EPA-650/2-74-002a
January 1974
Environmental  Protection Technology  Series


                                                           ^
                                                  i5

-------
                                      EPA-650/2-74-002a
EFFECTS  OF  DESIGN AND OPERATING
           VARIABLES ON  NOX
    FROM  COAL-FIRED  FURNACES--
                   PHASE  I
                       by

                  W. Joseph Armento

               Babcock and Wilcox Company
             Research and Development Division
                  Alliance, Ohio  44601
                Contract No. 68-02-0634
                  ROAP No. 21ADG-41
               Program Element No. 1AB014
           EPA Project Officer: David W . Pershing

               Control Systems Laboratory
           National Environmental Research Center
         Research Triangle Park , North Carolina 27711
                     Prepared for

           OFFICE OF RESEARCH AND DEVELOPMENT
          U.S. ENVIRONMENTAL PROTECTION AGENCY
                WASHINGTON, D.C. 20460

                     January 1974

-------
This report has been reviewed by the Environmental Protection Agency and




approved for publication.  Approval does not signify that the contents




necessarily reflect the views and policies of the Agency, nor does




mention of trade names or  commercial products constitute endorsement




or recommendation for use.
                                 11

-------
                                   ABSTRACT

     The purpose of this contract is to investigate various combustion
modification techniques which might be applicable for control of NO  on
                                                                   2v
pulverized coal fired utility boilers and to compare the relative effec-
tiveness of these methods for gas and oil combustion.

     These combustion techniques have been applied to a single burner coal
fired unit.  The techniques studied were:  (1) excess air, (2) air preheat,
(3) rating, (4) flue gas recirculation, (5) staged combustion, (6) quench,
and (7) swirl.

     Reductions of up to 501 in NO emission levels are possible using staged
combustion.  Reduction of excess air levels from 30 to 0% can yield similar
results.  Flue gas recirculation shows only moderate reduction.

     Fuel bound nitrogen conversion increases with increasing excess air
level and decreasing temperature.  At substoichiometric conditions, the
final precursors for NO formation from either fuel bound nitrogen conversion
or thermal atmospheric fixation are identical.

     For existing units, control of excess air promises to be the best
method for NO  reduction.
             
-------
                               ACKNOWLEDGMENTS

     The results of this phase of the contract are due to the efforts of
others at the Alliance Research Center.  In particular, W. L. Sage was
responsible for administrative help; E. D. Scott and F. M. Holsopple were
responsible for furnace operation; and E. IV. Stoffer, J. M. Kibler, and F. M.
Holsopple were responsible for instrumentation.
                                      IV

-------
                               TABLE OF CONTENTS
                                                                       Page
SYMBOLS AND ABBREVIATIONS -			  ix
   I.  INTRODUCTION					  1
       A.  Objectives			  1
       B.  Phase I 		-			-  1
       C.  Background and Description of Work 	  2
       D.  Significant Results 	  2
  II.  APPARATUS 			  5
       A.  Description of the Basic Combustion Test Unit 	  5
       B.  Instrumentation and Sampling --	--	--	  11
       C.  Furnace and Burner Detail		--			  16
 III.  PROCEDURES	  19
  IV.  MEASUREMENTS AND CALCULATIONS 		  21
       A.  Variables Studied	  21
       B.  Range of Variables			  21
       C.  Measurements Taken			  22
   V.  RESULTS				-		  23
  VI.  ANALYSIS OF DATA AND RESULTS 	  25
 VII.  DISCUSSION					  51
       A.  Results		-  51
       B.  Data and Testing Effects			  61
       C.  Final Presentation			  66
       D.  Interrelated Variables			  66
VIII.  CONCLUSIONS		-			  69
  IX.  FUTURE WORK			  71
   X.  REMARKS			  73

APPENDIX A, FUELS DATA, ANALYSES, AND CALCULATIONS 	 A-l
APPENDIX B, OPERATING CONDITIONS, MEASUREMENTS, AND CALCULATIONS 	 B-l
APPENDIX C, PRELIMINARY TEST DATA	C-l
APPENDIX D, PRELIMINARY DATA PLOTS		---		D-l
APPENDIX E, MATHEMATICAL DERIVATIONS AND CALCULATIONS 	 E-l
APPENDIX F, PRELIMINARY ECONOMICS ON FIELD UNIT MODIFICATION
            OR CONTROL		- F-l
APPENDIX G, PHASE II - WORK PLAN	G-l

-------
                                List of Tables
Table
6.1    Initial Tests (Series I for Coal) 		  26
6.2    Flue Gas Recirculation Tests (Series II for Coal) 	  27
6.3    Two Stage Combustion Tests (Series III for Coal) 	  28
6.4    Natural Gas Tests (Series IV A) 			  29
6.5    Oil Tests (Series IV B) 	-		  30
6.6    Swirl Tests (Series V) 		-	--		  31
6.7    Quench Tests (Series VI) 		---  31
6.8    Summary of Series II, Part 1 				—  32
6.9    Summary of Series II, Part 2	---			---  32
6.10   Summary of Series III, Part 1 	  33
6.11   Summary of Series III, Part 2 		  34
6.12   Summary of Series IV A, Part 1		-	-	-	  35
6.13   Summary of Series IV A, Part 2			  35
6.14   Summary of Series IV B, Part 1		-		  36
6.15   Summary of Series IV B, Part 2				-  36
6.16   Summary of Swirl Tests, Series V, Part 1 --	-	-	  39
6.17   Summary of Swirl Tests, Series V, Part 2 	  39
6.18   Summary of Quench Tests, Series VI, Part 1 --			   40
6.19   Summary of Quench Tests, Series VI, Part 2			  40
6.20   Carbon Loss and Burner Efficiency		-		  41
7.1    Relative Effects on NO in Flue Gas 			  67

A.I    Coal Analysis Data	 			A-2
A.2    Natural Gas Analysis	 			A-2
A.3    Bunker C Oil Analysis (#6 Residual) --		A-3
C.I to C.4    Series I, Preliminary Data				C-3,C-4
C.5 to C.8    Series II, Preliminary Data			C-5,C-6
C.9 to C.12   Series III, Preliminary Data --		C-7,C-8
C.13 to C.16  Series IV A, Preliminary Data			C-9,C-10
C.17 to C.20  Series IV B, Preliminary Data -	-		C-11,C-12
C.21 to C.24  Series V, Preliminary Data			C-13
C.25 to C.28  Series VI, Preliminary Data			C-14
                                       VI

-------
                                List of Figures
Figure                                                                 Page
2.1    Basic Combustion Unit (Single Burner) 		  6
2.2    Coal Burner				  6
2.3    Gas Burner	  6
2.4    Oil Burner	  6
2.5    Oil Atomizer	  7
2.6    Burner with Fixed Vanes 	  9
2.7    Burner with Adjustable Vanes 	  10
2.8    Front Slot Positions						-	  12
2.9    Side Slot Positions			  12
2.10   View of Burner and Slots		---		  13
2.11   Sample System ---				  14
2.12   Instrumentation			  14
2.13   Furnace Cross Section					  17
2.14   Burner Cross Section		-	  17
6.1    Excess Air			  43
6.2    Load			  43
6.3    Preheat			  43
6.4    Preheat, High Excess Air			  43
6.5    Air Input with Coal 		  44
6.6    Primary Flue Gas Recirculation				  45
6.7    Secondary Flue Gas Recirt.ulation		-		  45
6.8    Staged Combustion Options 	  46
6.9    Coal, Variable Port 			  46
6.10   Coal, Staged Combustion			  46
6.11   Gas, Staged Combustion	  47
6.12   Oil, Staged Combustion	  47
6.13   Burner Efficiency vs. Stoichiometry			  47
6.14   Burner Efficiency vs. Load —			  47
6.15   Burner Efficiency vs. Stoichiometry x Load			  48
6.16   Burner Efficiency vs. Load/Stoichiometry —		  48
6.17   NO Reduction for Swirl Tests 	  49
6.18   NO Reduction for Quench Tests 			  49
                                       VI1

-------
                          List of Figures  (Continued)
Figure                                                            Page
D.I to D.24    Preliminary Data, Coal  	  D-5 to D-10
D.25 to D.48   Preliminary Data, Gas 	  D-ll to D-16
D.49 to D.72   Preliminary Data, Oil 	  D-17 to D-22
D.73 to D.77   Flue Gas Recirculation	  D-23, D-24
D.78 to D.84   Two Stage Combustion			  D-24, D-25
G.I            Tijne Schedule for Phase II  	  G-2
                                        Vlll

-------
                          SYMBOLS AND ABBREVIATIONS


     This list of symbols and abbreviations includes all items from the text
from which confusion may result.  All air weights and measurements are calculated
dry unless otherwise noted.
Symbol, Abbreviation
A
Aver
BTU
BTUa
BTU£
BTUG
BTUm
D2
e
E
f
FB
FC02
FGR
FH20
               Definition
Pre-exponential rate constant
The average of two measurements
Fuel enthalpy release, BTU/hr
Air enthalpy, BTU/lb
Flue gas enthalpy, BTU/lb
Total enthalpy release in furnace, BTU/hr
Humidity (in air) enthalpy, BTU/lb of air
Differential
Diameter of orifice, inches
Diameter of pipe, inches
Natural constant
Activation energy
Subscript indicating forward
Fraction of total air at burner
Fraction of CO^ in flue gas
Flue gas recirculation, %
Fraction of HJD in flue gas
                                       IX

-------
                    SYMBOLS AND ABBREVIATIONS  (Continued)
Symbol, Abbreviation                                 Definition

k                                     Kinetic rate constant

L,                                    Measured value #1, base point

L.]                                    Standard deviation on base point
                                      measurement

L2                                    Measured value #2, reduced point

LI                                    Standard deviation on reduced point
                                      measurement

L.,                                    Calculated reduction

L,                                    Standard deviation of calculated
                                      reduction

MA                                    Moles of stoichiometric air/lb fuel

MAI                                   Moles of stoichiometric igniter air/lb
                                      igniter fuel

M'VR                                   Moles of stoichiometric test air/lb
                                      test fuel

MC                                    Moles of C02 in  flue gas/lb fuel

MCI                                   Moles of CC>2 in  igniter flue gas/lb
                                      igniter fuel

MCR                                   Moles of CO, in  test flue gas/lb test
                                      fuel       i

MF                                    Moles of flue gas/lb fuel

MFI                                   Moles of igniter flue gas/lb igniter fuel

MFR                                   Moles of test flue gas/lb test fuel

Mvi                                    Moles of moisture in flue gas/lb fuel

MMF                                   Moles of moisture from the fuel

MMH                                   Moles of moisture from the air humidity

MMI                                   Moles of moisture in igniter flue  gas/lb
                                      igniter fuel

-------
                    SYMBOLS AND ABBREVIATIONS  (Continued)
Symbol, Abbreviation                                 Definition

NMR                                   Moles of moisture in test flue gas/lb
                                      test fuel

n                                     Temperature exponential in kinetic rate
                                      expression

NDIR                                  NO measurement from the NDIR  instrument, ppm
                                      Also used for Beckman "Non dispersive
                                      Infrared"

NF                                    Fraction of full meter flow for natural
                                      gas igniter

NO                                    Nitric oxide*

NO-                                   Nitrogen dioxide

N0v                                   A mixture of NO and N00
  x                                                         &

N_                                    Nitrogen*

02                                    Oxygen*

PB                                    Barometric pressure, atm

PBA                                   Percent of stoichiometric air at burner

PH Q                                  Partial pressure of H-O in atmosphere, atm

P                                     Total pressure on orifice, atm
POP                                   Percent oxygen measured in flue gas,
                                      corrected for combustibles


PS                                    Pnet - PH20> atm

PT                                    PB - PH Q, atm
                                             it
PTA                                   Percent stoichiometric (theoretical) air

r                                     Subscript indicating reverse
* This symbol in brackets; i.e., [NO], indicates the concentration of that gas.
                                      XI

-------
                     SYMBOLS AND ABBREVIATIONS  (Continued)
Symbol, Abbreviation

R

R-N


STDV

t

T


TA

TAG

TECo



TFG

TM

Total


W


Wa

W
W,
 N
W,
 NI
Gas constant

Specifies an organic fuel bound
nitrogen molecule*

Standard deviation of Aver

Time

Temperature of orifice, °F; also used
as kinetic temperature for any reaction

Ambient temperature, °F

Air preheat temperature, °F

NO measurement from TECo instrument, ppm;
also used for "Thermo Electron Corp."
chemiluminescence

Flue gas temperature, °F

Total moles/lb fuel

Subscript designating sum of all partial
concentrations

Weight of gas flow, Ib/hr

Weight of air input to furnace, Ib/hr

Weight of fuel input to furnace, Ib/hr

Weight of flue gas from furnace, Ib/hr

Weight of recycled flue gas, Ib/hr

Weight of natural gas flow, Ib/hr

Weight of natural gas flow in igniter,
Ib/hr
* This symbol in brackets; i.e., [NO], indicates the concentration of that gas.
                                      XII

-------
                    SYMBOLS AND ABBREVIATIONS (Continued)



Symbol, Abbreviation                                 Definition

W-                                    Weight of air through second stage, Ib/hr

x                                     Subscript of variable type indicating any
                                      combination; i.e., r, 1, etc.

AH                                    Differential pressure across orifice,
                                      inches HLO

1,2,3...                              Subscript indicating reaction number for
                                      partial value
                                      xi 11

-------
I.    INTRODUCTION

     A.  Objectives

         The primary objective of this contract is to investigate on experimental
coal fired furnaces, a variety of combustion techniques which could be
applicable for control of NO  and related combustible emissions such as CO,
                            x
carbon, and hydrocarbons.  In addition, we are to provide detailed correla-
tions and to define the critical conditions for application of the most
promising combustion control techniques to a single burner furnace.  And
finally we are to optimize the most successful techniques for pollution con-
trol in the burning of coal and to identify potential problems in boiler
operational and thermal performance.  The work for the contract is divided
into three phases:

     Phase I:    Identification of the most promising control techniques
                 using a single burner, pulverized coal fired furnace.

     Phase II:   Correlation and definition of the conditions for the
                 most promising techniques as applied to the single burner
                 unit used in Phase I.

     Phase III;  Optimization of the most successful techniques from Phase
                 II as applied to a multiburner, pulverized coal fired
                 furnace.

The criteria applied to the testing will include the degree to which nitrogen
oxides are reduced, effects on thermal and operational performance, and applica-
bility and cost of modification to existing or new boilers.

     B.  Phase I

         The primary objective of this phase is to identify the major variables
which  influence the formation of NO  and the related combustible emissions in
                                   -A.
an experimental single burner, coal fired furnace.  In addition, it is necessary
                                      -1-

-------
to compare the effectiveness of the various combustion control techniques for
gas and oil and to determine the general applicability of control techniques
to all utility boiler types and fuels.

     C.  Background and Description of Work

         The contract work for Phase I was started October, 1972, and was planned
to continue for about 30 weeks.  The criteria utilized for Phase I were the
degree to which combustion techniques will control or inhibit NO  formation,
                                                                A
the effects of these techniques on thermal and operational performance of the
unit, and the general applicability and cost fo->- application of these techniques
to existing units or new units under design.

         The design and operational variables studied were fuel type, ratio of
air to fuel, heat liberation rate, air preheat, flue gas recirculation, staged
combustion and port position, quench, and swirl.  Most of the testing was done
using one coal, although natural gas and a heavy residual fuel oil were inves-
tigated on a limited basis for comparison.  For all operational and design
variables except port position, quench, and swirl, the variable was changed
over a wide range to include both normal operating conditions and extreme
operating conditions which are not ordinarily practical.

     D.  Significant Results

         It has been found that fuel type is of extreme importance and
that a change in the type of fuel produces entirely different effects for the
major variables studied.  In particular, gas and coal are significantly dif-
ferent in most responses to operational variables and although thev behave
similarly for the design variables, thev show far different reduction effects.
Oil has NO  emission levels similar to gas but its responses to variables are
          Jx
similar to coal.

         In the coal firing tests, the major changes were due to excess air
and load at moderate or high excess air.  Flue gas recirculation was only
                                      -2-

-------
effective at high levels of recirculation.  Staged  combustion was  the most
promising but only moderately effective and flue  gas  recirculation in combina-
tion with staged combustion showed no further reduction over staging alone.
Preheat of air showed only very small effects.  The quench  rate  (heat removal
rate) showed some effect on NO  emission  levels.
                              A.

         The NO  levels for natural gas were greatly  affected by air preheat,
               J\.
flue gas recirculation, staged combustion, and flue gas recirculation in
combination with staging.  Minor effects  on NO  emission are found from changes
                                              .X
in excess air and load.  A change in swirl also produced a  minor change in NO
                                                                             A
emissions.  Impeller position was an important variable also.

         Although the magnitude of the NO emissions  for oil are similar  to  gas
                                          .A.
under most conditions, many of the responses to variables are the  same as for
coal.  The major variable effecting NO  emission  for  oil was found to be  staged
                                      J\.
combustion.  A small effect is noted for  flue gas recirculation.   Little  or  no
effect on NO. emissions is noticed for preheat, load,  or excess air except at
            .A.
low excess air.
                                      -3-

-------
-4-

-------
II.  APPARATUS

     The single burner coal furnace used at the Alliance Research Center is
called "The Basic Combustion Test Unit."  Next to the furnace is a laboratory
area where the instrumentation for stack gas measurements is operated.

     A.  Description of the Basic Combustion Test Unit

         A schematic of the furnace is shown in Figure 2.1.  It is of cylin-
drical construction with a water-cooled jacket and partially lined with a
1-inch thick refractory brick.  The fuel and air input at the burner is split
into the primary (fuel) and secondary (air) flows.  Depending upon fuel type,
the following input is a normal loading of 5,000,000 BTU per hour:

         1)  Coal - primary air - ^ 15% total combustion air
                  - coal in prijnary air - ^ 500 Ib per hour
                  - secondary air - balance of burner combustion air

         2)  Gas  - primary fuel feed of about 250 Ib gas per hour
                  - secondary air - burner combustion air

         3)  Oil  - primary fuel feed of about 300 Ib per hour
                  - primary atomization with steam (^ 10 Ib per hour)
                  - secondary air - burner combustion air

Figure 2.2 is an illustration of the burner used for coal firing.  The spinning
vanes are fixed and therefore only one swirl can be applied to the secondary
air.  The coal spreader at the end of the primary pipe is set at a 45° angle
of divergence from the centerline to disperse the coal into the secondary air
stream.  Figures 2.3 and 2.4 show the burner used for gas and oil.  There are
16 movable vanes (not illustrated, but in the same relative position as shown
in Figure 2.2) which are symmetrically placed around the burner.  The vane
angle can be varied from 0°, or no swirl, to a maximum of 30°, or the maximum
swirl used during this test period.  Figure 2.5 illustrates a typical oil
sprayer plate; the atomization is accomplished by use of steam.  The gas/oil
                                      -5-

-------
                 FIGURE 2.1
FIGURE 2.2
        BASIC COMBUSTION UNIT (SINGLE BURNER)
                                                                        COAL BURNER
                                         STACK
NATURAL GAS
LIGHTER
 FUEL
                 FIGURE 2.3
FIGURE 2.4
                  GAS BURNER
                                                                        OIL BURNER
/ i

•
•*




'• \

.
                                           -6-

-------
  FIGURE 2.5
OIL ATOMIZER
   J$^
   s^/y^/^^/^y^y^y^y/y/j
OIL
   -7-

-------
burner was only used for coal when unsuccessful attempts were made  to determine
the effect of swirl on coal firing.  Figures 2.6 and  2.7 are photographs of  the
coal and gas/oil secondary burner hardware respectively  (no fuel  supply is
shown) as they look before placement in the windbox.   In summary, the following
configurations have been used for firing:

         1)  Coal - coal burner  (6 vaned) for all tests except swirl at
             immovable vane setting - coal feed pipe  carries primary air
             (> 15% total combustion air) for coal transport and  has a
             divergent 45° spreader outlet.

         2)  Swirl  (coal) - gas/oil burner - gas spuds and oil impeller
             were removed and replaced with coal feed as used in  No. 1.
             Vanes always set at 30° (fire unstable at lower angles,
             with loss of ignition at 0°).

         3)  Gas - all tests used eight spuds with ring feed and  impeller
             in place.  Variable setting of impeller  used only for
             specific tests,  Vanes always set at 30°  (maximum angle)
             except for swirl tests.

         4)  Oil - all tests used oil feed in center  pipe with impeller
             in place.  Impeller setting was varied only for specific
             tests.  Gas spuds removed.  Gas feed ring left in place.
             Vanes always set at 30° (maximum angle)  for all tests.

         5)  Igniter - supplied up to 1% by weight fuel and up to 21 BTU
             release rate in furnace.  Uses about 3 Ib natural gas  per
             hour at 20% flow.  Only used during tests for coal to  main-
             tain stable firing at low air and high load.  Used for all
             coal tests for consistency at 3 Ib per hour except when
             required for one test at 7 Ib per hour.  For all gas and
             oil tests, used only for initial flame ignition and  then
             shut off.
                                      -8-

-------
                               FIGURE 2.6
                        BURNER WITH FIXED VANES
inches
   I
I    I    I    I   I    I   I    I    |
         ONE FOOT
                                     -9-

-------
         FIGURE 2.7


BURNER WITH ADJUSTABLE VANES
                                               o
                                               o
                                              . o
                                           o
                                           c
                -10-

-------
         The positions of the staging ports are illustrated  in Figures  2.8 and
2.9.  Figure 2.10 is a photograph of the ports as placed  inside the  furnace.
The front slots are set up to admit second stage air from 12-in. by  1-in.
inlets parallel to the burner fuel/air feed.  The side slots are set up to
allow air into the furnace from 2-in. by 6-in. slots perpendicular to the
central axis but offset circumferentially and arranged so that the mixing
swirl around the center axis is opposite to the secondary swirl.  Only  one
set of second stage ports is operated at one time; never  both sets simulta-
neously.

         The refractory lining of the furnace is 1-in. brick.  The refractory
lining extends from the burner down to the mid section of the furnace for a
length of 4 ft.  During the tests using a higher quench rate, the refractory
was removed from the last 2 ft and covered only the area  from the burner down
one-quarter length of the furnace.

     B.  Instrumentation and Sampling

         There are two probes in the stack from which gases  and ash  are
regularly taken for measurement.  Figure 2.11 shows the relative probe
positions on the stack and the relative position of the gas  sampling probe
inside the stack.  The first probe is used exclusively for pulling ash  samples
into a bag filter to determine the ash loading in the gas  stream and to provide
an ash sample for further analysis.  The second probe is  used exclusively for
gas samples and subsequent measurements.  A third probe position is  available
1 ft above and slightly offset from the gas sample probe  for availability of
an EPA train and for traverses of the stack.

         The instrumentation probe branches into two gas  sample lines.  The
first line carries the gas sample into a pair of Bailey Meter hot-wire
analyzers used for measuring CL and total gaseous combustibles.  The output
from these two meters is continually monitored and recorded.  The second line
carries the gas sample into a 50°F ice bath (see Figure 2.12) before being
                                      -11-

-------
  FIGURE  2.8
FRONT SLOT POSITIONS
  FIGURE 2.9
SIDE SLOT POSITIONS
        -12-

-------
       FIGURE 2.10
VIBY OF BURNER AND SLOTS
             -13-

-------
              FIGURE 2.11
             SAMPLE SYSTEM
                                           FIGURE 2.12
                                           INSTRUMENTATION
    TO EPA
     TRAM
TO BALEY
  METERS
   TO NO, SCj, f
   CO, 0-INSTRUMENTS
      GAS*
    SAMPLE
     PROBE
P2;
                   ASH
                 SAMPLE
                 ., PROBE
                 '-:>;
                            ~T
       BAG  A  )
       FITER  (J
                                          FLUE GAS	.
                                          SAMPLE
                                          COLD FINGER
                                           50 F ICE BATH
                                                             MALLCOSORB COLUMN
                                                                   \
                                                        WHITTAKER
                                                        S02
carried into the instruments.  This removes most of the water in the sampled
flue gas.  The temperature is maintained as closely as possible to 50°F.  The
gas sample then flows separately into each of the following instruments:

         1)  A Thermo Electron Corporation (TECo) chemiluminescence
             NO-NO- monitor

         2)  A Whittaker NO chemical cell instrument with a Mallcosorb
             column to remove SO-, CO-, and H-0 before NO measurement

         3)  A Beckman nondispersive infrared (Nl)IR) NO analyzer with
             a pretreatment chamber to remove 1LO which interferes in
             the NO measurement

         4)  A Whittaker chemical cell SO- analyzer

         5)  An MSA infrared analyzer  (LIRA) for CO
                                      -14-

-------
         6)  An MSA paramagnetic 0- analyzer

All instrumental outputs except for the CO  and 0-  analyzers  are continuously  re-
corded.  The outputs of the CO and 0_  instruments  are manually recorded  for each
test however.

         Large discrepancies were found between  the NDIR  and TECo  in our early
tests.  These discrepancies could not  be  attributed to water interference be-
cause the TECo usually had a higher reading than the NDIR; a water interference
would have been indicated only if the  TECo  read  lower than the NDIR.  The
following pretreatments were tried before the NDIR gas measurement cell, but
after the 50°F water bath:*

         1)  No pretreatment
                 o
         2)  A 3 A mole sieve with small  amounts of  silica gel  as  an
             indicator
                 o
         3)  A 3 A mole sieve with no silica gel

         4)  Silica gel

         5)  A dry ice bath

         6)  A dual dry ice bath  (two baths in  tandem)

         7)  Anhydrous CaCl2

         8)  CaCl2-2H20  (dihydrate)

         9)  A 34°F water bath
   The  50°F water bath was  sufficient  for  the TECo and  the reading of the
   TECo was unaffected by minor changes  of temperature  in this bath.
                                       -15-

-------
The results of each unsatisfactory method are  summarized below by method
number:

         1)  Small variations in the  temperature  of the 50°F water bath led
             to changes in the H-0 content of  the gas  sample and large
             variations in the NDIR reading.

       2-4)  Loss of NO from flue gas when SO- and 09  were  present.
                                             Z      t*

       5-6)  When compared, treatment 6 gave lower NO  readings than
             treatment 5 suggesting both  treatment methods  were unreliable.

       7-8)  Same results as methods  2-4.

Thus it was found that treatment No.  9, the 34°F  water bath,  was the only
successful treatment for flue gas measurement  of  NO in the  presence of  SO-
and 0~.  The temperature of the sample gas in  the cold finger was maintained
during testing at 34 +_ 0.5°F by addition  of ice to the water in the bath
periodically.  The water interference due to the  humidity of 34°F saturated
flue gas was determined experimentally by bubbling warm air at 70-80°F  through
water of the same temperature, passing it through the  50°F  water bath,  and
then through the 34°F ice bath noting condensation of  water in the cold finger.
The measured interference used to correct all  future flue gas  measurements
was 55 +_ 5 ppm NO (the instrument cannot  be read  to better  than H^ 5 to  10 ppm
NO).  No further problems were experienced either with loss of NO or increased
water interference in NDIR readings.

     C.  Furnace and Burner Detail

         Figures 2.13 and 2.14 illustrate  the  details  of  the  furnace and burner
cross sections.  The impeller positional  extremes  are  shown for the oil and gas
burner.   The coal nozzle exit position is  just at  the  beginning of the  throat
flair of 27° (to the burner axis).
                                      -16-

-------
      FIGURE 2.13
FURNACE CROSS SECTION
      FIGURE 2.14
 BURNER  CROSS SECTION
           -17-

-------
-18-

-------
III.   PROCEDURES

       The day's testing always commenced with the furnace warmup period and
instrument calibration.  The test series to be carried out in the day's testing
started with one or two base line tests at normal operating conditions to
verify that everything was operating properly.  Only when the furnace, its related
systems, and the instrumentation were working properly did testing begin.

       The sequence for a test run would be to set furnace conditions and check
the operation of all instruments.  When all equipment and all temperatures were
equilibrated to a constant state of firing, the data would be taken; first data
were read from non-recording instruments, and then data were read off the strip
charts for recording instruments on the basis of the time the test was made.

       If there were to be comparison tests run in pairs to determine the
relative decrease in emissions, both tests were always run together on the
same day in order to minimize day-to-day variations.
                                       -19-

-------
-20-

-------
IV.  MEASUREMENTS AND CALCULATIONS

     A.  Variables Studied

         There are two types of control that can be used for reduction of NO,.
                                                                            .A.
Operational control techniques are more easily applied to existing units; the
physical change on the unit is minijnized and the final cost of the change on
the unit will be lower.  Design methods would be applied to new units yet to
be constructed and, therefore, in this manner a minimum of redesign and re-
construction costs would be entailed.  In addition, it is important to realize
that modification of existing units might be physically impractical or economi-
cally unattractive.

         The design variables, which suggest physical and mechanical changes which
would be made in the unit, include flue gas recirculation, staged combustion,
quench rate, and basic fuel type.  On the other hand, the operational variables
used to modify control on existing units include excess air, fuel firing rate,
air preheat, and swirl.  These groups of variables are not meant to be mutually
exclusive.

         An attempt was jnade to hold all conditions constant and to change the
one variable under study over a wide range.  However, many of these are inter-
related and thus as load, excess air, preheat, and the other variables were
changed, the air velocities changed leading to a variation in mix rate, turbu-
lence, and combustion intensity.  No attempt has been made to relate all of
these variables, but an attempt to do so is projected as part of Phases II and
III.

     B.  Range of Variables

         As each variable was in turn studied, the other variables were held
constant.  Generally the two extremes and the middle of the range of a variable
were tested.
                                       -21-

-------
         The range of each variable was  selected  so  that  the  entire practical
range of field unit operation could be studied.   The extremes of the  range
were usually outside the practical limits for normal operation of boilers.
The exceptions have occurred where our basic combustion unit  would have  shown
unstable combustion tendencies and no meaningful  test data could be attained.
Each variable will be specifically described under the results.

     C.  Measurements Taken

         For each of the test run measurement sequences,  the  time was noted; all
recording instruments were read at the equivalent of that time after  all non-
recording instruments were read.  There  were always  two people to take measure-
ments; one for the flue gas analysis instrumentation and  one  for the  furnace
conditions.

         The raw flue gas analysis data* taken was:  barometric pressure; temper-
ature of the instrument area; oxygen from the MSA; carbon monoxide from  the MSA;
S02 from the Whittaker; and NO from the  TECo, Whittaker  (no C02, S02, or H20 in
measured sample), and the NDIR (34°F saturated).  In addition,  spot checks were
made by ORSAT of oxygen, carbon monoxide, and carbon dioxide;  for substoichio-
metric firing, only ORSAT could be used  for carbon monoxide.   Ash samples were
also taken .during some tests and the measurements required were:  time duration
of test; change in weight of ash filter  bag; and  the orifice  temperature,
differential pressure, and absolute pressure.  An ash sample  was removed from
the filter bag for further analysis; always for unburned  carbon and sometimes
for nitrogen.

         The furnace data accumulated was:  the temperature,  differential, and
absolute pressures across a flow meter on an orifice for  each of primary air,
secondary air, the flue gas for all recirculation methods individually including
primary, secondary, and second stage; the natural gas burner,  and the natural
gas igniter.  The oil supply and return  pressures and the coal feeder rate were
also recorded, but were only used as checks for the  stoichiometric calculations.
Finally, the Bailey oxygen and combustibles meter was also recorded.

* Unless otherwise specified, all instrumental flue  gas measurements were made
  at the equivalent of 50°F saturated.
                                      -22-

-------
V.   RESULTS

     There -were six series of tests run for  this phase  of  the  contract.
A total of about 200 test points are available.  The data  are  presented
completely in tables in Appendix C, in figures  in Appendix D,  and the mathe-
matical equations and derivations are in Appendix E.  Some preliminary work
with the data was necessary for the data to  reach a readily usable form,
therefore, the "raw, as recorded" data are not  included in the report.
                                       -23-

-------
-24-

-------
VI.   ANALYSIS OF DATA AND RESULTS

      The data in final form are presented  in Tables  6.1  to  6.7.   These
data were used to prepare all of the final  data  graphs  for this  section.
The headings for the tabular columns are:

      1)  Original Series and Run Numbers -  Self explanatory.

      2)  Total Air, % - This is the total  air added  as the  percentage
          of 1001 theoretical (stoichiometric) air.   The  excess  air  is
          simply 100% less than this number.

      3)  Heat, kBTU/ft /hr - This is  the overall net heat release rate
          in the furnace in thousands  of BTU per unit volume.

      4)  Gas Preheat, °F - Self explanatory.

      5)  Flue Gas Input, I - This is  the weight percentage  of flue
          gas recycled back through the air  input.

      6)  Air in Burner, % - This is the total air at the burner  as
          percent of 100% theoretical  (stoichiometric)  air.  The
          balance of the air between columns 2 and 6  is the  air which
          enters through the second stage ports.

      7)  NO , ppm - This is the NO content  of the flue gas  corrected to  3%
            _/\.
          oxygen, dry conditions.

      8)  CO, ppm - This is the as measured, uncorrected  concentration  of
          CO (and H~ equivalent as CO) in the flue gas.

      9)  0~, % - This is the as measured, uncorrected  (except for combusti-
          bles) concentration of 0- in the  flue  gas.

In addition, Tables 6.8 to 6.15 inclusive are the final calculations based on
Tables 6.1 to 6.7 for use in evaluation of NO reduction for  flue  gas
                                       -25-

-------
         TABLE 6.1
INITIAL TESTS  (SERIES I  FOR COALI




     FINAL  DATA EVALUATION
•JW 1C, I ML
SfiRU S
ANU
«UN «-i
	
I - 1
I - ?
I - 3
I - 4
I - 5
1 - fc
1 - 7
I - rt
I - <;
I - lu
1-11
I - i?
1-13
I - 14
I - 1 c
1 - ll:
1-17
I - !!•
I - 1 =
! - 20
> - 21
1 - 22
I - ?j
I - ?4
1 - 20
I - ?(.
1 - '7
I - ?«
! - 2r-
1 - 3u
I - -H
I - 32
1 - 33
I - 34
I - 35
I - 36
\ - 37
I - 18
I - 3S
I - 40
I - 41
I - 42
I - ".3
ICTAL
AIR,
•f
116.3
142. u
1 Cl.S
1 12.4
135.1
1C1.9
1 1* . 0
137.0
I'M.?
113.3
t C 1 . 7
1 3h.O
111.3
114. 2
1 12.9
1C1 .A
14C.O
135.1
1 1 1.8
104.4
1 \S.O
14C.O
112.1
99.1
11C. 3
103. 3
135.1
11 '< . L,
11C. 7
111.'
103.3
115. b
1 4 1 . 0
103.2
116.3
141. p
l
51.5(i
31.91
49. 2H
29.71
51.17
50.ft9
47.63
62.3?
31.09
r>2.50
62.01
48.96
47.47
4 3.46
59.02
S7.22
CAS
PKF-
hEAT
OFG F
tee
c2<;
587
'rll
622
592
620
t47
tC5
S7C
?~<4
505
565
638
384
371
393
3H9
ie*
366
3t1
643
t3S
547
507
503
534
505
4 1C
279
263
52«
54f
515
553
527
5t>3
550
f 13
376
154
373
3t3
FILE
GAS
INPU1
lit
C.C
0.0
0.0
O.C
C.O
0.0
0.0
0.0
0.0
o.o
C.C
0.0
C.O
C.O
C.O
0.0
C.C
0.0
c.c
0.0
C.C
0.0
C.C
0.0
0.0
C.O
C.O
0.0
C.O
0.0
C.C
0.0
C.O
C.C
O.C
0.0
0.0
0.0
O.C
0.0
O.t)
o.o
0 .C
AIR
IN
BURNER
(Tl
116. 3
142.0
101.9
112. 4
135.1
101.9
113.0
137.0
101.2
113.3
101. 7
136.0
111.3
114.2
112.9
101.4
140.0
135.1
111.8
104.4
139.0
140.0
112.1
99. 1
110.3
103. 3
135.1
113.0
110. 7
111.3
103.3
US. 5
141.0
103.2
116.3
141.8
140.0
115. P
105.2
119.9
104. c
1 1 7.6
101.7
NOX
PPM
	
725
913
431
714
94R
431
746
998
54IS
534
292
795
546
8C«
683
420
834
821
460
321
6P1
9S5
791
282
746
538
956
676
428
6C1
312
731
958
466
789
749
922
834
558
739
449
764
5C'<
CO
PPM
	
205
RO
800C
180
90
8000
260
115
15000
115
90PC
85
240
360
5CO
8000
7C
65
24C
3200
60
90
165
20000
400
4000
140
100
800
400
18000
375
50
450C
26C
400
5C
750
3000
90
3200
360
700C
02
X
	 .
3.2
6.2
0.8
2.6
5.5
0.8
2.7
5.7
1.0
2.8
C.8
5.6
2.4
2.9
2.7
0.7
6.0
5.5
2.5
1. 1
"i.0
6.0
2.5
o.a
2.2
r.9
5.5
2.7
2.3
2.4
1 .6
3.1
6.1
0.9
3.2
6.2
6.0
3.1
1.3
3.7
1.2
3.4
C. 7
              -26-

-------
                 TABLE  6.2
FLUE  GAS RECIRCULAT ION TESTS (SERIFS II f CB  CCALI
             FINAL DATA
JP IG1NAL
SERIES
ANH
RUN »-S
	

1 4 - 1
I A - 2
14 - 3
I A - 4
IA - •,
IA - 6
1 A - 7
IA - 8
IA - 9
II A - 10
I I A - 11
I IA - 12
t r A - i .?
I IA - 14
II A - 15
MA - 16
IIA- 17
I A - IP
[[A - 19
II A - 2C
1 A - 21
IA - 22
IA - 23
Irt - 2-4
IA - 2?
IA - 2t-.
IA - 27
14 - 2fl
I A - 29
I I A - 3C
I IA - 31
IIA - 12
II A - 33
tlA - 34
HA - 35
IIA - 36
IIA- 37
MS - 1
1 Id - 2
[ I » - 3
MB - 4
1 IB - 5
116 - 6
ne - 7
i IB - a
ne - 9
118 - 10
IIB - 11
I IB - 12
IIB - 13
IIB - 14
IIB - 15
IIB - 16
118 - 17
IIB - 18
IIB - 19
116 - 2C
IIB - 21
IIB - 22
IIB - 23
IIB - 24
IIB - 25
IIB - 26
HE - 27
TC1AL
A tH,
t

114.3
112.7
m.c
132.2
132.3
1C2.H
1R2.6
113.3
113.3
1 37.0
!><;.s
11*. C
1 14. C
1 C 3 . 9
1C2.9
113.-:
1 1 3 . <;
135.1
131.4
1C3.S
1C3.2
114.0
lll.t
1 36. C
135.1
1C1.4
1C1.9
1 12. 7
111.8
111.7
1 1 7 . 0
112.4
111.0
13C.5
13f. 5
134. 1
133.2
116.7
115.0
1 1S.I
US. 2
142.0
139.9
1CH. 1
1C6.7
114.6
143. C
103. 3
142. C
117. C
117.7
13S.O
140.0
104.3
104.4
117.0
117.4
141.0
142.0
104.4
IC5.1
13S.6
133.2
1C?. 6
HEAT,
K6TU/
H»*3
/ HR.

52.34
51.87
5C.69
55.57
54. 7C
5C.1H
4R.65
40.89
62.95
65. C8
6?. 74
63.50
6B.C2
09.65
5 rf . S 5
32. ??
31.44
32.15
33.72
28.53
27.35
61.30,
60.99
6C.9I
6-". 19
56,f>2
54. P6
40.65
50.54
3 1.67
30.34
49. C4
48. 57
52.42
5C.'6
62.64
61.93
63. 1 1
65. C»
3U.26
30.81
31.52
40.63
27.98
29.00
52.27
53.44
28.84
58.95
51.48
53.13
56.98
55.25
49. 75
5C.22
31.20.
31.52
31. 3t
32.62
28.69
28.45
6C.91
63.27
56.27
CAS
PRE-
*EAT
DEC F

63C
645
t49
648
653
6CS
424
f31
66C
662
675
64q
66C
fc33
fr4S
551
577
600
57fi
515
54 7
521
52<:
541
527
5C5
520
516
506
459
4t:4
394
4C4
4CC
4C9
4C1
403
630
62S
560
565
579
596
538
54C
626
636
524
420
623
623
644
(42
601
595
573
557
566
593
53C
523
656
646
612
FILE
GAS
INPUT
1%}

c.c
1.8
3.2
C.O
1.3
C.O
?.o
0.0
1.4
0.0
1.2
0.0
u?
0.0
1.9
0.0
3.C
2.8
C.C
0.0
4. 3
0.0
1.6
1.2
0.0
o.c
1.8
1.9
O.C
0.0
2.4
0.0
1.9
C.O
1.5
C.C
1.4
0.0
1?. 1
o.o
21.0
17.5
C.O
C.O
21.4
0.0
0.0
0.0
0.0
0.0
3C.9
C.O
18.4
0.0
31.5
0.0
24.0
C.O
22. 8
0.0
41.1
0.0
20.4
0.0
AIR
IN
BURNER
i ii
-~ 	 —
114.3
112. 7
113. C
133.?
132.3
102. fl
102. f
113.3
113.3
137. C
1 39. S
114.0
114.0
103.9
102.9
113.5
113.9
135.1
131.4
103.8
103.2
1 14.0
111.6
136.0
135.1
101.4
101.9
112.7
1 11. »
111.7
11 7. C
112.4
111.0
130.5
130.5
1 34. 1
133.2
116.7
115.0
119.1
119.2
142.0
139.9
10R. 1
106. 7
114.6
143.0
103.3
142.0
117.0
117.7
139.0
140.0
104.3
104.4
117.0
117.4
143.0
142.0
104.4
105.1
135.6
133.2
102.6
NUX
3PM
	
774
694
659
ess
89fl
449
472
329
740
98C
969
762
704
571
5S2
4 70
494
699
65"
246
251
654
635
R68
913
444
387
630
667
452
5CI
613
622
706
734
910
791
P21
7CH
459
416
532
722
333
258
832
1080
289
1014
833
54B
1048
797
552
372
576
392
810
596
320
242
1013
«14
538
CU
PPM
	
90
80
90
100
9C
4000
320C
90
90
140
140
100
85
150C
26CC
6bO
240
90
90
4000
450C
90
125
1 15
1C5
4000
40CC
240
1 80
350
200
165
260
90
90
1 15
1 \f
I 15
1 15
165
115
100
100
2600
1500
eo
70
400C
90
f)0
70
80
80
2000
1400
100
90
80
80
3500
450
70
90
5000
02
t
	
2.9
2.6
2.7
5.3
5.2
0.8
C.7
2.8
2.fl
5.7
6.0
2.8
2.8
C.9
C.8
2.8
2.8
5.5
5.1
1.0
0.9
2.8
2.4
5.6
5.5
0.5
0.6
2.6
2.5
2.5
3.3
2.6
2.3
5.0
5.0
5.4
5.3
3.3
3.0
3.6
3.6
6.2
6.0
1 .8
1.5
2.9
6.3
0.9
6.2
3.3
3.4
5.9
6.0
1.0
1.0
3.3
3.3
6.3
6.2
1.1
1.1
5.5
5.3
0.8
                      -27-

-------
                 TABLE 6.3
TV.C  STAGE CCNBUSIION  TESTS (SERIES III FCR CO«LI




            FINAL  DtJt
l)R IlilNiL
StR It S
AM;
HUN «-s
	 	 i


















1 A- 1
1 1 A- 2
1 I A- 3
1 1 A- 4
1 1 A- 5
I 1 A- t
1 1 A- 7
I 1 A- 8
II A- <;
II A- 10
II A- 11
11 A-12
II A-13
II A- 14
II A-15
II A-16
II A- 1 7
II A-1P
I! 1 A- 14
III A-20
III A- 2 I
III U- 1
III fl- 2
111 M- ?
Ill R- <•
III B- 5
1
1
1
I
1
I
I
I
I
1
I
I
I
1
I
I
1
1
I
1
1
1
1
I
I fl- 6
1 H- 7
I B- S
I «- 9
J B-IC
1 B-ll
I B-12
I B-13
I B - 1 4
I 0-15
I *-16
I f)-l 7
1 B-18
1 8-19
1 H-,-i>
1 ft-21
1 H-27
1 K-2?
1 R-<".
1 B-2*
1 W-2o
IB-,;?
1 P.-28
I R-2«
III H-(0
III 8-11
1 1 H-!2
1 I 0 1
1 I C- I
1 I C- 3
I I C- 4
I I C- 5
1 1 C- 0
i i n- i

III D- 2
TCTAL
AIR,
J
	
1 l<;.0
13*. 1
IC3.S
111.8
140.9
1 14.<;
136.0
113.7
I 15.5
116. C
1 15.6
103.1
1C3.S
1 1 '. . 7
1C3.0
1 3 7 . C
113.6
136.0
117.7
136.0
iri2.6
16.3
16.3
2C.(
17.7
16.3
14.8
116.1
116.0
116.0
116.3
117.0
m.i
114.3
115.6
102.8
103.5
1C3.6
116.0
11S.3
117.2
1C3.2
1C4.0
ICft. I
137. C
137. S
1U.9
134. 1
136.9
113. 4
112. C
1J7.9
139. <,
115.6
116. <5
1 15.0
116. 1
102.1
116. C
S7.2
HFAT,
KBTU/
FT*»3
/ MR.
51.56
53.99
66.65
6*. 84
66.57
30.26
31.83
51.56
51.72
51. 2<.
51.64
50.22
50. !<•
65. 3S
63.90
51.17
52. T.
65.55
31. ««
3A.66
28. t9
«9.0'.
*7.55
«.5.19
48.18
4P.O?
47.63
46.6°
47.86
48.26
48.65
47.24
45.90
49.67
48.57
47.16
46.06
48.2ft
61.85
61.30
61. 7C
62.17
59.57
60, 26
48.18
47.63
50.38
62.56
61.70
31.26
31.36
32.46
31. S9
47.00
48.96
49.04
48.49
47.47
62.17
48.10
1
8K.9 | 51.7?
CAS
PRE-
HEAT
(HC F
615
t35
613
<25
65C
553
560
610
«C7
612
M4
5E6
5S7
62fi
tit
632
621
645
568
5E6
529
606
604
624
614
639
644
629
623
tl
-------
         TABLE 6.4
NAILHAL GAS TESTS (SERIES IV 4)
     FINAL DATA EVALUATION
ORIGIMAL
SEK1ES
AND
RUN «-S
	
IV A- 1
IV A- 2
IV A- •>
IV A- 4
IV A- 5
IV A- 6
IV A- 7
IV A- P
IV A- 9
IV A- 1C
IV A- 11
IV A- 12
IV A- 13
IV A- 14
IV ft- 1*
IV A- If-
IV A- 17
IV A- 18
IV A- 19
IV A- 2C
IV A- 21
IV A- 22
IV A- 23
IV A- 24
IV A- 25
IV A- 26
IV A- 27
IV A- 2R
IV A- 2<5
IV A- 30
IV A- 31
IV A- 32
IV A- 33
IV A- 34
IV A- 35
IV A- 36
IV A- 37
IV A- 38
IV A- 39
IV A- 4C
IV A- 41
IV A- 42
IV A- 43
IV A- 44
IV A- 4!)
IV A- 46
IV A- 47
IV A- 48
IV A- 49
TCTAL
AIR,
T
U4.3
131.1
1C2.S
115.0
138. C
103.1
113.7
138. C
102.7
113.7
135.3
1C3. 1
113.7
135.3
1C3.1
113.7
1C4.C
135.3
115.7
115.6
137.1
1C3.7
103.3
114.3
1C2.7
115.7
115.0
113.1
114.4
116.3
117.0
114.4
115. C
115.0
103.6
104.2
137.1
135.3
137.1
115.7
S9.4
84.9
76.4
113.1
111.9
1C3. 1
1C3.7
137. 1
\1k.2
HEAT,
KBTU/
FT»»3
/ MR.
55,41
56. 9R
55. PC
67.91
67.67
68. C6
37.10
37. C2
37.18
51.72
52.19
52.58
64.45
64,29
65. 39
33.32
32.77
35. 13
57.37
56.75
56.08
57.37
57.14
71.91
36.55
56.27
54.23
56.90
53.92
52.58
51.72
54.47
55.65
53.60
37.80
51.24
69.79
66.88
65.76
56.27
63.27
73.01
68.77
55.88
56.43
55.88
55. PC
56.43
56.75
GAS
PRE-
HEAT
DEC F
t<55
tS8
ess
7C3
7C9
7CC
664
t73
t£5
351
35E
345
345
346
344
36C
H3
326
684
686
691
679
676
686
644
691
fc62
660
649
698
663
*85
660
664
712
661
696
711
6R8
688
688
688
6f"i
tti
tS5
6S9
ePUT
IT)
C.C
0.0
0.0
0.0
0.0
c.o
0.0
0.0
0.0
0.0
0.0
0.0
c.o
0.0
0.0
c.o
C.C
0.0
27.1
14.5
24.7
33.1
26.4
27.4
30.5
0.0
0.0
27.4
26.1
0.0
23.1
0.0
26. C
26.6
0.0
23.2
0.0
0.0
18. 1
0.0
0.0
0.0
0.0
C.O
C.O
0.0
C.O
0.0
c.o
AIR
IN
BURNER
It)
114.3
137.1
102.8
115.0
138.0
103.1
113.7
138.0
102.7
113.7
135.3
103.1
113.7
135.3
103.1
113.7
104.0
135.3
115.7
115.6
137.1
103.7
103.3
114.3
102.7
115.7
87.0
85.7
86. 1
61.4
60.4
85.0
86.5
87.1
52.6
66.4
137.1
87.2
87.6
115.7
99.4
84.9
76.4
111.1
111.9
103.1
103.7
137.1
136.2
1
1 NQX
PPM
322
380
267
3ca
310
249
303
311
245
14H
135
123
144
127
124
156
109
139
44
74
47
60
33
54
24
346
256
23
178
90
53
310
28
220
120
70
330
269
198
365
251
128
53
332
235
194
278
314
283
CO
PPH
150
103
113
70
53
810
40
40
690
40
4C
107C
35
50
1020
<>3
960
15
7
22
22
200
133
22
480
0
0
3
7
40
8
0
0
C
760
323
0
0
C
0
10500
64038
151622
22
15
t75
460
15
15
02
t
	 .
2.9
5.8
0.6
3.0
5.9
0.7
2.8
5.S
0.6
2.8
5.6
0.7
2.8
5.6
0.7
2.8
0.9
5.6
3.1
3.1
5.8
C.8
0.7
2.9
0.6
3.1
3.0
2.7
2.9
3.2
3.3
2.9
3.0
3.0
O.P
0.9
5.8
5.6
5.8
3.1
0.4
Q.O
0.0
2.7
2.5
C.7
0.8
5.8
5.7
             -29-

-------
     TABLE 6.5
CIL  TESTS (SERIES IV B)




 FINAL CAT* EVALUATION
CRIGINAL
SFRH S
ANO
^UN K-S
	 1

IV h- I
IV S- 2
I v e- 3
l v f>- 4
IV "- 5
I V B- 6
IV l>- 7
iv - 21
IV B- 22
IV P. - 23
IV P- 24
IV P- 25
IV B- 26
IV B- 27
IV B- 2R
IV B- 29
IV B- 30
IV B- 31
IV B- 32
IV B- 33
IV B- 34
IV »- 35
IV B- 36
IV B- 37
IV B- 38
IV B- 39
IV fa- 40
IV B- 41
IV h- 42
IV B- 43
IV B- 44
IV B- 45
IV B- 46
IV B- 47
IV P- 48
IV B- 49
IV B- 5C
TCTAL
AIR,
%

113.1
115.0
115.0
1C3.2
1C3.B
131. fl
131.8
115.0
13C.B
103.6
115.0
126. "3
102.8
113.7
12S.8
103.7
115.6
126. S
1C4. 1
113.7
13C.8
113.1
1C3.3
127. 5
115.6
116.3
1 17.0
12S.8
1C4.2
1C4.2
115. C
115.0
114.3
1C4.7
115. h
116.3
114.3
115.6
115.0
116.3
114.3
113.7
113.7
113.7
115.6
103.7
1C3.6
127.fi
127. P
127.8
HEAT.
KRTL/
FT»»3
/ I-R.

53.37
52.50
52.50
52.34
52.11
54.54
54.54
51.79
54.54
51.24
64.37
68.69
63.50
13.32
35.84
32.15
47.86.
51.01
47.94
30.73
3C.97
56.79
58.32
61.38
51.40
52.74
51.64
55.88
51 .56
52.19
65.31
64.05
33.40
32.62
51 .32
48.89
50. C6
50.46
48.34
48.41
51.79
49.99
49.04
50.22
48.26
50.69
47.94
67.36
62.72
62.25
CAS
PRE-
HEAT
DEC F

693
6S7
6S1
688
tfb
696
7C1
691
696
688
699
704
696
668
674
«75
366
384
333
312
3C6
296
301
299
6<58
660
686
693
679
67G
695
701
669
644
692
691
6TC
659
700
681
7CC
675
651
669
666
69C
6SC
7C3
710
688
FLLE
G*S
INPUT
(*l

0.0
0.0
0.0
0.0
0.0
0.0
0.0
c.c
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
c.c
c.o
c.c
c.o
0.0
0.0
0.0
0.0
25. 9
14.6
23.8
14.5
26.5
14.4
o.c
0.0
20.2
C.C
0.0
14.7
31.3
0.0
14.2
C.O
O.O
1-..5
14.1
13.7
0.0
0.0
0.0
c.c
14. P
AIR
IN
BURNER
(I)

113.1
115.0
115.0
103.2
103.8
131.8
131.8
115.0
130.8
103.6
115.0
126.9
10?. 8
113.7
129.8
103.7
115.6
128.8
104.1
113.7
130.8
1 1 3.1
103.3
127.9
115.6
116.3
117.0
129.8
104.2
104.2
115.0
115.0
114.3
104.7
115.6
86.0
84.4
85.4
70.3
71.0
114.3
85.3
84.0
85.1
86.5
103.7
65.9
127.8
77.0
76.8
NOK
PPM
	
257
27*
3CO
238
210
289
343
253
284
200
279
319
222
212
245 •
173
219
253
174
181
218
220
182
263
260
244
235
256
193
174
252
282
214
152
255
224
203
205
175
172
262
241
213
213
19R
204
145
327
235
215
CO
PPM

25
22
15
260
SO
15
10
60
40
600
60
60
320
60
40
543
50
55
500
70
60
70
178
ao
50
45
45
45
90
14C
60
50
50
140
50
50
45
55
55
60
80
60
210
80
80
335
66C
115
125
127
02
I
	
2.7
3.0
3.0
0.7
0.8
5.8
5.8
3.0
5.7
0.8
3.0
5.3
C.6
2.8
5.6
0.8
3.1
5.5
0.9
2.8
5.7
2.7
0.7
5.4
3.1
3.2
3.3
5.6
0.9
0.9
3.0
3.0
2.9
1.0
3.1
3.2
2.9
3.1
3.0
3.2
2.9
2.8
2.8
2.8
3.1
0.8
C.8
5.4
5.4
5.4
        -30-

-------
                        TABLE  6.6
SxIRL  TESTS (SERHS V -  A  IS FCR NATURAL  GAS  AND 8 IS FOR  COAt >




                    FINAL CATA EVALLATION
ORIGINAL 1
S E R 1 e S 1
AND
RUN »-S
V A - 1
V A - 2
V A - 3
V A - 4
V A - 5
V A - 6
V A - 7
V A - 8
v A - q
V A - 10
V A - 11
V A - 1?
V 8 - 13
V B - 14
V B - 15
V B - 16
V B - 17
V B - 18
V P. - 19
V 8 - 2C
TCTAL
AIR,
*
113.7
11*. 3
113. 1
113.7
103.2
135.2
113.7
1C2.6
136.2
1 13.7
102.8
135.2
115.5
115.6
115.5
116. 1
13*. 1
115.3
133.1
103.6
HEAT,
KBTU/
FT*«3
/ HR.
55.17
67.91
35.21
34.97
34.50
36.00
54.47
41.97
55.65
67.83
6>a.l4
68.46
60.52
60.60
03.74
62.72
63.74
5C.93
54.94
51 .40
CAS
PRE-
HEAT
OtC F
d)
7C1
675
i7C
663
68C
tS3
685
fSS
7C4
tsg
705
632
628
64C
632
645
613
629
6C7
FLUE
GAS
INPUT
m
0.0
0.0
0.0
0.0
0.0
c.o
0.0
0.0
c.o
0.0
0.0
c.o
c.c
c.o
11.2
c.c
0.0
c.c
o.c
0.0
AIR
IN
BURNER
m
113.7
114. 3
113.1
113.7
103.2
135.2
113.7
102.6
136.2.
113.7
102.8
135.2
90.4
90.7
115.5
116. 1
134.1
115.3
133.1
103.6
NOX
PPM
330
329
283
261
212
275
269
230
265
270
239
245
658
649
717
791
971
750
934
556
CO
PPM
60
80
75
70
335
70
6
81C
70
75
36C
90
530
75
2500
850
2CO
1050
2P5
270C
C2 1
t
2.8
2.9
2.7
2.8
C.7
5.6
2.8
0.6
5.7
2.8
0.6
5.6
3.1
3.1
3.2
3.2
5.4
3.1
5.3
0.9
                       TABLE  6.7
             QUENCH  TESTS FCR CCAL  (SERIES VII




                  fINAL CAT* EVALUATION
UK IGISAL
•a-ui s
ANC
tUN «-S
	
VI - 1
VI - 2
VI - 3
VI - 4
VI - 5
VI - 6
VI - 7
VI - 8
TCTAL
AH,
>

	 1
1 14.9
115.4
110.4
1 lfc.9
1 30.4
1C6. 1
1 17.5
1 12.0
HEAT,
KBTU/
FT»«3
/ HK.

51.24
4S.3t
49.51
51. C9
5(-.27
4H.10
62.25
62.80
Gas
PRf -
HFAT
OEC F
	
623
6C9
tr?
616
t3<;
607
(•34
(-.5^
FLV.E
CAS
INPLT
1 »

C.O
c.o
0.0
<;.3
c.o
c.o
c.o
c.o
AIR
IN
BURNER
(t)
	
114.9
89. 7
88.7
116. 9
130.4
106.1
117.5
132.0

NOX
PPM

	
707
555
571
603
829
545
766
899

CO
PPM

	
285
810
6tC
500
42C
2225
750
72C

02
T

	 +
3.0
3.1
3.1
3.3
5.0
(.4
3.4
5.2
                            -31-

-------
       TABLE  6.8
O11 SfRltS  II --- F. G.  R.  FOR COAL
 FINAL  RECUCTIONS (PART  1)
1 VICINAL
TEST
NUS.

I
A I/ 2
A I/ 3
A 4/ 5
A ft/ 7
A 10/ 11
A 12/ 19
A 14/ 15
A 1ft/ 17
A IB/ 19
A 20/ 21
A 22/ .'3
A 2-/ 25
A 26/ 27
A ?»/ 29
A < 0 / 'il
A >?. 1 33
A 34/ 35
A t6/ 17


(' 3/ 4
t> 5/ ft
R ?/ M
P IV !<.
H IS/ 16
n 17/ l»
ft !«)/ 20
^ 2 1 / .' 2
K ?3/ ?4
!' 25/ 26
AVERAGES FUR TESTS
LCAC,
J

117.8
1 16.3
121.6
113.4
140. 1
142.0
114.9
73.1
71.8
65.1
141.1
14C.2
13C.5
114.9
!2.5
1 16.0
12C.7
146.0

143.5
'•S.I
7S.9
(.5.5
1 I 5.9
121. e
112.7
7C.4
7C.O
t5.t
1 15.0
EXCt SS
AIR, T
J
13.5
13.6
12. 7
2.7
38.4
M.O
3.4
13.7
33.2
1.5
12. R
15.5
1.6
12.2
14. 3
11.7
10. 5
13.6

	
15. P
19.1
40.9
7.4
17. 3
39. 5
4. 3
17.2
42.5
4. 7
14.4
TE«P.
lltG F
	 1
637
639
t5C
616
66P
654
641
564
589
531
525
534
512
512
471
399
404
402
1 	
629
56?
5P7
539
623
643
598
565
589
526
651
RURNER
AIR



113.5
113.6
132.7
102.7
138.4
J14.0
103.4
111.7
133.2
103.5
112.8
135.5
101.6
112.2
114.3
111.7
130.5
133.6
...
115.8
119.1
140.9
107.4
117.3
139.5
104.3
117.2
142.5
104.7
134.4
SIDE
Oft
FRONT
SLOTS


	
	

	
	
	


— — — —
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
— - — -
	
FU/'
GAS
RFCYf.
X
J 	
1.8
3.2
1.3
2.0
1.?
1.5
1 .Q
3.0
2.H
4.3
1.6
1 .2
1 .P
1 .0
2.4
1.9
1.5
1.4

12. 1
21.0
17.5
21.4
30.9
1H.4
31.5
14. il
22. A
41.1
20.4
PURNEK
OR
PORTS

	 JJ
PR I .
PRI.
PRI.
PR! .
PRI.
PRI .
PBI.
PRI.
PHI.
PHI.
PRI .
PR!.
PR!.
PRI.
PR I.
PRI.
PRI.
PPI.

SbC.
SFC.
StC.
SEC.
SFC.
SEC.
SEC.
SEC.
qFC.
SFC.
SEC.
       TABLE  6.9
CF StUIfS II 	 F.  G. R. FOR COAL
 F I.SAL  RECUCT ICNS IPAPT 21
I'RICINAL
TE-S T
NUS.
1J 	

A I/ 2
A I/ 3
A 4/ 5
A &/ 7
A 1U/ 11
A 12/ 13
/ I4/ IS
A It/ 17
A IS/ 19
A 20/ 21

A 22/ 23
A ?4/ 25
A 21, f 27
A 28/ 29
A 30/ 31
A 32/ 33
A 34/ 35
A 36/ 37
1

01/2
R 3/ 4
05/6
P 7/ 8
H 13/ 14
R 15Y 16
B 17/ IP
R 19/ 20
H 21/ 22
l< ?3/ 24

1) 25/ 26


HASt
VALUE
i— __ -

774 » H
774 * 11
HSfl ± 70
443 * 2
9fiO • 5
762 + 25
*71 ± 11
470 « 34
•)5fl * 11
240 * ?4

(-.54 * 49
913 t 91
4*4 * f)
667 » 69
452 » 10
613 » 129
7Cft » 245
910 * 120

	
828 » 80
4S9 i 2<)
722 ± 46
333 « 25
833 + IS
1048 » 13
552 ± 4
576 ± 10
810 » 30
320 ± 2

£013 ± 13

Mr cppfi
VilTH
CHANGES
i_

604 + 4
659 + 0
8<58 * 53
472 ± 30
96S » 12
794 t 107
552 » 20
494 * 10
699 * 6
2S1 * 20

635 » 41
868 4 96
3B7 T 49
630 « 52
501 » 35
622 * 55
734 » 172
791 » 57
_|

708 ± 68
416 * 13
532 i 59
25fl * 18
548 t 12
797 t 16
372 * 2
312 » 6
596 » 20
242 * 1

814 » q


REOUCTITK

RO t 12
115 i 11
0 * 88
-23 t 30
I 1 » 13
-32 * 1 10
!•> * 24
-24 » 45
-41 * 13
-5 * 31

19 » 64
45 «• 132
57 t 50
37 i R6
-49 * 46
-9 ± 140
-28 » 299
111 ± 133


120 » 105
S3 * 31
190 + 75
75 i 31
285 ± 22
251 ± 21
180 i 4
184 t 12
214 ± 36
78 * 2

199 + 16

REDUCTION ||
IN | |
NO. t ||
1 1
| |
II
10.3 ± 1.511
14.9 * 1.4||
0.0 « 9.B | |
-5.11 6.7 | |
1.11 1.3||
-4.2 ± 14.4 ||
3.3 » 4.211
-5.1 » 9.7||
-6.2 i 1.9||
-2.0 ± 12.7 ||
1 1
2.1 » S.8 1 1
4.9 t 14.5 ||
12. fl » 11.2 II
5.5 ± 13.0 1 1
-10. R + 10.2 ||
-1.5 » 22.9 I I
-4.0 ± 42.4 | |
13.1 t 14.7 II
JJ
II
14.5 » 12. R II
16.6 J» 6.311
26.3 1 10.5 | |
22.5 ^ 9.4 ||
34.2 ± 2.711
24.0 i 2.0 I 1
32.6 * 0.8 1 1
31.9 ± 2. 1 1 1
26.4 ± 4.6 1 1
24.4 ± 0.7 | |
1 1
19.6 « t.6 f |
1 1
           -32-

-------
             TABLE 6.10
SLVARY CF  SF.PIf< III	STAGED COMBUSTION





        FINAL PFCUCTICNS (PART 1)
(JPIG1NH 1
T C C T 1
1 C i 1 J
NOS.

1_
A 8/ B 1
A a/ e 2
A S/ H 3
A (»/ B *
A «/ B 5
A 8/ B 6
A 9/ R 7
A 9/ B 8
A 9/ B 9
A10/ BIO
Aid/ Bll
A10/ 612
All/ B13
All/ f\l*
A12/ R15
A12/ B16
/U3/ 617
All/ B18
Al*/ B19
M*/ R20
A15/ 1)21
M5/ P2?
A15/ fl23
A16/ «;>*
A16/ H25
A17/ f>76
A18/ 827
A1B/ B2S
All/ B29
A19/ H30
»20/ B31
A20/ H32
J_
A 8/ C 1
A 9/ C 2
A I/ C 3
All/ C *
A12/ C 5
Al*/ c 6
J 	
A17/ D 1
A17/ C 2
/VERAGtS FOM TESTS
LC*C,
T

	
11^.7
115.9
114.0
11^. A
116.1
116.9
11*. "»
117.*
116.8
114.8
H«.8
11*. 2
llf. 4
lie. 5
113.8
113.9
115.1
146.1
1*7.1
1*5.5
1*6.3
1*5. A
1**.0
112.9
112.2
116.8
1**.2
1*3.0
7?. 2
73.6
77.0
76.*

115. S
1 1 1 . 6
116.2
117.7
11*. 5
1*6. 1
	
11?.*
12C.2
EXCESS
AIR. X

	
15.0
15.0
17.1
15.7
15.0
1*.2
15.8
15.8
15. P
16. 1
16.5
17.5
1*.9
15.6
2.9
3.3
3.7
15.3
15.0
15.9
3. 5
3.9
5.0
37.0
37.*
1*.2
35.0
36.*
15.5
1*.8
16. S
37. q
1_
1*.6
16.2
15.3
15. P
2.6
15.3
	
5.*
1.3
1EHP.
DEC f

608
607
617
612
62*
627
618
615
613
tC7
61S
625
615
t29
5S6
600
58*
622
A37
632
<-2C
627
61*
630
628
612
6*6
6*5
577
65S
58<5
sat

601
595
612
603
"82
625
	
60*
598
BURNER
A T U
a i K t
X


91.3
68.2
5*. 8
93.0
68.0
52.*
65.9
5*. 2
67.8
90.9
67.2
5*. 3
66.7
*6.3
79.1
56.7
80.5
90.7
69.1
91.3
80.4
57.3
82. 7
92.1
93.1
<;o.*
95.8
"8.0
77.*
77.*
93.3
9*. 8
1
66.7
68.0
66.7
67.0
79.7
97.0
	
105.*
101.2
SICE
rtQ
UK
FRUST
SLOTS

	
SIDE
SIDE
SIDE
FRONT
FRONT
FRONT
SIDE
SIDE
SIDE
FRONT
FRONT
FRONT
FRONT
FRONT
FRONT
FRONT
SIDE
FRONT
FRONT
SIDE
FRONT
FRONT
SICE
FRONT
SIDE
FRONT
FRONT
SIDE
FRONT
SIDE
FRONT
SIDE
U 1.
FRONT
SIDE
FRONT
SIDE
FRONT
FRONT
	 J.

	
1 FLUF
1 r AS
1 l» **->
RECYC.
X

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
J
11. B
21.2
22.2
11.1
7. 1
9.9
	
0.0
0.0
BURNER
OR
PCRTS

	 _l

	

	
	
	
	
	
	
	
	
	

	
	
	
	

	
	
	
	
---_
	

	
	
	
	



1
PORTS
BURNER
BURNER
POSTS
PORTS
PORTS
	 1.
	

                    -33-

-------
                        TABLE  6.11
          SUHMARY  OF  SERIES II!  	  STAGED COMRLSTIGN




                   FINAL KECUCTICSS (PART 2)
1
ORIGINAL
TL--C T
' C J 1
NOS.

_ .
A 8/ E 1
A 8/ B 2
A 8/ 8 3
A B/ B 4
A 8/ B 5
A 8/ E 6
A 9/ B 7
A 9/ 6 8
A 9/ 6 9
A10/ 810
A10/ 611
AID/ B12
All/ 613
All/ B14
A12/ H15
A12/ B16
A13/ 817
A14/ 61R
A14/ BIS
A14/ B20
A15/ B21
A15/ B22
A15/ 823
A16/ 824
A16/ B25
A17/ 626
A18/ 827
A18/ B28
A19/ 629
A19/ 630
A20/ B31
A20/ 832
	 J.
A 8/ C 1
A 9/ C 2
A 9/ C 3
All/ C 4
A12/ C 5
A14/ C 6
_i
A17/ C 1
A17/ 0 2


EASE
VALUE
	 1
830 4 10
830 4 10
830 4 10
830 .4 10
830 4 10
830 ± 10
7S7 4 18
7S7 4 18
797 4 18
869 4 1A
869 4 IA
669 ± IA
765 4 7
765 4 7
534 4 6
534 4 6
641 4 22
885 ± 15
885 4 15
885 4 15
591 4 A
591 4 A
591 ± A
942 4 0
S42 i Q
739 4 3
1001 ± 17
1001 4 17
605 4 3
605 4 3
770 4 i
770 4 1
	 J
S30 4 10
797 4 Ifl
797 4 1R
765 4 7
534 4 6
885 4 15
.
739 i 3
739 4 3
NC (PPH)

WITH
CHANGES
-
677 4 8
488 4 9
505 4 9
711 4 o
343 4 11
295 4 9
467 ± 6
359 4 2
432 4 0
733 ± IA
385 4 2
350 4 2
374 4 9
389 4 2
399 4 18
283 4 8
371 4 11
693 4 18
4C9 ± 11
656 4 1
524 4 10
334 4 5
469 ± 6
689 4 28
685 4 24
674 4 7
807 4 It
844 4 12
282 4 9
362 4 9
410 4 2
524 4 2

	 	
320 ± n
465 4 2
366 4 23
411 4 16
323 4 2
655 ± 15
L
377 4 7
203 4 10


"EDUCI iON

— J
153 4 13
342 4 13
325 4 13
119 4 1C
487 4 15
535 4 13
330 4 IS
438 4 IP
365 ± 18
136 i 20
AR4 4 it,
519 4 14
391 4 11
376 4 7
135 4 19
251 4 10
270 i 25
192 4 23
476 ± 19
229 4 15
67 4 11
257 4 6
122 4 7
253 i 2P
257 4 ?4
65 i R
194 4 23
157 4 21
323 4 9
243 i s
360 4 2
246 4 2
J
510 i U
332 4 18
431 4 29
354 4 17
2114 6
230 i ?\
J
362 i f
536 4 10
RECUCT ION
T W
1 "(
NCI , *

1
18.4 ± l.A
41.2 ± 1.7
39.2 i 1.7
14.3 ± 1.2
5R.7 1 1.9
64.5 ± 1.8
41.4 ± 2.6
55.0 4 ?.6
45.8 ± 2.5
15.7 ± 2.3
55.7 4 1.9
59. 7 ± l.q
51.1 4 1.6
49.2 ± 1.1
25.3 i 3.6
47.0 4 1.9
42.1 i 4.1
21.7 4 2.7
53. ft i 2.3
25.9 ± 1.8
11.3 4 1.8
A3. 5 .4 1.1
20.6 .4 1.2
26.9 i 3.0
27.? 4 2.5
P." ± J.o
19.4 4 ?.<.
15.7 i 2.1
53.4 4 1.6
40.? i 1.6
46. R jt 0.3
31.9 4 0.3
i
61.4 i ?.l
41.7 i 2.5
54. 1 ± 3.0
46.3 i 2.3
39.5 4 1.3
26. C i 2.4
L il
49.0 4 1.0
72.5 4 1.4

                              -34-

-------
           TABLE  6.12
SUMMARY Of- SFRIFS IV*	NATURAL GAS




      FINAL RFCLCTIONS  (PART 1)
ORIGINAL
T C 0 T
I C. o I
NOS.

1
IVA 1/19
IVA 1/20
IVA 2/21
IVA 3/22
IVA 3/2}
IVA 4/24
IVA 9/25
	 i
IVA26/27
IVA26/28
IVA26/29
1VA26/30
I VA26/31
IVA26/32
IVA26/33
I VA26/34
iva 9/35
IVA 3/36
IVA37/3P
1VA37/39
AVERAGES FOR TESTS
	 .. _ i
LTAO,
»
	 _J
124.9
125.0
124.5
12h.S
127.1
154. S
83.2
_J
126.6
127. B
127.1
126. 4
126.3
126.9
126. 5
126.5
PR. J
125.5
1*4.3
153. R
EXCESS
AIR, 1
_
15.0
14.9
37.1
3.2
3.0
14.6
?.7

15.3
14.4
15.0
16.0
16.3
15.0
15.3
15.3
3.1
3.5
36.2
37.1
TEVP.
OFG F
L_ _ i
689
69C
694
6B4
682
694
654
i
676
675
67C
694
677
6R8
675
677
688
675
703
61?
BURNER 1 SIDE
AIR
1


115.0
114.9
137.1
103.2
103.0
114.6
102.7

87.0
85.7
86.1
61.4
60.4
85.0
86.5
87.1
52. A
66.4
87.2
87.6
np
UK
FRONT
SLOTS
_ i
	


	
-_-.-


_ 1
FRONT
FRONT
FRONT
FRONT
FRONT
SIDE
SIDE
SIDE
FRONT
FRONT
FRONT
FRONT
FLUE
f AC
\3 f*3
RECYC.
x
J_
27.1
14.5
24.7
33.1
26.4
27.4
30.5

0.0
27.4
26.1
0.0
23.1
0.0
26.0
26.6
0.0
23.2
0.0
18.1
BURNER
no
u**
PPRTS


BURNER
BURNER
BURNER
BURNER
BURNFR
BURNER
BURNER
.

BURNER
PORTS
____
PORTS
	
BURNER
PORTS
	
PORTS
	
PORTS
           TABLE  6.13
SUMMARY CF  SERIES IVA 	 NATURAL GAS




       FINAL REDUCTIONS (PART 21
ORIGINAL
T f S T
M:<,.
1 	 	
IVA 1/1<5
IVA 1/20
IVA 2/21
IVA 3/22
IVA 3/23
IVA 4/24
IVA 9/25
i 	 i
IVA26/27
I VA26/28
IVA26/29
IVA26/30
1 VA26/31
I VA26/32
I VA26/33
I VA26/34
IVA 9/35
IVA 3/36
I VA37/38
IVA37/39

RASE
VALUE
1 	
322 * 5
322 * 5
J2U + 4
267 t 3
?67 * 3
3Cn i o
245 t C
1 _ _l
^46 + 6
346 i *
346 + ft
346 t 6
346 * 6
346 * t,
346 + 6
346 t 6
245 * 0
267 + 3
330 i 7
330 i 7
NC I PP^ )
WITH
CHANCES
L _ .
44 2
74 7
47 7
60 '
33 4
54 16
?4 4
L _J
256 ± 5
23 + 2
178 •» 3
90 i 0
53 + 0
310 + 0
28 •» 1
220 + 7
120 * 10
70 + 3
269 i 2
198 + 1
~

REDUCTION
J
278 » 5
248 i 9
273 i 8
207 + 6
234 » 5
254 ± 16
221 + 
-------
              TABLE 6.14
SUMMARY OF SERIES IV8  	  »4 RESIC.  FUEL OIL




         FINAL RECICTICNS  (PART 1)
ORIGINAL 1
T l_ C T 1
' t O I I
NOS.

a 	 __

IVB25/26
IVH?5/27
IV3 6/2B
IVB 5/29
IVR 5/30
IVP1 1/31
IVB16/34
L_ _ i
IVB35/36
IVl>35/37
IVR35/38
IVB35/39
IVB35/40
1VB41/42
IV841/43
IVP41/44
IVB41/45
I VB46/47
IVB48/49
IVB48/50
AVERAGES FOR TgStS
LCAOt •
X


114.3
113.8
11S.O
116.2
116.1
143.1
72.8
-
L13.6
114.3
113.6
114.1
113.4
115.9
1 15.6
115.2
1 14. J
I 14.0
147.?
147.4
EXCESS
AIR, T
1 	 . J

15.9
16.3
30.8
4.0
4.0
15.0
4.2
L_ 	 J
15.9
14.9
15.6
15.3
15.9
14.0
14.0
14.0
14.9
3.6
27.8
27.8
TEMP.
DEO f
i

689
692
694
682
682
697
65S
„
691
681
675
696
686
687
675
684
6P3
690
706
695
1 RURNEK
AIR,
t


*
115. 9
116.3
130.8
104.0
104.0
1 15.0
104.2
1-
86.0
84.4
85.4
70.3
71.0
85.3
84.0
85. 1
86.5
65.9
77.0
76.8
SIDE 1
«n I
OR 1
FRONT 1
SLOTS

1
	 J
	 |
	 t
	
	
— --
	
_L
FRONT
FRONT
FRONT
FRONT
FRONT
SIDE
SIDE
SIDE
FRONT
FRONT
FRONT
FRONT
FLUE
C A C
u A D
RECYC.
j


25.8
14.6
23.8
14.5
26.5
14.4
20.2
J 	 _J
0.0
14.7
31.3
0.0
14.2
0.0
14.5
14.1
13.7
0.0
0.0
14.8
BURNER
OR
PORTS



BURNER
BURNER
BURNER
BURNER
BURNER
BURNER
BURNER


BURNER
BURNER
	
BURNER

PORTS
BURNER
PORTS
	
	
PORTS '
                                                       11
               TABLE 6.15
        OF SERIES  IVB --- «6 RFSID. FUEL OIL
          FINAL  KEOLCTIONS IPAKT  2)
CRIGINAL
T t C T
1 t i 1
NOS.


1VH25/J6
IVB25/27
IVil 6/28
IVI1 5/25
IVH 5/30
I V I! 1 1 / 3 1
IVB16/34

1VB35/36
1VP35/37
I VB35/36
IVR35/39
IVR35/40
IVB41/42
IV641/43
I VB41/44
I V841 /45
IVP46/47
IVB48/4S
IV048/50


BASE
VALUf
_! J
260 * 2
260 ± 2
2P9 t 1
210 * 2
210 » 2
?79 » ?
1 73 * 2
_[ _]
255 + 0
255 ± 0
255 ± 0
?55 ± 0
255 ± 0
262 » 3
262 » 3
262 + 3
262 * 3
?04 ± 2
327 » 2
327 * 2
\C (PPK)

hITH
CHANGES

244 4
235 4
256 6
193 2
174 2
252 + 0
152 + 1
J
224 ± 1
203 » 3
204 » 5
175 + 3
172 » 4
241 + 5
213 » 5
213 » 5
198 » 3
145 * 3
23f » 1
215 « 6


«tDUCTION


16 » 4
25 * 4
33 + 6
17 ± 3
36 t 3
27 ± 2
21 * 2
. J
31 * 1
52 » 3
51 * 5
SO + 3
83 » 4
21 * 6
49 + 6
49 * 6
64 + 4
59 t 4
92 i 2
112 * 6
RECUCT ION
I N
Nil, t


6.2 • 1.7
9.6 » 1.7
11.4 i 2. 1
n. 1 ± 1.3
17.1 Jt 1.4
9. 7 i 0. 7
12.11 1.3
	 _il
12.2 i 0.4
20.4 i 1.2
20.0 ± 2.0
31.4 ± 1.2
32.5 ± I. ft
8.0 i 2.2
18.7 jt 2.2
18.7 i 2.2
24.4 i 1.6
28.9 ± 1.8
28.1 ± 0.7
34.3 Jt 1.9
                      -36-

-------
recirculation and/or staged combustion.  The series are each described by two
tables; part 1 and part 2.  The tabular headings are described as:

     Part 1    1)  Original Test Numbers:  When coupled with the Series
                   number in the table title, this is self-explanatory.

               2)  Averages for Tests:  These values are the average
                   values for the two tests for:

                   a)  Load, %:  The percentage of fuel BTU input
                       based on 5,000,000 BTU/hr.

                   b)  Excess Air, %:  The percent of air based on
                       stoichiometric air added over and above the
                       1001 theoretical air level.

                   c)  Temperature, °F:  The total preheat for the
                       fuel/air input.

               3)  Burner Air, I:  This is the percentage of 100%
                   theoretical Cstoichiometric) air coming through
                   the burner as first stage air.

               4)  Side or Front Slots:  This is the slot position
                   used for second stage air if the tests involve staged
                   combustion.

               5)  Flue Gas Recycled, %:  This is the percentage of
                   flue gas recycled back from the stack into the
                   combustion air.

               6)  Burner or Ports:  This is the position for addition
                   of the flue gas.  For coal, all flue gas additions
                   of burners are secondary air additions; the only
                                       -37-

-------
                   exception is in Series II, flue gas recirculation,
                   where primary and secondary are differentiated,
                   but are both burner additions.

     Part 2    7)  NO (ppm):   The NO measurements in the flue gas corrected
                   to dry, 3% oxygen conditions for the following tests:

                   a)  Base Value:  The test before any NO correction
                       methods were tried.

                   b)  With Changes:  The test made with NO correction
                       method(s) applied.

                   c)  Reduction:  The difference between columns a
                       and b.

               8)  Reduction in NO, $:  This is the percentage reduction
                   from columns 7a and 7b based on the initial value in
                   7a.

In addition, similar tables, Tables 6.16 to 6.19, have been prepared for the
swirl and quench tests.

     Table 6.20 is the table showing burner efficiency calculated from
combustibles (mostly solid carbon found in ash samples) from a wide sampling
of coal tests.   The burner efficiency for gas and oil is 100%.  The tabular
headings are:

     1)  Test and Series Number - Self explanatory.

     2)  Firing Data - This is the fuel/air input data:
                                      -38-

-------
             TABLE 6.16
SUMMARY OF SWtCL  TESTS 	 SERIFS V (GAS)




        FINAL REDLCT IUNS (P4RT  1)
DKIGINAL
TEST
NOS.
	
VA 3/ 4
IVA 9/ 5
IVA 8/ h
VA I/ 7
IVA 9/ 8
IVA 21 9
VA 2/10
IVA 6/tl
IVA 5/12
AVERAGES Fan TESTS
LCAC,
t
	 _J
7S.3
82.0
80.5
123.3
SO. 3
123.5
152.1
154.6
149.1
EXCESS
AIRt *
._ J
13. 4
2.9
36.6
13.7
2.6
36.6
14.0
2.9
36.6
TEHP.
DEC F
_...
672
664
676
693
675
696
702
69S
707
BURNER
AIR,
X
J
113.4
102.9
136.6
113.7
102.6
136.6
114.0
10?. 9
136.6
SIDE 1
OR 1
FRONT
SLOTS






	


1 FLUE
GAS
RECYC.
s
.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1
BURNER
OR
POSTS










             TABLE  6.17
        OF SWIRL TESTS 	  SERIES V 
-------
              TABLE 6.18
Sl"MARY  OF QUENCH TESTS —  SERIES VI - COAL




         FINAL 3ECUCTIONS  (PART  1)
TEST
NOS.
i _

IA 1/1
IB 1/2
IB10/3
P 2/4
IA 2/5
IA13/6
IA14/7
IA18/8
AVERAGES FOP TESTS
LCAC,
j.
116.1
114.8
129.3
121.8
112.5
143.fi
141.0
EXCESS
AIR, X
L_
14.9
15.fi
15.8
15.9
32.7
5.0
16.1
34.0
TEMP.
DEC f
L 1
619
607
604
622
637
602
631
65C
BURNER
AIR,
%
114.9
90.5
89.fi
115.9
132.7
105.0
116.1
134.0
SIDE
OR
FRONT
SLOTS









FLUE
GAS
RECYC.
X
0.0
0.0
0.0
10.7
0.0
0.0
0.0
1 0.0
1
BURNER
OR
PTRTS
L 1









              TABLE  6.19
SIHHAP.Y OF QUENCH TESTS	SERIES VI  -  COAL




         FINAL REDACTIONS (PART 2)
CP IGINAL
T r c 7
1 r :> 1
NCS.

1






I
1
14 1/1
IB 1/2
1FUC/3
H 2/4
IA 2/5
IA13/6
IA14/7
1A16/8
NO (PPM)
BASE
VALUf
J _l
flP2
677
733
7Cft
icei
641
885
1CC1
15
8
14
68
13
22
15
17
WITH
CHANGES
—1
707
555
571
603
f>29
545
766
899
25
13
I
8
4
17
22
33
ptnuci ICN

	 J
175
122
162
105
222
96
119
102
29
15
14
6P
14
28
27
37
REOUCT ION
I N
Nil , T

	 1.
19.8 ± 3. 3
18.0 « ?.3
22.1 i 2.0
14.8 ± 9.B
21 .1 ± 1.3
1*.0 i 4.4
13.4 i 3.C
10.2 • 3.7
                     -40-

-------
          TABLE  6,20
CARflON LCSS  AND  RUBNF-K EFFICIENCY
SCR Its
A N P
TEST
MIMH FR
1 - 6
I -20
1 -26
1 -41
i I A- fc
11 A-l'.
1 I A-?6
II B- 2
II B- -i
II H-l "
I I I A- 1
III A- 2
III A- 5
III A - 6
III A- 1
III n- 5
III H- 6-
III H- H
II 1 B-15
III B-16
111 B-lB
1 1 I ii-20
III 5-21
HI 13-22
I I I H-25
1 I 1 S - 2 S
III 11 - 2 -r7
?75
Wf. IGMS, L
FUEL
(OPY)
i,hQ ***,«
272
572
4 19
464
54<=
516
5Pi (K )
263 ( a )
447 I a )
468
47S
SI".
27.S
471
4 r. 4 (SI
470 ( S>
47,' ( S >
450 IS)
4 i 1 IS)
5 S ? ( S )
577 (S)
r- "5 C ( S )
5 R 2 ( S I
4 4 H (SI
571 (S)
29? ( S )
301 (S)
463 < S-* )
475 (S-K)
5 ». 2 1 S - R )
447 (Sim)
4P6 (SU-«)
3./HR .
FLUf
GAS
5284
31 IS
648?
47RO
522/1
62«5
6118
7?62
30l>2
51 11
5925
7046
HS.)1?
.3556
5P»0
5P5-.
5=64
590"
5007
5027
7203
7735
6570
65R9
6577
^C9^
') 777
45-?!
5P03
5907
72 (0
4766
4 779
ASH
T M
1 N
F .r,.
i
O.HO
0.35
1 .55
O.hR
0.61
0 • R 3
0. 7«
i . n
0. >2
0.9"i
O. 56
U. •-!<
1 .71
U. 74
1.01
0.63
O.OK
1 . 0'.
J.o«
1 .24
1 . *1
1.21
.' . 4 2
c. U
1.15
1.13
0.53
1.11
1.02
O.a-i
1 .39
1 .04
??
r.
i j..
1 N
4SH,
54.6
51 .3
57.3
52.3
55. H
S<;. "i
C.D.6
64. 1
52. 2
r-6. 1
34 .',
4 •• . 3
3c.O
24.4
*<• . I
''T. 7
60.*-
3C . '
iJ. 7
3'- .0
3 '. 1
31 .1
<. ^ , t'
4 « . '
2'<. c
11 .^
36.2
1 c- .>*
4".°
24.--.
i5.5
M • 7
64.7
t p c r r
r ^ f" 1 (. •
IN *
BY WT .
94. i
97.9
H9.0
95.0
Qf>. 2
"4.3
94.6
°0 . 3
'• R . 0
93.9
°6.2
O.6
''5 .4
96. 7
95.2
°3.5
95.3
«7. 7
^7. 1
95.6
94.6
07.',
•">«, . 4
9'.h
97. !
9 3.1
94. '.
1 	
c«««» -  (<;)  =  SIAGFl:  CIMI-USTICN TfST
         1 = )  =  KLUE  C-AS  "i-c IKCUI AT ICN TFST
         ,S-' )  =  STA{;r;i  C ."M'UI<; I  ICN TfST  JITH
                          IC«!"TH 1C
                               (JAS  •> L f I o CU L A T 1CN
                  -41-

-------
         a)  Air, % - The percent of 100% theoretical  air.

         b)  Flue Heat - Net heat release rate  in the  furnace  in  kBTU/ft3/hr.

         c)  Deg F - The total air preheat in °F.

     3)  Weights, Ib/hr - For dry fuel  (coal only) and total flue gas weight.

     4)  Ash in F.G., % - This is the total weight percent  of  solid  ash  in
         the flue gas.

     5)  C in Ash, % - This is the total weight percent of  carb»n in the
         solid ash.

     6)  Burner Efficiency in Percent by Weight - This is the  amount of  coal
         burned to total flue gas after correction due to unburned solid (and
         gaseous for all except substoichiometric tests) combustibles.

     Figures 6.1 to 6.4 illustrate the typical  major effects observed for coal,
oil, and gas.  The variables observed are excess air,  firing intensity,  and
preheat.  The constant conditions observed in these figures are:

         Excess air level - about 151
         Preheat level    - about 600'F
         Firing rate      - about 40,000 BTU/ft3/hr
         (High excess air  - about 35%)

     Figure 6.5 shows the air addition to the furnace  for coal.   Between 15%
to 201 of the total air added to the furnace is used for coal  transport  and
is primary air.  Flue gas recirculation does not change the weight of gas in
the primary since an equal weight of air is removed from the primary and
added to the secondary.  The weight of the secondary always changes  with flue
                                       -42-

-------
C\J
          -H
  Q  Q-   ~1
LUCE   .
OIO  o
ZD_J  z son-
CD
cent
                          CRS
                                     CC

                                     CE

                                     cn
                                     CO
                                  rriu
           RRTE OF  HEflT RELEflSE.  KBTU/FT«x3/HR
LLJH
QCO
"^»— 1
LDZ:
                                                              CL
                                                              iLJ
                                                              n
                                                              UJ
                                                              cc
                                                              Q_
                                                                 soo
                                                           PREHERT,  °F
                                   COf-  £
                                     CE  Q-
                                   LULU   .
                                   ecu  o
                                   IDLU  z S00-
                                   LDQC
                                                                                    CORL
                        EXCESS  flIR,  X
                                                                 500

                                                            PREHERT.  °F
                                                                                                               100

-------
                                    RGURE 6.5
                             AIR  INPUT WITH COAL
                                             fPreheof up to 800°F
                                 SECONDARY  <
                                             L2000-5000 Ib/hr
                                              PRWARY
                                                No preheat
                                                400-600  Ib/hr
gas recirculation for single  stage firing.  Figure 6.6 is the result of primary
flue gas recirculation for  coal.  Figure  6.7 is the overall result of flue gas
recirculation for all fuels studied.

     Second stage combustion  air  can be added to our furnace in two ways (see
Figure 6.8).  The front slots produce a "progressive mixing" and involve addi-
tion of the air in the burner area.  The  side slots, on the other hand, produce
a defined second stage addition downstream of the burner area.   Figures 6.9 to
6.12 show the result of the staged combustion tests.  When flue gas recircula-
tion was used in the ports, it was added  to the port air.

     Figures 6.13 and 6.14  illustrate the effect of load and stoichiometry on
the burner efficiency and carbon  loss.  Figures 6.15 and 6.16 illustrate the
interdependence of load and stoichiometry on carbon loss and burner efficiency.

     The final two figures, 6.17  and 6.18, illustrate the effects of swirl for
gas and quench for coal.
                                      -44-

-------
  CJ
  cc
  *— — t
  LJ
  LU
COCC

 •CO
  CD
LJ
GCLU
ZDZD
LD_J
U_
o
U-T
CC
  CC
  cr
  cc





^**«88(

""I""

g^l

""!""

men o
— grfvH

""!""

F RCO


IIDIlill

LICtl0l<
Kjasajg

""!""

J



iiii|iui




111, |l II!



""!""



iiii|iin



""1""
                    FLUE GflS  RECYCLED,  7.
                                                                                                              LO
                                                                         FLUE GflS  RECYCLED,  7.

-------
                      FIGURE 6.8
              STAGED COMBUSTION OPTIONS
                        _
                        (SifrfioTto Bide slots)
                         #' <*-
                        ,-.*•••• Similar to
                        /   front stots)
      FIGURE  6.  9
CGflL,  VRRIRBLE  PORT
      REDUCTION IN NO,  X
        FIGURE  6.10
CGRL,  5TRGED  COMBUSTION
        REDUCTION  IN NO, V.
                         -46-

-------
4Z.
o -
'*""* J
\—
CD >^ •
c\o . j
•—•CD O
•21 z
tDO 2

ll 1 Z
ceo 2 "
.DLU H- «
oo ^
1__,Q~ Q
CO j
m
J

i_ | 100


^^^"








/








ll11llflllflllIIIIII1lll

*^*~"


















1 1 1 1 1 1 1 iiiii iiiiiiiiiiii

&^ -
l5 2
CD^I g
bjt t
oriiJ fc "
— ^
^S 90
o:
ID
QQ



*
•




STOICHIOMETRY
• HIGH 125 - 150*
* MID 1075-125
- LOW 100"- 1075

1 1 > j

'."v

h* J
*
*
-» -
—


i • i •









0 so IM >» 60 110 160
STOICHIOMETRY RT BURNERS. 7. LOAO,%
inn . . i
i— i
I— ™

•* *— J . _
«—  *
O
Z >•"
COLU ^
^g "
ut t -
QTUJ G3
=^n^
fT\ll

dg °
?
m


»
m m
+ " 1
w ™
* * *
«•
**» 1
*
V


%

1 1 f

.

^ *


LOAD RANGE
• HK3H 125 -WO"*"
* MID ICO - 125
-LOW 50'- 100
1 i '

i









.^ ..« inn i?n lan
so
     STOICHIOMETRY RT BURNERS,  X
STOICHIOMETRY, %

-------
100-

.

"*. •
muj u
cbS - "
ttfefe -
13
OFJ on
p-m 90
o:
2



o
a
* o










i • i



0
® o e
O 0
OB ft
0®
0 ® O ©
0 o
0

0
*

0
0
I " 1
M\j—

_

S* -
Z >-"
(.DLU ^
co^ 8
UJU_ t
CCLU D
•^rv
^iTl 90

£
CD


I
*
••
• 4«
• ..

«







i i i i
< .* *
* / • '
* ;
*

•
H w

0
*
11(1
                                                                                    I
                                                                                   oo
         100
STOICHOMETRYxLCAD, %
200
50
         100
LOAD^-STOICHIOMETRY, %
150

-------
            FIGURE  6.17
NO REDUCTION FOR  SWIRL TESTS £AS)
           WO REDUCTION, %
    LOW  LOAD
    MID   LOAD
    HIGH  LOAD
LOW MiO HIGH
AIR AIR AIR
10
(14, 6)

4
8
19
18
12
17
21
            FIGURE  6.18
NO REDUCTION FOR QUENCH TESTS (COAL)
           NO REDUCTION, %
    LOW  LOAD
    MID   LOAD
    HIGH  LOAD
LOW MK) HIGH
AIR AJR AIR

15


20
18- STAG.
22-STAG.
15-F.G.R
13

21
10
                 -49-

-------
-50-

-------
VII.   DISCUSSION

       The discussion section has been divided into four sections.  These
sections will deal with the data results, special effects which were observed
in the testing, final data discussion, and possible correlated interrelation-
ships.  The discussion will present the data as measured and a proposal for
possible future considerations.  The future work scheduled for Phase II will
be discussed in a later section.

       A.  Results

           The effects of each variable studied are usually significantly
different for each of the three fuels studied when surveying a single variable;
the simplest curve was drawn through the available data.   These data
were usually taken at the extremes and middle of the range for each variable;
but in a few cases, only at the extremes of the range.   In most cases, if a
straight line did not fit the data, a slightly curving line did.  It must be
emphasized that in many cases the extremes of a single variable are beyond the
range of what is currently considered acceptable operating practice.  In addi-
tion, these results apply only to a small single burner test unit.  Even so,
it is believed that the trends will probably hold for large multiburner units,
although the magnitude of these changes may be appreciably different.  Finally,
some of these variable changes may not be acceptable on large units.

           In reviewing these results, it should be borne in mind that iN'O
emissions are due to a combination of thermal and fuel  bound nitrogen sources.
During combustion of natural gas, only thermal fixation of atmospheric nitrogen
is possible since there is no fuel bound nitrogen:
               N     +  0.  	>   2   NO
                       *
                      A
                     '',.*.
                                      -51-

-------
(Only the  overall formation is  discussed here, not the mechanism of formation.)
In contrast, coal contains fuel bound nitrogen and an additional source of
nitric oxide is oxidation of this  fuel bound nitrogen to NO:
                                                   2   NO
       and
                     'L\
               2    R-N  +  02  —>  2   NO
                                                      (2)
       where R is the fuel portion  of the molecule.
The kinetic form of these equations  is given by a general  form:
from (1):
                                    >1  [N2] [02] - kp ^ [N0]:
(3a)
from (2):
                                    >2  [R-N]2[02J - k^  [NO]2
(3b)
       where k,- -, , kr  9, k  ,, and k  7 are of the form:
              1,1   ij^   ij-1-       * »^
                                     n   'Ex/RT
                                     n
                                                                      (3c)
 (Note:  by definition:  k  , = k  9)
                        ri    i z
                                     -52-

-------
It should be noted that the reverse reactions of  (1) and  (2) are  identical
and therefore it is not valid to say:
if reactions (1) and  (2) are considered separately.   If this happens to be
true for a given case, it is simply coincidental.

           The initial thought for oil is that the NO concentrations observed
                                                      j\.
should be higher than for gas due to the fuel bound nitrogen.   In  our unit,
however, oil burns with a more luminous flame than gas and has  a larger
visible flame envelope.  Hence, lower NO levels from  oil  combustion are
attributed to better radiating properties and therefore a lower bulk gas
temperature.

           Excess Air

           The results of the excess air tests show:

Effect
Mean Emission
(under standard
conditions)
Peak Position
(percent excess
air)
Variation from
Maximum to
Minimum Emission
Percent Variation
Coal
Major
700 ppm
1000 ppm
(35%)
±300 ppm
400-1000 ppm
«v40%
Gas
Strong
300 ppm
350 ppm
(20%)
±65 ppm
220-350 ppm
^25%
Oil
Strong
250 ppm
300 ppm
(401)
±50 ppm
200-300 ppm
^20%
       to Mean
                                       -53-

-------
There are significant differences between  gas  and coal which are at least
partially attributable to fuel bound nitrogen.  Although there  are differences
between the two fuels in flame temperature,  combustion rate, physical  state of
the fuel, and even gas velocities, these differences would be expected to
produce less change in NO  than the fuel bound nitrogen.  In particular,  the
                         JC
difference in the shape of the curve is expected  to be a change due to fuel
bound nitrogen.

           The NO emission from gas, the thermal  fixation of atmospheric
nitrogen, depends upon temperature and excess  air level.  At low excess air
levels, the effect of increasing oxygen level  more than  offsets the decreasing
flame temperature, thus the curve initially  rises.  In addition, the flame
can be more luminous at lower excess air level; this can lead to more  rapid
quench rates.  At high excess air levels,  the  decreasing temperature becomes
the overriding effect and the curve drops  after passing  through a maximum.

           In contrast, the coal, which contains  fuel  bound  nitrogen as a
second source of NO, shows a different position of peak  maximum, shifted  to
higher excess air, and an increase in formation of NO  at low excess air.
These differences are, at least qualitatively, due to  the fuel  bound nitrogen.
The trend thus shown indicates a positive  correlation  between increased fuel
bound nitrogen conversion to NO and increased  excess air.  It is not felt
that the fuel bound nitrogen can yet be quantitatively evaluated.   (An
additional factor which must be pointed out  is the apparent  greater luminosity
 (and therefore greater rate of radiation)  of the  coal  flame  as  compared to
the gas flame at low excess air:  in addition, the coal  flame luminosity
appears to .be insensitive to excess air level  whereas  the gas flame luminosity
is very greatly dependent upon excess air.)

           Oil tends to behave in shape and  peak  of curve as though there is a
fuel bound portion.  The actual levels of  NO are  low,  and as stated previ-
ously, are probably due to its high luminosity when compared to gas.   The
relative positions of the curves with coal highest, gas  intermediate,  and
                                       -54-

-------
oil slightly below gas agree in general with field test data.  The gas and oil NO
emission levels fall in the low range and this could be due to the fairly con-
servative furnace heat liberation rate for these  fuels in our test unit.

           Load

           The result of load change shows :
                       Coal - Very strong effect; varies from 400-800 ppm
                              under normal conditions.
                       Gas  - No dependence; 300 ppm under normal conditions.
                       Oil  - Intermediate between gas and coal; 175-275 ppm
                              under normal conditions.

           Again it should be pointed out that with the burner arrangement used
for these tests , the air velocity through the burner and the turbulence change
with load.  However, there is no indication of a peak level being reached under
increasing load conditions.  In addition, due to  the refractory shielding in  the
front half of the furnace , probably there is less response of NO to  load than
would be obtained with different quench rates.

           Preheat

           The dependence of NO emission level on air preheat is very interest-
ing.  Normal conditions  (15% excess air, normal 100% load) result in:

                                                            NO Range , ppm
               Fuel              Dependence               (Deviation  of Mean)
               Coal                 None                      725
               Gas                  Strong                100-300     (+^50 S)
               Oil                  Moderate              200-250     (+
-------
and for high excess air and normal load:

               Coal                 Moderate              750-1000    C
               Gas                  Strong                100-300     (+
               Oil                  Moderate              225-300     (+_M.5%)

The indication is that thermal production of NO  is increasing at a rate of
about 50 ppm per 100°F preheat increase.  This is determined from the slope
of the curve for gas.  The slope for gas is unaffected by excess air.  Since
the same type of increase of thermal emission of NO should, but doesn't,
occur for coal, and since it should be affected  by excess air in the same
manner as gas, then the fuel bound nitrogen conversion must be the reason for
the differences in slope between gas and coal.   Therefore, the results indicate
that conversion of fuel bound nitrogen increases with decreasing air preheat.
The increased slope of the two coal curves  (from horizontal at normal air to
15% at high excess air) simply means that the total NO of the preheat curve is
higher at higher excess air, not that the percent conversion of fuel bound
nitrogen has changed with increased excess air.

           Oil shows the tendency again to have  a fuel bound nitrogen component
like coal, but to be predominantly a thermal NO  emitter.  The oil curves are
therefore consistent with the gas and coal.

           Flue Gas Recirculation

           The following results were obtained for flue gas recirculation:

                                                          Reduction of NO, I
               Fuel              Effect                     (at 30% FOR)
           Coal, primary         Little                   <5S (at 5?o FGR)
           Coal, secondary       Moderate                      30
           Gas                   Very Strong                   85
           Oil                   Slight                        10
                                       -56-

-------
Since the primary transport air for coal represents about 15% of the total
combustion air, a high level of primary flue gas recirculation is not
possible, even when high levels of primary flue gas substitution are used.
Blending the flue gas with the primary air affects the primary ignition zone
and burner performance, further limiting the maximum levels of primary flue gas
recirculation attainable.  Also, as a result of the effect on burner stability,
data for primary flue gas recirculation tests showed considerable scatter.  It is
felt, however, that this trend is realistic and that any reduction of NO by use
of this approach is relatively insignificant.

           The overall effect of flue gas recirculation  (secondary flue gas
recirculation for coal) appears to be reduction of thermal NO emissions as
evidenced by the natural gas data.  The effect of flue gas recirculation on
conversion of fuel bound nitrogen is unknown, but the reduction of this
component is probably minimal.  In fact, reduction of thermal NO could be the
cause of the lower overall reduction of NO in the coal tests.  It is possible
that with lower temperatures in the flue gas, the amount of NO from conversion
of fuel bound nitrogen may actually increase, partially offsetting the de-
crease in thermal NO.  Overall for coal then, the effect is moderate, but
not overwhelming.  For coal, the addition of 10 to 151 flue gas recirculation
resulted in a reduction in NO emission levels of 10 to 151.

           For oil, the reduction of NO emissions by use of flue gas recircu-
lation is small.  The reason for this is probably that the base line data for
oil are already so low, that little or no change is seen for basic reduction
methods when applied to oil combustion.

           Staged Combustion

           The results of the staged combustion data are as follows:
                                       -57-

-------
                              REDUCTION  IN NO,  I
     Staging Test
  Coal
    Gas
   Oil
Normal:
     Effect on NO
     Maximum Reduction
     Burner Air at Max.
     Red., I Stoich.
 Strong
   60
Very Strong
     90
Moderate
   35

  •v-SS
Substoichiometric:
     Maximum Reduction
     Burner Air at Max.
     Red., % Stoich.
  100
    100
With Port FGR
No Effect
     95           No Effect
at %50I Stoich.
With Burner FGR
No Effect
    100
at -v80% Stoich.
No Effect
Variable Port Position
Some Effect
(Max. Red.:
Side Ports 50
Front Ports 60)
 No Effect
No Effect
           The difference in the second stage port position  is  important  for
the coal firing tests.  Although the reduction in NO  is not  significantly
different numerically at low burner to total air ratios* for the  two slot
positions, the visible flame pattern .indicates a low  second  stage combustion
efficiency for the side slots.  In particular, a large cylindrical, highly
turbulent flame envelope surrounds a blacker carbon containing  core.  Carbon
becomes visible in the smoke from the stack.  Although the transparency of
* The burner to  (total) air ratio is defined as the weight of air through
  the burner divided by the total weight of air into the furnace.
                                      -58-

-------
the flame is much greater than this for gas and oil, incomplete burning and
poor mixing is assumed to occur in the second stage for these fuels also.
Therefore, only the front slot, or "progressive combustion" data are used for
discussion of further results.

           It should be noted that these staged combustion data were obtained
with fixed burner and slot openings.  Thus, as the burner to total air ratio
decreases and staging increases, the air velocity through the burner decreases
and the air velocity through the ports increases.  It is for this reason
that the performance and the effect on two stage combustion is unsatisfactory
at lower burner to air ratios when using the side slots.

           The greatest effect of staging is found with gas.  Almost all of
the NO is eliminated by staging the gas combustion.  The addition of flue
gas recirculation can remove most of the rest of the NO emission.  The
important item is that burner flue gas recirculation is more important than
port flue gas recirculation.  This indicates that precursors (free radicals,
atoms, etc.) which later form thermal NO are formed in the first stage, even
under highly substoichiometric conditions:  if this were not the case, burner
flue gas recirculation would show the same or less effect on NO than port flue
gas recirculation.  Therefore, the addition of flue gas recirculation effects
more than just a lowering of the flame temperature in the combustion.  The
position of any maximum reduction of NO is uncertain, but is to be expected
at about 50% burner air.

           Again, in the case of oil, the reductions of NO for staged combus-
tion are small due to the already low base values of NO emissions from oil.

           Coal tests show reduction of up to 601 of the NO emission levels
for staged combustion.  An apparent maximum reduction of the NO is reached
at about 50% burner air to total air ratio.  This minimum is not unexpected
because it represents the diminishing return on the reduction of the thermal
                                      -59-

-------
NO precursors and conversion of the fuel bound nitrogen in the first stage
as contrasted to increasing thermal NO formation in the second stage due to
increasing enthalpy release in the second stage combustion.

           The substoichiometric tests for gas and coal, when superimposed,
indicate the same shape of curve and intercept for 100% reduction of NO.
These results seem to mean that both thermal NO formation and fuel bound
nitrogen conversion to NO under substoichiometric combustion conditions have
the same final precursors in atomic or free radical form such as NH, N, etc.
In other words, the reactions directly leading to NO are independent of the
source which provides these free radicals.  In addition, it would appear that
there is a lower level of burner air below which NO formation in the first
stage drops to zero and it is of no further use to decrease the burner to
air ratio.  Obviously, this is a function of second stage geometry, spacing,
gas temperature, etc.

           It is expected that flue gas recirculation would further reduce
the staged reduction of NO for coal.  It does not; therefore, the assumption
is that staging has reduced all or most of the thermally produced NO, but
only a portion of the fuel bound nitrogen conversion.  This may indicate
that the residence tijne in the first stage is too short and a greater
physical separation is required between stages.  If so, the burner area is
not the place to add second stage air.  An alternative might be to increase
swirl and mixing in the first stage, but increased temperature and combustion
intensity will result.

           Swirl

           A minor effect from swirl was noted for natural gas tests.  In
general, a greater reduction was noted for greater percentage of total air
and/or for higher load.  Both effects, separately or in combination, were
important and lead to higher velocities and probably more rapid mixing.
                                      -60-

-------
The only exception is for increasing load at  low air.   In  this  case,  increased
mixing may not be important since the lower oxygen concentration may  limit
kinetics and thus the combustion reactions are not diffusion  limited  but
kinetic limited.

           Quench

           Coal showed a quench dependence which indicates a  trend for greater
reductions in NO for either decreasing load or increasing  air.  There is in-
sufficient data to indicate whether a combination of factors  also produces
the same effect.  This could result from higher residence  time  and/or more
rapid combustion and therefore higher temperatures in a shorter length
(smaller volume) of furnace:  this would then utilize to maximum efficiency
the cooling surface of the furnace and the quench rate  and thus reduce the
overall tme for formation of thermal NO.  Therefore, all  that  is probably
being observed is a quench of the thermal formation of  NO and its subsequent
reduction due to decreased temperature and decreased time  at  temperature.

       B.  Data and Testing Effects

           NDIR/TECo

           The NDIR and TECo instruments are  very easy  to use and only require
minimum maintenance.  Both instruments or one instrument and  another  method
of NO measurement should be used at the same  time.  Either instrument may
slowly drift away from the true NO measurement and require recalibration if
this problem occurs.  An indication of problems is seen almost  immediately
when the instruments do not agree on the NO measurement.  The most common
problems encountered for the NDIR were:

           1)  Dirty cell, inability to calibrate with  wide range,
               insensitivity to changes in reading.
                                      -61-

-------
           2)  Method of water removal  (before  systematic use of 34°F
               water/ice bath), loss of NO.

           3)  Increase of temperature in final ice bath, increase of
               NO reading.

The most common problems encountered for the TECo were:

           1)  Leaks from a broken capillary  (the yellow capillary chipped
               at both ends if the instrument was moved  due  to faulty
               alignment of the tube ends).

           2)  Clogging of capillaries over long periods of  time by a
               "greasy" substance lowering sample flow.

           3)  Loss of total chamber pressure due to viscosity changes
               in pump oil by using commercial  pump oil.

Any of these problems for either instrument is  easily correctable if it  is
recognized.  In our early testing, many of these problems occurred at once
and it was difficult to track them all down.  Now preventative maintenance
has eliminated almost all differences between the instruments.   Whenever
measurements are currently made, the instruments must agree  within ± 10  ppm
or ± 5%  (whichever is larger) or a problem is suspected  and  the situation
corrected.  Calibration checks are made several times a  day  and no signifi-
cant drift for either instrument over a single  day is noticed.

           The only gaseous interferent observed for either  instrument is
HJD which absorbs infrared like NO when measured by the  NDIR.   The
presence of CO with NO does not reduce the NO measurement, even when
passed through the heated stainless steel coil  used for  the  NO^ conversion
in the TECo.
                                      -62-

-------
           Whittaker  (NOX)

           The Whittaker chemical cell NO monitor shows unreconcilable
differences when compared to readings from the NDIR and TECo during most coal
testing.  It does not respond to the true NO levels in the flue gas.  Although
it may read correctly at times, it does not do so consistently.  When the
reading is in error  (greater than ± 10% deviation), it always reads a value
higher than the NDIR and TECo.  This higher reading cannot be reconciled and
it does not seem to involve the following:

           1)  Calibration - This has been checked even before and
               after bad measurements.

           2)  S0? - Fresh Malcosorb and calibration steps rule
               this out because of the very rapid response.

           3)  C0/C02 - Test gases with these, even when saturated
               with water have no effect except at very high con-
               centrations of CO (>1% CO).

           4)  PNA (polynuclear aromatics) - No hydrocarbons can
               be found by gas chromatograph in even substoichiometric
               flue gas.

           For gas and oil firing tests, the Whittaker agrees very well with
the TECo and NDIR in most tests.  In some tests (besides substoichiometric
tests), an inconsistent and unexplainable deviation occurs; this deviation
is always high.  The Whittaker never adjusts as well as either the TECo or
the NDIR and usually shows greater differences from the "true" NO measure-
ment than either the TECo or NDIR.
                                      -63-

-------
           Impeller Position

           The oil impeller position was found  to be  important during  some
gas fired tests.  Since this was not listed as  a variable  to be  studied and
since there is no inpeller in position during coal  tests,  this variable is
only of minor interest and therefore is only mentioned  in  passing.  The results
obtained showed:

                     NO Emission, ppm  (all normal load)

                 Impeller Withdrawn                        Impeller  Impinging
                 from Flame Front                          on Flame  Front

     High Air           314            (10% reduction)            283
     Mid Air            332            (29% reduction)            235
     Low Air            278            (30% reduction)            194

The effect appears to be predominantly a mixing/turbulence effect which allows
more rapid mixing, higher local oxygen concentration, and  therefore more rapid
combustion.  More rapid mixing would indicate higher peak  temperatures  but  may
also yield a more rapid quenching of the flame  by entrainment of recirculating
cooler flue gas.  Since thermal NO formation is somewhat delayed in time from
peak temperature achievement, the result is a predominance of the lower quench
and therefore a lower NO emission level.  In the case of high excess air, this
may no longer be dominantly diffusion limited but more kinetics  limited and
the mixing effect is less.

           Scatter in Coal Data

           From day to day, changes in the NO emission levels for duplicate
tests occur.  The causes of these changes are unknown.  The following sugges-
tions have been made, but it is not known if they even contribute to the
problem:
                                      -64-

-------
           1)  Air temperature  (no air preheat  in primary)

           2)  Humidity in air

           3)  Moisture in coal

           4)  Slight changes in fraction  of  total  air  used  for primary
               coal transport (changes primary  air  to coal weight by
               much larger amount)

           5)  Barometric pressure fluctuations (could  change  velocities
               in furnace somewhat)

           The magnitude of these changes  is  usually less than the  error
of measurement (± 5$) but can sometimes become  ± 10%.   It is not considered
a major problem however and has usually been  ignored.

           Carbon Loss

           The carbon loss  (opposite of burner  efficiency) from the coal
fired tests on our unit  (there  is no observable solid carbon loss during  oil
or gas fired tests on our unit) is dependent  upon both  load and air as  seen
below:

           Burner efficiency with increasing  excess air

               High Load         Strongly  Increases
               Mid Load          No Dependence
               Low Load          Slightly  Decreases

           (Net effect is decreasing burner efficiency  with  increasing
           load for all air.)
                                       -65-

-------
When the burner efficiency is plotted against the product of  load and percent
of stoichiometric air, more scatter is evident.  If  the variable is  load
divided by percent of stoichiometric air, there is a greater  correlation
between this compound variable and burner efficiency.

           The net effect is that carbon loss increases with  increasing load
and decreasing residence time; the oxygen effect is  therefore not unexpected
since although that also further decreases residence time, more combustion
occurs in that time due to increased 0~ concentration and faster kinetics.

       C.  Final Presentation

           Table 7.1 shows the final results for the Phase I  studies.  This
table is used to indicate the effect of each variable on NO emission levels.
The number of pluses or minuses is only meant to be  a relative indication of
NO reduction.

       D.  Interrelated Variables

           Some of the variables are interrelated and should  only be considered
in combination,   (For example, see preheat and excess air effect upon preheat
as shown in Table 7.1.)  In addition, many of the variables studied could be
defined by a new set of variables such as enthalpy content, temperature,
velocity, etc.  It is possible that during Phase II, this will be tried during
the mathematical correlation.
                                      -66-

-------
                                TABLE 7.1
                   RELATIVE EFFECTS ON NO IN FLUE GAS


Under Normal Conditions
Increasing Level of
Variable                                 Coal        Gas         Oil

Excess Air                               ++++*      ++/--        ++

Load                                     ++++         0          ++
Preheat  (normal air)                       0
         (high air)                       +++

Flue Gas Recirculation                   --         	

Staged Combustion                        	/      —          --/
     (with FGR added-further effect        0        ---/          0)

Quench                                   --         no data      no data
Swirl                                    no data    ++           no data
* + indicates increasing; number of +'s indicates magnitude.
  - indicates decreasing; number of -'s indicates magnitude.
  / indicates maximum or minimum is reached.
                                    -67-

-------
-68-

-------
VIII.   CONCLUSIONS

        The following conclusions have been derived from the work done  in
Phase I for coal firing on the single burner test unit:

        1)  There is a distinct difference in NO emissions from coal
            and gas attributable to fuel bound nitrogen.

        2)  The conversion of fuel bound nitrogen is directly pro-
            portional to the level of excess air.

        3)  The conversion of fuel bound nitrogen is inversely
            proportional to the level of air preheat.

        4)  Primary flue gas recirculation is insignificant in
            reduction of.NO emissions.

        5)  A moderate reduction of NO from secondary flue gas
            recirculation has been shown, although only thermally
            formed NO is apparently reduced.

        6)  A minimum of 601 burner air (total burner to 1001
            theoretical air) is indicated for staged combustion.
            No further first stage reduction of NO would seem
            reasonable at lower percentages of burner air.

        7)  A definite physical separation is required for addition
            of the second stage air for reduction of NO.  Progres-
            sive mixing may be good enough.  Even so, a separately
            spaced second stage probably is required.

        8)  The same free radicals are responsible for conversion
            of fuel bound nitrogen and thermal NO in the final
            steps of NO production under substoichiometric conditions.
                                      -69-

-------
        The final conclusions to be drawn from the Phase I work shows for
coal testing on our basic combustion unit and applicable for single burner
units (no consideration of burner design is attempted):

        1)  Thermal/fuel bound nitrogen conversion NO emission
            effects which are different.  Conditions to change one
            are not the same to change the other.

        2)  Flue gas recirculation is not the method which shows
            most promise for new units for NO reduction.

        3)  For existing units, excess air level shows the most
            promising means of controlling flue emissions of NO.

        4)  For new units, staged combustion and total air control
            show the most effective means of reducing NO emissions.

        5)  The second stage air probably should not be added with the
            burner air for greatest effect, but farther away in
            separate NO  ports.
                                      -70-

-------
IX.   FUTURE VK)RK

     Appendix G includes the specific work plans for Phase II.  The general
steps in Phase II will be:

     1)  Further testing

     2)  Data correlation

     3)  Construction of a new multiburner test unit for use  in
         Phase III

Phase III will be the testing phase for the new multiburner unit.  Data
correlation will continue into Phase III also.
                                       -71-

-------
-72-

-------
X.   REMARKS (Recommendations)

     The indications from the Phase I single burner, coal fired data show
several currently accepted philosophies will have to be modified if the EPA
emission standards for NO  become lower for coal fired utility boilers.*
                         J\.
The obvious satisfactory NO reduction method for existing units without
construction or costly modification is control of excess air.  This requires
lowered excess air, probably below 10% excess air.  Another method for new
units is staged combustion.  Again the requirement appears to be a separate
first stage with reducing conditions prevalent.  Since these concepts require
a change in overall utility/manufacturing philosophy, there will be a long
period of salesmanship and education required to convert people to these
ideas.  Much of the problem will be fears of increased corrosion  (which may
or may not be substantiated in the future), increased carbon loss, decrease
in burner stability  (which may or may not exist), slagging, etc.  A general
discussion of the economics can be found in Appendix F.
 * Most  new coal units  are being designed to meet current  EPA limits.  Many
  existing coal units  also currently meet EPA limits,  but may be on  the
  borderline of acceptance.
                                       -73-

-------
              APPENDIX A
FUELS DATA, ANALYSES, AND CALCULATIONS

-------
A.   Fuel Data

     The coal used in all of our coal fired  tests  is an Ohio  #5 and #6  seam
coal.  The time lag for analysis is at least 30 days from the time  of sub-
mission of samples from the tests.  Therefore all  calculations pertaining
to stoichiometry and load were carried out based on three prior, but recent
coal analyses.  These three analyses, the average  used in calculations,  and
a later analysis are shown in Table A.I.  Although the coal analysis in
January, 1973, showed some change in the coal analysis, the calculations
were not corrected since any error was considered  smaller than the  experi-
mental measurement techniques.

     The natural gas analysis used is shown  in Table A.2.  The analyses  first
used were averaged and all calculations based on these numbers.  Later,  a new
analysis was found and although the molecular constituents were about the
same, the density and BTU value were different and the new analysis was  used
in all final calculations.  The oil analysis is shown in Table A.3.  Again,
the earlier analysis was used for preliminary calculations and the  final
analysis was used for all final calculations.

     In addition to those analyses listed, coal fuel bound nitrogen analyses
were also frequently run.  Below follows the listing of these:

     Coal
     Date of Sample
     Nitrogen, \ dry
     Moisture
     Carbon
10/25/72
1.05
--
--
11/21/72*
1.31
3.5
74.1
12/1/72
1.15
4.16
--
1/30/73
1.02
6.8
--
  Coal was dumped from hopper and not used  in coal  firing tests.
                                      A-l

-------
                               TABLE A.I
                             COAL ANALYSIS BVTA
MW Ub.
Serial No.
Date of Sample
\ Volatile
Fixed Carbon
Ash
t Total Moisture
BTU/lb, Dry
Ultimate. Dry \
C
H
N (determined)
S
Ash
0 (difference)
C-13688
V20/72
38.6
49.4
12.0
5.7
12290
69.1
4.8
1.1
2.8
12.0
10.2
C- 13689
S/9/72
58.1
48.7
13.2
6.4
12020
67.9
4.6
1.0
2.7
15.2
10.6
C-13692
5/15/72
59.6
49.2
11.2
6.3
12410
69.7
4.9
1.1
2.8
11.2
10.3
Average
used in
Calculations
--
--
--
--
6.13
12240
68.9
4.77
1.07
2.77
12.1
10.4
C-13762
(not used
in average)
1/18/73
--
--
--
5.4
--
72.8
5.0
1.1
--
7.6
--
                               TABLE A. 2
                            NATURAL GAS ANALYSIS
Type
Date
Mole i"
N,
c62
™4
C21'6
C3H8
C4H10
C6H14+
f>
(calc.)
ETU (calc.)
Columbia Gas Transmission Corp.
Pittsburgh Group, Steubenville
12/20/71

0.47
0.72
95.01
3.19
0.41
0.15
0.05
--
0.5864
1038.7
6/21/71

0.40
0.97
95.57
2.63
0.30
0.10
0.03
--
0.5835
1029.0
1/23/71

0.49
0.77
95.08
2.93
0.49
0.19
0.05
--
0.5872
1038.1
Average of
three groups
--

0.45
0.82
95.22
2.92
0.40
0.15
0.04
--
O.S8S7
1035.3
New Analysis
later used
12/18/72

0.40
0.78
95.84
2.54
0.30
0.11
0.03
--
0.5814
1030.5
*Sulfur bearing materials were small and therefore not entered into the calculations.
                                    A-2

-------
                           TABLE  A. 3
                BUNKER C OIL ANALYSIS  (16 RESIDUAL)
KW sample  * F-680 (analysis used  in final calculation)
           I F-367 (analysis used  in preliminary data)

Date of sample
Moisture
C
H
S
N (determined)
0 (by difference)
Ash
BTU/lb.
F-367
7/2/71
--
87.9
10.8
0.7
0.24
0.34
0.02
18S80
F-680
3/2/73
--
87.2
11.1
1.2
0.22, 0.23, 0.24, average
0.26
0.02
18620
                                                             0.23*
•These analyses  for fuel bound nitrogen were run on samples taken at least
 once a week.
                                 A-3

-------
B.   Fuels Analyses

     No fuels analyses are done at B§W ARC for natural gas.  All values  are
reported to B§W by the Columbia Gas Company at regular intervals.

     All of the important fuels analyses are shown below by method:

          Moisture                    ASTM; heating and weight difference
                                      in samples

          BTU                         ASTM; bomb calorimetry

          Total - carbon              ASTM; collection of CCL in ultimate  train

                - hydrogen            ASTM; collection of H-0 in ultimate  train

                - nitrogen            Kjeldahl distillation and titration

                - sulfur              ASTM; bomb calorimetry washings  as BaSO,

                - ash                 ASTM; complete combustion and  residual
                                      weight

                - oxygen              By difference

C.   Fuels Calculations

     In the chemical description of the coal for mathematical purposes,  all
•weight percent contents including moisture are converted to atom percentages.
The ash is considered to be SiO_.  An ash analysis indicates large amounts of
A190X and Fe0CL and so the Si09 is a good average in molecular weight  between
  Lt O       2t «J               £
A10, r and FeO, p.  The fuel values on conversion show the following atomic
   J. • 0        x • D
ratios:
                                      A-4

-------
     Coal  -  C =  54.049             Stoichiometric Air  -  N = 469.33
     (wet)    H =  50.973                    (dry)            0 = 125.90
              N =   0.718
              S =   0.813
             Si =   1.902
              0 =  13.117

     Oil   -  C =   7.2593            Stoichiometric Air  -  N = 74.929
              H =  11.011                    (diy)            0 = 20.100
              S =   0.0374
              N =   0.0164
              0 =   0.0169
             Si =   0.0003

     Gas   -  N =   0.90              Stoichiometric Air  -  N = 1520.7
              0 =   1.64                     (dry)            0 =  407.91
              H = 403.58
              C = 103.88
     The theoretical air requirement as used above can then yield a curve of
excess air versus oxygen concentration in the flue gas after combustion has
taken place.  Suitable curves were chosen* rather than calculating each case
separately.  The curves chosen are:
* Useful Tables for Engineers and Steam Users, llth Ed., 1969, The Babcock
  Wilcox Company.
                                      A-5

-------
Coal:  If           0.0 <_ % 02 <_ 2.5102
                        (% theoretical air = PTA and %  oxygen as
                       measured in  the  flue gas =  POP)
       Then         PTA = 100 + 4.7279  (POP)
       If           % 02 > 2.5102

       Then         PTA = 100 + ^ (POP)  +  | (TOP)2
Oil:   If            0.0 1 % 02  <_ 4.8522
       Then         PTA =  100  +  4.7279  (POP)
        If            % 02  >  4.8522

        Then          PTA = 100  +  i   (POP)  +   (POP)2
Gas:    If           0.0 <_ %  QZ <_ 2.4588

        Then         PTA = 100 + 4.7279 (TOP)
        If           I 02 >  2.4588

        Then         PTA = 100 + I (POP)  + i (POP)2
                                  A-6

-------
                     APPENDIX B
OPERATING CONDITIONS, MEASUREMENTS, AND CALCULATIONS

-------
A.   Operating Conditions

     Before any data runs for a day's testing commenced, the furnace was
warmed up and all instruments were calibrated.  The furnace warmup period
was at least one half to one hour.  During this time, all  instruments were
zeroed and calibrated with at least one standard gas.

     The NO  instrumentation was always checked with at least three or four
           JC
Matheson gas standards of ^200, ^500, "o800, and ^1300 ppm  NO in nitrogen.
As standard tanks of gas near the point of being empty, new standards of the
same concentration are ordered with a certified analysis.  These new standards
are checked against the old ones to verify the analysis before use as calibra-
tion gases.

     The standard operating conditions selected for our basic combustion
tunnel are 115% theoretical air, 600°F preheat for the secondary air, and a
5,000,000 BTU  (5 MBTU)/hour load or heat release rate.  During all coal tests,
the natural gas igniter was operated at three Ib/hr and a  heat release rate
of about 70,000 BTU  (70 kBTU)/hr.  The igniter was not used during natural
gas and fuel oil firing tests.

B .   Calculations

     The calculations used are based on the ASTM Fluid Meter Report, 1940.
The important equations are:
                       W = 358.9  (Dp  KEY   p     AH

where:                 KEY =  0.935  (0.7  - D^)


                                         273'16
and                    p_   -  0.0741
true   »•«'-"• 0.55556 (T + 459.67)
                                     B-l

-------
The air calculations for the furnace firing  reduce  for all  inlets to:
                                          459.6
Where:
     Dry air inlet description
     Normal primary air
     Compressed primary air
     (with primary flue gas
     recirculation)
     Primary air plus primary
     flue gas
     Normal secondary air
     Secondary flue gas
     Second stage air, normal
     Second stage flue gas
     Natural gas  (for ptrue
     replace 0.0741 with 0.0434)
2.25
0.75

1.625
 D2
4.00
1.50
2.50
K, a constant
    7028.
    2808.

    3911.
7.0
5.0
4.5
3.0
1.0
12.0
12.0
8.0
8.0
1.5
68689.
33601.
28110.
11785.
1127.
The addition of humidity  in the air  is easily accomplished:
                         WH20 = Wair
                              = W -   ,/   0.62133
                                  clli
                                                  PSH20
Where:
     WH 0 is the weight of water  in  Ib/hr

and  W -  is the weight of air  in Ib/hr  (previously  calculated above)
      3.1JT
                                     B-2

-------
The ash sampling probe also reduces to the same type of equation whereby D,
is 0.625, D- is 1.5, and K is 525.3.  For the natural gas igniter, the
orifice equation is:

            10t0(0.61278 + log(NF)) . 21.3480(0.0072527 • AH *
                                   (T + 459.7)
Although the form is awkward, it shows the flow meter/orifice constants.
                                      B-3

-------
     APPENDIX C
PRELIMINARY TEST DATA

-------
     The preliminary data is presented in the tables on following pages.  Sbc
series of tests were rim.  Each series of tests is described by four tables.
The series of data are:

       I.  Base line coal tests

      II.  A.  Primary flue gas recirculation - coal
           B.  Secondary flue gas recirculation - coal

     III.  A.  More base line tests for coal
           B.  Staged combustion with coal
           C.  Staged combustion and flue gas recirculation with coal
           D.  Substoichiometric firing with coal

      IV.  A.  All natural gas tests
           B.  All fuel oil (#6 residual) tests

       V.  A.  Swirl tests with natural gas
           B.  Swirl tests with coal

      VI.  Quench tests with coal

The table headings are discussed below also:

     Table 1 - Furnace input data in pounds per hour for the natural gas
               igniter, fuel, primary air (used as transport air for coal
               only), secondary air, second stage air, and flue gas re-
               cycled.  (The two numbeis for 1-1,  fuel are 471/502 and
               are respectively the fuel weight dry and the fuel weight
               with normal moisture.)
     Table 2 - Total amount of air, in percent of stoichiometric; the
               heat release rate in 10  BTU per cubic foot per hour;
               the total, averaged gas preheat for all air and any
                                      C-l

-------
          recirculated flue gas; the weight percent of flue gas
          recycled; and the percent of stoichiometric air which
          enters through the burner (primary and secondary summed
          together).

Table 3 - The three NO  instrument readings in ppm NO reduced to
                      .A.
          3$ oxygen and dry for the Beckman NDIR, TECo chemi-
          luminescence, and the Whittaker chemical cell; the
          average of the NDIR and TECo expressed as ppm NO ±
          the standard deviation of the average; and the con-
          version of the ppm NO to pounds of NO  (not N02) per
          million BTU input as fuel BTU only.

Table 4 - The humidity and barometric pressure in mm Hg; the un-
          corrected ("raw, as recorded") concentration of oxygen,
          carbon monoxide, sulfur dioxide, and carbon dioxide;
          and the ash loadings as weight percent of ash in the
          flue gas (pounds of ash per hundred pounds of flue gas)
          and weight percents of carbon and nitrogen as found in
          the ash  (pounds of total carbon and total nitrogen,
          forms undeterminable, per hundred pounds of ash).
                                 C-2

-------
     TABLE C.I
TABLE C.2
IMIUl UStS ISfOliS I fOP COAL»




    FiRMCE cat* (INPUT}
'•< li.lNM II
<1"IIS II II-.MIID
.if Jt'A 1 1 K.AM
- 1 II 1.2
£ II **2
- 3 II l.J
- 4 || i.l
- 5 II >.2
- 6 II «.<•
- 7 II ).2
• •' II ill
- lr II l.l
II
- ll II >.'
- 1? II 1.2
-11 II 1.2
- 11 II 3^2
- U II 3.2
- 17 II 3.2
- ID II 3.2
- 11 II J.I
- 20 It l.l
II
- 21 II 3.2
- 22 II 3.2
- '3 M 3-2
- 24 II 3.1
- 25 1 1 3.2
- 26 II 3.1
- 21 II 3.1
-If II l.l
- 21 II 3.1
- 1C II 3.1
II
- 1 II 3.1
- 2 II 1.2
- 3 II 1.2
- 4 II 3.2
- 5 l\ 3.2
- f II 1.2
- 37 II ).'
- IP II ).'
- 11 II 1.2
- *r 1! ).'
1 1
- 41 II (.2
- -2 II 3.2
- 41 II 3.2
LB.
tun.

48»/5?0
512/031
550/5. H6

274/212
301 /320
297/11 7
S5»/514
413/52!
2<7/')16
272/210

377/401
467/417
•1P/JI7
2flh/305
C12/6 2
511 /6 0
4R1/5 1
21B/3 7
4R4/5 *

212/J11
473/504
457/487
446/47t
574/612
2BR/306
471/502
573/61 0
45C /47S
451/411

4(1/447
466/602

Alb


666/717
678/7)2

•4 I/5C2
541/413
",!/'«4
oCe/641
<6W7C<
5ie/!i«
518/552

52C/556
605/643
163/714
517/556
683/721
676/725
(Cl/646
516/55?
6C1/647

514/556
65C/616
(22/661
614/655
654/7CI
'.4C/502
606/647
612/724
tCI/648
C2I/66C

C3C/60
696/1)1

il»


5517/514C
6468/4822

2051/22lf
3266/3531
2,5*2/2741
5210/5560
55U/5102
541V586C
2574/2751
2133/227)

4340/46K
54*6/5806
5522/5121
2125/22H5
5550/5125
6701/718C
4431/476C
2555/2771
4390/4716

2214/24(1
4411/4722
5352/56CC
3654/3916
5517/5101
3266/3516
541)1/5864
54*3/5772
3775/4017
*412/46fl6

34*1/3662
5451/5776

«M
O/ C
O/ 0
or c
O/ 0
O/ 0
O/ 0
O/ 0

o/ c
O/ 0
O/ 0
O/ 0
O/ 0
O/ 0
O/ 0
O/ 0
O/ 0

o/ c
O/ 0
o/ r
O/ 0
O/ 0
O/ 0
O/ 0
O/ 0
O/ 0

o/ n
O/ 0
o/ c
O/ 0
I/ 0
O/ 0
O/ 0
O/ 0
O/ 0
O/ 0

O/ 0
O/ 0
1 1
CAS II
1 I 1
C 1 1
C II
0 II
0 1 1
C 1 1
C 1 1
C 1 1
C 1 1
c 1 1
II
C 1 1
0 II
C | |
o II
0 1 1
0 1 1
0 II
1 II
c II
II
c II
0 1 1
0 II
c II
0 II
0 1 1
0 II
0 II
C 1 1
II
c 1 1
0 II
C 1 1
0 II
0 II
0 II
0 II
0 II
0 1 1
C 1 1
II
0 II
0 II
C 1 1
II
II
II
II
II
II
II
II
II
II
II
II
II
1 1
II
II
1 1
1 1
II
II
II
II
II
II
II
1 1
II
1 1
1 1
II
1 1
II
1 1
II
1 1
II
1 1
II
1 1
1 1
II
1 1
II
II
II
1 1
II
II
1 1
II


<.!5.1
1 1 1.0
IK. 7
111.1

IC3.3
US. 5
141.0
1C).?
116.3
1»!.K
14C.C-
Mi. e
K5.2
1 11.1

IC4.1
117.0
1C1.7

/ H«.

51 .15
52. 5f
50. 1C
53.ec
54.62
50. «1
64. CO
66.41
31.65
31. ««

21.6!
i.ti
2.46
».6«
«.C1
7.31
50. 3C
52* 11
31.20
it. 11

11. «
52.11
65. 7»
70* fl
65. >1
60. 7$
t».6<
51.56
11 .It
41. J8

J1. 71
S1.17
50. 61
47.6)
6?. )!
11.91
'2.50
62. Cl
4H.96
47.47

.).*«
5<.02
51. J2

tic. f

6C*
1.21
587
611
HI
412
62C
647
6C5
57C

514
515
96«
6l«
114
371
31)
)9S
3 4
1 «

1 7
6 1
6 1
547
407
501
5)4
505
470
274

263
32S
5««
515
5!3
527
563
54C
611
)7(

154
373
361


II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
| |
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
| |
II
1 1
II
II
II
II

III

0.0
0.0
0.0
0.0
0.0
0.0
3.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0*0
0.0
0.0
C. 0

0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
o.c
0.0
0.0
0.0
n.o
0. C

U.O
0.0
0.0

It)

116. 1
14.'. 0
101. 1
112.4
114.1
101.1
II'. o
1 17.0
101.'
II). 1

101. '
136. C
III. 1
114.2
112.1
111.4
1 40.0
KS.l
111.1
1C4.4

1 W.O
140. n
II'. 1
">.l
110. 1
103.1
11 .1
11 .0
11 .7
11.1

1-3.1
1 .*!
1 1 ."
1 «.2
1 ' . I
1 1.1
1 ,>.0
1IS.P
l\->.t
ll">. 1

10*>*1
HI. 6
1CI.7
II
1 1
II
II
II
II
II
II
II
II
j j
II
II
II
1 1
II
II
II
1 1
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
                                  C-3

-------
     TABLE C.3
TABLE C.4
INITIAL USTS ISfMFS I FTP COAL)




     hOX "f Ireful MS
                                                    IMI1*L TESIS
II tin IIS -
II -IIS 1-^
I 1
II

II
1 1
II
1 1
1 1
II
II
1 1
II
1 1
n
1 1
u
1 1

u
i
i
i

j
i
|

| |
I |
| |
| |
II
II
I I

| |
| |
| |
II
I |
| |

II
1
- 2
- >
<.
- 5
- e.
j
t
<;
- lu
- 1 1
- t 2
- 13
- 1 *
- I \
- It
- 1 7
- I P
- 1*1
- ;c

- 2 1
- 22
- 2 3
- 24
- ? ;
- ?t
- .' 7
- ?fl
- tf>
- 1C

- 3 I
- H
- ) S
- "
- 17
- if
- 1
P42
Hi
SC6

:<•?
537
775
6<3
4:2
I1H
I5C

<.24
7K
)23
77C
<4C
t>8«
442
5PO

> ? I
734
714
747
«7i
847
570
149
464
777
Se 3
ItCU

738
ISC
430
761*
1C54
12>
lO'll

IS!
*54
842
673
343
f 70
fit

I04(.
AC
74
72
11
66
41
A2

i*"
7.'9
7B4
7M
118
»22
546
*28
431)
751
4H
Khlt

79C
10?>
5»1
8L1
I1CI
•IT4
1 <2I

506
C13
116
731
547
127
1*4

1C94
495
4 SO
7>75
1112
157
4H»
717

524
>2I
fi
ac
9t
Rfl
<2
717
«1
M4
570
|[
II
II
II
II
II
II
II
II
II
1 1
II
II
II
II
n
1 1
n
n
1 1
u
1 1
ii
1 1
n

n
n
u
!!
1 1
1 1

u
n
1 1
n
n
ii
1 1
pov.
FlUt

725
113
431
114
14 a
746
5S*

212
540
j<. •
f * •
420
814
321

185
111
7«2
746
<*6
676
4211
601

112
711
7«1
749
522
834
55f
731
449
764
509
31 P2
CIS

1 1*
i •>
•
1 '
t f>
• 10
1 11

1 C
•- I."
• »7
.' l«
1 «5
£ 51
t «

t *
• I
J -i
I »
£ »
i 1«
t 70
1 1C

t '
t
t 1
2
t
1
2 I
• 1
t 1
• il
• 18
• 11
I0»«c
. * / II
»U 1 1
KP1.I II

i . >»
1.12
C. fi
C.ll
I.It
0.74
1.10

','.26
0,41
•l.M
r»6l
t.3«
1 .CO
n, 2-

1.13
V . It
-• . .' 5
i. n
i . 1 1
f. .h i
^.47
r .51

C./1
0. 14
1 .15
i-.K
J.-JI
1 .1C
O.M
0.51
0 . '4
U.4I
0.77
n.45
1 1
1 .07 II
> .12 II
1 .0 II
2 .Cb II
• .U II
• .11 II
1 .!• II
1 1
• . •' M
• . C1* II
t .Cl M
« .05 II
2 .01 II
• .04 II
t .Cf II
• .01 II
: .04 n
1 1
1 .10 II
t .01 II
1 .05 II
2 .01 II
t .03 II
• .02 II
1 .02 II
2 .01 II
1 1
2 .03 1 1
2 .0 II
1 .02 II
£ .01 II
2 .0 II
2.01 II
• .07 It
2 .O/ It
t .07 II
1 1
2 .07 II
2 .07 II
2 .07 II
1 1
1 1
4*-
1 |
t |
| |
| |

1 |
1 1
| |
| |
1 1
| |
| (

1 |
1 |
1 |
f |
1 |
| |
I 1
1 1
I i
I 1
1 |
1 |
1 1
• |

1 |
• i






JJ-
1 1
1 1
1 I
1 1
LKlGINAl | | hU^i
SEB IfS - || in*
»Uf I-S || bfTI
	 -|* — — •-
II




- tv II P*C

- •» II It *
1 1




- 1* II "-C


- u II •>.,>
- .'.' 11 •**'>
' '«. 11 «.'
- 7* II t..'
- .•* - II f . f

1 1





II S*1)


*!n II *, * (•
- «.l II «O
- W II *. »
- <•! II <>•>
tAA* || IV
( " lit
h T| | |
	 4i 	
II




16 II 0.6

)*• || Ui;
1 1




JH || 0.7


in 1 1 I. L
17 1 | 6.0
)7 II U.8
jr n 0.9
JT || 2.7

1 |





10 II A* 0
II 1*1
II 1*1
:^ ' j *
ii
2fl II 1.2
2* 1 1 0.7
PPM
CL
2C4
8C
9CCC
1 8C

HOCO
?60
1 1 *
1 liOOC
Its
**occ
"

If
5CC
"*OCC
7C
* '

KCO
90
2COOO
*occ
ICO
AC C

I «OCO

*ft
•
? ?
'hC



»
30CC

}2CC
700C
PPM
SO?
??oo

» r p
3?S
2700
 ft
^SCO
2 MO

' '
2-«50
2125
;**>o
2150
2*00
21/5

2500
2OT^


125


ii*>
23^0
23CO
2350
C02 II ASK
I 111
II
	 ^^ 	
n




	 II C.89

— 1 1 	
M




— n —


	 II 0,J5
II
	 | | 	
	 | | 	
	 II 1.5*
15.1 || 	



J j
' !
J J
' '
! !

!
'
n
16. fl 1 1 O. 68
	 | | 	
	 1 | 	
c IN
ASh
t




5*. «

....








51.1


M. 1












52. *
* IN 1 1
ASf 1 1
1 1 1
	 + 4
1 1




C.7C II

	 II
1 1




	 II
1 '

0.5* II

	 1 1
	 II
	 11

1 1

' '





' '

1 1
U.6S 1 1
                                 C-4

-------
             TABLE  C.5
             TABLE  C.6
HIK r.AS CICIICUIAIIO. ItSU ISEPIfS II fC« CUAll
            notice CAM dhBuii
lilt CAS 3K l««Jl»t U> USIS littltS II K« C01LI
            HJRNACI CAIA IflMll
1 1 OICINAL 1 |
II SL->tfb 11 (GUI f E9
1 1 >»• KUNS 1 1 10*^ I
n n
HIM- 1 II 1.1
Mill- 2 II l.f
Mill- 1 II I.-"
Mill- 6 1 ).0
1 1 1 11 - 7 1 1.0
1 1 IU - a 1 !.C
1 1 1 1 i - 1C 1 l.C
II II
1 1 1 U - 11 II l.f.
1 1 II A - 12 II ). 1
1 1 IIA - 1 1 II 1.1
1 1 111 - !<• II <.!
1 1 1 1 A - 1' II I.I
1 1 1 1 A - 1 1 II 1.1
1 1 III - l» II I.I
1 1 1 1 A - 1 -. II 1.1
1 1 111 - 2C II 1.1
II II
II 111-21 II *.l
1 1 IU - il II 1.1
1 1 111 - i\ II 1.1
11111-24 || 1.1
1 1 1 U - 2S II 1.1
1 1 1 U - 27 || 1.1
Mill-?': II ).l
1 1 IIA - 'C II >.l
II II
1 1 1 1 A - 12 II 1. 1
1 1 1 1 1 - 14 || ). 1
1 1 1 1 A - IS II 1.1
1 1 ll» - >6 II ).l
1 1 111 - 17 II 7.4
Mill'- 1 II )>!
1 1 IIK - 2 II I.I
1 1 tin - 1 II l.l
II II
1 1 111- - 4 II ).[
1 1 ll.l - •> |l ). 1
1 1 lln - ' II 1. 1
1 1 IU - 7 II I.I
M IIK - e II 1.1
1 1 llrt - » II ).2
M II* - 1 II l.i
II IIP - ) II ).!
1 1 1 1 - S II 1.2
1 1 II - t II 1.2
1 1 II - 7 II 1.2
1 1 II - » II 1.2
1 1 1 1 -It II 1 . .'
1 1 II - 2C II 1.2
1 1 II -11 II ).2
1 1 II -21 II 1.2
M II
II II - 2S II 1.2
1 1 II" - 2t II ).2
1 1 1 Ih - 27 II 1.2

fuu
476/507
*ie/s:ci
445/4 74
S76/61 J
iHS/104

SbA/601
471/502
257/1K
464/SOO
406/576
47^/SCf.
s-*2/Ml
475/612
571/611
'"1/621
.•76/2Q4
i 7S/2-7)
27S/241
)f-/)87
2S(/J7S
<63/240
47t/507
?i>7/?«
4e 7/497
SU4/517
415/50*
45E/488
447/4.77
214/3C;
277/3-M
277/2S6
26S/J12
5(0/475
547/581

PK1K1PV
IIP.
tOC/t)2
)7»/)':2
SOP/63?
t01/63t
)f t/J<7

17I/4C7
60 t/654
I2//M8
C05/6S7
6?6//>77
37S/414
601/650
37I/4C7
«M/7ll
472/721
5II./S76
*2d/S67
525/568
TC/5-J
•21/S51
12 fl/Sft6
cC2/6)2
5)P/57t
607/6%6
6C7/647
606/t4*]
60A/644
«14/(57
•22/556
•24/5!'
S2S/S50
524/Sif
661/70)
675/117

StCCNOlPV
AIR
4414/472P.
45)3/48211
4068/434C
6670/7|)a
)22)/lSf.s

546S/604I;
427S/47M
247C/274K
427A/47)!
5162/5004
5)62/54CO
67)0/ 72 17
6802/7)111
5512/5POI
5519/5017
25)5/2727
2S.'8/2H5
)1I2/»4|
420B/45C7
2040/2J4)
2041/224)
4450/4674
2042/21 't
4452/4MP
Sell/6250
5551/59)2
J8I4/40K)
)71 1/J974
2S77/2747
2512./2C6)
)1 74/1)84
2057/2H2
6044/6«l)
6065/64 )0

1 ML
IE!.
BINS

- 1
.'
l
4

7
!•
t
- 17
- 1 *
- 1
- 1
- 1
- )
-
-
.

t
.,
-
r
!•
•i
- li
- 1 1
- U'
- I »

- 1 *
- !•<
- I 1
- 1 ^
- IS
- .'I'
- 7 1
- 77
- 7>

- 74
- f-
- 7*.
- 21
II
II
1 1
II
II
II
II
II
1 1
II
II
II
1 1
II
1 1
II
II
1 1
II
II
I |
II
II
1 1
II
II
1 1
II
1 1
II
H
II
I |
II
II
II
II
1 |
1 1
II
1 1
1 1
1 1
1 1
II
II
II
II
II
II
II
II
II
II
II
1 |
II
II
1 1
1 |
1 1
II
II
II
II
1 1
II
II

II
II
1 1
UAl
C


14. )
12. 7
11. C
1 1.7
J2.1
C2.C
1 '. 1
1 1. )
17. C

JO. 4
14.0
14. C
C3.S
C?.*>
11.*
11.9
IS. I
M.4
CJ.I-

r ). i
14. n
1 1 .(
IV. I
Cl.4
fl.4
1.'. 7
11. R
11.7

1 7.C
12.4
II. C
)U. s
1C. 5
?4. 1
11.7
It.. 1

IS. t

14.2
42.0

CH. 1
C6. 7
14. C
4 l.u
C *•. )
4.' .i
17. J

17.7

C4.)
14. 4
17. C
17.4
4). C
47 . <
C4.4

IS. I
15. f
M.2
(7.6
Mil,
M»«)
/ MR.

•.2. !»
SI. It
SO.C4
55.57
54. 7C
4R.6S
4ft. 09
62.05
65. C8

M. 14
6). SO
>I.C)
5S. AS
4H.OS
12. \f
M . 44
12. 1 5
11, 72
2P. 51

27. !•
M. <»
(,0-SO
1.1.10
••6.52
5*. !•#
4I>. 65
SO. 54
11.67

1". )4
41.04
*«. 5 7
52. 47
SO. 46
C2. (4
61. s 1
ft 1. 1 1
fiS. CC
10. 7*

10. HI
U.S2
4f*. t I
2'. Si
70.00
52. 4*»
6*P
6)3
62*
6)1
6tC
66;

CM
6*1
66C
61)
641
5TT
600
370
M4

)\T
*>2l
52S
i2T
SCS
*fC
M»
r>o.
»^i

*B4
%?•*
40«
*cc
o<:
Cl
C1
JC
1$
6C

^6^
•>1*
*,<)(
Mr
^•>o
6?e
6)h
^}*
•>2C
62 )

ti )
«4«
601

5 M
M I
^t*
49 )
MC

^2S
6)b
6*f
617
M
n
n
n
n
1 1
1 1
n
u
1 1
n

1 1
1 1
n
n
i {
1 1
1 1
n
n
n
1 1
n
n
n
n
n
n
1 1
H
n
n
n
n
n
1 1
n
1 1
n
n
1 1
1 1
1 1
1 1
1 1
1 1
n
1 1
1 1
n
1 1
M
H
n
n
n
n
ii
ii
1 1
n
n
1 1

n

1 1
1 1
1 1
n
n
»LUt GAS
TU mPUT
Itl

0.0
I.I
1.2
0.0
1. )
I'.C
0.0
1.4
0.0

1.2
0.0
1.5
0.0
1.9
0.0
3.0
2.8
0.0
0.0

4.)
0.0
1.6
0.0
0.0
1 . 8
1.9
0.0
0.0

2.4
0.0
1 .9
n.o
1.5
0.0
1 .4
0.0
l.'.l
0.0

21.0
17. s
0.0
0.0
.'1.4
C. 0
0.0
0.0
n.o
o.c

10.5
0.0
0.0
n.s
o.c
14.0
O.u
22. e
0.0

41.1
n.o
20.4
0.0
lift AT
Itl


114.)
112.7
1D.O
I)).?
1)2.1
io?!»
ID.)
111.)
117.0

1)0.9
114.0
114.0
101.9
102.9
ID. 5
11). 9
115.1
111.4
10). E

10.2
114.0
III. 6
135.1
101.4
IC1.9
112.7
111. a
III. 7

117.0
112.4
Ill.O
1)0.5
110.5
114.1
1 ) ).?
lit.. 7
1 1S.O
1 IS. 1

us..-
142.0
1 )S.9
!OA. 1
106.7
114.6
141.0
10). 1
142.0
Ill.O

111.7
1)4.0
1 40.0
104. 3
104.4
Ill.O
117.4
14). 0
142.0
104.4

105.1
1)5.6
t».2
102.6
II
1 (
II
II
II
II
II
H
II
U
1 1
II
II
II
II
II
II
II
II
II
II
II
1 1
II
II
II
II
II
II
II
1 1
II
II
II
II
II
II
| |
II
II
II
II
II
II
II
II
1 1
II
II
II
II
II
1 1
II
II
II
II
II
II
II
II
II
1 1
II
II
II
II
II
J |
II
II
II
II
II
II
                                               C-5

-------
             TABLE  C.7
          TABLE  C.8
ftl-i r,t-, ifCIBCul»rICK  11SIS lifslfi II FCO COil I




             KCI »i»Sl,»£«!MS
U»
J
A
q
n

n
12
i 3
14
15
1 T
IH
20

?l
22
^ j
74
26
:i
2"
<• '
30

M
)?
M
1*.
3S
•\t
1 t
\
1
3

«.

f
J
tf
q
10
1 1
\i
i )

i 4
l •)
l«
i ;
u
i<:
>o
..M
22
J X

2'-
2t

J4X
f«0
*> »
-)C9
740
S ?h

<; i«
7*4
719
StO
S*-5
MS
K2
229

2J7
f>20
eci
4?«
1 V
•}<.\
f lH
4 u

<.7t>
1 i 2
1 f\
'. }3
h 12
I-;*!
/*|
I 71
i\*g
<. 79

4C«
4<50
et<<
3 (•>
.'*•*.
H !<.
I c*-2
?so
IC17
d2u

'>•>*'
IC3-*
7^6
l)^t>
m
•itt
i<=6
7t<;
*>t?
.'.'l

ICCl
A20
^«>0
TKC

7a?
6So
^S-^
•)•.?
•J IS
*M
HSO
r in
4N«

stl
7 79
b?0
S6l
^»«
"73
t«^
262

?<-i3
6H4
9)b
•.SO
*.?t
f>66
71S
s M

S?6
7C4
661
HI8
H'ife
IT*
631
pa*
J"iS
^ 19

•..-4
•> ; i
7S<.
'SO
2/1
fis'l
1 M 7
2-rt
tOM
d<«6

*< t9
ICS 7
HJt
"fyO
U J
SH 3
1*8
6>2
610
sin

IC22
P0«
S.*7

	 1 | cat. »» 02
MHM |i fuuf CAS
1 ,
it 7 M
?<;r 1 1
FBI | |
10-' II

774 ± M
694 i *,
&S9 t 0
B98 * ro
1C** 1 1 1996 i •>*
lf<. 1 1
9^9 I |
XC6 1 1
1119 1)
1 1
109} M
8(4 M
9)4 1 1
f?l II
k72 i «0
929 J 29
7*C t t4-
!80 i S

'61 j 1?
762 i 2*
79* i [07
Ul * it
630 1 1 ))2 l 20
MS 1 1 494 i 10
732 ( 1 699 i b
314 | |
1 1
4*C | |
*6 i 24

:ii j ^c
760 1 I CS4 j[ *<5
1010 1 1 B6fl l 9ft
SB; 1 1 444 i o
S4* H
7C1) 1 1
m M
MI H
1 1
set II
ice ||
707 | |
S17 | I
1C« II
•^ 1 1
Bee 1 1
H7C II
»•>•. n
^*»" M
1 !
«*1 M
611 H
'61 II
4b) 1 1
390 II
HIS 1 1
1C*6 II 1
*CC II
U37 || 1
«<> II
| |
C03 II
I2.M || 1
t)*« n
622 1 1
432 1 1
6-2 II
447 II
<1C1 M
ef ft | |
469 | |
1 1
J«T ^ *^
s 3y i s/
tfr ' * *<)
*><» i JC

01 i IS
Hi 12'.
22 i SS
06 i 2*S
(41 172
10 ; 121
91 * S »
^S jj •»(;
OH • /"<
9"» * 2M

16 » M
32 1 59
22 i 46
13 i 25
SC l 18
32 * 25
80 • 53
t)9 • 2
141 4
13 l 10

46 i 12
48 1 U
It t 16
4? • »
72 i 2
76 i 10
92 t «>
10, i 10

I ! r i * 7 l! t * r
i *" i * i!

1 1 1 I-'. - 11 1 1 tr.l
1 ][ I £ - I*. I I P. 4
1 «,'


1 1 1 1 a - <« 1 1 *.?
11 U




1 1 1 IA - >i Mil./
II MA- .7 II l).1?


II II





| | 1 I a - it 1 1 8. <<

1 t U o - .' 1 1 ^ . •>
II H




1 1 1 1 « - <• \ 1 ). 1



II U



l| Ml - "11 C.I
1 | II IT - -v 1 1 *•. '



II M


M IP- - ? 1 M •• - 6
MX II 1
• EH II
II
' i i >*


7<. 1 1 0.6
1 1 ? A
7 "" II ft

I 1
7*; 1 1 6.C
MS 1 I ?.8
MA 1 1 0.0
1 1 ? R


T>f II 1.0
I 1
' *" ' ' 0*q


ill II C '
Ml || 0.^
7 J 1 II 0.6


1 1


' . *i II ? . >




t<*( II 3.0
I |




Ms | | ?.<9



H



?*.! 11 t.C
7 1 II i. J



1 1

T Irt || ^. ^
Mri | | O.fi
CO


<90
ICO
*oa

Qf

140
1 CC
(9)
ISOO


4C
•.COO

,.


^000
*oco

1 fC
*r>

?CC
;* '
on
°
^
1 1 S

1 1 *





60
TC

^

K


l*CC
ICC




* c
JO
sncc
Sil2

?ion
tit1)
2*OO
2«U
??nn
?700
) no
2300
24%0
MOO


2100
21T5
2J50


3^J<
2*7^
?»iO

20 "^

?0?^

/1?S
18 'S
1 B7S
2*SO

^6f'0





21 1*>
4 M*






2^oo
iico


' "*

^^t 0
?1 'T
itco
C02 II *Sh
x lit
M
II
[ '
	 1 1 	
	 II 	
12. « ( 1 d.ot
* II

' j
1 1
— 11 —
	 11 0.81


	 II 	
	 II 	
M




	 1 | 0.78
' '


H


' J



] J
	 M l.;i
n


' |

	 II 	
' '

II
n

12.^ II
• •
	 II O.t*>
H.O M 	


j j
1 I
J [
1 1.0 II
	 II ,,-,
C IK
A^H
t




M.t




*«».^








00.6











(.<.. 1





....







*&. 1






—
N !>. 1 1
ASH II
< II


.... | |
	 II
	 (1

' '

1 1
	 1 1
	 1 I


	 M
	 1 1
I |



| '
	 II
' '


1 l


' '




1 .C<) M
I)




	 II



M
' j
' ]
' '
O.H» 1 1
	 11



1 1
J

	 II
                                               C-6

-------
    TABLE C.9
TABLE C.10
CLfPUST ICN Tt^T«, IStftHS 111 I-CR U.M I




   FU'i''*Ct CAT* I lUPt,I!
U IOIN1L II
«t" i i ^ ii ir.s i itfl
iii ..us n IGASI
1 1
1 1 1 •. - i II i.i
: 1 1 -- i ii '. i
M ! .' - 1 II 1 . I
1 '. I •••- 5 II » . 1
1 11 A- 1: II 1.1
III .1- 7 II ).)
. 1 1 a- n II 1.1
1 1 1 A- 1C || » .1
1 1
III ••-!! II 1.2
111114-12 II 3.2
HIM -1' II 3.)
1 1 1 1 1 -15 II ).!
i 1 1 1 1 -16 II 3.2
1 1 1 II - in II 3.1
1 1 1 i 1 A-1S II 1.)
II III i-/r II 1.1
II il
M II I n- l II 1.1
Mill'!-? II ).l
1 1 1 1 1 B- <• II ).C
1 1 1 1 1 .1- •> II 3.1
I I 1 1 1 a- 4 II ). !
1 1 1 1 R- ' II *.2
1 1 II 1 b- F II 1.2
1 1 II 1 i'- 9 II '.1
II M
II III P-l f II 1. 1
1 1 1 1 1 r.- l I II l.i
(I I 1 1 M- I? II » . t
1 1 II 1 »-13 II '..'
1 1 1 1 1 R- 14 ' ' 1. '
: . n i n-15 1 i >.l
1 1 1 1 1 •- 17 II ). >
1 1 III .1-1 • II >./
1 1 II 1 '-I'' 1 ! '•'
i i il
I | 11 1 it-iC II >••'
I 1 II 1 n-.M II L 1
II III «->.- II '•>
1 | II 1 II- /< II 1.)
1 1 III F-."- II 1.2
II 111 "-25 II 1.2
Mill.'--'" II 1.2
1 1 1 II <•-" II i.i
|| 111 t>-2e II i.l
II III P-2C 1 1 t.)
II II
1 1 I 1 1 B- it II 1.1
I 1 I 1 1 .1- il II 1.1
1 1 II 1 II- !.' II «.!
I 1 III C- 1 II 1.1
1 1 II 1 C- t II LI
I I III C- 1 II ».l
1 1 1 1 1 C- 4 II 1*2
1 1 II 1 C- 5 II >.2
II 111 C- 6 II 1.2
1 I 1 1 1 C- 1 II 3.2
II II
1 1 II 1 >- 1 II '•'
LA. /
FUfl
478/50°!
JtWJO)

453/483
!71/6I7
266/1C*
309/329
460/491
463/493
452/461
444/494
472/503
46S/49Q
4<>fl/4ftti
4iR/4BI>
453/48)
461/513
482/51 1
450/4)9
462/492
58>/62.C
590/629
4T7/M5
490/629
582/621
45 3/4.1.'
448/41 7
474/505
583/621
MJ/610
299/318
)02/)2 t
)U6/32
1264/1)74
2090/224 )
2110/2254
2071/2212
2162/2284
986/10)6
1022/1084
O/ 0
1 1
>IL( II
I.AS | 1
1 1
C 1 1
U 1 1
0 1 1
C II
0 1 1
C 1 1
0 1 1
C 1 1
1 1
c 1 1
0 1 1
0 1 1
c 1 1
0 1 1
0 1 1
0 1 1
C 1 1
1 1
0 1 1
0 1 1
0 1 1
0 1 1
C 1 1
0 1 1
0 II
c 1 1
1 1
C 1 1
0 1 1
0 1 1
0 1 1
C 1 1
c 1 1
0 1 1
0 1 1
c- 1 1
II
<: II
V II
C II
C II
C II
0 M
c II
C II
0 II
II
C 1 1
11 1 1
0 II
68k II
1251 II
1281 II
654 | |
\t» II
716 II
II
0 1 1
II
1 1
1 1
1 1
tf
II
1 1
II
1 1
II
1 1
1 1
II
II
1 1
1 1
1 1
II
1 1
II
II
M
1 1
II
II
1 1
1 1
1 1
I |
II
1 1
II
II
II
1 1
II
I 1
1 1
I |
II
II
1 1
II
1 )
1 1
I |
II
II
1 1
II
I 1
1 1
II
1 1
1 1
1 1
1 1
1 1
1 1
II
| |
II
II
II
II
1 1
1 1
1 1
1 1
1 |
1 1
1 1
CJ|
M-
CF

1 1 [
1 1 1
1 1 1
1 1 1
1 1 1
1 1 I
1 1 I
1 1 1
! 1 1
1 1 1

1 1 1
II 1
II 1
II 1
1 1 1
1 II
1 1 1
III
1 1 I
1 1 1

1 II
1 1 1
1 II
l!l
1 II
III
II 1
1 1 1
1 II
II 1

1 1 1
1 I 1
1 1 1
1 1 1
1 II
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

1 1 1
1 I 1
II 1
1 II
1 1 I
111
1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
I 1 1
1 1 1
1 1 1
1 II
III
1 1 1
II 1
1 1 1

1 1 1
GI1J1.
* lt>
ct;4S

4- I
4- /
- )
- .,
- «i
- O
- 7
- ~
- >.
- 1 rt

A- 1 1
A-l>
A-ll
A- I*.
A- !•>
A- 16
«-!7
A-l«
A-19
A-2C

A-/I
H- I
8- 1
fi- \
6- 1
B- 4

C- )
c- 4
c - *
c- 6
U- 1

c- 2
II
II
II
1 1
II
II
II
II
1 1
II
1 1
II
II
II
II
1 1
II
1 1
II
1 1
II
II
1 1
1 1
II
II
II
II
II
II
II
II
1 1
1 1
H
II
II
II
1 1
II
II
1 1
1 1
1 1
II
1 1
II
1 1
1 1
II
II
II
II
1 1
II
II
1 1
1 1
II
II
1 1
II
1 1
II
1 1
II
II
II
II
U Ml
>

115. c
1)5.
1C).
in.
MO.
111.
1 U.O
Hi. 7
H5.5
1 lA.li

115.6
10.1
ici.9
lit.?
1C). 9
11). 0
111. 4
1)0. C
117.7
116. C

IC2.I.
116. )
116.)
liC.t
117.7
1 16. )
1 14. A
11*. 1
116. C
lit,.!.

III.. 1
117. C
1 IN. 1
114.]
115.*
IC2.»
U1.5
10.,,
1 16. C
111.!

117.?
10.^
IC-.C
1(6.1
1)7. C
111.9
114.1
1)4.1
111.*

III.C
1)7. «
1*.1
15.6
16. 1
15.0
16. 1
102.1
116. C
97.2

m.*!
H£AT,
FT*» )
/ MB .

U.'6
5».99
6*. 65
6*. 84
66.57
30.16
)l.l)
51. 56
SI. 72
31. 24

51.64
50. 22
50.14
65.39
6 (.SO
11.11
52.74
65.55
91. 44
34.44

28. «4
49.04
41.55
45. 1*.
48.1"
48. C2
47.4.'
46.69
47. Bft
48.24

48. 6!
47.24
45.90
49.41
48.57
47.16
46. C<
48.26
61 .84
4 I. 1C

61. 7(
6?. 17
49. 51
60. li
41.13
47.6)
50, It
<2.5e
tl.lt

)!.!•
12.44
JI.99
47.00
1.8.96
49. C4
46.49
47. 47
62. 11
48. 1C

41.7.'
CiS
>•(»!
ntc. F

615
6! •
61)
25
!C
5)
(C
1C
07
I?

614
4(6
597
12*
619
6)?
621
(44
568
5(6

524
6C
60
62
Cl
6)
64
629
62)
614

6C2
627
6)8
617
644.
5*7
614
572
617
447

36
21
15
C1
29
25
C4
64 7
SO

55.0
59 )
5t6
1«3
5(3
611
1. 1
54.2
f.1.1

90.9
e'..'
S4. t
6*. f
4r. '
'".1
\o. '
HO. S
9C. 7
f ".. 1

91.)
BO. 4
5 r. )
£2. 7
'>.'. 1
91.1
90.-
95.H
9h.O
I 7. 4

77. <
9 1. i
94. fl
tf . r
OP.C
6ft. I
A7.C.
fd. 7
97 . J
s 7, ,'

*h.-i
II
1 1
11
II
I 1
II
II
1 1
II
1 1
I!
II

1 |
1 )
II
II
II
II
II
II

1 I
II
II
1 1
II
II
1 I
1 1
II
1 I
II
II
II
II

II
1 1
1 I
1 1
1 1
1 1
II
II
1 |
1 1
1 I
II
II
II

1 |
II
1 |
1 1
II
1 1
II
II
1 |
II
M
II
II
II
II
1 1
1 1
1 1
II
II
                                 C-7

-------
          TABLE  C.ll
TABLE C.12
UU SUOl CIHBUSIIC*. 7ESIS ISFOIIS 111 (CO CI1U I
                                                               u»cf cu'Buitici
II rpiLi.-.Ai. || PFf NC» )l 02. DRY || PPH hU* Is
11 «IK t-S 11 KCIP 1 T£CU
H II
1 t
1 I
j ]
1 1
1 1
t 1
1 1
II
1 1
| i
1 1
j 1
1 1
1 i
1 I
n
1 1
1 t
11
1 1
n
1 1
1 1
1 1
1 1
n
1 1
11
it
1 1
M
1 1
1 1
1 1
1 1
1 1
u
it
1 1

1 1
1 1
1 1

1 1
n
1 1
1 1
1 1
1 1
1 1
1 1
1 1
u
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1
1
;
I
1
I
1
1
I
1
1
1
I
I
]
r
,

t
i
i
i
i
i
t
i
i

i
i
i
i

!
I
1
j
I

I
I
1
1
1
I
|
1
1

1
1
t

1
j
1
1
1
1
A- I II €72
t- / || ICM
i - 3 [1 Si-l
*- «• n si?
A- •> | | 1 IC1
i- 6 1 I fc \">
A- 7 M 8S4.
A- 8 1 I 817
A- t. I I 1*4.
A-10 H 674
^ - 1 1 II 1 1 C,
A- 12 II S 10
i-n u tf>
a-l* 1) C7<.
4-15 || SS*
A-17 || ?J7
a- IB U SB9
a-20 II 771
1 1
A-?l U 3C2
B- j u <•<;<.
h- J | 1 511
a- <• 7u
R- ^ 351
H- h 3C?
U - 7 * ti 3
H- 8 3t 1
*- Q 02

<»-lG 7i 3
*-ll II »f*
ii-12 M 3'-')
K-l 1 I 1 ?H
e-i<. I) KC
tt-IS II JM
»-U U 21»
a-|7 || It I
H-M 1 1 *M
H- I*) (I <-C2

rt-.'U tM
rt-2l ' 31
o-,>? JH
a-?* ecs
,t-2t> f7C
rt-27 7Se,
.»-?(! f.-S
,j-2<) ?co

- - 10 i t P
:« - * 1 I | 111
D'»2 II «6
C- 1 II J?*
C- 2 1 1 **-o
C- 1 M 3P»
C- <. 1 1 *22
C- S II m
C- 6 1 1 tbt>
0- I 1 1 If*
it it
1 1 I I I I-- 2 II 210

t«3J
lOeO
5^1
«62
US!.
hi*
£77
023
810
RV»
77C
536
6*6
H95
JBQ
7*2
101 1
770

J8b
*C2
<.<»<)
710
13S
2fl9
*7l
j*e
02

i* )
H 7
Ml
JiM
3«7
'.t J
2nd
)7<3
70S
<• 1 7

hi 6
blT
13 1
C-i
)*}
1<5
$ 1
?»4

U6
4.CH
%<;i
U 1
*6 i ^
"51 ! 1 80* t T
!l'. II 8)0 1 0
115 n ?<7 t e
i;« n tt,? x •

1«» 1 1 »3* 1 <•
6
!7i | | *»; t *
!5t II HI t I
M; II *j; i t
1 1
'»« n m t u
3s» u >e< i ^
35e || >« t ^
371 || 114 i •>
«C1 || 181 • !
"1 II ill t M
1*1 II iKl t 8
111 II 171 t II
>t? II eil J 11
«?1 II -.01 1 11
1 1
ft3<- 1 1 a1"* i 1
'I'-.f II <;• 1 10
J6? | | 11* • *>
»!* II 08-1 2 74
771 II ».>» • '
a-, n fd t i«>
'CO II «»« • l^
?ei | i tai • «
1 1
«; u it; • «
iSQ II ".10 1 ?
-.?{ II 1?« 1 i
12fl II 3?0 t l<
»t; II *6» 1 f
3e/ II idt. 1 ^l
441 1 1 *l 1 i 1<»
i^ i 1 1 )?) ± 2
tea II e^5 t 15
»3« || 3771 I
n
1M II ?OJ i 10
L8. hoi / II
I0**6 fifU II
ISPUT II
II
O.f 1 .I? II
(.1 • .0.' II
C.S i .0) II
1.1 • .•)« 1 1
0.& 1 .01 II
1.0 1 .01 II
C.4I 1 .01 II
C. «0 t .0? II
O.-JC 1 .01 II
II
0.48 1 .')! II
u.*0 i .0; II
0.8? t .01 II
O.M J .0 II
1 • 1C 2 .0 II
O.M i .0
1 .>0 i .0?
o.^l i .n

0.^1 i .1
O.^C 1 .J II
O.S* • . 0 II
r. ; « » .0 II
C. IH > .C II
C. 10 • .0 II
P.* ' i .C II
0. U • .0 II
0.*. i .0 U
II
3.1 1 .01 II
0.4 i .C II
0.3 1.0 II
0.1 • .01 II
0.3 « .0 II
0.3 • .0.? 1 1
c.; i ..- . .01 II
0. iO i .0 II
o.t-v i . jl 11
o.s; • .11 n
O.O • .0? II
I .r? • .01 II
O.it 1 .01 II
1 1
0 . \t. i .01 11
o.4<; i .c u
O.C4 t .0 II
0 . i J i .01 II
C.47 t .0 II
0. i? « .C? II
0.41 • .0? II
O.il « .0 II
C.6t> i .0? II
0.3? • .31 II
II
0 . 1 6 1 .01 II
1 )
1 1

1 1
1 1
1 1
1 1

1 1
1 1



1 1
1 1
•
!
II
1 1
1 1
1 1
1 1
1 1
1 1
I
I
1 J
'
1 1
1 1
1 1
1 1
1 1
1 1
1 1
' '
1 1

1 1
1 1
J *
* i
1 1
1 1
1 1
1 1
} 1
t 1
tt
Jl i

1 1
i i
If
u

1 1




1 1
II
[ j
' '

1 1
il
1 1
1 E
{ 1

1 '
1 l
1 l
1
1 1
1 1
1 1
1
1
1
1
I
I
[

*
1
1
I
I
Uf S - t 1 ("*•
N *-S || -Ml
1 |
i- i II 1C. 7
4- s 1 1 1C. 6
a- 1 1 1C. *
A- 1 1 \l.*t

4- II 5.i
1 1



-IS 1 1 4.1
J- 1 7 1 1 *.)

A ' j ' ~,' .
1
i*- 1 V.f
M- <;.^
b- )l J.a
<«- II e ,s
h- 1 1 5.^

1 1
^ M i IP 1
" i ! <] " n
' \ii »
t. 1 J II *« . .
«- is t 1 i. »
K-»b H >.?
•i- ie I 1.7
1 1
H-^0 || •..;
•'-4?1 i i.e
*-^^ I •>. \

.i-?'. 1 •>.!

rt-.'^ II \!.t
11
^ ^c II i^"<1
--V || eT<

<- -. 1 1 t.<-
«.- •• 1 1 i.o
i- 1 II S.I
1 1
.-- *• J 1 9.1
INN || t
kET) ||
n
7 la l| s.;
7»« II J.i
37 II O.I
31 II >.C

?9 II ).l
n



r*; 1 1 o.<9
r*i II ?.«

7?1 II S*t
I |
72* 11 >..'
72* II >.«
r?« M >.<
72« l( J.C
7?. J

n
7 ' II 11
? II 1 *
• ! J ** '
1 j J ^'
7ir il o.e
J \? II 0.9
71' II 1.'
II
717 111.4
i4\ ii o.e
7-.? II 0.1

741 1 1 s.e

I>1 11^.7
II
7* ^ II S '
7il II <..C
121 II 1.1
Me II 1.?
737 1 1 0.6
741 1 1 0.0
74 1 II 0.0
CC

(.C
(C
lit

•>QO


??Sr

131".
260
**'
70

ID
no
17C
ft^C


Jft^
f f C
?rs
>l C
*ccc
)2*C
117^
ltd
MU
1CCC

2'.0

21C

1SCC
^
11
t>6
?c*c
l/CCO
* 7CCC
S02

;o^o
?**o
^\so
>1TS
27?*


7«*°

«oc
2«**0
?M S
717^

25)0
2>?1
2200
26^0




?iCO
?Q^S
>*co
27CO
2f>Q
^'.2*
*IOU
K*>0

l**Q

^.'^^

/«. IN
?1 '>
?o2s
?-CO
.'**C
.'7 CO
CU2 II «%M
1 III
II
n
11. f II C.H
— II —
	 U C..4

i..» ii i.n
1 1



	 H 	
K.I |l 	

j
II
.... II ....
	 II 	
	 II 	
M.I 1 1 	

11



II
U.C II C.<>*
tt>.0 11 ) .M
	 II 1. *••*
If
\\.t 11 t.? I
M.- 11 2.*7
U.2 II 2. 11

	 II l.is

1 .' . .' 1 . 1 1


1 .' , i 1 . 1 -J
1 ».* 	
.).--
.... i.n*
II
C IN
4it-
f

**>. 1

?*.''

U. I





	





6C.A






3C. 7
l*.4
M. I
M.I
*3.t»
-v. )

/•>. »•

11 .•*


1 •-. "•

J» . •»
^l. '
*. IH
ASH
t

C.f 1

P. 32

....











—
—





—
....
C.-.4
r. 1*9

L.«.'

	


....

	
r.t.4
0. It,
                                                                                                            11
                                                                                                            II
                                                                                                            11
                                                                                                           -M
                                                                                                            I I
                                                                                                            It

                                                                                                            II
                                                                                                            I I
                                                                                                            I I
                                                                                                            I I
                                                                                                            II
                                                                                                            II

                                                                                                            I I
                                                                                                            II
                                                                                                            II
                                                                                                            II
                                                                                                            I I
                                                                                                            II
                                                                                                            II
                                                                                                            II
                                                                                                            II
                                                                                                            II
                                                                                                            I I
                                                                                                            II
                                                                                                            I I
                                                                                                            I I

                                                                                                            I I
                                                                                                            I I
                                                                                                            I I
                                                                                                           I I
                                                                                                           I I
                                            C-8

-------
TABLE
TABLE C.I4
                                                   *»jfi.;ui c«s
         (Ur t.T. /
• 1 S , . 1 1 S 1 1 , •. 1 1 1 1
II l.-l ,, UN II I^»SI
1 ! II
1 ! I V :. - 1 I i ^ . C
ii...-.- i ll c . :
ni-.;- • ll c.o
1 1 1 v - - -. II C . L
! 1 1 - i - I II C . -.
1 1 1 V A - - II C . -
I I iv i- '. ii ;.:
ii li
II ! . 3 - I 1 II C.C
1 i i -• -'• ~ l .- M o . f
1 1 1 * A- i 3 II C.O
II iv v- l* II c.n
II 1 v •- - 1 '. II 1 . 3
II !VJ- Ic II C.O
II I v i - If II O.C
i i iv i- !•. ii c.e
1 1 IV 5- ?C II C.C
1 1 i , i- ?: ll o.ti
II lvA-?3 II C.f
1 ! .'. a- ,". II C.C
1 1 1 v A- >s II C.C
1 1 1 v 1- ?c II C.C
1 1 Iv a- . I II C.J
1 1 I v A- ."- II C.L
II 1 / 5 - *u II C.C
1 i II
1 1 1 v » - ' 1 M C.C
1 1 Iv !- V 1 1 „'.<:
1 1 1 v a - 1 1 II C.O
1 1 1 v »-  - - s ) 1 C.C
1 1 1 , :• .- 1 I.)


!t# i
IM/l I

lf>l/l*7

1 70/1 TC
; i «. / 2 c -.
>" »"
)0 1/101
Hi/Ill
';"""
• !«

(/ 0
C/ C
C / I
; / «.

C/ 0
c/ c
(/ C
c / n
c / c
c/ c
c/ c
C/ 0
c/ c
c/ c
C/ 0
(/ C
(/ 0
C/ 0
(/ C
(/ C
(1 C
i/ .
(; I-
5"°u'S>


Hl» 1/4 I Sf
00 T/ J?i ^

7U2/76C7

4)l)/4BC?
)0)B/)2*7

?MO/?'»#
>.660/4AU
4^ U/44C2

'KC,u'"

O/ 0
o/ o
o/ o
O/ 0
O/ 0
o/ c
O/ 0

O/ 0
O/ 0
o/ o
J/ 0
•)/ e
o/ c
O/ 0
o/ c
O/ 0
O/ 0
O/ 0
O/ 0
o/ c
i;ftt/t 34 *
O/ 0
O/ 0
o/ c
O/ 0
O/ 0
O/ 0
O/ 0
o/ c
f t Li

0
il
c
•3
f
0
0
0
0
c
c
0
c
1)1?
1116
IPSO
0
0
1)1 1
14*1
0
0
J
fl
f
p
c
c
c
                                11
                                11
                                11
                                11
                                II
                                II
                                II
                                II
                                11

                                II
                                II
                                M
                                11
                                I I
                                I I
1 1 » :GIK*I 1 1 KUI
1 1 -UK 1 «\C II *I«,
Man s II 1
.-.* fiLSS 1 1
1 1



















































,
V
t.
V
«
V
V
v
v


v
v
v
•<
V

,
V
V

i
v

v
,
„
v
v
V
v

V
v
V
V
v

v
v
V
V

v
V
w
,
t
v
V
V
- 1 II 11*. \
- - II 137.1
- 1 II IC2.*
- - II 11). 0
s 1 1 i itf.C
• ' H 103,1
- T || in.'
" II Mrt.C
9 II IC2. J
- 1C 1 1 IM. 7
I |
- U II H). 3
- i> M in,:
- 14 l| | JS.l
- 1) 11 1CJ.1
- l« 1 1 II).?
-IT | i U4.C
•in ll M). ;
- !•» 1 1 11). 7
- .'l> II 115.6
| |
- .M 11 I IT. I
- f: ll if i. J
- .M 11 1 C 1 . 1
- ?4 1 t I 14, 3
- .• ) ll 1 1 ; . ?
-I* II US. I
- ft II I IS. l.
- *« 1 1 in.i
- .» ' 11 11*.*
- K 1 1 1 )(>. 1
II
- M M 1 1 7.C
- *.' II M*.*
- 1» II 11). 0
- *«. II ID.O
- is || H J.f
- H, 11 1C*. S
- M II MT.i
- *H M i ;s. *
- » i 11 M 7 . {
-40 II 11). 7
1 1
- W II t*.s
- - 1 11 76.4
1 i<> 11 I I). 1
- -•• 1 1 III."
- *6 II 10.1
- *7 M 1C). I1
- 4(« |l M I. 1
- -*• 11 lift..*
Hi A 1 .
x r • * »
/ HH.

)) .41
)6. ->f
)). f C
67 .9 |
f. 7. A 1
(8.C6
17. 10
17. C2
37.18
)i . a

W.l-3
6%. 45
64 * ?<)
«). U
1) . J J
3i. 7 7
3). 13
)7.17
^6. M

b&.Ct
S7. JT
M.I*
71 .91
Jt» *>*
^6.2?
•>*.?!
^6 . *;o
M . s?
)? . )(

SI . 7^
i-. 4 1
)).C)
M. ec
!7. PC
M .2*
t<». 7-5
f 6. ^f
ftS. 79
S*. ! 7

7 t.Ol
ft*. J 1
4-S. of
46.4 1
)S. 8f
S^. cC
S& . * i
49l ?S
CM II Hut Cti
pai- it XECVCU?
K*I I) TC 1NPU1
0(&. F M III
1!
OSV |! U.3
»« II 0.0
tf «: i 1 J.o
loi ii r.G
1C1 II 0.0
ICO II O.C
6b« II 0,0
671 II 0.0
C6S II O.C
m ii 3.0
1 1
»H II 0.0
1.) II 0.0
!>c II 0.0
)4« tl 0.0
)tC II C.O
n i ll o.o
>J6 II O.C
frfl* II ? 7 . 1
O8b 11 I •*. ^
1 1
OSI II J«.7
6T< II M.I
676 II .'6.*.
b6o 11 ^ '.*
64« II 30,%
6SI II U.O
662 II 0.0
*(C II J:.«
6X II ?6.l
6.0
664 | | M.6
Tl? || 0.0
66t |l 2 ' . ^
i. «J 6 |l 0,0
711 || 0.0
6M 11 M.I
6Ffl 11 1.0
I i
f>fP H 0.0
608 II .'.0
OS J II 0.0
t«* II O.C
64« t 1 O.C
f S 1 II 0 . C*
:•':•, II 0.0
'CO II 0.?
Mfi t' ;
flcas( J 1
it) <
1
1

























1*. i |
JT. 1 |
C^ . * 1
i). 3 i
Ifl. 0 1
C 5 . 1 1
1 ' . 7 1
li*.0 1
22. ! I
M. ? f
1
IS. 3 1
: i. 7 i
3). » f
03. i :
M. 7 1
C*.0 1
11.. i 1
1**. 1 1
M. ft j
1
) 1. 1 I
•> ' . ' 1
CM. « 1
1 *. i 1
I0f.: 1
IM. J 1
r 7. C 1
'•'•. ' 1
P6. 1 1
ftl .« 1
1
(tO.* f
r •• . .1 1
*t. S 1
>":. i i
s ? . .-• l
66 . * 1
M'. I !
F '. f 1
? ;. s
11^.7 i

(•»!*» 1
'^. ^ 1
M.I 1
11.-? 1
0\ . i 1 '
0 i . ' \
*T . : :
; ^ , . i '
                              C-9

-------
    TABLE C.I5
TABLE C.16
NJTUDAl CAS ItStS ISIRIES IV Al
                                                           IOII.XL ..AS  76
- 2 1 1 !»
- 1 II >to
- -II 3C8
- 5 II )IO
- 0 II 2!0
- Ill ICO
- Ill 3C7
- Ill 245
- 10 II 1-0
U
- 11 II I3S
- > II I?'
- 3 II 145
- 4 II I 30
- s || i;s
- 611 140
- '11 III
- » II 1*2
- 9 tl '3
- la 1 1 >o
II
-/ill si
- 11 1 1 (3
- 21 II !6
- M 1 1 0
- 2s II n
- it II J42
- !' II 2'.;
-
-
-

-
-
-
-
-

-
.
-
-

-
-
-
-
-
-
-

-
KM ;2
411 1 76
ell <;o
II
111 '.)
2 II MO
311 It
4 II 225
s II 112
6ii 72
'II >J5
d 1 1 248
1 II IS'
en ;<6
II
1 II I'.tl
2 II 12*
311 S3
* 1 1 !32
•> II 2ifl
• II I")
' II 2r3
It il 1/0
•I 1 1 >I.S

31
11
26
30
30
1*
30
31
MS
146

131
no
1*3
!?s
US
15)
lilt)
136
AS
70

*,!
56
30
43
21
'•0
260
25
teo
*:o

S3
31
7
21
1?
6
33
?7
IS9
<«3

252
1?"
SI
332
2)3
181
212
icr
2«1
n
350 II 322 1 S
349 II 320 • 4
29-. II 267 1 1
34S || 30» 1 0
152 || 310 • 1
2»« 1 1 249 • 2
331 II 303 • S
143 II 311 • 6
212 1 1 245 1 0
1*1 II I4B • 3
tl
l/'K | | 131 1 6
12' 1 1 Ul 1 6
149 II 1*4 • I
139 II 12' 1 «
I2t II 12« ; I
U7 II 156 1 S
in ii io« i 3
ISO II 131 1 «
SI II «* 1 2
art 1 I 7*» '
1 1
"311 «7 1 '
Mil 60 • S
«6 II 33 1 «
5" II S» 1 16
3111 2t • «
)S6 II 346 1 6
251 1 1 256 • S
2111 23 t 2
1>? II 178 t 3
fl<> 1 1 40 1 0
II
•111 S3 1 0
3C1 II 110 1 0
3111 2« 1 1
2^0 1 1 220 1 7
'•> II 120 • 10
1 1 1 1 70 1 >
122 II 310 • )
.>£•> II 269 • i
IHII 19B i 1
3S« II 365 i I
II
2H II 2S1 i 2
!'<• II 128 • 1
*!/ 1 1 531 0
IS- II 312 1 1
2i< II 2JS • 4
211 1 1 114 • 1
303 1 1 278 • »
33t 1 1 114 1 '
2«'. II 2«3 J >
ie. M:« / II
I0»6 HIU 1 I
IhPur II
II
a. it i .0 u
0.31 i .0 II
0.21 1 .0 II
0.27 : .0 II
0.33 • .0 II
0.20 • .0 II
C.27 1 .0 II
0.33 £ .01 II
0.20 • .0 II
0.11 1 .0 II
II
0.14 . .01 II
0.10 • .0 II
0.13 1 .0 II
0.13 i .0 II
0.10 t .0 II
0.14 i .0 II
0.01 t .0 II
0.141.0 II
0.04 1 .0 II
O.C7 J .01 II
| |
0.04 1.01 II
0.05 • .0 II
0.03 1.0 II
0.05 i .01 II
0.02 1 .0 II
O.)0 1 .0 II
0.22 1.0 II
0.02 1 .0 II
C.IS 1 .0 II
O.OS i .0 II
II
0.05 1.0 II
0.27 1 .0 II
0.02 i .0 II
0.19 1.01 II
0.09 1 .01 II
0.06 1 .0 M
0.34 i .01 II
0.27 1 .0 II
0.20 * .0 II
0.32 1 .0 II
II
0.19 1 .0 11
O.Ot 1 .0 II
O.C3 • .0 II
0.30 • .0 II
0.21 i .0 II
0.16 • .01 II
0.23 • .01 II
0.13 1 .01 II
0.30 1 .0 II
1 1
1 1
) 1
[
J [

' '
' '


' '

1 1



' '

1 1

1 1

t 1



1 1

1 1
1 1
1 1

II
1 1







1 1
1 1

1 1
1 1
1 1

II

» P !f «, - It I*"
UK •-$ 1 1 *>t II
1 t
i!! t


V ft *! ! 1



V III f>. t
V * -II *>, B
11
V A 1 1 1 1 "t.f

V A 1 J I 1 . . 1


v * le> M ^. •*

v » IH | | S. (




v •• . ) 1 1 ^ • ">






1 1
v a- u I I ;.?













V A- (.1 1| U. 1

1** II «
ktt I II
1 1
*6 j I
11 I ! n
1 1 1C




Mi- II 5.

t 1
l! ** »
li
7/H II 2 * K
J J
il


7?s S.t
•



* 0.7






I |
7)" 1 1 ?.<)


' * ' ' Ot




II


I! * t


U) I | O.B

cc

in°
i

***



**•
A90



**









1 1 J


o




c




c








»60

St./

0


**
0


0









0




"


0




0
*

*

0
0
0
"






0

t II 1
II
M
J I
[ •

j '
'




II

! :
J J
II
' ]


* J
' '
1 1


• J



' '


n
.... n ....
J !


j '
' J
' '
J '
1 1




	 || 	


t 1*
t































....















* IN
t































....















                                                                                                    11
                                                                                                   -44
                                                                                                    II
                                                                                                    II
                                                                                                    II
                                                                                                    11
                                                                                                    II
                                                                                                    II
                                                                                                    II
                                                                                                    II
                                                                                                    II
                                                                                                    II
                                                                                                    II
                                                                                                    II
                                                                                                    I I
                                                                                                    n
                                                                                                    u
                                                                                                    11
                                                                                                    n
                                                                                                   n
                                                                                                   11
                                                                                                   u
                                                                                                   u
                                                                                                   n
                                                                                                   11
                                    C-10

-------
                     TABLE C.I7
  TABLE C.18
                      usi< tstHJFS u a»
                     tHNJCt CAT* CISPt'T)
Cll TESTS  (SERIES  IV al
  t-ijOMCt  CAT* IFIKAO
I I C.H I ill Nil
                                  -r. / h£i toT.»
; RU.S . fl'.r, 1 1 	
l I'f KoKS | 1 I(,A$) 1
i 1 1
live- 1 II C.C
1 i v rt- i 11 U.O
i V rt - 1 II C.C
1 V r - <• II C.C
1 v "- *. II C.O
i v e - o it c.c
1 v P - ? II 0.0
1 V H- H II G.O
I vi'- « 11 O.C
1 V * - 1 U II 0.0
1 1 1
1 v K- 1 I ! | C.C
1 V H- U II C.C
1 v 'l - 1 1 11 C.C
I C rt - U 11 O.C
I V •»- I S || C.C
1 v f' ' 1 ' 1 1 O.C
1 V 1' - 1 7 || O.C
1 v t*- 1 P 11 0.0
1 v (• - H II C.C
1 V K- 20 II 0.0
1 1 1
| y r - t' | |I O.C

1 v a- 2 3 11 C.c
1 V ft- ?•* 1 1 O.C
| v p_ /^ || C.C
1 v n- 2t- II c.c
1 V H- ^ 7 || 0,0
i v n- ft l| c.o
1 v I'- t» II C.C
1 v D- iO II C.O
1 1 1
1 V Ii- i 1 II U.C
II V o - 3 .' 11 C.O
II v K- 3 1 II C.C
|| v P- !*• M C.O
J I v h- U |l C.O
II v B- U II G.O
II v tt- l° 11 0.0
11 V M- lr< II O.C
|| V B- 40 11 0.0
II II
11 V l- *.-' II C.O
II v •* - 1 1 1 C.-1
t 1 v J- <•>. I 0.0
M v •>--•> 1 0.0
H V i;- *•£> 1 0.0
II v -i - * rt 1 c.c
II V >- 1C II C.C

1
1
JlVllH 1
31 4/31 <•
317/31 I
3 1 e>/ 3 U
VO/37C
310/3K
3.M / 321
311/311
-.0 W*0:>
3H^>/3^5
ioi/zoi
*\}t>\2
19ft/19t>
30fc/ 30e
J2fcl3/-.77>
70*7/7*9*
**20/59**
31 3*/ 3381
37e>*/4 IOC
2761/1016
4flb?
3122/1AOE
3606/ 392f>

•.-•u/^aet


870/^30C
R56/S291
6*?/frl57
390/*?96
385/vTee
60n/6S73
6020/6S6*'
314J/ **«.!
2T91/)Ot3
3* 78/1911.
3S56/lfl«;i


nhSt>/S2 )C
3*6H/ 191*
)^9o/ J961)
B*)<>S/ )*;7C
«3*l/%932
JT*7/ *C*1
t9<.0/ 7fc5(

;fiO STiCE
41R

O/ U
C/ 0
C/ C
O/ o
J/ C
o/ r
0 / 0-
n/ o
o/ c
O/ 0
r/ o
t)/ 0
O/ 0
J/ 0

O/ 0
O/ 0
n/ o

O/ 0

O/ 0
o/ o
O/ 0
O/ 0
I/ 0
O/ 0
n/ o
O/ 0
O/ 0
o/ c
1?4(>/1}HO
1258/13PO


O/ 0
m t/1326
l2Se/Mfl3
t2o->/mp
l^O/ l 3 J*
O/ C
1S71/U<.<»
OJ 0
27 )U 30 }0
HLf ||
GAi ||
1 1
0 1 1
C 1 )
C 1 1
0 1 1
C 1 1
C 1 1
C 1 1
C 1 1
C 1 1
1 1
0 1 1
C 1 1
0 1 1
0 1 1
0 1 1
0 1 1
C 1 1
0 1 >
C 1 I
C 1 1
1 1
0 1 1
C 1 1
0 1 1
0 1 1
0 I 1
J-. g M
a 9 i i
153||
79||
1)911
1 1
IOC3 | |
C 1 1
0 1 1
&•»« 1 1
C 1 1
0 1 I
H:I i f
0 1 1

1 1
o II
0 II
IK It
7V II
'ft** 1 1
c 11
0 1)
C U

1 1 ^
1 1 "
] 1
1 i
i :
1 1
1 1
1 1
n
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
n
1 1
1 1
1 1
1 1
1 1
1 1
1 1
it
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
M
1 1
I t
1 1
1 1
I |
t 1
1 1
I |
t |
I |
I I
1 1
1 1
1 1
1 i
i-i;. iKjti 1 1 t
L>h • AND 1 | »
SLFIK. II
a otHS II
n
V "- 1 II
V K- ! II
V B- » II
v e- « II
v it- •> II
V 6- t 11
» l!- ' II
V B- i II
, h- -. l|
V f - IV II
1 1
•, i-- n u
V 4 - I / II
V H- II II
V 11- 1» 1 1

V •*- l!< 11
V r- 1 I II
v n- u II
V i— 1° II
. "- .'0 1 1
II
V II - ,• 1 II
» 1- .V 1 1
V B- .M II
v r- .;<• 1 1
V H - f "• II
V 1-- i' II
v r- f r II
v 1'- i^ II

V f- 10 II
II
v f- M II
V n- !.' II
v i- n II
V •!- "• 1 I
V K- <". U
v a- a II
V !"- " II
v a- l- 1 1
V !•- •" II
V Fl- »l/ 1 1
1 1
V I1- -I II
V t- •..' 1 1
V n- >l II
V 1- -4 II
V «- "i*" It
V rt- «•& II
V -- si II
\ 11- <•<* \\
V !•-•.•> II
V «- SU II
f 1 AL I
la.
1

1 i. 1
t*. c
li.C
C!.,
C).»
)l . A
)!.»
L*.C
!C. P
C l.c

!•>. C
^ft.l
tV.fl
13.1

l>.'
F^.C
."*. f
t*. 1
11.)

?'.. "
F 1. t
C 1. )
* *.<•
1^.6
16. 3
1 '.L
?"i.H

C».^

n.c
1^.0
i *• '
C-,.1
H.c
U.I
1*. J
15.6
n.c
16. i

!•.. 1
D.I
U.f
1 «.l
I*.!.
O.I
C 1.6
2 I.A
.' '.B
//.»
Mill,
KSU/
H.«J
/KB.

Si. )7
S?.}0
*2. 40
». J«
V.ll
5».5»
H.5.
»I.M
5-.>*
M.2«

t*. ) 7
6H.6S
f.).50
13. }2

li.li
•.!.((
^t.Ol
«T. CA
10. TJ

10. <;?
•>e. T^
s». j>
«i . ie
Sl.«0
*?. T*
•»!. t«
^S.PB

*?. IS

%. 31
«.o^
l.«c
?.t/
1 .V
A. 94
O.C^
o.«/
s>1. js
*«. 4 F

41.71
*9.<)s
f.C«
0.^
a. 21
0.61
T.9«
Lit
1.11
l.l^
C«S II UUi CIS
PHI- II OfCTCF-iC
HE«T || 10 INPk;!
o(c. r || til
II
t» II 0.0
666 II 0.0
6^6 II 0.0
>C! II 0.0
691 II 0.0
6^6 1 1 0.9
6«e II C.O
1 1
6CS 1 1 0.0
H> II 0.0
xor. II 0.0
ot« II 0.0

674 II 0.0
if: II 0.0
3»« II 0.0
lit II 0.0
it; ii o.o
II
H< II 0.0
111, II 0.0
Kl II 0.0
?SS || C.O
6<98 II 0.0
6PC II ^4. II
et.o II
F4.I II
flo.4 11
103. 7 ||
64.9 1 1
U>.<) 1 1
77.0 1 1
76. R 1 |
                                                      C-ll

-------
 TABLE C.19
TABLE  C.20
Cll TiSIS I'tnlES IV 81
II c
II S
II I
"fulfill II PPF NfJX )| 02, QHV 11 »f»N HOt I*
»• '-S II >.[!« | IICO
II II

11
II
II
II
II
II
1 1
II
II
II

1 1
1 1
II
II
II
II
1 ]
II
II
II

II
1 1
1 1
1 1
II
II
II
II
II

II
II
II
II
1 1
II
II

II

II
1 1

1 1
II
1 1

1 1
II
«• i ii ;?3
rt- ^11 2*9
0- > H 2SC
It- 4 II 2)7
a- s | 1 211
8- A II 24C
1-- 7 II ]4)
0- « II 2^5
e- 1 II It'.
»- 10 II 1C!
II
»- 1 II 1H>
b- < II 111
»- 1 II III
»• 4 II 1

221
217
176
2»8
218
241
232
211
194
I7S

2*2
211
212
HI
244
223
2CI
201
171
U9

259
2)8
209
209
146
203
143
128
234
211
khlt || FLUt GAS
II
251 II 257 j »
271 II 274 £ 7
1IC II 300 1 14
244 II 23« t 1
222 II 210 t 2
297 II 2*9 1 I
1)1 II 54} 1 0
267 II 2*3 1 2
24? II 284 J C
216 II 200 1 2
II
297 II 279 . 2
114 II 319 1 2
244 H 222 1
221 II 212 i
246 1 1 24* £
IM || 173 1
225 II Z19 i
2»4 II 253 1
178 II 174 t
117 II 111 t
11
21? II 218 1
23C II 220 1
194 Ii 182 t
24S II 263 1
27} II 260 1
248 II 244 1
248 II 239 1
266 11 2*6 i
197 I) 193 1
114 II 174 1
1 1
267 || 252 1
1C) II 282 1
222 1 1 214 1
1«7 H 152 3.
273 II 255 1
237 II 224 1
214 II 203 1
216 II 205 ± 5
IM II 115 1 3
171 1 1 172 i 4
11
269 1 1 262 1 >
238 II 241 1 *
214 || 211 i 4
214 II 21) t 4
149 II 198 1 1
2C4 1 1 204 i 2
148 II 144 • 1
ill II 127 1 2
245 II 215 1 1
210 1 1 21) J 6
L>. KOI / II
I0««6 »TU 1 1
INPUT ||
II
0.25 1 .0) ||
0*2? j "" *'
0,29 |
0.21 J
0.19 J
0.12 J
0.11 ]
0.24 j
0.31 1
O.lt 1

0.27 i
0.34 i
0.19 1
0.20 ;
0*27 .
0.1* J
0.21 i
0.27 J
O.I* 1
0.17 j

0.24 j
0.21 1
0.16 i
a. it i
0.2* 1
0.24 J
0.21 j
0.21 1
0.17 |
0.16 j

0.2* ]
0.21 ]
0.21 1
0.14 1
0.2* i
0.22 j
0.20 .
0.20 j
0.17 j
0.17 j

0.2*
0.2)
0.21
0.21
0.20
o.ie
0.19
0.36
.U I II
.01 II
.0 II
.0 II
.0 II
.0 II
.0 II
• 0 II
.0 II
II
.0 II
.0 II
.0 II
.0 II
.0 1 1
.0 II
.01 II
.01 II
.0 II
.0 II
II
.0 II
.0 II
.0 II
.01 II
.0 II
.0 II
.0 II
.01 II
.0 II
.0 II
II
.0 II
.0 II
.0 M
.0 II
.0 II
.0 II
.0 II
.0 II
.0 II
.0 II
II
1 .0 II
t .0 II
t .01 II
1 .01 II
t .0 II
1 .0 II
t .0 II
t .0 II
0.26 t .0 II
0.24 1 .01 II
                                                        OIL ItSIS IKMII IV 81



                                                           01MH •MSl.ilfl'CMS
1 1 JHII.IMI || f^*.
1 1 Stdll S - II OK
1 1 UUt. I-S 1 1 Kit)
II II
1 1 IV d- III 9.1
1 1 IV «- ? II 1.7

II IV f- 4)1 8.7
II IV •<- til *.5
II IV R- 7I| 7.1
1 1 IV b- B 1 1 6.5
1 1 IV »- < 1 1 K.u
II II
II IV d- i> II a.l
1 1 lv n- 12 1 1 '.<
1 1 IV A- 13 1 1 t.C
1 1 IV C- 14 1 1 9.6
1 1 IV 1- IS 1 1 ».'
1 1 IV d- II 1 1 9.4
1 1 IV .1- 18 II 4.1
1 1 IV H- 19 II 9.4
II lv n- ic II K.O
II II
1 1 IV Ii- 21 II 9.4
1 1 IV P- 22 1 1 «.4
II IV l>- 23 II 4.4
1 1 IV a- 24 II 4.6
1 I IV P- 24 1 1 9.1
1 1 IV a- 26 1 1 9.6
II IV n- 27 II 4.9
II IV B- 28 II 1C.C
II IV 8- 29 | 1 10.4
II IV a- '0 II 10.1
II II
II lv a- 11 II 1C.I
II IV «- 12 II 1C. 4
1 1 IV P- 11 1 1 IC.P
II IV 8- 1* II 11.3
II lv •- !i II n. e
II IV I)- 16 1 1 II. C
1 | IV B- II 1 1 11.0
II IV K- lb II 11.5
II IV X- 19 II 12.0
II IV rt- 40 II 11. f
II II
I | IV n- 41 1 1 9.0
II IV H- s2 II 1C. 2
II IV .2
I) IV 11- ** II 1*6
II IV -I -44 II 4.4
I 1 I V M- 5C 1 1 5.6
e<». 1 1 02
INK || t
WEII II
II



7*2 1 1 O.K
7*2 II *.<


1*4 || *,7
II



744 11 S.6

7*> || 1.1


M


7*5 || 0.7

MB H i.2



II
7>B || l.C
7»* || l.C
7JP || ?.«»
71« || l.C

7J« II *.«

ue il 5.c
II
74; 1 1 2.1
T-; 1 1 ;.H
7*? 11 ?.e
7W || 2. rt
7s? 1 | ). t
7*i II 0.'
7*1 n «..•.
7M | | •>.<•
f*.! (I S.S
MM
CC




1C
14







*c









o





•c


4*


ec
to
2K
CC
*c
1 •>
6 C
\ •
1 ?
1 7
»#N
302




T*Q
»M







ft?0









730





7*»


7*0


7?0
7»»
760
7BC
T*^
rt*0
MO
*-0^
MO
*.flU
CO? II •*"
f lit
•i 	
II



— n —
— n —



it



— H —




ii




— u —



ii

1 1.; 1 1 —


— 11 —


1 1
D.* 1 1 —
	 H 	
	 j i 	
	 11 	
ii.? II 	
	 M 	
	 1 | 	
H.M t 1 	
	 || 	
	 M 	
C Ih
A*f
t























...,





—






* IN 11
ASH II
S II
._._.. 44
II



— n
— n


---- 1 1
M



— n




1!




— n



u

— n

j !
	 II


1 1
	 II
	 II
	 II
	 II
	 II
	 II
	 M
	 n
	 II
                                C-12

-------
          TABLE  C.21
TABLE C.22
ItSIS l 1 1 C.O
' 1 1 0.0
f 11 C.C
'. 11 0.0
C It C.C
1 1
III O.C
/ 1 1 C.C
: 1! !.;
<• II i . ~J
"3 II 3.^
t I) }.f
1 i 1 3 . 2
? II Jt?
*» 1 1 3.^
C II i. f
Lti.


?S'S/2«iS
^14/ne
i^t/l6(
U^/16^
1 6 *> 1 1 h '.
2*>t'^^t
iCC/^OC
.1^;/?'S5
iirt/jia

sa )/i^j
31 i/Sl J
5ftA/6C ;
5fcn/e.O'.
^ft -J/606
^h //bO<.
f>fvS/60^
A6;
<.Q'l/^l
«T 3/iG«.

l[0

(/ C
C/ 0
C/ C
C/ 0
C/ 0
(/ 0
c/ c
(/ 0
c/ c

c/ c
«./ 0
4?<;/^p<)
64WTO*
o^> ; / 7 1 2
ti ;/ 13(
6t.<./ ?2/»»ll

itbS/6021
(.9K2/768'.
<.IO)/«<.q;
M11M4CC
5*17/5119
S«l«./S93f
63)8/69)1
A317/S76S
S3«/5907
«9!2/.«
."..?
IS. 5
IS.t
5. t
t.. 1
-.. 1
5 . 3
1.1
3. 6



SS.l 1
er.M
is. >i
U.S 1
14. *C
16.00
s* . •. 1
u.si
ft). Hi

6rt. I*
ea. 4t
o.w
0. *o
1. 74
.'.72
1. 7*
O.S 1
4.14
i.4C

01






















c. r II iti
II
t! II C.O
Cl II 0.0
Ii (1 0.0
70 II 0.0
6) 11 0.0
8C || 0.0
1! II 0.0
»5 II 0.0
C4 1 1 0.0
II
18 II 0.0
£5 II o.n
1? II 0.0
28 | | 0.0
4C |l II.,'
32 1 1 0.0
45 || 0.0
l> II 0.0
21 II 0.0
C7 II 0.0

III II
II
II
in. 7 n
114. 1 II
n>. i n
in. i n
101.2 II
11). 2 II
IIJ.7 II
1C.'. 5 ||
1 3C. 2 II
111.' II
1 1
10?. » ||
iss. 2 n
so. 4 II
10.7 II
115.5 II
110.1 II
11'. 1 II
11-1.1 II
1)1.1 II
101. i II
           TABLE  C.23
TABLE C.24
                                                                           ASO 0 IS f LH COAI I

11 SI
1 1 »(.
1 1
1 1
1 1
1 1
1 1
i 1
1 1
1 1
1 1

1 1
] 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1

",V

1
f
- 3

5
- o
T
p
9
- 10

- 11
- 12
3

- •>

7
9
- C
I 1


1 1

II

II
II
II
II

1 1
1 1
II
1 1
II
1 1
II

II
1 J
II

NCI"

132

295
:<3
215
277
272
23)
267
272

239
248

643
711
778
743
112


teni

32**
329

259
201
213

227
262
269

240
242
660
655
723
803
75U

564

.Hi!

33
33
28
26
21
278

233
264
275

M5
24«
617
625
665
71H
706
972

| |
1 1
II
1 1
| |
1 1
II
1 |
| |
1 1
1 1
1 1
II
1 1
II
1
II
II
II
II
II

1 1
CUV i
Hu£

3)0
329
283
261
212
275
261
230
265
270

239
245
658
641
717
791
750
934
556
31 C2


• 2
3. 0
1 3
• 3
i 4
• 3
1 3
} 4
1 4
1 2

I 1
i 4
i 1
1 8
1 t
• 18
1 11
• 31
1 12
!0**6 tj


0. 10 1
0.30 t
0.25 I
0.23 t
0,17 J
0.29 1
0. 24 1
0.19 .
0.2rt t
0.24 1

0.2C •
0.26 1
0.68 t
0.67 *
0.74 t
O.B2 •
1.14 •
0.7B '•
1.09 J
0.52 •
TU 1 I

1 1
.0 II
.0 1 1
.0 II
.0 1 1
.0 II
.0 II
.0 II
.0 II
.0 II
.0 1 \
\ 1
.0 1 1
.0 1 1
.0 1 1
.01 II
.01 II
.02 II
.04 l|
.01 II
.04 1 |
.01 II
                                           11
                                           11
                                           11
. » IU \^L (1 >'
<.f 3|1 S - II (
«l.N «-S 1 1 *
1 1









V A - || || 1
v 4 - ; ; II t
V '' - 1 1 1 1
V t - <• 1 1 I
* 1- - •• 1 1 1
% f. - 7|ll
v i> - e 1 1 i
V f - 9 1 1 1
v P - ;o 1 1 i
1 1




,




<,
.6
. \
. t
.1
,*
1 1,
if
fcf












I 1
1 1 1
II









4 1 I
* 1 1
3 1 1
; 1 1
t M
? 1 1
? 1 1
? 1 1
2 II
«


j



* *
*


. t
. \
. 1
.1
.1
.S
CO






fc
if!


If C
<«c
•>30
7i
J«C
200
1090
2BS
me
SC->


••
••
•J
•J
*:
J
jr
*J
0
0
2«.*»0
^•>o
2^SO
2300
22SO
23X0
3Q-.0
1 lit
II
n



J !




' '
1 1
	 II 	
	 H 	
	 II 	
	 II 	
	 (1 	
£ 
-------
                   TABLE  C.25
TABLE  C.26
              tlthCM ItSIS *CR CCAL (SERIES Vll

                   fURNACE CAT* IIKPljT)
                                                                                CG*l (SF8HS vll
I I
I I
I I
:MCI'<3(. II IB. / hO. ICOV WT. / hf I Nl.l II
".t RUKS II (CAS 1
II
1 - 1 II
1 - 2 II
1 - 1 II
! - » II
'I ~ ^ II
1 - f 1 1
1 - > II
1 - 8 1 1
.1
. I
.1
.1
.1
.1
.1
.1


A.6«M95
*,6*/444
t)C/«fl*
iOl/1M
S6 J/600
tin

^ar/633
?81/«3i
5I4/427
^9J/«»
ft^S/TCO
»l«

UJ3/35J*
3P20/344C
MTT/*T3?
SsSSMHIl
S469/^09)
AU
O/ 0
1 10VU9?
IM1/11«2
O/ 0
O/ 0
O/ 0
CAS 1 1
1 1
C 1 1
0 1 1
0 1 1
»«7 1 1
0 1 1
C 1 1
0 II
0 1 1
1 I'
1 »








1

1
PIGI Ml II ILIA
UN 1 AXC II MR.
SUHS II 1
Cf «UNS 1 1
II
1 - 1 II 11*.
- i ii m.
- ) ii in.
- • II u«.
- S || 130.
- 6 II IC».
- ' II ll».
- 3 II lit.














•











•4AI,
11(11
T*»3
MR.

11.2*
4.3C
4. 51
1.04
6.2>
11.10
2.2*
?.FO
CAS 11 HUt CIS
p«f- II iucrciEO
hfAt II 10 INPU1
DEC. r II (tl
II
623 II 0.0
604 II 0.0
I.C7 II 0.0
(16 II <.l
63* II 0.0
601 II 0.0
63» II 0.0
6?» /I 0.0
lie AT n
lu«s(« II
dl II
II
II
It*. 4 II
«•>.' II
«».! II
116.4 II
1SC.« II
106.1 II
HI.4! II
13?. 0 Jl
                   TABLE  C.27
TABLE C.28
                                                                         if us f ID (C*i tscmts
KICIKAL | | ff HI
(./. «-5 II NtlS
II
111 e^O
- 2 11 ^«6
- Ill ^>12
- ill 632
- oil 5 '. 1
- ill in
- an «i6
> it i>
rtti)
i^»
46S
*/o
82I>
553
111
42?
. C
.1.
1
S
t
<;
V 1 1 PPM NGX Ih
' II '{.1.1 
* 1 1 **>•* i 1 »
/ 1 1 S/i j t
o 1 1 aj<> • s
T 1 1 *4* • 1 t
* 1 1 T6» i t> .'
< I | ft<)9 i 1 t
Lh. M»* / II
I*.Puf M
II
O.T? i -Ct II
C. •>£> 2 .01 1 1
o. se i .c ii
C."* I -0 II
O.M * • c; ii
c . / * • . o .- ii
i.ci i -0-. ii
»• If S -
\ *-s
1
1,



I [MM
1 -MJ
I
| -.)
1 H.C
1 c.C


1 ».^
1 *
fcF





1 1
) M
n
J 1
1 1
1 1


II
t
. c
. 1
. t
'
1
• i
1





'
pi*
e-G
Cf


.'C
•Mi
it\c
ftoo
^«n.i
. ^
1 JC 0 1
>-»10
t

—



t




1 —
I 1\
*s..
1





'. Ih
J

_.



                                                 C-14

-------
      APPENDIX D
PRELIMINARY DATA PLOTS

-------
     The data plots are split up inter two groups.  First, the original data
points are plotted arid the appropriate data  line(s) drawn to describe the
points.  Secondly, a blank graph is presented with the "normal", mid air,
mid load data line drawn on it.  The data plots require the grouping of data
into variable ranges which are defined below:

                Variable                      Range
                                  Low          Mid         High

              Excess Air, I     <7.5       7.5-25.     > 25.
              Load, %           <100.      100. -125.*    >125.*
              (kBTU/ft3/hr       < 40.       40. - 50.*    > 50.*;
              Preheat, °F       <450.      450. -550.     >550.
These data groupings, although arbitrary, recognize the fact that data were
gathered at the extremes and center of the variable ranges studied.  The
representation of these ranges is:
Variable

Excess Air, %
Load, %
Preheat, °F

Low
^ 3
^ 75
^350
Range
Mid
^ 15
-x-115
-^500

High
*> 35
^140
•^650
     The lines which are drawn through the data points are "eyeball" fits
and are simply used to describe the apparent trend of the data.  These lines
are done from visual fitting and no mathematical correlation has been used.
* For natural gas only, the value is 130% instead of 125%  (or 52. kBTU/i't /hi
  instead of 50. kBTU/ft3/hr).
                                      D-l

-------
The simplest form of line has been drawn through the data points - straight
where possible.

     The graphical descriptions follow:

     Graph #'s                                  Comments

     1-3                     Solid line - high preheat - curved line required
                             Dotted line - low and mid preheat - curved line
                                required

     4-6                     All data on graph described by one line

     7-12                    Normal mid air or mid load and high preheat line

     13-18                   Solid line - low range of air or load
                             Dotted line - mid range
                             Dash/dot line - high range

     19-24                   Normal mid air/mid load line

     25-30                   For excess air, a curve was used for data
                             Solid line - low preheat
                             Dotted line - high preheat

     31-36                   For all graphs except #31, one line was used to
                                describe all data even though slight, differ-
                                ential, consistent trends do seem to exist.
                                The line drawn follows the trend of mid air
                                or load since this condition is "normal."
                                In graph #31, the solid line is low excess
                                air and the dotted line is mid/high air.

     37-48                   Normal trends for mid air, mid load, and high
                                preheat ranges.
                                     D-2

-------
Graph #'s                                  Coinments

49-51                   Solid line - low preheat
                        Dotted line  - high preheat

52-54                   Line follows trend of normal higher preheat  -
                           second line not drawn to avoid confusion

55-60                   Line drawn follows trend of mid air/load range.
                           Other lines not drawn to avoid confusion
                           although  separate trends are observed.

61-72                   Normal trends for mid air, mid load, and high
                           preheat ranges

73                      Dotted line  sets off an area of possible NO
                           •reduction bounded by "zero" line and dotted
                           line.  Scatter in data makes true reduction
                           unknown.

74-76                   Single line  seems to describe all data equally
                           well

77                      Composite curves - solid - coal
                                           dotted  - gas
                                           dash/dot - oil

78                      No single line would suffice for all data

79                      Solid line - describes front slot staging
                        Dotted line  - side slot staging
                        Hatched line - substoichiometric

80                      No single line describes all data
                                D-3

-------
Graph #'s                                  Comments

81                      Solid line - staging (front slots)
                        Dotted line - staging with burner flue gas
                           recirculation
                        Dash/dot line - staging with port flue gas
                           recirculation
                        Hatched line - substoichiometric

82                      No single line drawn through all data

83                      All front slot data represented by one line

84                      Solid - coal
                        Dotted - gas
                        Dash/dot - oil
                                D-4

-------



.

OJCE
O
1 _j -
a £ •
O CL ~
LLJ»~<
QC2I o
• * ^^ KArt
_J *°B 	
0 1 J
1— 1
U 	 1 -
cr
0
CJ


D - PREHEHT >. 3SO»F
X - PBEHEfH - 500»F
Z - PREHER7 ^ 650»F







X
l<-
l«i
IT










, .X
IxJ^-(
sP-'
$
*













	 --
^^^^ — -*
^ "^
"










.... 1 , 1 . 1





J
. *• •
| C











1 . . 1 1 1 1 I .

cc
. — 1
cc
f infM —
, iyyy —
*., rrcn
en
11 iiu r -
acj £
X a-
LjJLjJ . J
QC o .
	 * —7^ ^- cnn __
_J^ SOO
LDO J
— •_!
LL.
1

_J -
CC
00 —
LJ
D - PREMEflT - 3SO°F
X - PREHEflT - 500°F
Z - PREMERT ~ 6SO*F










y
--^— •* * J
	 ' i



, , , , j , , , ,









-— ••"
^^^





.... 1 . . i .











Z
0 K«^
X





, , , , J . , , .










T T
-ii
JF .1






. . . . 1 . 1 . .




















o to «o ~ M »° M
EXCESS flIR, X. RflTE Op HEOT RELEflSE, KBTU/FTHM3/HR
LO


~"

-
Q 1000 —
— CC
o ~
1 1 —
o - -
u_
30.
LUO . J
m-J 5
^ z soo —
O 1 J
m. f
cc r
o
U
o —
ID - PBEMEflT - 3SO°F
X - PBEHEfiT - SOO»F
Z - PHEHEm ~ 650°F






^0*
*
.,-•



i i ^ \ \ \ \ \ \






^
rZ i -'"
••''











_^-^

^ ^ "*
*• *













.-— "ft
±





^^
.
—
a
f~[~ 1000 —
ono j
— i
i
* an £
O a-
LjJ— . -
ocz: o
	 > Z soo —
	 >
O 1 J
U 	 1
cc
o
CJ
o —


D - PREHEflT ~ 350°F
X - PREHEflT ^ 500«F
Z - PREMEBT - 650«F


Tl I ^
r Z f * «T
, • . -1 ui
j*Z '
\\




1 \
[I





i . i i 1 i .. .





— '^-~
**» **"*








i . . . i . ...




_• 	 j I-M^
— i -.









1 1 1 . i . . . .
r
Q















      20
                         «0
EXCESS flIR.  7.
EXCESS flIR.  Y.

-------
u_

CC
(f-\ (000 —
COCO
UJ
1 CJ
QX £
LU Q-
LU
acn o
CD—<
— 'I
u_
1

_J
CC
"

O - PREHERT
X - PREHERT
Z - PREHERT -

-.i











- 350°F
- SOO°F
- eso«F

~—~—~
$









• i , i | i r i i



I
. — • —













ill
V
51















i


























1 1 . 1 1 . .



1











* '



cocc
o ~
CD a.
1 i h — i _ _
012: 5
CD 1
I— 1
LJ 	 1
CC
0
CJ
0 	







s*
s^
/











/-
/*













^^^~
-^










1 ' I



	 	 -,











-1 . , • , . 1 1 1
20                 HO                  tO
 RflTE OF HEflT RELEflSE. KBTU/FT**3/HR
                                                                  EXCESS RIR. 7.
                                                                                                \o
cc -
CC ~
LOCO
CO
Mil
acj £
X Q-
LULU . J
CC o
	 )C 1 s()0
CD— •
— -s:
u_
i
_j -I
CE
O °
CJ
O - PREHERT .
X - PREHERT -
Z - PREHEfH -

I
~"i
1 1 1 1 j 1 1 ! 1
- 3SO°F
. SOOT
. 6SO°F

\^^




ai ij .



Ift
ofiM
-^a, JS

A
-
r-cr
o
i j
Q £ -
3 Q_
UJO .
OC_J o
CD 1 J
*""""*
U 	 1 -
cc
o
CJ
n




1 1 1 1 1 1 1 1 1


^

, 1 1 1 1 1 1 1 1


^"

1 1 > 1 1 1 1 1 1




1 1 1 1 1 • 1 1 1
20
 RflTE OF HEflT RELEflSE. KBTU/FT**3/HR
                                                                  EXCESS flIR. 7.

-------
        20                  HO                   SO

          RflTE  OF HEflT  RELEflSE.  KBTU/FTH*3/HR
                                                          01

                                                          CC

                                                          (/")   1000-
                                                        OJCO

                                                         1 O
                                                        ox f
                                                          UJ o.
                                                          _J
                                                          CC
                                                          O
                                                          LJ
                                                                        T
i i i i i i i i
            T
                                                                    0                   10                  80

                                                                    RflTE  OF HEflT RELEflSE. KBTU/FT«K3/HR
  CT   1000
CDO
f-1^ t
LU—'  .
ccz: §
-„_]
 CE
                                                          QC

                                                          CT
                                                               1
                                                        —'CO
                                                        —CO
                                                         I UJ
                                                        00 t
                                                          X Q-
                                                        LULU  .

                                                        0=    z
                                                        IDO z
                                                          CC
                                                          O
                                                          O
                      EXCESS RIR.  7.
                                                                                         • i • I • " •

                                                                   20                   40                  BO

                                                                    RRTE  OF  HEflT RELEflSE,  KBTU/FT**3/HR

-------
   r~\   1000-
z:
Q_
Q_
 I _J
O
   O
UJ^-.
QC2I
D
O I
i—i
U	I
   a:
   o
   LJ
O
  100-
;
-
-
-

B - EXCESS R
X - EXCESS R
Z - EXCESS R
-i


1 ' ' ' i • • • ?
IR 

1 —


                                                                              300
                                                                                              SOO

                                                                                        PREHEflT,  °F
                                                                                                                           100

-------
_, O - LORD ~ 75X

CC
oocn
— LJ
1 CJ
ox £
LJLJ Q-
1 1 i
IJ-' . —
DCIC o

O-—
_ x; j
u_ -^
i j

X - LORD - USX
2 - LORD - H

--I
— i —







-J -1
CJ
10X

	
	












.-2x — l-
-—I













- j






i -
; 1"
1




1 '
300 SOO
PREHERT, °F
CC ~
CC ~
r-cn
—CO
t UJ
C_j( 	 ) Q_
X o-
UJLU . i_
01 i -
ZDD so°

U_
1 1
0 - LOflO ~ 7
X - LORD ~ 11
Z - LORD - It



%.-
" "Z



O
_ — — •


1
	 1 _t
CC


1 1 1 1 [ i ; i i
sz
sx
ox



. 	 - - —



	 - - — "" — "






1 1 1 1 [ T 	 1 	 1 	 T 	



j , ... 	
| '^~
$

	 	 (A "
•'•






i i i i"| i i i i
1 1 ' ' ' '



occ
ruo
i _j
O Q-
cS o" ~
• — > '^- soo —

i 	 1
U 	 1
CC
0
f. . }

1
1












TTn TTr-rr-J














1

t






















1 1 1 . | 1 1 1 1
700 300 SOO 70t
PREHERT, °F


_

J:
1

.^—










,
*
-I











-
cncc
— -o
i _j
Q £ 1
3 o_ n
LUO . _,
QC—I o

CD 1 J
U 	 1
CC
o ~
' — J —











_^- 	 ^





i i i i 1 i i T i








_-— — ""^
— — - -^





i t 1 1 1 1 I ! I







	 	 	







i i r i | i i i i






^- 	 -""








1 1 1 1 | 1 ) I 1
inn *nn «;nn ?fl
                                                                                    CT>
                                                                                     i
                                                                                    Q
PREHEflT, °F
PREHEflT. °F

-------
  oc

  CE

ruco
OJCO
 I UJ
  X
UJLU

       soo-
CDO
CE
o     °-
                                                             cc

                                                             CE

                                                             CO   looo-
                                                          OJLU
                                                           I  CJ
                                                          ox =
                                                             LU o-
                                                          UJ
                                                          ecu o
                                                            CD-
                                                            *""""• I
                                                            u_"
                                                              CE
                                                              O
                               500

                         PREHEflT.  °F
                                                    700
                                                                                   1 ' I " '

                                                                                         500

                                                                                    PREHEflT,  °F



o
— 0
C\J_J

CD3Z JF -J
CD Q-
[ , |, 	 ,
CC3Z o
CD 1 J
CE
CJ _!j
'
° 1
30











| 	



r try j TTTT-
B







, 	 • 	







SO







— . ' " -







• . • • | 1 1 1 T
0






-








r-TT-r | i I 1 I
70


oc -
CE ~
1000 	
COCO
C\JCO
1 UJ -
00 f -
X o-
UJUJ .
OC o
— ir~} ^ soo —
CD—
— s;
u_
i
_j

-------
(*~"y 1000
cocr
r\jo ~
o^ £ :
O o.
LU— . -
ocz: o
-^ ~Z. 500
CD 1 J
l— H
LL.CO
iT"
LI-
LD ~
Q

O - PBEHEBT -
X - PREHEflT -


MX---""
X

i i i i | r i i i
. 350«F
. 6SO°F



K
	 B 	

i i i i i i i i i






i i i i | i i i i



X*~


i i i i | I'l i l
°c ~
CE ~
oocn
OJCO ~
1 LU
QCJ £
X d.
LULU . '-
QC 0
	 )_£. suo
— '_) ~

l
CD
cr

C - PflEHEflT -
X - PREHEflT -





-n c i | i , i ,
. 3SO«F
- 650«F




•8 	
1 1 1 1 I 1 1 1 I



)
J

1 1 ( 1 | 1 1 1 1



1 	 X


i i i i i i i i i
                                                                                  s
       20
EXCESS  flIR.  7.
10                  10                 60
 RflTE OF HEPT  RELEflSE,  KBTU/FT»*x3/HR



LOCE
f\JO
^
CD Q_
20.
LUO . _
QC_J o
1 "^ ^ SOO —
CD 1
—
U_CT>
cr
CD




D - PHEHEflT .
X - PBEMEflT ,








--X-'"""

B — -— '""
""~


- 3SO°F
. 650°F








__ X- 	
L 	 B 	 	


1 I • 1 1 1 1 1 1

































---
a 1000 	
r-cr
OJO
Q 1 -
mo. -
LUCD . -
QC>— i 0
^^ T~ ^ SOO

CD
^— i 1
U_ —
cn »
cr
CD —
0 —


03 - PREHEflT -
X - PflEHEflT -








-- X ~~

— 8— — -

i i i i 1 i i i i

. 350°F
- 6SO«F












i . i i | i . i i















11(11(111











X "

	 B —

i i i i i i i i i
i
Q















      20
                                                                                10
EXCESS flIR.  X
            EXCESS  flIR,  7.

-------
QC -
CL
ocn
cncn
1 UJ
OCJ £
x a- -
LUUJ . _
QC O

_J_L_ sqo
OCD J
, -
cn
CL u
O - PREHERT ,
X - PREHERT *













,.,,,,..,
. 3SOT













1 1 1 1 1 1 1 1 1














i i .. 1 ... .














, i , , 1 , , , >

-------
QC -
l***4
CL "
±rco j
coco ~
f LU -
OCJ £
X Q- "
LULU . 1
QC o
IDIZ z *°°
00 J
•— * — 1
LL.
1

CO .!
CE

<*M
0 - LOflO - '
X - LOflO ~ 1
Z - LORD ~ U













— •• 	

. i i . 1 . i . .
j%
rsx
5X
OX












	 	



• fl














H. 	 	 	 -



M













	 a #i
j



-»*
QC -
*— ' _
CE
• AJUI
IVVQ ^^
COCO
men
1 LU
OCJ f
X Q.
LULU . i
QC o
— ^ -7— 2 CAA
___' J . ^^
oo ~_
•— If-,
5 u-r :
: |

cn
— p- n
CE °
0
D - LORD ~ '
X - LOflO - 1
Z - LORD - IN













a gx • —



5*
sx
ox












__ 	 	 	


.... l ....














	 •
— ••
















_
-— "



l 1 l l .1 l l l i

                                                                             300
                            PREHEflT,  °F
                                                                        500
                                                                  PREHERT.  °F
                                                                                                                          700
                                                                                                                                  I
                                                                                                                                  Q
  l—i    1000-
00 CE
cno

o~  f

LUO   .
      "Z. soo.
Lu
  co
  CE
             Q - EXCESS RIR - 3X
             X - EXCESS RIR - ISX
             Z- EXCESS RIR ^ 35X
              — i
                                        QC
                                        I—1
                                        CE

                                      LOCO
                                      00 CO
                                       I LU
                                      OCJ  J
                                        X  CL
                                      LULU   .
                                      QC    O
                                                                          1000-
                                          I

                                        cn
                                        CE
                                        O
0 - LORD -  7SX
X - LOflO - 1I5X
z - LOflO •>. moz
           100
      SOD
PREHEflT.  °F
                                                         700
                                                                             300
              1 I I I i  i i  i i r i r i l i

                     soo
               PREHERT,  °F
                                                                                                                          700

-------
-
-
ODCE
COO
1 I —
O JF ~
Q o.
LU— . . ^
ocs: o

lj_CO
CL
-J

c

-

r-cr 1
coo
i 	 i _
0 j£
~~^ Q- ~
LJO .
OC_J o
CD 1
— '
U_(O -
ex
C3
—











^-^


i • l i , , i r-i












^— 	


' ' ' ' 1 ' ' ' '













*
EXCESS











_ 	


1 ' ' ' 1 ' ' ' '













-n i i | . T i i
0
RIR. 7.














. j










• 	 	 ^


4















, . • i | , • i ,
GL -
CE ~
OCO
rr*co
1 LU
OCJ ^
X o_
LULU .
QC o
CDO
1
CO
CL
CD °
0 1

( — ^ looa —

COOT.
COO
1 _J
o £ -
IL: Q-
[L.'CD .
n~ ' — i o

»— " i
u.
co
CL
CD



-



TI I t T T ITT



r i-rrpr n~r
..


-TTT-rj-T TTT-



•TTr-ryn-n-
                                          20                 HO                 60
                                           RflTE  OF  HERT RELEflSE. KBTU/FTxx3/HR
                                                                                    Q
-



a. :
°- 1
o
z soo —
D

~- 	 ' 	
i i r i [-1 -n i




. 	 • 	
-i n i y n i r





"i r i i yrn T






                                                                               ^o
EXCESS flIR.  7.
EXCESS flIR. X

-------
  cc

  CE
       i
cvicn
:=rcn
 i LU
CDO  f
  X  o-
LULU   .
OCD
  CO
  cr
           RflTE  OF HEflT  RELERSE.  KBTU/FTxx3/HR
  QC

  cr

—en
 I LU
00 £
  X a.
LULU


1.JCD
soo-
  a)
  a
           TTTT  T 7 T T
    RRTF:  SF  H^
                       rU-
                               >4G
                          RELERSE
                                                    00 CI
                                                    LUO  .
                                                    CC_J o
                                                    —\    z soo-
                                                           Li_cn
                                                             cr
                                                             CJ
                                                                                  500

                                                                             PREHEflT,  °F
                                                                                                                     LO
                                                                                                                     l—t

                                                                                                                     a
     soo

PREHEflT,  °F

-------
  QC
  f___f
  CE
        i
COCO
rrco
 i LU
QCJ  f
  X  o-
LULU   .
QC    o
        500-
Lu
   I

  cn
  ex
  CD
           300
                                 SOO
                           PREHEflT.   °F
                                                       700
                                                                 QC
                                                                 *-— 1

                                                                 CE
                                                                      1000-
                                                               OOCO
                                                               =TCO
                                                                I LU
                                                               OC_J  =
                                                                 X  Q-
                                                               LULU
                                                               GC    o
                                                               IDT;   soo
                                                               CD CD
                                                                  i

                                                                 CO
                                                                 CE
                                                                 CD
                                                                                             I
I
                                                                                               SOO
                                                                                         PREHEflT.   °F
                                                                                                                       700
  (—i   1000-
LOCE
L_J    Q_
  n:  o_
LUCD   .
QC—•  o
ZDX:  z s°°-
CD
Lu
CO
CE
CD
                                       T

                                 SOO
                           PREHEflT.  °F
                                                     700
                                                                 QC

                                                                 CE

                                                              r-co
                                                              zrco
                                                               i  LU
                                                              OCJ J
                                                                 X o_
                                                              LULU  .
                                                              QC    o
                                                              ZDO Z;
                                                                        1000-
                                                                   CO
                                                                   CT
                                                                   CD
                                                                                               500
                                                                                         PREHEflT,   °F
                                                                                                                               I
                                                                                                                               Q

-------
occ
LOO
Q
  Q a-
CC2I
ID
O I
i—i

L	I




O- PREHEftT -v
X - PREMEBT «.

=*=
I i i i I H 1 1 i
3SO«F
6SO°F

=*=
• i i i i H i J i


	 	 B
i i i i 1 i i i i


__ X 	
MM
1 I 1 1 I 1 I 1 1
                            20
QC -
CE "
OJCn
LOCO
1 LU
Qt-^ QL
X 0-
LULU . 1
DC 0
	 )-£ Z 500
t^O J
li_
1
	 1 J
1 — (
On —
*

D - PREHEftT -
X - PREHEflT -












	 ¥ •
. i i i | r i i i
3SO"F
650°F












	 	 	
i i i i | i i i i












X 	














	 	 X —
B

                      EXCESS RIR, 7.
20                 MO                  60

 RflTE OF HEflT RELERSE,  KBTU/FT««3/HR

CDCE
rro
I i
Q ^
UJO . J
CC_J o
U_._J
o ~

Q - PREHEflT ~
X - PREHEflT «.




_ -M 	 !
i i i i | i i i I
350°F
650»F




izU-
1 1 1 1 1 1 1 1 1





r..: 	 	
iiii|iiii





B 	
1 1 1 1 | 1 1 1 1

_
--ex
LOO
1 _J
O £
X Q.
LLlO . -
Lu
•— i
O _

n - pREHEm >.
X - PREHEftT -







> . . . I , , , i
350°F
650«F





. - -N 	
	 g 	 • 	 •

!,,.,.,..







— "".:









-


                      EXCESS RIR, 7.
            EXCESS  flIR.  X

-------
QC -
>— i
GC


zrcn
LDCO "
1 LU ^ -
X Q-
LULU . _
QC o

IDX M0
CDO J
i n i
_J
0
O - PREHEflT -v 3SO°f
X - PREHEflT -. K&T













-
0
RflTE OF H













X • 	 "
«
ERT RELEf














K
	 ID""
0
ISE, KBTU/














V
(
'FT»<«3/HR
-
	
.


COCL
LTJO
1 — ' 2- -
0 OL -
LU— < .
CC2I 0

ID SOT
CD 1 J
LJ 	 1
i— »
o 	
0 90
O - EXCESS ftlfl - 3X
X - EXCESS BIR - 15X
Z - EXCESS SIR - 35*












	 I-
0












. 	 • 	 	
sc
PREHEF














_ 	 • — • 	
0
T. °F














— 1
7C












i
K)
00
rH


QC ~
i— » _
cr
cntn
LOCO
1 LU
X o_
LULU . _
CC o
o2 SM -
iT5"" -
1
_J -
i — i
0
D - PREHEflT - 350«F
X - PREHERT ~ 650«f











S











	












JL
~~













•

_
-
—

Lncr
LOO
1 _J
^ a- ~
LUG . _
QC— 1 o
CD i _:
Li__J
i— -i
0 —

d - EXCESS flIR ~ 3X
X - EXCESS AIR - 1SX
2 - EXCESS filft - 3SX









'" 	
i i i i | i i i i









. —




























j^
B

Q














20                  
-------
  CL
  t—t
  cr

CD CO
LOCO
 I LU
00
  X
LULU
CL
1000-
        soo-
LDO
  O
-
-
•H
<

D - LOW) ~
X - LOfiO -v 1
Z - LOBO -

; x 	 —
l l l I 1 r i i F
75X
1SX
40X

"•
r i i i i i i i i


• —
i i i i i i i i i


	 .*
i i i i j i i i i
           300
                                 SOO
                           PREHERT.  °F
                                                       700
  CE
  »—H
  cr

oco
CD CO
                                                                 1000-
                                                           X  CL
                                                         LULU   .
                                                         QC    o
                                                         CDLD
                                                                   O
                                                                       D - LOflD ~ 75Z
                                                                       X - LOBO - IISX
                                                                       z - toflo - mox
                                                                           300
                                                                                             1 ' ' I '
                                                                                          500
                                                                                    PREHEflT.  °F
                                                                                                                       700

r-cr
LOO
Q J
X a- ~
LUO . _
CL— < o
—JJ- SOT
O J
u_
o J

D - EXCESS R
X - EXCESS R
Z - EXCESS R


^— — — — 	
1
, , , , | M , ,
in - ax
IR - 15X
IR ~ 3SZ


	 	 	
, . , . 1 , . , .




1 1 1 1 I 1 1 1 1


.
'
""'""
CL ~
cr "
ODCO
LOCO
1 LU
X a.
LULU . _
CL D
[<-3— • J
L^^ -
1 J
5 .'
£J) 0 1
a - LORD -
X - LORD - 1
2 - LOflO -v 1


B
i i i I [ I l ! (
75Z
ISX
MOX


. 	 . 	
1 ' ' ' 1 ' ' ' '



	 — 	
i i i i | i .1 •


3
•
""'""
           300
                                 500

                           PREHEflT.  °F
                                                       700
                                                                    300
                                                                                          500
                                                                                    PREHEflT.  °F
                                                                                                                700

-------
       1000-
OJCE
CDO
 I __l
Q    £
  O  Q-
LU— •   .
OC5I  o
^)    z
O I
l_-^
LJ __ I

  o
  I"!   1CWO-
^-.Q:
CDO
LUO   .
QC_I  o
— •)    Z SOO-

CD I
                        EXCESS  flIR,  7.
                                20
                        EXCESS  flIR.  y.
  CC
  *— — i
  CE

rrco
CD en
 I LU
                                                                    tooo-
  X  o_
LULU   .
QZ    o
U_
                                                                                       T
           20                   «0                    60

            RflTE OF  HEflT  RELEflSE.  KBTU/FTMM3/HR
                                                                                                                         o
                                                                                                                         (N
  ( — )   1000-
cno:
CDO
  H  a.
LUCD   .
CC— .  o
      ~
CD
                                                               O
                                                                                   I I II | I  1 I I
                         EXCESS  flIR.  '/,
                                            I I I  | I 1 I

-------
  oc
  >—H
  cr

co en
coco
 I LU
00 £
  X a.
LUUJ   „
QZ   o
       1ODO-
00
          ?0                   HO                   SO

           RflTE  OF HEflT  RELEflSE.  K8TU/FT»
-------
DC -
CE ~
OCO
r-cn
1 LU
OLJ £
X o-
LULU .
CC. o
LDO J
Lu
1
_J .1













I I I k 1 1 I I 1












I 1 1 1 I 1 1 I I












i r i i i i i i i












l l l l | i 1 l r
QC ~
CE ~
tooo— -i
(\JCO
r-cn
1 LU
OLJ £
X OL
LULU .
	 S T~ ~^- SOO 	
OLD J
LL.J: -
_J
ir~i










	 	 	












	 • 	

1 1 1 1 | 1 1 T 1










	

i i i i 	 |""t 	 r 	 t 	 T 	










	 _ — ___—

i r IT |"i 'ii r-












300 SOO 700 WO SOO 700
PREHEflT, °F PREHEflT. °F
(N
(N
l

-
_
( i 1000 	
cncr
coo
i _j
Q J
:r o-
LUCD .
fY" i i (O
i-t_ _^
IDZ: "o—
u_
^ :













i i P i | i i i «











. 	 — 	 ~
1 1 I 1 1 . 1 1 .












. . i i i . i i .












i . l i | i I I l
QT ~
CE ~
»— CO
r-co
1 LU
OLJ J
X o_
LULU .
DC o
S2
b_
1
On —












	 '
l l l l | i i i i











	 _ 	
l l i • ] l l T I











^_^ 	
.,..,...,
Q


























     soo
PREHEflT.  °F
     soo
PREHEflT.  °F

-------
  cr.
  o
  CJ

   i

r- •
 i o
ooc
  »—t
UJO
OCUJ
ZDQC
O

U_OL
  O

  UJ

  _J
  u_
u
2
O
O
ui
cc





—
-
~


Jit 11
I 1
ai z
41
f
0- LOt
*- LO*
» - L0»
X - Hit
Z- Hit
M - H1C
X - HIC
Z- HIC
+ - HIC


	 	 -.


1 RIR • L
1 RIR - M
1 AIR - H
1 RIR - L
1 RIR - H
1 AIR - H
!H AIR - L
;H RIR - H
H RIR - H


i


OH I
10 I
1GH
OH L
10 L
1GH
OH I
10 I
IGH
I 1

! -^.


ORO "
ORO
L0RO
OflO
OflO
LOAD
ORD
ORO
LORD
i i



nl





i (~ t i

,

MI





fill



	 .





i I ~i I
                                              o
  O

   I  >s-  o—
CO
p- . o
 I CJ =
OCC 2

UJCJ z
OCLU 2
rxr - «••
o   ^

[To: ^
  CJ

  UJ
  u
                                           30
                                                      U_
                                                           100
~*
_
_
-
—
-


O- LOH

	 .

BIft - L

	 	 'I

JM LORD
A - LOH AIR - HIO LORD
2 - HID RIR - MID LORD
-j * - HID flIR - HIGH LOflO
1 Z - HIGH RIR - H
-H-TT-l-r-TT ,~r
ID LORD
~r i i i

	 - 	






i i i i

D 	 1-






i i i i

Z
•••^^HH—
1





1 1 I 1
                                                                                 IS
              FLUE GflS RECYCLED.  7.
                                                                            FLUE GPS RECYCLED,  7.


o ~
•z.
o ~
t— «
, K/l ^VH
f— SO —
CJ
O ~
UJ
CC
—
-
—
•
00


"~ •* *



It
f '
r

••

1
]
— — .



»

Z


(

•


]




Q - LOH RIR - LOH LORD
A - LOH RIR - HIO LORD
* - LOH RIR - HIGH LORD
X - HIO RIR - LOH LORD
Z - HIO RIA - HID LORD
* - HIO AIR * HIGH LOflO
X - HIGH AIR - LOH LOflO
Z - HIGH AIR - HIO LOAD
* - HIGH AIR - HIGH LORD
""(""[""I"11!'"'!1"'
mimiimiijiiii













illllllll













lllljllll













illllllll













illllllll













iiiijiiH
u •
CL
O 1
| N. 0 ^
7 j s "
otn z
».,— i
QCU.J 2
IDfE »- '"--
— •(/: a ~
Ll'
UJ -
	 i
j 100 —
Ll" o

I
\
\



till




\


, . , .





"^i
I1 i i rr ^
t
O- LO
* - LO
Z- HI
K - MI
- Z - HI



-»^___^

5
H RIR -
W RIR -
D RIR -
B RIR -
GH RIR -




- — 	 	 .|

LOH LORD \
HIO LORD
HIO LORO
HIGH LOflO
HIO LORO



,
-it-
"111
3(
             FLUE  GflS RECYCLED.  *'.
                                                                          FLUE  GflS RECYCLED.  Y.

-------
  CL
  o
  O

GO ~r
r-o
 i •— i
Ql-
  cn
UJZ)
QCQD
  -CJ
 _
  Lu
  O
  CT
  »—
  CP

  CvJ
X 0-
      O
      •z
z
O
O
UJ
QC
  100-
_
_,
-
•
E_

_
_
-
—
*
™
_J





1 *f
} *








i z
** Cff
H
*$ II
I







it n ^liiiififiiiiiiiiiii





A - LOH fllft




i
- NIO LORD
« - L6H AIR - HIGH LORD
X - NIO AIR - LOH LORD
Z - HIO AIR - HIO LOflO
» - MIO fllft - HIGH LOflO
X - HIGH AIR - LOH LORD
Z - HIGH AIR - HIO LORD
* - HIGH AIR - HIGH LORD
tiiiiiiiiiiiiiiiiicri^ii
     SO
                                                 IH
                                                                   en
                                                                   (X
                                                             2 x  o-
                                                           oo
                                                           GO-
                                                            I K
o


2
                                                                 LUOO
                                                                 CE2I
                                                                         so-
                                                                 OCJ
                                                                 >— <

                                                                 LJL.UJ
                                                                   O
                                                                   CE
                                                                   h-
                                                                   

• en— . r-cr o i z C.JCJ ^ O CL O o UJ oc 100- (D 1- 0 - SIDE SLOTS X - TROW SLOTS X - SIDE / POUT FOR 0 - SIDE / BURNER FGfl M - FHWT f PORT FGR Y - FRONT / BURNER FGR Z - SUc)ST3!CHIOttETRIC vo too ISO STOICHIOMETPY flT 8URNFB5, ''.


-------
o
(MO  .
00*™*^ €5

ocn z


LUQD z
ccs: S
   o
  o
  cr.
  H•
  en

  f\j
     100
                       \
                              * - LOM ftlfl  - niO LORD

                              Z- HID HIM  - MID LOAD

                              + - HIGH ftlR - HIGH LOflO
                                         1
                                             1
        so
                            tag
                                                 ISO
              ST01CHIOMETRY  RT BURNERS, X
                                                                      SO                   100                   ISO

                                                                           STOICHIOHETRY flT  BURNERS,  '/.
s °
d -1
o
-J J
X
X "
01 X o—
-- t»-— H
« .
OC'CL o

DO z
»— « ""* ""
LUZ: z J
cr. ~
u i H- "—
O *"*
•— 'UJ O ~

01 J
*~
cr
O 10° "-










/
/
/

/l /
/\' y
/^
/





o >X
/
i
//
,v

/I/
/ / '
/ /
/
8
i'
/*
I TTTTi i i 1 1 1 1 i i i i i i i i i i i i









/
f
/
	











a - SIDE SLOTS
X - FRONT SLOTS
X - SIDE / PORT FOR
« - SIDE / BURNER FGR
X - FRONT / PORT FGR
Y - FRONT / BURNER FOR
X - SUBSTOJCHJOHETRJC

UL_
— 1
*\
f| » • o— •
li.- • s
<.'''-- .
oocr u
i z
OQ z
K— i "™
^ § "
" \ 1 t.* &0 -• — '
__} i ^* **
c-:'1 ^








f
^-^*" ^



--UJ 0 4
Lj_C_f S
' y-rn t ru r munrov nT Qiionroc v «;? PI t P M I flf'FT R Y CT DIIRKifSQ
              5TOICHIOMETRY  flT BURNERS,  7.

-------
               APPENDIX E
MATHEMATICAL DERIVATIONS AND CALCULATIONS

-------
     Initial calculations are done by- computer and yield the weight of fuel,
air, and natural gas from the igniter including any moisture if present  (see
Appendices A and B).  In addition, the percentage of theoretical air is  calcu-
lated.  For large amounts of combustibles  (>3%) in the flue gas during sub-
stoichiometric tests, a gas chromatographic sample is analyzed for CO and H~
                                                                            Li
(and CFL) for coal  fired tests to determine equivalent combustibles as 00;  and
for natural gas tests, the equivalent CO is hand calculated since both fuel
and air are metered.  (The equivalent CO for combustibles assumes all
combustible is present as CO for ease of excess air calculations - H~ and CO
both require 1/2 02 and no other combustibles are found in the flue gas
except solid carbon in coal tests.  Since  the unburned carbon in all coal
tests is relatively constant, it is ignored in these excess air calculations.)

     The flue gas recirculation is calculated by taking the ratio of flue gas
recycled to the total weight of fuel and air in the combustion:
                            FGR = 100.0 x
                                            W'
                                             fg
The criterion for staging is the stoichiometry at the burner which  is given
by:

                                         x FB
                                       100.0
where   FB = W,/Wa
              6  a
     In addition, corrections are applied to the NO   instrument readings
                                                   X
for C09 and H70.  The following series of constants are used:
                                     E-l

-------
                 Constant  Used
                  Coal
                        Gas*
Oil
Wt of fuel
Wt of moisture/
O . JOO
6.13
J.O.HO
0.0
LJ. /I
0.0
100 Ib fuel

MF .
1

MA .
1

MM .


MC -

f MFI

MFR
t,
\ mi

MAR
.
' MMI

MMR
{ MCI

MCR
0.6298

0.3154
0.5694

0.2976
0.1192

0.02549
0.06135

0.05405
0.6315

0.6315
0.5709

0.5709
0.1197

0.1197
0.06138

0.06138
0.6298

0.5028
0.5694

0.4752
0.1192

0.05506
0.06135

0.07259
The equations are thus given as:
                  1M = MF
where   MF = MFI x W   + MFR x W
        MA = MAI x
WNI +
MAR x Wr
           = MA x
                      H2°
* Gas analysis used for coal and oil igniter firing is slightly different from
  latest used for gas firing.  Difference in final calculations using old gas
  analysis for igniter is insignificant.
                                     E-2

-------
      WMF = 0.0613 Ib H20/lb coal (only for coal)
     FC02 =
            TM
            MCI x WXTT + MCR x
            _ NI
                     TM
            mi x WMT + MIR x Wr   MMH + MMF
     Corrections applied to the NO  instrumentation are:
                                  Jx.
     Whittaker:  Multiply by (1.0 - FH20 - FC02)
     TECo:       Multiply by (1.0 - FH20 + 0.012117V (1.0 - FH20))
     NDIR:       Miltiply by (1.0 - FH20 + 0.0065342*7(1.0 - FH20))
                 after subtraction of 50 ppm correction due to water
                 absorption.
(The NDIR correction due to water absorption at 34°F saturation was determined
experimentally.)

     For all:  correction to dry, 31 02 in flue gas, multiply by:

                            18.0	       1
                      FT x (21.0 - POF) X (1.0 - FH20)

The average of the NDIR and TECo, Aver, was calculated by:

                             Aver = ^rnr

and the standard deviation, STDV, by:
* Saturation factor at temperature of measurement.
  Infrared absorption correction for actual water content of sampled flue gas.
                                     E-3

-------
        STDV
=  J (NDIR - Aver)2 + (TECo - Aver)2 =  ^ 2.0 x  |TECo  - Aver)
     The BTU value from the fuel enthalpy release  is  given hy three equations,
one for each fuel:
        Coal :  BTU = 23855 x WNJ + 11533 x W£
        Gas :   BTU = 23920 x  (WNI + W£)
        Oil:   BTU = 23855 x WNI + 18620 x W£

The air and recycled flue gas preheat adds enthalpy  to  the  flue  gas  during
combustion also.  This addition is given by  (no primary preheat):

                 BTUG = BTU + W  x BTU  +  QM x W f x 18.016 +
                               3.      3.           -T
                   (MNfl + MvtF) x 18.016) x BTUm + W'  x BTUf
where   BTUa =  (TAG - TA) x  (0.240 + 10"5 x TAG)
        BTU^ =  (TAG - TA) x  (0.444 + 2 x 10"5 x TAG)
and     BTUf =  (TFG - TA) x  (0.252 + 10"5 x TFG)


For correction of ppm NO  at 3% CL, dry flue gas conditions  to  Ib NO,  (as  NO)
                        -X        £                                  A
per million BTU  (fuel BTU only) input, the NO value  is multiplied by:
(No conversion constant is necessary since BTU and ppm must both be divided
by 106.)

     In conversion of load percentages to thousands of BTU per ft  per hour,
the factors to be remembered are:
                                     E-4

-------
          1)  furnace volume - vL27 ft  (8 ft long,  4.5 ft diameter)
          2)  100% load E 5,000,000 BTU per hr
and therefore if million BTU load is divided by 0.1272,  the result  is  in
kBIU/ft3/hr.

     For calculation of the fractional reduction,  L,,  of the measured  values
L, (base point) and L,, (reduced value with reduction modification in firing
test):
and since the values were
                                  Li±Li
and
      L2±L2
then
2 + L'2]2   ffL  -L!
    4 j   +  |L1   L2]
                                                      Li
     The calculations as used in data tables  and graphs do not yet  include
conversion to the Si/metric system.   It  is  intended  that  these conversions will
be made during the later contract work when required by EPA.
                                     E-5

-------
                        APPENDIX F
PRELIMINARY ECONOMICS ON FIELD UNIT MODIFICATION OR CONTROL

-------
     Reduction of NO  by Field Unit Modification or Control utilizing the data
                    Jx
from this report would have to be discussed on a preliminary basis only.
Although the trends from the single burner test unit are useful, the magnitude
of these trends might not hold on large field units with many burners.  The
limit of control used on the basic combustion unit may also be outside the
practical range of large field units.  Preliminary economical analyses are
included for the best methods of proposed NO  control:
                                            Jt

     1)  Control of excess air - Pulverized coal fired units normally
         operate in the range of 15% to 30% excess air for control reasons.
         Operation at low excess air may present difficulties.  Problems
         which need to be solved are, for example, the slagging from
         Eastern coals or excessive carbon loss.

     2)  Load/Rating - There is this capability in existing units.  The
         cost of adding lower efficient units must be considered as
         the cost for making up for the loss of electricity from reduc-
         tion of load on the operating units.

     3)  Preheat - This must be balanced against the combustion effi-
         ciency since carbon and stack losses in the field increase as
         preheat decreases.  In addition, burner stability for safe
         operation may limit the amount of preheat reduction which is
         permissible.

     4)  Flue gas recirculation - The greatest problem appears to be
         the needed capacity for moving this flue gas around.  Increased
         capital costs and operating costs are unavoidable.  In addition,
         erosion may be accelerated.

     5)  Staged combustion - Two problems immediately evident are slagging
         and potential corrosion in the reducing/oxidizing boundary zone.
         The progressive mixing concept might hold greater promise as a
         compromise means of staging so that reducing gas would be kept
         off of the metal surfaces.
                                     F-l

-------
     APPENDIX G
PHASE II - WORK PLAN

-------
                        Future Work Plan for Phase II

I.    Task I Data Correlation/Further Firing Tests

     A.   Data Correlations (NO  and combustibles)

         1)  Computer analysis of data - preliminary
         2)  Firing tests to fill data gaps
         3)  Correlation to find quantitative trends
         4)  Further testing where uncertainty exists or for further
             information such as substoichiometric firing, etc.

     B.   Further Testing

         1)  Optimize most important trends from A - Detailed data correlation
         2)  Test two additional coals with different fuel bound nitrogen
         3)  Further quantifying tests as time permits, e.g., fuel bound
             nitrogen conversion, etc.
         4)  Prepare a preliminary operator's guide manual for application
             of technology to existing units

     C.   Reporting, Monthly, and Final


II.  Task II Construction of New Multiburner Unit

     A.   Justification Report
     B.   Design
     C.   Purchase of Materials
     D.   Construction and Site Preparation
     E.   Preliminary Testing
     F.   Reporting, Monthly, and Final
                                     G-l

-------
PLJ
H
                      CO
    <
                                      — c\Jro
-------
BIBLIOGRAPHIC D/»TA 1. f\: port No. 2.
SHEET EPA-650/2-74-002a
3.NEJecip:enc's Accession No.
4. lii'n,- ,mJ Submit "y. Report Date
Effects of Design and Operating Variables on NOx from January 1974
Coal-Fired Furnaces -- Phase I
7. Author(s)
W. Joseph Armento
9. Performing Organization Name and Address
Research and Development Division
Babcock &Wilcox Company
Alliance, Ohio 44601
12. Sponsoring Organization Name and Address
EPA, Office of Research and Development
NERC-RTP, Control Systems Laboratory
Research Triangle Park, NC 27711
6.
8- Performing Organization Kept.
No.
10. Project/Task/Work Unit No.
ROAP 21ADG-41
11. Contract 'Grant No.
68-02-0634
13. Type of Report & Period
Covered
Phase I, Final
14.
15. Supplementary Notes
16. Abstracts rj.^ report gives results of Phase I of an ii
modification techniques for controlling NOx emissior
utility boilers. The techniques --studied on a 5-milli<
unit—included: excess air; air preheat; rating; flue g
ustion; quench; and swirl. The study showed that NO:
possible either using staged combustion or by loweri
zero %. Flue gas recirculation yielded only moderate
nitrogen conversion increased with increasing excess
erature. At substoichiometric conditions, the final p
either fuel-bound nitrogen or thermal atmospheric fi
existing units , control of excess air promises to be i
however, for new units , staging (with physical separ
17. Key Words and Document Analysis. 17a. Descriptors tO 1
ATT T^nlliifinn 	 ....
Nitrogen Oxides
Combustion Control
Coal
Combustion Chambers
Flue Gases
17b. Identifiers/Open-Ended Terms
Air Pollution Control Excess Air
Stationary Sources Quench
NOx Reduction Swirl
Staged Combustion Fuel Nitrogen
Flue Gas Recirculation
Air Preheat
17c. COSATI Field/Group j^g ^ 20M, 21B
18. Availability Statement
Unlimited
ivestigation of combustion
is from pulverized- coal-fired
Dn Btu/hr single-burner pilot
•as recirculation; staged comb-
's reductions of up to 50% are
ng excess air levels from 30 to
3 NOx reductions. Fuel-bound
5 air level and decreasing temp-
recurs ors for NO formation from
xation appeared identical. For
:he best method for NOx reduction;
ation of the two stages) appears
DC the most promising.

19. Security Class (This 21. No. of Pages
Report) •,(••,
UNCLASSIFIED ±V5
20. Security Class (This 22. Price
Page
UNCLASSIFIED
FORM NTIS-35 IREV. 3-721
                                             THIS FORM MAY BE REPRODUCED
                                                                 H-l
                                                                                                        USCOMM-OC IJ932-P72

-------
ENVIRONMENTAL PROTECTION AGENCY
    Technical Publications Branch
      Office of Administration
 Research Triangle park. N. C. 27711
     POSTAGE AND FEES PAID
ENVIRONMENTAL PROTECTION AGENCY
           EPA - 335
        OFFICIAL BUSINESS
 AN EQUAL OPPORTUNITY EMPLOYER
                                 Return this sheet if you do NOT wish to receive this material
                                 or if change of address is needed uH.   (Indicate change, including
                                 ZIP code.)

-------