.
0.
-0.
0.
0.
0.
0.
0.
0.
0.
0*
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0*
0.
0.
0*
0.
0*
0.
0.
0.
0.
0.
0.
0.
0,
95E-01
27E 00
89E-01
85E-02
14E-02
28E-02
84E-03
lOE-04
42E 00
13E 01
22E 00
73E-01
12E-01
17E-01
82E-02
23E-02
79E 00
17E 01
97E-01
57E-01
HE 00
73E-01
25E-01
35E-02
HE 01
35E 01
57E 00
12E 01
50E 00
25E 00
10E 00
17E-01
89E 00
14E 02
90E 00
23E 01
39E 00
0.35E 00
0.
-0.
22E 00
37E-01
2
3
4
5
5
5
6
6
9
13
18
21
22
28
38
46
18
23
25
28
41
63
95
106
27
39
50
105
163
242
371
429
20
67
84
183
228
335
611
487
• 20
,11
.81
.18
,02
.88
.90
.94
.70
,98
.35
,51
.99
.26
,13
.05
.30
.91
.76
.25
.39
.94
.02
.72
.60
.37
.28
.62
• 62
.37
.18
.06
.50
.02
.32
.32
.27
.83
.04
.04
34
35
36
37
37
37
38
38
41
45
50
53
54
60
70
78
50
55
57
60
73
95
127
138
59
71
82
137
195
274
403
461
52
99
116
215
260
367
643
519
.20
.10
.81
.18
.02
.83
.90
.94
.70
.98
.35
,51
.99
.26
.13
.05
.30
.91
,76
-.24
.39
,94
,02
,72
,60
,38
.28
,62
.62
.37
.18
.06
.50
.02
.32
,32
.27
.83
,04
.04
80
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL R
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 86iO PPM
TIME
HRS
1.
3.
13.
39.
110.
302.
329.
1001.
3013.
1.
3.
13.
39.
110.
302.
329.
1001.
3013.
1.
3.
13.
39.
110.
302.
329.
1001.
3013.
INITIAL
CONC
MG/L
1
0
0
0
0
0
0
0
0
5
2
1
1
0
0
0
0
0
10
5
4
3
2
1
0
1
1
.00
.28
.22
.22
.26
.29
.37
.41
.66
.00
.22
.67
.19
.95
.85
.61
.96
.81
.00
.47
.30
.22
.41
.79
.71
.72
.11
FINAL
CONC
MG/L
0.25
0.18
0.18
0.23
0.26
0.33
0.38
0.64
0.20
2.08
1.50
0.99
0.74
0.64
0.38
0.75
0.59
0.18
5.24
4.00
2.87
2.02
1.36
0.23
1.29
0.65
0.15
DC
DT
PPM/HR
-0.
-0.
-0.
0.
-0.
0.
0.
0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
0.
-0.
-0.
-0.
-0.
-0.
-0.
-c.
-0.
0.
-0.
-o.
31E 00
32E-01
21E-02
16E-03
74E-04
13E-03
66E-03
20E-03
13E-03
15E 01
22E 00
35E-01
10E-01
27E-02
15E-02
47E-02
32E-03
18E-03
30E 01
44E 00
75E-01
28E-01
92E-02
51E-02
20E-01
96E-03
28E-03
DS SUM P SUM P
DT SORBED ON SOIL
PPM/HR PPM PPM
0.
0.
0.
-0.
0.
-0.
-0.
-0.
0.
0.
0.
0.
0*
0.
0.
-0.
0.
0.
0.
0.
0.
0.
0.
0.
-0.
0.
0.
32E 00
32E 00
21E-01
16E-02
74E-03
13E-02
66E-02
20E-02
13E-02
12E 01
22E 01
35E 00
IDE 00
27E-01
15E-01
47E-01
32E-02
18E-02
20E 01
44E 01
75E 00
28E 00
92E-01
51E-01
20E 00
96E-02
28E-02
7
8
8
8
8
8
8
6
10
29
36
43
47
50
55
54
57
64
47
62
76
88
99
114
109
119
129
.49
.55
.96
.89
.97
.57
.38
.11
.75
.20
.46
.25
.81
.94
.65
.31
.99
.27
.60
.38
.68
.74
.33
.95
.24
.99
.62
93
94
94
94
94
94
94
92
96
115
122
129
133
136
141
140
143
150
133
148
162
174
185
200
195
205
215
.50
.55
.96
.89
.97
.57
.38
.11
.75
.20
.46
.25
.81
.94
.65
.31
.99
.27
.60
.37
.67
.74
.33
.95
.23
.99
.61
81
-------
SOIL R CONTINUED
TIME
MRS
1.
3«
13.
39.
110.
302.
329.
1001.
3013.
1.
3.
13.
39.
110.
302.
329.
1001.
3013.
INITIAL
CONC
MG/L
40
30
25
18
7
3
2
2
2
100
86
75
57
13
6
5
6
5
.00
.50
.46
.62
.13
.91
«66
.94
.30
.00
.36
.01
.23
.31
.84
.98
.70
.33
FINAL
CONC
MG/L
30.00
24.70
17,50
5.40
2*02
. 0»70
0.99
0.32
0*13
85.65
73.70
54.98
8.75
1.94
1.04
1.79
0.35
0.23
DC
DT
PPM/HR
-0«
-0.
-0.
-0.
HE 02
17E 01
41E 00
30E 00
-0.44E-01
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
10E-01
59E-01
23E-02
65E-03
29E 02
38E 01
10E 01
HE 01
99E-01
19E-01
14E 00
57E-02
15E-02
0
0
0
0
DS
DT
PPM/HR
• 43E
• 17E
.41E
.30E
0.44E
0
0
0
0
0
0
0
0
0
0
0
0
0
• IDE
• 59E
01
02
01
01
00
00
00
•23E-01
.65E-02
• 62E
.38E
• 10E
• HE
• 99E
• 19E
.14E
01
02
02
02
00
00
01
•57E-01
.15E-01
SUM P
SORBED
PPM
100
158
237
369
421
453
469
496
517
143
270
470
955
1069
1127
1168
1232
1283
.00
.00
.64
.90
.00
.18
.87
.10
.87
.50
.17
.52
.33
.05
.08
.98
.57
.50
SUM P
ON SOIL
PPM
186.00
244.00
323.64
455.89
506.99
539.18
555.87
582.10
603.87
229.50
356.17
5S6..52
1041.33
1155.05
1213.08
1254.98
1318.57
1369.50
82
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL S
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 61.0 PPM
TIME
MRS
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
INITIAL
CONC
MG/L
1.00
0.24
0.17
0.16
0.21
0.24
0.23
0.30
5.00
1.58
1.08
0.95
0.90
0.85
0.76
0.72
10.00
4.00
3.27
2.88
2.41
1.99
1.76
1.50
40.00
24.23
23.12
19.57
16.53
15.32
13.11
9.00
100.00
72.57
68.88
61.22
54.21
50.57
44.42
33.99
FINAL
CONC
MG/L
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
3
2
2
2
1
1
1
0
23
22
18
15
14
11
7
5
71
67
59
51
47
41
30
19
.21
.13
.11
.17
.20
.19
.27
.15
.41
.88
.73
.69
.64
.54
.50
.38
.69
.92
.51
.02
.57
.33
.06
.44
.41
.24
.50
.30
.03
.70
.37
.11
.13
• 25
.18
.80
.97
.50
.52
.92
DC
DT
PPM/HR
-0.
-0.
-0.
0.
-0.
-0.
0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
32E 00
36E-01
29E-02
20E-03
10E-03
14E-03
31E-04
46E-04
15E 01
21E 00
18E-01
60E-02
23E-02
10E-02
21E-03
10E-03
31E 01
32E 00
40E-01
20E-01
74E-02
21E-02
58E-03
32E-03
12E 02
60E 00
24E 00
99E-01
21E-01
11E-01
47E-02
11E-02
29E 02
16E 01
50E 00
21E 00
54E-01
29E-01
11E-01
42E-02
OS SUM P SUM P
DT SORBED ON SOIL
PPM/HR PPM PPM
0.
0.
0.
-0.
0.
0.
-0*
0.
0.
0*
0.
0.
0.
0.
0*
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0*
0*
0.
0.
0.
34E 00
36E 00
29E-01
20E-02
10E-02
14E-02
31E-03
46E-03
15E 01
21E 01
18E 00
60E-01
23E-01
10E-01
21E-02
10E-02
27E 01
32E 01
40E 00
20E 00
74E-01
21E-01
58E-02
32E-02
72E 01
60E 01
24E 01
99E 00
21E 00
HE 00
47E-01
11E-01
12E 02
16E 02
50E 01
21E 01
54E 00
29E 00
HE 00
42E-01
7
9
9
9
9
10
9
11
35
42
46
49
51
54
57
60
63
73
81
90
98
105
112
123
165
185
232
274
299
336
393
432
288
341
439
533
595
686
825
966
.90
.09
.65
.57
.68
.13
.75
.30
.90
.99
.47
.08
.74
.88
.49
.91
.10
.95
.59
.24
.73
.34
.37
.00
.90
.89
.17
.92
.97
.25
.65
.62
.70
.93
.01
.22
.62
.33
.38
.12
68
70
70
70
70
71
70
72
96
103
107
110
112
115
118
121
124
134
142
151
159
166
173
184
226
246
293
335
360
397
454
493
349
402
500
594
656
747
886
1027
.90
.09
.66
.57
.68
.13
.75
.30
.90
•^99
.47
.08
.74
.88
.49
• 91
.10
.95
.59
.24
.73
.34
,37
.00
.90
.89
.17
.92
.97
.25
,65
.62
.70
.93
.01
.22
.62
.33
.38
.12
83
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL T
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 72.0 PPM
TIME
HRS
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
INITIAL
CONC
MG/L
1.00
0.81
0.64
0,56
0.49
0.49
Ot$5
0.48
5.00
3.82
3.44
3.23
3.05
2.91
2.65
1.71
10.00
8.54
8.01
7.62
6.86
6.29
4.80
2.55
40.00
35.04
35.04
34.43
32.97
31.60
28,28
21*53
100.00
96.51
92.21
93.44
92.87
91,59
87.28
71.32
FINAL
CONC
MG/L
0
0
.0
0
0
0
0
0
3
3
3
2
2
2
1
0
8
7
7
6
6
4
2
1
34
34
34
32
31
27
20
20
96
91
93
92
91
86
69
41
.80
.62
.54
.47
.47
.42
.45
.32
.76
.36
.14
.95
.80
.53
.53
.98
.47
.91
.50
.70
.10
.53
.16
.24
.78
.78
.14
.60
.16
.67
.56
,75
.33
.80
.10
.50
.15
.62
.82
.90
DC
OT
PPM/HR
-C.
-0.
-0,
-0,
-0»
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-o.
-o.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
29E 00
57E-01
50E-02
22E-02
23E-03
22E-03
21E-05
47E-04
14E 01
14E 00
15E-01
66E-02
22E-02
12E-02
93E-03
21E-03
29E 01
19E 00
26E-01
21E-01
67E-02
57E-02
22E-02
39E-03
HE 02
79E-01
47E-01
-0.42E-01
-0.
-0.
-0.
-o.
-0.
-0.
0.
-0.
-0.
15E-01
12E-01
64E-02
23E-03
28E 02
14E 01
46E-01
22E-01
15E-01
-0.16E-01
-0.
-0.
14E-01
88E-02
OS SUM- P SUM P
DT SORBED ON SOIL
PPM/HR PPM PPM
0.
0.
0,
0,
o.
0,
0.
0.
0.
0.
0.
0*
0.
0.
o.
0.
0.
0.
o.
0.
0.
0,
0.
o.
0.
o.
0.
0.
0.
0.
0.
0.
0.
o.
-0.
0.
0.
0.
0.
0.
86E-01
57E 00
50E-01
22E-01
23E-02
22E-02
21E-04
47E-03
53E 00
14E 01
15E 00
66E-01
22E-01
12E-01
93E-02
21E-02
66E 00
19E 01
26E 00
21E 00
67E-01
57E-01
22E-01
39E-02
22E 01
79E 00
47E 00
42E 00
15E 00
12E 00
64E-01
23E-02
15E 01
14E 02
46E 00
22E 00
15E 00
16E 00
14E 00
88E-01
2
3
4
5
6
6
6
8
12
17
20
22
25
29
40
47
15
21
26
36
43
61
87
100
52
54
63
82
100
139
216
224
36
83
74
84
101
151
326
620
.00
.88
.84
,81
.08
.76
.79
• 37
.40
.02
.04
.86
.39
.14
.33
.62
.30
.66
.80
.05
.70
.35
.79
.89
.20
.81
.81
.14
.24
.56
.83
.65
.70
.83
.93
.38
.63
.35
.04
.33
74
75
76
77
78
78
78
80
.00
,88
.84
.81
.08
.76
.79
.37
84»40
89
92
94
97
101
11-2
119
87
93
98
108
115
133
159
172
124
126
135
154
172
211
288
296
108
155
146
156
173
223
398
692
.01
.03
.86
.39
.14
.33
.62
.30
.66
.81
.05
.70
.35
.79
.89
.20
.81
.81
.14
.24
.56
.83
.65
.70
.83
.93
.38
.63
.35
.04
.33
84
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL U
RESIN EXTRACTABL.E PHOSPHORUS ON SOIL BEFORE SORPTION 1.8 PPM
TIME
HRS
1.
4*
10.
30.
100.
304.
1007.
3000.
1.
4.
10.
30.
100.
304.
1007.
3000.
1*
4.
10.
30.
100.
304.
1007.
3000.
1.
4.
10.
30.
100.
304.
1007,
3000.
1.
4.
10.
30.
100.
304,
1007.
3000.
INITIAL
CONC
MG/L
1.00
0.72
0.46
0.35
0.29
0.24
0.21
0,29
5.00
3,94
3.16
2,91
2.72
2.52
2.36
2.04
10.00
9.24
7.91
7.54
7.28
7.03
6.69
5.85
40.00
37.81
37.62
36.39
40.07
35.65
35.15
33.69
100.00
95.26
94.36
97.90
98.95
95.27
97.34
89.98
FINAL
CONC
MG/L
0
0
0
0
0
0
0
0
3
3
2
2
2
2
1
1
9
7
7
7
6
6
5
5
37
37
36
40
35
34
33
39
95
94
97
98
95
97
89
61
.71
.44
.32
.26
.20
.16
.26
.07
.89
.07
.81
.60
.39
.22
.88
.86
.21
.81
.42
.14
.88
.52
.64
.45
.70
.50
.20
.08
.43
.90
.36
.56
.02
.07
.80
.90
.03
.20
.46
.04
DC
DT
PPM/HR
-0.
-0.
-0.
-0.
-0.
-0.
0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
0.
-0.
-0.
-0.
0.
-0.
-0.
0.
0.
-0.
0*
-0.
-o,
29E 00
51E-01
16E-01
28E-02
80E-03
21E-03
41E-04
66E-04
14E 01
15E O'O
38E-01
96E-02
27E-02
87E-03
39E-03
55E-04
29E 01
25E 00
54E-01
12E-01
33E-02
15E-02
87E-03
12E-03
HE 02
56E-01
15E 00
HE 00
38E-01
22E-02
14E-02
17E-02
28E 02
21E 00
37E 00
30E-01
32E-01
56E-02
65E-02
88E-02
DS SUM P
DT SORBED
PPM/HR PPM
0.
0.
0.
0.
0.
0.
-0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-0,
0.
0,
0.
-0,
0.
0.
-0.
-0.
0.
-0.
0.
0.
12E 00
51E 00
16E 00
28E-01
80E-02
21E-02
41E-03
66E-03
48E 00
15E 01
38E 00
96E-01
27E-01
87E-02
39E-02
55E-03
34E 00
25E 01
54E 00
12E 00
33E-01
15E-01
87E-02
12E-02
99E 00
56E 00
15E 01
11E 01
38E 00
22E-01
14E-01
17E-01
21E 01
21E 01
37E 01
30E 00
32E 00
56E-01
65E-01
88E-01
2.
5.
7.
8.
9.
9.
9.
11.
11.
19.
23.
26.
29.
32.
37.
39.
7.
22.
27.
31.
35.
40.
51.
55.
23.
26.
40.
3.
49.
57.
75.
16.
49.
61.
27.
17.
56.
37.
116.
405.
SUM P
ON SOI
PPM
88
74
22
16
13
84
34
53
10
85
42
61
91
87
62
44
90
29
29
37
40
56
10
12
00
14
39
49
95
54
49
81
80
78
45
55
80
58
38
85
4.
7.
9.
9.
10.
11.
11.
13.
12.
21.
25.
28.
31.
34.
39.
41.
9.
24.
29.
33.
37.
42.
52.
56.
24.
27.
42.
5.
51.
59.
77.
18.
51.
63.
29.
19.
58.
39.
118.
407.
L
68
54
02
96
93
64
14
33
90
65
22
41
71
67
42
24
70
09
09
18
20
36
90
92
80
94
19
29
75
34
29
61
60
58
25
35
60
38
18
65
85
-------
PAGE 1
// JOB
LOG DRIVE CART SPEC CART AVAIL PHY DRIVE
0000 7209 7209 0000
V2 Mil ACTUAL 16K CONFIG 16KL
// FOR
*IOCS!DISK.»1132 PRINTER »CARD* TYPEWRI TER »KEYBOARD)
^EXTENDED PRECISION
#ONE WORD INTEGERS
*LIST SOURCE PROGRAM
C PHOSPHORUS SORPTION ISOTHERM DATA CONVERSION ASSUMES 10 G SOIL SAMPLE
DIMENSION CI(10»7)»FC(10»7)»DC(10»7)» DS(10*7)»SPAD(10»7)»SPS(10.7
*) »T(10)
100 FORMAT(13)
READ!2» 100)N
C N IS THE NUMBER OF SOIL SAMPLES
DO 1000 ID=1»N
110 FORMAT (A2)
READ (2.110) SM
120 FORMAT (215)
READ (2.120) IN.JN
C IN IS NO. OF TIVFS& U IS THE NO OF CONCENTRATIONS
130 FORMAT (5F10.C)
READ(2»130> J) »J=1,JN)
C PC ARE THE MEASURED CONCENTRATIONS
150 CONTINUE
170 FORMAT (F10.3)
READ (2,170) REP
C REP IS THE RESIN EXTRACTABLE PHOSPHORUS
DO 1 I=2»IN
DO 2 J=1»J.M
2 CI ( I ,J)=FC(1-1,J)
1 CONTINUE
DO 3 I = 1 » I N
DO A J=l ,JN
PAD = (CI ( I ,J)-FC(I , J) )/10.
A=I
IF (A-l) 8»8»9
8 SPAD(I»J) = PAD#100.
SPS! I ,J) = SPADl1»J)+REP
GO TO 10
9 SPAD (I»J) = SPAD( 1-1, J)-HPAD*100. )
SPS (I,J) = SPS ( 1-1»J) + (PAD^IOO. )
10 CONTINUE
4 CONTINUE
3 CONTINUE
C RATE CALCULATED OH + POIM "OVIKG
C CURVE
DO 50 J=1»JN
IC = 0
NN=IN-2
DO 49 I=1,MN
86
-------
PAGE
IC-I01
SUMX=0.
SUMY=Ot
SUMXY=0.
SUMXZ=0,
IIC = 1+2
DO 40 I 1 = 1 , I 1C
SUMX=ALOG(T(II > 1+SUMX
SUMY=FC(II.JJ+SUMY
SUMXY=ALOG(T(II ) )*FC( II»Jl+SUMXY
SUMXZ=ALOG(T(I I))**2+SUMXZ
40 CONTINUE
DEMON=3.*SUMXZ-SUMX**2.
RATE=((3.*SUMXY)-SUMX*SUMY)/DEMON
If ( IC-D42.42.43
42 DC(1»J)=RATE/T( 1)
43 DC( IC + 1,J)=RATE/T(IC + 1)
IF(IC-lN+2)46»45*44
44 WRITE(3,175)
175 FORMATI5X,'ERROR1)
45 DC(IC+2,J)=RATE/TtIC+2)
46 CONTINUE
SUMX=0.
SUMY=0.
SUMXY=0.
SUMXZ=0,
DO 41 11 = 1 ,IIC
SUMX = ALOG(T(I I ) )+SUMX
SUMY = SPAD(I I»J)+SUMY
SUMXY=ALOG(T(I I ) )*SPAD(I I .Jl+SUMXY
SUMXZ=ALOG(T(I I))**2 + SUMXZ
41 CONTINUE
DEMON=3.*SUMXZ-SUMX**2.
RATE=((3*SUMXY)-SUMX*SUMY)/DEMON
IF( IC-D47.47.48
47 DS(1.J)=RATE/T(1)
48 DS( IC+1,J)=RATE/T(IC + 1)
IF( IC-IN+2152.51,44
51 DS(IC+2»J)=RATE/T(IC+2)
52 CONTINUE
49 CONTINUE
50 CONTINUE
WRITE (3.200) SN.REP
200 FORMATt ' 1 '/////14X1 PHOSPHORUS SORPTION ISOTHERM1//1
* SOIL '.A2»///' RESIN EXTRACTABLE PHOSPHORUS 0
*N SOIL BEFORE SORPTION '.F5.1.1 PPM1/1
•U- l» _•• *•. ••«•!••«. ^..JaB !•.••• ~m^ ^w. •!••••• ^ mmmM MB «H ^ I / \
•K-— — — ____ ____________________ _ __ f i
205 FORMATt
* DC DS SUM P
* DT SORBED ON SC
* PPM/HR PPM PPM1/'•
# ^ «»^. i / \
—————— ——_— _ •/;
WRITE!3,205)
ICNT = 12
DO 180 J=1,JN
210 FORMAT(1X,F5.0.2F9.2.2E10.2.2F9.2)
WRITE (3.210) (T(I)»CI(I»J)»FC(I.J)»DC(I»J). DS(I»J)»SPAD(I»J)»SPS
* ( I »J ) »I = 1» IN )
220 FORMAT (/)
WRITE(3,220)
ICNT=ICNT+IN+2
SUM
'/'
i
P1 /7X. '
MRS
TIME
CONC
MG/L
INITIAL
CONC
MG/L
F
PP
INAL
DT
M/HR
87
-------
PAGE 3
IDUM=54-IN
IF(ICNT-IOUM)222»221»22l
223 FORMAT ( ' 1' /////21X' SOIL '»A2»' CONTINUED'//
221 IF IJ-JN>224»180,180
224 WRITE(3»223) SN
WRITE(3»205)
ICNT = 5
GO TO 180
222 CONTINUE
180 CONTINUE
1000 CONTINUE
CALL EXIT
END
FEATURES SUPPORTED
ONE WORD INTEGERS
EXTENDED PRECISION
IOCS
CORE REQUIREMENTS FOR
COMMON 0 VARIABLES 1340 PROGRAM 1204
END OF COMPILATION
// XEO
88
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL V
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 1.4 PPM
TIME
HRS
1.
10.
30.
277.
1.
10.
30.
277.
1.
10.
30.
277.
1.
10.
30.
277.
1.
10.
30.
277.
1.
10.
30.
277.
INITIAL
CONC
MG/L
1
0
0
0
5
3
2
1
10
7
5
4
40
33
27
27
100
85
83
82
200
172
164
174
.00
.64
.33
.17
.00
.64
.35
.59
.00
.71
.51
.52
.00
.90
.16
.30
.00
.60
.40
.75
.00
.60
.85
.00
FINAL
CONC
MG/L
0
0
0
0
3
2
1
0
7
5
4
2
33
27
27
21
85
83
82
73
172
164
174
168
.64
.33
.17
.17
.64
.35
.59
.44
.71
.51
.52
.27
.90
.16
.30
.40
.60
.40
.75
.05
.60
.85
.00
.10
DC
DT
PPM/HR
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
0.
0.
13E 00
13E-01
13E-02
14E-03
59E 00
59E-01
18E-01
20E-02
94E 00
94E-01
32E-01
35E-02
20E 01
20E 00
62E-01
67E-02
85E 00
85E-01
10E 00
11E-01
16E 00
16E-01
15E-01
16E-02
DS SUM P SUM P
DT SORBEO ON SOIL
PPM/HR PPM PPM
0.13E 01
0.13E 00
0.13E-01
0.14E-02
0.59E 01
0.59E 00
0.18E 00
0.20E-C1
0.94E 01
0.94E 00
0.32E 00
0.35E-01
0.20E 02
0.20E 01
0.62E 00
0.67E-01
0.85E 01
C.85E 00
0.10E 01
0.11E 00
0.16E 01
0.16F 00
-0.15E 00
-0.16E-01
3
6
8
8
13
26
34
45
22
44
54
77
61
128
127
186
144
166
172
269
274
351
260
319
.53
.63
.30
.25
.54
.46
.10
.54
.90
.90
.80
.24
.00
.40
.00
.00
.00
.00
.50
.50
.00
.50
.00
.00
4
8
9
9
14
27
35
46
24
46
56
78
62
129
128
187
145
167
173
270
275
352
261
320
.93
.03
.69
.64
.94
.86
.50
.94
.30
.30
.20
.64
.40
.80
.40
.40
.40
.40
.90
.90
.40
.90
.40
.40
89
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL w
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 2.6 PPM
TIME
HRS
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
INITIAL
CONC
MG/L
1
0
0
0
0
5
3
1
1
0
10
7
4
4
1
40
33
25
24
17
100
80
78
77
64
200
170
165
165
155
.00
.55
.26
.12
.08
.00
.37
.79
.16
.53
.00
.29
.63
.42
.52
.00
.10
.35
.10
.20
.00
.82
.88
.25
.75
.00
.70
.50
.50
.00
FINAL
CONC
MG/L
0.55
0.26
0.12
0.08
0.09
3.37
1.79
1.16
0.53
0.20
7.29
4.63
4.42
1.52
0.94
33.10
25.35
24,10
17.20
15.90
80.82
78.88
77.25
64.75
54.97
170.70
165.50
165.50
155.00
164.20
DC
DT
PPM/HR
-0.
-0.
-0.
-0.
-0.
12E 00
12E-01
23E-02
12E-03
52E-04
-0.65E 00
-0.
-0.
-0,
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
65E-01
16E-01
35E-02
15E-02
89E 00
S9E-01
42E-01
13E-01
58E-02
27E 01
27E 00
HE 00
31E-01
13E-01
10E 01
10E 00
19E 00
81E-01
35E-01
16E 01
16E 00
14E 00
10E-01
47E-02
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DS SUM P SUM P
DT SORBED ON SOIL
PPM/HR PPM PPM
.12E 01
.12E 00
.23E-01
.12E-02
.52E-03
.65E 01
•65E 00
•16E 00
.35E-01
.15E-01
.89E 01
•89E 00
•42E 00
•13E 00
•58E-01
•27E 02
.27E 01
.HE 01
.31E 00
•13E 00
•10E 02
•10E 01
•19E 01
•81E 00
•35E 00
•16E 02
•16E 01
•14E 01
.10E 00
.47E-01
4
7
8
9
9
16
32
38
44
47
27
53
55
84
90
69
146
159
228
241
191
211
227
352
450
293
345
345
450
358
.43
.40
.80
.20
.09
.25
.02
.40
.70
.99
.10
.70
.80
.80
.55
.00
.50
.00
.00
.00
.80
.20
.50
.50
.25
.00
.00
.00
.00
.00
7
10
11
11
11
18
34
41
47
50
29
56
58
87
93
71
149
161
230
243
194
213
230
355
452
295
347
347
452
360
.03
.00
.40
.80
.69
.85
.62
.00
.30
.59
.70
.30
.40
.40
.15
.60
.10
.60
.60
.60
.40
.80
.10
.10
.85
.60
.60
.60
.60
.60
90
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL x
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 2.5 PPM
TIME
MRS
1.
10.
30.
121.
277.
1.
10.
30.
1?1.
277.
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
INITIAL
CONC
MG/L
1
0
0
0
0
5
3
1
0
1
10
7
4
2
3
40
31
28
23
22
100
84
82
73
73
200
174
166
158
159
.00
.73
.22
.11
.10
.00
.51
.82
.88
.06
.00
.91
.94
.98
.28
.00
.55
.19
.50
.20
.00
.70
.10
.50
.00
.00
.55
.80
.00
.00
FINAL
CONC
MG/L
0
0
0
0
0
3
1
0
1
0
7
4
2
3
0
31
28
23
22
13
84
82
73
73
55
174
166
158
159
139
.73
.22
.11
.10
.05
.51
.82
.88
.06
.11
.91
.94
.98
.28
.46
.55
.19
.50
.20
.32
.70
.10
.50
.00
.27
.55
.80
.00
.00
.60
DC
DT
PPM/HR
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
19E 00
19E-01
15E-02
17E-03
78E-04
76E 00
76E-01
95E-02
24E-02
10E-02
14E 01
14E 00
20E-01
81E-02
35E-02
22E 01
22E 00
77E-01
34E-01
15E-01
29E 01
29E 00
HE 00
61E-01
26E-01
46E 01
46E 00
98E-01
60F.-01
26E-01
OS SUM P SUM P
DT SORBED ON SOIL
PPM/HR PPM PPM
0.19E 01
0.19E 00
0.15E-01
0.17E-02
0.78F-03
0.76E 01
0.76E 00
0.95E-01
0.24E-01
0.10E-01
0.14E 02
0.14E 01
0.20E 00
0.81E-01
0.35E-01
0.22E 02
C.22E 01
0.77E 00
0.34E 00
0.15E 00
0.29F. 02
0.29E 01
0.11E 01
0.61E 00
0.26E CO
0.46E 02
0.46E 01
0.98E 00
0.60E 00
0.26E 00
2
7
8
9
9
14
31
41
39
40
20
50
70
67
95
84
118
165
178
266
153
179
265
270
447
254
332
420
410
604
.62
.79
.90
.00
.41
.83
.76
.20
.40
.83
.90
.60
.20
.20
.34
.50
.10
.00
.00
.80
.00
.00
.00
.00
.25
.50
.00
.00
.00
.00
5
10
11
11
11
17
34
43
41
51
23
53
72
69
97
87
120
167
180
269
155
181
267
272
449
257
334
422
412
606
.12
.29
.39
.49
.91
.33
»26
.70
.90
.33
.40
.10
.70
.70
.84
.00
.60
.50
.50
.30
.50
.50
.50
.50
.75
.00
.50
.50
.50
.50
91
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL Y
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 45.0 PPM
TIME
HRS
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
INITIAL
CONC
MG/L
1
0
0
0
0
0
5
3
3
2
1
1
10
7
6
4
3
2
40
32
30
25
22
17
100
85
85
77
67
59
.00
.80
.71
.61
.53
.45
.00
.60
.10
.15
.55
.10
.00
.73
.90
.20
.10
.15
.00
.10
.00
.00
.00
.30
,00
.80
.40
.00
.00
.50
FINAL
CONC
MG/L
0.
o.
0.
o.
0.
0.
3.
3.
2.
1.
1.
0.
7.
6.
4.
3.
2.
1.
32.
30.
25.
22.
17.
14.
85.
85.
77.
67.
59.
53.
80
71
61
53
45
39
60
10
15
55
10
75
73
90
20
10
15
5-8
10
00
00
00
30
50
80
40
00
00
50
00
DC
OT
PPM/HR
-c.
-o.
-0.
-0.
-o.
-o.
-0.
-0.
-o.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-o.
-0.
-0.
-0.
-o.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
82E-01
27E-01
78E-02
23E-02
60E-03
20E-03
63E 00
21E 00
67E-01
15E-01
34E-02
11E-02
15E 01
51E 00
16E 00
29E-01
66E-02
22E-02
31E 01
10E 01
34E 00
HE 00
32E-01
10E-C1
38E 01
12E 01
79E 00
25E 00
60E-01
20E-C1
DS SUM P SUM P
DT SORBED ON SOIL
PPM/HR PPM PPM
0.82E 00
0.27E 00
0.78E-01
0.23E-01
0.60E-02
0.20E-02
0.63E 01
0.21E 01
0.67E 00
0.15E 00
0.34E-01
O.HE-01
0.15E 02
0.51E 01
0.16E 01
0.29E 00
0.66E-01
0.22E-01
0.31E 02
0.10E 02
0.34E 01
0.11E 01
0.32E 00
0.10E 00
0.38E 02
0.12E 02
0«79E 01
0.25E 01
0.60E 00
0.20E 00
2
2
3
4
5
6
14
19
28
34
39
42
22
31
58
69
78
84
79
100
150
180
227
254
142
146
230
330
405
470
.00
.90
.90
.70
.50
.09
.00
.00
.50
.50
.00
.50
.70
.00
.00
»00
.50
.20
.00
.00
.00
.00
.00
.99
.00
.00
.00
.00
.00
.00
47
47
48
49
50
51
59
64
73
79
84
87
67
76
103
114
123
129
124
145
195
225
272
299
187
191
275
375
450
515
.00
.90
.90
.70
.49
.09
f"»O
• V W
.00
.50
.50
.00
.49
.70
.00
.00
.00
.50
.20
.00
.00
.00
.00
.00
.99
.oO
.00
.00
.00
.00
.00
92
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL Z
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 8.5 PPM
TIME
HRS
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
INITIAL
CONC
MG/L
1
0
0
0
0
0
5
2
1
0
0
0
10
6
4
2
1
0
40
29
27
22
18
15
100
89
80
71
62
56
.00
• 41
.32
.24
.19
.14
.00
.34
.60
.90
.54
.30
,00
.42
.50
.55
.50
.86
..00
.87
.00
.00
.50
.30
.00
.47
.00
.00
.50
.80
FINAL
CONC
MG/L
0.
0.
0.
0.
0.
0.
2.
1.
0.
0.
0.
0.
6.
4.
2*
1*
0.
0.
29.
27.
22.
18.
15.
12.
89.
80.
71.
62.
56.
51.
41
32
24
19
14
11
34
60
90
54
30
18
42
50
55
50
86
51
87
00
00
50
30
80
47
00
00
50
80
00
DC
DT
PPM/HR
-o.
-0.
-0.
•"• P
-o.
-o.
-o.
-0.
-0.
-o.
-o.
-0.
-0.
-0.
-o.
-0.
-0.
""0 «
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-o.
-o.
-o.
-0.
73E-01
24E-01
56E-02
14E-02
33E-03
11E-03
62E 00
20E 00
46E-01
85E-02
15E-02
52E-03
16E 01
56E 00
13E 00
24E-01
42E-02
14E-02
34E 01
HE 01
36E 00
96E-01
24E-01
82E-02
80E 01
26E 01
75E 00
20E 00
49E-01
16E-01
DS SUM P
DT SORBED
PPM/HR PPM
C.73E 00
0.24E 00
C.56E-01
0.14E-01
0.33E-02
0.11E-02
0.62E 01
0.20E 01
0.46E 00
0.85E-01
0.15E-01
0.52E-02
0.16E 02
0.56E 01
0.13E 01
0.24E 00
0.42E-01
0.14E-01
0.34E 02
0.11E 02
0.36E 01
0.96E 00
0.24E 00
Q.82E-01
0.80E 02
0.26E 02
0.75E 01
0.20E 01
0.49E 00
0.16E 00
5,
6.
7.
8.
6.
8.
26.
34.
41 .
44.
46.
48.
35.
55.
74.
85.
91.
94.
101.
130.
180.
215.
247.
272.
105.
200.
290.
375.
432.
490.
SUM P
ON SOIL
PPM
85
80
55
10
55
88
53
CO
00
59
95
20
74
00
50
00
40
84
30
00
00
00
00
00
30
00
00
00
00
00
14
15
16
16
17
17
35
42
49
53
55
56
44
63
83
93
99
103
109
138
188
223
255
280
113
208
298
3S3
440
498
.35
.30
.05
.60
.04
.37
.03
.5C
.50
.09
.45
.70
.24
.50
.00
.50
.90
.34
.80
.50
.50
.50
.50
.50
.80
.50
.50
.50
.50
.50
93
-------
PHOSPHORUS SORPTION ISOTHERM
SOIL AA
RESIN EXTRACTABLE PHOSPHORUS ON SOIL BEFORE SORPTION 8.9 PPM
TIME
HRS
1.
3.
10.
30.
100.
300*
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
INITIAL
CONC
MG/L
1
0
0
0
0
0
5
3
2
1
0
0
10
7
6
4
2
1
40
32
29
25
20
11
100
87
85
77
62
49
.00
.56
.47
.33
.19
.16
.00
.11
.65
.90
.90
.48
.00
.29
.50
.70
.75
.10
.00
.00
.50
.50
.00
.80
.00
.14
.00
.00
.00
.00
FINAL
CONC
MG/L
0
0
0
0
0
0
3
2
1
0
0
0
7
6
4
2
\
0
32
29
25
20
11
7
87
85
77
62
49
39
.56
.47
.33
.19
.16
.16
.11
.65
.90
.90
»48
.29
.29
.50
.70
.75
.10
.56
.00
.50
.50
.00
.80
.50
.14
.00
.00
.00
.00
.00
DC
DT
PPM/HR
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-o.
-0.
-o.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0,
-0,
-0.
-c.
10E 00
33E-01
11E-01
23E-02
15E-03
51E-04
52E 00
17E 00
75E-01
20E-01
26E-02
88E-03
HE 01
37E 00
16E 00
52E-01
95E-02
31E-02
28E 01
94E 00
41E 00
19E 00
54E-01
18E-01
44E 01
14E 01
99E 00
40E 00
ICE 00
33E-01
DS SUM P SUM P
DT SORBED ON SOIL
PPM/HR PPM PPM
0.10E 01
0.33E 00
0.11E 00
0.23E-01
0.15E-02
0.51E-03
0.52E 01
0.17E 01
0.75E 00
0.20E 00
0.26E-01
0.88E-02
0.11E 02
0.37E 01
0.16E 01
0.52E 00
0.95E-01
0.31E-01
0.28E 02
0.94E 01
0.41E 01
0.19E 01
0.54E 00
0.18E 00
0.44E 02
0.14E 02
C.99E 01
0.40E 01
0.10E 01
0.33E 00
4
5
6
8
8
8
18
23
31
41
45
47
27
35
53
72
89
94
8.0
105
145
200
282
325
128
150
230
360
510
610
• 36
.30
.70
.05
.35
.39
.90
.50
.00
.00
.20
• 09
.10
.00
.00
.50
.00
.40
.00
.00
.00
.00
.00
.00
.60
.00
.00
.00
.00
.00
13
14
15
16
17
17
27
32
39
49
54
55
36
43
61
81
97
103
88
113
153
208
290
333
137
158
238
388
518
618
.26
.20
.60
.95
.25
.29
..80
.40
.90
.90
,09
.99
.00 •
.89
.89
.40
.90
.29
.90
.90
.90
.90
.90
.89
.50
.90
.90
.90
.90
.90
94
-------
APPENDIX E
COMPARISON OF SORPTION MODELS
In this appendix one can compare the measured amount of sorption listed
in Appendix D with the calculated amount of sorption for any of the five
kinetic models, along with the computer program used to develop the
tables. The regression coefficients used in these calculations are
tabulated in Table 4. The time and measured amount of sorption are
the same as that given in Appendix D. The remaining five columns
labeled 1 through 5 are for the five kinetic models described in the
report.
Column 1 - refers to Equation (15) .
Column 2 - refers to Equation (13) .
Column 3 - refers to Equation (14) .
Column 4 - refers to the diffusion limited model Equation (8)
with Freundlich sorption Equation (2).
Column 5 - refers to the diffusion limited model Equation (8)
with Langmuir sorption Equation (1) .
95
-------
PAGE i
//' JOB
LOG DRIVE CART SPEC CART AVAIL PHY DRIVE
0000 7207 7207 0000
V2 M1J ACTUAL 16K COftFIG 8K
// FOR
»10CS( CARD. TYPEWRITER .DISK .1132 PRI NTER .KEYBOARD )
*EXTEM>£0 PRECISION
*ONE WORD INTEGERS
*LiST SOURCE PROGRAM
DIMENSION CIUO»6)»FC<10»6l»SK10.6),S2U0.6).S3(10,6!»S4(10i6),
*S5(10,6) iSPAD(10»6) tCAVG( 10,6) .T!1C)
DIMENSION TA(ll) »CAVtll,6)
500 FORMAT! ' 1 '/////
1 • . SORPTION MODEL COMPARISON1//
2 i SOIL '»A2»///' ------------------
4<»•«*«».•••»•••«...«._»_•.. »~.»>~«~~___V*~«MM».w—B»M,K.KMMW*»».»iii_-i— •.— .-•.-».»-mi-i . • _LJ M __ r^i^-»ni_iTn4jiMi.ji _ n. •. .• t_- ^ •- -.i «• !• __ ». ^ — — i _ — . r— .• _ .• mft — am _- — __ -
* --- '/)
510 FORMAT ( 2X »F5 .0 .F9.2 »2X »5F9 . 1 )
.&20 FORMAT (/>
523 FORMAT t ' 1 ' // ///2 IX ' SOIL '«A2»' CONTINUED1///)
100 FORMAT* 13)
READ(2»100)N
C N IS THE NUMBER OF SOIL SAMPLES
DO 1000 ID=1,N
110 FORMAT! A3 >
.READ(2.110).SN
115 FORMAT12I51)
REAO(2tll5) IN.JN
C . SN IS SOIL NAME. IN=NO. OF TIKES. JN=NO. OF CONCENTRATIONS
130 FORMATI5F10.0)
READ12.130) (T(I ) .1 = 1, IN)
C T IS THE TIMES MEASUREMENTS TAKEN
140 FORMATUOF7-.3)
READ (2, 140) (CI( l.J) , J=1,JN)
C CI IS INITIAL CONCENTRATIOiXS
DO 150 1 = 1, IN
150 READ (2, 140) ( FC t I . J ) » J= 1 , JN)
C FC ARE MEASURED CONCENTRATIONS
DO 1 1 = 2, IN
DO 1 J=1»JN
1 CI(I»J)=0.95*FC(I-1»J)+0.05*C[(1»J)
DO 3 1 = 1 , IN
DO 3 J=1,JN
PADMCI ( I » J )-FC ( I » J) 1/10,
IF( 1-1)8.8.9
8 SPADt I,J)=PAD*100.
GO TO 10
9 SPADt I »J )=SPAD( 1-1 » J)-K PAD#100. )
-------
P-AGE
10 CONTINUE
3 CONTINUE
00 20 1 = 11 IN
DO 20 J=1»JN
20 CAVG(I»J)=(CI(I,J)+FC(I»JJ)/2.
READ (-2,130)
READ!2.130)A,B,D
DO 30 J=1»JN
DO 30 I=1»IN
Sl(I»J)=0.
DO 40 JJ=ltI
IF(1-1)35,35,45
35 TT = Tt I I
SI(I»J)= t(CAVGII,J)**B)»(1.-D)*A*TT)**(l./tl.-D)!
GO TO 40
45 TT=T(Il-T(JJ-l)
SI!I,J)=((CAVGII»J)**B)*tl.-D)#A*TT+Sl(I-1,J)!**(1./(1•-D))
40 CONTINUE
30 CONTINUE
REAO(2,130)A,X
DO 50 J=1»JN
DO 50 I=1»IN
S2(I,J)=0.
DO 60 JJ=1»I
IF(1-1)55,55,65
55 TT = T( I )
S2 I I .J) = (CAVG! I ,J) *>'.)-( (CAVGI IiJ)*X)/(EXP(A*TT) ))
GO TO 60 *
65 TT = T!I)-T(JJ-1)
S2(I,J)=(CAVG(I»J)*X)-t(CAVGII,J)*X)-S2!I-liJ)!/EXP(A*TT)
60 CONTINUE
50 CONTINUE
READ(2,130)A,X.Y
DO 70 J=1,J.'\
DO 70 I=1,IN
S3( I»J)=0.
DO P.O JJ=1»I
IF(I-1)75,75,85
75 TT»T(I)
S3(ItJ! = (CAVGtI,J!**Y)*X-( (CAVGII,J)**Y)*X/< EXPIA*TT I ) )
00 TO 80
85 TT = T( I J-TUJ-1)
S3( I,J) = (CAVGI I iJ)**Y)*X-( ( (CAVGII»J!**Y)*X)-S3I 1-1»J) >/EXP(A*TT)
80 CONTINUE
7C CONTINUE
READ (2,130)FX,X»Y
F'XK = 10.*<- (-EX)
-PI2 = 9.8696
DAT/1 CONVERSION FOR INDEXING
1 IN=I,-+1
DO 300 J=1,JI-J
DO 300 I«2iIIM
300 CAVd »J)=CAV,( I-1,J>
DO 310 1=7,UN
310 TA( I )=T( 1-1 )
TA(1 ) =0.0
DO 320 J=1,JN
320 CAVI1,J)=0.
DO 90 J=1,JN
DO 90 1=7» I IN
S4{I,J)=0.
97
-------
PAGE
DO 101 JJ«2.I
TT«TA( I )-TAt JJ-1)
CC«(CAV( JJ,J)**Y)*X-t (CAV< JJ-1«J!**Y)#X )
SU'-1X = 0.
DO 210 N=l,10
XJ « (l./(N**2. ) >*EXP< (-1. >*FXK*TT*PI2*(N**2. ) }
210 SUMX=SUMX + XJ
YJ=CC*< l.-(0.6092*SUMX) )
101 S4< I»J) '= YJ + S4< I»J)
90 CONTINUE
READ (2»130) EX»SMAX,B
FXK = 10**<-EX)
DO 220 J«1»JN
DO 220 I=2»I IN
S5(1.J)=0.
DO 230 JJ=2»I
TT-TAII 1-TAUJ-1J
CC»! (CAVUJ.J>*SMAX*B)/<1.+B*CAV< JJ.J) ) )-( ( CAV t JJ-1 1 J ) *SMAX*B ) /
2(1»+B*CAV< JJ-l.J) ) )
SUMX«0.
DO 250 N»l»10
XJ = (l./(N**2.-) )»EXP< t-l.-)*FXK»TT*PI2*IN**2. ) I
250 SUMX «SUMX + XJ
YJ»CC*( 1. -tO. 6092*Si.." -X) )
230 S5( IiJ)= YJ +S5I I »J)
220 CONTINUE
WRITE(3,500)SN
WRITE (3^501)
WRITE C3»502)
ICNT*16
DO 280 J = 1»JN .
WRITE(3»510) (T( I ) .SPADt I»J
*S5t I + l.J) ,I = 1»IN)
WRIT.E(3i520)
ICNT=ICNT-HN-t-2
IFt ICNT- IDU." ) 522 » 521*521
521 IF (J-JN)52'i» 280.280
524 WRITE(3,523)SN
V.'RITE (3.501)
WRITE! 3.502)
ICNT=5
GO TO 280
522 CONTINUE
280 CONTINUE
1000 CONTINUE
CALL EXIT
END
FEATURES SUPPORTED
ONE WORD INTEGERS
EXTENDED PRECISION
IOCS
CORE REQUIREMENTS FOR
COM'-'OM 0 VARIABLES 1956 PROGRA" 1920
END OF CO»'PILATIC.'-:
// XEO
98
-------
SORPTION MODEL COMPARISON
SOIL A
TIME
(HRS)
1.
3.
10.
30.
100.
300.
387.
1016.
3001.
1.
3.
10.
30.
100.
300.
387.
1016.
3001.
1.
3.
10.
30.
100.
300.
387.
1016.
3001.
MEASURED
2.69
2.69
4.20
5.90
6.73
7.53
8.28
8.37
9.05
6.98
7.92
9.86
13.43
16.79
21.54
23.65
24.83
28.11
11.56
11.65
13.89
18.13
24.58
31.68
33.94
35.47
41.25
SORPTION
(PPM)
CALCULATED
1
2.0
2.3
3.1
3.6
4.6
5.7
4.2
7.3
10.1
6.4
7.5
10.7
14.0
19.2
24.6
18.3
32.3
44.0
10.4
12.3
17.7
23.7
33.0
42.8
32.5
57.9
79.5
2
0.0
0.0
0.0
0.1
0.3
0.9
1.1
2.6
7.3
0.0
0.0
0.3
0.8
2.6
7.4
9.3
22.9
63.8
0.0
0.1
0.6
1.8
5.9
16.6
21.1
53.2
151.4
3
0.3
0.9
2.8
6.7
13.4
16.3
15.8
15.4
15.3
0.6
1.9
6.1
15.8
33.6
41.9
41.3
40.6
39.9
0.9
2.7
8.5
22.1
47.5
60.0
59.7
59.5
58.7
4
4.0
3.7
3.7
3.5
3.9
5.4
5.8
8.8
14.2
10.4
10.1
10*2
10.7
12.8
18.0
19.5
29.9
48.1
15.5
15.2
15.5
16.5
20.0
28.3
31.2
48.3
78.3
5
1.5
2.2
3.6
5.0
6.8
8.2
7.9
7.8
7.7
4. -3
6.6
11.5
18.5
29.0
38.0
38.6
39.8
39.0
5.4
8.4
14.8
24.2
38.7
52.0
53.7
56.3
55.9
99
-------
SOIL A CONTINUED
SORPTION (PPM).
TIME
(HRS)
1.
3.
10.
30.
100.
300.
387.
1016.
3001.
1.
3.
10.
30.
100.
300.
387.
1016.
3001.
MEASURED
24.90
48.94
27.32
42.91
66.71
79.71
91.91
89.65
113.07
187.40
64.96
55.75
57.92
116.50
136/50
157.65
172.97
208.13
CALCULATED
1
27.2
32.0
46.4
63.6
89.0
117.6
90.4
161.4
223.0
48.4
58.3
88.6
121.2
171.7
228.0
176.5
312.9
432.5
2
0.2
0.7
2.6
7.8
25.4
73.3
93.6
239.7
690.2
0.6
1.9
6.6
20.2
66.6
194.1
248.6.
637.4
1836.'
3
1.7
5.0
15.9
41.9
90.5
115.8
115.9
115.8
114.7
2.5
7.4
24.0
63.6
138.5
178.0
178.9
178.2
176.5
4
34.3
33.4
34.5
37.5
45.4
65.2
72.2
112.6
183.5
55.3
54.9
58.9
63.9
78.1
112.7
125.2
194.7
317.5
5
6.7
10,5
18.5
30.4
49.1
67.1
69.9
73.8
73.7
7.0
11.0
19,4
31.9
51.7
70.9
73.9
78.1
78.1
100
-------
SORPTION MODEL COMPARISON
SOIL B
TIME
(HRS)
1.
3.
10.
30.
102.
300.
387.
1000.
3010.
1.
3.
10.
30.
102.
300.
387.
1000.
3010.
1.
3.
10.
3C.
102.
300.
387.
1000.
3010.
MEASURED
8.84
8.77
9.81
10.51
10.93
11.35
11.77
11. AS
13.55
34.31
47.66
51.34
54.58
57.38
60.01
62.49
64.32
67.59
49. 63
73.02
96.91
105.21
111.58
117.40
122.33
127.28
133.02
SORPTION
(PPM)
CALCULATED
1
14.4
8.3
11.3
12.4
16.7
22.4
18.3
37.4
41.1
42.3
25.9 •
21.5
24.2
30.4
37.5
29.2
53.2
71.2
69.9
58.6
54 .3
45.0
52.5
61 .0
45.9
77.4
101.0
2
0.1
0.2
0.5
1.1
3.1
R.4
10.7
30.4
50.8
0.8
1.4
2.3
4.1
9.4
21.7
26.5
60.0
119.3
2.0
4.3
8.3
13.4
26.3
53.3
63.1
122.2 '
219.1
3
2.2
4.4
11.5
24.2
42.9
50.1
50.9
59.8
49.1
5.5
11.5
23.2
44.8
72.9
77.9
76.5
80.8
78.7
R.5
20.7
47.4
61.6
119.0
113.4
113.5
111.5
106.3
4
18,9
11.7
15.2
20.5
33.9
55.2
62.1
103.4
121.4
47.5
31.0
28.1
37.3
57.9
87.5
95.8
143.2
192.1
73.1
61.1
60.3
66.4
95.0
135.3
145.5
201.7
261.0
5
26.5
11.1
13.9
16.6
25.8
41.9
47.4
88.4
9-1.2
80.2
50.7
36.7
47.0
66.6
95.3
103.0
157.1
207.2
104.7
99.2
102.5
107.0
143.7
193.4
204.3
276.5
345.8
101
-------
SOIL 8 CONTINUED
SORPTION (PPM)
TIME
(HRS)
1.
3.
10,
30 i.
102.
300.
387.
1000.
3010.
' 1.
3.
10.
30.
102.
300.
387.
1000.
3010.
MEASURED
126.80
203.94
261.22
319.36
373.96
405.46 '
426.61
451.55
481.87
50.80
321.94
476.90
557.43
627.22
695.22
773.22
836.62
918.77
CALCULATED
1
173-.5
171.0
197.1
219.2
261.4
283'.7
208.8-
•335.0
411.7
330.4
358.3
425.9
512.2
683.3
851.7
639,4
1021.2
1313.9
2
9.2
22.3
55.4
125.3
310.1
652.1
772.2
1419.6
2300.6
26.6
71.2
189.3
473.2
1379.6
3519.8
4303.6
8504.1
15134.5
3
18.7
49.2
131.0
280.9
460.8
442.9
417.9
392.1
354.8
32.5
90.2
249.2
566.8
1032.1
1134.1
1087.6
1020.4
960.3
4
159.6
151.9
175.0
238.8
365.2
506.0
539.0
716.6
877.5
277.4
285.1
336.6
486.7
814.9
1261.5
1364.3
1847.0
2361.1
5
128.2
140.4
183.0
277.1
470.1
716.6
781.6
1087.5
3^398.4
133.9
149 ..5
199.3
310.8
550.2
890.9
990.3
1427.6
1942.9
102
-------
SORPTION MODEL COMPARISON
SOIL C
TIME
(HRS)
1.
3.
10.
30.
100.
300.
410.
1015.
3025.
1.
3.
10.
30.
100.
300.
410.
1015.
3025.
1.
3.
10.
30.
100.-
30-0.
410.
1015.
3025.
MEASURED
8.33
8.49
10.82
9.65
10.33
10.96
11.44
11.51
13.47
32.76
44.94
50.75
52.85
56.78
59.50
62.04
64.07
67.01
74.50
79.02
95.89
105.30
111.97
117.54
122.55
127.39
132.94
SORPTION
(PPM)
CALCULATED
1
9.7
5,9
5.9
7.6
15.0
18.5
14.7
26.0
27.0
31.2
20.0
17.3
19.1
24.5
27.5
22.0
37.5
52.2
47.2
32.9
38.9
36.0
41.0
49.1
39.2
63.6
86.4
2
0.0
0.1
0.2
0.5
2.0
5.7
•7.6
18.4
34.7
0.4
0.7
1.2
2.3
5.6
12.3
15.7
34.1
82.5
0.8
1.4
3.2
6.1
13.1
29.2
37.2
77.8
179.8
3
1.0
2.1
4.4
.9.3
22.1
24.4
23.4
25.0
18.6
3.1
6.4
12.7
23.5
37.3
35.5
34.1
35.1
3 4. '5
4.6
9.8
23.7
43.0
61'. 6
60.9
58.5
57.5
55.3
4
31.0
32.5
41.2
6O.3
114.7
136.6
134.7
143.2
111.0
80.0
87.1
101.8
132.0
179.5
190.7
187.1
192.5
189.9
112.1
128.2
184.4
222.8
276.6
304.6
299.1
295.9
285.9
5.
24.5
12.5
11.6
16.3
39.6
58.8
63.7
93.2
7-7.0
79.0
56.0
49.8
61.2
87.2
109.1
116.8
158.7
191.9
100.9
86.4
108.2
128.7
169.6
229. C
247.0
321.2
375.7
103
-------
SOIL C CONTINUED
TIME
(HRS)
1.
3.
10.
30.
100.
300.
410.
1015.
3025.
1.
3.
10.
30.
100.
300.
410.
1015.
3025.
MEASURED
170.00
222.50
273.20
304.89
340.54
377.29
395.74
413.22
440.28
310.00
397.50
454.60
513.59
563.49
612.74
689.24
719.29
778.44
SORPTION
(PPM)
CALCULATED
1
137.8
129.6
161.7
194.2
252.7
301.6
233.7
377.4
'509. C
265.3
275.7
375. C
487.6
675.2
886.6
709.2
1121.2
1549.4
2
4.0
9.4
24.7
60.9
169.3
418.4
535.7
1130.7
2604.5
10.7
27.6
81.9
227.1
703.9
1973.4
2602.6
5686.4
13669.7
3
12.5
31.5.
84.6
187.3
324.3
331.9
310.7
303.4
289.9
23.1
61.7
179.1
428.2
801.4
906.9
872.7
839.1
820.0
4
267.9
369.8
572.6
833.1
1181.3
1329.5
1281.7
1259.3
1210.2
456.5
672.3
1116.3
1733.1
2602.7
3176.5
3139.1
3054.0
2993.3
5
135.6
154.2
219.6
350.6
598.2
928.9
1033.3
1398.0
1711.7
143.2
167.7
244.3
399.6
699.3
1125.0
1272.2
1744.9
2179.5
104
-------
SORPTION MODEL COMPARISON
SOIL D
TIME
/ LJD C J
v nni} i
1.
3.
10.
30.
100.
317.
410.
1015.
3025.
1.
3.
10.
30.
100.
317.
410.
1015.
3025.
1.
3.
10.
30.
100.
317.
410.
1015.
3025.
iuirACI!DPP>
Mt AiUKtU
9.46
10.47
10.97
10.06
10.90
11.35
12.02
11.73
13.66
35.03
46.07
51.17
53.65
56.99
59.65
62.11
63.94
67.44
55.44
80.99
96.32
103.06
110.25
116.48
121.68
126.26
131.93
1
13.9
4.2
3.8
11.0
19. 1
23.3
17.8
32.5
36.0
40.4
25.?
23.0
25.1
31.6
37.7
29.5
50.4
64.7
64.4
49.9
46.9
47.0
56.5
65.2
48.5
77.5
102.0
SORPTION
<
2
0.0
0.0
0.1
0.4
1.8
5.6
7.1
18.4
38.9
0.4
0.8
1.3
2.5
5.9
14.6
18.0
41.7
100.0
1.0
2.0
3.9
7.3
16.6
38.7
46.6
95.4
221.2
(PPM)
CALCULATE!
3
3.3
8.5
25.0
76.4
229.6
471.4
516.6
606.2
588.4
4.1
11.4
34.5
94.0
259.6
518.8
568.4
658.8
657.2
4.5
12.8
39.1
106.2
290'.5
576.2
628.3
715.1
715.9
X
4
29.4
18.1
21.9
51 . 0
103.4
162.5
175.3
243.1
246.0
56.7
51.0
63.3
92.6
148.5
221.8
240.4
320.7
352.6
75.6
75.3
96.6
137.1
213.7
312.5
332.5
422.1
466.7
(
5.
58.6
19.1
16.4
56.1
136.6
206.8
217.8
323.4
2ffl.9
100.8
103.2
125.'7
176.6
273.1
388.0
416.0
563.3
603.2
109.2
1 2.9 . 2
184.9
276.6
439.2
640.7
677.8
856.4
940.5
105
-------
SOIL f> CONT-INUED
SORP-TION (PPM)
TIME
(MRS)
1.
3.
10.
30*
100.
317.
410.
1015.
3025.
1.
3.
10.
30.
100.
317.
410.
1015.
3025.
MEASURED
159.20
204.36
252.58
294.22
334.75
372.35
391.40
412.01
445.01
223.40
349.77
419.50
482.26
559.39
623,. 89
694.39
725.29
827.50
CALCULATED
1
153.7
149.6
185.3
216.1
264.6
311.9
233-* 3
365.7
459'. 8
278.8
295.1
378.5
47.2.8
6.18.6
783.0
600.9
939.3
1208.9
2
4.7
11.4
31.1
77.3
209.1
531.7
649.6
1344.7
2981. -1
13.1
34.6
101.5
278.1
842.4
2408.6
3008.5
6527.6
15231.7
3
5.3
15.5
49.7
139.2
386.6
772.6
843.4
957.9
950.8
5.9
17.5
56.6
160.5
451.6
916.0
1003.2
1143.9
1140.8
4
129.3
145.8
216.9
339.6
547.5
8 15. -.9
870.8
1098.7
1181.8
186.7
220.4
335.0
544.8
915.4
1426.4
1538.9
1959.5
2144.2
5
115.3
144.5
227.8
379.3
653.3
1041.9
1140.3
1487.6
1675.6
116,5
146.7
232.0
38S.2
672.8
1081.8
1188.1
1557.0
1767.2
106
-------
SORPTION MODEL COMPARISON
SOIL E
TIME
(MRS)
1.
3.
10.
30.
100.
295.
363.
1014.
3000.
1.
3.
10.
30.
100.
295.
363.
1014.
3000.
1.
3.
10.
30.
100.
295. "
363.
1014.
3000.
MEASURED
6.07
7.88
8.77
9.58
10.31
11.00
11.49
10.94
12.95
20.53
24.66
34.72
40.33
45.65
49.65
52.22
53.79
59.09
35.78
48.10
62.18
72.00
85.25
104.00
116.44
113.39
122.94
SORPTION
(PPM)
CALCULATED
1
2.1
2.1
2.4
3.1
4.6
6.2
3.9
13.4
18.9
11.1
11.8
17.2
21.3
30.7
40.5
22.1
64.9
96.0
22.0
23.4
35.4
48.7
72.0
75.1
21.6
62.2
122.0
2
0.0
0.1
0.3
0.7
1.9
4.7
5.5
16.7
40.5
0.4
1.0
2.8
6.4
16.2
37.5
43.9
103.9
238.8
0.9
2.2
6.0
14.9
39.4
80.5
86.3
141.0
314.2
3
0.5
1.3
3.5
9.1
26.3
65.6
77.3
191.2
317.3
1.4
3.9
11.4
29.3
82.3
200.6
235.5
504.5
819.2
2.1
5.8
17.2
46.3
133.~2
300.-5
329.8
558.6
934.9
4
14.4
10.1
10.9
14.9
22.6
32.4
33.9
59.0
71.3
47.2
42.7
49.7
64/3
94.*7
131.2
136.8
193.6
235.1
77.3
70.6
84.0
116.1
175.0
212.9
184.6
206.4
278.8
•5
17.8
9.8
9.0
10.9
15.4
21.0
21.7
41.2
50.5
79.2
67.0
70.0
81.2
113.3
151.2
155.8
221.8
275.8
126.8
114.1
125.3
161.9
239.0
280.7
233.5
245.5
348.3
107
-------
SOIL E CONTINUED
SORPTION (PPM)
TIME
(HRS)
1.
3.
10.
30.
100.
295.
363.
101*.
3000.
1.
3.
10.
30.
100.
295.
363.
101*.
3000.
MEASURED
86.10
104.80
154.12
236.56
357.56
416.06
451.91
478.25
500.55
151.60
183.17
287.75
509.92
823.92
1042.42
1129.70
1186.53
1232.21
CALCULATED
1
87.5
107.4
180.2
241.3
271.2
203.5
63.9
120.2
155.6
213.3
273.8
470.8
643.6
750.1
538.5
118.3
211.2
348.6
2
3.9
10.8
32.7
81.9
183.0
301.0
320.2
422.2
606.4
10.3
29.0
90.0
230.5
530.4
864.3
899.6
1067.3
1492.4
3
4.8
13.6
43.0
116.3
302.4
592.3
647.9
926.4
1156.2
8.0
23.2
74.4
203.4
538.4
1046.0
1117.1
1428.1
1828.4
4
210.1
214.7
271.2
371.2
477.4
475.8
424.2
370.4
353.8
401.3
423.3
543.3
753.7
992.4
970.9
806.0
615.8
633.9
5
224.4
234.2
284.0
392.5
573.1
640.4
570.4
496.6
482.3
261.2
279.2
344.2
493.5
796.9
1048.5
916.9
803.0
949.3
108
-------
SORPT10N MODEL COMPARISON
SOIL F
TIME
tHRS)
1.
3.
10.
30.
100.
295.
363.
1014.
3000.
1.
3.
10.
30.
100.
295.
363.
1014.
3000.
1.
3.
10.
30.
100.
295.
363.
1014..
3000.
MEASURED
7.21
8.19
9.34
9.88
10.66
11.26
11.74
11.33
13.19
14.99
35.78
45.94
50.17
53.24
56.76
59.32
60.95
65.22
29.99
53.57
74.00
84.59
94.44
104.59
110.58
115.85
122.62
SORPTION
( PPM )
CALCULATED
1
7.2
4.9
5.9
7.0
9.3
11.1
7.6
19.7
23.7
27.6
23.9
20.5
19.2
24.1
28.8
18.4
39.6
49.9
44.9
43.6
49.1
53.3
66.2
73.5
44. 1
84.2
108.7
2
0.0
0.1
0.3
0.6
1.6
3.1
3.4
6.5
5.8
0.5
1.1
2.1
3.5
7.1
12.6
13.4
18.5
16.7
1.0
2.4
5.8
12.3
27.7
48.1
50.4
56.4
50.6
3
0.6
1.4
3.7
9.1
22.9
39.9
42.3
58.2
51.5
1.9
4.7
10.9
22.8
51.3
86.1
89.5
101.9
93.1.
2.8
7.4
19,9
47.1
111.9
182.7
186.6
186.8
172.9
4
16.9
18.1
25.3
34.5
47.6
52.2
51.1
63.2
54.6
54.9
69.6
79.5
89.8
113.2
121.2
114.0
116.8
105.1
84.4
115.9
161.6
209.8
271.8
277,0
251.4
227.2
208.6
5
13.8
7.3
7.6
9.6
14.0
18.8
19.7
37.1
42.0
56.7
47.3
38.5
39.8
53.2
69.8
70.3
100.6
116.7
78.1
76.1
85.5
111.1
163..7
215.2
213.4
267.4
314.7
109
-------
SOIL F CONTINUED
SORPTION (PPM)
TIME
(HRS)
1.
3'.
10.
30.
100.
295.
363.
1014.
3000.
1.
3.
10.
30.
100.
295.
363.
1014.
3000.
MEASURED
105.30
147.66
185.98
231.06
281.56
319.06
359.51
433.79
476.04
175.60
2.32.78
303.38
434.14
554.14
679.14
754.54
988.61
1137.82
CALCULATED
1
121.0
129.0
175.2
220.5
285.8
343.5
215.1
321.6
269.8
238.8
272.0
385.1
492.1
647.2
781.6
499.3
782.5
631.2
2
4,2
11.0
31.7
81. 1
207.1
404.2
434.5
399.0
185-.9
11.1
30.8
94.3
249.2
653.2
1292.3
1399.6
1383.2
622.5
3
6.2
17.0
51.7
136.6
348.2
610.3
634.2
546.4
356.6
10.6
30.3
95.2
256.8
663.6
1171.7
1224.6
1106.5
701.5
4
202.0
296.4
478.4
706.4
972.6
1070.4
999.2
740.1
464.8
367.6
565.7
948.8
1425.8
1993.0
2207.7
2085.6
1620.4
983.0
5
109.1
113.8
156.5
239.8
406.8
633.2
673.6
863.5
824.7
118.5
.132.0
176.7
275.2
479.6
767.9
831.9
1184.1
1362.1
110
-------
SORPTION.MODEL COMPARISON
SOIL G
TIME
(HRS)
1.
3.
10.
30.
100.
300.
1007.
3004.
1.
3.
10.
30.
100.
300.
1007.
3004.
1.
3.
10.
30.
100.
300.
1007.
3004.
1.
3.
10.
30.
100.
300.
1007.
3004.
1.
3.
10.
30.
100.
300.
1007.
3004.
MEASURED
-0.49
-0.32
-0.34
-0.35
0.22
0.34
0.46
1.78
0.20
1.11
0.56
0.28
0.69
1.52
1.29
2.91
1.20
1.75
1.84
1.92
0.91
2. .74
1.26
2.30
1.20
4.06
3.85
3.73
2.00
5.67
2.32
6.09
2.00
3.70
7.08
6.51
6.31
13.98
2.62
6.46
SORPT ION
(PPM)
CALCULATED
1
0.0
o.o
0.2
0.3
0.4
0.2
0.9
1.1
0.0
0.1
0.2
0.2
0.4
0.8
2.0
3.5
0.2
0.1
0.4
0.9
2.3
4.4
10.0
19.2
0.6
0.4
1.7
3.1
7.4
13.8
30.5
57.2
1.6
1.8
4.7
S.9
19.8
36.5
81.1
157.4
2
0.0
o.c
0.0
0.1
0.4
1.2
3.9
9.2
0.0
0.0
0.0
0.2
0.8
2.4
7.6
18.9
0.0
0.0
0.2
0.7
2.5
7.6
24.4
64.8
0.0
0.1
0.6
1.8
6.0
17.9
57.5
151.2
0.1
0.4
1.3
3.9
13.0
38.0
122.9
330.6
3
0.0
0.1
0.3
1.1
3.1
6.5
9.1
8.7
0.0
0.1
0.4
1.3
3.9
8.1
11.2
11.2
0.0
0.2
0.6
1.9
5.6
11.8
16.6
16.9
0.0
0.2
0.8
2.5
7.4
15.7
22.0
22.4
0.1
0.3
1.1
3.2
9.5
20.1
28.3
29.1
4
0.3
0.5
0.6
0.7
0.6
0.6
0.6
0.5
0.5
0.7
0.9
1.0
1.0
1.0
1.0
0.9
1.0
1.5
2.0
2.1
2.2
2.1
2.1
2.2
1.8
2.7
3.6
3.8
3.8
3.8
3.6
3.3
3.0
4.5
6.0
6.3
6.4
6.3
"6.3
6.4
5
0.2
0.4
0.5
0.5
0.5
0.5
0.5
0.4
0.4
0.7
0.9
1.0
1.0
0.9
0.9
0.8
1.1
1.7
2.4
2.5
2.5
2.5
2.5
2.5
2.0
3.1
4.2
4.4
4.4
4.4
4.4
4.4
2.9
4.4
6.0
6.3
6.3
6.2
6.3
6.3
111
-------
SORPTION MODEL COMPARISON
SOIL H
SORPTION (PPM)
TIME
(MRS)
1.
4.
10.
30.
100.
304.
1007.
3000.
1.
4.
10.
30.
100.
304.
1007.
3000.
1.
4.
10.
30.
100.
304..
1007.
3000.
1.
4.
10.
30.
100.
304.
1007.
3000.
1.
4.
10.
30.
100.
304.
1007.
3000.
.MEASURED
4.17
6.83
7.33
8.37
8.25
9.13
9.90
9.40
18.80
26.14
31.10
39.04
37.41
44.20
51.10
59.30
26.00
4.1.70
48.61
67.58
60.68
82.28
104.43
114.01
25.00
77.95
127.08
245.58
394.30
433.07
457.42
476.60
101.50
142.07
346.92
537.17
953.59
1088.67
1144.53
1196.34
CALCULATED
1
1.5
2.1
2.3
3.3
5.8
9.9
15.9
30.0
7.7
10.2
12.2
17.8
31.5
52.1
69.5
63.0
16.4
23.3
28.9
44.3
80.0
125.5
131.4
108.5
71.4
115.7
144.5
203.0
182.4
89.4
97.3
147.4
172.6
287.3
360.3
520.9
535.7
244.2
194.2
293.2
2
0.1
0.2
0.5
1.3
3.9
11.0
28.0
61.4
0.5
1.6
3.4
8.2
23.5
63.0
137.2
165.3
1.1
3.7
8.3
20.5
60.1
157.0
290.1
311.4
5.0
18.7
42.3
100.3
190.2
246.3
312.2
388.9
12.3
46.8
106,7
258.2
529.0
686.6
773.6
848.5
3
0.4
1.2
2.7
6.9
21.2
59.4
149.0
289.9
1.2
4.3
9.6
24.5
72.7
197.4
443.2
550.6
2.1
7.7
17.6
46.1
139.2
370.5
735.2
836.2
6.1
23.2
54.2
137.6
301.3
461.1
703.8
971.7
11.4
43.9
102.7
264.3
614.8
940.2
1272.5
1618.4
4
19.7
17.5
19.1
27.6
46.9
76.5
113.1
161.4
51.0
49.6
57.5
79.5
131.6
208.4
277.8
263.3
79.4
81.5
96.5
136.1
227.8
352.5
415.0
368.9
166.9
210.7
250.2
338.4
403.7
351,9
370.4
429.3
317.7
360.4
428.9
588.0
748.2
641.2
583.8
650.9
5
32.6
4 8.. 8
68.7
107.5
175.4
255.3
289.2
304.7
38.8
63.5
9-6.5
157,4
260.1
378.9
439.3
390.2
39.7
65.8
100.8
166.5
276.8
404.1
472.2
436.7
40.4
67.3
103.3
171.6
283.7
398.3
458.9
456.6
40.5
67.5
103.7
172.4
286.9
414.1
485,2
486.4
112
-------
SORPTION MODEL COMPARISON
SOIL I
TIME
t LJQ C V
* HR5 )
1.
4.
10.
30.
100.
304.
1007.
3000.
1*
4*
10.
30.
100*
304.
1007.
3000.
1.
4.
10.
30*
100.
304.
1007.
3000.
1.
4.
10.
30.
100.
304.
1007.
3000.
1.
4.
10,
30.
100.
304.
1007.
3000.
— — - — — — »•
tjiC A C t iocrf*\
MEASURED
8.83
10.44
9.94
11.39
10.79
11.16
11.08
12.61
31.10
38.45
44.70
49.36
54.96
57.68
58.51
63.35
60.20
74.31
86.27
95.95
106.92
112.73
118.69
124.10
147.80
187.39
230.38
266*68
309.06
345.51
339.21
386.34
266.20
321.51
408.72
439.92
523.03
621.91
624.10
650.77
1
15.2
6.2
6.9
8.6
11.8
20.1
29.0
31.8
.43.5
36.0
33.9
35.7
36.1
35.8
50.4
57.9
65.5
55.8
53.8
57.9
60.4
62.1
74,0
85.5
159.4
167.3
177.4
208.3
244.8
273.6
352.0
422.1
280.3
315.4
347.0
428.7
534.9
620.4
778.2
976.2
SORPTION
<
2
0.0
0.1
0.1
0.3
0.8
2.1
2.9
2.4
0.5
1.3
2.3
4.4
6.9
6.7
7.7
6.7
1.1
2.7
5.0
9.9
16.5
17.1
15.0
13.3
5.2
16.4
35.0
81.7
170.0
216.4
224.7
212.4
13.8
47.5
107.2
272.7
635.2
883.4
888.6
908.3
(PPM)
:ALCULATED
3
1.1
2.3
4.3
9.5
18.7
28.9
32.3
28.9
3.0
8.9
17.9
36.5
54.6
49.7
53.7
50.1
4.4
13.3
26.9
56.2
86.9
82.3
76.5
71.7
10.0
34.5
75.9
174.2
306.7
320.4
320.1
310.7
16.8
60.7
137.8
331.6
622.0
679.1
663.4
671.2
4
1.9
1.7
2.2
3.1
3.9
5.0
5.5
5.0
4.6
6.5
8.2
10.0
9.7
8.1
8.7
8.2
6.4
9.3
11.8
14.8
14.8
12.7
11.9
11.3
13.3
22.2
30.6
41.4
46.1
4 2. '6
42.5
41.4
21.1
37.0
52.4
74.0
87.1
83.0
81.2
82.0
5
29.6
15.6
16.7
20.6
26.1
43.7
52.3
43.2
83.2
120.1
14J&.7
169.8
146.6
106.6
120.7
108,^
101.2
163.2
215.1
272.6
267.3
218.5
199.4
183.1
121.1
225.1
327.0
471.4
563.6
557.5
557.3
553.2
125.3
236.0
345.7
504.3
613.0
617.8
616.8
617.3
113
-------
SORPTION MODEL COMPARISON
SOIL L
TIME'
(MRS)
1.
3.
10.
30.
100.
312.
1015.
3005.
1.
3.
10.
30.
100.
312.
1015.
3005.
1.
3.
10.
30.
100.
312.
1015.
3005.
1.
3.
10.
30.
100.
312.
1015.
3005.
1.
3.
10.
30.
100.
312.
1015.
3005.
MEASURED
6.76
8.93
10.76
11.26
11.76
12.26
12.76
12.86
22.00
36.10
49.75
53.79
56.62
60.07
61.65
64.52
33.00
61.65
90.65
104.44
111.72
117.02
122.24
127.97
100.00
166.00
241.04
306.44
368.54
414.04
448.89
484.19
180.00
275.00
376.30
505.99
603.29
694.29
781.69
966.55
SORPTION
(PPM)
CALCULATED
1
0.9
2.0
3.9
6.7
15.4
35.4
87.4
221.9
1.4
3.1
6.5
11.6
25.8
55.4
136.0
313.4
1.7
3.8
8.1
14.9
31.5
68.0
164.8
357.9
2.5
5.3
12.4
25.8
59.8
126.6
286.0
573.8
3.1
6.7
16.2
35.0
86.0
196.1
475.8
998.0
2
0.1
0.2
0.3
0.4
0.5
0.8
1.0
1.8
0.7
1.6
2.9
4.0
5.6
6.5
6.8
7.8
1.6
3.8
7.6
11.3
14.6
16.2
15.7
13.5
7.0
17.8
46.2
99.6
190.5
233.9
169.3
101.7
18.2
49.4
144.3
360.2
859.2
1460.4
1539.0
1122.0
3
1.1
2.5
5.0
7.7
13.7
19.0
19.7
27.2
3.1
7.6
17.2
29.2
49.0
56.0
56.7
60.8
4.7
12.2
29.4
53.3
81.5
92.2
89.4
82.4
10.5
28.6
80.7
186.9
362.3
409.1
328.2
249.6
17.8
50.1
151.3
382.1
845.2
1161.3
1113.1
934.7
4
93,3
87.0
97.7
122.3
205.9
339.0
540.4
820.2
133.0
134.0
155.9
203.4
326.5
505.5
796.5
1107.8
154.9
160.2
191.6
256.5
390.7
606.1
942.0
1244.2
206.4
220.6
282.6
418.2
682.4
1041.9
1525.4
1877.9
249.8
272.2
358.0
546.7
933.1
1513.4
2351.5
3017.4
5
18.0
13.6
10.8
6.7
7.2
9.2
10.6
19.1
54.7
63.8
71.5
58.3
61.9
62.6
69.1
78.2
70.3
92.9
128.3
134.0
130.6
140.2
147,2
129.7
86.8
125.3
213.0
340.2
529.1
697.0
714.7
571 .4
91.0
133.1
231.0
382.0
632.4
926.9
1106.4
1091.1
114
-------
SORPTIOfl MODEL COMPARISON.
SOIL M
TIME
(MRS)
1»
3.
10.
30.
100.
312.
1015.
3005.
1.
3.
10.
30.
100.
312.
1015.
3005.
1.
3.
10.
30.
100.
312.
1015.
3005.
1.
3.
10.
30.
100.
312.
1015.
3005.
1.
3.
10.
30.
100.
312.
1015.
3C05.
MEASURED
2.40
4.12
5.91
6.99
8.31
8.81
8.96
10.73
10.00
16.50
26.29
31.54
38.00
41.59
43.99
52.31
24.00
34.20
42.85
50.85
60.24
69.09
75.66
94.60
51.00
70.55
93.95
103.35
124.99
150.20
151.58
269.21
54.00
90.69
124.10
146.95
189. 64
219.94
177.93
309.74
SORPTION
(PPM)
CALCULATED
1
4.9
5.0
5.9
6.7
8.0
9.5
13.0
14.7.
13.5
14.3
17.3
19.5
23.7
28.0
36.3
40.0
20.4
21.5
27.6
33.9
43.6
53.3
67.6
74.7
49.6
36.0
74.6
95.4
128.6
164.4
•220.1
251.6
89.2
1C3.6
139.8
180.1
2^*3.6
316.8
435.4
552.3
2
0.0
0.0
0.1
0.4
1.1
2.8
8.1
16.9
0.1
0.3
1.0
2.4
6.5
16.4
44.3
88.4
0.2
0.7
2.0
5.6
16.6
44.9
121.6
243.4
l.l
3.2
10.2
29.3
93.3
271.0
799.9
1706.2
2.9
8.7
28.0
81.8
263.1
780. ^
2392.5
5795.4
3
0.2
0.7
2.0
4.6
8.6
9.7
9.9
8.5
0.7
2.1
5.9
13.6
25.7
29.1
27.9
23.5
1.1
3.2
9.4
23.1
46.7
55.5
52.2
44.1
2. &
8.2
25.2
64.3
137.5
172.8
172.1
150.7
5.2
15.1
47.1
121.7
261.8
334.9
342.8
333.1
4
2.5
3.';
5.0
6.6
8.4
9.0
9.3
7.6
9.2
13.3
19.9
26.7
34.9
37.0
35.3
28.3
15.7
22.7
36.2
53.6
75.6
85.0
79.4
63.9
50.3
77.7
130.2
203.3
306.3
367.4'
369.6
311.4
107.9
171.9
293.7
463.9
703.3
862.6
899.2
866.6
5
6.0
4.9
4.3
4,'i
5.7
8.1
13.7
17.5
22.0
20.1
19.2
20.6
28.0
41.0
64.5
81.6
32.2
30.1
31.4
37.6
55.8
87.8
139.5
184.2
51.2
52.0
57.1
71.5
112.3
189.1
322.0
481. .6
57.6
59.3
65.6
82'. 5
130.3
221.6
380.2
593.6
115
-------
SORPTION MODEL COMPARISON
SOIL N
SORPTION (PPM)
TIME
JHRS)
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3,
10.
30,
99,
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
MEASURED
3.90
4.19:
5.60
6.37
6.28
6.50
6.57
8.94
15.30
20.06
24.18
28.93
33.72
42.13
51.66
56.56
24.40
30.82
37.02
47.51
68.94
86.78
95.94'
106.76
51.00
62.54
77.15
98.82
120.11
154.93
141.93
258.34
66.00
83.29
60.89
153.97
174.17
201.02
121.02
407.18
CALCULATED
1
2.7
2.9
4.1
5.2
7.8
12.5
17.2
21.7
8.3
8.9
12.5
16.5
22.7
30.1
28.7
27.2
13.5
15.2
22.1
29.3
3 7.. 6
44.6
47.2
56.0
35.8
42.9
64.0
88.4
129.2
192.7
257.1
332.4
67.8
83.3
127.4
177.0
258.2
400.6
555.1
747.6
2
0.0
0.0
0.0
0.2
0.7
2.8
7.8
18.4
0.0
0.1
0.5
1.4
4.0
11.6
22.0
34.9
0.1
0.3
1.2
3.2
8.8
22.5
44.4
85.9
0.6
1.7
5.7
16.4
51.4
173.4
453.2
1074.3
1.6
4.7
15.6
45.8
143.8
507.3
1390.4
3490.3
3
0.0
0.2
0.8
2.2
7.1
25.6
66.1
140.7
0.2
0.7
2.2
6.1
18.5
57.6
117.7
193.0
0.3
1.1
3.5
10.0
29.2
83.9
177.0
335.3
0.9
2.6
8.7
25.6
81.3
276.6
693.5
1485.3
1.6
4.7
15.7
46.4
147.8
515.8
1330.0
2952.9
4
8.0
7.0
6.9
7.1
9.4
16.6
27.1
40.3
19.6
17.4
17.1
18.1
22.6
34.4
44.0
52.1
29.0
26.8
27.0
28.8
34.1
48.0
64.9
89.2
63.6
61.8
63.6
69.7
90.9
150.6
241.0
362.3
106.2
105.3
110.6
121.8
158.6
270.2
444.4
689.8
5
7.0
6.6
8.7
12.4
21.0
37.7
55.6
57.7
26.3
26.6
36'. 2
54.7
86.0
124.3 •
121.8
83,0
39.5
43.0
60.9
95.0
145.5
196.9
219.5
208.0
61.5
71.6
104.2
169.6
293.4
506.0
726.1
874.4
68.6
80.8
118.2
193.5
336.7
588.9
851.1
1057.6
116
-------
SORPTION MODEL COMPARISON
SOIL 0
TIME
(MRS)
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
MEASURED
5.20
6.8:6
6.31
7.37
6.92
8.38
8.83
9.65
23.70
29.68
34.91
39.82
43.32
47.67
50.76
57.95
40.00
49.40
59.38
69.88
79.22
97.40-
109.49
118.67
82.00
87.10
159.95
278.73
388.45
439.35
460.57
483.88
144.00
73.19
245.49
533.44
840.80
1071.95
1130.48
1181.07
SORPTION
(PPM)
CALCULATED
1
1.2
1.4
2.0
3.1
5.6
10.2
13.2
20.0
7.7
7.3
10.6
14.5
22.6
37.5
49.7
59.7
17.9
18.0
28.6
40.6
62.3
83.9
70.1
67.3
97.3
121.8
201.6
226.3
188.2
113.4
82.1
119.7
283.8
389.6
691.8
844.1
840.1
532.2
192.9
287.3
2
0.0
0.0
0.0
0.2
0.6
2.3
5.5
13.3
0.0
0.1
0.3
0.9
2.6
7.9
18.6
38.6
0.1
0.3
0.9
2.3
6.4
17.4
31.5
52.0
0.6
1.6
5.0
11.5
22.4
36.4
51.8
86.2
1.5
4.5
14.5
35.6
76.9
132.5
162.3
229.4
3
0.1
0.3
1.0
2.9
9.5
33.9
85.0
216.2
0.3
0.9
2.8
7.4
22.0
72.3
179.6
416.7
0.6
1.6
4.8
13.1
38.7
117.1
245.3
490.8
1.5
4.4
13.9
35.3
82.3
173.9
311.5
653.2
2,8
8.3
26.9
71.2
178.4
393.9
608.5
1147.5
4
15.5
12.2
15.7
24.5
42.8
74.2
100.2
124.6
47.4
40.0
47.8
66.6
104.5
167.4
226.4
246.4
78.4
71.0
87.5
124.1
193.4
278.3
296.7
273.6
217.8
226.6
283.5
360.2
412.5
381.9-
354. C
382.4
415.4
456.3
592.9
786.8
987.1
952.7
672.. 0
666.9
5
16.3
10.5
12.4
18.1
31.4
54.4
72.4
92.3
69.9
53.3
57.0
72.1
108.3
169.9
228.1
245.1
119.2
103.5
117.3
154.3
234.6
328.8
330.6
289.2
237.5
248.0
297.8
388.3
491.6
462.9
409.9
448.2
287.7
30V. 4
381.7
538.0
833.0
1063.1
813.8
887.4
117
-------
SORPTION MODEL COMPARISON
SOIL P
SORPTION (PPM)
TIME
(MRS)
1.
3.
10.
30'.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
1.
3.
10.
30.
99.
364.
1009.
3000.
MEASURED
7.00
8.14
8.91
9.19
9.73
10.36
10.98
11.71
32.30
36.21
40.27
44.32
48.34
52.10
55.25
60.43
55.80
61.39
69.52
79.17
89.66
98.98
109.31
119.96
128.00
142.39
186.89
278.28
332.50
434.29
461.82
485.62
220.00
295.00
326.89
492.08
667.07
904.08
1109.63
1177.00
CALCULATED
1
3.8
2.6
3.2
4.4
6.8
10.4
13.1
17.3
16.8
12.1
16.9
21.7
29.4
41.0
49.6
57.8
33.0
27.7
40.5
52.2
68.5
90.8
96.7
97.1
129.9
138.8
204.3
236.6
266.8
242.2
120.1
134.5
308.9
344.4
522.3
690.0
861.4
948.6
599.9
320.2
2
0.0
0.1
0.3
0.9
2.8
8.3
15.3
18.4
0.4
0.9
2.4
6.0
15.7
41.0
70.4
73.2
1.0
2.2
6.2
15.8
41.0
102.3
156.9
134.6
4.7
12.4
36.9
89.2
204.6
368.8
317.5
204.5
12.6
33.9
104.3
279.1
714.4
1536.8
1586.9
625.7
3
0.5
1.2
3.3
9.0
26.6
70.3
104.3
104.2
1.5
3.6
10.3
27.1
73.9
181.3
258.7
235.8
2.4
6.1
18.2
48.6
131.3
312.8
412.6
335.1
6.2
17.1
53.1
137.3
342.1
654.0
543.9
417.9
11.2
31.4
99.1
273.0
729.1
1572.7
1527.8
756.0
4
14.6
8.3
8.2
10.7
17.7
30.7
44.5
60.6
49.5
32.2
34.0
41.6
61.4
98.1
137.1
169.4
86.6
64.1
69.9
85.8
124.5
191.7
245.2
269.2
270.6
243.8
267.2
304.9
397.6
466.0
367.4-
375.7
556.4
518.9
582.2
729.9
1028.4
1391.1
1274.3
S86..6
5
14.7
6.9
6'. 5
8.4
13.7
23.3
33.0
43.3
64.8
39.2
40.6
4"8.4
69.4
106.9
144.7
1 6 8 .-5
113.5
84.9
92.4
112.7
161.1
241.9
298.3
304.6
237.5
233.6
264.2
326.9
466.0
596.2
458.7
450.6
291.7
299.4
345.9
461.5
736.3
1212.0
1394.3
1079.7
118
-------
SCRPT'ION MODEL COMPARISON
SOIL Q
TIME
(MRS)
1.
3.
13.
3.9*
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
1-3.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
MEASURED
2.20
3. -11
4.81
5.18
5.02
5.88
6.90
6.94
9.70
13.98
18.35
21.51
22.99
28.26
38.13
46.05
18.30
23.91
25.76
28.25
41.39
63.94
95.02
106.72
27.60
39.37
50.28
105.62
163.62
242.37
371.18
429.06
20.50
67.02
84.32
183.32
223.27
335.83
611.04
487.04
SORPTIOM
(PPM)
CALCULATED
1
1.0
1.4
2.3
3.0
4.6
6.9
10.8
16.5
4.0
5.0
9.0
12.8
19.2
27.8
39.6
44.9
7.3
9.0
17.7
26.7
38.5
47.8
51.2
39.4
25.1
32.9
65.4
92.4
124.5
156.3
171.4
119.4
56.1
74.2
147.3
213.6
312.5
451.5
635.5
942.3
2
0.0
0.0
0.3
0.8
2.2
5.7
14.9
29.2
0.1
0.4
1.7
4.7
12.4
30.6
71.7
105.2
0.3
0.9
3.7
10.8
28.3
62.3
112.7
112.6
1.4
4.0
17.1
47.8
116.9
253.1
462.1
434.7
3.6
10.5
44.3
126.4
329.9
807.2
2869.3
3430.9
3
0.2
0.6
2.5
6.5
15.8
30.0
37.5
36.7
0.6
1.7
6.9
18.7
44.2
81.3
94.0
74.5
0.9
2.7
11.0
30.9
72.5
122.6
113.9
67.9
2.2
6.6
27.6
75.3
169.1
283.2
266.4
148.2
3.9
11.7
48.9
134.9
316.4
579.2
662.7
633.3
4
3.6
3.4
4.1
5.8
9.5
14.9
22.8
32.0
10.8
10.6
13.3
19.3
30.4
46.0
65.4
74.1
17.5
17.3
22.7
34.4
53.1
72.9
84.4
71.7
46.8
48.9
64.5
93.5
137.5
188.3
220.8
176.8
88.7
93.8
123.2
181.8
282.1
425.9
599,7
813.3
5
2.9
2.7
3.1
4.2
6.9
10.7
15.9
21.9
12.8
12.2
15.2
21.7
33.9
50,6
68.6
71.3
21.8
21.6
28.2
42.7
65.7
88.6
95.2
6S.8
46.0
48.9
64.9
96.5
147.8
213.3
268.1
210.3
58.1
62.4
83.2
126.0
202.1
317.1
498.1
708.3
119
-------
SORPTION MODEL COMPARISON
SOIL R
SORPTION (PPM)
TIME
IHRS)
1.
3.
13.
39.
110.
302.
329.
1001.
3013.
1.
3.
13.
39.
110.
302.
329.
1001.
3013.
1.
3.
13.
39.
110.
302.
329.
1001.
3013.
MEASURED
7.49
8.55
8.96
8.89
8.97
8.57
8.38
6.11
10.75
29'. 20
36.46 '
43.25
47.81
50.94
55.65
54.31
57.99
64.27
47.6-0
62.38
76.68
88.74
99.33
114.95
109.24
119.99
129.62
CALCULATED
1
1.6
1.5
2.1
3.5
6.6
13.5
7.0
46.0
66.3
11.2
8.9
13.7
16.1
21.9
28.4
12.5
70.0
78.2
26.3
23.5
39.9
47.4
56.4
48.6
18.6
111.5
101.7
2
0.1
0.2
0.8
2.3
7.0
21.5
23.9
95.0
168.2
0.9
1.9
5.4
11.9
26.0
53.2
57.2
154.2
209.4
2.0
4.4
13.8
31.5
64.3
106.7
112.1
252.0
283.8
3
1.5
3.4
12.1
35.8
103.2
285.7
312.1
940.2
1540.1
3.6
8. -9
31.3
80.1
196.3
445.1
479.3
1193. 4
1699.9
5.3
13.8
50.5
130.8
309.4
618.5
658.3
1519.5
1951.3
4
24.6
14.4
18.9
31.8
56.7
100.8
109.6
232.3
289.2
85.9
62.6
73.7
96.4
134.8
178.0
187.7
317.4
330.3
149.2
121.4
148.4
196.2
256.0
272.7
279. 1
439.7
400.6
5
30.1
13.4
15.5
25.2
46.2
66.9
96.3
231.9
2.99.1
134.0
89.0
91'. 2
108.3
145.7
185.6
196.8
349.4
361.0
221.7
180.2
200.7
249.3
317.7
319.5
326.5
528.7
469.8
120
-------
SOIL R CONTINUED
SORPTION (PPM)
TIME
(HRS)
1.
3.
13.
39.
110.
302.
329.
1001.
3013.
1.
3.
13.
39.
110.
302.
329.
1001.
3013.
MEASURED
100.00
158.00
237.64
369.90
421.00
453.18
469.87
496.10
517.87
143.50
270.17
470.52
955.33
1069.05
1127.08
1168.98
1232.57
1283.50
CALCULATED
1
142.5
160.0
287.0
252.7
149.9
119.9
35.0
158.9
207.5
419.9
513.3
976.7
771.5
264.3
215.8
76.4
372.3
517.2
2
9.2
23.7
79.9
160.4
237.9
324.3
332.4
469.1
539.2
24.4
66.5
236.7
457.4
579.3
709.1
725.9
1018.4
1215.0
3
11.5
31.9
121.7
293.4
566.6
1020.5
1070.6
1962.9
2669.8
18.7
53.6
209.8
494.1
840.8
1420.3
1494.7
2836.6
4007.2
4
447.3
426.9
533.6
610.9
565.2
541.1
528.8
607.1
634.0
902.8
915.4
1177.2
1282.6
950.4
857.8
866.5
1046.1
1141.3
5
398.7
407.2
509.4
645.7
674.1
670.0
652.6
768.2
830.3
462.8
492.3
643.9
888.6
923. '4
977.8
999.1
1351,7
1619.0
121
-------
SORPTiON MODEL COMPARISON
SOIL S
TIME
(MRS)
1.
' 3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
MEASURED
7.90
9.09
9.65
9.57
9.68
10.13
9.75
11.30
35.90
42.99
46.47
49.08
51.74
54.88
57.49
60.91
63.10
73.95
81.59
90.24
98.73
105.34
112.37
123.00
165.90
185.89
232.17
274.92
299.97
336.25
393.65
432.62
288.70
341.93
439.01
533.22
595.62
686.33
825.38
966.12
SORPTION
1 PPM)
CALCULATED
1
9.9
5.0
6.0
8.2
12.1
15.9
24.0
28.7
33.4
19.6
22.8
26.3
31.8
37.3
46.8
54.4
58.1
41.5
52.8
58.4
63.4
69.9
83.7
81.6
177.3
166.0
222.2
243.6
279.2
321.2
353.9
344.5
365.2
370.0
503.4
573.2
671.7
783.6
909.2
913.3
2
0.1
0.1
0.4
1.1
2.8
5.3
7.3
6.7
0.5
1.0
2.6
5.8
11.9
17.8
18.4
16.2
1.2
2.5
7.5
17.3
32.1
43.4
40.9
28.2
5.8
14.3
50.8
120.6
238.4
346.9
297.6
204.6
15.8
41 .4
153.9
381.5
783.2
1173.5
1087.6
781.7
3
0.7
1.4
4.0
10.3
22.9
33.3
38.3
36.2
2.0
4.2
12.7
29.5
55.4
70.6
68.4
63.0
3.3
7.6
25.3
58.8
103.1
122.5
113.0
89.5
8.7
22.9
84.7
200.7
366.7
456.8
394.1
311.6
16.4
44.8
170.4
415.5
778.2
987.0
892.2
725.0
4
15.7
13.9
20.2
33.0
54.0
69.6
80.4
75.5
50.6
49.5
72.6
103.9
140.8
159.6
152.9
139.7
86.0
96.9
158.6
223.4
277.7
293.8
267.3
206.3
251.7
346.2
618.6
877.4
1144.3
1269.5
1070.5
824.7
504.4
737.1
1351.3
-1982.5
2649.3
2989.2
2653.6
2107.1
5
24.4
8.0
6*3
7.5
10,1
13.3
24.2
38.3
100.1
46.8
36.4
34,6
36.4
41,8
60.7
91.0
162,2
106.2
94.9
87,6
83.3
90.7
125.8
159.6
284,1
265.2
261.7
258.9
275.2
329,3
470.5
670,8
326.6
321,4
323,7
332.6
364.1
447.6
685,9
1083,2
122
-------
SORPT1ON MODEL COMPARISON.
SOIL T
TIME
(MRS)
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
1.
3.
13.
39.
110.
302.
1001.
3013.
MEASURED
2.00
3.88
4.84
5.81
6.06
6.76
6.79
8.37
12.40
17.02
20.04
22.86
25.39
29.14
40.33
47.62
15.30
21.66
26.80
36.05
43. 70
61.35
87.79
100.89
52.20
54.81
63.81
82.14
100.24
139.56
216.83
224.65
36.70
83.83
74.93
84.38
101.63
151.35
326.04
620.33
SORPTIOM
( PPM)
CALCULATED
1
2.2
2.5
3.6
4.4
5.8
7.7
11.4
14.7
6.8
7.4
11.7
15.2
20.1
26.3
33.1
34.1
11.5
13.2
21.2
27.2
34.9
42.3
47.0
43.2
30.3
36.1
59.9
79.4
106.1
137.9
182.0
230.5
59.3
71.9
118.7
161.4
220.6
296.2
409.6
456.9
2
0.0
0.0
0.2
0.5
1.4
3.6
10.0
18.3
b.i
0.3
1.2
3.3
8.7
21.6
49.7
67.7
0.2
0.6
2.7
7.7
19.8
45.1
89.2
10?. 9
1.0
2.9
12.2
35.6
95.2
235.0
566.6
977.5
2.6
7.7
32.8
97.6
268.9
690.6
1775.1
2719.9
3
0.0
0.0
0.2
0.6
1.7
4.4
12.2
22.9
0.0
0.1
0.5
1.7
4.5
11.5
28.9
46.1
0.0
0.2
0.9
2.6
7.0
17.1
39.5
57.2
0.1
0.4
2.C
6.0
16.5
41.9
107.9
196.5
0.2
0.8
3.5
10.5
29.0
75.0
200.2
340.7
4
4.2
3.7
3.8
4.7
6.9
10.8
18.3
27.1
11.2
10.2
11.2
14.2
21.0
32.4
48.6
59.8
17. B
17.1
19.1
24. C
34.6
50.5
66.2
76.2
42.3
42. C
48.2
62.3
92.6
142.6
221. i
318.4
77.1
77.6
88.3
117.0
177.1
280.1
452- 1
596.2
5
3.6
3.C
2.9
3.5
4.9
7.6
12.8
18.2
14.3
12.7
13.7
17.3
25.2
38.4
54.7
60. 8
23.6
22.7
25.4
31.9
45.8
66.2
85.3
85.6
42.1
42 .8
49.3
64.3
96.8
152.5
249.1
373.0
50.1
51 .6
59.4
78.2
116.9
190.6
324.8
485. 8
123
-------
SORPTION MODEL COMPARISON
SOIL U
TIME
(HRS)
1.
4.
10.
30.
100.
304.
1007.
3000.
1.
4.
10.
30.
100.
304.
1007.
3000.
1.
4.
10.
30.
100.
304.
1007.
3000.
1.
4.
10.
30.
100.
304.
1007.
3000.
1.
4.
10.
30.
100.
304.
1007.
3000.
MEASURED
2.88
5.74
7.2'2
8.16
9.13
9.84
9.34
11.53
11.10
19.85
23.42
26.61
29.91
32.87
37.62
39.44
7.90
22.29
27.29
31.37
35.40
40.56
51.10
55.12
23.00
26.14
40.39
3.49
49.95
57.54
75.49
16.81
49.80
61.78
27.45
17.55
56.80
37.58
116.38
405.85
SORPTION
(PPM)
CALCULATED
1
5.8
6.2
6.1
7.0
8.3
9.5
13.1
14.7
11.6
13.1
14.2
17.6
22.0
26.6
32.8
39.3
16.0
19.1
21.0
26.5
33.8
41.3
51-2
61.3
28.7
35.5
40.6
52.8
68.0
82.3
104.9
133.7
42.1
52.2
60.5
78.4
100.8
125.2
159.5
180.9
2
0.0
0.0
0.0
0.0
0.0
0.1
0.4
0.9
0.0
6.0
0.0
0.1
0.5
1.4
4.0
10.0
0.0
0.0
0.1
0.4
1.3
3.9
11.6
28.9
0.0
0.2
0.7
2.1
7.1
20.5
63.3
177.6
0.1
0.7
1.8
5.5
13.3
54.9
171.6
399.8
3
0.0
0.1
0.3
0.9
2.7
6.8
15.1
18.5
0.0
0.2
0.6
1.7
5.4
14.0
29.5
37.3
0.0
0.3
o.e
2.3
7.3
19.1
40.6
51.4
0.1
0.5
1.2
3.7
12.0
31.4
67.8
39.8
0.1
0.6
1.6
5.0
15.9
42.3
91.5
112.0
4
6.8
11.2
15.0
21.6
30.5
35.1
38.1
34.8
13.1
22.8
32.9
51.0
76.6
93.3
91.9
88.8
17.9
32.3
47.7
75.2
114.8
141.9
140.7
136.0
31.3
58.2
88.6
144.4
223.8
274.6
279.5
237.0
45.2
84.2
129.5
210.7
326.4
409.7
417.4
333.4
. 5
11.7
9.4
7.3
6.4
6.4
7.6
13.8
19.9
20.9
20.1
19.6
20.2
23.1
31.0
50.5
82.0
23.2
22.2
23.3
24.3
28.2
38.4
63.8
1C5.4
25.1
25.2
25.6
27. C
31.4
42.9
72, C
120.6
25.5
25.7
26.1
27./,
32. C
43.7
73.4
122.4
124
-------
PAGE 1
// JOB
LOG DRIVE
0000
CART SPEC
7207
CA?T AVAIL
7207
PHY DRIVE
0000
V2 M10 ACTUAL 16K CO.NFIG 3K
// FOR
*IOCS(CARD»1132 PRINTER !
*EXTE,-iOED PRECISION
*C.NE V.'ORD INTEGERS
*L!ST SOURCE PROGRAM
DIMENSION CI (10,6), FCI 10,6),51(10,6), 52(10,6), S3(10,6),54(10.6),
*S5 <10 »£) ,SPAD(10,6!»CAVG( 10.6)»T<1C)
DIMENSION TAtll),CAV(11,6)
500 FORMAT! '!' /////
1 ' SORPTICIi f-'CDFL COMPARISON1//
2 ' SOIL ',A2,///'
Q—-«.^.«^^_—^ — ^ —— — — —.— — — ———— — .— ——«- — — — — ——— — •" — •- — *. — — — — «.— t )
501 FORMAT (
4 ' SORPTIO.N IPP'-')1/
'/
MEASURED
1
SOIL SAMPLES
6 '
7 < Tlt-'E
502 FORMAT I
8 ' (MRS)
9 '/
# i
jt / t „_••____-_ __ — _..__._. _.
•K J — •- —•
* ' / )
510 rORMAT (2X.F5.Q,F9.2,2X,5F9.1)
FOR!'.AT (/)
FORMAT ('l'/////21X' SOIL '.A2-
FORf-'ATI 13)
REACM2.1001.N
X IS THE f.ur'.SER OF
DC 1000 I'J=1,M
FOR.'IATI A2)
READ!2,110)S.N
FORMAT(215)
READ(2,115)IN.JM
s:: is SOIL NA.ME. i;
FORMAT(5F10.0)
READ!2»130) (T( I ) , I =1, T!)
T IS THE TI:"ES '-'fTASURE'lCMTS TAKEN
FORiVAT(10F7.3)
REAC(2,140)(CI(l.J),J=1,JM)
CI IS INITIAL CONCENTRATIONS
150 1=1,IN
,140) (FC( I ,J) »J=l,Jf!)
ARE MEASURED CONCENTRATIONS
1 1 = 2,1 r--!
1 J=1.JM
CHI ,J)=FC( I-l.J)
DO 3 1 = 1, IN
DO 3 J=1.J.N
PAD=(CI < I,Jl-FC tI , J>)/10.
IFt1-1)8,3,9
SPADt ! , J )=PAr:«100.
GC TO 10
SPADI I,J)=SPAD( 1-1,J) + !PAD*ICO. )
lALC'JLATED' )
520
523
100
110
115
130
///)
;=.MO. OF TIMES,
= .'-.0. OF COMCEMTRAT IONS
DO
150
FC
DO
00
125
-------
PAGE
10 CONTINUE
3 CONTINUE
DO 20 I=1»IN
DO 20 J=l»Jf\!
20 CAVGIItJ)=**B)*(1«-D)*A*TT)**(1./(1.-D))
GO TO 40
45 TT=T)
40 CONTINUE
30 CONTINUE
READI2»130)A,X
DC 50 J=1,JN
DC 50 1 = 1, IN
S2( I»J)=0.
DO 60 JJ=1»I
IF( 1-1)55,55,65
55 TT=T(I)
S2( I ,J ) = (CAVG(I , J)*X)-( I CAVGI I»J)*X!/(EXP(A*TT)>)
GO TO 60
65 TT = T(I)-TJ)*X)-I (CAVGI I iJ)*X>-S2I 1-1 , J) >/EXP(A*TT1
60 coNiir:uE
50 CONTINUE
READ(2»130)A,X,Y
DO 70 J=1,JM
DO 70 1 = 1, IN
S3! I ,J)=0.
DO SC JJ=1,I
IF( 1-1)75,75,.°5
75 TT=T(I)
S3 ( I ,J) = (CAVG(I ,J)**Y)*X-< (CAVGII »J ) **Y)*X/< EXP(A*TT) ) )
C50 TO 80
85 TT=T(I)-J(JJ-1)
S3 I I,J) = (CAVCf I »J)**Y)*X- ( ( !CAVGI ! ,J)**Y)^X)-S3 ( 1-1>J) )/EXP(A*TT )
BC CONTINUE
70 CCMT!,':UE
RCAD (2 ,130 )EX,X,Y
FXK=10.**(-EX)
PI2=9.3696
DATA CC^'VEHS 10" FC1^ I "2-XI'""'
1 lri=IN+l
DC 300 J=1»J.'-:
DC 300 I =2 » I I"!
3iO CAVt I t J) =CAVC-( I-l» J)
DO 31C !=2»ir:
310 TA(I)=T(1-1)
TAI 1 )=C.O
•>o ?i'D j = l,j;-:
320 CAV(1»J)=C.
DO 90 J-l ,J"
DO 90 I = 2. I I:.
O^i ( llJ)=v«
126
-------
PAGE
DO 101 JJ=2»!
TT = TA I I 1-TA ( JJ-1 )
CC=(CAV(JJ,J>**Y)*X-t (C AVI JJ-1 .J) **Y>*X )
SUMX=0.
DC 210 N=l,10
XJ = ! 1 . / ( N**2. ) !*EXP( 1-1 . )*FXK*TT*PI2*t
210 SUMX=SUMX + XJ
YJ = CC*5C1)
VJRITE (3,502)
IC.\'T = 16
00 280 J=1,JN
WRITE; 3 ,5ici(T ( 1 1 ,SPAJ( i,j]»si
-------
SORPTION MODEL COMPARISON
SOIL V
TIME
-------
SORPTION MODEL COMPARISON
SOIL W
TIME
t MD C \
> HKo '
i.
10.
30.
121.
277.
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
M C" A Q 1 1 D C Pv
rit. A^UKfc V
4.43
7.40
8.80
9.20
9.09
16.25
32.02
38.40
44.70
47.99
27.10
53.70
55.80
84.80
90.55
69.00
146.50
159.00
228.00
241.00
191.80
211.20
227.50
352.50
450.25
293.00
345.00
345.00
450.00
358.00
1
7.6
9.9
7.9
8.5
9.0
20.7
29.6
26.9
30.1
21.4
31.8
48.7
52.3
63.6
44.2
75.0
125.3
143.5
201.4
206.9
128.5
227.8
284.2
419.5
444.2
196.6
304.5
444.2
680.5
795.5
SORPTION
l
2
0.0
0.2
0.3
0.5
0.5
0.2
1.2
2.4
4.1
3.1
0.4
2.9
6.7
13.5
10.5
1.7
14.1
35.0
87.8
109.2
4.4
38.2
104.9
293.6
386.5
9.0
80.3
221.7
654.5
985.5
(PPM)
CALCULATE!
3
1.6
10.1
15.6
14.5
13.5
3.5
24.3
40.6
40.5
27.1
5.0
36.1
67.2
74.0
48.6
10.1
76.9
149.8
187.3
169.2
15.7
124.1
256.0
338.6
313.7
22.1
177.2
366.9
500.2
502.2
3
4
10.1
9.7
10.1
13.6
17.9
25.2
26.3
30.0
42.5
43.7
37.3
41.2
53.3
82.0
83.9
81.3
97. C
131.9
228.5
303.1
132.6
166.7
242.1
440.6
600.0
195.4
249.1
363.1
680.8
995.0
5'
15.6
25.7
22.8
18.8
17.6
60.1
125.9
140.1
138.7
79.5
90.2
216.6
302.7
375.0
235.2
140.9
389.7
608.3
953.7
1056.7
157.2
448.3
721.6
1176.2
1364.2
163.8
469,8
757.3
1243.1
1466.0
129
-------
SORPTION MODEL COMPARISON
SOIL X
TIME
(HRS)
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
1.
10.
30.
121.
277.
MEASURED
2.62
7.79
8.90
9.00
9.41
14.83
31.76
41.20
39.40
48.83
20.90
50.60
70.20
67.20
95.34
84.5.0
118.10
165.00
178.00
266.80
153.00
179.00
265.00
270.00
447.25
254.50
332.00
420.00
410.00
604.00
SORPTION
( PPM)
CALCULATED
1
6.2
8.9
6.0
7.4
7.4
17.1
26.5
22.5
30.2
26.3
27.4
46.2
44.4
63.4
54.8
65.9
122.4
145.7
223.4
227.9
120.3
234.5
292.9
467.2
514.1
188.2
369.2
466.8
761.8
877.9
2
0.1
0.7
0.7
0.5
0.3
0.7
4.2
5.4
4.7
2.8
1.5
10.0
14.9
15.3
9.1
6.3
46.0
88.1
111.1
87.0
16.4
127.5
260.1
355.5
314.4
33.3
260.7
540.5
768.5
731.6
3
3.2
18.5
21.0
17.6
15.4
6.8
41.4
54.4
50.2
39.7
9.6
62.2
88.7
87.1
68.4
18.5
127.5
208.6
221.9
197.1
28.9
206.0
348.2
383.6
360.5
40.3
288.4
491.4
551.4
536.2
4
7.2
10.5
10.9
14.9
17.8
17.5
27.4
33.6
50.6
56.0
26.6
44.6
59.7
96.0
106.6
57.9
105.0
163.9
287.2
359.3
98.5
186.2
301.3
547.9
724.4
146.4
278.0
454. 1
841.8
1151.1
5
8.6
•10.2
7.9
8.4
8.7
30.8
44.9
48.4
64.5
62.2
47.2
79.9
104.5
162.5
166.2
73.9
142.5
231.8
422.8
559.4
83.6
165.4
275.4
515.8
716.9
87.3
173.5
289.8
545.4
765.2
130
-------
SORPTION MODEL COMPARISON
SOIL Y
TIME
CHRS)
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
MEASURED
2.00
2.90
3.90
4.70
5.50
6.09
14.00
19.00
28.50
34.50
39.00
42.50
22.7^
31.00
58.00
6'9.00
78.50
84.20
79.00
100.00
150.00
180.00
227.00.
254.99
142.00
146.00
230.00-
330.00
405.00
470.00
SORPTION
(PPM)
CALCULATED
1
2.8
3.2
4.6
5.9
8.4
10.9
10.8
11.4
14.9
16.4
19.7
21.6
20.3
22.5
28.5
29.5
35.7
39.6
68.8
78.7
114.0
148.3
204,5
253.7
156.3
189.5
291-.5
391.5
563.4
758.7
2
0.2
0.7
1.9
3.5
4.2
3.7
1.4
3.4
8.0
12.4
11.7
8.1
2.9
7.4
17.1
25.1
23.3
16.4
11. 8
31.0
80.5
148.1
171.7
140.4
30.5
83.6
231.5
446.7
550.6
496.7
3
1.1
3.1
7.8
13.2
14.3
12.8
3.6
9.2
21.6
32.1
29.4
22.6
6.1
16.0
37.2
53.0
48.1
37.5
16.9
'44.8
113.9
193.3
204,6
175.8
33.5
91.6
244.1
429.3
474.3
436.8
4
3.2
4.7
7.3
10.6
14,4
15.8
11.6
16.1
23.3
28.9
33.7
30.7
21.0
30.3
43.3
51.2
59.2
54.6
66.5
98.7
156.9
223.8
299.2
312.9
144.6
224.4
376.6
555.5
774.7
876.8
5
2.9
4.1
6.4
8.9
11.9
12.7
12.8
17.5
24.7
29.5
32.7
28.1
23.9
34.5
48.8
56.2
62.9
55.3
61.9
95.1
155.9
229.9
318,1
343.5
90.5
145.4
250.9
390.3
578.6
692.5
131
-------
SORPTION MODEL COMPARISON
SOIL Z
TIME
(MRS)
1.
3*
10.
30.
100.
300*
1.
3.
10.
30*
100.
300.
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
3QQ.
1.
3.
10.
30.
10Q.
300.
MEASURED
5.85
6.80
7.55
8.10
8.55
8.8S
26.53
34.00
41.00
44.59
46.95
48.20
35.74
55.00
74.50
85.00
91.40
94.64
101.30
130.00
180.00
215.00
247.00
272.00
105.30
200.00
290.00
375.00
432.00
490.00
SORPTION
(PPM)
CALCULATED
1
7.1
5.7
7.2
6.5
10.6
12.5
21.6
17.8
19.6
19.0
19.9
19.2
37.2
35.3
39.5
38.2
39.8
38.9
96.9
107.8
146.4
181.0
240. 6
298.7
194.0
225.4
313.1
4C5.1
564.0
740.6
2
0.4
0.8
1.5
1.9
1.5
1.1
2.4
4.5
7.3
6.7
3.9
2.2
5.3
11.5
19.9
18.9
10.9
6.3
22.9
55.7
124.3
172.1
155.5
129.2
62*1
160.8
376.6
560. C
548.8
495.8
3
5.9
12.6
23.5
26.7
23,7
20.7
13.5
29.1
50.4
49.3
37.7
28.5
20.2
46.6
83.8
82.6
63.0
48.0
41.7
103. C
212.9
257.4
238.4
217.4
68.8
175.2
371.6
466.2
447.9
425.8
4
9.0
11.2
15.9
20.7
23.5
20.9
23.6
29.6
38.5
43.0
41.0
30.3
37.6
52.1
69.6
78.1
74.4
55.5
87.1
132.5
2C5.7
283.3
34C.6
219.5
155.4
247.1
39^.3
561.8
705.3
696.8
5
3.9
9.1
11.9
14.8
17.5
16.5
•31.9
37.4
46.2
48.1
44.9
31'. 6
48.4
68.0
94.7
108.4
109.3
82.7
71.1
113.7
194.2
301.7
448.5
534.2
78.3
127.7
222.5
355.7
547.4
681.5
132
-------
SORPTIO.N MODEL COMPARISON
SOIL AA
TIME
(HRS)
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
300.
1.
3.
10.
30.
100.
aoo.
1.
3.
10.
30.
100.
300.
MEASURED
4.36
5.30
6.70
8.05
8.35
8.39
18.90
23.50
31.00
41.00
45.20
47.09
27.10
35.00
.53.00
72.50
89.00
94.4.0
80.00
105.00
145.00
200.00
282.00
325.00
128.60
150.00
230.00
380.00
510.00
610.00
SORPT10N
(PPM)
CALCULATED.
1
0.0
0.0
0.0
o.c
0*,0
o."o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
' 0.0
2
1.6
1.0
0.8
0.5
0.3
0.3
8.3
5.9
4.7
2.8
1.4
0.7
17.8
14.2
11.5 •
7.7
3.9
1.7
74.5
63.6
56.9
47.0
32.9
19.9
193.6
178.1
167.6
143.8
114.8
91.0
3
0.3
0.9
2.9
7.1
12.7
13.9
0.3
0.9
2.9
7.1
12.7
13.9
0.3
0.9
2.9
7.1
12.7
13.9
0.3
0.9
2.9
7.1
12.7
13.9
0.3
0.9
2.9
7.1
12.7
13.9
4
37.3
28.2
23.8
17.9
13.9
13.0
112.4
89.3
76.3
55.1
34.3
23.2
186.6
160.4
139.5
106.1
68.2
38.8
485.4
436.8
405.3
356.9
280.7
200.9
920.6
870.5
835.8
754.3
648.8
555.3
5
2.3
2.5
3.5
4.3
5.3
7.0
5.1
6.3
9.8
13.6
15.7
15.8
5.9
7.8
12.7
19.5
26.9
27.2
6.7
9.1
15.2
25.3
42.1
61.2
6.9
9.3
15.7
26.4
44.8
67.9
133
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-660/2-75-022
2.
3. RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTITLE
KINETIC MODEL FOR ORTHOPHOSPHATE
REACTIONS IN MINERAL SOILS
5. REPORT DATE
June 1975
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Carl G. Enfield and Bert E. Bledsoe
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Robert S . Kerr Environmental Research Laboratory
Post Office Box 1198
Ada, Oklahoma 74820
10. PROGRAM ELEMENT NO.
1BB045
11. CONTRACT/GRANT NO.
ROAP 21-ASH, Task 13
12. SPONSORING AGENCY NAME AND ADDRESS
U.S. F/nvironmental Protection Agency
National Environmental Research Center
Office of Research and Development
Corvallis, Oregon 97330
13. TYPE OF REPORT AND PERIOD COVERED
Final 6/73 through 6/75
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
The ability of a soil to remove wastewater phosphorus from solutions
passing through the soil matrix is primarily related to the formation of
relatively insoluble phosphate compounds of iron, aluminum, and
calcium. Based on the solubility of these compounds, an estimate can
be made of the minimum concentration of phosphorus which will be
found at equilibrium in the soil solution.
The kinetics of orthophosphorus sorption with 25 viable mineral soils
were experimentally measured under laboratory conditions. Several
kinetic models were evaluated as a means of describing phosphorus
sorption by soil. A diffusion limited Langmuir sorption model best fit
the experimental data.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
Kinetics
Solubility
Phosphorus
Mathematical model
Sewage treatment
Phosphorus kinetics
07/04 Primary
13/02 Secondary
18. DISTRIBUTION STATEMENT
Release unlimited.
19. SECURITY CLASS (ThisReport)
21. NO. OF PAGES
20. SECURITY CLASS (This page)
JM.
22. PRICE
EPA Form 2220-1 (9-73)
ft U.S. GOVERNMENT PRINTING OPPICS: 1975-698.983 /I8 REGION 10
-------
Technical Publications Office
ENVIRONMENTAL PROTECTION AGENCY
National Environmental Research Center
200 S.W. 35th Street
Corvallis, Oregon 97330
POSTAGE AND FEES P/ID
ENVIRONMENTAL PROTECTION AGENCY
EPA-335
Special Fourth-Class Rate
Book
Official Business
I
5
v
o
T
If your address is incorrect, please change on the above label;
tear off; and return to the above address.
If you do not desire to continue receiving this technical report
series, CHECK HERE ("") ; tear off label, and return it to the
above address.
------- |