United States	Industrial Environmental Research EPA-600/7 78 111b
Environmental Protection	Laboratory	June 1978
Agency	Research Triangle Park NC 27711
Research and Development	
A Mathematical
Model of
Electrostatic
Precipitation
(Revision 1):
Volume II.
User Manual
Interagency
Energy/Environment
R&D Program Report

-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U S Environmental
Protection Agency, have been grouped into nine series These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields
The nine series are
1	Environmental Health Effects Research
2	Environmental Protection Technology
3	Ecological Research
4	Environmental Monitoring
5	Socioeconomic Environmental Studies
6	Scientific and Technical Assessment Reports (STAR)
7	Interagency Energy-Environment Research and Development
8	"Special" Reports
9	Miscellaneous Reports
This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH AND DEVELOPMENT series Reports in this series result from the
effort funded under the 17-agency Federal Energy/Environment Research and
Development Program These studies relate to EPA's mission to protect the public
health and welfare from adverse effects of pollutants associated with energy sys-
tems The goal of the Program is to assure the rapid development of domestic
energy supplies in an environmentally-compatible manner by providing the nec-
essary environmental data and control technology Investigations include analy-
ses of the transport of energy-related pollutants and their health and ecological
effects, assessments of, and development of, control technologies for energy
systems, and integrated assessments of a wide range of energy-related environ-
mental issues
REVIEW NOTICE
This report has been reviewed by the participating Federal Agencies, and approved
for publication Approval does not signify that the contents necessarily reflect the
views and policies of the Government, nor does mention of trade names or commercial
products constitute.endorsement or recommendation for use
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161

-------
EPA-600/7-78-111 b
June 1978
A Mathematical Model
of Electrostatic Precipitation
(Revision 1): Volume II.
User Manual
by
Jack R McDonald
Southern Research Institute
2000 Ninth Avenue. South
Birmingham. Alabama 35205
Contract No 68-02-21 14
ROAPNo 2 1ADL-027
Program Element No 1AB012
EPA Project Officer Leslie E Sparks
Industrial Environmental Research Laboratory
Office of Energy. Minerals, and Industry
Research Triangle Park. NC 2771 1
Prepared for
U S ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington. DC 20460

-------
DISCLAIMER
This report was prepared as an account of work sponsored by
the United States Government. The report has been reviewed by the
Industrial Environmental Research Laboratory, U.S. Environmental
Protection Agency, and approved for publication. Approval does
not signify that the contents necessarily reflect the views and
policies of the U.S. Environmental Protection Agency, nor does
mention of trade names or commercial products constitute endorse-
ment or recommendation for use. Neither the United States nor
the U.S. Environmental Protection Agency, nor any of their employees
nor any of their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness or
usefulness of any information, apparatus, product, process or
computer program disclosed, or represents that its use would not
infringe privately owned rights.

-------
ABSTRACT
The objectives of this manuscript are to provide a compre-
hensive description of how to use the computer program which
performs the calculations in the mathematical model of electro-
static precipitation and to instruct in the proper usage of the
model. The input and output data associated with the computer
program are described in detail and are presented in various
forms covering the different uses of the model. Comparisons of
the predictions of the model with experimental data are presented
and the agreement obtained is discussed. The various applications
of the model are described and demonstrated in detail. Applica-
tions of the model for troubleshooting and sizing of precipitators
are discussed. Precautions to take in using the model are empha-
sized throughout the text.
This report was submitted in partial fulfillment of Task VI
of Contract No. 68-02-2114 by Southern Research Institute under
the sponsorship of the U.S. Environmental Protection Agency.
This report covers a contract period from June 30, 1975 to
February 28, 19 78, and work was completed as of February 15,
1978.

-------
CONTENTS
Disclaimer		. ii
Abstract	
Figures	
Tables		viii
Metric Conversion Factors		ix
1.	Introduction		1
2.	Conclusions and Recommendations		2
3.	Description of Input Data		3
General description		3
Construction of the basic data set			3
Construction of shortened data sets		22
4.	Description of Output Data		27
General description		2 7
Printout of input data		27
Incremental analysis of precipitator
performance		28
Charging rates for the different particle sizes.	31
Charge accumulated on the different particle
sizes		31
Particle size range statistics		31
Unadjusted migration velocities and discrete
outlet mass loadings		34
Summary table of precipitator operating
parameters and performance		36
5.	Machine-Dependent Aspects of the Computer Program....	37
6.	Example Cases and Comparisons Between Model Pre-
dictions and Experimental Measurements		42
Comparisons of model predictions with laboratory
data		42
Comparisons of model predictions with field
data		50
7.	Applications of the Model		57
Effect of particle size distribution		57
Effect of specific collection area		58
Effect of applied voltage and current density...	61
Effect of nonideal conditions		68
Effect of resistivity		74
Use of the estimation procedure		76
8.	Use of the Model for Trouble shooting		81
9.	Use of the Model for Sizing of Precipitators		87
10. Precautions to Take in Using the Model.....		9 2
iv

-------
References		96
Appendices
A.	Output Data	from Example	1				97
B.	Output Data	from Example	2				112
C.	Output Data	from Example	3				128
Output Data	from Example	4		145
E.	Output Data	from Example	5		163
F.	Output Data	from Example	6		24 7
G.	Output Data	from Example	7		304
H.	Output Data	from Example	8		363
I.	Output Data	from Example	10		618
v

-------
FIGURES
Number	Page
1	Flow chart for the input data logic	 25-26
2	Comparison of experimental fractional collection
efficiencies and effective migration velocities
obtained from a laboratory precipitator with those
predicted by the model using the measured elec-
trical conditions.....	 4 4
3	Experimental and theoretical voltage-current
curves for the laboratory precipitator	 4 7
4	Comparison of experimental fractional collection
efficiencies obtained from a laboratory pre-
cipitator with those predicted by the model using
theoretical voltage-current calculations	 4 8
5	Comparison of experimental fractional collection
efficiencies and effective migration velocities
obtained from a full-scale, cold-side precipitator
with those predicted by the model	 52
6	Comparison of experimental discrete outlet mass
loadings obtained from a full-scale, cold-side
precipitator with those predicted by the model.... 53
7	Comparison of experimental fractional collection
efficiencies and effective migration velocities
obtained from a full-scale, hot-side precipitator
with those predicted by the model	 56
8	Effect of particle size distribution on overall
mass collection efficiency	 60
9	Effect of specific collection area on overall mass
collection efficiency	 6 3
10	Experimental voltage-current curves used in
Example 7	 66
11	Effect of current density on overall mass
collection efficiency	 67
vi

-------
12	Effects of nonideal conditions on overall mass
collection efficiency	 71
13	Distribution of mass in the total outlet emissions
for different particle size distributions in the
"rapping puff"			„oo	 7 2
14	Effects of the "rapping puff" particle size dis-
tribution on the particle size distribution of
the total emissions	o	 73
15	Experimentally determined effect of resistivity on
allowable current density in a precipitator	 75
16	Effect of resistivity on overall mass collection
efficiency			 77
17	Comparison of results obtained from rigorous
application of the model and the estimation pro-
cedure	 80
vii

-------
TABLES
Number	Page
1	Reduced Effective Negative Ion Mobilities
for Various Gas Compositions		12
2	Values of Viscosity for Air at Various Temper-
atures and Water Contents		20
3	Core Requirements for Various Segments of the
Computer Program		38
4	Input Data Card Set for Example 1	
5	Input Data Card Set for Example 2		49
6	Input Data Card Set for Example 3		51
7	Input Data Card Set for Example 4		55
8	Input Data Card Set for Example 5		59
9	Input Data Card Set for Example 6		62
10	Input Data Card Set for Example 7		65
11	Input Data Card Set for Example 8		70
12	Input Data Card Set for Example 10		78
viii

-------
METRIC CONVERSION FACTORS
To convert from
grains/ft3
ft
ft2
in
ft3 /min
ft/sec
°F
to
kg/nt3
m
m2
m
m3 /sec
m/sec
°K
Multiply by
0.00229
0.3048
0.0929
0.0254
0.000472
0.3048
(°F+459) x-
1.8
ix

-------
SECTION 1
INTRODUCTION
The objectives of this manuscript are to provide a compre-
hensive description of how to use the computer program which
performs the calculations in the mathematical model of electro-
static precipitation and to instruct in the proper usage of the
model. The text deals with the input and output data associated
with the computer program and with applications of the model.
The theories and numerical techniques associated with the model
and the details of the internal workings of the computer program
are presented in Volume 1. Since Volume 1 provides the basic
understanding of what the computer program does, it is strongly
recommended that Volume 1 be studied before one attempts to
utilize the contents in Volume 2. Volumes 1 and 2 should be
used in conjunction with one another in order to obtain the
fullest benefits of the model.
In this text, the input and output data associated with the
computer program are described in detail and are presented in
various forms covering the different uses of the model. Any
restrictions on the input variables are discussed and guidelines
are given for specifying the values of those input variables
whose values may be uncertain.
The different ways in which the model can be used to analyze
and project precipitator performance are discussed and demonstrated
in examples. Comparisons of the predictions of the model with
experimental data are presented and the agreement obtained is dis-
cussed. For all examples utilizing the computer program, the
input data are presented in tabular form in the main text and the
computer printouts of the output data are presented in appendices.
Thus, a user can easily run the example cases and has a means of
checking his results.
Methods for using the model in troubleshooting and sizing
precipitators are discussed. These methods employ the various
applications of the model in specific ways in order to obtain
specific information. Since, in applying the model to trouble-
shooting and sizing precipitators, it is very important that
the model be used properly, a section of the text is devoted
to emphasizing precautions which must be taken when using the
model for these purposes.
1

-------
SECTION 2
CONCLUSIONS AND RECOMMENDATIONS
CONCLUSIONS
The new computer program which performs the calculations
required by the mathematical model of electrostatic precipitation
is more user oriented than the previous program due to modifica-
tions that make the input data less cumbersome, make the output
data more complete and useful, result in savings of computer
time, and allow for the construction of log-normal particle
size distributions. Comparisons of the predictions of the model
with experimental data indicate that the model can be used
sucessfully to describe the operation of electrostatic precipita-
tors. The effect on precipitator performance of changes in
particle size distribution, specific collection area, current
density, nonideal conditions, and the resistivity of the collected
particulate layer can be easily obtained. In those cases where
the use of computer time is an important consideration, the
application of an estimation procedure can result in considerable
savings in computer time. Discussions on the use of the model
for troubleshooting and sizing of precipitators and on precautions
to use in applying the model provide a basis for practical
applications of the model.
RECOMMENDATIONS
It is recommended that the following work be performed in
order to make the computer program more user oriented:
1.	Alternative numerical techniques need to be investigated
and implemented in order to make the computer program run signi-
ficantly faster.
2.	Procedures which edit the input data should be imple-
mented.
3.	Documentation of the computer program needs to be
included in abbreviated form in the computer card deck.
2

-------
SECTION 3
DESCRIPTION OF INPUT DATA
GENERAL DESCRIPTION
The format of the original computer program which performs
the calculations in the model for electrostatic precipitation
has been re-structured to make the inputting of data less cumber-
some. The number of cards which is necessary to input data has
been reduced significantly by allowing different operating
conditions to be analyzed from one basic set of input data. Due
to the fact that several options are available in using the model,
the number of cards and type of information in the input data may
vary from one set of data to the next. Thus, it is necessary for
the user to familiarize himself with the logic associated with the
input data in order to ensure that the desired operations will be
performed.
Some of the input variables are read into the program in
British units whereas others are in MKS units. All input data
which are in British units are converted to MKS units prior to
pertorming the calculations. The input variables and format
specifications are discussed in detail in the following subsection.
CONSTRUCTION OF THE BASIC DATA SET
The following is a sequential listing of the variables in
the first group of data which is read in, along with the de-
scriptions of the variables and the format specifications.
(1)	NENDPT is the number of discrete points on a cumulative per-
cent versus particle diameter curve. NENDPT is
specified by the user and must have a value of at
least 1 but not greater than 21. If NENDPT has a
value of 99, the program terminates. If 21
-------
1	- A complete data set must be inputted. NDATA must
have this value on the first data set.
2	- Only cards 1 and 2 and data concerning size distri-
bution information must be inputted. All other data
remain as defined in the previous data set. NDATA
can have this value only after a basic data set has
been run. This value of NDATA allows one to examine
the effects of particle size distribution on precipi-
tator performance with all other variables held fixed.
3	- Only cards 1 and 2 and information concerning the gas
volume flow and gas velocity must be inputted. All
other data remain as defined in the previous data set.
NDATA can have this value only after a basic data set
has been run. This value of NDATA allows one to
examine the effects of specific collection area (SCA)
on precipitator performance with all other variables
held fixed.
4	- Only cards 1 and 2 and information concerning the
applied voltage and current must be inputted. All
other data remain as defined in the previous data
set. NDATA can have this value only after a basic
data set has been run. This value of NDATA allows
one to examine the effects of the electrical conditions
on precipitator performance with all other variables
held fixed.
NDATA is read in with an 12 format and must be right
justified in columns 3-4. If NDATA ^ 1,2,3, or 4, an
error message will be given by the computer at the point
in the program where NDATA is used in a "computed go
to statement" (line 64). Depending on the particular
computer, the program may or may not terminate at this
point. If the program continues to execute, it may
terminate abnormally at a later point in the program
due to incorrect usage of the input data. If the pro-
gram terminates normally, the calculations may or may not
be correct, depending on the input data and the action
taken by the computer.
The overall format for this group is (212). The data con-
tained in this group is on the first card and this card must
be the first card in each new data set.
Data group 2 is for specifying information which will
identify the data set which is under consideration. All or part
of columns 1-80 on data card 2 can be used in identifying the
data set. The overall format for this card is (40A2). This data
group must be the second card in each new data set.
4

-------
At this point, the third and successive data groups depend
on the choice of the value of NDATA. The basic data set must be
read into the program before shortened data sets can be used.
For NDATA=1, the program reads in the data groups in the basic
data set in the sequence discussed below.
The tollowing is a sequential listing of the variables in
data group 3, along with the descriptions of the variables and
the format specifications.
(2) NDIST
(1) NEST is an indicator which can have the values of 1 and 2.
If NEST = 1, the program will perform extensive, detailed
calculations in order to determine precipitator per-
formance. If NEST = 2, estimation procedures are used
to determine precipitator performance. Both of these
options have been discussed in detail in Volume 1. Use
of the estimation procedure will result in considerable
savings in computer time and can be used to establish
trends or to establish ranges over which to apply the
more rigorous calculations. NEST is read in with an
12 format and must be right justified in columns 1-2.
is an indicator which can have the values of 1 and 2.
If NDIST = 1, the user must supply the inlet particle
size distribution. If NDIST = 2, the program will
construct a log-normal particle size distribution
Lised on parameters provided by the user. The technique
used to construct the log-normal size distribution is
described in Volume 1. NDIST is read in with an 12
format and must be right justified in columns 3-4.
(3) NVI is an indicator which can have the values of 1 and 2.
If NVI = 1, the user must supply known or measured
values of the operating applied voltage and current.
If NVI = 2, the program will construct a voltage-
current curve (or curves) for a specified wire-plate
geometry up to a voltage which is specified by the user.
Both of the techniques for determining the electrical
conditions are discussed in Volume 1. NVI is read in
with an 12 format and must be right justified in columns
5-6.
(4) NX	is the number of grid points in the x-direction
(perpendicular to the gas flow) which is used in the
numerical techniques that determine the electrical
conditions. NX can not exceed a value of 15. If
NVI = 1, sufficient accuracy can normally be obtained
with NX > 11. If NVI = 2, NX should be set equal to
15. NX Ts read in with an 12 format and must be right
justified in columns 7-8.
5

-------
(5)	NY	is the number of grid points in the y-direction
(parallel to the gas flow) which is used in the
numerical techniques that determine the electrical
conditions. If NVI = 1, sufficient accuracy can
normally be obtained with NY 9. If NVI = 2, NY
should be set equal to 15. NY is read in with an 12
format and must be right justified in columns 9-10.
(6)	NITER is an indicator which serves two different purposes.
If NVI = 1, the value of NITER determines the maximum
number of iterations the program will make on a loop
which converges on overall mass collection efficiency.
If the overall mass collection efficiency converges
within 0.05% before NITER iterations, the calculation
of collection efficiencies is completed at this point.
NITER serves the purpose of cutting the calculation off
in a reasonable amount of time when convergence requires
more iterations and computer time than is warranted.
For normal inlet mass loadings and particle size dis-
tributions a value of NITER = 2 is sufficient. For
high inlet mass loadings or very fine particle size
distributions a value of NITER = 3 or 4 may be necessary
to provide sufficient accuracy. If NVI = 2, the value
of NITER determines the number of iterations which will
be performed over each incremental length of the pre-
cipitator in order to obtain self-consistent solutions
for the electrical conditions. In its present stage
of development, the calculation procedure yields the
same results for all values of NITER. Thus, in this
case, set NITER = 1. The calculation procedure is
discussed in Appendix A of Volume 1. NITER is read
in with an 12 format and must be right justified in
columns 11-12.
(7)	NCALC is an indicator which can have the values of 0 and 1.
If NCALC = 0, particle charge is determined by using
equation (12) in Volume 1. Due to the number of times
particle charge must be calculated and the use of
numerical techniques in order to solve the charging
equation, the particle charging calculations for
NCALC = 0 take a considerable amount of computer time.
If NCALC = 1, particle charge is estimated empirically
by using the sum of the charges predicted from classical
field and thermal charging theories [see equation (15)
in Volume 1]. In this case, particle charge can be
determined very rapidly from analytical expressions.
Thus, in those cases where a significantly shorter run
time is more important than the best accuracy possible,
NCALC should be set equal to 1. If NEST - 2, particle
charge will be performed as if NCALC = 1 regardless of
the value of NCALC. NCALC is read in with an 12 format
and must be right justified in columns 13-14.
6

-------
(8)	NRAPD is an indicator which specifies the number of rapping
puff particle size distributions which will be utilized
by the program in predicting the effect of rapping
reentrainment on overall mass collection efficiency.
NRAPD must have a value of at least 1 and can not exceed
a value of 10. If NRAPD = 1, the program will deter-
mine the rapping puff particle size distribution based
on the average of data obtained from several field tests
on full-scale precipitators. These tests yield an
average rapping puff particle size distribution with a
mass median diameter (MMD) of 6.0 ym and a geometric
standard deviation (ap) of 2.5. The technique which is
used to predict rapping losses is discussed in Volume 1.
If NRAPD is greater than one, the user must supply a MMD
and ap of a log-normal distribution corresponding to each
value of NRAPD greater than 1. The program will determine
the rapping puff particle size distribution based on
the specified combinations of MMD and Op. The case for
NRAPD = 1 will always be performed. Each rapping puff
particle size distribution is used in conjunction with
the same basic ideal calculation and its effect is
determined with very little expenditure of computer
time. NRAPD is read in with an 12 format and must be
right justified in columns 15-16.
(9)	NEFF is an indicator which can have the values of 1 and 2.
If NEFF = 1, the total mass reentrained at the outlet
due to rapping is determined from the mass collected
in the last field under adjusted no-rap conditions.
If NEFF = 2, the total mass reentrained at the outlet
due to rapping is determined from the mass which would
be collected in the last field under unadjusted ideal
conditions. NEFF should normally be taken to be 1
since this case is physically meaningful. A value of
NEFF = 2 will result in rapping losses which are
significantly greater than for NEFF = 1. Thus, a
value of NEFF = 2 should only be used when a precipi-
tator design which is conservative with respect to
rapping losses is desired. NEFF is read in with
an 12 format and must be right justified in columns
17-18.
(10)	NTEMP is an indicator which can have the values of 1 and 2.
The mass reentrained due to rapping will differ for
cold-side and hot-side precipitators. If NTEMP = 1,
the mass reentrained due to rapping is estimated based
on an equation for cold-side precipitators. If
NTEMP = 2, the mass reentrained due to rapping is
estimated based on equation for hot-side precipitators.
NTEMP is read in with an 12 format and must be right
justified in columns 19-20.
7

-------
(11) NONID is an indicator which specifies the number of com-
binations of normalized gas velocity standard deviation
(Og) and gas bypassage fraction and/or particle re-
entrainment fraction without rapping (S) which are to
be used to simulate the possible nonideal conditions.
The procedures used to account for these nonideal
effects are described in Volume 1. NONID must have a
value of at least 1 and can not exceed a value of 15.
Each set of nonideal conditions is used in conjunction
with the same basic ideal calculation and its effect
is determined with very little expenditure of computer
time. NONID is read in with an 12 format and must be
right justified in columns 21-22.
The overall format for this data group is (1112) and all the
data are contained on the third data card.
The next data group which is read in depends on the values
of NCALC and NVI. If NCALC = 0, the rigorous charging theory is
used. In this case, the following is a sequential listing of
the variables in the next data group which is read in, along
with the descriptions of the variables and the format specifi-
cations .
(1)	NN	is the number of increments in the Runge-Kutta inte-
gration of equation (12) in Volume 1. If NVI = 1,
a value of NN = 10 normally provides sufficient accuracy
when the precipitator is divided into incremental
lengths of approximately 0.305m or less. If NVI = 2,
a value of NN =5 normally provides sufficient accuracy.
NN is read in with an 12 format and must be right
justified in columns 1-2.
(2)	NUMINC is the number of increments in the Simpson's Rule
integration over 6 in equation (12) in Volume 1.
NUMINC must be an even number and a value of NUMINC =
20 normally provides sufficient accuracy. In order to
speed up the calculations, NUMINC can be reduced to a
value as low as 10 without causing too great a change
in the results. The use of values of NUMINC which are
less than 10 is not recommended. NUMINC is read in
with an 12 format and must be right justified in
columns 3-4.
The overall format for this data group is (212) and all the
data are contained on a single card. If NCALC = 1, the above
data group is not read into the program.
If NVI = 2, the model must calculate a voltage-current curve.
In this case, the following is a sequential listing of the variables
in the next data group which is read in, along with the descrip-
tions of the variables and the format specifications.
8

-------
(1)	IFINAL is an indicator which causes the calculation of suc-
cessive points on the voltage-current curve to cease
after IFINAL points. This indicator allows the user
to have the V-I calculation terminated at a point
before the specified operating voltage is reached
whenever it is taking an excessive number of points to
reach the specified operating voltage. IFINAL is read
in with an 12 format and must be right justified in
columns 1-2.
(2)	Jll is an indicator which allows the initial increment
size on current density in the calculation of the
voltage-current curve to be changed after JIl-1
points are determined on the curve. Since the voltage-
current calculation finds the applied voltage corre-
sponding to a specified value of current density, this
indicator allows the user to cover a large range of
current densities without using an excessive number
of points. Jll is read in with an 12 format and must
be right justified in columns 3-4.
(3)	JI2 is an indicator which allows the second increment size
on current density in the calculation of the voltage-
current curve to be changed after JI2-1 points are
determined on the curve. JI2 serves the same function
as Jll and JI2 must have a value greater than Jll for
proper usage. JI2 is read in with an 12 format and
must be right justified in columns 5-6.
(4)	VISKIP is an indicator which may have the values of 0 and 1.
If VISKIP = 0, a voltage-current curve will be calcu-
lated up to a specified operating voltage for each
successive length increment of the precipitator. If
VISKIP = 1, only the operating current density which
corresponds to a specified operating voltage will be
calculated based on an estimation procedure discussed
in Volume 1. In most cases, the user will want to set
VISKIP = 1 since this will result in a prediction of
the operating current density in each increment of
length of the precipitator without using the large
amounts of computer time required by the calculation of
a voltage-current curve. Only extremely detailed
analysis would warrant setting VISKIP = 0. VISKIP is
read in with an 12 format and must be right justified
in columns 7-8.
(5)	VISAME is an indicator which may have the values of 1 and 2.
The proper use of VISAME can result in significant
savings in computer time whenever the applied voltage
is the same in each electrical section. If the applied
voltage is the same in each electrical section, set
VISAME = 1 and only one "clean" voltage-current curve
9

-------
will be calculated. If VISAME = 1, as many data sets
as desired can be read into the program and all calcu-
lations will be based on the one "clean" voltage-
current calculation. The use of VISAME = 1 is especially
beneficial in studying hypothetical cases due to the
large savings in computer time. If the applied voltage
differs from one electrical section to the next, the
user must set VISAME = 2. Whenever the operating voltage
and current are unknown and the user must specify the
use of the voltage-current calculations (NVI = 2), the
quickest run time will occur when VISKIP = 1 and
VISAME = 1. The longest run time will occur when
VISKIP = 0 and VISAME = 2. VISAME is read in with an
12 format and must be right justified in columns 9-10.
The overall format for this data group is (512) and all data
are contained on a single card. If NVI = 1, the above data group
is not read into the program.
The following is a sequential listing of the next data group
which is read in, along with the descriptions of the variables and
the format specifications.
(1)	DL	is the inlet particulate mass loading in units of
grains/ft3 . DL is read in with a F8.0 format and
must be left justified in columns 1-8.
(2)	PL	is the total electrical length of the precipitator
in units of feet. PL is read in with a F8.0 format
and must be left justified in columns 9-16.
(3)	ETAO is the overall mass collection efficiency in units
of percent and it has two different interpretations
depending upon the value of NVI. If NVI = 1, ETAO
represents the measured or estimated overall mass
collection efficiency and is used as a test for con-
vergence in an iteration loop on overall mass collection
efficiency. If NVI = 2, ETAO simply represents the
desired design efficiency and is not used in the
calculations. ETAO is read in with a F8.0 format
and must be left justified in columns 17-24.
(4)	DD	is the density of the particles in units of kg/m3 .
DD is read in with a F8.0 format and must be left
justified in columns 25-32.
(5)	EPS is the dielectric constant of the particles for use in
the particle charging calculations and is dimensionless.
Values of EPS must be equal to or greater than 1. In
most industrial applications, the flue gas is sufficiently
humidified so that the particle surface becomes con-
ductive and a value of EPS = 100 can be used to simulate
10

-------
a conductor. EPS is read in with a F8.0 format
and must be left justified in columns 33-40.
(6)	VRATIO is the ratio of the peak voltage to the average voltage
and is dimensionless. In the calculation of particle
charge, it is assumed that the particles will charge
to an extent determined by the peak voltage rather than
the average voltage. For industrial applications,
VRATIO has a value around 1.2. VRATIO is read in with
a F8.0 format and must be left justified in columns
41-48.
(7)	US	is the ionic mobility at standard temperature (273°K)
and standard pressure {1 atm) and is in units of
m2/(V-sec). This mobility is referred to as the
"reduced mobility". Values to use for reduced ionic
mobilities for flue gas compositions are not well-
established at the present time. The reduced ionic
mobility for air is in the range 1.2-2.1 x 10"**m2/(V-sec) .
Reduced ionic mobilities for flue gas compositions have
been reported that are considerably larger than those
reported for air. These values cover the range of
2.2-5.4 x 10"^m2/(V-sec). Some reported values of
reduced ionic mobility for various gas compositions
are given in Table 1. Since the ionic mobility has
a strong influence on the electrical conditions through
the current and electric field distributions, this is
an important parameter in determining precipitator
performance. A value of 3.0 x 10-t,m /(V-sec) should
provide a representative value to use for flue gases
emanating from coal-fired boiler applications. US is
read in with a F8.0 format and must be left justified
in columns 49-56.
(8)	FPATH is a parameter which is used in the field charging
equation and is dimensionless. FPATH represents the
number of ionic mean free paths over which the momentum
of the ions will persist and allow the ions to reach
the surface of the particle even though the saturation
charge has been reached. The effect of this parameter
is to increase the saturation charge. FPATH normally
should have a value in the range 0-2. It is recommended
that FPATH be assigned a value of 1. FPATH is read in
with a F8.0 format and must be left justified in
columns 5 7-6 4.
(9)	EBP is the electrical breakdown strength of the gas or the
particulate layer in the region near the plate and is
in units of V/m. The value of this parameter is a
strong function of the resistivity of the collected
11

-------
TABLE 1
REDUCED EFFECTIVE NEGATIVE ION MOBILITIES FOR VARIOUS GAS COMPOSITIONS
Reduced Effective
Gas Composition	Ion Mobility
(Volume Percent)


(cm2 /V-
¦sec)
N*_
CO2
02_
SP2
Hz 0






100.0
0.67 +
0.17a


100.0
1

2.46 +
0.06b

100.0



1.08 +
0.03b



100.0

0.35C


(Laboratory
Air)

1.03d


(Laboratory
Air)

1.26 -
1.96e
79.4
14.7
4.6
0.2
0.6
5.39f

73.5
13. 6
4.2
0.2
8.4
2. 93f

65.9
12.2
3.8
0.2
17.8
2.23f

71.0
11. 2
3.7
0.0
14.0
2.35f

75.7
11. 6
3.2
0.0
9.4
3.02f

75.1
11.5
3.2
0.1
9.9
2.74f

78.5
10.9
3.6
0.0
7.0
3.36f -

78.3
19.8
3.6
0.1
7.0
2. 67f

77.9
10. 8
3.6
0.3
7.0
2.70f

77.6
10.7
3.7
0.7
7.0
2. 43f

a.	J. J. Lowke and J. A. Rees, Australian J. Phys. 16, 447 (1963).
b.	E. W. McDaniel and H. R. Crane, Rev. Sci. Instru. 28, 684 (1959).
c.	E. W. McDaniel and M. R. C. McDowell, Phys. Rev. 114, 1028 (1959).
d.	B.Y.H. Liu, K. T. Whitby, and H.H.S. Yu, J. Appl. Phys. 38,
1592 (1967) .
e.	J. Bricard, M. Cabane, G. Modelaine, and D. Vigla, Aerosols
and Atmospheric Chemistry. Edited by G. M. Hidy, New York,
New York, 27 (1972).
f.	H. W. Spencer, III, "Experimental Determination of the Effective
Ion Mobility of Simulated Flue Gas." In Proceedings of 1975
IEEE—IAS Conference, September 28, 1975, Atlanta, Georgia.
12

-------
particulate layer and the condition of the collection
plates. At present, mathematical techniques which are
based on physical principles do not exist for pre-
dicting the value of EBD under differing conditions.
Thus, experimental data and prior experience must be
used to choose appropriate values of EBD. In practical
applications, EBD fails in the range of 2-15 kV/cm.
A value of 2 kV/cm should provide a conservative
estimate of EBD whereas a value of 15 kV/cm would in
most cases provide the most optimistic value. The
value of EBD is used whenever NVI = 2 and a voltage-
current curve is generated. If the field at the
plate exceeds the value of EBD at any point on the
curve, a message to this effect is printed out with
the V—I calculation terminating at the corresponding
applied voltage and current density. These values of
voltage and current are then used in the projection of
precipitator performance. EBD is read in with a F8.0
format and must be right justified in columns 65-72.
(10) RHQ is the resistivity of the collected particulate layer
and is in units of ohm-cm. The resistivity to be used
must be determined experimentally by either iri situ
or laboratory methods. RHQ is used in the model only
to estimate the average electric field in the collected
particulate layer. It is not used to determine allow-
able electrical operating conditions. The effect of
RHQ on the allowable electrical operating conditions
must be reflected in the input data for the operating
voltages and currents. RHO is read in with a E8.2
format and must be right justified in columns 73-80.
The above data group has an overall format of (9F8.0, E8.2)
and is contained on a single data card. This data set must be
read in with each basic data set, i.e. when NDATA = 1.
The next data group which is read in depends on the value
of NRAPD. If NRAPD is greater than 1, the following is a
sequential listing of the variables in the next data group,
along with the descriptions of the variables and the format
speci fications.
(1)	ARD50(I) is an array containing the mass median diameters in
ym for log-normal particle size distributions of the
different rapping puff distributions which will be
utilized in the model. The values of this variable
are read in with a F4.0 format and must be left
justified in columns 1-4, 9-12, 17-20, 25-28, 33-36,
41-44, 49-52, 57-60, 65-68, and 73-76.
(2)	ARSIGM(I}is an array containing the geometric standard devia-
tions for log-normal particle size distributions of
the different rapping puff distributions which will
13

-------
be utilized in the model- Values of ARD50(I) and
ARSIGM(I) with the same index are used together to
construct a log-normal particle size distribution.
The values of this variable are read in with a F4.0
format and must be left justified in columns 5-8,
13-16, 21-24, 29-32, 37-40, 45-48, 53-56, 61-64,
69-72, and 77-80. ARSIGM(I) can not have a value
less than 1.
The above variables must be read in for 1=2 up to I=NRAPD
where NRAPD can not exceed a value of 10. The overall format for
this data group is (10(2F4.0)) and is contained on a single data
card. If NRAPD=1, this data group is not read in. In this case,
only one rapping puff particle size distribution will be considered
where ARD50(1) = 6.0 in ym and ARSIGM(l) = 2.5. This case is
built into the program and relates to experimental data discussed
in Volume 1.
The following is a sequential listing of the variables in the
next data group which is read in, along with the descriptions of
the variables and the format specifications.
(1)	ASNUCK(I) is an array containing different fractions of gas
flow which bypass the electrified region in each
baffled stage of the precipitator and/or different
fractions of the mass collected in each stage of
the precipitator which are reentrained due to
factors other than rapping. The values of this
variable are read in with a F4.0 format and must
be left justified in columns 1-4, 13-16, 25-28,
37-40, 49-52, and 61-64 of the first two data cards
in the group and in columns 1-4, 13-16, and 25-28
of the third data card in the group. ASNUCK(I)
must lie in the range 0.0 to 1.0.
(2)	AZIGGY(I) is an array containing different normalized standard
deviations for the inlet velocity distribution of
the gas flow. The values of this variable are read
in with a F4.0 format and must be left justified in
columns 5-8, 17-20, 29-32, 41-44, 53-56, and 65-68
of the first two data cards in the group and in
columns 5-8, 17-20, and 29-32 of the third data card
in the group. AZIGGY(I) must be equal to or greater
than 0.0.
(3) AZNUMS(I) is an array containing the number of baffled stages
in the precipitator. The values of this variable
are read in with a F4.0 format and must be left
justified in columns 9-12, 21-24, 33-36, 45-48,
57-60, and 69-72 of the first two data cards in the
group and in columns 9-12, 21-24, and 33-36 of the
third data card in the group. The values of AZNUMS(I)
must be whole numbers.
14

-------
The values of ASNUCK(I), AZIGGY(I) , and AZNUMS(I) with the
same index are used together to simulate one set of nonideal
parameters and to produce one set of no-rap efficiencies. The
values of I are determined by NONID which must have a value of
at least 1 and can not exceed a value of 15. Thus, at least one
set of these parameters must be read in. It is recommended that
the user take the first set of these variables to be ASNUCK(l) =
0.00, AZIGGY(l) = 0.00, and AZNUMS(1) = actual number of stages
so that efficiencies under ideal conditions will be obtained. In
practical situations, a well-operating precipitator will have
values of ASNUCK and AZIGGY of approximately 0.1 and 0.25,
respectively.
The overall format for this data group is (6(3F4.0)) and the
data group is contained on 3 or less cards. For NONID £ 6,
6
-------
The next data group which is read in depends on the value
of NDIST. If NDIST = 2, the following is a sequential listing
of the variables in the next data group, along with the descrip-
tions of the variables and the format specifications.
(1)	D50	is the mass median diameter of a log-normal inlet
particle size distribution and is in units of ym.
The value of D50 must lie between 0.01 and 1,000 ym.
The value of D50 is read in with a F8.0 format and
must be left justified in columns 1-8.
(2)	SIGMAP is the geometric standard deviation of a log-normal
inlet particle size distribution and is dimension-
less. The value of SIGMAP must be equal to or
greater than 1. The value of SIGMAP is read in
with a F8.0 format and must be left justified in
columns 9-16.
The program uses the values of D50 and SIGMAP to construct a
log-normal particle size distribution over the range and size bands
determined by the values of ENDPT(I). Any mass which is not in
the size range determined by ENDPT(I) will be put into the size
band with the largest midpoint. This must be done to ensure that
the sum over all size bands of the percentage of total mass in
each size band will equal 100%.
The above data group has an overall format of (2F8.0) and is
contained on a single data card. This data set is not read in if
NDIST = 1.
If NDIST = 1, the next data group which is read in consists
of a single array. The description of this array and its format
specification are given below.
(1) PRCU(I) is an array containing values of cumulative percents
corresponding to points on a curve of inlet mass
cumulative percent versus particle diameter. The
number of cumulative percents that must be read in
depends on the value of NENDPT which can not exceed
21. The cumulative percents must match the particle
diameters specified in the array ENDPT(I). The
cumulative percents are inputted in units of %.
The first value of PRCU(I) must be 0% and the last
value must be 100%. The program determines the
percentage by mass in each particle size band from
the values contained in ENDPT(I) and PRCU(I). The
user must supply values of PRCU(I) based on measured
or known particle size information for the particular
application under consideration. The values of
PRCU(I) are read in with a F8.0 format and must be
left justified.
16

-------
The overall format for this data group is (10F8.0) and the
data group is contained on 3 or less data cards. For NENDPT <. 10,
10
-------
along with the corresponding current will be used
in the calculation of precipitator performance.
The values of this variable are read in with an
Ell.4 format and must be right justified in
columns 12-22.
(3)	TCS(NSECT) is the total current in a given electrical section
and is in units of amperes. If NVI = 1, the value
of TCS(NSECT) corresponds to a measured or known
value. If NVI = 2, TCS(NSECT) has no meaning in
terms of input data since it will be calculated in
the program. In this case, the appropriate columns
on the data card can be left blank or any arbitrary
number can be entered. The values of this variable
are read in with an Ell.4 format and must be right
justified in columns 23-33.
(4)	WLS(NSECT) is the total effective wire length in a given
electrical section and is in units of feet. The
values of this variable are read in with an
Ell.4 format and must be right justified in
columns 34-4 4.
(5)	ACS(NSECT) is the corona wire radius in a given electrical
section and is in units of inches. The values of
this variable are read in with an Ell. 4 format
and must be right justified in columns 45-55.
(6)	BS(NSECT) is the wire-to-plate spacing in a given electrical
section and is in units of inches. The values of
this variable are read in with an Ell.4 format and
must be right justified in columns 56-66.
(7)	NWS(NSECT) is the number of discharge electrodes per given
electrical section per gas passage and is dimen-
sionless. The values of this variable normally
should not exceed 20. If the values do exceed 20,
use 20 in the program. These values are used to
determine the number of terms in a series summation
which determines the electrostatic electric field
distribution and 20 terms are more than sufficient
to reach convergence. The values of this variable
are read in with an Ell.4 format and must be right
justified in columns 67-77.
(8)	SYS(NSECT) is one-half of the wire-to-wire spacing in a given
electrical section and is in units of inches. The
values of this variable are read in with an Ell.4
format and must be right justified in columns 1-11.
18

-------
(9) VGS(NSECT) is the total gas volume flow rate in a given
electrical section and is in units of actual
ft3/min. The values of this variable are read
in with an Ell.4 format and must be right justi-
fied in columns 12-22.
(10)	VGASS(NSECT) is the gas velocity in a given electrical section
and is in units of ft/sec. The values of this
variable are read in with an Ell.4 format and
must be right justified in columns 23-33.
(11)	TEMPS(NSECT) is the gas temperature in a given electrical
section and is in units of °F. The values of
this variable are read in with an Ell.4 format
and must be right justified in columns 34-44.
(12) PS(NSECT)
(13) VISS(NSECT)
(14) LINCS(NSECT)
is the gas pressure in a given electrical section
and is in units of atmospheres. The values of
this variable are read in with an Ell.4 format
and must be right justified in columns 45-55.
is the gas viscosity in a given electrical section
and is in units of kg/(m-sec). Table 2 gives
values of viscosity for different temperatures
and water contents for a gas composition whose
components are those of air. This table provides
values of viscosity which cover most cases found
in practice although some extrapolation is
necessary for those cases involving hot precipi-
tators where temperatures are greater than 300°C.
The values of this variable are read in with an
Ell.4 format and must be right justified in
columns 56-66.
is the incremental length size which will be
taken in a given electrical section and is in
units of feet. If NVI = 1, LINCS(NSECT) should
be given a value of approximately one foot
although larger values can be used with some
loss in accuracy in order to save computer run
time. If NVI = 2, LINCS(NSECT) must be given a
value equal as near as possible to the wire-to-
wire spacing in order for the numerical proce-
dure to be valid. In any case, the product of
LSECT(NSECT) and LINCS(NSECT) must equal the
total length of the given electrical section.
The values of this variable are read in with an
Ell.4 format and must be right justified in
columns 67-77.
Tht- overall format for this data group is (7 (Ell. 4)) and the
data group is contained on two data cards. This data group must
be read in with each basic data set.
19

-------
TABLE 2. VALUES OF VISCOSITY FOR AIR AT VARIOUS TEMPERATURES AND WATER CONTENTS*
	Percent H20	
°c
0
1
2
10
1.767
1.758
1.748
20
1.810
1.801
1.792
30
1.854
1.844
1.835
40
1.900
1.887
1.878
50
1.938
1.929
1.920
60
1.979
1.970
1.961
70
2.020
2.011
2.002
80
2.059
2.050
2.042
90
2.099
2.090
2.081
100
2.137
2.129
2.120
110
2.175
2.167
2.158
120
2.213
2.204
2.195
130
2.250
2.241
2.232
140
2.286
2.277
2.269
150
2.321
2.313
2.304
160
2.356
2.348
2.339
170
2.390
2.382
2.374
180
2.424
2.416
2.408
190
2.457
2.449
2.441
200
2.489
2.482
2.474
210
2.521
2.513
2.506
220
2.552
2.545
2.537
230
2.583
2.575
2.568
240
2.613
2.606
2.598
250
2.642
2.635
2.628
260
2.671
2.664
2.657
270
2.699
2.692
2.685
280
2.727
2.720
2.713
290
2.754
2.747
2.740
300
2.780
2.773
2.767
3
4
5
6
1.739
1.730
1.721
1.712
1.783
1.774
1.765
1.755
1.826
1.817
1.808
1.799
1.869
1.860
1.850
1.841
1.911
1.902
1.892
1.883
1.952
1.943
1.934
1.925
1.993
1.984
1.975
1.966
2.033
2.024
2.015
2.006
2.072
2.063
2.054
2.046
2.111
2.102
2.093
2.085
2.149
2.140
2.132
2.123
2.189
2.178
2.169
2.161
2.224
2.215
2.207
2.198
2.260
2.252
2.243
2.235
2.296
2.288
2.279
2.271
2.331
2.323
2.315
2.306
2.366
2.358
2.349
2.341
2.400
2.392
2.383
2.375
2.433
2.425
2.417
2.409
2.466
2.458
2.450
2.442
2.498
2.490
2.482
2.475
2.530
2.522
2.514
2.507
2.560
2.553
2.545
2.538
2.591
2.583
2.576
2.569
2.621
2.613
2.606
2.599
2.650
2.643
2.636
2.628
2.678
2.671
2.664
2.657
2.706
2.700
2.693
2.686
2.734
2.727
2.720
2.714
2.761
2.754
2.748
2.741

X
10"5 kg/(m-
sec)
7
8
9
10
1.702
1.693
1.684
1.675
1.746
1.737
1.728
1.719
1.790
1.780
1.771
1.762
1.832
1.823
1.814
1.805
1.874
1.865
1.856
1.847
1.916
1.907
1.898
1.888
1.957
1.948
1.939
1.930
1.997
1.988
1.979
1.970
2.037
2.028
2.019
2.010
2.076
2.067
2.058
2.049
2.114
2.105
2.097
2.088
2.152
2.143
2.135
2.126
2.189
2.181
2.172
2.164
2.226
2.218
2.209
2.201
2.262
2.254
2.245
2.237
2.298
2.289
2.281
2.273
2.333
2.325
2.316
2.308
2.367
2.359
2.351
2.343
2.401
2.393
2.385
2.377
2.434
2.426
2.418
2.410
2.467
2.459
2.451
2.443
2.499
2.491
2.483
2.476
2.530
2.523
2.515
2.507
2.561
2.554
2.546
2.539
2.592
2.584
2.577
2.570
2.621
2.614
2.607
2.600
2.650
2.643
2.636
2.629
2.679
2.672
2.665
2.658
2.707
2.700
2.694
2.687
2.734
2.728
2.721
2.715
*Calculations according to:
C.R. Wilke. A Viscosity Equation for Gas Mixtures. J. Chem. Phy. , 18^(4):517-519 (April, 1950).

-------
The next data group which is read in depends on the value of
NVI. If NVI = 2, the following is a sequential listing of the
variables in the next data group which is read in, along with the
descriptions of the variables and the format specifications.
(1) RFS(NSECT) is the roughness factor for the wires in a given
electrical section and is dimensionless. In
precipitation practice, if the wires are scratched
or dirty but not completely coated with air, then
the values of RFS(NSECT) lie in the range 0.5-
1.0. A value of 1.0 corresponds to wires which
are in perfect condition. The effect of decreas-
ing the roughness factor is one of increasing the
current that can be achieved at a given voltage
level. If the wires are completely covered with
dirt, then the effect may be one of increased
wire diameter with a roughness superimposed.
This situation would lead to compensating effects.
The values of this variable are read in with an
Ell.4 format and must be right justified in
columns 1-11.
(2)	START1(NSECT) is the chosen initial current density at which
the calculation of a voltage-current curve starts
in a given electrical section and is in units of
A/m2. In generating the voltage-current curve,
the current density increments in steps of STARTl
(NSECT) until a change is specified. The values
of this variable are read in with an Ell.4 format
and must be right justified in columns 12-22.
(3)	START2(NSECT) is a chosen increment in current density which
is used in place of STARTl(NSECT) when the Jll-th
point on the voltage-current curve is reached and
is in units of A/m . The values of this variable
are read in with an Ell.4 format and must be
right justified in columns 23-33.
(4)	START3(NSECT) is a chosen increment in current density which is
used in place of START2(NSECT) when the JI2-th
point on the voltaqe-current curve is reached and
is in units of A/m . The values of this variable
are read in with an Ell.4 format and must be
right justified in columns 34-44.
(5)	VSTAR(NSECT) is an estimate of the applied voltage correspond-
ing to the first point on the voltage-current
curve as defined by STARTl(NSECT) and is in units
of volts. If VSTAR(NSECT) is close to the actual
applied voltage, the calculation will be performed
faster. However, whatever the choice of VSTAR
(NSECT), it will not affect the accuracy of the
21

-------
calculation. The values of this variable are
read in with an Ell.4 format and must be right
justified in columns 45-55.
The overall format for this data group is (7(Ell.4)) and
the data group is contained on a single data card. If NVI = 1,
this data group is not read in.
The data input starting with AS(NSECT) above must be repeated
for each electrical section of the precipitator, proceeding from
the inlet to the outlet of the precipitator. Thus, the data
group containing AS(NSECT) and possibly the data group containing
RFS(NSECT) must be read in NUMSEC different times.
At this point, the basic data set has been entered into the
program and precipitator performance will be projected based on
the inputted data. The last card in the data section must have
a 99 in columns 1-2. This causes the program to terminate normally.
CONSTRUCTION OF SHORTENED DATA SETS
Once the basic data set is processed, then all the parameters
which are needed by the program to calculate precipitator perfor-
mance are stored in memory. By using values of NDATA equal to 2,
3, or 4, shortened data sets can be entered after the basic data
set in order to analyze the effects of particle size distribution,
specific collection area, and electrical conditions on precipitator
performance. In the shortened data sets, the values of a small
number of variables which are stored in memory are changed to
new values in order to produce a new set of data.
In each shortened data set, the first two data groups and
data cards which are read in are the same as those discussed for
the basic data set. The value of NDATA on the first data card
determines the variables in memory that will be changed. The
effects of particle size distribution on precipitator performance
can be analyzed by setting NDATA =2. In this case, the third
data group which is read in depends upon the value of NDIST which
is stored in memory. If NDIST = 2, an inlet mass median diameter
(D5 0) and geometric standard deviation (SIGMAP) must be read in
according to the same specifications discussed for the basic
data set. If NDIST = 1, cumulative percents (PRCU(I)) correspond-
ing to the particle sizes (ENDPT(I)) stored in memory must be read
in according to the same specifications discussed for the basic
data set. After the third data group is read in, the shortened
data set is complete. By repeating this type of shortened data
with different choices of D50 and SIGMAP or PRCU(I), the effects
of particle size distribution can be analyzed with the use of
only a few data cards.
The effects of specific collection area (SCA) on precipitator
performance can be analyzed by setting NDATA =3. In this case,
22

-------
the following is a sequential listing of the variables which
are inputted in the third data group, along with the descriptions
of the variables and the format specifications.
(1)	VGS(I)	is the total gas volume flow rate in a given
electrical section and is in units of actual
ft3/min. The values of this variable are read
in with an Ell.4 format and must be right justi-
fied in columns 1-11, 23-33, and 45-55.
(2)	VGASS(I) is the gas velocity in a given electrical section
and is in units of ft/sec. The values of this
variable are read in with an Ell.4 format and
must be right justified in columns 12-22, 34-44,
and 56-66.
The overall format for this data group is (3(2E11.4)) and
the data group is contained on 4 or less cards depending on the
value of NUMSEC which is stored in memory. For NUMSEC ± 3,
3 
-------
terms of input data since it will be calculated
in the program. In this case, the appropriate
columns on the data cards can be left blank or
any arbitrary number can be entered. The values
of this variable are read in with an Ell.4 format
and must be right justified in columns 12-22,
34-44, and 56-66.
The overall format for this data group is (3(2E11.4)) and
the data group is contained on 4 or less cards depending on the
value of NUMSEC which is stored in memory. For NUMSEC <_ 3,
3
-------
READ NENDPT. NDATA
YES
TERMINATE
PROGRAM
NO
/ READ ITL
NO
NO
NDATA = 2
NDATA = 1
YES
YES
READ NEST, NDIST, NVI, NX,
NY, NITER, NCALC. NRAPD,
NEFF, NTEMP, NONID
NO
YES
NDATA = 3,
NO
CALC = 0
READ (VGS(I), VGASS(I),
1 = 1, NUMSEC)
READ (VOS(I), TCS(I),
I = 1, NUMSEC)
YES
READ NN, NUMINC
NO
NVI = 2
YES
READ IFINAL, JI1, JI2,
VISKIP, VISAME
Figure 1. Flow chart for the input data logic (Sheet 1 of 2).
25

-------
YES
NDATA>1
READ DL, PL. ETAO, DD. EPS,
VRATIO, US, FPATH, EBD, RHO
NO
READ NUMSEC, (LSECT(I).
I = 1, NUMSEC)
NO
NRAPD > 1
YES
START DO LOOP OVER THE NUMBER
OF ELECTRICAL SECTIONS
READ (ARD50(II, ARSIGM(I),
I = 2, NRAPD)
READ AS, VOS, TCS, WLS, ACS, BS, NWS.
SYS, VGS, VGASS, TEMPS, PS, VISS, LINCS
READ (ASNUCK(I), AZIGGY(I),
AZNUMS(I), I = 1, NONID)
READ, (ENDPT(I), I = 1, NENDPT
NVI = 1
NO
NO
NDIST = 2
READ RFS, START1, START2.
START3, VSTAR
YES
READ. Dg0, SIGMAP
END DO LOOP OVER THE NUMBER
OF ELECTRICAL SECTIONS
NO
NDIST = 1
YES
READ. IPRCU(I). I p 1, NENDPT)
Figure 1. Flow chart for the input data logic (Sheet 2 of 2).
26

-------
SECTION 4
DESCRIPTION OF OUTPUT DATA
GENERAL DESCRIPTION
The output data from the computer program are divided into
seven sections. The types of information contained in the
different sections are listed in order below.
(1)	Printout of all input data.
(2)	Incremental analysis of precipitator performance.
(3)	Charging rates for the different particle sizes.
(4)	Charge accumulated on the different particle sizes.
(5)	Particle size range statistics.
(6)	Unadjusted migration velocities and collection efficiencies
and discrete outlet mass loadings.
(7)	Summary table of precipitator operating parameters and
performance.
In the following subsections, the information contained in the
different sections listed above will be described in detail.
PRINTOUT OF INPUT DATA
The first section of printout which is generated in subroutine
PRTINP contains a listing of all the input data. The first
piece of information which is printed out in this section is a
description of the organizations involved in the development
of the model and the date of the latest revision. The second
piece of information which is printed out is a statement identi-
fying the data set number. Next, in sequence, each input data
card number is printed out and is followed by a sequential list
of the data entries on that particular card. The individual data
entries are printed out in terms of the variable name, numerical
value, and input units.
27

-------
INCREMENTAL ANALYSIS OF PRECIPITATOR PERFORMANCE
This section,of output data which is generated in subroutine
PRTINC provides a printout of those parameters of importance which
vary along the length of the precipitator. This includes data
which change from one electrical section to the next and from one
increment of length to the next.
The first piece of information which is printed out in this
section is the inputted information that describes the particular
calculation being performed. Second, the section number and
section length (m) are printed out.
Third, the names, values, and units of those parameters of
importance which may be section-dependent are printed out in three
columns. Most of this information is mainly of interest in debugging
the model and in looking for problems with the model. The first
column contains the following variables in the designated order:
(1)	total collection plate area in a given section in units of
m2 ;
(2)	wire-to-wire spacing in units of m;
(3)	current per meter of wire in units of A/m;
(4)	one-half the wire-to-wire spacing in units of m;
(5)	gas temperature in units of °K;
(6)	actual gas ion mobility in units of m2/(V-sec); and
(7)	the mass flux (DUST WEIGHT) entering the precipitator based
on the gas volume flow in the given section in units of
kg/sec.
The second column contains the following variables in the designated
order:
(1)	applied voltage in units of volts;
(2)	corona wire radius in units of m;
(3)	current density in units of A/m2 where the printed value
corresponds to a measured or known value (dirty gas) for
NVI = 1 and to a calculated clean gas value for NVI = 2;
(4)	gas volume flow rate in units of m3/sec;
(5)	gas pressure in units of atm;
(6)	mean thermal speed of the gas ions in units of m/sec; and
28

-------
(7) size of length increments to be taken in the given section
in m.
The third column contains the following variables in the
designated order:
(1)	total current in a given section in units of A where the
printed value corresponds to a measured or known value
{dirty gas) for NVI = 1 and to a calculated clean gas value
for NVI = 2;
(2)	total effective corona wire length in a given section in
units of m;
(3)	average electric field in the deposited dust layer in units
of V/m;
(4)	gas velocity in units of m/sec;
(5)	gas viscosity in units of kg/(m-sec);
(6} ionic path length over which the momentum of the ion persists
in the calculation of particle charge due to field charging
in units of m; and
(7) overall mass efficiency per increment in units of % based
on an estimated or measured efficiency for NVI = 1 or the
inputted design efficiency for NVI = 2.
Fourth, those parameters of importance which depend on a
particular length increment are printed out in a table. The
table contains 11 columns and a number of rows equal to the
number of length increments in the given section. The following
is a sequential list of the column headings, along with their
descriptions.
(1)	ROVRI(RIOVR) is the ratio of the total charge density to the
ionic charge density and is dimensionless.
ROVRI is printed out when NVI =1. If NVI = 2,
RIOVR is printed out. RIOVR is the ratio of
the ionic charge density to the total charge
density and is dimensionless.
(2)	ERAVG	is the average electric field in units of V/m.
If NVI = 1, ERAVG is determined by dividing the
applied voltage by the wire-to-plate spacing.
If NVI = 2, ERAVG is determined by averaging the
electric field over the 2NY-2 strips which are
contained in a wire-to-wire spacing and are
established by the grid use in the calculation
of the electrical conditions.
29

-------
(3) EPLT
is the average electric field at the plate in
units of V/m.
(4) AFID
is the average free ion density available for
particle charging in units of #/m3 .
(5) CMCD
is the average current density at the plate in
units of nA/cm2.
(6) MMD
is the mass median diameter of the collected
material in units of m.
(8) DUST LAYER
(7) WEIGHT
is the amount of material collected in units of
kg/m3
^gas
is the thickness of the collected particulate
layer in units of mm/min.
(9) J(PART)
is the average current density at the plate due
to particles in units of A/m2 .
(10) J (ION)
is the average current density at the plate
due to ions in units of A/m2 .
(11) INCR.NO.
is the increment number for which the calculations
have been made.
The data output beginning with the section number and section length
and ending at the present point is repeated for each section of
the precipitator. After the data concerning the last section are
printed out, the estimated or design efficiency and the uncorrected
computed efficiency are printed out. If NVI = 1, the incremental
analysis of precipitator performance along with its associated
printout will be repeated until either the value of NITER is
reached or the uncorrected computed efficiency is within 0.05% of
the estimated efficiency.
If NVI = 2, the printout of output data discussed above will
be altered somewhat in order to display data concerning the
voltage-current calculations. If VISAME = 2 and VISKIP = 2, then,
before the data concerning each section is printed out, the clean
gas voltage-current density-field at the plate relationship will
be printed out and will be preceded by a heading to that effect.
The variables VW, ACDNTY, and AEPLT which are the applied voltage
(V), average current density at the plate (A/m2), and average
electric field at the plate (V/m), respectively, will be printed
out in columns. Also, before the data concerning each length
increment is printed out, the dirty gas voltage-current density-
field at the plate relationship will be printed out and will be
preceded by a heading to that effect. The variables VW, ACDNTY,
and AEPLT will be displayed as discussed above.
30

-------
If VISAME = 1 and VISKIP = 2, the printout will be the same
as for VISAME = 2 and VISKIP = 2 except that the clean gas voltage-
current density-field at the plate relationship will be printed
out only prior to the data concerning the first section. If
VISAME = 2 with VISKIP = 1 or NEST = 2, the printout will be the
same as for VISAME = 2 and VISKIP = 2 except that the dirty gas
voltage-current density-field at the plate relationship will not
be printed out prior to each incremental length. If VISAME = 1
with VISKIP = 1 or NEST = 2, the printout will be the same as for
NVI = 1 except that the clean gas voltage-current density-field
at the plate relationship will be printed out prior to the
data concerning the first section.
CHARGING RATES FOR THE DIFFERENT PARTICLE SIZES
This section of output data which is generated in subroutine
CHGSUM begins by stating the method by which particle charges
were determined. Next, a table is printed out which contains,
for each particle size, values of the ratio of the charge accumu-
lated by a given particle size through a given increment of travel
to the saturation charge in the last section. The number of
columns in the table is determined by the number of particle size
bands in the inlet particle size histogram and the number of rows
is determined by the number of increments into which the precipi-
tator has been divided. The column headings are the actual values
of the midpoints of the size bands in units of ym and the row
headings are the increment numbers. The entries in the table
are designated by Q/QSATF.
CHARGE ACCUMULATED ON THE DIFFERENT PARTICLE SIZES
This section of output data which is generated in subroutine
CHGSUM consists of a table which contains, for each particle size,
the values of the charge in coulombs accumulated by a given particle
size through a given increment of travel. The number of columns in
the table is determined by the number of particle size bands in
the inlet particle size histogram and the number of rows is
determined by the number of increments into which the precipitator
has been divided. The column headings are the actual values of the
midpoints of the size bands in units of ym and the row headings
are the increment numbers.
PARTICLE SIZE RANGE STATISTICS
This section of printout is generated in subroutine ADJUST.
The data output in this section begins by stating which set of
values of ASNUCK(I), AZIGGY(I)/ and ZNUMS(I) is under considera-
tion. Next, a table is printed out which contains information of
importance which is dependent on particle size. This table has
11 columns and the number of rows is determined by the number of
particle size bands in the inlet particle size histogram. The
column headings and their descriptions are given in order below.
31

-------
(1) SIZE
is the midpoint of a particle size band in
units of pm.
(2) CCF
(3) INLET %
is the Cunningham correction factor for a given
particle size and is dimensionless.
is the percentage by mass of a given particle
size band in the inlet particle size distribu-
tion in units of %.
(4) OUTLET %
is the percentage by mass of a given particle
size band in the no-rap outlet emissions in
units of %.
(5)	COR. OUTLET % is the percentage by mass of a given particle
size band in the rap + no-rap outlet emissions
in units of %.
(6)	NO-RAP EFF. is the collection efficiency for a given particle
size band under no-rap conditions in units of %.
(7)	NO-RAP W	is the effective migration velocity for a given
particle size band under no-rap conditions in
units of cm/sec.
(8)	NO-RAP P	is the penetration of a given particle size band
under no-rap conditions in units of %.
(9)	COR. EFF. is the collection efficiency for a given particle
size band under rap + no-rap conditions in units
of %.
(10)	COR. W	is the effective migration velocity for a given
particle size band under rap + no-rap conditions
in units of cm/sec.
(11)	COR. P	is the penetration of a given particle size
band under rap + no-rap conditions in units of
% .
Next, 17 (or 18 if NDIST = 1) lines of data are printed out
which contain information regarding overall mass efficiency,
precipitation rate parameter, and particle size distribution under
various conditions. In the following, a sequential listing of
this information is presented and discussed.
• The stated and uncorrected computed efficiencies are printed
on this line. If NVI = 1, the stated efficiency corresponds to
the last estimated overall mass efficiency used in the calculations.
If NVI = 2, the stated efficiency corresponds to the inputted
design efficiency. The computed efficiency is the uncorrected
ideal overall mass collection efficiency. Also, the words
"convergence obtained" are printed out to indicate that the calcu-
lation over incremental lengths has been completed.
32

-------
•	The overall adjusted no-rap efficiency in units of % is
printed out on this line. This efficiency is obtained by taking
the uncorrected ideal migration velocities and correcting them
for gas sneakage and/or non-rapping particle reentrainment, gas
velocity distribution, and empirical no-rap correction factors
in order to determine adjusted no-rap migration velocities.
Adjusted no-rap efficiencies are calculated from the corresponding
migration velocities and these are used to determine the overall
ad lusted no-rap efficiency.
•	The mass median diameter of the inlet particle size distri-
bution in units of ym is printed out on this line.
•	The geometric standard deviation of the inlet particle size
distribution is printed out on this line.
•	If NDIST = 1, the MMD and ap were obtained from a log-normal
fit of the inlet particle size distribution and the goodness of
fit (GFIT) is printed out on this line. A value of 1 indicates a
perfect fit whereas values less than 1 indicate the extent to which
the distribution deviates from a log-normal distribution. If the
goodness of fit is much less than 1, the distribution deviates
significantly from a log-normal distribution and the values for
the MMD and Op obtained from the fitting procedure may not be
meaningful with respect to the actual distribution. Thus, when
the MMD and ap are of importance, the user must take care in
examining the goodness of fit and comparing the fitted MMD and ap
with the actual distribution. Values of (GFIT)2 > 0.985 are
sufficient to justify using a log-normal fit for many purposes.
If NDIST =1, a true log-normal distribution is used based on a
MMD and Op which are inputted and this line of printout is omitted.
•	The mass median diameter of the outlet particle size distribu-
tion under no-rap conditions in units of ym is printed out on this
line.
•	The geometric standard deviation of the outlet particle size
distribution under no-rap conditions is printed out on this line.
•	The log-normal goodness of fit for the outlet particle size
distribution under no-rap conditions is printed out on this line.
As before, care must be taken in interpreting the MMD and Op and
their meaningfulness must be judged in terms of the goodness of
fit and the actual size distribution.
•	The precipitation rate parameter under no-rap conditions in units
of cm/sec is printed out on this line. This quantity is determined
by usinq the adjusted no-rap efficiency in the exponential-type
equation relating efficiency and migration velocity and solving
for the migration velocity.
•	The values of the chosen nonideal conditions of normalized
standard deviation of the gas velocity distribution, fraction of
33

-------
gas bypassage and/or non-rapping particle reentrainment per stage,
and the number of stages are printed out on this line.
•	The value of the indicator NTEMP is printed out on this line
in order to indicate whether the rapping loss calculation is for
a hot or cold side precipitator.
The mass median diameter of the rapping puff size distribu-
tion (RMMD) in units of ym is printed out on this line.
•	The geometric standard deviation of the rapping puff size
distribution (RSIGMA) is printed out on this line.
The final corrected overall mass collection efficiency in
units of % which includes rapping losses is printed out on this
line.
The final corrected mass median diameter of the outlet
particle size distribution under rap + no-rap conditions in
units of ym is printed out on this line.
The final corrected geometric standard deviation of the
outlet particle size distribution under rap + no-rap conditions
is printed out on this line.
The log-normal goodness of fit for the outlet particle size
distribution under rap + no-rap conditions is printed out on this
line. As before, care must be taken in interpreting the MMD and
Op and their meaningfulness must be judged in terms of the goodness
of fit and the actual size distribution.
The precipitation rate parameter under rap + no-rap condi-
tions in units of cm/sec is printed out on this line. This
quantity is determined by using the final corrected overall mass
efficiency in the exponential-type equation relating efficiency
and migration velocity and solving for the migration velocity.
UNADJUSTED MIGRATION VELOCITIES AND DISCRETE OUTLET MASS LOADINGS
This section of output data which is generated in subroutine
ADJUST consists of a table which contains information for each
particle size band concerning the unadjusted migration velocity
and collection efficiency and the outlet mass loadings. The
table has 7 columns and a number of rows which is equal to the
number of particle size bands. The following is a sequential
listing of the column headings which contains descriptions of
the output variables.
34

-------
IDEAL UNADJUSTED
(1)	MIG. VEL. (CM/SEC) is a column containing the ideal uncorrected
migration velocity for each particle size band.
These values are obtained from the ideal calcula-
tion of particle collection efficiency and contain
no empirical adjustments.
IDEAL UNADJUSTED
(2)	EFFICIENCY %	 is a column containing the ideal uncorrected
collection efficiency for each particle size band.
NO-RAP
(3)	DM/DLQGD(MG/DSCM) is a column containing the discrete mass
loading in each size band under no-rap conditions.
The discrete mass loading for a given particle
size band is determined by calculating AM/Alogj0D,
using the NO-RAP outlet particle size distribution
and the total NO-RAP outlet mass loading where AM
is the mass loading in the size band in units of
mg/DSCM and Alogi0D is the difference of the
log 10 °f the particle diameter in units of m at
the upper endpoint of the size band and the lower
endpoint.
RAPPING PUFF
(4)	DM/DLQGD/(MG/DSCM) is a column containing the discrete mass
loading in each size band for the rapping puff
(contribution due to rapping). The discrete
mass loading for a given size band is determined
as discussed above using the rapping puff particle
size distribution and the mass loading for the
rapping puff.
NO-RAP+RAP PUFF
(5)	DM/DLQGD(MG/DSCM) is a column containing the outlet discrete
mass loading in each size band under no-rap + rap
conditions. The discrete mass loading for a
given size band is determined as discussed above
using the no-rap + rap outlet particle size distri-
bution and the total no-rap + rap outlet mass
loading.
RAPPING PUFF
(6)	DISTRIBUTION (%) is a column containing the percentage by
mass of each particle size band in the rapping
puff. This distribution is log-normal and is
constructed based on a specified MMD and o_.
r1
PARTICLE
(7)	DIAM. (M) is a column containing the midpoint of each
particle size band.
35

-------
SUMMARY TABLE OF PRECIPITATOR OPERATING PARAMETERS AND PERFORMANCE
This section of output data which is generated in subroutine
PRTSUM consists of a table which summarizes the results of the
calculations and gives the values of the most important parameters.
The table is divided into five types of information: (1) data set
number, (2) ESP performance, (3) electrical conditions, (4) size
distributions, and (5) nonideal parameters.
The data set number is the number of the particular set of
nonideal conditions which is under consideration. Under ESP
performance, the no-rap + rap efficiency (%) and specific collec-
tion area [m2/(m3/sec)J are printed out. Under electrical conditions,
the average applied voltage (V), average current density (nA/cm2),
and resistivity are printed out. Under size distributions, the
MMD (vim) and ap for the inlet and outlet particle size distributions
are printed out. The outlet MMD and ap are based on no-rap + rap
conditions. Under nonideal parameters, the gas sneakage fraction
per section, the normalized standard deviation of the gas velocity
distribution and the MMD and ap of the rapping puff are printed out.
36

-------
SECTION 5
MACHINE-DEPENDENT ASPECTS OF THE COMPUTER PROGRAM
The computer program, presented and discussed in this report,
has been developed on a Digital Equipment Corporation (DEC) PDP
15/76 computer. By changing only two statements, the program has
been executed successfully on an IBM 370/158 computer and on a
UNIVAC 1100 computer. By changing the same two statements and
certain output formating, the program has been executed success-
fully on a Control Data Corporation (CDC) 7600 computer. Although
the program should compile successfully with only minor changes on
most computers with a FORTRAN compiler, there are certain
machine-dependent aspects of the program that should be discussed.
These machine-dependent properties can be utilized to make the
usage of the program more general and to extend the application
of the program.
In order to use the program on most computers, the first two
executable statements in the program must be changed. These state-
ments define the input (read) and output (write) unit numbers.
The value of the variable NREAD specifies the input unit number
and the value of NPRNT specifies the outlet unit number. These
two changes should normally be all the modifications which are
necessary to allow successful compilation of the program. However,
in order to execute the program on the CDC 7600 computer, it was
also necessary to change single quotes to double quotes in output
format statements. The approximate times required to compile the
entire program on the DEC PDP 15/76, IBM 370/158, UNIVAC 110 0, and
CDC 7600 computers were 1575, 51, 95, and 5 seconds, respectively.
Although these times can not be compared directly due to software
differences and the fact that an overlay was necessary on the DEC
PDP 15/76, they do give some indication of the relative compile
times.
Once the program is compiled, it will execute provided that
enough core is available to store the program. The total core
requirements on the DEC PDP 15/76 are 86,334 octal words (36,060
decimal words) for the program plus 10,276 octal words (4,286
decimal words) for system software necessary to implement the
program. Table 3 lists the various segments of the program and
their core requirements.
37

-------
TABLE 3. CORE REQUIREMENTS FOR VARIOUS SEGMENTS OF THE COMPUTER PROGRAM

Octal
Decimal

Octal
Decimal

Words
Words

Words
Words
RESIDENT CODE


LINK1


ESPM
11,113
4,683
SPCHG1
407
263
CMAN
573
379
EFLD1
13,663
6,607
BLK1
502
322



BLK2
62
50
LINK2


BLK3
16
14



BLK4
1
1
SPCHG2
732
474
BLK5
15
13
EFLD2
15,774
7,164
BLK6
1,354
748



BLK7
3,410
1,800
LINK3


BLK8
170
120



BLK9
74
60
ADJUST
7,156
3,694
BLK10
74
60
WADJST
610
392
BLK11
53
43
CFIT
467
311
BLK12
202
130
LNFIT
616
398
BLK13
702
450
QTFE
160
112
BLK14
3
3
LNDIST
1,567
887
BLK15
71
57
PRTSUM
1,540
864
BLK16
5
5
System Software
437
287
BLK17
2
2



BLK18
17
15
LINK4


BLK19
57
47



BLK20
263
179
CHARGN
343
228
System Software
7,515
3,917
RATE
1,244
676



ARCCOS
200
128



ZERO
130
88



System Software
12
10



LINK5


PRTINC
PRTCHG
PRTINP
CHGSUM
System Software
1,744	996
1,562	882
5,113	2,635
1,115	621
110	72
38

-------
Due to the fact that the particular DEC PDP 15/76 which has
been used to develop the program has only approximately 55,714
octal words (23,500 decimal words) of core that can be accessed
at any given time, it was necessary to overlay subroutines in
order to fit the program into core. The main program (ESPM) and
subroutine CMAN were kept in resident core and the overlay was
established by setting up the following five links:
LINK1 = SPCHG1,	EFLDl
LINK2 = SPCHG2, EFLD2
LINK3 = ADJUST, WADJST, CFIT, LNFIT, QTFE, LNDIST, PRTSUM
LINK4 = CHARGN,	RATE, ARCCOS, ZERO
LINKS = PRTINC/	PRTCHG, PRTINP, CHGSUM
With the above overlay, the required core is 55,633 octal words
(23,451 decimal words) including system software. The core require-
ments were determined by the core utilized in resident core and
the largest link (LINK2). In this particular overlay, LINK2
had 4,707 octal words (2,503 decimal words) of core which were
not utilized. Also, the link table required an additional 323
octal words (211 decimal words) of core.
In order to get the program to execute on computers with
small storage capacities, an overlay similar to the one discussed
above may be possible. On computers with large memories such
as the IBM 370/158, UNIVAC 1100, or CDC 7600, no such action is
necessary.
Without changing the fundamental operations of the program,
the dimensions of certain arrays can be decreased or increased
if necessary. The dimensions of these arrays may be decreased
in order to fit the program on a small computer or they may be
increased to give greater flexibility on a large computer. In
the version of the program presented in this report, the following
quantities determine array sizes which may be changed:
• number of increments along the length of the precipi-
ta tor
•	number of particle size bands
•	number of electrical sections in the direction of gas
flow
•	number of grid points used in the calculations of
electrical conditions
•	number of rapping puff particle size distributions
39

-------
• number of sets of nonideal conditions of nonuniform gas
velocity distribution and gas sneakage and/or particle
reentrainment without rapping.
The above quantities have maximum values of 45, 20, 10, 225, 10,
and 15, respectively.
The number of increments along the length of the precipitator
that can be utilized can be changed by changing the dimension of
DW and the dimension of the first subscript of XDC. DW appears
in COMMON/BLK6/ and XDC appears in C0MM0N/BLK7/. COMMON/BLK6/
appears in the main program and subroutines PRTINP, CHGSUM, PRTINC,
PRTCHG, ADJUST, and PRTSUM. C0MM0N/BLK7/ appears in the main
program and subroutines SPCHG2 and PRTCHG. DW also appears in the
dimension statement in the subroutine SPCHGl. If the storage
capacity of the computer is large enough, the program should be
modified to handle more than 45 increments. Although 120 incre-
ments should be sufficient to handle most cases, as many as 180
increments may be necessary in certain cases.
The number of particle size bands that can be utilized can be
changed by changing the dimension of CHKSUM, DIAM, 0N0, DXS, XMV,
PCNT, RAD, CCF, VOL, XNO, Q, WS, QSAT, OLDQ, OLDXNO, XDC, OLDQF,
OLDQT, SOLDQF, SOLDQT, YY, RPCNT, DMDLD, WUNCOR, RDMDLD, CDMDLD,
PCTOT, CPCTOT, WSL, PXS, EUNCOR, and AREA. In addition, changes
must be made to those variables which depend on the number of
particle diameters in the particle size histogram. These variables
must have a dimension which is a value of 1 greater than those
which depend on the number of size bands. These variables include
PRCU, ENDPT, PRCUNR, RPRCU, PRCUC, Z, and Y. CHKSUM appears in
the dimension statement in the main program. DIAM, ONO, DXS, XMV,
PCNT, RAD, CCF, and PRCU appear in COMMON/BLKl/. VOL, XNO, Q, WS,
QSAT, OLDQ, AND OLDXNO appear in COMMON/BLK6/. XDC appears in
COMMON/BLK7/. ENDPT appears in COMMON/BLKl1/. OLDQF, OLDQT, SOLDQF,
and SOLDQT appear in COMMON/BLK20/. COMMON/BLKl/ appears in the
main program and subroutines PRTINP, PRTCHG, and ADJUST. COMMON/
BLK6/ and COMMON/BLK7/ appear in those locations previously
designated. COMMON/BLKll/ appears in the main program and sub-
routines PRTINP, ADJUST, LNFIT, and LNDIST. COMMON/BLK20/ appears
in the main program and subroutine CHGSUM. QSAT and XNO appear in
the dimension statement in subroutine SPCHGl. XNO, RAD, CCF,
OLDQ, and Q appear in the dimension statement in subroutine SPCHG2.
YY appears in the dimension statement in subroutine PRTCHG.
RPCNT, DMDLD, WUNCOR, RDMDLD, CDMDLD, PCTOT, CPCTOT, WSL, PXS,
PRCUNR, RPRCU, PRCUC, and EUNCOR appear in the dimension state-
ment in subroutine ADJUST. DIAM, ONO, and PXS appear in the
dimension statement in subroutine WADJST. Z and Y appear in the
dimension statement in subroutine CFIT. Z,Y, and PRCU appear in
the dimension statement in subroutine LNFIT. AREA, PRCU, and
PCNT appear in the dimension statement in subroutine LNDIST. In
changing XDC, it is the second subscript which accounts for the
maximum number of size bands which can be considered.
40

-------
The number of electrical sections in the direction of gas
flow that can be utilized can be changed by changing the dimension
Of LSECT, LINCS, PS, AS, VOS, TCS, WLS, ACS, BS, SYS, VGS, VGASS,
TEMPS, VISS, RFS, STARTl, START2, START3, VSTAR, and NWS.
LSECT, LINCS, and PS appear in COMMON/BLK2/. AS, VOS, TCS, WLS,
ACS, BS, SYS, VGS, VGASS, TEMPS, VISS, RFS, STARTl, START2,
START3, and VSTAR appear in C0MM0N/BLK6/. NWS appears in
C0MM0N/BLK19/. C0MM0N/BLK2/ appears in the main program and in
subroutines PRTINP and ADJUST. C0MM0N/BLK6/ appears in those
locations previously designated. COMMON/BLK19/ appears in the
main program and subroutines PRTINP, PRTCHG, and ADJUST. LSECT
appears in the dimension statement in subroutine SPCHG1.
The number of grid points that can be utilized in the calcu-
lation of electrical conditions can be changed by changing the
dimensions of VCOOP, RHO, EX, OLDRO, OLDV, CDNSTY, V, EY,
EAVGS, CHFIDS, ECOLLS, EAVG, CHFID, and ECOLL. VCOOP appears
in COMMON/BLK13/. EAVG and CHFID appear in COMMON/BLK8/. ECOLL
appears in COMMON/BLK9/. COMMON/BLK3/appears in the main pro-
gram and subroutines CMAN, EFLDl, and EFLD2. COMMON/BLK8/ appears
in the main program and subroutines SPCHG2, EFLD2, and PRTCHG.
COMMON/BLK9/ appears in the main program and subroutine EFLD2.
RHO, EX, OLDRO, OLDV, CDNSTY, V, and EY appear in the dimension
statement in subroutine EFLDl. RHO, EX, OLDRO, OLDV, CDNSTY, V,
EY, EAVGS, CHFIDS, and ECOLLS appear in the dimension statement
in subroutine EFLD2. VCOOP, RHO, EX, OLDRO, OLDV, CDNSTY, V,
and EY are doubly subscripted variables with the first subscript
referring to the number of grid points in the direction perpen-
dicular to the gas flow and the second subscript referring to
the number of grid points in the direction parallel to the gas
flow. EAVG, CHFID, ECOLL, EAVGS, CHFIDS, and ECOLLS are singly
subscripted variables whose dimension must be a value of two less
than twice the dimension of the second subscript in the variables
VCOOP, RHO, EX, OLDRO, OLDV, CDNSTY, V, and EY.
The number of rapping puff particle size distributions that
can be utilized can be changed by changing the dimension of ARD50
and ARSIGM. ARD50 and ARSIGM appear in C0MM0N/BLK12/. COMMON/
BLK12/ appears in the main program and in subroutines PRTINP
and ADJUST.
The number of sets of nonideal conditions of nonuniform gas
velocity distribution and gas sneakage and/or particle reentrain-
ment without rapping that can be utilized can be changed by
changing the dimension of ASNUCK, AZIGGY, and AZNUMS. These
variables appear in C0MM0N/BLK12/. COMMON/BLK12/ appears in
those locations previously designated.
If any changes are made that affect arrays, it should be
pointed out that these changes will also affect the limitations on
the input data discussed in Section 3 . The limitations on the in-
put data discussed previously are only applicable to the version
of the program presented in Appendix C of Volume 1. If changes are
made, new limitations on the input data must be established.
41

-------
SECTION 6
EXAMPLE CASES AND COMPARISONS BETWEEN MODEL
PREDICTIONS AND EXPERIMENTAL MEASUREMENTS
COMPARISONS OF MODEL PREDICTIONS WITH LABORATORY DATA
In order to have controlled experimental data with which to
compare predictions of the mathematical model, a laboratory-scale
precipitator has been constructed for the purpose of studying
collection of fine particles under essentially idealized condi-
tions. For the experiments which will be discussed here, the
carrier gas was ambient air and the particulate source was an
atomizer which produces an aerosol of dioctyl phthalate (DOP)
containing many different particle sizes. A complete description
of this precipitator and the experimental techniques used to
make the measurements can be found elsewhere2'3 and will not be
given here.
In these experiments, the collected oil droplets drained from
the collection electrode by gravity. Thus, particle reentrainment
was not a factor. Gas bypassage of electrified regions was
measured to be approximately 10% per baffled section for the four-
section precipitator. The standard deviation of the velocity
distribution at the inlet of the precipitator, expressed as a
percentage of the average velocity, was measured to be approximately
10%. Since the particles were spherical, particle charging
theories can be rigorously applied. The above considerations
indicate that nonideal effects should be small. Thus, an ideal
calculation of particle collection efficiencies should yield
results which are only slightly higher than those determined
experimentally.
Example 1
In this example, the predictions of the model are compared
with measured fractional collection efficiencies and effective
migration velocities for a plate-to-plate spacing of 25.4 cm,
wire-to-wire spacing of 12.7 cm, wire radius of 0.1191 cm, gas
velocity of 0.976 m/sec, and current density at the plate of 25.8
na/cm2. These parameters are also characteristic of full-scale
precipitators. The inlet mass loading and particle size distribu-
tion, operating voltages and currents, gas flow rate and velocity,
and gas temperature and pressure were measured and are used as input
data for the model. A reduced ionic effective mobility of
42

-------
1.65 x 10"4 m2/V-sec is used in the model since the use of this
value results in good agreement between theoretical and experi-
mental voltage-current characteristics for corona discharge in
ambient air. Although the precipitator is divided into four
baffled and independent electrical sections, the last two sections
were connected together during the experiment and this is reflected
in the input data to the model.
Figure 2 shows a comparison of the experimental fractional
collection efficiencies and effective migration velocities with
those predicted by the model. Table 4 gives the input data card
set which was used to obtain the model predictions. The computa-
tion times required to run this example on the DEC PDP 15/76, IBM
370/158, UNIVAC 110, and CDC 7600 computers were approximately
2801, 330, 112, and 18 seconds, respectively. The output data
from the computer program are givin in Appendix A.
In comparing the theoretical curves with the laboratory
experimental data, certain considerations should be made. The
adjusted, no-rap curves have built into them emprical correction
factors which are a result of data acquired from full-scale
precipitators. Since these correction factors most probably
account for certain length-dependent mechanisms that are presently
ignored in the model, it is doubtful that they would apply to the
same degree in a much shorter laboratory precipitator. These
mechanisms include particle charging near corona wires and particle
concentration gradients. It might be expected that both of these
mechanisms would enhance particle collection efficiencies and would
be more effective the greater the length of the precipitator.
Thus, the calculated adjusted, no-rap collection efficiencies
should tend to be higher than those measured. Since the calcu-
lated ideal, unadjusted collection efficiencies are obtained with-
out any consideration of the length-dependent mechanisms just
mentioned, it might be expected that these values would be some-
what less than those measured.
Example 2
In this example, the predictions of the model are compared
with measured fractional collection efficiencies and effective
migration velocities obtained from experiments with the laboratory
precipitator discussed in Example 1 when the gas velocity was
1.49 m/sec and the average current density at the plate was 10.8
nA/cm2. All input quantities to the model were determined as
previously discussed except the operating applied voltages and
current densities. For this example, these quantities are pre-
dicted by the model by calculating clean-gas, voltage-current
curves for each electrical section and estimating the reduction
in current in each increment of length due to particles.
43

-------
ADJUSTED NO-RAP, S = 0.0, og = 0.0
II	ADJUSTED NO-RAP, S = 0.1, og = 0.1
III	IDEAL. UNADJUSTED
0 EXPERIMENTAL
10.0
GEOMETRIC MEAN DIAMETER, pm
Figure 2: Comparison of experimental fractional collection efficiencies and effective
migration velocities obtained from a laboratory precipitator with those
predicted by the model using the measured electrical conditions.
44

-------
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
TABLE 4. INPUT DATA CARD SET FOR EXAMPLE 1
COLUMN NUMBER
	j	j	3	j	5	g	7	
12345678901234567890123456789012345670901234567390123456789012345678901234567690
1
6
0
1





































































L
A
B

E
S
p


S
c
A
-
1
2
5
P
T
2
/
1
0
0
0
A
C
F
M

J
-
2
4

0
U
A
/
F
T
2
































0
1
0
I
0
1
1
0
1
0
0
3
0
0
0
1
0
1
0
1
0
2



















































1
0
2
0





































































0

0
1
5
_

_
1
0

0
_
_
	
_
9
9

0

_
	
	
1
0
0
0

0
_

5

1
_
_
_
_

1

0
3
	
_
0

0
0
0
1
6
5
1 0






5
0
0
0
0
0

1

0
0
E
0

0
0
0

0
0
4

0
0
0


0
0

1
0
4

0
0

















































0

2
0
_

_

0

3
0


_
___
0

4
0

_
_
_
0

5
0
_
	
	

0

6
0
_
_
_
_
0

8
0


1

0
0
_
_
_
_
1 2
0
_
_
__
_
1


0
_
_
_
_
1

8
0

2

2
0




3

0
0




4

0
0




6

0
0

_
_

1
0

0




2
0

0





























0

0


_
_

0

0
0
0
2
_
__
0

4
0
0
2
_
_
1

0
0
0
2
	

2

6
6
7
2
_
_
7

6
6
7 2
_ 	
1
2

6
0
0
2
_
1 7 .
6
0
0

__
2
1

3
3

2


9

3
3
3
6

0
0
0
2

4
6

6
6
7
2
_
5
7

3
3
4
2

6
a

6
6
7
2

8
0

6
6
7
2
_
1
0
0

0




























0
3
0
3
0
3
0
6

































































+
6

2
5
0
0
E
+
0
0
+
4

6
0
0
0
E
+
0
4
+
1

5
0
0
0
E
-
0
4
+
6

2
5
0
0
E
+
0
0
+ 4
. 6
8
7
5
E
-
0
2
+
5 0
0
0
0
E
+
0
0
+
5

0
0
0
0
E
+
0
0
+
2

5
0
0
0
E
+
0
0
+
2

0
0
0
0
E
+
0
2
+
3

2
0
0
0
E
+
0
0
+
7

6
8
0
0
E

0
1
+ 1
- Q
0
0
0
E
+
0
0
+
1 8
0
0
0
E
-
0
5
+
B

3
3
3
3
E
-
0
1

6

2
5
0
0
E
+
0
0
+
4

5
8
0
0
E
+
0
4
+
1

5
0
0
0
E
-
0
4
+
6

2
5
0
0
E
+
0
0
+ 4
. 6
8
7
5
E
-
0
2

5 0
0
0
0
E
+
0
0
+
5

0
0
0
0
E
4
0
0
4-
2

5
0
0
0
E
+
0
0
+
2

0
0
0
0
E
+
0
2
+
3

2
0
0
0
E
+
0
0
+
7

6
8
0
0
E
+
0
1
+ 1
. 0
0
0
0
E
+
0
0
+
1 8
0
0
0
E
-
0
5
+
8

3
3
3
3
E
-
0
1
+
1

2
5
0
0
E
+
0
1
+
4

4
4
0
0
E
+
0
4
+
3

0
0
0
0
E
-
0
4
+
1

2
5
0
0
E
+
0
1
* 4
6
8
1
5
E
-
0
2
+
5 0
0
0
0
E
¦f
0
0
+
1

0
0
0
0
E
4
0
1
+
2

5
0
0
0
E
+
0
0
+
2

0
0
0
0
E
+
0
2
+
3

2
0
0
0
E
+
0
0
~
7

6
8
0
0
E
~
0
1
+ l
. 0
0
0
0
E
•f
0
0
+
1 8
0
0
0
E
-
0
5
+
8

3
3
3
3
E
-
0
1

-------
Figure 3 shows the measured voltage-current characteristics
for the three electrical sections without and with particles.
Also shown is the theoretical clean-air, voltage-current curve
which was used in the calculations for each of the electrical
sections. The theoretical curve was generated using a reduced
effective ion mobility of 1.65 x 10"** m2/V-sec and a roughness
factor of 0.90. Better fits to the clean-air curves could have
been obtained by adjusting the reduced effective ion mobility
and roughness factor and using slightly different values of these
parameters in the different electrical sections. However, for
purposes of illustrating the use of the theoretical voltage-current
calculations, the agreement between the experimental curves and
the theoretical curve is sufficient. At 10.8 nA/cm2, the theo-
retical curve is slightly above the clean-air curves for sections
1 and 2 and is slightly below the clean-air curve for the last
section.
Figure 4 shows a comparison of the experimental fractional
collection efficiencies and effective migration velocities with
those predicted by the model. Table 5 gives the input data card
set which was used to obtain the model predictions. The computa-
tion time required to run this example on the DEC PDP 15/76
computer was approximately 47,886 seconds. The output data from
the computer program are given in Appendix B.
For sections 1, 2, and 3 and measured operating applied voltages
of 40.8, 40.8, and 39.6 kV, respectively, the computer model
utilizes operating applied voltages of 40.7, 40.7, and 39.5 kV,
respectively, and predicts average current densities at the plate
of 11.9, 11.8, and 8.9 nA/cm2, respectively. The average value
of the predicted current density over the length of the precipita-
tor is 10.4 nA/cm2 which compares favorably with the value of
10.8 nA/cm2 which was maintained in each electrical section during
the experiments. In this example, the reason why all the theo-
retical curves lie below the experimental data can be attributed
to the procedure used in the calculations. When the voltage-
current calculations are employed, the model takes into account
the nonuniformity of the electric field and current density dis-
tributions instead of using average values for an entire electrical
section based only on the applied voltage and the wire-to-plate
spacing. On the average, this results in significantly lower
current densities and electric fields for use in particle charging
and particle collection than are used in the model when the oper-
ating voltage and currents are known. The effects of using this
procedure are especially pronounced for lower current densities
where the particle charging rates are low and longer residence
times are required for particles to attain a limiting value of
charge. Also, since the correction factors for the no-rap
migration velocities are based on comparisons of experimental
data with results obtained from the model using known operating
voltages and currents, these correction factors do not compensate
enough for underprediction in this case.
46

-------
O SECTION 1. NO PARTICLES
~ SECTION 2, NO PARTICLES
A SECTION 3,+ SECTION 4 , NO PARTICLES
• SECTION 1, WITH PARTICLES
¦ SECTION 2, WITH PARTICLES
~ SECTION 3 + SECTION 4, WITH PARTICLES
O THEORETICAL, NO PARTICLES
APPLIED VOLTAGE, kV
Figure 3: Experimental and theoretical voltage-current curves for the
laboratory precipitator.
47

-------
>
o
o
u.
z
o
o
LU
O
o
ADJUSTED NO-RAP, S
ADJUSTED NO-RAP. S
IDEAL. UNADJUSTED
EXPERIMENTAL
GEOMETRIC MEAN DIAMETER, fxm
Figure 4: Comparison of experimental fractional collection efficiencies obtained
from a laboratory precipitator with those predicted by the model
using theoretical voltage-current calculations.
48

-------
1
2
3
4
5
6
7
B
9
10
11
12
13
14
IS
16
17
19
19
20
21
TABLE 5. INPUT DATA CARD SET FOR EXAMPLE 2
	COLUMN NUMBER	
1
2
3
4
5
6
7
e
9
0
1
2
3
4
5
e
7
B
9
2
0
1
2
3

5
6
7
8
9
3
0
1
2
J
4
S
6
7
8
9
4
0
1
2
3
4
5
6 7
8
9
5
0
1
2
3
4
5
6
7
8 9
6
0
1
2
3
4
5
6
7
8
9
7
0
1
2
3
4
5
6
7
1
6
0
1







































































L
A
B
_
E
S
P

	
S
0
A
-
8
2
p
T
2
/
1
0
0
0
A
C
F
M

C
A
L
C
u
L
A
T
E
D
__
V
-
I

F
0
R _
E
A
c
H

E
L
E
C
T
R I
c
A
L
_
S
E
c
T

0
N







0
1
0
1
0
2
1
5
1
5
0
1
0
0
0
l
0
1
0
1
0
2





















































1
0
2
0







































































2
0
0
2
2

0
1
0
2

































































0

0
6
5



1
0

0




9
9

0




1
0
0
0

0


5

1

_

_

1

0
3


__
0

0
0
0
1
6
5
1
. 0





1
5
0
0
0
0
0

1

0
0
E
0

0
0
0

0
0
4

0
0
0

1
0
0

1
0
4

0
0



















































0

2
0

_
_
_
0

3
0


_

0

4
0

_


0

5
0
_


_
0

6
0
__
_
_
_
0

8
0
_
	
_
1

0
0
_
_
_
_
1
. 2
0
_
_

_
1

4
0
	


__
1

8
0

2

2
0




3

0





4

0





6

0





1
0

0
_

_
_
2
0

0































0
.
0





0

0
0
7
6
_

0

0
5
6
3
_

0

2
6
8
2
_
_
0

e
6
5
2
_
	
2

9
8
4
5
_
5

9
6
9
5
_

9
. 5
5


_

1
2

8
3
5
_
	
1
9

7
0
2
6

B
6
4
3
_
3
8

e
0
4
2

4
9

2
5
1
6

6
4

1
7
6
5

7
9

1
0
1

_
1
Q
0

0






























0
3
0
6
0
6
1
2



































































+
6

2
5
0
0
E
+
0
0
+
4

0
B
0
0
E
~
0
4
+
6

2
5
0
0
E
-
0
5
+
6

2
5
0
0
E
+
0
0
~


B
7
5
E
-
0
2
+
5
. 0
0
0
0
E
~
0
0
~
5

0
0
0
0
E
~
0
0
+
2

5
0
0
0
E

0
0
+
3

0
5
3
3
E

0
2
*
4

B
8
5
3
E
+
0
0
+
7

6
0
0
0
E
+
0
1
*
1 .
0
0
0
0
B
+
0
0
+
1
. B
0
0
0
E
-
0
5
+


1
6
6
7
E
-
0
1
~
9

0
0
0
0
E
-
0
1
+
6

0
0
0
0
E
-
0
5
•f
2

0
0
0
0
E
-
0
5
+
2

0
0
0
0
E
-
0
5
~

8
0
0
0
E
+
0
4





















+
6

2
5
0
0
E
+¦
0
0
+
4

0
8
0
0
E
+
0
4
¦f
6

2
5
0
0
E
-
0
5
+
6

2
5
0
0
E
+
0
0
~
4 -
6
8
7
5
E
-
0
2
+
5
. 0
0
0
0
E
+
0
0
+
5

0
0
0
0
E
4
0
0
+
2

5
0
0
0
E
+•
0
0
+
3

0
5
3
3
E
+
0
2
+
4

B
B
5
3
E
+
0
0
+
7

6
0
0
0
E
+
0
1
+
1 -
0
0
0
0
E

0
0
+
1
. B
0
0
0
E
-
0
5
+
4

1
6
6
7
E

0
I
+
9

0
0
0
0
E
-
0
1
+
6

0
0
0
0
E
-
0
5
+
2

0
0
0
0
E
-
0
5
+
2

0
0
0
0
E
-
0
5
+
3 -
8
0
0
0
E
~
0
4






















1

2
s
0
0
E
¦f
0
1
4
3

9
6
0
0
E
+
0
4
+•
1

2
5
Q
0
E
-
0
4
+
1

2
5
0
0
E
+
0
1
+
4 .
6
9
7
5
E
-
0
2

5
0
0
0
0
E
~
0
0
~
1

0
0
0
0
E
+
0
1
+
2

5
0
0
0
E
+
0
0
+
3

0
5
3
3
E
+
0
2
+
4

B
8
5
3
E
~
0
0
+
7

6
0
0
0
E
+
0
1
+

0
0
0
0
E
~
0
0
+
1
8
0
0
0
E
-
0
5
~
4

1
6
6
7
E
-
0
1
+
9

0
Q
0
0
E
-
0

¦f
6

0
0
0
0
E
-
0
5
¦f
2

0
0
0
0
E

0
5
+
2

0
0
0
0
E
-
0
S
~

6
0
0
0
B
~
0
4






















-------
COMPARISONS OF MODEL PREDICTIONS WITH FIELD DATA
Recent studies'1'5 have provided sufficient experimental data
characteristic of full-scale, industrial precipitators with which
to compare the predictions of the mathematical model. In these
studies, the physical quantities which must be known in order to
adequately apply the model have been measured. These quantities
include the precipitator geometry, inlet mass loading and particle
size distribution, voltage-current characteristics, average flow
rate, velocity, temperature, and pressure of the gas stream, gas
composition, and bulk particulate resistivity. The techniques
for measuring these quantities are described elsewhere6 in the
literature and will not be discussed here. In the following two
examples, the model is used to simulate the operation of two full-
scale precipitators collecting fly ash and the predictions of the
model are compared with the measured data.
Example 3
In this example, the predictions of the model are compared
with measured fractional collection efficiencies, fractional
effective migration velocities, and discrete outlet mass loadings
for a cold-side precipitator. Table 6 gives the input data card
set which was used in the model to simulate the operation of the
precipitator. All fundamental input parameters having a signi-
ficant effect on precipitator performance were measured or known
except the reduced effective ion mobility and gas viscosity. The
value of reduced effective ion mobility was assumed to be 2.2 x
10"** m2/V-sec which according to Table 1 may be somewhat low.
The value of gas viscosity was obtained from Table 2 and it was
assumed that air and the flue gas would have approximately the
same viscosity at the same temperature and moisture content. The
computation time required to run this example on the DEC PDP 15/76
computer was approximately 6,181 seconds.
Figure 5 shows a comparison of the experimental fractional
collection efficiencies and effective migration velocities with
those predicted by the model. Figure 6 shows a comparison of the
experimental discrete outlet mass loadings with those predicted
by the model. The output data from the computer program are given
in Appendix C. In Figure 5, theoretical points 'are shown for
pairs (Og, S) of ag and S with values of (0.0, 0.0) and (0.25,0.1).
From experience with modeling full-scale precipitators, these
values of the normalized standard deviation of the gas velocity
distribution (Og) and the fraction per baffled section of gas
sneakage and/or particle reentrainment without rapping (S) en-
compass the range of values which are typical of precipitators
that are in good working condition. The par,tide size distribu-
tion of the "rapping puff" was determined by the experimental
log-normal distribution (MMD = 6.0 um, 
-------
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
TABLE 6. INPUT DATA CARD SET FOR EXAMPLE 3
COLUMN NUMBER









1









2









3









4








5








5







7






1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6 7
8
9
0
1
2
3
4
5
6
7
8 9
0
1
2
3 4
5
6
7
8 9
0
1
2
3
4
5
6
1
4
0
1




































































F
U
L
L
-
S
C
A
L
E

C
0
L
D
-
S
I
D
E

E
5
P


P
L
A
N
T

A


S
C
A
-
2
4
3
F
T
2
/ 1
0
0
0
A
c
F
M

J
°
1 5

9
u
A /
F
T
2








0
1
0
1
0
1
1
0
1
0
0
3
0
0
0
1
0
1
0
1
0
2


















































1
0
2
0




































































1

9
6
6



2
7

0


_

9
9

6




2
2
7
0

0


1
0
0

0
__

_
1

2
_
_
_ __
_
0

0
0
0
2
2
_
1
0




1
5
0
0 0
0
0

5

0
0
0

0
0
0

0
0
3

0
0
0

1
0
0

2
5
3

0
0
















































0

1
0




0

3
0




0

5
0
_


_
0

9
0
_
_
_
_
1

3
0
_
_
_
_
1

9
0

__
_
3

1
0
_
_
_

3
9
0
-
_
	
5

1
0
_
-
-
6

9
0
1
0

1
0



1
4

9
0
_
_

2
5

1
0

_
_
2
9

9
0











































0

0





0

0
3
3



0

2
8
6



1

1
8
9



2

0
0

_
_

3

5
2
4
__
_
7

0
4
8
_
_
	
8
7
0
_
_
__ _
1
G

3 5
2
_

1
2

3
1
5

6
3
e


2
0

4
8
4


3
2

5
9
9


1
0
0

0











































0
3
1
0
1
0
1
0
































































4
2

6
4
6
0
E
+
0
4
4
4

0
6
0
0
E
4
0
4
4
2

7
3
0
0
E
-
0
1
4
1

5
7
2
0
E
+
0
4
+
8

5
0
0
E
-
0

+
5
5
0
0
0
E +
0
0
4
1 .
2
0
0
0
E
4
0
4
3

6
2
5
0
E
4
0
0
+
3

2
7
2
4
E
+
0
5
+
4

1
0
0
0
E
+
0
0
4
3


5
0
0
E
4
0
2
+
1 .
0
0
0
0
E
+
0
0
4
2
2
9
0
0
E -
0
5
4
9 .
0
0
0
0
E

0
+
2

6
4
6
0
E
+
0
4
+
4

2
1
0
0
E
+
0
4
4
4

3
3
0
0
E
-
0
1
4
1

5
7
2
0
E
4
0
4
+
8 .
2
5
0
0
E
-
0
2
+
5
5
0
0
0
E +
0
0
4
1 .
2
0
0
0
E
4
0
4
3

6
2
5
0
E
+
0
0
+
3

2
7
2
4
E
+
0
5
4
4

1
0
0
0
E
4
0
0
4
3

1
5
0
0
E
+
0
2
+
1 .
0
0
0
0
E
+
0
0
+
2
. 2
9
0
0
E -
0
5
4
9 .
0
0
0
0
E
-
0
4
2

6
4
6
0
E
4
0
4
+
4

2
4
5
0
E
+
0
4
4
5

5
8
0
0
E
-
0
1
4
1

5
7
2
0
E
+
0
4
+
8 .
2
5
0
0
E
-
0
2
4
5
. 5
0
0
0
E +
0
0
4
1 .
2
0
0
0
E
4
0
4
3

6
2
5
0
E
+
0
0
+
3

2
7
2
4
E
+
0
5
+
4

1
0
0
0
E
~
0
0
4
3

1
5
0
0
E
+
0
2
4
1 .
0
0
0
0
E
+
0
0
4
2
2
9
0
0
E -
0
5
4
9 .
0
0
0
0
E

0

-------
• EXPERIMENTAL
¦ THEORETICAL NO-RAP + RAP, og = 0, S = 0
~ THEORETICAL NO-RAP + RAP, og - 0.25, S - 0.1
& THEORETICAL NO-RAP, ag - 0, S « 0
A THEORETICAL NO-RAP, og « 0.25, S = 0.1
PARTICLE DIAMETER, jum
Figure 5: Comparison of experimental fractional collection efficiencies and
effective migration velocities obtained from a full-scale, cold-side
precipitator with those predicted by the model.
52

-------
• EXPERIMENTAL
~ THEORETiCAL NO-RAP, og = 0, S = 0
A THEORETICAL RAPPING PUFF
OTHEORETICAL NO-RAP + RAP, aa = 0, S = 0
PARTICLE DIAMETER, /urn
FTgure 6: Comparison of experimental discrete outlet mass loadings obtained
from a full-scale, cold-side precipitator with those prediced by the model.
53

-------
3.0 ym and the theoretical NO-RAP+RAP points show less agree-
ment with the measured data from 3.0 ym to 10.0 ym, the poorer
agreement from 3.0 ym to 4.0 ym can be attributed to the "rapping
puff" which was used. Better agreement would be obtained with
a "rapping puff" which has a larger mass loading and a particle
size distribution with a larger MMD. This is readily seen by
examining Figure 6.
Example 4
In this example, the predictions of the model are compared
with measured fractional collection efficiencies and migration
velocities for a hot-side precipitator. Table 7 gives the input
data card set which was used to simulate the operation of the
precipitator. All fundamental input parameters were determined
in the same manner as discussed in Example 3. The computation
time required to run this example on the DEC PDP 15/76 computer
was approximately 4,779 seconds.
Figure 7 shows a comparison of the experimental fractional
collection efficiencies and effective migration velocities with
those predicted by the model. The output data from the computer
program are given in Appendix D.
54

-------
1
2
3
4
5
6
7
8
9
10
18
19
7
E
S
1
0
1
0
1
0
1
0
TABLE 7. INPUT DATA CARD SET FOR EXAMPLE 4
COLUMN NUMBER
1
2
3
4
5
6
7
8
9
1
0

2
3
4
5
6
7
8
9
2
0
1
2
3
4
5
6
7
e
9
3
0
1
2
3
4
5
6
7
8
9
4
0
X
2
3
4
S
6
7
8
9
5
0
1
2
3
4
5
6
7
8 9
5
0
1
2
3
4
5
6
7
1
5
0
1






























































F
U
L
L
-
s
C
A
L
E

H
0
T
-
5
1
D
E
_
E
S
P

_
P
L
A
N
T
_
B

S
c
A
a
3
9
0
F
T
2
/
1
0
0
0
A
c
F
M

J
°
3
4
3
u
A
/
F
T
2


0
1
0
1
0
1
1
0
1
0
0
3
0
0
0
1
0
1
0
2
0
2












































1
0
2
0






























































2

5
1




3
6

0




9
9

6



_
2
2
7
0

0

_
1
0
0

0
_
_

1

2
_
_
_
_

0

0
0
0
2
2
	
1
0





1
5
0
0

0
0
0

0
0
4

0
0
0

1
0
0

2
5
4

0
0










































0

2
0
_
_
_
_
0

4
0
_
_
_
_
0

7
0
_
	
_
_
1

0
0
_
_

	
1

5
0

	
_
	
2

0
0
_
_

	
3

0
0
	
_
_
	
4
. 0
0
_
_
_
_
5

0
1
0

0
0
_
_
_
1
5

0
0
_
_
_
2
5

0
0
_
_
_
3
0

0
_
_
_
_
1
0
0

0





























0

0





0

1
4
7
9
_
_
0

5
7
4
2
1
_
1

0
0
9
2
2
_
1

7
2
2


	
2

7
4
9
2
6
_
6

5
2
5

4
_
9
. 4
B



_
1
1

1
5

6
2
5
5
5
2
0

1
B
4
4
5
3
0

9
7
2
6
9
3
5

4
9
6
7
9
1
0
0

0





























0
4
0
9
0
9
0
9
0
9
























































+
4

2
1
2
0
E
+
0
4
+
3

5
8
8
0
E
+
0
4
+
1

2
2
0
0
E
¦f
0
0
+
5

6
1
6
0
E
+
0
4
+
5

4
5
0
0
E
-
0
2

4
5
0
0
0
E
+
0
0
+
+
4

5
0
0
0
E
+
0
0
+
4

3
2
0
7
E
+
0
5
+
3

7
9
5
8
E
+
0
0
+
6

2
4
0
0
E
+
0
2
+
1

0
0
0
0
E
+
0
0
+
2
8
0
0
0
E
-
0
5
+
¦f
4

2
I
2
0
E
+
0
4
+
3

3
9
5
0
E
+
0
4
+
1

6
7
2
0
E
+
0
0
+
5

6
1
6
0
E
+
0
4
+
5

4
5
0
0
E
-
0
2
+
4
5
0
0
0
E
+
0
0
4
+
4

5
0
0
0
E
+
0
0
+
4

3
2
0
7
E
+
0
5
+
3

7
9
5
8
E
+
0
0
+
6

2
4
0
0
E
+
0
2
+
1

0
0
0
0
E
+
0
0
+
2
8
0
0
0
E
-
0
5
•f
+
4

2
1
2
0
E
+
0
4
+
2

9
1
3
0
E
+
0
4
+
1

4
2
0
0
E
+
0
0
+
5

6
1
6
0
E
+
0
4
+
5

4
5
0
0
E
-
0
2
+
4
. 5
0
0
0
E
+
0
0
+
+
4

5
0
0
0
E
4-
0
0
+
4

3
2
0
7
E
+
0
5
+
3

7
9
5
8
E
+
0
0
+
6

2
4
0
0
E
•f
0
2
+
1

0
0
0
0
E
+
0
0
+
2
. S
0
0
0
E
-
0
5
+
+
4

2
1
2
0
E
+
0
4
+
2

7
5
0
0
E
+
0
4
+
1

4
6
0
0
E
+
0
0
+
5

6
1
6
0
E
+
0
4
+
5

4
5
0
0
E
-
0
2
+
4
. 5
0
0
0
E
~
0
0
¦f
+
4

5
0
0
0
E
+
0
0
+
4

3
2
0
7
E
+
0
5
+
3

7
9
5
8
E
+
0
0
+
6

2
4
0
0
E
+
0
2
+
1

0
0
0
0
E
+
0
0
+
2
a
0
0
0
E
_
0
5


-------
>-
o
EXPERIMENTAL
THEORETICAL NO-RAP + RAP, og - 0, S = 0
~ THEORETICAL NO-RAP + RAP, og - 0.25. S = 0.1
A THEORETICAL NO-RAP, og = 0, S = 0
~ THEORETICAL NO-RAP, og = 0.25, S - 0.1
¦si : • i
¦ ¦¦¦¦¦¦¦lllllllllill
E
o
<
CE
C3
10.0
PARTICLE DIAMETER, f/m
Figure 7: Comparison of experimental fractional collection efficiencies and
effective migration velocities obtained from a full-scale, hot-side
precipitator with those predicted by the model.
56

-------
SECTION 7
APPLICATIONS OF THE MODEL
EFFECT OF PARTICLE SIZE DISTRIBUTION
The distribution of the various particle sizes entering a
precipitator influences the electrical operating conditions and
the overall mass collection efficiency. Normally, the distribu-
tion of particulate emissions from industrial sources can be
approximated by a log-normal distribution. This type of distri-
bution can be completely characterized by the mass median diameter
(MMD) and the geometric standard deviation (Op), and the effect
of both parameters on precipitator performance must be considered.
The MMD provides a representative size for the distribution and
0p provides a measure of the dispersion of the distribution.
The computer program for the model allows the user to
specify the MMD and Op for a log-normal distribution, along with
the desired particle size bands, and will then construct an
inlet particle size distribution histogram for use in the model.
By using a basic data set and shortened data sets, the effect of
particle size distribution on precipitator performance can be
easily obtained.
Example 5
In this example, the effects that certain particle size
distributions can have on precipitator performance are estimated
for the laboratory precipitator and conditions used in Example 1.
Although the particle size distribution will influence the
voltage-current characteristics and, depending on the mass
loading, can sometimes have a considerable effect, it is assumed
that the voltage-current characteristics remain constant in order
to obtain trends. If a more representative calculation is necessary,
this can be provided by using the option which calculates voltage-
current characteristics but this requires considerably more
computer time.
For this example, the effect of MMD on overall mass collection
efficiency was estimated by holding crp fixed at a value of 2.5
and using values of 2.0, 5.0, 10.0, 15.0, and 25.0 ym for the MMD.
The effect of Qp on overall mass collection efficiency was esti-
mated by holding the MMD fixed at 10 ym and using values of 1.5,
5.0, 10.0, and 15.0 for ap. The results obtained for ap = 2.5
57

-------
and MMD = 10.0 ym when holding Op constant can also be used in
analyzing the effect of Op on overall mass collection efficiency.
Table 8 gives the input data card set which was used to perform
the calculations. The computation time required to run this
example on the DEC PDP 15/76 computer was approximately 25,96 8
seconds.
Figure 8 shows curves obtained from the calculations. Non-
ideal effects have been ignored in obtaining the curves which are
shown. The output data from the computer program are given in
Appendix E. The results of these calculations point out the
importance of considering the effect of variations in particle
size distribution on overall mass collection efficiency for a
given specific collection area and set of electrical operating
conditions. A precipitator should be designed with the capability
of meeting emissions standards with a somewhat less favorable
particle size distribution than that currently existing or that
anticipated in order to provide a margin of safety. This is
necessary because any changes in the process which produces the
emissions may result in a less favorable particle size distribu-
tion .
EFFECT OF SPECIFIC COLLECTION AREA
An important parameter which influences the performance of
a precipitator is called the specific collection area (SCA) and
is defined as the ratio of the total collection area to the total
gas volume flow. The SCA can be changed by changing either the
collection plate area or the gas volume flow or both. In effect,
changes in SCA result in changes in the treatment time exper-
ienced by the particles. Thus, increasing the SCA of a precipita-
tor increases the collection efficiency.
The SCA provides the most flexible variable in designing a
precipitator. Although the SCA has practical limitations, it has
no physical limitations and can be increased indefinitely. Even
though a curve of efficiency versus SCA will level off for the
larger values of SCA due to the exponential nature of the
collection mechanism, greater efficiency can always be obtained
from increased SCA.
The computer program for the model allows the user to easily
examine the effects of SCA on precipitator performance by using a
basic data set and shortened data sets. The SCA is changed by
changing the gas volume flow and gas velocity through the
precipitator and leaving the collection plate area fixed. It
should be pointed out that for certain values of SCA this
method of producing different SCAs will lead to impractical
values of gas volume flow and gas velocity which are not physically
meaningful. However, this approach is equivalent to changing the
collection plate area in the present version of the model.
58

-------
TABLE 8 INPUT DATA CARD SET POR EXAMPLE 5
CARD
NUMBER
COLUMN NUMBER
	1	2	3	1	5	S	7	5"
12345678901234567890123456789012345678901234567690123456769012345678901234567090
L
A
B
_
E
S
p

__
S
c
A
•

2
5
F
T

/ 1
0
0
0
A
C
p
M

J
-
2
4 U A / P T 2

M
M
D
•
2
u
M

8

G
M
A
P
-
2

S

















0
I
0
2
0
1
1
0

0
0
3
0
0
0

0

0
1 0
1















































1
0
2
0
































































0

0

5



1
0

0




9
9

0




0
0

0

_

5 1
_
I

0
3
_
_
_
_
0

0
0
0
1
6
5
1

0





1
s
0
0 0 0
0



0
0
E
0

0
0
0

0
0
4

0
0
























































0


0




0

3
0




0

s
0 _



0

7
0




0 9 0 	
_



0
_
_
_
_
2

9
0
_
_
_
_
5

1
0
_
_

_
6

9
0	

_
9


0

1
0

9
0



1
9


0



3
0

9 0



4
9

1
0








































2

0





2

5

























































0
3
0
3
0
3
0
6




























































~
6

2
5
0
0
E
~
0
0
+


6
0
0
0
B
+ 0
4

1

5
0
0
0
E
-
0
4 + 6 250
0
s
+
0
0
+


6
6
7
5
E
-
0
2
+
5

0
0
0
0
E
~
0
0
+
5 0
0
0
0
E
+
0
0
+
2

5
0
0
0
E
+
0
0
+
2

0
0
0
0
E
+ 0
2

3

2
0
0
0
E
+
0
0*7.660
0
E
~
0
1
¦f
1

0
0
0
0
B
+
0
0



6
0
0
0
E
-
0
5
+
8 3
3
3
3
E
-
0
1
~
6

2
5
0
0
B
+
0
0
+
4

s
8
0
0
E
+ 0


1

5
0
0
0
E
-
0
4 + 6.250
0
B
~
0
0
+
4

6
6
7
5
B
"
0
2
~
S

0
0
0
0
B
~
0
0
+
5 0
0
0
0
E
~
0
0
+
2

5
0
0
0
B
+
0
0
+
2

0
0
0
0
E
+ 0
2

3

2
0
0
0
B
+
0
0 + 7.660
0
E
+
0
1
~
1

0
0
0
0
E
+
0
0
•+
1

6
0
0
0
E
-
0
5
+
8 3

3

E
-
0
1
~
1

2
s
0
0
E
+
0
1
+


4
4
0
0
B
+ 0
4

3

0
0
0
0
B
-
0
4 + 1.250
0
B
~
0
1
+
4

6
8
7
5
E
-
Q
2
4
5

6
0
0
0
E
~
0
0
+
1 0
0
0
0
E
~
0
1
+
2

5
0
0
0
E
~
0
0
+
2

0
0
0
0
E
+ 0
2

3

2
0
0
0
E
~
0
0 + 7.680
0
B
~
0
1
~
1

0
0
0
0
E
+
0
0
+
1

e
0
0
0
E
-
0
5
~
8 3
3
3

B
-
0
1
1
4
0
2
































































L
A
B

B
s
p
1
_
8
c
A
-
1
2
5
p
T
2
/1
0
0
0
A
C
p
M

J
-
2
4 U A / P T 2

M
M
D
•
5
0
N

8
I
c
H
A
p
-
2

5

















5

0





2

5

























































1
4
0
2
































































L
A
B
_
B
6
p


s
c
A
-
1
2
5
p
T
2
/ 1
0
0
0
A
c
p
M

J
-
2
4 U A / P T 2

M
M
D
-
1
0
a
M

6

G
M
A
P
-
2

s
















1
0

0



_
2

5

























































1
4
0
2
































































L
A
B
_
B
8
p

_
s
C
A
-
X
2
5
p
T
2
/ 1
0
0
0
A
c
p
M

J
-
2
4 U A / P T 2

M
M
D
-
1
5
u
M

8
I
G
M
A
P
-
2

5
















1
5

0
_
_
_
_
2

s

























































1
4
0
2
































































L
A
B

B
S
p


s
c
A
-
1
2
5
p
T
2
/ 1
0
0
0
A
c
p
M

J
-
2
4 0 A / P T 2

M
M
D
-
2
5
u
M

8

G
H
A
P
-
2

5
















2
5

0

_
_
_
2

5

























































1
4
0
2
































































L
A
B

B
8
p


s
c
A
-
1

5
p
T
2
/ 1
0
0
0
A
c
p
M

J
-
2
4 CJ A / P T 2

M
M
D
-
1
0
u
M

S
I
G
M
A
P
-
1

5

















0

0

_
_

1

5

























































1
4
0
2
































































L
A
B

E
S
p


s
C
A
-
1

5
p
T
2
/1
0
0
0
A
c
F
M

J

2
4 U A / P T 2

M
M
0
-
X
0
u
M

S

G
M
A
P
-
5

0
















1
0

0




5

0

























































1
4
0

































































L
A
B

E
s
p


s
c
A
«
1
2
5
p
T
2
/ 1
0
0
0
A
c
P
M

J
-
2
4 U A / P T 2

M
M
D
-
1
0
u
M

S
I
G
M
A
P
-

0

0















1
0

0




1
0

0

























































4
0
2
































































L
A
B

E
s
p


s
c
A
-
1
2
5
F
T
2
/ 1
0
0
0
A
c
P
M

J
-
2
4 U A / P T 2

M
M
D
-
1
0
U
M

S

G
N
A
P
-

5

0
















-------
>
o
Ui
o
o
Ui
o
y
«
<
2
<
CC
ui
>
O
MASS MEDIAN DIAMETER, Mm
Figure 8: Effect of particle size distribution on overall mass collection efficiency.
GEOMETRIC STANDARD DEVIATION
10.0
99.99
CURVE WITH MMD
MMD CURVE WITH
60

-------
Example 6
In this example, the effect of SCA on the overall mass collec-
tion efficiency is examined using the geometry and operating
conditions in Example 1. Although the voltage-current character-
istics will change with changes in SCA, it was assumed that they
remained constant in order to obtain trends. If a more repre-
sentative calculation is necessary, this can be provided by using
the option which calculates voltage-current characteristics but
this requires considerably more computer time. Overall mass
collection efficiencies were determined for SCAs of 9.85, 39.4,
59.1, 78.7, 118.1, and 157.5 (m2/(m3/sec)) or 50, 200, 300, 400,
600, and 800 (ft2/(1000 ft3/min)), respectively. The results
obtained in Example 1 for an SCA of 24.6 (m2/(m3/sec)) or 125
(ft2/(1000 ft3/min)) can also be used in this example. Table 9
gives the input data card set which was used to perform the
calculations. The computation time required to run this example
on the DEC PDP 15/76 computer was approximately 15,558 seconds.
Figure 9 shows curves of overall mass collection efficiency
as a function of SCA that were obtained from the calculations.
In obtaining the curves, the values of o_ and S were taken to be
zero. The output data from the computer program are given in
Appendix F.
These curves point out the large effect SCA has on precipi-
tator performance. Also, two other features of interest should be
discussed. First, the NO-RAP curve is significantly higher than
the unadjusted, ideal curve. This is due to the fact that the
inlet particle size distribution (MMD = 4 ym) is weighted towards
the fine particle size range where the correction factors to the
NO-RAP migration velocities are applied. As the MMD of the inlet
particle size distribution increases, the NO-RAP curve and the
unadjusted, ideal curve come into better agreement. Second, the
detrimental effect rapping reentrainment can have on precipitator
performance is clearly seen. Even with good electrical operating
conditions (45.2 kV and 25.8 nA/cm2), high collection efficiencies
are difficult to achieve with typical losses in collection effi-
ciency due to rapping reentrainment without going to large values
of SCA. From the curves, an overall mass collection efficiency of
9 9.9% can be obtained at an SCA of 49.25 m2/(m3/sec) or 250 ft /
(1000 ft3/min). However, with rapping, an SCA of 78.7 m2/(m3/sec)
or 400 ft2/(1000 ft3/min) is required in order to obtain the same
overall mass collection efficiency. With worse electrical oper-
ating conditions, the effects of rapping reentrainment would be
even more severe due to the collection of more mass on the outlet
fields of the precipitator.
EFFECT OF APPLIED VOLTAGE AND CURRENT DENSITY
In practice, it is desirable to operate a precipitator at the
highest values of applied voltage and current density that can be
61

-------
4
S
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
>2
TABLE 9. INPUT DATA CARD SET FOR EXAMPLE 6
COLUMN NUMBER









1









3









*









4








5








6









7







*
3
4

6
7

9
0
-
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
€
7
3
o
0
1
2
3
1
c
6
7 8
9
0
1
2
3
4
5
6
7
8 9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
1
6
0
1






































































L
A
B
_
E
S
P
:
.
s
c
A

5
0
F
T
2
/
l
0
0
0
A
C
F
M
;
J
-
2
4
U
A
/
F
T
2




































0
1
0
1
0
1
1
0
1
0
0
3
0
0
0
1
0
1
0
l
0
1




















































1
0
2
0






































































0
.
0
1
S
_
_
_
1
0

0
_
_

_
9
9

0
_
_
_
_
1
0
0
0

0
_
_
5
-
1
_
_
_


1
.
0
3
_
_

0

0
0
0
1
6
S
1
. 0





1
s
0
0
0
0
0

1
.
0
0
0
.
0
0
0
-
0
0
4
•
0
0






























































0
•
2
0
_
_


0
-
3
0




0
-
4
0




0
-
5
0

_


0
*
6
0




0
.
8
0



1

0
0




1
. 2
0




1
•
4
a




1
.
8
0
2
-
2
0
_
	
_
_
3
•
0

_
_

_
4

0
_
_
_
_
_
6
.
0


_
_
_
1
0
.
0




2
0

0






























0
•
0





0
-
0
0
0
2
_

0
-
4
0
0
2


1
.
0
0
0
2
	
	
2
•
6
6
7
2
_
_
7

6
6
7
2
__
1
2

6
0
0
2
__
1
7 .
3
3
3
2

2
1

3
3
3
2

2
9
.
3
3
6
.
0
0
0
2
_
4
6
.
6
6
7
2

5
7
.
3
3
4
2

6
a
.
6
6
7
2

8
0
-
6
6
7
2

1
0
0

0





























0
3
0
3
0
3
0
6


































































+
6
.
2
5
0
0
E
¦f
0
0
+
4

6
0
0
0
E
+
0
4
+
1
.
5
0
0
0
E
-
0
4
+
6
.
2
5
0
0
E
+
0
0
+
4
. 6
8
7
s
E
-
0
2
+
5
. 0
0
0
0
E

0
0
+
5
.
0
0
0
0
E

0
+
2
.
5
0
0
0
E
+
0
0
+
5
•
0
0
0
0
E
+
0
2
+
8
.
0
0
0
0
E
+
0
0
+
7
.
6
8
0
0
E
+
0
1
+
1
. 0
0
0
0
E
+
0
0
+
1
. 8
0
0
0
E
-
0
5
+
8
.
3
3
3
3
B
-
0
+
6
•
2
5
0
0
E
+
0
0

4

5
8
0
0
E
+
0
4
+
1
.
5
0
0
0
E
-
0
4
+
6
.
2
5
0
0
E
«~
0
0
+
4
. 6
8
7
5
E
-
0
2

5
. 0
0
0
0
E
~
0
0
+
5
.
0
0
0
0
E
~
0
~
2
•
5
0
0
0
E
+
0
0
+
5
•
0
0
0
0
E
+
0
2
+
8
•
0
0
0
0
E
+
0
0
+
7

6
8
0
0
E
+
0
1
+
1
. 0
0
0
0
E
~
0
0
~
1
. 8
0
0
0
E
-
0
5

8

3
3
3
3
E
-
0
+
1
.
2
5
0
0
E
+
0
1
+
4

4
4
0
0
E

0
4
+
3
-
0
0
0
0
E
-
0
4
+
1

2
5
0
0
E
~
0
1

4
. 6
8
7
5
E
-
0
2

5
. 0
0
0
0
E
~
0
0
¦f
1
.
0
0
0
0
E
*
0
+
2

5
0
0
0
E
+
0
0
+
5

0
0
0
0
E
~
0
2
+
8

0
0
0
0
E
~
0
0
+
7
.
6
8
0
0
E
+
0
1
~
1
. 0
0
0
0
E
+
0
0
~
I
. 8
0
0
0
B
-
0
5
+
8

3
3
3
3
E
-
0
1
6
0
3






































































L
A
B
__
E
s
p
i

s
c
A
=
2
0
0
P
T
2
/
1
0
0
0
A
c
F
M
,
J
-
2
4
U
A
/
F
T
2



































+
1
.
2
5
0
0
E
+
0
2
4-
2
.
0
0
0
0
E
+
0
0
+
1

2
5
0
0
E
+
0
2
+
2

0
0
0
0
E
~
0
0
~
1
2
S
0
0
E
+
0
2
+
2
0
0
0
0
E
+
0
0










1
6
0
3






































































L
A
B

B
s
p
l

s
C
A

3
0
0
F
T
2
/
1
0
0
0
A
C
F
M
;
J
-
2
4
u
A
/
F
T
2



































¦f
8
•
3
3
3
3
E
+
0
1
+
1

3
3
3
3
E
4-
0
0
+
8
.
3
3
3
3
E
+
0
1
+
1

3
3
3
3
E
+
0
0
+
8
. 3
i
i
3
E
+
0
1
+
1
. 3
3
3
3
E
+
0
0










1
6
0
3






































































L
A
B
_
E
s-
P
j
_
s
c
A
=
4
0
0
F
T
2
/
1
0
0
0
A
C
F
M
1
J
-
2
4
u
A
/
F
T
2



































~
6

2
5
0
0
E
+
0
1
+
1
-
0
0
0
0
E
~
0
0
+
6
.
2
5
0
0
E
+
0
1
~
1

0
0
0
0
E

0
0
*
6
. 2
S
0
0
E
~
0
1

1
. 0
0
0
0
E
~
0
0










1
6
0
3






































































L
A
B
_
E
s
P

_
s
-
A

6
0
0
F
T
2

1
0
0
0
A
c
F
M
1
J
-
2
4
u
A
/
F
T
2



































~
4

1
6
6
7
E
*

1
•
b

b
*
6
i
E

0
1
*
4
.
1
b
f
7
E
~
0
1
~
6
.
t>
b
6

E
-
0
1
~
4

0
*

t
*


•
b
b
6
6

e

>











1
b
0
3






































































L
A
B

P
s
f-



L
4
•
•j
0
c
r
T
2
t

0
0
0
A

F
M

J
°
2
4
u
A
/
F





































~
J


I




1
I





0
0
L
-
0
1
~
3

I
}
5
,




~
•i





t

0
1

i
1
I
¦>

i




5






0
1











-------
>
o
z
UJ
o
o
F—
o
o
o
V)
V)
<
s
<
0c
UJ
>
o
118.1
O NO-RAP, ag = 0, S = 0
~ NO-RAP + RAP, ag = 0. S
A UNADJUSTED IDEAL, ag
SPECIFIC COLLECTION AREA, ft2/(1000 ft3/min)
Figure 9: Effect of specific collection area on overall mass collection efficiency.
63

-------
obtained without excessive sparking or back corona. Higher values
of applied voltage lead to higher electric fields which result in
increased particle charge and a higher value of the electric field
near the collection electrode. Higher values of current density
lead to higher ion densities which result in faster charging rates
and an increased contribution to the total electric field near
the collection electrode due to space charge. Thus, higher values
of applied voltage and current density lead to higher migration
velocities and higher collection efficiencies.
In analyzing the effects of applied voltage and current
density with the model, it must be realized that the values of
applied voltage and current density are limited by the onset ot
sparking or back corona which is not predicted by the model in its
present form. Also, for the geometries which are used in practice,
the voltage-current curve becomes very steep for higher applied
voltages and large increases in current can be obtained from small
increases in applied voltage. For precipitators operating with
voltages and currents on the steep portion of the voltage-current
curve, increasing the current will not have a very pronounced
effect on improving precipitator performance because only small
changes in applied voltage will be realized and the applied vol-
tage plays the dominant role in limiting particle charge and
controlling the electric field.
The computer program for the model allows the user to easily
examine the effects of applied voltage and current density on
precipitator performance by using a basic data set and shortened
data sets. Measured or known values of applied voltage and current
density can be supplied by the user or theoretical values can be
determined for wire-plate geometries.
Example 7
In this example, the effect of applied voltage and current
density on the overall mass collection efficiency is examined
using the geometry and operating conditions in Example 1.
Figure 10 shows the voltage-current curves for the three elec-
trical sections where particles are in the gas stream. These
curves were used in order to determine various applied voltages
and current densities. The overall mass collection efficiency was
determined for 2, 5, 10, 20, 35, and 45 nA/cm2. The results
obtained in Example 1 for 25.8 nA/cm2 can also be used in this
example. Table 10 gives the input data card set which was used
to perform the calculations. The computation time required to
run this example on the DEC PDP 15/76 computer was approximately
21,067 seconds.
Figure 11 shows curves of overall mass collection efficiency
as a function of average current density at the plate that were
obtained from the calculations. In obtaining the curves, the
values of aq and S were taken to be zero. The output data from
the computer program are given in Appendix G.
64

-------
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
TABLE 10. INPUT DATA CARD SET FOR EXAMPLE 7
COLUMN NUMBER








1









2









3






4








&








6









7







1
2
3
4
5
6 7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7 8 9 0
1
2
3
4
5
6
7 8
9
0
1
2
3
4
5
6
7 8
9
0
1
2
3
4
5
6
7
0
9
0
1
2
3
4
5
6
7
1
6
0
1



































































L
A
B

E
S P


s
C
A
¦
1
2
5

F
T
2
/
1
0
0
0
A
C
F
M
<
_
J
=
2
_
N
A / C M
2


































0
1
0
1
0
1 1
0
1
0
0
3
0
0
0
1
0
1
0
1
0
1


















































1
0
2
0



































































0

0
1
5


1
0
.
0




9
9

0

_
_
_
1
0
0
0

0
_
_
5
-
1
_
_____
1
•
0
3
_
_
	 _
0

0
0
0
1
6
5
1
0





1
5
0
0
0
0
0
•
1
•
0
0
E
0

0
0
0
. 0
0
4

0
0




























































0

2
0



0
.
3
0




0
-
4
0


_
_
0

5
0
_
_
_
_
0
.
6
0
— — — —
0
•
8
0
_
_
_ _
1

0
0
_
_

_
1 .
2
0

_
_
_
1
•
4
0

_
_
_
1
•
8
0

2

2
0



3

0
0
w


__
4

0
0


_

6
-
0
0
	
_
_
	
1
0

0
0	
2
0
.
0
0






























0

0




0
.
0
0
0
2


0
-
4
0
0
2


1

0
0
0
2
_
_
2

6
6
7 2
7

6
6
7
2

1
2
.
6
0
0
2
_
1 7

3
3
3
2

2
1
•
3
3
3
2

2
9
•
3
3
3
6

0
0
0 2

4
6

6
6
7
2
_
5
7

3
3
4
2

6
8

6
6
7
2
_
8
0

6
6 7 2 _
1
0
0

0






























0
3
0
3
0
3 0
6
































































4
6
.
2
5
0 0
E
~
0
0
+
3
.
7
5
0
0
E
4
0
4
+
1

1
6
2
8
E
-
0
5
+
6
.
2 5 0 0
E
+
0
0
+
4
. 6
8
7
5
E
-
0
2
4
5 .
0
0
0
0
E
4
0
0
4
5
•
0
0
0
0
E
4
0
0
4
2
.
5
0
0 0
E
4
0
0
4
2

0
0
0
0
E
4
0
2
4
3
.
2
0
0
0
E
4
0
0
4
7

6 8 0 0
E
4
0
1
+
1
. 0
0
0
0
£
+
0
0
4
1 .
8
0
0
0
E
-
0
5
4
8
•
3
3
3
3
E
-
0
1
4
6
.
2
5
0 0
E
+
0
0
4
3
.
7
0
0
0
E
4
0
4
+
1

1
6
2
8
E
-
0
5
+
6
.
2 5 0 0
E
4
0
0
+
4
6
8
7
5
£
-
0
2
4
5 .
0
0
0
0
E
4
0
0
4
S

0
0
0
0
E
4
0
0
4
2
.
5
0
0 0
E
+
0
0
+
2
.
0
0
0
0
E
4
0
2
4
3

2
0
0
0
E
4
0
0
4
7

6 8 0 0
E
4
0
1
+
1
. 0
0
0
0
£
4
0
0
4
1 .
8
0
0
0
E

0
5
4
8

3
3
3
3
E
-
0
1
+
1
-
2
5
0 0
E
4
0
1
+
3
•
4
9
0
0
E
4
0
4
4
2
-
3
2
5
6
E
-
0
5
+
1
•
2 5 0 0
E
4
0
1
+
4
. 6
8
7
5
E
-
0
2
4
5
0
0
0
0
E
4
0
0
4
1
.
0
0
0
0
E
4
0
1
4
2

5
0
0 0
E
4
0
0
+
2
.
0
0
0
0
E
+
0
2
4
3
•
2
0
0
0
E
+
0
0
4
7
.
6 8 0 0
E
4
0
1
4
1
. 0
0
0
0
E
4
0
0
4
1 .
8
0
0
0
E
-
0
5
4
8
.
3
3
3
3
E
-
0
1
1
6
0
4



































































L
A
B
_
E
S P

_
S
c
A
-
1
2
5
	
F
T
2
/
1
0
0
0
A
C
F
M
;
_
J
-
5

N
A / C M
2


































4
3

9
4
5 0
E
4
0
4
+
2

9
0
7
0
E
-
0
5
+
3
•
9
0
0
0
E
+
0
4
+
2

9 0 7 0
E
-
0
5
+
3
. 7
2
0
0
E
4
0
4
4
5 .
6
1
4
0
E
-
0
5











1
6
0
4



































































L
A
B
_
E
S P
t
_
5
C
A
-
1
2
5
_
F
T
2
/
1
0
0
0
A
c
F
M


J
=
1
0
_
N A / C
M
2

































~
4

1
6
0 0
E
+
0
4
4
5

8
1
4
0
E
-
0
5
4
4

1
i
0
0
E
4
0
4
4
5
.
8 14 0
E
-
0
5
4
3
. 9
8
0
0
E
4
0
4
4
1 .
1
6
2
8
E
-
0
4











1
6
0
4



































































L
A
B
_
E
S P

_
5
C
A
-
1
2
5

F
T
2
/
1
0
0
0
A
c
F
M
?

J
=
2
0
_
N A / C
M
2

































4
4
•
4
7
0 0
E
+
0
4
+
1

1
6
2
8
E
-
0
4
4
4
.
4
4
0
0
E
+
0
4
+
1
-
16 2 6
E
-
0
4
~
4
. 3
0
0
0
E
4
0
4
4
2 .
3
2
5
6
E
-
0
4











1
6
0
4



































































L
A
B

E
S P

_
S
C
A
=
1
2
5

F
T
2
/
1
0
0
0
A
C
F
M
t

J
-
3
5

N A / C
M
2

































4
4

7
8
0 o
E
~
0
4
+
2

0
3
4
9
E
-
0
4
+
4

7
8
0
0
E
f
0
4
-
2

0 3 4 9
E
-
0
4
+
4
6
6
0
0
E
4
0
4
4
4
0
6
9
8
E
-
0
4











1
6
0
4



































































L
A
B

F
S P

_
S
C
A
-
1
2
5
_
F
T
2
/
1
0
0
0
A
C
F
M


J

4
5
_
N A /-C
M
2

































4
4

9
4
0 0
E
4
0
4
4
2

6
1
6
3
E
-
0
4
4-
4

9
4
0
0
E
+
0
4
+
2

6 16 3
E
-
0
4
+
4
7
6
0
0
E
+
0
4
+
5
2
3
2
6
E
-
0
4












-------
O SECTION 1
~ SECTION 2
A SECTION 3 + SECTION 4
30	40	50
APPLIED VOLTAGE, kV
Figure 10: Experimental voltage-current curves used in Example 7.
66

-------
>
o
z
HI
LL
111
z
o
t—
o
o
o
V)
in
<
S
<
cc
uj
>
O
AVERAGE CURRENT DENSITY AT PLATE, nA/cm2
Figure 11: Effect of current density on overall mass collection efficiency.
67

-------
Comparison of Figures 9 and 11 show that overall mass collec-
tion efficiency varies more slowly with current density than with
specific collection area. The curves in Figure 11 show that if
the precipitator is operated at low values of current density,
then significantly reduced overall mass collection efficiencies
will result. Thus, in designing a precipitator, the effect of
possible changes in the allowable current density due to changes
in the material being collected must be taken into account. If
reduced current densities are a possibility, then the possible
reduction in collection efficiency must be compensated for by an
excess in specific collection area (or, more appropriately,
collection plate area) . The curves in Figure 10 also show that
more mass will exit the precipitator due to rapping reentrainment
for the lower values of current density than the higher values.
At 2 nA/cm2, the model predicts that approximately 3.1% of the
mass entering the precipitator will exit due to rapping reentrain-
ment whereas, at 45 nA/cm2, approximately 1.3% of the mass entering
the precipitator will exit due to rapping reentrainment. Thus,
when considering the effect of reductions in current density on
precipitator performance, one must take into account not only
fundamental reductions in collection efficiency due to lowered
migration velocities but also possible increased reductions due
to increased rapping reentrainment.
EFFECT OF NONIDEAL CONDITIONS
The effects on precipitator performance of nonuniform gas
velocity distribution, gas bypassage of electrified regions, and
particle reentrainment must be considered in simulating the opera-
tion of an existing precipitator or in designing a new precipitator.
In many instances, poor performance of a precipitator can be
traced to either one or a combination of these nonideal conditions.
Although these nonideal conditions can not be completely avoided,
their effects should be minimized in order to achieve good per-
formance. The normalized standard deviation of the gas velocity
distribution should have a value of 0.25 or less. The fraction
per baffled section of gas bypassage and/or collected mass
reentrained without rapping should have a value of 0.1 or less.
In order to obtain high efficiencies, the number of baffled
sections should be at least four. Testing should be performed
in order to optimize the rapping intensity and schedule and to
minimize the amount of mass which is reentrained.
The computer program for the model allows the user to easily
examine the effects of various nonideal conditions on precipitator
performance with one basic data set. The effect of up to 10
different log-normal "rapping puff" particle size distributions
can be analyzed for a given set of precipitator parameters by
designating the MMD and o for each. For each "rapping puff"
particle size distributioR, the effect of up to 15 different
combinations of ag and S on the no-rap and no-rap + rap performance
can be obtained. The maximum amount of information concerning
nonideal conditions can be obtained with little additional use
of computer time.
68

-------
Example 8
In this example, the effect of various sets of nonideal con-
ditions on the overall mass collection efficiency is examined
using the geometry and operating conditions in Example 3. In
addition, the operating current density in each electrical section
is theoretically determined by generating a clean-gas, voltage-
current curve for the first electrical section only and holding
the applied voltage fixed in each electrical section at the
average value of 41.6 kV. In order to speed up the calculations,
particle charge is determined by using the sum of the charges
from classical field and diffusional charging theories.
The effect on overall mass collection efficiency of nine
different log-normal "rapping puff" particle size distributions
was obtained by specifying eight pairs (MMD, Op) of MMD and Op
along with the values (6.0, 2.5) stored in the program. The eight
pairs had values of (2.0, 2.5), (10.0, 2.5), (15.0, 2.5), (20.0,
2.5), (10.0, 1.5), (10.0, 5.0), (10.0, 10.0), and (10.0, 15.0).
The effect on overall mass collection efficiency of nine different
pairs (S, a,,) of S and aQ was also obtained for (0 .00, 0.00) ,
(0.10, 0.257, (0.30, 0.25), (0.50, 0.25), (0.70, 0.25), (0.10,
0.10), (0.10, 0.40), (0.10, 0.60), and (0.10, 0.80). Table 11
gives the input data card set which was used to perform the
calculations. The computation time required to run this example
on the DEC PDP 15/76 computer was approximately 5,001 seconds..
The output data from the computer program are given in Appendix H.
An effective ion mobility of 2.7 x 10"11 m2/V-sec and a
roughness factor of 0.85 were used in the calculations which
predict the voltage-current characteristics and the electrical
operating conditions. Using these parameters, the average current
densities at the plate in successive electrical sections were
calculated to be 12.6, 18.3, and 23.2 nA/cm2. These compare with
the measured values of current density of 11.1, 17.6, and 22.7
nA/cm2, respectively, that were obtained at applied voltages of
40.6, 42.1, and 42.45 kV, respectively. The collection effi-
ciencies predicted here are somewhat less than those predicted in
Example 3 due to the factors already discussed in Example 2.
The curves shown in Figure 12 point out the importance of
careful mechanical design and optimization of gas flow properties.
As these curves show, severe nonuniformity of the gas velocity
distribution and/or a large degree of gas sneakage will result
in serious degradation of precipitator performance. Figures 13
and 14 demonstrate the effect that the particle size distribution
of the material reentrained due to rapping can have on the particle
size distribution of the total emissions at the outlet of the pre-
cipitator when Og = 0.25 and S = 0.1. In obtaining the curves
shown in these figures, the total mass at the outlet due to
rapping reentrainment has been held fixed and only the particle
size distribution of the "rapping puff" has been varied. Thus,
69

-------
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
ie
19
20
21
22
TABLE 11. INPUT DATA CARD SET FOR EXAMPLE 8
	COLUMN NUMBER	



















2









3









4








5








&









7







1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3

5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2

4
5 6
7
8
9
0
1
2
3
4
5
6
7
8 9
0
1
2
3
4
5
6
7
B
9
0
1
2
3
4
5
6
7
1
4
0
1







































































p
L
A
N
T
_
A

_
s
c
A
=
2
4
3
F
T
2
/
1
0
0
0
A
C
F
M

V
0
=
4
1

7
K
V
'
C
A
L
C

V
-
I
<
A
N
A
L
Y
s
1
S
_ 0
F

N
0
N
I
D
E
A
L

E
F
F
E
C
T
S
0
1
0
1
0
2
1
5
1
5
0
1
0
1
0
9
0
1
0
1
0
9





















































2
0
0
2
2
0
0
1
0
1

































































1

9
6
6
_
_
_
2
7

0
_
_
_

9
9

6
_
_
_
_
2
2
7
0

0
__
_
1
0
0

0
_

_
1

2
_
_ _
_
_
0

0
0
0
2
2
_
1
0





1
5
0
0
0
0
0

5

0
0
E
2

0
0
2

5
0
1
0

0
2

5
0
1
5

0
2

5

2
0

0
2

5
0
1
0

0
1

5
0
1
0

0
5


1
0

0
1
0

0
1
0
0
1
5

0













0

0
0
0

0
0
4

0
0
0

1
0
0

2
5
4

0
0
0

3
0
0

2
5
4

0
0
0

5
0
0

2
5
4
0
0
0

7
0
0

2
5
4
0
0
0
•
1
0
0

1
0
4

0
0





0

1
0
0

4
0
4

0
0
0

1
0
0

6
0
4

0
0
0

1
0
0

e
0
4

0
0







































0

1
0
_
_
_
_
0

3
0
_

_

0

5
0

_

_
0

9
0
_


_
1

3
0
_
_
_
_
1

9
0

_
_
3

1
0

_

_
3
9
0
_
_
_

5

1
0
_
_
_
_
6

9
0

1
0

1
0
_
_

1


9
0



2
5

1
0


_
2
9

9
0














































0

0





0

0
3
3
_
_

0

2
8
6


_
1

1
8
9


_
2

0
0
4
_
_

3

5
2
4
_
_
7

0
4
8
_

	
8
7
0

_
_
_
1
0

3

2
_
_
1
2


3
1
5

6
3
e


2
0

4
8
4


3
2

5
9
9


1
0
0

0














































0
3
1
5
1
5
1
5



































































~
2

6
4
6
0
E
+
0
4
+



7
0
0
E
+
0
4
+
2

7
3
0
0
E
-
0
1
+
1

5
7
2
0
E
+
0
4
+ 8

2
5
0
0
E
-
0
2
+
5
5
0
0
0
E
+
0
0
+
1

2
0
0
0
E
+
0
1
+
3

6
0
0
0
E
+
0
0
+


2
7
2
4
E
+
0
5
+
4

1
0
0
0
E
+
0
0
+
3

1
5
0
0
E
+
0
2
+ 1

0
0
0
0
E
+
0
0
+
2
2
9
0
0
E
-
0
5

6

0
0
0
0
E
-
0
1
+
8

5
0
0
0
E
-
0
1
+


0
0
0
0
E
-
0
4
+
5

0
0
0
0
E
-
0
5
+
5

0
0
0
0
E
-
0
5
+ 3

6
0
0
0
E
+
0
4





















+
2

6
4
6
0
E
+
0
4
+


1
7
0
0
E
+
0
4
+
2

7
3
0
0
E
-
0
1
+
1

5
7
2
0
E
+
0
4
+ 8

2
5
0
0
E
-
0
2
+
5
5
0
0
0
E
+
0
0
+
1

2
0
0
0
E
+
0
1
+
3

6
0
0
0
E
+
0
0
+


2
7
2
4
E
+
0
5
+
4

1
0
0
0
E
+
0
0
+
3

1
5
0
0
E
+
0
2
+ 1

0
0
0
0
E
+
0
0
+
2
. 2
9
0
0
E
-
0
5
+
6

0
0
0
0
E
-
0
]
+
8

5
0
0
0
E
-
0
1
+


0
0
0
0
E
-
0
4
+
5

0
0
0
0
E
-
0
5
+
5

0
0
0
0
E
-
0
5
+ 3

6
0
0
0
E
+
0
4





















¦f
2

6
4
6
0
E
+
0
4
+


1
7
0
0
E
+
0
4
+
2

7
3
0
0
E
-
0
1
+
1

5
7
2
0
E
+
0
4
+ 8

2
5
0
0
E
-
0
2
+
5
5
0
0
0
E
+
0
0
+
1

2
0
0
0
E
+
0
1
+
3

6
0
0
0
E
+
0
0
+


2
7
2
4
E
+
0
5
+
4

1
0
0
0
E
+
0
0
+
3

1
5
0
0
E
+
0
2
+ 1

0
0
0
0
E
+
0
0
+
2
2
9
0
0
E
-
0
5
+
&

0
0
0
0
E
-
0
1
+
8

5
0
0
0
E

0
1
+


0
0
0
0
E
-
0
4
+
5

0
0
0
0
E
-
0
5
+
S

0
0
0
0
E
-
0
5
+ 3

6
0
0
0
E
+
0
4






















-------
>
o
z
z
o
o
o
%
<
S
<
cc
FRACTION OF SNEAKAGE AND/OB REENTRAINMENT WITHOUT RAPPING
O NO-RAP + RAP. og CURVE FOR S - 0.1, RMMD - 6.0 jum, RSIGMA
~ NO-RAP + RAP, S CURVC FOR oa - 0.25, RMMD = 6.0 fim. RSIGMA
NORMALIZED STANDARD DEVIATION OF VELOCITY DISTRIBUTION
Figure 12: Effects of nonidea/ conditions on overall mass collection efficiency.
71

-------
n
E
Q
U
O
5
Q
O NO-RAP + RAP, RMMD = 6.0 Aim, RSIGMA ¦
~ NO-RAP + RAP, RMMD = 2.0 /jm, RSIGMA •
A NO-RAP + RAP, RMMD = 20.0 nm. RSIGMA
V NO-RAP + RAP, RMMD ° 10.0 //m, RSIGMA
PARTICLE DIAMETER, jum
Figure 13: Distribution of mass in the total outlet emissions for different
particle size distributions in the 'rapping puff'.
72

-------
ap OF RAPPING PUFF ( RSIGMA )
E
"3.
o
5
fsi
O
o
»
s
Ul
—I
<
I-
o
o
Q
s
5
IIIIll:
CZMDL VS. RMMD. RSIGMA = 2.5
CSIGMO VS. RMMD, RSIGMA = 2.5
CZMOL VS. RSIGMA, RMMD - 10.0/xm ^
CSIGMO VS. RSIGMA, RMMD - 10.0urn

M t
C3
8
CO
Z
o
3
<
t-
o
15.0
MMD OF RAPPING PUFF ( RMMD ),fM
Figure 14: Effects of the 'rapping puff' particle size distribution on the
particle size distribution of the total emissions.
20.0
73

-------
the overall mass collection efficiency remains the same but the
particle size distribution at the outlet varies. This type of
analysis is important when the opacity due to the outlet emissions
is of interest since the opacity will depend on the amount and
the particle size distribution of the mass exiting the precipi-
tator. In certain cases, the outlet mass standard can be met
with the opacity being far out of compliance. For these cases,
the quantity and particle size distribution of the mass due to
rapping reentrainment is very important in determining the opacity.
Figure 13 shows the distribution of mass in the total outlet
emissions for different particle size distributions in the
"rapping puff". Depending on the resulting MMD and ap, these
changes in the distribution of mass in the outlet emissions can
have a significant effect on the opacity. Figure 14 shows several
curves which demonstrate the effect that the "rapping puff"
particle size distribution can have on the particle size distribu-
tion of the total emissions. These possible shifts in MMD and
Op of the outlet emissions due to rapping reentrainment are large
enough to produce significant changes in opacity.
EFFECT OF RESISTIVITY
In many instances, the useful operating current density in
a precipitator is limited by the resistivity of the collected
particulate layer. If the resistivity of the collected particu-
late layer is sufficiently high, electrical breakdown of the
layer will occur at a value of current density which in most
cases is undesirably low. Depending on the value of the applied
voltage, the breakdown of the collected particulate layer will
result in either a condition of sparking or the formation of
stable back corona from points on the particulate layer. Ex-
cessive sparking and back corona are detrimental to precipitator
performance and should be avoided.
Figure 15 shows an experimentally determined relationship
between maximum allowable current density and resistivity.7 It
points out the severe drop in maximum allowable current density
as the resistivity increases over the range 0.5 - 5.0 x 1011 ohm-
cm. With Figure 15 and known or calculated voltage-current
characteristics, the effect of resistivity on the overall mass
collection efficiency that can be obtained for a fixed geometry
anc specific collection area can be determined by using the
mathematical model of electrostatic precipitation.
Example 9
Once the overall mass collection efficiency is determined
as a function of current density for a given precipitator
geometry and specific collection area, then the performance of
the precipitator can easily be determined as a function of
resistivity. In this example, the results from Example 7 and
Figure 15 are used to illustrate the effect that the resistivity
74

-------
BASED ON HALL'S EXPERIMENTAL DATA6
101°	1()11	1012	1013
RESISTIVITY, ohm-cm
Figure 15 Experimentally determined effect of resistivity on allowable
current density in a precipitator
75

-------
of the collected particulate layer can have on the performance
of a given precipitator. Figure 16 shows the effect that
resistivity would have on the overall mass collection efficiency
for the precipitator and conditions in Example 7. In obtaining
the curves, resistivities of 0.2, 0.26, 0.35, 0.45, 0.90, 1.8,
and 4.5 (x 1011 ohm-cm) were taken to limit maximum allowable
current densities to values of 45.0, 35.0, 25.8, 20.0, 10.0,
5.0, and 2.0 nA/cra2, respectively.
The curves in Figure 16 show the dramatic effect that
changes in resistivity can have on precipitator performance.
If we assume that the precipitator in this example is operating
under the most favorable electrical conditions possible, the
NO-RAP overall mass collection efficiency would drop from 9 8.8%
to 80.8% if the resistivity of the collected particulate layer
increased from 2 x 1010 to 4.5 x 1011 ohm-cm. This example
points out why a knowledge of the resistivity of the collected
particulate layer is crucial in designing a precipitator. The
problem is made even more difficult since the resistivity can
change significantly with changes in the composition, moistuie
content, and temperature of the flue gas. In addition, chanqes
in resistivity due to changes in the material producing the
emissions must also be considered. Thus, in designing a precipi-
tator, proper allowance must be made to account for possible
values of resistivity that are larger than that anticipated.
USE OF THE ESTIMATION PROCEDURE
The mathematical model of electrostatic precipitation pro-
vides the option of using an estimation procedure to predict
precipitator performance. When only gross trends are desired
or a starting point for the more rigorous calculation is needed,
the use of this option can save considerable amounts of computer
time. The details of the estimation procedure are presented in
Volume 1 and will not be discussed here. If a user plans to
make extensive use of the estimation procedure, he should refer
to Volume 1 in order to acquire an understanding of the basis for
the procedure. Although judicious use of the estimation pro-
cedure can be quite beneficial to the user, it can not be assumed
that predictions from this procedure will always be close to
those of the more rigorous calculation. Thus, all final simula-
tions and final designs should be obtained by using the more
rigorous calculation.
Example 10
In this example, the operation of the hot-side precipitator
in Example 4 is simulated using the estimation procedure. Table
12 gives the input data card set which was used to perform the
calculations. The computation time required to run this example
on the DEC PDP 15/76 computer was approximately 26 3 seconds. In
this case, the estimation procedure runs 18 times as fast as
76

-------
O NO-RAP. CTfl = 0. S = 0
: ~ NO-RAP + RAP, ag = 0, S = 0
1011
RESISTIVITY, ohm-cm
i
Figure 16: Effect of resistivity on overall mass collection efficiency.
77

-------
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
TABLE 12. INPUT DATA CARD SET FOR EXAMPLE 10
COLUMN NUMBER
	1	2	3	I	5	S	7	ff
12345678901234567890123456789012345678901234567690123456789012345678901234567890
p
u
L
L
-
s
c
A
L
E

H
0
T
-
S
I
D
E
_
E
s
P

_
P
L
A
N
T
_
B

s
c
A
°
3
9
0
F
T
2
/ 1 0 0
0
A
C
F
M

J
¦
3 4
3
U
A
/
F
T
2

E
s
T

_
p
R
0
C
B
D .

0
2
0
1
0
1
1
0
1
0
0
3
0
1
0
1
0
1
0

0
2



















































2

5
1
_
_
	
_
3
6

0

_
_
	
9
9

6
	
_
	
	
2
2
7
0

0
_
	
1
0
0

0
_
_
	
1

2
_____
_
0

0
0
0
2
2
_ 1
0





1
5
0
0
0
0
0

1

9
0
E +
1
0

0
0
0

0
0
4

0
0
0


0
0

2
5
4

0
0

















































0

2
0

_
_
_
0

4
0
_
_
_
_
0

7
0

_
_
_
1

0
0

_
_
_
1

5
0
_
_

_
2

0
0
_
3

0
0
_
_
_
4
0
0




5

0
0




7

0
0


1
0

0
0
_
_
_
1
5

0
0
_
_
_
2
5

0
0
	
	

3
0

0
__
_


1
0
0

0




































0

0





0

1
4
7

_
_
0

5
7
4
2
1
_
1

0
0

2
2
_
1

7
2
2
6
4
_
2

7
4 9 2 6
_
6

5
2
5
1
4
_ 9
4
6
3
2
1
_
1
1

1
3
6
2
5
1
3

0
5 0
2
1
5

6
2

5

2
0

1
8
4
4
5
3
0

9
7
2
6
9
3
5

4
9
6
7
9
1
0
0

0




































0
4
0
9
0
9
0
9
0
9































































4
4

2
1
2
0
E
+
0
4
4
3

5
8
8
0
E
4
0
4
-
1

2
2
0
0
E
+
0
0
4
5

6
1
6
0
E
+
0
4*5.
4
5
0
0
E
-
0
2
4 4
5
0
0
0
E
4
0
0
4


2
0
0
0
E
4
0
1

+
4

5
0
0
0
E
4
0
0
4
4

3
2
0
7
E
4
0
5
4
3

7
9
5
8
E
+
0
0
4
6

2
4
0
0
E
4
0
2 + 1 .
0
0
0
0
E
4
0
0
4 2
8
0
0
0
E
-
0
5
4


0
0
0
0
E
4
0
0

4
4

2
1
2
0
E
4
0
4
4
3

3
9
5
0
E
4
0
4
+
1

6
7
2
0
E
+
0
0
+
5

6
1
6
0
E
4
0
4 4 5 .
4
5
0
0
E

0
2
4 4
5
0
0
0
E
4
0
0
4


2
0
0
0
E
4
0
1

4
4

5
0
0
0
E
4
0
0
4
4
•
3
2
0
7
E
4
0
5
+
3

7
9
5
8
E
4
0
0
+
6

2
4
0
0
E
4
0
2 + 1 .
0
0
0
0
E
4
0
0
4 2
8
0
0
0
E
-
0
5
4


0
0
0
0
E
4
0
0

4
4

2
1
2
0
E
4
0
4
4
2

9
1
3
0
E
4
0
4
4
1

4
2
0
0
E
4
0
0
+
5

6
1
6
0
E
4
0
4 4 5.
4
5
0
0
E
-
0
2
4 4
5
0
0
0
E
4
0
0
4


2
0
0
0
E
4
0
1

4
4

5
0
0
0
E
4
0
0
4
4

3
2
0
7
E
4
0
5
4
3

7
9
5
8
E
4
0
0
4
6

2
4
0
0
E
4
0
2 + 1 .
0
0
0
0
E
4
0
0
4 2
8
0
0
0
E
-
0
5
4


0
0
0
0
E
4
0
0

4
4

2
1
2
0
E
4
0
4
4
2

7
5
0
0
E
4
0
4
4
1

4
6
0
0
E
4
0
0
~
5

6
1
6
0
E
~
0
4 + 5 .
4
5
0
0
E
-
0
2
4 4
5
0
0
0
E
4
0
0
~


2
0
0
0
E
4
0
1

~
4

5
0
0
0
E
4
0
0
4
4

3
2
0
7
E
4
0
5
4
3

7
9
5
8
E
4
0
0
4
6

2
4
0
0
E
4
0
2 4 1.
0
0
0
0
E
4
0
0
4 2
8
0
0
0
E
-
0
5
4


0
0
0
0
E
4
0
0


-------
the more rigorous calculation. The output data from the computer
program are given in Appendix I.
For this example, the prediction of overall mass collection
efficiency by the estimation procedure is essentially the same
as that obtained from the more rigorous calculation. Figure 17
shows a comparison of the fractional collection efficiencies and
migration velocities obtained from the two methods of calculation.
Although slight differences exist in the predicted fractional
collection efficiencies, even significantly different inlet
particle size distributions would not lead to any appreciable
disagreement in overall mass collection efficiencies predicted
from the two methods of calculation. The good agreement between
the estimation procedure and the rigorous calculation can be
attributed to the agreement in the values of the electric field
at the plate. For the rigorous calculation, the values of
average electric field at the plate in successive electrical
sections are 1.70, 1.72, 1.53, and 1.51 (x 105 V/m) whereas, for
the estimation procedure, the corresponding values are 1.79, 1.70,
1.46, and 1.38 (x 10s V/cm), respectively. The estimated values
of the electric field at the plate provide the greatest uncer-
tainty in the estimation procedure and the type of agreement
obtained in this example can not always be expected.
79

-------
+ RAP, og = 0.25, S = 0.1
+ RAP (EST. PROCEDURE), og
~ O NO-RAP
=; ~ NO-RAP
0.25, S = 0.1
i 99.0
10.0
PARTICLE DIAMETER, nm
Figure 17. Comparison of results obtained from rigorous application
of the model and the estimation procedure.
80

-------
SECTION 8
USE OF THE MODEL FOR TROUBLESHOOTING
The mathematical model of electrostatic precipitation can be
used as a tool in troubleshooting precipitators that are not
meeting the overall mass collection efficiency which is expected
or anticipated. When using the model for troubleshooting, certain
experimental data should be obtained in order to properly utilize
the model. These data include operating voltages and currents in
the different electrical sections, inlet mass loading and particle
size distribution, ash resistivity, average gas flow rate and
velocity, and average gas temperature and pressure. By using
these limited experimental data, the geometry of the precipitator,
and the mathematical model, certain steps which are given below
can be taken in an attempt to diagnose the possible reason or
reasons for the level of performance of the precipitator.
Step 1; Determine optimum collection efficiency.
. Use the model to simulate the operation of the precipitator
under ideal, no-rap conditions (ag = 0 and S = 0) with the actual
operating parameters. This calculation establishes the optimum
overall mass collection efficiency that can be expected under
the given operating conditions. It should be noted that this
optimum efficiency may not always represent the best performance
of the precipitator since accumulation of material on the dis-
charge and collection electrodes, broken discharge electrodes,
electrode misalignment, or operation of the precipitator at lower
than permissible voltages and currents would result in less than
optimum electrical operating conditions. If possible, measures
should be taken to ensure that the electrical conditions in the
precipitator are at their best when obtaining data for use in
the troubleshooting procedure. In any event, the starting point
in the troubleshooting procedure can be taken to be the calculated
optimum efficiency under the actual operating conditions.
Step 2: Check to see if the calculated optimum efficiency is
equal to or less than the measured value.
If the calculated optimum value of efficiency is equal to or
less than the measured value, the precipitator can be assumed to
be performing as well as possible for the given set of operating
conditions. Changes in the inlet particle size distribution,
81

-------
the electrical operating conditions, or the gas volume flow can
result in a reduction in collection efficiency for a given pre-
cipitator even though the precipitator is performing at its best.
Thus, in certain cases, a precipitator may not be able to attain
the overall mass collection efficiency it once achieved or was
designed to achieve solely due to a change in the process
variables. As a consequence, the precipitator may no longer be
sized properly for the operating conditions encountered. The
options that are available for improving the performance of the
precipitator are limited to the possible improvement of the
electrical operating conditions or a reduction in the gas flow
rate through the precipitator.
Step 3: Check to see if the calculated optimum efficiency is
only a little larger than the measured value.
If the calculated optimum value of efficiency is only a
little larger than the measured value, the precipitator is probably
functioning well but nonideal conditions are having some effect
on the performance. In this case, calculations should be made
with the model in order to obtain NO-RAP + RAP overall mass
collection efficiencies for various small values of Og and S and
the rapping reentrainment parameters which are built into the
computer program. If the measured efficiency can be predicted
by the model with values of ag _< 0.25 and S < 0.1, it is question-
able whether or not improvements in the gas flow properties and
mechanical design will result in an appreciable improvement in
precipitator performance. A less costly and possibly more profit-
able exercise would be to vary the rapping intensities and
frequencies in an attempt to minimize losses in collection
efficiency due to rapping reentrainment. If ag > 0.25 or S > 0.1,
these quantities should be measured. If the measured values of
Og and S are consistent with those predicted by the model, the
gas flow properties and mechanical design should be improved.
Step 4: Check to see if the calculated optimum efficiency is
significantly larger than the measured value.
If the calculated optimum value of efficiency is significantly
larger than the measured value, the precipitator is functioning
poorly. Poor performance of a precipitator may be due to either
one or a combination of several factors than can be analyzed with
the model. These factors include the electrical operating condi-
tions, nonuniform gas velocity distribution, gas bypassage of
electrified regions, particle reentrainment without rapping, and
rapping reentrainment. In the following steps, procedures are
outlined that can be taken in an attempt to pinpoint the problem
areas.
82

-------
Step 5: Determine whether or not the operating currents are
completely useful in the precipitation process.
At this point, the electrical operating conditions should
be examined in order to determine whether or not the operating
currents are completely useful m the precipitation process.
If excessive sparking or back corona is occurring in the pre-
cipitator, the measured currents will not be totally useful in
the precipitation process and, in fact, the nature of the currents
may be very detrimental to precipitator performance. Use in
the model of currents measured under these conditions will result
in the prediction of much higher collection efficiencies than will
be attained by the precipitator.
Step 5(a): Check for excessive sparking.
Sparking results in localized currents that are not very
effective in charging particles. In addition, excessive sparking
can lead to increased particle reentrainment by producing dis-
ruptions at the surface of the collected particulate layer and
by producing reduced holding forces over large regions of the
collected layer due to reduced currents to these regions.
If sparking is occurring, the extent of the sparking should
be determined by using spark rate meters or other appropriate
instrumentation. If excessive sparking is occurring, the applied
voltage should be lowered until the spark rate is at a level
which is not detrimental to the performance of the precipitator.
Although the operating voltages and currents will be reduced,
the performance of the precipitator will improve and the use of
these operating electrical conditions in the model will give
better agreement between predicted and measured collection
efficiencies.
Step 5(b): Check for the existence of back corona.
If excessive sparking is not occurring, a check should be
made to determine whether or not a condition of back corona
exists in the precipitator. When back corona exists, both
positive and negative ions move in the interelectrode space and
this results in a reduction m the negative charge that can be
acquired by a particle.
Two methods can be used to check for the existence of back
corona. First, the measured value of ash resistivity and Figure 15
can be used to estimate the maximum allowable current density.
If the current density in the precipitator greatly exceeds this
value, the precipitator is probably operating in back corona.
As a second method of checking for the existence of back corona,
the voltage-current curves for the different electrical sections
can be checked to see if at some point on the curve increased
current is obtained at a reduced applied voltage. If this is
83

-------
the case and the precipitator is operating in this region of the
voltage-current curve, then back corona is occurring in the pre-
cipitator .
If back corona is occurring, the applied voltage should be
lowered in order to obtain a current density which will not
lead to the formation of back corona. The reduced voltages and
currents will result in improved performance of the precipitator
and the use of these operating electrical conditions in the model
will give better agreement between predicted and measured collec-
tion efficiencies.
Step 5(c): Consider electrode misalignment.
As a further consideration concerning the electrical condi-
tions, the electrode alignment should be taken into account. Con-
sideration of electrode alignment is especially important when
troubleshooting hot precipitators. In hot precipitators, the
col lection plates may buckle if proper precautions have not been
taken to allow for the expansion of the plates at the elevated
temperatures. If buckling of the plates occurs, higher currents
will be measured but they will be localized. Currents of this
type are not desirable for treating particles. The existence of
this type of misalignment should be evidenced by steep voltage-
curient curves with a narrow voltage range from corona initiation
to sparkover. Use in the model of measured currents obtained
from this type of situation will result in predicted collection
efficiencies that are well above those which are attained.
Step 6: Estimate the effect that various nonideal conditions
could have on the performance of the precipitator.
If the poor performance of the precipitator can not be traced
to the electrical operating conditions, then the nonideal effects
of nonuniform gas velocity distribution, gas bypassage of electri-
fied regions, and particle reentrainment should be considered next.
The effect of ag and S on the NO-RAP + RAP overall mass collec-
tion efficiency of the precipitator should be analyzed in a system-
atic fashion with the model.
Step 6 (a); Estimate the possible effect of nonuniform velocity
distribution on the performance of the precipitator.
In order to determine whether or not a nonuniform gas velocity
distribution could be responsible for the poor performance of the
precipitator, calculations should be made for S = 0 and values of
Og ranging from 0 to at least 2.0. If a certain value of Og in
tne chosen range produces the necessary reduction in collection
efficiency and this value is not completely out of line with
available information concerning the gas flow, interfacing of the
precipitator with the duct work, existence of gas diffusion plates,
etc., then the actual value of ag should be determined experi-
mentally by making a velocity traverse in a plane at the inlet
84

-------
of the precipitator. If the measured value of a„ is greater
than 0.25, measures should be taken to improve the gas flow dis-
tribution .
Step 6(b): Estimate the possible effect of gas sneakage and/or
particle reentrainment without rapping on the per-
formance of the precipitator.
In order to determine the extent of gas bypassage of the
electrified regions and/or particle reentrainment without rapping
that would be necessary to cause the poor performance of the pre-
cipitator, calculations should be made for ag = 0 and values of
S ranging from 0 to 0.9. There will be a value of S in this range
that will result in the necessary reduction in collection efficiency.
Depending on the value of S, different interpretations can be made.
If S is not too large (S £ 0.2), then the poor performance might
be attributed to either excessive gas bypassage of the electri-
fied regions or excessive particle reentrainment without rapping
or very poor gas velocity distribution or a combination of all
three of these effects where neither effect alone is very detri-
mental to the performance of the precipitator. In this case,
measurements should be made under air-load conditions to determine
ag and the fraction of the gas volume flow passing through non-
eiectrified regions in each baffled section. If the measured
values of these quantities are such that they can account for a
major part of the reduction in collection efficiency, then the
appropriate corrective measures can be made to the mechanical
design of the precipitator. If the measured values of these
quantities are such that they can not account for a major part of
the reduction in collection efficiency, then it is possible that
particle reentrainment without rapping is having an adverse effect
on the performance of the precipitator. This could be due to
factors which include a high average gas velocity, a very non-
uniform gas velocity distribution, a low value of ash resistivity,
excessive sparking, low operating current densities, and hopper
problems. All of these factors can lead to particle reentrainment
from causes other than rapping and should be taken into account
in the troubleshooting analysis.
If S is large (S > 0.2), the poor performance of the pre-
cipitator is probably due primarily to extremely excessive particle
reentrainment. This could be a result of one or more of the same
factors mentioned above. In this case, reentrainment of particles
from the hoppers, caused by poor gas flow qualities or by hopper
malfunctions, should receive more serious attention as a possible
cause of the poor performance. If very large values of S are
needed to predict the reduction in collection efficiency, then
it is also possible that rapping reentrainment is occurring to a
much greater extent than that predicted by the rapping reentrain-
ment calculation and that this is reflected in the value of S.
If the value of S is large, then hopper operation should be checked,
outlet mass loadings should be obtained with and without rapping,
85

-------
and real-time measurements of the outlet mass loading should be
made. These measures should indicate whether the problem is due
to hopper operation or rapping reentrainment or reentrainment
without rapping or some combination of the three.
The troubleshooting procedure described above can be a
valuable tool in helping to diagnose the causes of poor perfor-
mance of a precipitator. Since the procedure involves only
limited experimental data, it is not costly to perform. Use of
the procedure can also result in time and cost savings by giving
direction and helping to focus on those quantities which actually
need to be measured. A further benefit of using the procedure is
the possibility that costly modifications to the precipitator that
will not result in significant improvement in the performance can
be avoided.
86

-------
SECTION 9
USE OF THE MODEL FOR SIZING OF PRECIPITATORS
The mathematical model of electrostatic precipitation can be
used as a guide in sizing precipitators. Although this method of
sizing precipitators can be very successful, care must be taken to
ensure proper usage of the model and to prevent the use of erron-
eous input data. Misuse of the model could result in a large error
in sizing a precipitator.
When using the model for the purpose of sizing a precipi-
tator, certain data which are used as input to the model should
be obtained from measurements made using the actual gas stream or
one which will be very similar to the actual gas stream. If a gas
stream other than the actual one is used to obtain representative
data, steps should be taken to assure that the process variables
producing the effluent gas stream and particles are not too
different. Also, it is very important that the temperature and
composition of the gas stream be close to that which will be
experienced in the precipitator to be sized.
The following is a list and discussion of those quantities
whose values should be determined from measurements under condi-
tions similar to those which will be experienced in the precipi-
tator to be sized:
•	The temperature, pressure, and composition of the gas
stream should be measured.
•	The particle size distribution and mass loading in the
gas stream should be measured at a location from the
source that would be representative of where the gas
stream would enter the precipitator.
•	The bulk resistivity of the particles should be measured
both in situ and in the laboratory. In making these
measurements, the gaseous environment must not only be
preserved but, in addition, the electric field strength
at which the measurements are made must be close to that
which will be experienced in the precipitator in order
to obtain the appropriate measurement. If agreement
can not be obtained between the in situ and laboratory
measurement, then the higher of the two values should be
used in order to size the precipitator.
87

-------
• The effective mobility of the negative ions which would
be produced during negative corona discharge in the gas
stream should be measured.
If any or all of the above quantities are not measured or can not
be measured, then their values can only be estimated by using the
best data available and prior experience for similar sets of condi-
tions. Using values of these quantities that are not obtained
from measurements with the actual or a similar gas stream is risky
and these values should be estimated in a conservative manner.
Once the values of the quantities discussed above are deter-
mined, the model can be used in a procedure to predict what
precipitator sizes are needed to attain various levels of overall
mass collection efficiency. The steps which should be taken in
this procedure are discussed next.
Step 1: Establish an estimate of the electrical conditions under
which the precipitator should operate.
In establishing an estimate of the electrical operating con-
ditions, a determination of the maximum allowable current density
should be made first. The maximum allowable current density can
be estimated by using the determined value of ash resistivity
and the curve given in Figure 15. If voltage-current data are
available for similar conditions, then these should also be used
in helping to determine the maximum allowable current density.
Once the maximum allowable current density is estimated,
then the applied voltages which will produce this current density
in the different electrical sections must be estimated. These
voltages may be obtained from voltage-current data which are
available for similar conditions except it is not necessary that
the ash resistivity be duplicated. Alternatively, the model can
be used with the option which calculates voltage-current curves
for a wire-plate geometry in order to determine voltage-current
characteristics with the effect of resistivity being ignored.
Then, the applied voltages necessary to produce the maximum
allowable current density can be estimated. In utilizing the
voltage-current calculation, a value for the roughness factor of
the discharge electrodes must be specified. The value of this
parameter normally lies between 0.5 and 1.0 and small changes in
the value lead to significantly different results. Since the
value of this parameter is difficult to project in advance and
the value changes during the operation of the precipitator, care
must be taken in specifying this value and in analyzing the results
obtained. Calculations used to size the precipitator should be
made for several values of the roughness factor between 0.5 and
1.0 and the most conservative prediction of precipitator perfor-
mance should be used as the basis for sizing the precipitator.
Alsc, if values of the roughness factor in a particular range
yield results that are obviously out of line with similar applica-
tions, then this range should be eliminated from consideration.
88

-------
Since the ash resistivity is difficult to determine precisely
and environmental changes can produce significant changes in its
value, the size of a precipitator should be determined based on a
maximum allowable current density which is estimated based on a
somewhat higher value of resistivity than anticipated. A reason-
able and conservative approach might be to base the estimated
maximum allowable current density on a value of resistivity that
is one-half an order of magnitude greater than the anticipated
value.
Step 2: Determine the geometrical parameters to be used.
At this point, the geometrical characteristics of the pre-
cipitator should be established since these data are necessary as
input to the model. The values of the plate spacing, discharge
electrode spacing, and diameter of the discharge electrodes which
are used in the model must be the actual values. In order to
size the precipitator, it is not necessary to know the actual
values of the cross-sectional area, height, area, and number of
the plates, length of the electrical sections, or total electri-
fied length. Although the values of these quantities can be
chosen arbitrarily, they should be as representative as possible.
In the model, different overall mass collection efficiencies
can be determined for different specific collection areas and
then, based on the actual gas volume flow through the precipitator,
the total collection plate area necessary to achieve a given
efficiency can be determined. Knowing the required collection
plate area, the precipitator can be designed with respect to
cross-sectional area, plate height, and length. In designing
the precipitator so that it will have the required collection
plate area, certain considerations should be made. First, the
height of the collection plates should not be too high since
this can lead to increased reentrainment from rapping and to
greater difficulty in providing sufficient rapping force to the
entire area of the plate. In practice, the height of collection
plates ranges from approximately 3.05 (10) to 12.2 (40) meters
(feet). Second, the precipitator should be long enough so that
it can contain several baffled, independent electrical sections.
Increasing the number of baffled electrical sections leads to
better operating electrical conditions and reduced losses in
collection efficiency due to gas sneakage and hopper boil-up.
Third, the gas velocity through the precipitator should be 1.53
m/sec (5 ft/sec) or less in order to help prevent reentrainment
without rapping and to allow sufficient residence time to
recollect material reentrained due to rapping.
Step 3: Determine the nonideal conditions for which the pre-
cipitator will be sized.
Since a certain degree of a gas flow nonuniformity and gas
bypassage of electrified regions and/or particle reentrainment
89

-------
without rapping can be expected to exist in a precipitator, these
factors must be considered in sizing the precipitator. Experience
in simulating the operation of full-scale, industrial precipitators
indicates that values of Og = 0.25 and S = 0.1 are appropriate
for modeling precipitators which are in good working condition.
Losses in overall mass collection efficiency due to rapping
reentrainment are built into the model and can not be varied
without changing the computer program itself. Since the proce-
dure which determines the effect of rapping reentrainment on
precipitator performance is based on average data acquired from
six different full-scale precipitators, the effects of rapping
reentrainment might not be estimated in a conservative manner.
If a conservative approach is taken in sizing the precipitator,
then the values of oq and S should be taken to be somewhat higher
than 0.25 and 0.1, respectively. Values of ag = 0.4 and S = 0.2
should be conservative. This value of S should also allow for
above average losses in collection efficiency due to rapping
reentrainment. If the precipitator is sized in a conservative
manner, then the chances that the precipitator will be able to
meet the particulate emissions standards once it is built are
improved even though undesirable nonideal conditions exist. As a
consequence, the process producing the emissions does(not have to
be shut down until the problems with the precipitator are diagnosed
and corrected. The problems with the precipitator can be diagnosed
with the troubleshooting procedure while the precipitator is in
operation and appropriate corrective measures can be made during
a scheduled shut down. Thus, in many cases, the added cost of a
conservative design can be partially or fully recovered.
Step 4: Consider the effect of adverse changes in particle
size distribution in sizing the precipitator.
Since any decrease in the mass median diameter or increase
in the dispersiveness of the inlet particle size distribution
will result in a fundamental reduction in precipitator perfor-
mance, this factor should be considered in sizing a precipitator.
Any changes in the process variables controlling the source of
the emissions can result in significant changes in particle size
distribution. Thus, the possibility of a change from the antici-
pated particle size distribution to a less favorable one should
be incorporated into the sizing procedure. In a conservative
approach, the measured or anticipated inlet particle size distri-
bution can be fit to a log-normal distribution and the fitted
mass median diameter and geometric standard deviation can be
decreased and increased by 25%, respectively. These new values
should then be used in the model in order to obtain the inlet
particle size distribution for use in sizing the precipitator.
90

-------
Step 5: Generate a curve of overall mass collection efficiency
versus specific collection area.
At this point, since all appropriate input data have been
measured or can be determined, the computer program for the mathe-
matical model can be executed in order to size the precipitator.
The precipitator can be sized by generating a curve of overall
mass collection efficiency versus specific collection area. This
can be done by using a basic data set and shortened data sets as
discussed earlier in Section 3.
Based on the curve of overall mass collection efficiency
versus specific collection area and the particulate emissions
standard, the precipitator size needed to attain the required
efficiency can be determined. In sizing the precipitator in a
conservative manner, the precipitator should be sized to attain
an efficiency which is somewhat higher than that which is required.
This is necessary in order to provide a margin of safety in design
irrespective of any uncertainties in operating parameters and of
any nonidealities which might exist. In order to provide this
margin of safety, the projected collection plate area needed to
attain the required efficiency should be increased by a certain
percentage, possibly 10-15%. This added collection plate area
is also an advantage in that it offers the possibility that the
precipitator will be able to adequately treat gas flows which are
somewhat higher than the design gas flow.
Step 6: Allow for the outage of electrical sections.
In designing the precipitator, a high degree of electrical
sectionalization should be provided. As stated previously, this
leads to improved electrical operating conditions. In addition,
if certain electrical sections are not working, this condition
does not disable a large portion of the precipitator.
In sizing a precipitator, proper allowance should be made
for the possibility that from time to time certain electrical
sections will not be functioning. This can be done by increasing
the collection plate area obtained in step 4. The additional
collection plate area should be provided in the form of added
electrical sections. If reliable data or past experiences are
not sufficient for estimating the number of electrical sections
that might be inoperable at any given time, then a reasonable
approach might be to add an extra electrical section for approxi-
mately every four electrical sections that are required in step 4.
The guidelines and procedure presented in this section cover
the important considerations which must be made in sizing an
electrostatic precipitator. If the guidelines and procedure are
followed correctly, then the mathematical model of electrostatic
precipitation can be a valuable tool for sizing electrostatic
precipitators. Since the procedure includes reasonable conserva-
tive measures to account for several different uncertainties,
the cumulative effect should lead to a precipitator which is sized
conservatively but not excessively oversized.
91

-------
SECTION 10
PRECAUTIONS TO TAKE IN USING THE MODEL
In using the mathematical model of electrostatic precipita-
tion, there are several precautions that should be taken in order
to ensure proper usage of the model. Some of these precautions
have already been mentioned throughout the text. In this section,
all the precautions which should be taken are brought together in
a single location.
Precaution 1; The inlet particle size distribution which is
utilized in the model should be the actual size distribution which
will be seen by the precipitator. Also, in using measured particle
size distributions, make sure the size distribution has been
obtained based on the true density of the particles. The model
must have particle size distributions based on the true diameters
of the particles. Thus, particle size distributions based on
aerodynamic diameters or other non-physical diameters are not
appropriate for use in the model and they must be redetermined
based on the true diameters.
Precaution 2: The bulk resistivity of the particles to be collected
should be measured before using the model. An accurate knowledge
of the resistivity is essential for estimating maximum allowable
current density in a precipitator. This measurement should be
made in situ or under simulated conditions in the laboratory or,
preferrably, by both means. In making this measurement, all
environmental conditions that will prevail in the precipitator
should be duplicated in order to ensure that the measured value
will be representative of that found in the precipitator. The
most critical of these conditions are temperature, gas composition,
moisture content, and electric field strength in the particulate
layer.
Precaution 3; In specifying the electrical operating conditions
to be used in the model, make sure the maximum allowable current
density is not exceeded. The model does not account for the
detrimental effects of excessive sparking and back corona and,
if either of these conditions exists, the model will overpredict
particle collection efficiencies when the voltages and currents
which produce these conditions are used. Although, as discussed
earlier, the model can be used in a troubleshooting procedure to
determine whether or not excessive sparking or back corona is
occurring in a precipitator, it is recommended that the model not
92

-------
be used to simulate the operation of a precipitator in which either
of these conditions exists since no method is presently available
for determining the current which is effective in the precipita-
tion process. If excessive sparking or back corona exists in a
precipitator, then measures should be taken to correct this
problem before the model is used. The measured value of resis-
tivity and Figure 15 can be used to help determine the maximum
allowable current density. However, for collected particulate
layers with high resistivities {>1012 ohm-cm), it may not be
possible to eliminate entirely the effects of back corona. When
using the model to size a precipitator, always use the measured
value of resistivity, Figure 15, and any experimental data from
similar situations in order to make a reasonable estimate of the
maximum allowable current density. In sizing a precipitator, it
must be emphasized that care must be taken in specifying the
maximum allowable current density since a reasonable estimate of
this quantity is necessary for predicting the optimum collection
area. Significant overestimation of the maximum allowable current
density must be avoided in order to prevent severe undersizing of
a precipitator.
Precaution 4; When using the option for calculating voltage-current
characteristics of wire-plate geometries, care must be taken in
specifying a value for the roughness factor of the discharge
electrodes and in interpreting the results of the calculation.
In practice, the values of the roughness factor range between
0.5 and 1.0 and small changes in the value of this quantity can
result in significant changes in the theoretical voltage-current
curve. Decreasing the value of the roughness factor leads to
higher ion densities near the discharge electrode and to higher
currents for the same applied voltage. Since it is impossible to
predict what condition the discharge electrodes will be in once a
precipitator is constructed and since this condition will change
during the operation of the precipitator, it is difficult to deter-
mine what value of the roughness factor is appropriate for sizing
a new precipitator. Representative values of this quantity might
be determined by fitting voltage-current characteristics for
similar situations. Alternatively, calculations can be made for
several values of the roughness factor in the range 0.5-1.0 in
order to produce various possible combinations of operating
applied voltage and current and the sizing of a precipitator can
be based on a value of this quantity that produces conservative
estimates of overall mass collection efficiency. It should be
kept in mind that if the discharge electrodes become completely
covered with material during operation, that this has the effect
of increasing the size of the discharge electrode in addition to a
roughness of the surface. This situation should be prevented by
periodic rapping or vibration of the discharge electrodes with
sufficient force to keep large buildups of material off the
electrodes.
93

-------
Precaution 5; The applied voltage, current density, and electric
field at the plate are sensitive to the value of reduced effective
ion mobility that is used in the model. If in situ or laboratory
measurements of effective ion mobility can not be obtained/ then
make sure the value which is used is consistent with those
values given in Table 1.
Precaution 6; Recent studies'* have revealed peculiar electrical
operating conditions in certain hot-side precipitators. One
unexpected observation is very steep current-voltage curves for
the electrical sets. For hot-side precipitators, the expected
range (z 20-30 kV) from the corona starting voltage to the maximum
voltage would be on the order of 10 kV or more, whereas in these
cases the range (z 18-23 kV) for the outlet electrical fields
is on the order of 5 kV or less. This type of behavior results
in low operating voltages in the outlet electrical fields. Another
unexpected observation is that the voltage waveforms for the
electrical fields of the precipitator show the voltage decaying
to a value less than the corona starting voltage. This indicates
that a mechanism in addition to the applied voltage is sustaining
the current. However, measured values of resistivity and
electrical breakdown strength do not lend support for arguing
that the layer collected at the plate was experiencing electrical
breakdown. These phenomena associated with hot-side precipitators
are under investigation at the present time. Whether they are
due to the properties of the gas, the properties of the collected
particulate layers, or a combination of both is yet to be
established firmly. As a consequence of the possible limitation
in applied voltage, care must be taken in choosing electrical
operating conditions to be used in the model for simulating the
performance of hot-side precipitators. When sizing hot-side
precipitators, it ic cuggcctcd that recent voltage-current data
for different installations be obtained and used as a guide in
choosing the electrical operating conditions.
Precaution 7: Make sure the value of gas viscosity that is used
in the model is consistent with the values given in Table 2.
The gas viscosity has a significant effect of particle migration
velocities and should be specified as accurately as possible.
Precaution 8: In making the electrical calculations in the model,
the values of NX and NY must be large enough to provide sufficient
accuracy in the numerical procedures. For NVI = 1, the values of
NX and NY should not be less than 11 and 9, respectively. For
NVI = 2, the values of NX and NY should both be at least 15.
Precaution 9: When using the more rigorous charging theory, make
sure the values of NN and NUMINC are large enough to provide
sufficient accuracy in the numerical calculations. For NVI = 1,
a value of NN = 10 normally provides sufficient accuracy when the
precipitator is divided into incremental lengths of approximately
0.305 m or less. For NVI =2, a value of NN = 5 normally provides
sufficient accuracy since particle charging calculations are
94

-------
performed over small, subincremental lengths. NUMINC must be an
even number and a value of NUMINC = 20 normally provides sufficient
accuracy. In order to speed up the calculations, NUMINC can be
reduced to a value as low as 10 without causing too great a change
in the results. The use of values of NUMINC which are less than
10 is not recommended.
Precaution 10: The procedures which are used in the model to
estimate the effects of nonideal conditions yield the best results
when applied to high efficiency precipitators. If nonideal con-
ditions (especially particle reentrainment) exist to a large
extent in a precipitator, then the deviation from the exponential-
type relationship which is used in the model to describe particle
collection can be so large as to result in an inadequate repre-
sentation by the model. In this type of situation, a set of
nonideal parameters that results in a good representation of
nonideal conditions for one gas volume flow may be completely
different at another gas volume flow. Thus, in sizing a precipi-
tator to collect particles which are easily reentrained (due to low
resistivity, low density, etc.), care must be taken in choosing an
appropriate set of nonideal parameters that will be characteristic
of the actual operating conditions. For this type of application,
errors in sizing can be reduced by designing the precipitator such
that the gas velocity through the precipitator is as low as
possible.
Precaution 11: When sizing a precipitator, never base the final
size on calculations from the estimation procedure. Always check
the size obtained from the estimation procedure with that pre-
dicted by the more rigorous calculation and, if necessary, make
the proper adjustment to the size of the precipitator.
95

-------
REFERENCES
1.	Gooch, J. P., J. R. McDonald, and S. Oglesby, Jr. A Mathe-
matical Model of Electrostatic Precipitation. EPA-650/2-75-
037, U.S. Environmental Protection Agency, Raleigh Durham,
North Carolina, 1975.
2.	Gooch, J. P., and J. R. McDonald. Mathematical Modelling of
Fine Particle Collection by Electrostatic Precipitation.
Atmospheric Emissions and Energy-Source Pollution, AICHE
Symposium Series, 73(165):146, 1977.
3.	Gooch, J. P., and J. R. McDonald. Mathematical Modelling
of Fine Particle Collection by Electrostatic Precipitation.
Conference on Particulate Collection Problems in Converting
to Low Sulfur Coals, Interagency Energy-Environment Research
and Development Series. EPA-600/7-76-016, U.S. Environmental
Protection Agency, 1976. 68 pp.
4.	Gooch, J. P., and G. H. Marchant, Jr. Electrostatic Pre-
cipitator Rapping Reentrainment and Computer Model Studies.
Final Draft Report prepared for the Electric Power Research
Institute, 1977.
5.	Nichols, G. B., and J. D. McCain. Particulate Collection
Efficiency Measurements on Three Electrostatic Precipitators.
EPA-600/2-75-156, U.S. Environmental Protection Agency,
Raleigh Durham, North Carolina, 1975.
6.	Smith, W. B., K. M. Cushing, and J. D. McCain. Procedures
Manual for Electrostatic Precipitator Evaluation. EPA-600/
7-77-059, U.S. Environmental Protection Agency, Raleigh
Durham, North Carolina, 1977.
7.	Hall, H. J. Trends in Electrical Energization of Electro-
static Precipitators. Presented at Electrostatic Precipitator
Symposium, Birmingham, Alabama, Paper I-C, February 2 3-25,
1971.
96

-------
APPENDIX A
OUTPUT DATA FROM EXAMPLE 1
97

-------
*	E.P.A. ESP MOOfl	*
*	*
*	I.E.P.l.-H.T.P, 4ND sn.p.j. *
*	*
*	rfvisthn i,JAN, 1, 1Q7R	*
*	*
*************************************
PRINTOUT OF INPUT RATA FOP DATA SET NUMBfP l
DATA ON CARD NUMBFR I
NENOPT b 16 NOATA e 1
DATA ON CARD NUMBER 2
LAB ESP| SCAsl25FT2/lOOOACFMfJb2«,0UA/FT2
DATA ON CAPO number 3
*£>
00
NEST a 1 NOIST ¦ 1 NVI b 1 NX a 10 NY o 10 NITER e J NCALC » 0 NRAPD » 1 NEFF b 1 NTEMP B 1 HONID B 2
DATA ON CAPO NUMRFR <1
NN B JO NUMINC s 20
DATA ON CARD NUMBER 5
Dl a O.OI5OO CRN/ACF PL b 10.0000 FT ETAO b 99,00000 * DO b 1000,00 KG/M**3 EPS b 5.100E*00
VRATIO b 1,0300 US = 0.000165 M««2/V.SEC FPATH b 1,0000 CBO b 1500000. V/M RHOCGS b 1.00E+09 OHM-CM
DATA ON CARD NUM0ER 6
ASNUCK( n = 0,00 AZIGRYC 1) B 0.00 AZNUMSt 1) O U.0
ASNUCM 2) S 0,10 AZIGGY( ?) b O.|0 AZnUMSC 25 = U.O
DATA ON CARD NUMBER 7

-------
ENOPTf 11 e 0.200 UM ENOPTf ?) s 0,300 UH ENOPT{ 3) s O.IOO UM ENDPT( «) c 0,500 UM ENOPT f 5) n 0,600 U«
ENDPT( b) a 0,800 UM ENOPTf 7) s 1,000 UM ENOPTf 8) e 1,200 UM ENOPTf 9) = 1,800 UM ENf)PT(lO) « 1,800 UM
vo
to
DATA ON CARD NUMBER 8
ENOPT(ll) o 2,200 UM ENDPT ( 12) = 5,000 UM ENDPT(13) s 0.000 UM FNDPT(M) b 6.000 UH ENDPTM5) b 10,000 U«
ENDPT(lb) a 20,000 UM
DATA ON CAPO NUMBER 9
PRCU ( 1) o 0.0000 * PRCU( 2) a 0,0002 * PRCUC 3) a 0.U0O2 * PRCU( a) a 1 ,0002 * PRCU( 53 ¦ 2.6672 X
PRCU ( 63 a 7 ,6672 X PRCU( 7) = 12,6002 * PRCU( 8) « 17.6002 1! PRCU( «») o 21.3332 X PRCU(IO) a 29.3332 X
DATA ON CARD NUMBER 10
PRCU(11J a 36,0002 X PRCU(1 a I a 116,6672 X PRCU(135 a 57,3302 X PRCU(14) a 66,6672 X PRCUC15) ¦ 00,6672 X
PRCU(16) s 100,0000 X
DATA ON CARD NUMBER 11
NUMSEC c 3 CSECT( 1) a J L3ECI( 2) e 3 LSECT( ]) t 6
DATA ON CARD NUMBER 12
A9( 1) 8 6.2500E+00 fT»*2 VOS( 1) a U.6000E404 V TCS( 1) » 1.5000E-OU A «LS( 1) a 6.2500E+00 FT
ACS( 1) a (I.6875E-02 IN BS( 1) " 5.0000E+00 IN NW8( 1) « «i,0O00E*00
DATA ON CARD NUMBER 13
8VS( 1) a 2.5000E+00 IN VGSf 1) ¦ 2.0000E+02 FT**3/MIN VGAgSt 1) a 3,2000EtOO FT/SEC TEMPS( 11 a T.6600E+01 F
PS( n « 1 , OOOOE + OP ATM VISS t n s 1.8000E-05 KG/M-SEC LINcS* 1) a 8.3333E-0I ft
DATA ON CARD NUMBER 1"
AS( 2) a 6, 2500E+ OP FT**2 VOSf 2) = fl.SBOOE + OU V TCS( 2) s 1.5000E-OU A WIS( 2) a 6.2500E+00 FT
ACSf 2) e 1. 6675E-02 IN RS( 2) a S.OOOOE+OO IN NWS( 2) 3 5.0000F+00

-------
DATA on CARD NUMBER !5
SYSC 2) n 2.5000E+00 IN	VGS( 2) o 2.0000E+02 FT**3/mIn	VG»S3( 2) = 3,2000E*00 FT/SEC TEMPSC 2) b 7.6800E+01 F
PS( 2) * 1 .0000F + 00 ATM	VISSt 2) n 1.8000F-05 KG/M.SEC	LINCSC 2) ¦ 8.3333E-01 FT
DATA ON card NUMBER 16
AS( 3) * 1.2500E+01 FT**2 VOS( 3) a U,
-------
INCREMENTAL ANALYSIS r>F PRECIPITATOR PERFORMANCE
LAB ESP I SCASl25FT?/|000ACFM|Js20.25416565 M
TOTAL CURRENT s 1.500E-OB AMPS
CORONA WIRE LENGTH e 1.906E+00 M
DEPOSIT £ FIELD • 2.581E+03 VOLT/M
GAS VELOCITY ¦ 9.760E-01 M/SEC
VISCOSITY 8 1.800E-03 KG/M-SEC
PART, PATH PARAM, b 5.708E-0B H
INPUT EPF,/INCR, b 31,87
ROVRI
ERAVG
EPLT
AFIO
CMCO
HMD
WEIGHT
DUST LAYER J(PART )
J(ION) INCR, NO,
1,0165
1,0096
1,0056
3.606E+05
3,606Ef05
3.606E*05
?.7206E*05
2,7206E+05
2,7206E+05
2.0fl7BE*13
2,«638E+13
2.U736E-H3
25.8
25.8
25.8
2.35E-06
2,0«E-06
1.80E-06
2,fl36F-06
2.085E-06
1.589E-06
B.310E-05
6.107E-05
0.655E-05
0.60E-08
1«03E«08
3,«9E-08
2.58E.00
2.58E-0U
2,58E-na
CALCULATION IS IN SECTION NO. s 3 AND THF SECTION LENGTH IS a 1,5250 M
COLLECTION aREA b 1.162E+00 M2
WIRE TO PLATE c 1.270E-01 M
CURPENT/M s 7.869E-05 AmP/M
1/2 WIRE TO WIRE a 6.350E-02 M
TEMPERATURE = 297.667 K
ION MOBILITY s 1.79BE-0# H2/V0LT-SEC
OUST WEIGHT o 3.250E-f>6 KG/SEC
APPLIED VOLTAGE b «,ttflOE+Oa VOLTS
CORONA HIRE RAOTUS = 1.191E-03 M
CURRENT DENSITY o 2.581E-0« AMP/M2
GAS FLOW RATE a 9,(l60E-()2 M3/8EC
PRESSURE = 1 ,000 ATM
mean THERMAL SPEED b U.U39E+02 M/SEC
LENGTH INCR. bo.25016565 M
TOTAL CURRENT « 3,OOOE-Oa AMPS
CORONA WIRE LENGTH e 3.812E+00 *
DEPOSIT E FIELO b 2.581E*03 VOIT/m
GAS VELOCITY a 9.760E-01 "/SEC
VISCOSITY s 1,800E"05 KG/m-SEC
PART, PATH PARAM, ¦ 5,7086-08 M
INPUT EFF./INCR, b 3|,87
ROVRI	EHAVG EPLT	AF|D	CMCD	HMD	WEIGHT	OUST LAYER	J(PART)	J(ION)	INCR. NO,
1 ,0031	3,U96E + 05	2.6U52F + 05	2.5578E+I3 25.8	1.60E-06	1 .206E-06	3.533E-05	2.93E-08	2,58E-0
-------
1,0006 J.«O6F*05 2.6«52E*05 2.5602E+13 25.8 1.35E-06 A.300F-07
1,0000 5. 0 96E *05 2.6052E+05 2.5609E+13 25.6 1.27E-06 5.17OE-07
1,0002 3,U«6E+05 2.6"52E+05 2.5653E+13 25.8 1.20E-06 0.272E-07
1,MTE-0S 1.92E-08
1 ,516E"05 1.68E-08
1 .252E-05 1.06E-08
2.5BE-00
2.5BE-00
2.58E.00
10
11
12
EST, EFFICIENCY a 00.00 UNCORRECTED COMPUTED EFFICIENCY = <»3.2«
INCREMENTAL Analysis OF PRECIPITATOR PERFORMANCE
LAB ESPl SCABi25FT?/iO00ACFM,Ja2«,oUA/FT2
CALCULATION IS IN SECTION NO, ; 1 AND THF SECTION LENGTH IS a 0,7625 M
COLLECTION aREA a 5.B12E-01 M?
WIRE TO PLATE a 1.270E-01 M
CURRENT/M s 7.869F-05 AMP/M
1/2 WIRE TO WIPE « 6.350E-02 m
TEMPERATURE « 297,667 K
ION MOBILITY a 1.798E-0O M2/V0LT-SEC
DUST WEIGHT e 3.250E-06 KG/SEC
APPLIED VOLTAGE a 0.600E+00 VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY o 2.581E-00 AMP/M2
GAS FLOW RATE a 9.060E-02 M3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED a 0.039E+02 M/8EC
LENGTH INCR, '0.25016565 M
TOTAL CURRENT b 1.500E-0O AMPS
CORONA WIRE LENGTH a l,906E*00 M
DEPOSIT E FIELD a 2.581E+03 VOLT/M
OAS VELOCITY a 9.760E-01 M/SEC
VISCOSITY = 1.800E-05 KG/M-SEC
PART', PATH PARAM, a 5.708E-08 M
INPUT EFF./INCR, a 20,11
ROVRI
ERAVG
EPLT
AFID
CMCD
MHO
WEIGHT
DUST LAYER J(PART)
J(ION) INCR. NO,
1,0503
1,0371
1,0250
3.622E+05
3.622E+05
3.622E+05
2.7079E+05
2.7395Ef05
2,733BE+05
2.3090E+13
2.3879E+13
2,0162C* 13
25,8
25.8
25,8
6.71E-06
0.07E-06
2.89E-06
1.032E-05
6.501E-06
0,130E-06
3.022E-00
1.916E-00
1.210E-00
0.98E-08
6.06E-08
5.3BE-08
2.58E-0O
2.58E-00
2.98E-00
CALCULATION IS IN SECTION NO. a 2 AND THE SECTION LENGTH IS a 0,7625 M
COLLECTION AREA a 5.B12E-01 M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/M b 7.869E-05 AMP/M
1/2 WIRE TO WIRE a 6.350E-02 m
TEMPERATURE a 297,667 K
ION MOBILITY a 1.798E-00 M2/V0LT-SEC
DUST WEIGHT a J.250E-06 KG/SEC
APPLIED VOLTAGE a O.580E+0O VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY a 2,581F-0O AMP/M2
GAS FLOW RATE a *9,060E-02 M3/SEC
PRESSURF a 1,000 ATM
MEAN THERMAL SPEED a O.U39E+02 M/SEC
LENGTH INCR, >0,25116565 M
TOTAL CURRENT a 1.500E-00 AMPS
CORONA WIRE LENGTH a 1.906E+00 m
DEPOSIT E FIELD a 2.581E+03 VOLT/M
GAS VELOCITY a 9.760E-01 m/SEC
VI8C08ITY ¦ 1.800E-05 KG/N.SEC
PART, PATH PARAM, a 5.708E-0B M
INPUT EFF./INCR, ¦ 20,11
ROVRI
ERAVG
EPLT
AFID
CMCO
MMD
WEIGHT
DUST LAYER J(PART)
J(ION) INCR, NO,
1,0168
1,0110
1,0078
3.606E+05
3.606E+05
3.606E+05
2.7208E+05
2.7208E+05
2,7208E+05
2,0063E*t3
2.0593E+13
2.0682E+13
25,8
25,8
25,8
2.35E-06
2.0OE-06
1.80E-06
2.8U2E-06
2.088E-06
1.591E-06
8.326E-05
6.117E-05
0.662E-05
0.65E-08
0.03E-08
3.09E-08
2.5BE-00
2.SBE-00
2.5BE-00
CALCULATION Is IN SECTION NO. a 3 AND THE SECTION LENGTH IS a 1.5250 M
COLLECTION AREA a 1.162E+00 M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/M s 7,860E-ft5 AMP/M
1/2 WIRE TO WIRE a 6.350E-02 M
TEMPERATURE a 297,667 K
ION MOBILITY a 1 .798E-0O M2/V0L T»SFC
OUST WEIGHT a 3.250E-06 KG/SEC
APPLIEO VOLTAGE a O.OflOE+OO VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY a 2.5B1E-00 AMP/M2
GAS FLOW RATE a 9.O60E-02 M3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED a O.U39E+02 M/SEC
LENGTH INCR, aO.25016565 M
TOTAL CURRENT a 3.000E-00 AMPS
CORONA WIRE LENGTH a 3.812E+00 M
DEPOSIT E FIELD a 2.581E + 03 VOI.T/M
GAS VELOCITY a 9.760E-01 M/SFC
VISCOSITY a 1.800E-05 KG/M.SEC
PART, PATH PARAM, e 5.708E-08 m
INPUT EFF./INCR, a 20,11
ROVRI	ERAVG	EPLT	aFID	CMCD	MMD	WEIGHT DUST LAYER J(PART)	J(ION) INCR, NO,

-------
1,0052
3.UQbE+05
2,b«61E+05
2. 5S27F~13
25.8
1,60E-0b
1 ,21BE-0b
3,5386-05
2.93E-08
2.58E-0U
7
1 , 003b
S.u'JbE + OS
2.bB
2.S8E-0U
12
o
u>

-------
CHARGING PATFS fob PART ICLE SIZES FROM SUBROUTINE CHARGE OR CHGSU
SRI
THEORY USED
FOP PARTICLE
charging


INCREMENT no.
o/qsatf for
INDICATED
PaRTTCLE sizfs

0
.2500E-06 o
.35P0E-06 0
.U500E-06
0.5500E-06
0.7000E-06
1
1,0360
1 .0160
1.0360
1,0360
1.0360
2
1,6765
1.6091
1 .6069
1,5659
1,512*
3
1,8868
1 .fljati
1.7709
1,7129
1.6406
i
2.0127
l .9U3S
1.6663
1,7977
1.7136
5
2.1027
2.0207
1.9338
1.8577
1.7651
6
2.1726
2.0805
1.0859
1.9039
1.8017
7
2.2263
2.1253
2.0239
1.9369
1,8322
e
2.2719
2.1631
2.056"
1.9651
1,8558
9
2.3116
2.1966
2.0817
1.9697
1,8765
10
2,3166
2.2259
2.1097
2.0116
1.8948
11
2.3779
2.2521
2.1322
2.0312
1,9113
12
2.1063
2.2759
2.1525
2,0489
1,9262
0
.1600E-05
0.2000E-05
0.2600E-05
0.3500E-05
0.5000E-05
1
1.0360
1.0360
1,0360
1.0360
1 .0360
2
1.3419
1.3037
1.2638
1.2246
1.1852
3
1.1177
1.3692
1.3189
1.2699
1.2210
4
1.1596
I.1052
1.3488
1.2912
1.2399
5
1.1892
1.1305
1.3699
1.3113
1,2533
6
1.5119
1.4199
1.3861
1.3215
1.2636
7
1.5255
1 .4609
1.3916
1.3307
1.2677
8
1.5371
1.4706
1.4022
1.3307
1,2677
9
1 .5479
I.4793
1.1089
1.3307
1,2677
10
1.5573
1.4870
1,4089
1.3307
1,2677
11
1.5659
1,4941
1.1089
1.3307
1,2677
12
1 .5737
1,4941
1.1089
1.3307
1.2677
0.9000F-06
0.11 OOF-OS
0.1300E-05
1,0360
1 ,0360
1,0360
1,1572
1 ,41U6
1,3809
1,5667
1,5110
1.4676
1.6287
1,5653
1.5160
1.6721
1.6034
1.5501
1.7060
1.6328
1.5762
1,7285
1,6517
1,5926
1.7178
1,6682
1,6069
1.7618
1.6626
1,6195
1.7800
1.6955
1,6307
1.7936
1.7071
1,6409
1.8059
1.7177
1,6501
0,B000E»05
1,0360
l.mo
1,170a
1.1859
1.1935
1.2009
1,2032
1.2032
1.2032
1.2032
1.2032
1.2032
0.1500E-04
0,9605
1.0975
1.11B5
1,1279
1.1345
1,1396
1.1396
1.1396
1.1396
1.1396
1.1396
1.1396

-------
CHARGE ACCUMULATED nrJ PARTICLE SIZES Tn EACH INCREMENT
INCREMENT	CHARGE FOR INDICATED PARTICLE SIZES

0.2500E-P6
0,3500E»06
n.a500F»06
O.^SOOE*'1^
1
0.18A95F-17
0.J5«J SE-17
0,52363F-t7
0.7576UE-17
2
0.30576E-17
0 ,5318

0.1600E-0S
0 .2000E-05
0,2600E»0I?
0.3500E-05
1
0.59103E-16
n,9169JE-16
0.15399E-15
0.2T760E-15
2
0,765536-16
0.11538E-15
0,187B3E" 1S
0.32811E-15
3
o.eo87"e-i6
0,12118E-15
0.19602E-I5
0,3«4026E-15

0.83269E-16
0,12a36E»15
0,200U7E" 15
0.3U677E-15
5
O.Ba95flE-16
0.12660E-15
0,20 361E» 1 "5
0.35136E-15
6
0.862a9E-16
0,12832E"15
0.20602E-15
0,35a90E-15
7
0.87025E-16
0.12930E-1S
0.2072BE-15
0.356S7E-15

0.87702E-16
0.13016E-15
0,208«1E»1S
0.35657E-15
9
0.88302E-16
(I.13092E-15
0,209aJE"1S
0.35657E-15
10
0,888a1E-16
0,13161E-1S
0,209fl1E»15
0.356S7E-15
11
0.89329E-16
0,1322SE-15
0,209aiE-IS
0,356S7E"15
12
0.89775E-16
0.13223E-15
0,209aiE>lS
0.35657E-15
0. 7000F-06
0,119??E-16
0.17a09f-i6
0,1»879E-16
0.19720F-16
0,20 312F»16
0.20768E-16
0.21085E-16
0,21356F-1 6
0.2159UE-16
0.21805E-16
0.21994E-16
0.22166E-16
0.900nE-n
o, i<»2©r(E-1
0.27117E-1
0.29155E-1
0. J0509E-)
0,31122E-1
0,31T07E-1
0.32I65E-1
0.32S26F.-1
0.J2B03E-1
0.33123F-1
0.33S76E-1
0.53607E-1
0.1100E-05
0,28a23E»16
0,3880«E-lb
n,<(l«55E»16
0, U29U2E-16
0,U39
-------
PARTICLF SIZF PANT.F STATISTICS
CORRECTIONS FOR h'nMinEALTTIES USING SET NO, 1 OF CORRFCTION PAOAMETERS
SIZE
CCF
1NLFT X
OUTLET *
CflR, OUTLET
* NO-RAP EFF
, NQ-RAP U
Nn-«AP P
COR. EFF.
COR. w
ens, p
2.50PE-07
1 .590
0.000
0,0010
0.0006
8ft.5687
8.821
11.1313
88.5687
8,821
11.1313
3.500E-07
I.HI
o.uoo
i .Bfieu
1.1360
08.7009
8,872
11,?99l
88,2556
8,715
11,7111
1.500E-O7
1.320
0,600
2.6661
1,61ft?
89.3651
9.118
10,6319
88,8470
8.925
11.1530
5.500F-07
1 ,261
1 .667
6.7526
1,0195
90.3050
9.U95
9,6950
90,0288
9.38)
9.9712
7.000E-07
t .205
5,100
17.7321
10.5981
91.5119
10,036
8.1881
91,2317
9,905
8.7653
9.00 0E-07
1 .159
a.933
11.3956
R.R090
93.0155
10.829
6.98U5
92.6155
10,602
7,3815
1 , 100E-06
1.130
5,000
12.15^6
7.6316
91. 1818
11 .57?
5.8182
93,6856
11,239
6,311"
1,300E-06
1,110
3.733
7.5813
5.0878
95.1393
12,^01
0.8607
91,3638
11,702
5,6362
1 .600E-06
1 . P9n
6.000
12.8201
9.0311
96.1615
13,268
3,8355
95,3300
1?,167
1,6700
2.000E-06
1,072
6.667
7,9521
6.3865
97. 1(153
11,169
?,8S«7
96,0386
13,137
3,961 "
2.600E-06
1.055
10.667
8.5216
8,6386
98.0873
16.099
1.9127
96,6510
13,820
3,3190
3.500E-06
1,011
10.667
5.1979
7,U069
96.8337
18.112
1,1663
97, 1285
11,116
2,8715
5.000E-06
1,029
11.333
2.1822
8,166(1
99,5391
21.890
0,1609
96,9107
11,118
3,0893
6.000E-06
1 ,018
12,000
0.1505
8,9957
99,9700
33,002
0,0300
96.9000
11,130
3,1000
1.500E-05
1,010
19.333
0.0006
12,1675
99,9999
58.25?
0,0001
97.3973
lU.ft16
2,6027
EFFICIENCY - !
stated C
93.21
COMPUTED a
93,2125
CONVERGENCE
OBTAINED



adjusted ncubap eff, c 97.6O66
mho OF INUET size distribution b j,jooe+oo
Sir,map OF inlet SIZE DISTRIBUTION s 2> 161E+00
LOG-NORMAL GOODNESS OF FIT a 0,93«
HMD OF EFFLUENT UNDER NO-RaP CONDITIONS o 1.279E+00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS = 1.626E+00
LOG-NORMAL GOOONESS OF FIT = 0.961
PRECIPITATION RaTE PARAMETER UNDER Nfl-RAP CONDITIONS s 15,187
SIGMAGO o.^oo WITH 0.000 SNEAKAGE OVE" a.000 STAGES
NTEHP 5 1
RHMD a 6.00
RSIGMA s 2.SO
CORR. EFF, a 95,8617
CORRECTED MMO OF EFFLUENT o 2.107E+00
CORRECTED SIGMAP OF EFFLUENT e 2.177E+00
LOG-NORMAL GOODNESS OF FTT b 0.913
CORRECTED PRECIPITATION RATE PARAMETER s 12.96

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENT Its* AND DISCRETE OUTLET MASS LEADINGS
IDEAL UNADjUSTf-n
ideal UNADJUSTED
NO.RAP
HAPPIWG puff
no-rap*rap puff
RAPPING PUFF
PARTICLE
MIG, VEL.CCM/SFC)
EFFICIFNCY(X)
DM/DLnGD(MG/DSC«)
DM/DmGDfMG/nSCH)
DM/OLOGnCMG/DSfM)
DISTRTUUTIOM(Xi
DIam,(M)
3 . 795E+00
b.0<,faE*fll
.339E + 01
1.357E-01
5.3S0E-03
1 ,U1lF-ni
1.022E-01
3.500E-07
«,«u8E+oo
6.6,09UE-03
6.231E-01
6.292E-01
2.11UE+01
8,000E-06
5, 82"5E*01
1,OOOE+02
2.390E-05
i,?72E-01
6.272E-01
2.887E+01
1 .S00E-0S
o

-------
SUMH4RY TARlE of ESP OPERATING
PARAMETERS AND PERFORMANCE
DATA set number 1
ESP PERFORMANCE I	EFFICIENCY = 
-------
PAPT TCLE Size HAMGF STATISTICS
CORRECTIONS FOR NMN THF AL T T TES USING SET NO, ? OF CORRECTION PARAMFTFRS
SIZE
CCF
jnlft *
OUTLET * CnR, OUTLET
X NO-RAP EFF
, NO-RAP W
no-kap p
COR. EFF.
CflR, w
COW. P
2.500F-07
1 .590
0.000
o. o o o a
0.0005
85,0113
7.730
11,9587
85,011 J
7, 730
11,9587
J.500E-07
1 ,«10
O.lOO
1,5105
1,0237
85,1390
7.757
11,8610
81,6075
7.611
15,39?5
1.500F-07
1,3?fl
0.600
2.1586
1 ,1711
85,8111
7.951
11, 1586
85,2230
7,780
11,7770
5.500E-07
1,261
1 ,667
5.5601
3,7291
86.8737
8.262
13,1263
86,5111
8.161
13.155"
7.00 0F-07
1,205
5,000
11.9759
10,073ft
88.2127
8.700
1 t ,7B73
87,8819
8,587
12,1181
9.000E-07
1,159
1,933
12.6233
8,6511
89.9295
9.310
10,0705
89,1519
9,15?
10,5181
1,100E-O6
1.130
5,000
11.0615
7,7320
91.2913
9.931
8.7087
90,6989
9,661
9,301 1
1.300E-06
1,110
3.733
7.1718
5,2670
92.1393
10.507
7.5607
91,5136
10,037
8,1861
1,600E-06
1 ,P90
fl.OOO
12.818?
0,7120
93,6911
1 1.215
6.3056
92.6982
10.618
7,3018
2.000E-06
1,07?
6.667
8.5701
7,071 6
91.9112
12.112
5,0588
93.6203
1t.l^B
6,3797
2.600E-06
1,055
10.667
10.2993
9.779U
96,2002
13.306
3.7998
91.1858
1 1 ,791
5,5102
3.500E-06
1.011
10.667
7,1536
B.1B66
97,2501
10.622
2.7199
95.2117
12.368
1,7853
5.000E-06
1.029
11.333
1.1961
8,8535
98,1387
16.925
1 .5613
95.3013
12.H2
1,6987
8,000E-06
1 ,0)8
12,000
1,0551
8,0015
99,6510
23,056
0,3"60
95,9895
13,086
1,0105
1.500E-05
1,010
19.333
0.2U20
10,1138
99,9507
30.987
0.0193
96,8111
11.061
3,1559
EFFICIENCY - :
STATEO B
93,21
COMPUTED e
93,2125
CONVERGENCF
OBTAINED



ADJUSTED NO-RAP FFF, b 96.0616
MMD OF INLET SIZE DISTRIBUTION e 3.300E+00
SIGMAP OF INLET SrZE DISTRIBUTION a 2.161E+00
LOG-NORMAL GOODNESS OF FIT a 0,93a
OF EFFLUENT UNDER NO-RaP CONDITIONS b l,l75E-fOO
SIGMAP of EFFLUENT UNO£» NO-RAP CONDITIONS » 1.720E+00
S	LOG.NORMAL GOODNESS OF FIT s 0,960
PRECIPITATION Pate PARAMETER under NO-Rap CONDITIONS a 13,163
SIGHAG® 0,100 WITH 0,100 SNEAKAGE OVER 1,000 STAGE9
NTEMP b 1
RHKD a 6,00
rsigma s a.so
CORR. EFF. a 93.9853
CORRECTED M*D OF FFFLUENT s 2,351E*00
CORRECTED SIGMAP OF EFfLUENT b 2,116E»00
LOG-NORmAL GOODNESS OF FIT s 0,923
CORRECTED PRECIPITATION RATE PARAHETER b 11,11

-------
UNADJUSTFD MIGH 4 TI ON VELOCITIES AND EFFIC TFNCTES, a NO DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTFH
tdfal unadjiistfd
NO-RAP
Rapping puff
NO-RAP+RAP puff
RAPPING puff
PARTICLE
MIG. VEL.(CM/SEC )
FFFICIFNCY(X)
DM/DLnGD(MG/DSCM)
OM/DLOGO(MG/nSCM)
DM/DLOGDCmG/DSC")
DISTRIBUTION(X)
01 AM,(H)
3.795E+0O
6.066E+01
6.375E-05
1 .933E-03
t ,99«.F-03
1, 3fc0E«02
2.500E-07
fl.088E*00
6.339E*m
1.7BSF-01
b.38fcE-03
1,fi«9E-01
1.022E-01
3,500t-07
u.iitiee+oo
6.6a9E+01
3. 290E«01
1,«37E-02
3.
".001E+OO
8,905E*0I
1,73«E+00
2.7«0F-01
2.008F+00
3.831E+00
1 ,600t»06
1, 056E + 01
9.25UE+01
1.U52E+00
3.792E-01
1.83JE + 00
1,23UE+00
2,OO0E»0h
1.286E+01
9.576E+01
1.129E+00
5.095E-01
1.63OE + 00
8.791E+00
2.600E-06
l.62«E+01
9,fll5E+0t
fl.fli 0E-01
6.521E-01
1.533E+00
1,0«ilE + 0l
3,500E-06
2.1P9E+0I
g,<»5UE»0l
3.771E-01
7.577E-01
1 ¦135E*00
t ,709E*01
5, 0O0E»06
J.JOOEtOl
9,997E»01
7,0?uE«02
7.U3BE-01
e,iaoE-oi
2.1 JUE + 01
8.000E-06
5.825E+01
1.000E+02
1a187E»02
7,a87E-01
7.605E-01
2,B87E + 01
1 .500E-05

-------

SUMmarv TaplE OF FSP OPERATING *
parameters and performance •

DATA SFT number 2 *
* ESP PERFORMANCFl EFFICIENCY = 05,9853 * SCA s 2.O5BE+01 m*«?/fh.*j/sec) •
* ELECTRICAL CONDITIONS!
AVG, APPLIED VOLTAGE b 
-------
APPENDIX B
OUTPUT DATA FROM EXAMPLE 2
112

-------
E.P.A. ESP MODFL
T.E.R.L.-R.T.P. AND 80.R.I.
REVISION I.JAN, i, 1978
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER 1
DATA ON CARD NUMBER 1
NENPPT a 16 NOATA a 1
DATA ON CARD NUMBER 2
LAB ESP| SCAofl2FT?/lOOOACFM|CALCULATED V«I FOR EACH ELECTRICAL SECTION
DATA ON CARD NUMBER 3
NE8T a J NOIST o 1 NVI n 2 N* o 15 NV e 15 NITER a 1 NCALC » 0 NPAPD • 1 NEFP « 1 NTEMP ¦ 1 NONID ¦ 2
DATA ON CARD NUMBER 4
NN a 10 NUMINC a 20
DATA ON CARD NUMBER S
IFINAL b 20 JI1 a 2 JI2 e 81 VISKTP a 1 VISAME a 2
DATA ON CARD NUMBER 6
Dl s 0.06500 GRN/ACF PL » 1 0.0000 FT FT AO » 99,00000 * 00 a 1000.00 KG/M«*J EPS a 5.1006*00
VRATlO • 1.0500 US ' 0.000165 M**2/V-SFC FPATH a 1.0000 EBO a 1500000. V/M RmOCCS a 1,00E»09 OHM-CM
DaTa on r.ARO number T
ASNUCK ( 1) « 0.00 AZIGGVf 1) a 0.00 AZNUMSf 11 = <1.0

-------
A8NUCK( 2) a 0,10 iZIGGYf 2) a 0,10 AZnUMSC 2) a 0.0
OAT* ON CARD NUMBER 6
ENDPT( 1) « 0.200 UM ENDPTf 2) a 0,300 UM ENOPT f 1) a
ENDPTf 6) • 0.800 UM ENDPTC 7) a 1,000 UM ENOPT( 8) a
0,000 UM ENOPT{ «) ¦ 0,500 UM E"OPT( 5) « 0,606 UM
1.200 UM FNpPT( 9) a 1,000 UM ENOPT(10) a 1,800 UM
DATA ON CARD NUMBER 9
ENDPTfll) a 2,200 UM ENDPT(12) ¦ 3,000 UM ENDPT(13) a 0,000 UM ENDPT(JO) ¦ 6,000 UM ENDPT(15) ¦ 10,000 UM
ENDPT(16) e 20,000 UM
DATA ON CARD NUMBER 10
PRCU( 1) « 0,0000 X PRCU( 2) a 0,0076 X PRCUC 3) ¦ 0,0563 X PRCUC 0) ¦ 0,2682 X PRCUC 3) a 0,6652 X
PRCUC 6) ¦ 2,9805 X PPCUt 7) ¦ 5.96*5 X PRCUC 8) » 9.5515 X PRCUC 9) ¦ 12,8350 X PRCUC10) ¦ 19,7000 X
DATA ON CARD NUMBER 11
PRCU(li) a 26,860) X PRCUC12) e 38,8002 X PRCUC13) ¦ 09,2516 X PRCUC10) ¦ 60,1765 X PRCU(lS) ¦ 79,1010 X
PRCU(16) a 100,0000 X
DATA ON CARD NUMBER 12
NUMSEC a 3 L3ECT( 1) e 6 USECT( 2) ¦ 6 LSECT( 3) ¦ 12
DATA ON CAPO NUMBER 13
AS( 1) a 6.2500E*00 FT.*2 VOSC 1) a 0,0800E*0« V TC8( 1) e 6,25006-05 A NL8C 1) a 6.2500C+00 FT
AC8C 1) a O.6875E-02 IN BS( 1) o 5.0000F*nO TN NW8C 1) a 5.0rtO0E*00
DATA ON CARD NUMBER 10
8*8f 1) a 2.5000E*00 IN VGSC 1) a S.OSSSE + Oa FT**3/MIN VQASSC 1) " 
-------
DATA ON CARD NUMBER '5
RFSf 11 = R.OOOOF-OI 3T ART J{ 1) = 6.0000E-OS A^*»2 SURT2C n e 2.00006-05 A/M««J
8TIPTJ( 1 ) = 2.0000E-05 A/m**2 VSTAPf n s j.fiOone*na V
DATA ON CARD NUMBER 16
AS( 2) « 6.2500E + 0O FT««2 VOSf 21 a £i.080oE*0U V TCS( 2) a 6.2500E-05 A WLSC 2) a 6.2500E+00 FT
ACS( 2) a 533E*02 FT#»3/MIN VGASS( 21 a OOEtOU V TCSC 3) ¦ 1.2500E-0« A WLS( 3) a 1,2500E*01 FT
ACSr 31 o U.687SE-02 In BSC 3) a 5.0000E*00 IN NWS( 31 a i,n00PE*01
DATA ON CARD NUMBER 20
SVSf 3) o 2,50001*00 IN VGSf 35 0 3.0533E*02 FT**3/MIN VGASSf 3) a a,8853E»00 FT/SEC TE*PB( 31 a 7.6000E+01 F
P8< 31 a 1.0000E+00 ATM VJSSf 31 a 1.8000E-05 KG/M.SEC LINcSt 3) a U.1667E-01 FT
DATA ON CARD NUMBER 21
RFS( 31 o 9.0000E-0! START 1f 3} e 6.0000E-05 A/M**2 START?( 31 a 2,OOOnF-n5 A/M««2
START3( 31 a 2,noonE»OS a/m**2 vsUR( ^i s J.8000E*0U v

-------
CLEAN GAS VOLTAGE-CURRFNT DENSITY-FIELD AT THE PLATE RELATIONSHIP POR SECTION NO. 1
VW a •3.800flE+0fl ACDNTV e 6.0276E-05 AFPLT ¦ .1,T2E-oa
a
0,7027
2.085E»05
2.1Ba2E + o5
2.1583E+I3
U.a
l,90E-06
9.138E-06
8,1 78E"08
1.33E-07
1.62E-0U
5
0.7087
2.O85E+05
2.1B42E+05
2,1583E*13
11.5
I.62E-06
B.361E-06
7.879E-08
1.34E-07
t ,62E.oa
6

-------
CLFAN GAS VOLTAGE.CURRFNT DEMSITY-FIELP AT THE PLATF RELATIONSHIP FOR SECTION NO. 2
VW s •J.BOOOE+OU ACDNTY a 6.0276E-05	AEPLT s -1.7902E+05
vw 8 •J.8?06E+na ACDNTY a 7.9JJ7E-05	AEPLT ¦ -1.8597E+05
VW ¦ -3.88«»6E + oa ACDNTY s 9,9)9Jf-0&	AEPLT e -1,<>u35E+05
VW B .3.9513E»00 ACDNTY b 1.190aE»0a	AEPLT a -2,023?E*05
VW s -a.o098E*0a ACDNTY a 1,3B90E-Ofl	AEPt T a -2,099JF. + 05
VW B .U.O656E + 0U ACDNTY s I'.SSTflE-OU	AEPLT a -2,1722e+0S
VW B .«.|193E+0a ACONTY s l,7859E-0a	AEPLT s •t,gUgai*Oi
VW b -U.0711E+0U ACDNTY a 1,6251E»0«	AEPLT a .2,18a2E*05
CALCULATION IS IN SECTION NO. a 2 AND THE SECTION LENGTH IS s 0.7623 N
COLLECTION AREA b 5.812E"01 M2	APPLIED VOLTAGE ¦ u,080E*0« VOLTS	TOTAL CURRENT o 9,0«
10
0.7313
2.085E+05
2.18U2E + 05
2.158JE+13 11,9 9.89E-07
5.004C-06
4.178E-04 1.16E-07
1,62E>00
11
0.7377
2.085F+05
2.18U2E+05
2,1583E+13 12.0 9.25E-07
U.517E-06
a.OUOE-OO 1.12E-07
l,62E-0il
12


CLEAN GAS
VOLTAGE-CURRENT DENSITY-FIELD
AT THE PLATE
RELATIONSHIP FOR 8ECTI0N
NO, 3




VW « •S.flOOOE+Oa ACDNTY
b 6.0277E.05
AEPLT b •1,7902E~"5





VW b »3.8205E*00 ACDNTY
o 7,9332F»05
AEPLT b .1,8596E*05


vw a -3.flfl96E*nu ACDNTY a 9.9192E-05 AEPLT s -1.9U3SF+05

-------
VW « -S.95J2E*0a ACDNTY a 1.190«E»0a AEPl T ¦ *2,0232E*05
VW b •2,0279EtOS
CALCULATION IS IN 8FCTION NO'. s J AND THE 8ECTI0N LENGTH IS a 1,5250 M
COLLECTION AREA ¦ 1162E+00 M2
WIRE TO PLATE a l'.270E-0J H
CURRENT/M ¦ J,68Ut-05 AmP/m
1/I WIRE TO WIRE « 6.350E-02 H
TEMPERATURE « 297.222 K
ION MOBILITY a 1.795E"0a M2/V0LT-SEC
DUST WEIGHT b 2.J50E-05 KG/SEC
APPLIED VOLTAGE b 5.<>60F*0a VOLTS
CORONA WIRE RADIUS = 1l91E"03 H
CURRENT DENSITY b 1,208F"0a AMP/M2
GAS FLOW RATE b l.UUUE-01 MS/SEC
PRESSURE b 1.000 ATM
MEAN THERMAL SPEED ¦ a,e36E+02 M/SEC
LENGTH INCR. >0', 127081J5 M
TOTAL CURRENT • l.UOOE-OU AMPS
CORONA WIRE LENGTH s 3,812E+00 m
DEPOSIT E FIELD ¦ l'.208Et03 VOLT/M
GAS VELOCITY ¦ 1.U90EOO M/8EC
VISCOSITY b 1.800E-05 KG/M.8EC
PART, PATH PARAM', a 5.700E-08 M
INPUT EPF./INCR. ¦ 17.U6
RIOVR
ERAVG
EPLT
AFID
CMCD
MMO
WEIGHT
OUST LAYER
J(PART)
jcionJ
If/CR,
0,6947
2.001E+0 5
2,02796+05
, 777UE*11
8.4
8,aflE-07
3.800E-06
3.S99E-04
9.93E-08
1.21E-04
1
0,7020
2.00lEt05
2.0279E+05
.777UE+13
8,5
7,96E-07
3,a56E-06
3.091E-00
9,(I8E*0S
1.21E-04
1
0,7094
2,00lE*0S
2.0279E»05
.777UE+1J
8.6
7,57E-07
3. 1S0E-06
2,8161-00
9,0(IE«0S
1.21E-04
1
0,7167
2.001E+05
2.0279E+05
,777flE»lS
8,7
7;25E-07
2.881E-06
2.577E-00
8.6CE"08
».H«-oa
I
0,7840
2.001E+05
2.0279E+05
.777AE413
8.8
6.99E-07
2.644E-06
3.363e-0O
8.22E-08
i.m-oa
1
0,7312
2.001E+05
2.02T9E+05
.7774E+13
8,8
6.73E-07
2.433E-06
2.176E-0O
7,85E«08
1.21C-04
1
0,7382
2,00lE+05
2.0279E*05
.7774E*13
8,9
6,52E-07
2.246E-06
2,oo9E«oa
7.49E-08
1.211-04
1
0.7451
2.001E+05
2,02T9Et05
,777«E»13
SO
6,34E-07
2.079E-06
1.859E-0U
7.15E-08
1.21E*oa
2
0,7520
2,001E«05
2.0279E+05
.7774E+13

6,18E"07
1,929E»06
i,725E«04
6,8aE*08
1.21E-04
2
0.7587
2.001E+05
2.027'E*05
.7774E+13
9.2
6,05E-0T
1 .794E-06
l,605E-0«
6.5JE-06
i,2lE>oa
t
0,7692
2'.001E«05
2,0279E»05
,777«E*13
V
5,94E-07
1.672E-06
1.096E-OA
6.25E-08
l,2lE-oa
2
0,7716
2.001E+05
2.0279E+05
,777UEtlJ
9.3
5.84E-07
1.562E-06
1.397E-00
5.98E-08
i,»lE-o«
2
0E8ICN EFFICIENCY o 99',00 UNCORRECTED COMPUTED EFFICIENCY * 79.98

-------
CHARGING oaTFS fOR PAPMCLE S T 7 "i S F»0" SUBROUTINE CHARG'l OR CHC.SUM
SCI
Theory usfo
F OR PARTICLE
CHARGING


Inc"Emfnt Nn.
D/nSATF FOR
Indicated
partttlf sizes

0
.2500E-06 0
.3500E-06 0
.U5O0F-06
0.5500F-06
0 ,700 OE »ofe
1
1 .0603
1.0325
0,99)8
0.9523
0.9011
2
1,3302
1,2853
1,2306
1.1900
1 .1363
3
1.076?
1,0170
1,3567
1,3009
1,2036
0
1.5763
1.5066
1,0360
1 .3803
1.3130
5
1 .6522
1,573"
1,0987
1.0362
1 ,3636
6
1,7130
1,6276
1,5070
1 .0605
1.0036
7
1,7605
1,6723
1,5671
1.5172
1.0368
6
1,6063
1,7107
1.6210
1.5060
1.0607
9
1.6067
1.7001
1.6512
1.5755
1.0869
10
1,8609
1,7736
1,6776
1.5995
1,5103
11
1.9116
1,6005
1,7013
1,6210
1 .52941
12
1.9395
1.6206
1,7226
1,6005
1.5067
13
1,9579
1,6003
1,7360
1,6526
1.5571
10
1,9752
1,6550
1.7092
1 .6639
1.5670
IS
1,9916
1.8669
1.761?
1 .6707
1.5763
16
2,0072
1.6621
1.7727
1.6609
1.5652
17
2,0219
1,6906
1.7636
1,6906
1 ,59V
16
2.0360
1,9066
1.79U0
1,7039
1.6017
19
2,0095
1,9160
1.60U0
1,7126
1.6090
20
2.0620
1,9269
1,6135
1.7213
1.6090
21
2,0707
1,9390
1,6226
1.7213
1.6010
22
2.0666
1.9095
1,6310
1 .7213
1.6090
23
2,0960
1.9592
1,6310
1 .7213
1.6090
20
2.1069
1.9592
1,8310
1,7213
1.6090
0
.1600E-05 0
.2000P-05 0
.2600E-05
0.3500E-05
0.5000E.05
1
0,7079
0.7101
0,6600
0.6059
0.6120
?
0,9532
0.9108
0.6690
0,8260
0.7608
3
1,0611
1.01O2
0,9651
0,9159
0.6656
0
1,123?
1.0611
1.035?
0,9616
0.9202
5
1.1653
1.1201
1,0610
1.0335
0.9730
6
1.1967
1.1553
1.1133
1.0690
1.0101
7
1.2217
1.1795
1,1373
1.0909
1.0061
e
1.2023
1.1992
1,1560
1.1103
1.0666
9
1.2598
1.?158
1.1721
1.1298
1.0655
10
1.2750
1,2300
1,1655
1.1027
1.0966
11
1.2885
1.2025
1,1971
1.1537
1.10Q8
12
1 .3000
1.2536
1,2073
1 .1632
1.1191
13
1.3070
1.2590
1,2123
1.1676
1.1230
10
1,313?
1.25^0
1,21?3
1.1676
1,1230
15
1,313?
1.2590
1,2123
1.1676
1,1230
16
1.313?
1.2590
1.2123
1.1676
1,1230
17
1 .3132
1.2500
1.21?3
1.1676
1.1230
16
1.313?
1.2590
1,21?3
1.1676
1,1230
19
1,313?
1.2590
1.2123
1.1676
1.1230
20
1,313?
1,25«u
1,2123
1.1676
1,1230
21
1.3132
1.?5'0
1.2121
1.1676
1,1230
9000E-P6
0,1100E-05
0,1300E.05
0,6506
0,6116
0,7615
1.0790
1.0320
0,9955
1.1825
1.1360
1.1015
1.2072
1.1991
1,1633
1,2900
1.2036
1 ,2060
1.3300
1.2779
1,2192
1.3602
1.3057
1.2656
1,3853
1.3290
1.2876
1 .0070
1.3091
1,3060
1,#261
1.3666
1,3229
1.0031
1.3622
1,3370
1,0580
1.3963
1,3505
1.0675
1 .0003
1,3578
1.0760
1.0120
1.3607
1.0601
1.0192
1,5715
1.0918
1.0260
1,3713
1,0990
1.0260
1,3715
1.0990
1.0260
1.3713
1,0990
1.0260
1.3713
1.0990
1.0260
1,3713
1,0990
1 .0260
1 .3713
1,0990
1,0260
1,3713
1.0990
1.0260
1,3713
1.0990
1.0260
1.5713
.fiOOOf«05
0.5762
0,7332
0.6112
0.9676
0.9068
0.9000
0.9766
1.0046
1.0280
1.0061
1 .05">6
1.0702
1,0710
1 .0700
1.0700
1.0700
t . rt 7 « 0
1 . 07-00
1.0700
1 .0700
1.0700
O.ISOOE-OO
0.5399
0.6625
0.7556
0.6062
0.6009
0.6709
0.6999
0.9220
n .QU30
0.9633
0.9622
0.9983
1 .0060
1.0130
1 .01"5
1.0233
1.0833
1.0233
1.0233
1.n?3*
1.0233

-------
22	1.3112
23	1.3132
20 1.3132
1,2591
1,23'4
1.2594
1.2121
1.2123
1.2123
1.1676
1.1676
1.1676
1.1230
1.1230
1.1230
1.0740
1,07«0
1,07«0
1.0233
1,0233
1.0833

-------
charge »reuHin »tfo nw PiPTiciF sizes r^ f»c* t*chemfnt
INCREMENT	rHAPC.E M1P TMr>Tr4TFD PiRTiriF SIZES


D.2SO0E-
06
0
,3500E
06
0
.aSOOF
06
0.550OE-
1
0
1 Ml 3E-
7
0.
31 19OF
17
0,11611E«
18
0
3a781E-
7
o.
57603E
17
fl.
P0952E
17
0.11675E-
19
0
35010E-
7
o.
579U8E
17
0.
85a23E
17
0,11736E¦
20
0
S5230E-
7
o.
58276E
17
0.
8587aE
17
0.11790E-
21
0
35««1E-
7
o.
5859QE
17
0.
86306E
) 7
0,1179«E-
22
0
356UUE-
7
o.
58899E
17
0.
86722E
17
O.U790E-
23
0
35838E-
7
0,
59101c
17
0.
86722F
17
0.1179OE-
2a
0
J6026E-
7
0.
59)9lE
17
0.
86722E
17
0.11790E-

0.1600E"
35
0
.2000E
05
n
,2600E
05
0.3500E
l
0
399nOF-
6
0
59228E
16
0
9fl712E
16
0.1621«F
2
0
50958E-
6
0
75536E
16
0
12108E
15
0.207U1E
3
0
56727E-
6
0
«ai19E
16
0
13AU3E
15
0.22998E
a
0
600O7E-
6
0
89667t
16
0
l«aj8E
15
0.2ufe5O£
5
0
62290E-
6
0
93232E
16
0
15063E
15
0.25950E
6
0
639T5E-
6
0
9S816E
16
0
15S07E
15
0.2685UE
7
0
653tOE>
6
0
97826E
16
0
!5HaiE
15
0.27a9?E
A
0
66013E-

0
99U61E
16
0
16107F
15
0.27979E
9
0
67350E-
6
0
lOOS^E
15
0
16326E
15
0.28369E
10
0
681b3E*
6
0
10202E
15
0
16512E
15
0.28693E
11
0
6B8A0E-
6
0
10305E
15
0
16673E
15
0.2B968E
12
0
69521E »
h
0
10397E
15
0
16815E
15
0.29208E
13
0
6987IE-
6
0
ioaa5E
15
0
16886E
15
0.29319E
ia
0
70201E.
6
0
10««5E
15
0
16886E
15
0.29319E
15
0
70201E-
6
0
1oau5E
15
n
16886E
15
0.29319E
16
0
7 0?0 IE•
6
0
loaasE
15
0
16886E
15
0.29319E
17
0
70201E-
b
0
10a«5E
15
n
1h«86E
15
0.29319E
18
0
70201E-
h
0
10u«5E
15
0
16886F
IS
0.29319E
19
0
70201F-
6
0
1oaa5E
15
0
16RP6F
15
0.29J19E
20
0
7 0?011•
6
0
loa«5E
15
0
16886E
15
0.29319E
21
0
70?niE-
t>
0
10UU5F
15
0
168P6P
15
0,29319E
22
0
70201E-
6
0
)OuasE
15
0
168P6E
15
0.29319E
23
0
70201E-
6
0
10aa5E
IS
0
1h886E
15
0.29319E
2a
0
70201F-
6
0
10UU5F
IS
0
16886E
15
0.29319E
Oh
17
17
17
17
17
16
16
1*
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
05
15
15
15
15
15
15
15
15
15
15
15
15
IS
15
15
15
15
15
15
15
IS
15
15
15
0,7000E»06
0,971B9F »17
0 12252F-16
0.13U1 1E-1*
0.1U1SAF.16
0.1U7 06F"16
0,15137E-16
0.15U92E-16
0.15793E-16
0.1605SE-16
0.162«5E-16
0.16U91E-16
0,16678F »16
0.16790E-16
0,I6897E"I6
0,16997E-J6
0.17093E-16
0,lT18flF-16
0,17271E-J6
0,1735UE»16
ft. 17358F«16
0,1735'4E*16
0.17350F-16
0.1T35ur-16
0.17350F"!6
O.9O00E-06
0.1«P33E«16
o,1"A15E* 16
0 . 20 620E"I 6
0.?17U9E-16
n.??56UK-16
o,2J199e»16
0.23718E-16
0.2U156E-16
0.2U535E-16
0.?«867E-16
0.25160F-16
0,?5U31E"16
0.25S89E-16
0,25738E"16
0.25879E-16
0.26012E-16
0,26iunr-16
0,26ia0E»16
0,26laPE-l6
0.2MU0E-16
0,26iaOE-16
0.?61«0E»16
0.261 APE"16
0.261U0EM6
fi. 11 00E-05
0.20870E-16
o.?65«lE-16
0 , 292 1 OE • 1 6
0,J0fl2BF»16
0.51972E-16
n. VB5JE-1 6
0,3356flt-lh
0,JU167E »16
0.3U683E-16
0.351 3
-------
PARTICLE SiZE RANGE STATISTICS
CORRECTIONS FOR NONIDEALITIES USING SET Nr>'. l OF CORRECTION PARAMETERS
SIZE
2,500E-07
3,500E-07
0.500E-07
5.500E-07
7.000E-07
9,000E-fl7
1,100E-06
1.300E-06
1,600E»06
2,000E-06
2,600E-06
3,500E-06
s,oooe«o6
8.000E-06
1.sooe.os
CCF
INLFT *
OUTLET *
COR. OUTLET
1,589
0,OOB
0.0210
o,o2oo
1,«l«
0f 009
0,1359
0,1308
1.320
0.212
0,5826
0.5215
1.261
0,597
1,5937
1,3928
1,20%
2,119
5.0026
0,7063
1.159
2,985
7.0896
6,1893
1.130
3.582
7'. 9 U 0 A
6,9556
1.110
3.283
6'. 7915
6.0162
1.090
6^865
12,9352
11 ',5590
1.072
7, 161
12,0059
10,8313
1,055
11,940
16.9021
15.7103
1.0OI
10,#17
12.0625
11,8169
1.029
14,925
11,9052
12.6892
1.018
10,925
a.0698
6,6096
1.010
20.899
0.5220
0.8066
NO-RAP EPF,
NO-RAP *
NO-RAP p
COR, EFF,
COR, W
COR', P
59.8767
5.673
00,1233
05,0420
3,718
50.9576
59.0811
5.612
00,5189
50,0537
0.811
05.9063
60.068?
5.702
39,9318
57,8917
5.373
02,1083
61.2279
5,815
38.7721
60,0837
5.705
39,9163
62.9750
6,172
37.0250
62.0006
6.011
37,9954
65,5003
6.611
30.0957
60,5233
6,037
35,0767
67,8036
7, 000
32,1960
66,7758
6,805
33,2202
69.9588
7.070
30.0012
68.6506
7,205
31.3090
72.6309
8,050
27.3651
71.1920
7,731
28,8080
75.6592
8,777
20.1008
70.1311
8,399
25,8689
79.3911
9,811
20.6089
77.4871
9,262
22.5129
83,2307
11.092
16,7693
80.6070
10.202
19,3526
88,0106
13,389
1 1,5854
85.0531
11.975
10,3069
96,0395
20,056
3,9605
92.3770
15.989
7.6230
99.6372
30.900
0.3628
96.0608
20.096
3.9352
EFFICIENCY • STATED ¦ 99.00
COMPUTED « 79,9829
CONVERGENCE OBTAINED
ADJUSTED NO.RAP EFF, ¦ 85.0759
HMD OF INLET SIZE DISTRIBUTION ¦ 3.987E*00
SIGMAP OF INLET SIZE DISTRIBUTION ¦ j'.165E + O0
L05-N0RHAL GOODNESS OF FIT a 0.909
M	mmd OF EFFLUENT UNDER ND-RAP CONDITIONS a 2.063E+00
N*	BIGHAP OF EFFLUENT UNDER NO-RAP CONDITIONS a l.BOOE+OO
w	LOG.NORMAL GOODNESS OF FIT ¦ 0,995
PRECIPITATION Rate PARAMETER UNDER NO.RAP CONDITIONS b 11,985
SIGHAGB O'.OOO WITH 0,000 SNEAKAGE OVER a.000 STAGES
NTFMP • 1
RMMO ¦ 6.00
RBIGMA ¦ 2.50
CORA*. EFF. » 82.8902
CORRECTED MMO OF EFFLUENT a 2,o8lE*00
COBflECTED 8IGH*P OF EFFLUENT « 1,969E*00
LOG-NORMAL GOODNESS OF FIT a 0.990
CORRECTED PRECIPITATION BATE PARAMETER • 10.9T

-------
UNADJUSTED MjnPiTTDN VELOCITIES 'w,) EFF Ic ifhc TES, and dtscoftf oijtlft MASS LOADINGS
IDEAL umaojiistfo
IDMI 1 IN AO Jl IS TP D
NO.BAP
MAPPING PUFF
Kjr..RAP»RAP PUFF
BAPPJNG PUFF
particle
mic, vfL.rc»/SEn
tFFICI^Nr.V(*)
r>M/DLOr.D(MG/osrM)
nti/ni or.n{Mr,/pscM)
nii/n.ocnf MG/nscii
niSTPlBUTION(X)
f>I*M, (HJ
2,««0E+O0
J.2U8E*ni
2'.81 2E-02
1 .n'JOE-O?
3.8ME-02
fl.3t.0f «02
2.5001-07
2,586E~00
J.«05F+ftl
2.56UE-M
3.U3SF-02
2. <>oeE-o i
1 ,0??E-01
3.500E.07
2, 7fl?E + 00
3,61 OF *01
) ,«1"E + 00
7.727E-0?
1 • U95E + 00
1,76«E-0!
a.500E-07
2.O95E+0"
¦J . 826E ~(! 1
U, 7U6E + 00
1 .an ie-oj
U.8BfcF+00
2,6«2E«01
5.500E-07
J,336E*flO
a . 15*>£ + fl 1
1 ,P?oFfOI
2.A73E-01
l.na<,E + oi
7.9S3E-0I
7.000E.07
3.800E+00
a.576E +01
1 ,7?5E + 0t
u.oOfcE-O!
1,77«E»01
1,13?E»00
9.000E-07
U.272E+00
(I.97JF + 01
?.3h5F.-fO J
7.550E-01
2,U«0F*0t
J,U2«E*00
1,1006-06
a ,7
-------
SUMMARY TABLE OF ESP OPERATING
PARAMETERS AND PERFORMANCE
DATA SET NUMBER 1
E8P PERFORMANCE I
FFFICIENCY • 62,8902 X 8C* ¦ l.MOCtOl M**2/(M**3/SEC)
ELECTRICAL C0N0ITI0N8I AVG. APPLIED VOLTAGE a U.OllE+Ofl V
AVG, CURRENT DENSITY ¦ 10,31 NA/CM**2
RE8ISTIVITY » 1.000E+09 OHM-CM
SIZE DISTRIBUTIONS! INLET HMO B 3.9B?f«00 UM INLET 8IGMAP ¦ 2'.16SC + 00
OUTLET MHO ¦ 2,U8lE»00 UM	OUTLET 8IGHAP ¦ l',969E*00
NONIOEAL PARAMETERSl	GAS SNEAKAGE FRACTION • 0,00 /SECTION GAS VELOCITY 8IGMAG ¦ 0,00
RAPPING MMD ¦ 6.000E+00 UM RAPPING SIOMAP ¦ 2,500E»00

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOB Mfmr>e*LTTTFS USING SET nn. ^ OF CORRECTION PARAMETERS
SIZE
CCF
INLET *
OUTLET I
2.500E-07
1.589
o'.ooa
0.0186
3.500E-ft7
l.0|«
o'.oa9
0.1202
0,500E-07
1.320
0,212
0.5166
5,500E-07
1.26!
0,5**
1'0190
7f000E-07
1.205
2,119
0.8021
9.000E-07
1.159
2.985
6.0180
l,100E-06
1.150
3.582
7.2618
l,300E-06
1.110
3,283
6.2760
1.600E-06
1 .090
6,865
12.1309
2.000E-06
1.072
7.160
11,0797
2.600E-06
1.055
11.900
16.6809
3.500E-06
l.oai
10^007
12.3687
5.000F-06
1.029
18.925
13.1920
8.000F-06
I.01B
10.925
5.7287
1.500E-05
1.010
20.899
1.5061
EFFICIENCY - STATED =
99.00
OB. OUTLET * NO-RAP EFF. NO-PAP W
0.0218
55.6006
5.004
0.117®
55.1910
0. 986
0.0732
55.7356
5.062
1,2708
56.8030
5,220
0.3230
58,5153
5.065
5.7000
60.9581
5.802
6.5130
63.1890
6.20P
5,6801
65.2940
6.570
11.0663
67.9168
7.062
10,5502
70.9042
7,669
15.6689
70.6333
8.521
12,1210
78.5035
9,509
13.6928
03.9500
11,360
7.7055
93.0306
16.546
S.05J2
98.6567
26.773
COMPUTED s
79.9829
CONVERGENCE
NO-RAP p
COR. ECF.
cnu. *
Cnu. P
40.3950
40,2773
3,202
59,7227
04,6090
49,5"JJ
4,254
50,4169
40,2610
53,4867
4,755
46,5133
43,J570
55,6608
5,052
44,3392
4],4847
57,5127
5,317
42,4873
39,0419
59,9440
5,683
40,0556
36.8106
62,1274
6,03|
37,8726
30.7056
63,9427
6,336
36,0573
32,0832
66,4259
6,779
33,5741
29,0958
69,3253
7,311
30.6747
25,3670
72,6658
8,057
27,3342
21,4965
75,8344
8,622
24.1656
16,0496
80,8905
10,280
19,1095
6,9690
89,2463
13,852
10,7537
1.3433
94.9656
1 ft.566
5,0344
OBTAINED
ADJUSTED »?0-PAP FFF. b 01.0027
NNO OF INLET SIZF DISTRIBUTION s 3.9b7E+00
8IGHAP OF TMLET SIZE DISTRIBUTION = 2.165E+00
LOC-NOBKftL GOODNESS OF FIT s 0.9B5
NND OF EFFLUENT unoer MO-RAP CONDITIONS « 2".273E*00
m	SISMAP of EFFLUENT UNDER NO-RAP CONDITIONS » l.BTlEtOO
"	L0C-N0RH4L GOODNESS OF FIT s 0.995
PRECIPITATION Rate PARAMETER UNDER no.Rap CONDITIONS b 10,598
SIGNAGE 0.100 WITH 0.100 SNEAKAGE OVER 4.000 STAGES
NTE"P ¦ 1
RHND a 6.00
RSIGHA a 2.50
CORR. EFF. ¦ 79.1710
CORRFCTEO fiD OF EFFLUENT s 2.573E+00
CORRECTED SISMAP OF EFFLUENT b I.976E*00
LOG-NORMAL GOODNESS OF FIT a 0.991
CORRECTED PRECIPITATION BATE PAPAmETER b 9,7a

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENCIES# AND DISCRETE OUTLET MASS LfUnlNGS
IDEAL UNAOJUSTFD
*IG, VEL.(CM/SEC1
2.UO0E+00
2,S86E+00
2.782E+00
2.995E+00
J.5JfcE*00
j,eooe*oo
fl,272E»00
fl,7U6E+00
5,tl61E*00
6.a07Ef00
7,8S6E+00
9t9fl8E*00
l,J39E»01
2,006Et01
S.090E+01
IDEAL UNADJUSTED
EFFICIENCY*)
3,2«8E*01
J,U05E*0I
3.610E»01
3,826E*01
at155E»ftl
il, 576EfO 1
O.973E+01
5, 3M/OLOGPfMG/DSCM)
3,11 1E-02
2.836E»01
1,571E*00
5.283E+00
i'.1«3E40J
1,953E*0J
?,7niE+01
2,7fcflE+0J
3.277E+01
3,883E+01
3,65lEf01
2.919E+01
2.209E+01
7^613E+00
1,51«E*00
PAPPINS PUFF
DH/OLOGD(MG/PSCM)
1.07«E»02
3.5O9E-02
7.98UE-02
1,ua?E"01
2.76JE-01
5.069E-0!
7.801E-01
1 ,076E*00
1,52SE»00
2,107E»00
2.831Ef00
S.62ue+00
4.211E+00
fl,l5«E*00
4,161E+00
no«rap*rap puff
DH/DLOGD(MG/DSCMJ
A.185E-02
3,19J E"01
1.651E+00
5.
-------

SUMH 4 R Y TARLF IF FSP DPERATPKJ •
PARAMETERS ANp PFBFflRMAMCE •

DATA SET NUMBER 2 *
* ESP PERFOPM4NCM EFFICIENCY a 79.1710 t Sc* = 1.610E+01 M**2/(M*«S/StC) •
* ELECTS IT*L CONrlTIONSl
AVG, APPLIED VOLTAGE = d,Ollt«OH V *
AVG, CURRENT DENSITY B 10.3« NA/CM*«2 #
RESISTIVITY = J,OOOE*09 OHM.CM *
* SIZE DISTRIBUTIONS!
INLET mho a 3.98 7E~0 0 UM INLFT SIG«AP o 2.16SE+00 *
OUTLET MM|) s 2.57JF+00 UM OUTLET SIGMiP a 1.976E+00 •
* NONIDEAL PARAMFTFSSl
GAS SNFAKAGE FRACTION s 0.10 /SECTION GAS VELOCITY SIGMAG » 0,10 •
RAPPING HMD c 6.000E+10 UM RAPPING SIGHAP a ?,500E»00 *
STOP 011111

-------
APPENDIX C
OUTPUT DATA FROM EXAMPLE 3
128

-------
E.P.A. ESP mpdfl
T.F.R.L.-R.T.P. ANO Sfl.R.I.
REVISION I,Jan. 1, 1 <>7B
PRINTOUT OF input data FOR HAT A SET NUMBER 1
DATA ON CARD NUMBER 1
NENDPT s lil NDATA s 1
DATA ON CARD NUMBER 2
FULL-SCALE,COLD-SIDE ESP| PLANT A| SCAe?u3FT2/1OOOACFMjJs15,9UA/FT2
w	DATA ON CARD NUMRER 3
ro
vn
NEST a 1 NDIST s 1 NVI o 1 NX 3 10 NY a 10 NITER e J NCALC a 0 NRAPD b I NEFF s 1 NT£MP a 1 NONID a 2
DATA ON CARD NUMBER "
NN ¦ 10 NUMINC s 20
DATA ON CARD NUMBER 5
DL « l.QbbOO GRN/ACF PL 8 2T.0000 FT ETAO b 99.60000 * 00 a 2270.00 KG/M*«3 EPS « 1.000E+02
VRATIO b 1.2000 US B 0.000220 M.«2/V-SFC FPATH s 1.0000 FRO » 1500000. V/M RHOCGS o 5.00E+10 OHM-CM
DATA ON ca»0 NUMBER 6
ASNuCKf 11 = 0.00 AZIGGY f 1) a 0.00 AZNUMSf 1) » 3.0
ASNUCKf 2) a 0.10 AjrTGGYt ?) a 0.25 A7nIIMS( 2) s 3.0
DATA ON CARD NUMBER 7

-------
ENDPTf 1) ¦ O.ion "JM ENDPTf 2) s 0,300 IIM ENDPTf 3) s 0.500 UM ENDPTf «) e 0,900 UM ENDPT f 5) « 1,300 UM
ENDPTf 6) e 1.900 UM ENDPTf 7) c 5,100 UM ENDPTf 8) s J.900 MM ENDPTf 9) e 5,100 UM EWDPT f 11) ¦ 6.900 UP
data on card number e
ENDPTfll) B 10.100 UM ENDPTfl?) E 1U.O00 UM ENDPT f13) c 25.100 UM ENDPTflfl) o 29,900 UM
DATi ON CARD NUMBER 9
PRCUf 1) b 0,0000 * PRCUf 2) b 0.0330 X PRCUf 3) o 0.2860 X PRCUf 0) o 1,1890 X PRCUf 5) ¦ 2,0000 X
PRCUf 6) e 3.5210 X PRCUf 7) b 7.0UA0 X PRCUf 8) s 8.7000 X PRCUf 9) s 10,3520 X PRCUMO) b 12.33U0 X
DATA ON CARD NUMBER 10
PRCUf11) b 15,63«0 X PRCU(12) b 20.«800 X PRCIH13) a 32,5990 X PRClJfJfl) b 100,0000 X
DATA ON CARD NUMBER U
NUM8EC b 3 LSECTf 1) b to LSECTf 2) s 10 LSECTf 3) s io
DATA ON CARD NUMBER 12
A8( 1) b 2.6«60E + 0a FT**2 VOSf 1) b U,0600E*0U V TCSf 1) o 2.7300E-01 A WLSC 1) o 1 .5720E + 08 FT
ACS( 1) 8 8.2500E-02 IN BSf 13 b 5.5000E+00 IN NWSf 1) ' 1.20001*01
DATA ON CARD NUMBER 13
SYSt 1) o 3.6250E+00 IN VGSf 1) a 3.272UF+05 FT«*3/MIN VCASSf 1) b U.lOOOE+00 FT/SEC TEMPS( 1) b 3,l500E»02 F
PSf 1) 8 l.OOOOE^OO ATM VJSSf 1) B 2.2900E-05 KC/M-SEC LINeSf 1) b 9.0000E-01 FT
DATA ON CARD NUMBER 1U
ASf 2) i 2.6U60E*0U FT•*2 VOSf 2) o U.JlOOEtOU V TCSf 21 b U.3300E-01 A wLSf 2) b 1 .5720E + 0O FT
ACS f 2) b A.25nnF-02 IN RSf 21 s 5.5000E+00 IN NWSf 2) i 1.2000E+01
DATA ON CARD NUMBER li

-------
s r S f 2) c 3.f<250F + t>0 IN VGSf 21 = 3,272«'+05 FT**3/MIN VGASSC 21 3 U.1000E+00 FT/SFC TEMPS t 2) b 3.1500E+02 F
PSC 2) » l.cnnnE+OO ATM VJSSC 2) = 2.2<>0nF-05 KG/m-SEC UINCSf 2) = 9.0000E-01 FT
DATA PN c*RP NIIM0ER )6
AS f 51 = 2.M60E + OU KT**2 VPS( 51 s U,2«SOE + OU V TCS( 3) = 5.5800E-01 A WLS( 5) a 1.5720E+OU FT
ACS ( 5) 8 8.2500F-02 In BSC 3) = 5.5000E+00 IN NHSC 3) « 1.2000E+01
DATA ON CARD NUMBER 17
SVSf 3) a 3,6250F + 00 IN VGSt 3) = 3.272UE*05 FT**3/MTN VGAS3( 3) s «,1000E*00 FT/SEC TE^PSC 3) s 3.l5n0E+02 F
P8( 31 o J.OflOOE+OO ATM VtSSt 3) " 2.2900F-05 KG/M.SEC LINCSf 31 a 9.0000E-01 FT

-------
INCREMENTAL ANALYSIS OF PHFCIP IT A TOR pERFqPmanCE
FULL-SCALE.COlD-SIDE ESPl PLANT A) SCA82UjFT?/in00*CFM|J=lS,quA/FT2
CALCULATION is IN SECTION no'. 8 1 AND THE SECTION LENGTH IS a 2.7050 M
COLLECTION AREA » 2.061E+03 M?
WIRE TO PLATE o 1.397E-01 M
CURHENT/M a 5.69OE-05 AMP/M
1/2 WIRE TO WIRE « 9.20BE-02 M
TEMPERATURE • OJ0.000 K
ION MOBILITY a J.U61E-00 M2/VOLT-SEC
OUST WEIGHT ¦ 6.969E-01 KG/9EC
APPLIED VOLTAGE s O.060E+0O VOLTS
CORONA WIRF RADIUS * 2.096E-03 M
CURRENT DENSITY a 1.109E-00 AMP/M2
GAS FLOW RATE a 1 .508E»02 MJ/SEC
PRESSURE e 1.000 ATM
MEAN THERMAL SPEED B 5.335E+02 m/SEC
LENGTH INCR. o0'.27050000 M
TOTAL CURRENT a 2.7J0F-01 AMPS
CORONA WIRE LENGTH o O.795E+03 M
DEPOSIT E FIELD o 5.507E+00 VOLT/M
GAS VELOCITY b 1.250E+00 M/SFC
VISCOSITY a 2.290F-05 KG/M.8EC
PART, PATH PAR4M, ¦ 8.206E-OB M
INPUT EFF./INCR. b 16,81
ROVRI
ERA VG
EPLT
AFID
CMCD
MMD
WEIGHT
DUST LAYER
J fPART)
J C I ON)
INCR,
3,156#>
2.906E+05
2,0920E+05
2,1825E+12
11*1
2,29E-05
1 .523E-03
5.750E-02
O.82E-07
1,10E-00

2,5167
2.906E~05
1.9692E+05
2.737UE+12
11.1
2f27E-05
1.19SF-03
0.511E-02
6.23E-07
t,10E-00

2.0587
2.906E+05
I.88flflE»05
3.3060E+12
1 1 1 I
2,22E-05
6.878F-00
2.596E-02
5.22E-07
1.10E-0O

1,7622
2.906E+05
l,B269E+05
3.9093E+12
1 1 1 1
2.13E-05
3.653E-00
1.379E-03
0.11E-07
l.llt.M

1,5607
2.906E+05
t.7873E+05
0,00305+12
4 1 • 1
l,91E-05
1.968E-00
7.O26E-03
3.38E-07
l.ltE-00

1,0261
2.906E+05
1.7588E+05
O.8308E+12
1 1 « 1
1,20E-05
1.130E-00
0.262E-03
2.93E-07
I,IlE-oa

1.3250
2.906E+05
t .7J78E + 05
5.1990E+12
1 1 f 1
7 f06E-06
7.195E-05
2.715E-0J
2.60F-07
1,11E»00

1,2090
2.906E*05
1.7218E+05
5.5139E+12
11.1
5,13E-06
5.023E-05
1.896E-03
2.02E-07
1.11E.0O
8
1,1921
2.906E+05
1.7096E+05
5.7788E+J2
11^1
3,90E-06
3.792C.05
1.O31E-03
2.25E.07
1.UE.00
9
1.1080
2.906E+05
1.7002E+05
5,9990E~ I 2
11.1
3.19E-06
3.025E-05
1.1O2E-0J
2.10E-07
1,11E»00
10
CALCULATION IS IN SECTION no. b 2 AND THE SECTION LENGTH IS b 2,7450 M
COLLECTION AREA b 2.U61E+0S M2
WIRE TO PLATE s 1.397E-01 M
CURRENT/M b 9.031E-05 AMP/M
1/2 WIRE TO WjRg b 9.208E-02 M
TEMPERATURE » 030.000 K
ION MOBILITY a 3.063E-00 M2/V0LT-SEC
DUST WFIGHT a 6.969E-01 KG/SEC
APPLIED VOLTAGE s 0.210E+00 VOLTS
CORONA WIRE RADIUS ¦ 2.096E-03 M
CURRENT DENSITY a 1.760E-0O AMP/M2
GAS FLOW RATE " 1.5O8E+02 M3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED a 5.333E+02 M/SEC
LENGTH INCR, bO,27050000 m
TOTAL CURRENT a O.330E-01 amps
CORONA WIRE LENGTH b O.795E+03 M
DEPOSIT I FIELD ¦ 8'.79eEf0fl VOLT/M
GAS VELOCITY a 1.250E+00 M/SEC
VISCOSITY b 2",290E«05 KG/m.SEC
PART, PATH PARAM, a 8.2O6E-08 M
INPUT EFF./INCR, a 16,81
ROVRI
ERA VG
EPLT
AFID
CMCD
HMD
WEIGHT
OUST LAYER
J(PART)
J(TON)
INCR, NO
1,0750
3.010E+05
1.8591E + 05
9.8018E+1
17.6
2,68E"06
2.766E-05
t.OOOE-OS
2.22E-07
1.76E.00
11
1,0577
3.01OE»05
1 .8536E+05
9.9629E~1
17.6
2,01E-06
2.320E-05
8.770E-0O
2,10E-O7
1,76E>00
12
1.0003
3.01 uE + 05
1.8095E+05
1. 0090F+1
17.6
2.2flE-0b
1.981E-05
7.O76E-0O
1.98E-07
1.76E-00
13
1,0301
3.01oF + 05
1 .8063E+05
1.0190F+1
17.6
2.17E-06
1 .707F-05
6.001E-00
1 .86F.-07
1.76E-00
10
1,0263
3.010E+05
1 .B063E+05
1.0268F+1
17.6
if0BE-06
1 .085F-05
5.600E-00
1.70E-07
1.76E-00
15
1,0202
3.010E+05
1.8063E+05
1.0328F~1
17,6
2.00E-06
1.300E-05
0.905F-00
1.60E-07
1,76E»00
16
1,015b
3.010E+05
1.8063E+05
1.0375E+1
17.6
l,93E-06
t. 100F-05
0.317E-00
1.53E-07
1,76E«00
17
1.0120
3.01OE + 05
1 .8U63E + 05
1.0012E+1
1 7.6
1.B7E-96
1,011F-P5
3.B10E-00
1 .OOE-07
1.76E-00
18
1.0093
3.01UE*PS
1.B063E+05
1.OUO0F+1
1 7,6
l,fl0E-06
B.962E-06
3.382E-0O
1.35F-07
1,76E«00
19
1.0072
3.01OE+05
1 . B063E+05
1,0U6?F~'
17.6
1 .7OE-06
7.970F-06
3.008E-0O
1 .26F-07
1 ,76E-0O
?0
CALCUL
atton Is IN
SECTION ^n. s
3 AND THF
SECTION
LENGTH TS a
2.7050 h





-------
COLLFCTinu area = 2.0ME + 03 *2
KIBE TO PLATE s l'.397E-01 M
CURRENT/m 3 1.16OF.0O AMP/m
1/2 WIRE TO WIRE ¦ 9.20RE-02 M
TFMPERATURE = 030.000 *
ION MOBILITY s J."63E-0U M2/VOLT-SEC
OUST WEIGHT o 6.969E-01 KG/SEC
APPI TFD VOLTAGF = 0.2OSF+0U VOLTS
CORONA wire RADIUS s 2.n9feE-03 m
CURRENT DFNSITY a ?.2(>8E"00 AMP/M2
GAS FLOW RATE = !,5o8E*o2 M3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEEO s 5.335E*0? M/Sl
LENGTH INCR. rO.27050000 m
ROVRI
ERAVG
eplt
AFID
CMCD
MHO
WFIGHT
1.0003
3.039E+05
.9360E+O5
1,3u09E~13
22.7
1.69E-06
7.O53E-06
1.0033
3.039E+05
.9360F+05
1 .3023E + 13
22.7
1.63E»06
6 , 63 3F-06
1.0026
3,039Et05
.9360E+05
1.3033E+13
22.7
1,57E»06
5.91«,E-06
1.0020
3.039E+05
.9360E+05
1 .300 IE~13
22,7
1.52E-06
5 . 287F-06
1.0015
3.039F *05
.9360E+05
1,3007E ~13
22,7
1.07E-06
0.727E-06
1.0012
3.039E+05
.9360E+05
1.3052E+I3
22,7
1.03E-06
0.235E-06
1.0009
3.039F+05
.9360E+05
1,3o55E+13
22,7
1.38E-06
3.798F-06
1,0007
3.039E+05
.9360E+05
1,3o58E»13
22,7
1.3OE-06
3.O12E-06
1.0005
3.039E+05
.9360E+05
1.3O60E+13
22,7
1.30E-06
3,068E-06
1.0000
3.039E+05
.9360E+05
1,3062E~13
22.7
126E-06
2.763E-06
EST. EFFICIENCY « R9.60 UNCORRECTED COMPUTED EFFICIENCY o 99.37
INCREMENTAL ANALYSTS OF PRECIPITATOR PERFORMANCE
PULL-SCALE.COLD-SIDE ESPl PLANT At SCAB203FT2/1OOOACFMtJal5.9UA/FT2
CALCULATION IS IN SECTION NO. o t AND THE SECTION LENGTH IS ¦ 2.7050 M
COLIFCTION AREA r 2.O61E+03 m?
WIRE TO PLATE s 1.JO7E-01 M
CURRENT/M a 5.690E-05 AMP/M
J/2 WIRE TO WIRE ¦ O.208E-02 M
TEMPERATURE ¦ 050.000 K
ION MOBILITY a 3.«63E-00 M2/VOLT-SEC
DU8T WEIGHT > 6.O69E-0! KG/SEC
APPLIFD VOLTAGE » O.060E+00 VOLTS
CORONA WIRE RADIUS e 2',096E»03 M
CURRENT DENSITY » 1.109E-0« AMP/M2
GAS FLOW RATE ~ 1.5O8E+02 MS/SEC
PRESSURE a 1.000 ATM
MEAN THERMAL SPEED b 5.JJ5E+02 m/S
LENGTH INCR, B0.27O5000O M
ROVRI
ERAVG
EPLT
A F10
CMCD
MMO
WEIGHT
2,9905
2.906E+05
2,0637E»05
2, 30 06E +12
11.1
2,29E-05
1 .5O2F-03
2,«206
2.906F+05
1,9518Et05
2,8060E+12
11,1
2.26E-05
1 .193F-03
2.0061
2.906E+05
t.8700E+05
3.«3«0E+1?
11,1
2,22E«05
6.816E-00
U7356
2.906E+05
1.8216E+05
3.9690E+.12
tiCi
2.13E-05
3.610E-00
1.5533
2.906E+05
t,7A19E*05
0.0353E+I2
11.1
l,8OE-05
1 , 9UOE-00
1 ,fl23<»
2.906E+O5
1 .758OE + 05
0,8380E*12
11.1
1.1PE-05
1 .122E-0"
1,3262
2,9 06t~05
1 .73BOE + 05
5.1869E+12
11.1
7.38E-06
7.128F-05
1,2557
2.R06F+05
1.7232E+05
5.0863E+12
11,1
5.08E-06
0.985E-05
1,2000
2.906E+05
1.7113E+05
5.7012E+12
nCt
3.88E-06
3.768F-05
1,1568
?,90fcF+n5
1 .7021E + 05
5.9556E+1?
11.1
3 . 1 Bfc-06
3.009E-05
CALCULATION IS TN SFCTION NO, B 2 AND THE SEfTION LENGTH IS a 2.7050 M
COLLECTION aREA c ? .OblE + 15	APPIIFD VOLTAGE e 0,2iOE*00 VOLTS
WIRE TO PLATE b I.397F-01 m	CORONA WIRE RADTUS = 2.096E-03 M
TOTAL CURRENT a 5.5fl0E-0t AMPS
CORONA WIRE LENGTH a 0.795E+03 M
DEPOSIT E FIELD a 1.13OE+05 VOLT/M
GAS VFLOCITY a l.250E*00 M/SEC
VISCOSITY e 2.290E
•05 KG/M-SFC

PART ,
Path PARAM. a
A.2U6E-08
M
INPUT
EFF./INCR. e
16.81

oust layer
J CP ART )
J(ION)
INCR. NO
2.813E-00
1.2OE-07
2.27E-0O
21
2.503E-00
1.16E-07
2.27E-0O
22
?,233E-0«
1.09E-07
2.27E-00
23
1 .995E-00
1.02E-07
2.27F-00
20
1.780E-00
9.09E-08
2.2TE-0O
25
1.598E-00
e.AfcE-00
2.27E-00
26
1.033E-0«
8.27E-08
2.27E-00
27
1.288E-00
7.72E-08
2.27E-00
28
1 .158E-00
7.19E-08
2.27E-00
29
1 .003E-00
6.71E-08
2.27E-0O
30
TOTAL
CURRENT ¦ 2,
730E-01 AMPS

CORONA WIRE LENGTH « il,795E*03 N
DEPOSIT E FIELD e 5,5O7Ef0fl VOLT/m
GAS VELOCITY a 1 ,250E*00 M/SEC
VISCOSITY a 2.290E-05 KC/M-SEC
PART. PATH PARAM', a 8'.206F-08 M
INPUT
EFF./INCR.
a 15.55

DUST LAYER
j{Part)
J(I ON)
INCR, NO
5.821E-02
5.03E-0T
1.10E-0O
1
0.502E-02
6.30F-07
1.lOE-OO
3
2.572E-02
5.25E-07
1.10E-0O
3
1.362E-02
0.13E-07
1.11E-0U
0
7.33SE-03
3.39E-07
1.11E-00
S
O,23«E-03
2.9JE-07
1,11E-00
6
2.690E-03
2.60E-07
i. 1 IE-no
7
1.B81E-03
2.02E-07
1.11E-no
e
1 .U22E-03
2.25F.07
1, t IE.00
9
1 .136E-03
2.10E-07
i.UE-oo
to
TOTAL
CURRENT a
O.330E-01 amps

CORONA WIRE LENGTH b 0,795E + 0 3 *

-------
CURRENT/M a 9,051F»0^ AmP/m
1/2 WIRE TO WIRE a Q.208E-02 H
TEMPERATURE b 130.OOO K
ION MORILITY s 3.163E-0U M2/VOLT-SEC
OUST WEIGHT ¦ 6.969F-01 KG/SEC
CURRENT DENSITY s !,7fc0E-0a AMP/M?
GAS Fl n« RATE » 1.518E+02 M3/9EC
PRESSURE » 1,000 at*
MEAN THERMAL SPFEO 3 5.335F+02 M/SEC
LENGTH INCR. eO.27150000 M
DEPOSIT E fIELO a fi, 798E + 04 VOLT/M
GAS VELOCITY 0 1.250E+00 m/SeC
VISCOSITY s 2.290E-05 KG/M-SFC
PART. Path PARAM, b 8.21feE-08 *
INPUT EFF./INCR, b 15,55
ROVRJ
/
ERA VG
eplt
afio
CMCO
HMD
WEIGHT
OUST LAYER
J(PART)
J(ION)
INCR, NO
f
1,0805
3.01 uE + 05
1 ,8607E *05
9.7525E+I?
17.6
2.67E-06
2.752E-05
1.039E-03
2.21E-07
1 ,76E>01
11
1,0626
3.0HE + 05
1 .8553E + 05
9,9149E+12
17.6
2.10E-06
2.513E-05
A.729E-00
2.10E-07
I ,76E»01
12
1,0«90
3.01 iE*05
1.8510E+05
1.00U5E + 13
17.6
2.27E-06
1 .972F-05
7.«l2E-0fl
1.97E-07
1.76E-01
13
1,0383
3, OHE + 05
1 ,8476E»05
1,0119E + 13
17.6
2,17E«06
1.699E-05
6.113E-01
1.85E-07
1 ,76F»00
11
1,0299
3,014E + 05
1 ,8176E»05
1 .0231E + 13
17.6
2,08E-06
1.O79E-05
5.580E-0O
1.71E-07
1 ,76E«01
15
1,0251
3.011E+05
1.8176E + 05
1.0296E+13
17.6
2.00E-06
1.291E-05
1.685E-01
1.63E-07
1 .76E-01
16
1,0163
3.011E»05
1.S176E+05
1,03U8E+13
17.6
l,93E-06
1.1J9E-05
1.300E-01
1.53E-0T
1.76E-04
17
1,0111
3.011E + 05
1.8176E + 05
1 ,0388E+1 3
17.6
l,86E-06
1 .007E-05
3.799E-01
1 ,«3E-07
1 .76E-01
16
1,0112
3, 011E + 05
1 .8476E+05
1.0120E+13
17,6
1.80E-06
6.928E-06
3.369E-04
1.31E-07
1,76F>01
19
1,0088
3.011E+05
1 .8476E + 05
1.0H5E+13
17.6
1.71E-06
7.939E-06
2.996E-01
1 .26E-A7
1.76E-01
20
CALCULATION IS IN SECTION NO. s 3 AND THE SECTION LENGTH IS o 2.7050 M
COLLECTION AREA s 2'.i61E + 03 M2
WIRE TO PLATE ¦ 1'.397E"01 M
CURRENT/M « 1 . lfcflF-Otl AmP/m
1/2 WIRE TO HIRE ¦ 9.208E-02 M
TEMPERATURE a 430,000 K
ION MOBILITY a J.a65E-0fl M2/VOLT-SEC
OUST WEIGHT a 6.969E-01 KG/SEC
APPLIED VOLTAGE b 1.215E+01 VOLTS
CORONA WIRE RADIUS a 2.096E-03 M
CURRENT DEN8ITY » 2.2t>8£»01 AMP/M2
GAS FLOW RATE « 1.5o6E+02 M3/8EC
PRESSURE ¦ 1,000 ATM
MEAN THERMAL SPEED ¦ 5.335E+02 M/SEC
LENGTH INCR, ao',27450000 M
TOTAL CURRENT o 5.3BOE-01 AMPS
CORONA WIRE LENGTH ¦ U.TQ5E+83 M
DEPOSIT P FIELD b 1.131E+05 VOLT/M
GAS VELOCITY s 1 .250E + 00 M/SEC
VI8CO8ITY b 2,290E"05 KG/M.SEC
PART. PATH PARAM', • 8.216E-08 M
INPUT EFF./INCR, » 15.55
ROVRI
ERA VG
EPLT
AFIO
CMCD
MMD
WEIGHT
DUST LAYER
J(PART)
JCION)
INCR, NO
1,0051
3.039E + 05
1.9363E+05
1 .3395E+13
22.7
l,68E-06
7.122E-06
2.801E-04
1.21E-07
2.27E-01
21
1,0042
3.039E*05
1.9363E+05
1.3111E«13
22.7
l,62E-06
6.606E-06
2.O93E-04
1.16E-07
2.27E-01
22
1,0033
3,039e+05
1.9363E+05
1 .3123EM3
22,7
l,57E-06
5.892E-06
2.221E-04
1.08E-07
2.27E-01
23
1,0026
3, 039Eto5
1,9363Et05
1.3fl33E+13
22 7
l,52E-06
5.266E-06
1.Q87E-01
1.01E-07
2.27E-01
21
1,0020
3 ,039E+05
1.9363E+05
1,3100E*13
22,7
l,17E-06
1.709E-06
1.777E-01
9.06E"08
2.27E-01
25
1,0016
3,039E+05
1.936IE+05
1,3l«6E+ 13
22,7
1.12E-06
1.219E-06
1.592E-01
8.81E-08
2.27E-01
26
1,0012
3.039E+05
1.9363E+05
1.3151E + 13
22,7
l,38E-06
3.783E-06
1,12*E-01
8.25E-08
2.27E-01
27
1,0010
3.039E t05
1.9363E405
1,3u5lEtl3
22,7
1,31E»06
3.399E-06
1.283E-01
7.69E-08
2.271.01
28
l.oooe
3.039E+05
1(9363E»05
1 .3157E + 13
22,7
l,30E-06
3.057E-06
1.151E-01
7.17E-08
2.27E-01
29
1 ,0006
3.039E+05
1 .9363E + 05
1 ,3l59E*13
22.7
1.26E-06
2.753E-06
1.039E-01
6.69E-0B
2.27E-01
30

-------
CHARGING rates FOP PARTICLE SIZFS from Subroutine CHARGN OR CHGSIIH
SRI
THEORV useo
FOR PARTICLE
charging


MCEMENT NO,
o/qsaTf FOR
indicated
particle sizes

0
,2000E"06
0.0000E-06 0
.7000E-06
0.!100E-05
0.1600E-05
1
0.5293
0.5206
0 .4911
0.4693
0.4555
2
0.7611
0.7536
0,7120
0.6794
0.6576
3
0.9222
0.9229
0.8609
0.6104
0.7773
a
1.0587
1.0651
0,9861
0.9085
0,8596
5
1.1669
1.1677
1.0774
0.9919
0,9244
6
1,255"
t.2469
1,1432
1,0502
0,9793
7
1,3299
1.3110
1,1942
1.0931
1,0184
A
1,3939
1.3647
1,2357
1.1268
1,0476
9
1 .<1098
1.4106
1,2706
I.1544
1,0712
10
1.1992
1.4505
1,3005
1.1777
1,0906
11
1,5706
1.5100
1,3466
1.2156
1,1234
13
1,6301
1.5584
1,3636
1.2449
1,1460
13
1.6809
1.5991
1,4141
t.2687
1.1677
10
1.7252
1.6342
1 .4401
1.2688
1,1640
IS
1.7644
1.6650
1,4627
1,3060
1,1976
16
1,7996
1.6924
1.4827
1.3212
1,2099
17
1,8314
1.7170
1.5005
1.3346
1,2206
IS
1,8604
1.7394
1,5166
1.3467
1,2301
19
1,8871
1.7598
1,5313
1.3577
1,2366
20
1,91 17
I.7786
1,5446
1.3678
1.2466
21
1,9412
1,8014
1.5613
1.3602
1,2565
22
1.9683
1.8221
1.5762
1.3914
1,265a
23
1.9932
1.8411
1,5899
1.4017
1.2T35
24
2.0163
1.8587
1.6025
1,4111
1,2609
25
2.0378
1.8750
1,6141
1.4197
1 .2877
26
2^0579
1.8903
1.6250
1,4278
1,2940
27
2.0768
1.9045
1,6351
1.4353
1.2900
26
2,0907
1.9180
1,6«47
1.4424
1.2940
29
2.1116
1.9307
1.6537
1.4424
1.2900
30
2.1276
1.9027
1.6622
1.4424
1.2900
0
.6000E-05
0.850 0E»05
0.1250E-04
0,2000E»00
0.2750E-04
1
0.4311
0.4289
0^4277
0.4272
0.4270
2
0.6208
0.6184
0.6174
0,6170
0.6170
3
0.7265
0.7241
0.7232
0.7230
0,7229
4
0.7919
0.7893
0.7684
0.7883
0.7683
5
0.8355
0.8326
0,8318
0,8317
0,8317
6
0.8664
0.6632
0,8624
0.6623
0.8622
7
0.8895
0.8859
0.8650
0.6649
0.8649
8
0.9074
0.9033
0.9024
0,9023
0,9023
9
0,9217
0.9171
0.9161
0.9160
0.9160
10
0.9334
0.9283
0,9272
0.9271
0.9271
11
0.9583
0.9532
0,9521
0.9520
0,9520
12
0.9754
0.9699
0.96P7
8.96«6
0.9686
13
0.9870
0.9814
0,9803
0,9802
0.9602
14
0,9928
0,9889
0.9879
0,9876
0,9878
15
0.9958
0.9919
0.9918
0.9917
0.9917
2500E-05
0.3500E-05
0.0500E-05
0
4436
0,4373
0,4339
0
6386
0.6293
0,6200
0
7500
0.7370
0,7306
0
6215
0,8006
0,7969
0
8725
0,8508
0,8413
0
9122
0,8847
0,8733
0
9455
0,9113
0,8975
0
9721
0,9330
0,9167
0
9920
0,9512
0,9324

0079
0,9644
0,9453

0368
0,9921
0,9710

0573
1,0088
0,9686

0732
1,0216
0,9962

0861
1,0319
1.0055

0969
1 ,0405
1.0117

1062
1,0479
1,0172

1143
1,0543
1,0220

1216
1,0600
1,0220

1261
1,0652
1,0220

1340
1,0652
1,0220

1416
1,0719
1,0285

1484
1,0719
1,0285

1545
1,0719
1,0285

1601
1,0719
1,0285

1601
1.0719
1,0285

1601
1,0719
1,0285

1601
1,0719
1,0285

1601
1,0719
1,0285

1601
1,0719
1,0285

1601
1 ,0719
1,0285

-------
16
0,9958
0.9919
17
0.9958
0.9919
18
0.9958
0.9919
19
0.9958
0.9919
20
0,9958
0.9919
21
1,0021
0.9996
22
1.0021
0.9996
23
1.0021
0.9996
2«
1.0021
0.9996
25
1.0021
0.9996
26
1.0021
0.9996
27
1,0021
0.9996
28
1.0021
0.9996
29
1,0021
0.9996
30
1.0021
0.9996
w
o\
0.9918
0.99J8
0.9918
0.9918
0,9918
0,999?
0.9992
0.9992
0,9992
0,9992
0.9992
0,9992
0.9992
0.9992
0.9992
0.9917
0.9917
0.9917
0.9917
0.9917
0.9991
0.9991
0.9991
0.9991
0.9991
0.9991
0,9991
0.9991
0.9991
0.9991
0.99J7
0.9917
0.9917
0.9917
0.99J7
0,9991
0,9991
0,9991
0,9991
0,9991
0,9991
0.9991
0,9991
0,9991
0,9991

-------
CM* RGF ACCHMiJl ATE I' ON PART If LF SIZES IN E 4 CH IUCRFMFNT
increment	fHiRGE FOH INDICATED PiRTiriE SIZES


n.2000E"06
0.OO0 0E-06
0.7000E
06
0.1100E-05
1
0
9U2B7E-1H
0.28009E-17
0.75571F
17
0. 17331 E-16
2
0
13559E-17
0.01I86E-17
0.10957E
16
0.250O0E-16
3
0
1M?BE-|7
0.50O37E-17
0.132«BE
16
0.29927E-16

0
1BflftOE-17
0.58206E-17
0.1517UE
16
0,33551E» 16

0
20787E-I7
0.63813E-17
0.16580E
16
0.36630E-16
6
0
22360E-17
0.68102E-17
0.17592E
16
0.38783E-16
7
0
23692E-17
0.71607E-17
0.18377E
16
0.00365E-16

0
20832E-17
0.70579E-17
0.19016E
16
0.0]610E>16
9
II
25828E-17
O.77087E-17
0.19552E
16
0.02631E-16
10
0
26707E-17
0.79269E-17
0.20012E
16
0.U3193E-16
11
0
279B0E-17
0.82517E-17
0.20725E
16
0.00890E-16
12
0
29039E-17
0.85163E-17
0.21292E
16
0.05972E-16
13
0
?99U«E"17
0.87389E-17
0.21761E
16
0.06852E-16
10
0
3073«E-17
0.89J0BE-17
0,22161E
16
0.07592E-16
15
0
31«33E-17
0.O0990E-17
0.22509E
16
0.O8230E-16
16
0
32059E-17
0.92087E-17
0.22816E
16
0.18789E» 16
17
0
32626E-17
0.93833E-17
0.23091E
16
0.09286E-16
IS
0
33103E-17
0.95050E-17
0.23339E
lfc
0.O9733E-16
19
0
3361 BE"17
0.96172E-17
0.23565E
16
0.50139E-16
20
0
30057E-17
0.97201E-17
0.23773E
16
0.50510E-16
21
0
305B3E-17
0.980OJE-17
0.20026F
16
0.50970E-16
22
0
35064E-17
0,99S75E-17
0.20256E
16
0.51385E-16
23
0
35507E-17
0.10 061E»16
0,20466E
16
0.51762E-16
20
0
35919E-17
0.10 15BE"16
0.2O660E
16
0.52109E»16
25
0
36302E-17
0.10207E-16
0.20839E
16
0.52030E-16
26
0
36661E-1 7
0,10330E"16
0.25006E
16
0.52727E-16
27
0
36998E-17
0.1000BE-16
0.25162E
16
0.53005E-16
26
0
37316E-17
0.10082E-16
0.25309F
16
0,53266E"16
29
0
37617E-17
0.10551E-16
0,25048E
16
0.53266E-16
30
0
37902E-17
O.10617E-16
0.25578E
16
0.53266E-16


0.6000E"05
0.8500E-05
0.1250E
• 01
0.2000E-0O
1
0
.06333E-15
0.92U77E"15
0.19937E
•HI
0.50962E-10
2
0
.6672UE-15
0,|3333E-10
0.28776E
•10
0.73611E-10
3
0
.78089E-15
0.15611E-10
0.33708E
•10
0.86207E-1O

0
.85113E-15
0.17016E-10
0.36750E
• 10
0.90001E-10
5
0
, 89798E-15
0.17950E-1U
0.38770E
•10
0.99217E-1O
6
0
.93122E-15
0.18610E-10
0.10195F
•10
0,10287E-13
7
0
.95603E-15
0 . 19 099E- 1 <1
0.U1250E
•10
0.10557E-13

0
.97529E-15
0.19«75E-1U
0.U2060E
•10
0 a 1076OE-13
9
0
.OQ068E-15
0.19773E-1U
0 . <12701 E
-10
0.10928E-13
10
0
.10032E-1U
0.2001UE-M
0.U3218E
>10
0.U060E-13
11
0
,10300E-10
0.20550E-10
0.UU377E
•10
0,1)357E-13
12
0
.10063E-10
n.209i0E-ia
0.05150E
•10
0.11556E-13
13
0
,10608E»10
0.21160E-10
0. 0 5692F
-10
0.1169OE-13
1«
0
.10671E-1O
0.21321E-10
O.U60a7E
-10
0.117A5E-13
15
0
,107o3E-1«
0.213B6E-1U
0.16226E
-10
0.11S31E-13
16
0
.10703E-1O
0.21386E-10
0.0 6226E
-10
0.11A31E-13
17
0
.1 07O3E-1U
O.21386E-10
0.06226E
•10
0.1183IE-13
IB
0
.10703E-IO
0.21386E-10
0.A6226E
•10
0.11831E-13
19
0
.1 07o3E-10
0.21386E-10
0, "6226E
•10
0,11 A3 IE-13
0.16O0E-05
0.2500E
05
0.3500E
05
0.050 OF
05
0 , 351B8F" 16
0.83125F
16
0.16020E
15
0.26252E
15
0,50B0OE»16
0.11970E
15
0.23057E
15
0.37780E
15
0 .60 05?E»16
0,10053E
15
0 , 2700 0E
15
0 a 00217E
15
0 , 66006E-16
0.15390F
15
0.29079E
15
O.O0215F
15
0,71015E-16
0.16309E
15
0 ,31172E
15
0.50905E
15
0,75655E-16
0.17093E
15
0.32016E
15
0.52B37E
15
0.78676E-16
0.I7717E
15
0.3338BE
15
0.50303E
15
0 . B0900E-16
0.18215E
15
0.3O185E
15
0.55065E
15
0.82752E-16
0.18589E
15
0.3O85AE
15
0,560l2£
15
0,80208F-16
0.18B87E
15
0.35337E
15
0.57190E
15
0.867B5F-16
0 a 19029E
15
0.36352E
15
0.58707E
15
0.86688E-16
0,19B13E
15
0.36963E
15
0.59816E
15
0.90205E-16
0,20110E
15
0.37030E
15
0.60393E
15
0.91063E-16
0,20 351E
15
0,37807E
15
0,608 36E
15
0.92536E-16
0.20550E
15
0.38123E
15
0.61210E
15
0.93069E-16
0.20728E
15
0.3B393E
15
0.615O5E
15
0]l9O29SE-16
0,20B81E
15
0,386JOE
15
0.61838E
15
0,95031E-16
0.21016E
15
0.38839E
15
0,61838E
15
0,9S698E-16
0.21138E
15
0.39028E
15
0.6183BE
15
0,96306E-16
0.212O9E
15
0.39028E
15
0.61838E
15
0,97071E-16
0.21392E
15
0.39275E
15
0.62230E
15
0,97758E-16
0.21519E
15
0.39275E
15
0.62230E
15
0,9A3B1E-16
0.21630E
15
0.39275E
15
0.62230E
15
0.98951E-16
0.21738E
15
0.39275E
15
0.62230E
15
0.99076E-16
0.21738E
15
0.39275E
15
0,62230E
15
0.99962F-16
0.21738E
15
0.39275E
15
0,62230E
15
0,99962E-16
0.21738E
15
0.39275E
15
0,622JOE
15
0.99962E-16
0.2173BE
15
0.39275E
15
0.62230E
15
0.99962E-16
0.2173BE
15
0.3927SE
15
0,62230E
15
0.99962F-16
0.21738E
15
0.39275E
15
0.62230E
15
0.2750F-00
0.9651JE"J 0
0,13915E-13
0.1630OF-13
0.17778E-1S
0,18756E-13
0,1900fcF-l3
0,19957E-13
0.20S«9E-I3
0.20659E-13
0.2090OE-13
0.21U70E-15
0.2180fcE»13
0.22107E-13
0.22279F-13
0.?23t>7E"l3
0.22367E-13
0.22367F-13
0.22367E-13
0,22367E-13

-------
20
0.10703E-IU
n.?1386E»ta
0,«622f>E-ia
0,t1831E»1
21
0.I0771E-1U
0.21551E-ia
0.a6572E»ia
0.11920E-1
22
0.10771E-JU
0.2155lF-ia
0,a657?E-ia
0.11920E-1
23
0.10771E-1U
P.21551E-ia
0.a6572E-la
0.11920E-1
21
0.inT?lE-ia
P,2155lE»ia
0.a657?E-)a
0.11O20E-1
25
0,10771E»1"
o,2l55lE-ia
n.a657?E-la
0.11O20E-1
26
0.10771E-ia
o.2155lE-ia
0,a6572E-JU
0.11«20E-l
27
0.10771E-1U
0.21551E-U
0.a6572E-ia
0.11920E-1
26
0.10771E-1"
0.21551E-ia
0.a6572E-ia
0.11920E-1
29
0.1077IE-ta
n.21551E-ia
0.afe57?E-ia
0.11920E-1
3ft
0.10771E-ia
o.21551E-ia
0.a6572E-ia
0.11920E-1
u
00
0 . 22367F"
0.225SaE-
0,2253aF-
0.2253aF»
0.?253aF-
0.22530F-
0.22530E-
0.2255UE"
0.22350E-
0.2253«E«
0,?253flE"

-------
PARTICLE S 17 E BANRF. STATISTICS
CORRECTIONS FOR NONIPfALTTIES USING SET no'. 1 OF CORRFCTION PARAMETERS
SIZE
CCF
inlet *
OUTLET *
COR, OUTIFT *
NO-RAP EFF
, NO-RAP *
Nfl-HAP P
COR. EFF.
COR, w
COR. P
2,OOOE-0 7
2.125
0.033
0.7060
0,1596
95.6337
6.565
1,3663
95,1127
6,162
1,5873
1,OOOE-07
t .530
0.253
7.7119
1,6397
91.1103
5.938
5.8897
93.9591
5,885
6,0109
7.000E-07
1 .297
0,903
23.7197
11,5819
91,9201
6.218
5,0799
91,6806
6,151
5,3191
1,100E-06
1.188
0.815
15.2607
10,1210
96,3831
6.960
3,6166
95.9093
6.702
1,0907
1,600E-06
1.130
1,520
19.0113
13,5163
97.5839
7.806
2.1161
97,0708
7,102
2.9292
2.500E-06
1 ,083
3.521
22.9679
18,8810
98.7112
9.173
1,2588
98,2351
8.16a
1 ,7619
3,500E»06
1 .059
1.652
5.9857
6,9689
99.3002
10.101
0,6998
98,6101
8.966
1,3896
1.500E-06
1,016
1,652
3.5711
6,666"
99.5825
11,187
0.1175
98,6706
9,059
1,3291
6,OOOE-06
1.035
1.982
0.8603
5,9268
99.9162
11.853
0,0838
99,0150
9,687
0,9850
8,500E-06
1 ,02"
3.30"
0.0861
6,1118
99.9950
20,751
0,0050
99,3575
10.583
0,6125
1,250F-05
1,017
1,816
0.0025
5,1520
99,9999
3S.9B1
0,0001
99,6198
11,855
0,3502
2.000E-05
1.010
12,115
0,0062
1,1915
99,9999
51,021
0.0001
99,8860
11,209
0,1110
2,750E-05
1.008
67.101
0.0316
2.1197
99.9999
71.070
0.0001
99.9880
18,931
0,0120
EFFlflENCV -
STATED n
99.37
COMPUTED o
99,3736
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, s 99*.8069
mmo OF INLET SIZE DISTRIBUTION o 1.165E+01
SIGMAP OF INLET SIZE DISTRIBUTION 8 5.122E+00
LOG-NORMAL GOODNESS OF FIT o 0,981
hmo of EFFLUFNT UNDER NO-RaP CONDITIONS a 1.3S6E+00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS 8 1,919£*00
LOG-NORmal GOODNESS OF FIT s 0,997
PRECIPITATION Rate PARAMETFR under no-rap CONDITIONS O 11,103
SIGMAGB 0,000 WITH 0,000 SNEAKAGE OVER 3.000 STAGES
NTEMP a 1
RHMO s 6.00
RSIGMA a 2,50
CORR. EPF. a 99.6706
CORRECTFD MMD of EFFLUENT 8 2.6S7E+00
CORRECTED SIGMAP of EFFLUENT o 2.816E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0.988
CORRECTED PRECIPITATION RATE PARAMETER O 11,98

-------
UNADJUSTED migration VELOCITIES ANf) EFFICACIES, AND DISCRETE OUTLET MASS loadings
IDEAL UNADJUSTED
IDEAL unadjusted
NO-RAP
Rapping puff
NO-RAP+RAP PUFF
RAPPING PUFF
PARTICLE
MIC. VEL.(CM/SFC)
EFFICIENCV(X)
OM/DLOGn(MG/DSCM)
DM/DLOGO(MG/oSCM)
DM/DLOGD(MG/OSCM)
DISTRIBUTION (X)
DIAM,(M)
2.7021*00
7.2U3E+01
2'. 146E-01
1.086E-02
2.25«E-01
5.350E-02
2.000E-07
2.81UE+00
7.387E+01
«',772EtOO
1.225E-01
U.895E+00
2.806E-01
U.0O0E-07
J,377E+00
8.003E+01
1,277E+01
6.019E-01
1 .337Ef«l
1,586Et00
7.000E-07
0.223E+00
8. 666E *01
1,311E + 01
1 ,719E*00
1.O83E+0I
?,83UE+00
1.100E-06
5,296E+00
9.200E+01
1 .583E+01
3.362E+00
1.919E+01
5,720E>0n
1,6OAE>06
7.223E+00
9.6B1E+0J
1,UB2E*01
5.960E+00
2.078E+01
1,308E+01
2.500E-06
9.331E+00
9.683E+01
8,238E+0O
8,120E + 0A
1.636E+01
6.358E400
3.500E-06
1f1"9E+01
9.958E+01
a,206E+00
9,J86E+O0
11339E + 01
i.t ose*oi

3,398E*01
1.000E+02
if022E-03
7.1UOE+00
7.10 2 E~0 0
1.2«5E*01
1.250E-05
5,«02E*m
1.000E+02
3,769E-03
«.33iE+on
«.335f*00
1.013E+01
2.000E-05
7,«07E+01
I000E + 02
6.250E-02
7.5UOE+00
7.606E+00
5,91BE»00
2.750E-05
o

-------
SUMMARY TABLE OF ESP OPERATING
PARAMETERS ANO PERFORMANCE
DATA SET NUMBER 1
ESP PERFORMANCE!	EFFICIENCY s 99.6706 * SCA » U.769E+01 M*«?/{M*«3/SEC)
ELECTRICAL CONOITIONSI	AVG. APPLIED VOLTAGE b «.172E+0fl V
AVG. CURRENT DENSITY a 17,12 NA/CM**2
RESISTIVITY o 5.000E+10 OHM-CM
SIZE 01STRIBUT IONS t	INLET HMD o fl.«65E*01 UM	INLET SIGMAP a 5.122E+00
OUTLET HMD n 2,i87E*00 UM OUTLET SIGMAP o 2,016E+nO
NONIDEAL PARAHETERSl GAS SNEAKAGE FRACTION a 0.00 /SECTION GAS VELOCITY 3IGMAG ° 0,00
RAPPING MMD S 6.000E+00 UM RAPPING SIGMAP a 2.500E+00

-------
PARTICLE SIZE RANGF STATISTICS
CORRECTIONS FOR NONIDEALI TIES USING SET Nn". 2 OF CORRECTION PARAMETFRS
SI ZF
CCF
INLFT X
outlet *
CnR. OUTLET
* NO-RAP EFF
. NO.RAP W
no-rap P
COR. EFF.
COR, w
COR. P
2.000E-07
2.123
0.033
0'.1509
0.3301
"2.3311
5,381
7,6689
91,9336
5,278
8.0661
1.000F..07
1.530
0,253
U (IU8S
3.182?
90,1301
1.855
9.8699
89.8582
1.798
10.1118
7,000E.07
1.297
0.903
11,5658
10,621"
90.9062
5.036
9.0538
90.5155
1,939
9,1815
1 . 100E-06
1,188
0.815
10.5527
8.2078
92.7321
5.197
7.2676
91.8797
5.261
8, l203
l,600E-06
1 .130
1^520
15,3888
12,1518
91.3171
6.013
5.6826
93.39«7
5.697
6,6053
2.50 OE.06
1.083
3.52"
25.0113
2t.1091
96.0115
6.755
3.9885
95.1011
6.321
1,8986
3.500E-06
1.059
1,652
9.1685
8.9210
96.8819
7.273
3.1151
95.61(13
6.570
1.3557
1,500E-06
1.016
1,652
7.9239
8.8757
97.3078
7, *79
2.6922
95,6679
6.582
1,3321
6.000E-06
1.035
1,982
5.1532
7,571?
98.5106
8.863
1 .159(1
96,9)99
7.297
3.0801
8.500F-06
1.02"
3, 301
1,6876
7,9611
99,2037
10.133
0,7963
98,0571
8.263
1,9129
1.250E-05
1.017
a,806
2.3997
5,1557
99.7220
12.310
0.2780
99,0922
9.859
0.9078
2.OOOE-05
J .010
12,115
0.1661
3.2093
99.991 a
19.619
0,0086
99,7861
12,892
0.2136
2.750E-05
1 .008
67. <101
0.0323
1.7999
99.9997
71.070
0.0003
99,9785
17.703
0.0215
EFFICIENCY - !
STATED o
99". 37
COMPUTED 3
99,3736
CONVERGENCE
OBTAINED



ADJUSTED NO.RAP EFF. o 99'.(IJ87
HMO OP INLET SIZE DISTRIBUTION b 1.165E+01
SIGMAP OF INLET 3IZE DISTRIBUTION n 5.122E+00
LOG-NORMAL G00DNE8S OF FIT b 0.980
MHO OF EFFLUENT UNDER NO-RAP C0NDITI0N8 b 2.011E+00
8IGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS » 2.230E+00
LOG-NORMAL GOODNESS OF FIT o 0.997
precipitation rate parameter under no.rap conditions • 10.866
SIGHAG' 0.290 with 0.100 SNEAKAGE OVER 3.000 STAGES
NTEHP a 1
RMHD b 6.00
RSIGMA ¦ 2.50
CORR. EFF. c 99.1937
CORRECTED HMD OF EFFLUENT b 2.921E+00
CORRECTED SIGHaP of EFFLUENT b 2.600E+00
LOG.NORHAL GOODNESS OF FIT ¦ 0,996
CORRECTED PRECIPITATION PATE PARAMETER B 10,11

-------
UNADJUSTED MIGRATION VtlOClTieS ANO EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
ideal unadjusted
NO-RAP
Rapping puff
NO-RAP+RAP PUFF
RAPPING PUFF
PARTICLE
MIC. VEL.(CM/SEC)
FFEICIENCv(t)
DH/DLOGnfMG/DSCM)
DM/DLOGn(MG/OSCM)
DM/OLOGPfMG/DSCM)
DISTRTBUTION(X)
OIAM.(M)
?,702E+00
7,2«3E+P1
3.769F-01
1.953E-02
3.9ME-01
5.350E-02
2.000E-07
2,81UE+OO
7,J87E+01
7.O97E+00
2.2O3E-01
B.217E+00
2.806E-81
1,00OE-07
3.377E400
8.003E*01
2.275E+01
1 ,n82Etnn
2.38«Et01
1.5B6E+00
7.000E-07
1,223E + 00
ft , 666E + 01
2,635E+01
3.092E+00
2,pauE*oi
2.83UE+00
1, lOOE-Ofc
5.296E+00
9.200E*01
3,7?aE+01
fc.0«6E+00
fl.328E*01
5.720E+00
1 ,600E.0h
7.223E+00
9.681E*01
0,697F+01
1 .072E + 01
5.769E+01
1,JORE* 01
2,50OE»0h
9.331E+00
9.683E+01
3, 6fc7E + M
l.U60E + m
S,128E+01
8,158E+0n
S.500E-06
1,1U9E+01
9.958E401
2,7!2E*01
1 ,b52Et01
U,J6«E*01
1. t OSEt-01
0.500E-06
»,«85E+01
9^992E+01
l,5i5E+01
1.739E+01
3.30aE+01
1 .31OE + 01
6,OOOE-06
2,075E+01
9.999E*01
1,130E+01
1,t>2f>E*0l
2.756E+01
1,5«5E*01
8.500E-06
3.398E+01
1f 000E*02
5,667E+00
1.2BUE + 01
1.851E*01
1.215E+01
1.250E.05
5.402E+0 t
l,OOOE+n2
3,2«2E»01
71789E+00
8.118E+00
1.013E+01
2.00OE-05
7.U07E+01
1 . 0O0E + 02
1.695E-01
1.357E+01
1.37UE + 01
5,91BE*00
2.750E-05
•Cfc
OJ

-------

SUMMARY TABLE OF ESP OPERATING *
PARAMETERS ANo PERFORMANCE *

DATA SET NUMBER 2 «
* E8P PERFORMANCE! EFFICIENCY ¦ 99.1937 * SCA » U.769E+01 M«*2/(H*« 3/3EC) •
» ELECTRICAL CONDITIONS!
AVG, APPLIED VOLTAGE ¦ a,172E*0fl V *
AVG. CURRENT DENSITY a 17,12 NA/CM««2 »
RESISTIVITY ¦ 3.000E*10 OHM-CM •
* SIZE DISTRIBUTIONS!
INLET MMD a a.065E*01 UM INLET 8IGMAP ¦ 5.128E+00 *
OUTLET MMD n 2.92uE»00 UM OUTLET 8IGMAP ¦ 2.600E+00 •
* NONIDCAL PARAMETERS!
OAS SNEAKAOE TRACTION ¦ 0.10 /8ECTT0N GA8 VELOCITY SIGMAG ¦ 0.25 *
RAPPING MMD ¦ 6.000E+00 UM RAPPING 9IGMAP a 2,500Et00 *
STOP 011111

-------
APPENDIX D
OUTPUT DATA FROM EXAMPLE 4
145

-------
*	E.P.A, ESP MODEL	*
*	*
*	I,E,R,L,-R,T,P, AND 80,R.I, •
*	*
*	REVI8I0N I,JAN, i, 197ft	•
*	•
***••*••*«•*»****•*»****«»•»**•*»•***
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER J
DATA ON CARD NUMBER 1
NENOPT s 15 NDATA	o 1
DATA ON CARO NUMBER	2
FULL-SCALE,H0T-8I0E	E8P| PLANT B|3CAb390FT2/1000ACFM|Jb3«.3UA/FT2
^ DATA ON CARD NUMBER	3
ty\
NE8T ¦ 1 NO I ST a 1 NVI ¦ 1 NX ¦ 10 NV a 10 NITER ¦ 3 NCALC » 0 NRAPD ¦ 1 NEFF ¦ 1 NTEMP ¦ 2 NONIO ¦ 2
DATA ON CARD NUMBER <*
NN p 10 NUMINC ¦ 20
DATA ON CARO NUMBER S
DL ¦ 2.S1000 GRN/ACF PL ¦ 36,0000 FT ETAO « 99,60000 X DO b 2270,00 KG/M**3 EP8 ¦ l,0O0E*02
VRATIO a 1,2000 US ¦ 0,000220 M**2/V-SEC FPATH ¦ 1,0000 EBD ¦ 1500000, V/H RH0CG8 b 1.90EM0 OHM.CM
DATA ON CARD NUMBER 6
A8NUCK( 1) B 0,00 AZIGGYC 1) b 0,00 AZNUM9( 1) » 4,0
A8NuCK( 2) a 0,10 AZlGGYt 2) b 0.25 AZNUMSf 2) a il.O
DATA ON CARD NUMBER 7

-------
ENDP T ( 1) ¦ 0.200 UM ENHPT ( 2) a O.ilOO UM F.NDPTC 31 o 0.700 UM E.NHPTC (I) s 1 ,000 Uk FNflPTf 5) a 1,500 UM
ENOPTf ft) B 2.000 UM ENOPTf 7) s 3.000 UM ENDPT f 8) o 4.000 UM ENHPT( Q) o 5,000 UM ENDPTtlO) o 7,000 UM
DATA ON C4WD NUMBER 8
ENDPTfll) b 10,000 UM ENDPTC12) a 15,000 UM ENDPTC13) ¦ 25.000 UM ENDPTC14) s 30,000 UM ENRPTC15) a 100,000 Um
DATA ON CARD NUMBER 9
PRCUC 1) ¦ 0,0000 X PRCU( 2) 8 0,1079 x PRCU( J) 8
PRCUf 6) b 2,7493 X PRCUC 7) o <>,5251 X PRCUC 8) a
0,5702 X PRCUf 4) c 1 ,0092 X PRCUC 5) s 1.7226. X
9.4832 X PRCUC 9) a 11,1362 X PRCUC10) " 13,0503 X
DATA ON CARD NUMBER 10
PRCUCin 8 15,6255 X PRCUC 12) ¦ 20,18
-------
DATA ON CARD NUMBER IS
8VS ( 2) ¦ S.5000E+00 IN	VC8( 2) ¦ a,3207E»05 FT«»3/MIN VCASSf 2) ¦ 3.7958E+00 FT/8EC TEMP8C 2) a 6.2«00Ef02 F
PS( 2) « 1¦OOOOE+OO ATM	VI8SC 2) » 2.B000E-05 KC/H-SEC LINCS( 2) o 1.0000E+00 FT
DATA ON CARD NUMBER 16
ASC 5) ¦ 4,2120E+0a FT»«2 V08( 3) a 2,9130E*0a V TCSf 3) ¦ l.«200E*00 A «L81 3) ¦ 3.6160E + 0U FT
ACS f 3) » 5.US00E-02 IN	B8( 3) » a.5000E+00 IN MMS( 3) ¦ 1.2000E*01
DATA ON CARD NUMBER 17
SY8C 3) ¦ 4.5000E*00 IN	VGSt 3) a 
-------
INCREMENTAL ANALYSIS OF PRECIPITATOR PERFORMANCE
FULL-SCALE.HOT-SIOF ESPl PLANT B>SCAB390FT2/t000ACFM,JbS4.3UA/Ft2
CALCULATION IS IN 8ECTI ON NO. « 1 AND THE SECTION LENGTH IS a 2,7450 m
COLLECTION aREA a 3.917E*03 M2
WIRE TO PLATE b 1 .143E-01 M
CURRENT/M o 7,123E-05 AMP/M
1/2 WIRE TO wire a 1.143E-01 M
TEMPERATURE a 601 <>67 K
ION MOBILITY s fl,8«6E"0l H2/VOLT-SEC
OUST WEIGHT o 1,I75E+00 KG/SEC
APPLIED VOLTAGE b 3.5R8E+04 VOLTS
CORONA WIRE RADIUS a 1.384E-03 M
CURRENT DENSITY a 3.115E-04 AMP/M2
GAS FLOW RATE o 2,044E»02 M3/SEC
PRESSURE o 1.000 ATM
MEAN'THERMAL SPEED b 6.311E+02 H/S
LENGTH INCR. 80,30500000 H
ROVRI
ERA VG
eplt
AFID
C MCD
MMD
WEIGHT
1,5597
3. 139E+05
I.8186E+05
8.2047E+12
31.1
4,22E-05
4.136E-03
1,363b
3.139E+05
t.7508E+05
9.3BU2E+12
31.1
2.03E-05
6.995004
1,2650
3.139E+05
t,7156E+05
1.01166 + 13
31.1
l.UE-05
2.530E-04
1,1984
3.139E + 05
1.6915E+05
1.0678E+13
31.1
6.87E-06
1.45OE-04
1,1502
3,1 39E+05
1.6738E+05
1.1126E+13
31.1
4, 60E-06
9.767E-05
l.li«5
3,1 39E + 05
1.6606E+05
1.1482E+1 3
31,1
3.52F-06
7.105E-05
1.0676
3.139E*05
t,6505E*05
1,17 66E~13
31.1
3.11E-06
5.455E-0S
1,0673
3.1J9Et05
1,6429Et05
1.1990E+13
31.1
2.83E-06
4.343E-05
1 .0518
3.139E*05
1,6370E»05
1.2167EM3
31.1
2.61E-06
3.543E-05
CALCULATION IS IN SECTION NO. s 2 AND THE SECTION LENGTH IS a 2.7450 M
COLLECTION AREA b 3.917E+03 M2
WIRE TO PLATE b 1.1U3E-01 H
CURRENT/M a 9.761E-05 AMP/M
1/2 WJRE TO WIRE b 1.143E-01 M
TEMPERATURE « 601,667 K
ION MOBILITY ¦ 4.846E-04 M2/V0LT-SEC
DUST WEIGHT b 1.175E+00 KG/SEC
APPLIED VOLTAGE o 3.395E+04 VOLTS
CORONA WIRE RADIUS a 1.384E-03 M
CURRENT DEN8ITY a 4.268E-04 AMP/M2
GAS FLOW RATE a 2.044E+02 H3/8EC
PRESSURE o 1.000 ATM
MEAN THERMAL SPEED o 6.311E+02 M/3!
LENGTH INCR. bo,30500000 M
ROVRI
ERA VG
EPLT
AFID
CMCD
MMD
WEIGHT
1,0276
2.970E+05
1 .7245E+05
1 .80J8Efl3
42.7
2.46E-06
3.085E-05
1,0212
2.970E+05
1,7215E+05
1.8151E*13
42.7
2.38E-06
2.563E-05
1,0163
2.97oE*05
1,72 2.800E
-05 KG/M-SEC

PART,
PATH PARAM, a
1.154E-07
M
INPUT
eff./incr, b
14.22

DUST LAYER
J(PART)
J ( I ON)
INCR,
1,165E-01
1.27E-06
3.10E-04
1
1.971E-02
7.01E-07
3.11E-04
2
7.128E-03
5.52E-07
3.11E-04
3
4.098E-03
4.72E-07
3.11E-04
u
2.752E-03
4.14E-07
3.11E"04
5
2.002E-03
3.68E-07
3.11E-04
6
1.537E-03
3.31E-07
3.11E-04
7
1.224E-03
2.99E-07
3.11E-04
8
9.982E-04
2.71E-07
3.11E-04
9
TOTAL CURRENT a 1.672E+00 AMPS
CORONA wire length b i,713E+oa m
DEPOSIT E FIELD o 8.110E+04 VOLT/m
GAS VELOCITY * 1 a 158E+00 h/SEC
VISCOSITY b 2.800E
-05 KG/M.SFC

PART,
PATH PARAM, ¦
1.154E-07 M

INPUT
EFF./INCR, b
14,22

DUST LAYER
J(PART)
J(ION) I
NCR, NO
8.690E-04
2.59E-07
4.27E-04
10
7.221E-04
2.35E-07
4.27E-04
11
6.057E-04
2.13E-07
4.27E-04
12
5.1 17E-04
1.93E-07
4.27E-04
13
4.348E-04
t.75E-07
4.27E-04
14
3.706E-04
1.59E-07
4.27E-04
15
3.172E-04
1.44E-07
4.27E-04
16
2.724E-04
1.31E-07
4.27E-04
17
2.346E-04
1.19F-07
4.27E-04
1A
total CURRENT c 1.420E+00 AMPS
CORONA WIRE LFNGTH e 1.713E+04 M

-------
CURRENT/M ¦ 8.290E.05 AMP/M
1/2 WIRE TO WIRE « 1.143E-01 M
CURRENT DENSITY
GAS FLOW RATE ¦
• 3,625E-0a AMP/M2
2.000E+02 M3/SEC
DEPOSIT E FIELO ¦ 6,888E*0« VOLT/M
GAS VELOCITY o 1.158E+00 H/SEC
TEMPERATURE ¦ 601,'
667 K
PRESSURE o
1,000 ATM

VISCOSITY a 2.800E
•05 XG/M.SEC

ION MOBILITY B a,
BafcE-oa M2/VqlT>SEC mean
THERMAL
SPEED ~ 6,
311E+02 M/SEC
PART,
PATH PARAM, a
1,158E-07
H
DUST WEIGHT ¦ 1,175E*00 KG/SEC
LENGTH INCR,
BO.30500000
M
INPUT
EFF./INCR, «
ia,22

ROVRI
ERAVG
EPLT
AFID
CMCD
MMO
WEIGHT
DU8T LAYER
JfPART)
J(ION)
INCR, NO
1,0027
2.5O9E+05
1.5313E+0S
1.S297E+13
36,3
1.96E-06
6.U32E-06
1.812E-04
9.63E-08
3.62E-04
19
1,0021
2.549E+05
1.S313E+05
1. 8308E +13
36,3
1 .93E-06
5.651E-06
l,592E-0a
8.80E-08
3.62E-04
20
1,0016
2.549E+05
1.5313E+OS
1 .8316E*13
36,3
1.89E-06
a,975E-06
1.402E-O4
8,05E-08
3.62E-0U
21
1,0013
2.5<19E+05
1.3313E+05
1,8322E*13
36,3
1.86E-06
«,387E-06
1, 236E-04
7.36C-08
3,62E-04
22
1,0010
2,5»9E»05
1,53l3E*05
1 ,8328E*13
36,3
1,82E-06
3,876E-06
1, 092E-04
6,7aE-08
3.62E-04
23
1,0008
2,5«9E*05
\,53l3E+05
1,B332E+13
36,3
1.79E-06
3.O29E-06
9.662E-03
6,18E-08
3.62E-0U
24
1,0006
2.5«9E*05
1 ,5313E+-05
1.8J35E+I3
36,3
1.75E-06
3.039E-06
8.562E-05
9.66E-08
3,62E-0a
25
1,0005
2.549E+05
1.5313E+05
1.8337E+13
36,3
1.69E-06
2.697E-06
7.598E-05
5.18E-08
3.62E-04
26
1,0001
2,5<*9E»05
1.5313E+0S
1.8339E+I3
36,3
1.64E-06
2.396E-06
6.751E-05
4,7aE-08
3,62E-0a
27
CALCULATION 18 IN SECTION NO. ¦ a AND THE 8ECTION LENGTH 18 « 2.T058 M
COLLECTION AREA o j,917Et03 M2
WIRE TO PLATE ¦ 1.1O3E-01 M
CURRCNT/H a 8.524E-05 AMP/M
1/2 WIRE TO WIRE ¦ 1.143E-01 m
TEMPERATURE ¦ 601,66? K
ION MOBILITY ¦ 4.846E-04 M2/V0LT-SEC
DU8T WEIGHT ¦ 1,175E+00 KG/8EC
APPLIED VOLTAGE ¦ 2.750E+04 V0LT9
CORONA WIRE RADIUS » 1.384E-03 M
CURRENT DENSITY a 3.727E-04 AMP/M2
GAS FLOW RATE ¦ 2.004E+02 M3/8EC
PRESSURE b 1,000 ATM
MEAN THERMAL SPEED e 6,311E»02 H/8EC
LENGTH INCR, ¦0.30500000 M
TOTAL CURRENT ¦ 1.460E+00 amps
CORON* WIRE LENGTH ¦ 1,713E»0U M
DEPOSIT E FIELD ¦ 7.082E+04 VOLT/M
GAS VELOCITY a 1.15BE+00 M/SCC
VISC08ITY o 2.800E-0S KG/M-SEC
PART, PATH PARAM. ¦ 1.15OE-07 M
INPUT EPF,/INCR, » 14,22
ROVRI
ERAVG
EPLT
AFIO
CMCD
HMD
weight
OUST LAYER
j(Part)
J
-------
DU8T WEIGHT n 1.175E+00 KG/SEC
length incr. oo.30500000 m
INPUT EFF./INCR. « 16.55
ROVRI
ERAVG
EPLT
AFID
CMCD
MMD
WEIGHT
DUST LAYER
J(PART )
J CI ON)
INCR.
1,6516
3.139E+05
1.8090E+05
7.7083E+1?
31.1
O.21E-05
o.i«oe-o3
1 .167E-01
1.26E-06
3,1OE-OU
t
l ,oi io
3.139E+05
1.7675E+05
9.0670E+1?
31.1
2.00E-05
6.952E-00
1 .959E-02
6.97E-07
3.11E-01
2
1,2916
3.139E+05
1 .7252E+05
9.9077E+12
31.1
1.10E-05
2.516E-00
7.O09E-O3
5. 09E«0 7
3,1 lE-Otl
3
1,2123
3.139E+05
1 .6966E+05
1.0556E+13
31.1
6.82E-06
1,a07E-00
O.077E-0S
0.69E«0 7
3.1 1E-0U
ti
1,1561
3.13OE+05
1.6761E+05
1 .1066E+13
31.1
O.58E-06
9.720E-05
2.738E-0J
«. 12E-07
3.11E-0O
5
1,1160
3.139E+05
1.6612E*05
1.1067E +13
31.1
3.51E"06
T.073E-05
1.993E-03
3.67E-07
3.iie-ou
6
1,086"
3.139E+05
t.6500E+05
1,1779E+13
31 .1
3.1tE-06
5.O32E-05
1 .530E-03
3.30E-07
3.1 1E-0O
7
1,0615
3.139E+05
1.6019E+05
I.2021E+13
31.1
2.83E-06
0.328E-05
1.219E-03
2.98E-07
3.1 IE-01
8
1,0483
3.139E+05
1.635TE+05
1.2207E+13
31.1
2.61E»06
3.532E-05
9.952E-00
2.70E-07
3.11E-0O
9
CALCULATION IS IN SECTION NO. b 2 AND THE SECTION LENGTH IS a 2.7O50 H
COLLECTION AREA a 3.917E+03 M?
WIRE TO PLATE n 1.J03E-01 M
CURRENT/M d 9.761E-05 AMP/M
1/2 WIRE TO WIRE o 1.1O3E«01 M
TEMPERATURE a 601.667 K
ION MOBILITY a O.8O6E-0O M2/V0LT-SEC
DUST WEIGHT d J.175E+00 KG/SEC
APPLIED VOLTAGE = J.395E+0O VOLTS
CORONA WIRE RADIUS a 1.38OE-03 M
CURRENT DENSITY a a,268E-00 AMP/N2
GAS FLOW RATE e 2.000E+02 M3/SEC
PRE8SURE o 1.000 ATM
HEan THERMAL SPEED b 6.311E+02 M/SEC
LENGTH INCR. bo.30500000 M
TOTAL CURRENT ¦ 1.672E*00 AMPS
CORONA WIRE LENGTH » 1 . 7 1 3E + 0O M
DEPOSIT E FIELD b 8.110E»0o VOLT/m
GAS VFLOCITY s 1.158E+-00 M/SfC
VISCOSITY ¦ 2.800E-05 KG/M.SEC
PART, PATH PARAM, s 1.150E-07 M
INPUT EFF,/INCR , » 16,55
ROVRI
ERAVG
EPLT
AFID
CMCD
HMD
WEIGHT
DUST LAYER
J(PART)
J CIOMi
INCR. NO
1,0250
2.970E+05
1.7233E+05
1.8062E+13
"2,7
2.06E-06
3.077E-05
8.670E-04
2.59E-07
O,27E«0o
10
1,0187
2.970E+05
1.72J3E+05
1.8195E+13
02.7
2.38E-06
2.561E-05
7.210E-00
2.3OE-07
0.27E-00
11
1,0100
2.970E+05
1.7233E+05
1.8279Efl3
02.7
2.31E-06
2.108F"05
6.0S2E-0O
2.13E-07
0.27E-00
12
1,0105
2.970E+05
1.723JE»05
1.B30JE+13
02.7
2,20E-06
1.B15E-05
5.110E-00
1.93E-07
O.27E-0O
13
1,0078
2.97oE»05
1 ,7233E*05
1,83'lE+l3
02.7
2.19E-06
1.502E-05
0.3O6E-0O
1,75e-07
O.27E-0U
10
1,005'
2.O70E+05
1 ,7233Et05
1.8026E+13
02.7
2.10E-06
1.315E-05
3.700E-0O
1.59E-07
0.27E-0U
15
1,0000
2.970E+05
1.725JE+05
1.8053E*13
"2.7
2.09E-06
1.125E-05
J,171E-0«
1.OOE-07
0.27E-00
16
1,0033
2.970Et05
1 .7233E + 05
1,800
18
CALCULATION 18 IN SECTION NO. e 3 AND THE SECTION LENGTH IS a 2.7050 M
COLLECTION AREA b 3.917E+03 «2
WIRE TO PLATE b 1.H5E-01 M
CURRENT/m c 8.290E-05 AmP/m
1/2 WIRE TO WIRE n 1.10SE-01 M
TEMPERATURE a 601.667 K
ION MOBILITY e O.8U6E-00 M2/VOLT-8EC
DUST WEIGHT ¦ 1,175E+00 KG/SEC
APPLIED VOLTAGE a 2.9l3E*0« VOLTS
CORONA WIRE RADIUS b l,38oe>03 M
CURRENT DENSITY a 3.625E-00 AMP/M2
GAS FLOW RATE o 2.000E+02 M3/SEC
PRESSURE » 1,000 ATM
MEAN THERMAL SPEED o 6.31IE+02 M/SEC
LENGTH INCR, 80.30500000 M
TOTAL CURRENT a 1.O20E+00 amps
CORONA WIRE LENGTH a l,7l3E»0O M
DEPOSIT E FIELD e 6.888E»0o VOLT/M
GAS VELOCITY b 1,158E*00 M/SEC
VISCOSITY a 2.800E-05 KG/M.SEC
PART, PATH PARAM, e 1.150E-07 M
INPUT EFF./INCR, ¦ 16,55
ROVRI
ERAVG
EPLT
AFID
CMCD
MMO
WEIGHT
DUST LAYER
JfPART)
J(ION)
INCR, NO
1,0019
2.5O9E+05
1 ,S3l1E*05
1.8311E*13
36.3
1 .96E-06
6.O35E-06
1.813E-0O
9.60E-08
3.62E»0u
19
1,0010
2,509E»05
1,5311E+05
1 .8320EH3
36.3
1.93E-06
5.653E-06
1.593E-00
8.80E-08
3.62E-0O
20
1,0011
2.509E+05
1.5311E + 05
1.8326E*13
36.3
1.89E-06
0.977F-06
1 .002E-00
8.05E-08
3.62E-0U
21
1,0006
2.509E+05
1.5311E+05
1.BJ51E+1S
36.3
1,86E"06
0.389E-06
1.236E-00
7.36E-08
3.62E-0O
22
1,0006
2.509E+05
1.5311E+05
1.8330E+13
36.3
1 .82E-06
3.877E-06
1 ,092E-P«
b, 7UE-08
3.62F-00
23
1,0005
2.5«9E*05
1.5311E + 05
1 ,8337E113
36.3
1.78E-06
3.031E"06
9.665E-05
6. 18E-08
3.62E>0u
20
1,0000
2.509E+05
1.5311E+05
1.B339E+13
36,3
1.75E-06
3.000E-06
8.565E-05
5.66E«08
3.62E-00
25
1,0003
2.509E+05
1.531 IE *05
1.8301E+13
36,3
1 .69E-06
2.698E-06
7.600E-05
5.18E-08
3,h2E-0«
26
1.0002
2.509F *05
1.5311E+05
1,8302E»13
36,3
1 .60E-06
2.397F-06
6.750E-05
O.7OE-08
3.62E-00
27

-------
CALCULATION IS IN SECTION NO. a fl AND THE 8ECTION LENGTH IS a ?,7O50 M
COLLECTION AREA ¦ J.917E+03 hj
wjre to plate b i.ia3E-oi m
CURRENT/M D 8.52UE-05 AMP/M
1/2 WIRE TO "IRE a 1,1«3E-01 h
TEMPERATURE a 601.667 K
ION MOBILITY a a,8fl6F»0U M2/V0LT-SEC
OUST WEIGHT e 1.175E+00 KG/SEC
APPLIED VOLTAGE a 2.750E+0U VOLTS
CORONA WIRE RADIUS a l,3ft«E»03 M
CURRENT DENSITY a 3.727E-0U AMP/M2
GAS FLOW RATE s 2,0fl«E+02 M3/SEC
PRESSURE e 1,000 ATM
MEAN THERMAL SPEED ¦ 6.311E+02 M/SEC
LENGTH INCR, 80,30500000 M
TOTAL CURRENT a l,U60E+00 AMPS
CORONA MIRE LENGTH a 1,713E*04 M
DEPOSIT E FIELD ¦ 7.082E+0U VOLT/M
GAS VELOCITY a l,158E*00 M/SEC
VISCOSITY a 2.SOOE-OS KG/M-8EC
PART, PATH PARAM, ¦ 1.15AE-07 M
INPUT EFF./INCR, a 16,55
ROVRI
ERAVG
EPLT
AFIO
CMCO
HMD
WEIGHT
DUST LAYER
J(PART)
JCION)
INCR, NO
1,0002
2.U06E+05
1.5093E+05
1,9978E+13
37,3
1.59E-06
2.105E-06
5.929E-05

-------
CHARGING paTES
FOB PARTICLE
SIZES FROM
SUBROUTINE CHARGN OR CHGSUM



SRI
THFORY used
FOB PARTICLE
CHARGING





INCREMENT no.
Q/USATF FOR
INDICATED
PAPTICLE SIZES




0
.3000E-O6
0.550OE-06
0.6500E-06
0,1250E-05
0.1750E-05
0.2500E-05
0.3500E-05
0,a500E-05
1
1,3047
1,3047
1,2956
1,2285
1,1782
1,1379
1.1118
1,0989
2
1.6730
1.6608
1,5842
1.4830
1.3982
1,3168
1.2618
1.2362
3
1.8818
I.8410
1,7255
1.6001
1,1987
1,1065
1.3373
1 ,3014
a
2.0276
1.9616
1,8190
1,6752
1,5609
1,4579
1.3799
1,3362
5
2.1393
2.051'
1,8886
1,7302
1,6057
1,4901
1.1094
1,3602
6
2,2295
2.1239
1.9038
1,7735
1,6406
1,5219
1.4318
1,3785
7
2,3050
2.1835
1.9694
1,6091
1,6690
1.5445
1.1197
1,3933
B
2.3696
2,2341
2.0261
1,6391
1.6930
1.5633
1 .4647
1,4056
9
2,1259
2.2780
2.0616
1,8650
1.7136
1.5794
1,4775
1,4161
10
2.1893
2.3240
2,0910
1,8879
1.7300
1.5906
1 ,4849
1,4213
11
2.5441
2,3639
2.1225
1.9062
1,7446
1,6007
1.4918
1,4213
12
2.5924
2.3991
2.1477
1,9263
1.7578
1,6099
1,4918
1,4213
13
2.6353
2.4306
2.1704
1,9426
1.7698
1,6163
1,4918
1,4213
10
2.67U1
2.4590
2.1910
1,9575
1.7808
1.6260
1 ,4918
1,4213
15
2.7094
2,4649
2.2098
1,9712
1.7909
1,6260
1,4918
1,4213
16
2,7417
2,5087
2.2271
1,9836
1.6003
1,6260
1,4918
1,4213
17
2,7715
2.5307
2.2431
1.9955
1.6090
1,6260
1,4918
1,4213
ie
2.7992
2,5512
2.25B1
2,0065
1,6090
1,6260
1 ,4918
1,4213
19
2,0174
2,5621
2.2645
2,0101
1.6090
1,6260
1,4918
1,4213
20
2.8348
2,5621
2.2645
2,0101
1.8090
1,6260
1.4918
1,4213
21
2.8514
2.5621
2.2645
2,0101
1.8090
1,6260
1,4918
1,4213
22
2,6673
2,5621
2.2645
2.0101
1.8090
1,6260
1.4918
1,4213
23
2.8025
2,5621
2.2645
2.0101
1,8090
1.6260
1.4918
1,4213
24
2.8971
2.5621
2,2645
2.0101
1.8090
1,6260
1.4918
1,4213
25
2.9112
2.5621
2,2645
2.0101
1.8090
1,6260
1.4916
1.4213
26
2.9112
2.5621
2.2645
2.0101
1,8090
1,6260
1.4918
1.4213
27
2.9] 12
2.5621
2,2645
2.0101
1.8090
1,6260
1.4918
1,4213
26
2.9112
2,5621
2,2645
2.0101
1 .6090
1,6260
1.4916
1,4213
29
2.9U2
2,5621
2.2645
2.0101
1,8090
1,6260
1,4916
1,4213
30
2.9112
2.5621
2,2645
2,0101
1.8090
1,6260
1.4918
1.4213
31
2.9112
2.5621
2,2645
2.0101
1.6090
1,6260
1,4918
1.4213
32
2.9112
2.5621
2,2605
2.0101
I,8090
1,6260
1.4918
1.4213
33
2.9it2
2,5621
2,2645
2.0101
1,8090
1,6260
1,4918
1.4213
3a
2.9112
2,5621
2,2645
2.0101
1,8090
1,6260
1,4918
1.4213
35
2.9112
2,5621
2.2645
2.0101
1,8090
1,6260
1,4918
1.4213
36
2.9112
2.5621
2.2615
2.0101
1,8090
1.6260
1,4918
1.4213
0
,6000E»05
0.8500E-05
0.1250E-04
0,2000E"01
0.2750E-04
0.6500E-04


1
1 ,0696
1.0640
1.0816
1 .0813
1 .0613
1.0812


a
1 ,2195
1.2105
1.2076
1.2071
1.2070
1,2070


3
1,2757
1,2625
1.2585
1.2579
1.2578
1.2578


u
1,3067
1,2914
1.2864
1.2856
1.2656
1.2656


5
1,3222
1,305«
1 .3017
1.3010
1,3010
I.3010


6
1,3347
1,3101
1,3053
1.3018
1,3018
1.3040


7
1,3451
1.3101
1,3053
1.3008
1,3046
1.3048


8
1.3540
1,3101
1,3053
1,3048
1.3048
1.3048


9
1,3617
1,3101
1,3053
1,3016
1,3018
1.3048



-------
10
1.3648
1.311*1
1.3053
1.30U8
1.3008
1.3046
11
1 ,3608
1.3101
1.3053
1,3008
1.3008
1.3008
12
1.3608
1.3101
1.3053
1.3008
I,3008
1.3008
IS
1.3608
1.3101
1.3053
1 .3008
1,3008
1 .3048
1«
1.3608
1.3101
1,3053
1.3008
1,3006
1,3008
1?
1.3608
1.3101
1.3053
1.3006
1,3008
1.3048
16
1.3608
1.3101
1,3053
1,3008
1,3008
1.3048
17
1.3608
1.3101
1.3053
1.3008
1,3008
1 .3048
ie
1.3606
1.3101
1.3053
1.3006
1,3006
1 .3046
19
1.3608
1.3101
1.3053
1.3008
1,3008
1.3006
20
1.3608
1.3101
1,3053
1.3006
1,3008
1.3048
21
1.360ft
1.3101
1,3053
1.3008
1,3008
1.3048
22
1.3608
1.3101
1,3053
1.3008
1,3008
1.3046
23
1.3608
1.3101
1,3053
1.3008
1,3048
1,3046
24
1.3608
1.3101
1.3053
1.3008
1,3008
1.3046
25
1.3608
1,3101
1.J033
1.3008
1,3008
1,3046
26
1.3608
1.3101
1.3053
1.3006
1,3008
1.3046
27
1.3608
1.3101
1.3053
1,3008
1.3008
1,3006
28
1.3608
1,3101
1.3053
1.3008
1.3008
1.3046
29
1,3608
1.3101
1.3053
1.3008
1,3008
1.3046
10
1,3606
1.3101
1.3053
1.3008
1.3048
1.3046
SI
1,3608
1.3101
1.3053
1,3008
1.30O8
1.3046
>2
1.3608
1.3101
1.3053
1.3008
1,3008
1,3008
S3
1,3606
1.3101
1.3053
1.3006
1.3046
1.3006
34
1,3608
1,3101
1.3051
1.3008
1,3048
1.3046
is
1,1608
1.1101
1.3053
1.3006
1,3048
1.3046
36
1,1608
1.3101
1.3053
1.3008
1.1048
1,3046

-------
CHARGE ACCitMiiLAiro ON PARTICLE SIZES IN EACH INCREMENT
INCREMENT
CHARGE FOR INDICATED PARTI

0.3000E-06

D.5500E-OJ,
0.8500E-06
0
.1250E-05
1
o.398u5E-i7
0
10717E-16
0.23619E.18
0
4t>B7IE-l6
2
0.51093E-17
0
136U2E-16
0.28880E-16
0
56581E-16
3
0,57fl6'E»l7
0
15121E-16
0.31457E-U
0
61049E-16
a
0.61921E-17
0
lbl12E-16
0.33161E-16
0
6391UE-16
5
0.65333E-17
0
16B5UE» 16
0.34430E-16
0
66015E-16
6
0.6B0B8E-17
0
17445E-16
0.35436E-16
0
67667E-16
7
0.70392E-17
0
17934E-16
0,36267E»16
0
69022E-16
8
0.72J6UE-17
0
I 8J50E»lf>
0.36972E-16
0
70167E-16
9
0.740B4E-1?
0
18711E-16
0.375B3E-16
0
71155E-16
10
0.76022E-17
0
19088E-16
0.38175E-16
0
72030E-16
11
0,77696E-17
0
19U16E-16
0.38693E-16
0
72B03E-16
12
0.79168E-17
0
19705E-16
0.39153E-16
0
73494E-16
15
0.80UB1E-17
0
1996«E-16
0.39567E-16
0
74J18E-16
10
0.81665E-17
0
20197E-16
0.399a2E-ife
0
74686E-16
15
0.82741E-17
0
20M0E-16
0.40285E-16
0
7520BE-16
16
0.83729E-17
0
20606E-16
0,40600E-16
0
75689E-16
17
0.84640E-17
0
20786E-16
0.40893E-16
0
76136E-16
18
0.854B6E-I7
0
20954E-16
0.41163E-16
0
76553E-16
19
0.86042E-17
0
21044E-16
0.412B2E-16
0
76690E-16
20
0.86572E-17
0
21044E-16
0.41282E-16
0
76690E-16
21
0.87079E-17
0
21 OKIE' 16
0.412B2E-16
0
76690E>16
22
0,8756«E-17
0
21044E-16
0.412B2E-16
0
76690E-16
23
0.88029E-17
0
21044E-16
0.412B2E-16
0
76690E-16
24
0.BB475E-17
0
210UUE-16
0.412B2E-16
0
76690E-16
25
0.88905E-17
0
21044E-16
0.412B2E-16
0
76690E-16
26
0,BB9oSE-l7
0
21044E-16
0.412B2E-16
0
76690E-16
27
0.88905E-17
0
21044E-16
0,412B2E-16
0
76690E-16
2A
0,BB9o5F»l7
0
21044E-16
0.412B2E-16
0
76690E-16
20
0.88905E-17
0
21044E-16
0.412B2E-16
0
76690E-16
30
0.88905E-17
0
21044E-16
0,412B2E-16
0
76690E-16
31
0,B8905E»17
0
21044E-16
0,ai282E-16
0
76690E-16
32
0,889o5E»17
0
2104UE-16
0.412B2E-16
0
76690E-16
33
0.B8905E-17
0
21044E-16
0.412B2E-16
0
76690E"16
3d
0.8B905E-17
0
21044E-16
0,412B2E"16
0
76690E-16
35
0,889n5E-l7
0
21044E"16
0.41262E-16
0
76690E-16
36
0.88905E-17
0
21044E-16
0,412B2E»16
0
76690E-16
LE SIZES

0.6000E-05
0.8500E-05
0,1250E-04
0,2000E"04
t
0.92817E-15
0.18514E-14
0.39936E-14
0.10215E-1
2
0,10388E-1«
0.20674E-14
0,4«577E"14
0,11U03E-1
3
0.10867E-14
(1.21562E-14
0.4M57E-14
0.11883E-1
4
0.1U30E-14
0.22056E-14
0.474B7E-14
0.12146E-1
5
0,11263E-14
0.22296E-14
0.48053E-14
0,12291E»1
6
0.11369E-14
0.22375E-14
0.48184E-1a
0.12327E-1
7
0.11458E-14
0.22J75E-14
0.481B4E-14
0,12327E-1
8
0,11534E-14
0.22375E-14
0.UR16UE-1U
0.12327E-1
9
0.11509E-1«
o, 22375E-1 a
0.4B184E-1U
0.12327E-1
10
0.11625E-14
0.22375E-14
0,481B4E»14
0.12327E.1
11
0.11625E-14
0.22375E-14
0.4B1R4E-14
0,12327E-1
12
0,11625E-1U
0.22375E-14
0.481B4E-14
0.12327E-1
13
0.11625F.14
0.22375E-14
0,48184E»10
0.12327E-1

0.1750E-
05
0.2S00E
05
0.3500E
05
o.usnOE
0
86782E-
6
0,16956F
15
0.32332E
15
0
52726E
0
10298E-
5
0,19652E
15
0.3669UE
15
0
59314E
0
I1039E*
5
0.20959E
15
0.3BB89E
15
0
624J9E
0
11497E-
5
0.21725E
15
0.40128E
15
0
6410 BE
0
11827E-
5
0.22265E
15
0.40985E
15
0
65260E
0
12084E-
5
0.22680E
15
0.41636E
15
0
66139E
0
12293E-
5
0.23015E
15
0.42159E
15
0
66847F
0
12469E-
5
0.23296E
15
0.4259UF
15
0
6743«E
0
12621E*
5
0.23S36E
15
0.42965E
15
0
679UIE
0
12742E-
5
0.23703E
15
0.43182E
15
0
6B194E
0
12850E-
5
0.23853E
15
0.43380E
15
0
68194E
0
12947E-
5
0.23990E
15
0.433B0E
15
0
68194E
0
13035F-
5
0,24115E
15
0.433B0E
15
0
6819UE
0
13116E-
5
0.24230E
15
0.43380E
15
0
6819UE
0
1 3191E ••
5
0.24230E
15
0.43380E
15
0
68194C
0
13260E-
5
0.24230E
15
0,43380E
15
0
68194E
0
13324E-
5
0.24230E
15
0.43380E
15
0
681 94E
0
13324E-
5
0.24230E
15
0.43380E
15
0
68194E
0
13324E-
5
0.24230E
15
0.43380E
IS
0
68194E
0
13324E-
5
0.24230E
15
0.43380E
15
0
68194E
0
13324E-
5
0.24230E
15
0.43380E
15
0
68194E
0
13324E-
5
0.24230E
15
0.43380E
15
0
68194E
0
13324E-
5
0,24230E
15
0.433B0E
15
0
6819SE
0
13324E-
5
0.24230E
15
0.433B0E
15
0
68194E
0
13324E-
5
0.24230E
15
0,43380E
15
0
68194E
0
13324E-
5
0.24230E
15
0.433B0E
15
0
68194E
0
13324E-
5
0.24230E
15
0.433B0E
15
0
6B194E
0
13324E-
5
0.24230E
15
0,433S0E
15
0
68194E
0
13324E-
5
0.24230E
15
0.43380E
15
0
6819UE
0
13324E-
5
0.24230E
15
0.43380E
15
0
68194E
0
13324E-
5
0.24230E
15
0.43380E
15
0
6B194E
0
13324E-
5
0.24230E
15
0.433B0E
15
0
68194E
0
13324E-
5
0,24230E
15
0.43380E
15
0
68194E
0
13324E-
5
0.24230E
15
0.43380E
15
0
68194E
0
13324E-
5
0.24230E
15
0.43380E
15
0
68194E
0
13324E-
5
0.24230E
15
0.43380E
15
0
68194E

0.2750E-
04
0.650AE
• 04




0
,1931OE"
13
0,10786E
•12




0
.21556E-
13
0,12041E
-12




0
.2246JE-
13
0,1254BE
•12




0
.22960E-
13
0,12625E
-12




0
.23234E-
13
0,12978E
-12




0
.23303E-
13
0.13017E
•12




0
.23303E-
13
0,13017E
•12




0
.23303E-
13
0.13017E
• 12




0
. 23303E"
13
0.13017E
• 12




0
.23303E-
13
0.13017E
•12




0
, 23303F »
13
0.13017E
•12




0
.23303E-
13
0.13017E
•12




0
.23303F-
13
0.13017F
•12




05
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

-------
O.J
625E«
a
0.1
625E*
a
0.1
625E-
a
0.1
625E-
0
0.1
625E-
a
0.1
62SE-
a
0.1
625E-
4
0.1
625E-
a
0.1
625E-
a
0.1
625E-
a
0.1
625E-
a
0.1
625E-
a
0.1
625E-
a
0.1
625E-
a
0.1
625E-
a
0.1
625E-
a
0.1
625E-
a
0.1
625E-
a
0.1
625E-
a
0.1
625E-
a
o.l
625E-
a
0.1
62SE-
a
0.1
62SE-
a
0.22375E-M
0.22375E-14
0.22375E«ia
0.22375E-ia
0.22375E-ia
0.22375E-1U
0.22375E-1U
0.22375E-la
0.22375E-ia
0.22375E-10
0.22375E-10
0.22375E-10
0.223T5E-1A
0.22375E-14
0.22375E-IU
0.22375E-1«
0.22375E-H
0.22375E-ia
0.22375E-HI
0.223TSE-1U
0,22375E-1«
0.223T5E-HI
0.2237SE-14
o.aeiflUE»i a
o,48ie«E-ia
o.aeieflE-ii
o.aeieaf-ia
O.aBlflae-ia
O.aSieaE-ia
0.aB18aE-ia
o.aeieae.ia
o,«BieaE-ia
o.aeieaE-iu
o.aeteuE-iu
o.ueieoE-iu
o,uflie«E»ia
o.aeieue-iu
0.U818UE-1U
0.«818UE»1«
o.ueisaF-ia
o.eeisaf-ia
o.aeieoE-ia
o.asiaae-ia
o.asieae-ia
o,aeieaE-i«
o.aaisaE-ja
0.12327E-1
0.12327E-1
0.12327E-1
0.12327E-1
0,12327E"1
0.12327E-1
0.12327E-1
6.12327E-1
0i1Z327E"1
0.12327E-1
0.12327E-1
011 2327E"1
0.12327E-1
0.12327E-1
0.12327E-1
0.12327E-1
0.12327E-1
0.1232TE-1
0.12327E-1
0.12327E-1
0.12327E-1
0.12327E-1
0.12327E-1
0.23303E-1
0.23303E-1
0.23303E-1
0.233O3E-1
0.23303E-1
0.23303E-1
0.23303E-1
0.23303E-1
0.23303E-1
0.23303E-1
0.23303E-1
0.23303E-1
0.2S303E-1
0.23303E-1
0.23303E-1
0.23303E-1
0.23303E-1
0.233036.1
0.23303E-!
0.23303E-1
0.23303E-1
0.23303E-1
0.2330JE-1
0.1S017E-12
0.13017E-12
0.13017E-12
0.13017E-12
0.130J 7E»12
0.13017E-12
0.13017E-12
0.13017E-12
0.13017E-12
0.13017E-12
0.13017E-12
0.13017E-12
0,13017E»12
0.13017E-12
0.13017E-12
0.13017E-12
0.13017E-12
0.13017E-12
0.13017E-12
0.13017C-12
0.1S01TE-12
0.13017E-12
0.13017E-12

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONJ r>EALITIES USING SET no. 1 OF CORRECTION PARAMETERS
SIZE
CCF
INLET X
OUTLET t
COR. OUTLET
* NO-RAP EFF
. NO-RAP W
no-rap p
COR, EFF.
COR, w
COR, P
3.000E-07
2.040
0.148
2.0502
0,6084
99.6613
7,419
0,3387
99,5861
7. 157
0,4139
5.500E-07
1.540
0.426
1 1.4186
3.3765
99.3455
6,559
0,6545
99,2031
6.303
0,7969
8.500E-07
1.343
0.435
11.3780
3.9566
99.3608
6,590
0,6392
99,0848
6,122
0,9152
1.250E-06
1 . 23?
0.713
13.8509
6.386ft
99.5256
6,979
0,4744
99,0992
6. 143
0,9008
1.750E-06
1.166
1.027
13.7531
7.1391
99.6726
7.463
0.3274
99,3003
6.472
0,6997
2.500E-06
1.116
3.776
29.8952
15,5536
99,8065
8,149
0,1935
99,5855
7.155
0,4145
3.500E-06
J .083
2.958
12.5926
10,9696
99,8960
8,958
0.1040
99,6269
7.292
0,3731
4.500E-06
1 .064
1.653
3.9978
7,9501
99.9409
9,696
0.0591
99,5161
6,953
0,4839
6.0 00E-06
1 .048
1.91«
0,6526
11,1989
99,9917
12,251
0,0063
99,4113
6,698
0,5887
8.500E-06
1,051
2.575
0.0687
10.9771
99.9993
15,571
0.0007
99,5711
7,111
0,4289
1.250E-05
1.023
4.559
0.0185
9.8091
99.9999
22,561
0.0001
99,7826
7,997
0,2174
2.000E-05
1.015
10.788
0,0438
7,5021
99,9999
35,767
0,0001
99,9300
9,476
0,0700
2.750E-05
1.011
«.52«
0.0184
1.5290
99.9999
48,981
0.0001
99,9660
10,417
0,0340
6.500E-05
1 .004
64.503
0.2618
3.003(1
99.9999
115,059
0.0001
99,9953
13,002
0,0047
EFFICIENCY -
STATED o
99.85
COMPUTED o
99,8518
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, ¦ 99.9756
HMO OF INLET 8I2E DISTRIBUTION a 5.172E+01
S1GMAP OF INLET SIZE DISTRIBUTION b 5.542E*00
LOG-NORMAL GOODNFSS OF FIT ¦ 0.992
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS a 1.533E+00
SIGHAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 1.05OE+OO
ui	LOG-NORMAL GOODNESS OF FIT n 0,985
^	PRECIPITATION Rate PARAMETER under NO-RAP CONDITIONS B 10,848
SIGMAGa 0.000 WITH 0,000 SNEAKAGE OVER a,000 STAGES
NTEHP o 2
RMMD ¦ 6,00
RSIGMA a 2.50
CORP. EFF. o 99,8994
CORRECTED HMO OP EFFLUENT ¦ 4.418E+00
CORRECTED 3IGMAP OF EFFLUENT s 2.756E+00
LOG-NORMAL GOODNESS OF FIT b 0.999
CORRECTED PRECIPITATION RATE PARAMETER s 9,00

-------
UNADJU8TED MIGRATION VELOCITIES AND
EFFICIENCIES, AND
DISCRETE OUTLET MASS
LOAOINGS


IDEAL UNADJUSTED
IDEAL UNADJUSTED
NO.RAP
rapping pupf
NO-RAP+RAP PUFF
RAPPING PUFF
PARTICLE
MIC, VEL.(CM/8EC)
EFFICIENCY(X)
DM/0|.nGD(MO/DSCM)
DM/DLOGD(MG/DSCM)
DM/DLOGDCmG/DSCM)
DISTRIBUTION^)
DIAM.fM)
J.312E+00
9.21IE+01
2.112E-01
U.689E-02
2,581E»01
1 ,«58E-0l
3.000E-07
3.338E+00
9.226E+01
1.457E+00
3.170E-01
1.770E+00
7.960E-01
5,500E»07
J,7fl5E+00
9,«31E*01
2.278E+00
9.638E-01
3,262Et00
1 .S7UE + 00
8.500E-07
a,38SE+00
9.653E+01
2,ua0Ef00
2,192E*00

-------
SUMMARY TABtE Of ESP OPERATING
PARAMETERS and performance
DATA SET number J
ESP PERFORMANCE! EFFICIENCY ¦ «»9,89P« * SCA » 7.66TE+01 M«*2/(M*#S/SEC)
ELECTRICAL CONDITIONS,	AVG. APPLIED VOLTAGE 3 J.161E+OU V
AVG, CURRENT DENSITY e 36,S
-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONJDEAIITIES USING SET NO. 2 OF CORRECTION PARAMETERS
SIZE
CCF
INLET X
outlet *
COR. OUTLET
X NO-RAP EFF
, NO-RAP W
NO-RAP p
COR, EFF,
COR, W
COR. P
3.000E-07
2,000
0.106
1,1301
0,5290
96,8310
5,603
1,1686
96,5939
5,562
1,0061
5.500E-07
1 .Sao
0.026
5,0898
2.6158
96,0375
5,127
1.9625
97,5676
0,856
2,0122
8.500E-07
1.303
0.035
5.7690
3.2010
97,9789
5.069
2,0211
97,1072
0,621
2,8928
l,250E-06
1.23?
0.713
6,1239
5.5927
98.2606
5.268
1,7350
96,9182
0,539
3,0816
1.750E-06
1.166
1.027
9.8018
6.8700
96.5009
5.517
1,0551
97,3691
0,705
2,6309
2.500E-06
1,116
3.776
26.9662
17.9322
96.8309
5.803
1,1691
98,1330
5,192
1,8670
3.500E-06
1.083
2.958
18,7758
13.6732
99.0327
6,050
0,9673
98,1828
5.228
1 ,8172
0.500E-06
1.060
1.653
9,5309
9,3370
99.1209
6.175
0,8791
97,7790
0,966
2,2206
6.000E-06
l.OOfl
1,910
5.5673
11.0619
99.5567
7.066
0,0033
97,7239
0,930
2,2761
8.500E-06
1.03O
2.575
5.0773
10.9623
99.6759
7,076
0,3201
98,3235
5,333
1,6765
1.250E-05
1 .023
0.559
1.2825
6.4576
99.9571
10.115
0,0029
99,2707
6,016
0,7293
2.000E-05
1.015
10.788
0.0320
6,0638
99.9995
35.767
0,0005
99,7790
7,976
0,2210
2.750E-05
1.011
0.52«
0.0029
1.2358
99.9999
08,981
0,0001
99,8926
8,917
0,1070
6.500E-05
1.000
60,503
0.0020
2.0266
99.9999
115,059
0,0001
99,9852
11,503
0,0106
EFFICIENCY - !
stated ¦
99.85
COMPUTED o
99,6518
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF. » 49.8076
HMD OF INLET SIZE DISTRIBUTION a 5,172E*0l
SIGHAP OF inlet SIZE DISTRIBUTION a 5.502E+00
LOG-NORMAL GOODNESS OF FIT » 0,992
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 2.333E+00
8IGHAP OF EFFLUENT UNDER NO-RAP CONDITIONS » 2.060E+00
£	LOG-NORMAL GOODNESS OF FIT • 0,993
o	PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS e 8,060
8IGHAG* 0,290 WITH 0,100 SNEAKAGE OVER <1.000 STAGES
NTEHP n 2
RMMD ¦ 6,00
RSIGHA ¦ 2,50
CORR, EFF, ¦ 99.6069
CORRECTED MMD OF EFFLUENT a 0.310E+00
CORRECTED SIGHAP OF EFFLUENT ¦ 2.590E+00
LOG-NORHAL GOODNESS OF FIT b 0,999
CORRECTED PRECIPITATION RATE PARAMETER o 7,22

-------
UNADJUSTED migration VELOCITIFS and EFFICIENCIES, and DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
IDEAL UNADJUSTED
no-rap
Rapping puff
NO«HAP*RAP PUFF
RAPPING PUFF
PARTICLE
MIG, VEL. (CM/SEC)
EFFICIENCY(X)
DM/DLPGD(MG/DSCM)
DM/DLOGD(MG/nSCH)
DM/DLOGD(«G/DSCM)
DISTRIBUTION^)
DIAM,(m)
3.312F+O0
Q.2t JE+nt
7.2B7E-01
J .UB1E-01
8.76AE-01
1 ,«5«E-0t
3.000E-07
3.338E+00
9.226E+01
U.3fc9E+00
1 .OOIE + Ofl
5.370E+0n
7.960F-01
5.500E-07
3.7U5E+00
9.n
9,815E + 01
1.517E+01
1.226E + 01
2.7UUE+01
5 ,0 1 2E + 0 0
1,7SOE»Ofe
6,«l7E+on
9.927E+01
3.182E+01
1.S99E+01
5,08 J E + 01
1.09UE + 01
2.500E-06
8,03«EfOO
9.979E*01
2.9P7E+01
2.55«E*01
5.U61E+01
l.OUUEtOl
3,50OE"06
9.696E+00
9.994E+01
1 ,903E*01
2,90«E+01
U.flOflE+ni
9,208E»00
U.500E-06
1.225E+01
9.999E+01
7.369E+00
3.0«7E+01
3.78UE+0J
1 ,«57E+01
6,00 0E»06
1,557EtO 1
1,OOOE+02
6.B39E+00
2.85UE+01
3,5JBE*01
1 .UOfeF + Ol
B.500E-06
2.256E+01
t.OOOE+02
1.U09E+00
2.256E+0J
2.397E+01
1 ,299E»01
1 .250E-05
3.577E+01
1.OOOE+02
2.825E-02
1,36«E*01
1.367E+01
9.898E+00
2,00 0E»05
1.89BE+01
1.OOOE+02
7.192E-03
7.788E+00
7.795E+00
2.017E+00
2.T50E-05
J.151E+02
1 ,000E+-02
1.SS3E-02
2.316E+00
2.JJ1E+00
3.961E+00
6.SOOE-OS

-------

SUMMARY table OF ESP OPERATING *
PARAMETERS AND PERFORMANCE *

DATA SET NUMBER 2 •
* ESP PERFORMANCE 1 EFF
ICIENCY » 99,6060 I SCA » 7.667E+01 M»*2/(M«»J/SEC) *
* ELECTRICAL CONDITIONSI
AVG. APPLIED VOLTAGE b I.161E+00 V *
AVG, CURRENT DENSITY a 36,84 NA/CM**2 •
RESISTIVITY a 1.900e*10 OHM.CM *
* SIZE DISTRIBUTIONS!
INLET MMD b 5.172E + 01 UM INLET SIGMAP b 5.5
-------
APPENDIX E
OUTPUT DATA FROM EXAMPLE 5
163

-------
E.P.A, E8P MODEL
I,E,R,L.»R.T,P, AND SO.R'.J,
REVISION I.JAN. 1, 1978
PRINTOUT OF INPUT OATA FOR DATA SET NUMBER 1
DATA ON CARD NUMBER 1
NENDPT a 1U NDATa b 1
DATA ON CARD NUMBER 2
LAB E8P| SCAb125FT2/i000ACFM|J»2UUa/PT2|MMDo2UM|SICMAP«2.5
DATA ON CARD NUMBER 3
NEST ¦ 1 NOI8T b 2 NVI ¦ t NX a 10 NY n 10 NITER ¦ S NCALC a 0 NRAPD a ] NEFF ¦ 1 NTEMP a 1 NONID a 1
DATA ON CARO NUMBER a
NN a 10 NUMINC > 20
DATA ON CARD NUMBER 5
DL b 0.01500 GRN/ACF PL ¦ 10,0000 FT ETAO a 99,00000 X DD ¦ 100,00 KG/M**3 CPS a S.100E+00
VRAT 10 a 1 ,0300 US ¦ 0,000165 M««2/V-SEC FPATH a 1,0000 EBD a 1500000. V/H RHOCCS a l,00E»09 OHN-C*
DATA ON card NUMBER 6
A8NUCKC 1) s 0,00 AZIGCV( 1) b 0,00 AZNUMS( 1) a U.O
DATA ON CARD NUMBER T
ENDPT( 1) B O.lOO UM ENDPTf 2) s 0.300 UM ENDPT( 3) e 0,500 UM ENDPT( «) a O.TOO UM ENDPT( 5) « 0,900 UM

-------
ENDPT ( b) a 1,100 UM ENDPT ( 7) s 2,000 IIM ENDPTf B) s 5.100 UM ENOPT ( 9) = 6,900 LJH ENDPT (10) a
9,300 UM
DATA ON CARD NUMRFR 8
ENOPT f11J n 10,900 UM ENDPTC12) a 19,100 UM ENDPTC13) s 30.900 UM ENDPT(l
-------
ACS( 3) ¦ «.6«75E-02 IN
BS( 3) b 5.0000E+00 IN NWSf 3) a j.OOOOF+OI
DATA ON CARD NUMBER 16
SV9( 3) o 2.5000E*00 IN VG8( 3) b 2.0000E+02 FT**3/MIN VGA8S( 3) a 3.2000E+00 FT/SEC TEMPSC 3)
P8( 3) » I,0000E+00 ATM VtS3( 3) a 1.8000E-0S KG/M.SEC LINCSC 3) a 8.3333E-01 FT
7,6800E*01

-------
INCREMENTAL ANALYSIS OF PRECIPITATOR PERFORMANCE
LAB ESPl SCA=125FT2/1000ACFM,Ja2UUA/FT?|MMDo2UMfSIGMAP32.5
CALCULATION IS IN SECTION NO. c 1 AND THE SFCTION LENGTH IS s
COLLECTION aPEA e 5.B12E-01 M?
WJRE TO PLATE = 1.270E-01 M
CURRENT/M o 7.B69E-05 AMP/m
1/2 WIRE TO WIRE B 6.350E-02 m
TEMPERATURF c 297,667 K
ION MOBILITY b 1.798E-0U M2/VOLT-SEC
OUST WEIGHT o 5.250E-06 KG/SEC
0,7625 M
APPLIED VOLTAGE « «,600E+OU VOLTS
CORONA MIRE RADIUS s 1 , 1 <91 E-0J M
CURRENT DENSITY s 2.581F-0U AKP/M2
GAS FLOW RATE 3 9.060E-02 M3/SEC
PRESSURE » 1,000 ATM
MEAN THERMAL SPEED s U.OJ9E+02 M/SEC
LENGTH INCR. eO.25016565 M
TOTAL CURRENT b 1.500E-00 AMPS
CORONA -J I RE LENGTH s 1.906E+00 M
DEPOSIT E FIELD o 2,581E»03 VOLT/m
GAS VELOCITY e 9.760E-01 M/SEC
VISCOSITY a 1.800E-05 kg/m.SEC
PART, PATH PARAM, s 5.70BE-OB m
INPUT EFF./INCR, » 31,87
ROVRI
EPA VG
EPLT
AFID
CMCD
HMD
WEIGHT
DUST LAYER J(PART)
J(ION) INCR, NO,
vl
2, a E-05 AmP/M
1/2 WIRE TO wjRE = 6.350E-02 M
TEMPERATURE b 297,667 K
ION MOBILITY b 1.79BE-0U M2/VOLT»8FC
DUST WEIGHT a 3.250E-06 KG/SEC
1.900E-00
1 .7B9E-0U
1,3O3E-0a
5.53E-07
8,fl9E"07
8.13E-07
2.58E-0U
2.57E-00
2.57E-0U
APPLIED VOLTAGE o <|,580E + 0« VOLTS
CORONA WIRE RADIUS B 1.191E-03 M
CURRENT DENSITY b 2.581E-01 AMP/M2
GAS FLOW RATE = 9.160E-02 M3/SEC
PRE83URE b 1,000 ATM
MEAN THERMAL SPEED b 
-------
1.01 OS 3.496F+05 2.65U5E + 05 2.5297E+13 25.8 1.14E-06 8,a«0E»07
1,0087 3.496E+05 2.6545E+05 2.5«J8E*13 25.8 1.07E-06 7.023F-07
1,0053 3.U96E+05 2.65U5E+05 2.5524E+13 25.8 9.99E-07 5.875E-07
2.U72E-05 3.86E-07 2.58E-0U	10
2.057E-05 J,U9E»07 2.58E-0U	jj
1.721E-05 3.15E-07 2.5BE-04	12
EST, EFFICIENCY ¦ 99.00 UNCORRECTED COMPUTED EFFICIENCY a 89.86
INCREMENTAL ANALYSIS of precipitator PERFORMANCE
LAB ESPl SCA»l25FT2/1000ACFMrJo2UUA/FT2|MMDoZUM|3IGMAP«2.5
CALCULATION IS IN SECTION NO. s 1 AND THE SECTION LENGTH 18 ~ 0.7625 M
COLLECTION AREA b 5.812E-01 M2
WIRE TO PLATE 8 1.270E-01 M
CURRENT/M 9 7.869E-05 AMP/M
1/2 HIRE TO WIRE ¦ 6.3S0E-02 M
TEMPERATURE ¦ 297.667 K
ION MOBILITY ¦ 1.798E-04 M2/VOLT-8EC
DUST WEIGHT ¦ 3.250E-06 KG/SEC
APPLIED VOLTAGE a 4.600E+0O VOLTS
CORONA HIRE RADIUS b 1.J91E-03 M
CURRENT OENSITr ¦ 2.S81E-04 AMP/M2
GAS FLOW RATE a 9.460E-02 H3/8EC
PRESSURE a 1.000 ATM
MEAN THERMAL 8PEED ¦ 4.U39E+02 M/SEC
LENGTH INCR, bO.23416565 M
TOTAL CURRENT b 1.500E-00 AMPS
CORONA WIRE LENGTH b l,906E*00 M
DEPOSIT E FIELD ¦ 2.581E+03 VOLT/M
GAS VELOCITY ¦ 9.760E-01 H/8EC
VISC08ITY ¦ 1.800E-05 KG/M.8EC
PART, PATH PARAM, ¦ 5.708E-08 «
INPUT EPF,/INCR, b 17,37
ROVRI
EPAVG
EPLT
afio
CMCD
HMD
WEIGHT
DUST LAYER JtPART)
JCION) INCR, NO,
a\
CD
1,7873
1,5788
1,4173
3.622E+05
3.622Et05
3.622E*03
3.0854E+05
2.9909E+05
2.9147E+05
1.3857E+13
1.5686E+13
1,74746+13
25,8
25.8
25.8
2.74E-06
1.97E-06
1.76E"06
7.22AE-06
5.907E-06
4.310E-06
CALCULATION IS IN SECTION NO. b 2 AND THE SECTION LENGTH 18 b 0.7625 M
2,1 16E"04
1.730E-04
1.263E-04
6.30E-07
8.57E-07
8.16E-07
l,57E«04
2.57E-04
2.57E-04
COLLECTION AREA b 5.812E-01 *2
WIRE TO PLATE b 1.270E-01 M
CURRENT/M a 7.869E-05 AMP/M
1/2 WIRE TO WIRE b 6.350E-02 M
TEMPERATURE « 297.667 K
ION MOBILITY ¦ 1.798E-04 M2/V0LT-8EC
OUST WEIGHT a 3.250E-06 KG/SEC
APPLIED VOLTAGE a 4,580Et04 VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY o 2.581E-04 AMP/M2
GAS FLOW RATE a 9.460E-02 M3/SEC
PRESSURE b 1,000 ATM
mean THERMAL SPEED a 4.439E*02 M/SEC
LENGTH INCR, =0.25016565 M
TOTAL CURRENT a l.SOOE-04 AMPS
CORONA HIRE LENGTH a |,906E+00 M
DEPOSIT E PIELD ¦ 2.561E*03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SEC
VISCOSITY ¦ 1.800E-05 KG/M.8EC
PART, PATH PARAH. a 5.708E-08 M
INPUT EPF./INCR, a 17,37
ROVRI
ERAVG
EPLT
AFIO
CMCD
MMD
WEIGHT
DU8T LAYER J(PART)
J(ION) INCR, NO,
1,1000
1,8174
1,1579
3.606E+05
3.606E+05
3.606E+05
2.8452E+05
2,8105Et05
2.7846E»03
1.9iSat* 13
2.0433E+13
2.1482E+13
25.8
25,8
25.8
1 .62E"06
1.51E-06
1.42E-06
3.215E-06
2.480E-06
1.948E-06
9.417E-05
7.264E-05
5.708E-05
7.40E-07
6.69E-07
6.02E-07
2.57E-04
2.S7E-04
2.57E-04
CALCULATION IS IN SECTION NO. > 3 AND THE SECTION LENGTH IS a 1.5250 M
COLLECTION AREA a 1.162E+00 H?
WIRE TO PLATE a 1.270E-01 M
CURRENT/M a 7.869E-05 AMP/m
1/2 WIRE TO wire s 6.350E-02 M
TEMPERATURE a 297.667 K
ION MOBILITY B 1.798E-04 M2/VOLT-SEC
DUST WEIGHT a J.2S0E-06 KG/SEC
APPLIED VOLTAGE b 
-------
1.1115
3.19&E+05
2.6911E+05
r?,3086E* 1 3
25.8
1 .31E.-06
1 .513E-06
1.133E-05
5.26E-07
2.58E-0U
7
1,0816
3.196E+05
2.6808E~05
,\3723E+I3
25.8
1 .27E-06
1 . 226E-06
3.592E-05
1.73E-07
2.58E-01
8
1,0598
3.1'6E+05
2.6710E+O5
.?.1?11E+13
25.8
1 .20E-06
1.003E-06
2.939E-05
1.26E-07
?,58E»0«
9
1,0139
3.196E+05
2,6638E* 05
;>.«579E+13
25.8
1 .13E-06
8.279E-07
2.125E-05
3.83E-07
2.58E-0U
10
1,0323
3,U96E+0S
2.6585E+05
;>.1B56E+13
25.8
1.06E"06
6,88lE»07
2.016E-05
3.16E-07
2.58E-91
t 1
1,0237
3.1"6E*05
2.65B5E+05
J!. 5063E + 1 3
25.8
9.86E-07
5.762E-07
1 .6B8E-05
3,12E-07
2.5BE-0U
12
eST. FFPJCIENCV " 89,R6 IJNCOIIRECTEO COMPUTED EFFICIENCY a 90,01
INCREMENTAL analysis of PRECIPITATOR PERFORMANCE
L*B ESP| SCAb125FT?/1000ACFM|Jb2MUA/FT2|MMDs2IJM|SIGHAPb2.5
CALCULATION IS IN SECTION NO. a ¦> AND THE SECTION LENGTH IS a 0.7625 N
COLLECTION AREA a 5.B12E-01 M2
WIRE TO PLATE o 1.2T0E-01 M
CURRENT/m a 7.869E-05 AMP/M
1/2 WIRf TO WIRE » 6.350E-02 M
TEMPERATURE ¦ 297.667 K
ION MOBILITY a 1.79BE-00 M2/VOL"»8EC
OUST weight o 3.250E-06 KG/SEC
APPLIED VOLTAGE a 1.600E+01 VOLTS
CORONA WIRE RADIUS a 1.J91E-03 M
CURRENT DENSITY ¦ 2.581E-01 AMP/M2
GAS FLOW RATE b 9,
-------
OUST WEIGHT ¦ 3.250E-06 KG/SEC
LENGTH INCR. oO.25016565 M
INPUT EFF./INCR. ¦ 17,<17
ROVRI
ERAVG
EPLT
*FI0
CNC0
MM0
WEIGHT
OUST UYER
J(PART)
J(I0N)
INCR. M0
1.1113
3.«96E*05
2.69U0E+05
2.3089E+13
25.6
1.3UE-06
1.S13E-06
«,fl32E-05
5.26E-07
2.56E-0U
7
1.0614
3.««6E+05
2.6806E+05
2.3728E+13
25.6
1.27E-06
1.226E-06
3.591E-05
«,73E-07
2,56E>0
-------
CHARGING PATES FflP PARTICLE SIZES FROM SUBROUTINE CHARGN OR CHGSUM
SRI theory used for PARTICLE charging
INCREMENT NO. Q/QSATF FOR INDICATED PARTICLE SIZES
0
.2000E"06
0.«000£»06
0.6000E*06
0.8000E-06
0.1000E-05
1
1,0360
1.0360
1,0360
1 .0360
1.0360
2
1,5443
1,5269
1,4641
t.4127
1,3729
3
1.7694
1.70«3
1.6124
1.5383
1.4826

1,9154
1,8219
1,7020
1,6133
1,5475
5
2.0238
1.9038
1.7669
t.6673
1,59«2
6
2,1098
1,9680
1,6175
1.7094
1,6306
7
2,1777
2.0160
1.8537
1.7385
1,6548

2,2356
2.0570
1.8648
1.7636
1,6758
9
2,2857
2.0925
1.9119
1,7854
1 ,69
-------
CHARGE ACCUMULATED ON PARTICLE SIZES IN EACH INCREMENT
INCREMENT	CHARGE FOR INDICATED PARTICLE SIZES

0.2000E-06
0.4000E-06
0.6000E-06
0.8000E-06
1
0.13288E-17
0.42333E-17
0.8913SE-17
0,15378E-16
2
0.1O807E-17
0.62387E-17
0,12596E-16
0,20968E-16
3
0.22694E-17
0,698U2E»17
0.1J872E-16
0.22632E-16
a
0.24567E-17
0.740436-17
0,14643E-16
0.23945E-16
5
0.2595TE-17
0.777916.17
0.13201E-16
0,2«748E-lb
6
0,2705'E-|7
0.80
-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOft NriNThFAlITIES USING SET NO. 1 OF CORRECTION PARAMETERS
SIZE
CCF
INLET *
OUTLET *
COR, OUTLFT X
NO-RAP EFF
, NO-RAP *
no-Rap p
COR, FFF.
COR, *
COR, P
2, OOOE-07
1,751
1.P67
6.0440
3.8451
88.941?
8.959
11.0588
88,8844
8.938
11.1156
a.oooE-or
1 .361
4.59U
14.7187
9.4191
89.0567
9,002
10,9433
88.9J57
8.957
1 1.0643
6.000E-07
1.239
6.081
16.3798
10,5941
90 ,798ft
9,708
9,2012
90,5975
9,619
9,4025
8.000E-07
1 . 179
6.580
14.5254
9.5492
92.4596
10.517
7.5404
92.1661
10.363
7.831"
1,000E-06
1 .114
6.530
11.9298
8i0224
93.7599
11.28B
6,2401
93.3702
11,041
6,6298
2.000E-06
1 .072
10.039
51.2996
26,4802
97.3298
11.741
2.6702
96,4309
13.561
3.5691
U,000E-06
1 .036
18.907
4.7419
10.9246
99.1433
19.367
0,8567
96.8818
14.110
3,1182
6,OOOE-06
1.021
6.522
0.3267
S.0154
99,0289
25.921
0,1711
95,8496
12.947
4.1502
8.000E-06
1.018
3.916
0.0318
1.2293
99.9723
33.328
0,0277
94,1711
11.565
5.8289
1, OOOE-05
1 ,014
1 ,699
0.0023
2.4740
99.9954
40,663
0.0046
92,1419
10,350
7,8581
1 .500E-05
1.010
2,522
0.0001
5,6594
99,9909
58,091
0.0001
87,8921
A.S9]
12.1079
2.500E-05
>.006
0.549
0.0000
2,4350
99,9999
93,377
0,0001
76,0627
5,817
23,9373
4, 000E-05
1 .004
0, 194
0.0000
1.3522
99,9999
145,716
O.A001
62,4793
3,989
3T.5207
EFFICIENCY -
STATED :
: 90.01
COMPUTED =
90,0096
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EPF. » 96.5845
MMD OP INLET SIZE DISTRIBUTION B 2.000E+00
8ICMAP OF INLET SIZE DISTRIBUTION ¦ 2.500E+00
MHD OF EFFLUENT UNDER NO-RAP CONDITIONS s 8.663E-01
SIGHAP OF EFFLUENT UNOER NO-RAP CONDITIONS » 2.034E+00
LOG-NORMAL GOODNESS OF FIT b 1,000
M	PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS « 15,739
w
SIGMARe 0.000 WITH 0.000 SNEAKAGE OVER 4.000 STAGES
NTEHP a 1
RMMO a 6,00
RS1GHA ¦ 2,50
CORR, EFF, s 94.6034
CORRECTED MMO OF EFFLUENT c 1.894E+00
CORRECTED SIGHAP OF EFFLUENT a 5.S55E+00
LOG-NORMAL GOODNESS OF FIT b 0,994
CORRECTED PRECIPITATION BATE PARAMETER o 11.8B

-------
UNADJUSTED MIGRATION VELOCITIES AND
EFFICIENCIES, AND
DISCRETE OUTLET MAS8
LOADINGS


IDEAL UNAOJUSTED
IDEAL UNADJUSTEO
NO.RAP
rapping puff
NO-RAP+RAP PUFF
RAPPING PUFF
PARTICLE
NIG, VEL.(CM/SEC)
EFFICIENCV(X)
OM/OLOGOfHG/OSCM)
DM/DLOr.D(HG/DSCM)
DH/OLOGD(MG/DSCM)
DISTRIBUTION(X)
DIAM.(M)
J.687E+00
5.95<»E*0J
1 .6?ilE»01
B.335E-0U
1.632E-01
5,350Eo02
2,000E»07
4.266E+00
6.U96E+01
8.50UE-01
9,a02E»03
8.S98E-01
2.806E-01
4,OOOE>07
5,056F»00
7.HAE + 01
1,437E+00
3.1«2E-02
1 •U68E+0O
6,17fcE°01
6,000E»07
5.876E+00
7.6uoE+(U
1.706E+00
b.596E-02
1.772E+00
9,685E =01
B.OOOE.07
6.699E+00
8.07JE+01
1 • 755E + 00
1.096E-01
1.66UE+00
1.28SE+00
1 ,000E*06
1,076E+01
9, 290E ~() 1
9,529F»ftl
3.20AE-01
1,27,O00E»06
3.333E+01
9.997E+01
3,38BE-03
7.092E-01
7.126E-01
1 .IU7E + 01
8,000E«06
a.066etni
1.000E+02
3,7l6E-0
-------
SUMMARY TABLE OF ESP OPFRATING
PARAMETERS AND performance
DATA SET NUMBER J
ESP PERFORMANCE!	EFFICIENCY a 9
-------
E,P.A, ESP MODFl
I.E.R.L.-R.T.P. AND SO.R.I.
REVISION I,JAN, l, 197B
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER 1
DATA ON CARD NUMBER 1
NENDPT ¦ la NDATA o 2
DATA ON CARD NUMBER 2
LAB ESPl SCA«125FT2/1000ACFM|J»2«Ua/FT2|MMD»SUM|SIGMAPd2.3
DATA ON CARD NUMBER J
050 ¦ 5.0000 UM SIGMAP » 2.5000

-------
INCREMENTAL ANALYSTS PF PRECIPITATOR PERFORMANCE
LAB ESP I SCasi25FT2/1000ACFMjJb20UA/FT2|MMDs5UM»SIGMAPb2.5
CALCULATION IS in SETTION no. s J AND THE SECTION LENGTH 13 a 0.7*25 M
COLLECTION area a 5.812E-01 M2
wire to plate s i.27oe»oi m
ClIRRENT/H a 7.869E-05 AMP /M
1/2 WIRE TO I BE = 6, 350E-02 M
TEMPERATURE ¦ 297,667 K
ION MOBILITY a 1.798E-00 M2/VOLT-SEC
DUST WEIGHT a 3.250E-06 KG/SEC
APPLIED VOLTAGE o O.600E+0O VOLTS
CORONA WIRE RADIUS a l,l91E"03 M
CURRENT DENSITY a 2,58lF-0« AHP/M2
GAS FLOW RATE E 9.O60E-02 M3/SEC
PRESSURE a 1.000 ATM
MEAN THERMAL SPEED = O.U39E+02 M/SEC
LENGTH INCR. 50.25"16563 M
TOTAL CURRENT « 1.500E-00 AMPS
CORONA w IRE LENGTH c 1.906E+00 m
DEPOSIT E FIELD b 2.5BIE+03 VOLT/M
GAS VELOCITY = 9,760E-01 M/SEC
VISC08ITV s 1.800E-05 KG/M-SEC
PART, PATH PARAM, a 5.70BE-08 M
INPUT EFP./INCR. = 17,47

BOVRJ
1,2977
1.1261
ERAVG
3.622E+05
3.622E+05
3.622E+05
EPLT
2.8503E+05
2,8tO«E*05
2,7805E+05
AF ID
1	, 9085E+15
2,0701Em
2	a 199JE+l3
CMC D
25.8
25,8
25,8
MHO
7.10E-06
0.7BE-06
3.07E-06
WEIGHT DUST LAYER J(PARTJ
1,281E"05
7.221E-06
0.233F-06
CALCULATION IS IN SECTION NO, a 2 AND THE SECTION LENGTH IS a 0,7625 M
COLLECTION AREA b 5.B12E-01 H2
wire to plate c i.27oe-oi m
CURRENT/* a 7.869E-05 AMP/M
1/2 WIRE TO WIRE " 6.350E-02 M
TEMPERATURE 8 297,667 K
ION MOBILITY b 1,T98E-0
-------
1,0080 3.096E+05 2.6551E+05 2.5005EM3 25.8 1.5PE-06 0.075E-07
1.0059 3.096E+05 2.6551E+05 2.5508E+13 25.6 1.52E-06 3.176E-07
1,0002 3.096E*05 2.65StE*05 2.5552E+13 25.8 1.07E-06 2.097E-07
1.190E-05 8.71E-08 2.58E-00
9.310F-06 7,OOE-Ofl 2.58E-00
7,310E«06 6.29E-08 2.58E-00
10
11
12
E8T. EFFICIENCY a 90.01	UNCORRECTED COMPUTED EFFICIENCY » 96.82
INCREMENTAL ANALYSIS OF PRECIPITATOR PERFORMANCE
LAB ESPl 8CA»125FT2/1000ACFM|J»2aUA/PT2|MM0o5UM|SIGMAP»2t5
CALCULATION IS IN 8ECTI0N NO. r 1 AND THE SECTION LENGTH IS o 0.7625 M
COLLECTION AREA a 5.812E-01 M2
HIRE TO PLATE o 1.270E-01 M
CURRENT/H ¦ 7.869E-05 AMP/M
1/2 WIRE TO wjre « 6.350E-02 M
TEMPERATURE ¦ 297,667 K
ION MOBILITY ¦ 1,798E"00 M2/V0LT-SEC
DUST WEIGHT s J.250E-06 KG/SEC
APPLIED VOLTAGE ¦ 1.600E40U VOLTS
CORONA WIRE RADIUS ¦ 1 . 191E"03 M
CURRENT DENSITY B 2.581E-00 AMP/M2
GAS FLOW RATE ¦ 9,060E»02 MS/SEC
PRESSURE b 1.000 ATM
MEAN THERMAL SPEED ¦ 0,fl39E*02 M/SEC
LENGTH INCR. bO.25016565 M
TOTAL CURRENT b 1.500E-00 AMPS
CORONA WIRE LENGTH b l,906E+00 M
DEPOSIT E FIELO o 2.581E+03 VOLT/M
GAS VELOCITY b 9,7606-01 M/SEC
VISC08ITY b 1.800E-05 KQ/M.SEC
PART, PATH PARAM, s 5.706E-08 M
INPUT EFF./INCR, « 20,98
ROVRI
ERAVG
EPLT
AFID
CMCO
HMO
WEIGHT
DUST LAYER JCPART)
JtION) INCR, NO
1,0258
1.2516
1,1060
3.622E*05
3.622E+05
3.622E+05
2.9187E+05
2.8351E+05
2.7900E+05
1.7370EM3
1.9787E+13
2.1566E + 1J
25.6
25.8
25.8
7.01E-06
0.80E-06
3.08E-06
1.260E-05
7.208E-06
0.227E-06
S.760E-oa
2.123E-00
1.2J6E-00
0,528-07
O.O6E-07
3.52E-07
2.58E-0O
2.56E-00
2.58E-0U
CALCULATION IS TN SECTION NO. ¦ 2 AND THE SECTION LENGTH TS b 0,7625 M
COLLECTION AREA a 5.812E-01 M2
WIRE TO PLATE ¦ 1.270E-01 M
CURRENT/M a 7.869E-05 AMP/M
1/2 WIRE TO WlRe a 6.350E-02 M
TEMPERATURE a 297.667 K
ION MOBILITY a 1.798E-00 M2/V0LT-8EC
OUST WEIGHT b J.250E-06 KG/8EC
APPLIED VOLTAGE a O.580E+0O VOLTS
CORONA WIRE RADIUS a 1.1Q1E-03 H
CURRENT DENSITY a 2.581E-00 AMP/M2
GAS FLOW RATE b 9.O60E-02 MS/SEC
PRESSURE a 1.000 ATM
MEAN THERMAL SPEED a 0,oJ9E*02 M/SEC
LENGTH INCR, bO.25016565 M
TOTAL CURRENT a 1.500E-00 AMPS
CORONA WIRE LENGTH b 1,906E*00 M
DEPOSIT E FIELD a 2.581E+03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SEC
VISC08ITY b 1.800E-05 K6/M-3EC
PART, PATH PARAM, a 5.T08E-06 M
INPUT EFF./INCR, a 20,98
ROVRI
ERAVG
EPLT
AFID
CMCD
MMQ
WEIGHT
DUST LAYER J(PART)
J(ION) INCR, NO
1 ,0867
1,05(11
1,0333
3.606E+05
3.606E+05
3.606E+05
2.7537E+05
2.7379E+05
2.7283E+05
2.2807E+13
2.J596E+13
2.0072E+13
25.8
25.8
25.6
2.85E-06
2.36E-06
1.97E-06
2.699E-06
1.636E-06
1.301E-06
7.907E-05
5.360E-05
3.812E>05
2.78E-07
2.25C-07
1.83E-07
2.58E-00
2,56E-00
2.56E-00
CALCULATION IS IN SECTION NO, b 3 AND THE SECTION LENGTH IS a 1,5250 M
COLLECTION AREA b 1.162E+00 M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/M a 7.869E-05 AMP/m
1/2 WIRE TO WJRE s 6.350E-02 M
TEMPERATURE a 297,667 K
ION MOBILITY s 1.798E-00 M2/V0LT-SEC
DUST WEIGHT a 3.2S0E-06 KG/SEC
APPLIED VOLTAGE a 4.000E+00 VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY a 2.581E-00 AMP/M2
GAS FLOW RATE a 9.060E-02 M3/SEC
PRESSURE a 1,000 ATM
mean THERMAL SPEED a O.«39E+02 M/SEC
LENGTH INCR, aO.25016565 M
TOTAL CURRENT b 3.000E-00 AMPS
CORONA WIRE LENGTH a 3.812E+00 M
DEPOSIT e FIELD a 2.581E+03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SEC
VISCOSITY a 1.800E-05 KG/M-SFC
PART. PATH PARAM, a 5.706E-08 M
INPUT EFF./INCR, o 20,96
ROVRI	ERAVG	EPLT	AFID	CMCO	MMD	WEIGHT 0U8T LAYER J(PART)	J(ION) INCR, NO

-------
1,0201
5.«<»6E + 05
2.6529E+05
2,5l5tiE+l3
25,8
1.A3E-06
9,2J9E-n7
2.707E-05
1.U7E-07
2.58E-0U
7
1,012b
3,196E + 05
2,652'E + 0S
2.5339E+13
25,8
1.T3E-06
6.912E-07
2.025E-05
1.22E-07
2,58F.-0«
8
t,OOBO
3.196E+05
2.6S29E+05
2.5U55E+13
25,8
1 . <>5E"06
5.2S9E-07
1.5U1E-05
1.O3E-07
2.58E-0U
9
1,0051
3.+ 05
2.6529E+05
2,5529E*I3
25.6
1,5BE"0f>
a.056F-07
1,188E-05
8,68E-08
2.58f-0a
10
1,0032
3.«">6E+05
2.6529E+05
2.5576E+13
25,8
1 .52E-06
3.165E-07
9,272fc-06
7.37E-08
2.58E-0U
1 1
1,0021
3.iPbE+05
2,652<>Ef05
2.5605E*13
25,8
1,
-------
charging rates for particle sizes from subroutine chargn or chgsum
SRI THEORY USED FOR PARTICLE CHARGING
increment no, q/qsatp for indicated particle sizes
0
.2000E-06
0.4000E-06
0.6000E-06
0.8000E-06
0. 1000E-05
1
1,0360
1,0360
1,0360
1,0360
1,0360
2
1,6115
1,5826
1.509B
1,0516
1,0070
3
1,8405
1,7648
1,6569
1.5757
1,5152
4
1,9834
1.8736
1.74J1
1.6477
1.5773
5
2.0B68
1.9511
1,8043
1.6985
1,6212
6
2,1674
2,0108
1.8512
1,7376
1,6549
7
2,2302
2,0549
1.6804
1,7641
1,6770
8
2,2833
2,0923
1.9127
1,7869
1,6960
9
2,3292
2,1247
1,9373
1,8067
1,7126
10
2,3696
2,1532
1.9590
1.8242
1,7274
11
2,0055
I,1786
1,9784
1.8399
1,7406
12
2,4380
2,2015
1,9959
1,8541
1,7526
0
.B000E-05
0.1000E>04
0,1500E"04
0.2500E-04
0.4000E-04
1
0.9575
0,9344
0,9014
0.8726
0.8557
2
1,1269
1,1081
1,0770
1.0332
0.9923
3
1,1605
1,1002
1,1093
1.0780
1,0550
4
I,1766
1,1547
1,1216
1,0892
1,0663
5
1,1878
1.1647
1,1297
1,0960
1,0720
6
1,1963
1.1722
1.1358
1 ,1008
1,0765
7
1,1989
1.1741
1,1369
1,1008
1,0765
8
1,1989
1.1741
1,1369
1,1008
1,0765
9
1,1989
1,1701
1 ,1369
t.1008
1,0765
10
1,1969
1.1741
1.1369
1,1008
1,0765
11
1,1989
1,1741
1,1369
1,1008
1,0765
12
1.19A9
1,1701
1,1369
1.1008
1,0765
0.2000E-05
! ,0560
1,2860
1,3553
1,3911
1.4214
1,442"
1,4503
1 ,4607
1.47J9
1,0822
1,4897
1,4965
0.4000E-05
1,0360
1.1976
1.2416
1.2655
1.2820
1.2950
1.3012
1.3012
1.3012
1.3012
1.3012
1.3012
0.6000E-05
0,9942
1,1543
1.1908
1 ,2095
1,2226
1,2326
1,2364
1,2364
1,2364
1,2364
1,2)64
1,2364

-------
CHARGE ACCUMULATED ON PARTICLE SIZES IN EACH INC REMFNT
INCREMENT	CHARGE for INDICATED PARTICLE SIZES

0.2000E-06
0, «000E«06
0,6000E*06
0,80 0 0Ea 06
1
0.132BBE-17
0.423J3E-17
0.89135F•I 7
0,1537BE" 16
2
0 , 20b6'E»17
0.6U666E-17
0.129B9E»li,
0.21545E-16
3
0,23605E"17
0.72110E-17
0.14255E-16
0,233BBE» 16
4
0,25«38E-17
0.76555E-17
0.1U997E-16
0.24456E-16
5
0.26765E-17
0.79722E-17
0 .15523E"16
0,25211E-16
6
0.27799E-17
0.B2163E-17
0.15927E-16
0.25791E-16
7
0,28604E»17
0,8 3960E-17
0 . 16213E*16
0,26185E« 16
8
0,29285E"17
0.8SU92E-17
0.16U56E-16
0.26522E-16
9
0.2987«E-17
0.B6814E-17
0.16667E-16
0,26816E>16
10
0.30192E-17
0.87979E-17
0.16B5"E>16
0.27076E-16
11
0.30853E-17
0.89018E-17
0.17021E»16
0.27310E-16
12
0.31269E-J7
0.B9955E-17
0.17171E"16
0.27520E-16

0.8000E-05
o.ioooE-oa
O.1500E-OU
0.2500E-04
1
0,1329BE»11
0,20251E»11
0 . 0 3089E"14
0,11767E-13
2
0, 15650E-10
0,2«017E-ia
0.52«39E»1U
0¦13956E" 13
3
0,16117E»1#
0,2471«E»ia
0.5U01 IE-la
0,14568E" 13
<1
0.163U1E-1U
0.25028E-14
0,5Ufa09E-lU
0,1071UE"13
5
0,16496E-14
0.25243E-14
0.55007E»!a
0.14B05E-13
6
0.16614E-14
P.25U06E-14
0.55302E-1U
0,14870E"13
7
0, 16650E-1U
0.25448E-14
0.55356E-1O
0,14B70E-13
8
0, 16650E-1U
0.25«a8E-14
0.55356E»14
0.1U870E-13
9
0.16650E-14
o,2544ee>i4
0.55356E-14
0.14870E-13
10
0 , 16650E »11
0.25U48E-14
0.55356E-14
0, 14870E" 13
11
0.16650E-1U
0,25448E» 1 fl
0.55356E»1U
0.1«870E»13
12
0,16630E-ia
0,25448E"1U
0.55356E-1U
0.1UB70E-13
P.1000E-05
0.2362AF-16
0,3208flE-16
0.34S55E-16
0,J59T3E-16
0.3697aF«16
0.37TU2E-16
0.38246E-16
0.38679E-16
0.39058E-16
0.39395E-16
0.3969fcE-l#>
0.39970E-16
0 . 2000E"05
0,91693E"16
0.1 13B1E-15
0,1 1995E-15
0.12338E-15
0.12580E-15
0, t 2765E"15
0.12B71E-15
0,12963E"15
0.13044E-IS
0,13118E"15
0,13180E-15
0,13245E"15
o,aonoF»05
0.36192E-15
0 , fl1835E"15
0,a3370E-l5
0,aa208E-15
0,aa799E-15
0.A5252E-15
0.45456E-15
0.45456E-15
0.45U56E-15
0.45456E-I5
0,aS456t-15
0.45456E-1S
0.60nOE-05
0.T7823E-15
0.903S3E-15
0.93208F-15
0.94672E-15
0.9S701E-15
0 ,96UB6E"15
0.96776E-15
0.96776E-15
0.9&776E-15
0.96776E-15
0, 9fc7 76E»l5
n,9fe776E-15
O.4O00F-OH
0.29571E»13
0.34292E-13
0.36U59E-13
0,36B«9E-13
0.37060E-13
0.37203E-13
0.37203E-13
0.37203E-13
0.37203E-13
0.37203E-13
0.3T203EMS
0.37203E-13

-------
PARTICLE 81ZE RANGE STATISTICS
CORRECTIONS FOR NONIDEALITIES USING SET No. 1 OF CORRECTION PARAMETERS
SIZE
CCF
INLET X
OUTLET X
COR. OUTLET
% NO-RAP EFF
. NO-RAP w
NO-RAP P
COR, EFF,
COR, h
COR. P
2,000E-07
1.751
0.106
0.9240
0.4714
89.0329
8.993
10,9671
68,3452
8,746
11,6546
4.000E-07
1,361
0,492
4.2921
2,2064
89.0293
6,992
10,9707
88,2525
8,713
1 1,7475
6.000E-07
1.239
0.996
7,3651
3.8569
90.7056
9.667
9,2944
69,8615
9,313
10.1365
8.000E-PT
1,179
1.469
8.9598
0,8009
92.3351
10.451
7.6649
91,4378
10,000
8,5622
1.0O0E-06
1,144
1.856
9,4280
5.1941
93.6217
11.198
6,3783
92,6803
10.638
7,3197
2.000E-06
1,072
22.687
50.3662
33.6263
97.2094
14.562
2,7906
96.1191
13.220
3,0809
4,00 0E-06
1,036
23,253
16.5537
19.1700
99.1051
19,190
0,8949
97,8413
15.607
2.1567
6.000E-06
1,024
12.877
1.8357
7.6927
99.8208
25.733
0,1792
98,4356
16.917
1.5642
6.OOOE-06
1,018
10.590
0,2503
6.0625
99.9703
33.044
0.0297
96,4961
17.077
1.5039
1.000E-05
1,014
5.918
0.0236
3.5137
99.9950
40.292
0.0050
96,4455
16.943
1,5545
1,SOOE-05
1,010
12.574
0,0010
6.0167
99.9999
58.261
0.0001
96,3306
16.653
1,6694
2.500E-05
1,006
4,835
0.0004
3.4491
99.9999
93.547
0,0001
96,1323
16.196
1,6677
4,000E-05
1,004
2.344
0.0002
1.9154
99.9999
145,964
0.0001
97,8600
15,642
2,1400
EFFICIENCY - 1
STATED b
96.82
COMPUTED o
96,8317
CONVERGENCE
OBTAINED



ADJUSTED NO.RAP EFF, ¦ 98.7430
MHD OF INLET SIZE DISTRIBUTION a 5.000E+00
8IGMAP OF INLET SIZE DISTRIBUTION a z'.SOOEtOO
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 1,476E+00
SIGHAP OF EFFLUENT UNDER NO-RAP CONDITIONS o 1.930E+00
LOG-NORMAL GOODNESS OF FIT b 0,998
M	precipitation rate parameter under no-rap conditions « it.sot
00
to
SIGMAG* 0.000 WITH 0,000 SNEAKAGE over 4.000 STAGE8
NTEHP b 1
RMMD ¦ 6,00
RSIGHA o 2,50
CORR, EFF, a 97.3816
CORRECTED MMD OF EFFLUENT s 3.373E*00
CORRECTED 8IGMAP OF EFFLUENT o 2,778E*00
LOG-NORMAL GOODNESS OF FIT ¦ 0,997
CORRECTED PRECIPITATION RATE PARAMETER b 10,62

-------
UNADJUSTED MIGRATION VELOCITIES AND EFF!CIFNfTES» AND DTSCRETE OUTLET MASS LOADINGS
IDFAL UNADJUSTED
ideal unadjusted
ton-RAP
PAPPIfcG PUFF
NO-RAP+RAP PUFF
RAPPING PUFF
PARTICLE
MIG, VEL.fCH/SEC)
EFFIC1ENCV C*3
DH/DLOGfHMG/DSC*)
OM/OLOGO(MG/DSCM)
DH/0L0GD{HG/03CM3
DISTRIBUTION (X)
OIAH.(M)
3.70SE+00
5.973E+01
9.135E-03
5.728E»0
-------
summary table of esp operating
parameters and performance
DATA StT NUMBER 1
E8P PERPORMANCFl EFFICIENCY a flT.3816 * SCA ¦ 2.O58E+01 M«*2/(M*«J/8EC)
ELECTRICAL CONDITIONS! AVG, APPLIED VOlTAQE a «,515E+0fl V
AVG, CURRENT DENSITY a 25,61 NA/CM«*2
RESISTIVITY ¦ 1 a OOOE + OQ OHM-CM
SIZE DISTRIBUTIONS!	INLET HMD a 5.000E+00 UM INLET SIQMaP b 2.300E+00
OUTLET MHO ¦ J.3TJE+00 UM OUTLET SIGNAP » 2,77BEfOO
NONIDEAL PARAMETERS! GAS SNEAKAGE FRACTION s 0,00 /SECTION GAS VELOCITY 8IGHAG ¦ 0,00
RAPPING HMO B 6.000E+00 UM RAPPING 8IGHAP o 2,SOOE>00

-------
E.P.A. ESP modfl
I.E.P.L.-R.T.P, AND SO.P.I.
REVISION I,Jan, 1( iQTfl
PRINTOUT OP INPUT DATA FOR DATA SET MUMBeR 1
OAT* ON CARD NUMBER 1
NENDPT b id NDATA b 2
DATA ON CARD NUMBER 2
LAB ESPl 6CAal25FT2/tOOOACFM|Js2
-------
INCREMENTAL ANALYSIS OP PRECIPITATOR PERFORMANCE
LAB E8P l SCA«j2SFT2/JO00ACFM,Jc2«IIA/PT2|MmDbioUM,8IGMAPb2,5
CALCULATION is IN SECTION NO. • 1 AND THE SECTION LENGTH IS « 0.7625 M
COLLECTION AREA ¦ 5.812E-01 M2
WIRE TO PLATE b 1.270E-01 M
CURRENT/M ¦ 7.869E-05 AMP/M
1/2 HIRE TO "IRE ¦ 6.350E-02 M
TEMPERATURE 9 297,667 K
ION MOBILITY ¦ 1.798E-0U H2/VOLT-8EC
OUST weight s 5.250E-06 KG/SEC
APPLIED VOLTAGE o 4.600E+04 VOLTS
CORONA WIRE RADIUS a 1.|91E-03 M
CURRENT DENSITY ¦ 2.581E-04 AMP/M2
GAS FLOW RATE b 9.460E-02 MS/SEC
PRESSURE ¦ 1,000 ATM
MEAN THERMAL SPEED a 4.439E+02 M/8EC
LENGTH INCR, oO ,25416565 M
TOTAL CURRENT ¦ 1.500E-04 AMPS
CORONA WIRE LENGTH ¦ 1,906E»00 M
DEP08IT E FIELD ¦ 2.581E+03 VOLT/M
OAS VELOCITY ¦ 9.760E-01 M/SEC
VISCOSITY ¦ 1.800E-05 KG/M-SEC
PART, PATH PARAM, ¦ 5.708E-08 M
INPUT EFF./INCR, ¦ 24,98
ROVRI
ERAVG
EPLT
APID
CMCD
MMD
WEIGHT
DUST LAYER J(PART)
J(XON) INCR, NO,
>.2120
1,1057
1,0SS1
3.622E+09
3.622E+05
3.622E+05
2.8182E+05
2.7713E+05
2,74S3Ef05
2,0q34E+13
2.2399E+13
2,3475E*1J
25.8
2S.8
25,8
1.28E-0S
7.98E-06
5.67E-06
1.856E-05
7.147E-06
3.308E-06
5.437E-04
2.094E-04
9.691E-05
3.52E-07
2.56E-07
1.69E-07
2.58E-04
2,50E*O4
2,58E»0«
CALCULATION 18 IN SECTION NO, b 2 AND THE 8ECTI0N LENGTH IS a 0,7625 M
COLLECTION AREA ¦ 5.812E-01 M2
WIRE TO PLATE ¦ 1.270E-01 M
CURRENT/M ¦ 7,869E*09 AMP/M
1/S WIRE TO WIRE > 6.350E-02 M
TEMPERATURE ¦ 297,667 K
ION MOBILITY ¦ 1.798E-04 M2/V0LT-SEC
OUST WEIGHT b J.250E-06 KG/SEC
APPLIED VOLTAGE b 
-------
1.0012 3.U96E+05 ?.6l62E*05 2.5<>28E+IS 25.0 1.89E-06 1.672E-07
1,0007 5.096E + 05 2.64*2E+05 2.5M0E + 13 25.8 1.79E-06 1.210E-07
1,0001 3.196E+05 2.6462E+05 2.5617E+13 25.8 1.72E-06 9.301E-08
1.R99E-06
3.632F-06
2.725E-06
2.32E-08 2.58E-01
1.87E-08 2.5BF-0U
1,51E-0fl 2.58E-01
10
11
12
EST, EFFICIENCY o 96.82 UNCORRECTED COMPUTED EFFICIENCY « 49.05
INCREMENTAL ANALYSIS OF PRECIPITATOR PERFORMANCE
LAB E8P| 8CA»125FT2/)000ACFM|Jo2UU4/FT2|MMDs10UM|SIGMAPe2.S
CALCULATION IS IN SECTION NO. a 1 AND THE SECTION LENGTH IS = 0,7625 H
COLLECTION AREA e 5.812E-01 M2
WIRE TO PLATE e 1.270F-01 M
CURRENT/M o 7.869E-05 AMP/M
1/2 "IRE TO WIRE a 6.350E-02 M
TEMPERATURE « 297.667 K
ION MOBILITY b 1.79AE-01 M2/V0LT-SEC
DU8T WEIGHT s 3.250E-06 KG/SEC
APPLIED VOLTAGE b 1,600E + 04 VOLTS
CORONA WIRE RADIUS « 1,191E"03 M
CURRENT DENSITY s 2,581E»0« AMP/M2
GAS FLOW RATE ¦ 9.U60E-02 MS/SEC
PRESSURE b 1,000 ATM
MEAN THERMAL SPEED o 4.439F+02 M/SEC
LENGTH INCR. »0.25416565 H
TOTAL CURRENT b 1.5O0E-01 AMPS
CORONA WIRE LENGTH b 1.906E+00 M
DEPOSIT E FIELD « 2.581E+03 VOLT/M
GAS VELOCITY s 9.760E-01 m/SfC
VISCOSITY c 1.800E-05 KG/M-SEC
PART, PATH PARAM, a 5.708E-08 M
INPUT EFF./INCR, b 52,02
ROVRI
ERA VG
EPLT
AFIO
CMCD
HMD
WEIGHT
DU8T LAYER J(PART)
J ( I ON) INCH. NO.
1,2718
1,1226
1,0579
3.622E+05
3.622E+05
5.622E+05
2.8435E+05
2.7790E+05
2.7495E+05
1,9a74E+l3
2.2061E+13
2.3
-------
I.003">
3.U96E+05
2.6155E+0S
2.5559Etl3
25.8
2.68E-06
«.597E"07
1.3U7E-05
U.7UE-08
2.58E-0a
7
1.0021
3,1'6E+05
2,6«55E+05
2,5t>05E+t3
25.6
2.31E-06
3.203E-07
9.38SE-06
3.66E-08
2.S8E-0U
A
1.0011
3,U'6E*05
2.6«55E+05
2.5629E+13
25,8
2.01E-06
2,289F«07
fc,705E«06
2.90E-08
2.58E-0U
9
1,0006
3,«96E*05
?,M55E + 0 5
2.S6«3E»1S
25.8
1,89E»06
1.669E-07
«,890F»06
2.31E-08
2.56E-0U
10
1,0003
J.U96E+05
2.6155E+05
2.5650E+13
25.8
1.79E*06
1.23BE-07
3,626E»06
1 .86E-08
2,58E-0(l
1 1
1,0002
3,«96E*05
2.6«55E*05
2,5654E~13
25.8
1.72E-06
9.2"(>E"08
2.720E-06
1.51E-08
2.58E-0U
12
00
CO

-------
CHARGING RiTfS FOR PART ICIE SIZES FROM SUBROUTINE CHARGn riR CHgSUM
SRI
theory used
FOR PARTICLE
Charging


INCREMENT NO,
q/osatf for
indic»teo
particle sizes

0
,2000E"06
O.oonOE-Ofe
0.6000E"06
0.800 0E»06
0. 1000E-05
1
1.0360
1.0360
1.0360
1.0360
t.0360
2
1 .6038
1.6000
1.5313
1.0608
1.0220
3
1 .0713
t.7886
1.6750
1.5017
1.5200
0
2.0100
1.8901
1.7500
1.6612
1.5891
5
2.1103
1.0686
1.8181
1.7101
1.6312
b
2,1877
2.0250
1.8631
1.7075
1.6630
7
2.2070
2.0681
1.8909
1.7728
1.6805
8
2.2990
2.1030
1.0210
1.7006
1.7027
0
2.3031
2.1350
1.0055
1.6136
1,7186
10
2.38?1
2.1625
1.0660
1.8300
1.7328
11
2.0160
2.1870
1.0851
1.8056
1,7055
12
2.0083
2.2002
2.0020
1.8503
1,7571
0.8000E-05
0.1000E-00
0.1500E-00
0.2500E-0O
O.OOOOE-OO
1 0.9065
0.0601
0,0308
0.8078
0,8788
2 1.1367
1.1177
1.0876
1.0525
1.0U6
3 1.1660
1.1057
1,1101
1.0831
1,0600
4 1.1811
1.1588
1.1250
1 .0023
1.0692
5 1.1010
1.1679
1.1320
1.0082
1.0700
6 1,1993
1.1708
1.1380
1.1026
1,0700
7 1.2017
1.1766
1.1380
1.1026
1.0700
8 1.2017
1.1766
1.1380
1.1026
1.0700
0 1,2017
1.1766
1.1380
1.1026
1,0700
10 1.2017
1.1766
1.1380
1,1026
1.0 700
11 1.2017
1.1766
1.1380
1.1026
1.0700
12 1.2017
1.1766
1.1380
1.1026
1.0700
.2000E-05
1.0360
1.2062
1,3601
1.0015
1.0277
1.0077
1 .0591
1.0690
1,ti776
1 , <1857
1.U929
1.0929
O.UOOOE-05
1 .0*60
1.2001
1,2072
1.2702
1.2860
1,2'B8
1.3003
1,3003
1.3003
1.3043
1.3003
1,3003
0.6000E-05
1,0360
1,1602
1,1073
1,2105
1.2267
1,2361
1.23Q5
I,2305
1,2305
1.2305
1.2305
1.2305

-------
CHARGE ACCUMULATED ON PARTICLE SIZES IN EACH INCREMENT
INCREMENT
charge for INDICATED particle sizes
0.2000E-06
O.aoOOE-Ofc
0.6000E-06
0.8000E-06
0.13289E-17
0.«2333E-17
0.89135E-17
0.1537BE-1fe
0.21083E-17
0.6S7«aE-17
0.1317UE-16
0.21816E-16
0.2O000E-17
0.73083E-17
0.1«a19E-1fc
0.23625E-16
0.25785E-17
0.77391E-17
0.15137E-16
0.2B657E-16
0.27066E-17
0.80U37E-17
0.156U2F»lfc
0.25382E-16
0.28039E-17
0.82779E-17
0.16029E-16
0.25937E-16
0.28832E-I7
0,8150 3E¦17
0. 16302E-16
0.2631UE-16
0.29O86E-17
0.85967E-17
0.16535E-16
0.26637E-16
0.30053E-17
0.87238E-17
0.16738E-16
0.26919E-16
0,30552E»17
0.8B359E-17
0,16918E»16
0.27169E-16
0,30998E"17
0.89J62E-17
0.17078E-16
0.27393E-16
0.31U02E-IT
0.90269E-17
0.1722QE-16
0.27597E-16
0.B000E-05
o.loooE-oa
0,1500E-oa
0,2500E-oa
0,13839E"18
0.21008E-U
0,fl5319E-ia
0.12129E-13
0.15787E-18
0.28225E-1U
0,52957E-ia
0,1«218E-13
0.16199E-18
0.2«831E-ia
0,5a2a6E-ia
0.18631E-13
0,16U03E-ia
0.25115E-1U
0,5a778E»ia
0.U755E-13
0,1 6586E"1 a
0.23313C-14
0,55139E»1a
0.U835E-13
0.166SSE-10
0,25U63E«ia
0,55a09E-ia
0,ia89aE-13
0.16689E-H
0,25502E-1a
0,55ao9E«ia
0,U89aE-l3
0,16689E"I1
0.25502E-10
0,55a09E»ia
0 ,18898E"13
0.16689E-1U
0.25502E-10
o,55ao9e»ia
0,ia89aE»13
0,16689E"11
0,2S502E»1a
0.55ao9E-ia
o,la89aE-i3
0,16689E"1 a
0.23502E-1O
0,55ao9E«ia
0.U898E-1 J
0,16689E»1a
0.25502E-U
o,S5ao9E»ia
0,ia89aE»i3
o,ia oof»o5
0.2J62HE-16
0.J2A52E-16
0.3U871E-16
0.362«1E-16
0.J7201F-16
0.3T9J6E-16
0,38a 1 BE"16
0.38832E-16
0.39196E-16
0.J9518E-16
0. 39809E»1<>
0,a0073E»lfc
0.2000E-05
0.91693E-16
0. J IOT2E-15
0.12073E-15
0,12«0
-------
PARTICLE SIZE RANGF STATISTICS
CORRECTIONS FOR NONIOEAHTIES USING SET No. 1 OF CORRECTION PABAMFTgns
SIZE
CC F
INLfT *
OUTLET *
cnR. nuTiET
X NO-RAP EFF
, NO-RAP K
NO-RAP p
COR, EFF,
COR, w
cnn, p
2.000E-07
1 .751
0.006
0.1592
0,0887
89.0778
9,010
10,9222
81,7199
6,910
18,2801
O.OOOE-07
1 .361
0.007
1,1721
0,5773
89.0315
8.99J
10,9685
83,768?
7,398
16,2318
6.000E-07
1 ,259
0.131
2.7599
1,3307
90,6827
9,656
9,3173
86,5030
8,109
13,0966
8,000E-07
1,179
0.200
0.2006
2,0576
92.2992
10,032
7,7008
88,7701
8,898
11,2259
J.000E-06
1 . 100
0,370
5.3621
2,6020
93.5795
11,172
6,0205
90,0959
9.576
9,5001
2.000E-06
1,072
8.03S
51.3510
29,2108
97.1650
10,098
2,8306
95,1550
12,317
0,8050
O.OOOE-06
1,036
10.286
29.5135
20,2250
99.0836
19.093
0,9160
97,7002
15,020
2,2598
6.000E-06
1,020
11,15«
1,5501
10,2507
99,6191
25.693
0,1809
98,7708
17,911
1,2252
6.000E-06
1,018
11,626
0.7907
7,9138
99.9698
32.982
0,0302
99,0929
19,130
0,9071
1,000E-05
1,010
7.P05
0.0906
0,520?
99.9909
00.198
0,0051
99,2315
19,809
0,7685
1.500E-05
1,010
22.251
0.0050
10,2875
99,9999
58,155
0,0001
99,3839
20,708
0,6161
2.500E-05
1 ,006
13,091
0.0029
0,0258
99,9999
93.039
0,0001
99,5095
21,982
0,0505
fl.OOOE.05
1,000
10.913
0.0025
2.0578
99,9999
105,277
0,0001
99,6999
23,635
0,3001
EFFICIENCY -
stated =
99.03
COMPUTED c
99,0276
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP FFF, = 99.5560
HMD OF INLET SIZF DISTRIBUTION s l.OOOE+Ol
SIGMAP OF INLET SIZE DISTRIBUTION a 2.500E+00
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS o 2.075E+00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 1.88JE+00
LOG-NORMAL GOODNESS OF FIT ¦ 0,997
PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS » 22,005
SIGMAG" 0,000 WITH 0,000 SNEAKAGE OVER 0,000 STAGES
NTEMP ¦ 1
RMMD s 6,00
RSIGMA o 2,50
CORR. EFF, a 98,6670
CORRECTED MHO OF EFFLUENT s «,5U2Ei00
CORRECTED SIGMAP OF EFFLUENT c 2.089E+00
LOG-NORMAL GOODNESS OF FIT s 0,998
CORRECTED PRFCIPITATION RATE PARAMETFR a 17,57

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENCIES, AND DISCPETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
MIG. VEL.(CM/SEC)
3.708E+00
4,262Et00
5.029E+00
5.828E+00
6.630E+00
1.058E+01
1.818E+01
2,5«>9E»0l
3.298E+01
7E»02
1,02
3.7U1E-0U
0.220.-03
1.U10E-02
2.960E-02
U.91BE-02
1 ,A«0E-01
2.937E-01
3.329E-0!
3.183E-01
2.867E-01
2.	J J2E-01
1.059E-01
6.1 UE-02
NO.RAP+PAP PUFF
DM/DLOGD(MG/DSCH)
9.29AE-04
1.301E-02
U.55UE-0?
9.
-------
SUMMARY TABLE OF ESP OPERATING
Parameters and performance
DATA SET NUMBER 1
ESP PERFORMANCE! FFF JCIE^CY = 90.667U X SCA = 2,
-------
E.P.4. FSP MOOEL
I.E.R.l.-R.T.P. ANO SO.R.I.
REVISION 11J AN a 1, 107H
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER 1
DATA ON capo NUMBER 1
NENDPT s tU NDATA ¦ 2
DATA ON CARD NUMBER 2
LAB ESPl SCA«125FT2/1000ACFMjJb2<1UA/FT2|MMDo15UM|SIGMAPb2,5
DATA ON CARD NUMBER 3
D50 ¦ 15.0000 UM 8IGMAP » 2.5000

-------
INCREMENTAL analysis OP PRECIPITATOR PERFORMANCE
LAB ESP I SCA«l?5FT2/1000ACFM|J = ?UUA/FT2rMMPsl5UM,SIGMAPs2,5
CALCULATION IS IN SECTION NO. c 1 AND THE SECTION LENGTH IS a
COLLECTION aREA c 5.A12E-0! M?
WIRE TO PLATE a 1.270E-01 M
CUBRENT/M b 7.869E-05 AMP/M
1/2 WIRE TO wire » 6.350E-02 m
TEMPERATURE S 297.667 K
ION MOBILITY a 1.7QAE-04 M2/VOLT-SEC
OUST WEIGHT » 3.250E-06 KG/SEC
0.7625 M
APPLIED VOLTAGE a 4,600E*0« VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY a 2.581E-04 AMP/M2
GAS FLOW RATE a 9.460E-02 MJ/SEC
PRESSURE a t.000 ATM
MEAN thermal SPEED s a,fl3<>E + 02 m/SEC
LENGTH INCR. bO,25416565 M
TOTAL CURKENT s 1,500E«04 AMPS
CORONA WIRE LENGTH s l,906E*00 m
DEPOSIT E FIELD ¦ 2.581E»03 VOLT/m
GAS VELOCITY b 9.760E-0I M/SFC
viscosity a 1.800E-OS KG/M-SEC
PART, Path PARAM, b 5,708E»08 M
INPUT EFF./INCR. a 32.02
ROVRI
ERA VG
EPLT
AFID
CMCD
MMD
WEIGHT
OUST LAYER J{PART)
JflON) INCR, NO,
to
i/i
1,1821
1,0705
1,0303
3.622E+05
3.622E+05
3.622E+05
2.8052E+05
2.7554E+05
2,7363E + 05
2,09506+13
2,3134E+] 3
2,40J8E+13
25,8
25,8
25,8
1.68E-05
1.06E-05
7,11E*06
2.202E-05
6.517E-06
2.549E-06
CALCULATION IS IN SECTION NO. 8 2 AND THE SECTION LENGTH IS a 0,7625 M
COLLECTION AREA ¦ 5.812E-01 M2
WIRE TO PLATE » 1.270E-01 M
CURRENT/M a 7.B69E-05 AMP/M
1/2 WIRE TO WIRE B 6.350E-02 M
TEMPERATURE ¦ 297.667 K
ION MOBILITY b 1.79BE-04 M2/VOLT-
DUST WEIGHT b 3.250E-06 KG/SEC
6.451E-04
1.909E-04
7.466E-05
2.98E-07
1.74E-07
1.01E-07
2.58E-04
2.58E-04
2.5BE-04
SEC
APPLIED VOLTAGE a 4.580E+04 VOLTS
CORONA WIRE RADIUS b 1.191E-03 M
CURRENT DEN8ITY a 2.581E-04 AMP/M2
GAS FLOW RATE b 9.460E-02 M3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED o 4.U39E+02 M/SEC
LENGTH INCR, a0.254 16565 M
TOTAL CURRENT e 1.500E-04 AMPS
CORONA WIRE LENGTH ¦ 1.906E+00 M
DEPOSIT E FIELD a 2.5B1E+03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SEC
VISCOSITY a 1.800E-05 KG/M-SEC
PART, PATH PARAM, • S.708E-08 M
INPUT EFF./INCR. « 32,02
ROVRI
ERA VG
EPLT
AFID
CMCD
MMD
WEIGHT
DUST LAYER J(PART)
J ( ION) INCR, NO,
1,0139
1,0067
1 ,0033
3.606E+05
3.606E+05
3.606E+05
2.7194E+05
2,7194E+05
2.719UE+05
2,«5J2E*13
2, 4 708E+13
2.4791E+13
25,8
25,8
25.8
5.44E-06
4.31E-06
3.62E-06
1.251E-06
6.996E-07
4.222E-07
3,665E"05
2.050E-05
1.237E-05
6.45E-0B
4.00E-08
3.12E-08
2.5BE-04
2.5BE-04
2.58E-04
CALCULATION IS IN SECTION NO, a 3 AND THE SECTION LENGTH IS a 1,5250 M
COLLECTION AREA b 1.162E+00 Mj
WIRE TO PLATE c 1.270E-01 M
CURRENT/M e 7.869E-05 AMP/M
1/2 WIRE TO wire « 6.350E-02 m
TEMPERATURE a 297,667 K
ION MOBILITY a 1.798E-04 M2/VOLT-SEC
OUST WEIGHT a 3.250F-06 KG/SEC
APPLIED VOLTAGE ¦ 4.440F+04 VOLTS
CORONA WIRE RADIUS a 1.19JE-03 M
CURRENT DENSITY s 2.581E-0U AMP/M2
GAS FLOW RATE a 9.460E-02 M3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED a 4.U39E+02 M/SEC
LENGTH INCR, so.25416565 M
TOTAL CURRENT a 3.000E-04 AMPS
CORONA WIRE LENGTH a 3.612E+00 M
DEPOSIT F FIELD a 2.581E+03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SEC
VISCOSITY b 1.B00E-05 KG/M.8EC
PART, PATH PARAM. a 5.708E-08 M
INPUT EFF./INCR. b 32,02
ROVRI
EPA VG
EPLT
AFID
CMCD
MMD
WETGHT
OUST LAYER
J(PART)
J(ION) INCR, NO.
1,0016
1,000"
1 ,0005
3.496E+05
3.496E+05
3.U96F+0S
2.64
5.114E-06
3.515F-06
2.20E-08
1.64E-08
1 .25F-08
2,5SE>04
?.58E»04
2.5BE-04

-------
1,0002 3.496E+05 2,t>U05E+0S 2,5652F*JJ 25.8 2.27E-06 8.W51F-08
1,0001 J.0«
7.471E-05
2.97E-07
1.74E-07
1.01E-07
2.5BE-0U
2.9BE-04
2.5BE-04
CALCULATION IS IN SECTION NO. ¦ 2 AND THE SECTION LENGTH IS o 0,7625 M
COLLECTION AREA ¦ S.B12E-01 Ma
WIRE TO PLATE a l.2T0E"01 H
CURRENT/M ¦ T.869E-05 AmP/m
1/2 WIRE TO «IRE « 6.J50E-02 H
TEMPERATURE ¦ 297,66? K
ION MOBILITY a 1.798E-0O M2/VOLT-SEC
DUST WEIGHT b 3.250E-06 KG/SEC
APPLIED VOLTAGE b a.580E+Oa VOLTS
CORONA WIRE RADIUS ¦ 1.191E-03 M
CURRENT DENSITY a 2.581E-04 AMP/M2
GAS FLOW RATE ¦ 9.060E-02 M3/SEC
PRESSURE b 1,000 ATM
MEAN THERMAL SPEED ~ «,a39E*02 M/SEC
LENGTH INCR. bO.25416565 M
TOTAL CURRENT » 1.500E-04 AMP8
CORONA WIRE LENGTH ¦ 1.906E+00 M
DEPOSIT E FIELD b 2.581E*03 VOLT/M
Gas velocity b 9,760E*01 M/8EC
VISCOSITY a l.flOOE-OS KO/M-8EC
PART, PATH PARAM, ¦ 5.708E-08 M
INPUT EFF./INCR. ¦ 36,64
ROVRI
ERAVG
EPLT
AFJD
C*CD

WFIGHT OUST LAYER J/PARTJ
JflONJ INCR, NO
1,0129
1,0058
1,0027
3.606E*05
3.606E405
3.606E+05
2.7190E+05
2,7190E*05
2.7190E+05
2.4S57E+13
2.U730E+13
2.4807E+13
25.8
25.8
25,6
5.05E-06
4.3IE-06
3.62E-06
1.251E-06
6.996E-07
4.221E-07
CALCULATION is IN SECTION NO, o 3 AND the 8ECTION LENGTH IS B 1,5250 M
J.665E-05
2.049E-O5
1.237E-05
6.45E-06
4.O0E-0B
3.12E-0B
2.5BE-0U
2.56E-04
2.58E-0U
COLLECTION AREA b 1.162E+Q0 M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/M a 7.869E-05 AMP/m
1/2 WIRE TO wire a 6.350E-02 M
TEMPERATURE a 297.667 K
ION MOBILITY a 1.79BE-04 M2/VOLT-SEC
OUST WEIGHT b 3.250E-06 KG/SEC
APPLIED VOLTAGE o U.auOE+OU VOLTS
CORONA WIRE RADIUS a	M
CURRENT DENSITY a 2.581E-04 AMP/M2
GAS FLOW RATE a 9.U60E-02 M3/SEC
PRESSURE b 1,000 ATM
MEAN THERMAL SPEED « 4.439E+02 m/SEC
LENGTH INCR. 80.25416565 M
TOTAL CURRENT a 3.000E-04 AMPS
corona wire LENGTH a 3.P12E+00 m
DEPOSIT E FIELD a 2.581E+03 VOLT/M
GAS VELOCITY b 9.760E-01 M/SEC
VISCOSITY a 1.600E-05 KG/M.SEC
PART, PATH PARAM. B 5,708E«08 M
INPUT EFF./INCR. a 36,64
R0VR1	ERAVG	EPLT	aFID	CMCD	HMD	WEIGHT DUST LAYER J{PART1	J(ION) INCR, NO

-------
1,0012
3.U96E+05
?.6UU3E+n5
2,5*27E+13
25.8
3.21E-06
2.618F-07
7.670E-06
2.20E-08
2.56E»0r-07
3,51JE-06
1.25E-08
2.58C-04
*
1,0001
3.U«6E+05
2.MU3E*n5
2,Sb55E+lJ
25.8
2.27E-06
8»7E-0f>
5.8<»E-0
-------
charging bates fop particle sizes from subroutine chargn or chgsum
SRI THEORY used for particle charging
increment no. q/osatf for indicated particle sizes
0
.2000E-06
0,4000E»06
0,60 0 0E"06
0.8000F-06
0. 1000F-05
1
1,0360
1,0360
1.0360
1,0360
1 .0360
2
1,6568
1,6195
1,5399
1,0770
1.0293
3
1,8826
1 .7973
1.6829
1,5975
1.5301
0
2,0197
1.9011
1,7609
1,6659
1.5931
5
2.1179
1 .9703
1.8226
1,7138
1.6305
6
2.1902
2,0307
1,8669
1.7506
1,6661
7
2.2535
2.0722
1,8981
1.7756
1.6869
e
2.3038
2,1075
1.9208
1.7970
1.7OO0
9
2.3070
2,1382
1.9080
1.8157
1.7205
10
2,3859
2.1653
1,9686
1.8323
1.730S
11
2.0203
2.1896
1.9871
1.8473
1.7070
12
2.0510
2.2115
2,0038
1.8608
1.7385
0
.8000E-05
O.IOOOE-OO
0.1500E"00
0.2500E-00
o.ooooe-oo
1
1.0148
0.9052
0,9001
0.9090
0,8889
2
1.1006
1.1219
1.0910
1.0580
1.0201
3
1.1687
1.1478
1.1159
1.0807
1.0622
4
1.1828
1.1603
1,1263
1.093O
1.0703
5
1.1927
1.1691
1.1330
1.0990
1.0752
6
1 .2003
1.1758
1.1387
1.1032
1.0752
7
1.2027
1.1775
1.1307
1.1032
1.0752
8
1.2027
1.1773
1.1387
1.1032
1.0752
9
1.2027
1.1775
1.1387
1.1032
1.0752
10
1.2027
1.1775
1.1387
1.1032
1.0752
11
1.2027
1.1775
1.1387
1.1032
1.0753
12
1.2027
1.1775
1.1387
1.1032
1.0752
.2000E-05
1,0360
1,3003
1.3673
1,uoao
1.0298
1,0095
1,0606
1 ,0703
1,0790
1,0866
1,0939
1.0939
0.U00OE-O5
1.0360
1 .2067
1.2092
1.2718
1.2877
1.2999
1.3053
1.3053
1.30S3
1,3053
1.3053
1.3053
0.6000E-05
1,0360
1.1662
1.1988
1.2157
1.2277
1,2369
1.2003
1.2403
1.2003
1,2003
1.2403
1,2403

-------
CHARGE ACCUMULATED ON PARTICLE SIZES IN FACH INCREMFNT
INCREMENT	CHARGE FOR INDICATED PARTICLE SIZES

0.2000E-06
o.aoooE-Of.
O.fcOOOE-Ofc
0,800nE-06
1
0,13288E-17
0 ,42333E-17
0.89135E-17
0.15378E-16
2
0.21250E-17
0.66I75E-17
0.13218F-16
0.21924E-16
3
0.24145E-17
0,73036E"17
0,1 4478Ea16
0.23711E-16
0
0.25905E-17
0,77678E»17
0.15185E-16
0.2U726E-16
5
0.27164E-17
0.80671E-17
0,15681E*16
0.25U38E-16
6
0,28142E-17
P.8297UE-17
0,1<)062E-16
0.25984E-16
7
0.28903E-17
0,84670E»17
0,16330E-lh
0.26354E-16
8
0.295U8E-17
0.8M13E-17
0, 16560E-16
0,26672E"16
9
0,3010 7E»17
0.87367E-17
0 ,1 6760E»1fc
0,26950E"16
10
0.30601E-17
0.88474E-17
0.16937E-16
0.27197E-16
11
0,310a2E-17
0.89466E-17
0,1709fct-16
0,27419E"16
12
0,31««1E-17
0.9036UE-17
0,17240E»lfe
0.27620E-16

0.B000E-05
0.1000E-04
0.1500E-04
O,25O0E-0a
1
0.14094E-14
0.21354E-14
0.U5967E-1U
0.12280E-13
2
0,lS8tiOE-l564E-14
0.25338E-14
0,55185E»14
0, 14846E-13
6
0,16670E>14
0.25483E-14
0,55446E*14
0.14903E-13
7
0,lfc703E"14
0.25521E-1U
0,S5446E*14
0,14903E"13
8
0, 16703E-14
0.25521E-HI
0.55446E-14
0.14903E-13
9
0.16703E-14
0.25521E-14
0.55446E-14
0.14903E-13
10
0,1fe703E-l«
P.25521E-14
0,55446E*14
0.1U903E-13
11
0.16703E-M
0.25521E-14
0.S5446E-14
0.14903E-13
12
0.16703E-14
0.25521E-14
0,55446F>14
0.14903E-13
0.1OOOE'OS
0,23628F¦16
0,32596E•1b
0.34987E-16
0,36333E"1fe
0.37276E.J6
0.37998F-16
0.38472E-16
0 , 38880F• 1 <>
0.39238E-16
0,39556E"lb
0,3984jf•1b
0,40104E-16
0.20 0 0E»05'
0,91693E"16
0.1150AE-15
0.I2101F-15
0.12426E-15
0.1265UE-15
0.12828E-15
0.12927E-15
0,13013£«15
0.13090F-15
0.13159E-15
0.13222E-15
0.13222E-15
o.uoooE-ns
0.361"»2E-15
0.42155F-15
O.a36«0E»15
0.44428E-15
0.U49B3E-15
o.asaosE-is
0.U5598E-15
0.U5598E-I5
0.U5598E-15
0.45598E-15
0, 45598E"15
0.455«8E-15
0.6000F-05
0.81097E.15
0,91288E»15
0.93838E-15
0.95163E-15
0,96099E»15
0.96818E-15
0.97083E-15
0,97O83E«15
0.970R3E-15
0.97083E-15
0.97083E-15
0.97083E-15
0.4000E-04
0.30719E-13
0.35252E-13
0.36708E-13
0.36987E-13
0.37156E-13
0.37156F-13
0.37156E-13
0,37156E"13
0,37156E-13
0.37156E-13
0.37156E-13
0.37156E-13

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONJDEALITIES USING SET No, 1 OF CORRECTION PARAMETERS
SIZE
CCF
INLET *
OUTLET * COR. OUTLET
X NO-RAP EFF
. NO-RAP W
no-rap p
COR. EFF.
COR, W
COR, P
2,000E-07
1.751
0.001
0.0513
0.0530
89,1002
9.020
10,8958
53,8820
3.109
06,1180
O.OOOE-07
1.361
0.009
0,0900
0.3318
89,0035
8.997
10,9565
69,6291
0,809
30,3709
fr.000E.07
1.230
0,031
1,3805
0,8009
90,6151
9,658
9,3109
77,8166
6,127
22.1830
8.000E-07
1.179
0,066
2,0301
1,3263
92,2962
10,030
7,7038
82,8001
7,163
17,1959
1,O00E-06
l.iao
0,111
3.0233
1,8069
93,5733
11,168
6,0267
86,1038
8,030
13,8962
2.000E-06
1,072
3,027
06.6806
25,1790
97,1563
10,085
2,8037
93,7032
11,277
6,2568
0.000E-06
1,036
ft.307
36.8367
25,3098
99.0781
19,069
0,9219
97,0053
10,858
2.59U7
6.000E-06
1,02
-------
UNADJUSTED MIGRATION VELOCITIES AND
EFFICIENCIES, AND
DISCRETE OUTLET MASS
LOADINGS


IDEAL UNADJUSTED
IDEAL UNADJUSTED
NO.RAP
RAPPING PUFF
NO-RAP+RAP PUFF
RAPPING PUFF
PARTICLE
HlG, VEL.(CM/SEC)
EFFICIENCY!*)
DM/dLOGD(MG/DSCM)
DM/DLOgD(mG/DSCM)
DM/DLOGD(MG/DSCM)
DISTRIBUTION(*)
DIAM, (M)
3.712E+00
5.981E+0 1
8.3A0E-05
2.709E-0U
3,5«7E-0U
5.350E-02
2.000E-07
W.360E+00
6,«9aE*01
1,72«E-05
3.0S6E-03
a.780E-03
2 ,60bE»01
U.OOOE-07
S.050E+00
7.095E+01
7.391E-05
1.021E-02
1.760E-02
6.176E-01
6,rt00E-07
S,827E*00
7.612E+01
1.7U0E-02
2.1««E*02
3,88aE"02
9,fc85E»01
8, OOOE-07
*,628E+00
B.OJOEfOt
3.06UE"02
3.562F-02
6t626E»02
1 ,265E*00
1,0006.06
1.0S7E+01
9.2S6E+01
8.6B7E-02
1.0U3E-01
1.911E-01
1,817E*01
2,000E»06
1.B16E+01
9.885E+01
1.172E-01
2.127E-01
3.299E-01
2,159E + 01

-------
8UMMARY TABLE OF ESP OPERATING
parameters and performance
DATA SET NUMBER l
E8P PERFORMANCE! EFFICIENCY « "»9.1«83 * SCA ° 2.a58E+01 M**2/(M««3/SEC)
ELECTRICAL CONDITION8I AVG. APPLIED VOLTAGE e U,515E*0
-------
E.P.A. ESP MOOFL
I.E.R.L.-R.T.P. Awn SO.R.I,
REVISION T.JAN, 1, iflTA
PRINTOUT OF INPUT DATA TOR DATA SET NUMBER 1
DATA ON CARD NUMBER t
NENDPT a 10 NDATA s 2
DATA ON CARD NUMBER 2
LAB ESP| 3CA«125FT2/1000ACPM|Ja2UUA/FT2,MMDa25UM|SICHAPo2,5
^ DATA ON CARD NUMBER 3
o
u>
050 b 29.0000 UM SIGMAP a 2.5000

-------
INCREMENTAL ANALYSIS of precipitator PERFORMANCE
lab ESPi 8CA»125FT2/100 0*CFN|Jb20UA/FT2|Mm0«25UH|SIGMAP»2,5
CALCULATION IS IN SECTION NO. ¦ 1 AND THE SECTION LENGTH 13 o o,7625 M
COLLECTION AREA b 5.812E-01 M?
WIRE TO PLATE ¦ 1.270E-01 M
CURRENT/H a 7.B69E-05 AMP/m
1/* WIRE TO "IRE ¦ 6.350E-02 M
TEMPERATURE ¦ 297.667 K
ION MOBILITY ¦ 1.798E-04 M2/V0LT-8EC
DUST HEIGHT s 3.2S0E-06 KG/SEC
APPLIED VOLTAGE o a,600f»0« VOLTS
CORONA WIRE RADIUS B J,191E"03 M
CURRENT DENSITY b 2.581E-04 AMP/M2
GAS FLOW RATE ¦ 9.460E-02 MS/SEC
PRESSURE b 1,000 ATM
MEAN THERMAL 8PEE0 a O,439E»02 M/8EC
LENGTH INCR. bO,25416565 M
TOTAL CURRENT a 1.500E-04 AMPS
CORONA WIRE LENGTH e 1,906E*00 M
OEPOSIT E FIELD o 2,581E*03 VOLT/m
GAS VELOCITY b 9,760E*01 m/SEC
VISCOSITY a 1.B00E-0S KG/M.SEC
PART, PATH PARAM, a 5.708E-06 m
INPUT EFF./INCR, a 36,64
ROVRI
ERAVG
EPLT
AFID
CMCD
HMD
WEIGHT
DUST LAYER J(PART)
JCION) INCR, NO,
1,1368
1,0351
1.0120
J.622E+05
3,622Ef03
J.622E+05
2.7817E+05
2, 7386E + 05
2,727JE+05
2,1940E* 1 3
2.3925E+13
2.A472EM J
25.8
25.6
25,8
2.51E-05
l.JJE-05
9.28E-06
2.590E-05
5.316E-06
1.605E-06
7.5896-04
1.557E-04
4,701E"05
2.39E-07
9.87E-08
4.72E-08
2.5BE-04
2.S8E-0U
2.58E-04
CALCULATION IS IN SECTION NO. b 2 AnD THE SECTION LENGTH IS b 0,7625 H
w COLLECTION AREA s 5.812E-01 M2
9 WIRE TO PLATE 9 1.270E-01 M
CURRENT/M a 7.B69E-05 AMP/N
1/2 WIRE TO WIRE » 6,350E"02 H
TEMPERATURE b 297,667 K
ION MOBILITY a 1.798E-04 M2/VOLT-SEC
DUST WEIGHT a J.250E-06 KG/SEC
APPLIED VOLTAGE b 4.580E+04 VOLTS
CORONA WIRE RADIUS b 1.191E-03 M
CURRENT DENSITY a 2.581E-04 AMP/M2
GAS FLOW RATE b 9,«60E-02 M3/SEC
PRESSURE b J,000 ATM
MEAN THERMAL SPEED a 4.439E+02 H/SEC
LENGTH INCR. bO.25416565 M
TOTAL CURRENT a 1.900C-04 AMPS
CORONA WIRE LENGTH b 1,906Et00 M
DEPOSIT E FIELD b 2.581E+03 VOLT/M
GAS VELOCITY b 9,760E»01 M/SEC
VISCOSITY a 1.800E-05 KG/M.8EC
PART, PATH PARAM, a 5.706E-08 *
INPUT EFF./INCR, a 36,64
ROVRI
ERAVG
EPLT
AFID
CMCD
HMD
WEIGHT
OUST LAYER J(PART)
J(ION) INCR. NO,
1,0047
1,0019
1,0008
3.606E+05
3.606E+05
3.606E+05
2,7150E + 05
2,7150E+05
2.7150E*05
2,47S9E* 1 3
2.4826E+13
2.4853E+13
25,8
25.8
25.8
6.91E-06
5.56E-06
4.59E-06
6.741E-07
3.372E-07
1 .866E-07
1.975E-05
9.879E-06
5(466E*06
2.67E-08
1.66E-08
1 .09E-08
2.5BE-04
2.5AE-04
2.56E-04
CALCULATION IS IN 8ECTION NO. b 3 ANO THE SECTION LENGTH IS a 1,5250 M
COLLECTION AREA a 1,162E*00 M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/m b 7.669E-05 AHP/M
1/2 WIRE TO wire a 6.350E-02 m
TEMPERATURE b 297,667 *
ION MOBILITY a 1.798E-04 MJ/VOLT-SEC
OUST WEIGHT b 3.250E-06 KG/SEC
APPLIED VOLTAGE b 4,440E*04 VOLTS
CORONA WIRE RADIUS B 1.191E-03 M
CURRENT DENSITY a 2.581E-04 AMP/M2
GAS FLOW RATE a 9.460E-02 M3/SEC
PRESSURE b 1,000 ATM
MEAN THERMAL 8PEED a 4.O39E+02 M/SEC
LENGTH INCR, BO,25416565 M
TOTAL CURRENT a 3.000E-04 AMP8
CORONA WIRE LENGTH s 3,812E*00 M
DEPOSIT E FIELD » 2.581E*03 VOLT/M
GAS VELOCITY o 9.760E-01 H/SEC
VISCOSITY a 1.800E-05 KG/M.SEC
PART, PATH PARAM, a 5.708E-08 m
INPUT EFF./INCR. b 36,64
ROVRI
ERAVG
EPLT
AFID
CMCD
HMD
WEIGHT
DUST LAYER J(PART)
J(I ON) INCR. NO.
1,0004
1,0002
1,0001
3.096F »05
3.496E+05
3.496F+05
2.6439E*05
2.6039E+05
2.64J9E+05
2,5649E*I 3
2,5fc54E+13
2,5656C*H
25.8
25.8
25.8
3.85E-06
3.49E-06
3.12E-06
1 .080E-07
6.TR8P-08
«,43tE-08
S.165E-06
1 ,989E"06
I.298E-06
7.26E-09
5.13E-09
3.72E-09
2.58E-0U
2.S8E-04
2.56E-00

-------
1 ,0000 3,«96E+05 2.6439E+05 2.5658E+1J 25.6 2.84E-06 2.982E-08
1 ,0000 3.U96E+05 2.6439E+05 2.5658E+13 25.8 2.59E-06 2.057E-0*
1 ,0000 3.«96E*05 2.6439E*05 2,5658E»1S 25.8 2.3«E-06 1.446E-08
8.735E-07 2.75E-09
6.025E-07 2.07E-09
4,236E»07 1.57E-09
2,58E"04
2.5BE-0O
2.58E.04
10
1 1
12
EST. EFFICIENCY a 99.58 UNCORRECTED COMPUTED EFFICIENCY s 99,88
INCREMENTAL ANALYSIS OF PRECIPITATOR PERFORMANCE
l*B ESP| SCA«125FT2/1000ACFM|Ja205
3.622E+05
2.7914E+05
2,7395E+05
2.7271Ef05
2.1523EM3
2.388 IE*13
2.0486EMS
25.8
25.8
25.8
2.51E-05
1.33E-05
9.29E-06
2.590E-05
5.322E-06
1.606E-06
CALCULATION Is IN SECTION NO. a 2 AND THE SECTION LENGTH IS ¦ 0.7625 M
7.587E-04
1.559E-04
4.705E-05
2.58E-07
9.A7E-08
O.72E-08
2.58E-04
2.58E-04
2.5SE-04
COLLECTION AREA ¦ 5.812E-01 M2
WIRE TO PLATE a 1.27OE-01 M
CURRENT/M ¦ 7.869E-05 AhP/m
1/2 WIRE TO wire ¦ 6.350E-02 m
TEMPERATURE 8 297,667 K
ION MOBILITY a 1.798E-04 M2/V0LT-3EC
DU8T WEIGHT ¦ J.250E-06 KG/SEC
APPLIED VOLTAGE ¦ 4.580E+04 VOLTS
CORONA WIRE RADIUS = 1.1?1E"03 M
CURRENT DENSITY a 2.581F-04 AMP/M2
GAS FLOW RATE b 9.060E-02 M3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL 8PEED a fl,a39E*02 M/8EC
LENGTH INCR, a0,25Ol6565 M
TOTAL CURRENT a 1.500E-04 AMPS
CORONA WIRE LENGTH a 1.906E+00 M
DEPOSIT E FIELD a 2.581E+03 VOLT/M
GAS VELOCITY 8 9.760E-01 M/SEC
VISC08ITY a 1.800E-05 KG/M.SEC
PART. PATH PARAM, a 5.708E-08 H
INPUT EFF./INCR, ¦ 42,86
ROVRI
ERAVG
EPLT
Al? ID
CMCD
HMD
WEIGHT
OUST LAYER J(PART)
J(ION) INCR, NO,
1,0040
1,0015
1.0006
3.606E+05
3,606E+05
3.fc06E*05
2,7142E+05
2,71«2E+05
2,7142E + 05
2.4775EM3
2.0837E+13
2.4860E+ 13
25.8
25.8
25.8
6.92E-06
5.57E-06
4.59E-06
6.742E-07
3.372E-07
1.865E-07
1.975E-05
9,878E"06
5.465E-06
2.66E-08
1.66E-08
1.09E-08
2.58E-0U
2.58E-04
2.58E-04
CALCULATION IS IN SECTION NO, a 3 AND THE SECTION LENGTH IS a 1,5250 N
COLLECTION AREA ¦ 1.162E+00 M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/M e 7.869E-05 AMP/M
1/2 WIRF TO WIRE ¦ 6.350E-02 M
TEMPERATURE a 297,667 K
ION MOBILITY a I.7Q8E-0U M2/V0LT.SfC
DUST WEIGHT b 3.250F-06 KG/SEC
APPLIED VOLTAGE o 4.440E+00 VOLTS
CORONA WIRE RADIUS a l,l91E-rt3 M
CURRENT DENSITY a 2.5B1E-04 AMP/M2
GAS FLOW RATE a 9.460E-02 M3/SEC
PRESSURE = 1,000 ATM
MEAN THERMAL SPEED « fl.flJ9E+02 M/SEC
LFNGTH INCR. aO.25416565 m
TOTAL CURRENT a 3.000E-04 AMPS
CORONA WIRE LENGTH a 3.812E+00 M
DEPOSIT E FIELD s 2.581E+03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SEC
VISC08ITY 8 1.800E-05 KG/M.SEC
PART, PATH PARAM. a 5.708E-08 M
INPUT EFF./INCR, a 42,86
ROVRI	ERAVG	EPLT	AFID	CMCD	MMt)	WEIGHT DUST LAYER J(PaPT)	J(ION) INCR, NO.

-------
1 .0003
3.49fcE+05
2.fc«38E»05
2.5653E+13
25.6
3.85E»06
1.08OE-OT
3.16UE-06
7.26E-09
2.58E-04
7
1,0001
3,a"»6E + 05
2,6«S8E»05
2.56S6E+13
25,8
3,«5E-06
6,T86E"08
1.9B8E-06
5.1JE-09
2,S6E*04
fl
1,0000
5,fl'6E+05
2,6OJ8F*0S
2,5S57E*J 3
25,6
3.12E-06
u.a20E-o"
1.29BE-06
3.72E-0O
2.58E.0U
9
1,0000
S,U96E*05
2.65BEtl3
25.8
2.84E-06
2.9B0E-0B
8.T31E-07
2.75E-09
2,S8E»04
10
l.oooo
S.fl'ftE+OS
2.6438E+05
2,5658E4t3
25.8
2.59E-06
2.056F-08
6.022E-07
2,06E"09
2.S6E-QU
U
1,0000
3.«"»6E + 05
2.643BE+05
2.5658EH3
25.8
2.S4E-06
1.UU5E-08
«, 234E»07
1,56E-0"
2.58E-0U
12
ro
o
as

-------
CHARGING Bates FOR PARTICLE SIZES FROM SUBROUTINE C HARGN OR CHr.SUM
SRI THEORV USED FOR PARTICLE CHARGING
INCREMENT NO.
0/nS»TF FOR T*"">ICATpn PARTICLE SIZFS
0
.2000E-06
0.4000E-06
0.6000E-06
0,6000E"06
0,1000E"05
1
1 .0360
1,0360
1,0360
1.0360
1,0360
2
1.6678
1.6281
1.5170
1.4831
1.4316
3
l.SRia
1.8011
1.6883
1.6020
1,5380
0
2.0267
1.9063
1.7691
1.6693
1,5'61
5
2,1235
1 .9785
1.6259
1.7166
1,6368
6
2.1987
2.0311
1.8696
1.7528
1,6681
7
2.2571
2.0751
1.9004
1.7775
1,6686
e
2.1071
2,1100
1.9266
1.7966
1,7062
9
2.3303
2,1104
1.9498
1.6172
1,7218
10
2.3665
2.1673
1.9702
1.6337
1,7356
11
2.1227
2.1913
1,9665
1.8165
1,7461
12
2.0536
2.2131
2.0051
1.6619
1,7594
0
.8000E-05
0.1000E-01
0.1S00E-04
0.2500E-04
0.4000E-04
I
1.0332
1,0011
0,9969
0,9197
0,6965
2
1,1436
1.1245
1.0945
1.0621
1,0275
3
1.1705
1.1494
1.1170
1,0661
1,0636
4
1,1611
1,1615
1.1273
1,0942
1.0711
S
1,1937
1.1700
1.1342
1,0997
1.0757
6
1,2012
1,1765
1.1394
1.0997
1,0757
7
1,2034
1,1762
1,1394
1,0997
1.07S7
6
1,2031
1,1782
1.1394
1.0997
1,0757
9
1,2031
1.1782
1,1394
1,0997
1,0757
10
1.2034
1.1762
1.1394
1,0997
1,0757
11
1,2034
1,1782
1,1394
1.0997
1,0757
12
1.2034
1,1782
1.1394
1.0997
1,0757
A,2000E»05
0.1000E-05
0.6000E-A5
1,0360
1.0360
1,0360
1,3037
1,2089
1,1679
1.3698
1,2508
1,2000
1,4059
1,2730
1,2167
1.4313
1.2886
1,2281
1,4507
1.3006
1,2375
1.4617
1.3060
1,2406
1.4713
1,3060
1,2408
1,4799
1,3060
1,2408
1,4676
1,3060
1,2406
1,4946
1,3060
1,2108
1.4946
1,3060
1,2106

-------
CHARGE ACCUMULATED ON PARTICLE SIZES IN EACH INCREMENT
INCREMENT	CHARGE FOR INDICATED PARTICLE SIZES

0.2000E-06
0.4000E-06
0.6000E-06
0.8000E-06
1
0.132B8E-17
0.42333E-17
0,89135F" 17
0.15378E-16
2
0.21390E-17
0.66536E-17
0,1331OE" 16
0.22014E-16
3
0.242S9E-1T
0.73716E-17
0,14525E»16
0.23779E-16
4
0,25"»94E-17
0.77892E-17
0.15220E-16
0,247 78E" 16
5
0.27236E-17
0,80 841E»17
0.15709E-U
0.25479E-16
b
0,28201E»17
0.B3113E-17
O.U065E-16
0,2fc017E»lfc
7
0.28953E-17
0.84789E-17
0.1635PE-U
0.26383E-16

0.29591E-17
0.B6215E-17
0 ,16577E"16
0.26697E-16
9
0.30145E-17
0.8745TE-17
0.16775E-16
0.26972E-16
10
0.30635E-17
0.885S5E-17
0.16950E-16
0.27217E-16
It
0.31071E-1T
0.89539E-17
0.17108E-16
0.27437E-16
12
0.3J469E-17
0.90429E-17
0,17251E»16
0.27636E-16

C.8000E-05
o.lo ooe-0 a
0,1500E»04
0.2500E-04
1
0.1O349E-14
0,21699E"14
0.46594E>la
0.1242UE-13
2
0.15884E-14
0.24373E-14
0,5329 IE"14
0.1U347E-13
3
0.16256E-14
0.24913E-14
0.54O07E-1U
0.14672E-13
4
0.1644SE-14
0.25174E-14
0,54889E>14
0.14782E-13
5
0.165T8E-10
0.25358E-14
0.55223E-14
0.14855E-13
6
0.16681E-14
0.25499E-14
0.55A76E-14
0.14B55E-13
7
0,167l3E-ia
0.25336E-1U
0,55076E«ia
0.14853E-13

0.16713E-1O
0,25536E»14
0,55«T6E»14
0.148S3E-13
9
0,167l)E-14
0.25536E-14
0,55fl76E-14
0.14855E-13
10
0,167l3E»14
0.25536E-14
0.55A76E-14
0,148556-13
11
0.16713E-14
0,2353fcE»14
0.55476E-14
0.14855E-13
12
0.16713E-14
0.25S36E-14
0,55fl76E»14
0.148S5E-13
O.lOOOE-05
0.2362BE-16
0.32717E-16
0.J5076E-16
0.3640 IE" 16
0.37330F-16
0.3«0«2E-16
0.38510E-16
0.38913E-16
0.39267E-16
O.S9583F-16
0.30867E-16
0.40126F-I6
0.2000E-05
0.91693E-16
0,1153BE-15
0.12123E-15
0.12443E-15
0.12667E"15
0.12B39E-15
0.12036E-15
0.13021E-1S
0.13097E-15
0.13166E-15
0.13228E-15
0.13228E-15
0,4000E"05
0 , 3M '2F»15
0.42231E-1S
0,fl36'5E"15
0,
-------
PARTICLE SIZE PANPE STATISTICS
CORRECT IONS FnR NONI&FALITIES USINC SFT NO. 1 OF CORRECTION PARAMETERS
SIZE
CCF
INLET X
outlet X
COR, OUTLET
X NO-RAP EFF
, NO-RAP W
NO-RAP P
COR, EFF,
COR, N
COR, P
2,000E-07
1,751
0.000
0.0113
0,0016
89,1173
9,025
10.8827
89,1173
9,025
10,8627
fl.OOOE-07
1,361
0,001
0.1090
0.0218
89.0058
R.998
10,9502
89,0058
8.998
10,9502
6.000E-07
1 .239
0 .nil
0.5?7n
0,60*?
90.6A0B
9,656
9.3192
26.6099
1 .259
T3.190I
8.000E-07
1,179
0,010
1.0960
0.9901
92.2882
10,026
7,7118
52,3279
3,010
07,6721
1.000E-06
1,100
0.016
1.7616
1.3583
93.5635
11,161
6,0365
66,0251
0,392
33,9709
2.000E-06
1,072
0.900
38.5150
21.1966
97,1060
10,071
2,8536
89,2092
9,070
10,7508
a.oooE-06
1,036
3,202
oa.3098
20,9761
99,0726
19,000
0,927a
96,0209
13,550
3,5751
6.000E-06
1,020
3,863
10.6353
12,7798
99,8157
25,618
0.1803
98,0838
17,000
1.5162
8, 000E-06
1,018
5.501
2.0700
10,1875
99,9699
32,997
0,0301
99,1512
19,005
0,8088
1.000E-05
1,010
0,705
0.3631
5.8255
99,9909
00.196
0.0051
99,0373
21,077
0,5627
1.500E-05
1,010
20.198
0.0299
13,2109
99,9999
58,189
0,0001
99,7001
23,638
0,2999
2.500E-05
1,006
20,697
0.0312
5,6806
99,9999
93,130
0,0001
99,8701
27,170
0,1259
O.OOOE-OS
1,000
00,896
0.0605
3.1568
99,9999
105.361
0,0001
99,9606
32,330
0,0350
EFFICIENCY -
STATED a
99.88
COMPUTED b
99,8791
CONVERGENCE
obtained



ADJUSTED NO-RAP EPF, o 99.9330
HMD OP INLET SIZE DISTRIBUTION b 2.500E+01
8IGHAP OF INLET SIZE DISTRIBUTION ¦ 2,500Et00
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS a 2.77TE+00
SIOMAP OP EFFLUENT UNDER NO-RAP CONDITIONS s 1.766E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0,995
M	precipitation rate parameter under no-rap conditions o 2^,738
o
VO
8IGHAG* 0,000 WITH 0,000 SNEAKAGE OVER it,000 STAGES
NTEMP e I
RHMD ¦ 6,00
RSrCNA a 1,50
CORR, EPF, a 99.5016
CORRECTED HMD OF EFFLUENT b 5.866E+00
CORRECTED 8IGMAP OF EFFLUENT s 2.197E+00
LOG-NORMAL GOODNESS OF FIT s 0,993
CORRECTED PRECIPITATION RATE PARAMETER " 21,91

-------
UNADJUSTED migration VELOCITIES and EFFICIENCIES, and discpete outlet mass loadings
ideal UNADJUSTED
IDEAL UNADJUSTED
NO-RAP
RAPPING PUFF
NO»RAP*RAP PUFF
RAPPING PUFF
PARTICLE
MIG, VEL.(CM/SEC)
EFFICIENCY(X)
DM/OLOGD(MG/DSCM)
DM/OLOGD(MG/nSCM)
DM/DLOGD(HG/DSCM)
DISTRIBUTIONCX)
DIAM, (M)
J.71UE+00
5.986E+A1
5.9?9E-06
l,653E-0.«9«Et01
1.687E-0U
1.86UE-03
2.033E-03
2.806E-01
3«E»00
2.S00E.65
1.U5UE+02
1,OOOE+02
7.5ME-05
2.700E-02
2.707E-02
31681lE*flO
U.000E-05

-------
SUMM4RV table OF ESP OPERATING
PARAMETERS AND PERFORMANCE
DATA SET NUMBER 1
ESP PERFORMANCE! EFFICIENCY a 99,5116 X SC* ¦ 2.U58E+0J M*»2/(M*»J/SEC)
ELECTRICAL CONDITIONS!	AVG, APPLIED VOLTAGE s «,515E+0a V
AVG, CURRENT OEN8ITY b 25,81 NA/CM**2
RESISTIVITY b 1,000E+69 OHM.CM
SIZE DISTRIBUTIONS I INLET MMD o 2.500E+01 UM INLET SIGMaP a 2.500E+00
OUTLET MHO b 5a 866E + 00 UM OUTLET SIGMAP ¦ 2.197E+00
NONIDEAL PARAMETERS I	GAS 8NEAKAGE FRACTION ¦ 0,00 /SECTION GAS VELOCITY SXGMaQ ¦ 0,00
RAPPING MMD » 6.000E+00 UM RAPPING 8IGMAP b 2,500Et00

-------
E.P.a. ESP MODEL
I.E.R.L.-R.T.P, AND 30.B.I
REVISION I,JAN, 1, 1978
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER 1
DATA on CARD NUMBER 1
NENDPT ¦ 1fl NDATA ¦ 2
DATA ON CARD NUMBER 2
LAB E8PI 8CAb125FT2/1000ACFMjJ«2UUA/FT2|MMDolOUMjSIGHAP«l,5
data ON CARO number 3
D50 ¦ 10.0000 UM 8IGMAP ¦ 1.5000

-------
INCREMENTAL analysts of PRECJPTTATOR PERFORMANCE
LAB ESPt SCA»125FT2/1000ACFMjJs2UUA/FT2,MmPo!0UM|SIGMAPb1,5
CALCULATION IS IN 8ECTION NO. ¦ 1 AND THE SECTION LENGTH IS a 0.7625 M
COLLECTION AREA ¦ 5.812E-01 «2
WIRE TO PLATE o 1.2T0E-01 M
CURRENT/M b 7.869E-05 AmP/M
1/2 WIRE TO WIRE « 6.350E-02 M
TEMPERATURE » 297.667 K
ION MOBILITY a 1.798E-04 M2/VOLT-SEC
OUST HEIGHT • 3.2S0E-06 KG/SEC
APPLIED VOLTAGE b 4.600E+04 VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY o 2,581E-0« AHP/M2
GAS FLOW RATE e 9.460E-02 M3/SEC
PRESSURE o 1.000 ATM
MEAN THERMAL SPEED a 4.439E+02 M/SEC
LENGTH INCR. =0.25016565 M
TOTAL CURRENT a 1.500F-04 AMPS
CORONA WIRE LENGTH b 1.906E+00 m
DEPOSIT E FIELD b 2.581E+03 VOLT/M
GAS VELOCITY b 9.760E-01 M/SFC
VISCOSITY s 1.S0OE-05 KG/m-SEC
PART. PATH PARAM, b 5.708E-08 M
INPUT EFF./INCR. ¦ 42a86
ROVRI
ERA VG
EPLT
AFID
CMCD
MMD
WEIGHT
DUST LAYER J(PART)
J(I ON) INCR. NO.
1,2552
1,0760
1,0223
3.622E+05
3.622E+05
3,622E*05
2.8366E+05
2,7579Et05
2.7327E+05
1.97I1E+13
2.3017Etl3
2.4221E+13
25.8
25,8
25.8
1.02E-05
8.83E-06
7.69E-06
1.846E-05
8.532E-06
3.720E-06
5.407E-04
2.499E-04
1 ,090E-0«
3.48E-07
2.11E-07
1.08E-07
2.S8E-0U
2.58E-0U
2.58E-04
CALCULATION 18 IN 8ECTION NO. a 2 AND THE 8ECTI0N LENGTH IS ¦ 0.7625 M
COLLECTION AREA a 5.812E-01 M2
WIRE TO PLATE ¦ 1.270E-01 M
CURRENT/M ¦ 7.869E-05 AMP/M
1/2 WIRE TO WIRE c 6.350E-02 M
TEMPERATURE ¦ 297,667 K
ION MOBILITY a 1.798E-04 M2/V0LT-8EC
OUST WEIGHT a 3.250E-06 KG/SEC
APPLIED VOLTAGE ¦ 4.58OE+0A VOLTS
CORONA WIRE RADIUS ¦ 1.191E-03 M
CURRENT DENSITY b 2.5B1E-04 AMP/M2
GAS FLOW RATE o 9.460E-02 M3/8EC
PRESSURE b 1,000 ATM
MEAN THERMAL SPEED b fl.a39E+02 M/SEC
LENGTH INCR. aO.25416565 M
TOTAL CURRENT a 1.500E-04 AMPS
CORONA WIRE LENGTH s 1.906E+00 M
DEPOSIT E FIELD b 2.581E+03 VOLT/m
GAS VELOCITY b 9.760E-01 M/SEC
VI8COSITY a 1.800E-05 KG/M.SEC
PART, PATH PARAM. a 5.708E-08 M
INPUT EFF./INCR. ¦ 42.86
ROVRI
ERA VG
EPLT
AFIO
CMCD
HMD
WEIGHT
OUST LAYER J(PART)
J(ION) INCR. NO.
1,0070
1,0023
1,0008
3.606E*0S
3.606E+05
S.606E+05
2.7161E+05
2,7161E*05
2.7161E+05
2,4702E+13
2.4818E+1J
2,48S6E«13
25,8
25,8
25.8
7.02E-06
6.47E-06
5.97E-06
1.738E-06
8,673E"07
4.532E-07
5.092E-05
2.541E-0S
1,3?8E»05
5.69E-08
3.15E-08
1.80E-0B
2.58E-04
2.58E-0U
2.58E-0O
CALCULATION 18 IN SECTION NO. a 3 AND THE SECTION LENGTH 18 a 1.5250 M
COLLECTION AREA b i.162E*00 M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/M a 7.869E-05 AMP/m
1/2 WIRE TO WIRE B 6.350E-02 M
TEMPERATURE a 297,667 K
ION MOBILITY a 1.79BE-04 M2/VQLT-SEC
OUST WEIGHT ¦ 3.250E-06 KG/SEC
APPLIED VOLTAGE b a.flflOE+OU VOLT8
CORONA WIRE RADIUS s 1.191E-03 M
CURRENT DENSITY b 2.581E-04 AMP/M2
GAS FLOW RATE b 9.460E-02 M3/8EC
PRESSURE b 1,000 ATM
MEAN THERMAL SPEED b 4,U39E*02 M/SEC
LENGTH TNCR. bO.25416565 m
TOTAL CURRENT b 3.000E-04 AMPS
CORONA WIRE LENGTH b S.812E+00 M
DEP08IT E FIELD b 2,S«1E*0J VOLT/m
GAS VELOCITY b 9.760E-01 M/SEC
VISCOSITY b 1.800E-05 KG/"«SEC
PART, PATH PARAM, b 5,70BE-Og m
INPUT EFF./INCR, b 02.86
ROVRI	ERAVG EPLT AFID	C"CD	MMD	XEIGMT	nU8T LAYER	J(PART)	JCTON)	INCR. NO,
1,0002	3.496E+05	?.6«38E*05	2.5652E + U	25.P	5.52E-06	2.40OE-07	7.042E-06	1,03E-0«	2.58E-0tt	7
1,0001	3.496E*05	2.6438E+05	2.5656E+I3	25.fi	5.16E-06	1.S61E-07	3.987E-06	6.19E-09	2.58E-04	8
1,0000	3.496E«05	2.6«38E+05	2.5658E+IJ	25.8	U.83E-06	T.«19F-08	2.320E-06	3.82E-09	2.58E-0U	9

-------
1,0000 J.«*fcE+05 2.6«38Et05 2.5656E+1J 25.B 4.51E-06 U.717E-08 1.382E-06 2.41E-09 2.5BE-0H	10
1,0000 J.U96E+05 2,fc«'J8E+05 2,$658E*13 25.B A.19E-06 2,B6«E»0fl 8,«05E-07 1,5«E-09 2,5BE-0«	11
1 ,0000 J.fl9bE>05 2,61 J8E + 05 2.5650E+13 25.B J.91E-06 1.778E-0B 5.20BE-07 1 .00E-09 2.58E-0U	12

-------
charging rates for particle sizfs from subroutine chargn or chgsum
SRI
THEORV used
FOR PARTICLf
CHARGING





NCffMT NO,
o/(js»tf FOB
'~¦niCATFO
PiPTtriF SI7F9




0
,2000F>06
0.4000E-06
0.6000E-06
0.8000E-06
0.10OOE-O5
0.2000E-05
0.4000E-05
0.6000E-05
1
1.0360
1.0360
1.0360
1.0360
1.0360
1,0360
1 ,0360
1,0360
2
1.6566
1.61<"t
1,5307
1,4760
1,4202
1.3003
1,2067
1,1662
3
1,8837
1.7982
1,6835
1 .5081
1,5346
1.3676
1,240«
1,1090
4
2.0211
1.0021
1.7658
1.6666
1,5037
1.4044
1,2720
1,2159
5
2.1103
1.0753
1,8234
1.7145
1.6350
1.4301
1,2870
1 ,2270
6
2,195«
2.0316
1,8676
1.7512
1,6666
1 ,4408
1,3001
1,2370
T
2.2546
2,0730
1.8087
1.7761
1.6873
1.4600
1,3055
1 ,2404
e
2.3047
2,1082
1,0253
1.7074
1.7052
1.4706
1,3055
1 ,2404
4
2.3482
2,1388
1,0485
1.8161
1.7208
1,4703
1,3055
1 ,2404
10
2.3866
2,1650
1,0601
1.8327
1,7348
1.4870
1,3055
1 ,2404
11
2,4210
2,1001
1,0875
1.8476
1,7073
1,4041
1,3055
1 ,2404
IS
2,4520
2,2120
2,0042
1.8612
1,7587
1 ,4941
1,3055
1,2404
0
.BOOOE-OS
0.1000E-04
0.1500E-00
0.2500E-04
O.4OO0E-O4



i
1.0011
0,0732
0.0342
0.0007
0,8814



2
1.1340
1,1200
1.0800
1,0550
1,0168



3
1,1681
1,1472
1,1155
1,0843
1,0618



4
1.1823
1,1600
1,1261
1,0032
1,0701



s
1.1025
1,1680
1,1332
1,0080
1,0751



6
1.2002
1,1756
1.1387
1,1031
1,0751



7
1.2026
1,1774
1,1387
1,1031
1,0751



e
1.2026
1,1774
1,1387
1,1031
1,0751



9
1.2026
1.1774
1.1387
1,1031
1,0751



10
1 .2026
1.1774
1,1387
1,1031
1,0751



11
1,2026
1.1774
1,1387
1,1031
1,0751



12
1.2026
1,1774
1,1387
1,1031
1,0751




-------
charge accumulated on particle sizes in each increment
INCREMENT	CHARGE FOR INDICATED PARTICLE SIZES

0,2000E»06
O,#O0OE-O6
0,6000F »06
0.8000E-06
1
0,13288E»17
0.U2333E-17
0.89135E-17
0.15378E-16
2
0.212U7E-17
0.66167E-17
0,132a 7E»16
0.21922E-16
3
0,2ai60E-l7
0,73«73E-17
o,iaaeaE-16
0.23720E-16

0.25923E-17
0.77T22E-17
0.15192E-16
0 , 2a 737E »16
5
0.27182E-17
n,80713E"17
0,15688E»16
0,25a«8E-16
6
0.29157E-17
0.63011E-17
0,16068E"16
0.25993E-16
7
0.28916E-17
0.8U703E-17
0,16336E" 1
0 ,26 362E"16

0.29560E-17
0,86142E »17
0,1656a£»16
0.26679E-16
9
0,301lflE-17
0.87392E-17
0, 1676aE-16
0.26956E-16
10
0, 3061OE"17
0.88U97E-17
0.16941E-16
0.27202E-16
11
0.31051E-17
0.89U87E-17
0,17099E"16
0,27a2aE«l6
12
0,3l«fl9E-l7
0.90382E-17
0,172a3E»16
0.27625E-16

0.8000E-05
0. lOOOE-OU
0,1500E»oa
0,2500E-0a
1
0.13903E-1U
0,21093E»1a
o.asasap-ia
0.12167E-13
2
0,158l9E-l«
0,2a27aE-iu
0.53068E-1U
0,ia26«E-13
3
0,16223E-1«
0,2«865E-ia
0,5u3iaE-ia
0,1«6U8E"13
0
0,16fl22E-l«
0.25H2E-10
0,SQ829E>ia
0,ia767E-lS
5
0,16562E>10
0,2533«E-ia
0,55179e»1 a
o.iaea5E-l3
6
0,166fcBE»l1
0,25081E-1«
0.55Utt2E»ia
0,ia902E-l3
7
0.16701E-10
0,25519E"1 a
o,55aa2E»ia
0,1a902E»l3

0,1670lE-ia
0,25519E-1a
0.55UU2E-1U
0,ia902E-13
9
0,16701E»ia
0,25319E-ia
0,55«a2E-ia
0,ia902E-lJ
10
0,16701E-ia
0,25519E»1a
o,55aa2E-ia
0,la902E-13
11
0,16701E»1«
0,25519E-ia
0,55aa2E»ia
0.ia902E-15
12
0.16701E-1#
0,23519E-ia
0,55aa2E-ia
0,ia902E-13
0¦10OOE»O5
0.23628F-16
0.3259«E-16
0,3a99nE-16
0,363«6F«16
0.37289E-16
0.38010F-16
0.J8«8?E-lh
0.38889E-16
0.392U6E-16
0,3956UE"I6
0.39850E-16
O.aoi10F-16
0.2000E-P5
0.91693F-16
0.1 15O0E-15
0,1210«E-t5
0.12U30E-15
0.12657E-15
0.12831E-15
0.12929E-1S
0.13015E-15
0.13092E-15
0.13161E-15
0.13223E-15
0.13223E-15
O,aO00E»O5
0, 36192E»15
0,a2l53E«15
0,a36«7E-15
0,aaa37E-15
0.UU991E-15
0,«SU15E-15
0.45605E-15
0.U5605E-15
0.U5605E-15
0,a5605E»15
0,a5605E-15
0.U5605E-15
0.6000E-05
0.A1097E-15
0,91285E"15
0.93850E-15
0.95177E-15
0,96113E-15
0.968J0E-15
0.97090E-1S
0,9709UE"15
0.9709UE-15
0.9709UE-15
0,9709«E«15
0.9709IIE-15
0.U000E-04
0.30«60E-1S
0, J5139E-13
0.3669UE-13
0.36980E-13
0,J7152E-13
0.37152E-13
0.37152E-13
0,37152E» 13
0.37152E-13
0.37152E-13
0.37152E-13
0.37152E-13

-------
PARTICLE SIZE RANGF STATISTIC
CORRECTIONS FOR NONIDE ALIT IES USING SFT No', 1 OF CORRECTION PARAMETERS
SIZE
CCF
INLET *
OUTLET X
COR, OUTLET
X NO-RAP EFF
, NQ-RAP W
NO-RAP P
COR, EFF.
COR, *
COR, P
2.000E-07
1,751
0,000
0,0000
0,0000
89,1100
9,022
10,8900
89,1100
9,022
10,8900
4,OOOE-OT
1,361
0,000
0.0000
0,0000
89.0481
8,999
10,9519
89,0481
8,999
10,9519
6,000E-07
1,239
o.nnn
O.OPftfl
0.0000
90.6S89
9.659
9,3111
90,6689
9,659
9,3111
6.000E-07
1,179
0,000
0,0000
0,0000
92.2995
10,432
7,7005
92,2995
10,432
7.7005
1.000E-06
1,140
0,000
0,0002
0,0000
93.5761
11 ,169
6,4239
93,5761
11,169
6,4239
2.000E-06
1,072
0,113
4,0955
16,4005
97,1579
14,486
2,8421
29,5699
1.426
70,4301
4.000E-06
1,036
4,726
55,3402
27.6403
99.0769
19,072
0,9211
97,1532
14.181
2,6466
6,000E-06
1,024
13,167
30,5407
16,2629
99.8175
25,660
0,1825
99,3980
20.803
0,6020
6.000E-06
1,018
22.798
6.6115
11,3570
99,9696
32,951
0,0304
99,7575
24.502
0,2425
1.000E-05
1,014
17,612
1,1595
6,0223
99,9946
40,153
0,0052
99,6336
26.033
0,1664
1.S00E-05
1,010
36.059
0,0455
13,3598
99,9999
58,153
0,0001
99,8197
25.707
0,1803
2.500E-05
1,006
5.255
0.0066
5,7462
99.9999
93,427
0,0001
99,4678
21.30U
0,5322
4,000E-05
1 ,004
0,270
0.0003
3.1910
99.9999
145,268
0,0001
94,2438
11.616
5,7362
EFFICIENCY -
STATED »
99.88
COMPUTED
99,9052
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, o 99.9213
HMD OF INLET SIZE DISTRIBUTION a 1.000E»01
SIGMAP OF INLET SIZE DISTRIBUTION a J.500E+00
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 4.679E+00
SIGMAP OF EFPLUENT UNDER NO-RAP CONDITIONS a 1.390E+00
LOG-NORMAL GOODNESS OF PIT ¦ 0,999
PRECIPITATION Rate PARAMETER UNDER NO-RAP CONDITIONS e 29,063
SIGMAG" 0.000 WITH 0,000 SNEAKAGE OVER 4,000 STAGES
NTEMP ¦ J
RNMD ¦ 6.00
RSIGMA a ?,50
CORR. EFF, s 99,5132
CORRECTED HMD OF EFFLUENT ¦ 8.196E+00
CORRECTED SIGMaP OF EFFLUENT a 1.52TE+00
LOG-NORMAL GOODNESS OF FIT ~ 0,979
CORRECTED PRECIPITATION RATE PARAMETER a 21.67

-------
UNADJUSTED MIGRATION VELOCITIES AND
EFFICIFNCIFS, AND
OISCRETF OUTLET MASS
LOADINGS


IDEAL UNADJUSTED
IDEAL UNADJUSTED
NOaRAP
rapping puff
NO»RAPfRAP PUFF
RAPPING PUFF
particle
MIG, VEL.(CM/SEC)
FFFICIENCYt*)
OM/OLOGD(MG/DSCM)
DM/DLOGO(MG/D9CM)
DM/DLOGD(MG/DSCM)
DISTRIBUT I ON(X)
OIAM.{M)
3,71 JE»00
5,'85E*01
2.251E-17
1,77iiE-0a
1.77UE-04
5,3SOE*02
2.H00E-07
1,265E+0 0
fc.UQUEtOl
1.37BE-12
2.001E-03
2.001E-03
2,806E>01
U.800E-07
5.031E+00
7,09bE+01
6.080E-10
6./.87E-03
6,687E»0 S
6.176E-01
6.000E-07
5.828E+00
7,<>12E*01
3.731E-08
1 .U0UE-02
1, il0uE-02
9.685E-01
8,OOOE-07
6,62'E*00
8.039E+01
6.816E-07
2.332E-02
2 ¦ 333E»02
1.285E+00
1,OOOE«Ob
1,057E*01
9.257E+01
2.871E-03
6.828E-02
7.U5E-02
1,817E~01
2,OOOE»06
1.816E+01
9.885E+01
b,663E»02
1.3"»3E-01
2.059E-01
2,159E+01
U.000E-06
2.S66E+01
9.982E+01
6 ,867E»02
1.579E-01
2.266E-01
1.310E+01
6,000E>06
3.295E*01
9.997E*01
2,lb,T36E*00
1.000E-05
S.815F+01
1 ,000t*02
5.509F-05
1.001E-01
1.002E-01
1 ,5

-------
SUMMARY TABLE OF ESP OPERATING
parameters and performance
DATA SET NUMBER 1
ESP PERFORMANCE! EFFICIENCY ¦ 99.5132 X SCA = 2.«58E*01 M*#2/fM**J/8EC)
ELECTRICAL CONDITIONS! AVG, APPLIED VOLTAGE ¦ fl,51SE*0fl V
AVG, CURRENT DENSITY a 25,81 NA/CM**2
RESISTIVITY a i.OOOEtOO OHM.CM
SIZE 0ISTRIBUTION9I INLET HMD s 1.000E+01 UH INLET SIGHAP b 1.500E+00
OUTLET HMD o 8.190E+OO UH OUTLET SIGHAP o 1.527E+00
NONIDEAL PARAMETERS! GAS SNEAKAGE FRACTION ¦ 0.00 /SECTION GAS VELOCITY SIGHAG * 0,00
RAPPING HMD a 6.000E+00 UH RAPPING SIGMAP ¦ 2.500E+00

-------
t.P.A. ESP wnOFL
I.E.R.L.-R.T.P. AND SO.R.I.
REVISION I,JAN, i, 1978
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER 1
DATA ON CARD NUMBER 1
NENDPT b 14 NDATA o 2
OATA ON CARD NUMBER 2
LAB E8PI SCAol25FT2/l000ACFM|Jo2«UA/FT2|MHD»l0UM|SIGMAPo5,0
w OATA ON CARD NUMBER 5
N)
O
DSO > 10,0000 UM SIGMAP o 5,0000

-------
INCREMENTAL analysis OF PRECIPITATOR PFRFORMANCE
LAB E9PI 8CAei25FT2/1000ACFM|JB20UA/FT2fMMO«10UM|SICMAPs5.0
CALCULATION 18 IN 8ECTI0N NO. ¦ 1 AND THE SECTION LENGTH IS s 0.7625 M
COLLECTION aREA ¦ 5.812E-01 M2
WIRE TO PLATE » 1.270E-01 M
CURRENT/M ¦ 7.869E-05 AMP/M
1/2 WIRE TO WIRE a 6.350E-02 H
TEMPERATURE o 297.667 K
ION MOBILITY b 1.798E-04 M2/V0LT-SEC
OUST WEIGHT s 3.250E-06 KG/SEC
APPLIED VOLTAGE » 4.600E+04 VOLTS
CORONA WIRE RADIU8 « 1.191E-03 H
CURRENT OENSITV a 2,581E"04 AMP/H2
GAS FLOW RATE e 9,O60E-02 M3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED a 4.439E+02 M/SEC
LENGTH INCR, bO ,25416565 M
TOTAL CURRENT = 1.500E-04 amps
CORONA WIRE LENGTH « 1.906E+00 M
DEPOSIT E FIELD a 2.581E+03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SEC
VISCOSITY ¦ 1.800E-05 KG/m.SEC
PART, PATH PARAM, a 5,708E»08 M
INPUT EFF./INCR, b <12,86
ROVRI
ERAVG
EPLT
AFIO
CMCO
HMD
WEIGHT
DUST LAYER JCPART)
J(1 ON) INCR, NO,
1,8651
1 • 41 S3
1,2031
5.622E+0?
3,622E*0S
3.622C+05
3,0900E+05
2.9136E+05
2.8143E+03
1.329SE+13
1.7499E+13
2.0585E+1J
25,8
25,6
25,8
1.99E-05
7,J6E"06
3.83E-06
1.825E-05
5.980E-06
2.852E-06
5,3«7E-00
1,752E»04
8.355E-05
3.72E-07
3.96E-07
3.46E-07
2.5BE-04
2.58E-04
2,58E»0U
CALCULATION is IN SECTION NO, a 2 AND THE SECTION LENGTH TS a 0,7625 M
COLLECTION AREA ¦ 5.812E-01 M2
K HIRE TO PLATE ¦ 1.270E-01 M
M CURRENT/M ¦ 7.869E-05 AHP/M
1/2 WIRE TO WIRE b 6.350E-02 M
TEMPERATURE ¦ 297,667 K
ION MOBILITY a 1.798E-00 M2/V0LT-SEC
DUST WEIGHT a J.250E-06 KG/SEC
APPLIED VOLTAGE ¦ «,580E*0« VDLT8
CORONA WIRE RADIU8 b l,i91E-03 M
CURRENT DENSITY a 2.581E-04 AMP/M2
GAS FLOW RATE 8 9.U60E-02 M3/9EC
PRESSURE b 1,000 ATM
MEAN THERMAL SPEED ¦ 4.439E+02 M/SEC
LENGTH INCR. sO.25416565 M
TOTAL CURRENT ¦ 1.300E-04 AMPS
CORONA WIRE LENGTH a l,906E+00 M
DEPOSIT E FIELD a 2.581E*03 VOLT/M
GAS VELOCITY ¦ 9.760E-01 M/SEC
VISCOSITY b 1.800E-05 KG/M-SEC
PART, PATH PARAM, n 5.708E-08 M
INPUT EFF./INCR, a <12,86
ROVR!
ERAVG
EPLT
AFID
CMCD
MMD
WEIGHT
DUST LAYER J(PART)
J(ION) INCR, NO,
1.1009
1,050«
1.0290
3.606E+05
3.606E+05
J,606E*05
2,7591Ef05
2.7363E+05
2.72fl7E*05
2,2602E*13
2.5660EM3
2.0258E+13
25,8
25,6
25,8
2.70E-06
1.97C-06
1.75E-06
1.7JAE-06
l.lBaE-06
8.575E-07
5.081E-05
3.468E-05
2.512E-05
3.05E-07
2.74E-07
2.87E-07
2.58E-00
2.58E-00
2.5BE-04
CALCULATION IS IN SECTION NO, b 3 AND THE SECTION LENGTH IS a 1,5250 M
COLLECTION AREA b 1.162E+00 M2
WIRE TO PLATE b 1.270E-01 M
CURRENT/M ¦ 7.H69E-05 AMP/M
1/2 WIRE TO WIRE a 6.350E-02 M
TEMPERATURE a 297,667 K
ION MOBILITY a 1,798E"04 M2/VOLT-SEC
DU8T WEIGHT b 3.250E-06 KG/SEC
APPLIED VOLTAGE a 4.040E+04 VOLTS
CORONA WIRE RA0IU8 a 1.191E-03 M
CURRENT DENSITY a 2.581E"0fl AMP/M2
GAS FLOW RATE " 9.460E»02 MS/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED 8 05
2.5J43EH 3
2,5497Ef13
2.5576E+13
25.8
25,8
25.0
1.60E-06
1 .47E-06
1.J6E"06
6.289E-07
4,880F"07
3,868F»17
1.B43E-05
1,431E>05
J.133E-05
2.16E-07
1.96E-07
1 .78E-07
2.58F-04
2.58E-04
2.58E-0U

-------
1,0017 3,«96E+05 2,6«9ilE + 05 2,5616E*13 25,8 1.27E-06 3.112E-07
1,0008 3,U96E+05 2,6u9«E+05 2.5637E+13 2S.B 1.17E-06 2.535F-07
l.OOOU 3,mE + 05 2.6U9UE+05 2.5t»U7E+l5 25.8 1.0AF-06 2.O06E-O7
9.117E-06 1.61E-07
7.U26E-06 1.U6E-07
fe,112E-06 1.33E-07
2,58E-0a 10
2,58E»0«	11
2.58E.01	12
EST, EFFICIENCY e	UNCORRECTED COMPUTED EFFICIENCY » 96.«7
INCREMENTAL ANALYSIS OF PRECIPITATOR PERFORMANCE
LAB ESP I SCA»l25FT?/1 000ACFMtJo2UUA/FT2iMMDst0UM,SIGMARo5,0
CALCULATION IS IN SECTION NO. a 1 AND THF SECTION LENGTH IS ¦
COLLECTION area a 5.812E-01 M2
WIRE TO PLATE « 1.270E-01 M
CURRENT/M ¦ 7,869E»05 AMP/M
1/2 WIRE TO WIRE » 6.J50E-02 M
TEMPERATURE ¦ 297,667 K
ION MOBILITY s 1 ,798E-0E + 02 M/SEC
LENGTH INCR, 80,25116565 M
TOTAL CURRENT a 1.500E-04 AMPS
CORONA WIRE LENGTH ¦ l,906E*00 M
DEPOSIT E FIELO « 2,581E*03 VOLT/M
GAS VELOCITY ¦ 9,760e-01 M/SEC
VISCOSITY e 1.800E-05 KG/N.SEC
PART. PATH PARAM, n 5,7OBE«0fl H
INPUT EFF./INCR. ¦ 24,32
ROVRI
ERAVG
EPLT
AFID
CMCD
MMD
WEIGHT
DUST LAYER J(PART)
J(ION) INCR, NO,
1,4898
1,3125
1,2028
5.622F+0"!
3.622E+05
3.622E+05
2,9U92E*ft5
2.860OE+05
2,8101E + 05
1,662UE*13
1,8B69E+1 3
2,0590E +1 3
25,8
25.6
25.8
1.98E-05
7.33E-06
3.78E-06
1 ,839E"05
5,87«E»06
2.833E-06
S.367E-oa
1 ,721E-0«
8.299E-05
3.85E-07
3.97E-07
3.a9E-07
2,58E-0«
2,5BE-0«
2.58E-0U
CALCULATION Is IN seCTlON NO. ¦ 2 and the SECTION LENGTH is b o.762S m
COLLECTION AREA b S.812E-01 M2
WIRE TO PLATE i 1.270E-01 M
CURRENT/m ¦ 7.869E-05 AMP/M
1/2 WIRE TO wjre b 6.350E-02 M
TEMPERATURE b 897,667 K
ION MOBILITY b 1.796E-0U M2/V0LT-SEC
DUST WEIGHT ¦ S.250E-06 KG/SEC
APPLIED VOLTAGE b «,580E*0U VOLTS
CORONA WIRE RADIUS b 1.191E-03 M
CURRENT DENSITY ¦ 2.581E-0O AMP/M2
GAS FLOW RATE b 9.U60E-02 M3/SEC
PRESSURE o 1,000 ATM
MEAN THERMAL SPEED b fl,a39E+02 M/SEC
LENGTH INCR, 80.25416565 M
TOTAL CURRENT b 1.500E-0U AMP8
CORONA WIRE LENGTH d 1,
-------
1,0382
3.U96E+05
2.6612E+05
2,6E<.0S
2.6556E+05
2,501uE+lJ
2S,8
1 t«6E-0e>

3.880E-07
1.131E-05
1 .78E-17
2,58F-0«
9
1,0118
3,fl96Et05
2,6556E *05
2.S360E+13
25.8
1.26E-06
3.108F-07
9,lOUE-06
1 .61E-07
2.58E-0U
10
1,0080
3.«96E*0S
2.6556E+05
2,5«56E+13
25.8
1 .17E-06
2.533F-07
7.021E-06
1 .O7E-07
2.58E-na
11
1.00SU
J,a9feE+0S
2,6556E*05
2.5521E+13
25.8
1.08E-06
2.086E-07
6.111E-06
1 .33E-07
2,58E-nu
12
NJ
to
UJ

-------
CHARGING RATES FOR PARTICLE SIZES from SUBROUTINE chargn OR CHGSUM
SRI
THEORY USE0
FOR PARTICLE
CHARGING


INCREMENT no.
O/OSATF FOR
indicated
particle sizes

0
.2000E-06 0
,O000E"06 0
.6000E-06
0.8000E»06
0,100OE"fl5
1
1,0560
1.0560
1,0360
1,0560
1.0360
2
1,5976
1,5712
1,5000
1,0036
1.0000
3
1.8255
1,7551
1,6075
1,5678
1.5083
0
1,96A7
1,8625
1,7303
1.6003
1.5709
5
2,0732
1,9009
1,7962
1.6918
1.6150
6
2,15«9
?, 0 0 16
1,8059
1.7315
1.6096
7
2,2188
2.0065
1,8778
1.7586
1.6722
8
2,2750
2.0807
1.9067
1,7818
1,6916
9
2,3190
2.1178
1.9518
1,8021
1.7087
to
2.361 1
2.1069
1.9500
1,8201
1.7237
11
2.3978
2.1729
1.9738
1,8361
1.7375
12
2.0109
2.1063
1 .9917
1.8506
1.7095
0
.8000E-05 0
.lOOOE-OO 0
.1500E"0 0
0.2500E-00
O.UOOOE-OO
1
0,9032
0,9210
0.8902
0,6626
0,8066
2
1.1220
1,1055
1.0717
1.0228
0,9605
5
1.1576
1,1576
1.1069
1.0760
1,0519

1.1703
1,1527
1.1198
1.0877
1,0607
5
1.1859
1,1629
1.1283
1.0907
1.0715
6
1.1906
1,1707
1.1306
1.0998
1,0757
7
1.1970
1,1727
1.1357
1.0998
1,0757

1.1970
1,1727
1,1357
1.0998
1,0757
9
1.1970
1,1727
1.1357
1.0998
1,0757
10
1.1970
1,1727
1,1557
1.0998
1,0757
11
1.1970
1,1727
1.1357
1.0998
1,0757
12
1.1970
1,1727
1.1357
1.0998
1,0757
0.2000E-05
1,0360
1.2815
1,5509
1.5900
1.1177
1 ,0391
1 ,<1512
1 .<1619
1,1715
1,0798
1,0875
1,1905
0.U000E-05
1.0360
1,1907
1.2389
1.2629
1.2801
1,2935
1.2993
1.2993
1.2993
1.2993
1.2993
1.2993
0.6000E-05
0,9776
1,1098
1,1676
1.2069
1.2204
1,2307
1.2305
1.2305
1.2305
1.2305
1.2345
1,2305

-------
CHARGE ACCUMULATED ON PARTICLE SIZES IN EACH INCREMENT
INCREMENT	CHARGE FOR INDICATED PARTICLE SIZES

0.2000E-06
o.aoooE-Ob
0.6000E-06
0.8000E-06
t
0,t3?fl8F-17
0,a?33JF-17
0.89135E-17
0,1S378E•I 6
2
0.20490E-17
0.64198E-17
0.12909E-16
0.21427E-16
3
0,23«12E-l7
0.71631E-17
0,14174E*16
0.23271E-16

0.25250E-1T
0.76101E-17
0,149216
0,2flJ86E-16
5
0.26990E-17
0.79308E-17
0.1S4S3E-16
0.25111E-16
6
0,27fc38E«l7
0.8178«E-17
0,15B64E-16
0.25700E-16
7
0.28A58E-17
0,83621E"17
0,161S6E-16
0.26103E-16

0.29153E-17
0.85181E-17
0,16O04E-16
0.264O8E-16
9
0.29751E-17
0.86533E-17
0,16620E-16
0.26748E-16
10
0.30283E-17
0.87723E-17
0,16811E» 1 fe
0,27015E-1 <>
11
0,3075«E-17
0.8878«E-17
0,16982E-16
0.272S3E-16
12
0.31178E-17
0.897U0E-17
0,1713bE*16
0.27468E-16

0.8000E-0S
0.1000E-04
0,1500E*04
0.2300E-04
1
0.13099E-1U
0.1">970E-1U
0a43343E-ia
0.11655E-13
2
0,13388E-t»t5
0,6000E»05
0.76521E-15
0.89999E-1S
0.92962E-15
0 ,9U35E»1 5
0.96635E-15
0,4000E"04
0.29257E-13
0.3U0I6E-1J
0.36353E-13
0.36790E-13
0.37021E-13
0,371T3E"13
0.37173E-13
0.37173E-13
0.37173E-13
0.37173E-13
0.37173E-13
0.3717SE-13

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NHNidealities USING SET NO. 1 OF CORRFCTION PARAMETERS
SIZE
CCF
inlet *
OUTLET *
COR, outlet
x no-rap eff
, NO-RAP i
mo-rap p
COR, EFF,
COR, w
COR, P
2.000E-07
1,751
1,25<»
11.2005
"5.3793
89,0057
8.98J
10.9913
88,9183
8,962
11,0517
1.000E-07
1 ,361
1 ,671
11,8118
7,2326
89,0270
8.991
10,9730
88,8000
8,908
11,2000
6, OOOE-07
1, 239
1 .793
13,1726
6.7551
90,7177
9,672
9,2823
90,2519
9,173
9,7101
8.000F-07
1.179
1.811
1l,2n«9
5.8576
92,3515
10,161
7,6155
91,6311
10,093
8,3686
1 .0O0E-06
1 , 111
1.785
9.1818
5.0551
93,6116
11,213
6,3551
92,6712
10,633
7,3288
2.000E-06
1,072
13.608
30.5018
21.0578
97,2313
11,591
2,7687
95,1260
12,551
1,5710
1.000E-06
1,036
11.718
8.3786
15.2801
99,1168
19,213
0,8832
96,6262
13,790
3,3738
6, 0OOE-O6
1,021
7,111
1.0231
7.3315
99,8221
25,769
0,1776
97,3327
11,716
2,6673
8,000E-06
1,018
6,795
0.1613
6,0696
99,9707
33,099
0,0293
97,6890
15,329
2,3110
1, OOOE-05
1,011
4,081
0.0178
3,5287
99,9951
10,363
0,0019
97,9626
15,812
2,0371
1.500E-05
1,010
13,512
0.0011
8,0575
99,9999
58,261
0,0001
98,1572
16,973
1,5129
2.500E-05
1,006
10,237
o.onoe
3,1666
99,9999
93,558
0,0001
99,1239
19,276
0,8761
K.OOOE-OS
1,001
21,217
0,0020
1.9251
99,9999
115,995
0,0001
99,7913
25,172
0,2057
EFFICIENCY -
STATED a
96.17
COMPUTED c
96,1708
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, o 98.7618
mmd OF INLET SIZE DISTRIBUTION b 1.O0OE+O1
SIGHAP OF INLET SIZE DISTRIBUTION a 5.000E+00
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 8.672E-01
8K.MAP OF EFFLUfNT UNDER NO-RAP CONDITIONS » 2.S07E+00
LOG-NORMAL GOODNESS OF FIT a 0,997
PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS ¦ 17.878
N>

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
ideal unadjusted
NO-RAP
rapping puff
NO-RAP+RAP pupf
RAPPING PUFF
particle
MIG, VEL.(CM/SEC)
EFFICIENCr(X)
DM/OLtlGDCMG/DSCM)
DM/DLOGD(MG/DSCM)
DM/DLOGDCMG/DSCM)
DISTRIBUTI ON(X)
DIAM,CM)
3.697E+00
S.969E+01
1.089E-01
5,689E"04
1.095E-01
5.350E-02
2.000E-07
«,261Et00
6,«91E+01
3.I01E-01
6.A17E-03
3.165E-01
2.806E-01
U.OOOE-07
5.037E+00
7.101E+01
0.270E-01
2.1««E-02
4.U88E-01
6,176E-01
6.000E-07
5,8fl8E»05
9.293E-02
9.297E-02
3.68UE+00
U.OOOE-05

-------
SUMHARY TABLE OF ESP flPERATING
PARAMETERS AND PERFORMANCE
DATA SET NUMBER 1
ESP PERFORMANCE! EFFICIENCY » 97.U128 X SCA » 2.«5BE+0l M**2/(m««s/8EC>
ELECTRICAL CONDITIONS! A VG, APPLIEO VOLTAGE s 
-------
E.P.A. ESP «<00FL
T.E,R.L,»R.T.P, AND SO.R.I.
REVISION I,JAN, 1, 1<»7A
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER 1
DATA ON CARD NUMBER 1
NENDPT ¦ 14 NDATA a 2
DATA ON CARD NUMBER 2
LAB ESP I 8CA»125FT2/1000ACPHfJ«20UA/PT2iMMDcl0UMj8I6MAP«l0,0
M DATA ON CARD NUMBER 3
to
to
D50 o 10.0000 DM SI6MAP ¦ 10,0000

-------
INCREMENTAL ANALVSIS OF PRECIPITATOR PERFnRMANCF
LAB ESP I 9CABi25FT?/1000ACFM,j32UUA/FT?»HMneioUMfSlGMAP = 10,0
CALCULATION is IN SETTION NO. b J AND THE SECTION LENGTH IS o 0.7625 M
COLLECTION AREA a 5.812E-01 M2
WIRE TO PLATE b 1.270E-01 1
CURRENT/M n 7.869E-05 AMP/M
J/2 "IRE TO WJRE o fc,350E-02 M
TEMPERATURE o 297.667 K
ION MOBILITY ¦ 1.798E-04 M2/VOLT-SEC
DUST WEIGHT n 3.250F-06 KG/SEC
APPLIED VOLTAGE s 1.600E+OU VOLTS
CORONA WIRE RADIUS b 1,|91E»03 M
CURRENT DENSITY a 2.5B1E-0U AMP/M2
GAS FLOW RATE * 9.460E-02 M3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED o a,«39E+02 M/SEC
LENGTH INCR. sO.25416565 M
TOTAL CURRENT ¦ 1.500E-04 AMPS
CORONA WIRE LENGTH ¦ l,906E+00 M
DEP09IT E FIELD a 2.581E+03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SEC
VISCOSITY s 1.800E-05 KG/M-SEC
PART, PATH PARAM, o 5.70HE-08 M
INPUT EFF./INCR. " 2(1.32
ROVRI
ERA VG
EPLT
AFID
CMCD
HMD
WEIGHT
DUST LAYER J(PART)
J(ION) INCR, no.
1.8712
1.5921
1.4023
3.622E+05
3.622E+05
3.622E+05
3.0900E+05
2.9971E+05
2.8971E+05
1,3236E+13
1. 5556E +13
1,7660E+13
25.8
25.8
25.8
2.64E-05
7.14E-06
3.05E-06
1.832E-05
5.227E-06
2.509E-06
CALCULATION t3 in SECTION NO. • ? AND THF SFfTION LENGTH IS B 0,7625 M
COLLECTION AREA b 5.812E-01 M2
WIRE TO PLATE s 1.270E-01 M
CURRENT/M ¦ 7.B69E-05 AHP/M
1/2 WIRE TO wjRE s 6.3S0E-02 M
TEMPERATURE » 297.6t>7 K
ION MOBILITY ¦ 1.798E-04 MS/VOLT.
DUST WEIGHT a 3.250E-06 KG/SEC
5.366E-04
1.531E-04
7.351E-05
4.37E-07
5.61E-07
5.54E-07
2.58E-04
2,38E-01
2.58E-0a
SEC
APPLIED VOLTAGE « 4.5B0E+04 VOLT8
CORONA WIRE RADIUS b 1.191E-03 M
CURRENT DENSITY a 2,S81E-0a AHP/M2
GAS FLOW RATE b 9,«60E-02 M3/SEC
PRESSURE ¦ 1,000 ATM
MEAN THERMAL SPEED B il.a39E»02 M/SEC
LENGTH INCR, sO.25416565 M
TOTAL CURRENT b 1.500E-04 AMPS
CORONA WIRE LENGTH ¦ 1,906E*00 M
DEPOSIT E FIELD b 2.5B1E+03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SEC
VISC08ITY ¦ 1.B00E-05 KG/M-SEC
PART, PATH PARAM. ¦ 5.70BE-08 M
INPUT EFF./INCR, « 21,32
ROVRI
ERAVG
EPLT
AFID
CMCD
MHO
WEIGHT
DUST LAYER JCPART)
J(ION) INCR, NO,
1,2734
1,1670
1,1280
3.606E+03
3.606E+05
3.606E*05
2,8J40E*05
2,7'73E+05
2,7714E*05
1.9534E+13
2.0956E+13
2.2052E+13
25.8
25.8
25.8
1.90E-06
1.61E-06
1.40E-06
1.M1E-06
1.1ME-06
8.848E-07
O.T20E-05
3.001E-05
2.592E-05
5.52E-07
5.06E-07
4,78E»07
2.58E-04
2.5BE-04
2.58E-04
CALCULATION IS IN SECTION NO. ¦ 3 AND THE SECTION LENGTH IS b 1,5250 M
COLLECTION AREA b 1.162E+00 M2
WIRE TO PLATE o 1.2TOE-01 M
CURRENT/M ¦ 7,669E-0S AMP/M
1/2 WIRE TO WIRE b 6.350E-02 M
TEMPERATURE » 297.667 K
ION MOBILITY b 1.798E-04 M2/V0LT-SEC
DUST WEIGHT s 3.250E-06 KG/SEC
APPLIED VOLTAGE a U.OaOE+OO VOLTS
CORONA WIRE RADIUS a 1,|91E"03 M
CURRENT DENSITY b 2.5BIE-04 AMP/M2
GAS FLOW RATE B 9.460E-02 M3/SEC
PRESSURE o 1,000 ATM
MEAN THERMAL SPEED B a,039E+02 M/SEC
LENGTH INCR. oO.25116565 M
TOTAL CURRENT b 3.000E-00 AMPS
CORONA WIRE LENGTH » 3,812E*00 *
DEPOSIT E FIELD a 2,501E*OJ VOLT/M
GAS VELOCITY o 9.760E-01 M/SEC
VISCOSITY a l.flOOE-05 KG/M-SEC
PART. PATH PARAM, ¦ 5.70BE-08 *
INPUT EFF./INCR, b 21.32
ROVRI
ERAVG
EPLT
AFIO
CMCD
MMO
WEIGHT
OUST LAYER JfPART)
JCION) T NCR, NO,
1,0850 3,4'6E+05 ?,6823Et05 2.3649E-M3 25,8 1.23E-06 6.SOOE-07 1.993E-05 4.36E-07 2.58E-00
1,0584 3,13 25.8 1.09E-06 5.524F-07 1.618E-05 1.08E-07 2.5RE-0U
1,0401 3.09&E+05 2,6<>20E*05 ?,«670E+13 25,8 9.53E-07 4,5fe4E»07 1.337E-05 J,*OE-07 2,^8E-0u

-------
1,0275 3.<49<,l»0S ?^S<>ue+OS ?,u«7if*l3 25.B B.39F-0T tcB*3f.nT
1,018' 3.496E+05 ?, b564E»f>5 2,5l82E+13 25,8 '.50E-07 3,2«OP-07
1.0130 3.496E+05 2,6564E+05 2,5330Etl3 25.8 6.78E-0T 2.76AF-07
l.i2Of-0S 3, 54E»0T
9.U93E-06 3.?9E-07
8,10'E"06 3.0SE-07
t,SHE »
?.S8F.0«
2,5HE-na
i r
11
1?
EST, EFFICIENCY » 96,4 7	UNCORRECTED COMPUTED EFF T CIENC Y o 9a,27
INC&EMEnTAL ANALYSIS OF PRECIPITATOR PERFORMANCE
LAB ESPl SCabi25FT2/ioOOACTH|jb2UUA/FT2|MmO»10UH|S1GHAPbio,0
CALCULATION IS IN SECTION NO. a 1 AND THE SECTION LENGTH 13 s ft.7625 M
COLLECTION AREA a 5.812E-01 M2
WIRE TO PLATE b 1.270E-01 M
CURRENT/H • 7.869E-05 AMP/m
1/2 MIRE TO WIRE ¦ 6.550E-02 M
TEMPERATURE 0 297,667 K
ION MOBILITY a 1.798E-04 M2/V0LT-SEC
DU8T WEIGHT a 3.250E-06 KG/SEC
APPLIED VOLTAGE » U.600E+04 VOLTS
CORONA WIRE RADIUS o I.191E-03 M
CURRENT DENSITY a 2.581E-04 AMP/M2
GAS FLOW RATE « 9.460E-02 M3/8EC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED a a,a39e*02 M/SEC
LENGTH INCR, aO.25416565 M
TOTAL CURRENT a 1.500E-04 AMPS
CORONA WIRE LENGTH a 1.906E+00 M
DEPOSIT E FIELD a 2.581E»03 VOLT/"
GAS VELOCITY a 9.760E-01 M/SEC
VISCOSITY a 1.800E-05 KG/N-SEC
PART, PATH PARAM, a 5.708E-06 *
INPUT EPF,/INCR, a 21,21
ROVRI ERAVG ePLT AFIO C«CD MMD WEIGHT	OUST LAYER	J(PART)	J(ION)	INCR, NO
1,7596 3.622E+05 3.0731E+05 1,4075E*13 25,8 2,64E»05 1.840E-0S S,39ie-04	4.01E-07	2,58E.04	1
1,5574 3,622E+05 2.9717E+05 1.6109EM3 25,8 7.08E-06 5.161E-06 1.512E-04	5.62E-07	2.S8E-04	2
1,3900 S.622E+05 2,8882e+05 1.7941E+13 25,8 3.03E-06 2.09SE-06 7.306E-05	5.56E-07	2,586-04	3
CALCULATION 19 IN 8ECTI0N NO. a 2 AND THE 8ECTION LENGTH IS •	0,762; M
COLLECTION AREA a 5.812E-01 M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/H a 7.869E-05 AMP/M
1/2 WIRE TO wire ¦ 6.350E-02 H
TEMPERATURE a 297.667 K
ION MOBILITY a 1.798E-04 M2/V0LT-SEC
DUST WEIGHT a 3.250E-06 KG/SEC
APPLIED VOLTAGE a 4.580E+04 VOLTS
CORONA WIRE RADIUS ¦ 1.191E-0J M
CURRENT DENSITY a 2.581E-04 AMP/M2
GAS FLOW RATE o 9.460E-02 M3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED » 4.039E+O2 M/SEC
LENGTH INCR, 80.25416565 M
TOTAL CURRENT a 1.300E-04 AMPS
CORONA WIRE LENGTH a 1,9061+00 M
DEPOSIT E FIELO a 2.581E+03 VOLT/m
GAS VELOCITY a 9.760E-01 M/8EC
VISCOSITY a 1.800E-05 KO/M.SEC
PART, PATH PARAM, a 5.708E-08 M
INPUT EFF,/INCR, a 21,21
ROVRI
ERAVG
EPLT
Af ID
CHCD
HMD
WEIGHT
DU8T LAYER J(PART)
J(I ON) INCR, NO
1,2691
1,1916
1,1165
3.606E+05
3.606E+05
3.606E+05
2.8322E+05
2.7993E+05
2,7751E+05
1.9599E+13
2.0B74E+13
2,1886E+13
25.8
25,8
25.8
1.90E-06
1.60E-06
1.40E-06
1.608E-06
1.161E-06
8.852E-07
U.712E-05
3.401E-05
2.593E-05
5.34E-07
5.08E-07
4.79E-07
2.58E-04
2.58E-04
2.58E-04
CALCULATION IS IN SECTION NO, a 3 AND THE SECTION LENGTH IS a 1,5250 m
COLLECTION AREA a 1.162E+00 M2
WIRE TO PLATE s 1.270E-01 H
CURRENT/H a 7.869E-05 ahP/m
1/2 WIRE TO WIRE a 6.350E-02 M
TEMPERATURE s 297,667 K
ION MOBILITY a 1.796E-04 M2/V0LT-SEC
DUST WEIGHT a 3.250E-06 KG/SEC
APPLIED VOLTAGE a 4.440E+04 VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY a 2.581E-04 AMP/M2
GAS FLOW RATE a 9.U60E-02 M3/SEC
PRESSURE s 1,000 ATM
mean THERMAL SPEED a A,839E+0? M/SEC
LENGTH INCR, rO.25416565 H
TOTAL CURRENT a 3.000E-04 AMPS
CORONA WIRE LENGTH a 3.812E+00 M
DEPOSIT E FIELD a 2.581E+03 VOLT/m
GAS VELOCITY a 9.760E-01 M/SEC
VISCOSITY a 1.800E-0S KG/M-8EC
PART, PATH PARAM, s 5.708E-08 M
INPUT EFF,/INCR. « 21,21
ROVRI	ERAVG	EPLT	AFID	CMCD	MMD	WEIGHT DUST LAYER J(PART)	J(ION) INCR, NO

-------
l ,0")«u
3.U«>6E + 05
2.6«65E+05
2,3UU6E +1 3
25.8
1.23E-0<>
6.80RF-07
1.99UE-05
a,37E-07
2,58E»0fl
7
1,0675
S.U'bE + O'j
2,67uue+05
2,<1037EM3
?5, B
1.09E-06
5,526E»07
1.619E-05
a.OBE-07
2.58E-04
P
t.otiea
3.U96E+0S
2.c>6,;7E + n5
2, Uil78E+ 1 3
25.8
9.52E-07
«.5fc5E-07
1.337E-05
3.81E-07
2.58E-0U
9
l,oJ«5
S.UlfeEtOS
2.6595E+05
2, U803E+13
25.8
8.38E-07
3.82JE-07
1.120E-05
3,5«E-07
2.5BE-0U
10
l,02«7
3,U'6E +05
2.6595E+05
2,50«1E+13
25,8
7.U9E-07
3.2A0E-O7
9.U92E-06
3.29E-07
2.58E-0U
11
1,0176
3,U
-------
CHARGING Rates for PARTICLE SIZES FROM SUBROUTINE C-ARG* Ok C^CSUm
SRI THEORY U8ED FOR PARTICLE CHARGING
INCREMENT NO.	n/OSATF FOR TNOICiTED PARTICLE SIZES
0
.2000C-06
o,uo«oe-06
0.6000E-ft6
0.ROOOE-06
A.ionoE-n5
1
1,0360
1,0360
1,0360
1,0360
1,0360
2
1,5522
1,5315
1 ,<1696
1 , 01 7 J
I,3770
3
1.77B2
1,7162
1.6179
1 ,5430
1,0667
d
1.9201
1,B2Bb
1.7073
1.6177
1,5510
5
2,0322
1 ,9101
1.7719
1.6715
1,5978
6
2.1177
1,9TJ9
1,6221
1,7133
1,6)39
7
2.1851
2,0215
1,6581
1.7321
I,6579
6
2.2425
2,0621
1.6888
1,7669
1,6787
9
2.2922
2,0973
1,9156
1.70B5
1,6969
10
2.3359
2,1202
1,9392
t.8077
1.7130
11
2.3747
2.1558
1,9603
1.8246
1.727#
12
2,1097
2,1807
1,9793
1,8(102
1.7005
0.
B600E-05
0,10«0E-0«
0.1500E-00
0.2500E-04
O.OOOOE-04
1
0,8909
0,8732
0,8476
0,6247
0,8110
2
1,1036
1,0836
1,0436
0,9869
0,9559
3
1,1474
1,12B0
1,0979
I,0662
1.0359
a
1,166b
1,1456
1,1136
1,0620
1.0566
5
1,1796
1,1573
1,1335
1,0906
1.0674
6
1,1693
1,1659
1,1306
1,0965
1.0727
7
1,1924
1,1682
1,1320
1,0971
1.0730
B
1,1924
1,1662
1,1320
1,0971
1,0730
9
1,1924
1,1662
1,1320
1,0971
1.0730
10
1,1924
1,1662
1,1320
1,0971
1.0730
11
1.1934
1,1662
1,1320
1,0971
1,0730
12
1,1924
1,1662
1,1320
1,0971
1.0730
0.2000E-05
1,0360
1,266b
1 ,3371
1,37Tb
1,4 06 7
1.42*2
l .4422
l ,4536
J.4617
1.4758
1.4811
1.488b
o.oooof-o^
(1,9678
1.1754
I.2257
1.2524
1.2712
1.2856
1.2922
1.2961
1.2961
1.2961
1.2961
1.2961
0.6000E-05
0,9182
1,1310
1,1763
1,1980
1.2131
1,2203
1,2287
1,2287
1,2287
1,2287
1# 22 B 7
1,22B7

-------
CHARGE ACCUMULATED on PARTICLE SIZES IN FACH INCREMFNT
INCREMENT	CHARGE for INDICATED PARTICLE SIZES

0.2000E-06
0, 4000E-06
n,6000E-Ofi
0.8000E-0
1
0,132"8E»17
0,42133E» 1 7
0.89135F-17
0.15378E-1
2
0,1990BE-17
0.62659E-17
0,12643E-16
0.21037E-1
3
0,220O6E" 17
0.70125E-17
0.13920E-16
0.22902E-1
lu
0,53458E"14
0,14402E-1
a
0, 16202E-1ls
P.oai»l0E-l5
0,fl51
-------
SI7F BANijr STATISTICS
CORRECTIONS FOB NONJDEALITIE9 USING SET NO, 1 OF CORRECTION PARAMETERS
SIZE
CCF
inlet X
outlet *
COR. OUTLET
X NO-RAP EPF
, NO-RAP N
NO-RAP P
COR, EFF,
COR. "
COR. P
2.000E-07
1,751
<1,216
25.1832
13.6014
88,9449
8.961
11.0551
88,9248
8,953
11.0752
4.000E-07
1,361
3.351
19.8533
10.8326
89,0439
8.997
10,9561
88,9115
8,948
11,0885
6.000E-07
1 ,23«>
5.912
11.ot to
7.8382
9(1,7779
9.698
9.2221
90,4304
9,548
9.5606
8.000E-07
1,179
2,436
9.9556
5.8136
92,4355
10.505
7.5645
91,8064
10.179
8,1936
1.000E-O6
1.144
2.156
7,2988
4.5271
93,7348
11.271
6,2652
92,7920
10,701
7,2080
2,OOOE-Ob
1 ,072
12,967
18.8454
18,5342
97,3102
14.712
2,6898
95,0932
12,266
4,9068
4.000E-06
1,036
9.176
4.2791
12.2556
99,1370
19.337
0.8630
95,4150
12,542
4,5850
6.000E-06
1,021
5.227
0,4887
6,3014
99,8270
25.875
0,1730
95,8612
12,958
4,1388
8.000E-06
1.018
4.885
0.0743
5.3253
99,9719
33.265
0,0281
96,2579
13.368
3,7421
1 .000E-O5
l.oia
3.204
0.0081
3,1091
99,9953
40.581
0.004T
96.6682
13.841
3,3318
1.300E-05
1.010
9.809
0,0005
7.1063
99,9999
58.154
0,0001
97,5130
15,031
2.4870
2.500E-O5
1 .006
7.917
0.0004
3,05TS
99,9999
93.469
0,0001
98,6742
17.590
1,3258
4.000E-05
l.ooa
31.841
0.0017
1.6979
99,9999
145.851
0,0001
99,8169
25.646
0,1831
EFFICIENCY - :
STATED ¦
94.27
COMPUTED ¦
94,2797
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, * 98.1492
MHO OF INLET SIZE DISTRIBUTION o l.OOOE+Ol
SIGMaP OF INLET 81ZE DISTRIBUTION o l'.000E + 01
NMD OF EFFLUENT UNDER NO-RAP CONDITIONS a 5.633E-01
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS a 2.646E+00
LOG-NORMAL GOODNESS OF FIT a 1,000
M	PRECIPITATION R*TE PARAMETER UNDER NO-RAP CONDITIONS ¦ 16.233
W
l/l
SIGMAG" 0.000 WITH 0,000 SNEAKAGE OVER U.000 STAGES
NTEMP ¦ 1
RMMD m 6.00
R8IGMA • 2.50
CORR. EFF. • 96.5670
CORRECTED HMD OF EFFLUENT ¦ 1.591E+O0
CORRECTED SIGMAP OF EFFLUENT a 4.715E+00
LOG-NORMAL GOODNESS OF FIT • 0.995
CORRECTED PRECIPITATION RATE PARAMETER » 13,72

-------
UNAOJUSTEO MIGttATTOW vtlOCITIFS ANO FFF TC, TF*/CIFS, A*/D OlSCGETe OUTLFT MASS LOADINGS
I0EAL UNADJUSTED
IOEAL UNADJUSTED
NO.RAP
Rapping puff
mo-rap+hap puff
RAPPJUG PUFF
PARTICLE
MIG. VEL.fCM/SfC)
FFFICIENCVfti
DM/nLOGrXMG/OSCMi
DM/DLOr,n(MG/DSCH)
DH/niOGrf (MG/DSC")
DT STRI0UTION(X)
DIAM,(H)
S.iflSE+OO
S.'ftOf *01
1,666E»01
6,ASflF-OU
3.672E-01
5,35rtF-02
2.000E-07

0\

-------
SUMMARY T4BLE OF ESP OPE"*TING
PARAMETERS ANf) PERFORMANCE
DATA 9ET NUMBER 1
ESP PERFORMANCE! EFFICIENCY ¦ 96,5670 X SCA a 2.05BE+01 M.«2/fH»*3/8EC)
ELECTRICAL CONDITIONS!	AVG, APPLIED VOLTAGE o 
-------
E.p.a. ESP MODEL
I.E.R.l.-R.T.P. AND SO.B.I.
REVISION I|JAN# J, 19TB
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER 1
DATA ON CARD NUMBER 1
NENDPT a lit NDATa o 2
DATA ON CARD NUMBER 2
LAB ESPt 3CAil25FT2/1000ACFM|Jb2«UA/FT2|MMDb10UM|SIGMAPo15,0
M	DATA ON CARD NUMBER 3
CJ
CD
DSO ¦ 10.0000 UM SIGMAP b 15.0000

-------
tNCReHFNTiU ANALYSIS OF PRECIPITATOR PERFORMANCE
LAB E8P| SCAoi2SFT2/1000ACFH»Jb2UUA/FT2|Hm0»10UM|SIGMAP515,0
CALCULATION IS IN SECTION NO. s 1 AND THE SECTION LENGTH IS a 0.7625 M
COLLECTION AREA b 5.812E-01 M2
WIRE TO PLATE ¦ 1.270E-01 M
CURRENT/M ¦ 7.869E-05 AMP/M
1/2 WIRE TO WIRE s 6.350E-02 H
TEMPERATURE » 297.667 K
ION MOBILITY s 1.798E-04 M2/VOLT-SEC
OUST WEIGHT a 3.250E-06 KG/SEC
APPLIED VOLTAGE b 4.600E+04 VOLTS
CORONA WIRE RADIUS b 1.191E-03 M
CURRENT DENSITY ¦ 2.581E-04 AMP/M2
GAS FLOW RATE a 9.460E-02 MS/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED a 4.4J9E+02 M/SEC
LENGTH INCR. oO.25016565 M
TOTAL CURRENT s 1.500E-04 AMPS
CORONA WIRE LENGTH s 1,906E*00 M
DEPOSIT E FIELD n 2.581E+03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SFC
viscosity b i.eooe-os kg/m.sec
PART. PATH PARAM, E 5.708E-08 M
INPUT EFF./INCR, b 21,21
R0VRI
ERA VG
EPLT
AFID
CMCO
MMO
WEIGHT
DUST LAYER J(PART)
J(I ON) JNCR. NO,
1.89)4
1.6400
1.0569
3.622E+05
3.622E+05
J.622E+05
3.0900E+05
3.0192E+05
2.9337E+05
1.3080E+13
l.sioie+is
1.6999E*13
25.8
25.8
25.8
2.75E-05
7.20E-06
2.77E-06
1.848E-05
4.955F-06
2.375E-06
5.41UE-04
1.451E-04
6.957E-05
4.61E-07
6.24E-07
6.37E-07
2.58E-04
2.576-04
2.57E-04
CALCULATION is IN SECTION NO. o 2 AND THE SECTION LENGTH 18 o 0.7625 H
COLLECTION AREA ¦ 5.812E»01 M2
WIRE TO PLATE ¦ 1.270E-01 M
CURRENT/M • 7.869E-05 AMP/M
1/2 WIRE TO WIRE a 6.350E-02 M
TEMPERATURE ¦ 297.667 K
ION MOBILITY a 1.798E-04 M2/V0LT-SEC
DU8T WEIGHT a 3.250E-06 KG/SEC
APPLIED VOLTAGE b 4.580E+04 VOLTS
CORONA WIRE RADIUS b 1.191E-03 M
CURRENT DENSITY a 2,581E"04 AMP/M2
GAS FLOW RATE a 9.460E-02 M3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED a 4.439E+02 M/8EC
LENGTH INCR. aO.25416565 M
TOTAL CURRENT a 1.500E-04 AMPS
CORONA WIRE LENGTH a 1.906E+00 M
DEPOSIT E FIELD a 2.56tE*0S VOLT/M
GA8 VELOCITY a 9.760E-01 M/SEC
VI8C0SITY a 1.800E-05 KC/M-SEC
PART. PATH PARAM. a 5.708E-08 M
INPUT EFF./INCR. b 2t,2i
ROVRI
ERAVG
EPLT
AFID
CMCD
HMD
WEIGHT
DUST LAYER J(PART)
J(ION) INCR. NO.
1,3253
1,2328
1,1667
3.606E+05
3.606E+05
3.606E+05
2.8557E+05
2.8170E+05
2.7884E+05
1.8769EM 3
2.0177EM3
2.1321E+13
25.8
25.8
25.8
1 p78E"06
1.48E-06
1.27E-06
1.545E-06
1.135E-06
8.79aE»07
4.526E-05
3.324E-05
2.576E-05
6.20E-07
5.98E-07
5.70E-07
2.57E-04
2.57E-04
2.57E-04
CALCULATION IS IN SECTION NO. a 3 AND THE 8ECTI0N LENGTH IS a 1.5250 M
COLLECTION AREA ¦ 1.162EtOO H2
WIRE TO PLATE o 1.270E-01 M
CURRENT/M a 7.669E-05 ahP/m
1/2 WIRE TO wipe b 6.350E-02 M
TEMPERATURE o 297,667 K
ION MOBILITY a 1 .798E-0U M2/V0LT»SEC
DU8T WEIGHT s 3.250E-06 KG/SEC
APPLIED VOLTAGE b «.440E*04 VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY a 2.581E-04 AMP/M2
GAS FLOW RATE b 9.460E-02 M3/8EC
PRESSURE a 1.000 ATM
MEAN THERMAL SPEED a 4.439E+02 M/SEC
LENGTH INCR. bO.25416565 M
TOTAL CURRENT a 3.000E-04 AMPS
CORONA WIRE LENGTH a 3.8l2EtOO M
DEPOSIT E FIELD » 2.581E+03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SEC
VISCOSITY a 1.800E-05 KG/M-SEC
PART. PATH PARAM, a 5.708E-08 M
INPUT EFP./INCR. b 21.21
ROVRI	ERAVG EPLT AFJO	CMCO	MMO	WEIGHT	DUST LAYER	JfPART)	JCION)	INCR. NO,
1,1157	3.496E+05	2.6959Ef05	2.2999E+1S 25.8	1.09E-06	6.864E-07 2.011E-05	5.24E-07 2.58E-04	7
1.0830	3.U96E+05	2.6»15E*05	2.3692EM3 25.8	9.34E-07	5.6U8E-07 1.655E-05	U.93E-07 2.58E-04	B
1,0595	3.496E+05	?.6709E*05	2.4217E+13 25.8	8.02E-07	U.725F-P7 1.384E-05	4.62E-07	2.58E-04	9

-------
1,0027 3.U96E+05 2.6632E+05 2.U60BE+13 25.8 7.09E-07	0.003F-07	1.173E-05 (I.32E-07 2.58F-00	10
1,0308 3.u«6F+05 2.6578E+A5 2.0A97E+13 25.fi 6.30E-07	3.U25E-07	1.003E-05 0.02E-07	2.5BE-0U	11
1,0219 3.U96E + 05 ?,657BE*05 2.5108E+13 25.8 5.69E-07	2.957E-07	B.662E-06 3. 7SE-07	2,5«F-0«	12
EST, EFFICIENCY a 9U.27 UNCORRECTED COMPUTED EFFICIENCY « 93.50
INCREMENTAL ANALYSIS riF PRECIPITATOR PERFORMANCE
LAB ESP I SCA«l25FT2/1000ACFM|jBauUA/FT2»MMO = 10UMtSIGMAPal5,0
CALCULATION 18 IN SECTION NO. b 1 AND THE SECTION LENGTH IS s 0,7625 H
COLLECTION AREA s 5.812E-01 Ms
HIRE TO PLATE o 1.270E-01 M
CURRENT/H a 7.869E-05 AMP/M
1/2 WIRE TO WIRE « 6.350E-02 *
TEMPERATURE o 297,667 K
ION MOBILITY 8 1.798E-0U M2/VOLT-SEC
DUST WEIGHT b 3.250E-06 KG/SEC
APPLIED VOLTAGE ¦ a,600E+oa VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY a 2.581E-0O AMP/H2
GAS FLOW RATE a 9,«60E"02 M3/8EC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED = O.U39E+02 M/SEC
length incr, bo.25016565 m
total current « 1.500E-00 AMPS
CORONA WIRE LENGTH a 1 ,906E*00 M
DEPOSIT E FIELD b 2.581E+03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SFC
VI8COSITY b 1.0OOE-O5 KG/M-SEC
PART. PATH PARAM, a S.708E-08 M
INPUT EFF./INCR, ¦ 20,ill
ROVRI
ERAVG
eplt
AFID
CMCD
HMD
WEIGHT
DUST LAYER JCPART)
J
-------
1,1162
3.U96E+05
2.697 lEtOS
2,2915E+13
25.8
1.0"E-06
6.865E-07
2,011E-05
5.24E-07
2.58E-00
7
1,0857
3.u96E*05
2.6827E+05
2,3633E+13
25.8
9,34E-07
5.6U9E-07
1,655E»05
O.93E-07
2,58E-00
8
1,0621
3.«9<>E*05
2.67?0E+0S
2,"158Et t3
25.8
8.02P-07
U.725E-07
1.384E-05
U.62E-07
2,58e-0
-------
CHARGING RATES FOR PARTICLE SIZES FROM SUBROUTINE CHARGN OR CHCSUn
SRI THEORY USFD FOR PARTICLF CHARGING
INCREMENT NO,	Q/OSATF FOR INDICATED PARTICLE SIZES
0
.2000E-06
0.O000E-06
0.6000E-06
0.8000E-06
0.1000E-05
1
1,0360
1,0560
1 ,0560
1.0360
1.0360
2
1,5572
1.5209
1,0592
1.0085
1.3695
3
1,7621
1,7056
1,6078
t.5300
1.0792
0
1,9086
1,8167
1,6979
1,6098
1.5005
5
2.0177
1 ,8992
1,7652
1,6603
1 .5916
6
2,1005
1,9659
1,8102
1,7068
1.6282
7
2.1729
2,0120
1,8509
1.7361
1.6528
8
2,2515
2,0558
1,8825
1.7610
1.6759
9
2,2820
2,0897
1,9096
1.7635
1.6925
10
2,5265
2,1215
1,9558
1.8051
1.7090
11
2,5662
2,1095
1.9553
1.8206
1.7258
12
2,0018
2,1708
1.9707
1.8360
1.7571
8000E>05
0,1000£"00
0.1500E-00
0.2500E-00
O.OOOOE-OO
0.6*39
0,85*0

0.A117
0,7987
1.0958
1 ,0707
1,0280
0.9752
0.9063
1.1036
1.1201
1.0900
1.0619
1.0271
1.1638
1,1030
1.1113
1.0798
1.0563
1.1773
1,1552
1.1217
1.0891
1.0660
1.1870
1,1602
1,1292
1,0953
1.0717
1.1905
1.1666
1,1306
1,0999
1,0720
1.1905
1.1666
1,1306
1,0959
1.0720
1.1905
1.1666
1,1306
1,0959
1,0720
1.1905
1.1666
1.1306
1,0959
1.0720
1.1905
1.1666
1.1306
1,0959
1.0720
1.1905
1.1666
1.1306
1,0959
1,0720
0.2000E»05
1 .0360
1,2615
1,5521
1,5755
1,0027
1,0256
1,0589
1,0506
1,0610
1,0705
1,0767
t,0860
0.O000E-05
0,9053
1.1677
1,2208
1.2085
1.2679
1.2827
1.2896
1.2957
1.2957
1.2957
1.2957
1.2957
0.6000E-05
0,B99«
1.1256
1.1721
1 .1909
1,2100
1.2222
1.2267
1.2267
1.2267
1.2267
1.2267
1.2267

-------
CHARGE ACCUMULATED ON PARTICLE SIZES In EACH INCREMENT
INCREMENT	CHARGE FOR INDICATED PARTICLE SIZES

0.2000E-06
o.aeooE-06
0.6000E-06
0.8000E-06
1
0.13288E-17
0.42333F-I7
0.89135E-17
0,15378E-16
2
0.19716E-17
0.62144E-17
0.12554E-16
0.20906E-16
3
0,22600e-17
0.69608E-17
0,13832E•16
0.22775E-16
0
0.24480E-17
O.74230E-17
0,14608£*1h
0.2J89UE-16
5
0.25879E-17
0.77602E-17
O.15170E-16
0,2a703E-16
6
0.26969E-17
0.80245E-17
0.15609E-16
0.25333E-16
7
0.27869E-17
0.82227E-17
0.15924E-16
0.25769E-16
8
O.28610E-17
0.83918E-17
0.16194E-16
0.26145E-16
9
0.29268E-17
0.85366E-17
0,16430F-1 6
0.26473E-16
10
0.29839E-17
0.86678E-17
0,16637E-1b
0.26763E-16
11
0.303486-17
0.87829E-17
0.16822E-16
0.27023E-16
12
0.30805E-17
0.88864E-17
0.16989E-16
0.27257E-16

0.8000E-05
o,ioooe-oa
0¦1500E-04
o,25ooe-oa
1
0.12137E-1U
0,185846-14
0,40578E-14
0,10966E-13
2
0.15218E-10
0.23293E-14
0.50074E-14
0,131736-13
3
0.15B83E-14
0.243706-14
0.S3266E-14
0,143446*13
0
0.1616SE-14
0.247746-14
0,541116-14
0,145866-13
s
0,l6J50E-ia
0,250376-14
0,S0617E-1a
0,147126-13
6
0,160906-14
0.2S232E-14
0,549796-10
0.14796E-13
7
0,1653
0.11165E-15
0.11792E-15
0.12154E-15
0.J2O15E-15
0.12617E-15
0.12734E-1S
0.12838E-15
0.12930E-15
0.13012E-15
0.13087E-15
0.13155E-15
0.4000E-05
0.3302UE-15
0.40793E-15
0,426«7E-15
0.43613E-15
0.44291E-15
0.4481IE-is
0.45049E-15
0.45264E-15
0.45264E-15
O.U526AE-15
0.45264E-15
0.45264E-15
O.faOOOE *05
o,7oan2(»i5
0.87953£-t5
0.9l748f-15
0.93528E-15
0,94 747E-15
0.95670E.-15
0.96017E-15
0.96017E-15
0.96017E-15
0.96017E-15
0.96017F-15
0.96017E-15
0.4000E-04
0.27602E-13
0.32701E-13
0.35494E-13
0.36S05E-I3
0.36839E-13
0,37037E-13
0,370476-13
0.370476-13
0.370076-13
0,370476-13
0,370476-13
0.37007e-13

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NflNIDEAlTTIFS USING SET Nfi, l OF CORRECTION PARAMETERS
SIZE
CCF
INLFT X
OUTLET *
COR, OUTLET
X NO-RAP EFF
, NO-RAP W
NO-RAP P
COR, EFF,
tor, "
COR, P
2.000E-07
1,751
5,596
30,2304
16,7966
88,9268
8,954
11.0732
88,9) 1 1
8,948
11.08R9
4,OOOE-07
1,361
3,855
20.5883
1\.5479
89,0533
9.001
10,9467
88.9336
R.957
11,0664
6.000E-07
1,239
3,025
13,5739
7,8062
90,8020
9,709
9,1980
90,4661
9,563
9,5339
8.000E-07
1,179
2,515
9,2448
5.5605
92,4662
10.521
7,5338
91 ,8330
10,193
8.1670
1 .OOOE-06
1 ,144
2,164
6,5789
4.2221
93,7682
11,293
6,2318
92,7918
10,701
7,2082
2,000E-06
1,072
12,239
15,8925
16,9065
97,3382
14,754
2,6618
94,8965
12,106
5,1035
U,OOOE-06
1,036
8,212
3,4400
11,5182
99,1413
19.357
0,8587
94,8179
12,044
5,1821
6,OOOE-06
1,02"
4,598
0,3845
6,0454
99,8286
25,914
0, 1714
95,1428
12,307
4,8572
8, OOOE-06
1,018
4,273
0,0578
5,1371
99,9723
33,324
0,0277
95,5588
12,671
4,4412
1 .000E-05
1,014
2,798
0,0062
3,0023
99,9954
40,658
0,0046
96,0357
13,133
3,9643
1.500E-05
1,010
8,603
0,0004
6,8640
99,9999
58,064
0,0001
97,0522
14,339
2,9478
2.500E-05
1 ,006
7,061
0,0003
2,9532
99,9999
93,338
0,0001
98,4547
16.967
1,5453
4.000E-05
1 ,004
35,060
0,0017
1,6400
99,9999
145,669
0,0001
99,8272
25,881
0,1728
EFFICIENCY -
3TATFD «
93,54
COMPUTED s
93.5382
CONVERGENCE
OBTAINED



ADJUSTER NO.RaP EFF, b 97,9502
HMD OF INLET SIZE DISTRIBUTION o 1.000E+01
SIGMAP OF INLET SIZE DISTRIBUTION a 1.500E+01
hhd OF EFFLUENT UNDER NO-RAP CONDITIONS 8 4.889E-01
SIGHAP OF EFFLUENT UNDER NO-RAP CONDITIONS » 2.699E+00
LOG.NORMAL GOODNESS OF FIT e 1,000
M	PRECIPITATION RaTE PARAMETER UNDER NO.RAP CONDITIONS b 15,81?
X*
S1GMAGB 0,000 WITH 0,000 SNEAKAGE OVER 4,000 STAGE8
NTEHP b 1
RMM[> d 6,00
RSIGMA s 2,50
CORR. EFF, a 96,5055
CORRECTED MMD OF EFFLUENT d 1.402E+00
CORRECTED SIGMAP OF EFFLUENT » 5.067F+00
LOG-NORMAL GOODNESS OF FIT b 0,993
CORRECTED PRECIPITATION RATE PARAMETER a 13,42

-------
UNADJUSTED MIGRATION VELOCITIES AND
EFFICIENCIES, AND
DISCRETE OUTLET MASS
LOADINGS


IDEAL UNADJUSTED
IDEAL UNADJUSTED
NO-RAP
RAPPING PUFF
NO-RAP+RAP PUFF
RAPPING PUFF
PARTICLE
HIS. VEL.(CM/SEC)
EFFICIENCY*)
DM/dLOGD(MC/DSCM)
DM/DLOGDCMG/DSCM)
DM/DLOGD(MG/DSCM)
DISTRIBUTI ON(J)
OIAM,(M)
3.685E+00
5.957E+01
u'.«7aE-oi
6.920E-0U
O.881E-01
5.350E-02
2.000E-07
«.266Et00
b.«95E+01
7,1 39E»01
7.606E-03
7.217F-01
2.806E-01
U.000E-07
S.057E+00
7.11UE+01
7*. 1U5E-01
2.609E-02
7.U06E-01
6.176E-01
6.000E-07
5,87fiE+00
7,6

-------

SUMMARY TABLE OF ESP OPERATING *
PARAMETERS ANn PERFORMANCE •

DATA SET NUMBER 1 *
* ESP PERFORMANCE! EFFICIENCY s 9«>.30b5 * SCA » 2.U5BE+01 m**2/(m«*3/3EC) *
* ELECTRICAL CONDITI0N81
AVG, APPLIED VOLTAGE a «,515E+0« V *
AVG, CURRENT DENSITY o 25,61 NA/CM»*2 *
RESISTIVITY e 1 ,000E + 09 OHM-CM »
* SIZE DISTRIBUTIONS!
INLET MMD o 1 ,000E + 01 UM INLET SIGMAP s 1,500E*01 *
OUTLET MMD » 1,
-------
APPENDIX F
OUTPUT DATA FROM EXAMPLE 6
247

-------
*	E.P.A. ESP MODEL	*
*	*
*	I,E,R¦L,"R,T,P, AND SO,R.I, *
*	*
*	REVISION I,JAN, |, 197fl	*
*	*
*************************************
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER I
DATA ON CARD NUMBER 1
NENDPT ¦ 16 NDATA ¦ 1
DATA ON CARD NUMBER 2
LAB CSPl SCAa50FT2/1000ACFM|Ja2i)UA/rT2
DATA ON CARD NUMBER 3
N>
00
NJ8T ¦ 1 NDIST a 1 NVI B 1 NX B 10 NY a 10 NITER « 5 NCALC o 0 NRAPD a J NEFF a 1 NTEMP a 1 NONIO a 1
DATA ON CARD NUMBER U
NN a 10 NUMINC a 20
OATA ON CARD NUMBER 5
OL ¦ 0.01500 GRN/ACF PL s 10.0000 FT ETAO a 99,00000 * DD a 1000,00 KC/M**3 CP8 a S.lOOEfOO
VRATIO ¦ 1.0500 US » 0.000165 M**2/V«SEC FPATH a 1.0000 EBD a 1500000. V/M RhOCGS a t,00E+09 OHM.CM
DATA ON CARO NUMRFR 6
ASNUCK( 1) ¦ 0,00 AZICGYC J) B 0.00 AZNUMSf 1) » U.O
DATA ON CARO NUMBER 7
ENDPT( n a 0.200 UM ENDPT( 2) a 0,300 UM ENDPT( 5) o 0,000 UM FNDPT( «) a 0,500 UM ENDPTf 5) s 0,600 UM

-------
ENDPT( 6) ¦ 0,800 UM
EMDPTf 7) a J,000 UM ENDPT ( ft) e 1.300 UM E NDPT( 9) = 1,400 UM ENDPT(IO) • 1 ,800 UM
ro
\o
DATA ON CAPO number 8
ENDPT f 11 ) ¦ 2,200 UM ENDPT (121 a 3,000 UM F.NDPT(lJ) a a,000 UM ENDPT(1«) a 6,000 UM ENDPT (15) ¦ 10,000 UM
ENDPT(16) a 20,000 UM
DATA ON CARO NUMBER 4
PRCU( 1) a 0,0000 X PRCU( 2) b 0,0002 X PRCU( 3) a 0,0002 X PRCU( 4) a 1,0002 X PRCUC 5) a 2.66T2 X
PRCU( 6) b 7,6672 X PRCU( 7) b 12,6002 X PRCU( 8) b 17.3332 X P»CU( 9) ¦ 21,3332 X PRCUUO) b 2P.J332 X
OATA ON CARD NUMBER 10
PRCUCU) ¦ 36,0002 X PRCU(12) s <16,6672 X PRCU(lS) • ST.3342 X PRCUC14) a 68.6672 X PRCUU5) a 80,6672 X
PRCUC 16) a 100.0000 X
DATA ON CARD NUMBER 11
NUM8EC a 3 L8ECT( 1) ¦ 3 ISECTC 2) a 3 LSECT( 3) a 6
DATA ON CARD NUMBER 12
AS( 1) a 6.2500E+00 FT*»2 VOS( 1) a 4,6000E*04 V TC8( 1) a 1.5000E-04 A *IS( t) a 6.2500E*00 FT
AC6( 1) » «,6875E.02 IN BS( 1) » 5.0000E+00 IN NW8( 1) a 5.0000E+00
DATA ON CARD NUMBER 13
SYS( 1) a 2.5000E+00 IN VGS( 1) » S.OOOOE+02 FT**3/MIN VGASS( 1) a B.OOOOEtOO FT/8EC TEMPSC 1) a 7,6800E*01 F
PS( 1) a 1 ,0000£*00 ATM V1SS( 1) a 1 .8000E-05 KC/M.8EC LINC8( 1) a 8.J333E-01 FT
DATA ON CARD NUMBER 14
AS( 2) a 6.2500E + 00 FT«*2 V0S( ?) a 4.5800E+04 v TCSC 2) a l.SOOOE-04 A hlS( 2) a 6.2500E+O0 FT
AC8( 2) a 4.6875E-0? IN 891 2) b 5.0000E+00 IN NWS( 2) a 5.0000E+00

-------
Data on cabo nijmbfr is
srs C 25 » 2,5nnnF. + on IN	VGS( 2) = S,0000E + 02 FT»»J/MIN	VGASSt 2) S 8,0000ti00 FT/SEC TEMPSt 2) b 7.6«OOE*01 F
PS( 2) a l.OOOOE + OO ATM	VISS t 25 = l.Bf>00E-05 KG/M-SEC	LINcSC 25 » B.3333E-01 FT
DATA ON CARD NUMRfn 16
AS( 3) a 1.2500E+01 FT**2 VOS( 35 » a,
-------
INCREMENTAL ANALYSIS OF PRECIPITATOR PERFORMANCE
L*B ESPI SCA»50FT2/i000ACFM|jB206
3.861E-06
4.013E-06
3.301E-06
2.828E-04
2.939E-04
2,564E"04
3.61E-08
5.91E-08
6.40E-08
2.58E-04
2.58E-04
2.58E.04
CALCULATION 18 IN 8ECTI0N NO. a 2 AND THE 8ECTION LENGTH IS b 0.7625 M
w COLLECTION AREA e S.812E-01 «2
m WJRE TO PLATE o 1.270E-01 M
M CURRENT/M b 7.869E.05 AMP/H
1/2 WIRE TO WiRe b 6,350E*02 M
TEMPERATURE ¦ 297,667 K
ION MOBILITY ¦ 1.798E-00 N2/V0LT.SEC
OUST WEIGHT ¦ 8.120E-06 KG/SEC
APPLIED VOLTAGE b 4.580E+04 VOLTS
CORONA WIRE RADIU8 s 1 . 191E-03 M
CURRENT DENSITY b 2.581E-04 AMP/M2
GAS FLOW RATE b 2.365E-0I M3/SEC
PRESSURE b 1,000 ATM
MEAN THERMAL SPEED a a.E + 05	2.6501E+05	2,5«33E+13	25.8	2.64E-06	1.3S5E-06	9.925E-05	«,8i»E«08	2.5BE-0U	ft
1.0057	3.496E+05	2.6501E*fl5	2.5514E+13	25.8	2.45E«06	1.17UF-06	8.600E-05	4.56E-0A	2,58F-0«	9

-------
1,0036 J,U96E*05 2.6501E+05 2.5566E+13 25,6 2.31E-06 1,029f-n6
1,0023 S.u96Et05 2.6501E+05 2.5599E+13 25,6 2.18E-06 9.086E-07
1,0015 J.06
2.32OE-06
1.926E-06
2.083E-04
1.702E-04
1.011E-04
6.27E-08
5.97E-08
5.65E-06
2.9BE-0U
2.S8E-04
2.56E-0U
CALCULATION Is IN SECTION NO. c 3 AnO THE SECTION LENGTH IS b 1,5250 *
COLLECTION AREA b 1.J62E+00 M2
WIRE TO PLATE s 1.270E-01 M
CURRENT/M ¦ T.869E-05 AmP/m
1/2 WIRE TO WIRE b 6.350E-02 M
TEMPERATURE e 297,667 K
ION MOBILITY ¦ 1.79BE-04 M2/VOLT-SEC
DUST WEIGHT » 8.124E-06 KG/SEC
APPLIED VOLTAGE b «,«a0E+04 VOLTS
CORONA WIRE RADIUS b 1.19JE-03 M
CURRENT DENSITY B 2.581E-04 AMP/M2
GAS FLOW RATE b 2.365E-01 M3/SEC
PRESSURE B 1,000 ATM
MEAN THERMAL SPEED b U.039E+02 M/SEC
LENGTH INCR. 00.25416565 M
TOTAL CURRENT b 3.000E-04 AMPS
CORONA WIRE LENGTH s 3.812E+00 H
DEPOSIT E FIELD b 2.5B1E+03 VOLT/M
GAS VELOCITY a 2.4UOE+00 M/SEC
VISCOSITY b 1.800E-05 KG/M.SEC
PART, PATH PARAM, s 5.708E-08 *
INPUT EFF./INCR, « 10,58
ROVRI	ERAVG	EPLT	AFID	CMCD	mmq	WEIGHT DUST LAYER J(PART)	J(ION) INCR, NO

-------
1,0235
3,O96F*05
2.65U4E+05
2,5069E+13
25.8
2.90E-06
1 .573F-06
1 .152E-0U
5,15E-0B
2,58E-0«
7
1,0197
3.496E+05
2,65a«E+05
2.5163E+13
25. B
2.62E-06
1 ,3«6E-06
9.857E-05
«,85E-0B
2,58E-oa
8
t.0165
3,«9bE*05
?c65tlUE + 05
2,526E»r>6
8.5U3E-05
U.SbF-08
2,58E»0a
9
1,0139
3,«96E»05
2,65
-------
DUST WEIGHT « 8.12UE-06 KG/SEC
LENGTH INCR. B0.25«lfe5fe5 m
INPUT EFF./INCR, » 10,65
novRi
ERAVG
EPLT
A F10
CMCD
MMD
WEIGHT
OUST LAVER
j(Part)
J(ION)
INCR, NO
1,0235
3.U96E*05
?,65fltE+05
2, 50 6BE + 13
25.8
2.90E-06
1.57UE-06
1.153E-0U
5.15E-08
2,58E-0a
7
1,0197
3.U96E+05
2.65««E+05
2.5163E+13
25.8
2, 62E"06
1 ,3«6F-06
9.859E-05
<1,85E»08
2.58E.0U
8
1,016?
3,U96E+05
2,65U«E*05
2,52
-------
CHARGING RATES er>p PARTICLF SIZES FROM SUBROUTINE CHARGN OR CHQSUM
SRI THEORY USED FOR PARTICLE CHARGING
INCREMENT m0i	0/I5SATF FOR TNRICATEO PaRttcLF SIZES
0
,2500E"06
0.3500E-06
0.4500E-06
0.5500E-06
0.7000E-06
0.9000E-06
0,1 100E-05
0,1300E-05
1
1.0360
!.0360
1.0360
1.0360
1.0360
ft,9969
0,9648
0,9393
3
1.4244
1 .4197
1.4000
1.3780
1.3475
1,3040
1,2693
1,2413
3
1.607a
1 .5872
1.5516
1.5160
1,4692
1 .4143
1 .3719
1,3383
4
1.7256
1 .6925
1.6U53
1 .6002
1,54 25
1.0790
1 ,4304
1,3923
s
1.812'
1.7693
1.7132
1,6610
1,5953
1 ,5250
1,4717
1.4300
6
1,8618
1.8295
t,7662
1,7084
1,6362
1 ,5605
1,5033
1.4588
7
1.9360
1.8756
1,8058
1.7430
1,6653
1.5848
1.5243
1.4773
e
1.9823
1.9149
1,8397
1,7727
1,6903
1 ,6057
1.5424
1,«932
9
2.0228
1.9092
1,6692
1 ,7986
1,7122
1 .6240
1,5582
1.5072
10
2.0586
1.9796
1,8954
1,8216
1.7317
1,6403
1,5723
1.5197
n
2.0908
2.0069
1,9100
1,8422
1,7491
1,6550
1,5850
1.5309
12
2.1199
2.0316
1,9U03
1,8610
1,7650
1,6683
1,5963
1.5411
0
,1600E-05
0.2000E-05
0.2600E-05
0.3500E-05
0.5000E»05
0.8000E-05
0.1500E-04
1
0,9096
0.8806
0.8505
0.8215
0.7931
0,7641
0,7369
2
1,2081
1.1743
1,1371
1.0965
1.0444
0,9744
0,9141
3
1,2993
1.2610
1.2206
1.1805
1,1191
1.0920
1.0214
4
1,3483
1.3054
1.2605
1.2165
1,1721
1,12«8
1 .0742
5
1,3621
1.3355
1.2870
1.2397
1,1923
1,1426
1.0926
6
1.4077
1.3581
1,3067
1.2566
1,2067
1,1546
1,1033
T
1.4234
1.3713
1,3171
1.2649
1,2127
1,1585
1,1055
»
1,4370
1.3827
1,3265
1.2721
1,2127
1,1585
1.1055
9
1,4490
1.3928
1,3347
1.27B5
1,2127
1,1585
1,1055
10
1,4596
1.4018
1,3420
1.2843
1,2127
1,1585
1,1055
11
1.4693
1.4099
1.3487
1.2843
1,2127
1,1585
1,1055
12
1.4780
1.4173
1.3487
1.2843
1,2127
1,1585
1.1055

-------
CHARGE ACCUMULATED ON PARTICLE SIZES IN EACH INCREMENT
INCREMENT	CHARGE FOR INDICATED PARTICLE SIZES

0.2500E-06
0,3500E»06
0.4500E-06
0,5500E"06
1
0.18895E-17
0,33«13E-17
0.52363E-17
0.75764E-17
2
0.25979E-17
0,fl5785E» 17
0.707S9F-17
0,10077E-16
3
0.29317E-17
0,51188E"17
0.7B422E-17
0.11086E-16

0.31172E-17
0,5«58aE-17
0.83156E-17
0, 11702E »16
5
0,3306UE"1
0,19<*52E-1
o.t<»ro«E-i
0, 19927E-1
o.soiasE-i
0.30511E-1
0,90 0 0E"06
0,18551E"16
0.2U266E-16
0.26319E-16
0.27522E-16
0, 2B378E»16
0,29039E"16
0.29U92F-16
0.29881E-16
0.30222E-16
0,J0525E-16
0.30796E-16
0.310U5E-I6
O.llOnE-05
0,2<.a69E.16
0,3«82UE-16
0.37638E-16
0.392UUE-16
0.U0375E-16
0,ai2«flE-16
0.U1S19E-16
0.U231UE-16
0.«27fl9E»16
0.U3136E-16
0.4348UE-16
O.aSSOOE-lfc
0,13fl0E»05
0,35679£»l6
0.47152E-16
0.50838E-16
0,52889f.16
0,5«J?OE-lfc
0.5SU1UE-16
0,561I6E«16
0,56721F»16
0.S7252E-16
0.37726E-16
0.SBI52E-16
0.56540E-16
0.5000E-05
0,43179E"15
0.56866E-1S
0.62023E-13
0.63819E-15
0.64917E-15
0,656996-15
0.66028E-1S
0.66028C-I5
0.6602BE-15
0.66028C-13
0,66028E"|5
0.6602BE-15
0.8000E-05
0.10612E-14
0.13532E-14
0.15166E-14
0.15620E-14
0.15B6BE-14
0,16035E*14
0.16090E-1U
0,16090E-14
0.16090E-14
0.16090E-14
0.16090E-1D
0,16090E•!1
0.15O0E-0fl
0.35878E-14
o.aasiOE-ia
o,a9T31E-ia
0.52301E-18
0.5J197E-HI
0,53721E"14
0,53626E»ia
0,53826E«la
0.53826E»la
0.9S826E-14
0,?3626E-ia
0.53B26E»t4

-------
PART ICLF 9I2F. P4NCf STATISTICS
CORRECTIONS FOR nontoEIT168 USTnc SET wp, i OF CORRFCTiru. parameters
SIZE
CCF
INLET *
OUTl F i t
CflR. Ol'Tt FT
* NO-Rap EPF
. nd-pap »
no-rap p
COR, EFF.
COR, »
COR, P
2.500E-07
1,590
n.ono
ft, 0005
n.OOOu
53,2757
7, 700
06,7203
53,2757
7,700
06,7203
5.500E-07
1.010
o.ooo
0.9«?J
0.8580
53.9575
7 . 889
06,0025
53,1700
7,717
06,8300
u,5noE-nT

0 .
1.0?96
1. ?53"
55.3206
8. 195
00 ,#i790
50,000*
7,989
05.5955
5.500E-07
1,261
t .667
3,81«9
J,?t 39
57,086a
fl.O 5
02,9136
56,5980
8,090
03.0020
T,OOOE-O 7
1,205
5.000
10.8086
9.3959
59,0631*
9. 185
00,5370
58,9728
9,063
01,0272
9.000E-07
1,159
u.933
9.8738
8,6006
62,0658
9.968
37,5302
61,7583
9,7*8
38,2017
I.100E-06
1,130
o,733
8,8210
7,7778
b5,0093
10,693
30,9507
60,1222
1 (1,027
35,8778
J.300E-06
1,110
O.000
6.9537
6,2071
b7,00 0 5
11.002
32,5995
66,1206
11,010
33.8790
t,bOOE-Ob
1,090
8.000
12,6903
11,0006
70,253b
12,333
29,7060
68,7777
11,801
31,2223
2,000E-06
1,07?
t> ,667
9.0352
8,7016
73,0616
13,090
26,5380
71,5006
12,770
28,0950
2.600E-06
1,055
10,667
12,9220
12,3001
77,2628
15,075
22,7172
70,7030
13,997
25,2570
J.500E-06
1,001
10.667
10,6603
10.6295
81.2595
17.033
18,7005
78,2002
15,515
21,7558
5.000E-06
1,029
11.333
8.0532
9,3297
86,6707
20.502
13,3253
82,0266
17,058
17,9730
6.000E-06
1,018
12,000
3,0709
5.6215
95,2011
30,890
0,7989
89,7722
23,193
10,2278
I.500E-05
1,010
19.333
0.0830
0.0902
99,5315
50.557
0,0685
90,9291
30,330
5,0709
EFFICIENCY - !
STATED »
70.03
COMPUTED a
70,0259
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, s 81.2078
HMD or inlet SIZE DISTRIBUTION n 3,30j>E*00
8ISHAP OF INLET SIZE DISTRIBUTION b 2.16OE+00
LOG-NORMAL GOODNESS OF FIT s 0.9J5
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS o 1.750E+00
ui	8IGMAP OF EFFLUENT UNDER NO»RAP CONDITIONS ¦ 1.775E+00
^	LOG-NORMAL G00DNES8 OF FIT s 0.9S9
PRECIPITATION RATE PARAMETER UNDER NO.RAP CONDITIONS » 17,027
SIGMAG" 0.000 WITH 0,000 SNEAKAGE OVER 4,000 STAGES
NTEMP b 1
RMMD a 6,00
R3IGHA ¦ 2,50
CORR. EFF, . 78,1670
CORRECTED MmD OF EFFLUENT • 2,iflOEtOo
CORRECTED SIGMaP OF EFFLUENT a 1.963E+00
LOG-NORMAL GOOONESS OF FIT 8 0,908
CORRECTED PRECIPITATION RATE PARAMETER e 15,<18

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFtCIFNCIES, AND DISCPETE OUTLET MASS LOADINGS
IDEAL unadjusted
IOFAL unadjusted
NO»>»AP
rapping puff
NO-RAP*RAP puff
RAPPING PUFF
PARTICLE
NIG, VEL.CCM/8EC1
EFFIC!ENCY(*J
DH/DLflGD(MG/DSCH)
DM/DLOgDCMG/OSCH)
DM/DLOGO(MG/OSCM)
DI8TRIBUT ION(X)
OIAM,CM)
3.329E»00
2.791E+01
1 ,99lE-0«
2.863E-03
3.062E-03
0.360E-02
2.500E-07
3.636E+00
3.005E+01
5.532E-01
9,a61E-03
5,626E"01
1.022E-01
3.500E-07
3.998EfOO
3.250E»01
1 .038E + 00
2.12BE-02
1.059E+00
I.78UE-01
A.500E-07
0,379E*00
3,U98E+01
3.390E+00
3.85BE-02
S.«29E*00
2.642E-01
5.500E-07
fl.965E+00
3.B62E+01
b,088E+00
7.361E-0?
ba161E~0 0
7,953E"0I
7.000E-07
5,729E*00
U.306E+01
7, 170E + 00
1.3S1E-01
7.305E+00
1.132E400
9.000E-07
6,E*oi
9.953E+01
1.129E-01
1a109E+00
I,222E*00
2.887E+0I
J.S00E-05
to
Ul
CO

-------
SUMMARY TABLE OF ESP OPERATING
parameters and performance
DATA SET NUMBER 1
ESP PERFORMANCE! EFFICIENCY o 78.16TU * 8C* ¦ *.851E»00 M*«2/(M«*3/SEC)
ELECTRICAL CONDITIONS!	AVG, APPLIED VOLTAGE b U,515E*0il V
AVG, CURRENT DENSITY a 25,81 NA/CM**2
RESISTIVITY b l .OOOE + 09 OHM.CM
SIZE DISTRIBUTIONS!	INLET MMD a 3.302E+00 UM INLET SIGMAP » 2.16«E+00
OUTLET MMD » 2,11UE+00 UM OUTLET SIGMAP a l,963EtOO
NONIDEAL PARAMETER8I GAS SNEAKAGE FRACTION a 0,00 /SECTION GAS VELOCITY SIGMAG o 0,00
RAPPING MMD e 6.000E+00 UM RAPPING SIGMAP a 2,500E*00

-------
E.P.A. ESP MODFl
I.E.R.l.-B.T.P. AND SO.R.I.
REVISION I,JAN. 1, 1<»7B
PRINTOUT OF INPUT DATA FOB OATA SET NUMBER 1
DATA ON CARD NUMBER 1
NENDPT « 16 NDATA a 3
2.0000E»00 FT/SEC
Z.0000t*00 FT/SEC
2.ooooE+oo PT/see
DATA ON CARD NUMBER 2
LAB ESP| 8CA.200FT2/1000ACFM!J024UA/FT2
DATA ON CARD NUMBER 3
VG8( n ¦ 1.2300E+02 FT«*J/HIN VGASSC 1) a
VCS( 2) ¦ 1.2500E+02 FT««3/MIN VGASSC 2) ¦
VC6( 3) » 1,2500E»02 PT**S/MIN VCASSf 3) ¦

-------
INCREMENTAL analysts of precipitator PERFORMANCE
lab ESP I SCAb200FT2/1000ACFM,Js24UA/PT2
CALCULATION 18 IN SECTION NO. a 1 AND THE SECTION LENGTH IS a <1.7625 M
COLLECTION AREA > 5.812E-01 M2
WIRE TO PLATE ¦ 1.270E-01 M
CURRENT/m a 7,869E»05 AMP/M
1/2 HIRE TO WIRE s 6.350E-02 M
TEMPERATURE » 297,667 K
ION MOBILITY ¦ 1.798E-04 M2/V0LT-SEC
OU8T WEIGHT b 2.031E-06 KG/SEC
APPLIED VOLTAGE a 4.600E+04 VOLTS
CORONA HIRE RADIUS c 1.1Q1E"0S H
CURRENT DENSITY o 2,581F-0a AHP/M2
GAS FLOW RATE b 5.912E-02 M3/SEC
PRESSURE « 1,000 ATM
mean THERMAL speed » 05 AMP/H
1/2 WIRE TO WIRE o 6.3S0E-02 M
TEMPERATURE e 297,667 K
ION MOBILITY o 1.798E-04 M2/VOLT-SEC
DU8T WEIGHT ¦ 2.031E-06 KG/SEC
APPLIED VOLTAGE b tt,580E*0fl VOLTS
CORONA WIRE RADIUS ¦ 1.191E-03 M
CURRENT DENSITY a 2.581E-0U AMP/M2
GAS FLOW RATE ¦ 5.912E-02 MJ/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL 8PEED b «,a39Et08 M/SEC
LENGTH INCR, bO.25416565 M
TOTAL CURRENT ¦ 1.500E-04 AMPS
CORONA MIRE LENGTH b 1,906E+00 M
DEPOSIT E FIELD ¦ 2.381E+03 VOLT/m
GAS VELOCITY b 6.100E-01 M/8EC
VISCOSITY ¦ 1.800E-05 KG/M-SEC
PART, PATH PARAM, a 5.708E-08 H
INPUT EFF./INCR. « 10.63
ROVRI
ERAVG
EPLT
AFID
CMCD
MMD
WEIGHT
OUST LAYER J(PART)
J(1ON) INCR, NO,
1,0060
1,0002
1,0029
3.606E+05
3,606E»05
3.606E+0S
2.7156E+05
2.7156E+0S
2.7156E*05
2.4727E+13
2.«T7lE*lS
2,«802E*13
25.6
25.8
25.8
1.79E-06
l.5ae-06
1.40E-06
2.5S9C-06
1.TS7E-06
1.220E-06
«,665E-05
3.160E-05
2.230E-05
3.50E-08
2.79E-08
2.22C-08
2.56E-04
2.58E-04
2.58E-04
CALCULATION IS IN SECTION NO. s 3 AND THE SECTION LENGTH IS 8 1.5250 M
COLLECTION AREA b 1.162E+00 M2
WIRE TO PLATE 8 1.270E-01 M
CURRENT/M a 7.869Ea05 AMP/M
1/2 WIRE TO wire a 6.350E-02 m
TEMPERATURE a 297.667 K
ION MOBILITY 8 1.798E-0U M2/V0LT-SEC
DUST WEIGHT a 2.031E-06 KG/SEC
APPLIED VOLTAGE b a.fl«0E*04 VOLTS
CORONA WIRE RADIUS ¦ 1.191E-03 M
CURRENT DENSITY b 2.581E"0fl AHP/M2
GAS FLOW RATF o 5.912E-02 M3/SEC
PRESSURE b 1,000 ATM
MEAN THERMAL SPEED b 4.0J9E+02 M/SEC
LENGTH INCR, 80,25416565 M
TOTAL CURRENT 8 3.000E-04 AMPS
CORONA WIPE LENGTH b 3.812E+00 M
DEPOSIT E FIELD « 2.581E*03 VOLT/M
GAS VELOCITY 8 6.100E-01 M/8EC
VISCOSITY a 1.800E-05 KG/M.SEC
PART, PATH PARAM. 8 5.708E-08 M
INPUT EFF./INCR, 8 10,63
ROVRI
ERAVG
EPLT
AFID
1,0020 3,u9bEf05 2,64U6E»05 2,5bOBE+13
1,0014 3.496E+05 2.6446E+05 2.5622E+11
1,0010 3.496E+05 2.6446E+05 2.5633E+1S
CMCD
25.8
25,8
25.8
HMD
1.28E-06
1.17E-06
1.08E-06
WEIGHT
8.552F-07
6.296E-07
4.697E-07
DUST LAYER J(PART)
1,566E»05
1.153E-05
8,601E"06
1.73E-08
1.39E-08
I.12E.08
J(ION) INCR, NO,
2.58E-04
2.58E-04
2.58E-04

-------
t .0007 3.U06E+05 2.6446E+05 2,56«0E+t3 25,« 1.01F-06 J.5aaE-0T
1,0005 J.U96E*05 ?.6aU6E*05 2.5&45E+I3 25.6 9.57E-07 2,6<>6E-(1T
1,0001 3.896E+05 2.6446E+05 2.5&49E+I3 25.6 9.07E-07 2.067P-07
6.A89E-06 8.99E-00 2.58E-04
U.937E-06 7.26E-09 2.58E-04
3.785E-06 5.88E-09 2,5BE-0<|
10
1 1
12
EST, EFFICIENCY • 7a.03 UNCORRECTED COMPUTED EFFICIENCY o 97,65
INCREMENTAL ANALYSIS of PRECIPITATOR PERFORMANCE
1*0 ESP I SCA»200FT2/1000ACFMtJs2UUA/PT2
CALCULATION IS IN SECTION NO. o ) AND THE SECTION LENGTH IS ¦ 0.T625 M
COLLECTION AREA b S.812E-0I Mj
WIRE TO PLATE b 1.270E-01 M
CURRENT/M s 7.869E-05 AMP/M
1/2 MIRE TO MIRE a 6.350E-02 M
TEMPERATURE ¦ 297.667 K
ION M08ILITY s l,798E-0a M2/VOLT-SEC
DUST WEIGHT a 2.031E-06 KG/SEC
APPLIED VOLTAGE b «,600e*0« VOLTS
CORONA MIRE RAOIUS b 1.J91E-05 M
CURRENT DENSITY a 2.581E-04 AMP/H2
GAS FLOM RATE b 5,9i2£.o2 MJ/SEC
PRESSURE b 1,000 ATM
MEAN THERMAL SPEED b «,u39E*02 M/SEC
LENGTH INCR. so.25016565 M
TOTAL CURRENT a 1,500E-0« AMPS
CORONA HIRE LENGTH b 1.906E+00 M
DEPOSIT E FIELD ' 2.5B1E»03 VOLT/m
GAS VELOCITY B 6.100E-01 M/8EC
VISCOSITY b 1,6ft0E»05 KQ/M.SEC
PART, PATH PARAM, b 5.708E-0B M
INPUT EFP./INCR, b 27,39
ROVRI
ERAVG
EPLT
AFID
CMCD
MHO
WEIGHT
DUST LAYER J(PART)
J(I ON) INCR, NO,
1,0462
1,036(1
1,0107
3.622C+05
3,622E«05
3.622E+05
2.7O37E+05
2,T3«5E*05
2.7286E*05
2.3673E*I3
2.«129E+13
2,a«07E+13
25. B
25,8
25.8
6.18E-06
3.03E-06
2.21E-06
1.419E-05
7.110E-06
4.016E-06
2.599E-00
1.302E-04
T.352E-05
4.62E-08
5.44E-08
4.41E-08
2,586-04
2.58E-04
2,5«E»04
CALCULATION Is IN SECTION NO. b 2 AND THE 8ECTI0N LENGTH IS b 0,7625 M
COLLECTION AREA 8 5.812E-01 M2
MIRE TO PLATE ¦ 1.270E"Ot M
CURRENT/M b 7.869E-05 AMP/M
1/2 MIRE TO mire ¦ 6.350E-02 M
TEMPERATURE o J97.667 K
ION MOBILITY b l,798E-0a M2/V0LT-SEC
OUST HEIGHT ¦ 2.0JIE-06 KG/SEC
APPLIED VOLTAGE » 0.580E+00 VOLTS
CORONA MIRE RADIUS a 1.191E-03 M
CURRENT DENSITY b 2.581E-00 AMP/M2
GAS FLOM RATE a 5.912E-02 M3/SEC
PRESSURE s 1,000 ATM
MEAN THERMAL 8PEED e fl,ol9E+02 M/8EC
LENGTH INCR, B0.2S016S65 M
TOTAL CURRENT b 1,500E»04 AMPS
CORONA mire LENGTH b 1.906E+00 M
DEPOSIT E FIELD b 2.56ie»0J VOLT/M
GAS VELOCITY a 6.100E-01 "/SEC
VISCOSITY ¦ 1.800E-0S KO/M.BEC
PART, PATH PARAM, • 5.708E-08 M
INPUT EPF,/INCR, b 27,39
ROVRI
ERAVG
EPLT
AFID
CMCD
MMD
MEIGHT
OUST LAYER J(PART)
J(I ON) INCR. NO,
1,0082
1,0087
1,0027
3,606E*05
3,6061+05
3.606E+05
2.7167E+05
2.7167E+05
2.7167E+05
2.U671E+13
2,4759E+I3
2,4B08E+I3
25,8
25.8
25.8
1,796.06
l.SOE-06
1.40E-06
2.555E-06
1.73SE-06
1.219E-06
a,678E-05
J.177E-05
2.252E-05
3.50E-0B
2.79E-0B
2.22E-0B
2.58E-04
2.56E.00
2.58E-04
CALCULATION IS IN SECTION NO, a 3 AND THE SECTION LENGTH IS b 1,5250 M
COLLECTION aREA = 1.162E+00 mj
MIRE TO PLATE a 1.270E-01 M
CURRENT/M a 7.869E-05 AMP/M
1/2 MIRE TO WJRE a 6.350E-02 H
TEMPERATURE a 297.667 K
ION MOBILITY b 1.798E-0U M2/VOLT-SEC
OUST MEIGHT a 2.031E-06 KG/9EC
APPLIED VOLTAGE b 4,440E+0a VOLTS
CORONA MIRE RADIUS O 1.191E-03 M
CURRENT DENSITY a 2.581E-00 AMP/M2
GAS FLOM RATE a 5.912C-02 *3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED o a.a39E»02 M/8EC
LENGTH INCR. 80.25416565 M
TOTAL CURRENT a 3.00OE-0U AMPB
CORONA WIRE LENGTH b 3,812E*00 M
OFPOSIT E FIELD a 2.581E+03 VOLT/M
GAS VELOCITY a 6.J00C-01 M/SEC
VISCOSITY a 1.800E-05 KG/M.SEC
PART, PATH PARAM. a 5.708E-0B M
INPUT EFP./INCR, a 27,39
ROVRI	ERAVG	EPLT	aFID	CMCD	MWD	MEIGHT OUST LAYER J(PAHT)	J(ION) INCR. NO,

-------
1,0015
3.u96E.»05
?.6«U«E+05
2, 5fc2lE +13
25.B
1,28E»06
8,5"3E"07
1 .561E»05
1.73E-0B
2.58E-00
7
1 ,0006
S.iO&E+OS
2.6HUE + 05
2,5(>37£*13
25.8
1.17E-06
6.2«1E»07
1.152E-05
I .3BE-08
2.58E-0U
8
1,0005
* .U96E + 05
?.6«

-------
CHARGING RitES FOB PARTICLE SIZES FROM SUBROUTINE CHARGN OR C^r.SUH
SRI theory used
FOR PARTICLE
CHARGING





NCREMENT no,
q/osatf for
INDICATED
PaRTTCIE SIZES




0,2500E>06
0,35"0E"06 0
.0500E-06
0.5500E-06
0.7000E-06
0.9000E-06
0,1IOOE-05
0,1300E-05
1 1.0360
1,0360
1.0360
1.0360
1.0360
1,0360
1,0360
1,0360
2 1.8199
1,7759
1,7190
1,6669
1 .6007
1,5326
1,0810
1,0007
3 2.0353
1.9631
1.8839
1.8136
1,7275
1,6009
1,5761
1,5259
0 2.1616
2.0710
1.9781
1.8971
1,7991
1 ,7015
1 ,6290
1,5730
S 2.2511
2.1078
2.00(10
1.9558
1.8090
1,7000
1,6661
1 ,6060
6 2.3202
2.2066
2,0955
2.0010
1,8881
1,7767
1,6906
1.6310
7 2,3730
2.2501
2.1325
2.0330
1.9107
1 ,7983
1,7128
1.6071
B 2.0179
2,2876
2,1601
2.0600
1.9375
1,8170
1.7286
1,6608
9 2.0568
2,3200
2.1 *»17
2.0800
1,9575
1.8330
1,7025
1.6729
10 2.091?
2,3086
2.2161
2.1056
1,9753
1,8080
1.7509
1,6837
11 2.5220
2.3703
2.2380
2.1206
1.99J2
1,8612
1.7661
1.6935
12 2,5096
2,3975
2,2578
2.1019
2.0058
1.8T32
1.7760
1,7020
0.1600E-05
0.2000E-05 0
.2600E-05
0.3500E-05
0.5000E-05
0.8000E-05
0.1500E-00

1 1.0360
1,0360
1.0360
1.0360
1.0360
1.0360
1,0360

2 1.3942
1.3089
1.3018
1.2559
1.2100
1,1623
1,1160

J 1.4685
1,0130
1.3556
1.3000
1.2009
1,1879
1.1330

0 1.5092
1,0078
1,3805
1.3230
1.2630
1,2006
1.1011

5 1.5JT8
1,0723
1.0009
1,3000
1.2758
1.2100
1.1070

6 1.5598
1.0911
1.0205
1.3527
1,2857
1.2172
1.1516

7 1.5728
1,5016
1.0286
1.3585
1.2896
1.2193
1.1516

8 1,5801
1,5108
1,0356
1,3585
1.2896
1,2193
1.1516

9 1.5902
1,5190
1.0358
1.3585
1.2696
1,2193
1,1516

10 1.6033
1.5265
1,0358
1.3585
1.2896
1.2193
1.1516

11 1.6115
1.5265
1,0358
1.3585
1,289b
1,2193
1.1516

It 1.6190
1.5265
1.0358
1.3585
1.2896
1,2193
1.1516


-------
CHARGE ACCUMULATED ON PARTICLE SIZES IN EACH INCREMENT
INCREMENT	CHARGE FOR INDICATED PARTICLE SIZE8

0.2300E-06
0.3500E-06
0.4S00E>06
0.5500E-06
1
0.1B895E-17
0.33413E»17
0.52363E-17
0.75764E-17
2
0,33192E-17
0.57274E-17
0.86902E-17
0.12190E-16
3
0.37121E-17
0.63313E-17
0.95215E-17
0,132636-16
4
0,394238-17
0.66803E-17
0,99976E»17
0.13873E-16
s
0.41055E-17
0.69266E-17
0.10333E-16
0.14303E-16
6
0,42Jl7E-17
0.7U66E-17
0.10S91E-16
0.14633E-I6
7
0.43280E-17
0.72576E-17
0.10778E-16
0.14867E-16

0,4U097EM 7
0.73777E-17
0.10938E-16
0.15068E-16
9
0.44807E-17
0.74822E-17
0,11077E"1 fc
0.13243E-16
10
0.4S433E-17
0.75745E-17
0,11200E-16
0.1S398E-16
11
0.45996E-17
0.76573E-17
0.1131ie*16
0.15537E-16
12
0.46504E-17
0.77322E-17
0.114UE-16
0.15663E-16

0.1600E-05
0.2000E-05
0.2600E-05
0.3500E-05
1
0.59103e-16
0.91693E-16
0.15399E-15
0.27760E-15
3
0.79533E-16
0.11938E-15
0.19349E-15
0.33651E-15
3
0.83772E-16
0.12505E-15
0.20148E-13
0.34834E-1S
4
0.86096E-16
0.12813E-15
0.20378E-15
0.35461E-15
3
0.87729E-16
0.13030E-15
0.20881E-13
0.35900E.15
6
0,86982E-16
0.13196E-15
0.21113E-19
0.36244E-13
7
0.89723E-16
0.13289E-15
0.21233E-1S
0.36401E-1S
8
0.90371E-16
0.13371E-15
0.21340E-13
0.36401E-15
9
0,909«6E-16
0,l3444E-l5
0,21340E>15
0,364016-13
10
0.91463E-16
0.13510E-15
0.21340E-15
0,36«01E-15
11
0.91932E-16
0,13910E-15
0.21340E-13
0.36401E-13
12
0.9?361E-U
0.133106.13
0.21340E-13
0.36401E-15
0.7000E"0
0.11922E-1
0.18420E-1
0.19880E-1
0,20704E"1
0.2126JE-1
0.21726E-1
0,22034E>1
0,222'6E»1
0.22526E-1
0.227S1E-J
0.22915E-1
0.23082E-1
0, 9000E"06
0al9280E"16
0.28521E-16
0.30535E-16
0.31662E-16
0,32a5OE-J6
0.3S062E-16
6.33fl65E»14
0.33B13E-16
0,34118E»16
0.34390E-16
0.34635E-16
0t34856E»16
n.1100E»05
n.28423E-lfe
0.00632E-16
0.43240E-16
0.4Ufc90E-li
0.45708E-U
0.U6O90E-16
0, 4fc990E"16
Ot47423E«16
0.47804E-16
0.4814fcE-lfc
0,16
0, 63546E »16
0,63957E-lfc
0.64329E-16
0.64668E-16
0.5000E-05
0.56409E-1S
0.8S8T9E-15
0,6777?E-13
0,66767E-15
0,69466£-lS
0,70000E"15
0.70216E-15
0.70216E-19
0.70216E-15
0.70216E-15
0.70216E-15
0.70216E-15
0.8000E-05
0.14S66E-10
0.161«1E-1U
0.16496E-14
0.16677E-14
0.16805E-14
0.16904E-14
0.16933E-14
0,lfc933E*14
0,16933E-ia
0.16933E-14
0,16933E-1«
0.16933E-10
0.1500E-04
0.50443E-IU
0.34338E-14
0.55167E-14
0.35562E-14
0.55848E-14
0.56071E-14
0,560716.14
0.56071E-14
0.56071E-14
0.36071E-14
0,5607ie-14
0,S6071E»1«

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NflNIDEALITIES USING SET No. 1 OF CORRECTION PARAMETERS
SIZE
CCF
INLET *
outlet *
COR, OUTLET
* NO-RAP EFF
, NO-RAP W
NO-RAP p
COR. EFF,
COR, w
COR. P
2.500E-07
1.590
0.000
0.0014
0.0004
97.5047
9.386
2.4953
97,5047
9,386
2,4953
J.500E-07
1.414
0.400
2.8574
0,9366
97.4939
9.375
2,5061
97,2881
9,174
2,7119
4.500E-07
1.320
0.600
3.9412
1.3207
97.6956
9.588
2.3044
97.4562
9,337
2,5438
5.500E-07
1.261
1.667
9.5133
3.0719
97.9979
9.946
2.0021
97,8703
9,789
2.1297
7,000E-07
1,205
5.000
23.2591
7,6146
98.3681
10.465
1.6319
98,2400
10,273
1,7600
9.000E-07
1.159
4.933
16.9031
5,9202
98.7979
11,243
1.2021
98,6130
10,879
1,3870
1,1 00E-06
1.130
4.733
12.1630
4,6843
99.0985
11.975
0.9015
98,8562
11,369
1,1438
1.300E-06
1,110
4,000
7.7344
3,5053
99.3217
12,698
0,6783
98,9872
11,679
1,0128
J,600E-06
1.090
6.000
10.6369
5.8963
99,5335
13,650
0.4665
99,1479
12,118
0,8521
2,000E-06
1,072
6,667
5.5754
4.6423
99,7066
14,829
0.2934
99,1953
12,263
0,8047
2.600E-06
1,055
10.667
4.7462
7.5662
99,8439
16.434
0,1561
99,1803
12,216
0,8197
1.500E-06
1,041
10.667
2.1404
7,9221
99,9296
18,459
0,0704
99,1417
12,100
0,6583
S.000E-O6
1,029
11,333
0.5162
12,0667
99.9640
22,230
0,0160
98,7695
11,184
1,2305
B.OOOE-06
1.018
12.000
0,0063
10.7S13
99,9998
33,585
0,0002
98,5813
10,622
1,4187
1.500E-05
1,010
19.333
0.0055
20.1172
99,9999
56,826
0,0001
98,7974
11,212
1,2026
EFFICIENCY -
STATED B
97.85
COMPUTED a
97,8519
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, e 99.6492
MHO OF INLET SIZE DISTRIBUTION ¦ 3.302E+00
SIQMAP OP INLET SIZE DISTRIBUTION a 2.164E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0.9J5
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 1.067E+00
8IQMAP OF EFFLUFNT UNDER NO-RAP CONDITIONS « l.SSSE+OO
LOG-NORMAL GOODNESB OF FIT • 0,960
PRECIPITATION RATE PARAMETER under no-rap CONDITIONS ¦ 11,575
SIGMAG" 0.000 WITH 0,000 SNEAKAGE OVER 4.000 STAGES
NTEMP ¦ 1
RHHO ¦ 6,00
ftaiCHA ¦ 2,50
CORR', EFF, ¦ 98.844}
CORRECTED HMD OF EFFLUENT a J,22lE*00
CORRECTED SIGMAP OF EFFLUENT o 2,360E*00
LOO-NORMAL GOODNESS OF FIT a 0,905
CORRECTED PRECIPITATION RATE PARAMETER ¦ 11,34

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
IDEAL UNADJUSTED
NO-RAP
RAPPING PUFF
NO»RAP+RAP PUFF
RAPPING PUFF
PARTICLE
MIG, VEL.tCM/SEC)
EFFICIENCY(X)
DM/DLOGD(MG/DSCM)
DM/DLOGD(MG/DSCM)
DM/DLOGDIMG/DSCH)
DISTHIBUTION(X)
DIAM,(MJ
4.037E+00
7.95SE*01
1.06OE-05
7.082E-OU
7.586E-0U
U.360E-82
2.900E-07
aa320E«00
8.171E+01
3.011E-02
2.U72E-03
3.25BE-02
1.022E-01
3.500E.07
«,677E+00
a. a 11E ~ o l
5.3SUE-02
5.561E-03
5.910E-02
1.78UE-01
0.500E-07
5.061E+00
8.633E+01
1.582E-01
1.008E-02
1 .683E-01
?,6«2E-0l
5.500E-07
5.65TE+00
8.919E+01
2,flSlE-01
1.923E-02
2.6«3E»01
7.95SE-01
7, OOOE«OT
6.061E+00
9.212E+01
2.296E-01
3.531E-02
2.6U9E-01
1¦132E+00
9,00OE-O7
7.266E+00
9.«26t*01
2,022E-01
5.fl3«E"02
2.566E-01
1,a20E+00
1,lOOE-Ofc
8,067E+00
9,581E*01
1.S21E-01
7,U98E"02
2.271E-0J
1.661E+00
1.300E-06
»,2ME*00
9.738E*01
1.283E-01
1.061E-01
2.3««E-01
3,831E*00
1,600E*0b
1.082E+01
9.858E+01
8,«22E-02
1 .U68E>01
2.310E-01
U,23«E+00
2.000E»06
1.313E+01
9.9«3E*01
q,639E»02
1.972E-01
2,a36E-01
8.791EtOO
2,600E«06
1,656E*01
9.985E»01
2,255E-02
2.52UE-01
2.750E-01
1,ouaE+oi
3.500E-06
2.223E+01
9.998E+01
3,859E«03
2.933E-01
2.972E-01
1,709E+01
5, OOOE»06
J.359E*01
1.000E+02
3,717E"05
2.879E-01
2.880E-01
2,1laEtoi
8,000E*06
5.863E+01
1.000E+02
2.390E-05
2.898E-01
2.698E-01
2,887Et01
1.500E-05

-------
SUMMARY TABLE OF ESP OPERATING
PARAMETERS AND PERFORMANCE
DATA SET NUMBER J
E8P PERFORMANCE! EFFICIENCY a Q8.fl«flJ X 9CA ¦ 5.9J2E+01 M««2/(M«*J/SEC)
ELECTRICAL CONDITIONS!	AVG, APPLIED VOLTAGE s fl.515E+0a V
AVG, CURRENT DENSITY m 25,81 NA/CM**2
RESISTIVITY ¦ 1,000E+09 OHM.CM
SIZE DISTRIBUTIONS!	INLET MHD a 3.302E+00 UM INLET 8IGMAP ¦ 2,16«E+00
OUTLET MHD » 3.22je+00 UM OUTLET SIGMAP a 2.160E»00
NONIDEAL PARAMETERS! GAS SNEAKAGE FRACTION a 0,00 /SECTION GAS VELOCITY SI6MAG ¦ 0,00
RAPPING MMO ¦ 6.000E*00 UM RAPPING SIGMAP ¦ 2,500E*00

-------
E.P.A. ESP MODEL
I.E.R.l.-R.T.P. AND SO.R.I.
REVISION I,JAN, 1, 197R
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER 1
DATA ON CARD NUMBER 1
NENDPT ¦ 16 NDATA a S
DATA ON CARD NUMBER 2
LAB EBPi 8CA«300FT2/1000ACPH|Jo2UUA/PT2
M DATA ON CARD NUMBER 3
o\
SO
VG8( 1)	¦	8.3333E+01 FT**3/MIN	VGASSt 1) a	J.5333E+00 FT/SEC
V68( 2)	¦	6.3333E+01 FT«*S/MIN	VGASSt 2) b	l.J333E*00 FT/8EC
VG8< 3)	•	8.3333E+01 FT»«3/MIN	VGA88C 3) =	1.3333E«00 FT/8EC

-------
INCREMENTAL ANALYSIS OF PRECIPITATOR PERFORMANCE
LAB ESP I SCAS300FT2/1 000ACFM|JS206
2.43E-08
1.74E-08
1.24E-08
2.58E-04
2.58E-04
2.S8E-04
CALCULATION Is IN SECTION NO. a 3 AND THE 8ECTI0N LENGTH IS 8 1.5250 M
COLLECTION AREA a 1.162E*00 M2
WIRE TO PLATE 8 1.270E-01 M
CURRENT/M a 7.869E-05 AHP/m
1/2 WIRE TO WIRE a 6.350E-02 M
TEMPERATURE b 297,667 K
ION MOBILITY a 1.798E-04 M2/VOLT.SFC
OUST WEIGHT a 1 ,354E»06 KG/SEC
APPLIED VOLTAGE b 4,440E*04 VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY s 2.581F-04 AMP/M2
GAS FLOW RATE s 3.942E-02 M3/SEC
PRESSURE s 1 ,000 ATM
MEAN THERMAL SPEED 8 4.439E+02 M/8EC
LENGTH INCR. aO.25416565 M
TOTAL CURRENT b 3.000E-04 AMPS
CORONA WIRE LENGTH s 3.812E+00 H
DEPOSIT E FIELD 8 2,581E*03 VOLT/M
GAS VELOCITY a 4,067E»01 M/8EC
VISCOSITY s 1.800E-05 KG/M.8EC
PART, PATH PARAM, a 5.7O8E-O0 M
INPUT EFF./INCR, s 27,39
ROVRI
ERAVG
EPLT
AFID
CMCD
HMD
WEIGHT
DUST LAYER J CPART)
JCION) INCR, NO,
1,0005 J.496E*05
1.0003 3.496E+05
1,0001 3.496E *05
2,64 4 OE* 05
2,fc440E*05
2,644 0E + 05
2.5&46E +1 3
2.5652E~13
2,5655E+13
25,8
25.8
25.8
9.99E-07
9.18E-07
8.60E-07
5.0ME-07
3.373F-07
2.2MF-07
6.177E"06
4.117E-06
2.784E-06
8.72E-09
6.33E-09
4.61E-09
2.58E-04
2.58E-04
2.58E-04

-------
1.000! 3.«<>6E+05 ».6««0Ef05 2.5657Etl3 25.8 8.13E-07	1.560E-07	1.905E-06	3.37E-09	2,58E-nu	10
1,0000 3.O96E+05 2,6«00E*05 2.5658E+13 25.8 7.73E-07	1.077F-07	1.315E-06	2.06E-09	2.58E-0O	11
1,0000 3.«'6E+05 2.6000E+05 2,5658E»13 25.8 7.36E-07	7,il8flE»08	9.100E-07	1.80E-09	2.5BE-0U	12
EST, EFFICIENCY ¦ 97.85 UNCORRECTED COMPUTED EFFICIENCY o	99.08
INCREMENTAL ANALYSI8 OF PRECIPITATOR PERFORMANCE
LAB ESPi 8Cab300FT2/1000ACFM,Jo2«UA/FT2
CALCULATION 19 IN 8ECTI0N NO. a l AND THE SECTION LENGTH 19 o 0,7625 M
COLLECTION AREA ¦ 5.812E-01 M2
WIRE TO PLATE B 1.2T0E-01 M
CURRENT/M ¦ 7.869E-05 AMP/M
1/2 HIRE TO WIRE ¦ 6.350E-02 M
TEMPERATURE ¦ 297.667 K
ION MOBILITY ¦ 1.798E-00 M2/VOLT-8EC
DUST WEIGHT » 1.35UE-06 KG/8EC
APPLIED VOLTAGE « «,600E«00 VOLTS
CORONA WIRE RADIUS ¦ 1.191E-03 M
CURRENT DENSITY a 2.581E-00 AMP/M2
GAS FLOW RATE a 3.902E-02 M3/8EC
PRESSURE » 1,000 ATM
MEAN THERMAL SPEED a U.U39E+02 M/8EC
LENGTH INCR, aO.23016565 M
TOTAL CURRENT a l.SOOE-OO AMPS
CORONA HIRE LENGTH a 1,906E*00 M
DEPOSIT E FIELD s 2,581E*03 VOLT/m
GAS VELOCITY s 0.067E-01 M/SEC
VI9C09ITY b 1.800E-05 KG/M-SEC
PART, PATH PARAM. b 5.708E-08 m
INPUT EFF./INCR. a 35.KO
ROVRl
ERAVG
EPLT
AFID
CMCD
HMD
WEIGHT
DUST LAYER J(PART)
J(ION) INCR, NO,
1,0398
1,0163
1,0060
3.622E+03
3.627E+05
3.622E+05
2.7008E*05
2,7307E*05
2.72S5E+05
2,3817E+13
2,0321E+13
2.0569E+13
25,8
25.8
25.8
5.07E-06
2.U1E-06
1.7OE-06
1.771E-0S
7.20SE-06
3,6«9E»06
2, 162E»00
8.807E-09
0,050E"05
a,19E-08
O.73E-08
3.01E-08
2,58E.0fl
2.58E-00
2.3BE-00
CALCULATION IS IN 8ECTI0N NO. a 2 AND THE SECTION LENGTH IS b 0.7625 M
COLLECTION AREA ¦ 3.612E-01 Mg
MIRE TO PLATE b 1.270E-01 M
CURRENT/M ¦ 7.869E-05 AMP/M
1/2 HIRE TO NIRE a 6.350E-02 M
TEMPERATURE • 297.667 K
ION MOBILITY a 1.798E-00 M2/VOLT-SEC
OUST WEIGHT ¦ 1.350E-06 KG/SEC
APPLIED VOLTAGE B 4.580E+00 VOLTS
CORONA WIRE RAOIUB = 1.19JE-03 M
CURRENT DEN8ITY ¦ 2.581E-00 AMP/M2
GAS PLOW RATE a S,902E*02 M3/8EC
PRESSURE a 1.000 ATM
MEAN THERMAL SPEED B a.o39E»02 M/8EC
LENGTH INCR, bO,2S016565 M
TOTAL CURRENT b 1 .SOOE-OO AMP8
CORONA WIRE LENGTH b 1,906E*00 M
OEPOSIT E FIELD a 2,581E*03 VOLT/M
GAS VELOCITY a fl,067E-01 M/SEC
vrecosrTr a i.sooe-os kg/m.sec
PART, PATH PARAM, b 5.708E-08 M
INPUT EPF,/INCR. b 35,00
ROVRJ
ERAVG
EPLT
AFID
CMCD
HMD
HEIGHT
oust layer j(Part)
J(ION) INCR, NO,
1,0036
1,0016
1,0007
3.606E+05
3,606Et09
3.606E+05
2,71«0E*05
2.7100E+05
2.7100E»05
2.1786E+13
2,0834E*13
2.0B56E+13
25.8
25,8
25.8
1.00E-06
1.26E-06
1.10E-06
2.061E-06
1.267C-06
7.998E-07
2.SO0E-05
1.506E-05
9.763E-06
2.43E-08
1.70E-08
1.2OE-0B
2,50E»OO
2.58E-00
2.56E-00
CALCULATION IS IN SECTION NO. a 3 AND THE SECTION LENGTH IS a 1.5250 M
COLLECTION aREA a 1.162E+00 M2
WIRE TO PLATE a 1.270E-01 m
CURRENT/M a 7,869E*05 AHP/m
1/2 WIRE TO WIRE a 6.350E-02 M
TEMPERATURE a 297.667 K
ION MOBILITY a |.798E-0O M2/VOLT-SEC
DUST WEIGHT b 1.350F-06 KG/SEC
APPLIED VOLTAGE o 0,OO0E*0fl VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY a 2.581E-00 AMP/M2
GAS FLOW RATE b 3,902E«02 M3/8EC
PRESSURE ¦ 1,000 ATM
MEAK THERMAL SPEED a 0,u39E»02 m/SEC
LENGTH INCR. aO.25016565 M
TOTAL CURRENT b 3.000E-00 AMPS
CORONA WIRE LENGTH a 3.S12F+00 M
DEPOSIT E FIELD » 2,581E*03 VOLT/M
GAS VELOCITY a 0.067E-01 M/SEC
VISCOSITY e 1.800E-05 KG/M-SEC
PART, Path PARAM. a 5.708E-0S M
INPUT EFF./INCR. a 35.00
ROVRI ERAVG	EPLT
AFID	CMCD	MMD
WEIGHT DUST LAYER J(PART)
J(ION) INCR. NO,

-------
1 .0003
3,«96Ef05
2.6«39E»05
2.5b50E+13
25.8
9.99E-07
5.061E-07
fc.17BE-06
8.72F-00
2,58E"0fl
7
1,0001
3.U96E+05
2.6U39E+05
2,5fc55E+l3
25.8
9.18E-07
3.373F-07
U.117E-06
6.33E-09
2.58E-0O
8
1,0001
3,a«6E*0S
2.6«39E»05
2,Sh57E+13
25.8
8,ME"07
2.281E-07
2.78UE-06
U.61E-09
2.58E-0U
9
1 ,0000
J.U96E+0S
2.6U3«Ef05
2,5b58E*13
25.8
8.13E-07
1.561E-07
1.905E-06
3.37E-09
2.5BE-04
10
1,0000
3.U96E+05
2,6«39E*05
2.5fc58E»13
25.8
7.73E-07
1.077E-07
1.315E-06
2,afcF-09
2.58E-0U
11
1,0000
3.U96E+05
2.6OS9E+05
2.5658E+13
25.8
7.36E-07
7.U89E-08
9, l«?E-07
1.80E-09
2.58F-0U
12
w
K)

-------
CHARGING RATES FOP PARTICLE SIZES FROM SlIRROIJTINE CHARGN OR CHRSUM
8«I
THEOR* USED
FOR PARTICLE
CHARGING


increment Nn,
Q/QSATF FOP
INDICATED
particle sizes

0
,2500E»06 0
,3500E"06 0
.4500E-06
0.5500E-06
0.7000E-06
t
1.0360
1,0360
1,0360
1,0360
1,0160
2
1,9069
1,6668
1,6170
1.7541
1,6762
3
2.1655
2.0730
1,9601
1,6992
1,6012
a
2,2690
2.1603
2.0726
1.9611
1,6713
5
2.3775
2.2555
2.1360
2,0367
1,9205
6
2.4459
2.3135
2,1661
2,0629
1,9563
7
2.11978
2.3563
2,2203
2.1141
1,9801
e
2,5019
2,3926
2,2552
2,1409
2,0063
9
2.5602
2.0205
2,2621
2,1602
2,0256
10
2.6101
2.4526
2,3060
2,1609
2,0431
11
2,6040
2.0776
2,3274
2,2036
2,0567
12
2,6716
2,5006
2,3469
2,2205
2,0729
0
.1600E-05 0
.2000E-05 0
'.2600E-05
0.3500E-05
0.5000E-05
1
1.0360
1,0360
1.0360
1,0360
1,0360
2
1,4367
1,3673
1,3341
1,2624
1,2309
3
1.5111
1,0097
1,3860
1,3252
1,2647
a
1,5507
1.4635
l.aioo
1,3479
1,2822
5
1.5765
1,5072
1,4341
1,3636
1,2946
6
1,5999
1,5255
1,4493
1,3761
1,3042
7
1,6124
1,5356
1,4570
1 ,3617
1,3079
8
1,6234
1,5400
1,4639
1,3617
1,3079
9
1,6331
1,5524
1.4639
1,3617
1,3079
10
1.6419
1,5596
1,4639
1,3617
1,3079
tl
1 ,6496
1,5596
1.4639
1,3617
1,3079
12
1.6496
1.5596
1,4639
1,3617
1,3079
0.9000E-06
0.1100E-05
0.1300E-0S
1,0360
1,0360
1 ,0360
1,5972
1.5378
1,4916
1,7035
1,6309
1,5709
1,7626
1,6625
1 ,6206
1 ,6042
1,7166
1,6530
1,6361
1.7460
1,6777
1,8570
1,7600
1,6926
1,6752
1,7793
1,7060
1,8911
1.7928
1,7177
1,9053
1.6009
t,7282
1,9182
1.6156
1,7377
1,9298
1,8257
1,7060
0.8000E-05
0.1500E-00

1,0360
1,0360

1,1777
1.1262

1,2025
1.1427

1,2149
1,1505

1,2238
1,1561

1,2307
1.1561

1,2326
1.1561

1,2326
1,1561

1,2326
1.1561

1,2326
1.1561

1,2326
1.1561

1,2326
1.1561


-------
CHARGE ACCUMULATED ON PARTICLE SIZFS IN EACH INCREMFNT
INCREMENT	CHARGE FOR INDICATED PARTICLE SIZES

0.2500E-06
0.3500E-06
0,a500E-06
0.5500E-06
1
0,18895E"17
0.33ai3E-17
0.52363E-17
0, 7S7fcaE»17
2
0.35509E-17
0,608a9E.ir
0,9J 836E"t7
0,12828E-16
3
0.39459E-17
0.66868E-17
0.10008E-16
0.13888E-16

0.ai7o7E-l7
0.70315E-17
0,10076E»lfe
0,1 ua87E»l6
5
0.a3362E»l7
0.727B2E-17
0,10806E-16
0,1U908E*16
6
0.aa60SE-i7
0,7aMOE-17
0.11059E-16
0.15232E-16
7
0,a5555E«lT
0.75992E-17
0.112U2E-16
0.15460E-16

0.06360E-17
0.7716BE-17
0,11398E»1<>
0.1S656E-16
9
0,a7038E-l7
0.78193E-17
0,1 l53aE»16
0,15827E"16
10
0.a7676E-17
0.79099E-17
0,11655E*16
0,1S978E"16
11
0,«8229E-17
0,79911E» 17
0.11763E-16
0.16110E-16
12
0,a8729E»l7
0,806a7F"17
0, 11862E-16
0.1623SE-16

0.1600E-09
0.2000E-05
0.2600E-OS
0.3500E-05
I
0,59103E"16
0.91693E-16
0, 15399E-15
0,27760E"15
2
0.82072E-16
0.12278E-15
0.19829E-15
0.30361E-15
3
0.86207E-16
0.12850E-1S
0,20606e»15
0, J5510E-15
fl
0,88ab5E«16
0.13129E-15
0.21022E-15
0.J6116E-15
5
0,90052E-16
0.13339E-15
0.21315E-H
0.365ajE-15
6
0.91270E-16
0.13301E-15
0,2lSaiE>15
0.3687JE-15
7
0.91983E-16
0.13590E-15
0.21655E-15
0.37023E-15

0.92608E-16
0.13669E-1S
0.21757E-15
0.37023E-15
9
0.9316UE-16
0.13739E-13
0.21757E-15
0.3702JE-15
10
0.93664E-16
0.13803E-1S
0.21757E-15
0.37023E-1S
11
0,98118E-16
0.13B03E-1S
0,21757E-15
0,J7023E"15
12
0.9UU8E-16
0.13803E-15
0.21757E-15
0.37023E-1S
0.7000E-0
0.11922F-1
0.19290E-1
0.20727E-1
0.21530E-1
0.22100E-1
0.22535E-1
0.22832E-1
0.23088E-1
0.23312E-1
0.23512E-1
0.2369iF-t
0.2385OE-1
O.QOOOE-06
0,19280E-16
0.29723E-16
0,31700E»lfe
0.32801E-16
0.3357UE-16
0,3ai67E»16
0.34558E-16
0,34895E"16
0.3519IE-16
0.35«56E-1<>
0.3569SE-16
O.S5912E"16
O.ltOOE-OS
0,28fl23E"l
0.O2190E-1
0,ua7«5E-l
0,«615«E-1
0,a7l50E-l
0.U7912E-1
0.U8395E-1
0,la
0.56293E-14
0.56293E-10
0,5fc293E-ie
O.S6293E-le
0,56293E»la
0.5629JE.la

-------
PARTICLE 8IZ8 PUNSE STATISTJCS
CORRECTIONS FOR NONTOFAL!TIES USING SET No. 1 OF CORRECTION PARAMETERS
SIZE
CCF I
NLET X
2.300E-07
1,590
0.000
3.500E-07
1.414
0,000
4.500E-07
1.320
0.600
5.500E-07
1.261
1 .667
7.000E-07
1.205
5.000
9.000E-07
1,159
4.933
1,1 OOE-Ob
1,130
4,733
1.300E-06
1,110
4,000
1.600E-06
1,090
8,000
2.000E-06
1,072
6.667
2,600E-06
1,055
10,667
3.500E-06
1,041
10,667
5,000E-06
1,029
11.333
6.000E-06
1,018
12,000
1.500E-05
1,010
19.333
EFFICIENCY • STATED b
OUTLET X COR. OUTLET X
NO-RAP EFF
, NO-RAP W
NO-RAP p
COR. EFF.
COR, w
COR, P
0.0020
0,0396
99.7034
9,868
0.2966
40,3731
0,877
59.6269
4.2115
0,5009
99.6922
9,805
0,3078
99,6226
9,459
0,3774
5.6672
0,7109
99.7239
9.989
0.2761
99,6430
9,553
0,3570
12.8763
1,4877
99.7742
10,330
0,2258
99,7311
10,034
0.2689
28.7347
3.5058
99.8320
10.631
0,1660
99.7887
10.443
0,2113
16.0697
2.7757
99.8929
11.595
0,1071
99,6304
10.816
0,1696
11,3276
2.3848
99,9300
12.316
0,0700
99,8482
11,003
0,151 8
6,2743
2,1089
99,9541
13.033
0.0459
99.8411
10.926
0,1589
7,2198
4,1603
99,9736
13,970
0,0264
99,8433
10,949
0.1567
3.0073
4,1151
99,9868
15.146
0.0132
99.8140
10.659
0,1860
1,8769
8.1215
99,9949
16.742
0.0051
99,7706
10,303
0,2294
0.5714
9,4814
99,9984
18,758
0,0016
99.7321
10.041
0,2679
0.0547
15.4421
99,9999
22.833
0,0001
99,5894
9,316
0,4106
0,0407
19,0911
99,9999
33.947
0,0001
99,5206
9,054
0,4794
0.0656
26.0743
99.9999
59.047
0,0001
99,5936
9,334
0,4064
99,48
COHPUTED b
99,4760
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, » 99.9708
MHO OF INLET 8IZE DISTRIBUTION ¦ 3,302E*00
8IGMAP OF INLET SIZE DISTRIBUTION a 2.164E+00
LOG-NORMAL GOODNESS OF FIT s 0,935
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 9.059E-01
8ISMAP OF EFFLUENT UNDER NO-RAP CONDITIONS " 1,453E*00
LOG-NORMAL GOODNESS OF FIT e 0.963
precipitation rate parameter under no-rap conditions b is,796
SIGMAGP 0.000 WITH 0,000 SNEAKAGE OVER 4.000 STAGES
NTEMP ¦ 1
RMMD ¦ 6,00
RSIGMA ¦ 2,SO
CORR. EFF, ¦ 99.6966
CORRECTED HMD OF EFFLUENT ¦ 4.7SSE«00
CORRECTED 8IGMAP OF EFFLUENT ¦ 2.695E+00
LOG-NORMAL GOODNESS OF FIT • 0,981
CORRECTED PRECIPITATION RATE PARAMETER ¦ 9,64

-------
UNADJUSTED MIGRATION VELOCITIES and
EFFICIENCIES, and
DISCPfTF OUTLET MASS
LOADINGS


IDEAL UNADJUSTED
IDEAL UNADJUSTED
NO-RAP
Rapping puff
no-rap+rap puff
RAPPING puff
PARTICLF
MIG. VEL.(CM/SEC)
efficiency*)
DM/dLOGDCMG/DSCM)
DM/DLOGDCMG/DSCM)
DM/DLOGD(MG/DSCM)
DTSTRIBUTION(X)
DIAM.(h)

-------
summary table OF ESP OPERATING
PARAMETERS and performance
DATA SET NUMBER 1
E8P PERFORMANCE I EFFICIENCY " 99,6986 X SC* ¦ S'.899E + 0| M*«2/(M#*3/SEC)
ELECTRICAL CONDITIONS! AVG, APPLIED VOLTAGE a fl,315E+0U V
AVG, CURRENT DENSITY s 25,61 NA/CM**?
RESISTIVITY o 1.000E+09 OHM-CM
SIZE DI8TRIBUTIONSI INLET HMD ¦ 3,J02E»00 UN INLET 8IGMAP > 2.160E+00
OUTLET HMD ¦ 4.733E+00 UM OUTLET SIGMAP a 2.695E»00
NONIDEAL PARAMETERS I	GAS SNEAKAGE FRACTION • 0,00 /SECTION GAS VELOCITY 8IGMAG ¦ 0,00
RAPPING MMD b 6.000E«00 UM RAPPING SIGMAP ¦ 2,S00E*00

-------
E.P.A. ESP HODeL
T ,F,B,L.-».T.Pt ANO SO.B.J.
REVI8ION I,JAN, i, J97e
PRINTOUT OF INPUT DATA FOB DATA SET NUMBER 1
DATA ON CARD NUMBER 1
NENDPT • 16 NDATA a 3
DATA ON CARD NUMBER 2
LAB E8P| SCAa	¦	6.2500E+01	FT««»3/HIN VGASSt	1)	« l.OOOOE+OO FT/3EC
VC6(	2)	a	6.2500E+01	FT**J/MIN	VGA8S(	2)	a 1.0000E*00 FT/SEC
VC8(	3)	¦	6.2500E+01	FT**3/MIN VGASS(	3)	« l.OOOOE+OO FT/8EC

-------
tNCRFMF^T4L ANAIY8TS n» PRECIPITATOR PERFORMANCE
LAB ESP| SCa»UOOFT?/iooOACFH,js?UUA/FT2
CALCULATION IS I~ SECTION NO. ¦ 1 ANO THE SECTION LENGTH IS a o, T625 M
COLLECTION ARE* o 5.812E-01 mj
HIRE TO PLATE a 1.270E-01 M
CURRENT/M ¦ 7.B69E-05 AMP/M
1/I WIRE TO WIRE ¦ 6.350E-02 m
TEMPERATURE a 297.66T K
ION MOBILITY b 1.79BE-08 M2/V0LT-SEC
DUST WEIGHT b 1.015E-06 KG/8EC
APPLIED VOLTAGE ¦ U.600E+00 VOLTS
CORONA WIRE RADIUS b 1.J91E-03 M
CURRENT DENSITY o 2,S8ie-0a AMP/M2
GAS FLOW RATE a 2.956E-02 M3/SEC
PRESSURE b 1,000 ATM
MEAN THERMAL SPEED = a.«39E+02 M/8EC
LENGTH INCR, b0,25016565 M
TOTAL CURRENT e l.SOOE-OU amps
CORONA WIRE LENGTH a 1,906E*00 M
DEPOSIT E FIELD a 2.5A1E+03 VOLT/M
GAS VELOCITY » 3.050E-0I M/SFC
VISCOSITY > 1.800E-05 KG/M.SFC
PART. PATH PARAM. b 5.708E-08 H
INPUT EFF./INCR, » I5.U1
ROVRI
ERAVG
EPLT
AFID
CMCD
MMD
WEIGHT
DUST LAYER J(PART)
J(ION) INCR. NO,
1,029*
1,0125
i,oo«9
3.622E+05
3.622E+05
3.622E+05
2.7361E+05
2.7275E+05
2.7275E+05
2. 8088E+13
2,aa6iE*l3
2.86865+13
25.8
25.8
2S.B
U.93E-06
2.08E-06
l.a9E-06
2.023E-05
7.107E-06
3.20TE-06
i,85?E-oa
6.506E-05
2.936E-05
3.88E-0B
a,14E-08
2.67E-08
2.5BE-04
2.5BE-08
2.5BE"0a
CALCULATION 18 IN SECTION NO. a 2 AND THE SECTION LENGTH IS ¦ 0.7629 M
COLLECTION AREA a 5.B12E-01 M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/M a 7.869E-05 AMP/M
1/8 WIRE TO WIRE a 6.350E-02 M
TEMPERATURE o 297.667 K
JON MOBILITY a 1.798E-08 M2/VOLT-8EC
DUST WEIGHT a 1.015E-06 KG/8EC
APPLIED VOLTAGE a U.5B0E*0« VOLTS
CORONA WIRe RADIUS a 1.1Q1E-03 M
CURRENT DENSITY a 2,581E"08 AMP/M2
GA8 FLOW RATE a 2.956E-02 M3/SEC
PRESSURE e 1.000 ATM
MEAN THERMAL SPEED a 8.U39E+02 M/8EC
LENGTH INCR, s0.25ai6565 M
TOTAL CURRENT a 1.500E-08 AMP8
CORONA WIRE LENGTH a 1.906E+00 M
DEPOSIT E FIELD a 2.581E+03 VOLT/M
GAS VELOCITY a 3.050E-01 M/8EC
VISCOSITY ¦ 1.800E.05 KG/M.8EC
PART. PATH PARAM, b 5.709E-08 m
INPUT EFF./INCR. b 35.aa
ROVRI
ERAVG
EPLT
AFID
CMCO
MMD
WEIGHT
DUST LAYER J(PART)
J{ I ON) INCR. NO.
1,0019
1,0008
1,0003
3.606E+05
3.606E+05
3.606E+05
2.7132E*05
2.7132E+05
2.7132E+05
2.8826E+13
2.8855E+13
2.8866E+13
25,8
25.8
25.8
l,2aE>06
1.05E-06
9.33E-07
1,636Ea06
8.95BE-07
5.10JE-07
l,fl98E-05
8.201E-06
4.671E-06
1.70E-0B
1.10E-08
7.09E-09
2.58E-08
2.5BE-08
2.581-oa
CALCULATION Is in SECTION NO. b 3 AND THE SECTION length 18 0 1.5250 M
COLLECTION AREA a 1.162E+00 M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/M a 7.869E-05 AMP/M
1/2 WIRE TO WIRE b 6.350E-02 M
TEMPERATURE a 297,667 K
ION MOBILITY B 1.796E-08 M2/VOLT-SEC
DUST WEIGHT a 1.015E-06 KG/SEC
APPLIED VOLTAGE a U.OUOE+Oa VOLTS
CORONA WIRE RADIU8 b 1.191E-03 M
CURRENT DENSITY a 2,581E"04 AMP/M2
GAS FLOW PATE a 2.9S6E-02 M3/8EC
PRESSURE b 1,000 ATM
MEAN THERMAL SPEED a 0.U39E+02 M/8EC
LENGTH INCR, aO.25416565 M
TOTAL CURRENT a 3.000E-08 AMPS
CORONA WIRE LENGTH a 3,812E*00 M
DEPOSIT E FIELD s 2.361E+03 VOLT/M
GAS VELOCITY a 3.050E-01 M/8EC
VISCOSITY a 1.800E-05 KG/M-8EC
PART, PATH PARAM, a 5.708E-08 M
INPUT EFF./INCR, a 35,aa
ROVRI	ERAVG EPLT AFID	CMCD	HMD	WEIGHT	DUST LAYER	J(PART)	JCION)	INCR. NO,
1,0001	3.«96E*05	2,6«38E+05	2.5655E+13	25.8	B.52E-07	2.922E-07	2.675E-06	8.89E-09	2.5BE-08	7
1,0001	3.896E+05	2.6438Et05	2.5657E+13	25.8	7.93E-07	1.766E-07	1.617E-06	2.95E-09	2,58E-0a	8
1,0000	3.896E*05	2.6838E+05	2.5658E+13	25.8	7.82E-07	1.083E-07	9.919E-07	1.98E-09	2.56E-08	9

-------
1 ,0000 3.O96E+05 ?, 6U38E + 05 2.S658E-HJ 25.8 6.99E-07 6.722E-08
1,0000 3.096F+05 2.60J8E+05 2.5658E+I3 25.8 6.79E-07 O.209E-0B
1,0000 3.U96E+05 2.6038E+05 2.5659E+13 25.8 6.62E-07 2.650F-0A
6.150E-07 l,2RE-0<>
3.B53E-07 8.51E-10
2.O29E-07 5,65E«10
2.5BE-0O	10
2.58E-na	11
2,5BE»0U	12
EST, EFFICIENCY o 99.08 UNCORRECTED COMPUTFD EFFICIENCY a 99.fit,
INCREMENTAL ANALYSIS OP PRECIPITATOR PERFORMANCE
lab E8PI SCA«a00FT2/lO00ACFMfJe2UUA/FT2
CALCULATION IS IN SECTION NO. a 1 AND THE SECTION LENGTH IS b 0.7625 M
COLLECTION AREA s 5.812E-01 M2
WIRE TO PLATE a 1 .27OE-01 M
CURRENT/M a 7.869E-05 AMP/m
1/2 WIRE TO WIRE n 6.350E-02 M
TEMPERATURE ¦ 297,667 K
ION MOBILITY s 1.798E-00 M2/VOLT«SEC
OUST WEIGHT ¦ 1.015E-06 KG/SEC
APPLIED VOLTAGE o O.600F+0O VOLTS
CORONA WIRE RADIUS B 1.191E-0J H
CURRENT DENSITY b 2.581E-00 AMP/M2
GAS FLOW RATE a 2.956E-02 M3/SEC
PRESSURE b 1,000 ATM
MEAN THERMAL SPEED b 
-------
1.0001
3.196E+05
2. 64J6E + 05
2.5657E+I3
25,8
8.S2E-07
2.921E-07
2.670E-06
58E + 13
25.8
7.92E-07
1,7t>6F»07
1 , bl6E*06
2.95E-09
2,56F-0
-------
charging rates for particle sizes from subroutine ckargn or chgsum
8BI THEORY USED FOR PARTICLE CHARGING
increment no, o/osatf for indicated particle sizes
0
.2500E-06
0.3500E-06
0.4500E-06
0.5500E-06
0.7000E-06
0.9000E-06
0.1 100E-05
0.1JO0E-O5
1
1,0360
1,0360
1,0360
1,0360
1,0360
1 ,0360
1,0360
1 ,0360
2
2,0379
1,9656
1,8862
1,8159
1,7297
1,6429
1,5780
1 ,5277
J
2,2500
2,1509
2,0476
1,9591
1.6527
1.7473
1.6693
1 ,6092
4
2,3785
2,2566
2,1391
2,0398
1,9216
1 ,8053
1.7198
1 ,6541
5
2,0663
2,3309
2,2034
2,0965
1,9700
1.8461
1.7552
1,6856
6
2,5340
2,3882
2,2528
2,1401
2,0072
1,8774
1,7825
1,7099
7
2,5853
2,4304
2,2884
2,1707
2,0325
1,8980
1,7997
1,7247
e
2,6289
2,4664
2,3188
2,1970
2,0543
1,9157
1 ,8147
1 ,7376
9
2,6668
2,4977
2,3454
2,2200
2,0735
1,9314
1,8279
1 .7490
10
2,7002
2,5254
2,3689
2,2404
2,0905
1,9453
1,6397
1 .7593
11
2,7302
2,5503
2,3900
2,2588
2,1058
1,9579
1.8504
1 .7686
13
2,7574
2,5729
2.4092
2.2755
2,1198
1,9694
1,8602
1,7771
0
,1600E»05
0.2000E-05
0.2600E-05
0.3500E-05
0.5000E-05
0.8000E-05
0.1500E-04
1
1,0360
1.0360
1,0360
1,0360
1,0360
1.0360
1,0360
2
1,4701
1,4144
1,3569
1.3011
1,2457
1,1885
1.1333
3
1,5409
1,0753
1.4078
1.3420
1,2786
1,2126
1.1094
4
1,5796
1,5083
1.4352
1.3648
1.2956
1,2207
1.1570
5
1,6069
1,5315
1,4544
1.3804
1.307b
1,2333
1.1625
6
1,6278
1,5094
1.4692
1.3924
1.3170
1,2400
1.1625
7
1,6400
1,5592
1,4767
1,3978
1.3205
1,2419
1.1625
8
1,6507
1,5678
1,4830
1,3978
1.3205
1,2419
1.1625
9
1,6602
1,5756
1,4834
1 ,3978
1,3205
1,2419
1.1625
10
1,6687
1,5756
1,4830
1,3978
1.3205
1,2419
1.1625
11
1,6765
1,3756
1.4830
1,3978
1.3205
1,2019
1.1625
12
1.6765
1,5756
1.4834
1,3978
1.3205
1,2419
1.1625

-------
CHARGF ACCUMULATEn ON PARTICLE SIZES IN EACH INCREMENT
INCREMENT	CHARGE FOR INDICATED PARTICLE sizes

0.2SOOE-06
0.3500E-06
0,4500E«0fe
0.5500E-06
1
0.18895E-17
0.33U13E-17
0.52363E-17
0,7576aE»l7
2
0.37167E-17
0.63392E-1T
0.95330E-J7
0.13279E-16
3
0.41109E-17
0.69367E-17
0,103U9E-16
0.14326E-16
4
0.43379E-17
0.72778E-17
0,108J1E-16
0.14917E-16
5
0.UA981E-17
0.75174E.17
0,11136E-16
0.15331E-16
6
0.46215E-17
0.77020E-17
0.U386E-16
0.136SOE-U
7
0.47131E-17
0.78361E-17
0.11566E-16
0.15874E-16
8
0,U7946E"17
0.795U2E-17
0, 11720E"16
0.16066E-16
9
0.48637E-17
0.80552E-17
0.11854E-16
0.16235E-16
10
0,a92flBE"17
0.81447E-17
0,11973E"16
0.16384E-16
11
0.U9795E-17
0.82250E-17
0.12080E-16
0.16S18E-16
12
0.50290E-17
0.82977E-17
0.12177E-16
0.16640E-16

0.1600E-05
0.2000E-05
0.2600E-03
0.3500E-05
1
0.59103E-16
0.91693E-U
0.15399E-15
0.27760E-15
2
0.83865E-16
0.12518E-1S
0.20167E-15
0.34862E-15
3
0,87'07E»16
0.13057E-13
0.20925E-15
0.35980E-15
4
0.90H3E-16
0.13319E-15
0.21331E-13
0.36570E-15
5
0.9l6b8E-16
0.13555E-15
0.21617E-15
0.36988E-15
6
0.92862E-16
0.13713E-1S
0.21837E-15
0.37309E-15
7
0.93356E-16
0.13799E-15
0.21949E-13
0.374S4E-15
e
0.94166E-16
0.13876E-15
0.2204SE-1S
0.37454E-15
9
0.94708E-16
0,13944E"15
0.22048E-15
0.374S4E-15
10
0.93197E-16
0.13944E-1S
0.22048E-13
0.37454E-1S
11
0.93642E-16
0.13940E-15
0.22048E-1S
0.37434E-1S
It
0.93642E-16
0.1J944E-15
0.22048E-13
0.37434E-1S
0.7000F-0
0.11922E-1
0.19905E-1
0 .21520E-1
0.22113E-1
0.22670E-1
0.23098E-1
0.23J90E-1
0 ,236"1E»1
0.23861E-1
0,2U057E-1
0.2U233E-1
0.2U390E-1
0.9000E"0
0,19280F-1
0.30573E-1
0.32515E-1
0.33S95E-1
0.3fl35flE-l
0.30937E-1
0.35319E-1
0.35649E-1
0.35940E-1
0.36200E-1
0.36U35E-1
0.36649E-1
O.HOOE-O
0.28423E-1
0.43292E-1
0,«579bE»l
0.47181E-1
o.aaiSaE.i
0.48902E-1
0, 49374E»1
0,a9765E-i
0,501«7E«1
0,S0472E»l
0.30766E-1
0.51034E-1
0.1300E-0
fi,39355E»l
0.58029E-1
0.61127E-1
0.62832E-1
0.6U029E-1
0.60950F-1
0.65512E-1
0.66003E-1
0.6M37E-1
0.66827E-1
0.67181E-1
0.67505E-1
0.5000E-05
0.56409E-15
0.67823E-15
0.69614E-1S
0.70540E-15
0,711'7E«15
0.71705E-15
0.71898E-J5
0.71898E-15
0.71898E-15
0.71898E-15
O.71890E-15
0.7189BE-15
0.8000E-OS
o.ia3B8E-ia
0,16505E"14
0i16841E°14
0,17008E-14
0.1T12SE-1 a
011722 IE" 14
0.l720TE-ia
0.17247E-14
0.17247E-14
0,17247E-14
0,17247E"14
0,172«7E»10
0.1500E-04
0.5044SE-14
0.55181E-1«
0.S5966E-U
O.S633fiE»l
-------
PARTICLE SIZE RANGF STATISTICS
CORRECTIONS FOR NONiOfALITIES using SET no, 1 OF CORRECTION PARAMETEPS
SIZE
CCF
INLET *
OUTLET X
CnR, nUTt FT
X NO-RAP EFF
, NO-RAP W
no-rap p
COR, EFF,
COR. W
COR. P
2.500E-07
1,590
0.000
0.0025
0.0121
99,9671
10.209
0,0326
80,0180
2,018
19,9820
J.500E-07
l,m
0.100
5.1925
0.2173
99.9617
10,109
0,0353
99.9U1U
9,162
0,0586
1.500E-07
1,320
0.600
7.2162
0.3682
99,9690
10.272
0,0310
99,9118
9,171
0,0582
5.500E-07
1.261
1 ,667
15,5107
0,6751
99,9761
10,601
0,0239
99,9616
9,999
0,0381
7,000E-07
1,205
5,000
31.7150
1,6263
99,9837
11.090
0,0163
99,9691
10,278
0,0309
9, OOOE-OT
1,159
1.933
17,3106
1,5609
99,9910
11,811
0,0090
99,9700
10,313
0,0300
1,100E-06
1,130
a,733
9.U716
1.6298
99,9919
12.558
0,0051
99,9673
10,206
0,0327
1.500E-06
1,110
U.000
1.572'
1.7261
99.9971
13,270
0.0029
99.9591
9,919
0,0109
1.600E-06
1,090
e.ooo
1.1035
3.8118
99.9986
11,199
0,0011
99,9508
9,792
0,0152
2.000E-06
1,072
6.667
1.1800
1.8212
099.999U
1 1.611
0,0006
99,9311
9,262
0,0686
2.600E-06
1,055
10.667
0.6656
8,6715
99,9948
13,011
0,0002
99,9229
9,113
0,0771
3,500E-06
1,011
10.667
0.1200
10.0811
99.9999
17,359
0,0001
99,9103
8,922
0,0897
5.000E-06
1,029
11.333
0.1378
16,1881
99.9999
23,051
0,0001
99,8620
8,371
0,1380
8.000E-06
1,016
12.000
0,0635
20,3913
99.9999
31.198
0,0001
99,8388
8,176
0,1612
1.S00E-05
1,010
19.333
0.7U6B
27,8198
99,9999
59,363
0,0001
99,8633
8,386
0,1367
EFFICIENCY -
STATED o
99,86
COMPUTED =
99,8635
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EPF, 8 99,9971
HMD OF INLET SIZE DISTRIBUTION b J.302E+00
81QMAP OF INLET 8IZE DISTRIBUTION s 2.161E+00
LOG-NORMAL GOODNESS OF FIT b 0,935
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS a 9.163E-01
oo	SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS » 1,715E*00
LOG-NORMAL GOODNESS OF FIT 8 0,«07
precipitation rate parameter under no-rap conditions » is,111
SIGMAGB 0,000 WITH 0,000 8NEAKAGE OVER a.OOO STAGES
NTEMP ¦ 1
RMMD ¦ 6,00
R81GMA b 2,50
CORR. EFF, ¦ 99,9051
CORRECTED HMD OF EFFLUENT ¦ 5.521E+00
CORRECTED SIGMAP OF EFFLUENT b 2.597E+00
LOG-NORMAL GOODNESS OF FIT b 0,996
CORRECTED PRECIPITATION RATE PARAMETER b 8,85

-------
UNADJUSTED MIGRATION VELOCITIES AND FFFICIENCIES# AND DISCRETE OUTLET MASS LOADINGS
T9CAI UNADJUSTED
IDEAL unadjusted
NO-RAP
RaPPTuG puff
N0-RAP+R4P PUFF
RAPPING PUFF
PART tCLE
MIG. VEL. CCM/3EC)
EFFICIENCVtX)
DM/oLOCOfMO/DSC
OM/OLOCDCMG/nSCM)
D*/r>LOGn(MG/DSCH)
DI9TRIBUTI0KJ(*)
OtAM,(M)
«.391E+00
9,68E-e«
1.666E-02
1.685E-02
1«23
-------
SDHMARV table OF ESP OPFBATINC
parameters ano performance
DATA SET NUMBER t
ESP PERFORMANCE! EFFICIENCY b 99,9051 * SCA ¦ T.865E+01 M«*?/(M.»S/SEC3
ELECTRICAL CONDITIONgi A VG, APPLIED VOlTAGE b «,S15E*0a v
AVG, CURRENT OENSITY b 23,81 NA/Cm»*2
RESISTIVITY b |,000e*09 OHM-CM
SIZE DISTRIBUTIONS!	INLET HMD o J.S02E+00 UH INLET SIG*AP ¦ 2.164E+00
OUTLET MMO o 5.52OE+00 UM OUTLET SIGMAP ¦ 2,597E*00
NONIDEAl PARAMETERS! GAS SNEAKAGE FRACTION ¦ 0,00 /8ECTION GAS VELOCITY SIGHAG ¦ 0,00
RAPPING mmd b 6.000E+00 UH RAPPING SIGKAP ¦ 2,500E*00

-------
E.P.4. ESP MODEL
T.E.R.l.-R.T.P. AnI> SO.h.I.
REVISION I,JAM, i, 1978
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER 1
DATA ON CARD NUMBER 1
NENDPT B 16 NDATA a 3
DATA ON CARD NUMBER 2
LAB E8P| 8CAa600FT2/1000ACFM|Ja24UA/FT2
w DATA ON CARD NUMBER 3
ao
-j
VOS(	1)	¦ 0,1667E+01	FT*«3/MIN	VGASSt 1) ¦	6.6667E-01 FT/SEC
VG8(	2)	¦ A.16671+01	FT**3/MIN	V6ASS( 2) a	6.6667E-01 FT/8EC
VG8(	S)	¦	4,1667E+01	FT**3/MIN	VGASS( 3) a	fe.6667E.fll FT/8EC

-------
INCREMENTAL ANALYSIS 0* PRECIPITATOR PERFORMANCE
L*B E8P| SCA»600FT2/1000ACFM|Js?UUA/FT2
CALCULATION IS IN SECTION NO. a 1 AND THE SECTION LENGTH IS a 0.7625 »
COLLECTION AREA • 5.8I2E-01 *2
HIRE TO PLATE a 1.2T0E-01 M
CURRENT/M • T,Bfc9E«05 AHP/m
1/2 HIRE TO WIRE «" 6.350E-02 m
TEMPERATURE a 297,667 K
ION MOBILITY • l,79BE-0a M2/V0LT-SEC
OUST WEIGHT ¦ 6.770E-07 KG/SEC
APPLIED VOLTAGE b 
-------
1,0000 3.a96E>05 2,6«J6E+05 2,5&S9E*13 25.8 6.2UE-07 J.207E-08
1,0000 3.a96E+05 2.6436E+05 2.5659E+13 25.8 6.07E-07 6.201E-09
1 ,0000 5.U96f »05 2.6136E + 05 2.5<>59E*13 25.8 5.91E-07 3.208E-09
7.365E-08 I.O3E.J0 2.58E-0U
3.785E-08 1.05E-10 2.58E-0U
1.958E-08 S.72E-11 2.58E-0U
10
U
12
E8T, EFFICIENCY » 99.86 UNCORRECTED COMPUTED EFFICIENCY s 99.99
INCREMENTAL ANALYSIS of PRECIPITATOR PERFORMANCE
LAB ESPl 8CA«600FT2/1000ACFM|Ja2UUA/FT2
CALCULATION IS IN SECTION NO. o l AMD THE 8ECTI0N LENGTH IS o 0.7625 N
COLLECTION AREA ¦ 5.812E-01 M2
WIRE TO PLATE o 1.270E-01 M
CURRENT/M ¦ 7.869F.05 AMP/M
1/2 WIRE TO wire ¦ 6.J50E-02 M
TEMPERATURE a 297.667 K
ION MOBILITY ¦ l,798E-0a M2/V0LT-SEC
DUST WEIGHT b 6.770E-07 KG/8EC
APPLIED VOLTAGE ¦ 0,600E+0« VOLTS
CORONA WIRE RADIUS o 1.191E-0S M
CURRENT DENSITY a 2.58tE»0« AMP/M2
GAS FLOW RATE a 1.971E-02 M3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED s a,(i39E»02 M/SEC
LENGTH INCR, oO,25H6565 M
TOTAL CURRENT s 1 .500E-01I AMPS
CORONA WIRE LENGTH b 1.906E+00 M
DEP08IT E FIELD a 2.581E+03 VOLT/m
GAS VELOCITY a 2.033E-01 M/SEC
VISCOSITY a 1.800E-05 KG/M-SEC
PART, PATH PARAM. ¦ 5.708E-08 M
INPUT EFF./INCR, b 53,ai
ROVRI
ERAVG
EPLT
AFID
CMCD
MMO
WEIGHT
OUST LAYER JCPART)
J(I ON) INCR, NO,
1,0300
1,007b
1,0017
3.622E+0S
3.622E+05
3.622E+05
2.7361E+05
2.7253E+05
2.7253E+05
2.aoaaE+13
2.1580E+13
2.U72UE+13
25.8
25.8
25.8
«.38E»06
1.63E-06
1.21E-06
2.370E-05
6.508E-06
2.307E-06
1 ,U«7E-0«
3.972E-05
l,fl32E-05
3.32E-08
S.21E-0B
1.66E-08
2.5BE.04
2,5BE»0«
2.58E-00
CALCULATION 18 IN SECTION NO. a 2 AND THE SECTION LENGTH IS b 0,7625 M
COLLECTION AREA b 3.812E-01 M2
WIRE TO PLATE ¦ 1.270E-01 M
CURRENT/M P 7.869E-05 AMP/M
1/2 WIRE TO WIRE a 6.3S0E-02 M
TEMPERATURE ¦ 297.667 K
ION MOBILITY b 1.790E-OO M2/VOLT-SEC
OUST WEIGHT b 6.770E-07 KG/SEC
APPLIED VOLTAGE b .77ftF-07 KG/SFC
APPLIED VOLTAGE b U.aflOE+Ofl VOLTS
CORONA wire RADIUS a 1.191E-03 M
CURRENT DENSITY a 2.58lE"0a AMP/M2
GAS FLOW RATF b 1.971E-02 M3/SEC
PPESSUPE a 1,000 ATM
«Ean THERMAL SPEEn a a.a39E»0? M/8EC
LFNGTW T^CR. bO,25a16565 M
TOTAL CURRENT o J.000E»0a AMPS
CORONA MIRE LENGTH a 3,812E*00 M
DEPOSIT E FIELO a 2.SR1F+03 VOLT/m
GAS VELOCITY a 2.033E-01 M/8EC
VI8COSITY a 1.800E-05 KG/M-SEC
PART. PATH PARAM, ¦ 5.708E-0A «
INPUT FFF./INCR, b 53.ai
ROVRI
FPAVG
( PLT
aF ID
CMcn

WEIGHT
DUST LAYER J(PART )
JCION) INCR. NO.

-------
1,0000
3.U96E+05
2.6436E+05
2,5i58EM3
25,a
ti.9«i-07
"J.<|UflE-08
5, 7b7E»07
1,22E"0'
2.S8E-0U
7
1,0000
3,«96E*0S
2.6436E+05
2.5659E4-13
25,fl
h,66E"0T
U.695F-08
2.866E-07
6.50E-10
2,58E»0a
8
1,0000
3,U96E*05
2.feU36E+05
2,5h59E+l3
25.8
6.U3E-07
2.367F-08
1.4O5E-07
3.56E-10
2,S8E-0a
9
1,0000
J,U<)6E + n5
2.M36E + 05
2.5659E+J3
25,8
b.2«E-07
1.206E-08
7.362E-08
1 .93P-10
2,58E-oa
10
1,0000
3,U96Et05
2, M36E + 05
2.5659F+13
25,8
6. fITE "0 7
6.199E-09
3.7BUE-08
1.05E-10
2,58E-oa
1 1
1,0000
J,«96E+05
2,6«36E*05
2,St»59E + 13
25.R
5.91E-07
3.20TE-09
1 .Q58E-08
5.71F-11
2,58E»oa
12
to
V0
O

-------
CHARGING RATES for PARTICLE sizes from subroutine chargn OR CHGSUM
SRI THEORV USED FOR PARTICLE CHARGING
increment no. o/os*tf for indicated particle sizes
0
.2500E-06
0.3500E-06
0.4500E-06
0.5500E-06
0.7000E-06
0.9000E-06
0.1100E-0S
0. 1300E-05
1
1 .0360
1,0360
1.0360
1.0360
1,0360
1.0360
1.0360
1 ,0360
2
2,1669
2,0777
1.9851
1.9015
1.8069
1.7093
1.6367
1.5805
J
2.3006
2.2595
2.1420
2,0430
1.9254
1.0092
1.7237
1,6580
i
2,5036
2,3631
2.2317
2,1219
1.9922
1.8653
1.7722
1,7010
5
2.5901
2,4361
2.2916
2,1772
2.0393
1.9018
1.8065
1,7314
6
2,6569
2,4924
2.3131
2.219"
2.0755
1,9353
1,8330
1.7549
7
2,7073
2.5337
2.3778
2.2497
2.1001
1.9551
1,8496
1.7692
8
2.7502
2.5690
2,1075
2.2754
2.1213
1.9721
1,8611
1.7616
9
2.7676
2.5997
2.1335
2,2978
2.1400
1.9875
1.8769
1.7927
10
2,8206
2.6270
2.1566
2.3170
2.1566
2,0011
1.8884
1,8026
tt
2.8502
2.6515
2,477«
2.3358
2.1716
2.0134
1,8968
1.8117
12
2.6770
2.6737
2.4962
2,3521
2.1652
2.0246
1.9063
1.8117
0.
600E-05
0.2000E-05
0.2600E-05
0.3500E-05
0.5000E-05
0,8000E"05
0.1500E-04
1
.0360
1.0360
1.0360
1,0360
1,0360
1.0360
1,0360
2
.5164
1.4545
1.3906
1,3288
1.2674
1,2042
1,1435
3
.5834
1.5119
1.4385
1,3679
1.2983
1.2269
1.1568
4
.6204
1.5434
1.4615
1,3886
1.3144
1.2384
1,1660
5
.6466
1.5657
1.1829
1,4037
1.3259
1.2466
1,1712
6
.6669
1.5829
1.4972
1,4152
1.3309
1.2530
1.1712
7
.6786
1.5923
1.5043
1.4204
1.3382
1,2548
1.1712
6
.6888
1.6006
1.5013
1,4204
1.3382
1.2548
1,1712
9
,6960
1.6080
1.5013
1,4204
1,3382
1.2548
1.1712
10
.7063
1.6080
1.5003
1.4204
1,3382
1,2548
1.1712
11
.7063
1.6080
1.5043
1.4204
1,3382
1,2548
1,1712
12
,7063
1.6080
1.5043
1,4204
1,3382
1.2348
1.1712

-------
charge ACCl'MiJLAT£n on PAPTICLf SIZES In Fach INCRFmenT
increment	charge FOR INDICATED PARTICLE SIZES

0.2500E-06
0.3500E-06
O.U500E-06
0.5500E-06
1
0,18895E-17
0.33U13F-17
0,52363F•17
0.75761E-17
2
0,39521E»17
n,67006F »17
0,10033E-16
0,13928E"16
3
0.U3022E-17
0.72870E-17
0,10B28E-I6
0,1U9U3E-16
u
0,15661E»17
0.76212E-17
0.n280E-16
0.15517E-16
5
O.U72UOF-17
0.78566F-17
0.11S97E-I6
0,15922E" 16
6
0.UBU57E-17
0.80380E-17
0.118U2E-16
0 , 1 623(IE» 1 6
7
0.U9377E-17
0.81713E-17
0,12018E-16
0.16U52E-I6
8
0.50160E-17
0,82851E"17
0,12168F-16
0,16639F »16
9
0.508U0F-17
0.838UUE-17
0. 12300E-16
0,16801E-16
10
0,51««2E-17
0.8U723E-17
0,12U16E-16
0.16950E-16
11
0.51982E-17
0.85512E-17
0, 12521E-16
0.17081E-16
12
0,52«71E-17
0.86228E-17
0. 12616E-16
0, 1 7201F» 16

0.1600E-05
0.2000E-05
0.2600E-05
0.3500E-05
1
0,59in3E-16
0.91693E-16 ,
0, 15399E-15
0.27760E-15
2
0.B6508E-16
0.12673E-15
0,20669E•15
0.3560UE-15
3
0.90330E-16
0,13381E»15
0.21381E-15
0,36652E* 15
a
0,92«fl2E.16
0.13659E-15
0.21767E-15
0,37212E«15
5
0,939J7E»16
0.13857E-15
0.22041F-15
0,37611E-15
6
0,95091E»16
0, 10009E-15
0,22253E"15
0,37921E» 15
7
0.957S7E-16
0.1U092E-15
0.22359E-15
0.38058E-15
8
0,96316
0.1«231E-15
0.22359E-15
0.38058E-15
10
0,973a0E«16
0,1«231E-15
0,22359E" 15
0,38058E" 15
11
0,973«0E»16
0.11231E-15
0.22359E-15
0.3B058E-15
12
0.97300E-16
0,1«231E-15
0,22359E»15
0.38058E-15
0.7000E-06
0.11922E-16
0.20793F-16
0.22157E-16
0,2?926F•16
0,23U67£.16
0 ,23885F-16
0, 2<* 16RF•16
0.2UU12F-16
0.2U626F-16
0.2UMRF-16
0.2U990E-16
0.2510 7E»16
0.9000E-06
0,19?80E-16
0,51B09E"16
0 ,33668F" 16
0.3U711F-16
6.55U«6E-16
0 ,360 1 3E"16
0.36383E-16
0,36703E"16
0.36986E-16
0.37239E-16
0,37U6BE«16
0.37676E-16
0,1100E-05
n.28a23E-16
O.U090JE-16
0,U7289E"16
0,UA621E>16
0.U9562E-16
0,50288E»16
0,507«3E-16
0.511 aOE-16
0,51«92E«i6
0.51807E-16
0.32093E-16
0.3235UE-16
0. 1300E-0
0.39355E-1
0.60037E-1
0.62979E.1
0,6«6l<»E-l
0.65770E-1
0 ,66662E•1
0.67203E-1
0,67676E»1
0.68096E-1
0.68U75E-1
0,68818E»1
0.68818E-1
0.5000E-05
0.56U09E-15
0.69008F-15
0.7O686E-15
0.7156OE-15
0.72192E-15
0.72679E-15
0, 72861E"15
0 , 72861E"15
0.72861E-15
0.72861E-15
0,72861E" 15
0, 72861E»15
0.6000E-05
0,1 U388E"11
0,16724E-1U
0.17039E-1U
0,17198E"11
0.17313E-IO
0,17«02E»1«
0,17«26E-lfl
0,17U26E"10
0,17U26E-1U
0, 17U26E-10
0,i7a26E-ia
0,1 7fl26E"l1
O.ISOOE-OU
0.500
-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONIDEALITIES USING SET no. 1 OF CORRECTION PARAMETERS
SIZE
CCF
INLET *
OUTLET * COR, OUTLET
X NO-RAP EFF
, NO-RAP W
NO-RAP P
COR, EFF,
COR, w
COR, P
2.500E-07
1 .590
0,000
0.0006
0.0367
99.9997
5,202
0.0003
95.0532
2.548
4,9468
3.500E-07
l.ai«
0,400
1,5103
2,5305
99,9996
5.430
0,0004
99,8293
5.402
0,1707
4.500E-07
1,320
0.600
1,9326
2,6096
99,9997
5.768
0,0003
99,8826
5,720
0,1174
5.500E-07
1,261
1 .667
3,7287
4.5933
99,9998
6,147
0,0002
99,9257
6,1 07
0,0743
7,000E-07
1,205
5.000
6.4419
7,1206
99,9999
6,746
0,0001
99,9616
6,666
0,0384
9.000E-07
1.159
4,933
4,6784
3.3183
99,9999
7,564
0,0001
99,9817
7,294
0,0183
1.100E-06
1.130
4,733
4°. 40-41
2.0332
99,9999
8,384
0,0001
99,9884
7,682
0,0116
1.300E-06
1.110
4,000
3.7220
1.6366
99,9999
9,160
0,0001
99,9890
7,724
0,0110
1.600E-06
1.090
6,000
7,4440
3.2319
99,9999
10,331
0.0001
99,9891
7,734
0,0109
2,OOOE-06
1 ,072
6,667
6,2037
3,4248
99,9999
11.884
0,0001
99,9861
7,531
0,0139
2.600E-06
1,055
10,667
10,1165
7,0730
99,9999
14,140
0,0001
99,9821
7,314
0,0179
3.S00E-06
1,041
10.667
10.1165
8,3940
99,9999
17,639
0,0001
99,9788
7,169
0,0212
5.000E-06
1,029
11.333
10,9454
13,7473
99,9999
23.359
0,0001
99,9673
6,802
0,0327
6.000E-06
1,018
12,000
11.1660
17,0011
99,9999
34.5S3
0,0001
99,9618
6,671
0,0382
i.sooe-os
1,010
19.333
17,9892
23.2190
99,9999
59.809
0,0001
99,9676
6,811
0,0324
EPPICIENCV -
STATED B
99.99
COMPUTED ¦
99,9897
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF. = 99.9999
MHO OP INLET 8JZE DISTRIBUTION a 3.S02E+00
3IGMAP OP INLET SIZE DISTRIBUTION s 2,16flE+00
LOO-NORHAL GOODNESS OF FIT s 0,935
M	HMD OP EPPLUENT UNDER NO-RAP CONDITIONS s 2.991E+00
SIGMAP OP EPPLUENT UNDER NO-RAP CONDITIONS a 2,358E»00
w	LOG-NORHAL GOODNESS OP FIT a 0,910
PRECIPITATION Rate PARAMETER under no.rap CONDITIONS S 11,671
SIGMAG" 0,000 WITH 0,000 SNEAKAGE OVER 4,000 STAGE8
NTEMP ¦ 1
RMMO ¦ 6,00
ASIGMA « 2,SO
CORR. EPP. a 99.9730
CORRECTED MND OP EPPLUENT ¦ 3.727E+00
CORRECTED SIGMaP OP EPPLUENT o 3.060E+00
LOG-NORMAL G00DNE8S OP PIT a 0,925
CORRECTED PRECIPITATION RATE PARAMETER » 6.97

-------
UNADJUSTED MIGRATION VELOCITIES AND EF^TfIENCIES* AMD OISCPETE OUTLFT MASS lOiMNQS
IDEAL UNADJUSTED
jdpal unadjusted
NO.RAP
RAPPING PUFF
NO.RAP+BAP PUFF
RAPPING PUFF
PARTICLE
HIG, VEL.tCM/SECl
FfFICIENCVtXI
OM/r>lOGnCMG/DSC«l
DM/OLOGDtHG/DSCM)
DM/nLOGDCMG/DSCM)
DISTRIBUTION(X)
DIAM,CM)
<1,596E*00
9.956E+01
1 ,ai2E-09
2.M 6E-05
2.0UE-05
U,JfeOE-O?
2.500E-07
U,85«E*00
9.967E+0I
U,792F-05
7.102E-05
1,0226-01
3.500E.07
5,20l
1 ,06
1,188E + 01
1 .OOOE+02
2, B26E»05
3.956E-05
J.9BUE-0J
U.23UE+00
2, OOOE»Ot>
1 ,
5,981E+O1
1 .000E + 02
2.373E-05
7.B10E-03
7,83aE»03
2.887E+0J
1 .500E-05
ro
KO
•Cki

-------
SUMMARY TABLE OF ESP OPERATING
PARAMETERS AND performance
DATA SET NUMBER 1
ESP PERFORMANCE! EFFICIENCY a 99,9730 J! SCA ° 1.1BOE+OJ M**2/(M**S/SEC)
ELECTRICAL CONDITIONS! AVG, APPLIED VOLTAGE b 
-------
E.P.4. ESP MOOFI.
I.E.R.L.-R.T.P, AND SO.R.I,
REVISION I.JAN, i,
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER 1
data on card number i
NENQPT e 16 NDATA a 3
DATA ON CARD NUMBER 2
LAB ESP« SC*«800PT2/1000ACFM|Jo2ttUA/rT2
DATA ON CARD NUMBER 3
\D

-------
INC RE MF N T»L ANALYSIS OF PRECIP IT 4 TOP PERFORMANCE
LAB ESP I SCAb800FT2/1000ACFM|Jc202 M3/SEC
PRESSURE a 1 ,000 ATM
MEAN THERMAL SPEFD O a.a39£»02 M/SEC
LENGTH INCR. aO,25416565 H
TOTAL CURRENT o 1.500E-0U AMPS
CORONA WIRE LENGTH a 1,906E*00 M
DEPOSIT E FIELD o 2.581E+03 VOLT/m
GAS VELOCITY o 1.525E-01 M/9EC
VISCOSITY a I.B00E-05 KG/M.SEC
PART, PATH PARAM, e 5.7086-08 M
INPUT EFF./INCR, » 53,ai
ROVRI
ERA VG
EPLT
AFIO
CMCD
HMO
WEIGHT OUST LAYER J(PART)
JCION) INCR, NO,
OJ
\D
1,0225 3.622E+05
1,0048 3.622E+05
1,0009 3,622E>05
2.7327E+05
2.7152E+05
2.7152E+05
2,122lEt13
2.0617E+13
2.4745E+13
25.8
25.B
25.6
4.02E-06
1.44E-06
1.02E-06
2.600E-05
5.78UE-06
1.671E-06
CALCULATION IS IN SECTION NO. o 2 AND THE SECTION LENGTH IS » 0,7625 M
COLLECTION AREA b 5.812E-01 M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/M b 7.869E-05 AMP/M
1/2 WIRE TO wire ¦ 6.350E-02 M
TEMPERATURE = 297.667 K
ION MOBILITY b 1.798E-04 M2/VOLT-8EC
OUST WEIGHT a 5.077F-07 KG/SEC
\.190E-04
2.647E-05
7.650E-06
2.94E-08
2.54E-08
1.06E-08
2.58E-04
2.58E-04
2.58E-04
APPLIED VOLTAGE a 4.580E+04 VOLTS
CORONA WIRE RADIUS b 1,191E»03 M
CURRENT DENSITY a 2,581E"0« AMP/M2
GAS FLOW RATE a l.«7«E-02 M3/8EC
PRESSURE a 1,000 ATM
MEAN THERMAL 8PEEO b A.A39E+02 M/SEC
LENGTH INCR. aO.25416565 M
TOTAL CURRENT » 1.500E-04 amps
CORONA wire LENGTH s 1.906E+00 M
DEPOSIT E FIELD b 2.581E+03 VOLT/m
GAS VELOCITY a 1.525E-01 M/SEC
VISCOSITY b 1.800E-05 KG/M.SEC
PART. PATH PARAM, ¦ S.708E-08 M
INPUT EFF./INCR. b 53.41
ROVRI
ERA VG
EPLT
AFIO
CMCO
HMD
WEIGHT
DU8T LAYER J(PART)
JCION) INCR. NO,
1,0002
1,0000
1,0000
3.606E+05
3.606E+05
3.606E+05
2.712AE+05
2.7120E+05
2.7124E+05
2,«870EM3
2,«873E+13
2,«87aE + l J
25.8
25,8
25.8
8.35E-07
7.26E-07
6.71E-07
5.6S3E-07
2,052E»07
7,801E*08
2.379E-06
9.392E-07
3.571E-07
O.44E-09
1.89E-09
8.11E-10
2.S0E-O4
2.S8E-04
2.58E-04
CALCULATION IS IN SECTION NO. c 3 AND THE SECTION LENGTH IS a 1,3230 M
COLLECTION AREA c i.162E*00 M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/M b 7.B69E-05 AMP/M
1/2 WIRE TO WJRE a 6.350E-02 M
TEMPERATURE a 297.667 K
ION MOBILITY b 1.7Q8E-0U M2/VOLT-SEC
DUST WEIGHT b 5.077E-07 KG/SEC
APPLIED VOLTAGE e fl.«fl0E+0fl VOLTS
CORONA WIRE RADIUS o 1.191E-03 M
CURRENT DENSITY a 2.581E-04 AMP/M2
GAS FLOW RATE c 1.478E-02 MS/SEC
PRESSURE ¦ 1,000 ATM
MEAN THERMAL SPEED a a.a39E*02 M/SEC
LENGTH INCR. oO.25416565 M
TOTAL CURRENT a J.000E-04 AMPS
CORONA WIRE LENGTH a 3.812E+00 M
DEPOSIT E FIELD a 2.581E+03 VOLT/M
GAS VELOCITY a 1.525e-01 M/S£C
VISCOSITY b 1.600E-05 KG/M.SEC
PART. PATH PARAM. B 5.708E-08 M
INPUT EFF./INCR. a 53.ai
ROVPI	EPA VG	EPLT AFIO	C*CO	HMD	WEIGHT	OUST LAYER	JfPiRT)	J(ION)	INCR, NO.
1 ,0000	3.496F + 05	2.6416E + 05	2.5659E+13	25.«	6.40E»n7	2.996E-08	1 .372E-07	3.43E-10	2,S8E-04	7
1,0000	3.496E+05	2,6«36E*f>5	2.5659E+13	25.8	6.15E-07	1.221F-0B	5.591E-08	1.51E-JO	2.58E-04	8
1,0000	3.496E+05	2.6436E+05	2.5659E+13	25.8	5.91E-07	5.050E-09	2.311E-08	6.71E-11	2.58F-04	9

-------
1,0000 5,0S 2t5656E + 05 ?, b^36F t OS ?.565<>E+t3 ?5.B 5.35E-07 3.7MF-10 lt725E-ft9 S.PUF-I? J.^AF-na	12
ro
so
CO

-------
charging rates for particle sizes from subroutine chargn or chgsum
SRI THEORY used FOR PARTICLE charging
INCREMENT NO.	Q/QSATF FOR INDICATED PARTICLE SIZES
0
.2500E-06
0.3500E-06
0.0500E-06
0.5500E-06
0.7000E-06
1
1.0360
1.0360
1.0360
1.0360
1,0360
2
2.2600
2.1600
2.0596
1.9726
1,8676
3
2.0710
2.3370
2.2112
2.1052
1.9795
0
2.5921
2.0390
2.2982
2.1813
2.0037
5
2.6776
2.5107
2,3597
2.2352
2,0893
6
2.7036
2.5661
2.0072
2.2768
2,1206
7
2.7930
2.6068
2.0013
2.3060
2,1085
8
2,8358
2,6015
2,0700
2,3311
2,1692
9
2.8727
2.6718
2,0960
2,3531
2.1870
10
2.9050
2.6987
2.5187
2,3727
2.2037
11
2,9307
2.7229
2.5391
2,3900
2,2180
12
2.9612
2.7008
2.5577
2.0060
2,2318
0
.1600E-05
0.2000E-05
0.2600E-05
0.3500E-05
0.5000E-05
1
1 ,0360
1.0360
1,0360
1.0360
1.0360
2
1.5556
1.0889
1.8199
1.3529
1.2863
3
1,6165
1.5006
1,0626
1,3878
1.3138
0
1,6512
1.5700
1.0869
1.0071
1.3287
5
1.6761
1.5911
1.5003
1.0212
1,3396
6
1,6955
1,6076
1,5179
1.0321
1,3081
7
1.7067
1.6165
1.5207
1.O370
1.3512
8
1.7166
1.6205
1.5207
1.0370
1.3512
9
1.7250
1.6205
1.5207
1.OJ70
1,3512
10
1.7330
1.6205
1.5207
1.0370
1.3512
11
1.7330
1.6205
1.5207
1.0370
1.3512
12
1.7330
1.6205
1.5207
1.0370
1.3512
0.9000C-06
1.0360
1.7629
1.6561
1.9095
1.9176
1.9771
1.9965
2.0130
2.0278
2,0H1
2,0530
2.0640
0.1100E-05
1.0360
1,6809
1.7653
1,8113
1.8112
1.8697
1,8857
1,8997
1.9121
1.9233
1,9331
1,9027
0.1300E-05
1.0360
1,6216
1.6955
1.7361
1,7652
1 ,7878
1.8015
1,6135
1.6242
1.8339
1,6026
1,8026
0.8000E-05
1.0360
1.2175
1,2380
1,2087
1.2560
1,2626
1,2626
1.2626
1,2626
1.2626
1.2626
1.2626
0.1500E-00
1,0360
1.1515
1.1657
1.1725
1,1775
1,1775
1,1775
1,1775
1.1775
1,1775
1.1775
1.1775

-------
CHARGE ACCUMULATED ON PARTICLE SIZES IN EACH INCREMFNT
INCREMENT	CHARGE FOR INDICATED PARTICLE SIZES

0,25006-06
0,3500E-06
0,0500E-06
0,5500E-0ft
1
0,188956-17
0.3S013E-17
0.52363E-17
0.75760E-17
2
0.O1225E-17
0.69675E-17
0,10U09E-16
0.1OO25E-16
3
0,050666-17
0.7S38OE-17
0.11176E-16
0.15395E-16

0,072756-17
0.78659E-17
0,116156*16
0,15951E-16
3
0,088356-17
0.80972E-17
0,11926E-16
0 , 16 305E-16
6
0.500396-17
0.B2759E-17
0,12167E-16
0,16650E-16
7
0.50907E-17
n,8O0706-17
0.12339E-16
0,16863E-16

0.51720E-17
0.85190E-17
0, 12066E-16
0.170O7E-16
9
0.52393E-17
0,86168E-17
0,12615E-16
0, 17208E-16
10
0.52989E-17
0.87035E-17
0.12730E-16
0.17351E-16
11
0,535236-17
0.8781OE-17
0.12833E-16
0,170H0E-16
12
0,500076-17
0.88521E-17
0.12927E-16
0.17598E-16

0,16006-05
0,2000E-05
0,2600E-05
0,3500E-05
1
0,591036-16
0.91693E-16
0,15399E-15
0,277606-15
2
0.8B703E-J6
0.13177E-15
0,21100E-15
0,362506-15
3
0,922166-16
0,13635E-15
0.217OIE-15
0,37185E-15
a
0,90 J 976-16
0.13895E-15
0.22100E-15
0.37700E-15
5
0,956196-16
0,10 082E-15
0.22359E-15
0,380806-15
6
0.96727E-16
0,1«228E-15
0.22561E-15
0,38370E-15
7
0.97364E-16
0,10307E-15
0.22661E-15
0,38503E-15
8
0.97928E-16
0,10377E-15
0.22661E-15
0,38503E-15
9
0.980326-16
0.11377E-15
0.22661E-15
0,385036-15
10
0.98BB9E-16
0,103776-15
0.22661E-15
0,385036-15
11
0.98889E-16
0,11377E-15
0.22661E-15
0,385036-15
12
0,988896-16
0,10377E-15
0.22661E-15
0.38503E-15
0.7000E-0
0.11922E-1
0.21«<»2E-1
0.22780E-1
0.23518E-1
0,2«f)UJE-l
0.20050E-1
0.20725E-1
0.2O963E-1
0.25172E-1
0.25359E-1
0.25528E-1
0.25682E-1
0.9000E-06
0,19280E-16
0,32805E-16
0,3«539F-16
0.35533E-16
0,362«2E-16
0.36792E-16
0.371U9E-16
0.37060E-16
0.37735E-16
0.379S2E-16
0.38205E-16
0.38009E-16
0.1100E-05
0128023E-t 6
0.U6225E-16
0.08029E-16
0,09692E * 16
0,50590E-16
0,51295E-I6
0,51 730E-16
0,52118E-16
0,52059E-16
0.52765E-16
0.53003E-16
0.53298E-16
n.i3ft0E»0
0.39355E-1
0.61710E-1
0.60006E-1
o,659o8E-l
0.67053F-1
0.67912E-1
0.68031E-1
0.68888E-1
0,69290E-1
0,6966 IE*1
0,69990E- 1
0 ,6999 0E " 1
0.5000E-05
0.56009E-1S
0.70033E-15
0.71532E-15
0.723«5E-15
0.72936E-15
0.73400E-15
0.73570E-15
0.73570E-15
0.73570E-15
0.73570E-15
0.73570E-15
0.T3570E-1S
0.8000E-05
0,10388E-10
0,16908E-10
0,17t93E-ia
0.17301E-10
0, 17009E-10
0,17530E-10
0.17530E-10
0,17530E-1«
0,17530E-10
0,l753ttE"lfl
0, 17330E-10
0,17530E-1«
0, 1500E-00
0,50 005E-10
0.56067E-10
0.56759E-10
0,570906-10
0.573306-10
0.S7350E-10
0.57330E-10
0.57330E-10
0.S7330E-10
0.57330E-1U
0.57330E-10
0,573306-10

-------
PARTICLF SIZt RA^GE STATISTICS
CORRECTIONS FOR NONinEALITIES USING SET No, l OF CORRECTION PARAMETERS
SIZE
CCF I
NLET X
OUTLET X
COR, OUTIFT
X NO-RAP EFF
, NO-RAP W
no-rap p
COR
EFF.
COR, «
COR, P
2.500E-07
1,500
0.000
0.0002
0.0431
99.9999
S, 354
0,0001
95
4010
1.058
4,5990
3.500E-07
t.aifl
0.
-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
IDEAL UNADJUSTED
N0«RAP
Rapping puff
NO-RAP+RAP puff
RAPPING PUFF
PARTICLE
MIG. VEL.CCH/SEC)
EFFICIENCV(X)
DM/DLOGD(MG/DSCM>
DM/DLOGOtMG/DSCM)
DM/DLOGD(HG/DSCN)
DISTRIBUTIONS)
DIAM.(M)
fl.739E»00
<),99«E + 01

-------

SUMMARY table OF ESP OPERATING »
PARAMETERS ANO PERFORMANCE *

DATA SET NUMBER t *
* ESP PERFORMANCE! EFFICIENCY « 99,9787 X SC* » 1.573E*02 m*#2/(M»»3/SEC) »
* ELECTRICAL CONDITIONS!
AVG, APPLIED VOLTAGE b U.515E+0U V *
AVG, CURRENT DENSITY ¦ 25,B1 NA/CM*»2 •
RESISTIVITY a i,00OEf09 OHM.CM *
* SIZE OISTRIBUTION81
INLET MMD « 3.302E+00 UM INLET SIGMAP ¦ 2,16«Et00 •
OUTLET MMD 0 5.829E+00 UM OUTLET SIGMAP s 2,678E»00 •

GAS SNEAKAGE FRACTION a 0.00 /SECTION GAS VELOCITY SIGMAG ¦ 0,00 *
RAPPING MMD ¦ 6.000E+00 UM RAPPING SIGMAP a 2,500E»00 *
STOP Olllll

-------
APPENDIX G
OUTPUT DATA FROM EXAMPLE 7
304

-------
*	E.P.A, ESP MODEL	*
*	»
*	T.E.R.L.-A.T.P, And so.r.i. *
*	*
#	REVISION I,JAN, J, 1978	*
*	*
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER 1
DATA ON CARD NUMBER 1
NENDPT o 16 NDATA b 1
DATA ON CARD NUMBER 2
LAB ESP I 8CA«125 FT2/1OOOACFM| Jag NA/CM2
DATA ON CARD NUMBER 3
o
U1
NEST	¦ 1 NDIST ¦ 1 NVI ¦ 1 NX ¦ 10 NV B 10 NITER a 3 NCALC b 0 NRAPD b \ NEPP a 1 NTEMP b 1 NONID B 1
DATA	ON CARD NUMBER <1
NN b	]0 NUMINC b 20
DATA	ON CARD NUMBER 5
DL ¦	0.01500 GRN/ACF PL ¦ 10.0000 FT ETAO a 99,00000 X DD a 1000,00 KG/M»*3 EPS a 5.100E+00
VRATIO a 1,0300 US > 0,000165 M**2/V>SEC FPATH a 1,0000 EBD a 1500000, V/H RHOCGS c 1,006+09 OHM-CM
DATA ON CARD	NUMBER 6
ASNUCKC 1) a	0,00 AZIGG*( 1) a 0,00 AZNUMS( 1) a U.O
DATA ON CARD NUMBER 7
ENDPT ( 1) b 0.200 ilM ENOPTf 21 e 0,^00 UM ENOPTC 31 a 0,100 U« ENDPT ( U) c 0,500 tl»> F NnPT ( 5) a 0,600 UM

-------
ENDPTC 6) 6
0.800 UM EMOPT ( 7) B 1 ,000 UM ENDPTC 8) a
1,200 UM ENDPTC 9) b
1.U00 UM CNOPTHO) a
1,800 UM
DATA ON CARD NUMBER 8
ENOPT(It) a 3,200 UM ENDPTC12) b 5,000 UM EN0PTC13) s fl.OOO UM ENDPTClfl) b 6,000 UM ENDPT(15) ¦ 10,000 UM
ENDPT(16) ¦ 20,000 UM
DATA CM CARD NUMBER 9
PRCUf 1) b 0,0000 X PRCUC 2) « 0,0002 X PRCU( ]) ¦ 0,4002 X
PRCUt 6) ¦ T.6672 X PRCU( 7) ¦ 12,6002 X PRCUC 8) ¦ 17,3332 X
PRCUf d) o 1,0002 X
PRCUC o 21,5332 X
PRCUC 5) b 2,6672 X
PRCUCIO) b 29,5532 X
DATA ON CARD NUMBER 10
PRCU(lt) ¦ 36,0002 X PRCUC12) « 46,6672 X PRCUC15) « 57,3342 X PRCUC14) ¦ 68.6672 X PRCUC15) o 80,6672 X
PRCUC16) a 100,0000 X
2	DATA ON CARD NUMBER 11
o\
NUMBEC a 3 13ECT( 1) o 3 ISECT( 2) b 3 LSECT( 3) a 6
DATA ON CARD NUMBER 12
ABC 1) a 6,25006+00 PT**2 VOS< 1) s 3.7500E+04 V TC8( 1) a 1.16J8E-05 A WL3C 1) b 6.2500E+00 FT
ACS( 1) a O.687SE-02 IN BSC 1) a 5.0000E+00 !N NMSC 1) ¦ S.OOOOE+OO
DATA ON CARD NUMBER 13
arse 1) ¦ 2.S00OE+OO in VCOf 1) s 2.0000E+02 FT«*3/MIN VGA89C 1) a 3.2000E»00 FT/BEC TCMP8C I) a T,6800E*01 F
P8( 1) a 1, OOOOC + OO ATM VI83 C 1) a l.BOOOE-OS KG/M.SEC LINCSC 1) a 8.3533E-01 FT
DATA ON CARD NUMBER 14
ABC 2) a 6,2500E*0ft FT**2 V08C 2) a 5.TOOOE+OU V ICS t 2) a 1.I628E-05 A MLSC 2) b 6.2900E + 00 FT
ACS c 2) a O.68TSF.02 IN BSC 2) a S.OOOOE + OO IN NNSC 2) a 5.0000E+00

-------
OAT* ON CARD NiJMREB IS
SYS< 2) O 2,5000E+00 IN	VGSf 2) e 2.0000F+02 FT**3/MIN	VCASS( 2) a 1.2000F+00 FT/SEC TFHPSf 21 n 7.6800E+01 F
PSC 21 a l.OOOOF+OO ATM	VISS( 2) = 1.8000E-OS KG/m-SFC	LINcSt 21 s B.3333E-01 FT
DATA f)N c*p0 NUMBER 16
48( J) b I.2500E + 01 FT**2 VOSC 3) a 3,tt<>00Et0« V TCS( 3) « 2.3256E-05 A WLS( J) c l,2500Et01 FT
AC8( 3) b 
o
-J

-------
INCREMENTAL ANALYSIS of PRECIPITATOR PERFORMANCE
lab ESPt 8CAB125 FT2/1OOOACFM| Je2 NA/CM2
CALCULATION IS IN SECTION NO. o 1 ANO THF SECTION LENGTH IS a 0.762? M
COLLECTION AREA b S.812E-01 mj
WIRE TO PLATE b 1.270E-01 m
CURRENT/M ¦ 6.IOOE-06 AMP/M
1/2 HIRE TO WIRE a 6.350E-02 m
TEMPERATURE » 297,667 K
ION MOBILITY b I.T98E-0« M2/VOLT-SEC
OUST WEIGHT s 3.250E-06 KG/SEC
APPLIED voltage o 3.750E+0O VOLTS
CORONA WIRE RADIUS « 1.191E-03 M
CURRENT DENSITY b 2.001E-05 AMP/M2
GAS FLOW RATE » 9.U60E-02 M3/SEC
PRE8SURE a 1 ,000 ATM
MEAN THERMAL 8PEED b 67E*05	2. 5r37F ~' ?	J,3"f-06	2,lB3F-0» 6,I0|F»P$	i,5fef-o8	2,no*.t«.	7
1.0391	2.7U8f.n?	i,6t>52E»05	?.u%52E*12	2.0	J.OUE-06	1.8i?f>0t> «,
-------
1,0158 2.7<»«E + 05 1.66U«E»05 2.U912E+12 2.0 2.51E-06 1.351E-06
1,0100 2.718E+05 1.66uflE+05 2,505aE+12 2.0 2.35E-06 1.172E-06
1,0063 2.7O8E + 05 1.66UUE+05 2,5l«5E+12 2,0 2.20E-06 1.023F-06
3.95AE-05 l.a5E-08 2.00E-05
J.UJ3E-05 1.38E-08 2.00E-05
2.997E-05 1.31E-08 2.00E-05
10
11
12
EST, EFFICIENCY b 99.00 UNCORRECTED COMPUTED EFFICIENCY i 72,19
INCREMENTAL analysis nF PRECIPITATOR PERFORMANCE
LAB ESP I SC A¦125 FT2/1OOOACFMi Jb2 NA/CM?
CALCULATION IS IN SECTION NO. s 1 AND THE SECTION LENGTH IS ¦ 0,7625 M
COLLECTION AREA b 5.812E-01 M2
WJRE TO PLATE a 1.270E-01 M
CURRENT/M b 6,100E»06 AMP/h
1/2 WIRE TO WIRE o 6.350E-02 M
TEMPERATURE e 297,667 K
ION MOBILITY s 1.798E-0U M2/V0LT-SEC
DU8T WEIGHT ¦ 3.250E-06 KG/SEC
APPLIED VOLTAGE b 3,750E*0fl VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT OENSITY 8 2.001E-05 AMP/M2
GAS FLOW RATE a 9.060E-02 M3/SEC
PRESSURE e 1,000 ATM
MEAN THERMAL SPEED b u,«39E+02 M/SEC
LENGTH INCR, >0,25416565 M
TOTAL CURRENT b 1.163E-05 AMPS
CORONA WIRE LENGTH s 1.906E+00 M
DEPOSIT E FIELD a 2.001E*02 VOlT/M
GAS VELOCITY b 9.760E-01 m/SEC
VISCOSITY b 1.800E-05 KG/M.SEC
PART, PATH PARAM, s 5.708E-08 M
INPUT EFF./INCR, a 10,12
ROVRI
ERAVG
EPLT
AFID
CMCO
MHO
WEIGHT
DUST LAYER J(PART)
J(ION) INCR, NO,
1,2870
1,2900
1.2103
2.953E+05
2.953E+0S
2.953E*05
1,7968E+05
1.7<>«6E*05
1 ,7926E*05
1,8299E»12
1,8BA0E+12
1,939flE+12
2,0
2.0
2.0
7,5SE-06
6.B9E-06
5.96E-06
2.301E-06
3.13SE-06
3.25BE-06
6.7A0E-05
9.1BSE-05
9,5U3E«05
3.05E-09
7.10E-09
1.06E-08
2.00E-05
2.00E-05
2.00E-05
CALCULATION IS IN SECTION no. b 2 AND THE 8ECTI0N LENGTH IS s 0,7625 M
COLLECTION AREA a 5.812E-01 M2
WIRE TO PLATE b 1.270E-01 M
CURRENT/M b 6.100E«06 AmP/m
1/2 WIRE TO wire b 6.350E-02 M
TEMPERATURE a 297,667 K
ION MOBILITY a 1.796E-0U MJJ/VOLT-SEC
0U8T WEIGHT e 3.250E-06 KG/SEC
APPLIED VOLTAGE a 3.700E+00 VOLTS
CORONA WJRE RADIUS s 1,191E-03 M
CURRENT DENSITY b 2.001E-05 AMP/M2
GAS FLOW RATE a 9,«60E-02 M3/BEC
PRESSURE e 1,000 ATM
MEAN THERMAL SPEED a «.a39E*02 M/SEC
LENGTH INCR, O0.25U16565 M
TOTAL CURRENT a 1.16JE-05 AMPS
CORONA WIRE LENGTH a l,906EtOO M
DEPOSIT E FIELD a 2,001E*02 VOLT/m
GAS VELOCITY b 9.760E-01 M/SEC
VISCOSITY ¦ 1.800E-05 KG/M-SEC
PART. PATH PARAM, a 5.70BE-08 M
INPUT EFF./INCR. a 10,12
ROVRI
ERAVG
EPLT
APIO
CMCO
MMD
WEIGHT
DUST LAYER J(PART)
J(ION) INCR, NO,
1.179U 2.913E+05
1,1511 2.913E+05
1,1265 2.91JE+05
1.7672E+05
1 .7656E + 0S
l,76fl2E+05
2.023BE+12
2.0736E+12
2,1187E+12
2,0
2,0
2,0
1.91E-06
4.1BE-06
3,51E"06
3.020E-06
2.726E-06
2.A01E-06
8.B58E-05
7.987E-05
7.03AE-05
1.35E-08
1.57E-08
1.68E-08
2.00E-05
2.00E-05
2.00E-05
CALCULATION IS IN SECTION NO, a 3 AND THE SECTION LENGTH IS • 1,5250 M
COLLECTION AREA s l.l62E+00 M2
WIRE TO PLATE b 1.270E-01 M
CURRENT/M c 6.100E-06 AMP/m
1/2 WIRE TO WIRE b 6.350E-02 M
TEMPERATURE s 207.667 K
ION MOBILITY ¦ 1.7Q8E-0U M2/V0LT.SEC
DUST WEIGHT b 3.250E-06 KG/SEC
APPLIED VOLTAGE a 3,«90E*0« VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY b 2.001E-05 AMP/M2
GAS FLOW RATE b 9.U60E-02 M3/SEC
PRFSSURE s 1.000 ATM
MEAN THERMAL SPEED o a.aJ9E*0? M/SEC
LFNGTH INCR. aO.25016565 M
TOTAL CURRENT b 2.326E-05 AMPS
CORONA WIRE LENGTH a 3.812E+00 M
DEPOSIT E FIELD b 2.001E+02 VOLT/M
GAS VELOCITY a 9.760E-01 M/8EC
VISCOSITY s |.800E»05 KG/M.8EC
PART. PATH PARAM, B 5.708E-08 M
INPUT EFF./INCR, B 10,12
ROVRI	ERAVG	EPLT	AFID	CMCO	mho	WEIGHT DUST LAYER JfPART)	J(ION) INCR, NO,

-------
1,0996
2.748E*05
1.6692E+05
2.3012E+12
2.0
3.19E-06
1.966E-06
S.759E-05
1.59E-0B
2.00E-05
7
1,0834
2,748E+0S
1.6681E+05
2.3357EM2
2.0
2.89E-06
1.694E-06
4.963E-05
1.55E-08
2.00E-05
8
1,0698
2.748E+05
1,6672E+05
2.3654E*12
2.0
2.61E*06
1.457E-06
4.268E-05
1,flPE-08
2.00E-05
9
1,0584
2.748E+05
1,6665E*05
2.3908E+12
2.0
2.43E-06
1.258E-06
3.687E-05
1.41E-0B
2.00E-05
10
1,0489
2.7U8E+0S
1.6665E+05
2.H25E + 12
2.0
2.27E-06
1.090E-06
3.206E-05
1.34E-08
2.00E-05
M
1.0410
2.748E+05
1.6665E+05
2,4309E+12
2.0
2.13E-06
9.583E-07
2.807E-05
1.27E-08
2.00E-05
12
EST, EFFICIENCY ¦ 72.19 UNCORRECTED COMPUTED EFFICIENCY » 73,57
INCREMENTAL ANALY8IS OF PRECIPITATOR PERFORMANCE
LAB ESP I SCA«125 PT2/IOOOACFM| Jb2 NA/CM2
CALCULATION 18 IN 8ECTI0N NO. ¦ 1 AND THE 8ECTION LENGTH IS » 0,7625 H
COLLECTION AREA ¦ 5.812E-01 M2
WIRE TO PLATE ¦ 1.270E-01 H
CURRENT/N • 6.100E-06 AMP/M
1/2 HIRE TO WIRE ¦ 6.350E-02 M
TEMPERATURE ¦ 297.667 K
ION MOBILITY • 1.79BE-04 H2/V0LT-8EC
OUST WEIGHT d 3.250E-06 KG/SEC
APPLIED VOLTAGE « 3.750E*0U V0LT8
CORONA WIRE RADIUS ¦ 1.191E-0J M
CURRENT DENSITY o 2.001E-05 AMP/M2
CAS FLOW RATE a 9.460E-02 M3/8EC
PRESSURE ¦ 1.000 ATM
MEAN THERMAL SPEED o 4.439E+02 M/8EC
LENGTH INCR, oO,25116565 M
TOTAL CURRENT ¦ 1.163E-05 AMPS
CORONA WIRE LENGTH • 1.906E+00 H
DEPOSIT E FIELD ¦ 2.00lEt02 VOLT/M
GAS VELOCITY b 9.760E-01 M/8EC
VI8C0SITY ¦ l,800E-05 K0/M.8EC
PART, PATH PARAM, b 5.708E-08 M
INPUT EFF./INC, ¦ 10,30
ROVRI
ERAVG
1,2978 2.953E+05
1.3564 2.953E+05
1,2206 2.953Et05
EPLT
1 .7975E + 05
1 .7951E + 05
1 .7930E + 05
AFID
1.8146E+12
1,8714E*12
1.9294E+12
CMCD
2.0
2.0
2.0
HMD
7.55E-06
6.89E-06
5.97E-06
WEIGHT
2.288E-06
3.125E-06
3.252E-06
DUST LAYER J(PART)
6.704E-05
9.156E-05
9.527E-05
3.02E-09
7.04E-09
1.06F-08
J(ION) INCR. NO
2,00E*05
2.00E-05
2,00E»05
1
2
3
CALCULATION IS IN SECTION NO. a 2 AND THE SECTION LENGTH 18
0.7625 M
COLLECTION AREA ¦ 5.812E-01 M2
WIRE TO PLATE ¦ 1.270E-01 H
CURRENT/H ¦ 6.100E-06 AMP/H
1/2 WIRE TO wire ¦ 6.350E-02 m
TEMPERATURE « 297.667 K
ION MOBILITY b 1.79BE-04 M2/VOLT-8EC
DUST WEIGHT ¦ 3.250E*06 KG/SEC
APPLIED VOLTAGE ¦ 3,700C*0a VOLTS
CORONA WIRE RADIU9 ¦ 1.191E-03 M
CURRENT DENSITY « 2.001E-05 AMP/M2
GAS FLOW RATE » 9.460E-02 M3/8EC
PRESSURE ¦ 1,000 ATM
MEAN THERMAL SPEED o u.a39Ef02 M/8EC
LENGTH INCR. ¦0.25416565 H
TOTAL CURRENT b 1.163E-05 AMPS
CORONA WIRE LENGTH ¦ 1, 906E + 00 M
DEPOSIT E FIELD o 2.001E+02 VOLT/M
GAS VELOCITY ¦ 9.760E-01 M/8EC
VISCOSITY ¦ 1.800E-05 KG/M.8EC
PART, PATH PARAM, b 5.708E-08 M
INPUT EFF./INCR, ¦ 10,50
RCVRI
1,1839
1,1543
1.1287
ERAVG
2.913E+05
2.913E+05
2.913E*05
EPLT
1 ,7675E»05
1 ,7658Et05
t .7644E + 05
AFID
2.0161E+12
2,0679E+12
2,1147E + 12
CMCD
2.0
2.0
2.0
HMD
4.92E-06
U.19E-06
3.55E-06
WEIGHT DUST LAYER JCPART)	J(ION) INCR. NO
3.022E-06
2.726E-06
2.402E-06
B.852E-05
7.9B7E-05
7.038E-05
1.34E-08
1.56E-06
1.68E-08
2.00E.05
2.00E-05
2,001-05
4
5
6
CALCULATION Is IN 8ECTI0N NO. e 3 AND TMf SECTION LENGTH IS ¦ 1,5250 M
COLLECTION ARM ¦ 1 ,162E~ 00 M?
WIRE TO PLATE ¦ 1.270E-01 *
CURRENT/M a 6.100E-06 AMP/m
1/2 WIRE TO WIRE ¦ 6.350E-02 m
TEMPERATURE ¦ 297.667 K
ION MOBILITY a 1.798E-04 M2/VOUT-SEC
APPLIED VOLTAGE » S.490F + 04 VOLTS
CORONA WIRE RADIU8 ¦ 1.I91E-0J M
CURRENT OENSITV B 2.001E-05 AMP/M2
GAS FLOW RATE a 9.460E-02 M3/SEC
PRE8SURE b 1,000 ATM
MEAN THERMAL SPEFO ¦ 4.U39E+02 */SEC
TOTAL CURRENT b 2.326E-05 AMPS
CORONA WIRE LENGTH a 3.812E+00 m
DEPOSIT f FIELD ¦ 2,00 IF10? VOLT/M
GAS VELOCITY b 9.760E-01 m/SEC
VISCOSITY ¦ 1.600E-05 KG/M.8EC
PART, PATH PARAM, b 5.708E-08 M

-------
OUST WEIGHT » 5.250E-06 KG/SEC
LENGTH I NCR, O0.25UJ6565 H
INPUT EFF./INCR, « 10,50
ROVR!
F»4vr,
EPLT
AF I D
THCO
HMD
WEIGHT
DUST LAYER
J(P ART)
JdON)
I NCR, NO
1,1009
2.748E+05
1.66O3E + 05
2.2986E+12
2.0
3.19E-06
1.968E-06
5.766E-05
1.59E-08
2.00E-05
7
1,0801
2.748E+05
1,6682E*05
2,3 J42E + 12
2.0
2.89E-06
1.697E-06
4.971E-0S
1.5SE-08
2.00E-05
8
1,0701
2.748E+05
1 ,667UE*05
2,3648E+1 2
2.0
2.61E-06
1.460E-06
4.277E-05
1.O8E-08
2.00E-05
9
1,0564
2.748E+0S
1.6665E+05
2.S10QEM?
2.0
2.43E-06
1.261E-06
S.69UE-05
1.41E-08
2.00E-05
10
1,0487
2.74BE+05
1.6665E + 05
2,41 JOE*12
2.0
2.27E-06
1,096f>06
3.212E-05
1.34E-08
2,0 0E-05
11
1,0406
2.748E+05
1 ,666SE *05
2.4317E+12
2.0
2.13E-06
9.600E-07
2.812E-05
1.27E-08
2.00E-0S
12

-------
CHARGING RATES FOP PARTICLE SI2ES FRO* SUBROUTINE CHARGN OR CHGSUM
8RI THEORY U8EO FOR PARTICLE CHARGING
rMC^ENENT NO. O/OSATF FOR INDICATED PiOTICLE SIZES
0.2S80E-06
1	0.5242
I	0.80*5
5	1.0345
a	1.2301
5	1.3706
6	1.0793
7	1,5646
8	1.6363
9	1.6980
10	1.7520
11	1.8001
12	1.8033
0.3500E-06
0.S1I1
0.7BT7
1.0198
1.221"
1.360'
1.4652
1.5030
1.6078
1.6630
1.7111
1.7537
1.7917
0.050CE-06
0.4925
4*7610
0,9885
1.1939
1.3316
1.4320
1.5036
1.5626
1.6126
1.6550
1.6939
1.7279
0.5500E«06
0.4743
ft.7158
0.9563
1.1625
1.3002
1.3970
I.4640
1.5180
1.5642
1.6037
1.6383
1.6690
0.7000E-06
0,4516
0,7003
0,9149
1,1171
1.2567
1.3509
1.4119
1.4611
1.5021
1.5373
1.5680
1.5952
0
.1600E«05
0.2000E-05
0.2600E-05
0.3S00E-05
0.5000E-05
1
0.3852
0.3725
0.3601
0.3489
0.3386
2
0.6121
0.5933
0.5702
0.5562
0,5307
3
0.7875
0.7605
0.7329
0.7064
0,6805
4
0.9ai1
0.9027
0.8636
0.8264
0,7901
5
1.08T7
1.0357
0.9815
0.9308
0,8822
6
1.1874
1.1049
1.0933
1.0288
0,9649
7
1.2360
1.1933
1.1448
1.0918
1,0411
8
1.2727
1.2286
1.1801
1 .1300
1.0835
9
1.3020
1.2561
1.2067
1.1568
1.1106
10
1.3262
1.2785
1.2278
1,1772
I.13O0
11
1.3068
1.2975
1.2452
1.1937
1.1451
12
1.3608
1.3137
1.2600
1.2073
1.1574
O,9OOO£*06
e.itooc-05
0.1300E-05
0.4286
0,0118
0,3991
0.672T
0,6096
0.6519
0.8723
0.8000
0,8156
1.062
-------

CHARGE ACCUMULATED ON PARTICLE
SIZES IN EACH
INCREMFNT
INCREMENT
CHARGE FOR INDICATED PARTICLE
SIZES

0.2500E-06
0.3500E-06
O.aSO0E>O6
0.5500E-06
1
0.75143E-18
0.12956E-17
0,19557E»17
0.27264E-17

0,115U8E-17
0,19967E"17
0,30235E"17
0.42295E-17

0,14830E-17
0.25851E-17
0.39262E-17
0.54970E-17

0,1763aE-l7
0.30971IE-17
0.87U30E-17
0.66820E-17

0,196U8E-17
0.34499E-17
0.52908E-17
0.74740E-17

0,21207E»17
0.37142E-17
0.56891E-17
0.80325E-17

0.22430E-17
0.39116E-17
0,59736E*17
0.64155E-17

0,23«57E-17
0,a0757E-17
0,62078E»17
0.87280E-17

0,2a3a2E»17
0.4215BE.17
0.6a063E-17
0.89913E-17
10
0.25117E-17
0.43378E-17
0.65782E-17
0.92181E-17
11
0.25806E-17
0,44456E-17
0.67295E-17
0.94170E-17
12
0,26425E" 17
0,a5a2OE-17
0,686aaE-17
0.95938E-17

0.1600E-OS
0.2000E-05
0.2600E-05
0.3500E-05
1
0.17274E-16
0.25912E-16
0,«2069e«U
0.73493E-16

0.27446E-16
0,41272E®16
0.67087E-16
0.11715E-15

0.35312E-16
0.52905E-16
0.85620E-16
0.14878E-15

0.U2199E-16
0.62795E-16
0.10089E-15
0.17404E-15

0.4877SE-16
0.720SOE-16
0.11466E-15
0,19603E-15

0.53246E-16
0,79649E»16
0.12772E-15
0.21669E-15

0,35425E»16
0.83013E-16
0.13375E-15
0.22994E-13

0,5706«E-16
0,8Sa66E"16
0.1S7B7E-15
0.23799E-15

0.S8381E-16
0.B7381E-16
0,la097E»15
0.24364E-15
I
0,59a69E-16
0.889««E-16
0,ia3aaE-i5
0.2O795E-15
1
0,60394E»16
0.90260E-16
0.14348E-15
0.25141E-15
1
0.61197E-16
0.91393E-16
0.14721C.15
0.25429E-13
0.7000E-06
0.40847E-17
0.63706E-17
0.82761E-17
0,10105E"16
0.11368P-16
0.12219E-16
0.12771E-16
0.13216E-16
0,13587E-16
0.13906E-16
0.10183E-16
0,10029E-16
0.9000E-0
0.62694E-1
0,9e<»0«E-l
0.12760E-1
o.i5saoe-i
0,17668E-1
0.19020E-1
0.19838E-1
0.20487E-1
0.21024E-1
0,2ia80E-l
0.21B75E-1
0.22224E-1
0.1 100E-05
0.88802E-17
O.iaOORE-16
0.18122E-16
0.21924E-16
0.25178E-16
0,2717fcE-l6
0.28308E-16
0.29195E.16
0 a 29921E» 1 6
0.30533E-16
0.31061E-16
0.31525E-16
0. 1J00E-05
0,1 1918E-16
0,18868E-16
0,2«353E-16
0.29299E-16
0.33826E-16
0,36607E"16
0.38150E-16
0,3931OE • 1 6
0.40250E-16
0,410 3 8 E•16
0.0171JE-16
0.U2303E-16
0 ,5000E"05
0,ia«93E-15
0.23055E-15
0,29l2af-i5
0.33616E-tS
0.377S6E-1S
0.4129«e-15
0.44537E-1S
0.46372E-13
0.47529E-1S
0.48363E-15
0„a9009E-15
0,a993«E-15
o.eoooE-os
0.35869E-15
0.56861E-15
0,7taoiE-15
0.82258E-15
0,910«5E-15
0.98573E-15
0.10560EM4
0,11193E»1 a
Od l552E"ia
0.11777E-14
0,11938E-ia
0.120626-10
0,l500E-oa
0,12230E-14
0,19293E-1«
0,24077E»ia
0.27S29E-I4
0.30227E-14
0.32«39E«ia
0.34223E-14
0.358S7E-14
0.37408E-14
0,38818Eal4
0.39642E-14
0.40161E-14

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONIDEALI TIES USING SET No. 1 OF CORRECTION PARAMETERS
SIZE
CCF
INLFT X
outlet X
COR. OUTLET
* NO-RAP EFF
, NO-RAP W
NO-RAP p
COR, EFF,
COR, w
COR, P
2.S00E-07
1.590
0.000
0.0005
0.0004
51.9261
2.980
48.0739
51,9261
2,980
48,0739
3.500E-07
1,410
0.000
0.9772
0.8563
52.9604
3.069
47.0396
52,1708
3,001
47,8292
4.500E-07
1.320
0,600
1.4187
1.2472
54.A7JA
3.202
45.5262
53,5552
3,120
46,4408
5.500E-07
1,261
1.667
3.7832
3.2967
56.3028
3.369
43.6972
55,8131
3,323
44,1869
7.000E-07
1,205
5.000
10.7249
9.3523
58.6994
3.598
41.3006
SB,2079
3,550
41.7921
9.000E-07
1.159
4.933
9.7B49
8.5889
61.8074
3.916
38.1926
61,0980
3,841
38,9020
1.100E-06
1.130
4,733
8.7391
7.7279
64.4481
4,208
35,5519
63,5185
4,103
36,4815
1.300E-06
1,110
4.000
6.8907
6.1670
66.8308
4,490
33.1692
65,5475
4.336
34,4525
1.600E-06
1,090
8.000
12.5909
11.3802
69.6960
4,858
30.3040
68,2162
4,664
31.7838
2.000E-06
1,072
6.667
9.3922
8.6793
72.8752
5.309
27,1248
70,9129
5,024
29,0871
2.600E-06
1,055
10.667
12.9388
12.3660
76,6448
5.917
23.3552
74,0981
5,496
25,9019
3.S00E-06
1,041
10.667
10.7806
10.7338
80.5404
6,660
19.4596
77,5168
6,072
22,4832
S.000E-06
1,029
11.333
8.1751
9.U090
86,1108
8,032
13.8892
81,4500
6,655
18,5500
8.000E-06
1,018
12.000
3.2315
5,708a
9<1.8150
12,041
5.1850
89,3713
9,121
10.62B7
1.500E-05
1,010
19.333
0,5718
4,0858
99.4305
21,029
0,5695
94,8157
12,042
5,1843
EFFICIENCY - 1
STATED «
73.57
COMPUTED a
73,5327
CONVERGENCE
! OBTAINED



ADJUSTED NO-RAP EFF, o 80.7455
HMD OF INLET SIZE DISTRIBUTION a 3.302E+00
SIGMAP OF INLET 8IZE DISTRIBUTION q 2.164E+00
LOG-NORMAL GOODNE8S OF FIT ¦ 0.935
mho OF EFFLUENT under no-Rap CONDITIONS a 1,763E+00
8IGHAP OF EFFLUENT UNDER NO-RaP CONDITIONS « 1.780E+00
LOG-NORMAL GOODNESS OF FIT b 0,958
PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS o 6,703
SIGMAGO 0.000 WITH 0,000 SNEAKAGE OVER <1,000 STAGES
NTEMP ¦ 1
RMMD ¦ 6,00
RSIGMA a 2,50
CORR. EFF. a 77.6567
CORRECTED HMD OF EFFLUENT o 2.150E+00
CORRECTED 8IGMAP OF EFFLUENT a 1.964E+00
LOG-NORMAL GOODNESS OF FIT a 0.9U8
CORRECTED PRECIPITATION RATE PARAMETER « 6,10

-------
UNADJUSTED MIGRATION VELOCITIES ANn EFFICIENCIES! AND
IDEAL UNADJUSTFp
Hie. VEL.(CM/SEC)
1 .282E+00
l.«l«E+00
1.562E+00
1,71«E+O0
1.9ii5Ef00
2.251E+00
2,553E*00
2.855E*00
3.296E+00
3.875E*00
0.726E+00
5.973E+00
8,032E+00
1.20UE+01
2,101E + 01
IDEAL UNADJUSTED
EFFICIENCY(X)
2.702E+OI
2.936E+01
3.188E+01
3.«38Ef01
3.800E+01
U,2«9E+Ot
U.661E+01
5,OUOE+O1
5.S51E+01
6.142Et01
6.870E+01
71696E + 01
8,61lE+ni
9.U81E+01
9.9U3E+01
NO-RAP
DM/nLOGD(MG/DSCM)
2.0U9E-01
5.651E-01
1.058E+00
3.«52E+00
6.202E+00
7.295E+00
7.97flE*00
7.U37E+00
8.335E+00
7,787E+00
fe,9(IOE»O0
6,23SE*00
3,3500
l,052E+00
1.372E-01
OUTLET MASS LOADINGS
Rapping puff
NO-RAP+RAP puff
RAPPING PUFF
PARTICLE
DM/DLOGOCMG/DSCM)
OM/DLOGD(MG/DSCM)
DISTPIBUTION(X)
DIAM,(M)
2.(*7)E-63
3.07fcE-03

-------
SUMMARY TABLE OF ESP OPERATING
parameters and performance
DATA SET NUMBER J
ESP PERFORMANCE!	EFFICIENCY o 77.656T X SCA ¦ 2,fl58E*0l M»*2/(M*«J/SEC)
ELECTRICAL CONDITIONS!	AVG. APPLIED VOLTAGE o 3,607E*0« V
AVG, CURRENT DENSITY a 2,00 NA/CM**2
RESISTIVITY a 1.000E+09 OHM.CM
SIZE DISTRIBUTIONS! INLET MMD b 3.J02E+00 UM INLET 8IOMAP ¦ 2.16«E»00
OUTLET MMD a 2.150E+00 UM OUTLET SlGMAP s l,96«E+00
NONIDEAL PARAMETERS!	GAS SNEAKAGE FRACTION ¦ 0,00 /SECTION GAS VELOCITY SIGMAG ¦ 0,00
RAPPING MMD a 6.000E+00 UM RAPPING 8IGMAP a 2.500E+00

-------
E.P.A. ESP MODEL
I ,E,B,L,-P.T,P, AND SO.R.I,
REVISION I,JAN, i, 19Jb
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER 1
DATA ON CARD NUMBER 1
NENDPT s 16 NDATA b a
DATA ON CARD NUMBER 2
LAB E8PI SCAa125 FT2/1OOOACFM, J»5 NA/CM2
DATA ON CARD NUMBER J
VOS( 1) a J.9O50E + 0U V TCSt 1) ¦ 2.9070E-05 A
V08C 2) s 5,9000E+oa V TC8( 2) b 2.9070E-0S A
V08( 3) b J,7200E + Oil V TC8( 3) a S.BlaOE-05 A

-------
INCREMENTAL ANALYSIS of PRECIPITATOR PERFORMANCE
LAB ESP I SCA«125 FT2/lflOOACFMj Jb5 NA/CM2
CALCULATION IS IN SECTION NO. e 1 AND THE SFCTION LENGTH IS b 0,7625 M
COLLECTION AREA ¦ 5,fll2E-ni M2
HIRE TO PLATE b 1.270E-01 M
CURRENT/m b I.525E-05 amP/M
1/2 WIRE TO WIRE ¦ 6.350E-02 m
TEMPERATURE b 297,667 K
ION MOBILITY b 1.798E-0" M2/V0LT-SEC
DUST WEIGHT b 3.250E-06 KG/SEC
APPLIFO VOLTAGE s 3,95
5,7J33E+12
5,7fc92E* 12
5,7986E~12
5,0
5,0
5,0
2.ME-06
2.22F-06
2.05E-06
1 , 6 10F"06
1 .338E-06
1,130F"06
0.716E-05
3.919E-05
3.310E-05
2,10E»08
1 .93E-08
1.7BE-0B
5.00E-05
5.00E-05
5,O0E»O5

-------
1,0193 2.929E+05 I.859UE+05 5.8229E+12 5.0 1.90E-06	9.659E-07	2.830E-05	1.65E-08	5.00E-05	10
1,0198 2.92QE+05 I.859UE+05 5.8U28E+12 5.0 1.77E-06	8.331E-07	2.UU1E-05	1.52E»08	S.00E-05	11
1,0130 2.929E+05 1,B59UE+05 5,8592e*l2 5,0 1.66E-06	7.238F-07	2.121E-05	l.OOE-08	5.00E-05	12
E3T, EFFICIENCY e 73.57 UNCORRECTED COMPUTED EFFICIENCY «	82,52
INCREMENTAL ANALYSIS OF PRECIPITATOR PERFORMANCE
LAB E8PI SC4o125 FT2/1OOOACFMj Jb5 NA/CM2
CALCULATION IS IN SECTION NO. m 1 AND THE SECTION LENGTH IS s 0.7625 M
COLLECTION AREA o 5.812E-01 M2
HIRE TO PLATE b 1.270E-01 M
CURRENT/H a 1.525E-05 AMP/M
1/2 WIRE TO WIRE ¦ 6.350E-02 H
TEMPERATURE ¦ 297,667 K
ION MOBILITV o 1.798E"0« M2/V0LT-SEC
OUST HEIGHT a 3.250E-06 KG/SEC
APPLIED VOLTAGE b 3,9a5E+0U VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY o 5.001E-05 AMP/M2
GAS FLOW RATE ¦ 9.060E-02 M3/SEC
PRESSURE o 1,000 ATM
MEAN THERMAL SPEED o a,a39E*02 M/8EC
LENGTH INCR, eO,25116565 M
TOTAL CURRENT s 2.907E-05 AMPS
CORONA WIRE LENGTH ¦ 1,906E«00 M
DEPOSIT E FIELD » 5.001E+02 VOLT/M
GAS VELOCITY ¦ 9.760E-01 M/SEC
VISC08ITY o 1.800E-05 KG/M.SEC
PART, PATH PARAM', ¦ 5.708E-08 M
INPUT EFF./INCR. ¦ 13,53
ROVRI
ERA VG
EPLT
A F10
CMCD
HMD
WEIGHT
DUST LAYER J(PART)
J(ION) INCR, NO,
u
1,1615
1,1309
1.1037
3,106E+05
3.106E+05
3.106E+05
1.9768E+05
1.9728E+05
1.9692E+05
U.8185E+12
4.9087E+12
5.0709E+12
5,0
5.0
5.0
7.27E-06
5.85E-06
4.55E-06
4.56OE-06
4.849E-06
4.213E-06
CALCULATION is in SECTION NO, ¦ 2 AND THE SECTION LENGTH IS b 0,762S M
1.337E-04
1.421E-04
i,23ae-ofl
1,196.08
2.24E-0B
2.71E-0B
5.00E-05
5.00E-05
5.00E-05
COLLECTION AREA b 5.B12E-01 M2
MIRE TO PLATE b 1.270E-01 M
CURRENT/* o 1.S25E-05 AMP/M
1/2 WIRE TO WiRt ~ 6.350E-02 M
TEMPERATURE 0 297,667 K
ION MOBILITY a 1.79BE-0U M2/V0LT.SEC
OUST WEIGHT ¦ 3.250E-06 KG/8EC
APPLIED VOLTAGE b 3,900E*04 VOLTS
CORONA WIRE RADIUS e 1.191E-03 M
CURRENT DEN8ITV ¦ 5.001E-05 AMP/M2
GAS FLOW RATE b 9,«60E-08 M3/SEC
PRESSURE ¦ 1.000 ATM
MEAN THERMAL SPEED a a,aS9E+02 M/SEC
LENGTH INCR, 10,25416565 M
TOTAL CURRENT « 2.907E-05 AMPS
CORONA WIRE LENGTH ¦ 1,906E+00 M
DEPOSIT E FIELD • 5,001E*02 VOLT/M
GAS VELOCITY a 9,760E-01 M/SEC
VISCOSITY a 1.800E-05 KG/M.8EC
PART, PATH PARAM, a 5.708E-0B M
INPUT EFF./INCR, ¦ 13,SS
ROVRI
ERAVG
EPLT
AFID
CMCD
HMD
WEIGHT
DUST LAYER J(PART)
J(ION) INCR, NO,
t,060a
1,0630
1,0490
3.071E*05
3.071E+05
3.071E + 05
1,9
-------
1,0370
2.929E+05
1,8597E*05
5.7230E+12
5,0
2.02E-06
1.61BE-06
U.739E-05
2,10E«0B
5.00E-05
7
1.0292
2,929E»05
1.B597E+05
5,7667Etl2
5.0
2.22E»06
1.3U0E-06
3.937E-05
1.93E-0B
5.00E-05
B
1.0231
?,929E»05
t.B597E+05
5,8011E+12
5,0
2,05E»06
1.135E-06
3.32SE-05
1.7BE-0B
5,00E-05
9
1,0183
2,929Et05
1.8597E+05
5.B286E+12
5,0
1.91E-06
"»,701E-07
2.8O2E-05
1.65E-0B
5.00E-O5
10
1.0105
2.929E+05
1.B597E+05
5.850UE+12
5,0
1.78E-06
8.366E-07
2.U51E-05
1.52E-08
5,00E-05
11
1.0115
2.929E+05
t.8597E+05
5.867BE+ 12
5.0
1 .66E-06
7.269E-07
2,129E-05
1 ,aiE-ofl
5.00E-05
12
EST, EFFICIENCY 8 82.52 UNCORRECTED COMPUTED EFFICIENCY = 62,as
INCREMENTAL ANALYSIS OP PRECIPITATOR PERFORMANCE
LAB ESPi SCasj2S FT2/1000ACFM| j»5 NA/CM2
CALCULATION IS IN SECTION NO. c J A NO Th£ SECTION LENGTH IS b
COLLECTION AREA b 5.B12E-01 *2
WIRE TO PLATE a 1.2T0E-O1 M
CUR»ENT/M ¦ 1.525E-05 AmP/m
1/2 WIRE TO wiRe ¦ 6.350E-02 M
TEMPERATURE • 297,667 K
ION MOBILITY ¦ 1.798E-0U M2/V0LT-SEC
OUST HEIGHT • 3.2S0E-06 KG/SEC
0,7625 M
APPLIED VOLTAGE b 3,9o5E*0
-------
OUST WEIGHT b 3.250F-06 KG/SEC
LENGTH INCR, s0.25«16565 »
INPUT EFF./INCR. a 13,50
BOVRT
FBAVf.
EPL T
AFID
CMCD
HMD
WEIGHT
OUST LAYER
J(P ART)
JCION)
INCR, NO
t,0570
2,929F*05
1 .8597E+05
5,72JflE*l?
5,0
2.42E-06
1 .618E-06
U.7J9E-05
2.10E-08
5.00E-05
7
1,0292
2.929F+0S
1 .8597E+05
5,7666E+12
5,0
2.22F-06
1 ,3«
3.32UE-05
1.7AE-08
5,00E»«S
9
1,01 S3
2.O29F+05
1,85971*05
5,82B5E~1?
5.0
1.91E-06
9.701F-07
2,8«2E-05
1.65E-08
5.00E-05
10
1.01U5
2.929E+05
1.8597E+05
5.850JEO2
5,0
1,78E-0fc
8.366E-07
2,«51E»05
1 .52E-08
5.00E-05
11
1,0115
2.929E+05
1.8597E+05
5.8677E+12
5,0
1,66E»06
7.269E-07
2,129E-05
i.aie-08
5.00E-05
12
UJ
NJ

-------
CHARGING RATES 'OB PARTICLE SIZES FROM SUBROUTINE CHARGN OR CHGSUM
8RI THEORY USED FOR PARTICLE CHARGING
INCREMENT NO. O/OSATF FOR INDICATED PARTICLE SIZES
0.2500E-06
1	0,8929
2	1.3099
3	1,5308
4	1,67
-------
CHARGE ACCUMULATED ON PARTICLE SIZES In EACH INCREMENT
INCREMENT
CHARGE FOR INDICATED PARTICLE
SIZES

0.2500E-06
0.3500E-06
o.asooE-Ob
0,5500E«Ob
I
0,J 3fc«0E-17
0.23718E-17
0.36068E-17
0.50bS2E"17
2
0 ,2001 7E" 17
0.35257E-17
0.5ai70E-17
0,76624E-17
3
0 ,23391E»17
0,a09bOE-17
0.62739E-17
0.88b02E-l7
a
0.25583E-17
o.aasobE-17
0,b78S6E-l7
0,95A9UE"17
5
0.27206E-17
0,a70B«E-17
0.71517E-17
0.1OOJbE-16
6
0.28491E-17
0,a9l01E-l7
0,7a355E"17
0.10aO9E-lb
7
0,29U96E"17
0.50b22E-17
0,7b425E"17
0.10bTUE»lb
B
0.30355E-17
0.51919E-17
0.78190E-17
0.10900E-16
9
0.31103E-17
0.5304BE-17
0.79725E-17
0.1109bE«lb
10
0 , 31TbbE-l7
0.5404TE-17
0.B1082E-17
0,il269E-lb
11
0.32359E-17
n.5«9flOE-17
0.82296E-17
0.11425E«lb
12
0.3289bE-17
0.55749E-17
0.B339UE-17
0.11565E-lb

0.1600E-0S
0.2000E-05
0 «2600E-05
0.3500E-05
1
0.33372E-16
0.502776-16
0,B183«E-16
0,14297E-15
2
0,4988bE-l6
0.73983E-16
o.neaaE-15
0.20359E-15
3
0.59180E-16
0.88933E-16
0,143946-13
0.24839E-15
a
0.42979E-16
0.94605E-16
0.1533UE-1S
0,26b3lE-13
5
0.65374E-16
0.98041E-16
0.15870E-1S
0.27547E-15
6
O.bTlObE-lb
0.10048E-15
0.16239E-15
0.28151E-15
T
0.6B075E-16
0.10174E-15
0.16412E-15
0,283986-15
8
0,689o4E- 16
0.10283E-15
0.16561E-15
0,286136-15
9
0.69629E-16
0.10378E-15
0.16692E-I5
0.28601E-15
10
0.70270E-16
0.10463E-15
0,16809e»15
0.289b9E-15
11
0,70Ba5E-l6
0.10538E-15
0.16913E-15
0,291206*15
12
O.Tl3bbE-lb
0.10607E-15
0,170086-15
0.29257E-15
0.7000E-0
0.76579E-1
0,1lbb0E»l
0,1348bE-l
0. jaa79E-l
0,151bbE-l
0.15b89E-l
0,!60U5E»1
0, 1634BE"!
O.lbbllE-1
0.1fa844E-l
0.17053E-1
0.172ME-1
0.9000E-06
0,11877E-lb
0,181U6E-16
0.21015E-16
0,22483E"! 6
0.23177E-16
0,24222F«lb
0,2fl705E"l6
0,25117E-16
0.25076E-16
0.25793E-16
0.2b076E-lb
0,2b333E-lb
o. nooe-o
0,lfa956E"l
0.258fl6E-l
0,300b7E-l
0.3209JE-1
0.33033E-1
0.34a29E-l
0.35045E-1
6,35571 £¦ I
0.36029E-1
0,36434E"!
0.36797E-1
0.3T125E-1
0.1300E-05
0,228896-16
0 , 3Ub84E-lb
0,«0bl3f.-lb
0,
-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONIDEALI TIES USING SET NO. 1 OF CORRECTION PARAMETERS
SIZE
CCF
INLET X
OUTLET *
COR, OUTLET *
NO-RAP EFF,
NO-PAP W
NO-RAP P
COR, EPF,
COR, W
COR, P
2, 500E-07
1,590
0.000
0.0006
0,0005
66,9499
4,505
33,0301
66,9fl?9
0,505
33,0501
3.500E-07
t.uift
04 0 0
1.2175
0.9858
67.6574
0,593
32.3426
66,*451
4,504
33.0549
4.500E-07
1.320
0.600
1.7921
1.4252
68.9704
4,761
31.0296
68.1419
4,654
31 .8581
5.500E-07
1 .261
1.667
1.6018
3.7032
70,6479
4,988
29.3521
70.2062
4,927
29,7938
T.COOE-07
1.205
5,000
12.7785
10.2894
72,8433
5,304
27.156T
72.4000
5,238
27,6000
9.000E-07
1.159
4.933
11.2896
9.1798
75,6816
5,753
24,3182
75.0419
5,647
24,9581
l,l00E-0fe
1.130
4.733
9.7803
8,0446
78,0425
6,169
21.9575
77,2040
6,016
22,7960
1.300E-06
1.110
4.000
7.1838
6.2745
80,1194
6,573
19,8806
78,9619
6,343
21,0381
1 .'600E-06
1.090
3.000
13.1451
I1.210T
82,5402
7,101
17.4598
81,2055
6,801
18,7945
2.000E-06
1.07?
6,667
9.3219
8,2653
85.1427
T ,758
14,8573
83.3728
7,300
16,6272
2.600E-06
1 ,055
10,667
11.9633
11.3053
88,0827
8.655
11,9173
85,7857
7,938
14.2143
3.S00E-O6
1.011
10,667
9,1117
9,3880
90,9234
9.763
9,0766
88,1963
8,694
11.8037
5.000E-06
1,029
11,333
5,9451
8.2623
94,4259
11.747
5,5741
90.2221
9,460
9.7779
B.000E-06
1.016
12,000
1,5119
5.5909
98,6613
17.551
1,3387
93,7514
11,282
6,2486
I.500E-05
1.010
19.333
0.0939
6.0744
99.9484
30.798
0,0516
95,7860
12,885
4,2140
EFFICIENCY • STATED b 82.45 COMPUTED e 82,4509 CONVERGENCE OBTAINED
ADJUSTED NO-RAP EFF, = 89,3741
"HO OF INLET SIZE DISTRIBUTION ¦ 3,302E»00
SIGMiP OF INLET SIZE DISTRIBUTION s 2.164E+00
LOG-NORMAL GOODNESS OF FIT a 0.9JS
w	mmd OF EFFLUENT UNDER NO-RAP CONDITIONS e 1.581E+00
m	BIGNAP OF EFFLUENT UNOER NO-RAP CONDITIONS a 1.7306*00
*¦	LOG-NOR**L GOODNESS OF FIT a 0,963
precipitation rate parameter under no.rap conditions s 9,122
sir,MAG" 0,000 WITH 0,000 SNEAKAGE OVER U.000 STAGES
NTEMP B 1
RfMD B 6,00
RSIGHA b 2,50
CORR, EFF, a 86,5882
CORRECTED HMD OF EFfLUENT B 2,l38E»C0
CORRECTED SIGHAP of effluent a 2,008E*00
LOB>NO«ttAL GOODNESS OF FIT a 0,936
CORRCCTCO PRECIPITATION RATE PARAMETER b 6,IT

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENCIES* AND DISCRETE OUTLET MASS LOADINGS
IDEAL UM*r>JUf»TED
IDEAL UNADJUSTED
NO-RAP
rapping puff
NO»RAP+RAP PUFF
RAPPING PUFF
PARTICLE
MIC, VEL.CCM/8EC)
EFFICIENCVCXl
DM/DLOCDtMG/DSCM)
DM/DLOGO fHG/OSCM)
DM/D10G0(MG/DSCN)
DISTRIBUTION(%}
DIAM,(H)
1.938E+00
J.7B9E+01
1 .U09E-0U
2.590E-03
2.7J0E-03
«. JbllE-02
2.S00E-07
2,117E>00
U.056E+01
3 i 886E"0 t
8.5S7E-63
3.971E-01
1 .022E-01
3.500E-07
2,323E*00
U.350E+01
7.209E-01
1.925E-02
7,fl02E-01
1 ,78flE-01
U.500E-07
2.538E+00
O0E-06
5.663E+00
7,51#E+01
fl,2b5E+00
5.081E-01
fl,773E~00
U.23UE+00
2,OOOE>06
6.913E+00
8.171E+01
3,5«lE+00
6.826E-01
<1,22
ro
Ln

-------
SUMMARY TABLE OF ESP OPERATING
parameters and performance
DATA SET NUMBER 1
ESP PERFORMANCE!
EFFICIENCY « 86.5882 * SCA ¦ 2.U58E+01 H*«Z/ OHM-CM
SIZE DISTRIBUTIONS!
NONIDEAL PARAMETERS!
INLET HMD o J,J02E+00 UM
OUTLET MMD a 2.UBE + 00 UM
INLET SIGMAP a 2,16«E+00
OUTLET SIGMAP s 2.00BE400
GAS SNEAKAGE FRACTION fl 0,00 /SECTION GAS VELOCITY SIQMAG " 0,00
RAPPING HMD B 6.000E+00 UM	RAPPING 8IGMAP s 2,500E*00

-------
E.P.A. ESP MODEL
I.E.R.L.-R.T.P, AND SC.R.I.
REVISION I,JAN, i, 1978
PRINTOUT OF INPUT OATA FOR DATA SET NUMBER 1
DATA ON CARD NUMBER 1
NENDPT a 1* NDATA ¦ a
DATA ON CARD NUMBER 2
LAB ESP¦ 3CAol25 FT2/1000ACFH, Jalo NA/CM2
w data on card number j
K>
vos(	i) s	a.uooE+oa	v	Test	n	s	s.suoe-os a
V08(	2) b	a,l2O0E*0fl	V	TC31	2)	0	S.BlaOE-05 A
V03(	3) d	J.Q800E+04	V	TC8(	S)	"	1.1628E-04 A

-------
IWCRFMFNTAU ANALYSIS OF PRECIPITATOR PERFnRMANCE
LAB ESP| SCAB 125 FT?/1 000ACFMt JelO NA/CMJ
CALCULATION 16 IN SECTION NO. a J AND THE SECTION LENGTH IS ¦ 0.7625 M
COLLECTION aRE& a 5.812E-01 M2
HIRE TO PLATE ¦ 1.270E-01 H
CURRENT/M o 3,050005 AMP/M
1/2 "IRE TO WIRE r 6.350E-02 M
TEMPERATURE o 297,667 K
ION MOBILITY a 1.79BE-04 M2/VOLT-SEC
OUST WEIGHT s 3.250E-06 KG/SEC
APPLIED VOLTAGE a U.UOEtOU VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY a 1.000E-04 AMP/M2
GAS FLOW RATE a 9.460E-02 MS/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED a 4,«39E+02 M/SEC
LENGTH INCR. bO.25416565 M
TOTAL CURRENT a 5.814E-05 AMPS
CORONA WIRE LENGTH a 1,906E»00 M
DEPOSIT E FIELD a 1.000E+03 VOLT/M
GAS VELOCITY a 9.760E-01 m/SEC
VISCOSITY o I.800E-05 KG/M.SEC
PART, PATH PARAM, a 5.708E-08 M
INPUT EFF./INCR. ¦ IS,50
ROVRI
ERA VG
EPLT
AflD
CMCD
MMO
WEIGHT
OUST LAYER J(PART)
J(ION) INCR, NO,
1,0650
1,0662
1,0506
S.276E»05
3.276E+05
3.276E+05
2.20J2E+05
2.19B8E+05
2,!'51E + 05
9,7B34E*12
9.9551E+I2
1,0103E + 13
10.0
10.0
10,0
6, 86E*06
4.97E-06
J.88E-06
6.903E-06
5.9UTE-06
0.115E-06
CALCULATION IS IN SECTION NO, o 2 anD THF SECTION LENGTH IS a 0.7625 M
COLLECTION AREA a 5.812E-01 M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/m b S.050E-05 amP/m
1/2 wire TO WIRE ¦ 6.350E-02 M
TEMPERATURE « 297.667 K
ION MOBILITY ¦ l.TpflE-Ofl M2/VOLT-SEC
OUST WEIGHT a 3.250E-06 KG/SEC
2.022E-04
1.742E-04
1.264E-04
2.76E-08
3.91E-08
J.7BE-08
1 .OOE-OU
1.OOE-OU
1 .OOE-OU
APPLIED VOLTAGE a «,120E+0« VOLTS
CORONA WIRE RADIUS o 1.191E-03 m
CURRENT DENSITY a l.OOOE-OO AMP/M2
GAS Flow RATE a 9.460E-02 M3/SEC
PRESSURE e 1,000 ATM
MEAN THERMAL SPEED a 4.U39E+02 M/SEC
LENGTH INCR, eO.25416565 M
TOTAL CURRENT ¦ 5.B14E-05 AMPS
CORONA WIRE LENGTH a 1,9066*00 M
DEPOSIT E FIELD a 1.000E+03 VOLT/M
GAS VELOCITY ¦ 9.760E-01 M/SEC
VISCOSITY s 1.800E-05 KG/M.SEC
PART, PATH PARAM, ¦ 5.708E-08 M
INPUT EFF./INCRf ¦ 13,50
ROVRI
ERAVG
EPLT
AF ID
CMCD
MHD
WEIGHT
DUST LAYER J(PART)
J(ION) INCR, NO,
1.03B3
1,0294
1,0226
3.244E + 05
3.244E+05
3.244E>05
2.1733E+05
2.1733E+05
2.I733E+05
1¦0322E*13
1,0411E»13
1,0U8OE»l3
10,0
10,0
10,0
3 . 06E»06
2.55E-06
2.27E-06
3, 082E-06
2.328E-06
I.B23E-06
CALCULATION IS IN SECTION NO, a 3 AND THE SECTION LENGTH IS a 1,5250 M
COLLECTION AREA ¦ 1,162E+00 M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/m a 3.050E-05 AMP/M
1/2 WIRE TO wjre a 6.350E-02 m
TEMPERATURE ¦ 297.667 K
ION MOBILITY b 1.79BE-0U M2/VOLT-SEC
OUST WEIGHT a 3.250F..06 KG/SEC
9.029E-05
6.819E-0S
S.341E-05
3.42E-08
3.09E-08
2.80E-08
1,00e-04
1,OOE-Ofl
1 .OOE-OU
APPLIED VOLTAGE a 3,9B0E»04 VOLTS
CORONA WIRE RADIUS b 1.191E-03 M
CURRENT DENSITY a 1.000E-04 AMP/M2
GAS FLOW RATE a 9.460E-02 MS/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED a 4.439E+02 M/8EC
LENGTH INCR, «0.25416565 M
TOTAL CURRENT a 1.163E-0U AMPS
CORONA WIRE LENGTH a 3,812E*00 M
DEPOSIT E FIELD « I.OOOE+OS VOLT/M
GAS VELOCITY a 9.760E-01 M/8EC
VISCOSITY a 1.800E-05 KG/M.SEC
PART, PATH PARAM, B 5.708E-08 M
INPUT EFF./INCR, ¦ 13,50
ROVRI
ERAVG
EPLT
AFIO
CMCD
MMO
WEIGHT
DUST LAYER J(PART)
J(ION) INCR, NO,
1,0169
1,0131
1,0101
3.134E+05
3.134E + 05
3,1 3
-------
1,0079 J.13<|£*0S ?.1022E+05 1.1008E+13 10,0 1.59E-06 8.220E-07	2.409E-05	1.80E-08	l.OOE-OU	10
1,0061 S.lJaE + 05 ?. 1022E+05 1.1027E+13 10.0 1.52E-06 6.990E-07	2.049E-n5 1.63E-08	1.00E-04	11
1,0048 3,134E+05 2,1022E+05 1.1002E+1J 10,0 1.46E-06 5.985E-07	1.753E-05 1.47E-0B	1.00E-04	12
EST, EFFICIENCY » 82.45	UNCORRECTED COMPUTED EFFICIENCY ¦ 87.57
INCREMENTAL ANALYSIS OF PRECIPITATOR PERFORMANCE
LAB ESPl SCAB125 PT2/1000ACFMf Je\0 NA/C*2
CALCULATION IS IN SECTION NO. g 1 AND THE SECTION LENGTH IS fl 0.7625 M
COLLECTION aREA a 5.812E-01 M2
WIRE TO PLATE o 1.270E-01 M
CURRENT/M o 3.050E-05 AHP/H
1/2 WIRE TO WIRE O 6.3S0E-02 M
TEMPERATURE b 297.667 K
ION MOBILITY ¦ 1.79BE-04 M2/VOLT-SEC
OUST WEIGHT « J.2S0E-O6 KG/SEC
APPLIED VOLTAGE ¦ 4.160E+04 VOLTS
CORONA WIRE RADIUS b 1.191E-03 H
CURRENT DENSITY a t.OOOE-04 AMP/M2
GAS FLOW RATf ¦ 9,460E>02 MS/SEC
PRESSURE b 1,000 ATM
MEAN THERMAL SPEED ¦ 4.439E+02 M/SEC
LENGTH INCR. aO,25116565 M
TOTAL CURRENT a 5.810E-05 AHPS
CORONA WIRE LENGTH b 1.906E+00 M
DEPOSIT E FIELD b 1.000E+03 VOLT/H
GAS VELOCITY ¦ 9.760E-01 M/SEC
VISCOSITY b i.BOOE-OS KG/N-SEC
PART, PATH PARAM, ¦ S.7O8E-08 M
INPUT EFF./INCR, b 15,95
RQVRI
ERAVG
EPLT
AFID
CMCD
HMD
WEIGHT
dust layer j(Part)
JCION) I NCR, NO,
1,1004 J,276Ef05
1,0761 3.276E+05
1,0565 3.276E+05
2.2069E+05
2.2011E+05
2.1964E+05
9.6463E+12
08
1 .00E-04
1.00E-04
1.00E-04
CALCULATION 13 IN SECTION NO. b 3 AND THE SECTION LENGTH IS a 1.5250 M
COLLECTION AREA b 1.162E+00 M2
WIRE TO PLATE b 1.270E-01 M
CURRENT/M b 3.050E-05 AmP/m
1/2 WIRE TO wjbe a 6.350E-02 M
TEMPERATURE B 297.fc(,7 K
ION MOBILITY b l,79RE-0(l M2/VOLT.SEC
DUST WEIGHT b 3•250F>06 KG/SEC
APPLIED VOLTAGE a 3.980E+00 VOLTS
CORONA WIRE RADIUS a l,i9IE>03 M
CURRENT DENSITY b 1.000E-04 AMP/M2
GAS FLOW RATE b 9.060E-02 M3/SEC
PRESSURE a I ,000 ATM
MEAN THERMAL SPEED ¦ u.a39E+02 M/SEC
LENGTH INCR. aO.25416565 m
TOTAL CURRENT b 1,163E»04 AMPS
CORONA WIRE LENGTH s 3,8126*00 M
DEPOSIT E FIELD b l.OO0E*03 VOLT/M
GAS VELOCITY ¦ 9.760E-01 M/SEC
VISCOSITY ¦ 1.800E-05 KG/M.SEC
PART, PATH PARAM. a 5.708E-08 H
INPUT EFF./INCR, B 15.95
ROVRI ERAVG	EPLT	AFID	CMCD	MMQ	WEIGHT DUST LAYER J(P ART J	J(ION) INCR, NO,

-------
1,0168
3,1JttE+05
2.1022E+05
1,0Q12F+n
10,0
2,06E"06
1 .«21F«06
U.162E-05
2.O5E-08
l ,oot-na
7
1,0126
3,l3«E+05
2,1022E+05
I ,(195bE + 13
10,0
1,8BE"06
1 ,lt><»E-Ot>
J,UZ6E«05
2.20E-06
l ,oOE-oa
e
1,0095
511JUE + 05
2,10?2E*fl5
1 t0Q90E*IJ
10.0
1.73E-06
9,76aF-07
2.A60E-05
1.90E-OS
1,OOE-Oa
4
1,0072
3,1JaE+OS
2, 1022E *05
1.1015E+13
10,0
1 .60E-06
8,23UF"fl7
2,ui2E-oS
1,80E-08
l,OOE-o«
10
1.005a
3,13UE+0S
2,10?2E* 05
1.10SSF+13
10,0
1 .52E-06
7.00JF-07
2.052F-05
1.63E-08
l,0OE-na
11
1.00U1
3,1J4E+05
2,1022E+05
l.lOflQFtH
10,0
1.46E-06
5.992E-07
1.755E-05
1 .U7F-08
l.OOE-oo
12
u>
U)
o

-------
CHARGING SATES FOR PARTICLE SIZES FRO* SUBROUTINE CHARGN OR CHGSUM
3«I THEORV USED FOR PARTICLE CHARGING
INCREMENT NO,	O/OSATF FOR INDICATED PARTICLE SIZES
0
,2500E*06
0,3510E-06
0,«500E-06
0.5500E-06
0.7000E-06
0.9000E-06
0,1iooe-05
0.1300E-05
1
1.0152
1.0452
1,0052
1,0452
1.0452
1 .0452
1,0452
i,03ae
2
1,5166
1.5049
1,0785
1,4507
1.4132
1.3726
1 ,3408
1,3112
3
1,7256
1,69
-------
CHARGE ACCUMULATED ON PARTICLE SIZES IN EACH INCPFMFNT
INCREMENT	CHARGE FOR INDICATED PARTICLE SIZES

0.2500E-06
fl,3500E»0f>
0.4500E-06
O.5S00E-06
t
0,17088E-17
0.30217E-17
0.47355E-17
0.68517E-17
2
0,2«795E-l7
0.43507E-17
0.66986E-17
0,95099E »17
3
0,28211E-17
0.48978E-17
0,74696E" 1 7
0,10521E-16
4
0.30373E-17
0.52344E-17
0,79354E"17
0,11123E>16
5
0,31959E»17
0.54789E-17
0.82720E-17
0.11557E-16
6
0.33208E-17
0,56702E »1 7
0.85386E-17
0.11895E-16
7
0,3fll85E-l7
0.5S158E-17
0.87296E"17
0.121 a 1 E -16
8
0,35019E» 17
P.S9400E-17
0.88963E-17
0.12351E-16
9
0,357aaE-l7
0.60483E-17
0.90417E-17
0.1253SE-16
10
0.36387E-17
0.61441E-17
0,9i70«E-17
0.12698E-16
11
0.36963E-17
0.62299E-17
0.92859E-17
0.12844E-16
12
0,37884E"17
0.63076E-17
0,9390flE-17
0.12976E-16

0.1600E-05
0.2000E-05
0.2600E-05
0. J500E-05
1
0.50820E-16
0.75704E-16
0,1217«E-15
0.21021E-15
2
0.65193E-16
0.98113E-16
0.15933E-15
0 , 27718E»15
3
0.69668E-16
0.10856E-15
0,16941E"15
0.29887E-15
4
0.72101E-16
0,10792E-15
0,174J6E"15
0.30224E-15
5
0.73828E-16
0,11028E«15
0.17776E-15
0.30752E-15
6
0.75160E-16
0.11208E-15
0.1B039E-15
0.31150E-15
7
0.75972E-16
0.11313E-15
0.18178E-15
0.31340E-15
8
0.76680E-16
0.11404E-15
0.1B300E-15
0.31510E-15
9
0.77306E-16
0,11485E»15
0.18809E-15
0.31661E-15
10
0.77867E-16
0,1155SE-15
0.18508E-15
0.31661E-15
11
0.7B375E-16
0.U624E-15
0.18597E-15
0.31661E-1S
12
0.78838E-16
0.11684E-15
0.18597E-15
0.S1661E-15
n, 7000E-O6
O.I 078?F_»16
0,14578E-16
0,15974E-16
0.16794E-16
0,1 73B3E*16
0.178UJE-16
0. t 8160E-16
0.18441E-16
0.1868 OE-16
0.1B900E-16
0.19093F-16
0.19269F-16
0.9000E-0
0.17U35E-1
0.22S97E-1
0 ,24B49F"1
0.25977E-1
0.26787E-1
0,27ai6E-l
0,278flUE-l
0.28213E-1
0.28537C-1
0.28825E-1
0.29085E-1
0,29321E"1
0.JIOOE-O
0.25705E-1
0.32974E-1
0.35525F-1
0,3698 IE-1
0.38025E-1
0,38B35E»1
0.39369E-1
0.39831E-1
0.U023TE.1
0.80600E-1
0,4 0928E"1
0.81226E-1
0.1300E-
0.35235E-
0,au7i5E-
0, 47938F•
0.89750E-
0.510U7F-
0.52052F-
0.5269UE-
0.53251E-
0,53T«3E-
0.98183E-
0.58580E-
0,3tt9«2E"
0, 5000E"05
0.#0893E-15
O.Sao38E-l5
0.57580E-I5
0.58952E-15
0.S9857E-1S
0,60527e-l5
0.60802E-15
0.60602E-15
0.60802E"1S
0.60802E-15
0,60802E"15
0.60802E-1S
0.8000E-05
0.99645E-15
0,12923E-11
0,ia066E"ia
0.14377E-ia
0.10569E-IU
0.18706E»ia
0<187896"18
0,ia749E»ia
0,ia749E"l«
0,t«7«9E-lU
Otl«7fl9E»ia
0,i«7fl9E-ia
0. 1500E-0U
0,33aiSE*ia
o, m 718E»ia
0,a6793E-ia
0,48028E»14
0.48640E-14
o,a9oaoE>ta
0.49115E-14
0.49115E-1U
o,a9U5E-ia
0.89115E"ia
0.49115E-14
0.49115E-10

-------
PARTICLE 91ZF RANGE STATISTICS
CORRECTIONS FOR MONIDEALI TIES USING SET NO. 1 OF CORRECTION PARAMETERS
SIZE
CCF I
NLET X
OUTLET *
COR. OUTLET *
NO-RAP EFF
. NO-PAP W
NO-RAP P
COR. EFF,
COR, w
COR. P
8.500E-07
1 ,590
0,000
0.0007
0,0005
76,6852
5,925
23,3108
76,6852
5,925
23,3108
3.500E-07
1 ,010
0.100
1 .
-------
UNADJUSTED MIGRATION VELOCITIES ANf> EPFICIFMCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
I peal UNADJUSTED
NO-BAP
Rapping puff
NO-RAPtRAP PUFF
RAPPING PUFF
PARTICLE
MJG, VEL.(CM/SEC)
EFFICIENCY(X)
DH/nLOGDtHG/DSCM)
DM/DLOGD(MG/DSCM)
DM/DL0GD(MG/08CM)
DISTRIBUTI(1N(X)
DIAM,(M)
2.5U8E+00
il.65OE + 01
9.937E-05
2.2S0E-03
2.3506-03
U¦360E-02
2.SO0E-07
2.765E+00

-------
summary table OF ESP OPERATING
PARAMETERS ANO PERFORMANCE
DATA SET NUMBER 1
ESP PERFORMANCE! EFFICIENCY = 91,2655 X SCA = 2,«5eE+01 m««2/(M«*5/8EC)
ELECTRICAL CONDITIONS! AVG, APPLIED voltage B a.ObOEfOa V
AVG, CURRENT DENSITY o 10,00 NA/CM**2
RESISTIVITY b 1,OOOE + 09 OHM.CM
8IZE DISTRIBUTIONS!	INLET HMD « 3.J02E+00 UM INLET SIGMAP b 2,H>«E + 00
OUTLET MMD b 2,192E+00 UM OUTLET SIGMAP a 2,06
-------
E.P.A. ESP model
I.E.S.L.-C.T.P. AND SO.R.T.
REVISION I,JAN, i, 1978
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER 1
DATA ON CARD NUMBER 1
NENDPT b 16 NDATA ¦ a
DATA ON CARD NUMBER 2
IAS CSPl SCAb!?5 FT2/J000ACFH, Ja20 NA/Cm?
OATA ON CARD NUMBER 3
V08C 1) o U.U700E+0U V TCSC 1) b 1.1628E-0U A
V03( 2) b «,ttflOOE+OU V TCSC 2) ¦ 1.1628E-04 A
VOSC S3 ¦ a,3000E+0a V TCSC J) ¦ 2.3256E-0# A

-------
INCREMENTAL ANALYSIS of PRECIPITATOR PERFORMANCE
lab ESPi SCAOJ25 FT2/1000ACFM| JaZO NA/CMJ
CALCULATION IS IN SECTION NO. s 1 AND THE SECTION LENGTH IS » 0.7625 M
COLLECTION AREA a 5.812E-01
WIRE TO PLATE a 1.27OE-01 M
CURRENT/M a 6.100E.05 AMP/M
1/2 wire TO wire ¦ 6.350E-02 m
TEMPERATURE » 297,667 K
ION MOBILITY b 1.796E-00 M2/V0LT-8EC
DUST WEIGHT ¦ 3.250E-06 KG/SEC
APPLIED VOLTAGE ¦ O.470E+04 VOLTS
CORONA WIRE RADIUS » 1.191E-03 M
CURRENT DENSITY e 2,001E*04 AMP/M2
GAS FLOW RATE o 9.460E-02 M3/SEC
PRE8SUPE b 1,000 ATM
MEAN THERMAL SPEED ¦ fl.flJ9E*02 M/SEC
LENGTH INCR, aO,2SU16S6S *
TOTAL CURRENT ¦ 1.163E-04 amps
CORONA WIRE LENGTH * 1.906E+00 M
DEPOSIT E FIELD a 2.001E+03 VOLT/m
GAS VELOCITY s 9.760E-01 m/SEC
VISCOSITY ¦ 1.800E-05 KG/M-SCC
PART, PATH PARAM, a 5.708E-0B m
INPUT EFF./INCR. b 15,95
ROVRI
ERA VG
EPLT
AFID
CMCD
MHO
WEIGHT
DUST LAYER J(PART)
J {I ON) INCR, NO,
1.0539
1,039a
1.0283
3.520E+05
3.520Et05
3.520E+05
2.5701E+05
2.5643E+0S
2.5600E+05
1.8746E+13
1,9009E*13
l.9214E*13
20,0
20.0
20,0
6.70E-06
4.37E-06
3.11E-06
9.430E-06
6.437E-06
4.158E-06
2.763E-00
l,886E-0a
1.21BE-04
4.S8E-08
5.41E-08
4.B8E-08
2.0OE-0U
2.00E-0U
2.00E-04
CALCULATION IS IN SECTION NO. a 2 AND THE SECTION LENGTH IS a 0,7625 M
COLLECTION AREA c 5.B12E-01 M2
WIRE TO PLATE o 1.270E-01 M
CURRENT/M a 6,100E«05 AMP/M
1/2 WIRE TO WIRE ¦ 6.350E"02 M
TEMPERATURE ¦ 297,667 K
ION MOBILITY s 1.798E-04 M2/V0LT-SEC
DUST WEIGHT a 3.250E-06 KG/SEC
APPLIED VOLTAGE b 4,440E»04 VOLTS
CORONA WIRE RADIUS a l.»91E-03 M
CURRENT DENSITY s 2.001E-04 AMP/M2
GAS FLOW RATE a 9.460E-02 M3/SEC
PRESSURE ¦ 1,000 ATM
MEAN THERMAL SPEED s 4,4J9E*02 M/SEC
LENGTH INCR, bO.25416565 M
TOTAL CURRENT ¦ 1.16JE-Q4 AMPS
CORONA WIRE LENGTH b 1.906E+00 M
DEPOSIT E FIELO b 2.001E+03 VOLT/M
GAS VELOCITY d 9.760E-01 M/SEC
VI8C0SITY a 1.B00E-05 KG/M.8EC
PART, PATH PARAM. ¦ S.708E-06 M
INPUT EFF,/INCR, b 15,95
ROVRI
ERA VG
EPLT
AFID
CMCO
MMO
WEIGHT
DUST LAYER J(PART)
JflON) INCR, NO,
1,0203
1,0147
1.0107
3.496E+0S
3.496E+05
3,fl96EfOS
2.5423E«05
2.5423E+05
2.5423E*05
1,9496E*13
1.960SE«13
1.9680E413
20.0
20.0
20.0
2,49E-06
2.16E-06
1.92E-06
2.8BSE-06
2.140E-06
1.649E-06
e.asie-os
6.270E-05
4.630E-05
4.27E-08
3.76E-0B
3.J0E-0B
2.00E-04
2.00E-04
2.00E*04
CALCULATION IS IN SECTION NO. a 3 AND THE SECTION LENGTH IS o 1,5250 M
COLLECTION AREA a 1.162E+00 M2
WIRE TO PLATE b 1.270E-01 M
CURRENT/M a 6,100E«05 AMP/M
1/2 WIRE TO WIRE a 6.350E-02 M
TEMPERATURE b 297.667 K
ION MOBILITY a 1.798E-04 H2/VOLT-SEC
OUST WEIGHT a 3.250E-06 KG/SEC
APPLIED VOLTAGE a 4.300E+04 VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY a 2,001E>04 AMP/M2
GAS FLOW RATE a 9.460E-02 M3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED a 4.439E+02 M/SEC
LENGTH INCR, bO.25416565 *
TOTAL CURRENT b 2.326E-04 AMPS
CORONA WIRE LENGTH a 3.812E*00 M
DEPOSIT E FIELO a 2.001E*03 VOLT/M
GA8 VELOCITY b 9.760E-01 M/SEC
VISCOSITY o 1.800E-05 KG/M-8EC
PART, PATH PARAM. a 5.708E-08 "
INPUT EFF./INCR. a 15.95
ROVRI	ERAVG EPLT AFID	CMCD	MHO	WEIGHT	DUST LAYER	J CPART)	J(ION)	INCR. NO.
1,0075	3.386E+05	2.4692E+05	2.0384E+13	20,0 1.72E-06	1.265E-06	J.704E-05	2.80E-0B	2,00E«04	7
1,0055	J.386E+05	2.U692E+05	2.0«25E+13	20.0 1.57E-06	1.019E-06	2.985E-05	2.46E-08	2,OOE»OU	8
1,0041	3.J86E+P5	2.4692E*05	2,0455E*13	20,0 1.49E-06	8.318E-07	2.437E-05	2.17E-08	2.00E-04	9

-------
1,0030 3.386E+05 2,U692E*05 2.0U77F+13 20.0 1.41E-06 6,85flE-07
I,0022 3.386E+05 2,«692E+0S 2.0493E+13 20.0 I.35E-06 5.692E-07
1,0016 3.3S6E+05 2.4692E+05 2.0505E+13 20.0 1.28E-06 U.757E-07
2.008E-05 1.91E-08 2.00E-0U
1.66BE-05 1.68E-0B 2.00E-OU
1.394E-05 1.49E-08 2,OOE-O0(| AMPS
CORONA MIRE LENGTH a 1,906E»00 M
DEPOSIT E FIELD a 2.001E+03 VOLT/M
GA8 VELOCITY a 9.760E-01 M/SEC
VISC08ITY a 1.800E-05 KG/M.SEC
PART, PATH PARAM, a 5.708E-06 M
INPUT EFP./INCR, " 18,84
ROVRI
1,0637
1,0449
1,0311
ERAVG
3.320E+03
3.520E+05
3,320Et05
EPLT
2.5739E+05
2,5666Et05
2,3611C~0 5
AFIO
1,8374E*13
1.890BE+13
1.9160E+13
CMCD
20,0
20,0
20,0
MHO
6.70E-06
Q.38E-06
3.116-06
WEIGHT DUST LAYER J(PART)
9,fl30E"06
6.441E-06
4.158E-06
CALCULATION Is IN SECTION NO. a 2 AND THE SECTION LENGTH IS a 0,7625
2.763E-04
1.BB7E-04
1.218E-04
0.38E-08
5.4IE-0B
4.B8E.0B
J(ION) INCR, NO
2,00E-0a
2.00E-04
2.00E-04
COLLECTION AREA a 5.812E-01 *2
WIRE TO PLATE b 1.270E-01 M
CURRENT/M a 6.100E-05 AMP/M
1/2 MIRE TO mire a 6.330E-02 M
TEMPERATURE a 297.667 K
ION MOBILITY b 1.79BE-04 M2/V0LT-SEC
DUST WEIGHT a 3.250E-06 KG/8EC
APPLIED VOLTAGE a U,«aOE + 0(i VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY s 2,001E*0a AMP/M2
GAS FLOW RATE b 9.460E-02 M3/SEC
PRESSURE b 1,000 ATM
MEAN THERMAL SPEEO a a,fl39E*02 M/SEC
LENGTH INCR, bO,25416365 M
TOTAL CURRENT b 1.163E-0U AMPS
CORONA WIRE LENGTH a 1.906E+00 H
DEPOSIT E FIELD a 2,001E»03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SEC
VI8C06ITY b 1.800E-05 KG/M.SEC
PART, PATH PARAM, a 5.708E-0B M
INPUT EPF,/INCR, a 18,84
ROVRI
ERAVG
EPLT
AFIO
CMCD
MMD
WEIGHT
DU8T LAYER J(PART)
J(ION) INCR, NO
1,0213
1,0151
1,0106
3,a96E+05
3.496E+05
3.496E405
2,5«27E+05
2.5427E+03
2.3027E+05
1.9471E+13
1.9S95E+13
1.9682E+13
20.0
20.0
20,0
2.09E-06
2.16E-06
1,92E"06
2,eeaE*06
2.140E-06
1.64BE-06
8,«09f»05
6.268E-05
4.829E-05
4.27E.08
3.73E-08
3.30E-08
2,00E>04
2.00E-04
2.00E-04
CALCULATION 18 IN 8ECTION NO. a J AND THE SECTION LENGTH IS a 1,5250 M
COLLECTION AREA a 1.162E+00 Hj
WIRE TO PLATE b 1.270E"01 m
CURRENT/m a 6.100E.05 AmP/m
1/2 WIRE TO WIRE o 6.350E-02 M
TEMPERATURE a 297,667 K
ION MOBILITY a 1.79RE-04 M2/V0LT-SEC
DUST WEIGHT a 3.250E-06 KG/SEC
APPLIED VOLTAGE b 4,300E»04 VOLTS
CORONA WIRE RADIUS a 1.191E-03 M
CURRENT DENSITY b 2.001E-04 AMP/M2
GAS FLOW RATE a 9,«60E-02 M3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEEO a «,fl39E+02 M/SEC
LENGTH INCR, bo.25416565 M
TOTAL CURRENT b 2.J26E-0U AMPS
CORONA WIRE LENGTH a 3.812E+00 M
DEPOSIT E FIELD a 2.001E+03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SgC
VISCOSITY a 1.800E-05 KG/M.SEC
PART, PATH PARAM. a 5.708E-08 M
INPUT EFF./INCR, o 18,84
ROVRI ERAVG	EPLT	AFID	CMCO	MHO	WEIGHT DUST LAYER J(PART)	J(ION) INCR, NO

-------
1 ,0072
3.386E+05
2 ,<1691 E + 05
2.0391F+1S
20,0
1 .72E-06
1.26UE-06
3.703E-05
2.80E-08
2.00E-OU
7
1,0051
3.386E + 05
2, U691E~0 5
2,0E + 05
2.U691E+05
2.0«6«E+13
20.0
1 .HBE-06
8.315E-07
2.036E-05
2.17E-08
2.00E-0U
9
t ,0026
3.386E+05
2, <1691 E + 05
2,0«85E+13
20.0
1 .OlE-Ofc
6,851F»07
2.007E-05
1 ,91E«08
2,ooe>ou
10
1.0018
3.386E+05
2.
-------
charging rates for particle sizes from subroutine chargn or chgsum
8R1 THEORV USE"
FOR PARTICLE
CHARGING


[NCREHFNT Nn,
O/RSATF FOR
INOICATEO
PARTICLE SIZES

0.2500E-06
0.3500E-06
0.4500E-06
0.5500E-06
0.7000E-06
I 1,0395
1,0395
1 .0395
1,0395
1.0395
2 1,6383
1,6153
1 .5773
! .5397
1,1905
3 1,8507
1,8036
1,7445
1.6900
1,6213
1 1,9790
1,9150
1,8421
t.7768
1.6961
5 2,0713
I.9945
1,91 16
1,8384
1.7491
6 2,1131
2.0561
1,9653
1,8B60
1.7899
7 2,1985
2.1024
2,0046
1,9202
1.6184
8 2.2456
2.1118
2.0362
1,9494
1,8428
9 2.2866
2.1761
2,0675
1,9749
1.6642
10 2,3228
2.2065
2,0934
1,9976
1.8832
11 2.3552
2,2336
2,1167
2,0176
1.9002
12 2,3819
2.25B2
2.1377
2,0362
1.9157
2
3
a
5
6
7
e
9
10
it
12
0,1600P-05
1 1.0395
1,3301
i,ioei
1,1309
1,1812
I.5005
1,516b
1,5309
1,5418
1,5515
1,5604
1,5685
.2000E-05
1,0395
1,2940
1.3615
1,3980
1,1239
1,4439
t,"553
1,4653
1,4743
1,0823
1,4696
1 ,<1896
0.2600E-05
0.3500E-05
0.5000E-05
1,0395
1.0395
1,0395
1.2561
1.2189
1,1815
1.3130
1.2657
1,2165
1.3433
1.2902
1.2374
1,3648
1.3076
1,2509
1,3815
1.3211
1.2614
1,3903
1 ,3275
1.2656
1,3961
1,3275
1.2656
1,4050
1,3275
1.2656
1,4050
1,3275
1.2656
1,4050
1.3275
1.2656
1,4050
1.3275
1.2656
0,9000E>06
1,0395
1.4386
1,5510
1,611"
1,6593
1,6939
1,7172
1,7372
1,7518
1,7705
1,78«6
1,7970
0.1100E-05
1,0395
1,3985
1 ,<(977
1,5531
1,5923
1,6226
1.6122
1,6592
1,6712
1,6875
1,6995
1,7105
0.1300E-05
1,0395
1.3669
1,1560
1,5055
1.5401
1,5671
1,5811
1,5991
1.6121
1.6238
1.6313
1.6139
8000E"05
0.1500E-04
0,9930
0
9272
1,1366
1
0860
1,1668
1
1115
1,1810
1
1251
1,1910
1
1323
1,1988
1
1379
1,2012
1
1379
1,2012
1
1379
t,2012
1
1379
1,2012
1
1379
1,2012
1
1379
1,2012
1
1379

-------
CHARGE ACCUMULATE^ ON PARTICLE SIZES In EACH INCREMENT
INCREMENT	charge for INDICATED PARTICLE SIZES

0.2500E-06
0.3500E-06
0.4500E-06
0.5500E-
1
0.183ME-17
0,32«69E«17
0.50883E-17
0.73622E-
2
0.28937E-17
0. 50 453E"17
0.77208E-17
0.10904E-
3
0.3268BE»17
0.56333E-17
0.85393E-17
0,11969E-
4
0,3a9S6E-l7
0.59S12E-17
0.90169E-17
0,1258UE-
5
0.36585E-17
0.62295E-17
0.9J567E-17
0.13020E-
6
0,37854E"17
0,64221E»17
0.96196E-17
0.13357E-
7
0.38832E-17
0 ,65666E" 17
0.98123E-17
0.13599E-
B
0.39665E-17
0,66898E"17
0.99768E-17
0.13806E-
9
0, 40 388E"17
0.67969E-17
0.10120E-16
0.13987E-
10
0.41028E-17
0.68916E-17
0.10247E-16
0.1Ol«7E»
11
0.41600E-17
0.6976UE-17
0.10361E-16
0,1«291E-
12
0.U21I8E-17
0.70532E-17
O.lOUfcflE-lfe
0.1UU21E"

0.1600E-05
0.2000E-05
0.2600E-05
0.3500E"
1
0.5743SE-16
0,89101E" 16
0.14963E-15
0,26976E*
2
0.73487E-16
0.U091E-15
0,18081E* 15
0.31631E-
3
0.77795E-16
0.11669E-15
0.18899E-15
0i32845E"

0.80159E-16
0.11983E-15
0.19336E-15
o.ssaeoE-
5
0.81833E-16
0.12205E-15
0.19646E-15
0.33933E-
6
0.83123E-16
0.12376E-15
0.198B5E-15
0,34283E*
7
0.83900E-16
0.12474E-15
0.20012E-1S
0,34449E"

0.84579E-16
0.12560E-15
0.20124E-15
0.30449E"
9
0.85180E-16
0.12636E-15
0.20225E-15
0,34449E«
10
0.85720E-16
0.12705E-15
0.2022SE-15
0.34449E"
11
0.86209E-16
0.12768E-15
0.20225E-15
0i34449E*
12
0.86657E-16
0.12768E-15
0.20225E-15
0,J40U9E-
Oh
17
16
16
16
16
16
16
16
16
16
16
16
OS
15
15
15
15
15
15
15
15
15
15
15
15
0.7000E-06
0.9000E-06
0.1100E-05
O.I3O0E-
0.115B5F-16
0,18735E"16
0.27620E-16
0,38242E *
0.16611E-16
0.25926E-16
0,37159E» 16
0.50285E-
0.18070E-16
0.27952E-16
0.39793E-16
0.53564E-
0.1B903E-16
0,29095E" 16
0,41265E"16
0.55183E-
0.19493E-16
0.29904E-16
0.423O7E-16
0.56670E-
0.19949E-16
0.3052BE-16
0.43111E-16
0.57662E-
0.20266E-16
0.30947E-16
0.43633E-16
0.58286E-
0.20538E-16
0.31309E-16
0.44084E-16
0.58828E-
0.2077fcE-16
0.31626E-16
0.44482E-16
0.59307E-
0.20988E-16
0.31908E-16
0.U4836E-16
0,59735€«
0.21178E-16
0,32162E916
0.45156E-16
0,60123E•
0.21351E-16
0.32393E-16
0,45448E-16
0.60476E-
0.5000E-05
0.54815E-15
0.62299E-15
0.6U252E-15
0.65247E-15
0.65959E-15
0.66512E-15
0,66738E-15
0.667J8E-15
.0, 66738E"15
0.66738E-15
0.66738E-15
0.66738E-15
0.S000E-05
0,13356E"11
0115287E"11
0,1569«E*1«
0,1588
-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR N0NI0E«LTTIES USING SET No. 1 OF CORRFCTIOn PARAMETERS
SIZE
CCF
INLET *
outlet *
CflR. OUTLET X
NO-RAP EFF
, NO-RAP W
NO-RAP p
COR, EFF,
COR. *
COR, P
2.500E-07
1,590
0,000
0,0009
0,0006
85,5919
7,885
10,0081
85,5919
7,885
10,0081
3.500E-07
1,010
0,000
1,70B1
1.1319
85,7881
7,959
10,2119
85,2906
7,799
10,7090
1.500E-07
1,320
0.600
2,1775
I.6167
86.5725
8.170
13.0275
85,9957
7,998
10,0063
5.500E-07
1,261
1 .667
6.3225
0.0503
87.6660
8,51 S
12.3336
87,5578
A,015
12.6022
7.000E-07
1,205
5.000
16.7903
10.8020
89.0799
9.01 1
10.9201
88,7702
8.B97
11.2298
9,0OOE-O7
1,159
1.953
13.8686
9.1000
90.8576
9,750
9,102(1
90,0107
9,559
9,5893
1.100E-06
1,130
0 .733
11.2677
7.5820
92.2585
10,010
7.7017
91,6726
10,110
8,3270
1.300E-06
1,110
<1.000
8.0865
5,6811
95,0259
11.075
6.5701
92,6175
10,603
7,3827
1.600E-06
1,090
8.000
13,0589
9,5922
90,6999
11.952
5.3001
95,7675
11,293
6.2325
2.000E-06
1,072
6.667'
8,5091
6.7859
95.9072
13,0oa
0,0528
90,7108
11,960
5.2892
2(600E-06
1,055
10.667
9,2022
9.0708
97.1825
10,525
2.8175
95,5778
12,669
0,0222
5.500E-06
1,001
10.667
5.8980
7.5905
98.2018
16,350
1.7982
96,2968
13,011
3,7052
5.000E-06
1,029
11,333
2,6989
8,0909
99,2256
19,776
0.7700
96,2890
15.002
3,7110
8.000E-06
1,018
12,000
0,2090
8.0759
99.9325
29.706
0.0675
96,5027
13,603
3,0975
1.500E-05
1,010
19,353
0.0015
10.8155
99.9998
52.559
0.0002
97,0921
10,390
2,9079
EFFICIENCY - :
stated b
91.85
COMPUTED b
91 ,8325
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, o 96,7081
MHO OF INLET SIZE DISTRIBUTION o 5.502E+00
SIGMAP OF INLET SIZE DISTRIBUTION s 2.160E+00
LOG-NORHAL GOODNESS OF FIT ¦ 0.9J5
MHO OP EFFLUENT UNDER NO-RAP CONDITIONS « 1.522E+00
«	SIGHAP OF EFFLUENT UNDER NO-RAP CONDITIONS a 1.658E+00
M	LOG-NORMAL GOODNESS OF FIT b 0.960
precipitation rate parameter under no-rap conditions b 15,959
SIGMAGB 0.000 WITH 0,000 3MEAKAGE OVER 0,000 STAGES
NTEMP o 1
RMMD b 6,00
RSIGHA s 2,50
CORR. EFF. s 94.8020
CORRECTED MMD OF EFFLUENT s 2.522E+00
corrected sigmap of fffluent « 2,ioie*oo
LOG-NORMAL GOODNESS OF FIT b 0,917
CORRECTED PRECIPITATION RATE PARAMETER B 12,05

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTLFT MASS LOADINGS
IDEAL UNADJUSTFD
IDEAL UNAOJU8TED
no-rap
rapping puff
NO-RAP+RAP PUFF
RAPPING PUFF
PARTICLE
MIC. VEL.(CM/SEC)
EFFIClENCVfX)
OM/DLOGDtMG/DSCM)
DH/DLOrDCMG/DScm)
DM/DLOGDCmG/DSCM)
DISTRIBUTION^)
D1AH.t")
3.390E+00
5.6S«Efni
fc.tUlE-05
1 .809E-OS
1.A70E-03
«,3«i0E-02
2,500E»07
S.658E+00
5.93lE*OJ
1 . 707E»01
5.977E-03
1.767E-01
1.022E-01
3.S00E-07
j.«e5E+on
6.2U5E+01
3.120E-01
1.3«5E-02
3.2SuE-nt
1,78flE»01
30E»05
7.007E-01
T.00BE-
-------
SUMMARY table OF ESP OPERATING
parameters and performance
DATA SET NUMBfR 1
ESP PERFORMANCE! EFFICIENCY a 99,602(1 * SC* ° 2.158E+01 M**2/(M*»J/SEC)
ELECTRICAL CONOITIONSi	AVG, APPLIED VOLTAGE c «,377E+0U V
AVG, CURRENT DENSITY b 20,01 NA/Cm*«2
RESISTIVITY s t,O00E*09 OHM-CM
SIZE DISTRIBUTIONS!	INLET MMD a 3.S02E+00 UM	INLET SIGMAP b 2.16#E+00
OUTLET MMD » 2.322E+00 UM OUTLET SIGMAP a 2,l«lE+00
NONIDEAL PARAMETERSl GAS SNEAKAGE FRACTION e 0,00 /SECTION GAS VELOCITY 8IGMAG • 0,00
RAPPING MMO a 6.OOOE+OO UM RAPPING SIGMAP * 2.500E+00

-------
E.P.A. ESP MOOFL
I.E.R.L.-R.T.P, AND SO.P.I.
REVISION I,JAN, i, 19TB
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER 1
DATA ON CARD NUMBER 1
NENDPT a 16 NDATA a U
DATA ON CARD NUMBER 2
LAB E8P| SCA»125 PT2/10O0ACFM, J»55 NA/CM2
DATA ON CARD NUMBER 3
W
tn
VOSC	1)	a	fl, 7800E + 0U V	TCS<	1)	»	2.03
-------
INCREMENTAL ANALYSIS of precipitator PERFORMANCE
LAB ESP I SCA012S FT2/1000ACFMJ Jaj5 NA/CMJ
CALCULATION is in SECTION no. = J and THE SECTION LENGTH IS ¦ 0,7625 M
COLLECTION AREA o 5.812E-01 M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/M a 1.067E-04 AMP /M
1/2 WIRE TO wjbe * 6.350E-02 M
TEMPERATURE o 297.667 K
ION M08ILITV b 1.T98E-0U M2/V0LT-SEC
DUST WEIGHT b 5.250E-06 KG/SEC
APPLIED VOLTAGE a O.780F*0a VOLTS
CORONA MIRE RADIUS » 1.19 J E-03 M
CURRENT DENSITY b 3.501E-04 AMP/M2
GAS FLOW RATE a 9.U60E-02 MJ/8EC
PRESSURE = 1,000 ATM
MEAN THERMAL SPEED b a,a39E*02 M/SEC
LENGTH INCR, "0,25016565 M
TOTAL CURRENT ¦ 2.0J5E-01 AMPS
CORONA wire LENGTH b |,906E+n0 M
DEPOSIT E FIELD o 3.5ME*03 VOLT/M
GAS VELOCITY s 9.760E-01 M/SEC
VISCOSITr e 1.800E-05 KC/M-SEC
PART, PATH PARAM, ¦ 5.708E-08 M
INPUT EFF./INCR, b 18,81
ROVRI
ERAVG
EPLT
AFID
CMCD
MMD
WEIGHT
DUST LAYER J(PART)
J(I ON) INCR, NO,
1,0389
1,0265
1,0178
3.764Et05
3.764E+0S
3.764E+05
2.9904E+05
2,9832E+05
2.9832E+05
3.i121E*13
3, 1
-------
1,0012 3.669E+05 2.9112E+05 3.3126E+I3 35.0 1.25E-06 5.578E-07 1.634E-05 1.91E-08	3.50E-04	10
1 ,0008 3¦669E + 05 2.9112Et05 3,3lS8E*13 35.0 1.17E-06 4,u92e-07 1.316E-05 1.63E-08	3.50E-04	11
1,0006 3.669E+05 2.9112E+05 3.31«6E+13 35,0 1.10E-06 3.6HE-07 1.067E-05 1.40E-08	3.50E-0U	12
EST, EFFICIENCY B "»1.B3 UNCORRECTED COMPUTED EFFICIENCY * 9u,B8
INCREMENTAL ANALYSIS OF PRECIPITATOR PERFORMANCE
LAB E8PI SCAs 125 FT2/1000ACFM» Jb35 NA/CM2
CALCULATION 19 IN SECTION NO. a 1 AND THE SECTION LENGTH IS e 0,7625 M
COLLECTION AREA o 5.812E-01 M?
WIRE TO PLATE ¦ 1.270E-0J M
CURRENT/M b 1.067E-04 AmP/M
1/2 WIRE TO WIRE « 6.3S0E-02 H
TEMPERATURE 8 297,667 K
ION MOBILITY b 1.798E-04 M2/V0LT-SEC
OUST WEIGHT = 3.250E-06 KG/SEC
APPLIED VOLTAGE « 4,780E>04 VOLTS
CORONA WIRE RADIUS a J.J 9IE-OS M
CURRENT DENSITY ¦ 3.5O1E-04 AMP/M2
GAS PLOW RATE b 9.460E-02 M3/8EC
PRESSURE b 1,000 ATM
MEAN THERMAL SPEED b 
-------
t .OOJU
3 .669E *05
2.9110E+05
3,3054IE +13
35,0
1,51E»0b
1.131E-06
3.31ttE-05
3,OflE-Ofl
3. SOE'OI
7
1 ,0022
3.669E+05
2.9110E+0S
3.3092EM3
55.0
1, U2E"0t
8.B33E-07
2.588E-05
2.62E-08
J.50E.0U
8
1.0015
3.669E+05
2,9110E*05
3.3116EM3
35,0
1 .33E-06
6.985E-07
2.0U6E-05
2.23F-08
3,50E-0a
9
1,0010
3.669E+05
2,9110E+05
3.3133E+13
35,0
1.25E-06
5.57SE-07
1.63UE-0S
1.91E-08
3.50E-0U
lf>
1 ,000ft
3.fe69E»05
2,9110E+05
3,31 

-------
CHARGING PATES FOR PARTICLF SIZES FROM SUBROUTINE CHARGN OR CHGSUM
Sri theory used for particle charging
increment no. q/osatf for indicated particle sizes
0
.2500E-06
0.3500E-06
0.US00E-06
0.5500E-06
0.7000E-06
0,9000E»06
0.1100E-05
0.1300F-05
1
1.0256
1,0258
1.0258
1.0258
1,0258
1,0258
1,0258
1 ,0258
2
1,7051
1,6729
1,6266
1.5822
1,5254
1,4664
1,4213
1,3859
3
1.9097
1,8520
1.7805
1.7236
1.6480
1,5713
1,5136
1,4687
u
2,0316
1,9573
1.8768
1.8057
1,7188
1,6316
1,5665
1,5160
5
2,1162
2,0317
1.^117
1.8633
1,7684
1,6737
1,6034
1 ,5491
6
2,1652
2,0891
1.9916
1.9076
1,8065
1,7060
1,6316
1,5743
7
2,2369
2,1323
2,0285
1.9397
1,8334
1,7261
1,6504
1 ,5906
8
2,2606
2,1691
2,0599
1.9671
1,8563
1,7471
1,6666
1 ,6047
9
2,3169
2.2010
2,0872
1.9909
1,8764
1,7637
1,6808
1,6171
to
2,3525
2,2292
2,1113
2.0120
1,89«t
1,7784
1,6934
1,6262
11
2,3626
2,2544
2,1329
2,0309
1,9101
1,7916
1,7047
1 ,6381
12
2,4098
2,2772
2,1525
2,0480
1,9245
1,8036
1,7150
1 ,6472
0
.1600E-05
0.2000E-05
0.2600E*05
0.3500E-05
0.5000E-05
0,8000E>05
0.1S00E-04
1
1,0258
1,0258
1.0258
1,0258
1,0258
1,0258
1
0258
2
1.3449
1,3048
1.2630
1.2221
1,1810
1.1383
1
0966
3
1,4172
1.3673
1,3155
1,2652
1,2152
1,1634
1
1132
4
1.4564
1,4028
1.3451
1.2897
1,2345
1,1776
1
1227
5
1.4871
1,4275
1.3660
1.3067
1,2479
1,1874
1
1292
6
1,5091
1,4464
1.3818
1.3196
1,2580
1,1948
1
1342
7
1,5227
1,4576
1,3906
1.3261
1,2626
1,1975
1
134?
8
1,5346
1,4673
1,3983
1.3261
1,2626
1,1975
1
1342
9
1,5450
1,4760
1,4052
1.3261
1,2626
1,1975
1
1342
10
1,5544
1,0837
1,4052
1.3261
1,2626
1,1975
1
1342
11
1.5628
1,4907
1,4052
1.3261
1,2626
1.1975
1
1342
12
1,5705
1,4907
1,4052
1.3261
1,2626
1,1975
1
1342

-------
CHARGE ACCUMULATED ON PARTICLE sizes In each INCREMENT
INCREMENT	CHARGE FOR INDICATED PARTICLE SIZES

0.2500E-06
0,J500E-06
O.U500E-06
0.5500E-06
1
0,1"635E"17
0,3«720E-17
0, 5
0.15719E-16

0.1600E-05
0.2000E-05
0.2600E-05
0.3500E-05
1
0,61U16E>16
0.95280E-16
0,16001E>15
0.28846E-15
2
O,0O52«E-16
0.12120E-15
0,19702E-15
0.3U367E-15
3
0,8
0.22663E-16
0.22877E-16
0.23070E-16
0.232«flE-16
0.9000E-06
0.20034E-16
0.2B6U0E-16
0,J0688E-16
0.31866E-16
0.32690E-16
0.33320E-16
0.33752E-16
0.3«123E-16
01316
0.63978E-16
C,6««72E»16
0 , 6U912E«16
0,65309E»16
0.65670E-16
0.5000E-05
0,58617E"15
0.67U90E-15
0.69UU1E-15
0.70505E-15
0.71J09E-15
0.71891E-15
0.72150F-15
0.72150E-15
0.72150E-15
0.72150E-15
0.72150E-15
0.72150E-15
0.8000E-05
0.1«951E-1«
o,16591E-1A
0,16957E»1«
0.1716UE-1#
0.17307E-1U
0,17fll6E»lfl
0,17«5
-------
PARTICLE 81 ZE RANGE statistics
CORRECTIONS FOR NQNJDFALI TIES USING SET NQ, 1 OF CORRECTION PARAMETERS
SIZE
CCF
INLET X
OUTLET X
COR. OUTLET
X NO-RAP EFF
. NO-RAP N
no-rap p
COR. EFF.
COR, w
COR. P
2.500E.07
1,590
0,000
0,0011
0,0005
91,8626
10.207
8,1374
91 ,8b26
10,207
8,1374
3.500E-07
1,414
0.400
2.1161
1,1281
91.9U04
10.247
8,0596
91 .5652
10,061
8.4348
#,500E-07
1,520
0,600
2.9684
1,5996
92.4629
10.519
7,5371
92,0265
10.290
7,9735
5.500E-07
1,261
1,667
7.4294
3,9141
93,2102
10.944
6,7898
92,9776
10.807
7,0224
7,OOOE-OT
1,205
5,000
19.1709
10,1557
94.1587
11.556
5,8413
93,925?
11,397
6,0748
9,OOOE.OT
1,159
U.933
15.1540
6,2750
95,3199
12.458
4,6801
94,9829
12.175
5.0171
1,1OOE'06
1,130
1,733
11.8102
6,7148
96,1985
13,304
3,8015
95,7568
12.857
4,2432
1.300E-06
1,110
4,000
8.1326
4,9580
96,9025
14.137
3,0975
96,2929
13.406
3,7071
1.600E-06
1,090
A.000
12.4186
8,2063
97,6351
15,235
2,3649
96,9320
14.176
3,0680
2,000E*O6
1,072
6,667
7,3917
5,8433
98,3109
16,605
1,6891
97,3787
14.817
2,6213
2.600E-06
1,055
10,667
7.4929
8,1319
98,9298
18.462
1,0702
97,7200
15.384
2.2800
S.S00E-06
1,001
10.667
4.2673
7.2967
99.3905
20.752
0,6095
97,9541
IS.825
2,0459
3,OOOE-Ob
1,029
11,333
1,5722
9,1909
99,7887
25,062
0,2113
97,5745
15.132
2,4255
8,000E.O6
1,018
12,000
0,0736
10,4136
99,9907
37,753
0,0093
97,4045
14.857
2,5955
1.500E-05
1,010
19.333
0.0013
14.1716
99.9999
66.939
0,0001
97,8076
15.S44
2,1924
EFFICIENCY • !
STATED 0
94.88
COMPUTED «
94,8744
CONVERGENCE
OBTAINED



ADJU8TED NO.RAP EPF, ¦> 98,4765
HMD OF INLET 81ZE DISTRIBUTION o 3.302E*00
8I0HAP OF INLET 8IZE DISTRIBUTION a 2.164E+00
LOG-NORMAL GOODNE88 OF FIT ¦ 0,935
w	HMD OF EFFLUENT UNDER NO-RaP CONDITIONS ¦ 1.225E+00
2	8IGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS » 1.610E+00
LOG.NORMAL GOODNESS OF FIT ¦ 0,962
precipitation rate parameter under no.rap conditions • it,02s
SIGMAG* 0.000 WITH 0,000 SNEAKAGE OVER 4,000 STAGES
NTEMP a 1
RMMD ¦ 6,00
RSIGMA a 2,50
CORR. EFF. ¦ 97,0092
CORRECTED mmd OF EFFLUENT o 2.559E+00
CORRECTED 8IGMAP OF EFFLUENT « 2.230E+00
LOG.NORMAL GOODNES8 OF FIT ¦ 0,908
CORRECTED PRECIPITATION RATE PARAMETER ¦ 14.28

-------
UNADJUSTED MIGRATION VELOCITIES and EFFICIENCIES, and
tpfai unadjusted
MIG, VEL.(CM/SEC)
U.390E+00
U,722E*00
5.151E+00
5.570E«.00
6.2«7E*0O
7,160E + 60
e,075E»00
8.982E+00
t.OJUE+Ol
1,212E+01
I ,«75Ef01
I,8616+01
2.S06E+01
5, 775E + 01
6,69UE + 01
IDEAL UNADJUSTED
efficiencyc*)
fc,601E + 01
6.867E+01
7,167E *01
7,U58E+01
7,8H6E+01
8,279E+01
8.625E+01
8,900E+01
9.212E+01
9.«9lE*01
9.733E+01
9,897E »01
9.979E+01
9.999E+01
I , flOOE + 02
NO-RAP
OM/DLOGDtMG/DSCM)
3.«(>BE-05
9.685E-02
1.7S1E-01
5.J6UE-01
8.T72E-01
e.9ao£-01
8.527E-01
6.9U5E-01
6.505E-OI
U.849E-01
3.tflOE-Ol
1.953E-01
5.10UE-02
1,B96E"03
2.390E-0S
ui
ui
to
OUTLET MASS loadings
rapping puff
no-rap+rap PUFF
RAPPING PUFF
PARTICLE
OM/DLOGDCMG/DSCM)
DM/DLOGDCMG/DSCM)
DI STRI BUTTON (X)
DIAH,(M 3
1 .361E-03
1.399E-03
«,36nF-02
P.500E-07
U.507E-03
1.013E-01
1 ,(t22E-0l
3.500E-07
1 ,0t«E-02
1 .853E-01
1.78UE-01
U.500E-07
1 .B38E-0?
5.5«BE-0l
2.642E-01
5,5fl0E»07
3.507E-02
9.123E-01
7.9S3E-01
7.000E.07
6.U38E-0?
9.58UE-01
1 a 1J2E+00
9,000E-07
9 ,00
1, lOflE-06
1 .367E-01
6.312E-01
1,6ME*00
1 .300E-06
1.93AE-01
8.«39E-fil
J,831E»00
1,600E"Ofc
2.676E-01
7.525E-01
1.23UE+00
2.000E-06
3.595E-01
6.776E-01
8,791E + 00
2,600E"06
0.602E-01
6.535E-01
1,O««E*0l
3.500E-06
5.3#7E-01
5.856E-01
1 ,709Et0l
5,OOOE*Ob
5,2a9E-01
5.266E-01
2,1 1OE + 01
8, OOOE-06
5.28aE-01
S,28«E-0l
2,887E«01
1 .500E-05

-------
summary table OF ESP OPERATING
PARAMETERS AMD PERFORMANCE
DATA SET NUMBER 1
ESP PERFORMANCE!	EFFICIENCY e 97,0092 * SCA s 2.U58E+01 M*«2/(M*«3/SEC)
ELECTRICAL CONDITIONS! AVG, APPLIED VOLTAGE ¦ fl,720E*04 V
AVG, CURRENT DENSITY a 55,01 NA/CM««2
RESISTIVITY ¦ 1.000E+09 OHM-CM
SIZE DISTRIBUTIONS!	INLET MMD a 3,302E*00 UM INLET SIGMaP s 2.16UE+00
OUTLET mmd ¦ 2.5S9E+00 UM	OUTLET SIGMAP b 2.230E»00
NONIDEAL PARAMETERS!	GAS SNEAKAGE FRACTION b 0,00 /8ECTION GAS VELOCITY SIGMAG ¦ 0,00
RAPPING MMD B 6,OOOE+OO UM RAPPING SIGMAP 8 2.500E+00

-------
E.P.A. ESP MODEL
I.E.R.L.-R.T.P. A NO Sn.R.l.
REVISION I,JAN, J, j97fl
PRINTOUT OP INPUT DATA FOR OATA SET NUMBER 1
DATA ON CARO NUMBER 1
NENOPT ¦ 16 NDATA a <1
OATA ON CARO NUMBER 2
LAB E8P| 8C*"I25 FTJ/lOOOACfM, Jo«5 NA/CM2
OATA ON CARO NUMBER 3
VOSC 1) « U.9U00E+04 V TCS( 1) <¦ 2.6l6SE-Oa A
V081 3) b fl,9ilOOE + Oa V TCSt 2) » 2.6163E-0# A
VOSC S) • 4.T600E+OU v TCSt 3) « 5.2326E-0« A

-------
INCREMENTAL analysis OF PRECIPITATOR PERFORMANCE
LAB ESP I SC As125 FT2/1000ACFMI J»u5 NA/C*2
CALCULATION IS IN SECTION NO. e 1 AND THE SECTION LENGTH IS a 0,7625 M
COLLECTION AREA ¦ 5.B12E-0I M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/M ¦ 1 ,372E*04 AMP/M
1/2 HIRE TO wire ¦ 6.350E-02 M
TEMPERATURE a 297.667 K
ION MOBILITY ¦ 1.798E-04 M2/VOLT-SEC
DUST WEIGHT b 3,250E-06 KG/SEC
APPLIED VOLTAGE b 4.940F+04 VOLTS
CORONA WIRE RADIUS o 1.1 OlE-03 M
CURRENT DENSITY c 4.501E-04 AMP/M2
GAS FLOW RATE • 9.4fc0E-02 M3/SEC
PRESSURE a 1.000 ATM
MEAN THERMAL SPEED o 4.439E+02 M/SEC
LENGTH INCR, bO.23416565 M
TOTAL CURRENT s 2.616E-04 AMPS
CORONA WIRE LENGTH ¦ 1.906E+00 *
DEP08IT E FIELD a U.501E+03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SEC
VISC08ITY b 1.600E-05 KG/M.SEC
PART, PATH PARAM, ¦ 5.708E-08 M
INPUT EFF./INCR. ¦ 21,93
ROVRI
ERAVG
EPLT
AFID
CMCD
MMD
WEIGHT
DUST LAYER J(PART)
J(ION) INCR. NO,
1,0361
1,023"
1,0108
J.890E+05
3,890E+03
3.890E+05
3.2265E+05
3,2179E+05
3.2179E+05
J.6810E+13
3,9302E*13
3.9638E+13
15,0
15,0
15.0
6.53E-06
3.15E-06
2.49E-06
1.224E-05
6.853E-06
1.103E-06
CALCULATION 18 IN SECTION NO. ¦ 2 AND THE SECTION LENGTH IS b 0,7625 M
COLLECTION AREA b 5.812E-01 M2
MIRE TO PLATE b 1.270E-01 M
CURRENT/M a 1.3T2E-00 AMP/M
1/2 WIRE TO WjRc ¦ 6.350E-02 M
TEMPERATURE b 297,667 K
ION MOBILITY ¦ 1.T98E-01 M2/V0LT-8EC
OU8T WEIGHT b 3.250E-06 KG/SEC
3.586E-04
2.008E-04
1.202E-01
6.56E-08
7.86E-08
6.67E-08
4,50E»04
4.50E-04
4.S0E-04
APPLieD VOLTAGE O 4,9406+04 VOLTS
CORONA WIRE RADIUS s 1.191E-03 M
CURRENT DENSITY ¦ 4,561E"04 AMP/M2
GAS FLOW RATE a 9.460E-02 M3/8EC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED ¦ 4.439E+02 M/SEC
LENGTH INCR, bO.25116565 M
TOTAL CURRENT a 2.616E-04 AMP8
CORONA WIRE LENGTH a 1.906E+00 M
DEPOSIT E FIELD o O.501E+03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SEC
VI8C08ITY b 1.800E-05 KG/M-8EC
PART, PATH PARAM, e 5.708E-08 M
INPUT CFF./INCR, a 21,93
ROVRI
ERAVG
EPLT
AFID
CMCD
HMD
WEIGHT
DUST LAYER J(PART)
J(I ON) INCR, NO,
1,0094
1,0060
1,0039
3.890E+0S
3.890E+03
3.890E+05
3.2082E+05
3.2082E+05
3.2082E+0S
3,9850E+13
S.9984EM3
4,00706*13
45.0
45,0
45.0
2.07E-06
1.76E-06
1.56E-06
2.732E-06
1.940E-06
1.426E-06
8.004E-05
5.683E-05
4,178E«05
5.55E-08
4.62E-08
3.85E-08
4,50E>04
4,50E>04
a.goe-oa
CALCULATION IS in SECTION NO. a 3 AND THE SECTION LENGTH IS a 1,5250 M
COLLECTION AREA ¦ 1.1626 + 00 M2
WIRE TO PLATE a 1.2T0E-01 M
CURRENT/M a 1.372E-04 AMP/M
1/2 WIRE TO wire « 6.350E-02 M
TEMPERATURE B 297,667 K
ION MOBILITY b 1.798E-04 M2/V0LT-SEC
DUST WEIGHT a 3.250E-06 KG/SEC
APPLIED VOLTAGE " 4,7606+04 VOLT8
CORONA WIRE RADIUS B 1.191E-03 M
CURRENT DENSITY a 4.501E-04 AMP/M2
GAS FLOW RATE a 9.460E-02 M3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED a 4.439E+02 M/SEC
LENGTH INCR, nO.25416565 M
TOTAL CURRENT a 5.233E-0U AMPS
CORONA WIRE LENGTH a 3.S12E+00 M
DEPOSIT E FIELD b 4.501E+03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SEC
VISCOSITY s 1.800E-05 KG/M.SEC
PART, PATH PARAM, a 5.708E-08 M
INPUT EFF./INCR, a 21,93
ROVRI	ERAVG EPLT aFIO	CMCD	MMD	WEIGHT	DUST LAYER	J(PART)	J(ION)	INCR, NO.
1 ,0024	3.74BE + 05	3.1258E+05	4.16456+13	15.0	1.44E-06	1.045E-06 3.062E-05	3.12E-08	4.50E-04	7
1,0016	3.748E+05	3.1258E+05	4.16B0E+13	15.0	1.35E-06	8.02BE-07	2.352E-05	2.61E-08	4,50E»04	8
1,0010	3.748E+05	3,1258E+05	4.1703E+13	15.0	1.26E-06	6.250E-07 1.831E-05	2.19E-08 4.50E-0U	9

-------
1,0007 3.748E+05 3.1258E+05 4.I718E+13 «5.0 1.17E-06 4.917E-07
1,000« 3.740EtO5 3.1258E+05 4.1727E*13 45.0 1.09E-06 3.903F-07
1,0003 3.748E+05 3.1258E+05 4.1733E413 "5,0 1.04E-06 3.118E-07
l,uaoE-n5 i,84E«08
1 , 143E»05 1.55E-0B
9.135E-06 1,31E*0A
4.50E.04	10
4.50E-04	11
4,50E"04	12
EST, EFFICIENCY a 94.88 UNCORRECTED COMPUTED EFFICIENCY ¦ 95,95
INCREMENTAL ANALYSIS OF PRECIPITATOR PERFORMANCE
LAB ESP| SCAB125 FT2/1OOOACFH» JoU5 NA/CM2
CALCULATION IS IN 8ECTI0N NO, s 1 AND THE SECTION LENGTH IS a 0,7625 M
COLLECTION AREA ¦ 5.612E-01 M2
WIRE TO PLATE ¦ 1.270E-01 m
CURRENT/M s 1.372E-0a AMP/M
1/2 HIRE TO HIRE b 6.330E-02 M
TEMPERATURE b 297,667 K
ION MOBILITY b 1.798E-04 M2/VOLT-3EC
DUST HEIGHT b 3.2S0E-06 KG/SEC
APPLIED VOLTAGE a 4.940E+04 VOLTS
CORONA WIRE RADIU8 b l.l91E>03 M
CURRENT DENSITY ~ 4.S01E-04 AMP/M2
GAS FLOW RATE a 9.460E-02 M3/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED b 4,u39Et02 M/SEC
LENGTH INCR. 80.25416565 m
TOTAL CURRENT a 2.616E-04 AMPS
CORONA WIRE LENGTH a 1,906E»00 M
DEPOSIT E FIELD a <1.S01E~ 03 VOLT/M
GAS VELOCITY b 9.760E-01 M/SEC
VISCOSITY b 1.800E-05 KG/N-8EC
PART, PATH PARAM, a 5.708E-08 m
INPUT EFF./INCR, a 23,45
ROVRI
ERAVG
EPLT
AFID
CMCD
HMD
WEIGHT
DUST LAYER J fPART)
J(I ON) INCR, NO
1,0390
1,0246
1,0152
3,B90E*05
3.690E+05
3.890E+05
3,2281E*05
3.2187E+05
S.2187E+05
3,8716E* 13
3,9259E+13
3.9622E+13
45.0
45,0
<15.0
6.53E-06
3.45E-06
2.O9E-06
1.224E-05
6.852E-06
U.102E-06
3.567E-0U
2.007E-04
1.202E-00
6.S6E-08
7.86E-08
6.67E-06
U.50E-OU
4,50E<»04
U,50E»00
CALCULATION IS IN SECTION NO. a 2 AND THE SECTION LENGTH IS a 0,7625 M
COLLECTION AREA a 5.812E-01 M2
HIRE TO PLATE a 1.270E-01 M
CURRENT/M ¦ 1,J7ZlmQU AMP/M
1/2 WIRE TO WIRE b 6.350E-02 m
TEMPERATURE ¦ 297.667 K
ION MOBILITY a 1.798E-04 M2/V0LT-8EC
DU8T HEIGHT b 3.250E-06 KG/8EC
APPLIED VOLTAGE b 4.940E+0U VOLTS
CORONA WIRE RADIUS b 1.191E«03 M
CURRENT DENSITY a 0.501E-04 AMP/M2
GAS FLOW RATE a 9.460E-02 M3/3EC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED b U,a39E*02 M/SEC
LENGTH INCR, aO,25416565 M
TOTAL CURRENT a 2.616E-04 AMPS
CORONA WIRE LENGTH a 1.906E+00 M
DEPOSIT E FIELD a 4,501E*03 vOLT/m
GAS VELOCITY b 9.760E-01 M/8EC
VISCOSITY ¦ 1.B00E-05 KG/M.8EC
PART, PATH PARAM, ¦ 5.708E-0S M
INPUT EFF./INCR, a 2J.U5
ROVRI
ERAVG
EPLT
AFID
CMCD
HMD
WEIGHT
DUST LAYER J(PART)
J(ION) INCR, NO
1,0095
1.0059
1,0037
3,890E*05
3,89oEt05
3.890E»05
3.2082Et05
3,2082E»05
3.2082E+05
3,9847E + 13
3.99B7E+13
4.0074E+13
45.0
45,0
45,0
2.07E-06
1.T6E-06
1.56E-06
2.731E-06
1.939E-06
1.426E-06
8.001E-05
5.681E-05
4.177E-05
5.55E-06
4.62E-08
3.65E-08
4.S0E-O4
0.S0E-04
4,50E"04
CALCULATION IS IN SECTION NO. a 3 AND THE SECTION LENGTH IS a 1.S250 M
COLLECTION AREA a |a|b2E*00 M2
WIRE TO PLATE a 1.270E-01 M
CURRENT/m a J.372E-04 AMP/M
1/2 WIRE TO WIRE b 6.350E-02 M
TEMPERATURE a 297.667 K
ION MOBILITY o 1.79BE-04 M2/VOLT-SEC
DUST HEIGHT a *.250E«06 KG/SEC
APPLIED VOLTAGE b 4.760E+04 VOLTS
CORONA HIRE RADIUS B 1.J91E-03 M
CURRENT DENSITY a 4.501F-04 AMP/M2
GAS FLOW RATE a 9.460E-02 M3/SFC
PRESSURE o 1,000 ATM
ME * N THERMAL SPEED a 4.439E + 02 M/SEC
LENGTH INCR. 00.25416565 M
TOTAL CURRENT a 5.233F-04 AMPS
CORONA WIRE LENGTH a 3,8|2E+00 M
DEPOSIT E FIELD a 4.501E»03 VOLT/M
GAS VELOCITY a 9.760E-01 M/SfC
VISCOSITY a 1.B00E-05 KG/M.SEC
PART, PATH PARAM. B 5.708E-08 M
INPUT EFF./INCR, a 23,45
ROVRI	ERAVG	EPLT	*FID	CMCD	mho	HEIGHT DUST LAYER J(PART)	JflON) INCR, NO

-------
l ,0025
3.7O8E+05
3,1257E+05
<1,1650E*1 3
05.0
1.OOE-06
1.00SE-06
3,0 62E»0 5
3.12E-08
0,50E»oa
7
1,0010
3,7flBE*05
3,1257E+05
0,1685E +13
05,0
1.35E-06
B,02bE"07
2.351E-05
2.61E-08
0.50E-00
e
1,0009
3,7obe+o5
3.1257E+05
a(!'fi7E+i3
"5 j 0
1.26E-06
6.209F-07
1.831E-05
2.19E-08
o,50E*OO
9
1,0006
3.708E+05
3,1257E + 05
1,1720E+13
05,0
1.17E-06
0.916E-07
1,oa0E«05
1,BUF-08
0.50E-0U
10
1,0000
3,70BE+05
3,1257E+05
<1,1 729F* t 3
05,0
1.O9E-06
3.902E-07
1.103E-05
1 ,55E-nfl
U.50E-0U
11
1,0002
3, 708E~
3.1257E+05
0,1715E + 13
05.0
1.OOE-Ob
3.118E-07
9.13OE-06
1.31E-08
U.50E-00
12
u>
cn

-------
CHARGING RATES FOR PARTICLE SIZES FROM SUBROUTINE CHARGN OR CHGSUM
SRI THEORY USED FOR PARTICLE CHARGING
increment no, r/qsatf for indicated particle sizes
0
.2500F-06
0.3500E-06
0.4500E-06
0.5500E-06
0.7000E-06
0,9000E"06
0 ,1100E»05
0.1300E-05
1
1.0378
1.0378
1.0378
1.0378
1.0376
1 ,0378
1 .0378
1,0378
2
1,7594
1.7226
1.6T22
1.6245
1,5638
1,5011
1,4533
1,4159
3
1,9623
1,8996
1.8279
1.7636
1.6B43
1.6040
1,5438
1,4970
4
2.0824
2.0030
1 .9(63
1 .84S0
1.7536
1 ,6630
1,5955
1,5433
5
2.1674
2.0759
1#981B
1.9004
1,8020
1.7041
1,6315
1,5755
6
2.2331
2.1320
2.0307
1.9437
1.8392
1,7357
1,6591
1,6001
7
2.2824
2.1727
2.0650
1.9733
1.8636
1.7554
1,6756
1,6143
8
2.3243
2.2074
2,0944
I.9987
1.8847
1.7726
1,6901
1,6267
9
2.3607
2.2377
2.1201
2,0209
1,9032
1.7877
1.702B
1,6378
10
2.3930
2.2645
2.1428
2,0407
1,9197
1 .8012
1,7143
1,6477
11
2.4219
2.2886
2.1633
2,0585
1,9346
1 ,8134
1,724b
1,6567
12
2.4480
2.3103
2.1819
2,0746
1,9481
1.8246
1,7341
1,6649
0,1600E»05
1	1,0378
2	1,3726
3	1,0434
4	1 ¦ 4837
5	1.5117
6	I,5331
7	1,5447
8	1,5550
9	1.5641
10	1.578«
11	1,5799
12	1,3799
0,2000E>05
1,037«
1,3305
1,3416
1.4262
1,4303
1,4607
I.4760
1.4862
1,4937
1.4937
I,4937
1,4937
0.2600E-05
1.0378
1.2865
1.3378
1.3669
1.3871
1.4025
1.4095
1.4095
1.4095
1.4095
1.4095
1,4095
0.3500E-05
1.0378
1.2435
1.2857
1.3096
1,3261
1.3387
1,3437
1,3437
1.3437
1.3437
1.3437
1.3437
0.5000E-05
1,0378
1,2005
1,2339
1.2527
1.2657
1.2756
1.2788
1.2768
1.27B8
1.2788
1.2788
1,2788
0,8000E>05
1,0378
1.1557
1.1802
1.1941
1.2036
1,2109
1,2126
1.2126
1.2126
1.2126
1,2126
1.2126
0.1500E»04
1,0378
1.1121
1,1284
1,137b
1,1440
1,1489
1,1489
1.1464
t¦1484
1,1464
1,1484
1,1484

-------
CHARGE ACCUMULATED ON PARTICLE SIZES IN EACH INCREMENT
INCREMENT	CHARGE FOR INDICATED PARTICLE SIZES

0.2500E-06
0,3500E-06
0.4500E-06
0.5500E-06
1
0.20292E-17
0.35882E-17
0.56230E-17
0.B1363E-17
2
0.30000E-I7
0,59560E-17
0,90606E-17
0,12736E-16
3
0.38368E-17
0.65678E-17
0.99003E-17
0,13B26E-16
a
0,00716E-17
0.69250E-17
0,1039OE-16
0,I0057E-16
5
0.02378E-17
0,71775E-17
0,10738E-16
0,10899E-16
6
0,0 3663E-17
0.73716E-17
0.U003E-16
0,15238E-16
7
0.04626E-17
0.75122E-17
0,11189E-16
0.15470E-16
8
0,050U6E-17
0.76322E-17
0,11308E-16
0,15669E-16
9
0,06159E-17
0,77369F-17
0.11087E-16
0,15800E-16
10
0.46789E-17
0.78295E-17
0.11611E-16
0.15999E-16
11
0,07350E-17
0,79127E-17
0,11722E-16
0,1613BE-16
12
0.07866E-17
0,79880E-17
0,11822E-16
0,16265E-16

0.1600E-05
0.2000E-05
0.2600E-05
0.3500E-05
1
0,6J072E-16
0.98U70E-16
0,16537E-15
0.29812E-15
2
0.839SOE-16
0, 12624E-15
0.20099E-15
0.35721E-15
3
0.88279E-16
0.13203E-15
0.21318E-15
0.36933E-1S
a
0.907U3E-16
0.13532E-15
0.21781E-15
0.37618E-15
s
0.92056E-16
0.13761E-15
0.22103E-15
0,38093E-15
b
0,937606-16
0.13935E-15
0.22308E-15
0.S8454E-1S
7
0,9«fl75E-16
0,1«02«E-15
0.22060E-15
0.3B598E-15

0.95101E-16
O.1O102E-15
0.22060E-15
0.38598E-15
9
0,956606-16
0.10172E-15
0,224606-15
0.3B598E-15
10
0,96164E-16
0,10172E-15
0.22060E-15
0.38598E-15
11
0,96620E-16
0.10172E-15
0,224606-15
0.38598E-15
12
0,966206-16
0.1H72E-15
0.220606-15
0.38598E-15
0.7100E-06
0.12B0OE-16
0.19293E-16
0.20779E-16
0.2163flE.lt>
0.22232E-16
0.22690E-16
0.22992E-16
0.23252E-16
0.234S0E-16
0.2J68UE-16
0.23868E-16
0.24035E-16
0.9000E-0
0.20705E-1
0,29907E-1
0.32000E-1
0.33176E-1
0.3399BE-1
0.34627E-1
0.35021E-1
0.35363E-1
0.35665E-1
0.35934E-1
0.36178E-1
0.36400E-1
0.1100E-05
0.30524E-16
0, 02746E-16
0,o5fl06E-l6
0.O6927E-16
0,07986E-16
O.OB797E-16
0.49280E-16
0,497 08E-16
0.500B3E-16
0.50020E-16
0.50725E-16
0,510 OOE-16
0.1300E-05
0.42263E-16
0.57660E-16
0, 60 964E-16
0.62848E-16
0.64160E-16
0.65163E-16
0,65740E-16
0.66206E-16
0.66695E-16
0.67099E-16
0 , 67066E-16
0,678026-16
0.5000E-05
0.60579E-15
0.70070E-15
0.72022E-15
0.73121E-15
0.73881E"15
0.70460E-15
0,7«6aeE-l5
0.7064BE-15
•0.706086-15
0.70648E-I5
0.7U6O8E-1S
0.706186-13
0.8000E-05
0.15452E-14
0,17207E-10
0.17S72E-10
0.17778E-10
0.17921E-10
0.18029E-10
0,tB053E-l«
0.18053E-10
0,180536-14
0,18053E-14
0 ¦ 18053E-10
o.ieosse-io
0,1500E-04
0.50170E-14
0.58052E-14
0.5B904E-14
0.59385E-U
0.59717E-1O
0.S9970E-14
0.59970E-14
O.59970E-1O
0.59970E-10
0.59970E-10
0.59970E-10
0,399706-10

-------
PARTICLE SIZF RANGE STATISTICS
CORRECTIONS FOR NONIDfALITIES USING SET NO. 1 OF CORRECTION PARAMETERS
SIZE
CCF I
NLFT *
OUTLET *
COR, OUTLFT
X NO-RAP EFF
, NO-RAP W
NO-RAP p
COR, EFF,
COR, w
COR, P
2.500E-07
1,590
0.000
0.0012
0.0005
94.0060
11.151
5,9940
91,0060
11.451
5,9940
3.500E-07
1 ,aiu
0,100
2,3168
1,0989
94.0178
11.480
5.9522
93,7267
11.266
6,2733
4.300E-07
1,320
0.600
3,2*28
1.5530
94,4630
11.774
5.5370
91,0895
11.508
5,9105
5.500E-07
1.261
1.667
8,OOA
-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
ioeai UNAOJuSTEO
MO-RAP
rapptmg puff
NO-RAP+fiAP purr
RAPPING PUFF
PARTICLE
NIG, VEU.fCM/SEC)
EFFICIENCY
7.562E+01
1 .286E-01
fl.(.77E-03
1.373E-0J
1 ,78«E»01
0i
(l,«99E"01
2,nae+oi
8.000E-06
T.ajTE+Ol
1.000E+02
2.J90E-05
1.522E-01
A.522E-01
2,887E + 01
1.500E-05
w

-------

summary table of esp operating •
parameters an^ performance •

DATA SET NUMBER 1 *
* ESP PERFORMANCE I EFFICIENCY 3 97.71*5 * SCA » 2,«S8E+0l M»*2/(M**J/8EC) *
* ELECTRICAL CONDITIONS t
AVG, APPLIED VOLTAGE c a,890E+0a V *
AVG, CURRENT DENSITY b «5.01 NA/CM««2 *
RESISTIVITY e i,800E*09 OHM.CM *
* SIZE DISTRIBUTIONS!
INLET MMD * J,J02E+O0 UM INLET SIGMAP a 2.J64E+00 •
OUTLET MMD a 2.71SE+00 UM OUTLET SIGMAP a 2.27JE+00 •
• NONIDEAt PARAMETERSi
GAS SNEAKAGE FRACTION a 0,00 /SECTION GAS VELOCITY 3IGMAG ¦ 0,00 •
RAPPING MMD a 6.000E+00 UM RAPPING SIGMAP 0 2.500E+00 •
STOP 011111

-------
APPENDIX H
OUTPUT DATA FROM EXAMPLE 8
363

-------
*	E,P,A, ESP MOOFL	*
*	*
*	T.E.R.l.-fl.T.P, ANO SO,B.I. *
*	•
*	REVISION I,Jan. 1, 1978	*
*	*
*************************************
PRINTOUT OF INPUT DATA FOB DATA 8ET MUMBfP 1
DATA ON CARD NUMBER 1
NENDPT • 14 NDAT* a 1
DATA ON CARD NUMBER 2
PLANT A| 8CA»2«3FT2/|OOOACFM|VOsai,7KV|CALC". V-IpANALY8IS OF NONIDEAl EFFECT9
u,	DATA ON CARD NUMBER 3

-------
ARD50(
6)
¦
10,0
UM
AR8IGM f
6)
B
1.5
ARDS0(
7)
0
10.0
UM
ARSIGMf
T)
a
5.0
ARD50(
8)
¦
10.0
UM
AR8IGMf
8)
B
10.0
ARD50(
«>)
¦
o
•
o
UM
ARSIGMf
9)
s
15.0
DATA ON CARD NUMBER 7
ASNUCKt
1)
¦
0,00
AZIGGVt
1)
B
0.00
A ZNUMS(
1)
a.o
ASNUCKt
2)
¦
0.10
AZIGGYt
2)
•
0.25
AZNUMSt
2)
«'.o
ASNUCKt
3)
•
o.jo
AZIGGYt
3)
¦
0,25
AZNUMS(
3)
a'.o
ASNUCKt
4)
B
0,50
AZIGGYt
4)
B
0,25
AZNUMSt
4)
«'.o
A8NUCK(
5)
B
0,70
AZIGGYt
5)
B
0,25
AZNUMSt
S)
«,o
ASNUCKt
6)
•
0.10
AZIGGYt
6)
¦
0.10
AZNUMSt
6)
4.0
DATA ON CARD	NUMBER 6
f A8NUCK( 7) ¦	0.10 AZ!GGY(
Ut	¦
A8NUCK ( 8) ¦	O'.IO AZIGGYt
ASNUCKt 9) ¦	0,10 AZIGGYt
7)
a o.ao
AZNUMSt
7) ¦
1.0
8)
¦ 0,60
AZNUMSt
8) ¦
fl'.o
9)
¦ 0,80
AZNUMSt
9) ¦
t'.O
DATA ON CARD NUMBER
ENDPTt 1) ¦ 0,100 UM ENDPTt 2) o 0,500 UM ENDPTt 3) a 0.500 UH ENDPT( 0} a 0,900 UM
ENDPTC 6) ¦ 1,900 UM ENDPTt 7) ¦ 3,100 UM ENDPTt 8) s S.900 UM ENDPTt 9) ¦ 5,100 UM
ENDPTt 5) ¦ 1,300 UM
ENDPT(10) 6 6,900 UM
DATA ON CARD NUMBER 10
ENDPT till ¦ 10.100 UM ENDPT 112) » 1«,900 UM ENDPT 113) ¦ 25,100 UM EN0PT(1«) o 29,900 UM
DATA ON TARD NUMBER 11
PRCU( 1) ¦ 0,0000 X PRCUt 2) « 0,0330 X PRCUt 3) » 0,2660 X PRCUt a) a 1,1890 X PRCUt 5) ¦ 2,0010 X
PRCUt 6) o 3,5240 X P«CUt 7) n 7,0«80 X PBCUt 8) o 8'.7000 X PRCUt 9) o 10.3520 X PRCUt10) ¦ 12.3340 X

-------
PATA ON CARO NUMBER 12
PRCUtm 0 15.6380 * PRCUC12) = 20.U8
C\
RF8( 1) b 8.5000E.01 ST ART I { 1) » l.OOOOE-Ofl A/M**2 8TART2( 1) ¦ 5.00flOE-05 A/M**J
8TART3C 1) a 5.0000E-05 A/m**2 VSTARf 1) o 3.6000E*0fl V
DATA ON CARD NUMBER 17
A8( 2) a !,bft>0£+0a FT««2 VOS( 2) » a,!700E+0« V TCS( 2) s 2.7306E-01 A WLSf 2) > |,5720E»0fl FT
ACS( 2) b 6,2500E"02 IN BSC 21 s 5.5000E+00 IN NMS( 2) a 1.2000E*01
DATA ON CARD NUMBER IB
9V8C 2) a 3.6000E+00 IN VGSf 2) s 3.272
-------
DAT* ON CARD NUMBER JO
AS( J) ¦ ?.6«60e*0U FT*«2 V09( 3) « A,1?OOE*0« V TC8f 3) * 2.7J00E-0t A W|.9f S) ¦ 1.5?20C*0# FT
AC3( 3) ¦ 8.2500C-02 IN BSC 3) a 5.5000E+00 IN N*SC 3) s 1.2000E+01
OATA ON CARD NUMBER 21
SV8( 5) a 3.6000E+00 IN VC8f 3) a 3,?T?UE*05 FTaaJ/MIN VGASSf 3) ¦ U.1000E+00 FT/SEC TE"P8( 3) a 3.1500E+0? F
P8( 3) a l.OOOOE+OO ATM VI33( 3) a 2.2900E-05 KG/M.SEC LINCS( 3) a 6.0000E-01 FT
DATA ON CARD NUMBER 22
RF8 < 3) m 8.5000E-01 STARTlf J) ¦ l.OOOOE.OU A/M**2 START2( 3) a 5.0000E-05 A/M«*2
8TART3( 3) a S.OOOOE-05 A/M*«2 VSTAR( ]) a 3.6000E*0
-------
CLEAN GAS VOLTAGE-CUPBENT DENSITY-FIELD
vw s .3.7657E+0O ACDNTY
VW » -3'.B759E*0U ACDNTY
VW a -3.9T36E+00 ACDNTV
VW c .U.0627E+00 ACONTV
yw ¦ .u'.io59E + 0a ACDNTY
vw ¦ .a.22ujE+oa ACDNTY
T THE PLATE RELATIONSHIP FOR SECTION NO'. 1
9.9159E-05 AFPI.T o >I , <1J 99E + 05
l>8B1E-0« AEPLT b »1,5037E+05
1.98O7E-0O AFPLT a -1.6561E+05
2.«810E-00 AfPLT ¦ «l,7598E+05
2,«776E"0# AEPLT ¦ -1.8570E+05
3."740E»01 AEPLT • -l,902
8.75E-07
3,09E-00
1
0,3325
1 ,750E + 05
1,8787E*05
1.7580E*13
10.3
2.00E-05
1.130E"03
6,019E»02
1.16E-06
3.09E-00
2
0,3405
1.750E+05
1 .8787E + 05
1.7592E+13
10.6
1.01E-05
7.285E-00
U.12QE-02
9.6OE-07
3.O9E-0U
3
0,3529
1,750Et05
1 ,B787E»05
1 .7597E~ 1 3
10.9
8.O9E-06
a,aaoE-0«
2.513E-02
7.7OE-07
3,09Ea00
0
0,3656
1.750E+05
1.8787E+05
1,7b01E+13
11,3
0,52E-06
2.691F-00
1.523P-02
6.J5E-07
3.09E-00
5
0.3781
1.750E+05
1 8787E+ft5
1.7603E+1J

2,38E-06
1 ,66*E-00
9.031E-03
5.39E-07
3.09E-OU
6
0,3901
1.750E+05
1.B787E+05
1.760UE+13
12.1
1.77E-06
1 .073E-00
6.076E-03
0.72E-07
3.10E-00
7
0,0026
1,750E»05
1.8787E+05
1.7606E+13
12.5
1.37E-06
7.282E-05
0,122E»03
«t2«E-07
3|10E*0«
6
0,0107
1,75oE*f>S
1.8787E+05
1,7b06E*13
12,9
1 .10E-06
S.227F-05
2.959E-0S
3.88E-07
3,IOE*00
9
0,0269
1,75ftE*05
1.8787E+05
1.7607E+13
13^
8,22E»07
3.95PE-05
2.2HE-03
3.58E-07
3,10E-fl«
10
0,0391
1 .750E*05
1,P787E*05>
1.7608E+13
13.6
6.65E-07
3.137F-05
1 .776E-03
3, W-07
3,10E>00
11

-------
0,0514
0,0638
0,0762
0,0666
1,7S0E*05
1.750E+05
1.750E+05
1.750E+05
1 ,8787E + 05
1,87B7E »05
1.8787E+05
1.8787E+95
1,760BE*13
1a 7609E+1 J
1 .7609E+13
1.760QE + 1J
t«.0
10,0
10,8
15.2
5.8nE-ft7
5,23E»07
«,B3E-07
0.52E-07
2.577E-05
2.170E-05
1.871E-05
1 .632E-C5
CALCULATION Is in SECTION no', o 2 and THE SECTION length is ¦ 2.7050 M
COLLECTION AREA b 2.O61E+03 M2
WIRE TO PLATE ¦ 1.397E-01 M
CURRENT/H ¦ I.SQIEbOU AMP/H
1/2 WIRE TO Wire ¦ 9.100E-02 H
TEMPERATURE ¦ 430,000 K
ION MOBILITY ¦ O.2SPE-00 M2/V0LT.SEC
OUST WEIGHT ¦ 6.969E-01 KG/SEC
APPLIED VOLTAGE » U.170E+00 VOLTS
CORONA WIRE RADIUS s 2.096E-03 M
CURRENT DENSITY b 3.100E-0O AMP/M2
GAS FLOW RATE o 1 ,5uBF + 02 H3/8EC
PPE8SURE » 1,000 ATM
MEAN THERMAL 8PEED s 5*.335E+02 M/8E
LENGTH INCR, «0.18300000 M
RIOVR
ERA VG
EPLT
AFID
CMCD
MMD
WEIGHT
0,8012
1,750E+05
1,8787E + 05
,761OE+13
15.5
«l29E»07
1.037F-05
0,51*8
1,750Et05
1,8T07E + O5
,761OEfl3
15,9
a,llE»07
1.275E-05
0,5260
1.750E+05
t.8787E+05
.7610E+13
16.3
3.91E-07
1.138E-05
0,5392
1.750E+05
1,8787E + 05
,76ltE*13
16.7
3.60E-07
1.021E-05
0,5520
1,750E+05
1,8787E+05
.7611E+13
1M
3,35E-07
9.201E-06
0,5607
1,750E+05
1.8787E+05
,7611E~13
17.5
3.1OE-07
8.S23E-06
0,5773
1,?50E+0S
1.87S7E+05 ,
.7611E+ 1J
17,9
2,97E-07
7.552E-06
0,5899
1,750E+05
1.8787E+05
,7611E~ 13
18.3
2.82E-07
6.873E-06
0,6022
1.750E+03
1,8787E»05
,76l2Etl3
18,7
2.69E-07
6.270E-06
0,6108
1.750E+05
1.8787E+05
.7612E+13
IV
2.59E-0T
5.733E-06
0,6265
1,750Et05
1.8787E+05
.7612E+13
19,«
2,09E-07
5.253E-06
0,6382
1\750E+05
l,8787E+05
,76121+13
19,8
2.01E-07'
O.B21E-06
0,6097
1.750E+05
1.8787Et05
,7612E*13
20,2
2,30E-07
Q.O33E-06
0,6610
1.750E+05
1.8787E+05
,7612E«13
20.5
2.28E-07
0.083E-06
0,6721
1.750E+05
1.B767E+05
.7612E+13
20.8
2.23E-07
3.765E-06
CALCULATION 18 IN SECTION NO. • 3 AND 7HE SECTION LENGTH 18 ¦ 2^7050 M
COLLECTION AREA ¦ 2',U61E*03 M2
WIRE TO PLATE ¦ 1.397E-01 M
CURRENT/M ¦ 1.S91E-00 AmP/M
1/2 WIRE TO WIRE ¦ 9.100E-02 H
TEMPERATURE ¦ 030.000 K
ION MOBILITY ¦ 0.250^-00 M2/V0LT-SEC
OUST WEIGHT ¦ 6".969F.01 KG/SEC
APPLIED VOLTAGE ¦ 0.170E+00 VOLTS
CORONA WIRE RADIUS ¦ 2.096E-OS H
CURRENT DENSITY ¦ J.IOOE-OO AHP/M2
GAS FLOW RATE ¦ 1,508E*02 MS/SEC
PRESSURE ¦ 1,000 ATM
MEAN THERMAL SPEED ¦ 5.335E+02 M/Sl
LENGTH INCR, ¦ 0'.16300000 M
RIOVR
ERA VG
EPLT
AFIO
CMCD
HMD
WEIGHT
0,6829
l'.750E*05
1.8787E+05
1.7612E+13
21,2
2,18E-07
3.O77E-06
0,6914
1.750E+05
1 ,8787E *05
1.7612E+13
21,5
2,lOE-07
3.215E-06
0,7037
' 1.750E + 05
1.8787E+0S
1.7612E+13
21.8
2.10E-07
2.976E-06
0,7138
1.750E + 05
1.8787E+0S
1.7612EM3
22.1
2.07E-07
2.758E-06
0,7236
1.750E*05
1,8787E*05
1.7612E+13
22.0
2'.OOE-07
2.559E-06
0,7331
1,750E + 05
1.8787E+05
1.7612E+13
22,7
2,01E-0T
2.376E"06
0,7020
1.750E+05
1,8787E*05
1.7612E+13
23,0
2,00E-07
2.209E-06
0,7515
1,750E + 05
1.8787E+05
1.7612E+13
23,3
2,00E-07
2.055E-06
0.7603
J.750E + 05
1.8T87Et05
1.7612E*13
23.6
2,006-07
1.913E-06
0,7686
1.750E+05
1.8787E+05
1,7612E*13
23,B
2.00E-07
1,783E"06
0.T771
1,750E+05
1.87B7F+05
1,7612E*13
20,1
2,00E»07
1.663E-06
0,7852
1,750E*05
J.8787E+05
1.7612E«13
20.3
2,00E-07
1.552E-06
0,7930
1.750E+05
1.8787E+05
1.7612E+13
20.6
2.00E-07
1 ,o«9E-n6
1,fl59E-03
1.231E-03
1.059E-03
9.?!8E»P1
3.12E-07
2.93E-07
2.75E-07
?,59E»07
J,10E>00
3,10E-00
3.10E-00
3,10E»00
12
13
14
15
TOTAL CURRENT c 7.629E-01 AMPS
CORONA WIRE LENGTH a U,795E*03 M
0EP08IT E FIELD • l'.550E*05 VOLT/M
GAS VELOCITY « 1.2505*00 M/SEC
VISCOSITY b S.290E-08 KG/M.8EC
PART, PATH PARAM. c B.206E-08 M
INPUT EFP./INCR, ¦ 11,55
DUST LAYER
B,133E»04
7.215E-0O
6.0U1E-00
5.780E-00
5.208E-0O
0.711E-00
0.275E-00
3.891E-00
3.509E-00
S.2O5E-04
2.97OE-00
2.T29E-00
2.510E-00
2.311E-00
2.131E-04
J(PART)
2.OUE-07
2.29E-07
2.16E-07
2.03E-07
1.91E-07
1.80E-07
1.69E-07
1,60E>07
1,501-07
1.02E-07
1.30E-07
1.26E-0T
1.19E-07
1.13E-07
1.07E-07
J CION)
S.IOE-OO
3.10E-04
3.101-00
3,10E-00
3.10E-00
3.10E-00
3.10E-04
3.10E-00
3,10E*0O
3,}0E-04
3,1OE-04
J.lOfwflo
3.10E-00
3.10E-00
3.10E-00
INCR, NO
TOTAL CURRENT • 7.629E-01 AMPS
CORONA WIRE LENGTH a 0,79SE*03 M
DEPOSIT E FIELD ¦ 1.550E*05 VOLT/M
GAS VELOCITY m 1,2S0E*00 m/SEC
VISCOSITY ¦ 2.290C-OS KG/m-SEC
PART, PATH P A R A M1 ¦ S,246E»0e M
INPUT EFP./INCR, ¦ 11,55
OUST LAYER
1.968E-00
1.820E»00
1.68SE*00
1.561E-00
1 ,OU9E«0O
1 .3O5E-0O
1 .250E-00
1.163E-00
1 .083E»00
1 ,009E»00
9.012E-05
B.7BOF-05
B.203E-05
j(part j
i,oie-o7
9.56E-08
9.05E-OS
8,58E>08
8.13E-08
7.TIE-08
7.31E-08
6,90E*08
6.59E-0S
6,26E«08
5.90E-08
5.65E-08
5.37E-08
J(ION)
3,10Ea0«
3.10E-00
s.ioe-oo
3.10E-00
3.10E-04
3,1OE"Ofl
S.lOE-OO
3,10E-04
3.10E-00
3.10E-00
3,10E>00
3,10E-no
3,1OE-oa
INCR, NO


-------
0.8006 1.T50E+05 1.B787E+05 1.7612E+11 2«'.B 2.00E-07 1.354E-06 7.667E-05 9.UE-06 i.tOE-OU	OU
0.8060 1.750E+05 l.B7A7Et05 I.7612E+15 25.1 2.00E-07 1.266E-06 7,I70E*05 fl.ft6E-08 S,i0E"0«	AS
DESIGN EFFICIENCY ¦ 99.60 UNCORRECTED COMPUTED EFFICIENCY s 90,5a
OJ
•sj
©

-------
CHARGING RATES FOR PARTICLE SIZE3 FROM SUBROUTINE CHARGN OR CHGSUM
SUM or CLASSICAL FIELD and DIFFUSlONAL CHARGES USED FOR PARTICLE CHARGING
Increment no.
Q/QSATF for indicated PARTICLE SIZES
0
,2000ES06
0.4000E-06
1
l'.4490
1.2605
2
1,6905
1.4692
3
1.6283
1,5755
a
1.9232
1.6478
5
1.9946
1,7016
6
2,0515
1,7441
7
2.0965
1,7790
8
2,1386
1.A084
9
2,173®
1,8339
10
2.2012
1.8563
11
2,2318
1,8763
11
2,2567
1,6944
13
2,2796
1,9108

2,3006
1.9259
15
2.3200
1,9398
16
2,3381
1,9526
17
2.3550
1,9649
18
2,3708
1,9761
19
2,3857
1,9667
20
2,3998
1.9967
81
2,4131
2,0062
ei
2,4258
2,0062'
23
2.4379
2,0062
24
2,4379
2,0062
25
2,4379
2,0062
26
2.4379
2,4379
2,0062
27
2,0062
28
2.4379
2,0062
29
2,4379
2,0062
30
2,4379
2,0062
SI
2,4379
2,0062
32
2,4379
2,0062
S3
2,4379
2,0062
SO
2,4379
2.0062
35
2,4379
2,0062
36
2,4379
2,0062
S7
2.4379
2,0062
38
2,4379
2,0062
39
2,4379
2,0062
ao
2,4379
2,0062
01
2.4379
2.0062
42
2.4379
2,0062
US
2,4379
2,0062
04
2.4379
2,0062
as
2.4379
2,0062
0.
00E»06
1023
2525
3361
3922
0334
4656
4918
5137
5325
5490
5636
576?
5686
5995
6006
6184
6275
635S
6355
6355
6355
6355
6355
6355
6355
6355
6355
6355
6355
6355
6355
6355
6355
6355
6355
635S
6355
6355
6355
6355
6355
6355
6355
6355
6355
0.
1006-05
0 .1600E»05
0.2500E-05
0.3500E-05
0,4500E»05
,9816
0.9036
0.6301
0,7952
0,7721
,1099
1,0191
0,9391
0,8948
0,8687
,1606
1.0623
0,9961
0,9487
0,9209
,2275
1.1239
1,0333
0,9637
0,9546
,2616
1.1538
1,0600
1,0066
0,9786
,2879
1,1768
1,0802
1.0274
0.9966
,3091
1.1951
1,0962
1,0422
1,0107
,3268
1,2103
1,1094
1.0543
1.0223
,3416
1,2232
1 ,1204
1,0645
1.0319
.35U9
1.2343
1,1300
1,0732
1 .0402
,3664
1,2440
1.1383
1,0808
1,0474
,3766
1,252»
1,1457
1.0675
1.0537
,3661
1,2606
1,1524
1,0935
1,0594
,3946
1,2676
1,1564
1,0990
1,0645
,4025
1,2743
1,1639
1,0990
1.0645
,4097
1.2803
1,1639
1,0990
1.0643
,4164
1,2603
1,1639
1,0990
1.0645
,4164
1,2803
1,1639
1,0990
1.0645
,4164
1,2603
1,1639
1,0990
1.0649
,4164
1.2603
1,1639
1,0990
1,0645
,4164
1.2603
1,1639
1,0990
1,0605
,4164
1,2603
1,1639
1,0990
1,0605
,4164
1,2603
1,1639
1,0990
1.0605
,4164
1.2603
1,1639
1,0990
1.0645
,4164
1,2603
1,1639
1,0990
1,0645
,4164
1,2803
1,1639
1,0990
1,0645
.4164
1,2803
1,1639
1,0990
1,0645
,4164
1,2603
1,1639
1,0990
1,0645
,4164
1,2603
1,1639
1,0990
1.0645
,4164
1,2803
1,1639
1.0990
1,0645
,4164
1,2603
1,1639
1,0990
1.0645
.4164
1,2603
1,1639
1.0990
1.0645
,1164
1,2603
1.1639
1,0990
1,0645
,4164
1,2603
1,1639
1,0990
1,0605
,4164
1,2603
1,1639
1,0990
1,0645
,4164
1,2603
1 ,1639
1,0990
1,0645
,4164
1,2603
1,1639
1,0990
1,0645
,4164
1,2803
1,1639
1,0990
1,0645
,4164
1.2803
1,1619
1,0990
1,0645
,1164
1,2603
1.1639
1.0990
1,0645
,4164
1,2803
1,1639
1,0990
1,0645
,4164
1,2803
1.1639
1.0990
1,0645
,4164
1,2603
1,1639
1.0990
1,0645

1 .2803
1,1639
1.0990
1,0605
,4164
1.2603
1,1639
1.0990
1,0645
0.6000E-05 0.8500E-05 0.1250E-04 0.2000E-04 0.2750E»fta

-------
t
0,7509
c
7511
2
0.8449
0
8227
5
0,8959
0
8720
4
0,9282
0
9037
5
0,9912
0
9260
6
0.9689
0
9427
7
0,9821
0
9558
8
0,9932
0
9664
9
1,0024
0
9752
to
1.0102
0
9827
It
1,0170
0
9692
12
1,0231
e
9949
is
1,0284
l
0000
to
1.0333
i
0046
19
1,0333
l
0046
16
1,0333
i
9046
17
1,0333
l
0046
ie
1.0333
i
0046
i«
1.0333
l
0046
20
1,0333
i
0046
21
1>0J33
l
0046
22
t.0333
l
0046
23
1,0333
i
0046
24
1,0333
l
0046
29
1,0333
l
0046
26
1,0333
l
0046
IT
1,0333
i
0046
28
1,0333
l
0046
29
1,0333
l
0046
SO
1,0333
l
0046
31
1,0333
l
0046
12
1.0333
t
0046
33
1,0333
l
0046
30
1,0333
l
0046
39
1,0333
l
0046
3b
1.0333
l
0046
37
1,0333
l
0046
38
1,0333
l
0046
39
1,0333
l
0046
40
1,0333
l
0046
41
1,0333
l
0046
42
1,0333
l
0046
43
1,0333
l
0046
44
1.0333
l
0046
49
1.0333
i
0046
7149
0
7011
0
69as
80a8
0
7896
0
7823
8530
0
8369
0
8293
8859
0
8673
0
8594
9057
0
8886
0
8804
9219
0
9045
0
8961
9546
0
9168
0
9083
94(18
0
9268
0
9182
9535
0
9550
0
9263
9606
0
9420
0
9332
9668
0
9481
0
9392
9725
0
9534
0
94U5
9772
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
98)6
n
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
ft
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
98)6
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
9816
0
9582
0
9491
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-------
charge accumulated on particle sizes in each increment
increment
charge for INDICATED parti
0,2000E-06

o'.4000E-06
0.7000E-06
0,1100E-05
0.25996E-17
ft
70474E-17
0. 17083E-16
0.36512E-1
0.30327E-17
0
80856E-17
0.19410E-16
0.41277E-1
0,32801E-17
0
86707E-17
0.20705E-16
0.43903E-1
0.3U502E-17
0
90683E-I7
0,21575E-16
0.45649E-1
0.35783E-17
0
93648E-17
0.22214E-16
0.46918E-1
0,3680«E-17
0
95985E-17
0.22713E-16
0.47897E-1
0, 37648E-17
0
97904E-17
0,23118E-16
0,48686E-1
0.38367E-17
0
99326E-17
0.23438E-16
0.4930JE-1
0,38992E-17
0
10093E-16
0.23750E-I6
0.49902E-1
0.3950UE-17
0
10216E-16
0,24005E-16
0.50388E-1
0140038E-17
0
10326E-16
0.24231E-16
0,30817E-1
0.40486E-17
0
10423E-I6
0.24434E-16
0.51201E-1
0.40896E-17
0
10S16E-16
0,24619E-16
0.51349E-1
0.41273E-17
0
10399E-16
0.24788E-16
0.51866E-1
0.41621E-17
0
10676E-16
0,24944C-t6
0.52137E-1
0,419a6E-17
0
10747E-16
0,25088E-1fc
0.52423E-1
0.42249E-17
0
10813E-16
0.2S221E-U
0.S2673E-1
0,42333E-17
0
10876E-16
0,253a6E»l6
0.92673E-1
0.42801E-17
0
1093OE-16
0^23346E-16
0.32673E-1
0,43053E-17
0
10989E-16
0.2S346E-16
0.32673E-1
0.U3292E-17
0
11041E-16
0.2S346E-16
0.52673E-1
0.4J519E-17
0
11041E-16
0,25346E-t6
0.52673E-1
0.43736E-17
0
11041E-16
0,2S346E-16
0.52673E-1
0.43T36E-17
0
11041E-16
0.23346E-16
0.S2673E-1
0.43736E-17
0
11041E-16
0,S5346E-16
0.52673E-1
0,43736E-17
0
1104 IE-16
0.25346E-16
0.32673E-1
0.43T36E-17
0
11041E-16
0.25346E-16
0.52673E-1
0.437J6E-J7
0
1104IE-16
0.25346E-16
0.52673E-1
0.43736E-1T
0
11041E-16
0,2S346E-16
0.52673E-1
0.43736E-17
0
1104 IE—16
0.2S346E-16
0.52673E-1
0.43736E-1T
0
U041E-16
0.25346E-16
0.32673E-1
0.43736E-17
0
iioaie-i6
0.25346E-16
0.52673E-1
0^ 43736E-17
0
U041E-16
0.25346E-16
0.52673E-1
0,43736E-17
0
11041E-16
0.2S346E-16
0.S2673E-1
0,43T36E-1T
0
11041E-16
0.25346E-16
0.52673E-1
0,4 3736E-17
0
11041E-16
0.25346E-16
0.52673E-1
0.43T36E-17
0
llOaiE-lfc
0.23346E-16
0.92673E-1
0.43736E-17
0
11 041E-16
0.25346E-16
0.32673E-1
0,43736E-17
0
U041E-16
0,2S346E-16
0.S2673E-1
0.43736F-17
0
11041E-16
0.25346E-U
0.S2673E-1
0.43T36E-17
0
11041E-16
0,25346E-16
0.52673E-1
0.43736E-17
0
11041E-16
0.25346E-16
0.52673E-1
0,4 3736E-17
0
11041E-16
0.25346E-U
0,52673E-1
0.437J6E-J7
0
1104JE-16
0.2S346E-16
0.52673E-1
0.43T36E-17
0
1104IE-16
0.23346E-16
0.52673E-1
0.6000E-05

0.8500E-05
0'.1250E-Oa
0,200 0E-04
0.81278E-15
0
.15873E-14
0,33557E"14
0.8U233E-1"
0.91450E-15
0
,17863E—14
0.37775E-14
0,9a8S9E-14
0.96929E-15
0
,1&932E-14
0,40038E-14
0,10055E-13
0,100476-14
0
,19621E-l4
0,4ia9iE-ia
0.10U20E-13
LE SIZES
pit 600E-0
0.70310E-1
0.79283E-1
0,84l98E-l
0.87432E-1
0.89764E-1
0.91550E-J
0,92978E-1
0 94138E-1
0.95138E-1
0,96023E-1
0,96785E-1
0,97«61E-J
0,98072E-1
0,98629E-l
0 99137E-1
0,9960SE-1
0.99603E-1
0.99603E-1
0,99603E"1
0,99605E-1
0.99603E-1
0,99603E-1
0,99603E-1
0 996051-1
0 99605E-1
0,99603E-1
0,99603E-1
0,99603E-1
0,99605E-I
0,99605E-1
0.9960SE-1
0,99605E-1
0,99605E-1
0.9960SE-1
0.99603E-1
0.99605E-1
0f99603E-l
0 99603E-1
0,99603E-1
0.99603E-1
0,99605E-1
0.99605E-1
0.99603E-1
0.99605E-1
0',99605E-1
0',2500E-0
0.15740E-1
0.17721E-1
0,18797E-1
0. J9300E-1
0,20002E»1
0.20384F.-1
0.20686E-1
0,209JflE-l
0,211St -1
0.21323E-1
O.»1460e-1
0.21620E-1
0.21746E-1
0.21B59E-1
0.21963F*1
0.2196JE-1
0,21963E-I
0.2196SE-1
0.21963E-1
0.21963E-1
0.2196SE-1
0.21963E-1
0.21963E-1
6.2196JE-1
0.21963E-1
0.21963E-1
0.21963E-1
0.21963E-1
0.21963E-1
0.21963E-1
0.21963E"!
0.21963E-!
0.21963E-1
0.21963E-1
0.21963E-J
0.21963E-1
0.21963E-1
0.21963E-1
0.21963E-1
0.21963E-1
0.21963E-1
0.2196SE-1
0.21963E-1
0.2J963E-1
0,2J9b3E-l
o'.3500E-05
0.29340E-13
0.330151-15
0,3S001E-15
0.36296E-15
0.37214E-15
0.37908E-15
0.384I5E-15
0.3a902E-15
0.39277E-15
0.39599E-15
0.39879E-1S
0.40127E-15
0.40350E-13
0.40551E-15
0.405S1E-15
0.40331E-13
0.40551E-13
0.Q0SSIE-15
0,a053tE-l§
0.40551E-15
0.40551E-13
0.UO531E-15
0.40351E-15
0.405516.13
0.40551E-15
0.40551E-15
0.A0551E-15
0.40551E-15
0.40551E-15
O.OOS91E-19
0.40531E-13
0.40551E-13
0,ao?51i-15
0.40351E-13
0.00551E-1B
0,a055lE-l5
0.U0551E-15
0.40551E-13
0.405S1E-15
0.40531E-15
0.40551E-15
0.40351E-13
0.40551E-13
0.40551E-15
0.40551E-13

J.4500E
0
47046E
0
3S933E
0
3611 IE
0
38168E
0
S962SE
0
60722E
0
61586E
0
62289E
0
62877E
0
63380E
0
63818E
0
64203E
0
64S51E
0
64864E
0
64664E
0
64860E
0
64864E
0
64864E
0
66864E
0
648641
0
648641
0
64864E
0
64864E
0
64064E
0
64864E
0
68864E
0
64864E
0
64064E
0
64864E
0
64061E
0
64864E
0
64864E
0
648641
0
64864E
0
64864E
0
64864E
0
64864E
0
64864E
0
64864E
0
64B64E
0
64864E
0
64864E
0
64864E
0
64864E
0
64864E
0.2750E-0
0.15773E-1
0,17767E-1
0^ 18835E-1
0,19518E-1

-------
5
0,10296E
1 a
n a ?0105E
J4
0.4251?r
t 4
0.10676E
6
0.10484E
14
0. 20468E
14
0.432TUE
14
0, 10866E
7
0.1 0611E
1"
0.20752E
14
0,41869?
14
0.U015E
8
0.107S0E
14
0,20982E
1U
0,aul49E
1U
0,1111UE
9
0.1
850E
14
0,21171E
14
0.4U749E
14
0,11210E
10
0.1
915E
14
0.21136E
14
0.45088E
14
0,11118E
11
0.1
OO'E
ia
0,21077E
14
0.45181E
14
0.11591E
12
0.1
074F
14
0,21601E
14
0.45640E
1 4
0.11435E
13
0.1
I32F
14
0.21T12F
14
O.45870E
14
0.11511E
ia
0.1
185E
14
0,218126
14
0.46077E
14
0,1151 IE
13
0.1
185E
10
0.21812C
14
0.46077E
14
0,1151 IE
16
0.1
185E
14
0,21812E
14
0.46077E
14
0,1151 IE
17
0.1
185E
14
0.2I812E
14
0.46077E
14
0,1151 IE
te
0.1
1B5E
14
0.21812E
14
0.46077E
14
0.1151 IE
1*
0.1
183E
14
0.21812E
14
0.46077E
14
0,1151 IE
20
0.1
185E
14
0,21812E
14
0,4fe077E
14
0.1151 IE
21
0.1
185E
14
0.81812E
14
0.46077E
14
0.1151 IE
22
0.1
185E
14
0.81812E
14
0.46077E
14
0,1151 IE
23
o.l
185E
14
0,2t«12E
14
0.46077E
14
0,11311E
24
o.l
185E
14
0.21812E
14
0.46077E
14
0,1151 IE
85
o.l
16SE
14
0.21812E
14
0.46077E
14
0,11511E
86
0.1
185E
14
0.21812E
14
0.46077E
14
0.11311E
87
0.1
185E
14
0,81812E
14
0.46077E
14
0.1151 IE
86
O.l
185E
14
0.21812E
14
0.46077E
14
0.1151 IE
20
O.l
18SE
1U
0.21812E
14
0,46077E
14
0.11511E
SO
o.l
185E
14
0.81818E
14
0.46077E
14
0,1151 IE
SI
0.1
18SE
14
0,21818E
14
0.46077E
14
0.11SUE
S2
0.1
1R3E
14
0.21812E
14
0.46077E
14
0.11511E
S3
0.1
185E
14
0,81818E
14
0.46077E
14
0,1151 IE
34
0.1
185E
14
0.21812E
14
0.46077E
14
0.1151 IE
S3
0.1
185E
1 4
0,81818C
14
0.46077E
14
0.1151 IE
36
0.1
183E
14
0.21812E
14
0.46077E
14
0.1151 IE
37
o.l
183E
14
0.21812E
14
0.46077E
14
0.1151 IE
38
O.l
I85E
14
0.81812E
14
0.46077E
14
0,1151 IE
39
0.1
185E
14
0,218126
14
0.46077E
14
0,1151 IE
40
0.1
185E
14
0.21812E
14
0.46077E
14
0.1151 IE
41
0.1
185E
14
0,21812E
14
0.46077E
14
0,1151 IE
48
0.1
183E
14
0.21812E
14
0.46077E
14
0,1151 IE
as
0.1
185E
14
0,81818E
14
0.46077E
14
0,1151 IE
44
0.1
185E
14
0.21812E
14
0.4fe077E
14
0,1)51 IE
45
O.l
185E
14
0.21812E
14
0.46077E
14
0.1151 IE
fi,19997
0,20351
0 90631
0 20«5u
0,21010
0.21196
0,21132
0,21151
0.21557
0.21557
0.21557
0,21557
0 21557
0 21557
0,21557
0,21537
0,21557
0,21537
0,2135?
0,21537
0,21557
0,21557
0,81557
0.21357
0,21557
0,21557
0,21557
0,21357
0,21337
0,81357
0,81357
0,81557
0,21557
0,21557
0,81537
0,21337
0,21557
0.21557
0,21557
0,21537
0.21537

-------
PARTICLE SIZE RiNGE 8TATISTTCS
CORRECTIONS FOP NONTDEALI TIE 3 USING 8ET No'.
OUTLET X
1 OF CORRECTION parameters
SIZE
2,000E-07
0,000E-07
7,0O0E-07
l,100E-06
1,60 OC-Ofe
2,S00E-06
3,500E-06
0.500E-06
6,OOOE-06
8,500E-06
ccf :
2.123
1.530
1,297
1.188
t ¦ I 30
1,085
1,05<»
1.006
1.035
1.02fl
1,017
1.010
1.008
1.250E-05
2,000E-05
2.750E-05
EFFICIENCY - STATED ¦ 99.60
0,033
0,3109
0.253
6,0038
0,903
20 0560
0,815
16,2?02
1,520
20.1366
3,52a
23^1021
1,652
5,6379
1,652
3,2086
1,982
0.7050
3,300
0.0695
0,806
O^OAOl
12,115
0,0102
67.001
0.0565
COR. OUTIET
0.2091
3,3193
13,561(1
<9, <9*28
13,0177
18,0561
6,9069
6,8670
6,0696
7,2007
5,8079
a,7206
2.7615
COMPUTED o 99,5393
NO-RAP EFF,
NO-RAP W
NO-RAP P
COR', EFF,
COR, w
COR, P
98.7630
91210
1,2366
98,5956
8,900
1,0002
97.0053
7,356
2.9907
96,6906
T.277
3,1090
96,8080
7,209
3,1520
96,6660
7,1 Jl
3,3336
97,6007
7,859
2.3553
97,2851
7,562
2,7109
9S.0326
8.713
1,5670
98,0030
6,248
1,9966
99,2230
10,185
0.7770
98,8392
9,303
1.1608
99,5962
11,557
0.0038
99,0731
9.815
0,9269
99,7702
12,739
0,2298
99,0786
9,827
0,9210
99,9579
16,297
0,0421
99,2700
10,328
0,7856
99,9975
22,227
0,0025
99,5100
11.168
0,0860
99.9999
31,059
0,0001
99,7300
12.035
0,2656
99,9999
48,621
0,0001
99,9136
10.789
0,0860
99.9999
66.300
0.0001
99,9909
19,513
0.0091
convergence OBTAINED
ADJUSTED NO-RAP EFF, * 99'.8817
MMD OF INLET SIZE DISTRIBUTION ¦ O.afcSE+Ol
SIOMAP OF INLET SIZE DISTRIBUTION « 5.1J2E+00
LOG.NORMAL GOODNESS OF FIT * 0,960
HMD OP EFFLUENT UNDER NO-RAP CONDITIONS o l',360E + 00
81 CHAP OF EFFLUENT UNDER NO-RAP CONDITIONS " 1.833E+00
u	LOG-NORMAL GOODNESS OF FIT ¦ 0.996
-J	PRECIPITATION RATE PARAMETER under NO.RAP CONDITIONS B 10,131
VI
3IGMAGP 0.000 WITH 0,000 SNEAKAGE OVER «'.000 STAGES
NTEHP « 1
RMND a 6,00
R8IGHA ¦ 2,50
CORR'. EFF, ¦ 99.7TB0
CORRECTED HMD OF EFFLUENT b 2.969E+00
CORRECTED 8IGMAP OF EFFLUENT s 2.729E400
LOG-NORMAL GOODNESS OF FIT > 0.989
CORRECTED PRECIPITATION RATE PARAMETER a 12,81

-------
UNADJUSTED MIGRiTJOM VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTLET MASS LOAMNCS
IDEAL UNADJUSTED
MIC, VEL.tCM/SEC)
J, 7001~00
3',«86E + 00
3,9tee+oo
<1,7696*00
5.911E+00
fl.O19Et00
1.037E+01
1,270C + 0 J
lf630E*0t
2,2J1E*01
3,1Q6E+01
U.882E+01
6,630E*01
IDEAL UNADJUSTED
NO»P*P
BAPPING PUFF
wn-OAPfffiP PUFF
HAPPING PUFF
PARTICLE
EFFTCIENCYC*)
OH/pLOr.DfMG/OSCM)
r>M/OLOG"(NG/DSCM)
DH/OL0GD CG/08C")
DIST«IPUTIOM(*J
OIAM.(M)
B.3*OE*01
6".077E-02
B.238E-03
6.900E-02
5.350E-02
2.000E-QT
8.10ilE*01
2',a?fcE*00
9,293E"0?
2,519E*no
2,n06E>01
O,000E»07
8.15TE+01
T,922E*00
«,565E-01
8.378E+00
l,58iE»00
7.000E-07
8,9T2EtO1
8,5U0E*00
1.30UE+00
9,8«aE*00
2,«3ilE*00
1,100E.06
<»,uoue*oi
1,027E*01
2.550E+00
1.2B2E+01
5,720E»00
1 ,6006-06
9.782E+01
9, 150E + 00
a.S20E+00
1.36TE + 01
1 ,308E»01
2.500E-06
9,9?9E»01
(l,753E + 00
6.159E+00
1,091E + 01
B,358E»00
3,500E.06
9,977E»01
2# 315E + 00
6.967E+00
9.28JE+00
1 a 103E~01
a, 5001-06
9,996E*01
A.517E-01
7.332E+00
7.T83E+00
1.310E+01
6,000E-06
1 ,OOOE+02
3,53lE-02
6.859E+00
6,B95E»00
iiS«;e*oi
e,sooe.o6
i,000E+02
2,022E-03
5.UI5E+00
5.018E+00
1,2
-------
SUMMARY TiBLE OF ESP £lPf RAT ING
parameters and performance
data SET NUMBER 1
E8P PERFORMANCE! EFFICIENCY o 99.7780 X SC* » 0.769E+01 *••!/(M*«S/8EC)
ELECTRICAL CONOITIONsi	AVG. APPLIED VOLTAGE s 4.159E+0U V
AVG, CURRENT DENSITY ¦ 16,01 NA/CH**2
RESI8TIVITV a 5.000E+10 OMM.CM
SIZE DISTRIBUTIONS! INLET HMD a U,flfc5E + 01 UM INLET 8ICH*P • 5*.122E*00
OUTLET HMD n 2.969E*00 UM	OUTLET SICMAP ¦ 2*.T89E*00
NONIDEAL PARAMETERS! GAS SNEAKAGE FRACTION n 0.00 /SECTION GAS VELOCITY SXGMA6 ¦ 0,00
RAPPING MMO ¦ b'.OOOEtOO UM RAPPING 8IGMAP ¦ 2,500E*00

-------
PARTICLE 9IZF RANT.F STATISTICS
CORRECTIONS FOP NONIDE41.ITIES USING 8ET Nfl. 2 OF CDRRECTION PARAMETFRS
81ZE
2,OOOE-07
O,O00E-07
7,000E-n7
1,1 OOE-Ofc
1,600F-06
2,500E-06
3.500E-06
«,500E-06
6.000E-06
8.500E-06
1,250E-03
2.000E-05
2.750E-0S
CCF
2.123
I .550
1 .297
1.I8A
1.130
1.083
1.059
1.006
1.035
1.02a
1.017
1.010
1.008
INLFT *
0,033
0,253
0.903
0.815
1,520
3.520
1,652
1,652
1,982
3.300
a'.sob
12,115
67.001
OUTLET *
0.2605
0^0629
15.5003
H',6397
16.8762
2612590
9.0557
7.0301
0'2085
2,9758
1.6067
0.0981
0.0185
EFFICIENCY - STATED o 99.60
R. OUTLET
X NO-RAP EFF
, NO-RAP W
NO-RAP P
COR. EFF.
COR. #
COR, P
0,I«11
97,1023
7.025
2.8977
96.7893
7.210
3.2107
2.7066
90,1900
5,968
5,8060
93.9799
5.892
6,0201
10.6579
93.7900
5.828
6.2060
93.0509
5.717
6.5051
B,5750
90.8365
6.210
5.1635
90,1651
5.957
5.83U9
12.990?
95,9859
6.702
0,0101
95,2593
6.393
0.7007
21,6739
97 3060
7,578
2,6900
96,5fl9fl
7.063
3.01 06
8,8137
98.0181
8.221
1.9619
97,0010
7,361
2,9586
8,693?
98.3730
8,635
1.6270
97.0819
7.010
2,9181
7,3007
99*. 2325
10.210
0,7677
97,9562
8,137
2,0030
7.3165
99,6700
12,008
0,3256
98.7717
9,220
1.2283
5,3809
99,8801
10,103
0,1l"9
99.3643
10,672
0,6157
3,5895
99,9971
21,887
0,0029
99,8357
13.002
0.1603
2.0605
99.9999
66.300
0.0001
99,9830
16,200
0.0170
COMPUTED b
99.5393
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF. ¦ 99'.6385
HMO OP INLET SIZE DISTRIBUTION o 0.065E*01
SIGMAP OF INLET SIZE DISTRIBUTION ¦ 5.132E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0.980
MMD OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ l'.930E + 00
SIGHAP OF EFFLUENT UNDER NO-RAP CONDITIONS » 2.095E+00
w	LOG.NOfiMAL GOODNESS OF FIT ¦ 0.997
-J	PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS ¦ 11.769
00
SIGHAQi 0.250 WITH 0.100 SNEAKAGE OVER fl'.OOO STAGES
NTCMP ¦ l
RMMD ¦ 6.00
R8I6HA ¦ 2.50
CORR, EFF. > 99.0055
CORRECTED HMD OF EFFLUENT ¦ 3.013E*00
CORRECTED 8IGMAP OF EFFLUENT ¦ 2.562E*0ft
LOG-NORMAL GOODNESS OF FIT a 0.992
CORRECTED PRECIPITATION RATE PARAMETER ~ 10.89

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFleIENCTES, AND OISCBETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
WIO, VEl'.CCM/SEC)
Ji790E»00
3,9E*01
2.I92E+01
t, 310E»01
6,OOOE»Ofc
l,?81E+01
1 . 71JE + O1
1.5«5E*0l
B.500E.06
I .OtlE + OI
1.255E+01
l,2fl5E»01
1.IS0E.05
6.133E*00
6.2«UE+00
11013E*01
J.0OOE.03
1 ,068E*0I
1.07OC + 01
5.91SE+00
2.750E.05
Ul
-J

-------
summary T4BLF OF ESP OPERATING
PARAMETER 1MB PERFORMANCE
DATA SET NUMBER 2
ESP PERFORMANCE! EFFICIENCY « 99,0455 * 8C* » «'.769E»01 M«»2/(M*«3/8EC>
ELECTRICAL CONDITIONS! AVG. APPLIED VOLTAGE o 0,1S*E*0
-------
particle size B4NCE statistics
CORRECTIONS FOP NO"IQfALITICS USING SET wqS OF CORRECTION PARAM£TfP8
SIZE
2'.OO0E-O7
O.000E-07
7.000E-07
l,I00E-O6
1,600E-06
2,500E-06
3.500E-06
0,500E«06
6.000E-06
6,500E-06
1.250E-05
2,000E-05
2.T50E.05
CCF I
3.123
1.530
1,297
1.186
1.130
1.063
1.059
1.006
1.0J3
1,020
1.017
1.010
1,006
MUfT *
0,053
0,255
0,903
0,815
1,520
3,52#
1,652
1,652
1,982
3,500

-------
UNADJUSTED MIGRATION VELOCITIES ANn EFFICIENCIES* AND OISCPETE OUTLET MAS* LOADINGS
ideal UNADJUSTED
IDEAL UNADJUSTED
NO-RAP
Rapping puff
NO«RAP*RAp PUFF
RAPPING PUFF
PARTICLE
HIS. VEL'.(CM/8EC5
EFFICIENCVJ*)
DH/DLOSD(MC/DSCH)
DM/OlOGO(HG/DSCM)
DM/nuocntHG/DSCM)
DISTRI8UTI0N(X)
DIAM.(M)
J,790F+00
fl. J60E + 01
J,562E-01
S.O«0E-O2
J,86bF«01
5.350E-02
2.000E.07
I,01
«,000E«07
J,918E*00
8,«57E*fll
S,?1SE+01
1 .J»85E*00
Jf58UE+01
l,566E*nO
7,0Q0E*07
flJt769E*00
8.972E*01
Of15JE+01
U.812E+00
U.6SUE+01
2,8J«E+00
1,100E-06
5.911E+00
9JIU0aE + 01
6 ¦ UftOE + O1
9.112E + 0 1
a.62SEt01
5,918E*00
2,750E»OS
u>
00
to

-------
summary table of rse operating
PARAMETERS AND PERFORMANCE
OAT A SET NUMBER 3
FSP PERFORMANCE I EFFICIENCY » 90.3153 X SC* ¦ «'.769E + 0J M»*2/(M«*3/8EC)
ELECTRICAL CONDITIONS! AVG, APPLIED VOLTAGE b «,159E*0fl V
AVC, CURRENT DENSITY ¦ 18,00 NA/CM**2
RESISTIVITY o 5.000E+10 OHM.CM
SIZE DISTRIBUTIONS!	INLET MMD ¦ ii.a65E+0! UM INLET 8IGMAP ¦ 5.122E400
OUTLET HMD ¦ S.75BE + 00 UM OUTLET SlGMAP ¦ j',603E + 00
NONIDEAL PARAMETERS! GAS SNEAKAGE FRACTION a 0.30 /8ECTI0N GAS VELOCITY 8I0*AG • 0,23
RAPPING MMD a 6.000E+00 UM RAPPING SIGMAP ¦ 2,50ftE*00

-------
PARTICLE SIZE RANfiE STATISTICS
CORRECTIONS FOR nonioeaLITIES USING SET Mq. ti OF CORRECTION PARAMETERS
SIZE
2.000E-07
«,OOOE-07
7,000E-07
1.100E-06
1,600E-06
2,3001-06
3,S00E-06
0,300E-06
6,000E-06
6.500E-86
1,250E-05
2.000E-05
2.730E-05
EFFICIENCY - stated ¦ 99'.60
CCF
INLFT X
OUTLET *
cdr. outlet *
NO-RAP EFF,
NO.BAP N
NO-RAP P
COR. EPF,
COR. N
2,121
0' Oil
0.l?ll
0.1125
63.10 61
3,759
16,6519
82,2256
3,622
1,510
0,251
l'3076
1,1716
76.5857
3.a«o
21,0103
75,8178
2.976
1,297
0,901
0.9012
0,0610
75,0008
2,901
20,5952
70,1886
2.800
1,186
o.eis
U',1620
3,986*
76,8661
3,069
23,1337
70,0566
2.86?
1,110
r.520
7.1691
6,9771
78.6157
3,236
21,3601
76,0102
2.995
1,081
1^520
14.9909
10,7010
80.7261
3.052
19,2717
78,1561
3,190
1,059
1 .652
6,7015
6,9558
81.5156
3,500
18,0600
78,0126
3,176
1 ,006
1,652
6,7972
7,1606
811630
3,522
16,6170
76,7126
3.057
1,015
1.982
6.8997
7.7218
80.2118
3.871
15,7682
79,6550
3,139
1,020
1,100
10,1002
10,6128
86,1077
0 1 <13
11,8523
82.9100
3,700
1,017
0,806
12,2160
12,2069
88,5813
0,550
11,0187
86,8029
0,206
1,010
12,115
9.2210
9,1010
96,5521
7.061
1.0077
95,9715
6,735
1,008
67.001
15'.3608
1O.106A
98.9677
9,589
1,0121
98,9069
9,069
COB. P
17,7700
?«,1822
M.itia
>5,511"
21,9*98
21,8017
21,9872
21,2670
20.JUO6
17,0096
IS,1971
4,0265
1,0911
COMPUTED e 99,5191
CONVERGENCE OBTAINED
ADJUSTED NO-RAP EFF. » 95>700
HMp OF INLET 81 ZF DISTRIBUTION c O.afcSE^Ol
8IGHAP OF INLET SIZE DISTRIBUTION a S.122E+00
LOG.NORMAL GOODNESS OF FIT ¦ 0,960
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS « 6.220E+00
8IBMAP OF EFFLUENT UNDER NO-RAP CONDITIONS a 1.152E+00
LOG-NORHAL GOODNESS OF FIT b 0,990
co	PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS ¦ 6,060
SIQMAGB 0.250 WITH ft.500 SNEAKAGE OVER fl',000 STAGES
NTEMP ¦ 1
RMMD a 6,00
RSIGMA ¦ 2,30
CORR, EFF. ¦ 90',7780
CORRECTED HMD OF EFFLUENT o 6,l92E*00
CORRfcTEO 8IGMAP OF EFFLUENT s J,065E*00
LOB-NORMAL GOODNESS OF FIT • 0,991
CORRECTED PRECIPITATION BATE PARAMETER a 6,19

-------
UNADJUSTED MIGRATION VELOCITIFS ANf) EFFICIENCIES, AND DTSCRFTE OUTLET HASS LOADINGS
IDEAL UNADJUSTED
IDEAL ONAOJUSTED
NO«B»P
BABPJNG PUPF
SO-RAP+RAP PUFF
HAPPING PUFF
PARTICLE
MIC, VEl', (CM/SEC )
EFFICIENCY(X)
DM/()LOGOCMG/DSCH)
DH/OLOr.KMC/DSCM)
DM/OLOGD(*G/OSCn
DISTRIBUTION^)
01 AM,(M)
j'.790E»00
ft, 360E + 01
e^issE-oi
5.516E-02
8.734E>01
5.330E-02
2.000E-07
J.086E+00
8.10UE+ni
1 .*9TE + 01
6.2226-01
1.959E+01
?i806E*01
a.000E-0 T
J.918E+00
0.457E+O1
6.JS1E+01
3.0S7E+00
6,l87Et01
1.586E+00
7.000E-07
a'.769E + 00
8.972E+01
«,J1SE+01
B,730E*00
9,261E + 01
?,8J«E+ori
1,10 OE *06
5.911C+00
9,U0«E+Ol
t,UI»OE*02
1 .707E + 01
1.571E~0 2
5,T20E*00
1.600E-06
8,0l9E+00
9.782E+01
2.270E+02
J.62fcE*0l
2.57?E*02
1,S08E*01
2,500E»Ofc
1.0J7E+01
9 > 929E+01
2,176E*02
ur i2«E*oj
2.5661*02
8.358E+00
3.300E-06
1.2TSE+61
9,977E+01
l,878E+02
5E*01
2.3«flE*02
l,lfl5E*01
O.SOOC-Ob
J.6J0E>01
9.99bE+01
l,69lE+02
<1, 909E + 01
2.182E*02
1.310E+C1
6.900E.O*
2f223E+01
1 .000E+02
l,9fc5E+02
«.593E»01
2.4Sae«02
l,565Ef01
8.508E.06
J,lUfeE+01
lj,0OOE
-------
SUMMARY TABLE OF ESP OPERATING
PARAMETERS and performance
OATA SET NUMBER «
FSP PERFOBMANCE I EFFICIENCY a 9U.7T80 X SC* ¦ «.7*>9EtO! M»*?/(M»»J/SEC)
ELECTRICAL CONOITION8I AVG, APPLIED VOLTAGE ¦ «. 150Cf ft
-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS for NONIDEALTTIES USING set no. 5 OF CORRECTION parameters
SIZE
2,000E-07
1,OOOE-07
7,OOOE-07
i,100E-06
1 ,600E >06
2.500E-06
J,500E-06
1.500E-06
6,000E-06
8,500E-06
l,250E-05
2.000E-05
2.750E.05
CCF
INLET X
OUTLET * COR, OUTLET
X NO-RAP EFF
, NO-PAP W
NO-RAP P
COR. FFF.
COR, W
CpR'. R
2,123
0,033
0,0728
0,0716
64.3675
2,16a
35.6325
62,5998
2.062
37,4002
1.530
0,253
0.6774
0,6523
56.7538
1,758
43.2162
55,5445
1,700
44,4555
1.297
0,903
2,1961
2.4386
55.3530
1,691
44,6170
53,1378
1.603
16,5622
1,188
0,815
2,1898
2,2305
56,6033
1,750
13,3967
52,8117
1,575
47,1883
1.130
1,520
3,9380
«,0507
5H.1518
1,827
11,8452
51,0517
1,630
45,9483
1.083
3.521
0,7495
9.0233
59.8988
1 ,916
00,1012
55,8516
1,714
41,1181
1,059
1,652
<*.0669
1.338?
60,2386
1,934
39,7614
51,7223
1 ,661
15.2777
1.046
1,652
a,134?
1,5714
59.5802
1.899
40,1198
52,2882
1,552
07,7118
1,035
1,982
4,5999
5,1374
62.5155
2.057
37,1845
55,3085
1 ,689
11.6915
1,024
3,30"
7.2745
7.7914
64.4392
2,168
35,5608
59,3410
1,887
10,6590
1,017
4,816
9:7«ii
9.9122
67,5336
2,359
32,4664
64,7330
2,185
35.2670
1,010
12,113
13,0892
12,9019
82,5497
3,660
17,1503
81,6383
3,551
18,1617
1,008
67,001
38.9707
36,8805
90,6614
1,971
9,3386
90,5656
4,950
9,4341
CV • !
STATED a
99.60
COMPUTED a
99,5393
CONVERGENCF
OBTAINED



ADJUSTED NO.RAP EPF, ¦ 83',8185
HMD OF INLET SIZE DISTRIBUTION ¦ 1.465E+01
SIOMAP OF INLET SIZE DISTRIBUTION ¦ 5.122E+00
LOG.NORMAL GOODNESS OF FIT n 0,981
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS a 1.3S2E+01
8IGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 3.903E+00
LOG-NORMAL GOODNESS OF FIT o 0,986
PRECIPITATION R*TE PARAMETER UNDER NO-RAP CONDITIONS o 5.823
SIGHAG" 0.250 WITH 0,700 8NEAKAGE OVER 4.000 STAGES
NTEMP ¦ 1
RMMD ¦ 6,00
R8IGMA ¦ 2.50
CORR'. EFF. a 8?'.7588
CORRECTED mmd OF EFFLUENT ¦ 1.267E+01
CORRECTED SlGHtP OF EFFLUENT ¦ 3.773E*00
LOG-NORMAL GOODNE8S OF FIT ¦ 0,988
CORRECTED PRECIPITATION RATE PARAMETER « 3,69

-------
UNADJUSTED H J fin A T T ON VELOCITIES AND EFF ICIENCIFS, ANO DISCPET^ OUTLFT MASS LOADINGS
IDEAL UNADJUSTFD
IDEAL unadjusted
N0-9AP
RaPPTNG puff
no«rap*rap puff
RAPPTNr} PUPP
PaUTTCLE
MIC, VEL.fCM/SECI
EFFICIENCY*)
OM/oLOGPfMG/OSCM)
o>«/dlO(;d(*g/dsc*>
DH/D|.0GDfMG/08CH1
DISTRIBUTION^*!
niAM.fM)
3,790E+00
6.160E tnl
1.751E+00
8.<>86E»02
1 .83RE + 00
5,351E«02
2.000E.07
3,fl66E*00
P.tOflE+ni
3'.SflUE»0t
9.79BE-0J
3.t>0?E + 0l
2.P06E.01
4, 000E«07
3,918E»00
B.«57FfPl
1.1 ??E *i)Z
«.P13r*no
1.170E+02
1 .586E + 00
7.000E-07
«,769E*10
0.972E+O1
1.573E+02
1 ,37SE*0I
1,7 11E + 02
2.83flE«00
1.100E-06
5,9UE*00
9,«0«E*01
2, 7ii?E + 02
2.,M2E + 02
J.U6aE»01
6.978E+02
1.01SE+01
2.0OOE-O5
6.630E+01
1.000E+02
5.S80E+03
6.033E*01
5.905E+03
5,918E*00
2.750E.05
U)
CO
CO

-------
SUMMARY TABLE OF ESP OPERATING
PARAMETERS and PERFORMANCE
Dili SET NUMBER S
eSP PERPORMANCEl FFFICTENCV » 82.75B2 * SCA ¦ tt.769E*01 M**2/fM*»j/8EC)
ELECTRICAL CONOITTONSi	AVG. APPLIED VOLTAGE b O.159E+0H V
AVG, CURRENT DENSITY a 18,0« NA/CM**2
RESISTIVITY b 5.000E+10 OHM-CM
SIZE DISTRIBUTIONS!	INLET HMD a 4,«65E«01 UM INLET SIGMaP b 5.122E+00
OUTLET MMD o 1.267E+01 IIM OUTLET 8I9MAP ¦ J.T7JE+00
NONIDEAL PARAMETER81 GAS BREAKAGE FRACTION a 0,70 /SECTION OAS VELOCITY 8IGMAQ « 0,25
RAPPING HMD a 6.000E+00 UM RAPPINO SIGMAP a 2,500E*08

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FnR NONIOEAtI TIES USING SET no', 6 OF CORHEC TI Of-1 PahametebS
SIZE
2.000E-07
1.000E-07
7.000E-07
l,100E-06
1.600E-06
2,500E-06
3.500E-06
4.500E-06
6,000E-0fc
8.500E-06
1,250E-0S
2,oooe«o5
2.750E-05
CCF
2.123
1 .510
I ,?97
1.188
1.131*
1.083
1,05'
1.0(16
1.055
1,02«
1.017
1.010
1.008
INLET X
0.011
0.253
0,90 3
0.815
1 .520
3^524
1.652
1.652
1 .'82
3.301
0,816
12.115
67.101
OUTLET *
0,2911
1.71 15
1 7'.euoi
12.9822
1B'. 0 3 31
26'.0236
8'. 3261
6.388?
3.0611
i'.65«
0,6293
0.0192
0.0251
EFFICIENCY - STATEP * 99.60
COR, OUTLET
X NO-RAP EFF
, MO-PAP W
Nn-kAP P
COR. FFF.
COR, *
COR, P
0,2008
"7.6762
7.888
2.3238
97.1J36
7,663
2,5861
3.0239
95.0987
6,323
1,9013
91,9190
6.217
5,0810
1 1.6553
91,7976
6. 198
5,2021
94,5130
6,086
5,1870
'.1178
95.8076
6,650
1,1921
"5,2111
6.SS6
4,755'
13.3118
96.8775
7 268
3,1225
96,2678
6.891
3,7322
21,0971
98.0561
8.262
1,9136
97,4550
7.697
2.5450
8,3101
98.6735
9.063
1.3265
97,8538
8.054
2,1162
8,1661
98.9823
9 619
1,0177
97,8986
8,099
2.10H
6'. 8681
99.5935
11.513
0,1065
98,5225
8,837
1.4775
6,9160
99.8678
13,898
0,1322
99.U02
9,900
0,6698
5,1338
99,9656
16,735
0,0342
99,5196
11,328
0,4504
3,8598
99.9996
18,821
0,0001
99,8616
13,847
0.1354
2.2557
99.9999
66,301
0.0001
99,9858
18,57*
0,0142
COMPUTED a
99,5393
CONVERGENCE
OBTAINED



ADJUSTED Mn»RAP EFF, a 
-------
UNADJUSTED MIGRATION VELOCITIES AND
FFFICIEWCIPS, and
DISCRFTE OUTLET MASS
LOAntNGS


IDEAL UNAOJUSTEC
IDEAL UNADJUSTED
NO.RAP
barring puff
no-rap+rap PUFF
HAPPING PUFF
particle
MI6, VEL'. (CM/SEC)
EFFtCIENCV(*J
dm/dloso (wr,/DSC«i
OM/DLOGD(MG/dSCHJ
DM/rtLOGO(MG/DSCH)
DI3T»ieUTI0N(*)
OIAH.(M)
3-,790E*90
8. J60E + 01
t, iaZE-0)
1 .29JE-92
1.271E-01
s,i?9E.e?
2,909E»97
3,«86E*00
0,10UE + 01
3.971E+90
1 .U56E-91
«. 117E + 90
2.806E-01
0,909E-07
S,916E+00
6,«57E+9t
1f308E+01
7.19JE-01
1^J79E*0|
1 ,584E*99
T.OOOE-OT
fl,769E*90
6.972E*rtl
1,520E»91
2,0«3F*0n
1 .T20C + 91
2 a 63 UE4 00
1, ] 0OE«06
5,'tIE+00
9,
so

-------
summary table: of esp operating
PARAMETERS ANfl PERFORMANCE
DATA SET NUMBER 6
ESP PERFORM ANTE I EFFICIENCY s 99,5749 * SC* ¦ «.769E*0l M*»2/(M*»3/SEn
ELECTRICAL CONDITIONS! AVG, APPLIED VOLTAGE ¦ «,159E*0U V
AVG, CURRENT DENSITY o 1S,04 NA/CM*»2
RESISTIVITY a 5.000E*10 OHM.cm
SIZE DISTRIBUTIONS!	INLET mmd « «,U65E*0l UM INLET 8IGMAP ¦ 5,128C»00
OUTLET HMD « 2,95fcE+00 IJM OUTLET 3IQMAP a 2,t.06E*00
NONIDEAL PARAMeTERSi GAS SNEAKAGE FRACTION ¦ 0,10 /SECTION GA9 VELOCITY 8IQMAG ¦ 0.10
RAPPING MHO a fc.flOOE+OO UM RAPPING SIGMAP a 8,500E*00

-------
PARTICLE SIZE RANRE STATISTICS
CORRECTIONS FpR NONIDEALITIE3 using SET NO. 7 OF CORRECTION parameters
SIZE
2,000E-07
0,000E-07
7,0O0E-07
1.100E-06
1,600E-06
2.500E-06
3,500E-06
0,500E-06
6,000E-06
6.500E-06
1,250E«05
2,000E-05
2.750E-09
CCF
2.133
1.530
1,297
1,186
1,130
1 , 063
1.059
1.0116
1.035
1,020
1,017
1,010
1,008
INLET *
o', 033
0^293
0,903
0.819
1.520
3.521
1,652
1,652
1,962
3,301
<1,806
12, US
67,001
OUTLET *
0'2197
3,0620
13,2808
10,3039
15,580(1
25j'676
9,5269
8^2266
5,3236
0,5539
3,1180
0.3371
0.0790
COR, OUTLET *
0,1*19
2,«751
9,653T
7,9879
12,5213
21,9763
9,1667
9,1060
7,7033
7,9025
6,0191
3,3799
1,839a
NO-RAP EPF,
96,1865
92.8186
92,2810
93.3608
90,6205
96.1328
96.9735
97,3866
98.5900
99.2766
99.6623
99.9850
99.9990
EPFICIENCT - STATED s 99'.60
COHPUTfO a 99.5393
NO-PAP W
NO-RAP P
COR, EFF,
COR, W
6,850
3.8U5
95,8051
6,6«9
5.322
7.1810
98,5563
9.007
5,371
7.7186
91,8660
5,261
5,688
6,6352
92,5025
5,0«3
6 128
5,3795
93,7305
5,807
6.820
3,8672
95,2550
6,391
7.330
3.0265
95,7771
6,635
7.601
2,6130
95,8050
6,609
8.936
1.0096
97,0273
7.371
10.335
0.7230
96,1709
8,390
11,932
0.3377
99,0509
9,770
18,517
0,0106
99,7877
12,905
66.300
0.0006
99,9792
17,779
CONVERGENCE
OBTAINED


COR, P
0,1909
7.00J7
6,1300
7,0575
6,2695
0,7050
0,2229
4.1950
2,9727
1,8891
0,9051
0,2123
0,0208
ADJUSTED NO-RAP EPF. ¦ 99,0752
HMD OF INLET SIZE DISTRIBUTION a fl,065Eioi
8IQMAP OF INLET 8IZE DISTRIBUTION a $,l!2E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0,980
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 2.195E+00
SIGMAP OF EFFLUENT under NO-RAP CONDITIONS » 2.189E+00
u	LOG-NORMAL G000NE8S OF FIT ¦ 0,996
£	PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS o 11.007
SIGMAQi 0.000 WITH 0,100 SNEAKAGE OVER 0.000 STAGES
NTEMP ¦ 1
RMMD a 6,00
RSIGMA ¦ 2,JO
CORR. EFF. ¦ 99.2391
CORRECTED MMD OF EFFLUENT • 3.093E+00
CORRECTED 8IGMAP OF EFFLUENT ¦ 2.523E+00
LOG-NORMAL G00DNE8S OF FIT ¦ 0.990
CORRECTED PRECIPITATION RATE PARAMETER ¦ 10,33

-------
UNADJUSTED MIGRATION VFIOCITIFS AND F*H C. T FNC IE 8 $ AND DISCRETE OUTLET MASS LOADINGS
IDEAL UN»t>Ju8TFD
tt>e»l UNADJUSTED
NO.RAP
RAPPING PUFF
NO«RAP*RAP PUFF
RAPPING PUFF
PARTICLE
HIG, VEL.fCH/SEC)
EFFICIENCY*)
nM/ouoGO(MG/nscMi
DM/n(.OGO(MG/OSCM)
OM/DLOGnCMG/OSCM)
OISTRIBUTION(t)

3.790E+00
A. 360E*01
1^87JE-01
1.88UE-0?
2,P6tE-01
5. j5ne.o?
2.000E-07
3.U86E+00
8.10«E+01
5,819E + 00
2.125E-01
6.031E+00
2.806E-01
u, OOOE»07
3.918E+00
fl'.U57E + 01
1.9U0E + 01
l.nuoEtoo
2,0«uF*ni
1 ,58(tEt00
7.000E-07
«.769E*nO
8.972F*0l
?.ao6E*ni
5.o82E+on
2.70UE+01
2,83aE*on
talnoE>06
5^911E+00
9.U04E+0!
3,5?5E*01
S.831E+00
<4.1 OBEf 01
5.720E+00
1 ,600E»06
8.019E+00
9,782E*0!
U.5SUE+01
l .eiuE+oi
5.588E+01
1,308E*01
2.500E-06
1,037E+01
9.929E + M
S,5*3F+01
l.aoeEtoi
«,97tEf01
8.356E+00
3.500E-06
l,2TUE*0t
9.977E+01
2, e>^3E + 01
l.593E+01
4.22bEt01
1,105E+01
U.S00E-06
1.630E+01
9,996F *01
1,S12E+01
I,h77E+01
3 a 189E +01
J,310E*01
6.000E-06
2,223E*01
1.000E*02
1.026E+01
1,5b9F*0t
2.595E+01
l.sase+oi
8.500E-06
3,lflbE*01
l,OOOE»f>2
6,8«5E+rtO
t.23BE+01
J.927E+01
1,2«5E»01
1,2506-05
4(B82E+Q1
1 .000E + O2
S.5S0E-01
7.5\2Et00
8,067E+nO
1.013E~01
2,0O0E*05
6.630E+01
1000E + 02
j'.89aE-01
t.308E+01
l.J«7E+tl
•j,9iee*oo
!,750t»05
u>
vo

-------
SUMMARY table OF ESP OPERATING
PARAMETERS and PERFORMANCE
DATA SET NUMBER 7
ESP PERFORMANCE! EFFICIENCY ¦ 99.J391 * SCA ¦ 0.T69E»01 M*»?/(M**J/SEC>
ELECTRICAL CONDITIONS! AVG, APPLIED VOLTAGE ¦ U.159E+0U V
AVG, CURRENT DENSITY a 18,00 NA/CM*»J
RESISTIVITY * 5,oeOE*10 OHM.CM
SIZE DISTRIBUTIONS I INLET MMD p O.fl65E*0l UM INLET SIGHAP ¦ S'.122E+00
OUTLET HMD a J.09JE+00 u« OUTLET 8IGMAP ¦ 2,3831+00
NONIDEAL PARAMETERS!	GAS SNEAKAGE FRACTION a 0,10 /SECTION OAS VELOCITY SIGMAQ ¦ O.flO
RAPPING HMO n b,A0OE+00 UM RAPPING SIGMAP ¦ Z,900E+00

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONIPEAL tTIES USING SF.T NO, P OF CORRECTION PARAMETERS
SIZE
2,000E-07
4,OOOE-07
7,000E-07
1, 100E-06
1,600E-06
2,500E-06
3.500E-06
4,500E-06
6.000E-06
8.500E-06
i.asoE-os
2,OOOE-OS
2.750E-05
CCF
INLET X
OUTLET X
COR. OUTLET
X NO-RAP EFF
, no-rap u
no-Rap p
COR, EPP.
COR, W
COR. P
2.123
0.0 5 J
0'.2123
0,1707
94.5710
6,053
5.6290
95,8676
5.855
6.1321
1.550
0,253
2,8175
2.1550
90.2545
4,882
9,7455
69,9101
4,809
10,0899
1.297
0.903
10.8492
8.4231
89.4860
4,723
10.5140
88,9405
4.617
11,0595
1.180
0.815
8,7455
7,197?
90.6096
4,960
9.5904
89,5297
4.731
10,4703
1.150
l'.520
15.8751
11.7577
92'0129
5,299
7.9871
90,8445
5.013
9,1557
1.005
3,521
24.9052
21,8081
95.8154
5,835
6.1846
92,6627
5,177
7,3373
1,059
1,652
9.7151
9.5580
94,8548
6,221
5.H52
95,2858
5,662
6.7162
t ,046
1,652
ft.7750
9.5689
95.5527
6,454
4.6175
95,2760
5,660
6,7240
1.055
1,982
6.4826
8.2158
97.1578
7,451
2,8622
95,0855
6,317
4,9147
1.024
5,50«
6"5752
8,8977
98^2590
8,495
1.7410
96,8071
7.221
3,1929
1.017
4,816
5,5095
7,5265
99.0051
9,666
0,9949
98,2075
8,432
1.7925
1.010
12,115
1.0816
5,4506
99,9219
15,001
0.0781
99,6625
11,952
0,3377
1.008
67.401
0.4612
1.8927
99,9940
20,175
0.0060
99,9667
16,789
0,0331
ICY • 1
STATED b
99.60
COMPUTED b
99.5595
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, B 99.1249
HMD OF INLET SUE DISTRIBUTION b 4,465E*01
SIQMAP op INLET 8IZE DISTRIBUTION b 5'.122E + 00
LOG-NORmAl GOODNESS OF PIT • 0,984
HMD OP EPFLU6NT UNDER NO-BAP CONDITIONS a 2.572E+00
SIGMAP OP EPPLUENT UNDER NO-RAP CONDITIONS b 2,297E*00
LOG-NORMAL GOODNESS OF PIT b 0,996
PRECIPITATION PATE PARAMETER UNDER NO-PAP CONDITIONS ¦ 9.9JS
SIGHAGB 0,600 WITH 0,100 SNEAKAGE OVER A.000 STAGES
NTEMP b 1
RHHD ¦ 6,00
R8IGHA b 2,50
CORR'. EPP. b 96.6140
CORRECTED HMD OP EPPLUENT ¦ 5.279E+O0
CORRECTED 8ICMAP OP EPPLUENT ¦ 2.514P+00
LOG-NORMAL GOODNESS OP PIT b 0.996
CORRECTED PRECIPITATION RATE PARAMETER ¦ 9,50

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
MIQ, VEL'. (CM/SEC)
3'.790E*00
3.4B6E+00
3,918E+00
«,769E*00
5,9|1E+00
8.019E+00
1,037E*01
l,274Em
1.630E+01
2,223E+01
J,106E*01
«,662E+0t
6.630E+01
IDEAL UNADJUSTED
EFFICIENCY!*)
8. Jt>0E*n 1
8, 1 04E + 01
8,«S7E*01
8,972Ef01
Q, <40aE + 01
9,782cm
9.929E+01
9,977E+01
9f996E+01
1.OOOE+02
1.000E+02
l,OOOE+92
1.OOOE+02
NO-RAP
OM/OLOGD(MG/DSCM)
2,766E»()1
7,89ftE+00
2,h«2E+01
3,«05E+01
5,Z3«E»01
7.283Etfl1
6,057E+01
U,t)fl2E + 01
3.070E+01
2pfl70E*01
2,029E*01
2,969E+00
3.798E+00
RAPPING PUFF
DM/DLOGD(MG/DSCH)
2,fl7flE»02
2.790H-01
1.37lE*0f>
3.915E + 0 0
7.657Et00
1.357E+01
1.849E+01
2.092E+01
2,202E+01
2» 060E + 01
I,A26E+01
9,B65E*i)0
1.718E+01
NO"RAP*RAp PUFF
DM/DL05DCMG/DSCN)
J.OlilE-Ol
8.175E+00
2.780E+01
3.796E+01
5.999E+01
8.641E+01
7.906E+01
6,7706
8.500E.06
1.J50E.05
2.000E.05
2.750E-05

-------
SUMMARY table OF ESP OPERATING
PARAMETERS and PERFORMANCE
DATA SET NUMBER 8
ESP PERFORMANCE I EFFICIENCY a 98.81<1F + 01 M««2/( m««J/SEC )
ELECTRICAL CONDITIONS! AVB. APPLIED VOLTAGE o U.159E+0U V
AV6. CURRENT DENSITY b 18,00 NA/CM**2
RESISTIVITY ¦ 5.000E+10 OHM.CM
SIZE DISTRIBUTIONS) INLET mmd o U.«63E*01 UM INLET SIGHAP c 9.182C+00
OUTLET MHO ¦ J.27«+00 UM OUTLET 8I8MAP a 2.5l«E*00
NONIDEAL PARAMETERS!	GA8 SNEAKAGE FRACTION ¦ 0,10 /SECTION GAS VELOCITY SIGMAG • 0,60
RAPPING MMD « 6.000E+00 UM RAPPING 8IGMAP ¦ 2,500E»00

-------
particle size range statistics
CORRECTIONS FOR NONIOEALI TIES USING SET NO. 9 OF CORRECTION PARAMETERS
SIZE
2,0O0E-07
4.000E-07
7.000E-07
1.100E-06
l,600E-06
2,500E-06
3.500E-06
4.500E-06
6,OOOE-06
8,500E-06
1.250E-0S
2.000E-05
2.750E-05
CCF
INLET X
OUTLET *
COR, OUTLET X
NO-RAP EFF,
NO-RAP W
NO-RAP p
COR, FPF.
COR, N
COR. P
2.123
0,033
0.1908
0,1607
91.8187
5.249
6,1813
91,1735
5,090
8,8265
1.530
0,253
2,3418
i,ee93
86,9043
4 262
13,0957
86,4629
4,193
13.5371
1.297
0.903
9,016?
7,3850
85.8735
4 103
14,1265
85,1745
4.002
14.8255
1,188
0,815
7,4873
6,4657
87' 0024
4,278
12.9976
85,6185
4,066
14,3815
1.130
1,520
12,3234
10,8737
88,5295
4 540
11,4705
87,0318
4,283
12,9682
1.083
3,520
23,3765
21,1161
90,6149
4.961
9,3851
89,1377
4,654
10.8623
1 ,059
1.632
9,5059
9.2538
91,8589
5.259
8,1411
89,8455
4,796
10.1545
1.046
l',bSZ
8,8244
9.3126
92,4426
5,415
T.5574
89.7811
4.782
10.2189
1.035
1,982
7,1634
8,U66A
94.8866
6,234
5.1134
92.2561
5.364
7.7439
1.024
3,301
8.1009
9,7140
96,5311
7.048
3,4689
94.6703
6,147
5.3297
1.017

-------
UNADJUSTED MJCPATTON VELOCIT ICS AND EFFICIENCIES, AND DISCRETE OUTLET HA89 LOADINGS
IDEAL UNADJU8TE0
I DEAL UNADJUSTED
N0»RAP
CAPPING PUFF
NO-RAP+RAP PUFF
R4PPJMQ PUFF
PARTICLE
*10, VEL.CCM/8EC)
EFFICIENCY(X)
DM/OL06D(HC/03CM)
OM/OUOGD(MO/OSCM)
DM/DLOSOfMO/DSCK)
DISTRIBUTION*)
DIAM.(M)
J,790E+00
8.360E+01
ujo?nE-01
3.170E-02
U.3J7E-01
5.350E-0?
2.000E-07
S,l
",fil3E*00
8,U98E+01
*,720E*00
1,6001*06
a.o19c*o o
9.782E+01
1.105E+02
1«710E+0 J
1.279E+02
1.308E+OJ
2,300E-06
1,037E+01
9.929E+01
9,58
-------
summary table of E8P OPERATING
PARAMETERS and PERFORMANCE
DATA SET NUMBER 9
ESP PERFORMANCE I EFFICIENCY c 98.1A72 * 3CA « 
-------
PARTICLE ST7E RANGE STATISTICS
CORRECTIONS FOR NONIOEALlTIES USING SET no. 1 OF CORRECTION PARAMETERS
8IZE
21000E-07
4,OO0E-O7
7,000E-07
1,I00E-06
1,600E-06
2,900E-06
3,500E«06
0.900E-06
6,0O0E-06
S,900E-06
l,250E-05
2,0O0E»O5
2.TS0E-05
EFFICIENCY - STATED ¦ 99.60
CCF
INLET *
OUTLET *
COR. OUTLET *
NO-RAP EFF
2,123
ol 033
0,3449
1,05S1
98,7634
1.530
0.253
6.403*
5.5619
97.0053
1.297
0.903
24'0564
18.74SU
96.8480
1.188
0,815
16.224?
14,6035
97.6U47
1,130
1,520
20'. 1366
18.1465
21,9693
98,UJ26
1,083
3,524
23' 1421
99.2230
1,059
1,652
5.6379
6,8900
99.5962
1,046
1,652
3.2086
5.4251
99.7702
1,035
1,982
0,7054
3,4191
99,9579
1,024
3,304
0.0695
2,3550
99.9975
1,017
4,846
0,0041
1,1384
99.9999
1,010
12,113
0,0102
0,5281
99.9999
1,008
67.401
0.0569
0.1595
99,9999
COMPUTED b 99.5393
NO-RAP *
no-rap p
COR, EPF.
COR, w
COR, P
9,210
1,2366
92.9135
5.550
7,0869
7,356
2,99
-------
UNADJUSTED MIGRATION VELOCITIES AND EFPICIFNCIFS, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
MIC, VEL'. fCM/Sm
3.790E+00
J.US6E+00
3^918E4OO
#,769E+O0
5.911E + 00
8.019F+00
1,037E*01
!,2T«F*01
t,638E*0l
2.22Se«01
J, 146E+01
«,882E+01
6.630E*01
IPFAL UNADJUSTED
NO-RAP
RAPPING PUFF
N0-RAP»RAP PUFF
RAPPING PUFF
PARTICLE
EFFICtENCY(X)
OM/n^ORD(MG/ftSCM)
DM/DLOGn<*G/OSC>0
DM/DLOGD(MG/DSCM)
DI8TRIBUTIONCX)
DIAM.(M)
8.360Et01
6,077E-02
2.875E-01
3,
-------
SUMMARY TABLE OF E8P OPERATING
PARAMETERS AND PERFORMANCE
DATA SET NUMBER 10
ESP PERFORMANCE I EFFICIENCY » 99,77B« X SCA ¦ «'.769Et0l M*«2/(M«*3/8EC)
ELECTRICAL CONDITIONS! AVG, APPLIED VOLTAGE ¦ «,159f+0a V
AVG, CURRENT DENSITY • tS.Ofl NA/CM**J
RE3I8TIVITY a S.OOOE+tO OHM-CM
SIZE DI8TRIBUTTONS1 INLET mmd ¦ 8.065E + 01 UM INLET SIGMaP ¦ s'.122E*00
OUTLET MMD ¦ t.mE + OO UM OUTLET SIGMAP o t.227E*00
NONIDEAL PARAMETERSl OAS SNEAKAGE FRACTION a 0.80 /SECTION GAS VELOCITY 8ICHA6 ¦ 0,00
RAPPING MMD a 2.000E+00 UM RAPPING SIGMAP ¦ 3,500E*00

-------
PARTICLE SIZE range STATISTICS
CORRECTIONS COR nqniPEALITIES USING SET no. 2 OF CORRECTION PARAMETERS
SIZF
lf000E-O7
~,000E*07
7,00OE-07
1,100E-06
1,600E-06
2,500E-06
3.500E-06
4,500E-06
~,00OE-O6
8,500E-06
l,250E-05
2,000e-05
2.750E-05
CCF
INLET X
outlet X
2.123
0.033
0,2645
1.530
0^253
4.0629
1,297
0,903
15,5003
1.166
0,615
11,6397
1.130
1,520
16.6762
1,063
3.52"
26.2590
1,059
1,652
9^ 0557
1.006
1.652
7,4341
1,035
1,962
<1,2065
1.02
-------
UNADJUSTED MIGRATION VELOCITIES and EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
I0EAL UNADJUSTED
MI6, VEL'.fCM/SECJ
3l790E tOO
3.0B6E+00
3.919E + 00
U.769E+00
5,91lEtOO
B.019E+00
J,037Et01
l,27«Et0l
l,6J0Et01
2,22JEt01
3,lfl6Et01
fl,882E*01
6.630Et01
IDEAL unadjusted
EfdCIENCVt*)
8.360E+01
8. lOUEtOl
8,«57E*Ol
8.972Et01
9,«0«Et0l
9,782Et01
9,9?9Et01
9.977E*01
9^996Et01
l|>000Et02
1 J.00OE4-02
i,000E+02
J.OOOE+02
Nf|-»AP
DH/DLOGD(MG/OSCM)
t,a?aE-oi
fl,70«Et00
),5fc0Et01
B72Et01
2,630Et01
J,173Et01
2,J13Et01
1.619E+01
8,239Et00
O,619Et00
2,aEt01
7.000E.07
l.n9UEt01
2.966E«0l
1,27OEt01
1,100E»06
1.320Et01
3.950E+01
1.386Et01
1t600E*06
1.330Et01
U.502E+01
2a06lEt01
2.500E.06
1.10UE+01
3.U77E+01
8,317E»00
3.500E.06
9,368Et00
2.376E*01
7.9S7Et00
(I.SO0E.06
6.11UE+00
l'.505e + 01
6.S22Et00
6,OOOE»Ot>
a,J 18Et00
8,7S8Et00
01966E tOO
8.900E.06
l,981EtOO
fl.u25Et00
2,u39Et00
i ,2soe>os
6.B55E-01
7.966E-01
1i132Et00
2.000E.0J
6.180E-01
6.80SE*01
J,U2flE»01
2.750E-05
O

-------
SUMMARY TABLE OF ESP OPERATING
p»b*meteps and performance
DATA SET NUMBER 11
E8P PERFORMANCE I	EFFICIENCY a 99,aflS5 * SC* » «.769E*01 M*»2/(M«#J/SEC)
ELECTRICAL CONDITION31 AVG, APPLIED VOLTAGE a fl,15<»E+0a V
AVG, CURRENT DENSITY ¦ 18,0" NA/CM**S
RESISTIVITY ¦ 5,OOOE +1 0 OHM^CM
8IZE DISTRIBUTIONS! INLET MMD 0 H. OOOEtOO UM RAPPING 8IGMAP ¦ 2,SOOE»00

-------
parrrci? size range statistics
CORRECTIONS Fqq NOMIOEALITTE9 USING set no'. 3 OF CORRECTION PARAMETERS
SIZE
2.000F.07
«,0O0E-07
7,0OOE-O7
1,100E-O6
1.600E-06
2,900E-06
3,500E-06
fl.900E.06
6,000E-06
8,S00E-06
1.250E.05
S.000E-05
2.7S0E-05
EFFICIENCY - STATED ¦ 0<»'.60
CCF
INLET X
OUTLET *
COR. OUTLET *
NO-RAP EPF.
2,123
0,033
0.1836
0^5649
92'. 7505
1,530
0,253
2^ 3354
2,8471
87.9714
t ,297
0,903
8.8651
9.7250
87,20'2
l.i »a
0,815
Tj1631
8,4262
88,5468
1.130
1,520
11,5362
12,5146
90.1102
1.083
3,521
21.6915
21,4488
91.9780
1.059
1,652
9.0002
8,8434
92.9008
1.046
1,652
6,6513
8.4939
93,1761
1.035
1,982
7,3927
T,1953
95,1397
1.024
3,304
9,1127
8,1737
96,4060
1.017
4,846
9,0758
7.3721
97,5596
1.010
12,115
2,923«
2,5176
99.6856
1.008
67.401
2.0650
1.6753
99.9601
NO-RAP W
5,502
4,441
1,311
U 305
4,851
5,290
5.S46
5.629
6,301
6,975
7,785
12,081
16.408
COMPUTED o 99.5393
no-rap p
COR, EFF.
COR, N
7,2495
71.1598
2.607
12,0286
81.0409
3,487
12,7928
81.8561
3,579
11,4532
82,5618
3,664
9.8898
86,1291
4.142
8.0220
89.7459
4.775
7,0992
90.9793
5.044
6,8239
91,3378
5.129
4,8603
93,8839
5.859
3.5940
95,8322
6,663
2,4404
97,3675
7.626
0,3114
99,6499
11.856
0,0394
99,9581
16.308
obtained


CpR. P
28,8002
18,9591
18,1439
17,4182
13,8709
10,29(11
9,0207
8,6622
6,1161
1,1679
2,6325
0,3501
0.0969
NMD or INLET SIZE DISTRIBUTION o 4.4656+01
SICMAP OF INLET SIZE DISTRIBUTION a 5'.122£*00
LOG-NORMAL GOODNESS OF FIT a 0.964
NMD OF EFFLUENT UNDER NO-RAP CONDITIONS o 3.287E»00
SICMAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 2.550E+00
LOG.NORMAL GOODNESS OF FIT a 0.995
PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS a 9.101
SISMAG" 0.250 WITH 0,300 SnEAKAGE OVER a.900 STAGES
NTEMP a J
RMMD ¦ 2.00
R8IGMA a 1.50
CORR'. EPF, a 98.3153
CORRECTED MHD OP EFFLUENT a 2.Q24E+00
CORRECTED 8IGHAP OF EFFLUENT a 2.6S2E+00
LOG-NORMAL GOODNESS OF FIT a 0,998
CORRECTED PRECIPITATION RATE PARAMETER a 8,56

-------
UNADJUSTED migration VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
MIG, VEL.CCH/SEC)
3j790E»00
3,4S6E«00
J, 91 8E + CI0
~,769EiOO
9^91tE + 00
8,019E»00
1,03TE+01
t,2T«C+0l
1f630E+0I
2,223Et01
3.1U6E+01
«,882E+01
~.6306+01
IDEAL UNADJUSTED
EFFICIENC*(t)
8.360E+01
8.10UE+01
fl.a57E*01
8.'72E*0i
9.ttOUEtOt
9,7 82E~01
9.929E+01
9,9?7E*01
9.996E+01
1,OOCE + 02
1.OOOE+02
1.060E+02
l'.OOOE»02
NO.HAP
DM/D|.OCD(MO/DSCM)
S.542E-01
9,7U6E+00
215E+01
«,H3E*01
fc^ilSOE + 01
9,aa7E+oi
0,397E+01
6,8T5E»01
5,2136+01
5,098E+01
fl,9T6E+01
1r195E+01
2.517E*01
Rapping pupf
OM/DLOGO(MG/D8CH)
1.061E+00
5¦61SE+OO
1.3«5E»01
?. 163E*01
2,609E*01
2.629E+01
2.262E+01
1,852E»01
1.3U7E*01
8,1«1E*00
3.916E+00
1.355E*80
1.222E+00
NO-RAP+RAP PUFF
DM/DLOSDfMC/DSCMJ
i,«iTt*no
1,536E+01
«.560E+01
6.315E+01
9.0896+01
1.20eC + r>2
1.062E+02
8,727E+01
6.561E+01
5.913E+01
5.367E+01
1.331E+61
2.6S9E+01
RAPPING puff
DISTRIBUTION*)
1,86TE»00
U, J9(lE»00
1,266E»01
1,27UE»01
1.58bE»01
2.061E+01
8,31TEfOO
7,9STE*06
6.522E+00
4,96SE»00
8,U39E+00
1,13?E+60
3,u2aE-01
o
VO
PARTICLE
DIAH.(M)
2.000E-07
U.O00E-07
T.O00E-07
1,100E*06
1,600Ea06
2.500E.06
I.SOOE-06
«,509E-0fc
6,OOOE«06
s,gooE»06
1.250E-05
2.600E-03
2.750E-05

-------
summary table of ESP operating
PARAMETERS AMD PERFORMANCE
data 3ET number 12
ESP PERFORMANCE I EFFICIENCY • 98,1193 t SCA ¦ 4.T&9E+01 M**?/(m**S/8EC)
ELECTRICAL CONDITIONS! AVG, applied V0LTA6E ¦ «,15«E*0(I V
AVG, CURRENT DENSITY a 18.04 NA/CM**!
RESIBTIVITY a 5.000E+10 OMM.CM
SIZE DISTRIBUTIONS! INLET HMD s 
-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONIOEALITIES USING SET nq, u OF CORRECTION PARAMETERS
COR
SIZE
2,00OE-O7
4.000E-07
7,0OOE-O7
i ,1OOE-06
I,600E-06
2,500E-06
J,500E»06
4.500E-06
6,000E-06
6,300E-06
l,250E-05
2.000E-05
2.750E-05
CCF
2.123
1.530
J.297
1,186
1.130
1.063
1.05"
1 .046
1.035
1.024
1.017
1.010
1.008
INLFT X
0,033
0,253
0,903
0,815
1.520
3,52«
1,652
1.652
1,982
3,304
4,84b
12.115
67.U01
OUTLET *
0,1213
1,3078
4,9032
4,1624
7,1695
14.9949
6^7415
6.7972
6,8997
10.1042
12'216U
9,2214
15.360 8
OUTLET
0,3528
1.7435
5,9317
5,299a
"1,3209
.,7394
>,9504
9509
8
15
6
EFFICIENCY - STATED ¦ 99.60
6,~
6,8495
9,423?
10,9199
8, J488
15,3695
COMPUTED n 99.5393
-RAP EFF,
Nfl-
RAP W
NO-RAP P
COR. EFF.
COR, W
83.3481
3
759
16,6519
44,1802
1,222
76.5857
3
oau
25.4113
60,0130
2.143
75.4048
2
9111
24.5952
65,6972
2,243
76,8663
3
069
25,1337
66,0452
2,265
78,6557
5
236
21,3645
71,4135
2.626
80,7263
3
452
19,2737
76,6769
3.051
81,5156
3
5"0
1 A.4844
78,0298
3.177
81.3630
3
922
18,6370
76,0282
3.177
84,2518
3
873
15.7682
81.9535
3.590
86,1477
4
145
15,8523
85,1066
3.993
88,5813
4
550
11.4187
88,2329
4,087
96,5523
7
061
3.4477
96.4876
7,022
98.9677
9
589
1.0523
98,9612
9,582
COR. P
55',8198
35,9870
34,3026
33,9508
(6,5865
23,3331
21,9702
21,9718
16,0465
14,8934
11,7671
3,5124
1.0358
convergence obtained
ADJUSTED NO.RAP EPF. ¦ 95'.4700
HMO OF INLET SIZE DISTRIBUTION > 4,U6SE*01
8IGMAP OF INLET SIZE DISTRIBUTION a s'.122E*00
LOG-NORMAL GOODNESS OF FIT ¦ 0.984
MHO OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 6'.224E + 00
8IGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 3,l32E«00
LOG-NORMAL G00DNE8S OF FIT • 0.990
PRECIPITATION RATE PARAMETER UNDER NO.PAP CONDITIONS ¦ 6.488
SIGMAGP 0.250 WITH 0,500 SNEAKAGE OVER 4.000 STAGES
NTEMP • 1
RMMO a 2,00
RSIGMA ¦ 2.50
CORR*. EFF. ¦ 94'.7760
CORRECTED HMO OF EFFLUENT • 5.400E*00
CORRECTED 8IGMAP OF EFFLUENT ¦ J.300E+00
LOO-NORMAL GOODNESS OF FIT » 0.994
CORRECTED PRECIPITATION RATE PARAMETER s 6,19

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENCIES, AMI) DI8CRETF OUTLET MA38 LOADINGS
IDEAL UNADJUSTED
MIG, VEL.{CM/SEC)
J,790E»00
3,fl86E+00
3.918E+00
«,769E*00
S,911E»00
8.019E+00
1i037Etli
I,27"E*01
1.6J0E+01
2,223E*01
J.IU6E+01
~,882E+01
~.650E+01
IDEAL UNADJUSTED
EFFICIENCY(X)
S.360E+01
e,io«E+oi
e.asTE+oi
8,972E*01
9.U00E+01
782E4.01
9,'2'E* 01
9.977E+01
9.996E+01
lf0O0E+02
1,000E*02
1.000E+02
1 '.000E+02
NO.RAP
DM/DL0GP(MG/08CM1
8'. tPJE-Ol
1.897E+0I
6 • 181E + 01
8.3A8E+01
|,<100F + 02
2,270Et02
2,176E*02
1,878E + 02
1.691E + 02
1.965E+02
2,3?8E+02
l,310E+02
6.503E+02
Rapping puff
DH/OLOonCMG/DSCH)
1.925E+00
I,019Et01
2,aaoE»oi
3.92UE+81
fl,732E»0i
a.769E*01
0FJO«E+Ot
3.360E+01
2,UUflE*01
1.U77E+01
7.1OflE+OO
2.O58E+00
2.216E+00
Nfl.RAP+RAP PUFF
D^/DLOGO(MG/OSCM)
2.7«3E*00
2,916E+01
8.621E+01
1.231E+02
1.873Et02
2.717P+02
2.5S6E+02
2.21«e+02
l,93t>E*02
2,113E+02
2.3'9E*02
1,335E»02
6,52TEf02
RAPPING PUFP
DISTRIBUTION^)
1,867E*00
«,59flE*00
I ,2<>6E*01
1,278E*0!
1,SB6E«01
2,061l»01
8,317E»00
7,957E + 00
6,S22E*00
a,968E*00
2,a39E+00
1,11?E»00
S.O2UE-01
PARTICLE
OIAM,(M)
2.000E.07
~,0O0E«07
7.000E-07
1.100E.06
1.600E.06
2,5001*06
3.500E-0*
U.900E-06
~.000E-06
8.5O0E.0*
1.850E-05
2.000E-05
2,T30e-03

-------
SUMMARY tabi.e OF ESP OPERATING
PARAMETERS AND PERFORMANCE
DATA set NUMBER 1J
ESP PERFORMANCE I	EFFICIENCY s "»U.77iJ0 * SCA » fl',T69E*0l M**2/fm**J/SEC>
ELECTRICAL CONDITIONS!	AVG. APPLIED VOLTAGE s U,I59E*0« V
AVG, CURRENT DENSITY a 18,0« na/CM*«2
RESISTIVITY a ?,090E*10 OHM.CM
SIZE DI8TRI9UTI0NSI INLET mmd ¦ «,«<>5E*01 UM INLET SIGMAP ¦ 5'.122E»00
OUTLET MMD a 5.U00E+00 UM OUTLET SIG*AP ¦ 5.300E+00
NONIDEAL PARAMETERS!	GAS SNEAKAGE FRACTION a 0.S0 /SECTION GAS VELOCITY SICMAC ¦ 0,15
RAPPING HMD a ?,OO0E*OO UM RAPPING SIGMAP ¦ ?,300E»00

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS fop nomIHF'LITIES using SET mo. 5 OF CORRECTION PARAMETERS
SIZE
2,OOOE-OT
1,000E-07
7,000E-07
l,100E«06
1,600E-06
~.sooe*o6
3.500E-06
1,500E-06
~,000E»06
8,500E«06
l,250E-05
2,00OE«O5
2.750E-05
CC' INLET X
2,133 0,033
"" 0.253
0,903
0.813
1.520
3^521
1.930
1.297
1,188
1.130
1.063
1.059
1,016
1.035
1.020
1.01T
1.010 12^llS
1,652
1,652
1,982
3,301
1,616
OUTLET X
0,0728
0,6771
2.1961
2Ll«98
3,9380
8,7195
1.0669
iUS12
1,5999
7,2715
9,7111
13,0892
36.9707
1.008 67.101
EFFICIENCY • STATED ¦ 99.60
COR. OUTLET X
0,l«6i
0.9231
3,1389
2,8366
1.6916
9,0995
1,3357
1.3759
1,7211
7,1266
9,2792
12,3331
36.5276
COMPUTED o 99,5395
NO-RAP EFF,
fcO-RAP *
NO-RAP p
COR, EFF,
COR, *
60,3675
2,161
35.6325
2,6653
0.057
56.7538
1,756
13,2062
36,9500
0,967
55.3530
1,691
11,6170
10,0651
1,073
56,6033
1,730
13,3967
39,5620
1,056
5811546
t, 627
11,8152
16,7812
1,323
59.8988
1,916
10,1012
53,9216
1,606
60.2386
1,931
39,7611
51,7190
1.663
59,5602
1,699
10,1196
51,3269
1,613
62.5155
2,057
37,1815
36,9277
1,866
61.1392
2.168
35,5608
62,7996
2,073
67.5336
2.359
12,1661
66,9B49
2,321
62j 3197
3,660
17,1503
62,1076
3,616
90.6611
1,971
9,3366
90,6556
0,970
COR.
97 *¦
.... P
91,3117
63.0160
59,9316
60,1380
53,2166
46,1781
us.?? i o
13,2510
15.6715
11.0723
\y.anna
37,2001
33,0151
17,5322
9,311!
CONVERGENCE OBTAINED
adjusted no-rap eff, ¦ es'.eiss
HMD OF INLET SIZE DISTRIBUTION ¦ 4.16SE+01
SIGMiP OF INLET SIZE DISTRIBUTION a 5'.122E + 00
LOG.NORMAL GOODNESS OF FIT ¦ 0,981
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 1.332E+01
8IQMAP OF EFFLUENT UNOER NO-RAP CONDITIONS » 3.903E*00
LOG-NORMAL GOODNESS OF FIT ¦ 0.986
PRECIPITATION RATE PARAMETER UNDEP NO.RAP CONDITIONS o 3,623
SIGMAGa 0,250 MITH 0,700 SnEAKAGE OVER 1.000 STAGES
NTEMP ¦ 1
RMMD b 2.00
R8IGMA a £.50
CORR*. EFT, ¦ 62'.7382
CORRECTED MMD OP EFFLUENT • 1.215E+01
CORRECTED 8IGMAP OF EFFLUENT b 1.I63E+0C
LOG-NORMAL GOODNE88 OF FIT • 0,989
CORRECTED PRECIPITATION RATE PARAMETER ¦ 3,69

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIFNCIES, AND OISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
MIG. VEL'. (CM/SEC)
3.790E+00
J,U86E+00
J.918E+00
«,769Ef00
5,911E+00
6,01'EtOO
1,037E+01
1,270E+01
1.6J0E+0J
2,223E*01
5,146E+01
4.882E+01
6.630E+01
IDEAL unadjusted
EFFICIENCY(*)
8,l60E+01
6.1OUE+oI
e.«57E*01
8.972E+01
9,U0OE*01
9.782E+01
9.929E+01
9,O77E*01
9 a 996E *01
1.000E+02
1. oooe+02
1,000E*02
1.000E+02
NO-RAP
DM/OLOGD(MG/DSCM)
l'.7«5lE + 00
~,50«E+01
1,122E+02
1,573E*02
2,7026+02
0,722E+02
~,fc«lE+02
U.072E+O2
4,02|E+02
5^0 a SE~0?
6,620E+D2
6,632E+02
5.8AUE+03
SAPPING PUFF
D^/DLOGD(MG/DSCM)
3.ejie+oo
l.AOUE+01
3,ftU2E+01
6,179E+01
7,U53E+01
7.510E+01
6.fl62E*01
5.291E+01
3,ea8E+oi
2.S26E+61
1.114E+01
3.872E*00
3.U90E+00
uf).PAP*RAp PUFF
DM/DLOGD(MG/DSCM)
A.782E+00
5t106E + 0 1
1.506E+02
2.191E+02
3,4 87E+02
S.U73E+02
5,S87P*02
«.60»E*02
4,01
PARTICLE
DIAM.(M)
2.000E-07
fl,OOOE-07
T.8O0E-07
1,1OOE-Ofc
1,600E«06
2.500E-06
J.500E-0*
«,500E-06
6, OOOE-06
8.SOOE.06
1 .250I-0S
2.000E-05
2.750E-05

-------
SUMMARY table OF ESP OPE&ATING
parameters and performance
DATA SET NUMBER 1U
E3P PERFORMANCEt EFFICIENCY a 82,7532 * ScA ¦ «.7b»E*01 H»*2/(M««3/8BC)
ELECTRICAL CONOITIONSl AVG. applied VOLTAGE b a.lSRE+OU V
AVG, CURRENT DENSITY a 16.04 NA/CH«*8
RESISTIVITY a 5.000E+10 OHM.CM
SIZE DISTRIBUTIONS!	INLET mmq a 0,
-------
PARTICLE SIZE RANRE STATISTICS
CORRECTIONS FOR NONIDEALITIES USING SET Nn. 6 OF CORHECTION PARAMETERS
SIZE
2.000E-07
4,000E-07
7,000E-07
1.100E-06
1.600E-06
2.500E-06
J,500E-06
«,500E-06
6,000E-06
8.500E-06
l,250E-05
2,000E-05
2.7SOE-05
CCF
2,123
J .530
1.297
t .108
1.130
1.083
1,059
1.046
1.035
1.021
1.017
1.010
1 .008
INLPT X
0.033
0,253
0.903
0.815
1.520
3.521
1,652
1,652
1,982
3.30«
<1,8<16
12,115
67.101
OUTLET %
0.2911
1,71 15
17.8191
12,9822
18.0331
26.0236
8*. 3261
6,3882
3.0611
1^6599
0,6293
0,0192
0.0251
EFFICIENCY - STATED ¦ 99'.60
OUTLET
* NO-RAP EFF
. MO-RAP W
NO-RAP P
COR. EFF'.
COR, W
COR. P
0,8919
97.6762
7.888
2,3238
88.5100
4.537
11,4900
1,6681
9S.0987
6.323
4.9013
92.1564
5,337
7.8436
15.8764
94' 7976
6,198
5.2021
92.5238
5.438
7.4742
12,8926
95.8076
6,650
4,192U
93,2752
5.660
6,7248
17.2079
96,8775
7 268
3.1225
95.187a
6.361
1,8126
23,9671
98.0561
8.262
1.9436
97.1088
7.430
2.8912
8.3250
98.6735
9.063
1,3265
97,8577
8.058
2,1423
6,9878
98,9023
9.619
1/0177
98,2018
8,425
1,7982
1,3809
99.5935
11.513
0.4065
99,0604
9.786
0,9396
2,9213
99,067«
13.898
0,1322
99,6?41
11.707
0,3759
1,3190
99,9658
16.735
0,0342
99.8843
14,177
0,1157
0,(1311
99,9996
18.821
0.0004
99.9849
18.142
0,0151
0.1303
99.9999
66,304
0,0001
99,9992
66.304
0,0008
MPUTEO ¦
99.5393
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, ¦ 99'.7S6fl
HMO 0F INLET 8IZE DISTRIBUTION a 4.465E+01
SIGMAP OF INLET SIZE DISTRIBUTION a 5'. 122E+00
LOG-NORMAL GOODNESS OF FIT • 0,984
MHO OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 1.707E*00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS a 1,987E*00
LOG-NORMAL GOODNES8 OF FIT ¦ 0.997
PRECIPITATION RaTF PARAMETER UNDER NO-RAP CONDITIONS ¦ 12.051
SIGHAG* O'.lOO WITH 0,100 SnEAKAGE OVER a'.OOO STAGES
NTEMP ¦ 1
RMMD ¦ 2,00
R3IGMA ¦ 2.50
CORR. EFF. ¦ 99*.5719
CORRECTED MHO OF EFFLUENT a 1.816E*00
CORRECTED SIGMAP OF EFFLUENT ¦ 2.216E+00
LOG-NORMAL GOODNESS OF FIT o 0.999
CORRECTED PRECIPITATION RATE PARAMETER a 11,05

-------
UNADJUSTED MlGRATtON VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTLET MASS LOADIN68
IDEAL UNADJUSTED
HIG, VEL'. (CM/SEC)
3,790E+00
3,466E«00
i.9ieetoo
«.769E*00
5,9UE + 00
6,019EfOO
l,0JTEf01
1,.270E*01
1»630E+01
2.!2Slt01
3.146E+01
«,882E+0l
6.6S0E+0J
IDEAL UNADJUSTED
EFFICIENCY(X)
8.560E+01
8.10UE+01
a,«57E*01
e.'TaE+oi
«j.ao00
1.876E+01
1,266E*01
7,oeoe-07
1,S?0E+01
9,182E+00
2,fl38E+01
1.S7UE+01
1,JOOE»06
2.OflftE + 01
1¦107E»01
J,H«S + Ol
1 ,586E*01
1 .600E-06
2,289E»01
1^116E + 01
s.aosEtoi
2,061E*01
z.sooe-06
I.S62E+01
9,603E*00
?. sazc-f o i
8.317E*00
3.500E.06
1.025E+DI
7.862E»06
l.BlJEfOl
T,937E*00

-------
SUMMARY TABLE OP ESP OPERATING
parameter and performance
DATA SET NUMBER 15
ESP PERFORMANCE!	EFFICIENCY ¦ 99.57A9 * 8C* » fl.769E + 
-------
PARTICLE SIZE RANGE STATISTICS
SIZE
2',000E-07
4.000E-07
7,000E-07
I,100E-06
1,600E-06
2.S00E-06
3,500E-06
0,500E-06
6,OOOE-06
6.500E-06
l,250E-05
2.000E-05
2.750E-05
FOR NONIDEALITIE8 USING SET NO. 7
OF CORRECTION
PARAMETERS


CCF
INLET X
OUTLET *
COR. OUTLET *
NO-RAP EPF,
NO-RAP M
NO-RAP p
COR. eFF'.
COR, "
2.123
Oi 033
0^2397
0,7455
96,1885
6.850
3.8115
82,8104
3,692
1,530
0,253
3.4620
3,8158
92,6186
5,522
7,1814
88,5243
4,539
1.297
0,903
13.2808
13,0953
92.2814
5,371
7,7186
88,9657
4,621
1,188
0,815
10.3039
11,0660
93,3648
5,688
6,6352
89,6668
4,759
1.130
1,520
15,5806
1 5,674U
94.6205
6.12S
5.3795
92,1537
5,336
1.083
3,524
25,9676
24,3166
96.1328
6,820
3,8672
94,7497
6,179
1,059
1,652
9,5269
9.1561
96,9735
7.334
3,0265
95,7828
6,638
1.046
1,652
8,2266
8,1472
97.3866
7.641
2,6134
96,2475
6,883
1,035
1,982
5,3236
5.6988
98.5904
8,936
1,4096
97,8122
8.014
1,024
3,304
4,5539
4,6851
99,2766
10.335
0,7234
98,9211
9.496
1.017
4.846
3,1180
2,9085
99.6623
11,932
0,3377
99.5433
11,299
1,010
12,115
0,3371
0,5843
99,9854
18,517
0,0146
99,9631
16,585
1.008
67.401
0.0794
0.1064
99.9994
66.304
0,0006
99,9988
23,754
COR. P
17,1896
11,1757
11,0103
10,3318
7,8463
5,1903
1,2172
1,7525
2,1878
1,0789
0,4367
0,0167
0,0012
EFFICIENCY - STATED ¦ 99.60
COMPUTED o 99,5393
CONVERGENCE obtained
ADJUSTED NO.RAP EFF, ¦ 99.0752
mho OF INLET SIZE DISTRIBUTION o «.«65E*01
8I6MAP OF INLET SIZE DISTRIBUTION ¦ s'.122E*00
L06>N0R«AL GOODNESS OF PIT « 0,964
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS a 2.1958*00
8IGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS a 2,189Et00
L0G-N0Rmal GOODNESS OF FIT ¦ 0,996
PRECIPITATION RATE PARAMETER UNDER NO-PAP CONDITIONS o 11,0(17
BIGNAG* 0.400 WITH 0,100 SNEAKAGE OVER 4'.000 STAGES
NTEMP ¦ 1
RMmo a 2,00
RSIGMA a 2.50
CORR', EFF. a 99.2391
CORRECTED hmo OF EFFLUENT ¦ 2,J09E*00
CORRECTED 8IGMAP OF EFFLUENT ¦ 2,311E«00
LOG-NORMAL GOODNESS OF FIT b 0,999
CORRECTED PRECIPITATION RATE PARAMETER ¦ 10,23

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENCIES# AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
IDEAL UNADJUSTED
NO-RAP
RAPPING PUFF
NO»RAP+RAP PUFF
RAPPING PUFF
particle
"IG, VEL.(CM/SEC)
EFPICIENCV(*>
DM/0(.OCD(MC/DSCM)
nM/0L0GD(MC/D8CH)
D*/DLOGD(MG/D9CM)
DISTRIBUTION fX)
OIAM'.(M)
S.790E+00
8.360Et01
1.873E-01
6.37«E-01
8.U«7E-01
1 ,86?E*00
2.000E-07
3 ¦ 466E + 00
B.10e+oi
1.3U0E+01
3.716E+01
1,2TflE*0J
l.lOOE-Ob
5,911E*00
9J>O0«Ef01
3,525E*01
1 .616E + 0J
5,1«JE+01
1,586E*01
l,600E-06
6^019E*00
9,782F + 01
a,55flE+01
1.629E*01
6,183E*01
2.061E+01
2.506E-06
1,037E*01
9,929E+0l
3.563E+0I
1 .fl02E*01
«,969E+01
8.31TE+00
J.500E-06
i,27«E+01
9.9T7E+01
2,633E+0l
l.l«7E*0t
3,7«OE»Ol
7.937E400
0.500E-06
l,6)0E+0i
9.996E+01
t,S12E+0!
8,3«7E+00
2.3"7E*01
61322E + 00
f>.OOOE«06
2,223E+01
1,OOOE+02
1 ,026F + 01
S.0fl«E+00
1.531E+01
«,9fc8E+00
8.500E-06
J,106Et01
1.000E+02
6.885E+00
2,a26Et0fl
9.3UE + 00
2,039E400
1.250E-05
4,ee2E*oi
lj.OOOE + 02
5,550E-01
8.397E-01
1,395E»00
1.132E+00
2.000E-05
6,6S0E*01
1.000E+02
3.89flE»01
7.570E-01
l,lflfcE*80
3,a2
-------
ro
NJ

summary table or esp operating
PARAMETERS AMD PERFORMANCE

DATA SET NUMBER 16
ESP PERFORMANCE! EFFICIENCY ¦ 99,2391 X SCA ¦ «,769E*01
ELECTRICAL CONDITIONS)
AVG, APPLIED VOlTASE b 4,lS9E»oa V
AVG, CURRENT DENSITY ¦ 16,04 NA/CMMt
RESISTIVITY ¦ 3.000E*1C OHM-CM
SIZE DISTRIBUTIONS!
INLET mmD ¦ 
-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NftwjOEALI TICS USING SET nq, 8 OF CORRECTION PARAMETERS
size
2'.000E-07
4.000E-07
7,000E-O7
1,100E-06
l,600E-06
2,500F-06
3,S00E-06
4,500E-06
6.000E-06
8.500E-06
l,250E-05
2,000£-03
2.T3QE-05
CCF
INLfT X
OUTLET X
COR, OUTLET
2,123
0,033
0.2123
0,6056
1.330
0.253
2.8175
3,2828
1.297
0,903
1018492
1 1,3236
1.188
0,815
8.7055
9,7910
1,130
1,520
13,8731
14,3922
1,083
3,524
20.9052
23.7»02
1,059
1,652
9.7131
9,3070
1,046
1,652
8,7730
8,5592
1,035
1,982
6.0826
6.0928
1,02a
3,304
6,5732
6.1528
1,017
a,806
3,5095
4^7052
1,010
12, 1 IS
1,0816
1,0908
1,008
67.401
0.4642
0.452T
NO-HAP EPF,
NO-RAP W
no-rap p
COR, EPF,
COR, w
COR'. P
94,3710
6,033
5,6290
76,8000
3,064
23,1960
90.2505
0.882
9,7055
84.6156
3.925
15,3844
89,0860
4,723
10,5140
85,1321
3,996
14,8679
90.6096
0.960
9,3900
85,7563
4,086
14,2437
92,0129
3.299
7,9871
88.7737
4,585
11,2263
93.8150
5,835
6.1846
91,9992
5,2«3
8,0008
94,8548
6,221
5,1052
93.2914
3,663
6,7086
95,3527
6,030
4,6473
93.8570
5,849
6,1030
97.1378
7.051
2,862?
96.1160
6,811
3,8840
98,2590
8,093
1,7010
97,7921
7,993
2,2079
99,0051
9,666
0,9949
98.8488
9,360
1,1312
99.9219
15,001
0,0781
99.8929
14.339
0.1071
99.9940
20,373
0,0060
99,9924
19,885
0,0076
EFFICIENCY - STATED ¦ 99.60
COMPUTED a 99.5393
CONVERGENCE OBTAINED
ADJUSTED NO-RAP EPFa a 99'. 1249
HMD OP INLET SIZE DISTRIBUTION ¦ 4.465E+01
81QMAP OP met SIZE DISTRIBUTION o S.122E+00
LOG-NORMAL. 6000NE88 OP FIT • 0.984
HMO OP EFFLUENT under no-rap CONDITIONS ¦ 2.572E+00
8IGHAP OP EFFLUENT UNDER NO-RAP CONDITIONS ¦ 2,297Et00
LOG-NORMAL GOODNESS OF FIT ¦ 0,996
precipitation rate parameter under no-rap conditions ¦ 9,955
8IGMAGI 0,660 WITH 0,100 SNEAKAGE OVER 4,000 STAGE8
NTEMP ¦ 1
RHMD ¦ 2,"0
RSIGHA ¦ f.iO
CORR'. EPF, ¦ 98'.81«fl
CORRECTED HMD OF EFFLUENT ¦ 2.386E+00
CORRECTED 8IGH«p OF EFPLUENT « 2,393E»00
LOG-NORHAU GOODNES5 OF FIT ¦ 0,999
CORRECTED PRECIPITATION RATE PARAMETER ¦ 9,30

-------
UNADJUJTrp MIGRATION VELOCITIES amp EFFICIENCIES! AND DISCRETE OUTLET MA88 LOADINGS
IDEAL UNADJUSTED
Hip, VEL'» (CM/8EC)
3,T«0E+00
5,mE*00
)^918E+00
«,769E»00
9.911E+00
8.019E+00
1.0S7E+01
I,87fiE+01
t,650E+0l
2,223E+0l
J,lfl6E*01
~,882E*01
~.6S0E401
ideal UNADJUSTED
EFFICIENCY(X)
8,JftOEt 01
e.io«E»oi
8.«57E»01
8.972E+01
9.«0«E+0l
9.782E+01
9.929E+01
9,977E*01
9.996E*0l
1.000E+02
ij.oooe+02
1,000E*02
1.000E*02
NO-RAP
RAPPING PUFF
NO.RAP+RAP PUFF
RAPPING PUFF
PARTICLE
DM/DLOGD(HG/DSCH)
DH/DL0GDCMG/D8CM)
DH/DLOOD(MG/D8CM5
DISTRIBUTIONS)
DIAH.(H)
?,7fc6E-01
8.(S32E«0t
l.lflOE+OO
1 ,867E»06
2,0006-07
7,8O6E*00
fl.589E»00
1,2«7E»01
a,89aE*00
«,OOOE»07
2,6B2E+01
1.098E+01
S. 7 3 TC* 01
1.266E+01
r.oooe-or
S,aoSE+Ol
1.760E+01
5.16«E*01
1.27flE*01
i.iooe-06
3,2UE + 01
2,1222+01
7.J5fcg*01
l,S86e*01
1.600E.0*
7.28JE+01
2.1J9E+01
9,«22E*01
2,061E*01
2.500E.06
6,057E+0I
1,880E*01
7.898E401
S.SlTEfOO
S.500E.06
fl,682Et01
1.507E+01
fc.l8QE*01
T,9BTK»00
8,5001*06
S,070E+01
i,me*oi
0.166E+01
6,522E*00
6.000E.06
2.®7OEt0l
6.62flE*00
s. iste-foi
fl,968E*00
8.500E.06
2,0*9E+01
3,186E+00
2.JO7E+01
2,a|9e*00
1,250E.0S
2,9A9E+00
1.103E+00
0.072E+00
t.lJIEOO
2,0006»05
5.798E+00
9,q«0E"01
fl.792E*00
l,al8E-0l
2.750E.05

-------
SUMMARY TABLF or ES? OPE"*TING
PARAMETERS AND PERFORMANCE
DATA SET NUMBER 17
ESP PERFORMANCE! EFFICIENCY ¦ 98.8JUfl * SCA » u'.769E+0l M**2/(M«*3/8EC)
ELECTRICAL CONDITION9| AVG, APPLIED VOLTAGE ¦ a,159E+0« V
A VG, CURRENT DENSITY o 18,00 NA/CM**2
RESISTIVITY ¦ 5.000E+10 OHM.CM
SIZE DISTRIBUTIONS! INLET MMD » U,
-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOB NONIOEAL ITIES USING SET No'. <5 OP CORRECTION PARAMETERS
[NLfT * OUTLET X COR. OUTLET
SIZE
2,OOOE-OT
4,oooe-ot
7,0006-07
I,10OE-O6
t.600E-06
2,S00E-06
3,5ooe-06
4,sooe-o6
6,0001-06
6,500E-06
I.25OE-05
2»OOOE-OS
2.750E-05
CCF I
2.12)
1.530
1.29?
1.188
1.110
1.003
1.050
1.046
1.035
1.024
1.01?
1.010
1.008
0,033
0,253
0,903
0,615
1,520
5,52a
1,652
1,652
i;»82
3,SOU
atsub
12,115
fcT.aol
0,1908
2,3118
9.0162
7',«873
12.3230
23.3765
9,5059
8,8244
7.163a
6.1009
7.6993
2',3700
1.6000
0,558*
2,6363
9.8163
8,6399
13,0987
22,7691
9,2449
8,6339
7,0225
7,«131
EFFICIENCY • STATED ¦ 99.60
6,5««3
2,0982
1.3239
COMPUTED o 99,5393
NO-RAP EPF.
NO-RAP W
NO-RAP P
COR, EPF,
COR, W
91.8187
5,249
8.1813
69,1051
2,476
86,9043
4.262
13,0937
79,6775
3,341
85.8735
4.103
14.1265
80,2936
3,405
87,0024
4,278
12,9976
80,7624
3,456
88,5295
4.540
11,4705
84,3782
3,892
90,6149
4 961
9,3851
60,2673
4.496
91.8589
5,259
8,1411
89.6591
4,748
92,4426
5,415
7,557
-------
UNADJUSTED migration VELOCITIES and EFFICIENCIES# and DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
IDEAL UNAOJUSTEn
NO-RAP
SAPPING CUPF
SO.RAP+RAP PUPP
rappimq puff
PARTJCLE
*IC, VfL.tCM/SECi
EFFICIENCV(*J
OM/d( OGDfMB/DSCH}
DM/0L0GD(MG/D8CM)
DM/DLOGDCmS/dscm)
DISTRIBUTION^)
OlAM.CM)
J.790E+00
8.J60E+01
U,020E«01
1.106E+00
r.sose+fto
1.867E*00
2.000E-07
5,aefce+o o
8,10UE+01
1.0fclE + 01
S.S55E+00
1.647E+81
U.99«E»00
U.O00E-07
3>18E + 00
8,«57P*01
S,550E+01
1 ,a02E + 01
tt.953E«01
1 «?66E*Ct
7.000E-07
fl.769E*00
B,972E+01
«,71SE»01
2.255E+01
6.968E+01
1.27UE+0!
1.100E-06
5,911E+00
9.U0AE+01
7.516E*0!
2.T20E+01
I.024E+02
1.586E+01
1,600E«06
8,019E»00
9,7 B2C~01
1.105E+02
2,7016+01
1.379E+02
2.06JE+01
2.500E-06
110JTF + 01
9,929E»01
9.58UE+01
2.S59E+01
1, 19«E»02
8,S17E»60
J.980E-06
1.27QE+01
9,977E+0t
7.6J0E+01
1.951E+01
915"5E*0|
7(9S7E+00
fl.900E-0*
J,6J0e+61
9.996E+01
5,««5E*01
1,405E+01
6.890E+OI
4,522E»00
6,OOOE»Ot
2,223Et01
1fOOOE+02
U.921E+01
8,a89E+00
3,770E*0J
0,966Et00
S.500E.06
3.I46E+01
1,OOOE+02
U^383E+61
U.0«5E*O0
U.991E+01
2,flJ9E*00
1.290E-05
«,882E+01
I,OOOE+02
1,052E»01
l.alSE+OO
1 f 19JE*01
1,1J?EtOO
2.000E.05
6.650E+01
1.060E+02
1.116E+01
J.27UE+00
2.2
-------
SUMMARY TABLE OF ESP OPERATING
parameters anr performance
DATA SET NUMBER IS
ESP PERFORMANCE I EFFICIENCY ¦ 98,1672 t 8C* " a',769e + 01 M**2/(M»*3/SEC)
ELECTRICAL CONOITIONSi AVG. APPLIED VOLTAGE ¦ a,139E«.0« V
AVG, CURRENT DENSITY a tfl.OU NA/CM*«|
RESISTIVITY a 5.000E+10 OHM.CM
SIZE DISTRIBUTIONS! INLET HMD a fl.afcSE+Ot UM INLET SIGMAP ¦ 3'.122E + 00
OUTLET HMD a 2.787E+00 UN OUTLET 8X0MAP ¦ 2.56JB+00
NONIDEAL PARAMETERS! GAS 8NEAKAGE FRACTION ¦ O'.IO /SECTION OAS VELOCITY 8I0NAQ ¦ 0,60
RAPPING MMO ¦ 2•OOOE+OO UM RAPPING BIGMAP ¦ I,S00E»O0

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR »CNICI*LITTE9 USING SET NO, t Or CORRECTION PARAMETERS
INLfT* OUTLET * COR. OUTLET
SIZE
2,000E-07
fl.oooe-oT
7.000E-07
1,IOOE-06
1,600E-06
2,500E-<36
3,300E-06
4,500E-06
b,OOOE-06
8,500E-06
l,250E-05
2,000E-0S
z.rsoe.os
ccf
2.121
1.530
1,297
1,186
1,130
1,083
1.059
1.046
1.035
1.02a
1.017
1.010
1.006
0,033
0,3049
0,253
6,4038
0,903
24 0564
0,815
16,2242
1,520
20.1366
3-524
23,1421
1,652
5,6379
1,652
3,2086
1,982
0.7054
3,304
0,0695
4,806
0,0001
12,115
0,0102
67,001
0,0565
0,1*71
3.0005
13,0167
9,0661
11,7701
15,at56
5,0lOfl
5,0056
5,5600
7,5756
7,650 J
8,1227
7.3506
NO-RAP EFF,
NO-RAP ~
NO-RAP P
COR. EFF.
COR, W
98,7634
9,210
1,2366
96.7032
9,176
97.0053
7.356
2,9907
96.9659
7,342
96,8080
7,209
3,1520
96,8050
7,220
9T,6a1466
0,0202
EFFICIENCY - STATED o 99.60
COMPUTED = 99,5393
CONVERGENCE OBTAINED
ADJUSTED MO-PAP EPF, ¦ 99,6617
HMD OF INLET SIZE DISTRIBUTION a 0,4*SE*O1
8IGMAP OP INLET SIZE DISTRIBUTION * 3.122E+00
LOG.NORHAL GOODNESS OF PIT ¦ 0.964
k*o of effluent under no-rap eoworTroNS a i.siae+oQ
81GHAP OF EFFLUENT UNDER NO-RAP CONDITIONS P 1,833E*00
LOG-NORMAL GOODNESS OF FIT ¦ 0.996
PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS a 10,1)1
SIAHA&a 0.000 WITH 0,000 SnEAKAGE OVER 4,000 STAGES
NTEHP ¦ 1
RMND ¦ 10,00
nSIGMA ¦ 2,50
CORR'. EFF, a 99.7764
CORRECTED *MD OF EFFLUENT ¦ 3,732E*00
CORRECTED 8I6MAP OF EFFLUENT ¦ 3.U5E+00
LOG-NORMAL GOODNESS OF FIT a 0,973
CORRECTED PRECIPITATION RATE PARAMETER • 12,61

-------
UNADJUSTED MIGRATION VELOCITIES AND TCIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
IDEAL UNADJUSTED
NO»RAP
Rapping puff
NO.RAP+RAP PUFF
RAPPING RUFF
PARTICLE
*18. VEl.(CM/SEC)
efficiency*)
DM/o|.OCD(MG/D8CH)
DM/DL0GD(MG/D8e*>
DM/DIOSD(MG/D8C")
DISTRIBUTIONS)
DIAM.CH)
3*.790E + 00
8,360E*01
6,077E-02
9.95OE-0«
6,j7fcE-02
6,fifc«E«03
2.888E-07
J,a86E*00
8,10flE+8)
2,tt26E*00
1 .570E-02
2,aa2E*flfl
a,7aeE-«8
a.flOOE-07
3,9t8E+00
8,4S7E*01
7,9?2E+00
1.081E-0J
e,o3oe»oo
3,T56E«01
7,00CE»07
a,769E*00
8.972E+01
8^ 506
6,019E*00
9,782E*01
9,150E*00
2.268E+00
t.I«2e+oi
6,363E*00
I.SOOE.Ot
1,0J7E+A1
9,929E»01
fl«75JE+00
3.79SE400
8.5U6E+00
5.I47C«00
S.900E-06
l,27«E+01
9,977E*0l
2,315E»00
a.991E*00
7,306E+00
7,919C*00
a.sooE-e*
1.6J0E+01
9# 996E + 01
03
6.6S0E+01
t.OOOE+02
6.2S0E-02
1.52«E*01
1.530E+01
1.376Ef0t
8.7S0E-0S
UJ
o

-------
SUMMARY TABLE OF E8P OPERATING
parameters and performance
DATA SET NUMBER 19
E8P PERFORMANCE I EFFICIENCY ¦ 99.77B0 X SC* » «. 769E + 01 M**2/(M*«J/8EC)
ELECTRICAL CONDITION81 AVG, APPLIED VOLTAGE b 
-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONIDEALITIE8 USING SET NO-. 2 OF CORRECTION PARAMETERS
SIZE
2.000E-07
4,000E-«7
7,OOOE-07
j , 100E-O6
1,600E-06
2,500E-06
3,500E-06
4,500E-06
6,000E-06
6.500E-06
l,250E-05
2,000E-05
2.790E-05
CCF
inlet X
OUTLET X
COR. OUTLET
X NO-RAP EPF.
NO-RAP H
NO-RAP p
COR, Iff'.
COR, W
2.123
0.033
0'2645
0^1747
97.1023
7,425
2,6977
97.0645
7,396
1.530
0,253
4,0629
2,6654
94,1940
5.968
5,8060
94,1578
5,955
t .297
0,903
15.5003
10,2365
93,7940
5.628
6.2060
93,7137
5.801
1.188
0,815
11.6397
7,6913
94,6365
6,214
9.1635
94,6306
6,132
1.130
1,520
1618762
11,7677
95,9859
6.742
4,0141
95,7068
6,601
1,083
3,524
26,2590
19,405!
97,3060
7,576
2,6940
96,9464
7,315
1.059
1,652
9.0557
7,6959
98,0181
6,221
1,9819
97,4167
7.666
1.046
1,652
7'.4341
7,6024
98,3730
8,635
1,6270
97,4460
7.691
1.035
1,982
4,2065
6,6270
99,2323
10,210
0,7677
96,1456
8,361
1,024
3,304
2.9758
7,5654
99,6744
12,006
0,3256
96,7302
9,155
1,017
4,846
1.6067
6,7557
99,8801
14,103
0.1199
99,2269
10,195
1.010
12,115
0,0961
6,1252
99,9971
21,687
0,0029
99,7196
12,322
1.008
67.401
0.0185
5.4878
99.9999
66,304
0.0001
99,9546
16,131
JCV -
STATED a
99.60
COMPUTED a
99,5393
CONVERGENCE
OBTAINED


COR,
2.935
5,802
6,286
5.369
1,293
S.OfS
2,58]
2,552
1,854
1,269(
0,7731
0,860<
0.695
ADJUSTED NO-RAP EPF. a 99'.6385
HMD OP INLET SIZE DISTRIBUTION a a,Il6?Eiol
SIOHAP OF INLET 8IZE DISTRIBUTION ¦ S.122E*00
LOG-NORMAL GOODNESS OF pit ¦ 0.96
-------
UNADJUSTED MIGRATION VELOCITIES ANt) EFFICIENCIES, AMD DISCRETE OUTLIT M*99 LOADINGS
ro*4i. UNir».njsteo
MIS, VEL.tCM/SEC)
j'.790EtOn
3,e>L uwaojusteo
EFFICIENCV(I)
$,3fc0E»01
a.ioae+oi
e.«57E»ni
g.9T2E*ni
9.«oue*oi
*»j.T02C*Ot
<»,?29EfE + 0l
er?35E+ao
4r6t«>e+oo
2faauE+oo
1.H3E-B1
4.2S0E-D2
ZiPptHG wrr
DH/BLCgOCMG/DSC*)
I ,fl56E-0S
2,«>3tE-02
2.0HE-01
7.o&?r«oi
1.fl29E*0ft
#.23e + 0l
S.C
-------
SUMMARY table OF ESP OPERATING
parameters and performance
DATA SET NUMBER 20
ESP PERFORMANCE I EFFICIENCY « 99.A05S * SCA B H.769E+01 N*«2/(M»*3/8EC)
ELECTRICAL CONDITIONS! AVG, APPLIED VOLTAGE ¦ U,159t»0« V
AVG, CURRENT DENSITY ¦ 1B.0O NA/CM**2
RESISTIVITY o S.OOOfc+lO OHM.CM
SIZE DISTRIBUTIONS! INLET HMD ¦ O,U69E*01 UM INLET SIQMAP ¦ 3.1221*00
OUTLET mho ¦ 5.606E+00 UM OUTLET SIQMAP ¦ 2',83BE»00
MONIOEAL PARAMETERSl GA8 8NEAKAGE FRACTION a 0,10 /SECTION OAS VELOCITY SIOMAS • 0,23
RAPPING MMO ¦ l.OOOE+Ol UM RAPPINO SIBMAP e 2,500E»00

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NflNTPiEALITIES USING SET No', J OF CORRECTION PARAMETERS
SIZE
2. OOOE-07
O.OO0E-O7
T.000E»07
l.iooe-oi
1,600E»06
2,500E.06
),300E«06
4,300E-06
6,OOOE«06
6,300E.06
1,250E»05
2,OOOE-05
2.750E-05
EFFICIENCY - STATED ¦ 99.60
CCF
INLET *
OUTLET *
2,123
0,(133
0.1836
1.530
0,253
2.3350
1,297
0,903
8.6651
1.188
0,815
7' 163 d
1 ,130
1,520
11,5362
1,083
3,52*
21,6943
1,059
1,652
9.0002
1 ,006
1,652
8.6513
1.035
1,982
7,3927
1.020
3,300
9,1127
1,017
4,806
9,0758
1,010
12,115
2,9250
1,008
67.001
2.0658
COR. OUTLET
X NO-RAP EPF
, Nn-RAP W
no-rap p
COR, EFF.
COR, H
0,t035
92,7505
5,302
7,2095
92,6737
5,081
1,8171
87,9710
0,041
12,0286
87,8999
4,028
6,9U19
87,2072
o,3i 1
12.7928
87,0484
0,266
5,7375
88,5068
0,543
11,051?
88.1396
O.470
9,0203
90,1102
0.85!
9,8898
89.5585
0,737
18.2666
91,9780
5,290
8.0220
91,2672
5,112
8,127?
92.9008
5,506
7.0992
91,7118
3,221
8,4800
93.1761
5,629
6.8239
91.3475
5.131
8,2007
95,1397
6,141
4,8603
92,9919
5.3TS
10,7086
96.4060
6,973
3,5940
90,5396
6,096
10,7300
97,5396
7.783
2,0000
96.2683
6,695
6,2052
99,6836
12,011
0,3)04
99.1J71
9,963
5.1687
99 . 96t> 1
16,408
0.0399
99.8708
13.906
COMPUTED ¦
99.539J
convergence
OBTAINED


COR, P
7,1243
12,1001
12,951b
11.8602
10.4015
8,7528
8,2882
8.6325
7,0081
3,0604
3.7517
0,8629
011292
ADJUSTED no.Rap EFF, ¦ 98.6969
MHO of INLET SIZE DISTRIBUTION ¦ 4.O63E+01
SIGHAP OF INLET SIZE DISTRIBUTION a g'.l22E*00
LOS.NORMAL GOODNESS OF FIT * 0,964
MHO OF EFFLUENT under no-rap CONDITIONS o 3.287E+00
SISNAP OF EFFLUENT UNDER N0»RAP CONDITIONS « 2,530E*00
LOO.NORMAL GOODNESS OF FIT ¦ 0.995
PRECIPITATION RaTE PARAMETER UNDER NO-RAP CONDITIONS • 9.lot
SIGMAG" 0.230 WITH 0,500 BNEAKAOE OVER 0.000 STAGES
NTEMP ¦ 1
AMMO ¦ 10,00
RSIGMA • 2.50
CORR'. EFF, ¦ 98.5155
CORRECTED HMO OP EFFLUENT ¦ O.22SE+00
CORRECTED 81GHAP OF EFFLUENT • 2.753e*00
L06.NORHAL GOODNESS OF FIT a 0,994
CORRECTED PRECIPITATION RATE PARAMETER ¦ 8,56

-------
UNADJUSTED MIGRATION VELOCITIES AND FFFICTENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
MIG, VEL'.
b,060E>03
2.000E-07
e.lowe* o i
9,7«6E+00
5.793E-02
9,80«E+00
flt7«0E-82
U,OOOE»07
8,«57E*01
3,215E»01
3.990E-01
3.255E+01
3.756E-01
7.000E-07
6.972E+01
«,153E+01
1,a76E+00
«fJOOE+Ol
S,691E«01
1,1OOE»06
9,UOSE + 01
6.O80E+01
J.M5E + 00
6.8U2E+01
2,19TB~0 0
J.600E-06
9.782Et01
<»,U07E + 01
8.J71E+00
J.028E+02
6.563E+00
2.3C0E-06
9>29E + 01
8 f337E+01
1,a00E+0!
9.757E+0J
3.1«TE*00
3.S00E-06
9,977E«0l
6.B75E+01
1.8«2E*01
8,717E + 01
7.915E+B8
O.SOOE-06
9,996E»01
5.21JE+61
2.30«E»01
7.517E+0J
1 a 1 1 SC ~ 0 1
fc.OOOE-06
1.000E+02
3,098E+01
2,6«8Et01
7.7«6E»0l
1,616E*01
8.500E-06
1.000E+02
Q.976E+01
2,fc33E+01
7,609E+01
i ,6«oe*oi
1.260E-05
1 ,0001+02
1.105E+01
2.08UE+0)
3,279E*01
1,T#1E*01
I.000E-05
1.000E+02
2,517E*01
5.62OE+01
B.lOlEiOl
1,S76E*01
2.756E-05
U>

-------
SUMMARY table or ESP OPERATING
PARAMETERS ANO PERFORMANCE
DATA SET NUMBER 21
ESP PERFORMANCE! EFFICIENCY b 90.S15S X SC* ¦ 0.769E+01 M**2/(M«*1/SEC>
ELECTRICAL CONDITIONS! AVG. APPLIED VOLTAGE ¦ fl,13<»E*0« V
AVG, CURRENT DENSITY ¦ 18,Ofl NA/CM«»2
RESISTIVITY a S,OOOE»10 OHM-CM
81ZE DISTRIBUTIONS!	INLET MMD o «.«65E»0l UM INLET STGMAP ¦ 3'.122E + 00
OUTLET MMO o (I.220E + OO UM OUTLET 8IGMAP ¦ 2',T35E*00
NONIDEAL PARAMETERS! GAS SNEAKAGE FRACTION ¦ 0.30 /SECTION GAS VELOCITY StGMAO • 0.3S
RAPPING MMD > 1¦000E+01 UM RAPPING SIGMAP * 2.500E400

-------
PARTICLE 3TZE RANGE STATISTICS
CORRECTIONS FOR NONIDEAL!TTES USING SFT Nfl. a OF CORRECTION PABameTfrs
SIZE
2,OOOE-07
«,O0OE-O7
T.OOOE-OT
i.iooe-ofc
1,600E«06
2,SOOE-06
3,500E-06
4,500E-06
6,OOOE-06
8.500E-06
1,250E«05
2,OOOE-03
2.7S0E-O3
CCF
INLET *
OUTLET (
COR. OUTLET
2.123
0*. 033
0,1213
0,1061
1.530
0,253
1,3078
1.140T
1,297
0,903
4,9032
4.J029
1.188
0,815
4,1624
3,7257
1.130
1,520
7,1693
6,5100
1.083
3,524
14"9949
13,8770
1.059
1.652
6,7415
6,5301
1.046
1,652
6,7972
6,9454
1.033
1.982
6,8997
7,4637
1.024
3,304
10,1042
10,9068
1.017
4,846
12,2164
12,7705
t.Olfl
IS,us
9.2214
10,3071
1.008
67.401
15.3608
15,4141
no-rap eff.
NO-RAP N
NO-RAP p
COR, EFF.
COR, n
83,3481
3'759
16,6519
83.2125
3.74?
76.5B37
3,044
23,4143
76,4560
3,031
75,4048
2,941
24,5952
75,1168
2,916
76.B663
3,069
23,1337
76,1280
3.003
76,6357
3,236
21,3643
77,6349
3.140
80,7263
3,452
19,2737
79,4367
3.316
81.5156
J.540
18,4844
79,1585
3.308
81.3630
3,522
18,6370
78,0457
3.179
84,2318
3,873
15.7682
BO.3334
3.410
66.1477
4,143
13.8523
82,7618
3,686
88.5813
4,550
11.4187
86.2387
0.158
96,5523
7,061
3,4477
95,3573
6.589
98.9677
9,589
1.0323
98,8058
9,283
COR. P
16,7875
83.5440
84,8852
23.8720
22,3651
20,5653
20.6415
81,9543
19.6646
17,2182
11,7615
4,4427
1.1942
EFFICIENCY - STATED ¦ 99'.60
COMPUTED o 99,5393
convergence OBTAINED
AOJU8TCO NO-RAP EFF, a 9S'.4704
MMD OP INLET SIZE OISTRI0UTION ¦ 0.46SE+0J
8IGMAP OF INLET SIZE DISTRIBUTION b 5'.1?2E*00
LOG-NORMAL GOODNESS OP FIT b 0.9B4
mmd op effluent unoer no-rap conditions <> fe.22«E+oo
SIQMAP OF BPFLUENT UNDER NO-RAP CONDITIONS ¦ 3,I32E*00
LOO.NORMAL GOODNESS OF FIT a 0,940
precipitation rate parameter under no.rap conditions * 6.ass
8I0MAG* 0,230 WITH 0,500 8NEAKAGE OVER 4.000 STAGES
NTENP ¦ 1
RMHD ¦ 10,00
RSIGMA 8 2.30
C0RR'. EFF, ¦ 94,7780
CORRECTED HMD OF EFFLUENT ¦ 6.616E+00
CORRECTED SIGMAP OF EFFLUENT • 3.1266400
LOG-NORMAL G00DNE88 OF FIT ¦ 0.993
CORRECTED PRECIPITATION RATE PARAMETER * 6,19

-------
UNADJUSTED MIGRATION VELOflTIES AND EFFJtIEUCIES, A*D OISCBFTE OUTLET MASS LOADINGS
IDEAL 'JNAr>J(i8TEC>
HIS, VEL. (C*/SEC)
3,790E>00
l.flBfcE+OO
J,918E*00
«.T6«»E*00
5,9UE + 00
8.019E+00
l,0JTE*01
i,mE*01
1,6JOE+O1
2,223E+01
J.1B6E+01
~,ee2E+ot
~.630E+01
jn£*L UNAHJU3TE9
EFFICIENCV(X)
S'.360E«0]
S'.lOIE + flJ
B.157E4-01
8.9T2Et01
9,U0UE»01
0.TS2E+01
9.929E*01
9.9T7E+01
9.996E+Q1
1,OOOE*02
1.000E+02
l.OttflE+02
1 .000E+02
NO»RAP
nM/oLOGOCMG/OSCMt
e.iejE-01
1.697E401
6.l«lE«01
e,5«0E+oi
l,O00E+02
2,270E*02
2,17fcE+02
l,B7BE+02
l,69lE+02
l,9f.3E + 02
2.3J8E+02
1-5I0E+12
6.505E+02
RjppInG puff
C*/r>lCGD(*G/D8CM>
6,2E»01
" »179E»01
a.803E>01

-------
summary table OF E8P OPERATING
Parameters ANn performance
DATA set NUMBER 22
ESP PERFORMANCE! EFFICIENCY a 9«(7760 * 8CA ¦ U'.T69E*01 M*«2/fM««3/8EC)
ELECTRICAL C0NDIT10N8I AVG, APPLIED VOLTAGE e a,lS9E*0« V
AVG, CURRENT DENSITY ¦ IB,00 NA/CM**!
RESISTIVITY s S.OOOEflO OHM.CM
SIZE 0ISTRIBUTI0N8I	INLET MMD ¦ «.«65E*01 UM INLET 8IG*AP ¦ 5.122E»00
OUTLET MHO ¦ 6.616E+00 UM OUTLET SIGMAP a ],12bE«00
NONIDEAL PARAMETERS! GAS SNEAKAGE FRACTION ¦ 0,50 /SECTION CAS VELOCITY 8IS«AQ ¦ 0.85
RAPPING HMD ¦ l.OOOE+Ol UN RAPPING SIGMAP a 2,500E*00

-------
PARTICLE SIZE RANGE ST*TI8TIC8
CORRECTIONS for NONIOEALITIES using SET NCI. 5 of CORRECTION PARAMETERS
INLET X OUTLET * COP,
8IZE
2.000E-07
4,0C0E«07
7.000E-07
i,iooe-o6
t,600E-06
2,500E-06
3,500E-06
4,500E-06
6.000E-06
8.500E.06
1.3S0E.O5
2,OOOE-05
2.750E-05
CCF
2.123
1.S30
1.297
1,188
1.130
1,063
1.059
1.046
1,035
1.020
1.017
1,010
1.008
0,033
0.253
0^903
0,815
1,520
3,52«
1,652
1,652
1.982
3.304
4,846
12,115
67.001
0,0728
0.6774
2'. 4961
2,1898
3.9380
8,7495
4.0669
4,1342
4,5999
7.2745
9^7411
13.0892
38.9707
EFFICIENCY - STATED ¦ 99.60
OUTLET
0,0686
0.6376
2.3620
2,1063
3,8279
8.6112
4,1352
4,3733
5,0103
7,8362
10,1619
13,3625
37.5030
COMPUTED s 99,5393
NO-RAP EPF,
NO-RAP W
no-rap p
COR, EFf,
COR, w
64.3675
2,164
35,6325
64,1539
2,151
56,753"
1,758
43,2462
56.5495
1,748
55.3530
1,691
44,6470
54,8994
1,670
56,6033
1,750
43,3967
55,0406
1,695
58.1548
1.827
41,8452
56,5787
1,749
59,8988
1,916
40,1012
57,8680
1 ,812
60,2386
1,934
39.7614
56.8016
1.762
59,5802
1,899
40,4198
54.3561
1.644
62,5155
2,057
37,4845
56,3794
1.T39
64,4392
2.168
35,5608
59,1069
1,875
67,5336
2.359
32.4664
63,8445
2.133
82,5497
3,660
17,fl503
80,9828
3,480
90.6614
4,971
9.3386
90,4064
4,915
COR. P
39,8461
43,4505
43,1006
44,5594
43,4213
42,1320
43,1584
45,6439
"3,6206
40,8931
36,1355
19,0172
9,3936
CONVERGENCE obtained
ADJUSTED NO-RAP EFF, f 83',8485
HMD OF INLET SIZE DISTRIBUTION a 4,465E*01
SIGHAP OF INLET 8IZE DISTRIBUTION s 5.1?2E*00
LOG-NORMAL GOODNES3 OF FIT n 0,984
NMD OF EFFLUENT UNOER NO-RAP CONDITIONS o 1.352E*01
3I6MAP OF EFFLUENT UNDER NO-RAP CONDITIONS » 3.903E+00
LOG-NORMAL GOODNE8S OF FIT a 0,986
PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS B 3,823
SIQMAG" 0,250 WITH 0,700 SNEAKAQE OVER 4,000 STAGES
NTEMP ¦ 1
RMMD ¦ 10,00
RSIQHA ¦ 2,50
CORR. EFF. a 82.7582
CORRECTED MMQ OF EFFLUENT ¦ 1.323E+01
CORRECTED 8IGMAP OF EFFLUENT ¦ 3,B04E*00
LOG-NORMAL GOODNESS OF FIT a 0.988
CORRECTED PRECIPITATION RATE PARAMETER ¦ 3,69

-------
UNADJUSTED HJCRATION velocities and efficiencies, ANO discrete OUTLET MASS LOADINGS
IDEAL UNADJU8TED
HIG, VEL'.CCM/SEC)
3,790E+0n
3,«86E+00
3.9ieE*00
fl,769E+O0
5.9UE + 00
e.OfEtOO
1.03TE+01
l,27«E*0t
i,630E*01
2,22JEf01
3.146E+01
fl,882E*01
6.610E+01
IDEAL UNADJUSTEO
EFFICIENCV(X)
8.360E+01
8,100E+01
8,«57E*0l
8.972E+01
9.40UE*01
9.782E+0I
9.929E+01
9,977E+01
9,996E+01
1.000E+02
l,000E+02
l,000E+02
1a000E+Q2
NOaRAP
DM/D|.OGD(MG/OSCM5
1 .751E + 00
3*, 50UE + 01
1,122E+02
1 ,573Et02
2.T02E+02
<»5E + 02
1.9621402
5,081E*02
U.598E+02
«.679E+02
5.801E+02
7.3?2E«02
7.227E40I
6,0«5E+03
RAPPING PUFF
DISTRIBUTION^)
6,«6flE"03

-------
SUMMARY TABLE OF E3P OPERATING
PARAMETERS ANn PERFORMANCE
DAT* SET NUMBER 23
ESP PERFORMANCE! EFFICIENCY ¦ 82,7588 t SCA ¦ a'.76«E*0l M«*2/(M**3/3EC)
ELECTRICAL CONOITIONSI AVG, APPLIED VOLTAGE ¦  l'.000E*01 UM RAPPING SIQMAP ¦ 2.500Et00

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS for UOWIOEAlITteS USING SET NO. 6 OF CORRECTION PARAMETERS
SIZE
2,OO0E»O7
~.OOOE-OT
7.000E-07
l,100E-06
1.600E-06
2.500E-06
3.500E-06
O.SOOE-06
~,OO0E-O6
8,S00E-06
1,250E-0S
2,000E-05
2.750E-09
EFFICIENCY ¦ STATED « 99,60
CCF
INLET X
OUTLET *
2.123
0,033
0', 2914
1.530
0,293
o'7115
1.297
0,903
17,8491
1.188
0,815
12,982?
1.130
1,520
18,0331
1,083
3,524
26,0236
1,059
1,652
8.3261
1,046
1,652
6,3882
1,0J5
1,982
3,0611
1,020
3,304
1,6599
1,017
4,846
0,6293
1,010
12,115
0,0192
1.008
67.401
0.0254
COR, OUTLET
X NO-RAP EFF
, NO.RAP N
NO.RAP P
COR, EFF,
COR, *
0,1829
97.6762
7 888
2,3238
97,6445
7,859
2,9350
95.0987
6,323
4.9013
95,0683
6,310
11,1939
90,7976
6,198
5.2024
94.7302
6,171
8,3688
95,8076
6.650
a,192a
95,6348
6,566
12,0020
96,8775
7,268
3,1225
96,6433
7,117
18,6131
98,0564
8,262
1.9436
97,7546
7.960
7,1165
98,6735
9.063
1.3265
98.1687
8.387
6.9718
98,9823
9.619
1.0177
98.20S9
8,430
6,1464
99.5935
11,543
0,4065
98,6817
9.076
7,1862
99,8678
13,898
0,132?
99.0754
9,920
6,6389
99,9658
16,735
0,0302
99.4176
10.789
6,6359
99,9996
48,821
0.0004
99.7672
12.711
6,0063
99,9999
66,304
0,0001
99,9621
16,518
COMPUTED
99.5393
CONVERGENCE
OBTAIN


COR. P
If 1555
4,9117
5,269®
4,3*53
3.5567
2,2454
1,9313
1,7941
1.1183
0,9206
0,582"
0.2326
0.0179
ADJUSTED NO-RAP EPF, « 99.7368
HMD OF INLET SIZE DISTRIBUTION • 
-------
UNADJUSTED MIGRATION velocities AMP efficiencies, and discrete outlet MASS LOADINGS
IDEAL UNADJUSTED
ideal unadjusted
NO.RAP
rapping puff
NO»RAP*RAp PUFF
SAPPING PUFF
PARTICLE
IIC, VEL.06
8,019E+00
9.782E+01
2^ 289E + 01
3.551E+00
2.644E+01
6,563E»00
2.900E-06
1.0STE+01
9.929E+01
l,5h2E+0t
5.9O3E+00
2>136 C~01
3,147E+00
3.S0OE-06
i^27«e«oi
9,977E+01
J,025E+01
7.821E+00
l.BO?E»01
7.91SE+00
a,500E.06
1.630E+01
9,996Et01
360E + 00
9.781E+00
t.fllflE+01
1.11SE*01
6.000E-06
2,223E*01
1 .000E+02
1 ,876E*00
1.121E+01
1.312E+01
1 ,M6E»01
8.300E-06
J.IO6E+01
1.000E+02
6,9fc8E-01
1.11®C~01
1.187£*01
1 ,t.aoE»ot
1.250E-05
0.882E»01
1.000E+02
1,587E"02
8.819E+00
8,865E+00
1,7
-------
SUMMARY TABLE OF ESP OPFRATING
parameters and performance
DATA SET NUMBER 3«
ESP PERFORHANCEi EFFICIENCY b Q9,57«Q I 8CA « tt'.769E + 0J M*»2/(M**J/SEC)
ELECTRICAL CONDITIONS! AVG, APPLIEP VOLTAGE ¦ a,159E*00 V
AVG, CURRENT DENSITY ¦ IB,00 NA/CM**!
RESISTIVITY ¦ 5.000E+10 OHM-C*
SIZE DISTRIBUTIONS! INLET "HD ~ U.flftSE+Ol UM INLET SIGWAP ¦ 5.12K + 00
OUTLET HMD e 3.580E+00 UM	OUTLET SIGMAP a 2>lJE + 00
NONIOEAL PARAMETERS!	GAS SNEAKAGE FRACTION • 0.10 /SECTION GAS VELOCITY 8I0MA0 ¦ 0,10
RAPPING HMD ¦ t.OOOEtOl UM RAPPING S1QMAP • 2,500E«00

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR MON|nE*LTTIES USING SFT no. 7 Of CORRECTION PARAMETERS
SIZE
a.oooe-oT
«,OOOE-07
7,000E-07
l,100E-06
1,600E-06
2,300E-06
3,500E-06
«,500E-06
6p 000E-06
8,500E-06
l,250E-05
2,O00E-05
2.750E-05
CCF
3.125
1 .530
1.297
1.180
1.130
1.083
1.059
1.006
1.035
1.024
t.017
1.010
1.006
INLET X
0.033
0,253
0,«»03
0,615
1,520
3,52"
1,652
1,652
1,982
3.301
1,816
12,115
67.101
OUTLET X
0.2597
3.1620
13.2108
10,3039
15.5806
25.9676
9'5269
8,2?66
5,3236
1,5539
3,1180
0,3371
0.0791
CflR. OUTLET
0,1673
2.1026
9.2770
7.3772
11,1291
19,9508
0,1707
8,1312
7,1385
8.1629
7.2165
5.6136
1.8993
NO-RAP EFF.
NO-RAP M
NO-RAP P
COR. EFF.
COR, W
COR. P
96.1885
6', 850
3.81 15
96.1121
6,825
3,8579
92.8186
5.522
7.1»11
92,7713
5,509
7,2257
92.2811
5.371
7.7186
92,18)0
5,311
7,8170
93'. 3618
5.688
6.6352
93,1127
5,610
6.8873
91.6205
6,128
5.379?
91,1786
5.999
5,721®
96.1328
6,820
3.8672
95.6923
6.591
1,3077
96.9735
7,331
3.0265
96,2367
6.677
3,7633
97,3866
7,611
2.6131
96,2535
6,886
3,7465
98.5901
8.936
1.1096
97,2595
7,512
2,7105
99,2766
10.335
0.7231
98,1202
8,332
1,8798
99.6623
11,932
0,3377
98,8622
9,385
1.1378
99^9851
18.517
O.OH6
99,6156
11,830
0,3511
99.999U
66.301
0.0006
99,9417
15.725
0.0553
EFFICIENCY . STATED ¦ 99.60
COMPUTED « 99,5393
CONVERGENCE obtained
ADJUSTED NO-RAP EPF. ¦ 99'.1752
MHO OF INLET SIZE DISTRIBUTION « 1.165E+01
SIGHAP OP INLET SIZE DISTRIBUTION a s'.122E + 00
LOG-NORMAL GOODNESS OF FIT a 0,981
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS a 2.195E+00
SIGHAP of EFFLUENT UNDER NO-RAP CONDITIONS " 2,189Et00
^	LOG-NORMAL GOODNESS OF FIT ¦ 0,496
•*	PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS * 11,007
-J
SIGMAG" o'.ioo WITH 0,100 SNEAKAGE OVER 1,000 STAGES
NTEMP • 1
RMMD a 10,00
RSIGMA ¦ 2,50
CORR'. EFF, » 99,2391
CORRECTED MMO OF EFFLUENT a 3,617E»00
CORRECTED SIGHiP OF EFFLUENT d 2.769e*00
LOG-NORMAL GOODNESS OF FIT a 0.989
CORRECTED PRECIPITATION RATE PARAMETER a 10,23

-------
UNA0JU5TED *IGRITJ0N VELOCITIES ANn IFFICT^WCIf8, A WD OTSCffETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
inEAL UnaoJUSTED
NO»HAP
Rapping pupf
NO-RAP+RAP puff
BA
PING PUFF
particle
MIS, VEL'.(Cm/8ECJ
EFFTCIENCr(X)
DH/0LOGD
-------
SUMMARY TABLE OF ESP OPERATING
PARAMETERS and PERFORMANCE
DATA SET NUMBER 25
E8P PERFORMANCE! EFFICIENCY ¦ 99,2391 * SCA « «',769E + 01 M»*2/(N#«3/SEC)
ELECTRICAL CONOlTIONSi	AVG, APPLIED VOLTAGE ~ U,159E*0« V
AVG, CURRENT DENSITY ¦ 18,00 NA/CM**2
RESISTIVITY o 3.000E+10 OHM.CM
SIZE DISTRIBUTIONS! INLET HMD o a.flftSE+Ot UM INLET SIGM*P ¦ 5.122E+00
OUTLET MMO ¦ 3.6«7E+O0 UM OUTLET SIGMAP ¦ 2.769E+00
NONIDEAL PARAMETERSl	GAS 8NEAKAGE FRACTION ¦ 0,10 /SECTION GAS VELOCITY 3IGMA3 ¦ 0,40
RAPPING HMD b 1.000E+01 UM RAPPING SIGMAP ¦ 2,5006*00

-------
PARTICLE SIZE RANGF STATISTICS
CORRECTIONS POP WON T DC ALITIES JSING SFT NO*. 8 OF CORRECTION PARAMETERS
SIZE
2.000E-07
0.000E-07
7,000E-07
1 ,i 00E-O6
l,600E-06
2.500E-06
1,500E-06
0.500E-06
6.000E-06
8.S0OE-O6
l,250E-05
2.000E-05
2.750E-05
CCF
2.123
1.510
1.297
1,138
1.1 JO
t .083
1.05'
1.006
1.035
1,021
1.017
1,010
1,008
INLET X
0.033
0,253
0.903
0,615
1.520
3.521
1,652
1,652
1,982
3,300
<1,806
12.115
67.001
OUTLET X
0.2123
2,8175
10.8092
8*. 7055
13.8731
20.9032
9.7131
fl'. 7730
6.1826
6.5732
5'. 5095
f.0616
O-. 0602
COS. OUTLET
0.1580
2.0926
6,1060
6,6625
10,8150
20.1012
8,5171
8.5^83
7,7060
9,083a
6.J608
5,358?
0.0712
X MO-PAP EFF,
90.3710
90,2505
89,0860
90,6096
92.0129
93,8150
94.8508
95.3527
97.1378
98.2590
99.0051
99.9219
99,99(10
NO-RAP H
6,033
0,682
0.723
0.960
5.299
5.635
6.221
6,030
7,051
6,093
9,666
15,001
20,373
EFFICIENCY - STATED » 99".60
COMPUTFO = 99,5393
Np.RAP P
COR, EFF.
COR, *
COR, P
5.6290
90,3102
6,010
5,6696
9.7055
90,1960
0,869
9,6036
10.5100
89,3566
0,697
10.6032
9.390O
90,2760
0,867
9,7216
7,9871
91,5600
5,160
8,0360
6,1806
93,2370
5,608
6,7630
5,1052
93,8873
5,860
6,1127
0,6073
93,6609
5,852
6,1351
2,6622
95,3902
6.051
4,6096
1.7010
96,7«00
7,178
3,2596
0,9909
97,9500
8.155
2,0056
0,0781
99,0736
11.009
0,5200
0,0060
99.9213
10,987
0,0787
OBTAINED



ADJUSTER NO-RAP EPF, a 49*.1209
HMD of INLET SIZE DISTRIBUTION s a.065E*01
SIGMAP OF INLET SIZE DISTRIBUTION a 5'.122E + 00
LOG-NORMAL GOODNESS OF FIT ¦ 0.9B4
HMO OF EFFLUENT UNDER NO-RAP CONDITIONS a 2'.572Et00
SIGMAP OF EFPLUENT UNDER NO-RAP CONDITIONS * 2.297E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0,996
PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS ¦ 9.9J5
SIGMAG" 0 .600 MITH 0.100 SNEAKAGE OVER o'.OOO STAGES
NTEMP ¦ 1
RMMO a 10.00
RSIGMi d 2.50
CORR". EFF, • 98'.810«
CORRECTED mho OF EFFLUENT a J.776E+00
CORRECTED SIGMAP OF EFFLUENT ¦ 2.7106*00
LOG-NORMAL GOODNESS OF FIT e 0,992
CORRECTED PRECIPITATION RATE PARAMETER ¦ 9,30

-------
UNADJUSTED MIGRATION VELOCITIES and EFFICIENCIES, AND DISCRETE OUTLFT MASS LOADINGS
IDEAL UNADJUSTED
MIS, VEL.(CM/SEC)
3,790E*00
J.U86E+00
j,918E+oo
1.769E+00
5,911E»00
8.01 OF * 0 0
l,0J7E*01
1 ,2TflE*01
1,6J0E*O t
2,223E*01
3.M6E + 01
~,ee2Etoi
~,6S0E*01
IOE*L UNADJUSTED
EFFICIENCY(X)
B. J60E + 01
8.10UE+01
8.a57E*01
6.972E*01
9,«0«E*01
9.782E+01
9.929E+01
9.9T7E+01
9.996E+01
l,000E*O2
1.000E+02
1.OOOE+P2
1,000E+O2
NO.RAP
DM/DLOGD(MG/DSCMl
if766E"01
7,896E*00
2,6fl2E+01
3,«03F*01
5,23UE*01
7,28SE*01
6,057E+01
«,682E*01
3,070E*01
2,il70E*01
2.029E+01
2,9fc9E*00
S.79BE400
RaPPInG puff
DM/DL0GD(M5/DSCM)
2.989E-03
4,71«E-02
3.2«7E-01
1.201E+00
2.9fl1E*00
fe.PME + flO
I¦139E*01
l.«99E»81
1,«7SE»01
2.15«E»01
2.t#2E+01
1¦696E*01
fl.576E+01
no.rap+pap puff
DM/DLOGD(MG/DSCMJ
2,79<>E-01
7.90SE*00
2.675Et01
3,5252*01
5.528E»0t
7.96flE*01
7.196E*0J
6.181E+01
a.9«se»ot
«,62«E*01
U.lTll+Ol
1,993E»0t
a.956E*01
RAPPING PUFF
DISTRIBUTIONS!
6,a6flE-03
U.TUOE-02
3.7S6E-01
8,691E»01
2.197Et00
6,5fc3E*0n
5, l«7Et00
7.9tSE*00
1,1191401
1.616E«01
1,6401*01
l,TO!l*Cl
t,S7fc£ + 01
pabttcle
DIAM,(M)
2.000E.07
06
8.900E.06
1.250E-05
2,000€»05
2.750E-05

-------
SUMMARY table OF ESP OPERATING
parameters and performance
DATA SET NUMBER 26
ESP PERFORMANCE! EFFICIENCY e 96,8100 X SCA o fl.769E*0l M.«?/J/SEC)
ELECTRICAL CONDITIONS! AVG, APPLIED VOLTAGE a «,139E*00 V
AVC. CURRENT DENSITY b 18.00 NA/CM«*8
RESISTIVITY ¦ S.OOOE+IO OHM.CM
SIZE DISTRIBUTIONS!	INLET HMD • O.O6SE+01 UM INLET SIGMAP ¦ 5.182E+0O
OUTLET mmo e J.776E+00 UM OUTLET SIGMAP ¦ 2,?1«E*00
NONIDEAL PARAMETERS! GAS SNEAKAGE FRACTION ¦ 0,10 /SECTION GAS VELOCITY SJSMaG ¦ 0,60
RAPPING MMD a 1.000E+01 UM RAPPING SIGMAP ¦ 2.500E+00

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS fn (J MONJ dflL f TIPS IIS INC SET N0. 9 OF CORRECTION PARAKETeRS
SIZE
2.000E-07
4.000E-07
7,O00E-O7
1,1006-06
i,600E-06
2,500E-06
3.500E-06
4,500E-06
6,000E-O6
8,500E-06
l,250E-05
2.000E-05
2.750E-05
CCF
INLET X
OUTLET X
COB. OUTLET
2.123
Ol 033
Of 1908
0.1504
1.530
o,253
2.3418
l,flJ81
t ,29T
0,903
9.0162
7.1193
1.188
0.815
7.4873
6,03a)
1.130
1,520
12.3234
10.1003
1.083
3,524
23.3765
19,6850
1,054
1 , 652
9'5059
8.5489
1,046
1, 652
8.8244
6.6247
1,033
1,982
Tll634
8,0394
1.024
3,301
8.1009
9.8697
1,017
4,846
7'. 6993
9.6085
1,010
12,115
2.3700
5.6719
1 .008
67,401
1.6000
4.7092
NO"RAP EFF,
NO-RAP W
NO-RAP p
COR. EFF.
COR, w
COR. p
91 .8187
5.249
8,1813
91,7407
5.229
8,2593
66.9043
4,262
13.0957
86,8297
4.250
13,1703
85.8735
4,103
14.1265
85,7080
4,079
14,2920
87.0024
4.278
12.9976
86.5780
a,2U
13.4220
88,5295
4.540
11,4705
87,9542
4,438
12,0456
90.6149
4,961
9,3851
69,6736
4,801
10,1264
91,8589
5,259
8,1411
90.6190
4.962
9,3810
92,4426
5,415
7,5574
90.5J59
4,943
9,4641
94,8866
6,234
5.1134
92.6470
5,472
7,3530
96.5311
7,048
3,4689
9fi.5849
6,114
5.4151
97,7522
7,957
2,2478
96,4057
6,973
3.5943
99.7232
J2.3«9
0,2768
99,1513
10,000
0,8487
99.9664
16,771
0,0336
99,8733
13,466
0.1 (67
EFFICIENCY • STATED ¦ 99.60
COMPUTED B 99,5393
convergence OBTAINED
ADJUSTED NO-RAP EFF, » 96.5B52
HMD OF INLET SIZE DISTRIBUTION e 4.465E+01
SI0MAP OF INLET SIZE DISTRIBUTION a 5.122E+00
LOG-NORMAL 600DNE88 OF FIT a 0,9B
-------
UNADJUSTED MjGRATTON VELOCITIES Awn EFFICIENCIES, AND DISCRETE OUTLET MASS LOADING9
IDEAL UNADJUSTED
HIG, VEL*. (CM/SEC5
J,790E*00
J,flfl6E400
J.918E+00
«,769E+00
5^911E*00
8,019E*00
1.037E+01
1,2703
«,7flOE-02
3,756E«=01
8.69IE-0I
2,197E*00
6,5fcJE*00
3,1«7E+00
7,913E*00
1 a 115E + 01
1 a M 6E + 01
l,6«nE*01
1,7816481
1.S76E+01
PAHTICLE
ftlAH.(H)
2, 006E»07
O.000E.07
7.000E-07
1.IO0E-06
1.600E.06
2.S00E.06
l,S0nE-06
U.500E.06
6,00 OE»06
8.500E-06
1.250E.0S
1,0091*0!
2,T50E»05

-------
SUMMARY TABLE OF ESP OPERATING
PARAMETER AND PERFORMANCE
DATA SET NUMBER J7
ESP PERFORMANCE!
EFFICIENCY a 90.1872 *
8CA a U.769E401 «•#?/(M**J/SEC)
ELECTRICAL CONDITIONS!
AVG. APPLIED VOLTAGE a «.159E*0« V
AVG, CURRENT DENSITY ¦ 18,OU NA/CM**2
RESISTIVITY ¦ 5.000E+10 OHM-CM
SIZE DISTRIBUTIONS!
INLET MMD ¦ a.(l6SE*01 UM INLET SIGMAP a 3,122E+00
OUTLET HMD ¦ a.01lE*00 UM OUTLET SIGMAP ¦ 2.71JE+00
NONIDEAL PARAMETERS! GAS 8NEAKAGE FRACTION a 0,10 /SECTION OAS VELOCITY SIGMAG ¦ 0,00
RAPPING MMO > l.OOOetOl UM RAPPING SXQMAP o 2,50C>e*00

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS POP NONinEALITIES USING SET No, 1 OF CORRECTION PARAMETERS
8IZE
CCF
INLfT *
OUTLET x
COR. OUTLET
2', OOOE "07
2.123
0.033
0,3119
0,1816
1.000E-07
1.530
0,253
6.1038
3,0227
7.OOOE-07
1.297
0.903
21'. 0561
12.8865
1a100E-06
1.188
0.815
1612212
8,7881
1,600E-06
1.130
1,520
20,1366
11.1317
2.500E-06
1.083
3,520
23.1121
13,7801
3,S00E-06
1.059
1,652
5,6379
1,3210
1,500E-06
1.006
1,652
3.2086
3.9878
6(000E-06
1,035
1.982
0.7051
1,0550
8.500E-06
1,02"
3,301
0.0695
6.3181
1,250E-05
1,017
<1,816
0,0011
7,6563
2,OOOE-05
1.010
12.115
0.0102
10.0680
2.7S0E-0S
1.008
67.101
0.0565
13.3961
NO-RAP EPF,
NO-RAP W
no-Rap p
COR, EPF.
COR, w
COR'. P
98.7631
9.210
1.2366
98.7601
9,205
1,2396
97,0053
7.356
2,9917
97,0015
7,353
2.9985
96,8180
7.219
3.1520
96.8J70
7,211
3.1630
97,6117
7,859
2.5553
97.6100
7,629
2,3900
98.1326
8,713
1.5671
98.3761
A,639
1.6236
99,2230
10.185
0,7770
99.1333
9.955
0.6667
99,5962
11.557
0,1038
99,1203
10,799
0.5797
99.7702
12,739
0,2298
99,1650
10.967
0,5350
99.9579
16,297
0,0121
99,5165
11.3U
0.1515
99.9975
22.227
0.002S
99,5761
11.155
0.1239
99.9999
31,«59
0,0001
99,6098
11,656
0,3502
99.9999
18.821
0.0001
99,8158
13.203
0,1812
99.9999
66.301
0.0001
99,9559
16.202
0,0111
EPPICIENCY - STATED » 99.60
COMPUTED a 99,5301
CONVERGENCE OBTAINED
A0JU8TED NO.RAP EFP. " 99'.881T
MHO OF INLET sue DISTRIBUTION n fl,«63E»01
8IGMAP OP INLET SIZE DISTRIBUTION a s'.122EtfiO
LOG.NORMAL G00DNE88 OF PIT ¦ 0',98«
HMD OF EPFLUENT UNDER NO-RAP CONDITIONS ¦ l',361E*00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 1.833E+00
LOG-NORMAL GOODNESS OF FIT • 0.99b
PRECIPITATION RATE PARAMETER UNDER NO.RAP CONDITIONS ¦ 11,131
SIGMAGB O'.OOO WITH 0,000 SNEAKAGE OVER I'.OOO STAGES
NTEMP ¦ 1
RMMD ¦ IS.00
R8IGMA • 2,50
CORRECTED'""© Of'ePPLUENT • fl,126E+00
CORRECTED SIGMAP OF EFFLUENT ¦ 3.505E*00
LOG-NORMAL G0PDNES8 OF FIT ¦ 0,936
CORRECTED PRECIPITATION RATE PARAMETER ¦ 12,81

-------
UNADJUSTED HjCRATInN VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTFD
HIC, VEL.(CM/8EC>
5,790E*00
3,4B6EtOO
3,918E+O0
~,769E+00
5p9tlE*00
B,019E+00
1,037E*01
1,27«E+01
1f630E+01
2.22JE*01
J. HI6E*0l
A,882E+01
~.630E+01
IDEAL UNADJUSTED
EFFICIENCY^!)
e.360E«ni
8.1QUE+01
8,«57E+01
8.972E*01
q,«o«e»oi
9.762E+01
9,929E+01
9,977E+01
9.996E+01
1.000E+02
l,000E+02
1.000E»02
1.000E+02
no-rap
DM/Dj.OQDfMG/DSCM)
6.077E-02
2,U?6E+00
7,'22E+00
8.5U0E+00
1 p 027E + 01
9.150E+00
(1.753E+00
2.315E+00
«,517E»01
3,531E«02
2.0P2E-0S
3,76<>E"03
6.2S0E-02
RAPPING PUFF
DM/DL0GDC5/DSCM)
1.506E-0U
3.0B2E-03
2,780E-02
1.25BE-0I
3.6B5E-01
1.0S7E+00
2.071E+00
3.075E+00
0,
1 .230E-05
2,0001*05
2.750E.05

-------
SUMMARY TABLE OF ESP OPERATING
parameters and performance
data set number 28
ESP PERFORMANCE! EFFICIENCY » 99.7T8U X SC* ¦ a'.769E»0l M«»2/(M»*J/SEC)
ELECTRICAL CONDITIONS! AVG, APPLIED VOLTAGE • «,159E»0« V
AVG. CURRENT DENSITY d 18,OK NA/CH**2
RESISTIVITY a 5.000E+10 OMM-CM
SIZE DISTRIBUTIONS! INLET HMD ¦ «,«65E*01 UM INLET SIGMAP ¦ 5'.122E*00
OUTLET MHO d  1.300E+01 UM RAPPING SIQMAP ¦ 2,300E*00

-------
PARTICLF SIZE RANGE STATISTICS
CORRECTIONS FOR NONlDfAlITIES USING set no. ? OF CORRECTION PARAMETERS
SIZE
2^000E"07
«.oooe>o7
7,000E-P7
1,IOOE-06
1.600E-06
2.500E-06
3,500E-06
65
5,8131
93,7940
5,828
6,2060
93.7733
5,821
6,2267
94.8365
6,214
5.1635
94,7717
6,188
5,2283
95,9859
6,742
a.0141
95,6809
6,687
",1191
97.3060
7.578
2 . 69	PRECIPITATION RATE PARAMETER UNDER NO.RAP CONDITIONS o 11,789
81GMAGI 0.250 WITH 0,100 SNEAKAGE OVER 4.000 STAGES
NTEMP ¦ J
RMMD • 15.00
R81GHA ¦ 2,50
rnes' rrr ¦ oo'aflSS
CORRECTED'mmD Op'eFFLUENT a fl.lOJEtOO
CORRECTED SIGMAP OF EFFLUENT « 3.096E»00
LOG-NORMAL GOODNESS OF FIT • 0.976
CORRECTED PRECIPITATION RATE PARAMETER ¦ 10,89

-------
UNADJUSTED MIGRATION VELOCITIES ANn IC!FNCIES# AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
IDEAL UNADJUSTED
NO.RAP
MIG. VEL'.(CH/SFC)
EFFICIENCY(X)
DH/dL OGD(mG/
Jp790E*00
8.360E»01
1 ,U?
DM/DL0G0(mG/08Cm5
DI8TBIBUTI0NCX)
OIAM.(M)
2.811E-0U
1.027E-01
9,779E»0«
2,0006-07
5.753E»0S
«.710E*00
9,109E«01
«,000E«07
5,190E-02
1 .565E ¦» 0 1
9,659E»02
7.0006.07
2,3«8E-01
1 ,896E*01
2.7JUE-01
1.100E-06
6,879e-01
2.699E+01
B.269E-01
1,6006.06
1.973E+00
J. J70E + 01
J,059E»00
2.500E.06
3.867E*00
2.720E+01
2,8UE*00
1.500E.06
5,7
-------
SUMMARY table OF E8P OPERATING
PARAMETERS ANO PPPFORMANCE
DATA SET NUMBER 29
E8P PERFORMANCEI EFFICIENCY ¦ 99,fl«5S * SC* = 4.7A9E+01 M#»2/(H#»J/8EC)
ELECTRICAL CONDITIONSi
AVG. APPLIED VOLTAGE b a,159E+0fl V
AVG. CURRENT DENSITY a 18.0« NA/CM«»2
RESISTIVITY s 5.000E»10 OHM.CM
3IZE DISTRIBUTIONS!
NONIDEJ
^etersi
INLET mmd b U.«fe5E*0t UM	INLET SIGMaP b S.122E»00
OUTLET HMD o U.lOJEtOO UM OUTLET SIGMAP b 3,096E»00
GAS SNEAKAGE FRACTION ¦ 0,10	/SECTION	GAS VELOCITY 8IGMAG • 0,25
RAPPING mmo a i.SOOE+Ol U* RAPPING SIGMAP ¦ 2,500C+00

-------
PARTICLE SI ZE RANCE STATISTICS
CORRECTIONS FOR NQNIOEALITIES USING SET No. 3 OF CORRECTION PARAMETERS
SIZE
CCF
inlet *
OUTLET X
COR. OUTLET
X NO-RAP eff
, NO-RAP H
NO-RAP P
COR. EFF,
COR. v
COR. P
2jOOOE-07
2.123
0.033
0', 1836
0,1422
'2.7505
5.502
7,2495
92,7392
5,499
7,2608
4,000E-O7
1,530
0,253
2,3354
1,8085
87,9714
4.441
12,0286
87,9574
4,438
12*0426
7.000E-07
1.297
0.903
8.8651
6,8787
"7,2072
4,311
12,7928
87,1664
4,305
12.8336
1 f 1OOE-06
1,188
0,815
7'. 1630
5,6029
88,5(168
4,54$
11,4532
88,4188
4,520
11,5812
1.600E-06
1.130
1,520
11,5362
9,1100
'0,1102
4.851
9,8898
89,9027
0,807
10,0973
2.500E-06
1.083
3,524
21,69fl5
17.U726
91.9780
5,290
8.0220
91,6468
5.205
8,3532
3,5006-06
1.059
1,692
9,0002
7,5980
92,9008
5,546
7,0998
92,2514
S.363
7,7486
4.500E-06
1,046
1,652
8,6513
7,7960
93.1761
5,629
6.8239
92,0tl95
S.309
7,9505
6.000E-06
1,035
1,982
7.3927
7,5040
•>5.1397
6,341
4,8603
93,6215
5,771
6,3785
8.500E-06
t .024
3,304
9.1127
10,0982
96.4060
6,973
3,5940
94,8509
6,219
3.H91
1.250E-05
1.017
fl. 8"6
910758
10,7369
97,5596
7,785
2,4004
96,2673
6,894
3.7327
2.000E-05
1.010
12,115
2.9234
7,1099
99,6856
12,081
0,3144
99,0057
9,668
0,9943
2.750E-05
1 .006
67.001
2.0658
8,1025
99.9601
16,408
0.0399
99,7975
13,004
0.2025
EFFICIENCY -
STATED ¦
99'.60
COMPUTED =
99,5393
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, ¦ 98'.6969
MHO OF INLET SIZE DISTRIBUTION a 4.465E+01
SIGMAP OF INLET 8IZE DISTRIBUTION a 5-.l22E + 00
LOG-NORMAL GOODNESS OF FIT o 0.984
MHO OF EFFLUENT UNDER no-Rap CONDITIONS b 3.28TE+00
SICKAP of EFFLUENT UNDER NO-RAP CONDITIONS o 2.550E+00
^	LOB-NORMAL GOODNESS OF FIT ¦ 0,995
^	PRECIPITATION RATe PARAMETER UNDER NO-RAP CONDITIONS ¦ 9,101
SIGMAG* 0,250 MITH 0,300 8NEAKAGE OVER a',000 STAGES
NTEMP ¦ 1
RMMD ¦ 15,00
RSIGMA ¦ 2,50
CORR, EFF. • 96.5153
CORRECTED HMD OF EFFLUENT ¦ 4.625E+00
CORRECTED 8I0M*P OF EFFLUENT ¦ 2.908E+00
LOG-NORMAL G00DNES8 OF FIT ¦ 0.991
CORRECTED PRECIPITATION RATE PARAMETER « 8,56

-------
UNADJUSTED MIGRATION VELOCITIES AND FICIENCtE3, ANp DISCRETE OUTLET MASS LOADINGS
IDEAL UNAPJUSTED
*IG, VEL.(CM/SEC)
3'.790E + 00
S.««6E+0O
3.918E+00
0,7fc9E+00
9,41lE + OO
8.019E+00
1,037E+01
l,27«E+01
1,6JOE*01
2.223E+01
3.146E+01
«,882E+0i
6.630E+01
IPF*L UNADJUSTED
EFFICIENCY(*)
8.360E+01
s.ioue+oi
8.U97E+01
8.972E+01
9.«0«E+01
9.78ZE+01
9.929E+01
9,977E+P1
9,996E+01
J.0 0 OE+0 2
1 .000E + 02
1.OOOE+02
1.000E+02
NO-RAP
OM/OLOOnfG/DSCM)
3.562E-01
9j7a6E+00
3,215E+01
<1,1S3E + 01
ueoE+oi
9fD07E+01
6,357E+01
6.875E+01
5,21JE+Ol
S.098E+01

-------
SUMMARY TAfllE OF ESP OPERATING
parameters and performance
DATA SET NUMBER 50
ESP PERFORMANCE I EFFICIENCY a 08.5155 * SCA « 4.769E + 0I M*«2/(M»«5/SEC)
ELECTRICAL CONOITIONSI	AVG, APPLIED VOLTAGE b a.lSQE+Ott V
AVG, CURRENT DENSITY • 18,Oil NA/CM«#2
RESISTIVITY a 3,000E»10 OHM.CM
SIZE DISTRIBUTIONS!	INLET mmd b «,Ufc3E*01 UM INLET SIGMAP ¦ 5.123E+00
OUTLET mmd s 4.68SE + 00 UM OUTLET SIGMAP'¦ 2.908E + 00
NONIOEAL PARAMETER9I GAS SNEAKAGE FRACTION ¦ 0,50 /SECTION OAS VELOCITY SIGKAG ¦ 0.J5
RAPPING MMD b 1.500E+01 U« RAPPING SIGMAP ¦ 1.500E+00

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONIP>EALITUS USING SET No". U OF CORRECTION BA94METEBS
8IZE
2,oooe-or
fl,000E-07
7,OOOE-07
1.100E-06
I.600E-06
2.SOOE-06
3,500E-06
0,500E-06
6,O00E-O6
8.500E-06
l,250E-05
2.000E-05
2.7S0E-05
CCF
INLET X
OUTLET * COR, OUTLET
2,123
0, 03 J
0,1213
0.1051
1.530
0.253
1.3078
1.1356
1.297
0.903
l".'032
1,265'
1.188
0,815
1.1620
3.6068
1.130
1.520
T.16'3
6,3283
1.083
3.521
ia^9»0302
1,021
3,300
10,1002
10,?095
1.017
1,816
12,2161
12,772?
1.010
12,115
'.2210
10.6600
1,008
67,101
15.3608
17.1311
NO-RAP EFF.
83,3081
76.5857
75,1008
76,8663
78.6357
80,7265
81.5136
61,3630
81.2518
86.1077
80.5813
'6,5523
'8,9677
MO-PAP H
3,75'
3,Oil
2, '11
3,06'
3,236
3,158
3,500
3.522
3.873
1,105
4,550
7,061
9.589
MO-HAP p
16.6519
83.«1«3
21,5952
23.1337
21.3613
19,8737
18,1811
18,6370
15.T68?
13,8523
11,1187
3.1077
1.0323
COB. EFF,
83,3276
76,5603
75,3307
76.6311
78.25'2
80.18!
80.35
7«,3l
81 ,17
83,32
86.23
95.31
96,67
COB. IN
3.756
3.0«2
8.'35
3.0«8
3.200
3.368
3.010
3.30a
3,535
3.756
1.158
6,01'
9,062
CO*. P
16,6721
23.0397
?1,669J
23,365'
21,7008
19,0707
19.6621
10,6807
18,5221
16,6735
13,7631
0,6810
1.3273
EFFICIENCY - STATED o 99.60
COMPUTED » ",S3'3
CONVERGENCE obtained
ADJUSTEO NO-BAP EFF, ¦ 95'.1T0U
HMD OF INLET SIZE DISTRIBUTION n 1.165E+01
SIGMAP OF INLET SIZE DISTRIBUTION b 5'.122E>00
LOG-NORMAL GOODNESS OF FIT ¦ 0,981
MHO OF EFFLUENT UNDER NO-RAP CONDITIONS s 6.220E+00
8IGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS » 3.152E+00
LOG-NORMAL GOODNESS OF FIT o 0,990
PRECIPITATION BlTE PARAMETER UNDER NO-RAP CONDITIONS ¦ 6,088
SIGHAG" 0,250 WITH 0.500 SNEAKAGE OVER 1.000 STAGES
NTEMP a 1
RMMO o 15.00
R8IGMA a 2,50
COBB. EFF. a 91.7780
CORRECTED MMD OF EFFLUENT o 6.969E+00
CORRECTED SIGMiP OF EFFLUENT a 3.203E+00
LOG-NORMAL GOODNESS OF FIT a 0,992
CORRECTED PRECIPITATION BATE PARAMETER a 6.19

-------
UNADJU8TE0 MIGRATION VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL (JNAOJUSTEO
MIG. VEL*. (CM/SEC)
sj79oe*oo
3,fl86E»00
3.918E»00
Uflt>9t*00
5^9111~0 0
8.019E+00
1.017E+01
l,27«E*01
J,6J0E»01
2,223Et01
J,106E»01
0,S62E*01
6.630E+01
IDEAL UNADJUSTED
EFFICIENCY(X)
e'.itoe+oi
s.inuE>oi
8.H57E+01
8.972E+01
9.ooue*oi
9.782E+01
9.929E+01
9,977E+01
9,996E*01
t.OOOE+02
t.OOOE+02
l,OOOE*M
1 .000E+O2
NO-PAP
DM/DLOGD(MG/DSCM)
8,183E-01
1f897E+01
6. lBlE + OI
fl,388E*01
1,65E*02
2^328E+02
t•3t 0E + 02
6.505E+02
Rapping puff
NO-SAP+RAP PUFF
RAPPINQ PUFF
PARTICLE
OM/OLOGO(MG/DSCM)
DM/DLOGDIMG/DSCM)
DISTRIBUTION t*)

1.008E-03
8.19JE-0J
9, 7T9E*0#
l,OO0E»07
2.063E-08
l.B99E»fll
9,305E»03
U.O00E-O7
1.861E-01
6.200E+01
9,fcS9E»02
7.000E-07
8,fl2JE»01
8,072E»01
2,71flE»0!
1.100E-06
2,4671*00
1.B2SE+02
8.26SE-01
1,600E»06
7.0T7E+00
2.301E+02
3,059E+00
I.300E.06
1.387E+01
2,315E+02
2,811E+00
I,500f"06
2.0S9E+01
2.083E+02
U.876E+00
0.500E.06
2.95OE+01
1.9S7E02
7,80(IE+OO
6,0001*06
a,002E*01
2.365E+02
1,306E»01
8,5006-06
a,780C+01
8,806E+02
1,6411401
1.150E.05
0.687E+01
1,7798+08
2,198E+01
2,0001*05
1.8591+02
e.me+02
2.B7IE401
2,750e»05
A
o\
ffl

-------
summary table OP ESP OPERATING
PARAMETERS and PERFORMANCE
DATA SET NUMBER 51
E8P PERFORMANCE I
EFFICIENCY « 00,7780 *
SCA a U.769E+01 M»»?/fM*»5/8EC)
ELECTRICAL CONDITIONSt
AVG, APPLIED VOLTAGE ¦ 0t UM
OUTLET MMD a 6.969E+06 UM
INLET SIGMAP a 5'.122f + 00
OUTLET 8IGMAP a S.20JE+00
NONIDEAL PARAMETERS I
GAS 8NEAKAGE FRACTION a 0.50 /SECTION GAS VELOCITY 8IGMAG a 0.25
RAPPING HMD a 1.500E+01 UM RAPPING SIGMAP a 2,500E*00

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS for N0NIDEALITIE9 USING SET No. 5 OF CORRECTION PARAMETERS
81U
2.000E-07
fl.OOOE-07
7,000E-07
1,100E-06
1.600E-06
2.500E-06
3,500E-06
4,500E-06
6.000E-06
8.5001*06
1,250E-05
2.000C-05
2.750E-05
CCF INLET *
2.(23 0.033
1.530
1.297
1,188
1.130
1.083
1.059
1 .out)
1.035
1.024
1,017
1.010 12^113
0,253
0,003
0,813
1,380
3,520
1.632
U652
1,962
3,301
a,8^6
OUTLET t
0,0728
016770
2.4961
2.1898
319380
8,7495
4,0669
4,134?
4.3999
7^2705
9,7411
13,0892
38.9707
1,008 67.401
EFFICIENCY • STATED • 99'.60
COR, OUTLET
0.06M
0,635?
2,344a
2.0686
3,7412
8.3896
3,987a
4.1811
4,8075
7,6658
10,1627
13,626?
38,3220
COMPUTED s 99.5393
no-rap eff.
NO"
?AP v
NO-RAP P
COR. EFF.
COR, *
64.3675
2
164
35.6323
64,3332
2,162
56.7538
1
758
43.246?
56.7137
1,756
55.3930
1
691
411,6470
35,2363
1,685
56.6033
1
730
43.3967
56,2376
1,733
58,1548
t
827
41,8452
57,5619
1,797
59,6968
1
916
40,1012
58,9524
1 .867
60,2386
1
934
39,761a
58,3834
1,838
39,580?
I
899
40.4196
36,3618
1.739
62,5155
2
057
37,4845
38,1782
1.628
64,U392
2
168
35,5608
59,9962
1,921
67,5336
2
359
32,4664
63,8416
2.133
82,5497
3
660
IT.4503
80,6075
3.439
90.6614
4
971
9.3386
90,1969
4,869
COR. P
35,6648
43,2863
44.7637
43,7624
42,4381
41,0476
41,6166
43,6382
«i,82ie
40,0038
36,1584
19,3923
9.8031
CONVERGENCE OBTAINED
ADJUSTED NO.RAP EFF. » 83'.848S
HMD OP INLET SIZE DISTRIBUTION a a.fl65E*01
SIQHAP Of INLET SIZE DISTRIBUTION a 3'.1?2E*00
LOB-NORMAL GOODNESS OF FIT ¦ 0,984
MMD OF EFFLUENT UNDER NO-RAP CONDITIONS a 1.353E+01
8I6HAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 3.903E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0,986
PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS ¦ 3,823
BIBMAGb 0.250 WITH 0,700 SNEAKAGE OVER 4,000 STAGES
NTEMP ¦ I
RHMO ¦ 15,00
RSICMA ¦ 2.50
CORR', EFF. ¦ 82'.7382
CORRECTED HMD OF EFFLUENT ¦ 1.368C*01
CORRECTEO 8IGMAP OF EFFLUENT ¦ 3.B52E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0.988
CORRECTED PRECIPITATION RATE PARAMETER • 3,69

-------
UNADJUSTED MIGRATION VELOCITIES A no EFFICIENCIES* AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
IDEAL UNADJUSTED
NO.RAP
RAPPING PUFF
NO*RAP+RAP PUFF
RAPPING puff
PARTICLE
MI6, VEL'. fCM/SEC)
EPFICIENCVf*)
DM/oLOCDfMG/D8CM5
DM/DL0GD(HC/D3rM)
DM/DL0G0(*G/03Cm)
DISTRIBUTION^)
DIAM,(M)
3.790E+00
8', 360E+01
1j 751E + 00
1.588E-03
1.753E+00
9.779E-0U
2.600E.07
3.<1866*00
8,10«E+01
3.50UE+01
3.202
7.000E.07
fl,769E+00
8,972E + 01
1 .573E+02
1.326E+00
1.587E+02
2.73OE-01
1.100E-06
5^911E + 00
9,UOUE+01
2.7«2E+02
3.885E+00
2.781E+02
8.269E-01
1.600E.06
8,019E+00
9.782E+01
 £ ~ 01
8.500E.06
3.1«6E*0l
1a OOOE + 02
6^620E+02
7,5286+01
7.372E+02
1,6«lE+01
1.250E.05
U,B82E+01
1.000E+02
6.6S2E+02
7.3811 + 01
7.370E+02
2.19BE+01
2.OOOE.05
6.630E+01
1.000E+02
5.88UE+03
2.927E+02
6.177E+03
8,8711+01
2,7506-05

-------
SUMMARY table OF ESP OPERATING
PARAMETERS AND PERFORMANCE
OATA SET NUMBER 32
ESP PERPOPMANCEl EFFICIENCY « 82.7582 * SC* 8 U.769E+01 M*«2/fm*«S/8EC)
ELECTRICAL CONOITIONSI AVG, APPLIED VOLTAGE a a,15<»E»0« V
AVG, CURRENT DENSITY a 18,00 »A/CM**2
RESISTIVITY a s.OOOEtlO OHM.CM
SIZE DISTRIBUTIONS!	INLET MHO P U.«fc5E+01 UM INLET SIGHAP ¦ 5.122E+00
OUTLET MMO ¦ I.J68E+0I UM OUTLET SIGMAP ¦ 3.89>E«00
NONIDEAL PARAMETERS! GAS SNEAKAOE FRACTION a 0,70 /SECTION GAS VELOCITY SJ0MA8 ¦ 0.1?
RAPPING MHO s 1,5002+01 UM RAPPING 8IGMAP a 2.500EtOO

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR N0W|tlE4 LI TIES USING SET Nnt is OP CPPRECTION PARAMETERS
SIZE
CCF
INLET *
OUTLET *
COR. CUTLET
* NO-RAP EFF
, UO-PAP w
NO-RAP P
COR, EFF.
COR, *
COR, P
2,000E>07
2.1*5
0.033
0,2911
0, 1808
97.6762
7,888
2.3238
97,6711
7,883
2,32*6
1, OOOE-07
1.5)0
0.253
1,7115
2,9209
95.0987
6,323
U,9013
95,0927
6,320
1,9071
7.000E-07
1.297
0'.90l
17,8(191
11,0875
9tt,7976
6,19*
5,2021
91,7803
6,191
5,2197
1.1006-06
1.188
0.815
12,9622
8,1117
95.8076
6,650
0,1920
95,7552
6,623
1,2168
I.600E-O6
1.150
1.520
18.0331
11,4796
96,8775
7,868
3.1225
96,789(1
7,210
1,2106
2.900E-06
1.085
3.521
26'0236
17,2779
98,0561
8,262
1.9136
97,9158
8,1 16
2,0812
3,500E-06
1.059
1 ,652
8.3261
6.226?
98,6735
9,063
1,3265
98,1978
8,667
1,6022
fl,500E-06
1.046
1.652
6,3882
5,8136
98,9823
9 619
1,0177
98,5010
8,811
1,1960
6.0001-06
1,015
1,982
3.0611
1,9002
99 5935
11,513
0,1065
98,9190
9,551
1,0510
8,500E-06
1.02(1
3,301
1,6599
6,1591
99,8678
13,898
0,1322
99,2075
10,113
0,7925
1.250E-05
1,017
1,816
0,6293
6,6138
99,9658
16,735
0,031?
99,«172
10,768
0,5828
2.000E-05
1.010
12,115
0,0192
8,2252
99 9996
18,821
0,0001
99,7111
12,861
0,2886
2.750E.05
1.008
67,101
0,0251
10.9112
99,9999
66,301
0,0001
99,9310
15,261
0,0690
EFFICIENCY • 1
STATED 8
99,60
COMPUTED a
99,5393
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, a 99,7368
HMD OF INLET SIZE DISTRIBUTION ¦ 1,165E*01
SIGHAP OF inlet SIZE DISTRIBUTION ¦ 5.122E*00
LOG-NORMAL GOODNESS OF FIT a 0,90(1
HMD OF EFFLUENT UNDER NO.RAP CONDITIONS ¦ 1.707E»00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS » 1.987E+00
LOG.NORMAL GOODNESS OF FIT o 0,997
»	PRECIPITATION RATE PARAMETER under no.rap CONDITIONS a 12,05*1
SIGMAG* O.lOO WITH 6,100 SNEAKAGE OVER 4.000 STAGES
NTEMP b |
RMMD ¦ 15,00
RSIGMA a 2,SO
CORR. EFF, a 99.5719
CORRECTED MHD OF EFFLUENT a 1,l20EtOO
CORRECTED 8IGMAP OF EFFLUENT « 3.200E+00
LOG-NORMAL GOODNESS OF FIT o 0,971
CORRECTED PRECIPITATION RATE PARAMETER ¦ 11.15

-------
UNADJUSTED MIGRATION VELOCITIES and EFFICIENCIES, and discrete outlet MASS loadings
IDEAL UNADJUSTED
Hie. vel'.(cm/sec)
3',790E*00
J,486E*00
J,918E*00
fl,769£*00
5,911E 0 0
8,0191*00
1.0J7E+01
1.2T«E*01
I,610E*01
2,221E*01
J,IU6E*01
fl,6«2E*01
6.610E*01
IDEAL UNADJUSTED
EFFICIENCY**)
S.360E+01
8,101E*0l
8,US7E+01
8,972E*0I
9j«0«E*01
9,782E+0I
9,9292*01
9,977E*01
9,996E*0I
1,00OE+02
l,00OE+02
1,0001+02
1.OOOE+02
NO-RAP
DH/DLOGD(NC/DSCH)
i. 1O2E-01
~,9716*00
i,soee+oi
1.520E+01
2,006E*01
2,289E+0l
1,5(>2E + 01
1,025E*01
~,	jt>oe*oo
1,8T6E+00
4,9ft8E-01
1.587E-02
6.250E-02
RAPPING PUFF
DVDL0GD(MG/DSG*)
2,359E-08
U.A28E-03
4.356E-02
1.971E-01
5.77JE-01
l,656E*0O
3.ja?E*00
~.fltSE+OO
~,91flE*00
9.166E+00
l.im+oi
I.097C+01
U.J09E+01
NO-RAP*RAP puff
DH/DL0CD(M5/DSCH)
1 • 14
3,?00E»06
4.9O0E-O6
6,OOOE-06
8.J0OE.O6
1,2506-09
2,	OOOE-OS
2.T5OE.0!

-------
SUMMARY TABLE OF E8P OPERATING
PARAMETERS and PERFORMANCE
DATA SET NUMBER 5J
ESP PERFORMANCE I	EFFICIENCY ¦ 99.5709 X 8CA o o,7fc9E»01 M«*2/fM««S/8EC)
ELECTRICAL C0NDITI0N3I	AVG, APPLIED VOLTAGE ¦ 0,159F*0fl V
AVG, CURRENT DENSITY ¦ 19,00 na/CM*«2
RESISTIVITY a 5.000E+10 OHM-CM
SIZE DISTRIBUTIONS! INLET HMD ¦ 0,0691*01 UN INLET SIQNAP ¦ 5'ai2aE+00
OUTLET MMD ¦ 0¦1?0EtOO UM OUTLET SlGMAP ¦ J.aOflE + OO
NONIDEAL PARAMeTERSl CAS 8NEAKAGE FRACTION ¦ 0,10 /8ECTI0N OAS VELOCITY 8IGHA6 ¦ 0,10
RAPPING MMD ¦ 1.500E+01 UM RAPPING 8IGMAP ¦ 2.500E+00

-------
PARTZCLE Sire RANC.E STATISTICS
CORRECTIONS for NONinEALITIES US ING SET No'. T OF CORRECTION PARAMETERS
size
2,OOOE-OT
1.000E-07
7.000E-07
100E-06
1.600E-06
2,500E-06
3,500E-06
1,500E-06
6,00OE-06
8,500E-06
J.250E-05
2',000E-05
2.T50E-05
CCF INLET *
2.123 0,033
0.253
1.530
1,297
1, ISA
1.130
1.063
1.0S9
1,006
1,035
1.020
1.017
1.010 12.115
1.006 67.401 0',079 a 15,00
R8I6MA a 2,50
CORR". EPF. b 99.2391
CORRECTED MMO OF EFFLUENT a 1,103E*00
CORRECTED SIGMAP OF EFFLUENT b 2.9936*00
LOG-NORMAL GOODNESS OF FIT b 0,981
CORRECTED PRECIPITATION RATE PARAMETER » 10,23

-------
UNAPJHSTFD HICPA TI0N VELOCITIES AND
EFFTCIFNCIES, AND
DISCPETE OUTLET MASS
LOADINGS


IDEAL UNADJUSTED
IDEAL UNAOJUSTEO
NO.RAP
Rapping pufp
NO-RAP»ffAP PUPF
RAPPING PUFF
PARTICLE
MIC, VEL*. (CM/SEC)
EFfICIENCV(t)
PM/DL0GD(MG/DSCM1
OM/DLOGDfNC/oSCH)
OM/OL05D(MG/D8CM5
DISTRIBUTION(X)
DIAN'.(M)
3'.790E»00
ft.360E+01
1f873E"01
j.auaE-00
1.B76E-01
9,779E*0S
2,OOOE»OT
S,E*00
7.0«7E»03
3.826E+00
9.305E-03
tt.OOOE.OT
3.918E+00
8.«57E+01
1,940E+01
6.J38E-02
l.«6Et01
9,659E»02
7 ,OO0E"O7
«,769E*00
8.972E+01
2,a<)6E + 01
2.876E-01
2.4I5E+01
2,71«E-01
I .lOfiE.Ofc
5,9UE»00
9,40«E+01
3.S25E+01
B,a2f>E-0l
3.609E+01
B.26SE-01
1.600E.06
8,0 19E*00
<>.r62e+oi
a,55«E+01
2.fll7E»00
«,796E*01
3,059E»00
2.100E-06
1.0J7E*01
9.929E+01
S,5«JE+81
«.7S7E*00
U.037E+01
218tie*0fl
3,?00E-06
1,2T«E+01
9,977E»01
2,«>33E + 01
7,o32EtOO
3.336E+01
U,87fcE*00

-------
SUMMARY TABLE OF ESP OPERATING
PARAMETERS ANfl PERFORMANCE
DATA SET NUMBER J«
ESP PERFORMANCE!	EFFICIENCY o Q9.2SQ1 * 8C* « fl'.769E«01 M»»2/fM*«3/SEC)
ELECTRICAL CONDITIONSI AVG, APPLIED VOlTAGE ¦ 
-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FO» NONinEALITIE9 USING SET NO. fi OF CORRECTION PARAMETERS
SIZE
2.008E-07
fl.OOOE.OT
7,0006.07
1.100E-06
1.600E-06
Zj.S00E.06
3,500E-06
«,5ooe.o«
6.000E-06
8,500E-06
1 ,250E-05
2,OOOE-05
2.750E-0S
CCF
INLET X
OUTLET X
COR. 0JJTt ET *
NO-RAP EFF.
NO-RAP N
no-rap p
COR, FFF,
COR. N
2.123
0,033
0,2123
0.1569
9 4.3710
6.033
5,6290
94,3618
6.029
1.530
0.253
2,8175
2,0820
90.2545
4.882
9,7«55
90,2431
4.879
1.297
0,903
10.8492
8,0329
89,4860
4,723
10,5140
89,4528
4,716
1.188
0,815
8.7455
6,3265
90.6096
4,960
9,390«
90,5054
4,937
1.130
1,520
13.8731
10,4560
92.0129
5.299
7,9871
91,8440
5,255
1.083
3,524
24.9052
19,1833
93,8154
5.835
6,1846
9S.S45S
5,746
l .ogo
1.652
9.7131
7,9052
94,8548
6.221
5,105?
94,3264
6,016
1,0116
K6S2
8.7730
7,7524
95,3327
6.434
4,6<»7S
94,4361
6,057
1.035
1,982
6.4826
6.8496
97.1378
7,451
2.8622
95,9025
6,698
1.024
3,304
6.5732
8,3777
98,2590
8,493
l,7«in
96,9937
7,348
1.017
4,846
5.5095
8,3641
99.0051
9,666
0,9949
97,9336
8,154
1.010
12,115
1^0816
6,4503
99,9219
15,001
0,0781
99,3687
10,620
1.006
67.401
0.4642
7.8629
99.9940
20.373
0,0060
99,8617
13.803
CpR. P
5.6382
9,7569
10,5972
9,4946
6,1560
6,45«2
5,6736
5,5639
0,0975
3,0063
2,0464
0,6it 3
0.I583
efficiency - stated « 99'.6o
COMPUTFO a 99,5393
CONVERGENCE OBTAINED
ADJUSTED NO.RAP EFF, o 99".1?49
MMO OF INLET SIZE DISTRIBUTION i 4,465E*01
SI8MAP of inlet size distribution o s.i22E+oo
LOG-NORMAL GOODNESS OF FIT « 0,984
HMD OF EFFLUENT UNnER NO-RAP CONDITIONS ¦ 2.572E+00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS • 2,297E*00
.p.	LOG-NORMAL GOODNESS OP FIT ¦ 0.996
-J	PRFCIPITATION PATE PARAMETER UNDER NO.RAP CONDITIONS ¦ 9.9J5
SIGHAQB 0.600 WITH 0,100 SNEAKAGE OVER «'.000 STAGES
NTEMP ¦ 1
RHMD m 15,00
R8IGM* a 2,SO
CORR, EFF. ¦ 98.8110
CORRECTED MHO OF EFFLUENT « 4,184E+O0
CORREC7EO SIGMAP of effluent b 2.899E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0,987
CORRECTED PRECIPITATION rate PARAMETER ~ 9,30

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFJc1ENC1ES, *Nt) DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
MI6, VEl.(CM/SEC)
J,790E*00
5,«6fcE+0O
J.418E+00
8.769E + CI0
5,911E*00
8,019E*00
1,037E*01
1.2TAE+01
1,6IOE*01
2,2JIE*01
5.106E*0 1
U.082E+O1
6.6J0E+01
EAL UNADJUSTfD
NO-RAP
rapping purr
no>rap+rap pucf
RAPPING PUFF
PARTICLE
EFFICIENCY(*)
D«/0
OGD(MG/DSC*)
DM/DL00DIMG/D8CMJ
DM/OLOCD(M6/OSCH}
DISTRIBUTION!*)
DIAM.(M)
e.JbOE+oi
2
7fct>E"81
a.S22E-0fl
2.771E-01
9.TT9E-00
2.000E-07
8,uue*oi
T
89t>E*00
9,25ae»03
T,905E»00
9.305E-93
tt,000£*07
8.15TE+01
2
6U2E+01
8.JU8E-02
2.651E+01
9.6S9E-02
7.000E.07
8.«72E+01
3
U05E+01
3.777E-01
J,06
J.000E»O2
2
ii 7 0 E ~ 01
1.795E+01
A.265E+01
l,JA6E»0l
8.500E-06
t,00OE+02
2
0P9E+01
2.1UOE + 01
#¦172E+01
1,60lE*Ot
1.2B0E-09
1 ,000E+02
2
9«9E«00
2,102E+91
2.399Et0i
2.158E+01
2.000E-05
1,0OOE*O2
3
798E+00
8,336E+01
8,715E*fll
8.8T1E*01
2.T50E-0?
CD

-------
summary table of esp operating
parameters and performance
DATA SET NUMBER 35
ESP PERFORMANCE! EFFICIENCY a 98.B14U « SC* ¦ «.7696*01 M**2/(M»*J/SEe)
ELECTRICAL CONDITIONS! AVG. APPLIED VOLTAGE * fl,i59E*0H V
AVG, CURRENT OENSITV s 18t0« NA/CM*«J
RESISTIVITY ¦ 5.000E*10 OHM-CM
SIZE DISTRIBUTIONS I	INLET MMD ¦  1.500E+01 UM RAPPING SIGMAP ¦ ?,500E*00

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONIOE ALI TIES USING SET No. 9 OP CORRECTION PARAMETERS
SIZE
CCF
INLET X
outlet *
CO". OUTLET
2.OOOE-0 7
2.123
0.033
0'. 1 9 0 8
0.1091
0,00OE-07
1.930
0,253
2.5018
1,8297
7.000E-07
1.297
0,903
9,0162
7.0580
l,100E-06
1.1BB
0,815
7.0673
5.9035
1.600E-06
1.130
1,520
12^3230
9,7994
2.900E-06
1.083
3,520
23,3765
18,9159
3,S00E-06
1.059
1,692
9,5059
B.0361
U.500E-06
1.006
1,652
8.8200
7,9576
6.000E-06
1.035
1,082
7.1630
7.3216
8,500E-06
1.020
3, JOO
8' 1 009
9,2781
1,290E-09
1.017
0,806
7,6993
9,6113
2.000E-05
l.«10
12,1 IS
2.3700
6,5873
2.790E-05
1.008
67.001
l'.6000
7.9523
NO-RAP EFF,
NO-RAP W
NO'RAP p
COR. EFF,
COR, W
91.8187
5.209
8.1813
91.8069
5.206
B6.9003
0.262
13.09S7
86.8896
0.260
85.8735
#.103
10.1265
85.8309
0.097
87.0020
0.278
12.9976
86.6689
0.297
88.9295
o,3oo
11,0705
88.3131
0.901
90,6149
0.961
9.3851
90.2690
0.685
91.8589
5,259
6,1011
91.1816
5,091
92,0426
5,015
7.5970
91.2679
9.112
90.8866
6.330
5.U30
93.3035
5,669
96.SSI 1
7,000
3,0669
90.9090
6,203
97,7522
7,957
2,2078
96.0006
6,973
99,7232
12.309
0,2768
99,0)03
9.666
99.9660
16,771
0.0336
99,7969
12,998
COR. P
8.1931
15.1100
10,1641
13,1311
11,6869
9,7506
8,8182
6,7321
6,6969
3,0906
1,9950
0.9657
0.2031
EFFICIENCY - STATED 8 99.60
COMPUTED ¦ 99.S393
CONVERGENCE OBTAINED
ADJUSTED NO-RAP €FF. u 98.5692
HMD OF INLET SIZF DISTRIBUTION ¦ O,a6?E*01
sicmap of inlet size distribution ¦ s.t?2E*oo
LOG-NORMAL GOODNESS OF FIT s 0.980
KMC OF EFFLUENT UNDER NO-RAP CONDITIONS e 3.087f*00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS = 2.083E+00
«.	LOG-NORMAL GOODNESS OF FIT ¦ 0.996
g	PRECIPITATION Rate PARAMETER under NO-RAP CONDITIONS « 8,926
BIGMAG" 0.800 WITH 0,100 SNEAKAGE OVER 0.000 STAGES
NTEMP ¦ 1
RMMQ • 19,00
RSIGMA d 2,90
CORR'. EFF. a 90.1872
CORRECTED HMD OF EFFLUENT a O.376E+00
CO»«ECTEO SIGMAP OF EFFLUENT ¦ 2.863E+00
LOG-NORMAL GOODNESS OF FIT a 0.990
CORRECTED PRECIPITATION RATE PARAMETER ¦ 8,01

-------
UNADJUSTED MIGRATION VELOCIT I?9 AND gFFICIENCIES* AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
IDEAL UN4DJH8TED
no-rap
RAPPING PUFF
no»rap*rap puff
RAPPING PUFF
particle
MIS, VEL . (CM/SEC 5
EPFICICNCV t*)
nM/nLOoo(M6/oscH)
DM/0l0CD(HC/D8Cm)
DM/DL06D(H0/D3CM)
DISTRIBUTION*!
DIAM.(M)
3.790E+00
8.360E+01
U.020E-01
5.795E-0U
0.026E-01
9,779E"01
2.000E-07
3,«86E*00
8.10«EtOt
1 , 061E + 01
t .186E-02
1.062E+01
9.309E-03
4.000E-07
3,918E*00
«'.«57E + 01
J.550E+01
l.n7OE»0l
3.5616+01
9.A50E-02
7,eooc»or
<1.769E*00
8.972E+01
U.713E+01
a.e«oe-oi
4.761E+01
2.7J4E-01
J.iOOE.Ofr
5,9UE*00
9,«OOE*Ot
7,51<>E*01
1 .aiOE + OO
7,658E+01
8.26SE-01
l,600E*0fc
8,019E*00
9,782E+01
1,105E*02
a.o6AE*00
1.1U6E+02
3.859E+80
2,5OOB-Ofc
l,0J7E»0i
9J,929E*01
9,5«
-------
SUMMARY TABLE OF ESP OPERATING
parameters and performance
DATA SET NUMBER 36
ESP PERFORMANCE! EFFICIENCY a 96.1B72 X SC* ¦ «.76«E*01 M.*2/(«.*5/8EC)
ELECTRICAL CONDITIONSl AVO, APPLIED VOLTAGE ¦ 4,159E+00 V
AVG, CURRENT DENSITY ¦ 18,00 NA/CM**|
RE8ISTIVIT* a 5.000E+10 OHM-CM
SIZE DISTRIBUTIONS!	INLET MMD a q.fl65E»0t UM INLET 8IGMAP a S.122I+00
OUTLET mmd ¦ 4.376E+00 UM OUTLET 8IGMAP o 2.86JE*00
NONIDEAL PARAMETERS!	GAS SNEAKAGE FRACTION ¦ 0.10 /SECTION GAS VELOCITY SI6MA0 ¦ 0,80
RAPPING MMO a 1.900E+01 UM RAPPING SIGMAP * 2,500E*00

-------
°ARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONIOE4LITIE3 USING SET No. 1 OF CORRECTION PARAMETERS
SIZE
CCF
INL^T x
OUTLET *
COR. OUTLET
X NO-RAP EPF
. NO-PAP W
no-rap P
COR. EFF.
COR. W
COR. P
2,OOOE-OT
3,121
0,053
0'.5U49
0'. 1842
98.7654
9.210
1,2566
98,7627
9,209
1.257 5
4,OOOE-07
1 ,530
0.255
6*.O058
3.0196
97.0055
7.556
2,9947
97,0042
7,555
2,9958
7,OOOE-07
1.297
0,905
20.0564
12,8568
96.8080
7.249
3.1520
9*1,8443
7,206
5,1557
1,1OOE-06
1.188
0.615
16.2202
8.7105
97.6007
7 ,859
2,3553
97,0311
7,807
2,5689
1,600E-06
1.130
1,520
20,1566
10.9205
96,4526
8.715
1,5670
98,0076
R.680
1,5920
2,500E-06
1,085
5.520
25.1421
13,0926
99.2250
10.185
0,7770
99,1765
10,065
0,8255
5,S0OE-06
1 ,059
1.652
5.6379
3.7682
99,5962
11.557
0,4058
99,4944
11,086
0,5056
4.500E-06
1 ,046
1,652
3,2086
3,1467
99,7702
12,759
0,2298
99,5778
11,060
0,4222
6,000E-06
1.055
1.982
0.7050
2,9331
99,9579
16.397
0,0421
99,6720
11,995
0,3280
8,500E-06
1,024
5.500
0.0695
4.9462
99.9975
22,227
0,0025
99,6682
11.969
0,5318
1,250E«05
1,017
4.846
O'.OOOl
6.8150
99.9999
31,459
0,0001
99,6883
12,100
0,3117
2,OOOE-OS
1.010
12,115
0,0102
10,4455
99.9999
08,821
0,0001
99,8089
13.126
0,1911
2.750E-05
1 .008
67.001
0.0965
18.761?
99.9999
66,304
0.0001
99,9J83
15.096
0,0617
EFFICIENCY -
STATED b
99.60
COMPUTED s
99,5393
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EPF, o 99.8817
HMD OF INLET SIZE DISTRIBUTION c 4.465E+01
8IGMAP OF INLET SIZE DISTRIBUTION s s'.122E + 00
LOG-NORMAL GOODNESS OF FIT a 0,980
MHO OF EFFLUENT UNDER NO-RAP CONDITIONS a 1.364E400
8IGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 1.835E*00
LOG-NORMAL GOODNESS OF FIT c 0,49b
precipitation rate parameter under no-rap conditions » ia.131
8IGMAQS 0,000 WITH 0,000 SnEAKAGE OVER fl',000 STAGES
NTEMP ¦ 1
RHMO a 20.00
R8IGMA s 2.50
CORR'. EFF. o 99.7780
CORRECTED HMD OF EFFLUENT a U.947E+00
CORRECTED 8IGMAP OF EFFLUENT a J,813Et00
LOG-NORMAL GOODNESS OF FIT ¦ 0,944
CORRECTED PRECIPITATION RATE PARAMETER ¦ 12,81

-------
UNADJUSTED MIGRATION VELOCITIES and EFFICIENCIES, AND DISCRETE outlet MASS LOADINGS
IDEAL UNADJUSTED
NIG) V!L.(CM/SEC)
1.790E+00
3,«86E+ftO
S,918E+00
#,T69E+00
5,911E + 00
8,019E+00
1.037E+01
l,27#S+01
I .6S0E + 01
2,22JE+01
3, 106E+01
#,682E+01
6.6J0E+0I
ifAL UNAPJIISTEI5
NDaRAP
rapping puff
NO.RAP+RAP PUFF
RAPPING PUFF
PARTJCLE
EFFICIENCY^}
DM/OLOGO(MG/DSCM)
D*/DLOGn(MG/D8CM)
OM/DLOGDfMQ/DSCH)
DISTRIBUTION^)
OIAM,(M)
6.J60E+01
6, 07TE»(*2
3.*?J 8E-05
f>'.080E-02
2,285E-0fl
I.000E.07
8.10«E + IM
2,«26E+00
8.6«2E-o«
2,a27E+00
2.609E-0J
a.ooee-07
S'.OSTE + Ol
7,9?2E+00
9,a«9E»03
7.9S1E+0O
3.283E-02
7, OOOE»07
8.972E+01
8,5U0E+O0
U.923E-02
6.5896+00
1,070E»01
1.100E.06
9.«0«E+01
1.027E+01
1,<,38E-01
1,0«36+01
3,67«E-01
1,600E»06
9.782E+01
9, 130E + 00
5.O73E-01
9,6976+80
1,58flEf00
2,9001*06
9.929E+01
a.753E+00
1•198E+00
9,9526+00
1,6266+00
1,5001.06
9,977E+01
2,31SE+00
1.938E+00
«,89je+00
3,9716+00
a,5001-06
9.996E+01
fl,5l7E-01
3.067E+00
3.918E+00
5,0796+00
6.000E"06
1,OOOE+02
3.931E-02
1¦672E+00
a.7076+00
1,0586+01
8,500E»06
t,OOOE+02
2.022E-03
6.J5SE+00
6,3576+00
I.U61E+01
1.290E-05
1.000E+02
3.769E-03
7.263E+00
7,2666+00
2.2S9E+01
2.000E.05
l.OOOE+02
6.250E-02
3.888E+0I
3.690E+01
8,0211+01
I.750E-05

-------
summary table OF ESP OPERATING
PARAMETERS AMD PERFORMANCE
OATA SET NUMBER 57
ESP PERFORMANCE!	EFFICIENCY ¦ Q9.77BU * 8C» « u'.769E*0l M»«2/(M«*J/SECJ
ELECTRICAL CONOUIONSI	AVC, APPLIED VOLTAGE a U,159E»0« V
AVG, CURRENT DENSITY ¦ 18,OU NA/CM««g
RESISTIVITY a 5.000E+10 OHH.CM
SIZE DISTRIBUTIONS!	INLET MHO ¦ «.«65E*0I UM INLET SIGMAP ¦ 5.122E+00
OUTLET MMD b U,qa7E400 UM OUTLET SIGMAP ¦ J.8J3E*00
NONIOEAL PARAMETERS! GAS SNEAKAGE FRACTION ¦ 0,00 /SECTION GA8 VELOCITY SIGNAQ o o.OO
RAPPING MMD a 2 , OOOE + 01 UM RAPPING SIGMAP ¦ I.SOoEtOO

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONIOEALITIES USING SET no. 2 OF CORRECTION PARAMETERS
INLET *
8IZE
2.000E-07
0,OOOE-07
7,O00E-07
1,IOOE-06
l,600E-06
2,S00E-06
3,S00E-06
0,500E-06
bpOOOE-06
8.500E-06
l,250E-05
2,000E-05
2.T90E-05
CCF I
2.123
1.5J0
1.297
1.186
1.130
1.083
1,039
1.0U6
1.035
1.020
1.017
1.010
1,008
0,033
0,253
0,903
0,615
1.520
3.521
1,652
1,652
1,982
3,300
4,806
12,115
67.001
OUTLET *
0.2645
A'. 0629
15,5003
11,6397
16,8762
26,2590
9.0537
7'. 0301
0*2005
2.9758
1.6067
0,0981
0.0185
COR, OUTLET X
0,1725
2.6098
10,1172
7,6260
11,1307
17,6716
6,0701
5,9168
0,6515
5,6033
6,1320
7,8580
13.999*
NO-RAP EPF,
97.1023
90*. 1900
93,7900
90.8365
95,9859
97.3060
98,0181
98,3730
99,2323
99,6700
EFFICIENCY - 8TATED ¦ 99.60
99,8801
99,9971
99.9999
COMPUTED » 99,5393
no-rap n
no-rap p
COR, EFF,
COR, w
COR. P
7.025
2,8977
97,1010
7.020
2,8990
5,968
5.8060
90,1920
5,967
5,8060
5.828
6,2069
93,7870
5,626
6.2130
6,210
5,1635
90,6112
6,203
5,1666
6,702
a,oioi
95.9J92
6,717
0,0608
7.578
2,6900
97,2192
7,511
2,7808
8,221
1,9819
97,8281
8,029
2,1719
8,635
1,6270
98,0138
8,217
1,9662
10,210
0,7677
98,6966
9,103
1,3010
12,008
0,3256
99,0595
9,760
0,9005
!«,103
0,1199
99,2963
10,396
0,7017
21,887
0,0029
99.6003
11,799
0,3597
66,100
0,0001
99,6606
10,187
0.1152
convergence
obtained



ADJU8TED NO-RAP EFF, ¦ 99.6385
mho of iNLeT size distribution a a.flfcSeiol
SIGMAP OP inlet SIZE DISTRIBUTION b 5.122E+00
LOG-NORMAL G00DNE88 OF FIT P 0.980
MHD OF EFFLUENT UNDER NO-RAP CONDITIONS b l'.930E»00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS a 2,095E*00
LOG-NORMAL G000NE83 OP FIT ¦ 0,997
00	PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS ¦ 11,789
8IGMAG* t ,250 WITH 0,100 8NEAKAGE OVER 0.000 STAGES
NTEMP ¦ 1
RMMD a 20.00
R8ICMA ¦ 2,50
porr' FpF m oo' aam
corrected'hmo of'effluent ¦ 0.008e*00
CORRECTED SIGMAP OP EFFLUENT p 3.260E+00
LOG-NORMAL GOODNESS OP FIT » 0.968
CORRECTED PRECIPITATION RATE PARAMETER « 10,69

-------
UNADJUSTED migration VELOCITIES A NO EFFICIENCIES, AND DISCRETF OUTLET MASS LOADINGS
IDEAL UNADJUSTED
HIS, VEL.(CM/SEC)
j'. 790E+00
J,«86E*00
3.918E+00
U,769E+00
5,91IE + 00
8.019E+00
t, 037E*01
1.2TOE+01
1,650Et01
2,22Sf*0t
J.lfl6E*01
4,882E+01
6,6J0E*0t
IDEAL UNADJUSTED
EFFICIENCVf*)
S.360E+01
6.10UE+O1
8,«57E*01
8.9T2E+01
9."OflE+81
9.782E+01
9,929E+01
9.977E+01
9^ 996E + 01
1.000E+02
1.000E+02
1,OOOE+02
1.000E+02
NO-RAP
OM/oLOGDCMG/DSCH)
1,a?RAP+RAP PUFF
DM/ni0GD(HG/08e>M
1.U25E-01
U.706E+00
1.542Et01
1.881E+01
2.661E+0I
3,275E*01
2.5S7E+01
2.001E+01
J.J9fcE*01
1.3S4E+01
l.aSjE+01
1.J67E+0J
7.26flE*01
RAPPING PUFF
DISTRIBUTION(X)
2.285E.0O
2,fc09E«03
3,?83E»02
1.07PE-01
3.670E-01
I ,58llEtOO
1 26E + 00
3.073E+00
S.U79E+00
t.052E*01
J,UfclE*01
2,239E*0l
0,0211*0!
PARTICLE
DIAM.(M)
2.000E.07
4.000E-07
7.000E-07
1.J0OE-O6
1,600E»06
2.500E-06
3.500E-06
A.500E-06
6, 00OE-O6
8.900E-06
1.250E-05
2.000E.05
I.750E-08

-------
summary table of esp operating
PARAMETERS ANfJ PERFORMANCE
data 8ET NUMBER 18
ESP PERFORMANCE I EFFICIENCY • 99.0U55 I 8CA ¦ 
-------
PARTICLE SIZE range STATISTICS
CORRECTIONS FOP NONIDEALTTIES USING SET No. 3 OF CORRECTION PARAMETERS
SIZE
2,OOOE«OT
4,OOOE-07
7,0OOE-O7
1.100E-06
1.600E-06
2.500E-06
3,500E-06
4,500E-06
6,000E-O6
8.500E-06
1,250E«05
2.000E-05
2.750E-05
EFFICIENCY - STATED » 99.60
CCF
INLET X
OUTLET t
2.123
0,033
0.1836
1 ,530
0,253
2,3354
1.297
0,903
8.8651
1,188
0,815
7'1634
1.130
1,520
11,5362
1 .083
3,52«
21.6945
1 .059
1,652
9,0002
1 ,046
1.652
8,6513
1 .035
1.982
7.3927
1,024
3,104
Rj1127
1 .017
4,846
9 0758
1,010
12,115
2.9234
1.008
67.401
2.0658
OUTLET X
0*. 1U21
1,8069
6,864?
1,5648
1,0060
'.1386
' f3296
r,3876
>,959?
' 4319
5,
9
17
7
7
6
9
10,5J8<1
7,3330
NO-RAP EFF,
'2.7505
87.9711
87.2072
88.5468
90,1102
91.9780
92.9008
93,1761
95.1397
96,4060
97.5596
99,6856
99.9601
If 333V
10.7075
COMPUTED ¦ 99.5393
NO-PAP N
NO-RAP o
COR, EFF.
COR, w
COR, P
5.502
7,2495
92,7478
5,501
7,2522
4 441
12,0286
87,9675
4,440
12,0325
4.311
12,7928
87,1933
4.309
12,8067
4.543
11.4532
88.4967
4,534
11,5033
4.851
9,8898
90,0180
4,832
9,9820
5,290
8,0220
91,8065
5,246
8,1935
5,546
7.0992
92.9252
5,438
7,4748
5,629
6,8239
92,4660
5,421
7,5340
6,341
a.8603
94,0845
5,929
5,9155
6.973
3.5940
95,1906
6,363
4,8094
7 785
2,4404
96,4093
6,975
3,5907
12.081
0.3144
98.9803
9,615
1,0197
16,408
0.0399
99,7324
12,419
0,2676
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, a 98.6969
MHO OF INLET SIZE DISTRIBUTION ¦ 4.465E+01
SIGMAP OF INLET SIZE DISTRIBUTION ¦ 5.122E+00
LOG-NORMAL GOODNESS OF FIT a 0.984
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS o 3.287E*00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS o 2.550E+00
LOG-NORMAL GOODNESS OF FIT • 0.993
00	PRECIPITATION Rate PARAMETER UNDER NO.RAP CONDITIONS ¦ 9,101
id
SIGMAQW 0.250 WITH 0,300 SNEAKAGE OVER 4.000 STAGES
NTEHP ¦ 1
RMMO ¦ 20.00
RSIGMA ¦ £,50
CORR'. EFF. ¦ 98.3153
CORRECTED MMD OF EFFLUENT ¦ 4.897E+00
CORRECTED SIGMAP OF EFFLUENT ¦ 1,018E*00
LOG-NORMAL GOODNESS OF FIT a 0.986
CORRECTED PRECIPITATION RATE PARAMETER ¦ 8,56

-------
UNADJUSTED MIGRATION VELOCITIES AWO £FFIflENC T E S, AVO DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
MIS, VEL.(CM/SECJ
S',790E*90
j,asfcE+oo
5,9186+00
(I.769E + 00
s,«m+oo
8.019E+99
i,oj7e*ot
1,J70E+01
i,6J0E+91
2,22SE*01
JfIOfcEtOl
«,S8IE*01
6.630E+01
IDEAL UN4DJUSTFD
FFFICIENCVC*)
8.3t>0E»Ol
e,to«E»oi
8.«STEf0i
8.972E*9i
9,«0«E»01
9.782E+91
0,929E*9l
9,9TTE*01
9,99fc€*0V
i,OOOEt02
t, OOOE+02
1 .0908 + 92
1.000E+92
NfWRAP
DM/OLOGDCMG/DSCH)
3.5A2E-91
9^ 7U6E+00
3.215E+0I
U,1SSE+01
i.aaoE+oi
9.007E+91
8^ 357E+0I
6.875E+01
5.213E+01
5,09BE»01

l,2«8E-oa
J.56«E-01
2.28SE-0S
2,ooee*o7
3,lB9E«93
9,7fl9E+00
2,609E-0)
«,060E>07
3.«B7E-92
3.219E+A1
3,283E>02
7.000E.07
1,01T€"0t
«.tTiE+0J
1.070E-01
t. 106E*96
fe.ft«SE»01
6,5
-------
SUMMARY table of E3P OPERATING
PARAMETERS and PERFORMANCE
DATA SET NUMBER 39
ESP PERFORMANCE! EFFICIENCY ¦ 96,1153 * 8CA » «.T<>9E*0l M**2/(M»*J/SEC)
ELECTRICAL CONDITIONSi AVG, APPLIED VOLTAGE ¦ «,»39E*0fl V
AVG, CURRENT DENSITY ¦ 18,OA NA/CM**2
RESISTIVITY s 5,000E*10 OHM.CM
81ZE DISTRIBUTIONS!	INLET MMD ¦ «.«63E*01 UM INLET SIGMAP ¦ 5.122E*00
OUTLET MMD b a,89TE+00 UM OUTLET SIGMAP » S.018E+00
NONIDEAL PARAMETER8I GAS 8NEAKAGE FRACTION ¦ 0.50 /SECTION GAS VELOCITY SIGMAG ¦ 0.25
RAPPING MMD ¦ 2.000E+01 UM RAPPING SIGMAP a 2,500E*00

-------
PARTICLE 8TZE RANGE STATISTICS
CORRECTIONS FOR NONIOEALITIES USING SET No. a OF CORRECTION PAPA MyTerS
COR
SIZE
?,000E»0T
4,000E-07
7.000E-07
I,1OOE-06
t,600E-06
2,300E-06
3,300E-06
4,300E-06
6 fOOOE-06
S,300E-06
1.250E-03
2,Q00E-03
2.730E-05
CCF
2.123
1,530
1.207
I . 160
1.130
1.083
1,05<»
1.046
1.033
1.02a
1 , 0 1 T
1.010
i.ooe
INLET X
0,033
0,253
0.903
0,815
1.520
3.521
1,652
1,652
1.082
3^304
4,806
12,115
67.401
OUTLET X
0'. 1213
1.3078
4,9032
4,1624
7.1603
14^9949
6,7«15
6.7972
6', 8907
10.1042
12,2164
0,2214
15.3608
EFFICIENCY ¦ STATED • 09.60
. OUTLET
0^1053
1.1347
4,2574
3.6247
6,2674
13,2168
¦ 6.0632
6,3034
6,7114
10,1506
12,5331
10,0672
18.6558
COMPUTED « 90,3303
NO-RAP EPF,
NO-
DAP W
no-rap p
COR, EFF,
COR, W
COR, P
83.3481
3
759
16,6519
83.3433
3.738
16,6567
76,5857
3
044
23.4143
76.3786
3.043
23.4J14
75.4048
2
941
24,5952
75.3706
2.030
24,6204
76.8663
3
069
23,1337
76,7754
3.061
23.2246
T8,63S7
3
236
21,3643
78.4684
3.220
21,5316
80.7263
3
432
19,27J7
80.4130
3.418
10,3830
81,5156
3
540
18,484 4
80.8341
3.464
10,1630
81.3630
3
522
18,6370
80,0740
3.382
10.9231
84.JJ18
3
875
13,7682
82,3176
3.633
17,6824
86*. 1477
4
143
13.8323
83,0428
3,833
16,0572
88,5813
4
550
1 1,4187
86,4945
4,108
13,5055
06.5323
7
061
3,4477
03,2728
6,300
4.787!
98',9677
9
589
1.0323
08,5546
8.883
1,4434
CONVERGENCE OBTAINED
ADJUSTED NO-RAP EFF, a 95.4704
WHO OF INI.ET SIZE DISTRIBUTION ¦ fl.465E*0i
SICMAP OF INLET SIZE DISTRIBUTION s i',lS2t*00
LOG-NORMAL GOODNESS OF FIT • 0,484
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 6'.224E*00
SIGNAP OF EFFLUENT UNDER NO-RAP CONDITIONS » 3.132E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0.990
PRECIPITATION Rate PARAMETER under NO-RAP CONDITIONS ¦ 6.488
BIGHAG* 0.250 WITH 0.300 SNEAKAGE OVER 4.000 STAGES
NTEMP ¦ 1
RMMD a 20,00
R8IGMA b 2.30
CORR, EFF, ¦ 94.7780
CORRECTED HMD OF EFFLUENT a 7.211E+00
CORRECTED 8IG*AP OF EFFLUENT a 3,262E*00
LOG-NORMAL GOODNESS OF FIT a 0.990
CORRECTED PRECIPITATION RATE PARAMETER a 6,19

-------
UNADJUSTED MIGRATION VELOCITIES AID EFFICIENCIES, AND DISCPETE OUTLET MASS LOADIMP.S
IDEAL UNADJUSTED
IDEAL UNADJUSTED
MO-BAP
happinr puff
MO.RAP+RAP PUFF
9 A PPINQ PUFF
PARTICLE
"IG, veL.(CM/3EC)
EFFICIENCV(*i
DM/DLOGD(MG/DSCM5
DVOLOGDtMG/DSCM)
DM/DLOGDCMG/DSCM)
DISTRIBUTIDNtX)
DJAM,(N)
3j 790E + 00
8'.360E + 01
8',183E-Ol
2¦355E"0tt
8.185E-01
2.285E-04
2,OOOE-07
J,«86E+00
8,101E + 01
1.897E+01
5.78fcE«03
1.898E+01
2.609E-0S
O.000E-07
5,9 J 8E + 00
8,«57Ef01
6,181E*01
f>.S27E-02
fe. isee~oi
3,283E>02
7,000E»07
1
l,691t+02
2,053ef01
1.897E+02
5,079E+00
6.000E-06
2,223E*01
1.OOOE+02
1,9(,5E*02
3.128E+01
2.278E+02
1 , 052E + 01
8.500E.04
5, 106E + 01
1.000E*B2
2.3?8E+02
<1,25SE*01
2.78
-------
SUMMARY TABLE OF ESP OPERATING
parameters and performance
DATA SET NUMBER <10
ESP PERFORMANCE I EFFICIENCY a 9U.77A0 * SC* » U.7fc*E + 01 M**2/tM**5/SEC)
ELECTRICAL CONOITIONSI AVG, APPLIED VOLTAGE ¦ tt,159E*0U V
AVG, CURRENT DENSITY • 18,04 NA/CM*«2
RESISTIVITY ¦ 5.000E*10 OHM.CM
SIZE DISTRIBUTIONS!	INLET HMD a U.O65E+01 UM INLET SI5HAP s S.122E+00
OUTLET MMD » 7¦211E+00 UM	OUTLET 8IGMAP • i.262E»00
NONIOEAL PARAMETERS! GAS SNEAKAGE FRACTION ¦ 0,50 /SECTION GAS VELOCITY SIGMAG ¦ 0,25
RAPPING MMD a 2.000E+01 UM RAPPING SIQMAP • 2,300E»00

-------
PARTICLE" SIZF RANGE STATISTICS
CORRECTIONS For nqnioeaLITIES USING SET NO. S OF CORRECTION parameters
SIZE
2,OOOE-*7
4,000E-07
7.000E-07
i, ieoE-06
1.600E-06
2.500E-06
3,500E-06
4.500E-06
6.000E-06
8.900E-06
1,2SOE-05
8,00OE-05
2.750E-05
CCF
INLPT *
OUTLET * COR, OUTLFT *
NO-RAP EFF,
WO.RAP W
no*Rap p
COR, EFF.
COR, N
COR, P
2.123
0,033
0.0728
0,0682
64,3675
2,164
35,6325
64,3600
2,163
35,6400
1.530
0.253
0.6771
0.6347
56.7538
1.758
43.246?
56.7U25
1 .757
43,2575
1.297
0,903
2,4961
2,3404
55.3530
1.691
44,6470
55,3133
1,689
44,6867
1.18B
0,815
2.1898
2.0581
56.6033
1.750
43.3967
56.4602
1 ,743
43,5398
1.130
1.520
3.9380
3.7122
58. 1548
1.827
41.8452
57,8913
1 ,813
42,1087
1,083
3,52«
8'7495
8,2963
59.6988
1,916
40,1012
59,4086
1 ,890
40,5914
1.059
1,652
1.0669
3.9125
60.2386
1.934
39,7614
59.1653
1 ,878
40,8347
1 ,00*
1,652
4.134 2
4,0671
59,5802
1 ,899
40.4198
57,5517
1,797
42,4483
1.035
1,982
4'.5999
4,6555
62,5155
2.057
37.4845
59.5010
1,895
40,4990
1.02"
3.30"
7'274S
7,4798
64,4392
2,168
35,5608
60,9668
1,972
39,0332
1.017
11^846
9,7411
10,0487
67.5336
2,359
32.4664
60,2473
2.157
S5.7S27
1.010
12,115
13.0892
13,6773
82,5497
3,660
17,4503
80,5347
3,431
19,9653
1.008
67.<101
38.9707
39,0492
90,6614
4,971
9,3386
90,0108
4.830
9,9892
EFFICIENCY - STATfO b 99.60
COMPUTEO a 99,5593
CONVERGENCE OBTAINED
ADJUSTED NO.RAP FFF, ¦ 83.8485
HMD OF INLET SIZE DISTRIBUTION o U,U65E*01
8IGHAP OF INLET SIZE DISTRIBUTION u 5.122E+00
LOG.NORMAL GOODNESS OF PIT ¦ 0.964
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS a l'.352E401
SIOHAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 3.903E+00
LOG.NORMAL GOODNESS OF FIT ¦ 0,986
PRECIPITATION rate PARAMETER UNDER no-RAP CONDITIONS s 3,8?3
SIGMAG" 0,250 WITH 0,700 SNEAKAGE OVER A.000 STAGES
NTEMP a 1
RMMO ¦ 20,00
RSIGMA a 2,50
CORR*. EFF, a 82.7502
CORRECTED "mo OF EFFLUENT a l,399E*0l
CORRECTED 8ICMAP OF EFFLUENT ¦ 3.B89E+00
LOG-NORMAL GOODNESS QF FIT ¦ 0,968
CORRECTED PRECIPITATION RATE PARAMETER a 3,69

-------
UNADJUSTED MIGRATION VELOCITIES ANn EFFICIENCIES, AND DISCPETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
Hie, veL.(cm/sec)
J,790E+00
3,«86E+00
3,918E*00
7696+00
3,91ie*oo
8.019E+00
1.037E+01
1,27«C+0I
1.630E+01
2,221E+01
3,146f+0!
«,882E+01
6.6J0E+O1
IDEAL UNADJUSTED
EFFICIENCY(X)
B >360Etfl1
8,inaE+oi
8.457E+01
B,"»72E + 81
9.40«E+01
9.782E+01
g;«>a9E»oi
9.977E+01
9.996E+01
1,OOOE+02
t,O00E*O2
1,OOOE+02
1 a O00E + 02
NO.BAP
DM/DLOGD(MG/DSCMJ
l'.TSlE + OO
3-.snaE*oi
1,122E*ft?
1.57SE+02
2.TO2E+02
a,722E+02
a,68tE+02
0.072E+02
~.031E+02
5,0fl5E+02
~.62OE+02
6,6J2E+02
S.88aE+03
Rapping puff
DM/DLOGD(HG/DSCm)
3.709E-0«
9.I12E-03
9.9fc3E-02
5.191E-01
I .T27E + 0A
5.773E+00
1.26JE+01
2.04AE+01
3.23SE+01
U.926E+01
6.T00E+01
7,6S8E+01
1.099E+02
NO.HAP+BAP PUFF
DH/DLOGD(MG/OSC>'5
1.751E+00
3.505E+01
1.123E+02
I.S79E+02
2.7S9E+02
«,780E»02
# >8071 + 02
«.276E+02
«,302
1 ,07flE"01
J,67flE«01
1.58UE+00
1.626E+0O
3,97JE*0O
S,fl79E*00
1.0SJE+01
l,«6lE+0»
till9E»tl
o,o2te«oi
PARTICLE
DIAK,(M)
2.000E-07
~.OOOE-07
7.000E-07
1.100E.06
1.600E-06
2.SO0E-06
3,5O0E«0fc
4.300E-06
~,0O0E»06
e.ioce-ot
1.250E.05
I.0O0E.05
2,750E»05

-------
SUMMARY TABLE OF FSP OPERATING
parameters and performance
DATA SET NUMBER 41
ESP PERFORMANCE I EFFICIENCY » A2.7582 * SC* * U.769E»0l M«»2/(M*«J/SEC)
ELECTRICAL CONDJTIONSt	AVC, APPLIED VOLTAGE b 
-------
PARTICLE 8I7E RANGE STATISTICS
CORRECTIONS FOR NONioe'M.ITIES USING SET No's t> OF CORRECTION PARAMETERS
SIZE
2^000E-07
«,oooe-07
7,000E-07
1,loot.06
1,600E-06
2,500E-06
3,300E-06
4,SO0E-O6
6,000E-06
8,5001-06
1.250E-05
8.000E-05
2.750E-0S
CCF
INLET X
OUTLET *
COR. OUTLET
t NO-RAP EFF
, NO-RAP W
NO-RAP p
COR. EFF,
COR, W
COR. P
2.123
0.033
o' 2914
0,1805
97.6762
7.888
2,3238
97,6751
7,887
2.3249
1.530
0,253
4,7115
2.9180
95.0987
6,323
4.9013
95,0970
6.322
4,9010
1.297
0,903
17.8491
11.0632
94,7976
6.198
5.2024
94,7917
6,196
3,2063
1,168
0,815
12,9822
8,0783
95,8076
6.650
4.1920
95,7863
6,640
4,2137
1,110
1,520
18.0331
11,3046
96.8775
7,268
3,1225
96,8384
7,242
3,1616
1.083
3,524
26'. 0236
16,7155
98,0560
8.262
1.9436
97,9836
8,185
2,0164
1.059
1,632
8' 3261
5,7746
98,6733
9.063
1,3265
98,5140
8,825
1,4860
1,046
1,652
6.3882
5,1265
98,9823
9.619
1,0177
98,6808
9,075
1,3192
1.035
1,982
3.0611
3.9837
99,S935
11.543
0.4063
99,1456
9,985
0,8544
1.024
3, 304
1.6599
5,0381
99.8678
13,898
0.1328
99.3518
10,565
0,6482
1.017
4.846
0.6293
5.9565
99.9658
16,735
0,0342
99,0775
11,017
0,5229
1.010
12,115
0,0192
8,5334
99,9996
48.821
0.0004
99.7006
12,184
0,8994
1.008
67.401
0.0254
15.3270
99.9999
66.304
0,0001
99,9033
14,530
0,0967
ICY - 1
BTATED a
99'. 60
COMPUTEO o
99,5393
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, ¦ 99.7368
MHO OF INLET SIZE DISTRIBUTION a 4.a65Eioi
SIOMAP OF INLET SIZE DISTRIBUTION s 5'.122E + 00
LOC.NORHAL GOODNESS OF FIT * 0.984
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS a l'.7OTf + 00
SIGHAP OF CFFLUeNT UNDER NO-RAP CONDITIONS ¦ 1.987E+00
LOO-NORMAL QOODNE8S OF FIT • 0,997
PRECIPITATION R«TE PARAMETER UNDER NO-RAP CONDITIONS ¦ 12,454
SIGMAC* O'.lOO WITH 0, 5 00 sneakage over u.ooo stages
NTEMP ¦ 1
RHMO a 20.00
RSIGMA e 2',50
CORR'. EFF. ¦ 99,5749
CORRECTED MMD OF EFFLUENT o 0.499E+00
CORRECTEO SIGMtP OF EFFLUENT b 3.42lfr*00
LOG-NORMAL GOODNESS OF FIT ¦ 0.961
CORRECTED PRECIPITATION RATE PARAMETER a 11,(IS

-------
UNADJUSTED MI5R4TI0N VELOCITIES AND
EFFICIENCIES, *MD
DISCRETE CUTLET MASS
LOADINGS


IDEAL UNADJU9TEO
ideal unadjusted
VPmPiP
Rapping PUPP
NO-»AP+fiAP PUFF
RAPPING PUFF
PARTICLE
MI?. VEL.(CM/SEC)
EFFICIENCY!*)
DM/OLOfiDtMG/DSCM)
OM/DLOGD(MG/DSC*)
DM/DLOGn(HG/OSC*)
DISTRIBUTION*)
OHM. (M)
if790E+00
8.360E+01
1.1U2E-01
5.512E-05
1.112F-01
2.285E-0U
2.000E-07
3,UB6E*fln
8.10«E*01
3,97lE+00
1,35«E-03
3.97JE+00
2,609E"0J
«,000E-07
1.918E+00
8.«57E*0i
1,308F+01
j.aetE-o?
1,J09E+01
3.283E.02
7.000E.07
H.769E+00
8.972E+01
1,5?0E + 01
7.71UE-02
1.526E+01
1 .070E-01
1,100E-06
5,«tie*oo
9,«0Ut*01
2,0E + 01
2,'566F-0J
2.072K+O1
3,h7UE-01
1.600E«06
B.019E+00
9,782E*01
2 f289E+01
8,378E-0|
2.375E+01
1.seoE+oo
2,soeE.ot>
l,OJ7E+Oi
9.929E»01
1,5«2Ef0t
1.378E+08
1.7«9E+01
1,62«E+08
3.500E«fl*
l,27«E*01
9.977E+01
1 .025E+01
3,037E*00
1.329E+01
J,073E»00
U.500E-06
1.630E+01
9.996E»01
ajSAOE+OO
U.B05E+00
9.165E+O0
5,

-------
SUMMARY TABLE OF ESP OPERATING
PARAMETERS AMD PERFORMANCE
DATA SET NUMBER 42
ESP PERFORMANCE I EFFICIENCY a 99.57«9 * 9CA 0 
ELECTRICAL CONOITION9I AVG, APPLIED VOLTAGE • a,199E+0U V
AVG, CURRENT OENSITY ¦ 18,0(1 NA/CM**{
RE8I8TIVITY ¦ S.OOOE+IO CHM-CM
Size DISTRIBUTIONS! INLET KMO ¦ O.469E+01 UM INLET SIGMAP ¦ S'.t62E*00
OUTLET MHO ¦ «.<|99E*00 UM OUTLET 8IGNAP ¦
NON1DEAL PARAMETERSi GAS SNEAKAGE FRACTION a 0.10 /SECTION GAS VELOCITY 8IGMAG ¦ 0,10
RAPPING MMD a 2.000E+01 UM RAPPING SIGMAP • ?,500E*00

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS *OR NONIDEALITIES USIN6 SET no. 7 OF CORRECTION PARAMETERS
SIZE
2,000E-07
4.000E-07
7.000E-07
l^lOOE-Ofe
l,600E-06
2,500E-06
3,500E-06
4.500E-06
6,00 OE-06
8.500E-0fc
1,250E-05
2,OOOE-OS
2.750E-05
CCF
INLfT X
OUTLET *
cor, outlet
2,123
0.033
0.2397
0,1654
1,530
0,253
3,"620
2,3887
1.297
0,903
13,2808
9,1705
1 .188
0,815
10,3039
T.lUOJ
1.130
1.520
13,5806
10,6607
1 .083
3,521
25.9676
18,4033
1,059
1,652
9^5269
7,0765
1,046
1,652
8,2266
6,6294
1.03S
1,982
5.3236
5,3750
1.024
3.301
1.5539
6,4112
1,017
1.816
3,1180
6,6900
1.010
12,115
0,3371
7,1909
1,008
67,«01
0.0794
12.4981
* NO-RAP EFF,
96.188*
92.8186
92^2814
93,3648
94,6205
96.1328
96,9735
97.3866
98.5901
99 2766
99,6623
99.9854
99.9994
NO-RAP N
NO-RAP P
COR, EFF,
CO», «
COR, P
6,850
3.8115
96,1 868
6,8«9
3,8132
5,522
7.1814
92.8J62
5,521
7,1838
5,371
7,7186
92,2728
5,368
7,7272
5,688
6,6352
93,3338
9,678
6,6662
6.12A
5,3795
94,3633
6,106
5,4367
6,820
3,8672
96,0264
6,763
3,9736
7,334
3,0265
96,7407
7,178
3,2593
7,641
2,6134
96,9466
7,315
3,0531
8.936
1,4096
97.9J66
8,137
2,0630
10,335
0,7234
98,5235
0,839
1.1765
11,932
0,3377
98,9496
9,552
1,0504
18.517
0.0146
99,5484
11,322
0,4516
66.304
0.0006
99,8589
13,762
0,1411
EFFICIENCY - STATED ¦ 99.60
COMPUTED • 99,5393
CONVERGENCE obtained
ADJUSTED NO-RAP EFF, ¦ 99'.fl732
HMD OF INLFT SIZE DISTRIBUTION o 4,465E»01
8I0MAP OF INLET SIZE DISTRIBUTION a s'.122E»00
LOO-NORMAL GOOPNE8S OF FIT a 0,984
MMO OF EFFLUENT UNDER NO-RAP CONDITIONS b 2,195E*00
8IGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 2.189E+00
LOG-NORMAL G00DNES8 OF FIT • 0,996
PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS b 11,007
SIGMAG" 0,400 WITH 0,100 SNEAKAGE OVER 1,000 STAGES
NTEMP a 1
RMMD a 20,00
R8IGMA a 2.50
CORR", EFF. a 99,2391
CORRECTED HMD OF EFFLUENT a 4.415E+00
CORRECTED SIGMAP OF EFFLUENT a 3.155E+00
LOG-NORMAL GOODNESS OF FIT a 0,975
CORRECTED PRECIPITATION RATE PARAMETER a 10,23

-------
UNADJUSTED MIGRATION VELOCITIES AN£> EFFICIENCIES, AND DISCETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
m:g, vel'.ccm/secj
3',790E*00
3,4B6E+00
3,918E+00
a.T60E+00
5.911e^oo
~,oi9E«oo
ll037E*01
1,27«E*01
1.630E+01
2.22JE401
3,lfl6E*0l
«,B82E+01
~.6JOE+01
IDEAL UNADJUSTED
EFFICIENCY(*)
8.160E+01
s.inuEfAi
8,«57E+0l
8,972E»01
H.flOUE+Ol
9,782E*0l
9,92'E + 01
9,977E*01
9.996E+01
I.	0O0E + 02
1 ,OOOE+02
t .000E+02
i ,oooe*o2
NO-RAP
DM/DLOGDfHS/DSCMJ
1.873E-01
Sj 819E + 00
1,9«GE+01
2,Q06E+01
3.5?5E+BI
a',55flE + 81
3,563E*01
2.633E+01
1,5122+01
1.026E+01
6,B85E»00
5.550E-01
3,e9«E-0t
DAPPING PUFF
OM/DLOSfXMS/oSC*)
e.ottse-ss
r.976E°03
2.161E-02
1.126E-01
3.7fl6E-01
1.ZS2E+00
2.740E+00
«,4J2?+0C
7,013E + 00
1.068E + 01
1.U53E+01
1,661E*01
8.B90E+01
NO-RAP+RAP puff
DH/DL0GD{M0/D9C«)
I'.BTuE-Ol
5.821E+0O
l.saaE+oi
Z,H1TE*01
3.S62C+01
«,6796*01
3,8376*01
3> 0766*01
2.213E+01
2.095Et01
2,1
-------
SUMMARY TABLE OF ESp OPFBATING
PARAMETERS AND PERFORMANCE
DATA SfT NUM0FO UJ
ESP PERPOBMAnC I FFFICIENCV o 49a?°<
-------
particle aire range statistics
CORRECTIONS FOR NONIDEALI TIES USING SET NO. B OF CORRECTION PARAMETERS
NO-RAP M
SIZE
2.000E-07
O,0O0E-O7
7,OOOE-07
\f100E-06
1,600E«06
2,500E-06
3,500E-06
4.500E-06
6,000E-06
8,500f-06
t,230E-05
2,OOOE-05
2.750E.05
CCF
2.123
1.530
1.207
1.1 SB
J.ISO
1.0S1
1.09'
1.046
1.035
1.020
1.017
1.010
l.ooe
I^LET X
0,053
0,253
0,903
0,615
1.520
3,52«
1,652
1,652
1,082
3, 30«
4,646
OUTLET X
0212 3
2,8175
10.8092
8'.7055
13.8731
21.9052
9,7131
8.7730
6,4826
6.5T32
515095
1,0816
0.4*02
EFFICIENCY ¦ STATEO ¦ 99*.60
12,115
67.a0l
COR. OUTLET *
0'. 156T
2,060?
6.016?
6,0829
10,3358
16.7971
7,5909
7,280?
6,2199
7,6070
7.891B
6,6621
10.8706
NO«R»P EFF.
90.3710
90,2505
89,0860
90.6096
92.0129
93.8150
90.6508
95,3527
97,1178
98.2590
99.0051
99,9319
99,9900
6 033
0,882
0,723
4,960
5,299
5,835
6,221
6.030
7,051
8.093
9 666
15,001
20,373
no-rap p
COR. EFF.
COR. N
5,6290
90,3688
6,032
9,7055
90,2513
4,68]
10.5100
89,4707
4.720
9,3900
90,5686
4,951
7,9871
91.9J78
5,279
6.1846
93,6758
5,788
5,1«S2
94,5091
6,100
0,6473
94 7750
6,189
2,8622
96,2793
6,901
1.7410
97,2701
7,550
0,9909
98,0692
8,276
0,0781
99,3480
10,552
0.0060
99,8087
13,123
COR. P
5,6312
9,7087
10,5251
9,4312
A,0622
6,3202
5,0509
5,2250
1,7207
2,7299
1,9308
0,6520
0,1913
COMPUTED » 99,5393
CONVERGENCE OBTAINED
ADJUSTED NO-RAP EPF, 8 99'.1209
HMO OF INLET SIZE DISTRIBUTION a 0.065E*01
BIGHAP OF INLET SIZE DISTRIBUTION b s'.122E+00
LOG-NORMAL GOODNESS Of FIT a 0,984
HMD OF EFFLUENT UNDER NO-PAP CONDITIONS ¦ 2',572E*00
SIGHAP OF EFFLUENT UNDER NO-RAP CONDITIONS « 2.297E+00
LOG-NORMAL GOODNESS OF FIT a 0.996
PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS ¦ 9,935
SIQMAG* 0.600 WITH 0,100 SNEAKAGE OVER o'.OOO STAGES
NTEHP a t
RHHD * 20.po
RSIGNA b 2.50
POBfi' Vtf m ea'nlOO
CORRECTEd'mmd Of'eFFLUENT ¦ 4.O60E+00
CORRECTEO BIGMiP OF EFFLUENT ¦ 3.031E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0.982
CORRECTED PRECIPITATION RATE PARAMETER a 9,30

-------
UNADJUSTED MIGRATION VELOCJTles ANr> EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IOEAl UNADJUSTED
NIC, VFL'. fCM/SEC J
3.790E*0«
3,«86E+00
3.918E*00
«.76<»E*0n
5,911E + 00
~,019E+00
1.037E+01
l,27«E*01
t,6S0E*01
2.223E+01
3.1U6E+OI
«.B82E+01
~,6J0E*01
IDEAL UNADJIJSTEO
EFFICIENCr(X5
8.	J60E + 01
8.10UE+01
e.«S7E*01
8.972E+01
9.aoaE+oi
9.782E+01
9,9?9E*01
9,977E*01
9.996E+01
I.000E402
1.000E*02
1.000E+02
1.0nOE+02
MO-PAP
DH/Dj.OCD(MG/DSrM5
?,7l«fcE-01
7.P96E+00
2, M2E + 01
5,fl05E+01
5,23aE+01
7,283E*01
6.0S7E+01
U,b82E+01
3^070E+01
2.U70E+01
2.029E401
?,969E+00
3 • 798E+00
RAPPING PU»P
DM/OLOr.DtMG/DSeM)
l',056E-0a
2.595E-03
2.837E-02
1.U78E-01
U.918F-01
1.610E + 00
3.59ee4oo
5.820e*00
9.209E»00
1.U03E+01
J .908E + 01
2,181E + 01
1 • 167E+02
NO-RAP*RAP PUFF
DM/DLnGDfMG/DSCM)
2.767E-01
7.899E+O0
2.6O5E*01
3.a20E+01
5.283E+01
7 . «U0F + 01
6,8 1 7E + 01
5.260E+01
3.091E+01
3,873E + 01
3.937E+01
2.W78E+01
1 .203E + 02
RAPPING PUFF
DISTPIBUTION(X)
2.283E-01
2,609E«03
3.263E-02
I ,«7BE-01
3,67aE"01
1,58
fc.OOOe-Ofc
8.500E.06
1.250E-0S
2,0001-05
2.750E.05

-------
SUMMARY table OF ESP OPERATING
PARAMETERS AND performance
DATA SET NUMBER 
-------
particle size range statistics
CORRECTIONS for NONJOE4LITIES USING SET No. 9 OF CORRECTION PARAMETERS
SIZE
2.000E-07
i.oooe-ot
7.000E-07
1.100E-06
1 .600E-06
2.500E-06
3.500E-06
4,500E-06
6,000E-06
8.500E-06
1,2506-05
2.000E-05
2.750E.05
CCF I
2.123
1,530
1.297
1.188
1,130
1 .093
1.05'
1,046
1,035
1.02"
1,017
1 .010
1 .008
"LET X
0.033
0.253
0.903
0,815
1.520
3,52"
1.652
1,652
1.082
3^301
a,846
12,115
67.401
OUTLET *
COR, OUTLET *
NO-RAP EFF.
NO-RAP N
NO-RAP P
COR, EFF,
COR, w
COR, P
o', 1908
0,1490
9181 8 7
5.249
8,1813
91,0159
5.240
8.1841
2.3418
1.8283
86.9043
1,262
13,0957
06.9002
1.362
13,0998
9.0162
7,0440
85.8735
4,103
14,1265
85,8590
1.101
H.HIO
7' 4073
5.0670
87,0024
a.278
12,9976
86 9502
4.270
13.0498
12.3234
9,6906
88.5295
a.540
11,4705
88,4333
1,523
11.5667
23.3765
18.5922
90,6149
a.961
9,3851
90,4359
4.921
9.5611
9'. 5059
7,7760
91.8589
5.259
8,1111
91.4672
5.160
8,5328
8.8244
7,5618
92,4426
5,415
7,5574
91.7022
5,219
8.2978
7.1634
8.1009
6,7937
94,8866
6.234
5,1134
93,7863
5.815
6.2137
8,6324
96.5X11
7,048
3,4689
95.2637
6,399
1.7363
7,6993
9,2154
97,7522
7,957
2,2170
96.5327
7,061
3.1473
2.3700
6,7640
99,7232
12,349
0,2768
98,9078
9,630
1.0122
1.6000
10.0760
99.9664
16.771
0.0336
99.7290
12,393
0.2710
EFFICIENCY - STATED • 99'.60
COMPUTED b 99,5393
CONVERGENCE OBTAINED
ADJUSTED NO-RAP EPF, ¦ 98.5852
HMD OF INLET SIZE DISTRIBUTION b 4.465E+01
8IGMAP OF INLET 8IZE DISTRIBUTION b 5'.122E + 00
LOG.NORMAL GOODNESS OF FIT ¦ 0,98a
HMO OF EFFLUENT UNDER NO.RAP CONDITIONS s 3.0876*00
8J5MAP OF EFFLUENT UNDER NO-RAP CONDITIONS b 2.183E+00
LOG-NORMAL GOODNESS OF PIT o 0.996
o	PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS a 8,928
SIGHAO* 0,800 WITH 0,100 SNEAKAGE OVER 4.000 STAGES
NTJMP a 1
RMMq ¦ 20,00
RSIGHA b 2,50
CORR. CFF, ¦ 90.1872
CORRECTED MMD OF EFFLUENT s 1.623E+00
CORRECTED 8IGMAP OF EFFLUENT » 2.970E*00
LOG-NO«MAL GOODNESS OF FIT m 0,907
CORRECTED PRECIPITATION RATE PARAMETER ¦ 0,41

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFIc IENCIES, ANO DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJU«TeD
Hie, VEL. (CM/SEC)
S,790E*00
S.«86E+00
J.018E+00
a„769E+00
S,9llE+00
8,01«E*00
1,0JTE»01
l,27«E+01
1.6J0E+01
2,223E*01
lf106E»01
fl,882E+01
6.630E+01
ideal UNADJUSTED
EFFICIENCY(X)
8.360E+O1
f»,!0
-------
9UMMARY TABLE OF PS* OPERATING
PARAMETERS A*d PERFORMANCE
DATA SfT NUMBPP US
ESP PERFORMANCE I	EFFICIENCY « 98,1872 * SC« e «.769P*0l M*«2/fM**S/8EC)
ELECTRICAL CONDITIONS! AVG, APPLIED VOLTAGE a fl,159E*0a V
AVG. CURRENT DENSITY a 1B.OU NA/CM««2
RESISTIVITY b 5.000E+10 OHM.CM
SIZE DISTRIBUTIONS!
INLET MHO » U.U65E+01 UM	INLET SIGMAP a 5.122E+00
OUTLET MMD b O.623E+00 UM	OUTLET SIGMAP a 2.970E+00
NONIDEAL PARAMETERS!
GAS SNEAKAGE FRACTION a 0,10 /SECTION OAS VELOCITY 8IGMAG a 0,80
RAPPING MMD e J.000E+01 UM RAPPING SIGMAP o a.506E*00

-------
PARTICLE SIZE RANGE 8T4T18T1C8
corrections por nonjdealities using set no. j of correction parameters
SIZE
2,000e«07
4,OOOE»07
7.000E-07
1 f 100E-O6
I,600E*06
2.500E-06
3,500E-06
4,500E-06
6,OOOE-06
9,S00P»06
I.25OE-05
2,OOOE-03
2.730E-05
CCF
3.123
1.510
1,297
1.188
1.1)0
1.063
1 .OS'
1.046
1 .OSS
i.Oie
1.017
1.010
i.ooe
Inlet X
0.033
0,253
0,903
0,815
1,520
3,S2«
1,652
1,652
1.082
J. jo«
4,606
12,115
67.101
OUTLET X
0'3119
6.1039
21,0561
16,2212
20,1366
23.1421
5,6379
3.2086
0'705«
0.0695
O.OOH
0.0102
0.0565
COR, OUTLET
0', 18 U1
3,4184
12.8115
6,6606
10,7500
12,1128
3,3909
3.1968
6.5195
15,0210
15,2818
7,0163
0.5123
X NO-RAP EPF.
98.7631
97.0053
96.8180
97,6117
98.4326
99,2230
99.5962
99.7702
99.9379
99,9975
99,9999
99.9999
99.9999
NO-RAP H
9,210
7.356
7,219
7,859
8,713
10.165
11,557
12,739
16,297
22,227
31,159
06,821
66.300
EFFICIENCY - STATED ¦ 99.60
COMPUTEO a 99,5393
NO-RAP p
COR. EPF.
COR, *
COR, P
1,2366
98,7634
9,210
1,2366
2.99a?
97,0053
7.356
2,9947
3,1320
96,8080
7 ,?09
3,1520
2,3553
97,6447
7,659
2,3553
1,5674
98,4325
8,713
1,5675
0,7770
99,2174
10,170
0,7826
0,1038
90,5051
11,307
0,4349
0,2298
99,3306
11.241
0,4694
0,0121
99,2709
10.SIS
0,7291
0,0025
96,9635
9,964
1,0303
0,0001
99,3011
10,407
0,6909
0,0001
99,6711
13,950
0.1269
0,0001
99,9982
22.926
0,0018
OSTAINEO



ADJUSTED NO-RAP EPF, a 99'.6617
MUD OP INLET SIZE DISTRIBUTION ¦ 4.465E+01
8IQMAP OP INLET SIZE DISTRIBUTION s 5.122E+00
LOO-NORMAL QOODNE88 OP PIT a 0,984
HMD OP EFFLUENT UNDER NO.RAP CONDITIONS ¦ f,361E+00
SIOHAP OP EFFLUENT UNDER NO-RAP CONDITIONS ¦ 1.833E+00
LOB-NORMAL GOODNESS OP PIT ¦ 0,996
precipitation Rate parameter under no-rap conditions ~ is.in
SIQNAGP 0.000 MITH 0,000 SnEAKASE OVER 4,000 STAKES
MTEMP ¦ 1
RMMO ¦ 10.00
RSIGMA » 1,50
CORR. Iff. « 99*,7784
CORRECTED HMD OP EFFLUENT s J,690E»00
CORRECTED SIGMAP OF EFFLUENT ¦ 2,912E*00
LOO-NORMAL GOODNESS OF FIT • 0,973
CORRECTED PRECIPITATION RATE PARAMETER ¦ 12,81

-------
UNADJUSTED migration VELOCITIES AND EFP J c T ENC IES, ANH DISCRETE OUTLET -»SS iO*OlNG3
rOE*U UN»nkrnsreo
IDEAL UNADJUSTED
nn.RtP
RAPPJnG PUFF
MO»R4P*R4P PUFF
RAPPING PUFF
PARTICLE
MIG, VEL.trH/SEC)
EPFICIENCVC*J
DM/OLOGD(MG/DSCMl
DM/nLOGDfMG/DSCM)
DM/DL0Gn(M5/0SCM)
DT8T«!BUTI0N(*)
DIAM,(M)
J.790E+00
fl.3&0EO1
6.077E-02
0E-O«
t027E+01
2.079E-0J
1 .600E-06
8.019E+00
9.782E+01
9.1S0E + 00
6.616E-02
9.216E«00
1t 915E»01
2.500E-06
1,037E+01
9.929E+01
U.753E+00
6.023E-01
5.J56E+00
8.173E-01
3.500E-06
t,27«E+01
9.977E+01
2,315E+00
2,ai«E+00
«.7296*00
3. A28E + Q0
U.500E-06
1,630E»01
9.996E»01
a,S17E-01
7.369E+00
7.R20E+00
1,317E»01
6.000E-06
2,223F+01
1.OOOE+02
3.531E-02
1. U6iiF*0 1
1 .DfcflE + 01
3,297E*01
8.500E-0«>
3 » 14 6E + 01
1f000E+02
2,0?2E-03
1 ,il25P*0i
l,«35E»01
3|275E~01
1 .250E.05
«,882E*01
l,oooE+n2
5.769E-83
0.901E+00
a.90flE+00
1,51lS*01
2, OOOEvOS
6.630E+01
1.OOOE+02
fc.250E.02
1.12UE+00
1.187E»0A
1,163E+00
I.750E.05
in

-------
SUMMARY TABLE OF ESP OPERATING
PARAMET£R8 AND PERFORMANCE
DATA SET NUMBER 06
ESP PERFORMANCE! EFFICIENCY b 99,778a * 8CA ¦ «'.769E + 01 M**2/(M**}/SEC)
ELECTRICAL CONDITIONS I AVG, APPLIED VOLTAGE a 4,1S9E»0« V
AVG. CURRENT DENSITY s 16,04 NA/CM**2
RESISTIVITY « 3.000E+10 OHM.CM
SHE DISTRIBUTIONS I	INLET MMO ¦ «.fl65E*ei UM INLET 8IGMAP c S.litHOO
OUTLET MMD a 3.690E+00 UM OUTLET SIGMAP « 2.912E+00
NONIDEAL PARAMETERS! GAS SNEAKAGE FRACTION ¦ 0,00 /SECTION GAS VELOCITY SIGMAO ¦ 0,00
RAPPING HMD » l.OOOE^Ol UM RAPPING SJGMAP ¦ 1,BOOE*00

-------
PiBT! f(_ F Sl?f RANGE 8T«fJS'tCS
co»>»E'"TinNS *o» Nnnrnf4irTiES ising set no, s of correction parameters
ST7E
CCF
I^LfT *
OUTLET *
CtlR. OUTLFT
2.000P.OT
2.12*
0.033
0.2605
0. 1T20
o.oooe.07
1.530
«. ?53
Ol062"
2.6089
T.OOnE.«7
1 .?9T
n.QM
15.5003
10^1057
1 .100E-06
1.18A
0,815
11.6397
7,5887
1 .600E-Q6
1,130
1.520
16.8762
11.0035
£. 500E-06
1,083
J. 520
26.2591)
17,|866
3.5f*0E-06
1 .059
1.652
9.0557
6,1886
O.500E-06
1 .006
1,652
7,0301
6.179fc
6.000E-06
1 .035
1,982
0.2085
',3277
8.900E-06
1.020
3.300
2'. 9758
>3,0196
1 ,250E-05
1.017
0,8«6
1 '.6067
12,0503
2,000E-05
1 .010
12, 1 15
0,0981
5,3230
2.750E-05
1,008
67.001
0.0185
0,0050
*0«RAP EPF.
97,1023
90.1900
93,7900
91,8365
95 <'859
97.3060
98,0181
98.5730
99.2123
99,6700
99 8801
99,9971
99,9999
NO-RAP M
7.025
5.968
S ,828
6.210
6,702
7,578
8,221
8,655
10,210
12,008
10,103
21,887
66,300
EFFICIENCY . STATEn a 99.60
COMPUTED a 99.5393
NO-RAP p
COR. EPF.
COR, i
COR. P
2.B97T
97,1023
7,025
2.8977
5.8060
90,1900
5,968
5,0060
'.2060
93.7900
5.828
6.2060
5.1635
90,8365
6,210
5,1635
0,0101
95,9856
6.T01
o.oioo
2,6900
97,2955
7,570
2,7005
1,9819
97,9226
8.121
2,0770
1,6?70
97.9256
a.126
2,0700
0,7677
97,9098
8.150
2,0502
0,3256
97,7077
7.953
2,2523
0,1199
98,5753
8.913
1,0207
0.0029
99,7563
12,616
0,2017
0,0001
99,9967
21.615
0,0033
obtained



ADJUSTED NO-RAP EFF, e 99.6385
MHO OF INLET SIZE DISTRIBUTION e fl.065E*01
8IGMAP OP INLET SITE DISTRIBUTION « 5J *00
LOG-NORMAL G00DNE8S OF FIT a 0,980
NMD OF EFFLUENT UNDER NO-RAP COnOITIOnS o 1>30E+00
SIGMAP OF fPFLUENT UNOER NO-RAP CONDITIONS a 2.095E+00
LOG-NORMAL GOODNESS OF FIT a 0,997
PRECIPITATION RATE PARAMETER UNnER NO.RAP CONOITIONS s 11,T8'
SIGH4G* 0,250 WITH 0,100 BNEAKAGE OVER 0,000 STAGES
NTEHP ¦ 1
RMMQ o 10.00
RSIGMA a 1,50
CORR'. EfF. a 99*. 0055
CORRECTEO MHO OF EFFLUENT a 3.512E+00
CORRECTED SIGMAP OF EFFLUENT a 2.663E+00
LOG-NORMAL GOODNESS OF PIT s 0.968
CORRECTED PRECIPITATION RATE PARAMETER a 10,99

-------
UNAOJUSTEO MIGRATION VELOCITIES AND EFFICIENCIES, AND OI8CRETC OUTLET MASS LOADINGS
IDEAL UNADJUSTED
MIO. VIL'.fCM/SEC)
3,7901+00
3,<1S6E«0O
3,916E»00
U.769E»00
5,911E~0 0
e,019E+00
t,0J7E»0l
J,27flE*01
t.630E+01
2,223E*01
S,i«6E+0l
0.882E+01
6.610Et01
IDfAL UNADJUSTED
EpFICIENCV(X)
8.360E+01
a.ioue >01
8,«57E*01
8.9726*01
9,ao«E+01
9.782E+01
9.929C+01
9.977C+01
«,996E*01
1.000E+02
1 a 000E+02
i,oooe*o2
l.oaoEtoa
NO.RAP
DH/hLOSDfMG/DSCM>
1 f4?UE"01
«,70flE*00
1 ,S60Et01
1,872E»01
2.630F+01
3,17SE»0l
2,3S3E»01
I.659E+01
8.2S5E+00
fl.blflE+06
2,«auE*oo
1.U3E-01
6.230E-02
rapping puff
DH/DLOGt>(MG/n8CH>
7.550E-1T
a,398E-l?
7.722E-0B
2.075E-05
1.T30E-03
1.235E-01
t.i2«e*oo
a.S07E+00
1.376E«Ot
2,733E*01
2.fc«oe+oi
9,jfl9e*oe
2.0992*00
NO.RAP+RAP puff
DK/0L0GD(M0/08CM)
t,4jaE-01

-------
summary Table df ESP operating
PARAMETERS AND PERFORMANCE
OAT* SET NUM8ER (IT
ESP PERPORMANCEr FPPICIENCY e 99.UU55 * SC* » a.T6QF*0l M.*2/{M««S/8EC)
ELECTRICAL CONOITIONSI AVG, APPLIED VOLTASe a «,l59E+0« V
AVG, CURRENT OEN9ITV a 18.OA NA/Cm**2
RESISTIVITY ¦ 5.0002*10 OHM-CM
SIZE OISTRIBUTlONSt I^LET MHO ¦ U.aj,Sf + 01 UM INLET SIGHAP • 5.122E+00
OUTLET MHO ¦ 1.51JE+OO UK	OUTLET SIGMAP » 3.663E*80
NONIDEAL PARAMETERSi GAS SNEAKAGE FRACTION ¦ 0.10 /SECTION GAS VELOCITY SIGMaG a 0,35
RAPPING HMD " 1.000E+01 UM RAPPING SIGMAP ¦ 1,500E»00

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NOMT5EAUITIE! USING SET m0'. j rjr COPPFCTinN PARAMETERS
OUTLET K COR
SIZE
^oooe-ot
,000f-07
,OOOE-07
,iooe-o6
.600E-06
,300E-06
,500E-06
,500E-06
.OOOE-06
,90flE.06
.290E.05
.000E.05
CCF INLET X
2,125 0,011
1,530
1 a 297
l.iaa
l.i so
1.083
1.039
1.046
1.039
1,024
1.017
1.010 12,115
1.006 67,401
0.253
0,903
0,815
1,520
3,52"
1,652
1,652
1,982
3.304
4,846
0;iA36
2,335a
8.6651
7', 1634
11,5362
21,6945
9.0002
s;63II
7,3927
9.1127
9^0758
2,9234
2.0658
8.750E.05
EFFICIENCY > STATED ¦ 99',60
OUTLET
0,|420
1,8064
6.8568
5,5406
8j 923?
16,8231
7,tfl64
7,5586
8,7006
14,3180
14,a395
5,6835
1.8613
NO-RAP EFF.
92.7505
87,9714
87,2072
88,5468
90,1102
9 J,9780
92,9008
93.1761
95,1397
96,4060
97.5596
99,6856
99.9601
NO-RAP W
5.502
4,441
4,311
4,543
4,851
5,290
5,546
3,629
6,341
6,97 J
7,783
18,081
16.408
COMPUTED o 99,5393
NO-RAP p
COR. EFF.
COR, w
7,2493
92.7505
3,502
12,0286
87.9714
4,441
12,7928
87,3072
4.311
11,4532
88,5466
4,343
9,8898
90,1097
4,831
B,0220
91,9373
9.283
7,0992
92.7120
3,491
6.8239
92,2916
3,374
4,8603
92,6043
5,460
3,5940
92.5972
5,436
2,4404
94,9800
6.2T1
0,1144
99,2096
10,149
0.0399
99,9533
16,088
OBTAINED


COR. P
7,2495
12,0286
12,7928
11,4532
9,8903
8,0427
7,2880
7,7084
7,3937
7,4028
3,0200
0,790#
0,0065
ADJUSTED NO-RAP EFF, » 98*.69«9
MHO OF INLeT SIZE DISTRIBUTION a a.4fc5E+01
siCMip of inlet 8i;e distribution « g,i22E*oo
LOS-NORMAL GOODNESS OP FIT b 0,984
MHO OF EFFLUENT UNDER NO-RAP COnOIMOnB a 3',287E + 00
SICMAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 2.550E+00
LOG.NORMAL G00DNE8S OF FIT m 0,995
PRECIPITATION RATE PARAMETER UNDER NO.RAP CONDITIONS ¦ 9,101
SIQMAG" 0.230 WITH 0,300 8NEAKAGE OVER 4.000 STAGES
NTEMP • t
RMMD • 10.00
R8IGMA b 1,30
CORR'. ePF, s 98.3153
CORRECTED mho OF EFFLUENT b 4,o50E*O0
CORRECTED 8IGHAP OF EFFLUENT ¦ 2,600e»00
LOG-NORMAL GOODNESS OF FIT a 0.994
CORRECTED PRECIPITATION RATE PARAMETER a 8,56

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
IDEAL UNADJUSTED
NO-RAP
Rapping puff
NO.RAP*PAp PUFF
RAPPING PUFF
PARTICLE
MIG, VEL.tCM/SEC)
EFPICIENCVfX)
dm/d^ogd(mg/oscmi
OM/DLOGD(mG/DSCH)
DM/OLOGDCMG/DSCMJ
OISTRIBUTION(X)
DIAM.(M)
3,790E*00
6,J60E+01
J,5fc2E-01
1,093E"t6
3.562E-01
2.627F-1*
2.000E-07
3,0

-------
summary table or esp operating
PARAMETERS AN[> PERFORMANCE
DATA SET NUMBER 06
£SP PERFORMANCE! EFFICIENCY ¦ 98.SI5J * SCA ¦ 4.769E+01 M*#2/(M«*|/6eC)
ELECTRICAL COMOITIOMSI A VG, APPLIED VOLTAGE s 0,lS9E*Ott V
AVG, CURRENT DENSITY ¦ IS,OA NA/CM»*2
RESISTIVITY a g.OOOE+JO OHM»fM
SIZE DISTRIBUTIONS!	INLET MMD m a,«65E*01 UM INLET SIGMAP a 5.122E+00
OUTLET HMO b 1|,050E»00 UN OUTLET SIGMAP ¦ »,600E*00
nonideal papametersi gas sncakage fraction b 0,30 /section gas velocity sishag a 0,2s
RAPPING HMD a 1.000E+01 U« RAPPING SIGMAP ¦ 1,S00E»00

-------
PiPMClE SIZE PANGE ST*TJSTtcS
CORRECTIONS FOB NONIPEALTTTgl USING SF.T Nri. U OF CORRECTION PARAMETERS
SIZE
2,0O0E-07
1,OOOE-07
7,000E-O7
1.100E-06
I,600E-06
2.300E-06
3,500E-06
1,500E-06
6,000E-06
8.500E-06
|,250E-05
2,OOOE-05
2.750E-05
CC?
2. 123
1.530
1 .207
1.188
1.1J0
1.093
1.059
1.0A6
1 . OSS
1 .020
1.017
1.010
1.006
INLET *
0.033
0.253
0,903
0,815
1,520
3, 521
1,652
1,652
1,982
3, 301
4,816
12,115
67.101
OUTLET *
0.1213
1.3078
l'.903?
i'.162U
T'.1693
11,9919
6,7115
6,7972
6,8997
10.1012
12.2161
9.2211
15.3608
COR, OUTLFT
0^1052
1,1311
1.2531
3,6105
6.2190
13.0321
5.9560
6,1035
7,7306
13.1363
11,439?
10,0017
13.07B3
no-Rap EFF,
no-pap w
Nfl-RAP P
COR, EFF,
COR, «
COB. P
83.3181
3.759
16,6519
83.3181
3,759
16,6519
76.5857
1.011
23,1113
76,5857
3.011
23,1113
75.1018
2.911
21.5952
75,1048
2.911
21,5952
76,6663
3.069
23.1337
76,8663
3,069
23,1337
78,6357
3.336
21.3613
78,6318
3,236
21,3652
80.7263
3,152
19.2737
80,6887
3,116
19.3113
81,5156
3,510
18,1801
81,1730
3,501
16,6270
81,3630
3,522
IB.6170
79,7585
3,319
20,2115
81,2318
3.873
15.7682
79,6383
3,336
20,3677
86, 1 <177
1,115
13,8523
79,2380
3.296
20,7620
88,5813
1,550
11.1187
83,9017
3,630
16,0983
96,5523
7,061
3.4177
95,6889
6,992
1,3111
98.9677
9.589
1.0325
98,9538
9,565
1,0112
EFFICIENCY * STATED " 99.60
COMPUTFO a 99,5393
CONVERGENCE OBTAINED
ADJUSTED NO-RAP EFF, a 95.1701
M*0 OP INLET SIZE DISTRIBUTION e 1.165E+01
SIGMAP OF inlet SIZE DISTRIBUTION ~ 5.122E+00
LOG-NORHAL 800DNE8S OF FIT * 0.981
MHO OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 6.221E+00
8IGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS a 3.152E+00
LOG-NORMAL GOODNESS OF FIT b 0.990
PRECIPITATION Rate PARAMETER UNDER NO-RAP CONDITIONS s 6,168
8IGMAG° 0.250 WJTH 0,500 SNEAKAGE OVER 1.000 STAGES
NTEMP a I
RMMO 9 10.00
RSIGHA a 1,50
COUP. EFF. a 91,7780
CORRECTED MMD OF EFFLUENT s 6.601E+00
CORRECTEO 9IGMAP OF EFFLUENT e 3.060E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0.991
CORRECTED PRECIPITATION RATE PARAMETER a 6,19

-------
UNADJUSTED migration VELOCITIES and EFFIeiENClFS, ANO OISCfiETC OUTLET «*88 L0A0IN68
IDEAL UNADJUSTED
MIO. VEL'.(CM/8EC)
3,T90E+00
3,«66E+00
3,918E*00
4,769E*00
5,911E+(50
8.019E+00
l.037E»01
l,27»e*01
l,6J9E*0t
2,sasE*ei
J.JOfcEfOl
4,S62E+01
6.610E«01
ideal UNADJUSTED
EFFICICNCYtX)
s.SbOEtm
8.104E+01
8.US7E+0I
8'.972E*01
i.anac*ol
9.782E+0J
9.939E+01
9,9T7E*0l
9.996E+OI
1 .000E+C2
1,00QE*02
l.OOOE+02
1.000E+02
NO.RAP
DH/0L0SD(M8/D8CM)
fl.185E-01
1f897E+OI
fc.ieiEoOl
0.588E+O!
lf«00E*02
2.270E+02
if176E+02
1,07BE*O2
1,fc91E+02
1,965E*02
J.32BE+02
1.310E+02
6.505E + 02
RiPPlHO CUFF
DM/DLOSO(MS/D8Cm)
2.709E-16
I.609E-11
2.769E-0T
7.AU0E-0S
6.S05E-0J
fl.fllOE-Ol
U.03SE+00
1.616E+01
fl,«S
2.905E+01
3.I82E+02
l,638E+02
6,580E»fl2
RAPPfNfl PUFF
DISTRIBUTION£X)
2.687E-16
7,a3»E-J2
1.037E.DT
a,fll3E-09
2.079E-03
1.915E-01
8,173E»01
5,628E*00
I,3I7E«01
3,2971*01
3,279E«0t
t,SHE*01
1.163E+00
PABTTCLE
OIAM.(M)
2.000E-07
4.000E-07
T.OOOE-6T
I.IOOE-OO
l,600E>06
fi.SOOE-Ofc
3.S00E-06
H.500E-06
t.OOOEaO*
8.508E-06
I,1506-05
2,0001-05
2.7S0E-05

-------
SUMMARY table OF ESP OPERATING
parameters AND PERFORMANCE
DATA SET NUMBER (19
ESP PERFORMANCE|	EFFICIENCY ~ 9U.T780 *	SC* B U.769E+01 M**?/{M**S/SEC)
ELECTRICAL CONDITTONSi AV5, APPLIED VOLTAGE ¦ a,15<»E*0fl V
AVG, CURRENT DENSITY ¦ 1B.OO NA/CM«#J
BE8ISTIVITY a 5,O00E*lO OHM-CM
SIZE DISTRIBUTIONS! INLET HMD ¦ U.atSEtOl UM INLET SIGMAP e 5'.l?2E + 00
OUTLET MMO b 6.60lE*00 UM OUTLET 8!6"AP ¦ 1,080E»00
NONIDEAL PARAMETERSl GAS 8NEAKAGE FRACTION ¦ 0,90 /SECTION GAB VELOCITY 3IGNA0 ¦ 0,25
RAPPING HMD a 1.000E+01 UN RAPPING SIGHAP ¦ l,500E»00

-------
PARTICLE SIZE RANGE STATISTICS
corrections FOR NONIOEALITIE8 USING SET NO*. 5 OF CORRECTION PARAMETERS
8IZE	CCF	INLFT * OUTLET t COR, OUTLET * NO.RAP EPF,
2'.OO0E-O7	2.123	0.033
0,OOOE»O7	l.SJO	0,253
7,OOOE-OT	1.297	0,"»03
1.100E-06	1,188	0.815
1,600E»06	1.130	1,520
2,300E»06	1.08J	3,521
3,500E«06	1.054	1 652
0,300E*06	1.006	1,652
6.000E.06	l.OSS	1.902
8.S00E.06	1.020	3,SOU
1,250E.05	1.017	0,806
2.000E.05	1,010	12,115
2.750E.05	1,008	67.001
EFFICIENCY « stated ¦ 99.60
0.0728
0.0682
6a 3675
0,6770
0.6306
56.7538
2,0961
2,3383
55'. 3530
2.1898
2.0513
56.6033
3,9380
3,6891
58,1508
8,7099
8,2083
59.8988
0.0669
3,8610
60.2386
0.1302
0.1)08
59'.5802
0.5999
5,1016
62.5155
712705
8,8996
60,0392
9.7011
11,1963
67.5336
13,0892
13,2168
82,5097
38.9T07
36.579T
90.6610
99.60
COMPUTED o
99,5393
NO-RAP W
2.160
1,758
1.691
1.750
1,827
1.916
1.930
1,899
2,057
2,166
2,359
3,660
0.971
NO-RAP P
COR, EFF,
COR, *
35.6325
60,3675
2,160
03,2062
56.7538
1,758
00,6070
55,3550
1,691
03,3967
56,6033
1.750
01,8052
56,1533
1,827
00.1012
59,8)96
1.913
39.7610
59.6991
1,905
00,0198
57,0536
1.772
37.0605
55,2752
1,667
35.5608
53,5577
1,606
32,0660
60,1602
1,930
17,0503
61,t90t
3,503
9.3366
90,6025
0,967
COR. *
35,6325
03,2062
04,6070
A3,3967
01,8067
00,1600
00,3009
02,9060
00,7178
06,0023
39,6358
18,4099
9,3575
convergence obtained
ADJUSTED NO.RAP EFF. ¦ 83.6065
HMD OF INLET SIZE DISTRIBUTION b 0,065E+O1
8IGMAP of INLET SIZE DISTRIBUTION • 5.122E+00
LOG.NORMAL GOODNESS OF FIT a 0,980
NMD OF EFFLUENT UNOER No-RAP CONDITIONS ¦ l'.352E*0i
SIGNAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 3.903E+00
LOG.NORMAL GOODNESS OF FIT • 0,986
PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS ¦ 3,823
8I0MAO* 0.250 X1TH 0,700 SnEaKAOE OVER 0.000 STAGES
NTEMP ¦ |
RHMD a 10,00
RSIOMA ¦ 1,50
CORR'. EFF. • 82,7582
CORRECTEO mmd OF EFFLUENT ¦ l,32aE*01
CORREC7EO SIGMAP OF EFFLUENT a 3.781E»00
LOG-NORMAL GOODNESS OF FIT 9 0.990
CORRECTED PRECIPITATION RATE PARAMETER a 3.69

-------
UNADJUSTED migration VELOCITIES AND EFFICIENCIES# and DISCRETE OUTLET MASS LOADINGS
IDEAL UN4OJU8TE0
IDFAU UNADJUSTED
MO.RAP
RapPInG PUFF
NO»RAP*RAP PUFF
RAPPING PUFF
PARTICLE
MIG, VEL.(CH/SfC)
EFFICIEMCVC*)
OM/PiLOCnfMG/D8CM)
OM/OLOGO(MG/OSCM)
DM/niOGft(MG/D8CM)
DISTRIBUTION*)
OIAM,(H)
3,790E»r»n
8, J60E ~(! 1
i. tsie~oo
1.266E-16
1.751E+00
2,627E"16
2.000E-07
J,fl86E*no
8.1OUE+O1
jj.SnuE + 01
2.597F-1i
3.50F • 12
a.oOOE.07
3.9J8E+00
8,«57E*01
1. l?2E+02
0.361E-07
1.122E*0?
1.U37E-07
7.000E.07
d, 7<>9F»on
8.972E + M
t ,573E*02
l.l72e-0«
1.573E*82
2.U15E.05
1,1001*06
5,911E~0 0
9,06
J,J86E+01
1,000E*02
6.620E+02
1.503E+02
8.122E+02
3,275E*01
1.250E-05
uf682E+01
1.000E+02
6.632E+02
5',t6TE*01
7 a 149E + 02
l,5UE»01
2.000E.05
6.630E»01
1 .OOOE + 02
5.88OE+03
1.186E + 01
5.89bEt03
1 a 163E+00
2.750E-05
in
fo
u>

-------
Summary table or ESP OPERATING
PARAMETERS and PERFORMANCE
DATA SET NUMBER 50
E8P PERFORMANCE! EFFICIENCY ¦ 82,7982 X SC* ¦ «.T69E»0! m«*8/(M»»1/8IC)
ELECTRICAL CONDITIONSi A VG, APPLIED VOLTAGE • a,159E*0O V
AVG, CURRENT OENStTY ¦ 18,0a NA/CM**2
RE8ISTIVIT* » 5,OOOEt10 OHM-CM
SIZE DISTRIBUTIONS! INLET HMD • a,«65E*01 UH INLET 8IGMAP ¦ 5.1»2E»00
OUTLET HMD • 1.32BE+01 UM OUTLET SIGHAP ¦ 3.T8IE+00
NONIDEAL PARAMETERS! GA8 SNEAKAGE FRACTION ¦ 0,70 /SECTION 3A8 VELOCITY 8IQMAG ¦ 0,15
RAPPING MMD ¦ 1.000E+01 UM RAPP1N0 SIGMAP ¦ 1.I00E+00

-------
particle SIZE RANGE STATISTICS
corrections pqr nonidfalittes using set no". 6 or correction parameters
SIZE
2.000E-0T
0.000E-07
7,000E-07
1,	100E-06
l,600E-06
2.300E-06
3,300E-06
0.500E-06
6,000E-06
8,300E-06
1.250E-05
2,OOOE-OS
2.750E-05
EFFICIENCY • STATED « 99.60
CCF
INLET X
OUTLET X
2.123
0,033
0.291O
i.SSO
0,253
OllS
1 .297
0,903
17.8091
1.186
0,615
12,9822
1.130
1 .520
18,0331
1.063
3,520
26.0236
1.059
1,652
8,3261
1.006
1,652
6,3882
1.035
1,982
3,0611
1.020
3,300
1.6399
1.017
0,806
Ol6293
1,010
12,115
0,0)92
1.006
67.001
0.025O
COR. OUTLET
X NO-RAP EFF
, NQ-PAP W
no-RAP P
COR. EFF.
COR. W
0,1800
97.676?
7.816
2.323B
97.6762
7.868
2.9170
95.0987
6.323
0,9013
95.0987
6.323
11,0507
90,7976
6,198
5.2021
90,7976
6.198
8,0375
95.8076
6,630
0,192(1
95,8076
6,630
11.1650
96,8775
7,268
3.1225
96,8773
7,868
16.1807
98.0560
8,262
1,9036
98,0076
8.253
5.0660
96.6735
9.063
1.3265
98,5933
8,900
5,0101
98.9823
9.619
1.0177
98,6068
8.960
6,9116
99,5955
11.503
0,0063
98,5171
8,830
13,5950
99,8678
13.898
0,1322
98,2307
6.083
12,8730
99,9656
16.735
0.0302
98,8707
9.A01
5,7581
99,9996
08.821
0,0000
99,7960
13,009
0.0033
99.9999
66.300
0.0001
99,9972
21.963
COMPUTED a
99,5393
CONVERGENCE
OBTAINED


COP. P
2.3236
0,9013
9,202a
0,1920
3.1227
1.9520
1.4067
1,3932
1,0829
1,709J
1.1293
0,2020
0.0026
ADJUSTED NO-RAP EPF. » 99'.7S68
HMD OF INLET 8IZE DISTRIBUTION s 0.065E+01
8IGMAP OF INLET SIZE DISTRIBUTION a 5.122E+00
LOG.NORHAL G000NES8 OF FIT a 0,960
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS « l'.707E + 00
SIOMAP OF EFFLUENT UNDER NO-RAP CONDITIONS » 1.987E+00
LOG-NORNAL GOODNESS OF FIT > 0.997
PRECIPITATION RATE PARAMETER UNDER NO.RAP CONDITION " 12,130
6IQHAGB 0.100 WITH 0,100 8NGAKAGE OVER 0.000 8TAGE8
NTEMP a 1
RHHD a 10.00
R8I0HA a l.SO
CORR'. EPF, a 99'.5709
CORRECTED HMD OF EFFLUENT ¦ 3.S01E+00
CORRECTED SIGMAP OF EFFLUENT ~ 2.720E+00
LOG-NORMAL G00DNES8 OP FIT a 0.980
CORRECTED PRECIPITATION RATE PARAMETER a 11.03

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENCTES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
IDEAL UNADJUSTED
NO.PAP
RaPPInG puff
no>rap+rap puff
RAPPING PUFF
particle
MIG. VEL.(CM/8EC)
CFFlCIENCVf*)
DM/0L0GDfMG/DSC«5
DM/0L0G0CMG/D8C")
DH/DLOGD(mG/OSCm)
OISTBIBMT10N(I)
DIAM'. (M)
3.790E+00
8.S60E401
1,ia?E«01
6.500E-17
1.1«2E-01
2.627E-16
2.000E-07
J,«86E*00
8,1OUE+O1
5.9T1E*00
3.859E-12
3.971E+00
T. 036C-12
U.000E-07
3.918E+00
8.U57E+01
1,308E»01
6.a81E-08
l.JOSEtOl
1 .B37E-07
7.000E-07
fl,76"»E400
8.972E*01
1.520E+01
1.7O1E-05
1,520E«01
2, A15E«0S
l.tOOE-Ofc
S,9HE»00
9.00UE401
2,0«6E+01
1,A52E-05
2,0«6E»0»
2.079E-0J
1.600E-06
8.019E+00
9.7B2E40I
2.289E+01
1,037E"0»
2,299E»01
t ,914I«01
2.500E.06
l,037E*Oi
9.929E+01
1.5fc?E*01
9.A37E-0J
1.6S6Et01
8,t7IE-01
S.500E-06
l,270E*0l
Q,9?7E*01
1,025E»01
5.T85E+00
1,<»08E»01
S.efiSE+OO
U.SOOE-Ofc
l,6J0€+Ot
9,996E+01
4.360E+00
1.1SSE+01
1.391E+01
l,l!7E»0l
6,000E«06
2,22SE+01
1,090E*02
1.8T6E+0Q
2.29UE+01
2.fl82E*01
l,29TEf01
8.B00E-06
3,1«6E»01
1.000E+02
6,968E»01
2.233E+01
2,J03E*OJ
J,2t«*01
1.250E.0S
0.882E+01
1 .OOOE + 02
J.587E-02
T.fc79E»00
T,fc9flE»00
r,62
-------
SUMMARY T401E or ESP OPERATING
PARAMETERS and PERFORMANCE
DATA SET NUMBER 51
ESP PERFORMANCE! EFFICIENCY ¦ 99.57*19 * 8C* ¦ «'.769E»01 M*«2/(M*«J/8EC)
ELECTRICAL CONnlTIONSl	AVG. APPLIED VOLTAGE ¦ a,159E+Ofl V
AVG, CURRENT DENSITY e 16,04 NA/CM**S
RESISTIVITY a 3,OUOE*10 OHM.CM
SIZE OI8TRIBUTIONS1	INLET MMD a a,U6SE+01 UM INLET 8IGHAP e 5.122E+00
OUTLET MMO « 1.501E+00 UM HUTLET SI6"AP ¦ 8.72AE+00
NONIOEAL PARAMETERS 1	GAS SNEAKAGE FRACTION ¦ 0.10 /SECTION GAS VELOCITY SIGMAG ¦ 0.10
RAPPING MMO ¦ 1.OOOE+Ol UM RAPPING SIGMAP a 1.900E+00

-------
p*»ticie am range statistics
corrections for noniceai!ties using sft Nn". 7 or correction parameters
SIZE
2'.000E«07
4.000E-07
7,oooe-o7
l,J00E-06
1,600E«06
2,500E-06
3.S00E-06
4,500E-06
6.000E-06
6,500E»06
1.250E-05
2,oooe-os
2.750E-05
CCF
INLET X
OUTLET *
CO". OUTLET
* NO-RAP EFF
, NO-RAP W
NO-RAP P
COR, EPF,
COR, w
2,123
0,033
0,2397
0,165)
96.1365
6,850
3.B115
96,1685
6.650
t .530
0,253
3,4620
2.3879
92.8186
5,522
7.1814
92,8186
5,522
1.297
0,901
13.2808
9.1603
92,2814
S, 371
7.7186
92,2814
5.37|
1,1 SB
0,513
10,3039
7.1071
93.3648
5,688
6,6352
93,3648
5,668
1,130
1,520
15.5806
10,7072
94,6205
6,126
5.3795
94,6201
6.128
1,063
3^524
25,9676
17,9704
96,1328
6,820
3.8672
96,1199
6.813
1,059
1,652
9.5269
6,8251
96,9755
7.334
3.0265
96,8565
7,254
1,046
1,652
i,2266
6,8640
97,3866
7,641
2,6134
96,8386
7,212
1,035
1,982
5:3236
7,7641
98,5904
8.936
1,4096
97,0194
7,566
1 ,02U
3,304
4.5539
13,3801
99,2766
10,335
0.7234
96,9166
7,295
1,017
4,606
3'. 118 0
12,3302
99,6623
11.932
0,3377
96,0640
8,270
1,010
12,115
013J71
4,9278
99,9854
18.517
0,0146
99,6905
12.115
1,008
67.001
0.0794
0.3616
99.9994
66.304
0.0006
99.9959
21.190
lev •
STATED ¦
99'. 60
COMPUTED •
99,5393
CONVERGENCE
OBTAINED


COR. P
3,81|5
T,iei4
7.T186
6:6)92
5,3*99
J.8801
J.iaiS
3,1610
2.9906
3,0«3O
1,9360
0,3095
o.ooai
ADJUSTED NO-RAP EPF, ¦ 99'.4752
HMD OP INLET SIZE DISTRIBUTION c 4,
-------
UNADJU8TED MIGRATION VELOCITIES AND EFFICIENCIES, AND DlSCPf-TE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
MIG, VEL¦(CH/SEC5
3.790E*00
3,«86E*0ft
S.918EfOO
«,T<>9E + 00
5.9UE + 00
s,om+oo
1 r0J7E + 01
l,27UE+0!
1.6J0E+01
2,223E*01
3.1«6E»01
«,882Et01
6(630E* 01
IDEAL UNADJUSTFO
EFFICIENCY(X)
8,360E+0 1
8,in«e+oi
8.U57E+01
8.972E+01
9,ao«E+01
9,?82E*01
9.929E+0 1
9.977E+01
9.996E+01
1,OOOE+02
1,O00E+O2
1.000E+02
1.OOOE+02
NO-RAP
RAPPING PUFF
NO-RAP+RAP PUFF
RAPPING PUFF
PARTICLE
DLOGD(Mfi/DSCM)
DH/0L0GDfMG/D3rM)
OM/OLOGD(MG/D3CM)
DISTRIRIJTION(X)
DIAM'.(M)
1 '.87JE-01
9.253E-17
1.87je-01
2.627E-16
2.006E-07
5,81OE+00
5.632E-12
5.819E + 0CI
7.Q36E-12
U.OOOE-07
1 .9U0E + 01
9.U59E-08
1.9«0F*01
1.U37E-07
7.000E-07
2,E + Ot
3.3«BE+01
U.37flE+01
3,297E*01
8.900E-06
6,8fl5E+00
3.259E+01
3, 9UTE + 01
3,275E*01
1 .250E.05
5.S50E-01
1.J2ie+01
1.176E»01
i.snc»oi
2.Q00E-05
J.89UE-01
2.571E*00
2.961E+00
11163E+00
2.750E-05
ai
ro
so

-------
summary table of esp operating
parameters and performance
OAU SET number 38
ESP PERPORHANCEl EFFICIENCY S QQ.PJQI * sc* » fl.769E*0l H**g/{«**J/8CC)
ELECTRICAL CONDITIONS I AVG, APPLIED VOLTAGE ¦ «,159E+04 V
AVG, CURRENT DENSITY a 18,OU NA/CH**2
RESISTIVITY « S,OOOE +10 OHM.CM
SIZE DISTRIBUTIONS!	INLET MMD ¦ il.fl69f+01 UM INLET SIG«AP • 5.182E+00
OUTLET HMD • J.507E+80 UM OUTLET 8ISHAP ¦ 2,612EtOO
NONIDEAL PARAMETERS! GAS SNEAKAGE FRACTION ¦ 0,10 /SECTION GAS VELOCITY SIGMAQ b 0,40
RAPPING MMD a 1.000E+01 UM RAPPING SI0MAP a l.SOOEtOO

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FO» NONJPEALITIES USING SET Np, A OF CORRECTION PARAMETERS
SIZE
2.000E-07
4.000E-07
7.000E-07
1.100E-06
1.600E-06
2,500E-06
3,500E-06
4,500E-06
6,000E-06
8,500e.06
l,250E-05
2,000E-05
2.750E-05
EFFICIENCY - STaTFP n 90.60
CCF
INLfT *
outlet *
2,123
0.033
0.2123
1 ,510
0.253
2*. 8175
1.297
o' 903
10^8492
1.188
0,815
8,7455
1.130
1,520
13,8731
1 .085
3,321
24.9052
1.059
1,652
9.7131
1.046
1,652
8^7730
1.035
1,982
6,4826
1.020
3.304
6,5732
1.017
ol 846
5,5095
1.010
12,115
1.0816
1.008
67.401
0.46«2
COR. OUTLET
* NO.RAP EFF
, NO.RAP W
no-rap p
COR. EFF.
COR. W
COR'. P
0". 1567
94.3710
6,033
5.6290
94.3710
6,033
5.6290
2.0796
90.2545
4.882
9.7455
90,2545
0,882
9.7055
8,0076
89, (1860
U.7?3
IP',5100
89,4860
4,725
10.5100
6,4519
90.6096
0,960
9,3904
90,6096
4,960
9,3904
t o.a o oi
92.0129
5.299
7.9871
92,0125
5,299
7,9875
18,4523
93.8154
5.835
6,1846
93,7985
5.830
6.2018
7,5831
94.8548
6.221
5,105?
94,7011
6.159
5.2989
7,4779
95,3327
6.434
4,6473
90,6351
6.133
5,3669
8.2331
97.1378
7.451
2,8622
95,0749
6.313
4,9251
13,4876
98,2590
8.493
1,7410
95,1600
6,309
4,8000
12,6044
99,0051
9 666
0.9949
96,9063
7.288
3,09J7
4.7550
99,9219
15.001
0,0781
99,5307
11.260
0,4653
0.6473
99.9940
?0.373
0,0060
99,9886
19,039
o.ouo
COMPUTED ¦
99.5393
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, ¦ 99.1849
HMD OF INLET Size DISTRIBUTION a fl,at>5E*0!
SIGMAP OF INLET SIZE DISTRIBUTION n 5.122E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0.984
MMO OF EFFLUENT UNDER NO.RAP CONDITIONS ¦ 2.572E+00
8IGMAP OF EFFLUENT UNDER NO.RAP CONDITIONS » 2.297E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0,996
precipitation rate parameter under no.rap conditions ¦ 9,955
SIGMAGB 0,600 WITH 0,100 SNEAKAGE OVER u',000 STAGES
NTEMP ¦ 1
rmmd ¦ 10,00
RSIGMA * 1,50
rono' FFF m Oa'aIOU
CORRECTEo'mmo Op'eFFLUENT ¦ 5.682E+00
CORRECTED SIGMAP OF EPFLUENT ¦ 2.586E+00
LOG-NORMAL G000NESS of FIT o 0,992
CORRECTED PRECIPITATION RATE PARAMETER e 9.30

-------
UNADJUSTEfl *1fiffA TION VELOCITIES t»0
EFFICIENCIES, AND
DISCRETE OUTLET MASS
LOADINGS


IDEAL UVADJU8TED
IDEAL UNAPJUS*?0
NO-RAP
Rapping puff
N0»RAP*RAP PUFF
RAPPING PUFF
PARTICLE
MI6, VEL.(CM/SEC)
EFFICIENCY(*)
OK/OLOGD(MG/OSCMJ
DH/nuOGDfMG/OSC")
DH/OLOGO(MG/D9CM)
DISTRIBUTION!*)
DIAM.fH)
3'.T90E-»00
e,jfcOE+oi
2,7fcfeE-01
1.215E-U
2,76feE-0l
2t62TE»16
8.000E-07
J,«86E+00
«,io«E*oi
7,B96E»00
7.39fcE-12
7,B96f*00
7,UJfeE-12
It, oooe*ot
J,91BE*00
8,«57E+01
2,M2Ft«l
1.2025-07
2.6a2E*ni
1.U37E-07
7.000E-07
«,769E+on
8.972E+01
J.tt05E*flJ
3.337E-05
3.tt05Et01
2.015E.05
1.I00E-06
5,911E»00
9.UOUE+01
5.231E+01
2.78SE-03
5.23HE+01
!,079C"0J
1.&00E-0*
8,019E*00
9,782E*01
7.28JE+01
J.987E-01
7,J03E*01
1.91SE-01
2.500E.06
1 ,0JTE + 01
9,929E+0l
6.0S7E+01
J,B09E*00
<>.238E + 01
8.173E-01
3,500E-06
1.27 UE~0 1
9.977E+01
«,t>A2E + 01
7,2«9E+00
s,uo7E+oi
3,82BEt00
a,;ooE«06
l,630e+0t
9,99fcE*01
3.OTOE + 01
2.213E+01
5.283E+01
1,317E*01
6,600E«06
2,2231*01
1.000E+02
2,4T0E+0l
ft ,396EtO1
6.866E+01
S,?97e*61
8,500E«06
l.ldbEtOl
1.0O0E+02
2.029E+01
O.279E+0J
6.J0BE*01
l.873E*01
1 ,250E«05
a,ei2E+oi
1 ,Q00E*02
2,9»9E+00
J.U72E+01
1.769I401
i,stie*oi
2.000E-05
6.630E+01
1.000E+02
3.798E*00
5,377E+00
7.17«E*00
1(163E*00
2.TS0E«05
Ln
CJ
NJ

-------
SUMMARY table OF ESP OPERATING
PARAMETERS AND PERFORMANCE
DATA SET NUMBER 93
ESP PERFORMANCE!	EFFICIENCY ¦ 98,81 <10 X SC* ¦ U.769E + 01 M*»2/(H.»J/SEC)
ELECTRICAL CONDITTONSl AVG, APPLIED VOLTAGE ¦ a.i5«E*flfl V
AVG, CURRENT DENSITY b 18,0« NA/CM*«2
RESISTIVITY a 5.000P*10 OHM.CM
SIZE DISTRIBUTIONS! INLF.T MMO b 4.065E+01 UN INLET SIG*AP a 3,l?2e+00
OUTLET MMO ¦ J.682E+00 UM OUTLET 8I5HAP » ?'.586S»00
NONIOCAL PARAMETERSl	CAS SNEAKAGE FRACTION a 0.10 /SECTION GAS VELOCITY SIG"AG » 0.60
RAPPING HMD = 1.OOOE+O1 UM RAPPING BIGHAP o t,500E<»00

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONIPEALITIES USING SET no. Q OF CORRECTION PARAMETERS
OUTLET *
SIZE
2,OOOE-07
4.000E-07
7.000E-07
1,100E-06
1.600E-06
2,500E-06
3,500E-06
«,500E-06
6,OOOE-06
8,500E-06
l,250E-05
2,0O0E-05
2.750E-0S
CCF
2,123
1.530
1.297
1.188
1.130
1.083
1,059
1.046
1.035
1.02a
1.017
1.010
1,008
INLET *
01033
0,253
0,903
0,815
1.520
3.521
1,652
1,652
1.982
1,10*
a,806
12,113
67.401
0,1908
2.3018
9.0162
7,4873
12.3234
23^ 3765
9.5039
e',6244
7,1634
8,1009
7.6993
2'. 3700
1.6000
COR. OUTLET t
O'. 1480
1 .8277
7,0368
5,8435
9.6184
18,2865
7,5984
7,7275
8,4813
13,5613
13.1994
5,1662
1.5041
NO-RAP EFF,
NQ-RAP W
no-rap p
COR, eff'.
COR, W
COR. P
91.8187
5,249
8.1813
91,8187
5.249
8,1813
86.9043
4.262
13,0957
86,9043
4.262
13,0957
85,6735
4,103
14,1265
85,8735
4.103
14,1265
87,0024
4.278
12,9976
87,0024
4,278
12.9976
88.5295
4.540
11,4705
88,5289
4,540
11,4711
90^6149
4 961
9,3851
90,5932
4,956
9'4068
91.8589
5,259
8,1411
91,6620
5.209
8,3380
92', 4426
5,415
7,5974
91,5204
5,174
8,4796
94,8866
6,234
5,1134
92.2428
5,360
7,7572
96,5311
7.048
3.4689
92.5594
5.448
7,4406
97.7522
7.957
2,2178
95,0624
6.307
4,9376
99,7232
12,349
0,2768
99,2270
10.195
0,7730
99,9664
16.771
0,0336
99,9995
16,381
0,0405
EFFICIENCY - STATED » 99.60
COMPUTED o 99,5393
CONVERGENCE OBTAINED
ADJUSTED NO-RAP EPF, " 98'.S852
HMD OP INLET SITE DISTRIBUTION a 4,«65E*01
9IGMAP OF INLET SIZE DISTRIBUTION a s".l22E + 00
LOG-NORMAL GOODNESS OF FIT a 0,984
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS a 3.087E+00
8IGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 2.483E+00
LOS.NORMAL GOODNESS OF FIT a 0.996
PRECIPITATION RATE PARAMETER under NO-RAP CONDITIONS » 8,920
SIGMAGa 0.800 WITH 0,100 SNEAKAGE OVER 4.000 STAGES
NTEMP a 1
RMHD • 10,00
R8IG(4A a 1,50
CORR, EFF, a 9b',1872
CORRECTED HMD OF EFFLUENT a 3.833E*00
CORRECTED 8IGMAP OF EFFLUENT a 2.55OE*00
LOG-NORMAL GOODNESS OF FIT a 0,995
CORRECTED PRECIPITATION HATE PARAMETER o 8,41

-------
UNADJU9TEP MJOPATION VELOCITIES ANn
EFFICIENCIES, AND
DISCRETE OUTLET MA88
LOADINGS


!DE*L UNAp JilSTEP
IPE*L unarjustfo
NO-PAP
Rapping puff
NO.RAP*«AP PUFF
NAPPING PUFF
PARTICLE
MIG, VEL'.CCH/SEC>
EFFICIENCY**)
D«/DLOGD(MG/D8CM)
DM/DLOGDCMG/nSex)
0H/DL0GD(MG/DSCM)
DISTRIBUTION^)
DIAM.(M)
3.790E+00
8, 360E+0I
(if 0?OE"0l
1.557E-16
U.020E-H1
2,627E>16
2.000E-07
3,
-------
SUMMARY TABLE OF ESP OPERATING
PARAMETERS and PERFORMANCE
DATA SET NUMBER 54
ESP PERFORMANCE I EFFICIENCY ¦ OS.I8T2 t SCA a «'.7fe9E + 0l H**2/(«**3/SEC)
ELECTRICAL CONDITIONS! AVC, APPLIED VOLTAGE ¦ «,15QE+0« V
AVG, CURRENT DENSITY a 16.04 na/CH*«2
RESISTIVITY e 5.60OE+1O OHM.CM
SIZE DISTRIBUTIONS! INLET HMD • 4,4bSE+01 Um INLET SIGMAP a s'.l32Et00
OUTLET HMD ¦ J.flSjE+OO um OUTLET SIGHAP b 2.55«E+00
NONIDEAL PARAMETERS! GAS SNEAKAGE FRACTION ¦ 0.10 /SECTION GAB VELOCITY SIGMAO • 0.80
RAPPING HMD ¦ 1.000E+01 UM RAPPING SIGMAP ¦ 1,SOOE*00

-------
PARTICLE 8IZE RANGE STATISTICS
C0RRFrTrnN9 fofr NONI^EAL T V r ES US IWG SFT mo. i OF CORRECTION PARAMPTER9
SIZE
CCF
INLfT *
OUUFT x
COR. OUTLET
2.000E-07
2.123
0,035
0.3409
0,7716
4,OOOE-07
1 .S^O
0.253
6,0038
4.1979
T. OOOF*'"
1 ,?9T
0.903
2
96,0353
6,991
7.859
2.3553
97.1977
7,495
8.713
1.5670
98.1012
8,311
10.185
0,7778
98,9809
9,616
11,557
0.4038
99,3086
10,429
12.739
0,2298
99.0027
10,736
16.29T
0,0421
99,5867
11,508
22,227
0,0025
99,7036
12,207
31.459
0,0001
99,7960
12,989
48,821
0,0001
99,8987
14,456
66.300
O.OOOl
99,9564
16,223
fONVERGENCE
OBTAINED


COB, P
5,1828
J.6TT6
3,5607
2,8023
1,8988
1,0191
0,6913
0,5973
0,0133
0,2962
0,2000
0,1013
o(oai6
ADJUSTED NO-PAP EFF, o 99'.88t7
MHO OF INLET 9IZC DISTRIBUTION o 4.465E+01
3IGMAP OF INLET SIZE DISTRIBUTION ¦ S.122E+00
LOG-NORMAL GOODNESS OF FIT 9 0.980
mmo of effluent under no-Rap conditions « i.$6oe*oo
BIGMAP of EFFLUENT under NO-RAP CONDITIONS B 1.833E+00
y,	LOG.NORMAL GOODNESS OF FIT « 0.996
w	PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS ¦ 1«,131
SIGMAG* 0,000 WITH 0,000 SMEAKAGE OVE" 4,000 STAGES
NTEHP ¦ 1
RMMD ¦ 10,00
RSIGMA • 5.00
CORR', EFF. * 99.7784
CORRECTED HMD OF EFFLUENT a 3,439E*00
CORRECTED SIGMaP OF erFLUENT ¦ 3,709E»00
LOG-NORMAL GOODNESS OF FIT s 0.963
CORRECTED PRECIPITATION RATE PARAMETER ¦ 12,81

-------
UNADJUSTED MIGRATION VELOCITIES AND
EFFICIENCIFS, AND
DISCRETE OUTLET MASS
LOADINGS


IDEAL UNADJUSTED
IDEAL UNADJUSTED
NO-BAP
RAPPING PUFF
no.rap*rap PUFF
RAPPING PUFF
PARTICLE
*JC, VEL.tCM/SECJ
e^FiclEwcyf*>
DK/OLOCDfMG/OSCM)
D«/DL0GD(MG/0SCm3
DM/D1.0GD(mG/DSCM)
DISTRIBUTION!!)
DIAH.(M)
s.mc+oo
8.3t.0E*01
A.077E-02
1 .939E-01
2.5«7E-fll
),259E»08
2.00PE.07
3.U86E+00
8.104E+01
2,H2bE*00
5.333E-01
3.980E*fl0
1,6T1E*00
fl,000e.07
J.918E+00
8.«57E+01
7,9?2E*I>0
J.037E+00
8.9S9E*00
3,60aE+00
7.000e»07
«.76«e+00
8.972E*01
6.5UOE+00
1.621E+00
t,8l6E*ot
S.52JE*00
1.100E-06
5,911S *00
9.«oue+oi
l'027E+01
2.171E+00
l,2«UE»0l
A.871B+00
t ,600t«0t
6.019E+00
9,782E+01
9,150E»00
2,851E+00
11JOOE + O1
8.251E+00
2,SOOE»Ot
l,0J7E*01
9.929E+01
a,T53E+00
3.386E+00
8,140E + Q0
fl.S99E*00
3,9006.06
J,27«E+01
9.9T7E+01
2,3t5E+00
3.T02E+00
6.017E+00
5,A7IE»0«
4.500E-06

9.996E+01
a.517E-0t
3.982E+00
a,«33E*00
7.tl0E«00
6.000E«06
2.22JE+01
i.onoe+02
3,53lE-0fe
4.166E+00
«,202E*00
9,S8SE*00
0.5OOE-O6
3,106E+01
1,OOOE+02
2.0?2E"03
a,tS9E+00
4,161E*00
9.SS8E+00
1.250E.01
fl,882E+0J
lj.OOOC + 02
3,769E«03
3.850E+00
3.89flE*00
11167C+01
I.009E.05
6.630E+0I
1.0006*02
6.2SOE-02
2.719E401
2.T55E*0l
i,eost*oi
t.TSOC-es
U1
U>
CO

-------
SUMMARY TABLE OF ESP OPERATING
parameters and performance
DATA SET NUMBER 55
ESP PERFORMANCE! EFFICIENCY b R9.770U * SC* » «.7fc9E*01 m*»2/(M«*J/8EC)
ELECTRICAL CONDITIONS! AVG, APPLIED VOLTAGE ¦ «,15«E+0« V
AVG, CURRENT DENSITY ¦ 18.00 NA/CH..2
RE8ISTIVITV » 5.000E+J0 OHM-CM
SIZE DISTRIBUTIONS! INLET MMD a «.U65E*01 UM INLET SIGMAP d 5,l22e+00
OUTLET MMD a 3.U39E+00 UM OUTLET SIGMAP a S,709E»00
NONIDEAL PARAMETERS!	GAS SNEAKAGE FRACTION ¦ 0,00 /SECTION GAS VELOCITY 8IGMAG ¦ 0,00
RAPPING MMD a 1.000E+01 UM RAPPING SIGMAP ¦ 5,0006*00

-------
PARTICLE 91?E RANGE STATISTIC*
C0RI»ECT!0N9 '00 NONIDEAL!TIES USING SFT mq. ? Of CORRECTION PARAMETER8
SIZE
2',000E-07
4.000E-07
7.080E-0T
1 ft 00E-O6
1,600E-06
2,500E-06
3,500E-06
fl,500E-06
6,000E-06
8,500E-06
1,250E*05
2, 000E-05
2.750E-05
EFFICIENCY ¦ STATED ¦ ".60
CCF
INLFT *
OUTLET * COR, OUTLET *
NO-RAP EFF,
2.123
0,033
0,2645
0,6109
97". 1023
1.530
0.253
4.0629
3.2306
94,1940
1.297
0,903
15.3003
11,3604
93.7940
1.188
0,815
11.6397
8.8151
90.8365
1.130
1,520
16,8762
12,6986
95.9859
1.083
3,524
26,2990
19,9925
97,3060
1.039
1,652
9,0557
7,5039
98.0181
1.046
1,652
7.4341
6,#907
98.3730
1.035
1,982
4,2085
5.2207
99.2323
1,024
3,304
2,9758
5,2070
99,6744
1,017
0,84b
1,6067
4,3752
99,B801
1.010
12,115
0,0981*
4,1958
99.9971
1.008
67.401
0.0185
9.8988
99.9999
NO-RAP N
7,423
5.968
9,838
6.214
6,742
7,578
8.221
8,635
10.210
12,008
10 101
21,887
66.304
COMPUTED o 99,5393
NO-RAP P
COR. EPF.
COR, w
COR, P
2.8977
89,7349
4,773
10,2651
5.8060
92,9191
5,552
7.0809
6.2060
91.0235
5.583
6.9765
5.1635
94,0021
5.900
5,9979
4.0141
95,3672
6,441
4,6318
2.6940
96.8540
7,252
3.1460
1.9819
97,4811
7,719
2,5189
1.6270
97,6869
7,897
2,3131
0.7677
98,3393
8,861
1,4607
0,3256
99,1361
9.938
0,8739
0.1199
99,0993
11,106
0,5007
0.0029
99,8079
13,115
0,1921
0.0001
99.9(86
14,914
0.0814
OBTAINED



ADJUSTED NO-RAP EFP, ¦ 99'.6385
HMD OF INLET SIZE DISTRIBUTION a 4,aj,5E»01
SIGMAP CF INLET SIZE DISTRIBUTION a s',l?2E + 00
LOO-NORHAL GOODNESS OF FIT p 0.984
HMO OF EFFLUENT UNDER NO-RAP CONDITIONS a 1.934E+00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS e 2.095E+00
U,	LOG-NORMAL OOOOME88 OF FIT ¦ 0.997
g	PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS B 11.789
8XGMAG* 0.290 WITH 0,100 SNEAKACE OVER 4.000 STAGE8
NTEMP ¦ 1
RMHD 9 10.00
RSIGNA ¦ 5.00
CORRl EFF. ¦ <><»'.U«53
CORRECTED MMD OF EFFLUENT • 3,403E»00
CORRECTED SIGMAP OF EFFLUENT " 5.226E*0e
LOO-NORMAL GOODNESS OF FIT ¦ 0,979
CORRECTED PRECIPITATION RATE PARAMETER ¦ 10.89

-------
UNADJUSTED MIGRATION VELOCITIES ANf) EFFICIENCIES, and discrete outlet mass LOADINGS
IDEAL UNADJUSTED
MID, VEL.CCM/8EC)
1", 790E* 00
3.486E+00
S^lflE + OO

S.OflUE-Ol
S.737E+00
1^75SE+91
2.I75E+01
3.036E+01
3.705E+01
2.965E+01
2,3301*01
1.567E+01
1.2«06»01
I.021E+01
7.299E+00
5.136E+01
RAPPING PUFF
DISTRIBUTION^)
1.2S9E+00
1 ,fe71E*B0
J,b0ut*O0
3,52Se»00
U,87tE*00
e,i5iE*oo
«as9se#oo
5.B71E+O0
7,1J«E*00
9,S83E*00
9.558E+00
1 .187E + 6!
a,e«ie»oi
PARTICLE
DIAM.(M)
I.OOOE-OT
fl,OO0E»07
7, 000E»07
t.lOOE-06
1 ,fcOOE»Ob
2.500E»06
3,9001-06
U.500E-06
6,000E»0fe
8,500E»06
1.250E-05
2.000E-05
2.750E-03

-------
SUMMARY T*Bie of ESP OPERATING
PARAMETERS AND PERFORMANCE
DATA SET NUMBER 56
ESP PERFORMANCE! EFFICIENCY ¦ 94,0455 X 8CA ¦ a,769E+0i M*»2/
-------
PARTICLE SIZE RANGE STATI8TIC9
CORRECTIONS FOR NONIPEALITIC3 USTNG SET No. 5 OF CORRECTION PARAMETERS
SIZE
2.000E-07
0.000E-07
7,000E-07
i.iooe-oA
t,6ooe-o<>
2,500E-06
1.S00E-06
fl,500E-06
6.000E-06
8,500E-06
1a 250E-05
3,OOOE-05
2.750E-03
EFFICIENCY • STATED » 99.feO
CCF
INLET *
OUTLET *
2.123
0,033
0,1836
1.530
0.253
2.3354
1.297
0,903
B,Bh51
1.188
0,815
7,1634
1.130
1,520
11,536?
1.083
3,52«
21.60(15
1 ,059
1,652
9.0002
1.006
1,652
8.6513
1.035
1.982
7.3927
1.024
3,301
9" 1127
1.017
a,8U6
9,0758
1.010
12,11!
2.9230
1.008
67,101
2.0658
COR, OUTLET
* NO-RIP EFF
, NO-RAP W
WO-PAP P
COR, EFF.
COR, H
0.0273
92,7505
5.502
7,2095
78,1861
3,192
2,1808
87,9710
0.001
12.0286
85,0511
0.002
7,673?
87,2072
0.311
12.7928
85,6800
0,076
6,3386
88.5068
0.503
11.0532
86.89T2
0,261
10,0263
90.1102
0 851
9,8898
88,8871
4, 607
18.6089
91 .9780
5,290
8,0220
91,0805
5.068
8,0023
92.9008
5,506
7.0992
91,8392
5.230
8.0213
93,1761
5.629
6.8239
91,9196
5,249
7.3296
95.1397
6,301
(1,8603
93,7697
3.820
9.1700
96.0060
6.973
3,5900
95,3221
6.021
9,1850
97.5596
7.785
2,40oa
96,8068
7.221
0,9097
99,6856
12,081
0,3100
99,3117
10,039
8.0390
99,9601
16.008
0.0399
99,7991
13.020
COMPUTED b
99.5393
CONVERGENCE
obtained


COR. P
21.8139
10,5089
14,3160
15,1028
11,112*
8,9155
8,1408
8,1802
6,2303
4,6779
5,1932
0,6083
0.2009
ADJUSTED NO-RAP EPF, ¦ 96'.6969
HMO OF INLET SIZE DISTRIBUTION ¦ O.O65E+01
SICMAP OF INLET SIZE DISTRIBUTION s 5'. l?2E + 00
LOG.NORMAL GOODNFSS OF FIT ¦ 0,980
MMO OF EFFLUENT UNDER no-Rap CONDITIONS a 3.287E+00
SIGHAP OF EFFLUENT UNDER NO-RAP CONDITIONS e 2.550E+00
LOU-NORMAL GOODNESS OF FIT a 0,995
PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS « 9,101
SI6NAGB 0.230 WITH 0,300 SuEAKAGE OVER 1.000 STAGES
NTEMP ¦ I
RMMO ¦ 10,00
RSIGMA a 5,00
CORR". EFF. a 98,3153
CORRECTED HMD OF EPPLUENT ¦ 0.110E+00
CORRECTED SIGMAP OF EFFLUENT ¦ 3.033E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0,990
CORRECTED PRECIPITATION RATE PARAMETER ¦ 8,56

-------
UNADJUSTED Migration VELOCITIES AND EFFICIENCIES, UNO DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
MIB, VEL'.(CH/SEC)
S.T90E+00
J,086E*00
5,918E*00
4.769E+00
5,9111+00
8,0196+00
l,OJ7E+01
l,27«E+01
1.6J0E+01
2,223E+01
l.l«6E+01
~,e#2E*oi
~.6JOE+01
DEAL UNADJUSTED
HOt.Pt0
rapping puff
no-pap+rap puff
RAPPING PUFF
part;cle
EFFICIENCYt*)
t)M/D\.OGD WOSCM)
OM/DLOGD(MG/DSCM)
DH/DLOGDlMO/DSC")
DISTRIBUTION^)
DIam.(m)
a". J6oe+oi
J,S62E-01
T.157E-01
1.072E+00
1
239e*eo
2.000E-07
e.iouE+oi
9,7O&E+00
2.002E+00
1.1796*01
1
671E+00
U.OOOE-07
e.«5TE+0J
J.2) 5E + 01
3.82BE+00
S.598E+01
3
604E+00
7.000E-07
8.972F+01
U.1S3E+01
5.981E+00
«.75lE+0l
S
12SE+00
l.tOOE.Ofc
9,ao
-------
8UHMAPY TABLE OF ESP OPERATING
PARAMETERS ANO PERFORMANCE
DATA Set NUMBER 57
E8P PERFORMANCE! EFFICIENCY a *8.5153 * 8C* » U.769Et01 M#»J/(M«*3/SEC)
ELECTRICAL CONOITTONSl AVG, APPLIED VOLTAGE u 
-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONmEALITIES USING SET No, a OF CORRECTION PARAMETERS
SIZE
2.000E-07
~,000E«07
7,O0OE-O7
1.100E-06
l,600E-06
2,500E-06
3,500E-06
865
27,3584
36,1262
PS,5831
20.8448
20.0100
81.0975
18,2515
15,8186
12.7845
A.1260
1,3204
EFFICIENCY - STATED 9 99.60
COMPUTED b 99,5593
CONVERGENCE OBTAINED
ADJUSTED NO.RAP EFF, ¦ 95,4700
HMD OF INLET SIZE DISTRIBUTION b a.
-------
UNADJUSTED MIGRATION VELOCITIES AND
EFFICIENCIES, AND
DISCRETE OUTLET MASS
LOADINGS


IDEAL UNADJUSTED
ideal UNADJUSTED
NO-BAP
Rapping puff
NO-RAP+BAP PUFF
RAPPING PUFF
PARTICLE
MIG. VEL', (CM/SEC)
CFFICIENCY(*)
OM/nLOGO(MG/DSCM)
DM/r)Lor,n(MG/DSc^i
DM/riL0CD(HG/D8C'")
DI8TRIBUT I ON(X)
01 AM. (M)
j,r<»oc+oB
e.)60E«01
8'.iejE"01
i ,?2
B,251E»00
I.500E.06
l.OJTf+Ot
9.929E+81
2.1T6E+02
2.867C-KM
2,
-------
SUMMARY TtBlE OF E8P OPERATING
parameters and performancf
DATA SET NUMBER 58
E8P PERFORMANCE! EFFICIENCY » 9O.77B0 X 3C* ¦ «'.769E#0l »•#?/1M#«3/8EC)
ELECTRICAL CONDITIONS! AVS, APPLIED VOLTAGE b 0,J59E»0a V
AVG, CURRENT DENSITY ¦ 10,04 NA/CN**!
RESI3TIVITV ¦ 5,0006*1Q OHM.CM
SIZE DISTRIBUTIONS! INLET "MO b q.«65E+0l UM INLET SIOMaP a 5.122E*00
OUTLET m«D ¦ 6.5«TE*00 UM OUTLET 8I6MAP ¦ 3,J85IiOO
NONIDEAL PARAMETERS! GA8 8NEAKA3E FRACTION • 0,90 /SECTION GAS VELOCITY 8IGNA6 • 0,25
RAPPING NMD ¦ 1.0O0e+01 UH RAPPING 3IGMAP B S.000E+00

-------
PAP*!C'»E SIZE RANGE STATISTICS
CORRECTIONS FOR NONIOEAUITIES USING SET no. 5 OF CORRECTION parameters
SIZE
ZfOOOE-OT
0,000E-07
7.000E-07
1,100E-06
1,600E»06
2,500E-06
3,500E-06
«,500E-06
6,OOOE-06
8,sooe-o6
l,250E-05
2.000E-05
2.750E-05
EFFICIENCY - 8T*TED o 09.60
CCF
inlet *
OUTLET t
2.123
0.033
0.0728
1.530
0.253
0'. 6770
1.297
0,903
2,0961
1.188
0,815
2,1898
1.130
1,520
3,9380
1.083
3,52"
8.7095
1.059
1,652
0'. 0 6 6 9
1 .006
1,652
0,1302
1.035
1,982
0,5999
1 .020
3, 300
7,2705
1.017
0.806
9.7011
1.010
12". 115
13'. 0892
1.008
67.001
38.9707
CO', OUTLET
* NO-RAP eFF
, NO-RAP W
NO-RAP P
COR, EFF,
COR, W
0.1078
60,3675
2.160
35.6325
22,7586
0.501
0.7 0 0 2
56,7S38
1.758
03,2062
09,5533
1.035
2,566?
55.3530
1 ,691
04,6070
51,0015
1.096
2.2701
56,6033
1,750
03,3967
5t,8906
1,530
3,9970
58,1548
1.827
01,8052
50,6606
1,658
8,7179
59,8988
1,916
00,1012
57,3059
1,786
0,1003
60,2386
1.930
39.7610
57,2055
1 ,780
0,2000
59,5802
1,899
00.1198
55,7055
1.707
0.7589
62.5155
2,057
37,0805
58,6016
1,809
7.O078
60.0392
2,168
35,5608
61,3025
1,993
9.7295
67,5336
2,399
32."660
65,3830
2.220
13,0120
82.5097
3,660
17,0503
81,0816
3,536
38.30OJ
90.6614
0,971
9,3386
90,2010
0,870
COMPUTED «
99.5393
CONVERGENCE
OBTAINED


COR, P
77,2010
50,0067
48,9985
08,1090
05,3390
02.6301
02,7909
00,2905
01,3960
36,6579
10,6170
18,5180
9,7986
ADJUSTED NO-RAP EFP, » 83'.8085
HMO OF INLET SIZE DISTRIBUTION o 0,065E*01
SIQM4P or INLET SIZE DISTRIBUTION s 5'.122E + 00
LOG-NORMAL GOODNESS OF PIT • 0,980
HMD OF EPPLUENT UNDER NO-RAP CONDITIONS b l'.352E*01
8IGMAP 0^ EFFLUENT UNDER NO-RAP CONDITIONS ¦ 3,903E*00
LOG-NORHAL GOODNESS OF FIT ¦ 0,986
PRECIPITATION Rate PARAMETER under no-rap CONDITIONS « 5,823
SIGMAG" 0.250 WITH 0,700 SnEakaGE OVER 0.000 STAGES
NTEMP ¦ 1
RHMD ¦ 10,00
R8IGMA s 5,00
CORR. EFF, a 82.7582
CORRECTED MMp OF EFFLUENT ¦ 1.356E+01
CORRECTED SIGMaP OF EFPLUENT e O.109E+00
LOG-NORMAL GOODNESS OF FIT » 0,991
CORRECTED PRECIPITATION RATE PARAMETER a 3.69

-------
UNADJUSTED MIGRATION VELOCITIES and EFFICIENCIES, and discrete outlet mass loadings
IDEAL UNADJUSTED
Mio, VEL'. fCM/SEC)
3.790E+00
J, 086E + 00
3.918E+00
a'.TbflE+eo
5.911E+00
8,019E*00
1,037E+01
1,27UE + 01
1.630E+01
2.223E»01
3,ia6E»01
fl,882E*01
6.630E+01
ideal unadjusted
NO-RAP
RAPPING PUFF
NO-RAP+RAp PUFF
RAPPING PUFF
PARTICLE
EFFICIENCYCX)
riM/DLOGDfWG/DSCM)
DM/DLOGD(MG/DSCM>
DM/DL0GD(MG/06CM)
DI3TRIBUTION(*)
DI AM,(M)
8.J60E+01
1,7S1E+00
2,oa5e*oo
3.79<,E + 00
l,259EtOO
2.000E.07
6.J o«r+oi
S.50OE+01
5«8Jac+oo
u.oeTE^oi
1,67JE*08
a,000E-07
8,fl57E+01
1, 122E + 02
1.09UE+01
1,23ll*52
3,ioae*oo
7.000E-07
6.972E+01
1.573E+02
1.709E+01
1.7«ttE+02
3,523E+Ofi
1.lOOE-Ofc
9.U0UE+01
2.7a8E*02
2.290e+01
2.97lE*02
a,87tE*00
1,600E>06
9.782E*01
a,722E+02
3.006E+01
5,023E*02
e,ssiE«oo
2.500E-06
9.929E*01
a,6ME +02
3.37JE+01
3.038Ef0l
a,595E*0C
1.9001-06
9.977S+01
a,072E+02
3.90aE+01
a,U6JE+02
S.871E«00
a,500E»06
9.996E+01
a,0?lEt02
a,l98E+01
a,aaiE*02
7,1jaE+00
t>f OOOE-06
1.000E+02
5.0U5E+02
a.393e+01
5.a8aE*02
9,3BSe«00
8.9001*06
1.0O0E+02
6,6?0E+62
a.3#SE»01
7.0S8E+02
9,ss8e*oo
1.250E.09
1.000E+02
*,632E*02
aj,039E*0J
7.038E+02
1,187£t0J
?,000E»05
i.oooe+o2
S,88<>E + 03
2.B98E+02
6,178E + 03
2,8«3E*01
8,7506-05
Ul
in
o

-------
SUMMARY table OF ESP OPERATING
PARAMETERS and performance
DATA SET NUMBER 54
E8P PERFORMANCE! EFFICIENCY » 82,7582 * SCA » «.769E+0|	m**5/8EC>
ELECTRICAL CONMTIONSI AVG. APPLIED VOLTAGE ¦ «,139E*0« V
AVG, CURRENT DENSITY s 18,0" NA/CM»*2
RESISTIVITY ¦ 5,OOOE*!0 OHM.CM
SIZE DISTRIBUTIONS! INLET mmo ¦ a,«6SE*01 UH INLET SIG*AP ¦ 5.122E+00
OUTLET mmo ¦ 1.J56E+01 UM OUTLET SIGHAP a a,109E*nO
NONIDEAL PARAMETERS! GA8 SNEAKAGE FRACTION b 0,70 /8ECTI0N CAS VELOCITY 8I6MAG « 0.2S
RAPPING HMD ¦ 1 .OOOE+Ol UH RAPPING 8IGMAP s 5,C0OE»00

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONIOEALITIES USING SET no. b OF CORRECTION PARAMETERS
OUTLET *
8IZE
2,OOOE-OT
1,OOOE-07
7.000E-07
l,100E-06
l,600E-06
2,500E-06
J.500E-06
0,500E-06
6,000E-06
e.sooe-06
1,250E-05
t.OOOE-05
2.750E-05
CCF INLFT X
2.121 0>33
1.530
>.297
1,186
l.UO
1,083
1.059
1,046
1.035
1.021
1.017
0,253
0,903
0.815
1.520
3.521
1,652
1,652
1,982
3,300
0,806
1.010 12,115
1.008 67,001
0,2910
1.7115
i7.a«9i
12^9822
18.0331
26'0236
8.3261
6.3682
3', 0611
1,6599
0.6293
0,0192
0.0251
COB. OUTI.FT X
NO-RAP EFF.
NO-RAP M
NO-RAP P
COR, EFF'.
COP, W
COR, P
0,6604
97,6762
7,888
2,3238
91,1930
5,167
8,5070
3.5538
95.0987
6,323
1,9013
90,0287
5.909
5,9713
12,02^3
Pi.7976
6, 19A
5,202a
91,1510
5,952
5,8190
9.3802
95.8076
6.650
i,192a
95,1078
6,327
1,6928
13,0212
96,8775
7,266
3,1225
96,3583
6,906
3,6017
19.2966
98.0560
8,262
1,9036
97,6770
7.S88
2,3230
6,9061
98,6735
9,063
1,5265
96,2226
6,050
1,7772
6,1927
98,9823
9,619
1,0177
98,0060
6.679
1,5916
1,6068
99,5935
11,513
0,006$
99,0119
9.681
0,9681
1,6013
99,8678
13,898
0,1322
99,0076
10.753
0,5921
1,0327
99,9658
16,735
0,0142
99,6062
11.830
0,1538
1,5235
99,9996
18,621
0,0000
99,8013
13,515
0,1*87
10,8372
99,9999
66,300
O.OOOl
99,9116
15.281
0.0661
EFFICIENCY > STATEO ¦ 99.60
COMPUTED a 99,5393
CONVERGENCE O0TAINEP
ADJUSTED NO-RAP EPF. • 99.7368
MMD OP INLET SIZE DISTRIBUTION a 0,06SE»01
SIGHAP OF INLET SIZE DISTRIBUTION b 5.122E+00
LOG-NORMAL GOODNESS OF FIT a 0,960
MMD OF EFFLUENT UNDER NO.RaP CONDITIONS ¦ l'.707E*00
8I0MAP OF EFFLUENT UNDER NO-RAP CONDITIONS » 1,9876 + 00
L06-N0RMAL GOODNESS OF FIT ¦ 0.997
£	PRECIPITATION RATE PARAMETER under no-rap CONDITIONS ¦ I2.05fl
eiGMAO* 0.100 WITH 0,100 SNEAKAGE OVER 0.000 8TAGE8
NTEMP ¦ 1
RHMD ¦ 10,00
RSIGMA ¦ 5,00
corr". err. • 99.5709
CORRECTED MMD OF EFPLUENT ¦	3.355E*00
CORRECTED SIGHAP OF EFFLUENT ¦ 3.309E»00
LOG-NORMAL GOODNESS OF FIT ¦ 0,970
CORRECTED PRECIPITATION RATE PARAMETER • 11,15

-------
UNADJUSTED MIGRATION VELOCITIES ANn
EFFICIENCIES, AND
DISCRETE OUTLET MASS
LOADINGS


IDEAL UNADJUSTED
IDEAL UNADJUSTED
NO.RAP
Rapping puff
UP-P4D+RAP PUFF
RAPPING PUFF
P*»TICLE
MI6. VEl.(CM/SEC)
EFFICIENCV(*)
DM/oLOGD(MG/OSCM)
DM/DLOGD(MG/DSCM)
DH/nLOGD(MG/D8CH)
DISTRIBUTION(X)
DI AM,(H)
3.790E+00
8.360E+01
l,M2E-fll
3.038E-01
«.18PE-01
t,259E«00
2,0001.07
3.«8<>E»00
8,lOttE+Ol
3,971E + 0 0
8.670E-01
(l.838E»00
1,671E*00
4,000E.07
3.913E+00
8.4S7E+01
1,308E + 01
1.625E + 00
l.«70E*01
3,60(IE«00
7.000E-07
769E+00
8,972Ef0l
1,520E+01
2.539E+00
1.77UE+0I
S,52«*n0
1.100E«0t>
5,'11E~0 0
9,U0«E+0t
2,OU6Et01
J.U02E+00
2.386E«01
«,871E»00
1,6COE.Ofc
8.019E+00
9.782E*01
2,2«9E*01
U.u6BE*00
2.736E+01
8,251E *00
2.500E.06
I.0J7E+01
9.929E+01
l,5fc2E+01
5.J0fcE*00
2,092E+01
fl.595«»8n
3, S0OE.06
1,2T«E*01
9,977E*01
1f0?5E*0I
5.861E+00
1,605E«0I
5,B71E»00
a,5ooe-ofe
1.630E* 01
9,996E+01
a.SfcOE+oo
6.239E*00
1,060E*01
7,1UE*00
fe.000E.06
2.22JE*0l
1.000E+O2
1,87fcE*00
6.528E+A0
8.fl0flE*00
9,iese*on
8.500E-06
J, 106E + 01
1,000E*02
6.968E"01
6.516K+00
7,21JEfOO
9,558E*no
1.250E.05
«,882Ef01
1.000E+02
!,587E-02
b,032E *00
6,048E + 00
1,18 7 C ~ 01
2.000E-05
6.6508+01
1.000E+62
6.2^0E>02
a,307E*0|
<1.31SE*01
2,8«SE*01
2.750E-05
in
vi
u>

-------
summary table or esp operating
parameters and performance
DATA Set NUMBER 60
ESP PERFORMANCE!
EFFICIENCY ¦ 99,57«9 * SCA o 
-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR MOMIDFAlITIE9 USImG SET No. 7 OF CORRECTION PARAMETERS
SIZE
2.000E-07
4,000F-07
7,000E-07
1 , 100E-06
1.600E-06
2.500E-06
J,500E«06
fl,500E-06
6. 000E-06
8.500E-06
l,250E-05
2.000E-0S
2.750E.05
CCF
?. 123
t .530
1 .297
1.188
1.1 JO
1 .08)
1.059
1,006
1.035
1.024
1 .017
1.010
1 .one
INLfT X
0,033
0,253
0,903
0,815
1,520
3,524
1.652
1,652
1,982
3,304
<1,816
12,115
67.101
OUTLET X
0.2397
3^1620
13.2808
10'.3039
15.5806
2 59 6 7 6
9.5269
8,2266
5.3236
1,5539
3,1180
0,3371
0.0791
EFFICIENCY - STATED o 99.60
COR. OUTLFT
X NO-RAP EFF
, NO.RAP M
NO.RAP P
COR. EFF,
COR, w
COR, P
0.5567
96.1885
6,850
3.8115
87.1610
1.301
12,8360
2,9071
92.8186
5.522
7,1811
91,2569
5,109
8,7031
10.2801
92.2811
5.371
7,7186
91,3376
5.129
8,6621
8.2019
'3.3618
5,688
6,6352
92.3127
5.387
7.6573
12,2605
91.6205
6,128
5,3795
93,8626
5.851
6,1371
20.4753
96.1328
6.820
3,8672
95.5791
6,539
1,1209
7,9991
96.9735
7,331
3,0265
96.3156
6,921
3,6814
7,0988
97.3866
7,611
2,6130
96,5162
7,057
3,4538
5.8831
98.5901
8.936
1,1096
97.7115
7.917
2,2585
6,0571
99.2766
10,335
0,7231
98,6050
8,958
1,3950
5,1213
'9,6623
11.932
0,3377
99,1959
10,113
0,8001
3,9211
99.985#
18,517
0,0116
99,7537
12.591
0,2463
8.8370
99.9991
66.301
0,0006
99,9002
11.188
0.0998
COMPUTED a
99,5393
convergence
OBTAINED



ADJUSTED NO.RAP EFF , a 99'.1752
MMO OF INLET 8IZE DISTRIBUTION ¦ 1.465E+01
SIGMAP OP INLET SIZE DISTRIBUTION a s'.122E + 00
LOG-NORMAL GOODNESS OF FIT a 0,984
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 2.195E*00
8IGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS » 2,189E*00
LOG.NORMAL GOODNESS OF FIT b 0,996
PRECIPITATION Rate PARAMETER UNDER no.RAP CONDITIONS ¦ 11,007
SIGHAGO 0.100 WITH 0,100 SNEAKAGE OVER <1.000 STAGES
NTEMP a J
RMMD • 10.00
RSIGMA a 5,00
CORR', EFF, a 99,2391
CORRECTED HMD OF EFFLUENT a 3.474E+00
CORRECTED SIGHAP OF EFFLUENT a 3.I14E+00
LOG-NORMAL GOODNESS OF FIT e 0,981
CORRECTED PRECIPITATION RATE PARAMETER a 10.23

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTLET MASS IOADING8
IDEAL UNADJUSTED
MJ6, VEL.(CM/SECJ
3',790E*80
J,«86EtOO
~,769E»00
5.91IE+00
~,01«E*OC
l,0J7f*9l
1,27«E+01
1.630E+01
2,223E*0l
J,l«6E*0t
RAP4Qt» PUFF
RAPPING PUFF
paRTtclE
DM/DL0GD(MG/D8CM)
DM/OLOGDCMC/DSCH)
DI8TRI8UTI0NC*)
OIAM,(M)
U.uSSE-Ol
b.3oee>oi
1.259E+00
2.000E.07
1.265E+00
7.08«E»08
1,67IE*00
O,00OE»07
2i372E+00
2, 177E*0 J
3,604E*00
7.800E-07
3.70«>E*00
2,77tE»01
S.3?3E*00
1.106E.06
a,9t>6E + 00
O.022Et01
fl,871E+60
1,600E»06
6,526E+00
5.206E+01
8,J51E»00
2.500E.06
7.7»aE+ee
U.357E»B1
fl,59SE*00
S.SOOE.Ofe
8.U66E+00
3.«88E»0i
5.87ie»00
«,S00E-06
O.105E+00
2.023E+01
71110E + OO
6, 600E*06
9f528E+00
i'.979E*0l
9, J8JE+88
8.S00E.06
9,51OE+OO
l,6«0E»0J
9,5581*00
1.J50E.05
s.eoaE+oo
9,3S9E»00
1,1S7E + 01
2.000E-05
6.286E+01
6.325E»0t
2,8«1E*01
2.T50E-05
U1
U1
9\

-------
SUMMARY TABLE OF ESP OPERATING
PARAMETERS and PERFORMANCE
DATA SET NUMBER 61
E8P PERFORMANCE I EFFICIENCY o 09,2391 * SCA o «',769E*01 M*«2/(M**3/3EC)
ELECTRICAL CONDITIONS I AVG. APPLIED VOLTAGE a 
-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR N0NI0EAIITTE8 USING SET No'. S OF CORRECTION PARAMETERS
X OUTLET X CnR, OUTLET K NO-RAP EPF,
CCF
SIZE
2^000E-07
4,000E-07
7.000E-07
1.100E-06
l,600E-06
2,500E-06
5.500E-06
0,500E-06
6 , OOOE-06
8.500E-06
I.250E-05
2.000E-05
2.750E-05
EFFICIENCY - STATED ¦ 99*.60
2.121
0,055
0,2125
0,0865
94,5710
1.550
0,255
2,6175
2,5171
90.2505
1.297
0,903
10,6092
8,9515
69,4860
1,188
0,815
8,7055
7.5775
90.6096
1.1J0
1,520
15,8751
11,5155
92.0129
1.085
5,52"
24.9052
20,5452
93,8150
1.059
1,652
9.7151
8,5726
94,8508
1.046
1,652
8.7750
8,0128
95,5527
1.055
1,902
6'0826
6,6480
97,1578
1.020
3,50A
6.3752
7,5092
98,2590
1.017
4,606
5.5095
6,5699
99,0051
1.010
12,115
1,0816
5,9067
99,9819
1.008
67.101
0.4642
7.7895
99.9900
COMPUTED o 99,5595
NO-RAP W
no-rap p
COR. EFF.
COR, H
6,053
5.6290
82.5209
3.657
4.8B2
9,7055
88.2059
0,481
4.725
10,5100
80.2067
0.4B9
4,960
9.3900
89,2670
0,680
5,299
7,9871
91,0177
5. 05J
5,835
6,1846
93,0883
5.601
6,221
5.1052
93,9910
5.896
6,430
0,6075
90,2092
5.988
7,451
2,8622
96.0251
6.761
8.495
1.7010
97,3771
7,630
9,666
0,9909
98,1926
8,660
15,001
0,0781
99,6177
11,672
20.373
0,0060
99,8630
15,825
CONVERGENCE
obtained


COR.
17,41
11,7
n,7
10.7
0«9
6.9
6,0
5.7
a,6
1(6
0,5
0.1
ADJUSTED NO-RAP EFF, » 99'. 1209
HMD OF INLET BI2E DISTRIBUTION o 4,065E*01
SICMAP OF INLET SIZE DISTRIBUTION a 5.122E+00
LOG-NORMAL GOODNESS GF FIT • 0.980
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS b 2.572E+00
SI8MAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 2.297E+00
w	LOO-NORMAL GOODNESS OF FIT • 0.996
ui	PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS B 9.935
00
0.600 WITH 0,100 SNEAKAGE OVER 4.000 STAGES
SIGHAQ*
NTEMP b 1
RMMO b 10,00
RSIGMA b 5.00
CORR'. EFF, • 98'.Sl«a
CORRECTED MMD OF EFFLUENT b
CORRECTED SIGMAP OF EFFLUENT
LOG-NORMAL GOODNESS OF FIT ¦
3.659E+00
¦ 5.010E«00
0.990
CORRECTED PRECIPITATION RATE PARAMETER a
9,50

-------
UNADJUSTED "IGRATTON VELOCITIES AN[> fFFTCTENCIFS, ANO DISCRETE OUTLET MA88 LOADINGS
IDEAL 'INiDJUS'ED
ir>E*L unadjusted
MO-PAP
"APPISiC PUFF
kJO»RAP + R*P PIJ«
RIPPING PUPF
PARTICLE
«IG, VEL.(CM/3EC)
EFFJCIENCVf*)
OM/oLDGO(MC/DSCH)
DM/OLOCDfMC/03CM)
DM/DLOGDlMG/HSCMJ
DISTRIBUTION f *)
DIAH', I M)
3.790E+00
8. JfcOEtOl
2,766E»01
5.823E-01
8.589E-01
1
259E+00
2.000E-07
3.UA6E+00
a,io«e*oi
7.89«>E*00
1.6622*00
9,5S6E*00
1
67ie»eo
4, OOOE«07
J.918E*00
e.«37E+01
2,6U2E*0I
3.1 l5E + on
2.95UE+01
3
60aE»00
7.0O0E-0T
a,769E*00
6^ 972E + 01
3.«05E*01
U,8fc6C*00
3.891E+01
3
S23E«00
1.100E-06
5 ,9HE*00
9,«0«E+01
5.2S4E+IM
fc.5216+00
5.886F+01
a
S71E*00
1 ,600E»06
e.om+oo
9^ 782E I
7,283E*01
8,562C*00
8,139E+01
8
251E+00
2 ,500E"06
1.037E*01
9,929Ef01
6,037E*OJ
1.017E+01
7,07aE*01
jj
5958*0"
3.509E-06
1.27«E+01
9.9T7E+01
U.6S2E+01
I.I l?F*01
5,794E+01
5
871E *00
« .500E.06
1.630E+01
9,996E+01
3,070E*ni
1.196E + 01
a,?66E+01
7
ii«e*oo
fc.O00E.O6
2.223E+01
t,0Q0E+O2
?,U70f»01
1.231E+01
3.721E+01
9
383E+00
8,30 OE«06
3.KI6E + 01
1,OOOE+02
2.029E+01
1.2«9E+01
3.277E+01
9
5S9E+00
1 ,2506.05
0.882E+01
1 .OOOE+02
2,969E+00
1.156E~01
l.fl5JE+0l
1
!8TE*01
2.000E-0S
6.630E+01
1.000E+02
J a 798E* 00
8.250E+0I
8,63flE*01
2
84 SE~01
2.750E-05
Un
ui
vo

-------
summary table or ESP OPERATING
parameters and performance
DATA SET number 62
ESP PERFORMANCE! EFFICIENCY ¦ <>6,81*11 I SC* ¦ U.769E+01 M»*J/(M**J/SEC)
ELECTRICAL CONDITIONS! AVG, APPLIED VOLTAGE ¦ O.lSQEtOfl V
AVG, CURRENT DENSITY ¦ 16,01 NA/C«*«?
RESISTIVITY » ?,OOOE*10 OHM-CM
SIZE DISTRIBUTIONS!	INLET MMD a a,46SE*01 um	INLET 8IGMAP ¦ S.1SIE«00
OUTLET MMD ¦ J.6J9E+00 UM OUTLET 8IGMAP ¦ J,0|OE»00
NONIDEAL PARAMETERSi G«S SNEAKAGE FRACTION ¦ 0,10 /SECTION GAS VELOCITY SIGMaG ¦ 0,60
RAPPING MHO ¦ 1.000E+01 UM RAPPING SIQMAP ¦ SaOO0E+OO

-------
PARTICLE SIZE «»*N5E STATISTICS
CORRECTIONS NPNJDEALITIES l»S!NG SET Npe o 0F CORRECTION PARAMETERS
SIZE
2, OOOE-OT
0,000E-07
7,000E-07
1 , I 00E-O6
l,600E-06
2,500E.06
3.500E-06
0,500E-06
6.000E-06
6,500E-06
1.250E.05
2.000E-05
2.750E-05
CCF
INLET X
OUTLET X
COR. OUTLET
2.123
0.033
0'. 1908
a',0250
1.530
0.253
2,3018
2.1905
1.P97
0,903
9,0162
7,6260
1.188
0,815
7,0873
6,6169
1.130
1,520
12.3230
10,6873
1.083
3,520
23,3765
20,0558
1.059
1.652
9.5059
ft,0279
1.046
1,652
B,8240
6,1759
1.035
1,982
7.1630
7,1526
1.02«
3, 301
8,1009
6,3825
1,017
a,806
7,6993
8,1070
1.010
12,115
2,3700
U,05S2
i.ooe
67.001
1.6000
7.0908
NO-RAP EFF.
91'.81 87
86.9003
85,8735
87,002«
08,5295
90,6109
91.8589
92,11026
9(1,8066
96.5)11
97.7522
99,723?
99,9660
NO-RAP W
no-rap p
COP. EFF.
COR, W
COR. P
s.209
8.181)
76,6317
3,006
23', 3663
0.262
13,0957
80,2762
3.879
15.7236
oif>3
11.1265
80,2652
3.880
15.7108
0.278
12.9976
85,2823
0,018
10.7177
0,500
11.0705
87,2501
0.319
18,7059
0.961
9.3851
89,6831
0,762
10.3169
5.259
R.101I
90,7519
0,99*
9,2081
5.015
7.5570
91,0280
5,055
8,9716
6,230
5.1130
93,0501
5,710
6,5019
7,008
3.0689
95.0008
6.056
0,5992
7 957
2.2078
96.9672
7,329
3,0328
12.309
0,2768
99,3330
10.506
0,6666
16.771
0,0336
99,7965
13.015
0,2015
EFFICIENCY • STiTED ¦ 99.60
COMPUTEO ¦ 99,5393
CONVERGENCE OBTAINED
ADJUSTED NO.RAP £fF, o 96'.5652
HMD OF INLET SIZE DISTRIBUTION ¦ fl.flfe5E*01
SIOHAP OF INLET SIZE DISTRIBUTION ¦ 5.122E+00
log.normal OOODNESS OF FIT ¦ 0.960
MMO OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 3'.087E+00
SICMAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 2.083E*00
LOG-NORMAL GOODNESS OF FIT ¦ 0.996
<*	PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS o 0,988
SIGMAG" 0.600 WITH 0,100 SNEAKAGE OVER 4,000 STAGES
NTEHP ¦ 1
RHMD d 10,00
RSIGMA ¦ 5.00
CORR. EFF. ¦ 98*. 1ST2
CORRECTED mmo OF EFFLUENT ¦ J.896E+00
CORRECTED SIGM*P OF EPPLUENT « 2,97?E*0fl
LOG-NORMAL GOODNESS OF FIT ¦ 0.993
CORRECTED PRECIPITATION RATE PARAMETER a 8,41

-------
UNADJUSTED KIGRATION VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTieT MASS LOADINGS
IDEAL UNADJUSTED
*1?, VCL(CM/SEC)
3,T90E*00
3,11E + 00
8,019E*00
1^ 037C*Q1
t,2TUE+01
t,630E*01
2,223E+01
J,1
-------
SUMMARY TABLE OF ESP OPERATING
PARAMETERS AMD PERFORMANCE
DATA SET NUMBER 63
ESP PERFORMANCE I EFFICIENCY ¦ 9B.18T2 * SC* » 0,76«E*0! N*»2/fM**J/81C)
ELECTRICAL CONDITIONS! AVG. APPLIED VOLTAGE B 0.1S9E+0U V
AVG, CURRENT DENSITY s 18,OU NA/CM**2
RESISTIVITY a 5.000E+10 OHM.CM
SIZE DISTRIBUTIONS! INLET MMD ¦ «.Ufc5E+01 UM INLET SIGMAP a «>'t122E + 00
OUTLET HMD ¦ 3.896E+00 UM	OUTLET 8IG*AP ¦ 2,9T2E«00
NONIOEAL PARAMETERS!	GAS SNEAKAGE FRACTION a 0,10 /SECTION GAS VELOCITY SIGMAG • 0,80
RAPPING MMD » 1.000E+01 UM RAPPING SIGMAP a S.OOOE+OA

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS roc N0NIDEALITIE8 USING SET no", 1 OF CORRECTION PARAMETERS
SIZE
2,000E-07
4,0O0E-07
7,000E-07
1,100E-06
1.600E-06
2,S00E-06
3.S00E-06
fl.500E.06
6.000E-06
B,S00E-06
l,250E-05
2.000E-05
2.750E.05
EFFICIENCY - STATED ¦ 99.60
CCF
INLET *
OUTLET *
2, 121
0>33
0,3449
1.530
0,253
6,4038
1.297
0,903
24,0561
1,168
0,815
16,2242
1.130
1,520
20,1366
1 .OSS
3,52#
23,1421
1.059
1.652
5.6379
1,0(16
1,652
3". 2 086
1,03?
1,982
0.7054
t.020
3, 301
0,0695
t ,017
a,846
0,0041
1,010
12,115
0.0102
1,008
67.<101
0.0565
COR, OUTLET
* NO-PAP EFF
, NO-RAP W
NQ-RAP P
COR. EFF.
COR, h
COR. P
2.1512
98^7634
9.210
1.2366
85,3517
4,056
14'0483
4.9831
97.0053
7,356
2.9907
95.6345
6,566
4,3655
15,2898
96,8480
7 249
3.1520
96.8471
6,883
1.7529
10,5709
97,6447
7,859
2.35S3
97,1252
7,442
2,8748
13,0240
98.4326
8,713
1,5670
98,1009
8,311
1,8991
15,7039
99 22J0
10.185
0,7770
99,0122
9.681
0,9878
4,7207
99.5962
11.5S7
0,4038
99,3666
10,613
0,6334
3,8013
99,7702
12,739
0.2298
99,4900
11,067
0,5100
2,8152
99,9579
16,297
0,0421
99,6852
18,879
0,3148
3,1799
99,9975
22,227
0,0025
99,7667
12.895
0,2133
3,2050
99,9999
31,459
0,0001
99,8534
13,682
0,1466
4.1380
99.9999
48.821
0,0001
99,9243
15,067
0,0757
16.4150
99,9**9
66.304
0.0001
99,9060
15,776
0,0340
COMPUTED a
99.5393
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, ¦ 49',8B17
HMO OF INLET SIZE DISTRIBUTION ¦ 4.465E+01
8ICMAF OF INLET SIZE DISTRIBUTION ¦ 5.122E+00
LOO-NORMAL GOODNESS OF FIT ¦ 0,480
MMP OF EFFLUENT UNDER NO-RAP CONDITIONS o 1.364£*00
SIGHAP OF EFFLUENT UNDER no-rap CONDITIONS * 1.833E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0.946
PRECIPITATION RATE PARAMETER UNDER NO.RAP CONDITIONS o 14,151
SIGHAG* 0.000 WITH 0.000 SNEAKAQE OVER I'.OOO STAGES
NTEMP ¦ 1
RMMO ¦ 10.00
RSIGNA olO.OO
CORR. EFF, ¦ 9V.7784
CORRECTED HMD OP EFFLUENT a 3,157E*00
CORRECTED 8IGMAP OF EFFLUENT » 4,fllJE»00
LOG-NORMAL GOODNESS OF FIT s 0.960
CORRECTED PRECIPITATION RATE PARAMETER • 13,81

-------
UNADJUSTED migration VELOCITIES and EFFICIENCIES, and DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
jnfAL unadjusted
wn.RAp
Rapping PUpr
NO-PAP+RAP puff
RAPPING PUFF
PARTICLE
MIG, VELfC^/SEC )
EPPICIENCv £ K)
nH/nLOGD(MG/DSCMl
nM/nLOGOCMG/DSc^J
DM/ni 0GD("G/08Ct")
DISTRIBUTION(X)
nUM.(M)
3.790E+00
6.360E+01
6.077E*02
6,ii92E»01
7.100E-01
a
mE+oo
2.000E-07
J,tt86E*00
«.10«E*01
2,U2&EtOO
1.111c~o o
S.537E+00
3
350E»00
A.OOOEpOT
3.918E+00
8,457E*01
7.92?E*00
i.51or*oo
9.II32E + 00
5
208E+00
7»OOOE»07
a,76<»E*oo
U,972E»fll
8.5
-------
SUMMARY table OF E3" OPERATING
parameters ano performance
DATA SET NUMBER 60
E$P PERFORMANCE | EFFICIENCY ¦ 99,7760 X SC* » 0',769|*0l 1***2/(**•J/SEC J
ELECTRICAL CONDITIONS! AVG, APPLIED VOLTAGE ¦ O,t59E*0« V
AVG, CURRENT DENSITY b 18,00 NA/CH*»2
RESISTIVITY b 5.000E+10 OHM.CM
SIZE DISTRIBUTIONS!	INLET HMD a 4.U65E + 01 UM INLET SIGKAP ¦ S'.l22e + 00
OUTLET HMD a 3.157E + 00 UM OUTLET SIGMAP ¦ a.MJE + OO
NONIDEAL PARAHETER8I GA8 SNEAKAGE FRACTION ¦ 0.00 /SECTION GAB VELOCITY 8I6HAG • 0.00
RAPPING HMD ¦ 1.000E+01 UM RAPPING SIGMAP ¦ 1,OOOE*01

-------
particle size range statistics
CORRFCTTONS for NPNjngALITIES USING SET Nq. 2 OF CORRECTION PAPAMETEBS
SIZE
2.000E-07
1.000E-07
7,000E-07
1,100E-06
1.600F-06
?,560E-06
3.500E.06
1.500E-06
6,oooe-o6
e,500E»06
l,250E-05
2.000E-05
2.750E-05
EFFICIENCY - STATED b 99.60
CCF
INLET *
OUTLET X
2,123
0.033
0.2615
1 ,530
0.253
1.0629
1.297
0,903
15,5003
1.188
0,815
11,6397
1,130
1.520
16 8762
1.083
3.521
26.2590
1.059
1.652
9'. 0557
1 .016
1,652
7'. 1311
1.035
1-982
1.2085
i'.ozi
3,301
2,9758
1,017
1,816
1,6067
1.010
12,115
0,0981
1.008
67.101
0.0185
COR. OUTLET
X NO-RAP EFF
, NO-PAP *
no-rap p
COR. CFF,
COR, N
1,6413
97^1023
7.125
2,8977
72.1365
2,702
3.B165
9a,1910
5,966
5,8060
91.6317
5,202
11,9327
93,7910
5,828
6,2060
92,6720
5,180
9,0112
9
-------
UNiOJUBTtf) KIGHATICN VELOCITIES itJD Er F TCIENCIE 91 AND DISCRETE OUTLET MASS LOADINGS
IDEAL UMiDJUSTEC
MIG, VEt,'. (CM/SEC)
3.T90E+00
5,«86E+C0
3,91BE*00
~,769E*G0
5,911E*00
8,019E+00
1.0JTE»01
1,2TOE*01
l,630E*01
«,B82E + IM
~.650E+0J
IDEA'. l,^>CJUS'TEO
EFFICIENCVfX)
fl, 3fe0E*01
0.1OUE+O1
8,«57e*01
B.972E+01
9P«0I4E + 01
9#782E+01
9,929E»01
9.977E+01
9.996E401
1.000E+02
1 ,000E+02
l,000E+02
i.oooe«o2
h=0-BA?
0H/m.05D(MG/0SCM)
J ,«2UE-01
U.TOaE+OO
1,560E*01
1,B72E*01
2,650Et01
5.1T5E+01
2.353E+01
1.659E + 01
8,235E+00
fl,M9E + 00
?,aa«E+oo
l.nsE-oi
6.2L0GD(MG/D8C*)
1.212E + 00
2,07«E+00
?.«20E+00
3,31TE*00
«,05BE*00
«,t.3bE*00
5.0«6E+00
5,2T0E+00
5,«blE»00
$,5»
U250E.05
2,P0OS»fl5
2.750E.05

-------
SUMMARV table or ESP OPERATING
PARAMETERS AND PERFORMANCE
DATA SET NUMBER 65
ESP PERFORMANCE!	EFFICIENCY ¦ 99,««55 *	SCA a a.TfcQE + Ol M««2/(M*«r3/SEC)
ELECTRICAL CONDITIONS! A VG, APPLIED VOLTAGE b «,159E*0« V
AVG, CURRENT DENSITY o 18,0<1 NA/CM**2
RESISTIVITY a «S.OOOE*10 OMM.CM
SIZE DISTRIBUTIONS! JNLET HMD a u,Ufc5E+01 UM INLET 8IGMAP • 5.122E+00
OUTLET HMO o J,190E+A0 UM OUTLET SIGMAP ¦ 3.&5TE+00
NONIDEAL PARAMETERS! CAS SNEAKAGE FRACTION • 0,10 /SECTION GAS VELOCITY SIGMAG » 0,25
RAPPING MMO ¦ 1.000E+01 UM rapping SIGMAP ¦ l.OOOE+Ol

-------
PAST I CLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONIDEALITIES USING SET No. J OF CORRECTION PARAMETERS
COR. OUTLET *
SIZE
2.000E-07
4,oooe>or
7.000E-07
i,lOOE-56
l,600E-06
2,500E-06
3.500E-06
4,500E-06
6,OOOE-06
8,500E-06
l,250E-05
2j.OO0E.O5
2.750E-05
CCF
INLET *
OUTLET *
2. 123
0>J3
0.1836
1.530
0,253
2'.3S50
1.297
0,903
8', 8651
1.188
0,815
7.1630
1.130
1,520
11^5362
1,003
3.52#
21,6905
1.059
1,652
9,0002
1.046
1,652
8,6513
1.035
1,982
7,3927
1,020
3,30«
9.1127
i ,017
<1,806
910758
1,010
12,115
2,9230
1,008
67.^01
2,0658
1,0971
2.5661
8.0056
6,0681
10,0274
lB^flOTfc
T ,7921
7,7055
6,9020
8,5703
8,5756
0,2700
9.568?
NO-RAP EFF,
NO-RAP W
NO-RAP P
COR, EFF,
COR, W
COR. P
92.7505
5,502
7,2095
43,9890
1,215
56,0106
87,9710
o.oot
12,0286
82,9(21
3.700
17,0879
87.2072
0,311
12,7928
84,9692
3.976
15,0106
88,5068
0,503
11,0532
66,6290
0,219
13,3706
90.1102
0,851
9,8898
88,6859
0,606
11.1101
91.9780
5,298
8,0220
91,1996
5.096
e',8002
92,9008
5,506
7,0992
92,0535
5.310
7,9065
93,1761
5,629
6.8239
92,1019
5.333
7.6561
95,1397
6,301
0,8603
90,1332
5,906
5,6668
96,0060
6,973
3,5900
95,6279
6,562
4.3721
97.5596
r.tts
2.4000
97.0187
7,365
2,9613
99,6856
12,061
0.3100
99.4062
10,746
0.5936
99.9601
16,008
0.0399
99,7608
12,655
0,2392
EFFICIENCY - STATED ¦ 99.60
COMPUTED o 99,5393
CONVERGENCE OBTAINEO
ADJUSTED NO-RAP EFF, a 98'.6969
HMD OF INLET 8IIE DISTRIBUTION a O.O65E+01
SIOHAP OF INLET SIZE DISTRIBUTION ¦ 5.122E+00
LOG-NORMAL G00DNE8S Of FIT a 0,980
mho OF EFFLUENT UNDER NO-RiP CONDITIONS » 3.287E+00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 2.550e*00
LOG-NORMAL GOODNESS OF FIT a 0.995
-J	PRECIPITATION RATE PARAMETER UNDER NO.RAP CONDITIONS ¦ 9,101
o
SIGMAGB 0.250 WITH 0,300 SNEAKAGE OVER a'.000 STAGES
NTEMP ¦ 1
RHHD * 1C.00
RSIGMA ¦lO.OO
CORR. EFF. . 96.3153
CORRECTED MMD OF EFFLUENT b 3.967E+00
CORRECTED SIGMAP OF EFFLUENT ¦ 3.337E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0,996
CORRECTED PRECIPITATION RATE PARAMETER • 8,5b

-------
UNADJUSTED MIGRATION VELOCITJFS AND EFFICIENCIES/ AND DISCRETE OUTLET MASS 10ADJNG3
IDEAL lINipJUSTto
IDEAL UNAPjltSTfO
NO-RAP
RAPPING PUFF
NO*RAP+RAP PUFF
RAPPING PUFF
PARTICLE
MIC, VEL'. (CM/SEC)
EFFICIENCVt*)
OM/DLOGDCMG/DSCM)
DM/DLOGOfMG/D8CM)
DM/OLOGO(MG/OSCMJ
nilTRiaUTIONJ*)
n?AM',(M)
Sj790E+00
8 • J60E + 01
3,5fe?E"01
2.396E»00
2.752E+00
0.21frE *0 0
2,000E-07
S,fl86E*00
8,10«E*
-------
SUMMARY table of E9P operating
parameters and performance
DATA SET NUMBER 66
ESP PERFORMANCE! EFFICIENCY » 96,3153 * 8C* ¦ a'.T6«E»0l M**2/fM»«S/8ie>
ELECTRICAL C0NDITI0N8I AVG, APPLIED VOLTAGE ¦ 0,!59E*OU V
AVG, CURRENT DENSITY s 16,00 NA/CM»*I
RESISTIVITY « S.000E+10 OMM-CM
SIZE OI9TRI0UTIOMSI	INLET MMD « «.«6SE*0I UM INLET SIGMAP o 5^|22E*00
OUTLET HMO b 3.967E+00 UM OUTLET 8IGMAP b 3'.337E*00
WONIDEAL PARAMETERS! GAS SNEAKA8E FRACTION ¦ 0,30 /SECTION GAB VELOCITY SIOMAG • 0,!S
RAPPING NMD a l.OOOE+Ol UM RAPPING SIGMAP ¦ 1.000E»01

-------
particlf sue BINGE statistics
CORRECTIONS FOR NONIOEALIT IES USING SET No. 0 OF CORRECTION PARAMETERS
CO"
SIZE
2.000E-07
o',00OE-07
7.000F-07
1,100E«06
1.600E-06
2,500E-06
3,500E-06
0.500E-06
6,000E-06
8,500E-06
l,250E-05
2,OOOE-05
8.750E.05
CCF
2,123
1.530
1.207
1.188
1.130
1.083
1,059
1 ,016
1.035
1 . 020
1.017
1.010
1.008
INLET *
0.033
0,253
0,903
0,815
1,520
3,520
1,652
1,652
1,982
3,30fl
a,806
12,115
67.001
OUTLET *
0.1211
1'. 3 0 7 fl
fl',9032
1.1620
7,1693
10 9009
6,7015
6.7972
6.8997
10'1002
12.216U
9j,221U
15.3608
OUTLET
0.1058
1,5880
0.9767
" 1767
,9038
0379
.3695
,5259
7150
9,7119
11,5719
9,2263
18.0901
(I
6
<«/
6
6
6
•RAP EFF.
NO-RAP W
NO-RAP P
C0». EFF'.
COR, i
COR'. P
83,3181
3,759
16,6519
83,3081
3,759
16,6519
76,5857
3,0flfl
23,0103
67,0075
2,351
32,5925
TS.OOflfl
?,9A|
2
-------
UNADJUSTED HJCB4TI0N VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
NIG, VEL'. fCM/SEC)
3".790EtOO
S.UBbE+OO
3,918E+00
fl.T6«E+00
S,9ttE»O0
6.019E+00
1.037E*01
1.2TaE+0l
1.650E+01
s.iabE^oi
«,862Et0l
6,6IOE*OI
IDEAL UNADJUSTED
EPFICIENCr(X)
e.JfcOF+oi
8^ 1 OUE + Ol
8."57E+01
8.972E+01
9,	«0<»E*0l
9,782e*0i
9,929E*0l
9.977E+01
9.996E*IU
1 .0006*82
l", OOOE+02
1 f 000E+02
1 , 000E + 02
NO-BAP
DK/Dl or,D(MGVDSC«)
8^ 1 S3E"01
|,897E+01
6^ ieiE + 01
fl, JAflEtOl
l,«ooE»o2
2,270E»02
2,17fcEt02
1,678E*02
l,69lE+02
1,9fc3E*02
2,328Et02
1.S10E+02
6.505E+02
Rapping puff
DH/DLDGOfMG/DSC^)
«.3«7E+00
7.Ul7E*0ft
1 .01lE+Ot
1.261E*0t
1 ,aS5Et01
1(663E+01
1 ,fl0QC*01
1,890E*01
1,959E*0|
2.00JE+01
2,001E*01
i f926E+01
2,?77E»02
NO-RAP*RAP PUFF
DM/DLOGD(MG/DSCH)
5.J65E*00
2.fe«lE+01
7.19JE*01
9.6U9E+01
1.S"5E + 02
2.fiJ6E+02
2.J57E+02
2.067E402
i,8«7e*02
2.l«se«02
2.528E+02
I.S03E402
8.78IE«02
RAPPING PUFF
DISTRIBUTION^)
a,216E»00
S,35UE*0O
S,2UAE«00
«,e9cE*oo
a,876E«ee
7t 166E+00
S,66TE«00
4,476E*06
5.227EtOO
b,	7JfcE*0fl
6,8686*00
8,869t*0fl
3,91BE«0t
PARTICLE
niAM,(M)
2.000E.07
fl.C06E.07
7.000E»07
l.JOOEOfc
1,600E»06
2.500E-06
l.SOOEeO*
a,500E»0fc
iS.CC0E.06
B.3C0E-06
I.250E.0S
2.000E-05
2.730E.05

-------
SUMMARY TiBlE OF ESP OPERATING
parameters and performance
OATA SET NUMBER 67
ESP PERFORMANCE! EFFICIENCY a 90,8072 * SCA « a,T69F+01 M**2/(H«•J/8ECJ
ELECTRICAL CONDITIONSi AVG, APPLIED VOLTAGE s a,15«e+0fl V
AVG, CURRENT DENSITY s 18,nA/Cm**2
RESISTIVITY b 5.000e*10 OHM.CM
SIZE DISTRIBUTIONS!	INLET HMO a 
-------
PARTICLE SIZE RANGE STATISTICS
SIZE
2jOOOE-07
4.000E-07
7,OOOE-07
t ,1OOE-06
1.600E-06
2.500E-06
3,500E-06
4,500E-06
6.000E-06
8,500E-06
Fne NONIDEALITIE8 USING StT no". 5
OF CORRECTION
parameters


CCF
INLET X
OUTLET *
COR, OUTLET *
NO-RAP EFF.
NO-RAP w
NO-RAP P
COR, EFF'.
COR, N
2,123
0,033
0,0728
0,0684
64.5675
2.160
35.6325
64,3675
2,160
1,530
0,253
0,6774
0l8«89
56.7538
1.758
43,2462
02,2997
1.153
1,297
0,903
2,4961
2,6771
55.3530
1 .691
44,6470
49,0(64
1.412
1,168
0.5)5
2,1898
2,St 6a
56.6033
J , 7S0
43,3967
51,1256
1 ,501
1,130
1,520
3,9380
4,0080
58,1548
1,827
41,8458
50,6570
1,658
1 .083
3,321
8.7U95
8,6737
59.0988
1.916
00,1018
57,6755
1,803
1,059
1,652
4,0669
4,0524
60,2386
1,934
39,7614
57.8179
1,810
1.046
1,652
4.1342
0,1670
59.5802
1.899
40,4198
56,6256
1,751
1,035
1,982
4.5999
4,6519
62,5155
2,057
37,4845
59,6000
1.902
1,024
3,304
7.2705
7,2598
64,4392
2,168
35,5608
62,2162
2.041
1,017
a,646
9,7011
9,5849
67,5336
2,359
32,0664
65,9881
2,261
1,010
12, US
13,0892
12,8566
82,5497
3,660
17,4503
81,7515
3,567
1,008
67.401
38.9707
38,6347
90.6610
4,971
9,3386
90,0922
4,847
1,250E«05
a,OOOE»OS
2.750E-05
EFFICIENCY . STATED ¦ 99*.60
COR. P
55,6325
57,7003
50,9816
oa,87aa
45,3430
48,3845
42,1821
43,3744
40,3600
37,7638
34,0117
18,2485
9,9876
COMPUTED « 99,3393
CONVERGENCE OBTAINED
ADJUSTED ND-RAP EPF, ¦ 8j'.0tl8S
HMO OF INLET SIZE DISTRIBUTION ~ 0,0656 + 01
SIQKAP OF INLET SIZE DISTRIBUTION > 5.122C+00
LOG-NORMAL GOODNESS OF FIT b 0.984
MHO OF EFFLUENT UNOER NO.RAP CONDITIONS b l'.352E»Ol
SIGMAP OP EFFLUENT UNDER NO-RAP CONDITIONS " S.903E+00
LOG.NORMAL GOODNESS OF FIT ¦ 0.986
PRECIPITATION RATE PARAMETER UNOER NO.RAP CONDITIONS ¦ 3,823
SIGHAG* 0.250 WITH 0,700 9NEAKAGE OVER 4'.000 STAGES
NTEMP • ]
RMMO a 10.00
RSIGHA ¦lO'.OO
CORR'. EFF, ¦ 82.8001
CORRECTED MHO OF EFFLUENT o 1.S30E+01
CORRECTED SIGMAP OF EFFLUENT ¦ 3.950E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0,964
CORRECTED PRECIPITATION RATE PARAHETER ¦ 3,69

-------
UNADJUSTED MrGBATION VELOCITIES ANfj EFFICIENCIES. iNO DTSCSETE OUUET MASS LOADINGS
IDEAL UNADJUSTED
t1E*L UNADJUSTED
NO-BAP
RAPPTud PUFF
no.rap*«ap puff
RAPPING PUFF
PARTICLE
"IC, VEL.(CH/SEC)
EPFICIENCr(t)
DM/DLOGDCMG/DSCM)
DM/DL0Gf>(HG/D8CM)
dm/ologd^g/dschj
DIST8J BUT ION(t)
DIAM.(H)
l,790E*on
8.560E+01
1 .751E + 00
6.8a6E+00
8.597E+00
U,?16E*00
2.000E-07
J,086E+00
8.100E*01
3^50OFt0t
1.1Tte+ot
0.675E+01
i.J54E+00
u.OOOE-OT
J,918E»00
8.Q57E+01
I•122E+02
1,593E+01
1,28lE*02
5.2O8E+00
T.
|,630E»01
9.996E+01
a,0?|E+02
5.B80E*01
«,l29E+02
5,227E»00
fc .OOOE.Ofc
2.«3E*0I
i.eoop+02
5f0OS£*0S
J,150C*0I
5,3*0E+02
6,7S6l»C0
8.500E.C6

1 .OOOE+02
6;620E+02
S.151E*0|
6,DSse*oe
6,868E»00
1,250E»05
«,882E»01
t,000E+O?
6,632E+02
s.oJ«Em
6.9S5C»02
8.869E+00
2.000E.05
6.6J0E*01
1.000E402
5.88OE+0J
S.SBbE»02
6.2«SEfOJ
S.516E+0)
2.750E-05
in
-J

-------
SUMMARY table OF ESP OPERATING
PARAMETERS and PERFORMANCE
DATA SET NUMBER 66
ESP PERFORMANCE! EFFICIENCY » S2.e0ul * SCA a a'.7ME»0l «**?/fM**J/SEC)
ELECTRICAL CONDITIONS! AVC, APPLIED VOLTAGE ¦ «,159E*0« V
AVC, CURRENT DENSITY ¦ 16,00 NA/CM»*2
RESISTIVITY ¦ 5, OOOE + 10 OHH-C"
SIZE DISTRIBUTIONS!	INLET MMD n O.A63E+01 UM INLET SIG"AP ¦ 5.H2E+00
OUTLET MMQ b 1.3S0E+0J (JM OUTLET SIGMAP ¦ 3.950E*00
NONTDEAL PARAMETERS! SAB SNEAKAGE FRACTION ¦ 0,70 /SECTION SAS VELOCITY 816HA0 ¦ 0,25
RAPPING MHO B 1.000E+01 UM RAPPING SIGHAP • l.OOOEtOi

-------
PARTICLE 8I7F RANfiF STATISTICS
CORRECTIONS FOR NONIOFALITTES USING 8ET Kiq, 6 OF CORRECTION PARAMETERS
SIZE
CCF
INLET *
OUTLET *
COR, OUTLET
2.000E-07
2.123
0.033
0.2914
l'.787u
4.000E-07
1.530
0,253
4'.71 15
4,1953
7.000F-07
1.297
0.903
17.8491
13,0509
1.100E-06
1 .188
0,815
12'9822
9,5981
1.600E-06
1.130
1,520
18,0331
13,0232
2,500E-06
1.063
3.524
26.0236
18,8506
3.500E-06
1.059
U652
8.3261
6.5527
«,500E-06
1.046
1,652
6.3882
5,6613
6,0OOE-O6
1.035
1,982
3.0611
3,6874
8,500E-06
1.024
3,304
1.6599
3,5952
1.250E-05
1.017
4,846
0^6293
3,0073
2,000E-05
1.010
12,115
0,0192
3,3806
2.750E-05
l.ooe
67.401
0.0254
13,4101
NO-RAP EFF.
NO-RAP W
MO-RAP P
TOR, EFF,
COR, W
COR. P
97.6762
7.886
2,3238
76.9750
3,079
23,0250
95.0987
6.3?3
4,9013
92,9508
5.561
7.0492
94.7976
6.198
5,2024
93,8560
5.849
6 , 14(10
9 58 0 7 6
6,650
4.192(1
94,9936
6.276
5,0064
96.8775
7,268
3,1225
96.35T7
6,945
3,6423
98.0564
8.262
1.9436
97,7260
7,933
2,2740
98.6735
9.063
1,3265
98,3138
8.560
1,6862
96.9823
9,619
1.0177
96.5432
8,867
1,4568
99.5935
11,5«3
0,4065
99,1662
10,037
0,6338
99 8678
13,898
0.1322
99,5374
11,272
0,4626
99,9658
16.735
0,0342
99.7362
12,449
0.2638
99.9996
48.821
0,0004
99,6814
14,125
0,1166
99.9999
66.304
0,0001
99.9154
14.835
0.0646
EFFICIENCY . STATED n 99.60
COMPUTED o 99.5393
CONVERGENCE OBTAINED
ADJUSTED NO-RAP FFF, o 99'.7368
HMD OF INLET SIZE DISTRIBUTION a 4.465E401
SIGMAP OF INLET SIZE DISTRIBUTION a 5.122E+00
LOG-NORMAL GOODNESS OF FIT a 0,984
M«0 OF EFFLUENT UNOER NO-RAP CONDITIONS b 1.707E+00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS » 1.98TE+00
LOG-NORMAL GOODNESS OF FIT ¦ 0.997
PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS ¦ 12.05"
8IGMAGB 0.100 WITH 0.100 SNEAKAGE OVER 4.000 STAGES
NTEMP ¦ t
RMmd d 10.00
RSIGMA a I 0,00
CORR'. EFF. a 99*.5749
CORRECTED MMD OF EFFLUENT e 3.123E+00
CORRECTED SIGMAP OF EFFLUENT e 3.637E+00
LOG-NORMAL GOODNESS OF FIT a 0.972
CORRECTED PRECIPITATION RATE PARAMETER ¦ 11.US

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
IDEAL UNADJU8TED
NO-BAP
RiPPTNO PUfF
NCURAP*RAP PUFF
BAPPIKC PUFF
PARTICLE
IIC, VEL.tCH/SECS
RFFICIENCVfX)
0M/DL0GD(MC/08CM)
DM/0L0G0fMQ/D8CM)
DM/nU0G0(HC/08CMJ
OtSTBT(t(JT!ON(*J

3.790E+00
8.360E+01
r.lU2E-01
1.017E+00
l.lSlE+OO
K.216E+00
2.000E-07
3,U86E+00
B,10UE»01
3,9T)E-»00
1.7«0E+0O
3.712E+00
3.35OE+00
fl.OOOE-OT
J,91«E+00
8.457E+01
. l^SOBEtOl
2,367E+00
1 .500E + 01
5.2U8E+09
7.000E-07
4,76«E*00
6,972E*01
1,520E+0I
2.O51E+00
1.815E«A I
0,09«E+no
1.100E*A6
5,911E*00
9,«0«E+01
2,0ifeE+01
3.S06E+00
2.387E*0t
U,676EtOO
1 ,600E»06
S.019E«00
9,782E+01
?,289E*01
J,8,500e-06
l,03TE+f)l
9,929E*01
l,5fc2E+01
U^ZJSEtOO
1,985E+01
3.667E+00
S.500E-06
1,270E + 01
9.977E+01
1,025E+01
U.B23E+00
I.U68E+01

-------
SUMMARY TABLE OF ESP OPERATING
parameters anp performance
DATA set NUMBER 69
ESP PERFORMANCE I
EFFICIENCY e 99.57«9 X
8CA ¦ U.769E+01 M**2/(M*»S/SEC)
ELECTRICAL CONOITI0N8I
AVG, APPLIED VOLTAGE ¦ 0,159E*0« V
AVG, CURRENT DENSITY ¦ 18,0« na/Cm**2
RESISTIVITY ¦ S.OOOE*10 OHM.CM
SIZE DISTRIBUTIONS!
INLET MMO b U,at5E*0t UM
OUTLET MMD o J.123E+00 U*
INLET SIGMAP * 5.122EtOO
OUTLET SIGMAP » J.63TE+00
NONIOEAL PARAMETERSl
GAS SNEAKAGE FRACTION ¦ 0,10 /SECTION	GAS VELOCITY SIGMAG ¦ 0,10
RAPPING HMD » l.OOOEtOl U" RAPPING 8IGMAP a l.OOOE+Ol

-------
PARTICLE size RANGE STATISTICS
CORRECTIONS FOR NONIOEALI TIES USING SET No', T OF CORRECTION PARAMETERS
SIZE
2.000E-07
«,0OOE-O7
7,000£-07
1,100E-06
l,600E-06
2,500E-06
3,500E-06
~,306E-96
~.000E-06
6,500E-06
l,250E-05
2.000E-05
2.750E-05
EFFICIENCY
CCF
2.123
1.530
1.297
1,166
1,130
1.063
1.03'
1. Ott6
1.035
1.02a
1.017
1.010
1.008
INLET * CUTLET *
o'. 033
O" 2397
0.253
3,0620
0.903
13.2606
0.815
10*. 30 39
1,520
15.5606
3,52«
25'9676
1,652
9,5269
1,652
6,2266
1,962
5.3236
3,300
a'.5539
0.606
3.1160
12,115
0' 3371
67.001
0.0790
COR. OUTLET
1,0757
3.<130?
10.7911
B,3796
12,2621
20,1002
7,7110
7,0655
5,29611
5,2306
0.26S2
2,9891
10.9351
* NO-RAP EFF,
96.1885
92*. 8186
92.2810
93.3608
90.6205
96,1328
96,9735
97.3666
98.5900
99,2766
99,6625
99,9850
99.9990
¦ STATED 0 99.60
COMPUTED 8 99,5393
NO-RAP W
no-rap p
COR, EFP,
COR, *
COR. P
6.650
3.8115
65.9709
2.260
30,0251
5.522
7,1810
89,6637
0.763
10,3163
5.371
7.7186
90.9070
5.027
9,0930
5.666
6,6352
92.1766
5.303
7,8232
6,126
5,3795
93.6616
5,651
6,1362
6,620
3,6672
95,6506
6.573
0,3090
7.330
3.0265
96.0060
6,996
3,5516
7,601
2,6130
96.7057
7.162
3,2303
8.9J6
1.0096
97.9667
8,166
2,0333
10,335
0,7230
96,7905
9,260
1,2055
11.932
0.3377
99,3272
10,066
0,6726
16.517
0.0H6
99,8123
13.163
0,1877
66,300
0,0006
99.6T66
14,002
0.1230
CONVERGENCE
OBTAINED



ADJUSTED NO-RAP EFF, s 99.0752
HMD OF INLET SHE DISTRIBUTION s fl.O65E«'01
3IGHAP OF INLET SIZE DISTRIBUTION o 5.122E+00
LOG-NORHAL GOODNESS OF FIT ¦ 0.960
HMD OP EFFLUENT UNDER NO-RAP CONDITIONS o 2.195E+00
8IGHAP OF EFFLUENT UNDER NO-RAP CONDITIONS a 2.189E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0,996
precipitation rate parameter under no.rap conditions q 11,007
SIGHAG* O'.OOO WITH 0,100 SNEAKAGE OVER 0.000 STAGES
NTEMP e 1
RMmd ¦ 10,00
R8IGMA BlO.OO
CORR', EFF. g 99.2391
CORRECTED mmd OF EFFLUENT g 3.263Ef00
CORRECTED SIGHAP of EFFLUENT * 3.086E*00
LOG-NORMAL GOODNESS OF FIT ¦ 0,960
CORRECTED PRECIPITATION RATE PARAMETER a 10,23

-------
UNADJUSTED MIGRATION VELOCITIES AND £PF ! cIFNCTFS, AND DISCPHE OUTLET MASS LOADINGS
IDFAL UNADJUSTED
ideal unadjusted
NO-RAP
rapping puff
NO»RAPfRAP PUFF
RAPPING PUFF
particle
HIC, VEL'.fCM/SEC)
EFFICIENCY(X)
DM/DLOGDfHr./nsCH)
DM/OLnGn(MG/DSC^)
OM/OLOGOtHG/DSrM)
DI9TRt BUT TPN(*)
OIAM.(M)
3,7Q0E*00
fl. Jft0E + 01
l'.873E-01
1 .U85E + 00
1.672E»00
1(216EtOO
2.000E-07
3 , 186E + 00
8.10UE + 01
5.819E+00
2.5O0F+00
A,359E+00
S.SSOEtOO
u.OOOE-07
3.9J8E*00
A.«57E+01
1 .9U0E + 01
S.u5«E+00
2,285E+01
5,2U8E*0fl
7,O00e»07
8.769E+00
8.972E+01
2-,«n6E*01
O.306E+0O
2.B37E+01
4,091EtOO
1,100E »06
5.91lEfOO
9,U0«E*01
3.525E+0J
0.971E+00
U,022E*01
U,876E«00
t ,600E»06
8.019E+00
9,782E+0)
a'.55UE + 0l
5.679E*00
5.122E*01
7.!8tE«oe
J.900E.06
l,037E+01
9,929Ef01
3,5A3E+01
6. IflOEtOO
«. 181E+01
3,667E*00
3.S00E-06
1,27UE*01
Q.977E+01
2.633E+01
6,«56E+00
3.2T8E*01
«,«76E»00


-------
8UMMARY TABLE OF ESP nPfBATING
PARAMETERS ANP, performance
DATA SET NUMBER 70
E9P PERFORMANCE! EFFICIENCY a 99.2391 * 8C* ¦ «.T69E*01 M*«2/fM..J/8EC)
ELECTRICAL CONDITIONS! *VC, APPLIED VOLTAGE a a,159E*00 V
AVG, CURRENT DENSITY a 18.0U NA/CH*»3
RESISTIVITY « 5.000E+10 OHN«CM
SIZE 018TRI0UT T ONSI	INLET MMD a a.«i65E»01 UM INLET SIGMAP b 5'.1?2E»00
OUTLET MMD b J.283E+00 UM OUTLET 8IGHAP « j',«86E#00
NONIOEAL PA#AMETER8l OAS SNEAKAOE FRACTION ¦ 6.10 /SECTION GAS VELOCITY SIGHAG ¦ O.ftO
RAPPING NMD a l,e00e+01 UM RAPPING SIGMAP a 1,OOOE>OI

-------
PAPT J CLE SIZF RANGE StATI9TICS
CORRECTIONS FOR NONIOE4LITTES H9I^C SFT no", e or CORRECTION PARAMETERS
SIZE
2.000E-07
4,OOOE-07
7,000E-07
1,1OOE-06
1	,600E-06
2	a 500E-06
3	.500E-06
4,500E-06
6,OOOE-06
8,500E-06
1,2506.05
2,OOOE-05
2.750E-05
CCF
INLET X
OUTi ET X
2,123
0,033
0,2123
1.530
0,253
2.8175
1.297
0,903
10'.e49?
1.188
0,815
8' 7455
1.130
1.520
13.8731
1.063
3,521
219 0 5 2
1,059
1.652
9.7131
1.046
1,652
8*7730
1,035
1.982
6,4826
1.024
3,314
615732
1.017
4,846
5,5095
1,010
12.115
1,0816
1,008
67.401
0.1642
COR. OUTLET
l',2609
2.9580
9,3621
7,5275
11,5167
20,26a?
8,1296
7,6177
6,1537
6,6158
5,865J
3.1213
9.5575
NO-RAP EFF,
94,3710
'0,2515
89',4860
90,6096
92.0129
93.8154
94,8548
95,3527
97.1378
98'. 2590
99.0051
99,9219
99,9900
EFFICIENCY . STATED • 99.60
COMPUTED o 99,5393
NO-RAP W
no-rap p
COR, EFF,
COR, N
6.033
5,6290
54,6971
1 ,660
4.882
9,7455
86,1381
4.143
4,723
10,5140
87,6813
4,391
4,960
9,3904
89,0495
4.637
5,299
7.9871
91,0167
5.053
5,835
6.1846
93,1822
5.631
6.221
5,1452
94,1654
5,957
6,434
4,6473
94,5113
6.086
7,451
2,8622
96,3189
6.923
8,493
1.7410
97,6259
7,843
9,666
0.9949
98,5650
8,896
15,001
0.0781
99,6945
12,142
20.373
0.0060
99,8319
13.394
CONVERGENCE
OBTAINED


COR. P
15.3029
13,6610
12,318V
10,950'S
8.9BJ3
6,8178
5,8340
5,4887
3,681 I
2,3741
1.1350
0,3055
0,1681
ADJUSTED NO-RAP EFF, ¦ 99'. 1249
HMD OF INLET SIZE DISTRIBUTION a 4.465E+01
9IGMAP OF INLET SIZE DISTRIBUTION a 5.122E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0.964
MUD OF EFFLUENT UNDER NO-RAP CONDITIONS • 2.572E+00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS = 2,297E*00
LOG-NORMAL GOODNESS OF FIT n 0,996
PRECIPITATION RATE PARAMETER UNDER NO-RaP CONDITIONS o 9,935
8IGMAG" 0,600 WITH 0,100 8NEAKAGE OVER 4.000 STAGES
NTEHP ¦ 1
Rmmd ¦ 10.00
RSIGMA elO.OO
CORR'. EFF. o 98.8141
CORRECTED M*n OF EFFLUENT ¦ 3,4755*00
CORRECTED SIGMAP OF EFFLUENT a 3.326E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0,990
CORRECTED PRECIPITATION RATE PARAMETER a 9,30

-------
UNADJUSTED MIGRATION VELOCITIES AMD EFFICIENCIES, AND DISCRFTE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
MIG, VEL,(CH/3EC3
3',mE + 00
3,«86E400
J.916E+00
«/7fc9E+00
5p911Ef00
8,019E+00
l.OJTE+Ol
1,2TUE*01
1.6SOE+01
2.22JE+01
3,106E+01
flf882E»01
6.6J0E+01
IDEAL UNADJUSTED
NO-RAP
rapping puff
NO-RAP+RAP PUFF
RAPPING PUFF
particle
EFFICIENCVf*)
OM/DlOGD(MG/nsCH)
OM/DLOG'MMG/DSCM)
DM/DLOGD(HG/DSC»i)
DISTRIBUTION^)
DIAM.(H)
8.360E+01
2j766E-OI
1 ,Q50E*00
2.226E+00
fl,?16E»00
2.B00E-07
S.lOUEtBl
7,896E+00
3.335E+00
1.123E401
j,35«E*no
U.000E-07
8,«57Et0t
J.6U2E+01
1.5J6E+00
3.096E+01
5,2fl8EfOO
7.00CE.07
B.972E+01
J.UOSEtOl
5.656E+06
3.970E+01
u,09«E*no
t .100E-06
9,A0«E»0l
5.23UE+01
6,528Ef00
5.886E+01
U.876E+00
1 .600E-06
9.T82E+01
7,28JE+0l
7.U57E+00
6,029E«01
7,186E#00
2.500E-06
9.929E+01
4,057E*0l
8a J tfcE*00
6.P69E+01
J,667E»00
3.500E.86
9.977E+01
U.682E+01
6,fl77E*00
5,5J0E*0l
«,07fcE»00
S.500E-06
9.996E+01
3.070E+01
8.7SflE+00
3.9fl9E*01
5,227E*00
6.000E-06
l'000E+02
2^9E*00
8,6

-------
SUMMARY table of ESP OPERATING
PARAMETERS and PERFORMANCE
DATA set NUMBER
ESP PERFORMANCE! EFFICIENCY ¦ «8.81oa I SCA a a.769E+0l M»»2/(M#*S/SEC)
ELECTRICAL C0N0ITI0N8I AVG. APPLIEO VOLTAOE a a,15QE*0fl V
AVG, CURRENT DENSITY e 18.01 NA/CM**2
RESISTIVITY s S.0006*10 OHM-CM
SIZE DI8TRIBUTI0NS|	INLET mmd ¦ «.«65E*01 UM INLET SIGMAP ¦ 5.122E+00
OUTLET MMO ¦ 3,<1?5E«00 UM OUTLET SIGMAP ¦ J.J26E + 00
NONIOEAL PARAMETERSi CA8 8NEAKAGE FRACTION ¦ O.IO /SECTION SA8 velocity SIGMAG « 0,60
RAPPING MHO B l .0005*01 UM RAPPING SIGMAP ¦ l.OOOg + Ol

-------
PARTICLE SIZE RANGE STATISTICS
corrections for nontdealities using set no', q of correction parameters
SIZE
2.000E-07
4,OOOE-07
7,0OOE«O7
1,IOOE-06
t.600E-06
2,500E-06
5,500E-06
fl,500f-06
6.000E-06
8,500E«06
t,250E«05
2.000E-05
2.7SOE-05
CCF
INLET *
outlet t
2.123
0 j 033
0,1908
1.530
0,253
2'. 3418
1.297
0,903
9*0162
1,188
0,815
7,4873
1,130
1,520
12,3234
1,083
3,524
23,3765
1.059
1,652
9.50S9
1,046
1,652
818244
1.055
1,982
7,1634
1.024
3,304
8,1009
1.017
4,846
7,6993
1.010
12,115
2,3700
1.008
67.401
1.6000
cor. outlet *
t'nOTis
2,5600
6,1609
6.7424
10,6880
19,8220
6.220?
7,6698
6,7382
7.8015
7,5167
3,7968
8.9728
NO-RAP EPF.
NO-RAP W
NO-RAP p
COR, EFF.
COR, N
91.8187
5.249
8,1813
40.9731
1,105
86,9043
4,262
13,0957
81,6286
3,555
85.8735
4,103
10,1265
83,5607
5.786
87,0024
4,278
12,9976
85,0031
5.978
88.5295
4,540
11,4705
87,2528
4,519
90.6149
4,961
9,3851
89,8034
4.787
91.8989
5,259
8,1411
90,9754
5,045
92.4426
5,415
7.5574
91,3642
5.155
9u'.8866
6,234
5,1134
93,8371
5.845
96,5311
7,048
5,4689
95.7197
6.607
97.7522
7,957
2,2478
97,1881
7.488
99.7232
12,349
0,2768
99,4519
10,841
99.9660
16,771
0.0336
99,7587
12.656
CpR. 9
59,0269
18,571a
16,11593
18,9969
12,7172
10,1966
9,0246
8,6598
6,1629
4,2801
2,8119
0,S681
0.8413
EFFICIENCY ¦ STATEO o 99.60
COMPUTED ¦ 99.5593
CONVERGENCE 08TAINEO
ADJUSTED NO-RAP EFF. ¦ 98'.5852
NMD or INLET SIZE DISTRIBUTION • «,O65E*01
SIOHAP or INLET SIZE DISTRIBUTION a S.122E+00
LOS.NORMAL G00DNE88 OF PIT « 0,984
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS b 3.087E+00
SIOHAP OF EFFLUeNT UNDER NO.RAP CONDITIONS e 2.483E+00
j,	LOG.NORMAL GOODNESS OF FIT ¦ 0,996
»	PRECIPITATION RATE PARAMETER under no.RAP CONDITIONS a 8,988
8IGMAGB 0,800 WITH 0,100 SNEAKAGE OVER 4,000 STAGES
NTEHP a 1
RMMD a 10.00
R8IGHA iIO.OO
CORR*. EFF. ¦ 98*. 1872
CORRECTED HMD OF EFFLUENT ¦ 3.755E+00
CORRECTED 8IGHAP OF EFFLUENT ¦ 3.233E+00
LOG-NORMAL GOODNESS OF riT ¦ 0.994
CORRECTED PRECIPITATION RATE PARAMETER a 8.41

-------
UNAOJUSTED MIGRATION VELOCITIES and EFFICIENCIES# and DISCETE OUTLET MA8S LOADINGS
TOfAl UNADJUSTED
ideal unadjusted
NO-RiP
Rapping puff
NO'RAP+RAP PUFF
RAPPING PUFr
PARTICLE
Hip, VEL.fCM/SEC)
EFFICIENCY(*1
OM/oLOGOfMG/"SCMJ
DM/OlOGD(HG/DSCM)
DM/DLOGDCMG/DSC*)
DISTRIBUTION*)
DUN'. (M)
3,790E*00
8. JfcOEiOl
tt'.020E-01
2 fU99E + 00
2.Q01E+00
O6
3,106E*01
1,OOOE*02
a.S83E»01
1,130E+0I
5,7S3E+01
6 a 868E #0 0
J.250E.05
U,882E*0l
1 ,OOOE+12
t,052E*01
1.107E+01
2,159E+01
8,869E *00
2.000E-05
6.630E+01
1.0O0E+02
2.116E+01
1.309E+02
1.521E402
J ,518E*0l
2.750E-05
CO

-------
summary table of esp operating
parameters and performance
DATA SET NUMBER 72
ESP PERFORMANCE I EFFICIENCY ¦ 98,1872 * 9C* ¦ «.769E*0l M**J/(M»»3/8EC)
ELECTRICAL CONOITIONSi AVS, APPLIED VOLTAGE a a,15«E*0fi V
AVGi CURRENT DENSITY o 18,04 NA/CH*»l
R6SI8TIVJTY ¦ S.OOOEOO OHM-CM
SIZE DISTRIBUTIONS! INLET HMD ¦ a,
-------
PARTICLF SIZE RANGE STATISTICS
CORRECTIONS FOR NONIOEALITIES USING SET no. 1 OF CORRECTION PARAMpTERS
SIZE
2,0O0E«07
fl.OOOE-07
7.000F-07
1, 100E-06
1,600E-06
2,500E-06
3.500E-06
U,S00E-06
6.000E»06
8,500E-06
1,250E-OS
2,OOOE-OS
2.750E-05
EFFICIENCY • STATED a 99.60
ccf
INLET X
OUTLET X
2,125
0^033
0,5009
1,550
0,253
6.0038
1,297
0,903
20.0560
1,188
0,815
16^2202
1,130
1,520
20,1366
1,083
5,52"
23,1021
1.05O
1.652
5.6379
1.046
1,652
3,2086
• .035
1,982
0,7050
1.020
5.500
0.0695
1,017
0.806
o'.oooi
1,010
12,115
0,0102
1,008
67.001
O'. 0565
COR, OUTLFT
2,7951
5.2171
15,0260
10,5587
12.921**
15,0395
o,508S
3,5480
2,5219
2,7851
2.B031
5,6572
17.7578
X NP-RAP EFF,
98.7631
97.0053
96.8(180
97,6007
98,0526
99.2250
99.5962
99.7702
99,9579
99.9975
99.9999
99,9999
99.9999
NO-PAP W
9.210
7.556
7.209
7 859
8,715
10.185
11.557
12.759
16,297
22,227
51,459
08,821
66.30O
COMPUTED e 99,5593
no-rap p
COR, EFF,
COR. N
COR. P
1 ,2366
81,2269
3.507
18.7731
?,9907
95,0295
6.069
4,5705
3,1520
96,2135
6,860
3,7865
2.3553
97,1285
7,000
2,8715
1,5670
98,1138
8,327
1,8802
0,7770
99,0289
9,717
0,9711
0,0058
90,5890
10,691
0,6102
0,2298
99.5212
11,200
0,0788
0,0021
99,7 J 80
12,310
0,2820
0,0025
99.8132
13.173
0,1868
0,0001
99,8718
13.962
0.1282
0,0001
99,9331
15,326
0,0669
0.0001
99,9016
15,611
0.058O
OBTAINED



ADJUSTER NO-RAP EFF, « 99*,8817
MMD OF INLET 8IZE DISTRIBUTION ¦ O,O65E*01
8IGHAP OF INLET SIZE DISTRIBUTION a 5.122E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0.980
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 1.56OE+00
8IGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 1.833E+00
LOG-NORMAL GOODNESS OF PIT ¦ 0,996
PRECIPITATION Rate PARAMETER UNOER no.rap CONDITIONS ¦ 10,151
8IGMAGS 0,000 HITH 0,000 SNEAKAGE OVER 0.000 STAGES
NTEMP ¦ 1
RMHD ¦ 10.00
RSIGMA *15.00
C0PR. EFF. t 99.7780
CORRECTED mmd OF EFFLUENT ¦ 5.086E+00
CORRECTED 8IGMAP OF EFFLUENT ¦ o,750E*00
LOG-NORMAL GOODNESS OF FIT a 0.957
CORRECTED PRECIPITATION RATE PARAMETER ¦ 12,81

-------
UNADJUSTED KrGflATlON VELOCITIES AND EFFICIENCIES. ANO DTSCPETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
rnEiL U*ADJU9TE0
Nf)«RAP
RAPPInQ puff
NO.RAPtRiP PUFF
BAPPtNO PUFF
PARTJCLE
MI6, V|L.(CH/SEC)
EFPICIENCVCX1
nn/pL05n(MG/03CM)
nH/ntonntmg/dschj
BM/DLOCn(MS/OSCM)
DISTRIBUTION*)
OIAM,(M)
3,7toe*oo
e.J60E+0!
6,077E-02
e.ilBE-Ol
9.225E-01
5.396E+00
2.000E-07
3.066E+00
6.101E+01
2,<126E + 00
1 ,277E*00
S;T05E+06
3,85$E*00
fl.OOOE.OT
3f918E»00
8.«5TE+0t
7.
-------
SUMMARY TABLE OF ESP OPERATING
Parameters and performance
data set number tj
E8P PERFORMANCE! EFFICIENCY o 99,TTB« t SC* » a".76«»01 H**2/(M**S/SEC)
ELECTRICAL CONDITIONSi AVG, APPLIED VOLTAGE ¦ U,159E«0
-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR WONfOEALlTIES USING SET NO, ? OF CORRECTION PARAMETERS
SIZE
2.000E-07
4.000E-07
7.000E-07
1.100E-06
l,600E-06
2,500E-06
3.500E-06
4.500E-06
6 * OOOE-06
8.900E-06
i,25oe-o5
2,oooe-o5
2.750E-05
CCF
inlet *
OUTLET X
2.123
0,033
0.2645
1.530
0,253
4.0629
1.297
0.903
1 5".5005
1,188
0,815
11.6397
1,130
1,520
16*.8T62
1.083
3.524
26.2590
1,059
1,652
9^0557
1,046
1,652
7.4341
1,035
1 ,982
4'2085
1.02a
31304
2,9758
1.017
4,846
1,6067
1.010
12.115
0,0981
1.008
67.401
0.0185
cnR,
, OUTLET
2'. l?0fl
3^991!
12.0316
9.0051
12,6241
19,0223
7.052?
(>.2315
4.3047
3 f9906
3.1387
2.7929
13.2506
* NO-RAP EFF,
97.1023
9 4.1440
93.7940
94.8365
95,9859
97,3060
9A.0181
98.3730
99.2323
99.6744
99.8801
99.9971
99.9999
NO-RAP M
7,425
5,968
51828
6,214
6,742
7,578
8,221
8,635
10,210
12.008
10,103
21,887
66.304
NO-RAP P
2,8977
5,6060
6.2060
5.1635
4,0141
2.6940
1.9819
1.6270
0.7677
0,3256
0,1199
0,0029
0.0001
rOR. EFF.
COR, W
64,3624
2,163
91,2520
5.108
92,6094
5.462
93,6727
5.855
95,3944
6.453
96,9436
7.313
97,6327
7,849
97,9082
8,108
98,7844
9,246
99,3302
10,496
99.6406
11,801
99,8722
13,968
99,8910
14,302
COR. P
35,6376
8,7480
7.3906
6,1273
4,6056
1,0564
2.3673
2.0918
1,2156
0,6698
0,3892
0,1278
0,1090
EFFICIENCY ¦ STATED ¦ 99.60
COMPUTFD b 99,5393
convergence obtained
ADJU8TED NO-BAP EFF. m 99'.6385
MHO OF INLET SIZE DISTRIBUTION b 4,4b5E+01
8IGMAP OF INLET SIZE DISTRIBUTION e 5,t?2E+00
LOG-NORMAL GOODNESS OF PIT a 0.984
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS a 1.934E+00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS a 2,09Se+00
LOG-NORMAL G000Ne8S OF FIT « 0.947
PRECIPITATION RATE PARAMETER UNDER NO.RAP CONDITIONS ¦ 11,789
SIGMAG* 0,250 WITH 0,100 SNEAKAGE OVER o'.OOO 8TAGES
NTEMP ¦ 1
RMMD b 10,00
R8IGMA §15,00
CORR'. EFF, ¦ 99.44155
CORRECTED HMO OF EFFLUENT ¦ 3.137E+00
CORRECTED S1GMAP OF EFFLUENT ¦ 3.8I6E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0,977
CORRECTED PRECIPITATION RATE PARAMETER ¦ 10,89

-------
UNADJUSTFD MIGRATION VELOCITIES AND EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
IDEAL UNADJUSTED
NO-PAP
rapping puff
NO-RAP+HAP PUFF
RAPPING PUFF
PARTICLE
MIS, VEl'. tCM/SEC)
ErFiriENCv(X)
nM/OLOGDCHG/DSCM)
DH/0L0GD(MG/DSCM)
nM/DLOGn(MG/nscH)
DISTRIBUTIONS)
01 AM,(M)
S'.TQOE + OO
8.360E + 01
1,U?UE»01
1 .609E + 00
1.751E + 00
5, S96E~00
2,n00E«07
3,«86E+00
8'. lOOEfOl
U.70UE+00
2.38UE+00
7.088E»00
3a 85SE + 00
ti.000E.07
J.918E+00
8.«57E»0I
l,5fe0E*01
2.977E+00
1 ,857E*01
5,5flOE*00
7.000E-07
«,76"»E + 00
8.972E+01
l,87?E+01
3.U9UE+00
2.222E»01
u,068F+nO
1.100E-06
5.911E+00
 30E+01
3.876E+00
3.018E+01
U,fc57E«00
1,600£»06
8.019E+00
9.782E*01
3,17JE*01
U.267E+00
3.599E+01
6,6iaE«00
2,500E»0b
1 j. 037E + 01
9.929E+01
2.333E+01
U.537E+00
2,787E+01
3,298Ef00
3.500E.06
l,2?UE+0l
9.977E+01
J .639E + 01
0,683E+On
2.107E + 01
3 «977E *00
fl,500E-06
1.630E+01
9.996Et01
8,235E*00
fl.80SE*no
1 a JOflEtOl
tt,598E*00
fe.OOOE.Ofc
2^223E*01
1f 00OE+02

-------
SUMMARY table OF ESP OPERATING
PARAMETERS AND PERFORMANCE
DATA SET NUMBER Tfl
ESP PERFORMANCE! EFFICIENCY « 09,4455 X SCA ¦ 4',T69E + 01 H**3/(H*»3/8CC)
ELECTRICAL CONDITIONS! *VG, APPLIED VOLTAGE it 4,!5<>E + oa V
A VG, CURRENT DENSITY ¦ IS,04 NA/CM**S
RESISTIVITY a S.OOOE+IO OHMiCM
8IZE DISTRIBUTIONS!	INLET MMD ¦ 4,4696 + 01 UM INLET SIGMAP ¦ ?'.122E»60
OUTLET HMD • 5» 15TE+C0 UM OUTLET SIGMAP ¦ S',8J6E*00
NONJOEAL PARAMETERS! CAB 8NEAKAGE FRACTION ¦ 0,10 /SECTION OAS VELOCITY SIGMAG ¦ 0,29
RAPPING MMD ¦ r.OOOE+Ol UM RAPPING 810MAP a 1,500E»01

-------
PARTICLF SIZE RANGE STATISTICS
CORRECTIONS FOR WO^IDEALITIES USING SFT wo'. 3 OF CORRECTION PARAMETFPS
SIZE
2^000E-07
fl.OOOE.OT
7.000E-07
1 , 1OOE-06
1.600E-06
2,500E-06
3,500E-06
o,sooe-o6
6(000E-06
8,500E-06
1.250E-05
2.000E-05
2.750E-09
CCF
2.123
1.530
1.297
1.188
1.130
1.0*3
1.05"
1.046
1.035
1.020
1.017
1.010
1.008
INLFT X
O'033
0.253
0,903
0,815
1.520
3,520
1 .(>52
1,652
1,982
3.30"
(1.8(16
12,115
67.101
OUTLET *
0,1636
2.3350
«'8651
7,1631
1 1 .5362
21,6905
',0002
8.6513
7,3927
9.1127
9,0758
2,9230
2.0658
EFPICIENCr * STATED b 99.60
OUTLET
t NO-RAP EFF
. NO-RAP u
NO-RAP P
COR. FFF.
COR, «
COR. P
l'.009fl
92.7505
5',502
7,2095
28,0279
0,690
71,9721
2.6797
87.9710
4.041
12,0286
82,1555
3,610
17,8045
8,1119
87.2072
0,311
12,7928
84,8655
3,959
15,1305
6, (162?
88,5068
4,543
11.0532
86,6015
0,221
13,351)5
9,977"
90.1102
4 . 851
9,8898
88,9009
a.617
11,0591
18,2781
91.9780
5.290
8.0220
91,2617
5,111
B.73B3
T.TOflU
92,9008
5,546
7.099?
92,1389
5,^32
7,8611
7,5920
93,1761
5,629
6,8239
92,2572
5.360
7,7028
6,7596
95.1397
6.301
4.8603
90,2502
5,990
5,7058
8,3826
96.4060
6.973
3.5900
95,7257
6,610
0,2743
8,3805
97'. 5596
7.765
2.0000
97,0865
7,013
2,9135
0,0369
99.6856
12.081
0.314O
99,0386
10,866
0,5610
10.2201
99.9601
16.008
0.0399
99,7405
12,517
0,2555
MPUTED »
99.5393
CONVERGENCE
obtained



ADJUSTED NO-RAP EFF, ¦ 98.6969
HMD OF INLET SIZE DISTRIBUTION a 0,fl65E*01
SIGHAP OF INLET SIZE DISTRIBUTION e s'.122E + 00
LOG-NORMAL GOODNESS OF FIT a 0.98(1
mmd or effluent under no-rap conditions o 3,2B7E+oo
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS b 2.550E+00
LOG.NORMAL GOODNESS OF FIT ¦ 0,995
«>	PRECIPITATION PaTE PARAMETER UNDER NO-RAP CONDITIONS ¦ 9.101
S1GHAG* 0.250 WITH 0,300 SNEAKAGE OVER fl'.OOO STAGES
NTEMP ¦ 1
RMMD ¦ 10.00
R8IGMA «15.00
CORR. EFF, ¦ 98.3153
CORRECTED HMD OF EFFLUENT a 3,936EtOO
CORRECTED SIGMAP OF EFFLUENT ¦ 3,056E*00
LOG-NORMAL GOODNESS OF FIT ¦ 0.996
CORRECTED PRECIPITATION RATE PARAMETER n 8,56

-------
UNADJUSTED MiGRATION VELOCITIES and EFFICIENCIES, AMD DISCPETE OUTLET HiSS LOADINGS
IDEAL UNADJU8TE0
IDEAL UNADJUSTED
NO»PAP
SAPPING PUFF
NP.BAP+RAP PUFF
RAPPING PUFF
PARTICLE
Kip, VEL'.(CM/SEC)
EFFICIENCVC*)
D*/DLOGD(MG/0SC*>
OM/l)L.OGO(MG/PSCH)
OM/OLOpDfHG/OSCH)
DISTRIBUTION^)

3.790E+00
8.360E+01
3.5*2E-01
j'.ieoE+oo
3.537E+00
5.S96E+00
S,000E»07
3.«86E+00
e.louE+oi
l.yabt*00
1.712E400
1.UA6E+01
3,855E*00
ii.000E.07
3,«M8E + 00
8,«57E*01
3f215E+01
5'.885Et0fl
3.80
-------
SUMMARY TABLE OF FSP OPERATING
parameters and performance
DATA SET NUMBER 75
ESP PERFORMANCE! EFFICIENCY ¦ 98,3155 * SCA « «.769E*0l M»*2/(M**3/SEC)
ELECTRICAL CONDITIONS!	AVG, APPLIED VOLTAGE ¦ fl,15«E*0fl V
AVG, CURRENT DENSITY e 18,Oil NA/CM**2
RESISTIVITY s 5.000E+10 OHM.CM
SIZE DISTRIBUTIONS!	INLET HMD b U.UfcSE+Ol UN	INLFT SIGMAP a 3'.1?2E*00
OUTLET mho a 5,<»S(,E + 00 IIM	OUTLET SlGMAP ¦ J.«56E*00
NONIOEAL PARAMETERS!	GAS SNEAKAGE FRACTION ¦ 6.10 /SECTION GAS VELOCITY SIGMAG b 6,25
RAPPING MMD b l.oOOEiOl UM RAPPING SIGHAP a 1,500E+01

-------
PtOTICi.f $!'* RANGE gTdTTSTrCS
CPPRcrT70M$ FOB wPNTOfil.IT IFf> IISIMG SET no, « OF CORRECTION PARAMETERS
SIZE
2j000E-07
«,0COE-07
7.00 0E-07
l,l00E-06
1.600E-06
2,500E-06
3,500E-06
0,500E-06
6,00 0E-06
6,500E-06
l,250E-05
2,000f«n5
2.750E-05
CCF
INLET *
OUTLET X
COR. OUTLET *
NO-RAP EFF.
NQ-PAP N
no-R*p p
COR, EFF.
COR, w
2.123
0,033
0* 1213
0,1060
83,3061
3,759
16.6519
63.3061
3.739
1.530
0,253
1,3078
1,6579
76,5857
3,0ao
23.0103
66.0350
2,260
1 .297
0,«03
0.90J2
5,0250
75,0008
2,901
20,59S2
71,1566
2,607
1. 188
0,815
0.162a
o.ieio
76,6663
3.069
23,1337
73.0100
2,777
1.130
1,520
7^ 1693
6,8872
76.6357
3,236
21.3603
76,5100
3.038
1.0S3
3,520
1 0.9QU9
13,9875
60.7263
3.052
19,2737
79.0267
3,315
1.059
1,652
6.7015
6.3319
61.5156
3,500
16,oBua
60,1330
3,369
1.0U6
1,652
6^7972
6,fl7lJ
61.3630
3,522
16,6370
79,6961
3.303
1.035
K982
6,8997
6.6038
60.2318
3,673
15,7663
62.6250
3.670
1.020
3,301
10,1002
9,6168
86,1077
a,105
13,6523
60,9)35
3.966
1.017
0,606
12,2160
11,0762
66,5613
fl,550
11.0187
67.7231
0.396
1.010
12,US
9,2214
9,1056
96.5523
7,061
3.0077
96.1003
6.600
1 .006
67.401
15.3608
18.5079
96.9677
9.569
1.0323
96,5767
6.916
COR. P
16,6914
SS^kSO
26,8aja
26,5900
23,
-------
UNADJUSTED MIGRATION VELOCITIES ANp EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTFO
HIG, VEL.(CM/SEC)
J,790E+no
3,«86E+00
3.918E+00
«,769F*00
5,911E+00
e,oi9Etoo
1,637E+01
1,27UE+01
1,630E*01
2.223E+01
3,tU6E*01
4fae2Etoi
fc.6J0E*01
IDEAL unadjusted
EFPICIENCV(X)
8,J60E+ftl
e.lOUE»o»
8,«57E+01
8,972E+01
9.U0UE+01
9,782E*01
9.929E+01
9,977E+01
9.9O6E+01
1.OOOE+02
1,OOOE+02
1.OOOE+02
1000E + 02
NO.RAP
DM/DLOf,0(MG/DSCM)
e, 1A3F-01
1 .897E + 01
hj.lfltE + 01
8,3A8E+01
1 .UA0E + 02
2,270Ei02
?, 1 TfiE + 02
1,878E*02
1.691E+02
l,9fc5E+02
2,328E*02
l,310E+02
6.505E+02
Rapping puff
DM/DLOGDfMG/DSCM)
S'.770E + 00
8.519E»00
1,068E+0 t
1.253Et01
l,390E»01
1.530E+01
1.627E+01
1.fc79E*01
1.723E+01
1,751E»6J
1,750E+01
1.702E+01
2.fl6flE+02
no«RAP+RAP PUFF
DM/dlOGD(HG/DSCH)
6.58«E*00
2.752E+01
7,2«9E+01
9,fc0iF+ei
1.5J9E+02
2,a2JE*02
2,3S9E*02
2.0U5E+02
1 a 86QE+02
2.1«0E*02
2.503E+02
1 .U81E + 02
8.968E+02
RAPPING PUFF
DISTRIBUTION(X)
5.596E+00
3,833E»00
5,5«oe»oo
U,068E+fl0
«,657Et00
6,61UE *00
3,298E*00
3,977E»00
~,598E*00
5.89oe*00
~,007E»00
7 , 838E + 0 0
],806E*0!
(Xl
o
PARTICLE
OIAm', (M)
2.000E-07
~,onoE.07
7.000E-07
1.10OE-06
1.600E-06
2t500E»06
S.500E.06
U.500E.06
~.000E.06
8,SOOE »06
1.250E-05
2,0 OOE »05
2.7SOE.05

-------
summary table or esp operating
parameters ano performance
OATA 8ET NUMBER 76
ESP PERrORHANCCl EFFICIENCY ¦ 9«,81«8 X 8C* » 
ELECTRICAL CONOITIOWSl AVG, APPLIED VOLTAGE • 4,IS9E*0« V
AVG. CUAflENT DENSITY • 16.00 NA/eM»*2
RESISTIVITY ¦ 5.000E*10 OMM.CM
SIZE DISTRIBUTIONS! INLET NMD • U.«6SE*01 UM INLET SIGHAP ¦ s'. 122E«-00
OUTLET MHO b fc,60CE+00 UM OUTLET SIQMAP a j',299E*00
NONIOEAL PARAMETERS! GAS SNEAKAQE FRACTION ¦ 0,50 /SECTION GAS VELOCITY SIGNAG ¦ 0,15
HAPPING MHO ¦ l.OOOE+Ol UM RAPPING SIGMAP » 1,500E*01

-------
PARTICLE SIZE PANGE STATISTICS
COBPFCTIOMS FOP NONJDEALITTE8 USING 9ET KIq. 5 OF CORRECTION PARAMETERS
SIZE
2.000E-07
4',000E-07
7,OOOE-07
1,1OOE-06
l,600E-06
2,500E-06
3,500E-06
«,500E-06
6,000E-O6
8,500E-06
l,250E-05
2.000E-05
2.750E-05
C CP
2.123
1.530
I ,297
1,186
1,130
1,083
1,059
1 .01)6
1,035
1.021
1.017
1,010
1,008
INLET X
0,033
0,253
0,'03
0,815
1,520
3,524
1,652
1,652
1,982
3, 301
<1,8(16
12,115
67.101
OUTLET *
O'. 0728
0,6771
2.1961
2.1898
319380
8.7495
4'0669
1.1312
1.5999
7.2715
9j7Ull
13,0892
38.9707
EFFICIENCY - STATED « 99.60
». OUTLET
X NO-RAP EFF
, Nn-RAP w
nd-rap p
COR. EFF.
COR, W
COR. P
0 . 0 6 8 ti
6U.3675
2.161
35.6325
64,3675
2. 164
35,6325
0.8815
56.7538
1,758
13,2462
40,1384
1,076
59,6616
2.698?
55.3530
1 .691
14,6170
46,6629
1,396
51,3371
2,3168
56.6033
1,750
43.3967
51,1603
1.5f>3
46,6397
3,9976
58.1518
1.827
41,8152
54,8142
1 .666
45,1858
8,6150
59,8968
1,916
40,1012
57,8523
1,812
42,1477
1,0325
60.2366
1 .931
39.761U
56,0616
1 ."22
41,958?
1,1389
59.5802
1 .899
40,4198
56.9552
1.767
43,0408
1.6161
62,5155
2,057
37,4845
59,9856
1,920
40,0142
7.2121
64.1392
2.168
35,5606
62,4954
2,056
37.5046
9.5386
67.5336
2,359
32,4664
66,1621
2.273
33,8179
12.8025
82,5197
3.660
17.4503
81,8442
3,577
18,1558
39.0513
90.6614
4.971
9.3386
90,0456
4,837
9,9341
COMPUTED o
99.5393
CONVERGENCE
: obtained



adjusted no-Rap eff, ¦ 83.sues
MMD OF INLET size DISTRIBUTION a 1,165E«01
8ICHAP OF INLET SIZE DISTRIBUTION c 5'.122E + 00
LOG-NORMAL GOODNESS OF FIT « 0.981
HMD OF EFFLUENT under NO-RAP CONDITIONS » l'.352E»01
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS s 3.903E+00
LOG.NORHAL GOODNESS OF FIT a 0.986
°	PRECIPITATION RATE PARAMETER UNDER NO-RAP CONDITIONS » 3,823
LJ
8IGHAG" 0,250 WITH 0,700 SNEAKAGE OVER 1.000 STAGE8
NTEMP ¦ 1
RMMO ¦ 10,00
RSIGNA ¦15,00
CORR'. EFF, ¦ 62.8192
CORRECTED MMD OF EFFLUENT ¦ 1.336E+01
CORRECTED SIGMAP OF EFFLUENT « 3,973E*00
LOG-NOPMAL GOODNESS OF FIT o 0,983
CORRECTED PRECIPITATION RATE PARAMETER a 3,69

-------
UNADJUSTED MIGRATION VELncrrifS ANO EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
MIS, VEL.CC*/8EC>
3.790E+00
S.OBbE+OO
3,910e+oo

-------
SUMMARY table OF ESP OPERATING
parameters and performance
DATA set number 77
ESP PERFORMANCE EFFICIENCY « S2.619? * SC* » 
-------
PARTICLE 8IZE RANGE STATISTICS
CORRECTIONS FOR NONIDEALITIES USING SET No. 6 OF CORRECTION PARAMETERS
8IZE
2. OOOE-OT
4.000E-07
7,OOOE-07
l,100E-06
l,600E-06
2,500E-06
3,500E-06
4,500E-06
6,000E-06
8,500E-06
1.2S0E-0S
2.000E-05
2.750E-05
EFFICIENCY - 8TATED ¦ 99.60 COMPUTED o 99,5593 CONVERGENCE OBTAINED
CCF
INLET X
OUTLET t
COR. OUTLET *
NO-RAP EFF,
NO-RAP W
NO-RAP P
COR. EFF.
COR, w
2.123
0,033
0.2914
2,3134
97.6762
7.888
2,3238
70,1966
2.538
1.530
0,253
4,7115
4, 366
-------
UNADJUSTED MIGRATION VELOCITIES 4*0 EFFICIENCIES# AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
Ir»Eal UN*nju8Tfo
NO-RAP
BAPPImG PUF'
Mp.R«P*Rtp PUFF
RAPPING PUFF
pabtjcle
MIC, VEL'.(CM/SEC>
EFFICIEnCYt*)
DM/0tOGn(MC/0SC«1
OH/DLOGO(HC/PSCM)
DM/DIOGPChG/DSC")
DISTRIBUTION*)
DIAM.(M)
3,790E*00
8,360E+01
t ,1«2E-0J
1,350E*00
J,U6«E+00
5,S96E»00
2.000E-07
3,«86E*00
e. t ooE-t-o 1
3'.971E*00
2.001E+00
5.972EtOO
3,855E + 0 0
U.000E.07
3.9|8E»00
A.U57E+01
l,308Ef01
2.U99E+00
1.557E+01
5,5E*00
e,'T2E+01
1 ^SSOE + O1
2.933E+00
1.813E*01
11068E *00
1,1O0E»06
5,9UE*00
9,«0«E*01
Zf0U6E+01
3.2S3E+00
2.371E+01
O,657E«00
1 ,600E»06
8,019E" + 00
9,782E»01
2,2B9Ef01
3.581E+00
2.6U7E+01
6.61UE+00
2.500E-06
1,0J7E+01
9.929E+01
1,562E+01
3.80PE+00
1.9«2E*01
3.298E+00
3.500E-66
1.27<1E*01
9.977E+01
1,025E+01
3.930E*00
I.U1BE+01
3.977E*00
U.500E-06
1.630E+01
9,996E+01
«,360E4>00
«.032E+00
6.393E*00
a,598E«00
6.000E-06
2,223E*0|
t,OOOE»n2
1 .8T6E + 00
a.098E+6fi
5.973EfOO
5.890E+00
B.500E-06
3.H6E*0t
1 ,OOOE»02
6.9fc8E»01
"•095E+00
a,792E»80
6.007E+00
1.250E.05
«,882E+01
1.0O0E+02
1.587E-02
3.984E*00
fl.OOOE+OO
7,B38E*00
2,0O0E»05
6.630E+01
1.000Et02
6. 2S0E"fl2
5.765E+01
5.772E+01
3,806E*01
2.750E-05
ON
o
-o

-------
summary table or esc operating
PARAMETERS AND PERFORMANCE
oata set number re
ESP PERFORMANCE! EFFICIENCY ¦ 99,5709 * SCA ¦ a,769E*0| M»*2/(N**3/6EC>
ELECTRICAL CONDITIONS! *VC, APPLIED V0LTA6E ¦ U.159E+0U V
AVG, CURRENT DENSITY . 1B.0U NA/CMo?
RESISTIVITY b 5.060E410 OHM-CM
SIZE DISTRIBUTIONS!	INLET HMD • «.«65E«
-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS For NONIDEALITIES USING SET no'. T OF CORRECTION PAPAMfTEPS
SIZE
2, OOOE"0 7
O.OOOE-07
7,OOOE-07
1,100E-06
1-600E-06.
2,500E-06
3,500E-06
0,500E-06
6, OOOE-06
8,500E-06
1.250E-05
2,0001-05
2.7S0E-05
EFFICIENCY . STATED ¦ 99.6ft
ccf
INLfT X
OUTLET X
COR. OUTLET
2.123
0,033
0,2397
I'.9006
1.530
0,253
3.0620
3.5661
1.297
0,903
13.2808
10'. 8823
1.188
0.815
1 O'. 3039
8.3715
1.130
1,520
15.5806
12,1900
1,083
3.52"
25.9676
19,9667
1.059
1,652
9,526'
T,5961
1,006
1,652
6,2266
6,9103
1 ,035
1.982
5,3236
5,1011
1 .020
3,SOU
0,5539
0,9716
1.017
<1.806
3.1180
0,0175
1,010
12,115
0,3371
2,6688
1,008
67.001
0.0 790
11.8290
COMPUTED a 99,5393
l-RAP eff
, NO-RAP W
NO-RAP P
COR, fFF ,
COR. w
COR. »
96.1885
6.850
3.8115
56,0808
1 .725
03,9152
92.8186
5.522
7,1810
89.2J09
0.669
10,7851
92,2810
5,371
7.7186
90,8300
5.010
9,169b
93.3608
5,688
6,6352
92,1803
5.305
7,8157
90.6205
6,126
5,3795
93,6959
5.863
6,1001
96,1328
6,820
3,8672
95,6889
6.592
0,3111
9f>,9735
7,330
3,0265
96,5013
7.030
3,0987
97,3866
7.601
2^6130
96,8172
7,228
3,1828
90.5900
8,936
1,0096
98.0017
8.206
1.9583
99.2766
10.335
0,7230
98,8551
9,372
1,1009
99.6623
11.932
0,3377
99,3692
10,622
0,6308
99.9850
18,517
0,0106
99.832#
13,000
0,1676
99.9990
66.300
0,0006
99,8665
13,877
0,1335
5393
CONVERGENCE
OBTAINED



ADJU8TED NO-RAP fFP t » 99.0752
HMD OF INLET SIZE DISTRIBUTION s 0.065E+01
SIGHAP OF INLET SIZE DISTRIBUTION b 5.122E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0.98O
MHO OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 2.195E+00
8IGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS " 2,189E»00
LOG-NORHAL GOODNESS OF FIT ¦ 0.996
precipitation rate parameter under no.rap conditions b 11.007
SIGHAG* 0.000 WITH 0,100 SwEAKAGE OVER 1.000 STAGES
NTEMP • 1
RMMD ¦ 10,00
RSIGMA ¦15.00
CORR. EFf. ¦ 99.2391
CORRECTED mho OF EFFLUENT b 3.236F*00
CORRECTED 8IGMAP OP EFFLUENT # 3.639E+00
LOG-NORMAL GOODNESS OF FIT b 0.983
CORRECTED PRECIPITATION RATE PARAMETER » 10,23

-------
UNADJUSTED MIGRATION VELOCITIES ANp EFFICIENCIES, AND DISCRETE OUTLET MASS LOADINGS
IDEAl UNA(1 JllSTFD
MIS, Vfl '.fCH/SEO
3,790E*00
3.U86E+0D
3.918E+0P
«.769E+00
5.911E+00
6,019E*00
t,03TE*01
1,2T«E+01
1,630E+0I
2,22JE*0l
J,106E+C1
«,882E+01
6.630E»0t
FAt UNADJUSTED
NO«RAP
rapping puff
no-rap+rap puff
RAPPING PUFF
PARTICLE
efficiencv(X)
DM/DLOGIHHO/DSCM)
DM/OLOgD(*G/0SC")
D^/DLOGDfMG/DSCM)
DIBTBlBl/TJONfX)
DIAM.(H)
8.360E+01
1,87JE-01
1 .971E»00
2". J58E + 00
S.S96E+00
2.000E-07
S.lOUUOl
5. 819E + 00
2.92OE»O0
8,7S9Ei00
3.655E*00
U.000E-07
R,«57E + IH
1,SOOE+Ol
3.6UTE* 00
2,303E+01
5,suoE*on
7.000E-07
fl'.9T2£tOI
2,uoaE+0t
5.22TE+00
5,0T7E+01
fc,M«E+00
2.500E.04
9.929E+01
3,?6JE+01
5.558E+00
a.lt9E*01
S.29PE+00
3.500E-06
9.9T7E+01
2.63SE+01
5,736E+00
3.206E+01
3.977E*09

-------
SUMMARY TABLE OF ESP OPERATING
PARAMETERS ANR PERFORMANCE
DATA SET NUMBER 79
ESP PERFORMANCE!	EFFICIENCY « 99,2391 * SCA « O.T69E+01 »**Z/(M««3/SEC)
ELECTRICAL CONDITIONS!	AVG, APPLIED VOLTAGE a «,159E+0U V
AVG, CURRENT DENSITY ¦ 10,0(1 NA/CM**2
RESISTIVITY ¦ 5.000E+10 OHM.CM
SIZE DISTRIBUTIONS! INLET HMD o U.U65E+01 UM INLET SIGHAP ¦ 5,122E»00
OUTLET MMD b 5,2JfcE+00 UM	OUTLET SIGHAP ¦ 3.6J9Et00
NONIDEAL PARAMETERS!	GAS 8NEAKAGE FRACTION a 0,10 /SECTION GAS VELOCITY SIGMAG ¦ 0,U0
RAPPING HMD e 1,OOOE+Ol UM RAPPING SIGMAP ¦ 1.500E+01

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOP NONIDEiLITTf 1 USING SFT NCl", 8 OF CORRECTION PARAMETERS
SIZE
2',000E-0T
fl,000E-07
oooe-or
1,IOOE-06
1.600E-06
2.500E-06
3,500E-06
fl,500E-06
6,000E-06
6.S00E-06
l,250E-05
a.oooE-os
2.7S0E.05
EFFICIENCY - STATED o 99.60
CCF
INLfT X
OUTLET *
COR. OUTLET
2.123
0,033
0,2123
U622U
1,530
0,253
2,8175
3.0893
1.297
0.903
10.8192
9.H587
1,188
0,815
B',7455
7,5205
1,130
1,520
13.8T31
1 1,4593
1.083
3.521
2119052
20,1115
1.059
1.652
9,7131
8,0329
1 ,nub
1,652
8.7730
7,5169
1,035
1,982
6.1826
5,9891
1,021
3,301
6,5732
6,3912
1,017
11,616
5,5095
5,6397
1.010
12,115
1,0816
2,8513
1.008
67,401
0.1612
10.3112
COMPUTED ¦ 99,5393
•RAP EFF
, NO.RAP W
no-rap p
COR, EFF,
COR. w
91.3710
6,033
5.6290
11,7103
1,132
90,2515
1,882
9,7455
85,5225
0,052
69,4860
1,723
10.5140
B7.5607
0.37U
90,6096
4.960
9,3904
89,0594
4,639
92,0129
5,299
7.9871
91.0615
5,06)
93.8154
5.835
6,1846
93,2325
5,606
94.8548
6.221
5.HS2
90,2348
5.983
95,3527
6,031
1,6173
90,6051
6,122
97.1378
7,051
2,8622
96,0173
6,980
98,2590
8,093
1,7010
97,7055
7,914
99,0051
9.666
0,9949
98,6202
8,981
99,9219
15,001
0,0781
99,7210
12.332
99.9940
20.373
0,0060
99,8186
13,235
5393
CONVERGENCE
OBTAINED


COR, P
58',2897
14,4775
12,0193
10,94106
8,9305
6.T675
5,7652
5,3949
3,5627
2,2945
1,3798
0,2790
0.181"
ADJUSTED MO.RAP EFF, ~ 99'.12a9
HMD OF INLET SIZE DI8TRI8UTION o 4.465E+01
81SHAP OF INLET SIZE DISTRIBUTION ¦ 5.122E+00
LOG-NORMAL GOODNESS OF PIT a 0,960
HMD OF EFFLUENT UNDER NO.RAP CONDITIONS ¦ 2.572E+00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS ¦ 2.297E+00
LOG-NORMAL GOODNESS OF FIT ¦ 0.996
precipitation rate parameter under no.rap conditions ¦ 9,935
SIOMAG" o'.fcOO MITH 0,100 BREAKAGE OVER a.000 STAGES
ntemp ¦ i
RNMD o 10,00
RSIGMA BIS.00
CORR'. EFF. ¦ 98.8111
CORRECTED mho OF EFFLUENT • 3,il37E»00
CORRECTED SIGMAP OF EFFLUENT a 3.133E+00
LOG-NORMAL GOODNESS OF FIT b 0,990
CORRECTED PRECIPITATION RATE PARAMETER a 9,30

-------
UNADJUSTED MIGRATION VELOCITIES ANn FFFJC TEMC IE9 # AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNAPJU8TEP
iriEAL UNADJUSTED
Nf)«RAP
RaPPInG PUFF
no-rap+rap puff
RAPPING PUFF
particle
MIS, VEL.(GM/8EC)
J.790E+00
EFFICIENCV(X)
DM/OJ.OGD (MG/DSC*)
DM/Dl06D(MG/D3CM)
Dm/DLOGD(mG/DSCm)
DISTRIBUTIONS J
DIah',(M)
8.360E+01
2.7*6F-01
2.588E+00
2,AbaE*00
5.596E+00
2.000E-07
5.«86E*00
e'.ioae+oi
r,896e<-eo
s.8sae*oo
1.173E+01
3.855E+00
fl,0fl0E.07
910E4-OO
8.157E+01
2^6U2Et0t
U.789E+00
3.121E+01
5,980E+en
7.000E.07
fl.T69E+00
6,9T2E+01
3,«05E*01
5.621E+00
3.967E+01
1,068E+00
1.100E.06
5,911E»00
9,aouE*oi
5j2S1Et01
6.230E+00
5.857E+01
U.657E+00
1.600E.06
8.019E+00
9',762e + 01
7,283E+01
6,86«E+00
7.970E+01
fc,61oE*00
2.500E.06
1,0S7E*01
9,«2<»E + 01
fe,057E+01
7.298F+00
6,787E + 01
3,298E*on
3.500E-06
lf27«Et01
9,977E+01

-------
8UMMARY TABLE OF E8P OPERATING
parameters and performance
DATA SET NUMBER 80
ESP PERFORMANCE! EFFICIENCY e "J0.B1UU X 8C* » U.769E+0! M**2/(M*«]/SEC)
ELECTRICAL CONDITIONS! AVG, APPLIED VOLTAGE ¦ a,J59E*0i V
AV6, CURRENT DENSITY ¦ IB,04 NA/CM**2
RESISTIVITY • 5.000E+10 OHM-CM
SIZE OISTRIBUTIOnSi INLET mmo ¦ a.atSE+Ol UM INLET 8IGMAP ¦ S,122C*00
OUTLET HMD » 3.f37E+00 UM OUTLfT SISMAP a 3.«55Et00
NONIOEAL PARAMETERS! GAS SNEAKAGE FRACTION ¦ 0.10 /SECTION GAS VELOCITY SIGMAG * 0,60
RAPPING MHO » 1,OOOE+O1 UM RAPPING SIQMAP a 1,5001*01

-------
PARTICLE 8IZE RANGE STATISTICS
CORRECTIONS FOR NONir>FALITIES USING SET Np. 9 OF CORRECTION PARAMETERS
SIZE
2.000E-07
4.000E-07
7.000E-07
1,100E.O6
1,600E.06
2,500E-06
3,500E-06
0,500e-06
6,0OOE-O6
8,500E»06
i,250E-05
2,000E-O5
2.750E-05
CCF
INLET X
OUTLET X
COR. OUTLET X
NO-RAP EFE,
NO-RAP W
NO-KAP p
COR, FFF.
COR, W
2.123
0>3i
0.1908
1,3775
91,8187
5.249
8,1813
24.3292
0.585
1.530
0,253
2'3418
2.6741
86.9043
4.262
13.0957
80.8390
3.464
1.297
0.903
9.0162
8,2532
85,8735
4.103
14.1265
83,4J17
3,769
1.188
0,615
7,4873
6,7367
87,0024
4.278
12,9976
85.0157
3.980
1.130
1,520
12.3234
10.6403
88,5295
4.540
11 .4705
87.3102
4,326
1.083
3,52"
23^3765
19,6965
90.6149
4.961
9.3851
69.8679
4,800
1.059
1,652
9.5059
8,1431
91.B589
5,259
e.ioi i
91 .064(1
5.064
1.046
1,652
8^8244
7,7602
92,4426
5,415
7,5574
91,4845
5.165
1.035
1,982
7.1634
6.6002
94.8866
6,234
5,113a
93.9633
5.866
1,021
3,304
8jI 009
7,6155
96.5311
7,048
3.4689
95.8217
6.658
1.017
a.846
7.6993
7,3277
97.7522
7.957
2,2478
97.2589
7.541
1.010
12,115
2.3700
3.5706
99.723?
12.349
0,2768
99.4657
10,970
1.008
67.401
1.6000
9.6045
99.9664
16.771
0.0336
99.7417
12.494
COR. P
75,6708
19.1602
16,5603
14,9643
12,6808
10,13?1
B.93S6
8,5155
6.05()7
#.1783
2,7«H
0,5303
0,2503
EFFICIENCY - STATED « 99.60
COMPUTED « 99,5393
CONVERGENCE OBTAINED
ADJUSTED NO.RAP EFF, e 98.5852
HMO OF INLET SIZE DISTRIBUTION n 4,U65E»01
8IGMAP or inlet 8IZE DISTRIBUTION o 5.122E+00
LOG.NORMAL GOODNESS OF FIT ¦ 0.984
MHO OF EFFLUENT UNDER NO.RAP CONDITIONS a 3.087E*00
SXGMAP OF EFFLUENT UNDER NO-RAP Conditions « 2.483E+0O
LOG-NORMAL GOODNESS OF FIT s 0.996
precipitation rate parameter under no.rap conditions ¦ 8.92s
SIGMAGB 0.800 WITH 0.100 8NEAKAGE OVER 4.000 STAGES
NTEMP • 1
RMMD d 10.00
RSIGMA a 15.00
CORR'. EFF. ¦ 98.1872
CORRECTED HMD OF EFFLUENT ¦ 3.722E*00
CORRECTED SIGMAP OF EFFLUENT o 3.36SE*00
LOG-NORMAL GOODNESS OF FIT ¦ 0.994
CORRECTED PRECIPITATION RATE PARAMETER o R.fll

-------
UNADJUSTED migration VELOCITIES AND EFFICIENCIES, and DISCRETE outlet MASS loadings
IDEM UNADJUSTED
MIG, VEL.CCM/SECi
3.790ft00
3,«86E*no
3.918E+00
Uf769Ef00
5.9UF + 00
e;om+oo
1,037E*01
l,27«E*01
1.630E+01
2.223E+01
3.146E+01
0,Be2E«ni
6.630E+01
IDE»l UMOJUSTED
EFFICIENCV(X)
S'.360Et01
8,10
-------

SUMMARY TABLE OF ESP OPFRATING *
parameters *nq performance •

DATA SET NUMBER SI *
» ESP PERFORMANCFl EFFICIENCY ¦ 98,1*72 * SC* « «.76«E*0I M«*2/(M#«J/8fC) •
• ELECTRICAL CONDITIONSi
AVG. APPLIED V0LTA6E ¦ 
-------
APPENDIX I
OUTPUT DATA FROM EXAMPLE
618

-------
E.P.A, ESP MODEL
I.E.P.L.-R.T.P. AND SO.R.I.
REVISION I.JAN, J, 107ft
PRINTOUT OF INPUT DATA FOR DATA SET NUMBER 1
DATA ON CARD NUMBER 1
NCNDPT a 15 NDATA a 1
DATA ON CARD NUMBER 2
FULL-SCALE,HOT-SIDE ESP| PLANT B»SCA«J90FT2/1OOOACFMjJeja,JUA/FT2»EST. PROCED.
DATA ON CARD NUMBER 3
NEST a 2 NDIST a 1 NVI s 1 NX a 10 NY S 10 NITER a J NCALC a 1 NRAPD a ) NEFF a 1 NTEHP a 2 NONIO a 2
DATA ON CARD NUMBER a
DL a 2.51000 GRN/ACF PL a 3fc.0000 FT FTAO a 99,60000 X DD a 2270.00 KG/M«*5 EPS a 1.000E+02
VRATIO a 1.2000 US s 0.000220 M»*2/V-SFC FPATH e 1,0000 EBD a 1500000, V/M RHOCGS a 1.90EM0 OHM.CM
DATA ON CARD NUMBER 5
A8NUCKC 1) a 0.00 AZlGGY ( 1) e 0.00 A ZNUMS ( 1) a <1.0
ASNUCKf 2) o 0,10 AZlGGYf 2) a 0,25 AZNUMSC 2) a <1,0
DATA ON CARD NIIMRFP (,
ENDPT( 1) B O.JOft HM EnDPT( 2) a o.aoo UM ENDPT( 5) = 0,700 UM ENOPTf «) =	1.000 UM £NnPT( b) s 1,500 UM
ENDPT t b) s 2,000 MM ENDPT ( 7) = S.000 UM ENDPT f B) a 0, 000 UM ENDPT ( 9) = 5,000 UM ENDF'T (1 0 ) a 7,000 I'M

-------
data on card	number 7
ENDPT(|1) s	10,00(1 UM ENDPTC12) B 15,000 UM ENDPT(13) s 2S.OOO UM ENDPT(1 fl) a 30,000 UM ENDPTC15) a 100.000 UM
DAT* ON CARD	NUMBER 6
PRCUt 1) o	0,0000 X PRCUt 2) ¦ 0.1il79 * PRCUt 3) b 0.5742 X PRCUt U) b 1,00<»2 *
PRCUt 6) "	2,7«93 X PRCU { 7) s 6,5251 X PRCUt 8) » 9,0832 X PRCUt 9) > 11,1362 *
DATA ON CAPO NUMBER 9
PRCU(U) b 15,6255 * PRCU(12) « 20,18#" * PRCUtl3) ¦ 30,9727 x PRCU(10J a J5,«968 X
DATA ON CARD NUMBER 10
NUMSEC ¦ <1 LSECTf 1) « 9 LSECTf 2) c 9 LSECTC 35 « 9 LSECT ( U) » 9
DATA ON CARD NUMBER 11
AS( 13 b a,2120E+0
-------
DATA ON CARD NUMRFR 15
A3< 3) o <112120E+0U FT**2 VDSf J) c 2,91J0E+0U V TCS( 3) = 1,«?O0E + 00 A WLS( 3) o 5.61&0E+0U FT
ACS( 3) a S.0500E-0? IN 63( 3) = U.5000F+00 IN NWS( 3) = 1.2000E+01
DATA ON CARD NUMREP 16
SYS( 3) » 1.5000E+00 IN VGSC 3) = a,3207E+05 FT**3/MJN VGASSC 3) o 3.795AE+00 FT/SfC TEHPS( 3) o 6.2«00E*02 F
PS( 3) b 1 .0000E + 00 ATM VIS9( 3) = 2.8000E-05 KG/M-SEC LINCS( 3) a 1.0000E*00 FT
DATA ON CARD NUMBER 17
AS( U) a 1.2120E+00 FT**2 V0S(  s lta60«E*00 A WLS( fl) b 5.Mfc0E*0« FT
ACS( (I) s 5.U500E-02 IN BSC a) » U.5000E+00 IN NMS( U) s 1.2000E+01
DATA ON CARD NUMBER IB
8YS( a) s a,5000E+00 IN VGSf 
-------
incremental analysts of precipitator performance
FULL-SCALE,HOT-SJDE ESP I PLANT BtSCAa390M'2/1 000ACFM,JaJU,3UA/FT21EST, PROCED,
CALCULATION is in SECTION no. a 1 AND THE SFCTION LENGTH IS s 2.7050 M
COLLECTION ARE* e 3.91TE+03 *2
WIRE TO PLATE o 1.1OJE-01 M
CUBRENT/M n 7.J23E-05 AMP/M
1/2 WIRE Tfl WIRE b 1.IUJE-01 M
TEMPERATURE b 691.667 K
ION MOBILITY « O.8U6E-0O M2/VOLT-8EC
OUST WEIGHT s 1,175E+00 KG/SEC
applied voltage « 3.588e»o« volts
CORONA WIRE RADIUS ¦ 1.38OE-03 H
CURRENT DENSITY a 3,115E-0a AMP/M2
OAS FLOW RATE = 2,0i0E»02 M3/SEC
PRESSURE ¦ 1,000 ATM
MEAN THERMAL SPEED b 6.311E+02 M/SEC
LENGTH INCR. >0,30500000 M
TOTAL CURRENT a 1,220E*00 AMPS
CORONA wire LENGTH b 1.713E+0O M
DEPOSIT E FIELD * 5,9l8E*0« VOLT/N
GAS VELOCITY b 1,15BE+00 M/SEC
VISCOSITY b 2.800E-05 KG/M.SEC
PART, PATH PARAM, b I.15OE-07 N
INPUT EFF./INCR, b 10,22
ROVRI
ERAVG
EPLT
AFID
CMCO
HMD
WEIGHT
DUST LAYER
J(P ART)
JdON)
1,5597
5.139E+05
1.79J8E+05
8,2C«7Efl2
31,1
O.21E-05
O.1UOE-03
1.166E-01
1.35E-06
J.10E-00
1,3610
3.139E+05
1 .7938E + 03
9,on26E*l?
31.1
2.00E-05
7.275E-0O
2.009E-02
8.00E-07
3.11E-00
1.2586
3.139E+05
1.7938E+05
1, 0167Et13
31,1
1.07E-05
2.597E-0B
7.318E-03
6.60E-07
3.ne-ou
l.l'OI
3.139E+05
1 ,7938E*05
1.0750E+13
31,1
6.31E-06
i.a75E-oa
O.151E-03
5.57E-0T
3,11E>00
1,1«18
3,139E+05
1.7938E+05
1.1207E+13
31,1
U.2SE-06
9.762E-05
2.750E-03
U.81E-07
3,ne-ou
1,1060
3,l39E*05
1 .7936E + 05
1.1S66E+13
31,1
3.30E-06
7.003E-05
1 .973E-03
0.21E-07
3.1IE-00
1,0802
3¦139E+05
1.7938E+05
1,18«7E+13
31.1
2.96E-06
5.295E-05
1.O92E-03
3.71E-07
3,HE-00
1,0606
3,lS
-------
CURRENT/m a 8.290E-05 AmP/M
1/2 WIRE TO WIRp o 1.143E-01 M
CURRENT DENSITY
CAS FLOW RATE o
8 3.625E-0U 4MP/M2
2,0«UE*n? HS/SFT
DEPOSIT E FIELD
GAS VELOCITY s
b 6. 8B8E + 0Q VOLT/M
1.15AE*00 M/SEC
TEMPERATURE b 601.
667 K
PRESSURE s
1.000 ATM

VISCOSITY s 2.800E
-05 KG/M-SI-C

ION MOPILJTY b a.
8U6E-0a Mg/VOLT-SEC mFan
thEHMAL
SPEED b 6,
311E + 02 M/SEC
PART,
PATH PARAM. b
1.154E-07
M
DUST WEIGHT b 1.175F+00 KG/SEC
LENGTH INCR.
bO.30500000
M
INPUT
EFF,/INCR, 0
1 a, 22

ROVRI
ERA VG
EPLT
AFID
cmco
MMD
WEIGHT
DUST LAYER
J(P ART )
J(ION)
INCR. NO
1 .0023
2.519E+05
1.4563E+05
1 ,830flEtl3
36.3
1.91E-06
5.231E-06
1 ,a7«E-oa
A.45E-0B
3.62E-0U
1«
1,0018
2.5«9E+05
1 ,«563E»05
1,8313E+13
36,3
1.87E-06
4,625E-06
1 ,3O3E-0«
7.74E-08
3,62E-0a
20
1,001«
2.5«9E+05
1 .U563E + 05
1.8320E+13
36,3
1.8UE-06
4,096E-06
1.15UE-00
7,10E-08
3,62E-0a
21
1,0011
2.5«9E*05
1.U563E+05
1.8325E+13
36.3
1.80E-06
3.63OE-06
1,02«E-0«
6.51E-08
3.62E-04
22
1,0009
2.549E+05
1 ,a563E*05
1.8330E+1J
36.3
1.77E-06
3.230E-06
9.099E-05
5.97E-08
3.62E-04
23
1,0007
2.5«9E*05
1 ,a563Et05
1.8J33E+13
36.3
1.72E-06
2.878E-06
8.097E-OS
5,47E-0B
3.62E-0U
2tt
1,0005
2.5«9E*05
1 . (I563E + 05
1.8336E+13
36.3
1.67E-06
2.561F-06
7.216E-05
5.02E-08
3,62E-04
25
1,000«
2.SU9E+05
1 .U563E + 05
1,8338E+13
36.3
1.62E-06
2.286E-06
6,aaoE-o5
a, 60E-08
3,62E-0a
26
1,0003
2.519E+05
t .4563E+05
1.83«0E+13
36.3
1.57E-06
2.043E-06
5.75UE-05
«.22E-08
3.62E-04
27
CALCULATION IS IN SECTION NO. a U AND THE SECTION LENGTH IS n 2.7«50 H
COLLECTION AREA o 3.917E+03 M2
WIRE TO PLATE * 1.1O3E-01 M
CURRENT/M ¦ 8.524E-05 AMP/M
1/2 WIRE TO WIRE ¦ 1.143E-01 M
TEMPERATURE o 601.667 K
JON MOBILITY B (l.846E-0a M2/V0LT-SEC
OUST WEIGHT « 1.175E+00 KG/SEC
APPLIED VOLTAGE » 2.750E+00 VOLTS
CORONA WIRE RADIUS b 1.38UE-03 M
CURRENT DENSITY ¦ 3.727f-0 THFRMAL SPEED s 6.3I1E+0? M/SEC
TOTAL CURRENT b 1.220E+00 AMPS
C0R0N4 wire LENGTH e 1.71JE+0U m
DEPOSIT E FIELD b 5,9|8E*0a vOLT/m
GAS VELOCITY b 1.158E+00 M/SFC
VISCOSITY s 2 , 800E-05 KG/M-SFC
part, path param, b i.i5uF-07

-------
OUST WEIGHT a 1.175E+00 KG/SEC
LENGTH INCR, 80.30500000 m
INPUT EFF, /1 NCR, ¦ 16a63
ROVRI
ERAVG
EPLT
AFI o
CMCO
HMD
WEIGHT
OUST LAYER
j(Part)
JCION)
INCR,
1,6506
3,I39E+05
1.7938E+05
7.73O0E+12
31.1
0.21E-05
0.126E-03
1.163E-01
1.33E-06
3,10E»00
1
1,010"
3,139E+05
1.7938Et05
9, 0698E +12
31.1
2.05E-0S
7.362E-0A
2,07aE-02
8.35E-07
3,llE-0a
2
1,2861
3.13»F*05
1,7"38E+05
9,9a97E+12
31.1
1.08E-05
2.618E-00
7.376E-03
6,58t"07
3,llE-oa
3
1,2008
3,139E+05
1 .7938E + 05
1,0622E+13
31.1
6.37E-06
1 .082E-00
a, 175E"03
5.56E-07
S.llE-Oa
a
1,1483
3,139E+05
1.7938E + 05
>,!I«0E*13
31.1
0.27E-06
9,81 IE-OS
2,760E»OS
U.81E-07
3.11E-00
5
1,1081
3,139Et05
1,7938E+05
l,15«8Etl3
31,1
3.35E-06
7.035E-05
1.982E-03
U.21E-07
3,1lE«0a
6
1,0792
3,139E+05
1.793SE+05
1,1B58E+ 13
31.1
2.97E-06
5.316E-05
1 ,a98E-03
3.T1E-07
3.11E-00
7
1,0582
3.139E+05
1 .7938E + 05
1,20'3F~ 1 3
31.1
2.68E»06
a,161E-05
1.172E-03
3.2BE-07
3,11E-04
8
1,0029
3,1 39E+05
1.7938E+05
1.2270E+13
31.1
2.08E-06
3.335E-05
9.396E-00
2.92E-07
3.1iE-oa
9
CALCULATION IS IN
3FCTI0N NO. a
2 AND THE
SECTION
LENGTH 18 s
2,7050 M




COLLECTION AREA a J.Q17E+0J M2
WIRE TO PLATE ¦ 1.1O3E-01 M
CURRENT/M a 9.761E-05 AmP/m
1/2 WIRE TO WIRE ¦ 1.103E-01 h
TEMPERATURE a 601,667 K
ION MOBILITY a O.BafcE-Oa M2/VOLT-SEC
OUST WEIGHT o 1.175E+00 KG/SEC
APPLIED VOLTAGE a 3.395E*0a VOLTS
CORONA WIRE RADIUS a 1.J8UE-0J M
CURRENT DENSITY • O.268E-0O AMP/M2
GAS PLOW RATE « 2.0OOE+02 MS/SEC
PRESSURE a 1,000 ATM
MEAN THERMAL SPEED a 6.311E+02 m/SEC
LENGTH INCR. >0,30500000 M
TOTAL CURRENT a 1.672E+00 AMPS
CORONA WIRE LENGTH s l,713E»0O M
DEPOSIT E FIELD a 8.110E+00 VOLT/M
GAS VELOCITY a 1,15BE*00 M/SEC
VISCOSITY a 2.800E-05 KG/M.SEC
PART, PATH PARAM, a 1.150E-07 M
INPUT EFF./INCR, * 16,63
ROVRI
ERAVG
EPLT
aFid
CHCD
MMD
WEIGHT
OUST LAYER
j(Part)
J(ION)
INCR, NO
1,0219
2.970E+05
1.6973E+05
1,8138E +13
02.7
2.38E-06
2.585E-05
7.282E-00
2.08E-07
0.27E-00
10
1,0163
2.970E+05
1.6973E+05
1.8238E+13
«2.7
2.31E-06
2.1S2E-05
6.060E-00
2.23E-07
0.27E-00
11
1,0122
2.970E+03
1.6973E+05
1,8312E+13
02.7
2.20E-06
1 .805E-05
5.066E-00
2,01E»07
0.27E-00
12
1,0091
2,9ToE*05
1.6973E+05
1.8368E+13
02,7
2.1BE-06
1 .520E-05
0.290E-00
1.81E-0T
a,27E-oa
13
1,0068
2.970E+05
1,6973E»05
1.8410E+13
02.7
2.13E-06
1 ,2'oe»05
3.605E-00
1.63E-07
a,27E-oa
la
1,0051
2.970E+05
1.6«>73E*05
1,Baaie+l 5
02.7
2.0BE-06
1.103E-05
3.109E-00
1.07E-07
0.27E-00
15
1,0038
2,970E*05
1.6<>73E + 05
1,80656+13
02,7
2.00E-06
9.009E-06
2.662E-00
1.33E-07
a,27E-oa
16
1,002'
2.970E+05
1.6973E+05
1.B082E+13
02.7
1.99E-06
S.120E-06
2.2B8E-00
1.20E-07
a,27E-oa
17
1,0021
2.970E+05
1,6'7JE+05
1.8095E+13
02.7
1.95E-06
6.999F-06
1.972E-00
1.0BE-07
o,27e»oa
18
CALCULATION Is IN SECTION NO. a 3 AND THE SECTION LENGTH IS a 2,7050 H
COLLECTION AREA a 3.<>17E»03 M2
WIRE TO PLATE m 1.1O3E-01 M
CURRENT/M a 8.290E-05 AmP/m
1/2 WIRE TO wire ¦ l.l«3E-0l H
TEMPERATURE a 601,667 K
ION MOBILITY a U.806E-OU M2/V0LT-SEC
DUBT WEIGHT a 1.175E+00 KG/SEC
APPLIED VOLTAGE o 2,<»13E*0fl VOLTS
CORONA WIRE RADIUS o 1.30OE-O3 M
CURRENT DENSITY a 3.625E-00 AMP/M2
GAS FLOW RATE « 2,0fl«E+02 M3/SEC
PRESSURE o 1,000 ATM
MEAN THERMAL SPEED a 6,311E*02 M/SEC
LENGTH INCR, "0,30500000 m
TOTAL CURRENT a 1,«20E*00 AMPS
CORONA WIRE length a l,7l3E*0a M
DEPOSIT E FIELD a 6.888E*0a VOLT/M
GA8 VELOCITY a 1,15BE*00 M/SEC
VISCOSITY a 2.800E-05 KG/M.8EC
PART, PATH PARAM, a 1.15OE-07 M
INPUT EFF./INCR, a 16,63
ROVRI
ERAVG
EPLT
AFIO
CMCO
MMD
WEIGHT
DUST LAYER
J(PART)
JCION)
INCR, NO
1,0016
2.509E+05
1 .0S63E+05
1,8316E+13
36,3
1.91E-06
5.2U3E-06
1 .077E-00
8,ObE>08
3,62E>00
19
1,0012
2.5O9E+05
1 .0563E + 05
1.8323E+13
36,3
1.87E-06
0.635E-06
1 .306E-00
7.76E-08
3.62E-00
20
1,0009
2.509E*05
1 .0563E + 05
1.8329E+13
36,3
1.8UE-06
O.lOflE-Ofe
1.156E-00
7.UE-08
3.62E-0O
21
1 ,0007
2.509E+05
1 .0563E + 05
1.8333E+13
36,3
1.80E-06
3.6O1E-06
1 .026E-00
6,52E»08
3.62E-0O
22
1,0006
2.509E+05
1 .0563E + 05
1.8336E+13
36,3
1.77E-06
3.235E-06
9,110E-05
5.99E-08
3.62E-00
23
1,0000
2,509E+05
1.O563E+05
1.8338E+13
36.3
l,72E-06
2,878E»06
8.109E-05
5.O8E-0B
3.62E-00
20
1,0003
2.509E+05
1 ,a563F*05
1,83aoE + t3
36.3
1 .67E-06
2.56SE-06
7.226E-05
5.03E-08
3.62E-00
25
1 ,0002
2.5O9E+05
!.0563E+05
I.8301E+13
36.3
t.62E*06
2.288F-06
6,007E"05
U.61E-08
3.62E-00
26
1,0002
2.509E+05
1 .a56SE + 05
1,830JE+13
36.3
1.57E-06
2.0O5F-06
5.760E-05
O.23E-06
3.62E-00
27

-------
CALCULATION IS IN SECTION no, = <1 AND THE SECTION LENGTH IS = J.7U50 M
COLLECTION AREA o 3.917E+03	APPLIFO VOLTAGE n ?t7«;nF*oa VOLTS	TOT&L CURRENT « l.ahOE+OO AMPS
WIRE TO PLATE s 1.1U3E-01 m	CORONA WIRE RADIUS = 1.38aF-03 m	COHONa WIRE LENGTH s 1.713E+0U H
CURRENT/M s 8.52UE-05 AmP/m	CURRFNT DENSITY a 3.727F-0U amP/mj	DEPOSIT E FIELD " 7.082E+oa vOLT/m
1/2 WIRE TO WIRE o 1.1«3E-01 M	GAS FLOW RATE = 2.0aaE*ft2 MJ/SEC	CAS VELOCITY b 1.158E+00 M/SEC
TEMPERATURE b 601,667 K	PRFSStiRE « 1,000 ATM	VISCOSITY a 2.flfl0E-05 KG/M.8EC
ION MOBILITY a a,$a6E-0a Mg/VOLT-SEC	mean THERMAL SPEED ¦ 6,311E*0? m/SEC	PART. PATH PARAM, o 1.15UE-07 M
OU8T WEIGHT s 1.175F+00 KG/SEC
LENG
TH INCR.
oO.30500000
M
INPUT
EFF./INCR. *
16,63

ROVRI
ERAVG
EPLT
AFID
CMCD
MMD
WEIGHT
DUST LAYER
J(PART)
J( I ON)
INCR. NO
1 .0001
2.a06E+05
1.37U8E+05
.9978E*13
37.3
1 .52E-06
1.732E-06
a,880E-05
3.67E-08
3.73E-0a
28
1 ,0001
2,a06E+05
1.37U8E + 05
,9979E*13
37.3
1 .«8E-06
1.561F-06
«.398E-05
3.39E-0R
3.73E-0a
29
1.0001
2,
-------
charging rates fop particle sizes from subroutine chapgn or chgsum
SUM
OF CLASSICAL field and
DIFFUSION
CHARGES USED FOR
particle
charging


INCREMENT no.
q/gsatf FOR INDICATED
particle stzes




0
,5000E-06
0.5500E-06
0.8500E-06
0.1250E-05 0
.1750E-05
0.2500E-05
0.3500E-05
0.1500E-09
J
1.3017
1.3017
1.3017
1.3017
1,3017
1,3017
t,2491
1,2156
2
2.2101
1.9978
1.80B2
1.6561
1,5506
1,1597
1,3931
1 ,3531
3
2.3617
2.1292
1.9129
1.7117
1,6250
1,5248
1,1518
1.1086
(1
2.<1967
2.2119
1.9792
1.7978
1,6691
1,5625
1,1850
1.1392
5
2.5827
2.2778
2.0270
1.8352
1.7001
1.5879
1,5066
1,1591
6
2,6511
2.3273
2.0640
1.8637
1.7231
1.6066
1,5227
1.1733
7
2,7077
2.3679
2,0911
1,8866
1.7H3
1.6212
1,5318
1 ,1640
8
2,7556
2.1021
2.1193
1.9056
1.7563
1.6331
1,5015
1,1926
9
2.7976
2.1317
2.1109
1.9218
1.7690
1.6130
1,5526
1,4996
10
2,8063
2.1650
2.1611
1.9381
1.7606
1,6513
1,5566
1,4996
11
2.6881
2.1935
2.1839
1.9521
1,7909
1.6585
1,5566
1,4996
13
2.9246
2.51B1
2.2013
1.9613
1,7998
1.6585
1,5566
1,4996
13
2.9370
2.5106
2.2167
1.9T51
1,7996
1,6565
1.5566
1,1996
H
2,9862
2.5605
2.2306
1.9619
1,7996
1.6565
1.5586
1,4996
15
3.0127
2.5786
2.2032
1,9819
1.7998
1,6565
1.5586
1,4996
16
3.0370
2.5951
2.2517
1,9819
1,7998
1.6585
1.5566
1 ,1996
IT
3.0593
2.6101
2.2651
1,9819
1,7998
1,6585
1,5566
1 ,4996
IB
3,0801
2.6215
2.2651
t.9619
1,7998
1.6565
1.5566
1 ,4996
19
3,0942
2.6176
2.2651
1.9619
1,7998
1.6585
1,5566
1,4996
80
3,1172
2.6376
2.2651
1.9619
1,7996
1.6585
1,5586
1,4996
21
3,1311
2.6376
2.2651
1,9819
1,7996
1.6585
1,5586
1 ,4996
22
3.1500
2.6376
2.2651
1.98(19
1,7996
1.6585
1,5566
1,4996
BJ
3.1651
2.6376
2.265#
1.9819
1,7998
1,6585
1,5366
1,4996
2a
3.1651
2.6376
2.2651
1.9819
1,7996
1,6585
1.5566
1,1996
25
3.1651
2.6376
2.2651
1.9619
1,7996
1,6585
1,5566
1,4996
26
3.1651
2.6376
2.2651
1.9819
1,7998
1.6565
1.5566
1 ,4996
27
3.1651
2.6376
2.2651
1.9819
1,7998
1.6585
1.5566
1 ,4996
28
3,1651
2.6376
2.2651
1 .9819
1,7996
1.6565
1.5566
1,4996
89
3.1651
2.6376
2,2651
1.9619
1,7996
1.6565
1.5586
1,4996
30
3.1651
2.6376
2,2651
1.9649
1,7998
1.6565
1.5566
1,4996
31
3.1691
2.6376
2.2651
1.9849
1.7998
1.6565
1.5566
1,4996
32
3.1651
2.6376
2.2654
1.9819
1,7996
1.6565
I.5SA6
1.4996
3S
3.1651
2.6376
2.2651
1.9849
1,7996
1.6585
1.556*
1.4996
30
3.1651
2.6376
2.2651
1,9619
t,7998
1.6565
1,5566
1.4996
35
3.1651
2.6376
2.2651
1.9819
1,7998
1.6565
1.5566
1,4996
36
3.1651
2.6376
2.2651
1.9819
1.7996
1.6565
1.5586
1,4996
0
.6000E-05
0.6500E-05
0.1250E-01
0.2000E-04
0.2750E-01
0.65001-04
1
1.1»12
1.1511
1.1299
1,1098
1,0985
1.0613
2
1,3166
1.2621
1.2513
1.2301
1,2168
1.1996
3
1,3668
1.3317
1.3015
1.2758
1,2635
1.2131
1
1.3972
1.3561
1,3263
1 .2991
1,2665
1.2653
5
1.1153
1.3716
1.34J7
1.3138
1,3005
1,2786
6
1.1260
1.3661
1.3522
1.3236
1.3099
1,2871
7
1.1376
1.3916
1.3598
1.3305
1,3166
1,2936
6
1.0151
1.1012
1.3657
1 .3356
1,3216
1.2936
9
1.4512
1.4012
1.3657
1.3356
1,3216
1.2936

-------
10
1 ,«512
1,ooi2
1.3657
1 .3358
1.3216
11
1,0512
1.0012
1.3657
1 .3358
1,3216
12
1,1512
1.0012
1.3657
1.3358
1,3216
13
1.1512
1.0012
1.3657
1.3358
1,3216
10
1.0512
1.0012
1,3657
1 .3358
1,3216
15
1.0512
1.0012
1.3657
1.3356
1,3216
16
1.0512
1.0012
1.3657
1,3358
1,3216
17
1,0512
1.0012
1.3657
1,3358
1,3216
IS
1.0512
1."012
1.3657
1,3356
1,3216
19
1.0512
1.0012
1.36S7
1,3358
1,3216
20
1.0512
1,0012
1.3657
1,3358
1,3216
21
1.0512
1,0012
1.3657
1.3556
1,3216
22
1.0512
1,0012
1.3657
1.3358
1,3216
23
1 .«5l2
1.0012
1.3657
1.3358
1,3216
2«
1.0512
1.0012
1.3657
1.3356
1.3216
25
1,0512
1.0012
1.3657
1.3356
1,3216
26
1,0512
1.0012
1.3657
1.3358
1,3216
27
1,0512
1.0012
1.3657
1.3356
1,3216
26
1,0512
1.0012
1.3657
1.3358
1,3216
29
1,0512
1,0012
1,3657
1,3356
1,3216
30
1,0512
1,0012
1,3657
1,3358
1,3216
31
1,0512
1.0012
1 ,3657
1.3358
1,3216
32
1,0512
1.0012
1,3657
1.3356
1,3216
33
1.0512
1.0012
1,3657
1.3356
1.3216
30
1,0512
1.0012
1,3657
1.3358
1.3216
35
1,0512
1.0012
1,3657
1.3356
1.3216
36
1,0512
1,0012
1.3657
1,3356
1.3216
1,2936
1,2036
1.293b
1,2936
1,2936
1,2936
1,2936
1,2936
1.2936
1,2936
1,2936
1,2936
1,2936
1.2936
1,2936
1.2936
1,2936
1,2936
1,2936
1,2936
1,2936
1,2936
1,2936
1.2936
1.2936
1,2936
1,2936

-------
CHARGE ACCUMULATED ON PARTICLE SIZES In EACH INCREMENT
INCREMENT	CHARGE FOR INDICATED PARTICLE SIZES

0.3000E
06
0 • 5500E-06
0.8300E
06

0.12SOE
0
1
0.39845E
17
0,10717E-16
0.237B6E
16
0
49780E
1
2
0,67495E
17
0. 1640°E-16
0.32963E
16
0
63272E
1
1
0.72736E
17
0,17469E-16
0.34872E
16
0
66567E
1
a
0,76247E
17
0,J8192E-J6
0,360816
16
0
68591E
1
5
0,7BB73E
17
0,18709E-16
0.36952E
16
0
70019E
1
6
0.80963E
17
0.19116E-16
0.37627E
16
0
71108E
I
T
0.R2692E
17
0.19UU9E-16
0.38176E
16
0
71982E
1

o.eaiME
17
0,197J0E-16
0,38635E
16
0
72707E
1
9
O.05U36E
17
0,1"73E-16
0.39029E
16
0
73324E
J
10
0.S6923E
17
0.20246E-16
0.39051E
16
0
73946E
1
It
0,8B199E
1*
0.20481E-16
0,39810E
16
0
70479E
1
12
0,89Sl5E
17
O.20685E-16
0.40131E
16
0
74943E
1
11
0.90306E
17
0.20867E-16
0,40412E
16
0
75359E
1
14
0.9H97E
17
0.21031E-16
0.40665E
16
0
75731E
1
IS
0.92006E
17
0.21179E-16
0.40894E
16
0
75731E
1
16
0.92747E
17
0.21315E-16
0.4M05E
16
0
75731E
1
IT
0.9JU30E
17
0,21441£•16
0.41298E
16
0
75713 E
1
18
0.914
0.50199E-
1 a
0
.12570E-
1
e
0.12309E-
14
0.23931E-14
0.50415E-
14
0
.12620E-
1
9
0.12361E-
14
0,23931E>14
0,504 15EP
14
0
.12620E-
1
10
0,12361E-
14
0,23931E»14
0,50413E*
14
0
.12620E-
1
11
0,1236 IE*
14
0.23931E-14
0,50415E"
14
0
.12620E-
1
12
0.12361E"
10
0.2393JE-J4
0,50415E"
14
0
.12620E-
1
13
0,12361E-
14
0,23931F »14
0,5015
0,38325C>15
0
11421E-15
0.217S2E
13
0,ao911E-15
0.649J7E-13
0
11969E-15
0.2272IE
15
0.42219E-I5
0.67565E-1S
0
12296C-15
0,23283c
13
0.431S3E-IS
0,69053E-15
0
12322E-15
0,23663E
13
0.43819E-15
0,700 06E"15
0
126'1E-13
0.23942E
19
0.44J79E-13
0.70687E-15
0
12826E-13
0.24139E
13
0.44632E-13
0.7
203E>15
0
12936E-15
0.24336E
15
0.4491SE-15
0,7
613E-19
0
13029E-1S
0.24483E
13
0.45149E-1S
0.7
948E-15
0
13U6E-15
0.24608E
13
0.43323E-13
0.7
948E-13
0
131'1E-15
0.24714E
19
0.43323E-1S
0.7
948E.19
0
13236E-13
0,247141
13
0.Q3323E-15
0,7
908E-15
0
13256E-13
0.24710E
13
0.45323E-13
0.7
9«8E-13
0
13236E-13
0.24714E
13
0.45323E-15
0.7
9«8E>13
0
132S6E-15
0.24T1QE
13
0.4S323E-H
0.7
9fl8E»l5
0
13236E-13
0.24714E
19
0.4S323E-15
0.7
948E-15
0
13236E-15
0,J071«E
19
0.43S23E-19
0.7
915
0
13236E-19
0,247tae
19
0.4S323E-15
0.7
9U8E-15
0
13216E-15
0.24714E
13
0.03323E-1S
0.7
9a8E«l5
0
13256E-15
0.24714E
19
0,«3323£-l5
0.7
948E»19
0
132S6E-15
0.24714E
19
0,43I23E*13
0.7
9«8E*15
0
1J236E-19
0,247IflE
13
0.43S23E-15
0,7
948E-13
0
13296E-15
0.24714E
19
0.43323E-15
0.7
9a8E»15
0
13236E-15
0.24714E
19
0.45323E-19
0,7
908E-1S
0
13236E-15
0.24714E
19
0.43323E-13
0.7
948E-15
0
132S6E-IS
0.24714E
19
0.45323E-15
0.7
9«8E«15
0
13256E-15
0.24714E
15
0.43323E-15
0.7
908E-13
0
132S6E-1S
0.24714E
19
0,43323E>13
0.7
9U8E-13
0
132S6E-13
0.24714E
15
0.03323E-15
0.7
948E-15
0
13256E-15
0.2U714E
15
0.43323E-15
0.7
908E-1S
0
13256E-1S
0.24714E
15
0.43323E-13
0.7
948E-19
0
1J256E-13
0.24714E
13
0.03323E-I3
0.7
988E»13
0
13236E-13
0.24714E
15
0.43S23E-I9
0.7
908E-15
0
1II96E-1S
0.2471SE
19
0.41323E-15
0.7
9O0E-13
0
1S296E-19
0.24T14E
19
0,a3323E«19
0.7
908E-13
0
IS296E-19
0.14714E
19
0.43323E-13
0.7
948E-13
0
,>730E»04
0.6300E-04




I'616E-13
0,10787E»ll



0.
*»766r-l3
o,ii96re»
12



0.
22360E-13
n,12«01E-
12



0.
22976E-13
0,126C2E"
12



0.
23225E-13
0,12735E"
12



0,
233'2E"13
0.12843E-
12



0.
23512E-13
0,12905E"
12



0.
23602E-1J
0.12905E-
12



0,
23602E-13
0.12905E-
12



0.
23602E-13
0,12905E"
12



0.
23602E-13
0.12903E-
12



0.
23602E-1S
0.12905E"
12



0.
23602E-13
0.12905E-
12




-------
1«
0, 12JME-
a
o.?J031E-ia
0.50U15F-1 a
0,12620E-1
15
0.12361E-
a
0 ,2J931E"1 a
0.50ai5E»ia
0,12620E"1
lb
0.12361E-
a
ft.23931E-la
0.5oai5F-ia
0,12620E>1
17
0„ 12361E-
a
rt,23931E-la
0,50ai5E-lU
0.12620E-1
18
0.12361E-
a
0,23931E-ia
0,50«15E-1«
0.12620E-1
1«
0.12361E-
a
n.23931E-ia
0.5oai5E-ia
0,12620E-1
30
6,12361E-
a
0,23931E-ia
0.5oui5E-ia
0, 12620E-1
21
0, 1236 IE*
u
0,2393IE-la
o,5oai5E»ia
0.12620E-1
22
0.12361E-
a
0.23931E-1U
0.50ai5E-ia
0 , 12620E>1
23
0.12361E-
a
0.23931E-1U
0.50ai5E-ia
0,12620E«1
21
P,12361E-
a
0.2393lE-ia
0,50415E"1 a
0,126?0E»1
25
0.12S61E-
a
0.2J9SlE-ia
0,50ai5E«ia
0,12620E-1
2b
0,12361E-
a
0.23931E«la
0.50U15E-1U
0,12620E>1
27
0.12361E-
a
0,23931E«1 a
O,50ai5E-l«
0,126?0E»1
28
0.12361E-
a
0,23931E-ia
0.5oai5E«ia
0,12620E"1
20
0.12361E-
0
0.2J931E-1U
0.5oai5E»ia
0.12620E-1
30
0.12361E-
a
0, 23931E-1 a
0.5oai5E»ia
0, 12620E>1
31
0,12361P"
u
fl.23931E.lU
0,5oai5E-ia
0.12620E-1
32
0.12361E-
a
0.23931E-1U
0.50fll5E-ia
0.12620E-1
33
0,12361E«
a
0.23931E-U
0.5oai5E-ia
0, 12620E*1
10
0.12361E-
u
0.21931E-1U
0.S0U15E-ia
0.12620E-1
35
0,12361E-
a
0.23931E-1U
0.5oai5E-ia
0i12620E*1
36
0.12361E-
u
0.23931E-1U
0.5oai5E«ia
0,12620E"1
o\
VC
0.P5602F-1
0.23602F-1
0.23602F-1
0.23602F-1
0.23602E-1
0.25602E-1
0.23602E-1
0.23602E-1
0.23602F-1
0.2S602E-1
0.23602F-1
0.23602F-1
0.23602E-1
0.23602E-1
0.23602E-1
0.23602E-1
0.23602E-1
0.23602E-1
0.23602E-1
0.23602E-1
0.23602E-1
0.23602E-1
0.2S602E-1
0
1 ?9n«5E
12
0
I2905F
12
0
12905F
12
0
12905E
12
0
12905E
12
0
12905E
12
0
12905E
12
0
12905E
12
0
12905E
12
0
12905E
12
0
12905E
12
0
12905E
12
0
12905E
12
0
12905E
12
0
I2905E
12
0
12905E
12
0
12905E
12
0
12905E
12
0
12905E
12
0
12905E
12
0
12905E
12
0
12905E
12
0
12905E
12

-------
PARTICLE SIZE RANGE STATISTICS
CORRECTIONS FOR NONIDEALITIES USING SET NO. 1 OF CORRECTION PARAMETERS
SIZE
CCF
INLET *
OUTLET x
COR, OUTLET
X NO-RAP EFF
, NQ.RAP W
NO-RAB p
COR. EFF,
COR, *
COR, P
J.OOOE-07
2,oio
0. 118
1,2983
0.1215
99,7973
8,088
0,2027
99,7218
7,689
0,2752
5.500E-OT
l ,5io
0,126
10,7597
3.1792
99,1172
6,711
0,5828
99.2799
6,135
0,7201
8.500E-07
1.3U3
0.135
12.2801
1.1356
99.3102
6,565
0,6518
99.0820
6,118
0,9180
1.250E-06
1,232
0, T13
15,7106
6,7917
99,a915
6,889
0,5085
99.0803
6,116
0.9197
1.750E-06
1.166
1.027
15.2128
7,1556
99,6579
7,106
0,3121
99.2987
6.1T0
0,7013
2.500E-06
1,116
3,776
29,6112
15.1221
99,8187
8,231
0,1813
99.6056
7.220
0,3911
3,500E«06
1 ,083
2,958
1 0,9iiJ0
10,5675
99,9116
9,216
0,0851
99.6550
7,395
0,3150
1,500E»06
1 ,060
1,653
3.2263
7.7655
99,9519
10,050
0,0151
99.5152
7,031
0,1518
6,000E»06
1 ,018
1.9H
0.1661
11.2070
99,9911
12,761
0,0056
99.1)16
6.750
0,5651
6.500E-06
1,03"
2.575
0.0991
11.0388
99,9991
15.168
0,0009
99,586!
7.157
0,1139
1.250E-05
1.023
1.559
0.0196
9.89BJ
99.9999
21,199
0,0001
99,7903
8.041
0,2097
2.000E-05
1.015
10.788
0.0163
7.5397
99.9999
33,350
0,0001
99.9J25
9,523
0,0675
2.750E.05
l.Otl
a.52«
0.0191
1.5366
99,9999
15,181
0,0001
99.9672
10.161
0,0328
6.500E-05
l ,ooi
61,503
0.2771
3.0171
99,9999
103,896
0.0001
99.9955
13,050
0,0015
EFFICIENCY -
iTATEO o
99,86
COMPUTED •
99,8568
CONVERGENCE
OBTAINED



ADJUSTED NO.RAP EFF, s 99t9769
HMD OF INLET SIZE DISTRIBUTION a 5.172E+01
816HAP OF IN LET SIZE DISTRIBUTION m 5.5aZE+OO
\.OG«NORhAL GOODNESS OF FIT m 0.992
HMO OF EFFLUENT UNDER NO-RAP CONDITIONS • 1.5BOE+00
SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS o 1.850E+00
LOG.NORMAL GOODNESS OF FIT ¦ 0,992
precipitation rate parameter under no.rap conditions ¦ 10,922
SIGMAGB 0.000 WITH 0,000 SNEAKAGE OVER 4.000 STAGES
NTEHP e 2
RHMD B 6,00
RSIGHA o 2,50
CORR, EFF, c 99,903a
CORRECTED HMO OF EFFLUENT o 1.166E+00
CORRECTED SIGHAP OF EFFLUENT o 2.TUE + 00
LOG-NORMAL GOODNESS OF fit o 0,996
CORRECTED PRECIPITATION RATE PARAMETER e 9,06

-------
UNADJUSTED MIGRATION VELOCITIES AND EFFICIENCIES# AND DISCRETE OUTLET MASS LOADINGS
IDEAL UNADJUSTED
IDEAL UNADJUSTED
NO.RAP
CAPPING PUFF
NDoRAPtRAP PUFF
RAPPING PUFF
PARTICLE
MIC, VEL.(CM/SEC)
EFFICIENCY!*)
DM/DLOGD(*G/DSCM)
DH/nuOGD(MG/DSCM)
DM/OLOGD(«G/DSCM)
DISTRIBUTION X)
DIAH,(M)
3,611E*00
9.372E+01
1.26UE-01
U.522E-0?
1 .716E-01
1 .U58E-01
J.OOOE-07
3.415E+00
Q.271E+01
1.2O7E+00
3.058E-01
Ufeojr+oo
7,960E-01
5.500E-07
3.730E+00
9.U27E+01
?,323E+00
9.U88E-01
3.272E+00
1,57UE*0A
B.500E-07
0.326E+00
9.637E+01
2.615F+00
2,1IflE+on
<1,729E + 00
3.988E+00
1 ,25nE.06
5.161E+00
9.809E+01
3.568E+00
3.705E+00
7.313E+00
5,012E*00
1.750E.06
6,«8E*00
9,20flf+00
4.500E-06
1.276E+0I
9.999E+0 1
9,3UAE"02
9.306E+00
9,399E + 00
1 .O57E+01
6.000E-06
1.S17E+0J
1,000E*02
l,87SE-02
8,715E + 00
8.730E+00
1,UUhE+01
8.S00E-06
2,150E+01
1,000E+02
3.259E-03
6.889E+00
6,892E + 00
1•299E+01
1.250E-05
3.335E+01
1.OOOE+02
6.121E-03
U.165E+00
a.lTlEtOO
9.098E+OO
2.000E-05
4.51BE+01
1,OOOE+02
7.192E-03
2.378E+00
2.386E+00
2.017E+00
2.750E-05
1.039E+02
1,000E*02
1.55JE-02
7.072E-01
7.227E-01
S.961E+00
6.500l-0<>
c\
u>

-------
SUMMARY Table or ESP OPERATING
PARAMETERS and PERFORMANCE
DATA SET NUMBER 1
ESP PERFORMANCE! EFFICIENCY n 99,
-------
PARTICLE SIZF RANGE STATISTICS
CORRECTIONS FOR NONIOEALITTES USING SET NO. ? OF CORRECTION PARAMETERS
SIZE
CCF
tnlft *
OUTLET *
COR. OUTLFT
t NO-RAP EFF
, NO-RAP W
NO-RAP P
COP. EFF.
COR, w
COR, P
3.000E-07
2,0(10
0.108
0,8050
0,000(1
99,1832
6,271
0.8168
98.9080
5.900
1,0520
5.500E-07
1.510
0,126
5.1395
2.0736
98,1909
5,233
1.8091
97.7a55
0.90fc
2,2505
8.500E-07
1,303
0.135
5.9383
3.2600
97,9515
5,071
2.0185
97.0881
0.613
2,9119
1.250E-06
1,232
0,713
8.6366
5.7811
98,1831
5,228
1.8166
96.8097
1.510
3,1503
1,750E-06
1,166
1,027
10,2329
7.029?
98,5013
5,001
1.1957
97.3396
0 . 730
2.660O
2.500E-06
1,116
3.776
28,3510
17.6670
98,8733
5,051
1.1267
98.1820
5.227
1.8180
3.500E-06
1.083
2.958
17.3290
13.1009
99,1209
6,175
0.8791
98.279)
5.299
1 ,7209
0.500E-06
1 ,06a
1.653
8,6612
9.0072
99.2117
6,317
0,7883
97,8828
5.028
2,1172
6,000E-06
1 .008
1 .911
5.0679
10.9003
99,6027
7,211
0.3973
97.7872
0.971
2,2128
8.500E-06
1,031
2.575
7.8180
11.8976
99,5141
7,032
0.1556
98.2019
5.211
1,7951
1,250E-05
1,023
1.559
1.8762
8.7026
99,9382
9,639
0.0618
99,2583
6,396
0,7017
2,OOOE-OS
1,015
10,788
0.0757
6.1063
99,9989
11.9(19
0.0011
99.7801
7,982
0.2199
2.750E-05
1.011
1.521
0.0030
1.2385
99,9999
05.181
0.0001
99.8936
8,929
0,1061
6.500E-05
1,001
61.503
0.0(126
2.1321
99,9999
103,896
0.0001
99.9853
11 .515
0,0107
EFFICieNCV - !
BTATED a
99.86
COMPUTFD b
99,8568
CONVERGENCE
OBTAINED



ADJU8TED NO-RAP EFF. " 99.8099
MHO OF INLET SIZE DISTRIBUTION c 5.172E+01
SIGMAP OF INLET SIZE DISTRIBUTION a 5-,5O2E*00
LOG-NORMAL G00DNE8S OF FIT o 0,992
HMD OF EFFLUENT UNDER NO-RAP CONDITIONS o 2,162E*00
m	SIGMAP OF EFFLUENT UNDER NO-RAP CONDITIONS o 2.095E+00
u	LOG.NORMAL GOODNESS OF FIT a 0,996
w	precipitation rate parameter under no-rap conditions ~ e.iei
SIGMAGB 0,250 WITH 0,100 SNEAKAGE OVER a,000 STAGES
NTEMP o 2
RMMD a 6,00
RSIGMA o 2,50
CORR, EFF, a 99,611"
CORRECTED HMD OF FFFLUENT e 1.382E+00
CORRECTED SIGHAP 0' EFFLUENT o 2.56TE+00
LOG-NORMAL GOODNES8 OF FIT « 0,999
CORRECTED PRECIPITATION RATE PARAMETER » 7.2tt

-------
UNADJUSTED MIGRATION VELOCITIES and EFFICIENCIES# and DISCRETE OUTLET mass LOADINGS
IDEAL UNADJUSTED
IDEAL UNADJUSTED
NO-RAP
RAPPING PUFF
NO»RAP+RAP PUFF
(JAPPING PUFF
PARTICLE
MIC, VELi(CH/8EC)
EFFICIENCY(X)
DH/DLQGD(H6/DSCM)
0M/Dl0G0(MG/DSC»O
DM/DLOGD(MG/DSCM)
DISTRIBUTIONCX)
DI AM,(M)
J.611F + 00
9 a 372E~ fl I
5.093E-01
1 .U67E-01
6.560E-01
i.asee-oi
3.000E-07
3.U15E+00
9.271E+01
U.028E+00
9.917E-01
5.019E+00
7.960E-01
5.S00E.07
S.7J0E+00
9.U27E+01
7.301E+00
3.0T7E+00
1.038E+01
1.37UE+00
8.500E-07
0.326E+00
9.637E+0I
9.3U1E+00
6.8S8E+00
1.620E+01
3,988E»00
1.250E.06
5,161E + 00
9,ao«>E+oi
1.560E + 01
1.213E+01
2.775E+01
5,012E*00
1.750E-06
6,U8UE*00
9,'J1E*01
J,0i6E+01
i.eeiE+ot
a,900
3¦961E+00
6.500E.05
CT»
u>

-------

SUMMARY table or fsp operating *
PARAMETERS AKln PERFORMANCE *

DATA SET NUMBER 2 *
* ESP PERFORMANCE! EFFICIENCY o 99.611U * SCA a 7.6676*01 M»#2/(H«*J/SEC) •
• ELECTRICAL CONDITIONS!
AVG. APPLIED VOLTAGE o J,161E+0« V *
AVG. CURRENT DENSITY o 36,8a NA/CM*#2 •
RESISTIVITY a 1.900E+10 OHM.CM *
• SIZE DISTRIBUTIONS!
INLET mmd » 5.172E+01 UM INLET SIGHAP b 5.5«2E»00 •
OUTLET MMD » 0.382E+00 UM OUTLET SIGMAP s 2.567E+00 *
* NONIDEAL PARAMETERS!
GAS SNEAKAGE FRACTION a 0,10 /SECTION GAS VELOCITY SIGHAG = 0,25 •
RAPPING HMD b 6.0006+00 UH RAPPING 8IGMAP a 2.500E+00 *
STOP Olllll

-------
TECHNICAL REPORT DATA
(Please read luunictions on the reverse before completing)
1 REPORT NO 2
EPA-600/7-78-111b
3 RECIPIENT'S ACCESSION NO
j title ano subtitle ^ Mathematical Model of Electrostatic
Precipitation (Revision 1): Volume n. User Manual
5 REPORT OATE
June 1978
6 PERFORMING ORGANIZATION CODE
7 AUTHOR(S)
Jack R. McDonald
8 PERFORMING ORGANIZATION REPORT NO
SORI-EAS-7 8 —101
3540-6
9 PERFORMING ORGANIZATION NAME AND ADDRESS
Southern Research Institute
2000 Ninth Avenue, South
Birmingham, Alabama 35205
10 PROGRAM ELEMENT NO
1AB012; ROAP 21ADL-027
11 CONTRACT/GRANT NO
68-02-2114
12 SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13 TYPE OF REPORT AND PERIOD COVERED
Revision: 6/75-2/78
14 SPONSORING AGENCY CODE
EPA/600/13
15 supplementary notes !ERL_RTp project officer is Leslie E. Sparks, Mail Drop 61, 919/
541-2925. EPA-650/2-75-037 was the initial report.
is abstract^^ rep0rt. gives a comprehensive description of how to use the computer
program which performs the calculations in the mathematical model of electrosta-
tic precipitation, and instructs in the proper usage of the model. It describes in
detail input and output data associated with the computer program, and presents
the data in various forms covering the different uses of the model. It compares the
predictions of the model with experimental data and discusses the agreement ob-
tained. It describes the various applications of the model and demonstrates them
in detail. It discusses applications of the model for troubleshooting and sizing of
precipitators, emphasizing throughout the precautions to be taken in using the
model.
17 KEY WORDS ANO DOCUMENT ANALYSIS
a DESCRIPTORS
b IDENTIFIERS/OPEN ENDED TERMS
c COSATl Field/Croup
Air Pollution
Dust
Electrostatic Precipitation
Mathematical Models
Computer Programs
Maintenance
Size Determination
Air Pollution Control
Stationary Sources
Particulates
User Manual
Troubles hooting
13B
11G
13H
12A
09B
15E
14B
13 DISTRIBUTION STATEMENT
Unlimited
19 SECURITY CLASS (This Report}
Unclassified
21 NO OF PAGES
645
20 SECURITY CLASS (This page}
Unclassified
22 PRICE
EPA Form 2220-1 (9 73)
636

-------