-------
Other Data
Data on Table 6 suggest a high toxicity to nickel in the single-celled
organisms. Bringmann and Kuhn (1959a. b; 1977a; 1979; 1980a, b; 1981)
have reported concentrations resulting in incipient inhibition (defined
variously, such as a 3% change in growth) for algae, bacteria, and
protozoans. Although incipient inhibition of growth may at times be
statistically significant, its ecological significance is unknown. Babich
and Stotzky (1983) observed delayed effects after a 24 hr exposure.
Although citing the effects of nickel, algal, bacterial, and protozoan
data appearing in Table 6 are not directly comparable to other data.
Willford (1966) reported 48 hr LC50 in 6 species (3 families) of
fishes tested in the same water. Although fish differed in size, neither
this nor taxonomic differences produced a clear trend in relative toxicity.
Blaylock and Frank (1979) observed LC50s for a carp larva at 3 days and
10.5 days to be 8,460 and 750 >Jg/L, respectively.
Shaw and Brown (1971) tested the effect of nickel on laboratory
fertilization of rainbow trout eggs. They report no statistically
significant effect at 1000 jjg/L (hardness = 260-280), and also note a
stimulation in development after fertilization compared to controls.
Several studies have investigated associated effects of nickel intox-
ication. See et al. (1975) studied the effect on photoresponse in a planarian.
Whitley and Sikora (1970) and Brkovic-Popovic and Popovic (1977) studied
effects on respiration in tubificid worms. Influence of nickel on thermal
resistance in salmonids is examined by Becker and Wolford (1980). Effect
of complexing agents on nickel toxicity in a carp are studied by Muramoto
(1983). Smith-Sonneborm et al. (1983) studied the toxicity of ingested
nickel dust particles in Paramecium. Although they do not cite data,
10
-------
Anderson and Weber (1975) derive an expression relating body size to
toxicity in the guppy.
In a field study, Havas and Hutchinson (1982) worked with acidified
and control ponds. They suggest the presence of heavy metal stress
(including nickel), caused by increased mobilization of these materials,
in the resident aquatic invertebrates, with decreased pH.
Unused Data
Some data on the effects of nickel on aquatic organisms were not used
because the studies were conducted with species not resident in North
America (Baudouin and Scoppa 1974; Khangarot et al. 1982; Sexana and
Parashari 1983; Van Hoof and Nauwelaers 1984; Verma et al. 1981). Data
were also not used if nickel was a component of a mixture (Besser 1985;
Anderson 1983: Hutchinson and Sprague 1981; Markarian et al. 1980; Muska
1978; Stratton and Corke 1979b; Wong et al. 1978; Wong et al. 1982).
Babich and Stotzky (1985), Birge and Black (1980), Phillip and Russo
(1978), Rai et al. (1981), and U.S. EPA (1978) only present data that
have been published elsewhere. Studies reporting no data or data in an
unusable form for deriving criterion include Braginsky and Scheherban
(1978). Jones (1939). Muska and Weber (1977a. b) Scheherban (1977),
Whitton and Shehata (1982). Brown (1968) provided an inadequate description
of experimental procedures.
Results of some laboratory tests were not used because the tests were
conducted in distilled or deionized water without addition of appropriate
salts (e.g., Buikema et al. 1973, 1974; Jones 1935; Shaw and Grushkin
1957) or were conducted in chlorinated or "tap" water (e.g., Grande and
Andersen 1983). Dilution waters in studies by Stratton and Corke (1979a)
and Mann and Fyfe (1984) contained excessive amounts of EDTA.
11
-------
Bringmann and Kuhn (1982) cultured Daphnia magna in one water and
conducted tests in another. Tests conducted with too few test organisms
(e.g., Tarzwell and Henderson 1960; Applegate et al. 1957) were not used.
Results of laboratory bioconcentration tests were not used if steady-state
was not demonstrated (e.g., Stokes 1975; Gerhards and Weller 1977).
Summary
Acute values for twenty-one species in 18 genera range from 1.101
jjg/L for a cladoceran to 43,240 Mg/L for a fish. Twelve of these values
are for fish, and there appears to be no clear taxonomic or size relationship
correlating relative toxicity. Water hardness appears to be significantly
correlated to observed LC50 values.
Chronic toxicity to nickel occurs at a concentration as low as 14.8
[jg/L for Daphnia magna in soft water. Chronic value increases to 356.6
{jg/L for I), magna in hard water. Of all organisms tested, fathead minnows
are the most tolerant of chronic nickel intoxication with a value of
526.7 (Jg/L. Final acute-chronic ratio is 32.03.
Nickel appears to be quite toxic to freshwater algae, with concentrations
as low as 50 pg/L producing significant inhibition. Bioconcentration
factors for nickel range from 0.8 for fish muscle to 193 for a cladoceran.
with a median factor of 40.3.
National Criteria
The procedures described in the "Guidelines for Deriving Numerical
National Water Quality Criteria for the Protection of Aquatic Organisms
and Their Uses" indicate that, except possibly where a locally important
species is very sensitive, freshwater aquatic organisms and their uses
should not be affected unacceptably if the four-day average concentration
12
-------
(in yg/L) of nickel does not exceed the numerical value given by
e(0.8478[ln(hardness)j-0.1135) more than once every three years on the
average and if the one-hour average concentration (in ug/L) does not
exceed the numerical value given by e(0.8478 [In(hardness)J+3.353)
more than once every three years on the average. For example, at hardnesses
of 50, 100, and 200 mg/L as CaCC>3 the four-day average concentrations of
nickel are 25, 42, and 80 Mg/L, respectively, and the one-hour average
concentrations are 788, 1418, and 2553 ug/L.
EPA believes that a measurement such as "acid-soluble" would provide a
more scientifically correct basis upon which to establish criteria for
metals. The criteria were developed on this basis. However, at this
time, no EPA approved methods for such a measurement are available to
implement the criteria through the regulatory programs of the Agency and
the States. The Agency is considering development and approval of methods
for a measurement such as "acid-soluble." Until available, however, EPA
recommends applying the criteria using the total recoverable method.
This has two impacts: (1) certain species of some metals cannot be
analyzed directly because the total recoverable method does not distinguish
between individual oxidation states, and (2) these criteria may be overLy
protective when based on the total recoverable method.
The allowed excursion frequency of three years is based on the Agency's
best scientific judgment of the average amount of time it will take an
aquatic ecosystem to recover from a pollution event in which exposure to
nickel exceeds the criterion. The resilience of ecosystems and their
ability to recover differ greatly, however, and site-specific criteria
may be established if adequate justification is provided.
13
-------
The use of criteria in designing waste treatment facilities requires
selection of an appropriate wasteload allocation model. Dynamic models
are preferred for the application of these criteria. Limited data or other
factors may make their use impractical, in which case one must rely on a
steady-state model. The Agency recommends interim use of 1Q10 for
Criterion Maximum Concentration (CMC) design flow and 7Q10 for the
Criterion Continuous Concentration (CCC) design flow in steady-state
models. These matters are discussed in more detail in the Techncial Support
Document for Water Quality-Based Toxics Control (U.S. EPA 1985) and the
Design Flow Manual (U.S. EPA 1986).
14
-------
Table 1. Acute Toxlctty of Nickel to Aquatic Animals
Spec 1 es
Worm,
Nals sp.
Snal 1 (embryo) ,
Amnlcola sp.
Snail (adult).
Amnlcola sp.
Cladoceran,
Daphnla maqna
Cladoceran,
Daphn la maqna
Cladoceran,
Daphnla magna
Cladoceran,
Daphn la maqna
Cladoceran,
Daphn la magna
Cladoceran,
Daphnla magna
Cladoceran,
D*phnla magna
Cladoceran,
Daphnla pul Icarla
Cladoceran,
Daphnla pul 1 carlo
Cladoceran,
Daphnla pullcarla
Method*
s.
s,
s,
s,
s.
s.
s,
s.
s,
s,
s,
s,
s,
M
M
M
U
U
M
M
M
M
M
M
M
M
Chemical
Nickel
chloride
Nickel
chloride
Nickel
nitrate
Nickel
chloride
Nickel
chloride
"Nickel
chloride
Nickel
chloride
Nickel
sulfate
Nickel
sul fate
Nickel
sul fate
Hardness LC50
(mg/L as or EC50
CaCOj) (Mg/L)»»
FRESHWATER SPECIES
50 14,100
50 1 1 ,400
50 14,300
<317
45.3 510
51.1 915
51 1,800
100 2,360
104 1 ,920
206 4,970
48 2,182
48 1,8)3
44 1 ,836
Adjusted
LC50 or EC50
(ug/L)*""
14,100
11,400
14,300
554.5
998.3
1,770
1,311
1,032
1,496
2,259
1,877
2,046
Species Mean
Acute Value
((iq/L)««"» Reference
14,100 Rehwoldt et at.
Rehwoldt et al .
12,770 Rehwoldt et al.
Anderson 1948
Bleslnger and
Chrlstensen 1972
Cat 1 et al. 1983
- Chapman et al .
Manuscript
Chapman et al .
Manuscript-
Chapman et al .
Manuscript
1,101 Chapman et al.
Manuscript
Llnd et al .
Manuscript
Llnd et al .
Manuscript
Llnd et al .
Manuscript
1973
1973
1973
-------
Table 1. (Continued)
Species
Cladoceran,
Daphnla pul Icarla
Amphlpod,
Gammarus sp.
Mayfly,
Ephemerel la subvarla
Damsel fly,
Unidentified sp.
Stonef ly ,
Acroneurla lycorlas
Caddlsf ly,
Unidentified sp.
American eel,
Anqul 1 la rostrata
American eel,
Angullla rostrata
Rainbow trout (2 mos),
Salmo galrdnerl
Rainbow trout (Juvenile),
Salmo galrdnerl
Rainbow trout (Juvenile),
Salmo galrdnerl
Rainbow trout (juvenile),
Salmo galrdnerl
Rainbow trout (juvenile),
Salmo galrdnerl
Rainbow trout (juvenile),
Salmo qalrdnerl
Method*
S, M
S, M
S, U
S, M
S, U
S, M
S, M
S, M
F, M
F, M
F, M
F, M
F, M
F, M
Chemical
Nickel
sulfate
Nickel
sulfate
Nickel
sulfate
Nickel
nl trate
Nickel
nitrate
Nickel
sulfate
Nickel
sulfate
Nickel
sulfate
Nickel
sul fate
Nickel
sul fate
Hardness LC50
(mg/L as or EC50
CoCOj)
-------
Table 1. (continued)
Species Method*
Rainbow trout (juvenile), F, M
Salmo galrdnerl
Rainbow trout (juvenile), F, M
Salmo galrdnerl
Rainbow trout (juvenile), F, M
Salmo gafrdner I
Rainbow trout (3 mos), F, M
Salmo galrdner 1
Rainbow trout (3 mos), F, M
Salmo galrdnerl
Rainbow trout (12 mos), F, M
Salmo galrdner 1
Rainbow trout (12 mos), F, M
Salmo galrdnerl
Goldfish (1-2 g), S, U
Carasslus auratus
Common carp (<20 on), S, M
Cypr Inus carplo
Common carp, S, M
Cypr Inus carplo
Fathead minnow, F, M
Plmephales promelas
Fathead minnow, F, M
Plmephales promelas
Fathead minnow (Immature), S, U
Plmephales promelas
Fathead minnow ( Immature) , S, M
Plmephales promelas
Chemical
Nickel
sulfate
Nickel
sulfate
Nickel
sulfate
Nickel
chloride
Nickel
chloride
Nickel
chloride
Nickel
chloride
Nickel
chlor Ide
Nickel
nitrate
-
Nickel
sul fate
Nickel
sul fate
Nickel
chloride
Nickel
ch lor Ide
Hardness
(mg/L as
CaC05)
27-
39
27-
39
27-
39
27-
39
20
53
55
45
44
210
210
LC50
or EC50
(Mg/L)»*
15,900t
II.SOO1"
11,100t
10,000
10,900
8,900
8,100
9,820
lo.eoo1"
10,400
5,209
5,163
27,000
32,200
Adjusted
LC50 or EC50
(Mg/L)»"»
14,220
15,500
12,660
11,520
21,350
10,090
9,593
5,696
5,754
7,998
9,538
Species Mean
Acute Value
(wq/L)»«*» Reference
Anderson 1981
Anderson 1981
Anderson 1981
Nebeker et al .
Nebeker et al .
Nebeker et al .
13,390 Nebeker ef al.
21,350 Pickering and
Henderson 1966
Rehwoldt ot al.
1971
9,838 Rehwoldt et al .
1972
Llnd et al .
Manuscript
Llnd et al.
Manuscr 1 pt
Pickering 1974
Pickering 1974
1985
1985
1985
1985
-------
Table 1. (continued)
Species
Fathead minnow (Immature),
Plmephales promelas
Fathead minnow (Immature),
Plmephales promelas
Fathead minnow (1-2 g) ,
Plmephales promelas
Fathead minnow (1-2 g) ,
Plmephales promelas
Fathead minnow (1-2 g) ,
Plmephales promelas
Fathead minnow (1-2 g) ,
Plmephales promelas
Banded kllllflsh «20 cm),
Fundulus dlaphanus
Banded kllllflsh,
Fundulus dlaphanus
Guppy (6 mo) ,
Poecl 1 la retlculata
White perch «20 cm) ,
Morone amerlcana
White perch,
Morone amerlcana
Striped bass ( finger 1 Ing) ,
Morone saxatllls
Striped bass,
Morone saxatllls
Striped bass (63 day),
Morone saxatllls
Method*
F,
F,
s.
s.
s.
s,
s,
s,
s,
s,
s,
s,
s,
s,
M
M
U
U
U
U
M
M
U
M
M
M
M
U
Chemical
Nickel
chloride
Nickel
chloride
Nickel
chlor Ide
Nickel
chloride
Nickel
ch lor I'de
Nickel
chlor Ide
Nickel
nitrate
Nickel
chlor Ide
Nickel
nitrate
Nickel
nl trate
Nickel
chloride
Hardness
(mg/L as
CoC03)
210
210
20
20
360
360
53
55
20
53
55
53
55
40
LC50
or EC50
(pg/L)««
28
25
5
4
42
44
46
46
4
13
13
6
6
3
,000
,000
,180
,580
,400
,500
,200f
,100
,450
,600f
,700
,200f
,300
,900
Adjusted
LC50 or EC50
((ig/L>"»
9
7
11
9
7
8
43
42
9
12
12
5
5
4
,294
,405
,260
,960
,953
,347
,970
,520
,677
,940
,640
,901
,811
,712
Species Mean
Acute Value
(iiq/L)*11"" Reference
Pickering
Pickering
Pickering
Henderson
Pickering
Henderson
Pickering
Henderson
8,051 Pickering
Henderson
Rehwoldt
1971
43,240 Rehwoldt
1972
9,677 Pickering
Henderson
Rehwoldt
1971
12,790 Rehwoldt
1972
Rehwoldt
1971
Rehwoldt
1972
Palawskl
1974
1974
and
1966
and
1966
and
1966
and
1966
et al .
et al .
and
1966
et al .
et al .
et al .
et al .
et al .
-------
Table 1. (continued)
Species
Striped bass (63 day),
Morone saxatl 1 Is
Rock bass,
Amb 1 op 1 1 tes rupestr I s
Pumpklnseed (<20 cm).
Lepomls glbbosus
Pumpklnseed,
Lepomls glbbosus
Blueglll (1-2 g) ,
Lepomls macrochlrus
Blueglll (1-2 g) ,
Lepomls macrochlrus
Blueglll (1-2 g) ,
Lepomls macrochlrus
Method*
S, U
F, M
S, M
S, M
S, U
S, U
S, U
Chemical
Nickel
chloride
Nickel
sul fate
Nickel
nitrate
_
Nickel
chlor Ide
>,.„•„,
: :e
Nickel
chlor Ide
Hardness LC50 Adjusted
(mg/L as or EC50 LC50 or EC50
CaCOv) (|iq/L>M* (pq/L)"1"1
285 33,000 7,545
26 2,480 4,317
53 8,100f 7,710
55 8,000 7,379
20 5,180 11,260
20 5,360 11,660
360 39,600 7,428
Species Mean
Acute Value
(iig/L)»»"" Reference
5,909 Palawskl et al. 1985
4,317 Llnd et al .
Manuscr Ipt
Rehwoldt et al .
1971
7,542 Rehwoldt et al.
1972
Pickering and
Henderson 1966
Pickering and
Henderson 1966
9,917 Pickering and
Henderson 1966
* S = static, R = renewal, F = flow-through, M = measured, U = unmeasured.
** Results are expressed as nickel, not as the chemical.
*** Freshwater LC50s and ECSOs were adjusted to hardness = 50 mg/L using the pooled slope of 0.8478 (see text).
««»« freshwater Species Mean Acute Values are calculated at hardness = 50 mg/L.
' In river water.
-------
Table 1. (continued)
Results of Covarlonce Analysis of Freshwater Acute Toxlctty versus Hardness
Species
Daphnla magna
Fathead minnow
Striped bass
Bluegl II
All of above
n
6
10
4
3
23
Slope
1.1810
0.8294
1.0459
0.6978
0.8478
95Jf Confidence Limits Degrees of Freedom
0.3185,
0.6755,
0.7874,
0.5678,
0.6669
2.0434
0.9833
1.3045
0.8279
0.9999
4
8
2
1
18
P = 0.18 for equality of slopes.
-------
Table 2. Chronic Toxlclty of Nickel to Aquatic Animals
Species
Test*
Chemical
Hardness
(mg/L as
CaCOO
Limits
Chronic Value
(»ig/L)** Reference
FRESHWATER SPECIES
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla magna
Caddlsf ly,
CMstoronla magnlflca
Rainbow trout,
Salmo galrdnerl
Fathead minnow,
Plmep hales promelas
Fathead minnow,
Plmephales promelas
* LC = 1 Ife-cycle or
LC
LC
LC
LC
ELS
LC
ELS
partial llfjs-cycle
** Results are expressed as nickel, not
*** Unacceptable effects occurred at all
Nickel
chloride
Nickel
chl or Ide
Nickel
chloride
•Nickel
chloride
Nickel
chloride
Nickel
chloride
Nickel
sul fate
; ELS = early II
as the chemical.
51
105
205
54
53
210
-
fe-stage.
10.2-
21.4
101-
150
220-
578
66-
250
380-
730
108.9-
433.5
14.77 Chapman et al.
Manuscript
123.1 Chapman et al.
Manuscript
356.6 Chapman et al.
Manuscript
128.4 Nebeker et al. 1984
<35 Nebeker et al. 1985
526.7 Pickering 1974
217.3 Llnd et al.
Manuscript
concentrations tested.
Results of Regression Analysis
Species
Daphnla magna
n Slo
of Freshwater Chronic Toxlclty
pe 95)C Confidence Limits
3 2.29 0.6666,
4.4444
versus Hardness
Degrees of Freedom
1
-------
Table 2. (Continued)
Acute-Chronic Ratio
Species
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla magna
Cladoceran,
Oaphnla magna
Fathead minnow,
Plmephales promelas
Fathead minnow,
Plmephales promelas
Hardness
(mg/L as
CaCOx)
51
104-
105
205-
206
210
44-
45
Acute Value
1,800
1,920
4,970
27,930*
s.ise"11
Chronic Value
(i>g/l)
14.7
123.1
356.6
526.7
217.3
Ratio
122.4
15.60
13.94
53.03
23.87
* Geometric mean of four values In Table 1.
** Geometric mean of two values In Table 1.
-------
Table 3. Ranked Genus Mean Acute Values with Species Mean Acute-Chronic Ratios
Rank*
18
17
16
15
14
13
12
It
10
9
8
7
6
Genus Mean
Acute Value
(iiq/L)
43,240
40,480
30,200
21 ,350
21,200
14,100
13,390
13,000
W12,770
12,180
9,838
9,677
8,693
Species
Banded kl 1 1 If 1st),
Fundulus dlaphanls
Stonef ly,
Acroneurla lycortas
Caddlsfly,
Unidentified sp.
Goldfish,
Carasslus auratus
Oomsetf ly,
Unidentified sp.
Worm,
Nals sp.
Rainbow trout,
Salmo galrdnerl
Amph Ipod,
Gammarus sp.
Snail,
Amnlcola sp.
Amer lean eel ,
Anqul 1 la rostrata
Common carp,
Cyprlnus carplo
Guppy,
Poecllla rettculata
White perch,
Morone amerlcana
Striped bass,
Species Mean
Acute Value
(Mq/L)"
43,240
40,480
30,200
21,350
21,200
14,100
13,390
13,000
12,770
12,180
9,838
9,677
12,790
5,909
Species Mean
Acute-Chronic
Ratio*"
Morone saxatlI Is
-------
Table 3. (Continued)
Rank*
5
4
3
2
1
Genus Mean
Acute Value
(gq/L)
8,648
8,051
4,637
4,317
1,499
Species
Blueglll,
Lepomls macrochlrus
Pumpklnseed,
Lepomls qlbbosus
Fathead minnow,
Plmephales promelas
Mayfly,
Ephemeral la subvarla
Rock bass,
Ambloplltes rupestrls
Cladoceran,
Oaphnla pul (car la
Cladoceran,
Daphn la maqna
Species Mean
Acute Value
dig/D**
9,917
7,542
8,051
4,637
4,317
2,042
1,101
Species Mean
Acute-Chronic
Ratl6««»
35.6
29.9
* Ranked from most resistant to most sensitive based on Genus Mean Acute Value.
»» From fable 1.
*•* From table 2.
Fresh water
Final Acute Value » 1,576.4 ug/L (at a hardness of 50 mg/L)
Crl**rlon Maximum Concentration = (1,576.4 »q/\.Yfy/ 2 » 788.2 ug/%fct a
hardness of 50 mg/L)
Pooled Slope = 0.8478 (see Table 1)
In (Criterion Maximum Intercept) » In (788.2) - (slope x lnW))l
» 6.6698 - (0.8478 x 3.9120*..» 3.353
Criterion Maximum Equation = e<0.8478l In(hardness) I + 3.353)
£lnal Acute-Chronic Ratio » 32.03 (aee text)
FlnW*.Chronlc Value = (1,576.4 Mq/L) / 32.03 - 24.61 pg/L (at ha*»*ess of 50 mg/L)
FlnSl'Chronlc Equation = e'0*847^! In(hardness)l-0.1l35)
-------
Table 4. Toxic Ity of Nickel to Aquatic Plants
Species
Blue-green alga,
Anabaena flos- aquae
Blue-green alga,
Hlcrocystls aeruglnosa
Green alga,
Anklstrodesmus falcatus
Green alga,
Anklstrodesmus falcatus
Green alga,
Anklstrodesmus falcatus
var. aclcularls
Green alga,
Chlamydomonas eugametos
Green alga,
Chi ore! la vulqarls
Green alga,
Chlorococcum sp.
Green alga,
Haematococcus capensls
Green alga,
Pedlastrum tetras
Green alga,
Scenedesmus acumlnata
Chemical
Nickel
nitrate
Nickel
chloride
Nickel
chloride
Nickel
nitrate
Nickel
nitrate
Nickel nitrate or
Nickel sulfate
Nickel nitrate or
Nickel sulfate
Nickel
chloride
Nickel nitrate or
Nickel sulfate
Nickel
nitrate
Nickel nitrate or
Nickel sulfate
Hardness
(mg/L as Duration
CaCX»5>_ (days)
FRESHWATER SPECIES
14
8
10
14
14
47.5 12
47.5 12
10
47.5 12
14
47.5 12
Effect
84$ reduction
1 n growth
Incipient
Inhibition
45$ reduction
In growth
98$ reduction
In growth
42* reduction
In growth
91$ reduction
In growth
53$ reduction
In growth
52$ reduction
In growth
85)1 reduction
In growth
Increased
growth
54$ reduction
In growth
Result
(ug/L)«
600
5
5,000
100
100
700»»
300»»
5,000
300»»
100
50"
Reference
Spencer and Greene
1981
Brlnqmann and Kuhn
1978a,b
Devi Prasad and
Devi Prasad 1982
Spencer and Greene
1981
Spencer and Greene
1981
Hutch Inson 1973
Hutch Inson and
Stokes 1975
Hutch Inson 1973;
Hutch Inson and
Stokes 1975
Devi Prasad and
Devi Prasad 1982
Hutch Inson 1973;
Hutch Inson and
Stokes 1975
Spencer and Greene
1981
Hutch Inson 1973;
Hutch Inson and
-------
Table 4. (Continued)
Spectes
Green alga,
Scenedesmus acumlnata
Green alqa,
Scenedesmus dlmorphus
Green alqa,
Scenedesmus obllquus
Green alga,
Scenedesmus quadrlcauda
Green alqa,
Scenedesmus quadrlcauda
Alga (metal-tolerant strain),
Scenedesmus acutlformIs
Diatom,
Mavlcula pelllculosa
Duckweed,
Lemna minor
Chemical
Nickel nitrate or
Nickel sulfate
Macrophyte,
El odea (Anacharls) canadensls
Nickel
nitrate
Nickel
chloride
Nickel
chloride
Nickel
nitrate
Nickel
nitrate
Nickel
chIor Ide
Nickel
chloride
Hardness
(mg/L as
CaC03)
47.5
49.8
14.96
Duration
(days)
13
14
10
8
14
6
14
28
28
Effect
Reduced
growth
30? reduction
In growth
47? reduction
In growth
Incipient
Inhibition
EC50
EC50
Result
(pg/L)»
500
100
3,000
1,500
60% reduction 100
In growth
50? reduction 1,171»«
In growth
82? reduction 100
In growth
340
2,800
Reference
Stokes et a). 1973;
Hutchlnson and
Stokes 1975
Spencer and Greene
1981
Devi Prasad and
Devi Prasad 1982
Brlngmann and Kuhn
1977a; 1978a,b;
1979; 1980b
Spencer and Greene
1981
Stokes 1975
Fezy et al. 1979
Brown and Rattlgan
1979
Brown and Rattlgan
1979
* Results are expressed as nickel, not as the chemical.
** Estimated from graph.
-------
Table 5. Btoaccutnulaton of Nickel by Aquatic Organisms
Species
Chemical
Concentration
In Hater (pq/D*
Hardness
-------
Table 6. Other Data on Effects of Nickel on Aquatic Organisms
Species
Hardness
dng/L as
Chemical CaCOT)
Resu 1 t
Duration Effect (uq/D*
Reference
FRESHWATER SPECIES
Green alga,
Scenedesmus quadrlcauda
Green alga,
Scenedesmus quadrlcauda
Alga,
(mixed population)
Bacter 1 urn,
Aeromonas sobrla
Bacterium,
Bacl 1 lus brevls
Bacterium,
Bacl 1 lus cereus
Bacterium,
Escherlchla col 1
Bacterium,
Escherlchla col 1
Bacterium,
Pseudomonas putlda
Bacterium,
Serratla marcescens
Protozoan,
Entoslphon sulcatum
Protozoan,
Mlcroreqma heterostoma
Nickel
chloride
Nickel
ammon lum
sul fate
Nickel 87-
nltrate 99
Nickel 40
chloride
Nickel 40
chloride
Nickel 40
chloride
Nickel
chloride
Nickel
ammon lum
sul fate
Nickel
chlor Ide
Nickel 40
chloride
Nickel
chloride
Nickel
chloride
96 hrs Incipient 1,500
Inhibition
(river water)
96 hrs Incipient 900
Inhibition
(river water)
<53 days Decrease In 2-
dlatom diversity; 8.6
shift to qreen and
blue-qreen algae
24 hrs** Reduction In 5
abundance
24 hrs** Reduction In 5
abundance
24 hrs** Reduction In 5
abundance
Incipient 100
Inhibition
Incipient 100
Inhibition
16 hrs Incipient 2.5
Inhibition (3.0)
24 hrs** Reduction In 10
abundance
72 hrs Incipient 140
Inhibition
28 hrs Incipient 50
Inhibition
Brlngmann and Kuhn
1959a,b
Brlngmann and Kuhn
1959a,b
Patrick et al . 1975
Bablch and Stotzky
1983
Bablch and Stotzky
1983
Bablch and Stotzky
1983
Brlngmann and Kuhn
1959a
Brlngmann and Kuhn
1959a
Brlngmann and Kuhn
1977a; 1979; 1980b
Bablch and Stotzky
1983
Brlngmann 1978;
Brlngmann and Kuhn
1979; 1980b; 1981
Brlngmann and Kuhn
1959b
-------
Table 6. (Continued)
Species
Protozoan,
Mlcroreqma heterostoma
Protozoan,
Chi lomonas parameclum
Protozoan,
Uronema parduezl
Tubl field worm,
Tublfex tublfex
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla maqna
Cladoceran,
Daphnla maqna
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla maqna
Cladoceran,
Daphnla pul Icarla
Cladoceran,
Daphnla pul Icarla
Cladoceran,
Daphnla pul Icarla
Hardness
(mg/L as
Chemical CnCOj)
Nickel
ammon lum
sul fate
Nickel
chloride
Nickel
chloride
Nickel 34.2
sulfate
Nickel
chloride
Nickel
ammon 1 urn
sul fate
Nickel 288
chloride
Nickel 45.3
Chloride
Nickel 45.3
chloride
Nickel 45.3
chlor Ide
Nickel 25
sutfate
Nickel 28
sul fate
Nickel 28
sul fate
Duration
28 hrs
48 hrs
20 hrs
48 hr
48 hrs
48 hrs
24 hrs
48 hrs
21 days
21 days
48 hrs
48 hrs
48 hrs
Effect
Incipient
Inhibition
Incipient
Inhibition
Incipient
Inhibition
LC50
EC50 (river
water)
EC50 (river
water)
EC50
(swimming)
EC50 ( Immobll-
zatlon) (fed)
EC50 (Immobll-
zatlon)
16? reproduc-
tive Impairment
LC50 (TOC =
39 mg/L)
LC50 (TOC =
15 mg/L)
LC50 (TOC =
13 mg/L)
Result
(ufl/L>*
70
820
42
8.70
7.00
6,000
6,000
11,000
1,120
130
30
2,171
1,140
1,034
Reference
Brlngmann and Kuhn
1959b
Brlngmann et al . 1980;
Brlngmann and Kuhn
1981
Brlngmann and Kuhn
1980a, 1981
Brkovlc-Popovlc and
Popov Ic 1977a
Brlngmann and Kuhn
I959a,b
Brlngmann and Kuhn
I959a,b
Brlngmann and Kuhn
1977b
Bleslnger and
Chrlstensen 1972
Bleslnger and
Chrlstensen 1972
Bleslnger and
Chrlstensen 1972
Llnd et al . Manuscript
Llnd et al . Manuscript
Llnd et al. Manuscript
-------
Table 6. (Continued)
Species
Cladoceran,
Daphnla put Icarla
Cl adoceran,
Oophnla pu 1 Icarla
Cladoceran,
Daphnla pul Icarla
Cladoceran,
Oaphnla pul Icarla
Cladoceran,
Daphnla pul lean la
Cladoceran,
Oaphnla pul Icarla
Cladoceran,
Dapnnla pullcarla
Cladoceran,
Daphnla pul Icarla
Cladoceran,
Oaphnla pul Icarla
Cladoceran,
Oaphnla pul Icarla
Mldqe,
Chlronomus sp.
Coho salmon (year line)),
Oncorhynchus klsutch
Rainbow trout (0.5-0,9 g) ,
Salmo qalrdnert
Rainbow trout (1 yr) ,
Salmo qalrdnerl
Chemical
Nickel
sul fata
Nickel
sul fate
Nickel
sul fata
Nickel
sul fate
Nickel
sul fate
Nickel
sul fate
Nickel
sul fate
Nickel
sul fate
Nickel
sul fate
Nickel
sul fate
Nickel
chloride
Nickel
sul fate
Nickel
su 1 fate
Hardness
(mg/L as
CaCOT>
29
73
74
84
86
89
89
100
1 14
120
50
90
42
240
Duration
48 hrs
48 hrs
48 hrs
48 hrs
48 hrs
48 hrs
48 hrs
48 hrs
48 hrs
48 hrs
96 hrs
144 hrs
48 hrs
48 hrs
Effect
UC50 (TOC =
13 mg/L)
LC50 (TOC =
28 mq/L)
LC50 (TOC =
28 mq/L)
LC50 (TOC =
32 mq/L)
LC50 (TOC =
34 mq/L)
LC50 (TOC =
18 mq/L)
LC50 (TOC =
34 mq/L)
LC50 (TOC =
34 mq/L)
LC50 (TOC =
27 mg/L)
LC50 (TOC =
33 mq/L)
LC50
100$ survival
LC50
LC50
Result
(ug/L)«
697
3,414
2,325
3,014
3,316
2,042
2,717
3,757
3,156
3,607
8,600
5,000
35,730
32,000
Reference
Llnd et at. Manuscript
Llnd et al. Manuscript
Llnd et al. Manuscript
Llnd et al. Manuscript
Llnd et al. Manuscript
Llnd et al. Manuscript
Llnd et al. Manuscript
Llnd et al. Manuscript
Llnd et al. Manuscript
Llnd et al. Manuscript
Rehwoldt et al . 1973
Lorz et al . 1978
Wll Iford 1966
3rown and Dal ton 1970
-------
Table 6. (Continued)
Species
Rainbow trout
(embryo, 1 arva) ,
Salmo galrdnerl
Rainbow trout (embryo),
Salmo galrdnerl
Rainbow trout
(embryo, larva),
Salmo galrdnerl
Rainbow trout
(embryo, larva),
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
Rainbow trout (adult),
Salmo galrdner 1
Rainbow trout (10 g),
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
Brown trout (0.8-1.2 g) ,
Salmo trutta
Brook trout (0.4-0.6 g) ,
Salvellnus fontlnalls
Lake trout (2.5-3.2 g) ,
Salvellnus namaycush
Goldfish,
Carasslus auratus
Goldfish (embryo, larva),
Carasslus auratus
Chemical
Nickel
chloride
Nickel
chloride
Nickel
chlor Ide
Nickel
sulfate
Nickel
chlor Ide
Nickel
chl or Ide
Nickel
sul fate
Nickel
sul fate
Nickel
sul fate
Nickel
sul fate
Nickel
chlor Ide
Nickel
chloride
Hardness
(mg/L as
CaCO,)
104
(92-110)
104
125
174
240
320
28.4
22.5
42
42
42
195
Duration
28 days
28 days
28 days
28 days
3.5 days
6 mos
20 mlns
48 hr
48 hrs
48 hrs
48 hrs
19-50 hrs
200-210 hrs
7 days
Effect
EC50 (death
and deform! ty)
LC50
EC50 (death
and deformity)
EC50 (death
and deformity)
Decreased gill
dl f f us Ion
Increase In
1 Iver proteoly-
tlc activity of
males
Avoidance
threshold
LC50
LC50
LC50
LC50
LT
IT
EC50 (death
and deformity)
Result
(pq/L)»
50
50
60
90
2,000
1,000
23.9
54,963
60,290
54,040
16,750
100,000
10,000
2,140
Reference
Blrge 1978; Blrge and
1980; Blrqe et at . 1978,
1980, 1981
Blrge et al . 1979
Blrge et al . 1981
Blrge et al . 1981
Hughes et al. 1979
Aril lo et al. 1982
Glattlna et al. 1982
Bornatowlcz 1983
Wll Iford 1966
Wll Iford 1966
Wll Iford 1966
Ellis 1937
Blrge 1978
-------
Table 6. (Continued)
Species
Goldfish (embryo, larva),
Carasslus auratus
Common carp (embryo),
Cyprlnus carplo
Common carp (larva),
Cyprlnus carplo
Common carp (embryo),
Cyprlnus carplo
Fathead minnow,
Plmephales promelas
Fathead minnow,
Plmephales promelas
Fathead minnow,
Plmephales promelas
Fathead minnow,
Plmephales promelas
Fathead minnow,
Plmephales promelas
Fathead minnow,
Plmephales promelas
Channel catfish (1.2-1.5 g) ,
Ictalurus punctatus
Channel catfish,
Ictalurus punctatus
Guppy,
Poecl 1 la rotlculata
Guppy (184 mg) ,
Poec II 1 a ret 1 cu 1 ata
Chemical
Nickel
chloride
Nickel
sul fate
Nickel
sul fate
Nickel
sul fate
Nickel
sul fate
Nickel
sul fate
Nickel
sul fate
Nickel
sulfate
Nickel
sulfate
Nickel
su 1 fate
Nickel
sul fate
Nickel
chlor Ide
Nickel
sul fate
Nickel
chlor Ide
Hardness
(mg/L as
CaOH)
93-
105
128
128
360
28
29
77
86
89
91
42
93-
105
260
260
Duration
7 days
72 hrs
72 hrs
257 hrs
-
96 hrs
96 hrs
96 hrs
96 hrs
96 hrs
96 hrs
48 hrs
7 days
96 hrs
48 hrs
Effect
EC50 (death
and deformity)
LC50
LC50
EC50 (hatch)
LC50 (TOC =
14 mg/L)
LC50 (TOC =
12 mg/L)
LC50 (TOC =
32 mg/L)
LC50 (TOC =
15 mg/L)
LC50 (TOC =
33 mg/L)
LC50 (TOC =
30 mg/L)
LC50
EC50 (death
and deformity)
LC50 (high
sol Ids)
LC50
Result
(xg/L)«
2,780
6,100
8,460
750
22,000
2,923
2,916
12,356
5,383
17,678
8,617
36.840
710
34,900
37,000
Reference
Blrqe and Black 1980;
Blrge et al . 1981
Blaylock and Frank
1979
Blaylock and Frank
1979
Kapur and Yadov 1982
Llnd et al . Manuscript
Llnd et al . Manuscript
Llnd et al . Manuscript
Llnd et al. Manuscript
Llnd et al . Manuscript
Llnd et al . Manuscript
Wll Iford 1966
Blrge and Black 1980;
Blrge et al . 1981
Khangarot 1981
Khangarot et al . 1981
-------
Table 6. (Continued)
Species
Blueqlll (0.7-1.1 g),
Lepomts macrochlrus
Largemouth bass
(embryo, larva),
Mlcropterus salmoldes
Narrow-mouthed toad
(embryo, larva),
Gastrophryne carol Inensls
Narrow-mouthed toad
(embryo, larva),
Gastrophryne carol Inensls
Fowler's toad,
Bufo fowlerl
Marbled salamander
(embryo, larva),
Ambystoma opacum
Chemical
Nickel
sulfate
Nickel
chloride
Nickel
chloride
Nickel
chloride
Nickel
chloride
Nickel
chloride
Hardness
-------
REFERENCES
Abo-Rady, M. 1979. The levels of heavy metals (Cd, Cu, Hg, Ni, Pb, Zn) in
brook Crouts from the River Leine in Che area of Gottingen (West Germany). Z.
Lebensm. Unters. Forsch. 168:259-263.
Agrawal, S.J. , A.K. Srivastava and H.S. Chaudhry. 1979. Haematological
effects of nickel toxicity on a fresh water teleost, Colisa fasciatus. Acta
Pharmacol. Toxicol. 45:215-217.
Anderson, B.C. 1948. The apparent thresholds of toxicity to Daphnia magna for
chlorides of various metals when added to Lake Erie water. Trans. Am. Fish.
Soc. 78:96-113.
Anderson, D.R. 1981. The combined effects of nickel, chlorine, and
temperature on the mortality of rainbow trout, Salmo gairdneri. Ph.D. thesis,
University of Washington, Seattle, WA. Available from: University Microfilms,
Ann Arbor, MI. Order No. 8121178.
Anderson, D.R. 1983. Chlorine-heavy metals interaction on toxicity and metal
accumulation. IN: Water chlorination: Environmental impact and health
effects. Vol. 4, Book 2. Jolley, R.L., W.A. Brungs, J.A. Cotruvo, R.B.
Gumming, J.S. Mattice, and V.A. Jacobs (Eds.). Ann Arbor Science Publishers,
Ann Arbor, MI. pp. 811-826.
Anderson, P.D. and L.J. Weber. 1975. Toxic response as a quantitative
function of body size. Toxicol. Appl. Pharmacol. 33: 471-483.
-------
Biesinger, K.E. and G.M. Christensen. 1972. Effect of various metals on
survival, growth, reproduction, and metaabolism of Daphnia magna. J. Fish.
Res. Board Can. 29:1691-1700.
Birge, W.J. 1978. Aquatic toxicology of trace elements and coal and fly ash.
IN: Energy and environmental stress in aquatic systems. Thorp, J.H., and J.W.
Gibbons (Eds.). CONF-771114. National Technical Information Service,
Springfield, VA. pp. 219-240.
Birge, W.J. and J.A. Black. 1980. Aquatic toxicology of nickel. IN: Nickel in
the environment. Nriagu, J.O. (Ed.). Wiley, New York, NY. pp. 349-366.
Birge, W.J., J.E. Hudson, J.A. Black and A.G. Westerman. 1978. Embryo-larval
bioassays on inorganic coal elements and in situ biomonitoring of coal-waste
effluents. IN: Surface mining and fish/wildlife needs in the eastern United
States. Samuel, D.E., J.R. Stauffer, C.H. Hocutt, and W.T. Mason (Eds.).
PB298353. National Technical Information Service, Springfield, VA. pp.
97-104.
Birge, W.J., J.A. Black and A.G. Westerman. 1979. Evaluation of aquatic
pollutants using fish and amphibian eggs as bioassay organisms. IN: Animals
as monitors of environmental pollutants. Neilson, S.W., G. Migaki, and D.G.
Scarrelli (Eds.). National Academy of Sciences, Washington, DC. pp. 108-118.
Birge, W.J., J.A. Black, A.G. Westerman and J.E. Hudson. 1980. Aquatic
toxicity tests on inorganic elements occurring in oil shale. IN: Oil shale
-------
symposium: Sampling, analysis and quality assurance. Gale, C. (Ed.).
PB80221435 or EPA-600/9-80-022. National Technical Information Service,
Springfield, VA. pp. 519-534.
Birge, W.J., J. A. Black, and B.A. Raraey. 1981. The reproductive toxicology of
aquatic contaminants. IN: Hazard assessment of chemicals: Current
developments. Vol. 1. Saxena, J. and F. Fisher (Eds.). Academic Press, New
York, NY. pp. 59-115.
Blaylock, B.C. and M.L. Frank. 1979. A comparison of the toxicity of nickel
to the developing eggs and larvae of carp (Cyprinus carpio). Bull. Environ.
Contain. Toxicol. 21:604-611.
Bornatowicz, N. 1983. Assessment of the acute toxicity of nickel sulfate to
rainbow trout. PB84232073. National Technical Information Service,
Springfield, VA.
Braginskiy, L.P. and E.P. Shcherban. 1978. Acute toxicity of heavy metals to
aquatic invertebrates at different temperatures. Hydrobiol. J. 14(6):78-82.
Brezina, E.R. and M.Z. Arnold. 1977. Levels of heavy metals in fishes from
selected Pennsylvania waters. Publication No. 50. Pennsylvania Department of
Environmental Resources, Bureau of Water Quality Management.
Bringmann, G. 1978. Determination of the biological toxicity of waterbound
substances towards protozoa. I. Bacteriovorous flagellates (model organism:
Entosiphon sulcatum Stein). Z. Wasser Abwasser Forsch. 11:210-215.
-------
Bringmann, G. and R. Kuhn. 1959a. The toxic effects of waste water on aquatic
bacteria, algae, and small crustaceans. Gesund.-Ing. 80:115-120.
Bringmann, G. and R. Kuhn. 1959b. Water toxicology studies with protozoans as
test organisms. Gesund.-Ing. 80:239-242.
Bringmann, G. and R. Kuhn. 1977a. Limiting values for the damaging action of
water pollutants to bacteria (Pseudomonas putida) and green algae
(Scenedesmus quadricauda) in the cell multiplication inhibition test. Z.
Wasser Abwasser Forsch. 10:87-98.
Bringmann, G. and R. Kuhn. 1977b. Results of the damaging effect of water
pollutants on Daphnia magna. Z. Wasser Abwasser Forsch. 10:161-166.
Bringmann, G. and R. Kuhn. 1978a. Limiting values for the noxious effects of
water pollutant material to blue algae (Microcystis aeruginosa) and green
algae (Scenedesmus quadricauda) in cell propagation inhibition tests. Vom
Wasser 50:45-60.
Bringmann, G. and R. Kuhn. 1978b. Testing of substances for their toxicity
threshold: Model organisms Microcysti s (Diplocystis) aeruginosa and
Scenedesmus quadricauda. Mite. Int. Ver. Theor. Angew. Litnnol. 21:275-284.
Bringmann, G. and R. Kuhn. 1979. Comparison of toxic limiting concentrations
of water contamination toward bacteria, algae and protozoa in the cell-growth
inhibition test, Haustech. Bauphys, Umwelttech. 100:249-252.
-------
Bringmann, G. and R. Kuhn. 1980a. Determination of the harmful biological
effect of water pollutants on protozoa. II. Bacteriovorous ciliates. Z.
Wasser Abwasser Forsch. 13:26-31.
Bringmann, G. and R. Kuhn. 1980b. Comparison of the toxicity thresholds of
water pollutants to bacteria, algae, and protozoa in the cell multiplication
inhibition test. Water Res. 14:231-241.
Bringmann, G. and R. Kuhn, 1981. Comparison of the effects of harmful
substances on flagellates as well as ciliates and on halozoic bacteriophagous
and saprozoic protozoa. Gas-Wasserfach, Wasser-Abwasser 122:308-313.
Bringmann, G., R. Kuhn and A. Winter. 1980. Determination of biological
damage from water pollutants to protozoa. III. Saprozoic flagellates. Z.
Wasser Abwasser Forsch. 13:170-173.
Brkovic-Popovic, I. and M. Popovic. 1977a. Effects of heavy metals on
survival and respiration rate of tubificid worms: Part I - Effects on
survival. Environ. Pollut. 13:65-72.
Brkovic-Popovic, I. and M. Popovic. 1977b. Effects of heavy metals on
survival and respiration rate of tubificid worms: Part II - Effects on
respiration rate. Environ. Pollut. 13:93-98.
Brown, V.M. and R.A. Dalton. 1970. The acute lethal toxicity to rainbow trout
of mixtures of copper, phenol, zinc and nickel. J. Fish Biol. 2:211-216.
-------
Brown, B.T. and B.M. Rattigan. 1979. Toxicity of soluble copper and other
metal ions to El_qdea canadensis. Environ. Pollut. 20:303-314.
Brown, V.M. 1968. The calculation of the acute toxicity of mixtures of
poisons to rainbow trout. Water Res. 2:723-733.
Buikema, A.L. and J. Cairns. 1975. The effects of sublethal concentrations of
zinc and nickel on the photonegative response of Dugesia tigrina. Virg. J.
Sci. 26:60.
Buikema, A.L. , Jr., J. Cairns, Jr. and G.W. Sullivan. 1973. Development and
assessment of acute bioassay techniques for the littoral rotifer, Philodina
acuticornis. PB290937, National Technical Information Service, Springfield,
VA.
Buikema, A.L., Jr., J. Cairns, Jr. and G.W. Sullivan. 1974a. Rotifers as
monitors of heavy metal pollution in water. Bulletin 71. Virginia Water
Resources Research Center, Blacksburg, VA.
Buikema, A.L., Jr., J. Cairns, Jr. and G.W. Sullivan. 1974b. Evaluation of
Philodina acuticornis (Rotifera) as a bioassay organism for heavy metals.
Water Res. Bull. 10:648-661.
Buikema, A.L. , Jr., C.L. See and J. Cairns, Jr. 1977. Rotifer sensitivity to
combinations of inorganic water pollutants. Bulletin 92. Virginia Water
Resources Research Center, Blacksburg, VA.
-------
Cairns, J., Jr., K.W. Thompson and A.C. Hendricks. 1981. Effects of
fluctuating, sublethal applications of heavy tnetal solutions upon the gill
ventilation response of bluegills (Lepomis macrochirus). EPA-600/3-81-003.
National Technical Information Service, Springfield, VA.
Calamari, D., G.F. Gaggino and G. Pacchetti. 1982. Toxicokinetics of low
levels of Cd, Cr, Ni and their mixture in long-term treatment on Salmo
gairdneri Rich. Chemosphere 11:59-70.
Call, D.J., L.T. Brooke, N. Ahmad and J.E. Richter. 1983. Toxicity and
metabolism studies with EPA priority pollutants and related chemicals in
freshwater organisms. PB83263665 or EPA-60Q/3-83-095. National Technical
Information Service, Springfield, VA.
Callahan, M.A., M.W. Slimak, N.W. Gabel, I.P. May, C.F. Fowler, J.R. Freed,
P. Jennings, R.L. Durfee, F.C. Whitmore, B. Maestri, W.R. Mabey, B.R. Holt
and C. Gould. 1979. Water-related environmental fate of 129 priority
pollutants. Vol I. EPA-440/4-79-029a. National Technical Information Service,
Springfield, VA. pp. 15-1 to 15-9.
Chapman, G.A., S. Ota and F. Recht. Manuscript. Effects of water hardness on
the toxicity of metals to Daphnia magna. U.S. Environmental Protection
Agency, Corvallis, OR.
Chaudhry, H.S. 1984. Nickel toxicity on carbohydrate metabolism of a
freshwater fish, Colisa fasciatus. Toxicol. Letters 20:115-121.
-------
Devi Prasad, P.V. and P.S. Devi Prasad. 1982. Effect of cadmium, lead and
nickel on three freshwater green algae. Water Air Soil Pollut. 17:263-268.
Dixon, W.J. and M.B. Brown, eds. 1979. BMDP Biomedical Computer Programs,
P-series. University of California, Berkeley, California, p. 521.
Ellis, M.M. 1937. Detection and measurement of stream-pollution. Bulletin No.
22. Bureau of Fisheries, U.S. Department of Commerce, Washington, DC.
Fezy, J.S., D.F. Spencer and R.W. Greene. 1979. The effect of nickel on the
growth of the freshwater diatom Navicula pelliculosa. Environ. Pollut.
20:131-137.
Forstner, U. 1984. Metal pollution of terrestrial waters. IN: Changing metal
cycles and human health. Nriagu, J.O. (Ed.). Springer-Verlag, New York, NY.
pp. 71-94.
Gerhards, U. and H. Weller. 1977. The uptake of mercury, cadmium and nickel
by Chlorella pyrenoidosa. Z. Pflanzenphysiol. 82:292-300.
Giattina, J.D., R.R. Carton and D.G. Stevens. 1982. Avoidance of copper and
nickel by rainbow trout as monitored by a computer-based data acquisition
system. Trans. Am. Fish. Soc. 111:491-504.
Gill, T.S. and J.C. Pant. 1981. Toxicity of nickel to the fish Puntius
conchonius (Ham.) and its effects on blood glucose and liver glycogen. Comp.
Physiol. Ecol. 6:99-102.
-------
Grande, M. and S. Andersen. 1983. Lethal effects of hexavalent chromium, lead
and nickel on young stages of Atlantic salmon (Salmo salar L.) in soft water.
Vatten 39:405-416.
Hale, J.G. 1977. Toxicity of metal mining wastes. Bull. Environ. Contam.
Toxicol. 17:66-73.
Hall, T. 1978. Nickel uptake, retention and loss in Daphnia magna. M.S.
thesis. University of Toronto, Toronto, Ontario, Canada.
Hall, T.M. 1982. Free ionic nickel accumulation and localization in the
freshwater zooplankter, Daphnia magna. Limnol. Oceanogr. 27:718-727.
Havas, M. and T.C. Hutchinson. 1982. Aquatic invertebrates from the Smoking
Hills, N.W.T.: Effect of pH and metals on mortality. Can. J. Fish. Aquat.
Sci. 39:890-903.
Hughes, G.M., S.F. Perry and V.M. Brown. 1979. A morphometric study of
effects of nickel, chromium and cadmium on the secondary lamellae of rainbow
trout gills. Water Res. 13:665-679.
Hutchinson, N.J. and J.B. Sprague. 1983. Chronic toxicity of a mixture of 7
metals to flagfish in soft, acid water. IN: Proceedings of the eighth annual
aquatic toxicity workshop. Kaushik, N.K. and K.R. Solomon (Eds.), p. 191.
-------
Hutchinson, T.C. 1973. Comparative studies of the toxicity of heavy metals to
phytoplankton and their synergistic interactions. Water Pollut. Res. Can.
8:68-90.
Hutchingson, T.C. and P.M. Stokes. 1975. Heavy metal toxicity and algal
bioassays. IN: Water quality parameters. Barabas , S. (Ed.). ASTM STP 573.
American Society for Testing and Materials, Philadelphia, PA. pp. 320-343.
Hutchinson, T.C., A. Fedorenko, J. Fitchko, A. Kuja, J. Van Loon and J.
Lichwa. 1975. Movement and compartmentation of nickel and copper in an
aquatic ecosystem. IN: Trace substances in environmental health - IX.
Hemphill, D.D. (Ed.). University of Missouri, Columbia, MO. pp. 89-105.
, J.C., J.E. Smith and J.M. Hassett. 1982. Factors influencing metal
accumulation by algae. EPA-600/2-82-100. National Technical Information
Service, Springfield, VA.
Jones, J.R.E. 1935. The toxic action of heavy metal salts on the three-spined
stickleback (Gasterosteus aculeatus). J. Exp . Biol. 12:165-173.
Jones, J.R.E. 1939. The relation between the electrolytic solution pressures
of the metals and their toxicity to the stickleback (Gasterosteus aculeatus
L.). J. Exp. Biol. 16:425-437.
Kaiser, K.L.E. 1980. Correlation and prediction of metal toxicity to aquatic
biota. Can. J. Fish. Aquat. Sci. 37:211-218.
-------
Lind, D. , K. Alto and S. Chaltterton. Manuscript:. Minnesota Environmental
Quality Board, Minneapolis, MN.
Lorz, H.W., R.H. Williams and C.A. Fustish. 1978. Effects of several metals
on smolting of echo salmon. EPA-600/3-78-090. National Technical Information
Service, Scringfield, VA.
Mann, H. and W.S. Fyfe. 1984. An experimental study of algal uptake of U, Ba,
V, Co and Ni from dilute solutions. Chem. Geol. 44:385-398.
Markarian, R.K., M.C. Matthews and L.T. Connor. 1980. Toxicity of nickel,
copper, zinc and aluminum mixtures to the white sucker (Catostomus
conrmersoni) . Bull. Environ. Contam. Toxicol. 25:790-796.
Mathis, B.J. and T.F. Cummings. 1973. Selected metals in sediments, water,
and biota in the Illinois River. J. Water Pollut. Control. Fed. 45:1573-1583.
McCabe, L.J., J.M. Symons, R.D. Lee and G.G. Robeck. 1970. Survey of
community water supply systems. J. Am. Water Works Assoc. 62:670-687.
Muramota, S. 1983. Influence of complexans (NTA, EDTA) on the toxicity of
nickel chloride and sulfate to fish at high concentrations. J. Environ. Sci.
Health 18A:787-795.
Muska, C.F. 1978. Evaluation of an approach for studying the quantitative
response of whole organisms to mixtures of environmental toxicants. Ph.D.
thesis, Oregon State University, Corvallis, OR.
-------
Muska, C.F. and L.J. Weber. 1977a. An approach for studying the effects of
mixtures of environmental toxicants on whole organism performances. IN:
Recent advances in fish toxicology. Tubb, R.A. (Ed.). PB273500 or
EPA-600/3-77-085. National Technical Information Service, Springfield, VA.
Muska, C.F. and L.J. Weber. 1977b. An approach for studying the effects of
mixtures of toxicants. Proc. West. Pharmacol. Soc. 20:427-430.
Mushak, P. 1980. Metabolism and systemic toxicity of nickel. IN: Nickel in
the environment. Nriagu, J.O. (Ed.). Wiley, New York, NY. pp. 499-523.
Nebeker, A.V., C. Savonen, R.J. Baker and J.K. McCrady. 1984. Effects of
copper, nickel, and zinc on the life cycle of the caddisfly Clistoronia
magnifica (Limnephiliclae). Environ. Toxicol. Chem. 3:645-649.
Nebeker, A.V., C. Savonen and D.G. Stevens. 1985. Sensitivity of rainbow
trout early life stages to nickel chloride. Environ. Toxicol. Chem.
4:233-239.
Neter, J. and W. Wasserman. 1974. Applied Linear Statistical Models. Irwin,
Inc., Homewood, Illinois.
Nriagu, J.O. 1980. Cilohal cycle and properties of nickel. IN: Nickel in the
environment. Nriagu, J.O. (Ed.). Wiley, New York, NY. pp. 1-26.
-------
. Dwyer. 1985. Sensitivity of young striped
mic contaminants in fresh and saline waters. Trans
'.. Larson. 1975. The role of trace elements in
•wths. PB241985 or EPA-660/2-75-008. National
ice, Springfield, VA.
er and M.E. Potter. 1982. Contaminant levels in
Mississippi. J. Miss. Acad. Sci. 27:139-147.
sso. 1978. Metal bioaccuraulat ion in fishes and
Lterature review. EPA-600/3-78-103. National
Springfield, VA.
tic toxicity of nickel to the fathead minnow. J.
46:760-765.
erson. 1966. The acute toxicity of some heavy
of warmwater fishes. Air Water Pollut. Int. J.
3. Kumar. 1981. Phycology and heavy-metal
•151.
status of fish
ven species of
its growth of two
ntals of aquatic
trocelli (Eds.).
apman and W.A.
»r quality
5es. PB85227049.
by metal-
1. Verh.
1 tolerance in
Can. J. Boc.
-------
Stratton, G.W. and C.T. Corke. 1979a. The effect of nickel on the growth,
photosynthesis, and nitrogenase activity of Anabaena inaequalis. Can. J.
Microbiol. 25:1094-1099.
Stratton, G.W. and C.T. Corke. 1979b. The effect of mercuric, cadmium, and
nickel ion combinations on a blue-green alga. Chemosphere 10:731-740.
Swaine, D.J. 1980. Nickel in coal and fly ash. IN: Nickel in the environment.
Nriagu, J.O. (Ed.). Wiley, New York, NY. pp. 67-92.
Tarzwell, C.M. and C. Henderson. 1960. Toxicity of less common metals to
fishes. Ind. Wastes 5:12.
Taylor, G.J. and A.A. Crowder. 1983. Uptake and accumulation of copper,
nickel and iron by Typha latifolia grown in solution culture. Can. J. Bot.
61:1825-1830.
Tong, S.S., W.D. Youngs, W.H. Gotenmann and D.J. Lisk. 1974. Trace metals ia
Lake Cayuga lake trout (Salvelinus namaycush) in relation to age. J. Fish.
Res. Board Can. 31:238-239.
Trollope, D.R. and B. Evans. 1976. Concentrations of copper, iron, lead,
nickel and zinc in freshwater algal blooms. Environ. Pollut. 11:109-116.
U.S. EPA. 1976. Quality criteria for water. EPA-440/9-76-023. National
Technical Information Service, Springfield, VA.
-------
U.S. EPA. 1978. Metal bioaccuraulation in fishes and aquatic invertebrates: A.
literature review. EPA-600/3-78-103. National Technical Information Service,
Springfield, VA.
U.S. EPA. 1980. Ambient water quality criteria for nickel. EPA-440/4-80-060.
National Technical Information Service, Springfield, VA.
U.S. EPA. 1983a. Methods for chemical analysis of water and wastes.
EPA-600/4-79-020 (Revised March 1983). National Technical Information
Service, Springfield, VA.
U.S. EPA. 1983b. Water quality standards regulation. Fed. Regist.
48:51400-51413. November 8.
U.S. EPA. 1983c. Water quality standards handbook. Office of Water
Regulations and Standards, Washington, DC.
U.S. EPA. 1985. Technical support document for water-quality based toxics
control. Office of Watet, Washington, DC.
Uthe, J.F. and E.G. Bligh. 1971. Preliminary survey of heavy metal
contamination of Canadian freshwater fish. J. Fish. Res. Board Can.
28:786-788.
van Hoof, F. and J.P. Nauwelaers. 1984. Distribution of nickel in the roach
(Rutilus^ rutilus L.) after exposure to lethal and sublethal concentrations.
Chemosphere 13:1053-1058.
-------
Verraa, S.R., M. Jain and R.C. Dalela. 1981. In vivo removal of a few heavy
metals in certain tissues of the fish Notopterus notopterus. Environ. Res.
26:328-334.
Wachs, V.B. 1982. Concentration of heavy metals in fishes from the river
Danube. Z. Wasser Abwass. For. 15:43-49.
Wang, H.K. and J.M. Wood. 1984. Bioaccumulation of nickel by algae. Environ.
Sci. Technol. 18:106-109.
Warnick, S.L. and H.L. Bell. 1969. The acute toxicity of some heavy metals to
different species of aquatic insects. J. Water Pollut. Control Fed.
41:280-284.
Weber, W.J., Jr. and W. Stumm. 1963. Mechanism of hydrogen ion buffering in
natural waters. J. Am. Water Works Assoc. 55:1553-1578.
Wehr, J.D. and B.A. Whitton. 1983. Accumulation of heavy metals by aquatic
mosses. 2: Rhynchostegium riparioides. Hydrobiologia 100:261-284.
Whitley, L.S. and R.A. Sikora. 1970. The effect of three common pollutants on
the respiration rate of tubificid worms. J. Water Pollut. Control Fed.
42:R57-R66.
Whitton, B.A. and F.H.A. Shehata. 1982. Influence of cobalt, nickel, copper
and cadmium on the blue-green alga Anacystis nidulans. Environ. Pollut.
(Series A) 27:275-281.
-------
Willford, W.A. 1966. Toxicicy of 22 therapeutic compounds to six fishes.
Publication 35. U.S. Fish and Wildlife Service.
Wong, P.T., Y.K. Chau and P.L. Luxon. 1978. Toxicity of a mixture of metals
on freshwater algae. J. Fish. Res. Board Can. 35: 479-481.
Wong, P.T.S., Y.K. Chau and D. Patel. 1982. Physiological and biochemical
responses of several freshwater algae to a mixture of metals. Chemosphere
11:367-376.
Wren, C.D., H.R. Maccrimmon and B.R. Loescher. 1983. Examination of
bioaccumulation and biomagnification of metals in a precambrian shield lake
Water Air Soil Pol lut. 19:277-291.
-------