A MATHEMATICAL MODEL
FOR PREDICTING TEMPERATURES
IN RIVERS AND RIVER-RUN RESERVOIRS
(053S$k)
VWATFgy
FEDERAL WATER
POLLUTION CONTROL
ADMINISTRATION
NORTHWEST REGION
PORTLAND, OREGON
-------
A MATHEMATICAL MODEL FOR PREDICTING
TEMPERATURE IN RIVERS AND RIVER-RUN RESERVOIRS
Prepared by
John R. Yearsley
Working Paper
No. 65
United States Department of the Interior
Federal Water Pollution Control Administration
Northwest Region, Portland, Oregon
March 1969
-------
Acknowledgements
The development and testing of the temperature prediction model
described in this paper has benefitted from the cooperation and contri-
butions of several individuals, as well as various public and private
agencies,
Initial development and programming of the model was done by
Mr. William Morse * of the FWPCA, Pacific Northwest Water Laboratory,
Corvallis, Oregon.
The hydraulic calculations are adapted from techniques developed
by Dr. Bruce Tichenor and Mr. Alden Christianson of the FWPCA, Pacific
Northwest Water Laboratory, Corvallis, Oregon.
Mr. Robert Cleary, a graduate student in chemical engineering
at the University of Massachusetts, Amherst, Massachusetts, provided
technical support while working for the FWPCA, Northwest Regional Office,
Portland, Oregon, as a temporary employee during the summer of 1968.
A major part of developing and testing the model has been the
compilation and organization of necessary data. The author wishes to
thank the US Army Corps of Engineers; Weather Bureau; Bureau of Commercial
Fisheries; US Geological Survey; Federal Aviation Agency; Atomic Energy
Commission; Chelan, Grant and Douglas County PUD's and Battelle Northwest,
for providing hydraulic, meteorologic and water temperature data,
* Mr. Morse Is presently a mathematician with the Bonneville
Power Administration, Portland, Oregon.
i
-------
TABLE OF CONTENTS
PAGE
Introduction 1
Background 2
Description of the Model «... 3
Method of Computation ..... 7
Model Testing ......... 18
Further Investigations .23
References 24
APPENDIX A (Description of the Computer
Program) 25
APPENDIX B (Preparation of
Data Cards) 27
APPENDIX C (Program Listing) 34
-------
SUMMARY
A one-dimensional temperature prediction model has been developed
and tested on the Columbia River. The model in its present form is
operational for use on rivers for which:
(1) Cross-sectional characteristics, including water surface
width and cross-sectional area are available.
(2) Adequate meteorologic data is available.
(3) Water surface elevation data is available.
(4) Evaporation and sensible heat flux can be evaluated in
terms of regional weather data and the results of representa-
tive field studies.
(5) Lateral and vertical variations in temperature are negligible.
(6) The flow can be considered quasi-steady.
Punched cards containing the FORTRAN statements shown in Appendix C
can be obtained from the FWPCA, Northwest Regional Office, Portland,
Oregon. The program can also be executed directly from the FWPCA data
cell at the Department of the Interior Computer Center in Washington, D. C.
ii
-------
INTRODUCTION
Thermal loads imposed upon rivers as a result of heat rejection
from manufacturing and power generating industries, impoundment by
dams, and irrigation diversion have made temperature an important water
quality parameter. Effective water resource planning must, therefore,
include adequate methods for predicting and evaluating temperature changes.
To fulfill this need the Federal Water Pollution Control Administration,
Northwest Regional Office, is developing a computerized system of
mathematical models which can be used to predict temperature in rivers and
reservoirs.
The model described in this document has been developed primarily
for predicting temperatures in rivers which are regulated by dams with
run-of-the-river, or small usable storage capacity reservoirs; and which
may also have reaches which are free-flowing.
In the river-run model, finite volumes of water, or water parcels,
are released from an upstream starting point at specified intervals of
time. Individual parcels are followed downstream through reservoirs and
open river reaches, and changes in the parcel temperature due to weather,
flow regulation, and advected sources are predicted.
-------
BACKGROUND
2
The model development program was initiated at the beginning
of FY 1968, and was conducted as the Columbia River Temperature Study,
a Technical Project of FWPCA, Northwest Regional Office, until February
1968. Since that time the temperature prediction efforts have been
incorporated, with the biological effects studies, into the Columbia
River Thermal Effects Study. The purpose of the Study, a two-year
program, is to provide a scientific basis for the evaluation of the temp-
erature regime of the main stem Columbia River and its effects on the
river's ecology, particularly upon the economically important anadromous
fishery.
During FY 1968 a mathematical model of river-run reservoir water
temperatures was developed and programmed. The model was tested on
the portion of the Columbia River between Grand Coulee and Priest Rapids
Dams. (See Figure 2.1) This model was limited to river syBtems which had
no advected sources and provided reliable temperature predictions over
periods of 10-14 days only. These restrictions have been eliminated in
the present model, and portions of the net heat flux calculations have
been updated, as well. In addition, test runs have been made on the
Columbia River between Priest Rapids and Bonneville Darns, excluding the
Hanford Operations area.
-------
DESCRIPTION OF THE MODEL
3
This model has been developed for the purpose of predicting temper-
atures in rivers which are regulated by dams with small storage capacity.
It is essential for application of the model that the cross-sectional
characteristics of the river be given. Furthermore, it has been assumed
that:
(1) The prototype is thermally well-mixed vertically
and laterally.
(2) Longitudinal diffusion and dispersion can be neglected
(3) The water surface profile between dams is a function
of longitudinal distance only. (Water surface profile refers
to the shape of the water surface as seen in a longitudinal
section and does not imply an absolute surface elevation. )
(4) Weather data from a representative station is adequate for
describing conditions along a specified portion of the river.
(5) Empirically derived coefficients can be used to evaluate heat
and mass transfer at the air-water interface.
where
Given the above assumptions, temperature changes can be predicted
from the one-dimensional energy equation:
dT _ _Q (3.1)
"Y « water temperature
Tj ¦ longitudinal water velocity
G} * net heat flux at the water surface
"t ® time
D ¦ depth of water
B specific heat of water
^3 * density of water
-------
Joseph
8
lurr >ia R.
Wells
Grand uouiee
(R.M. 597)
Rocky Reach
(R.M.475)
^-Wanapum
Richland
•-John Day (R.M. 216)
The Dalies
(R.M. 192)
FIGURE 2.1 Map Showing Projects
On the Columbia River
-------
The heat flux, Q, is composed of the following terms:
(1) Qs - short wave incident solar radiation
(2) Qr - short wave reflected solar radiation
(3) Qa - net atmospheric radiation
(4) Qjj - back, or emitted radiation from the water surface
(5) Qe - evaporative heat flux
(6) Oh ~ sensible heat conduction
O - Qs - Ov * (3.2)
In the model, the net heat flux, Q, can be expressed a9 either
a linear or parabolic function of the water temperature, T. The model
has been programmed so that either function can be chosen, however,
comparison of the two indicates that the linear function is adequate for
normal conditions.
For the linear function:
Q , +3,T o.3)
and equation (3.1) becomes
a. *"6rv
(3.4)
dl = Ajjv'*'.'
d-t fcft>
Integrating equation (3,4): ^
"T- ^ ~ (3.5)
~T „o(
where: »• »
To => the initial temperature
of, - — A./8,
- - -B.
• exposure time
-------
6
When the net heat flux, Q, is expressed as a parabolic function
of the water temperature, T:
= -rz
(3.6)
the integration yields;
(3.7)
fct°
T- P* \ To-fx'
where *
To ¦ the initial temperature
oU . ~®» -
, VCx
p* ¦
"fc-"L^ = the exposure time
It should be pointed out that the sum of the heat fluxes in
equation 3.2 is zero, when T* oL % >or, \ -z od"T*^ .
The temperature, T0, is referred to as the equilibrium water
temperature.
Finally, if the velocity of the particle, U(x,t), is known, the
exposure time, (t-t0), can be determined from the equation:
and the predicted temperature, T, can be determined from either
equation 3.5 or 3.7.
To accommodate advected sources, such as tributary streams, the
temperature of the advected source is mixed completely with the
temperature calculated in equations 3.5 or 3.7, according to the ratios
of their respective discharges.
-------
METHOD OF COMPUTATION
7
Net Heat Flux- The functional relationship between the net
heat flux, Q, and the water temperature, T, is determined by calculating
the heat flux over a selected range of water temperature, say 50°F. to
80°F, and fitting the resulting points to either a first- or second-order
polynomial by the Method of Least Squares.
The following weather data is needed for these calculations:
(1) incident solar radiation
(2) wind speed
(3) cloud cover
(4) air temperature
(5) wet-bult temperature or dew-point
(6) barometric pressure
This data should be obtained from a station with weather typical
of the region in which the river system is located.
Before the net heat flux is calculated the meteorological data are
averaged over a specified number of days. The individual fluxes are
then determined in the following manner:
(a) Qs - obtained by measurement in an area with radiation
characteristics similar to those of the river system
0>) Qr Z A> C4-1)
where© = sun's altitude
and A and B are functions of cloud cover as
given in reference (2) .
-------
8
A
Qe a X fc, MT (e - e^) <4 W
where
X = latent heat of vaporization
1^ = an empirical constant
* vapor pressure of water in saturated
air at the temperature of the water
= vapor pressure of water in the ambient
air
MX = wind speed
(f) Qh * \kx (TflL -T } (4.5)
where \ and juJt are as defined previously and
= and empirical constant
z atmospheric pressure
» air temperature
T = water temperature
Recapitulating:
Qx 0^(1-A.®8) * (4.6)
- Xk.JW (e^,- + XV^-ur ^ (t*-T )
-------
9
The values of Qs> A, B, ew, ea, T , w, and pa are obtained either
directly or indirectly from the meteorologic data and are fixed for each
averaging period. The net heat flux, Q, is determined by specifying the
water temperature, T. A first- or second-order polynomial can be generated
for each averaging period by calculating the heat flux, Q, for a range of
water temperatures, T, and fitting the appropriate curve to the resulting
points. As an example, weather data from Richland for the period August 20-
29, 1967, collected by Battelle Northwest and made available by the U.S.
Atomic Energy Commission, has been used to determine heat flux-water
temperature relationships for the Columbia River below Priest Rapids Dam
(see Figure 2.1). The meteorologic data for the four six-hour daily periods,
averaged over ten days is given in Table 4.1. For water temperatures be-
tween heat flux and water temperature for each of the four periods are
shown in Table 4.2.
Exposure Time - The period of time during which each water particle
is exposed to heating and cooling is determined from equation 3.8. This
requires calculating the longitudinal velocity, U(x,t), for the particle.
In order to make the calculations compatible with numerical analysis,
the water particle has been replaced by a finite volume of water, or
water parcel. Associated with each parcel as it leaves a particular dam
is the dam discharge, QD, and the tailwater elevation, TL, for that time
period when it is discharged. The parcel retains these values until it
reaches an advected source, or the next dam.
Assuming that the water surface profile is a known function of
the longitudinal distance from the dam, and is independent of pool elevations
and discharge; and given the geometric characteristics of cross-sectional
-------
TIME
PERIOD
INCIDENT SOLAR
RADIATION, BTU/ft.2/hr
WIND SPEED,
M.P.H.
CLOUD COVER,
TENTHS
AIR TEMP.,
°F
WET BULB,
TEMP,°F
AIR PRESSURE
in. Hg.
0000-0600
1.9
14.2
2
69.5
54.6
29.20
0600-1200
159.0
8.0
4
81.3
59.2
29.20
1200-1800
145.7
9.5
5
91.5
61.8
29.20
1800-2400
1.0
16.0
3
76.3
56.1
29.20
TABLE 4.1
Weather Data From Richland for Four (4) daily
Periods Averaged Over Ten Days (August 20-29 1967)
-------
TIME
LINEAR RELATIONSHIP
PARABOLIC RELATIONSHIP
PERIOD
Q-BTU/ft.2/hr, T-°F
Q-BTU/ft.2/hr,T-°F
0000-0600
Q=332.-6.31T
Q=228.-2.96T-0.0268T2
0600-1200
Q=377.-3.95T
Q=315.-1.94T-0.0161T2
1200-1800
Q=A17.-4,54T
Q=345.-2.20T-0.0187T2
1800-2400
Q=380.-6.96T
Q-266.-3.25T-0.0297T2
TABLE 4.2 Linear and Parabolic equations relating heat
flux and water temperature for the meteorology
given in Table 4.1.
-------
12
area and water surface width, as a function of longitudinal distance and
water surface level, the parcel velocity can be determined.
The water surface profile, determined from the difference between
the tailwater elevation of the upstream dam and the water surface elevations
at selected stations can be obtained from backwater calculations or avail-
able stage records. Profiles obtained from backwater calculations or
stage records are generally a function of dam discharge and pool elevation,
and it is necessary to define a "representative" profile which will be
independent of these effects.
Location of the profile is determined by the tailwater elevation of
the upstream dam. This will give a satisfactory water surface level
providing dam discharges and pool elevations are varied gradually, and
that stretches of the river which are free-flowing are either very small
or very large compared to that part which is impounded.
The geometric characteristics of cross-sectional area and water
surface width are determined from available data such as sounding charts.
River reaches between dams are divided into sub-reaches and representative
cross-sectional data are assigned to each sub-reach.
Figure 4.1 is a schematic diagram of the idealized river as used in
the model. The river reach between dam 1 and dam 2 is divided into sub-
reaches. The longitudinal distance of each section, N, from the origin
is X(N). The water surface profile is determined by the values, CTE(N),
which are functions of longitudinal distance only. The absolute surface
elevation at each section, N, is:
2(N"> =TL - CTE^ <*•'>
where TL is the tailwater elevation of the upstream dam referenced to
some DATUM,
-------
X(4)
-------
14
Representative cross-sectional characteristics are given at each
of the sections, N. The cross-sectional characteristics at each station
must be specified for various surface elevations, covering the entire
range of elevations which can occur during the modelling period.
If the maximum tailwater elevation at the upstream dam is TLn,av. and
the minimum is and the distance below the tailwater in CTE(N) at
station N, then the table containing cross-sectional characteristics must
cover the range of heights.
"¦min " CTE(N)
-------
N=2
N=4
N=3
QDp
DAM
DAM 2
DATUM
FIGURE 4.2(a) - Schematic diagram showing parcel, P, as it is released from Dam 1.
P+3
P+l
QDp
TLp-CTE (4)
DATUM
FIGURE 4.2(b) - Schematic diagram showing parcel, P, after progressing through two
river sections.
-------
16
(3) The average cross-sectional area and width are calculated:
= AX(Zp(N),N) + AX(Zp(+l),N+l)
2
= WX(Zp(N),N) + WX(Zp(N+l),N+l)
2
(4) The discharge used to determine the velocity of parcel,
P, is a function of all the parcels in the reach behind P. This is so
because the hydraulic model is a kinematic model and involves only a
solution of the continuity equation. To account for the effect of parcels
behind parcel, P, the velocity Up is ;
Up = QDp
where in the example of Figure 4.2b
QDp - (QDp + (QD^J + QDp+2+QDp+3)i
QDp
1 + (QDp+1 + QDp+2 + QDp+3)
%
1
For constant cross-sectional area it can be shown that QDp is a
length average of QDp, QDp+i, QDp+2, and QDp+3.
The nominal depth is
D =
P <^>
-------
17
The value of the longitudinal velocity,11^, is used in equation 3.8,
to determine the exposure time, (t-t0), which, in turn, is used with Op,
and the Ol , ^ , and values appropriate to that time period, for
predicting the water temperature. The value ofis also used to
determine how far the front of the parcel has traveled.
When a new reach is enountered the longitudinal velocity>~^>> afld
nominal depth, p, are recalculated. The same discharge, QDp, is used,
but new geometric characteristics will be necessary.
If a new time period begins the values of ^ , and "^are updated.
(5) Parcel temperature, Tp, is recorded or reinitialized as the
flagged portion reaches those stations at which these operations have
been specified,
(6) When the parcel, P, reaches stations with an advected source,
the temperature, of the source is mixed into the main stream
according to equation (3.9)
(7) Upon leaving the advected source, the parcel will have a
new discharge:
QDp = QDp + QDadv
but the same tailwater, TLp.
(8) When the parcel, P, for the 1st time period, reaches a new
dam the parcel assumes a discharge and tailwater elevation equal to that
of the new dam for the time period during which the parcel arrived at
the new dam. If the new dam is the last dam, calculations begin for the
second time period as parcel, P+l, from the first dam.
-------
MODEL TESTING
18
The model has been tested using Columbia River main-stem reservoirs
as prototypes. Description of the various tests is given in Table 5.1,
and Figure 2.1 shows the location of the projects. Temperatures of
parcels at selected points for each test are shown in Figure 5.1 - 5.5.
Where sufficient data were available, predicted temperatures were
compared with observed.
Suitable data for comparison of predicted and observed travel times
were not available.
In all the test cases, heat flux associated with evaporation and
sensible heat conduction have been calculated from equation 4.4 and 4.5,
using the empirical constants obtained from the Lake Hefner study (1).
It would be possible to find the best fit between observed and predicted
data by varying these empirical constants. This would not be meaningful
unless errors in other heat flux calculations, hydraulic calculations,
observed temperature data and meteorologic data could be controlled more
precisely.
-------
CONDITION
PERIOD
FIRST DAM
LAST DAM
STATION PROVIDING
METEOROLOGY DATA
1
July 22-31
1966
Grand Coulee
(R.M. 597)
Priest Rapids
(R.M. 397)
Wenatehee
FAA
2
August 20-
Sept. 12,1967
Priest Rapids
(R.M. 397)
Bonneville
(R.M. 145)
Hanford Area
3
Sept. 14-19
1967
Wells
(R.M. 516)
Rock Island
(R.M. 453)
Wenatehee
FAA
TABLE 5.1 Description of conditions used for testing the one-dimensional
temperature model.
-------
63
62
61
60
59
58
I II I | I I I I | I I I I | I I II |
Q- Observed Temperature
0- Predicted Temperature
^- Initial Temperature
o
•OOqOO
-A>:
*
r aAAAAAAAAAaaA
A A AA
A A
' I * I I ¦ ' » ' 1 ' » ' I I ' ' ' I 1
10 15 20
PARCEL NUMBER
FIGURE 5.1 Analysis of Water
Temperatures at Rocky Reach Dam
For Condition 1 In Table 5. 1
I I II | I I M | 1 I I 1 1 I I I I |
Q- Observed Temperature r\
% - Predicted Temperature _
^ - Initial Temper- Q Q
re
63
r\
- 62
_ 61
— 60
~ *AAAAAAAAA4AA
ph
o
a
!=>
H
2
W
W
&
— 59
• . A
Aa
^ » i ' I i i i i I i » i i I i i « . I
10 15
PARCEL NUMBER
58
20
FIGURE 5.2 Analysis of Water
Temperatures at Priest Rapids Dam
For Condition 1 In Table 5. 1
N>
o
-------
21
71 —
I I II | I I I I | I I I I | I I I I |
Q - Observed Temperatures
Predicted Temperature
Initial Temperature
oooo
71
69 — •
70
69
68
68
67
66
A A AA
A AAA A AAA
A AAA
A A AA
67
66
65
I » » t 1 1 I I I I I I I I I I I I l I
65
5 10 15
PARCEL NUMBER
20
FIGURE 5.3 Analysis of
Water Temperatures at Bonneville
Dam for Condition2 in Table 5.1
-------
I I I I I II I I I I I I I I I I I I 1
65U o
* I- ioO0 oooo ° 00o°
o
g 64
P§
u
'vV-VIiX
4 aaa
H 63
cA
£ A A
2
62 — O~ Observed Temperature
i- Predicted Temperatu
- Initial Temperature
"i ¦ i i I ' ' i i I i i i i I i i i i I
5 10 15
PARCEL NUMBER
FIGURE 5.4 Analysis of Water
Temperature at Rocky Reach Dam for
Condition 3 in Table 5.
I I I 1 | I 1 I I | J I I I | II I 1 1
65
ooooogowr--- H
A AAa*l
v££to-j64 *
A-l 1
u
63 ps
w
E-t
O" Observed Temperature — 62
Predicted Temperature
^ - Initial Temperature
» ' ' I I I ' 1 ' I 1 ' ' ' 1 ' ' » ' I 61
5 10 15 20
PARCEL NUMBER
FIGURE 5.5 Analysis of Water
Temperatures at Rock Island Dam
For Condition 3 in Table 5.
ro
io
-------
FURTHER INVESTIGATIONS
23
Two subroutines are being developed which will eliminate some of
the restrictions associated with the present model. One subroutine
calculates solar radiation using available techniques (3) and the other
subroutine calculates backwater profiles (4).
Study of other problem areas, including evaporation and sensible
heat fluxes, diffusion and dispersion processes and unsteady flow, will
continue.
-------
24
REFERENCES
(1) "Water-Loss Investigations: Lake Hefner Studies,
Technical Report," U.S.G.S. Professional Paper 269,
U.S. Government Printing Office, Washington, D.C.:1954
(2) Raphael, J.M., "Prediction of Temperature in Rivers and Reservoirs,"
Journal of the Power Division, ASCE, July 1962,pp 157
181.
(3) "Heat and Mass Transfer Between a Water Surface and
the Atmosphere, (Preliminary edition)", Tennessee
Valley Authority, Norris, Tennessee, July, 1967.
(4) Prasad, R, "A Numerical Method of Computing Gradually Varied Flow
Profiles", Specialty Conference of Hydraulics Division,
ASCE, M.I.T. Cambridge, Massachusetts, August, 1968.
-------
APPENDIX A
25
A-l. Description of the Computer Program
The computer program, which calculates water temperatures according
to the principles described in the main portion of the report, has been
coded in FORTRAN H. The program contains one MAIN program and nine sub-
programs. The MAIN program is a calling program only, the function of
the other programs is as follows:
(1) HYREAD - Reads in river geometry, dam discharge and tailwater
elevation and advected source discharge.
(2) MEREAD - Reads in the meteorological data and averages the
data over specified periods.
(3) THREAD - Reads all temperature input, stations at which
parcel temperatures are to be reinitialized, stations
where temperatures are to be printed, and temperatures of
advected sources.
(4) TROUT - Routes the parcels down the river, making use of
subprograms TEMP and HYDRA2 for determination of parcel
temperatures and travel times.
(5) HYDRA2 - Calculates parcel velocity using the method of
Section 4.
(6) TEMP - Calculates the parcel temperature using equation (3.5)
or (3.7), depending upon whether a linear or parabolic
function relating heat budget and water temperature is desired.
(7) METEOR - Calculates the net heat flux, Q, using relationships
described in Section 4. An array of heat budget versus water
temperature is generated for each averaging period and the
appropriate coefficients in equation (3.3) or (3.6) are
calculated with the aid of CRVXZQ,
(8) CRVXZQ - A curve fitting routine using the Method of Least
Squares.
(9) TWRITE - Writes out predicted, observed and initial
parcel temperatures, as well as arrival times and travel
times, for each parcel at specified stations.
The intention has been to design the program in modular form! so that
various parts of the program, particularly input and output, can be easily
-------
26
modified.
A-2. Data Requirements
Data requirements for running the program can be divided into
four categories:
I. Hydraulic Data
1. Section number
2. River mile of each section
3. Distance of water surface level below the tailwater
elevation of the upstream dam, in feet.
4. Cross-sectional area, in square feet, and water surface
width, in feet, for various water levels at each section.
5. Dam discharges in 1000 cfs and tailwater elevations in feet
above datum.
6. Discharge from advected sources, in 1000 cfs.
II. Meteorologic Data
1. Incident solar radiation in langleys or BTU/ft. /hr.
2. Cloud cover in number of tenths
3. Air pressure in inches of mercury
4. Wind speed in knots or miles per hour
5. Air temperature in °F or °C.
6. Wet-bult temperature or dew-point in °F or °C.
III. Water Temperature Data
1. Initial temperature of parcels
2. Station numbers associated with temperature input
3. Station numbers associated with output temperatures
4. Station numbers where parcel temperatures are to be
reinitialized (a subset of III.2 above)
-------
27
IV. Systems Information
1. Seven cards are reserved for supplying labelling information
such as location of river basin, stations providing meteor-
ology data, time period covered by analysis, etc.
APPENDIX B
B.l. Preparation of Cards
The data cards are prepared in four groups, corresponding to those
described in the Appendix A-2. A sample set of data as arranged on
punched cards is given in Appendix D.l. The numbers in the left edge of
the sample data print-out correspond to the numbers given below.
1.1 FORMAT (615, F15.10)
NADV - number of advected sources
NDAMS - number of dams
VDAYS - number of days parcels are released from the first dam
NDQ - number of days of discharge
NPD - number of periods into which each day is divided.
NSECT - number of sections into which river is divided
DZ - the height increment at which cross-sectional area and
water surface width are specified
1.2 FORMAT (I3,F6.1,F4.1,F5.0,5(F7.0,F5.0),I1>
N - section number, beginning with one (1) at the first
upstream dam and Increasing consecutively downstream. The
first station is at the downstream face of the first dam.
Between dams the river may be divided into as many sections
as are needed. At subsequent downstream dams, however, there
must be a station at the upstream face and the downstream face,
to account for the space taken by the dam.
X(N) - river mile of section, N
CTE(N) - distance in feet, of the water surface at station N
below the tailwater of the upstream dam.
CD(N) - lowest elevation at station N for which cross-sectional
area and water surface width are specified
-------
CD(N)+DZ
CD(N)+2DZ
vwvyxv* datdm
xyxxvyvx datum
WWXXW
DATUM
FIGURE B-2.1 Schematic Diagram Showing How Cross-Sectional Data is to be Speci-
fied at Station N.
ro
00
-------
29
AX(N,1) - cross-sectional area at station N for the water surface
elevation, CD(N), in ft.2 See Figure B.2-1.
WX(N,1) - water surface width* in feet, at station N for
the water surface elevation CD(N). See Figure B.2-1
AX(N,2) - as above for water surface level, CD(N)+DZ
WX(N,2) - as above for water surface level, CD(N)+DZ
AX(N, 3) CD(N)+2DZ
WX(N,3> CD(N)+2DZ
AX(N,4) CD (N) +3DZ
WX (N, 4) CD (N ) +3DZ
AX(N,5) CD(N)+4DZ
WX(N,5) CD(N)+4DZ
ICK - an indicator for determining the last geometry card
for each station. If ICK = 0, there are more cards to
follow. ICK = 1 indicates the last geometry card for
station N.
Continue in the above manner until all station geometry is
recorded.
1.3 FORMAT (212, 12X,5 (F6.1,2X)
M - dam number
ID(M) - section number of dam M. Corresponds to section
number at the downstream face of dam M.
ELT(M,1) - tailwater elevation of dam M, in feet on day 1
of the analysis.
QD(M,1) - discharge in 1000 cfs for first daily time period
QD(M,2) - as above for second time period, if necessary
QD(M,3) - as above for third time period, if necessary
QD(M,4) - as above for fourth time period, if necessary
Continue as above for as many days as there are dam discharges
I.A FORMAT (212,20X,4(F6.l,2x)
M - advected source number
-------
30
IDADV(M) - section number of advected source
QADV(M,1) - discharge of advected source, or in 1000 cfs for
the first daily time period.
QADV(M,2) - as above for the second time period, if necessary
QADV(M,3) - as above for the third time period, if necessary
QADV(M,4) - as above for the fourth time period, if necessary
11.1 FORMAT (515)
NDMET - number of days of meteorologic data
NAVG - number of days over which meteorologic data is averaged
NMD - number of meteorologic variables per day
MAXT - maximum water temperature for heat budget calculations
MINT - minimum water temperature for heat budget calculations
11.2 FORMAT (3F5.0)
PHI - the latitude of the river system
DTSL - the difference between local time of the river system and
standard time. Positive if the local meridan is greater
than the standard meridian, negative otherwise (for
west longitude only.)
DAY1 - first day of analysis
11.3 FORMAT (715)
151 * 1 Radiation in BTU/ft2/hr
¦ 2 Radiation in langleys
152 - 1 wind speed in MPH
2 wind speed in knots
153 - 1 air temperature in °C
2 air temperature in °F
154 ¦ 1 wet bulb temperature is input
» 2 dew point temperature is input
155 » 1 solar radiation Is input
156 ¦ 1 write heat budget information
- 2 do not write heat budget information
-------
IV = 1 linear heat budget relations 31
= 2 parabolic heat budget relationship
11.4 FORMAT (2E10.3)
CT3 - evaporation coefficient lb./mile/ft.^/°F
CT4 - sensible heat conduction coefficient, lb./mile/ft.^/°F.
11.5 FORMAT (18A4)
FRMT - FORTRAN IV FORMAT statement for reading meteorological
data
11.6 FORMAT - specified by user (see above II.5). Data must appear
in the following order, however:
2
A9 - incident solar radiation in langleys/hr or BTU/ft. /hr
B9 - cloud cover in number of tenths
C9 - wind speed in MPH or knots
D9 - air temperature in °C or °F
E9 - wet bulb or dew point temperature in °C or °F
F9 - air pressure in in. Hg.
111.1 FORMAT (15)
NT1 - number of stations with temperature input
111.2 FORMAT/315/(16F5.0)
IDIN(N)-station number of temperature input
NTHIN(N) - number of temperature values at station N
ICFIN = 1 if °F
= 2 if °C
THR(N,J) - temperature at station N for time period. J=l,
NTHIN(N) F or °C
111.3 FORMAT (15)
NCHNG - number of stations at which temperature is to be
reinitialized.
111.4 FORMAT (20 A4/15)
XCHNG(N,J) - label for station N at which parcel temperatures
are to be reinitialized
-------
32
XDCHNG(N) - station number at which temperature is to be
reinitialized
111.5 FORMAT (215)
NTP - number of locations at which parcel temperatures are
to be predicted.
ICFOUT = 2 if output temperature is °F
111.6 FOBMAT (20 A4/15)
XOUT (N,J) - label describing temperature output location
IDTP(N) - station number of the Nth temperature output
location.
111.7 FORMAT (10X.15/16F5.0)
ICFIN = 1 if advected source temperature is in °C
= 2 if advected source temperature is in F
TADV(N,J) temperature of advected source at station N.
J = 1,NPQ (NPQ=NPDxNDQ)
IV.1 FORMAT (20A4)
HOT POO (I,J) - lable such as organization performing work,
area covered by analysis, and date of analysis
I - 1,7
J = 1,20
A listing of the program and a sample of the output are given in
Appendix C and D.
-------
APPENDIX C
-------
C.l PROGRAM LISTING
MAIN PROGRAM
CALL HYREAD
20 CALL MEREAD
30 CALL THREAD
CALL TROUT
CALL TWRITE
STOP
END
-------
(1)
SUBROUTINE HYREAD
C SUBROUTINE HYREAD REAOS IN THE HYDRAULIC AND HYDROLOGIC DATA*
C THIS INCLUDES CROSS-SECTIONAL DATA~ IDEALIZED BACKWATER PROFILES,
C AND DAM DISCHARGES AND TAILWATER ELEVATIONS*
COMMON/NUMBER/NADV, NDAMS, NDAYS, NPD, NPER, NSECT, NT 1, NCHNG,
1 NTP, NTHIN(15)» NPQ
COMMON/GEOM/AX (100»25), WX(100,2M* X(IOO), CTE(IOO), CD(IOO), DZ
COMMON/1 DENT/10M 5) * IDIN(15), IDADVU5), IOTP{15), IDCHNG(15)
COMMON/HYDRO/ELT(12.400), QDI12,400), QADV(5,400)
COMMON/CHECK/JJMAX(400)
READ!5 >1010) NADV, NDAMS» NDAYS, NDO* NPD, NSECT, DZ
INSECT = NSECT ~ 1
IDADVINADV+1) = INSECT ~ 1
11 = NPD
12 » NDAYS
13 = NDO
NPER » 11*12
NPQ = 11*13
ND1 » NDAMS - 1
C ******************************************************************
C * READ RIVER GEOMETRY(RIVER MILE* AREA, WIDTH, ETC.) *
C ******************************************************************
DO 19 N = 1,NSECT
J = 1
10 JJ « J 4
READ(5 ,1020) N, X(N), CTE(N), CD(N), (AX(N,K), WX(N,K), K « J,JJ)
1, ICK
JJMAX(N) x JJ
J « J 5
IF IICK.EQ.O) GO TO 10
19 CONTINUE
C ******************************************************************
C * READ DAM NUMBER, STATION, TAILWATER, ELEV. AND DISCHARGES *
C ******************************************************************
20 READ(5 *1030) M, ID(M), ELT ( M,1), (QD(M,I), I * 1,NPD)
DO 29 K « 2, NDO
NSTART » CK - 1)*NP0 + 1
NSTOP * K*NPD
READ(5 ,1040) ELT(M,K), (QD(M,L), L * NSTART,NSTOP)
29 CONTINUE
-------
c
c
c
IF (M.tT.NOl) GO TO 20
IO(NDAMS) * INSECT
DO 39 M » 1 ,ND1
DO 39 L = lfNPQ
TMPRRY - ODIM, L)
QO(M,L> = 3.6E06*TMRRRY
39 CONTINUE
IF (NADV.EQ.O) GO TO 100
******************************************************************
# READ ADVECTEO SOURCE NUMBER* STATION AND DISCHARGES *
******************************************************************
40 READ(5 ,1050) M, IOADV(M), (QADV(M,I), I = 1,NPD)
DO 49 K = 2 ,NDQ
L = NSTART ,NSTOP)
NSTART = (K - 1)*NP0 + 1
NSTOP * K*NPO
REA0(5 ,1060) (QADV(H,L)•
49 CONTINUE
IF (M.LT.NAOV) GO TO 40
00 59 N > 1,NAOV
DO 59 L ' 1,NPQ
TMPRRY * QADV(H,L)
QADV(M,L) « 3.6E06*TMPRRY
59 CONTINUE
1010 FORMAT (615, F15.10)
1020 FORMAT (13, F6.1, F4.1, F5.0, 5(F7.0,
1030 FORMAT (212, 12X, 5
-------
SUBROUTINE MEREAD
C SUBROUTINE MEREAD REAOS IN AND AVERAGES METEOROLOGY DATA.
C AVERAGING PERIODS ARE SPECIFIED BY THE USER.
COMMON/CONST/ NDMET» NAVG, NMD, IS1, IS2, IS3, IS4, IS5, I S6 , IV,
IMAXT, MINT
COMMON/EVAP/CT3, CT4
C0MM0N/R00TS/ALPHA(A0,24), BETA(40,24), GAMMA(40,24)
COMMON/WEATHR/0S(100), CC(IOO), W(IOO), TA(IOO), TAW(100), AP(IOO)
COMMON/NUMBER/NADV, NOAMS, NDAYS, NPD, NPER, NSECT, NT I, NCHNG,
1 NTP, NTHIN(151, NPO
COMMON/ALMNAC/PHI, DTSL, DAY1
DIMENSION FRMT{18)
READ(5 ,1000) NDMET, NAVG, NMD, MAXT, MINT
READ(5 ,1001) PHI, DTSL, DAY 1
READ(5 ,1002) IS1, IS2, IS3, ISA, IS5, IS6, IV
READ!5 ,1005) CT3, CT4
READ(5 ,1010) FRMT
XNPD = NPD
NDIV = NMD/NPD
T1 » NDIV
NLOOPS « (NDMET-D/NAVG + 1
DO 49 I - 1,NLOOPS
NDAYL = NAVG
NCHECK = NDMET - NAVG*1
IF (NCHECK.LT.O) NDAYL - NDMET - NAVG*(I-1)
XOL ¦ NDAYL
DO 9 J » 1,NPD
QS(J> = 0.0
CC(J) = 0.0
W(J) = 0.0
TA(J) = 0.0
TAW(J) = 0.0
AP(J) * 0.0
9 CONTINUE
DO 39 J * 1,NDAYL
DO 39 K = 1,NPD
DO 39 L = 1,NOIV
READ(5 ,FRMT) A9, B9, C9, D9, E9, F9
OS(K) * A9/T1 + OS(K)
CC(K) * B9/T1 + CC(K)
-------
W(KI * C9/T1 + W(K)
TA(K) = 09/Tl + TA(K)
TAW(K) * E9/TI ~ TAW(K)
AP (K) = F9/T1 + AP (K)
39 CONTINUE
DO 48 M * 1»NPO
QS a AP(M)/XDL
48 CONTINUE
ITRANS = I
CALL METEOR(I TRANS)
49 CONTINUE
1000 FORMAT (515)
1001 FORMAT (3F5.0)
1002 FORMAT (715)
1005 FORMAT (2E10.3)
1010 FORMAT (18A4)
RETURN
END
u>
00
-------
(3) SUBROUTINE THREAD
C SUBROUTINE THREAD READS IN TEMPERATURE DATA. THIS INCLUDES
C INPUT TEMPERATURE LOCATIONS, STATIONS WHERE TEMPERATURES ARE
C REINITIALIZED, TEMPERATURES FROM ADVECTED SOURCES, AND LOCATIONSS
C OF OUTPUT TEMPERATURES.
COMMON/TEMPER/THETA(5,365), THR<5,365), TADVI5,365)
COMMON/NUMBER/NADV, NDAMS, NDAYS, NPD, NPER, NSECT, NT 1, NCHNG,
1 NTP, NTHIN(15), NPQ
COMMON/IDENT/ID(15), IDIN(15), IDADV<15), IDTP(15), IDCHNG(15)
COMMON/NAME/XCHNG( 5, 40 ) , XOUTt10,40)
INSECT = NSECT
READ(5 ,1000) NT1
DO 9 I = 1,NT1
READ(5 ,1005) IDIN(I), NIN, ICFIN, (THR(I,J), J = 1,NIN)
NTHIN(I) = NIN
IF (ICFIN.EQ.2) GO TO 9
DO 8 M = 1»NIN
TMPRRY = THR(I,M)
THR(I,M) = 1.8»TMPRRY 32.0
8 CONTINUE
9 CONTINUE
READ<5 ,1000) NCHNG
IDCHNG(NCHNG+1) = INSECT + 1
IF (NCHNG.EQ.O) GO TO 20
DO 19 K 1 1,NCHNG
READ(5 ,1025) ((XCHNG(K,L), L = 1,20), IDCHNG(K))
19 CONTINUE
20 READ(5 ,1027) NTP, ICFOUT
WRITE(6,1027) NTP, ICFOUT
DO 29 K = 1,NTP
READ(5 ,1030) ((XOUT(K,L), L = 1,20), IDTP(K))
29 CONTINUE
45 CONTINUE
IF (NADV.EQ.O) GO TO 100
DO 49 I « 1,NAOV
READ(5 ,1045) ICFIN, (TADV(I,J), J « 1,NPQ)
IF (ICFIN.EQ.2) GO TO 49
DO 48 M * I,NPQ
TMPRRY » TADVU ,M)
TADV(I.M) = 1.8*TMPRRY 32.0
-------
48 CONTINUE
49 CONTINUE
1000 FORMAT (15)
1005 FORMAT
1025 FORMAT
1027 FORMAT
1030 FORMAT
1045 FORMAT
100 RETURN
END
(/3I5/(16F5.0))
(20A4/I5)
(215)
(20A4/I5)
(/10X, I 5/(16F5 «0))
O
-------
SUBROUTINE TROUT
SUBROUTINE TROUT ROUTES THE PARCELS DOWN THE RIVER. SUBROUTINE
TEMP IS USED IN CONJUNCTION WITH TROUT TO DETERMINE PARCEL
TEMPERATURES.
COMMON/NUMBER/NADV, NOAMS* NDAYS * NPO, NPER * NSECT , NT1, NCHNG ,
1 NTP, NTHINC 15), NPO
COMMON/IOENT/ID(lS), 1DIN115), IDADV<15), IDTP(15), IDCHNG(15)
COMMON/HOWLNG/TI ME(10 > 400)
COMMON/TEMPER/THETA(5.365), THR15,365), TADV(5,365)
COMMON/GEOM/AX(100,25), WX(100,25), X(100>, CTE(IOO), CD(IOO), DZ
DIMENSION T{20 ) t DELTAT(20 )
T{11 = 24.0/NPD
DO 99 I « I* NPER
II * I
10 = I
L « 1
MADV = 1
M « 1
N » 0
TH1 = THRUtl)
NNEW = 2
15 N « N 1
20 OX « (X(N) - X*5280.
25 CALL HYDRA2(II* 10, M, MADV, N, U, Z)
01 ST » T(L)*U
DTEST « OIST - OX
IF (DTEST* 30,35,45
30 DX » DX - OIST
OT = T(L)
OELTAT(L I * DT
CALL TEMPCIQ, II, MADV, M, N, DT, Z, TH1)
11 = II 1
IF (II.GT.NPG) GO TO 75
L = 1
GO TO 25
35 DT = T(L)
DELTAT(L» * DT
CALL TEMP(10» II, MADV, M, N, DT, Z, TH1)
N = N 1
IF (N.GT.IOAOV(MADV)) MADV = MADV + 1
-------
IF (N.NE.IOCHNG(NNEM)) GO TO 36
TH1 = THR(NNEW»II)
NNEW - NNEW + 1
36 CONTINUE
GO TO 46
45 L = L I
T(L) = OX/U
DT = T (L)
DELTAT(L) = DT
CALL TEMPUQ, II, MADV» M, N, DT. Z, TH1)
T(L) = T(L-l) ~ T(L)
N = N 1
IF (N.GT.IDADV(MADV)) MADV = MADV + 1
IF (N.NE.IDCHNG(NNEW)) GO TO 46
TH1 = THR(NNEW*II)
NNEW * NNEW + I
46 CONTINUE
DO 49 K » 1»NTP
IF (N.NE.IDTP(K)) GO TO 49
THETA(K»I) « THI
SUM « 0.0
DO 48 KL = 2? L
SUM « SUM + DELTAT(KL)
48 CONTINUE
TIME(K*I) = (II - 1)*T(1) + SUM
49 CONTINUE
IF (DTEST.EG.O.O) L = 1
IF (DTEST.EQ.O.O) II =11+1
IF (II.GT.NPQ) GO TO 75
N1 « N + 1
IF (N1*LT*ID(M+1)) GO TO 20
M * M ~ 1
IF (M.GE.NOAMS) GO TO 99
IQ = II
GO TO 15
75 NDUM = 0
80 NDUM - NDUM 1
IF (N.GE.IDTP(NDUM)) GO TO 80
ND1F = NTP - NDUM ~ 1 &
DO 89 ID1F = ltNDlF
-------
NDUG = NDUH -f- I OIF - 1
THETMNDUGtl) = -999.99
89 CONTINUE
99 CONTINUE
RETURN
ENO
U>
-------
(5) SUBROUTINE HYDRA2 tilt 10, M, MADV, N, U, Z)
C SUBROUTINE HYDRA2 CALCULATES DEPTH AND VELOCITY OF THE PARCEL AS
C REQUIRED 8Y SUBROUTINE TROUT.
COMMON/NUMBER/NADV, NOAMS * NDAYSt NPOt NPER. NSECT, NT1» NCHNG,
1 NTPt NTHINC15) » NPQ
COMMON/HYDRO/E LT(12,400)t 00(12,400), QADV(5»400)t QZ
COMMON/IDENT/ID(15)* IDINI15), IDADV(15), IDTP(15), IDCHNG(15)
COMMON/CHECK/JJMAX(400)
COMMON/GEOM/AX<100,25)t WX(100,25), X(100), CTE(IOO), CD(IOO), OZ
DIMENSION AR(2 ) » WR(2>, QDUMMY(10)
IDAY = (10 - 1)/NPD +¦ 1
DO 20 L = 1,2
NL1 * N f L - 1
EL « ELT(M,IDAY) - CTE(NLl)
10 DELTA = (EL - CD(NL1))/DZ ~ 1.0
K ¦ DELTA
K1 ¦ K + 1
HK * K
WR(L) * WX(NL1,K) + (DELTA - HK)*(WX(NL1,K1) - WX(NL1,K))
AR(L) = AX(NL1»K) 4, (DELTA - HK)*(AX(NL1,K1) - AX(NL1,K))
20 CONTINUE
WA * (MR(1) * WR(2))/2.0
AA « (AR (1) -f AR (2) )/2.0
IF (N.NE.ID(M)) GO TO 25
QADD « 0.0
MTEST2 « MADV
NTEST « IDADV(MADV)
25 CONTINUE
IF (N.LT*IDADV(MTEST2)) GO TO 40
IF (N»NE*NTEST) GO TO 35
IQADV • II
NTEST « IDADV(MAOV)
GO TO 40
35 CONTINUE
SUM1 « 0.0
SUM2 » 0.0
DO 38 I * IOADV.II
MAD1 « MADV - 1
RATIO - 0ADV(MAD1,I)/QADV(MADl,IOADV)
SUM1 «= SUM1 4 RATIO
-------
SUM2 * SUH2 + RATI0*QADV(MA01»
38 CONTINUE
I TEMP » MADV - MTEST2
QDUMMY(ITEMP) * SUM2/SUM1
QAOO >0,0
DO 39 I « l.ITEHP
OAOO ¦ OADD ~ QDUMMY
39 CONTINUE
40 CONTINUE
SUMl =0.0
SUM2 =0.0
00 49 I = 10,11
RATIO = QD(M»I)/QD(M»10)
SUH1 = SUM1 + RATIO
SUM2 = SUM2 ~ RATIO*QD(M*I)
49 CONTINUE
0 = SUM2/SUM1 + OAOO
55 U = Q/AA
1 = AA/WA
OZ = 0
RETURN
END
-r*
m
-------
(6) SUBROUTINE T E MP (IQ , II, MADV, M, N, DT , Z, TH1)
C SUBROUTINE TEMP CALCULATES PARCEL TEMPERATURES AS REQUIREO BY
C SUBROUTINE TROUT.
COMMON/ROOTS/ALPHA(40,24), BETA(40,24), GAMMA(40,24)
COMMON/I DENT/I D( 15) » IDIN(15), IDADV(15), IDTPU5), I0CHNG(I5)
COMMON/HYORO/ELT(12,400), 00(12,400), 0ADV(5,400), Q
COMMON/TEMPER/THETA(5,365), THR(5,365), TADV(5,365)
COMMON/NUMBER/NADV, NOAMS, NDAYS, NPO, NPER, NSECT, NT 1, NCHNG
1 NTP, NTHIN(15), NPO
COMMON/CONST/ NDMET, NAVG, NMD, IS1, IS2» IS3, IS4, IS5, IS6,
1MAXT, MINT
NPDAVG - NAVG*NPD
INOMET = (NDMET - 1 ) / NAVG * 1
IAVG = ( II-l ) /NPDAVG +¦ 1
IF (IAVG.GT•INDMET) IAVG = INOMET
INPD = II -((II - 1)/NPD)»NPD
EX = GAMMA(IAVG»INPD)*DT/( 62* 43*Z)
GO TO (10,20), IV
10 TAV = TH1 BETA(IAVG, INPD)
TAV = TAV*EXP(EX)
TAV = -BETAUAVG, INPD) + TAV
GO TO 25
20 TAV = (TH1 -h ALPHA (I AVG, INPD) )/(THl + BETA ( IAVG, INPD ))
TAV = TAV*EXP(-EX)
TAV = (—ALPHA(IAVGtlNPD) ~ BETA(IAVG,INPD)*TAV)/(1.0 - TAV)
25 TH1 = TAV
IF (N.NE.IDADV(MADV)) GO TO 100
TMAIN = TH1*Q
TTRIB « TADV(MADV,11)*QADV(MADV,11)
OTOT = 0 ~ OADV(MADV,11)
TH1 * (TMAIN+TTRIB)/QTOT
100 RETURN
END
-------
SUBROUTINE METEOR(IAVG)
SUBROUTINE METEOR CALCULATES THE HEAT BUDGET AS A FUNCTION OF
WATER TEMPERATURE t USING THE INPUT METEOROLOGY DATA. .
THIS INFORMATION IS PASSEO TO SUBROUTINE CRVXZO WHERE A FIRST
OR SECOND ORDER POLYNOMIAL RELATING THE HEAT BUDGET TO WATER
TEMPERATURE IS GENERATEO.
COMMON/CONST/ NDMETt NAVG* NMD* IS1» IS2, IS3» IS4, IS5, IS6, IV*
1MAXT• MINT
COMMON/WEATHR/QS(100)t CC(IOO), W(IOO), TA(IOO), TAW(IOO), AP(IOO)
COMMON/ROOTS/ALPHA<40,24)t BETA<40,24), GAMMA(40 f24)
COMMON/HEATBG/TW(50)t QT t 50)» C(10), MOTH
COMMON/NUMBER/NADV, NDAMSt NDAYS. NPD, NPER, NSECT t NT 1, NCHNG,
I NTP, NTHIN(15)» NPQ
C0MM0N/EVAP/CT3f CT4
COMMON/ALMNAC/FHIf DTSL, 0AY1
DIMENSION Al(2tII)t GOFGRAt 30)
REAL** LHA
MM « HAXT - MINT + 1
MDTH = MM
XHPD » NPD
T1 - 24.0/XNPD
DO 9 J » 1*MM
J1 « J - 1
TW(JI « MINT + J1
9 CONTINUE
DO 99 I « 1»NPD
TAI * TA(I)
TAC - 5.*
-------
EA ¦ EA/33.8639
80 BATA = Al(ltlCl) ~ A1(2»IC1)*EA
IF (IS6.NE.1) GO TO 90
85 WRITE(6 11000)IAV6, I, BATA, EA, RH, ES
WRITE(6 ,1010) W(I), AP(I), TA(I), TAW(I), CC
C ~~~»~»»#~•*~~*****************************************************
C * GENERATE ARRAY OF HEAT FLUX AS A FUNCTION OF WATER *
C ~ TEMPERATURE, FOR EACH DAILY TINE PERIOD *
C ******************************************************************
DO 96 J « 1, MM
TWC « 5.0»(TW(J) - 32.0)/9.0
HV « -0.5WTWC ~ 595.65
HV « 1.8*HV
TWC2 » TWC/2. «
NGG * TWC2 ~ 1
-------
XNGG « NGG - 1.
EW ¦ GOFGRA(NGG) + (TWC2-XNGG)*(GOFGRA(NGG+1)-GOFGRA(NGG ))
EW = EW/33.8639
CT1 « 0.97.
CT2 * 1.72E-09
OE « HV*CT3#W(I)«(EW - EA)
OH » HV*CT4*W
-------
13H OB, 9X, 3H QE, 9X, 3H OH, 9X, 3H EW« 9X, 3HTW//I
1030 FORMAT (1H , 9FL2.3)
1040 FORMAT (1H0//7H BETA*,13, 1H,, 12, 4H1 = F8.3/
1 7H GAMMA(tI3« 1H», 12, 4H) = F8.3)
1047 FORMAT I//10X,4HQ ,F7.3,4H (,F9.6,6H)T (,F9.7,5H)T**2)
1050 FORMAT {1H0//7H ALPHA(,I3, 1H,, 12, 4H) * F8.3/
1 7H BETA(,13, 1H,, 12, AH) = F8.3/
2 7H GAMMA{,13, 1H,, 12, 4H) = F8.3)
1060 FORMAT(IX,2F4.2,F6.1,F3.2)
DATA Al/0.740, 0.154, 0.750, 0.151, 0.761, 0.145, 0.770, 0.143,
10.781, 0.137, 0.791, 0.134, 0.800, 0.132, 0.810, 0.129, 0.827,
20.117, 0.845, 0.105, 0.868, 0.087/,
3G0FGRA/6.108, 7.055, 8.129, 9.347, 10.72, 12.27, 14.02, 15.98,
418.17, 20.63, 23.37, 26.43, 29.83, 33.61, 37.80, 42.43, 47.55,
553.20, 59.42, 66.26, 73.78, 82.02, 91.03, 100.89, 111.66, 123.40/
RETURN
ENO
Ln
O
-------
K°J SUBROUTINE CRVXZQUV)
C SUBROUTINE CRVXZQ IS A CURVE FITTING ROUTINE USING THE METHOD OF
C LEAST SQUARES.
COMMON/HEATBG/X(50) » Y(50), C<10), MOTH
REAL*8 A(ll,ll), Bill). P(20>
IV2 = IV*2
00 9 I = 1»IV2
PCI) = 0.0
DO 9 J = 1,MDTH
P(I) = PU) i- X(J)**I
9 CONTINUE
N - IV + 1
DO 19 I = 1,N
DO 19 J = 1»N
K » I + J - 2
IF (K) 15*15*10
10 A (I , J) = P < K )
GO TO 19
15 A(lfl) = MDTH
19 CONTINUE
Bfl) = 0.0
DO 29 J * I»MDTH
B(l> = B(l) 1- Y(J)
29 CONTINUE
DO 39 I * 2»N
B ( I> - 0.0
DO 39 J * 1fMDTH
Bfl) « B11> * Y(J)*X(J>**<1-1)
39 CONTINUE
NM1 ¦ N - I
00 89 R » 1fNMl
KP1 » K + 1
L * K
DO 49 I * KP1«N
AIK * ABS(A(I*K))
ALK - ABS(A(L»K))
IF (AIK - ALK) 49,49,45
45 L « I
49 CONTINUE
K2 ¦ K
-------
IF 60160150
50 DO 59 J ¦ K2 »N
TEMP = A (K » J )
A(K» J) = A ( L « J)
A(L,J) = TEMP
59 CONTINUE
TEMP = B(K )
BIKI = B(L)
B(L) = TEMP
60 00 89 I = KP1»N
FACTOR * A(I,K)/A(K,K)
A(I.K) = 0.0
00 69 J = KPltN
All,J) = All,J) - FACTOR*A(K,J)
69 CONTINUE
B(I) = B(I> - FACTOR*B(K)
89 CONTINUE
C(N) = B(N)/A(N,N)
1 « NM1
90 IP1 * I + I
SUM « 0.0
00 99 J * IPi,N
99 SUM * SUM -h A(I,J)*C
C(I> » (B(I) - SUM)/A(I , I )
1*1-1
IF (I) 100,100*90
100 RETURN
END
ui
ro
-------
(9) SUBROUTINE TWRITE
C SUBROUTINE TWRITE WRITES OUT PREDICTED INFORMATION AS A FUNCTION
C OF PARCEL NUMBER AND LOCATION.
COMMON/IDENT/ID(15)* IDIN<15), IDADV(15), 1DTP(15), IDCHNG(15)
COMMON/TEMPER/THETA<5,365)» THR(5,365), TADV<5,365)
COMMON/HOWLNG/TIMEI10,400)
COMMON/NAME/XCHNG C 5,40), XOUTt10,40)
COMMON/NUMBER/NADV, NDAKS, NDAYS, NPD, NPER, NSECT, NT1, NCHNG,
1 NTP, NTH IN(15)» NPQ
C0MM0N/EVAP/CT3, CT4
DIMENSION HOTPOCM 10,20)
READC5 ,1001) ((HOTPOO(I,J), J = 1,20), I - 1,7)
WRITElfe ,1002) <
-------
IF (II.GT.NTHINtIK)) GO TO 25
IF (IK.EQ.O) GO TO 25
WRITEC6 ,1030) l» I DAY» IHQUR, IOAYEL, IHOURE, THETA(J,L),
ITHR(IK »11), THR( 1,L>, L
DIFF « THETAtJ,L) ~ THR(IK»11 )
XMEAN » DIFF + XMEAN
STDV = DIFF**2 ~ STDV
NADD = NAOD + 1
GO TO 28
25 CONTINUE
WRITE(6 v10 AO) If I DAY ,1HOUR , IDAYEL » IHOURE t THETA(J.L), THR(1» L)
It I
28 CONTINUE
WRITEC6 ,1041)
WRITE(6 ,1050) CT3, CT4
IF (NAOD.EQ.O) GO TO 29
XMEAN = XMEAN/NADD
STDV = STDV/(NADD - 1)
STDV = SORT(STDV)
WRITE(6 ,1045) XMEAN, STDV
29 CONTINUE
1001 FORMAT (20A4)
1002 FORMAT (1H1,(/////11X, 20A4)>
1004 FORMAT (1H1, 10X, 20A4/11X, 20A4//)
1005 FORMAT (1H0, 10X, 20A4/11X, 20A4//)
1010 FORMAT (1H0, 2X, 105H
I /3Xf
22H—, 9X, 2H—, 15X, 2H—, 15X, 2H—, 14X, 2H—, 14X, 2H—, 14X,
32H—, 8X, 2H—/3X» 105H— — ARRIVAL TIME — TRAVEL TIME
4 — PREDICTED — OBSERVED — INITIAL — — /3X,
5105H— PARCEL TEMPERATURE -
6- TEMPERATURE — TEMPERATURE — PARCEL —/3X, 105H— NUMBER —
7 DAY - TIME — DAYS - HOURS ~ (FAHR.) — (FAHR.)
8 (FAHR.) — NUMBER — /3X, 2H—, 9X, 2H— 6X, 1H-, 8X, 2H—,
96X, 1H-, 8X , 2H—, 14X, 2H—, 14X, 2H—, 14X, 2H—, 8X, 2H—/3X,
A105H
)
1020 FORMAT <3X, 2H—, 2X, I3» 4X, 2H—, 2X, 3HDNR, IX, 1H— 8X, 2H—,
16X, 1H— 8X, 2H—, 14X, 2H—, 14X, 2H—, 14X, 2H— 8X , 2H—/3X,
2105H
-------
3 )
1030 FORMAT (3X, 4H-- , 13, 7H — , 13, 5H - , 14, 5H — , 13,
14H - , 14, 9H -- , F5* L, 11H — , F5.1, 11H
2 , F5.1, 9H — , 13, 5H —/, 3X, 105H
3
4 )
1040 FORMAT (3X, 4H— , 13, 7H — , 13, 5H - , 14, 5H — , 13,
14H ~ , 14, 9H — , F5* 1, 11H — , 5H , 11H
2- , F5~1» 9H — , 13, 5H —/3X, 105H
3
4 )
1041 FORMAT (1H0, 5X, 32HDNR - DIO NOT REACH THIS STATION /
112X, 25HDURING COMPUTATION PERIOD//)
1045 FORMAT (1H0//6X, 53HMEAN VALUE OF PREOICTED MINUS OBSERVED TEMPERA
1TURES -, F5.1//6X, 61HSTANDARD DEVIATION OF PREDICTED MINUS OBSERV
2ED TEMPERATURES -, F5,l//)
1050 FORMAT (1H0, 5X, 25HEVAPORATION COEFFICIENT -, 1PE10.2, IX, 23HIB.
1/MILE/FT.**2/IN. HG.//6X, 38HSENSIBLE HEAT CONDUCTION COEFFICIENT
2-, 1PE10.2, IX, 23HLB./MILE/FT.*#2/DEG. F.)
RETURN
END
-------
appendix d
-------
D. 1 SAMPLE DATA
1.1
1 <~ 24 24 4 36 2.0
1.2
001 397.100.0 382.000090.0160.0006 86.0A70.001776.0640.002600.0660.004420.0680.01
OP*0397®100.00382.005100.0700.006400.0810.008500.0860.0 10800 .0955 .012700 .0980.02
0010397.100*00382.014800.1050.016900.1300.018800.1700.021000.1095.023200.1110.03
0010397.100.00382.026000.1135.028200.1160.030800.1180.033000.1200.035300.1230.14
0020392.405.60380.000300.018 5.000700.0300.001700.0490.002700.0610.014000.0760.01
0020392.405.60380.005470.0840.007230.0930.009000.1000.011200.1075.013400.1100.02
0020392.405.60380.015600.1150.018000.1240.020600.1320.023300.1400.026000.1490.13
0030386.712.50380.005700.0880.007620.1070.009920.1225.012800.1275.015000.1330.01
0030386.712.50380.017200.1380.020000.1450.023000.1550.026100.1650.029700.1750.02
0030386.712.50380.033700.1850.033200.1940.037200.2040.041000.2140.045700.2240.13
0040382.119.60360.002300.0500.0039 60.0520.004200.0570.006200.0600.006900.0640.01
0040382.119.60360.008200.0680.010100.0710.011900.0850.013900.1000.015900.1150.02
0040382.119.60360.018000.1180.020500.1210.023000.1250.025500.1300.028500.1390.03
0040382.119.60360.031200.1470.031500.1580.034800.1670.037900.1760.041200.1850.14
0050377.425.80370.002470.0450.003780.0880.006450.1700.010020.1800.013630.1820.01
0050377.425.80370.017000.1860.020800.1890.024200.1930.028000.1960.032000.2000.02
0050377.425.80370.036700.2040.040500.2080.044700.2110.049000.2150.053800.2200.13
0060371.635.60360.004980.1230.007750.1470.010830.1600.014180.1730.017890.1960.01
0060371.635.60360.022600.4000.030000.4050.037900.4100.046100.4130.055500.4180.02
0060371.635.60360.063710.42 50.073200.4280.082000.4310.090700.4370.000000.0000.13
007 0364. 447.00350.008400.1460.011200.1510.014480.1590.017900.1630.021200.1695.01
0070364.447.00350.024400.1740.028200.1800.032000.1840.035700.1890.039200.1930.02
0070364.447.00350.043000.1990.047200.2040.051300.2090.055900.2140.060000.2195.13
0080358.354.40340.012500.0880.014300.0950.016200.1000.018300.1020.020500.1050.01
0080358.354.40340.022200.1090.024700.1105.027000.1150.029200.1190.031500.1220.02
0080358.354.40340.034000.1260.036500.1300.039000.1330.031500.1370.044500.1400.13
0090353.658.30340.006855.1240.009483.1388.012407.1536.015613.1657.019017.1748.01
0090353.658.30340.022605.1840.026397.1952.030413.2064.034652.2174.000000.0000.12
0100346.365.90334.008077.1416.011143.1656.014707.1908.018775.2160.023121.2186.01
0100346.365.90334.027 519.2212.031968.2237.036466.2261.041012.2289.045616.2319.02
0100346.365.90334.050288.2353.055024.2378.000000.0000.000000.0000.000000.0000.13
11 339.569.0 324. 6400. 850. 10400. 850. 14400. 850. 18400.1150. 22400.1450.00
0110339.569*00324.026426.1747.030411.2278.035163.2474.040307.2670.045759.2782.01
-------
1.2 (Cont.)
0110339.569.00324.051435,2894.057571.3218.064023.3234.070507.3250.077103.3346.02
0110339.569.00324.083891.3442.090888.3572.000000,0000.000000.0000.000000.0000.13
12 333.669.8 324. 15000.2200. 20000.2300. 25000.2400. 30000.2500. 35000.2600.00
0120333.669.80324.040073.2673.045451.272 3.050983.2809.056687.2895.062497.2915.01
0120333.669.80324.068347.2935.074243.2966.080217.3008.086275.3050.092763.3438.02
0120333.669.80324.100027.3826.108230.4320.000000.0000.000000.0000.000000.0000.13
13 329.470.1 324. 27700.3000. 31700.3000. 37700.3000. 43700.3000. 49700.3000.00
0130329.470.10324.055753.3024.061823.3046.067937.3068.074095.3090.080743.3448.01
0130329.470.10324.087 887.3696.095645.4180.104725.4900.115245.5620.126817.5952.02
0130329.470.10324.139053.6284.151915.6540.000000.0000.000000.0000.000000.0000.13
14 324.370.4 324. 37000.3250. 46000.3350. 55000.3450. 64000.3550. 73000.3650.00
0140324.370.40324.081700.3748.090347.4904.1002 43.4992.110315.5080.121079.5424.01
0140324.370.40324.132011.5508.143130.5630.154550.5790.166290.5950.000000.0000.12
15 324.070.4 324.109679.6700.111335.6800.113654.6900.115774.7100.115232.7200.01
0150324.070.40324.119679.7302.134961.7872.150829.7996.166945.8120.18 3229.8164.02
0150324.070.40324.199601.8208.216061.8252.232609.8296.249245.8340.000000.0000 ..13
0160319.570.50324.268849.8 581.286442.8999.304808.9367.323910.9735.351738.9999.01
0160319.570.50324.268849.8 581.286442.8999.304808.9367.323910.9735.351738.9999.02
0160319.570.50324.380222.9999.409473.9999.439977.9999.471785.9999.000000.0000.13
17 311.870.5 324.187563.5150.197662.5160.207334.5170.217882.5200.228101.5210.01
0170311.870.50324.23788 4.52 51.248404.5268.258956.52 84.269540.5300.280168.5328.02
0170311.870.50324.2908 52.5356.301592.5384.312388.5412.32 3240.5440.000000.0000.13
18 303.570.6 324.296501.6055.30 5551.6072.309886.6082.318524.6102.326441.6130.01
0180303.570.60324.339738.6162.352092.6184.364470.6192.376862.6200.389535.6343.02
0180303.570.60324.402234.6356.414961.6373.427728.6394.440537.6415.000000.0000.13
19 292.370.7 324.356773.6025.361228.6100.375212.6150.389520.6160.392110;6200.01
0190292.370.70324.401801.6288.414924.6828.428613.6860.442367.6893.456185.6925.02
0190292.370.70324.470070.6958.484016.6983.497999.7000.000000.0000.000000.0000.13
0200292.000.00240.009000.0670.010500.0750.012000.0820.013800.0950.016000.1180.01
0200292.000.00240.018000.1440.021700.1710.025000.1940.029000.2160.033000.2360.02
0200292.000.00240.037000.2520.043000.2780.049000.2990.055000.3140.061500.3270.13
0210283.015.70230.014500.1290.018000.1570.022000.1860.026000.2130.030000.2400.01
0210283.015.70230.034000.2620.039000.2690.044500.2 750.050000.2810.055500.2840.02
0210283.015.70230.061000.2880.067000.2980.072500.3000.078500.3050.084500.3110.13
0220273.526.00220.018 500.1490.022000.1650.026000.1830.029500.1940.033000.2060.01
0220273.526.00220.037000.2190.044000.2650.050500.3100.058000.3630.065000.4200.02
0220273.526.00220.071000.4640.083500.5290.095000.5750.107000.6300.118000.6700.13
230262.244.20200.019000.2020.023200.2170.027800.2270.032200*2350.036500.2400 .01
0230262.244.20200.042000.2470.046000.2470.051500.2 520.056500.2520.061500.2520.02
0230262.244.20200.066500.2530.071500.2570.077000.2590.082500.2640.087500.2650.03
-------
1.2 (Cont.)
0230262,244.20200.093000.27BO.098000.2730.103500.2730.108500.2730.114000.2740.14
240253.954.80190.009000.1285.011500.1400.014500.1560.018200.I860.022500.2300.01
0240253.954.80190.027000.2810.033000.2870.039000.3000.045000.3060.051000.3080.02
0240253.954.80190.057000.3170.063500.3170.070000.3180.076000.3220.082500.3240.03
0240253.954.80190.088 500.3240.095500.3340.102000.3420.109000.3520.116000.3600.14
0250243.367.10180.024000.1400.027500.1530.030500.1600.033500.1690.037000.1790.01
0250243.367.10180.040000.1860.044000.1960.048000.2 030.052000.2110.056000.2190.02
0250243.367.10180.060000.2260.064500.2300.069000.2360.073500.2400.078000.2440.13
02602 32.385.80160.011000.0910.013200.0960.015500.1240.018000.1290.020300.1360.01
02602 32.385.80160.022700.1448.026100.1530.029900.1710.033300.1860.036800.2030.02
02602 32.385.80160.040500.2910.046800.3030.053 000.3236.059500.3248.065500.3356.03
0260232.385.80160.072000.4180.000000.0000.000000.0000.000000.0000.000000.0000.14
0270224.393.60150.008300.0980.010200.1230.012300.1430.014500.1730.016800.1760.01
0270224.393.60150.019000.1820.023000.1860.026500.1870.030300.1900.034000.1920.02
0270224.393.60150.037800.1940.042100.2040.046800.2150.051000.2250.055500.2360.03
0270224.393.60150.060000.2460.065000.2500.070000.2 550.075000.2600.080100.2640.04
0270224.393.60150.085000.2690.000000.0000.000000.0000.000000.0000.000000.0000.15
0280218.696.60150.024500.1960.028900.2000.033000.2060.037300.2170.041500.2190.01
0280218.696.60150.045700.2260.050500.2310.055300.2360.060000.2410.065000.2460.02
0280218.696.60150.069700.2500.075500.2630.081500.2780.087300.2910.093000.3050.03
0280218.696.60150.099000.3210.106000.3490.113000.3520.120000.3550.127500.3580.04
0280218.696.60150.134000.3610.000000.0000.000000.0000.000000.0000.000000.0000.15
0290210.198.30150.065000.3200.071000.3210.077500.3220.084000.3230.090000.3240.01
0290210.198.30150.097000.3250.103500.3260.110000.3270.116000.3280.126000.3290.02
0290210.198.30150.129000.3300.000000.0000.000000.0000.000000.0000.000000.0000.13
0300199.398.90150.150000.4280.160000.4460.170000.4490.181000.4530.192000.4560.01
0300199.398.90150.202500.4590.212000.4590.221000.4590.230000.4600.239000.4600.12
0310191.498.9 150.747939.5106.758151.5106.768363.5106.778576.5106.788788.5106.01
0310191.498.9 150.799000.5106.809213.5106.819425.5106.000000.0000.000000.0000.12
0320191.100.00072.037433.1554.040541.1554.043649.1554.046757.1554. 48000.1554.01
0320191.100.00072.052973.1554.056081.1554.059190.1554.000000.0000.000000.0000.12
33 180.1 1.0 62.100231.2600.102267.2650.103442.2675.104330.2700.105001.2720.01
0330180.101.00062.105835.2760.11163 5.2900.117435.2900.123235.2900.129035.2900.02
0330180.101.00062.134835.2900.140635.2900.146436.2900.000000.0000.000000.0000.13
34 164.6 1.5 62.119606.5080.119606.5080.119606.5080.119606.5080.129001.5080.01
0340164.601.50062.139175.5080.149335.5080.159495.5080.169655.5080.179815.5080.02
0340164.601.50062.189975.5080.200135.5080.210295.5080.000000.0000.000000.0000.13
35 153.8 1.8 62.171829.6410.171829.6410.171829.6410.171829.6410.184613.6410.00
0350153.801.80062.197407.6410.210227.6410.223047.6410.235867.6410.248687.6410.02
0350153.801.80062.261508.6410.274328.6410.287148.6410.000000.0000.000000.0000.13
-------
1.2 (Cont.)
0360145.502.60062.045277.0956.047189.0956.049101.0956.051013.0956.052926.0956.01
0360145.502.60062.045277.0956.047189.0956.049101.0956.051013.0956.052926.0956.02
0360145.502.60062.054838.0956.056750.0956.058662.0956.000000.000 13
1.3
01010397.16708200408.2060079.9120080.5180102.7240123.6
01010397.16708210410.506008 5.9120130.0180143.3240146.4
01010397.16708220409.2060071.2120110.7180117.4240139.2
01010397.16708230409.5060067.3120114.9180143.9240134.0
01010397.16708240410.2060070.7120140.5180151.5240133.9
01010397.16708250410.1060073.8120129.0180151.9240133.7
01010397.16708260407.3060056.8120090.5180110.1240094.3
01010397.16708270406.2060045.1120078.9180105.5240080.9
01010397.16708280410.0060066.8120127.1180146.3240148.1
01010397.16708290410.4060081.6120127.3180145.9240147.1
01010397.16708300409.9060076.7120125.7180146.9240131.3
01010397.16708310409.3060054.0120119.5180154.8240131.1
01010397.16709010406.8060052.0120099.6180100.4240086.4
01010397.16709020403.4060046.1120046.8180046.6240059.3
01010397.16709030404.5060049.3120069.7180064.4240050.0
01010397.16709040402.5060037.2120041.4180040.2240039.8
01010397.16709050406.9060039.3120080.6180101.5240117.2
01010397.16709060407.6060052.4120094.6180109.2240109.9
01010397.16709070408.3060044.4120117.0180135.0240110.6
01010397.16709080408.7060058.2120105.1180130.4240125.1
01010397.16709090407.3060069.6120082.0180097.4240096.5
01010397.16709100403.5060041.0120045.4180048.7240053.8
01010397.16709110407.2060040.0120089.8180111.1240104.0
01010397.16709120407.9060052.1120061.6180050.2240059.6
2200292.06708200256.7060127.8120127.3180126.1240130.3
02190292.06708210258.0060139.7120173.9180157.1240129.7
02190292.06706220258.2060130.4120152.9180176.7240151.2
02190292.06708230256.1060120.6120120.8180121.3240119.0
02190292.06708240255.3060108.0120107.1180106.7240108.7 ^
02190292.06708250255.3060107.2120107.0180107.2240113.0 <=
02190292.06708260256.3060137.2120137.7180114.5240111.3
-------
1.3 (Cont.)
02190292,06708270255.3060110.9120110*2180108,4240109,5
02190292.06708280256.5060108.1120124.4180139.8240138.0
02190292.06708290258.306013B.8120154.il80164.8240164.6
02190292.06708300258.5060140.3120156.4180165.3240161.8
02190292.06708310256.0060117.5120116.2180117.5240117.6
02190292.06709010255.8060116.5120116.8180116.9240108.6
02190292.06709020253.6060087.1120086.0180087.3240086.5
02190292.06709030253.6060087.6120086.0180086.7240086.3
02190292.06709040253.7060085.8120086.1180086.3240086.4
02190292.06709050253.7060086.4120086.5180087.3240087.2
02190292.06709060253.9060086.7120093.4180086.9240086.9
02190292.06709070255.1060071.4120108.3180120.0240111.2
02190292.06709080255.6060088.8120113.8180120.8240121.7
02190292.06709090255.7060115.8120121.4180114.1240098.6
02190292.06709100255.0060112.7120108.7180100.5240099.6
02190292.06709110254.5060088.5120111.1180100.2240097.8
02190292.06709120255.3060103.1120112.8180104.7240114.7
03320191.06708200074.9060094.4120129.4180141.3240140.7
03310191.46708210076.4060136.8120187.4180159.0240155.8
03310191.46708220076.3060140.5120184.4180163*2240140.2
03310191.46708230075.4060114.0120180.9180142.3240128.7
03310191.46708240073.2060072.4120154.1180118.9240111.2
03310191.46708250074.1060090.0120128.5180108.8240120.1
03310191.46708260076.2060094.8120116.6180160.3240181.7
03310191.46708270074.8060087.6120112.1180135.8240140.6
03310191.46708280075.8060078.4120158.4180147.6240130.4
03310191.46708290076.3060092.3120160.9180162.9240159.5
03310191*46708300076.3060088.0120177.9180183.4240179.2
03310191*46708310076*6060116.5120157.0180169.9240157.2
03310191*46709010075*8060081*7120141*3180142.9240113.4
03310191.46709020075*5060091*2120123.5180108.4240106.6
03310191.46709030074.8060082.3120095.3180104.5240096.7
03310191*46709040075.1060077.1120094.4180100.0240097.4
03310191*46709050075*0060073*6120101.0180109.1240100.2
03310191*46709060074*8060074.2120107.1180108.6240114.9
03310191*46709070074*8060050*7120098.4180105.8240097.1
03310191*46709080075*4060080.9120114.6180120.8240119.1
03310191*46709090075.1060090.3120122.1180132.22 40122.0
03310191*46709100075*3060119.4120129.0180139.1240133.5
03310191.46709110074*6060081*8120111.1180112*5240111.8
-------
1.3 (Cont.)
03310191.467 09120074.8060081*1120121*9180107•6240129*0
1140324* 36708200338 * 5060012 *9120024* 6180022 * 4240012 *8
1140324*36708210338.0060012*7120024.418002 5.4240013*9
1140324*36708220338.1060013.3120024.9180025.4240014.4
1140324*36708230336.7060012.7120012.7180012.6240012.6
1140324.36708240338.3060012*6120015.7180027.9240021.3
1140324.36708250339.7060012.8120018.4180023.92 40013.9
1140324.36708260340.3060012.9120013.0180013.1240013.6
1140324.36708270340.0060013.1120013.4180013.9240020.1
1140324.36708280340.0060012.5120024.7180028.7240017.5
1140324.36708290340.0060008.3120024.7180028.6240019.5
1140324*36708300339.6060008*3120023.0180026.3240021.3
1140324.36708310339.5060008.1120023.3180025.6240012*5
1140324.06709010340.4060012.5120008.5180023.9240026.2
1140324*06709020340.4060018.1120008.2180017*1240025.2
1140324.06709030340.1060011.7120008.2180020.6240026,8
1140324.06709040339.0060022.4120008.1180013.0240013.2
1140324.06709050339.0060014.5120016.9180023.2240025.5
1140324.06709060339.4060022.1120010.3180026*8240029*5
1140324*06709070340.0060016.2120008.3180024.1240025*6
1140324.06709080340.5060014.8120008.4180023.7240026.3
1140324.06709090341.0060014*5120008.2180022.7240025.6
1140324.06709100340.8060023.4120008.5180013.0240026*0
1140324.06709110340.5060021.1120013.5180028*8240038*1
114032 4 . 067 09120 340 • 00 60017.0120011.518 002 5 . 42-4002 5.3
-------
H. 1
24 10 24 75 50
II. 2
46.0 232
II.3
2 1 1 I 1 2 2
II.4
1.09E-02 3.71E-06
II.5
<16X# FS.Ot 5X, F2.0, F3.0, 8Xt F4.1, F4.1, 4X, F5.2)
II. 6
196708200100 000
196706200200 000
196706200300 000
196708200400 000
196708200500 000
0016,029285.878.456.0
0020.029282.778.758.0
0020.029281.477.858.0
0019.029279.475.057.0
0414.029280.069.552.0
29.2022.0
29.2026.0
29.2029.0
29.2032.0
29.2028.0
-------
II.6 (Cont.)
196708200600 004
196708200700 004
196708200800 007
196708200900 037
196708201000 043
196708201100 066
196708201200 070
196708201300 067
196708201400 059
196708201500 056
196708201600 030
196708201700 023
196708201800 008
196708201900 002
196708202000 000
196708202100 000
196708202200 000
196708202300 000
196708202400 000
196708210100 000
196708210200 000
196708210300 000
196708210400 000
196708210500 000
196708210600 004
196708210700 004
196708210800 007
196708210900 037
196708211000 043
196708211100 066
196708211200 070
196708211300 067
196708211400 059
196708211500 055
196708211600 030
196708211700 023
196708211800 008
196708211900 002
196708212000 000
196708212100 000
06 6.027079.673,154.0
09 5.029278.474.655.0
09 8.029277.777.757.0
04 5.027080.085.061.0
02 4.000082.887.061.0
03 3.009087.391.262.0
01 2.009090.894.764.0
01 2.006893.797.765.0
09 2.015896.999.965.0
09 3.015898.099.965.0
09 5.022598.399.965.0
0919.031593.996.162.0
1028.031588.989.962.0
1038.031583.885.060.0
1039.029281.882.859.0
1035.029279.380.361.0
1034.029278.979.960.0
0628.029276.177.059.0
0424.029274.073.958.0
0021.029272.671.856.0
0018.029271.869.455.0
0015.029270.667.155.0
0013.029269.666.155.0
0015.029269.766.057.0
0220.029268.069.158.0
0011.029271.472.758.0
01 7.020273.476.460.0
0010.031576.683.262.0
0016.031576.283.062.0
0015.031578.284.562.0
0515.031580.888.063.0
0617.031582.389.762.0
0722.029283.690.162.0
0423.031585.591.761.0
0017.029286.492*261.0
0015.031586.090.562.0
0018*031584.486.861.0
0022.031582.182.059.0
0024.031579.979.158.0
0024.031577.976.758.0
29.2025.0
29.2025.0
29.2026.0
29.2022.0
29.2020.0
29.2018.0
29.2016.0
29.2014.0
29.2013.0
29.2012.0
29.2011.0
29.2012.0
29.2017.0
29.2020.0
29.2022.0
29.2031.0
29.2030.0
29.2033.0
29.2036.0
29.2036.0
29.2040.0
29.2045.0
29.2048.0
29.2057.0
29.2053.0
29.2042.0
29.2039.0
29.2029.0
29.2030.0
29.2028.0
29.2023.0
29.2019.0
29.2017.0
29.2014.0
29.2014.0
29.2018.0
29.2021.0
29.2024*0
29.2026.0
29.2031.0
-------
II.6 (Cont.)
196706212200
000
0024
.031577.
376.
059
.0
196708212300
000
0030
.029275.
174.
058
.0
196708212400
000
0028
.031573.
573.
058
.0
196708220100
000
0025
.029271.
871.
758
.0
196708220200
000
0018
.029270.
871.
157
.0
196708220300
000
00;
LO
.027070.
.364.
,454
.0
196708220400
000
00
2
.024871.
863.
754
.0
196708220500
000
00
6
.006870.
.262.
,353
.0
196708220600
004
00
6
.004570.
,165.
,955
.0
196708220700
017
00
5
.029268.
,071.
,158
.0
196708220800
032
00
4
.031569.
.373.
,059
.0
196708220900
047
00
4
.033873.
,778.
,160
.0
196708221000
058
00
3
.000075.
.780.
.861
.0
196708221100
066
00
3
.004579.
.384.
,361
.0
196708221200
070
00
3
.002282.
.989.
,163
.0
196708221300
070
00
2
•002284.
.790.
,163
.0
196708221400
064
00
4
.002286.
.691.
,564
.0
196708221500
055
00
3
.006890.
,095.
565
.0
196708221600
043
00
3
.013590.
195.
064
.0
196708221700
030
00
4
.013591.
095.
164
.0
196708221800
014
01
7
.011289.
691.
462
.0
196708221900
002
001
LO
.011287.
484.
660
.0
196708222000
000
00
7
.013587.
380.
759
.0
196708222100
000
0014
.013584.
279.
158
.0
196708222200
000
0017
.031583.
479.
962
.0
196708222300
000
0020
.029278.
176.
560
.0
196708222400
000
0023
.029280.
176.
760
.0
196708230100
000
0022,
.029275.
675.
060
.0
196708230200
000
0017
.029275.
474.
359
.0
196708230300
000
0017,
.029274.
472.
859
.0
196708230400
000
001
:5,
.029273.
970.
156
.0
196708230500
000
0016,
.029273.
068.
857,
.0
196708230600
003
0014,
.029273.
570.
658,
.0
196708230700
016
0010,
.029274.
377.
562,
.0
196708230800
031
0017,
.029275.
179.
863,
.0
196708230900
046
0018 4
>029277.
383.
463,
.0
196708231000
098
001
4,
.031578.
085.
163,
.0
196708231100
065
0011.
>029281.
388.
364,
.0
196708231200
069
0010.
>029284.
590.
764,
.0
196706231300
068
00
8.
>031585.
592.
664,
>0
29.2034.0
29.2040.0
29.2042.0
29.2044.0
29.2044.0
29.2049.0
29.2052.0
29.2054.0
29.2048.0
29.2043.0
29.2042.0
29.2035.0
29.2029.0
29.2025.0
29.2023.0
29.2021.0
29.2020.0
29.2017.0
29.2016.0
29.2015.0
29.2017.0
29.2021.0
29.2024.0
29.2027.0
29.2034.0
29.2038.0
29.2038.0
29.2040.0
29.2040.0
29.2043.0
29.2042.0
29.2050.0
29.2045.0
29.2041.0
29.2038.0
29.2031.0
29.2029.0
29.2024.0
29.2020.0
29.2018.0
-------
II.6 (Cont.)
196708231400 064
196708231500 055
196708231600 043
196708231700 030
196708231800 014
196708231900 002
196708232000 000
196708232100 000
196708232200 000
196708232300 000
196708232400 000
196708240100 000
196708240200 000
196708240300 000
196708240400 000
196708240500 000
196708240600 004
196708240700 016
196708240800 031
196708240900 047
196708241000 059
196708241100 067
196708241200 071
196708241300 070
196708241400 066
196708241500 056
196708241600 044
196708241700 029
196708241800 014
196708241900 002
196708242000 000
196708242100 000
196708242200 000
196708242300 000
196708242400 000
196708250100 000
196708250200 000
196708250300 000
196708250400 000
196708250500 000
0011.029286.392.763.0
0019.029285.491.161.0
002 5.031584.289.660.0
0028.031582.586.458.0
0031.031579.681.455.0
0027.031573.274.154.0
0031.031570.471.153.0
0036.031568.269.655.0
0032.031567.268.254.0
0022.029266.467.254.0
0022.029266.666.954.0
0025.029266.465.953.0
0019.027065.665.252.0
0016.027065.161.951.0
0015.029264.459.049.0
0718.029262.361.049.0
0618.029263.662.051.0
0715.031563.366.853.0
0311.031565.870.153.0
01 4.033868.872.954.0
00 4.004569.874.553.0
00 3.004572.477.154.0
00 3.024874.981.056.0
00 4.031576.979.055.0
00 4.000078.783.756.0
00 4.033879.684.056.0
00 4.004581.386.057.0
00 2.002282.084.956.0
00 3.009081.283.656.0
0010.013 578.377.955.0
0014.015877.971.951.0
0010.015878.167.550.0
00 5.029276.667.550.0
0016.029275.265.248.0
0019.029279.067.850.0
0020.031573.365.751.0
0020.031572.466.052.0
0020.031570.862.350.0
0019.031570.264.851.0
0016.031569.462.451.0
29.2017.0
29.2015.0
29.2014.0
29.2014.0
29.2013.0
29.2026.0
29.2028.0
29.2037.0
29.2038.0
29.2042.0
29.2041.0
29.2041.0
29.2040.0
29.2045.0
29.2050.0
29.2043.0
29.2044.0
29.2037.0
29.2030.0
29.2025.0
29.2021.0
29.2019.0
29.2017.0
29.2016.0
29.2013.0
29.2013.0
29.2013.0
29.2012.0
29.2012.0
29.2017.0
29.2020.0
29.2022.0
29.2022.0
29.2024.0
29.2024.0
29.2035.0
29.2036.0
29.2041.0
29.2038.0
29.2043.0
-------
II.6 (Cont.)
196708250600
003
0012,
.033869,
.265.
352.
,0
196708250700
016
0013.031569,
.470.
454.0
196708250800
032
00
9
.031571,
.074.
855.
,0
196708250900
046
00
8
.033872
.877.
855.
>0
196708251000
058
00
9
.002274
.279.
855.
~ 0
196708251100
065
0011
.002277
.183.
056.
>0
196708251200
070
0011
.004580
.185.
257,
.0
196708251300
069
001
L0
.004581
.687.
859,
>0
196708251400
064
0010
.004582
.687.
258.
.0
196708251500
054
00)
LI
.002283
.789.
960.
.0
196708251600
043
0011
.002285
.291.
060,
.0
196708251700
029
00
9
.002285
.288.
659,
.0
196708251800
013
0011
•000084
.486.
558,
.0
196708251900
002
oo;
12
.000083
.178.
854,
.0
196708252000
000
0012
.000083
.072.
952,
.0
196708252100
000
oo:
LI
.033881
.668.
750,
.0
196708252200
000
0010
.033881
.668.
850,
.0
196708252300
000
oo:
LI
.031580
.768.
250.
.0
196708252400
000
0012
.031579
.067.
850,
.0
196708260100
000
0011
.033878
.265.
749,
.0
196708260200
000
0311
.031577
.567.
049,
.0
196708260300
000
0112
.031576
.367,
650,
,0
196708260400
000
0014
.029276
.065.
549,
.0
196708260500
000
oo:
L3
.031573
• 664.
549,
>0
196708260600
004
01
8
.031572
.766.
450,
.0
196708260700
015
04
9
.031571
.770.
152,
.0
196708260800
031
06
9
.031572
.176.
154,
.0
196708260900
042
09
6
.033874
.778.
255,
.0
196708261000
041
09
5
.033876
.881.
957,
.0
196708261100
064
10
6
.033879
.985.
058,
.0
196708261200
054
10
3
•024882
.585.
057,
.0
196708261300
030
10
1
•006883
.485.
357.
,0
196708261400
017
10
1
•009084
.387.
158,
.0
196708261500
020
10
5
.013585
.087.
859.
>0
196708261600
022
10
5
•013584
.888.
660,
>0
196708261700
023
0812
•013585
.888.
859.
~ 0
196708261800
010
10
7
•015686
.287.
559.
>0
196708261900
001
10
9
•022583
.782.
856.
~ 0
196708262000
000
10
8
•022583
.280.
956.
>0
196708262100
000
10
4
•018082
.478.
655.
>0
29.2041.0
29.2033.0
29.2023.0
29.2018.0
29.2017.0
29.2015.0
29.2014.0
29.2014.0
29.2013.0
29.2013.0
29.2013.0
29.2013.0
29.2013.0
29.2015.0
29.2018.0
29.2021.0
29.2022.0
29.2022.0
29.2024.0
29.2027.0
29.2023.0
29.2024.0
29.2024.0
29.2030.0
29.2030.0
29.2026.0
29.2021.0
29.2019.0
29.2018.0
29.2016.0
29.2014.0
29.2014.0
29.2014.0
29.2014.0
29.2014.0
29.2013.0
29.2014.0
29.2015.0
29.2016.0
29.2017.0
-------
II.6 (Cont.)
196708262200
000
101
2,
.020282.
678.
455,
.0
196708262300
000
101
.5.
022583.
281.
256.
,0
196708262400
000
10]
.2.
.029282.
777.
755,
.0
196708270100
000
10
9.
.027082.
479.
257.
,0
196708270200
000
1012.
.027080.
777.
858.
.0
196708270300
000
1010.
.027080.
079.
560.
.0
196708270400
000
10
8.
.022580.
378.
859 ,
.0
196708270500
000
1012.
.022579.
374.
558.
.0
196708270600
001
10
6.
.027078.
875.
457,
.0
196708270700
005
10
5.
.029278.
977.
058.
.0
196708270800
010
10
5.
.024878.
379.
358,
>0
196708270900
017
09
2.004578.
281.
059,
,0
196708271000
034
09
1.004580.
282.
360.
.0
196708271100
052
07
1.
022584.
288.
562.
.0
196708271200
071
06
4.
.022587.
493.
965,
.0
196708271300
068
07
5.024888.
894.
065.
.0
196708271400
067
05
5.
.004590.
096.
666 <
.0
196708271500
035
10
3,
~ 000089.
693.
664,
.0
196708271600
012
10
7.
.031589.
293.
064.0
196708271700
Oil
10
8.
>033868.
891.
663,
.0
196708271800
010
10
7,
>029288.
991.
463.0
196708271900
002
05
4,
.004587.
584.
861,
.0
196708272000
000
00
3.009087.
181.
860
.0
196708272100
000
00
4.013586.074.
055.0
196708272200
000
00
4,
.013585.
873.
855,
.0
196708272300
000
00
2,
.024884.
374.
255.0
196708272400
000
00
3,
.027083.
870.
354.0
196708260100
000
00
6«
>033880.
468.
153,
.0
196708280200
000
00
8.033879.
069.
054.0
196708280300
000
0011.031578.
167.
554.0
196708280400
000
0015.029276.
466.
754.0
196708280500
000
0017,
.029272.
864.
352,
.0
196708280600
002
0016.029271.
966.
354.0
196708280700
013
0115,
.029271.
372.
056.0
196708280800
029
0214.031573.
377.
359,
.0
196708280900
041
0714,
.031575.
881.
260.0
196708281000
040
0810
.031577.
882.
061.0
196708281100
061
09
7,
.033881.
186.
462.0
196708281200
066
08
6.033884.
888.
963.0
196708281300
062
08
4,
.002287.
493.
265.0
29.2018.0
29.2017.0
29.2020.0
29.2024.0
29.2027.0
29.2028.0
29.2028.0
29.2035.0
29.2030.0
29.2029.0
29.2027.0
29.2026.0
29.2026.0
29.2021.0
29.2019.0
29.2018.0
29.2017.0
29.2018.0
29.2018.0
29.2019.0
29.2019.0
29.2023.0
29.2025.0
29.2027.0
29.2027.0
29.2028.0
29.2032.0
29.2034.0
29.2037.0
29.2039.0
29.2040.0
29.2041.0
29.2044.0
29.2035.0
29.2032.0
29.2028.0
29.2028.0
29.2025.0
29.2023.0
29.2020.0
-------
11.6
(Cont.)
196708281400 054
196708281500 052
196708281600 032
196708281700 022
196708281800 012
196708281900 001
196708282000 000
196708282100 000
196708282200 000
196708282300 000
196708282400 000
196708290100 000
196708290200 000
196708290300 000
196708290400 000
196708290500 000
196708290600 002
196708290700 013
196708290800 026
196708290900 043
196708291000 055
196708291100 062
196708291200 056
196708291300 046
196708291400 056
196708291500 052
196708291600 038
196708291700 025
196708291800 010
196708291900 001
196708292000 000
196708292100 000
196708292200 000
196708292300 000
196708292400 000
196708300100 000
196708300200 000
196708300300 000
196708300400 000
196708300500 000
08 5,002290.094.465.0
08 5.004591.695.165.0
10 6.004592.696.665.0
09 9.004592.294.264.0
09 8.002291.692.563.0
1011.002290.085.460.0
1011.000090.880.058.0
10 9.000088.178.458.0
1010.031587.879.958.0
10 8.000086.076.257.0
10 6.000084.475.557.0
10 5.033884.276.358.0
1011.031584.579.359.0
1013.031580.975.2 57.0
0013.031580.674.057.0
0015.031579.674.157.0
0715.031579.175.058.0
0912.031577.579.359.0
09 8.033878.882.560.0
09 7.033881.186.362.0
09 7.033882.987.963.0
09 8.000086.190.664.0
10 9.000090.194.966.0
0911.002292.096.266.0
0910.002294.499.967.0
0911.002295.899.967.0
0911.002296.899.967.0
0612.002296.699.966.0
0614.002295.696.464.0
0414.000094.888.161.0
0515.000094.682.959.0
0215.002291.280.958.0
0012.002290.082.258.0
00 9.002287.177.356.0
00 5.004586.576.555.0
00 4.004586.575.055.0
00 8.031586.573.454.0
0011.031582.874.255.0
0011.033882.475.055.0
0212.031579.073.756.0
29.2018.0
29.2018.0
29.2017.0
29.2017.0
29.2017.0
29.2021.0
29.2024.0
29.2025.0
29.2025.0
29.2030.0
29.2031.0
29.2030.0
29.2028.0
29.2032.0
29.2033.0
29.2034.0
29.2034.0
29.2029.0
29.2026.0
29.2024.0
29.2023.0
29.2021.0
29.2020.0
29.2019.0
29.2017.0
29.2016.0
29.2016.0
29.2015.0
29.2016.0
29.2019.0
29.2021.0
29.2022.0
29.2022.0
29.2024.0
29.2024.0
29.2024.0
29.2026.0
29.2027.0
29.2026.0
29.2029.0
-------
II.6 (Cont.)
196708300600
002
196708300700
Oil
196708300800
028
196708300900
041
196708301000
053
196708301100
060
196708301200
062
196708301300
061
196708301400
058
196708301500
049
196708301600
039
196708301700
025
196708301800
010
196708301900
001
196708302000
000
196708302100
000
196708302200
000
196708302300
000
196708302400
000
19670831010000000
196708310200
00
196708310300
00
196708310400
00
196708310500
00
196708310600
02
196708310700
13
196708310800
30
196708310900
40
196708311000
52
196708311100
60
196708311200
64
196708311300
62
196708311400
56
196708311500
35
196708311600
39
196708311700
28
196708311800
11
196708311900
01
196708312000
00
196708312100
00
OA 8.000077•87A•056.0
0611.031577.579.158.0
0710.031580.083.860.0
06 8.033883.089.062.0
04 6.000084.189.463.0
00 7.002287.992.964.0
00 7.002291.996.064.0
00 8.002295.599.968.0
00 8.002298.099.968.0
00 6.006899.399.968.0
00 8.006899.999.967.0
00 6.006899.999.967.0
00 8.004599.499.966.0
0015.004 597.289.361.0
0016.004593.887.161.0
0013.006890.583.159.0
00 5.004589.983.759.0
00 2.031589.181.358.0
00 2.031587.279.858.0
0009.033 787.377.858.0
0010.031584.576.256.0
0013.031584.275.856.0
0014.0292 84.275.856.0
0214.029282.874.2 56.0
0211.031580.774.356.0
0312.031581.180.559.0
0309.031580.984.860.0
0408.031582.588.362.0
0108.031584.289.962.0
0006.029287.893.263.0
0003.031591.195.264.0
0003.002 393.398.065.0
0306.004596.8101.66.0
0605.018098.0103.67.0
0705.018098.3103.67.0
0409.022 599.3103.66.0
061 .022598.298.964.0
0512.022 596.589.059.0
0415.024793.485.359.0
0417.024788.384.061.0
29.2030.0
29.2026.0
29.2022.0
29.2020.0
29.2020.0
29.2018.0
29.2015.0
29.2016.0
29.2Q15.0
29.2013.0
29.2013.0
29.2013.0
29.2014.0
29.2017.0
29.2019.0
29.2021.0
29.2020.0
29.2022.0
29.2024.0
29.2027.0
29.2027.0
29.2027.0
29.2026.0
29.2029.0
29.2031.0
29.2026.0
29.2022.0
29.2020.0
29.2018.0
29.2017.0
29.2016.0
29.2015.0
29.2014.0
29.2012.0
29.2013.0
29.2012.0
29.2011.0
29.2014.0
29.2018.0
29.2023.0
-------
II.6 (Cont.)
196708312200 00
0418
.029286.685
.264.
.0
196708312300 00
0418
.027086.881
.963,
.0
196708312400 00
0417
.0292 84.979
.462.
.0
19670901010000000
0616
.0
75
.560.
,0
19670901020000000
0610
.0
72
.958.
.0
19670901030000000
0403
.0
70
.356.
.0
19670901040000000
0402
.0
66
.554.
.0
19670901050000000
0200
.0
64
.552.
.0
19670901060000002
0504
.0
66
.855,
,0
19670901070000012
1004
.0
70
.257.
.0
19670901080000018
1011
.0
73
.958,
.0
19670901090000032
1008
.0
86
.761.
.0
19670901100000048
0514
.0
89
.661,
.0
19670901110000058
0820
.0
93
.263.
,0
19670901120000064
0617
.0
94
.764.
.0
19670901130000064
0015
.0
95
.865,
,0
19670901140000060
0620
.0
95
.262,
,0
19670901150000040
0825
.0
93
.063,
.0
19670901160000030
0826
.0
93
.163,
.0
19670901170000022
0931
.0
91
.064,
.0
19670901180000007
0933
.0
83
.863.
.0
19670901190000001
0826
.0
82
.062,
.0
19670901200000000
0727
.0
79
.660,
.0
19670901210000000
0517
.0
77
.259,
.0
19670901220000000
0420
.0
76
.458,
.0
19670901230000000
0227
.0
73
.658,
.0
19670901240000000
0232
.0
72
.158.
.0
19670902010000000
0128
.0
71
.658,
.0
19670902020000000
0323
.0
69
.459.
.0
19670902030000000
0415
.0
67
.757,
.0
19670902040000000
0417
.0
67
.256.
.0
19670902050000000
0317
.0
65
.156.
.0
19670902060000002
0217
.0
67
.958.
.0
19670902070000014
0013
.0
70
.058.
.0
19670902080000030
0010
.0
72
.660.
.0
19670902090000031
0006
.0
76
.061.
.0
19670902100000051
0006
.0
75
.060,
.0
19670902110000060
0103
.0
80
.061,
,0
19670902120000066
0608
.0
81
.663,
.0
19670902130000066
0810
.0
84
.463,
>0
29.2031.0
29.2033.0
29.2036.0
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
-------
11.6 (Cont.)
19670902140000062
0912
.0
85
.963
.0
29
.20
19670902150000047
0314
.0
85
.262
.0
29
.20
19670902160000040
0313
• 0
85
.362
.0
29
.20
19670902170000025
0014
.0
82
.261
.0
29
.20
19670902180000010
0014
• 0
78
.760
.0
29
.20
19670902190000001
0023
• 0
73
.257
.0
29
.20
19670902200000000
0027
• 0
70
.657
.0
29
.20
19670902210000000
0027
• 0
69
.456
.0
29
.20
19670902220000000
0026
• 0
68
.455
.0
29
.20
19670902230000000
0020
.0
67
.655
.0
29
.20
19670902240000000
0011
.0
64
.553
.0
29
.20
19670903010000000
0012
.0
64
.054
.0
29
.20
19670903020000000
0010
• 0
59
.450
.0
29
.20
19670903030000000
0002
• 0
59
.651
.0
29
.20
19670903040000000
0001
.0
58
.751
.0
29
.20
19670903050000000
0001
.0
56
.249
.0
29
.20
19670903060000002
0001
• 0
60
.853
.0
29
.20
19670903070000014
0003
• 0
66
.756
.0
29
.20
19670903080000030
0005
• 0
68
.156
.0
29
.20
19670903090000043
0003
.0
70
.857
.0
29
.20
19670903100000055
0001
.0
73
.058
.0
29
.20
19670903110000062
0001
• 0
77
.459
.0
29
• 20
19670903120000066
0002
• 0
80
• 060
.0
29
• 20
19670903130000065
0004
• 0
82
.461
.0
29
• 20
19670903140000060
0005
.0
84
.761
.0
29
• 20
19670903150000052
0004
• 0
86
.162
.0
29
• 20
19670903160000040
0005
• 0
87
.862
.0
29
• 20
19670903170000025
0003
• 0
88
• 562
.0
29
• 20
19670903180000008
0006
.0
85
.562
.0
29
• 20
19670903190000001
0109
• 0
78
.259
• 0
29
.20
19670903200000000
0208
.0
77
.359
.0
29
.20
19670903210000000
0319
.0
78
.159
.0
29
• 20
19670903220000000
0410
.0
72
• 957
.0
29
• 20
19670903230000000
1004
• 0
70
.757
.0
29
• 20
19670903240000000
1015
• 0
73
.457
.0
29
.20
19670904010000000
1016
• 0
74
.660
.0
29
• 20
19670904020000000
1020
.0
74
• 160
.0
29
• 20
19670904030000000
1018
• 0
73
• 860
.0
29
• 20
19670904040000000
0714
.0
72
.859
.0
29
• 20
1967 0904050000000
0307
• 0
66
.355
.0
29
• 20
-------
11.6 (Cont.)
19670904060000001
19670904070000012
19670904080000027
19670904090000040
19670904100000052
19670904110000060
19670904120000063
19670904130000063
19670904140000058
19670904150000049
19670904160000038
19670904170000023
19670904180000008
1967 0904190000001
19670904200000000
19670904210000000
19670904220000000
19670904230000000
19670904240000000
19670905010000000
19670905020000000
19670905030000000
19670905040000000
19670905050000000
19670905060000000
19670905070000001
19670905080000002
1967 0905090000010
19670905100000010
19670905110000022
19670905120000013
19670905130000014
19670905140000016
19670905150000005
19670905160000003
19670905170000004
19670905180000002
19670905190000001
19670905200000000
19670905210000000
0004.0
66.855.0
29.20
0105,0
72.659.0
29.20
0001.0
74.559.0
29.20
0001.0
80.261.0
29.20
0003.0
82.062.0
29.20
0004.0
87.164.0
29.20
0005.0
90.665.0
29.20
0006.0
91.464.0
29.20
0007.0
93.065.0
29.20
0005.0
94.565.0
29.20
0003.0
95.066.0
29.20
0203.0
93.364.0
29.20
0102.0
90.363.0
29.20
0704.0
85.261.0
29.20
0708.0
82.360.0
29.20
1012.0
86.963.0
29.20
0910.0
83.261.0
29.20
1008.0
81.261.0
29.20
0812.0
80.162.0
29.20
1013.0
79.962.0
29.20
1019.0
79.862.0
29.20
1016.0
78.762.0
29.20
1015.0
79.062.0
29.20
1015.0
76.162.0
29.20
1015.0
76.361.0
29.20
1007.0
75.060.0
29.20
1009.0
75.462.0
29.20
1011.0
77.163.0
29.20
1011.0
77.862.0
29.20
1008.0
81.964.0
29.20
1005.0
80.663.0
29.20
1006.0
81.263.0
29.20
1010.0
79.963.0
29.20
1011.0
77.062.0
29.20
1011.0
76.063.0
29.20
1007.0
74.363.0
29.20
0903.0
74.863.0
29.20
0503.0
72.562.0
29.20
0006.0
69.462.0
29.20
0004.0
65.759.0
29.20
-------
II.6 (Cont.)
19670905220000000
0005
.0
62
.158
.0
19670905230000000
0011
.0
62
.159
.0
1967 09052 <>-0000000
0123
.0
66
.258
.0
19670906010000000
0126
.0
65
.857
.0
19670906020000000
0124
• 0
66
.157
.0
19670906030000000
0020
.0
63
.655
.0
19670906040000000
0016
.0
63
.055
.0
19670906050000000
0213
.0
59
.953
.0
19670906060000001
0211
.0
58
.653
.0
19670906070000011
0011
.0
65
.356
.0
19670906080000027
0009
.0
71
.858
.0
19670906090000041
0009
.0
74
.559
.0
19670906100000053
0006
.0
76
.460
.0
19670906110000057
0002
• 0
78
.761
.0
19670906120000066
0103
.0
81
.162
.0
19670906130000059
0005
• 0
81
.860
.0
19670906140000060
0105
.0
82
.961
.0
19670906150000049
0003
.0
84
.062
.0
19670906160000038
0302
.0
83
.662
.0
19670906170000023
0401
.0
83
.861
.0
19670906180000008
0205
.0
81
.658
.0
19670906190000001
0005
.0
74
.157
.0
19670906200000000
0009
.0
70
.055
.0
19670906210000000
0009
.0
68
.354
.0
19670906220000000
0007
.0
64
.052
.0
19670906230000000
0004
.0
61
.651
.0
19670906240000000
0006
.0
62
.952
.0
19670907010000000
0009
.0
62
.351
.0
19670907020000000
0008
.0
63
.152
.0
19670907030000000
0011
.0
59
.651
.0
19670907040000000
0014
.0
57
.750
.0
19670907050000000
0014
.0
53
.446
.0
19670907060000001
0014
.0
53
.045
.0
19670907070000011
0011
.0
64
.552
.0
19670907080000025
0110
.0
70
.557
.0
19670907090000040
0012
• 0
74
.958
.0
19670907100000051
0009
.0
76
.458
.0
19670907110000059
0108
.0
80
.459
.0
19670907120000063
0306
.0
83
.360
.0
19670907130000062
0705
.0
85
• 161
.0
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
-------
II.6 (Cont.)
19670907140000057
1967 0907150000049
19670907160000035
19670907170000018
19670907180000006
19670907190000001
19670907 200000000
19670907210000000
19670907220000000
19670907230000000
19670907240000000
19670908010000000
19670908020000000
19670908030000000
19670908040000000
19670908050000000
19670908060000001
19670908070000011
19670908080000025
19670908090000040
19670908100000050
19670908110000058
19670908120000061
19670908130000061
19670908140000056
19670908150000046
19670908160000035
19670908170000020
19670908180000007
19670908190000000
19670908200000000
19670908210000000
19670908220000000
19670908230000000
19670908240000000
19670909010000000
19670909020000000
19670909030000000
19670909040000000
19670909050000000
0906.0
88.061.0
29.20
0707.0
87.961.0
29.20
0805.0
88.761.0
29.20
0806.0
87.161.0
29.20
0706.0
82.659.0
29.20
0607.0
78.057.0
29.20
0008.0
74.655.0
29.20
0008.0
72.154.0
29.20
0006.0
71.554.0
29.20
0012.0
71.054.0
29.20
0214.0
69.954.0
29.20
0414.0
70.554.0
29.20
0613.0
66.852.0
29.20
0614.0
66.753.0
29.20
0710.0
63.451.0
29.20
0515.0
62.351.0
29.20
0315.0
62.852.0
29.20
0214.0
69.756.0
29.20
0015.0
75.558.0
29.20
0013.0
81.860.0
29.20
0010.0
82.860.0
29.20
0005.0
86.261.0
29.20
0003.0
90.462.0
29.20
0001.0
91.363.0
29.20
0005.0
92.963.0
29.20
0007.0
93.665.0
29.20
0007.0
92.364.0
29.20
0009.0
91.864.0
29.20
0011.0
88.763.0
29.20
0020.0
83.662.0
29.20
0029.0
75.660.0
29.20
0027.0
73.059.0
29.20
0028.0
71.458.0
29.20
0024.0
69.456.0
29.20
0016.0
66.155.0
29.20
1018.0
67.655.0
29.20
0523.0
66.854.0
29.20
0018.0
64.152.0
29.20
0016.0
61.550.0
29.20
0911.0
57.149.0
29.20
-------
II.6 (Cont.)
19670909060000001
1005
.0
58
.449,
.0
19670909070000010
1004
.0
62
.452,
.0
19670909080000022
1001
.0
67
.354,
.0
19670909090000036
0903
.0
71
.956,
.0
19670909100000048
1003
.0
74
.056,
,0
19670909110000061
1005
.0
78
.258.
>0
19670909120000061
1004
.0
81
.259,
.0
19670909130000060
0807
.0
82
.760.
~ 0
19670909140000056
0806
.0
84
.561,
,0
1967 09091500000 47
0807
.0
86
.962.
.0
19670909160000037
0708
.0
85
.761.
,0
19670909170000022
0610
.0
84
.061.
,0
19670909180000006
0606
.0
80
.560,
,0
19670909190000000
0714
.0
75
.060,
~ 0
19670909200000000
0720
.0
71
.259,
,0
19670909210000000
0520
.0
69
.458.
>0
19670909220000000
0518
.0
68
.658,
~ 0
19670909230000000
0215
.0
66
.656.
,0
19670909240000000
0414
.0
65
.256,
,0
19670910010000000
0912
.0
66
.556,
>0
19670910020000000
0904
.0
63
.955,
.0
19670910030000000
1004
.0
59
.652,
.0
19670910040000000
1000
.0
60
.953,
.0
19670910050000000
1004
.0
59
.953,
.0
19670910060000000
1007
.0
57
.952,
>0
1967 091007 0000002
1004
.0
59
.853,
.0
19670910080000016
0802
.0
64
.155.0
19670910090000034
0801
.0
69
.457,
.0
19670910100000035
0801
.0
71
.758.0
19670910110000026
1020
.0
77
.660,
.0
19670910120000048
0926
.0
79
• 260,
.0
19670910130000037
0932
.0
78
.459.0
19670910140000020
1039
.0
77
.859.0
19670910150000014
1045
.0
73
.058.0
19670910160000014
1043
.0
72
.858.0
19670910170000011
1038
.0
71
.057,
.0
19670910180000002
1025
.0
70
.056.0
19670910190000000
0727
.0
68
.156,
.0
19670910200000000
0522
.0
65
.955.0
19670910210000000
1022
• 0
64
.754,
.0
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
-------
II.6 (Cont.)
19670910220000000
1022.0
65.454.0
19670910230000000
1017.0
62.754.0
19670910240000000
1012.0
61.253.0
19670911010000000
1009.0
59.752.0
19670911020000000
1006.0
59.152.0
19670911030000000
1006.0
59.851.0
19670911040000000
1011.0
59.050.0
19670911050000000
1011.0
59.350.0
19670911060000000
1014.0
58.950.0
19670911070000002
1008.0
59.351.0
19670911080000008
1003.0
60.652.0
19670911090000013
1010.0
59.654.0
19670911100000028
1011.0
62.354.0
19670911110000044
1010.0
66.255.0
19670911120000020
0907.0
63.954.0
19670911130000050
0709.0
68.954.0
19670911140000054
0518.0
72.554.0
19670911150000041
0022.0
72.054.0
19670911160000037
0029.0
71.052.0
19670911170000022
0031.0
67.051.0
19670911180000007
0029.0
63*450.0
19670911190000000
0032.0
59.749.0
19670911200000000
0027.0
57.548.0
19670911210000000
0618.0
56.347.0
19670911220000000
0718.0
58.547.0
19670911230000000
0720.0
57.147.0
19670911240000000
0417.0
53.646.0
19670912010000000
0216.0
54.846.0
19670912020000000
0013.0
54.046.0
19670912030000000
0018.0
54.446.0
19670912040000000
0016.0
53.245.0
19670912050000000
0013.0
49.943.0
19670912060000001
0012.0
49.643.0
19670912070000010
0011.0
57.046.0
19670912080000024
0007.0
60.849.0
19670912090000040
0003.0
64.850.0
19670912100000053
0004.0
65.750.0
19670912110000060
0005.0
70.552.0
19670912120000064
0004.0
71.052.0
19670912130000064
0002.0
72.053.0
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
-------
II.6 (Cont.)
196709121400000 59
0204,
.0
72,
.352
.0
19670912150000049
0103.
~ 0
73,
.053,
.0
19670912160000036
0104,
.0
73,
.553
.0
19670912170000022
0102,
>0
73,
~ 653,
.0
19670912180000007
0103,
~ 0
69.
.752,
.0
19670912190000000
0013.
.0
62.
,348,
.0
19670912200000000
0012,
.0
59.
.347,
.0
19670912210000000
0010.
.0
54.
.844.
.0
19670912220000000
0010,
.0
53,
.043,
,0
19670912230000000
0012,
.0
56.
.444,
~ 0
19670912240000000
0010,
.0
52,
.743.
>0
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
29.20
-------
III.l
2
III. 2
TEMPERATURES AT PRIEST RAPIDS DAM (R.M. 397) AUGUST 20 - SEPTEMBER 12, 1967.
1 96 1
19.0 19,0 19.0 19.0 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.2 19.2 19.2 19.2
18.8 18.8 18.8
18.8
18.9
18.9
18.9
18.9
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0 19.0 19.0
19.0
18.7
18.7
18.7
18.7
18.5
18.5
18.5
18.5
18.6
18.6
18.6
18.6
18.8 18.8 18.8
18.8
18.9
18.9
18.9
18.9
18.9
18.9
18.9
18.9
18.6
18.6
18.6
18.6
18.3 18.3 18.3
18.3
18.1
18.1
18.1
18.1
17.8
17.8
17.8
17.8
17.8
17.8
17.7
17.7
18.3 18.3 18.3
18.3
18.1
18.1
18.1
18.1
17.8
17.8
17.8
17.8
17.8
17.8
17.7
17.7
TEMPERATURES AT
RICHLANOtR.M.
3291
AUGUST 20
- SEPTEMBER 12,
1967
13 96 1
20.8 20.8 20.8
20.8
20.8
20.8
20.8
20.8
20.6
20.6
20.6
20.6
20.7
20.7
20.7
20.7
20.5 20.5 20.5
20.5
20.3
20.3
20.3
20.3
20.3
20.3
20.3
20.3
20.6
20.6
20.6
20.6
20.6 20.6 20.6
20.6
20.5
20.5
20.5
20.5
20.2
20.2
20.2
20.2
20.1
20.1
20.1
20.1
20.2 20.2 20.2
20.2
19.9
19.9
19.9
19.9
20.1
20.1
20.1
20.1
20.8
20.8
20.8
20.8
19.9 19.9 19.9
19.9
19.4
19.4
19.4
19.4
18.8
18.8
18.8
18.8
18.8
18.8
18.8
18.8
19.9 19.9 19.9
19.9
19.4
19.4
19.4
19.4
18.8
18.8
18.8
18.8
18.8
18,8
18.8
18.8
III. 3
2
III. 4
TEMPERATURES HAVE BEEN INITIALIZED AT PRIEST RAPIDS DAMtR.M. 397)
I 1
TEMPERATURES HAVE BEEN INITIALIZED AT RICHLAND(R.M. 329)
13 13
-------
III. 5
2 2
III. 6
ANALYSIS OF TMEPERATURE AT RICHLAND(R.M. 329)
12
ANALYSIS OF TEMPERATURE AT BONNEVILLE DAM(R.M, 145)
36 36
III. 7
TEMPERATURES AT ICE HARBOR DAM (R.M. 324) AUGUST 20 - SEPTEMBER 12» 1967
14 96 2
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
76.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
75.0
74.0
74.0
74.0
74.0
74.0
74.0
74.0
73.0
73.0
73.0
73.0
72.0
72.0
72.0
72.0
72.0
72.0
72.0
72.0
72.0
72.0
72.0
72.0
73.0
73.0
73.0
73.0
72.0
72.0
72.0
72.0
72.0
72.0
7Z.0
72.0
72.0
72.0
72.0
72.0
00
o
-------
IV. 1
ONE DIMENSIONAL TEMPERATURE PREDICTION MODEL - MARK II
LONER COLUMBIA RIVER FROM PRIEST RAPIDSCR.M. 397) TO BONNEVILLE(R.M. 145)
HYDRAULIC AND HYDROLOGIC DATA FOR THE PERIOD AUGUST 20 - SEPT. 12, 1967
RICHLAND WEATHER OATA FOR THE PERIOD AUGUST 20 - SEPT. 12, 1967
FWPCA - NORTHWEST REGIONAL OFFICE
COLUMBIA RIVER THERMAL EFFECTS STUDY GROUP
MARCH 1969
------- |